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Abstract

In this paper, we explore metrics for the evaluation of time-to-saccade problems. We define
a new sampling strategy that takes the temporal nature of gaze data and time-to-saccade
problems into account, avoiding samples of the same event in different datasets. This allows
us to define novel error metrics for a more intuitive evaluation of predicted durations. The
metrics are defined to evaluate the consistency of a predictor and the evaluation of the error
over time. We evaluate our method using a state-of-the-art method for time-to-saccade
prediction along with an average baseline on three different datasets.
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1. Introduction

When we as humans perceive a scene, our eyes constantly move due to their relatively small
area of sharp vision, the fovea Holmqvist et al. (2011). This restriction also applies when we
perceive a virtual environment (VE ) through a head-mounted display (HMD). In both cases,
it is possible to determine the different eye-movements by taking their inherent properties,
such as velocity and acceleration, into account and classify them into their respective class
Komogortsev and Karpov (2013); Andersson et al. (2017); Startsev et al. (2019); Zemblys
et al. (2019); Agtzidis et al.; Salvucci and Goldberg (2000); Dar et al. (2021). However,
such a classification can only be performed after capturing the sample. This, makes a
real-time utilization of gaze events or blinks challenging due to the low update rates and high
latencies found in commercial head-mounted displays or wearable eye-trackers Stein et al.
(2021); Langbehn et al. (2018). This is especially true for saccades, as they are temporarily
short, fast eye-movements in the range of 30-80 ms Holmqvist et al. (2011), where wearable
eye-trackers often just have a few samples to classify them correctly.

Nonetheless, knowing when a saccade event occurs would benefit several virtual real-
ity (VR) applications, such as gaze forecasting Hu et al. (2020, 2021), blink or saccade
detection for redirected walking Langbehn et al. (2018); Sun et al. (2018), gaze contingent
rendering Arabadzhiyska et al. (2017), or gaze-based interaction David-John et al. (2021).
Furthermore, the prediction of fixation durations is also important in other areas outside VR,
with one example being scan path prediction which try to predict fixation durations along
with the sequence of fixation points on a visual stimulus Yang et al. (2020). To use these
gaze events, previous applications often mitigate the latency through unnatural actions,
such as intentional blinking Langbehn et al. (2018) or long saccade durations Sun et al. (2018).
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A different approach was recently proposed by Rolff et al. (2022). They redefined the
problem of gaze classification as the recurrent time-to-event prediction of saccade events
(time-to-saccade), predicting the time it takes until a saccade occurs. However, this approach
is fairly general and can also be applied to other gaze events, such as fixations or blinks. In
contrast to classical gaze classification approaches, this redefinition of gaze event classification
as a recurrent time-to-event problem allows estimating the remaining time for each input
sample of an eye-tracker. This provides information on how long it will take until the specified
event will occur. This is desirable, as it is not essential if the class for each time-step is known,
but rather when its class will change. In contrast to classical gaze classification methods,
the redefinition also allows to account for the latency of eye-trackers found in commercial
head-mounted displays or wearable eye-trackers. To evaluate their approach, Rolff et al.
(2022) utilize the mean absolute error (mae) on a set of randomly sampled time-to-event
values to evaluate how well their method performs for time-to-saccade prediction.

In this paper, we define a more fitting sampling strategy than random sampling. This
allows to adapt the previously used error metric to be more suited to the actual problem
of time-to-saccade prediction. We will explore how well these metrics can be utilized to
understand the prediction and provide a different evaluation method.

To summarize, our work proposes the following contributions:

• A sampling strategy for dataset sampling that considers the sequential time-to-event
information of gaze events.

• Novel error metrics using the previously defined sampling strategy, enabling a more
interpretable result to infer the predictive performance of a time-to-saccade predictor.

2. Related Work

A commonly utilized metric for time-to-event problems is Harrell’s concordance index
(c-index ) Harrell et al. (1982). The c-index measures the correlation between the predicted
risk-score and the observed time-to-event. Hence, a higher risk value correlates with a
shorter time-to-event. However, it has also been shown that the c-index is biased if the test
set contains a high number of censored samples Uno et al. (2011), leading to an alternative
definition by Uno et al. (2011). Another metrics commonly used is the brier-score Brier
(1950). Its definition is equivalent to the mean square error (mse) for probabilistic predictions
of binary events, hence, requiring a probabilistic prediction from the employed model. It
has also been re-defined to allow censored data Graf et al. (1999).

