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For goal-directed movements like throwing darts or
shooting a soccer penalty, the optimal location to aim
depends on the endpoint variability of an individual.
Currently, there is no consensus on whether people can
optimize their movement planning based on information
about their motor variability. Here, we tested the role of
different types of feedback for movement planning
under risk. We measured saccades toward a bar that
consisted of a reward and a penalty region. Participants
either received error-based feedback about their
endpoint or reinforcement feedback about the resulting
reward. We additionally manipulated the feedback
schedule to assess the role of feedback frequency and
whether feedback focusses on individual trials or a
group of trials. Participants with trial-by-trial
reinforcement feedback performed best. They were less
loss-aversive, had the least endpoint deviation from
optimality, and showed more consistent performance at
the group level. This combination of reduced
between-participant variability and the improved
alignment with optimality suggests that reinforcement
feedback about a single movement is particularly
effective to optimize movement planning under risk.

Introduction
Even if we intend to perform the same movement

multiple times, the movement and its outcome will not
be identical, but they will vary somewhat from one time
to the next. Consider, for example, shooting a penalty
in soccer. To succeed, the ball must move toward the
goal and overcome the goalkeeper. The latter is more
likely when the ball is aimed close to the goalpost. But
even if we always aim for the lower left corner, our
shot will sometimes miss the goal or hit the goalpost
instead, whereas in other cases, the ball will land at
a more central location of the goal. In goal-directed
aiming tasks like shooting a penalty or throwing a

dart, the optimal location to aim for is determined by
the motor variability of an individual. An experienced
soccer player may aim close to the goalpost because
they are aware that the ball will land close to the
targeted location most of the time. A less experienced
player, however, whose shooting is more variable, may
repeatedly fail when aiming for the same location,
because the ball will frequently hit the goalpost or even
land outside of the goal—reducing the chance to score
to zero. The inexperienced player, therefore, benefits
from aiming at a less extreme location (i.e., closer to the
goal center).

Sensorimotor decision tasks like shooting a penalty
or throwing darts can be considered a case of movement
planning under risk, and performance in these tasks
depends on sensory uncertainty, motor uncertainty,
and the reward structure of the task (for reviews, see
Trommershäuser, Maloney, & Landy, 2008; Wolpert
& Landy, 2012). The reward structure refers to the
magnitude of reward and penalty, as well as the relative
size of the reward and penalty region. Consequently,
the reward structure can be manipulated, for example,
by changing the relative size of the reward and penalty
region or by imposing a different ratio between reward
and penalty. Sensory and motor uncertainty, on
the other hand, can be considered a characteristic
of the participant performing the task. Previous
research has shown that movement planning under
risk considers both the reward structure of the task
and the inherent motor variability (Tatai, Straub,
& Rothkopf, 2025; Trommershäuser, Maloney, &
Landy, 2003a; Trommershäuser, Maloney, & Landy,
2003b; Zhang, Daw, & Maloney, 2013). Moreover,
when feedback about endpoints is perturbed, thereby
increasing the inferred motor variability, people adjust
their behavior and select a less risk-seeking point to
aim (Trommershäuser, Gepshtein, Maloney, Landy, &
Banks, 2005). Although movement planning has been
shown to maximize the expected gain and is therefore
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considered close to optimal (Trommershäuser et al.,
2003a; Trommershäuser et al., 2003b; Trommershäuser
et al., 2005), other studies reported movement planning
to be suboptimal (Ota, Shinya, & Kudo, 2016; Ota,
Shinya, Maloney, & Kudo, 2019; Wu, Trommershäuser,
Maloney, & Landy, 2006). For example, Wu et al.
(2006) showed that behavior can be suboptimal with
more complex, asymmetric reward structures. But
even for simpler reward structures, behavior can be
suboptimal, even after prolonged training (Ota et al.,
2016) or when additional information is provided to
the participant (Ota et al., 2019). To this end, Ota et
al. (2019) provided participants with blocked summary
feedback after a block of 50 trials. This feedback
showed the endpoints of the 50 recent trials, reasoning
that observing the distribution of many trials helps
to directly infer motor variability. Yet, the additional
summary feedback did not improve performance
(Ota et al., 2019). However, given that summary
feedback was provided incrementally, it is unclear
whether blocked summary feedback can improve
movement planning or is as effective as trial-by-trial
feedback.

In the literature on motor learning and skill
acquisition, there is an ongoing debate about the
effectiveness of feedback with a reduced frequency
compared to trial-by-trial feedback (Fujii, Lulic, &
Chen, 2016; Marco-Ahulló et al., 2024; McKay et al.,
2022; Ronsse et al., 2011; Salmoni, Schmidt, & Walter,
1984; Schmidt, Young, Swinnen, & Shapiro, 1989;
Weir-Mayta, Hamilton, Stockton, & Munoz, 2022;
Wulf, Chiviacowsky, Schiller, & Ávila, 2010). According
to the guidance hypothesis (Salmoni et al., 1984;
Schmidt et al., 1989), trial-by-trial feedback can be
superior during skill acquisition but can be detrimental
once the feedback is removed, because participants
are too reliant upon the presence of feedback. Since
then, empirical studies have provided evidence for and
against the guidance hypothesis. A recent meta-analysis
(McKay et al., 2022) found no clear evidence for
the guidance hypothesis and superior retention
performance with reduced feedback frequencies.
Moreover, trial-by-trial and summary feedback differ
in terms of not only feedback frequency but also the
focus of feedback: Trial-by-trial feedback provides
information about a single movement or its outcome,
whereas summary feedback provides information about
multiple movements. For movement planning under
risk, a focus on multiple movements appears beneficial,
because it allows for direct assessment of the motor
variability—and thus the crucial property to maximize
performance. In contrast, neurocomputational accounts
of human motor learning emphasize the evaluation of
individual movements and their outcomes (Diedrichsen,
White, Newman, & Lally, 2010; Doya, 2000; Feulner,
Perich, Miller, Clopath, & Gallego, 2025; Krakauer
& Mazzoni, 2011; Shadmehr, Smith, & Krakauer,

2010), suggesting better performance when individual
movements can be evaluated.

