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1 Introduction

Coating objects with thin films of a certain material is ubiquitous nowadays,
covering a wide range of applications like lens coatings that improve reflec-
tion properties [MKS+12] or coatings that enhance the rigidity and durability
[RL07]. The definition of thin in thin films is hard to give as the term is used
for films with a thickness of a few microns as well as for films with just a few
nanometers. While the upper boundary for the thickness of thin films is quite
fuzzy, the lower boundary can be defined precisely because the minimal thick-
ness of a film is determined by the size of a single molecule of its constituents.
In literature, the term thin film is mostly used for films, where the thickness is
small compared to the length scale at which lateral variations occur [ODB97].
If the thickness of a film corresponds to one molecular layer, it is referred to as
a monolayer. The actual thickness of monolayers varies greatly with the actual
material, ranging from just a few ångström up to a few tens of nanometers
[GK97].

A common method to produce and transfer monolayers is the so-called Lang-
muir-Blodgett transfer [Rob90]. The name refers to Irving Langmuir (1881–
1957), an American chemist and physicist, and his coworker at General Electric,
Katherine Burr Blodgett (1898–1979), also a physicist. Their work based upon
techniques developed by Agnes Pockels (1862–1935) who did experiments on
surfaces of liquids [Poc91]. Among others, she studied the influence of solutes
and surface acting agents (also referred to as surfactants) on the surface tension
of water with a self-designed apparatus, today called Pockels trough [Poc93].
Langmuir and Blodgett developed it further to the so-called Langmuir-Blodgett
trough which can be used to prepare and transfer monolayers [Blo34, Lan34,
Blo35].

The first step in Langmuir-Blodgett transfer is the preparation of a monolayer
of the molecules to be transferred on a liquid bath. This can be easily achieved
for amphiphilic substances like, e.g., the pulmonary surfactant dipalmitoylphos-
phatidylcholine (DPPC), of which the chemical structure is shown in Fig. 1.1.

Such substances consist of molecules that have hydrophilic as well as hy-
drophobic (or lipophilic) parts. In the case of DPPC the molecules have one
polar hydrophilic head and a hydrophobic tail consisting of long nonpolar hydro-
carbon chains. When brought into contact with a water surface, the molecules
try to arrange themselves in a way that their hydrophobic tails point away from
the water surface in order to minimize their energetic state. This automatically
leads to the formation of a monolayer of the surfactant on the water surface. In
this case, the surfactant is confined to the water surface and therefore consti-
tutes a truly two-dimensional system. Depending on exterior parameters, the
monolayer can be in different states that especially vary in their density and the
way the nonpolar tails of the molecules are arranged. Besides a gaseous state,
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Figure 1.1: Chemical structure of the pulmonary surfactant dipalmitoylphos-
phatidylcholine (DPPC). The molecules posses a polar, hydrophilic head (left
side) and a nonpolar, hydrophobic tail (right side).

different liquid states exist that vary in the mean distance between the molecules
and whether the nonpolar tails of the molecules are aligned. This is only true
for the liquid-condensed (LC) phase, in contrast to the liquid-expanded (LE)
phase. Both states are illustrated in Fig. 1.2. In a Langmuir-Blodgett trough,
movable barriers can be used to control the area of the water surface that is
accessible for the surfactant film. In this way, also the phase of the film can be
controlled.

substrate

substrate

substrate

LC-phase

LE-phase

LE/LC-phase

(a)

(b)

(c)

Figure 1.2: Illustration of the phases occurring in Langmuir-Blodgett trans-
fer: (a) liquid-expanded (LE) and (b) liquid-condensed (LC), as well as (c)
alternating domains in the LE and LC phase.

After the monolayer is prepared, it can be transferred to a substrate by simply
drawing the substrate out of the trough. A sketch of a Langmuir-Blodgett
trough and the transfer process is depicted in Fig. 1.3. During the transfer, the
barriers need to be permanently adjusted to ensure a constant density of the
monolayer. Remarkably, the monolayer is not necessarily transferred as it has
been prepared on the liquid surface, but can also undergo a phase transition, for
example from a LE phase on the water surface to a LC phase on the substrate.
This happens due to an effect called substrate-mediated condensation (SMC).
This effect describes a short-range interaction between the monolayer and the
substrate that is negligible for thick water layers, but has significant influence
on the thermodynamics of the monolayer as the water layer vanishes during the
transfer process [RS92]. The SMC reduces the value of the free energy of the LC
phase and therefore favors the condensation of the monolayer. It is a remarkable
fact that this condensation does not necessarily occur uniformly in space and

2



su
bs
tr
at
e

ba
rr
ie
r

ba
rr
ie
r

Figure 1.3: Illustration of a Langmuir-Blodgett trough used for Langmuir-
Blodgett transfer. The movable barriers can be used to control the density as
well as the phase of the surfactant film.

time, but may lead to the transfer of complex patterns of different phases.
Figure 1.4 shows images made with atomic force microscopy that exhibit the
patterns arising during Langmuir-Blodgett transfer of DPPC. Depending on the
transfer velocity, the stripes are parallel or perpendicular to the pull-direction
(depicted by the white arrows in Fig. 1.4). The width of the stripes is of a
few hundred nanometers and is uniform over macroscopic areas of several cm2

[CLH+07]. Hence, by one simple transfer process one is able to produce patterns
with hundreds of thousands of perfectly aligned stripes.

Figure 1.4: AFM images of occurring patterns of DPPC in the liquid-
condensed and liquid-expanded phase after Langmuir-Blodgett transfer at dif-
ferent transfer velocities: a) 60 mm/min, b) 40 mm/min, c) 10 mm/min. The
white arrows depict the transfer direction, the scale of the axes are microns.
Taken from [CLH+07].

Recently, Köpf et al. have developed a model which is able to reproduce the
experimental findings of pattern formation phenomena in Langmuir-Blodgett
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transfer and can be used to investigate this process from a theoretical point of
view [KGF09, KGFC10, Köp11]. The model couples the dynamics of a thin
fluid layer with the thermodynamics of the monolayer in the vicinity of the
LE/LC phase transition.

The dynamics of the thin fluid layer can be approximately described by the
Navier-Stokes equation in the so-called lubrication approximation [ODB97].
This approximation holds true for fluid layers with a thickness that is small
compared to the characteristic wave length of variations in lateral direction,
which is the case for the water layer in the vicinity of the air-water-substrate
contact line.

The thermodynamics of the monolayer is modeled with a Cahn-Hilliard type
free energy in the vicinity of a phase transition. The coupling between the
monolayer and the water layer mainly occurs due to two effects. On the one
hand, the monolayer influences the surface tension of the fluid layer, depending
on the local concentration of the monolayer. On the other hand, as mentioned
above, the monolayer is subject to substrate-mediated condensation that is
strongly dependent on the distance between the substrate and the monolayer,
and therefore strongly dependent on the height profile of the water layer. We
will skip the precise derivation of the model and refer the interested reader
to [Köp11]. Taking all the aforementioned effects into account, the evolution
equations for the height of the water layer H(x, T ) and the density of the
monolayer Γ(x, T ) have been obtained,

∂

∂T
H =−∇ ·

H3

3
∇
{(

1− ε2Phom

)
∆H −Π

}︸ ︷︷ ︸
generalized pressure gradient

+
H2

2

(
ε−2Γ∇∆Γ−∇Phom

)
︸ ︷︷ ︸

Marangoni forces

− HV︸︷︷︸
advection

+ Q︸︷︷︸
sink

, (1.1)

∂

∂T
Γ =−∇ ·

ΓH2

2
∇
{(

1− ε2Phom

)
∆H −Π

}︸ ︷︷ ︸
generalized pressure gradient

+ ΓH
(
ε−2Γ∇∆Γ−∇Phom

)︸ ︷︷ ︸
Marangoni forces

− ΓV︸︷︷︸
advection

+ I︸︷︷︸
diff. flux

 . (1.2)

Here, the spatial vector x = (X,Y ) is in general two-dimensional. The first
component X is chosen to be in the direction of the pull process.

Both equations include contributions from a generalized pressure gradient,
Marangoni forces occurring due to surface tension gradients, advection terms
accounting for the pulling during the transfer process, and source or sink terms
incorporating evaporation as well as diffusive flux of the surfactant layer. The
generalized pressure comprises contributions arising in the case of homogeneous
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liquid layers without any surfactants. Phom denotes this pressure apparent in a
homogeneous situation and ε is a parameter of smallness originating from the
lubrication approximation. Besides the Laplace pressure term ∝ ∆H, the gen-
eralized pressure comprises the so-called disjoining pressure Π(H), that includes
the substrate-mediated condensation. The specific shape of Π(H) is not known
in general up to date. Usually, combinations of short range and long range
interactions with different signs are used in this context, e.g., Lennard-Jones
potentials [ODB97].

The ability of surfactants to change the surface tension of the underlying
liquid introduces the possibility for the surface tension to be spatially varying
with the concentration of the surfactant. Such a spatially inhomogeneous sur-
face tension leads to forces called Marangoni forces that create an important
coupling between the thermodynamics of the surfactant layer and the dynamics
of the fluid.

In order to model the transfer process with Eqs. (1.1)-(1.2), two choices of
a coordinate system are conceivable: a coordinate system that is at rest in
relation to the substrate being pulled out the trough, or one that is at rest
in relation to the trough and laboratory system. This choice determines what
boundary conditions must be applied at the boundary of the simulation domain
and whether an advection term has to be added to the equations. For Eqs. (1.1)-
(1.2), the coordinate system is chosen to be at rest in relation to the trough,
which necessitates the presence of the advection terms with the transfer velocity
V in both equations. In addition, the presence of the trough ensures a constant
height H0 of the water layer and a constant surfactant density Γ0 at the lower
boundary (X = 0) of the simulation domain. At the upper boundary (X = L),
non-reflective boundary conditions would be an ideal choice but are hard to
implement for such equations. Easier to implement and also well-suited for this
application are vanishing first- and second-order derivatives with respect to X
of both fields H(X,T ) and Γ(X,T ) at the upper boundary, that have proven
to be nearly non-reflective. Thus, the boundary conditions read

Γ|X=0 = Γ0,
∂2Γ

∂X2

∣∣∣∣
X=0

= 0,
∂Γ

∂X

∣∣∣∣
X=L

= 0,
∂2Γ

∂X2

∣∣∣∣
X=L

= 0, (1.3)

H|X=0 = H0,
∂2H

∂X2

∣∣∣∣
X=0

= 0,
∂H

∂X

∣∣∣∣
X=L

= 0,
∂2H

∂X2

∣∣∣∣
X=L

= 0. (1.4)

For two-dimensional simulations, periodic boundary conditions are applied for
the Y -direction.

This model has been successful in reproducing experimental findings of pat-
tern formation phenomena in Langmuir Blodgett transfer [KGFC10] and to
predict up to then not investigated behavior like synchronization with pre-
structured substrates [KGF11]. However, this two-component model is quite
complicated. Additionally, Köpf et al. [Köp11] noticed that temporal changes
of the height profile H(X,T ) of the water nearly vanished and therefore the
meniscus remained almost static during the transfer process. As further evi-
dence to this fact, the meniscus can be manually frozen during the simulations,
without influencing the transfer and patterning process significantly [Köp11].
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This led to the assumption that a more simplified model should also be able to
reproduce the experimental findings, while allowing for extended mathematical
treatments to investigate it in more detail due to a less complex mathematical
structure [KGFT12].

The first step toward a simplified model is to use the fact that the meniscus
shape remains almost static and therefore to set ∂H

∂T = 0. Hence, the first Eq.
(1.1) shows no more dynamics and only defines the shape of the static menis-
cus, which will enter the second Eq. (1.2) merely parametrically. A further
investigation of Eq. (1.2) reveals that a static meniscus minimizes the contri-
butions of the generalized pressure gradient. This means that this term can be
approximately neglected in comparison to the other contributions. Therefore,
one is then left with the equation

∂

∂T
Γ = −∇ ·

ΓH
(
ε−2Γ∇∆Γ−∇Phom

)︸ ︷︷ ︸
Marangoni forces

− ΓV︸︷︷︸
advection

+ I︸︷︷︸
diff. flux

 . (1.5)

Omitting the diffusive flux I because of its minor influence [Köp11], Eq. (1.5)
can be rewritten to

∂

∂T
Γ = −∇ ·

[
−ΓHε−2∇

(
Γ∆Γ− 1

2
(∇Γ)2 + ε2Phom

)]
+ V · ∇Γ. (1.6)

Equation (1.6) possesses the form of a generalized Cahn-Hilliard equation that
will be discussed in the next chapter. This reduced model has proven to still be
able to reproduce experimental findings as well as to be more easy to treat from
a mathematical point of view [Köp11, KGFT12]. Therefore, we investigate this
reduced Cahn-Hilliard model in detail during this thesis.

