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Humans can use visual motion to estimate the distance
they have traveled. In static environments, optic flow
generated by self-motion provides a pattern of
expanding motion that is used for the estimation of
travel distance. When the environment is populated by
other people, their biological motion destroys the
one-to-on correspondence between optic flow and
travel distance. We investigated how observers estimate
travel distance in a crowded environment. In three
conditions, we simulated self-motion through a crowd of
standing, approaching, or leading point-light walkers.
For a standing crowd, optic flow is a veridical signal for
distance perception. For an approaching crowd, the
visual motion is the sum of the self-motion–induced
optic flow and the optic flow produced by the
approaching walkers. If only optic flow were to be used,
travel distance estimates would be too high because of
the approaching direction of the crowd toward the
observer. If, on the other hand, cues from biological
motion could be used to estimate the speed of the
crowd, then the excessive optic from the approaching
crowd flow might be compensated. In the leading crowd
condition, in which walkers of the crowd keep their
distance from the observer as they walk along with the
observer, no optic flow is produced. In this condition,
travel distance estimation would have to rely solely on
biological motion information. We found that distance
estimation was quite similar across these three
conditions. This suggests that biological motion
information can be used (a) to compensate for excessive
optic flow in the approaching crowd condition and (b) to
generate distance information in the leading crowd
condition.

Introduction
Spatial navigation requires the monitoring of motion

direction and travel distance. Sensory information to
estimate travel distance during self-motion consists
of vestibular cues (Israël & Berthoz, 1989; Harris,

Jenkin, & Zikovitz, 2000; Frissen, Campos, Souman, &
Ernst, 2011; Cheng & Gu, 2018), proprioceptive cues
(Thomson, 1980; Frissen et al., 2011), self-generated
(“idiothetic”) cues (Mittelstaedt & Mittelstaedt,
1973; Nico, Israël, & Berthoz, 2002), and visual cues
(Bremmer & Lappe, 1999; Harris et al., 2000; Lappe,
Jenkin, & Harris, 2007; Redlick, Jenkin, & Harris,
2001; Frenz, Bremmer, & Lappe, 2003). Perceiving
self-motion from visual cues entails the analysis of optic
flow (Gibson, 1950; Frenz & Lappe 2005), the pattern
of expanding visual motion generated during forward
locomotion.

Because, strictly speaking, the optic flow is
ambiguous for estimating travel distance, it requires
some way of scaling the visual environment (i.e.,
something like a yardstick) (Lee, 1974; Lee, 1976; Lee,
1980). This scaling is available, for example, from one’s
eye height if the environment contains a ground plane
(Frenz & Lappe, 2005). In such a case, optic flow speed
can be transformed into ego-speed.

Ego-speed obtained from optic flow must be
integrated over space (Lappe, Lappe, Kolesnik, &
Bührmann, 2007; Lappe, Stiels, Frenz, & Loomis, 2011)
to provide traveled distance (Ellmore & McNaughton,
2004). Researchers refer to this integration process as
“path integration” (Maurer & Séguinot, 1995; Bremmer
& Lappe, 1999; Kearns, Warren, Duchon, & Tarr,
2002; Ellmore & McNaughton, 2004; Lappe et al.,
2007). Path integration is a theoretical mechanism that
might underpin the estimation of traveled distance
during locomotion (Mittelstaedt & Mittelstaedt,
2001). Because travel distance discrimination
requires estimating self-motion signals relative to the
environment, path length estimation is not directly
derived from the image motion but rather from the
observer’s self-motion (Frenz et al., 2003; Mossio,
Vidal, & Berthoz, 2008, Lappe et al., 2011).

Although many experiments have shown that optic
flow provides access to travel distance, these experiments
have also revealed increasing underestimation of travel
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distance with increasing true travel distance. This
underestimation has been observed in real environments
(Lappe & Frenz, 2009), simulations (Frenz & Lappe,
2005; Lappe, Frenz, Bührmann, & Kolesnik, 2005),
and virtual reality experiments (Redlick et al., 2001;
Frenz & Lappe, 2006; Frenz et al., 2007; Lappe et
al., 2007; Steinicke, Bruder, Hinrichs, Lappe, Ries,
& Interrante, 2009). Lappe et al. (2007) proposed a
leaky path integration model to explain travel distance
estimates and their increasing misestimation over long
travel distances.

