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Abstract— We describe a brain-like approach for the cogni-
tive control of visual perception and present the first simulation
results. We first describe how working memory is a key
process in visual perception, allowing perception to be linked
to action through time. We list the different challenges of this
approach and propose a computational model of perirhinal
cortex that allows memory retrieval in mnemonic tasks. We
then discuss a functional model of working memory allowing to
take advantage of memory retrieval by linking robust working
memory to selective updating and reinforcement learning in
prefrontal cortex and basal ganglia.

I. INTRODUCTION

A reactive system determines its actions in response to
external events or stimuli. Much research has been devoted to
the development of learning rules that enable an agent to de-
termine an action in order to achieve a maximum of reward,
dependent on the sensor information. Despite much progress
in this field, the flexibility to change behavior depending on
particular context information, to selectively emphasize task-
relevant sensory information and to ignore task-irrelevant
stimuli is limited. We aim at developing cognitive systems
that actively manipulate their working memory to flexibly
adapt their strategy, particularly with respect to visual percep-
tion. Our research direction is twofold: we aim to understand
human cognition and provide models for artificial cognitive
agents. Part of this research goal is coordinated with the EU
Consortium Eyeshots “Heterogeneous 3-D Perception Across
Visual Fragments” which intends to investigate how an active
exploration allows to acquire a knowledge of the surrounding
environment. From an autonomous agent’s point of view,
such an active exploration requires that visual perception is
as well an active process: the agent has to select which
part of the incoming information has to be processed in
priority to assure its survival. Visual attention is an example
of the various cognitive processes involved in perception.
Although it has a bottom-up component induced by the
physical properties of the visual objects, visual attention has
also a cognitive top-down component which guides the way
visual information is processed, depending on the context
or tasks requirements [1], [2]. This goal-directed behaviour
needs internal representations of the objects that are expected
in order to favorize their perception. We here address the
fundamental questions of how these internal representations
are learned, maintained and recalled when needed.

Working memory (WM) is a process that allows such
representations to be momentarily maintained throughout
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the visual search phase (for example), directing attention
to objects having similar properties. In delayed match-to-
sample (DMS) tasks, where the presentation of a visual cue
indicates which target has to be chosen after a certain delay,
the internal representation of the cue or the associated target
(if visually different from the cue) has to be maintained
during the delay period to direct attention through top-
down connections to the correct target. WM has often been
related to states of persistent activity. Several computational
models of WM in prefrontal cortex have been proposed. They
typically consist of a pool of excitatory coupled pyramidal
neurons and several inhibitory interneurons [3], [4], [5],
[6]. Common effects are that the network can remain in
an active stage even in the absence of an external input.
Most of these models consider that dopamine (DA) is a
key modulator for sustained activities during WM processes,
but it is also critical for many more aspects of cognitive
vision [7]. Dopamine is one of multiple neurotransmitters
in the nervous system, such as noradrenaline, serotonin
and acetylcholine. Dopamine has been linked to almost all
aspects of behaviour, cognition, addiction and particularly
to reward. The assumed modulatory influence of DA, such
as an increase of the NDMA and GABA and a decrease
of AMPA conductances, varies in these models. Neurons
show a bi-phasic property (switching between low and high
active states). An increase in DA, assumed to have a global,
spatially non-selective effect, changes the properties of the
switch from spontaneous activity to a state of persistent
activity, such that memorization is facilitated. Limitations of
these models lie in the functional context, since the timing
of the signals for reseting the memory is not specified [8].
Thus, systems level aspects of working memory have to be
considered as well.

However, DA has different effects depending on the re-
ceiving cell. Its effect on cortical cells is very slow and long-
lasting [9], putting emphasis on the tonic firing mode of DA
cells, whereas striatal cells respond to the phasic bursts of DA
they receive. These bursts have been related to reinforcement
learning since the discovery that the phasic bursts of DA
cells occur at the time of the delivery of a reward before
learning a DMS task, but progressively occur at the time of
the presentation of the reward-predicting cue [10]. Moreover,
when reward is omitted, these cells cease to fire. This firing
pattern has been quite accurately modelled as the prediction
error signal of the temporal-differences (TD) algorithm [11],
but the neural mechanism behind it is still unclear. How does
this DA firing pattern influence the learning and maintenance
of WM?