This thesis is organized as follows:
Chapter 2 contains a derivation of the Cahn-Hilliard model that is used to

model pattern formation phenomena during Langmuir-Blodgett transfer. The
main concepts of spinodal decomposition, which are the basis for Cahn-Hilliard
models, are discussed here, as well as all the effects that are incorporated in
our model, like the ansatz for the free energy of the monolayer in the vicinity of
the LE/LC phase transition, energetic boundary layer contributions, and SMC.
Because even the reduced Cahn-Hilliard model cannot be solved analytically,
numerical treatments of the underlying equations have to be used. The tech-
niques needed, including Runge-Kutta time stepping methods, finite difference
methods and the implementation on modern graphics processors, are presented
in chapter 3. In chapter 4, the model is applied to the case of transfer onto
homogeneous substrates. Properties of the occurring patterns in one and two
dimensions are discussed in dependence of experimental parameters like the
transfer velocity. In addition, a novel approach to produce gradient structures,
Langmuir-Blodgett rotating transfer, is examined with simulations. Besides ho-
mogeneous substrates, also the transfer onto substrates that have some kind of
prestructure is discussed in chapter 5. As it is shown there, prestructures can
be used to control the patterning process during the transfer via the occurrence
of synchronization phenomena. Chapter 6 provides a linear stability analysis
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for solutions of the model. They are used to gain more insights in the origin of
the patterning process. In addition, the emergence of stripe patterns of differ-
ent orientations in two-dimensional systems is investigated. The last chapter 7
contains a summary of the whole thesis and raises some possible questions for
future research.
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2 Model

Cahn-Hilliard models are in general able to describe binary mixtures in the
framework of spinodal decomposition. Therefore, a short introduction to spin-
odal decomposition will be given here, followed by a derivation of the model
equations for Langmuir-Blodgett transfer that will be employed in the following.

2.1 Spinodal decomposition

The term spinodal decomposition occurs in the context of phase transitions. A
rather simple yet insight-generating system that can be utilized to explain the
basic concepts is the van der Waals equation. It is an extension to the ideal
gas equation with additional contributions to the pressure due to interactions
between the gas molecules as well as contributions to the available volume due
to the volume occupied by the gas molecules. The van der Waals equation reads
[Dem03] (

p+ a
n2

V 2

)
(V − nb) = nRT. (2.1)

Here, p denotes the pressure of a gas with n moles of molecules in a confined
volume V at a certain temperature T . R is the gas constant and a and b are gas
specific constants depending on the attraction between the molecules and the
volume excluded by them. A lot of gases are described well with this model,
for example carbon dioxide (CO2), with the values a = 3.65 · 106 bar·cm6

mol2
and

b = 42.5 cm3

mol [Dem03]. For a given temperature, Eq. (2.1) specifies a line in a
pressure vs. volume diagram, which is called an isotherm. Figure 2.1 shows such
a diagram with four isotherms for different temperatures. For temperatures
below a certain critical temperature Tcrit, the isotherms have a local minimum
and a local maximum, which necessitates a region where

∂p

∂V
> 0. (2.2)

This is physically impossible, as this means an infinitesimal decrease dV < 0
of the volume would lead to a decrease dp < 0 of the pressure, resulting in
an unphysical behavior of the system. This stems from the assumption of a
homogeneous phase in the derivation of the van der Waals equation, that does
not hold true below Tcrit. Therefore, a phase transition has to occur in the
region of positive ∂p

∂V . In this region, which is separated from the rest of the
phase diagram by the so-called spinodal, both phases coexist with a volume
share that can be calculated from the overall free energy of the system. This
process leading to the separation of phases is called spinodal decomposition.
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2.1 Spinodal decomposition
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Figure 2.1: Isotherms of carbon dioxide in a van der Waals gas model. From
top to bottom: T = 320 K (blue line), T = Tcrit ≈ 304 K (green line), T = 280 K
(red line), T = 260 K (blue line). The light gray area depicts the binodal region
and the dark gray area depicts the spinodal region.

However, it can be energetically advantageous for the system to separate
into different phases even outside the spinodal. This area can be found by the
famous Maxwell construction [Nol12], which continuously replaces a part of the
isotherm with a line of constant pressure pm. This pressure is chosen in a way
that ∫ Vb

Va

p(V )dV =

∫ Vb

Va

pmdV = pm(Vb − Va), (2.3)

where Va and Vb denote the left and right boundary between which the isotherm
is replaced by the line of constant pressure pm. This implies that the energy
needed to drive the system through the phase transition is not affected by the
Maxwell construction. The region where the Maxwell construction is possible
is separated from the rest of the p-V -plane by the so-called binodal. Inside
the binodal, but outside the spinodal, the system may, but does not have to
undergo a partial phase transition. Superheated fluids or subcooled gases are
experimentally realizable examples for systems inside the binodal, that are in
a homogeneous state, although their total energy would decrease if they were
not.

Binodal and spinodal of course meet, as soon as the minimum and maximum
of p(V ) merge at T = Tcrit in the so called critical point. Above this critical
point, no different phases can be distinguished.

Although this discussion treated a rather simple example, the basic principles
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2 Model

of phase transitions, binodals, spinodals etc. remain the same even for more
complex systems, as they will be considered in the following.

2.2 The Cahn-Hilliard equation

While the considerations above dealt with the question in what kind of state
(homogeneous or phase separated) a system is, we now want to describe the
system more detailed and especially want to investigate the process of spinodal
decomposition. This can be done with the Cahn-Hilliard equation. The deriva-
tion given here follows along the lines of [NCS84], to which we refer the reader
for more details.

We consider a binary mixture of the two components A and B. The local
density of the components is called cA(x, t) and cB(x, t), where x is a two
dimensional vector comprising x = (x, y). Each component has a corresponding
flux JA(x, t) and JB(x, t). The flux can in general be expressed as a function
of the mobility Mij from component i to component j and the gradients of the
chemical potentials µi of each component, with i = A,B,

JA = −MAA∇µA −MAB∇µB, (2.4)

JB = −MBA∇µA −MBB∇µB. (2.5)

Usually we are not interested in the absolute values of the densities and fluxes
of each component, but only in the relative ratio between them. Therefore, we
can rescale the sum of both densities to one and introduce a net flux. This
leaves us with only one density and one flux, namely

c(x, t) = cB(x, t) = 1− cA(x, t) and J = JB − JA. (2.6)

Inserting (2.4) and (2.5) into (2.6), one obtains

J = −MBA∇µA −MBB∇µB +MAA∇µA +MAB∇µB, (2.7)

which can be written more shortly using the Gibbs-Duhem relationship [Nol12]

(1− c)∇µA = −c∇µB. (2.8)

The expression for the flux then reads

J = −M∇(µB − µA), with (2.9)

M = (1− c)(MBB −MAB) + c(MAA −MBA). (2.10)

Now M denotes an effective mobility, that is in general dependent on the ra-
tio between the two components. According to classical thermodynamics, the
difference between two chemical potentials can be expressed by means of a
corresponding free energy per unit volume f(c),

µB − µA =
∂f(c)

∂c
. (2.11)

10



2.2 The Cahn-Hilliard equation

The Cahn Hilliard equation now follows directly from the assumption of mass
conservation:

∂

∂t
c(x, t) = −∇ · J = ∇ ·

(
M∇∂f(c)

∂c

)
. (2.12)

The main task remaining now is to find an appropriate expression for the free
energy f(c) that fits the experimental setting.

As the monolayer we want to model with this equation is prepared to be
in the vicinity of a phase transition, it seems reasonable to assume a double
well potential for the free energy. Probably the easiest expression for this is
a quartic polynomial with zero contributions from odd exponents of c, so the
potential is symmetric,

f(c) = a4c
4 + a2c

2. (2.13)

The coefficients a2 and a4 can be chosen according to the desired positions of
the local minima of the free energy, for example a4 = 1/4 and a2 = −1/2, which
means that c = ±1 correspond to states of minimal free energy.

2.2.1 Energetic boundary layer contributions

Up to now, no influence of boundary layers between regions of different c are
considered. A more realistic model should contain some kind of penalization for
the creation of more regions and boundaries to account for the accompanying
increase of entropy. This leads to considerations made first by Cahn and Hilliard
[CH58]. They derived an expression for a generalized free energy potential that
incorporates boundary contributions, which we want to derive here briefly, too.
We start with a generalization of the free energy that allows for taking into
account spatial inhomogeneities via an expansion of gradient terms:

f(c)→ f̂(c,∇c,∇2c, ...) = f(c)+L·∇c+J∇(∇c)+
1

2
K(∇c)(∇c)+h.o.t., (2.14)

where L is a vector and J and K are matrices containing coefficients for the
strength of penalization of boundaries. Because the system we want to describe
is isotropic, L, J and K must be isotropic, as well. This reduces L to zero and J
and K to multiples of Kronecker delta, which means there are only three terms
contributing up to second order, namely

f̂(c,∇c,∇2c, ...) = f(c) + J∇2c+
1

2
K(∇c)2 + h.o.t., (2.15)

where J and K are only scalars. It turns out, that also J has to vanish due
to arguments based on natural boundary conditions for the boundaries of the
whole volume V [NCS84]. This means there is only one contribution up to
second order of the ∇-operator, that we can incorporate into the Cahn-Hilliard
equation (2.12) via

∂f(c)

∂c
→ ∂f(c)

∂c
−K∆c. (2.16)
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substrate

LB trough

liquid
meniscus

pull direction

simulation
domain

y

x

Figure 2.2: Illustration of the position of the frame of reference that is chosen
for simulations of the Cahn-Hilliard model. x and y depict the spatial coor-
dinates. Compared to Fig. 1.3, the trough is turned by 90 degrees for this
illustration.

2.2.2 Frame of reference

As already mentioned in chapter 1, one has to chose a frame of reference, in
which the model should be applied to the experimental setting. Obviously two
choices are most reasonable, either the system considered is at rest relative
to the Langmuir-Blodgett trough and the laboratory, or the system is at rest
relative to the substrate that is pulled out of the trough. Throughout this
thesis we will stick with the first type of frame of reference, which is illustrated
in Fig. 2.2. This has two implications for the model.

First, as the substrate is pulled out of the trough, it imposes some kind of
force on the monolayer, so it gets pulled out too. In the model, this implies
that the field c(x) is subject to an advection. In Eq. (2.12) this can be achieved
by adding an advective term to the time derivative,

∂

∂t
c(x, t)→ ∂

∂t
c(x, t) + v · ∇c(x, t), (2.17)

where v is a vector specifying the direction and velocity of the pulling.

Second, the spatial region we can simulate with our model is of course limited.
That calls for boundary conditions specifying the behavior at the boundaries
of the simulation region. At the lower boundary where x = (x = 0, y) (see
Fig. 2.2 for an illustration of the notation of the coordinates), the substrate is
in contact with the liquid reservoir of the trough, which continuously supplies
molecules of the monolayer with a certain density. The density is kept constant
by moving the barriers that were shown in Fig. 1.3. For our model this implies
that the value of c is also held constant at the lower boundary. In addition, we

12



2.2 The Cahn-Hilliard equation

require the second derivative to vanish at the boundary,

c|x=0 = c0,
∂2

∂x2
c

∣∣∣∣
x=0

= 0. (2.18)

On the upper boundary (x = Lx), the boundary should be non-reflective ide-
ally, which means that every flux trough the boundary is not affected by the
boundary. Unfortunately, it is hard to formulate such boundary conditions for
the kind of equation we are dealing with. We can nevertheless easily formulate
boundary conditions, that are effectively non-reflective, which means their in-
fluence on the bulk of the simulation domain is limited to a small region around
the boundaries. In the simulations it is then possible to choose the simulation
domain larger than the region of interest, so that the effects of the boundaries
are negligible there. We will use vanishing first and second order derivatives at
the upper boundary leading to a smooth behavior at the boundary,

∂

∂x
c

∣∣∣∣
x=Lx

= 0,
∂2

∂x2
c

∣∣∣∣
x=Lx

= 0. (2.19)

Numerical simulations can be used to investigate the influence of the boundary
conditions by simply doing the same simulations on different domain sizes. In
the case of effectively non-reflective boundary conditions, the deviations of the
simulations should be well localized near the boundaries. This holds true for
(2.19).

