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Abstract: As humans, we gather a wide range of information about other people from watching them
move. A network of parietal, premotor, and occipitotemporal regions within the human brain, termed
the action observation network (AON), has been implicated in understanding others” actions by means
of an automatic matching process that links observed and performed actions. Current views of the
AON assume a matching process biased towards familiar actions; specifically, those performed by con-
specifics and present in the observer’s motor repertoire. In this study, we test how this network
responds to form and motion cues when observing natural human motion compared to rigid robotic-
like motion across two independent functional neuroimaging experiments. In Experiment 1, we report
the surprising finding that premotor, parietal, occipitotemporal regions respond more robustly to rigid,
robot-like motion than natural human motion. In Experiment 2, we replicate and extend this finding
by demonstrating that the same pattern of results emerges whether the agent is a human or a robot,
which suggests the preferential response to robot-like motion is independent of the agent’s form. These
data challenge previous ideas about AON function by demonstrating that the core nodes of this net-
work can be flexibly engaged by novel, unfamiliar actions performed by both human and non-human
agents. As such, these findings suggest that the AON is sensitive to a broader range of action features
beyond those that are simply familiar. Hum Brain Mapp 00:000-000, 2011.  © 2011 Wiley-Liss, Inc.
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The human body in motion is a rich source of social
data, conveying such information as the mover’s identity,
goals, intentions, and even thoughts, beliefs, or desires.
Research into the social brain is advancing rapidly
[Adolphs, 2010; Meltzoff, 2007], and a key component that
helps to facilitate social interaction is believed to be an
action observation network [AON; Gallese and Goldman,
1998; Gallese et al., 2004]. This network, comprising pre-
motor, parietal, and occipitotemporal cortices, is activated
when observing other people in action [Cross et al., 2009b;
Gazzola and Keysers, 2009; Grezes and Decety, 2001].
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Moreover, some components of this network, including
inferior parietal and inferior premotor cortices, correspond
to brain regions containing mirror neurons in non-human
primates [Gallese, 2007; Gallese et al., 2004; Rizzolatti and
Craighero, 2004]. Recent neuroimaging work with humans
shows that parietal and premotor nodes of the AON
encode performed and observed actions within the same
networks [Kilner et al., 2009; Oosterhof et al., 2010]. It has
been suggested that these parts of the AON permit ‘direct’
comprehension of other people’s behavioral and mental
states [Gallese and Goldman, 1998; Gallese et al., 2004].
Furthermore, the discovery of neurophysiological proc-
esses linking action with perception has been taken as evi-
dence in support of the ideomotor principle of action
control. This prominent theory, introduced over 120 years
ago, posits that actions are cognitively represented in
terms of their sensory consequences, thus providing a
common code for perception and action [James, 1890;
Prinz, 1990].

The dominant model of the AON proposes that this net-
work of brain regions responds most robustly when
watching familiar, executable actions [Press, 2011]. Brain
regions associated with the AON show stronger responses
to humans than animals [Buccino et al.,, 2004], familiar
than unfamiliar actions [Calvo-Merino et al., 2005; Cross
et al.,, 2006, 2009a,b], human agents than robotic agents
[Chaminade et al., 2010; Miura et al., 2010; Shimada, 2010;
Tai et al., 2004] or other non-human agents [Costantini
et al., 2005; Engel et al., 2008], and same-race than differ-
ent-race individuals [Avenanti et al.,, 2010; Liew et al.,
2010]. Moreover, both AON activity [Wheatley et al., 2007]
and motor priming in behavioral tasks [Liepelt and Brass,
2010; Liepelt et al., 2010] are increased when participants
believe they are observing another human, compared to a
robotic or inanimate agent (although other studies report
less clear effects of animacy instructions on AON activity,
c. f. Stanley et al., 2010). Behavioral work investigating
how observed actions influence simultaneously performed
actions has reported greater interference effects when par-
ticipants watch a human actor moving with human kine-
matics compared to moving with a constant velocity
profile [Kilner et al., 2007a], and when watching a robotic
agent moving in a human-like manner compared to a non-
biological manner [Chaminade et al., 2005]. These findings
are consistent with the notion that observing actions with
familiar kinematic features, which are within one’s motor
repertoire, results in greater AON activation than observ-
ing less familiar actions.

Findings concerning the impact of an agent’s form on
AON activity and motor resonance are also largely consist-
ent with the familiarity hypothesis. A number of behav-
ioral studies demonstrate a greater influence of action
observation on action performance when actions are per-
formed by human compared to non-human, symbolic
agents, even when all movements have been precisely
matched to display human kinematics [Brass et al., 2001;
Gowen et al., 2008]. Such findings are further corroborated

with evidence from electroencephalography [Oberman
et al, 2005], magnetoencephalography [Kessler et al.,
2006], near infrared spectroscopy [Shimada, 2010], and
functional magnetic resonance imaging [fMRI; Chaminade
et al., 2010; Miura et al., 2010], which all demonstrate that
the AON is indeed more strongly engaged by human com-
pared to non-human forms, even when all actions are
matched for kinematics.

Based on these studies examining observation of famil-
iar compared to less familiar form and motion cues,
engagement of the AON in particular and the motor sys-
tem in general is commonly taken as an indicator of spon-
taneous simulation of actions that are present in an
observer’s motor repertoire. Furthermore, some studies are
now measuring engagement of AON in a form of reverse
inference in which greater activity in these regions is taken
as a sign that participants see the other actor as being ‘like
me’, and lack of AON engagement is taken as a measure
of failure to link self and other [Dapretto et al., 2006; Ober-
man et al., 2005].

In contrast to these results, emerging evidence suggests
that the relationship between AON activity, the form of
the observed agent and the motion of the observed action
might be much more nuanced [Cross et al., 2009a; Gazzola
et al., 2007; Ramsey and Hamilton, 2010]. That is, the
AON may not simply respond more when observing
actions with familiar form or motion, a notion that departs
from the familiarity hypothesis. One study found no dif-
ference in AON activity when participants observed a
human hand and a robotic hand perform simple actions,
such as grasping a cup [Gazzola et al., 2007]. It is of inter-
est that the robotic hand in this context differed from the
human hand on both form and motion parameters, thus
making it impossible to know how these features inde-
pendently influence responses within the AON. Another
recent study asked participants to watch short animations
of geometric shapes “retrieve” simple objects, such as a
cookie or some keys [Ramsey and Hamilton, 2010]. In this
study, the shapes did not have human form or motion,
but were animated to make them appear self-propelled
and “alive”. The authors found activity in the parietal
node of the AON when participants observed these
abstract animations [Ramsey and Hamilton, 2010], similar
to previous studies involving observation of human goal-
directed action [Hamilton and Grafton, 2006].