According to the leaky integration model, two
parameters influence the instantaneous change of
distance: the gain factor (k) and the leak rate (α).
The gain factor (k) describes the transformation from
optic flow to ego-speed and, thus, how the integrated
distance is incremented proportionally to the distance
of the observer’s motion. The leak rate (α) describes
how the integrated distance reduces as the motion
continues. Because of the leak, longer distances lead to
a greater decrease in the current distance estimate such
that the extent of underestimation increases. The leak
accumulates over the path that is traversed (Lappe et
al., 2011).

Empirical studies and computational models have
examined traveled distance estimation from optic flow
analysis in static environments. In natural environments,
however, we are often confronted with dynamic scenes
in which other people walk alongside us. The motion
of other walking humans, known as biological motion
(Johansson, 1973), introduces noise to the optic flow
field, thereby biasing optic flow analysis for heading,
the direction of one’s self-motion (Riddell & Lappe,
2017; Riddell & Lappe, 2018; Riddell, Li, & Lappe,
2019; Hülemeier & Lappe, 2020; Koerfer & Lappe,
2020) and concerning flow parsing, the estimation of
independent object motion within a flow field (Mayer,
Riddell, & Lappe, 2021). Biological motion consists
of limb articulation and its associated translation
through space. In natural locomotion, articulation and
translation are linked such that the articulation delivers
cues about the speed and direction of the walker (Giese
& Lappe, 2002; Masselink & Lappe, 2015; Thurman
& Lu, 2016). Humans can derive the corresponding
translation speed and direction from limb articulation
alone (Fujimoto & Sato, 2006; Giese & Lappe 2002;
Masselink & Lappe, 2015; Thurman & Lu, 2016). In
the present study, we asked whether these biological
motion cues can be used for travel distance estimation
in combination with the optic flow. Because biological
motion conveys information about the walking speed
of a person that approaches or walks ahead of oneself,
the speed information in the biological motion might
also be integrated to derive travel distance. Consider
a situation where you walk among a crowd of people
coming toward you. Taking the optic flow perspective,
an approaching crowd produces much optic flow as

the walkers move toward you in addition to your
self-motion. In contrast, if you follow a crowd of
people walking in front of you at the same speed as
yourself, the group does not cause any optic flow. Yet,
the biological motion of the crowd contains cues to
their walking speed and, by extension, to the travel
distance. In the present experiments, we compared
crowds of walkers that come toward the observer with
crowds that walk in front of the observer and with static
scenes in which the observer moves through a crowd of
standing people.

Methods

Sample

We recruited 25 participants (eight males, 17 females)
from the University of Münster. Ages ranged from 18 to
35 years (M = 21.28, SD = 4.16). All participants were
naïve regarding the aim of the experiment. Their visual
acuity was normal or corrected to-normal. Everyone
gave written informed consent. Ethics approval was
obtained from the ethics board of the Department
of Psychology and Sport Science at the University of
Münster. Participation was voluntary, anonymous, and
compensated by either course credits or money.

Setup

Experimental testing took place in a quiet, darkened
room. We generated stimuli in MATLAB R2020a (The
MathWorks, Natick, MA) with the Psychophysics
Toolbox V3 (Kleiner, Brainard, & Pelli, 2007) and
the OpenGL libraries (version 2.1) add-ons. Stimuli
were projected onto a 250 cm × 200 cm backlit
screen by a Marquee 8500 projector (VDC Display
Systems, Tucker, GA) connected to a MacBook Pro
(equipped with a 512-MB Intel HD graphic card;
Apple, Cupertino, CA). The screen resolution was
800 × 600 pixels with a frame rate of 120 Hz.
Participants sat 100 cm away from the screen on a chair
resulting in a visual field of 102° by 90°. They registered
their responses by moving the cursor up or down and
pressing the left button of a computer mouse.

Scene

The simulated virtual world spanned over 60-meter
scene depths. We placed the horizon of a visible
ground plane at eye height (1.60 meters). The ground
structure consisted of stripes oriented in the motion
direction, (Figure 1, Supplementary Movie S1) so that
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Figure 1. Stimulus and reporting procedure. The upper panel
shows the crowd of point-light walkers placed on the ground
plane. The stripes on the ground plane were oriented such that
they provide perceptive depth information but no optic flow.
The lower panel shows the procedure for reporting perceived
travel distance. The red line represents the reference line from
which the participants started. This red reference line appeared
only during the distance estimation and not during motion
simulations. Participants moved the blue line along with the
walker to indicate their traveled distance. The size of the walker
scaled with its depth.

the ground provided static information about distance
via perspective cues but no optic flow.