The boundary conditions for the y-direction can be chosen to be periodically,
which means that the simulation domain is thought to be repeated in y-direction
up to infinity,

c(x, y = 0) = c(x, y = Ly). (2.20)

2.2.3 Substrate-mediated condensation (SMC)

-1.0

-0.5

0.0

0 10 20 30 40 50 60 70

ζ
(x

)

x

Figure 2.3: Plot of the assumed spatial dependence of the SMC ζ(x), with

ζ(x) = −1
2

(
1 + tanh

(
x−xs
ls

))
, and xs = 10, ls = 2.

Now we want to incorporate the effect of substrate-mediated condensation
into our model. As already discussed in chapter 1, SMC is a short range inter-
action between the substrate and the monolayer favoring the phase transition
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2 Model

of the monolayer into the LC phase. The effect becomes important as the liquid
layer separating the substrate and the monolayer vanishes. The SMC therefore
has a dependence on the liquid layer height. The height profile could be calcu-
lated as the stationary solutions of Eq. (1.1) of the full model. But it turns out
that only the qualitative shape of the height profile, that is, a smooth transition
from a fixed value at the lower boundary to a lower fixed value after the menis-
cus, is important for the patterning process. Hence, it can be simply described
by a hyperbolic tangent ζ(x) located at the meniscus. We now interpret the
SMC as a skewness of the free energy f(c) favoring the energetic well associated
with the LC phase in comparison to the one associated with the LE phase. This
can be achieved by adding a term linear in c and proportional to ζ(x) to the
free energy (2.13),

f(c, x) = −1

2
c2 +

1

4
c4 + µζ(x)c, ζ(x) = −1

2

(
1 + tanh

(
x− xs

ls

))
. (2.21)

Here µ is a coefficient that regulates the strength of the SMC, xs specifies
the position of the meniscus and the main step in the strength of the SMC,
and ls determines the steepness of the transition. The function ζ(x) is designed
in a way that it provides a smooth transition from 0 to −1. Unless specified
differently, µ = 0.5, xs = 10 and ls = 2 are used in this thesis. The graph of
ζ(x) is plotted in Fig. 2.3 and the resulting shape of the free energy f(c, x) is
illustrated in Fig. 2.4.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50
10

20
30

40
50

-1.0

0.0

1.0

2.0

f(c, x)

c

x

f(c, x)

Figure 2.4: Illustration of the free energy landscape f(c, x) = −1
2c

2 + 1
4c

4 +

µζ(x)c, with ζ(x) = −1
2

(
1 + tanh

(
x−xs
ls

))
, µ = 0.5, xs = 10 and ls = 2.
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2.2 The Cahn-Hilliard equation

2.2.4 The final model

If we now include all of the previous considerations into the Cahn-Hilliard equa-
tion, our final model reads

∂

∂t
c(x, t) =−∇ ·

[
−∇

(
−∆c− c+ c3 + µζ(x)

)
+ vc

]
, with (2.22)

ζ(x) =− 1

2

(
1 + tanh

(
x− xs

ls

))
, and

c|x=0 =c0,
∂2

∂x2
c

∣∣∣∣
x=0

= 0,
∂

∂x
c

∣∣∣∣
x=Lx

= 0,
∂2

∂x2
c

∣∣∣∣
x=Lx

= 0,

c|y=0 = c|y=Ly
.

As it is hardly possible to find exact solutions to this equation analytically, we
will discuss how to treat this equation numerically in the following chapter.
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3 Numerical Implementation

Equation (2.22) is a partial differential equation in two spatial dimensions that
we want to solve numerically as an initial value problem. That means we assume
a certain initial configuration c(x, t0) and want to determine the evolution of
the system in time. As a first step toward a numerical solution of a partial
differential equation, the equations have to be discretized onto a spatial and
temporal grid. Then the solution can be split into two algorithms, one to
evaluate the right-hand side of the equation including the spatial derivatives,
and another to integrate in time, the so-called time stepping.

3.1 Runge-Kutta methods

Probably the easiest algorithm for the temporal integration of a differential
equation is the so-called explicit Euler method. If we consider the equation

∂

∂t
c(x, t) = f(c(x, t), t), (3.1)

with a certain initial configuration c(x, t0), we can approximate the time deriva-
tive by the forward difference quotient

∂

∂t
c(x, t) ≈ c(x, t+ ∆t)− c(x, t)

∆t
, (3.2)

with a small, but finite temporal step ∆t. With this we can write (3.1) as

c(x, t+ ∆t) = c(x, t) + ∆t · f(c(x, t), t). (3.3)

This basically implies that we can evaluate the time evolution of the system by
doing small steps given by the right-hand side of the equation. This directly
exposes the major drawback of this method: the right-hand side is taken to be
constant at the initial value f(c(x, t), t) for the whole time interval [t, t + ∆t].
Obviously, the step size ∆t then has to be sufficiently small for this method to
deliver good results.

An improvement over this method are so-called predictor-corrector methods
like Heun’s method. The idea of this method is to make a preliminary time
step with the Euler method,

c̃(x, t+ ∆t) = c(x, t) + ∆t · f(c(x, t), t), (3.4)

and then use this result to approximate the right-hand side at the upper bound-
ary of the time interval [t, t+ ∆t], f(c̃(x, t), t+ ∆t). This is now averaged with
the value at the lower boundary, f(c(x, t), t), and used for the real time step

c(x, t+ ∆t) = c(x, t) +
1

2
∆t · (f(c(x, t), t) + f(c̃(x, t+ ∆t), t+ ∆t)) . (3.5)
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3.1 Runge-Kutta methods

t t+ ∆t

c(t)

prediction by Heun’s method
prediction by Euler’s method

tangent with slope f(t)

tangents with slope f(t+ ∆t)

exact solution

corrector step in
Heun’s method

Figure 3.1: Comparison of the Euler and Heun’s method for a simple one-
dimensional ordinary differential equation ∂c

∂t = f(t).

One can show that the accuracy of this method is better than the accuracy of
the Euler method, as the error decreases with O(∆t2) for Heun’s method rather
than with O(∆t) for the Euler method. A geometric interpretation of Heun’s
method in comparison to the Euler method is shown in Fig. 3.1.

Just like the improvement from the Euler method to Heun’s method, one
can improve the latter by doing even more intermediate steps to have more
interpolation points for a better approximation of the time step. This leads to
a whole family of integration schemes, called Runge-Kutta (RK) methods. The
general form of an explicit RK scheme is

c(x, t+ ∆t) = c(x, t) + ∆t

s∑
i=1

γiki, (3.6)

with the intermediate evaluations of the right-hand side

kj = f

(
c(x, t) + ∆t

j−1∑
i=1

βjiki, t+ αi∆t

)
. (3.7)

The number of intermediate steps s denotes the so-called stage of the method.
γi, αi and βji are constants that can be calculated for any arbitrary s and
also be tweaked for certain properties of the method. In general more stages
lead to a higher accuracy, although the order of the method does not scale
linearly with the stage s of the method for s > 4. A handy way to compile
these constants are the so-called Butcher tableaus that are arranged as shown
in table 3.1. A good overview over different Runge-Kutta schemes, especially
the ones discussed here, can be found in [But08]. Obviously, the Euler and
Heun’s method presented earlier are just special Runge-Kutta methods with
one and two stages, respectively.

Although the Runge-Kutta methods of a higher stage are in general more
accurate than the Euler or Heun’s method for a certain time step size ∆t, we
still need a method to find an actual number for ∆t, that results in a stable
method giving acceptable accurate results. Stable in this context means, that
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3 Numerical Implementation

0
α2 β21

α3 β31 β32
...

...
...

. . .

αs βs1 βs2 · · · βs s−1

γ1 γ2 · · · γs−1 γs

Table 3.1: Butcher tableau for a Runge-Kutta method of stage s.

truncation errors are bounded and do not lead to a possible divergence of the
result from the true solution. One method to determine a time step size is
the Courant-Friedrichs-Lewy condition [CFL28]. The basic idea behind this
condition is that an imaginary particle at a certain grid point x0 should travel
no further than to one neighboring grid point x0+∆x in each time step, meaning

∆t <
∆x

umax
, (3.8)

where umax is the maximal velocity the imaginary particle can have. This
can be calculated by the terms of the right-hand side. In one dimension, an
advective term in the right-hand side, v ∂

∂xc, for example delivers uadv = |v|,
a diffuse term ν ∂2

∂x2
c delivers udiff = ν

∆x . For the more-dimensional case, the
contributions from each dimension have to be calculated separately and then
added. The maximal velocity umax is then the maximum over all ui of all
terms i of the right-hand side and over all grid points. For nonlinear terms,
the estimated velocity is dependent on the actual state of the system and can
therefore not be calculated a priori.

A different approach to find a value for the time step size ∆t that is as large as
possible (to reduce compute time) and as small as necessary (to have acceptable
small errors) is to find an estimation for the truncation error ε made in each
time step, compare it to a given, acceptable error size εtol, and then adjust the
time step size accordingly to result in an error just below εtol. Because the time
step size is then adapted in each step, such methods are called adaptive step
size algorithms. The estimation of the error made in a step can be calculated
by the difference in the results of two time steps, one with a nth-order Runge-
Kutta method of stage s, and one with a (n+ 1)st-order Runge-Kutta method
of stage s+ 1,

ε =
∥∥c(x, t+ ∆t)RKn − c(x, t+ ∆t)RKn+1

∥∥ . (3.9)

The norm ‖·‖ can for example be defined as the maximum value over all grid
points. If this error ε is smaller than the accepted error εtol, the time step is
accepted and the next time step size will be increased. If ε > εtol, the step will
be discarded and repeated with a decreased time step size. The optimal size
can be calculated by the relation between ε and εtol, for example according to

∆tnew =

{
β∆told

(
εtol
ε

)1/n
for ε > εtol

β∆told

(
εtol
ε

)1/(n+1)
for ε < εtol,

(3.10)
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3.2 Finite difference methods

where β is a “safety factor“ in the range of ]0, 1], that ensures the error to stay
well below the threshold [PTVF92]. It is chosen to be β = 0.85 in this thesis.
This adaptive time step size algorithm is shown in Fig. 3.2.

∣RK4−RK5∣
< ϵtol > ϵtol

t=t 0+ Δ t

t=t 0

RK5RK4

Δ t ↑ Δ t ↓

Figure 3.2: Flow diagram for the adaptive time step Runge-Kutta-Fehlberg
method.

While this method always ensures a suitable choice of the time step size, it
has the drawback to be numerically quite expensive, as it needs two full time
steps of order n and n + 1 to be made in order to calculate the error ε. The
effort for this can be reduced by so-called embedded algorithms that use shared
stages ki for both the nth- and (n+1)st-order algorithm. There exists a variety
of different embedded Runge-Kutta methods [But08]. Probably the best known
is the Runge-Kutta-Fehlberg method that uses a fourth-order (n = 4, s = 5)
and a fifth-order (n = 5, s = 6) method. The corresponding Butcher tableau is
shown in table 3.2. There are also other choices for the Runge-Kutta coefficients
possible, for example those proposed by Dormand and Prince [But08], that will
be used for two-dimensional simulations in this thesis, as they allow for slightly
larger time step sizes. The coefficients are listed in table 3.3.

Obviously, besides the algorithm used for time integration, we still need a
method to evaluate the right-hand side of our equation. In particular, we need
to find a way to numerically deal with the differential operators.

3.2 Finite difference methods

There are many methods available that can be used to approximate the differ-
ential operators numerically for the evaluation of the right-hand side of a par-
tial differential equation. Well known examples are spectral or pseudo-spectral
methods and finite difference methods. The latter will be discussed and used
here, because they allow for an easy implementation of specific boundary con-
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0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

25
216 0 1408

2565
2197
4104 −1

5

16
135 0 6656

12825
28561
56430 − 9

50
2
55

Table 3.2: Butcher tableau for the Runge-Kutta-Fehlberg method. The last
two rows are the coefficients γi for the fourth-order method and the fifth-order
method, accordingly.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

32
384 0 500

1113
125
192 −2187

6784
11
84

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Table 3.3: Butcher tableau for the Dormand-Prince method. The last two
rows are the coefficients γi for the fourth-order method and the fifth-order
method, accordingly.
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3.2 Finite difference methods

ditions needed in our model (2.22), and are straightforward to implement.

