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Abstract. A novel method is introduced for the stabilization of short image sequences. Stabilization is achieved
by means of fixation of the central image region using a variable window size block matching method. When applied
to a sliding temporal window, the stabilization improves the performance of standard optic flow techniques. Due to
the unique choice of fixation as the main stabilization mechanism, the proposed method not only increases the flow
field density but renders certain global structural properties of the flow fields more predictable as well. This in turn
is advantageous for egomotion computation.

1. Introduction

Visual motion is one of the more important sensory
cues that are used by humans to guide behavior or
to navigate a dynamical environment. The instanta-
neous velocity or optic flow field contains a tremen-
dous amount of information related to the self-motion
of the observer, the three dimensional (3D) structure
of the environment, and the presence and motion of
independently moving objects. Extracting this veloc-
ity field from the temporal evolution of image intensity
values is a highly complex and ill-posed problem. In or-
der to obtain unique solutions, a variety of assumptions
have been used to constrain the problem. One important
assumption, adopted by many optic flow algorithms
proposed in the literature, states that the local veloc-
ities remain constant over a short time span (Barron
et al., 1994). If this assumption holds, multiple frames
can be used in the estimation process. This allows for
the application of more stable numerical differentiation
techniques, the reduction of temporal aliasing (Barron
et al., 1994) or the extraction of more reliable confi-
dence measures (Gautama and Van Hulle, 2002). When
both observer and moving objects undergo smooth mo-
tion, this velocity constancy assumption is valid (except

at motion boundaries). In realistic situations however,
the computation of optic flow has to cope with un-
desired motion of the camera due to shocks or vibra-
tions of the vehicle or robot on which it is mounted.
These perturbations typically manifest themselves as
fast, rotational camera movements (Duric and Rosen-
feld, 2003) that induce large local motions over very
short time spans (Giachetti et al., 1998). Consequently,
the assumption of locally constant velocities is often
violated. A possible solution is to use optic flow al-
gorithms that do not make this assumption (Giachetti
et al., 1998), such as correlation-based matching tech-
niques. Since the performance and reliability of these
techniques on stable sequences, is typically much lower
than those of a differential or phase-based approach
(Barron et al., 1994), a better solution is to stabilize the
image sequence first. After stabilization, the velocity
constancy assumption is met more closely, and conse-
quently, a differential or phase-based approach can be
used to compute optic flow.

1.1. Stabilization

Image sequence stabilization is defined as the process
of modifying an image sequence from a moving or
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jittering camera so that it appears stable or stationary
(Balakirsky and Chellappa, 1996). Traditional stabi-
lization techniques estimate the camera motion first and
use it to render the sequence stable. This egomotion or
rigid self-motion of the camera can be decomposed
into a 3D translation and a 3D rotation. Due to mo-
tion parallax, the translational motion field depends on
the scene structure, while the rotational motion field is
fully determined by the camera parameters only. The
superposition of these two components can result in
complicated motion fields. Although much progress
has been made to date, extracting the camera motion
from such optic flow fields is nontrivial and most algo-
rithms perform well only in specific domains (Xiang
and Cheong, 2003). A distinction can be made between
2D and 3D techniques for electronic image stabiliza-
tion. The former proceed by fitting an affine model to
all motion in the sequence (Morimoto and Chellappa,
1996). This renders them very efficient but limits their
validity to scenes with minimal depth variation (e.g.
aerial images). In contrast, 3D stabilization techniques
operate on the camera rotation only and consequently
do account for a rich scene structure. This approach is
effective since in normal situations (such as driving or
walking), the effects of unwanted translations are neg-
ligible compared to the effects of unwanted rotations
(Duric and Rosenfeld, 2003). These 3D techniques sta-
bilize by de-rotating the frames, in this way generating
a translation-only sequence (Irani et al., 1997), or by
temporally smoothing the rotational component of the
camera motion (Duric and Rosenfeld, 2003). Note that
this involves estimating the rotation in the presence of
general motion, with all its associated difficulties and
ambiguities.

