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1. Introduction

The function of the CNS is to generate and control behavior in order to support the
living needs of the organism. At any time, such behavior must be appropriately
adjusted to the status of the environment and of the organism itself, and hence must
be guided by sensory information. The sensory and motor structures of the brain
encode information in various different formats. Sensorimotor transformations in-
terface the sensory and motor systems. They have two main tasks to solve. First,
they must convert between the different coding formats. Second, they must fuse the
different sensory and motor input signals and establish a unified representation of
the environment and the organism’s action within it.

2. Sensory and motor systems of the CNS

2.1. Sensory systems

The senses of most animals consist of vision, audition, the sense of balance, touch,
smell, and taste. For the purpose of guiding motor behavior, in primates and many
other animals vision, balance, and touch are most important. The associated sen-
sations are registered by the visual, the vestibular, and the somatosensory systems.
In the following, we will briefly describe these sensory systems and the primary
encoding of the incoming information in each of them. In-depth information can be
found in [1-4].

In vision, light entering the eye is transformed into electrical currents in the
photoreceptors of the retina. After some initial image processing by the networks of
the retina the visual information leaves the eye in the form of action potentials of the
retinal ganglion cells. The fibers of the retinal ganglion cells form a thick parallel
bundle, called the optic tract, from which branches run to several parallel retinal
recipient structures. The main cortical pathway is via the thalamus to the primary
visual cortex, or area V1. Other important pathways are those to the superior
colliculus and to the accessory optic system and pretectum. Each retinal ganglion
cell transmits information from a small localized part of the visual image, known as
its receptive field. Neighboring cells transmit information from neighboring image
locations. In the primary visual cortex, these topographic relationships are largely
preserved (see chapter 16 by Flanagan in this book). The primary visual cortex
contains a retinotopic map of the visual field. This is not true for all retinal recipient
structures. While the superior colliculus is also retinotopically organized, the ac-
cessory optic system, for instance, is not. Several other order parameters are also
represented in a structured manner in the primary visual cortex. These include the
relative strength of input from the two eyes (‘ocular dominance’) and the selectivity
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preferences of each neuron for parameters of visual stimuli (orientation, color,
motion direction) (see chapter 22 by Ernst and Pawelzik in this book). Each of these
order parameters establishes a structured map in the primary visual cortex. All of
these maps are present in parallel. The nature and origin of cortical feature maps are
discussed in other chapters of this book.

The primary visual cortex is the starting point of information processing in a
large network of more than 40 identified areas in the visual cortex [5], each
containing a representation of the visual field. These areas extract and transform
information from the visual image. To a first approximation, this information
processing stream can be viewed as a hierarchical system for visual analysis.
However, there are frequent interconnections and feedback projections between
the different stages [5,6]. There is good evidence that the cortical information
processing involves two major streams [4]. One is concerned with the analysis of
the features of objects (shape, color, etc.) and object recognition, and maybe
perception in general. The other is concerned with spatial positions of objects,
visual motion, and the generation of action or motor output. Owing to the topic
of this chapter, we will be mostly concerned with the latter. It involves a series of
areas in parietal cortex. These areas receive not only visual input but also signals
from the vestibular, somatosensory, and auditory systems and build a universal
representation of space.

The vestibular organs of the inner ear sense gravitational and inertial forces
and are important for our sense of balance and self-motion. Rotations and
translations of the head are registered by separate sensors. The semicircular canals
of the labyrinth organ are closed, liquid-filled tubes [1]. Their inner surface is lined
with sensory hair cells. As the head rotates the inertial mass of the liquid generates
relative movement between the liquid and the inner surfaces of the canals. This
movement induces electric activity in the hair cells, which is transmitted to the
vestibular nuclei in the brainstem as a signal of head rotation in space. Linear
acceleration forces are sensed by the otholiths [1]. These consist of an orthogoenal
pair of two-dimensional arrangements of tiny calcium carbonite crystals. Inertial
forces acting on these crystals are again detected by hair cells. Signals from the
hair cells are transmitted to the vestibular nuciei and provide the input for the
detection of linear accelerations of the head and of the tilt angle of the head with
respect to gravity.

The sense of touch, the position of the limbs, the status of the muscles controlling
them, the sense of temperature, and the sense of pain are all registered by the
somatosensory system. For the purpose of this chapter we are mainly interested in
the position of the limbs and the activity of the muscles. This is known as pro-
prioceptive information. It is generated by spindle fibers in the muscles [1]. These
fibers change their rate of action potential generation related to the length of the
muscle, change of muscle length, and the contraction of the muscle. The axons of the
muscle spindles of the skeleton muscles run along the spinal chord to the brain.
Those from the eye muscles run along the trigeminal nerve from the face. Soma-
tosensory information from the body is represented in somatotopic maps in the
somatosensory cortex.
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2.2. Motor systems

Movement of the limbs and other body parts is controlled by muscle contraction.
Muscle contraction is controlled by neural commands. The neurons that control
the muscles are called motor neurons. Each motor neuron is connected to a small
number of muscle fibers which contract when the motor neuron fires. The motor
neurons, in turn, are controlled by a network of areas from the brainstem, the
cerebellum, the basal ganglia, and the cortex [1,2]. Motor neurons that activate
skeletal muscles reside in the spinal chord. Motor neurons that activate eye muscles
reside in the oculomotor nuclei of the brainstem.

The eye movement system or oculomotor system is the best understood of the
motor systems and most of the examples in this chapter will come from the control
of eye movements. It is therefore appropriate to focus here on the oculomotor
system in particular. A detailed reference to the oculomotor system is [7].

The eye is moved by six muscles. One pair of muscles subserves horizontal eye
movements. The remaining two pairs subserve vertical movements and rotations
along the line of sight (called torsional movements). The muscles are driven by
motor neurons in the oculomotor nuclei of the brainstem. Each muscle pair has its
own nucleus.

Eye movements can be broadly classified into two categories, those that align
gaze with a specific target and those that stabilize vision during movements of the
head or body. The first category contains three important types of eye movement.
The first are normal gaze shifts, called saccades, which bring the line of sight to an
object of interest. These are the most ubiquitous eye movements, performed for
instance several times a second while reading this sentence. The second type of gaze
targetting eye movements are vergence movements. They adjust the axes of the two
eyes such as to look at an object at a certain distance. Often, when gaze shifts from
one object in space to another, saccades and vergence eye movements go together.
The third type are smooth pursuit eye movements which are initiated when one
follows a small moving target with the eyes.

The group of eye movements that stabilize vision during movements of the head
or body consists of a set of three reflexes, the optokinetic, the vestibulo-ocular and
the cervico-ocular reflex. They rotate the eyes opposite to the head movement such
that the visual image of the world remains approximately stable on the retina. They
use visual, vestibular, and somatosensory information, respectively, to infer the
correct direction and speed of the eye movement.

Each type of eye movement is driven by its individual neuronal machinery. Only
a limited part of that machinery is shared among some eye movements. However, all
oculomotor control eventually has to go through the oculomotor nuclei in order to
address the eye muscles.

3. Important concepts for sensorimotor transformations

In this section, we will visit some important conceptual issues for the understanding
of sensorimotor information processing. After that, we will delve into specific topics
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and systems in the remaining sections. The issues discussed here shall allow to define
the problems and solution strategies of sensorimotor tasks.

3.1. Coupling of action and perception

In the normal function of an organism, motor action and sensory perception are
closely intertwined. First of all, perception is the basis for controlling goal-directed
action. Each action, in turn, has consequences for perception because it changes the
temporary relation between the organism and the perceptual world. It is possible to
study motor and sensory systems in isolation in controlled laboratory conditions.
Often this simplifies matters of experimental design and interpretation, much as it is
easier to study simple isolated physical systems rather than complicated ones. But to
truly understand either sensory perception or motor control it is necessary to con-
sider the interaction between the two.

Sensory-guided motor action is usually an iterative procedure in which sensory
input is continuously evaluated and used for control purposes while the motoric act
continuously changes the setting of the actor in the environment. Think, for ex-
ample, of walking through a room towards the door. Every step that takes you
closer to the door also changes the view of the room that is used to locate the door
and guide the movement. This iterative process of sensory perception and motor
activity is called the action—perception cycle (Fig. 1).

A further aspect of the action—perception coupling is that often motor activities
are performed to aid sensory perception. If you want to get a closer look at an
object that is moving, smooth pursuit eye movements are initiated to keep high-
resolution gaze at the object. Similarly, if you want to get information about an

Action

Need, desire, New state
affordance, etc. (world & self)

Perception

Fig. 1. The action—perception cycle.
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object somewhere in the room, a saccadic gaze shift brings it to the center of the
visual field. Hence it is not only true that perception provides the basis of action.
Rather, action may also provide support for perception. In computer vision, re-
cognition of this principle has led to the development of the paradigm of active
vision [8].

3.2. Feedforward and feedback control systems

In motor control, the controller sends a signal to an effector that prompts the
effector to perform a certain action. In biological systems, the effector is typically
itself a complicated system, has its own dynamical properties, possibly exhibits
nonlinear behavior, and is subject to noise and delays in internal as well as
external processes. There are two principle ways by which the controller can assure
that the effector performs the desired output function [9]. Either the controller
knows how the effector performs, sends an appropriate command, and trusts that
the effector works as expected. This is a feedforward control system. Or the con-
troller sends a signal that approximately results in the appropriate response, checks
the output, and uses the difference between the actual output and the desired output
to steer the control signal towards matching the two. This is a feedback control
system.

