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Interest in the processing of optic flow has increased recently in both
the neurophysiological and the psychophysical communities. We have
designed a neural network model of the visual motion pathway in
higher mammals that detects the direction of heading from optic flow.
The model is a neural implementation of the subspace algorithm in-
troduced by Heeger and Jepson (1990). We have tested the network in
simulations that are closely related to psychophysical and neurophysio-
logical experiments and show that our results are consistent with recent
data from both fields. The network reproduces some key properties of
human ego-motion perception. At the same time, it produces neurons
that are selective for different components of ego-motion flow fields,
such as expansions and rotations. These properties are reminiscent
of a subclass of neurons in cortical area MSTd, the triple-component
neurons. We propose that the output of such neurons could be used
to generate a computational map of heading directions in or beyond
MST.

1 Introduction

The concept that optic flow is important for visual navigation dates from
the work of Gibson in the 1950s. Gibson (1950) showed that the optic
flow pattern experienced by an observer moving along a straight line
through a static environment contains a singularity that he termed the
focus of expansion. He hypothesized that the visual system might use
the global pattern of radial outflow originating from this singularity to
determine the translational heading of the observer.

A host of studies in human psychophysics have followed up Gibson’s
ideas (Regan and Beverly 1982; Rieger and Toet 1985; Warren et al. 1988;
Warren and Hannon 1988, 1990). Regan and Beverly (1982) rejected his
hypothesis on the basis that the optic flow pattern that arrives on the
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retina is radically altered by eye movements of the observer. Then the
flow field becomes a superposition of the radial outflow pattern with a
circular flow field that is obtained when the eyes move in the orbita.
Generally the resulting vector field may also have a singular point sim-
ilar to a focus of expansion, but this point does not necessarily coincide
with the heading direction. If, for instance, the eye rotation results from
the fixation of a point in the environment, the singularity will be at the
fixation point instead of the destination point.

Nevertheless, Warren and Hannon (1990) found humans capable of
judging their heading with great accuracy from optic flow patterns that
simulated translation plus eye rotation. Their subjects were able to per-
ceive their heading with a mean error between one and two degrees
solely from the optic flow. No nonvisual information such as oculomo-
tor signals was necessary. This ability persisted over a natural range
of speeds and over a variation of the number of visible moving points
between 10 and several hundred. The performance of the subjects was
at chance, however, when no depth information in the form of motion
parallax was available.

In the visual system there are at least two (maybe three) main streams
of information flow (Mishkin et al. 1983; Livingstone and Hubel 1988; Zeki
and Shipp 1988). In the simplest depiction, there is an inferotemporal sys-
tem that is mainly responsible for the processing of form, and a parietal
system that processes motion (Ungerleider and Mishkin 1982). Within
the cortical motion system, one of the prominent and most investigated
areas in primates is the middle temporal area or area MT (Allman and
Kaas 1971). In cats the probable homologue for MT is the Clare-Bishop
area (Clare and Bishop 1954), also called area PMLS (Palmer et al. 1978).
Evidence from both areas suggests that they participate in the process-
ing of flow field information. Both areas contain neurons that are highly
direction selective and respond well to moving stimuli. It has first been
found in cat area PMLS that a majority of neurons prefer movement
away from the area centralis, that is, centrifugal motion (Rauschecker et
al. 1987a,b; Brenner and Rauschecker 1990). The same has been found in
monkey area MT (Albright 1989), thus strengthening the likelihood of a
homology between these two areas. Other studies have revealed single
neurons in PMLS that respond well to approaching or receding objects
(Toyama et al. 1990).

More recently, a number of studies have described neurons in the dor-
sal part of monkey area MST (MSTd) that respond best to large expand-
ing/contracting, rotating, or shifting patterns (Tanaka and Saito 1989a,b;
Andersen et al. 1990; Duffy and Wurtz 1991a,b). The response of these
neurons often shows a substantial invariance to the position of the stim-
ulus. Duffy and Wurtz (1991a,b) found that a majority of the neurons in
MSTd responded not only to one component of motion of the stimulus
pattern (e.g., expansion or contraction), but rather to two or all three of
them separately. About one-third of MSTd cells displayed selectivity to
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expansions or contractions and clockwise or counterclockwise rotations
and showed broad directional tuning for shifting dot patterns when tested
with these stimuli one after another. It is these “triple component cells”
that our model is mainly concerned with. Furthermore, cells in MSTd
are unselective for the overall speed of a stimulus and for the amount of
depth information available in the stimulus.