Motor learning can rely on different processes
that use performance-related information in different
ways. One prominent distinction emphasizes
learning mechanisms that use sensory information
about movement errors or outcome or reward
information. Sensory error–based processes update
motor commands based on the discrepancy between
predicted and observed movement consequences,
enabling direction-specific corrections (Shadmehr
et al., 2010). Outcome-based processes adjust future
actions according to their success or failure, without
requiring information about the error direction
(Doya, 2000; Izawa & Shadmehr, 2011). Although
outcome-based updates are often discussed within
the broader framework of reinforcement learning,
they differ from sensory error–driven mechanisms
in the nature of the information they use. These
learning principles motivate an important question
for movement planning under risk: Does the type
of information provided as feedback—sensory error
versus reward outcome—shape how people choose an
aim point when the optimal solution depends on their
own motor variability?

In the present study, we rigorously tested the role
of feedback for movement planning under risk using
saccade eye movements—a response system with
established influences of reinforcement and error-based
learning (Madelain, Paeye, & Darcheville, 2011;
Pélisson, Alahyane, Panouillères, & Tilikete, 2010).
However, our goal was not to distinguish between
reinforcement learning and sensory error–based
mechanisms. Rather, we use these concepts as a
conceptual motivation for why feedback highlighting
individual movement outcomes (reinforcement
feedback) might influence planning differently from
feedback that conveys sensory error information
(error-based feedback). In our experiment, we asked
participants to make saccades to an elongated bar
divided into a reward region and a penalty region.
Both reward and penalty increased toward the center
of the bar. Thereby, aiming into the rewarded region
close to the center of the bar yielded a high amount
of reward—yet at the risk of encountering a penalty.
We systematically manipulated the feedback modality
(error-based feedback, reinforcement feedback),
as well as the feedback schedule (trial-by-trial
feedback, blocked summary feedback, rolling summary
feedback), in a fully crossed between-participant design.
Participants received feedback about the obtained score
(reinforcement feedback) or about their endpoints
(error-based feedback). Moreover, participants received
feedback on a trial-by-trial level or feedback about the
recent 30 trials (summary feedback). Two groups of
participants received summary feedback every 30 trials
(blocked summary), whereas two other groups received
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summary feedback after every trial (rolling summary).
A comparison between the blocked summary and
rolling summary groups reveals the contribution of
feedback frequency, and the comparison between
trial-by-trial and rolling summary feedback reveals
the contribution of feedback focus—thus, whether
feedback focuses on the outcome of individual
movements or on a set of movements.

Methods
Participants

We recorded data of 120 participants (100
females, 20 males; age range: 18–46; median age:
21). Participants were Psychology students from the
University of Muenster and were reimbursed with
course credit or with 8€/h. Additionally, participants
received a performance-contingent reward that
depended on their performance in the experiment.
The performance-contingent reward varied between 0€
and 2.40€ (median: 1.90€). Participants had normal
or corrected-to-normal vision. The experiment was
approved by the Ethics Committee of the Faculty of
Psychology and Sports Science at the University of
Münster, and participants provided written informed
consent before taking part in the experiment.

Setup and stimuli

Stimuli were presented on an Eizo FlexScan 22-inch
CRT monitor (Eizo, Hakusan, Japan) with a resolution
of 1,152 × 870 pixels, an effective display size of 40.7
× 30.5 cm, and a refresh rate of 75 Hz. A chin–forhead
rest was used to restrict head movements and ensure
a viewing distance of 67 cm. Stimulus presentation
was controlled via the Psychtoolbox (Brainard, 1997;
Kleiner, Brainard, & Pelli, 2007) in MATLAB (The
MathWorks, Natick, MA, USA). Eye position of the
right eye was recorded at 1000 Hz using the EyeLink
1000 (SR Research, Mississauga, ON, Canada) and
the EyeLink Toolbox (Cornelissen, Peters, & Palmer,
2002). All stimuli were presented on a gray background
(9.06 cd/m2). The EyeLink was calibrated at the
beginning and in the middle of each block using a
9-point calibration protocol.

The stimulus was a horizontally elongated white
bar (83.6 cd/m2) with a width of 8.1° and a height
of 1.04°. It was presented at the horizontal monitor
midline, at a vertical eccentricity of either –7.5° or
+7.5°. The bar had no sharp visible edges but slowly
faded into the background: The outermost 0.15° of
each edge was a linear transition into the background.
We used a combination of a fixation cross and a
bull’s eye as a fixation cross (Thaler, Schütz, Goodale,

& Gegenfurtner, 2013). To provide feedback in the
error-based conditions, we used an ellipsoid with a
diameter of 0.3 (horizontal) and 0.5 (vertical) for
trial-by-trial feedback and black vertical lines of 1.65°
length for summary feedback (Figure 1A). For the
reinforcement conditions, we used numbers rounded to
one decimal displayed 1.25° above the bar.

Design and procedure

Participants were instructed to make vertical
saccades to a horizontally elongated bar. Half of the
bar was associated with a reward, whereas the other
half was associated with a penalty. Critically, reward
and penalty increased toward the center of the bar,
with the penalty being twice as high as the reward
(Figure 1B). This information was made explicit to
participants. The vertical position of the bar and the
reward orientation on the bar were balanced across
participants. The asymmetric reward structure ensured
that the expectedly few penalties contributed to the
overall performance. We recorded six groups that
differed in terms of the feedback provided to them.
Participants received feedback about their endpoint
on the bar (error-based) or about the obtained reward
(reinforcement). Moreover, participants received
feedback about the recent trial (trial-by-trial) or about
the recent 30 trials (blocked summary and rolling
summary). Participants in the blocked summary groups
received feedback every 30 trials, whereas participants
in the rolling summary groups received feedback after
every trial. During the first 29 trials, participants in the
rolling summary conditions received feedback about all
previous trials.