1.2. Fixation

The stabilization strategy adopted by humans and pri-
mates is quite different: motion in the fovea or central,
high-resolution part of the retina is nullified by means
of eye movements. These gaze stabilization eye move-
ments use vestibular, proprioceptive, or visual signals
to achieve this task (Lappe and Hoffmann, 2000). For
the present work we use the term fixation to describe
the effect of such eye movements, that is to hold the
gaze direction towards the same environmental point
through time (Daniilidis, 1997; Fermüller and Aloi-
monos, 1993; Lappe and Rauschecker, 1995). Con-
trary to other 3D stabilization techniques, fixation does
not require estimation of the rotational component of

self-motion and is hence much simpler. Instead, on the
basis of foveal motion only, a compensatory, 3D rota-
tion (eye movement) is determined and superposed on
the motion field. Since rotational jitter acts on every
part of the image or retina, this procedure effectively
removes its effects.

The stabilization method introduced here is very
similar and aims at fixating the central image region in
a short image sequence. A novel variable window size
block matching procedure, that allows for joint fea-
ture selection and feature tracking, enables the fixation
point to remain at this location. By using a correlation-
based matching technique, velocity constancy is not
required at this stage. Since the method specifically
aims at improving the computation of optic flow by
increasing the temporal velocity constancy, the length
of the sequence is determined by the temporal sup-
port required by the optic flow algorithm. The choice
of fixation as the mechanism for stabilization not only
renders the procedure relatively simple (as compared
to other 3D stabilization methods) but has a number
of additional advantages as well. First of all, it is well
known that fixation reduces the number of parameters
that determine the egomotion from five (two for the
heading or translation direction and three for the rota-
tion) to four (Aloimonos et al., 1987). The reason for
this is that the horizontal and vertical rotations that sta-
bilize the fixation point (e.g. the image center) are fully
determined by the (relative) depth of that point and the
current translation. This observation has been exploited
in numerous algorithms (Daniilidis, 1997; Fermüller
and Aloimonos, 1993; Lappe and Rauschecker, 1995;
Taalebinezhaad, 1992) that compute egomotion from
optic or normal flow. A second advantage is related to
the global structure of flow fields obtained during fix-
ation. Typically, during fixation and self-motion, the
singular point of the optic flow field is near the cen-
ter of the visual field (fovea) (Lappe and Rauschecker,
1995). Therefore, this central area contains many dif-
ferent local motion directions that are important for the
analysis of the flow field. In contrast, in the periphery
speed and homogeneity of the flow increase with dis-
tance from the center (cf. center flow field in Fig. 1B).
This allows spatial averaging over a larger scale with-
out losing too much information about the local mo-
tion directions (Lappe, 1996). In other words, fixa-
tion results in a consolidation of information near the
fovea. These global properties are quite robust to scene
changes, heading changes, and small fixational errors
and are therefore a good basis for the development
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of space-variant filtering techniques that improve ego-
motion computation (Calow et al., 2006). Furthermore,
they can directly benefit the computation of optic flow
itself. By fixating prior to flow estimation, the param-
eters for the estimation (e.g. filter sizes) can be pre-
dicted to scale with eccentricity, to a certain extent. In
this way, the performance of single-scale algorithms
can be improved and the increased complexity of, and
computational resources required by multi-scale algo-
rithms avoided.

A number of artificial fixation systems have been
proposed in the past. Most of these systems are active
(they control the camera motion) and employ feedback
to fixate a region of interest (Fermüller and Aloimonos,
1993). Besides being active, they differ from the pro-
posed method in that these regions need to be selected
either manually or by means of ‘interest point detec-
tors’. A passive tracking/fixation system is discussed
in (Taalebinezhaad, 1992). This latter method however
fixates two images to simplify egomotion estimation
and is not suitable for image sequence stabilization.

2. Proposed Method

In this section we give a brief overview of the pro-
posed stabilization method and explain in what way it
alters classical optic flow computation. Figure 1 illus-
trates both the classical (A) and proposed (B) approach
graphically.

Figure 1. Classical optic flow computation (A) and the proposed method (B). The dashed box marks the sliding temporal window used in
computing the optic flow at time t . Without stabilization, the flow field is sparse and noisy (right flow field in A). The small filled squares mark
the location of the feature that is at the image center at time t . After fixation, this feature is motionless in the warped images (B). Note how a
rotational curl is present in the flow field computed on the stabilized images. An optional de-fixation step can transform the flow field into one
that more closely resembles the flow field computed on the original sequence.