To understand the basic principle of the finite difference method, we start
with a Taylor series expansion of a one-dimensional function c(x) in the vicinity
of the point x0,

c(x0 + ∆x) = c(x0) +
∂c

∂x

∣∣∣∣
x0

∆x+
1

2

∂2c

∂x2

∣∣∣∣
x0

∆x2 +O(∆x3). (3.11)

If we neglect all nonlinear terms and solve this equation for ∂c
∂x , we obtain

∂c

∂x

∣∣∣∣
x0

=
c(x0 + ∆x)− c(x0)

∆x
+O(∆x). (3.12)

This means we can approximate the value of the derivative by the differential
quotient, just like we did in the derivation of the Euler method. One can
now combine such expressions to achieve a higher order of accuracy and to
approximate higher derivatives. If we for example subtract (3.11) from the
same equation for a step −∆x backwards,

c(x0 −∆x) = c(x0)− ∂c

∂x

∣∣∣∣
x0

∆x+
1

2

∂2c

∂x2

∣∣∣∣
x0

∆x2 +O(∆x3), (3.13)

we end up with

∂c

∂x

∣∣∣∣
x0

=
c(x0 + ∆x)− c(x0 −∆x)

2∆x
+O(∆x2), (3.14)

which is accurate up to order of O(∆x2). We will now skip further derivations
and just list the formulas that will be used. The interested reader is referred to
[Smi86]. In the following, a short-hand notation just enumerating the positions
on the discretized grid will be more convenient. We use ci := c(x0), ci+1 :=
c(x0 + ∆x), ci−1 := c(x0 −∆x), and so on. With this notation we obtain

∂c

∂x

∣∣∣∣
x0

=
ci+1 − ci−1

2∆x
+O(∆x2),

∂2c

∂x2

∣∣∣∣
x0

=
ci+1 − 2ci + ci−1

∆x2
+O(∆x2),

∂4c

∂x4

∣∣∣∣
x0

=
ci+2 − 4ci+1 + 6ci − 4ci−1 + ci−2

∆x4
+O(∆x2). (3.15)

The coefficients that arise in these formulas can be memorized easier when
writing them in form of stencils, like shown in Fig. 3.3. This concept can be
easily extended to a function of two variables c(x, y). We also use a shorter
notation here, namely cji := c(x0, y0), cji+1 := c(x0 + ∆x, y), cj+1

i := c(x0, y0 +
∆y), and so on. The formulas for the Laplacian∇2 and the biharmonic operator
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∇4 then read

∇2c
∣∣
x0,y0

=
cj+1
i+1 + cji+1 + cj−1

i+1 + cj+1
i − 8cji + cj−1

i + cj+1
i−1 + cji−1 + cj−1

i−1

3∆x2

+O(∆x2), (3.16)

∇4c
∣∣
x0,y0

=
1

∆x4

(
cji+2 + 2cj+1

i+1 − 8cji+1 + 2cj−1
i+1 + cj+2

i − 8cj+1
i + 20cji

−8cj−1
i + cj−2

i + 2cj+1
i−1 − 8cji−1 + 2cj−1

i−1 + cji−2

)
+O(∆x2). (3.17)

These formulas are also compiled in stencils in Fig. 3.4.
Obviously, the evaluation of finite difference schemes always necessitates the

knowledge of surrounding grid points. However, there are always grid points
on the boundary of the finite simulation domain that have no neighbors in
one or even two directions. This problem can be either bypassed by the usage
of asymmetric finite difference schemes, or by the introduction of virtual grid
points, as it is described in the following.

3.2.1 Implementation of boundary conditions through virtual grid
points

As already mentioned above, we have certain boundary conditions we want to
apply to our system. For finite difference methods this can be achieved by
introducing grid points lying just outside of the simulation domain, so that
they are neighbors to the grid points at the boundary inside the simulation
domain. The values of these grid points outside the simulation domain are set
according to the boundary conditions to be met, and are not subject to our
time integration. Therefore, they are called virtual grid points.

Let us consider the case of the lower boundary of our system (2.22),

c|x=0 = c0 and
∂2

∂x2
c

∣∣∣∣
x=0

= 0. (3.18)

The first condition is obviously easy to implement by just setting cj0 = c0. For
the implementation of the second condition we start with the finite difference
expression for the second derivative at the lower boundary,

∂2c

∂x2

∣∣∣∣
i=0,j

=
cj1 − 2cj0 + cj−1

∆x2
+O(∆x2). (3.19)

By neglecting the higher order terms, we can solve this for the value of the
lowermost row of virtual grid points ci−1,

cj−1 = 2cj0 − c
j
1 +

∂2c

∂x2

∣∣∣∣
i=0,j

∆x2, (3.20)

and by inserting the condition (3.18) we finally obtain

cj−1 = 2c0 − cj1. (3.21)
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1 1−2

−1 10

−4 61 1−4

Figure 3.3: Stencils for the one-dimensional finite difference schemes with a
second-order accuracy. From top to bottom are the stencils for the first, second
and fourth derivative. The grid points at which the derivatives are evaluated
are shown in light blue, while the neighboring grid points are colored dark blue.
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Figure 3.4: Stencils for the two-dimensional Laplacian (left) and biharmonic
operator (right) difference schemes with a second-order accuracy. The grid
points at which the derivatives are evaluated are shown in light blue, while the
neighboring grid points are colored dark blue.
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Figure 3.5: Sketch of the lower left corner of the simulation domain (light
blue) and the neighboring virtual grid points to match the boundary conditions
(dark blue).

For the implementation at the upper boundary, where we impose

∂

∂x
c

∣∣∣∣
x=Lx

= 0, and
∂2

∂x2
c

∣∣∣∣
x=Lx

= 0, (3.22)

the same approach can be used. We start with the forward finite difference
schemes for the first and second derivative at the upper boundary, where i = Nx,
the number of total of grid points in x direction. For the sake of simplicity, we
assume a quadratic grid where Nx = Ny := N :

∂c

∂x

∣∣∣∣
i=Nx,j

=
cjN+2 − c

j
N

2∆x
+O(∆x2), (3.23)

∂2c

∂x2

∣∣∣∣
i=Nx,j

=
cjN+2 − 2cjN+1 + cjN

∆x2
+O(∆x2). (3.24)

If we again drop the higher order terms, apply our conditions (3.22), and solve
for the values of the virtual grid points, we end up with the simple condition

cjN+2 = cjN+1 = cjN , (3.25)

fulfilling our imposed boundary conditions.
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The periodic boundary conditions in y-direction can be easily implemented
by making the left and right virtual points repeat the values at the right and
left boundary accordingly,

c0
i = c

Ny

i , c−1
i = c

Ny−1
i , cN+1

i = c1
i , and cN+2

i = c2
i . (3.26)

So in summary, we have introduced virtual grid points outside our simulation
domain and then determined their value by means of the boundary conditions
we impose. This leaves us with additional grid points we can employ to evaluate
the finite difference terms even at the boundary of our simulation domain, so
we can use the same symmetric finite difference schemes for all grid points.

3.3 Parallelization for GPGPU

The time that a certain simulation run takes to finish depends on a variety of
factors, like the speed of the processor, the number of grid points, the time step
size and so on. Unfortunately, the time step size underlies the restriction of the
Courant-Friedrichs-Lewy condition mentioned earlier. The fourth derivative in
our model equation (2.22) simply necessitates quite small time step sizes. Also
the number of grid points cannot be reduced too far if we want to simulate a
certain system size with a satisfying resolution. This leaves the speed of the
processor to tweak the simulation speed. In the last decades, the speed of the
central processors in computers (CPU) rose almost exponentially as predicted
by Moore’s law [Rec06]. In the more recent past, this increase in computational
power could not be accomplished by simply clocking processors faster, but only
by adding more and more processing cores into one processor.

A different trend arose from the area of graphics processing units (GPU).
These chips have always been designed to render millions of pixels in video
games, a task that can be easily distributed to a lot of cores working simultane-
ously. Therefore, modern GPUs have hundreds to a few thousands of process-
ing cores that have become available also for more general calculations through
frameworks like CUDA [NVI] and OpenCL [SGS10]. This concept is called
”General Purpose Computation on Graphics Processing Unit“ (GPGPU). Be-
cause each core of a GPU is relatively slow compared to a core of a modern CPU,
this technique is only reasonable for computations that can be parallelized eas-
ily into independently computable parts. Fortunately this is true for the finite
difference method we want to employ. In fact, it can be parallelized down to the
separate grid points, which means each GPU core is working on only one grid
point. Of course, some communication between the cores is needed to exchange
information about neighboring values for the evaluation of the finite difference
formulas. In the CUDA framework each processing core is called thread, and a
group of threads is called block. Such a block of threads has a shared memory,
which is very fast and can be used to exchange the information. The speed of
the shared memory is also what makes GPGPU interesting in comparison to
parallelizing scientific software for conventional clusters of computers. Here the
interconnect between the different memories of each node is slower compared to
the communication between different blocks on one GPU. Therefore, GPGPU
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qualifies for problems with a strong interdependence of all computing threads.
This advantage of course drops out, as soon as more GPUs on different comput-
ing nodes should be employed. Nevertheless, the efficiency of GPGPU clusters
is often higher than of conventional clusters, meaning they use less electrical
power for the same amount of calculations.

Figure 3.6: Sketch of the parallelization for the use of GPGPU. The whole
domain is discretized into equidistant grid points, which are each calculated by
one thread. A quadratic group of threads is combined to a block. Each block
has a shared memory in which the information of its own thread and the next
two neighbors are kept to evaluate the finite difference formulas.

The already mentioned memory layout makes programming for GPGPU dif-
ferent to what one is used to for classical CPUs. This is due to the fact that
communication between the GPU and the system’s main memory is much slower
than between the GPU and the graphics memory. In addition, the communi-
cation of each thread with the shared memory of the associated block is again
much faster. Therefore, one has to make sure all information needed for the
threads to operate is kept as close as possible.

In our actual implementation, the memory is handled in the following way.
The initial conditions for the simulation are either read from an input file or
generated after a functional description by the main processor and are then
accessible in the computer’s main memory. Then they are copied to the graphics
memory. The simulation domain is then divided into blocks of 16× 16 threads,
each of them responsible for one grid point. The threads of a block first copy the
initial data of their grid points into the shared memory of the block, as well as
the next two neighboring rows and columns of grid points. The computation of
the different stages of each Runge-Kutta time step is then executed in parallel
by all threads. After each stage, the results are copied back from the shared
memory of the blocks to the graphics memory. This way the information needed
for the next stage is distributed among all blocks. On the way, all threads have
to be synchronized at certain times to ensure the integrity of the data, meaning
no thread is running ahead of the others. The data in the graphics memory is
only seldom copied to the computer’s main memory for visualization or storage
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3.4 The final numerical implementation

for later analysis. The benefit for accounting for all these peculiarities are
fast simulations, for example with a speedup of factor 10-20 in comparison to
simulations on a CPU in our case (NVIDIA GeForce GTX 480 versus a Intel
Core 2 Quad 9300).

3.4 The final numerical implementation

We want to summarize the methods we use for the numerical treatment of
our nonlinear partial differential equation (2.22). We employ an embedded
Runge-Kutta scheme of order 4(5) for the temporal integration of the initial
value problem. The time step size is determined adaptively, ensuring the so-
lution to stay below a threshold error in each time step. The evaluation of
the differential operators on the right-hand side of the model equation (2.22) is
accomplished with finite difference schemes. The boundary conditions imposed
are implemented by the introduction of virtual grid points next to the grid
points at the boundary of the simulation domain. The program was written in
the programming language C++ and executed on desktop computers. Parame-
ter studies have been distributed to the computers of the Morfeus GRID at the
University of Münster, with the use of Condor [LLM88]. For two-dimensional
simulations, the calculations were performed on modern graphics processors
(NVIDIA GeForce GTX 480) using the CUDA framework, which provides ex-
tensions to C++ to access the graphics processor.
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4 Transfer onto homogeneous
substrates

From now on, we want to discuss results obtained by direct numerical simula-
tions of our model. We start with the case of homogeneous substrates, that is,
we assume the same strength of the SMC all over the substrate. In addition,
we first focus on one-dimensional systems. Results in two dimensions will be
discussed in Sec. 4.3.

4.1 Solution families in 1D

In the one-dimensional case, four qualitatively different types of solution of
the model (2.22) exist. The transfer velocity v as the main parameter in the
following considerations determines, which solutions are obtainable.

The first type of solution exhibits a steep increase in the concentration from
the boundary value c0 to a positive value near c = 1. At the location of the
meniscus at xs = 10, the onset of SMC yields a small corrugation. This type
of solution is shown in Fig. 4.1. It is observable for a broad range of transfer
velocities.

The second type of solution only exists for rather small transfer velocities and
possesses a slight decrease in concentration until the onset of SMC, followed by
a steep increase up to a positive value near c = 1. This corresponds to the
transfer of a homogeneous layer in the LC phase, just like in the case of the
first type of solution. A corresponding solution is shown in Fig. 4.2.

