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Abstract

Image analysis in the visual system is well adapted to the statistics of natural scenes.
Investigations of natural image statistics have so far mainly focused on static features. The
present study is dedicated to the measurement and the analysis of the statistics of optic flow
generated on the retina during locomotion through natural environments. Natural
locomotion includes bouncing and swaying of the head and eye movement reflexes that
stabilize gaze onto interesting objects in the scene while walking. We investigate the
dependencies of the local statistics of optic flow on the depth structure of the natural
environment and on the ego-motion parameters. To measure these dependencies we estimate
the mutual information between correlated data sets. We analyze the results with respect to
the variation of the dependencies over the visual field, since the visual motions in the optic
flow vary depending on visual field position. We find that retinal flow direction and retinal
speed show only minor statistical interdependencies. Retinal speed is statistically tightly
connected to the depth structure of the scene. Retinal flow direction is statistically mostly
driven by the relation between the direction of gaze and the direction of ego-motion. These
dependencies differ at different visual field positions such that certain areas of the visual field
provide more information about ego-motion and other areas provide more information about
depth. The statistical properties of natural optic flow may be used to tune the performance of
artificial vision systems based on human imitating behavior, and may be useful for analyzing
properties of natural vision systems.
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Introduction

Often the brain has to analyze sensory signals which are ambiguous. Ambiguity
arises from the spatial and/or temporal properties of the perceptual sensors, from
noise introduced by the perceptual sensors, and from noise created by the
environment. To (re)construct perception, the brain may use statistically plausible
predictions and/or statistical models of the signal-sending environment. The
resources of a signal processing system are usually limited, and therefore the
range of signals that can be processed is bounded. Nonlinear
processing schemes that include knowledge of the statistics of the signals can
enable the system to be more sensitive for signals which occur very frequently, and
to attach less value to signals which are very unlikely to occur. Such statistically
efficient processing schemes restrict the limited resources of the system to the range
of statistically probable signals. Therefore, evolutionary adaptations of the
perceptual areas of the brain to the statistics of natural environments, are plausible.
Effects of such adaptations are seen in gestalt laws (Elder and Goldberg 2002;
Kriiger and Worgétter 2002) and in efficient encoding schemes (Barlow 1961;
Lauglin 1981).

In the visual modality, several researchers invested effort to reveal the statistics
of natural environments, and to link it with the neural representation of the
sceneries (Laughlin 1981; Atick and Redlich 1992; Rudermann and Bialek 1994;
Olshausen and Field 1996; Kriiger 1998; van Hateren and Rudermann 1998;
Zetsche and Krieger 2001; Simon celli and Olshausen 2001; Berkes and Wiskott
2002; Betsch et al. 2004). Their investigations are largely restricted to static
attributes of natural scenes, however, even when dynamic stimulus material was
used (van Hateren and Rudermann 1998; Betsch et al. 2004). Furthermore, the
resulting statistics are treated as independent of the position in the field of view.
The properties of motion signals elicited on optic detectors by ego-motion within
natural sceneries strongly depend on the position in the view field (Zanker and
Zeil 2005). To investigate the statistics of these motion signals therefore requires
an analysis of distributions of flow vectors with respect to their visual field
position.

Optic flow generated by self motion encodes much information about the
direction of ego-motion, the velocity, the distances of potential obstacles, and
the structure of the environment (Gibson 1950, 1966). Animals use this information
for path planning, obstacle avoidance, ego-motion control, and foreground—
background segregation (see Lappe (2000b) for an overview). The motion signals
of the optic flow are processed in specialized motion-processing brain areas (Saito
et al. 1986; Albright 1989; Duffy and Wurtz 1991; Lappe et al. 1996). It is likely that
the motion-processing pathway of the brain uses statistical properties of natural flow
fields to efficiently encode natural optic flow, and to reconstruct the true motion
field from the motion signals in early motion detectors. We hypothesize that the
brain has involved mechanisms of extracting information from optic flow which
benefit from statistical dependencies of the elicited optic flow on the properties of
the natural environment and natural motion situations. An investigation of the local
statistical properties of optic flow can be the starting point to reveal such
connections.

The analysis of the statistics of optic flow may be undertaken on the true motion
signals (Ivins et al. 1999; Calow et al. 2004; Roth and Black 2005), or on the signals
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obtained from early motion detectors (Fermuller et al. 2001; Kalkan et al. 2005;
Zanker and Zeil 2005). The latter approaches analyze the combination of properties
of the motion field generated by ego-motion with the properties of particular motion
detectors. Since we are interested in the statistical properties of the motion field
itself we need to analyze the true motion signals. Therefore, we need a large number
of true motion fields generated by natural ego-motion through a natural
environment.

A method to collect a sufficient number of true optic flow fields was introduced
in Calow et al. (2004). Based on the Brown range image database (Huang et al.
2000) true motion fields were generated by biologically plausible ego-motion and
first results of the first-order statistics of retinal optic flow fields were reported.
Roth and Black (2005) used this method to investigate the statistics of optic flow
and elementary optic flow components. Since their work mainly focused on
aspects of machine vision, the ego-motion parameters underlying the optic flow
fields were obtained from ego-motions of hand-held or car-mounted cameras.
The resulting statistics were treated as independent of the position in the field of
view. Our investigation is dedicated to the local statistics of the true retinal motion
signals occurring in biological vision during natural human-like ego-motion. In
natural locomotion, eye movement reflexes stabilize gaze on objects of interest in
the scene (Solomon and Cohen 1992; Lappe et al. 1997; Niemann et al. 1999)
such that natural ego-motion is always a combination of body movement and eye
movement. The combination of body movement, eye movement, and depth
structure of the visual environment determines the structure of the optic flow on
the retina (Lappe et al. 1999). Our investigation of the statistical properties of the
flow field is therefore based on a combination of walking and eye-movement
reflexes.

We use the term local statistics to note the statistical properties of the
distributions of retinal velocities and their statistical dependencies on depth and
ego-motion for certain positions in the field of view. The correlations between
motion signals of different positions are not part of our notion of local statistics.

We see the purpose of our study in providing basic information and quantitative
data on the statistics of retinal motion signals. This information can be used to
predict sensitivity ranges of neurons in the motion-processing pathway of the brain.
Future work will focus on the examination of the hypothesis that these neurons
efficiently encode distributions of naturally occurring retinal motion signals. The
knowledge of the statistics is crucial for that purpose. Furthermore, the knowledge
of the statistical properties of retinal motion signal is an important tool in creating
experimental paradigms that focus on natural motion stimuli. Comparisons between
natural and unnatural motion situations are necessary to reveal how the motion-
processing pathway is adapted to the statistics of the natural environment. Our
investigation can also provide prior knowledge for creating probabilistic models of
the motion—processing pathway of the brain based on Bayesian inference (Weiss and
Fleet 2001).

Since the local statistics of optic flow are tightly linked to the statistics of the depth
structure of natural scenes and to the statistics of the ego-motion parameters, the
information about the depth map of the current scene and the ego-motion situation
is encoded in the retinal flow. However, the generation of optic flow maps from a
5-dimensional parameter space (walking speed, heading, depth, and depth of the
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fixation point) to a 2-dimensional flow vector (cf. Equations 5 and 6). Therefore,
the information about the underlying parameters is condensed in the flow vector
and cannot be extracted from an individual flow vector directly. Recovery of
heading, for instance, requires the combined information from several flow vectors
(Longuet-Higgins and Prazdny 1980). However, different areas in the field of view
show different statistical dependencies of the components of the optic flow on
heading and depth. By focusing the analysis on these areas the brain may gain
instant access to particular parameters regarding the other parameters as fixed and
their variation as noise.