Besides survival-analysis related metrics, there are multiple metrics for time-series
forecasting using the real values of the prediction. Commonly used metrics are the mean-
absolute, mean-square, or (normalized) root-mean-square error Diebold (1998); Hyndman and
Koehler (2006). Variations of those metrics have been proposed, such as the (symmetric) mean
absolute percentage error. Most of the listed error metrics, assume that an overestimation
should be penalized equally. This, however, might not always be the case, thus requiring an
asymmetric error function such as the asymmetric mean Diebold (1998) or the linex error
Diebold (1998); Varian (1975).
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Figure 1: Illustration of the sampling strategy, splitting the data at the occurrence of an
event into multiple sequences (red). Each sequence then contains multiple samples
and is placed into the respective dataset. It also depicts an example for a prediction
with overestimation (green) and a prediction with underestimation (blue).

3. Methodology & Metrics

For our experimental setup, we follow, if not noted otherwise, Rolff et al. (2022), allowing
for comparability between both approaches. First, we would like to highlight a disadvantage
of their evaluation, the random sampling. This does not take the temporal property of the
gaze data into account, as the samples of the same time-to-saccade sequence might have
been selected for different datasets. As a result, it is impossible to evaluate properties, like
the consistency of the prediction, or the error of the overall sequence, without the predictor
having seen part of the data. This makes it challenging to interpret the reported error
metrics, as it is not clear how the predictor behaves over time.

Here, we introduce a new sampling strategy that keeps samples of the same time-to-
saccade sequence in the same dataset. As illustrated in Fig. 1, we construct these sequences,
by splitting the gaze signal exactly if an event happens, instead of randomly chosen samples.
This results in sequences containing multiple individual samples as data points. An advantage
is that the time-to-event of a sequence is always strictly monotonically decreasing, with
the rate depended on the frequency of the eye-tracker. With the update frequency fi > 0
of the eye-tracker at step i, each time-to-saccade value (tts) can be calculated through:
ttsi+1 = ttsi − f−1

i . We define the last time-to-event before the occurrence of the event as
zero, implying the first time-to-event value being equal to the total duration of the sequence.

Using these observations, it allows us to explore additional error metrics that account
for the temporal properties of a time-to-saccade sequence which also take and information
of eye-movement classifiers into account. As time-to-saccade predictions are rarely right
censored, as they are repeatable events that happen every 300 to 2500 ms. Therefore, same
as Rolff et al. (2022) we would like to advise against the usage of earlier listed time-to-event
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metrics for the evaluation of predictions, even under the new sampling strategy. As a
result, the only right censored sequences are at the end of an eye-tracking session, often
corresponding to a small portion of the dataset. Moreover, the task of time-to-saccade
prediction requires predicting the time-to-event as accurate as possible, other metrics such
as the c-index do not provide helpful information on their accuracy. Here, it is better to
utilize metrics for time-series forecasting, as they are concerned with the difference between
the actual time-to-event and the predicted time. However, as these are fairly general and do
not allow insight into a time-to-saccade predictor model, we propose the additional metrics:

Consistency: To measure how consistent the model is in its prediction, we define consis-
tency of a sequence j with length l as the relative difference Diebold (1998) between the
current and the next prediction. Ideally, this change should be equal to the frequency of the
eye-tracker, due to the definition of time-to-saccade. Hence, we can define consistency as:

cj =
∑l−1

i=0

∣∣|pi+1 − pi| − f−1
i+1

∣∣
|f−1

i+1|
.

As this gets evaluated over each sequence, we can derive the mean consistency of a dataset
through the arithmetic mean.

