
Theoretische Physik

Phase Transitions from Bose-Einstein
Condensates to Active Soft Matter

Systems

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich Physik
der Mathematisch-Naturwissenschaftlichen Fakutlät

der Universität Münster

2024

Vorgelegt von
Alina Barbara Steinberg

aus Bochum



Dekan: Prof. Dr. R. Bratschitsch
Erstbetreuer: Prof. Dr. U. Thiele
Zweitgutachter: Prof. Dr. F. Maucher
Abgabedatum: 28. Oktober 2024



Kurzzusammenfassung

Ziel dieser Arbeit ist es, den Zusammenhang zwischen lokalisierten Zuständen und
Phasenübergängen in einer Vielzahl unterschiedlicher physikalischer Systeme zu
verstehen, die von passiv zu aktiv und von der klassischen bis hin zur Quantenebene
reichen.

Zu diesem Zweck werden zum einen verschiedene Näherungen eines Modells der
klassischen Dichtefunktionaltheorie, dem GEM-4-Modell, betrachtet, mit dem Ziel,
das Snakingverhalten von Ästen lokalisierter Zustände zu testen. Dabei stellt sich
heraus, dass dieses normalerweise weder Teil des Originalsystems, noch der besseren
Näherungen ist, sondern nur auftritt, wenn quadratischen und kubischen Termen
andere als die natürlich resultierenden Gewichte zugewiesen werden.

Für den aktiven Fall liegt der Fokus auf Phasengrenzen in einem erweiterten aktiven
Phasenfeldkristallmodell. Die Arbeit kommt zu dem Schluss, dass kristalline Lösun-
gen des passiven Grenzfalls, die durch das Hinzufügen einer konstanten Aktivität
zerstört werden, durch das Hinzufügen einer dichteabhängigen Aktivität wieder
hergestellt werden können. Darüber hinaus werden die Existenz und das Verhalten
rotierender Kristalle und Zustände fernab des kritischen Punktes beschrieben.

Auf der Quantenebene wird ein Bose-Einstein-Kondensat auf die generelle Existenz
lokalisierter Zustände getestet. Sie erscheinen ohne Snaking sowohl in einem Ryd-
berg Testmodell mit lokaler und nichtlokaler Wechselwirkung, als auch in einem
dipolaren Modell mit Röhrengeometrie in einer und drei Dimensionen. Insbesondere
zeigt diese Arbeit die Möglichkeit, dass einige zuvor aufgrund der Primärbifurkation
als zweiter Ordnung eingestufte Phasenübergänge durch die Existenz lokalisierter
Zustände als Phasenübergänge erster Ordnung klassifiziert werden müssen.
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Abstract

This thesis seeks to understand the relation between localized states and phase
transitions in a variety of physical systems ranging from passive to active and from
classical to quantum level.

To that end different approximations of a classical density functional theory model,
the GEM-4 model, are examined with the aim of testing for snaking behavior in
branches of localized states. This reveals that snaking is not usually a part of either
the original system, or the better matching approximations, but rather appears once
quadratic and cubic terms are given weights other than the naturally resulting
ones.

For the active case the focus is on phase boundaries in an extended active phase-
field crystal model. The thesis concludes that adding a density-dependent activity
can reverse the destruction of patterned states occurring in the passive limit, which
happens under the influence of a constant activity. In addition, the existence and
behavior of rotating crystallites and states far from the critical point are detailed.

On the quantum level a Bose-Einstein condensate is tested for the general existence
of localized states. They appear without snaking in both a Rydberg-dressed toy
model with local and nonlocal interactions, as well as in a dipolar model with
tube geometry in both one and three dimensions. Specifically, this thesis shows
the possibility that some phase transitions previously identified as second order on
account of the primary bifurcation have to be classified as first order due to the
existence of localized states.
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1 Introduction

Any equilibrium system in nature seeks to reach a resting point with minimum
energy. This expresses itself, e.g., in the commonly found states of water: fluid, solid
and vapor, which differ in some inherent property such as the density. Disturbing
a system, e.g., by raising the temperature, can push it from one state to another in
a so-called phase transition (Ch. 2) [70, 132]. Of specific interest to this thesis are
phase transitions towards non-uniform phases and states, e.g., crystallization.

Such phases and states also appear in non-equilibrium systems, where the inter-
action of individual microscopic parts can lead to self-organization into a macro-
scopic structure. The underlying driving force can be, e.g., physical, chemical,
social or economical in nature [70, 51, 184, 74, 102, 88]. Often the resulting struc-
ture is a pattern, meaning the same elements reappear repeatedly, e.g., in form
of stripes. Self-organization appears all throughout the cosmos on vastly different
length scales (e.g., cells, galaxies) and time scales (e.g., laser pulses, heart beats,
certain biorhythms) [70, 130, 192]. Some prominent examples are the patterns on
animals [184, 87], swarming behavior [145] and weather phenomena [84]. Fig. 1.1
depicts more specific cases of these examples: a) dot pattern on a cheetah b) cir-
cular swarming behavior in a school of fish and c) stripe pattern in cirrocumulus
undulatus clouds.

a) b) c)

Fig. 1.1: Examples of self-organized structures: (a) dot pattern on a cheetah,
cropped from [69] with permission, (b) circular swarming behavior in a
school of fish, cropped from [127] with permission and (c) stripe pattern
in cirrocumulus undulatus clouds, cropped from [163] with permission.

This thesis focuses specifically on systems where particle interactions are long-
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ranged or non-local and can be described by convolutions. To facilitate numerical
simulations, approximations are often used to derive simpler partial differential
equations from the original integro-differential equations.

In this thesis phase transitions are explored with a specific interest in a state which
frequently accompanies it, the so-called localized state. In such a state a patterned
phase and another (often uniform) phase exist simultaneously in the same domain,
only separated by an interface region. Some examples of this can be found in
Fig. 1.2, namely a) a localized seven peak structure in a ferrofluid, b) sunspots and
c) localized patches of vegetation.

a) b) c)

Fig. 1.2: Examples of localized states: (a) localized seven peak structure in a
ferrofluid, cropped from [110] with permission, (b) sunspots, cropped
from [129] with permission, (c) localized patches of vegetation, cropped
from [42] with permission.

The emergence and behavior of localized states, as well as general information on
phase transitions are examined for three different types of systems.

The first system is categorized as part of classical passive soft matter physics (see
Ch. 3), which deal with materials with a large, nonlinear response to small stimuli.
Examples include easily deformed polymer structures such as rubber, the soft prop-
erties of colloids such as paints or the optical properties of liquid crystals, easily
influenced by electric fields [46]. The physical understanding of many of these ef-
fects is based on Brownian motion and consequently closely connected to statistical
mechanics [198], but the actual concept of soft matter is built on the studies of de
Gennes and Edwards in the 1960s and 70s, which united several fields of study into
soft materials [198, 62]. From there the field spread in many different directions,
though this thesis specifically focuses on colloidal systems, described by dynamical
density functional theory, developed in 1999, which uses a density field to describe
particle positions [119, 11].

In addition to the passive case, this thesis also takes a look into a higher order
active soft matter model (Ch. 4). Matter is considered active if its constituents can
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absorb energy and convert it into motion [63, 118, 145]. Consequently, those types
of systems are open to energy influx and do not move towards equilibrium states.
Instead, the constituents may form a variety of potentially moving patterns, exam-
ples of which include clusters and swarms, such as in bacteria colonies or flocks of
birds, and also extends to artificial self-propelled constituents [145]. Early interest
in the topic was closely connected to the concept of life and consequently rather
philosophical in nature [93, 145]. The renewed interest in the 1980s was still di-
rected at the collective behavior of living beings [139], but self-driven particles [187],
computer simulation [155] and physical models [183] soon followed. The modern
use of the term active matter has only been used since 2006 [145, 153].

The last system considered in this thesis is quantum mechanical in nature. Specif-
ically, this thesis looks at transitions between phases which are macroscopic mani-
festations of quantum effects (Ch. 5). One such phase is the superfluid, a state of
matter which distinguishes itself through dissipationless flow in the liquid phase,
most famously found in liquid Helium [91, 3, 111]. Another phase, the supersolid,
(i.e., a state of matter which is both superfluid while simultaneously exhibiting the
rigid structuring of a solid) was predicted to exist starting in the late 50s [68, 7,
103, 37]. While this state of matter could not (yet) be found for Helium [96], it has
been realized in Bose-Einstein condensates (BECs) [26, 39, 177].

A BEC is a new state of matter and short hand for a dilute gas (4-6 orders of
magnitude below air [141]) of massive bosons at very low temperatures (𝜇-nK [6,
44]), where a macroscopic amount of particles occupies the lowest-energy single-
particle state [48]. The theory of BECs dates back to 1925 [25, 48], but experimental
proof in form of an atomic BEC is as young as 1995 [6, 44] and owes its existence
to advances in laser cooling, combined with magnetic traps and evaporative cooling
(see, e.g., Ref. [126]). Those early BECs show superfluidity, but no supersolid phase.
The latter was realized experimentally in 2017 by two groups using additional light
fields [105, 106].

This thesis is structured as follows: Ch. 2 gives an overview over terminology sur-
rounding patterns, phase transitions and bifurcation theory. It explains linear sta-
bility analysis, as well as particular features of phase transitions, i.e., nucleation
and its connection to localized states. Finally, it details the numerical methods
used to simulate results.

Ch. 3 introduces a soft matter system, the GEM-4 model, and proceeds to analyze
the effects of different approximations on the existence and behavior of localized
states.

Ch. 4 analyzes the effects of adding different types of activity to an extended phase-
field crystal model, specifically on the different phase boundaries, and takes a look
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at the emergence of localized states in form of rotating crystallites, which includes
two and three phase coexistence far from the critical point.

Ch. 5 is focused exclusively on the transition from superfluid to density modulated
states such as supersolids, specifically the existence and stability of localized states
as defined above. The chapter analyzes the transition for two different types of Bose-
Einstein condensates: First, a Rydberg-dressed toy model both with and without
approximation and second, a dipolar Bose-Einstein condensate with tubular geom-
etry, both under dimensional reduction and in a full three-dimensional set-up. The
former is treated with a full bifurcation analysis. A special focus is laid on whether
localized states exist as a ground state and how higher-order nonlinearities affect
the phase transition. The latter, as a more realistic set-up, is largely tested for the
general existence of localized states.

Finally, Ch. 6 summarizes the results and gives an outlook for possible future re-
search avenues for all systems.
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2 Pattern Formation and Phase Transitions

2.1 Theoretical Preliminaries

This thesis focuses on self-organized patterns, which are spatio-temporal structures
with recurring elements, found in complex systems consisting of many nonlinearly
interacting often microscopic parts. Those parts collectively form the macroscopic
pattern, which is not immediately apparent when looking at the forces governing
the individual parts. The pattern is therefore self-organized, rather than imposed
externally through the driving force [70, 88].

y

(a) (b) (c) (d)

x

y

(e)

ρmin

ρmax

Fig. 2.1: Examples of common patterns in two-dimensional, spatially periodic sys-
tems: (a) hexagon, (b) honeycomb or down-hexagon, (c) stripe (d) rectan-
gle and (e) localized state (see Sec. 2.4). The colors mark low or high values
of an order parameter 𝜌 and the domain sizes are (a)-(d) 2𝐿𝑐/

√
3 × 2𝐿𝑐

and (e) 16𝐿𝑐/
√

3×2𝐿𝑐 where 𝐿𝑐 is the critical length scale of the pattern.

Here, the focus is placed on spatially extended patterns, which can take a variety of
forms. Some of the more common two-dimensional patterns are depicted in Fig. 2.1
with the most prominent ones, hexagons, down-hexagons and stripes [85] shown in
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panels a), b) and c), respectively. The colors mark low or high values of a local
density. The overall pattern is measured by an order parameter, a property of the
system which changes with the appearance of the pattern (e.g., an amplitude) [88,
132].

A phase is a state of matter in which the macroscopic physical properties of the
substance are uniform when considered over a macroscopic length scale (e.g., unit
cell size for patterns). It depends on system specific macroscopic parameters such
as the temperature [132]. In terms of patterns this means the whole domain is
spanned by the same pattern.

A diagram which details the existing phases, spanned by those macroscopic pa-
rameters is called a phase diagram. Boundaries between phases are called phase
boundaries and crossing them by changing parameters can lead to a phase transi-
tion. Such a transition can be detected by measuring an order parameter, as the
materials characteristics change drastically. From a mathematical point of view a
phase transition is characterized by the appearance of a singularity (e.g., a cusp,
jump or divergence) in a physical quantity of the material [132].

Phase transitions can generally be divided into different categories. In this thesis
there appear only continuous and discontinuous transitions with respect to the
order parameter, which roughly correspond to second and first order transitions
according to Ehrenfest’s classification [113, 4].

To analyze complex systems with respect to phases and transitions between them it
is useful to express them in form of an evolution equation. While more complicated
equations are possible, a simple dynamical equation is sufficient to explain general
principles:

𝜕𝑡u = G(u) . (2.1)

Here u = u(𝑡) is a state variable at time 𝑡. 𝜕𝑡 represents an operator for partial
temporal derivation, while G is a function of u [131].

The phase space of the system contains all possible states the system can reach in
accordance with Eq. (2.1) starting from any possible initial condition u0 = u(𝑡 = 0).
Solutions take the form of a flow 𝜙(u0, 𝑡) = u(𝑡), which is a path, or more formally
a trajectory through phase space depending entirely on the initial condition [85,
173].

Trajectories are unique outside of invariant manifolds, which include fixed points,
i.e., states u𝑓(𝑡) = u𝑓 for which 𝜕𝑡u𝑓 = G(u𝑓) = 0. Hence, there is no flow
as 𝜙(u𝑓, 𝑡) = u𝑓. Another invariant manifold is the periodic orbit, a temporally
reoccurring equivalent of the fixed point. It describes a trajectory in phase space
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which meets itself after a period 𝑇, i.e., for any state u𝑝 on the periodic orbit it is
𝜙(u𝑝(𝑡)) = 𝜙(u𝑝(𝑡 + 𝑇 )). Equivalents for higher dimensions also exist [85, 173].

The temporal dynamics of a system is governed by those invariant manifolds and
whether phase space trajectories move towards or away from them. If all trajectories
in the immediate surroundings move towards the invariant manifold it is considered
stable, if the reverse is true it is unstable. In case trajectories move both towards
and away it is considered a saddle node [85].

Mathematically speaking, linear stability is determined by adding a perturbation
to a fixed point

u = u𝑓 + 𝛿u (2.2)

and inserting it into the governing equation (2.1). The resulting equation can then
be linearized around u𝑓. This leads to:

𝜕𝑡𝛿u = G(u𝑓) + 𝛿u J(u𝑓) + 𝒪(𝛿u2) , (2.3)

where J represents the Jacobian matrix, with elements 𝐽𝑖𝑗 = 𝜕𝐺𝑖/𝜕𝑢𝑗 where 𝑢𝑗 ∈ u.
As G(u𝑓) = 0, Eq. (2.3) becomes a linear equation which can be solved by an
exponential ansatz ∝ 𝑒𝜎𝑡. The exponent, i.e., the eigenvalues 𝜎 of the Jacobian
matrix, decide whether the perturbation shrinks or grows in time.

Here, stable directions of trajectories touching a fixed point are indicated by nega-
tive real parts of the eigenvalue 𝜎, while positive real parts mark unstable directions.
Imaginary parts are indicative of additional circular motion of the flow around the
fixed point. Overall only fixed points with negative real parts for all their eigenval-
ues are considered stable [85].

A change in the stability and number of invariant manifolds in response to the
change of parameters 𝜆 is called a bifurcation, with the exact bifurcation point
given by 𝜆𝑐. A bifurcation diagram details those changes by tracking those invariant
manifolds in the form of branches in parameter space [85, 173, 166].

There are different ways of characterizing bifurcations. Local bifurcations only
affect the flow directly around an invariant manifold, while global bifurcations affect
the whole phase space. The codimension gives the number of parameters in 𝜆
which need to be varied in order to reach a bifurcation point1. Finally, stationary
bifurcations appear when only real eigenvalues cross zero, as opposed to a dynamic
bifurcation where the crossing eigenvalues are imaginary [85, 166].

1The codimension is determined here with regards to the normal form. Unfolding would of course
lead to more parameters and the given definitions would therefore only hold under certain
symmetries.
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b)

λ

c)

λ

d)

Fig. 2.2: Bifurcation diagrams which track fixed points u𝑓 with respect to changes
in parameter 𝜆. a) fold (or saddle-node), b) transcritical, c) supercritical
pitchfork and d) subcritical pitchfork, respectively. Solid lines represent
stable solutions, while dotted lines represent unstable fixed points.

The bifurcations depicted in Fig. 2.2 are not an exhaustive list, but rather form
reference points for bifurcations appearing in this thesis. Fig. 2.2 a) depicts a saddle-
node or fold bifurcation, which is characterized through the collision and subsequent
annihilation of two fixed points of opposite stability when moving towards smaller
𝜆. It is a local codimension one bifurcation [173, 85].

Fig. 2.2 b) shows a transcritical bifurcation, which is also characterized through a
meeting of a stable and unstable fixed point, but here they exchange their respective
stability rather than annihilate. Again it is a local codimension one bifurcation [173,
85].

Fig. 2.2 c) and d) show super- and subcritical pitchfork bifurcations, respectively,
which are common in (but not exclusive to) systems with symmetries such as left-
right symmetry, i.e., where fixed points appear in pairs as no solution is more
favorable than the other. With the emergence of new fixed points the original fixed
point changes stability. If the change is from stable to unstable with the additional
fixed points being stable it is a supercritical pitchfork. If the opposite is true it is a
subcritical pitchfork. Both are steady and local codimension-one bifurcations [173,
85].

Another example of a bifurcation is the Hopf bifurcation (not shown). It resembles
the pitchfork, but rather than two distinct fixed points, what emerges is a periodic
orbit, rendering it a dynamic codimension-one bifurcation. It can can be sub- or
supercritical, too [4, 166].

Some combination of bifurcations in a system may lead to parameter regions with
multiple stable fixed points, called multistable regions. Depending on external
conditions, the system may assume any stable solution and even jump between

8



Phase Transitions from Bose-Einstein Condensates to Active Soft Matter Systems

them. In an equilibrium system the solution with the lowest energy is both linearly
and nonlinearly stable, while other stable solutions are metastable [173, 4].

Phase boundaries come in different forms depending on the underlying thermody-
namic ensemble. Fig. 2.3 shows examples in a) the grand canonical (open to energy
and particle exchange) and b) the canonical ensemble (open to energy exchange)
for a phase boundary related to two uniform phases of different densities.

The phase diagram for the grand canonical ensemble is shown in the (𝑇 , 𝜇)-plane
with temperature 𝑇 and chemical potential 𝜇. The phase boundary is given by a
black line, which ends in the critical point (black dot). Above the critical point the
phases become indistinguishable, therefore no boundary exists.

The transition between two uniform phases in the canonical ensemble looks quite
different. It is depicted in the (𝑇 , 𝜌)-plane, with temperature 𝑇 and density 𝜌.
Rather than a clearly defined boundary, there are several regions separating the two
uniform phases below the critical point. The spinodal (solid line) is also called a
linear stability boundary and is where the uniform phases become linearly unstable
in favor of the phase-separated state. The binodals (dashed line) signal the onset
of a multistable region, typically indicated by a saddle-node bifurcation. Spinodals
and binodals are not limited to bordering phase-separated states, but may also
appear for transitions towards patterns [46].

µ

T

a) uniform
phase

ph
as

e
bo

un
da

ry

ρ

b)

m
ul

tis
ta

bl
e

phase-
separated

uniform
phase

bi
no

dal spinodal

Fig. 2.3: Sketch of a phase diagram with phase boundaries in a) the grand canonical
ensemble and b) the canonical ensemble, depicted in the (𝑇 , 𝜇) and (𝑇 , 𝜌)-
plane respectively. The former shows a simple phase boundary (black
solid line), ending in the critical point (black dot). The latter shows both
a spinodal (solid line) and a binodal (dashed line), meeting in the critical
point. The spinodal is the border of linear stability between the uniform
and phase-separated states. The binodal borders a region where both
phase-separated and the respective uniform phase appear.

In terms of phase transitions any bifurcation (or combination of different bifur-

9



Alina Barbara Steinberg

cations) which causes a multistable region is part of a first order transition. As
these are accompanied by a binodal, any transition which passes a binodal before
reaching the spinodal is of first order.

A naive assumption would be that one would find only the most energetically favor-
able solutions in an experiment. In reality finite size effects or having a limited time
of observation means metastable or even unstable states may become important,
e.g., as transient states [181].

In a non-equilibrium system with changing energy levels a solution will not come
to rest in a free energy minimum, but change between possible states within the
scope of the current level of energy (cf. Ch. 4).

For spatio-temporal systems Eq. (2.1) becomes a partial differential equation with
field u = u(x, 𝑡), which now also depends on position x, and operator G. The
latter contains spatial derivatives in the form of powers of the nabla operator ∇.
The stability of a system becomes more complicated, as the perturbation 𝛿u needs
to account for spatial patterns.

If an exact solution of the system is known, as is usually the case for uniform solu-
tions (i.e., u𝑓(x) = ū = const with mean value ū) linear stability can be determined
by adding a small periodic perturbation, which takes the form of an exponential
function:

𝛿u = 𝜀𝑒𝑖kx+𝜎𝑡 , (2.4)

Here k is a wave vector while 𝜀 is a smallness parameter, so that 𝛿u ≪ ū. Insert-
ing the perturbation into the governing equation gives a dispersion relation of the
form

𝜎(k) = 𝑓(k) + 𝒪(𝜀) . (2.5)

In this thesis only dispersion relations with 𝑓(𝑘) appear, i.e., 𝜎 has radial symmetry
as it only depends on the absolute value 𝑘 of the wave vector k. The simplest
example for 𝑓 would be a polynomial in 𝑘2.

Negative values of Re(𝜎) cause the perturbation to decrease with 𝑡, while positive
values represent a growing perturbation. Hence, Re(𝜎) = 0 represents the border
of linear stability for the uniform ground state. This coincides with a maximum of
Re(𝜎) with respect to 𝑘.

Depending on the form of 𝜎 there are different types of instabilities. For conserved
dynamics as considered in this thesis Re(𝜎)(𝑘 = 0) = 0 always applies. Furthermore
passive systems show purely real 𝜎, meaning the dispersion relation represents only
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the growth rate. Active systems (cf. Ch. 4) also show complex values of 𝜎, which
correspond to oscillations.

If Im(𝜎) = 0, a maximum in Re(𝜎) growing next to 𝑘 = 0 constitutes a large-scale
(also long-wave), or Cahn-Hilliard instability [60]. A minimal example of such a
dispersion relation would require powers of 𝑘2 up to 𝒪(𝑘4).

If for Im(𝜎) = 0 a maximum crosses zero at a critical wavenumber 𝑘 = 𝑘𝑐 > 0 this
constitutes a small-scale (also short-wave) or conserved-Turing instability, leading
to pattern formation with a length scale of 𝐿𝑐 = 2𝜋/𝑘𝑐 [60]. A minimal example of
such a dispersion relation would require powers of 𝑘2 up to 𝒪(𝑘6).

If Re(𝜎) > 0 and Im(𝜎) ≠ 0 the instability becomes oscillatory. The large-scale
case is named conserved-Hopf instability, while the small-scale equivalent is called
conserved-wave instability [60].

At any maximum with 𝜎 = 0, 𝜕𝑘𝜎 = 0 also holds. Together the two equations allow
for the determination of the critical wave vector 𝑘𝑐 as well as critical model specific
parameter values [85, 131, 70].

Alternatively, it is possible to test for spatial stability, i.e, add a purely spatial
perturbation, where different types of eigenvalues correspond to different types of
patterns. Explanations and applications of this can be found in App. A.1.

2.2 Phase Coexistence and Maxwell Construction

In layperson terms, phase coexistence can happen, when two phases 𝐴 and 𝐵 are
equally favorable to the system, leading to both being present in the same domain,
only separated by an interface. The Maxwell construction [31] gives a more formal
explanation: The point of coexistence is characterized by two stable states, which
have equal chemical potential 𝜇 and pressure 𝑝. As 𝑝 = −Ω/𝑉, this is equivalent to
equal grand potential Ω.2

Fig. 2.4 a) and b) show the Maxwell construction, specifically an isothermal (red)
for phase A (dashed) and phase B (dotted) as well as meta- and unstable states
(dash-dotted). Panel b) visualizes the process explained above (with equal 𝜇 and
𝑝), while panel a) shows the traditional explanation in the (𝑝, 𝑉 )-plane. Here
the black dots represent the coexistence points, chosen such that areas 𝑎1 and 𝑎2
(shaded red), bordered by the isobar (black, solid line), are of equal size. Those
same coexistence points are also marked in panel b) and c). The latter shows the
double tangent construction, which is applied for a canonical ensemble, where the

2It is Ω = 𝑈 − 𝑇 𝑆 − 𝜇𝑁 and 𝑈 = 𝑇 𝑆 − 𝑝𝑉 + 𝜇𝑁, therefore Ω = −𝑝𝑉.
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corresponding potential is the free energy 𝐹, while particle number 𝑁 and therefore
density 𝜌 (rather than 𝜇) are fixed. The coexistence points are defined by a shared
tangent connecting two minimum regions as the new lowest energy states. This is
equivalent to the equal 𝜇 and equal Ω construction in the grand canonical ensemble,
where the density is variable.

V

p

a)

a1

a2

phase A

phase B

µ

b)

ρ

F/
N

c)

Fig. 2.4: Maxwell construction [31] for two uniform phases A (red dashed line) and
B (red dotted line). Panel a) shows the traditional presentation of an
isothermal line (red) in the 𝑝 − 𝑉 plane, where shaded areas 𝑎1 and 𝑎2
are of equal size, therefore defining the coexistence points (black dots)
connected by an isobar (black line). Panel b) shows the equal 𝑝 and equal
𝜇 part of the coexistence, while panel c) depicts its equivalent for the
canonical ensemble, the double-tangent construction.

2.3 Classical Nucleation Theory

When a system is pushed far enough into a binodal region (i.e., the region bounded
by binodal and spinodal) to become metastable, a phase transition occurs. However,
unlike when the phase becomes unstable, the new phase does not form everywhere
at once. Instead, there is a gradual change, starting with an initial patch of the new
phase, which then spreads across the domain. This phenomenon can be described
by classical nucleation theory (CNT) [136, 137, 92]. It describes how systems in
metastable states pass over a free energy barrier to reach the thermodynamically
stable state (e.g., crystallization of a supercooled liquid). Besides impurities spark-
ing the transition between phases, the system has to form a sufficient amount of
the stable phase, the so-called critical nucleus, to be able to move from one state
to the other. The reason such a nucleus has to reach a certain volume is due to
the interface appearing between the two now separated phases. On the one hand
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the additional energy of the interface raises the overall energy, on the other hand
having more of the energetically favorable new phase lowers it. The critical nucleus
is reached when these energy gains and losses are equal.

In a container plus reservoir which fixes the chemical potential 𝜇, the system in the
metastable state 𝐴 is described through the grand potential

Ω𝐴 = −𝑝𝐴𝑉 , (2.6)

where 𝑝𝐴 is the pressure and 𝑉 the volume. For the grand potential density that
means

𝜔𝐴 = Ω𝐴
𝑉

= −𝑝𝐴 . (2.7)

For a system which reached the stable state 𝐵 the same equations apply with
pressure 𝑝𝐵.

For a nucleus (denoted by subscript 𝐴𝐵) the system contains both, state 𝐴 and
state 𝐵, as well as an interface, which means the volume 𝑉 is split into the state
𝐵 part with volume 𝑣𝐵 and the state 𝐴 part with volume 𝑣𝐴. In other words,
Ω𝐴𝐵 = Ω𝐴|𝑣𝐴

+ Ω𝐵|𝑣𝐵
+ 𝐼, where 𝐼 is the influence of the interface.

From here several assumptions are made [92]: First, that the nucleus and surround-
ing phase have the same thermodynamic properties as the full phases (e.g., density,
structure). Second, the interface between the nucleus and its surroundings is sharp,
meaning 𝑉 = 𝑣𝐴 + 𝑣𝐵. Finally, the interface is considered planar, meaning 𝐼 ≈ 𝑎𝑏𝛾
with the constant interface tension 𝛾 and the size of the interface 𝑎𝑏. This is only
approximately true, as the interface is not generally planar and therefore the inter-
face tension 𝛾 not constant. It therefore fails for small spherical nuclei, but works
well enough for larger radii. In other words, CNT works best when a phase only
just turned metastable, leading to large critical nuclei and small pressure differences
between phase 𝐴 and 𝐵 (i.e., Δ𝑝 = 𝑝𝐵 − 𝑝𝐴).

Given all these assumptions the grand potential takes the form

Ω𝐴𝐵 ≈ −𝑝𝐴(𝑉 − 𝑣𝐵) − 𝑝𝐵𝑣𝐵 + 𝑎𝐵𝛾 . (2.8)

The grand potential difference to the metastable state 𝐴 is given by

ΔΩ = Ω𝐴𝐵 − Ω𝐴 ≈ −𝑣𝐵Δ𝑝 + 𝑎𝐵𝛾 , (2.9)

with the small pressure difference Δ𝑝, as defined above.