Our analysis starts with the measure of dependence between the random
variables’ retinal speed and direction for a set of positions in the field of view. Then
we analyze the properties such as mean, standard deviation, skewness, kurtosis, and
negentropy of the distributions of speed and direction. The results provide the most
important properties of the distributions depending on the position in field of view.
Finally, we investigate the statistical dependencies between the distributions of
optic flow and the distributions of depth in the scene, depth of the fixation point,
and heading. To put the influence of heading and scene structure into context, the
same analysis is performed with two other sets of optic flow fields. One set is
generated under the assumption that no gaze stabilization is executed and therefore
no rotation occurs. The second set provides a baseline for comparison of the
influence of the scene structure. In this set, the depth values are randomly mixed.
Thus, the scene structure is abolished and the depth statistics do not differ for
different positions.

Methods
Construction of retinal flow fields

In this section, we describe the preparation of retinal flow fields in a sufficient
number for the statistical analysis. The calculation of retinal optic flow fields relies
on the knowledge of the depth map of a variety of natural scenes. We will explain
how to obtain ego-motion parameters and how to construct flow fields from the
depth map and the ego-motion.

We generate flow fields under three different conditions. One condition is
regarded as naturalistic and combines naturalistic ego-motion, which includes gaze
stabilization, through natural scenes (natural condition). Another set of flow fields
relies on the same set of natural scenes and heading directions but without gaze
stabilization (nonstabilized condition). In this set, gaze is directed to the same
objects in the visual field as in the natural condition but is not stabilized on that
object, i.e., does not conteract the motion induced by the forward movement. The
third set of flow fields is generated from the same naturalistic ego-motion
parameters, including gaze stabilization, but each scene is mixed in depth by
exchanging the depth values between randomly selected pairs of positions (mixed
depth condition). This procedure ensures that the overall distribution of depth
values is natural, but the differences in depth statistics for different positions in the
visual field disappears.
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Database. We use the Brown range image database, a database of 197 range
images collected by Ann Lee, Jinggang Huang and David Mumford at Brown
University (Huang et al. 2000). The range images are recorded with a laser range-
finder with high spatial resolution. Each image contains 444 x 1440 measurements
with an angular separation of 0.18°. The field of view is 80° vertically and 259°
horizontally. The distance of each point is calculated from the time of flight of the
laser beam, where the operational range of the sensor is 2-200 m. The wavelength of
the laser beam is 0.9 um and lies in the near infrared region. Thus, the data of each
point consist of 4 values: the distance R, the azimuth angle ¢, the zenith angle 0, and
a value for the reflected intensity of the laser beam. The location of the source of the
laser beam is 1.5m above the ground. Figure 1 shows a typical range-image
projected onto the ¢ — 0 plane. It can be seen that the intensity of the reflected laser
beam characterizes the properties of the reflecting surfaces sufficiently well. The
objects in the scene are clearly visible, and the image resembles a grey level picture
of a fully illuminated scene at night. The data are provided in spherical coordinates
R, ¢, 6. The 3-dimensional Euclidian coordinates from the standpoint of the
laser range finder can be easily calculated by (X, Y, Z) = (R cos(¢) sin(f), R cos(6),
R sin(¢) sin(#)).

(B) (C) i

20

10

Elevation (degree)

-30 -20 -10 0 10 20 30
Azimuth (degree)

Figure 1. (A) Panoramic projection of 3D data of a range-image. The grey values encode the
intensity of the reflected laser beam. (B) Measured gaze directions projected onto the
azimuth—elevation plane. (C) Retinal flow field generated by a leftward motion and a gaze-
stabilizing eye movement through the scene depicted with the white frame in A. The motion
direction is depicted by a cross. The direction of gaze is depicted by a disc.
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Retinal projection. The knowledge of the 3D coordinates of each image point allows
the calculation of the true motion of that point for any given combination of
translation and rotation of the projection surface. As we are interested in the
statistics of retinal projections, we consider as the retina a spherical projection
surface with the radius 1. All coordinate systems we will use in the following are
attached to the center of the projection surface and therefore the coordinates of the
data delivered by the database have to be transformed in the perspective of the
projection surface. In Euclidian coordinates, the X- and Y-axis are right and up, and
the Z-axis is perpendicular to the X-Y plane. The value of the Z- coordinate of any
point in the scene is the depth of that point from the perspective of the projection
surface. The most simple description of optic flow vectors on the sphere is given by
the following notation. Let € be the angle of eccentricity describing the meridians of
the sphere and o the rotation angle describing the circles of latitude rotating counter
clockwise. The focal point is defined by € =0. The meridians and the circles of
latitude are coordinate lines, and every vector v on the sphere has the components
2= (v v,) in the respective local orthonormal coordinate system. The velocity v of
a point moving over the sphere described in terms of the temporal derivatives of ¢
and o is v = (de/ds, sin(e) do/dr). Although the spherical coordinates €, o already
sufficiently provide the description of the sphere, we want to use a second spherical
coordinate system to denote positions on the projection surface, in terms of which
we are going to plot our results. Each position on the sphere is described by the
azimuth ¢ and the elevation 6, where the projection of a point in the scene onto the
sphere is governed by the relationship in equation

X sin(¢) __sin(e)

Z  cos(¢) cos(e) cos(e)

Y - sin(6) = sin(€) sin(o)
Z  cos(¢)cos(d) cos(e) '

Since, positions of the upper and the right visual field are denoted by positive values
of 6 and é respectively and positions of the lower and left visual field are denoted by
negative values of 6 and ¢ respectively, the reader can easily discern what positions
on the sphere are pointing to the right, left, up, and down from the perspective of the
observer. The flow field emerging on a moving sphere can be easily extracted by a
simple transformation from the well-known flow field (v,,v,), which would be
generated on a moving plane with internal coordinates (x, v) = (X/Z, Y/Z) (Longuet-
Higgins and Prazdny 1980). The flow field generated on a plane is described by

d 1

di:zvx =2(—Tx+xTZ)+(nyx—(l +53)Q, +19,) (1)
dy 1 5
a:vy :Z(—Ty—l—yTz) —l—(—nyy—l—(l +y )Qx—xQZ). (2)

The transformation rule is
ve = cos>(€)(cos(a)vy, + sin(o)vy) 3)

v, = cos(€)(cos(o)v, — sin(o)vy). (4)
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Ego-motion parameters. To calculate the flow field from the scene structure we
need the motion parameters of the projection surface. The ego-motion of the surface
is fully described by the translational velocity vector of the surface T= (T, T,, 1)
and the vector of rotation Q=(,,2,,2,) in the Euclidian coordinate system
attached to the projection surface. The translation 7 of the surface can be further
split up in the parameters translational or walking speed || 7| and heading (H,, Hy),
which are azimuth and elevation denoting the direction of the translational velocity
vector of the surface:

T =(T..1,,T;) = || T||(cos(Hy) sin(Hp), cos(Hy), sin(Hy) sin(Hy)).

Natural ego-motion within the scenes involves eye movements which stabilize the
gaze on environmental objects (Lappe et al. 1998; Lappe 2000;). Gaze
stabilization keeps the point of interest or the gaze-attracting object in the
center of the visual field and causes the motion in the center of view to be zero.
It can be easily extracted from Equations 1 and 2 that the associated rotation
depends on the translation by Q = (1/Z;)(Ty, — Tx,0), where Z; denotes the
depth of the point at which gaze is directed. Under this assumption, (3) and (4)
can be transformed to

Ve = % (cos(e) sin(e) T, + <§ — cosz(e)) ( cos(0)Ty + sin(o) Ty)> (5)
f
1 Z .
Vy = Zcos(e) <Zf — 1)(003(0) T, — sin(0) Ty). (6)

By (5) and (6) the parameters governing the optic flow at a certain position are the
walking speed ||7|, the heading (Hy, Hy) and the depth structure of the scene
determined by the depth Z of the point in question and the depth of the fixation
point Z.