As such, these latter studies provide preliminary evi-
dence for a greater flexibility of information processing
within the AON, which is not restricted to familiar action
features. However, a key question remains regarding the
relationship between observed form and motion within
the AON. For example, in the studies that provide evi-
dence for AON activation when observing non-human
agents, motion parameters were not systematically manip-
ulated (i.e., the robotic hand [Gazzola et al., 2007], ani-
mated shapes [Ramsey and Hamilton, 2010], and scrolling
arrows [Cross et al., 2009a] all moved in just one manner,
none of which resembled human motion). To this end,
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open questions remain concerning how this network proc-
esses unfamiliar, non-human motion cues independent of
agent form, as well as how form and motion cues might
interact.

In this study, we systematically examine the relationship
between motion and form cues in terms of action familiar-
ity and activity within the AON. In the first experiment,
we compare brain activity when observing a human
dancer perform in a rigid, robotic manner, compared to a
smooth, fluid, natural manner. In the second experiment,
we build upon the first by directly juxtaposing form and
motion cues. We accomplish this by matching the move-
ments of an articulated robotic figure with the human
dancer’s movements, in both the robotic dance and natural
dance conditions. As such, the following experiments ena-
ble us to cleanly disambiguate the impact of motion (natu-
ral human vs. rigid robotic) and form (human vs. robot)
cues on the AON.

MATERIALS AND METHODS
Subjects

Twenty-two right-handed volunteers (12 men, 10 women;
mean age 25.95 years, range: 20.5 — 33.6 years) participated
in Experiment 1. Twenty-three different right-handed vol-
unteers (10 men, 13 women; mean age 25.25 years; range
19.7 - 31.0 years) participated in Experiment 2.

Across both experiments, all participants were naive to
the purpose of the experiment, free of any neurological or
psychiatric disorder, or were not on medication at the
time of measurement. No participant reported having for-
mal dance training, and while most participants reported
occasionally dancing in clubs, no participant reported try-
ing to “dance the robot.” All participants were strongly
right-handed according to self-reported responses to the
Edinburgh Handedness Inventory [Oldfield, 1971]. All par-
ticipants provided written informed consent and were
monetarily compensated for their time, treated according
to the ethical regulations laid out in the Declaration of
Helsinki. The local ethics committee approved all experi-
mental procedures.

Stimuli and Design
Experiment |

Thirty-six videos ranging in length from 7.7 to 9.8 sec-
onds featured a professional break-dancer dancing in a
natural, free-style manner (Supporting Information Video
S1) or in a rigid, robotic manner, known as ‘dancing the
robot” (Supporting Information Video S2). Importantly, the
videos were not altered in any way - the dancer was sim-
ply instructed to dance naturally and dance robotically,
and the robotic dance videos used throughout both experi-
ments feature this individual dancers’ interpretation of
dancing like a robot. The dancer performed to music that

was of equivalent tempo across both dance styles. How-
ever, the videos used for the experiment did not include
any audio information. In half the videos, the dancer wore
a plain white mask with white gauze over the eyes, in
order to render static all facial information. The motivation
behind the mask manipulation was to determine whether
robotic movements would be perceived as less human-like
if access to facial information was obscured by a mask.

The 36 stimuli videos of Experiment 1 fell into a 2 x 2
factorial design, with factors face (levels: face visible; face
masked) and movement (levels: natural; robotic—see Fig.
4a). Of these videos, eight featured the dancer dancing in
a natural style with his face visible, eight were of the
dancer dancing in a natural style while wearing the white
mask, eight were of the dancer dancing in a robotic style
with his face visible, and eight were of the dancer dancing
in a robotic style while wearing the white mask.

Experiment 2

Thirty-two videos ranging in length from 7.72 to 9.80
seconds were used. Of those videos, 16 were the same as
those used in Experiment 1; eight featuring the dancer
moving in a natural manner (without the mask) and eight
featuring the dancer moving in a robotic manner (without
the mask). The remaining 16 videos were created with a
Lego Bionicle™ action figure (model 7117, name: Gresh)
and stop-motion animation, using Frame-by-Frame soft-
ware (http://web.mac.com/philipp.brendel/Software/Fra-
meByFrame.html). The videos were made by matching the
Lego figure’s limbs to the positions of the human dancer’s
limbs. This matching process was performed by overlaying
real-time video of the Lego figure onto the prerecorded
video of the human dancer. The original videos of the
human dancer were advanced frame by frame, and the
Lego figure’s posture was adjusted to match the human’s
for each video frame. As the human videos were recorded
at a rate of 25 frames per second, this resulted in a total of
193 to 245 static images of the Lego figure, which, when
played back at the rate of 25 frames per second, precisely
matched the human videos in duration. This resulted in 16
frame-matched videos featuring the Lego form: eight with
the Lego form moving in a natural human dance style
(Supporting Information Video S3), and eight with the
Lego form moving in a robotic dance style (Supporting In-
formation Video S4).

Motion Energy Quantification

Because videos within and across the robotic and natu-
ral dance style categories varied in the amount of limb
motion, it was necessary to ensure that neural differences
that were observed between movement styles were not
due to more low-level action features, such as the number
of movements or the size or scale of the movements in
space. To do this, we quantified the motion energy in each
video clip using a custom Matlab algorithm, based on
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work in motion recognition in computer science [Bobick,
1997]. Such quantification of motion energy has been
applied successfully before to stimuli used in neuroimag-
ing studies of action observation [Schippers et al., 2010].
With our particular algorithm, we converted each movie
to grey-scale, and then calculated a difference image
between each pair of consecutive frames in each movie.
The difference image was thresholded so that any pixel
with more than 10 units luminance change was classified
as ‘moving.” The average number of moving pixels per
frame and per movie was summed to give a motion
energy score for that movie. Results from the motion
energy quantification procedure are illustrated in Support-
ing Information Figure S1.

fMRI Task

During functional neuroimaging, all videos were pre-
sented via Psychophysics Toolbox 3 running under Matlab
7.2. The videos were presented in full color with a resolu-
tion of 480 x 270 pixels using a back projection system,
which incorporated a LCD projector that projected onto a
screen place behind the magnet. The screen was reflected
on a mirror installed above participants’ eyes. In Experi-
ment 1, participants completed 36 trials from each cate-
gory organized in a pseudorandom design, with 36 probe
trials in total (nine probe trials from each category). In
Experiment 2, participants completed 32 trials from each
category organized in a pseudorandom design, with 32
probe trials in total (eight probe trials from each category).
In both studies, the intertrial intervals were pseudologar-
ithmically distributed and ranged between 7 and 9
seconds.

