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A Model of Biological Motion Perception from Configural

Form Cues

Joachim Lange and Markus Lappe

Department of Psychology II, Westfaelische Wilhelms University, 48149 Muenster, Germany

Biological motion perception is the compelling ability of the visual system to perceive complex human movements effortlessly and within
afraction of a second. Recent neuroimaging and neurophysiological studies have revealed that the visual perception of biological motion
activates a widespread network of brain areas. The superior temporal sulcus has a crucial role within this network. The roles of other areas
are less clear. We present a computational model based on neurally plausible assumptions to elucidate the contributions of motion and
form signals to biological motion perception and the computations in the underlying brain network. The model simulates receptive fields
for images of the static human body, as found by neuroimaging studies, and temporally integrates their responses by leaky integrator
neurons. The model reveals a high correlation to data obtained by neurophysiological, neuroimaging, and psychophysical studies.
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Introduction

The visual motion generated by human actors is complex because
the body comprises many degrees of freedom. Despite the com-
plexity and diversity of the visual stimulus, humans can easily
recognize the movements and gestures of others.

Many studies that investigated the perception of human
movement used point-light walker stimuli (Johansson, 1973).
These stimuli consist of 12 point lights that are attached to the
joints of an otherwise invisible human body. Point-light walkers
allow to investigate the impact of the different features of a walk-
ing human figure. Generally, these features can be divided in local
and global features of motion and form and the dynamics of
global motion and form.

Global motion can theoretically be derived from a suitable
integration of local motion signals of the trajectories of the point
lights over time (Webb and Aggarwal, 1982; Hoffman and
Flinchbaugh, 1982; Giese and Poggio, 2003). Alternatively, the
visual system may analyze the global form that is sparsely avail-
able in the stimulus at each point in time. Although this informa-
tion is insufficient to recognize a walker from a single frame
(Johansson, 1973), temporal integration of the sparse form infor-
mation may allow the identification of a walker (Chen and Lee,
1992; Beintema and Lappe, 2002; Beintema et al., 2006).

The superior temporal sulcus (STS) has often been implied in
the perception of biological motion (Bonda et al., 1996; Oram
and Perrett, 1996; Puce et al., 1998; Grossman et al., 2000; Vaina
etal., 2001; Beauchamp et al., 2002; Santi et al., 2003; Thompson
et al., 2005). Because it receives input from form and motion
areas, it is in a prime location to integrate form and motion
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processing (Oram and Perrett, 1996; Vaina et al, 2001;
Beauchamp et al., 2002). The role of other brain areas is less clear.

Some studies found selective activation of the middle tempo-
ral gyrus (MT) (Vaina et al., 2001; Ptito et al., 2003) and the
kinetic occipital area (KO) (Vaina et al., 2001; Santi et al., 2003),
which are believed to process local motion signals. Other studies
reported activation of these areas not different from a “scrambled
walker” control stimulus, which presented dots with identical
motion signals but randomized spatial arrangement that did not
depict a human figure (Grossman et al., 2000; Downing et al.,
2001). The extrastriate body area (EBA) is activated by static
images of the human body (Downing et al., 2001). EBA is also
stronger activated by point-light walkers than by a scrambled
control stimulus (Downing et al., 2001; Grossman and Blake,
2002). Thus, although the role of the STS in biological motion
recognition is undisputed, the contribution of signals feeding
into the STS is currently not clear.

We are particularly interested in the possible contribution of
form processing to biological motion recognition and present a
model for its perception. The model is based on global, configural
form information only and uses neurally plausible assumptions.
We compared the performance of the model with data from
functional magnetic resonance imaging (fMRI), neurophysiolog-
ical, and psychophysical studies. The results demonstrate that
perception of biological motion, even from point-light walkers,
can be achieved by the analysis of global form recognition over
time.

Materials and Methods

The model

Background and motivation. Classical point-light walkers were intro-
duced by Johansson (1973) and comprise 12 point lights attached to the
joints of an otherwise invisible human body. Point-light stimuli limit
information about the walker’s body structure. The visible points pro-
vide information about the joint positions, but the connections between
them are absent. A single static picture of a point-light walker is insuffi-



Lange and Lappe * Biological Motion Perception from Form Cues

cient to induce the percept of a human figure in naive observers (Johan-
sson, 1973). When the stimulus is in motion, the individual dots provide
fully correct motion signals. Therefore, many studies have concluded
that biological motion perception is derived from local motion signals.
For instance, Mather et al. (1992) presented a point-light walker embed-
ded in randomly moving noise dots. Subjects viewed the stimulus frames
that alternated with a mask consisting of blank frames. The duration of
the mask was varied (60—100 ms). Direction discrimination in noise was
not possible if stimulus frames and blank interstimulus frames alter-
nated. Mather et al. concluded that local motion detectors that are dis-
turbed by the blank frames are essential to recognize biological motion.
Neri etal. (1998) argued in a similar way. They used biological motion or
simple translatory motion as a stimulus and asked subjects to detect the
stimulus in noise. The results showed no differences for detection of the
two stimuli. Both revealed a linear increase of threshold for increasing
stimulus dots. Performance threshold for discriminating the walking
direction of a biological motion stimulus in noise, however, increased
nonlinearly with the number of stimulus dots. Neri et al. (1998) con-
cluded from the first experiment that the common information of the
two stimuli (that is motion) is the driving force for biological motion
perception. These biological motion filters are flexibly adapted to the
stimulus, as reflected in the nonlinearity revealed by the second experi-
ment. Early computational considerations also focused on local motion
signals. Johansson (1973) and Cutting (1981) hierarchically recon-
structed the human figure from common pendular movements of neigh-
boring dots. The recent computational model of Giese and Poggio (2003)
integrates local motion signals and local form signals in independent
processing pathways to reconstructed templates of human motion. Only
the motion processing pathway of this model was able to reconstruct a
human body from point-light walkers.

The reliance on local motion signals is called into question by some
observations in neurological patients. Vaina et al. (1990) studied a pa-
tient with bilateral lesions including area MT. This patient had severe
difficulties in low-level motion integration tasks but no problems iden-
tifying biological motion displays. McLeod et al. (1996) reported that
patient LM, who lacked all motion perception after a stroke (Zihl et al.,
1983), was able to recognize action from point-light biological motion
stimuli. Her ability to see biological motion was lost, however, when the
stimulus was embedded in noise. Vaina et al. (2002) described a patient
that had difficulties integrating local motion signals into a coherent mo-
tion percept or to perceive structure from motion but could recognize
point-light biological motion. These three cases demonstrate that biolog-
ical motion perception is possible even when general motion analysis is
impaired.

To study biological motion perception in the absence of local motion
signals in healthy observers, Beintema and Lappe (2002) developed
point-light walkers in which point lifetime was limited to a single anima-
tion frame. In these stimuli, 98% of the local motion information is
removed (Beintema et al., 2006), yet naive observes readily recognized a
walking human figure from these stimuli. Moreover, when observers had
to identify the orientation of the walking figure, the addition of local
motion signals by increasing the lifetime of the point lights did not aid
performance. Beintema et al. (2006) showed similar results for a different
biological motion task, namely the discrimination of forward from back-
ward walking. Also in this task, which clearly involves the global motion
direction of the figure, local motion signals did not contribute to task
performance. Beintema et al. suggested that biological motion percep-
tion here was driven by the analysis of the variation of the form of the
figure over time. These results prompted us to develop a model of bio-
logical motion perception from global form analysis.

Shiffrar et al. (1997) previously emphasized the importance of global
form analysis for interpreting biological motion. They presented stick
figures of walking humans seen through apertures. Despite the ambigu-
ous motion signals through the apertures, subjects recognized the human
figure easily. Chatterjee et al. (1996) showed that form information in
biological motion could override local motion signals. They presented a
two-photograph series of human movements and asked subjects to re-
port the apparent motion path. Subjects reported the biomechanically
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consistent path rather than the shortest path, which would be reported if
subjects used only local apparent motion signals.

