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Abstract

The current thesis consists of two parts, both of which are dealing with the analysis of
complex systems, one with stochastic time series analysis and one with pattern formation
in microscopic fluid layers.

The first part is about an analysis method which allows to extract stochastic order
parameter equations from measured time series data. Employing this method termed
Kramers-Moyal analysis, significant problems can occur if the temporal resolution of
the measurement data is not sufficient. In the course of this thesis it is analyzed what the
term “sufficient” means in this context, and where the limitations of the applicability of
the Kramers-Moyal analysis are. Furthermore, the analysis method is extended in order
to be able to analyze data with small sampling frequencies more reliably. In this context
an estimation of the uncertainties of determined model parameters plays an important
role. The latter is done via a Monte Carlo error propagation technique.

First, the extended method is tested employing examples of synthetic data. Then, an
application to real-world data from an optical tweezers experiment is performed. In this
experiment a micrometer-sized particle diffusing in a fluid is trapped in the center of a
highly focused laser beam. The particle then performs Brownian motion subject to an
external force that is induced by the optical light pressure of the laser beam, whereas
the motion of the particle is filmed by a CCD camera. Subsequently, the positions of the
particle are extracted from the recorded images.

An analysis of the measurement data shows a surprisingly large Markov-Einstein
time scale, which can be traced back to hydrodynamic memory effects. Above this time
scale the process can be mapped to an Ornstein-Uhlenbeck process via the application
of the developed extended method. This is in agreement with the classical theory of
overdamped Brownian motion.

In the second part of the thesis, an experiment in the field of organic semiconductor
research is modeled. The goal of these experiments is to deposit ordered structures of
thin layers of small organic semiconducting molecules onto a substrate. This is done
via organic molecular beam deposition. Within this technique organic molecules are
sublimed at high temperatures in vacuum and subsequently condense onto a cooled
substrate. In order to create ordered structures on the substrate, the latter is prestructured
with inorganic substances, such that the organic molecules preferably accumulate at
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specific sites. One specific type of experiments is regarded, where the prestructure
consists of periodic gold stripes on a SiO2 substrate. Depending on the geometry of the
prestructure and the amount of deposited material, instabilities are observed that hinder
the formation of homogeneous ridges on top of the gold stripes.

In order to provide a theoretical description of the experiments, a so-called thin
film equation is employed that describes the dynamics of the height profile of the
layer of deposited molecules on the substrate. Based on this equation, the linear
stability of stationary solutions is analyzed that form ridges centered on the gold stripes.
This stability analysis is performed employing numerical continuation. Thereby two
instabilities are found which are also observed in the experiments. If the amount of
deposited molecules is too small, a ridge breaks up into small droplets on the gold stripe.
If too much material is deposited, large bulges form which also partly cover the bare
substrate between the gold stripes. For both instabilities direct numerical simulations
are performed to analyze the full nonlinear dynamics.
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Kurzfassung

Die vorliegende Dissertation besteht aus zwei Teilen, die sich beide mit der Analyse
komplexer Systeme beschäftigen, der eine mit stochastischer Zeitreihenanalyse und der
andere mit Strukturbildung in mikroskopischen Flüssigkeitsschichten.

Der erste Teil behandelt eine Analysemethode, mit deren Hilfe stochastische Ord-
nungsparametergleichungen aus gemessenen Zeitreihen gewonnen werden können.
Bei dieser Methode, Kramers-Moyal-Analyse genannt, können erhebliche Probleme
auftreten, wenn die zeitliche Auflösung der Messdaten nicht hinreichend groß ist. Im
Rahmen der Arbeit wird zunächst untersucht, was “hinreichend” in diesem Zusammen-
hang bedeutet und wo die Grenzen der Anwendbarkeit der Kramers-Moyal-Analyse
liegen. Darüber hinaus wird die Analysemethode erweitert, um Messdaten mit kleiner
Samplingfrequenz verlässlicher analysieren zu können. Eine wichtige Rolle spielt dabei
die Abschätzung der Ungenauigkeit der gewonnenen Modellparameter. Diese erfolgt
mittels einer Monte-Carlo-Fehlerfortpflanzungsmethode.

Die weiterentwickelte Methode wird zunächst an Beispielen mit synthetisch erzeugten
Daten getestet. Des Weiteren erfolgt eine Anwendung auf echte Messdaten aus einem
Experiment mit optischen Pinzetten. In diesem Experiment wird ein mikrometergroßes
Kügelchen, das in einer Flüssigkeit diffundiert, im Zentrum eines stark fokussierten
Laserstrahls gefangen. Das Kügelchen vollführt dann eine brownsche Bewegung unter
dem Einfluss einer externen Kraft, die durch den Lichtdruck des Lasers hervorgerufen
wird. Dabei wird die Bewegung der Kügelchen wird mit einer CCD-Kamera gefilmt.
Anschließend wird aus den aufgenommenen Bildern eine Zeitreihe der Positionen des
Kügelchens bestimmt.

Eine Analyse der Messdaten zeigt eine überraschend große Markov-Einstein-Zeitskala,
die auf hydrodynamische Gedächtniseffekte zurückgeführt werden kann. Oberhalb
dieser Zeitskala kann der Prozess durch Anwendung der weiterentwickelten Methode
auf einen Ornstein-Uhlenbeck-Prozess abgebildet werden, was im Einklang mit der
klassischen Theorie überdämpfter brownscher Bewegung steht.

Im zweiten Teil der Arbeit wird ein Experiment aus der organischen Halbleiter-
forschung theoretisch modelliert. In diesen Experimenten wird versucht, geordnete
Strukturen dünner Schichten aus kleinen organischen, halbleitenden Molekülen auf ein
Substrat aufzutragen. Letzteres erfolgt über eine Methode namens Organic Molecular
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Beam Deposition. Dabei werden die organischen Moleküle im Vakuum bei hohen
Temperaturen sublimiert und kondensieren anschließend auf einem gekühlten Substrat.
Um Strukturen auf dem Substrat zu erzeugen, wird dieses vorher mit anorganischen
Substanzen vorstrukturiert, so dass die organischen Moleküle sich vorzugsweise an
bestimmten Stellen ansammeln. Konkret werden Experimente betrachtet, in denen die
Vorstrukturierung aus periodischen Goldstreifen auf einem SiO2-Substrat besteht. In
Abhängigkeit der Geometrie der Vorstrukturierung und der Menge der aufgedampften
Moleküle werden Instabilitäten beobachtet, die eine homogene Beschichtung der Gold-
streifen verhindern.

Um diese Experimente theoretisch zu beschreiben, wird eine sogenannte Dünnfilm-
gleichung für die Zeitentwicklung des Höhenprofils der Schicht aufgedampfter Moleküle
auf dem Substrat verwendet. Anhand dieser Gleichung wird die lineare Stabilität von
stationären Lösungen untersucht, welche die Form von auf den Goldstreifen zentrierten
Kämmen haben. Diese Stabilitätsanalyse erfolgt mittels numerischer Kontinuierung.
Dabei werden zwei Instabilitäten gefunden, die auch in den Experimenten beobachtet
werden. Bei zu geringen Mengen aufgedampfter Moleküle zerfällt ein Kamm in kleine
Tropfen auf dem Streifen. Bei zu großen Mengen bilden sich große Beulen, die auch das
Substrat zwischen den Goldstreifen bedecken. Für beide Instabilitäten werden außerdem
direkte numerische Simulationen durchgeführt, um die volle nichtlineare Dynamik zu
analysieren.
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1 Introduction

The current thesis deals with the analysis of complex systems. Complex systems are
ubiquitous and play a tremendously important role in our every-day life. If one only
considers, for instance, the climate, financial markets or modern power grids, it becomes
clear that understanding complex systems is of immense importance for several great
challenges humanity faces today. While physicists had great successes in understanding
the fundamental interactions of nature during the last few hundred years, culminating
in the recent experimental detection of the Higgs boson, we are still far away from
understanding the various complex structures created by nature or societies.

What is a complex system? According to the preamble of the Springer Series in
Synergetics edited by Hermann Haken, complex systems “[...] are composed of many
parts which interact with one another in a more or less complicated manner” (see, e. g.,
[Hak04]). If such systems are driven out of equilibrium by some external fluxes, they
might spontaneously develop spatial, temporal, spatio-temporal or functional structures,
a process we call self-organization. Demonstrative examples for these different types
of structures are animal coat patterns [KM94], synchronization [ABV+05, PM03],
convection rolls in the Rayleigh-Bénard experiment [AGL09], and the behavior of
humans or animals resulting from neural interactions in their brains.

