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1. Introduction and Motivation

Generally speaking, the topic of the present work is the theoretical description of thin
films of a complex fluid. From the point of view of a theoretical description, the term
thin does not refer to an absolute height of the film but rather to the ratio of the height
to a typical horizontal length scale [KT07]. The variety of liquid films which can be
considered as thin according to this notation is extremely large, ranging from lava flows,
with a height larger than ten meters, to films of a height on the molecular length scale.
Reviews of the dynamics and statics of thin films can be found, e.g., in [CM09, ODB97].
However, in the context of technical applications and related experiments, authors often
refer to the absolute height of the films as thin. There, the main interest is the behavior
of liquid films of heights of a few hundred nanometers deposited on solids. Homoge-
neous coatings of solids by thin liquid films are important for optical applications and
are also employed as protective layers [ODB97]. In other cases, e.g., depending on the
thickness of the film and the interaction energies between film and underlying solid, thin
films eventually break up into more or less regular structures which can be of interest
for applications in semiconductor technologies [CWS+02]. Early experiments of this
self-assembly mechanism in the case of thin polymer films are presented in [Rei92].
These applications motivate the description of thin films on a solid, with a free surface
given by the liquid-gas interface. Following common nomenclature, the solid will be
subsequently referred to as the substrate. The theoretical description of simple liquids,
i.e., liquids consisting of a single component, for this geometry is quite advanced. The
basic equations are reasonably well understood and of Cahn-Hilliard type as we will see
in chapter 4.
In contrast, thin films of binary fluids, exhibiting phase separation and local concen-
tration dependence are still not understood to a large extent. For recent publications
related to this topic, see [NT10, TTL13]. Especially the description of solutions, featur-
ing a volatile solvent, is of great interest for the description of deposition processes from
thin films. The structured deposition of technically relevant molecules at the contact
line of a thin film moving on a substrate has been experimentally investigated in the
past decade [Thi14]. By contact line, we refer to the region where the liquid-gas inter-
face meets the solid-liquid interface. The controlled deposition can be obtained, e.g.,
through the evaporation of a droplet of solution from a restricted geometry as reported
in [LG05, HXX+05], but most commonly, controlled deposition is achieved through
the use of the so-called dip-coating technique. In this intriguingly simple technique, the
substrate is pulled from a bath containing the solution and the deposition takes place at
the contact line of the meniscus, where the solvent evaporation is strongest. A sketch
of the experimental set-up is shown in figure 1.1. Two different types of molecules
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1. Introduction and Motivation

can be deposited in dip-coating processes, namely surface-active and non surface-active
molecules. Surface active molecules are amphiphilic, i.e., consisting of a hydrophilic
and a hydrophobic part and are therefore adsorbed at the surface of the solution, form-
ing a so-called Langmuir-Blodgett film. A theory concerned with the description of
pattern formation during the transfer of such films on a substrate can be found in
[KGFC10, LKG+12]. For the case of surface active molecules, which are adsorbed at
the surface, the liquid subphase can be treated as a one-component fluid, with a surface
layer dependent surface tension.
However, in the past decade various dip-coating experiments were performed using so-
lutions containing non surface-active molecules, which are deposited when the solvent
evaporates. Structures found are in general stripe patterns as, e.g., in [GFS07] for the
case of colloidal suspensions. A short overview is given in [LKG+12, FAT12].

v

Figure 1.1.: Sketch of the experimental set-up in dip-coating experiments. The sub-
strate is pulled out of a bath filled with a solution with a constant velocity v which is
in most cases the main experimental control parameter.

Recently, experiments were performed at the University of Münster, where more com-
plex structures of dendritic type are formed during the deposition of molecules of the
organic semiconductor DTBDT-C9 on silicon wafers [LGS+10] (see figure 1.2 for optical
images of the deposition structures and the structural formula of the solute molecules).
In these experiments, the main control parameter is the transfer velocity v, i.e., the
velocity at which the substrate is pulled out of the bath containing the solution. The
velocity determines the morphology of the deposits, as well as the number of layers of
which the deposits consist. Bilayer and multilayer deposits exhibit a crystal ordering,
whereas the monolayer deposits are reported to be amorphous. Therefore, it seems
probable that the dynamical deposition process at the contact line plays a crucial role
even for structures as complex as described above.
As stated before, the description of the dynamical formation of such structures from
solutions of non surface-active molecules is rather involved. As a first step, one needs
to develop thin film equations for solutions, which are valid for dense solutions and
evaporating solvents. The formulation and investigation of such equations is addressed
in the present thesis.
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Figure 1.2.: Left: Optical images of (a) multilayer and (b) bilayer deposits of DTBDT
on a silicone substrate as reported in [LGS+10]. The pulling direction is indicated by
the arrows. Right: Structural formula of DTBDT-C9.

The thesis is organized as follows: Subsequent to the introductory chapter, in the
second chapter, the well known advection-diffusion equations for binary fluids will be
discussed in details. Using a long-wave expansion, the corresponding equations in the
thin film limit will be derived. These resulting equations are coupled, highly nonlinear,
partial differential equations for the local height h(x, t) and the local, height averaged
concentration φ(x, t) of the solution layer which are only valid for dilute solutions.
In chapter 3, we introduce a gradient formulation of the simple diffusion equation and
formulate the Cahn-Hilliard equation as a generalization of this equation. Following
[Thi11], it is then shown that the basic equations derived in the previous chapter can
also be written in terms of a gradient formulation. In the framework of the gradient
formulation, we present an extension of the basic equations through an alteration of the
free energy functional and propose a derivation for one part of the resulting equations.
Chapter 4 starts with a discussion of the thin film equations for simple liquids, which are
contained as a special case in our equations for solutions. The full extended equations
as derived in chapter 3 are then supplemented by an evaporation term. In addition,
we perform a linear stability analysis of the full system of equations and discuss some
numerical results on the dynamics exhibited by the equations.
While the dynamics shown in the previous chapter take place on a substrate at rest, in
chapter 5 we investigate the dynamics on a moving substrate, namely using boundary
conditions that mimic the transfer process which occurs in dip-coating experiments.
Here, it is shown that periodic structures, i.e., stripes and patterns of hexagonal type,
are formed at the meniscus due to evaporation-induced phase decomposition.
The thesis ends with a summary as well as a discussion of the results and an outlook
on possibilities and tasks for future work.

3





2. Derivation of the Basic Equations

2.1. Advection-Diffusion Equations for Solutions

The basic equations for fluids are the Navier-Stokes equation (2.1) for the velocity
u(x, t) and the continuity equation (2.2) for the density ρ(x, t), x ∈ R3 of the fluid
[LLW91]:

ρ(∂tu + u ·∇u) = −∇p+ η∆u +
(
ξ +

η

3

)
∇(∇ · u), (2.1)

∂tρ+ ∇ · (ρu) = 0. (2.2)

Here, the Lamé-parameters of viscosity ξ and η are assumed to be independent of (x, t).
Note that the last summand in equation (2.1) is non-zero only for compressible fluids.
Following [LLW91], we now wish to extend these equations to a system of equations
for two-component fluids, i.e., binary mixtures. These equations can then be applied to
solutions of small solute concentration, where the effect of concentration on the Navier-
Stokes equation enters only through the dependence of the Lamé-parameters on the
concentration. Although the equations will be subject to massive simplifications in the
framework of the lubrication approximation, in this section they will be presented in
their full extend.
The relevant new order parameter for the case of mixtures and solutions is the concen-
tration c(x, t) of one component. The concentration can be defined as a per mass-, a
per parts- or a per volume concentration. The relations between the different definitions
are in general nonlinear for particles of different size and different mass per mole. In
this section, we define c := cm as a per mass concentration. Later on, we will assume
identical particles in mass and size and use the definition of a per volume concentration.
To prevent confusions, a few words should be spend on the correspondence of the dif-
ferent definitions with the average density ρ.
Let us consider a small volume element dV = dVA + dVB containing a small mass ele-
ment of the fluid dm = dmA +dmB, where dVA,B are the volumes occupied by molecules
of component A or B, respectively and dmA,B are the corresponding masses. We can
now define the per mass concentration cm and the per volume concentration cV as

cV =
dVA

dVA + dVB
; cm :=

dmA

dmA + dmB
=

ρAdVA

ρAdVA + ρBdVB
=
ρAcV

ρ
. (2.3)

Here, the mass densities ρA,B are the constant densities of the pure substances A,B,
whereas the average density of the fluid ρ is defined via ρAdVA + ρBdVB := ρdV .
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2. Derivation of the Basic Equations

The explicit dependence of the average density ρ (which is the density now appearing
in the Navier-Stokes equation) on the per mass concentration reads:

ρ =
ρAρB

ρBcm + (1− cm)ρA
. (2.4)

The overall mass flux of the fluid is given by

JA+B = ρu = cρu + (1− c)ρu. (2.5)

The velocity u can be interpreted as a center of mass velocity of the binary fluid.
Let us now consider the spatio-temporal evolution of the mass density ρc of one com-
ponent, e.g., in the case of a solution, the mass density of the solute. As the mass of
the solute is conserved, the corresponding density obeys a local conservation law of the
form:

∂t(ρc) = −∇(ρc u + Jc), (2.6)

where JA = ρc u is the flux of mass due to advection and Jc corresponds to the flux
due to diffusion. Note that through equation (2.5) the diffusive fluxes for the different
components are related by Jc = −J1−c. Using equation (2.2), we obtain the advection-
diffusion equation for the concentration of the solute:

ρ(∂tc+ u ·∇c) = −∇ · Jc. (2.7)

The evolution of the overall flow field u is given by a modified Navier-Stokes equa-
tion, where the Lamé-parameters are now in general concentration-dependent and thus
spatio-temporally non-constant:

ρ(∂tu + u ·∇u) = −∇p+ ∇ · γ. (2.8)

Here, γ is the viscous stress tensor and in the most general case γij reads

γij =

(
η(c)

(
∂xj∂ui + ∂xi∂uj −

2

3
δij∂xlul

))
+ δij (ξ(c)∂xlul) . (2.9)

We use the notation ∇·γ := ∂xiγij and i, j ∈ {1, 2, 3}. Notice that several terms may be
omitted in later derivations when assuming approximate incompressibility. In general,
for ρA 6= ρB, the average density ρ can not be considered as a constant due to the
relation (2.4). To close the system of equations for mixtures and solutions, one finally
needs information about the diffusive flux in equation (2.7). In general, the diffusive flux
results from temperature gradients, concentration gradients and pressure gradients. For
the sake of simplicity, we confine ourselves to the discussion of concentration dependence
and refer the reader to [LLW91] for a more detailed discussion of all effects in the
framework of thermodynamics. In this case one obtains:

Jc = −ρD ∇c. (2.10)
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2.2. Lubrication Approximation of the Advection-Diffusion Equations

Here, we call D = D(c) the diffusion coefficient, which may be concentration depen-
dent. The suitable concentration dependence for solutions can be formulated indirectly
through the concentration dependence of the viscosity and by the well known Einstein
relation:

D(c) =
kBT

6πaη(c)
. (2.11)

The relation can be easily derived by considering the thermodynamic equilibrium of
a solution in a conservative external force field, as it was done in [Ein06]. In relation
(2.11), a is a molecular length of a solute molecule, η(c) the viscosity of the fluid, kB is
the Boltzmann constant and T is the temperature. A concentration dependence of the
viscosity will be discussed in Chapter 4.

2.2. Lubrication Approximation of the Advection-Diffusion
Equations

In this work, we are interested in the dynamics of very thin films of solution, i.e., in
systems with largely separated horizontal and vertical length scales. It is quite obvi-
ous that in this case approximations through rescaling of the basic equations suggest
themselves. For this purpose, we will introduce a vertical length scale h0 and a hor-
izontal length scale l0 and use their ratio ε := h0

l0
as a parameter of smallness. This

approximation technique is widely used for thin films and is referred to as lubrication
approximation or long-wave expansion. A review of the treadment of liquids in the thin
film limit can be found in [ODB97].
The derivations shown here follow the ideas presented in [WCM03], where the derivation
has been performed for equations for soluble but surface active solutes. In [WCM03]
thermal effects are also included, which are omitted here in order to obtain a simplified
model.
In the framework of the lubrication approximation, partial differential equations for the
local height h(x, t), as well as for the height-averaged local concentration φ(x) of the
thin film of solution, will be derived. Here, x = (x, y) are the horizontal coordinates
(see also figure 2.1). We adopt the notation

a(3) := (ax, ay, az); a := (ax, ay); ∇(3) := (∂x, ∂y, ∂z); ∇ := (∂x, ∂y). (2.12)

The following properties of the system in question are assumed:

(a) The vertical extension of the system is much smaller than the horizontal extension.

(b) The diffusion in the vertical direction leads to fast averaging of the concentration
in the vertical direction.

(c) The concentration is small throughout the system.
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2. Derivation of the Basic Equations

The most important tool for the derivation of simplified equations by using the prop-
erties (a)-(c) is the rescaling of the respective equations. We will now introduce the
general scaling by length and time scales (h0, l0 and t0 respectively), further scaling
will be introduced ad hoc when needed in the derivations. We define (see figure 2.1 for
the choice of the coordinate system):

z = h0z̃; x = l0x̃; t = t0t̃; u =
l0
t0
ũ =: u0ũ; uz =

h0

t0
ũz = εu0ũz. (2.13)

For the derivatives, we obtain accordingly:

∂t =
1

t0
∂t̃ ∇ =

ε

h0
∇̃ ∂z =

1

h0
∂z. (2.14)

As already mentioned above, the parameter ε can be treated as a parameter of smallness
to account for assumption (a).

2.2.1. Evolution of the Height Profile

We start out by deriving an equation for the height profile h(x, t) dependent on the

vertically averaged velocity field u := 1
h

h∫
0

u
(
x(3)

)
dz. An expression for u will be

obtained from the Navier-Stokes equation later on. Using assumption (c), we consider
ρ to be approximately independent of (x(3), t), which is valid for small concentrations
c or ρA ≈ ρB in equation (2.4). In this case equation (2.2) reduces to the so-called
incompressibility equation:

∂zuz = −∂xux − ∂yuy. (2.15)

Using the no-penetration boundary condition at z = 0 (uz(z = 0) = 0), we obtain

uz(x, h(x, t), t) = −
h(x,t)∫
0

∇u dz. (2.16)

The velocity of the fluid at the surface is u(3)(x, h(x, t), t). We can now introduce a

different velocity u
(3)
s (x, h(x, t), t) which complies with the identity

d

dt
h = ∂th+ us ·∇h = us,z. (2.17)

Equation (2.17) is called the kinematic boundary condition [WCM03]. The physical

meaning of this equation is that the flux of the velocity field u
(3)
s through the surface

defined by z = h is vanishing. Accordingly, we can define an arbitrary flux j through
the free surface of the film as

j = e
(3)
n · (u(3)(x, h(x, t), t)− us

(3)(x, h(x, t), t)). (2.18)
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2.2. Lubrication Approximation of the Advection-Diffusion Equations

Here, en
(3) is the normal vector to the surface of the film at z = h as shown in figure

2.1. Now, we need to write the normal vector e
(3)
n , as well as the tangential vectors e

(3)
tx

and e
(3)
ty , in an explicit form. Note that the surface at z = h is given by the graph of the

function h(x). In this case the unit vectors locally normal or tangential with respect to
the surface read

e
(3)
n =

1√
1 + (∂xh)2 + (∂yh)2

(−∂xh,−∂yh, 1), (2.19)

e
(3)
tx =

1√
1 + (∂xh)2

(1, 0, ∂xh); e
(3)
ty =

1√
1 + (∂yh)2

(0, 1, ∂yh). (2.20)

It is easily seen by rescaling that the normalization of these vectors is close to unity in
the system we are interested in. We insert the above definition of the normal vector in
equation (2.18). By performing the rescaling outlined in (2.13), combined with j = h0

t0
j̃

and dropping the tildes, we obtain:

us ·∇h− us.z = j + u ·∇h− uz. (2.21)

As already suggested above, here we used the approximation 1√
1+ε2(∂x̃h̃)2+ε2(∂ỹh̃)2

≈ 1.