For the condition without gaze stabilization the concerning retinal flow can be
extracted from (5) and (6) by assuming the observer gazes towards a point in
infinity, i.e. Zy— 00, and thus Q and the term Z/Z; vanish.

Since, for higher walking speed, the distribution is linearly shifted to higher speed
values, there are only trivial correlations between the motion signals and walking
speed. Therefore, we restrict our analysis to flow fields generated by a walking speed
of |T]|=1.4m/s.

Finding plausible ego-motion parameters (H,, Hy) and depth of fixations Z; for
the respective scene requires to search for feasible walking directions within
the scene and to extract probable gaze directions. The walking direction within the
scene combined with the gaze direction provides the parameters of heading
(Hy, Hy). Furthermore, if the direction of fixation is given, the depth of fixation can
be extracted from the point in the laser range image that the gaze direction is
associated to.

To determine possible walking directions within a range image, we search for
areas which are free from obstacles in a depth of at least 3m and a width of 0.7 m.
This criterion gives us a set of walking directions for each scene, which are
considered to be equally likely.

To obtain gaze directions that we can use to generate gaze stabilization
movements, we measured eye movements of observers who viewed images, that
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were generated from segments of the range images centered on the walking
directions. The images are projected onto a 36.5 x 27.5 cm plane with a focal length
of 30 cm (white frame in Figure 1A). Six subjects viewed these pictures on a 17 inch
computer monitor with the head stabilized on a chin rest 30 cm in front of the
monitor. Pictures were shown for 1 s in immediate succession to give the impression
of a changing environment the subject is moving through. Gaze fixation points were
measured by an eye tracking system (Eye Link II). The first fixation for each picture
was rejected because it might be partially driven from the preceding picture. The
subsequent fixations were used as probable gaze directions for the statistical
analysis. Although, the subjects are not actually walking through the real scenes, and
therefore have no access to the true color, disparity and other factors, which might
influence gaze attraction, the arrangement of objects and surfaces populating the
scene and the objects itself are well recognizable (Figure 1A). Furthermore, humans
are usually familiar with that sort of scenes and this world knowledge ensures that
the scenes are instantly identifiable as street scenes or forest scenes, and that gaze is
instantly attracted to the usual objects in such scenes. Figure 1B shows the
distribution of gaze directions while viewing the scenes. The points are plotted in
spherical coordinates (¢, 6) and are centered on the direction of walking used for the
flow field calculations.

To consider all aspects of human walking we also take bouncing and swaying of
the head during walking into account. Bouncing and swaying of the head while
walking is part of the complex oscillatory motion pattern of during walking (Imai
et al. 2001). The position of the head during walking can be modeled as sinusoidal
time functions. To obtain typical values for the amplitude and period we measure
the head position of one human subject while walking. The walking velocity of the
subject was 1.4 m/s. The height of the subject was 1.80 m. The head position was
measured by a position tracking system (Motion Star). We approximate the
properties of vertical and horizontal movement of the head as follows. The vertical
head position has a period of 0.6 s and an amplitude of 0.02 m. The horizontal head
position has a period of 1.2 s and an amplitude of 0.02 m as well. The velocity of the
head during walking can be obtained by the first temporal derivative of the
horizontal and vertical head position. The actual horizontal and vertical movement
of the head for a certain motion situation is picked up at a randomly selected time
and is added to the preliminary determined ego-motion parameters such that the
gaze of the eye towards the fixation point is stabilized also during bouncing and
swaying of the head.

Since the actual combination of walking direction, gaze direction and head
movement is linked to the environment and to the task, and since the simulated
components of ego-motion might not be generally independent, our assumed
ego-motion is an approximation to actual ego-motion and might not match
actual ego-motion in all details. But the simulation matches the main
components of human ego-motion and allows us to combine naturalistic ego-
motion parameters with the true depth information data provided by the range
image database.

We mirror each scene and the respective heading on the vertical plane (Y-Z
plane). This procedure of mirroring the scene attaches to each position in
the field of view the depth value of its counterpart in the opposite hemisphere
and therefore doubles the set of depth data points for each position.
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Simultaneously mirroring the heading ensures that ego motion is still in the
direction of the obstacle-free corridor.

The retina. The flow fields we finally consider are elicited on the inside of a
section of a sphere, in which a grid of motion sensors is affixed. The field of view
of this retina is set to 90° horizontally and 58° vertically. This field of view is
subdivided in pixels, which can be referred to as motion sensors, with a resolution
of 0.36° x 0.36° yielding a grid of 250 x 160 pixels. As the angular separation of
the range images is 0.18°, one pixel covers up to four data points. The depth
values Z=R sin(¢) sin(¥) from these data points are averaged. The mean depth
value is assigned to the pixel in question. Thus, we reduce the original resolution
provided by the laser range images. This procedure is necessary, because the pixel
grid of the retina is sliding over the pixel grid of the laser range image and mostly
does not match the original pixels. Therefore, reducing the resolution ensures that
all pixels of the retina receive appropriate motion signals. The flow vector attached
to a pixel depends on the depth value, the translation and rotation components of
the ego-motion and the visual field position of the pixel. The flow vectors of all
pixels of an image provide the measurement of the true retinal flow field for this
gaze direction, ego-motion, and scene. Figure 1C shows an example of a true
retinal flow field.

Statistical analysis

We constructed 7136 different flow fields for each of the three conditions:
naturalistic, no gaze stabilization, and mixed depth map. To examine the local
statistics of these flow fields we collect for each scene, motion situation, and
pixel position, the data sets which comprises the retinal velocity, the depth at the
respective position, the depth of fixation, and the heading of the respective ego-
motion. Examples of the distributions of retinal velocities can be seen in
Figure 2.

The analysis of the local statistics of optic flow is divided into two parts. The first
part is dedicated to the examination of the distributions of optic flow and how strong
the statistical properties of which depend on the positions in the field of view. The
investigation considers the polar optic flow components’ retinal flow direction and
retinal speed and starts with the measure of the statistical dependence of these two
variables. Although there are slight differences in the degree of statistical
dependence for the different conditions, it turns out that flow direction and retinal
speed are largely statistically independent for all conditions. Therefore, the further
analysis is based on the extracted 1-dimensional distributions of retinal speed and
retinal flow direction. For each position in the field of view we measure the mean,
the scatter, the skewness, the kurtosis, and an estimation of the negentropy for the
distributions of retinal speed and retinal flow direction.

The second part addresses the problem of the statistical dependence of the
variables’ retinal direction and retinal speed on the particular parameters’ depth,
depth of fixation point, and heading. The statistical correlations are not purely
linear, and nonlinear statistical dependencies play an important role. This can be
seen in the exemplary scatter plots (Figure 3), which show the extracted data for the
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Figure 2. Measured distributions of retinal velocity for 9 different positions in the left visual
field. The numbers in each panel give the visual field position in spherical coordinates (¢, 6) in
degrees. First row: positions in the upper field of view, middle row: horizontal meridian, third
row: lower field of view.

distribution of retinal speed and the inverse of depth (Figure 3A), the retinal speed
and the elevation heading component (Figure 3B), and the retinal speed and the
azimuth heading component (Figure 3C) at the visual field position (—5°, —18°). All
scatter plots show that a statistical analysis based on linear correlation is not
sufficient. For example in the scatter plots Figure 3A and C, a quadratic correlation
seems to underlie the data set and in the scatter plot Figure 3B a correlation of
degree 3 provides the main contribution. However, despite the very different kinds
of statistical dependencies for different data sets and for different positions we would
like to compare the degree of dependence the retinal flow has on the different
parameters. Information theory provides the notion of mutual information between
random variables. The mutual information is a measure of the difference between
the joint probability density function (PDF) of the random variables and the PDF
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Figure 3. Examples of scatter plots of the dependence of retinal speed on inverse depth (A),
elevation of heading (B), azimuth of heading (C). The data are from the visual field position
(=5°, —18°).

which would appear if the random variables were statistically independent. Since the
mutual information only vanishes if the random variables are fully statistically
independent, the measure of the mutual information takes all kinds of statistical
dependencies into account and is useful to investigate the degree of dependence
between random variables. However, the mutual information can range from zero to
infinity. Therefore, we are going to define a generalized dependence coefficient in
terms of the mutual information between data sets which will be bound between
values 0 and 1. This definition is motivated by the mathematical relation between
mutual information and the linear correlation in the case of purely linear statistical
dependency.