Across both experiments, participants received identical
instructions. Their task was to watch each video closely,
and to stay alert for probe trials. Probe trials occurred after
25% of experimental trials, and were signaled by a short
display of a question mark, followed by a 2-s. video clip
that participants were required to decide whether this
video clip was part of the larger video they had previously
viewed, or not (Fig. 1). Probe clips were always taken
from the same category as the full experimental videos
(i.e., if a probe trial followed an experimental trial where
the human dancer danced like a robot, then the 2-s. test
clip would also feature a human dancer dancing like a
robot). Probe trials were designed so that 50% of trials
were correct matches, and 50% were incorrect matches.

fMRI Data Acquisition

Data acquisition for both experiments was conducted at
the Max Planck Institute for Human Cognitive and Brain
Sciences (Leipzig, Germany). Functional images were
acquired on a Bruker 3-T Medspec 20/100 whole-body
MR scanning system, equipped with a standard birdcage
head coil. Functional images were acquired with a single

shot gradient echo-planar imaging (EPI) sequence with the
following parameters: echo time TE = 30 ms, flip angle
90°, repetition time TR = 2,000 ms, acquisition bandwidth
100 kHz. Twenty-four axial slices allowing for full-brain
coverage were acquired in ascending order (pixel matrix =
64 x 64, FOV = 19.2 cm, resulting in an in-plane resolu-
tion of 3 mm x 3 mm, slice thickness = 4 mm, interslice
gap = 1 mm). Slices were oriented parallel to the bicom-
missural plane (AC-PC line). Geometric distortions were
characterized by a B0 field-map scan [consisting of a gra-
dient-echo readout (32 echoes, inter-echo time 0.64 ms)
with a standard 2D phase encoding]. The BO field was
obtained by a linear fit to the unwrapped phases of all
odd echoes. Prior to the functional run, 24 two-dimen-
sional anatomical images (256 x 256 pixel matrix, T1-
weighted MDEFT sequence) were obtained for normaliza-
tion purposes. In addition, for each subject a sagittal T1-
weighted anatomical scan high-resolution anatomical scan
was recorded in a separate session on a different scanner
(3T Siemens Trio, 160 slices, 1 mm thickness). The anatom-
ical images were used to align the functional data slices
with a 3D stereotactic coordinate reference system.

Scanning parameters were held constant across Experi-
ments 1 and 2, with only one change: in a single fMRI
run, a total of 1,293 images were collected for Experiment
1, and a total of 1,150 images were collected for Experi-
ment 2. In addition, following the fMRI portion of Experi-
ment 2 only, participants were asked to complete a short
dance rating survey. For this survey, participants watched
each video once more, and rated on a 1-7 scale their per-
ceived ability to reproduce each movement, with 1 corre-
sponding to “I could not come close to reproducing that
dance right now” and 7 corresponding to “I could repro-
duce that dance perfectly right now”. Similar scales have
been used in the past, and validated for ratings of per-
ceived ability tracking with actual physical ability [Cross
et al., 2006].

fMRI Data Analysis

Data were realigned, unwarped, corrected for slice tim-
ing, normalized to individual participants’ T1-segmented
anatomical scans with a resolution of 3 mm x 3 mm x 3
mm, and spatially smoothed (8 mm) using SPM8 software.
A design matrix was fitted for each participant with
regressors for each of the four video types in the factorial
design, as well as a parametric modulator for each regres-
sor that expressed the mean motion energy of each video.
The inclusion of these parametric regressors should model
out any differences between conditions that are due sim-
ply to the different amounts of movement between condi-
tions. One additional regressor was included that
encompassed the probe video and question phase. Each
trial was modeled as a boxcar with the duration of that
video convolved with the standard hemodynamic
response function.
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Figure I.

Representative experimental stimuli and timecourse (Experi-
ments | and 2). The study began. with a fixation cross, which
was followed by a dance video 7-9 seconds in length. After 25%
of the trials, a ‘7’ appeared, signaling to participants that they
would next see a 2-second probe video. Participants’ task was
to decide whether this video segment was part of the longer
video they had just watched. Probe sequences were always cho-
sen from the same category as experimental videos (i.e., a face-
visible natural dance style probe video would always follow a
face-visible natural dance style experimental video, and so on).
Following the probe video, participants had 2 seconds to

Experiment |

The first group-level analysis evaluated which brain
regions were more active when watching the dancer per-
form in either a robotic or natural dance style, compared
to baseline (in this instance, our baseline is an implicit
measure, as we did not explicitly model fixation onsets
and durations). This was achieved by collapsing across the
‘face/mask’ factor, and comparing all robotic dance to an
implicit baseline measure, and comparing all natural
dance to the same implicit baseline measure. The main
effect of movement style was calculated in a random
effects analysis. In addition, the main effect of face visibil-
ity was calculated, as were the interactions between these
two factors. These latter two analyses are not the focus of
the present paper, but the results from each are presented
in Table I for completeness. All contrasts were evaluated
at the Puncorrectea < 0.001, k = 10 voxel threshold, and only

respond whether the probe video was or was not part of the
previously observed experimental video. In Experiment I, the
videos featured a human dancing in a robotic style (top video
segment) or in a natural human style (bottom video segment),
and the dancer’s face was either exposed (shown) or covered
with a white mask (not shown). In Experiment 2, the videos fea-
tured a human dancing in a robotic style (top video segment) or
in a natural human style (bottom video segment), or a Lego fig-
ure dancing in a robotic or natural human style (not shown).
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

results that reached a significance level of p < 0.05, FDR-
corrected, are discussed in the main text.

Experiment 2

Both main effects and interaction analyses were eval-
uated at the random effects level. For the main effect of
movement style, comparisons were collapsed across human
and Lego forms, and for the main effect of form, compari-
sons were collapsed across natural and robotic dance styles.
Findings from all analyses are reported in Table II.

RESULTS
Behavioral Results

Figure 2 illustrates that participants performed the task
at a high level of accuracy across Experiment 1 (88.0%)
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TABLE I. Main effects and interaction from Experiment |

MNI coordinates

Putative Cluster Peorrected
Anatomical region BA x y z funct. name t-value size value
Main effects
(A) Dance: robotic > natural
R inferior parietal lobule 40 63 =25 28 IPL 8.85 1898 <0.0001
R inf. parietal lobule 40 36 -37 49 IPL 8.35
R postcentral gyrus 2 39 -31 43 S2 8.25
L inferior parietal lobule 40 —51 -28 40 IPL 7.25 511 <0.0001
L ant. intraparietal sul. 40 —42 -37 49 alPS 7.24
L postcentral gyrus 2 —63 -19 16 S2 5.40
L occipitotemporal cortex 37 —42 =70 —11 LOC 7.14 906 <0.0001
L mid. occipital gyrus 37 —51 —55 -5 MOG 6.74
L fusiform gyrus 37 =30 -52 -20 6.71
R inferior frontal gyrus 6/44 54 8 22 PMv 4.82 84 0.035
R inferior frontal gyrus 44 42 2 13 IFG 3.63
R precentral gyrus 6 27 -10 40 FEF 4.69 82 0.035
R middle frontal gyrus 6 27 5 61 MFG 4.55
L precentral gyrus 6 —24 —4 49 FEF 4.49 62 0.058
L precentral gyrus 6 -30 2 58 PMd 3.86
R sup. temporal gyrus 22 42 -10 -5 STG 423 28 0.198
(b) Dance: natural > robotic
R Lingual gyrus 18 3 —82 -5 V2 8.45 739 <0.0001
R mid. occipital gyrus 18 24 —94 7 V2 8.36
L occipital pole 17 -21 —94 13 7.35
L anterior hippocampus NA —18 -7 —11 4.42 11 0.763
(c) Face: mask > exposed
L inferior occipital gyrus 19 —27 -85 -8 6.63 78 0.142
L fusiform gyrus 37 -30 —70 —14 517
R fusiform gyrus 37 33 —64 -11 4.66 16 0.626
Interaction
(d) Natural dance (face) + robotic dance (mask) > natural dance (mask) + robotic dance (mask)
R lingual gyrus 30 12 -52 -2 5.87 131 0.065
R posterior cingulate 31 12 —58 16 5.28
R parahippocampal gyrus 35 21 —40 —14 5.11 27 0.476
L lingual gyrus 19 -12 —49 -2 5.00 63 0.171
L parahippocampal gyrus NA —21 =37 -5 3.88
R angular gyrus 39 42 —67 34 IPS 4.33 12 0.722
R inferior parietal lobule 39 48 -52 22 IPL 4.14 32 0.412

