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Abstract

When cells respond well to complex stimuli, it is often di$cult to determine which aspects of
the stimulus are most relevant. We present a technique to describe the encoding of information
on many stimulus features by a single cell. Based on the concept of conditional mutual
information, we distinguish cells that are mono-, dual- or synergistic encoders, depending on
their amount of specialisation for stimulus features. As an application of the technique, we show
that cells in the macaque medial superior temporal area encode information on the direction of
heading, but simultaneously on local features such as the direction of motion in small parts of
their large spatial receptive "eld. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Moving higher up the hierarchy of the visual processing pathway, stimuli that drive
a cell become more and more complex. The complexity of a stimulus and the
co-variation of features in a stimulus often lead to an ambiguity about which aspect of
a stimulus actually drives the cell; tuning for one feature dimension is often di$cult to
separate from tuning for another. One could deal with this ambiguity by using an
experimental design that varies the features of the stimulus factorially. Two problems
arise in this approach. Firstly, the recording time required to quantify a neuron's

0925-2312/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.
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response grows exponentially with the number of stimulus features. Secondly, some of
the combinations in the factorial design will be quite unnatural. Unless a neuron's
response properties are linear, knowing the response to a stimulus that the neuron
never gets confronted with in the real world is of doubtful value. The time spent on
trying to measure the whole factorial space could better be spent on trying to
determine the response to natural stimuli with higher accuracy. Another approach to
the ambiguity problem is to consider only cells that respond invariantly to a particu-
lar stimulus dimension. This is not an easy task for a neuron and, depending on the
stringency with which `invariancea has been de"ned, invariant neurons have proven
di$cult to "nd.
We describe an information theoretic approach that deconstructs the receptive "eld

along multiple feature dimensions. This characterises the encoding of multiple stimu-
lus features by single cells. No factorial designs are required, hence stimuli can be
restricted to natural stimuli, improving the relevance of the data as a description of the
real-world operation of the cells. The method does not look for invariant responses,
but rather assumes that a cell can, in principle, provide information on all features in
the stimulus. The problem of co-variation of features is dealt with by calculating
conditional information: the amount of information encoded on a particular feature,
given knowledge of a di!erent feature. This concept allows us to determine whether
cells encode information on a feature dimension that is not already expected from its
encoding of another feature dimension. Section 2 describes the formal details of
receptive "eld deconstruction. In Section 3, we apply the method to the analysis of
data recorded in the medial superior temporal (MST) area of the macaque during
optic #ow stimulation.

2. Receptive 5eld deconstruction

In the typical situation where this method can be applied, a stimulus varies along
two or more feature dimensions, but these dimensions are not independent. For
instance, consider a set of visual stimuli with varying sizes and velocities, in which
small objects tend to have low speeds. Such correlations arise in natural scenes due to
the fact that far-away objects appear both small (geometrical perspective) and move
slowly (motion parallax). In this example, the features size and velocity are correlated
and any tuning for size will be correlated with tuning for velocity.
We start by estimating the information encoding on the stimulus features without

regard for stimulus correlations. For this we use standard information theoretic
methods [5]. The "rst decision that has to be made, is what code to use. This decision
is guided by assumptions about what is important to the brain, but also limited by the
amount of data one can record from a single cell. A simple assumption is that the
mean rate r forms the code. We then construct a contingency table that tabulates how
often a stimulus feature is followed by a particular codeword r. From such a table, an
estimate of information can be calculated. This direct method of information estima-
tion overestimates the amount of information, but we use the methods of [3] to
correct for the limited-sampling bias.
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Assuming there are two stimulus features a and b, we construct contingency tables
for both and estimate the information in the code (r) on either of the features: I(r; a)
and I(r; b). If, however, stimulus features a and b are correlated, these information
estimates are not independent. For instance, if a particular feature a"aH always
co-occurs with b"bH, then a cell that encodes information on aH, will inevitably
encode information on bH. There is nothing wrong or invalid about this information
on bH, but because it is due to the stimulus correlations, that same information may
not be present in a di!erent stimulus set, or in the real-world where the fortuitous
correlation between aH and bHmay not exist. To claim that a cell encodes information
on multiple feature dimensions, we should show that the information on b cannot be
obtained from the information on a together with a knowledge of the correlations
between a and b.
To clarify this, assume that a cell encodes information on a (i.e. I(r; a)'0).