Polar representarion of retinal flow vectors. The retinal velocity at a certain position in
the field of view is a 2-dimensional vector (v., ¥,). Therefore, the velocity
distributions are distributions of 2-dimensional random variables. The random
variables we choose for further analysis are the polar coordinates retinal speed v and
retinal direction ¢g;. We will show that these random variables are largely
independent. Thus, our analysis of the local statistics of retinal velocities will be
separately performed on these two random variables:

_ 2 2
v= v+ v,
Ve
arccos % 5 Vg = O,
v+ vl
Gdir =
Ve
—arccos ——— ; v, <0
2 + 02

Estimating the properties of the distributions of speed and direction. To illustrate the
different properties of the distributions of speed and direction for different positions
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in the visual field we measure the mean (EX), the scatter (DX), the skewness
(M5X), the kurtosis (M,X), and estimate the negentropy (¥X). For the sake of
completeness, we list the well-known corresponding formulas to estimate these
parameters from an empirical data set X = {x; e R},_; , N

N

1
EX = — ’

Ni:lx

1 N
DX = MX= —— - — EX)?
2 No1, )

(1/N-1) ¥ (x—EX)
M;X = e

(1/N-1) ¥ (x—EX)*
MX = Dk - 3.

DX is a measure for the width or the spreading of the data, M5X and M,X are
measures of the difference between the empirical distribution and the Gaussian
distribution. M5X measures the asymmetry and M, X is a measure for the flatness of
the distribution. A negative value of M,X means the distribution is more flat than a
Gaussian and has shorter tails. A positive value of M;4X means the distribution has a
peak higher than a Gaussian and longer tails.

Mean, scatter, skewness and kurtosis take only the first four moments of a
distribution into account. To obtain a compact measure to assess the difference
between an empirical distribution and the Gaussian distribution with the same mean
and scatter we estimate the negentropy from the empirical distribution. Let P(x) be
the PDF of a random variable X. The negentropy ¥(X) is defined as the difference
between the differential entropy of the Gaussian H(X;,uss) and the actual differential
entropy H(X) := — suppP P(x)log,(P(x))dx
F(X) = H(Xgauss) — HX) = %logz(eZnDXz) — H(X),

where e is the Euler number. Since a Gaussian distribution has the maximal entropy
for a given mean and scatter, F(X) is always nonnegative and vanishes only if X is a
Gaussian distribution. The estimation of the negentropy of a distribution requires
the estimation of the differential entropy.

The measure of dependence and the estimation of differential entropy. The analysis of
the statistical interdependence between the optic flow components’ retinal direction
and retinal speed and the statistical dependencies of the optic flow components on
the parameters’ depth, depth of fixation point and heading components requires
estimating the mutual information from 2-dimensional and 3-dimensional data sets.
The analysis of the properties of the distributions of retinal speed and retinal
direction furthermore needs an estimation of the differential entropy from
1-dimensional data sets.

The mutual information mI(X;,X>5,...,X,) between (possibly more-
dimensional) continuous random variables X; with minor PDFs P;(x;) and joint
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PDF Px(xy, x5, ...) is defined by

P o
ml(X1,Xs,..) =  Px(x1,%, ...) 1og2( x(1, %, ) )d’”x,
Rﬂl

Py(x1)Py(x2) . .. Pu(xy)

H(X;) - H(X,,X>,...), (7

)

where m =, dim(X;) and
H(X)=— Px(x)log,(Px(x)d"x; m = dim(X) (8)

is the (differential) entropy for the random variable X. The mutual information is
always nonnegative, and zero if and only if P(xy, x5, . ..) = P1(x1)Py(x5) . .. P,(x,,), i.e.
the X, are mutually independent random variables. In this study, we deploy the
method of the k-nearest neighbors distances to estimate the differential entropy
(Kozachenko and Leonenko 1987) and the modification to estimate mutual
information (Kraskov et al. 2004). Let W = {y;};,_1,,, ., n be an m-dimensional data
set and let f)\p be an estimator for the actual PDF Py. The differential entropy (8)
can be estimated by

N
HOW) ~ B =~ loga(Pu(y) ©

=1

Let ¢; be the minimal radius of the sphere centered at ¥/; € W and located within the
k nearest neighbors of ¥ for large N and large & (but A << N, PyP(y,;) can be
estimated by

1 k

Py() = ———, 10
W) =y (10)
where 1/, is the volume of the unit ball. Equation 10 leads directly to an estimate of

the differential entropy

N
H(V) = log,(N) — log,(k) +logx (V) + % log,(€)). (11)

=1

For smaller N and/or smaller £ Equation 10 gives a rather bad estimate of Py and
Equation 11 must be replaced by

N
H(W) = (W(N) = Y(k))/ 10g(2) + logo(Vi) + 30 logs(ei,
i=1
where ¢ is the digamma function (Kraskov et al. 2004). Let now
U = (W1, ¥2) = {(V1,, ¥2,}iz1,2... .~ be a (m; +my)-dimensional data set for which
we wish to estimate the mutual information mI(¥,, ¥2) ~ H (W) + H(¥,) — H(Y).
Whereas H(W) can be estimated by Equation 11, to use the same distance scales in
the joint and the minor spaces, and to avoid any biases the estimation of the
differential entropies H (¥y) and H (W;) have to be modified in the following way
(Kraskov et al. 2004). Let ¢, be the minimal radius of the sphere which is centered at
Y; € ¥ and which are located, within the & nearest neighbors of y; then &y, is the
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number of data located within the sphere with radius ¢, centered at v,, in the space
Wy, and ky, is the gnalog number of data around v, The estimation of the
differential entropy H(W¥;) is modified by

N 1 N m N
HW) =logs(N) + 5 logo(y, + D +logs(V1,) + 50 loga(e).

=1 =1

Analogous calculations are performed for the estimation of H (V,). For the
estimation of mutual information between more than two random variables, the
method can be easily extended.

For all mutual information estimation performed in this study we fixed the
number of nearest neighbors by 2= 0.005N. Whereas N ranges between 6000 and
7136, the number of nearest neighbors takes values between 30 and 35.

Rank ordering of data sets. The dependent components of an empirical data set are
usually measured in different units and have different scales. Large differences in
scale can cause errors in the estimation of mutual information. Note that the mutual
information (7) is preserved under any differentiable transformation f : R” — R™ of
the m-dimensional components. To conform the scales of the components of the
data sets, the components are transformed to a uniform distribution by rank
ordering.