There have been a number of computational approaches to extract
navigational information from optic flow focusing on different mathe-
matical properties of the flow field. The difficulty of the task is that in the
mapping of three-dimensional movements onto a two-dimensional retina
some information is lost that cannot be fully recovered. Models that
use differential invariants (Koenderink and van Doorn 1981; Longuet-
Higgins and Prazdny 1980; Waxman and Ullman 1985) require dense
optic flow to compute derivatives. By contrast, humans are quite suc-
cessful with sparse fields (Warren and Hannon 1990). Models based on
algorithms that solve a set of equations for only a small number of vectors
(Prazdny 1980; Tsai and Huang 1984), on the other hand, require precise
measurements and are very sensitive to noise. Methods that rely on mo-
tion parallax or local differential motion (Longuet-Higgins and Prazdny
1980; Rieger and Lawton 1985) are in agreement with the psychophys-
ical data in that they fail in the absence of depth in the environment.
However, they require accurate measurements at points that are close to
each other in the image but are separated in depth, which is an especially
difficult task to accomplish. Furthermore, recent psychophysical studies
(Stone and Perrone 1991) have shown that local depth variations are not
necessary. Least-square minimization algorithms (Bruss and Horn 1983;
Heeger and Jepson 1990) that use redundant information from as many
flow vectors as are available are robust and comparatively insensitive to
noise.

None of the above-mentioned algorithms is clearly specified in terms
of a neural model. Given the current advances in visual neurophysiology,
it seems desirable to construct a neural network for ego-motion percep-
tion that is consistent with the neurophysiological and psychophysical
data. Recently a network model of heading perception in the simpler
case without eye movements has been described (Hatsopoulos and War-
ren 1991), which accounts for some psychophysical findings. A neural
model we presented in brief form earlier together with first results from
the model described in this paper (Lappe and Rauschecker 1991) is also
concerned with pure translations. It uses a centrifugal bias similar to the
one found in PMLS and MT to achieve precise heading judgments with
neuronal elements that are as broadly directionally tuned as the cells
found in these areas.

In this article we present a new neural network that succeeds when
the radial flow pattern is disturbed by eye movements. The network
is capable of reproducing many of the psychophysical findings, and the
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single units exhibit great similarity to the triple component cells of Duffy
and Wurtz (1991a,b) in area MSTd.

2 The Model

Our network is built in two layers. The first layer is designed after
monkey area MT and represents the input to the network. The second
layer is constructed to yield a representation of the heading direction
as the output of the net and thus could form a model of MSTd. In each
network layer we employ a population encoding of the relevant variables,
namely the speed and direction of local movements in layer one and the
heading direction of the individual in layer two. The computation of the
direction of translation is based on the subspace algorithm by Heeger and
Jepson (1990). Its main course of action is to eliminate the dependencies
on depth and rotation first and thereby gain an equation that depends
only on the translational velocity. Therefore it bears some similarity to
Gibson’s original claim that the visual system can decompose the optic
flow into its translational and rotational components. We will restrict the
scope of our model to such eye movements as occur when the observer
keeps his eyes fixed on a point in the environment while he is moving.
This is a natural and frequently occurring behavior, and we believe that
using assumptions that are a reflection of the behavior of an animal or a
human being makes it more likely to gain results that can be compared
with experimental data. Although it is mathematically possible to include
any type of eye movements, it is not very likely that the eyes would rotate
around their long axis to a significant amount during locomotion. Note
that our assumption includes the case of no eye movements at all, since
it can be described as gazing at a point infinitely far away.

2.1 Optic Flow and the Subspace Algorithm. Optic flow is the pro-
jection of the motion of objects in the three-dimensional world onto a
two-dimensional image plane. In three dimensions, every moving point
has six degrees of freedom: The translational velocity T = (T,.T,. T.)" and
the rotation © = (Q,,Q,,2.)". When an observer moves through a static
environment all points in space share the same six motion parameters.
The motion of a point R = (X,Y,Z)" in a viewer-centered coordinate sys-
tem is V= —(Q x R+ T). This motion is projected onto an image plane.
Writing two-dimensional image vectors in small letters, the perspective
projection of a point is r = (x,y)' = f (X/Z,Y/Z)!, where f denotes the
focal length. Following Heeger and Jepson (1990) the image velocity can
be written as the sum of a translational and a rotational component:

0(x,y) = (dx/dt,dy/dt) = p(x,y)A(x,y)T + B(x,y) (2.1)
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where p(x,y) = 1/Z is the inverse depth, and

swo=(7 5 7)

(w)/f —(f +x%/f) y)
f+yif  —(y)/ff —x

The unknown depth and translational velocity are multiplied together
and can thus only be determined up to a scale factor. Regarding therefore
the translation T as a unit vector, one is left with six unknowns: p, the two
remaining components of T, and the three components of €2, but only two
known quantities, 0y, 6,. The subspace algorithm uses flow vectors at five
distinct image points to yield an overdetermined system of equations that
is solved with a minimization method in the following way: The five sep-
arate equations are combined into one matrix equation ® = C(T)q where
®=(,..., 0s)" is now a 10-dimensional vector consisting of the com-
ponents of the five image velocities, q = [p(x1.41). ..., p(Xs5. ¥5). Qv @y, Q]
an eight-dimensional vector, and C(T) a 10 x 8 matrix composed of the
A(x;,y;)T and B(x;,y;) matrices:

B(x.y) = (

A(I].}/I)T B(x‘!-.yl)
C(T) = ' 5
A(xs,y5)T B(xs,ys)

Heeger and Jepson (1990) then show that the heading direction can be
recovered by minimizing the residual function

R(T) = [|[©'CH(T)|1%,

where C*(T) is a matrix that spans the two-dimensional orthogonal com-
plement of C(T).

2.2 Restriction to Fixations during Locomotion. We now restrict our-
selves to only those eye movements that arise through the fixation of a
point F = (0,0,1/pg)" in the center of the visual field while the observer
moves along a straight line. The rotation that is necessary to fixate this
point can be derived from the condition that the flow at this point has
to be zero:

(8)=»(%6 F8)r=(7 4 5)e

Choosing Q. = 0 we find © = pg(T,, —T+,0)". The optic flow then is:

0(x,y) = [p(x,y)( _{, _? ; ) +pr ( f(j;;;z/?f f(fryy)zﬁ/rf 8 ﬂ !
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The case of a straight translation without any eye movements can easily
be described within this framework by considering a fixation point that
is infinitely far away. Then pr and the rotational velocity 2 are zero,
resulting in a purely translational flow.

The optic flow equation above has only four unknowns: p(x.y), pr,
Ty, and T,. Combining the equations for two different flow vectors into
one matrix equation in the same way as before yields ® = C (T) -
[p(x1,11), p(x2.y2), pg)', where C(T) is now only a 4 x 3 matrix, the or-
thogonal complement of which is a line given by the vector C*(T). The
residual function becomes the scalar product between this vector and the
observed flow:

R(T) = |©'CH(T)? (2.2)

Since the optic flow is a linear function of the translational direction, R(T)
does not have a single minimum but is equal to zero along a line in the
(T:,T,) plane. Therefore one such minimization alone cannot give the
translational velocity, rather several pairs of flow vectors with different
R(T) functions have to be used in conjunction.

2.3 The Network. In the first layer of the network, which constitutes
the flow field input, 300 random locations within 50° of eccentricity are
represented. We assume a population encoding of the optical flow vectors
at each location by small sets of neurons that share the same receptive
field position but are tuned to different directions of motion. Each such
group consists of n’ neurons with preferred directions e, k = 1,..., n'.
The flow vector 6 is represented by the sum over the neuronal activities

sx in the following way:

8= Zskek (23)
k=1

We do not concern ourselves with how the optic flow is derived from the
luminance changes in the retina or how the aperture problem is solved.
Neural algorithms that deal with these questions have already been de-
veloped (Biilthoff et al. 1989; Hildreth 1984; Yuille and Grzywacz 1988). A
physiologically plausible network model that yields as its output a pop-
ulation encoding like the one we use here has been proposed by Wang et
al. (1989). It can be thought of as a preprocessing stage to our network,
modeling the pathway from the retina to area MT or PMLS.