Every participant completed two blocks. In the
first block, participants received feedback about their
true endpoints (veridical feedback). In the second
block (noisy feedback), endpoints (and thus scores)
were perturbed by adding position noise (σ = 0.5°) to
the true endpoint. Thus, the experiment constituted
a 2 × 2 × 3 design, with the within-participant
factor feedback veridicality (veridical, noisy) and
the between-participant factors feedback modality
(error-based, reinforcement) and feedback schedule
(trial-by-trial, blocked summary, rolling summary).

At the beginning of each trial, a fixation cross was
displayed at the screen center. A trial was started if
gaze was within a square region of 2.5° width around
the fixation cross for 250 consecutive samples. After
a uniform random interval between 200 and 500 ms,
the bar appeared. Participants were instructed to
quickly look at the bar after its appearance with a
single eye movement. A sample was labeled on-target
if it was less than 0.5° away from the edge of the bar.
The target was classified as selected if gaze was on the
bar for 200 samples. The mean gaze position of the
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Figure 1. Design and critical manipulations. (A) Participants were rewarded/penalized for making vertical eye movements to a
horizontally elongated white bar. We recorded six groups that received different forms of feedback. Participants received feedback
about their endpoint (error-based, left column) or about their obtained score (reinforcement, right column). Participants in the
trial-by-trial groups (top row) received feedback about their performance in the recent trial, whereas participants in the summary
groups (bottom row) received feedback about their performance in the recent 30 trials. Participants in the blocked summary groups
received feedback every 30 trials, and participants in the rolling summary group received feedback after every trial. Summary
feedback consisted of the mean, the minimum and maximum, and the 25th and 75th percentiles in terms of position or obtained
score. (B) Reward structure. Half of the bar was associated with a reward, the other half with a penalty. Importantly, reward and
penalty increased toward the bar center. For half of participants, the rewarded region was the right-hand part of the bar.
(C) Individual data of one participant. Every participant completed two blocks, each with a break after 150 trials (dashed vertical line).
In the first block, participants received feedback about their true endpoints (veridical feedback, left). In the second block (noisy
feedback, center and right), position noise was added to the provided feedback. Every data point is the endpoint of one trial. Solid
black lines are a moving average (σ = 20 trials). Green lines are optimal aim points derived from the variability relative to the moving
average. The green shaded area denotes the region of optimality for that individual (Supplementary Figure S1). For noisy feedback,
the perturbed endpoints (right) and not the true endpoints (center) were used to compute the optimal aim point.
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last 10 samples was used to provide feedback. In the
trial-by-trial conditions, feedback was displayed for 306
ms. Summary feedback was displayed until participants
pressed any button on a keyboard. If the target was not
selected within 1,200 ms, the target was removed, and
the next trial began. Summary feedback was a graphical
representation (Figure 1A) of the mean, the minimum
and maximum, and the 25th and 75th percentiles in
terms of position or score. Participants in the summary
groups were told that feedback provided information
about the recent 30 trials, displaying the mean (central
line or value; see Figure 1A), the values covering the
central half of the responses (neighboring elements),
and the minimum and maximum (outmost elements).

Every participant completed a demo version of the
experiment before proceeding to the main experiment
to get familiar with the task. The demo consisted
of five trials, and no feedback was provided. Unlike
the main experiment, the penalized region of the bar
was displayed in dark gray. Both blocks of the main
experiment consisted of 300 trials and included a
break after 150 trials. Participants were told that their
task was the same in the two blocks, yet a different
algorithm was used to compute where they had looked.
After completing the second block, score points were
converted into a monetary reward, with 1,000 points
yielding 1€. For the noisy feedback block, the payment
was based on the true score or on the perturbed score,
depending on what was higher.

Data analysis

We recorded gaze position of the right eye at
1000 Hz. Saccade onsets and offsets were defined using
the EyeLink 1000 algorithm. In the offline analysis,
gaze position at saccade offset was used as a saccade
endpoint. These offline estimates of saccade endpoints
and the online estimates of gaze position (which were
used for feedback) were highly correlated, r = 0.96, p
< 0.001. The analysis is based on the offline results.
We discarded 21 trials (out of 72,000) because no gaze
position on the target was detected.

The optimal aiming point depends on the motor
variability. Under the assumption of a stable aim
point across trials, the motor variability is identical
to the variability of endpoints. An optimal aim point
can then be derived by shifting the entire endpoint
distribution to different mean values and computing
the resulting overall score for that mean endpoint. The
mean endpoint with the highest score can be used as an
estimate of the optimal aiming point. However, such
an analysis would neglect that participants may change
their aiming location over the course of the experiment,
either by slow, gradual changes or by sudden changes
in strategy. Thus, the observed variability may reflect
not only motor variability but also aiming variability

(i.e., variability due to aiming at different locations).
In consequence, this approach would overestimate the
individual motor variability. Alternatively, one may
compute the endpoint residuals relative to a moving
average (Figure 1C). This way, changes in the aiming
location over time can be accounted for. However,
the moving average and the resulting residuals will
depend on the size of the sliding window that is used
to compute the moving average. A common choice
is to use a Gaussian weighting function as a sliding
window, where the standard deviation of the Gaussian
controls the effective width of the window. A small
sliding window may result in a noisy moving average
that underestimates motor variability (Supplementary
Figure S1). A large sliding window, on the other hand,
will overestimate motor variability, given that the
moving average will approach the individual mean
with increasing window size (Supplementary Figure
S2). Considering all these limitations, we decided
not to provide point estimates of motor variability
and thus of optimal performance, but to compute an
upper limit (spread around the individual mean) and
a lower limit of motor variability (spread around the
moving average with the smallest sliding window). We
refer to the region between the upper and lower limits
as the region of optimality (Supplementary Figure
S1). Specifically, to compute the lower limit of motor
variability, we used a sliding Gaussian window with a
standard deviation of 1 trial. Thus, each trial’s moving
average was effectively influenced by the trial itself and
its immediate neighbors. For Figures 2–4, the depicted
regions of optimality indicate the distance from the
lower limit (minus 1.96 times the standard error) to
the upper limit (plus 1.96 times the standard error) for
each participant group. We excluded one participant
from the computation of the region of optimality,
because this participant alternated between looking
at the left and right edges of the bar during the first
block, thereby producing unrealistically high values of
variability.