Typical approaches to compute optic flow for each
frame of a long image sequence involve the use of a
sliding temporal window. A short window, the length
of which depends on the temporal support required by
the optic flow algorithm, is moved over the sequence
one frame at a time and the instantaneous velocity
field is computed for the central frame of the window
(Section 2.3). This window is marked by the dashed
boxes in Figure 1 and contains three frames in this ex-
ample. As illustrated in Figure 1A, when optic flow is
extracted from these frames directly, the obtained flow
field is often sparse and noisy. The proposed stabiliza-
tion method operates on the images in these short win-
dows, and optic flow is computed only after all images
within the sliding window are stabilized. Stabilization
consists of a simulated fixation (Section 2.1) of the
central part of the short image sequence. The feature
that is at the image center at time t is marked by the
small filled squares in Figure 1. Fixation involves de-
tecting and tracking this feature over the current tempo-
ral window (Section 2.2). After stabilization, its loca-
tion remains fixed in the image center. Next, optic flow
is computed on this ‘fixated’ image sequence. Due to
the stabilizing effect of this fixation, the resulting flow
field is typically less noisy and denser than the one
computed directly on the original image sequence. As
discussed in the introduction, certain global structural
properties of the fixated flow field differ from those of
the original flow field. Note how the fixation has added
a rotational curl to the center flow field in Figure 1B
and rendered the image center (indicated with the small
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square) motion-free. Although not necessary for most
purposes, certain applications require flow fields that
more closely resemble those computed on the origi-
nal image sequence. For this reason, the stabilization
procedure contains an optional de-fixation step (Sec-
tion 2.4) that removes the rotational stabilization ef-
fects from the optic flow field. The resulting flow field
is shown to the right in Fig. 1B and looks very similar
to the original one from Fig. 1A, except that the former
is less noisy and denser.

2.1. Image Sequence Stabilization

Similar to other active and passive systems that exploit
foveal representations (Daniilidis, 1997; Fermüller and
Aloimonos, 1993), the optical image center (the inter-
section of the optical axis with the image) is chosen
as the fixation point in our method. This is similar to
the biological case in the sense that it corresponds to
the direction of gaze. Although the location of the fixa-
tion point does not affect the generality of the method,
choosing the center has certain advantages, such as al-
lowing for the same amount of warping in all direc-
tions. Keeping this location fixed renders the proce-
dure conceptually simple and yields more stable global
structural properties of the flow field (Section 4.4),
which in turn can be exploited efficiently by hardware
architectures.

Fixation is achieved by means of simulated 3D rota-
tions around the x- and y-axes of the observer-centered
coordinate system1. Although relevant in the context of
stabilization, z-axis rotations are not considered here
(see also Section 2.2), without loss of generality of
the fixation procedure. Figure 2 illustrates the stabi-
lization method for an example sequence consisting of
five frames. To transform the sequence into a fixated se-
quence, i.e. a sequence in which the central image part
is motion-free, the central part of the middle frame
(the ‘template window’, indicated by the small solid
square) needs to be localized in all frames of the se-
quence. A straightforward way to achieve this tracking

Figure 2. Stabilization by means of fixation. The central image region of frame 3 is backward and forward tracked to frames 1
and 5 respectively. In this way, the individual displacements dij, denoting the movement of the feature from frame i to frame j , are
determined.

would be to block match the central part of frame 3
directly to all other frames. However, to allow for grad-
ual texture changes and to limit the size of the search
windows (dashed squares), tracking is performed iter-
atively in our method. To match backward from frame
3 to frame 1, the texture in the center square of frame
3 is first matched to the area within the search win-
dow in frame 2. The obtained displacement (arrow in
frame 2) is used to move the search window in frame 1
and the texture found in frame 2 (small square) is then
matched to this search window. A similar procedure is
followed to match forward to frame 5. These displace-
ments uniquely determine a 3D rotation for each frame
that warps the texture most similar to the central tex-
ture of the middle frame to the center of the respective
frame.

As an example, we determine the rotation for frame 1
from Fig. 2. The center coordinates of the template
window in frame 1 equal: (x1, y1) = d32 + d21. Since
the stabilization operates on short temporal windows,
a velocity-based scheme yields a reasonable approxi-
mation of the 3D rotation (Adiv, 1985). In this scheme,
the instantaneous velocity (ẋ, ẏ) of image point (x, y)
resulting from the camera rotation (ωx , ωy, ωz) equals:

ẋ = ωx
xy
f

− ωy

(
f + x2

f

)
+ ωz y (1)

ẏ = ωx

(
f + y2

f

)
− ωy

xy
f

− ωz x , (2)

where f is the focal length of the camera. Con-
sequently, the compensatory 3D rotation that warps
(x1, y1) to the center pixel (0, 0) should result in the
following motion vector at (x1, y1):

ẋ1 = −x1 (3)

ẏ1 = −y1 . (4)

Since we only consider x- and y-axis rotations in
the stabilization, a unique compensatory 3D rotation
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satisfies this requirement:

(ωx , ωy, ωz) = (− y1 f
f 2 + x2

1 + y2
1

,
x1 f

f 2 + x2
1 + y2

1

, 0) .

