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Abstract
In current computational models on oculomotor learning ‘the’ movement vector is
adapted in response to targeting errors. However, for saccadic eye movements, learn-
ing exhibits a spatially distributive nature, i.e. it transfers to surrounding positions. This
adaptation field resembles the topographic maps of visual and motor activity in the brain
and suggests that learning does not act on the population vector but already on the level
of the 2D population response. Here we present a population-based gain field model for
saccade adaptation in which sensorimotor transformations are implemented as error-
sensitive gain field maps that modulate the population response of visual and motor
signals and of the internal saccade estimate based on corollary discharge (CD). We fit
the model to saccades and visual target localizations across adaptation, showing that
adaptation and its spatial transfer can be explained by locally distributive learning that
operates on visual, motor and CD gain field maps. We show that 1) the scaled locality
of the adaptation field is explained by population coding, 2) its radial shape is explained
by error encoding in polar-angle coordinates, and 3) its asymmetry is explained by an
asymmetric shape of learning rates along the amplitude dimension. Learning exhibits
the highest peak rate, the widest spatial extension and a pronounced asymmetry in the
motor domain, while in the visual and the internal saccade domain learning appears more
localized. Moreover, our results suggest that the CD-based internal saccade representa-
tion has a response field that monitors only part of the ongoing saccade changes during
learning. Our framework opens the door to study spatial generalization and interference
of learning in multiple contexts.

Author summary
Understanding the neural mechanisms that enable adaptive motor behavior remains a
significant challenge in sensorimotor control. First, we show how learning associated
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with a specific target position spreads across the visual field. Second, we show how
learning acts on the two-dimensional population code for visual, motor and internal
movement representations. Third, our model dissociates the different sites of the ocu-
lomotor circuitry that plastically adapt to motor errors and serve the optimization of
future movements. In sum, our framework sets the stage to study how the spatially dis-
tributive representation of visuomotor signals shapes various adaptation phenomena,
like position-dependent adaptation in multiple target directions or sequential learning at
differentes sites in the visual field.

Competing interests: The authors have
declared that no competing interests exist.

Introduction
Human motor behavior is highly adaptive and strives for optimization [1,2]. A popular
paradigm to study the plasticity of the motor system is adaptation to an external perturbation
that is assigned to an internal sensorimotor failure [3–5]. During adaptation of saccadic eye
movements, a saccade target is shifted during movement execution such that the saccade vec-
tor adapts trial by trial to minimize the resulting motor error [6–8]. Current computational
models on saccade adaptation capture various aspects of this learning process, like error sen-
sitivity [9–11], motor memory [12], characteristics of the target step [13] and accompany-
ing changes in visuospatial target localization [14,15]. All these models use a spatially one-
dimensional framework in which adaptation acts on a single movement vector for a specific
goal position in the visual field. However, adaptation of saccadic eye movements has a spa-
tially distributive nature, i.e. it transfers to target positions in the surrounding [7,16,17]. Frens
& Van Opstal (1994) [18] have called this the adaptation field as it resembles how motor-
related activity is represented in the brain, e.g. by the movement fields in the SC [19–21].

The structure of the adaptation field exhibits four essential characteristics. 1) The adapta-
tion field is scaled, i.e. the transfer is a descending function of the distance to the adaptation
position [16,18,22]. 2) The adaptation field is radial. This means that the change of the sac-
cade vector – and not the change in the horizontal and vertical component – is transferred to
other saccades [7,17,23]. For example, if a horizontal saccade adapts to a horizontal inward
target step, the adaptation transfer to an oblique saccade shortens the entire saccade vector
while keeping its direction stable. By contrast, if the transfer were based on the horizontal and
vertical components separately, only the horizontal component of the oblique saccade would
shorten, altering its direction, but this is not the case. 3) The adaptation field is asymmet-
ric along the amplitude dimension. Hence, the transfer is higher for targets that are outward
than for targets that are inward of the adaptation position [17,24–26]. 4) Changes in pre- and
trans-saccadic visual target localization that accompany saccade adaptation show an adapta-
tion field as well [22,25]. The change in the pre-saccadic visual target localization shows that
not only the motor command is updated throughout adaptation but also the visuospatial rep-
resentation of the saccade goal itself [14,27,28]. The change of the trans-saccadic visual target
localization suggests that also the internal representation of the saccade based on corollary
discharge (CD) [29] is updated throughout adaptation [14,15].

The existence of the adaptation field means that learning occurs simultaneously for target
locations close to the adaptation position, i.e. for neurons that are tuned to saccades of similar
amplitude and direction. This suggests that learning already acts on the level of the response
distribution across a neural population that collectively encodes the amplitude and direction
of a saccade. Population coding mechanisms are known form the retinotopic movement fields
in the SC [19,20,30] but also in other brain regions involved in oculomotor control, like the
frontal eye fields (FEF) [31–33], parietal cortex [34,35] and the cerebellum [36].
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Here we present a population-coded model for the adaptation of saccade amplitudes in
which learning acts on three gain field maps for visual, motor and the internal saccade rep-
resentation. In each of these maps, a gain field centered at the saccade target modulates the
responses at neighboring portions in the map, thus changing the population response over the
course of adaptation. Note that our use of gain fields for adaptation is different from the use of
gain fields for coordinate transformations and spatial updating, areas where gain field models
have also been applied with great success [37–41]. We fit the model to saccade amplitudes and
visual target localizations during adaptation and demonstrate 1) through which mechanisms
the model explains the scaled, polar and asymmetric shape of the adaptation field, 2) how
visual, motor and CD learning rates are spatially distributed across the visual field, and 3) that
the CD-based internal saccade estimate has a response field that underestimates the ongoing
saccade changes during learning. Our findings support the idea that learning operates on the
level of a neural population that collectively encodes saccade amplitude and direction.

Results
Themodel describes amplitude adaptation of conjugate saccades in any direction within the
360 degree range across the fronto-parallel plane. Each signal is represented by a popula-
tion response across the two-dimensional retino-centric field. Locations are encoded by the
identity of the active population, i.e. by computing a population vector across the population
response. Based on Masselink & Lappe (2021) [14], adaptation operates at three sites of the
oculomotor circuitry, i.e. the sensorimotor transformations between visual, motor and inter-
nal movement representations. In the model at hand, these sensorimotor transformations are
implemented as visual, motor and CD gain field maps that scale the population response of
the respective signal and learn from error that is encoded in polar-angle coordinates, i.e. as a
directed amplitude error.

Model framework
Fig 1 presents the model framework. On the input map, the population response rI1 to the
pre-saccadic target is described by a two-dimensional Gaussian distribution (see Fig 1a).
Hence, the input map provides a place code representation of the pre-saccadic target posi-
tion in retinal coordinates. The activity on the input map is routed into the visual map where
the visual population response rV1 is scaled by the visual gain field 𝜔v (Fig 1b). The motor
gain field 𝜔m transforms the visual map into a motor map, leading to the motor population
response rM (Fig 1c). Before saccade onset, the CD gain field 𝜔cd transforms the motor repre-
sentation into a visual representation of the expected saccade size, i.e. the CDV map with the
population response rCDV (Fig 1d).

The visual, motor and the CD gain fields are implemented as a one-to-one connectivity
structure between corresponding positions in two maps, where each position in the respective
input map connects exclusively to the corresponding position in the respective output map.
The one-to-one connectivity structure ensures that the gain fields, i.e. reference frame trans-
formations, and its change across adaptation are explicit and analytically accessible. Based
on the one-to-one connective structure, the gain fields operate as a rate code on the popu-
lation responses, i.e. they scale the activity independently at each position on the map, and
this differential scaling across the map affects the overall population response. In contrast to
a place code mechanism, where the center of activity is shifted spatially on the map, the gain
fields modulate the magnitude of activity at fixed positions, indirectly shaping the population
response and the resulting population vector. The population vector is read out from these
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Fig 1. Model framework. (a) The population response rI1 to the pre-saccadic target on the input map is defined by a two-dimensional Gaussian distribution.
(b) The activity on the input map is routed into the visual map where the visual population response rV1 is scaled by the visual gain field𝜔v. The population
vector V⃗1 is computed across rV1 and specifies where the target is visually localized in retinal coordinates. (c) The visual map is transformed into a motor map
by the motor gain field𝜔m, resulting in the motor population response rM and the motor command M⃗, i.e. in motor coordinates. (d) Before saccade start, the
CD gain field𝜔cd transforms the motor map into a CDV map with the population response rCDV . The resulting population vector C⃗DV defines the internal
estimate of saccade size in visual coordinates. (e) A shift of the visual population response rV1 by C⃗DV defines the population response rV̂2 on the prediction

map that specifies ⃗̂V2, i.e. where the post-saccadic target is predicted to appear on the retina after saccade landing. (f) After saccade execution, the population
response rI2 to the post-saccadic target on the input map is routed into (g) the visual map by the visual gain field𝜔v. The visual population response rV2 defines
the visual post-saccadic target position V⃗2 in retinal coordinates. (h) In order to compute the error of the motor command, the oculomotor system first postdicts
the visual population response to the post-saccadic target back to pre-saccadic space. Hence, rV2 is shifted by C⃗DV, resulting in the population response rV̂1 on

the postdiction map. (i) The postdictive motor error E⃗ is computed as the error of the motor command M⃗ with respect to the postdicted target position ⃗̂V1.

https://doi.org/10.1371/journal.pcbi.1013041.g001

maps as the sum of the active population, leading to the visual pre-saccadic target representa-
tion V⃗1, the motor command M⃗ and the computed displacement of visual space C⃗DV, i.e. the
internal estimate of how large the saccade will be.