A mathematical understanding of the emergence of ordered structures or patterns is
provided by synergetics, Haken’s theory of self-organization [Hak04, Hak00, Hak09].
According to this theory, self-organization is accompanied by a dramatic reduction of
the relevant degrees of freedom. In the vicinity of a non-equilibrium phase transition
that leads to the emergence of ordered structures, it comes to a separation of time scales
of the dynamics of the different degrees of freedom. As a consequence, only a few of
them, the so-called order parameters, determine the dynamics of the system and enforce
the emergence of macroscopic patterns.

This reduction of the effective dimensionality of a complex system makes it possible
to establish mathematical models one can analyze. In some cases it is possible to derive
equations of motion for the macroscopic order parameters directly from the interactions
of the microscopic subsystems as Haken demonstrated for the laser [Hak85]. This can
be regarded as a bottom-up approach to model a complex system. If the interactions
of the microscopic subsystems are not known or simply too complex, one has to find
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2 1 Introduction

another strategy. With the maximum information principle [Hak00], Haken provides a
so-called top-down approach to describe complex systems. Employing this principle,
one can set up a model for macroscopic observables by measuring specific expectation
values of these observables from experimental data. One famous application of this
method is the Haken-Kelso experiment [HKB85].

The first part of this thesis develops further another top-down approach that was
introduced in 1997 by Friedrich and Peinke [FP97b, FP97a]. In order to analyze the
statistical properties of the turbulent cascade, they mapped the velocity increments of a
turbulent flow field onto a Markov process in scale and demonstrated how to measure
the drift and diffusion coefficients of a Fokker-Planck equation from measured data.
This method, today referred to as Kramers-Moyal analysis, has since then been applied
to many different complex systems in the natural sciences as well as in medicine, finance
and engineering (cf. [FPST11, FPT09] and references therein).

The first part of the current thesis provides a detailed analysis of the problems that
arise when the Kramers-Moyal analysis is applied to data sets that are sampled with an
insufficient resolution. Since most objects of the Kramers-Moyal analysis are processes
in time, these problems are termed finite time effects. An underestimation of the
significance of this problem can lead (and has led) to estimated models that in the worst
case do not at all reflect the real process.

Chapter 2 of this thesis gives an introduction into the field of Kramers-Moyal analysis
and reviews the necessary knowledge about stochastic processes. Chapter 3 presents two
data analysis techniques that will be employed in the later analyses. The next chapter
contains the discussion about finite time effects. An improved method is introduced that
is suitable for the analysis of data sets measured with an insufficient sampling frequency.
Chapter 5 presents an application of the extended method to experimental data of an
optical trapping experiment. Finally, the first part of this thesis is concluded in Chap. 6.

The second part of the thesis employs a bottom-up approach to describe a specific
complex system that arises in experiments in the field of organic semiconductor research.
The goal of these experiments is to produce thin layers of organic semiconducting
material that are structured on a length scale that should be as small as possible. This is
done by a technique termed area-selective growth. This means that the substrate onto
which the organic material is deposited is chemically prestructured in a way that the
deposited material prefers to accumulate at specific sites to form, e. g., homogeneous
ridges. In dependence of the geometry of the prestructure and the amount of deposited
material, certain instabilities are observed that hinder the formation of the intended
structures.

In this case the macroscopic observable is the height profile of the deposited material.
Its dynamics is described by a thin film equation [ODB97, Thi10]. Employing such
an equation it is analyzed under which conditions the unwanted instabilities occur.
This is done by a transversal linear stability analysis. The findings of this analysis are
complemented by direct numerical simulations.
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The second part starts with an introductory chapter that reviews organic semiconductor
research and theoretical approaches to model these systems. The specific experiments
that are investigated in the course of this thesis are described in detail in Chap. 8. Based
on the experimental results, the here employed theoretical description is motivated.
Chapter 9 provides the basic theory including a sketch of the derivation of the thin film
equation and an explanation of the specific form used here. The numerical methods that
are employed to analyze the model are the subject of Chap. 10. Chapter 11 contains
the transversal linear stability analysis, followed by a chapter presenting the direct
numerical simulations. The thesis closes with a conclusion in Chap. 13.





Part I

Stochastic time series analysis
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2 From complex systems to Kramers-Moyal
analysis

As described in the introduction of the previous chapter, the first part of this thesis
is about a top-down approach to model complex systems, the Kramers-Moyal (KM)
analysis. It allows one to extract models in form of Fokker-Planck equations (FPEs)
or corresponding Langevin equations from stochastic time series data employing data
analysis techniques. This first chapter will give an introduction into this field and will
provide the necessary theoretical background about stochastic processes.

First of all, Sect. 2.1 will start with a motivation of the KM analysis which lies in the
analysis of complex systems. The next section is about different classes of stochastic
processes with special emphasis on Markov processes. Section 2.3 introduces the FPE
for Gaussian Markov processes, followed by a section about the Langevin equation.
Finally, Sect. 2.5 introduces the KM analysis technique.

2.1 Analyzing complex systems
When people try to model a complex system consisting of a large number of degrees of
freedom, they are usually interested in the behavior of a few macroscopic observables.
If we consider the financial markets as an every-day life example, such a macroscopic
observable could be a stock index or an exchange rate. In the case of the human
brain, probably the most complex system nature has ever created, one could consider
an EEG signal. The dynamics of these observables often display some kind of order
together with random fluctuations that stem from the large number of degrees of freedom
involved in the system. Therefore, one has to deal with stochastic processes. We
forego a review of basic probability theory and refer the reader to textbooks like, e. g.,
[Ris89, VK07, Gar86].

The most comprehensive information a model of a stochastic process can provide is
the N-point probability density function (PDF)

fN(qN , tN; qN−1, tN−1; . . . ; q1, t1) . (2.1)

Given N points in time t1 < t2 < · · · < tN , the N-point PDF provides the probability
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8 2 From complex systems to Kramers-Moyal analysis

that a stochastic process Q(t) assumes the values q1, . . . , qN at the N points in time,
respectively. If the N-point PDF is known, we are able to compute every expectation
value we are interested in. The process Q(t) can be univariate or multivariate, i. e., Q
can be a scalar or vector variable, respectively.

For a general stochastic process it is of course practically impossible to obtain the
N-point PDF for arbitrary N via data analysis techniques. However, if the process has
some specific properties, or can be approximated by processes that have these properties,
it becomes possible to obtain the N-point PDF.

2.2 Classes of stochastic processes
The N-point PDF fN can be split up into a product of a conditional PDF p and an
(N − 1)-point PDF fN−1, like

fN(qN , tN; . . . ; q1, t1) = p(qN , tN | qN−1, tN−1; . . . ; q1, t1) · fN−1(qN−1, tN−1; . . . ; q1, t1) .
(2.2)

Depending on the properties of the conditional PDF, also referred to as transition PDF
in this context, one can devide stochastic processes into different classes.

2.2.1 Pure noise
The easiest class of stochastic processes is pure, uncorrelated noise. This means that the
transition PDF satisfies

p(qN , tN | qN−1, tN−1; . . . ; q1, t1) = f1(qN , tN) (2.3)

An iterated application of Eq. (2.2) with (2.3) yields

fN(qN , tN; . . . ; q1, t1) =

N∏
i=1

f1(qi, ti) . (2.4)

This means that the N-point PDF of a process of uncorrelated noise can be split up into a
product of one-point PDFs, which can be estimated from an ensemble of realizations of
the process. If the process is furthermore stationary, the estimation of one PDF suffices
to gain the complete information about the whole process.

2.2.2 Markov processes
The second easiest class of processes are Markov processes. These are defined by the
property

p(qN , tN | qN−1, tN−1; . . . ; q1, t1) = p(qN , tN | qN−1, tN−1) . (2.5)
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Looking at the definition of a Markov process, one can realize the enormous utility of
a mathematical statement because it is very hard to express the exact meaning of this
statement in words. Here is a try: If we know that the process Q(t) is in the state qN−1

at the current time tN−1, the probability of finding the realization qN in the future time
tN does not change if we add further information about the past of the process before
time tN−1. Therefore, it is often said that a Markov process has no “memory” because it
has “forgotten” the information about its past. To get an intuitive understanding of the
Markov property, it might be helpful to provide examples for non-Markovian processes.

Consider for example the state variable Q of a harmonic oscillator with a weak δ-
distributed noise. Let the oscillator be in the state qi = 0 at time ti. If we do not know
what happened before time ti, the probability of finding the oscillator at some qi+1 > 0 at
time ti+1 is equal to the probability of finding it at −qi+1. On the other hand, if we add the
information that the oscillator was in the state qi−1 < 0 at time ti−1 closely before ti, it is
more probable to find the oscillator at qi+1 > 0 at time ti+1 than finding it at −qi+1 because
the velocity q̇i is probably positive. In this case the relation (2.5) does not hold true.
However, if we consider the state Q together with its first derivative Q̇, this bivariate
process is Markovian. If we know qi and q̇i at time ti, additional information about the
past will not change our forecast for the future. Another example for non-Markovianity
are processes with correlated noise. If the influence of positively correlated noise was
positive in the past, it is more probable that it is positive now. Therefore, the knowledge
about the past changes our forecast for the future.