Nucleation naturally requires Ω𝐴 > Ω𝐵. Otherwise state 𝐴 would not be metastable,
which means the theory is only valid for Ω𝐴 < Ω𝐵 starting from the critical point
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where phases coexist (cf. Sec. 2.2). At this point 𝑝𝐴 = 𝑝𝐵 and, therefore, Δ𝑝 = 0.
Given a known geometry of the surface of the nucleus 𝑎𝐵, this allows for the deter-
mination of the surface energy 𝛾, as now ΔΩ = 𝑎𝐵𝛾.

In three dimensions with a spherical nucleus Eq. (2.9) takes the form:

ΔΩ3𝐷 ≈ −4
3

𝜋𝑅3Δ𝑝 + 4𝜋𝑅2𝛾 . (2.10)

Similarly in two dimensions with a circular nucleus one has:

ΔΩ2𝐷 ≈ −𝜋𝑅2Δ𝑝 + 2𝜋𝑅𝛾 . (2.11)

In quasi-1D, i.e., for a rectangle with 𝐿𝑦 ≫ 𝐿𝑥 the equation becomes:

ΔΩ1𝐷 ≈ −2𝑅𝐿𝑥Δ𝑝 + 2𝐿𝑥𝛾 . (2.12)

All three dependencies (Eqs. (2.10)-(2.12)) are depicted in Fig. 2.5 a) in blue, red
and black for one, two and three dimensions, respectively. The curves are linear,
quadratic and cubic in turn and each has a maximum value ΔΩ∗ for 𝑅 ≥ 0, which
represents the energy that has to be supplied to reach a nucleus with critical radius
𝑅∗. As it is an energy maximum both smaller and larger nuclei are more favorable,
meaning it is an unstable steady state and the tipping point of moving the whole
system into either state 𝐴 or state 𝐵. In a bifurcation diagram the steady states
should appear as an unstable branch of localized states, where each point on it is
calculated for a different Δ𝑝 corresponding to a different value of 𝜇.

The critical values 𝑅∗ and ΔΩ∗ = ΔΩ(𝑅∗) are listed in Tab. 2.1 for the different
dimensions.

1D 2D 3D
𝑅∗ 0 𝛾

Δ𝑝
2𝛾
Δ𝑝

𝑎∗
𝐵 2𝐿𝑥 2𝜋𝑅∗ 4𝜋𝑅∗2

ΔΩ∗ 2𝐿𝑥𝛾 𝛾𝜋𝑅∗ 16
3 𝛾𝜋𝑅∗2

Table 2.1: Critical values for the radius 𝑅∗, the interface size 𝑎∗
𝐵 and the energy

barrier ΔΩ∗ in one, two and three dimensions.

For the 2D case the dependence of the maxima at 𝑅∗ on 𝜇 is depicted in Fig. 2.5 b),
where darker colors are for states with 𝜇 closer to 𝜇𝑐 where Ω𝐴 = Ω𝐵. As the
distance from that point increases, the energy barrier decreases and a smaller nu-
cleation radius is required, because state 𝐵 becomes energetically more favorable.
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Fig. 2.5: a) The difference ΔΩ of the grand potential of the nucleus to the
metastable state 𝐴 is plotted over the radius 𝑅 of the nucleus as pre-
dicted through Eqs. (2.10)-(2.12) for the respective dimensions with line
colors black (3D), red (2D) and blue (1D). Parameters 𝛾 = 1, 𝐿𝑦 = 0.5 and
Δ𝑝 = 2.5 are freely chosen for demonstration purposes. In consequence,
each curve has a set chemical potential 𝜇. b) ΔΩ plotted over 𝑅 for the
2D case for different values of 𝜇. Each color represents a different chemical
potential with darker colors being closer to 𝜇𝑐, and therefore showing a
higher energy barrier ΔΩ∗ and bigger critical radii 𝑅∗. c) Energy bar-
rier level ΔΩ∗ plotted over over the critical radius 𝑅∗ of the nucleus as
listed in Tab. 2.1. d) is same as panel c), but the critical grand potential
is rescaled with respect to the critical surface 𝑎∗

𝐵 of the nucleus. All di-
mensional influence is reduced to prefactors in constants, which are noted
over the respective lines, i.e., apart from dimensional influence the overall
behavior is the same.

Fig. 2.5 c) finally shows the dependence of the energy barrier level ΔΩ∗ on the
critical radii for each dimension (same colors as in panel a)), allowing for a compar-
ison to steady state data. The curves are constant (1D), linear (2D) and quadratic
(3D). Though they look qualitatively different, Fig. 2.5 d) shows that apart from
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dimensional effects they scale the same. To that end the critical grand potential is
scaled with respect to the critical surface 𝑎∗

𝐵 = 𝑎𝐵(𝑅∗) (see Tab. 2.1).

2.4 Localized States and Coexistence at Finite Size

Unlike CNT, which is considered in the thermodynamic limit, systems are generally
simulated at finite size and only later generalized to the thermodynamic limit.
This generalization is trivial for uniform states while periodic patterns show some
changes from the thermodynamic limit case. Those changes, however, are negligible
for many (but not all) systems.

Nucleation, however, is a very size-dependent phenomenon. In a particle reservoir
system, a bifurcation diagram would show an equivalent of the critical nucleus in
form of an unstable steady state, which is commonly referred to as a localized state.
As before, it is defined as a state where a finite patch of one phase coexists with a
background of another. Unlike before, however, at least one phase is a patterned
state [98]. Examples of this can be found in Fig. 2.7 a)-c) for one dimension or
2.1 e) for two dimensions. If the system is closed, i.e., is controlled by fixing the
density 𝜌 (rather than 𝜇) the localized state can also be a stable steady state.

Localized states can appear close to phase transitions in parameter regions of phase
coexistence [181, 83]. This means two (or more) different stable states (with dif-
ferent mean densities) exist, which are connected by the Maxwell construction (cf.
Sec. 2.2). They have equal chemical potential 𝜇 and grand potential Ω (see also
Fig. 2.4, which works nearly the same for coexistence of a uniform and a patterned
phase [181]).

Independent of the analyzed system, branches of localized states have a very dis-
tinctive structure within bifurcation diagrams, depending on the parameter region.
For example, states consisting of a patterned and a uniform state lead to two cor-
responding primary branches, one with an odd (red) and one with an even (rose)
number of pattern layers, which are in turn connected by branches of asymmet-
ric localized states (blue). An example of the bifurcation diagram can be found in
Fig. 2.6 with examples of the odd, even and asymmetric localized states in 1D given
in Fig. 2.7 a)-c), respectively. The odd and even states wind around each other like
snakes with the asymmetric states resembling the rungs of a ladder. Consequently,
this branch form is referred to as a snakes-and-ladders structure, or alternatively
as ’homoclinic snaking’ [29, 194, 98].

The snaking follows a line, the Maxwell line, between the coexisting states (black
circles), i.e., the states with matching 𝜇 and Ω. Depending on whether the system is
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Fig. 2.6: Sketch of typical snaking behavior considered for (a) controlled chemi-
cal potential 𝜇 and (b) controlled density 𝜌. The black branches are for
uniform and patterned stable (solid) and unstable (dashed) states, as indi-
cated at the branches. The coexistence of states (black circles, equal 𝜇 and
Ω) results in localized states, which have an odd (red) or even (rose) num-
ber of pattern layers, connected by asymmetric (blue) states (stabilities
not indicated for ease of viewing). The localized branches emerge from the
patterned branch, then perform the typical snaking and finally reconnect
with the pattern branch again, at which point the latter becomes stable.
The form of the snaking follows a line between the coexisting states which
is either vertical (a) or slanted (b).

considered at fixed chemical potential (Fig. 2.6 (a)) or density (Fig. 2.6 (b)), this line
and consequently the snaking will be vertical or slanted, respectively. Each snaking
curve represents the addition of another layer of pattern, as shown in Fig. 2.7 d),
where the layer appears by way of the growth of a single additional peak. Depending
on parameter values, the snaking might be less pronounced, leading to fewer folds,
which culminates in two largely straight branches with no folds, but the primary
ones, in which case peaks do no longer grow in individual layers. Instead, several
peaks form a front, which is slowly pushed outward as inner peaks reach optimum
height, while new outer layers are added [182, 83, 97]. An example of the latter can
be found in Fig. 2.7 e).

Ref. [181] takes a closer look at the effect of finite size on localized states as opposed
to the thermodynamic limit. A fairly obvious consequence of increasing system sizes
is that the amount of snaking of the branches of localized states rises proportional
to the system size, as there is now more room to add pattern layers to the localized
structure. In addition, all globally stable localized structures in the thermodynamic
limit (both with and without snaking) have the same value of 𝜇, and match perfectly
with the Maxwell construction. In the finite size case, however, globally stable parts
of the snaking branches appear on a narrow band of chemical potentials Δ𝜇 around
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Fig. 2.7: Examples of localized states in one dimension. They have a) odd or b)
even peak numbers, or can be c) asymmetric. Panels d) and e) show
the addition of further peak layers (dashed line) through growth of either
single or multiple peaks, respectively.

the Maxwell line.

2.5 Numerical Analysis of Nonlinear Partial Differential
Equations

2.5.1 Spatial Discretization and Fourier Transform

For a system described by Eq. (2.1) the thesis now assumes u(x, 𝑡) to be a field
with spatial discretization of 𝑁 ∈ ℕ grid points, i.e., x now consists of discrete
positions 𝑥𝑗 with 𝑗 ∈ [1, 𝑁]. In all following equations u(𝑡) now consists of all
u(𝑥𝑗, 𝑡) = u𝑗(𝑡).

Furthermore, the right-hand side G of Eq. (2.1) is split into two parts

𝜕𝑡u = G(u) = ℒ(u) + 𝒩(u) (2.13)

with linear part ℒ(u) = ℒu, which is diagonal in Fourier space, and a part 𝒩(u),
which can contain nonlinear terms and functions of space.

In Fourier space k is also discretized into grid points 𝑘𝑚 with 𝑚 ∈ [1, 𝑁]. As x and
k are also restricted in their range, the discrete Fourier transform [148] is used to
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move to and from Fourier space. The one dimensional version is3

ℱ[𝑓](𝑘𝑚) = ̂𝑓(𝑘𝑚) =
𝑁−1
∑
𝑗=0

𝑓(𝑥𝑗)𝑒−𝑖2𝜋𝑗𝑚/𝑁 (2.14)

ℱ−1[ ̂𝑓 ](𝑥𝑗) = 𝑓(𝑥𝑗) = 1
𝑁

𝑁−1
∑
𝑚=0

̂𝑓(𝑘𝑚)𝑒𝑖2𝜋𝑗𝑚/𝑁 . (2.15)

The Fourier transform simplifies convolutions and spatial derivatives to multiplica-
tions with functions of the wave vector [148]:

∫dx′𝑔(x − x′)𝑓(x′) ↔ ̂𝑔(k) ̂𝑓(k) (2.16)

∇𝑛𝑓(x) ↔ (𝑖k)𝑛 ̂𝑓(k) . (2.17)

The pseudospectral method [16, 27] makes use of the accompanying lowered com-
putational costs. Specifically, for 𝑁 grid points a convolution in one dimensional
real space takes 𝑁2 operations, whereas the associated multiplication in Fourier
space only takes 𝑁 operations. However, the computational cost of moving a field
to and from Fourier space needs to be taken into account as well. The Fast Fourier
Transform algorithm [27] cuts down on the number of operations required to per-
form the discrete Fourier transform to 𝑁 log𝑁 by splitting them into odd and even
parts.

In summary, even with the Fourier transformations taken into account it is numer-
ically cheaper to treat 𝒩 in real space while moving derivatives and convolutions
to Fourier space for computation.

2.5.2 Time Evolution Methods

To study nonlinear differential equations by way of direct time evolution the first
step is to discretize it in time 𝑡 through integration over a time interval Δ𝑡, mean-
ing

u(𝑡 + Δ𝑡) − u(𝑡) = ∫
𝑡+Δ𝑡

𝑡
G(u)d𝑡 . (2.18)

Here G(u) once again represents the right-hand side of the the equation.
3Note that a constant factor of the real space sampling distance Δ𝑥 [1/Δ𝑥] needs to be multiplied

to Eq. (2.14) [Eq. (2.15)] in case of only transforming in one direction. When performing both
they cancel out.
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Rewriting that leads to

u(𝑡 + Δ𝑡) = u(𝑡) + ∫
𝑡+Δ𝑡

𝑡
G(u)d𝑡 , (2.19)

which can be solved step wise if given an initial condition u(x, 𝑡 = 0) (e.g., noise, a
sine pattern or previous results). From there the solution evolves towards a stable
state, meaning a fixed point, periodic orbit or strange attractor.

Semi-Implicit Euler
Generally the Euler’s method [16] assumes that G(u) is constant over the time in-
terval Δ𝑡, meaning the area beneath can be considered a rectangle, which simplifies
the time integral in Eq. (2.19) to G(u)Δ𝑡, i.e.,

u(𝑡 + Δ𝑡) = u(𝑡) + G(u)Δ𝑡 . (2.20)

If the constant is chosen to be G(u(𝑡)), meaning the start of the time interval, the
method is called explicit Euler. Like all explicit methods it has a maximum time
step beyond which the error grows exponentially [27]. If the constant is chosen to
be the end of the interval, meaning G(u(𝑡 + Δ𝑡)), the method is called implicit
Euler, which is more forgiving of larger time steps, but requires the computation
of u(𝑡 + Δ𝑡) at every step, which is numerically expensive.

The semi-implicit Euler method combines parts of both the implicit and explicit
methods, keeping the numerical computation cost lower than for the implicit Euler,
while allowing larger time steps than the explicit Euler. To that end ℒ(u) is
calculated implicitly and 𝒩(u) is calculated explicitly. This leads to

u(𝑡 + Δ𝑡) = u(𝑡) + Δ𝑡[ℒu(𝑡 + Δ𝑡) + 𝒩(u(𝑡))] . (2.21)

Sorting all u(𝑡 + Δ𝑡) terms to the left and everything else to the right-hand side
gives

u(𝑡 + Δ𝑡) = u(𝑡) + Δ𝑡𝒩(u(𝑡))
(1 − Δ𝑡ℒ)

, (2.22)

if ℒ can safely be separated from u as is sometimes the case in Fourier space, where
ℒ̂ is a function of k.

In this thesis both self written and adapted python code is used for simulations.

Fourier Split-Step
The Fourier split-step method [1, 14, 191, 58] is a pseudospectral method which,
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similar to the semi-implicit Euler, splits the Hamiltonian on the right-hand side into
ℒ and 𝒩, though it is primarily used for Schrödinger-type equations, meaning

𝑖ℏ𝜕𝑡𝜓(x, 𝑡) = [ℒ + 𝒩(𝜓(x, 𝑡))]𝜓(x, 𝑡) , (2.23)

where 𝜓 is a complex wave function.

This type of equation has a formal solution of the form

𝜓(x, 𝑡 + Δ𝑡) = 𝑒−𝑖Δ𝑡(ℒ+𝒩)/ℏ𝜓(x, 𝑡) . (2.24)

The Baker-Campbell-Hausdorff formula [32] shows that multiplying exponential
functions of non-commuting operators ̂𝑎 and ̂𝑏 leads to

𝑒𝑎̂𝑒𝑏̂ = 𝑒𝑎̂+𝑏̂+[𝑎̂,𝑏̂]/2+... . (2.25)

Consequently, when ignoring the the non-commuting nature of ℒ and 𝒩, Eq. (2.25)
facilitates to

𝑒Δ𝑡ℒ𝑒Δ𝑡𝒩 = 𝑒Δ𝑡(ℒ+𝒩) . (2.26)

The dropped terms causes an error proportional to Δ𝑡2 with every time step of size
Δ𝑡. Given a small enough time step this error is minimal, allowing the use of

𝜓(x, 𝑡 + Δ𝑡) ≈ 𝑒−𝑖Δ𝑡ℒ/ℏ𝑒−𝑖Δ𝑡𝒩/ℏ𝜓(x, 𝑡) . (2.27)

From there the parts which are diagonal in Fourier space are computed there, while
the rest is computed in real space.

The error can be reduced to Δ𝑡3 if the linear exponential function is split further
in half and moved to both sides of the nonlinear exponential, symmetrizing the
operators in Eq. (2.25). Each part of the linear exponential is now propagated for
only half a time step [1]:

𝜓(x, 𝑡 + Δ𝑡) ≈ 𝑒−𝑖Δ𝑡ℒ/2ℏ𝑒−𝑖Δ𝑡𝒩/ℏ𝑒−𝑖Δ𝑡ℒ/2ℏ𝜓(x, 𝑡) . (2.28)

The final equation therefore takes the form

𝜓(x, 𝑡 + Δ𝑡) ≈ 𝑒−𝑖Δ𝑡ℒ̂/2ℏℱ[𝑒−𝑖Δ𝑡𝒩/ℏℱ−1[𝑒−𝑖Δ𝑡ℒ̂/2ℏ𝜓(x, 𝑡)]] . (2.29)

Leaving the equation as is, is known as real-time propagation, where the norm and
energy are conserved, while the wave function fluctuates. This type of propagation
can be used to evolve or test the robustness of solutions.

Alternatively the total energy can be minimized through a gradient flow, which
is also known as imaginary-time propagation [14] and requires that the original
equation is converted using 𝑡 → −𝑖𝑡. As the norm is no longer conserved, renor-
malization is needed after each step.

In this thesis a self written parallelized python code is used for simulations.
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2.5.3 Path Continuation

Path continuation [52, 185, 166] is a systematic way of looking through parameter
space. It is useful to avoid lengthy parameter sweeps of time simulations and to
gain additional information on unstable branches.

Path continuation works by following the steady state solutions which satisfy 𝜕𝑡u =
G(u) = 0, starting from a known solution u0(x).

From there a continuation parameter 𝜆 is varied by a small step size Δ𝜆 (i.e.,
𝜆𝑛+1 = 𝜆𝑛 + Δ𝜆) and the new solution u𝑛+1(x) is predicted (e.g., by following the
tangent at u𝑛(x)) and then corrected by solving Eq. (2.1) at 𝜆𝑛+1. This is most
commonly done through Newton’s method.

The prediction method is depicted in Fig. 2.8 a), which also highlights the problem
of this method. It’s a natural parametrization, which fails when the solution folds
back.

To get around that the pseudo-arclength parametrization uses the arclength 𝑠 of
the solution branch as continuation parameter instead of 𝜆, which becomes part of
the solution instead, meaning Eq. (2.1) is replaced by

u̇(u𝑛+1 − u𝑛) + 𝜆̇(𝜆𝑛+1 − 𝜆𝑛) = Δ𝑠 , (2.30)

with the tangent v = (u̇, 𝜆̇), and steps size Δ𝑠. This is depicted in Fig. 2.8 b).

From there the stability of the solution can be calculated through the eigenvalues
of the Jacobian J as explained in Sec. 2.1. Any time an eigenvalue crosses the
imaginary axis there is a bifurcation, which some path continuation packages can
use to switch branches.

If the system has additional constraints they are added as additional equations
𝑞(u, 𝜆) = 0 to the system of differential equations in (2.1) or (2.30), while additional
parameters 𝜆add are used together with the original continuation parameters 𝜆, to
avoid overdetermining the system [52].

A constraint appearing in isolated and many closed systems is the conservation of
density (cf. Ref. [52]), which leads to the additional equation

𝑞density = 1
𝑉

∫ udx − ū = 0 (2.31)

with mean density ū and the additional parameter 𝜆density, which is related to the
chemical potential and changes the original equation to 𝜕𝑡u = G(u, 𝜆) + 𝜆density.
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Fig. 2.8: a) Natural parametrization in path continuation. Starting from 𝑢𝑛 pa-
rameter 𝜆 is varied by a small step Δ𝜆 and a solution 𝑢guess estimated by
following the tangent (red). Correction (e.g., through Newton’s method)
leads to true solution 𝑢𝑛+1. Method fails at saddle-node bifurcation. b)
Pseudo arclength path continuation. Starting from 𝑢𝑛 arclength 𝑠 is var-
ied by a small step Δ𝑠 which corresponds to different Δ𝜆. As the Δ𝑠 are
not bound by the axis direction they can curve around a saddle-node bi-
furcation, while keeping previous predictor and corrector methods (green).

Another constraint is phase conservation [52] in periodic solutions, which is intro-
duced for each direction where translation invariance applies (i.e., directions with
periodic boundary conditions). Without it, every single phase shift in u would reg-
ister as a different solution. This is called motion along the group orbit and can be
prevented through permitting only solutions which are situated perpendicular to
said group orbit. For that a reference profile u∗ (e.g., the solution of the previous
continuation step) is required, leading to the additional equation

𝑞phase = ∫ u𝜕𝑥u∗dx = 0 , (2.32)

for phase conservation in 𝑥-direction. The additional parameter 𝜆phase changes the
original equation to 𝜕𝑡u = G(u, 𝜆) + 𝜆phase𝜕𝑥u. This is equivalent to transforming
the system into a comoving frame with velocity 𝜆phase.

For most problems the spatial discretization is based on finite elements [185, 65],
but others (e.g., networks [186]) are possible. Specifically, for problems which are

23



Alina Barbara Steinberg

easier to solve in Fourier space, there are options of working with Fourier spectral
differentiation matrices [186]. It works remarkably similar to the previously dis-
cussed method with the pseudospectral method used to solve the right hand side.
Any move to and from Fourier space is done by way of a discrete cosine function,
which can be applied directly or in form of a spectral differentiation matrix.

In this thesis the matlab package pde2path [185] is used.
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3 Soft Matter Physics

3.1 Introduction to Soft Matter Physics and Models

Soft matter [46, 198, 45] describes materials which have a large, nonlinear response
to small stimuli, often in form of deformations. This same response also tends to be
slow, meaning that even equilibrium soft matter systems can spend comparatively
long times outside of said equilibrium. In such a system, compared to ”hard” mat-
ter, the driving force for structuring is not dominated by the interaction between
particles. Instead, those interactions are of the same order of magnitude, or even
lower than that of the entropy, which enters, e.g., in the form of thermal fluctua-
tions. In other words, the drive towards equilibrium, i.e., a state of minimum free
energy, is a question of interplay between the two or even outright dominated by
the entropy, which in turn causes self-organization [198]. In non-equilibrium soft-
matter physics structuring can be influenced or even caused in response to adding
external fields [99] (cf. Ch. 4).

One way of modeling soft matter systems is through dynamical density functional
theory (DDFT) [11, 51, 119, 120, 10, 9], which was originally developed for over-
damped Brownian particle movement, based on stochastic equations. These days it
is much more general, working for interacting classical particles in a non-equilibrium
system and resulting in the time evolution of the ensemble’s average one-body
density field 𝜌.

DDFT corresponds to dynamics given by the continuity equation

𝜕𝑡𝜌 = −∇ ⋅ j , (3.1)

where 𝜕𝑡 is the partial derivative with respect to time 𝑡, ∇ the nabla operator and
j a current with [57]

j = 𝛽𝑀(𝜌)∇𝜇 . (3.2)

Here 𝛽 = 1/𝑘𝐵𝑇 with temperature 𝑇 and Boltzmann constant 𝑘𝐵. 𝑀 is a positive
mobility depending on the density, which in the following will be 𝑀 = 𝜌. The
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chemical potential 𝜇 can be calculated using functional derivatives1 of the Helmholtz
free energy 𝐹 with respect to the density:

𝜇 = 𝛿𝐹
𝛿𝜌

. (3.3)

Under exclusion of external potentials 𝐹 consists of two parts. The first is the
entropic ideal gas contribution, the second part 𝐹int adds particle interactions:

𝐹 = 1
𝛽

∫ 𝜌[log(𝜌) − 1] d3𝑥 + 𝐹int . (3.4)

𝐹int requires some approximations to get to an expression of only a single convo-
lution with an interaction potential 𝑈int [11]. 𝐹int is also where applications to
different scenarios enter, as different particle interactions are modeled by different
potentials.

In this thesis a potential for particles with soft, repulsive pair interactions is used,
which can be described using the generalized exponential model with the exponent
𝑛, ‘GEM-𝑛’ for short. It takes the form 𝑈int(𝑟) = 𝜀𝑒−(𝑟/𝑅)𝑛 . For 𝑛 = 4 the model
represents a coarse grained potential for soft particles in a solution, e.g., polymers
whose structure allows for a limited overlap [8].

Starting from the exact DDFT (Eqs. (3.1)-(3.4)) many approximations exist, which
facilitate the practical modeling of problems at the cost of accuracy. Such is the case
for the Phase-Field Crystal (PFC) model [51, 11, 86, 179, 50], which was originally
developed as a phenomenological model of crystal growth [49], but has since been
used for modeling liquid-solid phase transitions, foam formation, colloids, liquid
crystals and many more [51].

The PFC model is a classical pattern forming equation with a conserved dynamic
and is well researched (see e.g. [182]). It takes the form

𝜕𝑡𝜌 = ∇2𝜇 , (3.5)

i.e., Eqs. (3.1) and (3.2) but with constant 𝑀. The main change with respect to
the DDFT model appears in the Helmholtz free energy 𝐹, where both, logarithm
and the interaction potential, are approximated. In consequence, the PFC model
differs from DDFT in prominent ways: There are two additional phases which do
not appear in DDFT, as well as an additional phase transition at higher densities,
as described in Ref. [11].

In addition to that, the PFC model has large parameter regions which show snaking
behavior for localized states, a phenomenon which has not been observed in DDFT

1For 𝐹 = ∫ 𝑓(𝜌, ∇𝜌, … )d𝑟 with 𝜌 = 𝜌(𝑟) it is 𝛿𝐹/𝛿𝜌 = ∑𝑖=0(−1)𝑖∇𝑖𝜕𝑓/𝜕(∇𝑖𝜌).
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as modeled with the GEM-4. From there the question arises whether the appearance
of snaking in the PFC model is caused by the approximations. If that were the case
then the next question is whether this arises due to approximating the long-range
interaction, approximating the logarithm or a combination of both.

Finally, it is of interest how snaking or the lack thereof influences the phase tran-
sition, for which this thesis draws on classical nucleation theory.

3.2 The DDFT Model with GEM-4 Potential

3.2.1 The Model

The GEM-4 pair potential takes the form

𝑈int(𝑟) = 𝜀𝑒−(𝑟/𝑅)4 . (3.6)

It has a characteristic length scale 𝑅, interaction strength 𝜀 and inter-particle dis-
tance 𝑟. Generally, it looks like a softened Heaviside function with the height given
by 𝜀 and the radius given by 𝑅. An example for 𝑅 = 𝜀 = 1 is depicted in Fig. 3.1 a).
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Fig. 3.1: Pair potential for 𝑅 = 𝜀 = 1 in a) real space 𝑈(𝑟) (see Eq. (3.6)) and b)
Fourier space ̂𝑈(𝑘), calculated via Eq. (3.12) for 1D (blue) and Eq. (3.13)
for 2D (red).

The corresponding DDFT model, taken from Ref. [11] (where it appears as DDFT-
3) has the form

𝜕𝑡𝜌 = ∇ [(𝜌 + 1)∇𝛿𝐹
𝛿𝜌

] , (3.7)
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with the free energy

𝛽𝐹 = ∫ d𝑥 [(1 + 𝜌) log (1 + 𝜌) − 𝜌 + 1
2

𝜌𝜌0𝛽(𝑈int ∗ 𝜌)] , (3.8)

where 𝛽 = 1/𝑘𝐵𝑇.

𝜌′ = 𝜌0(1 + 𝜌) (3.9)

represents the actual density of the system, split into a constant reference density 𝜌0,
also called bulk fluid density, and 𝜌, a density modulation field. The mean density
follows as ̄𝜌′ = 𝜌0(1+ ̄𝜌) where ̄𝜌 does not have to be zero. The trivial homogeneous
state 𝜌 = ̄𝜌 = const has no clustering and the model describes a fluid. Values of
𝜌′ < 0 and therefore 𝜌 < −1 do not constitute a physically sensible solution. Also,
𝜌 = −1 leads to trouble in the free energy (3.8), due to the log (1 + 𝜌) term.

Finally, (𝑈 ∗ 𝜌) = ∫ 𝑈(𝑟 − 𝑟′)𝜌(𝑟′)d𝑟′ is a convolution and represents the long-
range interaction. Given the nature of convolutions it is convenient to treat this
part of the equation in Fourier space, where ̂𝑈int has a minimum below zero, which
satisfies the Likos criterion [107], which states that such a minimum is required for
the uniform phase to become unstable in favor of clustering. For larger 𝑘 the Fourier
interaction potential relaxes to zero. Examples of this in one (blue, Eq. (3.12)) and
two (red, Eq. (3.13)) dimensions can be found in Fig. 3.1 b).

Introducing length- and timescales 𝑥 = 𝑅𝑥𝑠, 𝑦 = 𝑅𝑦𝑠, 𝑟 = 𝑅𝑟𝑠 and 𝑡 = 𝑅2𝑡𝑠 (see
App. A.2) Eq. (3.7) can be rescaled to

𝜕𝑡𝜌 = ∇[(1 + 𝜌)∇[log(1 + 𝜌) + 𝛼(𝑢 ∗ 𝜌)]] , (3.10)

where 𝛼 = 𝜀𝑅𝑑𝜌0𝛽, while

𝑢 = 𝑒−𝑟4 (3.11)

no longer depends on 𝑅 and energy scale 𝜀.

