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Abstract

The brain's structural network follows a hierarchy that is described as rich club

(RC) organization, with RC hubs forming the well-interconnected top of this hierar-

chy. In this study, we tested whether RC hubs are involved in the processing of hier-

archically higher structures in stimulus sequences. Moreover, we explored the role of

previously suggested cortical gradients along anterior-posterior and medial-lateral

axes throughout the frontal cortex. To this end, we conducted a functional magnetic

resonance imaging (fMRI) experiment and presented participants with blocks of digit

sequences that were structured on different hierarchically nested levels. We addi-

tionally collected diffusion weighted imaging data of the same subjects to identify RC

hubs. This classification then served as the basis for a region of interest analysis of

the fMRI data. Moreover, we determined structural network centrality measures in

areas that were found as activation clusters in the whole-brain fMRI analysis. Our

findings support the previously found anterior and medial shift for processing hierar-

chically higher structures of stimuli. Additionally, we found that the processing of

hierarchically higher structures of the stimulus structure engages RC hubs more than

for lower levels. Areas involved in the functional processing of hierarchically higher

structures were also more likely to be part of the structural RC and were furthermore

more central to the structural network. In summary, our results highlight the potential

role of the structural RC organization in shaping the cortical processing hierarchy.
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1 | INTRODUCTION

One of the most intriguing properties of the brain's connectome is the

rich club (RC) phenomenon (van den Heuvel et al., 2012; van den

Heuvel & Sporns, 2011). The RC consists of highly connected areas or

nodes, that is, hubs, which are also particularly well-connected with

each other (Colizza et al., 2006), remarkably at the expense of high

energetic costs (Collin, Sporns, et al., 2014; Harriger et al., 2012; van

den Heuvel et al., 2012). Following its first discovery in the human

connectome, the RC organization was consistently found as a
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structural network property across different individuals and age

groups (Ball et al., 2014; Grayson et al., 2014; Kocher et al., 2015;

Riedel et al., 2022; Sporns, 2013). Van den Heuvel and Sporns (2013)

theorized that the RC serves as a global workspace that integrates

information from many different areas with unparalleled efficiency

(Crossley et al., 2013; Harriger et al., 2012; Hermundstad et al., 2013;

Zamora-L�opez et al., 2010). However, since the RC organization as a

graph theoretical property is foremost a mathematical construct

(Griffa & van den Heuvel, 2018; Sporns, 2011), its functional role has

yet to be clarified.

A strong argument in favor of the functional significance of the

structural RC comes from clinical observations (for a review, see Griffa

et al., 2013). Thus, changes in structural RC organization were found

for autism and attention–deficit/hyperactivity disorder (Ray

et al., 2014), Alzheimer's disease (R. Cao et al., 2020; Lee et al., 2018;

Yan et al., 2018), bipolar disorder (Collin et al., 2017; O'Donoghue

et al., 2017; Reavis et al., 2020; Wang, Deng, et al., 2019), and schizo-

phrenia (Bassett et al., 2008; Collin et al., 2017; Collin, Kahn,

et al., 2014; Reavis et al., 2020; van den Heuvel et al., 2013). Also, stud-

ies in nonclinical populations support a link between the structural RC

organization and individual cognitive abilities (Baggio et al., 2015;

Bathelt et al., 2018; Kim et al., 2016; Ma et al., 2017; Solé-Casals

et al., 2019). Together, these observations point toward a very impor-

tant function of the structural RC without specifying it in detail.

To understand the underlying function of the RC, Gollo et al.

(2015) proposed that the RC organization enables the brain to pro-

duce slower and more stable dynamics in the rich and densely inter-

connected core while peripheral nodes of the network showed faster

fluctuations. This multiscale temporal organization is crucial for the

ability to process incoming stimuli by segregating or integrating hierar-

chically nested stimulus structures (Golesorkhi, Gomez-Pilar, Zilio,

et al., 2021). These stimulus structures are omnipresent in our envi-

ronment: Every action sequence toward a goal (Fitch &

Martins, 2014; Grafton & Hamilton, 2007; Hamilton & Grafton, 1993;

Wakita, 2014), every piece of music (Farbood et al., 2015) or para-

graph of text (Lerner et al., 2011) requires hierarchical processing (for

a review, see Jeon, 2014). A prominent hypothesis is that the brain's

intrinsic hierarchical structure enables it to encode, decode, and pro-

cess hierarchical structures in our environment (Botvinick, 2008;

Hamilton & Grafton, 1993). Evidence in favor of this correspondence

has been established by anatomical gradients in the frontal brain.

Thus, a temporally organized processing gradient was suggested that

follows an anterior–posterior axis (Badre & Nee, 2018; Chanes &

Feldman Barrett, 2016; Dixon et al., 2017; Fuster, 2001; Hilgetag

et al., 2016; Kiebel et al., 2008; Koechlin & Summerfield, 2007;

Sanides, 1964), and a lateral to medial/midline gradient through the

frontal cortex for the processing of hierarchically higher levels

(W. H. Alexander & Brown, 2018; Badre & Nee, 2018).

Excitingly, it is unclear and remains to be investigated whether

the RC architecture discussed above may underlie or correspond to

these anatomical gradients. For instance, medial structures processing

hierarchically higher structures in the stimulus (J. Chen et al., 2017;

Hasson et al., 2015) were reliably demonstrated to be RC hub areas

(Q. Cao et al., 2013; Z. Chen et al., 2013; Huang et al., 2015; Riedel

et al., 2022; Wang, Zhan, et al., 2019). However, the concept of a

hierarchal processing gradient has not yet been empirically tested

with relation to the RC architecture of the brain.

Against this background, in the present study we investigated

whether the processing of hierarchically organized stimuli corre-

sponds to the structural RC architecture and anatomical gradients of

cortical processing hierarchies.

To this end, we collected diffusion weighted imaging (DWI) data

of participants and used a combined diffusion tensor imaging (DTI)

and generalized Q-sampling imaging (GQI; Yeh et al., 2010) approach

(de Lange et al., 2023) to identify the RC hubs in a group average con-

nectome. During a functional magnetic resonance imaging (fMRI) ses-

sion, the same group of participants saw nested, hierarchically

structured digit sequences. Finally, we integrated the structural and

functional results using two different approaches: First, by using the

structurally defined network nodes and hubs as regions of interest

(ROIs) for the analysis of the subject-level fMRI data. Secondly, we

analyzed the structural network centrality in areas that were identified

as significant clusters in the functional whole-brain analysis to further

investigate the relationship between cortical function and the under-

lying network structure. Both of these methods of integration define

their group-wise independent variables (structural ROIs and function-

ally identified clusters) and subject-level dependent variables (fMRI

data and structural network centrality) crossmodally, thus avoiding

the problem of circularity (Kriegeskorte et al., 2009).

We had two hypotheses: processing hierarchically higher struc-

tures of the stimulus (I) involves RC hubs more than other nodes and

(II) anterior and/or medial regions more than posterior and/or lateral

areas of the frontal cortex.

2 | MATERIALS AND METHODS

2.1 | Participants

Data of 48 right-handed participants (32 females, M = 21.75,

SD = 2.74 years; range = 18–28 years) were collected in this study.

Four participants had to be excluded due to technical difficulties.

Additional participants had to be excluded due to an inadequate per-

formance in the experiment (one participant) or movement during the

experiment that exceeded 1.5 times the voxel size (3.3 mm) in one

direction within a run (three participants). Consequently, N = 40

(29 females, M = 21.73, SD = 2.75 years; range = 18–28 years) sub-

jects were included in the analysis. All subjects gave informed written

consent approved by the University of Münster Research Ethics Com-

mittee in accordance with the declaration of Helsinki. None of the

participants reported any history of neurological or psychiatric dis-

eases or any ferromagnetic material inside their bodies. Participants

had (corrected-to-) normal vision and were right-handed (M = 84.85,

SD = 16.07, range = 30–100) as assessed by the Edinburgh Handed-

ness Inventory (Oldfield, 1971). They received money or course credit

as remuneration for participating in the experiment.
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2.2 | Stimuli

Subjects were presented with sequences of digits made up of the

numbers 4, 5, 6, 7, 8, 9, and 0 (for task instructions, see Section 2.3).

Digits 1–3 were excluded due to evidence for different neural proces-

sing of these numbers in humans (Goffin, 2019). Importantly, only one

digit was presented on screen at a time. The nested digit sequences

were constructed from chunks of subsequently presented digits of

varying length depending on the experimental condition (see below).

Additionally, digit sequences were pseudorandomly interrupted by

targets which required a response (button press) by the participants

to ensure their constant attention. Target trials were characterized by

the presentation of the number zero due to this digit's special role on

the number scale (Brysbaert, 1995; Nieder, 2016; Pinhas & Tzel-

gov, 2012).

The experimental design comprised four conditions: (1) Single,

where the transition probability between all digits was equal (i.e., no

digit allowed an above-chance prediction of the subsequent one);

(2) Triplet, in which the digits appeared in predefined chunks of 3

(4-5-6, 6-5-4, 7-8-9, and 9-8-7); (3) Nonet, with predefined chunks of

nine digits created by repeating a triplet three times each (4-5-6–

4-5-6–4-5-6, 6-5-4–6-5-4–6-5-4, 7-8-9–7-8-9–7-8-9 and 9-8-7–

9-8-7–9-8-7); and finally (4) Complete, where subjects were presented

with the complete sequence of 36 numbers the other conditions were

nested in (4-5-6–4-5-6–4-5-6—6-5-4–6-5-4–6-5-4—9-8-7–9-8-7–

9-8-7—7-8-9–7-8-9–7-8-9) (Figure 1a). The nested hierarchy of this

sequence was chosen to resemble the structure and subsequent divi-

sion of the natural stimuli used previously to analyze temporal recep-

tive windows (TRW; Farbood et al., 2015; Hasson et al., 2008, 2010;

Lerner et al., 2011). Each condition was presented five times during

the main experiment (divided into 20 experimental blocks with one

condition presented per block) and once each during a preceding

training session.

Transition probabilities of Single digits, Triplet, and Nonet chunks

were balanced using concatenated de Bruijn sequences of the order of

two (de Bruijn, 1946), creating ideal pseudorandom sequences (Aguirre

et al., 2011) of 144 digits. Each sequence was completed by 18 pseu-

dorandomly inserted zeros (targets), which occurred at 12.5% of transi-

tions on a chunk level, and neither in the first three trials of each block

nor in direct succession. For each condition, six different digit

sequences were created. Then, these unique sequences were randomly

assigned to each training and experimental block to avoid the repetition

of sequences within the same condition. The creation of all digit

sequences and balancing of transition probabilities was done using

MATLAB (Version 9.6.0 [R2019a]; The MathWorks Inc., 2019). For the

creation of the de Bruijn sequences, we used the MATLAB-based de

Bruijn sequence generator (Brimijoin & O'Neill, 2010).