From the first example we can learn that non-Markovianity sometimes results from
disregarding relevant degrees of freedom of a system. In those cases it is possible to
construct a Markov process by embedding the process into a higher-dimensional phase
space. One possibility is the well-known delay embedding that is often used to obtain
attractors in classical (non-stochastic) nonlinear time series analysis [KS03].

The second example leads us to the notion of the Markov-Einstein (ME) time scale.
If we consider a correlated noise term Γ(t) with an autocorrelation like

〈Γ(t)Γ(t′) 〉 = e−γ(t−t′) (2.6)

we have a finite correlation time τc = γ−1. Then, Eq. (2.5) is approximately valid if
the time increment tN − tN−1 � τc. This implies that there exists a time scale τME such
that Eq. (2.5) is approximately valid for time increments tN − tN−1 > τME. We call τME

the ME time scale. That means that as long as we sample the process with sampling
intervals larger than τME, the process appears to be Markovian.

Now we come back to the N-point PDF. If Eq. (2.5) is valid, fN can be written as a
product over two-point conditional PDFs

fN(qN , tN; . . . ; q1, t1) = f1(q1, t1)
N−1∏
i=1

p(qi+1, ti+1|qi, ti) . (2.7)
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If the process is furthermore stationary, the two-point conditional PDFs only depend on
the time increments ti+1 − ti. That means that the function pτ(q′ | q) := p(q′, t + τ | q, t)
completely defines the process. It should be noted that if pτ is known, one can also
compute p2τ via the Chapman-Kolmogorov equation (CKE), which we derive now:

p2τ(q′′ | q) =
f2(q′′, q)

f1(q)

=

∫
dq′ f3(q′′, q′, q)

f1(q)

=

∫
dq′ f1(q) pτ(q′′ | q′) pτ(q′ | q)

f1(q)

=

∫
dq′ pτ(q′′ | q′) pτ(q′ | q) (2.8)

Therefore, it suffices to determine the transition PDF pτ for one small increment τ to
get the complete information about a stationary Markov process.

2.2.3 Higher order processes
In principle one can extend our classification scheme by processes that obey the relations

p(qN , tN | qN−1, tN−1; . . . ; q1, t1) = p(qN , tN | qN−1, tN−1; qN−2, tN−2) , (2.9)
p(qN , tN | qN−1, tN−1; . . . ; q1, t1) = p(qN , tN | qN−1, tN−1; qN−2, tN−2; qN−3, tN−3)

(2.10)

and so on. But we will not discuss these processes here.

2.3 The Fokker-Planck equation
In the last section we classified stochastic processes according to their transition PDFs,
but we did not regard the specific forms of the transition PDFs. Regarding the functional
forms of transition PDFs, there is one class of Markov processes that allows for a further
dramatic simplification. This is when the transition PDFs p(q, t | q′, t′) converge towards
a Gaussian distribution in the limit t− t′ → 0. In this case it is sufficient to determine the
first two moments of the transition PDFs in the limit of small time increments in order
to get the complete information about the process. This is because the KM expansion
stops in this case and results in the FPE.

With use of a Taylor expansion of the CKE, Eq. (2.8), one can derive the KM
expansion (in one dimension) [Ris89]

∂

∂t
p(q, t | q′, t′) =

∞∑
i=1

(
−
∂

∂q

)n

D(n)(q, t)p(q, t | q′, t′) , (2.11)
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where D(n) are the KM coefficients

D(n)(q, t) = lim
τ→0

1
n!τ
〈(Q(t + τ) − Q(t))n |Q(t) = q〉 . (2.12)

These coefficients will be discussed in more detail in Sect. 2.5. The Pawula theorem
[Ris89] states that if D(3) = 0, all higher moments vanish, too, i. e., D(k) = 0 ∀k ≥ 3.
Then Eq. (2.11) becomes the FPE

∂

∂t
p(q, t | q′, t′) =

[
−
∂

∂q
D(1)(q, t) +

∂2

∂q2 D(2)(q, t)
]

p(q, t | q′, t′) . (2.13)

The initial condition of this partial differential equation (PDE) must of course be

p(q, t′ | q′, t′) = δ(q − q′) . (2.14)

As long as the KM coefficients depend explicitly on time, the formal solution of the
FPE is given by an unhandy Dyson series (cf. [Ris89]), the first terms of which are

p(q, t | q′, t′) '
[
1 +

(
−
∂

∂q
D(1)(q, t) +

∂2

∂q2 D(2)(q, t)
)

(t − t′) + O((t − t′)2)
]

× δ(q − q′) . (2.15)

From this one can deduce the short time propagator, i. e. the transition PDF in the limit
τ = t − t′ → 0:

p(q, t + τ | q,′ , t) =
1

2
√
πD(2)(q′, t)τ

exp
(
−

[q − q′ − D(1)(q′, t)τ]2

4D(2)(q′, t)τ

)
. (2.16)

As was pointed out in the beginning of this section, it is a Gaussian distribution with
mean value q′ − D(1)(q′, t)τ and variance 2D(2)(q′, t)τ. This gives us an understanding
of the KM coefficients D(1) and D(2). D(1), also referred to as the drift coefficient,
determines where the process will go to on average. The second term D(2), also called
the diffusion coefficient determines the strength of the stochastic influence and therefore
the uncertainty about what the process will do.

To summarize, the FPE is a PDE which determines the time evolution of the transition
probability of a Gaussian Markov process. It depends on two coefficients, the drift
and the diffusion term. Thus, if these two quantities are known, we can compute the
transition probabilities for arbitrary time increments and can set up every N-point PDF
that we are interested in.

For the sake of completeness, the FPE for a multivariate process Q(t) reads

∂

∂t
p(q, t | q′, t′) =

−∑
i

∂

∂qi
D(1)

i (q, t) +
∑

i, j

∂2

∂qi∂q j
D(2)

i j (q, t)

 p(q, t | q′, t′) (2.17)
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Here the multivariate KM coefficients are defined by

D(1)
i (q, t) = lim

τ→0

1
τ
〈Qi(t + τ) − Qi(t) |Q(t) = q〉 , (2.18)

D(2)
i j (q, t) = lim

τ→0

1
2τ
〈[Qi(t + τ) − Qi(t)][Q j(t + τ) − Q j(t)] |Q(t) = q〉 . (2.19)

2.4 The Langevin equation
In the previous section it was shown that a Gaussian Markov process is fully charac-
terized by the first two KM coefficients. For these processes one can set up a dynamic
evolution equation in form of a stochastic differential equation, the Langevin equation.
Its basic form for a univariate process Q(t) is [Ris89]

Q̇(t) = h(Q(t), t) + g(Q(t), t)Γ(t) . (2.20)

Here the function h determines the deterministic part of the dynamics, and g is the state
dependent amplitude of a stochastic force Γ with 〈Γ(t)〉 = 0. In order for the process to
be Markovian, the stochastic force has to be δ-correlated,

〈Γ(t)Γ(t′)〉 = δ(t − t′) . (2.21)

Remembering our considerations about the drift and diffusion coefficients from Sect.
2.3, it is obvious that h and g must be connected to D(1) and D(2), respectively. One can
easily show that the concrete connection is

D(1)(q, t) = h(q, t) , (2.22)

D(2)(q, t) = 1
2g

2(q, t) , (2.23)

if Itô’s definition of stochastic integrals is used (cf. [Ris89]). If Γ is Gaussian distributed,
all KM coefficients of order three and higher vanish.

The generalization to a multivariate process Q(t) is

Q̇(t) = h(Q(t), t) + G(Q(t), t)Γ(t) , (2.24)

where q, h and Γ are vectors with N components and G is an N × N diffusion matrix.
The noise vector Γ now has to satisfy

〈Γi(t)Γ j(t′)〉 = δi jδ(t − t′) , (2.25)

where δi j denotes the Kronecker symbol. The connection to the KM coefficients is now
given by

D(1)
i (q, t) = hi(q, t) , (2.26)

D(2)
i j (q, t) =

1
2

∑
k

Gik(q, t)G jk(q, t) . (2.27)
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The Langevin equation is very useful to simulate Markov processes. A numerical
integration of Eq. (2.20) can be easily done using the Euler-Maruyama scheme,

Qi(t + τ) = Qi(t) + τhi(Q(t), t) +
√
τ gi j(Q(t), t)Γ j(t) . (2.28)

Here, Γ j(t) are standard normal distributed independent random variables which can
be computed employing, e. g., the Box-Muller method. The accuracy of the Euler-
Maruyama scheme is of order τ1/2. A higher order method is the Milstein scheme,
which is of order τ [KP99].