Locations in MNI coordinates and labels of peaks of relative activation from conditions of interest in Experiment 1. Regions more re-
sponsive to robotic than human-like dance are listed under (a), regions more responsive to human-like than robotic dance are listed
under (b), and the main effect for mask > face is listed under (c). No suprathreshold activations emerged for the main effect of exposed
face > mask. Only one direction of the interaction analysis reached significance, and is listed under (d). Results were calculated at
Puncorrected < 0.001, k = 10 voxels. Up to three local maxima are listed when a cluster has multiple peaks more than 8 mm apart. Entries
in bold denote activations significant at the FDR cluster-corrected level of P < 0.05. Only regions that reached cluster-corrected signifi-
cance are illustrated in the figures in the main text. Abbreviations for brain regions: IPL = inferior parietal lobule; S2 = secondary soma-
tosensory cortex; alPS = anterior intraparietal sulcus; LOC = lateral occipital complex; MOG = middle occipital gyrus; PMv = ventral
premotor cortex; IFG = inferior frontal gyrus; FEF = frontal eye fields; MFG = middle frontal gyrus; PMd = dorsal premotor cortex;
STG = superior temporal gyrus; V2 = visual area V2/prestriate cortex.

and Experiment 2 (89.1%). In more detail, no main effects
for dance style or face presence emerged in Experiment 1
(both P-values > 0.05), but there was an interaction
between dance style and face presence, which suggests
participants’” performed marginally less accurately when
performing the matching task for trials where the face was

unmasked and the dancer danced in a robotic manner,
compared to a natural manner, F;; = 7.47, P = 0.012. Sta-
tistical analysis of behavioral data from Experiment 2
revealed no main effects or interactions from the accuracy
data. Together, these behavioral data suggest that partici-
pants were carefully attending to all video categories.
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TABLE Il. Main effects and interaction from Experiment 2

MNI coordinates
Putative Cluster Peorrected

Anatomical region BA x y z funct. name t value size value

Main effects
(a) Dance: robotic > natural

R inferior parietal lobule 40 63 -25 40 IPL 10.91 1687 <0.0001
R occipitoparietal cortex 19 42 =79 22 8.00
R precentral sulcus 6 54 5 31 PMv 7.33
L occipitotemporal cortex 37 -36 -55 -8 9.80 384 <0.0001
L middle occipital gyrus 37 —45 —64 —14 8.96
L fusiform gyrus 37 —22 —49 -17 6.30
L inferior parietal lobule 40 —60 -31 34 1PL 9.15 399 <0.0001
L intraparietal sulcus 2 —45 =37 58 IPS 4.35
R parahippocampal gyrus 37 33 —43 —-11 7.88 452 <0.0001
R middle temporal gyrus 37 48 —49 -5 7.66
R parahipp. Gyrus 20 33 =25 —26 7.03
L occipitoparietal cortex 19 -39 -82 19 6.00 47 0.090
L superior temporal gyrus 42 -33 =31 7 STG 5.48 240 <0.0001
L insula NA —-36 -16 -5 4.79
L sup. temporal gyrus 22 —45 -22 4 STG 4.47
L inferior frontal gyrus 6/44 —51 -1 22 PMv 512 37 0.119
R middle cingulate gyrus 24 6 —4 40 CMA/SMA 4.08 12 0.386
(b) Dance: natural > robotic
R occipital pole 18 21 -97 1 V1/V2 9.85 880 <0.0001
L middle occipital gyrus 18 -27 -97 4 MOG 9.50
R mid. occipital gyrus 18 24 -91 -8 MOG 8.16
R lateral occipital cortex 19 48 —67 4 V5/hMT+ 5.72 29 0.402
R superior frontal gyrus 6 6 8 67 SMA 4.38 29 0.402
L superior frontal gyrus 6 -6 —4 64 SMA 3.89
(c) Form: lego > human
R fusiform gyrus 19 30 —61 -17 10.87 2282 <0.0001
R lat. occipital cortex 19 36 -85 22 LOC 9.87
R mid. occipital gyrus 19 27 -79 -8 LOC/V4v 8.92
L inferior occipital gyrus 19 -21 —94 -17 10G 9.97 1839 <0.0001
L fusiform gyrus 37 —27 —64 -14 6.67
L inf. occipital gyrus 19 =33 —94 —11 LOC 7.73
L inferior parietal lobule 40 —54 —25 40 IPL 5.11 128 0.009
L intraparietal sulcus 2 —48 —40 55 IPS 4.52
L ant. intraparietal sul. 2 —48 —34 46 alPS 427
R superior frontal gyrus 6 27 17 58 PMd 4.86 53 0.080
R precentral gyrus 6 33 —-10 49 FEF 4.32 53 0.080
R middle frontal gyrus 6 33 -7 58 4.20
L superior frontal gyrus 6 -33 -1 58 PMd 413 45 0.094
L precentral gyrus 6 —27 5 40 3.93
L middle frontal gyrus 6 —51 2 40 3.97 15 0.376
Interactions
(d) (ND w/HF) + (RD w/LF) > (ND w/LF) + (RD w/HF)
L temporoparietal cortex 40 —51 —40 25 TPJ/IPL 5.47 35 0.566
(e) (ND w/LF) + (RD w/HF) > (ND w/HF) + (RD w/LF)
R middle occipital gyrus 18 21 -97 -5 7.40 79 0.026
L inf. occipital gyrus 19 -21 -97 -17 5.66 45 0.051