Point-light walkers

Point-light walkers were constructed from the
motion-tracking data of a single walking human
(De Lussanet, Fadiga, Michels, Seitz, Kleiser, &
Lappe, 2008). Each walker consisted of 12 points
corresponding to the ankles of a human body (knee,
hip, hands, elbow, and shoulder joints). We created a

crowd of 30 walkers. To allow easier identification and
segmentation of the walkers in the crowd, each walker
had a unique color different from the others. Each
walker started individually with a random selection
starting position in the gait cycle. The group appeared
collectively as static, approaching or leading the
observer.

Walker speed
Walkers walked with natural speed but slight

variations so that the group contained different paces.
To implement this, the original motion-tracking
data, which had a translation speed of 0.04 m/s, was
interpolated with either 0.8 times (slower) or 1.2 times
(faster) the original articulation and translation speed.
The three speeds were then distributed equally across
the 30 point-light walkers that formed the crowd. Thus,
10 walkers walked at the original speed, 10 at a slightly
faster pace, and 10 at a slightly slower pace. The average
speed of the crowd was always the original speed.
Starting position in the gait cycle was randomized
across the walkers.

Walker position
The walkers were uniformly distributed within

the viewing frustum up to 26 meters in distance
from the observer. This limited in-depth position is
beneficial for leading crowds combined with slow
observer speeds. When walkers disappeared from
the frustum, we replaced them at 23 meters in depth
from the observer. To avoid collisions with static or
approaching walkers, we created a 3-meter-wide path to
keep observer movements clear of walkers. Yet, shortly
before the end of the trial (less than 10 seconds left),
walkers disappearing from the frustum were allowed
to be placed on the path as there was no more risk of
collision. This setting did not reveal any information
about travel distance or travel velocity, but it made the
scene look more natural. Leading crowds did not need
any replacements within the frustum.

Self-motion simulation

We simulated the observer’s forward self-motion
at different speeds and duration to obtain a set of
travel distances that could be reached with different
combinations of speed and duration as in Lappe et al.
(2007). Travel distances were 4.00, 5.66, 8.00, 11.31,
16.00, and 22.63 meters. Each distance was simulated
with two different speeds and respective durations.
Distances of 4.00, 5.66, and 8.00 meters were simulated
with 0.8 m/s and 0.4 m/s. Distances 11.31, 16.00, and
22.63 meters were simulated with 0.8 m/s and 1.2 m/s.
We chose these combinations to avoid very short and
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Walker condition Travel distance (m) Travel velocity (m/s)

Leading 5.66 0.8 (equal)
Static 8.00 0.8 (equal)
Leading 8.00 0.8 (equal)
Approaching 11.31 0.8 (equal)
Static 16.00 0.8 (equal)
Approaching 5.66 0.4 (slower)
Static 8.00 0.4 (slower)
Leading 8.00 0.4 (slower)
Leading 11.31 1.2 (faster)
Static 16.00 1.2 (faster)

Table 1. Composition of the practice trials.

excessively long trial durations. Depending on travel
distance and velocity, a trial lasted between 5 and
28 seconds.

Conditions

We combined three walker conditions (approaching
vs. leading vs. static) with six traveled distances (4.00,
5.66, 8.00, 11.31, 16.00, and 22.63 meters), and two
self-motion speeds for each distance. This combination
of variables resulted in 36 trials. We repeated each
stimulus combination five times in random order giving
180 trials in total.

Procedure

Participants saw a motion trial and afterward
reported how much distance was covered. They
indicated the perceived travel distance by placing a
point-light walker along with a blue indicator line
extending from the walker’s feet such that its position
in depth from a red starting line presented 2.624 meters
in front of the observer matched the perceived distance
covered in the travel simulation (“adjust-to-target”
paradigm) (Lappe et al., 2007; Lappe & Frenz, 2009).
The size of the walker scaled with its position in depth.

We instructed participants orally and in writing
about the study procedure and their tasks. After the
instruction, participants completed a practice block
without data collection and performance feedback. The
practice block contained 10 trials in randomized order.
We presented the same practice trials to all participants
so they all had the same anchor for distance estimation
(see Table 1).