Average overestimation and underestimation rate: Overestimation and underes-
timation measure if the model generally tends to predict durations that are too short
(underestimation) or too long (overestimation). For the non-temporal time-to-saccade
problem of a sample j with time-to-saccade duration dj and predicted duration pj , an
overestimation happens if dj − pj < 0, and underestimation if dj − pj > 0. This calculation
is not possible with a recurrent time-to-saccade prediction, as the predictor outputs an
estimation pji for each step i. Therefore, we calculate the average time-to-saccade pj using
the arithmetic mean for the estimation of over- and underestimation of the sequence j.
While this is not optimal as the prediction might over- or underestimations with time, we
assume this to be a reasonable approximation for a general overview. This allows us to
define the average overestimation and underestimation rate for a set of n sequences as:

avg. overestimation rate =
1

n

∑n

j=1
1dj<pj , avg. underestimation rate =

1

n

∑n

j=1
1pj<dj

Average sequence and underestimation error: Using the historic gaze information
provided by the eye-tracker, we would not perform an action in case of an overestimation.
This is not the case for an underestimation, as we cannot exploit the additional information
that would imply a wrongfully performed action. Hence, we calculate the underestimation
error only in cases where the prediction of a model underestimates the actual duration, and
assume a perfect prediction otherwise, by defining the average underestimation error as:

avg. underestimation errorf =
1

n

∑n

j=1
f(dj , pj) · 1pj<dj ,

using the indicator function 1 and the error metrics f ∈ {mse,mae}. To calculate the
average time-to-saccade error (avg. tts.), we use previous definitions of time-to-saccade
duration dj and average time-to-saccade prediction pj of a sequence j:

avg. sequence errorf =
1

n

∑n

j=1
f(dj , pj)
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Table 1: Results of the stochastic gradient descent (SGD) regressor and average time-to-
event using the metrics described in Sec. 3 along with the mean square error (mse)
and mean absolute error (mae). A lower error is preferred.

Metric
Dataset

Stochastic Gradient Descent Avg. Time-to-Event
DGaze FixationNet EGTEA DGaze FixationNet EGTEA

mse↓ 0.1285 s2 0.2390 s2 0.1672 s2 0.2314 s2 0.3647 s2 0.3043 s2

mae↓ 0.2556 s 0.3567 s 0.2668 s 0.3387 s 0.4261 s 0.3677 s
avg. time-to-saccade mse↓ 0.0494 s2 0.0887 s2 0.0420 s2 0.0672 s2 0.1035 s2 0.0745 s2

avg. time-to-saccade mae↓ 0.1747 s 0.2422 s 0.1484 s 0.1792 s 0.2260 s 0.1765 s
underestimation mse↓ 0.0319 s2 0.0537 s2 0.0311 s2 0.0664 s2 0.1003 s2 0.0718 s2

underestimation mae↓ 0.0857 s 0.1105 s 0.0799 s 0.1666 s 0.1968 s 0.1470 s
o/u estimation rate↓ 0.61/0.39 0.64/0.36 0.60/0.40 0.27/0.73 0.36/0.64 0.43/0.57
consistency↓ 1.64 1.39 1.12 1.0 1.0 1.0

Sectioning: The prediction of a model may change with time. Depending on the utilized
method, it might not have enough information at the beginning to predict an accurate time-to-
saccade. As a result, the prediction may improve over time without being inherently evident
from the evaluation when using the earlier mentioned metrics. Hence, we split each time-to-
saccade sequence Sj [1, . . . , lj ] of length lj into k sections sjk = Sj [⌈ ljk · (k − 1)⌉, . . . , ⌊ ljk · k⌋].
Then we calculate the error over all sections Sm = {s0m , . . . , snm} of the same bin m, showing
the behavior of the error over time.

4. Evaluation & Discussion

To evaluate our approach defined in Sec. 3 we utilize a linear regressor with a Nyström
approximation Williams and Seeger (2001) trained through stochastic gradient descent
(SGD) Robbins and Monro (1951). This has been chosen, as it was identified as the best
performing regressor among four other classical methods Rolff et al. (2022). The models
were trained as specified in Rolff et al. (2022). One notable exception while training is the
used sampling strategy. Here, we made sure that samples leading to the same gaze event are
placed inside the same train, test, or validation dataset. To train the models, we utilize the
DGaze Hu et al. (2020), FixationNet Hu et al. (2021) and EGTEA Gaze+ Li et al. (2018)
datasets. In addition, we use some artificial prediction strategies to evaluate the proposed
metrics on synthetically generated predictions. For those, we employ: mean time-to-saccade
(mean), zero prediction (zero), maximum time-to-saccade (max), and random time-to-saccade
prediction (rand). A more extensive evaluation of those can be found in the appendix.