Since we start out with a layer in which the optic flow is already
present, we have to guarantee that the tuning curves of the neurons and
the distributions of the preferred directions match the requirement of
equation 2.3. As the simplest choice for our model, we use a rectified
cosine function with n’ = 4. It preserves the most prominent feature
of the observed directional tuning curves in MT/PMLS, namely broad
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unidirectional tuning with no response in the null direction. The pre-
ferred directions are equally spaced, e; = [cos(7k/2),sin(7k/2)], and for
the unit’s response to a movement with speed #, and direction ¢, the
tuning curve is

_J bpcos(¢p — wk/2) if cos(¢p —7k/2) >0
=10 otherwise

The second layer represents a population encoding of the translational
direction of the movement of the observer, which is represented by the
intersection point of the 3D-movement vector T with the image plane.
There are populations of 7 neurons at possible intersection points whose
combined activities u; give the perceived direction. But here the sum of
the activities U = 3°|_, u; at each position yields a measure of how likely
this position is to be the correct direction of movement. The perceived
direction is chosen to be the one that has the highest total activity.

The output of a second layer neuron is a sigmoid function g(x) of
the sum of the activities of its m input neurons weighted by synaptic
strengths Jjy and compared to a threshold s

u=g (Z > Jisic — ,U-) (2.4)

i=1 k=1

Here Jix denotes the strength of the connection between the Ith output
neuron and the kth input neuron in the population that represents image
location i. The sigmoid function is symmetric such that g(—x) =1 — g(x).

The connections and their strengths are set once before the network
is presented with any stimuli, and are fixed afterward. First a number of
image locations are randomly assigned to a second layer neuron. Then,
values for the synaptic strengths are calculated so that the population
of neurons encoding a specific T is maximally excited when R(T) equals
zero. Although the neuron may receive input from a large number of
image locations we start the calculation of the connections with only two
in order to keep it simple. We want the sum in equation 2.4 to equal the
scalar product on the right side of equation 2.2:

2 n
Y Y Twey=6'CHT)
i=1 k=1
For every single image location i we have
n' CJ'- (T) .
Jinisik = 9:( Ty ) ¥ =12
2 Ci(m
Substituting equation 2.3 we find
oo (C-1(T) .
Sik = ) Sik€ik| - ) =1,2
g]k.'sk Zskek( CA(T) i

k=1
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Therefore we set the synaptic strengths to

L
ik = eix (Cz'jl(T))
C5(T)
If the neuron is connected to more than two image locations the input
connections are divided into pairs and the connections are calculated
separately for each pair.

Now the question of when R(T) is minimal comes down to the ques-
tion of when all the neurons’ inputs balance each other to give a net input
of zero. Consider two output neurons u; and uy receiving input from the
same set of first layer neurons but with inverse connections such that
Jir = —Ji. Then, if the threshold i equals zero, the sum of both neu-
rons’ activities is equal to 1 regardless of their inputs, since the sigmoid
input/output function is symmetric. If, however, ;1 has a slightly nega-
tive value, both sigmoid functions will overlap and the sum will have a
single peak at an input value of zero. Such a matched pair of neurons
generates its maximal activity when R(T) = 0.

MSTd neurons have very large receptive fields and do certainly re-
ceive input from more than 2 image locations. Also MSTd neurons show
the same response in the case of as little as 25 visible moving dots as
they do in the case of 300 (Duffy and Wurtz 1991a). We chose each of
our model neurons to receive input from 30 image locations. We restrict
the space for the encoded heading directions to the innermost 20 x 20°
of the visual field, since this approximates the range over which the
psychophysical experiments have been carried out. Nevertheless, each
layer-two neuron may receive input from a much larger part of the visual
field. The layer-two neurons form a three-dimensional grid with 20 x 20
populations encoding one degree of translation-space each, and 20 pairs
of neurons in each population.

3 Results

3.1 Comparison of the Network’s Performance with Human Psy-
chophysical Data. The network was tested with simulated flow fields
with different motion parameters. We used a cloud-like pattern that
consisted of a number of dots, the depths of which were randomly dis-
tributed within a given range. To test the behavior without eye move-
ments a translational direction was randomly chosen within the inner-
most 20 x 20° and the rotation was set to zero. To test cases with eye
rotation the translational direction was again chosen randomly and the
fixation point was set in the center of the image plane and assigned a
specific depth. The rotational component was then calculated from the
condition that the flow at the fixation point must be zero. Each simula-
tion run consisted of 100 presentations of different flow fields, after which
we calculated the mean error as the mean angular difference between the
network’s computed direction and the correct direction.
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---------- Eyes fixed on target
—=—— No eye movements

Mean error (degree)

0 2 4 6 8 10 12 14 16 18 20 22
Number of flow vectors

Figure 1: Performance with sparse flow fields. The heading error becomes small
with as little as 10 vectors. The number of dots necessary is about the same
with or without eye movements.