Stimuli were presented using Neurobs Presentation software

(Version 20.3, Neurobehavioral Systems, Inc., Berkeley, CA, www.

neurobs.com). “Microsoft JhengHei Light” was chosen as the font as

it represented the best balance between readability and minimization

of relative pixel overlap (Wong & Szücs, 2013). Digits were presented

at a visual angle of approximately 1.29� in very light gray, RGB =

(230, 230, 230), on a dark gray background, RGB = (40, 40, 40).

2.3 | Procedure

The experiment was divided into two sessions in the MRI scanner that

were completed on two separate days: the fMRI-task day and the

F IGURE 1 Experimental paradigm on the functional magnetic resonance imaging (fMRI)-experiment day. Example sequences for the four
conditions. (a) Colors show nested hierarchical structure. (b) Presentation of digit sequence. Participants had to press a button when a zero was
presented.
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DWI-rest day (Figure 2). The order of sessions was counterbalanced

across the group. On average 7.58 days (SD = 6.05 days) passed

between sessions.

On the fMRI-task day, participants saw 24 blocks of the digit task,

four blocks in the training outside the scanner, and then 20 blocks

during the experiment in the MR scanner. Every participant was

assigned a different order of blocks, with the first blocks in training

and the main experiment counterbalanced across participants

between the four conditions. The training (including all four condi-

tions) and the main experiment started with the same condition. The

block order was pseudorandomized using adjusted de Bruijn

sequences to control that the transition probabilities between each

condition were the same, but two blocks of the same condition could

never be presented directly after each other. Each of the four blocks

of the training and the 20 blocks of the main experiment consisted of

162 trials in total. At the start of each block, a fixation cross was pre-

sented for a block-specific jittered duration of 6370–7950 ms. The

fixation cross blinked three times in the rhythm of number presenta-

tion signaling the approaching start of the next block. Each trial took

700 ms, consisting of a 400 ms digit presentation followed by 300 ms

of a blank screen. If a zero was presented, the participant had the

whole 700 ms to press the response button with the right index finger

(Figure 1b). The experiment continued regardless of the response

without feedback. Additionally, the main experiment contained a

break of 1 after every five blocks, where the participants were

informed about their progress in the experiment. To motivate

participants, they could earn extra money/course credit when they

responded to the zeros. At the end of the experiment, they were

notified about the amount of additional reward they won. In total, the

participants spend approximately 60 min in the scanner during the

fMRI-task day.

For the DWI-rest day, measurements included an anatomical

T1-weighted image (approx. 5 min), multiple diffusion-weighted

(DW) images and non-DW images (approx. 15 min; see Section 2.4)

and a resting-state fMRI scan (approx. 8 min). Participants were asked

to remain as still as possible for the duration of the measurements.

We presented the participants with a fixation cross during the

resting-state fMRI scans, which is recommended for resting-state

measurement (Agcaoglu et al., 2019; Patriat et al., 2013; van Dijk

et al., 2010). The total scanner time on the DWI-rest day was about

30 min.

All stimuli were projected on a screen that was positioned behind

the scanner bore. Participants viewed the screen via an adjustable 45�

mirror. Movements were minimized with form-fitting cushions. To

reduce scanner noise, ear plugs and noise-cancelling headphones

were provided.

2.4 | MRI data acquisition

Brain images were recorded with a 3 T Siemens Magnetom scanner

(Siemens, Erlangen) using a 20-channel head coil. Functional blood-

F IGURE 2 Diagram of the experimental procedure. DWI, diffusion weighted imaging; EPI, echo planar imaging; FOV, field of view; MB,
multiband; MPRAGE, magnetization prepared rapid acquisition gradient echo; TE, echo time; TR, time of repetition. Note that the order of the
two sessions (functional magnetic resonance imaging [fMRI]-task and DWI-rest) were counterbalanced across participants.
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oxygen-level-dependent (BOLD) images on both days were acquired

parallel to the anterior commissure/posterior commissure line. We

used a T2*-weighted simultaneous multi-slice echo-planar imaging

(SMS-EPI; 94 � 94 data acquisition matrix; 210 mm field of view

[FOV]; 57� flip angle; time of repetition [TR] = 1000 ms; echo time

[TE] = 34 ms). Each volume consisted of 66 adjacent axial slices with

a slice thickness of 2.2 mm, a gap of 0.11 mm (5%), and a voxel size of

2.2 � 2.2 � 2.2 mm3. Slice acquisition and multislice mode were

interleaved. The acceleration factor was 6. The functional acquisition

on the fMRI-task day was completed in four runs between which the

participants had a 1-min break.

Structural reference images during both days were acquired for

each participant using a standard Siemens 3D T1-weighted MPRAGE

sequence for a detailed reconstruction of anatomy with isotropic

voxel size (1 � 1 � 1 mm) in a 256-mm FOV (256 � 256 matrix;

192 slices; 8� flip angle; TR = 2130 ms; TE = 2.28 ms).

For DWI, we applied the parameters of the imaging sequences

used in the Marburg-Münster Affective Disorders Cohort Study

(Vogelbacher et al., 2018). Imaging started with a gradient echo field

map (320 mm FOV; 60� flip angle; TR = 616 ms; TE1 = 5.19 ms;

TE2 = 7.65 ms; 56 slices, slice thickness = 2.5 mm; 0 mm gap; voxel

size 2.5 � 2.5 � 2.5 mm3; interleaved slice acquisition). This was fol-

lowed by two times 30 DW images with a b-value of 1000 s/mm2 and

in total five non-DW images (b = 0 s/mm2), that had the same parame-

ters except for their b-value (320 mm FOV; initial rotation �90�;

TR = 7300 ms; TE = 90 ms; 56 slices, slice thickness = 2.5 mm; 0 mm

gap; voxel size = 2.5 � 2.5 � 2.5 mm3; interleaved slice acquisition;

GRAPPA acceleration factor = 2). DWI was completed by a reverse

phase encoding sequence (320 mm FOV; initial rotation �90�;

TR = 7300 ms; TE = 90 ms; 56 slices, slice thickness = 2.5 mm; 0 mm

gap; voxel size = 2.5 � 2.5 � 2.5 mm3; interleaved slice acquisition;

GRAPPA acceleration factor = 2).

2.5 | fMRI preprocessing

Preprocessing of functional and anatomical data was performed using

the Statistical Parametric Mapping software (SPM12; The Wellcome

Centre for Human Neuroimaging, London, UK) implemented in

MATLAB (Version 9.10.0 [R2021a]; The MathWorks Inc., 2021). Pre-

processing included manual reorientation to MNI space (Montreal

Neurological Institute, Montreal, QC, Canada), slice time correction to

the temporal and spatial middle slice (slice 34), realignment to the

mean EPI image, and co-registration of the functional images to

the individual structural scans. The subjects' co-registered anatomical

(T1) scans were then segmented into native space tissue components.

To this end, we used DARTEL (Ashburner, 2007) implemented in

SPM12 with the default settings to create a group-specific template.

Individually created flow fields were then used to normalize the func-

tional images to MNI space. Finally, a Gaussian kernel of 8 mm3 full-

width at half-maximum was applied by DARTEL to smooth the data. A

160 s temporal high-pass filter was applied to remove low-frequency

noise from the functional images' timeseries. To pre-whiten the data

and correct for temporal autocorrelations, we applied the FAST model

as recommended for TR ≤ 1400 ms (Corbin et al., 2018).

2.6 | Network reconstruction

To be able to analyze the structural network of the brain, the white

matter network has to be reconstructed from the DW images to then

determine the structural connectivity matrix describing this network.

This reconstruction of the DWI-based structural connectivity matrices

was done with the Connectivity Analysis TOolbox (CATO, v3.1.2.; de

Lange et al., 2023). To this end, additional (preprocessing) steps had

to be performed on the anatomical (T1) and DW images.

First, cortical surface reconstruction from the T1 images was per-

formed using recon-all from FreeSurfer (v7.2.0; Fischl, 2012). This

processing step was necessary as the T1 images are captured in voxels

that do not directly contain the information of the brain's location and

surface structure. It also included the automatic parcellation of the

brain's surface according to the Desikan–Killiany atlas (Desikan

et al., 2006). To ensure the quality of the anatomical reconstruction

and parcellation, we applied the quality control protocol used by the

ENIGMA consortium (https://enigma.ini.usc.edu/). Thus, we extracted

the cortical thickness (in mm) and the surface area (in mm2) of every

parcel according to the Desikan–Killiany atlas of each participant to

identify outliers, which might indicate issues in the parcellation but

could also just reflect anatomical variability. Then, the parceled corti-

cal surfaces of every subject were visually inspected internally, for

accurate segmentation between gray and white matter and tracing of

sulci, and externally, for successful differentiation of areas, and for

general parcellation errors by one of the authors (FM) and three stu-

dent assistants. No participants had to be excluded based on the

results of this quality control. Thus, we ended up with parcellated cor-

tical surfaces of all 40 participants.

Second, to merge the 60 DW and five b0 images per participant,

we used fslmerge from FSL 6.0 (Jenkinson et al., 2012; CATO uses FSL

to prepare the DWI data). The pipeline included a susceptibility correc-

tion using FSL topup (Andersson et al., 2003; Smith et al., 2004) based

on the recorded Reverse Phase Encoding images and an eddy current

as well as movement correction using FSL's eddy (Andersson &

Sotiropoulos, 2016). For the reconstruction of the anatomical network,

CATO allowed us to use a combined method of DTI and GQI (Yeh

et al., 2010). Thus, in cases of multiple diffusion peaks because of more

complex fiber configurations (e.g., kissing or crossing fibers), the voxel-

wise diffusion profiles were determined using GQI. Otherwise, the

informed RESTORE algorithm (Chang et al., 2005, 2012) was applied to

model the tensor and remove outliers during the fitting, which helps

with reducing the influence of physiological noise on the DTI modeling.

Following the reconstruction of the diffusion signal, white matter tracts

were reconstructed using deterministic tractography. For the recon-

struction of the fibers following the diffusion peaks in each voxel, the

FACT algorithm (Mori et al., 1999) was applied, extended for multiple

peaks. This step resulted in the estimation of every participant's white

matter streamlines.