The motor gain field 𝜔m acts as an inverse model that transforms a visual representation
into a motor representation. If the whole motor gain field is equal to 1, i.e. if it is perfectly
tuned, the saccade will land on the visual pre-saccadic target location. The CD gain field 𝜔cd

acts as a forward dynamics model that re-transforms the motor representation into a visual
representation. If the whole CD gain field 𝜔cd is equal to 1, it is perfectly tuned such that C⃗DV

matches the actual saccade size.
Before saccade execution, the visuomotor system predicts where the target will appear on

the retina after saccade landing, i.e. by spatial updating. Hence, the visual population response
rV1 is shifted by the internal saccade estimate C⃗DV. The resulting population response rV̂2

on the prediction map specifies the predicted post-saccadic target in retinal coordinates ⃗̂V2

(Fig 1e). After saccade landing, the visual gain field transforms the population response rI2 to
the actual post-saccadic target on the input map (Fig 1f) into the visual population response
rV2 (Fig 1g). To compute the error of the motor command M⃗, the oculomotor system uses
the visual post-saccadic target representation to postdict where the target was in pre-saccadic
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coordinates. Hence, rV2 is postdicted back to pre-saccadic space based on a backward coordi-
nate shift by C⃗DV, resulting in the population response rV̂1

on the postdiction map (Fig 1h).
The postdictive motor error E⃗ is then computed as the error of the motor command M⃗ with
respect to the postdicted target position ⃗̂V1, i.e. E⃗ = ⃗̂V1 – M⃗ (Fig 1i).

Model simulations for inward and outward adaptation of saccades in
different directions
Fig 2 presents a model simulation about 200 adaptation trials with a 12.7 dva pre-saccadic tar-
get to the upper right with 45 angular degree. During saccade execution, the target is stepped
3 dva inward, i.e. against saccade direction.

Fig 2A depicts the state of the gain fields 𝜔v, 𝜔m and 𝜔cd on the first trial (Pre-adapt, col-
umn 1), on the last trial (Post-adapt, column 2), the change from pre- to post-adaptation
(Δ-adapt, column 3) as well as the pre- and post-adaptation states along the amplitude axis
(column 4). Before adaptation, each gain field is described as a flat plane, with activity lev-
els constant across the entire map. As the visuomotor gain fields are well calibrated before
adaptation (i.e. close to 1), the population responses rI1 , rV1 , rM and rCDV look very similar in
the pre-adaptation state (Fig 2B). Small gain field deviations from 1 become more apparent
in the population vectors (Fig 2E), showing, in this example, a slight underestimation of the
pre-saccadic target eccentricity V⃗1 (in line with [14,22,25]), a hypometric saccade M⃗ (in line
with [42–44]) and a fairly accurate internal saccade estimate C⃗DV at the start of adaptation.

Due to the accurate calibration of visuomotor gains in the pre-adaptation state, the ocu-
lomotor system predicts the post-saccadic target to appear in the fovea after saccade landing
(rV̂2

in Fig 2B, ⃗̂V2 in Fig 2E). However, due to the peri-saccadic inward target step, the tar-
get appears in the lower left quadrant with respect to the fovea (rI2 and rV2 in Fig 2C, V⃗2 in
Fig 2E). The population responses of the post-saccadic signals are higher but narrower than
those of the pre-saccadic signals as the post-saccadic target is less eccentric than the pre-
saccadic target. Due to the lower left position of the post-saccadic target, the postdicted target
V⃗1 is localized closer to the fovea in pre-saccadic coordinates (Fig 2C, 2E). Consequently, the
postdictive motor error E⃗ is directed inward, i.e. against saccade direction (Fig 2E).

The visuomotor gain fields 𝜔v, 𝜔m and 𝜔cd learn to nullify the postdictive motor error E⃗
along the amplitude dimension, resulting in a trial-by-trial shortening of the saccade vec-
tor M⃗ as well as a trial-by-trial inward shift of the visual pre-saccadic target position V⃗1 and
C⃗DV until E⃗ is nullified (Fig 2E). Learning occurs locally around the pre-saccadic target posi-
tion. Thereby, the learning distributions 𝛼v, 𝛼m and 𝛼cd (Fig 2D) determine the learning rate
for each position across the gain fields 𝜔v, 𝜔m and 𝜔cd. Hence, they specify how much each
position within each gain field learns from error on a given trial. The local elevation within
𝛼v and 𝛼m means that a postdictive motor error E⃗ < 0 along the amplitude dimension, i.e.
encoding an inward error, will lead to a local decrease of 𝜔v and 𝜔m. The local indentation
within 𝛼cd means that a postdictive motor error E⃗ < 0 along the amplitude dimension will lead
to a local increase of 𝜔cd. The 𝛼cd learning direction is reversed because 𝜔cd, acting as a for-
ward dynamics model, is the antagonist of 𝜔m, acting as an inverse model. As a consequence,
the downscaled population response in rM is upscaled in rCDV (Fig 2B), which, overall, leads
to an underestimation of the actual saccade change M⃗ by C⃗DV (Fig 2E, congruent with [14]
and [15]).

The learning distributions 𝛼v, 𝛼m and 𝛼cd are symmetrically shaped along the orthogo-
nal amplitude axis and asymmetrically shaped along the amplitude axis (Fig 2D). Thereby,
the learning rate falls sharply for positions inward of the adaptation target, i.e. closer to the
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Fig 2. Model simulation for inward adaptation of an oblique saccade to the right hemifield.The target is presented
12.7 dva to the upper right and steps 3 dva inward during saccade execution. (A)The visual, motor and CD gain fields
𝜔v,𝜔m and𝜔cd are well calibrated before adaptation (𝜔vC = 0.900,𝜔mC = 1.050,𝜔cdC = 1.020). Inward adaptation
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causes a local indentation in𝜔v and𝜔m and a local elevation in𝜔cd around the adaptation target position. (B) Due to
the accurate calibration in the pre-adaptation state, the input map rI1 and the visual, motor and CDV maps rV1 , rM and
rCDV look very similar. Hence, the prediction map rV̂2 expects the post-saccadic target to appear in the fovea. (C) Due
to the peri-saccadic inward target step, on the input map rI2 and the visual map rV2 , the post-saccadic target appears
in the lower left quadrant with respect to the fovea. The actual location of the post-saccadic target is used to update the
pre-saccadic target position on the postdiction map rV̂1 . (D)The learning distributions 𝛼v, 𝛼m and 𝛼cd determine the
rate of learning for each position in the visual field. They exhibit an asymmetric shape along the amplitude dimension
with a prolonged expansion into the periphery (𝜙v = 0.002, 𝜙m = 0.002, 𝜙cd = -0.002, 𝜎vF = 1.00, 𝜎mF = 2.00, 𝜎cdF
= 1.50, 𝜎vP = 3.50, 𝜎mP = 7.00, 𝜎cdP = 6.00, 𝜎vO = 2.00, 𝜎mO = 4.00, 𝜎cdO = 3.00). (E)The visual pre-saccadic target
V⃗1, the motor command M⃗ and the internal saccade estimate C⃗DV adapt to minimize the postdictive motor error E⃗.
Further depicted signals are the postdicted pre-saccadic target ⃗̂V1, the predicted post-saccadic target ⃗̂V2 and the visual
post-saccadic target V⃗2. (F)The visual, motor and CDV adaptation fields and the post-saccadic localization exhibit a
scaled, radial and asymmetric shape.

https://doi.org/10.1371/journal.pcbi.1013041.g002

fovea, and more gradual for positions outward of the adaptation target. This results in non-
uniform adaptation fields of the visual pre-saccadic target position V⃗1, the motor command
M⃗ and the computed displacement of visual space C⃗DV. Fig 2F presents these adaptation
fields, i.e. the change of the signals from the pre- to the post-adaptation state. Consistent
with Collins et al. (2007) [25], Schnier et al. (2010) [22], Masselink & Lappe (2021) [14] and
Masselink et al. (2023) [15], there is most adaptation and most transfer to other positions
in the motor command M⃗, i.e. the saccade vector, a medium change in C⃗DV, and a rather
small change in the visual pre-saccadic target position V⃗1. The amount of learning, its spatial
distribution as well as its asymmetry along the amplitude dimension are determined by the
shape of the learning distributions 𝛼v, 𝛼m and 𝛼cd. In addition, in the lower right plot (ΔPost-
saccadic localization), we present the expected change in an experimental task in which sub-
jects have to visually localize after saccade landing where the pre-saccadic target was (see
Results and Methods below).

When the motor command M⃗ has converged to a new steady state, the saccade lands close
to (but not on) the post-saccadic target (Fig 2E; as known from [7,17,45,46]) and the postdic-
tive motor error E⃗ is nullified.

