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Abstract—The prediction of human locomotion behavior is
a complex task based on data from the given environment and
the user. In this study, we trained multiple machine learning
models to investigate if data from contemporary virtual reality
hardware enables long- and short-term locomotion predictions.
To create our data set, 18 participants walked through a
virtual environment with different tasks. The recorded posi-
tional, orientation- and eye-tracking data was used to train
an LSTM model predicting the future walking target. We
distinguished between short-term predictions of 50ms and long-
term predictions of 2.5 seconds. Moreover, we evaluated GRUs,
sequence-to-sequence prediction, and Bayesian model weights.
Our results showed that the best short-term model was the
LSTM using positional and orientation data with a mean error
of 5.14 mm. The best long-term model was the LSTM using
positional, orientation and eye-tracking data with a mean error
of 65.73 cm. Gaze data offered the greatest predictive utility for
long-term predictions of short distances. Our findings indicate
that an LSTM model can be used to predict walking paths
in VR. Moreover, our results suggest that eye-tracking data
provides an advantage for this task.

Keywords-LSTM, Virtual Reality, Eye Tracking, Locomotion,
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I. INTRODUCTION

When we see people walk, we can infer their future
position from their current trajectory [1]. This ability is used
by animals and humans to avoid collisions in everyday life.
The same task has to be solved technically by hardware
that physically interacts with walking humans. The need to
improve driver assistance systems in cars has made accurate
predictions of pedestrian walking behavior a necessity [2]
and the anticipation of human actions, such as walking,
can also play a key role in the development of assistive
robots [3]. Additionally, locomotion prediction can be used
to expand highly immersive virtual reality (VR) applications,
in which complex environments can be explored by walking,
which has been shown to be perceived as natural and
presence-enhancing by users [4] and also allows them to
acquire spatial knowledge about the virtual environment
intuitively [5].

Various predicting methods for future trajectories have
been proposed in the past [e.g. 6, 7, 8]. A rather new
approach is the use of artificial neural networks. To process

sequential data, a common, if not the most established
method in this field is the use of recurrent neural networks
(RNNs). RNNs share parameters over a sequence instead
of treating every observation differently. Thus, if a piece
of information occurs at a slightly different point in the
sequence, it is not offset against the weights of a completely
different parameter. Therefore, RNNs have been used for the
purpose of human motion prediction in different contexts
[e.g. 9, 10, 11, 12, 13]. A common RNN approach is the us-
age of Long Short-Term Memory networks (LSTM). LSTMs
were first introduced by Hochreiter and Schmidhuber [14]
and have already been used to predict the user position after
1 second based on sequential position and orientation data
[15]. The same approach has also been used to create a
controller model for redirected walking [16], a technique in
which VR users paths can be imperceptibly manipulated to
make maximum use of the given physical space [17, 18, 19].

Deep learning has also been used to predict eye-related
parameters such as pupil diameter and fixation targets [e.g.
20, 21, 22]. Typically, these analyses were focusing on
the analysis of the visual stimuli shown to user and thus
either used Convolutional Neural Network (CNN) [e.g. 23]
or combinations of CNN and RNN features [e.g. 24, 25, 26].
However, Cornia et al. [27] used the aforementioned LSTM
architecture to predict so-called saliency maps for specific
points in time, estimating the most likely fixation targets of
a subject. Instead of using environmental information (such
as the structure of the scene) to train a model, it is also
possible to base the analysis on the subjects behavior, which
allows applying the same model on other environments that
do not share the spatial arrangement of the data collection
experiment.

