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ABSTRACT

If we want to explain attention, we ultimately have
to explore how we perceive natural scenes, the envi-
ronment primates typically encounter. The task of
detecting an object in a natural scene constrains the
involvement of attention differently than in artificial
scenes. I suggest that attention emerges through time
on the systems level based on three general principles,
and I demonstrate their feasibility in a computational
model. In this model, attention itself is not a prerequi-
site for object recognition but feedback constrains
feedforward processing and improves target
discrimination. As a result, a state evolves that allows
the linking of areas involved in planning to early areas
responsible for scene analysis.

I. INTRODUCTION

Attention has been investigated in numerous tasks
using displays with isolated items. In those experi-
ments and related models, the spotlight model of
attention has been shown to explain a number of find-
ings. In natural scenes, however, a subject faces the
additional problem of object detection and segmenta-
tion. A pure spatially based form of attention (e.g., a
spotlight of attention) hardly improves the discrimi-
nation of the object of interest against the background.
I suggest the following three principles that allow the
detection of objects in natural scenes: (1) High-level
processing and object detection are possible without
spatial attention; that is, spatial attention does not gate
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processing; (2) a form of feature-based attention
enhances features of interest in parallel and thus
enhances an object of interest against the background;
and (3) focal processing needs time to develop and
emerges through reentrant processing from occulo-
motor areas.

These three principles are routed in one general rule
of perception: Convergent zones in one brain area
provide an expectation about feature or space. When
an expectation is sent to other areas, it enhances the
gain, given that a match with the input of this area
occurs. This concept of a population-based inference is
related to Bayesian inference, but avoids the computa-
tion of probabilities. Competition cleans up the popu-
lation activity in higher stages from all unimportant
stimuli so that a full recognition can take place. As a
result, attention emerges on the network level. There
is no area in the brain that is solely devoted to com-
puting attention.

II. THE MODEL

In order to explain attention as a distributed, com-
petitive resource I have suggested that attention
emerges through interactions (Hamker, 1999). The
presented computational model consisted of an area
with large receptive fields inferior temporal cortex (IT)
that is responsible for a largely location-invariant
scene description, an area with small receptive fields
(V1-V4) that encodes the features of objects within a
small to intermediate spatial scale and an area of
spatial processing (PP, FEF, SC) that encodes informa-
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II. THE MODEL

tion about the location of objects. Similar as in the
Selective Tuning Model (Chapter 92) top-down con-
nections within the ventral pathway play an important
role (Chapters 25, 83, and 107), but here a selection in
space is localized outside the ventral stream. Such a tri-
modular architecture has been recently shown to
account for various attention effects based on compe-
tition (Hamker, 2000; Chapter 97).

As an extension to this general model, I here
describe a new population-based computational
approach that aims at modeling specific areas of the
brain, including their temporal dynamics (Fig. 98.1).
This model has been developed to be consistent with
a range of electrophysiological findings. The model V4
area (Hamker, 2004a) has been demonstrated to quan-
titatively account for receptive field competition in V4
(Reynolds et al., 1999) and for multiplicative effects on
the tuning curve (Chapter 49). A slightly simplified
version of the proposed systems model (Hamker, 2003)
has been shown to match the time course of IT and V4
activity in visual search (Chelazzi et al., 1993, 1998).
The model is also consistent with findings in the FEF
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FIGURE 98.1 Model for top-down guided detection of objects.
First, information about the content and its low-level stimulus-
driven salience is extracted. This information is sent further upward
to V4 and to IT cells that are broadly tuned to location. The target
template is encoded in prefrontal memory cells (PFmem). Prefrontal
match cells (PFm) indicate by comparison of PFmem with IT
whether the target is actively encoded in IT. Feedback from PFmem
to IT increases the strength of all features in IT matching the
expected features. Feedback from IT to V4 sends the information
about the target downward to cells with a higher spatial tuning.
Frontal eye-field visuomovement cells (FEFv) combine the feature
information across all dimensions and indicate salient or relevant
locations in the scene. A competition among frontal eye-field move-
ment cells (FEFm) determines the expected location of a target. Even
during this competition, the movement cells provide a reentry signal
to V4 and IT, which enhances the gain for all features at locations
where the receptive field overlaps with the movement field. The
inhibition of return (IOR) map memorizes recently visited locations
and inhibits the FEFv cells.

(Schall, 2002) and psychophysical data (Hamker,
2004b), and it predicts that the FEF provides a spatially
organized reentry signal to extrastriate visual areas
(Hamker, 2001).