While Fig 2 demonstrated inward adaptation of an oblique saccade to the right hemi-
field, we show an example simulation for outward adaptation of a horizontal saccade to the
left hemifield in Fig 3. We choose different adaptation directions, saccade directions, and
hemifields to demonstrate the model’s functionality across a broad range of possible situa-
tions, i.e. amplitude adaptation in both directions across the full 360 degree saccade range.
In the simulation shown in Fig 3, the pre-saccadic target is placed 9 dva to the left on the
horizontal meridian, and the target is stepped 3 dva outward during saccade execution, i.e.
in saccade direction. In this case, the postdictive motor error E⃗ is > 0 along the amplitude
dimension (Fig 3E), teaching the visual gain field 𝜔v and the motor gain field 𝜔m to locally
increase and the CD gain field 𝜔cd to locally decrease specified by the learning distributions
𝛼v, 𝛼m and 𝛼cd (Fig 3A, 3D). This leads to a gradual increase of the motor command M⃗, i.e.
to saccade lengthening, and to an outward shift of the visual pre-saccadic target position
V⃗1. Consistent with with Masselink & Lappe (2021) [14], C⃗DV reflects a lengthening of the
saccade but still underestimates its size. Moreover, in line with Kojima et al. (2004) [47],
Panouilleres et al. (2008) [48] and Pelisson et al. (2010) [26], outward adaptation converges
with a larger remaining distance between the saccade landing location and the post-saccadic
target than inward adaptation (see motor command M⃗ and V⃗2 in Fig 3E compared to Fig 2E).
Fig 3B–3C shows the population responses of the pre- and the post-adaptation state as well as
the change across adaptation.
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Fig 3. Model simulation for outward adaptation of a horizontal saccade to the left hemifield.The target is pre-
sented 9 dva to the left and steps 3 dva outward during saccade execution. (A)The visual, motor and CD gain fields
𝜔v,𝜔m and𝜔cd are well calibrated before adaptation (𝜔vC = 0.900,𝜔mC = 1.050,𝜔cdC = 1.020). Outward adaptation
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causes a local elevation in𝜔v and𝜔m and a local indentation in𝜔cd around the adaptation target position. (B) Due to
the accurate calibration in the pre-adaptation state, the input map rI1 and the visual, motor and CDV maps rV1 , rM and
rCDV look very similar. Hence, the prediction map rV̂2 expects the post-saccadic target to appear in the fovea. (C) Due to
the peri-saccadic outward target step, on the input map rI2 and the visual map rV2 , the post-saccadic target appears on
the left horizontal meridian with respect to the fovea. The actual location of the post-saccadic target is used to update the
pre-saccadic target position on the postdiction map rV̂1 . (D)The learning distributions 𝛼v, 𝛼m and 𝛼cd determine the
rate of learning for each position in the visual field. They exhibit an asymmetric shape along the amplitude dimension
with a prolonged expansion into the periphery (𝜙v = 0.002, 𝜙m = 0.001, 𝜙cd = -0.001, 𝜎vF = 1.50, 𝜎mF = 3.00, 𝜎cdF
= 2.00, 𝜎vP = 3.00, 𝜎mP = 6.00, 𝜎cdP = 4.00, 𝜎vO = 2.00, 𝜎mO = 4.00, 𝜎cdO = 3.00). (E)The visual pre-saccadic target
V⃗1, the motor command M⃗ and the internal saccade estimate C⃗DV adapt to minimize the postdictive motor error E⃗.
Further depicted signals are the postdicted pre-saccadic target ⃗̂V1, the predicted post-saccadic target ⃗̂V2 and the visual
post-saccadic target V⃗2. (F)The visual, motor and CDV adaptation fields and the post-saccadic localization exhibit a
scaled, radial and asymmetric shape.

https://doi.org/10.1371/journal.pcbi.1013041.g003

Population coding, polar-angle error and asymmetric learning
distributions explain the spatial layout of the adaptation field
The adaptation field model reflects essential properties of oculomotor learning and its trans-
fer to spatial positions in the surrounding (Figs 2F and 3F). 1) The adaptation field is scaled
with most adaptation at the primary target position and less adaptation at neighboring tar-
get positions (in line with [16,18,22]). The model produces this scaled locality because learn-
ing is implemented to act on the population code representation of visuomotor signals. 2)
The adaptation field is radial such that learning acts on the amplitude representation of the
saccade and not separately on the horizontal and vertical saccade components (consistent
with [7,17,23]). For example, in Fig 3, outward adaptation of horizontal leftward saccades
produces oblique saccade changes for targets in the upper and in the lower part of the visual
field, rather than isolated horizontal changes as it would be the case if adaptation transfer
were component-specific. In Fig 2, inward adaptation of saccades to the upper right produce
oblique saccade changes on both sides of the amplitude axis. The oblique shape is reproduced
because in the model, learning is implemented to operate in polar-angle coordinates, i.e. by
a directed amplitude-error instead of a horizontal and a vertical error component (for polar-
angle encoding see [49,50]). This is in line with the notion that learning operates in oculomo-
tor areas where saccades are represented by their amplitude and direction and not in more
peripheral structures, i.e. in the brain stem, where saccade representations are split into ver-
tical and horizontal components before being sent to the eye muscles (in line with [23,24,51]).
3) The adaptation field is asymmetric along the amplitude dimension, i.e. the amount of trans-
fer falls more sharply for targets inward of the primary target position and more gradually for
targets outward of the primary target position (Figs 2F and 3F; consistent with [17,24–26]).
In the model, this asymmetry is explained by an asymmetric distribution of learning rates
along the amplitude axis. 4) Not only the saccade vector but also the pre- and post-saccadic
target localizations and C⃗DV show an adaptation field that is scaled, radial and asymmet-
ric [14,15,27,28]. In Figs 2F and 3F, V⃗1 is equivalent to where subjects would localize a briefly
flashed target during fixation (pre-saccadic target localization) and M⃗ is equivalent to the
saccade vector.

Spatial transfer occurs for visual, motor and internal saccade
representation
To test the model, we experimentally measured saccade adaptation with a 12 dva rightward
target that stepped 3 dva inward during saccade execution (Fig 4A–4B). Before and after
adaptation, we measured saccades as well as pre- and post-saccadic target localizations for 11
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Fig 4. Experimental design. (A) A saccade trial was performed with a 12 dva rightward stepping target, that, from
the adaptation phase onwards, jumped 3 dva inward during saccade execution. In a pre-saccadic localization trial,
a stimulus was briefly flashed for 26.7 ms at one of 11 probe positions. Subjects had to keep their gaze fixated at the
now invisible fixation position while localizing where they had perceived the flash with a mouse cursor. In a post-
saccadic localization trial, the fixation target stepped to one of the 11 probe positions. After 40-50 ms, a stimulus was
flashed for 26.7 ms nearby. Following saccade execution, subjects had to stay fixated at the saccade landing location
while localizing where they had perceived the flash with a mouse cursor. In case their gaze deviated more than 4
dva, a beep tone reminded subjects to stay fixated at the saccade landing position (or at the fixation position in pre-
saccadic localization trials). Please note that the yellow circle indicates eye position and was not visible on the screen.
(B) In a saccade trial, the target was presented 12 dva to the right on the horizontal meridian with a 3 dva inward step
during saccade execution from the adaptation phase onwards. (C)The probe targets were arranged on two invisible
concentric circles with a radius of 3 dva and 6 dva around the adaptation target position. (D)The pre-adaptation and
the post-adaptation phases tested the state of saccades, pre- and post-saccadic localizations for the 11 probe positions.
The adaptation phase consisted of 200 saccade trials with peri-saccadic inward target step to induce adaptation.

https://doi.org/10.1371/journal.pcbi.1013041.g004
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probe positions, i.e. for the adaptation target and 10 positions in the surrounding (Fig 4C–
4D). In pre-saccadic localization trials, a stimulus was briefly flashed at one of the 11 probe
positions. Subjects had to localize with a mouse pointer where they had perceived the stim-
ulus while still holding gaze at the fixation location (Fig 4A). This served to fit the visual pre-
saccadic target position V⃗1 at the 11 probe positions before and after adaptation. In the post-
saccadic localization trials, a saccade target was presented at one of the 11 probe positions and
a stimulus was briefly flashed close to the saccade target. After saccade execution to the target,
the display was completely dark and subjects had to localize the perceived flash position with
the mouse pointer while holding gaze at the saccade landing position (Fig 4A). If the post-
saccadic target localization matches the pre-saccadic target localization, the spatial integration
between the pre- and the post-saccadic visual scene is correct, i.e. the computed displacement
of visual space C⃗DV matches the actually performed saccade. By contrast, a deviation between
the pre- and the post-saccadic target localization quantifies how much C⃗DV deviates from the
actually performed saccade (Fig 5C). Hence, the combination of pre- and post-saccadic local-
ization trials and saccade amplitudes served to retrieve C⃗DV in the experimental results and to
fit C⃗DV in the modeling results.