We found the network’s performance to be well within the range of
human performers (Warren et al. 1988). For pure translation as well as
with eye movements the mean error settled between 0.5 and 1.5°, show-
ing that the network always has its activity maximum at a position close
to the translational direction. Consistent with the experiments of Warren
et al. (1988) we found very little influence of speed on the performance
of the network.

Humans are able to detect their heading with very sparse flow fields
consisting of only ten dots (Warren and Hannon 1988, 1990). In order to
test how many flow vectors are needed in our model under otherwise
optimal conditions we made an additional assumption: We assumed that
a given pair of vectors in the flow field serves as input to at least one pair
of neurons in each population of the output layer. If this were not the
case, some populations would receive more information than others and
the number of dots neccessary for correct heading estimation would de-
pend on the heading direction. Our assumption ensures that all heading
directions are represented equally. Considering the large number of cor-
tical neurons this assumption is biologically reasonable since it would be
approximately fulfilled if the number of neurons in the output layer were
large. For the simulations, we distributed the connections between input
and output neurons in such a way as to fulfill the assumption. The results
of the simulations are shown in Figure 1. The cloud of dots extended in
depth from 11 to 31 m with a fixation point at 21 m. The translational
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speed was 2 m/sec. In both the pure translation and in the eye rotation
case the network started to detect the heading with the desired accuracy
at approximately 10 points, although with eye rotation the error did not
quite reach the optimum and continued to decrease as more flow vectors
were provided. Mathematically two vectors are sufficient to compute the
heading of a purely translational movement (Prazdny 1980), but humans
fail to detect their heading with only two visible dots (Warren et al. 1988).
Our network does not know a priori if the flow field is generated by a
translation alone. It therefore has to rely on the flow pattern and needs
about the same number of vectors as with the eye movements.

Humans also fail when eye rotations are paired with a perpendicular
approach to a solid wall, where all points are at the same depth (Rieger
and Toet 1985; Warren and Hannon 1990). In this case the subjects’ per-
formances are at chance and they often report themselves as heading
toward the fixation point. Because of a well-known ambiguity in planar
flow fields (Tsai and Huang 1984), we were not able to test the depth de-
pendence of the network with approaches to a plane at different angles.
We therefore varied the depth range of the cloud. Doing this revealed
that with decreasing depth the peak in the second layer grows broader
and covers the fixation point as well as the heading direction. This can
be seen in Figure 2 where the summed population activities in the out-
put layer are shown on a grayscale map, together with reduced pictures
of the input flow fields. Input and output are compared for situations
that differ in the amount of depth in the image. In Figure 2a a flow
field is shown in which the depth range of the cloud of dots is large,
extending from 7 to 30 m. The observer moves toward the cross while
he is keeping his eyes fixed on an object (x) in the center. There is no
apparent focus of expansion. The network output (Fig. 2b) shows an
easily localizable brightness peak in the upper left that corresponds to
the correct heading direction as indicated by the cross. Figure 2c shows
the same movement as Figure 2a, but here the depth range of the cloud
is much smaller, ranging from 19 to 21 m. In this case the flow field
looks very much like an expansion centered at the fixation point. In
the corresponding network output (Fig. 2d), the peak is very broad and
includes the fixation point in the center. A maximum nevertheless still
exists, although much less pronounced, and in the simulations the net-
work was still able to compute the right heading. However, the solution
is unstable and very sensitive to noise. To illustrate this, we randomly
varied the amplitudes of the flow vectors by stretching them by a factor
distributed uniformly between 0.9 and 1.1, thus adding 10% noise. The
results for all conditions are shown in Figure 3 for different depth ranges.
This small amount of noise increases the error for the rotational move-
ment to around 7°, whereas in the purely translational case the network
performance is unaffected. With growing depth differences this separa-
tion becomes less pronounced and the error values for the rotational case
decrease.
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Figure 2: Influence of image depth on the heading judgment of the network.
(a) Depth-rich flow field. Movement is toward the cross (+) while the x in the
center is fixated. (b) Output of the network. The response peak gives the correct
heading. (c) Same movement with only little depth differences. (d) Brightness
maximum in the output of the network is very broad and includes the fixation

point.