MECKLENBRAUCK ET AL. 5
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Third, for the reconstruction of the DWI-based connectivity

matrices (Figure 3), we used the default settings of CATO based on

van den Heuvel et al. (2013). The algorithm started with eight seeds

from each voxel in the brain mask, following the main direction of the

diffusion to the next voxel and stopped in one of five cases: (1) the

reconstructed white matter streamline reached a voxel with a frac-

tional anisotropy (FA) value of 0.1, which often corresponds to gray

matter; (2) the streamline tried to exit the brain mask; (3) it made a

sharp turn larger than 45�; (4) it revisited a previous voxel; or (5) it

entered a region defined as a forbidden region, which describes the

cerebellum. Only streamlines that fully connected two brain regions

were considered. The connectivity matrices for each participant were

constructed based on a parcellation of their T1 anatomy. The parcella-

tion of the individual anatomy in accordance with the same atlas or

parcellation scheme is necessary to have an equal definition of parcels

that form the nodes of the network and can be compared or com-

bined across subjects. CATO extents on the classical Desikan–Killiany

(Desikan et al., 2006) parcellation and includes the Lausanne sub-par-

cellations, which represent an approach to achieve the optimal scaling

for connectivity matrices (Cammoun et al., 2012). We considered both

F IGURE 3 Flowchart from diffusion weighted images to rich club hubs. DTI, diffusion tensor imaging; FDR, false discovery rate; GQI,
generalized Q-sampling imaging; NOS, number of streamlines.

6 MECKLENBRAUCK ET AL.
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the lausanne120 and lausanne250 parcellation schemes, as they

showed the best reliability (Cammoun et al., 2012) and represent a

meaningful meso-level parcellation of the cortex (Amunts &

Zilles, 2015). The main manuscript is focused on the lausanne120 par-

cellation scheme (Figure 3) while all analyses using the lausanne250

parcellation are contained in the Supplemental Material.1 The results

according to both parcellation schemes are discussed together. The

application of the lausanne120 parcellation resulted in the construc-

tion of 114 � 114 connectivity matrices for each subject. Note we

did not include subcortical regions, as our functional hypotheses

focused on cortical areas.

Finally, as connectivity matrices tend to be sensitive to outliers

(Chung et al., 2017), we controlled the quality of the connectivity

matrices based on the guidelines described in van den Heuvel et al.

(2019). We determined outliers based on the following matrix mea-

sures: average number of streamlines (NOS), average FA, average

mean diffusivity, average length, average streamline density controlled

for the volume of the connected regions (in number of voxels), and

distance to group prevalence map. Outliers were identified as values

either below Q1 � 2 � IQR or above Q3 + 2 � IQR (Q1 = first quar-

tile, Q3 = third quartile, IQR = Q3 � Q1 = interquartile range). Only

connectivity matrices of participants that showed no outlier in any of

the measures were used for further analysis. No subjects had to be

excluded due to this quality check of matrix norms. Consequently, the

network construction resulted in an individual DTI-GQI-based

weighted connectivity matrix according to the lausanne120 parcella-

tion scheme for all 40 participants.

2.7 | From connectivity matrices to ROIs

To investigate hypothesized relationships between hierarchies in

function and structure, we identified the RC hubs of the group net-

work and used these hubs as ROIs for the analysis of task-based

BOLD data. First, we created a binary connectivity matrix for each

participant (Figure 3) to reduce the bias from inaccuracies caused by

the applied DWI sequence (Fornito et al., 2016). We binarized the

individual DTI-GQI-based connectivity matrices by setting every edge

that had at least one streamline (NOS > 0) to one while others were

given a value of zero. These binarized matrices were then summed

and thresholded in two different ways (Figure 3) that are both used to

avoid false positive streamlines. The first way was based on the

results of de Reus and van den Heuvel (2013a), who found that keep-

ing connections that are present in at least 60% of the participants

produces a good balance between false negative and false positive

connections. The second method applied used one-tailed one-sample

t tests to examine whether an edge's relative NOS (NOS/total NOS of

a given participant) was larger than zero (Ponsoda et al., 2017). T tests

were then corrected for multiple comparisons using the Benjamini

and Hochberg (1995) method to control the false discovery rate (FDR)

and adjust the p value accordingly. These two methods resulted in

two different group-wise connectomes for the lausanne120 parcella-

tion scheme with 463 and 455 edges, respectively (Figure S5.1).

The following identification of hubs was based on the methods

described in Riedel et al. (2022). In deviation from their approach, we

used binarized group matrices instead of individual weighted matrices.

This deviation was implemented since the individual differences in RC

organization were not relevant for our purposes. Also, major structural

connectivity patterns are more apparent in group-wise connectomes

(Hagmann et al., 2008). The Brain Connectivity Toolbox (BCT) for

MATLAB (Rubinov & Sporns, 2010) was applied to determine the RC

coefficient

ϕ kð Þ¼ 2E > k

N> k N< k�1ð Þ ð1Þ

(rich_club_bu.m from the BCT) for each node degree k. The node

degree k, also called degree centrality, describes the number of edges

an individual node has with other network nodes (Rubinov &

Sporns, 2010). The undirected and binary RC coefficient ϕ kð Þ was

then calculated as the proportion of the links between nodes with a

degree higher than k divided by the total possible number of links

between all nodes of this subset (van den Heuvel & Sporns, 2011).

These RC coefficients were normalized by dividing them by the mean

RC coefficient of 2500 random networks. The randomization was

achieved by applying the randmio_und.m function from the BCT 2500

times to the group network, rewiring each connection ten times.

As the RC coefficient ϕ kð Þ is calculated for every node degree k,

it is possible to identify a range of degrees for which the empirical RC

coefficient ϕ kð Þ is significantly higher than in the random networks.

This range of degrees is called the RC regime (van den Heuvel &

Sporns, 2011). We used the same rules as Riedel et al. (2022) to iden-

tify the RC regime as the largest range of consecutive degrees k, for

which the empirical RC coefficient was significantly larger (α= .05)

than the random coefficients. Therefore, we calculated the p values

using the formula described in van den Heuvel and Sporns (2011). We

adjusted for multiple comparisons by controlling the FDR.

Based on this range of k with significantly larger empirical RC

coefficients ϕ kð Þ, we identified individual hubs by following the cri-

teria used in Riedel et al. (2022) (Figure 3): (a) The regions belonged to

the top 15% of the degree distribution (also applied in, e.g., Liu

et al., 2020; Repple et al., 2020; Yan et al., 2018). (b) The region's

degree was at least as large as the start degree of the RC regime, so

the first node degree k for which the empirical RC coefficient ϕ kð Þ is
significantly larger than in the random networks. (c) The region's

degree was at least as large as the degree k with the largest normal-

ized RC coefficient within the RC regime. (d) The region was within

the top 33% in four of the following five hub scores: node degree,

betweenness centrality, nodal path length or closeness centrality,

between-module participation coefficient, and within-module degree

z-score. The calculation of modularity was done exactly as in Riedel

et al. (2022) using the Louvain algorithm. Thus, we determined

100 partitions of the group network (γ=1) with the

1Note the ROI and centrality analyses results of both parcellation schemes were very similar.

The decision to feature the lausanne120 parcellation in the manuscript was made for the

sake of clarity of the connectome depictions.
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community_louvain.m function, found an agreement matrix of all par-

titions (agreement.m) and arrived at the final partition by applying

consensus_und.m to threshold the agreement matrix (τ= .6) applying

the Louvain algorithm 100 times resulting in a single ideal community

structure. In the end, we defined hubs using four different

approaches.

Since the four hub definitions (a–d) produced inconsistent results,

we applied additional criteria to reach a conclusive hub definition.

First, we only looked at regions identified as hubs in at least three of

the four hub criteria introduced above. Of these regions, only those

were considered that were connected to other identified hub regions

more likely than in random networks, as this is in line with the defini-

tion of the RC in general (Colizza et al., 2006). Therefore, for each

identified region, we calculated the proportion of edges connecting to

other identified hub regions in relation to the total degree k of that

region (Figure 3). Only those regions with edge proportions signifi-

cantly larger than the average edge proportions calculated from the

2500 random networks were finally labeled as RC hubs. To test

the difference between empirical and random networks, we applied a

Wilcoxon sign-rank test FDR corrected for multiple comparisons. This

step resulted in the final set of RC hubs (Tables S6.1–S6.2).

To use the hub classification in the analysis of the task-based

data, we subsequently created binary ROI maps for each parcel to

extract the functional BOLD neural responses from the parcels.

To create these binary ROI maps of the lausanne120 parcels, we used

the Multi-Scale Brain Parcellator (Tourbier et al., 2019) to parcellate

the MNI-152 standard template according to the lausanne120 atlas.

This parcellated template was implemented as an atlas in the WFU

pick atlas toolbox for SPM (Maldjian et al., 2003). In the WFU pick

atlas toolbox we could make use of the DILATE option to dilate the

only surface-level defined ROIs by one voxel size three-dimensionally

as it is commonly applied when combining fMRI and diffusion-based

tractography (Jarret et al., 2022). So, each of the 114 cortical areas

could be extracted as an ROI. We categorized each network node and

thereby ROI as RC, which is an area identified as an RC hub, or Feeder,

which is an area that is not itself an RC hub but shares a direct edge

with a RC hub in the binary group network underlying this classifica-

tion, or Local, an area that neither belongs to nor is connected to the

RC (Figure 4 and Tables S6.5–S6.6). This classification was later used

for the ROI and centrality analyses (see Sections 2.8.3 and 2.8.4).

2.8 | Statistical data analysis

2.8.1 | Behavioral analysis

The behavioral and all other data analyses were performed using R

(Version 4.2.2.; R Core Team, 2022) and RStudio (Version

2022.7.2.576; RStudio Team, 2022).

Reaction time

We expected a main effect of the different conditions on reaction

times (RTs). Specifically, RTs in the Single condition were expected to

be shorter than in the structured conditions because expectation vio-

lations were found to lengthen RTs (Badre & Wagner, 2004; Kühn &

Schubotz, 2012; Nattkemper & Prinz, 1997). Accordingly, it was also

to be expected that zeros appearing within a sequential structure

would lead to longer RTs than those appearing between sequence

transitions. To investigate this assumption, we applied Bayesian hier-

archical generalized linear modeling implemented via the brms library

in R (Bürkner, 2017) to model the influence of the different blocked

conditions and the level of structure disruption. HIERARCHY, a four-level

within-subject factor, was comprised of the different conditions of

hierarchy: Single, Triplet, Nonet, and Complete. The second factor,

LEVEL OF VIOLATION, referred to where in the sequential structure a zero

occurred; this factor also had four levels: Between Single, Between Trip-

let, Between Nonet, and Between Complete. However, the levels of the

two factors were not fully crossed, as not all levels of violation could

occur at each level of HIERARCHY. Thus, we used two different models

(Equations 2 and 3) to investigate the influence of sequential structure

on the RT. Both models included a random intercept and random

slopes for the trial number, the trial number in the block, the times the

participant saw this condition already to control for learning and tired-

ness as well as the distance of a zero to the last recorded reaction and

the Shannon surprise (Shannon, 1948) of that zero in the sequence up

to this point. The second model also included a random slope for the

factor HIERARCHY. The surprise of a stimulus was calculated using

the formula derived from the infinite time scale model (Harrison

F IGURE 4 Transition from network node classification to regions

of interest in MNI space. Rich Club = area is an identified rich club
hub, Feeder = area directly connect to a rich club hub, Local = areas
neither part of, nor connection to a rich club hub. MNI, Montreal
Neurological Institute.
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et al., 2006). This variable was used as part of the random structure in

our models. See Supplemental Material for details on the calculation

of surprise.

