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Summary 
In predictive processing accounts of the brain, visual perception is believed to be a 

dynamic interplay between two competing sources of information: bottom-up driven 

information based on external influences, and top-down projected predictions generated from 

prior knowledge. These two sources of information are continuously matched to compute 

discrepancies which, in form of prediction errors, are drawn upon to update internal 

representations. Within this framework, the brain is seen as a hierarchical generative model of 

the environments we inhabit.  

The present thesis comprises three studies which collectively aimed to shine light on 

the generation, maintenance, and development of cued predictions. By exploiting the temporal 

advantages of electroencephalography, Study I examined the temporal aspects underlying the 

formation and development of cued face-related expectations. Neural signatures of 

expectation-facilitation marked the early onset of a neural state optimal for top-down processes 

which prevailed until the expected event occurred. Study II built upon these findings by 

investigating to what extent different contextually relevant interferences might impact the 

maintenance and development of such cued expectations. Whilst temporal delays appeared to 

have little effect on the active maintenance of anticipatory processes, visual interferences 

appeared to overwrite the internal representation of the expected event. Study III extended these 

assumptions by examining whether visual interferences were merely processed to a certain 

extent along the visual processing hierarchy to ensure expectation-facilitated behavioural 

responses. Indeed, the brain seemed to compensate for processing contextually relevant 

interferences by restricting how far these sensory signals were processed within higher 

cognitive levels.  
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Overall, the present thesis emphasises how the brain fluctuates between neural states 

facilitating either top-down or bottom-up processes to efficiently prioritise the source of 

information relevant to the present environmental context. 
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1. Theoretical and Empirical Background

The notion that the brain takes on the role of merely a passive orchestrator in how we 

experience the external world has, over the past decades, been increasingly challenged by a 

more pro-active view of the brain (Helmholtz, 1948). Through interlacing compelling bodies 

of work from cognitive science, psychology, philosophy of mind and psychophysics, a picture 

emerges that presents the brain as an ever-active ‘prediction engine’ that strives to predict 

ensuing incoming sensory information (Clark, 2013, 2015). This active prediction process, 

coined predictive processing, uses prior knowledge stored in the brain to generate relevant 

predictions of the external world (Clark, 2013; Hohwy, 2013). These predictions are compared 

with incoming sensory information to yield a percept that best reflects the state of the present 

context. When the brain gets a prediction wrong, a prediction error is generated upon which 

the internal model is revised (Clark, 2013; Friston, 2009). By trying to minimize and obviate 

prediction errors as one attempts to predict the incoming stream of sensory evidence, a 

structured world is gradually brought into view (Clark, 2015; Friston, 2009). On these grounds, 

how we experience the world depends on the extent to which we can predict the present flow 

of sensory information. In the following sections, I will explore the fundamental underpinnings 

of the predictive brain whilst also accentuating the lucrative benefits that a predictive 

processing picture of visual perception upholds. Towards the end, a number of abiding research 

questions will be raised and upon which the main objectives of the thesis will be addressed and 

elucidated. 

1.1 The brain as a ‘prediction engine’ 

Envision a scenario in which you hear a dog bark just as you are about to walk around a 

corner. If your eyes fall upon a dog sitting in the middle of the pavement, you will think nothing 
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special of it. If, however, you see a cat in place of the dog, you would undoubtedly be a little 

bewildered by the incompatibility between what was initially heard and what was then 

observed. The traditional passive account of perception would dictate that the brain passively 

awaits these streams of sensory information, which it then processes by propagating the signals 

up from lower to higher cortical regions along bottom-up pathways. As such, the brain takes in 

information from the senses to assemble coherent percepts which are build-up in a stepwise 

motion, starting with simple and finishing with complex features (Egner et al., 2010). More 

precisely, whilst neurons in the primary visual cortex (V1) respond to simple lines and edges, 

regions higher up in the visual processing hierarchy (V2 and V4) appear to respond to more 

complex features, i.e., whole shapes and contours (Huang & Rao, 2011; Hubel & Wiesel, 

1968). The predictive processing approach builds on this passive account by adding so-called 

‘generative internal models’ to the framework (Clark, 2013; Friston, 2005; Hohwy, 2013). 

These generative models are acquired in a bottom-up fashion similar to the process mentioned 

above. What sets predictive processing apart from the traditional passive approach, however, 

is a Bayesian spin on how sensory processing is conducted. Following the predictive processing 

approach, generative models are assembled in order to predict afferent sensory signals before 

or whilst they occur. In other words, instead of passively awaiting sensory stimuli, the brain 

actively tries to predict incoming sensory occurrences via a cascade of top-down propagated 

predictions (Friston, 2005; Lee & Mumford, 2003; Rao & Ballard, 1999). Essentially, these 

predictions reflect what the brain already ‘knows’ about the statistical regularities of the 

external environment (Bar et al., 2006). The focal aim of the predictive brain is thus to match 

the multi-layered incoming sensory data with predictions at each level. That is, each level 

within this hierarchy tries to predict the signal of the level below. The discrepancies between 

the internal prediction and the sensory signal at each level are computed using Bayesian 

inference (Friston, 2003). The resulting mismatch is returned in the form of a prediction error 
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signal that is drawn upon to revise the internal model (Den Ouden et al., 2012; Huang & Rao, 

2011; Rao & Ballard, 1999). Depending on the magnitude of the residual mismatch, individual 

levels can either be updated independently or in a way that cascades up several levels of the 

multi-level hierarchical model. To gain better insight, let us return to the fictional scenario 

mentioned above. In general, predictive processing would dictate that the pro-active brain 

attempts to predict external information on the basis of prior knowledge. In this case, 

predictions most probable with regard to the dog’s bark would be generated. If a dog was 

indeed observed after rounding the corner, only little adjustments would be made to the internal 

generative model, e.g., regarding the dog’s colour, size, and breed, etc. If, on the contrary, a 

cat was observed, the dog-related predictions would be compared with contradicting sensory 

data, leading to a cascade of prediction errors upon which the internal model would be revised. 

The role of these prediction error signals is therefore to inform the internal model of sensory 

information which, to this point in time, was not hypothesised (Huang & Rao, 2011). In turn, 

the model is revised and newly sharpened predictions are generated which are closer matches 

of the incoming sensory information. This continuous circular process is referred to as 

prediction error minimisation (Feldman & Friston, 2010) and enables the predictive brain to 

establish probabilistic models that best explain the external world.  

Ideally, the predictive brain strives towards accommodating the most up-to-date model of 

our natural surroundings. Taking into account that our environments comprise a myriad of 

different sensory data which are prone to shift incessantly, this idealistic approach is highly 

improbable. Thus, these generative internal models are subject to concurrent and continuous 

re-evaluation and revision. On a similar note, not every sensory signal that our natural 

environment hosts is of relevance at any given point in time. The notion that the brain can select 

relevant whilst filtering out irrelevant sensory data is well established in empirical literature 

(Ligeza et al., 2017; van Moorselaar et al., 2020). This begs the question: on what grounds does 
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the predictive brain deal with the sensory overload of our surroundings and compartmentalises 

which information is relevant, and which can be considered environmental ‘noise’? 

1.2 Efficiency in the face of environmental ‘noise’ 

As mentioned previously, our environments are laced with a plethora of sensory stimuli. 

Naturally, it would seem inefficient for the predictive brain to predict and process every sensory 

signal that one is brought in contact with equally. To overcome this, informative or even crucial 

sensory signals are isolated from redundant sensory ‘noise’. In terms of perception, the present 

state of our natural surroundings can heavily influence which incoming sensory information is 

processed along the hierarchy of the generative models (Clark, 2015, 2017a; Limanowski et 

al., 2020). The dog’s bark, for instance, provides an indication of what to expect when rounding 

the corner. Thus, to cope with the noisy and dynamic nature of our surroundings, the predictive 

brain makes use of the current context to hypothesise what up- and/or incoming visual data 

would be most probable. Consider the visual example depicted below from Lupyan & Clark 

(2015). When reading from top to bottom, the numeric context would lead one to read 12, 13, 

and 14. In contrast, reading from left to right, the letter A prompts one to read the central 

character as the letter B. Even though the character in the centre is the same in both cases, the 

Figure 1.1 Visual example of how the current context 
impacts perception. Image taken from Lupyan & Clark 
(2015).  
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context influences whether a number or letter is perceived. As such, top-down predictions 

pinpoint which visual input (13 versus B) is most probable based on the present context. 

According to predictive processing, this is brought about by flexibly varying the impact top-

down and bottom-up signals can have at different levels of processing, given the current context 

(Clark, 2015, 2022). In the above case, the balance of influence between top-down and bottom-

up signals is swayed towards the former. In other words, the influence of the top-down 

predictions overrides, at least to some extent, that of the incoming sensory input. Hence, less 

‘weight’ is given to bottom-up driven signals. This well-calibrated process is a vital feature of 

predictive processing and is referred to as precision-weighting (Clark, 2017b; Friston, 2005, 

2009; Lupyan & Clark, 2015). By estimating the uncertainty of our predictions, the predictive 

brain can determine to what extent predictions based on the past should guide current 

perceptual inferences (O’Reilly, 2013). The underlying mechanisms believed to be involved 

recruit certain neuromodulators, such as dopamine (Diederen et al., 2017; Haarsma et al., 2021) 

or noradrenaline (Lawson et al., 2021; Yu & Dayan, 2005), to adjust the synaptic gain given to 

either top-down or bottom-up signals depending on how precise they are estimated to be, given 

the current context (Yon, 2021). Take, for instance, sensory signals generated when scanning 

a landscape during a foggy day. These bottom-up signals tend to be more noisy and less reliable 

than those generated on a clear sunny day. By efficiently altering the weight given to prediction 

errors of varying degrees of reliability subsequently impacts to what extent they influence the 

revision of the internal model (Clark, 2017b). Thus, low-precision-weighted prediction errors 

subsequently tend to have minimal to no impact on influencing the revision of the generative 

model, whereas highly weighted prediction errors have a greater influence on ongoing 

processes (Den Ouden et al., 2012). In general, this systematic, yet flexible, process modulates 

how influential top-down versus bottom-up information is at a given point in time (Clark, 2013, 

2017b; Lupyan & Clark, 2015). This grants us, for instance, to: (a) rely more strongly on top-
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down predictions to guide one through the house in the darkness of night, or (b) let incoming 

sensory information play a more substantial role when walking along unfamiliar terrain. Hence, 

in ideal circumstances, the predictive brain seems to efficiently select different contextually 

driven patterns of weightings to ensure that one’s perceptual hypotheses are updated based on 

relevant sensory signals, and ‘noise’ is disregarded somewhere along the hierarchy of the 

internal model.  

With this in mind, let us revisit the ‘13 versus B’ example shown above. Considering that 

over the years we have established a rich representation and understanding of both numbers 

and the alphabet, the subsequent contexts allow us to predominantly rely on top-down 

predictions. Hence, we can interchangeably read either from top to bottom or from left to right 

and allow the weight given to these top-down predictions to give rise to the most probable 

visual data with respect to the current context. In summary, by integrating precision-weighting 

as a tool to variably ‘sharpen’ and ‘mute’ incoming sensory or top-down signals, the predictive 

brain can efficiently guide visual perception by drawing on the most reliable source of 

information. 

1.3 Neural and behavioural signatures of anticipatory processes 

In theory, a central signature of predictive processing is the suppression of signal by 

‘explaining away’ prediction error by means of precisely predicting incoming sensory 

information (Rao & Ballard, 1999). Indeed, previous functional neuroimaging research has 

demonstrated such expectation-based signal suppressions. For instance, fMRI studies have 

shown that expected (versus unexpected) visual stimuli induced a diminished response in early 

visual cortex (Alink et al., 2010; Kok et al., 2012). Other neurophysiological studies conveyed 

that high frequency gamma-band activity, commonly associated with mediating bottom-up 
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signals (Bastos et al., 2015; Bauer et al., 2014; Brodski et al., 2015; van Pelt et al., 2016), was 

suppressed when processing expected (versus unexpected) events (Todorovic et al., 2011). 

Relatedly, prior expectations regarding upcoming events also appear to speed up behavioural 

responses (Ran et al., 2014; Schliephake et al., 2021; Turk-Browne et al., 2010). 

 In term of experimental design, a cuing paradigm is most commonly used to 

examine anticipatory processes. For low level visual processing, grayscale luminance-defined 

sinusoidal grating stimuli are most often used (Kok et al., 2012), whereas for more 

complex visual perception, face and house stimuli tend to be implemented 

(Schliephake et al., 2021; Summerfield et al., 2008; Turk-Browne et al., 2010). As such, 

the face-sensitive event-related potential N170, a negative deflection at approximately 170 – 

200ms after stimulus onset (Luck, 2014), has been examined and shown to index expectation-

related reductions in amplitude, i.e., a reduced negative deflection (Johnston et al., 2016; Ran 

et al., 2014).  

 Notably, and somewhat contradictory to the ‘suppression feature’ posed by predictive 

processing, enhancements in neural activity have also been associated with anticipatory 

processes. As such, recent studies have shown that the early activation of top-down processes 

is reflected by increases in alpha/beta oscillatory activity (Brodski-Guerniero et al., 2017; 

Cao et al., 2017; van Pelt et al., 2016). In early years of studying alpha oscillations, this 

low frequency band was considered to represent an ‘idling’ state of the brain. In occipital 

areas, alpha oscillations appeared to increase when participants had their eyes closed, and 

decreased upon opening their eyes (Berger, 1930; for a review, see Kropotov, 2009). As a 

result, alpha oscillations received considerably less empirical attention than other frequency 

bands. Only more recently have alpha waves gained more empirical interest particularly in 

the fields of attention and sensory inhibition (Klimesch, 2012; Klimesch et al., 2007). In the 

three upcoming studies, alpha oscillations, combined with beta oscillations, will be examined 

in terms of how these frequency bands may facilitate top-down processes by inhibiting 

bottom-up processes. 
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 Overall, it becomes clear that not only expectation-based signal suppression 

underlies anticipatory processes. The focal premise of the present thesis draws on these 

neural and behavioural signatures of expectation to further advance our understanding of 

the fundamental signatures framing predictive processing. Given that face perception is 

intrinsic to daily life, we used neutral face images to construct a visual cuing paradigm 

to generate statistical regularities. The electrophysiological and behavioural signatures of 

expectation mentioned above will thus be discussed in more detail in the three studies 

comprising this thesis. 
1.4 Research questions and objectives 

The previous sections have outlined the notion that the brain can be viewed as a prediction 

engine that is constantly trying to acquire probabilistic situational models that best represent 

and predict the external world. To acquire such internal models, either internal or incoming 

signals are weighted to ensure that primarily reliable bottom-up signals are drawn upon during 

the revision of these models. Notably, the current context plays a substantial role in regulating 

which sensory signals can be compartmentalised as relevant or noise. By subsequently reducing 

the weight on the noisy signals, top-down processes can take on a larger influential role. All 

these underlying systematic features constituting predictive processing are not only restricted 

to visual perception but also provide a plausible framework for auditory perception (Cao et al., 

2017), language (Kutas & Hillyard, 1980) and action (Bestmann et al., 2008; Clark, 2015; 

Schubotz, 2007). Thus, although the empirical and philosophical research in this field is beyond 

its infancy, many abiding questions still remain. 

Foremost, previous research regarding visual predictions has conveyed little about the 

temporal aspects of how cued predictions are generated. Hence, it remains ambiguous whether 
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neural signatures reflecting the formation of cued expectations are instantly activated upon 

seeing a predictive cue and then subside, or whether this is a gradual process which prevails 

until the expected event occurs. In Study I, we thus exploited the temporal advantages of 

electroencephalography to examine the temporal constrains that mark the generation of cued 

face-related predictions. 

Study II builds upon these findings by integrating the observation that cued expectations do 

not always immediately ensue their predictive cues in a realistic ‘everyday’ setting. 

Additionally, given that our natural environments host vast numbers of sensory stimuli, the 

predictive brain is likely to process other sensory data in the meantime if a cued expectation 

does not immediately follow its respective cue. The aim of this study was, thus, to examined 

whether the neural signatures reflecting the generation process of face-related expectations are 

affected by (i) a temporal delay in the onset of the expected image, or (ii) a visual interference 

(depiction of a randomly selected image) prior to the onset of the expected image. We 

hypothesised that a delay in the onset of the expected image would have little influence on the 

neural signatures reflecting top-down processes. In contrast, processing another visual stimulus 

whilst awaiting the expected stimulus may interfere with early anticipatory processes.  

Based on the findings of Study II, Study III investigated how the present context influences 

how visual interferences are processed. Given that not every incoming sensory information can 

be exclusively compartmentalised as being either relevant or sensory noise, the following 

question arose: how are sensory stimuli processed which are contextually relevant but only to 

a certain extent? In this final study we hypothesised that contextually relevant interferences are 

merely processed to the extent (within the generative internal model) that is necessary for the 

present context.  

Overall, these three studies draw on previously established knowledge regarding the 

underpinnings of the predictive brain to further elucidate: (a) the generation and development 
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of cued expectations, (b) the influences of temporal and visual disruptions on the 

aforementioned process, and (c) how the brain compensates for processing contextually 

relevant visual disruptions.  
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Abstract 

Although statistical regularities in the environment often go explicitly unnoticed, traces 

of implicit learning are evident in our neural activity. Recent perspectives have offered 

evidence that both pre-stimulus oscillations and peri-stimulus event-related potentials are 

reliable biomarkers of implicit expectations arising from statistical learning. What remains 

ambiguous, however, is the origination and development of these implicit expectations. To 

address this lack of knowledge and determine the temporal constraints of expectation 

formation, pre-stimulus increases in alpha/beta power were investigated alongside a reduction 

in the N170 and a suppression in peri-/post-stimulus gamma power. 

Electroencephalography was acquired from naive participants who engaged in a gender 

classification task. Participants were uninformed, that eight face images were sorted into four 

reoccurring pairs which were pseudorandomly hidden amongst randomly occurring face 

images. We found a reduced N170 for statistically expected images at left parietal and temporo-

parietal electrodes. Furthermore, enhanced gamma power following the presentation of random 

images emphasized the bottom-up processing of these arbitrary occurrences. In contrast, 

enhanced alpha/beta power was evident pre-stimulus for expected relative to random faces. A 

particularly interesting finding was the early onset of alpha/beta power enhancement which 

peaked immediately after the depiction of the predictive face. Hence, our findings propose an 

approximate timeframe throughout which consistent traces of enhanced alpha/beta power 

illustrate the early prioritisation of top-down processes to facilitate the development of 

implicitly cued face-related expectations.  
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Introduction 

Our environment is of a highly dynamic nature, veiling a cascade of statistical 

regularities. Explicitly, such regularities often go unnoticed, although traces of implicit 

learning are evident in the brain’s neural activity. These regularities are extracted as sensory 

input and projected ‘bottom-up’ over multiple cortical levels in order to establish associative 

neural representations reflecting external influences [1]. These internal representations are 

henceforth frequently updated and revised to optimise their reliability. This accumulation of 

knowledge regarding statistically predictable external recurrences can then be drawn upon 

when the external input is less informative or lacks certainty [2]. To reduce this ambiguity, 

predictions based on prior knowledge regarding an external stimulus are sent ‘top-down’ along 

the cortical hierarchy and are compared with equivocal sensory-driven input to draw relevant 

inferences. According to predictive processing frameworks, if, for instance, the top-down 

prediction and bottom-up input carry dissimilar information, a mismatch in the form of a 

prediction error is propagated upwards to update a subsequent higher level. On the contrary, 

no revision of any given level would be necessary if the bottom-up signal is congruent with the 

top-down prediction. In the context of predictive processing, this bidirectional interplay 

between incoming sensory signals and top-down projected predictions is the underlying 

mechanism assisting perception [3,4]. 