In feedforward control systems (Fig. 2A), the controller must predict the
output generated by the effector. Because there is no feedback information of the
actual performance, it is essential that the prediction is very accurate. There are
two possibilities by which the controller can generate its prediction. Either the
controller knows what the effector will do, i.e., directly knows what output the
control signal will generate. Or the controller knows how the effector works and
predicts the output generated by the control signal, in which case the controller is
said to have an internal model of the effector [10]. The quality of a feedforward
control mechanism depends on the accuracy of the prediction. In theory this could
be high but in practice it is not, because biological systems behave too variably to
allow an accurate prediction and normal biological behavior often has to cope
with unexpected disturbances. The advantage of feedforward control, however, is
that it is fast.

Feedback control systems (Fig. 2B) have less problems with variabilities of the
effector and the task. This is because they do not attempt to accurately predict the
behavior of the effector. Instead they use the error in the motor output to con-
tinuously adjust the control signal. The current output is fed back to the controller
and compared to the desired output. The difference is used for the new control
signal. This is an efficient and simple method, as it does not require much detailed
knowledge about the effector or an internal model. It also has the advantage that it
can deal with unexpected disturbances of the task or the behavior of the effector.
However, its problems lie in the fact that: (a) the feedback signal is usually sensory
in nature and hence must be interpreted or transformed into an appropriate motor
error signal, and (b) the error signal arrives with a certain temporal delay, as it
needs to be registered and processed by the sensory system first. Because of this, a
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feedback controller typically lags behind its goal and only asymptotically reaches
perfect performance. Moreover, if the feedback controller is not able to follow
correctly it develops a phase lag and might become unstable.

A means to cope with these problems is to add a faster way to generate an error
signal. This can be done by using an internal model of the effector to predict the
error (Fig. 2B). This internal model receives the same control signal as the effector
and without delay generates an expected output signal. This expected output is fed
back to the controller and is used like the true error signal that later arrives via the
regular sensory feedback mechanisms. In biological systems this is called the re-
afference method and the signal that is sent to the model of the effector is called the
efference copy signal [11,12].

A feedback control system consists of a closed loop of control and error sig-
nals. If the feedback path is cut the system is in the so-called open-loop situation.
In this case, the system behavior is entirely determined by its feedforward path,
This makes it possible to study the behavior of that part in isolation. An often
used technique, for instance, is to look at only the initial phase of the systems
reaction to an input. Because of the temporal delay in the sensory feedback the
initial response phase is of the open loop type. The performance of the system is
specified by its gain, which is defined as the ratio of the output of the system to
the input. In the closed loop situation the gain should ideally be unity, which is
often approximately reached. Yet the gain normally depends on the frequency
distribution of the input signal. The open loop gain is a measure of the behavior
of the feedforward path of the system only. It is often very different from the ideal
value of 1.0, which 1s desirable as it affects the speed of adjustments of the control
signal by the feedback path.

3.3. Plasticity of input—output relations

The appropriate motor reaction to a sensory input may vary greatly in everyday
circumstances. Moreover, the exact motor program that leads to a desired goal
varies depending on constraints experienced in the situation. For instance, obstacles
in the path may force deviations from a straight trajectory. Changes to the sensory
input (think for mstance of wearing astigmatic glasses) or to the effector (for in-
stance by an additional load to be moved) require a recalibration of the mappings
from sensory to motor coordinates. For these reasons sensorimotor transformations
cannot be fixed but have to allow plastic changes to adapt to changes in the be-
havioral situation or the sensory input.

Most sensorimotor behaviors show the capability to adapt to changes. In fact,
many sensorimotor transformations are under constant control by recalibration
procedures. This recalibration is performed through a continuous comparison of
the desired motor effect with the actual motor output. Depending on this com-
parison, the connections and weights of the sensorimotor transformation are
adjusted. Very likely feedback pathways from cortical and subcortical control
centers through the cerebellum are involved in the constant recalibration process
[10,13].



1010 M. Lappe

3.4. Multiple frames of reference and sensor fusion

Sensory information is encoded in different primary formats in the different sensory
systems. For example, in the visual system the position of an object is encoded
spatiotopically in the distribution of activity in the two-dimensional layer of retinal
ganglion cells. In the auditory system the spatial position of that same object is
encoded in time and intensity differences between the two ears. On the output side,
different motor actions that involve different effectors might also be coded differ-
ently. Saccadic eye movements are encoded by the spatial distribution of activity in a
two-dimensional topographic map in the intermediate layers of the superior colli-
culus. The encoding of arm movements in the primary motor cortex, in contrast
does not appear to have a topographic organization.

To transfer sensory information to appropriate motor commands hence requires
to interconvert between different encoding schemes. Because the same information
might be used for many different purposes it is required to keep it in several different
formats in parallel. For instance, the visual location of an object might be used to
direct an eye movement to it, or to reach at it with the arm. Encoding information
such that it can be used in multiple output formats is achieved in two ways. On the
one hand, the brain constructs multiple separate encodings each serving a different
purpose and residing in a different brain area. On the other hand, the brain uses
encoding schemes that are more universal and that provide the encoded information
in such a way that a brain area that requires a specific format may extract it by
specific read-out mechanisms of the universal code. This will be elaborated in the
next section.

A further complication is that the different primary sensory and motor encoding
formats do not have a fixed relationship with one another. Neither do they have a
fixed relationship to the external world. This is because of the coupling of action and
perception. Every action changes the orientation of the sensors in the world and
with respect to each other. For instance, eye movements change the orientation of
the eye in the head such that the same location on the retina now corresponds to a
different direction relative to the head. Head movements likewise introduce a dis-
sociation between spatial locations relative to the head and the trunk. This also
applies across sensory modalities. Since the ears are fixed in the head, eye move-
ments also introduce a dissociation between the encoding of the visual and of the
auditory location of an object.

It is therefore appropriate to ask in which frame of reference, i.e., with regard to
which coordinate system, information is encoded. We can distinguish between five
frames of reference. Retino-centric encoding is with respect to the retina or the eye.
Head-centric encoding is with respect to the head. Body-centric is with respect to the
trunk or body. Ego-centric encoding gives the location in external space with respect
to the current location of one self. Allo-centric encoding means the location of an
object in the world, irrespective of the position and orientation of the body or the
sensors. This is what we commonly perceive as the locations of the objects around
us. Sensorimotor transformations must keep the encodings of information in these
various frames of reference in continuous register.
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Although primary sensory information comes in different formats it often
pertains to the same object or the same quality. Spatial position can be sensed
visually, acoustically, or haptically (i.c., by means of touch). Movement can be
sensed visually, acoustically, haptically, or vestibuiarly. An object’s identity is
conveyed by its shape, color, feel, smell, or taste. To use all sensory information
as efficiently as possible requires to combine or fuse them, in order to form a
coherent percept or generate a successful motor command. Such sensor fusion, in
turn, requires a universal encoding scheme or representation that is beyond the
primary sensory encodings in the different formats. This unified, supramodal
encoding of space is established along the pathways from sensory to motor areas
of the cerebral cortex.

3.5. Distributed encoding in overdetermined, noncartesian coordinate systems

Mathematically, spatial transformations can most simply be described by vector
addition, rotation, and scaling in an orthonormal coordinatle system that has the
smallest possible number of degrees-of-freedom. In the brain, things are different.
Spatial parameters are often encoded in the firing rates of large populations of
neurons. Each neuron contributes only a small part to the entire encoding of a single
parameter and might participate in the encoding of several other parameters as well.
A well-known example is the population encoding of movement direction, for in-
stance the direction of arm movement in primary motor cortex or the direction of
visual motion in motion sensitive visual areas. In the population code, the direction
of movement D is represented by a vector-weighted summation of the activity of all
neurons in the population

N
D= Za{e,', (1)
i=1

where a; is the firing rate of neuron i, and e; is a unit vector in the direction in which
the neuron is assumed to contribute to the encoding. Usually this is the direction for
which the neuron has the strongest firing rate, i.e., the preferred direction of the
neuron. Since every neuron has its own preferred direction, and since the preferred
directions are often equally distributed across the neuronal population, Eq. (1) is a
linear decomposition of D in a vastly overcomplete set of basis vectors.

Under the constraints imposed by properties of a biological system, such a
distributed population encoding has a couple of advantages. Among them are the
robustness against noise or against failure of individual neurons, and the ability to
perform smooth interpolations. More information on this is provided in chapter 20
by Gielen and chapter 19 by Treves. With regard to the topic of this chapter, there is
one additional important property, namely that it is possible to represent several
different encodings with the same population of neurons. Consider, for instance, a
population of neurons encoding visual motion in a specific part of the retina. Each
neuron has its own preferred direction e; and speed s; of motion. Then by using the
above population code
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N
D= § a;€;,
i=1

one might retrieve the direction of visual motion, as the speed of visual motion
is averaged out by summing over all neurons. This assumes, of course, that the
combination of speed and direction tuning is equally distributed across the popu-
lation. On the other hand, one might construct a similar population code for the
speed S of the visual motion by weighting each neuron by its preferred speed

N
S = E a;Si.
i=1

Or one might retrieve the full velocity V by using both the direction and the speed in
the population code

N
V= E a;s;e;.
i=1

This argument may seem trivial, but the point is that the neuronal population
provides the complete information and the process by which the population 1s read
out determines what information is used and how it is used. In the brain, this means
that subsequent areas can each choose to select different parts (or different formats)
of the information that is provided by the preceding area. This is important for the
construction and use of a supramodal representation of space as outlined in the
previous section.