In 2016 Zank & Kunz used eye tracking to develop an
algorithm to predict one of two locomotion targets, assuming
that gaze behavior precedes the direction of human walking
[28]. Indeed, there is a body of evidence supporting this
notion [e.g. 29, 30, 31, 32, 33]. Wiener et al. [34] even
went a step further and concluded that action preparation
requires a change of attention, accompanied by a change
of gaze direction, when the decision-relevant information
was dissociated from the required direction of movement.
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Accordingly, the findings by Zank & Kunz indicated that
their predictions based on gaze data were superior in some
cases. While rough long-term predictions as well as accurate
short-term predictions were possible without the addition of
eye-tracking data, it was valuable for long-term predictions
in a narrow environment [28]. Short-term predictions are
useful in VR to calculate the most likely configuration of the
body in the scene for the next couple of frames, which can be
useful to reduce wasting resources when e.g. streaming high-
resolution VR content [see 35]. Long-term predictions can
be used to estimate the intention of the actor and therefore
could enhance applications such as collision-avoidance and
redirected walking.

In this study, we created a machine learning locomotion
path prediction model using VR position, orientation, and
eye-tracking data. We examined the influence of the different
features on prediction performance and were especially in-
terested in a comparison of the use of this data for short-term
(several frames) vs long-term (several seconds) predictions.

II. DATA ACQUISITION

Our data was obtained from a VR experiment in which
18 participants completed a set of natural locomotion tasks
which were designed to include typical behaviors, such as
searching for a target object, walking along a curve and
avoiding obstacles. To promote natural walking behavior
subjects were given verbal task instructions instead of de-
fined walking paths. All raw data files are freely available
from https://osf.io/b43uv/.

A. Procedure

The virtual environment consisted of two rooms linked
by a corridor. The rooms contained target objects, which
the participant had to search for. In one room the target
was placed among six identical looking distractors (see
Figure 1a), so that the participant had to perform a search
amongst distractors by walking freely between them until
she found the target. The other room had four different
conditions: obstacle centered, obstacle 30cm to the left,
obstacle 30cm to the right and no obstacle. In that room,
the participants first positioned themselves in front of a red
button. Pushing the button with the controller made the
button disappear, and the target and the obstacle appear.
The distance between button and target was 4 meters. The
obstacle was placed in the middle between the button and
the target (see Figure 1b). The participant repeated this task
four times for each visit to this room, each time with new
start positions, targets and obstacles. The participant changed
between rooms by walking through a transition corridor. The
corridor followed a curve with a radius of 5.5 m. Subjects
completed a total of 10 trials in each room. Thus, since
the participants went back and forth between the rooms,
nine left curves and ten right curves were obtained for
each subject. The two rooms were mapped onto the same

physical space (impossible spaces scenario) [36]. Whenever
the subject moved through the transition corridor to the
door on the other side, an entry to the room opened on
the other side and the interior changed. This was done
for practical, not experiment-related reasons. During the
experiment, all positional tracking data was Kalman filtered
[37]. Before testing, subjects were informed about the tasks
and were instructed to keep a natural walking speed during
the data collection. On average, subjects needed 14 minutes
to complete the experiment.

(a)

(b)

(c)

Figure 1: (a) Search task. The room contained seven posts (2 m apart from each other,
five posts are visible in this figure) which the user had to inspect to find the target
among them. (b) Obstacle avoidance task. In this room the user had to walk from a
starting location (red button) to a target post (as in the room above) while avoiding an
obstacle (chair). The obstacle and the target were not visible at the beginning. Pushing
the red button showed the target and the obstacle. (c) The two rooms were linked by
a corridor, in which the user had to walk along a curved path from one room to the
other. The corridor is shown from a bird’s eye view.

B. Participants

18 subjects (8 female) completed the experiment. The
subjects’ ages ranged from 20 to 47 years (M = 27, SD =
6.34). Participants gave informed written consent and the
experimental procedures were approved by the Ethics Com-
mittee of the University Münster. Two authors participated



in the experiment. All other observers were naı̈ve to the
purpose of the experiment.