(5)
This rotation is now used to warp every pixel (x, y) in
frame 1 according to Eqs. (1) and (2). Cubic convolu-
tion interpolation (Keys, 1981) is used to perform these
warps with subpixel accuracy.

After warping each frame (except the middle frame)
according to the stabilizing rotations, the central part
of the image sequence is motion-free. Note that the in-
terframe rotations are not necessarily identical. In case
there is a need to reconstruct the original flow fields,
these rotations must be averaged in the de-fixation step
(Section 2.4).

2.2. Variable Window Size Matching

As discussed in the previous section, the stabilization
method requires tracking the central region of the mid-
dle frame over the short image sequence. All matching
is performed using the normalized cross correlation
method (Lewis, 1995). Since the location of the fixa-
tion point is set in advance, the use of a fixed window
size at this location can result in a textureless template
window. This is contrary to most approaches to feature
tracking which use interest point detectors to first local-
ize regions in the image that contain certain types of tex-
tures or features that simplify matching. Fixed-window
block-matching techniques are then typically used to
track these regions over different frames. Although the
proposed method is not allowed to change the location
of the fixation point, the size of the template window
can be chosen freely. To ensure the general applicabil-
ity of the method, the window size should be increased
in the absence of texture or in ambiguous situations due
to a repetitive pattern. In the context of stereo match-
ing, Kanade and Okutomi (1994) proposed an adap-
tive window method that optimally balances between
signal-to-noise ratio or intensity variation maximiza-
tion and projective distortion (due to variations in the
depth of scene points) minimization. This technique is
however unable to deal with repetitive patterns. It is
very important to take such ambiguities into account,
since they can result in large estimated displacements
that may deteriorate the subsequent computation of op-
tic flow. A possible approach to detect spurious matches
is to analyze the cross-correlation surface in terms of its
peakedness (Anandan, 1989). However, such analysis

requires a set of relatively arbitrary thresholds, so that
its reliability can be called into question (Barron et al.,
1994).

On the basis of two heuristics, we propose a simple
and robust matching algorithm that effectively com-
bines feature selection and feature matching. The first
heuristic is founded on the observation that when a
repetitive pattern is accidentally matched to a wrong
instance, it is unlikely that an identical displacement is
obtained when the matching is repeated with a slightly
larger window. The heuristic consists of increasing the
window size until two successive matches result in
the same displacement vector. This yields excellent re-
sults in most cases and typically results in very small
template windows. However, there still remain situa-
tions where the procedure is confused by strong repet-
itive patterns. Most matching techniques validate lo-
cal matches by means of global constraints inherent to
the problem (e.g. stereo or rigid body motion). A con-
straint we can employ here is the following: if we track
a feature over three consecutive frames 1, 2, and 3, the
displacements from frame 1 to 2 (d12) and from 2 to 3
(d23) should add up to the displacement obtained when
directly matching frame 1 to frame 3 (d12 +d23 = d13).
The combination of these heuristics results in the fol-
lowing matching algorithm for matching frame 1 to
frame 2, using frames 1, 2, and 3:

INITIALIZE

template window size w = 0
search window size s = 0
displacements d0

12, d0
23, d0

13 = NaN
iteration i = 0

DO

w = w + 10 ; s = w + 50 ; i = i + 1
match frame 1 to frame 2 → di

12
match frame 2 to frame 3 → di

23
match frame 1 to frame 3 → di

13

UNTIL

di−1
12 = di

12 ; di−1
23 = di

23 ; di−1
13 = di

13
di

13 = di
12 + di

23

In the next frame, matching is performed using the
constraint d23 + d34 = d24. This is continued until
the complete short sequence is stabilized. In a single
step of the algorithm, the same template and search
window sizes are used for all three matches. Note that
this simple algorithm requires only two parameters:
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the increase in the template window size after each
iteration and the size of the search window, relative to
the template window size.