We now insert (2.21) in (2.17) and the result in (2.16):

∂th+ u ·∇h = −
h∫

0

∇ · u− j ⇔ ∂th = −∇ ·
h∫

0

u dz − j (2.22)

⇔ ∂th = −∇ · (hu)− j. (2.23)

Thus, the evolution equation of the height profile h in the thin film limit is an advection
equation with the height averaged velocity field u and a source term j defined by a
rescaled version of equation (2.18). The source term j will obtain the physical meaning
of an evaporation term later on.

2.2.2. Evolution of the Averaged Concentration

We will now proceed with the treatment of equations (2.7) and (2.11) with a diffusion
coefficient given by the Einstein relation (2.11):

ρ(∂tc+ u(3) ·∇(3)c) = −∇(3) ·
(
ρ
kBT

6πaη
∇(3)c

)
. (2.24)

In order to use assumption (a), we start out by the nondimensionalization of equation
(2.7). For this purpose, we use the scaling (2.13) and define

η = η0η̃; D =
kBT

6πaη0
D̃ =: D0D̃. (2.25)
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2. Derivation of the Basic Equations

en

ety
etx

y

z

x

h(x,y)

Figure 2.1.: Sketch of the height profile showing the choice the coordinate system used
in the derivations as well as the normal and tangential unit vectors.

We insert the above scaling in (2.7), where we once again consider ρ to be approximately
constant. Omitting the tildes, equation (2.7) can be written in a nondimensional form
as

1

t0
∂tc+

l0
t0

ε

h0
u ·∇c+

h0

t0

1

h0
uz∂zc =

ε2

h2
0

D0∇ · (D∇C) +
D0

h2
0

∂z(D∂zc)

⇔ ∂tc+ u ·∇c+ uz∂zc = Pe−1(∇ · (D∇c) +
1

ε2
∂z(D∂zc)). (2.26)

The Péclet number Pe = u0l0
D0

was defined, which is a dimensionless measure for the
ratio of advective to diffusive transport rates [Pro05]. Now, the assumption (b) has
to be quantified to be included in the derivations. The concentration is assumed to
be only weakly dependent of the vertical space variable z and the following ansatz is
performed:

c(x, z, t) = φ(x, t) + ε2Pe c1(x, z, t), where
1

h

h∫
0

c(x, z, t)dz = φ(x, z, t). (2.27)

The parameter of smallness associated with the z-dependent part of c is chosen to be the
vertical Péclet number Pez := ε2Pe. We can now insert the ansatz (2.27) into equation
(2.26):

∂tφ+ ε2Pe ∂tc1 + u ·∇φ+ ε2Pe u ·∇c1 + ε2Pe uz∂zc1 (2.28)

= Pe−1(∇ · (D∇φ) + ε2Pe∇ · (D∇c1) + Pe ∂z(D∂zc1)).

Assuming that Pe is of order O(1), we obtain, when neglecting terms of order O(ε2),

∂tc0 + u ·∇c0 = Pe−1(∇ · (D∇c0) + Pe ∂z(D∂zc1)). (2.29)
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2.2. Lubrication Approximation of the Advection-Diffusion Equations

Furthermore, up to O(ε2), we can perform the expansion

D(φ+ ε2Pec1) = D(φ) + ε2Pec1D
′(φ) = D(φ) +O(ε2). (2.30)

Finally, averaging equation (2.29) according to f = 1
h

h∫
0

fdz yields

∂tφ+ u ·∇c0 = Pe−1∇ · (D∇φ) +
1

h

h∫
0

∂z(D∂zc1)dz

⇔ ∂tφ+ u ·∇φ = Pe−1∇ · (D∇φ) +
D

h
((∂zc1)|z=h − (∂zc1)|z=0). (2.31)

To close this equation, we need boundary conditions for z = 0 and z = h, respectively

and an expression for the averaged velocity field u = 1
h

h∫
0

u dz which is to be derived

from the Navier-Stokes equation, as already mentioned.

Boundary at the substrate
For the boundary at z = 0, we assume that the diffusive flux Jdiff = −D(c)∇(3)c van-

ishes in the direction of the substrate (i.e., in the direction −e(3)
z ). The advective flux

vanishes due to the no-penetration boundary condition, which will be used to solve the
Navier-Stokes equation. This leads directly to the relation:

D(φ)∂zc1(x, z = 0) = 0. (2.32)

It has to be emphasized that a different ansatz could be chosen at z = 0, assuming
that the diffusive flux at the z = 0 is equal to a deposition rate of the solute on the
substrate. For a deposition rate linear in c, this would lead to the boundary condition

D∂zc1 ∝ φ. (2.33)

Boundary at the free surface
The physical idea behind the boundary condition at the free surface (z = h) is that no
solute should leave the film through this surface. According to equation (2.18), we can

write the advective flux of solute through the surface as jad = c e
(3)
n · (u(x, h(x, t), t)−

us(x, h(x, t), t)) = c j. We then obtain the yet to be nondimensionalized boundary
condition:

j c|z=h − (D e
(3)
n ·∇(3)c)|z=h = 0. (2.34)

(2.35)

We insert the definition (2.20) of the normal vector into the boundary condition above.
The resulting equation can be rescaled in an analogous way as in (2.21).
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2. Derivation of the Basic Equations

Once again, we immediately omit the tildes:

jc|z=h = − 1

Pe
D∇c ·∇h|z=h +

1

ε2Pe
D∂zc|z=h (2.36)

Now, including the decomposition (2.27) yields:

jφ|z=h + jc1ε
2Pe|z=h = − 1

Pe
D∇h ·∇φ− ε2D∇h ·∇c1|z=h +D∂zc1|z=h

⇒
O(ε)

D∂zc1|z=h = jφ+
1

Pe
D∇h ·∇φ. (2.37)

The boundary conditions (2.32) and (2.37) can now be inserted into equation (2.31):

∂tφ+ u ·∇φ = Pe−1∇(D∇φ) +
1

h
(jφ+ Pe−1D∇h ·∇φ)

⇔ ∂tφ+ u ·∇φ =
1

h

(
1

Pe
(∇(hD∇φ)) + jφ

)
. (2.38)

2.2.3. Lubrication approximation of the Navier-Stokes equation

We now need to compute an expression for the height averaged velocity field in the
thin film geometry. This can be achieved by solving the Navier-Stokes equation in the
framework of a long-wave expansion, subjected to appropriate boundary conditions.
The scaling and approximations presented here, as well as the treatment of the bound-
ary conditions shown in the next section, follow the derivations carried out in [Köp11].
The incompressible Navier-Stokes equation has to be written with a non constant
viscosity η = η(φ + ε2Pe c1). Since we will only consider the lowest order terms
in ε, at this point, we can introduce the approximation η (c (x, z)) ≈ η(φ(x, t)) +
ε2Pe η′(φ(x, t)) c1(x, z, t) ≈ η(φ) and obtain:

ρ(∂tu
(3) + u(3) ·∇u(3)) = −∇(3)p+ ∇(3) · γ (2.39)

(∇(3) · γ)i = ∂xk (η(φ) (∂xk∂ui) + ∂xiuk) = ∂xkui∂xkη + ∂xiuk∂xkη + η∆(3)ui (2.40)

We now first consider the equation for u. It is rescaled according to the scaling (2.13),

completed with the scaling p = t0ε2

η p̃ of the pressure terms and the introduction of the

classical Reynolds number Re = ρl0h0
ηt0

. The scaling of the pressure terms might seem
ad hoc at this point, but we will see later that the scaling corresponds to an assumed
relationship of time and energy scales. The nondimensional Navier-Stokes equation for
u reads without tildes:

∂tu + (u ·∇ + uz∂z)u = Re−1
(
εη∆u + ε−1η∂2

zu + ε∇η ·∇u + ε∇uk ·∇η − ε−1∇p
)
.

(2.41)
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2.3. Boundary conditions for the thin film flow

Here we used the approximation η ≈ η(φ) and thus ∂zη ≈ 0. Furthermore, the notations
x1 = x, x2 = y, x3 = z were used. Then, for the lowest order in ε, we obtain:

η∂2
zu = ∇p. (2.42)

For the z component of the velocity analogous calculations lead to

∂tuz + (u ·∇ + uz∂z)uz = Re−1
(
εη∆uz + ε∇uz ·∇η + ε−1(∂zu) ·∇η − ε−3∂zp

)
.

(2.43)

That is, in lowest order in ε only one term remains and the two equations resulting
from the lubrication approximation of the Navier-Stokes equation are

η∂2
zu = ∇p, (2.44)

∂zp = 0. (2.45)

Obviously, the simplifications are very drastic and one arrives at the same result when
one simply starts from the Stokes equation arguing that inertial effects are negligible
for very thin films. Nevertheless, it is instructive to see how one arrives at the same
equations starting with the Navier-Stokes equation in a very general form when using
the appropriate ansatz for the concentration field c(x, z).

2.3. Boundary conditions for the thin film flow

To solve equations (2.44) and (2.45), once again boundary conditions for the boundaries
at z = 0 (boundary at the substrate) and at z = h have to be provided. For the
boundary condition at the substrate we choose the so-called no-slip boundary condition,
i.e., the velocity of the fluid flow at the substrate has to be equal to the velocity v of
the substrate:

u(x, z = 0) = v. (2.46)

The boundary condition at the free surface is more complicated and its formulation
necessitates an appropriate description of the forces at the surface. As a first step
we will formulate the boundary conditions for the general case and will then apply
the lubrication approximation to obtain the boundary conditions for equations (2.44)
and (2.45). Following [LLW91], we consider a film where the surface is infinitesimally
changed by δf and the height is changed by δz. Now, there are two different types of
forces acting on the film during the change of geometry described above. The first type
of force is due to the well known surface tension σ of the film and the change in the
energy due to this force can be written as δEsurface = σδf .
The second type of force is due to the difference between the pressure pl in the liquid
and the pressure pg in the gas phase. The respective force acting on an infinitesimal
part df of the surface of the film is (pl − pg)df .
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2. Derivation of the Basic Equations

At this point, we need to introduce a physical quantity which becomes meaningful and
important for the description of thin liquid films on a substrate: the disjoining pressure
Π, which was first introduced by Derjaguin [Der40]. The disjoining pressure is used
to describe the interaction of the liquid and the substrate and is explicitly dependent
on the height h of the film. It typically consists of a long range attractive term and
a short range repulsive term, our particular choice and further possible choices of the
disjoining pressure will be discussed in chapter 4. For now, it is important to know that
the disjoining pressure has to be included in the considerations as a supplement to the
pressure pl. Altogether, the overall energy change δE due to the deformation (δz, δf)
can be written as

δE = −
∫

(pl −Π− pg)δzdf + σδf. (2.47)

We now want to express the change δf of the surface in dependence of the infinitesimal
change of the height δz. Locally the non-flat surface df can be described through the
two main radii of curvature κ1, κ2. Up to the first order in δz, the surface element df
is changed as df → δzdf(κ1 + κ2) and thus we can write:

δE = −
∫
δz [pl −Π− pg − σ(κ1 + κ2)] df. (2.48)

In equilibrium, the change in energy has to vanish for all infinitesimal changes δz.
From this requirement we obtain the famous Laplace equation supplemented with the
disjoining pressure term:

pl − pg = Π + σ(κ1 + κ2). (2.49)

This equation can be used to formulate a condition for the stresses acting upon the
free surface. In general, the following relation between the stress tensor τ , the viscous
stress tensor γ and the pressure holds in a continuous medium:

τij = −p δik + γij = −p δij + η
(
∂xjui + ∂xjuj

)
. (2.50)

Here and in the following, the indices are elements of {1, 2, 3}. The vector valued
stresses acting on a surface with normal vector n(3) can be expressed in terms of the
stress tensor by

τ · n(3)|surface := τijnj |surface. (2.51)

Assuming that the difference of the viscous stresses of liquid and gas at the surface
vanishes and using equation (2.44), we obtain for the difference of the stresses acting

on the surface which has the normal vector e
(3)
n :

−Π e
(3)
n − σ(κ1 + κ2)e

(3)
n =

(
(τl − τg) · e(3)

n

)∣∣∣
z=h
≈
(
τl · e(3)

n

)∣∣∣
z=h

. (2.52)
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2.3. Boundary conditions for the thin film flow

The above approximation is valid because the stresses in a gaseous phase are in general
much smaller than in the liquid phase.
Finally, to obtain the boundary conditions for the Navier-Stokes equation at the free
surface, we can project equation (2.52) on the directions of the unit vectors normal and
tangential to the surface defined in equation (2.20):(

e
(3)
n · τl · e(3)

n

)∣∣∣
z=h

= −Π− σ(κ1 + κ2), (2.53)(
e

(3)
tx · τl · e

(3)
n

)∣∣∣
z=h

= 0 =
(
e

(3)
ty · τ · e

(3)
n

)∣∣∣
z=h

. (2.54)

These boundary conditions can now be nondimensionalized using the same scaling as
in section 2.2.3. As the appearing terms are quite extensive, we only write down the
resulting equations up to lowest order in ε for the boundary conditions (2.54) and for
the first two orders of ε for the boundary condition (2.53). As usual, we immediately
omit the tildes and obtain:(

e
(3)
tx · τl · e

(3)
n

)∣∣∣
z=h

= 0 −→
(
ηη0

t0ε
∂zux

)∣∣∣∣
z=h

= 0, (2.55)(
e

(3)
ty · τl · e

(3)
n

)∣∣∣
z=h

= 0 −→
(
ηη0

t0ε
∂zuy

)∣∣∣∣
z=h

= 0, (2.56)(
e

(3)
n · τl · e(3)

n

)∣∣∣
z=h

= −Π− σ(κ1 + κ2) −→ 0 =

(
η

t0ε2
(Π− p)− h0σ

l20
∆h

)∣∣∣∣
z=h

.