Emerging principles within this field of research have highlighted several biomarkers 

which support this bidirectional predictive framework. For instance, the face-sensitive event-

related potential (ERP), N170, is a reliable temporal marker which, amongst other factors, 

reflects the level of predictability of a face-related sensory input. Specifically, selected studies 

investigating face perception conveyed that the amplitude of the N170 component was 

significantly diminished for expected compared to unexpected faces [5–7]. In line with 

predictive processing, this suggests that the sensory-driven information of an expected face is 
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met by fairly accurate top-down prediction. To establish such predictions, the brain draws upon 

prior information of expected events in preparation for their actual occurrence [8]. Recent 

studies have shown that pre-activation of sensory information, and subsequent sensory priors, 

are mediated by low frequency oscillations encompassing alpha and beta frequency ranges [8-

12]. These oscillations, primarily alpha, are believed to enhance the signal-to-noise ratio in 

task-related networks by carefully selecting relevant and simultaneously silencing irrelevant 

populations of neurons to establish a more focused access to representations of expected stimuli 

[13]. Due to the early access to relatively precise prior information, less cognitive resources 

are required to process anticipated perceptual input and in turn visual event-related potentials 

are modulated [7,9,13]. Additionally, updating and optimising this given neural representation 

would be unnecessary, hence, the forward projection of prediction errors is downregulated. 

Bottom-up processing as well as the projection of prediction errors functionally relate to high 

gamma frequency (60 – 100Hz) synchronisation, which requires a greater energetic cost than 

lower frequencies [14,15]. Based on these findings, a reduction in gamma power would be 

presumed to proceed the onset of expected events. In contrast, due to the limited access to pre-

activated prior information, more cognitive resources would be allocated to processing 

unexpected occurrences [10,15,16]. Unexpected events could, therefore, be distinguishable 

from expected occurrences by enhanced post-stimulus gamma-band activity (GBA), whereas 

expected images are preceded by an enhancement in pre-stimulus alpha/beta power and a 

suppression in GBA post-stimulus onset [11]. In turn, whilst less cognitive resources are 

devoted to processing sensory information of expected targets, subsequently evoking a 

diminished ERP response, the opposite would be expected for novel or surprising occurrences 

[7,9].  

Although the fundamental principles of adaptive perception have been well established, 

various aspects relating to the genesis and development of top-down driven expectations 
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remain underexplored. Several studies have investigated the presence of pre-stimulus 

alpha/beta power as an indicator of expectation [9,12,17], as well as examined the pre-

activation, maintenance, and transfer of prior face-related knowledge [8]. Yet, these studies 

primarily focus on a small fragment of the pre-stimulus timeframe immediately prior to the 

onset of expected events. Therefore, it remains unclear at which point facilitatory processes 

aiding the development of cued face-related expectations commence and how this development 

evolves over time. The main aim of the present study was, therefore, to locate the point within 

the pre-stimulus period at which the enhancement in alpha/beta power is initiated for expected 

relative to random images. Moreover, we meant to investigate whether this enhancement in 

alpha/beta power either (i) fluctuates, (ii) shows a gradual and steady increase until the 

expected event occurs, or (iii) shows an accelerated increase just prior to stimulus onset. To 

our knowledge, the current study, therefore, provides new insight into the evolution of 

implicitly cued face-related expectations. 

Through employing a statistical learning paradigm during a short training session, 

participants acquired implicit knowledge of the statistical relationships and, hence, predictable 

nature of certain stimuli. More specifically, the participants completed an explicit gender 

classification task whilst implicitly learning and predicting the statistically predictable 

occurrences of certain face images. Participants consequently relied on a previously establish 

representation of the interrelationships between certain images to form subsequent perceptual 

expectations. As such, the formation of these expectations was dependent on memory. 

Foremost, we aimed to replicate findings verifying the presence of implicit expectations. In 

line with previous studies, we expected a faster and more accurate behavioural response for 

expected faces alongside an attenuation of the N170 amplitude [1,7]. Furthermore, we assumed 

that whilst an enhancement in GBA should succeed the depiction of randomly occurring faces 

[11], the statistically expected images should be met with a prior elevation of alpha/beta activity 
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[8,11,12,17]. A systematic relationship between this increase in alpha/beta activity and the 

amplitude reduction of the N170 in response to the stimulus would subsequently support the 

suggestion that the increase in alpha/beta activity reflects predictive processes. Thus, our 

primary motivation was to examine pre-stimulus alpha/beta power, indicating the development 

of face-related expectations, in order to determine the initial onset and offset confining the 

formation process of implicitly cued expectations. 

Materials and methods 

Participants  

A total of 33 individuals participated in this study (23 women; 23.1 ± 3.51 years of age 

[mean ± SD]) after having signed informed consent based on the principles expressed in the 

declaration of Helsinki. All participants were right-handed as assessed by the Edinburgh 

Handedness Inventory [18], reported (corrected-to-) normal visual acuity and had no history of 

neurological and psychiatric disorders. For compensation, participants were either accredited 

with class credits or reimbursed for their participation (25 Euros). Four additional participants, 

whose EEG data contained excessive sweat artefact contamination (severe drifts in the signal), 

were excluded from further analyses. The study was approved by the Ethics Committee of the 

University of Münster (Department of Psychology). 

Stimulus material 

Participants were presented with 25 neutral face images (12 women) chosen from the 

Radboud Faces Database (RaFD) [19]. Since visual information to process faces is extracted 

using sequences of eye fixations over mainly eye regions (the mouth region being second), all 
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images were scaled so that those facial features (especially eyes) aligned [20]. This was done 

to reduce the amount of eye movements.  

To generate statistical regularities, eight of these images were sorted into four 

reoccurring pairs under the following sequential guidelines: i) a male face invariably preceded 

a female face, ii) a male face invariably preceded another male face, iii) a female face invariably 

preceded a male face, and iv) a female face invariably preceded another female face. Each 

individual participant was assigned a unique set of four pairs which were pseudorandomly 

embedded amongst reoccurring arbitrary face images. The face images (W = 9.5cm, H = 14cm) 

were depicted individually in the centre of a black background for 500ms (subtending visual 

angles of approx. 9° vertically and 6° horizontally). These were immediately followed by a 

17ms white noise mask and a fixation period of 2483ms. Each of these trials was, therefore, a 

total length of 3000ms (Figure 1).  

Figure 1 Schematic illustration of the experimental task. Each image was depicted for 
500ms followed by a white noise mask (17ms) and a darkened fixation screen (2483ms). The 
participants were instructed to press either the left (right index finger) or right (right middle 
finger) button on a response box to discriminate between female (F) and male (M) images, 
respectively.  
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Task 

The participants engaged in a gender classification task without having prior knowledge 

of the presence of the embedded pairs. They were given a response box and were instructed to 

respond as fast and accurately as possible – via a right-hand button press – respective to the 

gender of the face presented on screen. Here a left button press (right index finger) classified 

the presented image as a female face, whilst a right button press (right middle finger) classified 

the depicted face image as male (Figure 1).  

Experimental procedure 

Participants were tested on two consecutive days. The first day consisted of a short, 18-

minute behavioural training session, providing a chance for the participants to gain implicit 

knowledge regarding the presence of the paired images and to familiarise themselves with the 

classification task at hand. Four image pairs were pseudorandomly hidden amongst 17 arbitrary 

face images, with each image depicted five times to form sequences (blocks) of approximately 

six to seven minutes (125 images within each block). The first image within each pair served 

as a predictive event for the second image and subsequently enhanced its predictability. 

Focusing on this predictability regarding the occurrence of a certain image, all images could 

be sorted into two image categories – expected and random. Given the confounding informative 

nature of a predictive image, these images were removed from analyses determining the 

predictability of a shown image (behavioural, ERP and gamma-band analyses). The timeframe 

following the onset of predictive images was, however, examined in the alpha/beta analysis, 

since it also served as the pre-stimulus timeframe for the expected images.  

The EEG session on the following day comprised of an elongated replica of the training 

session. All images were equally distributed throughout eight blocks with self-determined 

breaks separating them (yielding a total of 1000 trials). Whilst the four image pairs remained 
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consistent throughout the training and EEG sessions for each individual participant, the 

combinations of paired images differed and were counterbalanced across participants. The 

participants were seated comfortably in a dimly lit EEG booth and advised to keep general 

movement to a minimum. Overall, the EEG session took approximately 50 – 60 minutes to 

complete depending on the length of the breaks.  

A questionnaire following immediately after the EEG session tested the participants’ 

explicit awareness of the predictive nature underlying the classification task. The participants 

were asked to state whether they had noticed face images which invariably ensued certain 

predictive images and asked to identify them seriatim. 

The experiment was programmed and performed using Presentation 18.1 

(Neurobehavioral Systems, San Francisco, CA, USA). 

Behavioural data analysis 

The statistical analysis of the behavioural response time (RT) and accuracy (percentage 

of correct responses) was performed in R (version 3.6.0; R Foundation for Statistical 

Computing, Vienna, Austria; Rstudio Team, 2015). Premature and prolonged responses 

(occurring 3 SDs faster/slower than the aggregated group mean), in addition to incorrect 

answers, were excluded from the behavioural analysis. Random images were arbitrarily 

selected to create a sample size equal to the number of expected images (~160 of expected and 

~170 of random image trials per participant). Since we hypothesised that the responses for the 

expected faces would display an increase in accuracy aligned with a decrease in RT, these two 

aspects of performance were subjected to individual dependent, one-tailed t-tests for the two 

image categories (expected versus random). 
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EEG data analyses 

EEG data acquisition. Scalp EEG was acquired using 62 Ag/AgCl-electrodes 

mounted to the actiCAP snap electrode cap in combination with the BrainVision Recorder 

software (Brain Products, Gilching, Germany). The electrodes were placed according to the 

10-20 system and additional electrooculogram (EOG) electrodes were attached below and next

to the right eye to account for vertical and horizontal eye movement, respectively. An online 

bandpass filter (0.1 – 1000Hz) was applied to the EEG data recorded at a sampling rate of 

1kHz. Electrodes FCz and FPz served as online reference and ground, respectively, and were 

disregarded from all analyses. Electrode impedance was maintained below 10 kΩ. 

EEG signal processing. EEG data was pre-processed offline using the EEGLAB 

toolbox (version 14.1.1b) [21] in MATLAB (R2017b). The raw data was down-sampled to 

500Hz and bandpass filtered by applying a 0.1Hz high-pass and 30Hz low-pass Butterworth 

filter (12 db/octave) for the ERP analysis, whereas a 0.5Hz high-pass and 100Hz low-pass 

Butterworth filter was implemented for the time-frequency analysis (TFA) [22]. Line noise was 

suppressed at the source through a carefully designed set-up (as recommended by [23]).  

Continuous data was segmented into epochs extending from -200ms pre- to 600ms post-

stimulus onset for ERPs. The 200ms prior to stimulus onset served as a baseline. For the TFA, 

data was epoched from -2000 to approximately 1500ms, time-locked to stimulus onset. These 

time segments of 3500ms framing image onset were used with the intention to allow edge 

artefacts to subside before and after our points of interest [22]. Consecutive epochs overlapped 

by approximately 500ms to minimise loss of data during convolution. Ocular correction was 

applied using the Gratton plug-in for EEGLAB [24]. Noisy channels (kurtosis criterion: z > 6) 

were manually inspected and replenished by an interpolation of neighbouring electrodes 

(ERPs: 1.14% and TFA: 0.66% of electrodes were interpolated). For the ERP analysis, 

semiautomatic artefact inspection discarded epochs contaminated by artefacts exceeding an 
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amplitude threshold of  ± 75 μV or voltage fluctuations greater than 50 μV with regard to the 

previous sample point (3.9% of trials removed). For the TFA, epochs with artefacts exceeding 

an amplitude threshold of  ± 200 μV and voltage fluctuations greater than 50 μV were rejected 

(6.2% of trials removed). A dataset was disregarded when more than 2 SDs of trials were 

removed during the semiautomatic rejection (ERP mean: 943 trials; TFA mean: 941 trials). 

Henceforth, four out of the 37 participants were dismissed from all further processing. During 

the final pre-processing step, datasets were re-referenced to a common average. For all EEG 

analyses, the number of expected and random trials was equalised across participants 

(expected: ~160 per participant; random: ~170 per participant). 

Event-related potentials. The epochs framing the event of interest were averaged 

across each image category (expected and random) for each individual participant. The N170 

was quantified by measuring the mean amplitude within the timeframe of 150 – 200ms in 

relation to a pre-stimulus baseline of 200ms. Based on former literature, we restricted the 

attributing electrode sites to exclusively P7/P8 and TP7/TP8 for our analysis [25-29]. In line 

with our directional hypothesis, the mean amplitudes for expected and random images were 

subjected to dependent, one-tailed t-tests for each set of electrodes (left hemisphere: TP7/P7; 

right hemisphere: TP8/P8; see S1 File for an alternative repeated measures cluster permutation 

test approach). 

Time-frequency. The spectral analysis was performed using the MATLAB toolbox 

FieldTrip [30]. Spectral power was estimated by applying FFT to a sliding window passing 

through averaged trials (for both low and high frequencies). A Hanning taper was used for low 

frequencies (2 – 30Hz) by centring a 500ms fixed sliding window that moved in time steps of 

50ms and 1Hz increments. This process subsequently constructed trial windows extending 

from -1750 to 1200ms (stimulus locked), as 250ms on either side of the original epoch frames 

(-2000 – approx. 1500ms stimulus locked) were discarded due to convolution. For high 
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frequencies (40 – 100Hz), an adaptive DPSS (discrete prolate spheroidal sequences) multitaper 

approach was applied [31]. Estimates were acquired using a 500ms fixed sliding window 

maintaining identical stepwise motion over time and frequency axes as previously stated (± 

4Hz smoothing).  

Cluster-based permutation tests were computed in three dimensions (frequency, 

channel, and time) to correct for multiple comparisons. Hence, voxels of the two image 

categories were subjected to Monte Carlo randomisation tests with 1000 iterations and a 

significance level of α = .05. With reference to our hypotheses regarding the enhancement of 

alpha/beta power pre-stimulus and the diminution of gamma power post-stimulus onset for 

expected versus random faces, dependent, one-tailed t-tests were computed for these 

permutation tests. Statistical tests were performed on the normalised difference in raw power 

estimates between expected and random images (difference expected vs. random = (X-Y)/(X+Y)). 

This normalisation was also applied to all spectral data used for time-frequency representations. 

Lastly, data-driven analyses were carried out to assess the relationship between the 

observed effect in pre-stimulus alpha/beta power and the modulation of the N170. For each 

participant, the difference in normalised alpha/beta power between expected and random 

images was calculated and averaged over channels, frequency, and time. In this case, power 

was only averaged across those channels that contributed to the positive cluster. The difference 

in mean amplitude for the N170 was computed and averaged over time and left electrodes for 

each participant. The modulation of alpha/beta power within the immediate pre-stimulus 

timeframe (1250 – 3000ms) was z-standardised and correlated with the z-standardised 

magnitude of the difference in mean amplitude for the N170. To examine the functionality of 

the last two peaks more closely, their underlying alpha/beta power was segregated and 

correlated individually with the modulation of the N170. The timeframe proceeding the onset 
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of the predictive images was not included in these analyses because of the images’ informative 

and ‘cue-like’ nature.  

Results 

Behavioural results 

Throughout the EEG session, participants engaged in a classification task with the 

instructions to identify the gender of the depicted faces as fast and as accurately as possible. 

The performance for both image categories conveyed the participants’ close engagement with 

the task at hand (expected: 96% accuracy; random: 96% accuracy; one-tailed: t(32) = 0.51, p 

= .305). The RT for the two observed image categories showed a mean of 478ms (SD = 49ms) 

for expected faces and 479ms (SD = 46ms) for random faces. The dependent, one-tailed t-test 

showed no significant difference between the two categories (t(32) = 0.38, p = .352).  

Notably, the answers of the questionnaires revealed that only a single participant 

became explicitly aware and was capable of correctly identifying merely one out of the four 

confronted pairs.  

Event-related potential results 

The modulation of the N170 played a fundamental role in identifying whether the 

participants had gained implicit knowledge regarding the predictability of the paired images. 

Our approach examined four relevant channels – TP7 and P7 in addition to their right lateral 

counterparts –for a substantial reduction in mean amplitude (150 – 200ms) for expected faces. 

Supporting our hypothesis, a significant reduction in mean amplitude was observed for 

expected (-1.31 ± 2.40 μV) versus random images (-1.51 ± 2.25 μV) at left parietal and 

temporal-parietal channels (Bonferroni-corrected: p = .039; Figure 2). In contrast, no 
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significantly reduced amplitude for expected faces was evident at right-lateralised channels 

(expected: -1.80 ± 3.02 μV; random: -1.86 ± 3.05 μV; Bonferroni-corrected: p = .569).  

Figure 2 (A) A significant reduction in the N170 amplitude for expected (blue line) in comparison to 
random (black line) faces was found across the averaged electrodes TP7 and P7 (left hemisphere). The 
timeframe of the significant mean amplitude difference is marked by a red dash. The shaded area 
illustrates within-participants confidence intervals for the expected (blue) and random (grey) faces. (B) 
No vast differences in the N170 were evident across electrodes TP8 and P8 (right hemisphere). (C) 
Voltage topographies (μV) for expected and random images show activity in a timeframe from 150 – 
200ms following stimulus onset. (D) Topographies show voltage differences between expected and 
random face images. 
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Time-frequency results: gamma oscillations 

An underlying implication of predictive processing is the notion that the feeding 

forward of sensory information is upregulated for novel or unexpected as compared to expected 

occurrences [14]. In accordance with this conception, our time-frequency analysis showed a 

significant reduction in gamma power for expected versus random images within the first 

1000ms upon stimulus onset (p = .04, cluster corrected; Figure 3). In other words, a significant 

enhancement in GBA was found in response to random compared to expected images. No 

particular frequencies within the broad gamma-band were singled out a priori, meaning, 

gamma power (40 – 100Hz) was treated as a singular entity. Interestingly, we observed that the 

gamma-related spectral difference between random and expected images appeared to reside in 

an early and late enhancement (Figure 3A). Visual inspection of the cluster revealed that the 

channels contributing to these elevations in GBA were predominantly located over posterior 

scalp regions (Figure 3B). 

Figure 3 (A) Time-frequency representation (TFR) showing the normalised difference in gamma-band 
activity (GBA) between expected and random images peri- and post-stimulus onset (40 – 100Hz; 0 – 
1000ms). Power was averaged across electrodes contributing to the negative cluster (p = .04, cluster 
corrected). (B) TFRs for each individual channel illustrate the topographical distribution of the negative 
cluster. The significant time and frequency points composing the negative cluster stand out as opaque; 
insignificant differences are transparent. 
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Time-frequency results: alpha and beta oscillations 

The above analyses determined several neural traces which suggest that the predictive 

nature underlying the classification task was learned implicitly. Building upon this finding, we 

examined alpha and beta frequencies to determine a confined time-window preceding an 

expected event, in which the development of an expectation was reflected by its power 

distribution pattern. Hence, this analysis focused on the presence and distribution of low 

frequencies, primarily associated with top-down processes, in the short timeframe preceding 

the expected stimuli [12,17,32]. In line with our hypothesis, we found a significant 

enhancement in alpha and beta power for expected images (in comparison to random images) 

ranging from approximately 1250ms after the presentation of the predictive image to onset of 

the expected stimulus (p = .017, cluster corrected; Figure 4B). However, as displayed in Figure 

4A, the positive cluster seems to commence prior to this enclosed timeframe. Thus, we 

additionally contrasted the time course extending from stimulus onset until 1200ms post-

stimulus onset between predictive and random images. Interestingly, a further positive cluster 

enclosing alpha/beta frequency bands was observed in this timeframe (p = .044, cluster 

corrected). Visual inspection of the cluster suggested that the channels corresponding to the 

largest power differences between predictive and random images were predominantly located 

over central electrodes within occipital, parietal, and frontal regions (Figures 4Ai and 4Aii). 