Since this matching component is a crucial part of
the proposed method, we apply an additional subpixel
refinement step after all pixelwise displacements are
estimated. Assuming that the above-mentioned match-
ing procedure correctly computes the integer parts of
the displacements, we further refine these estimates
by computing the least-squares fit to the gradient con-
straint equation (Horn and Schunck, 1981). The sub-
pixel displacement (sx , sy) is chosen that minimizes the
constraint deviation over the smallest template window
" that yields the correct (pixelwise) displacement es-
timates:

∑

x∈"

(
Ix (x, t)sx + Iy(x, t)sy + It (x, t)

)2
, (6)

where Ip(x, t) is the partial derivative of the image in-
tensity function to parameter p at pixel x = (x, y) and
time t . These partial derivatives are approximated by
forward differences (after compensating for the pixel-
wise motion). Instead of Eq. (6), a more complex mo-
tion model that also incorporates rotations around the
line of sight (z-axis) could be used at this stage. This
has not been included here for two reasons. First of all,
a richer model might reduce the accuracy of the dis-
placement estimates. Secondly, contrary to the deter-
mination of the fixational rotation, which is restricted to
a small area surrounding the fixation point, the extrac-
tion of z-axis rotation can exploit information located
anywhere in the image. Consequently, instead of in-
creasing the model complexity at the template window,
an even more sophisticated procedure, not restricted to
this window, is more appropriate.

In certain situations, it is possible that relatively large
template windows are necessary and that the stabilized
sequence no longer fixates exactly on the image cen-
ter. Imperfections in the tracking, however, only result
in imperfect fixation, but not in incorrect flow or ego-
motion computation, since the performed warps are
known and can be used to reconstruct the original flow
(see Section 2.4). Therefore, only algorithms that build
on a perfectly fixated flow field are affected by this.

2.3. Optic Flow

To demonstrate the consistency of our results, we use
two fundamentally different optic flow algorithms. The

first algorithm is the well-accepted differential-based
algorithm by Lucas and Kanade (1981) (LUC). As sug-
gested in Barron et al. (1994), the image sequence is
first smoothed with a spatiotemporal Gaussian filter
with a standard deviation of 1.5 pixels-frames before
computing the derivatives. We use image sequences
of length 13 to have sufficient temporal support. The
second algorithm is a more recent phase-based algo-
rithm by Gautama and Van Hulle (2002) (GAU). This
algorithm uses spatial filtering to compute phase com-
ponents of oriented filters at every time frame. The tem-
poral phase gradient is estimated from this sequence of
phase components using linear regression. Finally, an
intersection-of-constraints step extracts the full veloc-
ity from the component velocities. The resulting op-
tic flow fields have been shown to be much denser
and more accurate than those obtained with LUC
(Gautama and Van Hulle, 2002). For this algorithm,
we use the parameters suggested in Gautama and
Van Hulle (2002). No pre-smoothing is required here
and the algorithm uses only five frames.

2.4. De-fixation

Figure 3 contains flow fields for an example frame of
one of the sequences (Section 3) used in the analyses.
The top and bottom row flow fields have been extracted
using LUC and GAU respectively. The optic flow in the
center column has been computed directly on the orig-
inal sequence whereas the left column flow has been
computed after fixation. When comparing these two
columns, it is clear that the flow fields can look very
different. A comparison of these two flow fields is im-
portant for the validation of the stabilization method.
Even though it is not required for the computation of
the translational egomotion parameters and the subse-
quent recovery of structure from motion, certain appli-
cations may also prefer operating on flow fields that
more closely resemble the flow fields computed on the
original sequence, or may require knowledge of the
true rotational egomotion parameters. To achieve these
goals, the fixating rotation needs to be determined and
the original flow reconstructed by ‘de-fixating’ the sta-
bilized flow fields, i.e. removing the effects of this fixat-
ing rotation. Since the interframe rotations that stabilize
the short image sequence are not necessarily identical,
de-fixation requires their summarization into a single
rotation.