Fig 5A depicts the mean horizontal saccade amplitude that, starting with 11.9 ± 0.5
dva (pre-adaptation phase), was gradually shortened trial by trial by -2.4 ± 0.9 dva (pre-
adaptation phase until last 8 trials of the adaptation phase, t(12) = -6.46, p < .001). Fig 5B
presents the mean change from the pre- to the post-adaptation phase for saccade landing
locations, pre- and post-saccadic target localizations and C⃗DV. The saccades show a strong
adaptation field, including scaling, radiality and asymmetry, and significant amplitude short-
ening at all probe positions (p≤ .002). The amplitude of the pre-saccadic localization exhib-
ited a marginally significant reduction of -0.6 ± 0.9 dva at the adaptation target position
(t(12) = -2.15, p = .053) and a significant reduction at the positions 3 dva above and below the
adaptation target (t(12) = -2.93, p = .013 and z = -2.27, p = .023). The pre-saccadic localiza-
tions at all other positions did not show substantial adaptation (p≥ .008). Hence, the adapta-
tion effect of the pre-saccadic localization is small and its transfer is mainly local. The adap-
tation of the post-saccadic localization and its transfer was more pronounced with a signifi-
cant change of -1.2 ± 0.6 dva at the adaptation target (t(12) = -7.64, p < .001) and significant
changes at eight other probe locations (p≤ .013; the remaining two positions were not signifi-
cant with p≥ .153). The CDV signal demonstrates an adaptation field with a significant ampli-
tude shortening of -0.9 ± 1.0 dva at the adaptation target location (t(12) = -3.20, p < .008)
and for all probe positions above, below and outward of the adaptation target (p≤ .047). C⃗DV

changes at the three probe positions inward of the adaptation target did not show significant
effects (p≥ .139).

The distribution of learning differs between gain field maps
Fig 6 presents the model fit to the subjects’ mean data across the 200 adaptation saccades and
the pre- and post-adaptation state of V⃗1 (fitted to pre-saccadic localizations), ⃗̂V2 (fitted to
post-saccadic localizations with respect to saccade landing) and M⃗ (fitted to saccade vectors)
across the 11 probe positions. Table 1 provides all fitted parameters.

Fig 6A shows the gain fields 𝜔v, 𝜔m and 𝜔cd in the pre-adaptation state (left column) that
we fitted each as a uniform, horizontal plane defined by the fitted constants 𝜔vC = 0.978,
𝜔mC = 0.962 and 𝜔cdC = 1.020 (Fig 6A). Hence, the gain fields were fairly well calibrated in
the pre-adaptation state, but, with 𝜔vC and 𝜔mC being slightly < 1, the visual and motor gain
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Fig 5. Experimental results. (A) Saccade amplitude shortening during the adaptation phase (subject mean ± SE). (B) Adaptation fields
for pre-saccadic localization, post-saccadic localization, saccades and CDV (pre- to post-adaptation mean across subjects with individual
subject data in the background). The saccade amplitudes show the strongest, clearly shaped adaptation field, CDV shows a medium sized
adaptation field and post-saccadic localization show a smaller sized adaptation field. The adaptation effect is limited for pre-saccadic local-
izations with a marginally significant amplitude reduction at the adaptation target position (p = .053). Significant transfer can be found 3
dva above and below the adaptation target. (C) Illustration of CDV quantification. Before adaptation, the pre-saccadic flash is localized at
the same position if judged during fixation (pre-saccadic localization) or after performing a saccade (post-saccadic localization). Hence,
the spatial integration between the pre- and post-saccadic visual scene is correct such that CDV accurately reflects the saccade vector. Dur-
ing adaptation, a spatial gap opens up between pre- and post-saccadic localization, indicating that CDV has decoupled from the actually
performed saccade.

https://doi.org/10.1371/journal.pcbi.1013041.g005

fields reflect the slight underestimation of pre-saccadic target eccentricity as well as the sac-
cade undershoot in the pre-adaptation state (Fig 6E). The post-saccadic target is predicted to
appear in the fovea (rV̂2

in Fig 6B, left column). However, due to the intra-saccadic inward
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Fig 6. Model fit to the adaptation data.The target is presented 12 dva to the right and steps 3 dva inward during
saccade execution. (A)The visual, motor and CD gain fields𝜔v,𝜔m and𝜔cd are well calibrated before adaptation.
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Inward adaptation causes a local indentation in𝜔v and𝜔m and a local elevation in𝜔cd around the adaptation target
position. (B) Due to the accurate calibration in the pre-adaptation state, the input map rI1 and the visual, motor and
CDV maps rV1 , rM and rCDV look very similar. Hence, the prediction map rV̂2 expects the post-saccadic target to
appear in the fovea. (C) Due to the peri-saccadic inward target step, on the input map rI2 and the visual map rV2 ,
the post-saccadic target appears on the left horizontal meridian with respect to the fovea. The actual location of the
post-saccadic target is used to update the pre-saccadic target position on the postdiction map rV̂1 . (D)The shape of
the learning distributions 𝛼v, 𝛼m and 𝛼cd differs between gain field maps. The motor learning distribution 𝛼m exhibits
the highest peak rate, the widest spatial span and the largest asymmetry along the amplitude dimension, i.e. it largely
expands into the periphery. The asymmetry is followed by the smaller and less peaked visual learning distribution
𝛼v. The CD learning distribution 𝛼cd reaches the smallest peak rate and exhibits a fairly concentric shape around the
adaptation target position. (E)The visual pre-saccadic target V⃗1, the motor command M⃗ and the internal saccade esti-
mate C⃗DV adapt to minimize the postdictive motor error E⃗. The shaded, blue area in the background are the measured
saccade vectors ± SE. Further depicted signals are the postdicted pre-saccadic target ⃗̂V1, the predicted post-saccadic
target ⃗̂V2 and the visual post-saccadic target V⃗2. (F)The visual, motor and CDV adaptation fields and the post-saccadic
localization exhibit a scaled, radial and asymmetric shape. The shaded areas depict the data and the arrows depict the
model fit.

https://doi.org/10.1371/journal.pcbi.1013041.g006

Table 1. Fitted parameters of the model.
Description Visual Motor CD
Gain fields 𝝎v, 𝝎m, 𝝎cd:
Constants in the pre-adaptation state 𝜔vC = 0.978 𝜔mC = 0.962 𝜔cdC = 1.020

Learning distributions 𝜶v, 𝜶m, 𝜶cd:
Scaling factors 𝜙v = 0.005 𝜙m = 0.008 𝜙cd = -0.003
Foveal width 𝜎vF = 0.55 𝜎mF = 0.48 𝜎cdF = 1.10
Peripheral width 𝜎vP = 2.01 𝜎mP = 2.66 𝜎cdP = 1.18
Orthogonal width 𝜎vO = 1.04 𝜎mO = 1.06 𝜎cdO = 1.13

Here we report the fitted parameters of the model. The gain field constants𝜔vC ,𝜔mC and𝜔cdC were fitted to the pre-adaptation state. The
parameters of the learning distributions were fitted to the trial-by-trial saccade adaptation and the post-adaptation state. The foveal, peripheral
and orthogonal widths of the learning distributions are defined in dva. The learning distributions were restricted to extend maximally into the
fovea with the constraints 𝜎vF ≤ 1

3 𝛿1 , 𝜎mF ≤ 1
3 𝛿1 and 𝜎cdF ≤ 1

3 𝛿1 with 𝛿1 being target eccentricity. The adaptation drop factor 𝜅 = 0.334 was
fitted to capture the percentage of adaptation decline from the end of the adaptation phase to the post-adaptation phase. Fixed parameters were

the pre-saccadic target P⃗1(n) =
⎛
⎝
12
0
⎞
⎠
and the peri-saccadic target step P⃗s(n) =

⎛
⎝
–3
0
⎞
⎠
in saccade adaptation trials.

https://doi.org/10.1371/journal.pcbi.1013041.t001

target step, the target actually appears on the left horizontal meridian with respect to the fovea
after saccade offset (rV2 in Fig 6C, left column). Thus, the postdictive motor error (E⃗ in Fig 6E)
teaches the gain fields 𝜔v, 𝜔m and 𝜔cd to adapt for error minimization.