Evidence for the latter prediction has been given by
stimulating the FEF, which influenced stimulus-related
activity in V4 (Moore and Armstrong, 2003). By fitting
the model data with the experimental data gained by
Chelazzi et al. (1998), I identified movement cells in the
FEF as a possible convergent zone, which provides the
spatial reentry signal (Hamker, 2003). Their timing and
selectivity corresponds with the observed target dis-
crimination in the ventral stream. In such a movement
plan model, activity of the movement cells is required
to produce a reentry signal. A potential problem could
arise in explaining covert attention. During fixation,
movement neurons might be inhibited by fixation
cells and thus are presumably inactive, whereas visual
neurons are not inhibited and therefore can provide
both a reentry signal that modulates visual processes
in extrastriate cortex and the target selection signal to
the movement neurons. However, no experiment has
clearly ruled out that the movement cells are inactive
during covert attention. It is possible that fixation cell
activity is reduced, which in turn allows movement
cells to be active but below the level that elicits an eye
movement. Others have proposed a visual selection
model (Chapter 22). A potential problem of the visual
selection model is its low signal-to-noise ratio. Al-
though the visual cells show a target selection, dis-
tractor activity is initially almost equally strong. If
these activities are directly fed back, spatial attention
would be initially distributed to all stimuli. In addi-
tion, the target selection in visual cells appears very
early as compared to the late occurrence of spatial
attention in some psychophysical experiments. At
present, it is not possible to rule out either model
describing how the FEF might be involved in attention.

The model (Fig. 98.1) consists of the following com-
ponents. Consistent with the idea of stimulus-driven
salience (Chapter 39), a saliency module extracts fea-
tures from the natural scene and weights their initial
conspicuity by computing center-surround differences
in parallel. Please note, such center-surround differ-
ences have been used by Itti and Koch (2000) to
compute a saliency map. However, a saliency map that
selects a location on a very fast time scale, which
would be necessary to explain a popout perception on
basis of a spatial selection, has not been found in the
brain. Thus, according to principle 1, I suggest an alter-
native to an external saliency map: Stimulus-driven
saliency emphasizes, but does not select, unique
features in parallel within the ventral stream. For
simplicity, the model computes the center-surround
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differences prior to V4 (see also Chapters 45 and 93).
The model is consistent with the idea that stimulus-
driven conspicuity can be determined at higher levels
as well (Hochstein and Ahissar, 2002). I combine the
feature value with its corresponding conspicuity into
a population code (Hamker and Worcester, 2002),
which is then continuously modified. At each location
x, I construct a space, whose axes are defined by the
represented features and by one additional conspicu-
ity axis. The encoded feature is then defined by the
subset of active cells within a set of neurons i sampling
the feature space. The present version computes
five parallel channels: intensity, orientation, red-green
opponency, blue-yellow opponency, and spatial
frequency.

Each V4 layer receives the obtained features,
weighted by the initial conspicuity value, as input.
Feature-specific feedback from IT cells and spatial
reentry from the frontal eye-field movement cells both
control the gain of the bottom-up input. V4 cells
compete in representing their encoded stimuli.

The populations from different locations in V4
project to IT, but only within the same channel. I
simulate a map containing nine populations (sets of i
neurons) with overlapping receptive fields. For sim-
plicity, the complexity of features is not increased from
V4 to IT. Thus, the model IT populations represent the
same feature space as model V4 populations. The
receptive field size, however, increases in the model so
that several populations in V4 converge onto one pop-
ulation in IT. IT receives feature-specific feedback from
the prefrontal memory and location-specific feedback
from the frontal eye-field movement cells, which again
control the gain. Principle 2 is implemented in the
model by feedback from prefrontal memory to IT and
further back to V4.
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The FEFv neurons receive convergent afferents from
V4 and IT and add up the activity across all channels.
The information from the target template, in addition,
enhances the locations that result in a match between
target and encoded feature at all locations simultane-
ously. This allows the biasing of specific locations by
the joint probability that the searched features are
encoded at a certain location. The firing rate of FEFv
cells represent the saliency and task relevance of loca-
tion (Chapter 21), pooled over different channels,
whereas the conspicuity of each feature is encoded in
V4 and IT.

The effect of the FEFv cells on the FEFm cells is a
feedforward excitation and surround inhibition. Thus,
by increasing their activity slowly over time FEFm
cells determine the expected location of the target.
According to principle 3, the FEFm activity provides a
delayed reentry signal to extrastriate areas.