Bertenthal and Pinto (1994) provided additional evidence for an in-
volvement of global form analysis in biological motion perception. They
presented point-light walkers surrounded by noise dots. The motion
trajectories of the noise dots were identical to those of the walker dots;
only the global spatial configuration was different for walker and noise.
Despite the identical motion signals in the noise, subjects could still
recognize the walking figure. Bertenthal and Pinto argued that “the per-
ception of structure in a point-light walker does not require the prior
detection of individual features or local relations.”

The above studies indicate that form analysis of the human body is
involved in biological motion recognition. However, it is also clear that
biological motion perception is a special function that goes beyond sim-
ple form (or motion) analysis. For instance, findings in patients have
shown that biological motion perception can be impaired despite intact
motion and form perception. Batelli et al. (2003) studied three patients
with lesions in the parietal cortex. Although their ability in low-level
motion tasks was normal, they were unable to perceive biological mo-
tion. Batelli et al. explained this with deficits in attention allocation.
Schenk and Zihl (1997) examined stroke patients with lesions in the
parietal cortex. In some patients, the perception of biological motion as
an isolated stimulus was possible but became impossible when a segre-
gation from the background was necessary. Another study revealed that
patients could have normal object and motion recognition performances
without perceiving a form in a biological motion stimulus (Cowey and
Vaina, 2000). Vaina and Gross (2004) studied four patients with brain
damage caused by strokes. All of them were unable to recognize a walker
from a point-light figure. They had normal object recognition rates and
only partial motion deficits but were impaired on recognition of objects
from degraded incomplete information. These patients had damage to
STS and were presumably unable to integrate the given information to a
percept of biological motion. The specific impairment of biological mo-
tion recognition despite intact from and motion processing argues for a
separate integration stage in which signals that support biological motion
analysis are integrated to achieve the percept.

Recent fMRI studies provided more insight into the neural correlates
of biological motion perception. These studies almost uniformly report
activation of STS when subjects viewed biological motion displays (Puce
et al., 1998; Grossman et al., 2000; Vaina et al., 2001; Beauchamp et al.,
2002; Santi et al., 2003; Peuskens et al., 2005; Thompson et al., 2005). STS
gets input from both motion and form processing areas.

fMRI studies reported selective activation of motion-sensitive areas
KO and MT (Vaina et al., 2001; Santi et al., 2003; Peuskens et al., 2005),
although other studies found that the activation of MT and KO is not
specific to biological motion (Grossman et al., 2000; Downing et al.,
2001). Grossman et al. (2005) reported that transcranial magnetic stim-
ulation to knock-out MT activity did not influence the perception of
biological motion, whereas transcranial magnetic stimulation (TMS)
over STS impaired the perception of biological motion. Other studies
found selective activation in form areas such as the fusiform gyrus or the
occipital face area (OFA) (Vaina et al., 2001; Grossman and Blake, 2002;
Michels etal., 2005; Peelen and Downing, 2005). Beauchamp et al. (2003)
showed that point-light displays of human actions activate the ventral
temporal cortex, although this activation is less strong than for whole-
body displays. Michels et al. (2005) used different biological motion
stimuli that varied in the amount of available motion and form informa-
tion. Activation levels in areas sensitive to processing static human form
depended strongly on the amount of structural information in the stim-
uli but not on local motion signals. This suggests that form processing
areas are recruited for biological motion perception.

Specific form processing areas and the STS are also driven by static
images of the human body (Beauchamp et al., 2002). These activations
are increased when motion is added (Beauchamp et al., 2003). The EBA
shows selective responses to static pictures of human bodies and of stick
figures (Downing et al., 2001). However, the role of EBA in perceiving
point-light displays remains unclear. Downing et al. (2001) observed a
stronger activation for biological motion displays than for scrambled
nonhuman figures with identical motion signals. They attributed this
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Figure 1. lllustration of the model. Stage 1 consists of template cells for whole-body pos-

tures. Two sets of template cells represent walking to the left and walking to the right, respec-
tively. Each set comprises static postures, with Gaussian response functions indicated by the
shaded areas. The dots indicate the stimulus that is compared with the template by each tem-
plate cell at each time step of stimulation. The dashed lines are only for illustration and not
shown in the real stimulus. In each set, a winner-takes-all process selects the cell with maxi-
mum output at each time step. From the temporal integration of these maximum responses in
the two sets, a decision about stimulus orientation is achieved as a first stage of analysis. This
stage of analysis does not consider the temporal order of the stimulus postures. Analysis of
temporal order is deferred to stage 2 and provides information for a decision on global motion
aspects of the stimulus. This analysis is achieved by weighting the temporal differences be-
tween two consecutively selected frames (m,n) by the function w,, , (inset). This function
weights adjacent frames more strongly than frames that are temporally separate. In addition,
the function is asymmetric such that it weights frames that are in the preferred direction of the
cell more strongly than frames that are in the temporally opposite direction.

signal increase to the engagement of attention driven by the presence of a
body configuration. Also, Grossman and Blake (2002) found that EBA
responds stronger to biological motion stimuli than to the scrambled
controls. Peelen and Downing (2005) reported significant activation in
fusiform face area (FFA) for human bodies shown without a head.

Thompson et al. (2005) presented displays of walking mannequins
that were either intact or with the limbs and torso scrambled. Stimuli
were either completely visible or partially occluded. Activation in STS
was always greater for the intact walkers than for the scrambled walkers
regardless of whether parts of the body were occluded or not. Thompson
et al. concluded that processing of biological motion in STS is driven by
configural processing of the walking stimulus rather than tracking the
movement of individual limbs. This provides means to process biological
motion even in the case of occlusion.

Outline of the model. From the above studies, we can, for the purpose of
our model, derive three assumptions. First, biological motion may be
inferred from form analysis without local motion processing. Second,
form analysis in some areas of the ventral stream is selective for the shape
of the static human body. Third, biological motion perception is a spe-
cialized process that combines the analysis of the global form of the
human body with its global motion. Our model follows these assump-
tions. It uses form sensitivity and processes biological motion in two
stages, a static and a dynamic form stage. Leaky integrator neurons of the
second stage dynamically integrate the output of neural template cells
from the first stage. These template cells are formed by Gaussian response
functions that simulated receptive fields for human bodies.

Figure 1 shows a schematic overview of the model. We assume a library
of upright static template cells of human walkers that are implemented in
a view-based template-matching approach. The three-dimensional con-
figuration of a walking human body is represented by a collection of
two-dimensional postures. We assume that this view-based approach is
invariant to size and position of the perceived object, similar to the prop-
erties of neurons in higher areas of the ventral stream (Logothetis et al.,
1995; Tanaka, 1996). Alternatively, the model may be made adaptable to
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the size of the stimuli by a preoperating process that resizes stimuli to the
required template size. However, size invariance is not an issue for the
present paper because the stimuli were always presented at a constant
size.

We generated the template cells from recordings of the movements of
nine human walkers (aged 20-29 years; five males). The individuals
walked normally on a catwalk with sensors attached to their major joints
(head, shoulders, elbows, wrists, hips, knees, and ankles) while a motion
tracking system (MotionStar; Ascension Technology, Burlington, VT)
recorded their movements at 95 Hz sampling rate. To reduce noise, we
filtered the tracking data by averaging three successive data points of each
sensor. If necessary, additional data points of the walking sequence were
obtained by interpolation between the filtered recording data. Then, each
of the nine walking sequences was divided in temporally equal intervals
to obtain a set of 50 sequential body configurations for each walker. The
recorded joint positions for each configuration were connected in the
anatomically correct way to obtain stick figures of a common walking
sequence. These stick figures formed the basis of the body template cells
of the model. Each such body template cell is selective for a particular
body posture. The cells response to a biological motion stimulus is de-
rived from the total of the responses to the individual stimulus dots. The
response to a dot near a particular position on the body is assumed to be
maximal if the dot is located on the body and drops off with a Gaussian
function of distance of the dot to the nearest point on the body (Fig. 1).
Because our study is intended to investigate the contribution of global
form, our model treats the body as a global figure without explicitly
taking into account local stimulus features (orientation and motion).
This is different from previous models, which combine local features
hierarchically into a percept of a human body (Johansson, 1973; Cutting,
1978; Giese and Poggio, 2003).