For the first model, we combined HIERARCHY and LEVEL OF VIOLATION

to the factor COMBINATION to model the mean RT for each possible

combination of the two factors.

RT�Combinationþ 1þTrial Number TotalþTrial Number Blockð
þ Times BlockþLast ZeroþSurprisejSubjectÞ

ð2Þ

The data for the second model than excluded the Single condition

and added the factor POSITION, which was labeled Between for a viola-

tion during the transition of the condition-specific highest chunk

(e.g., insertion between triplets in the Triplet condition) while Within

described all other positions in the sequence. Thus, we could model

an interaction effect between HIERARCHY and POSITION.

RT�Hierarchy�Positionþ 1þHierarchyþTrial Number Totalð
þ Trial Number BlockþTimes BlockþLast ZeroþSurprisejSubjectÞ

ð3Þ

We used uninformative priors for both models as recommended

for multilevel modeling (Bürkner, 2017). For β coefficients we used N

(0, 5); for the standard deviation a Student's t(3, 0, 5) distribution was

applied; and finally for the correlation in Equation 3, a Lewandowski–

Kurowicka–Joe (LKJ(2)) distribution was used. For both models, we

used the shifted lognormal family. The RT models were calculated

with ten chains, each with 4000 iterations from which the first 1000

were warmups.

Hit rate

Due to the apparent ceiling effect (Table 1) and its effect on the sta-

tistical analysis (Cramer & Howitt, 2011; Rhodes et al., 2019), we only

descriptively report the hit and false alarm rates of HIERARCHY and LEVEL

OF VIOLATION and refrain from further analyses.

2.8.2 | fMRI design specifications

The whole brain analysis and extraction of data for the ROI analysis

were conducted in the SPM12. A general linear model (GLM) was

used to model the fMRI timeseries on the first level. The GLM

included four regressors for each of the different blocked conditions:

Single, Triplet, Nonet, and Complete. These regressors were modeled

as epochs with a duration of 162 trials (entire block duration). The

onsets were time-locked to the start of the blocks, resulting in five

onsets per condition. We further included the fixation epochs, the

360 events of a zero interrupting the digit sequence, and six rigid-

body transformations (regressors of nuisance). Regressors were con-

volved with the canonical hemodynamic response function.

To identify areas that process hierarchically lower or higher struc-

tures in the digits sequence, we built contrasts between the four

levels of HIERARCHY: Triplet > Single, Nonet > Triplet, and

Complete > Nonet. On the second level, we applied one-sample

t tests across the participants. For the particular contrasts of interest,

we employed a cluster-forming threshold of p < .001 and a cluster

extend threshold of 47 voxels. This cluster threshold was determined

by 10,000 Monte Carlo simulations and represents a cluster-wise

p < .05 corrected for multiple comparisons (Slotnick, 2017; Slotnick

et al., 2003; for simulation results, see Supplemental Material).

Finally, to specifically test for the predicted anterior-medial trend

in the frontal lobe for the processing of hierarchically higher stimulus

structures, we computed the correlations between the Euclidian dis-

tance to an anterior-medial reference point, XMNI = 0, YMNI = 72, and

the extracted beta values of the step-wise contrasts from the frontal

lobe. Using the Hittner et al. (2003) modification of the z test by Dunn

and Clark (1969) within the cocor framework (Diedenhofen &

Musch, 2015), we then compared the contrast-specific correlations to

see if the beta values increase or decrease differently with distance

from the anterior-medial reference point (for more details see Supple-

mental Material). For higher-level contrasts, we expected larger beta

values to be located closer to the anterior-medial reference point

while for lower-level contrasts the beta values should increase with

the distance. Consequently, the correlations of higher-level contrasts

should be smaller than in lower levels.

2.8.3 | ROI analysis

In preparation for the ROI analyses, we used the same GLM to esti-

mate the mean activations per condition by calculating the contrast of

the respective condition against the implicit baseline, which is the pre-

dicted BOLD activation when all predictors are set to zero. Then we

TABLE 1 Average hit rates and false
alarm rates of reacting to zeros in the
digit sequences.

Hit rate HIERARCHY

LEVEL OF VIOLATION Single Triplet Nonet Complete

Between Single 97.61 (3.30) 97.54 (3.81) 97.47 (4.97) 97.57 (3.29)

Between Triplet 97.91 (3.25) 97.53 (4.44) 97.25 (4.76)

Between Nonet 98.00 (4.64) 97.46 (7.36)

Between Complete 100.00 (0.00)

False alarm rate 0.07 (0.16) 0.07 (0.10) 0.10 (0.15) 0.12 (0.20)

Note: Reported is M(SD) in %, N = 40.
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extracted the unthresholded, estimated beta values from the contrast

images for each ROI per level of HIERARCHY in each participant, using

the spm_get_data.m function from the SPM12. We subsequently

averaged the beta values from all voxels of an ROI for every level of

HIERARCHY and participant. ROIs were grouped into RC hubs, Feeder

nodes, and Local nodes, depending on their RC membership and con-

nectivity. The extraction and classification were done for both group

network construction methods. After inspection of the Cullen–Frey

plots, to judge the skewness and kurtosis of the data (Cullen &

Frey, 1999), extreme averaged beta values (below Q1 � 3 � IQR or

above Q3 + 3 � IQR) were excluded from the analysis.

The statistical ROI analysis was performed using Bayesian hierar-

chical generalized linear models via the brms package (Bürkner, 2017).

In the model, HIERARCHY, NODE CLASSIFICATION, and the HIERARCHY by

NODE CLASSIFICATION interaction were included as predictors. The model

also incorporated random intercepts for the individual ROIs, subjects,

and a random HIERARCHY effect for each subject (Equation 4).

Beta�Hierarchy�Node Classificationþ 1þHierarchy jSubjectð Þþ 1 jROIð Þ
ð4Þ

As the model was multilevel, we used the same priors as for the

behavioral data (see “Reaction Time” section). The skewed normal

family was utilized for modeling the data. All models were calculated

with ten chains, each having 4000 iterations, 1000 warmups, and a

maximal treedepth of 15.

We hypothesized that the RC hubs would be more activated in

conditions that involve the processing of hierarchically higher stimulus

structures. Thus, the interaction between HIERARCHY and NODE CLASSIFI-

CATION was of particular interest, as beta values should increase signifi-

cantly with hierarchically higher structures. This was especially

expected in areas identified as RC hub regions, and possibly also in

Feeder nodes which are (by definition) directly connected to the RC.

2.8.4 | Centrality analysis

We then examined the graph theoretical node properties of the areas

with hierarchal level-specific BOLD responses. Again, we assumed

that areas that process hierarchically higher structures of the stimulus

also occupy hierarchically higher levels in the structural graph, which

are more central to the network.

First, we started with using the already established individual

DTI-GQI-based connectivity matrices referenced to the lausanne120

parcellation scheme before the merging to group-wise matrices (see

Section 2.6). To be able to use the binarized matrices on a

subject-level, we applied a different binarization method than on the

group-level. At the individual level we fixed the threshold for

keeping an edge at three or more streamlines to correct for false posi-

tives (Brown et al., 2011), setting edges clearing this threshold to one

and all others to zero. Based on these individual binary connectivity

matrices, we calculated the five centrality measures that make up the

hub score in the RC identification (Riedel et al., 2022) for each individ-

ual network: nodal degree/degree centrality, betweenness centrality,

closeness centrality, within module degree z-score, and participation

coefficient.

Second, we used the resulting clusters of the group-averaged

BOLD contrasts Triplet > Single, Nonet > Triplet, and Complete >

Nonet that were significant at the cluster threshold of 47 voxels

(Table 3 and Figure S5.2) as functional ROIs and extracted them

binarized maps.

Third, based on these maps, we assigned the functionally defined

Rhat activation clusters to parcels of the lausanne120 atlas (see Sup-

plemental Material for lausanne250). Therefore, we calculated the

proportion of each binarized functional cluster that was contained in

the parcels of the lausanne120 parcellation scheme. As a result, we

determined the lausanne120 parcels that comprised activations of the

Triplet > Single, Nonet > Triplet, and Complete > Nonet contrasts as

well as a percentage of the contrasts contained in each of these

parcels.

Fourth, for each of the three BOLD contrasts, we then deter-

mined the weighted average for all five node centralities, weighted by

the percentage of overlap between contrasts and parcel.

We repeated this step for each subject to receive individual struc-

tural centrality measures based on the subject's binary network for all

clusters of the functional analysis. These individual measures were

also controlled for the total amount of activated voxels of a contrast

covered by any parcel. This culminated in five controlled centrality

measures for each of the stepwise contrasts for all 40 participants.

Finally, we z-scaled every centrality measure to obtain comparable

values for all five measures.

To analyze the difference between the mean centrality of the

stepwise contrasts we applied a multivariate multilevel model via brms

(Bürkner, 2017) with the factor HIERARCHY CONTRAST describing the

influence of the different levels of contrasts (Equation 5).

ðDegree Centrality; Betweenness Centrality; Closeness Centrality,

WithinModule Degree z�Score; Participation CoefficientÞ�
HierarchyContrastþ 1jSubjectð Þ

ð5Þ

We expected that the average centrality of the areas activated by

hierarchically higher structures of the stimulus would increase with

the levels of hierarchy.

2.8.5 | Validation using the human connectome
project dataset

As this article is the first to apply the additional step of using the con-

nections between hub regions as a criterium for RC hub definition, we

sought to validate the results of the node classification as well as the

subsequent ROI and the centrality analyses on an independent data-

set. For this purpose, we made use of the publicly available data from

the Human Connectome Project (HCP; Van Essen et al., 2013; for

details see Supplemental Material). We applied the exact same

methods described in Sections 2.6–2.8.4 to the structural and DW

data of 100 unrelated subjects from the HCP database. The resulting

node classification was compared to the results of our own data.
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Subsequently, the HCP-based classifications and structural centrality

measures were utilized to replicate the ROI and centrality analyses.

2.8.6 | Bayesian hypothesis testing

The hypotheses for the Bayesian multilevel models were tested using

the hypothesis function from the brms library (Bürkner, 2017). A

Bayes factors (BF) > 3 indicates significant evidence in favor of the

tested hypothesis (van Doorn et al., 2021). Bayes factors for one-

sided hypotheses (BF+0) are defined as the division of the posterior

probability of the hypothesis by the posterior probability of the alter-

native, that is, the evidence ratio (Bürkner, 2018).

3 | RESULTS

3.1 | Behavioral results

3.1.1 | Hit and false alarm rates

Table 1 reports hit rates and false alarms rate in detecting the zero

broken down by HIERARCHY and LEVEL OF VIOLATION only for hit rates.