We compared scores and endpoints using a
2 × 2 × 3 analysis of variance (ANOVA) with
the within-participant factor feedback veridicality
(veridical, noisy) and the two between-participant
factors feedback modality (error-based, reinforcement)
and feedback schedule (trial-by-trial, blocked summary,
rolling summary). The direction of effects was tested
using t-tests. Inferential statistics are supplemented
with effect size estimates, Cohen’s d for t-tests,
and partial eta squared, η2

p, for ANOVA results.
Postpenalty behavior was analyzed using a 2 ×
3 × 5 ANOVA on the saccade endpoints with the
between-participant factors feedback modality and
feedback schedule and the within-participant factor
postpenalty trial (T1–T5; referring to the first through
fifth trials following a penalty). To assess the effect
of blocked summary feedback, we analyzed data
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Figure 2. Performance. (A) Average score per trial for every participant. Every participant first completed a veridical feedback
condition before proceeding to the noisy feedback condition. The score in the noisy feedback condition shows the true score, not the
perturbed one used for feedback. Each faint data point is the mean of one individual. Solid data points are the group mean. Error bars
represent the 95% confidence interval of between-participant variability. Diagonal error bars must be compared to the identity line.
(B) Proportion of penalized trials for every participant. (C) Average endpoint of every participant. Positive values denote average
endpoints on the rewarded region; negative values indicate the penalized region. Green regions denote the region of optimality.
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Figure 3. Scores as a function of endpoints. Average score as a function of the average endpoint for (A) the veridical feedback
condition and (B) the noisy feedback condition. Each data point is one individual. Green regions denote the regions of optimality.

from the blocked summary groups using a 2 × 2 ×
2 × 5 ANOVA on the saccade endpoints, with the
between-participant factor feedback modality and
the within-participant factors feedback veridicality,
feedback phase (prefeedback, postfeedback), and trial
lag (T1 to T5; distance in trials from the feedback
event, where negative lags correspond to prefeedback
trials and positive lags to postfeedback trials). The
results of all ANOVAs are presented in Supplementary
Tables S1–S4.

We used cluster permutation tests with 1,000
permutations to compare continuous data (i.e.,
endpoints over time and kernel density estimates)
of two conditions. For each permutation, the
assignment of participants to the groups was randomly
permuted.

Results
Best performance with trial-by-trial
reinforcement feedback

To quantify performance, we computed the mean
score per trial. Figure 2A shows scatterplots of the
noisy score (i.e., score in the noisy feedback condition)
over the veridical score (i.e., score in the veridical
condition) for the different groups. To compute the
noisy score, we used the true score associated with the
real endpoints and not the perturbed score that was
used for feedback.

Scores were compared with a 2 × 2 × 3 ANOVA.
Supplementary Table S1 provides coefficients of all
main effects and interactions. On average, scores were
higher with reinforcement feedback compared to
error-based feedback (main effect feedback modality),

F(1, 114) = 4.01, p = 0.048, η2
p = 0.034. Crucially, the

effect of feedback modality was further modulated
by feedback schedule (feedback modality × feedback
schedule interaction), F(2, 114) = 4.63, p = 0.012,
η2
p = 0.075. Although reinforcement feedback was

superior to error-based feedback when provided on a
trial-by-trial basis (veridical: t(38) = 3.08, p = 0.004, d
= 0.97; noisy: t(38) = 3.22, p = 0.003, d = 1.02), we
observed no statistically reliable difference with blocked
summary feedback (veridical: t(38) = 1.60, p = 0.119, d
= 0.50; noisy: t(38) = 1.73, p = 0.092, d = 0.55) or with
rolling summary feedback (veridical: t(38) = −1.39, p
= 0.174, d = −0.44; noisy: t(38) = −0.89, p = 0.382, d
= −0.28). Moreover, for reinforcement feedback, scores
were higher for trial-by-trial feedback compared to
rolling summary feedback (veridical: t(38) = 3.97, p <
0.001, d = 1.26; noisy: t(38) = 3.70, p < 0.001, d = 1.17),
as well as compared to blocked summary feedback, but
only in the veridical condition (veridical: t(38) = 2.43, p
= 0.0198, d = 0.77; noisy: t(38) = 1.58, p = 0.122, d =
0.50). The interaction between feedback modality and
feedback schedule was primarily driven by the rolling
summary groups, which showed a tendency toward
the opposite pattern compared to the trial-by-trial and
blocked summary conditions (Figure 2A). In contrast,
the trial-by-trial and blocked summary conditions
exhibited similar mean differences between feedback
modalities, although the latter appeared to be influenced
by a few outliers rather than a consistent group-level
effect.

Additionally, the ANOVA revealed a main effect
of feedback veridicality, reflecting that noisy scores
were higher than veridical scores, F(1, 114) = 13.694,
p < 0.001, η2

p = 0.107. This is expected if, first, our
manipulation of feedback veridicality was successful
(i.e., people became more cautious with noisy feedback)
and, second, participants lost the most points in the
veridical condition by being too risky.
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Figure 4. Endpoints in space and time. (A) Kernel density estimates of saccade endpoints. Horizontal lines and asterisks denote a
difference between error-based feedback (orange) and reinforcement feedback (blue), as revealed by a cluster permutation test. Black
colors indicate the strongest cluster. (B) Endpoints over time for error-based (orange) and reinforcement feedback (blue), separate for
the trial-by-trial (left), blocked summary (center), and rolling summary condition (right). Each panel shows data from the veridical
feedback condition (left of solid vertical line) and the noisy feedback condition (right of solid vertical line). Dashed vertical lines
indicate the break during each experimental block. Solid horizontal lines and asterisks indicate a significant difference between time
courses, as revealed by a cluster permutation test. (C) Absolute deviation from the region of optimality. Same conventions as in (B).