The third type of solution occurs only for higher transfer velocities. It shows
the same decrease of concentration until the onset of SMC and an increase
afterwards, just like solution type number two. But in contrast to this, the con-
centration then rises to a value near c = −1, corresponding to a homogeneous
layer in the LE phase being transferred. Figure 4.3 shows such a solution. All
these three types of solution are stationary and stable, meaning they do not
change in time and are also insensitive to small perturbations.

The fourth type of solution is time-periodic. The solutions are characterized
by domains of high concentration alternating with domains of low concentra-
tion, with each of them formed at the meniscus and then advected with the
transfer velocity. This behavior corresponds to patterns of alternating domains
in the LC and LE phase. Two examples of such solutions for different transfer
velocities are shown in Figs. 4.4 and 4.5. The dependence of the occurring
patterns on the transfer velocity will be discussed in the following section 4.2.
To compare these solutions with experimental results, we can expand them
uniformly in the y-direction. The solutions then describe the stripe patterns
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4.1 Solution families in 1D

perpendicular to the transfer direction, that are experimentally observed (see
Fig. 1.4).

All these types of solution exist for a certain range of transfer velocities.
Typically, for a given transfer velocity more than one type of solution is possible
and therefore the initial conditions determine the solution type. In most simu-
lations a smooth transition between c(x = 0) = c0 and c(x = Lx) = 1 with a
hyperbolic tangent shape was used as the initial condition. This type of initial
condition favors the solution types 2 and 3 and the periodic solutions over the
solution type 1 in the velocity ranges where they are possible. Therefore, the
final states of simulations in the velocity range where only type 1 solutions are
possible were used as initial conditions, too, to follow the branch of solutions
of type 1 to higher transfer velocities.

A good overview over the possible solutions can be achieved by calculating
the L2-norm,

‖c(x)‖2 =
1

Lx

∫ Lx

0
c(x)2 dx, (4.1)

where Lx is the system length. The results can then be combined for different
transfer velocities and for all types of solution in an L2 versus v diagram. There,
each type of solution corresponds to a different solution branch. The result is
shown in Fig. 4.6. It has to be noted that for the case of time-periodic solutions,
the L2-norm is averaged over time.

The results of the one-dimensional simulations presented in this section can
be directly compared to the ones obtained in [KGFT12]. There, the same model
Eq. (2.22) was investigated, and the same L2 versus v diagram was obtained
using a continuation technique. The comparison can be used as a good bench-
mark for the numerical implementation used in this thesis. It turns out that
the branches of stable solutions obtained by the direct numerical simulations
in this thesis resemble the findings of the continuation technique in [KGFT12].
Of course, the stationary, unstable solutions that could also be determined by
means of the continuation technique could not be obtained with the direct nu-
merical simulations used here. Because of the fact that the results obtained in
this section equal the results found in the literature, we can be confident that
our numerical implementation does not exhibit systematic errors.
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4 Transfer onto homogeneous substrates
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Figure 4.1: Stationary one-dimensional solution of Eq. (2.22) for v = 0.015,
corresponding to the transfer of a layer in the LC phase.
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Figure 4.2: Stationary one-dimensional solution of Eq. (2.22) for v = 0.02,
corresponding to the transfer of a layer in the LC phase.
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Figure 4.3: Stationary one-dimensional solution of Eq. (2.22) for v = 0.08,
corresponding to the transfer of a layer in the LE phase.
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Figure 4.4: Snapshot of a periodic one-dimensional solution of Eq. (2.22) for
v = 0.04, corresponding to the transfer of stripes in the LE and LC phase.
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Figure 4.5: Snapshot of a periodic one-dimensional solution of Eq. (2.22) for
v = 0.05, corresponding to the transfer of stripes in the LE and LC phase.
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Figure 4.6: Branches of stable stationary and periodic solutions. The black
line corresponds to stationary solutions of type 1 (see Fig. 4.1), the red line
corresponds to stationary solutions of type 2 (see Fig. 4.2), the green line cor-
responds to stationary solutions of type 3 (see Fig. 4.3), whereas the blue line
corresponds to time periodic solutions (see Figs. 4.4 and 4.5).
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4 Transfer onto homogeneous substrates

4.2 Periodic solutions in 1D

The periodic solutions we obtained can be best characterized by the wavenum-
ber k and the duty cycle D of the resulting pattern. Figure 4.7 illustrates the
definition of these quantities. The wavenumber results from the wavelength λ
by k = 2π

λ . The duty cycle is a measure for the ratio between the width lLC of

stripes in the LC phase and the wavelength, and therefore D = lLC
λ ∈ [0, 1] is a

reasonable definition.

lLC lLE

λ

x

c

Figure 4.7: Sketch of the definition of the wavenumber k = 2π
λ and the duty

cycle D = lLC
λ .

However, for the practical implementation, these definitions are slightly ex-
tended. We exploit the fact that after the formation of the stripes they are
basically only advected with the transfer velocity v without changing their
shape. Therefore, we can also measure the time ∆tstripe it takes for a stripe to
pass a certain measurement location xm and then calculate the corresponding
wavelength as λ = v ·∆tstripe. This approach is easier to implement and has the
advantage of a well-defined location for the measurement. The simulations pre-
sented in the following are performed for a system size L = 300 with N = 500
grid points.

We are now able to investigate the dependence of the properties of the peri-
odic solutions in dependence of the transfer velocity. The results are shown in
Fig. 4.8. Up to a velocity of v = 0.0256 ± 0.001, no pattern formation occurs.
At the onset of pattern formation, the wavenumber increases rapidly with v
until a maximal value of k. The wavenumber then decreases for increasing v.
Therefore, the same wavenumber can be achieved for different transfer veloci-
ties. However, the corresponding patterns are not identical as the duty cycle
decreases monotonically with v for v > 0.0277. At the right end of the pattern-
ing regime, the curve k(v) exhibits another small increase. The dynamics that
leads to this behavior is rather complicated because with increasing v, the area
where new stripes are formed is more and more carried away from the meniscus
to the inside of the simulation domain. The simulations in this area show a
very long transient behavior which necessitates simulations of sufficiently long
times. The patterning stops, when the pattern forming area is carried outside
the simulation domain. Therefore, the exact position of the upper boundary of
the patterning regime is also dependent on the size of the simulation domain.

The simulations shown so far were performed with a fixed boundary value
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Figure 4.8: Wavenumber k (blue triangles) and duty cycle (red circles) of the
occurring patterns in the periodic solutions in dependence of the transfer ve-
locity v.
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Figure 4.10: Upper (red line) and lower (blue line) boundary of the patterning
regime in dependence of the boundary concentration c0. The patterning regime
between these boundaries is shown as a gray area. The green line depicts
the position of the first local maximum of the curve k(v). The corresponding
maximal wavenumber kmax is shown as a gray line (with secondary ordinate).

of the concentration c0 = −0.9. As this parameter influences the influx into
the simulation domain significantly, we also want to study its influence on the
patterning process. Figure 4.9 shows the dependence of the wavenumber k
on the transfer velocity v and the boundary concentration c0. Both the lower
limit of the patterning regime and the upper limit are shifted toward higher
velocities for increasing boundary concentrations. Because the upper limit is
shifted further than the lower one, the patterning regime becomes larger with
increasing c0. Additionally, the maximal wavenumbers that can be achieved
also increase, meaning the value of the local maximum in the middle of the
patterning regime becomes larger. This result is interesting for experimental
applications because it implies that smaller structures can be accomplished
by increasing the boundary concentration. The boundaries of the patterning
regime as well as the position and value of the wavenumber maximum are
presented in Fig. 4.10. To obtain results that are comparable to the ones from
the literature, we use a value of c0 = −0.9 in the following.

4.3 Solutions in 2D

In general, all solutions we obtained in the one-dimensional case are also so-
lutions in two dimensions if they are just extended homogeneously in the y-
direction. This becomes immediately clear by looking at the model Eq. (2.22).
Assuming a solution homogeneous in y-direction, all derivatives with respect
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4.3 Solutions in 2D

to y vanish and one is left with the one-dimensional version of the equation.
Therefore, the one-dimensional solutions have to be solutions in two dimensions,
too. As it will be discussed later on, such pseudo two-dimensional solutions do
not have to be necessarily stable with respect to perturbations in y-direction.
An example of such a solution that is indeed stable is shown in Fig. 4.11. The
concentration of the monolayer c(x, y) is color-coded with red areas referring to
the high density LC phase and blue areas referring to the low density LE. The
transfer process occurs from bottom to top, meaning the meniscus is located at
the bottom and the substrate is pulled in the top direction.
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Figure 4.11: Snapshot of a two-dimensional simulation with a domain size of
Lx × Ly = 600 × 600 with Nx × Ny = 384 × 384 grid points and a transfer
velocity of v = 0.04. The solution is homogeneous in y-direction and therefore
identical to the one-dimensional solution.

More interesting are of course truly two-dimensional simulations which also
show variation in y-direction. One example is shown in Fig. 4.12, where the
occurrence of stripes perpendicular to the liquid meniscus is shown. Such so-
lutions can be obtained for low transfer velocities in the patterning regime.
This behavior resembles the findings of experimental studies, see, for exam-
ple, Fig. 1.4 and [CLH+07]. This type of stripes appears after a secondary
instability after the formation of stripes parallel to the meniscus. This will be
investigated further by means of a linear stability analysis in chapter 6. In
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4 Transfer onto homogeneous substrates

order to induce an instability of this type, one has of course to introduce some
kind of inhomogeneity in the y-direction, e.g., by slightly perturbing the initial
conditions with additive noise, or varying the spatial location of the meniscus
xs with respect to y.
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Figure 4.12: Snapshot of a two-dimensional simulation with a domain size of
Lx × Ly = 600 × 600 with Nx × Ny = 384 × 384 grid points and a transfer
velocity of v = 0.03. The stripes are now oriented perpendicular to the liquid
meniscus.

A visualization of the temporal buildup of perpendicular stripes is presented
in Fig. 4.13, showing a time series of snapshots of a simulation with a low
transfer velocity v = 0.03. At the beginning, stripes parallel to the meniscus
are formed, but they then become unstable and exhibit gaps in the y-direction.
The areas of high concentration beside the gaps then expand in the x-direction,
tending to form stripes perpendicular to the meniscus. After a few of such pro-
cesses, the simulation domain is filled with perpendicular stripes. The wave-
length in y-direction is yet not necessarily the one preferred by the system and
therefore changes slowly by the creation of defects, for example by merging or
splitting of stripes.

The relaxation time to a stationary state can be very long. In this transient
phase, the system tries to optimize its configuration by introducing defects.
Figure 4.14 shows a time series of snapshots illustrating a scenario. In the first
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Figure 4.13: Time series of snapshots of a two-dimensional simulation showing
the transition between stripes parallel to the meniscus to stripes perpendicular
to the meniscus. The same parameters as in Fig. 4.12 were employed.
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Figure 4.14: Time series of snapshots of a two-dimensional simulation show-
ing the creation of defects in the stripe patterns. The same parameters as in
Fig. 4.13 were employed, however, the snapshots show the evolution at a later
time t.

38



4.4 Langmuir-Blodgett rotating transfer

snapshot (t = 5 · 104), the sixth stripe from the left is broader than the rest
and therefore suddenly thins out to a more preferred width, leaving more space
for the neighboring fifth stripe. This stripe then spreads out to fill the new
space, but afterward also again thins out to its preferred width. This leaves
more space for the fourth stripe, and so on. Hence, as a result, some kind of
defect wave is traveling in a transverse direction, leaving the stripes behind it
with more preferred stripe widths.

In such a scenario, the boundary conditions at the left and right of the simu-
lation domain become important. As we impose periodic boundary conditions,
we implicitly introduce this additional symmetry to the solutions obtained with
these simulations. This can of course conflict with the natural solution the sys-
tem would develop in the absence of boundaries, for example if the system would
prefer a y-periodicity λ, while the system size Ly is no integer multiple of this
periodicity. The system is then forced to a slightly different periodicity or to
the formation of defects. This leads to solutions that never become stationary,
but for example exhibit traveling defects, like shown in Fig. 4.14. Such defects
can be seen in analogy to, e.g., the zigzag instability in the Swift-Hohenberg
equation [CH93].

4.4 Langmuir-Blodgett rotating transfer

In the following section, we want to make a little excursion to a slightly differ-
ent transfer process called Langmuir-Blodgett rotating transfer, as it has been
investigated similarly in [CHFC07]. This technique allows for the production
of gradient structures where, for example, stripes are oriented like a fan. Such
structures can occur when stripes parallel to the meniscus are formed and then
advected with a rotational movement of the substrate, which is the essential
difference to the conventional Langmuir-Blodgett transfer. While up to now we
only considered a straight, linear transfer upward with a constant transfer ve-
locity v, we now assume the transfer to happen onto a substrate that is rotated
around a hinge located outside the trough. A sketch of this experimental setup
is shown in Fig. 4.15.