2.5 Estimation of Kramers-Moyal coefficients
As was demonstrated in the previous sections, the information about the first two KM
coeffcients is sufficient to set up a thorough model for a Gaussian Markov process. If
appropriate data of such a process are available, it is possible to estimate these coef-
ficients by data analysis methods. Friedrich and Peinke were the first who performed
this kind of analysis, which is now termed Kramers-Moyal analysis, during their in-
vestigations of the turbulent cascade [FP97b, FP97a]. Later in Ref. [SFP98], Siegert,
Peinke and Friedrich described the general method and pointed out its potential for other
applications. Since then there have been numerous applications in the natural sciences,
finance, engineering and medicine (cf. Refs. [FPST11, FPT09] for an overview).

The problem of estimating KM coefficients, Eq. (2.12), can be devided into two
parts. The first part is to evaluate the conditional expectation values, which we call the
conditional moments

M(n)
τ (q, t) = 〈(Q(t + τ) − Q(t))n |Q(t) = q〉

=

∞∫
−∞

(
q′ − q

)n p
(
q′, t + τ | q, t

)
dq′ . (2.29)

This is a regression problem well known in statistics. A common method to solve this
regression problem will be presented in Sect. 3.2. However, the conditional moments
can only be estimated for finite values of the time increment τ. The smallest τ for
which the conditional moments can be estimated is given by the sampling interval of the
available time series data. Therefore, the second problem is to perform or approximate
the limit

lim
τ→0

1
n!τ

M(n)
τ (q, t) . (2.30)

In the first applications of the KM analysis, researchers were predominantly interested
in qualitative models and put not much emphasis on the quantitative accuracy of the
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estimated KM coefficients. Therefore the regression problem was solved by simple
histogram-based regression and not much attention was paid to the limiting process.

Regarding the regression problem, a first improvement was achieved by Lamouroux
and Lehnertz who employed a kernel-based regression technique to estimate the con-
ditional moments [LL09]. Ragwitz and Kantz were the first who pointed out the
importance of the limiting problem. Based on the short time propagator, Eq. (2.16),
they provided correction terms for the estimation of the diffusion coefficient at a finite
sampling interval. But, as was pointed out in Ref. [FRSP02], the short time propagator
can deviate from Eq. (2.16) for a finite time increment. Therefore, the corrections
presented by Ragwitz and Kantz are not correct. However, as we will demonstrate in
Chap. 4, the conditional moments can be expressed as an infinite series expansion in
the time increment τ (cf. Eq. (4.10)). From this series expansion one can construct
correction terms of arbitrary order in τ [FRSP02]. However, higher order correction
terms soon become very cumbersome, and the question about which correction order is
necessary has not been answered.

Another way to perform the KM analysis is to make a parametric ansatz for D(1) and
D(2) and to optimize the free parameters on some observable quantities. The first method
of this kind was introduced by Kleinhans et al. [KFNP05, KF07]. In this method the
free parameters are iterated until the conditional PDF of some fixed time increment of
the corresponding model is in optimal agreement to the corresponding conditional PDF
estimated from the available time series data. This method also allows for correct results
if the sampling interval of the time series data is large. However, we cannot expect the
reconstruction method of Refs. [KFNP05, KF07] to work for arbitrary large sampling
intervals because at some point the information about the dynamics is lost, and two
successive measurements become uncorrelated.

In Chap. 4 the problem of the KM analysis for data sets with large sampling intervals
is analyzed in further detail. The question, under which conditions a reliable estimation
is possible, is discussed, and another optimization method, which has some advantages
over the method of Refs. [KFNP05, KF07], is introduced. In Chap. 5 an application
of this method to experimental data of an optical trapping experiment is presented. A
conclusion is presented in Chap. 6.

Another problem related to the KM analysis that is not addressed here is measurement
noise. An analysis method that regards this problem is presented in [Leh11, Leh13].

Finally it should be stressed that the KM analysis is only suggestive for Gaussian
Markov processes. Therefore, a reliable analysis should contain a test of the Markov
property and a test, whether or not the third and higher KM coefficients vanish in order
to ensure the Gaussianity. Both tests are explained and performed in the course of the
analysis of Chap. 5.



3 Data analysis techniques

The scope of this chapter is to introduce some computational data analysis techniques
that will be employed in Chaps. 4 and 5. The first section is devoted to kernel density es-
timation, a method to estimate probability densities from random samples. Subsequently,
kernel regression will be introduced in Sect. 3.2.

For a more comprehensive discussion about kernel density estimation and kernel
regression, the reader is referred to Ref. [HMSW04].

3.1 Kernel density estimation
The PDF fQ(x) of a stochastic variable Q can be defined as the expectation value of the
Dirac δ function

fQ(x) = 〈δ(x − Q)〉 , (3.1)

where δ(x−Q) is also called the fine grained PDF. For a set of observations Q1, . . . ,QN

an estimator for the expectation value of a function g(Q) is

̂〈g(Q)〉 =
1
N

N∑
i=1

g(Qi) , (3.2)

where here and in the following, a hat above a symbol denotes an estimator for the
corresponding object. Therefore, a natural estimate for the PDF of the variable Q would
be

f̂Q(x) =
1
N

N∑
i=1

δ(x − Qi) . (3.3)

In the limit N → ∞ this will yield the correct PDF, but for finite N this estimator will
not be of much use. To improve our estimator, we define a function K(x), such that∫

K(x)dx = 1 (3.4)

15
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and

lim
h→0

1
h

K(x/h) = δ(x) (3.5)

and define

f̂Q(x) =
1
N

N∑
i=1

1
h

K
( x − Qi

h

)
. (3.6)

This estimator converges to the true PDF in the limit N → ∞, h → 0. The function
K(x) is called a kernel and Eq. (3.6) is the definition of the kernel density estimator.
Kernel functions are usually even, i. e.,

K(x) = K(−x) , (3.7)

and positive, K(x) ≥ 0 ∀x. Table 3.1 shows examples of common kernel functions that
satisfy these conditions together with (3.4) and (3.5). Here, we have used the definition

I(|x| < 1) =

1 for |x| < 1
0 else

. (3.8)

The functions listed in Tab. 3.1 are plotted in Fig. 3.1.

Tab. 3.1 Frequently used kernel functions.

Kernel K(x)

Uniforma 1
2 I(|x| < 1)

Epanechnikova 3
4 (1 − x2) I(|x| < 1)

Quartica 15
16 (1 − x2)2 I(|x| < 1)

Gauß 1
√

2π
exp

(
−1

2 x2
)

aI(|x| < 1) is defined in Eq. (3.8)

A specific kernel density estimate of a given random sample depends on the selected
kernel function and on the coefficient h that is called the bandwidth. Since the selection
of the bandwidth turns out to be the most important issue [HMSW04], we label a specific
kernel density estimate with f̂h(x) and skip the name of the stochastic variable. To assess
the quality of an estimate, two quantities, the bias and the variance are important and
will be introduced in the following.
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Fig. 3.1 Frequently used kernel functions corresponding to Tab. 3.1.

3.1.1 Bias and variance
The discussion in the remaining sections of this chapter follows the presentation of Ref.
[HMSW04].

An estimator is said to be unbiased if the expectation value of the estimator equals
the quantity that it is supposed to estimate. Otherwise it has a specific bias which is
defined as the difference between the expectation value of the estimator and the quantity
it is supposed to estimate and can be understood as a systematic error. As we have
already seen, the kernel density estimator is unbiased if the bandwidth is zero. For a
finite bandwidth it has the finite bias

Bias
{
f̂h(x)

}
=

〈
f̂h(x)

〉
− f (x) (3.9)

=
1
N

N∑
i=1

〈
1
h

K
( x − Qi

h

)〉
− f (x) . (3.10)
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Since we assume that all Qi are drawn from the same distribution f (x), 〈g(Qi)〉 = 〈g(Q)〉.
Hence,

Bias
{
f̂h(x)

}
=

〈
1
h

K
( x − Q

h

)〉
− f (x)

=

∫
1
h

K
( x − y

h

)
f (y)dy − f (x)

=

∫
K(s) f (x + hs)ds − f (x) . (3.11)

In the last expression we have introduced the variable s =
y−x

h and used Eq. (3.7).
Expanding f (x + sh) up to second order in h yields

Bias
{
f̂h(x)

}
= f (x)

∫
K(s)ds︸      ︷︷      ︸
=1

+ h f ′(x)
∫

sK(s)ds︸       ︷︷       ︸
=0

+
1
2

h2 f ′′(x)
∫

s2K(s)ds︸        ︷︷        ︸
=µ2(K)

− f (x) + O(h3) . (3.12)

The first integral equals one because of Eq. (3.4), and the second integral vanishes due
to Eq. (3.7). Therefore, for small h the bias can written as

Bias
{
f̂h(x)

}
=

h2

2
f ′′(x)µ2(K) + O(h3) , (3.13)

with µ2(K) =
∫

x2K(x)dx. We see that the bias grows quadratically with the bandwidth
and depends linearly on the curvature of the true PDF.