These topographical distributions then spread to primarily occipital and frontal regions for the 

largest difference in alpha/beta power between expected and random images (Figure 4Bi). In 

contrast to the previous scalp maps, the final enhancement in alpha/beta power was mostly 

lateralised bilaterally over parietal regions (Figure 4Bii). Collectively, these findings suggest 

that the facilitation of the development of a cued expectation is initiated by the onset of the 

predictive image and ends shortly prior to depiction of the expected image. 
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Figure 4 TFRs of the normalised differences in low frequency power (2 – 30Hz) averaged 
across channels contributing to the positive clusters (outlined in grey). The timeframe shown 
extends from stimulus onset (predictive/random) to stimulus onset (expected/random). The 
histograms along the x-axes show the sum of significant frequency points per time point across 
cluster contributing channels. The reversal is shown in the histograms along the y-axes (sum 
of significant time points for each frequency across cluster contributing channels). (A) 
Significant cluster for the alpha/beta power differences between predictive minus random 
images. Scalp maps illustrate the topographical distribution of the greatest power differences 
(predictive - random) within (i) 0 – 200ms (14 – 19Hz), and (ii) 950 – 1200ms (10 – 18Hz). 
(B) Significant cluster for the alpha/beta power differences between expected minus random
images. The scalp maps illustrate the topographical distribution of power differences (expected
- random) within (i)1250 – 1750ms (10 – 14Hz) and (ii) 2500 – 3000ms (6 – 11Hz). A 50ms
rift disjoins the 3000ms interstimulus timeframe as a result of the chosen epoch size and Fourier
transform parameters (see Materials and methods). Both 4A and 4B, however, provide
supportive indications to assume that in place of the 50ms rift, a steady increase in significant
frequency points (histograms along the x-axes) would link the gradual increase in 4A with the
peak seen in 4B.

Post hoc correlations demonstrated that the modulations of alpha/beta power (8-30Hz) 

within neither the entire pre-stimulus timeframe immediately prior to stimulus onset (1250 – 

3000ms) nor the middle peak (1250 – 1750ms) significantly correlated with the magnitude of 
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the reduction of the N170 (Spearman’s rho = .19, p = .838, 95% CI [-0.16 0.50]; Spearman’s 

rho = .04, p = 1, 95% CI [-0.31 0.38], respectively). A significant positive relationship was, 

however, observed between the modulation of alpha/beta power underlying the final peak (8-

30Hz; 2500 – 3000ms) and the modulation of the N170 (Spearman’s rho = .46, p = .021, 95% 

CI [0.14 0.69]; Figure 5). All above p-values were Bonferroni-adjusted to correct for multiple 

comparisons. Collectively, these findings suggest that the final peak could reflect a relatively 

precise expectation of the upcoming stimulus. The continuous enhancement of alpha/beta 

power extending throughout the entire interstimulus interval may, on the other hand, provide 

an elongated favourable state optimal for expectation formation.  

Figure 5 Correlation between the z-standardised modulations of pre-stimulus alpha/beta power 
(8-30 Hz; 2500 – 3000ms) and of the left-lateralised N170 (N = 33). 
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Discussion 

The present study provides findings which suggest that the development of implicitly 

cued expectations is optimised by the early prioritisation of top-down processes. In turn, 

predictable visual events are met by relatively accurate implicit expectations to allow the brain 

to reserve cognitive resources. These processes were reflected by enhancements in pre-stimulus 

alpha/beta power for expected relative to randomly occurring faces. Intriguingly, this 

enhancement commenced as early as the onset of the predictive image and prevailed until the 

expected stimulus occurred. A correlation between the final elevation in alpha/beta power and 

the reduction of the N170 revealed a positive relationship between these two modulations. 

Ultimately, a reduction in bottom-up processing for expected relative to random images 

appeared to be reflected by a suppression in post-stimulus gamma power (Figure 6).  

Figure 6 Schematic overview of observed electrophysiological modulations in response to 
predictive/expected relative to random images.  

Through employing a short statistical learning test (training) prior to the EEG session, 

participants were given the chance to acquire implicit knowledge regarding the predictive 

relationship between paired face images. At first glance, the gain of neither a significant 
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decrease in response time nor a significant increase in accuracy for statistically expected 

images seems at odds with previous studies [1,7]. Considering the simplicity and repetitiveness 

of our task, however, the lack of behavioural effects could be caused by a ceiling effect. Turk-

Browne and collegues [1], for instance, took into account that signs of statistical learning 

become evident after merely 2 to 3 repetitions. In their experiment, novel images and paired 

image combinations were introduced in each new block to eliminate the likelihood of reaching 

a plateau in response time and accuracy across expected and unexpected images. Noting that 

our focal point of interest lay with the origination of implicit expectations and not the statistical 

learning process as such, our task (the 25 images and paired-up faces remained the same 

throughout the experiment) may have permitted participants to quickly reach optimal 

proficiency. A further point to consider is that the images were presented for an entirety of 

500ms which may have buffered a speeded reaction. A reduced presentation period could, thus, 

help encourage participants to give a more speeded response.  

Whilst this study does not allow us to draw a strong conclusion regarding the 

lateralisation of the N170 effect, the observed modulation of the N170 does, however, appear 

to support the notion that participants implicitly differentiated between statistically expected 

and random images (Figure 2). This observation is in line with the established premise that a 

smaller fraction of cognitive resources is devoted to expected in comparison to somewhat 

unexpected or surprising events [5,7]. This in turn results in an attenuated electrophysiological 

response. An assumption as to why this attenuation was solely observed over left-lateralised 

electrodes is based on the principles that the right-lateralised N170 seems to be more sensitive 

to familiarity than the left-lateralised N170. That is, studies regarding the role of the N170 

during face identity processing have shown that consecutive presentation of identical face 

images leads to a reduction in the N170 [33,34]. On the contrary, Jemel, Schuller & Goffaux 

[35] observed an enhanced N170 amplitude for familiar (famous) in comparison to unfamiliar 
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faces during overt face recognition. These habituation effects or memory-driven modulations 

were found to be predominantly right-lateralised, irrespective of gender [33-35]. Although 

consecutive depictions of the same face were not permitted within our pseudorandomisation 

parameters, each individual image was presented 55 times (regardless of its assigned category) 

throughout the two experimental sessions (training and EEG). Thus, it seems plausible that the 

N170 components for expected and random images may have, to some extent, been influenced 

by habituation. This right-lateralised habituation effect may, therefore, have dampened a 

considerable right-lateralised, expectation-related modulation.  

On a different note, past studies have shown sex-related differences in face processing 

and the lateralisation of the N170. These findings suggest a dominating right lateralisation of 

the N170 in men and a more bilateral tendency in women [36,37]. Intriguingly, Proverbio and 

colleagues (2012) showed that sex-coding studies revealed a slightly different pattern in 

hemispheric lateralisation [38]. Here, women showed a more dominating left-lateralised 

response whilst men showed bilateral functioning; thus, suggesting that the involvement of the 

left hemisphere is essential during gender classification in both gender groups. Given that in 

the present study participants performed a gender classification task, the observed left-

lateralised modulation of the N170 may have been influenced by the underlying nature of the 

task at hand and the fact that women outnumbered men (10 men and 23 women). However, 

this unbalanced sample makes it difficult to draw firm conclusions regarding any sex-related 

differences impacting hemispheric lateralisation. Ultimately, this question would be interesting 

to pursue in future, with an adequately designed study that specifically investigates how sex-

related difference may impact the origination of face-related expectations.  

On a final note, the current study used faces as stimuli because the N170 component is 

a well-established signature of face processing. We would, however, like to emphasize that the 

N170 has also been reported for non-face stimuli [5,39]. Whether the reduction of the N170 
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along with the modulations in alpha/beta power observed here for expected faces generalises 

across other stimulus categories remains to be investigated. 

Acknowledging that the occurrence of the face images without a preceding predictive 

image lacked the predictability of the paired images, random images were deemed to require 

more cognitive resources and elicit an enhanced gamma-band response. In other words, since 

all images were task relevant and required a specific behavioural response, it seems likely that 

more cognitive resources were necessary for processing randomly occurring images, for which 

the gender was not foretold by a predictive image. In line with previous findings, we observed 

enhancements in GBA for the somewhat unexpected random images within peri- and post-

stimulus periods (Figure 3A; for a review see [40]). Drawing on previous studies, gamma 

synchronisation has been shown to play a facilitatory role during specific neural functions such 

as feature binding of incoming visual information [16], the projection of prediction errors 

[10,14], and influencing synaptic strength during memory encoding and retention [15,41]. 

When linking these previous findings to our observations, the early peri-stimulus enhancement 

in GBA (~ 0 – 500ms) could reflect the feeding forward of salient visual information which 

unifies each individual random image. This notion is supported by the observation that this 

early gamma-band enhancement is predominantly distributed over occipital electrodes (Figure 

3B). Namely, regions which are associated with low-level perceptual processing. Initial 

processing of incoming visual information, therefore, seems to be augmented for the somewhat 

unexpected in comparison to expected stimuli. 

Given that fast gamma frequencies (~ 60 – 100Hz) are deemed optimal for 

strengthening synapses during the encoding and updating of short-term memories [14], the later 

post-stimulus enhancement in broadband gamma power (~ 500 – 1000ms) could indicate that 

neural representations of the random images are encoded, retained, and revised [16]. Since the 

random images were recurrently presented over the duration of the experiment, it seems 
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plausible that associated representations could be kept “active” whilst being progressively 

updated by bottom-up sensory input upon depiction. Consistent with previous findings by 

Arnal, Wyart & Giraud [10] and Bauer and colleagues [11], the late enhancement in broadband 

GBA could, thus, reflect the augmented projection of prediction errors from early visual areas 

via low GBA and the revision of higher cortical levels via high GBA for random images (Figure 

3B). 

Complementary to previous studies, we found that the depiction of expected targets (in 

comparison to random faces) was met by an enhanced pre-stimulus alpha- and beta-band 

activity [11,12,17]. Extending previous findings, we observed that this enhanced alpha/beta 

activity persisted throughout the entire interstimulus interval. Interestingly, this elongated 

enhancement in alpha/beta power was governed by three peaks that marked the largest 

differences in power between expected and random images (Figure 4). The first peak, cresting 

shortly after stimulus onset (~ 0 – 200ms), suggests an elevation in alpha/beta activity for 

predictive relative to random images (Figure 4A). It appears that the initial activation of 

underlying processes facilitating expectation formation is subsequently triggered by the 

informative attribute of these cue-like images. Namely, the predictive image itself marks a 

pivotal juncture and foretells the approach of a certain expected face. The largest power 

difference between predictive/expected and random images appears to be primarily located 

across central electrodes within occipital, parietal, and frontal regions (Figures 4Aii and 4Bi). 

Even though the corresponding scalp map does not provide the same spatial resolution as 

magnetoencephalography results, this topographical distribution seems to show the 

engagement of predominantly dorsal regions, frequently associated with the propagation of 

top-down processes [10,11]. This continuous modulation in alpha/beta power, thus, seems to 

suggest that the prioritisation of top-down processes commences much earlier than just 

immediately prior to the occurrence of the expected target. Several past accounts have provided 
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evidence to suggest that alpha/beta power is an electrophysiological marker for the inhibition 

of forward feeding networks [13,42]. Arguably, it seems very plausible that a similar neural 

state is elicited upon the presentation of the predictive image. As such, the predictive image 

seems to give rise to a favourable condition in which increases in alpha/beta power reflect 

prioritisation of top-down processes whilst competing forward-feeding representations are 

suppressed. Especially since each predictive image only cued a single specific face, alternative 

neural representations were unnecessary to be processed or maintained during this interval. The 

reverse has been demonstrated recently in a study by Griffith et al., (2019), which showed that 

a decrease in alpha/beta power (disinhibition of relevant networks) facilitates information 

processing [42]. Thus, the continuous maintenance of a favourable condition within the 

timeframe confined by the onsets of the predictive and expected images could appear to aid the 

development of precise perceptual expectations.  

In the context of predictive processing, alpha oscillations are leading modulators of 

attention and expectation. Yet, the process of how these two means modulate information 

processing remains controversial. Recent studies have suggested that whilst attention boosts 

the precision of prediction error by synaptic gain, expectation regulates the precision of top-

down predictions [43,44]. In the latter case, a highly predictable event would, thus, yield fewer 

prediction errors which would be distinguishable by a subsequent attenuation in high frequency 

neural responses. Given that our predictive images invariably prompted certain face images, 

the expectation generated should ideally have been fairly accurate. Upon stimulus depiction, 

less iterative optimisations between hierarchical levels should, therefore, have been necessary 

to establish a relatively precise representation of the expected stimulus. The observed positive 

relationship between the final enhancement in alpha/beta activity (2500-3000ms; Figure 4B) 

and the left-lateralised reduction of the N170 appears to be coherent with this modulation 

framework. Namely, data-driven observation suggests that there is a systematic relationship 
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between the modulation in alpha/beta power occurring immediately prior to stimulus onset and 

the modulation of the peri-stimulus N170. This electrophysiological pattern is also in line with 

the notion that preactivated prior knowledge and subsequent predictions regarding an 

approaching target must be maintained until this predictable event is encountered [8]. Hence, 

this post hoc observation supports the hypothesis that processes of expectation are reflected in 

increased alpha/beta activity, which makes processing of expected stimuli more efficient and 

consequently reduces the amplitude of the N170. In this case, the prioritising of top-down 

predictions could, therefore, be elucidated in terms of prediction accuracy [11,43]. 

To summarise, we extended findings substantiating the presence of perceptual 

expectations. Of particular interest was the observation that the predictive images seemed to be 

essential for the initiation of the evolution of cued expectations. This was rendered by the 

enhanced alpha/beta activity cresting shortly after the depiction of the predictive faces. Even 

though the early peaks did not correlate with the modulation of the N170, the onset of the 

predictive image seems to initiate an early optimisation of a favourable neural state to boost 

the development of relatively precise perceptual expectations. The perception of predictable 

faces is subsequently facilitated through the implementation of these expectations, leading to a 

suppression in bottom-up information processing reflected by a reduction of the N170 and 

GBA. The facilitation of the development of implicitly cued face-related expectations, thus, 

appeared to prevail over the entire interstimulus period with fluctuations in alpha and beta 

power varying throughout the three second timeframe. One could question why this pre-

stimulus enhancement in alpha/beta power fluctuates instead of being a stable and continual 

increase in power leading right up to the presentation of expected targets. An explanation could 

be that the spectral distribution pattern within this timeframe is biased by the temporal aspects 

of the experimental parameters. Given that three seconds are a relatively long interstimulus 

interval for this particular perceptual task, the gradual decrease in alpha/beta power (approx. 
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1500 – 2250ms; Figure 4B) could illustrate a progressive conservation of top-down processes 

before the final power enhancement which marks the imminent approach of the expected target. 

This would also explain why only the last peak in alpha/beta power positively correlated with 

the modulation of the N170. Averaging over the entire immediate pre-stimulus timeframe may 

have concealed a systematic relationship between the aggregated pre-stimulus alpha/beta 

power and the modulation of the ERP. The precise functional purpose of the second and most 

prominent peak would, however, benefit from further investigation, which we intend to do in 

a currently orchestrated study. In addition, although phase analysis is beyond the scope of the 

present study, it would be an intriguing research question for future studies to investigate 

alpha/beta phase coherence at the timepoints of each of the observed peaks. 

In conclusion, the current study provides new insight into the temporal dynamics and 

development of face-related expectations. Notably, our findings raise the notion that the 

formation of cued expectations does not occur at random within the period preceding a 

statistically expected target. Instead, the facilitation of this developmental process appears to 

be instigated by the predictive image and proceeds, with fluctuations in growth, until shortly 

before the depiction of the target. In turn, expected stimuli are met by a relatively precise 

expectation to allow the brain to reserve cognitive resources. The evolution of implicit face-

related expectations, thus, seems to prevail over the entire interstimulus period. From these 

results we could draw a timeframe confining the genesis and reflecting the developmental 

nature of cued face-related expectations. As such, these results open up opportunities for future 

studies to investigate and pinpoint more specific aspects underlying the anticipation of faces. 

It would, for instance, be of interest to narrow down the precise functional roles – as well as 

the neural networks – of the observed pre-stimulus peaks in alpha/beta power. Collectively, 

this would further advance our understanding of how the development of perceptual 

expectations is shaped in preparation for upcoming expected targets.  
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 S1 File 

Alternative ERP analysis 

The N170 amplitude was quantified by measuring the mean amplitude within the 

timeframe of 150 – 200ms in relation to a pre-stimulus baseline of 200ms. For this 

computation, the Mass Univariate ERP Toolbox for MATLAB [1] was employed to analyse 

the mean amplitude across selected channels (TP7/TP8, P7/P8) and within the respective 

timeframe. The ERPs for expected and random images were subjected to repeated measures 

cluster permutation tests with 5000 random iterations to correct for multiple comparisons. In 

line with our hypothesis that expected faces elicit a modulation in the N170 amplitude in 

comparison to random faces, a dependent, one-tailed t-test was computed for each electrode 

and timepoint (a total of 100 comparisons). Clusters arose when the one-tailed t-tests resulted 

in a p-value of or less than .05. The sum of the t-values within each cluster were compared and 

the maximum values extracted throughout each permutation to derive the null hypothesis 

distribution. Our test statistic of interest was thus deemed significant, if it grounded outwith 

the 95% tail of the derived distribution. 

A significant reduction in amplitude was observed for expected in comparison to 

random images (p = .039) at left parietal and temporal-parietal channels (Fig 2A). The cluster 

permutation test also conveyed that this positive, left-lateralised cluster extends from 

approximately 158 – 188ms peri-stimulus (Fig 2A). In contrast, no significantly altered 

amplitude for expected faces (p = .172) was evident across the equivalent right-lateralised 

channels (Fig 2B). 

 

 

 



Research Articles 
 

 54 

 References 

1.  Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain 

potentials/fields I: A critical tutorial review. Psychophysiology. 2011;48(12): 1711–25. 

doi: 10.1111/j.1469-8986.2011.01273.x 

 

 



Research Articles 

 55 

2.2 Study II: Fluctuations in alpha and beta power provide neural 

states favourable for contextually relevant anticipatory processes 

 

 

Marlen A. Roehea,b*, Daniel S. Klugerb,c, and Ricarda I. Schubotza,b,d 

 

aDepartment of Psychology, University of Munster, Germany  

bOtto-Creutzfeldt-Centre for Cognitive and Behavioural Neuroscience, University of Munster, Germany 

cInstitute for Biomagnetism and Biosignal Analysis, University of Munster, Germany 

dDepartment of Neurology, University Hospital Cologne, Germany 

 

 

under review 

 

 

 

 

 

 

 

 

 

 

Keywords: prediction, face perception, neural oscillations, N170, sensory interferences 



Research Articles 
 

 56 

Abstract 

 Cued sensory input occasionally fails to immediately ensue its respective trigger. Given 

that our environments are rich in sensory cues, we often end up processing other contextually 

relevant information in the meantime. The experimental design of the present study allowed us 

to investigate how such temporal delays and visual interferences may impact anticipatory 

processes. Thirty-four participants were trained to remember an individualised set of eight 

paired-up faces. These paired-up faces were presented pseudorandomly in sequences of 

unpaired face images. To keep participants engaged throughout the electroencephalography 

study, they were instructed to classify each face image, according to its sex, as fast as possible 

without compromising accuracy. We observed dissimilar modulations in alpha and beta power 

between the 6-second timeframe encompassing the onsets of predictive and expected images 

(Temporal Delay block) and the 6-second timeframe encompassing the predictive, interference 

and expected images (Visual Interference block). Furthermore, an expectation-facilitated 

reduction of the face-sensitive N170 component was observed if an anticipated face image 

directly followed its corresponding predictive counterpart. This effect was no longer evident 

when the expected face was preceded by a distracting face image. Regardless of the block type, 

behavioural measures confirmed that anticipated faces were classified significantly faster and 

with fewer erroneous responses than faces not foretold by a predictive face. Collectively, these 

results demonstrate that whilst the brain continuously adjusts internal hierarchical generative 

models to account for temporal delays in stimulus onset and visual interference, the higher 

levels, and subsequent predictions, fundamental for expectation-facilitated behaviours remain 

intact. 
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Introduction  

The sensory triggers constituting our natural surroundings are exceedingly fluid and 

common to rapidly change and develop. Our brains deal with this continual transmission of 

sensory material by means of filtering out relevant and dismissing irrelevant information 

(Ligeza et al., 2017; van Moorselaar et al., 2020). To achieve this, the current context plays a 

crucial role in assisting the brain to compartmentalise which sensory data to attend to 

(Limanowski et al., 2020). The contextual setting is therefore pivotal for narrowing down and 

selecting the most ‘newsworthy’ cues to focus on in order to adapt internal predictive models 

and behave accordingly. For instance, the sound of an ambulance siren informs us to vigilantly 

take in our surroundings in case we must make way for the onrushing vehicle. The notion that 

cues such as the latter evoke an array of internal predictions to optimise respective behaviours 

is well established (Clark, 2013; Friston, 2005). Within this predictive processing framework, 

predictions regarding upcoming events derive from prior knowledge and are propagated top-

down within sensory hierarchies. Incoming sensory information, on the other hand, is mediated 

in a bottom-up motion. These complementary pathways are distinguishable by distinct neural 

signatures, whereby top-down processes are facilitated by alpha/beta frequency ranges (Arnal 

& Giraud, 2012; Bastos et al., 2015) and bottom-up processes by gamma frequencies (Bastos 

et al., 2015; also see Kaiser & Lutzenberger, 2005).  