The argument becomes more interesting if we consider it in relation to such a
supramodal space representation and to the issue of different frames of reference.
Let us assume that the population of neurons described above also receives in-
formation about the orientation of the eyes in the head, either from the stretch
receptors in the eye muscles or via an efference copy signal. Then in an analogous
way it is possible to retrieve by different population read-out procedures the visual
motion on the retina (a retino-centric variable), the position of the eye in the head,
or the visual motion with respect to the head (a head-centric variable). Now this
is exactly what would be required of a mechanism for sensorimotor coordinate
transformation. In fact, this is one of the ways by which sensorimotor transfor-
mation is realized in the brain.

3.6. Separation of state variables position and velocity

Physically, position and velocity are closely related as velocity is the derivative of
position. The brain often treats them as two separate and unrelated entities. For
instance, it is possible to perceptually experience motion without a change in po-
sition. This is demonstrated, for example, in the motion aftereffect [14]. If one looks
at a continuous motion pattern for about a minute and then suddenly looks at a
stationary scene the scene appears to move while at the same time it does not appear
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to change position. Another example of the separation of position and velocity can
be seen in the control of smooth pursuit eye movements. When a fixated stationary
object suddenly starts to move the brain initiates two superimposed eye movements
to follow the motion of the object. First there is a smooth acceleration of the eye
such as to bring its speed up to the speed of the target. While this acceleration
occurs, a saccadic gaze shift is initiated to bring the target back into the center of
gaze. These two movements occur independently and at different times after the
onset of the target movement, and are controlled by different systems.

The separation of position and velocity is also seen in the functional anatomy of
the brain. There is a dedicated processing stream that explicitly involves motion.
This processing stream analyses visual motion and provides the motor commands
for motion-related motor acts such as tracking eye movements or the control of
locomotion and posture. The analysis of spatial position and the control of motor
acts directed towards spatial positions, i.e., saccadic gaze shifts and reaching and
pointing movements, is largely subsevered by a different network of brain areas. In
the following, sensorimotor transformations for spatial actions are considered first
and then the processing of motion.

4. Spatial representations and transformations

4.1. Topographic representation in early visual areas

In an abstract sense, the eye functions similarly to a camera, in which the optics
(lens) generate a faithful two-dimensional image of the visual scene on the receptor
surface (the retina). Adjacent photoreceptors receive light from adjacent visual di-
rections. The topography of the visual image is preserved in the different layers of
the retina and in several of the retinal recipient structures in the brain, such as the
superior colliculus and the lateral geniculate nucleus. It is also preserved in the
primary visual cortex, or area V1, and subsequent visual cortical areas V2, V3, V4,
V35 (or area MT), and V6 in the cortical processing stream. In each of these struc-
tures, a neuron can be characterized by its retinotopic receptive field, i.e., the part of
the retina from which this neuron receives information. Receptive fields become
bigger along the path, increasing in diameter from less than a minute of arc in the
retina up to 10° of visual angle in the peripheral visual field representation in area
MT. In the central part of the visual field receptive fields are smaller than in the
periphery and the number of neurons per degree of visual angle is higher. Thus more
cortical tissue is devoted to the processing of the central parts of the image. This is
known as the cortical magnification factor. However, while this affects the metric of
the representation, there is a strong tendency in the early visual areas to preserve the
topographical relationships between image positions such that neighboring neurons
have adjacent or overlapping receptive fields. More information on cortical maps is
provided in chapter 22 by Ernst and Pawelzik.

In the most simple form, the receptive field of a visual neuron can be modeled
as a Gaussian with its center in the receptive field center and its width adjusted to
the width of the receptive field (Fig. 3A). For many models that deal with spatial
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Fig. 3. Descriptions of receptive fields. (A) Simple Gaussian profile. (B) ‘On’-center, ‘Off-
surround structure obtained as the difference of two Gaussians. (C) and (D) Gabor functions
with phase 0 (C) and phase = (D).

position and the conversion between coordinate frames this is already sufficient.
However, the receptive fields of most visual neurons show a richer structure which is
related to their respective role in the processing of visual information. Already in
retinal ganglion cells the receptive field consists of two parts. One part leads to
excitation of the cell when it is hit by light, the other part leads to an inhibition when
illuminated. These are known as the ‘on’ and "off” regions of the receptive field. In
the retinal ganglion cells, and also in the neurons of the lateral geniculate nucleus,
the on and off regions are arranged as two concentric circles of different diameters.
They can be described by two Gaussians of different widths and signs. The total
receptive field is then described by the difference of the two Gaussians (Fig. 3B)
[15,16]. In the primary visual cortex and beyond, receptive fields become more
complex in correspondence to the more complex response properties of the neurons.
Neurons in V1 respond selectively to the orientation and spatial frequency of
gratings presented in their receptive field. The receptive fields of such neurons can be
modeled by Gabor functions, i.c., the product of a Gaussian and a cosine function
(Fig. 3C,D) [17,18].
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4.2. Construction of three-dimensional space

The retinal image of each eye is two-dimensional. Accurate goal-directed spatial
action requires knowledge of target position in three-dimensional space. The brain,
therefore, must construct a representation of the three-dimensional world. There are
many cues to the third dimension already in the two-dimensional monocular image
(Fig. 4). Among these cues are shading, textural density and perspective, object-size
relationships, and motion parallax [3,11,19]. Motion parallax is the differential
visual motion that objects in different distances from the eye undergo when one
moves the head sideways, for example (Fig. 4C). All of these cues are evaluated by
the visual system and are used in parallel to reconstruct three-dimensional spatial
relationships. Their usefulness for depth perception varies with the depth scale that
an individual cue may provide and with the depth range over which it can be
analyzed [20].

A primary cue to depth in the near range (below 10 m) originates from binocular
vision [21]. Each eye sees the world from a slightly different perspective. From the
difference in perspective, parallactic differences between the images of the two eyes
result (Fig. 5). They are called horizontal retinal disparities. In Fig. 5, the lines of
sight of the two eyes are converged on the point F and form a certain vergence angle
vr. In both eyes, point F is projected onto the center of gaze. In contrast, for the

Fig. 4. Monocular cues to three-dimensional structure. (A) Size foreshortening, texture
density, texture perspective. (B) Shading. (C)} Motion parallax.



1016 M. Lappe

Horopter
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Fig. 5. Binocular horizontal disparity.

more distant point P, the rays through the center of the lens of the eye form an angle
vp. The difference between the two angles,

Op = Yp —Vr

is the absolute horizontal disparity of P. Its value can be used to estimate the
distance of P from F. The absolute horizontal disparity is negative when P is more
distant than F. The absolute horizontal disparity of point Q, 8y = Yo = Y, IN
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contrast, is positive. This point is closer to the eyes than F. A special set of points F
consists of those for which the absolute disparity is zero. They form a two-dimen-
sional curve that 1s called the horopter.

The disparity of a point can be obtained from the projection of the image point
in the two eyes. The projection of F is in the center of gaze of both eyes. The
projections of a point F on the horopter fall on eccentric positions in both eyes. The
two positions of the projection of F are called ‘corresponding positions’ because
they both correspond to the same object with zero disparity. In contrast, the pro-
jections of point P do not fall on corresponding positions. In the left eye, the
projection is to the right of F. In the right eye, it is to the left of F. The angular
difference between the two projections of P is equivalent to the absolute horizontal
disparity 8p of P.

Once the absolute horizontal disparity 8, is known, recovery of the true distance
of point P from the eye further requires knowledge of the distance between the eyes,
and of the vergence angle y,. Only if all of these parameters are known, the distance
of P from the eye can be calculated geometrically. However, from the visual images
in the two eyes solely the disparity can be retrieved. The vergence angle and the
interocular distance cannot be determined visually. Hence, an absolute depth jud-
gement is not possible from the visual information alone. Moreover, for geometric
reasons. the calculation of absolute depth strongly relies on the accuracy of the
vergence angle measurement. Any errors in that measurement will lead to large
errors in depth perception. However, the difference between the disparities of two
points P and 0,

dpg =0p =80 =1p — Yo

can be retrieved from the binocular images alone. This difference is called the
relative horizontal disparity between P and Q. The relative horizontal disparity is
independent from the vergence angle. It permits a direct visual estimation of the
depth difference between two objects solely from image information.