The second important quantity of an estimator is the variance which describes the
expected fluctuations around the expected value of an estimator. The variance of the
kernel density estimator is

Var
{
f̂h(x)

}
=

〈
f̂ 2
h (x)

〉
−

〈
f̂h(x)

〉2
, (3.14)

which can be shown to equal

1
N

Var
{

1
h

K
( x − Q

h

)}
. (3.15)

For a small bandwidth h the leading term is [HMSW04]

Var
{
f̂h(x)

}
'

1
Nh

f (x)||K||22 , (3.16)

with ||K||22 =
∫

dxK2(x). Therefore a small bandwidth leads to a large variance and vice
versa.
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3.1.2 Bandwidth selection
We have seen that a large bandwidth leads to a low variance, but also results in a large
bias and vice versa. An optimal bandwidth should therefore represent a tradeoff between
both effects. This also becomes clear if we consider the mean squared error

MSE
{
f̂h(x)

}
=

〈[
f̂h(x) − f (x)

]2
〉
. (3.17)

It can easily be shown that the MSE is the sum of the variance and the squared bias,

MSE
{
f̂h(x)

}
= Var

{
f̂h(x)

}
+

[
Bias

{
f̂h(x)

}]2
, (3.18)

if one uses the definitions of bias and variance, Eqs. (3.9) and (3.14), respectively.
Therefore, as a criterion for an optimal bandwidth we can use the postulation that the
MSE is minimal. Using our series expansions (3.13) and (3.16), we obtain

MSE
{
f̂h(x)

}
'

1
Nh

f (x)||K||22 +
h4

4
f ′′(x)2µ2(K)2 . (3.19)

The only problem is that the MSE depends on x. To obtain a global optimal bandwidth,
one can regard the mean integrated squared error (MISE) instead of the MSE. The
former is defined as

MISE
{
f̂h

}
=

∫
MSE

{
f̂h(x)

}
dx (3.20)

If we insert the approximation (3.19), we obtain the approximate mean integrated
squared error (AMISE)

AMISE
{
f̂h

}
=

1
Nh
||K||22 +

h4

4
|| f ′′||22 µ2(K)2 . (3.21)

From this expression, one can compute the minimum with respect to h, yielding

hopt =

(
||K||22

|| f ′′||22 µ2(K)2N

)1/5

. (3.22)

The problem with this formula is of course, that it depends on || f ′′||22 while f (x) is
the unknown quantity we try to estimate. However, one can obtain a rule-of-thumb
bandwidth by assuming a specific class of distributions. For a Gaussian PDF with
variance σ2 for instance, one obtains

|| f ′′||22 =
3

8
√
π
σ−5 ≈ 0.212σ−5 . (3.23)
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The standard deviation can be estimated by

σ̂ =

√√
1

N − 1

N∑
i=1

(〈Q〉 − Qi)2 . (3.24)

For the Gaussian kernel K(x) = 1
√

2π
exp

(
−1

2 x2
)
, we have(

||K||22
µ2

2(K)

)1/5

=

(
1

4π

)1/10

≈ 0.776 , (3.25)

which results in

hopt ≈ 1.06σ̂N−1/5 . (3.26)

The last expression is the famous Silverman’s rule of thumb (SRT). If we introduce the
coefficient

δ0(K) =

(
||K||22
µ2

2(K)

)1/5

, (3.27)

we can generalize SRT to

hopt ≈ 1.364 δ0(K)σ̂N−1/5 . (3.28)

During the analyses presented in this thesis, the Epanechnikov kernel scaled in a way
that µ2(K) = 1 is used. It reads

K(x) =
3
√

5
100

(
5 − x2

)
I
(
|x| <

√
5
)
. (3.29)

For this kernel, the rule-of-thumb bandwidth is given by

hopt ≈ 1.048σ̂N−1/5 . (3.30)

The Epanechnikov kernel is employed because it leads to continuous and (at least
piecewise) differentiable estimates and is numerically cheaper than other kernels that
have this property.

3.1.3 Multivariate kernel density estimation
The natural extension of the kernel density estimator, Eq. (3.6), for a multivariate
stochastic variable Q = (Q1, . . . ,Qd)T is the product kernel estimator

f̂Q(x) =
1

N
∏d

k=1 hk

N∑
i=1

d∏
j=1

K

 x j − Q j
i

h j

 . (3.31)
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Now we have a specific bandwidth h j for each component of Q. In analogy to Eq. (3.28)
there is also a rule of thumb for the optimal bandwidths [HMSW04],

h j,opt ≈ σ̂ jN−1/(d+4) , (3.32)

where σ̂ j is the standard deviation estimator of jth component of Q. Here, a constant
prefactor is omitted because it is close to one anyway, and aspirations for high accuracy
in multivariate density estimation cannot be satisfied in most practical cases.

In many cases it is not suggestive to assign a bandwidth to each component. This
is when the cloud of data points has minimal and maximal widths that are not aligned
with the coordinate axes. In mathematical terms that means that the eigenvectors of the
covariance matrix are not parallel to the coordinate axes. In those cases, an improvement
of (3.31) is [HMSW04]

f̂Q(x) =
1

N det H

N∑
i=1

K{H−1(x − Qi)} (3.33)

with

K{H−1(x − Q)} =

d∏
j=1

K{[H−1(x − Q)] j} , (3.34)

where H is the bandwidth matrix. A rule-of-thumb bandwidth matrix can be constructed
from an estimated covariance matrix Σ̂ with

Σ̂i j = 〈(Qi − Q̄i)(Q j − Q̄ j)〉 . (3.35)

Then, an optimal bandwidth matrix can be approximated by [HMSW04],

Hopt ≈ Σ̂
1/2

N−1/(d+4) . (3.36)

To compute Σ̂
1/2

, one has to diagonalize Σ̂,

Σ̂ = QDΣQ−1 (3.37)

= QD1/2
Σ

Q−1QD1/2
Σ

Q−1 . (3.38)

Then we have

Σ̂
1/2

= QD1/2
Σ

Q−1 , (3.39)

where D1/2
Σ

is a diagonal matrix whose entries are the square roots of the (real and
positive) eigenvalues of Σ̂, and Q and Q−1 are the transition matrices that are built from
the eigenvectors of Σ̂.
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3.2 Kernel regression
The most frequently used kernel-based estimator for conditional expectation values is
the Nadaraya-Watson estimator. This estimator will be used in later analyses to estimate
the conditional moments (2.29). In order to derive the Nadaraya-Watson estimator, we
consider two random variables X and Y with a joint PDF f (x, y). We assume that we
have a random sample of pairs (Xi,Yi), i = 1, . . . ,N that were drawn independently
from the joint distribution. Now the goal is to estimate the conditional expectation value

m(x) = 〈Y | X = x〉 =

∫
y p(y | x) dy =

∫
y f (x, y)dy

fX(x)
. (3.40)

To estimate the joint PDF f (x, y), we employ the product kernel estimator introduced in
the previous section,

f̂ (x, y) =
1

Nhxhy

N∑
i=1

K
(

x − Xi

hx

)
K

(
y − Yi

hy

)
. (3.41)

Then we obtain for the numerator of Eq. (3.40)∫
y f̂ (x, y)dy =

1
Nhx

N∑
i=1

K
(

x − Xi

hx

) ∫
y

hy
K

(
y − Yi

hy

)
dy . (3.42)

For the last integral we introduce the variable s =
y−Yi

hy
, which leads to

K
(
y − Yi

hy

)
dy =

∫
(hys + Yi)K(s)ds (3.43)

= hy

∫
sK(s)ds︸       ︷︷       ︸

=0

+Yi

∫
K(s)ds︸      ︷︷      ︸
=1

(3.44)

= Yi (3.45)

To evaluate the integrals in Eq. (3.44), Eqs. (3.7) and (3.4) have been used. If we plug
Eqs. (3.45) and (3.42) into Eq. (3.40), and use the standard univariate kernel estimator
(3.6), we obtain the Nadaraya-Watson estimator

m̂(x) =

∑N
i=1 K

(
x−Xi

hx

)
Yi∑N

j=1 K
( x−X j

hx

) . (3.46)

Just as the kernel estimator for the density estimation problem, also the Nadaraya-
Watson estimator depends on a bandwidth. A large (small) bandwidth will decrease
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(increase) the variance, but increase (decrease) the bias of the estimation. In contrast
to the density estimation problem, one cannot derive an easy rule-of-thumb bandwidth
for the regression problem. One possibility to compute an optimal bandwidth is the
cross-validation algorithm [HMSW04]. The problem with cross-validation is that it
is computationally very demanding for large data sets because one has to minimize
a function that consists of order N2 summands, where N is size of the data sample.
However, to estimate the conditional moments (2.29), one can yield satisfying results by
using the same rule-of-thumb bandwidth as for the density estimation problem. This is
on the one hand reasonable because in the derivation of the Nadaraya-Watson estimator,
hx is the bandwidth with which the univariate PDF of X is estimated in the denominator.
On the other hand, the bias of the Nadaraya-Watson estimator crucially depends on
the derivatives of the desired function m(x), which should influence the choice of the
bandwidth. Since a large bandwidth leads to systematically underestimated slopes and
curvatures of the function m(x), often the prefactor of Eq. (3.30) is reduced to 0.8 in the
analyses presented in this thesis.