Another issue related to the link between sustained ac-
tivities and WM is the content of the memorized pattern.
In the case of visual search, does this pattern represent the
visual features that have to searched for, or a more abstract
code allowing only the manipulation of the object? The lack
of robustness to distractors of sustained activities in visual
areas (like in inferotemporal or perirhinal cortices) suggests
that they are not the primary mechanism for memorizing
the visual content. We propose to shift emphasis on memory
retrieval as part of the visual WM process. In this article, we
first describe how perirhinal cortex (PRh) can be part of the
memory retrieval process in the context of delayed match-to-
sample tasks and we propose a computational model. We will
then sketch how this model can fit in a broader framework
of WM manipulation by the reciprocal interactions between
prefrontal cortex and basal ganglia.

II. PERIRHINAL CORTEX INVOLVED IN MEMORY
RETRIEVAL

PRh (areas 35 and 36) is located in the medial temporal
lobe and has strong reciprocal connections with the infer-
otemporal cortex (IT). It is involved in object recognition
memory, novelty detection, object categorization, multimodal
integration [12]. Its cells have a broader selectivity than IT
cells and tend to gather in clusters representing the same
object, perhaps with different modalities or viewpoints. They
also show sustained activities during DMS tasks, but they
are not robust to the presentation of distractors [13]. To
explore their functional role, we propose that these sustained
activities are only the consequence of the clustering of these
cells during learning. They do not support by themselves the
process of WM, but rather facilitate memory recall.

We designed a computational model of PRh emphasizing
this hypothesis [14]. It is composed of a set of 400 exci-
tatory cells reciprocally connected with another set of 100
inhibitory cells (Fig. 1). We use mean-rate artificial neurons
whose activity is ruled by a dynamical differential equation.
This positive scalar activity represents the instantaneous
firing rate, which is directly derived through a transfer
function from the membrane potential, without using a
spike-generation mechanism. Each excitatory cell receives a
cortical input C coming from other cortical areas like IT and
representing different aspects of objects. In our simulation,
one aspect of an object directly stimulates a few excitatory
cells whereas one object is represented by multiple aspects
that can occur randomly at each presentation of the object
during the learning phase. Additionnaly, the excitatory cells
are reciprocally connected in a all-to-all manner, but with a
strength that can adapt to the experience of the network.
We use for this a learning rule that is a mixture of the
classical covariance rule [15] with a homeostatic regulation
of synaptic strengths at the cell level [16].

The goal of the learning phase is that the multiple sets of
excitatory cells representing the different aspects of the same
object create strong connections between them to form a
cluster. After learning, the modulation by DA of the different
synaptic currents can switch the network in a different mode.

Fig. 1. Each excitory cell E receives connections from neighbouring
excitatory cells, neighbouring inhibitory cells I, cortical input C from other
areas and a thalamic input T. Inhibitory cells receive connections from
neighbouring excitatory cells and other inhibitory cells. Every connection
except the cortical ones (C) and inhibitory-to-inhibitory ones are modulated
by DA.

Consistent with other models of dopaminergic modulation
of WM in prefrontal cortex [3], [4], [5], [6], we considered
that DA enhances reciprocal connections between excitatory
cells (on an activity-dependent manner, as they are mostly
mediated by NMDA receptors), reciprocal connections be-
tween excitatory and inhibitory cells as well as thalamic
inputs. We reproduced classical results for this type of neural
network, such as the inverted-U shape of sustained activities
depending on the dopamine level [17] (DA must be in a
certain range to observe sustained activities, see Fig. 2),
propagation of activity within a cluster for intermediate levels
of DA (when only half of the sets of cells receive a cortical
input during the presentation of an object, the remaining cells
exhibit strong activity due to the increase in the strength
of the reciprocal connections with the stimulated cells) and
the lack of robustness of sustained activities. Moreover, we
showed that a thalamic stimulation of a little percentage
of the cells of a cluster (lower than 35%) is sufficient to
propagate this activity to the whole cluster.

The implications of this model is that PRh is a multimodal
area gathering different multimodal informations on individ-
ual objects through the formation of clusters. Each individual
cell of the cluster has a high selectivity on an aspect of
an object through its cortical inputs, but the propagation of
activity inside the cluster under intermediate levels of DA
makes each cell also responsive for other aspects of the
object. Thalamic stimulation of a small number of cells of a
cluster can easily retrieve the content of the memory stored
in the reciprocal connections within the cluster. In return, this
retrieved memory can be used to bias visual processing in the
visual stream, through feedback connections to IT. The core
WM of the object can be located somewhere else, but through
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Fig. 2.  Effect of the DA level on sustained activities. Two cells have
been recorded: one receiving a cortical input, the other being in the same
cluster but without stimulation. When the first cell receives stimulation,
it exhibits a strong activity whatever the DA level. The unstimulated one
shows significant activity only for intermediate DA levels (between 0.3 and
0.7, the maximum level of DA being 1.0). One hundred milliseconds after
the end of stimulation, we record again the activity of the two cells. We
can then observe that for, the intermediate range of DA level, the two cells
exhibit sustained activities.

this thalamic stimulation the sensory features associated to
the memorized object can be retrieved when needed ("GO
signal”), not necessarily during the delay period.