Let Px(x), x € Q C R be the PDF of a 1-dimensional random variable X. Let H
be the Heaviside step function. The transformation which turns X into a uniform
random variable is

fx(x):= H(x — ¥)PE)dx. (12)
Q

,,,,,

approximation of the uniforming procedure by

N

fulwd = Hbi— ). (13)

i=1

which is referred to as rank ordering. To perform the uniforming procedure for
a 2-dimensional data set the first component is rank-ordered according to
Equation 13. The resulting data set can then be divided into stripes of the
same width comprising the same number of data. Regarding each stripe as a
1-dimensional data set, the stripes are rank-ordered by Equation 13 again.
Although uniforming dissolves the internal dependence structure of the
1-dimensional random variable, the mutual information between the uniformed
2-dimensional random variable and a separately rank-ordered third random
variable is not affected.

The definition of the generalized dependence coefficient. Suppose the random
variables X and Y have the following joint PDF:

1 x* (x—y)°
- - , 14
270107 exp( 20%) exp< 20% (14)

P(x,y) =
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and Px and Py are the PDFs of the constituents. There is a simple relationship
between the linear correlation coefficient C(X,Y) and the mutual information
mI(X,Y) = . pP(x.3)10g,(P(x.5)/Px(x)Py(y)) dxdy:

2
2 91
CX,Y) = 7+ o2 (15)
1 0% + 0?2
2
2 o (~2mI(X. V)

Motivated by Equation 17 we define for a multi-dimensional random variable ¥ a
normed mutual information

mIP () = 1 — 22, (18)

which takes values between 0 and 1, and which is referred to as a generalized
dependence coefficient. Recall that Equation 17 is only valid for linear correlations
and if all constituent random variables are gaussian-distributed. However, we will
use the definition (18) to condense the estimated mutual information in a value
between 0 and 1 for a more compact presentation.

Results
Statistical interdependencies between retinal direction and retinal speed

Figure 4 shows the estimated normed mutual informations mI™°™(dy;,, V)
between the distributions of direction and speed for all positions in the field of view
in each of the three conditions. The values of mI™°™(dy,, 1) for the natural
condition (Figure 4A) range from 0.04 to 0.19, with the peak in the center of the
visual field. These values are rather low suggesting that direction and speed are
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Figure 4. Statistical dependence between retinal speed and direction. Three-dimensional
plots and contour plots of the estimated normed mutual informations #I™°™¢ (®4;,, V)
between retinal flow direction and retinal speed as function of the position of the visual field
for different conditions, (A) natural, (B) nonstabilized and (C) mixed depth.



358 D. Calow & M. Lappe

largely independent from each other at all positions in the visual field. This result,
however, is not a direct consequence of Equations 3—6 but rather depends on the
statistical properties of the motion and depth parameters and their combination in
walking and gaze stabilization. This can be seen from the comparison with the other
two conditions.

In the condition with no gaze stabilization (Figure 4B), mI™*™(dy;., V) ranges
from 0.05 to 0.3 in the lower visual field and from 0.04 to 0.2 in the upper visual
field. The interdependence between retinal speed and direction is increased for a
domain of the lower visual field right under the horizontal line. This shows that the
ego-motion situation influences the dependence structure of retinal speed and
direction.

In the third condition (mixed depth map, Figure 4C), mI™®™4(® 4., V) varies
between 0.08 and 0.16 across the visual field. Thus, randomization of the depth
structure keeps the statistical interdependence between retinal speed and direction
on the same level as in the natural condition. Thus, the depth structure exerts less
influence on the interdependence between retinal speed and direction than the
ego-motion situation. However, a depth structure with very different statistics may
affect the interdependence between direction and speed. For instance, if the scene
contains only objects in great distances from the observer the retinal motion
signals are mostly caused by the rotational component of ego-motion. This
produces a higher statistical interdependence between direction and speed.
Therefore, the low statistical interdependence between direction and speed of
the optic flow in the natural condition is a particular property of ego-motion
through natural settings.

The statistical interdependence between retinal direction and speed is not
dependent on walking speed. Variation of walking speed only scales the retinal
speed by a proportionality factor. However, a statistical variation of walking speed
between different motion situations would evidently further diminish the level of
statistical interdependence between retinal direction and speed by introducing an
additional statistical variance which solely affects the statistics of retinal speed.

In the remainder of our analysis, we consider the statistical properties of the
distributions of retinal direction and speed separately. This is justified by the low
statistical interdependence between direction and speed in the natural condition
and facilitates the understanding and interpretation of the results.

Properties of the distributions of speed and directions

Figure 5 shows some examples for kernel-based estimates of the PDFs of direction
(measured as deviations from the radial direction) and speed (Parzen 1962;
Silverman 1986). All examples are from the natural condition. They show different
positions in the left visual field. The distributions of the right visual field are
essentially mirror symmetric. The estimated distributions of speed appear similar to
logarithmic Gaussian distributions. We therefore measure the skewness, kurtosis,
and negentropy for the logarithmic values of speed rather than for the speed itself to
reveal how close the speed distributions are to logarithmic Gaussian distributions.
We note the reference to the logarithm of a random variable by the prefix log (for
example log-kurtosis).
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Figure 5. Examples of kernel-based density estimations for direction (A) and retinal speed
(B). Nine positions in the left visual field are shown.
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Properties of the distributions of directions. Figure 6 shows the visual field maps for
mean, scatter, skewness, kurtosis, and negentropy for the distributions of direction
in the three conditions. First, we discuss the results concerning the natural
condition (column A). The top panel (Figure 6Al) shows the mean of the
distributions of direction for all positions in the field of view. The mean deviates
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Figure 6. Estimated statistical properties of the distributions of directions for the different
conditions plotted over the visual field. 1: Estimated mean, 2: estimated scatter, 3: estimated
skewness, 4: estimated kurtosis, 5: estimated negentropy.
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from the radial direction by up to 12°. The deviation from radial is high near the
center of the field of view and decreases towards the periphery. The variations of the
deviation with eccentricity and the absolute values of deviation are very similar in
the upper and lower visual fields. The visible cloverleaf structure in the plot shows
that the means of the direction in each quadrant are distorted towards the vertical
direction: the means are negative in the left upper visual field and positive in the left
lower visual field, and vice versa for the right visual field. A similar structure occurs
in the map of the skewness of the direction distributions (Figure 6A3). This means
that the direction distributions have longer tails at the side where the directions
are closer to the vertical direction. Consequently, the skewness vanishes for the
positions on the horizontal and vertical meridian.

The shifts of the means and the distortions of the distributions are mainly caused
by the interplay between the mathematics of the projection and the properties of
the distribution of headings. The distribution of headings has a higher variance for
the horizontal component than for the vertical component (cf. Figure 1B). When
heading is varied symmetrically around the center along the horizontal meridian the
flow vectors induced at position along the 45° diagonal in the lower visual field are
distributed asymmetrically around the radial direction (Figure 7). As our flow fields
include eye rotations to stabilize gaze on an attended object in the scene, the flow
vectors are additionally influenced by the properties of the distributions of Z/Z f
(see Equations 5 and 6). Z/Z f takes values between 0 and infinity. The distribution
of Z/Zf is right-skewed. The result is a further skewing of the direction
distributions. Therefore, the extend to which the resulting distributions of flow
direction are skewed depends on the interplay between the statistics of the depth
structure and the statistics of the ego-motion parameters. The different depth
statistics in the upper and lower visual fields lead to the differences in the magnitude
of skewness in the upper and the lower visual field in Figure 6A3.

Figure 6A2 shows the scatter of the directions around the mean. The scatter is
maximal (about 60°) at the center of the field of view and decrease to around 10° in

Heading direction Center of view Heading direction
a o e

Figure 7. In the case of straight forward ego-motion without rotations, the same horizontal
deviation of heading to the left and to the right, respectively, results in different deviations
from the radial direction for the resulting flow vectors. The distribution of flow directions
is skewed.
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the periphery. In combination with the mean the scatter map shows that the
direction distributions in the periphery become more radial. There is not much
difference between the upper and the lower visual field.