 Apart from benefiting behavioural performance, having access to prior knowledge 

downregulates the amount of cognitive resources necessary to process a given stimulus (Blom 

et al., 2020; Klimesch, 2011). More precisely, the brain can draw information from these pre-

activated stimulus-specific neural representations ahead of their respective afferent sensory 

input. Upon stimulus onset, fewer cognitive resources are required to process this already 

expected sensory input. In turn, neural activity such as gamma facilitated bottom-up processes 

can be minimised, leading to a subsequent reduction in neural expenses (Bauer et al., 2014; 
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also see Gordon et al., 2019). Diminished neural activity in response to a given target can, thus, 

be seen as a marker reflecting predictiveness. For instance, a reduction in the face-sensitive 

event-related potential, N170, can indicate if a face was expected and/or familiar (Johnston et 

al., 2016; Ran et al., 2014). A growing body of evidence has revealed that this pre-activation 

of already existing knowledge is associated with pre-stimulus enhancements in alpha/beta 

power (Brodski-Guerniero et al., 2017; Mayer et al., 2016). In a previous study, we even 

observed that this enhancement in low frequency power stretched throughout the entire 

interstimulus interval (ISI) between a cue and its implicitly expected target (Roehe et al., 2021). 

In a natural setting, however, it is relatively unlikely that a cue is immediately pursued by a 

single, specific anticipated event. More commonly, we are left to process various sensory input 

before the anticipated event occurs. Revisiting the ambulance scenario mentioned previously, 

sometimes a few seconds go by after first hearing the siren in which we are hastily scanning 

our surroundings for flashing blue lights. In these cases, we end up processing several afferent 

sensory input before glimpsing the anticipated event. To the best of our knowledge, the notion 

of how and to what extent contextually relevant interferences impact pre-activated expectations 

remains underexplored.  

 The central aim of the present electroencephalography (EEG) study was, therefore, to 

investigate how different ‘interruptions’, such as a delay in stimulus onset and distracting visual 

information, would impact the availability of cued prior knowledge and subsequent sensory 

predictions. Prior to the EEG study, participants were extensively trained to learn the identity 

of eight face images that were sorted into four customised pairs and were pseudorandomly 

embedded in sequences of unpaired faces. To remain engaged throughout the EEG experiment, 

participants were instructed to classify all occurring images as either female or male faces. To 

incorporate both a delay condition and an interference condition, we adapted our previous 

experimental design (Roehe et al., 2021) by (i) elongating the ISI between two paired-up face 
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images to generate a delayed temporal onset of the expected image, and (ii) inserting a 

contextually relevant face image in between the paired-up images to act as a visual interference. 

These Temporal Delay (TD) and Visual Interference (VI) blocks were presented in alternate 

succession.  

Foremost, we expected to replicate findings indicating that expectations boost 

behavioural responses (Ran et al., 2014; Turk-Browne et al., 2010). In line with previous 

findings, we hypothesised that early access to a neural template of the anticipated face would 

permit bottom-up processes to be downregulated and hence, result in a diminished N170 

response for expected images (Johnston et al., 2016; Ran et al., 2014; Roehe et al., 2021). On 

the contrary, since the interference images were contextually relevant, i.e., required a specific 

behavioural response and invariably occurred amidst the cue and anticipated images, we did 

not expect neural signatures of distractor suppression for these images. This foregoing 

assumption was based on previous research reporting that distractor interference was greatly 

reduced when their presentation was highly predictable in terms of spatial and temporal 

occurrences (van Moorselaar et al., 2020). Ultimately, we used time-frequency analyses to 

investigate to what extent a temporal delay in stimulus onset and visual interferences would 

influence the augmentation in pre-stimulus alpha/beta power and the predictive impact of the 

cueing stimulus. Succinctly, we observed that the brain shifts between prioritising neural states 

favourable for either top-down or bottom-up processes. These fluctuations in alpha/beta power 

conveyed different spectral patterns depending on whether a temporal delay in stimulus onset 

occurred or an interfering face image was presented in between the predictive and expected 

images. Thus, the brain seems to adapt internal predictive models to account for temporal 

delays in sensory input and visual interferences. Intriguingly, different levels within this 

hierarchical model seem to be fine-tuned to varying degrees so that contextually relevant 

predictions can continue to aid expectation-facilitated behavioural responses.  
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Materials and methods 

Participants 

A total of 37 participants took part in the study (31 females; 21.57 ± 3.14 years of age 

[mean ± SD]) after having signed informed consent based on the principles expressed in the 

declaration of Helsinki. Two participants had to be excluded because of excessive movement 

artefacts and one further participant because of extremely delayed response times (3 SD from 

the mean). Subsequently, the final sample size consisted of 34 participants (28 females; 21.62 

± 3.25 years of age [mean ± SD]). All participants were right-handed as assessed by the 

Edinburgh Handedness Inventory (Oldfield, 1971), had no history of neurological 

and psychiatric disorders, and reported (corrected-to-) normal visual acuity. Participants were 

either awarded class credits or were reimbursed (24 Euros) for their participation. The study 

was approved by the Ethics Committee of the University of Munster (Department of 

Psychology).  

 

Stimulus material and experimental design 

 Participants were presented with sequences of 20 recurring neutral face images (10 

female) chosen from the Radboud Faces Database (RaFD; Langner et al., 2010). To limit the 

amount of eye movement, all images were scaled, using GIMP (GNU Image Manipulation 

Program), so that salient facial features, i.e., eye and mouth regions, aligned across images 

(Blais et al., 2008). Eight of these images (four male and four female images) were sorted into 

four reoccurring pairs, covering all possible paired-up combinations. Each individual 

participant was assigned a unique set of four pairs which were pseudorandomly presented 

within sequences of randomly reoccurring unpaired images. The face images (W = 9.5cm, H = 

14cm) were depicted individually for 500ms in the centre of a grey background (subtending 
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visual angles of approx. 9° vertically and 6° horizontally). The depiction of these face images 

was immediately followed by a 2.5-second fixation period. A single trial was, therefore, a total 

of 3 seconds in length.  

 The experimental design consisted of two types of blocks, each occurring once during 

the training session and twice during the EEG-experiment. The blocks were shown in an 

alternating order, commencing with the first Temporal Delay (TD) block, and finishing with 

the second Visual Interference (VI) block. During the TD blocks each image was succeeded 

by an elongated fixation period of an additional 3 seconds. Hence, the timeframe between the 

onsets of two consecutive images was 6 seconds long (Figure 1). In contrast, the timeframe 

between the onsets of two face images in the VI blocks was only 3 seconds. The hidden face 

pairs in the VI blocks were, however, disjointed by the depiction of a randomly selected 

unpaired face image (interference image). Similar to the TD blocks, the interval between the 

paired images in the VI blocks was, subsequently, also 6 seconds in duration (Figure 1).  

To balance the occurrences of each individual image, every face image was repeated 

twice during each of the four sequences making up a single TD block. After each sequence, a 

small break of one minute (at most) could be taken after which the next sequence would 

commence automatically. A longer self-determined break ensued upon completion of each 

block. With the additional 3-second fixation period within each trial, the TD blocks took 

approximately 16 – 19 minutes to complete, depending on whether participants made use of 

the entire one-minute break after completing each sequence. For the VI blocks, each image was 

repeated three times. In this case, each unpaired image occurred twice as a random and once 

as an interference image in each of the four sequences of a single VI block. Each VI block 

lasted approximately 12 – 15 minutes. This meant that together the two TD blocks comprised 

of 64 predictive, 64 expected, and 192 random trials and the two VI blocks of 96 predictive, 96 

expected, 96 interference, and 192 random trials.  
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The experiment was programmed and presented using Presentation 18.1 

(Neurobehavioral Systems, Dan Francisco, CA, USA). 

 

 

Figure 1 Schematic illustrations of the behavioural task and the sequential pattern of face images 
constituting the two types of blocks. The colours of the frames mark different event categories (blue: 
paired images; green: elongated ISI; light grey: interfering images). 

 

Task 

Prior to starting the experiment, participants were shown four individual face images 

(two male and two female faces) which they were asked to remember, as these would each be 

paired-up with a specific face. Participants then engaged in a classification task, in which they 

were instructed to distinguish between male and female faces as fast and as accurately as 

possible. In addition, they were required to learn and remember the identity of the faces which 
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immediately pursued each of the four remembered faces shown during the induction. For half 

of the participants, a left button press (left index finger) classified the depicted face as a female 

face and a right button press (right index finger) as a male face. This classification arrangement 

was reversed for the other half of participants. At the end of each experiment (training and 

EEG), the participants had to correctly identify each of the four image pairs. 

 

Experimental procedure 

 The study took place on two consecutive days: a short behavioural training session was 

scheduled for the first day and the EEG-experiment for the following day. The training session 

allowed participants to become accustomed to the task at hand and explicitly learn the identity 

of the paired-up faces. During the 15-minute behavioural training, one TD and VI block were 

shown, each consisting of three sequences. At the end of the experiment, participants had to 

correctly identify all four of their personally tailored face pairs as a prerequisite to take part in 

the EEG-experiment the following day.  

 For the EEG-experiment, participants were comfortably seated in front of a response-

box and screen in a dimly lit EEG booth. Over the duration of approximately an hour, two TD 

and VI blocks, each bearing four sequences, were shown in alternating order. Like before, at 

the end of the EEG-experiment, participants were asked to correctly classify the identity of 

their paired-up faces. At the end, a general questionnaire was carried out inquiring about 

participants’ wakefulness and awareness.  

 

EEG data acquisition and pre-processing 

 Scalp EEG was recorded using Brain Products’ actiCAP snap system, combined with 

the BrainVision Recorder Software (Brain Products, Gilching, Germany). Sixty-two Ag/AgCl-

electrodes were distributed on the cap according to the 10-20 system. Two further electrodes 
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served as electrooculograms and were placed above and beside the right eye to account for 

vertical and horizontal eye movements, respectively. Electrodes at FCz and FPz served as the 

online reference and ground, respectively, and were disregarded from all following analyses. 

EEG data was recorded at a sampling rate of 1kHz, with an applied online bandpass filter of 

0.1 – 1000Hz. Electrode impedance was maintained to be below 10kΩ.  

 Recorded EEG data was pre-processed using MATLAB (R2017b) in combination with 

the EEGLAB toolbox (version 14.1.1b; Delorme & Makeig, 2004). Raw data was 

downsampled to 500Hz before applying a Butterworth bandpass filter (12 db/octave) with cut-

offs at 0.1Hz and 30Hz for the ERP data and 0.5 and 40Hz for the time-frequency data, 

respectively. For the ERP analysis, continuous data was segregated into epochs extending from 

-250 to 600ms, locked to stimulus onset. To segregate continuous data into epochs of 3750s 

for the TF analysis, artificial triggers had to be added to the elongated timeframes separating 

each stimulus in the TD block. Here, the ISI was 6000ms seconds long instead of the 3000ms 

in the VI block. These artificial triggers were inserted 3000s after each image onset, allowing 

all continuous data-points to be separated into 3750ms epochs extending from -250 to 3500ms. 

The Gratton plug-in for EEGLAB was then applied to correct for ocular movement (Gratton et 

al., 1983). Noisy channels were semi-automatically inspected and interpolated if kurtosis 

criterion > 6. Of the ERP data, a total of 1% of electrodes were interpolated whereas 3.4% of 

electrodes were interpolated of the TF datasets. Artefacts were removed semi-automatically 

with the criteria that trials were discarded if artefacts exceeded an amplitude threshold of ± 

75μV or conveyed fluctuations in voltage greater than 50μV respective to the previous sample 

point. Hereupon, trials were visually inspected and removed if containing any residual 

artefacts. Out of the initial 1136 trials (per participant), a mean number of 1081 trials remained 

of the ERP datasets and 873 trials of the TF datasets. Datasets were then re-referenced to a 
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common average and the number of random trials was reduced to match the number of 

predictive/interference/expected trials for the individual block types. 

 

Statistical analysis 

Behavioural analysis 

Behavioural data was analysed using RStudio (version 3.6.0). For each individual 

participant, datasets were trimmed so that reaction times (RT) 3SD faster or slower than the 

mean were removed from all further analyses. For the RT analysis, any trials bearing missed 

or incorrect responses were also removed. The number of trials for each image category were 

then equalised; that is, the number of random images was reduced to match the number of 

predictive/interference/expected for each block type (TD block: n ≈ 64 and VI block: n ≈ 96). 

For the response time, an individual one-way, repeated-measures ANOVA was implemented 

for each of the two block types. A Bonferroni correction was applied to all post hoc 

comparisons. Given that the data for response accuracy was not normally distributed, non-

parametric Friedman tests, along with post hoc Wilcoxon signed-rank tests, were applied to 

analyse the percentage of correct responses. 

 

ERP analysis 

 The ERP datasets were averaged across each image category of interest (TD: expected 

and random; VI: expected, interference and random). Given that the ERP analysis was 

conducted to investigate the predictability of the different image types, the predictive images 

were disregarded because of their confounding informative, cue-like nature.  

To measure the mean amplitude of the N170, the mean voltage within the timeframe of 

140-180ms over electrodes P5/P6 and P7/P8 was calculated relative to the 250ms pre-stimulus 
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baseline (Ran et al., 2014). The mean amplitude was entered into a 2 x 2 repeated-measures 

ANOVA for the TD block with factors hemisphere (left vs. right) and image type (expected vs. 

random). For the VI block, a 2 x 3 repeated-measures ANOVA was applied with factors 

hemisphere (left and right) and image type (expected, interference and random). Where 

applicable, the degrees of freedom of the F-ratio were amended according to the Greenhouse-

Geisser method. 

 

Time-Frequency analysis 

 Spectral analyses were performed using MATLAB (R2020b) and the Fieldtrip toolbox 

(Oostenveld et al., 2011). To estimate spectral power, a fast Fourier Transform approach was 

applied to averaged trials. Here a Hanning taper was used for our frequencies of interest (2-

30Hz), using a 500ms long sliding window which moved in fixed steps of 50ms and 1Hz 

increments.  

 As for the statistical analyses, cluster-based permutation tests were used to assess the 

differences in low frequency power between the different image conditions within each block 

type. First, time-frequency power was normalised by calculating the raw differences in power 

estimates between the predefined contrasts of interest, i.e., normalised difference expected vs random 

= (X-Y)/(X+Y) (Spaak et al., 2016). This normalised data of our predefined region of interest 

(O1/Oz/O2/PO7/PO8/PO4/PO3/POz) was then used for all statistical analyses and to generate 

time-frequency representations. For all planned contrasts, this normalised power was then 

subjected to Monte-Carlo randomisations using dependent sample t-tests and k =1000 

permutations. Differences between image types were deemed significant with an alpha level 

below α = .05. 

 A data-driven correlation was carried out to assess the relationship between the 

coexisting clusters, marking the immediate onset of the expected (in comparison to random) 
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faces of the VI block. For each participant (n = 34), the normalised power of the two observed 

clusters was averaged over channels, frequencies, and time. The averaged power of the beta 

suppression was then correlated with the averaged power of the alpha enhancement. 

 

Results  

Performance on classification task 

 The behavioural performance of the classification task was assessed in terms of 

response time and accuracy. Here we hypothesised that participants would respond and classify 

images faster and more accurately when the identity of the upcoming face was predictable. For 

the response time, both one-way, repeated-measures ANOVAs yielded a main effect for image 

types (TD block: F(1.24, 40.97) = 304.67, p < .001,  ηp2  = .902 [Greenhouse-Geisser 

corrected]; VI block: F(1.21, 39.87) = 165.14, p < .001,  ηp2  = .833 [Greenhouse-Geisser 

corrected]). In both cases, participants were able to classify expected images significantly faster 

than predictive (TD: t(66) = -21.41, p < .0001, d = -2.56; VI: t(99) = -18.87, p < .0001, d = -

2.56), random (TD: t(66) = -21.34, p < .0001, d = -2.55; VI: t(99) = -18.60, p < .0001, d = -

2.53), and interference images (VI: t(99) = -16.76, p < .0001, d = -2.28; Figure 2). The 

remaining contrasts yielded no significant differences in response time (p > .05). Similarly, the 

accuracy of the behavioural performances significantly differed between the image types 

regardless of the block type (TD: χ2 (2) = 19.98, p < .0001; VI: χ2 (3) = 37.92, p < .0001). It 

appears that fewer erroneous responses occurred during the classification of expected in 

comparison to predictive (TD: p < .001, r = -0.38; VI: p < .0001, r = -0.36), random (TD: p < 

.0001, r = -0.40; VI: p = .002, r = -0.27), and interference images (VI: p < .0001, r = -0.38; 

Figure 2). The remaining comparisons showed no substantial differences in accuracy between 

the image types (p > .05). A Bonferroni correction was applied to all post hoc comparisons. 
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Figure 2 Behavioural performance for each type of image present in the two blocks. Significant 
differences (α ≤ .05) in response time (ms) and accuracy (%) are marked accordingly (*). 
 
N170 responses 

 The modulation of the N170 component was analysed to investigate whether, in both 

block types, perceptual processing of predictable images was aided by top-down activity 

(Figure 3). It was hypothesised that in comparison to unpredictable images, fewer resources 

would be required to process cued images. The expected images were, thus, predicted to evoke 

a reduced N170 response compared to images where the identity of an upcoming face was not 

foretold by a certain cue.  
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Figure 3 Topographies for each image condition of the two block types. The time extends 
from 140ms to 180ms in 10ms increments and depicts the period that was averaged to analyse 
the N170 component. 
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For the TD block, the 2 x 2 repeated-measures ANOVA yielded a significant main 

effect for image type (F(1, 33) = 5.95, p = .020, ηp2 = .153) and no interaction between 

hemisphere and image type (F(1, 33) = 1.68, p = .204, ηp2 = .049). More precisely, expected 

images reflected a significantly diminished response in contrast to random images (one-sided: 

t(33) = 2.44, p = .010, d = 0.42; Table 1). Interestingly, for the VI block, the 2 x 3 repeated-

measures ANOVA yielded no significant main effect for hemisphere (F(1,33) = 0.20, p = .657, 

ηp2 = .006) and image type (F(1.71, 56.42) = 0.20, p = .785, ηp2 = .006 [Greenhouse-Geisser 

corrected]), nor a significant interaction between the two (F(2.00, 65.87) = 0.15, p = .864,  ηp2 

= .004 [Greenhouse-Geisser corrected]). Hence, a significant reduction in the N170 was only 

observed when a predictable image immediately ensued its corresponding cue. 