In the primary visual cortex and in several higher cortical areas, the majority of
neurons receive visual input from both eyes. Many of these neurons are selective for
disparity [22]. Their response to a visual stimulus depends on the binocular disparity
of that stimulus. These neurons are considered to form the basis of our stereoscopic
depth perception. Models of disparity sensitive receptive fields have proposed two
different mechanisms [23,24]. Either the neuron receives input from two different
(noncorresponding) retinotopic locations in the two eyes {25]. Models of this type
are called position-bascd models. Or the neuron receives input from two corre-
sponding locations, but with a different phase of its Gabor function in the two eyes
[26 -29]. Models of this type are called phase-based models. In phase-based models,
the neuron becomes sensitive to differences in the horizontal position of a textured
object, for instance, because the left eye might be optimally stimulated when the
image of the texture is at phase zero, while at the same time the right eye is optimally
stimulated by a texture that is shifted a bit, i.e, at a phase different from zero. It is
also possible to combine both approaches and arrive at a hybrid model [23].
However, while the phase-based and the position-based models start from different
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assumptions, have different physiological relevances. and involve different compu-
tational steps, it can be demonstrated that at the final stages where disparity values
are made explicit, the simplest versions of the two methods are mathematically
equivalent [30].

From the responses of binocular disparity-sensitive neurons it is possible to infer
the relative depth between two visible points. Lehky and Sejnowski [31] have shown
how a population code with physiologically plausible parameters can account for
human disparity sensitivity data and depth interpolation. To estimate true ego-
centric distance, absolute disparities and a signal describing the vergence angle are
necessary. Such a signal is provided by a modulation of the firing rate of individual
binocular neurons in area V1 [32] and in the parietal cortex [33]. These neurons are
not only selective for disparity, they are also influenced by the vergence angle of the
eyes. This combined selectivity can be used to establish a distributed representation
of egocentric distance [34].

4.3. Multiple space representations in parietal cortex

Retinotopic receptive fields, even binocular ones, define the position of an object in
space in a retinal frame of reference. Spatial position is encoded relative to the
current direction of gaze. Many spatial actions, however, require an encoding of
target position with respect to the body or the external world. To direct an arm
movement to the correct point in space, for instance, the brain needs to have in-
formation about the position of that object relative to the shoulder.

Knowing the location of an object in retinotopic coordinates is not enough to
specify its location in body-centric coordinates because the eyes can move relative to
the body. Thus, retinal position information needs to be combined with information
about the position of the eyes in the head to create a representation of the object’s
position in head-centric space. If this is then combined with information of the
position of the head on the body a body-centric representation becomes possible.
Most research up to now has focussed on the first transformation, that of retino-
centric representations to head-centric representations. The second step, head-cen-
tric to body-centric has only lately been explored in some detail.

Current concepts of space representation in primate cortex center around three
neurobiological findings. The first are spatial gain fields that modulate the response
to a visual stimulus depending on eye position in the head. Second, neurons with
head-centric receptive fields have been found in some brain areas. Third, some
neurons shift their receptive field dynamically to a future retinotopic location before
an impending eye movement. These mechanisms may act in parallel, or might de-
pend on each other in a serial or circular fashion. Several observations indicate that
they could form multiple parallel mechanisms rather than a single hierarchical
process. We will look at each of them in turn.

4.3.1. Implicit distributed coding by spatial gain fields
Neurons in many areas of the brain scale their response (o a visual stimulus within
their receptive field depending on the current position of the eye in the head [35].
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They respond to a preferred stimulus only when its image falls on a specific retinal
location. However, the response strength changes when the eyes (and the stimulus)
move to a different direction in space. Thus, while these neurons have a clearly
retinotopic receptive field they also carry information about the current eye position.
The influence of eye position on the activity of neurons has been termed the ‘spatial
gain field’. It has been described for many areas along the processing stream towards
and within parietal cortex (areas V3A, V6A, MT, MST, LIP, and 7A) [36-39] but
also for premotor cortex [40] and superior colliculus [41]. The widespread occur-
rence of eye position gain fields in the monkey brain could suggest that they subserve
a basic form of space coding. The origin of the modulatory input is unclear. Tt could
be proprioceptive feedback from the eye muscles, or a copy of the motor command
to move the eye, or a combination of both.

Several theoretical studies suggested that gain fields may serve to transform the
coordinates of the incoming sensory signals to a non retino-centric representation of
space. Zipser and Andersen [42] developed a backpropagation network that used an
extraretinal eye-position signal to transform retinotopic visual input into a head-
centric representation. The network consisted of three layers of neurons. The input
layer contained neurons with retinotopic receptive fields modeled as Gaussians. A
second set of inputs encoded the position of the eye in the head. These neurons
increased their firing rate linearly with eye position in a preferred (horizontal or
vertical) direction. The output layer was set to encode head-centric position of a
target. Training data consisted of combinations of retinal input, eye position, and
the corresponding head-centric output. The network was trained to associate the
correct input and output patterns with a backpropagation learning rule. The units in
the intermediate ‘hidden layer’ developed retino-centric receptive fields but their
activity was also modulated by eye position. Their behavior was functionally similar
to the gain field neurons in area 7A, suggesting that the role of these neurons might
liec in a transformation between reference frames. Later studies have refined the
general ideas of Zipser and Andersen by using more biologically plausible learning
mechanisms [43] and examining the consequences and function of head-centered
coordinates in more detail [44,45]. Bremmer et al. [46] showed with real experi-
mental data that a population of neurons is capable of a coordinate transformation
of visual signals into a non retinocentric frame of reference.

Pouget and Sejnowski [47] have formalized the spatial transformations provided
by gain fields in the theory of basis functions (Fig. 6A). This formalism capitalizes
on the fact that any smooth function can be expressed in a series of basis functions.
Classical examples are the Taylor series or the Fourier series. Likewise, a set of
Gaussians with different centers and widths, or a set of sigmoids with different
centers and slopes, also form a basis set to express any smooth function in a series
[48,49]. Pouget and Sejnowski described the receptive field of a single neuron by a
Gaussian and the eye position gain field by a sigmoid. Both interact multiplicatively
such that the behavior of the neuron is described by the product of a Gaussian and a
sigmoid (cf. [50]). This product, in turn, also defines a basis set, provided that all
possible combinations of parameters are included [47]. Hence each neuron can be
interpreted as providing the amplitude of a single basis function from that set.
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A: Distributed head-centric coding by spatial gain fields
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Fig. 6. Schematic illustrations of the three types of dynamic spatial representation described

in Sections 4.3.1 and 3. Gaussian functions depict areas of excitation in representational

maps. Shaded areas reprcsent range of neural connections. See text for details of the me-
chanisms.

Equivalently, each neuron can be interpreted as encoding the input at a specific
retinotopic location (its Gaussian receptive field) and a specific eye position (its
sigmoid gain field). By weighted summation of all neuronal activities with appro-
priately chosen weights it is possible to represent any smooth mapping from input
(spatial position and eye position) to a desired output. The weights, in that termi-
nology, correspond to the amplitudes of the different basis functions in the ex-
pansion series. Specifically, it is possible to choose weights such that the output
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becomes a Gaussian function of head-centric position. In this case, the neurons
encode head-centric position. However, they do so in a distributed, i.e., implicit
manner. The appropriate weights can be found by learning procedures. Pouget and
Sejnowski [47] used the delta-rule to learn the mapping from retinotopic to head-
centric encoding. The delta rule minimizes the squared error between the actual
output and the desired output by gradient descent. Also simpler., correlation-based
learning methods are feasible [51].

The principle of implicit distributed encoding is schematically illustrated in
Fig. 6A. In the left and right drawings of Fig. 6A the same head-centric target is
seen from two different eye positions. In the left drawing, the eye is in the central
position and the target falls on the right retinal hemifield, where 1t elicits a Gaussian
aclivity profile. This activity is transmitted to the basis function encoding in the
parietal cortex, where it excites all neurons that have connections with this part of
the retina. Because the eye is in the central position no gain field modulation occurs
and all responses have the same amplitude. In the right drawing of Fig. 6A, the eye
is shifted to the right. The image of the target now falls on the left retinal hemifield.
This excites a different subpopulation of parietal neurons, namely those that have
receptive fields in the left retinal hemifield. However, the distribution of activity
within the subpopulation is nonuniform. Because eye position is eccentric, the gain
ficld modulation leads to strong responses in neurons in which the gradient of the
gain field is in eye movement direction. Examples are the lower two of the four basis
function neurons in Fig. 6A. In contrast, neurons for which the gradient of the gain
ficld is against the eyec movement direction exhibit only weak responses (upper
neuron in Fig. 6A). Hence the amount of excitation varies within the population of
neurons because each neuron is modulated differently by eye position. The dis-
tribution of activity in the subpopulation defines how the retinotopic position of the
target corresponds to head-centric coordinates. The population read-out mechanism
interprets the activity distribution in the population and establishes the location of
the target in head-centric space. For an equal distribution of activity in the sub-
population of excited neurons, the head-centric location is identical to the retino-
centric position (Fig. 6A, left). For an asymmetric distribution of activity, the head-
centric position of the target must be shifted depending on the degree of asymmetry
(Ivig. 6A, right).