We used two different sets of template cells: one for a walker oriented
and moving to the right and one for a walker oriented and moving to the
left. Differential activity within those two sets is used for decisions in the
discrimination tasks we describe below.

In each set, the nine different walkers redundantly represented each of
the 50 static postures for a total of 450 templates.

The model consists of two stages: a first stage for the analysis of the
form (posture) of the walker and a second stage for the analysis of the
global motion (postural change) of the walker (Fig. 1). Our choice of
different stages for these tasks is partly motivated by the above mentioned
fMRI studies, which showed different selectivities for static and moving
human bodies and, in part, by differences observed between biological
motion tasks. For instance, Vaina et al. (2001) showed that identical
displays of biological motion might activate different brain regions de-
pending on the task. When the subjects had to discriminate between the
shape of the walking pattern and a scrambled control stimulus, different
regions were activated than for judging the overall motion direction of
the dots. Results of Beintema et al. (2006) also suggested a task-specific
analysis of biological motion stimuli. When subjects were asked to iden-
tify the direction in which a point-light walker faced (left or right), they
mainly used information about the shape of the figure. When asked to
discriminate between forward and backward walking point-light figures,
subjects used also information about the global motion of the stimulus.
These results argue for a task-dependent analysis of a biological motion
stimulus as implemented in the different stages of the model.

Stage 1. At the onset of stimulation, the first stimulus frame is present
in stage 1. This frame is compared with the templates of each of the
template cells. Each dot of the stimulus frame contributes to the response
of the cell weighted by the distance to the nearest part of the body. Each
cell sums the responses for all single dots to obtain an overall response
measure to this stimulus frame (Eq. 1):

n

(pee — pi(1))?

Fu)= Y e 0 (1)

where F, (t) denotes the output of the template cell tc at the time . The
outputs of the template cells were obtained by weighting the shortest
distance between a stimulus dot and a limb of the template with a Gauss-
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ian function. p; gives the position of the stimulus dot I, and u,. denotes
the limb position in the template cell with the shortest distance to the
stimulus dot. o is the width of the receptive field of the template cells that
is defined by the Gaussian weights.

This template-matching procedure is done independently for both
sets of template cells. A winner-takes-all mechanism selects the maxi-
mum output within each set and feds it into a leaky integrator (Eq. 2).
The template-matching procedure is repeated for each stimulus frame
independently of the preceding one, and the maximum outputs of both
sets are fed into two leaky integrators. The activities u, , of the integrators
are computed from

aul,z(t) .
T =15 (8) + iy T wi flu 5 (8) — w fluy 1 (1), (2)

where 7= 10 ms, u, , denotes the activities in the decision stage 1 for the
two sets of templates, and i, , denotes the bottom-up inputs from both
sets of template cells to the decision stage 1 as defined by the maximum
outputs of the template cells in Equation 1:

iy, = max(F());,. (3)

tc

The lateral interaction between the two integrators is given by f(u, ,(t)),
with fa sigmoid function that integrates the state of the two integrators:

1
fluy5(2) = 1+ 0 (4)

e
with

uy () — max(u; (1))

k=2 max(u ,(t)) ’ (5)

In Equation 2, lateral interaction is weighted by w, and w_, which de-
note the weights for lateral excitation and inhibition between the states
Uy 5.

The activities u, , provide a decision criterion for a left/right discrim-
ination in stage 1. The maximum activity over the total trial duration of
both kinds of template cells is taken for a decision of the model. The
excitatory and inhibitory weights w, and w_ are free parameters of the
model that will be fixed in a single simulation later (see below, Parameter
fits).

Stage 2. The model in stage 1 does not explicitly consider the temporal
order of the stimulus frames. This is implemented in stage 2. We assume
that the recognition of one frame influences the expectation of the next
frame:

vy 5(1)

T = V() w (), (6)
where 7is 10 ms, v, , denotes the activities in the decision stage 2 for the
possible responses 1,2, and u is the bottom-up input from stage 1. w,, ,,
weights the difference between selected frame n and previously selected
frame m (Fig. 1). This function should be asymmetric in time because it
is intended to generate a preference for one movement direction over the
other. We chose

n— m\e!
) , (7)

Wiy = cos(

with a for n — m = 0, b otherwise.

Experimental methods

We tested the model by comparing its results with neurophysiological,
fMRI, and psychophysical data from the literature. In doing so, we
adapted the stimulus settings of the corresponding experiments. We con-
ducted additional psychophysical experiments to test model predictions.
Here, we used similar experimental settings as described by Beintema
and Lappe (2002) and Beintema et al. (2006). In the following, we pro-
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vide a brief description of the stimulus and the procedure. Additional
information can be obtained from those publications.

Tasks

The experiments involved either of two discrimination tasks: a direction
task or a forward/backward task. In the direction task, the walker was
presented either facing to the left or to the right. The subject had to report
the walkers facing orientation. In the forward/backward task, the walker
was presented in left or right orientation and either with a normal for-
ward gait or in backward motion, in which case the frames of the walking
sequence were displayed in reverse order. The subjects had to report
whether the stimulus walked forward or backward.

Stimulus

The stimulus was generated by a computer program and imitated the
movements of a walking human (Cutting, 1978). For the model simula-
tions, it is important to realize that the stimulus never exactly matches
any of the nine recorded templates of real walkers, because it presumably
does not exactly match the motions of a real walker to a human observer.
In the original program by Cutting, the human body was depicted by
light-points attached to the major joints of an otherwise invisible body.
Beintema et al. modified this stimulus such that it consisted of a variable
number of points (one to eight), each with a randomly chosen position
on the limbs. Each point was relocated to a new randomly chosen posi-
tion on the limbs after every single frame of the animation sequence. This
stimulus allows to study the perceptual mechanisms of biological motion
in conditions with near-absent local motion signals, thus focusing on the
role of form information. We used this stimulus in the experiments
described below. The number of dots present in each stimulus frame
(one to eight), the duration of presentation of each stimulus frame (10—
200 ms), and the lifetime of each dot (one to eight frames) are parameters
that influence the amount of form and global motion present in the
stimulus (Beintema and Lappe, 2002; Beintema et al., 2006). The param-
eters used in each of our experiments are described in the respective
section.

Experimental procedure

Stimuli were presented on a monitor with a resolution of 1280 X 1024
pixels and a display size of 30 X 40 cm. The monitor refresh rate was 100
Hz. Unless indicated otherwise, a single stimulus frame was presented for
a duration of 50 ms (five monitor frames), and a total trial lasted for 1.6 s,
i.e., one walking cycle.

The stimulus covered a field of 5 X 10° and consisted of white dots
(5 X 5 pixels) on a black background. Trials were presented in random
order, and the stimulus position had a randomly chosen spatial offset to
avoid spatial cues.

Four and five subjects (two female) participated in each experiment.
They were between 26 and 35 years of age and had normal or corrected-
to-normal vision. All subjects were students or members of the depart-
ment and experienced in psychophysical experiments. Subjects were
seated 60 cm in front of the monitor and viewed the stimulus binocularly.
Subjects had to indicate their decision in the respective discrimination
task by pressing one of two buttons in front of them after the stimulus
presentation.

Simulation procedure

We compared the performance of the model with existing data and with
data obtained in new experiments. For existing data, we mimicked the
stimuli described in the corresponding study. For new psychophysical
experiments, we used identical stimuli for model simulations and exper-
imental tasks.

Each simulation run consisted of 150 trials with stimuli with randomly
chosen starting phases in the walking cycle. The model computed activa-
tion levels for these stimuli in stage 1 [u, ()] and in stage 2 [v, ,(£)]. At
each model stage, we compared activation levels for both possible deci-
sions (left/right and forward/backward) and used them for the decision
in the respective perceptual tasks on a trial-by-trial basis. We then calcu-
lated the proportion of correct answers over all trials.