 

 
 
Ongoing modulations of pre- and post-stimulus alpha/beta power 

In a previously carried out study, we observed that alpha/beta power enhancements, 

extending from the onset of the predictive until the onset of the expected image, revealed an 

optimal state that prioritised top-down processes (Roehe et al., 2021). Based on these findings, 

we now hypothesised that a similar alpha/beta enhancement should be evident within the pre-

stimulus timeframe prior to an expected image, regardless of the block type. However, both 

temporal delays and visual interferences may impede an elongated enhancement in alpha/beta  
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power that extends throughout the entire period, stretching from the onset of the cue until the 

presentation of the expected image.  

For the TD block, the entire 6-second ISI was analysed as two succeeding 3-second 

timeframes and contrasted with the 6-second ISI between two random images. In the first 3-

second timeframe, a distinctive negative cluster, encompassing both alpha and beta 

frequencies, marked the approximate timeframe of the behavioural responses classifying 

predictive images (p < .001; Figure 4). Considering the sizable differences in power marked by 

the first cluster and its subsequent impact on rendering smaller differences insignificant (p = 

.072), we readjusted the analysed time-window so that neural activity occurring during the 

period at which most behavioural responses occurred was disregarded. Analysing the 

timeframe from 1000 to 3000ms post-stimulus onset (predictive > random) consequently 

yielded a significant enhancement in alpha/low beta power for predictive images (relative to 

random images; p = .046). The second timeframe showed a late negative cluster just prior to 

the onset of the expected/random image (p < .001; Figure 4). 

A very similar pattern in spectral power was observed for the VI block. Here, the onset 

of the predictive and interference images also evoked an alpha/beta suppression, relative to 

random images, at the time corresponding to the behavioural responses (predictive: p = .002; 

interference: p = .002). Once resizing the time-window to extend from 1000 to 3000ms post-

stimulus onset, substantial enhancements in alpha/beta power succeeded the negative clusters 

(predictive > random: p = .047; interference > random: p = .046). Intriguingly, whilst the 

alpha/beta enhancement after the onset of the predictive image stopped near to 500ms before 

the onset of the interference image, the enhancement after the onset of the interference image 

remained until the presentation of the expected image. Similar to the TD block, the onset of the 

expected images was met by a suppression of largely beta power that commenced more than 

1500ms prior to stimulus onset. Ultimately, we analysed the relationship of the two concurring 
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clusters leading up to the onset of the expected images. Interestingly, we observed a positive 

correlation between the suppression of high beta and the coinciding augmentation of alpha/low 

beta activity (Spearman’s rho = .36, p = .035, 95% CI [0.03 0.63]). 

Collectively, to ensure that these substantial enhancements in alpha/beta power (1000 

– 3000ms post-stimulus onset) can indeed be linked to top-down processes reflecting 

expectations regarding the identity of the expected images, we analysed the timeframe covering 

the ISI between the onset of the expected and the ensuing random image. Like the previously 

stated results, the onset of the expected images also reflected a substantial suppression of 

alpha/beta power around the time of the behavioural response, irrespective of the block type 

(TD: p < .001; VI: p < .001). However, diverging from the earlier findings, no significant 

enhancements in alpha/beta power followed these suppressions. Instead, these suppressions 

seemed to persist for almost half the ISI (Figure 4).  

Finally, we created data-driven correlation matrices for each of the eight predetermined 

parieto-occipital channels to analyse the relationship between the observed positive cluster and 

the significant N170 attenuation of the TD block. For each participant, the magnitude of the 

N170 reduction was correlated with each frequency and time point for each individual channel. 

Results revealed a positive relationship between the enhancement in alpha/beta power and the 

reduction in the N170 at two electrodes (PO7 and POz; p < .05; see Figure S1). Hence, these  

observations do not allow us to draw robust conclusions about the association between these 

two individual effects.  
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Figure 4 Time-frequency representations (TFRs) of dissimilarities in spectral power 
amongst the different image conditions of each block type. For the Temporal Delay block, 
the timeframe depicted stretches from the onset of the predictive image to the onset of the 
expected image. For the Visual Interference block, the timeframe extends from the onset of the 
predictive image to the onset of the expected image with the interference image occurring amid 
the two. For all TFRs, the timeframe between the onsets of two random images was used as a 
comparison. Subplots, representing a smaller timeframe (1000ms – 3000ms), are depicted 
below their original 3000ms counterparts. Clusters of interest, marking considerable 
differences in power between the chosen contrasts, are outlined in grey. The positive 
relationship between the beta suppression and alpha enhancement, reflected in the timeframe 
extending from 1000ms after onset of the interference/random images, is illustrated in the 
scatter plot. 
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Discussion  

Ideally, an expected event would shortly ensue after being foretold by a cue. However, 

every now and then we are left waiting for an anticipated stimulus to occur and are sometimes 

even faced with processing other percepts in the meanwhile. In the current study, we looked at 

the N170 component in combination with spectral changes in alpha and beta frequencies to 

investigate how such temporal delays and visual interferences impact face-related expectations.  

In the timeframe leading up to the depiction of expected images (relative to random 

images), we observed enhancement in both alpha and low beta oscillations, suggesting 

increased inhibition of incoming information, followed by alpha and beta suppressions, 

suggesting a release from this inhibition. These fluctuations in alpha/beta power conveyed 

different spectral patterns depending on whether a temporal delay in stimulus onset occurred 

or an interfering face image was presented in between the predictive and expected images. 

Moreover, we observed that time-resolved neural responses for expected images also showed 

dissimilar expressions depending on the block type. As such, a reduction in the N170 

component was observed if the expected images followed the predictive faces, despite a 

relatively long temporal delay of 6 seconds, but vanished when preceded by a contextually 

relevant face image in the visual interference condition. Irrespective of the block type, 

behavioural measures confirmed that the identity of the cued face images was learned and could 

be predicted. As hypothesised, this led to a decrease in response time and an increase in overall 

accuracy. 

 

Suppressions in alpha/beta power reflect a neural state optimal for 

bottom-up processes 
 
Firstly, we observed suppressions encompassing alpha and beta frequencies during the 

first 1000ms after image onset for all image categories in contrast to random faces (Figure 4). 
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Given that both the predictive and expected images share an informative nature, although of 

different means, the observed decline in alpha/beta power seems to be in line with the 

previously established premise that tasks which require greater engagement also seem to evoke 

a greater alpha/beta power decrease (Griffiths et al., 2019; Lebar et al., 2017). Broadly, these 

studies build upon the notion that low frequency oscillations, predominantly alpha, are a marker 

for sensory inhibition and that decreases in alpha power reflect a release from this inhibition 

(Klimesch, 2011). Under this framework, enhancements in alpha/beta power would be linked 

to prioritising top-down processes, whilst a decline in these frequency ranges would shift 

priority to bottom-up processes. Notably, these task-related decreases in alpha/beta power 

extend across various tasks (Lebar et al., 2017; Pfurtscheller et al., 1994), sensory modalities, 

such as visual and auditory (Griffiths et al., 2019), and somatosensory (Lebar et al., 2017), as 

well as various species, including humans (Griffiths et al., 2019; Pfurtscheller et al., 1994), 

macaques (Haegens et al., 2011), and rodents (Wiest & Nicolelis, 2003). The omnipresence of 

this pattern in low frequency power, therefore, seems to hint towards a more general process 

beneficial for processing incoming information, rather than reflecting actual sensory 

information itself (Griffiths et al., 2019). We thus propose that in the current study, alpha and 

beta suppressions, associated with the predictive and expected images (relative to random 

images), signalled augmented contextual relevance. 

 Strikingly, we observed an identical alpha/beta response within a similar timeframe (~0 

– 1000ms) for interfering images. One may question the sizable difference in alpha/beta power 

between interference and random images considering that the interference images are 

effectively just arbitrarily selected random images. Here we propose that the interfering images 

become an unintentional temporal cue for the onset of the expected images (Xu et al., 2021). 

Having learned the sequential structure of the VI block will have provided participants with 

the opportunity to anticipate that the onset of the expected image will ensue 3 seconds after the 
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onset of the interference image. Thus, although the interference images convey little to no 

differences in behavioural and time-resolved neural responses when compared to random 

images (Figure 2, Figure 3), their temporal station seems to be contextually relevant for 

predicting the imminent onset of anticipated faces. Given the distinctive attributes of 

predictive, expected, and interference images, the mutual decline in alpha/beta power, within 

the first second after stimulus onset, seems to coincide with the suggestion that this spectral 

modulation reflects a more generic neural state which boosts the ability to process contextually 

relevant information (Griffiths et al., 2019).  

 

Enhancements in alpha/beta power reflect a neural state optimal for 

top-down processes 
  

Extending the proposition raised above, an enhancement in alpha/beta power may 

reflect a contrasting neural state which is optimal for top-down processes, such as reflecting 

the activation of prior knowledge (Brodski-Guerniero et al., 2017; Mayer et al., 2016) and 

gating the gain and precision of neural communication (Lebar et al., 2017; Limanowski et al., 

2020). Our findings revealed momentary enhancements in alpha/beta power within the 

timeframe ranging from the onset of the predictive to the onset of the expected image (in 

contrast to random images). Here we put forth the notion that like the alpha/beta suppressions, 

these enhancements do not, in fact, carry specific information regarding the anticipated face, 

but instead, create an optimal neural condition that is favourable for top-down processes. With 

this interpretation, we intend to unify some of the widely held theories regarding the role of 

alpha/beta frequencies. Brodski-Guerniero and colleagues (2017), for instance, conveyed that 

alpha and beta frequencies index the activation of prior face-related knowledge. More 

specifically, they observed that alpha/beta frequencies correlated with the amount of activated 

prior knowledge in face-specific brain regions, such as the fusiform face area (FFA). Likewise, 
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Mayer and colleagues (2016) showed that an increase in pre-stimulus alpha power was 

associated with the activation of former knowledge about previously observed letters. These 

observations fit well with the notion that a neural state ideal for top-down processes could 

promote access to activated neural representations whilst suppressing other less relevant 

external input. As such, fluctuations of alpha and beta power appear to reflect continuous shifts 

in gating inhibition of bottom-up processes whilst systematically giving rise to top-down 

processes. This suggestion provides a seamless transition to the proposal that alpha/beta power 

have been associated with gating neural communication (Lebar et al., 2017; Limanowski et al., 

2020). Findings of these two studies revealed that beta power in occipital regions decreased 

when vision was task-relevant and increased when visual input was ignored. Therefore, these 

studies suggest that modulations of beta power gate to what extent a particular visual stimulus 

is processed at a given moment. This foregoing argument assumes that there is a systematic 

relationship between beta and alpha power. In other words, one would expect an increase in 

beta power to be accompanied by an increase in alpha power. In turn, the established neural 

state would be favourable for the facilitation of top-down processes, i.e., the activation of prior 

knowledge. Our results support such a relationship by revealing a correlation between the co-

occurring beta suppression and alpha enhancement just prior to the presentation of expected 

(relative to random) images in the VI blocks (Figure 4). These findings would suggest that the 

beta suppression restricts top-down processes, yielding confined anticipatory processes. 

Arguably, this could indicate that in the VI blocks the pre-activated neural representation of 

the upcoming expected image is suppressed or dismissed in order to unbiasedly process the 

upcoming, contextually relevant interfering face (Blom et al., 2020). Hence, it appears that the 

underlying predictive hierarchical model is modified accordingly to account for the 

contextually relevant visual interferences. 
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On a related note, this spectral pattern of a coexisting beta suppression and alpha power 

enhancement was not observed in the TD block. Instead, the onset of the expected (relative to 

random) image was met by a drawn-out suppression in both alpha and beta power. Here we 

propose that the delayed onset of the anticipated image provided an elongated timeframe in 

which the brain is left ‘waiting’ for this upcoming event. Considering that the delay in stimulus 

onset remained consistent throughout the TD blocks, rather than keeping the representation for 

the predicted image active throughout the 6 second ISI, which could be relatively taxing, the 

brain efficiently shifts between neural states optimal for the current contextual setting. Namely, 

our results suggest that a temporary facilitation of relevant top-down processes shortly after the 

offset of the predictive images would suffice for the present context, before shifting to a neural 

state optimal for bottom-up processes in preparation for the upcoming sensory input. 

 

Neural and behavioural signatures of anticipatory processes 

Foremost, we observed that behavioural responses were significantly faster for 

anticipated faces compared to faces which were not foretold by a corresponding predictive face 

(Figure 2). In addition, significantly fewer erroneous responses were made when classifying a 

predicted in comparison to an unpredicted face. These anticipation-facilitated behavioural 

responses were evident for both the temporal delay and visual interference conditions. In line 

with previous studies, these behavioural effects confirm that top-down activity, such as explicit 

or implicit expectations, boosts behavioural responses (Ran et al., 2014; Turk-Browne et al., 

2010). 

 Likewise, cued expectations have also been shown to influence time-resolved neural 

responses (Johnston et al., 2016; Ran et al., 2014). As hypothesised, we observed that the face-

sensitive N170 was significantly diminished (reduced in negativity) for the four predictable 

face images of the TD block (Table 1). Notably, this neural activity in response to these 
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predictable images did not reach significance in the VI block. Previous studies have conveyed 

that the N170 diminishes for contiguous depictions of the same face (Caharel et al., 2009; 

Campanella et al., 2000; Ran et al., 2014). In these cases, the neural correlate of the identity of 

a particular face was available to be drawn upon to aid visual processing of the succeeding 

image. As such, fewer cognitive resources were required to process and respond to these 

predictable faces. In turn, this would be reflected in a diminished neural response, such as a 

reduction in the N170. The design of our TD block allowed predictive images to pre-activate a 

representation of the expected images which, in a top-down fashion, would be available to 

facilitate early processing of the directly ensuing expected image. On the contrary, given that 

in the VI block the predictive and expected images were segregated by an interfering image, 

the cue-triggered neural representation of the expected image might be temporally overwritten 

when the new sensory information of the interfering face becomes available. Especially 

considering that unlike other visual ‘distractor’ paradigms, the interference images in the 

current study were relevant to the task at hand and required visual processing. This reasoning 

is supported by findings showing that the brain regions involved in actively upholding face-

related neural templates are also the regions processing this context-specific information 

(Brodski-Guerniero et al., 2017). Contextual relevance, thus, appears to play a fundamental 

role in selecting the most efficient forthcoming neural state. This line of thought is based on a 

related suggestion claiming that when multiple target representations are active simultaneously, 

trial-by-trial changes in environmental context play a considerable role in regulating the 

attentional-weight attributed to them individually (van Driel et al., 2019). The previously 

observed fluctuations in alpha and beta power provide confirmation that a goal-directed shift 

in neural states takes place between top-down and bottom-up processes throughout both block 

types. In addition, the interplay between the coexisting alpha enhancement and beta 

suppression in the visual interference condition provides an explanation as to why we observed 
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significant expectation-facilitated behavioural responses but no substantial differences in the 

N170 component between expected and random images. As mentioned previously, the beta 

suppression seems to restrict anticipatory process. Hence, it appears that lower sensory levels 

within the predictive hierarchical model are fine-tuned to account for the contextually relevant 

visual interferences whilst higher levels within this hierarchical predictive model remain stable 

(Long & Kuhl, 2018). A sustained maintenance of the anticipated face’s sensory template is 

subsequently impeded, and the predictive model no longer provides a valuable source to draw 

identity-related expectations from ahead of its subsequent afferent sensory input. Access to 

higher cortical levels, for instance representing the learned associates between expected images 

and their corresponding behavioural responses, would, however, continue to enhance the 

propagation of specific behavioural predictions albeit the lack of an actively maintained face-

related representation. As such, lower levels representing face-related templates could be 

overwritten by incoming visual information without compromising expectation-facilitated 

behavioural measures. This opens an exciting line of further investigations which could 

combine M/EEG and multivariate pattern analysis (Barne et al., 2020; Blom et al., 2020) to 

decode the amount of face-specific information activated ahead of its afferent sensory input 

after having attended to visual interferences. 

Lastly, we corroborated that the observed enhancements in alpha/beta power are indeed 

neural signatures of a generic neural state which allow face-related neural patterns to emerge 

instead of representing face-specific information themselves. This interpretation was drawn 

from data-driven correlation matrices which merely provided moderate evidence to suggest 

that the enhancement in alpha/beta power for expected relative to random images (cluster in 

timeframe predictive > random) correlated with the significant modulation of the N170 

obtained in the temporal delay condition (Figure S1). A question that remains, however, is that 

if these enhancements in power signal a general neural state that is beneficial as a means of 
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boosting top-down processes, what neural signatures do then carry actual stimulus specific 

information? Griffiths and colleagues (2019) put forth the notion that since the phase and power 

of a given oscillation are mathematically distinct, they may also have independent facilitatory 

purposes. This theoretical suggestion is supportive of previous findings revealing that the phase 

of low frequency oscillations (~8Hz) appears to carry information about a given stimulus 

(Michelmann et al., 2016). Note, however, that more evidence is required to conclusively 

attribute distinctive, yet complimentary, neural purposes to these two oscillation components. 