(2.57)

We take advantage of the fact that the curvatures κ1 and κ2 of a surface given by the
graph of h(x) can be approximated through the second derivatives of h with respect to
x and y (κ1 + κ2 ≈ −(∂2

xh + ∂2
yh)). Equations (2.55)-(2.57) can now be introduced as

boundary conditions to the equations (2.44) and (2.45). The latter can then be solved
easily. By integrating equation (2.44) twice with respect to z, we obtain:

ηu =
1

2
z2∇p+ a1z + a2 (2.58)

Once again, we used the approximation η ≈ η(φ) and thus the approximate indepen-
dence of η with respect to z. From ∂zu|z=h = 0 and equation (2.45), we can deduce
a1 = −(h∇p)|z=h and the no slip boundary condition leads to a2 = ηv. Hence, we can
conclude:

u(x, z = h, t) = −h
2

2η
∇(Π− ε3Ca−1∆h) + v (2.59)

⇒ u =
1

h

h∫
0

udz = −h
2

3η
∇p+ v; p := Π− ε3Ca−1∆h (2.60)
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2. Derivation of the Basic Equations

Here, we introduced the dimensionless parameter Ca = l0η0
t0σ

, which is well known in
literature as the Capillary number and is a measure for the ratio between viscous and
surface forces [Pro05]. We are now in the position to close the evolution equations for
the averaged concentration field and the height profile which will be the starting point
for further considerations in this work:

∂th = −∇ · (Jadv)− j −∇h · v, (2.61)

∂tφ = −1

h
Jadv ·∇φ+

1

h

(
1

Pe
(∇(hD∇φ)) + jφ

)
−∇φ · v, (2.62)

where Jadv := − h3

3η(φ)
∇p. (2.63)
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3. Free Energy Approach to Relaxational
Dynamics

In this chapter, we will first reformulate the simple diffusion equation using a free
energy functional. This approach will then be extended to obtain a PDE for a system
exhibiting phase separation and so-called uphill diffusion. Finally, we will show that
the conservative part of our basic equations (2.61) and (2.62) can also be formulated in
a similar way.

3.1. Diffusion Equation and Cahn-Hilliard Free Energy

In classical thermodynamics, the Helmholtz free energy is defined as [Hil60]

F = U − TS, (3.1)

where U is the inner energy of the system, T is the temperature and S is the entropy.
The concept of a free energy can be extended to spatially inhomogeneous binary systems
characterized through local concentrations1, and can be used to derive equations for
the spatio-temporal dynamics of those systems.
We introduce a free energy functional F [c] as the integral of a free energy density over
the volume Ω of the considered system:

F [c] =

∫
Ω

f(c,∇c, ..)dxn. (3.2)

The free energy density f(c,∇c, ..) is locally dependent on the concentration and deriva-
tives of the concentration, respectively. By means of a functional derivative of the free
energy functional with respect to the concentration, we define a generalized chemical
potential µc [God91]. The corresponding chemical force Fc is given by the negative
gradient of this potential:

Fc = −∇µc = −∇δF
δc
. (3.3)

We now assume that the flux of the concentration can be expressed through a, in general
concentration-dependent, mobility coefficient M(c) and the chemical force:

Jc = M(c) Fc = −M(c) ∇δF
δc
. (3.4)

1Here and in the following by concentration we mean per volume concentration of one of the compo-
nents.
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3. Free Energy Approach to Relaxational Dynamics

The continuity equation for the concentration then reads

∂tc = −∇ · Jc = ∇ ·
(
M(c) ∇δF

δc

)
. (3.5)

For positive mobility coefficients M(c) > 0, ∀c ∈ [0, 1] and vanishing fluxes through
the surface of the volume Ω, the free energy functional is a Lyapunov functional of
equation (3.5), i.e., a functional which is minimized for stationary solutions of the
equation [Pis06]:

d

dt
F =

∫
Ω

δF
δc(x′)

∂tc(x
′) dx′n =

∫
Ω

δF
δc(x′)

∇ ·
(
M(c(x′)) ∇ δF

δc(x′)

)
dx′n

= −
∫
Ω

M(c(x′))

(
∇ δF
δc(x′)

)2

dx′n ≤ 0. (3.6)

An almost trivial example is a binary mixture exhibiting purely diffusional dynamics
for small concentrations. We formulate the following free energy functional of purely
entropic type for this system:

F [c] =

∫
V

dx3kBT

a3
c ln(c). (3.7)

The diffusion equation with a diffusion coefficient following the Einstein relation (2.11)
can be written in terms of the free energy functional and a mobility coefficient M(c) =
c a2

6πη :

∂tc = ∇ ·
[
M(c)∇δF

δc

]
= D ∆c. (3.8)

For interacting particles, a dependence of the free energy on concentration gradients
should be expected for inhomogeneous systems. In [CH58], Cahn and Hilliard were able
to derive a free energy density exhibiting a dependence on gradients in the most simple
form by symmetry arguments. The arguments used in [CH58] are based on a Taylor
expansion of a free energy density about the free energy density of a homogeneous
system f0(c):

f(c, ∂xic, ∂xi∂xjc) ≈ f0(c) +Gi ∂xic+ κ′ij ∂
2
xixj c+ κ′′ij∂xic ∂xjc. (3.9)

The assumption was used that interactions of the particles in the system are sufficiently
local, so that gradient contributions of higher order can be neglected. Now, the free
energy density has to be invariant to the operations R1 : xi → −xi (reflection) and
R2 : xi → xj (rotation) in order to account for an isotropic system. The expression for
the free energy density (3.9) therefore reduces to

f(c, ∂xic, ∂xi∂xjc) ≈ f0(c) + κ′∆c+ κ′′ (∇c)2 . (3.10)
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3.2. Thermodynamics of Phase Separation

The second and third term can finally be combined due to Green’s theorem, if we
assume a vanishing flux through the boundary of the volume. Using the expression
κ = − d

dcκ
′ + κ′′, we obtain:

f(c,∇c) = f0(c) + κ(∇c)2. (3.11)

The Cahn-Hilliard equation in the most general form is obtained by inserting the Cahn-
Hilliard free energy (3.11) into (3.5):

∂tc = ∇ ·
(
M(c) ∇δF

δc

)
= ∇ ·

(
M(c) ∇

(
∂f0

∂c
− κ∆c

))
. (3.12)

For a certain class of free energy densities f0(c), the solutions to this equation show
the dynamics of phase separation as well as coarsening of phase separated structures.
Before the discussion of these dynamics, it is instructive to revise shortly some aspects
of a thermodynamical (equilibrium) theory of stability and phase separation.

3.2. Thermodynamics of Phase Separation

The most prominent example of a theory describing the thermodynamics of phase sep-
aration is the van der Waals theory for real gases. The well known equation of state
reads [LL70] (

p+
a

v2

)
(v − b) = kBT. (3.13)

Here, p is the pressure of the gas, v = V/N is defined by the total volume V and the
number of particles N as the specific volume occupied by a particle. The constants
a and b arise from particle interactions and the finite extent of the particles. The
corresponding Helmholtz free energy (3.1) can be rescaled by the number of particles
N to obtain the specific free energy f̃ = F

N [Hil60]:

f̃ = −kBT

(
1 + ln

(
(v − b)T 3/2

c

))
− a

v
. (3.14)

We consider a system described by (3.14), consisting of a fixed number of particles
confined to a volume V0. For the van der Waals gas, the specific volume v = V

N can
be considered as the order parameter allowing the differentiation between liquid and
gaseous states. For the given system, we are now interested in the question if the phase
separation occurs, i.e., if the overall free energy of the system in the homogeneous state
Fhom = Nf̃(v = v0) can be lowered through the separation of the system into a fraction
NI of particles with the specific volume vI and a fraction NII of particles with the specific
volume vII, respectively. The obvious constraints to NI,II and vI,II are

NI +NII = N ; NI vI +NII vII = v0N (3.15)

⇒ NI = N
vII − v0

vII − vI
; NII = N

v0 − vI

vII − vI
. (3.16)
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3. Free Energy Approach to Relaxational Dynamics

Thus, the free energy of the phase separated system reads:

Finhom = N

(
vII − v0

vII − vI
f(vI) +

v0 − vI

vII − vI
f(vII)

)
. (3.17)

Equation (3.17) simply states that the free energy Finhom resulting from a phase sepa-
ration of a system initially characterized by the uniform order parameter v0 is given by
the value of the linear interpolation between the two phases evaluated at v = v0. As it
can be easily seen from geometrical considerations or variational calculus, the common
tangent points of the free energy f̃ denoted by vI, vII in figure 3.1 are the energetically
most favorable phases for the decomposition. The decomposition into the phases vI

and vII yields the lowest possible free energy for all initial order parameters v0 located
between vI and vII.
For order parameters v0 /∈ [vI , vII], equation (3.17) implies that no energetically favor-
able inhomogeneous system exists. The region delimited by the coexisting phases vI

and vII is called the binodal region. As stated above, the coexisting phases vI and vII are
defined as the common tangent points of f̃ . The corresponding equations determining
the two values are

f̃ ′(vI) = f̃ ′(vII); f̃(vI) + f̃ ′(vI)(vII − vI) = f̃(vII). (3.18)

Through a simple calculation (cf. [Köp11]), the conditions (3.18) can be reformulated
to the well known thermodynamic conditions for phase coexistence:

p(VI) = p(VII); µ(VI, pI) = µ(VII, pII), (3.19)

where µ is the chemical potential of each phase. One can furthermore note that the
conditions (3.19) may be written in terms of the well known Maxwell construction (e.g
[LL70]).
As a subset of the binodal region we now wish to identify the region where an infinites-
imal change of the order parameter leads to a reduction of the free energy. This subset
of the phase space is denoted as the spinodal region and here infinitesimal fluctuations
of the order parameter induce phase separation. The calculations shown here follow
along the lines of a similar derivation presented in [Köp11].
We once again consider a system consisting of N particles. Let a subset N of the par-
ticles be subject to fluctuations, such that the specific volume of a number N1 < N
of particles is augmented infinitesimally by dv. Due to the conservation constraint
(3.16), the specific volume of the remaining N2 = N −N1 particles needs to change by
dv2 = −N1dv1

N−N1
. The resulting free energy difference with respect to the unperturbed

homogeneous state then reads

∆F = N1f(v0 + dv1) + (N −N1)f

(
v0 −

N1dv1

N2

)
−Nf(v0)

=

(
N1

2
+

N2
1

2(N −N1)

)
(dv1)2 ∂2f

∂v2

∣∣∣∣
v=v0

+O((dv1)3). (3.20)
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3.2. Thermodynamics of Phase Separation

The first factor in equation (3.20) is non-negative per construction. Thus, the free en-

ergy is lowered through an infinitesimal fluctuation for all v0 ∈
{
v0

∣∣∣ ∂2f
∂v2

∣∣∣
v=v0

< 0

}
.

In the thermodynamical context, this is the range of specific volumes, where the isother-
mal compressibility is negative and the system is thus mechanically unstable. Homoge-
neous systems in the spinodal region can be considered unstable. Outside of the spinodal
region and inside the binodal region, homogeneous states are denoted as metastable, i.e.,
their free energy is lowered by phase separation, but infinitesimal fluctuations do not
suffice to induce the separation. Here phase separation does not occur due to spinodal
decomposition triggered by fluctuations but through nucleation (see e.g. [CH59]). In
the (p, v0) phase diagram for the van der Waals gas, the limits of the spinodal and bin-
odal regions meet for the critical temperature at T = TC . For temperatures T > TC ,
no phase separation occurs.

spinodal
  region

binodal 
region

vI vII

f(v)

v

Figure 3.1.: Sketch of the specific free energy of a van der Waals gas. The limits of
the binodal region (green) and spinodal region (red) are shown as well as the coexisting
specific volumes vI, vII and the respective common tangent.
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3. Free Energy Approach to Relaxational Dynamics

3.3. Dynamics of the Cahn-Hilliard Equation

We return to the discussion of the Cahn-Hilliard equation (3.12). We already noted that
for a closed system of volume Ω, the free energy functional is a Lyapunov functional
of the PDE and the solutions of equation (3.12) will evolve towards a minimum of F .
Performing the mapping N → Ω, and v → c, the arguments related to equations (3.17),
(3.20) which were presented in the previous section can be formulated analogously for
the free energy

F̃ [c] =

∫
Ω

dxnf0(c(x)). (3.21)

The concentration c is now the conserved order parameter. Let the local free energy
density f0(c) exhibit double tangent points cI, cII. We then expect homogeneous so-
lutions c(x) = c0 of equation (3.12) to be unstable, if c0 is in the spinodal region(
∂2f
∂c2
|c=c0 < 0

)
, and phase separation into domains of concentration cI and domains of

concentration cII to occur. This instability is readily confirmed by a linear stability
analysis of equation (3.12). We perform the ansatz c(x, t) = c0 + η(x, t) [NCS84]:

∂t η(x, t) = ∇M(c) ·∇
(
f ′0(c)− κ∆c

)
+M(c)∆

(
∂f0

∂c

∣∣∣∣
c=c0+η

− κ∆c

)

= M(c0)

(
∂2f0

∂c2

∣∣∣∣
c=c0

∆η −∆2η

)
+O(η2). (3.22)

To investigate the linear stability with respect to undulations, we furthermore assume
η(x, t) = ηk e

ik·x+ν(k). This ansatz yields the isotropic dispersion relation

ν(k) = M(c0)

(
− ∂2f0

∂c

∣∣∣∣
c=c0

k2 − κk4

)
(3.23)

As one can see from equations (3.22) and (3.23), the curvature ∂2f0
∂c

∣∣∣
c=c0

determines

the sign of the diffusion coefficient in the linear regime. The linear diffusion coefficient

becomes negative for the already thermodynamically derived condition ∂2f
∂c |c=c0 < 0.