Data collection started after the practice
block. All stimulus combinations were repeated
five times and distributed over two blocks (the
first block with three repetitions of stimulus
combinations and the second block with two

repetitions). The whole session took about 1.75 hours,
including short breaks between blocks. We compensated
participants with either money or course credits.

Leaky integration model

From previous studies (Lappe et al., 2007; Lappe
et al., 2011; Harris et al., 2012; Bossard, Goulon,
& Mestre, 2016; Bossard & Mestre, 2018), we
expected that perceived traveled distance is not
linearly related to true travel distance. Therefore,
we fitted each participant’s data to the leaky
integration model and then computed traditional
inferential analyses with the calculated parameters
from the fit. According to the leaky integration
model, perceived distance p(x) for a true distance
x is

p (x) = e−αx+b + k
α

The leaky integration model has two parameters:
k and α. Gain factor k describes to what extent
physical and perceived distances are congruent.
Values around 1 indicate perfect congruency, values
above 1 indicate distance overestimation, and values
smaller than 1 denote distance underestimation. The
leak parameter (α) measures the extent to which the
perceived traveled distance is reduced throughout the
movement. If α is greater than 0, the perceived traveled
distance will become disproportionately smaller while
moving. Parameter α is also an indicator of whether
the relationship between perceived and true travel
distance is linear. If it were, the best-fitting α would be
zero.

Fitting procedure

Analogously to Lappe et al. (2007), we collapsed
data over velocity. For each participant and walker
condition, we calculated a leaky model fit (as described
by Lappe et al., 2007). Before proceeding with
analyses, we tested α against zero to determine whether
the data were either linear (α = 0) or nonlinear
(α > 0). The Shapiro–Wilk normality test showed
that the distribution of α departed significantly
from normality (W = 0.90, p < 0.001). Results from
the one-tailed Wilcoxon signed-rank test confirmed
(W = 300, p < 0.001 across walker conditions)
that α was significantly larger than zero, and our
fit is, thus, nonlinear. This finding further supports
our assumption that participants disproportionally
misjudged their traveled distance with ongoing
self-motion.
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Data preparation and check

We checked participant-wise the relation between
estimated and traveled distance by calculating Kendall’s
τ as the correlation coefficient. The static walker
condition served as the reference because it provided
pure optic flow. Due to poor performance in the static
condition (Kendall’s correlation between traveled
and estimated distance rτ = 0.008; 95% confidence
interval [CI], –0.09 to 0.25; z = 0.89; p = 0.371),
we excluded one participant from further analyses.
In 24 out of 9000 trials, distance estimate values
were negative because the blue indicator lit with
the walker was placed closer than the reference line.
These cases probably occurred from pressing the
mouse button by mistake and were removed from the
analysis.

Analysis procedure

The inferential analysis concentrated on the
gain factor k and the leak rate α from the leaky
integration fit. The data structure is based on a
within-subject design with repeated measurements
and two categorical independent variables with
several levels. We performed an analysis of variance
by applying a mixed-modeling framework (LMM).
LMM benefits from higher flexibility, accuracy, and
power for repeated-measures data (Kristensen &
Hansen, 2004; Jaeger, 2008) than traditional variance
analyses.

We analyzed whether the magnitude of k or α
depends on the walker conditions. For this calculation,
we fitted LMM (estimated using restricted maximum
likelihood [REML] criterion and nloptwrap optimizer)
with random intercept and constant slope for
participants. Because of the data structure it was
impossible to further cluster the observations by
random effects. We incorporated walker conditions
with three levels (static vs. approaching vs. leading) as
factors. The static walker condition was set as reference.
The model included participant ID as a random effect
and conditions as fixed effects. In other words, we
assumed that k and α have some residual variation
associated with participants. By using participants
as random effects, we modeled the unexplained
variation of k and α through the variance of the
participants. We obtained standardized parameters
by fitting the model on a standardized version of
the dataset. The 95% CIs and p-values were aligned
to the Wald approximation. Effect sizes were labeled
following Field’s (2013) recommendations. Significant
main effects were followed by post hoc analyses with
the Tukey method for p-adjustments (two-tailed
testing).