C. Materials

The virtual environment was presented on an HTC Vive
Pro Eye with a resolution of 1440×1600 pixels per eye, a
frame rate of 90 Hz and a field of view of 110 degrees.
Six Vive Lighthouses 2.0 were used to create a tracking
area of 6×11 m. The experiment was built with Unity3D
and was running on an MSI GE63VR 7RF Raider notebook
with an NVIDIA GTX1070 graphics card in a backpack. A
Vive tracker was attached to the backpack to measure body
orientation independently of the HMD. A Vive controller
was used as the input device. Throughout the experiment,
positional and orientation data from all trackers, as well as
the outputs from the integrated eye tracker, were recorded.

III. PREDICTION MODEL

A. Data Preparation

For the predictive models, the data was divided into 50-
millisecond bins. At a sampling rate just below 90Hz, one
bin corresponded to about four frames in the raw data. To
form the models’ inputs, sequences containing the data at
the current timestamp (the time at which the prediction is
calculated) and the data of some immediately preceding
timestamps were then constructed. The length of the input
was set to 2.5 seconds. With a resolution of 50ms per sample
point, this corresponds to a sequence of 50 samples per
input. To compensate for asymmetries in the spatial design
of the experiment, every second sequence was mirrored on
the XZ-plane.

Due to blinking and the nature of mobile eye trackers,
the eye-tracking system was the sensor most susceptible
to missing values. To deal with blinks, a single missing
value in the eye-tracking data was filled using linear ex-
trapolation based on the previous 3 frames. Data sequences
with multiple subsequently missing values were excluded.
Additionally, data containing prolonged standing (e.g. at the
beginning of the experiment) in the HMD tracking data was
excluded using a threshold of 0.15 m/s.

The positional data was output for both the HMD
(XH

t , Y
H
t , ZH

t ) and the body tracker (XB
t , Y

B
t , ZB

t ). To
reduce the complexity of the model, the Y-coordinate (el-
evation) was removed by projecting the three-dimensional
coordinate system of the tracking area to a two-dimensional
coordinate system (XB

t , Z
B
t ).

In addition to the position recordings of the room tracking,
orientation data provided by the inertial measuring units
(IMU) was also included in the models. All orientations are
denoted as intrinsic Euler angles roll (Φ), pitch (Θ) and
yaw (Ψ). Both the orientation of the HMD (ΦH

t ,Θ
H
t ,Ψ

H
t )

and the orientation of the body tracker (ΦB
t ,Θ

B
t ,Ψ

B
t ) were

recorded.

Lastly, the outputs of the Vive Pro Eye’s integrated eye
tracker were obtained as yaw and pitch angles (ΨE

t−i,Θ
E
t−i).

1) Features: All in all 7 features were selected. In
addition to the two-dimensional head velocity (~Vt−i), yaw
and pitch of the HMD (ΨH

t−i,Θ
H
t−i) and gaze direction

(ΨE
t−i,Θ

E
t−i) as well as the yaw angle of the body tracker

(ΨB
t−i) were included.
The current two-dimensional velocity ~Vt−i was calculated

relative to the previous frame. By using velocities, the
information is independent of the coordinate system’s origin.

~Vt−i = (V X
t−i, V

Z
t−i) =

(XH
t−i −XH

t−i−1, Z
H
t−i − ZH

t−i−1)

50ms
(1)

In this equation, the i represents the respective array index
in the time sequence on which the input is based.

2) Labels: The direction vector ~Ft from the current
position at time t to the future position at time t+n was
chosen as prediction target. To cover the different aspects
of path prediction, we specified two time intervals and
evaluated both of them. The time interval for the long-term
prediction was set to 2.5 seconds, mirroring the input length.
Regarding the short-term prediction, we used the next step
of the time sequence (50 ms).

~Ft = (FX
t , F

Z
t ) = (XH

t+n −XH
t , Z

H
t+n − ZH

t ) (2)

3) Coordinate Systems: Even though ~Ft and ~Vt depend
on the previous positions and are therefore independent of
the origin position of the coordinate system, both features
and labels are still in a coordinate system defined by the
axes of the virtual environment. This is undesirable, since
it cannot be assumed that movements are distributed evenly
across directions. In fact, the environmental architecture is
likely to produce certain movement patterns associated with
certain directions (e.g. the curves in the corridor). A major
problem with models based on global coordinate systems
like this is a lack of transferability of the same motion
patterns to other orientations and positions. Therefore, it is
necessary to use a relative coordinate system.