Consider the ways in which information on b can also become represented in r.
Firstly, changes in b could be correlated with changes in a which in turn cause changes
in r. Secondly, b could, independently from a, a!ect the rate. Thirdly, joint changes in
a and b could cause changes in r. These possibilities are in fact a part of continuum of
possibilities that can be described by the conditional mutual information. The condi-
tional mutual information between r and b given a, denoted by I(r; b � a) is the mutual
information between r and b given knowledge of a. If information in r on b is only due
to correlations between a and b, then I(r; b � a)"0. In other words, if you already
know a then knowing r does not give you any extra information on feature b. To
calculate the conditional mutual information, express it in terms of entropy H [1]

I(r; b � a)"�log
p(r, b � a)

p(r � a)p(b � a)�
��������

"H(r � a)!H(r � b, a),

where the �� denote the expectation value over the joint probabilities. The entropies
can easily be calculated from the contingency tables based on the data. By calculating
I(r; b � a) we can divide cells into three classes:

Mono encoders: I(r; b � a)"0. Although there may be information on b in r, this
information could have been determined by combining the information in r on a with
the stimulus correlations. There is no extra information on b in r.

Dual encoders: 0(I(r; b � a)(I(r; b). Part of the information on b in r is due to
stimulus correlations with a, but there is also some information that cannot be
obtained from stimulus correlations.

Syneruistic encoders: I(r; b � a)'I(r; b). There is extra information on b in r, but
moreover, knowing a helps to get more information on b from r. One way this could
happen is that particular combinations of a and b-features are encoded by a cell.
To test for signi"cant encoding of multiple features, we must refute that

I(r; b � a)"0. In other words, we must refute the null hypothesis that r and b are
conditionally independent given a. Under the assumption of this null hypothesis, the
joint probability p(r, a, b), can be expanded as:

p�(r, a, b)"p(r � a)p(b �a)p(a)"p(r, a)p(a, b)/p(a).
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The alternative hypothesis is that the joint probability distribution p(r, a, b) cannot be
reduced p�(r, a, b)"p(r, a, b). The joint probabilities in these expressions can be
estimated from the contingency tables. For instance, n(r, a) is the contingency table
where each entry is the number of times that a particular rate r followed feature a.
De"ning N as the number of stimuli, the maximum likelihood estimate for a joint
probability of a and r is: p(r, a)"n(r, a)/N Similarly, to estimate the joint probability
p(r, a, b) from the data, construct the three-way contingency table n(r, a, b). Clearly,
large amounts of data are needed to estimate three-way tables. In terms of the
contingency tables the null and alternative hypotheses becomes

p�(r, a, b)"n(r, a)n(a, b)/(N*n(a)),

p�(r, a, b)"n(r, a, b)/N.

The log-likelihood of these hypotheses given the data n can be determined from the
binomial distribution

ll�"log�
N!

�
�����

n(r, a, b)!�# �
�����

n(r, a, b) log[p�(r, a, b)], for i"0,1.

To test the null hypothesis, calculate twice the di!erence of log-likelihoods: 2(ll�!ll�).
This quantity, called the deviance, has an asymptotic �� distribution with the degrees
of freedom given by the di!erence in the number of estimated parameters in p� and p�.
The null-hypothesis is tested by comparing the deviance to the �� distribution. If we
can reject that I(r, b � a)"0 at some level of signi"cance, then there is information in
r on feature b that cannot be obtained from the information r on feature a together
with the stimulus correlations between a and b. The magnitude of the non-zero
conditional information I(r; b � a) can be used to classify the cell as a dual or synergis-
tic encoder.