Locations in MNI coordinates and labels of peaks of relative activation from conditions of interest in Experiment 2. Regions more re-
sponsive to robotic than human-like dance are listed under (a), regions more responsive to human-like than robotic dance are listed
under (b), and regions more responsive to the lego form than the human form are listed under (c). No suprathreshold activations
emerged for the main effect of human form > lego form. Both directions of the interaction are listed under (d) and (e). Results were cal-
culated at Pyncorrectea < 0.001, k = 10 voxels. Up to three local maxima are listed when a cluster has multiple peaks more than 8mm
apart. Entries in bold denote activations significant at the FDR cluster-corrected level of P < 0.05. Only regions that reached cluster-cor-
rected significance are illustrated in the figures in the main text. Abbreviations for interactions: ND = natural dance; RD = robotic
dance; LF = lego form; HF = human form. Abbreviations for brain regions: IPL = inferior parietal lobule; aIPS = anterior intraparietal
sulcus; LOC = lateral occipital complex; MOG = middle occipital gyrus; PMv = ventral premotor cortex; IFG = inferior frontal gyrus;
FEF = frontal eye fields; PMd = dorsal premotor cortex; STG = superior temporal gyrus; V2 = visual area V2/prestriate cortex; CMA
= cingulate motor area; SMA = supplemental motor area; V1 = primary visual cortex; V5/MT = extrastriate visual cortex/middle tem-
poral; IOG = inferior occipital gyrus; TP] = temporoparietal junction.
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Neuroimaging Results

In Experiment 1, a random effects analysis (P < 0.05
whole brain cluster-corrected) demonstrated that com-
pared to an implicit baseline, observing natural dancing
activated frontal, parietal, and occipitotemporal brain
regions. Compared to the same baseline, observation of
robotic dancing activated the same regions (Fig. 3A,B).
Direct comparison of the two kinds of dancing revealed
striking differences: observation of robotic dancing
engages parietal, premotor and middle temporal regions
more than observation of natural dancing (Fig. 3C; Table
I). The inverse contrast demonstrated greater recruitment
of visual cortex, centered on the lingual gyrus (Fig. 3D;
Table I).

In Experiment 2, we sought to determine whether
increased activation in the AON reflects a sensitivity to
form and motion mismatches (i.e., a human form does not
normally move like a robot; Fig. 4A). As in Experiment 1,
we found that observation of robotic compared to natural
motion engaged premotor, inferior parietal and middle/
superior temporal cortices, while again only visual regions
showed selectivity for natural motion compared to robotic
motion (Fig. 4B,C; Table II). Observation of the Lego figure
compared to the human figure lead to bilateral ventral
occipitotemporal and left inferior parietal activation (Fig.
4D). The inverse contrast did not yield significant clusters.
The interaction between watching a human dance natu-
rally and a Lego figure dance robotically, compared to
watching a human dance robotically and a Lego figure
dance like a human revealed one cluster of activation
within the left temporoparietal junction (TPJ) region (Fig.
5, Table II). Thus, it would appear that this region
responds to typical form-action pairings more than atypi-
cal ones. The inverse interaction revealed greater activity
only within the left middle occipital gyrus, negating the
possibility that AON activity seen in this study is simply
due to unusual agent and action pairings.

An additional fMRI analysis was performed to evaluate
the simple effect of robotic dance > natural dance only for
videos with the Lego form. This analysis was performed
in order to rule out the possibility that the strong effects
observed when robotic dance movements are contrasted
with natural dance movements are driven exclusively by
the human form moving in an uncharacteristic manner.
The results from this analysis confirm that this is not the
case (Supporting Information Fig. S2). Simply watching an
articulated Lego form move in a robotic manner compared
to a natural human manner engages the AON.

Postscan behavioral ratings of how well participants
believed they could perform the dances showed that
robotic dance was rated as more difficult to reproduce
than natural dance (Fig. 6). When a 2 x 2 repeated meas-
ures ANOVA was performed on participants’ self-report
scores, a main effect of motion emerged, with participants
rating the robotic dance sequences as significantly more
difficult to reproduce (M = 4.61; SD = 0.78) than the natu-

ral dance sequences (M = 4.13; SD = 0.89; F,,, = 9.458, P
= 0.006). There was no main effect for form (F; 5, = 2.88, P
= 0.104), nor was there an interaction between form and
motion (Fy5, = 0.13, P = 0.721).

DISCUSSION

Across two independent studies with 45 participants,
we demonstrate that human inferior parietal, premotor,
and occipitotemporal cortices respond more robustly to
rigid, robot-like motion than to natural human-like motion
for both human and Lego robot forms. These results are
challenging to reconcile with previous studies suggesting
that the AON is preferentially responsive to human agents
[Chaminade et al., 2010; Costantini et al., 2005; Engel et al.,
2008; Shimada, 2010; Tai et al., 2004] or an observer’s prior
motor experience [Aglioti et al., 2008; Calvo-Merino et al.,
2005; Cross et al., 2006, 2009a]. They suggest that the hy-
pothesis that the AON responds preferentially to actions
that are familiar does not fully capture the sensitivity of
this neural system, thus creating a need for an updated
model of AON function. In the following discussion, we
consider several interpretations of the current data and
put forward an account of AON function that can accom-
modate the current findings with seemingly conflicting
results from previous studies. We also suggest avenues for
future research that could test these proposals.

Effects of Agent Motion

In the first experiment, the comparisons to baseline
revealed robust AON activity both when participants
watched a human figure dance in a normal, fluid human
manner or in a rigid, robotic manner. This unsurprising
result confirms that parietal and premotor regions, as well
as parts of visual cortex, are active when watching a
human in motion. However, when observation of human-
like and robot-like motion is directly compared, large clus-
ters within bilateral inferior parietal lobules, occipitotem-
poral cortices, and right ventral premotor cortex respond
more strongly to the rigid, robot-like dance movements.
These findings show that observing a real human move in
a robotic manner lead to increased activation of the AON,
compared to watching the same agent move in a more
human-like manner.

These data run contrary to prior work on observation of
virtual human avatars moving with robotic kinematics
[Shimada, 2010], or robotic model dressed to look like a
human arm [Tai et al., 2004]. Our results are also the op-
posite of that predicted by the familiarity hypothesis of
AON function. Here we see that the less human-like and
less familiar the actions appeared, the stronger the AON
responded. No AON regions showed the opposite pattern
of a preference for human-like compared to robot-like
motion. Instead, activation within the lingual and middle
occipital gyri was found when observing natural human
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Figure 2.

Behavioral data from fMRI task (Experiments | and 2). Plots illustrate mean accuracy (expressed
as percent correct). Participants from Experiment | demonstrated an interaction between face
presence and dance style, manifest as less accurate performance when observing a person with
an exposed face dance robotically compared to dancing naturally. No other main effects or inter-
actions were observed in Experiment | or Experiment 2.