To simulate physiological experiments, we compared the stimulus-
induced activity in model stages 1 and 2 with that induced by a respective
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Figure 2.  Psychophysical data used to fix the free parameters of stage 1 and evaluate the

optimum fit of the model. Shown are correct responses as a function of total trial duration for
two, four, and eight points per stimulus frame in a direction task. Psychophysical data are
presented as mean == SE.

control. Stimulus-induced activity in each stage was computed as the
activity of the maximally active leaky integrator [u,(f) or u,(¢) in stage 1;
v,(t) or v,(¢) in stage 2] averaged over the duration of the stimulus. This
activation of the model cannot be directly compared with activation
levels in fMRI experiments, however, because the scaling between the two
is not known. We can therefore only compare relative activity differences
between conditions. This was done by first normalizing the model activ-
ity to the fMRI activity in one condition and then comparing model
activation and fMRI activation in the other condition.

Parameter fits

The model stage 1 contains two adjustable parameters, namely the exci-
tatory and inhibitory weights, w, and w_ (Eq. 2). To estimate the values
of these parameters, we conducted a psychophysical experiment and
fitted the model to the psychophysical data (Fig. 2). The obtained fit was
then used for all additional simulations in this study.

Because model stage 1 is concerned with form analysis, the experiment
focused on stimulus properties that influence form information. First, we
manipulated the number of dots per stimulus frame (two to eight) to
examine the influence of form information per stimulus frame. Second,
we varied the form information per trial by varying the stimulus duration
(100-1600 ms).

Subjects were asked to report the orientation (left or right) of the
walker. The model solved the task by matching the stimulus frames to
either template cells for a walker oriented to the right or template cells for
a walker oriented to the left. We varied the free parameters so that the
model simulations fitted optimally (in terms of least squares) to the
psychophysical data for the condition of eight points per frame. The
parameters (w, = 6.8; w_ = 4.0) were then fixed for all experiments and
simulations reported in this study.

We also tested whether the choice of fit data influenced the model.
Fitting results for other conditions with two or four dots per stimulus
frame resulted in the same parameter set. Thus, the results do not rely on
the kind of fitting or the data we chose for fitting.

Figure 2 displays observer percentage correct and model simulation
results for eight, four, and two dots per frame. The observer data for eight
points per frame were used to adjust the weights of the model. Data from
the four and two dot conditions provide an estimate of how well the
parameter fit generalizes. The data reveal a clear relationship between
form information and performance of the human observers (Fig. 2). Our
form-based model matches these data with high accuracy for all param-
eters (form per frame/overall form). Although inspection of Figure 2
suggests that for short durations the model does slightly better than the
mean of the human observers for two points and slightly worse for eight
points per frame, there were no statistically significant differences be-
tween model and psychophysical data at any number of points (one-
sample 7 test).
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Figure 3.  Psychophysical data used to fix the free parameter of stage 2 and evaluate the

optimum fit of the model. Shown are correct responses as a function of total trial duration for
eight points per stimulus frame in a forward/backward task. Psychophysical data are presented
asmean = SE.

Stage 2 contains three free parameters (a, b, ). These parameters were
combined to one adjustable factor (w,,, ), which determines the expected
frame order of the model. To estimate the value of this parameter, we
used a forward/backward discrimination task with eight dots per stimu-
lus frame and varied the amount of form information by varying the total
trial duration between 100 and 1600 ms. Unlike the direction task, the
forward/backward task cannot be solved solely by spatial analysis (Bein-
tema et al., 2006). Because the order of the selected frames has to be taken
into account, the temporal integration in stage 2 is crucial.

Human subjects were asked to discriminate between a walker moving
forward or backward. The model solved the forward/backward task by
analyzing, in stage 2, the temporal order of the template cells that were
most strongly activated in stage 1 by the sequential stimulus frames. The
model used the outputs in stage 2 for an expected forward movement
compared with an expected backward movement as the decision crite-
rion to solve the task.

The results from human observers (Fig. 3) were used to fit the free
parameter of stage 2 of the model (w,,, , in Eq. 6). This best-fitting weight-
n—m

9.6

[2400,50]
ing function (w,,,,,, = cos( ) ) was then used for all simu-

lations reported in this paper.

Results

Direction task

Beintema and Lappe (2002) and Beintema et al. (2006) asked
subjects to discriminate between a walker facing to the right and
a walker facing to the left. They manipulated the number of stim-
ulus dots, the duration of each trial, and the amount of motion
signals. Recognition rates depended strongly on the available
form information but not on motion signals. Furthermore, rec-
ognition rates depended on the number of dots per frame (i.e.,
form information per frame) and on trial duration (i.e., overall
form information per trial). However, across all experiments, the
recognition rates were constant if the product of trial duration
and number of dots was constant, i.e., when the total number of
stimulus dots presented during the trial was constant (Beintema
et al., 2006). The model is generally consistent with this because
its recognition rates critically depended on the number of stim-
ulus dots presented during the trial (compare with Fig. 2). How-
ever, the model relies on spatiotemporal integration of form in-
formation. This predicts that performance should also depend on
the speed with which new information is acquired. Therefore, we
conducted an experiment in which we manipulated the informa-
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Figure4.  Correct responses as a function of the duration of a single frame for four (left) and

eight (right) points per stimulus frame in a direction task. Psychophysical data are presented as
mean = SE.

tion rate of the stimulus by varying the duration each frame was
displayed.

Total stimulus duration and walking speed were kept con-
stant. For long frame duration, therefore, the walker remained in
one static posture for some time and then changed its posture in
a large step to another posture. For short frame durations, the
walking sequence was sampled rapidly and appeared smooth.
Thus, dynamic sampling of the walking sequence is different for
different frame durations as the dynamical change from one dis-
played posture to the next postures varies.

We presented four or eight points per frame and varied frame
duration from 10 to 200 ms. Figure 4 shows the results for human
observers separately for the four dots-per-frame and the eight
dots-per-frame condition. Both graphs show a decrease of per-
formance for prolonged frame durations. The decrease is stron-
ger and begins earlier in the four dots-per-frame condition.

The model solves the task by matching the stimulus frames to
the template cells for walking to the right and to the template cells
for walking to the left and integrating the outputs dynamically.
For prolonged frame duration, fewer frames are available within
the integration time of the leaky integrator. Therefore, the model
performance decreases. The decrease of model performance rep-
licates the psychophysical data accurately. For prolonged frame
durations, recognition rates drop in a similar way as in the psy-
chophysical data. The model also replicates the stronger and ear-
lier drop of recognition rate for four dots per frame. This sup-
ports our hypothesis that form information is integrated over a
fixed temporal period. Thus, the results of the direction discrim-
ination task reveal a dependence of recognition rates on form
information per frame, form information per trial, and form
information per time period.

Forward/backward task
The model simulations and psychophysical results in the direc-
tion task provided evidence that the recognition rates depend on
form information per time period. The direction task may be
performed using only form information (Beintema et al., 2006).
The forward/backward discrimination task cannot be solved
solely by spatial analysis. In this task, both stimuli (moving for-
ward and moving backward) comprised exactly the same set of
frames. In one condition, the frames were presented in forward
moving temporal order and, in the other condition, in reversed
temporal order. Thus, the temporal properties of the stimulus are
crucial.

Beintema et al. investigated the influence of different param-
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Figure 5.  Correct responses as a function of frame duration for eight points per stimulus

frame in the forward/backward task. Frames are presented for the indicated duration (no isi
condition; left) or for 20 ms followed by a blank period for the remainder of the frame duration
(isi condition; right). Psychophysical data are presented as mean = SE. Psychophysical data are
adapted from Beintema et al. (2006).

eters in this task. We used the same task and compared model
predictions for this task with the data from Beintema et al. (2006)
and to additional psychophysical experiments reported below.
We varied the dynamic behavior in two ways. First, by keeping
the total trial duration constant and varying the duration a single
frame is presented (variation of frame duration). Second, by ma-
nipulating dynamic behavior by varying the walking speed. Here,
the number of frames per trial was kept constant and trial dura-
tion varied with the duration each frame was presented.