Table 1 shows the measured results of the predictions on the DGaze Hu et al. (2020),
FixationNet Hu et al. (2021) and EGTEA Gaze+ Li et al. (2018) datasets. While close to
previous literature Rolff et al. (2022), the results are still slightly different due to the different
sampling method. However, it is also evident, that this results in a higher overestimation
rate, as the predictor can not estimate the correct time-to-saccade for most data samples.
Moreover, the consistency of the SGD predictor is not as optimal as the average prediction.
This is expected, as the average predictor reports very consistent results by predicting the
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Figure 2: Error of different predictors on different sections as explained in Sec. 3. We divide
all time-to-saccade sequences into 10 different sections of equal length to estimate
the mean square error on the DGaze Hu et al. (2020) (left) and FixationNet Hu
et al. (2021) (right) datasets.

mean value for every sample. It can also be seen that the underestimation error reports
much lower results for the SGD predictor when compared to the average time-to-event.
This is consistent with the underestimation rate, as the predictor underestimates less than
the average predictor, making it more useful for real-world applications. Here we assume
underestimations to be more of a problem than overestimations due to their ability to trigger
downstream methods with the user being aware of them. In contrast, an overestimation can
be mitigated through the utilization of data samples from the eye-tracker. Fig. 2 shows the
evaluation of the 5 different baseline predictor models along with the SGD predictor over
multiple sections of all sequences. Here, it can be seen that the SGD predictor outperforms
all baselines most of the time, except for a brief range 20-30% of the length before the actual
event, where it is outperformed by the mean absolute error. This indicates that the SGD
tends to do better than the other predictor, but eventually fails shortly before the actual
event. We also performed additional evaluations, which can be found in the appendix due
to space restrictions.

5. Conclusion

In this paper, we proposed a new sampling strategy that lets us take the sequential information
of gaze data for time-to-saccade prediction into account. This enabled us to define multiple
new metrics capturing the consistency and duration of time-to-saccade predictors, as well as
capturing the overall behavior of them over different parts of time-to-saccade sequences. To
evaluate these, we use the state-of-the-art time-to-saccade predictor and compared it against
a simple average baseline. However, we also expect future work on this topic, especially
overestimation and underestimation evaluation, as they currently just evaluate the average
over- and underestimation over the whole sequence but do not take the prediction strategy
of a proposed model into account.
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Appendix A. Extended evaluation

To provide a more detailed evaluation on the proposed metrics of our paper, we also evaluate
against five different baseline predictors, namely:

• Zero predictor (zero): Predicts an event for every step by reporting a time-to-event
of zero. This should result in high underestimation and low overestimation rates.
Furthermore, it should have a good but not zero consistency.

• Maximum predictor (max): This predicts the maximum time-to-event. This should
result in high overestimation and low underestimation rates. Similar to the zero
predictor, it should also have a good consistency. However, we also expect this to
perform the worst out of all predictors on the mean square and mean absolute error.

• Random predictor (rand): Predicts a uniformly distributed random event length at
the start of a sequence and consistently reduces the time-to-saccade by the update
rate of the eye-tracker. Once, we predict a time-to-event below zero, we just report
that the event is going to happen every step. We expect this predictor to have a
mixed overestimation and underestimation rate dependent on the distribution of the
time-to-event and an excellent consistency, due to its definition.

Using those predictors, we measure how the proposed metrics behave on the DGaze Hu et al.
(2020), FixationNet Hu et al. (2021) and EGTEA Gaze+ Li et al. (2018) datasets.