The plots of kurtosis and estimated negentropy (Figure 6A4 and A5) show that in
large areas of the lower visual field the kurtosis and negentropy are very small (from
—0.4 to 2.0 and 0.02 to 0.08 respectively). Kurtosis and negentropy increase (up to
17 and 1 respectively) near the horizontal meridian. However, also comparatively
small deviations from zero kurtosis and from zero negentropy, such as those in the
lower visual field, give a significant difference of the distribution from a Gaussian.
For example, the distribution at position (—30, —15) in Figure 5A has a kurtosis of
0.44, a negentropy of 0.05, and a skewness of 0.55, and is clearly different from
a Gaussian distribution. Position (—30, 15) in Figure 5A provides an example for a
distribution with rather large values of kurtosis (6.54), negentropy (0.28), and
skewness (—1.28).

We conclude that the distributions of the directions for positions of the lower
visual field are rather close to Gaussian distributions and that extreme non-Gaussian
distributions occur near the horizontal meridian.

A comparison with the direction distributions in the nonstabilized condition
(second column) and the mixed depth condition (third column) shows the influence
of the statistics of the ego-motion parameters and the depth on the distributions of
retinal directions. Whereas the cloverleaf structure in the mean exists in all
conditions, the patterns of scatter, skewness, kurtosis, and negentropy show clear
differences between the conditions. In the nonstabilized and mixed depth
conditions, there are no differences between upper and lower visual field.
Kurtosis and negentropy do not take as high values as some domains of the visual
field in the natural condition. Although the distributions in both conditions are
similarly skewed, natural motion parameters in combination with natural scenes
have a cumulative effect on skewing for some regions of the visual field.

Properties of the distributions of retinal speed. Figure 8 shows the visual field maps for
mean, scatter, skewness, kurtosis, and negentropy for the distributions of retinal
speed for the three conditions. Figure 8A1 shows the mean of retinal speed for all
positions in the field of view in the natural condition. Mean retinal speed and scatter
is zero at the center of view because of the assumed gaze stabilization. Mean retinal
speed increases in the periphery up to 20°s. Note that the absolute values of speed
would scale with walking speed, which was a constant 1.4 m/s in our calculations,
but only by a constant factor for all flow speeds. Hence, walking speed does not
change the distribution over the field of view.

The increase of the mean speed is larger for the lower visual field than for the
upper visual field. The scatter ranging from 0° to 11°/s, on the other hand, increases
more in the upper visual field than in lower visual field. These differences between
mean and scatter show that the retinal speeds are faster and more uniform in the
lower visual field and slower and more variable in the upper visual field.

Since the appearance of the estimated distributions for speed suggests that these
distributions are Gaussians on a logarithmic scale, we measured the skewness,
kurtosis, and negentropy for the logarithms of speed. This measures show how close
the speed distributions are to logarithmic Gaussian distributions. Figure 8,
Panels A3, A4 and A5, show the estimated values for the log-scatter, log-kurtosis
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Figure 8. Estimated statistical properties of the distributions of retinal speed for the different
conditions (A) natural, (B) nonstabilized and (C) mixed depth, plotted over the visual field.
1: Estimated mean, 2: estimated scatter, 3: estimated skewness of log-speed, 4: estimated
kurtosis of log-speed, 5: estimated negentropy of the distributions of log-speed.
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and log-negentropy. These values are largely uniform over the visual field. The log-
skewness ranges from —0.8 to 0.8, the log-kurtosis from 0.5 to 3, and the estimated
log-negentropy from 0.03 and 0.11. Although these values are rather low, for each
position either the skewness, or the kurtosis, or both values, are significantly
different from zero, which we tested by calculating the standard errors and using the
resulting error bars (approx. two times the standard error) as significance criterion.
Therefore, the distributions of retinal speed are significantly different from log-
Gaussian distributions. However, the small values of log-skew, log-kurtosis, and
log-negentropy may, for practical purposes, allow to model the distributions of
retinal speed by log-Gaussian distributions.

The distributions in the nonstabilized condition (Figure 8, column B) look very
similar to those for the natural condition except for positions close to the center of
view. Close to the center of view the mean and scatter of retinal speed do not vanish
in the nonstabilized condition and do not fall below 1.3°/s and 1.6°/s, respectively.
In the mixed depth condition, the distributions show a complete different pattern
(Figure 8, column C). The increases of the mean and scatter towards the periphery
are not as pronounced as in the other conditions and do not rise about 8°/s and 7°/s,
respectively. Log-skewness takes only negative values across the visual field. Log-
kurtosis is smaller than in the other conditions. Log-negentropy is in the same range
as in the natural and nonstabilized condition. These results suggest that the depth
statistics has a shaping effect on the statistics of retinal speed while the gaze
stabilization reflex affects the statistics of retinal speed only in the center of the visual
field.

Dependence of the local optic flow statistics on scene structure and ego-motion

In this section, we describe the statistical dependencies of the retinal flow on the
depth statistics of the scene (depth Z and fixation depth Z;) and on the heading
direction (Hy, Hy). The dependence on scene statistics is interesting because the
speed of an element of the optic flow depends on the distance of the element from
the observer. Moreover, in case of combined observer translation and gaze
stabilization the speed and the direction of the motion vector of the optic flow
element depends on the relationship between the distance of the element from the
observer and the depth of the gaze point. Without gaze stabilization, the statistics of
the retinal direction solely depend on the statistics of the heading direction and not
on the statistics of depth. Retinal speed is only influenced by depth and not by the
depth of the gaze point.

Dependence of the local optic flow statistics on the depth statistics of the scene. To reveal
to what extend the optic flow in the natural condition is statistically dependent on
the depth statistics of the natural environment, we estimated the normed mutual
information between the random variables’ retinal flow direction ®4;,. and speed
and the following random variables of the scene structure: the 2-dimensional vector
(1/Z, 1/Z)), the inverse depth-values 1/z, and the quotient between the depth and the
depth of the fixation point Z/Z;. We take Z/Z; rather than 1/Z; as a single random
variable because the direction of retinal motion depends on Z/Z; not on Z; alone.
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Figure 9 column A shows the distribution of the normed mutual information over
the visual field for the aforementioned parameter combinations.

The estimated values for mI*°™(® ., (1/Z, 1/Z)) (Figure 9A1) range from 0.05 to
0.6. Positions in the lower visual field show smaller values than positions in the
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Figure 9. Statistical dependence between direction and depth. Estimated normed mutual
information in the natural (A) and the mixed depth (B) condition plotted over the visual field.
1: mI*om™ed (@ (1/7, 1/Zy)) between retinal direction ®g;, and depth structure (1/Z, 1/Z)),
2: mI™™d (@ .. 1/Z) between ®g;, and the inverse of depth 1/Z, 3: mI™™¢ (b4, ZIZ)
between ®g4;, and the quotient of depth and fixation depth Z/Zy
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upper visual field. The highest values are observed along the horizontal meridian.
The estimated values for mI™°™Y(dy,, 1/Z) (Figure 9A2) are very small and
nowhere exceed 0.16. The estimated values for mI™™(dy;,, ZIZ,) (Figure 9A3)
show a similar distribution as mI™*"™4(®y,, (1/Z, 1/Z))), but with a peak of higher
dependence (0.8) in the center of view. Taken together, these plots show that the
dependence of the direction of the optic flow on the depth statistics of the scene is
particularly strong in the upper visual field and that the combination of depth Z and
fixation depth Z; considerably influences the flow directions in this area. In contrast,
the flow directions in the lower visual field do not carry much information about
scene structure. Finally, the statistics of 1/Z by itself has hardly any influence on the
statistics of the retinal direction (Figure 9A2).