The Fourier transformations 𝑢̂(𝑘) of Eq. (3.11) are [150, 151]

𝑢̂1𝐷(𝑘) = 2 ∫
∞

0
d𝑟 𝑈(𝑟) cos(𝑘𝑟) , (3.12)

𝑢̂2𝐷(𝑘) = 2𝜋 ∫
∞

0
d𝑟 𝑟𝑈(𝑟)𝐽0(𝑘𝑟) , (3.13)

which use radial symmetry to go from the exponential function of the general
Fourier transformation to the cosine function cos and Bessel function of the first
kind 𝐽0 multiplied by 𝑟, respectively. Both functions are even, meaning 𝑢̂(−𝑘) =
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𝑢̂(𝑘). In 1D for 𝑘 = 0 the Fourier potential 𝑢̂0 = 𝑢̂(𝑘 = 0) is 𝑢̂0 = 2Γ(5/4) with
Γ being the Gamma function. In 2D 𝑢̂0 =

√
𝜋3/2. The results are also listed in

Tab. 3.2.

The accompanying free energy is

𝐹 = ∫ d𝑥 [(1 + 𝜌) log (1 + 𝜌) − 𝜌 + 1
2

𝜌𝛼(𝑢 ∗ 𝜌)] (3.14)

and the chemical potential:

𝜇 = 𝛿𝐹
𝛿𝜌

= log (1 + 𝜌) + 𝛼(𝑢 ∗ 𝜌) . (3.15)

The grand potential density takes the form

Ω
𝑉

= 𝜔 = 𝐹
𝑉

− 𝜇(1 + 𝜌) , (3.16)

where 𝑉 is the volume (or area, length) of the system.

For a uniform state 𝜌 = ̄𝜌 it follows

𝐹0 = 𝑉 [(1 + ̄𝜌) log (1 + ̄𝜌) − ̄𝜌 + ̄𝜌2𝛼𝑢̂0
2

] , (3.17)

𝜇0 = log (1 + ̄𝜌) + ̄𝜌𝛼𝑢̂0 , (3.18)

𝜔0 = − ̄𝜌 (1 + 𝛼𝑢̂0 (1 + ̄𝜌
2

)) , (3.19)

due to (𝑢 ∗ ̄𝜌) = ̄𝜌𝑢̂0.

3.2.2 Temporal Stability

In this section the stability of homogeneous states with respect to perturbations
is investigated, as explained in Sec. 2.1. This results in a dispersion relation for
Eq. 3.10 of the form

𝜎 = −𝑘2(1 + 𝛼(1 + ̄𝜌)𝑢̂(𝑘)) . (3.20)

As 𝑢̂ is a radially symmetric function the same is true for 𝜎. As typical for models
under conservation laws 𝜎 is zero at 𝑘 = 0. It has an additional maximum at a
wavenumber 𝑘 > 0. This maximum is the first point to cross zero, at which point
it gives the critical wavenumber 𝑘𝑐. This is a conserved-Turing instability, meaning
if the maximum rises further this results in a band of unstable wavenumbers and
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therefore pattern formation. The moment the maximum crosses zero is depicted in
Fig. 3.2 a) for 1D (blue) and 2D (red).

The parameters required for 𝜎 to cross zero can be determined by imposing 𝜎 = 0
and 𝜕𝑘𝜎 = 0, while discarding 𝑘 = 0. With the derivative of 𝜎 with respect to 𝑘
being

𝜕𝑘𝜎 = −2𝑘(1 + 𝛼(1 + ̄𝜌)𝑢̂) − 𝛼(1 + ̄𝜌)𝑘2𝜕𝑘𝑢̂ = 0 . (3.21)

This is solved by 𝜕𝑘𝑢̂ = 0 and 𝛼(1 + ̄𝜌)𝑢̂ = −1.
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Fig. 3.2: a) Dispersion relation for 𝛼(1 + ̄𝜌) = (𝛼(1 + ̄𝜌))𝑐 in 1D (blue line) and 2D
(red line). The thin dotted line matches 𝜎 = 0 and is used as a guide to
the eye. The dispersion relation touches it at 𝑘 = 0 and 𝑘 = 𝑘𝑐 where 𝑘𝑐
matches the values in Tab. 3.1. b) Border of linear stability, split into a
two parameter space with 1/𝛼 ∝ 𝑇 over 1 + ̄𝜌. The curves for 1D (blue
line) and 2D (red line) follow 𝛼 = (1 + ̄𝜌)/(𝛼(1 + ̄𝜌))𝑐 with the critical
value set according to Tab. 3.1.

Critical values can not be calculated analytically, but numerical evaluation gives
the values in Tab. 3.1.

1D 2D
𝑘𝑐 4.592 5.096

(𝛼(1 + ̄𝜌))𝑐 5.34 6.376
Table 3.1: Critical values for the wave vector 𝑘 and the compound parameter 𝛼(1+

̄𝜌) in one and two dimensions.

The resulting border of linear stability is just 1/𝛼 ∝ (1 + ̄𝜌), see Fig.3.2 b) for the
linear dependencies for one (blue) and two (red) dimensions.
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3.3 DDFT Approximations and the PFC Model

3.3.1 Approximating the Fourier Potential

This approximation, here denoted as GEM-4-𝜀, appears in Ref. [11] as DDFT-5.
The idea is to express 𝑢̂ as a Taylor series up to order 𝑘4, and then match the
border of linear stability as well as the curvature 𝜅 = 𝜕2

𝑘𝜎|𝑘=𝑘𝑐
of the dispersion

relation to the full GEM-4 model. The values of 𝜅 as well as of 𝑢̂0𝜀 = 𝑢̂𝜀(𝑘 = 0) are
given in Tab. 3.2.

1D 2D
𝑢̂0 2Γ(5/4)

√
𝜋3/2

𝑢̂0𝜀 0.39 0.661
𝜅 0.219 0.252

Table 3.2: Curvature parameter 𝜅 = 𝜕𝑘𝜎|𝑘=𝑘𝑐
of the dispersion relation Eq. (3.20),

as well as the interaction potential 𝑢̂0 at 𝑘 = 0 for the GEM-4 model
and the GEM-4-𝜀 approximation (𝑢̂0𝜀) in one and two dimensions.

The resulting potential takes the form

𝑢̂𝜀 = 𝜅
8𝑘2

𝑐
(𝑘2

𝑐 − 𝑘2)2 − 1
(𝛼(1 + ̄𝜌))𝑐

. (3.22)

All remaining equations stay the same as for the GEM-4, including the borders of
linear stability and critical values.

According to Ref. [11] this approximation has a smaller coexistence region than
the full DDFT, and said coexistence is closer to the border of linear stability. In
addition, the patterned state exhibits physically impossible negative densities at
higher mean densities.

3.3.2 Approximating the Logarithm and Using Constant Mobility

This approximation is called PFC-𝛾 and appears in Ref. [11] under the same name.
The idea is to express (1 + 𝜌) log (1 + 𝜌) as a Taylor series around 𝜌 = 0 up to 𝜌4

and keep the mobility constant (𝑀 = 1), instead of 𝑀 ∝ 1+𝜌 during the derivation
from the DDFT theory (see Ref. [11]).

The resulting model takes the form

𝜕𝑡𝜌 = Δ (𝜌 + 𝛼(𝑢 ∗ 𝜌) − 𝑠𝜌2 + 𝑡𝜌3) , (3.23)
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where 𝑠 = 1/2 and 𝑡 = 1/3. The energy and chemical potential in this approxima-
tion are:

𝐹 = ∫ d𝑥 𝜌2

2
− 𝑠𝜌3

3
+ 𝑡𝜌4

4
+ 1

2
𝜌𝛼(𝑢 ∗ 𝜌) (3.24)

𝜇 = 𝜌 − 𝑠𝜌2 + 𝑡𝜌3 + 𝛼(𝑢 ∗ 𝜌) (3.25)
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Fig. 3.3: Border of linear stability depending in the (1 + ̄𝜌,1/𝛼)-plane. One and
two dimensions are indicated by blue and red respectively. The GEM-4-𝜀
approximation is per definition indistinguishable from the full GEM-4 case
(solid line), while both PFC approximations (dashed lines) only match the
GEM-4 model close to ̄𝜌 = 0.

While the GEM-4-𝜀 approximation can be made to perfectly match the border
of linear stability of the full GEM-4 model, the PFC-𝛾 approximation has the
dispersion relation

𝜎 = −𝑘2(1 + 𝛼𝑢̂ − 𝑠 ̄𝜌 + 𝑡 ̄𝜌2) . (3.26)

For 𝜎 = 0 and 𝜕𝑘𝜎 = 0 it follows that either 𝑘 = 0 (trivial case) or 𝜕𝑘𝑢̂ = 0 (as
before) and 𝛼𝑢̂−𝑠 ̄𝜌+𝑡 ̄𝜌2 = −1, which only matches the border of the GEM-4 model
close to ̄𝜌 = 0, as depicted in Fig. 3.3. Rather than the linear dependence it has
a maximum slightly to the right of ̄𝜌 = 0, giving it an additional phase transition
at higher values of 𝛼 and no phase transition at low values of 𝛼. (Ref. [11] chooses
different axes and sets ̄𝜌 = 0. As a consequence their borders for full model and
PFC approximation match perfectly). Unlike the GEM-4-𝜀 approximation, this
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approximation matches the dispersion relation of the full GEM-4 model perfectly
at ̄𝜌 = 0.

In addition to the spurious second phase transition, according to Ref. [11], addi-
tional stable solution types (stripes and down hexagons) appear, which make those
regions unsuitable for use as a DDFT approximation.

3.3.3 The Full PFC Approximation

This approximation is named PFC-𝜀 and appears in Ref. [11] under the same name,
but essentially matches the classical PFC model with a quadratic and cubic term.
It applies the GEM-4-𝜀 approximation on PFC-𝛾, meaning Eq. (3.22) is inserted
into Eq. (3.23). The border of stability matches that of PFC-𝛾.

3.4 Bifurcation Analysis and Localized State Behavior

This section takes a closer look at the GEM-4 model and its approximations by way
of bifurcation diagrams, phase diagrams and CNT theory. To measure solutions
a classical solution measure of pattern formation is employed: the L2-norm of the
field’s deviation from its mean, which is given by

||𝛿𝜌|| = √ 1
𝑉

∫
𝑉

0
d3𝑥(𝜌 − ̄𝜌)2 , (3.27)

where 𝑉 is the domain size, which, in case of a pattern should be optimally related
to its unit cell. In case of localized states the measure is not independent of 𝑉,
consistency for comparison’s sake is therefore required.

This section only details results for two dimensional domains, as they prove more in-
teresting than the ones for one dimensional domains. For the latter see App. A.3.

3.4.1 GEM-4 in Two Spatial Dimensions

The results for two dimensional domains are calculated for a domain of size 𝐿𝑥 ×
𝐿𝑦 = 𝐿𝑐/

√
3×14𝐿𝑐 with 𝐿𝑐 = 2𝜋/𝑘𝑐 and 𝑁𝑥 ×𝑁𝑦 = 10×140 discretization points.

The continuation parameter is the mean density ̄𝜌, while 𝛼 is set to 6.376 so that
the border of linear stability can be found at ̄𝜌𝑐 = 0.

The left panel of Fig. 3.4 presents a bifurcation diagram containing branches of
two domain spanning patterns, hexagons (blue) and a uniform state (black). In
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addition, two more patterns (down hexagons and stripes) emerge from the primary
bifurcation, which are always unstable (not shown, cf. Fig. 5.7 for same bifurcation
type). The primary bifurcation is, therefore, of higher order than the ones presented
in Sec. 2.1. Simplified, it consists of a supercritical pitchfork bifurcation for the
stripes and a transcritical bifurcation for the hexagons and down hexagons. The
latter branch off towards higher mean densities, while the former branch off towards
lower densities, before reaching a fold (1 + ̄𝜌 = 0.84), at which the branch turns
back and continues towards higher densities, creating a multistable region.
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Fig. 3.4: Bifurcation diagrams of steady state solutions of Eq. (3.10) in 2D charac-
terized by ||𝛿𝜌|| (see Eq. (3.27)) as a function of 1 + ̄𝜌 at different fixed
𝛼. On the left, the critical values are 𝛼 = 6.376 with ̄𝜌𝑐 = 0. Top right
has 𝛼 = 6.376/5 with ̄𝜌𝑐 = 4 and bottom right has 𝛼 = 6.376 ⋅ 5 with

̄𝜌𝑐 = −0.8. The domain size is 𝐿𝑥 × 𝐿𝑦 = 𝐿𝑐/
√

3 × 14𝐿𝑐 with 𝐿𝑐 = 2𝜋/𝑘𝑐
and 𝑁𝑥 × 𝑁𝑦 = 10 × 140 discretization points. The solutions are charac-
terized through ||𝛿𝜌||. Solid and dotted lines represent linearly stable and
unstable states, respectively. The indicated patterns are uniform states
(black), hexagons (blue) and localized hexagons (gray). The two filled
circles represent stable coexisting states in an infinite domain (identical
grand potential and chemical potential, see Fig.3.5 a) for 𝛼 = 6.376).

In an infinite domain two specific uniform and hexagon states (marked by filled
circles) may coexist as given by a Maxwell construction. In a finite domain such
a coexistence results in a branch of localized states (gray), where a finite patch of
patterned state is embedded in a background of uniform state (or vice versa). The
branch corresponding to this state emerges from the still unstable hexagon branch
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at 1+ ̄𝜌 = 0.987, goes through two saddle-node bifurcations (1+ ̄𝜌 = 0.846 and 0.864,
respectively), between which the solutions are stable, and finally reunites with the
hexagon branch beyond the saddle-node bifurcation (1 + ̄𝜌 = 0.842), rendering it
stable (close up in Fig. 3.6 a)). Note that the localized branch does not exhibit
snaking, even if the large domain size would allow for it.

This type of bifurcation diagram stays effectively the same at different values of 𝛼,
as depicted in the panels on the right of Fig. 3.4. It shows examples at 𝛼 = 6.376/5
with ̄𝜌𝑐 = 4 (top right) and 𝛼 = 6.376 ⋅ 5 with ̄𝜌𝑐 = −0.8 (bottom right), which
are effectively rescaled versions of the 𝛼 = 6.376 diagram by a factor of 5 and 1/5
respectively.

The coexisting uniform and hexagon states in each of these diagrams are deter-
mined via a Maxwell construction, geometrically represented by a crossing of stable
branches in the (𝜇, 𝜔)-plane. Fig. 3.5 a) shows a close up for the 𝛼 = 6.376 case,
with the crossing marked with a filled circle. The same circles are shown in Figs. 3.4
and 3.5 c), highlighting the coexisting states. Additionally, Fig. 3.5 b) gives a phase
diagram, showing the coexisting states as binodals (continuous line), with the the
border of linear stability as spinodal (dashed line). Note that the saddle-node bifur-
cation on the hexagon branch lies between the binodals in the coexistence region,
very close to the left binodal (not shown). The area between the binodals is gray
and marks the coexistence region.

Energetically (see Fig. 3.5 d)), the uniform state is the most favorable state up to
1 + ̄𝜌 ≈ 0.855. Then there is a small parameter region of globally stable localized
hexagons reaching up to 1 + ̄𝜌 ≈ 0.857. Beyond this point hexagons become the
lowest energy state. This is further highlighted in the close up in Fig. 3.6 c).
The width of the parameter region where the localized states are linearly stable
depends on the domain size, with larger sizes widening the region, while lower sizes
(𝐿𝑦 = 12𝐿𝑐 and down) have no globally stable localized states at all.

Fig. 3.5 c) depicts the dependence of 1 + ̄𝜌 on 𝜇, which easily shows that there
is a marked difference between a system with or without mass conversation ( ̄𝜌 or
𝜇 as continuation parameter, see, e.g., Ref. [52] (sections 3.2 and 3.3), Ref. [182]
(conclusion) or Ref. [83] (end of section 2) for detailed discussions). The former
case is what is depicted in Fig. 3.4, though to read the diagram correctly it requires
mentally flipping the axes. When read through the lens of a system without mass
conservation, however, the diagram can be read as is, but any stability considera-
tions must be re-evaluated as the saddle-node bifurcations shift position to where
the branch folds back with respect to 𝜇. This would move the saddle-node bifur-
cation on the hexagon branch to slightly higher densities. In case of the localized
hexagon branch, its start is at 𝜇 ≈ −0.24 as before, but the saddle-node bifurcations
vanish entirely, as there is no longer any point where the branch folds. Subsequently
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Fig. 3.5: Shown are (a) the grand potential density difference to the liquid state Δ𝜔
and (c) the mean density 1+ ̄𝜌 as a function of the chemical potential 𝜇, as
well as (d) the energy difference to the uniform state 𝐹 − 𝐹0 as a function
of the mean density 1 + ̄𝜌, all for the model considered in the left panel
of Fig. 3.4 (with matching line styles). The coexistence point (i.e., the
crossing of continuous lines in panel (a)) is marked by filled circles, which
indicate the existence of localized states. Finally, (b) shows the phase
diagram of the two dimensional GEM-4 model, depicting the coexisting
states as binodals (continuous line), the border of linear stability as the
spinodal (dashed line) and the area between the binodals (gray) where
localized states can be found.

there are no changes in the stability of that branch, leaving it completely unstable.
In addition, this, as well as the close up in Fig. 3.6 b), highlight that the stable
part of the branch of localized states follows a near straight line between the two
coexisting states at 𝜇 = −3.1.

The right parts of Fig. 3.6 show example profiles of localized states at loci on the
branch of localized states as indicated by numbers in Fig. 3.6 a). Two profiles
are at the saddle-node bifurcations and three on the different sections between
bifurcations. Instead, of individual peaks (or peak layers) growing to full height
one after the other, as occurs for normal snaking (see, e.g., Ref. [181]), here a pattern
forming front develops. This front has a width of several peaks and all peaks within
it grow in such a way that the overall form of the front remains constant. This form,
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however, only appears between the two saddle-node bifurcations (see panels 2-4).
In panel 1 it has not yet fully developed, while panel 5 shows the deformation of
the front as the branch reconnects with he full hexagon patterned branch.
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Fig. 3.6: Close ups of (a) the left panel of Fig. 3.4, (b) of Fig. 3.5 (c), and (c) of
Fig. 3.5 (d) with five states marked on the localized branch. Stabilities and
coexisting states are marked as in Fig. 3.4. In turn the panels highlight (a)
the lack of snaking, (b) the straight vertical line of the localized hexagon
branch between the coexisting states and (c) the small region where the
localized states become the energetically favorable state. Profiles of the
marked states are given in the right hand panels 1-5. The lower half
of the panels shows the localized pattern, where lighter colors represent
higher densities. The upper half shows two cuts through the lower panel at
𝑥 = 0.7 (dark gray line) and 𝑥 = 0 (light gray line). Solid lines represent
stable and dotted lines unstable states.
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3.4.2 DDFT Approximations and Snaking

All three approximations introduced in Sec. 3.3 have per definition identical 𝑘𝑐. At
̄𝜌𝑐 = 0 they also have the same value of 𝛼 = 𝛼𝑐. To see how the approximations

differ from the full model, bifurcation diagrams at 𝛼 = 𝛼𝑐 for each of the approxi-
mations are compared while focusing on states in two dimensions. This is depicted
in Fig. 3.7.
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Fig. 3.7: Bifurcation diagram with the full GEM-4 model (solid lines) as well as the
approximations GEM-4-𝜀 (dashed line), PFC-𝛾 (dotted line) and PFC-𝜀
(dot-dashed line). The colors are chosen as in Fig. 3.4, though no stabilities
are marked.

As expected, the approximations all match the full GEM-4 model at the border of
linear stability, but then deviate from it relatively fast.

The GEM-4-𝜀 approximation has its new fold at 1 + ̄𝜌 = 0.932 as opposed to the
original 1+ ̄𝜌 = 0.835. The development of the L2-norm is similarly steep (meaning
if it were rescaled to match at the fold points the curves would match fairly well),
though the front of the localized state is wider, therefore the folds of the localized
hexagon branch are comparatively closer together, leaving a much smaller stable
region.

The PFC-𝛾 approximation has a fold that is closer to the original than GEM-4-𝜀,
though not by much. It is at 1+ ̄𝜌 = 0.917. The form of the branch, however, differs
more as its height is compressed as compared to either previous model. The front
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width of the localized states is even wider than in the GEM-4-𝜀 approximation and
the snaking branch lacks even the customary two folds required to create a stable
region.

Finally, the PFC-𝜀 approximation combines the worst of both worlds. The fold
point at 1 + ̄𝜌 = 0.94 is furthest away from the original one, the height compression
of the curve is only marginally better than for PFC-𝛾 and the localized states have
an even wider front. The localized hexagon branch also has no folds and therefore
no stable part.

To make sure the lack of snaking seen here is not a result of choosing domains that
are too small as compared to the front’s width, a second path continuation was
performed for a much larger domain (𝐿𝑥 = 30𝐿𝑐, result not shown), where there is
no snaking either.

In conclusion, the approximations do not introduce snaking into the system at the
parameters which match the GEM-4 model, but they do widen the fronts connecting
the pattern with the uniform background to varying degrees in addition to the
drawbacks already mentioned in Ref. [11].

3.4.3 The Cause of Snaking

To test which approximation causes the appearance of snaking without completely
deviating from the model, the GEM-4-𝜀 and PFC-𝛾 approximations are analyzed for
different parameter values which only preserve the position of the border of linear
stability and critical values of ̄𝜌 and 𝛼. From there all bifurcations and fold points
are tracked through parameter space, thereby detecting the appearance of snaking
in the form of additional folds that appear on the branch of localized hexagons.

For the GEM-4-𝜀 approximation (see Eq. 3.22) the only parameter which can be
varied while maintaining the border of linear stability is the curvature parameter 𝜅.
Its influence on the fold points is depicted in Fig. 3.8 a). Per definition the border
of linear stability (red) is fixed at ̄𝜌 = 0, and the branch of hexagons (yellow) has
not changed much in the studied parameter range. It moves only slightly towards
lower densities with decreasing curvature 𝜅. As for folds of the branches of localized
states, the two main folds exist for 𝜅 ≤ 0.3, but no additional folds appear.

A look at the accompanying bifurcation diagram (not shown) makes it clear that
until 𝜅 = 0.1 no hint of snaking can be found (i.e., the branch does not wiggle at
all). Beyond 𝜅 = 0.1 the numerical procedure eventually fails, as the coexisting
pattern is at such high density that it lies beyond the border which marks the
end of physically sensible solutions due to the appearance of negative densities. In
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Fig. 3.8: Bifurcation and fold point continuation for a) the GEM-4-𝜀 approximation
and b)-d) the PFC-𝛾 approximation. The former uses Eq. (3.10) with
𝑢̂ = 𝑢̂𝜀 given by Eq. (3.22), while varying the curvature parameter 𝜅.
The latter uses Eq. (3.23) with the original 𝑢̂ given by Eq. (3.13), while
varying the weights 𝑠 and 𝑡 of the quadratic [b) and d)] and cubic [c) and
e)] terms, respectively. The red and yellow lines are the border of linear
stability and the hexagon fold position respectively. The black lines depict
the positions of the two main fold points of the odd localized states branch.
Additional folds on the odd localized hexagon branch are marked through
multicolored lines. d) and e) show those same odd localized state branch
folds, spread out around the mean of the black lines for ease of viewing.

conclusion the snaking is not caused by approximating the interaction potential.

For the PFC-𝛾 approximation (see Eq. (3.23)) the options for variable parameters
are the prefactors 𝑠 and 𝑡 of the quadratic and cubic terms respectively. Their
influence on the folds is depicted in Fig. 3.8 b) and c) respectively.

Again, the border of linear stability (red) is fixed at ̄𝜌 = 0. A more significant
change appears in the position of the hexagon fold (yellow), which rises exponen-
tially with rising 𝑠 or falling 𝑡.

For the parameter 𝑠 the primary folds of the odd localized hexagon branch (black)
appear for values > 0.54 which then start wiggling until finally additional saddle-
node bifurcations (multicolored) appear at 𝑠 > 0.7.
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The picture for 𝑡 is structured similarly, with the main folds (black) appearing at
𝑡 < 0.28 and full snaking (multicolored) appearing at 𝑡 < 0.18. Fig. 3.8 d) and
e) clarify the appearance of the snaking folds. To that end the center between
the main folds (mean( ̄𝜌black)) is used to rescale the axis, using ̄𝜌-mean( ̄𝜌black). To
understand how the move towards snaking influences the density modulation field
𝜌 of the localized states see App. A.4.

Fig. 3.9 shows an example of a bifurcation diagram with snaking at 𝑠 = 0.5 and
𝑡 = 0.1. Panel a) clearly shows the different position of the saddle-node bifurcation
on the hexagon branch, as well as snaking of the localized state branch, while the
border of linear stability is held at the expected value of 1+ ̄𝜌 = 1. Interestingly the
bifurcation where the localized state branch emerges is close enough to the primary
bifurcation that its position is not affected by the approximation. It remains at
1 + ̄𝜌 = 0.987 (and 𝜇 ≈ −0.24). In addition, the chemical potential 𝜇 and its
relation to the mean density are depicted in panel b), which shows that the snaking
is indeed not slanted when plotted over 𝜇. Instead, the folds for all but the first
and last snaking ladders are on vertical lines.

Finally, panel c) shows the energy difference to the uniform ground state. While
the hexagon branch behaves similarly to previous cases, the localized state (close
up in the inset) now zigzags along a curve which at no point becomes the lowest
energy state at the given domain size.

Panel d) shows the grand potential density difference to the uniform ground state,
again similar to the previous depiction with the exception of the localized states
branch, which, as seen in the inset zigzags around a single point.

3.5 Comparison to Classical Nucleation Theory

This section compares simulation results to the predictions of critical radii 𝑅∗ and
the accompanying energy barrier ΔΩ∗, as shown in Fig. 2.5.

To that end, first a definition for the radius 𝑅 of a localized state is required, which
can be calculated using densities:

𝑅𝑑 = 𝐿𝑦
̄𝜌𝐴𝐵 − ̄𝜌𝐴
̄𝜌𝐵 − ̄𝜌𝐴

. (3.28)

Here, the subscript 𝐴𝐵 denotes the nucleus or rather the localized state, while
the 𝐵 and 𝐴 subscripts are for the crystalline and liquid state, respectively. The
mean of the density modulation fields for the latter are taken where their chemical
potential is 𝜇𝐴 = 𝜇𝐵 = 𝜇𝐴𝐵.
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Fig. 3.9: Bifurcation diagrams for the changed PFC-𝛾 equation (Eq. (3.23)) with
𝑠 = 0.5 and 𝑡 = 0.1. The colors, line and marker styles are as in previous
bifurcation diagrams. It shows a) ||𝛿𝜌|| as solution measure over the mean
density 1+ ̄𝜌, b) the mean density 1+ ̄𝜌 plotted over the chemical potential
𝜇 and c) the energy difference to the uniform state 𝐹 − 𝐹0 as a function of
the mean density 1 + ̄𝜌, with inset of a close up of the localized hexagon
branch. Panel d) shows the grand potential density difference to the liquid
state Δ𝜔 as a function of the chemical potential 𝜇. The crossing of the
continuous lines is again marked by a filled circle and indicates that these
states can coexist, allowing for the localized states. The inset shows a
close up of the localized hexagon branch.

Alternatively, the radius can be estimated by looking at the actual amplitude profile
of the localized state. The divide between uniform and patterned part is in fact not
sharp. Instead, there is an area, the interface, which is neither flat, nor is there a
fully developed pattern. The amplitude method measures the position of the outer
and inner radius, 𝑅𝑜 and 𝑅𝑖, defining the borders of this area.

The density of the innermost peak 𝜌inner and the outermost part (peak or flat where
applicable) 𝜌outer are taken as reference points, while the distance between all peaks
as well as the flat part are bridged by straight lines, forming a stepwise linearized
front for the localized state 𝑓loc(𝑅). See Fig. 3.10 for a visualization.

From there the inner and outer radii 𝑅𝑖 and 𝑅𝑜 are defined through setting a five
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Fig. 3.10: Explanation of inner and outer radius 𝑅𝑖 and 𝑅𝑜 (black, solid) of a lo-
calized state profile (gray), as defined by the stepwise linearized front for
the localized state 𝑓loc(𝑅) (red), as well as inner maximum 𝜌inner (green,
solid) and the outermost flat density 𝜌outer (blue, solid). The radii are
given by the crossing of 𝑓loc(𝑅) with the five percent deviation Δ𝑏 from
𝜌inner and 𝜌outer (dashed).

percent border Δ𝑏 = (𝜌inner − 𝜌outer) ⋅ 5% and seeing where 𝑓loc(𝑅) crosses it:

𝑅𝑖 = 𝑓−1
loc (𝜌inner − Δ𝑏) (3.29)

𝑅𝑜 = 𝑓−1
loc (𝜌outer + Δ𝑏) (3.30)

Here 𝑓−1
loc is the inverted function of the linearized front of the localized state. The

resulting mean radius is

𝑅𝑎 = 𝑅𝑜 + 𝑅𝑖
2

. (3.31)

Given those radii as a first step the value of the interface energy 𝛾 is determined, by
looking at the system at the coexistence point where ΔΩ = 𝑎𝐵𝛾 with 𝑎𝐵 = 𝐿𝑥 (not
2𝐿𝑥 due to the reduced domain). Comparison with Eq. (2.12) leads to 𝛾𝑎 = 0.06145
for 𝑅𝑎 and 𝛾𝑑 = 0.06159 for 𝑅𝑑 and allows the determination of ΔΩ∗ = 𝐿𝑥𝛾 (see
Tab. 2.1, again not 2𝐿𝑥𝛾 due to the chosen domain).