Performance in the task depends on aiming at a
rewarded location close to the center of the bar while
minimizing the number of penalties. A low score can
result from being too cautious (low reward, few if
any penalties) or from being too risky (high reward,
but also a high number of penalties). Indeed, over all
groups, the mean score was strongly correlated with

the proportion of trials in the penalty region, r(238)
= −0.85, p < 0.001. Descriptively, the proportion of
penalties was lowest with reinforcement feedback, in
both the trial-by-trial and blocked summary groups
(Figure 2B). Yet, the ANOVA only yielded a main
effect of feedback veridicality, F(1, 114) = 14.89,
p < 0.001, η2

p = 0.116, reflecting a lower number
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of penalties in the noisy condition (unperturbed
data).

Trial-by-trial reinforcement feedback enables
high reward endpoints

The relationship between the individual mean
endpoint on the bar and the mean score per trial
was inverted U-shaped (Figure 3), with a peak at
approximately 1° (veridical feedback condition): For
endpoints above 1°, the score was lower the further the
mean endpoint was away from the bar center, r(34)
= −0.75, p < 0.001, whereas the opposite was true
for endpoints below 1°, r(82) = 0.67, p < 0.001. This
turning point of approximately 1° coincides with the
inferred region of optimality: In the veridical condition,
the lower limit of optimality wasMlower = 0.69° (SDlower
= 0.14°), and the mean upper limit was Mupper = 1.10°
(SDupper = 0.24°). In the noisy condition, however, the
lower limit was Mlower = 0.93° (SDlower = 0.12°), and
the upper limit was Mupper = 1.38° (SDupper = 0.18°).
Thus, across the whole sample, we obtained a region
of optimality that varied between 0.66° and 1.14° for
the veridical condition and between 0.90° and 1.41°
for the noisy condition. Please note that the regions
of optimality are not identical for the different groups
(Figures 2C and 4A).

Although mean endpoints showed substantial
interindividual differences in most of the groups
(Figure 2C), participants in the trial-by-trial
reinforcement feedback group were most consistent
(lowest between-participant variability; Figure 2C),
and their mean endpoints were within the region of
optimality or risk-seeking (i.e., in between the region of
optimality and the bar center; Figure 4A). An ANOVA
on the endpoints (Supplementary Table S2) revealed an
interaction between feedback modality and feedback
schedule, F(1, 114) = 4.70, p = 0.011, η2

p = 0.076.
For trial-by-trial feedback, endpoints were lower (i.e.,
closer to the bar center) for the reinforcement versus
the error-based condition (veridical: t(38) = 2.44, p =
0.020, d = 0.77; noisy: t(38) = 2.67, p = 0.011, d =
0.84). This was neither the case for blocked summary
feedback (veridical: t(38) = −1.67, p = 0.103, d =
−0.53; noisy: t(38) = −1.79, p = 0.008, d = −0.57) nor
for the rolling summary (veridical: t(38) = −0.84, p =
0.406, d = −0.27; noisy: t(38) = −0.38, p = 0.701, d =
−0.12). For reinforcement feedback, endpoints were
closer to the bar center for trial-by-trial compared to
blocked summary feedback (veridical: t(38) = 2.59, p =
0.013, d = 0.82; noisy: t(38) = 2.94, p = 0.006, d = 0.93)
but not compared to rolling summary (veridical: t(38) =
1.64, p = 0.109, d = 0.52; noisy: t(38) = 1.56, p = 0.127,
d = 0.49).

Moreover, the ANOVA revealed a main effect of
feedback veridicality, F(1, 114) = 9.24, p = 0.003, η2

p =

0.075, reflecting that endpoints in the noisy feedback
condition, Mnoisy = 0.93°, SDnoisy = 0.58°, were on
average further away from the bar center than in
the veridical feedback condition, Mveridical = 0.84°,
SDveridical = 0.56°, t(119) = 3.07, p = 0.003, d = 0.28.
This reflects that the noisy feedback manipulation
was successful and that participants adjusted their
endpoints to become more cautious. Yet, this average
shift (�M = 0.09°) was less than what would be
required to maintain a good level of performance, given
that the differences in the lower limit (�M = 0.24) and
upper limit of the optimal endpoint (�M = 0.28) were
approximately three times as high.

How can people’s suboptimality be characterized?
Based on the individual region of optimality, we
computed the proportion of rewarded but suboptimal
trials and classified them as either risk-seeking (i.e., in
between the bar center and the region of optimality)
or as cautious/loss-aversive (i.e., beyond the region
of optimality). For five of six groups, the fraction of
risk-seeking and loss-aversive trials was approximately
the same (Figure 4A; Supplementary Table S5), with
trial-by-trial reinforcement feedback being the only
exception. With veridical feedback, participants in
the trial-by-trial reinforcement group had a higher
proportion of risk-seeking trials, Mrisk = 46.7% [42.8%,
50.6%], and a lower number of cautious/loss-aversive
trials, Mcautious = 22.7% [17.0%, 28.4%], compared to
the remaining sample, Mrisk = 30.1% [26.9%, 33.2%]
and Mcautious = 35.5% [30.3%, 40.8%], respectively.
This was also true for noisy feedback: Mrisk = 58.9%
[53.8%, 64.1%] and Mcautious = 12.9% [9.0%, 16.8%] for
trial-by-trial reinforcement feedback compared to Mrisk
= 41.1% [36.7%, 45.5%] and Mcautious = 27.8% [22.6%,
33.3%] for the remaining sample.

Although the ANOVA identifies overall differences
between feedback conditions, any systematic temporal
structure in the endpoints may violate its assumption
of independence. To ensure that our conclusions
do not rely on this assumption, we therefore
complemented the ANOVA with cluster permutation
tests, which allow distributional (Figure 4A) and
temporal (Figure 4B) comparisons without requiring
independence. First, we estimated each participant’s
endpoint distribution using a kernel smoothing
function and compared distributions of different
groups using cluster permutation tests (Figure 4A). For
trial-by-trial feedback, we observed a difference between
reinforcement and error-based feedback (veridical: tsum
= 475.84, tcrit = 200.35, p = 0.001, cluster position:
1.28°–3.04°; noisy: tsum = 428.54, tcrit = 232.95, p =
0.008, cluster position: 1.53°–3.21°).