A Robotic Dance > Baseline B Natural Dance > Baseline

C

Figure 3.
Main effects of motion manipulation, Experiment |. Watching robotic (A) or human (B) dancing
compared to baseline broadly activated the AON. Direct comparisons revealed stronger AON
activation when watching robotic dancing (C), and stronger middle occipital gyrus in the inverse
contrast (D; Peorrected < 0.05; Table I).
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Human Form Lego Form

Natural Dance

Robotic Dance

c

Figure 4.
Experimental design and main effects from Experiment 2. The 2
x 2 factorial experimental design (A) and brain regions showing
a greater BOLD response for robotic (B) and human motion
(C) and robotic form (D; Peorrected < 0.05; Table II).

compared to robotic dance motion. This could be driven
by concurrent movement of multiple limbs in opposing
directions during the natural, human motion condition (as
opposed to the serial, one limb at a time, movements of
the robotic motion condition), consistent with work show-
ing this region of visual cortex to be responsive to motion
moving in multiple directions [Van Oostende et al., 1997].

The findings from Experiment 2 replicate and extend
those from Experiment 1. The inclusion of both human
and robotic forms in Experiment 2 enabled us to directly
test how form and motion cues contribute independently
and interact to influence AON function. Here again, we
report stronger AON activation when participants watched
the robot-like motion compared to the natural human
motion, independent of whether the agent was a human
or a Lego robot. This form-independent increased activa-
tion of the AON when observing robot-like motion sug-
gests that motion is more critical than form in driving
AON activity in this instance. Additional analyses of
Experiment 2’s data lend further weight to our suggestion
that the AON is not strictly biased to respond to action
features that are familiar. The simple effects analysis eval-
uating robotic vs. natural human movement styles for the
Lego form only demonstrates that observation of agents
that neither look nor move like the observers leads to ro-
bust activation across parietal, premotor, and occipitotem-
poral cortices. Finally, the postscanning behavioral follow-
up test, which assessed participants” perceived ability to
physically perform the observed actions, demonstrates that
participants found the robotic actions (as performed by ei-
ther the human or Lego agent) to be more difficult to
reproduce than the human actions. As such, these data
provide further evidence in contradiction to past work on
perceived action ability and AON activation [Calvo-Mer-
ino et al., 2005; Cross et al., 2006], by demonstrating a dis-
sociation between how well participants think they can
perform an action and activation of the AON.

Previously, the better participants thought they could
reproduce a dance sequence, the higher the BOLD signal
was in left parietal and ventral premotor cortices [Cross
et al., 2006]. In this study, the data support the inverse
relationship. In other words, when the participants from
Experiment 2 were interrogated about their ability to
reproduce the observed movements on the same scale
used previously [Cross et al., 2006], they rated the robotic
movements as significantly more difficult to reproduce
than the human-like movements (Fig. 6). Thus, a clear dis-
sociation emerged in the present study between general
performance ability and AON activation. That is, the AON
responded more to the perception of actions that were per-
ceived as more difficult for participants to reproduce com-
pared to actions that were perceived as easier to
reproduce. As such, when considered with previous find-
ings, our data hint that the relationship between perceived
performance ability (or familiarity in general) of an
observed action and AON activity is non-linear. Greater
BOLD signal can be associated with unfamiliar actions,
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A (HF/ND +LF/RD)
>
(HF/RD + LF/ND)

B (HF/RD + LF/ND)
>
(HF/ND +LF/RD)

Figure 5.

Interactions between form and motion (Experiment 2). (A) One
cluster emerged within the left temporoparietal junction when
watching a human dance normally and a Lego form dance
robotically, compared to a human dance robotically and a Lego
form dance naturally as a human would. (B) The inverse interac-

which are not frequently performed by individuals (as
demonstrated in this study), as well as familiar actions
that are frequently performed by individuals [Calvo-Mer-
ino et al., 2005; Cross et al., 2006]. In the final part of the
discussion, we outline a hypothesized account of AON
function that could possibly explain these disparate
findings.

Effects of Agent Form

Occipitotemporal and inferior parietal cortices showed a
greater response when observing the Lego robot compared
to the human agent dancing, independent of movement
style. Increased activation of ventral occipitotemporal
regions when observing the robotic form is consistent with
the notion that a nonhuman agent with a humanoid body
recruits visual regions implicated in body processing [Cha-
minade et al., 2010; Peelen and Downing, 2007]. One possi-
bility is that this activity reflects increased demands to
visually compare the observer’s body with the observed
body, a notion consistent with prior work on body percep-
tion [e.g., Felician et al, 2009]. Furthermore, imagined
transformations of the human body (such as those that
might occur when implicitly comparing one’s own body
with the observed Lego figure’s body) have been reported
within similar regions of the parietal cortex [Jackson et al.,

tion revealed one cluster within right middle occipital gyrus,
which responded most robustly to the Lego form dancing natu-
rally. Abbreviations: HF = human form; ND = normal dance; LF
= lego form; RD = robotic dance (Pyncorrectea < 0.001; Table II).

. Natural Dance

Robotic Dance

Perceived Ability to
Perform Movement
w

Human Form Lego Form
Figure 6.

Participants’ perceived ability to reproduce the dance sequences
(Experiment 2). When participants were asked to rate their ability to
reproduce each dance sequence on a |1-7 scale (anchors: | = not pos-
sible to reproduce at all; 7 = could reproduce perfectly), they rated
the robotic dance sequences as significantly more difficult to reproduce
than the natural dance sequences. No main effect of form emerged,
nor did an interaction between form and motion (both P > 0.10).
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2006; Zacks et al., 2002]. Another factor that might contrib-
ute to greater occipitotemporal activity when viewing the
Lego robot compared to the human is the greater motion
energy contained in the videos featuring the robotic agent
(Supporting Information Fig. S1). Even though we were
careful to model out mean motion energy from our experi-
mental design, we calculated only a single value per
video, which means that not every feature was perfectly
equated across the duration of each video stimulus. The
higher motion energy level for the Lego robot is attribut-
able to the fact that this figure has relatively longer arms
and legs than the human, which results in more pixels
being displaced when the it “performs” the same move-
ments. Prior evidence supports the notion that portions of
the lateral occipital cortex track with increasing optic flow
contained in visual stimuli [Beer et al., 2009], similar to
that seen in the Lego robot compared to human stimuli in
this study.

The interaction analyses shed light on how the brain
processes consistent and contrasting form and motion
pairings. The first interaction evaluated brain regions most
active to typical agent-action pairings (i.e., human form
dancing in natural human style and Lego form dancing in
a robotic style) vs. atypical agent-action pairings (i.e.,
human dancing robotically and Lego form dancing in a
natural human style). The activation of left TPJ is consist-
ent with prior work that implicates this region as part of
multimodal association cortex [Decety and Sommerville,
2003]. Its emergence from this contrast might signal its
responsiveness to the congruence between agent and
action. The finding of increased activity within the middle
occipital gyrus for the inverse interaction suggests that
this region may be recruited to perform increased visual
analysis of atypical agent/action pairings, such as when a
human dances in a robotic manner or a Lego form moves
in natural, human manner [Chaminade et al., 2010].