Since there is no reason to believe that a single input rep-
resentation is appropriate for both long-term and short-term
predictions, we present two different coordinate systems to
be able to select the most suitable one for each time interval.
In the following, values in the new coordinate systems will
be represented by lowercase letters (e.g. ψ, θ).

First, we evaluated a coordinate system using the average
head orientation of one sequence as a reference angle (Mean
Head Orientation Reference System).

Ψ̄R
t =

1

l

l∑
i=1

ΨH
t−i

Θ̄R
t =

1

l

l∑
i=1

ΘH
t−i

(3)



In this equation, l refers to the total number of timestamps in
the input. The reference angles were identical for all steps in
one time sequence and therefore provided a stable coordinate
system for each single input-output-pair. In the Mean Head
Orientation Reference System the features are expressed as:

ψH
t−i = ΨH

t−i − Ψ̄R
t

θHt−i = ΘH
t−i − Θ̄R

t

ψB
t−i = ΨB

t−i − Ψ̄R
t

ψE
t−i = ΨE

t−i + ψH
t−i

θEt−i = ΘE
t−i + θHt−i

(4)

Since the eye data is given in the coordinate system of the
HMD, it can be offset using the new HMD orientations.
Finally, the velocities and labels were transferred to the
Mean Head Orientation Reference System by point rotations:

vxt−i = cos(−Ψ̄R
t )V X

t−i − sin(−Ψ̄R
t )V Z

t−i

vzt−i = sin(−Ψ̄R
t )V X

t−i + cos(−Ψ̄R
t )V Z

t−i
(5)

fxt = cos(−Ψ̄R
t )FX

t − sin(−Ψ̄R
t )FZ

t

fzt = sin(−Ψ̄R
t )FX

t + cos(−Ψ̄R
t )FZ

t

(6)

In the second approach, the respective direction of move-
ment of the previous step was used as a dynamic reference
angle (Translational Motion Reference System). Accord-
ingly, the last directions of movement were then used as
labels. This means that the original pitch angles were pre-
served. Since the virtual environment’s global Y-axis refers
to the gravity axis and not to an arbitrary positioning, this
is not a problem. In contrast to the Mean Head Orientation
References, the reference angle differed at each index.

ΨR
t−i = 6 (

−−−−→
Vt−i−1,

(
0
1

)
) (7)

Labels and features were expressed as:

ψH
t−i = ΨH

t−i −ΨR
t−i

θHt−i = ΘH
t−i

ψB
t−i = ΨB

t−i −ΨR
t−i

ψE
t−i = ΨE

t−i + ψH
t−i

θEt−i = ΘE
t−i + θHt−i

(8)

vxt−i = cos(−ΨR
t−i)V

X
t−i − sin(−ΨR

t−i)V
Z
t−i

vzt−i = sin(−ΨR
t−i)V

X
t−i + cos(−ΨR

t−i)V
Z
t−i

(9)

fxt = cos(−ΨR
t+1)FX

t − sin(−ΨR
t+1)FZ

t

fzt = sin(−ΨR
t+1)FX

t + cos(−ΨR
t+1)FZ

t

(10)

Both coordinate systems were used for models with all
features. The coordinate system resulting in the lowest error
was then chosen and used for further variations of the model
(e.g. fewer features).

B. Model Properties

Our LSTM model had two layers of 64 hidden units
each. The output of the second LSTM layer went through a
dropout layer (p = 0.3) [38] resulting in the final linear dense
layer with two outputs - one for each label coordinate. In
total, the model with all features had 51,586 trainable param-
eters and used adam as the optimizer [39]. The learning rate
was set to 0.003 and to prevent overfitting, a weight decay of
1× 10−4 was applied. The model was trained for 20 epochs
using a batch size of 64 and the mean squared error between
predicted and label position as the loss function. Then the
epoch with the lowest validation error was selected.