In the mixed-depth condition (Figure 9, column B), the dependence of direction
on depth shows only minor variation over the visual field. The differences between
upper and lower visual field in the natural conditions disappear in the mixed-depth
condition. The statistical dependence of depth (1/Z) on the statistics of flow
directions remains minor. The nonstabilized condition is not shown, because in this
condition retinal direction does not depend on the depth structure of the scene, and
all values would be zero.

Figure 10 shows the statistical dependence of retinal speed on the depth structure
of the scene. Compared to retinal direction (Figure 9A), retinal speed shows an
almost opposite dependence on the statistics of depth in the scene in the natural
condition (Figure 10, column A). The estimated values for mI*°™(V, (1/Z, 1/Zp)
vary between 0.6 and 0.97 (Figure 10A1), with smaller values in the lower visual
field and high values in the upper visual field. The estimated values for 7™ (V,
1/Z) (Figure 10A2), range from 0.58 to 0.97 and show a visual field distribution
similar to that of mI™™(V, (1/Z, 1/Z))). The estimated values for mI™*™(V, Z/
Zy) (Figure 10A3) range between 0.05 and 0.5. They show a minor influence of Z/Z;
on the statistics of retinal speed for the lower visual field and a moderately increased
statistical dependence for the upper visual field. The latter is caused by an increased
statistical dependence between 1/Z and Z/Z; for the upper visual field (data not
shown). We therefore conclude that the dependence of the distributions of retinal
speed on the depth statistics of the scene is mainly carried by 1/Z.

In the nonstabilized condition, retinal speed depends only on 1/Z. The estimated
statistical dependence of retinal speed on 1/Z resembles the estimated data in the
natural condition (Figure 10B2). In the mixed-depth condition, retinal speed is
highly dependent on depth at all positions of the visual field but the dependence on
depth is symmetric between upper and lower field.

We find that considering scenes with a nonnatural depth statistics results in
completely modified statistical dependencies between depth and retinal optic flow.
Thus, we conclude that these dependencies are specific in the case of natural scenes.

Dependence of the local optic flow statistics on the statistics of heading. The dependence
of the statistics of the retinal direction on the statistics of the observer’s heading is
shown in Figure 11. Column A depicts the natural condition. The estimated values
for mI™°™(D ;. (Hy, Hp)) (Figure 11A1), range between 0.5 and 0.99 and thus
reveal a strong statistical influence of heading on the flow direction. This influence is
much more pronounced in the lower visual field than in the upper visual field. This
observation is in accordance with the observation in the previous section that the



Local statistics of retinal optic flow 367

(A) (B) (C)
1 5 - . . : — - ’ 2 . y 1.0

o
S

(degrees)

6 05
=

-_240 ik & < | !
Bl | |

Ty WY BN | 0.0
~40-30 -20 10 0 10 20 30 40 -

Azimuth (degrees)
B [ = = 10
‘@ 05
. :

0.0

1.0

0.5

0.0

Figure 10. Statistical dependence between speed and depth. Estimated normed mutual
information in the different conditions (A) natural, (B) nonstabilized and (C) mixed depth,
plotted over the visual field. 1: mI™*™ (1, (1/Z, 1/Z))) between retinal speed V" and depth
structure (1/Z, 1/Z), 2: mI normed (17 1/7) between I and the inverse of depth 1/Z, 3: ml"*"™
(V, ZIZ;) between IV and the quotient of depth and fixation depth Z/Z,

depth statistics have a larger influence in the upper visual field than in the lower
visual field. This increased dependence on depth in the upper visual field disturbs
the linkage to the heading.

Panels A2 and A3 show how the retinal flow directions are influenced by the
vertical and horizontal heading components H, and H, separately. H, has a strong
influence on the statistics of retinal flow direction for eccentric positions on
the vertical meridian. Hy has the highest influence at eccentric positions along the
horizontal meridian.

In the nonstabilized condition, retinal direction is completely predicted by the
heading direction, as all retinal motion is radially away from the heading point
(focus of expansion). This means that the mutual information between the
distribution of directions and heading is infinite. However, as in the natural
condition the different components of heading have different statistical influence on
retinal direction for different domains of the visual field, but the generated bulges of
high-normed mutual information values are broader than in the natural condition
and do not show the abrupt decrease in the center of the visual field (Figure 11,
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Figure 11. Statistical dependence between direction and heading. Estimated normed mutual
information in the different conditions plotted (A) natural, (B) nonstablized and (C) mixed
depth, plotted over the visual field. 1: mI™°™ (4., (H,, Hg)) between retinal direction ®g;,
and heading (Hy, Hp), 2: mIPormed (. H,) between ®g;, and the horizontal heading
component Hy, 3: ml normed (¢, . H,) between ®g;; and the vertical heading component H,.

Panels B2 and B3). According to the certainty that in the nonstabilized condition the
depth structure of the scene has no influence on the statistical behavior of flow
directions, there are no differences of the estimated mutual information values
between the upper and the lower visual field. In the mixed depth condition the
statistical influence of heading on the statistics of flow directions are decreased for the
lower visual field and increased for the upper visual field compared with the natural
condition (Figure 11, column C). This is a result of the influence of the parameter
Z/Z; on the statistics of retinal flow direction (Figure 10B3). The distribution of
normed mutual information for the components Hy and Hy is similar to that of the
natural condition, but rather than drop near the center of view as in the natural
condition, the distributions rise in the center of view (Figure 11, Panels C2 and C3).

Figure 12 shows the dependence of the statistics of the retinal speed on the
statistics of the observer’s heading. In the natural condition (Figure 12A1), the
estimated values for mI™°™<d(p, (Hy, Hp)) (Figure 12A1), which vary between 0
and 0.77, indicate only a modest statistical influence of heading on the statistics of
retinal speed. Similar to retinal direction, the influence is more pronounced in the
lower visual field than in the upper visual field.
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Figure 12. Statistical dependence between speed and heading. Estimated normed mutual
information in the different conditions (A) natural, (B) nonstabilized and (C) mixed depth,
plotted over the visual field. 1: mI™°™ (1, (Hy, Hy)) between retinal speed I and heading
(Hyps Hp), 2: mIrormed (7, H,) between V and the horizontal heading component H,, 3:
mI™™ed (17 H.y between 1V and the vertical heading component Hy.

The restriction of the statistical influence to the lower visual field is also seen for
the separate vertical and horizontal heading components Hy and H, (Figure 12A2
and A3). This correlates with the diminished effect of the statistics of depth on the
retinal speed for the lower visual field. However, the heading components H, and
H, assert their influence in different parts of the lower visual field. H, influences
retinal speed along the diagonals in the lower visual field whereas H, influences
retinal speed near the vertical meridian in the lower visual field.

In the nonstabilized condition (Figure 12, column B) there is more statistical
dependence in the upper visual field but the dependence in the lower visual field is
very similar to that in the natural condition. In the mixed depth condition, heading
has hardly any statistical influence on retinal speed (Figure 12, column C).

Together, the different influences of H, and Hj on retinal direction (Figure 11)
and retinal speed (Figure 12) can be explained by the following consideration: a
horizontal deviation of heading from straight ahead causes a deviation of the retinal
flow direction from radial for the flow elements close to the vertical meridian. Close
to the horizontal meridian the direction of flow vectors is less affected, because
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mainly the speeds are increased or reduced there. Analogously, the statistical
dependence of flow direction along the horizontal meridian is higher for the vertical
heading direction. However, the counter-rotation of the retina in the case of gaze
stabilization affect the statistical influence of the components of heading by keeping
the directions closer to radial.