3. Application to information coding in MST

Cells in theMST area of the macaque respond well to whole-"eld optic #ow and are
tuned to global properties of these #ow "elds such as the focus of expansion [2].While
varying the focus of expansion, however, the experimenter also varies the local
structure in the #ow "eld, such as the average speed, and direction in small parts of the
visual "eld. Hence, a cell's response to a change in the focus of expansion could in
principle also be due to changes in either of these two local features. The con-
founding of these stimulus dimensions and the near impossibility to control for this
confoundwith naturalistic stimuli make these cells ideal targets for the deconstruction
analysis.
Paolini et al. [4] recorded extracellularly from single cells in macaque MST during

long, continuous optic #ow stimulation. The #ow patterns represented trajectories
through three-dimensional random dot clouds. For details of the stimuli, the
electro-physiological and histological methods, see [4]. As an application of the
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Table 1
Information coding in MST. The "rst row shows the average amount of information encoded on the three
features ($ standard error). The second and third row show the percentage of sub"elds which are dual, or
synergistic with respect to heading

Heading Direction Speed

Mean info (bits/s) 0.6$0.07 0.7$0.07 0.4$0.05
Dual * 16% 1%
Synergistic * 52% 8%

deconstruction method, we determined the encoding of three stimulus features:
heading, local direction and local speed. Heading was de"ned as the instantaneous
translation vector in eye-centred coordinates, and determined every 100 ms. To de"ne
local direction and speed we divided the "eld of view into 25 spatial sub"elds and
determined the average motion vectors in each sub"eld every 100 ms. The whole #ow
"eld was 903�903, hence the sub"elds were 183�183. The response of the neurons
was characterised by their mean "ring rate in 100 ms time bins. To correct for the
latency of MST cells, the time bins used to determine the responses were shifted by
25 ms. This implies that we assume that a cell encodes stimulus information by the
"ring rate in a window between 25 and 125 ms after stimulus onset. Clearly, such
a choice is somewhat arbitrary and could be adapted to the neurons that are being
studied. With appropriate amounts of data available, a temporal code could also be
investigated.
Table 1 shows the results of applying the deconstruction analysis to a set of 81 cells

from area MST. The analysis "rst of all quanti"es how much information on the
direction of heading MST cells extract from optic #ow. This global aspect of the optic
#ow stimulus is represented with low "delity per cell, but a small population of cells
can easily be seen to encode enough information for the animal to base its behaviour
upon. Moreover, because this calculation is based on heading directions calculated
every 100 ms in a long trajectory, this shows that the representation of heading in
MST follows changes in the environment on this short time scale. The deconstruction
analysis additionally shows that, even though these cells have large spatial receptive
"elds (&6000 deg�), they nevertheless encode signi"cant information on the stimulus
direction in much smaller sub"elds (&650 deg�). Seventy four percent of cells have at
least one sub"eld for which signi"cant information is encoded on the local velocity.
The simultaneous encoding of local and global information in MST cells suggests

that these cells are involved in computations for which both local and global features
are important. Global features provide information on where the animal is heading,
whereas local features provide information on the depth structure of the environment
and possibly the motion of independent objects. A combination of these features is
highly suitable for navigation and obstacle avoidance tasks, which we speculate these
cells could be involved in.
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4. Conclusion

We presented a technique to deconstruct the receptive "eld along many stimulus
feature dimensions. It quanti"es how much information cells encode on the many
features of a complex stimulus, even when these features are correlated. With the
concept of conditional mutual information, the deconstruction technique quanti"es
whether a cell specialises in encoding a particular feature or whether it provides
information on many features at once. We believe this to be a helpful tool that allows
one to move away from assigning single tasks to neurons and instead acknowledge
that neurons can be a source of information for many di!erent features. This wide
range of information is present in the spikes, and is waiting to be read out by any
downstream area that needs it.
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