This approach has basically three implications for our model of the transfer
process. As a first consequence, the transfer velocity now also has a compo-
nent in y-direction, that is, in the direction of the meniscus. In addition, the
absolute value of the transfer velocity is not constant across the substrate, but
varies with the distance from the rotation center. Furthermore, the boundary
conditions at the left and the right boundaries cannot be assumed to be periodic
anymore, because this would conflict with the transfer velocity that is no more
translational invariant. Instead, we apply the same boundary conditions to the
left and right boundary that we already use for the upper boundary. That is,
we impose vanishing first and second derivatives at the boundaries,

∂

∂y
c

∣∣∣∣
y=0

= 0,
∂2

∂y2
c

∣∣∣∣
y=0

= 0,
∂

∂y
c

∣∣∣∣
y=Ly

= 0,
∂2

∂y2
c

∣∣∣∣
y=Ly

= 0. (4.2)

For the simulations of LB rotating transfer, we use a slightly changed setup
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Figure 4.15: Illustration of the experimental setup for Langmuir-Blodgett ro-
tating transfer.
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Figure 4.16: Illustration of the setup used for numerical simulations of
Langmuir-Blodgett rotating transfer.
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4.4 Langmuir-Blodgett rotating transfer

that is shown in Fig. 4.16. The only difference to the experimental setup used in
[CHFC07] is the location of the rotation center, which we assume to be on the
liquid surface, and not above the trough. This configuration is advantageous for
simulations because there exist no parts of the substrate being pushed into the
trough, which could conflict with the boundary conditions used for the lower
boundary.

Considering this setup, we now essentially have two new parameters describ-
ing the transfer process, i.e., the rotational velocity ω of the substrate, and the
distance l between the rotation center and the simulation domain (see Fig. 4.16).
Both parameters influence the shape of the velocity field v(x, y) via the simple
relations

vx(x, y) = ω r(x, y) cos (α(x, y)) , and (4.3)

vy(x, y) = −ω r(x, y) sin(α(x, y)), with (4.4)

r(x, y) =
√

(y + l)2 + x2 and α(x, y) = arctan

(
x

y + l

)
.

A sketch of a velocity vector field given by Eqs. (4.3)-(4.4) is shown in Fig. 4.17.
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Figure 4.17: Sketch of the velocity vector field v(x, y) given by Eqs. (4.3)-
(4.4) for Langmuir-Blodgett rotating transfer at a distance l = 500 from the
rotation center.

The results obtained in [CHFC07] basically show that the patterning process
at the meniscus in principle does not change because the authors still observe
stripes that are formed parallel to the meniscus, and then carried away with the
movement of the substrate. Because of the rotation, the stripes are not parallel
to each other, but form a gradient mesostructure. To investigate this process
in theory, we employ simulations of the rotating transfer for different distances
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4 Transfer onto homogeneous substrates

l between the simulation domain and the rotation center. The rotational fre-
quency ω was adjusted in a way that the x-component of the velocity is kept
constant to vx = 0.05 at the center of the lower boundary (0, Ly/2). The angle
α between the stripes and the meniscus was measured using the software pack-
age GIMP at the position (300, 400) after a simulation time T = 8000, where
we assume an uncertainty of one degree. An example of such a simulation for
l = 4000 including a sketch clarifying the definition of α is shown in Fig. 4.18.

0

150

300

450

0 150 300 450 600 750 900

x

y

-1.0

-0.5

0.0

0.5

1.0

c(
x
,y

)

α

Figure 4.18: Snapshot of a simulation of Langmuir-Blodgett rotating transfer
at a distance of l = 4000 from the rotation center. Stripes parallel to the
meniscus are formed and then advected non-uniformly, leading to a certain
angle α between the resulting stripes and the meniscus.

Under the assumption that the stripes are indeed only advected with the rota-
tional velocity field, the angle α of the stripes can of course be easily calculated
by geometrical considerations, i.e.,

α(x, y) = arctan

(
x

y + l

)
. (4.5)

This theoretical expectation along with the results obtained by the numerical
simulations is shown in Fig. 4.19, and it obviously resembles the data from the
simulations very well, as well as the experimental results from [CHFC07].

Besides in situations where the gradient structures formed by LB rotating
transfer are really needed for a certain application, this technique can also be
applied in other cases. An example are situations where a certain property
should be examined for different transfer velocities. While in conventional LB
transfer this would necessitate the repetition of the experiment for different
velocities, one experiment with LB rotating transfer can be sufficient because
different areas on the substrate are subject to different transfer velocities, de-
pending on their distance to the rotation center.

This can also be achieved by LB rotating transfer simulations as it is shown
in Fig. 4.20. Because the distance to the rotation center was chosen to be
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Figure 4.19: Dependence of the angle α of the stripes at the position (400, 300)
on the distance l of the rotation center. The data obtained by numerical simu-
lations (blue points with error bars) resemble the theoretical expectation (red
line).
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Figure 4.20: Snapshot of a two-dimensional simulation of Langmuir-Blodgett
rotating transfer at a distance of l = 500 from the rotation center. The velocity
in x-direction at the meniscus ranges from vx = 0.023 at the left boundary to
vx = 0.064 at the right boundary, covering a range where all types of transfer
during normal Langmuir-Blodgett transfer are observed: homogeneous transfer
of a LC layer, stripes perpendicular to the meniscus, stripes parallel to the
meniscus, and homogeneous transfer of a LE layer (from left to right). The
defects of the stripes parallel to the meniscus occur due to the strong velocity
gradients in this area.
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4 Transfer onto homogeneous substrates

quite small with l = 500 in this simulation, there is a large transfer velocity
gradient across the simulation domain. The velocities at the meniscus therefore
cover a range from vx = 0.023 at the left boundary to vx = 0.064 at the right
boundary, which includes the whole patterning regime (see Fig. 4.8). That is,
in just one simulation, we can see the transfer of a homogeneous LC phase, of
stripes perpendicular to the meniscus, of stripes parallel to the meniscus, as well
as the transfer of a homogeneous LE phase (from left to right) simultaneously.

After this short excursion to Langmuir-Blodgett rotating transfer, we want
to come back to the case of linear transfer. In contrast to the considerations
up to now, we want to focus on substrates with a chemical prestructure, which
introduces a spatially varying strength of the substrate-mediated condensation.
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5 Transfer onto prestructured
substrates

Besides the transfer onto homogeneous substrates, also the transfer of a mono-
layer onto a substrate that has some kind of prestructure is conceivable. In
addition to the effects discussed above, the monolayer transfer then is influ-
enced by an inhomogeneity of a certain parameter, e.g., the wettability of the
substrate. This of course opens up a new possibility to control the transfer pro-
cess, which also has been experimentally realized [GHLL99]. The prestructure
on the substrate can, for example, be produced by lithographic processes, or
just by means of a Langmuir-Blodgett transfer itself [QXX+99].

As a prestructure influences the interaction between the substrate and the
monolayer, it can be incorporated as a spatial variation of the strength of the
SMC. We only want to focus on spatially periodic prestructures because they
give rise to interesting synchronization phenomena. Such effects can occur if one
considers a system with a natural, inherent frequency, like the transfer process
in the patterning regime, that is coupled to an external forcing with a possibly
different, external frequency, like a periodic prestructure. We again start with
the investigation of the one-dimensional case.

5.1 Incorporation of prestructured substrates into the
model

Up to now, the spatial dependence ζ(x) of the SMC was modeled as a smooth
transition from no influence of the SMC to a certain fixed value after the menis-
cus at position xs,

ζ(x) = −1

2

(
1 + tanh

(
x− xs

ls

))
. (5.1)

We generalize the function ζ(x) by introducing a spatial modulation m(x, t) of
the value of the SMC after the meniscus,

ζ(x, t) = −1

2

(
1 + tanh

(
x− xs

ls

))
· (1 + ρ ·m(x, t)) . (5.2)

Here ρ is a scalar factor determining the strength or the contrast of the pre-
structure. A value of ρ = 0 would correspond to the case of no prestructure,
while increasing ρ means an increasing difference in the strength of SMC be-
tween different regions on the substrate. Typically, we choose ρ to be in the
range of a few percent, while m(x, t) ∈ [−1, 1]. For the form m(x, t) of the
modulation we use a smooth transition between alternating domains of higher
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5 Transfer onto prestructured substrates

and lower SMC in x-direction, mimicking stripes on the prestructured substrate
parallel to the meniscus,

m(x, t) = tanh

(
a

(
4

∣∣∣∣frac

(
x− vt
Lpre

)
− 0.5

∣∣∣∣− 1

))
. (5.3)

Here, Lpre denotes the periodicity of the prestructure, a is a measure for the
steepness of the transition between domains of different values of the SMC, and
frac() is the fractional function, returning the fractional part of its argument.
For Lpre, different values of the same order of magnitude as the natural wave-
length inside the patterning regime have been used. The value of a was chosen
as a = 10. Snapshots of the curve ζ(x, t) for different times t and for different
prestructure contrasts ρ are shown in Fig. 5.1.

As one would expect, the effect of the prestructure is governed by the contrast
ρ, resulting in little to no influence on the patterning process for very low val-
ues of ρ. But in addition to ρ, the periodicity Lpre does also play an important
role. If Lpre on the one hand is much larger than the natural wavelength of the
system, the transfer process occurs basically like on a homogeneous substrate,
distorted only seldom by the transitions between different values of the SMC.
On the other hand, prestructures with a very short periodicity Lpre introduce a
forcing to the system that is much faster than the timescale the system can re-
act on. In this case, the system only feels the average value of the SMC, but not
the fast fluctuations. Therefore, the most interesting effects can be expected for
values of Lpre of the same order of magnitude as the natural wavelength of the
system. In this case, synchronization can occur, meaning the wavenumber k of
the occurring patterns has a well-defined fractional relation to the wavenum-
ber kpre = 2π

Lpre
of the prestructure, and the phase relationship between both

patterns is locked to a well-defined value.

5.2 Synchronization with prestructures in 1D

First, we want to consider the one-dimensional case. We employ the same pa-
rameters used in Sec. 4.2 and additionally apply a prestructure with Lpre = 60
and varying contrasts up to ρ = 0.03. Three examples for different velocities
and a contrast ρ = 0.012 are shown in Figs. 5.2–5.4. The solution in Fig. 5.2
exhibits a 1:1 synchronization between the occurring pattern and the prestruc-
ture, meaning both wavelengths are equal. For a higher transfer velocity, a 2:3
synchronization can occur, as shown in Fig. 5.3. The pattern that is transferred
in this case does not have one distinct wavelength, but two that alternate in
a way, that they add up to three wavelength of the prestructure. The aver-
age wavenumber of the pattern is then equal to two thirds of the prestructure
wavenumber. For an even higher transfer velocity, the wavelength of the trans-
ferred pattern is uniformly twice the wavelength of the prestructure, referring
to a 1:2 synchronization (see Fig. 5.4).

This synchronization behavior can be conveniently examined in a k versus v
diagram, as shown in Fig. 5.5, where the k axis is normalized to the wavenumber
kpre of the prestructure. Therefore, the synchronization ratio can be directly
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Figure 5.1: Spatial and temporal evolution of the function ζ(x, t) for a pre-
structured substrate with Lpre = 40. The different colors refer to different
prestructure contrasts: ρ = 0 (blue line), ρ = 0.05 (red line), ρ = 0.1 (green
line). The temporal evolution is shown in snapshots for increasing time t from
top to bottom.
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Figure 5.2: Snapshot of the periodic solution of Eq. (2.22) for v = 0.04 on an
prestructured substrate with Lpre = 60 and ρ = 0.012. The solution (blue line)
exhibits a 1:1 synchronization with the prestructure ζ(x) (red line).
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Figure 5.3: Snapshot of the periodic solution of Eq. (2.22) for v = 0.06 on an
prestructured substrate with Lpre = 60 and ρ = 0.012. The solution (blue line)
exhibits a 2:3 synchronization with the prestructure ζ(x) (red line).
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Figure 5.4: Snapshot of the periodic solution of Eq. (2.22) for v = 0.07 on an
prestructured substrate with Lpre = 60 and ρ = 0.012. The solution (blue line)
exhibits a 1:2 synchronization with the prestructure ζ(x) (red line).
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read off the ordinate. Synchronization regimes can be identified as intervals
on the abscissa with nearly constant wavenumber. As one would expect, the
synchronization regimes grow for increasing prestructure contrast ρ.
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Figure 5.5: Wavenumber k of the occurring patterns in the periodic solutions
of Eq. (2.22) in dependence of the transfer velocity v for different prestructure
contrasts ρ = 0 (blue line), ρ = 0.006 (red line), and ρ = 0.010 (green line).
The wavenumber has been normalized to the wavenumber of the prestructure
kpre = 2π/Lpre with Lpre = 60.