In this case, phase separation into the coexisting phases occurs through so-called uphill
diffusion. The Cahn-Hillard equation reflects the spinodal instability of the free energy
as a linear instability of the corresponding homogeneous solutions. Through the dis-
persion relation (3.23), the role of the biharmonic term in the Cahn Hilliard equation
(3.12) is also clarified. For a negative curvature of f0, the term leads to the stabiliza-
tion of high wavenumbers, as shown in figure 3.4. In the free energy functional, the
biharmonic term corresponds to the gradient contribution. High gradients lead to an
increase of the free energy and are therefore suppressed.
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3.3. Dynamics of the Cahn-Hilliard Equation
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Figure 3.2.: Direct numerical simulations of the Cahn-Hilliard equation with the free
energy density f0 = 1

4(c2 − 1)2 and κ = 0.8 showing phase separation into domains of
cI = −1.0 and cII = 1.0. The two columns show the time evolution for the homogeneous
and randomly perturbed initial condition c0 = 0.0 and c0 = −0.4. Note that the
snapshots are not taken at equal times in the two columns. In both cases the coarsening
dynamics are clearly exhibited. For the concentration c0 = −0.4, which is closer to the
binodal limit, one observes the formation of droplets. Smaller droplets are absorbed
into larger ones, this process is known in literature as Ostwald ripening [Pis06].
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0

50

100

150

0 50 100 150

y

x

-4

-2

0

2

4

-4 -2 0 2 4

k
y

kx

-1

-0

0

0

1

c(
x
,y

)
0

2

4

6

8

10

12

c̃(
k
x
,k
y
)

Figure 3.3.: Left: Snapshot of a 2D simulation of the classical Cahn-Hilliard equation
at an early stage of the spinodal decomposition (t=30) for c0 = 0 and κ = 0.8. Right:
Discrete Fourier transformation of the simulation snapshot on the left. The value of
the dominant mode corresponds well to the maximum of the corresponding dispersion
relation (3.23).
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Figure 3.4.: Dispersion relations for the classical Cahn-Hilliard equation and two dif-
ferent homogeneous concentrations. The concentration c0 = 0.0 lies in the spinodal
region, the dispersion relation shows a finite band of unstable wavenumbers. The con-
centration c0 = 0.6 lies in the binodal region but outside of the spinodal region. Here,
the homogeneous solution is stable for all wavenumbers.
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3.4. Gradient Formulation of the Model Equations

A second effect of the gradient contribution in the free energy is the so called coarsening
of phase separated structures. As it can be clearly seen in figure 3.2, the dynamics
are such that small domains of the same phase combine to larger domains in order to
minimize the interface between the two phases and the corresponding energetic penalty.
The numerical results and the dispersion relation shown in figures 3.2 -3.4 correspond
to equation (3.12) with M(c) = 1 and the free energy density

f0(c) =
1

4
(c2 − 1)2. (3.24)

In the following, we will refer to this equation as the classical Cahn-Hilliard equation
[CH58, NCS84].

3.4. Gradient Formulation of the Model Equations

The conservative part of the model equations derived in chapter 2 reads

∂th = ∇ ·
(

h3

3η(φ)
∇
(
Π(h)− ε3Ca−1∆h

))
,

∂tφ =

(
h2

3η(φ)
∇
(
Π(h)− ε3Ca−1∆h

))
·∇φ+

1

h

(
1

Pe
(∇(hD∇φ))

)
. (3.25)

Note that in this section we adopt the notation (2.12), and therefore x ∈ R2. In order to
write these equations in a similar way as equation (3.12), i.e., as a gradient system, we
start out by formulating a dimensional free energy functional for the thin solution layer
depending on the height profile h(x) and the local concentration φ(x). The formulation
of equations (3.25) as a gradient system was first introduced by Thiele in [Thi11]. An
appropriate choice is the following functional:

F [h, φ] =

∫
A

f(h) +
σ

2
(∇h)2 + h

kBT

a3
φ ln(φ) dx2. (3.26)

Here f(h) is the disjoining potential, representing the interaction energy between the
solution and the substrate. The dimensional disjoining pressure Π(h) is defined as
Π(h) = df

dh . The second summand accounts for the surface energy of the film due to
deformations and the third summand is the contribution of the concentration dependent
bulk free energy.
One has to notice that in the set of equations (3.25) the fields which are conserved on
the area A are not h and φ but rather h and Ψ = hφ, since

d

dt

∫
A

dx2 Ψ =
d

dt

∫
A

h
1

h

h∫
0

dx3 c
(
x(3)

)
= 0. (3.27)
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3. Free Energy Approach to Relaxational Dynamics

A gradient formulation of equations (3.25) is therefore only possible in terms of the fields
h(x) and Ψ(x). We will show that a non-dimensional form of the following equations
is equivalent to equations (3.25):

∂th = ∇ ·
[
Qhh∇

δF

δh
+QhΨ∇

δF

δΨ

]
,

∂tΨ = ∇ ·
[
QΨh∇

δF

δh
+QΨΨ∇

δF

δΨ

]
, (3.28)

where the mobility matrix Q is defined as

Q =
1

3η

(
h3 h2Ψ

h2Ψ hΨ2 + 3a2

6π Ψ

)
. (3.29)

Here, we also introduced the notation2:

F [h,Ψ] := F [h(h,Ψ), φ(h,Ψ)], (3.30)

with the nonlinear but bijective transformation

(h, φ)↔ (h,Ψ),where h(h,Ψ) = h; φ(h,Ψ) =
Ψ

h
. (3.31)

Equations (3.28) can be rescaled using the scaling introduced in (2.13) and a scaling
for the energy F = e0l

2
0F̃ (here e0 is an energy per area). Since we interpret the

concentration as a per volume concentration, the quantity Ψ = hφ can be seen as a
local height of the solute and is scaled according to Ψ = h0Ψ̃. We scale the molecular
length by the small length scale h0. The scaling of the mobility matrix therefore reads

Q =
h30
η0
Q̃. Furthermore, it is important to note the following correspondence between

rescaling and functional derivatives3:

δ

δh(x)
→ 1

l20h0

δ

δh̃(x̃)
. (3.32)

We rescale equation (3.28) and immediately drop the tildes as usual:

η0h0

t0ε2e0
∂th = ∇ ·

[
h3

3η
∇δF
δh

+
h2Ψ

3η
∇δF
δΨ

]
,

η0h0

t0ε2e0
∂tΨ = ∇ ·

[
h2Ψ

3η
∇δF
δh

+

(
hΨ2

3η
+

a2

6πηh2
0

Ψ

)
∇δF
δΨ

]
. (3.33)

2In this section and in the following, we often omit the differentiation between h and h, since the
differentiation between F and F always clarifies in a unique way which field we mean.

3The initial functional derivative acts on a functional of the type F =
∫
A

...dx2, whereas the rescaled

functional derivative acts on a functional of the type F̃ =
∫̃
A

...dx̃2, hence the factor 1/l20 =
(
x̃
x

)2
.
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3.4. Gradient Formulation of the Model Equations

The effective time scale t0ε2e0
η0h0

is now defined to be unity, and we thus establish the
relationship

t0 =
η0h0

ε2e0
(3.34)

between energy and time scale of the equations, which was already used in the scaling
of the pressure term in the derivation of the basic equations (see chapter 2, section 2.2).
The non-dimensional free energy functional reads:

F [h,Ψ] =

∫
σε2

2e0
(∇h)2 +

1

e0
f(h0h) + h

h0kBT

a3e0

Ψ

h
ln

(
Ψ

h

)
dA. (3.35)

For calculations, it is convenient to perform the transformation (3.31) and to reformulate
equations (3.33) in terms of (F , h, φ), so that variations with respect to h and φ are
performed independently. We use the relations

δF [h,Ψ]

δh
=
δF [h(h,Ψ), φ(h,Ψ)]

δh
=
∂φ

∂h

δF [h, φ]

δφ
+
∂h

∂h

δF [h, φ]

δh

=
δF [h, φ]

δh
− φ

h

δF
δφ
, (3.36)

δF [h,Ψ]

δΨ
=
∂φ

∂Ψ

δF [h, φ]

δφ
+
∂h

∂Ψ

δF [h, φ]

δh
=

1

h

δF
δφ
. (3.37)

and obtain

∂th = ∇ ·
(
Qhh

(
∇δF
δh
− 1

h

δF
δφ
∇φ
))

(3.38)

∂tφ =
Qhh
h

(
∇δF
δh
− 1

h

δF
δφ
∇φ
)
· ∇φ+

1

h
∇ ·
(
Qdiff∇

(
1

h

δF

δφ

))
. (3.39)

By F we mean the (h, φ) dependent analog to the non-dimensional functional (3.35)

and we have defined Qdiff := hφa2

6πh20η
. The variations read

δF
δh

= −σε
2

e0
∆h+

h0

e0
f ′(h0h) +

h0kBT

a3e0
φ ln (φ) ;

δF
δφ

=
h0kBT

a3e0
h (ln (φ) + 1) . (3.40)

By inserting these variations into equation (3.33), we finally recover equations (3.25),
since, due to (3.34),

σε2

e0
=
t0εσ

η0h0
ε3 = Ca−1ε3, (3.41)

3a2

6πh2
0

h0kBT

a3e0
=
kBT

6πa

1

e0h0
=

kBT

6πaη0

t0ε
2

h2
0

=
1

Pe
. (3.42)
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3. Free Energy Approach to Relaxational Dynamics

The nondimensional disjoining pressure is defined as Π(h) = h0
e0
f ′(h0h). We will now

adopt a special choice of scales, which will prove itself useful later on. We choose

e0 :=
E0

h2
0

; l0 = h2
0

√
σ

E0
, (3.43)

where E0 is an arbitrary energy scale. The choice of the lengthscale l0 implies σε2

e0
= 1.

By defining the dimensionless parameters

L :=
h0

a
; ET =

kBT

E0
, (3.44)

we can finally write the rescaled free energy as

F [h, φ] =

∫
1

2
(∇h)2 +

h2
0

E0
f(h0h) + hL3ET φ ln (φ) dA. (3.45)

The parameter L is obviously the ratio of a typical film height to the molecular length
scale a and ET is the ratio of the thermal energy kBT and the reference energy scale
E0 which is yet to be chosen.
We briefly return to the discussion of the general structure of equation (3.28). The
mobility matrix Q has two important properties. Firstly, the matrix is positive definite,
a fact which ensures the Lyapunov functional property of F in equations (3.28):

d

dt
F =

∫
A

δF

δh(x′)
∂th(x′, t) +

δF

δΨ(x′)
∂tΨ(x′, t) dx′2

= −
∫
A

(
∇ δF

δh

∇ δF
δΨ

)T
Q

(
∇ δF

δh

∇ δF
δΨ

)
dx′2 < 0. (3.46)

Secondly the matrix Q is symmetric. Due to this fact, the formulation (3.28), can be
interpreted in close relation to the so called Onsager reciprocity relation [GP71], where
Fh = ∇ δF

δh , FΨ = ∇ δF
δΨ are the thermodynamic forces corresponding to irreversible

processes.
As already emphasized in the former chapter, equations (3.25) are valid only for small
concentrations, where the dynamics are purely diffusional. Using the gradient formu-
lation, we are now in the position to extend equations (3.25) in a consistent way, i.e.,
such that the gradient structure remains unaltered. In the following section we will
derive a bulk free energy fB(c,∇c) which is valid for high concentrations and local
interactions in the solution. We will then replace the purely entropic bulk free energy
g(φ) = kBT

a3
φ ln(φ) in (3.26) by fB(φ,∇φ).
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3.5. Free Energy of a Non-Ideal Solution

3.5. Free Energy of a Non-Ideal Solution

In this section, we provide a derivation of the free energy density of a solution with
locally interacting components (known in literature as a regular solution [Gug35]) in
the framework of classical statistical mechanics. The derivation follows closely the ar-
guments presented in [Saf94] (chapter 2, section 3).
We assume that the solvent and solute have a similar hard-core repulsion radius and
the solution can thus be modeled by a lattice Hamiltonian with a single lattice constant
a corresponding to the molecular length of the components. The lattice sites repre-
senting spatial coordinates ri, rj will be denoted by indices i and j, respectively. The
Hamiltonian of the system reads:

H = −1

2

∑
i,j

JAAij (1− si)(1− sj) + JBBij sisj + 2JABi,j si (1− sj) . (3.47)

Here, the quantities JAAij , JBBij , JABij are positive energies of attractive solvent-solvent
(AA), solute-solute (BB) and solvent-solute (AB) interactions. Furthermore we define
si ∈ {0, 1}, so that si = 0 if the lattice site i is occupied by a solvent molecule, and
si = 1 if the site is occupied by a solute molecule:

Hint =
1

2

∑
i,j

Jijsi(1− sj), where Jij =
1

2

∑
ij

(JAAij + JBBij − 2JABij ). (3.48)

Hint is the effective interaction Hamiltonian, which can be derived from H by neglecting
constant terms. The effective interaction energy between solute and solvent Jij is
positive and thus repulsive, if the interaction energies of molecules of the same type are
greater then JABij . We now calculate an upper bound to the free energy corresponding
to the Hamiltonian Hint. For this purpose, we define a model (or trial) Hamiltonian by

H0 =
∑
i

kBTαisi. (3.49)

The interaction energies kBTαi are now merely locally defined and, as we will show,
dependent on a quantity we define as the local concentration. The model Hamiltonian
defines a model probability weight P0(si) and configuration sum Z0 as well as a model
equilibrium free energy F0:

Z0 =
∑

{si}∈{0,1}N
e
−H0({si})

kBT =
∑

{si}∈{0,1}N
e

∑
i
−αisi

=
∏
i

∑
si=0,1

e−αisi =
∏
i

1

1− φi
. (3.50)

P0({si}) =
e
−H0({si})

kBT

Z0
; F0 = −kBT ln(Z0) = kBT

∑
i

ln(1− φi). (3.51)

We have introduced the quantity φ := (1 + eαi)−1. It is readily shown that

φi = 〈si〉0, (3.52)
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3. Free Energy Approach to Relaxational Dynamics

where by 〈. . . 〉0, we mean the statistical average with respect to the statistical weight
P0 defined above. Equation (3.52) states that φi corresponds to the local mean value
of si with respect to the model Hamiltonian and since si ∈ {0, 1} we identify φi as the
local concentration of the solute. One can furthermore derive the following inequality
which holds for all parameters {αi}:

Fexact < F0 + 〈Hint −H0〉0 =: F. (3.53)

Assuming that H0 allows a good approximation of the full Hamiltonian, the minimum
of F (φi) with respect to the local concentrations φi provides an upper bound close to
the equilibrium free energy of the full system. Close to equilibrium, F is then a good
approximation for the free energy of the non-homogeneous system. Inserting relations
(3.50),(3.50) into the definition (3.53) yields:

F = kBT
∑
i

(1− φi)ln(1− φi) + φiln(φi) +
1

2

∑
i,j

Jijφi(1− φj) (3.54)

= kBT
∑
i

(1− φi)ln(1− φi) + φiln(φi) +
1

2

∑
i,j

1

2
Jij
(
(φi − φj)2 − φ2

i − φ2
j + 2φi

)
.

In the continuum limit and for local (nearest neighbor) interactions, the free energy can
finally be written as:

F [c] =

∫
V

dx3fB(c,∇c), (3.55)

where fB(c,∇c) =
kBT

a3
(c ln(c) + (1− c) ln(1− c)) +

J

a3
c(1− c) +

1

2

J

a
(∇c)2

=: g(c) +
1

2

J

a
(∇c)2. (3.56)

Note that the free energy g(c) corresponds in fact to a special case of the well known
Flory-Huggins free energy for polymer solutions, which reads [deG79]

gFH =
c

N
ln(c) + (1− c) ln(1− c) + χ c(1− c), (3.57)

where χ is an interaction parameter and N is the number of monomers of which the
considered polymer is constituted.