For the first simulation, we adapted psychophysical data of
Beintema et al. (2006). A stimulus with eight points per frame was
presented, and the duration of a stimulus frame was varied be-
tween 30 and 200 ms. Total stimulus duration was kept constant
and always contained one full step cycle. Thus, for longer frame
durations, the number of frames was reduced and the change of
posture between frames was increased to keep the walking speed
constant. The task was to discriminate between a walker moving
forward and a walker moving backward.

The data are shown in Figure 5 (left). For smoother presenta-
tions (shorter frame durations), the walking direction was recog-
nized more easily. For longer frame durations, the walking direc-
tion was harder to discriminate, at 200 ms frame duration just
above chance level. The model showed the same behavior as the
human observers in that study.

To further rule out a contribution of local motion detectors to
the recognition process, Beintema et al. (2006) repeated this ex-
periment with a blank interstimulus interval (isi) between stim-
ulus frames similar to Mather et al. (1992). Each frame was pre-
sented for only 20 ms, and the remaining time of the frame
duration was filled with a blank frame. The psychophysical data
for the isi condition (Fig. 5, right) was not different from that of
the no isi condition (Beintema et al., 2006).

We compared the behavior of the model also with these psy-
chophysical data. In principle, the model should be unaffected by
the additional blank intervals because it does not rely on local
motion signals and thus should not be influenced by the manip-
ulation of local motion signals in the isi condition. However, for
the model, there is a difference between the two conditions in the
reduced presentation time of stimulus frames in the isi condition.
During the blank interval, activation in the template cells drops.
The results in Figure 5 (right) show similarity between model and
human observers also in the isi condition. In agreement with the
psychophysical data, the model showed only negligible differ-
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Figure 6.  Correct responses as a function of the walker's velocity for eight points per stimu-

lus frame in the forward/backward task. Psychophysical data are presented as mean = SE.

ences between the isi and the no isi conditions. These results
imply that the forward/backward task can be solved by spatio-
temporal analysis of form information. The model simulations fit
the psychophysical data in the absence of local motion analysis.

Next, we tested the influence of walking speed on the model
behavior and compared the results with psychophysical data in a
new experiment. We presented a stimulus with eight points per
frame. We kept the number of frames constant (32 frames) and
varied the presentation duration of each stimulus frame (20-200
ms). This resulted in slow or fast walking speed. Thus, the overall
form information per trial (number of dots per frame X number
of frames) was kept constant, but the amount of information
within a certain temporal integration period and the total dura-
tion of the stimulus varied.

Figure 6 shows the results. The human observers reveal a max-
imum in recognition rate for normal walking speed. Recognition
rates decrease for higher and lower walking speeds. This is not
unexpected because there is a certain preferred speed associated
with a particular walking pattern (Giese and Lappe, 2002). The
model simulations also show a decline in performance as the
walking speed becomes different from the canonical walking
speed. Activation levels of the template cells cannot reach their
maximum level if presentation times are short. For long presen-
tation times, the outputs of the template cells will no longer be
integrated effectively because of the limited integration period.

Discrimination in noise

So far, we investigated the perception of biological motion with
an isolated stimulus. Neri et al. (1998) reported a remarkable
efficiency of human observers in the temporal integration of bi-
ological motion in noise. They presented a point-light walker
with a variable number (one to six) of simultaneously visible dots
located on the joints of the walker. The dots kept this joint posi-
tion for two frames before disappearing and relocating to a new
joint location. Therefore, each dot provided useful local motion
signals for two frames. The walker was embedded in a random
noise mask of dots that changed position in every frame. This
stimulus was presented on one side of a fixation dot. The other
side displayed the same noise dots plus the number of dots of the
walker in random position. Human observers had first to deter-
mine in a two-alternative forced-choice task the correct presen-
tation side of the stimulus. After correct detection, they had to
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discriminate between the walking directions of the stimulus or, in
another condition, the coherence of the stimulus. In this coher-
ence task (Mather et al., 1992), the upper and lower parts of the
stimulus were shown in either the same (coherent) or opposite
(incoherent) direction. Subjects had to decide whether the stim-
ulus was coherent or not. Neri et al. determined noise thresholds
for 75% correct recognition rates in the detection and the dis-
crimination task. In agreement with previous results (Barlow,
1997), they found that the relationship between number of stim-
ulus dots and number of noise dots is linear for the detection of
the biological motion stimulus. In the case of discriminating
walking direction, the relationship was nonlinear, featuring a
more rapid increase of performance with increasing number of
stimulus dots.

We simulated the discrimination performance of the model
for a stimulus surrounded by random dot noise. We adapted the
stimulus of Neri et al. (1998) such that one to six dots per frame
were presented simultaneously on the major joints of the body.
They moved on this position for two frames before they were
redrawn on a new joint. For a fixed number of stimulus dots, we
varied the number of noise dots within a window of six by 4.5
times the size of the stimulus. Model simulations were run with
these stimuli in the direction and coherence tasks.

For the coherence task, the model applied the same steps as in
the discrimination task but separately for the upper and lower
parts of the body. The templates were, therefore, subdivided into
templates for the upper body (arms) and the lower body (legs).
This resulted in two final decisions of the model, one for each
body part. Comparing these two decisions resulted in the overall
decision whether the walker was coherent or incoherent.

We fitted the levels of correct response to a sigmoid function
and determined the threshold for 75% correct responses. These
values were plotted in a log-log diagram, and slopes of linear
regression were determined analogously to Neri et al. (Fig. 7).
The results reveal a slope steeper than 1, consistent with the hu-
man data. The slope for discrimination of the walking direction is
3.18. This is in the range of the two subjects in the study by Neri et
al., which had slopes of 2.55 and 4.23. In accordance with Neri et
al,, the slope in the coherence task was even steeper (4.12). This is
similar to the value Neri et al. obtained from one subject (4.48).
We conclude that the template-matching approach is able to re-
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produce the spatial integration properties for discrimination in
noise.

A similar conclusion was reached by Lee and Wong (2004),
who proposed a template-matching algorithm based on the dis-
tance of dots to the joints, not the body segments. The neurally
plausible approach of our model is able to replicate the psycho-
physical data also quantitatively. Cutting et al. (1988) investi-
gated the efficiency of various noise masks on the perception of
point-light displays. Detection rates decreased if stimulus dots
and noise dots revealed identical motion trajectories. Cutting et
al. proposed that the observer’s performance included at least two
parts: a “filtering task that ignored ~% of the display area” and a
second “organizational task.” Bertenthal and Pinto (1994)
showed that, even in noise dots with motion trajectories identical
to the motion trajectories of the stimulus dots, the global struc-
ture of the stimulus is preserved. These results indicate that seg-
mentation and solving the task do not necessarily rely on the
same information. Neri et al. (1998) showed that detection
threshold increased with local motion information. Our model
showed that the recognition process can be explained by global
form analysis.

In agreement with Cutting et al. (1988), we, therefore, suggest
that perception of biological motion in noise comprises a preop-
erating segmentation process and a recognition process fulfilled
by template matching. The segmentation process may be sup-
ported by form cues if the density of the stimulus dots is higher
than the density of the noise dots. Also, motion signals may help
to segment the stimulus from the background even when they are
not needed for the recognition process itself (Beintema and
Lappe, 2002). Our model assumes a first stage that extracts form.
It may be supplemented by a preprocessing stage that uses mo-
tion cues for segmentation, but, importantly, the motion cues
themselves are not passed to the first stage of the model.

Neuronal activities

Studies in humans and nonhuman primates suggest a specialized
network for the visual perception of biological motion. This net-
work comprises areas of the visual system (Bonda et al., 1996;
Oram and Perrett, 1996; Puce et al., 1998; Grossman et al., 2000;
Vaina et al., 2001; Beauchamp et al., 2002; Santi et al., 2003;
Thompson et al., 2005) and the mirror-neuron system (Buccino
etal., 2001; Saygin et al., 2004; Sakreida et al., 2005). The interre-
lations between these areas and the specific role of each area are
not fully understood. Electrophysiological studies in nonhuman
primates have found neurons in the superior temporal polysen-
sory area (STP) selective for biological motion (Oram and Per-
rett, 1994; Oram and Perrett, 1996). In humans, the presumably
homolog of monkey area STP, the STS, has been linked to bio-
logical motion in positron emission tomography studies (Bonda
etal.,, 1996) and in fMRI studies (Grossman et al., 2000; Vaina et
al., 2001). STS receives input from both form and motion pro-
cessing areas, but the functional involvement of these connec-
tions in biological motion perception is not known. In this sec-
tion, we compare simulations of model cells with data from
monkey area STP.