From there the continuation results can be compared to ΔΩ∗. To that end the
difference of the grand potential density of the localized state to the flat state ΔΩ/𝑉
is plotted over the radius 𝑅𝑑 (green) as measured according to Eq. (3.28) and radius
𝑅𝑎 (gray) as measured according to Eq. (3.31) with the region bounded by the
inner and outer radius 𝑅𝑖 and 𝑅𝑜 colored in light gray. The results are depicted in
Fig. 3.11 a) for the GEM-4 model. Stable and unstable parts are once again marked
in solid and dotted lines. The predicted results from the classical nucleation theory
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Fig. 3.11: The difference of the grand potential density of the localized state to
the flat state ΔΩ/𝑉 for a) the full GEM-4 model and b) the PFC-𝛾
approximation with 𝑠 = 0.5 and 𝑡 = 0.1, plotted over the critical radius
𝑅∗ as defined according to the density 𝑅𝑑 (green, Eq. (3.28)) and radius
𝑅𝑎 (gray, Eq. (3.31)), while the accompanying radii 𝑅𝑖 and 𝑅𝑜 which
mark the inner and outer borders of the interface region are marked in
light gray. Stable and unstable states are marked by solid and dotted
lines respectively, while the theoretical prediction of classical nucleation
is marked with a dashed black line.

are included as a black dashed line, the position of which is indistinguishable for
either value of 𝛾.

The most obvious conclusion is that the CNT prediction of a constant energy barrier
independent of the radius is matched by the simulation results for a comparatively
large range of radii. It works better for larger radii.

At small radii the continuation results do not match the theoretical prediction. In
part this is because radii below a single peak radius can no longer be considered
a fully formed patch of a pattern. In addition, unlike predicted, patterns do not
just appear fully formed. The amplitude based radius accurately depicts that the
unstable branch at low ΔΩ/𝑉 does have a small pattern, rather than being flat.
The 𝑅𝑑 measurement predicts a smooth rise of the radius starting at 𝑅∗ = 0 which
a real system could never match and certainly does not fit the actual pattern of
the localized state. Overall the amplitude-dependent radius measurement 𝑅𝑎 is a
much more accurate depiction of the real system and also matches better to CNT,
while the density dependent radius calculation 𝑅𝑑 is easier, and still close enough
to be a valid approximation outside of very small radii.

Unlike the prediction in Sec. 2.3 the localized state has a stable part, which is due
to the primary continuation parameter being the density rather than the chemical
potential. A look at Fig. 3.6 c) easily shows that for a particle reservoir system the
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branch would indeed be purely unstable, as it does not contain any fold points to
render it stable.

Finally, it should be noted that both CNT and the depicted simulations make the
erroneous assumption of a sharp divide between liquid and patterned phase. In
other words, neither theory nor data sets are completely accurate depictions of
reality.

As a next step the influence of snaking on critical radii and the accompanying
energy barriers is analyzed. To that end the PFC-𝛾 approximation with 𝑠 = 0.5
and 𝑡 = 0.1 is subjected to the same treatment of calculating the interface energy
(needed to predict the theoretical (dashed black) line), which is 𝛾 = 0.133 for both
radii. Results of this procedure together with the radii and critical energy barrier
are depicted in Fig. 3.11 b) with a similar color scheme as before. It also depicts
the same differences to theory at low radii as in Fig. 3.11 a).

What is clearly different, however, is that rather than matching the theoretical line,
the critical energy barrier forms peaks and valleys which become more pronounced
with bigger radii. These differences to CNT make it clear that the theory is not
suitable for predicting nucleation in systems with snaking behavior.

In addition, due to the snaking there are now stable solutions even for the particle
reservoir system. This matches the implication of the peak and valley structure,
namely that some radii have a lower energy barrier (valley points), making them
easier to reach, while the surrounding peaks mean that going from there to another
radius takes some additional energy.
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The following results are under consideration to be published, a pre-print version
can be found in Ref. [82]. The system was first studied in the doctoral thesis of M.
Holl [80]. All data shown in Figs. 4.1 to 4.6 have been re-calculated and in most
cases completed (they are marked accordingly). All data in Sec. 4.4, which focuses
on 2D rotating crystallites, is completely new.

4.1 Motility-Induced Phenomena in Active Soft Matter
Models

Unlike passive soft matter systems, where stability of states is directly connected
to a minimum in the free energy landscape, active soft matter models are typical
examples of non-equilibrium phase transitions. Here, the energy enters the system
via an external field. The energy influx makes the free energy 𝐹 insufficient to
determine optimal phases, instead methods such as structural entropy maximization
have to be applied [12].

One focus of studying phase transitions in active soft matter is motility-induced
phase separation (MIPS), i.e., the crossing of a density-dependent threshold be-
yond which self-propelled particles separate into dense and dilute fluid phases rem-
iniscent of a liquid-like cluster coexisting with a gas-like phase [152, 156, 118,
35, 121, 64, 167]. Such clusters can be observed experimentally [118, 30, 15] as
well as in particle-based simulations [53, 128, 140, 43, 33] and continuum models
mainly based on nonvariational amendments [193, 170, 169, 154, 19, 18] of the
Cahn-Hilliard model for phase decomposition [28] with consistent results for their
properties [19].

Additionally, simulations and experiments yield active crystallites, i.e., resting,
traveling or rotating crystalline structures within a fluid background [180, 30, 128,
138, 143, 15, 199, 142, 61]. They are also called finite-size active solids [71, 77,
55, 117] and often modeled using an active version [124, 125, 36, 2, 133, 149, 134,
135, 83] of the passive PFC model [49, 51, 182], which is a versatile microscopic
field theory for colloidal crystallization and a local approximation of a Dynamical
Density Functional Theory (DDFT) [11, 188].
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The active PFC model is capable of modeling the transition from resting to traveling
space-filling crystalline states [124], as well as active crystallites [133, 135, 83].
However, it fails to describe proper motility-induced crystallization (MIC). In other
words, a crystalline structure found in the passive model [182, 174] is subdued by
the addition of activity, which results in either the destruction of the crystal or the
addition of translation, rotation or oscillation [134].

As a further downside, the active PFC model does not distinguish between different
fluid phases, therefore, there is neither a liquid-gas transition nor is the interplay
of condensation and crystallization considered.

4.2 The Extended Active PFC Model

This section introduces a model which attempts to mitigate both of the short-
comings of the standard active PFC model mentioned above. This includes the
passive form, as well as two different types of activity: density-independent and
density-dependent. Linear stability is analyzed for all three cases.

4.2.1 Model Introduction

The extended active PFC model is derived from two different theories. One part is
an extended PFC-type equation (ePFC) of higher order (i.e., three- and four-point
direct correlation functions). Its parameters are chosen with the specific aim of
modeling three distinct phases, vapor, liquid and solid, as well as phase transitions
and coexistence between them [190]. It has the free energy

𝐹ePFC = ∫ −𝐵0𝜌 − 1
2

𝜌(𝐶0 + 𝐶2Δ + 𝐶4Δ2 + 16Δ3)𝜌d𝑟

+ ∫ 1
3!

(9𝜌3 + 34.2𝜌2Δ𝜌) + 1
4!

(6𝜌4 + 52.1𝜌2(Δ𝜌)2)d𝑟 (4.1)

with the (scaled and shifted) density field 𝜌 and parameters as described in Tab. 4.1.
The rescaled and shifted effective temperature 𝑇 enters through those parameters,
making it a second control parameter in addition to the mean density ̄𝜌.

𝐵0 𝐶0 𝐶2 𝐶4
−4.5 − 3𝑇 −5.764 − 𝑇 17.8 + 2𝑇 39.8 − 𝑇

Table 4.1: Parameter values for the temperature dependent parts of the extended
PFC model according to Ref. [190].
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Both the vapor and the liquid phase are uniform and differ only in their densities.
The solid takes the form of a spatially periodic pattern. In its passive form the
model already captures the liquid-gas transition, as well as liquid-solid and gas-
solid transitions.

The active component resulting from self-propulsion enters the model by way of a
polarization field P, detailing the local strength and direction of the polar order
(cf. [124, 125]). The free energy used here takes the form

𝐹𝑃 = ∫ 1
2

P2d𝑟 , (4.2)

as in, e.g., Ref. [133].

The polarization field P and density field 𝜌 are non-reciprocally connected (right
most terms in Eqs. (4.3) and (4.4)), which breaks the overall gradient dynamics
structure, thereby indicating sustained non-equilibrium influences such as chemo-
mechanical driving. They are ultimately responsible for all occurring moving and
oscillating states.

𝜕𝑡𝜌 = Δ𝛿𝐹ePFC
𝛿𝜌

− ∇𝑣(𝜌)P (4.3)

𝜕𝑡P = Δ𝐷𝑐
𝛿𝐹𝑃
𝛿P

− 𝐷𝑛𝑐
𝛿𝐹𝑃
𝛿P

− 𝛼∇𝑣(𝜌)𝜌 , (4.4)

with the parameters in Tab. 4.2.

𝐷𝑐 𝐷𝑛𝑐 𝛼
0.2 0.5 0.5

Table 4.2: Parameter values for the polarization field and coupling of the active
PFC model, chosen according to Refs. [124, 80].

The coupling strength, i.e., the self-propulsion speed of the active particles, is given
by 𝑣(𝜌). It is often assumed constant (𝑣 = 𝑣0) [124, 133], representing an effective
speed of individual particles. However, in this thesis the density-dependent expres-
sion 𝑣 = 𝑣0 − 𝜁𝜌 is used, which often appears in effective hydrodynamic models for
MIPS [170, 169, 18]. It accounts for the force imbalance related to the self-trapping
of particles due to interactions in dense regions. Note that 𝑣0 might take on nega-
tive values, due to the scaling and shifting of 𝜌 away from the proper density 𝜌′ [18].
In that case 𝜁 remains a positive constant as in a 𝜌′-based model. This thesis takes
the symmetry of Eqs. (4.5) and (4.6) into account, which implies identical behavior
for 𝑣0 < 0, 𝜁 > 0 and 𝑣0 > 0, 𝜁 < 0, with only a change in the direction of the
polarization (i.e., P → −P).
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The remaining terms in Eq. (4.4) correspond to translational and rotational diffu-
sion, which are conserved and non-conserved gradient dynamics, respectively.

The full form of the model is:

𝜕𝑡𝜌 = Δ[−(𝐶0 + 𝐶2Δ + 𝐶4Δ2 + 16Δ3)𝜌

+ 9
2

𝜌2 + 57
10

(2𝜌Δ𝜌 + Δ(𝜌2))

+ 𝜌3 + 521
120

(𝜌(Δ𝜌)2 + Δ(𝜌2Δ𝜌))] − ∇𝑣(𝜌)P (4.5)

𝜕𝑡P = 𝐷𝑐ΔP − 𝐷𝑛𝑐P − 𝛼∇𝑣(𝜌)𝜌 . (4.6)

In combination the system captures the destruction of passive clusters as the earlier
active PFC model as well as MIC and MIPS [80].

In the following the thesis analyzes its phase behavior in passive (thermodynamic)
and active cases thereby focusing on the destruction of passive clusters (drops and
crystallites) and the emergence of active ones. Finally, the emerging rotating crys-
tallites are analyzed.

4.2.2 Linear Stability Analysis

The linear stability of a one dimensional uniform steady state ( ̄𝜌, 0)𝑇 of a two
field model requires a vectorial perturbation, where the components take the form
introduced in Eq. (2.4), i.e., 𝛿 = (𝛿𝜌, 𝛿𝑃 )𝑇 ∝ 𝑒𝑖kx+𝜎𝑡 (cf. [80]).

Introducing ( ̄𝜌, 0)𝑇 + 𝛿 into Eqs. (4.5) and (4.6) results in a two dimensional eigen-
value problem

𝜎𝛿 = J𝛿 (4.7)

with Jacobian

J = ( 𝐽𝜌 −𝑖𝑘(𝑣0 − 𝜁 ̄𝜌)
−𝑖𝑘𝛼(𝑣0 − 2𝜁 ̄𝜌) 𝐽𝑃

) (4.8)

where 𝐽𝜌 and 𝐽𝑃 are the dispersion relations of the uncoupled Eqs. (4.5) and (4.6),
respectively:

𝐽𝜌 = (𝐶0 − 9 ̄𝜌 − 3 ̄𝜌2) 𝑘2 − (𝐶2 − 114
5

̄𝜌) 𝑘4 + (𝐶4 − 521
120

̄𝜌2) 𝑘6 + 6𝑘8 (4.9)

𝐽𝑃 = −(𝐷𝑐𝑘2 + 𝐷𝑛𝑐) . (4.10)
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The two branches of the full dispersion relation are given by

𝜎± = 1
2

[𝐽𝜌 + 𝐽𝑃 ± √(𝐽𝜌 + 𝐽𝑃)2 − 4det(J)] (4.11)

with the determinant of the Jacobian

det(J) = 𝐽𝜌𝐽𝑃 + 𝑘2𝛼[𝑣2
0 + 2(𝜁 ̄𝜌)2 − 3𝑣0𝜁 ̄𝜌] . (4.12)

Note that changing the sign of 𝑣 = 𝑣0 − 𝜁𝜌, i.e., changing the sign of both 𝑣0 and 𝜁
has no effect on 𝜎.

As the bigger eigenvalue 𝜎+ dictates the actual growth rate, which is given by
Re(𝜎+) and depends on the wavenumber 𝑘. The frequency of the harmonic modes
is given by Im(𝜎), also depending on 𝑘. As long as (𝐽𝜌 − 𝐽𝑃)2 > 4𝑘2𝛼[𝑣2

0 + 2(𝜁 ̄𝜌)2 −
3𝑣0𝜁 ̄𝜌] it is Im(𝜎) = 0.

−2 −1 0 1
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(b)

−2 −1 0 1
ρ̄

(c)

Fig. 4.1: Spinodals, i.e., the stability thresholds of uniform states, of the extended
active PFC model Eqs. (4.5) and (4.6) in the ( ̄𝜌, 𝑇 )-plane (black lines).
The parameters are a) 𝑣0 = 0, 𝜁 = 0 (passive limit) b) 𝑣0 = 1,
𝜁 = 0 and c) 𝑣0 = 1, 𝜁 = −0.5. Dashed, dotted, and dash-dotted
lines respectively mark the instability type: large-scale, stationary (Cahn-
Hilliard), small-scale, stationary (conserved-Turing), and small-scale os-
cillatory (conserved-wave). All three panels show a codimension-2 point
where the onset of large- and small-scale instability coincides, i.e., the
spinodals cross. Red dots mark positions of dispersion relations shown in
Fig. 4.2, while the blue line matches the parameters in Fig. 4.3.1

Fig. 4.1 shows the stability thresholds of the uniform state in the ( ̄𝜌, 𝑇 )-plane for
a) 𝑣0 = 0, 𝜁 = 0 (passive limit) b) 𝑣0 = 1, 𝜁 = 0 and c) 𝑣0 = 1, 𝜁 = −0.5.

1Re-calculated from Ref. [80] and instability types amended.
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They are categorized according to Ref. [60]: Regardless of the parameter choice,
all cases show liquid-gas phase separation, marked by a dashed line. It results
from a Cahn-Hilliard instability (stationary, large-scale, conserved system). They
appear for temperatures 𝑇 < 𝑇𝑐, which is roughly equal in panel (a) and (c) at
( ̄𝜌𝑐, 𝑇𝑐) ≈ (−1.5, 1) but lower in (b) ( ̄𝜌𝑐, 𝑇𝑐) ≈ (−1.5, 0). In other words, the
density-independent activity suppresses phase separation by shifting the critical
point and the entire spinodal to lower temperatures while the density-dependent
activity fosters phase separation by reversing the shift and therefore leading to
MIPS.

Crystallization also occurs for all parameters. The accompanying instability is
either a conserved-Turing instability (stationary, small-scale, conserved system)
as in panel (a) and (c) (for lower 𝑇), or a conserved-wave instability (oscillatory,
small-scale, conserved system) in panel (b) and (c) (for higher 𝑇). They are marked
by dotted and dot-dashed lines, respectively. In contrast to the phase-separation
stability threshold, the crystallization spinodals barely move, meaning potential
occurrences of suppression or fostering of MIC will be decided by the nonlinear
behavior (see Fig. 4.6).

There is a codimension-2 point at ( ̄𝜌, 𝑇 ) ≈ (−0.5, −2), where large- and small-scale
instabilities occur simultaneously, i.e., where the spinodals cross.

Dispersion relations matching the different types of instabilities, as well as the
codimension-2 point are depicted in Fig. 4.2. There the real parts of 𝜎 are depicted
as black lines in case of purely real eigenvalues or as red dashed lines if Im(𝜎) ≠ 0.

Panel (a) gives an example at 𝑇 = −0.5, and ̄𝜌 = −0.5, which is well above the
onset of a Cahn-Hilliard instability. At the onset 𝑘 = 0 would appear as the mode
with the largest growth rate, here however, the eigenvalue at 𝑘 = 0 remains zero
and there is an adjacent band of unstable wavenumbers. In time evolutions, this
gives rise to large-scale structures, specifically, a phase-separated state.

Panel (b) shows an example at the same temperature as panel (a), i.e., 𝑇 = −0.5,
but at a higher mean density 𝜌 = −0.2515. This is only slightly above the onset
of a conserved-Turing instability, meaning there is a small band of wavenumbers
close to 𝑘 ≈ 1.1444 which is unstable. Directly at onset and barring further non-
linear influences, a time evolution will give rise to a spatially periodic state, i.e., a
crystal.

Panel (c) shows a dispersion relation close to the codimension-2 point in the passive
case at 𝑇 = −2 and ̄𝜌 = −0.52895. There, both the large-scale and the small-scale
instability, occur simultaneously. There are two bands of unstable wavenumbers:
one adjacent to 𝑘 = 0 and the other around 𝑘𝑐 ≈ 1.1533. While nonlinear effects
make predicting the outcome of a time simulation from linear stability analysis
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Fig. 4.2: Examples of dispersion relations of the extended active PFC model in
Eqs. (4.5) and (4.6). Purely real eigenvalues are represented by black solid
lines, complex eigenvalues are represented by a red dashed line. Disper-
sion relations are given at (a) ̄𝜌 = −1.5, 𝑇 = −0.5, and 𝑣0 = 0, (b)

̄𝜌 = −0.2515, 𝑇 = −0.5, and 𝑣0 = 0, (c) ̄𝜌 = −0.52895, 𝑇 = −2., and
𝑣0 = 0 and (d) ̄𝜌 = 0.229, 𝑇 = −0.5, and 𝑣0 = 1. Panels (a)-(c) show
monotonic instabilities corresponding to (a) a Cahn-Hilliard instability,
(b) a small-scale (conserved-Turing) instability and (c) a case close to
the codimension-2 point, where the small-scale and the large-scale sta-
tionary instabilities occur simultaneously. Panel (d) shows an active case.
The resulting dispersion relation corresponds to an oscillatory small-scale
(conserved-wave) instability.2

impossible, the competition between the instabilities is a first indicator for the
existence of three-phase (vapor-liquid-solid) coexistence.

Finally, panel (d) shows a dispersion relation for an active case at 𝑣0 = 1, as well as
̄𝜌 = 0.229 and 𝑇 = −0.5. It shows a small-scale instability, which unlike the one in

panel (b), features complex eigenvalues, meaning the instability is oscillatory, i.e.,
a conserved-wave instability. Barring additional nonlinear effects, a time evolution
would produce a traveling periodic state, i.e., a traveling crystal.

2Re-calculated from Ref. [80].
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4.3 Bifurcations in One Dimension

In this section an example of a bifurcation diagram of the passive extended PFC
model (i.e., for 𝑣0 = 𝜁 = 0) at 𝑇 = −0.5 is presented for a one-dimensional domain
of size 𝐿 = 100 with 𝑁 = 256. The bifurcation diagram is depicted in Fig. 4.3
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Fig. 4.3: Bifurcation diagram at fixed 𝑇 = −0.5 for 𝑣0 = 𝜁 = 0, given as a function
of the mean density ̄𝜌 for a 1D domain of size 𝐿 = 100. The result-
ing branches of steady states are characterized by their L2 norm ||𝛿𝜌||,
while solid [dashed] lines indicate linearly stable [unstable] states. Black
branches represent uniform states (gas or liquid), light blue states are
phase separated states, i.e., states with gas-liquid coexistence, while the
thick [thin] dark blue line corresponds to domain-filling crystalline (peri-
odic) states with 18 [19] peaks. The intertwined dark and light orange lines
represent branches of localized states with odd and even peak numbers,
respectively, featuring predominantly crystal-gas coexistence. The inter-
connecting branches in dark green represent asymmetric localized states.
The four filled circles indicate two pairs of binodal points, with the colors
indicating the respective coexisting state, specifically, the fully black cir-
cles are coexistence between two uniform states, while the dark blue and
black combination indicates gas-crystal coexistence. The crosses mark
states depicted in panels I to V, which show density profiles 𝜌(𝑥) in blue
and the polarization 𝑃(𝑥) in dark orange.3

3Re-calculated from Ref. [80], panel I-V adapted.
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depending on ̄𝜌 and characterized by the L2 norm ||𝛿𝜌|| (cf. Eq. (3.27)). It matches
the horizontal cut through the phase diagram in Fig. 4.1 (a).

The uniform state has ||𝛿𝜌|| = 0. At low ̄𝜌 it is considered a gas, for higher ̄𝜌
a liquid. Its accompanying branch (black) exist for all ̄𝜌. Starting from low ̄𝜌
the state is stable, but then loses stability in a subcritical pitchfork bifurcation at

̄𝜌 ≈ −2.140 and regains it at the same way at ̄𝜌 ≈ −0.830. Finally, the branch
destabilizes at ̄𝜌 ≈ −0.251 in a supercritical pitchfork bifurcation. They match the
Cahn-Hilliard instabilities and conserved-Turing instability presented in Fig. 4.1 (a),
respectively.

The two lower ̄𝜌 bifurcations connect through a branch of phase-separated states
(light blue), where liquid and gas coexist as predicted by the crossing of the black
solid line with itself in Fig. 4.4 (b) at (𝜇, 𝜔) ≈ (1.854, −0.15). The coexisting states
are marked with black circles. The phase-separated branches both emerge subcrit-
ically and are unstable, however, they gain stability at saddle-node bifurcations at

̄𝜌 ≈ −2.247 and ̄𝜌 ≈ −0.739, respectively. Between them the branch is linearly
stable, with an example profile given in Fig. 4.3, panel I. That same stable part
follows parts of the Maxwell line, which connects the two coexisting states, and
matches the upper thin dotted horizontal line (at 𝜇 ≈ 1.854) in Fig. 4.4 (a).

The supercritical bifurcation at ̄𝜌 ≈ −0.251 gives rise to a branch (dark blue, thick)
of domain-filling periodic states with 18 peaks, which is initially stable, but desta-
bilizes at ̄𝜌 ≈ −0.249 in a secondary subcritical pitchfork bifurcation, which results
in two branches of localized states (with odd and even peak numbers, orange).
A second branch of domain-filling periodic states with 19 peaks (dark blue, thin)
emerges from the uniform state in a supercritical bifurcation at ̄𝜌 ≈ −0.239. It
starts out unstable, but stabilizes when the branches of localized states reconnect
with it at ̄𝜌 ≈ 0 in another pitchfork bifurcation.

The localized states are a result of coexistence between a 18 peak crystalline state
and a uniform state, as indicated by the crossing of their respective branches in
Fig. 4.4 (b) at (𝜇, 𝜔) ≈ (1.675, −0.15).

Both the odd (dark orange) and even (light orange) states are unstable when their
branches emerge from the 18 peak branch. They approach and then closely follow
the stable part of the branch of phase-separated states. The localized states on this
part of the branch resemble a phase-separated state with a comparatively small pe-
riodic modulation on the high-density plateau, which therefore matches coexistence
between gas and a weakly modulated crystal state (cf. Fig. 4.3, panel II).

The localized state branches veer off from the phase-separated branch shortly after
passing its maximum. From there at ̄𝜌 ≈ −1.9 they fold back toward larger ̄𝜌 by
way of two saddle-node bifurcations. The odd localized state branch gains stability
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Fig. 4.4: Chemical potential 𝜇 given as a function of (a) the mean density ̄𝜌 and (b)
the mean grand potential 𝜔̄ for states depicted in Fig. 4.3. All parameters,
line styles and symbols match accordingly. (b) only shows branches of
domain filling states. Intersections of branches of stable states in panel
(b) indicate a coexistence of states in the thermodynamic limit by way of
Maxwell (binodal) points. They are marked by filled circles in Fig. 4.3 and
their 𝜇 values indicated by the horizontal red dotted lines, which indicates
the position of the Maxwell line in (a) that coexisting state branches follow.
Note that at 𝜇 ≈ 1.2 a near intersection exists in (b), causing the snaking
of branches magnified in the inset of (a).4

at that point, while its even counterpart remains unstable. However, they exchange
stability through a series of pitchfork bifurcations, giving rise to short asymmetric
localizes state branches (dark green), connecting both branches. An example of such
an asymmetric state can be found in Fig. 4.3, panel IV. Gas-crystal coexistence for
an even state can be found in panel III. Both states are sufficiently close to the triple
point (at ( ̄𝜌, 𝑇 ) ≈ (−0.379, −0.271)) such that they also exhibit hints of “liquid
shoulders” between the gas and the crystal phase. Together, the localized state
branches form a typical snake-and-ladder structure of slanted homoclinic snaking
found in many systems with mean density conservation [182, 97, 83]. It follows
the Maxwell line for a limited density range, as shown in Fig. 4.4 (a) (lower red
dotted line). If the chemical potential were used as control parameter the snaking
would become vertically aligned (cf. Fig. 4.4 (a) when rotated by 90 degree and

4Re-calculated from Ref. [80] and re-arranged.
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the discussions in [182, 83]).

Fig. 4.4 (a) shows another distinct snaking structure at 𝜇 ≈ 1.06, which is magnified
in the inset. It is caused by a “ghost-binodal”, i.e, the near miss of coexistence
between the liquid and crystalline state, as indicated by the close proximity of the
saddle-node bifurcation where solid and dashed black lines meet, and the blue solid
line in Fig. 4.4 (b).

In 4.3 the second snaking structure is situated on the near horizontal part of the
localized state branches close to where they reconnect with the crystalline branch.
Profile V consequently shows a clear liquid-solid coexistence.

The two distinct snaking structures (solid-liquid and solid-gas) are separated by a
pair of saddle-node bifurcations, which can be found at ̄𝜌 ≈ −0.218 and ̄𝜌 ≈ −0.230
for the odd and at ̄𝜌 ≈ −0.210 and ̄𝜌 ≈ −0.243 for the even branch of localized
states.
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Fig. 4.5: Relative mean free energy density ̄𝑓 for all states depicted in Fig. 4.3,
shown in dependence of ̄𝜌. All parameters, line styles and symbols match
accordingly.5

Energetically, going from low to high ̄𝜌 the gas starts as the most favorable state,
followed by the phase-separated states shortly after passing the left saddle-node
bifurcation (above ̄𝜌 ≈ −2.218) up until ̄𝜌 ≈ −1.829. After that the branches of
odd and even localized states alternately form the global minimum, spanning the
region between ̄𝜌 ≈ −1.829 and ̄𝜌 ≈ 0.103. At larger densities the domain-filling

5Re-calculated from Ref. [80].
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crystal with 19 peaks corresponds to the state of lowest energy. This is shown in
Fig. 4.5.

The part of the localized states branches which is both unstable and closely matched
to the linearly stable phase-separated branch has slightly higher energy than its
phase-separated companion. Therefore, it represents the threshold states which
the system is required to overcome in order to reach the stable localized states
when starting from the metastable phase-separated state.

In summary the extended PFC model both matches the phase diagram and com-
bines structures from both Cahn-Hilliard and PFC models as intended.

−2 −1 0
ρ̄

−1.0

−0.5

0.0
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−2 −1 0
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Fig. 4.6: Spinodals (i.e., linear stability borders) and binodals (i.e., loci of outermost
saddle-node bifurcations) tracked through the ( ̄𝜌, 𝑇 )−plane for a system
with 𝐿 = 100 and 𝑁 = 256, as well as a) 𝑣0 = 0, 𝜁 = 0 b) 𝑣0 = 1,
𝜁 = 0 and c) 𝑣0 = 1, 𝜁 = −0.5. Spinodal are given as black dashed
and dotted lines, which denote the Cahn-Hilliard and conserved-Turing
instabilities respectively, while the dot-dashed lines indicate a conserved-
wave instability. The red dot marks the critical point of the gas-liquid
spinodal. For the binodals (colored lines) only stationary solution branches
are tracked. Colors match the branches of the saddle-node bifurcations in
Fig. 4.3. 6

Given the present bifurcation diagram, continuation of the outermost saddle-node
and primary pitchfork bifurcations through the (𝜌, 𝑇 )−plane gives the binodals of
the system. They are depicted in Fig. 4.6 for the same parameters as Fig. 4.1, i.e.,
for a) 𝑣0 = 0, 𝜁 = 0 b) 𝑣0 = 1, 𝜁 = 0 and c) 𝑣0 = 1, 𝜁 = −0.5 with matching line
styles, however, the spinodals are now adapted for a system of size 𝐿 = 100, which
shifts them slightly from where they are in Fig. 4.1.