How much do endpoints deviate from optimality?
Based on the time course of endpoints (Figure 4B), we
computed the distance of each endpoint to the region of
optimality of an individual. Figure 4C shows a moving
average of this deviation. The deviation to optimality
was lowest with trial-by-trial reinforcement feedback
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in the veridical condition. A cluster permutation
test revealed a difference between reinforcement and
error-based feedback, tsum = 560.9, tcrit = 261.9, p =
0.003, trials: 4–234. Importantly, the early onset of this
cluster is attributable to the temporal filtering applied to
the data. When unfiltered data are used, the difference
between conditions emerges later in the experiment.

Trial-by-trial feedback enables immediate error
correction

How does movement planning change after making
an error? Figure 5A shows endpoints (relative to the
individual mean) of the five trials (T1 to T5) following
a saccade into the penalty region (with T0 being
the penalty trial). Although endpoints immediately
following a penalty are not different from the individual
mean with trial-by-trial feedback, MT1 = −0.04°, t(36)
= 0.98, p = 0.332, d = 0.16, endpoints immediately
following an error remain below the individual mean,
for both blocked summary feedback, MT1 = −0.34,
t(38) = 6.90, p < 0.001, d = 1.10, and for rolling

summary feedback, MT1 = −0.17, t(38) = 3.54, p
= 0.001, d = 0.57. The endpoints in both summary
conditions do appear to show a gradual return to
the individual mean (Figure 5A). We compared
postpenalty endpoints with a 2 × 3 × 5 ANOVA
(Supplementary Table S3) with the between-participant
factors feedback modality and feedback schedule and
the within-participant factor postpenalty trial (T1 to
T5). Postpenalty behavior differed depending on the
feedback schedule, F(2, 109) = 14.05, p < 0.001, η2

p =
0.205, reflecting larger deviations from the individual
mean for blocked summary feedback. Crucially,
however, we found an interaction between postpenalty
trial number and feedback schedule, F(8, 436) = 2.66,
p = 0.007, η2

p = 0.046, suggesting that the postpenalty
time courses (Figure 5A) are different for the different
feedback schedules. Linear regressions fitted to the
postpenalty trials of individuals showed a positive
slope for blocked summary, Mslope = 0.034, t(38) =
4.22, p < 0.001, d = 0.95, and for rolling summary,
Mslope = 0.029 t(38) = 2.13, p = 0.040, d = 0.48, but
not for trial-by-trial feedback, Mslope = −0.012, t(36)
= −1.23, p = 0.227, d = −0.29. This reflects that
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Figure 5. Posterror and postfeedback behavior. (A) Endpoints following a saccade on the penalized region for trial-by-trial feedback
(left), blocked summary feedback (central), and rolling summary feedback (right). The penalty trial itself is shown at position 0 on the
x-axis. Endpoints are shown relative to the individual mean (horizontal dashed line). The results in (A) and the accompanying analysis
combine data from the veridical and noisy feedback conditions. The pattern and conclusions do not change if the analysis is restricted
to data from the veridical block. (B) Endpoints before and after feedback in the blocked summary condition. Endpoints are shown
relative to the individual mean. All error bars are 95% confidence intervals of between-participant variability.
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endpoints immediately return to the individual mean
with trial-by-trial feedback, whereas they show a more
gradual return with summary feedback.

An immediate return to the individual mean (from
T0 to T1) with a subsequent (T1 to T5) slope of
(approximately) zero, as it is found with trial-by-trial
feedback, does not necessarily reflect an active error
correction process but may instead reflect a regression
to the mean. Under summary feedback, the return to
the individual mean after an error is incomplete and
unfolds gradually over time. Is the gradual return the
default pattern that can also be observed in the absence
of any feedback? To test this, we repeated the same
analysis for the blocked summary condition, this time
only selecting trials during which no feedback was
displayed between T0 and T5 (Supplementary Figure
S4). Also in this selection, endpoints immediately
following an error (T1), MT1 = −0.34, were different
from error trials (T0), t(38) = 7.86, p < 0.001, d = 1.49,
as well as different from the individual mean, t(38) =
6.7, p < 0.001, d = 1.52. Most importantly, endpoints
again showed a gradual return to the individual mean,
Mslope = 0.029, t(38) = 3.53, p = 0.001, d = 0.80. This
shows that the gradual return that can be observed in
the summary feedback groups (Figure 5A) does occur
independent of feedback.

Endpoint adjustment after blocked feedback

Is blocked summary feedback thus effective
in guiding movement planning? To test whether
information provided by blocked summary feedback
was used, we compared prefeedback and postfeedback
trials in the blocked summary condition (Figure 5B).
Postfeedback endpoints were higher (i.e., more to the
right) than those in prefeedback trials (main effect
feedback phase), F(1, 38) = 9.58, p = 0.004, η2

p =
0.201 (Supplementary Table S4). This suggests that
participants became more cautious after blocked
summary feedback. When directly comparing trials
before and after blocked feedback, this was especially
evident after error-based feedback in the noisy block
(veridical: t(19) = 2.09, p = 0.050, d = 0.47, noisy: t(19)
= 3.74, p = 0.001, d = 0.83) but not with reinforcement
feedback (veridical: t(19) = 0.17, p = 0.87, d = 0.04,
noisy: t(19) = 0.91, p = 0.376, d = 0.20).