Fig 6D depicts the fitted learning distributions 𝛼v, 𝛼m and 𝛼cd that define how much is
learnt from error on a given trial at each position in the field. The motor learning distribu-
tion 𝛼m exhibits the highest peak rate of 𝜙m = 0.008 at the adaptation target location com-
pared to the visual and CD learning distributions with the fitted peak rates 𝜙v = 0.005 and
𝜙cd = -0.003. The CD learning distribution is negatively polarized as the forward dynamics
model is the counterpart of the inverse model. Moreover, the motor learning distribution 𝛼m
has the widest spatial expansion compared to the visual and the CD learning distributions 𝛼v
and 𝛼cd. To account for the asymmetry of the adaptation fields along the amplitude dimen-
sion, we fitted the Gaussian widths of the learning distributions independently for the foveal
and the peripheral amplitude direction with respect to the adaptation target, i.e. separately
for decreasing vs. increasing amplitudes. The motor and visual learning distributions 𝛼m and
𝛼v exhibit an asymmetric shape along the amplitude axis. 𝛼m extends 1.44 dva into the foveal
amplitude dimension (𝜎mF = 0.48 dva) and 7.88 dva into the peripheral amplitude dimension
(𝜎mP = 2.66 dva). 𝛼v is smaller than 𝛼m but also shows asymmetry with 1.65 dva expansion
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into the foveal amplitude dimension (𝜎vF = 0.55 dva) and 6.03 dva expansion into the periph-
eral amplitude dimension (𝜎vP = 2.01 dva). However, the asymmetry is more pronounced in
𝛼m than in 𝛼v. In the orthogonal amplitude dimension (that was fitted with one parameter
for both directions) 𝛼v and 𝛼m have almost the same widths (𝜎vO = 1.04, i.e. 3.12 dva expan-
sion in each direction; 𝜎mO = 1.06, i.e. 3.18 dva expansion in each direction). By contrast, the
CD learning distribution 𝛼cd does not follow the asymmetry but exhibits a fairly concentric
shape with 3.30 dva expansion in the foveal amplitude dimension (𝜎cdF = 1.10 dva), 3.54 dva
expansion into the peripheral amplitude dimension (𝜎cdP = 1.18 dva) and 3.39 dva into each
direction of the orthogonal amplitude dimension (𝜎cdO = 1.13 dva).

Fig 6F shows the adaptation fields, i.e. the change of V⃗1, M⃗, C⃗DV and of the post-saccadic
localization of the target in the respective experimental task. The shades in the background
are the data and the arrows in front are the model fit. The C⃗DV change is larger than the V⃗1

change as C⃗DV is a result of the large M⃗ change and the respective adaptation of 𝜔cd in the
opposite direction.

When the motor command M⃗ converges to a new steady state at the end of the adaptation
phase, the postdictive motor error E⃗ is almost nullified (Fig 6E). Consistent with Masselink &
Lappe (2021) [14] and Masselink et al. (2023) [15] C⃗DV monitors the actual saccade change
during adaptation but underestimates its size.

To account for the drop of the adaptation level that is usually observed between the end of
the adaptation phase and the subsequently measured after-effect in the post-adaptation phase,
we fitted the adaptation drop factor 𝜅 = 0.334. Hence, in the post-adaptation phase, the gain
fields 𝜔v, 𝜔m and 𝜔cd decayed by 33.4% towards the pre-adaptation state.

For goodness of fit, we obtained the residual standard errors RSEpre,post = 0.52 dva (pre- and
post-adaptation phase across horizontal and vertical saccade vectors, pre- and post-saccadic
localizations at the 11 probe positions) and RSEadapt = 0.23 dva (adaptation phase across
horizontal and vertical saccade vectors at the adaptation target position).

In sum, the distribution of learning differs between gain field maps. Motor learning of 𝜔m

exhibits the highest peak rate and covers the largest spatial area with a span of 9.32 dva along
the amplitude dimension and a pronounced asymmetry of 1:5.5, i.e. it largely expands into the
periphery. Visual learning of 𝜔v exhibits a medium sized peak rate, spans 7.68 dva along the
amplitude dimension and shows an asymmetry of 1:3.7 in favor of the periphery. Learning
of 𝜔cd occurs with a smaller peak rate in a fairly concentric area of 6.84 dva width along the
amplitude dimension. Along the orthogonal amplitude dimension, the widths of the learning
distributions are very similar.

Discussion
We have presented a model that explains adaptation of saccade amplitudes in any saccade
direction based on population-coded learning across visual, motor and CD gain field maps.
In the model, learning acts via a polar-angle encoded error on the two-dimensional popula-
tion codes for visual target localization, saccade amplitude and the internal representation of
the saccade based on corollary discharge (CD). We fitted the model to saccade amplitudes and
pre- and trans-saccadic visual localizations for different target positions before, during and
after adaptation to a peri-saccadic inward target step. We show that the spatial layout of the
adaptation field is explained by three mechanisms: 1) its scaled locality is explained by popu-
lation coding, 2) its radial shape is explained by learning operating in polar-angle coordinates,
and 3) its asymmetry is explained by an asymmetric shape of learning rates along the ampli-
tude dimension. Learning of the saccadic population code exhibits the highest peak rate, the
broadest extension along the amplitude dimension and the most pronounced asymmetry in
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favor of the spatial periphery, while for the visual and the internal saccade representation,
learning appears more localized. Our findings support the idea that learning acts on the level
of a neural population that collectively encodes the amplitude and direction of a saccade.
Moreover, our results suggest that not only the representation of the visual target position
and the saccade command but also the internal representation of saccade size has a response
field that monitors only part of the ongoing saccade changes during learning. Our model can
be used to study oculomotor learning in multiple contexts, e.g. how visuomotor behavior is
shaped by spatial generalization or interference of learning at different sites in the visual field.

Learning operates on gain field maps for visual, motor and internal
saccade representation
The gain field model implements visuomotor plasticity by adaptive visual, motor and CD gain
field maps that scale the response distribution and can learn from error.

Learning of the motor gain field covers the greatest spatial area, exhibits the highest peak
rate at the adaptation target position and a pronounced asymmetry along the amplitude
dimension, i.e. it expands far into the periphery. The size and peakedness of the motor learn-
ing distribution (as compared to the visual and the CD learning distribution) means that most
part of the error is credited to a failure of the saccadic motor command. On neural level, this
means that neurons that are tuned to saccades of intermediate distance to the adaptation tar-
get partially adapt, too. Thereby, the speed of saccade changes is driven not only by the high
peak rate but also by the width of the distribution, since the activities in the vicinity con-
tribute to the population vector that is computed across the motor population response. The
asymmetry of the learning distribution in favor of the periphery is consistent with experimen-
tal results of Collins et al. (2007) [25] and Schnier et al. (2010) [22].

Learning of the visual gain field means that part of the error is assigned to an internal fail-
ure of visual target representation. Changes of visual target localization at the adaptation tar-
get position are usually small but consistent [14,22,25,27,28,52,53], as is its transfer to sur-
rounding positions [22,25]. This is confirmed by our results in that changes of visual target
localization are smaller than saccade changes, and the visual learning distribution is notably
narrower than the motor learning distribution. In the model fit, the visual learning distri-
bution showed asymmetry in that it expands wider into the peripheral than into the foveal
direction. Yet, due to the small effect, we are cautious in interpreting this asymmetry. Thus,
it would be interesting to further examine the shape of the visual learning distribution with a
larger intra-saccadic target step and more transfer positions.

Learning of the CD gain field captures how well the forward dynamics model tracks the
ongoing motor changes during learning. Consistent with previous results, we found that the
internal saccade estimate reflects most of the saccade changes but still underestimates its
amount, i.e. it decouples from the actual saccade size [14,15,54–56]. This underestimation was
transferred to saccades to neighboring targets, i.e. the CDV adaptation field was less profound
than the saccade adaptation field. Accordingly, the CD learning distribution was confined to
a more local area as compared to the motor learning distribution, and appeared rather con-
centric around the adaptation target position. Yet, further studies are needed to draw secure
conclusions on the shape of CD learning across the visual field.

A plastic, population-coded internal representation of the saccade
Our approach to quantify the visuomotor system’s internal estimate of how large the saccade
will be (referred to as the CDV signal) is based on the comparison between the localization
of a briefly flashed stimulus with vs. without performing a saccade in between. Hence, after a
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saccade that lands without any visual references, subjects need to rely on their internal esti-
mate of saccade size in order to localize, in post-saccadic coordinates, the position of the
flash that was presented in pre-saccadic coordinates. A mismatch between these judgements
reveals a mismatch between the actual saccade and its internal representation, that, accord-
ing to our data, arises in the course of learning. These results are consistent with previous
studies that have demonstrated changes in post-saccadic localization at the adaptation target
position [22,25,55,57–59] and at transfer positions [22,25]. Yet, in Collins et al. (2007) [25]
and Schnier et al. (2010) [22], subjects localized a flash presented at the transfer position
after executing a saccade to the adaptation target (and not to the transfer position, as in our
paradigm). Hence, the results of Collins et al. (2007) [25] and Schnier et al. (2010) [22] did
not allow to draw conclusions on the internal estimate of saccades to targets other than the
adaptation target. As far as we know, our study is the first that demonstrates a transfer of CDV

changes to other saccades, i.e. that the internal saccade representation has an adaptation field.
The plasticity of the internal saccade estimate CDV and its transfer to nearby targets is at

odds with the assumption that CDV must always indicate the correct saccade vector. In our
view, this assumption is fed by the logic that a copy of the motor command, i.e. the efference
copy or corollary discharge [60–62], cannot deviate from the actual motor command, i.e. it
cannot be wrong. We agree, yet, a copy of the motor command is in motor coordinates and
hence, it cannot, by itself, indicate the saccade size in visuospatial coordinates. For this trans-
formation a forward dynamics model is needed that should be adaptive with respect to the
dynamics of the eye muscles, i.e. to whether the eye muscles are fatigued or strong [1,54,63–
65]. Hence, the accuracy of the internal saccade estimate CDV depends on the calibration of
the forward dynamics model. That the internal saccade estimate can deviate from the actual
oculomotor behavior is acknowledged for pursuit eye movements [66,67] and has been shown
for saccades when the SC-MD-FEF pathway for CD transmission is lesioned [68] or experi-
mentally perturbed [69–72]. Moreover, Cavanaugh et al. (2016) [72] demonstrated that inac-
tivation of MD thalamus in the macaque monkey causes a bias in trans-saccadic perception,
similar to our finding after adaptation of saccadic eye movements.