3.6. Extended Equations

As already stated, to extend our basic equations (3.25) we will now insert the bulk free
energy density derived above as a replacement of the bulk free energy density of purely
entropic type. This ansatz is based on the important assumption that the mobility
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3.6. Extended Equations

matrix remains unaltered for higher concentrations and interacting molecules. The
extended overall free energy functional of the thin film now reads

F [h, φ] =

∫
1

2
(∇h)2 +

h2
0

E0
f(h0h) + hfB(φ,∇φ) dx2, (3.58)

where fB(φ,∇φ)/h0 is given by a rescaled version of (3.56):

fB(φ,∇φ) = g(φ) + ε2EJL
1

2
(∇φ)2, (3.59)

g(φ) = L3ET (φ ln(φ) + (1− φ) ln(1− φ)) + L3EJφ(1− φ). (3.60)

In analogy to the parameter ET , we defined the dimensionless quantity EJ = J
E0

as the
ratio of the bulk interaction energy J and the reference energy scale E0. For convenience
we furthermore define

α :=
EJ
ET

(
=

J

kBT

)
; γ := ε2EJL. (3.61)

The variations with respect to (h, φ) are now given by

δF
δh

= g(φ) +
γ

2
(∇φ)2 −∆h+ f ′(h), (3.62)

δF
δφ

= hg′(φ)− γ∇(h∇φ). (3.63)

These variations can be inserted in equations (3.39) and we obtain the following ex-
tended equations:

∂th =∇ ·
(
Qhh

(
∇
(
−∆h+ f ′(h) +

γ

2
(∇φ)2

)
+
γ

h
∇ · (h∇φ)∇φ

))
, (3.64)

∂tφ =
Qhh
h

(
∇
(
−∆h+ f ′(h) +

γ

2
(∇φ)2

)
+
γ

h
∇ · (h∇φ)∇φ

)
· ∇φ +

1

h
∇
(

hφ

6πL2η
∇
(
g′(φ)− 1

h
γ∇(h∇φ)

))
. (3.65)

We note two important aspects of the extended equations. Firstly, as it could have
been expected, the effective (linear) diffusion coefficient in the diffusive contribution to
the time evolution of φ is changed according to the non-gradient part g(φ) of the bulk
free energy. The equation for φ is also supplemented by a term containing derivatives
of higher order and especially a negative biharmonic term in φ. The consequences of
these extensions will be discussed in detail in the next chapter.
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3. Free Energy Approach to Relaxational Dynamics

Secondly, the hydrodynamic flux Jadv corresponding to the flux in equation (3.64) is
now dependent on gradients in the concentration field φ. These terms stem from a
concentration-dependent Cauchy stress tensor which has to be inserted in the Navier-
Stokes equation for the case of interacting solute molecules [LT98].
The extended equations for a general bulk free energy density are still of the form

∂tφ = −1

h
Jadv ·∇φ+

1

h
∇ ·
(
Qdiff∇

(
1

h

δFB
δφ

))
. (3.66)

The term 1
hJadv corresponds to the height averaged velocity of the solution. In [NT10],

the authors were able to derive this term rigorously from a generalized Navier-Stokes
equation in the framework of a thin film limit of the Navier-Stokes Cahn-Hilliard
(NSCH) equations. For the case of concentration independent disjoining potential and
surface tension, the free energy functional FB simply reads

FB =

∫
A

h fB(φ,∇φ) dx2. (3.67)

We now propose a derivation for the general form of the diffusive contribution in analogy
to the derivation presented in 2.2.2. We start with a generalized diffusion equation of
Cahn-Hilliard type, valid in the volume V =

∫
A

h(x)dx2 of the film:

∂tc
(
x(3), t

)
= ∇(3) ·

(
M(c)∇(3) δFV [c]

δc

)
. (3.68)

The free energy functional FV is defined as a volume integral over an arbitrary free
energy density:

FV =

∫
f(c,∇(3)c)dx3. (3.69)

We now introduce general scales (J0, J
z
0 ) for the flux J := −

(
M(c)∇(3) δFV [c]

δc

)
in the

horizontal plane and the vertical flux Jz := −
(
M(c)∂z

δFV [c]
δc

)
respectively. As in 2.2.2,

we then average the equation over the film height and obtain

∂tφ(x, t) + ε2
1

h

h(x,t)∫
0

∂tc1(x, z, t) dz = −J0t0
l0

1

h

h(x,t)∫
0

∇ · Jdz − Jz0 t0
h0

1

h
(Jz|z=h − Jz|z=0).

(3.70)

We performed the ansatz c(x, z, t) = φ(x, t) + ε2c1(x, z, t). The choice of the param-
eter of smallness of the z dependent summand is of no importance for the derivation
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3.6. Extended Equations

presented. For the purely diffusional case, the no flux boundary condition at the free
surface reads:

Jz0 t0
h0

Jz|z=h =
J0t0
l0

J|z=h · ∇h. (3.71)

Using this boundary condition, as well as the no flux boundary condition at the sub-
strate, equation (3.70) is reformulated as

∂tφ(x, t) + ε2
1

h

h(x,t)∫
0

∂tc1(x, z, t) dz = −J0t0
l0

1

h
∇ ·

h(x,t)∫
0

Jdz. (3.72)

A functional Taylor expansion of the free energy FV yields the straight forward result

FV [c] = FV [φ] + ε2
∫
V

δF [c]

δc(x′, z′, t)

∣∣∣∣
c(x′,z′,t)=φ(x′,t)

c1(x′, z′, t) dx′3

= FV [φ] +O(ε2). (3.73)

Omitting all terms of order O(ε2) or higher order in ε, we now obtain:

∂tφ(x, t) =
J0t0
l0

1

h
∇ ·
(
hM(φ)∇ δFB[φ]

δc(x, z, t)

)
, (3.74)

where FB is given by FB[φ] =
∫
V

f(φ,∇φ) dx3 =
∫
A

h f(φ,∇φ) dx2 as in equation (3.67).

Since φ[c(x)] = 1
h

h∫
0

c(x, z′)dz′, we finally observe that4

δFB[φ]

δc(x, z, t)
=
δFB[φ[c]]

δc(x, z, t)
=

∫
A

δFB[φ]

δφ(x′, t)

δφ[c(x′)]

δc(x, z, t)
dx′2

=

∫
A

δFB[φ]

δφ(x′, t)

1

h(x′)

h(x′,t)∫
0

δ(x− x′)δ(z′′ − z′)dz′′dx′2 =
1

h(x, t)

δFB[φ]

δφ(x, t)
(3.75)

Equation (3.74) then reads

∂tφ(x, t) =
J0t0
l0

1

h
∇ ·
(
hM(φ)∇ 1

h(x, t)

δFB[φ]

δφ(x, t)

)
, (3.76)

which is in agreement with (3.66) for M(c) ∝ c/η(c). We have thus shown that the
extension of the bulk free energy in equations (3.25) leads to a modified diffusional part,

4As it is often the case for the variational calculus in theoretical physics, we lack in mathematical
rigour in our derivation. For the special free energy functionals we are interested in, the identity
(3.75) can be justified through a detailed but simple calculation. The admittedly ill defined chain
rule used here is proposed in [GR93].
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3. Free Energy Approach to Relaxational Dynamics

which can be derived starting from a Cahn-Hilliard type equation for the non-averaged
concentration. The special type of extension we will use in the following (i.e. the bulk
free energy density for a regular solution) is a straight forward extension of the purely
entropic free energy which gives rise to the simple diffusion equation, as shown in (3.8).
The mobility coefficient M(c) ∝ c/η(c) is chosen such that for small concentrations
(where η(c) ≈ η) and non-interacting particles the diffusion equation is recovered. For
concentration independent viscosities, an alternative choice yielding a diffusion equation
for the quantity (1− c) for high concentrations would be M(c) ∝ c(1− c). However, for
concentration dependent viscosities, this mobility supplemented by 1/η does not lead
to a linear diffusion equation in (1− c) and is not considered in this work.
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4. Thin Solution Layers on a Resting
Substrate

In this chapter, we discuss the stability and dynamics of thin solution layers on a
substrate which is at rest. We will first consider a thin layer of a simple fluid, i.e.,
the case φ = 0, and introduce two alternative formulations of the disjoining potential
term. For the case φ 6= 0, we will then complement the extended equations (3.64) by an
expression for the evaporation and the concentration-dependent viscosity, and discuss
the linear stability of the resulting equations as well as phase separation and dewetting,
including nonlinear effects.

4.1. The Thin Film Equations for Simple Liquids

For the case of a pure liquid, i.e., for φ(x) = 0, equations (3.64) reduce to the extensively
investigated thin film equation (e.g., [KT07])

∂th = ∇ ·
[
Qhh∇

δFSF[h]

δh

]
= ∇ ·

[
Qhh∇

(
−∆h+

h3
0

E0
f ′(h0h)

)]
(4.1)

This equation, although not derived from the point of view of phase separation, is of
Cahn-Hilliard type with a nonlinear mobility Qhh and a free energy functional

FSF[h] =

∫ (
1

2
(∇h)2 +

h2
0

E0
f(h0h)

)
dx2, (4.2)

where a rescaled version of the disjoining potential corresponds to the local free energy
f0 in (3.12). The disjoining potential therefore determines the linear stability of homo-
geneous solutions of equation (4.1). Before discussing suitable choices of the disjoining
potential, we need to establish some physical background concerning thin liquid films
on substrates.
Depending on the interaction energy of the liquid with the surface of the substrate, three
scenarios, well known from daily experiences, may occur when a liquid is deposited on
a substrate. As shown in figure 4.1, depending on the equilibrium contact angle, which
is determined by Young’s equation [Saf94], in equilibrium, the substrate is partially,
completely or not at all covered. For the partially wetting case, a homogeneous film
will eventually break up to form droplets, whose shape is determined by the amount of
mass and the contact angle.
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4. Thin Solution Layers on a Resting Substrate

complete wetting partial wetting nonwetting

θ

Figure 4.1.: Sketch of the three different wetting scenarios for thin films deposited on
a substrate. The contact angle θ is determined by the substrate-liquid interaction and
the surface tension of the film through Young’s equation [Saf94].

The mathematical description of thin films in terms of a continuum model becomes quite
delicate whenever applied to a three phase boundary (trijunction), like in the case of a
contact line of a film or droplet. If the contact line moves on the substrate (e.g., when
the substrate is pulled out of a liquid bath), the velocity of the fluid in terms of the
hydrodynamic continuum theory is multivalued due to the no-slip boundary condition
which is in general applied in fluid mechanics. The stress then diverges logarithmically
at the contact line [BMW02]. The moving contact line problem was first pointed out
rigorously in [HS71] and has since then become a field of research of its own, which is
out of the scope of this thesis. A quite simple approach to circumvent the problem is to
introduce the concept of a so called precursor film. According to this approach, at the
henceforth merely apparent contact line, the film fades into the ultrathin precursor (see
figure 4.2). The contact line problem is transferred to the trijunction of the precursor
film which is simply not described. For the description of partially wetted surfaces, one
therefore assumes that the ”dry” regions are completely covered by the precursor film.

θ

hp

Figure 4.2.: Sketch of a contact line placed on an ultrathin precursor hp and of the
apparent contact angle θ.

In order to include the concept of a precursor film in the framework of our thin film
equations, we obviously need to formulate a disjoining potential which provides (for the
case of dewetting) a stable fixed point of homogeneous film height hp corresponding
to the height of the precursor. The disjoining pressure Π(h) was experimentally found
and described by Derjaguin [Der40]. It becomes relevant for films of thickness smaller
than 100 nm, since apolar van der Waals forces extend across the whole thickness of
the film in those geometries [BMW02].
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4.1. The Thin Film Equations for Simple Liquids

In this work, we will use two different models for the disjoining potential f(h), namely

fP(h) = − A

2h2
+

B

5h5
, (4.3)

fS(h) =
A

2h2
+ SPe

d0−h
δ0 . (4.4)

The disjoining potential fP was derived by Pismen [Pis01] in the framework of a diffuse
interface model for thin apolar films. The first term in fP stems from long-range van der
Waals interactions. The constant typically characterizing van der Waals interactions is
the Hamaker constant AH [Isr11], and for fP the relation A = −AH

6π holds. The second
summand in fP corresponds to a short-range repulsive term with some constant B. The
potential fS was proposed by Sharma for polar fluids [Sha93] . Here, the constant A is
the same as for the potential fP, SP < 0 is a polar spreading coefficent, d0 and δ0 are
the Born repulsion length and the Debye length, respectively [TVA+09]. In the scaling
of our basic equations, we are still free to choose the length scale h0 and the energy scale
E0. These scales are now chosen such that the coefficients in the disjoining pressures
are eliminated. We define

h0 :=
3

√
B

A
; E0 = A for f(h) = fP(h), (4.5)

h0 :=
3

√√√√δ0Ae
− d0
δ0

|SP|
; E0 = A for f(h) = fS(h). (4.6)

The non-dimensional potentials then read

h2
0

E0
fP(h0h) = − 1

2h2
+

1

5h5
;

h2
0

E0
fS(h0h) =

1

2h2
− 1

χ
e−χh, (4.7)

where we defined χ := h0/δ0. In the following, we will refer to the nondimensional
disjoining potentials (4.7) simply as fP,S(h). The two potentials and the corresponding
pressures are plotted in figure (4.3).
Since, as already mentioned, equation (4.1) is of Cahn-Hilliard type, the linear stability
of homogeneous films of height h0 is determined by a dispersion relation of the same
form as (3.23):

ν(k) = Qhh(h0)

(
−
∂2fP,S

∂h2

∣∣∣∣
h=h0

k2 − k4

)
. (4.8)

The limits of the stable region (spinodal lines) are given by
∂2fP,S
∂h

∣∣∣
h=h0

= 0 and are also

shown in figure (4.3). Outside of the linear stable region, homogeneous films break-up
into “dry” regions (i.e. regions with h = hp) and regions of larger film heights. This
process in the context of the thin film equation (4.1) is called spinodal dewetting, in
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Figure 4.3.: Plots of the disjoining potentials fP, fs, given by (4.3), (4.4) and of the
corresponding disjoining pressures ΠP, ΠS. The solid lines designate the spinodal region,
which extends to infinity for fP. For fS, one finds two coexisting film heights which
define the limits of the binodal region, as denoted by the dotted lines. The corresponding
Maxwell construction is shown in the plot of ΠS.
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4.1. The Thin Film Equations for Simple Liquids

analogy to the spinodal decomposition in the classical Cahn-Hilliard equation. For the
disjoining potential fP, the spinodal region is infinite, i.e., in our scaling the potential
predicts a break-up of all homogeneous films of a height h0 >

3
√

2. In the case of fS

with the parameter χ = 1.09 [LGP02, TVA+09] we consider in this work, the spinodal
region is bounded from above.
In contrast to fP, for fS one finds hI 6= hII satisfying condition (3.18), i.e., two coexisting
film heights. The lower film height hI ≈ 2.233 is identified with the precursor film height
hp. Due to this fact, the thin film equation with the potential fS exhibits phase sepa-
ration dynamics between the two film heights hI and hII and therefore shows dewetting
into pancake-like drops. The equation supplemented by fP exhibits phase separation
between dry regions and droplets with a given contact angle [Pis01]. Simulations of the
dewetting dynamics in one and two dimensions are shown in figure 4.4, figure 4.5 and
figure 4.6, respectively. From the dispersion relation (4.8), one can easily calculate the
wavelength λP,S of the fastest growing mode at a given initial homogeneous film height
h0:

λP,S = 2π

√√√√−2

(
∂2fP,S

∂h2

∣∣∣∣
h0

)−1

. (4.9)

In our scaling and for typical initial film heights, the wavelengths differ significantly for
the two potentials, hence the simulations shown in figures 4.4 - 4.6 for the two potentials
are performed on domains of a size of different orders of magnitude.
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5.0
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t = 2300
t = 78500

Figure 4.4.: Four snapshots of 1D numerical simulation of the dewetting dynamics
exhibited by equation (4.1) with the disjoining potential fP. Phase separation between
regions of precursor height (h = hp = 1.0) and droplets is shown as well as the typical
coarsening dynamics.
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Figure 4.5.: Dewetting dynamics resulting from the disjoining potential fS in equation
(4.1). In contrast to the simulation shown in figure 4.4, phase separation into domains
of different well defined film heights (given by the Maxwell construction, see figure 4.3)
takes place, rather then into regions of precursor height and droplets. The result of this
phase separation is the formation of pancake-like drops.