6Re-calculated from Ref. [80], spinodals adapted to finite size with stability types amended.
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To match the colors of the bifurcation diagram, the loci for the gas-liquid coex-
istence are shown in light blue and branch off from the spinodal representing the
Cahn-Hilliard instability. The remaining colored lines represent the loci of the out-
ermost saddle-node bifurcations for the branches of localized states of odd (dark
orange) and even (light orange) number of peaks. They are nearly on top of each
other and show complex structures, some of which are explained by the discussion
above. While additional traveling states exist for the active cases shown in (b) and
(c) (not shown) they do not have a significant impact on the overall size of the
coexistence region.

The triple point should be located in the swallow tail formed structure, where
different parts of the lines correspond to different coexistences with the crystal
state.

This is also where it becomes obvious that adding a density-independent activity
not only lowers the gas-liquid spinodal (critical point marked by the red dot) and
accompanying binodals, but also affects the crystallization process beyond changing
the instability from conserved-Turing to conserved-wave. The whole crystal-gas
binodal, including swallow tail structure are lowered significantly from its passive
counterpart. Adding a density-dependent activity, however, not only lifts the gas-
liquid spinodal and binodals to higher 𝑇 values, but also, to a lesser extent the
liquid-solid binodal, therefore accounting for both MIPS and MIC.

4.4 Rotating Localized States in Two Dimensions

Rotating crystallites are an intriguing state, appearing in many experimental sys-
tems [77, 143, 175, 195]. Here they are simulated for a system with 𝑣0 = 𝜁 = 1
using a semi-implicit Euler method on a periodic boundary domain of length
𝐿𝑥 = 𝐿𝑦 = 100, with a discretization of 𝑁𝑥 = 𝑁𝑦 = 256. Starting from an
initial condition of a rotating localized state with six fold rotational symmetry, the
existence range of those same structures, as well as their radius 𝑅 and angular
velocity 𝜔 is tracked for densities ̄𝜌 = −0.2 to ̄𝜌 = −0.45 as a function of both
𝑇 and 𝑅. The results are depicted in Fig. 4.7. Generally the crystalline clusters
show a hexagonal or near hexagonal shape which rotates as a rigid body, i.e., with
identical group and phase velocity. Odd and even states rotate around a central
peak or valley, respectively.

The radius is calculated using a time average, then taking a slice at 𝑦 = 0 and then
measuring at which point 𝜌(𝑥, 0) first reaches a threshold value 𝐴 when starting
from the outer edge and moving in. 𝐴 is defined as the difference of the highest
peak density 𝜌ℎ and the background density 𝜌𝑏 multiplied by a percentage 𝑝, i.e.,
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𝐴 = (𝜌ℎ − 𝜌𝑏)𝑝. For odd localized states 𝑝 = 0.75 is used. For even localized states
it is 𝑝 = 0.65, so as to compensate that there is no central peak, which lowers the
value of 𝜌ℎ when averaging over time. The 𝑥-value where 𝐴 is passed gives the
cluster radius 𝑅.
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Fig. 4.7: Characteristics of rotating crystallites: (a) Radius 𝑅 of the rotating local-
ized structures depending on the temperature 𝑇. (b) Angular velocity 𝜔
in degree per time unit depending on the radius 𝑅. In both (a) and (b)
results are given for several fixed mean densities ̄𝜌 as indicated by the col-
orbar. Example profiles from two ends of a plateau state for ̄𝜌 = −0.3 are
depicted in (c) and (d). Their exact placement in (a) and (b) is marked by
an orange triangle and red circle, respectively. The system is at 𝑣0 = 𝜁 = 1
with a domain of 𝐿𝑥 = 𝐿𝑦 = 100 and a discretization of 𝑁𝑥 = 𝑁𝑦 = 256.

Fig. 4.7 (a) shows the radius 𝑅 of the rotating localized states depending on the
temperature 𝑇. It has the appearance of a staircase that goes up with decreasing
𝑇, even as the step length increases. The step height, however, is roughly equal for
all presented mean densities, which are indicated according to the colorbar. The
near horizontal part of each step is indicative of a constant radius, with only slight
alterations as exemplified in the density fields in Fig. 4.7 (c)-(d) (marked by orange
triangle and red circle, respectively). They show two different states on the same
plateau at ̄𝜌 = −0.3, i.e., with similar radii, the only difference being that with

59



Alina Barbara Steinberg

falling 𝑇 the initially incomplete outer shell of the hexagonal structure laterally
grows more peaks until the shell is completed, at which point a new outer layer is
initiated by peaks in the central part of each face. The new layer initiates the jump
in 𝑅, leading to a step-like form.

The stairs can also be taken as an indication of snaking behavior, which is a common
feature of localized structures [29, 97]. In consequence, a certain level of hysteresis
between the different plateau solutions can be assumed which is not captured in
this figure.

Generally, lower mean densities can be found at lower values of 𝑇 even as the overall
form of the stairs stays the same. The maximum radius is close to 𝑅 = 45, with
higher radii excluded from the analysis as the localized states would then start
to interact with themselves via periodic boundary conditions, leading to different
patterns appearing, such as (traveling) holes within a (traveling) pattern. Similarly
there is a lowest possible radius slightly above 𝑅 = 16. It marks the lowest possible
amount of seven peaks (one center six around) which is required to form a stable
localized state. Lower densities lead to a breakdown of the localized structure in
favor of a uniform state. For the higher mean densities ̄𝜌 = −0.2 and ̄𝜌 = −0.25
the lowest radius is even higher at 𝑅 = 21, which is due to the softening of the
boundary between uniform background and pattern. The boundary is very steep at
lower temperatures, but wider for higher values, therefore leading to a requirement
of more than the minimum of seven peaks for a localized state.

Fig. 4.7 (b) shows the angular velocity 𝜔 of the localized states in degree per time
unit. Overall, low radius states are faster than high radius states, with a sharp
decline for very small states. Beyond that, each radius plateau shows a change in
angular velocity, with the angular velocity for fully filled out hexagon states lower
than for states with an incomplete shell. Note that for the largest ̄𝜌 the clusters
seem to remain at rest in an intermediate parameter range.

Generally, lower mean densities lead to lower angular velocities at the same radius.
The ̄𝜌 = −0.2 states are a special case, as they have the lowest angular velocity.
This is further lowered for a complete outer shell, at which point they come to
rest.

In addition to the discussed odd and even states, asymmetrical states (with the
radius bigger in two directions than in others) also exist. They can be the only
stable rotating state, but are not included in Fig. 4.7, as their radius is no longer
easily defined. As a further complication the group and phase velocity diverge
for the outermost peaks of the longer axis, effectively destroying the rigid body
rotation.
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Fig. 4.8: A cluster of several rotating states at ̄𝜌 = −0.3 is depicted as a density
field for 𝑇 = 0. Left pane: rotating states move both with and against
the clock as indicated by the arrows, with the local density given by the
colors in the colorbar. The edges of states brush against each other during
rotations, but do not visibly disturb their form or speed for comparatively
long time scales. Middle: Two rotating states collapsed into one, forming
a bigger rotating localized state, again edges interact with other states
which after comparatively low time leads to the right panel, where all
states collapsed into one localized patch. The domain is 𝐿𝑥 = 𝐿𝑦 = 200,
with a discretization of 𝑁𝑥 = 𝑁𝑦 = 512.

Fig. 4.8 (left panel) shows a cluster of several rotating states in close proximity, two
of which move with, the other two against the clock. The rotating hexagons are close
enough that their edges interact during rotation, though without visibly hindering
the individual rotation for a comparatively long time. However, eventually the state
collapses first into three (middle) and finally one (right) localized structures.

Finally, in Fig. 4.9 there are additional localized states depicted for more extreme
parameter regions, i.e., at low ̄𝜌 and 𝑇. They show a rich variety of intricate
behavior, including a stripe phase (in analogy to the standard active PFC model
[124]) which corresponds to particles that are periodically placed in one direction
but are mobile in the other. The newly resulting localized structures, shown in
Fig. 4.9, feature combinations of local stripe and crystalline arrangements (two-
phase cluster) or pure stripe phase, in addition to the previously discussed pure
crystal phase. In consequence, they often are of lower symmetry and due to the
activity the entire cluster or just parts of it may move in different ways.

Fig. 4.9 (a) shows an elongated hexagonal crystallite swinging like a torsion pen-
dulum, implying a periodic reversal of the polarization field. (b) shows a slowly
rotating two-phase crystallite in the form of a hexagon patterned bow tie shape
surrounded by stripes. The bow tie structure does a kind of bouncing motion. (c)
depicts a two-phase crystallite of shaking stripes surrounding a resting hexagon
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Fig. 4.9: Examples of intricate behavior of crystalline clusters at lower 𝑇 and ̄𝜌 =
−1. The black and white arrows indicate collective motion and inner modi
of motion, respectively. The local density 𝜌 is given by the colorbar. The
individual states are described in the main text. Remaining parameters
are as in Fig. 4.7.

patterned star. (d) shows a rotating two-phase crystallite, the hexagons once
again forming a star. The overall structure shows 180 degree rotational symmetry.
(e) shows a rotating two-phase crystallite with additional wobbling motion of the
stripes. The structure has 60 degree rotational symmetry. (f) shows a swinging
stripe structure with additional waving motion of the stripes, once again with 180
degree rotational symmetry. (g) shows a swinging two-phase crystallite with the
hexagons forming a star, while the longer stripes at the bottom wave. Finally, (h)
shows a rotating stripe state with inversion symmetry.
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5 Bose-Einstein Condensation

5.1 Bose-Einstein Condensation with Interactions

Bosons are particles with integer spin which (in contrast to half-integer spin fermions)
are allowed to occupy the same single-particle state. In layperson terms Bose-
Einstein condensation occurs when a dilute gas of bosons is cooled to very low
temperatures, where their thermal de Broglie wavelength

𝜆dB = √ 2𝜋ℏ2

𝑚𝑘𝐵𝑇
(5.1)

(with mass 𝑚, Boltzmann constant 𝑘𝐵, reduced Planck constant ℏ and temperature
𝑇) becomes a size comparable to the mean distance between the particles 𝑑𝑝 = 𝜌−1/3

with particle number density 𝜌 = 𝑁/𝑉. At that point the particle waves overlap so
much that they become indistinguishable, which constitutes a new phase of matter
with different properties [141]. A conceptual visualization of the same (inspired by
Ref. [94]) can be found in Fig.5.1 for a) high and b) low temperature Bose gases.
In the former case the bosons can be treated like hard spheres. In the latter case
the bosons have wave character with different phases. At the critical temperature
c) there is the onset of Bose-Einstein condensation, where particles overlap to the
point that they become indistinguishable. This is also the start of phase coherence.
Many, but not all bosons are now part of the lowest energy state. In the hypothetical
case of d) 𝑇 = 0, there would be a “pure condensate” where the lowest energy state
is occupied by all bosons.

For a more thorough explanation of the general principles for the non-interacting
Bose gas see, e.g., Ref. [147]. This thesis, meanwhile, lays the focus on a weakly
interacting Bose gas, considered under dilute conditions.

A weakly interacting gas [147] is defined as interacting on a length scale 𝑎 where
|𝑎|3𝜌 ≪ 1. The diluteness condition [147] requires 𝑎 to be much smaller than the
distance between particles 𝑑𝑝 = 𝜌−1/3. It therefore is:

𝑎 ≪ 𝜌− 1
3 . (5.2)
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Fig. 5.1: Conceptual visualization of Bose gases at different temperatures: a) high
temperature, bosons primarily interact as particles with velocity 𝑣 and
distance 𝑑𝑝, b) low temperature, bosons interpreted as wave packets with
wavelength 𝜆dB according to Eq. (5.1), c) Bose-Einstein condensation with
coherent matter wave overlap where 𝜆dB ≈ 𝑑𝑝, d) zero temperature, “pure
condensate”. Inspired by Ref. [94].

The latter makes it possible to focus on the interactions between only two particles.
Violating the diluteness condition leads to inelastic three-body interactions and
recombination effects which result in atom loss in the BEC [54].

Under the described conditions the dynamics of a Bose-Einstein condensate are
governed by the (second quantization) Hamiltonian [147, 165]1 of the field operator

̂𝜓

𝐻̂ = ∫ dr ̂𝜓†(r) [− ℏ2

2𝑚
Δ + 𝑉ext] ̂𝜓(r)

+ 1
2

∬dr′dr ̂𝜓†(r) ̂𝜓†(r′)𝑈int(r − r′) ̂𝜓(r′) ̂𝜓(r) , (5.3)

with the particle interaction described by the real function 𝑈int(r−r′) and external
trapping potential given by 𝑉ext(r). From there the time evolution is described by
the Heisenberg equation of motion

𝑖ℏ𝜕𝑡
̂𝜓(r, 𝑡) = [ ̂𝜓(r, 𝑡), 𝐻̂]

= [− ℏ2

2𝑚
Δ + 𝑉ext + 1

2
∫dr′ ̂𝜓†(r′)𝑈int(r − r′) ̂𝜓(r′)] ̂𝜓(r, 𝑡) . (5.4)

If the ground state has a macroscopic occupation number a mean-field description
of the field operator can be derived using the Bogoliubov ansatz [24]:

̂𝜓 = 𝜓 + ̂𝜙 . (5.5)

1The full 𝑁-body Hamiltonian is reduced to this single particle Hamiltonian due to particles
being indistinguishable. A more thorough explanation can be found in, e.g., Sec. 4 of Ref. [34]
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Here 𝜓 is the expectation value ⟨ ̂𝜓⟩, represented by ⟨⋅⟩, and the so-called condensate
wave function. It is normalized to ⟨𝜓|𝜓⟩ = 𝑁 and for very weak interactions it rep-
resents the wave function all bosons in the BEC reside in. ̂𝜙 represents fluctuations
and averages to zero, i.e., ⟨ ̂𝜙⟩ = 0 [75].

Applied to the expectation value of Eq. (5.4) it follows:

𝑖ℏ𝜕𝑡𝜓(r, 𝑡) = [− ℏ2

2𝑚
Δ + 𝑉ext] 𝜓 + 1

2
∫dr′ 𝑈int(r − r′)⟨ ̂𝜓†(r′, 𝑡) ̂𝜓(r′, 𝑡) ̂𝜓(r, 𝑡)⟩ .

(5.6)

The Hartree-Fock approximation neglects all fluctuations but requires the first
Born approximation [34]. Its application would reduce ⟨ ̂𝜓†(r′, 𝑡) ̂𝜓(r′, 𝑡) ̂𝜓(r, 𝑡)⟩ to
|𝜓(r′, 𝑡)|2 and lead to the Hartree equation

𝑖ℏ𝜕𝑡𝜓 = [− ℏ2

2𝑚
Δ + 𝑉ext + (𝑈int ∗ |𝜓|2)] 𝜓 , (5.7)

with the convolution (𝑈int ∗ |𝜓|2) = ∫ 𝑈int(r′ − r)|𝜓(r′, 𝑡)|2dr′.

The first Born approximation requires 𝑈int to be weak enough to neglect correlations
between particles. Contact interactions have forms relatively close to a Lennard-
Jones potential, which is strong for short range interactions and therefore does not
fit the criterion. This is demonstrated in Fig. 5.2 for small particle distances 𝑑𝑝.
The potential even has an optimal distance 𝑑𝑐 between particles which would results
in crystallization on large time scales, but is suppressed by the diluteness of the
BEC for shorter time scales [34, 75, 147].

In the second Born approximation neither the possible bound state nor the strong
interacting parts cause problems, when dilute conditions (5.2) are taken into ac-
count [75, 147]. Under those the results of the Schrödinger equation for the in-
teracting and non-interacting case can be compared for very large 𝑑𝑝. The only
difference in the results is a phase shift proportional to the scattering length 𝑎𝑠 [75,
147, 34].

In consequence, any potential 𝑈eff which results in the same phase shift is a valid
approximation for 𝑈int. Choosing one which is weak for all 𝑑𝑝, e.g., a Gaussian (see
Fig. 5.2), allows for the application of the first Born approximation after all. As the
interaction is short range, 𝑈eff can be further approximated, e.g., 𝑈eff = 𝑔𝛿(r). For
scattering it is 𝑔 = 4𝜋ℏ2𝑎𝑠/𝑚 [147] with s-wave scattering length 𝑎𝑠. This turns
Eq. (5.7) into

𝑖ℏ𝜕𝑡𝜓 = [− ℏ2

2𝑚
Δ + 𝑉ext + 𝑔|𝜓|2] 𝜓 , (5.8)
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Fig. 5.2: Possible particle interaction potentials 𝑈 depending on the distance 𝑑𝑝
between particles. The Lennard-Jones potential (solid line) is large for
small 𝑑𝑝 and encourages a bound state at 𝑑𝑝 = 𝑑𝑐. The Gaussian potential
(dotted line) can be used as an approximation as it causes the same phase
shift. It is weak for all 𝑑𝑝 and does not give rise to a bound state.

as 𝑈int is replaced by 𝑈eff.

The s-wave scattering length is tunable through external fields using Feshbach res-
onances [89], making 𝑎𝑠 a viable continuation parameter in addition to the density
𝜌 = |𝜓|2.

Additional long-range interactions can influence the properties of the quantum gas
(e.g., shape, density, excitation, possible phases, accessible range of parameters).
They enter 𝑈eff through an additional term for which the first Born approximation
also has to be valid. For example, for dipole-dipole interactions the length scale is
𝑎𝑑𝑑 which is different depending on the specific dipole.

The temporal evolution of such a BEC can be described using the non-local Gross-
Pitaevskii equation (GPE) [67, 146], where the new effective potential 𝑈eff (which
still contains a scattering term 𝑔) replaces 𝑈int in Eq. (5.7):

𝑖ℏ𝜕𝑡𝜓 = [− ℏ2

2𝑚
Δ + 𝑉ext + (𝑈eff ∗ |𝜓|2)] 𝜓 . (5.9)

When working with dipolar interactions beyond mean-field effects have to be con-
sidered, meaning ⟨ ̂𝜓†(r′, 𝑡) ̂𝜓(r′, 𝑡) ̂𝜓(r, 𝑡)⟩ is subject to less drastic approximations.
The |𝜓(r′)|2𝜓(r) remains as before, i.e., it matches the previous GPE. Due to the
small size of the fluctuations the remaining terms are only considered in quadratic
order, while the cubic term is neglected. What remains are the non-condensate
density terms ⟨ ̂𝜙†(r′) ̂𝜙(r′)⟩𝜓(r) and ⟨ ̂𝜙†(r′) ̂𝜙(r)⟩𝜓(r′) as well as the anomalous
non-condensate density term ⟨ ̂𝜙(r′) ̂𝜙(r)⟩𝜓∗(r′). In the Popov approximation, the
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latter is neglected [66]. From here the remaining terms are subjected to a Bo-
goliubov transformation, leading to the Bogoliubov-de Gennes equations, which in
turn can be solved using the local density approximation. The result is the so-called
Lee-Huang-Yang expansion [101, 109, 108, 72], a correction term for quantum fluc-
tuations with strength 𝛾QF:

𝑖ℏ𝜕𝑡𝜓 = [− ℏ2

2𝑚
Δ + 𝑉ext + (𝑈eff ∗ |𝜓|2) + 𝛾QF|𝜓|3] 𝜓 . (5.10)

𝛾𝑄𝐹 is directly related to the quantum depletion of the condensate due to exci-
tations, which is small (𝛾QF|𝜓|3 contains √𝑎3

𝑠𝜌 which is ≪ 1 for weak interac-
tions [147, 78]) and > 0 making it repulsive, allowing it to stabilize otherwise
inaccessible states in specific parameter regimes [144, 56, 90, 196, 197, 79].

The accompanying energy to the GPE is

𝐸 = 1
𝑉

∫dr 𝜓∗ (− ℏ2

2𝑚
Δ + 𝑉ext + 1

2
(𝑈eff ∗ |𝜓|2) + 2

5
𝛾QF|𝜓|3) 𝜓 . (5.11)

It connects to Eq. (5.10) through

𝑖ℏ𝜕𝑡𝜓 = 𝛿𝐸
𝛿𝜓∗ . (5.12)

In a complex-time evolution Eq. (5.12) represents standard gradient dynamics on
the energy 𝐸 for coupled order parameter fields Re(𝜓) and Im(𝜓).

5.2 Phases, Transitions and Linear Stability

5.2.1 Superfluid, Supersolid and Isolated Droplets

The unmodulated ground state of the BEC behaves like a superfluid, which is an
exotic state of matter. In layperson terms its a gas, but due to coherence between
particles it has the properties of a fluid with its attributes taken to the extreme,
i.e., it flows without friction. This allows, e.g., for passage through narrow channels
or quantized vortices [141].

More formally speaking, friction would slow down the flow of a superfluid, as it
transforms kinetic energy into quantized thermal energy in the form of an elemen-
tary excitation. The elementary excitation, however, raises the overall energy of
the superfluid. In other words, retaining a frictionless flow is more energetically
favorable [95, 100].
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The supersolid is a contradictory state of matter, which retains superfluidity, but
also shows a weakly modulated density structure with discrete translational sym-
metry reminiscent of a solid [115].

The portion of the BEC which is superfluid is estimated using the Leggett estima-
tor [104], which gives an upper bound for the superfluid fraction

𝑓𝑠 = [|𝜓0|2

𝐿
∫

𝐿

0

d𝑥
|𝜓(𝑥)|2

]
−1

. (5.13)

It describes the fraction of atoms that support frictionless flow, written here for a
boost along a line of length 𝐿 in 𝑥-direction. Alternatively, this can be defined for
the fraction of resting particles in a rotating cylinder, in which case 𝐿 = 2𝜋 while
𝑥 is replaced by the angle 𝜃. In both cases |𝜓0|2 gives the mean density of 𝜓.

If there is no modulation, i.e., if 𝜓 = 𝜓0 = const this results in 𝑓𝑠 = 1. For a
small modulation it is 𝑓𝑠 < 1. If the modulation of the supersolid becomes so large
that the density between peaks at 𝑥min falls to zero, it is 1/|𝜓(𝑥min)|2 → ∞ and
𝑓𝑠 → 1/∞ = 0. This so-called isolated droplet (or crystal) state has no long range
phase coherence and therefore is the opposite of a supersolid [26].

As the Legget estimator only gives an upper bound the use of Eq (5.13) does
not necessarily give precise results [176]. Other ways of measuring the superfluid
fraction of a supersolid have been proposed [17].

Alternatively, to avoid the ambiguity, the amplitude modulation induced in the
field 𝜓 can be measured using the contrast 𝐶 [26, 39, 177]. It takes the form

𝐶 = |𝜓|2max − |𝜓|2min
|𝜓|2max + |𝜓|2min

. (5.14)

Similar to the superfluid fraction it has a range from zero to one, however, for the
contrast values close to zero represent a superfluid. Higher values are associated
with a supersolid and values close to one are considered isolated droplets.

Under the right circumstances there is a relation between the contrast and the
superfluid fraction from Eq. (5.13), which is detailed in Ref. [38]. Specifically, for
shallow modulations, i.e., the supersolid regime, it is 𝑓𝑠 ≈ 1 − 𝐶2/2.

5.2.2 Stability and Phase Transition

The stationary state of the GPE is

𝜓(r, 𝑡) = 𝜓0(r)𝑒−𝑖𝜇𝑡/ℏ , (5.15)
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with a parameter 𝜇 which is constant with respect to x and 𝑡. Inserted into the
GPE it gives the a steady state equation for the chemical potential 𝜇:

[− ℏ2

2𝑚
Δ + ∫ dr′|𝜓0(r′)|2𝑈eff(r′ − r) + 𝛾QF|𝜓0(r)|3 − 𝜇] 𝜓0(r) = 0 . (5.16)

Now small amplitude perturbations 𝛿(r, 𝑡) of 𝜓0(r) are used to determine the linear
stability by way of the excitation spectrum [24], similar to the proceedings in Ch. 2.
The perturbation takes the form

𝛿(r, 𝑡) = 𝜀 [𝑢(r)𝑒−𝑖𝜔𝑡 + 𝑣∗(r)𝑒+𝑖𝜔𝑡] , (5.17)

with the smallness parameter 𝜀, excitation 𝜔 and Bogoliubov modes 𝑢(r) and 𝑣(r).
The perturbed wave function Eq. (5.15) is

𝜓𝑝(r, 𝑡) = [𝜓0(r) + 𝛿(r, 𝑡)] 𝑒−𝑖𝜇𝑡/ℏ . (5.18)

Eq. (5.18) is then introduced into Eq. (5.10), linearized in 𝜀 and sorted by terms
∝ 𝑒−𝑖𝜔𝑡, ∝ 𝑒+𝑖𝜔𝑡 as well as terms without exponential functions. The latter simply
gives Eq. (5.16), which has to be solved to be able to identify 𝜇 and (if not already
known) 𝜓0.

Terms with 𝑒−𝑖𝜔𝑡 and 𝑒+𝑖𝜔𝑡 lead to a pair of differential equations (cf. [158, 75]):

ℏ𝜔𝑢(r) = [− ℏ2

2𝑚
Δ + ∫ dr′|𝜓0(r′)|2𝑈eff(r′ − r) + 𝛾QF|𝜓0(r)|3 − 𝜇] 𝑢(r)

+ 𝜓0(r) ∫ dr′𝑈eff(r′ − r)(𝑢(r′) + 𝑣(r′))𝜓0(r′)

+ 3
2

𝛾QF|𝜓0(r)|3(𝑢(r) + 𝑣(r)) (5.19)

−ℏ𝜔𝑣∗(r) = [− ℏ2

2𝑚
Δ + ∫ dr′|𝜓0(r′)|2𝑈eff(r′ − r) + 𝛾QF|𝜓0(r)|3 − 𝜇] 𝑣∗(r)

+ 𝜓0(r) ∫ dr′𝑈eff(r′ − r)(𝑢∗(r′) + 𝑣∗(r′))𝜓0(r′)

+ 3
2

𝛾QF|𝜓0(r)|3(𝑢∗(r) + 𝑣∗(r)) (5.20)

These equations can be solved, which is easiest if 𝜓0 = const, using 𝑢(r) = 𝑢𝑒𝑖kr

and 𝑣(r) = 𝑣𝑒𝑖kr with constant 𝑢 and 𝑣. This finally leads to an excitation spectrum
of the form

ℏ2𝜔2 = 𝑓(k, ̂𝑈eff) (5.21)

when substituting either 𝑢 or 𝑣 from the equation.
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The excitation spectrum for a Bose-Einstein condensate near a phase transition
towards a supersolid or isolated droplet state takes the form of a classical maxon-
roton structure, i.e., starting from |k| = 0 the spectrum passes a maximum, the
maxon, and a minimum, the so-called roton minimum.

An example of an excitation spectrum with typical maxon-roton structure is given
in Fig. 5.3 for a system where changes in a parameter 𝛼 (often the strength of the
interaction) lead to a phase transition.

Three excitation spectra are shown. One for a state right on the border of linear
stability 𝛼 = 𝛼𝑐 (blue), one for a linearly stable state at 𝛼 < 𝛼𝑐 (black) and one
for a linearly unstable state 𝛼 > 𝛼𝑐 (red). The latter is indicated by a parameter
configuration which leads to 𝑓(k, ̂𝑈eff) < 0 state [147, 75, 158]. As the latter are
purely complex the spectrum is only plotted for regions with 𝜔 > 0.

The excitation spectrum functions much like the dispersion relation introduced in
Ch. 2, though upside down, meaning instability is now determined by 𝜔2 < 0,
leading to complex values for 𝜔. It matches a conserved-Turing instability.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
k

0

1

2

ω

α < αc α = αc α > αc

Fig. 5.3: Example of a excitation spectra with typical maxon-roton structure, given
at different parameter values. 𝛼 = 𝛼𝑐 (blue) is the excitation spectrum
at the border of linear stability, while 𝛼 < 𝛼𝑐 (black) and 𝛼 > 𝛼𝑐 (red)
correspond to excitation spectra matching linearly stable and unstable
parameter regions.

5.3 Hydrodynamic Formulation for Steady State Solutions

The transformation of the Schrödinger equation into a hydrodynamic form consist-
ing of separate transport/balance equations for the density 𝜌(r, 𝑡) and the phase
𝜙(r, 𝑡) of the probability wave function was introduced by Madelung in 1927 [116].
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The first step of the Madelung transformation is to write the complex wave function
into polar form as

𝜓(r, 𝑡) = √𝜌(r, 𝑡)𝑒𝑖𝜙(r,𝑡) (5.22)

and using it in the time dependent Schrödinger equation

𝑖ℏ𝜕𝑡𝜓 = (− ℏ2

2𝑚
Δ + 𝑉 (r)) 𝜓 , (5.23)

where 𝑉 (r) is an arbitrary potential. In case of a Bose-Einstein condensate it is
𝑉ext + (𝑈eff ∗ |𝜓|2) + 𝛾QF|𝜓|3 (see Eq. (5.10)).