In our model, the plasticity of the forward dynamics model is implemented as plasticity of
a CD gain field map. This follows the idea of a population code representation for CDV that
explains why we find a CDV adaptation field, i.e. why adaptation of the internal saccade esti-
mate transfers to saccades in the vicinity. It seems worthwhile to test this idea. At least, popu-
lation coding mechanisms are known from areas that transmit the corollary discharge signal,
like the SC [19,20] and the FEF [31–33].

The scaled, radial and asymmetric shape of the adaptation field
Our data confirmed four essential properties of the adaptation field. First, the adaptation
field is scaled, i.e. it is locally limited with a peak at the adaptation target position and a grad-
ual decline to the outside [16,18,22]. Second, the adaptation field is radial, i.e. the transfer
of adaptation is oblique on both sides of the amplitude axis (and not parallel to the ampli-
tude axis; [7,17,23]). Third, the adaptation field, at least for the saccade domain, is asymmet-
ric along the amplitude dimension with more transfer to larger saccade amplitudes than to
shorter saccade amplitudes [7,17,23]. Forth, saccade changes are accompanied by changes in
pre- and trans-saccadic target localization that show an adaptation field as well [22,25].

In accordance with our model that mirrors these characteristics, the local scaling of adap-
tation fields can be explained if learning does not act on the population vector but already on
the level of the neuronal population that collectively encodes saccade amplitude and direction
(for polar-angle encoding see [49,50]). Moreover, the radial shape of the adaptation field can
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be explained if learning takes place upstream from the component decomposition of the sac-
cade [7,17,23,73], i.e. in polar-angle coordinates. In our model, this is reflected by the polar-
angle encoding of error that teaches the saccade amplitude to adjust instead of teaching its
separate horizontal and vertical components. By contrast, if learning acted on the horizontal
and vertical saccade components, the adaptation field should be parallel, and not oblique, to
the amplitude axis. In our model, the asymmetry of the adaptation field is explained by higher
learning rates in the visual periphery than in more foveal-directed positions. This could also
be caused by non-linear representations of saccade amplitudes, like along the rostral-caudal
axis of the SC where small amplitude saccades are over-represented compared to large ampli-
tude saccades [19]. Thus, a high number of neurons that are tuned to small saccades could
absorb part of the adaptive effect, leaving small amplitude saccades less affected by adaptation
at a medium-sized target position.

Neurophysiological sites of population-coded learning
Although our model is not intended as a detailed model of the physiology of saccadic adapta-
tion and contains a number of simplifications of the physiological details it can nevertheless
provide some conceptual indications regarding possible sites of population-coded learning.
Whether adaptation alters activity in the polar-angle eye movement map of the intermedi-
ate SC [19,20] remains a matter of debate. Several studies did not find a change in the locus
of SC activity during adaptation [74–76]. However, an increase in discharge rate has been
reported before the onset of adapted saccades in the SC [77] and along one of its descending
routes, i.e. in the nucleus reticularis tegmenti pontis (NRTP) [78] and in the caudal fastigial
nucleus (cFN) [79,80]. The cFN relays the output of the cerebellar oculomotor vermis which
is highly associated with error encoding and motor adjustments [63,81–83] and has been
shown to hold retinotopic properties [36]. The Purkinje cells in the oculomotor vermis are
sensitive to saccade direction and encode saccade amplitude. Yet, saccade amplitude is rather
encoded by the duration of the population activity than by spatial tuning [84,85]. Moreover,
the cerebellum holds interconnections with a variety of cortical areas, like the FEF and pari-
etal cortex [86–88]. These areas are involved in adaptation [26,89], show retinotopic organi-
zation [90–92] and population coding [31,33–35]. Hence, it is possible that these areas con-
tribute to plasticity of visual and motor representations and of the internal saccade represen-
tation during learning. A potential population code plasticity for the internal representation
of the saccade could be implemented along several routes that are known for corollary dis-
charge transmission, like from SC via MD thalamus to the FEF [29,93,94], from SC through
the thalamic pulvinar to parietal and occipital cortex [95,96], from the cerebellum through VL
thalamus to frontal cortex [97–99] and from FEF via the basal ganglia to SC [64,100].

Learning from postdictive motor error
In our model, gain field changes were driven by postdictive motor error. This means that the
oculomotor system derives a postdictive update of the pre-saccadic target based on post-
saccadic visual input and calculates the error of the motor command with respect to this
position. Minimization of postdictive motor error well explains the simultaneous changes of
saccade amplitude, pre- and post-saccadic localization [14,15,101] as well as its transfer to
nearby spatial positions, as shown in the present data. Most adaptation models explain sac-
cade changes only and use visual prediction error as the driving force of learning [9,12]. In
these models, the prediction is usually quantified as the fixed saccade undershoot that was
measured in the baseline, even if the saccade vector changes during learning. However, taking
the spatial gap that opens up between pre- and post-saccadic localization into account, i.e. the
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bias in the internal representation of the saccade, it becomes clear that visual prediction error
is not minimized during learning [14]. By contrast, learning from postdictive motor error
well explains changes of visual, motor and internal saccade representations and is compatible
with saccadic suppression of displacement [102,103] in that the world is assumed stable across
saccades.

Model choices and limitations
Our model does not reflect a detailed neural representation of all stages of the oculomotor
transformation but is a conceptual model that explains how adaptation is transferred to
neighboring positions across visual, motor and internal saccade representations. Hence, our
modeling approach adopts a set of simplifications in representing sensorimotor signals to
focus on the examination of the spatial shape of the learning transfer. We choose an exclu-
sively eye-centered reference frame, as it is widely represented in areas such as the SC and
FEF [41,104]. We model response fields as Gaussian [19,105], though we acknowledge that
motor response fields yield more complex and asymmetric profiles [106,107]. We implement
spatial updating through a simple shift of the population response by the internal estimate of
saccade size, simplifying the more complex neural processes involved in updating spatial rep-
resentations following eye movements [38–41]. Our model of the forward dynamics process
is also kept deliberately simple without referring to the detailed physiology, for example in
the cerebellum [108,109]. These choices serve to prioritize an interpretable isolation of how
learning is generalized across visual, motor and internal saccade maps.

Spatial generalization and interference of learning at different sites in the
visual field
We have used our gain field adaptation model to explain spatial transfer of learning, i.e. how
learning at a specific target position transfers to saccades of different amplitude and direc-
tion. Beyond that, our model can be used to explore various spatial dependencies of learning.
For example, in position-dependent adaptation, the saccade target may step inward in trials
to a specific primary target position, and step outward in trials to a different primary target
position. It has been shown that the oculomotor system is able to learn such conflicting tasks
demands [110–112]. However, it remains to be examined how these learning processes inter-
fere with each other, and how this depends on the spatial distance of the two targets. In addi-
tion, learning the same task demand at different primary target positions may lead to spatial
generalization of learning. Rolfs et al. (2010) [113] showed that learning from inward target
steps has roughly the same or even a slighly higher speed when performed across saccades in
random directions (referred to as global adaptation) as when the saccades were always per-
formed in the same direction. Our model could help to dissociate how much global adapta-
tion is boosted by spatial transfer, i.e. how much a saccade benefits from learning at neigh-
boring positions in previous trials, and how much of the global adaptation speed must result
from a different process that, e.g., could be driven by the error regularity across saccade direc-
tions. Moreover, our model could unravel how global adaptation is accompanied by changes
in visual target and internal saccade representation. Beyond that, sequential learning of differ-
ent task demands (e.g. learning from inward errors in a first block followed by outward errors
in the next block) may leave footprints in the population code that could manifest itself in the
temporal domain and hence, explain phenomena of motor memory [114]. These paradigms
could be used to further validate our model, that could, in turn, provide insights into the
underyling mechanisms.
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Interaction with direction adaptation
In future work, it would be interesting to extend the model to account for error direction in
addition to error amplitude. This could be achieved by introducing an additional direction
gain field for the visual, motor, and CD domains, allowing the model to adapt not only the
length of the population vector but also its direction. Such an extension would enable the
model to simulate adaptation to directional target jumps and make predictions about how
saccade direction adaptation unfolds over time. Moreover, this framework could be used to
investigate potential interactions between amplitude and direction adaptation, particularly
in cases where the target jump has both an amplitude and a directional component. Examin-
ing whether these two forms of adaptation operate independently or affect each other could
provide valuable insights into the neural mechanisms underlying saccade learning.

From a 1D to a 2D perspective in modeling oculomotor learning
The brain represents the visual world and our movement goals by spatially tuned popula-
tion codes in two-dimensional topographic maps. However, despite the shape of adapta-
tion transfer to nearby spatial positions, computational models of saccadic adaptation have
largely remained grounded in the classical perspective of one-dimensional movement vec-
tor adjustments. We think that oculomotor learning should be studied in a framework that
accounts for the two-dimensionality of visuomotor representations, in order to capture how it
shapes adaptation phenomena, like spatial transfer, spatial interference of learning, or motor
memory.