0

50

100

150

200

y

f(h) = fP(h) t = 650

0

500

1000

1500

2000

f(h) = fS(h) t = 68.04 · 105

0

50

100

150

200

0 50 100 150 200

y

x

f(h) = fP(h) t = 1020

0

500

1000

1500

2000

0 500 1000 1500 2000
x

f(h) = fS(h) t = 73.71 · 105

0.0

2.0

4.0

6.0

8.0

10.0

h
(x
,y

)

0.0

2.0

4.0

6.0

8.0

10.0

h
(x
,y

)

Figure 4.6.: 2D numerical simulations of equation (4.1) showing dewetting dynamics
in an early stage for the different disjoining potentials fS (right panel) and fP (left
panel).
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4.2. Viscosity and Evaporation

4.2.1. Viscosity

To complete the extended equations (3.64), (3.65) for the case of non-vanishing solute
concentration, we need to formulate an expression for the concentration-dependent
viscosity η(φ) of the fluid. In the equations in question, the viscosity appears in the
mobility coefficients

Qhh =
h3

3η(φ)
; Qdiff =

hφ

6πL2η(φ)
. (4.10)

For the choice of the dimensional viscosity η(φ), we follow [WCM03, TVA+09] and
define

η(φ) =

(
1− φ

φr

)−2

. (4.11)

Here, φr is the random-close-packing volume concentration of the solute, which we set
to unity for the sake of simplicity. The concentration dependence above was derived
in [Que77] for the case of concentrated suspensions from minimum energy dissipation
considerations. Notice that it is a special case of the well known Krieger-Dougherty
law, which states (for concentrations c):

η(c) = η0

(
1− c

cr

)−ν
. (4.12)

A derivation of the Krieger-Dougherty law can be found in [Pro05]. An important fea-
ture of the choice (4.11) for the concentration dependence is that the resulting mobility
coefficients (4.10) appearing in our equations tend to zero for φ→ 1 due to the strongly
nonlinear divergence of the viscosity.

4.2.2. Evaporation

We now wish to extend equations (3.64) and (3.65) by an additive evaporation term.
The formulation of an appropriate evaporation term for thin film equations of simple
liquids is not evident and the formulation of such a term for solutions is, as one might
expect, even more delicate. For the case of simple fluids, in [LGP02, TVA+09, Köp11],
the following ansatz for the equations extended by an evaporation term is made:

∂th = ∇ ·
[
Qhh∇

δFSF

δh

]
− Ev

(
δFSF

δh
− µv

)
. (4.13)

In this ansatz, µv is the chemical potential of the vapor and Ev > 0 is a constant
determining the strength of the evaporation. The underlying assumption is that the
evaporation is a process close to equilibrium and thus proportional to the difference of
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4. Thin Solution Layers on a Resting Substrate

the chemical potential of the liquid phase µl := δFSF
δh and the chemical potential of the

vapor phase. Equation (4.13) is an equation of Cahn-Hilliard type supplemented by an
equation of Allen-Cahn type [AC79]. The evolution of a stable homogeneous film of
height h(t) is then described by the ordinary differential equation

∂th = −Ev

(
f ′P,S(h)− µv

)
. (4.14)

The obvious fixed points hstat are given by

f ′P,S(hstat)− µv = ΠP,S(hstat)− µv = 0. (4.15)

One readily observes (see figure 4.3) that for an almost vanishing chemical potential in
equation (4.13) in the case of the disjoining potential fP, the thin film evaporates until
it reaches the precursor height h = 1.0. This fixed point is stable.
For the case of fS, one can consider a chemical potential µv below the point of the
Maxwell construction (see figure 4.3, e.g. µv = −0.003 in our scaling) and obtain two
stable fixed points with respect to the evaporation term. Equation (4.13) then exhibits
moving front solutions between the two fixed points (figure 4.7 and [LGP02]).
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Figure 4.7.: Moving front between the two fixed points of the evaporation term, given
by equation (4.15) with µv = −0.003, Ev = 0.7, as investigated in [LGP02].

For the case of solutions, we now wish to formulate an evaporation term which accounts
for the evaporation of the solvent, whereas the solute is non-volatile. In [FAT11, FAT12],
where evaporating solutions are described, the authors assume the same evaporation
term (4.13) as for a simple liquid. This ansatz is of course only a minimal model, since
the evaporation term in (4.13) does not account in any way for the amount of solute
present in the liquid. Therefore, this ansatz, although it yields a relatively simple
evaporation term, fails for large concentrations in our case, where it might lead to
concentrations larger than unity.
In analogy to the local height of the solvent Ψ(x, t), it is useful to introduce ρ(x, t) as
the local height of the solute such that

ρ(x, t) = h(x, t)−Ψ(x, t). (4.16)
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4.2. Viscosity and Evaporation

If we aim for an evaporation term which does not permit concentrations larger than
unity, this is equivalent to the request of an evaporation term which leads to fixed
points in ρ which are larger than zero. In this work, we use the following ansatz for the
extension of equations (3.64), (3.65) in their gradient formulation, which is also shortly
discussed in [Thi11]:

∂th = ∇ ·
[
Qhh∇

δF

δh
+QhΨ∇

δF

δΨ

]
− Ev

(
δF

δh
− µv

)
,

∂tΨ = ∇ ·
[
QΨh∇

δF

δh
+QΨΨ∇

δF

δΨ

]
. (4.17)

This ansatz is a straight-forward generalization of (4.13), where we now consider the
difference between the chemical potential µv of the vapor and the chemical potential µs

of the solvent, which reads

µs :=
δF [h,Ψ]

δh
=
δF [h, φ]

δh
− φ

h

δF [φ, h]

δφ
. (4.18)

An easy calculation in analogy to (3.46) shows that

F̃ = F −
∫
A

µvh dx
2 (4.19)

is a Lyapunov functional of equation (4.17). For our extended free energy functional
(3.58), the chemical potential of the solvent is given by the variations (3.62) and (3.63).
For the case of a homogeneous thin film, it therefore reduces to

µs = f ′(h) + g(φ)− φg′(φ). (4.20)

The term g(φ) − φg′(φ) corresponds to the osmotic pressure of the solute as it is in-
troduced, e.g., for the already mentioned Flory-Huggins free energy in [deG79]. We
will discuss explicitly the evaporation term for the disjoining potential fP, which will
be used in the following chapter. In this case, the evolution of the solute height for
homogeneous films reads

∂tρ = −Ev

(
ΠP(Ψ + ρ) + L3ET

(
α

(
Ψ

ρ+ Ψ

)2

+ ln

(
ρ

Ψ + ρ

))
− µv

)
. (4.21)

Here, the solute height Ψ has to be considered as a constant. It is easily seen that
the logarithmic osmotic pressure contribution diverges to −∞ for ρ → 0. It therefore
ensures fixed points ρstat > 0 for all solute heights Ψ. However, the parameters µv and
ETL

3 need to be well adjusted to ensure physically meaningful values of these fixed
points. Plots of the right-hand side and a numerical solution of equation (4.21) are
shown in figure (4.8) and (4.9), respectively, for parameters which will be used in the
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following chapter (ETL
3 = 0.1538 and µv = −0.3077)1. For non-homogeneous films,

the full evaporation term reads:

δev = −Ev

(
f ′(h)−∆h+ g(φ)− φg′(φ) +

γ

2
(∇φ)2 + γ

φ

h
∇ · (h∇φ)− µv

)
. (4.22)
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Figure 4.8.: Left: Plot of the evaporation term as a function of ρ for α = 2.3, omitting
the factor −Ev. Right: Fixed points in ρ as a function of the constant solute height Ψ.
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Figure 4.9.: Numerical simulation of equation (4.21) for different solute heights Ψ,
α = 2.3 and Ev = 1.0.

1We are aware of the fact that the order of magnitude of µv is high compared to the maximum of
the disjoining potential fP. Nevertheless, these parameters have to be chosen mainly for numerical
reasons, since for lower values of µv, fixed points in ρ very close to zero occur, which we are not able
to treat numerically for 2D simulations due to the divergent logarithm in the evaporation term.
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4.3. Linear Stability

In this section, we will investigate the linear stability of homogeneous solutions of the
full equations (3.64) and (3.65), including the evaporation term discussed in the previous
section. To perform this linear stability analysis, the use of the gradient formulation
(4.17) is very helpful. For a similar gradient system, excluding evaporation terms, a
quite general stability analysis is shown in [PBMT05]. We linearize equation (4.17)
about homogeneous states h0, Ψ0, which correspond to fixed points of the evaporation
term, i.e.,

δF

δh

∣∣∣∣
h0,Ψ0

− µv = 0. (4.23)

Since we are only concerned with linear terms, it is sufficient to consider the following
equation as a starting point:(

∂th

∂tΨ

)
=
(
Q∆ + E

)( δF
δh
δF
δΨ

)
, (4.24)

where we introduced the negative semidefinite evaporation matrix

E :=

(
−Ev 0

0 0

)
. (4.25)

To perform the calculations in a more general framework, we furthermore define

f̃(h,Ψ) = fS,P(h) + hg(h,Ψ). (4.26)

We now perform the ansatz h(x, t) = h0 + η(x, t), Ψ(x, t) = Ψ0 + ξ(x, t), where η, ξ
are small perturbations.
The first order in ξ, η of the variations of F with respect to h, Ψ then read

δF

δh
= const.+

∂2f̃

∂h2

∣∣∣∣∣
h0,Ψ0

η +
∂2f̃

∂h∂Ψ

∣∣∣∣∣
h0,Ψ0

ξ −∆η − γΨ2
0

h3
0

∆η + γ
Ψ0

h2
0

∆ξ + h.o.t.,

(4.27)

δF

δΨ
= const.+

∂2f̃

∂Ψ2

∣∣∣∣∣
h0,Ψ0

ξ +
∂2f̃

∂Ψ∂h

∣∣∣∣∣
h0,Ψ0

η − γ

h0
∆ξ + γ

Ψ0

h2
0

∆η + h.o.t. . (4.28)

We insert these variations combined with a Fourier ansatz(
η(x, t)

ξ(x, t)

)
=

(
ηk(t)

ξk(t)

)
eik·x (4.29)
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into equation (4.24) and obtain the system of ODEs(
∂tηk(t)

∂tξk(t)

)
=
(
−k2Q + E

)
J

(
ηk(t)

ξk(t)

)
. (4.30)

The Jacobian matrix J reads:

J =

∂2f̃
∂h2

+ k2 + γ
Ψ2

0

h30
k2 ∂2f̃

∂h∂Ψ − γ
Ψ0

h20
k2

∂2f̃
∂Ψ∂h − γ

Ψ0

h20
k2 ∂2f̃

∂Ψ2 + γ
h0
k2

 . (4.31)

In the following, we consider the case k 6= 0. The fixed point (0, 0)T of the ODEs (4.30)
is stable if and only if Q̃J is negative semidefinite, where Q̃ := −k2Q + E. Inserting the
definition (4.26) and some calculations which are readily performed yield the following
matrix J:

J =

(
(f ′′P,S(h0) + k2) +

φ20
h0

(
g′′(φ0) + γ k2

)
−φ0
h0

(
g′′(φ0) + γ k2

)
−φ0
h0

(
g′′(φ0) + γ k2

)
1
h0

(g′′(φ0) + γ k2)

)
. (4.32)

In this matrix, the terms

Sh := −(f ′′P,S(h0) + k2); Sφ := −(g′′(φ0) + γ k2) (4.33)

determine the sign of the eigenvalues of J. Obviously, these two terms have a simple
interpretation of their own: k2Sh and k2SΦ are proportional to the dispersion relations
of the simple thin film equation (4.1) and a Cahn-Hilliard equation in φ with the free
energy density g(φ), respectively.
The signs of the eigenvalues of Q̃J can be deduced from the trace and the determinant

of the matrix. Since for k 6= 0 the matrix Q̃ is negative definite, the sign of the
determinant and and the thresholds of instability are fixed solely by the matrix J. For
the trace of Q̃J and the determinant of J, simple calculations yield:

Tr[Q̃J] = Ev

(
Sh +

φ2
0

h0
Sφ

)
+ k2

(
h3

0

3η0
Sh +

Qdiff

h0
Sφ

)
; Det[J] =

1

h0
ShSΦ. (4.34)

At least one of the eigenvalues of Q̃J is positive and (0, 0)T is an unstable fixed point

of the linearized equations (4.30), if Det[J] < 0 or Tr[Q̃J] > 0. We therefore end up
with the quite trivial result that our coupled equations (4.17) are unstable if

(a) The homogeneous height in the thin film equation (4.1) is unstable and the con-
centration in the Cahn-Hilliard equation for the concentration is stable or vice
versa: (Sh > 0, Sφ < 0) ∨ (Sh < 0, Sφ > 0)⇒ Det[J] < 0.

(b) Both height and concentration are unstable in their respective decoupled equation:
Sh > 0, Sφ > 0⇒ Tr[Q̃J] > 0.
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In the non-evaporative case, the growth rate νφ(k) and the fastest growing wavelength
λmax,φ of the linear instability in φ read

νφ(k) =
φ0

6πL2η(φ0)
(−g′′(φ)k2 − γk4); λmax,φ =

√
−8π2γ

g′′(φ0)
. (4.35)

If both height and concentration are stable in their respective decoupled Cahn-Hilliard
equations, the coupled equations are stable too. For the positive definite mobility
matrix, the stability is determined by the structure of the free energy functional F [h, φ],
where the coupling between φ and h is weak in our case. A stronger coupling, which also
induces new cooperative instabilities can be observed for disjoining potentials, which
are concentration-dependent [TTL13]. Since one main goal of this work is to write a
simple model for the structure formation at the contact line, we do not consider this
coupling here. In [Cla04], a linear stability condition is derived only by considering
a general free energy functional of the type F =

∫
A f(φ, h) + hfb(φ). This stability

criterion can be reproduced for our gradient system. This shows the thermodynamical
consistency of this formulation, which goes beyond the fact that h and Ψ are conserved.