 

Conclusion  

In summary, we obtained novel findings which demonstrated that the brain shifts 

between neural states to optimise hierarchical predictive models and subsequent contextually 

relevant anticipatory processes. In both the TD blocks and VI blocks, we found indications of 

a neural state beneficial for top-down processes, i.e., granting early access to cued neural 

representations. Nevertheless, if the onset of the anticipated face was interrupted by the 

depiction of a distracting yet relevant image, priority shifted to processing the interfering visual 

input before giving restricted access to contextually relevant properties of the formerly cued 

neural representation (in the current study: the gender/sex of the expected face). In line with a 

growing body of literature, these fluctuating shifts boosting access to either internal 

representations or external stimulus specific information were mediated by modulations of 

alpha and beta power (Benwell et al., 2021; Brodski-Guerniero et al., 2017; Griffiths et al., 

2019; Lebar et al., 2017, 2017; Limanowski et al., 2020; van Moorselaar et al., 2020). Our 

observations suggest that lower sensory levels within these predictive models are continuously 

revised, granting us to constantly adapt to the fluidity of our surroundings. Notably, neither a 

temporal delay in stimulus onset nor visual interferences negatively impacted expectation-

facilitated behavioural responses. The brain, thus, appears to fine-tune different levels within 
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the hierarchical predictive model to different degrees. Whilst lower levels are revised and 

overwritten to allow us to have the most contextually adequate representation of our external 

environment at a given moment, higher levels appear to remain intact to aid higher cognitive 

functions. Ultimately, our findings fit neatly within the predictive processing framework by 

corroborating that the brain continuously adapts internal predictive architectures, and 

subsequent predictions, to optimise contextually relevant behaviours.  
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Abstract 

The environmental context plays a crucial role in assisting the brain to 

compartmentalise which sensory information to select as contextually relevant or disregard as 

contextually irrelevant. In the present electroencephalography study, we examined how the 

brain compensates for processing contextually relevant information which disrupts prior 

activated predictions. Thirty-four participants were instructed to memorise an individualised 

set of eight sequential pairs. Although the first image of each memorised pair acted as a cue for 

its expected counterpart, these images were not presented in immediate succession. Instead, an 

unpaired image was pseudorandomly selected and presented amidst these pairs. To keep 

participants engaged throughout the experiment, they were instructed to correctly classify the 

sex of each face image as fast as possible without compromising accuracy. We obtained 

evidence to suggest that visually processing contextually relevant interferences was assisted by 

an enhanced suppression in alpha/beta power. This suppression in alpha/beta power has been 

shown to reflect a neural state optimal for processing incoming information. Time-resolved 

neural responses, in contrast, appeared to be downregulated for these interferences as revealed 

by a diminished P3b response when compared to cue and unpaired images. Interestingly, we 

observed that a larger reduction in the P3b responses (compared to unpaired images) was linked 

to a faster classification of the impending predictable images. These observations imply that 

the brain compensates for processing contextually relevant interferences by downregulating 

higher cognitive processes that are dispensable to the present context and its behavioural 

requirements. 
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Introduction 

The brain’s ability to select relevant and disregard irrelevant afferent sensory 

information is essential for perceiving and processing the world around us (Ligeza et al., 2017; 

van Moorselaar et al., 2020). Instead of focusing on a binary process that classes information 

as either relevant or irrelevant, a stimulating objective would be to examine whether the brain 

progressively censors incoming information of diminishing importance, and vice versa. Here, 

the current context would play a pivotal role in assisting the brain to compartmentalise which 

sensory input to prioritise over others (Limanowski et al., 2020). More specifically, the context 

aids in isolating the most “newsworthy” and relevant sensory events which are then processed 

and assembled into adequate internal representations of the external environment. According 

to predictive processing accounts, these representations are constructed as hierarchical models 

(Clark, 2013; Friston, 2005). Each level is consistently updated, whereby incoming sensory 

information regarding the present setting is compared to sensory predictions derived from prior 

knowledge. In terms of perception, a mismatch between the bottom-up driven sensory input 

and the top-down transmitted prediction generates prediction errors which prompt the revision 

of the subsequent representation. These distinct, yet complementary, sensory signals are 

reflected by contrasting neural signatures: whilst bottom-up processes are reflected by high-

frequency gamma oscillations (Bastos et al., 2015; see also Kaiser & Lutzenberger, 2005), top-

down processes are marked by low-frequency alpha/beta oscillations (Arnal & Giraud, 2012; 

Bastos et al., 2015). A growing body of studies has shown that enhancements in alpha/beta 

power demonstrate the inhibition of incoming sensory information (Haegens et al., 2011; 

Mathewson et al., 2011). That is, the brain suppresses incoming sensory information to give 

priority to top-down processes such as pre-activating representations of existing knowledge 

and subsequent predictions (Brodski-Guerniero et al., 2017; Mayer et al., 2016). In contrast, 

the release of such sensory inhibition is reflected by the suppression of alpha/beta power 
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(Houshmand Chatroudi et al., 2021; Klimesch, 2011). More generally, it has recently been 

proposed that modulations in alpha/beta power represent polar opposite neural states that either 

facilitate bottom-up or top-down processes (Griffiths et al., 2019; Roehe et al., 2021). Highly 

predictable environments, for instance, would be represented by neural states optimal for top-

down processes (enhancement in alpha/beta power) which boost (i) the pre-activation of 

previously assembled representations and (ii) context-specific predictions. In a less familiar or 

erratic setting on the other hand, priority should be attributed to incoming afferent information 

(suppression of alpha/beta power) to enable us to efficiently interact with our environment.  

This interplay between bottom-up and top-down signals is also evident in event-related 

potentials (ERPs). Past literature has shown that the face-sensitive N170 component is 

influenced by familiarity (Johnston et al., 2016; Ran et al., 2014; Roehe et al., under review) 

and whether the same face was shown consecutively (Caharel et al., 2009; Campanella et al., 

2000). In contrast, the P3b component (a subcomponent of the P300 that is characterised by a 

centro-parietal scalp distribution in response to target stimuli) has been associated with surprise 

(Saurels et al., 2022; Valakos et al., 2020), an evaluation process assessing a signal’s 

informative nature (Kluger et al., 2019), and the process of updating internal models (Donchin, 

1981; Fonken et al., 2020).  

Although all the findings mentioned above shine light on the dynamic nature of neural 

signatures underlying perception, little is known about how contextually relevant interferences 

are processed. Namely, in a natural setting, a sensory cue is not always pursued by a single 

expected event. Instead, we are commonly left to process several sensory signals whilst waiting 

for the anticipated event to occur. In a previous study we found evidence to suggest that the 

brain shifts between neural states that are optimal for bottom-up and top-down processes 

(Roehe et al., under review). These fluctuations in alpha/beta power indicated that the brain 

adapts internal representations to account for temporal changes in the environment and for 
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contextually relevant visual interferences. It was observed that if anticipatory processes were 

interrupted by a distracting but contextually relevant visual stimulus, the brain prioritised 

processing the interfering image above actively maintaining the representation of the expected 

event. This was demonstrated by the insignificant difference in the N170 amplitude between 

expected, arbitrary, and interfering images (Figure 1B). Intriguingly, it was concluded that not 

the entire predictive model of the expected stimulus was revised. Behavioural effects showed 

that even though the N170 component was impacted by processing interfering images, 

participants continued to respond to expected events substantially faster than to arbitrary and 

interfering events (Figure 1A). Thus, it was concluded that whilst the brain revises lower visual 

Figure 1 Overview of behavioural and ERP responses from Roehe et al., (under review). 
(A) Time taken to correctly categorise images as either male or female faces. (B) Grand-
average waveforms depicting the N170 response across electrodes P5/6 and P7/8 for each of
the four types of images (predictive, expected, interference, and random) relative to a 250ms
pre-stimulus baseline. Figure was adapted from Roehe et al. (under review).
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levels within the respective hierarchical model, higher cognitive levels remained intact to 

continue to aid anticipatory-facilitated behaviour. One question that subsequently arises is: how 

does the brain compensate for processing contextually relevant events in order to maintain such 

anticipation-facilitated behavioural effects? With this being the focal aim of the present study, 

we re-analysed the neural data of the previous electroencephalography (EEG) study (Roehe et 

al., under review), this time focusing on the perceptual processes of interfering images.  

Foremost, we expected that the unpaired images, arbitrarily selected to act as 

interference images, would require more bottom-up processing than the explicitly learned 

sequential pairs. As such, we hypothesised that interference images would be marked by a 

stronger peri-stimulus alpha/beta suppression than predictive and expected images. Since the 

interference images were contextually relevant and required a certain behavioural response, we 

did not expect modulations in neural activity resulting from ‘surprise’ or distractor suppression. 

This foregoing hypothesis was based on previous research stating that the interference by 

distracting stimuli was greatly diminished if the temporal and spatial presentation of these 

images was highly foreseeable (van Moorselaar et al., 2020). Furthermore, we hypothesised 

that higher cognitive processes would be stifled or even impeded for interference images to 

allow expectation-facilitated behavioural responses for expected images to be maintained. A 

reduced P3b component was therefore expected to be evoked by the interference images 

relative to unexpected (random) and predictive images. In turn, we anticipated that diminished 

P3b responses (compared to random images) would be associated with faster behavioural 

responses for upcoming expected images (Figure 1A). Succinctly, the present study would 

convey novel insight into how the brain deals with contextually relevant interferences that 

disrupt visual anticipatory processes. 
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Materials and methods 

Data statement 

The data analysed here were taken from a previous dataset (Roehe et al., under review). 

Participants 

A total of 37 participants took part in the study (31 female; 21.57 ± 3.14 years of age 

[mean ± SD]), all of whom signed informed consent based on the principles expressed in the 

declaration of Helsinki. Two participants had to be excluded due to excessive movement 

artefacts and one additional participant because of prolonged reaction times (3 SD from the 

mean). The final sample size consisted of 34 participants (28 female; 21.62 ± 3.25 years of age 

[mean ± SD]). All participants were right-handed as assessed by the Edinburgh Handedness 

Inventory (Oldfield, 1971), and reported (corrected-to-) normal visual acuity and no history of 

neurological and psychiatric disorders. Participants were either awarded class credits or were 

reimbursed for their participation. Ethical approval was granted by the Ethics Committee of 

the University of Munster (Department of Psychology).  

Stimulus material 

Twenty neutral face images (10 female) were selected from the Radboud Faces 

Database (RaFD; Langner et al., 2010). To limit eye movements, all images were scaled and 

cropped so that salient facial features, i.e., eye and mouth regions, generally aligned across 

images (Blais et al., 2008). For each participant, eight of these images (four male, four female) 

were randomly selected and sorted into four reoccurring pairs, covering all possible paired-up 

combinations. 
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Task and experimental design 

Prior to the experiment, participants were shown four individual face images (two male, 

two female), i.e., one from each of the four pairs, which they were asked to memorise. During 

a training session, they were informed that these particular predictive images would each be 

paired-up with a specific expected face which they would have to correctly identify at the end 

of each experiment (training and EEG). During the task, face images were presented 

individually in portrait orientation (subtending visual angles of approx. 9° vertically and 6° 

horizontally) in the centre of a grey background. Learnt paired-up images were 

pseudorandomly presented within sequences of randomly reoccurring unpaired (random) 

images. Instead of presenting the paired-up faces in succession, an unpaired interference image 

was depicted in the timeframe after the predictive image and before the expected image (Figure 

2). In other words, the participants were required to learn the identity of the faces which pursued 

immediately after having seen both the predictive (one of the four memorised faces shown 

during the induction) and interference image (arbitrarily selected unpaired image acting as a 

‘distractor’; Figure 2). To keep the participants engaged, they were instructed to distinguish 

between male and female faces as fast as possible without compromising accuracy. For the 

classification task, participants could answer by pressing a corresponding button using their 

right and left index fingers. The assignment of the male/female responses to the right/left index 

fingers was counterbalanced across participants but fixed for each participant. 

Each face image was depicted for 500ms followed by a fixation period of 2500ms; 

hence, yielding trials of 3 seconds in length. For consistency purposes, each image was repeated 

three times to form sequences of approximately 3 minutes. In this case, each unpaired image 

occurred twice as a random and once as an interference image in each of the four sequences 

that made up a single experimental block. After each sequence, participants were given the 

option to either proceed immediately onto the next sequence or take a timed break of one 
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minute. After this one-minute break, the next sequence would commence automatically. 

Between the experimental blocks, participants took a self-determined break. Overall, the two 

blocks lasted approximately 12 – 15 minutes each and comprised of 96 predictive, 96 expected, 

96 interference, and 192 random trials.  

The experiment was programmed and presented using Presentation 18.1 

(Neurobehavioral Systems, Dan Francisco, CA, USA). 

Figure 2 Schematic diagram of the experimental task. The colours of the frames mark 
different image categories (purple: random images; green: predictive images; burgundy: 
interference images; turquoise: expected images). 

Experimental procedure 

The study took place on two consecutive days: a short behavioural training session took 

place on day one and the EEG recording was scheduled for the following day. During this 

training session, three of the sequences were shown (approximately 9 minutes). The training 

session allowed participants to explicitly learn the identity of their individualised paired-up 

faces and become accustomed to the task at hand. At the end of the experiment, participants 

had to correctly identify all four pairs as a prerequisite for taking part in the EEG recording the 

following day.  
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For the EEG recording, participants were comfortably seated in front of a response-box 

and screen in a dimly lit EEG booth. Here, two experimental blocks, each bearing four 

sequences, were presented (approximately 24 – 30 minutes). Like before, participants engaged 

in a classification task. After completing the EEG recording, a general questionnaire was 

carried out inquiring about participants’ wakefulness and awareness. 

EEG data acquisition and pre-processing 

Scalp EEG was recorded using Brain Products’ actiCAP snap system, combined with 

the BrainVision Recorder Software (Brain Producted, Gilching, Germany). An elastic cap with 

sixty-two Ag/AgCl-electrodes (distributed according to the 10-20 system) was used for the 

recording. To record vertical and horizontal eye movements, two further electrodes were placed 

above and beside the right eye, respectively. FCz and FPz served as the online reference and 

ground, respectively. Continuous EEG data were recorded at a sampling rate of 1000Hz and 

with an online bandpass filter of 0.1 – 1000Hz. Electrode impedance was maintained to be 

below 10kΩ.  

Continuous EEG data were pre-processed using MATLAB (R2017b) in combination 

with the EEGLAB toolbox (version 14.1.1b; Delorme & Makeig, 2004) and custom scripts. 

Raw data were downsampled to 500Hz before applying a Butterworth bandpass filter (12 

db/octave) with cut-offs at 0.1Hz and 30Hz for the ERP data and 0.5 and 40Hz for time-

frequency (TF) data, respectively. For the ERP analysis, continuous data were epoched around 

stimulus onset, i.e., extending from -250 to 600ms with the -250 – 0ms timeframe acting as a 

baseline for each trial. For the TF analyses, continuous datasets were segregated into 3750ms 

epochs extending from -250 to 3500ms (relative to stimulus onset). Next, the Gratton plug-in 

for EEGLAB was applied to eliminate ocular-movement artefacts (Gratton et al., 1983). Noisy 

channels were then semi-automatically inspected and interpolated if the kurtosis criterion > 6 
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(ERP data: M = 0.62 ± 1.16 interpolated channels; TF data: M = 2.15 ± 2.60 interpolated 

channels). Movement artefacts were removed semi-automatically with the criteria that trials 

were discarded if peak-to-peak fluctuations exceeded an amplitude threshold of ± 75μV or 

caused alterations in voltage greater than 50μV/ms. Hereupon, trials were visually inspected 

and removed if containing any residual artefacts. Datasets were then re-referenced to a common 

average and the number of random trials was reduced (every second random image was 

selected) to match the number of predictive/interference/expected trials. 

Statistical analysis 

Time-Frequency analysis 

Spectral analyses were performed using the Fieldtrip toolbox (Oostenveld et al., 2011) 

for MATLAB (R2020b). A fast Fourier Transform approach was applied to averaged trials to 

estimate spectral power. For our frequencies of interest (2-30Hz), a Hanning taper was used 

with a 500ms long sliding window which moved in fixed steps of 50ms and 1Hz increments. 

First, time-frequency power was normalised by calculating the raw differences in power 

estimates between the predefined contrasts of interest, i.e., normalised difference expected vs random 

= (X-Y)/(X+Y) (Roehe et al., 2021; Spaak et al., 2016). The normalised data of our 

predetermined region of interest (O1/Oz/O2/PO7/PO3/POz/PO4/PO8; Houshmand Chatroudi 

et al., 2021) were then used for all statistical analyses and to create time-frequency 

representations. The normalised data were analysed in R (R Core Team, 2014) using linear 

mixed-effect models (nlme package). The variance across participants was accounted for by 

including the participant as a random effect in the model. Having included this random effect, 

the maximum likelihood estimations were obtained for the fixed effects image contrasts 

(predictive vs. random, interference vs. random, and expected vs. random) and for frequency 
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bands (alpha and beta frequencies), which was considered as a nuisance predictor (Model 1). 

After considering the full model, non-significant interactions between fixed effects were 

identified through stepwise model comparisons and not included in the final model that best 

explained our dependent variable: 

Model 1: Power ∼ Contrasts + Frequency + (~1|Participants) 

Tukey’s method was used for all post hoc comparisons in order to account for multiple 

comparisons. 

ERP analysis 

The ERP datasets were averaged for each participant and each image category of 

interest (predictive, expected, interference, and random). To determine the mean amplitude of 

the P3b, the mean voltage within the timeframe of 300-600ms at electrodes CPz/CP1/CP2 and 

Pz/P1/P2 was calculated (Kluger et al., 2019; Valakos et al., 2020). These averaged voltage 

datasets were then analysed in R using linear mixed-effect models. The image category 

(predictive, expected, interference, and random images) was considered as a fixed predictor of 

voltage variance and the electrode distribution (CPz, CP1, CP2, Pz, P1, and P2) was fitted as 

a nuisance predictor (Model 2). Similar to the ERP analysis, participants were modelled as a 

random effect. Stepwise model comparisons were used to identify and remove non-significant 

interactions between fixed effects after having considered the full model. 

Model 2: Voltage ∼ Category + Electrode + (~1|Participants) 

For all planned contrasts, Tukey’s method was applied to account for multiple 

comparisons. Lastly, we assessed whether a reduced P3b response for interference images – 
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relative to random images – was linked to a faster classification of the upcoming expected 

image. For each participant, the voltage was averaged over the electrodes and timeframe of 

interest for the P3b component. The difference in mean voltage was then calculated between 

the interference and random images and correlated with the mean response time for the 

expected images using a Spearman's rank correlation test. 

Results 

Peri-stimulus alpha/beta power 

To examine differences in early visual processing, we analysed the peri-stimulus alpha 

and beta power of the image types predictive (M: 0.66-2 ± 0.03 power), interference (M: -1.66-

2 ± 0.03 power), and expected (M: 0.99-2 ± 0.04 power), which was normalised relative to 

random images. The linear mixed-effect model identified the fixed effect image category to be 

significant (F(2, 167) = 13.40, p < .0001). As hypothesised, peri-stimulus alpha/beta power 

was reduced upon visually processing interference images in contrast to predictive and 

expected images (interference-random vs. predictive-random: z = -4.13, p = <.0002, 95% CI = 

[-0.04; -0.01], d’ = -0.72; interference-random vs. expected-random: z = -4.70, p = <.0001, 

95% CI = [-0.04; -0.01], d’ = -0.81; Figure 3). No substantial difference in alpha/beta power 

was observed between predictive-random and expected-random images (z = -0.57, p = .836, 

95% CI = [-0.02; 0.01], d’ = -0.1).
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Figure 3 Normalised alpha/beta power modulations for Predictive, Interference and 
Expected images extending from stimulus onset to 1000ms post-stimulus onset. (A) Time-
frequency representations of estimated power changes in alpha and beta frequency ranges. The 
dashed frame highlights the 500ms during which images were presented. Observed fluctuations 
in estimated power is relative to random images (see Materials and methods for a detailed 
explanation regarding the normalisation applied here). (B) Differences in normalised peri-
stimulus alpha/beta power (0 – 500ms) between the image types: Predictive, Interference, and 
Expected. The scalp map depicts the parieto-occipital region of interest. All power estimates 
used for analyses and to create illustrations were averaged across those electrodes. Significant 
differences in alpha/beta power are marked accordingly (Note: * p < .05; ** p < .01, *** p < 
.001). 
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P3b response 

The P3b response was analysed to determine to what extent higher cognitive processes 

differed amongst the image types (predictive, interference, expected, and random images). It 

was hypothesised that whilst highly informative images, i.e., predictive images, are likely to 

elicit a large P3b response, predictable (expected images) and less informative images 

(interference images) would elicit a diminished P3b response. 

We identified the fixed effect for image category to be significant (F(3, 369) = 68.48, 

p < .0001). The obtained results revealed that predictive images evoked the largest P3b 

response (μ = 4.69μV), followed by random (μ = 4.14μV), interference (μ = 3.54μV), and 

expected images (μ = 2.99μV; Figure 4). The estimated differences between the different image 

types, as well as their corresponding 95% confidence intervals, are presented in Table 1. The 

post hoc analyses conveyed significant differences between all image types (Table 1). 

Table 1 Estimates, corresponding 95% confidence intervals, SE, z-statistic, effect size, and p-
values of the contrasts corresponding to the fixed effect category of the P3b linear mixed effect 
model: * p < .05, ** p < .01, *** p < .001 

95% CI 

Contrasts Estimate Lower Upper SE z Effect size p 

Interference – Expected 0.55 0.26 0.84 0.11 4.37 0.48 <.0001 *** 

Predictive – Expected 1.70 1.41 2.00 0.11 13.51 1.49 <.0001 *** 

Random – Expected 1.15 0.86 1.44 0.11 9.16 1.01 <.0001 *** 

Predictive – Interference 1.15 0.86 1.44 0.11 9.14 1.01 <.0001 *** 

Random – Interference 0.60 0.31 0.89 0.11 4.78 0.53 <.0001 *** 
Random – Predictive -0.55 -0.84 -0.26 0.11 -4.35 -0.48 <.0001 *** 
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Figure 4 Illustrations of the P3b component for each image type (Predictive, Expected, 
Interference, and Random). (A) Grand-average ERP waves expressed at each of the six pre-
selected centro-parietal electrodes. Red horizontal lines highlight the timeframe in which the 
amplitude of the P3b component was analysed (300 – 600ms). (B) Grand-average ERP 
topographies for each image type averaged across 300 – 600ms post-stimulus onset. The 
centro-parietal ROI of the P3b is highlighted by asterisks (*). Both (A) and (B) show that 
predictive images evoked the largest P3b response, followed by predominantly random, 
interference, and lastly expected images. 
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Correlation between P3b and expectation-facilitated behavioural 
responses 

Lastly, we examined whether the suppression of higher cognitive processes, reflected 

by the diminished P3b for interference relative to random images, would allow expectation-

facilitated behavioural responses for expected images to be maintained. Thus, we assessed the 

relationship between the magnitude of the diminished P3b response for interference relative to 

random images and the time taken to correctly classify the succeeding expected image. A 

substantial negative correlation was identified (Spearman’s rho = -.44, p = .010, 95% CI 

[-0.68 -0.12]). Hence, the larger the P3b amplitude for interference (versus random) 

images, the slower the classification response for the ensuing expected images (Figure 5). 