These observations show that the statistical dependencies of retinal optic flow on
heading are shaped by both the geometry of natural scenes and the properties of
natural ego-motion. Altering either the ego-motion parameters, or the depth
statistics, considerably changes the dependence structure between retinal optic flow
and heading.

Summary and discussion

The results show how the structure of the retinal flow depends on the scene statistics
and the ego-motion statistics. The principle dependence of the retinal flow on these
parameters is clear from the geometrical properties of flow generation (Longuet-
Higgins Prazdny 1980). However, the particular relevance of individual parameters
in natural situations depends on the statistics of these parameters in the natural
context. In the natural condition, the random variables’ retinal speed and retinal
direction show rather low statistical interdependencies at almost all positions in the
visual field. This statistical independence between retinal speed and retinal direction
in the natural condition allows to efficiently encode both parameters independently,
as is the case in motion-sensitive neurons in visual cortical area MT. These neurons
have largely independent tuning curves for direction and speed (Rodman Albright
1987). Gaze stabilization plays an important role for the independence between
retinal speed and direction. Without gaze stabilization there is a much higher
statistical interdependence between retinal speed and retinal direction for large
domains of the lower visual field. Since this increase occurs only in the lower visual
field, the depth structure appears to have also a strong influence on these
interdependencies.

The distributions of retinal speed and retinal direction are strongly influenced by
the underlying statistics of depth and ego-motion parameters. The statistical
properties of the distributions measured for the different conditions differ strongly
in their behavior over the field of view. In the natural condition, differences between
the upper and the lower visual field are clearly visible for both retinal flow direction
and retinal speed. In the nonstabilized condition, in contrast, differences between
upper and lower visual field only occur in the distributions of retinal speed. This is
because depth has no influence on flow direction in the nonstabilized condition.
The statistical differences for the upper and the lower visual field are caused by
different depth statistics for the upper and the lower visual field. Most natural scenes
consist of objects on a ground surface. The ground surface may be flat, or form dips
and humps, or it can decline or rise. But in each scene, the ground confines the
maximal depth at each positions of the visual field. Therefore, the existence of a
ground in natural scenes generates an asymmetry in the depth statistics between
positions in the upper and the lower visual field and restricts the variability of depth
in the lower visual field. This asymmetry underlies all observed asymmetries
between upper and lower visual field in the flow statistics. When the asmmetry in the
depth statistics are destroyed in the mixed-depth condition, the differences in optic
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flow statistics between the upper and the lower visual field vanish. All statistical
variations between different positions in the field of view in that condition are
caused by the mathematical rules behind optic flow generation and the statistics of
heading. However, the asymmetries between upper and lower visual field in the
natural condition arise not just from the depth distribution alone, but rather from a
combination of the depth distribution and the natural ego-motion parameters. For
instance, many properties of the flow distributions in Figure 11 are symmetric
between upper and lower field also in the nonstabilized gaze condition. Regarding
the properties of early motion detectors, our results coincide with the findings in
Zanker and Zeil (2005), who also state differences in the distributions of the
responses of early motion detectors between the upper and lower visual field for
straight motion through natural scenes.

One may predict properties of motion-sensitive neurons from the statistics of
retinal optic flow according to the principle of efficient encoding, particular with
respect to the dependence of tuning properties on the positions of the receptive
field. The variation of the distributions of retinal speed and directions over the visual
field may explain the variation of properties of neurons encoding different positions
in the visual field. Thus, populations of neurons encoding for optic flow near the
center of the visual field should be more sensitive for low speed but for a large range
of retinal directions, whereas populations of neurons encoding for optic flow more
peripherally should be more sensitive for large retinal speed but for more radial
retinal directions (cf. for instance (Albright 1989) for such distributions in the
primate cortical area MT). The tuning curves of such neurons should account for
quantities such as skew and kurtosis, which might affect the proportion of sharply
and broadly tuned neurons as well as the tuning in individual cells. Furthermore,
the peripheral increase of the size of the receptive field of motion-processing
neurons in area MT seems to be well adapted to the structure of natural flow fields
(CAlow et al. 2005). More quantitative predictions may be derived from an analysis
of efficient encoding of optic flow based on the measured distributions.

Our analysis reveals that the dependence of retinal speed and direction on the set
of ego-motion and scene parameters varies considerably across the visual field. In
the natural condition, the influence of the depth statistics on the retinal speed is
strongest in the upper visual field and much weaker in the lower visual field. Since
optic flow depends on depth and heading, an increase in the statistical influence of
one parameter must be accompanied by a decrease of the statistical influence of
another parameter. Therefore, the reduction of the influence of the depth statistics
on the retinal speed coincides with an increased influence of the statistics of heading
on the statistics of retinal speed at the lower visual field. This is true also in the
nonstabilized condition. The finding that the dependence of retinal speed on depth
is highest in the mixed depth condition shows that retinal speed can be regarded
as directly linked to the depth map of the scene, at least for the upper visual field.
For the lower visual field, the dominance of the ground and the associated decrease
in the variation of the depth over different scenes increases the statistical influence of
the remaining parameters.

The statistics of retinal direction in the natural condition, on the other hand, are
independent of the statistics of depth throughout most of the visual field. The same
is true in the mixed depth condition. However, retinal direction is linked to
the statistics of the combination of depth and depth of fixation in terms of the
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quotient Z/Z,. This quotient separates the scene in foreground (entities closer than
the fixation point, Z/Z;<1) and background (entities more distanced than the
fixation point, Z/Z;>1). The dependence of direction on Z/Z;is most pronounced
near the horizontal meridian, presumably because variation in depth relative to the
depth of fixation occurs most frequently in that area of the scene image.

It is conceivable that the tight statistical linking of optic flow to the depth structure
of the scene enables the brain to reconstruct a good relative depth map of the scene
from the motion signals. In the natural condition, heading influences the statistics of
direction and speed of the retinal motion to different degrees. This is especially
pronounced in the lower visual field. Heading has the largest influence on the
statistics of direction. The influence of heading on retinal speed remains minor. The
azimuth and the elevation component of heading have mutually exclusive statistical
influence on the retinal flow direction. The azimuth component and the elevation
component of heading are statistically independent ([ “°rmed(H¢, H,;)=0.0032) in
the distribution we used. The strong statistical influence of one heading component
in a certain domain of the visual field leads to a high correlation between the
directions of flow vectors within that domain and to a lower correlation between
the directions of flow vectors lying in domains which are influenced by the other
heading component. We leave the quantitative investigation of the statistical
correlation between flow vectors at different position, of the field of view and the
extraction of possible independent components or patterns for future work. But
detection of such flow patterns requires receptive fields, which fully contain the
extend of the pattern. Therefore, the sizes of the domains of a high statistical
influence of a certain heading component on retinal flow might also predict the sizes
of the receptive fields of heading sensitive neuron. Heading estimation from optic
flow is processed in the medial superior temporal (MST) brain area, which receives
most of the incoming information from motion-sensitive neurons in area MT and
which is widely accepted to process patterns of optic flow (Tanaka and Saito 1989;
Duffy and Wurtz 1991). The large receptive field of neurons in area MST are
therefore consistent with the large extend of the domains of a high statistical
influence of the azimuth and the elevation component of heading on retinal optic
flow, particularly in the periphery.

Our study was performed with human-like ego-motion. It is difficult to speculate
how the local statistics of retinal velocity will differ for other animals. The height of
the eyes above ground may quantitatively alter the statistics, particularly in the lower
visual field. However, Zanker and Zeil (2005) reported that the properties of motion
signal distributions in the upper visual do not change much with variation of the
height of the camera field. Many higher animals that live mostly on the ground, in
similar environments, and perform gaze-stabilization reflexes will qualitatively
encounter similar local statistics of optical flow. To what extend the statistics will
change quantitatively for different species is an interesting question for future work.
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