Stage 1 of the model consists of two types of cells that encode
either walking to the right or to the left (Fig. 1). Figure 8 (top left)
shows response rates of the two stage 1 cells over time after the
stimulus is applied. For the one cell (gray line), the stimulus is in
preferred direction. For the other cell (black line), the stimulus is
in opposite direction. The activity for both types of cells shows an
initial rapid increase. After ~50 ms, the cell with the nonpre-
ferred direction becomes suppressed by inhibitory interactions
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Figure8. Top left, Simulated activity of the two cells of model stage 1 that encode forward

walking. The stimulus was a leftward oriented walker with eight points per frame. The light
gray line shows the cell with preference for the stimulus orientation, and the black line shows
the cell with preference for the opposite orientation. Top right, Simulated activity in model
stage 2 for a stimulus facing to the left and moving forward. The light gray line shows the cell
with the preference for forward movement, and the black line shows the cell with the prefer-
ence for backward movement. Both activities are simulated for 150 different trials. Bottom left,
Single-cell recordings from a neuron that responds selectively to a particular combination of
body orientation and walking direction (e.g., a walker oriented to the left and moving forward),
whileaforward moving stimulus was presented either with the preferred orientation or with an
orientation that was opposite to the preferred orientation. Bottom right, Single-cell recordings
from a neuron that responds selectively to a particular combination of body orientation and
walking direction. Stimuli were presented with a fixed-body orientation but opposite walking
directions. Figures adapted with permission from Oram and Perrett (1996).

from the cell with the preferred directions. Both cell responses
settle on these respective asymptotic response levels for as long as
the stimulus is present.

Figure 8 (top right) shows the responses of two cells from stage
2 of the model. In this case, the stimulus presented forward walk-
ing. One cell (gray line) was selective for forward walking. The
other cell (black line) was selective for backward walking. The
cells show the same qualitative behavior as cells from stage 1, but
activity in the nonpreferred direction decreases more slowly than
in stage 1. Also, the differences between both cell types are smaller
for stage 2 than for stage 1.

Oram and Perrett (1996) recorded the responses of neurons in
anterior STP of the macaque monkey when the monkey viewed
real walking humans. In one condition, they recorded spike in-
tensity from cells that discriminate between the directions the
walking body faces (Fig. 8, bottom left). This task corresponds to
the direction task in our model. In another condition, they re-
corded cells while the walker was facing in the preferred direction
of the cell and walked either forward or backward (Fig. 8, bottom
right). This is similar to the forward/backward task used in our
model simulations.

In the direction task, the model simulations show the same
behavior as the cell recordings. Both stage 1 and stage 2 show a
rapid increase of activity for the preferred stimulus. Closer exam-
ination reveals that the more rapid decrease in stage 1 matches the
electrophysiological data even better than the simulations in
model stage 2.

In the model, the two types of cells can discriminate walking
direction within 100200 ms. This is in accordance with the re-
sults of Oram and Perrett (1996), who showed that neurons re-
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spond selectively to biological motion stimuli with specific form
and orientation from 119 ms after stimulus onset.

The forward/backward task comprises both form recognition
and global motion analysis. The model analyzes global motion in
stage 2. Therefore, we compare electrophysiological data for this
forward/backward walking only with stage 2 predictions (Fig. 8,
top right). Here, too, the model shows a rapid increase as the
neuronal data. Also, it shows weaker activity for the nonpreferred
walking direction, similar to the electrophysiological data.

Functional MRI data

We are interested in the contributions of STS and form process-
ing areas to the perception of biological motion. STS activity was
found in many fMRI studies (Oram and Perrett, 1996; Puce et al.,
1998; Grossman et al., 2000; Vaina et al., 2001; Beauchamp et al.,
2002; Santi et al., 2003; Thompson et al., 2005). The contribution
of form processing areas to biological motion perception is less
clear. Because our model is based on form analysis and does not
use local motion signals, we will focus in this section on contri-
butions from form processing areas. Activation of form process-
ing areas has been found in many fMRI studies of biological
motion analysis (Downing et al., 2001; Vaina et al., 2001; Gross-
man and Blake, 2002; Beauchamp et al., 2003; Ptito et al., 2003;
Santi et al., 2003; Michels et al., 2005; Thompson et al., 2005).
Point-light walkers activate FFA (Vaina et al., 2001; Grossman
and Blake, 2002; Santi et al., 2003; Michels et al., 2005), which is
believed to process form information. Point-light walkers also
activate EBA (Downing et al., 2001; Grossman and Blake, 2002;
Michels et al., 2005), which is characterized by sensitivity to static
images of human figures (Downing et al., 2001).

The model uses static template cells in stage 1 that are com-
bined for temporal order analysis in stage 2. Possible neural cor-
relates may be EBA or FFA, which are sensitive to static postures
of human bodies (Downing et al., 2001; Peelen and Downing,
2005) for stage 1 and area STS, which is sensitive to the global
motion of a point-light walker (Grossman et al., 2000; Vaina et
al., 2001) for stage 2. We computed model predictions of activa-
tion levels at the two model stages for different kinds of stimuli
and compared the results with experimental data reported for
these areas.

Grossman and Blake (2002) recorded fMRI blood oxygen-
ation level-dependent (BOLD) responses to a stimulus that con-
sisted of 12 point lights that depicted a human walker, and they
compared them with BOLD responses to a scrambled control
stimulus. In the scrambled control stimulus, the 12 dots had the
same motion trajectories as in the biological motion stimulus,
but the starting positions of the dots were randomized. Thus, the
motion path of any dot is consistent with one of the walker dots
while the spatial structure of the stimulus is destroyed so that it
does not resemble the human form any longer. Grossman and
Blake measured BOLD activity in EBA and STS as subjects viewed
the biological motion or the scrambled stimulus. They found a
slight increase of activation for biological motion over control in
EBA and a strong and significant difference in STS. Downing et
al. (2001) also mentioned a significant increase of activation in
EBA for point-light walkers compared with controls.

We simulated the experiments with the same stimuli as Gross-
man and Blake and compared the outputs of the stages 1 and 2 of
the model with the results for EBA and STS (Fig. 9). We normal-
ized model data to the maximum of the signal change in the fMRI
data. The results of the model simulations are in accordance with
the fMRI data. Biological motion stimuli revealed more activa-
tion than the scrambled control stimuli in both model stages. The
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from EBA and STS for normal and scrambled presentation of the stimulus. Results are presented
as mean == SE. fMRI data are adapted from Grossman and Blake (2002). **p << 0.01.

difference between biological motion and control was significant
in stage 2 (t = 4.5; p < 0.01, independent ¢ test) but only a trend
(p = 0.07) in stage 1. Activity in both model stages matches
quantitatively the differences in EBA and STS (Fig. 9).

Our model thus exhibits a higher activation level for biological
motion than for scrambled stimuli. Stimuli that depict a walker
simply match the templates better than a scrambled arrangement
of dots. However, from the outline of our model, it is clear that
the amount of difference between scrambled and normal de-
pends on the exact way of “scrambling” the stimulus. The more
similar the structure of the scrambled walker in a single frame is
to the structure of the human body, the more activation the
scrambled stimulus elicits. For instance, scrambling the starting
phases of the dot movements (Grossman and Blake, 2002; Mich-
els et al., 2005) has a less deteriorating effect on the spatial struc-
ture than scrambling the spatial positions of all dots from the
walker (Vaina et al., 2001) and should lead to a smaller activity
difference. Furthermore, if the single frames of the stimulus were
intact but the temporal order of the frames was randomized, the
model would make the counter-intuitive prediction that this
temporal scrambling does not affect activation levels in stage 1,
nor should it affect performance in the direction task. Recently,
Hirai and Hiraki (2006) investigated the influence of spatial and
temporal scrambling of biological motion stimuli on event-
related potentials (ERPs). In accordance with our model predic-
tions, they found that the temporal scrambling had only a negli-
gible influence on the ERP, whereas spatial scrambling decreased
the ERP strongly. It would be interesting to test, in an fMRI study,
whether different brain areas such as EBA, FFA, and STS are
affected by the temporal scrambling.