Figure 5 Correlation between the diminished P3b response (µV) for interference images 
and the expectation-facilitated behavioural response (ms) for ensuing expected images. 
Spearman’s rho and the respective p-value are reported in the top right-hand corner. The shaded 
area represents the 95% confidence intervals. 
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Discussion 

In the present study, we investigated how the brain compensates for having to process 

contextually relevant visual stimuli that interfere with an overarching goal. Given that these 

visual interferences were relevant to the current context, one would expect early visual 

processes to remain intact in order to maintain an up-to-date representation of the present 

setting. Processes reflecting higher cognitive functions may, however, be dampened or 

altogether repressed to allow expectation-facilitated behavioural requirements, associated with 

the ensuing target image (expected image), to be successfully met. In line with such notions, 

we investigated early visual processes reflected by fluctuations of alpha/beta power in addition 

to later cognitive measures characterised by the parietal P3b and behavioural responses. Indeed, 

we found evidence suggesting that visually processing contextually relevant interferences 

remained unhindered. Hence, the forward flow of sensory signals was facilitated by the 

suppression of alpha/beta power (relative to random images). This decrease in parieto-occipital 

alpha/beta power is considered to create the optimal neural state for processing incoming visual 

information. Higher cognitive processing of interfering stimuli, on the other hand, appeared to 

be downregulated as revealed by a diminished P3b response for interference compared to 

predictive and random images. Notably, we observed that a more diminished P3b response for 

interference images (relative to random images) was associated with a faster behavioural 

response for the ensuing expected image. 

Facilitation of early visual processes 

Fluctuations in alpha/beta power have been recognised to affect the flow of incoming 

sensory information to higher cognitive levels (Houshmand Chatroudi et al., 2021; Klimesch 

et al., 2007; Roehe et al., under review). More precisely, enhancements in alpha/beta power 



Research Articles 

109 

have been associated with the inhibition of bottom-up projected afferent information (Haegens 

et al., 2011; Mathewson et al., 2011), whereas an alpha/beta suppression reflects a release from 

this inhibition (Griffiths et al., 2019; Klimesch, 2011). Recent advances have put forth the 

notion that this interplay in low frequency power serves as a dynamic neural state that, in turn, 

prioritises either bottom-up or top-down processes depending on the contextual setting 

(Griffiths et al., 2019; Roehe et al., 2021). As such, a neural state established by predominantly 

alpha/beta enhancements allows for top-down processes to dominate whilst bottom-up 

processes are stifled (and vice versa). Expectedly, the alpha/beta activity observed for the 

interference images in the present study appeared to provide a neural state marked by the 

decrease in alpha/beta power. Although disrupting the underling anticipatory processes of the 

upcoming expected images (Roehe et al., under review), processing the interference images 

was a necessity for the behavioural task. Hence, these images could not be fully ignored as 

customary in traditional ‘distractor suppression’ paradigms. They were essentially 

pseudorandomly selected random images and, therefore, unlikely to be predicted in advance. 

As such, these images were consequently marked by a more prominent suppression in 

alpha/beta power than the explicitly learned sequential pairs (Figure 3). As for these explicitly 

learned images, top-down processes could have aided visual processing by retrieving relevant 

face-related information from working memory (Brodski-Guerniero et al., 2017).  

The observation that early visual processes underlying the interfering faces are not 

hindered by the overarching goal of predicting the identity of the upcoming expected image 

aligns nicely with previous findings (Roehe et al., under review). In fact, these results suggested 

that actively processing interfering faces disrupted the maintenance of the expected face’s 

internal representation by temporally overwriting it (Roehe et al., under review). Hereupon, the 

neural templates representing identity-related information of expected images were unable to 

be drawn upon prior to stimulus onset. This was expressed by the insignificant differences of 
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the N170 amplitude amongst expected, random and interference images (Figure 1B). 

Behavioural responses for expected images, however, continued to be accelerated even after 

processing interference images (Figure 1A; Roehe et al., under review). Thus, our results 

propose that whilst lower visual levels within the respective hierarchical generative model 

(evoked by predictive images) are updated, higher levels appear to remain intact to aid 

expectation-facilitated behaviours. This, in turn, begs the question of whether higher cognitive 

processes relating to processing interference images are inhibited to allow for these 

expectation-facilitated behavioural effects. 

Suppression of higher cognitive processes 

The P3b has been proposed to reflect a plethora of higher cognitive processes including 

a mismatch between sensory input and internal expectations (Saurels et al., 2022; Valakos et 

al., 2020), inhibition of irrelevant neural networks (Elbert, 1993; Houshmand Chatroudi et al., 

2021; Polich, 2007), and an evaluation process during which the informative nature of 

incoming sensory input is assessed (Kluger et al., 2019; Polich, 2007) and the internal 

representation updated (Donchin, 1981; Fonken et al., 2020). In the present study, we observed 

that the informative cues elicited an enhanced P3b response whilst the interfering faces were 

marked by a noticeably diminished response relative to random images (Figure 4). These 

observations appear to align more with the notion that the P3b reflects an evaluation process, 

determining the significance of a given sensory input, rather than reflecting an ‘error signal’ 

arising from a sensory discrepancy. Kluger and colleagues (2019), for instance, showed that 

sequential informative events, coined ‘checkpoints’, expressed a substantial P3b response 

similar to events that violated cue-based expectations. The key difference was that events 

violating a prediction elicited a prediction error signal as reflected by a N400 evoked response. 

As such, the P3b was considered to be a neural correlate of processes regarding model 
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evaluation rather than model adaptation, which appears to occur at later stages (Kluger et al., 

2019). This notion would also encompass the suggestion that the P3b indexes neural inhibition 

(Elbert, 1993). If incoming information is acknowledged as contextually informative, it would 

be propagated upward to the next higher level of the generative model (Clark, 2013; Friston, 

2005). It would therefore seem practically sound to facilitate this feedforward transmission by 

inhibiting irrelevant neural networks and thus boosting the signal-to-noise ratio (Houshmand 

Chatroudi et al., 2021). In contrast, if a sensory input is reckoned uninformative for the current 

context, it would be inefficient to pass this information further up the hierarchy. The inhibition 

of irrelevant neural networks is thus unnecessary, resulting in a diminished P3b response. 

Collectively, these observations hint towards the proposal that the P3b component does not 

represent inhibition processes per se, but rather reflects a general evaluation process which 

then primes fundamental processes for model-updating, i.e., boosting the signal-to-noise ratio. 

The evoked neural responses we observed for the interfering and anticipated faces support this 

notion. Namely, the interfering faces acted as distractions and their lack of informative 

significance rendered them contextually invaluable after initial visual processing. Similarly, 

once the behavioural requirements were successfully met and the expected images correctly 

classified, these explicitly learned images no longer detained any further information relevant 

to contextually update the internal representation. In both cases, these stimuli did not require 

the current model to be updated, which was reflected by a reduced P3b response. On the 

contrary, the highly informative predictive images not only triggered temporal predictions 

regarding the sequential make-up of the image sequences (predictive, interference, and lastly 

expected images), but also triggered identity-related predictions of the expected faces in order 

to facilitate behaviour. The predictive trials were consequently marked as highly informative 

which was represented by the enhanced P3b response. Hence, these modulating P3b responses 
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appear to reflect an evaluation process that identifies whether a specific stimulus is sufficiently 

“newsworthy” to update the respective internal model.  

 Collectively, these results suggest that whilst sensory input that was deemed 

informative was passed on to and processed at higher cognitive levels (predictive images), the 

interference images appeared to be merely processed at lower visual levels. Our findings 

therefore suggest that these higher cognitive processes are, to some extent, suppressed for 

contextually relevant interferences (Figure 6). Interestingly, this suppression 

negatively correlated with the behavioural responses driven by anticipatory processes 

(Figure 5). These findings suggest that there is a relationship between the extent to 

which later cognitive processes of visual interferences are restricted and the accelerated 

response classifying the anticipated image. The current study, thus, provides a fundamental 

framework of how the brain compensates for processing contextually relevant 

interferences. Future studies combining MEG and multivariate pattern analysis (Barne et 

al., 2020; Blom et al., 2020) could build upon these findings by decoding the amount of face-

related information that is passed on to higher levels for each image type (predictive, 

interference, and expected). Besides providing further evidence to reveal at what cost the 

brain processes contextually relevant interferences, this would also shed light on some of 

the neural regions involved.  
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Figure 6 Simplified schematic diagram of how the brain compensated for processing 
contextually relevant visual interferences. Initially, predictive images are processed in early 
visual regions. Sensory information is then propagated upwards to trigger the pre-activation of 
existing knowledge regarding the upcoming expected image. This existing knowledge allows 
subsequent predictions of the expected image to be generated. These, in turn, facilitate 
respective behavioural requirements. In contrast, processing contextually relevant visual 
interferences seems to cease at visual regions within the hierarchy. In essence, the brain appears 
to downregulate the higher cognitive processes of the interference images to prevent them from 
hindering expectation-facilitated behavioural responses. 

Conclusion 

Overall, the findings of the present study demonstrated that the brain processes all 

contextually relevant sensory input to the extent that seems fit to the current setting. If a sensory 

stimulus is evaluated and deemed unnecessary for the current overarching goal, the brain 

appears to restrict or disregard further processing, i.e., passing on information further up the 

hierarchical model, and proceeds to processes regarded more critical to the task at hand. We 

can thus infer that the brain compensates for processing contextually relevant interferences by 

downregulating higher cognitive processes that are dispensable to the current environment and 

its behavioural requirements.  
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3. General Discussion and Future Research 

3.1 Summary of the presented studies 

The collective aim of the presented studies was to determine some of the temporal aspects 

of anticipatory processes underlying visual perception. Foremost, the focal intention was to 

examine the process of expectation generation and how it is affected by ‘sensory disruptions’ 

commonly experienced within our natural habitat. Considering that contextually relevant 

disruptions are prone to require visual processing to some extent, we also investigated how the 

brain copes with processing these bottom-up signals whilst simultaneously anticipating 

upcoming visual events.  

Study I explored the fundamental question: can the generation of cued expectations be 

confined to a particular timeframe? An implicit ‘associative learning’ paradigm was employed 

for participants to gain implicit knowledge of hidden sequential pairs by means of statistical 

learning. By exploiting the temporal advantages of EEG, we analysed alpha/beta power and 

N170 responses to mark the on- and offset of top-down processes. In line with previous 

research, we observed that bottom-up processes were downregulated for expected (versus 

random) images as reflected by a reduced response in the N170 and peri-stimulus gamma-band 

power. Furthermore, we obtained evidence to suggest that a neural state optimal for 

anticipatory top-down processes was established as soon as the predictive cue was observed. 

This was reflected by a continuous enhancement in alpha/beta power prevailing throughout the 

entire three second timeframe between the onset of the predictive cue and the expected image. 

The augmented alpha/beta power directly prior to the onset of the expected stimulus positively 

correlated with the modulation of the N170 amplitude (expected versus random images). Thus, 

suggesting that, at least to some extent, these early top-down processes provided anticipated 
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information prior to the presentation of the expected image. Surprisingly, we did not find 

expectation-facilitated behavioural effects. Nevertheless, this could be due to a ceiling effect 

given the simplicity and repetitiveness of the classification task. In summary, Study I provided 

evidence to suggest that anticipatory processes are activated as soon as being triggered by a 

respective cue and extend until the expected event occurs. These findings set the groundwork 

for the succeeding studies.  

The main objective of Study II was to determine how different types of disturbances that 

we commonly face in our natural surroundings may impact the anticipatory processes observed 

in Study I. The two disturbances implemented here were: (a) a delay in the onset of the expected 

event, and (b) a visual interference, by which an additional face image was presented between 

the predictive cue and its expected counterpart. It was hypothesised that the delay in the onset 

of the expected stimulus would have minor impact on anticipatory processes. In contrast, 

considering that the visual interferences required a behavioural response (given the 

experimental context), it was proposed that subsequent bottom-up processes would interfere 

with early activated anticipatory processes for the upcoming expected image. In both cases, 

alpha/beta power suppressions as well as enhancements laced the interstimulus interval prior 

to the onset of the expected images. Thus, the brain appears to alternate between neural states 

facilitating either top-down or bottom-up processes at a given time. Additionally, we observed 

a reduction in the face-sensitive N170 component solely when an anticipated image directly 

ensued its corresponding predictive cue. This expectation-facilitated effect disappeared when 

the expected face was preceded by a distracting image. Interestingly, behavioural measures 

confirmed that neither a temporal delay in stimulus onset nor a visual interference negatively 

impacted explicit expectation-facilitated behavioural effects. Collectively, the findings of Study 

II provided evidence to suggest that the brain fine-tunes lower levels of the internal generative 

model to account for both temporal delays in stimulus onset and visual interferences. Higher 
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levels and their subsequent top-down predictions, however, seem to remain intact to facilitate 

higher cognitive functions, i.e., optimising expectation-facilitated behaviours.  

Expanding upon the conclusions drawn in Study II, Study III was conducted to explore the 

influence of the current context on how visual interferences are processed. By re-analysing the 

EEG data recorded in Study II, we intended to investigate whether these contextually relevant 

interferences were processed only to the extent which was necessary for the current context. 

We observed that initial visual processing was facilitated as reflected by a peri-stimulus 

alpha/beta suppression (compared to random images). In contrast, higher cognitive processing 

of these visually interfering stimuli seemed to be downregulated as revealed by a diminished 

P3b response (relative to predictive and random images). Intriguingly, we observed that a more 

diminished P3b response for visual interferences (relative to random stimuli) was associated 

with a faster behavioural response for the ensuing expected stimulus. To this end, these findings 

show that the brain compensates for processing contextually relevant interferences by 

downregulating higher cognitive processes which are dispensable to the current context and 

task at hand.  

In the following, key findings of the three aforementioned studies will be discussed within 

the predictive processing framework. My main aim is then to show that the fluctuating 

alpha/beta power observed in all three studies endorses the notion that the brain efficiently 

prioritises the most reliable or relevant sources of information at a given time. Drawing on our 

event-related potential findings will help interpret how this balance between weighting either 

top-down or bottom-up information will affect anticipatory processes, i.e., the early activation 

of prior knowledge and expectation-facilitated behaviours. By emphasising on the well-

calibrated interplay between these findings, I will highlight some of the advantages that a 

predictive processing account of visual perception upholds. 
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3.2 Stability of cued face-related expectations  

Based on the belief that the probabilistic brain uses prior knowledge to minimise 

prediction error (Clark, 2015; Friston, 2009), a neural pattern reflecting the downregulation of 

bottom-up signals should, in theory, emerge for predicted events. That is, neural signatures of 

expectation-facilitated suppressions should help distinguish expected from unexpected sensory 

signals (Johnston et al., 2016; Kok et al., 2012; Todorovic et al., 2011; Turk-Browne et al., 

2010). In both Study I and Study II we established a stable experimental environment in which 

specific faces were reliably foretold by a predictive cue. Whilst Study I gave initial insight into 

the generation process of cued face-related expectations, Study II was conceptualised to 

examine how this process was influenced by (i) a temporal delay in the onset of the expected 

image or (ii) a visual interruption which segregated the expected image temporarily from its 

respective cue. In both studies, visually processing expected images appeared to be 

downregulated by anticipatory processes. Foremost, a suppression in gamma-band activity, 

associated with diminished bottom-up processes including the transfer of prediction errors 

(Arnal & Giraud, 2012; Bastos et al., 2012; Brodski et al., 2015), marked the depiction of the 

expected faces (relative to randomly occurring faces) in Study I. Relatedly, a unilateral (left) 

reduction in the N170 response was observed for these expected faces (relative to random 

faces). A similar expectation-facilitated response – this time bilaterally – was mirrored in Study 

II for the expected images that were temporally delayed (relative to random images)1. These 

observations align with previous findings conveying that anticipated faces, as a consequence 

of consecutive depictions, and familiar faces in general evoked a reduced N170 response 

(Caharel et al., 2009; Campanella et al., 2000; Johnston et al., 2016; Ran et al., 2014). In these 

 
1 Several factors which could have contributed to a unilateral instead of a bilateral modulation of the N170 have 
been discussed in Study I. Potential reasons why Study I and Study II expressed a different lateralisation of the 
expectation-facilitated N170 effect will be raised in the Critical reflections and future directions section. 
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examples, prior knowledge could be drawn upon to aid visual processing of subsequent faces. 

In other words, the predictions generated on the basis of this respective prior knowledge 

provide a match for incoming sensory evidence, leading to a decline in prediction errors. 

Indeed, recent findings have provided stimulating evidence to suggest that the N170 could be 

a prediction error signal, reflecting the conflict between top-down predictions and incoming 

sensory information (Baker et al., 2021; Johnston et al., 2017). The diminished N170 response 

and gamma-band activity for expected relative to random images observed in Study I endorse 

this assumption. Previous research investigating N170 and M170 2 responses alongside gamma 

activity has shown that these neural responses may be tied to different stages within the face 

processing hierarchy (Gao et al., 2013; Zion-Golumbic & Bentin, 2007). Specifically, the 

N170/M170 appeared to be predominantly involved in face detection and classification. 

Gamma-band activity, on the other hand, appeared to be involved in updating respective pre-

existing representations. In future, a cued expectation paradigm with varying degrees of face-

related expectation violations could be implemented within a M/EEG setting to further 

illuminate if the N170/M170 response does indeed reflect a prediction error signal.  

Referring back to Study I and Study II, the diminished N170 responses observed suggest 

that, at least to some extent, a neural template of the expected faces was activated ahead of its 

presentation to facilitate the generation of relatively precise predictions. The early activation 

of prior knowledge, which Study I has shown is triggered by the onset of the predictive cue, 

thus appears to assist in the maintenance of face-related predictions (Brodski-Guerniero et al., 

2017). Interestingly, Study II showed that this process can withstand extensive timeframes of 

six seconds. As such, these cued expectations appear to remain stable even when confronted 

with temporal delays.  

 
2 A posterior face-sensitive component similar to the N170 found in MEG (Liu et al., 2000). 
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On the contrary, this early activation of prior knowledge seems to be impeded when the 

brain has to process other kindred visual stimuli before attending to the anticipated image. This 

assumption is centred around observations from Study II. Here, findings showed that when 

visually interfering images were presented between the predictive cue and its expected 

counterpart, the above mentioned N170 response disappeared. One has to bear in mind that 

these interfering images required a specific behavioural response, making them contextually 

relevant to the task at hand. Previous research has shown that motivational relevance influences 

visual processing (for a review, see Summerfield & Egner, 2009). In Study II, we therefore 

proposed that upon visually processing this type of interference, the pre-activated neural 

representation of the expected images (triggered by the cue) is temporarily overwritten in the 

process of updating the internal model. This assumption rests on the notion that lower levels 

within the visual system’s hierarchy are updated more readily than higher cognitive levels 

(Long & Kuhl, 2018). In addition, on the grounds of predictive processing, the brain aims to 

acquire the most up-to-date model of the external world (Clark, 2013, 2015; Hohwy, 2013) and 

would subsequently update early visual levels to account for the visually interfering images 

that were attended to. Nevertheless, given that the main goal of the experimental context was 

to classify each image as quickly as possible, keeping the internal representation of the 

associated behavioural response for the expected image intact would have sufficed for the 

overarching task requirements. Indeed, Study II showed that even though the N170 responses 

during the visual interference condition did not portray signs of expectation-facilitation, the 

behavioural responses did. Based on these observations, we suggested that whilst the brain 

updates and revises lower levels within the hierarchical model that are dispensable to the 

contextual goal, higher cognitive levels remain unaffected by the visually interfering image. 