To obtain a single value on the meter scale, the mean
displacement error (mde) between the true values (labels)
and the predictions, i.e. the Euclidean distances between the
two-dimensional points, was calculated.

First, we created a full model that included all seven
features presented in the data preparation. The full model
was used to determine the most appropriate coordinate
system for both the long-term and short-term analyses as
it contained all the information. To evaluate the effects of
eye-tracking and IMU data, models without these features
were added.

In order to obtain a more detailed picture, we also
assessed variants of the long-term full model. To assess
the contribution of the specific characteristics of the LSTM
architecture, we also report a model that uses gated recurrent
units (GRUs). Introduced by Cho et al. [40], GRUs are
another RNN variant that is similar to the LSTM architec-
ture but reduces the number of parameters. This leads to
lower computational costs. GRUs have been utilized in path
prediction contexts [41].

Additionally, a widely used approach in sequential fore-
casting is the prediction of an entire sequence. If sequential
predictions were as accurate as single-value predictions, a
detailed path could be obtained in place of the future position
prediction. We evaluated this option as well by creating a
variation of the model that, with an otherwise equivalent
architecture, predicts a sequence of 50 position vectors. The
labels consisted of a series of vectors that, like ~Vt , always
contained the information from one step to the next. The
loss function was adjusted accordingly to form the mean
squared error between the predicted path at step i and the
actual path. The learning rate was lowered to 0.001.

Furthermore, we also created a Bayesian version of the
long-term prediction model. Bayesian methods can be used
in an attempt to account for uncertainty and thus make
more accurate predictions while at the same time calcu-
lating an error associated with the specific prediction. In
this approach, distributions of weight parameters replace
deterministic weights. Our Bayesian network was built with
a library by Esposito [42], which is based on the ’Bayes by
Backprop’ approach introduced by Blundell et al. [43].



The Kullback-Leibler divergence between the model pos-
terior and the observed posterior was added to the loss
function. Apart from replacing the deterministic weights,
the architecture of the model was kept the same. The
hyperparameters were also retained with the exception of
the weight decay, which had to be removed as it affects
distributions differently than deterministic weights. Standard
normal distributions were used as prior distributions.

Figure 2: The model Architecture used for both short-term and long-term predictions.
7 features in 50 time steps enter the model. The circles represent this input. The
following 4 rows marked with squares form the 4 layers of the model. The final
dense layer outputs the prediction result.

C. Evaluation

1) Cross-Validation: To avoid overlapping input se-
quences in the training and test set and to ensure the
transferability of a model to new data, cross-validation
was implemented at group level. In this process, leave-3-
out-cross-validation was used. In each case, the data of
one subject was used as validation data and the data of
the remaining two as test data generating 6 variations of
the model in total. This ensured that the validation data,
which was used to evaluate different hyper-parameters, did
not factor into the final results. Before training, features
and labels were z-standardized. To fit the scalers, only the
training set was used while all data was adjusted with these
scalers.

2) Statistical Significance: Using this cross-validation
approach, individual prediction errors were calculated for
each subject and test set. Moreover, to decide whether a
model outperforms a reference model (e.g. the benchmark
or a model with fewer features), a significance test provides
more information than a mere comparison of average errors.

The results of two cross-validated models are based on
the exact same data. Hence, the data is paired. Nadeau and
Bengio [44] proposed a method to correct for the fact that
the individual results of the folds are not independent of
one another, since the training sets overlap. Therefore, we
used the paired t-test with the correction of Nadeau and
Bengio [44]. It should be mentioned that the results of these
significance tests need to be treated with caution. Bouckaert

and Frank [45] raised concerns about the replicability of
test methods like the one used here, which depend on
the partitioning of the data in the cross-validation process.
The alpha level was set to 0.05. The Benjamini-Hochberg
correction was applied to the p-values of a single paragraph
to avoid underestimation of the p-value due to multiple
testing [46]. All tests were two-sided and the assumption
of normally distributed data was tested with a Shapiro-Wilk
test beforehand [47].