Peuskens et al. (2005) tested a stimulus that consisted of the
motion of an articulated skeleton, but the skeleton was unlike
that of a human. Our model would ignore the apparent levers and
axles in the “articulated walker” because they would not fit the
template. It would thus treat the articulated walker like other
scrambled walkers and would show a lower response when com-
pared with the normal walker.

In a previous study, Grossman and Blake (2001) explored the
orientation specificity of biological motion in the fMRI BOLD
signal. It is well known that perception of biological motion is
impaired for upside-down walkers (Sumi, 1984; Pavlova and
Sokolov, 2000; Grossman and Blake, 2001; Grossman et al., 2005)
(but see Shipley, 2003). Grossman and Blake (2001) recorded
neural activity in STS when subjects viewed a canonical (upright)
point-light walker or an inverted (upside-down) display of this
figure. They found that the response to an inverted walker was
approximately half that of an upright walker. We presented both
stimuli (upright and inverted) to the model and analyzed the
output in stage 2 (Fig. 10). In accordance with the results of
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Grossman and Blake (2001), inverted walkers evoked signifi-
cantly lower responses than upright walkers in the model (inde-
pendent ¢ test, t = 3.8; p < 0.01). The reason for this is that, in our
model, only template cells for upright walkers exist. These tem-
plate cells match an upright point-light walker more accurately
than an inverted point-light walker, consistent with the common
explanation for viewer-centered orientation specificity of biolog-
ical motion perception (Reed et al., 2003; Troje, 2003). However,
even the poor matches between the upside-down stimuli and the
upright templates did elicit some activity in the model as they did
in STS. According to the model, this residual activity is still con-
sistent with the assumption of upright only templates. In agree-
ment with the fMRI data, model simulations at stage 2 revealed
that inverted and scrambled walkers evoked only approximately
half the response of normal biological motion (inverted, 57%;
scrambled, 53%). In model stage 1, we found that inverted walk-
ers evoked only 51% of the response to normal biological motion,
whereas scrambled walkers reached 75% of the response evoked
by normal biological motion. The reason is that the deviations
from the templates of the model are even larger for the inverted
walker than for a scrambled walker. Therefore, stage 1 responds
less to inverted than to scrambled walkers. Stage 2, however, also
takes into account whether the sequence of best-matching tem-
plates is in accord with a consistent walking motion. Because both
the inverted and the scrambled stimulus would essentially lead to
a sequence of false matches, there is little consistent temporal
order in either condition, and the activation levels drop to simi-
larly low values for both scrambled and inverted walkers.

Recent TMS results indeed suggest that STS encodes only up-
right biological walkers but not inverted walkers. Applying TMS
over STS impaired the perception of upright biological motion
but not the perception of inverted biological motion (Grossman
et al., 2005).

In the experiments above, we simulated data from studies that
used classical Johansson point-light walkers with light points at-
tached to the major joints. Additionally, we compared model
simulations with results of an fMRI study that used the stimulus
of Beintema and Lappe (2002) and that compared walking with
static stimuli (Michels et al., 2005). This fMRI study applied four
different stimuli. First, they used the classical walker computed
by the algorithm of Cutting (1978) with the dots on the joints of
the stimuli (classical walker moving). The second stimulus con-
sisted of a static posture of this stimulus presented for the same
duration as the moving stimulus (classical walker static). The
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Figure 11.  Comparison of simulated activities in model stage 1 with fMRI data obtained

from EBA and the FFA/OFA complex. fMRI data are adapted from Michels et al. (2005). Dashed
lines and * indicate differences between model simulations for the different conditions, and
solid lines and * indicate differences between model simulations and fMRI data within one
condition. Classic Walker refers to the stimulus introduced by Cutting (1978), and SP-Walker
refers to the stimulus of Beintema and Lappe (2002) (for details, see Results). *p << 0.05; **p <
0.01.
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Figure12.  Comparison of simulated activities in model stage 2 with fMRI data from area STS

(Michels et al., 2005). Dashed lines and * indicate differences between model simulations for
the different conditions, and solid lines and * indicate differences between model simulations
and fMRI data within one condition. Classic Walker refers to the stimulus introduced by Cutting
(1978), and SP-Walker refers to the stimulus of Beintema and Lappe (2002) (for details, see
Results). *p < 0.05; **p < 0.01.

third stimulus depicted a walking figure with the dots reallocating
on the skeleton each frame. This is the stimulus introduced by
Beintema and Lappe (2002) and used in the psychophysical sim-
ulations of direction and forward/backward tasks presented
above. To distinguish it from the classical walker, we will call this
stimulus the “sequential position” (SP) walker. For the last stim-
ulus, Michels et al. used a static posture of the SP stimulus with
the dots changing their position on the static posture frame by
frame (SP walker static).

These four stimuli were also applied in model simulations.
Activation levels were computed in the model and compared
with the activation levels in the fMRI study. Differences between
activations in different conditions were tested for significance
with independent ¢ tests. Activation levels and significance levels
are reported in Figures 11 and 12. Figure 11 shows the compari-
son of activity in model stage 1 with fMRI data obtained from
EBA and FFA. Figure 12 shows the results from model simula-
tions in stage 2 compared with fMRI data obtained from STS.

Statistical analysis for stage 1 revealed that the model predicts
increased activity for both SP walker conditions (moving and
static) compared with both classical walker conditions. Michels et
al. (2005) reported the same statistical differences between the
single conditions for both EBA and FFA. Only in EBA and FFA
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did the SP walker conditions evoke higher activity than for any
classical walker condition.

The comparison between model and fMRI data within each
condition revealed a significantly higher activity in EBA for the SP
walker moving condition compared with the model prediction.
Model predictions and fMRI data differed for the classical walker
static. Here, the model predicts a disproportionate activity for the
static condition compared with the fMRI data. In the classic
walker static condition, a single frame of the stimulus is displayed
for the entire trial duration, whereas in the three other condi-
tions, stimulus dot positions are refreshed every 50 ms. It is likely
that fMRI activation in the classic walker static condition is lower
because activity is not sustained over the entire trial as a result of
the fatigue of the neuronal response (Grill-Spector et al., 2006).
Such mechanisms are not present in the model, and, therefore,
the model response is larger.

The comparison of stage 2 with fMRI data revealed that,
among all areas, the best correlation is observed between stage 2
and STS. Here, the model predicts that activity for the classical
walker static condition is significantly lower than for all other
conditions. The same results were reported by Michels et al.
(2005) for STS. In addition, the model shows a significantly in-
creased activity for the SP walker static condition compared with
the classical walker moving condition. Michels et al. (2005) ob-
served only a trend that did not reach statistical significance ( p <
0.09).

The comparison of model and fMRI data within each condi-
tion revealed that the model overestimates activity for the classi-
cal walker static condition also in stage 2. As specified above, this
discrepancy can be explained by the fatigue of the BOLD signal,
which is missing in the model.

In summary, the model reveals a high correlation of its stage 1
to EBA and FFA/OFA with a slightly better match for FFA/OFA
than for EBA. For stage 2, we found a high correlation between
model and STS.

Discussion

Biological motion perception from dynamic form

We developed a neurally plausible model of biological motion
perception that dynamically integrates the activity of template
cells of static postures of the human body. The first stage of the
model analyzes only the form information in each sequential
frame of the stimulus without knowledge of the temporal order.
Local as well as global motion analysis is excluded. The second
stage performs global motion analysis by explicitly analyzing the
temporal order of the selected frames. The first stage stands for
pure form analysis as in the task of direction discrimination. In
experiments using this direction task, we varied the contribution
of form information and the influence of global motion. All data
could be accurately replicated by the model solely exploiting form
information. This indicates that direction discrimination tasks
do not necessarily need global motion information.