An advantage of the implicit, distributed representation by basis functions is that
it can be used to encode not only one particular transformation, but any other inpui—
output mapping as well. The particular transformation depends on the weights that
are used to read out the population activity. In that sense, this type of encoding is
coordinate-free (the coordinates are chosen when the weights are defined) and can
represent or generate different spatial representations in parallel. Salinas and Abbott
[51] have demonstrated that it is possible to interface such a representation directly to
the population coding of motor output in primary motor cortex (see Section 5.3).
This requires a different set of weights than the extraction of head-centric position,
but it can be subserved by the same population of gain-field neurons. Van Opstal and
Hepp [41] have shown how the parameters for the control of goal-directed saccadic
eye movements (Section 5.1) can be obtained from such a represcntation.
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4.3.2. Explicit coding by head-centric receptive fields

The above model assumes that head-centric position of objects is encoded implicitly
in a population of neurons. While this type of encoding has certain advantages in
terms of flexibility it may, on the other hand, sometimes be unwieldy to use because
the responses of an entire population of neurons must be combined before a true
head-centric signal can be reached. A more direct way to represent head-centric
position would be to explicitly construct head-centric receptive fields. Indeed in a
small number of cortical areas neurons are found that possess head-centric receptive
fields. These receptive fields remain in head coordinates even when eye position
changes. Head-centric receptive fields have been observed in area V6A [37], area VIP
[52]. and premotor cortex [53]. However, the existence of cells coding explicitly in a
head-centric frame of reference does not exclude eye position effects in the same area
or even in the very same cells. About half of the cells in areas VIP, V6A and the
premotor cortex reveal eye position gain fields on their firing rate [37,52,54], both in
darkness and in normal viewing. Interestingly, in area VIP, this eye position effect
occurred in both eye-centric cells and head-centric cells.

Gain field models have shown that head-centric receptive fields can be con-
structed from a combination of retino-centric receptive fields and spatial gain fields
in a hierarchical fashion [42.45]. But they have also suggested that the explicit head-
centric step is not necessary, since all information is present implicitly in the neu-
ronal population [42,47,51]. A strict hierarchical construction of head-centric
ncurons from spatial gain fields would predict that once head-centric neurons are
established, gain fields are no longer needed. Yet gain fields are found in many
cortical areas in the dorsal stream. Moreover, even the head-centric neurons in area
VIP themselves (the putative end point of a hierarchical construction) exhibit eye
position gain fields [52]. This might reflect a residual effect of the construction by
gain fields. But it could also mean that head-centric receptive fields are generated by
a different mechanism. For instance, dynamic selection of input from a retinotopic
representation could directly yield head-centric receptive fields (Fig. 6B). In this
view, a head-centric neuron makes connections to the entire representation of the
retina (shaded areas in Fig. 6B) but selectively gates its connections so as to restrict
its input to only a part of the visual field (continuous vs. stippled lines in Fig. 6B).
The selection, then, is adjusted based on eyc position. In this view, the observation
that head-centric neurons in VIP are modulated by gain fields would suggest that
gain fields have a functional importance that goes beyond the construction of head-
centric receptive fields. In fact, gain fields can also be observed in area LIP [39,55],
where a third mechanism for spatial localization, receptive field updating, has been
described (see below), indicative of a parallelism between the different spatial coding
mechanisms.

4.3.3. Dynamic retino-centric receptive field updating

Neurons in some brain areas have retinotopic receptive fields that anticipate the
effect of impending eye movements. Slightly prior to a saccadic gaze shift, they shift
their receptive field in space to the position that will be retinotopically correct after
the saccade is completed. These phenomena were first observed in LIP by Duhamel
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et al. [56], and later in the frontal eye field [57], and superior colliculus [58]. While
these neurons appear to encode a certain retinotopic location, their receptive field
cannot be simply anchored to input from only that retinal location. Rather, they
must receive information from a much larger area of the retina and dynamically
evaluate only a restricted part of the input. A possible mechanism may be a spatially
and temporally variable, gaze-dependent gain modulation of the receptive field
structure (Fig. 6C). This is similar to the model of direct construction of head-
centric receptive fields outlined in the previous section. However, unlike in head-
centric neurons, which continue to use the information from the new area of the
retina when the eye is in the new position, the retino-centric neurons only transiently
use that area but switch back to the original part of the retina that corresponds to
their retinotopic receptive field immediately afterwards (Fig. 6C). In the inter-
mediate step, the neuron can be driven by stimulation of either the old or the new
retinal location.

For anticipatory receptive field shifts, information about the direction and am-
plitude of an impending saccade are needed. Quaia et al. [59] have proposed a model
of receptive field updating. This model takes into account the latencies and firing
properties of the neurons in area LIP, the frontal eye field, and the superior colli-
culus. It assumes that information about impending eye movements is provided by
the oculomotor signal from the frontal eye field that precedes the eye movement.

4.3.4. Why multiple space codes?

Why does the brain apparently use multiple parallel space codes? Certainly the
different encoding schemes differ in a number of behaviorally relevant properties
such as accuracy, flexibility, robustness, number of neurons required, demands on
the structure of the input or output, etc. This means that each mechanism has a
certain functional scope for which it is optimal, or at least for which it is superior to
the other mechanisms. For instance, it would seem that an explicit head-centric
receptive field must in principle obtain information from every place on the retina as
the eye position changes, requiring a heavy convergence of inputs on every head-
centric neuron (Fig. 6B, shaded areas). This is costly in terms of connectivity. In
contrast, retinotopic neurons with spatial gain fields need only connect to those
parts of the retina that are within their receptive field (Fig. 6A, shaded areas). This is
more efficient than head-centric receptive fields, particularly in early visual areas
where retinotopic receptive fields are small. On the other hand, even though head-
centric receptive fields are more expensive, they might be preferable when it comes to
accuracy or robustness, or when a specific output format is required. Also, they
might provide head-centric information faster because the population summation
step is omitted.

It is also conceivable that certain functions or tasks require particular encoding
strategies in appropriate reference frames. Theorctically all relevant information for
spatial coding can be provided by any of the three coding mechanisms, and easily
transformed from one to another. Yet in many areas there seems to be more than
one mechanism at work. Areas VIP and V6A have gain fields and explicit head-
centric receptive fields in the same neuron [37,52]. LIP neurons have explicit re-
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tinotopic receptive fields, which they update prior to a saccade [56], but they also
show eye position gain fields [39,55]. This shows that multiple space encodings are
available in parallel, and that whichever encoding best serves the functional task
of an area becomes the explicit code. Explicite head-centric coordinates might
be preferable for the control of reaching movements of the arm (area V6A), for
instance, or for a multimodal representation of body surfaces (area VIP). Retino-
centric representations, in contrast, could be preferable for the control of eye
movements (area LIP).

5. Goal-directed spatial action

5.1. Saccadic gaze shifts

Saccades are rapid eye movements that align the direction of gaze with a particular
target of interest. Saccades are fast (up to 600°/s), quick (lasting about 50 ms), and
frequent (we perform about three of them every second, mostly without ever noti-
cing). Saccades are probably the most ubiquitous but also the most simple form of
goal-directed behavior. For this reason, they have been studied extensively and have
served as a prime example of the basics of sensorimotor information transfer.

Natural saccadic gaze shifts are usually a combination of an eye-in-head
movement and a head-on trunk movement. However, most work on saccades has
focussed on a situation where the head is fixed and only the eyes move. Only recently
have researchers begun to investigate natural eye-head gaze shifts. Most of what
follows in this section pertains to the head-fixed situation.

Like all eye movements, saccades are ultimately generated by contraction of the
eye muscles. Contraction of the eye muscles is governed by the firing of neurons of
the oculomotor nuclei in the brainstem. This final output part of eye motor control
is shared by all classes of eye movements. The control systems that act before the
oculomotor nuclei are specific for each type of eye movement. While saccades may
appear to be rather simple movements, their control involves a large network of
subcortical and cortical areas. To understand this network and the flow of in-
formation within it, it is useful to consider three separate stages: saccade planning
and preparation, saccade initiation, and saccade execution.

Saccade planning and preparation refers to the process of choosing a target for a
saccade, calculating its position in space, and relating that information to the sac-
cade initiation system. Area LIP in the parietal cortex provides information about
salient visual objects that can become targets for a saccade [60]. The visual receptive
field of many LIP neurons serves a dual function as a motor field for saccades.
Electrical stimulation in a cluster of LIP neurons with similar receptive field position
initiates a saccade in the direction of that position [61]. Hence the visual retinotopic
map in LIP can also function as a spatial motor map for saccades. A few other
cortical areas are also involved in saccade planning and preparation, most im-
portantly the frontal eye field (FEF) [62]. Similarly to LIP, electrical stimulation in
FEF also generates saccades with a particular amplitude and direction.
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Information about the spatial location of a saccade target is relayed from LIP
and FEF to the superior colliculus (SC), which is a primary structure for saccade
initiation. The SC contains a retinotopic motor map for saccade generation
(Fig. 7A). Each location in this map is associated with a particular direction and
amplitude of a saccade. Electrical stimulation at a specific map position leads to an
eye movement with the respective direction and amplitude (e.g. points a and b in
Fig. 7A). The spatial parameters of a saccade are retrieved from the implicit space
code provided by area LIP [41] and represented by a population code in the dis-
tribution of activity in the collicular map [63,64]. Many of the neurons in the SC also
have visual receptive fields. Their receptive field center is positioned at the same
direction and amplitude as the eye movement that is generated.