III. PREFRONTAL CORTEX AND BASAL
GANGLIA FOR MEMORY MANIPULATION

A. Context

Since the sensory details of an object can be retrieved
through partial thalamic stimulation of a cluster in PRh,
the robust sustained activities representing this object during
the delay period do not need to be so detailed. They could
rather be more focused on the manipulation of the objects
with possible associations. Prefrontal cortex (PFC) and basal
ganglia (BG) are good candidates to implement this robust
WM. Present findings indicate that prefrontal cortex rather
provides executive control than represents the top of a
hierarchy of the representation of the visual world. For
example, with lesions of the PFC, subjects tend to only react
towards visual cues with behaviors that are associated with
the cue itself[18]. This suggests that subjects represent the
cue outside PFC, but with lesions of the PFC, they have
difficulties in the coordination of new responses.

DA is directly involved in prefrontal sustained activities,
through modulation of different ionic and synaptic currents
[19]. However, its effects are very slow and long lasting,
meaning that reward-predictive phasic DA bursts are not
potential candidates to gate the updating of WM in PFC.
DA rather provides a global tone for prefrontal processing
and sustained activities. On the contrary, the striatum (the
major input structure of BG) is directly modulated by DA
phasic bursts. BG are known to play an important role in WM
processes, as revealed by imaging studies [20], [21]. Striatal
medium spiny neurons have been shown to exhibit a region
of bistability (up/down states) under elevated dopamine lev-
els [22]. This intrinsic mechanism of sustained activities is
therefore under direct control of DA, whose effects have

very quick latencies in the striatum, allowing phasic DA
discharges to control the updating of working memory at this
level. This information can then be sent back to PFC through
direct connections between the striatum and the mediodorsal
part of the thalamus [23] and/or indirectly through GPi
(globus pallidus pars interna, one output structure of BG).

Anatomical investigations suggest that the basal ganglia
is also part of cortical-basal ganglionic loops [24], [25] in
which the cortex provides excitatory links to the striatum
followed by disinhibition of the thalamus and back to cortex.
It has been proposed that the basal ganglia participate in two
circuits with skeletomotor and oculomotor areas of cortex:
the primary motor cortex (M1) and the frontal eye field
(FEF) and in three additional circuits which involve non-
motor areas in the frontal lobe: dorsolateral prefrontal cortex,
lateral orbitofrontal cortex and anterior cingulate cortex. The
outputs to PFC are topographically organized and they are
largely segregated from those to the motor areas [23]. The
learned competition between the direct pathway (directly
from striatum to GPi) and the indirect pathway (with a relay
to GPe (globus pallidus pars externa)) can then selectively
disinhibit a recurrent loop between a cortical area and the
corresponding thalamic nuclei. In the case of WM, this disin-
hibition can either stabilize existing sustained representations
or selectively gate the entry of new reprensentations into
WM.

Several computational models have already tried to ad-
dress the interplay between the prefrontal cortex and the
basal ganglia in WM tasks. The PBWM model of Frank
and O’Reilly [26] is designed to learn different cognitive
tasks involving WM on the same substrate, thanks to a
robust reward-prediction error algorithm. However, time is
not explicitely considered, making no distinction between
phasic and tonic modes of DA firing. The FROST model
of Ashby et al. [27] uses BG to maintain information in
prefrontal cortex, but does not deal with updating. Finally,
the model of Gruber et al. [28] is the first that distinguishes
between the tonic long-lasting effect of DA on prefrontal
cells (increasing the cortical gain) and the phasic effect of
DA on striatal cells (intrinsic bistability). Prefrontal cortex
and BG in this model cooperate to provide a robust and
dynamic WM depending on dopamine modulation. However,
the model would need to be integrated into a realistic task,
with an efficient learning algorithm for DA activation.