3.2 Comparison with Single Cell Properties in MSTd. The output
layer cells of our model network exhibit a remarkable resemblance to
some triple component neurons in MSTd. Figure 4 shows the response
of one output layer cell to presentations of each of the components (e.g.,
expansions, rotations) at different places in the visual field. The neuron
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Figure 3: Heading error versus depth. In the noise-free condition, heading
calculation is accurate despite the broad peak in the network output depicted
in Figure 2d. Adding a small amount of noise, however, shows that the solution
in the eye movement case is unstable and gives rise to a large error.

receives input from 30 positions distributed inside a 60 x 60° receptive
field centered in the lower right quadrant of the visual field and extend-
ing up to 10° into each of the neighboring quadrants, thus including the
vertical and horizontal meridians and the fovea or area centralis (Fig. 4a).
This receptive field characteristic is common for MSTd neurons (Duffy
and Wurtz 1991b). The neuron in our example is a member of the popula-
tion that represents a heading direction in the upper right quadrant at an
eccentricity of 11°. Figure 4b shows the cell’s broad unidirectional tuning
and little selectivity for stimulus speed. The plots c—f in Figure 4 illus-
trate the responses of the neuron to expansions, contractions, clockwise
rotations, and counterclockwise rotations, respectively. The (x,y)-plane
represents a visual field of 100 x 100°, the height is the response of the
neuron to a stimulus centered at (x,y). The size of the stimulus was
always large enough to cover the whole receptive field of the cell. For
a stimulus in the center of the visual field the cell responds favorably
to counterclockwise rotations and expansions, although there also is a
smaller response to contractions. There are very large areas of position
invariance covering almost half of the visual field for a given stimulus
movement. The response to counterclockwise rotations, for instance, is
constant in most of the upper two quadrants.

The cell also shows the reversals in selectivity observed in 40% of
triple-component neurons in MSTd (Duffy and Wurtz 1991b). In our
example, moving the center of the stimuli to the right causes the response
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(a) Receptive Field (b) Global Shift

Figure 4: Responses of one output layer cell. (a) Receptive field of the cell as
defined by its input connections. (b) Broad unidirectional response to global
shifts of a dot pattern. No tuning to a particular stimulus speed. (c-f) Responses
to expanding, contracting, and rotating patterns centered at different positions
within the visual field reveal large areas of position invariance and sudden
reversals of selectivity.
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to contractions to disappear. Moving the center of the stimuli to the
lower left causes the cell’s selectivity to change to favor contractions
and clockwise rotations. There are intermediate positions where the cell
responds to both modes of one component. For example, in plots b and ¢,
there is a vertical strip in the center where the cell responds to expansions
as well as to contractions.

The response reversals take place along edges running across the vi-
sual field, which is similar to the findings of Duffy and Wurtz (1991b).
The reason for this is that the residual function, which is computed by
the neuron, equals zero along a line in the (T, T;) space, as mentioned
before. The edge of the surface that marks the neuron’s response to
expansions follows this line. The neuron signals only that the heading
direction lies somewhere along the edge. The edges of all neurons in one
population overlap at the point that corresponds to the heading repre-
sented by that population. When the network is presented with a flow
field, the population encoding the correct heading is maximally excited
since all of their neurons will respond. In populations representing other
directions, only part of the neurons will be active, so that the total activity
will be smaller. ]

It is worth noting that the edges of reversal do not necessarily cross
the receptive field of the cell. In the example of Figure 4, the reversal
from selectivity for expansion to selectivity for contraction takes place
in the left half of the visual field outside the cell’s receptive field, which
occupies the lower right quadrant. Likewise, it sometimes occurred in the
simulations that the reversal for rotation was not even contained within
the 100 x 100° visual field.

Another interesting observation is that the edges for rotation and ex-
pansion/contraction often cross each other approximately orthogonally.
The position of the intersection point, on the other hand, can vary widely
between cells.

4 Discussion

We have designed a neural network that detects the direction of ego-
motion from optic flow and is consistent with recent neurophysiologi-
cal and psychophysical data. It solves the traditional problem of eye
movements distorting the radial flow field by means of a biologically
reasonable mechanism.