Separating the complex and real parts gives after some further algebraic steps (see
Ref. [116])

𝜕𝑡𝜌 = −∇ ⋅ (𝜌 ℏ
𝑚

∇𝜙) = −∇ ⋅ j , (5.24)

which represents a continuity equation with probability current j = 𝜌 ℏ
𝑚∇𝜙, and

ℏ𝜕𝑡𝜙 = −(𝑄 + 𝑉 ) − ℏ2

2𝑚
(∇𝜙)2 , (5.25)

where 𝑄 = − ℏ2

2𝑚
Δ√𝜌√𝜌 is the so-called quantum potential. The term assumes that at

no point 𝜌 = 0, which automatically disallows trapping potentials and completely
isolated droplets.

When looking at steady states of a BEC it is useful to assume 𝜙 = 𝜇𝑡/ℏ, which
gives ∇𝜙 = 0 and 𝜕𝑡𝜙 = 𝜇/ℏ (see Refs. [73, 171]). Then, the chemical potential 𝜇
is given by Eq. (5.25) as

𝜇 = −(𝑄 + 𝑉 ) . (5.26)

In addition, the flux j in Eq. (5.24)) can be defined similar to Eq. (3.2) [73] using
j = ∇𝜇. The constant 𝜇 assumed before is therefore a consequence of the flux
evening it out when evolving towards a steady state. This leads to

𝜕𝑡𝜌 = −Δ𝜇 = Δ (𝑄 + 𝑉) . (5.27)

As ∇𝜇 = 0 it follows 𝜕𝑡𝜌 = 0 which matches the definition of steady states and
keeps it in accordance with the conditions introduced above.

Inserting 𝑄 and the standard terms of a GPE for 𝑉 Eq. (5.27) leads to

𝜕𝑡𝜌 = Δ (− ℏ2

2𝑚
Δ√𝜌
√𝜌

+ 𝑉ext + (𝑈eff ∗ 𝜌) + 𝛾QF
√𝜌3) . (5.28)

It no longer depends on 𝜙 and is therefore solely density dependent.
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5.4 Simplified Nonlocal Model and its Local
Approximations

Though dipolar systems are currently the main focus of studies of the supersolid
phase, for simplicity, a commonly adopted prototypical toy model of soft-core
bosons, [76, 41, 159, 115, 114, 40], which approximates the interaction potential
caused by the so-called Rydberg-blockade effect [112, 76, 123], is used to show the
application of methods.

To that end the method explained in Sec. 5.3 is used, leading to a purely density-
dependent formulation with long-range interaction. The resulting nonlocal equation
can be approximated as a local equation, using an abbreviated interaction potential
as detailed in Sec. 3.3 (𝜖-approximation). This approach differs from the one in
Ref. [73], where the match between exact model and approximation is determined
by the form of ̂𝑈, rather than by the threshold of linear stability.

Some of these results, specifically, most of those pertaining to the approximated
model have been published in Ref. [171].

5.4.1 Governing Equation and Stability Considerations for General
Interactions

Starting from the GPE (5.9) with 𝑉ext = 0, but rescaled so ℏ and 𝑚 vanish, the
nonlocal governing equation is

𝑖𝜕𝑡𝜓 = [−1
2

Δ + (𝑈 ∗ |𝜓|2)] 𝜓 , (5.29)

with ̄𝜌 = 1
𝑉 ∫ |𝜓|2d𝑑𝑟, where 𝑉 is the volume of the considered domain and 𝑑 the

spatial dimension.

The stability of the uniform ground state is determined as detailed in Sec. 5.2.2,
leading to

𝜔2(k) = 𝑘2

2
(𝑘2

2
+ 2 ̄𝜌 ̂𝑈(k)) , (5.30)

where ̂𝑈(k) is the Fourier transform of 𝑈(r). All considered cases have radial
symmetry, therefore 𝑘 = |k| can be used in place of k.

For pattern formation, at the border of linear stability of the uniform state the
following requirements must be met: 𝜔2(𝑘 = 𝑘𝑐) = 0 and 𝜕𝜔2/𝜕𝑘∣

𝑘=𝑘𝑐
= 0 with the

critical values 𝑘𝑐 for the wavenumber and ̄𝜌𝑐 for the density.
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Using the hydrodynamic formulation plus steady state considerations as in Sec. 5.3
for the governing equation Eq. (5.29) turns it into

𝜕𝑡𝜌 = Δ [(∇𝜌)2

8𝜌2 − Δ𝜌
4𝜌

+ (𝑈 ∗ 𝜌)] . (5.31)

Critical values exactly match the ones obtained with Eq. (5.29). The chemical
potential is similarly adapted

𝜇 = − [(∇𝜌)2

8𝜌2 − Δ𝜌
4𝜌

+ (𝑈 ∗ 𝜌)] , (5.32)

matching Eq. (5.26).

5.4.2 Local Approximation

For the local approximation a Taylor series up to fourth order of the interaction
described in Fourier space is used, leading to

̂𝑈 (𝑠)(𝑘) = 𝑔0 + 𝑔2𝑘2 + 𝑔4𝑘4 . (5.33)

The accompanying dispersion relation

𝜔2(𝑠) = 𝑘2

2
(𝑘2

2
+ 2 ̄𝜌 ̂𝑈 (𝑠)) (5.34)

is then adjusted to the dispersion relation of the nonlocal model at 𝑘 = 𝑘𝑐 by
choosing the free parameters (𝑔0, 𝑔2, 𝑔4) such that root and curvature at 𝑘 = 𝑘𝑐
match, i.e.

𝑘𝑐 = 𝑘(𝑠)
𝑐 , (5.35)

̄𝜌𝑐 = ̄𝜌(𝑠)
𝑐 , (5.36)

𝜕2𝜔2

𝜕𝑘2 ∣
𝑘=𝑘𝑐

= 𝜕2𝜔2(𝑠)

𝜕𝑘2 ∣
𝑘=𝑘(𝑠)

𝑐
. (5.37)

Independently of the specific form of the interaction, the solution of this set is given
by

𝑔0 = 𝑘2
𝑐𝜕𝑘𝑘

̂𝑈(𝑘𝑐) − 2 ̂𝑈(𝑘𝑐)
8

,

𝑔2 = −2𝑔0 − ̂𝑈(𝑘𝑐)
𝑘2

𝑐
= −𝑘2

𝑐𝜕𝑘𝑘
̂𝑈(𝑘𝑐) − 6 ̂𝑈(𝑘𝑐)

4𝑘2
𝑐

,

𝑔4 = 𝑔0
𝑘4

𝑐
. (5.38)
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The approximated governing equation now has the form

𝜕𝑡𝜌 = −Δ𝜇 = Δ [1
2

((∇𝜌)2

4𝜌2 − Δ𝜌
2𝜌

) + (𝑔0𝜌 − 𝑔2Δ𝜌 + 𝑔4Δ2𝜌)] . (5.39)

with the chemical potential

𝜇 = [Δ𝜌
4𝜌

− (∇𝜌)2

8𝜌2 − (𝑔0𝜌 − 𝑔2Δ𝜌 + 𝑔4Δ2𝜌)] . (5.40)

For convenience, the model is rescaled to better match the linear parts of the PFC
equation:

𝑟 → 𝑟′ √− 𝑔2
2𝑔4

, (5.41)

𝑡 → 𝑡′ 4𝑔4
𝑔2

2
, (5.42)

𝜌 → 𝜌′ (−𝑔2)
2

. (5.43)

Using Eqs. (5.41)-(5.43) and dropping the primes leads to

𝜕𝑡𝜌 = Δ [(∇𝜌)2

8𝜌2 − Δ𝜌
4𝜌

+ (𝛼𝑢 + 1)𝜌 + 2Δ𝜌 + Δ2𝜌] , (5.44)

where

𝛼𝑢 = 4𝑔0𝑔4
𝑔2

2
− 1 (5.45)

as in Ref. [73]. In terms of the interaction and critical values it takes the form

𝛼𝑢(𝑘𝑐, ̄𝜌𝑐) =
(𝑘2

𝑐𝜕𝑘𝑘
̂𝑈(𝑘𝑐) − 2 ̂𝑈(𝑘𝑐))

2

(𝑘2
𝑐𝜕𝑘𝑘

̂𝑈(𝑘𝑐) − 6 ̂𝑈(𝑘𝑐))
2 − 1 . (5.46)

For the interactions considered here, 𝛼𝑢 > −1 follows naturally, while 𝛼𝑢 < 0
follows due to excessive amplitude growth which invalidates the used approxima-
tion.

The energy2 of the system is given by

𝐹[𝜌] = 1
2

∫
𝑉

[|∇𝜌|2

4𝜌
+ (𝛼𝑢 + 1)𝜌2 + 2𝜌Δ𝜌 + 𝜌Δ2𝜌]d𝑛𝑟 , (5.47)

2As this now resembles expressions well known from soft-matter physics the same vocabulary is
applied here. This specifically concerns the energy which is called a “free energy functional”
even though the considered BEC has constant 𝑇 = 0. See also Ch. 3.
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which allows for rewriting the system as gradient dynamics, i.e., the dissipative
conserved dynamics take the form:

𝜕𝜌
𝜕𝑡

= Δ𝜇 , (5.48)

where the chemical potential is defined as the functional derivative

𝜇 = 𝛿𝐹
𝛿𝜌

, (5.49)

and the corresponding grand potential density is Ω/𝑉 with

Ω = 𝐹 − ∫ 𝜇𝜌d𝑛𝑟 . (5.50)

Together they can be used to determine coexistence (cf. Ch. 2.4).

5.4.3 Soft-Core Bosons and their Dispersion Relation

From this section onward the interaction of a prototypical model for soft-core bosons
is considered. The interaction takes the form of a Heaviside step function Θ(1 − 𝑟)
with 𝑟 = |r| [76, 159, 115]. For s-wave scattering a delta function 𝛿(𝑟) is added,
leading to

𝑈(𝑟) = Θ(1 − 𝑟) + 𝑎𝛿(𝑟) . (5.51)

Both, the range and the strength of this interaction can be absorbed into the
mean density by way of rescaling [115], leaving 𝑎 as the rescaled scattering length,
while range and height of the Heaviside step function are one. The practicality of
specific values of 𝑎 (e.g., the collapse for attractive scattering lengths discussed in
Ref. [47, 122]) is not considered, as this is a demonstration of method and values
not accessible for one specific model might occur for another interaction.

Specific critical values can now be determined from the dispersion relation, both
for the nonlocal model (5.30) and the local approximation (5.34). The interaction
in Fourier space is given by

̂𝑈(𝑘) =
⎧{
⎨{⎩

2 sin(𝑘)
𝑘

+ 𝑎 , 1𝐷

2𝜋𝐽1(𝑘)
𝑘

+ 𝑎 , 2𝐷
(5.52)

where 𝐽1(𝑘) is the Bessel function of the first kind.

From Eq. (5.52) it becomes obvious that Eqs. (5.38) give values that depend on 𝑎, as
do the critical values. Figure 5.4 (a) directly compares the dispersion relations at the
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Fig. 5.4: Comparison between the exact nonlocal model (Eq. (5.29)) and its local
approximation (Eq. (5.44)). (a) Dispersion relations at the onset of the
modulational instability at 𝑎 = 0 given by Eqs. (5.30) (exact, solid lines)
and (5.34) (approximation, dashed lines). Therefore it is ̄𝜌 = ̄𝜌𝑐 and

̄𝜌′ = ̄𝜌′
𝑐. One- and two-dimensional cases are represented in red/orange

and blue/purple, respectively. Also given are the dependencies of the (b,c)
critical wavenumber 𝑘𝑐 and the (e,f) critical density ̄𝜌𝑐 on the rescaled
scattering length 𝑎. Panel (d) shows the dependency of 𝛼𝑢 on 𝑎. The axis
on the left and right side of panels (b,c,e,f) correspond to the unscaled and
scaled system, respectively. Due to the nonlinear scaling the right axis is
nonlinear.

onset of the modulational instability for 𝑎 = 0 for both, the exact and approximated
case, meaning ̄𝜌 = ̄𝜌𝑐 and ̄𝜌′ = ̄𝜌′

𝑐, respectively. Comparisons are made in one
(1D) and two dimensions (2D). The results confirm the built-in matching of root
and curvature for the critical values, i.e., wavenumber 𝑘𝑐 and density ̄𝜌𝑐 perfectly
match. The curvature, while correct at 𝑘 = 𝑘𝑐 differs at 𝑘 = 0 and the position and
height of the maximum is changed significantly. In addition, figures 5.4 (b) to (f)
show how 𝑘𝑐, ̄𝜌𝑐 and 𝛼𝑢 depend on the rescaled scattering length 𝑎.
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5.4.4 Comparing the Nonlocal Model and Local Approximation

This section compares results regarding the bifurcation which marks the transition
from the uniform to the modulated state for 𝑈(𝑟) = Θ(1 − 𝑟) (i.e., for 𝑎 = 0)
for the nonlocal model (Eq. (5.31) or (5.29)) with that of the local approximation
(Eq. (5.44)). The results are depicted in Fig. 5.5 in both, one and two dimensions.
The bifurcation diagrams use the mean density ̄𝜌 as the continuation parameter,
and the resulting states are characterized by the contrast given in Eq. (5.14).

10.5 11.0 11.5 12.0 12.5 13.0 13.5
ρ̄′

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.5C

(a)

Nonlocal GPE
Approximation

12.5 13.0 13.5 14.0 14.5

0.90 0.95 1.00 1.05 1.10

ρ̄

0.0

0.5

1.0

C

(b)

Unstable

Linear Stability Border

Fig. 5.5: Comparison between steady states of the GPE (Eq. (5.31), blue line) and
its approximation (Eq. (5.44), red line), in form of a bifurcation diagram
as a function of the mean density ̄𝜌 and ̄𝜌′. Solutions are characterized
by the contrast 𝐶 (Eq. (5.14)) and are depicted for (a) 1D and (b) 2D
systems. The domain size corresponds to multiple of 2𝜋/𝑘𝑐. The black
filled circles indicate the linear stability threshold (compare. Fig. 5.4 (b-
d)).

As expected, the linear stability thresholds match exactly, i.e., ̄𝜌′
𝑐 = 10.5 for the 1D

case and ̄𝜌′
𝑐 = 14.7 for the 2D case. In addition, the type of the primary bifurcation

is identical for full and approximated model, in particular it is supercritical in 1D
and subcritical in 2D.

A consequence of these bifurcation types is that in 1D the two curves agree quite
well close to the bifurcation and only quantitatively deviate with rising amplitudes
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further from the threshold. The difference is about 20% at the maximum density
depicted in Fig. 5.5 (a).

In 2D the situation is more complicated. The unstable subcritical parts of the
branches agree quite well close to the bifurcation point and both branches fold
back towards higher densities at saddle-node bifurcations, leading to regions of
bistability. The fold points, however, are far from the primary bifurcation and
therefore differ significantly (about 10% between its positions in absolute terms),
as can be seen in Fig. 5.5 (b).

Additional differences further from the primary bifurcation are detailed in Ref. [11],
such as changes to phase boundaries and regions without physical solutions.

5.4.5 Periodic Patterns and Localized States

This section explores different types of periodic patterns as well as localized states
supported by either model in the 2D case. However, the section starts with a brief
discussion of the 1D case.

Results for One Spatial Dimension

For Eqs. (5.31) and (5.44) the primary bifurcation in systems with only one spatial
dimension is always supercritical (see Sec. 5.5.2), with an example displayed in
Fig. 5.5 (a). Such a bifurcation does not exclude the option of localized states in
systems with mass conservation due to different mean densities of the coexisting
states (see, e.g., Refs. [182, 181, 83]).

To ascertain whether localized states appear Fig. 5.6 shows the grand potential
density Ω/𝑉 plotted over the chemical potential 𝜇 for the uniform and patterned
states presented in Fig. 5.5 (a). In such a representation a crossing of lines for the
uniform and patterned states would indicate coexistence and therefore localized
states [181]. As this is not the case, the phase transition is continuous, i.e., a
second order phase transition.

Similarly the nonlocal model has no crossing (not shown). Results for a one-mode
approximation (also not shown) imply that the patterned branch in the grand
potential always points away from the stable uniform branch, meaning that no
localized states are possible in one spatial dimension independent of parameter
choice.
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Fig. 5.6: The grand potential density Ω/𝑉 is plotted over the chemical potential
𝜇 for the patterned and uniform states in the approximated 1D case of
Fig. 5.5 (a) (Eq. (5.44)). Lines are red for modulated and black for uniform
states, while solid lines correspond to stable and dotted lines to unstable
states. At no point do the lines for uniform and modulated states cross,
therefore there is no coexistence and no localized states.

Results for Two Spatial Dimensions for the Local Approximation

To determine patterns in two dimensions and their ranges of stability as a function
of ̄𝜌, pseudo-arclength continuation is used at different fixed values of 𝛼𝑢 and 𝑎
respectively, with the domain size optimized for a hexagonal pattern, which matches
the critical wavenumber 𝑘𝑐. The corresponding length is 𝐿𝑐 = 2𝜋

𝑘𝑐
resulting in the

domain size 𝐿𝑥 × 𝐿𝑦 = 2√
3𝐿𝑐 × 2𝐿𝑐.

Note that periodic boundary conditions are required, in particular, to accurately
predict the stability of the stripe phase and related secondary bifurcations. Neu-
mann boundary conditions do not allow for certain changes of symmetry, resulting
in missing unstable modes and therefore missing bifurcations (see, e.g., Fig. 5.18
where the pattern resulting from intermediate hexagon-stripe states is not mirror
symmetric with respect to the 𝑥-axis, which under Neumann BC leads to the ar-
tifact that stripe patterns with reversed maximum and minim positions exhibit
different stabilities).

An example of a resulting bifurcation diagram is given in Fig. 5.7 at 𝛼𝑢 = −0.4
for the approximated system. The solution measure is the contrast 𝐶 given as a
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function of the control parameter ̄𝜌. The critical wave vector is 𝑘𝑐 = 0.88 leading
to 𝐿𝑐 = 7.14.
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honeycomb

stripes

rectangles

localized
hexagons

multistablity

thermodynamic coexistence region

stable
unstable
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Fig. 5.7: Bifurcation diagram of the steady state solutions in 2D of Eq. 5.44 as a
function of ̄𝜌 at fixed 𝛼𝑢 = −0.4. The domain sizes are as in Fig. 2.1,
except for the localized states, which are at a quarter domain size. The
solutions are characterized through the contrast 𝐶 [see Eq. (5.14)]. Solid
and dotted lines represent stable and unstable states, respectively. The
respective patterns are indicated at the curves. The two filled blue circles
represent stable states coexisting in an infinite domain (identical grand
potential and chemical potential, see Fig. 5.8). This indicates the range
where localized states (grey line) may, in principle, exist.

The figure shows the primary bifurcation at the expected critical value of ̄𝜌𝑐 = 0.555.
It is a higher order bifurcation, seemingly consisting of a transcritical bifurcation
for hexagon (blue line) and honeycomb (purple line) states, as well as a pitchfork
bifurcation for stripe (red line) states. Examples of those patterns can be found in
Fig. 2.1 (a), (b) and (c) respectively.

More specifically, at this bifurcation the uniform state (black line) coming from
lower densities, loses stability, while unstable branches of honeycomb and stripes
move on to higher densities, while the equally unstable hexagon branch moves back
towards lower densities. It then passes a saddle-node bifurcation at ̄𝜌 = 0.498,
where it turns back towards higher densities and also would become stable if it
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were not for the localized states. Instead, it stabilizes in the following pitchfork
bifurcation at ̄𝜌 = 0.512, which is still below ̄𝜌𝑐, forming a multistable region.

This multistability and consequent hysteresis leads to a jump in the amplitude
when passing from lower to higher densities, which is typical of a first order phase
transition.

In addition, there is a branch of an unstable rectangular pattern (orange line, see
Fig. 2.1 (d)) which emerges in a subcritical pitchfork bifurcation from the stripe
branch. Note that this state is rectangular only due to the finite rectangular domain.
On an infinite domain it would correspond to a branch of square patterns.
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−0.065
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Ω
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stable
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Fig. 5.8: The grand potential density Ω/𝑉 as a function of the chemical potential
𝜇 for the branches of hexagonal patterns (blue lines) and uniform states
(black lines) is shown for the 2D case in Fig. 5.7. The crossing of the lines
marked by a filled circle indicates that these states can coexist and local-
ized states may exist. The coexisting states are also marked in Fig. 5.7.

The 2D case, similarly to the 1D case, is tested for thermodynamic coexistence,
therefore Fig. 5.8 shows the grand potential density Ω/𝑉 as a function of the chem-
ical potential 𝜇 for the hexagon and uniform branches. As opposed to the 1D case
the branches cross (blue filled circle), indicating that a stable uniform state and a
stable hexagonal pattern can coexist on a sufficiently large domain. The respective
coexisting states have different densities, which are marked by two filled blue circles
in the bifurcation diagram in Fig. 5.7.

Using a domain of size 16𝐿𝑐/
√

3 × 2𝐿𝑐, a localized states branch (grey line) can be
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found, with an example of its profile given in Fig. 2.1 (e). Note that this localized
state is not fully two-dimensional, as it is only localized in the 𝑥-direction.

The localized state branch does not show the typical snaking behavior found in
the more standard PFC model[181], which is true even on larger domains up to
24𝐿𝑐/

√
3 × 2𝐿𝑐 where one would usually find pronounced snaking behavior[81],

meaning this corresponds to the small region in the classical PFC model where
larger effective temperatures lead to an annihilation of the involved saddle-node bi-
furcations, even if the number of peaks still changes when going along the branch.

Analogously, one would expect snaking at lower values of 𝛼𝑢 which indeed leads
to a narrower interface region between the uniform background and the patterned
part, however, the system closes in on regions with negative densities and the
accompanying numerical instability, before any snaking can occur.

The lack of a second branch of localized states with an even number of lines of
peaks (cf. Fig. 15 (d) of Ref. [181]) is due to the numerical limitation of the size of
the box in combination with Neumann boundary conditions.

With the exception of small changes to the secondary bifurcation on the stripe
branch and subsequent unstable patterns branching off from it, the described bifur-
cation diagram is typical for the approximated system at other values of 𝛼𝑢. Given
a similar domain the primary bifurcation has generally the same form and types of
emerging branches, though its position with respect to 𝜌 changes. In addition, the
fold bifurcation on the hexagon branch and the width and position of the coexis-
tence region can vary. The bifurcation diagram of the nonlocal system also matches
this general form, which includes the existence of localized states. An example for
testing the stability of such a localized state for the nonlocal case with complex-
and real-time evolution is given in App. A.5.

Fig. 5.9 shows a phase diagram of the local approximation spanned by ̄𝜌 and 𝛼𝑢
tracking those very changes. It shows the position of the primary bifurcation, i.e.,
the linear stability threshold or spinodal (black line) above which uniform states
are stable, as well as the fold point on the hexagon branch (blue line), below which
a hexagon shaped pattern is stable. Between those lines (light blue region) both
are valid solutions, making the region bistable for domains that are small enough to
not support localized states. This bistable region grows (shrinks) for higher values
of ̄𝜌 when tracking changes in ̄𝜌 (𝛼𝑢).

In addition, the coexistence region (with its borders given by the coexistence points)
is marked by a grey striped region. It is fairly narrow for higher values of 𝛼𝑢 and
grows progressively wider (with respect to ̄𝜌) towards lower values of 𝛼𝑢. For mean
densities above ̄𝜌 = 1 (marked by a black circle) the coexistence region lies within
the bistable region limited by the fold and the primary bifurcation. Below that, until
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Fig. 5.9: Phase diagram of the local approximation in 2D, spanned by ̄𝜌 and 𝛼𝑢.
Every parameter combination above the primary bifurcation (black line)
allows for uniform solutions, while any parameters below the hexagon fold
bifurcation (blue line) allows for a hexagon pattern. Given a system with
no localized states the region between those line (light blue) is bistable.
The grey striped region marks the coexistence region within which local-
ized states can be found. This region, at different parameters crosses both
the primary bifurcation and the hexagon folds, as marked by a black circle.

roughly ̄𝜌 = 0.64 (second black circle) the coexistence region is above the primary
bifurcation but reaches beyond the fold bifurcation. Finally, for even smaller mean
densities the higher density border of the coexistence region is at higher densities
than the primary bifurcation. Eventually, at about ̄𝜌 = 0.61 the position of that
border of the coexistence region no longer decreases with 𝛼𝑢. Instead, it turns
back towards higher densities. As this is at values of 𝛼𝑢 close to where negative
densities make the system both numerically unstable and physically questionable
any consequences should be considered to be potentially suspect.

Fig. 5.10 tracks the same properties as Fig. 5.9, except for the nonlocal and unscaled
system, with the bistable region and fold point now marked in red. Most previous
observations hold true for this system, with the exception of the coexistence region
passing the linear stability threshold or having a turning point towards higher mean
densities, which theoretically might still be possible at lower densities, but would
require negative values of 𝑎. The point where the coexistence region crosses the
fold bifurcation line here is at ̄𝜌 ≈ 14.8
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Fig. 5.10: Phase diagram of the nonlocal model in 2D spanned by the unscaled
mean density ̄𝜌 and scattering length 𝑎. Area and line styles are as in
Fig. 5.9, except blue is replaced by red.

For a direct comparison Fig. 5.10 is scaled to match the local approximation, with
the results given in Fig. 5.11. The coexistence region, as expected from Fig. 5.5
is wider for the nonlocal model. The points where the fold lines cross the border
of the coexistence region are relatively close together at ̄𝜌 = 1 (local) vs ̄𝜌 = 1.04
(nonlocal).

5.5 Simplified Model with Higher-Order Nonlinearities

As already mentioned in Sec. 5.1, higher-order nonlinearities, specifically in form of
the quantum fluctuation term 𝛾QF|𝜓|3𝜓 introduced in Eq. (5.10), can stabilize oth-
erwise inaccessible patterns, as well as impact the stability region [196, 197, 79] and
potentially turn the hexagon phase transition into a second order transition [196].

Such quantum fluctuations appear for dipolar systems, their addition to the present
model is therefore purely illustrative, aiming to understand the bifurcations involved
in the emergence of new phases, as well as the resulting changes to bifurcation
diagrams. Generally, the parameter values for quantum fluctuations are very low
and dependent on the scattering length. Neither constraint is considered here,
meaning a wider range of phenomena can be analyzed.
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Fig. 5.11: Phase diagram of both the nonlocal model (see Fig. 5.10) and local ap-
proximation (see Fig. 5.9) in 2D spanned by the scaled parameters ̄𝜌 and
𝛼𝑢. Again the linear stability border is marked in black, matching for
both systems. For the nonlocal model the fold is given in red, with the
coexistence region marked by a grey cross pattern. For the local approx-
imation the fold is marked in blue and the coexistence region through
grey stripes. Any point where the coexistence region border crosses a
fold bifurcation is marked by a black circle.

Following the steps outlined in Sec. 5.3 for the GPE with quantum fluctuations,
Eq. (5.10) gives the local approximation with an additional term compared to
Eq. (5.31). Consequently, the rescaling has to be extended to that term, leading
to

𝑏 → 𝛾QF
𝛼𝑢 + 1

𝑔0
√ 2

−𝑔2
, (5.53)

and therefore the state equation

𝜕𝑡𝜌 = Δ [(∇𝜌)2

8𝜌2 − Δ𝜌
4𝜌

+ (𝛼𝑢 + 1)𝜌 + 2Δ𝜌 + Δ2𝜌 + 𝑏𝜌3/2] , (5.54)

with accompanying free energy functional

𝐹 = ∫
𝑉
d𝑛𝑟 [|∇𝜌|2

8𝜌
+ 𝑏2

5
𝜌5/2 + (𝛼𝑢 + 1)

2
𝜌2 + 𝜌Δ𝜌 + 𝜌

2
Δ2𝜌] . (5.55)
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To match the border of linear stability of the nonlocal model with critical values
𝑘𝑐 and ̄𝜌𝑐, the specific values for 𝑔0, 𝑔2 and 𝑔4 have to be set to

𝑔0 = 2 ̂𝑈(𝑘𝑐) + 4𝑘𝑐𝜕𝑘
̂𝑈(𝑘𝑐) + 𝑘2

𝑐𝜕𝑘𝑘
̂𝑈(𝑘𝑐)

8
+ 3𝑘2

𝑐
8 ̄𝜌𝑐

− 9𝑏
√

̄𝜌𝑐
8

, (5.56)

𝑔2 = − 1
𝑘2

𝑐
(2𝑔0 + 𝑘2

𝑐
4 ̄𝜌𝑐

+ 3𝑏√ ̄𝜌𝑐) , (5.57)

𝑔4 = 1
𝑘4

𝑐
(𝑔0 + 3

2
𝑏√ ̄𝜌𝑐) . (5.58)

𝜕𝑘
̂𝑈 and 𝜕𝑘𝑘

̂𝑈 represent the first and second derivatives of ̂𝑈 with respect to 𝑘.