Results

Distance estimation in the presence of static
walkers replicates previous findings of travel
distance estimation from optic flow

In the static condition, walkers were standing in
place while observer travel was simulated through
the static crowd. In this condition, travel distance
estimation is based only on optic flow. Therefore, we
first checked whether distance estimates were consistent
with previous studies of travel distance estimation from
optic flow (Frenz & Lappe, 2005; Lappe et al., 2005;
Lappe et al., 2007; Lappe & Frenz, 2009; Bossard et al.,
2016).

In those studies, perceived travel distance was
progressively underestimated as true travel distance
increased. This tendency was also observed in our
data (Figure 2A). For the shortest distance (4 meters),
participants on average slightly overestimated travel
distance by 7.5% (0.3 meter). For longer distances,
travel distance was more and more underestimated,
reaching the largest underestimation (53.91%
or 12.20 meters) for the longest travel distance
(22.63 meters).

These data were fit by the leaky path inte-
gration model. The fit gave a gain factor of k
= 1.117 (SD = 0.22) and a leak rate α above zero
(M = 0.103, SD = 0.09). These values are close
to those of previous optic flow-based studies that
reported gain factors around 1 and leak rates between
0.02 and 0.22 (Lappe et al., 2007; Lappe et al., 2011;
Bossard et al., 2016; Bossard & Mestre, 2018; Clément,
Bukley, Loureiro, Lindblad, Sousa, & Zandvilet, 2020;
Stangl, Kanitschneider, Riemer, Fiete, & Wolbert,
2020).

In the approaching crowd condition, biological
motion perception compensates for the
increase in optic flow

When the observer traverses a crowd of walkers
that approach them, the optic flow that the observer
experiences is the sum of the optic flow produced
by the observer’s motion and the optic flow
generated by the approaching walkers. If travel
distance estimation used only optic flow, then the
distance should be overestimated. This was not
the case. Instead, distance estimates were below
the veridical performance (Figure 2B). Thus, the
biological motion of the walkers, particularly their
articulation, must have been used to compensate
for the excessive optic flow introduced by the crowd
motion.
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Figure 2. Descriptive results and model fits per condition. The points show the average distance estimates. The error bars give the
standard deviation of the average distance estimates. The solid red line indicates the fit of the leaky integration model. The black
dotted line represents veridical performance.

In the leading crowd condition, biological
motion perception allows the estimation of
travel distance despite a lack of optic flow

When the observer follows a leading crowd of
walkers that walks in front of them, the walkers in
the crowd produce little or no optic flow as they keep
their distance from the walker. If the observer bases
their travel distance estimate only on optic flow travel
distance estimation would not be possible. Yet, the
reported travel distance in this condition (Figure 2C)
was again quite similar to that of the static condition,
in which optic flow was available as the only cue.
Therefore, in the leading crowd condition participants
must have used biological motion perception to estimate
travel distance.

Fit parameters show the interplay between
optic flow and biological motion

In all conditions, distance estimates are well described
by the leaky integration model. A one-tailed Wilcoxon
signed-rank test (W = 300, p < 0.001; Shapiro-Wilk
normality test indicated that the distribution of α
departed significantly from normality: W = 0.90, p
< 0.001) across walker conditions confirmed that α
was significantly larger than zero, and our fit is, thus,
nonlinear. This finding corroborates the observation
that participants disproportionally misjudged their
traveled distance with ongoing self-motion. Fitting α
and k over all participants, we obtained a small leakage
rate of α = 0.103 (SD = 0.089) and a gain factor slightly
above 1 (k = 1.117, SD = 0.224), again consistent with
previous studies of optic flow-based distance estimation
(Bossard et al., 2016; Bossard & Mestre, 2018; Clément

et al., 2020; Lappe et al., 2007; Lappe et al., 2011; Stangl
et al., 2020).

To analyze differences in travel distance estimation
in the different conditions, we fitted each condition
to a leaky integrator model and determined the fit
parameters gain (k) and leak rate (α). A positive value
for the leak rate leads to an underestimation of travel
distance for long distances even if the gain is perfect.
Thus, both parameters can potentially contribute
to the distance underestimation and a comparison
between the conditions might show some differences in
the use of optic flow and biological motion as visual
signals. Figure 3 depicts the average values for k and α
per condition.