At the rostral pole of the map, neurons are clustered that are active during
fixation rather than during saccades (Fig. 7B, top panel). In the saccade preparation
phase, the activity of these neurons slowly decreases. At the same time, the activity of
a subset of the neurons at the map position that represents the saccade target slowly
increases (Fig. 7B, middle panel). Because of the slow build-up of their activity in this
phase, these neurons are called build-up neurons [65]. When the build-up activity
reaches a threshold level, a further subset of SC neurons at that map position be-
comes activated, the so-called burst neurons (Fig. 7b, bottom panel). These neurons
fire a burst of action potentials which triggers the onset of the saccade. The build-up
activity reflects many aspects of saccade preparation and target selection. When
several targets are available, build-up activity occurs at all associated places in the
map. The strength of the build-up activity depends on the probability that the target
will be the goal of the saccade [66]. However, when two targets are presented close
together, the saccade may be directed to an average of the two target positions,
demonstrating that the SC map can perform vector averaging [67].

The target selection and saccade preparation process in the collicular motor map
has been modeled in a neural field approach [68,69]. In this approach, the two-
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Fig. 7. Saccade initiation in the superior colliculus. (A} The collicular motor map. (B)
Distribution of activity in the map during fixation, saccade preparation and saccade initiation.
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dimensional map of neurons in the colliculus is treated as a homogeneous excitable
ficld. Lateral interactions are assumed to provide short-distance excitation and long-
distance inhibition [70]. In this model, incoming information about the location of
saccade targets initiates the build-up of activity at the associated map locations.
Simultaneously, the activity in the map is subject to internal dynamics governed by
the lateral interactions. The internal dynamics allow to model vector averaging of
closeby targets [67,68] and to model influences of multiple targets on saccadic re-
action time [69].

When the build-up activity reaches threshold, the collicular burst neurons initiate
the saccade. The execution of the saccade is then controlled by the so-called
brainstem saccade generator. It consists of several groups of neurons from a number
of brainstem nuclei along with the burst neurons and the fixation neurons of the SC.
The brainstem saccade generator has to transform spatial target information pro-
vided by the saccade initiation system into an appropriate motor program for the
eye muscles. Ultimately, this involves the transformation from a spatial map of
target position into a temporal signal for the time course of muscle contraction. The
brainstem saccade generator functions as a feedback controller (see Section 3.2). It
receives a desired gaze displacement as input, which is provided by the SC burst
neurons. The output is the signal to the oculomotor neurons. Two other important
pathways of the controller are the feedback signal about eye position and the in-
hibitory pathway that suppresses the fixation neuron activity in order to release
fixation. Many models of the brainstem saccade generator fall within this general
scheme (e.g. [71-77]). They differ in the exact nature of the input signal and in the
way eye position feedback is generated and used.

A saccade aligns the direction of gaze with a target direction in space. The target
direction specifies two positional angles of the eye (azimuth and elevation). Yet, the
eyeball has three degrees of freedom of movement, the third being torsion around
the line of sight. Hence, the saccade target direction does not fully specify the final
eye orientation. The saccadic system introduces a further constraint (called Listing’s
law [11}) that moves the eye such as to minimize torsion [78,79]. This constraint is
sensible for two reasons. First, because rotations are non-commutative, a sequence
of saccades that does not follow Listing’s law would lead to the build-up of strong
torsion of the eyeball over time, which would strain the muscles. Second, minimizing
torsion ensures that the image of the world always remains in approximately the
same orientation in the eye [11,79]. It is still under debate which part of the saccade
pathway is responsible for the physiological implementation of Listing’s Law
[41,80].

Because the duration of a normal saccade is shorter than the latencies of visual
mput to the brain, the saccadic system cannot receive visual feedback while the
saccade i1s ongoing. Errors in saccade targeting are conveyed to the system only after
the saccade is finished. Thus, the entire saccade programming must be based on
presaccadic visual information in an open loop sense. It is therefore important for
the saccadic system to closely monitor errors in saccade targeting and adjust the
saccade programming based upon recent performance. For this reason, saccade gain
is plastic [81]. When a subject is instructed to make saccades to a target A that is
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suddenly moved to another position B during the saccade, initially all saccades miss
the target. After about a 100 trials, however, the saccadic system has learned to
associate the presaccadic target position A with a saccade that brings the eye to the
postsaccadic position B. This requires an adaptation of the gain of the saccade. Such
an adaptation is not seen at the level of the superior colliculus [82], suggesting that it
occurs in the saccade generator downstream from the colliculus, probably in the
cerebellum [81.83,84].

The requirements for the control system and for the input signal become more
complicated when combined eye-head movements are considered. In this case, both
eye and head movement have to be controlled such that the gaze reaches the target
and stays there. Typically, the eye movement is much quicker than the head
movement. Therefore, even when both components are initiated at the same time,
the eye movement is first to align gaze with the target. Then, as the head follows, the
eye has to be counter-rotated to the head in order to keep gaze on the target. This
process involves a complicated interaction between the two movement components.
It has been proposed that both components might be driven by a common gaze
command [85]. But recent experiments suggest that more likely each component
receives an independent control signal [86].

5.2. Spatial representations during saccadic gaze shifts

Saccadic eye movements impose problems for the stability of vision. A saccade
rapidly and often drastically changes the view of the world that is projected on the
retina. Moreover, each saccade induces strong and fast image motion on the retina
as it sweeps across the visual image. Typically, however, we are not aware of the
retinal image motion generated by a saccade nor of any image displacement after the
saccade [87-89]. Both phenomena show that vision is temporally suppressed during
saccades. The saccade-induced change of the view of the visual scene, moreover,
enforces a match of identical image elements before and afier the saccade. Otherwise
we would fail to experience a stable environment. Transient changes of the apparent
position of a briefly flashed object before a saccade illustrate the mechanisms of
transsaccadic visual stability. Just before the beginning of a saccade, the apparent
position of briefly displayed objects in the visual scene changes. There is a strong
shift in the direction of the saccade anticipating the saccade and compensating for its
effects [90,91]. The magnitude of shift varies with position in the visual field, im-
plying a transient compression of the metric of space just before the saccade [92].
However, the compression is less robust than the shift, and is not found under all
conditions. It is mainly driven by visual information available in the postsaccadic
image [93], while the shift is thought to reflect the efference copy signal [90,91]. The
presaccadic position shifts have been linked with the mechanism of receptive field
updating in parietal cortex [56].

5.3. Reaching and pointing

Goal-directed movements of the arm are much more difficult to control than eye
movements. They involve several joints and hence possess a much higher degree of
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freedom. Here we will only provide a very brief overview of the main theoretical
concepts involved in arm motor control. For more detailed information the reader is
referred to a number of review articles [94-98].

The central problem of arm motor control is to specify a unique set of movement
parameters in the high-dimensional state space of the joints of the arm. This involves
complex control problems for the kinematics and/or dynamics of the joint co-
ordinates. Most approaches to this problem employ optimization schemes. In these
schemes, a sequence of joint coordinates is established that minimize some property
of the movement. Important examples are movement jerk (i.e. the third derivative of
position) [94], torque change [99], or joint stiffness [100]. The equilibrium point
hypothesis [101.,102] asserts that much of the control of an arm movement is carried
out by the passive properties of the muscoloskeletal system. A specific muscle in-
nervation will drive the arm to a certain associated joint configuration, the equili-
brium point, which forms a stable attractor of the force field generated by the
muscles. In this case, the motor controller only needs to specify the equilibrium
point [95,103].

It is also important to observe that normal arm movements do not use all the
possibilities that the arm has. Natural arm movements towards a given point in
space typically lead to a single posture of the arm. This posture is associated with the
position of the target point relative to the shoulder. While many other postures
would be possible, the system often uses only a single one. Thus, arm movements
normally behave in a more constraint fashion in which only a smaller number of
degrees of freedom is actually exploited [94,104]. This bears some analogy to the
reduction of the degrees of freedom for saccadic eye movements by Listing’s Law
(see Section 5.1).

The motor system for arm movements involves areas in the parietal cortex,
cortical motor areas, the cerebellum, the basal ganglia, subcortical motor structures,
and the spinal cord [1,2]. The motor command neurons in the primary motor cortex
are within the highest level of this command hierarchy. These neurons reveal a
tuning for the direction of the movement of the hand in space. They are thought to
provide a population code for arm movement direction [97,105]. This code can be
directly obtained from the distributed encoding of target position in space in the
parietal cortex [51]. However, the firing rate of neurons in primary motor cortex is
influenced by many other parameters of the movement such as its starting position
[106], the orientation of the arm [107], and the load to be moved [108]. Because these
parameters influence neuronal firing rate but do not influence the direction of the
hand movement, the population may provide more information than just the
movement direction. This suggests a more complicated population code which takes
proprioceptive feedback about arm position into account [109].

6. Motion

Sensing and interpreting motion are essential for many behavioral tasks. Tracking a
moving object with the eye or the hand or controlling one’s own motion in the
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environment requires the determination and analysis of movement in the visual field.
Perceiving motion is also helpful for other information processing tasks. Motion can
be used to group objects together or to separate objects from their background. The
brain contains specialized mechanisms that detect and analyze motion and that
transfer information about motion to motor networks involved in motion tasks.
This section will first describe how motion is detected and analyzed and later de-
scribe how motion information is used in sensorimotor behavior.

6.1. Visual motion detection

An object moving across the visual field induces a changing pattern of illumination
on the retina. Motion sensitive neurons respend to spatio-temporal luminance
changes when motion is into their individual preferred direction. Such direction-
selective responses are already found in the retina, but also in most retinal recipient
structures, and in many cortical areas. Many techniques have been proposed to
estimate motion from time-varying images (overview and comparison in [110]). Two
main classes of models for neuronal motion detection and direction selectivity are
correlation models and gradient models.