The model reproduces some key properties of human ego-motion
perception, namely, the ability to function consistently over a range of
speeds, the ability to work with sparse flow fields, and the difficulties in
judging the heading when approaching a wall while moving the eyes.

The network also generates interesting neuronal properties in its out-
put layer. Simple intuitive models for heading perception might expect a
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single neuron to show a peak of activity for an expansion at a certain pre-
ferred heading direction. Instead, our model uses a population encoding
in which single cells do not carry all the information about the perceived
heading, but rather the combined activity of a number of cells gives that
information. At the level of a single neuron, the position information
is contained in the edges of reversal of the cell’s preferred direction of
stimulus motion.

The resulting characteristics of the output neurons in our network
show great similarity to the response properties of a particular cell class
recently described in MSTd, the triple-component neurons (Duffy and
Wurtz 1991a,b). These cells, which comprise about one-third of all neu-
rons in MSTd, display selectivity not only for expansion or contraction,
but also for one type of rotation and one direction of shifting patterns.
Most of the neuronal outputs produced by our network have similar
properties. It appears tempting to postulate, therefore, that the output
of triple-component cells could be used to compute directional heading,
either within MST or in another area.

A potential problem for using the output of M5Td neurons to compute
heading direction concerns their apparent position invariance. In a neural
network that is supposed to signal the directional heading, the response
of the output layer cells has to depend on the position of the stimulus in
some way. Most neurons in MSTd seem to be insensitive against changes
of stimulus position, although the proportions of position invariant cells
reported in different studies vary and obviously depend on the exact
stimulus paradigm (Andersen ef al. 1990; Duffy and Wurtz 1991b; Orban
ef al. 1992). In our network model many output neurons would appear
position invariant when tested over a limited, wide range of stimulus
positions. Interestingly, the proportion of position dependent responses
seems to be highest among triple-component neurons (Duffy and Wurtz,
1991b): In about 40% of these cells component selectivity for a flow field
stimulus is reversed along oriented edges, which conforms exactly with
the behavior of our model neurons. It is conceivable, therefore, that
it is this subtype of triple-component neurons that is involved in the
computation of heading direction. More neurons of this type might be
encountered in MSTd if one specifically looks for them. Their frequency
of occurrence may depend on laminar position, or they might be found
even more frequently at another processing stage.

A closer look at the experimental data reveals that the number of
triple component cells in MSTd may indeed have been underestimated.
The different cell types in MSTd do not fall in strictly separate classes
but rather form a continuum changing smoothly from triple to single
component cells (Duffy and Wurtz 1991a). Therefore, double and single
component cells might be regarded as possessing some, albeit weak, re-
sponses to the other components. It is equally possible, however, that
single and double component cells simply do not participate in the de-
tection of heading direction, but serve some other purpose. Single com-
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ponent cells, for example, could be involved in the analysis of object
motion.

The network can also generate cells that are selective to fewer compo-
nents when the restriction is removed that rotations are due to the fixation
of an object. Allowing arbitrary rotations, including ones around a sagit-
tal axis through the eye, results in neurons that are unselective for rota-
tions and respond only to translations and expansions/contractions. Un-
der the different assumption that only frontoparallel rotations, including
for instance pursuit eye movements, will occur, the neurons show strong,
fully position invariant responses to rotational stimuli, which dominate
over the selectivity for translation and expansion/contraction (Lappe and
Rauschecker 1993).

We would like to emphasize that the neurons in our model do not
decompose the flow field directly. At no point is the translational part of
the optic flow actually computed. The neurons rather test the consistency
of a measured optic flow with a certain heading direction. In this way,
a response selectivity for rotations, for example, does not mean that the
neuron is actually funed to the detection of a rotation in the visual field,
but this property rather has to be regarded as the result of a more complex
selectivity.

The cells in the output layer of our model form a computational map
of all possible heading directions. However, it would not be easy to find
this map in an area of visual cortex, since the topography reveals itself
only in the properties of cell populations. Simultaneous recording from
an array of electrodes would perhaps be the only way to demonstrate
this computational map experimentally. Our model suggests that one has
to focus on the mapping of selectivity reversals and explore these more
thoroughly, especially in triple component cells: Neurons in neighboring
columns should show smooth shifts of their preferences. The concurrent
activity of such cells in a hypercolumn would signal one particular head-
ing direction in space, which is given by the intersection point of their
reversal edges for expansion and contraction.
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