To estimate the components of a drift vector (2.18) or a diffusion matrix (2.19) of
multivariate process, one needs to determine conditional expectation values, where the
random variable X is multivariate,

m(x) = 〈Y |X = x〉 . (3.47)

Employing the multivariate kernel density estimator (3.33), one can derive the multi-
variate Nadaraya-Watson estimator

m̂(x) =

∑N
i=1K{H−1(x − Xi)}Yi∑N

j=1K{H−1(x − X j)}
. (3.48)

The Nadaraya-Watson estimator is used in the KM analysis method presented in
Chap. 4. A more sophisticated method is local polynomial regression [HMSW04].
This method can significantly reduce bias and variance. Therefore, employing the local
polynomial regression method may improve the KM analysis method presented in this
thesis.





4 Kramers-Moyal analysis for sparsely
sampled time series data

A frequently arising problem in the estimation of drift and diffusion from “real world”
time series data consists in a low sampling rate at which the data were recorded. In this
case, it is not trivial to perform the limit τ→ 0 in Eq. (2.12). In a naive estimation that
ignores the limiting process and just evaluates the conditional moments for the smallest
available time increment τ, i. e., the sampling interval of the time series data, dramatic
deviations from the true coefficients can occur. Even if one applies low order corrections,
the results can be very misleading. The errors that originate in a large sampling interval
are referred to as finite time or finite sampling interval effects in the literature. In a paper
from 2009, Lade presents a method that allows one to make exact predictions of finite
time effects for arbitrary drift and diffusion coefficients [Lad09]. Within the framework
of the current thesis, the inverse problem was solved, namely the deduction of the true
drift and diffusion coefficients from estimated finite time coefficients. This method,
which is published in Refs. [HF11, HFHD12], is the subject of the present chapter.

The first section of this chapter reviews Lade’s method to predict finite time effects
and gives some examples of how these effects can look like. It will be shown that there
are two regimes in the time increment τ separated by the relaxation time τR. In the
regime τ � τR the treatment of finite time effects is not necessary, in the regime τ � τR

it is not possible, because the information of the dynamics is lost. The new method is
well suited for cases where the sampling interval is approximately of the same order of
magnitude as the relaxation time.

In the next sections the method is described, and examples for its functionality are
presented. The last section provides some remarks on the numerical integration of the
adjoint FPE, which has to be performed in the course of the optimization if no analytical
solutions are available.
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4.1 Finite time effects
We define the finite time KM coefficients as

D(n)
τ (x) =

1
n!τ

M(n)
τ (x) (4.1)

with

M(n)
τ (x) = 〈[X(t + τ) − X(t)]n〉|X(t)=x (4.2)

=

∞∫
−∞

(
x′ − x

)n p
(
x′, t + τ|x, t

)
dx′ . (4.3)

Thus,

lim
τ→0

D(n)
τ (x) = D(n)(x) . (4.4)

As we have seen in Sect. 2.3, the conditional PDF p (x′, t + τ|x, t) is the solution of the
FPE at time t′ = t + τ with the initial condition f (x′, t′ = t) = δ (x′ − x). Therefore, it
can be written as

p
(
x′, t + τ|x, t

)
= eL̂(x′)τδ(x′ − x) , (4.5)

where L̂(x′) is the Fokker-Planck operator

L̂(x′) = −
∂

∂x′
D(1)(x′) +

∂2

∂x′2
D(2)(x′) . (4.6)

Inserting Eq. (4.5) into (4.3), one obtains

M(n)
τ (x) =

∞∫
−∞

(
x′ − x

)n eL̂(x′)τδ(x′ − x)dx′ . (4.7)

If we define the inner product 〈 f |g〉 =
∫

f (x)g(x)dx, Eq. (4.7) can be written as

M(n)
τ (x) =

〈(
x′ − x

)n
∣∣∣ eL̂(x′)τδ(x′ − x)

〉
=

〈
eL̂†(x′)τ (x′ − x

)n
∣∣∣∣ δ(x′ − x)

〉
= eL̂†(x′)τ (x′ − x

)n
∣∣∣∣
x′=x

. (4.8)

In the second step we have introduced the adjoint Fokker-Planck operator

L̂†(x′) = D(1)(x′)
∂

∂x′
+ D(2)(x′)

∂2

∂x′2
. (4.9)
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The propagator eL̂†(x′)τ in Eq. (4.8) can be expanded into a power series of L̂†(x′)τ,
which leads to

M(n)
τ (x) =

 ∞∑
k=0

(
L̂†(x′)

)k
τk

k!
(
x′ − x

)n


∣∣∣∣∣∣∣∣
x′=x

. (4.10)

Equation (4.10) was already stated in [FRSP02]. The central point in Lade’s article
[Lad09] is a reinterpretation of Eq. (4.8). Namely, the term eL̂†(x′)τ can be understood as
the propagator of the PDE

∂Wn,x(x′, t)
∂t

= L̂†(x′)Wn,x(x′, t) , (4.11)

which acts on the initial condition

Wn,x
(
x′, 0

)
=

(
x′ − x

)n . (4.12)

Thus, the conditional moments are given by

M(n)
τ (x) = Wn,x

(
x′ = x, t = τ

)
. (4.13)

The indices n and x of the function W shall emphasize that Eq. (4.11) has to be solved
with the initial condition (4.12), which depends on n and x, to obtain the nth moment at
position x. Lade calls Eq. (4.11) the adjoint Fokker-Planck equation (AFPE)1.

The advantage of this interpretation over the series expansion (4.10) lies in the fact
that the conditional moments can be calculated exactly or at least up to numerical
accuracy. On the contrary, the usage of the series expansion is connected to the problem
that one does not know in advance how many terms are necessary. This would make an
inversion quite intricate. Section 4.8 deals with the numerical integration of the AFPE.

4.1.1 Examples
For simple drift and diffusion coefficients, Eq. (4.11) can be solved analytically. For
a linear drift D(1)(x) = −γx and quadratic diffusion D(2)(x) = α + βx2, one obtains for
n = 1

W1,x(x′, t) = x′e−γt − x . (4.14)

This leads to

D(1)
τ (x) =

1
τ

W1,x(x′ = x, t = τ)

= −
x
τ

(
1 − e−γτ

)
. (4.15)

1It differs from the backward Kolmogorov equation which has a negative sign in front of one side of the
equation.
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For n = 2 we get

W2,x(x′, t) = x2 −
α

β − γ

(
1 − e2(β−γ)t

)
+ x′2e2(β−γ)t − 2xx′e−γt , (4.16)

which yields

D(2)
τ (x) =

1
2τ

W2,x(x′ = x, t = τ)

=
1
2τ

[
x2

(
1 + e2(β−γ)τ − 2e−γτ

)
−

α

β − γ

(
1 − e2(β−γ)τ

)]
. (4.17)

For β = 0 we obtain the corresponding result for an Ornstein-Uhlenbeck (OU) process,

D(2)
τ (x) =

1
2τ

[
x2 (

1 − e−γτ
)2

+
α

γ

(
1 − e−2γτ

)]
. (4.18)

The finite time drift for the OU process is the same as Eq. (4.15).
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Fig. 4.1 Conditional moments (top) and finite time drift and diffusion coefficients (bottom)
for an OU process with D(1) = −x and D(2) = 1. The τ axes are in logarithmic scaling. The
relaxation time for this process is τR = 1. For τ � τR, the finite time KM coefficients have
converged to the true KM coefficients, whereas the conditional moments vanish. For τ � τR,
the conditional moments become stationary, whereas the corresponding KM coefficients vanish.



4.1 Finite time effects 29

Figure 4.1 shows the finite time drift and diffusion and the corresponding conditional
moments for the latter process with γ = α = 1. As one can clearly see, the relaxation
time τR = 1 separates two different regimes. In the regime τ � τR, the finite time KM
coefficients have converged to the true coefficients. Finite time effects can be safely
neglected in this case. In the regime τ � τR, the first conditional moment becomes
linear in x and the second moment becomes quadratic. Both moments become constant
with respect to τ. The corresponding KM coefficients have the same dependence on x
but, according to Eq. (4.1), decay to zero with τ−1.