4.4. Dynamics of Thin Solution Layers

4.4.1. Dewetting and Phase Separation

In analogy to the calculations shown for the van der Waals gas, we now investigate the
non-gradient part of the free energy functional (3.58) with respect to the possibility
of phase coexistence in both h (dewetting) and Ψ. In the system of equations for h
and φ (3.65), it is clear that the phases in h will be solely defined by the disjoining
potential, since the non-gradient coupling of φ into the evolution equation for h occurs
only through the mobility. We will nevertheless shortly present the general calculations
which for more complicated free energy functionals will reveal cooperative phases in φ
and h. We consider the energy of a system, where the fields have the values h1, h2 and
φ1, φ2 on the areas A1, A2. This energy has to be minimized with respect to hi, φi
and Ai under the constraints of overall volume-, solute volume- and area conservation.
The constraints are implemented in terms of lagrangian multipliers [HW91] and the
expression to be minimized reads

eps :=A1f̃(φ1, h1) +A2f̃(φ2, h2) + λ1 (φ1h1A1 + φ1h1A1)

+ λ2 (h1A1 + h2A2) + λ3(A1 +A2). (4.36)
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The minimalization of this energy term with respect to all arguments leads to the
following equalities:

f̃(φ1, h1)− h1∂hf̃(φ1, h1) = f̃(φ2, h2)− h1∂hf̃(φ2, h2), (4.37)

∂hf̃(φ1, h1)− φ1

h1
∂φf̃(φ1, h1) = ∂hf̃(φ2, h2)− φ2

h2
f̃(φ2, h2), (4.38)

1

h1
∂φf̃(φ1, h1) =

1

h2
∂φf̃(φ2, h2). (4.39)

This system of equations is also investigated in [Tod13] for the same purpose as here.
To close the system of equations, we follow [Tod13] and explicitly formulate the con-
servation of solute and volume and obtain as a fourth equation

h0φ0 − φ2h2

h1φ1 − φ2h2
=
h0 − h2

h1 − h2
. (4.40)

In our case, the equations (4.37)-(4.39) yield

f(h1)− h1f
′(h1) = f(h2)− h2f

′(h2), (4.41)

f ′(h1) + g(φ1)− φ1g
′(φ1) = f ′(h2) + g(φ2)− φ2g

′(φ2), (4.42)

g′(φ1) = g′(φ2). (4.43)

In these equations, one can identify the equations (3.18) for h and φ for the case of
decoupled free energies in h and φ, which are now coupled through equation (4.42). In
addition and most importantly, the phases φi, hi are coupled through the conservation
constraint in Ψ, which leads to equation (4.40). Due to this equation, phases in φ and
h, which may coexist in the decoupled phase (e.g. the two coexisting film heights in
h for the case of the Sharma potential) are in general not coexisting for the coupled
system (in the way assumed here, i.e., where hi, φi occupy the same domains Ai). For
the special case of h1 = h2, which will occur if h0 is chosen outside of the binodal region
of h, solutions φi to the equations

g′(φ1) = g′(φ2); g(φ1)− φ1g
′(φ1) = g(φ2)− φ2g

′(φ2) (4.44)

are obviously also solutions to the equations (4.41)-(4.43). The conservation constraints
corresponding to equation (4.40), which is of course not defined for h1 = h2, can be
met for an appropriate choice of A1, A2. Solutions to equation (4.44), i.e., the classical
binodal lines for the regular solution free energy (3.60), are shown in figure 4.10.
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Figure 4.10.: Binodal and spinodal lines for the regular solution free energy (3.60).

1D numerical simulations of the full equations (3.64), (3.65) without evaporation in a
regime where phase separation, as well as dewetting, occurs are shown in figures 4.11
and 4.12, respectively. The Sharma potential (4.4) is used as the disjoining potential.
Although it was derived in another context, in these equations the parameter γ can be
used to adjust the coupling strength of the gradient terms in φ to the advective flux.
It then corresponds to a scaled coupling parameter of the Cauchy stress tensor in the
Navier-Stokes equation which was mentioned in section 3.6. Here we choose a very
weak coupling (γ = 1 ·10−4), the nonlinear effects of a strong coupling will be discussed
in the next section. For a fixed parameter γ, the growth rate of the instability in φ and
the corresponding typical wavelength can then be adjusted through the parameters 1

Pe
and ETL

3. In figures 4.11 and 4.12, one observes that, as stated above, no cooperative
phases in h and φ are formed. As expected, the phase decomposition in the two fields
rather occurs into the same phases as in the decoupled case.
Nevertheless, the coarsening dynamics are now coupled through the mass conservation
constraint. The detailed investigation of these dynamics is an interesting topic which
should be addressed quantitatively using a simplified bulk free energy (i.e. the classical
polynomial Cahn-Hilliard free energy) as in ([NT10]) instead of the full bulk free energy
(3.60). However, this does not lie in the scope of the present work.
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Figure 4.11.: Dewetting and phase separation of a thin solution layer as a result of
equations (3.64) for α = 2.5, ETL

3 = 0.1 · 10−7, Pe−1 = 0.27. For these parameters,
the phase separation is well advanced when the dewetting starts.
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Figure 4.12.: Dewetting and phase separation for α = 2.5, ETL
3 = 0.1 · 10−7,

Pe−1 = 1.38 · 10−3. Here, the dewetting instability occurs on a smaller time-scale
compared to the instability of the phase decomposition.
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4.4. Dynamics of Thin Solution Layers

4.4.2. Nonlinear Coupling

A linear stability analysis as performed in section 4.3 shows no coupling between the
fields h and φ. Nevertheless, due to the gradient contributions of φ in the advective
flux

Jadv = −Qhh
(
∇
(
−∆h+ f ′(h) +

γ

2
(∇φ)2

)
+
γ

h
∇ · (h∇φ)∇φ

)
, (4.45)

for large values of γ, instabilities in φ can have a significant effect on the height profile
h(x). As shown in figure 4.13, gradients in φ induce cusp-like notches in the height pro-
file, for initial heights, which are metastable or even stable in the decoupled case. This
phenomenon is discussed in detail in [NT10], where the authors consider a disjoining
pressure of van der Waals type which is regularizing for all film heights.
In figures 4.13 and 4.14, 1D numerical simulations are shown where phase separation oc-
curs in a film of height h0 = 2.5 and h0 = 2.55, respectively. For the Sharma potential,
these film heights lie both in the metastable regime. The larger film height is very close
to the limit of instability and, as one can observe in figure 4.14, the notches produced
by the gradients in φ eventually lead to the nucleation and growth of elevated drops.
The growth of the drops is coupled to the coarsening of the structures in the concentra-
tion field. The drops do not necessarily grow in regions of low concentration, but the
concentration dependence of the mobility Qhh enhances this behavior. Nevertheless,
the boundaries of the drops are always located at the interphases of the structures in
φ.
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0 200 400 600 800

x

h/hp
φ

Figure 4.13.: 1D numerical simulation of equations (3.64) and (3.65) showing the
nonlinear coupling of gradients in the concentration field to the height profile. At the
interfaces in φ (green curve), cusp-like structures in h (black curve) are formed. The
parameters are α = 2.3, TL3 = 0.1, h0 = 2.5, c0 = 0.5, Pe−1 = 0.1, γ = 10.
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Figure 4.14.: 1D numerical simulation of equations (3.64) and (3.65), showing the
growth of a drop, starting with a film of height h0 = 2.55. This film height is at the
edge of the metastable regime and the growth is induced by the coupling to the phase
separation in φ. All parameters except for the initial film height are as denoted in figure
4.13.

52



5. Transfer onto Substrates

As mentioned in the introductory chapter, this work represents a first step towards the
aim of a theoretical description of complicated dendritic-like structures formed in dip-
coating experiments. It is evident that the thin film equations derived in chapter 3 can
not be used to exactly or even quantitatively describe solutions like the one employed
in the dip-coating experiments performed in Münster [LGS+10]. Nevertheless, in this
chapter some first results on structures formed at the meniscus by evaporation-induced
phase separation will be presented. In particular, we show that depending on the
initial concentration and the pulling speed different periodic structures are formed. In
addition, the resemblance to structures formed by directional quenching in the classical
Cahn-Hilliard equation is discussed.
In all the simulations shown in this chapter, we chose the laboratory frame as the frame
of reference. For a substrate which is pulled out of a liquid bath with a constant velocity
v, this implies the inclusion of an advective term in our equations (3.64) and (3.65).
This advective term was included through the boundary conditions in the derivation
of the basic equations (2.61) and (2.62) in chapter 2. The full equations considered in
this chapter combine the conservative, extended equations (3.64) and (3.65) with the
evaporation term δev given by (4.22) and the advection term mentioned above. Writing
the conservative part in the gradient formulation, the full equations read:

∂th = ∇ ·
[
Qhh∇

δF

δh
+QhΨ∇

δF

δΨ

]
− Ev

(
δF

δh
− µv

)
− v ·∇h,

∂t(hφ) = ∇ ·
[
QΨh∇

δF

δh
+QΨΨ∇

δF

δΨ

]
− v ·∇(hφ). (5.1)

The disjoining potential fP given by equation (4.3) was employed in this chapter.
Throughout the chapter, the parameters Pe=0.5, ETL

3 = 0.01, Ev = 0.01, µv = −0.02
and, if not denoted otherwise, γ = 0.01 were chosen.1

1In this chapter , we rescale our basic equations for numerical reasons, such that f(h) = A(1/h3 −
1/h6), where A = 0.065. All the parameters, as well as length and time scales, appearing in this
chapter must therefore be rescaled according to x′ =

√
Ax, t′ = A2t, v′ = A−3/2v, (ETL

3)′ =
1
A
ETL

3, Pe−1 = APe′
−1
, µ′v = 1

A
µv, E

′
v = 1

A
Ev in order to obtain the parameters corresponding

to the scaling outline in the previous chapter (denoted by a prime).
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5. Transfer onto Substrates

5.1. Boundary- and Initial Conditions

In order to describe the deposition process in dip-coating experiments, one first needs
to formulate appropriate boundary conditions. Since the meniscus arises from a bath of
solution, the natural boundary condition mimicking the transfer process would include

lim
y→0

∂yh(x, y) =∞, (5.2)

when the bath is situated at y = 0 (see also figure 5.1). Such a boundary condition is
very hard to treat numerically. In addition, a description of the full meniscus starting
from the bath would necessitate the inclusion of very large film heights near y = 0.
Mainly due to the nonlinearities in h in the disjoining pressure term, this would also
cause major problems in the numerical framework. For these reasons, we content our-
selves with the modeling of the meniscus through the following boundary conditions:

h(x, y)|y=0 = h0; ∂2
yh(x, y)|y=0 = 0; ∂3

yh(x, y)|y=0 = 0. (5.3)

∂yh(x, y)|y=L = 0; ∂2
yh(x, y)|y=L = 0; ∂3

yh(x, y)|y=L = 0; (5.4)

Here, the main assumption is that the boundary value of the height can be fixed to h0 at
a given position which does not correspond to the surface of the bath (see figure 5.1). For
our numerical treatment, three boundary conditions are required in the non-periodic
case, since the treatment is based on finite-difference approximations of the spatial
derivatives. For details, the reader is referred to the appendix. We therefore demand
the second and third derivative in y-direction to vanish at the lower boundary and
the corresponding first, second and third derivatives to vanish at the upper boundary.
These conditions imply a certain degree of smoothness at the boundaries. Finally it
seems natural to impose the boundary conditions (5.3) and (5.4) also for the field φ(x).
Notice that very similar boundary conditions are also used in [Köp11] for the modeling
of the Langmuir-Blodgett transfer. In our case, these boundary conditions are of course
not completely accurate and a future task would be to derive more rigorous boundary
conditions in order to capture more precisely the hydrodynamics of the meniscus.

The initial conditions are chosen as

φ(x, 0) = φ0; h(x, 0) =
1

2
(hp − h0) tanh

(
(y − a)

b

)
, (5.5)

i.e., the initial concentration is chosen to be constant throughout the domain of sim-
ulation whereas the initial film height h(x, 0) is chosen as an analytic function which
is similar to the meniscus obtained in the simulations. As it should be the case for
the meniscus, the function connects the initial height h0 and the precursor height hp.
The steepness and width of the transition can be adjusted by the parameters a and b.
The particular choice of the parameters is quite unimportant, as long as the film height
relaxes to the natural meniscus-shape during the simulations.
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Figure 5.1.: Sketch of the meniscus in a dip-coating experiment and of the respective
simulation domain considered in this chapter. The coordinates (x, y) denote the position
in the plane spanned by the substrate of the length L. By using the boundary conditions
(5.3), we assume that the film height h is fixed to a constant value h0 at the position
y = 0 in the frame of reference of the laboratory (dashed line).

5.2. Transfer from an Ideal Solution

As a first example, we consider the transfer process for vanishing values of EJ, i.e. for
the case α = 0, γ = 0 in the extended free energy functional (3.58). In this case, no
solute-solvent demixing (i.e., phase separation in the concentration field) occurs and
a layer of homogeneous concentration is transferred onto the substrate. Furthermore,
after a sufficiently long simulation time, a static meniscus is formed, whose shape is
determined by the evaporation rate, the pulling speed, the capillary forces (which are
fixed in our scaling) and the initial film height. In figure 5.2, the meniscus as well as the
corresponding concentration profile are shown for two different initial concentrations.
Note that for the higher initial concentration, the evaporation is stopped due to the
osmotic contributions in equation (4.22), which are discussed in chapter 4. For an
evaporation term without these contributions, the concentration would exceed unity at
the meniscus. The height of the transferred precursor is approximately constant for
values Ψ ∈ [0, 1], as one can see in figure 4.8. For Ψ > 1, the precursor height increases
with the amount of solute.
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Figure 5.2.: Snapshots of simulations of equations (5.1) for γ = 0, α = 0. Top:
Height profile forming a static meniscus (black) and static concentration profile (green)
for φ0 = 0.25. Middle: For the case φ0 = 0.7, part of the initial meniscus is carried
away, since the evaporation term and the mobility vanish for φ→ 1.
Bottom: static meniscus and concentration profile obtained for φ0 = 0.7 and longer
simulation times. All curves are taken from 2D simulations at x = Lx/2, where Lx = 20
is the domain size in x-direction.