Why Might the AON Respond Most Strongly
When Watching Robotic Actions?

Low-level visual features

There are several possible explanations for the present
results. First, distinct brain responses to human and
robotic dance could be caused by differences between low-
level motion features such as smoothness or the amount of
movement in each stimulus. Because quantitative differen-
ces exist between the movements seen in the natural
human dance and robotic dance conditions, the visual
inputs for both conditions are different. This could then
result in distinct patterns of AON engagement, which
have been driven in a bottom-up manner from visual cort-
ical input. We suggest this explanation is unlikely for sev-
eral reasons. The first and most important reason is
because we explicitly quantified and modeled out differen-
ces in motion energy between all conditions in our design.
Secondly, our movement quantification algorithm revealed

other features about the stimuli that are relevant to con-
sider if a motion energy-based account is to be adopted.
One is that there is more, not less, motion in movement
sequences featuring the natural human style of dance
(Supporting Information Fig. S1). Therefore, our finding of
greater AON activation when observing action sequences
with less overall movement is counterintuitive if a bottom-
up visual input explanation is adopted.

Another feature that may differ between conditions is
implied muscle tension when perceiving natural and
robotic dance styles. It is likely that execution of the
robotic style movements required greater muscle tension
compared to performing the natural human style move-
ments. Furthermore, observing actions involving greater
muscle activity leads to greater excitability of primary
motor cortex [Alaerts et al., 2010; Obhi and Hogeveen,
2010]. However, we believe an explanation of our data
only in terms of muscle tension differences is unlikely.
First, such an explanation should be able to account only
for differences during observation of a human dancer
moving in a natural or a robotic style, since the Lego fig-
ure used in Experiment 2 has no muscles and thus no dif-
ferences in muscle tension between dance styles. By this
logic, if differences in perceived muscle tension were re-
sponsible for our findings, we should see no response in
the AON for the simple effect of robotic versus natural
human dance style when evaluating the effects of watch-
ing the Lego figure only (Supporting Information Fig. S2).
As is clear from this figure, even when an agent with no
muscles is observed, greater activity within AON regions
still emerges when watching the robotic compared to natu-
ral movement style. While it is conceivable that partici-
pants inferred the activity of non-existent muscles in the
Lego robot, this possibility would need to be tested explic-
itly before such an explanation could be supported. In
sum, we acknowledge that differences in perceived muscle
tension when observing the human agent, and even
inferred muscle tension when watching the Lego figure,
could partially underpin the differences in AON activity
seen when observing robotic compared to natural human
movement styles. However, due to a paucity of research
investigating how perception of actual and inferred muscle
tension is processed in the human brain, we cannot make
strong claims regarding this interpretation. Instead, we en-
courage further investigation into the relationship between
perceived and inferred levels of muscle tension during
action observation.

Experimental task

A second possible explanation relates to the experimen-
tal task which participants were engaged in. In the vast
majority of action observation studies [Buccino et al., 2004;
Calvo-Merino et al., 2005; Cross et al.,, 2009a,b; Gazzola
et al., 2007; Miura et al., 2010], participants simply observe
stimuli or sometimes judge whether they can perform the
action themselves [Cross et al., 2006]. In this study,
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participants were engaged in an explicit memory/encod-
ing task, which might in and of itself demand deeper
engagement of the AON, as suggested previously [Zen-
tgraf et al., 2005]. Put another way, when participants
observe sequences with the intent of remembering the
movement content, if the movements are unfamiliar com-
pared to familiar, this could lead to stronger AON activity
as these brain regions work harder to create an action rep-
resentation where very little prior information is available.
Such an interpretation is also consistent with a prediction
error account of the data (discussed in more detail below).
It is of note, however, that memory performance did not
differ with trial type (Fig. 2), so there is no behavioral evi-
dence that the memory task was more difficult when
observing robotic movements compared to human-like
movements. Ongoing research in our laboratory is investi-
gating the relationship between distinct patterns of BOLD
activity within the AON across conditions whilst task per-
formance remains equivalent.

Attention

A third possible explanation of the present results could
be differences in attention when observing the natural
compared to robotic movement styles. It is possible that
participants found the robotic dance style more ‘engaging’
than the human dance style, and this difference in engage-
ment drove the differences in BOLD signal. Since attention
is a broad construct with many different component parts,
we consider two possible attentional accounts, first in
terms of contextual incongruency, and second in terms of
salience of the observed actions in relation to one’s motor
capabilities.

First, could contextual incongruency between seeing
people dance like robots or robots dance like humans be
driving the response in the AON? This question was
assessed through calculation of the statistical interaction of
form and motion. One brain region, right middle occipital
gyrus, was sensitive to unusual action-agent pairings (i.e.,
the human dancing as a robot and the robot dancing as a
human; see Fig. 5). If the AON were sensitive to unusual
action-agent pairings, we would expect responses in the
AON for this interaction analysis. As we do not find such
a response, it is difficult to explain our findings in terms
of a contextual incongruency account. Although previous
fMRI studies have shown that medial prefrontal cortex,
TP] and middle temporal gyrus are sensitive to contextual
incongruency, in terms of how ‘rational’ actions appear
given a certain context [Brass et al.,, 2007; Jastorff et al.,
2011; Liepelt et al., 2008; Marsh and Hamilton, 2011], we
show that the AON is not sensitive to incongruent combi-
nations of form and motion cues. Instead we show that
incongruent action-agent pairings are encoded in middle
occipital brain regions.

A second attention explanation relates to the salience of
the observed movements. In particular it is possible that
actions that are not in one’s own motor repertoire (like

robotic actions used in this study) are more salient to indi-
viduals and capture attention more than actions we see
and perform more frequently (like natural human motion).
In order to reconcile the present data with prior findings,
it could also be that when we are particularly skilled with
certain actions, such as when professional dancers learn to
perform a choreographed sequence of dance moves [Cross
et al.,, 2006], these actions are more salient than actions
with which we have not had such extensive physical expe-
rience. This explanation posits salience as a mediator of
the BOLD effect, but the factor driving the salience of the
action is the participant’'s motor familiarity with that
action. We expand upon this explanation when hypothe-
sizing a relationship between BOLD response and action
familiarity below, which can account for disparate prior
results.

In sum, there is no single, unambiguous attention-based
explanation of our data, and any such explanation would
leave unanswered the question of what drives greater
attention to one stimulus set compared to another. While
there is evidence that explicitly directing attention to dif-
ferent features of an action modulates the AON response
[Chong et al.,, 2008; de Lange et al., 2008; Spunt et al.,
2011], there is no empirical evidence that our stimuli
demand systematically different levels of attention, nor
why they might do so. However, while we suggest that a
difference in attention for the two movement styles is not
an explanation for the present findings in and of itself,
attention could nonetheless be mediating the pattern of
results we report here. Continued investigation into how
brain systems for attention and action observation interact
would be valuable.