The model fits indicated that the gain k was larger
than 1 in all conditions (static: M = 1.18, SD = 0.41;
approaching: M = 1.47, SD = 0.80; leading: M = 1.17,
SD = 0.50). This suggests that the transformation from
visual motion to travel distance slightly overestimates
travel distance. The leakage rate α was larger than zero
in all conditions (M = 0.12, SD = 0.07; approaching:
M = 0.20, SD = 0.14; leading: M = 0.14, SD = 0.07),
indicating that the overall underestimation of travel
distance is due to the leak.

To assess whether walker conditions affect the
magnitude of model parameters, we calculated
ANOVAs separately for k and α. The results for the
gain parameter confirmed the statistical significance of
the main effect walker condition, F(2) = 4.68, p = 0.014,
η2
p = 0.17, 95% CI, 0.02–1.00. Note the effect size is

large. The same pattern emerges for α. The main effect
of the condition on α reached significance with a large
effect size, F(2) = 5.88, p = 0.005, η2

p = 0.20, 95% CI,
0.04–1.00. In other words, the translation from physical
to perceived distance (k) and the decay (α) leading
to underestimation depends on the walker condition.
Post hoc analyses showed that the gain k was largest in
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Figure 3. (A) Leaky fit per condition. The dotted line indicates veridical performance. (B, C) Leaky fit parameter k (B) and leak rate α

(C) per condition. Asterisks denote significant differences between conditions.

the approaching condition and significantly different
from the static (p = 0.034, Mdiff = 0.287) and leading
(p = 0.025, Mdiff = 0.299) conditions. Leading and
static conditions did not show a statistically significant
difference (p = 0.993, Mdiff = 0.013). The large value
for k in the approaching condition might indicate that
in this condition the excessive optic flow from the
walker is not completely compensated by the biological
motion analysis. The leak rate α was significantly
higher in the approaching compared to the static
condition (p = 0.005, Mdiff = 0.080). Neither the
differences between approaching and leading (p= 0.059,
Mdiff = 0.056) nor leading and static crowds (p = 0.590,
Mdiff = 0.023) reached significance. The combination
of a large k with a simultaneously increased α produces
underestimation in the approaching condition even
though the gain in this condition is the largest.

Discussion

Our study investigated travel distance estimation for
self-motion through a crowd of point-light walkers. To
assess the impact of biological motion and optic flow
as information sources of self-motion, we designed
three conditions. The static condition presented solely
standing walkers, thus, solely conveying optic flow.
The leading crowd condition depicted a crowd that
participants visually followed. Due to the similar
to identical motion speed of the observer and the
walkers, the optic flow was reduced to a minimum.
Here, participants must infer visual self-motion
from the articulation of the walkers in the crowd
(Seno & Sato, 2012; Masselink & Lappe, 2015;
Riddell & Lappe, 2017; Hülemeier & Lappe, 2020).

In the approaching condition, participants visually
traversed a crowd that walked toward them. This scene
combined optic flow from the observer’s movement
with optic flow created by the approaching walkers,
and participants had to use the articulation of
the biological motion to estimate the speed of the
crowd and remove its optic flow from the full optic
flow to gauge their self-motion speed for distance
estimation.

In line with previous studies (Frenz & Lappe,
2005; Lappe et al., 2005; Lappe et al., 2007;
Lappe & Frenz, 2009; Bossard et al., 2016), our
participants underestimated their traveled distances
across conditions. The underestimation occurred
disproportionally large for longer distances. The
data were fitted by the leaky integration model
(Lappe et al., 2007). This model describes a
disproportional underestimation of long distances
by two parameters: gain factor k, representing the
congruency between physical and perceived distance,
and leak rate α, modeling the disproportional
misjudgments of long distances. The fitted parameters
in the static condition, providing solely optic flow
information and no biological motion, were consistent
with those from the literature on travel distance
estimation from option flow (Lappe et al., 2007;
Lappe et al., 2011; Bossard et al., 2016; Bossard
& Mestre, 2018; Clément et al., 2020; Stangl et al.,
2020).