As we will see in the next subsection, the behavior in the latter regime is the same for
all different kinds of drift and diffusion coefficients, provided that the first two moments
of the stationary solution of the corresponding FPE exists. Therefore, any information
about the true KM coefficients is lost if one has only access to this regime. A KM
analysis is impossible in this case.

4.1.2 Limiting case of statistical independence
Linear drift and quadratic diffusion are the most frequently observed types of KM co-
efficients in real world time series (see e. g. [FPR00, Sur02, JFG+03, TM04, GPST05,
SJA+05, GPTS06, GSPT06, GBSM+06, SP06, TGP+06, FEB+07, CRA07, CAR08,
LPF+10, KMKT11]). In this subsection, it shall be shown that such results have to
be interpreted with care since this is what one observes if the limit of statistical in-
dependence is approached where all information about the true KM coefficients is
lost. Especially the diffusion coefficient often appears to be quadratic although it is
constant, even if the sampling interval is lower than the relaxation time of the process
(cf. examples of Fig. 4.3).

This is the case if the time increment τ is large compared to the relaxation time τR

of the process, so that the events x at time t and x′ at time t + τ become statistically
independent, i. e.,

p(x′, t + τ|x, t) ≈ f (x′, t + τ) . (4.19)

As was pointed out in [AQ10], the nth finite time KM coefficient becomes a polynomial
of degree n in this case:

M(n)
τ (x) =

∞∫
−∞

(
x′ − x

)n p
(
x′, t + τ|x, t

)
dx′

τ�τR
−→

∞∫
−∞

(
x′ − x

)n f (x′, t + τ)dx′ . (4.20)
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Apparently, the last term is an n-order polynomial in x. For a stationary process, f does
not depend on time. In this case, the first two conditional moments yield

M(1)
τ�τR

(x) = 〈X〉 − x , (4.21a)

M(2)
τ�τR

(x) = 〈X2〉 − 2〈X〉x + x2 . (4.21b)

With Eq. (4.1), the finite time KM coefficients become

D(1)
τ�τR

(x) =
1
τ

[〈X〉 − x] , (4.22a)

D(2)
τ�τR

(x) =
1
2τ

[
〈X2〉 − 2〈X〉x + x2

]
. (4.22b)

If the observed conditional moments or finite time coefficients are close to (4.21) or
(4.22), respectively, for all available τ, one has to admit that the KM analysis is not
possible.

Of course, Eqs. (4.21) and (4.22) are only valid if the first and second moment of
the stationary PDF f (x) exist. For example, for a process with D(1)(x) = −γx and
D(2)(x) = α+ βx2, which was discussed in Sect. 4.1.1, the second moment does not exist
for β ≥ γ as is shown in Appendix A. Therefore, the finite time diffusion, Eq. (4.17),
diverges in this case as τ goes to infinity.

4.1.3 Recommended preinvestigations
The reader should now be convinced that it is important to know whether or not the
sampling interval of a given data set is sufficient before one performs a KM analysis.
The easiest way to get a feeling for that is to take a look at the autocorrelation function
(ACF)

C(τ) =
〈X(t)X(t + τ)〉t
〈(X(t))2〉t

. (4.23)

To demonstrate this, we consider an OU process with D(1) = −x and D(2) = 1, which has
a relaxation time τR = 1. Employing the Euler-Maruyama scheme, we produce three
different synthetic time series with sampling intervals τs = 0.1, 1, 10 and 105 data points
each. For each data set the ACF (see Fig. 4.2) and the finite time drift and diffusion
coefficients D(1,2)

τs (see Fig. 4.3) are determined. For τs = 0.1 the ACF is resolved
well; the correlation between two successive measurements is large (C(τs) > 0.9). In
this case, finite time effects are small, but the diffusion term already appears quadratic
(cf. top panels of Fig. 4.3). For τs = 1.0 the ACF is not resolved well, but it is still
possible to estimate the relaxation time from it. Here, finite time effects are large (cf.
middle panels of Fig. 4.3), but, as we will see in Sect. 4.4.1, a reconstruction of the
true KM coefficients is still possible since two successive measurements are correlated
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Fig. 4.2 Estimated ACFs for three synthetic OU processes with relaxation time τR = 1 and
sampling intervals τs = 0.1, 1.0, 10.0 from top to bottom. For τs = 0.1 finite time effects are
small. For τs = 1.0 finite time effects are large, but a KM analysis is still possible. For τs = 10.0,
two successive points are almost uncorrelated; a KM analysis is not possible.
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Fig. 4.3 Estimated finite time drift (left column) and diffusion (right column) coefficients
D(1,2)
τs (x) for three synthetic OU processes with relaxation time τR = 1 and sampling intervals

τs = 0.1, 1.0, 10.0 from top to bottom. The dotted lines show the true coefficients to illustrate
the finite time effects. The coefficients are estimated employing the Nadaraya-Watson estimator
(3.46) with the kernel (3.29) and the bandwidth (3.30).
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(C(τs) ≈ 0.37). For τs = 10.0 the correlation between two successive measurements is
approximately zero. The information about the dynamics is lost, and a KM analysis is
not possible, even if finite time effects are taken into account (cf. discussion is Sect.
4.6).

In Fig. 4.3 one can see that the variance of the estimated coefficients decreases as the
sampling interval increases. Therefore, it can be advantageous to use the information
of estimated finite time coefficients also for larger sampling intervals as is done in the
analysis method introduced in the following section.

4.2 The optimization procedure
This section describes how Lade’s method to compute the finite time KM coefficients
can be inverted to obtain the true KM coefficients. This leads us to an optimization
problem. The idea is as follows. At first, one has to represent the KM coefficients with a
set of free parameters σ. For example, one can make a polynomial ansatz like

D(1)(x, σ) = a0 + a1x + a2x2 + · · · + anxn ,

D(2)(x, σ) = b0 + b1x + b2x2 + · · · + bmxm ,

with a set of free parameters

σ = {a0, a1, . . . , an, b0, b1, . . . , bm} .

Another possibility is a representation in form of spline curves. In this case, one defines
a set of sampling points x1, x2, . . . , xn. In the numerical integration of the AFPE, D(1)

and D(2) are represented as spline interpolations through these sampling points. The free
parameters are then

σ =
{
D(1)(x1), . . . ,D(1)(xn),D(2)(x1), . . . ,D(2)(xn)

}
.

For a specific set of parameters σ, one can compute the conditional moments M(1)
τ (x, σ)

and M(2)
τ (x, σ), for all x and τ values of interest by solving the AFPE. Some details on

the numerics are described in Sect. 4.8.
The aim of the optimization procedure is to find the set of parameters σ∗ such that

M(1)
τ (x, σ∗) and M(2)

τ (x, σ∗) are as close as possible to the conditional moments M̂(1)
τ (x)

and M̂(2)
τ (x) one has estimated from the time series data. To this end, one has to define a

distance measure. We employ the least square distance

V(σ) =

M∑
i=1

N∑
j=1


[
M̂(1)

τi (x j) − M(1)
τi (x j, σ)

]2(
σ̂(1)

i j

)2 +

[
M̂(2)

τi (x j) − M(2)
τi (x j, σ)

]2(
σ̂(2)

i j

)2

 , (4.24)
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which is weighted by measures of the statistical uncertainty in the estimation of the
conditional moments σ̂(1)

i j and σ̂(2)
i j . Applying an expression from Ref. [HMSW04] for

the standard deviation of the Nadaraya-Watson estimator, the statistical uncertainties
can be computed as

σ̂(1)
i j =

√
||K||2

h

√√√√√ M̂(2)
τi (x j) −

(
M̂(1)

τi (x j)
)2

∑T
k=1

1
h K

( x j−Xtk
h

) , (4.25a)

σ̂(2)
i j =

√
||K||2

h

√√√√√ M̂(4)
τi (x j) −

(
M̂(2)

τi (x j)
)2

∑T
k=1

1
h K

( x j−Xtk
h

) , (4.25b)

where ||K||22 is the L2 norm of the kernel, thus

||K||2 =

√∫
K2(x)dx . (4.26)

The parameter set σ∗ that minimizes the least square distance corresponds to the max-
imum likelihood estimation if two conditions are satisfied. First, the estimates M̂(k)

τi (x j)
are Gaussian distributed around M(k)

τi (x j, σ
∗) with standard deviation σ̂(k)

i j . Second, the
estimates M̂(k)

τi (x j) are independent for different i, j, k. If one employs kernel regression,
this is not the case for “neighboring“ coefficients if |x j − x j±1| is larger than the width of
the employed kernel. The kernel (3.29) with a bandwidth h for instance, has a width
given by w = 2

√
5h. Therefore we sample the x axis with a sampling interval equal to

w.
Regarding the optimization, a large variety of methods is available. In the examples

presented in the following, an implementation of a trust region algorithm [CGT00] from
the Intel Math Kernel Library 10.1 for Linux [MKL] was used.