Methods
Participants
Data were recorded from N = 13 healthy subjects (26.4 ± 7.8 years, 5 female, 8 male) with
normal or corrected-to-normal vision who were naïve to the objectives of the experiment.

Ethics statement
All subjects gave written informed consent prior to the first recording session. The experi-
ment followed the 2008 Declaration of Helsinki and was approved by the Ethics Committee
of Department 7 (Psychology and Sport Science) of the University of Münster with protocol
number 2015-21-ML.

Model
Themodel represents each signal by a population response across the two-dimensional visual
field. Locations are encoded by population vectors that are calculated across the population
response described with the help of the two-dimensional Gaussian distribution:

f(p⃗;𝜇⃗,𝜎⃗) = exp(–((px – 𝜇x)
2

2𝜎2
x

+
(py – 𝜇y)2

2𝜎2
y
)) (1)

where p⃗ = ( pxpy ) is the retino-centric position, 𝜇⃗ = (
𝜇x
𝜇y ) is the center and 𝜎⃗ = ( 𝜎x𝜎y ) is the stan-

dard deviation of the Gaussian.
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Pre-saccadic computations. The population response rI1(p⃗,n) to the pre-saccadic target P⃗1
on the input map for trial number n is (Fig 1a)

rI1
(p⃗,n) = f(p⃗;P⃗1 ,𝜎⃗1)

∑p⃗ f(p⃗;P⃗1 ,𝜎⃗1)
(2)

with 𝜎1x = 𝜎1y = 1
3𝛿1 where 𝛿1 = |P⃗1|, i.e. target eccentricity. Hence, the width and the height

of the population response linearly depends on target eccentricity such that more peripheral
targets produce a broader but flatter population response. Moreover, the population response
has its limits in the fovea.

The visual gain field 𝜔v
(p⃗,n) routes the activity on the input map onto a visual map, result-

ing in the visual population response rV1
(p⃗,n) (Fig 1b):

rV1
(p⃗,n) = rI1

(p⃗,n) 𝜔v
(p⃗,n) (3)

The visual pre-saccadic target position is read out from the visual map by:

V⃗1
(n) = ∑

p⃗
rV1
(p⃗,n) p⃗ (4)

Hence, if the whole visual gain field 𝜔v
(p⃗,n) is equal to 1, the visual pre-saccadic target will

be accurately localized on the visual map.
The visual population response is scaled by the motor gain field 𝜔m

(p⃗,n) to transform the
visual map into a motor map (Fig 1c):

rM(p⃗,n) = rV1
(p⃗,n) 𝜔m

(p⃗,n) (5)

The motor population response rM(p⃗,n) determines the motor command:

M⃗(n) = ∑
p⃗
rM(p⃗,n) p⃗ (6)

Hence, the motor gain field 𝜔m
(p⃗,n) acts as an inverse model that transforms a visual rep-

resentation into a motor representation. If the motor gain field is perfectly tuned, the whole
motor gain field will be equal to 1 such that the saccade will land on the visual pre-saccadic
target location.

The motor population response is scaled by the CD gain field 𝜔cd
(p⃗,n) to transform the

motor map into a CDV map (Fig 1d):

rCDV
(p⃗,n) = rM(p⃗,n) 𝜔cd

(p⃗,n) (7)

Hence, the CD gain field 𝜔cd
(p⃗,n) acts as a forward dynamics model that re-transforms

motor coordinates back into visuospatial coordinates. The population vector across the CDV

map determines the computed displacement of visual space:

C⃗DV
(n) = ∑

p⃗
rCDV

(p⃗,n) p⃗ (8)
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If the whole CD gain field 𝜔cd
(p⃗,n) is equal to 1, it is perfectly tuned such that C⃗DV

(n)

matches the actual saccade size.
The population response rV̂2

(p⃗,n) on the prediction map (Fig 1e) is:

rV̂2
(p⃗,n) = rV1

(p⃗+C⃗DV
(n) ,n) (9)

Hence, the post-saccadic target is predicted to appear at the position:

⃗̂V2
(n) = ∑

p⃗
rV̂2
(p⃗,n) p⃗ (10)

Saccade execution. The saccade is executed with the motor noise 𝜖⃗M(n), resulting in the
saccade vector:

P⃗M(n) = M⃗(n) + 𝜖⃗M(n) (11)

Due to peri-saccadic target step P⃗s(n) and motor error 𝜖⃗M(n), the oculomotor system expe-
riences the physical disruption P⃗d(n) across the saccade:

P⃗d(n) = P⃗s(n) – 𝜖⃗M(n) (12)

With respect to saccade landing, the post-saccadic target is placed at the position:

P⃗2(n) = P⃗1(n) + P⃗d(n) – P⃗M(n) (13)

Post-saccadic computations. The population response rI2(p⃗,n) to the post-saccadic target
on the input map (Fig 1f) is

rI2
(p⃗,n) = f(p⃗;P⃗2 ,𝜎⃗2)

∑p⃗ f(p⃗;P⃗2 ,𝜎⃗2)
(14)

with 𝜎2x = 𝜎2y = 1
3𝛿2 where 𝛿2 = |P⃗2|, i.e. post-saccadic target eccentricity. To restrict the height

and narrowness of the population response for foveal targets, we set 𝜎2x ≥ 0.5 and 𝜎2y ≥ 0.5.
The visual population response rV2

(p⃗,n) (Fig 1g) to the post-saccadic target on the visual
map is

rV2
(p⃗,n) = rI2

(p⃗,n) 𝜔v
(p⃗,n) (15)

resulting in the visual post-saccadic target position:

V⃗2
(n) =∑

p⃗
rV2
(p⃗,n) p⃗ (16)

The population response rV̂1
(p⃗,n) on the postdiction map (Fig 1h) results from a backward

coordinate shift of rV2
(p⃗,n) by C⃗DV

(n):

rV̂1
(p⃗,n) = rV2

(p⃗–C⃗DV
(n) ,n) (17)

The postdicted target position is:

⃗̂V1
(n) = ∑

p⃗
rV̂1
(p⃗,n) p⃗ (18)
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Adaptation of visual, motor and CD gain field maps. The postdictive motor error E⃗(n)

(Fig 1i) is computed as the error of the motor command M⃗(n) with respect to the postdicted
target position ⃗̂V1

(n):

E⃗(n) = ⃗̂V1
(n) – M⃗(n) (19)

For adaptation, the postdictive motor error is encoded as a directed amplitude error:

For P1x(n) ≠ 0:

𝛿E(n) =
Ex(n) P1x(n)

|Ex(n) P1x(n)|
|E⃗(n)| (20)

For P1x(n) = 0:

𝛿E(n) =
Ey(n) P1y(n)

|Ey(n) P1y(n)|
|E⃗(n)| (21)

Thereby, |E⃗(n)| is the magnitude of the error, and Ex(n) P1x(n)

|Ex(n) P1x(n)|
directs the error such that

𝛿E(n) is < 0 for inward target steps and 𝛿E(n) is > 0 for outward target steps, independently
whether adaptation takes place in the left hemifield (P1x(n) < 0) or in the right hemifield
(P1x(n) > 0). The encoding of the postdictive motor error as a directed amplitude error causes
the change in amplitude to be transferred as a whole to surrounding targets, rather than dis-
tributing the changes separately across the horizontal and vertical components.

Accordingly, the visual, motor and CD gain fields adapt to reduce postdictive motor error:

𝜔v
(p⃗,n+1) =𝜔v

(p⃗,n) + 𝛼v(p⃗) 𝛿E(n) (22)

𝜔m
(p⃗,n+1) =𝜔m

(p⃗,n) + 𝛼m(p⃗) 𝛿E(n) (23)

𝜔cd
(p⃗,n+1) =𝜔cd

(p⃗,n) + 𝛼cd(p⃗) 𝛿E(n) (24)

with the visual, motor and CD learning distributions:

𝛼v(p⃗) = 𝜙v
f(p⃗;P⃗1 ,𝜎⃗v)

∑p⃗ f(p⃗;P⃗1 ,𝜎⃗v)
(25)

𝛼m(p⃗) = 𝜙m
f(p⃗;P⃗1 ,𝜎⃗m)

∑p⃗ f(p⃗;P⃗1 ,𝜎⃗m)
(26)

𝛼cd(p⃗) = 𝜙cd
f(p⃗;P⃗1 ,𝜎⃗cd)

∑p⃗ f(p⃗;P⃗1 ,𝜎⃗cd)
(27)

The learning distributions specify the learning rate for each position across the visual,
motor and CD gain fields. Hence, the learning distributions determine how much the gain
fields learn from error in a given trial. Thereby, 𝜙v, 𝜙m and 𝜙cd act as a scaling factor for the
learning distribution. To take account for the asymmetry of the adaptation field along the
amplitude dimension, we allowed the learning distributions to be differently shaped inward
compared to outward of the adaptation target, with 𝜎⃗v = (𝜎vF𝜎vO

), 𝜎⃗m = (𝜎mF
𝜎mO
) and 𝜎⃗cd = (

𝜎cdF
𝜎cdO
)

along the foveal amplitude dimension, and 𝜎⃗v = (𝜎vP𝜎vO
), 𝜎⃗m = (𝜎mP

𝜎mO
) and 𝜎⃗cd = (

𝜎cdP
𝜎cdO
) along
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the peripheral amplitude dimension (with ‘O’ indexing the orthogonal amplitude axis along
which the learning distributions are symmetrically shaped). Learning distributions were first
created with a Gaussian along the rightward horizontal axis and then rotated according to the
target angle. Learning distribution were restricted to extend maximally into the fovea with the
constraints 𝜎vF ≤ 1

3𝛿1, 𝜎mF ≤ 1
3𝛿1 and 𝜎cdF ≤

1
3𝛿1.