The leading crowd condition investigated whether
observers were able to infer travel distance from
biological motion. Considering that there is little to no
optic flow in the leading condition, distance estimates
of similar magnitude as in the static condition ascertain
that observers can indeed infer their velocity from pure
biological motion. Participants must have derived the

Downloaded from jov.arvojournals.org on 04/28/2023



Journal of Vision (2023) 23(4):7, 1–11 Hülemeier & Lappe 8

appropriate translational speed of the crowd from their
biological motion. To do this, they had to calculate
the theoretically appropriate translational speed of
the walker from the walker’s arm and leg movement
(Masselink & Lappe, 2015; Thurman & Lu, 2016).
Equating one’s speed with the speed of the crowd
would then enable travel distance perception similar
to that of optic flow because distance estimation
from the optic flow is also based on perceived ego
speed (Frenz et al., 2003; Frenz & Lappe, 2005). The
analysis of the leaky fit parameters confirms that
this conversion of the biological movement of others
into ego-speed works similarly to that for optic flow.
Gain factor k and leak rate α of the leading crowd
condition are not different from those of the static
condition.

The approaching crowd condition contains twice
the optic flow as the static condition because not
only does the observer walk through the crowd, but
the crowd also approaches the observer. The finding
that travel distance estimation is similar to that of
the static condition suggests that observers were
able to use information from the articulation of the
biological motion to infer their correct ego-speed.
If they can estimate the speed of the crowd from
the articulation of the walkers, this speed might be
deducted from the forward speed of the optic flow
to produce ego-speed. In parallel, the visual system
processes the optic flow of the entire scene. From the
optic flow, the visual system must subtract the deduced
translation speed. Our results suggest an interesting
link to flow parsing. Flow parsing (Rushton & Warren,
2005; Warren & Rushton, 2009) refers to the process
by which the visual system extracts the independent
motion of objects within a scene during self-motion.
This decomposition is achieved by subtracting the
motion due to self-motion from the complete retinal
motion field. As a result, the visual system can parse the
optic flow input and estimate the independent motion
of objects. Flow parsing on its own (i.e., only using
visual information) underestimates ego-speed and, thus,
misestimates object speed (Xie, Niehorster, Lappe, &
Li, 2020). But, during real walking, when vestibular
and somatosensory cues are also available, flow passing
is close to perfect (Xie et al., 2020). In addition, flow
parsing, can also take limb articulation or facing
direction of biological motion into account to estimate
the direction and speed of walkers embedded in optic
flow (Mayer, Riddell, & Lappe, 2021). This is similar to
the situation in our present experimental conditions, in
which participants have to use articulation information
to extract their own speed from the optic flow by
decomposing the flow into own and crowd components.
The difference between our study and typical flow
parsing studies is that our task is to estimate ego-speed
rather than speed of the object. Participants would
first subtract the walker motion to then recover the

self-motion. In either case, participants use their prior
knowledge of biological motion to deduce self-motion
estimates.

With perfect calculations, gain factor k and leak
rate α should be the same as in the static and leading
conditions. However, the leaky integration fits of
the data produced a gain factor k significantly
larger than in the other conditions. A larger gain
means that the perceived distance of an elementary
movement is larger than its physical distance. This
could occur, for example, if the speed of the crowd is
underestimated and the ego-speed thus overestimated.
Estimation of ego-speed is indeed not perfect,
neither during walking nor from static viewing of
optic flow stimuli (Durgin, Gigone, & Scott, 2005;
Durgin, 2009; Tcheang, Gilson, & Glennerster,
2005).

With a larger value for k, one might expect
participants to overestimate travel distance; however,
the increase in k was countered by an increase
in leak rate α. Thus, although the gain for each
elementary movement was large the overall distance
estimate was not increased due to the larger leak.
Significant effects for α represent the difficulty
of estimating distance from approaching walkers
alone. This difficulty might derive from the fact
that approaching walkers keep disappearing from
the field of view. To re-estimate self-motion,
participants need to pick another walker as an
anchor. However, this walker may have a different
translational velocity and will fall out as an anchor
again after some time. Distance estimation is more
error-prone than approaching static objects or leading
crowds.

To conclude, we found that humans are capable
of estimating their traveled distance from biological
motion alone or in combination with optic flow. In
either case, the distance estimates follow a leaky path
integration in which visual motion is transformed into
ego-speed and then integrated throughout travel in a
leaky manner.

Keywords: optic flow, distance perception, biological
motion, point-light walkers, leaky path integration
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Supplementary material

Supplementary Movie S1. Stimulus presentation and
distance estimation. Self-motion velocity is equal to the
average crowd speed across trials. The first trial depicts
the static condition, the second one the approaching,
and the third one the leading condition. Every trial is
followed by traveled distance report.
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