3) Benchmarks: Since this data has never been evaluated
before, cross-validated benchmarks were calculated as a
reference. In addition to the mean value of the training data,
we used the most recent positions to create an extrapolation
benchmark. Yet this comparison is somewhat unfair, as the
extrapolation is based on much less data. Therefore, we gave
the exact same data into a linear model, in which the time
progression of the seven features was flattened - i. e., for
each of the 50 time steps, all seven features were used as
individual predictors. To evaluate our model, the mde of
the best LSTM model was compared to the best benchmark
model.

IV. RESULTS

A. Short-Term Predictions

For the short-term LSTM prediction the Translational
Motion Reference System gave a far better result with a
mean displacement error of 5.16 millimeters on average (the
absolute error was 2.91 mm; the squared error was 4.78
mm²) compared to the Mean Head Orientation Reference
System with 9.77 millimeters on average (the absolute error
was 5.95 mm; the squared error was 8.75 mm²). The former
gave a more accurate prediction for every subject. Thus,
the Translational Motion Reference System was used as the
coordinate system for all short-term prediction models and
benchmarks. Using this method, 151,943 input-output pairs
were obtained.

In 50 milliseconds, the observers traveled 3.59 cm on
average. The training mde was 5.17 millimeters for the full
model. The mde of the full model and the model without
eye data were almost identical with 5.16 mm and 5.14 mm
respectively. The mde of the model only using positional
data was also close with 5.29 mm. For the full model, the
null hypothesis that the data is normally distributed was
rejected (W = 0.75, p = 0.02). Moreover, testing an effect
of eye-tracking data would have been unnecessary since the
full model was not better than the model using positional
and IMU features. The difference between the model using
the two positional features and the model using positional
and IMU features failed to reach statistical significance
(t(5) = −1.93, p = 0.11). All in all, the errors of the LSTM
short-term models were quite similar.

Compared to all of the benchmark models, the LSTM
models provided better predictions for each of the 6 test sets
and each of the 12 subjects. The difference between the best



LSTM model and the best benchmark model (linear model)
reached statistical significance (t(5) = −8.73, p < 0.001).
Nevertheless, the linear model was only one millimeter
worse than the LSTM on average. Table I summarizes all
model results.

Table I: 50ms prediction

Model

Architecture Features mde sd

LSTM positional + IMU 5.14 mm 0.64 mm
LSTM all 5.16 mm 0.65 mm
LSTM positional 5.29 mm 0.70 mm
GRU all 5.33 mm 0.64 mm
Linear Model all 6.14 mm 0.82 mm
Interpolation positional 10.45 mm 1.91 mm
Mean - 16.51 mm 1.53 mm

B. Long-Term Predictions

For the long-term prediction, the Mean Head Orientation
Reference System proved superior with a mean displacement
error of 65.73 centimeters on average (the absolute error
was 41.74 cm; the squared error was 55.90 cm²) compared
to the Translational Motion Reference System with 68.85
centimeters (the absolute error was 43.87 cm; the squared
error was 58.49 cm²). The Mean Head Orientation Reference
System gave a more accurate prediction for each subject.
Thus, the Mean Head Orientation Reference System was
used as the coordinate system for all long-term prediction
models and benchmarks.