Prediction error

A fourth possible explanation of the present results
could be greater engagement of compensatory top-down
modulation of the AON [Schubotz, 2007] or greater predic-
tion error [Neal and Kilner, 2010] when observing actions
with robotic motion compared to natural human motion.
The predictive coding account of the AON [Kilner et al.,
2007b, ¢; Neal and Kilner, 2010] is based on empirical
Bayes inference. It posits that the AON functions to mini-
mize prediction error through reciprocal interactions
among levels of the cortical hierarchy (parietal, premotor,
and superior temporal regions; Kilner et al., 2007c). When
observing an agent moving, we have prior expectations
about how they might move based on the agent’s goal
[Gallese and Goldman, 1998], the environmental context
[Liepelt et al., 2009], or the form of their body [Buccino
et al.,, 2004]. These prior expectations have an associated
standard deviation, which signifies a level of confidence in
each prior. The comparison between the predicted move-
ments of the observed agent (based on the observer’s
action system) and the observed motion generates a pre-
diction error. In this study, when an observer has few or
no action priors from either visual or physical experience
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(such as in the robotic motion conditions), prediction error
is greatly increased, compared to when they have consid-
erably more experience (such as in the natural human
motion conditions). This discrepancy in prediction error
between conditions would result in greater AON activa-
tion. Such activation might reflect increased demands to
learn, predict, or otherwise assimilate atypical actions into
a more familiar biological motion template.

Integration of Prior and Present Findings

In the previous section, we outlined four possible
accounts that might explain the present findings. As we
mentioned, the present data contradict findings from prior
experiments that examined physical or visual experience
and action perception [Calvo-Merino et al., 2005; Cross
et al., 2006; Cross et al., 2009b], and any one of the four
accounts offered above (or a combination of them) might
underlie the discrepancies observed between previous and
present findings. As such, we are left with the challenge of
explaining why prior work frequently demonstrates stron-
ger AON activity when viewing familiar compared to
unfamiliar movements [e.g., Buccino et al., 2004; Calvo-
Merino et al., 2005; Cross et al., 2006; Shimada, 2010] and
the present two experiments demonstrate the opposite
pattern.

One possibility is that if differences in muscle tension
explain the discrepancies between past and present find-
ings, this would be a factor orthogonal to familiarity. Con-
sidering this possibility further, it is reasonable to think
that the rigid, mechanical postures and 90° positioning of
the limbs and torso in relation to each other in the present
robotic motion stimuli could be the driving force behind
higher AON activity when viewing robotic compared to
natural human-like movement. The reason such differen-
ces might have been absent in prior studies is because in
many of these studies [e.g., Gazzola et al., 2007; Kilner
et al., 2003; 2007a; Tai et al., 2004], the natural and robotic
stimuli moved according to roughly the same trajectories,
with variations emerging mainly between velocity profiles
(and not actual or inferred muscle tension). Thus, while
further work would be required to support or refute this
explanation for differences between prior and present find-
ings, it is possible that muscle tension variations are the
main factor that account for the different pattern of find-
ings we report here.

We argue, however, that the discrepancy between past
and present findings is more parsimoniously explained by
differences in familiarity. Specifically, the key difference
between the present study and past studies of action fa-
miliarity [Buccino et al., 2004; Calvo-Merino et al., 2005;
Cross et al., 2006; 2009b; Shimada, 2010] is the range of
familiarities tested. Some studies compared extensively
rehearsed actions to actions one might typically see and
perform, but have not been explicitly rehearsed [Calvo-
Merino et al., 2005; Cross et al., 2006; Cross et al., 2009b].

>

BOLD Signal

in Action Observation Network

Extremely ———)  Extremely

Unfamiliar/Unpredictable Familiar/Predictable

Stimulus Familiarity

Figure 7.

Hypothesized relationship between BOLD response and action
familiarity. One way in which the present findings might be inte-
grated with findings from many previous studies on familiarity
and AON function is if strong BOLD signal is associated with
both highly unfamiliar actions and highly familiar actions, with
weaker BOLD signal for “generally familiar” actions. At present,
this interpretation is highly speculative and will require thorough
testing to validate. However, such a relationship is consistent
with a predictive coding account of AON activity (see main
text).

In contrast, this study compares unfamiliar actions, which
individuals had little or no experience with, to more famil-
iar actions one might typically see and perform. Across
these studies, therefore, it might be possible to conceive of
a familiarity continuum that ranges from ‘“unfamiliar’ to
‘generally familiar’ to ‘extensively familiar’. When consid-
ered in conjunction with BOLD responses in the AON, one
possibility is that the relationship between action familiar-
ity and AON response is not linear. Rather, it could be the
case that strong BOLD signal can emerge for both highly
unfamiliar actions and highly familiar actions, with
weaker BOLD signal for ‘generally familiar’ actions (Fig.
7). What is needed at this stage is research that systemati-
cally investigates this proposed spectrum of action famili-
arity to test this hypothesis.

Finally, it is worth considering that this proposed non-
linear relationship between BOLD signal and familiarity is
potentially compatible with the Bayesian model of action
observation described above [Kilner et al., 2007b,c]. Obser-
vation of unfamiliar actions should lead to increased pre-
diction error and greater BOLD signal, compared to
observation of ‘generally familiar’ actions. In contrast, ob-
servation of extensively familiar actions where participants
can make very specific predictions about how an action
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will continue based on prior experience might also lead to
a higher prediction error compared to observation of ‘gen-
erally familiar” actions, if the confidence in an action prior
is high and the sensory input deviates from this. Such a
proposal is still speculative at this stage, and there are
undoubtedly a number of other possible ways in which
BOLD signal within the AON and action familiarity may
interact. More detailed computational modeling of how
prediction error is modulated under different degrees of
action familiarity would be useful to determine whether
this proposed integration of prior and present results is
valid.

CONCLUSION

Overall, our data demonstrate clear evidence that the
action observation network responds more robustly to
robotic motion cues compared to natural human motion
cues, independent of whether the form of the agent is
human or robotic. This finding suggests that action fea-
tures that are unfamiliar to individuals compared to famil-
iar can preferentially engage the AON. This result deviates
from the dominant view that the perception of familiar
action features produces a greater response in the action
observation network. We have considered a variety of pos-
sible explanations for this finding, and suggest that there
may be a non-linear relationship between BOLD signal
and action familiarity. That is, heightened BOLD signal
can be associated with both highly unfamiliar actions and
highly familiar actions compared to actions that are at nei-
ther end of a familiarity continuum. This means that acti-
vation of the AON cannot be taken as an indicator that a
participant is physically or visually familiar with the
observed action, or necessarily as evidence in support of
the familiarity hypothesis. In other words, interpreting
engagement of AON activity only as an indicator of social
closeness is not feasible. Other factors, which might
include novelty, task learning, and predictability can also
substantially impact the BOLD signal. Precise articulation
of what those factors are and how they might be modu-
lated presents an intriguing challenge for future research.
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