5.5.1 Influence on Linear Stability

Again, the stability for the nonlocal model is determined according to Sec. 5.2.2,
leading to something close to Eq. (5.30), but with an additional term:

𝜔′2(𝑘) = 𝜔2 + 3
2

𝑘2𝛾QF√ ̄𝜌
3

. (5.59)

From there, using 𝜔′2 = 0 and 𝜕𝜔′2

𝜕𝑘 = 0 leads to the critical values, which, for the
nonlocal model take the form

̄𝜌𝑐 = − 𝑘𝑐

2𝑅̂𝑘(𝑘𝑐)
(5.60)

𝛾QF𝑐 = − 2
3√𝜌𝑐

3 [𝑘2
𝑐
4

+ 𝜌𝑐(𝑅̂(𝑘𝑐) + 𝑎𝑐)] (5.61)

𝑎𝑐 = − [ 𝑘2
𝑐

4 ̄𝜌𝑐
+ 3

2
𝑏𝑐√ ̄𝜌𝑐 + 𝑅̂(𝑘𝑐)] (5.62)

̄𝜌𝑐 must be set to get 𝑘𝑐 from Eq. (5.60). Then either 𝑎 or 𝛾QF must be set to get
𝛾QF𝑐 or 𝑎𝑐, respectively. This results in a border of linear stability as depicted in
Figs. 5.12 and 5.13 for one and two dimensions, respectively. The border is indicated
by a black line for different values of 𝛾QF indicated by different line styles. Above
these curves the uniform state is stable.

For the approximated system the critical wavelength is

𝑘2
0 = 1 − 1

8 ̄𝜌
, (5.63)
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Fig. 5.12: Linear stability region of the uniform (superfluid) state 𝜌(𝑥) = ̄𝜌 in the
( ̄𝜌, 𝑎)-plane in 1D. The stability thresholds according to Eq. (5.62) are
given as black lines of various styles representing different values of the
strength of the higher-order nonlinearity, as indicated at the curves. The
regions above the respective lines correspond to stable uniform states.
The thin red line indicates the position of the maximum 𝑎𝑚 of the curves
when continuously changing 𝛾QF, while 𝑎𝑠 indicates the position of the
change between sub- and supercritical pitchfork bifurcation. Note that for
𝑏 → 0 the corresponding ̄𝜌 also diverges. To the left [right] of the purple
line the primary bifurcation is a supercritical [subcritical] pitchfork.

with the accompanying border of linear stability

𝛼𝑢𝑐 = (1 − 1
8 ̄𝜌

)
2

− 1 − 3
2

𝑏√ ̄𝜌 for ̄𝜌 ≥ 1
8 , (5.64)

where 𝛼𝑢𝑐 is the critical value of 𝛼𝑢. It is depicted in Fig. 5.14 for different values
of 𝑏 as black lines of various styles. Again uniform states above those curves are
stable.

It is immediately obvious that in all three depictions the addition of the higher-
order nonlinearity leads to significant changes in the phase diagram as expected
according to Ref. [196]. They add a maximum to the border of linear stability,
extending the region of stable uniform states toward smaller values of 𝑎 and 𝛼𝑢, as
well as toward larger values of ̄𝜌. The position of the maximum is indicated by the
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Fig. 5.13: Linear stability region of the uniform (superfluid) state 𝜌(𝑥) = ̄𝜌 in the
( ̄𝜌, 𝑎)-plane in 2D, with line styles as in Fig. 5.12. The purple line is now
only applicable to the striped solution. In addition, there is a point where
the hexagon/honeycomb branches of the primary bifurcation exchange
direction and stability. This 4 phase point 𝑎𝑝 is indicated by the crossing
of the border of linear stability with the blue curve. To the left [right]
of this crossing the first stable pattern is the hexagon [honeycomb]. In
both cases the transition is of first order.

crossing of said border with the red line, given by

𝑎𝑚 = −𝑅̂(𝑘𝑐) − 5
4

𝑘2

̄𝜌
𝛼𝑢𝑚 = 5

64 ̄𝜌2 − 3
4 ̄𝜌

. (5.65)

Without quantum fluctuations the border of linear stability and the red maximum
line never cross but converge for ̄𝜌 → ∞.

5.5.2 Changes to Patterns and Phase Transition

From there additional stability regions of different patterns and the order of the
phase transitions can be approximated using a one-mode approximation. To do so
the patterned state is approximated by harmonics of a single wavelength with small
amplitude ̄𝜌𝐴 with 𝐴 ≪ 1. This is either

𝜌 = ̄𝜌 + ̄𝜌𝐴
3

∑
𝑖=1

cos (k𝑖r) (5.66)
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Fig. 5.14: Linear stability region of the uniform (superfluid) state 𝜌(𝑥) = ̄𝜌 in the
( ̄𝜌, 𝛼𝑢)-plane. The line styles match those of Figs. 5.12 and 5.13, though
with different values of 𝑏 as indicated at the curves.

for hexagons [honeycomb] with 𝐴 > 0 [𝐴 < 0] or

𝜌 = ̄𝜌 + ̄𝜌𝐴 cos (k1r) (5.67)

for one dimensional solutions or stripes in two dimensions. The lattice vectors k𝑖
are k1 = (𝑘, 0), k2 = (−𝑘/2, 𝑘

√
3/2) and k3 = (−𝑘/2, −𝑘

√
3/2).

This ansatz is then inserted into the free energy and the result approximated by
way of a Taylor expansion in 𝐴 ≪ 1. This results in an equation of the form

𝐹 − 𝐹0 = 𝑞2𝐴2 + 𝑞3𝐴3 + 𝑞4𝐴4 + 𝒪(𝐴5) . (5.68)

where 𝐹0 = 𝐹(𝐴 = 0) is the uniform ground state free energy. As the modulation
amplitude 𝐴 is small close to the border of linear stability, this is a reasonable
approximation close to the primary bifurcation and any points of interest directly
influencing the type of bifurcation should be qualitatively correct, though still devi-
ate quantitatively. As the border of linear stability is also the point where nonlocal
model and local approximation agree the one-mode approximation is done only for
the local approximation, meaning 𝐹 has the form given in Eq. (5.55).

From there Eq. (5.68) is minimized with respect to 𝑘, i.e., 𝜕𝑘𝐹 = 0, leading to the
critical wavenumber 𝑘𝑐, which still depends on 𝐴. Inserting 𝑘𝑐 into Eq. (5.68) and
truncating at 𝒪(𝐴5) leads to the results in Tab. 5.1.
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hexagons/honeycomb 1D/stripes
𝑞2

192𝛼𝑢 ̄𝜌2+48 ̄𝜌+288𝑏
√

̄𝜌5−3
256

64𝛼𝑢 ̄𝜌2+16 ̄𝜌+96𝑏
√

̄𝜌5−1
256

𝑞3
−24 ̄𝜌+48𝑏

√
̄𝜌5+3

256 0
𝑞4

240 ̄𝜌−90𝑏
√

̄𝜌5−33
1024

8 ̄𝜌−3𝑏
√

̄𝜌5−1
512

Table 5.1: Prefactors to the amplitudes in the energy equation (Eq. (5.68)) of the
one mode approximation up to fourth order, depending only on the model
parameters.

For a striped or 1D pattern the sign of the prefactor 𝑞4 distinguishes between super-
(𝑞4 > 0) and subcritical (𝑞4 < 0) pitchfork bifurcation. The former is true for all
valid densities at 𝑏 = 0 as seen, e.g., in Fig. 5.5 or Fig. 5.7. For 𝑏 > 0 on the other
hand this is no longer the case. To find the exact point of change, the border of
linear stability equation (Eq. (5.64)) is solved with respect to 𝑏 and introduced into

𝑞4, leading to 𝑞4 = 64𝛼𝑢 ̄𝜌2 + 272 ̄𝜌 − 33
16384

, meaning anywhere

𝑎𝑠 = −𝑅̂ − 19
4

𝑘2

̄𝜌
𝛼𝑢𝑠 = 33

64 ̄𝜌2 − 17
4 ̄𝜌

(5.69)

crosses the border of linear stability the bifurcation changes.

The resulting information is added as a purple line to the Figs. 5.14, 5.12 and 5.13.
To the left of the crossing point the bifurcation is supercritical, to the right, it is
subcritcal. It becomes immediately obvious that a minimum density is required for
this effect to appear. For the approximated system, e.g., it requires ̄𝜌 > 4.125.

In addition there are more expected changes [196, 197, 79] to the phase diagram, as
depicted in Fig. 5.15, which gives an overview over the most energetically favorable
phases in the ( ̄𝜌, 𝑏)-plane, given by the one-mode approximation.

Under the limitation that this approximation becomes more inaccurate the further
away it is from the primary bifurcation, it is still possible to conclude that the
hexagon pattern is the ground state in the lower density region within the black
lined region where the uniform ground state is linearly unstable. The honeycomb
pattern, however, is dominant in higher density regions, while the stripes occupy a
region in between the two.

An important observation is that the hexagon and honeycomb patterns can be the
most stable state even outside of the border of linear stability, suggesting a region
of bistability between the respective patterns and the uniform state, and therefore
a first order phase transition.
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Fig. 5.15: Energetically favored ground states in the ( ̄𝜌, 𝑏)-plane as obtained in
a one-mode approximation at 𝛼𝑢 = −0.4. The border of stability,
Eq. (5.64), is given as black line. The ground states are the uniform
state (white region), hexagons (light blue), stripes (light red) and honey-
comb (light purple). All four meet in a single point, where no bistability
with the uniform state exists. Horizontal dashed lines indicate 𝑏-values
employed for the bifurcation diagrams in Figs. 5.16 and 5.17.

There is a point where all three patterns as well as the uniform state touch. At
this point the bistable region shrinks to zero for both the hexagon and honeycomb
pattern, suggesting a second order phase transition. This ”four phase point” is
indicated in the one-mode approximation via a change of sign of 𝑞3. Similar to the
sub-/supercritical pitchfork the intersection of 𝑞3 = 0 and Eq. (5.64) gives

𝑎𝑝 = −𝑅̂ − 3
2

𝑘2

̄𝜌
𝛼𝑢𝑝 = 7

64 ̄𝜌2 − 1
̄𝜌
. (5.70)

In the phase diagrams in Figs. 5.13 and 5.14 this is indicated by a blue line, above
[below] which the hexagon [honeycomb] phase is the dominant phase at the primary
bifurcation.

To substantiate the results of the one-mode approximation bifurcation diagrams of
interesting points in the higher order system are depicted below. The four phase
point can be found in the bifurcation diagram in Fig. 5.16 with ̄𝜌 as control pa-
rameter of a two-dimensional system at 𝛼𝑢 = −0.4 at 𝑏 = 0.1286 (along the upper
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horizontal line in Fig. 5.15). The domain size is again chosen to fit hexagonal states
with 2𝐿𝑐/

√
3 × 2𝐿𝑐.
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Fig. 5.16: Bifurcation diagram showing branches of steady states of Eq. (5.54) as
a function of ̄𝜌 at fixed 𝛼𝑢 = −0.4 and 𝑏 = 0.1286 (along the upper
horizontal line in Fig. 5.15). The considered 2D system has domain size
2𝐿𝑐/√(3) × 2𝐿𝑐. The solutions are characterized through the contrast
𝐶 (see Eq. (5.14)). Line styles are as in Fig. 5.7 with the addition of
intermediate states between stripes and hexagons in cyan. The bifurca-
tion at low ̄𝜌 is related to points of thermodynamic coexistence between
the uniform and hexagon states (indicated by filled circles). No such co-
existence occurs related to the bifurcation at high ̄𝜌 indicating a second
order transition.

It shows two bifurcations from uniform to patterned state, one at lower densities
and one at higher densities. The lower density bifurcation at ̄𝜌 ≈ 1.35 retains
all the same qualities already seen in the previous sections for 𝑏 = 0, including
multistability with the hexagons as well as a small coexistence region, making it a
first order phase transition. The new bifurcation is exactly on the predicted four
phase point, specifically at ̄𝜌 ≈ 2.4. At this point both stable hexagons (blue) and
stripes (red) as well as the unstable honeycomb state (purple) emerge vertically,
leaving no bistable region, i.e., the transcritical hexagon/honeycomb part of the
bifurcation is at exactly 90 degree with respect to the uniform state. In addition,
there are no points of identical chemical potential and grand potential density and
therefore no coexistence, making this a second order phase transition. The stripe
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state is only stable in a narrow region, after which it exchanges stability with a
stripe-hexagon transition state (light blue) which heads back towards the primary
bifurcation. The one-mode approximation indicated that the energy of the stripe
phase would be lowest, right at the four phase point, however, for the present bifur-
cation diagram the energy of the stripe and hexagon phase near the higher density
bifurcation are practically indistinguishable, making a clear distinction whether
the stripe phase really is the first stable phase difficult. For the nonlocal model the
results look very similar, while all the bifurcations show the same nature, if not
position (not shown).

1.0 1.5 2.0 2.5 3.0 3.5
ρ̄

0.0

0.2

0.4

0.6

0.8

C

uniform

hexagons

honeycomb

stripes

stableunstabletherm. coexistence

Fig. 5.17: Bifurcation diagram at 𝛼𝑢 = −0.4 and 𝑏 = 0.1175 (along the lower
horizontal line in Fig. 5.15). Domain size, line styles, solution measure
and markers are as in Fig. 5.16. The additional dotted orange lines cor-
respond to intermediate states between hexagons and honeycombs. The
background shading locally matches the colors of the respective ground
state. Thermodynamic coexistence of pairs of states is marked by filled
circles: the two colors of filling and edge refer to the respective coexisting
states.

Figure 5.17 shows an example bifurcation of a region with a stable honeycomb
pattern, specifically at fixed 𝛼𝑢 = −0.4 and 𝑏 = 0.1175 (along the lower horizontal
line in Fig. 5.15). The bifurcation diagram is shaded to specify the regions in
which the four possible patterns are globally stable. Starting at low ̄𝜌, the uniform
state (black line, grey shading) is energetically favored up to ̄𝜌 = 1.07, followed
by hexagons (blue line, light blue shading) up to ̄𝜌 = 2.7. Then follows the stripe
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pattern (red line, light red shading) which has the lowest energy until ̄𝜌 = 3.28
where honeycombs (purple line, rose shading) take over. Finally, at ̄𝜌 = 3.56 the
uniform state once again becomes dominant.

All these regions have transitions between them, each with their own set of coexist-
ing states with identical chemical potential and grand potential density. They are
marked with circles colored with the branch color of those same coexisting states
and are at near identical values of ̄𝜌 with the difference being of order 10−2 or lower.
Consequently, the coexistence region is too narrow to actually find localized states
within the given domain, however, even without them the transitions are of first
order.

The first bifurcation at lower densities behaves just like all previously discussed
uniform-hexagon transitions. At higher densities are the two transitions which
bracket a range of stable stripe pattern, with bifurcations linking it to hexagons
(lower density) or honeycomb (higher density). The connecting unstable branches
(light blue) consist of intermediate shapes of stripes and hexagons/honeycombs as
depicted in Fig. 5.18, starting from a hexagon (leftmost image) passing such an
intermediate state before transforming into a stripe (central image), after which it
transitions into a honeycomb (rightmost image)3.

-3 0 3
-5

0

5

y

-3 0 3 -3 0 3 -3 0 3
x

-3 0 3 -3 0 3 -3 0 3
ρmin

ρmax

Fig. 5.18: Examples of steady patterns illustrating the change from hexagons to
stripes and further to honeycombs in Fig. 5.17 (for parameters see its
caption). The sequence is as follows: From left to right there is a stable
hexagon at ̄𝜌 = 2.75, unstable intermediate states at ̄𝜌 = 2.7 and ̄𝜌 =
2.69, a stable stripe at ̄𝜌 = 2.67, unstable intermediate states at ̄𝜌 = 3.27
and ̄𝜌 = 3.25, and a stable hexagon at ̄𝜌 = 3.19.

Finally, the higher density bifurcation is much like the one for the uniform hexagon
transition, i.e., seemingly transcritical with respect to hexagons and honeycomb,

3The latter image of a shifted honeycomb explains the necessity of using periodic BCs to find
the state and the accompanying bifurcations, as it is impossible to realize with Neumann BCs.
The reverse is true when transitioning from a honeycomb back towards hexagon states.
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except this time it is the honeycomb branch which points towards higher densities,
before turning back in a fold.

The small gap in the branch connecting stable and unstable hexagons [honeycombs]
is due to the numerical grid of the domain not quite matching the corresponding
pitchfork bifurcation, meaning the symmetry of the involved pattern is not reflected
well enough. It is from here that further unstable intermediate states branch off
to connect the hexagon and honeycomb states (orange lines). They form triangles
and patchwork quilt patterns (as in Ref. [85], chapter 5.4). Further branches may
bifurcate from these states, but they should all be unstable, meaning they only
become relevant during time evolution, where unstable states may first attract and
then repel the evolution.

16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8

ρ̄

0.0

0.2

0.4

0.6

0.8

C

pattern

uniform

stable
unstable

therm. coexistence

Fig. 5.19: Bifurcation diagram in 1D at 𝛼𝑢 = −0.5 and 𝑏 = 0.08. Domain size is
𝐿𝑥 = 8𝐿𝑐, line styles, solution measure and markers are as in Fig. 5.16.
Thermodynamic coexistence of pairs of states is marked by filled circles.

Finally, there is the change in 1D from super- to subcritical pitchfork bifurcation, an
example of which is given for the approximated system for 𝛼𝑢 = −0.5 and 𝑏 = 0.08
in Fig. 5.19, simulated on a domain of size 𝐿𝑥 = 8𝐿𝑐. The primary bifurcation is
indeed a subcritical pitchfork at the expected value of ̄𝜌 = 16.317. It is followed by
a saddle-node bifurcation at ̄𝜌 = 16.48 on the patterned branch (blue), where the
branch turns towards lower densities.

There is also a coexistence of a patterned and a uniform state, as indicated by the
blue filled circles, which indicate the existence of localized states. Those states can,
however, not be found in the given domain, indicating an interface region of sizes
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> 8𝐿𝑐. As simulating bigger systems causes numerical problems their existence
here remains theoretical.

5.6 Dipolar BECs in an Infinite Tube

The discovery that dipolar BECs can self-organize into a supersolid or isolated
droplets due to stabilizing effects of beyond mean-field contributions [109, 108, 189,
160] led to a variety of experiments, many performed in a tube-like setup [90, 164,
39, 177, 178, 26], i.e., the potential 𝑉ext traps the BEC such that the dipoles have
a side-by-side orientation along the axial, unconfined direction 𝑧 and are strongly
confined in the polarization direction 𝑦 of the dipoles and the remaining direction
𝑥. In consequence, all pattern formation is along the 𝑧-axis, making the system
quasi one-dimensional. A schematic is shown in Fig. 5.20.

In such a trap the superfluid-supersolid phase transition can be of first or second
order [23, 168, 161], as determined through complex time-evolution and comparison
of the energies of the converged states. This is generally done under the assumption
of small domains, which do not support localized states. In consequence, the order
of the phase transition in those works is determined by only taking the primary
bifurcation into account.

The following results are under consideration to be published. A pre-print version
can be found in Ref. [172].

5.6.1 Full Three-Dimensional Model

To match the experiments an ensemble of 𝑁 164Dy atoms with mass 𝑚 = 163.93 u is
considered at zero temperature. The atoms interact via both collisions and dipolar
long-range interactions, characterized by 𝑎𝑠 and 𝑎𝑑𝑑 = 𝑚𝜇0𝜇2

𝑚/12𝜋ℏ2 = 130.8 𝑎0,
respectively. Here 𝜇𝑚 is the magnetic moment, and 𝜇0 the magnetic constant, while
𝑎0 is the Bohr radius.

The accompanying interaction is described by

𝑈eff(r) = ℏ2

𝑚
(4𝜋𝑎𝑠𝛿(𝑟) + 3𝑎𝑑𝑑

𝑟3 (1 − 3𝑦2

𝑟2 )) (5.71)

̂𝑈eff(k) = 4𝜋ℏ2

𝑚
(𝑎𝑠 + 𝑎𝑑𝑑 (3

𝑘2
𝑦

𝑘2 − 1)) . (5.72)
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in real and Fourier space [13]. Finally, the quantum fluctuations are given by [109,
108]

𝛾𝑄𝐹 = ℏ2

𝑚
4
√

𝜋32
3

√𝑎𝑠
5 ∫

1

0
d𝑢 (1 + 𝑎𝑑𝑑

𝑎𝑠
(3𝑢2 − 1))

5/2

, (5.73)

and the trapping potential by

𝑉ext(r) = 𝑉ext(𝑥, 𝑦) = 1
2

𝜔2(𝑥2 + 𝑦2) , (5.74)

with the trapping frequency 𝜔 = 150 ⋅ 2𝜋Hz. Furthermore, the wave function is
normalized to the total particle number 𝑁 = ∫ |𝜓|2𝑑3𝑟, with the mean density

̄𝜌 = 𝑁/𝐿 and tube length 𝐿. The one-dimensional density is 𝜌(𝑧) = ∫ |𝜓|2𝑑𝑥𝑑𝑦.

The subsequent dynamics can be approximated by the extended GPE (5.10) with
the accompanying energy (5.11).

5.6.2 One-Dimensional Approximation with a Gaussian Profile

To reduce the dimensionality of the problem the profile of the BEC in the (𝑥, 𝑦)−
plane is considered to be Gaussian (see Refs. [22, 23]), i.e., 𝜓(r) = 𝜓∥(𝑧)𝜓⟂(𝑥, 𝑦)𝑒−𝑖𝑡𝜇/ℏ

with chemical potential 𝜇 and

𝜓⟂(𝑥, 𝑦) = 1√
𝜋𝑙

𝑒−(𝜂𝑥2+𝑦2/𝜂)/2𝑙2 . (5.75)

Here 𝑙 represents the mean width, while 𝜂 represents the anisotropy, caused by
the interaction of the dipoles. Fig. 5.20 illustrates the two parameters as well as
the critical length scale in 𝑧-direction. As the Gaussian can be integrated out, the
one-dimensional density becomes 𝜌(𝑧) = |𝜓∥(𝑧)|2.

After performing the integration in 𝑥 and 𝑦-direction, the BEC can be described
by the energy [22, 23]

𝐸 = 𝐸⟂ + ℏ2

𝑚
1
̄𝜌𝐿

∫
𝑢𝑐

d𝑧 𝜓∗
∥ (−1

2
𝑑2

𝑑𝑧2 + 1
2

(𝑈 ∗ |𝜓∥|2) + 2
5

𝑔𝑄𝐹|𝜓∥|3) 𝜓∥ (5.76)

with 𝑢𝑐 representing a unit cell. 𝐸⟂ is the effective energy contribution of the
structure in 𝑥-𝑦-direction

𝐸⟂ = ℏ2

𝑚
1
4

(𝜂 + 1
𝜂

) (𝑙2𝑚2𝜔2

ℏ2 + 1
𝑙2

) . (5.77)
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Fig. 5.20: Sketch of the considered geometry, explaining the parameters 𝜂, 𝑙 and 𝐿𝑐.
𝜂 is a measure of the anisotropy of the profile, while 𝑙 gives the overall
width of the Gaussian. Finally, 𝐿𝑐 is the characteristic length of the
pattern.

𝑔𝑄𝐹 is the coefficient for the quantum fluctuations and takes the form

𝑔𝑄𝐹 = 256
15𝜋

𝑎5/2
𝑠

𝑙3
(1 + 3𝑎2

𝑑𝑑
2𝑎2

𝑠
) . (5.78)

It contains a further approximation [21] of the integral in Eq. (5.73) in addition to
the changes due to the Gaussian profile.

The interaction in Fourier space is now described by [22, 23]

̂𝑈eff(𝑘) = 2
𝑙2

[𝑎𝑠 + 𝑎𝑑𝑑 (3(𝑄𝑒𝑄Ei(−𝑄))
𝜂 + 1

− 1)] . (5.79)

Here 𝑄 represents 𝑄 = √𝜂𝑘2𝑙2/2, while Ei(𝑥) is the exponential integral function,
meaning Ei(−𝑥) = ∫𝑠

−∞
𝑒𝑠/𝑠d𝑠.

From here the usual GPE (taking the form of Eq. (5.10) with 𝑉ext = 0) can be
used, under the condition that 𝜂, 𝑙 and 𝐿𝑐 are adapted to minimize the energy in
Eq. (5.76). The accuracy of such an approximation is fairly good on a qualitative
level, but doesn’t fit quantitatively, as shown in Ref. [168].

5.6.3 Results

The Gaussian profile approximation facilitates the application of path continuation
for the uniform and patterned states, though the patterned results need to be refined
with complex-time evolution. Localized states, however, can not be accounted for
as the front between uniform and patterned part would require a gradient between
the coexisting values of 𝜂 and 𝑙.
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To circumvent this the following results are considered at constant 𝜂 and 𝑙, their
values chosen to match the primary bifurcation. For 𝑎𝑠 = 98𝑎0 they are set to
𝑙 = 1.146 and 𝜂 = 5.808. The resulting bifurcation diagram is depicted in Fig. 5.21.

Fig. 5.21 (a) shows the contrast 𝐶 (Eq. (5.14)) as a function of the one-dimensional
mean density ̄𝜌− ̄𝜌c where ̄𝜌𝑐 = 6060.49/𝜇m is the critical means density of the pri-
mary bifurcation. The uniform solution, representing a perfect superfluid (black),
is linearly stable (solid lines) for densities higher than the critical density ̄𝜌𝑐 and un-
stable (dotted lines) below it, the accompanying primary bifurcation (at expected

̄𝜌− ̄𝜌𝑐 = 0) is a supercritical pitchfork and marked by a grey dot. From there a new
linearly stable supersolid state (solid line, blue) emerges, featuring periodic density
modulation.

Previous considerations of the phase transition in a tube shaped dipolar BEC,
depending on the parameter region, categorized them as either first or second order,
as determined through complex time-evolution on a small domain, therefore making
it dependent on the nature of the primary bifurcation, while assuming the local
mean density, i.e., the density profile gained when averaging over the individual
unit cells, would remain uniformly distributed [23, 168]. Under these assumptions
the presented bifurcation would give rise to a second order transition, as no localized
states (red line) can develop.

However, when given a sufficiently large domain, localized states with their nonuni-
form local mean density distributions become possible, which in turn indicate a
first order phase transition independent of the type of primary bifurcation.

Here, localized states (red line, example profiles i to iv in top row of Fig. 5.21)
branch off from the supersolid branch (blue) in a subcritical bifurcation, which
leaves both branches unstable. From there the localized states branch continues
towards higher densities while the contrast 𝐶 increases until it reaches a saddle-
node bifurcation (state i). At the saddle-node the branch reaches its maximum
density and stabilizes as it turns back towards lower ̄𝜌. From there 𝐶 plateaus until
(at lower ̄𝜌) there is another limiting saddle-node bifurcation (state iv) where the
branch turns again, and destabilizes until it ends on the branch of supersolid states
thereby stabilizing them.

In consequence there are two bistable regions, one for ̄𝜌 > ̄𝜌𝑐 between uniform and
localized state and another one at lower ̄𝜌 between localized and regular periodic
state. They bracket a region where the localized state is the only stable state.

Fig. 5.21 (b) takes a closer look at the bistable region at ̄𝜌 > ̄𝜌𝑐 with respect to
the energy particle density difference Δ𝐸/𝑁 = (𝐸 − 𝐸0)/𝑁 between the various
states and the superfluid. The order of the phase transition now becomes obvious,
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Fig. 5.21: Bifurcation diagram of the effective one-dimensional dipolar BEC model
as a function of the mean density ̄𝜌 − ̄𝜌c in terms of (a) contrast 𝐶, (b)
mean energy per particle Δ𝐸/𝑁 and (c) the chemical potential 𝜇. Shown
are branches of uniform perfect superfluid states (black), periodic states
(blue) and of localized states (red). Solid [dotted] lines denote linearly
stable [unstable] states. Profiles 𝜌(𝑧) of the localized states i-iv (also
marked in (a) and (b)) are depicted in the top row. Panel b) shows
that the energy of the localized state is lower (e.g., state ii) than the
energy of the superfluid even for densities larger than the critical one
( ̄𝜌c, gray circle), marking this as a first order phase transition. Panel c)
depicts the chemical potential depending on the density, clearly showing
the constant region in the localized states, connecting the two coexisting
states. The latter are fully explained in panel d) where the crossing of
two stable branches in the (ΔΩ/𝑁, 𝜇)-plane (ΔΩ/𝑁 is the grand potential
per particle) gives the exact coexisting states marked in black ringed blue
circles both here and in previous panels. The remaining parameters are
𝑎𝑠 = 98𝑎0, 𝑙 = 1.1456 and 𝜂 = 5.8077.
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as Δ𝐸/𝑁 of the localized state crosses zero at a mean density ̄𝜌 > ̄𝜌𝑐, making state
ii more energetically favorable than the superfluid. Consequently, when decreasing
the mean density from a sufficiently large value, there is a jump in the contrast
when the system relaxes to state ii (under complex time evolution), making it a
first-order phase-transition.

In Fig. 5.21 (c) a typical feature of localized states is highlighted. It shows the
chemical potential 𝜇 as a function of the density, which for the stable parts of the
localized branch is largely constant as it follows the Maxwell construction even
outside the thermodynamic limit [181].