B. Proposed tasks

Our main hypothesis is that the content of WM is not
located in PFC or in BG, but can be retrieved through
external activation of multimodal areas like PRh. It can
be tested by creating a computational model able to learn
different tasks involving WM manipulation. Following [29],
we use an intermix of delayed match-to-sample (DMS) and
delayed pair-association (DPA) as depicted on Fig. 3. In the
DMS task, the model is presented with a visual object (A
or B), creating a distributed representation in PRh. After a
certain delay, a cue representing the DMS task is shown,
and the representation of A or B in PRh is reset due to
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Fig. 3. Delayed match-to-sample (DMS) and delayed pair-association
(DPA) tasks. When a visual object (A or B) is followed by the DMS cue,
the subject has to choose the same object to obtain reward. When it is
followed by the DPA cue, the subject has to chose the opposite object to
obtain reward.

competition. The goal of the model in the DMS task is to
retrieve the content of the previously shown item in order
to obtain reward. In the DPA task, the system must on the
contrary retrieve the content of the associated item to obtain
reward.

In psychological experiments, the subjects would have to
choose the correct target between A and B, but here, the
retrieval of the content of the target in PRh is considered as
sufficient to induce top-down attention on the visual features
processed in the ventral pathway and consequently choose
the correct target. The interest of this mixture of tasks is that
the WM system does not need to systematically remember
the visual features of the first presented object, but rather its
identity in order to retrieve the correct information.

C. Proposed model

In Fig. 4 we propose a functional model that allows to
learn the formerly described tasks. It relies on the ability of
our PRh model to retrieve the multimodal representation of
an object through thalamic stimulation. PRh is reciprocally
connected to a thalamic nuclei, so that coordinated self-
organization in these two structures leads to segregated
recurrent loops for each cluster. Thalamus is under tonic
inhibition of the output structure of BG (GPi) to control
the thalamic stimulation of PRh. GPi is itself inhibited
by the striatum (STR) and of other BG nuclei (GPe or
STN (subthalamic nuclei, not included here)), meaning that
activation of these structures can selectively disinhibit one or
more thalamocortical loops in PRh and retrieve the content
of a cluster.

PRh therefore projects to the striatum that will learn to
associate PRh representations to the disinhibition of the
corresponding thalamocortical loops thanks to the reward-
prediction system represented by phasic DA releases to the
striatum. These DA bursts can favorize either LTP or LTD
in corticostriatal connections depending on the polarization
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Fig. 4. Schematic architecture of the WM model. PRh provides the striatum
(STR) and PFC with a distributed representation of the identity of the visual
object (A, B, DMS or DPA). Self-organization in PFC and STR allows to
create a representation of both, the identity of the object and the current
task. Disinhibition of thalamus (Thal) can then retrieve the content of the
memorized or associated object.

state of the striatal cells [30]. They can also switch the striatal
cells from their intrinsic bistable states, particularly into the
“up-state” where the cell exhibits robust sustained activity.
This part of the model is able to learn the DMS task alone. In
order to concurrenty learn the DPA task, we have to introduce
a mixing of sensory information and task-related context
at the striatal level to disinhibit the correct thalamocortical
loop. We consider then a prefrontal area (probably located
in orbitofrontal cortex) that will receive information about
the identity of the objects cues, and exhibit compound
representations of objects in the context of the current task.
This PFC area projects on the same striatal cells that PRh.
Self-organization of striatal cells through lateral competition
creates separate representations of objects according to the
task requirements, allowing different thalamocortical loops to
be disinhibited depending on the task. The interplay between
direct and indirect pathways in the BG circuitry favorizes this
selection.

The key problem this model addresses is the timecourse
of DA release and its differential effects on striatal and
cortical cells. As stated earlier, cortical cells react very
slowly to DA release, whereas DA can switch very quickly
a striatal cell into an “up-state”. At the beginning of the
learning phase, DA fires for salient objects or for unexpected
rewards, whereas later it only responds when an object
predicts reward. In our experiments, objects and cues are
not distinguishable as they are equally represented in PRh.
However, if the system tries to retrieve the content of the
cues (DMS or DPA), it will never receive reward, and this
tendency will be reduced. The only reward-predicting stimuli
will then be the objects A and B, that switch the striatal
cells into the up-state, leading to a robust working memory
of all possible combinations of this object. When the cue is
presented, it will create a burst of activity in PFC which



will stimulate the striatal cells that represent the correct
association between an object and the task, and consequently
disinhibit the correct thalamocortical loop.

D. Results
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Fig. 5.  Model for memory retrieval property. PRh provides STR with
a distributed representation of the identity of an object (A, B, DMS or
DPA). Self-organization in STR allows to create a different and reduced
representation of this object. The disinhibition of thalamus by GPi can
then retrieve the content of the memorized or associated object. DA is
phasically activated by new patterns in STR and modulates the learning
of the corticostriatal connections.