Discussion
We tested the role of feedback for movement

planning under risk. We asked participants to make
saccades to an elongated white bar that consisted of
a reward and a penalty region while manipulating the

feedback modality (reinforcement vs. error-based)
and the feedback schedule (trial-by-trial, blocked
summary, rolling summary). The different schedules
differed in terms of feedback frequency (blocked
summary vs. rolling summary) or feedback focus
(trial-by-trial vs. rolling summary). To perform well
in this task, participants needed to select an aiming
location that maximized their reward. The optimal aim
point depended jointly on the reward landscape and on
each participant’s motor variability. While the reward
structure was constant across participants (Figure 1B),
the effective variability differed across individuals and
conditions. In the veridical feedback block, participants
could infer their own motor variability directly from
feedback. In the second (noisy) block, we manipulated
perceived variability by adding random perturbations to
the feedback signals. As predicted, participants became
more cautious when feedback implied higher variability.
Together with the performance improvements observed
at the start of the experiment (Supplementary Figure
S3), this demonstrates that participants flexibly
adapted their behavior to the task constraints. In
terms of overall performance, results showed large
variability between participants, spanning the whole
spectrum of different strategies (risk-seeking, optimal,
loss-aversive; Figures 2–4). Trial-by-trial reinforcement
feedback enabled a high level of performance for all
participants. This was achieved by selecting an aim
point (i.e., mean endpoint) that was either close to
optimal or risk-seeking.

Our results therefore provide evidence that, within
the present task context, trial-by-trial feedback is
particularly effective when performing sensorimotor
decisions under risk. Most importantly, our results
suggest that feedback is most effective when provided on
a trial-by-trial basis and when it simultaneously focuses
on the outcome of a single trial compared to focusing on
summary statistics of a group of trials. This latter aspect
of feedback focus may appear counterintuitive, given
that the decision where to aim depends on the variability
of one’s own movement—which can be more easily
estimated from summary feedback. We had decided to
provide summary feedback (mean, range, and quartiles)
rather than displaying endpoints (error-based) or score
points (reinforcement) of the recent 30 trials, because
we reasoned that the latter would not allow a fair
comparison between error-based and reinforcement
feedback: Although multiple endpoints and their
variability may be assessable at a glance in a scatterplot
(error-based feedback), a display of 30 score points
(reinforcement) may be overwhelming and may require
a prolonged and more detailed processing to obtain the
same information. We acknowledge, however, that the
relatively abstract format of our summary feedback
(i.e., summary statistics rather than visual distributions)
may have contributed to the poorer performance
observed in the summary groups, as it might have been
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less intuitive for participants. However, as has been
shown by Ota et al. (2019), displaying a distribution
of endpoints does not improve performance beyond
that of trial-by-trial feedback. Moreover, we knew that
our sample, which consisted exclusively of Psychology
undergraduates, was well familiar with means, quartiles,
and ranges (although these words were not used for the
instructions; see Methods). Thus, we also cannot rule
out the possibility that summary feedback is even less
effective in a sample that is less familiar with statistics
and distributions.

According to the guidance hypothesis (Salmoni et al.,
1984; Schmidt et al., 1989), feedback with a reduced
frequency can be more effective in motor learning
and skill acquisition. However, the hypothesis mainly
addresses performance in a retention test without any
feedback—and not performance during the initial skill
acquisition. Given that we did not include a retention
test (i.e., a phase without any feedback), we cannot
test this core prediction of the guidance hypothesis.
Therefore, our data do not allow for a direct evaluation
of this hypothesis. Nevertheless, in the specific context
of movement planning under risk, we consider it less
likely that reduced feedback frequency would provide
an advantage. To perform well in the task at hand,
one must be able to select an aiming location based on
one’s own motor uncertainty. Once participants have
learned to choose a high amount of reward (as in the
trial-by-trial group), there is little reason to expect a
substantial decline in a later retention test. In contrast,
since participants receiving summary feedback generally
learned this mapping less effectively, it is unlikely that
they would outperform the trial-by-trial group when
feedback is removed. Hence, we would expect that the
superiority of trial-by-trial reinforcement feedback for
movement planning under risk would also persist in an
immediate or delayed retention test.

Our findings show that trial-by-trial feedback is
more successful when it provides information about
the outcome of the behavioral goal (reinforcement)
compared to information about the outcome of the
movement (error-based). Although success or failure
is immediately apparent with reinforcement feedback,
translating feedback about one endpoint into success
or failure requires an additional step. For example, for
an endpoint close to the bar center, one needs to assess
whether the displayed feedback was on the left-hand
(penalty) or the right-hand half (reward). In that case,
participants would have to perform a line bisection
task, which is governed by visual uncertainty. In our
task, visual uncertainty could have been reduced by
providing a visual reference, either by highlighting the
center of the bar or by having different-colored reward
and penalty regions. Hence, we cannot rule out the
possibility that participants in the error-based condition
would have performed better when an additional visual
reference had been provided. However, we believe it

is unlikely that the presence or absence of a visual
reference can account for all differences between the
error-based and the reinforcement groups, considering
that approximately one fourth of the trial-by-trial
error-based group pursued a loss-aversive strategy.

Our results also show that people change their
movement planning based on perturbed feedback
to become more cautious. Yet, this adjustment was
comparatively small and covered only approximately
25% of the adjustment expected, given the
manipulation. One reason might be that participants
attributed the larger errors in the second block
externally, especially since this was emphasized in
the instruction. Whereas oculomotor behavior can
be adjusted to feedback indicating external errors
(Heins & Lappe, 2024), this adjustment might have
been incomplete (Gastrock, Modchalingam, ‘t Hart, &
Henriques, 2020; Wilke, Synofzik, & Lindner, 2013).
Alternatively, this incomplete adjustment might reflect
the suboptimality in movement planning under risk
(Ota et al., 2016; Wu et al., 2006).