There is currently no clear indication where cells
that ensure an inhibition of return are located (chapter
16). We regard each location x as inspected, dependent
on the selection of an eye movement or when a match
in the PFm cells is lost. In this case, the inhibition of
return (IOR) cells are charged at the location of the
strongest FEFm cell for a period of time. This causes a
suppression of the recently attended location in the
FEFv map. IOR cells slowly decay.

I now show how the FEF and IT might contribute
to the detection of an object in natural scenes.

III. RESULTS

I first demonstrate how the model operates in a free-
viewing task, which is only driven by the stimulus
saliency (Fig. 98.2). The overt scanning behavior is

C
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FIGURE 98.2 Results of a free-viewing task. (A) Natural scene. (B) Scanpath. The scan starts on the tooth-
paste and visits the hairbrush, the shaving cream, two salient edges, and then the soap. (C) Activity of FEFv
cells prior to the next scan. By definition, they represent locations, which are actively processed in the V4 and
IT map and, thus, represent possible target locations. An IOR map inhibits FEFv cells at locations that were
recently visited (causing the black holes in the activity landscape).
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similar to pure feedforward approaches (Chapter 94).
The major difference is that the saliency is actively con-
structed within the network prior to each shift (Fig.
98.2C). I now demonstrate how the behavior of the
model changes when it searches for a specific object in
the scene. To mimic the activation of a search template,
I present the model objects from which it generates
very simple templates (Fig. 98.3A). This template,
which is hold in PFmem cells, guides perception by
changing the sensitivity of IT cells due to a feature-
specific feedback. When presenting the search scene,
initially IT cells reflect conspicuous features, but over
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time those features that match the target template get
further enhanced (Fig. 98.3B). Thus, the features of
the object of interest are enhanced prior to any spatial
focus of attention. The frontal eye-field visual cells
encode salient locations. At approximately 85-90ms,
all areas that contain objects are processed in parallel.
Spatial reentry then enhances all features at the
selected location at approximately 110ms after scene
onset. As a result, the initial top-down guided infor-
mation is altered to process all the features of the target
object. For example, the very red color of the asprin
bottle is only encoded in IT after the emergence of the
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FIGURE 98.3 (A) After the presentation of a target object, PFmem cells memorize in each channel the
most conspicous feature. (B) The temporal process of a goal-directed object detection task in a natural scene.
The frontal eye-field visual cells indicate preferred processing, which is not identical with a spatial focus of
attention. At first they reflect salient locations, whereas later they discriminate target from distractor loca-
tions. The activity of IT cell populations with a receptive field covering the target initially show activity that
is inferred by the search template. Later activity is dominated by the emerging spatial focus and reflects other
features of the object that were not searched for. The arrow indicates the enhancement of the cells encoding

the red color due to spatial reentry.
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spatial reentry signal because those features were not
among of the expected features (arrow in Fig. 98.3B).

The model does not always search in parallel. If the
target does not sufficiently discriminate from the back-
ground, reentrant processing can be misguided and
the model automatically switches into a serial search
mode.

IV. DISCUSSION

I have presented an approach to model perception
in natural scenes based on three general principles of
computation in the brain. (1) I postulate that high-level
vision does not require spatial selection. This is con-
sistent with the finding that some scenes allow the
parallel detection of categories, such as animals, in the
near absence of spatial attention (Li et al., 2002). (2)
Because the spatial resolution of high-level vision is
poor, the function of massive feedback projections is to
provide cells in early location-specific areas informa-
tion about the feature of interest. (3) Such enhanced
activity in the “what” pathway is picked up by maps
in the “where” pathway, which locates the object for
action preparation. Reentrant activity, for example,
from the FEF (Moore and Armstrong, 2003), then
enhances all features of the object in order to allow a
more detailed analysis. The model predicts that object
identification begins before the eyes actually fixate on
the object.

My model suggests that the brain uses reentrant
processing to constrain processing in some areas by
decisions in convergent areas. A match of the bottom-
up input with the expectation increases the gain,
which can alter the interpretation of a visual scene by
tuning the population response. As a result, suppres-
sive and facilitatory effects occur, commonly referred
to as attention. My model is consistent with the idea
of Biased Competition (Desimone and Duncan, 1995;
Chapter 50), but population-based inference extends
the idea of a mere competition toward the high-level
guidance of low-level processing. The described mech-
anisms implement a dynamic filter that allows the
connection of planning processes with the physical

world and presumably the elaboration of the content
of awareness (Chapter 29). Such an approach unifies
recognition and attention as interdependent aspects of
one network.
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