The most sensible way to proceed is by averaging the
individual rotations in the same way as the optic flow
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Figure 3. Flow fields computed for the city3 frame shown in Figure 4. The flow has been computed using LUC (top row) and GAU (bottom
row). The left and middle columns contain the flow fields computed respectively with and without stabilization. The right column contains the
stabilized flow fields after removal of the stabilizing rotation. All flow fields have been subsampled and scaled 10 times.

algorithm averages the temporal information over the
sequence. For the phase-based algorithm, all five
frames are equally weighted, so a simple averaging
of the four interframe rotations yields the best re-
sults. In our Lucas and Kanade implementation 13
frames are spatiotemporally convolved with a Gaus-
sian of standard deviation 1.5 pixels-frames, and the
five central frames are retained. On the basis of these
five frames, derivatives are computed with four-point
central differences by convolution with the mask:
1

12 (−1, 8, 0, −8, 1). We apply a similar transformation
to compute the average rotation. In this way, each in-
dividual rotation influences the computation of the av-
erage rotation in a similar way as the respective frame
influences the computation of the temporal derivatives.
This is achieved by first convolving the interframe ro-
tations with the same Gaussian used in the flow com-
putation, and then computing the average rotation as
the weighted average of the four central interframe ro-
tations, with weights equal to 1

18 (1, 8, 8, 1).
The de-fixation procedure has been applied to the

flow fields in the left column of Fig. 3 and the results
are shown in the right column. It is clear that for both
algorithms the de-fixated flow fields very closely re-
semble the ones computed on the original sequences

(except that the former are denser and less noisy). In
conclusion, we can see that, although stabilization can
arbitrarily change the inter-frame rotations over a short
sequence, it is still possible to extract a single fixating
rotation and to reconstruct the flow, as corresponding
directly to the original sequence.

3. Sequences

Three real-world driving sequences are used in the anal-
yses. The sequences have been recorded with a camera
rigidly installed behind the front shield of a moving
car2. All sequences are 18 seconds long and contain
450 frames at a resolution of 638 × 508 pixels. The
sequences contain a wide variety of inner-city driv-
ing situations. An example frame from each sequence
is shown in Figure 4. Stabilizing these sequences is
nontrivial, as the scenes exhibit large depth variability
and stable features (e.g. the horizon) are lacking. The
sequences differ with respect to the curvature of the
trajectory, illumination conditions, and the overall con-
dition of the road. The latter directly relates to camera
jitter. Note that even though the camera is fixed relative
to the car, this does not imply a constant heading. When
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Figure 4. Example frames from the three sequences used. All sequences consist of 450 frames and contain a wide variety of driving situations
and illumination conditions.

the car moves along curves or overtakes other cars, the
heading strongly deviates from a forward translation.
Although only driving sequences are used in the eval-
uation, no characteristics specific to this kind of se-
quences (such as the high speed or the presence of a
road) are exploited by the method. Consequently, the
method is applicable in more general situations involv-
ing self-motion (e.g. walking in natural scenes).

4. Results

In this section, the effects of stabilization on the com-
puted optic flow are investigated by comparing density
and global structure of the optic flow fields computed
before and after stabilization. To show the merits of
our proposed fixation approach, two other stabilization
methods are included in the comparison as well. Both
techniques are explained next.

4.1. Alternative Stabilization Techniques

The first technique (TRA) registers two images by es-
timating a 2D translation globally, using the whole im-
ages. This mechanism is typically used in electronic
stabilization systems of commercial cameras. In our
implementation, images are matched by applying the
normalized cross correlation technique to the entire im-
ages. Although time-consuming, this is effective.

The second technique (PHC) is more sophisticated
and estimates the best-fitting affine transformation (2D
translation, 2D rotation, and scale) between two im-
ages. As mentioned in the introduction, for scenes with
minimal depth variation this transformation largely ac-
counts for the camera motion. The affine transforma-
tion is found by performing phase correlation, both in

the original space (to find the 2D translation) and in
log-polar space (to find the rotation and scale) (Reddy
and Chatterji, 1996).

Both registration techniques are applied in the stabi-
lization framework explained in Section 2.1. In a sim-
ilar fashion as the proposed method, all frames of the
short sequence are matched to the center frame. Only
consecutive frames are registered and the estimated
transformations are accumulated. A similar procedure
to the one described in Section 2.4 is used to compute
the average transformations for TRA and PHC, which
can be used to reconstruct the original flow fields from
the stabilized if desired.

4.2. Optic Flow Reliability Measures

When evaluating the density and global structure of the
optic flow fields, only reliable flow vectors are consid-
ered. Two different reliability measures are computed
for each flow vector and only if both agree, the flow
vector is retained.