This would consequently ensure the facilitation of contextually relevant behavioural responses. 

As previously raised in Study II, this opens a stimulating line of future research which could 
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combine M/EEG and multivariate pattern analysis (Barne et al., 2020; Blom et al., 2020) to 

decode the amount of face-specific information activated ahead of the expected face’s 

presentation after having attended to contextually relevant visual interferences.  

Study III provided evidence to corroborate that higher cognitive processing of visually 

interfering images was downregulated to permit expectation-facilitated behavioural responses 

for the upcoming expected image. In other words, higher levels within the internal model 

appeared to be unaffected by revisions and model-updating after visually processing interfering 

images. This was shown by a diminished P3b response evoked by these interfering images 

relative to the predictive cues and randomly occurring unpaired images. Moreover, Study III 

convincingly showed a linear relationship between this diminished P3b response and the 

accelerated classification response for the ensuing expected image. These observations add to 

the literature supporting the notion that the P3b reflects an evaluation process in which the 

informative characteristics of a given bottom-up signal is assessed (Kluger et al., 2019; Polich, 

2007). As such, a reduced response is typically evoked by less informative or expected events 

(Ran et al., 2014), whereas informative events evoke an enhanced P3b response that 

subsequently primes fundamental processes underlying model-updating (Donchin, 1981; 

Fonken et al., 2020), including the generation of prediction errors (Valakos et al., 2020), and 

silencing irrelevant neural networks (Elbert, 1993; Houshmand Chatroudi et al., 2021). By 

evaluating and restricting to what extent visual interferences are processed, the brain enables 

higher cognitive representations to remain stable which in turn aids the generation of 

predictions regarding upcoming responses. 

Notably, neither the temporal delay nor the visual interference disruption appeared to 

negatively impact expectation-facilitated behaviours (Study II). In both cases, the response time 

and the overall accuracy of the classification response were substantially facilitated by 

anticipatory processes. Whilst a familiar expectation suppression pattern was observed for the 
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response time (Ran et al., 2014; Turk-Browne et al., 2010; Zhou et al., 2020), response accuracy 

showed an inverse pattern, i.e., accuracy increased with prior expectation (Auksztulewicz et 

al., 2017; Schliephake et al., 2021). Again, prior knowledge can be relied upon to guide precise 

predictions regarding the expected stimulus. Having explicitly learned the identity of the 

expected faces, participants would subsequently be less likely to accidentally misclassify the 

sex of these face images. In the same vein, behavioural responses could be prepared ahead of 

the depiction of the anticipated stimulus, resulting in an accelerated behavioural response.  

In sum, Study I and Study II provide evidence to suggest that cued anticipatory processes, 

which are contextually relevant, remain stable even within dynamic environments. To achieve 

this, Study III showed that the brain appears to downregulate processes which might interfere 

with maintaining stable neural representations of the contextually relevant expected events. In 

turn, prior activation of these internal representations aids the facilitation of top-down 

predictions that more-or-less match the incoming signal, thus minimising prediction error 

signals.  

 

3.3 A neural state favourable for anticipatory processes 

Within all three studies comprising this thesis, experimental conditions were generated 

in which either top-down predictions or bottom-up sensory input played a more substantial role 

at a given time. So far, past research has associated the facilitation of top-down processes with 

increases in alpha/beta power and bottom-up processes with decreases in alpha/beta power 

(Arnal & Giraud, 2012). More specifically, whilst enhancements in occipital alpha power have 

been linked to the inhibition of incoming visual information (Haegens et al., 2011; Mathewson 

et al., 2011), a suppression in power within alpha ranges has been linked to the release from 

this inhibition (Klimesch, 2011). Contextually relevant decreases in alpha/beta power have also 
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been the subject of study in various tasks (Lebar et al., 2017; Pfurtscheller et al., 1996), sensory 

modalities (Griffiths et al., 2019; Lebar et al., 2017), and different species, such as humans 

(Griffiths et al., 2019; Lebar et al., 2017), macaques (Haegens et al., 2011), and rodents (Wiest 

& Nicolelis, 2003). In terms of anticipatory processes, enhancements in alpha/beta power have 

been associated with activating previously established knowledge and sensory predictions 

(Bastos et al., 2015; Brodski-Guerniero et al., 2017; Mayer et al., 2016). In brief, fluctuations 

in alpha and beta power appear to be associated with several features underlying both bottom-

up and top-down processes. With the intention to incorporate these listed findings, Study I and 

Study II put forth the notion that modulations in alpha/beta power provide contrasting neural 

states that either facilitate bottom-up or top-down processes. This notion was first raised by 

Griffiths and colleagues (2019) with regard to suppressions in alpha/beta power. Here the 

authors suggested that instead of reflecting actual bottom-up prediction errors (or incoming 

signal), suppressions in alpha/beta power established a general neural state favourable for 

facilitating such mentioned bottom-up processes. To compliment this proposal, they speculated 

that stimulus-related information could, in turn, be carried by the phase of low alpha 

oscillations (Michelmann et al., 2016). Considerably more evidence is needed, however, to 

support this assumption. 

Critically, if enhancements in pre-stimulus alpha/beta power were indeed a reflection 

of predictions carrying stimulus specific information one would anticipate: (i) an expectation-

facilitated reduction in the N170 response for the expected (relative to random) images 

(Johnston et al., 2016; Ran et al., 2014), and (ii) a linear relationship between the pre-stimulus 

alpha/beta enhancement and peri-stimulus expectation-facilitated suppression in the N170. 

Expectation-facilitated modulations in the N170 response were observed in both Study I and 

Study II. Although in Study II, this only extended to the expected images which immediately 

ensued their respective cue. The expected images of the visual interference condition, however, 
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showed no expectation-facilitated effect in the N170, despite evident enhancements in 

alpha/beta power within the respective pre-stimulus timeframe (relative to random faces). 

Furthermore, both Study I and Study II (temporal delay condition) provided limited evidence 

of a positive linear relationship between the pre-stimulus enhancement in alpha/beta power and 

the modulation of the N170 response (reduced negative deflection) for expected relative to 

random faces. Instead of reflecting stimulus-related information of the expected face per se, 

the augmentation in pre-stimulus alpha/beta power seems to be more in line with the notion of 

a global neural state. Hence, Study I and Study II extend the concept of a neural state optimal 

for bottom-up processing (Griffiths et al., 2019) by adding an opposing neural state which is 

favourable for top-down processes.  

In Study I and Study II a stable environment was established in which the expected faces 

could be reliably predicted. Hence, in both cases enhancements in alpha/beta power were 

observed within the pre-stimulus timeframe leading up to the onset of the expected face. 

Furthermore, Study II also revealed that in the timeframe extending past the expected face - 

leading up to a randomly occurring image - this enhancement in alpha/beta power was not 

observed. Instead, an elongated alpha/beta suppression appeared to dominate this timeframe. 

Thus, fluctuations in alpha/beta power seem to highlight at which point in time a neural state 

necessary for facilitating top-down versus bottom-up processes is established and vice versa. 

The idea of fluctuating between two neural states, one facilitating top-down processes and the 

other facilitating bottom-up processes, ties in somewhat neatly with the premise of precision-

weighting. When more weight is attributed to top-down processes, an enhancement in 

alpha/beta power would be expected. In turn, when more weight is bestowed upon bottom-up 

processes, alpha/beta power is suppressed to establish a neural state optimal for bottom-up 

processes. On these grounds, one would expect an interchanging interplay between these two 



General Discussion and Future Research 
 

 130 

neural states, regulated by the sensory signals that are estimated to provide the most relevant 

information given the current context (Clark, 2017b; Lupyan & Clark, 2015).  

3.4 Efficiency of weighting contextually relevant information 

A cornerstone of predictive processing is the view that the predictive properties of the 

brain can be amplified or muted by means of increasing the weight assigned to either internal 

predictions or incoming signals, respectively (Clark, 2015; Yon & Frith, 2021). In an 

exceedingly dynamic world like ours, these contextually driven patterns of weightings allow 

predictive models to determine which signals should predominantly guide perceptual 

inferences (Clark, 2017b, 2022; O’Reilly, 2013). This would amount to fluidly altering 

between assigning more weight to top-down predictions in familiar surroundings and more 

weight to bottom-up signals in territories where contingencies are less predictable. Hence, the 

contextual setting plays a crucial role in determining how far predictive perceptual systems rely 

on prior knowledge and subsequent predictions (Summerfield & Egner, 2009).  

The findings observed in Study II and Study III were facilitated by an explicit cueing 

paradigm, i.e., the participants explicitly learned their unique sets of sequential pairs. Hence, 

explicit expectations regarding predefined regularities were generated whilst also enhancing 

the cue and target’s saliency (Kok et al., 2012). As a result, these stimuli may attract more 

attention and engagement than the random (less contextually relevant) images, given their 

contextual significance (Griffiths et al., 2019; Lebar et al., 2017). Classically, attention can be 

categorised into two types. Bottom-up attention (stimulus-driven), in which a particularly 

salient stimulus captures perceptual resources, i.e., a sudden movement or loud noise, and top-

down attention (goal-driven), which is guided by higher level cognition, such as prior 

knowledge and contextual goals (Summerfield & Egner, 2009; Vanunu et al., 2021). In terms 

of predictive processing accounts, attention is hypothesised to increase the weight on prediction 
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error signals to facilitate efficient model-revision and updating (Feldman & Friston, 2010; 

Jiang et al., 2013; Smout et al., 2019). Although this is a sound interpretation of how bottom-

up attention should in principle work, top-down attention regarding visual perception is less 

well understood. The general argument here pushes the notion that assigning more weight to 

top-down predictions regarding task-relevant information renders us more sensitive to a given 

sensory stimulus (Yon & Frith, 2021). This sensory signal therefore ‘stands out’ from task-

irrelevant signals (Clark, 2017b). The incoming signal from this given stimulus is then drawn 

upon to facilitate efficient updating of the internal model. However, the underlying 

mechanisms that enable such enhanced sensitivity to task-relevant stimuli are not well 

understood as to date and require more research in future. 

Although all images within the three studies were equally relevant to the task 

requirements (sex-classification task), explicit knowledge of the sequential pairs may have 

rendered them more salient. In other words, given the current context, these images ‘stood out’ 

from the rest of the randomly occurring faces. The fluctuations between alpha/beta power 

which we observed in Study II appear to be in line with the notion that these images required 

more engagement than the random (less contextually relevant) images, as marked by alpha/beta 

power suppressions following stimulus presentation (Griffiths et al., 2019; Lebar et al., 2017; 

Limanowski et al., 2020). In addition, we observed the same alpha/beta suppression for 

interference (versus random) images. Considering that the interference images were effectively 

arbitrarily selected random images, we proposed that these images were also enhanced in 

saliency because the participants had explicitly learned the sequential make-up of the visual 

interference blocks. As such, the interfering images became an unintentional temporal cue for 

the temporal onset of the approaching expected images (Xu et al., 2021). 

In addition, findings of Study III showed that the onset of the interference images was 

marked by an enhanced suppression in alpha/beta power relative to the predictive and expected 
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images. This neural state favourable to bottom-up processing will have facilitated the forward 

flow of incoming information (Griffiths et al., 2019; Houshmand Chatroudi et al., 2021), and 

subsequently the revision of lower levels within the visual system (Long & Kuhl, 2018). 

Specifically, Long & Kuhl (2018) showed that whilst visual interruptions in the form of 

scrambled facial features primarily influenced representations within the visual system, 

modulations such as a switch in goal or task relevance influenced representations in 

frontoparietal networks. This is in line with our previous suggestion (Study II) that the 

interfering images appeared to affect the stable maintenance of a face-related template of the 

expected images; hence, the insignificant expectation-facilitated N170 effect. However, the 

diminished P3b response for the interfering images (relative to random images) showed that 

although processed at lower visual levels, these bottom-up signals do not appear to interfere 

with higher cognitive levels that facilitate contextually relevant behaviours (Study III). That is, 

the brain appears to give more weight to bottom-up processes to efficiently update the internal 

model to account for visually interfering images before giving weight to top-down processes 

to efficiently assist expectation-facilitated behaviours (Study II and Study III). Similarly, 

temporal delays in stimulus onset were accounted for by first providing a neural state optimal 

for top-down processes to activate respective prior knowledge (Study II). Once this had been 

achieved, a pre-stimulus neural state was established favouring bottom-up processes in 

anticipation of the delayed salient expected image. The brain, thus, seems to fluctuate between 

these two neural states to flexibly give weight to either top-down or bottom-up processes. 

Critically, this is not to say that fluctuating between neural states reflects precision-weighting 

per se. Instead, these neural states index whether top-down or bottom-up processes have been 

bestowed more weight given the present context. Promising studies narrowing in on how 

specific neuromodulators shape to what extent the brain relies on either top-down or bottom-

up signals might enrich our understanding of the mechanisms underlying precision-weighting 
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in visual perception (Lawson et al., 2021; Yu & Dayan, 2005). Lawson and colleagues  (2021), 

for instance, examined the speeded response of participants taking noradrenaline-blocking 

medication (Propranolol) during a classification task (faces versus houses). They conveyed that 

these participants were more likely to trust their internal top-down predictions during 

conditions of high uncertainty. That is, under the influence of Propranolol, they responded 

faster to ‘noisy’ expected stimuli than the participants of the placebo group; thus, implying that 

increased weight was given to top-down predictions. By altering the predictive contingencies 

in the experiment, Lawson and colleagues (2021) were also able to show that these participants 

were slower to update their internal model when confronted with new regularities. Hence, 

noradrenaline is believed to encode the (un)certainty of our predictions and subsequently plays 

a role in assigning more weight to incoming information when our surroundings are estimated 

to be more volatile. That means, when our environments are more probable to change, we tend 

to rely more heavily on incoming signals to update our internal model considering that our 

prior representations are quickly outdated (Yon, 2021). By suppressing noradrenergic circuits, 

the above-mentioned results propose that more weight is afforded to our prior beliefs even in 

the face of constant change. An interesting notion would be to examine (i) if visual 

interferences are as readily accounted for in internal models of participants whose 

noradrenergic circuits have been suppressed, and (ii) if enhanced weight assigned to top-down 

processes is reflected by an elongated augmentation in alpha/beta power throughout the pre-

stimulus timeframe of the expected stimuli. This would further substantiate the assumption that 

alpha/beta enhancements reflect a neural state optimal for top-down processes.  
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In Study I, implicit expectations guided top-down processes which prevailed from the 

onset of the cue to the presentation of the expected image3. Here, the whole brain analysis 

suggests that not only top-down related processes regarding the visual system appear to play a 

role in generating and maintaining cued expectations. Instead, a whole network of regions 

appears to be involved in establishing an overall neural state optimal for top-down processes.  

Overall, all three studies show that the brain prioritises either top-down or bottom-up 

states depending on which signal is contextually relevant at a given point in time. Fluctuations 

between these two neural states, for example, facilitate optimal conditions for keeping 

contextually relevant knowledge intact whilst also updating lower visual levels to account for 

different interferences which we face in everyday life. By weighting which information is most 

relevant, the brain can efficiently compensate for processing different interferences whilst 

continuing to drive expectation-facilitated behaviours. 

 

3.5 Critical reflections and future directions  

The three studies comprising this thesis collectively aimed to deepen our understanding 

of the generation, maintenance, and development of cued face-related expectations. In 

hindsight, several factors have been brought to light which impacted how the results were 

interpretated.  

One major difference between the experimental paradigms of Study I and Study II was 

that different types of expectations were elicited. That is, in Study I, implicit expectations were 

generated as a result of statistical learning, whereas in Study II, participants were explicitly 

 
3 We conducted a whole brain analysis in Study I to gain initial insight into the formation and development of 
cued face-related expectations. In contrast, the region of interest (ROI) was narrowed down to parieto-occipital 
electrodes in Study II, because one of our main points of interest rested on the influence of visual interferences on 
the development of face-related expectations. We subsequently chose a ROI commonly used in literature to 
examine visual perception. The averaged spectral patterns in pre-stimulus alpha/beta power observed in these two 
studies consequently differ primarily because different ROIs were implemented. 
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primed to learn their unique sets of paired-up faces during a training session. The use of a 

statistical learning paradigm in Study I may have contributed to the ceiling effect observed in 

the behavioural responses. Especially the simplicity and the repetitiveness of the classification 

task could have allowed participants to quickly reach optimal proficiency4. It is noteworthy to 

mention here that how the participants are instructed during the induction period can impact 

and even confound expectation-facilitated responses. Prior to commencing a statistical learning 

experiment, Zhou and colleagues (2020), for instance, informed participants that the upcoming 

sequences were to comprise a predictive structure (the exact pairwise relationship between 

certain images was not conveyed). Being orientated towards the presence of sequential pairs 

may however tilt the balance towards eliciting explicit rather than implicit expectations. In 

future, it would be interesting to examine if implicit and explicit face-related expectations 

reflect expectation-facilitated responses to varying degrees. This could also provide an 

assumption why Study I and Study II expressed a different lateralisation of the expectation-

facilitated N170 effect. The rationale behind this speculation is based on conflicting findings 

concerning the enhanced facilitation of explicit versus implicit cueing on expectation-

facilitated behavioural responses, i.e., response times regarding temporal expectations (c.f. Ball 

et al., 2020; Menceloglu et al., 2017).  

Relatedly, a limitation between Study I and Study II is that different ROIs were used to 

analyse the N170. Due to the Covid pandemic all our participants were required to wear a FFP2 

face covering during the EEG-recording. Given the close proximity of electrodes TP7/8 and 

the mask’s elastic fastening behind each ear, their signals were contaminated with artefacts. 

These electrodes were thereupon not included in the analysis of the N170 component in Study 

II. Naturally, this could also have contributed to the different lateralisation of the diminished 

N170 effects observed between Study I and Study II.  

 
4 For a more detailed critical reflection of the behavioural results obtained in Study I, see Discussion of Study I.  
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4. Conclusion  

 The view that the brain is a ‘prediction engine’ which actively anticipates its natural 

environments has transformed the way it has been studied, empirically as well as 

philosophically, over the past decades. Given that at the heart of predictive processing lies the 

notion that the brain persistently generates top-down predictions regarding up- and incoming 

sensory information and their reliability given the current context, it was our intention to gain 

deeper insight into the temporal aspects encompassing the generation, maintenance, and 

development of such expectations. In Study I we obtained evidence to suggest that anticipatory 

processes are initiated the moment a predictive cue is observed. Study II extended on this by 

conveying that these anticipatory processes are not hindered by temporal delays in the onset of 

the expected image but, to some extent, by visual interferences. The notion that the brain 

compensates for processing visual interferences by mitigating their influence on higher 

cognitive levels was subsequently indicated in Study III.  

In this thesis, I examined some of the fundamental underpinnings of the predictive brain 

with the aim to highlight their benefits within a visual perception framework. Thus, if the brain 

truly is a prediction engine, the aforementioned studies collectively showed that it consistently 

predicts and calibrates the relevance of internal predictions versus incoming signals. 

Depending on which way the balance sways, we rely more heavily on prior knowledge and 

top-down predictions, or bottom-up information to influence how far our internal model is 

updated. To date, this appears to be a lucrative interaction between our internal predictive 

model and the external world that, nevertheless, provides plenty of fascinating conundrums 

waiting to be resolved in future. 
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