First, Tab. 2 shows the evaluation of the zero predictor, which will report a time-to-event
of zero. As expected, it is evident that the predictor underestimates every prediction, which
is also shown through the underestimation rate. This also results in a high underestimation
error, as the full sequence underestimates the actual target. Second, Tab. 3 shows the evalua-
tion of the random predictor. As expected, this predictor has a much lower underestimation
rate and very high consistency. It does not reach a 0.5 overestimation and underestimation
rate, which is due to the uniform sampling not reflecting the general distribution of the
data. At last, Tab. 4 shows the maximum predictor. Here, it is shown that the predictor
does not produce any underestimations and thus has an excellent underestimation error.
However, this also results in the highest average time-to-saccade errors, meaning that it does
not well in its overall prediction. Moreover, Fig. 3 and Fig. 4 show the overestimation and
underestimation rate using 10 sections to visualize the behavior of the overestimation and
underestimation over time. As expected, the zero and maximum predictors have the highest
over- and underestimation rate across the sequence lengths. Whereas, the random predictor
is consistently at a 0.6 overestimation and 0.4 underestimation rate. It can also be inferred
that the mean and SGD predictors tend to overestimate as the sequence reaches the event.
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Table 2: Results of the zero predictor using the metrics described in Sec. 3 of the main
paper and the mean square error (mse) and mean absolute error (mae). A lower
error is preferred in all cases.

Metric
Dataset

DGaze FixationNet EGTEA

mse↓ 0.5168 s2 0.6695 s2 0.5168 s2

mae↓ 0.5434 s 0.6408 s 0.5434 s
avg. time-to-saccade mse↓ 0.2089 s2 0.3088 s2 0.2000 s2

avg. time-to-saccade mae↓ 0.4066 s 0.3831 s 0.3733 s
underestimation mse↓ 0.2089 s2 0.3088 s2 0.2000 s2

underestimation mae↓ 0.4066 s 0.3831 s 0.3733 s
overestimation rate↓ 0.0 0.0 0.0
underestimation rate↓ 1.0 1.0 1.0
consistency↓ 1.0 1.0 1.0

Table 3: Results of the random predictor using the metrics described in Sec. 3 of the main
paper and the mean square error (mse) and mean absolute error (mae). A lower
error is preferred in all cases.

Metric
Dataset

DGaze FixationNet EGTEA

mse↓ 0.4585 s2 0.6805 s2 0.7973 s2

mae↓ 0.5384 s 0.6526 s 0.7066 s
avg. time-to-saccade mse↓ 0.5097 s2 0.7877 s2 0.9966 s2

avg. time-to-saccade mae↓ 0.5742 s 0.1017 s 0.8003 s
underestimation mse↓ 0.0653 s2 0.1017 s2 0.0575 s2

underestimation mae↓ 0.1306 s 0.1620 s 0.1006 s
overestimation rate↓ 0.62 0.62 0.72
underestimation rate↓ 0.38 0.38 0.28
consistency↓ 0.24 0.25 0.20
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Table 4: Results of the maximum predictor using the metrics described in Sec. 3 of the main
paper and the mean square error (mse) and mean absolute error (mae). A lower
error is preferred in all cases.

Metric
Dataset

DGaze FixationNet EGTEA

mse↓ 2.7385 s2 3.9040 s2 4.1814 s2

mae↓ 1.6050 s 1.9092 s 1.9899 s
avg. time-to-saccade mse↓ 2.9792 s2 4.3473 s2 4.7266 s2

avg. time-to-saccade mae↓ 1.7134 s 2.0669 s 2.1601 s
underestimation mse↓ 0.0000 s2 0.0000 s2 0.0000 s2

underestimation mae↓ 0.0000 s 0.0000 s 0.0000 s
overestimation rate↓ 1.0 1.0 1.0
underestimation rate↓ 0.0 0.0 0.0
consistency↓ 1.0 1.0 1.0
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Figure 3: Overestimation rate calculated over 10 sections on the DGaze Hu et al. (2020)
and FixationNet Hu et al. (2021) datasets.

Figure 4: Underestimation rate calculated over 10 sections on the DGaze Hu et al. (2020)
and FixationNet Hu et al. (2021) datasets.

13


	Introduction
	Related Work
	Methodology & Metrics
	Evaluation & Discussion
	Conclusion
	Extended evaluation