A first measure of reliability is provided by the optic
flow algorithms themselves. For LUC, a velocity esti-
mate is retained if the least-squares matrix used in solv-
ing the gradient constraint equation (a weighted version
of Eq. 6) is invertible (Barron et al., 1994). GAU con-
siders a full velocity estimate to be reliable if at least
five component velocities are used in its determina-
tion (a total of 11 component velocities are computed
at each location). A component velocity is rejected if
the corresponding filter pair’s phase information is not
linear over the short sequence.

In addition to this first measure, a second reliabil-
ity measure is computed. This measure, the image
reconstruction quality, is independent of the flow
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algorithm and allows for flow field transformations
(e.g. de-fixation) before evaluation. Given the optic
flow vector (ẋ, ẏ) at location (x, y) and time instant
t , we define the image reconstruction quality as the
normalized correlation between the intensity values of
small windows centered at (x, y) and (x + ẋ, y + ẏ) in
frames t and t + 1 respectively. A flow vector is con-
sidered reliable when this correlation exceeds 0.9. The
correlation is computed over windows of size 15 × 15
pixels and cubic interpolation is used to achieve sub-
pixel accuracy in the comparison. Measures based on
the reconstruction quality have been shown to yield
adequate performance in evaluating flow vector qual-
ity (Lin and Barron, 1995).

4.3. Optic Flow Field Density

The flow field density is the number of reliable flow vec-
tors divided by the number of pixels. For the original
flow fields, the image reconstruction quality is eval-
uated directly on the original images. For the stabi-
lized flow fields, the average effect of the stabilizing
transformations is first removed from the flow fields,
using the de-fixation procedure for FIX and similar
reconstruction procedures for TRA and PHC. In this
way, the reconstruction quality is also evaluated on the
original images. This allows for a more direct com-
parison between the different flow fields. Note that
this also validates that the stabilization and reconstruc-
tion procedures preserve the dynamic aspects of the
sequence. Table 1 contains the average density of re-
liable flow vectors before and after stabilization for
all algorithms on all three sequences. Since the den-
sity varies widely across frames, the frame index is in-
cluded as a factor in a two-way ANOVA. Using a Tukey
multiple-comparison test (Hsu, 1996), the significance
of all individual pairwise differences in mean density

Table 1. Average flow field density (in percent) obtained on the original
sequence (ORG) and after stabilization using 2D translation (TRA), phase
correlation (PHC), and fixation (FIX). The mean density is underlined if all
pairwise differences in which the respective algorithm occurs are significant.
For each combination of sequence and optic flow algorithm, the joint signifi-
cance level of all pairwise differences is 0.05.

LUC GAU

seq ORG TRA PHC FIX ORG TRA PHC FIX

city1 21.3 21.6 26.8 22.0 24.2 18.4 19.4 27.6
city2 21.5 21.8 24.7 23.0 22.1 20.4 21.2 27.0
city3 15.9 17.6 23.2 19.3 14.8 15.1 15.6 23.0

is assessed at the joint significance level of 0.05. The
mean density is underlined in the table if all pairwise
differences in which the respective algorithm occurs
are significant. This analysis is repeated for each com-
bination of sequence and optic flow algorithm.

For the proposed method FIX, stabilization results in
a significant increase in flow density as compared to the
original sequence on all occasions. For optic flow algo-
rithm LUC, we see that FIX performs better than TRA
but is outperformed by PHC on all sequences. This is
due to the estimation of scale by the registration compo-
nent of PHC, which results in smaller displacements in
the stabilized sequences on average (see also Figure 5).
As a consequence of this, the number of flow vectors
that are within the acceptable magnitude bounds of
the single-scale flow algorithm increases. Even though
this is also the case for optic flow algorithm GAU, a
very different result is obtained. Here PHC and TRA
perform much worse than FIX, and the obtained den-
sities are not significantly different from those com-
puted on the original sequence (they are even smaller
for city1). The reason for this weak performance is that
both PHC and TRA are whole-image techniques that
lack a tracking component. In other words, they do not
guarantee that the same features are matched over the
entire short sequence, as does the proposed method.
This is not a problem if the model employed by the
registration technique is a good approximation of the
camera movement, but due to the rich scene structure
of the sequences used, this is not the case here. Al-
though PHC yields good results when registering two
frames, inconsistencies occur in longer sequences. As
a result, the local velocities no longer remain constant
and the estimates are rejected by the reliability mea-
sure of GAU. It is clear from the results that this effect
strongly outweighs the advantages resulting from the
average magnitude reduction. This effect is weaker for
LUC since this optic flow algorithm strongly smooths
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the sequences before estimating the gradients. As a
consequence, the reliability measure is less sensitive to
small inaccuracies. This smoothing however leads to
less accurate flow estimates (Gautama and Van Hulle,
2002).