The 50-sample input sequences and prediction labels
formed 156,076 input-output pairs in total. The subjects
traveled a mean distance of 165.28 cm per output length
of 2.5 seconds. The average walking speed was 0.72 m/s.
For the full model, the training mde was 58.82 cm. While
the prediction using no eye data came in just behind the
full model (mde = 67.56 cm vs. mde = 65.73 cm), the
model using only position data falls off at 78.38 cm,
which was significantly lower than the full model (t(5) =
−6.99, p = 0.003) and the model using positional and IMU
features (t(5) = −4.92, p = 0.007). Although the difference
between the model using positional and IMU data and the
model also using eye data reached statistical significance
(t(5) = −3.01, p = 0.029), it has to be noted that the mde
in the full model is only 2.78% smaller. Given the size of
this difference, the aforementioned caution in interpreting
the significance tests is particularly important here.

Regarding the full model, the errors varied substantially.
On average, the top 25 % of the prediction errors were over
89.82 cm, including the top 10 % over 127.41 cm. While
the lowest 25 % of the prediction errors fell below 32.21cm,
including the lowest 10 % below 18.71cm on average ( see
Figure 3 for exemplary predictions). Further investigation
indicated that the gap between the models with and without
eye data was not evenly distributed over the length of the

(a) (b)

Figure 3: Example paths taken by the user and prediction derives from the model. a:
Tree paths where the prediction error (all features) was above the 25 % quantile but
below the 75 % quantile. b: Examples in which the prediction failed. The prediction
error (all features) was above the 75 % quantile.

Table II: 2.5s prediction

Model

Architecture Features mde sd

LSTM all 65.73 cm 5.12 cm
GRU all 66.17 cm 6.01 cm
LSTM positional + IMU 67.56 cm 5.46 cm
LSTM positional 78.38 cm 6.77 cm
Linear Model all 92.52 cm 8.09 cm
Interpolation positional 131.09 cm 16.16 cm
Mean - 144.72 cm 14.65 cm

predicted path (see Figure 4). At peak, between 50 and 60
cm, the difference reached 9.33% for the prediction of short
distances. We also found that beyond a distance of 1.5m,
the prediction error decreased in both models.

The difference between the best LSTM model and the
best benchmark model (linear model) reached statistical
significance (t(5) = −11.08, p < 0.001).

C. Model Variants

Between the LSTM and GRU architectures, no significant
difference could be found for both long-term predictions
(t(5) = −0.73, p = .50) and short-term predictions (t(5) =
−1.13, p = .31). Thus, it is quite a comparable model. For
the sequence-to-sequence approach, 117,254 input-output
pairs were obtained. At 77.65cm, the error at the last position
was significantly larger compared to a model only predicting
the final position (t(5) = −16.68, p < 0.001). When
testing the Bayesian model, 10 predictions were sampled
per input. Although the model performed better than the full
model (65.19 cm), the improvement failed to reach statistical
significance (t(5) = 0.81, p = 0.45). Table II summarizes
all model results.



Figure 4: The mdes of models using different sets of features as a function of the
distance that the user walked during the 2.5 s used as label data. Line transparency
indicates the number of observations that factored into this data point.

V. DISCUSSION

In this study we presented trajectory prediction models
trained on free locomotion data obtained in a real-walking
VR setup. We compared prediction quality of different
models using different timescales, different sets of features,
and different coordinate systems. We will first discuss the
models and the limitations of the data and then discuss
features and coordinate systems.

An LSTM model was able to provide successful pre-
diction of future positions and was able to outperform all
of our benchmark models. This was especially noticeable
in long-term predictions of position after 2.5s. For short-
term predictions of the next 50 ms, the LSTM model
outperformed the benchmark models only slightly. However,
the results of the full feature GRU model indicate that a more
cost-efficient architecture might be sufficient.

The Bayesian model could not significantly outperform
its deterministic counterpart. Thus, although the Bayesian
model determined the average over 10 independent runs,
these multiple predictions did not improve the estimate.
For future applications, it may be possible to reduce the
prediction error by applying a moving average to a time
series of predictions while walking.