3.1.2 | Reaction times

The RT model (Equation 2) tested the influence of all combinations of

HIERARCHY and LEVEL OF VIOLATION on the RT for detecting a zero, con-

trolled for participant-specific effects of learning, tiredness, and sur-

prise. The model had no divergent transitions, all Rhat < 1.05, and all

variables had bulk- and tail-effective samples ≥ 1373 and ≥ 2665,

respectively. Posterior checks showed that the cumulative count

model simulations reasonably capture the means and distributions of

the observed data (Figure S7.1). Posteriors drawn from the estimated

model (Equation 2) were used to compare the RT between the levels

of HIERARCHY per LEVEL OF VIOLATION. As aforementioned, we expected

that a zero inserted within the sequence would be slower than a zero

presented between chunks of the sequence. It was found that the RT

for a zero occurring Between Single was increased for Nonet condi-

tion in comparison to the Single condition (H+: Nonet:Between

Single > Single:Between Single; M = 0.02 [0.01, 0.04], SD = 0.01, p.p.

= 1, BF+0 = 217.98; Figure 5a).

The second RT model (Equation 3) focused on the structured con-

ditions to test the influence of HIERARCHY, POSITION (i.e., if the zero was

inserted within or between the sequences), and their interaction on

the RT. This model also had no divergent transitions, all Rhat = 1.00,

and all variables had bulk- and tail-effective samples ≥ 2133

and ≥ 4822, respectively. Posterior checks again showed that the

cumulative count model simulations reasonably capture the means

and distributions of the observed data (Figure S7.2). Posteriors drawn

from the estimated model (Equation 3) revealed a larger RT in the

Within position compared to the Between position in the Nonet con-

dition (H+: Nonet:Between � Nonet:Within < 0; M = �0.04 [�0.07,

�0.02], SD = 0.02, p.p. = 1, BF+0 = 308.28; Figure 5b). This differ-

ence was also larger than in the Triplet condition (H+: Triplet:(With-

in > Between) � Nonet:(Within > Between) < 0; M = �0.04 [�0.07,

�0.01], SD = 0.02, p.p. = 0.98, BF+0 = 58.06; Figure 5b). These

results show a tendency for a larger influence of the interruption and

position of insertion on the RT with stimuli containing hierarchically

higher structures. The results of the Complete condition break this

pattern (H+: Nonet:(Within > Between) � Complete:(Within > Between)

< 0; M = 0.07 [0.01, 0.12], SD = 0.03, p.p. = 0.02, BF+0 = 0.02;

Figure 5b). However, it must be noted, that the participants saw far

fewer Between Complete insertions (3 per participant) than Between

Nonet insertions (18 per participant).

3.2 | fMRI results

According to the hypothesis of a stepwise increase of the activation

with the nested levels of hierarchy in the stimulus structure, we

F IGURE 5 Results of reaction time analysis. Density plots of posterior distributions with mean point estimate, 50 and 95% highest probability
density areas marked. BF, Bayes factor. (a) Estimates of all conditions of the HIERARCHY � LEVEL OF VIOLATION interaction. Yellow, Single; Red,
Triplet; Green, Nonet; Blue, Complete. (b) Interaction of HIERARCHY � POSITION in structured conditions. Red, Triplet; Green, Nonet; Blue, Complete;
Dark, Within; Light, Between.
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examined the significant clusters at a cluster threshold of 47 voxels

that was determined using the simulation introduced by Slotnick et al.

(2003); Slotnick (2017). This approach revealed activation clusters for

the contrasts Triplet > Single and Nonet > Triplet (Table 2 and

Figure 6, for a graphic depicting all clusters see Figure S5.2). Because

of their stepwise nature, we will also refer to these contrasts as

Triplet-specific and Nonet-specific, respectively. The Triplet > Single

contrast comprised a single cluster in the left inferior frontal junction

(IFJ). The Nonet > Triplet contrast showed additional frontal clusters

in right middle frontal gyrus (MFG) and two separate clusters in the

right superior frontal gyrus (SFG). In the temporal lobe, we found clus-

ters in the left inferior temporal sulcus and a cluster in the right middle

temporal gyrus. Finally, we also found bilateral clusters in the inferior

parietal lobule (IPL) and a cluster in the right posterior cingulate gyrus

(PCG). No significant clusters were revealed in the Complete > Nonet

contrast. Activation clusters resulting from the stepwise comparison

of the increasing hierarchical structure were later used as the basis for

the analysis of the centrality measures (see Section 3.5).

To test for the predicted anterior-medial trend in the frontal lobe,

we compared the correlations between the Euclidian distance to the

anterior-frontal reference point, XMNI = 0, YMNI = 72, and

the extracted beta values of the Triplet > Single and Nonet > Triplet

contrasts. We found that the correlations for the Nonet-specific

betas, rEdN = �.07, t(2020557) = �97.81, p < .001, as well as the

Triplet-specific betas with the Euclidian distance were significantly

different from zero, rEdT = .09, t(2020557) = 122.88, p < .001. Addi-

tionally, the Nonet-specific correlation was significantly smaller than

the Triplet-specific correlation, z = �126.60, p < .001. Accordingly,

TABLE 2 Activation clusters from second-level whole-brain block contrasts with cluster threshold = 47 voxels.

Localization H Cluster extent (in voxel)

MNI coordinates

t Value p Valuex y z

Nonet > Triplet

Superior frontal gyrus R 73 22 60 14 3.80 <.001

Superior frontal gyrus R 401 22 18 58 4.32 <.001

Medial superior frontal gyrus R l.m. 12 36 42 4.01 <.001

Superior frontal gyrus R l.m. 22 32 56 3.96 <.001

Middle frontal gyrus R 108 38 24 40 4.08 <.001

Inferior temporal sulcus L 144 �56 �24 �26 5.51 <.001

Middle temporal gyrus R 123 64 �30 �16 3.95 <.001

Posterior cingulate gyrus R 101 4 �40 28 4.04 <.001

Inferior parietal lobule L 118 �54 �58 44 4.14 <.001

R 190 44 �62 36 4.10 <.001

Triplet > Single

Inferior frontal junction L 77 �36 0 28 3.91 <.001

Abbreviations: H, hemisphere; L, left; l.m., local maximum; MNI, Montreal Neurological Institute; R, right.

F IGURE 6 BOLD activation clusters in the frontal cortex for the contrasts Triplet > Single and Nonet > Triplet. Significant clusters at the
cluster threshold of 47 voxels, depicted on MNI template. BOLD, blood-oxygen-level-dependent; IFJ, Inferior frontal junction; MFG, Middle
frontal gyrus; MNI, Montreal Neurological Institute; SFG, Superior frontal gyrus; y, y coordinate.
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Nonet-specific beta values are higher in anterior and medial areas,

while Triplet specific betas are higher in lateral and more posterior

portions of the frontal lobe.

3.3 | RC results

The final set of RC hubs identified with the lausanne120 parcellation

(Figure 7c,d) and the group-based connectivity matrix based on 60%

prevalence (de Reus & van den Heuvel, 2013a; Figure 7a,b) are

depicted in Figure 6. The RC hubs of the remaining identification

methods and a summary of all hub measures can be found in the sup-

plemental material (Figures S5.1 and S5.3 and Tables S6.5–S6.8). The

comparison with the HCP-based RC definition is also described in

the supplemental material (Table S9.1).

3.4 | ROI analysis results—The function of
different structural nodes

The ROI analysis model (Equation 4) tested the influence of HIERARCHY

and the NODE CLASSIFICATION (Local, Feeder, RC) as well as their

F IGURE 7 Connectivity matrices and rich club network combining lausanne120 parcellation scheme and 60% prevalence-based group matrix.

(a) Group matrix depicting prevalence of connection in percent. For further analyses, the matrix was binarized by thresholding at 60% prevalence
(Figure 3). (b) Binarized group network based on 60% prevalence threshold. (c) Node classification and identified RC network for the lausanne120
parcellation scheme and a 60% prevalence-based group matrix. Red, RC nodes; green, Feeder nodes; Blue, Local nodes. (d) Surface render of the
RC hubs; colors code different parcels of the lausanne120 atlas (lausanne120 labels: (a) right superiorfrontal_2, (b) left caudalanteriorcingulate_1,
(c) right caudalanteriorcingulate_1, (d) right superiorfrontal_3, (e) left superiorfrontal_4, (f) left posteriorcingulate_1, (g) right paracentral_1,
(h) right postcentral_2, (i) left superiorparietal_1, (j) right superiorparietal_1, (k) left precuneus_1, (l) right precuneus_2, (m) right precuneus_1,
(n) left precuneus_2, (o) left superiorparietal_3, and (p) right superiorparietal_3).
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interaction on the beta values extracted from the ROIs. We calculated

the same model for both group matrix methods (prevalence and t test,

see Supplemental Material for lausanne250). All beta values were

derived from a GLM that estimated the mean activations per condi-

tion compared to the implicit baseline. The models differed in the clas-

sification of the nodes, corresponding to different group networks

(Figures 7c and S5.3). None of the models had divergent transitions

and all Rhat < 1.05. The bulk- and tail-effective samples of each model

are given in Table 3 and S4.1–S4.3, respectively. Posterior checks

showed that the cumulative count model simulations reasonably cap-

ture the means and distributions of the observed data (Figures S7.3–

S7.6). We were especially interested in the interaction of HIERARCHY

and NODE CLASSIFICATION. Since the tendencies were the same for both

approaches, Table 3 reports the results for the variant lausanne120

parcellation and 60% prevalence-based group matrix (see

Tables S4.1–S4.3 for remaining results).

Regarding the expected interaction, we found an increase in the

beta values between the conditions Triplet and Nonet for all levels of

NODE CLASSIFICATION, and this increase showed a nonsignificant ten-

dency to be stronger for RC hubs and Feeder nodes than for Local

nodes. In general, the beta values decreased for the RC hubs and

Feeder nodes compared to local nodes (Figure 8 for lausanne120

TABLE 3 Results of the hypothesis test of model Equation 4 for the data from parcellation scheme lausanne120 and 60% prevalence-based
group matrix.