4.4. Global Flow Field Structure

As discussed in the introduction, fixation renders cer-
tain global flow field properties more predictable. In
particular, speed and homogeneity of the flow vec-
tors tend to increase with distance from the fixation
point. The speed effects can be quantified by evaluat-
ing the mean and standard deviation of the flow vector
magnitude as a function of eccentricity (the fixation
point is the image center). These values are computed
by averaging, for each frame, the flow vector magni-
tudes within specific eccentricity rings and summariz-
ing these values over all sequences. The results are
shown in Figure 5. The mean and standard deviation of
the magnitudes are shown in the left and right columns
respectively. The results are qualitatively similar for
both optic flow algorithms.

For the original sequence (dashed lines) and TRA
(dotted lines), the mean magnitude increases slightly
with eccentricity and the standard deviation remains

Figure 5. Mean (left column) and standard deviation (right column) of the optic flow vector magnitude as a function of eccentricity with
and without stabilization. The results have been summarized over all sequences and are shown in the top and bottom row for LUC and GAU
respectively.

large throughout, as compared to the other algorithms.
As expected, for PHC (dash-dotted lines) the mean
magnitudes are strongly reduced at all eccentricities.
The standard deviation is also much smaller. This
renders the magnitude of the velocity vectors well-
predictable, but less so near the fovea.

Finally, the results for the proposed method FIX
(solid lines) show a very strong upward trend in the
mean motion magnitudes and a small standard devia-
tion throughout. Note that this does not necessarily im-
ply that after stabilization, the flow field is purely trans-
lational with focus of expansion in the center (see e.g.
the stabilized flow field in Figure 1B). Differences with
PHC occur near the fovea, where FIX results in smaller
magnitudes and standard deviations, and at large eccen-
tricities, where the mean magnitudes are larger for FIX.

In conclusion, both the proposed stabilization by fix-
ation and PHC render the global structure of the optic
flow fields more predictable. The structure imposed
by the proposed method is however much more pro-
nounced. As can be expected from a fixation-based
system, the image is very well stabilized near the cen-
ter. In this way, static image processing in general be-
comes much easier at this location. For a system that
has to perform many tasks at once, this may be very
important.
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5. Conclusion

The proposed method achieves stabilization by fixating
short image sequences. After stabilization, optic flow
computation is greatly facilitated. It has been argued
that this processing order and the techniques devel-
oped to achieve it, can provide important advantages
that enable a more robust extraction of behaviorally
relevant information, such as camera motion, structure
from motion, and independent motion. First, the im-
proved flow density allows for a more accurate ego-
motion estimation using egomotion algorithms that are
proven consistent (Zhang and Tomasi, 2002). Second,
during fixation, the number of parameters required to
describe the egomotion is reduced from five to four.
Last, fixation renders the global flow field structure
better predictable and results in a consolidation of in-
formation near the fovea, which is advantageous for
the application of optimized noise filtering and/or data
compression techniques. This increased structural con-
sistency also enables one to define, in advance, sensible
space-variant parameters for single-scale optic flow al-
gorithms.

Although possible extensions related to the compen-
sation of z-axis rotation have not yet been included
in the algorithm, significant quantitative improvements
of stabilization with respect to optic flow density and
global flow structure have been demonstrated. In an ex-
tensive comparison with established stabilization pro-
cedures, it has been shown that sequences stabilized
with the proposed method are better conditioned for
highly accurate optic flow algorithms. Furthermore, the
global structure of the resulting flow estimates is much
more pronounced.
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Notes

1. In this coordinate system the x-axis is horizontal, the y-axis ver-
tical and the z-axis coincides with the line of sight. The origin
corresponds to the optical center of the camera.

2. All sequences have been recorded in the context of the ECOVI-
SION project. Courtesy of Dr. Norbert Krüger, Aalborg Univer-
sity Copenhagen, and HELLA Hueck KG, Lippstadt.
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