Setup
The experiment was conducted in a dark room (luminance below 0.01 cd/m2) with all sources
of light removed. Subjects were seated with a chin rest and forehead support 62 cm in front of
an Eizo FlexScan F930 monitor (Eizo, Hakusan, Japan; 40×30 cm, 1152×870 pixels, 32.8×25.8
dva, 75 Hz) that was covered with a dark foil to avoid visibility of the monitor background
light. Subjects used a multi-touch trackpad (Apple Inc., Cupertino, CA) for localization judge-
ments.

The right eye was recorded by an Eyelink 1000 at 1000 Hz (SR Research, Ontario, Canada)
with a 1.5 dva position and a 22

dva

s velocity threshold for online detection of saccade onset.
Saccade offset was detected online as soon as saccade velocity fell below 30

dva

s . The experi-
mental procedure was conducted by a Matlab script (Mathworks, Natick, MA).

Tasks and procedure
Saccade adaptation was induced with a 12 dva rightward target that stepped 3 dva inward
during saccade execution (Fig 4B). The pre- and post-adaptation phases tested the current
state of saccade vector, pre-and post-saccadic localization for 11 probe positions including the
12 dva rightward adaptation target (Fig 4C). As the post-adaptation level could contain only
a restricted amount of trials during which it is possible to maintain the adaptation level, every
subject passed through the experimental session twice.

The probe targets were arranged on two invisible concentric circles around the adaptation
target (on a 3 dva radius circle with 0, 90, 180 and 270 angular degree and on a 6 dva radius
circle with 30, 90, 150, 210, 270 and 330 angular degree). Each trial started with a fixation dot
placed 6 dva leftward of the screen center. The dot color revealed whether subjects had to per-
form a saccade (red for saccade trials and post-saccadic localization trials) or to keep fixation
on the fixation point (green for pre-saccadic localization trials). If the subject had fixated the
fixation dot with 1.5 dva maximum deviation for a random threshold duration between 500
and 1200 ms, the trial was initiated. Fixation dots and saccade targets measured 0.6 diameter.

Saccade trials. At fixation dot offset, a saccade target was displayed 12 dva to the right
that, from the adaptation phase onwards, jumped 3 dva inward upon saccade onset (Fig 4B).
In the pre-adaptation phase, the target remained at its initial position. After saccade offset, the
target was visible for 500 ms.

Post-saccadic localization trials. At fixation dot offset, a saccade target was displayed at
one of the 11 probe positions. After 40-50 ms, a white square of 0.6 dva width was flashed for
26.7 ms at a random position on an invisible circle of 1 dva radius around the probe position.
Upon saccade onset, the target was erased. Subjects had to hold their gaze at the saccade land-
ing position. A gaze deviation of 4 dva was accepted, otherwise a beep tone occurred until
gaze position returned to the accepted fixation window. A grey dot cursor of 0.7 dva diam-
eter turned on 500 ms after saccade offset at a random position within an invisible square of
16 dva side length around the adaptation target position. While keeping fixation at the sac-
cade landing location, subjects had to localize the perceived flash position with the dot cursor.
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In case they had not perceived the flash, they were instructed to click at the lowest possible
location, i.e. the invisible lower screen border.

Pre-saccadic localization trials. After fixation dot offset, subjects had to keep fixation
at the invisible fixation dot location. After 40-50 ms, a white square was flashed. Subjects
had to localize the perceived flash position with a dot cursor that appeared 770 ms after fixa-
tion dot offset while keeping fixation at the invisible fixation dot position. Parameters of the
flashed square, dot cursor and fixation check procedure followed those of the post-saccadic
localization trials.

Subjects practiced every trial type at the start of each session. The adaptation phase con-
sisted of 200 saccade trials. The pre- and the post-adaptation phase contained a repeated
sequence of saccade trial, post-saccadic localization trial and pre-saccadic localization trial.
The saccade trials were always directed to the adaptation target with intra-saccadic target step
in the post-adaptation phase to maintain the level of adaptation. The pre- and post-saccadic
localization trials covered the 11 probe positions in random order (each position repeated
5 times, including the adaptation target position), resulting in 55 trials of each trial type, i.e.
3×55 trials = 165 trials in the pre- and in the post-adaptation phase. The inter-trial interval
was 800 ms. In the middle of the pre- and of the post-adaptation phase as well as between
phases, subjects took a self-paced break. Sessions took around 30 minutes each and were
recorded at least 5 days apart.

Data analysis
The data were analyzed offline in Matlab R2022a (Mathworks, Natick, MA). All reactive sac-
cades with a latency of 100-400 ms that landed within ± 5 dva horizontally and vertically
around the saccade target of the respective trial were accepted for analysis. A customized pro-
cedure with a combined velocity-acceleration criterion served for offline detection of saccade
on- and offset. As the relation between post-saccadic target localization and saccade landing
position is pivotal for a reliable C⃗DV estimate, in the pre- and in the post-adaptation phase
only the saccades of the post-saccadic localization trials were used for further analysis.

Post-saccadic localizations without a valid primary saccade to the target were excluded.
Localizations were accepted only if gaze was held successfully within ± 2 dva at the respective
fixation position.

For each of the 11 probe positions, we calculated the median saccade vector (M⃗), median
pre-saccadic localization (V⃗1) and median post-saccadic localization (denoted as V⃗2f, i.e. with
respect to the fixation point) per subject before and after adaptation. On this basis, we derived
the state of the computed displacement of visual space before and after adaptation (Fig 5C):

C⃗DV = V⃗1 – V⃗2f + M⃗ (28)

The data were averaged across the two sessions per subject, and averaged across subjects
for the grand mean level. Two-sided one-sample t-tests or Wilcoxon signed rank tests were
used in case normality distribution was violated. The significance level was 0.05.

Model fitting
Themodel was fitted to the grand mean data with a visual field of ± 48 dva and 0.05 dva step
width. The first and the last trial served as the pre- and the post-adaptation state. We fitted
the gain field constants 𝜔vC , 𝜔mC and 𝜔cdC to the pre-adaptation state, and the learning dis-
tributions to the trial-by-trial saccade adaptation and the post-adaptation state. These were
the scaling factors 𝜙v, 𝜙m and 𝜙cd, the width along the foveal amplitude dimension 𝜎vF , 𝜎mF
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and 𝜎cdF , along the peripheral amplitude dimension 𝜎vP , 𝜎mP and 𝜎cdP , and along the orthog-
onal amplitude dimension 𝜎vO , 𝜎mO and 𝜎cdO . To account for the drop of the adaptation level
from the end of the adaptation phase to the adaptation after-effect in a post-adaptation phase,
we fitted the adaptation drop factor 𝜅 that captures the percentage of gain field adaptation
decay towards the pre-adaptation state. The fitting procedure minimized the weighted sum of
squared errors SSEweighted. This included SSEpre,post of the pre- and the post-adaptation phase
(pre- and post-saccadic localizations as well as saccade vectors, i.e. 3 types × 2 time points
(pre and post) × 2 dimensions (horizontal and vertical) × 11 target positions = 132 data
points), and SSEadapt of the adaptation phase (saccade vectors to the adaptation target, i.e. 200
trials × 2 dimensions (horizontal and vertical) = 400 data points). The visual pre-saccadic tar-
get position V⃗1 was fitted to the pre-saccadic localizations, the motor command M⃗ was fit-
ted to the saccade vectors and the predicted post-saccadic target position ⃗̂V2 was fitted to the
post-saccadic localizations with respect to the saccade landing location. Due to the unequal
number of data points between phases, SSE minimization would favor a good fit of the adap-
tation phase (qadapt = 400 data points) at the expense of the pre- and post-adaptation phase
(qpre,post = 132 data points). To ensure a balanced fit to all phases, we minimized the weighted
sum of squared errors:

SSEweighted = 𝜂pre,postSSEpre,post + 𝜂adaptSSEadapt (29)

with the weights 𝜂pre,post = (qadapt+qpre,post)qpre,post
× 0.6 = 2.42 and 𝜂adapt = (qadapt+qpre,post)qadapt

× 0.4 = 0.53.

Model fitting was performed with 𝜖⃗M(n) = (00). For goodness of fit, we calculated the residual
standard errors:

RSEpre,post =

¿
ÁÁÀ SSEpre,post

qpre,post – 1
(30)

RSEadapt =

¿
ÁÁÀ SSEadapt

qadapt – 1
(31)
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