Hypothesis M SD CI lower CI upper Evidence ratio (BF) Posterior probability

Increase of beta values with level of Hierarchy separated by node classification

Local

Triplet > Single �0.08 0.12 �0.28 0.12 0.34 0.26

Nonet > Triplet 0.38 0.20 0.06 0.71 33.97 0.97

Complete > Nonet �0.07 0.16 �0.33 0.19 0.50 0.33

Feeder

Triplet > Single �0.04 0.13 �0.25 0.16 0.60 0.37

Nonet > Triplet 0.48 0.20 0.15 0.80 106.91 0.99

Complete > Nonet �0.12 0.16 �0.38 0.15 0.30 0.23

RC

Triplet > Single 0.02 0.14 �0.21 0.26 1.33 0.57

Nonet > Triplet 0.43 0.21 0.09 0.77 48.10 0.98

Complete > Nonet �0.14 0.17 �0.42 0.14 0.26 0.21

Increase of beta values with level of Hierarchy compared between node classifications

Triplet > Single

Feeder > Local 0.04 0.07 �0.07 0.15 2.63 0.72

RC > Local 0.10 0.09 �0.04 0.25 7.17 0.88

RC > Feeder 0.06 0.09 �0.09 0.22 3.08 0.76

Nonet > Triplet

Feeder > Local 0.09 0.07 �0.01 0.20 12.25 0.92

RC > Local 0.05 0.09 �0.10 0.20 2.32 0.70

RC > Feeder �0.05 0.09 �0.20 0.11 0.44 0.31

Complete > Nonet

Feeder > Local �0.05 0.07 �0.16 0.06 0.30 0.23

RC > Local �0.07 0.09 �0.22 0.08 0.27 0.21

RC > Feeder �0.02 0.10 �0.18 0.13 0.67 0.40

No difference of beta values between node classifications

Local = Feeder �1.04 0.28 �1.59 �0.48 0.01 0.01

Local = RC �1.39 0.39 �2.14 �0.63 0.04 0.03

Feeder = RC �0.35 0.4 �1.14 0.47 11.57 0.92

Note: The evidence ratio of one-sided hypothesis tests is equal to the Bayes factor. All Rhat = 1.00, Bulk_ESS ≥ 3634, Tail_ESS ≥ 5167, N = 17,905.

Bold values: Evidence ratio/Bayes factor of > 3 (see Section 2.8.6 for more detail) or more precisely from a posterior probability > 0.95. The posterior

probabiltiy can be intepreted similar to a p-value in frequentist statistics. For results in favor of the tested hypothesis the posterior probability must be

> 0.95 and for results in favor of the alternative hypothesis posterior probabilty must by < 0.05. So significance is already given and highlighted. I am not

sure, what might be missing.

Abbreviations: BF, Bayes factor; CI, credible interval; RC, rich club.
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parcellation and 60% prevalence-based group matrix, Supplemental

Material for remaining results).

3.5 | Centrality analysis results—Network
centrality of the functional clusters

On a descriptive level, we looked at the regions that were covered by

the functional clusters identified in the whole brain analysis (see

Section 3.2). Specifically, we examined if the clusters were classified

as RC hub, Feeder or Local node and focused on the differences in

classification between the Triplet- and Nonet-specific clusters

(Figure 9, Supplemental Material for remaining results).

On the model side, we used a MANOVA-like approach within the

brms (Bürkner, 2017) framework to compare the centrality measures

calculated for each subject between the identified clusters. No model

had any divergent transitions, all Rhat = 1.00, and all variables had

bulk- and tail-effective samples ≥ 4173 and ≥ 4061, respectively. Pos-

terior checks showed that the cumulative count model simulations

reasonably capture the means and distributions of the observed data

(Figure S7.7).

First, we compared the model (Equation 5) including the factor

HIERARCHY CONTRAST with a null model, to see if the factor explained

any variance of the centrality measures. The leave-one-out-cross-

validation (loo) comparison revealed a significant increase in the

expected log pointwise predictive density (elpd) with the inclusion of

the factor HIERARCHY CONTRAST (Table 4).

Next, we specifically tested whether the centrality measures of

the areas derived from the Nonet > Triplet contrast were higher than

those for the Triplet > Single contrast. Only the within-module degree

z-score, which describes the module-specific degree of a node

(Rubinov & Sporns, 2010), failed to show the predicted effect. For

degree centrality, closeness centrality, betweenness centrality, and

the participation coefficient the Nonet > Triplet clusters demon-

strated the expected effect displaying significantly higher scores

(Table 5 and Figure 10). This pattern shows that functional activation

clusters for hierarchically higher structures of the stimulus coincide

with areas of higher structural network centrality.

4 | DISCUSSION

Humans show a preference for exploring higher-order structures in

the presence of complex, hierarchically nested, eventful stimuli such

as actions (Williams et al., 2022) or language (Yedetore et al., 2023).

In the current study, we used DWI and fMRI to investigate the

F IGURE 8 Results of region of interest analysis based on lausanne120 parcellation scheme and 60% prevalence-based group matrix. Beta
values represent mean activations per condition compared to the implicit baseline. Density plots of posterior distributions with mean point
estimate, 50 and 95% highest probability density areas marked. Local, no connection rich club; Feeder, connection to rich club; rich club, rich club
hubs. Yellow, Single; Red, Triplet; Green, Nonet; Blue, Complete; Dark blue, Local; Light green, Feeder, Dark red, Rich Club. (A) Level of HIERARCHY

estimates in different NODE CLASSIFICATIONS. (B) HIERARCHY differences in different NODE CLASSIFICATIONS. Red line marks no difference.
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importance of the brain's intrinsic hierarchical structure for proces-

sing nested hierarchical stimuli. To identify brain structures that pro-

cess hierarchically higher stimulus structures, we presented subjects

with different levels of hierarchically nested digit sequences. We col-

lected DWI data from the same participants to determine the global

hierarchical node structure of the brain expressed in Local and,

Feeder nodes, and RC hubs. We tested two separate hypotheses:

(I) We hypothesized that the processing of hierarchically higher stim-

ulus structures would involve network hubs that are part of the

RC. (II) We also expected a trend toward more anterior and medial

regions of the frontal cortex for processing hierarchically higher

stimulus structures.

TABLE 4 Fit indices of the HIERARCHY

contrast model (Equation 5) compared to
the null model for lausanne120
parcellation scheme.

Model delpddiff se delpddiff
� � delpdloo se delpdloo

� �
Hierarchy contrast + (1 j Subject) 0.0 0.0 �1817.70 42.36

1 + (1 j Subject) �12.7 3.6 �1830.40 42.19

Note: Models are considered to be better if the absolute difference is larger than the standard error

(Mohor et al., 2021); delpdloo, expected log pointwise predictive density for a new dataset using PSIS

leave-one-out-cross-validation (loo) criterion. The closer to zero the better the model; delpddiff , difference
between the delpdloo of the two compared models; se, standard error of the variable.

Abbreviation: PSIS, Pareto smoothed importance sampling.

TABLE 5 Results of testing (Nonet > Triplet) > (Triplet > Single) for model Equation 5 for all five centrality measures extracted from
individual connectivity matrices following lasuanne120 parcellation scheme.

Centrality measure M SD CI lower CI upper Evidence ratio (BF) Posterior probability

Degree centrality 0.59 0.16 0.32 0.85 >999 1

Closeness centrality 0.28 0.16 0.02 0.54 26.73 0.96

Betweenness centrality 0.54 0.16 0.27 0.81 >999 1

Within-module degree z-score �0.21 0.17 �0.49 0.06 0.12 0.10

Participation coefficient 0.46 0.17 0.19 0.73 >999 1

Note: The evidence ratio of one-sided hypothesis tests is equal to the Bayes factor.

Abbreviations: BF, CI, credible interval; RC, rich club.

F IGURE 9 Percentage of overlap of activation clusters of the whole brain analysis with the parcellation. Colored according to lausanne120
and 60% prevalence-based NODE CLASSIFICATION. IFJ, inferior frontal junction; IPL, inferior parietal lobule; ITS, inferior temporal sulcus; l, left; MFG,
middle frontal gyrus; MTG, middle temporal sulcus; PCG, posterior cingulate gyrus; r, right; rSFG1, rSFG (22, 60, 14); rSFG2, rSFG (22, 18, 58);
SFG, superior frontal gyrus.
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4.1 | fMRI results—The anterior–posterior and
medial-lateral gradient

BOLD activation results confirmed the expected shift toward more

anterior and medial regions for processing hierarchically higher struc-

tures. Visually inspecting the frontal activation clusters of the step-

wise contrasts of the Nonet > Triplet blocks and the Triplet > Single

blocks, we can describe the clusters in the Nonet-specific activations

were located in more anterior and medial areas of the SFG and MFG.

The only Triplet-specific cluster, however, was found in the more pos-

terior and lateral IFJ. Additionally, we examined the correlations

between contrast-specific beta values and the distance from the

anterior-medial section of the frontal lobe. The comparison between

Nonet- and Triplet-specific correlations revealed that the Nonet-

specific activations increased closer to the anterior-medial frontal cor-

tex. The Triplet-specific beta values in contrast significantly increased

with distance. Thus, the correlations provide evidence for the

anterior-medial shift for processing hierarchically higher stimulus

structures beyond the visual inspection of the identified clusters.

The concept of a posterior-to-anterior processing gradient

throughout the frontal lobe has been discussed even before the dawn

of brain imaging (Ingvar, 1985). This gradient was proposed to be

organized according to the temporal persistency of the processed

levels (Fuster, 2001; Golesorkhi, Gomez-Pilar, Zilio, et al., 2021; Kiebel

et al., 2008; Koechlin & Summerfield, 2007; Uithol et al., 2012). Also,

it was found not only in fMRI BOLD responses (Badre &

D'Esposito, 2007; Koechlin et al., 1999) but also in cytoarchitecture

(Chanes & Feldman Barrett, 2016; Hilgetag et al., 2016;

Sanides, 1964) and recently also in patterns of cortical frequencies

(Mahjoory et al., 2020; Raut et al., 2020). Notably, this progression of

time scales might also characterize the association cortices in the pari-

etal and temporal lobes as well, which were found to integrate

information across time (Badre & Wagner, 2004; Bussey &

Saksida, 2005; Cui, 2014; Golesorkhi, Gomez-Pilar, Zilio, et al., 2021;

Jeon, 2014; Kravitz et al., 2013; Naya et al., 2003). Yet, theoretical

and empirical work sees the frontal lobe at the top of the entire corti-

cal processing hierarchy (Brunia, 1999; Fuster & Bressler, 2015;

G�omez et al., 2004; Koechlin et al., 1999; E. K. Miller & Cohen, 2001).

However, the initial notion of the frontal pole being the apex of the

hierarchy has been challenged by several findings (Badre &

Nee, 2018; Crittenden & Duncan, 2014; Goulas et al., 2014; Nee &

D'Esposito, 2016; Ramnani & Owen, 2004; Reynolds et al., 2012).

More recent studies included the structure of cortical layers in the

gradient and argued for more medial aspects of the PFC and the lim-

bic system to be superordinate to the frontal pole (W. H. Alexander &

Brown, 2018; Chanes & Feldman Barrett, 2016; Nee &

D'Esposito, 2016). This progression from posterior-lateral toward

anterior-medial frontal lobes for processing hierarchically higher struc-

tures of stimuli was also reflected in our results (Figure 6, also Supple-

mental Material).