Correlation models compare the light intensity at one location at a specific time
with the light intensity at another location at a later time [111]. The first such models
were proposed in the late 1950s and 1960s [112,113]. The basic principle is shown in
Fig. 8A. The signal from the first image position is delayed and compared to the
signal from the second image position by a coincidence detector, which is modeled
as a multiplication of the two signals. This detector responds to a luminance change
at the two positions with a specific temporal profile, i.e., to a particular contrast
frequency. However, this arrangement alone is not sufficient to truly detect motion
in a particular direction. It would also respond to a continuous uniform illumina-
tion, because then the time delay does not matter anymore. This ambiguity is re-

A lnput1 Input2 B
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Fig. 8. Motion detection by spatio-temporal correlation. (A) Correlation detector. (B)
Spatio-temporal filter.
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solved by comparing the outputs of two detectors that are mirror images of each
other (opponent detectors) [112,111]. But even then, the detector is direction se-
lective but it cannot be selective for the speed of motion. For instance, two gratings
of different spatial frequencies can be moved along the detector at different speeds
and yield the same response. Speed information can be gained, however, through the
analysis of a population of detectors [114].

A varnant of the correlation approach are the motion energy models [115,116]
(Fig. 8B). These models use linear spatio-temporal filters that establish time delays
for some sub-parts of the receptive field. In the example of Fig. 8B the receptive field
consists of an excitatory region (light ellipse) flanked by two inhibitory regions (dark
ellipses) in a Gabor-like arrangement. Time delays between these areas can be ex-
pressed as an orientation of the receptive field in space-time (Fig. 8B). This receptive
field structure establishes a filter that responds preferentially to a spatio-temporal
luminance change that is aligned with the long axis of the excitatory region. The
outputs of opponent filters are squared and summed to obtain a measure of the total
motion strength, or motion energy [115,116]. Subsequent models have refined this
general structure, ¢ither to make it more consistent with human psychophysical data
from motion perception [117,118], or to allow the estimation of speed through
population analysis [119]. More recent work has elaborated on these procedures in
order to closely resemble the properties of direction selective neurons in the primary
visual cortex [120,121].

Gradient models attempt to calculate local velocity from the local spatial and
temporal gradients of luminance [122-125]. They are built around the assumption
that the total image luminance E is stationary over time, dE/dr = 0. If this is true,
then the temporal and spatial luminance gradients must sum to zero

OEOx OFEQy OF

Ox Ot oyor ot
From this equation, image velocity (0x/0t,0y/0t) can be computed once VE and
0K /0t are known.

An inherent problem in the neural computation of visual motion is the so-called
aperture problem [122,123]. The aperture problem occurs if the moving object is
larger than the receptive field of the neuron. The neuron only sees the luminance
changes inside its receptive field, i.e., through a limited aperture. For a moving one-
dimensional edge seen through a limited aperture, only the motion component or-
thogonal to the edge can be determined. The motion component along the edge
cannot be determined because there is no change of luminance along this direction.
Mathematically, this is expressed in the fact that the luminance gradient equation
above is a single equation in two unknowns. Hence, a neuron that is subject to the
aperture problem can only register one component of the two-dimensional visual
motion signal. The aperture problem can be overcome by integrating local motion
signals from many neurons over a larger spatial region. Several models for such
motion integration have been proposed, dilfering mainly in the way in which the
integration is performed. The integration of motion signals may be performed along
the edges of a moving object [126], or over a two-dimensional area [123,127]. The
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latter case attempts to estimate a dense and smooth velocity field across the entire
image. However, when motion measurements are spatially averaged, the problem
arises that the edges of moving objects form a discontinuity in the velocity field.
Averaging motion signals across this discontinuity compromises the estimation of
the motion of the object. Moreover, detecting the discontinuity is important to
scparate the object from its background. In the spatial integration approach, line
processes can be incorporated that break up the integration at discontinuities where
the local motion signals change abruptly [124]. Alternatively, one may segment the
velocity field into coherently moving parts based upon the reliability of individual
local motion measurements [128].

In the primate visual system, the integration of local motion signals happens
along the pathway from the primary visual cortex (area V1) to the middle temporal
(MT) area and the medial superior temporal (MST) area. Neurons in area MT have
been shown to overcome the aperture problem [129,130]. Area MT is an area spe-
cifically dedicated to the processing of motion. It contains a high proportion of
direction-selective neurons [131] and has been linked to behavioral responses to
motion stimuli in lesion [132] and microstimulation [133] studies. Area MT contains
a topographic map of motion the visual field [134]. Receptive fields in areca MT are
much larger than those of area V1, reflecting the motion integration that occurs in
MT. They range from about 1deg? in the central visual field up to 100deg? in the
periphery. Each neuron in the map responds to visual motion at that map position
and in its preferred direction. A combination of the responses of several neurons
with different preferred directions can provide a population encoding of motion
across the visual field [124,128,135].

6.2. Motion analysis

Visual motion is used for many purposes. This includes the determination of the
three-dimensional structure of objects [136], the control of tracking movements of
the eyes [7], and the guidance of self-motion [137]. Each task requires a dedicated
analysis of the visual motion signal. This analysis is performed in areas MT and
MST, the ventral intraparietal (VIP) area and area 7A in the parietal cortex.
Much useful information is contained in motion parallax [138,139]. Motion
parallax is the difference in the apparent motion of two objects that move with the
same physical speed but are positioned at different distances from the observer
(cf. Fig. 4C). Near objects, in this case, move faster on the retina than objects
located further away. This difference in the speed of motion signals from different
depths is the basis for estimation of the three-dimensional structure of moving
objects [140-143]. Neurons in area MT have an antagonistic substructure in their
receptive fields that suggests a role in the estimation of motion parallax. In addition
to the part of the receptive field that generates responses to motion in the preferred
direction of the neuron, the receptive field of many MT cells contains an area that
reduces the response when it is stimulated with motion in that same direction
[144,145]. These neurons respond to differences in local motion, i.e., to motion
parallax. Their response properties are useful for the estimation of three-dimen-
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sional shape [146,147] and for the estimation of self-motion and depth in the visual
scene [148,149].

6.3. Visual tracking by smooth pursuit eve movements

Tracking a moving object involves smooth pursuit eye movements. Smooth pursuit
eye movements are performed to continuously keep the image of the object on the
fovea, i.e., in the area of high-resolution vision. The cortical pathway that generates
smooth pursuit is largely separate {from the one that drive saccades. Smooth pursuit
is generated in a network consisting of the cortical motion areas MT and MST, the
frontal eye field (which is also involved in saccades), the pontine nuclei, and certain
parts of the cerebellum (overview in [150]). At the level of the pontinc nuclei and the
cerebellum the pursuit pathway converges to some degree with the pathways for
other eye movements.

Smooth pursuit is governed by a feedback control system [151]. Tt uses visual
motion as input and eye speed as the feedback signal. Different models assume
different formats for the visual motion input. This difference is best understood by
considering the initiation of pursuit to a target that suddenly starts moving. This is
the open-loop situation of the feedback system, in which only the input to the
controller, not the feedback signal, is available. When the target starts moving, the
movement-induced retinal image motion tells the pursuit system the desired speed of
the eye. After a certain latency period of about 100 ms the eye is accelerated towards
the desired target speed. Meanwhile a saccade is initiated to bring the moving object
into the fovea. Later, in the closed-loop situation, smooth pursuit continues to
match the eye velocity to the target velocity. But now the retinal image motion of the
target is very small because the eye movement stabilizes the target on the fovea.
Hence the retinal image motion does not specify the movement of the target any-
more and cannot be directly used as the driving signal for the controller. There are
two ways to deal with this problem. Target velocity models construct the velocity of
the target in space from the sum of the velocity of the eye movement and the
remaining retinal motion of the target [151,152]. The target velocity signal is then
used as the input to the controller. Retinal motion models, on the other hand, use
directly the retinal image motion as input to the controller and integrate it to
determine target velocity in space [153].

Neurophysiologically, the input to the pursuit system originates from motion
sensitive neurons in areas MT and MST [150,154-156]. Most of these neurons
respond to retinal image motion. Hence they can provide the input required by the
retinal motion models [156]. However, part of the neurons in area MST appears to
encode target velocity in space rather than image motion on the retina [157-159).
Their signal can provide the required input for the target motion modet [152].

6.4. Control of self-motion and posture

Movement of the observer himself induces global image motion of the entire visual
field (Fig. 9). This pattern of image motion is called optic flow. It serves as a signal
to control self-motion and to stabilize posture. Optic flow is used to control body
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Fig. 9. Optic flow induced by self-motion. (A) An observer moving across a flat horizontal

plane. (B) Vector field of image motion induced by forward movement of the observer while

he looks directly into the motion direction. (C) Vector field of image motion when the

observer performs an eye movement to look at an element on the ground in front of him
(circle).

stance [160,161], the speed of self-motion [162], the distance traveled [163], the time-
to-collision with obstacles along the path [160,164], and the direction of heading
[137).