In the forward/backward discrimination task, global motion
analysis had to be involved because the frames and their available
form information were identical. Only their temporal order dif-
fered. The model computes this global motion in stage 2 by ana-
lyzing the frame order based on comparing the current most
active template with an intrinsic expectancy. We again varied the
amount of form information and the dynamics by changing stim-
ulus duration and velocity. This expectancy combined with the
form information transferred from stage 1 accounted for all of
data that used the forward/backward task.

Our model approach is consistent with perceptual investiga-
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tions that showed that a global analysis underlies the perception
of human motion from line drawings or whole-body photo-
graphs (Shiffrar and Freyd, 1990; Chatterjee et al., 1996; Shiffrar
etal,, 1997). These studies uniformly stressed the importance of
orientation and form cues for biological motion perception. We
extend these conclusions to point-light walkers. We found that
the form information in a single frame is not enough information
to solve biological motion tasks, but temporal integration within
an appropriate time window can provide the required
information.

The model could also account for psychophysical experiments
conducted in interfering noise (Neri et al., 1998). We regard a
form-based template-matching model as a possible explanation
for the differences observed for discrimination of translatory and
biological motion. This supports the conclusion of Neri et al. who
considered “very sensitive, but flexible, mechanisms” as an expla-
nation for their findings.

The cortical network for biological motion analysis

Our form-based model was inspired by various findings from
neurological patients that suffered from the loss of motion per-
ception but could see biological motion (Vaina et al., 1990, 2002;
McLeod et al., 1996). The recent surge in functional imaging
studies of biological motion allows us to draw comparisons of the
model with parts of the cortical network of biological motion
perception. Among this network, STS is believed to be crucially
involved in the perception of biological motion because it has
been found in imaging (Bonda et al., 1996; Puce et al., 1998;
Grossman et al., 2000; Vaina et al., 2001; Beauchamp et al., 2002;
Thompson et al., 2005) and electrophysiological investigations
(Oram and Perrett, 1994; Oram and Perrett, 1996), and it has
been functionally implied from lesion studies (Cowey and Vaina,
2000; Vaina and Gross, 2004).

The data produced by our template-matching model pre-
dicted activity in areas sensitive to static postures of human bod-
ies. Comparison of the model predictions with fMRI data from
EBA showed a high correlation between model and experimental
data. Moreover, the model predicted that the activation is higher
for normal biological motion than the activity for the scrambled
control (Downing et al., 2001; Grossman and Blake, 2002). How-
ever, the neural implementation of the model does not have to be
restricted to EBA. Peelen and Downing (2005) also found selec-
tive activity for human bodies in the mid-fusiform gyrus, and
Grossman and Blake (2002) reported that point-light walkers
significantly elicited more activation in FFA than scrambled con-
trol stimuli. Comparison of model predictions for different types
of walker stimuli with fMRI results (Michels et al., 2005) revealed
high similarities to activities in EBA and the FFA/OFA complex.
This supports our idea that this step of the model analysis may be
implemented in form processing areas. The model simulations
suggest that EBA, or other areas sensitive to static postures, can be
involved in the network of biological motion perception. Puce et
al. (2003) reported similar results for face perception. Line draw-
ings of faces activated the fusiform gyrus more than scrambled
line drawings. Therefore, we suggest that areas such as EBA or
FFA are candidates for the neural implementation of model stage
1. The results imply that tasks such as the direction task, which
does not necessarily involve global motion analysis (Beintema et
al., 2006), can be solved by form analysis in this area.

We compared the model simulations of neural activity in stage
2 with fMRI studies of STS activation (Grossman et al., 2001;
Grossman and Blake, 2002; Michels et al., 2005). The results im-
ply that the role of STS differs from EBA or other areas processing
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form information. The differences between the activation levels
for normal and scrambled control stimuli in EBA and model
stage 1 were multiplied in STS and stage 2. The differences at stage
1 were deferred to stage 2 and reinforced by the temporal analysis
conducted at stage 2. From our model simulations, we hypothe-
size that the additional global motion that is necessary to solve
forward/backward tasks is processed in STS and that the impres-
sion of global motion can be derived from the dynamic change of
static postures, processed in EBA or FFA. That is, in contrast to
EBA, STS involves global motion analysis.

The model also predicts that the spatial structure of the stim-
ulus has a strong influence on activity in STS. This is consistent
with Thompson et al. (2005), who found that STS activation is
driven by the spatial configuration of the stimulus. The hypoth-
esis is also supported in fMRI studies by Grossman and Blake
(2002) for spatially scrambled walkers and by Grossman and
Blake (2001) for inverted walkers. Also, Hirai and Hiraki (2006)
revealed that the amplitude of event-related potentials elicited by
point-light biological motion is mainly dependent on the spatial
structure of the walker rather than on the temporal structure of
the dot movement. Temporal structures would be useful for local
motion detectors, whereas the spatial configuration is useful if
the stimulus is mainly processed by global form analysis.

The STS also receives input from motion-sensitive areas of the
brain and features general motion sensitivity (Ungerleider and
Desimone, 1986; Boussaoud et al., 1990). Thus, it is conceivable
that low-level motion signals contribute to biological motion
processing, although our model would not seem to require them.
In the literature, there is surprisingly little direct evidence that
low-level motion signals contribute to biological motion percep-
tion (for a discussion, see Beintema et al., 2006). Inactivation of
motion processing area MT does not interfere with biological
motion perception (Grossman et al., 2005). Some studies re-
vealed selective activation of area KO when biological motion is
compared with scrambled control stimuli (Vaina et al., 2001;
Santi etal., 2003). A pathway through area KO may allow residual
motion perception in patients with lesions of MT (Casile and
Giese, 2005). However, other studies reported that KO showed
no selectivity to biological motion versus these control stimuli
(Grossman et al., 2000).

Other computational studies

Only a few computational studies have investigated the influence
of dynamics and form information on the perception of biolog-
ical motion. Troje (2002) proposed a model to identify the gender
of a walking person from different viewing angles applying a
principal component analysis. The results revealed that omitting
information about the spatial structure of the walker by averaging
over all walker stimuli corrupts performance. However, leaving
out the dynamical component decreases recognition rates even
more strongly. We report the same findings for our simpler dis-
crimination tasks: omitting structural information leads to a de-
crease of performance and even to a stronger decrease if informa-
tion about the dynamics is decreased.

Lee and Wong (2004) proposed a template-matching model
similar to ours, but they used point-light displays as templates
instead of stick figures. Their model could also account for the
nonlinear relationship between number of stimulus dots and
number of noise dots reported by Neri et al. (1998). Our model
provides an improvement because it also quantitatively replicates
the psychophysical results.

Similar to our approach, Giese and Poggio (2003) assumed
snapshots of human walking as the basis for a temporal order
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analysis. These snapshots are presumably implemented in STS
and selectively activated by different human motion patterns.
The snapshot neurons get input from motion processing path-
ways via areas MT and KO and also from form processing areas.
In both cases, however, the information is extracted from the
stimulus in a local-to-global bottom-up manner. For the case of
point-light stimuli, Giese and Poggio proposed that only the
motion-analyzing areas are able to lead to the reconstruction
because the stimulus is devoid of local form cues such as local
orientation. Our model shows that the template matching can be
achieved by appropriate global form analysis. Our template-
matching method can also explain why areas such as EBA and
FFA show a higher activation level for point-light walkers than for
their scrambled versions.

The model uses a set of templates that was recorded from
movements of humans and is therefore restricted to these tem-
plates of human gait perception. In the human brain, it is likely
that the templates are generated by a learning processes. Imple-
mentation of such a learning process might be possible as an
additional aspect for the model and may be interesting to explore.
Moreover, templates for different movements or different artic-
ulation structures (such as four-legged locomotion of animals)
might be learned and used. In this way, the model may in future
work be extended from human gait perception to the perception
of other biological motion stimuli
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