Additionally, two effects of a prestructured substrate can be observed in
Fig. 5.5: The patterning regime is enlarged toward higher transfer velocities
to an extent that grows with increasing prestructure contrast. Therefore, a
patterned transfer is possible on prestructured substrates even for velocities
that lead to a homogeneous transfer in the LE phase on homogeneous sub-
strates. As a second effect, a prestructure can induce patterns with a higher
wavenumber than the ones the system achieves on a homogeneous substrate.
This can be observed in Fig. 5.5 for a prestructure contrast of ρ = 0.01, where
the maximal wavenumber is shifted upwards to a 1:1 synchronization. In the
experimental context, this means the minimal wavelength of the stripes can be
reduced by the use of prestructured substrates.

A good overview over the synchronization behavior for different prestructure
contrasts can be achieved by concentrating only on the synchronization regimes
and compiling them in a contrast ρ versus transfer velocity v diagram. Figure
5.6 (top) shows such a diagram for a prestructure wavelength Lpre = 60. Here,
the colored areas depict the regions in the ρ–v–plane where synchronization
occurs, while each color refers to a different synchronization ratio. Because of
their shape, the regions are called Arnold tongues [PRK03], named after the
Russian mathematician Vladimir Arnold (1937-2010). Especially the broaden-
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bottom to top to read off the contrast ρ, after which a new area of synchroniza-
tion occurs.
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ing of the synchronization regimes for increasing contrast ρ can be directly read
off such a diagram.

As mentioned before, the prestructure wavelength Lpre also has an important
influence on the synchronization behavior. To illustrate this, Fig. 5.6 (bottom)
shows the same Arnold diagram like Fig. 5.6 (top), but for a prestructure wave-
length Lpre = 240. In this case, the natural wavelength of the system is typi-
cally shorter than the one of the prestructure. Therefore, synchronization ratios
above 1:1 now occur, like, e.g., 2:1 or 3:1, which means two or three wavelengths
of the occurring pattern now sum up to one wavelength of the prestructure.

The results of this section can be seen in comparison to the ones obtained in
[KGF11], where the Langmuir-Blodgett transfer onto prestructured substrates
was investigated in the framework of the full model we briefly introduced in
chapter 1. Just like in our case, the full model exhibits synchronization phe-
nomena with prestructures, and similar synchronization diagrams like the ones
in Fig. 5.6 were obtained, revealing the characteristic Arnold tongues. There-
fore, it is notable, that the easier Cahn-Hilliard model used in this thesis is
obviously sufficient to investigate the synchronization phenomena with pre-
structured substrates.

As a result, we can summarize that prestructured substrates can be a powerful
way to control the patterning process. Especially the facts, that the pattern-
ing regime can be expanded toward higher velocities, and that the maximal
wavenumber possible can be increased, are remarkable as they extend the ex-
perimental possibilities.

5.3 Effects of prestructures in 2D

Just as in the case of homogeneous substrates, the same effects that were ob-
served in one dimension can also trivially occur in two dimensions if one only
extends the one-dimensional solution homogeneously into the new y-direction.
An example is shown in Fig. 5.7, where a snapshot of a two-dimensional sim-
ulation is presented. The solution exhibits a 1:2 synchronization, just like in
the one-dimensional case in Fig. 5.4. Because the effects are equivalent to the
ones discussed previously for the one-dimensional case, we want to focus on new
effects in the following.

Figure 5.8 shows an AFM image of a DPPC monolayer transferred onto a
prestructured substrate. The prestructure can be identified as the five broad
stripes perpendicular to the transfer direction in the right half of the image.
Obviously, more complex patterns occur in the presence of the prestructure.
The occurring pattern exhibits stripes that are bended toward the boundaries
of the prestructure. It is still unclear, what kind of dynamics leads to such pat-
terns. For a numerical simulation with our model, some difficulties hinder us
from exactly reproducing the experimental results. At first, it is challenging to
find a good estimation for the contrast ρ in our model that corresponds to the
properties of the experimental prestructure. Another difficulty is given by the
dimensions involved in the experimental setting. The width and wavelength
of the prestructure in the experiment are much larger than the wavelength
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Figure 5.7: Snapshot of a two-dimensional simulation of the transfer with v =
0.07 onto a prestructured substrate with ρ = 0.03 and Lpre = 60. The solution
(left) exhibits a 1:2 synchronization with the prestructure (right).

of the occurring pattern. Therefore, a large simulation domain with still a
fine resolution in the grid is needed to resolve both the occurring pattern and
the prestructure. Third, the resulting patterns can raise the speculation, that
possibly the bended stripes occurred due to a liquid meniscus receding perpen-
dicular to the transfer direction, which would contradict the assumption of a
frozen meniscus in our model.

Nevertheless, the model is still capable to exhibit similar effects, concerning
the bending of stripes. Such a simulation is shown in Fig. 5.9. Here, the transfer
onto a prestructured substrate with Lpre = 400 is simulated. The stripes of
the prestructure are oriented parallel to the meniscus, just like in the case
simulated in one dimension in the previous section. But in contrast to this, the
prestructure in this case is not present across the entire domain in y-direction,
but only for y ∈ [500, 2500]. Therefore, the system is not exposed to the
prestructure at the left and right boundary. Exactly at these transitions from
prestructure to no prestructure, the solution exhibits bending of the occurring
stripe patterns. While Fig. 5.9 only showed a section of the simulation domain
to clarify the shape of the stripes near the onset of the prestructure, Fig. 5.10
covers the whole domain.

Although these results do not fully explain the experimental findings, they
still resemble some aspects of them. Therefore, we are confident, that our model
can also be used to simulate the transfer onto substrates with more complex
prestructures, enabling also more complex patterning control.
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5µm

Figure 5.8: AFM image of the occurring pattern of DPPC in the LE and LC
phase after Langmuir-Blodgett transfer onto a prestructured substrate. The
black arrow depicts the transfer direction. Taken from [HL10].
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Figure 5.9: Snapshot of a two-dimensional simulation, where the transfer onto
a prestructured substrate is simulated. The prestructure consists of stripes with
Lpre = 400 that reach from y = 500 to y = 2500 (depicted by the gray dashed
lines). The solution exhibits bending of the occurring stripes at the boundary
of the prestructure stripes. The figure is an enlargement of the upper right
corner of the simulation shown in Fig. 5.10.
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Figure 5.10: Snapshot of a two-dimensional simulation, where the transfer
onto a prestructured substrate is simulated. The prestructure consists of stripes
with Lpre = 400 that reach from y = 500 to y = 2500 (depicted by the gray
dashed lines). The solution exhibits bending of the occurring stripes at the
boundary of the prestructure stripes.
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6 Linear stability analysis

The results in the previous chapters were mainly achieved by direct numerical
simulations of the model (2.22). Now we are looking for a different approach
to investigate the system. In particular, we want to gain more insights in the
transition from stationary solutions to time periodic solutions by means of linear
stability analysis.

In general, a linear stability analysis is a tool to determine the stability of a
solution of an equation with respect to a small perturbation. We again start
with the model Eq. (2.22),

∂

∂t
c(x, t) = −∇ ·

[
−∇

(
−∆c(x, t)− c(x, t) + c(x, t)3 + µζ(x)

)
+ vc(x, t)

]
=: F (∇,x,v) [c(x, t)] , (6.1)

where we introduced F (∇,x,v) [·] as a short-hand notation for the nonlinear
operator defined by the right-hand side of the evolution equation. Now, the
starting point is the assumption of the existence of a stationary solution c̃(x),
and we are interested in the temporal evolution of this solution under the in-
fluence of a small perturbation η(x, t),

c(x, t) = c̃(x) + η(x, t). (6.2)

Inserting this ansatz into the model, we obtain

∂

∂t
c̃(x) +

∂

∂t
η(x, t) = F (∇,x,v) [c̃(x) + η(x, t)] , (6.3)

where we can expand the right-hand side into a Taylor series of F about
c(x, t) = c̃(x),

∂

∂t
c̃(x) +

∂

∂t
η(x, t) =F (∇,x,v) [c̃(x)] + F ′(∇,x,v)

∣∣
c̃(x)

η(x, t)

+
1

2
F ′′(∇,x,v)

∣∣
c̃(x)

η(x, t) : η(x, t) +O(η3). (6.4)

Here, F ′ is a linear operator denoting the Fréchet-derivative of the nonlinear
operator F . For the case of Eq. (6.1), it takes the form

F ′(∇,x,v)
∣∣
c̃(x)

= −∆2 +
(
3c̃2 − 1

)
∆ + (12c̃∇c̃− v) · ∇+ 6

(
c̃∆c̃+ (∇c̃)2

)
.

(6.5)
The first terms on both sides of Eq. (6.4) vanish because c̃(x) was assumed to

be a solution of Eq. (6.1). If we additionally neglect the terms of higher order,
we obtain a linear evolution equation for the perturbation η(x, t),

∂

∂t
η(x, t) = F ′(∇,x,v)

∣∣
c̃(x)

η(x, t). (6.6)
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The perturbation can now be written as a series of eigenfunctions ηj(x) of F ′

with the assumption of an exponential time dependence with exponent λj,

η(x, t) =
∑

j

ηj(x)eλjt. (6.7)

By inserting this ansatz into Eq. (6.6) and evaluating the time derivative, we
are left with the linear eigenvalue problem

λjηj(x) = F ′(∇,x,v)
∣∣
c̃(x)

ηj(x). (6.8)

Statements about the linear stability of the solution c̃(x) can now be made by
looking at the eigenvalues λj. The Hartmann-Grobmann theorem now states
that the solution c̃(x) is stable if the real parts of all eigenvalues are less than
zero, Re(λj) < 0 ∀ j, or unstable if there is at least one eigenvalue with a positive
real part, ∃ j : Re(λj) > 0 [Str08]. If the largest real part of an eigenvalue
is equal to zero, no statement on the stability of the solution can be made by
means of a linear stability analysis.

Typically, one is now interested in the behavior of the stability when vary-
ing certain control parameters. In our case, the main control parameter is the
transfer velocity v that on the one hand enters the linearization operator ex-
plicitly, but on the other hand also in addition implicitly via the stationary
solution c̃(x), which of course also differs for varying v.

6.1 Application to the model

In contrast to typical textbook examples, in our case the linearization is not
calculated about a homogeneous but a spatially inhomogeneous state c̃(x). In
particular, we want to investigate the stability of type 2 solution (see Fig. 4.2)
close to the onset of pattern formation. Therefore, the linearized operator F ′

has a spatial dependence, too, and the eigenfunctions cannot be assumed to be
well represented by a plane wave ansatz, as it is often used. To account for these
facts, the approach used in the following starts with a stationary solution c̃(x)
obtained by direct numerical simulations. The solution is then inserted into
Eq. (6.5) to evaluate F ′(∇,x,v)|c̃(x). The operators in (6.5) are discretized by
means of finite difference schemes on the same grid as the numerical solution
c̃(x). The actual implementation is done in MATLAB.

We first consider the one-dimensional case, where the linearization operator
(6.5) then reads

F ′(∇, x, v)
∣∣
c̃(x)

=− ∂4

∂x4
+
(
3c̃2 − 1

) ∂2

∂x2
+

(
12c̃

∂c̃

∂x
− v
)
∂

∂x

+ 6

(
c̃
∂2c̃

∂x2
+

(
∂c̃

∂x

)2
)
. (6.9)

After the discretization, the operator F ′ is represented by a matrix. The eigen-
values and eigenvectors of this matrix are then the eigenvalues and eigenfunc-
tions of the eigenvalue problem (6.8). The results of this approach are shown in
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Fig. 6.1, where a stationary solution of type 2 for v = 0.0259 (corresponding to
the transfer of a homogeneous LC layer) and five eigenfunctions corresponding
to the first five eigenvalues with the largest real part are shown. The trans-
fer velocity is close to the instability threshold, where the patterning regime
begins. Therefore, the eigenfunctions give a clue where exactly in terms of lo-
cal position the instability occurs. All five eigenfunctions in Fig. 6.1 feature a
dominant peak located at the position of the meniscus, where the solutions of
type 2 exhibit a steep increase up to a value near c = +1. The eigenfunctions
only differ in the area behind the meniscus, where c(x) is nearly constant and
the shape of the eigenfunctions reminds of basic harmonics. This shape of the
eigenfunctions gives strong evidence that the formation of stripes occurs right
at the meniscus and not due to an instability of the nearly homogeneous area
behind the meniscus.
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Figure 6.1: Stationary solution of type 2 (blue solid line) for v = 0.0258 and
five eigenfunctions corresponding to the first five eigenvalues λ1-λ5 with the
largest real part obtained by linear stability analysis. The eigenfunctions are
shifted along the c-axis for better visibility. The real part of the corresponding
eigenvalue decreases from bottom (red solid line) to top (green dashed line).