The low computation time of the finished models on
current hardware allows their usage in different online appli-
cations. For example, short-term prediction of the position
of a user in the next couple of frames could be used
to enhance techniques that reduce the resolution or level
of detail of streamed VR content [e.g. 35]. By including
locomotion estimation, these methods could also be used
for immersive environments that allow real walking. Online
long-term prediction could be helpful for early detection of
potential collisions and thus in collision avoidance. It could

also be useful for optimizing redirected walking algorithms
in VR. With a prediction error of 65.73 cm, the model is
not exact, but an estimate accurate to the centimeter is not
necessary for redirected walking.

Regarding the set of features of the 2.5 second prediction,
the results suggest that IMU data is a useful addition to the
positional data for the prediction. This fits with previous
observations regarding the relationship of head and trunk
orientation during locomotion steering [48]. Additionally,
eye-tracking data provided a small but significant benefit in
predicting walking paths. The notion that the addition of eye
data can improve predictions is also in accordance with pre-
vious findings [28]. Notably, our findings indicate that eye
data offers the greatest predictive utility over short walking
distances (see Figure 4), or slow movements, respectively.
One reason for this result could be that subjects used their
gaze to plan their foot placement [see 33]. However, it is also
possible that gaze data contained valid information regarding
stopping or search behavior at slow velocities. Figure 4
also shows that longer trajectories (beyond 1.5m) based on
a faster walking pace led to lower prediction errors. One
explanation could be that longer trajectories were less bent
and therefore only the walking distance was needed to be
estimated. To estimate path bending, we divided each path
into two segments of equal duration and determined the
absolute angle between the start and ending positions of each
segment (0 degree for a straight path, higher values for more
bending). Indeed, for paths longer than 0.5 m, the distance
traveled in the labels correlates with bending at r = −0.442
on average.

We also compared two types of coordinate systems, one
based on mean head orientation, the other based on the
current direction of motion. The evaluation showed that the
different coordinate systems were differently suited to the
two prediction time periods. The Mean Head Orientation
Reference System led to better predictions for the long-term
prediction, while the Translational Motion Reference System
achieved lower errors in the short-term LSTM prediction.
Although the information was basically the same in the two
reference systems, since both used the same set of base
features, some transformations are necessary to transform
the data from one coordinate system to the other. Using a
model with more interconnections and many layers, capable
of such transformations is possible. However, to prevent
overfitting, creating an appropriate coordinate system during
preprocessing is a more effective approach. Based on our
results, it seems beneficial to use a motion-based reference
when predicting positions for the next few frames. A head
orientation based reference seems better when estimating
long-term positions. One explanation for this difference
might be that for short-term prediction the motion direction
of the user is basically constant and changes only little. Thus,
a reference system based on current motion will provide only
small deviations and hence allows efficient prediction. For



long-term predictions, motion directions are likely to change
as the user turns within the room and a reference system
based on the orientation of the user is better suited.

The features we used for our prediction models are
features of the users’ locomotion and orientation of the
body and eyes. These are all egocentric features and do not
contain information from the environment. While one might
expect that the addition of environmental features would
improve the prediction ability of our models, we purpose-
fully restricted our analysis to the egocentric features since
we aimed to produce a system that can predict locomotion
in any environment in a general way. The different tasks
(searching for a target, walking along a curve and avoiding
obstacles) were designed to include multiple typical, natural
behaviors. Since our model does not use the layout of the
environment, it can be applied to other VR and even non-
VR environments (given accurate measurements of the input
features). However, we can assume that certain movements
are represented disproportionately often in our data set,
which diminishes the transferability of the model. This needs
to be studied in more detail in the future. Another focus of
future work could be the addition of moving objects, such as
walking avatars, that would likely elicit distinct interactions
with eye movements.

VI. CONCLUSION

We presented a report on deep learning trajectory predic-
tion using position, orientation, and eye-tracking data. It is
a cross-validated implementation which uses IMU data and
specifically targets VR contexts. We showed how a model
using the LSTM architecture can be used to predict walking
paths in VR. Moreover, our results suggest that eye-tracking
data provides an advantage for this task, especially regarding
short distances in long-term predictions.
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