Beyond the frontal effects our hypotheses focused on, the

Nonet > Triplet contrast also revealed significant activation clusters in

posterior parietal cortex. The lateral fronto-parietal network has been

related to the processing of numbers (Dormal et al., 2012;

Goffin, 2019; Sokolowski et al., 2017) and numerical magnitude (Ansari

et al., 2006; Molko et al., 2003; Piazza et al., 2004, 2007), including the

so-called mental number line in the angular gyrus (Dehaene

et al., 2003). More generally, the parietal cortex is proposed to provide

frontal areas with information about spatial and temporal relational

metrics such as order, number, duration, length, distance, and propor-

tion (Genovesio et al., 2014). Because digits were presented and pro-

cessed in all conditions in our study, one might suggest that the

hierarchically higher structure of the digit sequences (Nonet > Triplet)

required greater temporally extended integration that is also associated

F IGURE 10 Results of the centrality analysis for lausanne120 parcellation scheme. Density distributions with mean point estimate, 50 and
95% highest probability density areas marked. Centrality measures are controlled for cluster size and z-standardized for comparability. Eye plots
describe distribution of contrast on average, colorful point-interval plots describe each individual cluster. BF, Bayes factor; IFJ, inferior frontal
junction; IPL, inferior parietal lobule; ITS, inferior temporal sulcus; l, left; MFG, middle frontal gyrus; MTG, middle temporal sulcus; PCG, posterior
cingulate gyrus; r, right; rSFG1, rSFG (22, 60, 14); rSFG2, rSFG (22, 18, 58); SFG, superior frontal gyrus.
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with the fronto-parietal network (Bor & Seth, 2012; Golde et al., 2010;

Hasson et al., 2015; Noonan et al., 2013).

4.2 | RC analysis—A largely consistent structure
emerges

Based on the DWI data, we identified the structural graph including

Local, Feeder, and RC areas, for the RC analysis. The RC hubs we

identified closely resemble those hub regions identified by previous

studies, including those in the bilateral precuneus and bilateral supe-

rior parietal lobe (Q. Cao et al., 2013; Z. Chen et al., 2013; Hagmann

et al., 2010; Riedel et al., 2022; Wang, Zhan, et al., 2019), in the bilat-

eral superior frontal gyri (Q. Cao et al., 2013; Z. Chen et al., 2013;

Riedel et al., 2022; Wang, Zhan, et al., 2019), the anterior and poste-

rior cortex cingulate (Huang et al., 2015) as well as the paracentral

lobe (Z. Chen et al., 2013) and the superior and middle occipital lobe

(Q. Cao et al., 2013; Z. Chen et al., 2013; Huang et al., 2015).

Although the results of network measures are sufficiently reliable

even with the use of different methods, there is still no gold standard

for identifying RC hubs or graph-theoretical measures in general

(Braun et al., 2012; H. Cao et al., 2014; Welton et al., 2015). Most

studies use only nodal degree-relative thresholds to determine RCs

(Keown et al., 2017; O'Donoghue et al., 2017; Ray et al., 2014; van

den Heuvel et al., 2013; Yan et al., 2018). In contrast, we decided to

implement additional criteria for a node to qualify as an RC hub. In

particular, we followed the definition of Colizza et al. according to

which RC hubs are more densely connected to other high-degree

nodes than expected in a random network (Colizza et al., 2006). As far

as we can see, we are the first to apply this additional, theory-based

step in the identification process, although as early as van den Heuvel

and Sporns (2013) it was recommended to use more than just the

degree as an identifier for the RC membership. A degree-based defini-

tion of hubs may generally be inadequate for identifying network

structures that are important for global network communication. For

instance, structures characterized by specific nodal properties such as

an exceptionally high participation coefficient, making up a diverse

club, might be more critical for efficient global integration than the RC

hubs' outstanding connection strength (Bertolero et al., 2017).

However, as a result of using not just the degree to identify hubs,

we did not find all RC hubs that are typically reported when more lib-

eral criteria are applied. For instance, while we identified the insula as

a highly connected node when following the criteria for RC qualifica-

tion introduced by Riedel et al. (2022), this node failed to be more

connected to other high-degree nodes than expected at random

(Tables S6.1–S6.4). The insula, though commonly reported as a hub

(Q. Cao et al., 2013; Z. Chen et al., 2013; Riedel et al., 2022), was even

labeled as a Local node, according to our definition, as it was not

directly connecting to any other RC hub. Especially because of these

discrepancies between our results using additional constraints in the

RC hub identification and the hubs found in the related literature, the

performed validation analysis using the HCP data was a crucial step.

According to the conventions for inter-rater reliability by Landis and

Koch (1977), the results showed only a slight agreement (Table S9.1)

in hub identification. Thus, sticking with the insula as an example, the

parcels of the insula in the HCP dataset were mostly identified as

Feeder nodes. Occasionally across the different parcellation schemes

and group matrix creation methods some insula parcels were even

classified as RC hubs. But importantly, areas that were found to be

crucial for the processing of hierarchically higher stimulus structures

(J. Chen et al., 2017; Hasson et al., 2015) and were consistently found

as RC hubs in previous studies (e.g., Riedel et al., 2022) like parcels in

the superior frontal cortex or the precuneus were identified in both

our own and the HCP dataset (Tables S6.1–S6.4 and Table S9.8).

Thus, the consistent findings between both datasets for the ROI and

centrality analyses might be especially influenced by these coherently

identified RC hubs.

To summarize, the applied RC hub identification in this article

adheres more closely to the original definition of the RC by Colizza

et al. (2006). Therefore, the identified hubs can be more likely consid-

ered as RC hubs, while other identification methods that, for example,

only use the node degree might rather identify general hubs, not nec-

essarily RC hubs. Nevertheless, this method is still dependent on

acquisition parameters and processing of the connectivity matrices

(some decision will be discussed in Section 4.4). Hence, more research

is necessary to determine if the proposed extra step of comparing the

hub connections to the connectivity in random networks is a valuable

improvement to the RC identification methodology.

4.3 | Combining the results—The significance of
RC hubs for the processing of nested hierarchical
stimuli

To our knowledge, our study was the first to attempt to relate task-

based fMRI activity to the structurally determined RC in the same

group of subjects. Therefore, we developed the described procedures

specifically for this analysis. We applied two complementary

approaches, the ROI analysis, and the centrality analysis, to tackle the

question of the functional significance of the structural hubs from dif-

ferent sides, which will be discussed separately in the following para-

graphs. As mentioned before, these methods of combining structure

and function both prevent any notion of circularity by identifying their

areas of interest and outcome variables drawn from them crossmod-

ally based on the fMRI and structural connectivity data, respectively

(Kriegeskorte et al., 2009).

On the one hand, we modeled the beta values extracted from

each parcel by their condition (HIERARCHY) and network relevance

(NODE CLASSIFICATION). Especially looking at the activations within the

RC hubs, Feeder nodes, and Local nodes revealed that all three kinds

of nodes were depicting the same pattern of activity: Beta values

were higher for the Nonet condition in comparison to the Triplet con-

dition, while the Single and Triplet conditions as well as the Nonet

and Complete did not differ significantly. Using the node classifica-

tions from the HCP validation dataset we were able to replicate the

same pattern (Figure S9.1 and Tables S9.2–S9.5). We found a
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nonsignificant trend that the Nonet > Triplet difference was slightly

larger for RC and Feeder nodes than for Local nodes. When using the

HCP dataset-based classification of nodes and the t test-based group

matrices the difference between the Nonet and Triplet was signifi-

cantly larger in RC hubs for both parcellation schemes (Tables S9.3

and S9.5 and Figures S9.1B and S9.1D).

Nevertheless, due to the inconsistent results, the hypothesis that

RC hubs are specifically more involved in the processing of hierarchi-

cally higher structures of stimuli could neither be confirmed nor dis-

proven with our analysis. However, this very similar activation pattern

in Local, Feeder, and RC nodes could be a direct result of a core func-

tion of the RC, namely network synchronization (G�omez-Gardeñes

et al., 2010; Senden et al., 2017; Watanabe, 2013). Specifically, Gollo

et al. (2015) found that the RC hubs sit on top of so-called resonant

network motifs, each consisting of three non-fully connected nodes

with edges facing away from the central node. These network motifs

are particularly efficient at synchronizing the activity of their neigh-

boring nodes. Thus, finding very similar activation patterns all across

the brain regardless of the type of node might indicate that the activa-

tion is synchronized throughout the network. The well-connected RC

could be the prime candidate to achieve this synchronization. In order

to assess the influence of the RC on the overall neural network, other

methods may be more informative than those that average neural

activity over the entire time span of the experiment. The synchroniza-

tion effect imposed by the RC can be tested using the autocorrelation

of the network nodes (Aguilar-Velázquez & Guzmán-Vargas, 2019).

For instance, the autocorrelation decay method was recently used to

show different intrinsic timescales across the cortex (Ito et al., 2020;

Raut et al., 2020). Using this approach could reveal additional informa-

tion on the dynamic influence of the RC hubs on the rest of the net-

work and its modulation depending on the task at hand.

On the other hand, we analyzed the centrality measures obtained

from the structural nodes at the location of significant functional clus-

ters to assess the cluster's network importance. To this end, we first

inspected the network-based classification of each of the functionally

identified clusters. As a result, the clusters in the frontal and parietal

lobes and the PCG cluster were contained in parcels that were classi-

fied as RC hubs or Feeder nodes. In contrast, the temporal lobe activ-

ity identified in the Nonet > Triplet contrast belonged to parcels that

were classified as Local nodes. Also, the cluster in the left IFJ identi-

fied in the Triplet > Single contrast did not overlap with any parcels

that were labeled as RC hubs. While a little less distinct, using the

node classification from the HCP dataset, we could again show a ten-

dency of the Nonet-specific clusters to share more overlap with par-

cels that were classified as RC hub (see Supplemental Material). So,

compared with Triplet-specific activation cluster, Nonet-specific clus-

ters showed greater overlap with the locations of RC hubs and Feeder

nodes in frontal and parietal cortices. This observation is consistent

with the hypothesis that hierarchically higher stimulus structures were

processed in, or closer to, the structurally identified RC hubs.

Based on this overlap between the functionally found clusters

and the network nodes, we extracted the following five centrality

measures from the structural network nodes underlying the functional

clusters: degree centrality, closeness centrality, betweenness central-

ity, within-module degree z-score, and participation coefficient. We

expected that the centrality measures of nodes underlying the Nonet-

specific clusters would be higher than for the Triplet-specific cluster.

We indeed found a general significant influence of the HIERARCHY CON-

TRAST, an effect depending on whether the cluster was Nonet- or

Triplet-specific, on the examined centrality measures. This general

effect was replicated also using structural centrality measures

extracted from the HCP data. Looking at the individual measures, the

predicted effect was identified for degree centrality, betweenness

centrality and the participation coefficient for both parcellation

schemes and additionally for closeness centrality using the lau-

sanne120 parcellation. Similarly, the individual measures from the

HCP data also differed significantly between the Nonet-specific and

Triplet-specific clusters extracted from functional data presented in

this article. Significant differences were found for degree centrality

and participation coefficient for both parcellation schemes, and addi-

tionally for betweenness centrality for the lausanne120 parcellation

(Table S9.7 and Figure S9.3). Thus, the results of the centrality analy-

sis largely met our expectations and were also very similar across the

two parcellation schemes and datasets. The found differences for

degree centrality, betweenness centrality and closeness centrality

suggest that the structural nodes underlying Nonet-specific activa-

tions are more important for the integration and resilience of the con-

nectome than the Triplet-specific cluster (Rubinov & Sporns, 2010).