The preceding functional model is not fully implemented
yet, but we have extended our PRh model [14] to show
how BG can disinhibit thalamus to retrieve object memory.
This preliminary version of the WM model is depicted on
Fig. 5. Each area is represented by a set of mean-firing
rate units whose activity evolves through time following a
differential equation. PRh is stimulated by four different
objects representing the A, B, DMS and DPA cues. It
projects to the striatum in an all-to-all manner. The striatum
inhibits GPi with a gaussian connectivity kernel, as well
as the inhibitory connections from GPi to thalamus. PRh
and the thalamus are reciprocally connected in an all-to-
all manner. The thalamus also projects to the striatum with
a gaussian connectivity kernel, for reasons explained later.
The reciprocal connections between PRh and thalamus are
learned according to the same learning rule we use for the
lateral connections in PRh.

Each time an object is presented, it creates some new
activity in striatum, which phasically activates the dopamine
cell for approximatively 200 ms. DA then modulates the
homeostatic learning of the corticostriatal connections, al-
lowing LTP only at the time of a DA burst. Competition
in the striatum and in thalamus ensures self-organization in
these structures, so that only a few cells represent the same
object. The topological projection from thalamus to striatum
ensures that the two representations of the same object are
similar but not identical, since thalamus has four times less
cells than striatum in this model. Learning then converges
to three different representations of the same object in PRh,

striatum and thalamus, with a decreasing number of active
cells.

During learning, GPi is always inhibited by striatal activity
to ensure that thalamic cells can become active and learn
their reciprocal connections with PRh. When the model
has to learn DMS and DPA tasks, this inhibition will
not be systematic anymore. Also, striatal cells are kept in
the ”“down-state” during learning, i.e. they only respond to
cortical stimulation but do not show sustained activities.
Fig. 6 highlights the properties of this model showing the
simulation of a sequence of events. The object A is first
shown for 200 ms. The corresponding cluster exhibits sus-
tained activation after the disappearance of the object. We
then artificially set the striatal cells into their “up-state”, by
self-stimulating them. Another object then appears (DMS,
for example) which erases the sustained activation in PRh.
When it disappears again, the striatal cells still fire and the
thalamic cells corresponding to object A are disinhibited.
This activates the thalamocortical loop and the cluster in
PRh corresponding to object A shows again high activity,
without any cortical input. Thus, a sustained activation of
striatal cells allows memory retrieval in PRh.
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Fig. 6. Timecourse of the activity of a perirhinal cell. At approx. 200 ms
after the start of the trial, the preferred object of this cell is presented for 200
ms. When the stimulation ends, the cluster exhibits sustained activation until
a new object is presented at approx. 1200 ms. This new object disappears
at 1600 ms and the cell becomes active again due to memory retrieval.

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

We have presented a general framework of cognitive con-
trol of visual perception, by emphasizing the role of working
memory in perception. It relies on the distinction between the
content of working memory (what is actually kept in mind)
and the content of the memorized object (its visual features).
We suggest that memory retrieval is a key process in every-
day WM tasks which are scientifically explored by delayed
match-to-sample or delayed pair-association tasks. Memory
retrieval is essential in exploiting internally-generated goals
that guide behaviour without any environmental anchoring.
We also suggest that top-down attention to targets in these
tasks are mainly managed by the subordinate categories that
are described in high-level visual areas like PRh.

We propose a functional model of working memory in
visual tasks that relies on the known anatomy and function-
ality of diverse cortical and subcortical structures. Dopamine



is thought to play a great role in the modulation of cortical
activity as well as in the learning of associations at the striatal
level. The understanding of the distinction between tonic
and phasic modes of DA firing should allow to differentiate
reward-related processing in cortical and subcortical struc-
tures and highlight the relation between limbic information
and cognition.

Autonomous agents should take benefit of this internal
biasing of perception-action loops. The coupling of visual
selective attention [2] with reinforcement-based maintenance
of relevant information in WM will allow to generate goal-
directed behaviours grounded on actual perception and past
experience.

B. Future Works

Only a part of the proposed functional model has been
implemented in a brain-like computational model. The prob-
lems still unsolved are the intrinsic bistability of striatal
cells, the learning of compound representations in PFC and
the development of an efficient learning algorithm for the
DA signal. The classical TD algorithm [31] will not fit
because it relies on strictly constant delays between cue
onset and reward delivery. Realistic tasks can not make such
a strong hypothesis. A distinction between primary rewards
and learned values as in [32] seems more plausible, by using
the sustained activation in striatum to avoid dependency on
time intervals.
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