As mentioned above, statements on the stability of a certain solution can
be made by looking at the eigenvalue with the largest real part (from now on
only referred to as largest eigenvalue). To this end, we come back to Fig. 4.6,
where the results from direct numerical simulations were shown in an L2 versus
v diagram. Figure 6.2 adopts this representation and additionally shows the
corresponding real part of the largest eigenvalue. The fact that the real parts
are less than zero for the bulk of the branches clearly proves the stability of these
stationary solutions. Up to now, we only stated the stability of the solutions
because of numerical observations. However, direct numerical simulations can
never really prove the stability because one can never distinguish a very slow
transient behavior from a stable stationary solution by means of simulations
of finite times. The increase of the real parts of the eigenvalues above zero at
the edges of the branches indicate that the branches really end at the locations
observed by the simulations because they become unstable.

In this context, we again want to point to results from the literature con-
cerning the same model. In [KGFT12], the nature of the bifurcation leading
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to the onset of the patterning regime was investigated. It has turned out that
the patterning branch in Fig. 6.2 (blue solid line) does not arise from the end
of the branch of the solution type 2 (red solid line), but from a branch that is
unstable. Therefore, there exists a global bifurcation that cannot be tracked
down to a single solution, where a single eigenfunction becomes unstable. In
contrast, a whole region in the solution space has to be considered, which of
course is not possible by means of linear stability analysis of a local solution.
For the analysis in this section, this implies that the transition from the stable
solutions of type 2 to the periodic solutions cannot be simply envisioned by a
single consequently growing perturbation leading to the onset of pattern for-
mation. The statements made on the stability of the solutions of course remain
unchanged by the nature of the bifurcation.
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Figure 6.2: Branches of solutions (solid lines) and their corresponding eigen-
value with the largest real part (dashed lines). For the time-periodic solutions
(blue line), no single eigenvalue can be assigned by means of a linear stability
analysis.

6.2 Stability analysis in 2D

We now want to extend the technique presented in the previous section to the
two-dimensional case. Especially, we are interested in the transition between
stripes parallel to the meniscus to stripes perpendicular to the meniscus. There-
fore, the ansatz for the perturbation is multiplied with a plane wave term in
y-direction,

η(x, t) =
∑

j

ηj(x)eikyyeλjt. (6.10)
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This ansatz is reasonable because we impose periodic boundary conditions in
y-direction. The linearization operator then reads

F ′(∇, x, v)
∣∣
c̃(x)

=− ∂4

∂x4
+ 2ky

∂2

∂x2
− k4

y +
(
3c̃2 − 1

) ∂2

∂x2
+ k2

y

(
3c̃2 − 1

)
+

(
12c̃

∂c̃

∂x
− v
)
∂

∂x
+ 6

(
c̃
∂2c̃

∂x2
+

(
∂c̃

∂x

)2
)
. (6.11)

That is, for a fixed value of ky, the same approach as in the one-dimensional
case can then be applied. To reveal the dependence of the eigenvalue spectrum
on the transversal wavenumber ky, of course the approach has to be repeated
for different values of ky. Again, the solutions we want to analyze are obtained
by one-dimensional direct numerical simulations, meaning we are interested in
the stability of two-dimensional solutions that are homogeneous in y-direction.
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Figure 6.3: Real part of the eigenvalue with the largest real part maxj(Re(λj))
under the assumption of a transversal modulation of the perturbation with eikyy.
The different colors refer to different solutions for a transfer velocity v = 0.0254
(blue line), v = 0.0260 (red line), and v = 0.0266 (green line). The latter refers
to a snapshot of a time-periodic solution.

The results, again for stationary solutions close to the onset of the patterning
regime, are shown in Fig. 6.3. In the case of transfer velocities of v = 0.0254
and v = 0.0260, the real parts of the eigenvalues monotonically decrease with
increasing ky. This implies that stable stationary solutions that are homoge-
neous in y-direction are also stable with respect to perturbations that vary
with y. This is an important result because it attests that the results from
the one-dimensional linear stability analysis performed in the previous section
fully carry over to the two-dimensional case. In addition, we can take a look
at the results for time-periodic solutions. For an increased transfer velocity of
v = 0.0266 above the lower limit of the patterning regime, the dependence of the
eigenvalues of ky changes qualitatively. Then the real part of the largest eigen-
value increases with the transversal wavenumber ky up to a maximum value,
and then decreases. That is, if we consider a solution that is already unstable,
the solution is even more sensitive to perturbations that have a certain variation
in y-direction. These results reveal that the transversal instability in the two-
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6 Linear stability analysis

dimensional system is indeed a secondary instability because it only appears in
the wake of the first instability that also occurs in the one-dimensional system
and that is homogeneous in the y-direction. This also explains the way the
stripes perpendicular to the meniscus evolve in the numerical simulations (see,
e.g., Fig. 4.13): First, stripes parallel to the meniscus are formed, which then
subsequently break up in y-direction and extend in x-direction, until stripes
perpendicular to the meniscus are formed. Of course, it has to be emphasized
that the eigenvalue spectrum obtained by this approach varies in time for a
periodic solution, like the one studied for v = 0.0266 in Fig. 6.3, and therefore
rigorous statements for such solutions would necessitate a different approach,
like the Floquet theory [AFHF10]. Nevertheless, we can find evidence that the
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Figure 6.4: Snapshot of 2D simulation showing a very early stage of the for-
mation of transversal stripes.

approach used here is able to deliver reasonable results. To this end, we take a
look at a two-dimensional simulation in an early stage before the occurrence of
stripes perpendicular to the meniscus. The initial conditions for the simulation
shown in Fig. 6.4 were perturbed by white noise, so that the system was able
to “choose“ a preferred wavelength. By the basic approach of counting the
number of max ima nmaxima that arise located at the meniscus, we can easily
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6.2 Stability analysis in 2D

estimate the average wavenumber of the structure to be

ky =
2π

λy
=

2π
Ly

nmaxima

≈ 0.43. (6.12)

Taking into account the simplicity of this estimation, the value obtained resem-
bles the wavenumber with the largest amplification predicted by the stability
analysis in Fig. 6.3, ky = 0.325, quite well, especially when comparing the cor-
responding eigenvalues that differ only slightly (see Fig. 6.3). The fact that the
results do not coincide perfectly, however, is not surprising as the linear stability
analysis does only deliver predictions for infinitesimal perturbations, while the
perturbation observable in Fig. 6.4 has obviously evolved much further already.

The mechanism that leads to the fact that for higher transfer velocities stripes
parallel to the meniscus stay stable and do not break up unfortunately cannot
be addressed with the linear stability analysis presented here. Instead, a math-
ematical technique like the already mentioned Floquet theory, which is able
to treat time-periodic solutions correctly, is planned to be employed in future
work to investigate the solutions inside the patterning regime. Still, the lin-
ear stability analysis presented in this chapter already reveals insights in the
transfer process. It proves the stability of the stationary solutions obtained by
direct numerical simulations, it discloses the functional form of eigenfunctions
involved in the onset of pattern formation, and it reveals that stripes perpen-
dicular to the meniscus can only occur in the wake of a first instability leading
to stripes parallel to the meniscus.
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7 Summary and Outlook

The main topic of this thesis is the investigation of pattern formation processes
in Langmuir-Blodgett transfer by means of a minimal Cahn-Hilliard model. To
this end, first a derivation of a Cahn-Hilliard model is presented that is suit-
able for the application to the case of Langmuir-Blodgett transfer and that
has been first derived in [KGFT12] and in more details in [Köp11]. The re-
sulting model (2.22) used in this thesis incorporates physical effects occurring
during Langmuir-Blodgett transfer, like substrate-mediated condensation, en-
ergetic boundary layer contributions, advection, as well as certain boundary
conditions, into the framework of a Cahn-Hilliard equation. These are the key
ingredients making this Cahn-Hilliard model suitable for the investigation of
pattern formation processes during Langmuir-Blodgett transfer. To this end,
direct numerical simulations of the model have been performed. The simulation
software was programmed in the programming language C++ using the CUDA
framework for computations on modern graphics processors. The software em-
ploys a finite difference approach for the evaluation of spatial derivatives on the
simulation grid and an adaptive Runge-Kutta time stepping algorithm. The
first investigations with this approach have been done on the case of a transfer
onto a homogeneous substrate in one and two dimensions, where some results
are readily available in the literature [KGFT12]. These results, like the trans-
fer velocity dependence of the wavelength of the occurring stripe patterns, or
the transition between stripes of different orientation, can be compared to the
results obtained here and therefore be used as a benchmark for the actual im-
plementation. With the confidence of a properly working model and numerical
implementation, new dynamical scenarios have been investigated. In particu-
lar, the results for periodic solutions in one dimension for a varying boundary
concentration c0 (see Figs. 4.9-4.10) reveal that this parameter can be used
experimentally to control certain properties of the transferred patterns. Two-
dimensional simulations for varying c0 are also worth to be investigated in future
work.

In the same context, we have also identified a minor drawback of the model.
At the upper limit of the patterning regime, the spatial location where new
stripes are formed is carried further and further away from the meniscus with
an increasing transfer velocity. The patterning process then ceases, as soon as
this location is carried outside the simulation domain. As the results indicate,
this effect becomes larger for an increasing value of c0 (see the irregular be-
havior of k(v, c0) at the right limit of the patterning regime in Fig. 4.9). This
result implies a dependence of the upper limit of the patterning regime on the
size of the simulation domain, which of course is an unwanted artifact in the
simulation. It occurs because we assumed the mobility M of the monolayer to
be constant in the derivation of the model. A more realistic approach could
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be achieved in future investigations by using an ansatz for M that restricts the
mobility to a certain domain around the meniscus, just as in the real experi-
ment, where the monolayer also is “frozen“ as soon as the liquid layer below it
is evaporated.

In addition to the conventional Langmuir-Blodgett transfer onto homoge-
neous substrates, also Langmuir-Blodgett rotating transfer has been examined
in chapter 4. The results from simulations resemble the experimental observa-
tion that this novel approach can be used to produce gradient structures as well
as to do high-throughput studies, where a full parameter range can be evaluated
by just one transfer experiment. This example demonstrates the ability of the
model to be applied to different transfer geometries.

The results presented in chapter 5 attend to the transfer onto substrates with
a prestructure. Here it has been proven that prestructures are a powerful way
to control the pattern formation process during Langmuir-Blodgett transfer.
While this has been shown in the framework of the full model earlier [KGF11],
the findings of this thesis show for the first time that such effects can be also
be studied in the minimal Cahn-Hilliard model. Therefore, a reasonable sub-
ject for future research is the application of the model onto the case of more
complex prestructures. Although we have been able to address a key feature of
experimental findings in this context, that is, the bending of occurring stripes at
the boundaries of a prestructure, there are still open questions concerning the
mechanisms involved. One major question is the validity of the assumption of
a static meniscus when considering prestructured substrates that do not only
exhibit a chemical prestructure influencing the substrate-mediated condensa-
tion, but possibly also a topological prestructure influencing the dynamics of
the meniscus. This should be investigated by comparative simulations of both
the full model and the minimal Cahn-Hilliard model.

In the last chapter, the technique of linear stability analysis has been utilized
to examine the stability of the solutions obtained by direct numerical solutions.
Further, the occurrence of stripes perpendicular to the meniscus has been iden-
tified to arise as a transversal (secondary) instability only in the wake of the
global bifurcation leading to stripes parallel to the meniscus. An open question
that should be addressed in future work concerns the stability of stripes paral-
lel to the meniscus for higher velocities, where this secondary instability does
not occur. To face this fact, a technique has to be employed that is capable
of treating not only stationary solutions, but is also able to make statements
on the stability of time-periodic solutions. The Floquet theory seems to be a
reasonable choice for such investigations. With such a technique, it should also
be possible to examine the experimental observation of rectangular patterns,
which probably can be explained as a superposition of stripes perpendicular
and parallel to the meniscus.

Looking at the results obtained in this thesis, the Cahn-Hilliard model has
proven to be a powerful framework to investigate the pattern formation phe-
nomena occurring during Langmuir-Blodgett transfer. While being much less
complex than the full model that was first developed to investigate the same
phenomena, the minimal Cahn-Hilliard model reproduces the main features
obtained in the full model.
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