The consistent finding of an increased participation coefficient for

Nonet-specific clusters further indicates that these nodes are also

more structurally connected to different modules. The participation

coefficient is usually interpreted and investigated alongside the

within-module degree z-score (e.g., Fukushima et al., 2018; Jao

et al., 2020; Pedersen et al., 2020). Only nodes with a high within-

module degree and high participation coefficient are described con-

nector nodes, which encourage global integration (Guimerà & Nunes

Amaral, 2005; Rubinov & Sporns, 2010) and are crucial for communi-

cation across the cortical network (Crossley et al., 2014; Wu

et al., 2011).Yet, the previously mentioned diverse club is just charac-

terized by high participation coefficient nodes and their connectivity

(Bertolero et al., 2017) showing that nodes with a high participation

coefficient alone could indicate importance for the network's commu-

nication. More research on centrality measures is necessary to settle

if there are meaningful and systematic relations between individual

graph centrality measures of nodes and their function. This could be

especially intriguing as the dynamic association between structural

and functional networks was found to be dependent on the segrega-

tion or integration of the functional network (Fukushima et al., 2018).

In summary, the results of the centrality analysis demonstrate

that areas that are functionally activated by hierarchically higher stim-

ulus structures are more important for the integration and integrity of

the structural network. In combination with the larger overlap of

these functional clusters with RC hub regions, these results provide

potential evidence for the hypothesis that the RC hubs are more

involved in the processing of hierarchically higher structures of incom-

ing stimuli.
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Taken together, both the ROI and centrality analysis allude to the

involvement of RC hubs in the processing of hierarchically higher

stimulus structures. In this context, it has to be pointed out that the

results were very consistent across methods of parcellation and

group-matrix creation and were even replicated using a large indepen-

dent structural dataset. Thus, even though, the methods for combin-

ing structure and function in this article were specifically developed

for the investigated question and consequently applied for the first

time, the displayed consistency of the found results demonstrates

their suitability.

4.4 | Limitations and open questions

Some limitations of the study have to be considered. The paradigm

and stimulus structure we applied was based on the TRW approach

(Hasson et al., 2008, 2010). As previous findings using this

approach could demonstrate a distinction of specific areas activated

for certain hierarchical structures in the stimulus levels and that the

additionally engaged areas per hierarchical level also extend along an

anterior–posterior gradient (Farbood et al., 2015; Lerner et al., 2011),

we as well expected to find a distinction between the four levels

implemented in our stimulus sequences. However, neither the behav-

ioral, neurofunctional, nor ROI analysis results could consistently dis-

tinguish between the four implied hierarchical levels. The ROI results

rather showed a distinction between a hierarchically low (Single and

Triplet) and hierarchically high (Nonet and Complete) level. Especially

the Complete condition behaved unexpectedly across all analyses, as

it did not differ from the Nonet condition in any applied contrast. It

can be speculated that the 36-digit sequence of the Complete condi-

tion was too long for subjects to notice the repeating pattern of digits.

If the stimuli are processed one by one as they are presented, studies

on working memory capacity would predict a maximum capacity of

nine items depending on the modality (Bick & Rabinovich, 2009; G. A.

Miller, 1956). This would include the ranges for the Single, Triplet, and

Nonet conditions and might also explain the similarity of the Nonet

and Complete conditions as they are practically the same when only

looking at the last nine digits.

A second limitation relates to the method of structural network

reconstruction and RC hub identification. In constructing the connec-

tivity matrices used for the RC analysis, we decided on the one hand

to binarize the matrices and on the other hand to use group-averaged

matrices. The binarization was implemented as a necessary compro-

mise (Calamante, 2019). Since the acquisition parameters of our DWI

sequence did not fully comply with current recommendation (Jones

et al., 2013), we binarized the structural connectivity matrices to miti-

gate biases that can occur when using weighted graphs with subpar

DW data (Fornito et al., 2016). The decision to use a group-wise con-

nectivity matrix was made because we employed group-level

statistics for the combination of functional and structural data. Addi-

tionally, it has been already shown that large structural connectivity

patterns, such as the RC, are more detectable in group-connectomes

(Hagmann et al., 2008). Still, it should be considered that both steps

reduce the information included in the analysis, which affects the

interpretability and generalizability of the results (Calamante, 2019).

However, the consistency of results across parcellation schemes,

group matrix creation methods and datasets demonstrated in this arti-

cle nonetheless supports the credibility of our findings.

Furthermore, for the parcellation schemes, we opted for the

extensions of the FreeSurfer inherent Desikan–Killiany atlas intro-

duced in Cammoun et al. (2012) that are included in CATO (de Lange

et al., 2023). More precisely, we used the lausanne120 and lau-

sanne250 options with 114 and 219 cortical areas, respectively, as

this resolution might come closer to meso-level parcellations related

to multimodal differences between the areas (Amunts & Zilles, 2015).

However, while the Desikan–Killiany atlas is based on the borders of

gyri and sulci (Desikan et al., 2006), thus having an anatomical justifi-

cation, the extensions aimed for a near voxel-level parcellation and

are not particularly based on any natural borders in the cortex

(Cammoun et al., 2012). Parcellation on the levels of voxel size is

referred to as random (Qi et al., 2015) as the resolution becomes arbi-

trary (de Reus & van den Heuvel, 2013b). An increase in parcellation

resolution would also require an improvement in DWI quality (Yeh

et al., 2018). It can, however, be argued that the level of detail of the

chosen parcellation might be dependent on the purpose of the inves-

tigation, as a “correct” parcellation is unlikely to be accomplished

(Schaefer et al., 2018). Nevertheless, in trying to bridge the gap

between structural connectivity and cortical function, it might be

more interesting to utilize a parcellation scheme that uses functional

information as the basis for boundaries (Craddock et al., 2012;

Schaefer et al., 2018; Shen et al., 2013), or even an approach using

multiple sources of information (Glasser et al., 2016). This is especially

relevant since the parcellation scheme has been shown to largely

influence the appearance of the network (Bassett et al., 2011; Bryce

et al., 2021; Cammoun et al., 2012; Qi et al., 2015; Seguin et al., 2020;

Sporns, 2011), which can also be seen in this study when comparing

the networks between the lausanne120 and lausanne250 parcella-

tions (Figure S5.3).

Also, we varied the method that constructed the group connec-

tivity matrix. The prevalence method was based on the false-positive

and false-negative balance calculation (de Reus & van den

Heuvel, 2013a), while the t test method was based on the analyses in

Ponsoda et al. (2017). Since the results differed especially for the lau-

sanne250 parcellation scheme between the two methods

(Figure S5.3), it might be necessary to investigate the false-positive

rates, like de Reus and van den Heuvel (2013a) did before, depending

on the parcellation scheme used. Previously it could be shown that

graph theoretical measures are only more reliable with lower resolu-

tion parcellations (Welton et al., 2015) which in turn might be less rep-

resentative for a functionally viable parcellation of the cortex

(Amunts & Zilles, 2015).

Finally, we did not include the subcortex since the focus of the

functional analysis was on cortical activations. Hence, our approach

was not designed to identify subcortical hubs as others did, for

instance in the thalamus, putamen, and caudate nucleus (Riedel

et al., 2022). The DTI algorithms used to reconstruct the white matter
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streamlines for structural connectivity analyses are less reliable in the

subcortex due to kissing and crossing fibers (Prčkovska et al., 2016).

Even though, we used a combined DTI and GQI algorithm, which

showed good performance in the benchmarking test (de Lange

et al., 2023), additional methodical considerations regarding DWI

sequence and tract algorithm are necessary to accurately identify the

streamlines and model the connectivity of the subcortex (Kai

et al., 2022). Nevertheless, via basal ganglia-thalamocortical loops, the

subcortical areas play a major role in shaping the cortical hierarchy

(G. E. Alexander et al., 1986; Badre & Nee, 2018). Thus, given a reli-

able acquisition and tract-detection, investigating the relationship

between structural connectivity in the subcortex and the processing

hierarchically structured stimuli could be a compelling next step. Espe-

cially, as the striatum is commonly found as an RC hub (Riedel

et al., 2022) and also is a key structure for the chunking of sequences,

it could be vital for the processing of nested hierarchical structures

(Graybiel, 2008).

This article considered both graph-theoretical and anatomical gra-

dients but did not intend to determine which one is better suited to

describe our brain's organization. In fact, either gradient may explain

distinct portions of variance (Golesorkhi, Gomez-Pilar, Tumati,

et al., 2021). Recent studies on cortical gradients explored methods to

combine and compare different gradient definitions (Hansen

et al., 2022; Suárez et al., 2020). For instance, approaches using

resting-state fMRI could already demonstrate the relationship

between the intrinsic timescales and structurally determined mea-

sures of centrality (Fallon et al., 2020; Lurie et al., 2023; Sethi

et al., 2017) as well as cytoarchitectonic (Gao et al., 2020) and func-

tional unimodal to transmodal gradients (Shafiei et al., 2020; Wolff

et al., 2022). Future studies should compare gradients defined by vari-

ous modalities not only in respect to the brain's resting state but also

with regard to their task-relevance.

5 | CONCLUSION

To summarize, we could observe a shift of activation clusters for pro-

cessing hierarchically higher stimulus structures toward more anterior

and medial areas in the frontal cortex. The evidence for the impor-

tance of structural RC hubs for processing of hierarchically higher

structures in nested stimuli, however, remains inconclusive. On the

one hand, we determined a set of hub structures that match previ-

ously found compositions of the RC. We also are the first to demon-

strate that areas in the frontal and parietal regions of the brain that

are related to the processing of hierarchically higher structures of

stimuli share more overlap with areas that were identified as RC hubs

or directly connected Feeder nodes. Also, these areas identified for

the functional processing of higher levels were found to be more cen-

tral to the structural network. On the other hand, while the ROI analy-

sis did determine the involvement of RC hubs in the processing of

hierarchically higher stimulus structures, the found activity pattern

was not specific to the RC and was instead found across all node clas-

sifications. This alludes to a more complex relationship between the

functional processing of hierarchically structured stimuli and the levels

of nodes in the structural network. We suggest alternative analysis

methods that focus more on the temporal structure of the neurofunc-

tional signal as well as possible refinements of the hub identification

methods to further assess the relationship between the hierarchy of

our cortical network and the hierarchical structures in the world

around us.
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