5.3. Formation of Periodic Patterns

5.3.1. Stripe Patterns

We will now consider the case EJ 6= 0. The parameter α associated with the inter-
action energy is chosen as α = 2.3, such that phase-coexistence in the concentration
field is possible (see figure 4.10). If the initial concentration is high enough and the
concentration reaches the spinodal range due to the evaporation in the meniscus, a
spinodal instability occurs during the transfer process. Physically speaking, the solute
and the solvent demix when a critical concentration is reached. This phase separation
is now directed by the transfer process and a first region of high concentration is formed
parallel to the contact line. As a consequence of mass conservation, behind this first
region of high concentration a region of low concentration is formed. Note however
that by mass conservation, we mean the conservation of Ψ(x) rather than of φ(x). The
form of the meniscus is therefore relevant for the process of phase separation. As the
kink-antikink structure is advected, the process repeats itself periodically resulting in a
pattern of stripes which are aligned parallel to the meniscus. It has to be emphasized
that the wavenumber of the structures formed at the meniscus does not correspond to
the wavenumber of the fastest growing mode in the corresponding spinodal decompo-
sition but is determined by the dynamical process described above. The dependence
of the wavenumber k of the structures on the transfer velocity v is shown in figure 5.3.
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5.3. Formation of Periodic Patterns

The absolute height h = ρ + Ψ of the transferred film is approximately equal for both
phases, as the amount of solute Ψ is always smaller than unity. The meniscus of the
height field remains almost static during the process of pattern formation.
In figure 5.4, 2D numerical simulations are shown exhibiting the formation of stripe
patterns and their dependence on the initial concentration φ0. As one can readily see,
the width of the stripes of high concentration is increased monotonically with the initial
concentration.
Finally, it is important to emphasize that the periodic stripe patterns do no correspond
to a minimum of the Lyapunov functional given by equation (4.19) and are subjected
to slow coarsening dynamics.
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0.010 0.015 0.020
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v

Figure 5.3.: Wavenumber of the stripe pattern vs. the transfer velocity v as obtained
from 2D direct numerical simulations of equations (5.1) with α = 2.3.

5.3.2. Transition to Hexagonal Patterns

Especially for small initial concentrations, the spinodal instability occurring in the
region of the contact line preferably leads to the formation of aligned droplets, rather
than stripes. This can be seen in analogy to the dynamics shown for the classical Cahn-
Hilliard equation in figure 3.2, where for small initial concentration, the formation of
droplets is preferred over the formation of labyrinth-like patterns. Due to the same
mechanism as described in the previous subsection, the structures of aligned droplets
recur periodically. In subsequent lines, the droplets are arranged shifted to each other,
such that a pattern of hexagonal type is transferred onto the substrate (see figure 5.5).
In our simulations, in general the hexagonal patterns occur subsequent to a transient
regime of stripe patterns and for various initial concentrations. The stripe patterns
become unstable through a transversal instability. It is unclear and to be verified by an
appropriate stability analysis, if all regimes of stripe pattern formation are unstable to
an instability leading to hexagonal patterns. As for the stripes, coarsening dynamics of
the transferred hexagones can be observed, leading to defects which are advected away
from the contact line and do not influence the overall regime of pattern formation.
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Figure 5.4.: Snapshots of 2D simulations of the full equations (5.1), for α = 2.3 and
three different initial concentrations φ0. The width of the stripes formed at the meniscus
increases with the initial concentration φ0. On the right, the corresponding meniscus
shape is shown as a cross-section at x = L/2.
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Figure 5.5.: Snapshots of 2D simulations of the model equations (5.1) showing the
transition from a stripe pattern to a hexagonal pattern. The instability is initiated
by transversal instabilities of the stripes in proximity to the meniscus. The initial
concentration is φ0 = 0.18.
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5.3.3. Comparison to Similar Models

In the previous part of this chapter, we have shown that through a very complicated
process of directional phase decomposition periodic structures were formed. It is similar
to the process of pattern formation as it is described for a full model [LKG+12] and
a simplified model [KGFT12] for the case of the Langmuir-Blodgett transfer. An even
more simple model showing directional phase separation in the Cahn-Hilliard equation
is investigated in [Kre09]. There, the classical Cahn-Hilliard equation with the free
energy density

f(c) =
1

4
c4 − ε(x, t)

2
c2, where ε =

{
−ε if x < y(t)

+ε if ε > y(t)
(5.6)

is subjected to a front which is localized at y(t), moves with a constant velocity v
and switches the sign of ε, thus inducing a linear instability at the front position.
In this system, periodic stripe patterns are observed for a straight front in one and
two dimensions. For a sinusoidally modulated front, vertically oriented stripes and
hexagonal patterns are found, depending on the transfer speed. For this simple model,
an analytical treatment was possible in terms of a marginal stability analysis. In our
system, analogous calculations are rather difficult, since they necessitate knowledge
about the concentration influx at the region where the pattern formation sets in. A
project for future work could be to implement boundary conditions which control the
flux at y = 0. It should be discussed if such boundary conditions are physically more
meaningful than the ones employed in the current model.
To summarize, the comparison of our results with [LKG+12, KGFT12, Kre09] shows
that in our rather complicated process of phase decomposition, we obtain structures
which seem archetypical for directed phase decomposition.
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6. Summary and Outlook

As stated in the introductory chapter, this work represents a first step towards a hydro-
dynamic model for thin solution layers, which has the ability to describe the deposition
of complex structures in dip-coating experiments. We will now summarize the content
of the thesis and give an outlook for future work.
In chapter 2, we presented a derivation of thin film equations for dilute solutions through
the application of a long-wave expansion to advection-diffusion equations. The derived
equations account for an evaporative contribution, the advection of the substrate and
a concentration-dependent viscosity of the fluid.
Referring to [Thi11], we showed in chapter 3 that the conservative part of our basic
equations can be written in terms of a gradient formulation. We then presented an
extension of the equations, where the bulk free energy was chosen according to the
free energy of a regular solution. The extension leads to contributions of concentration
gradients in the advective flux and an alternated diffusional flux, which now allows for
phase separation in the concentration field, i.e., solvent-solute demixing. In analogy to
the derivation presented in chapter 2, we proposed a derivation for the general form of
the extended diffusional dynamics.
In the following chapter, we discussed a particular choice of the evaporation term, which
is concentration-dependent through contributions of osmotic type. We showed that due
to the entropic contribution in the solvent concentration, the evaporation is always sat-
urated for solute concentrations lower than unity. This is an improvement over models
used in literature where the evaporation is concentration independent. Nevertheless, we
were only able to treat the evaporation term numerically for particular choices of the
parameters involved. Here, a concentration-dependent disjoining pressure could lead to
better results, which however is at the expense of the simplicity of the model. We then
investigated the linear stability of the full equations as well as the dynamics of phase
separation and dewetting. The linear stability analysis revealed that the coupling of
the concentration to the height of the film is of simple nature in our model. However,
the nonlinear coupling of concentration gradients to the advective flux was shown to
lead to interesting effects.
Finally, in chapter 5, we presented first results concerning the formation of periodic
structures in dip-coating experiments. In the simulations, the local solute height is
always smaller than unity, in this case the evaporation term leads to an approximately
constant film height of the transferred layer, independent of the concentration. In the
simulations presented in chapter 5, stripe patterns parallel to the contact line, as well
as patterns of hexagonal type, are formed due to evaporation-induced phase decompo-
sition.
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The structures shown in this chapter were also found in similar models describing di-
rected phase decomposition based on a Cahn-Hilliard approach. In the literature, the
formation of stripe patterns at the receding contact line of evaporating solutions and
suspension is reported, e.g., for polymer solutions [HXL07] or colloidal suspensions
[BDG10]. In contrast to our model, the formation is explained by a stick-slip motion
of the contact line in these experiments.

As it should be the case for a first approach, the present thesis opens many perspectives
for future work. The conservative part of our equations consists of coupled PDEs de-
scribing dewetting as well as phase separation in a non-conserved order parameter. It
would be interesting to investigate the coupling of the two processes in more detail for
a simplified bulk free energy. Here, especially the coupled coarsening dynamics would
be of interest.
While our formulation of the evaporation term is certainly a step into the right direc-
tion, it still needs to be improved, e.g., as proposed above through the formulation of
a concentration-dependent disjoining pressure.
In order to describe the formation of structures at a receding contact-line, two strate-
gies, can be pursued. On the one hand, our current model can be used to investigate the
deposition of solute-structures for larger local values of Ψ, leading to a concentration-
dependent height in the transferred layer. This would necessitate the consideration
of larger initial film heights, which is numerically difficult to treat for the disjoining
potential (4.3) currently used. Since evaporation is included in our model, a possible
ansatz could be to consider a completely wetting liquid with a disjoining potential which
is simply of van der Waals type. In this case, the numerical treatment of larger film
heights would be simpler. Although the current model might seem quite extensive, some
physical effects which could be important for the formation of complex structures are
still neglected. For example, the surface tension of the film should not be independent
of large concentrations. Furthermore, the bulk free energy currently used is still of a
very simplifying nature. For the description of the structures reported in [LGS+10], it
seems probable that a bulk free energy accounting for anisotropic particles is necessary.
Nevertheless, all extensions of the model should be well reflected, in order to preserve
the possibilities to treat the model numerically or even partially analytically, which is
quite difficult even for the current model.
For this reason, the second strategy which could be pursued is the formulation of a
more simple and abstract model of phase-field type [WB95] for the formation of depo-
sition structures. The process of deposition is a solidification process after all, and such
processes are successfully described by phase-field models, e.g., for the case of metals.
Nevertheless, this ansatz could not account for hydrodynamic effects on the formation
of the structures and should only be pursued in addition to a further development of
our current model.
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A. Appendix

In this appendix, we give a short overview of the numerical methods employed for
the simulations shown in the thesis. The program used is written based on a solver
developed by Markus Wilczek in the context of his Master thesis [Wil12].

A.1. Finite Differences

The spatial partial derivatives occurring in the treated equations are evaluated in terms
of central finite differences. This method is a straight-forward discretisation of the
derivatives based on their mathematical definition as the limit of difference quotients.
We will explain the basic idea for the case of a first order derivative and then give an
overview of the higher order finite differences used, referring the interested reader to
[Bes06] for more details.
To obtain the first order derivative of a function f(x) with respect to a discretisation
∆x and with a second order accuracy, we perform the following Taylor expansion:

f(x+ ∆x)− f(x−∆x) = f(x) + f ′(x)∆x+O(∆x2)− f(x) + f ′(x)∆x+O((∆x)2)

= f ′(x)(2∆x) +O(x2).

Using the notation f(x) =: fi, f(x ± ∆x) =: fi±1, we obtain the central difference
representation of a first order derivative as

f ′i =
fi+1 − fi−1

2∆x
. (A.1)

The extension to the case of partial derivatives of a function f(x, y) =: fij is straight-
forward. In this thesis, the following discretised differential operators were employed:

∂xfij =
fi+1,j − fi−1,j

2∆x
; ∂yf(x, y) =

fi,j+1 − fi,j−1

2∆x
; (A.2)

∆fij =
fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j

(∆x)2
(A.3)

For the simulations shown in this thesis, we used discretisations with a number of grid
points in x, and y direction ranging from Nx,y = 170 to Nx,y = 400, according to the
respective domain size.
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A.2. Boundary Conditions

For the numerical treatment, our basic equations were written in terms of the variables
ρ and Ψ. As for the formulation in h,Ψ, in these variables the conservative part of our
equations takes the form of a continuity equation (3.28). In order to obtain numerical
solutions which respect the corresponding conservation constraints, the finite differences
had to be applied first to obtain the flux field, and then, successively to calculate the
divergence of the flux. This successive treatment in terms of finite differences neces-
sitates the definition of three virtual grid points and of three corresponding boundary
conditions at each boundary.
For the simulations of the transfer process shown in chapter 5, the upper and lower
boundary conditions can be expressed in terms of the finite differences. This yields ex-
pressions for the virtual grid points fi,−1, fi,−2, fi,−3 and fi,Ny, fi,Ny+1, fi,Ny+2 in terms
of neighboring grid points corresponding to the physical simulation domain. For the
case of the boundary conditions (5.3), we obtain through simple calculations:

fi,−1 = f0; fi,−2 = 2f0 − fi,0; fi,−3 = 4f0 − 4fi,0 + fi,1, (A.4)

fi,Nx+2 = fi,Nx+1 = fi,Nx = fi,Nx−1. (A.5)

Note that the boundary conditions are located at the first virtual grid point, rather
than at the last physical one.

A.3. CUDA Framework

In the framework of calculations based on finite differences, at each grid point only
neighboring grid points are of relevance. Especially for the case of two dimensional cal-
culations, the use of parallelised algorithm is therefore useful and possible. In our case,
the parallelised calculations are performed using modern GPUs (Graphics Processing
Units). These GPUs are predestined for parallelised calculations, since they are con-
stituted of a few thousand processing cores. Note that the single cores of the GPUs
are much slower than an ordinary CPU and the speed-up through the use of GPUs is
only achieved due to the large number of parallel calculations. GPUs are accessible
for general purpose calculations, e.g., through the so called CUDA framework, which is
based on C++.
The internal parallelisation of the calculations on the GPU is organized in terms of
so-called Blocks of Threads . More precisely, the grid resulting from the spacial dis-
cretisation is divided into Blocks containing a certain number of grid points, where each
grid point is treated by one Thread. The data corresponding to one Block is stored in a
shared memory, allowing a fast access on the data necessary for the calculations within
the Block. In each timestep, the calculations in the Blocks are performed parallelised.
Therefore, each Block also comprehends virtual grid points, corresponding to the actual
calculation domain of neighboring Blocks. In summary, our calculations in terms of fi-
nite differences are well adapted to this framework of parallelised calculations, which
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leads to a considerable speed-up of the numerical treatment. For further information
about the CUDA framework, the reader is referred to [NVI].

A.4. Time-Stepping

In order to solve the large system of coupled ODEs resulting from the spatial discreti-
sation, we use an explicit Runge-Kutta Dormand-Prince algorithm with an adaptive
step-size. Runge-Kutta time-stepping algorithms are extensions of the classical Euler-
Forward algorithm with higher order accuracy. The general form of a Runge-Kutta
algorithm for an ODE

∂tx = F (x(t), t) (A.6)

is of the type

x(t+ ∆t) = x(t) + ∆t
n∑
i=1

γiki, (A.7)

where ki = F (x(t) + ∆t

i−1∑
j=1

βijkj , t+ αi∆t). (A.8)

Here, n determines the stage of the method, while the order of accuracy does not
necessarily correspond to the stage n. The coefficients vary according to the specific
Runge-Kutta scheme considered. In general, the coefficients are organized in so called
Butcher-Tableaus specifying a method. In adaptive algorithms, the time stepping is
performed with two Runge-Kutta schemes of different orders of accuracy. A comparison
of both algorithms is used for an estimation of the numerical error ε being made in each
time-step. According to the numerical error, the time step-size ∆t is adjusted in order
to ensure the error to stay below a given threshold. For details about the Runge-Kutta
Dormand-Prince algorithm and its explicit form, the reader is referred to [But08].
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Ratschlägen.
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während meines gesamten Studiums.





Erklärung zur Masterarbeit

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig angefertigt und außer
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