In Fig. 5.21 (d) the coexistence of states is further highlighted, as now the chemical
potential is plotted over the grand potential difference to the superfluid per particle
ΔΩ/𝑁 = (Ω − Ω0)/𝑁. The latter is usually only considered for finite 𝑇 cases for
BECs [66, 157, 162], however, this does not exclude the 𝑇 = 0 case considered
here.

The grand potential density allows to check for thermodynamic coexistence of the
superfluid and patterned state, meaning states with the same ΔΩ/𝑁 and 𝜇. Such
states indeed exists and their crossing is highlighted by a black rimmed blue dot
in Fig. 5.21 (a,c,d). The interval of densities spanned by these points marks the
area where localized states can exist. As the considered numerical box is finite, the
actual existence region of the localized states is slightly smaller.

Given that ̄𝜌𝑐 = 6060.49/𝜇m the considered values of ̄𝜌− ̄𝜌𝑐 are comparatively small,
meaning while localized states exist and influence phase transitions, their existence
region is very small, making them hard to find in more complicated simulations,
but not impossible: Fig. 5.22 shows a localized state for the full 3D model (cf.
Sec. 5.6.1) at 𝑎𝑠 = 91𝑎0 and 𝜌 = 5250/𝜇m.

The state is contextualized in Fig. 5.234. Panel (a) gives the contrast with respect
to the mean density for the uniform states (black, example: top row, right) regu-
larly patterned states (blue, example: top row, middle) and a localized state (red,
example: top row, left). (b) shows the accompanying energy particle density differ-
ence to the uniform state, with the crossing marked by a gray dot, while (c) gives
the crossing of the uniform and regularly patterned state in the (Ω/𝑁, 𝜇)-plane,
marked by a black rimmed blue dot. As before these points of thermodynamic
coexistence ( ̄𝜌coex periodic = 5237/𝜇m, ̄𝜌coex superfluid = 5259/𝜇m) limit the interval
where localized states can exist.

4The figure only contains results of complex time-evolution, as full bifurcation analysis in 3D is
numerically still too taxing.
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Fig. 5.22: Example of a stable localized state in a three-dimensional dipolar BEC.
The dipoles are polarized along the 𝑦-direction, the BEC is tightly con-
fined in the transverse direction, but unconfined in the 𝑧-direction (axi-
ally), leading to a tubular geometry. Even without a trap in 𝑧-direction,
there exist stable localized states which feature a modulated supersolid
in the central region and a perfect superfluid sufficiently far from it, i.e.,
there is an unequal distribution of the local average density. The param-
eters are ̄𝜌 = 5250/𝜇m and 𝑎𝑠 = 91𝑎0. Contours are given at 1% (light)
and 75% (dark) of the peak density. For ease of viewing the 𝑧-direction
is compressed by a factor 7.
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Fig. 5.23: Examples of states for a system of ̄𝜌 = 5250/𝜇m and and 𝑎𝑠 = 91𝑎0
in top row: Localized state (left, red), periodic state (middle, blue) and
superfluid (right, black) with contours at 1% (light) and 75% (dark)
of the peak density. For ease of viewing the 𝑧 direction is compressed
by a factor 7 [2] for the localized state [periodic and superfluid states].
Panel (a) shows the contrast of the flat (black) and patterned (blue)
states depending on the mean density, and also situates the localized
state (red dot). The grey dot marks the energy cross between the uniform
and regularly patterned state, found in panel (b), while panel (c) gives
the grand potential density per particle with respect to the chemical
potential. The crossing of the uniform and regularly patterned state
(black rimmed blue dot) gives the coexistence, according to the Maxwell
construction, which is also marked in panel (a).

103



6 Conclusion and Outlook

In this thesis phase transitions have been analyzed in a variety of systems ranging
from passive to active and from classical to quantum level. Effects of different ap-
proximations, including dimensional reduction (assuming a profile in 𝑥 − 𝑦 plane)
and changes from nonlocal to local interactions have been considered. Specifically,
their influence on spinodals, binodals, the order of the phase transition, the gen-
eral existence of localized states and the behavior of their branches in bifurcation
diagrams have been discussed.

The GEM-4 model, as an example of a classical, passive soft-matter model with
nonlocal interactions has been analyzed specifically with an interest in the snaking
behavior of localized state branches [29, 194, 98]. Snaking was expected to appear
due to its prevalent existence region in the Phase-Field Crystal (PFC) model [182],
which can be derived as a local approximation of the GEM-4 model [11, 86, 179,
50]. In this thesis it has been shown that the snaking of localized state branches in
bifurcation diagrams is not part of the original model.

Tests of the different approximations used to get from the GEM-4 to the PFC
model have shown that the lack of snaking is inherited by all of them, even the
PFC model, as long as all parameters are set to match the original model perfectly.
Differences appear only in the width and position of the coexistence region as well
as the position of the folds on the localized states branch, which in turn is influenced
by changes in the width of the interface between uniform and patterned part of a
localized state.

If the approximation parameters do not perfectly match the original model (i.e., if
only the original position of the primary bifurcation is maintained), then variation
in the freed up parameters can qualitatively influence the behavior of localized state
branches. Of the tested approximations the 𝛾 approximation, which replaces the
Fourier expression of the convolution with a series in 𝑘2 up to order 𝑘4, does not
lead to snaking for any parameter configuration, but does influence the width of
the coexistence region. The 𝜀 approximation, which replaces the logarithm with a
Taylor series up to 𝜌4, however, influences the width of the interface region between
localized pattern and the surrounding background. Consequently, the appearance
of snaking and even the overall existence of localized states are subject to changes.
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In summary, it has been shown, that the snaking in the PFC model is not a product
of approximating the GEM-4, but rather of parameter sets which do not perfectly
align with the original model. However, the option that other nonlocal models may
produce snaking, e.g., due to a different interaction potential, cannot be ruled out.
Consequently, future studies exploring which types of terms and potentials lead to
snaking phenomena would prove intriguing.

Overall, the approximations, even when perfectly aligned with the original equa-
tion, only match up qualitatively to the full model, i.e., the bifurcation structure,
including localized state branches remains unchanged, while showing significant
differences on a quantitative level. Therefore, their easier implementation in path-
and time-continuation software must be weighted against the need for the accurate
results of a full model.

As an example of active soft matter an extended PFC model [190], capable of
describing gas, liquid and crystal phases, has been coupled with a polarization
field [80]. The result is a model capable of describing not only the previously
mentioned phases, but also moving or living crystals and crystallites.

The influence of density-dependent and density-independent activity on phase bound-
aries and coexistence regions of the system has been of specific interest to this
thesis. Of the two suggested kinds of activity the density-independent one was
previously shown to destroy motility-induced crystallization (MIC) [124, 135, 134],
while Ref. [80] also pointed out the suppression of motility-induced phase-separation
(MIPS). Here, building on Ref. [80], it has been shown clearly that adding a density-
dependent activity restores the MIPS and also some of the MIC.

In addition, rotating crystallites have been analyzed with respect to their size and
angular velocity depending on the mean density ̄𝜌 and temperature 𝑇. The crys-
tallites have been shown to move like a rigid body while forming hexagonal or near
hexagonal structures. Their behavior can by summarized as follows: Lower 𝑇 and

̄𝜌 lead to lower radii. The lower the radius the higher the angular velocity. The
overall structure of a 𝑅(𝑇 ) diagram for fixed ̄𝜌 has the form of stairs, i.e., plateaus
of constant radius solutions, consisting of crystallites in various stages of filling out
the outermost layer of peaks.

Very low values of 𝑇 lead to coexistence between a uniform background and both
stripe and hexagon patterns, which show additional types of movement such as
shaking or swinging.

For future ventures, additional bifurcation diagrams around interesting points such
as points with multiple coexistences could give further insight, especially when
augmented with numerical continuation of traveling and rotating states.
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Finally, on the quantum level, Bose-Einstein condensates (BECs) and their approx-
imations close to the primary bifurcation have been analyzed.

To start with, tests on a Rydberg dressed nonlocal toy model [76, 41, 159, 115, 114,
40] and its local approximation [73] have proven the general existence of localized
states in two dimensions (in accordance with Refs. [73, 5]), though it has been
shown that the coexistence region might grow infinitely small depending on the
parameter region.

Higher-order nonlinearities are shown to greatly affect the phase diagram in both
one and two dimensions. In 1D they allow for first order phase transitions and
localized states. In 2D they can stabilize the honeycomb and stripe patterns, as
well as lead to a singular point with a second order phase transition, matching
results in Ref. [196].

Overall no qualitative difference between nonlocal model and local approximation
has been found, nor has there been evidence of snaking.

The more complex and realistic model of a dipolar BEC in an infinite tube [26,
39, 177] has similarly been tested for the existence of localized states. Both the
approximated model of a Gaussian profile [23, 22] and the full three dimensional
model [168] show localized states.

Additionally, the approximated model demonstrates an intricacy when determining
the order of a phase transition (cf., e.g., Ref. [182]). The primary bifurcation
is a supercritical pitchfork, which, on a superficial level, would seem to imply a
second order phase transition. The existence of localized sates, however, indicates
a first order phase transition, but requires a sufficiently large domain to support
the interface region between the coexisting phases.

Further tests for regions with a supercritical pitchfork as a primary bifurcation
would be interesting to augment the understanding of the phase transition on large
domains. Especially helpful would be the realization of a comprehensive bifurca-
tion analysis for the three-dimensional case. In addition, simulations of localized
states in finite BECs, i.e., BECs with an additional trap in the 𝑧-direction with
limited particle number would give a better understanding of situations one might
encounter in an experimental setup.

A further step would then be the actual experimental realization, though given the
particle numbers required for domains wide enough to encompass a localized state
this appears elusive with current experimental capabilities.

Furthermore, one could explore the appearance of localized states in other scenarios
which are a current research topic of the BEC community, such as the influence of
temperature fluctuations in dipolar BECs [162, 161] or molecular BECs [20].
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In summary, the thesis has analyzed phase transitions in a variety of contexts. This
has resulted in answers regarding the origin of snaking in the PFC model, influence
of different types of activity on phase boundaries and has also clarified both the
general existence of localized states in BECs and their influence on the classification
of phase transitions.
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A Appendix

A.1 Spatial Stability and the Prediction of Localized States

The general idea of testing for spatial stability [98] of the uniform ground state is to
add a perturbation 𝛿u as in Eq. (2.2), though unlike the test for temporal stability
(see Sec. 2.1) the perturbation now takes the form

𝛿u = 𝜀𝑒𝜆x , (A.1)

where 𝜖 is once again a smallness parameter. Unlike for temporal stability the
spatial eigenvalues 𝜆 can be complex. Therefore, in the following 𝜆∗ is the complex
conjugated spatial eigenvalue.

Applying the perturbation to an equation gives a solution of the form

𝑓(𝜆) + 𝒪(𝜀) = 0 .

The solution of that equation with respect to 𝜆 should give a number of eigen-
values. As often 𝑓(𝜆) = 𝑓(−𝜆) = 𝑓(𝜆∗) = 𝑓(−𝜆∗), there should be at least four
eigenvalues.

Four combinations of eigenvalues are likely to appear, their perturbations are de-
picted in Fig. A.1. An eigenvalue with Re(𝜆) = 0 and Im(𝜆) ≠ 0 (middle left
panel) corresponds to a perturbation in form of a standard pattern. If Re(𝜆) ≠ 0
there is a front between a patterned and a flat state, indicating that localized states
might be possible (but are not guaranteed). This corresponds to the middle and
left panels.

For purely real eigenvalues other than 𝜆 = 0 which just represents a flat state, we
get perturbations as depicted in the two right panels, with an exponential front
rising from a flat state. The corresponding solutions might look like plateaus, or
rather like coexistence of flat states with different mean densities, though this is
not proven.

When passing from one set of eigenvalues, and therefore from one solution type
to another, multiplicity ensues, which consequently is an indicator for borders of
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Fig. A.1: Real part of the spatial perturbation 𝛿u = 𝑒𝜆𝑥 for Im(𝜆) ≠ 0 with Re(𝜆) >
0 (left), Re(𝜆) = 0 (middle left), Re(𝜆) < 0 (middle), as well as for
Im(𝜆) = 0 with Re(𝜆) > 0 (middle right) and Re(𝜆) > 0 (right).

stability. The border of linear stability in particular is given by multiplicity with
Re(𝜆) = 0 and Im(𝜆) ≠ 0.

The well documented Phase-Field Crystal (PFC) model (see e.g. [182, 83]) will be
used to exemplify the stability analysis. Its dynamics are described by

𝜕𝑡𝜌 = Δ [𝑟𝜌 + (Δ + 1)2𝜌 + 𝜌3] . (A.2)

Following the temporal stability analysis leads to

𝜎 = −𝑘2 [𝑟 + (𝑘2 − 1)2 + 3 ̄𝜌2] + 𝒪(𝜀) , (A.3)

which, using 𝜎 = 0 and 𝜕𝑘𝜎 = 0, gives the following critical values for an infinitely
large system:

𝑘2
𝑐 = 0 or 𝑘2

𝑐 = 1 ± √−𝑟 − 3 ̄𝜌2 (A.4)
𝑟𝑐 = −3 ̄𝜌2 . (A.5)

This corresponds to the solid black line in Fig. A.2, above which the flat states are
stable.

When taking spatial eigenvalues into account the eigenvalues 𝜆 take the form

𝜆 = ±√−1 ± √−𝑟 − 3 ̄𝜌2 , (A.6)

which is also depicted in Fig. A.2. The possibility of localized states is given,
branching off in the direction of stable flat states from the border of linear stabil-
ity, which is indeed indicated through purely linear eigenvalues with multiplicity.
Beyond that we find a set of purely imaginary eigenvalues which correspond to a
pattern.
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A second border with multiplicity appears below the first (dashed black line), which
changes the eigenvalue set to two purely real and two purely imaginary eigenvalues,
which presumably indicates the appearance of plateau like states.
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Fig. A.2: Left: Linear stability regions for the PFC model (see Eq. (A.2)) mea-
sured through temporal and spatial stability analysis. The solid black
line represents the border of linear stability, therefore the flat state is
stable above this line and unstable below. The dashed line also has mul-
tiplicity, possibly indicating the onset of plateau solutions. Additionally,
spatial eigenvalues are indicated through insets to the corresponding re-
gions, which detail the real and imaginary parts. The eigenvalues 𝜆 are
marked in violet, with crosses representing single eigenvalues while circles
and squares represent multiplicity of two and four eigenvalues respectively.
Right: The combination of real and imaginary parts of the eigenvalues is
limited to the paths traced in violet, depending on all possible combina-
tions of 𝜌 and 𝑟.

The right panel in Fig. A.2 also shows the paths the real and imaginary parts of
the eigenvalues trace when changing the model parameters ̄𝜌 and 𝑟 and cements
that not every localized state pattern is possible, as wave vector and front width
(which depend on the imaginary and real part of 𝜆 respectively) are linked through
a parabolic dependence.

In the PFC model there are different regions with different types of snaking behav-
ior. Arguments could be made that this behavior is connected to the front width
of the localized states.

Assuming the right value of 𝜆 a localized state front would be given by the real
part of the perturbation 𝛿𝜌. Using the Euler equation it takes the form

Re(𝑒𝜆𝑥) = 𝑒Re(𝜆)𝑥 cos(Im(𝜆)𝑥) . (A.7)
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Rescaling gives two options for measuring the front. ̃𝑥 = 𝑥Re(𝜆), leads to

𝑒𝑥̃ cos( ̃𝑥Im(𝜆)/Re(𝜆)) (A.8)

representing a constant front while 𝑏/𝑎 gives information about the amount of
pattern that fits within that front. Alternatively ̃𝑥 = 𝑥Im(𝜆) leads to

𝑒𝑥̃Re(𝜆)/Im(𝜆) cos( ̃𝑥) (A.9)

giving a constant pattern with changing front steepness as given by Re(𝜆)/Im(𝜆).
This is depicted in Fig. A.3 and will be used in the following parts.
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Fig. A.3: Localized state front depending on the ratio of real to imaginary part of
the spatial eigenvalue 𝜆, after rescaling so the pattern is constant, while
the front varies.

For the PFC model tracking Re(𝜆)/Im(𝜆) as a function of the density distance to
the border of linear stability |𝜌 − 𝜌𝑐| for different values of 𝑟 gives the dependence
depicted in Fig. A.4. Black lines indicate the onset of localized states (dotted line),
wiggling (i.e., snaking without folds, dashed line) and snaking (solid line), neither
of which could be guessed at just from looking at the values of Re(𝜆)/Im(𝜆).

Considering that localized states are a coexistence of a flat state and a patterned
state the value for Re(𝜆)/Im(𝜆) which corresponds to that coexisting flat state with
the mean density ̄𝜌𝑐𝑥 could be more informative. To test that, ̄𝜌𝑐𝑥 at different 𝑟
were drawn from Ref. [182] and the corresponding spatial eigenvalues calculated.
The results are depicted in the grey line in Fig. A.4. It crosses the snaking onset
(solid black line) at a ratio of Re(𝜆)/Im(𝜆) ≈ 0.17 and the wiggling onset (dashed
black line) at a ratio of Re(𝜆)/Im(𝜆) ≈ 0.1.

Given that mass conservation is involved, ̄𝜌𝑐𝑥 may not match the mean density
of the flat parts of the localized states, due to system size and particle amount
constraints. The given values are therefore to be used with caution.

Testing this against the real PFC model at 𝑟 = −0.9 leads to the results depicted
in Fig. A.5. The real results show a steeper front than the ones drawn from spatial
eigenvalues, therefore exact predictions are likely not possible, though they could
be taken as a lower bound.
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Fig. A.4: Ratio of real to imaginary part of the spatial eigenvalue 𝜆 for the PFC
model as a function of the density distance to the border of linear stability
|𝜌 − 𝜌𝑐| for different values of 𝑟, as indicated by the colorbar. The onset
of localized states as well as the wiggling and snaking behavior of the
localized branch are indicated as dotted, dashed and solid black lines
respectively. The grey line gives the results specifically for the flat state
which coexists with the pattern to form the localized state.

In the bottom right panel Re(𝜆)/Im(𝜆) is once again measured over the mean den-
sity distance from the border of linear stability, both for the theoretical values (red)
and for the real model (blue). The front steepness is measured through fitting an
exponential through the maxima of two neighboring peaks, with 𝜆(1.&2.max) (solid
line) corresponding to the fit through the first and second maximum, 𝜆(2.&3.max)
(dot-dashed line) and 𝜆(3.&4.max) (dotted line) then match the fit through the
second and third, and third and fourth maximum respectively. As expected the
fit through the smallest maxima (third and fourth) matches the theoretical curve
best, though it still deviates quite far.

Other models which exhibit an onset of snaking have different equations for the
spatial eigenvalues and therefore different dependencies for Re(𝜆)/Im(𝜆). Such a
dependency is depicted in Fig. A.6 for the PFC and the coupled Cahn-Hilliard
model (see Ref. [59]) at parameter values which match the onset of snaking of the
respective models. The resulting curves have very little in common and show very
different values at the density of the uniform coexisting value, both of which are
indicators that there is no universality for values of Re(𝜆)/Im(𝜆) as an indicator
for the onset of snaking.
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Fig. A.5: Real results (blue) and theoretical prediction (red, rescaled and shifted to
match the lowest maximum of the blue curve) for a localized state front
in the PFC model at 𝑟 = −0.9, depicted in the numbered windows 1) to
5). The corresponding real to imaginary ratio of the eigenvalues can be
found the the lower right figure in red for the theory and blue for the real
values, with different line styles, depending on whether the eigenvalue 𝜆
was calculated using the first and second maximum (solid), second and
third maximum (dot dashed) or third and fourth maximum (dotted).
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Fig. A.6: Snaking onset as indicated by the ratio of real to imaginary part of the
spatial eigenvalue 𝜆 for the PFC and coupled Cahn-Hilliard (CH) model
(light blue).
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A.2 Rescaling of the DDFT Equation with GEM-4 Potential

When rescaling Eq. (3.7), i.e.,

𝜕𝑡𝜌 = ∇[(1 + 𝜌)∇[log(1 + 𝜌) + 𝜌0𝛽(𝑈 ∗ 𝜌)]] (A.10)

with the characteristic dimensionless length scale 𝑅 the new parameters (denoted
with subscript 𝑠) connect to the original ones as follows:

𝑥 = 𝑅𝑥𝑠 ,
𝑦 = 𝑅𝑦𝑠 ,

𝑟 = √𝑥2 + 𝑦2 = 𝑅√𝑥2
𝑠 + 𝑦2

𝑠 = 𝑅𝑟𝑠 .

In consequence

𝜌(𝑥, 𝑦) = 𝜌(𝑥𝑠𝑅, 𝑦𝑠𝑅) = 𝜌𝑠(𝑥𝑠, 𝑦𝑠) ,
∇ = 𝑅−1∇𝑠 ,

𝑈(𝑥, 𝑦) = 𝑈(𝑥𝑠𝑅, 𝑦𝑠𝑅) = 𝑈𝑠(𝑥𝑠, 𝑦𝑠) with 𝑈𝑠(𝑟) = 𝜀𝑒−𝑟4 ,
(𝑈 ∗ 𝜌)(𝑥, 𝑦) = 𝑅𝑑(𝑈𝑠 ∗ 𝜌𝑠)(𝑥𝑠, 𝑦𝑠) ,

where 𝑑 is the dimension. The latter is due to

(𝑈 ∗ 𝜌)(𝑥, 𝑦) = ∫ d𝑟′𝑑𝑈(𝑟 − 𝑟′)𝜌(𝑟′)

= 𝑅𝑑 ∫d𝑟′𝑑
𝑠 𝑈(𝑟𝑠𝑅 − 𝑟′

𝑠𝑅)𝜌(𝑟′
𝑠𝑅)

= 𝑅𝑑 ∫d𝑟′𝑑
𝑠 𝑈𝑠(𝑟𝑠 − 𝑟′

𝑠)𝜌𝑠(𝑟′
𝑠)

= 𝑅𝑑(𝑈𝑠 ∗ 𝜌𝑠)(𝑥𝑠, 𝑦𝑠) .

If furthermore introducing the (dimensionless) energy scale 𝜀 by writing 𝑈𝑠 = 𝜀𝑢𝑠
the equation takes the form

𝜕𝑡𝜌𝑠 = 𝑅−2∇𝑠[(1 + 𝜌𝑠)∇𝑠[log(1 + 𝜌𝑠) + 𝑅𝑑𝜌0𝛽𝜀(𝑢𝑠 ∗ 𝜌𝑠)] .

Rescaling 𝑡 using 𝑡 = 𝑅2𝑡𝑠 and combining the remaining parameters into 𝛼 =
𝑅𝑑𝜀𝜌0𝛽 finally leads to:

𝜕𝑡𝑠
𝜌𝑠 = ∇𝑠[(1 + 𝜌𝑠)∇𝑠[log(1 + 𝜌𝑠) + 𝛼(𝑢𝑠 ∗ 𝜌𝑠)] . (A.11)
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A.3 GEM-4 Results in One Spatial Dimension

The results in one spatial dimension are calculated on a domain of length 𝐿 = 3𝐿𝑐
with 𝐿𝑐 = 2𝜋/𝑘𝑐 and 𝑁 = 128 discretization points. The mean density modulation

̄𝜌 is set as the continuation parameter, while 𝛼 is set to 𝛼 = 5.34, so that the
transition between uniform fluid and pattern is at ̄𝜌 = 0. This transition is depicted
in Fig. A.7 a) and takes the form of a supercritical pitchfork bifurcation.
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Fig. A.7: Bifurcation diagram of the steady state solutions in 1D of Eq. 3.10 as a
function of 1 + ̄𝜌 (panels a and c) or 𝜇 (panels b and d) at fixed 𝛼 =
(𝛼(1 + ̄𝜌))𝑐. Stable and unstable states are marked by continuous and
dotted lines respectively, while the pattern (or lack thereof) is indicated
at the branch. The solution measure is a) the L2 norm ||𝛿𝜌||, b) the mean
density 1 + ̄𝜌, c) the energy difference to the uniform state Δ𝐹 = 𝐹 − 𝐹0
and d) the grand potential density difference to the uniform state Δ𝜔.
As the patterned and uniform state branches in the latter do not cross,
coexistence is not possible. The domain size is 𝐿 = 3𝐿𝑐 with 𝐿𝑐 = 2𝜋/𝑘𝑐
and 𝑁 = 128 discretization points are used.

Fig. A.7 b) depicts the dependence of 1 + ̄𝜌 on 𝜇, which easily shows only a near
linear dependency between between a system with or without mass conversation ( ̄𝜌
or 𝜇 as continuation parameter). The former case is discussed in panel a), while
the latter requires re-evaluation of stability and saddle-node bifurcations. As the
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system does not contain those, however, there is no qualitative difference between
both considered systems (also see, e.g., Ref. [52] (sections 3.2 and 3.3), Ref. [182]
(conclusion) or Ref. [83] (end of section 2) for detailed discussions).

In addition, Fig. A.7 c) depicts the energy difference to the uniform state, showing
that the pattern becomes the favorable state once it emerges from the uniform
state.

Finally, Fig. A.7 d) shows the grand potential density difference to the uniform
state. As the lines only cross or rather touch at the primary bifurcation, there is
no indication for localized states.

In addition to the shown bifurcation diagrams the parameter regions around 𝛼 =
5.34/5 and 𝛼 = 5.34 ⋅ 5 were tested, confirming that the discussed behavior occurs
independent of the choice of 𝛼.

A.4 Localized State Interface in the PFC-𝛾 Approximation

To further understand the onset of snaking, changes in the interface between uni-
form and patterned part of the localized state are tracked for the the PFC-𝛾 ap-
proximation while changing 𝑠 or 𝑡 and keeping the other parameter at its optimal
value of 𝑠 = 1/2 or 𝑡 = 1/3. Specifically, the front in the left primary localized
state fold is tracked from its first appearance until the start of full snaking behavior.
This is equivalent to following the left most black lines in Fig. 3.8 b) and c).

For ease of viewing, a slice of the density field ̃𝜌 = 𝜌(𝑥 = 0.7) is prepared by using
̃𝜌 → ̃𝜌− ̄̃𝜌

max( ̃𝜌− ̄̃𝜌) with ̄ ̃𝜌 being the mean of ̃𝜌. The slice ̃𝜌(𝑦) is depicted in Fig. A.8 for
the lowest and highest value of 𝑠 and 𝑡 respectively. The fronts are depicted for all
states in between using the maxima to fit to 𝑓( ̃𝜌max) = 𝑒−( ̃𝜌2

max/𝑓2
1 )𝑓2 , where 𝑓1 is

the radius and 𝑓2 represents the steepness of the front. The respective values of 𝑠
and 𝑡 can be taken from matching the lines to the colorbar.

It can be seen that the closer the parameters 𝑠 and 𝑡 come to the snaking region
the steeper the front becomes. However, the increase of steepness slows down until
it seems near constant at the snaking onset.

A.5 Stability of Localized States in the Nonlocal BEC

Complex time evolution is used to substantiate the existence and stability of the
localized state in a nonlocal Rydberg-dressed toy model of a BEC, i.e., the nonlocal
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Fig. A.8: Front of the localized states depending on 𝑠 (a) and 𝑡 (b) depicted through
a rescaled (with respect to the first maximum) density modulation field
slice ̃𝜌 taken at the first fold of the localized states branch (the left black
line in Fig. 3.8 b) and c)). The fronts are fitted to the maxima through
an equation visualizing the front 𝑓( ̃𝜌max) = 𝑒−( ̃𝜌2

max/𝑓2
1 )𝑓2 . The fronts are

depicted for all values of 𝑠 and 𝑡 for which there is both a fold and no
snaking. The exact values of 𝑠 and 𝑡 are indicated by the color. In
addition, ̃𝜌 is depicted for the lowest and highest value of 𝑠 and 𝑡, matching
those colors.

GPE (5.29) with the interaction potential from Eq. (5.51). In particular, a two-
dimensional domain is considered with 𝑎 = 0 at ̄𝜌′ = 12.625 using a uniform state
with randomly perturbed phase as initial condition. The domain size is 𝐿𝑥 × 𝐿𝑦
with 𝐿𝑥 = 48𝐿′

𝑐/
√

3 and 𝐿𝑦 = 2𝐿′
𝑐. The time step is of size 𝑑𝑡 = 10−3. This

results in the localized state displayed in Fig. A.9 (a), which represents the ground
state of the system. The relaxation of the amplitude during the complex time
evolution is shown in Fig. A.9 (b). Finally, to probe the robustness of the result, this
ground state was evolved using real-time evolution, i.e., by employing a dissipative
pseudo dynamics. The resulting small numerical fluctuations of the amplitude are
illustrated in Fig. A.9 (c) clarifying that the pattern is preserved.
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Fig. A.9: (a) Localized ground state for a two-dimensional domain as obtained by
complex time evolution of Eq. (5.29), i.e., the nonlocal GPE with the inter-
action potential from Eq. (5.51). (b) Relaxation of the amplitude during
the complex time evolution. (c) Real-time evolution of the amplitude of
previously relaxed state, indicating its robustness. The parameters are
𝑎 = 0 and ̄𝜌′ = 12.625 with a time step of 𝑑𝑡 = 10−3. The domain size is
𝐿𝑥 × 𝐿𝑦 with 𝐿𝑥 = 48𝐿′

𝑐/
√

3 and 𝐿𝑦 = 2𝐿′
𝑐.
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