Much work has concentrated on the last issue, the estimation of heading. The
optic flow pattern induced in the eye of a moving observer is determined by the
parameters of the movement and the three-dimensional structure of the environment
[138]. Mathematically, the problem of inferring the motion of the observer from the
pattern of optic flow is ill posed. At any instance, the motion of the eye, like any
rigid body motion, can be described by translation and rotation, i.e., with six de-
grees of freedom. The image motion of an element of the environment depends on
these parameters and on its distance from the eye. The structure of the flow pattern
is quite simple when only observer translation is considered. In this case, the motion
field radiates away from a singular point, the focus of expansion, which is directly
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equivalent to heading (Fig. 9B). However, when rotational movements of the eye
are superimposed on the translation of the observer, the motion field becomes much
more complex [165,166] and the singular point is no longer associated with heading
(Fig. 9C).

Heading estimation then requires the determination of the direction of translation
in the presence of rotational flow disturbances. This can be framed as a problem with
many unknown parameters, namely the six degrees of freedom in the self-motion plus
the distances of all visible points from the eye. Accurate measurement of the retinal
flow provides information to solve this problem by registering the direction and speed
of every moving point. This allows the mathematical decomposition of the flow into
translational and rotational components and the estimation of heading once more
than six moving points are given [167]. Usually many more points are available but
their measurements are noisy. In this case, redundant information from more than six
points can be used to optimally determine heading [168,169].

A key source of information to separate translational and rotational components
of the optic flow is motion parallax. For translational movements of the eye, the
induced visual speed of each element is inversely proportional to its distance from the
eye. In contrast, a rotation of the eye induces equal angular speed in all image points,
independent of distance. This difference is exploited by most neural models for
heading estimation from optic flow. Three main classes of models have been pro-
posed. Differential motion models directly capitalize on the properties of motion
parallax. By computing differences between adjacent flow vectors they remove the
constant rotation component and construct an approximation of the translational
component only [170,171,148]. Heading can then be recovered by locating the sin-
gular point. The antagonistic receptive field structure of neurons in area MT can
provide a starting point for such an analysis [148]. Template-matching models take a
different approach. They construct neurons that respond to specific instances of
optic flow, i.e., to specific flow patterns. As the number of possible flow patterns in
principle is infinite this requires either a very large number of templates [172], or
restraining assumptions about the parameters of observer motion or of the
environment [173], or a mechanism to approximate an entire set of templates from a
few basic templates [174]. A third approach, optimization models, constructs an
optimization function that leads to a set of motion parameters that optimally predict
the measured flow field. Originally this approach was based on minimizing the
squared error between the measured flow field and a possible candidate flow field
[168,169]. The parameters that define the best matching candidate flow field were
found iteratively. However, the time-consuming iteration can be cut short by geo-
metric considerations, resulting in a fast and robust estimation procedure [175]. This
algorithm has been implemented in a neural network [176]. The emerging properties
of the elements of this network bear strong resemblance to the properties of neurons
in areas MT and MST [177,178]. While the three types of model follow quite different
approaches, and make different predictions for the neuronal elements involved, ul-
timately they all bear on the properties of motion parallax [137]. The first step for this
analysis could be provided by receptive field properties in area MT [149]. The opti-
mization model provides a generalization from local to global parallax analysis [149].
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The representation of self-motion in areas MT and MST is a good example of the
fusion of different sources of information for a common goal. For the separation of
translational and rotational (eye-movement) components, motion parallax has been
mentioned above as a useful visual cue. A further source of information, however, is
provided by eye movement feedback. A nonvisual eye movement feedback signal
can be used to adjust the gain of templates in a template model [174] or, more
directly, to estimate the eye movement-induced visual motion and to subtract it
from the flow pattern in the optimization model [179]. Such an eye movement
feedback signal is available in area MST [158], and it is used to obtain heading
information in the presence of eye movements [180,181]. In addition, self-motion is
also sensed by the vestibular system. Vestibular self-motion signals are integrated
with visual self-motion signals in area MST [182,183]. Finally, knowledge of the
three-dimensional depth structure of the visual scene can also provide constraints
for the evaluation of the flow field [184,185]. Disparity selectivity in area MT con-
tributes to the robustness of the flow representation by a depth-dependent spatial
filtering of the flow vectors [135]. It reduces noise among flow vectors with the same
motion parallax. Disparity selectivity in area MST may provide a selective weighting
of flow signals from distant objects which enhances the separation of translational
and rotational components of the flow field [186].

The direct coupling of optic low to motor output has been investigated in detail
for the control of posture. When a standing, stationary subject experiences a low-
frequency, low-amplitude expanding and contracting flow pattern, the subject will
unconsciously sway back-and-forth along with the pattern movement [160,161].
Hence visual motion is used for postural control, and must be integrated with
vestibular and somatosensory signals [187]. The swing and phase coupling behavior
has been modeled in a dynamical systems approach. The original idea was that the
expansion rate of the flow field can directly drive a passive dynamic system for
postural responses [188]. However, detailed comparison with expcrimental data
suggests that the expansion rate of the flow field rather couples into a system that
actively generates postural responses [189]. Again, flow field input to this system
appears to be provided by area MST [190].

6.5. Gaze stabilization during self-motion

The coupling of perception and action also manifests itself in the oculomotor be-
haviors during self-motion. In the above section, we have scen that eye movements
give rise to rotational components in the optic flow that severely complicate the task
of heading detection — and probably many other optic flow-related tasks, as well.
Why then do we perform eye movements during self-motion? The reason is that self-
motion creates a problem for stable vision as it sets the entire image of the world on
the retina in motion. In order to accurately perceive the environment it is desirable
to have a clear and stationary visual image. For this reason, several types of com-
pensatory eye movement reflexes are active during self-motion that move the eye so
as to keep the central part of the retinal image stable [7,191]. These gaze stabilization
mechanisms use vestibular, proprioceptive, and visual signals.
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The requirements of gaze stabilization are quite different for rotation and
translation movements. For rotations of the head or body, the entire visual scene
moves with a single angular velocity. The rotational vestibulo-ocular reflex (rVOR)
very directly uses the signal from the vestibular organs to compensates for rotations
of the head by rotating the eyes opposite to the head rotation in a feedback control
loop [71,191]. The speed of the eyes in the rVOR closely matches the speed of the
head movement such that very good image stabilization is achieved. This is parti-
cularly true for fast head rotations, e.g. head oscillations in the 2-8 Hz range. For
slower head rotations, ocular compensation increasingly relies on the optokinetic
reflex (OKR). The optokinetic reflex tries to null retinal image motion by adjusting
the eye speed to the speed of the visual motion in a visual feedback control loop. A
combination of the optokinetic and vestibulo-ocular reflexes, which is the normal
situation during active movement, results in almost complete image stabilization
during head rotations. The VOR and the open-loop OKR both have to predict their
effects on the visual image and may receive visual feedback signals only with a
comparatively long time delay of about 80 ms. For this reason, their performance is
constantly monitored through cerebellar feedback loops and subject to fast adap-
tation mechanisms [10,13,192].

Translations of the head in space also induce vestibularly driven compensatory
eyc movements, called the translational vestibulo-ocular reflex (tVOR). However,
there are two further complications in this case. First, for geometrical reasons the
required speed of the eye movement cannot be determined from the head movement
alone. The visual motion of a fixated scene element during translation depends on
the distance of the element from the observer. Accurate image stabilization in this
case must take the geometry of the visual scene into account. If the object is close to
the eye the same head movement would induce a much larger visual motion than if
the object is further away. Hence to achieve accurate image stabilization the com-
pensatory eye speed depends on the viewing distance [193,194]. Scaling of eye speed
with viewing distance also occurs for the ocular following reflex [194]. The second
problem is that during forward translation it is physically impossible to stabilize the
entire retinal image. Forward motion induces an expanding pattern of optic {low in
which points in different parts of the visual field move in different directions. Hence
it is only possible to stabilize the part of the visual image at which gaze is directed. In
this case, the tVOR varies with viewing direction. Eye movement is rightward when
gaze is directed to the right and leftwards when gaze is directed to the left [195]. In
addition to the tVOR, optokinetic reactions to radial optic flow fields use visual
information to stabilize gaze during forward translation [196,197]. These eye
movements follow the direction of motion that is present at the fovea and parafovea,
stabilizing the retinal image in a small parafoveal region.

7. An overall view

The brain uses sensory information to control motor behavior. Initially, the in-
coming information provided by the different sensory systems is encoded in different
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sensor-specific formats. Typically, this information is either directly or via a first
transformation represented in topographic maps. For the guidance of spatially ac-
curate motor action, multiple multisensory representations of space are formed in
the parietal cortex. These representations are distributed across populations of
neurons. Different task-dependent space coding formats can be specified by the
read-out mechanism of the population activity. Different motor tasks, such as the
various types of eye movement, are controlled by separate sensorimotor networks.
They can mostly be described as feedback control systems. Sensory information acts
as the input signal. Feedback is also provided by sensory information and, in ad-
dition, by an efference copy of the motor command. The exact types of these signals
and their encoding depends on the specific motor task.

Abbreviations

CNS, Central Nervous System
deg, degree

FEF, Frontal eye fields

LIP, Lateral inter parietal

ms, millisecond

MT, Medial temporal

MST, Medial superior temporal
OKR, Optokinetic reflex

s, second

SC, Superior colliculus

V1, primary visual cortex (area 17)
VIP, Ventral inter parietal
VOR, Vestibulo-ocular reflex
2D, two-dimensional
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