Here, we established a region of optimality by
computing both the upper and lower limits of
optimality instead of relying on point estimates.
Unlike some previous studies, we did not obtain a
separate estimate of pure motor variability prior to
the task. We deliberately refrained from doing so
because motor variability is highly task-dependent and
target-dependent and cannot be assessed in isolation for
spatially extended targets like the horizontal bar used
in our study. Without a meaningful reward structure,
participants would have no fixed aim point, whereas
instructing them to always look, for example, at the
center of the bar would have changed saccade direction
and amplitude with respect to the main experiment—
which in turn affects endpoint variability (van Beers,
2007). In other words, endpoint variability in our task
conflates both motor variability and aiming variability.
By attributing all variability to the motor component
(upper limit) or assuming a maximally variable aim
point (and therefore minimal motor variability; lower
limit), we have identified the possible span of the true
motor variability. Because our approach is based on
these boundary values (see Supplementary Figures S1,
S2), it can be considered a conservative approach to
estimate optimality. Hence, behavior outside that region
can be clearly labeled suboptimal, as too risk-seeking or
too cautious/loss-averse. Thus, the current approach
considers both the task and the target, and it might
therefore provide a more ecologically valid estimate
of motor variability. Nevertheless, we acknowledge
that directly measuring motor variability in a separate
task could have provided complementary information
about individual differences. Such estimates might
generalize to some extent across similar tasks and
targets, and future studies could benefit from including
both direct and task-derived measures of variability.
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Importantly, however, the present conclusions are based
on conservative boundary estimates and are therefore
robust in the exact decomposition of motor and aiming
variability.

In almost all groups, we observed both kinds of
suboptimality (Figure 2C): risk-seeking and loss
aversion. One notable exception was the group receiving
trial-by-trial reinforcement feedback, in which the
deviation from optimal was lowest (Figure 4C) and in
which participants could be classified as optimal or
risk-seeking. Thus, even in the condition resulting in
the best performance, we see an overall tendency for
suboptimality. One reason might be that people cannot
represent asymmetric reward structures (Wu et al.,
2006). In our task, the maximum penalty was twice as
high as the maximum reward. Indeed, if the maximum
penalty and reward had the same magnitude, the
region of optimality would have been closer to the bar
center (0.59°–1.01° for the trial-by-trial reinforcement
group in the veridical condition), resulting in larger
overlap between behavior and optimality. Alternatively,
suboptimality might result from a need for certainty,
and occasional penalties reassure participants that they
are aiming at a location yielding a high reward rate. The
latter would predict that participants can perform well
under an asymmetric reward, yet they would rather do
so when the maximum penalty is below the maximum
reward—and not when it is the other way around—as
in the current task.

With trial-by-trial feedback, endpoints immediately
returned to the individual mean after a penalty
(Figure 5A). This is consistent with a simple statistical
assumption: If trial outcomes are sampled from a
normal distribution around a fixed aim point, extreme
values (e.g., penalties) will naturally be followed by
less extreme values due to regression to the mean.
In contrast, with summary feedback, the return to
the mean is incomplete and unfolds gradually over
several trials. Importantly, however, the magnitude
of this gradual adjustment is very small (≈0.03°
per trial) and therefore substantially smaller than
typical saccadic endpoint variability. This suggests
that, although statistically detectable, these temporal
dependencies likely have limited functional relevance
for the overall performance. Moreover, the small
size of these adjustments makes it highly unlikely
that they account for the substantial between-group
differences in endpoints and reward rates observed in
this study. One possible explanation for the postpenalty
behavior under summary feedback is a slow drift
in the participants’ internal aim point, driven by
uncertainty about where exactly to aim. Without
immediate feedback about an individual movement,
participants may lose track of their intended target
location, leading to a prolonged deviation across
trials. Such drift would not only increase the overall
endpoint variability (as observed in Figure 4A) but

also delay the recovery from a penalty region. This
phenomenon may be particularly pronounced in tasks
with a spatially extended target and no additional visual
reference. Under this interpretation, the immediate
return to the mean with trial-by-trial feedback reflects
a stabilization of the internal aim point: Participants
can rapidly recalibrate their intended target location
because each movement is followed by unambiguous
feedback about the recent movements. Thus, while
small posterror adjustments exist in all conditions, their
effect is minimal, and trial-by-trial feedback appears to
prevent slow drift from accumulating over time.

Our feedback manipulation was motivated by
conceptual differences between sensory error–based
and outcome-based learning processes. Sensory
error–based mechanisms would predict direction-
specific adjustments linked to the discrepancy between
intended and observed movement outcomes, whereas
outcome-based or reinforcement-like mechanisms
would predict updates that depend on the success or
failure of the chosen aim point, without encoding error
direction. However, our experiment was not designed
to distinguish these mechanisms, and the present
behavioral data cannot differentiate between them. The
observed advantages of trial-by-trial reinforcement
feedback therefore reflect the behavioral consequences
of providing outcome-focused information about
individual movements, rather than evidence for a specific
underlying learning algorithm. Future work combining
our task with explicit computational modeling may
help to clarify the mechanistic contributions of these
learning processes.

Our findings were obtained using saccadic eye
movements as amodel of sensorimotor decision-making
under risk. While saccades have specific properties,
the underlying decision process—selecting an optimal
movement endpoint under uncertainty—is shared
across a wide range of effectors, including pointing
movements. Thus, the mechanisms by which feedback
guides the adjustment of movement planning are likely
to generalize beyond the oculomotor domain, although
future work is needed to confirm this. From an applied
perspective, our results imply that training programs
providing immediate, trial-by-trial reinforcement
feedback may be particularly effective in contexts that
require rapid mapping between actions and outcomes,
such as sports training, surgical skill acquisition, or
motor rehabilitation. Conversely, feedback formats
that rely on statistical summaries may be less intuitive
and therefore less effective in facilitating movement
planning.

To summarize, we here show that trial-by-trial
reinforcement feedback is superior when performing
sensorimotor decisions under risk. Poorer performance
in the other groups might be explained by additional
visual uncertainty when translating endpoints into
score values (error-based feedback) or by difficulties
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in translating the displayed summary feedback into
an effective aiming strategy. Participants receiving
trial-by-trial reinforcement feedback, in contrast, were
most consistent across individuals, selecting an aim
point yielding a high rate of reward. This pattern
suggests that trial-by-trial reinforcement feedback
represents the most intuitive and directly interpretable
form of feedback, enabling participants to align their
behavior efficiently. Crucially, trial-by-trial feedback
reinforcement is effective because it conveys information
about a single movement (feedback focus) and not
because it is administered after every trial (feedback
frequency).

Keywords: saccade eye movements, aiming, movement
planning, feedback, reinforcement
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