4.3 Monte Carlo error propagation
The question of how much information about the dynamics is contained in a time
series data set depends on both the sampling interval and the amount of data. From the
discussion in Sect. 4.1.2, it becomes clear that the larger the sampling interval of the
time series data, the less information about the dynamics is contained in the data. The
more data we have, the more precisely we can estimate the conditional moments, which
allows for a more accurate evaluation of the KM coefficients. If a data set contains
only very little information about the dynamics, the introduced optimization procedure
might yield wrong or inaccurate results. In order to assess the reliability of the obtained
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results, it is therefore of great value to estimate uncertainties for the determined model
parameters. Since we have to deal with a highly nonlinear optimization problem, this is
unfortunately no trivial task. An often applied technique in those situations is the Monte
Carlo error propagation (MCEP) [ABT05].

To explain the idea of the MCEP technique, it is helpful to introduce two terms often
used in the context of inverse problems, namely the forward problem and the backward
problem. Loosely speaking, the forward problem is to use a model to produce data:

forward problem: model −→ data

A typical example would be to solve Newton’s equation of motion for a specific set of
forces (model) to obtain the trajectory of a particle (data). The backward problem is to
find a suitable model that describes a given data set, which is in general assumed to be
subject to noise sources:

backward problem: data + noise→ model (4.27)

In the above example, the backward problem would be to find the forces that act on
a particle from a measured trajectory, which is subject to measurement noise. The
backward problem has generally no unique solution but depends on a specific model
ansatz with a set of parameters one has to obtain such that the model fits at best to the
data.

The first step of the MCEP approach is to solve the backward problem with a specific
model ansatz. Then, one has to solve the forward problem for the obtained model
to produce a data set, which – provided that the forward problem can be solved with
arbitrary accuracy – is not perturbed by noise. In a next step, one generates an ensemble
of pseudo data sets, by perturbing the data set obtained from the model with different
realizations of noise. For each of these pseudo data sets, one again has to solve the
backward problem with the same model ansatz. The standard deviations of the obtained
model parameters over the ensemble of pseudo data sets can then be used as error
estimates. Thereby it is crucial that the noise one uses to generate the pseudo data sets
has similar properties as the noise in the original data sets.

In the actual case, we do not regard the time series data itself as data but the measured
conditional moments. As the model we regard the AFPE with some parameterized drift
and diffusion coefficients. The forward problem is then to solve the AFPE to obtain the
corresponding conditional moments, whereas the backward problem is to obtain KM
coefficients that correspond to the measured conditional moments.

The solution of the backward problem yields the coefficients M(1,2)
τi (x j, σ

∗). It is
assumed that the errors of the estimated conditional moments are Gaussian distributed
with standard deviations according to Eqs. (4.25). Therefore the coefficients of a pseudo
data set are computed as

M(1,2)
τi

(x j, σ
∗) + σ̂(1,2)

i j Γi j , (4.28)
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where Γi j are independent standard normal distributed random numbers.
It should be noted that the MCEP method assumes that the estimates M̂(k)

τi (x j) are all
independent for different i, j and k. Therefore it is important that the x axis is sampled
as described at the end of the previous section.

A practical problem that occurs in connection with the MCEP procedure is that for
some pseudo data sets, the optimization procedure can get stuck in a local minimum
at a distance from the global minimum. This can lead to a significantly overestimated
errors. To overcome this problem, one has to detect these outliers and remove them
from the calculation of the standard deviation over the ensemble of pseudo data sets.
This is demonstrated with the first numerical example in Sect. 4.4.1.

4.4 Parametric examples
In the following, two examples with synthetic time series are presented. In both
presented examples, the sampling interval of the constructed time series is approximately
of the same order of magnitude as the relaxation time of the underlying process because
then it is both necessary and possible to take into account finite time effects as was
demonstrated in Sect. 4.1. Using the first example, we also regard the problem of
outliers in MCEP approach and the way it is solved.

4.4.1 Ornstein-Uhlenbeck process
As a first example, we consider an OU process, i. e., a Langevin process with linear drift
and constant diffusion,

D(1)(x) = −γx ,

D(2)(x) = α ,

with γ, α > 0. Such a process can always be rescaled such that

D(1)(x) = −x , (4.29a)

D(2)(x) = 1 , (4.29b)

so we take this as a first example.
At first, a synthetic time series is created by a numerical simulation of the corre-

sponding Langevin equation with the Euler-Maruyama scheme. Thereby, a time step
∆t = 10−3 is used, but only every 1000th time step is stored so that the sampling interval
is τ1 = 1. The computed time series consists of 106 data points. In the next step, the finite
time KM coefficients are estimated for the two smallest available time increments τ1 and
τ2. This is done via the Nadaraya-Watson estimator (3.46) with a reduced rule-of-thumb
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bandwidth h = 0.8σ̂N−1/5 (cf. discussion in Sect. 3.2). The blue crosses in Fig. 4.4
show the results for D(1)

τ1 (x) (left) and D(1)
τ1 (x) (right). The error bars correspond to the

error estimates (4.25a) and (4.25b), respectively. As one can see, the finite time drift is
clearly linear and the diffusion is quadratic, but the results are far away from Eqs. (4.22)
so we are not in the limit of statistical independence. We make the parametric ansatz

D(1)(x) = −ax , (4.30a)

D(2)(x) = b + cx2 , (4.30b)

with the set of optimization parameters σ = {a, b, c}. After making an initial guess for
the parameters, the optimization is started. The MCEP errors are determined employing
104 pseudo data sets.

The parameter values of the initial guess, the results of the optimization, the obtained
errors, and the true parameter values are listed in Tab. 4.1. The initial guess corresponds
to the blue dotted curves in Fig. 4.4. The result is depicted by the red solid curve
while the true coefficients are represented by the black dots. The agreement between
the result and the true coefficients is very good. For the diffusion, we also construct a
1σ-confidence band indicated by the red dashed lines. They correspond to the functions
(b ± σMCEP(b)) + (c ± σMCEP(c))x2.

Figure 4.5 illustrates the problem of outliers that occurs in connection to the MCEP
approach because the optimization does not converge for all generated pseudo data sets.
To identify these outliers, we plot the result for the parameter a for each pseudo data set
against the residual

r = V(σ∗) . (4.31)

One can clearly identify outliers by eye that are correlated with large residuals. To
identify them numerically, we define a residual threshold rth and only consider those
pseudo data sets that are below this threshold (black dots in Fig. 4.5). The threshold is
set to

rth = 〈r〉 + 2〈|r − 〈r〉|〉 , (4.32)

Tab. 4.1 Results for the optimization parameters a, b and c together
with the error estimates σMCEP obtained by the MCEP method and
the initial guess for the OU example.

a b c

initial guess 0.63 0.45 0.2
result 1.0016 1.006 0.003
σMCEP 0.0033 0.012 0.012
true value 1.0000 1.000 0.000
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Fig. 4.4 Results of the optimization procedure for an OU process with D(1)(x) = −x, D(2)(x) = 1.
The analyzed time series consists of 106 data points with a sampling interval τ1 = 1. The blue
crosses with error bars are the estimated finite time coefficients D(1)

τ1 (left) and D(2)
τ1 (right). The

blue dotted curves show the initial guess for the optimization, and the red solid ones show the
result in comparison with the true coefficients (black dots). For the diffusion, the red dashed
lines indicate a 1σ-confidence band.

where the brackets denote averages over the ensemble of pseudo data sets.

4.4.2 Multiplicative noise
As a second example, we consider a system with multiplicative noise:

D(1)(x) = −x , (4.33a)

D(2)(x) = 1 + 0.5x2 . (4.33b)

In the same manner as in the previous example, a time series consisting of 106 data
points and a sampling interval of τ1 = 1 is generated. From finite time coefficients
D(1,2)
τ1 (x), we derive the parametric ansatz

D(1)(x) = −ax ,

D(2)(x) = b + cx2 .

The initial guess and the result of the optimization are displayed in Fig. 4.6 and Tab. 4.2
analogously to the previous case of the OU process. Again, the resulting coefficients
agree very well with the true coefficients.

4.5 Systematic evaluation of MCEP errors
In order to assess whether the MCEP approach really yields realistic error estimates, an
ensemble of ten realizations of an OU process with the same properties as the time series
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Fig. 4.5 The problem of outliers in the determination of MCEP errors. Each point in the plot
represents the optimization result for the parameter a against the final residual of one of 104

pseudo data sets. To remove outliers from the evaluation of the MCEP error, a residual threshold
is defined (red line). The removed outliers are represented by red dots. From all points below
the threshold (black dots), the standard deviation is determined. The blue solid line represents
the resulting parameter value, the blue dashed lines the ±σ interval.

Tab. 4.2 Results for the optimization parameters a, b and c together
with the error estimates σMCEP obtained by the MCEP method and
the initial guess for the process (4.33).

a b c

initial guess 0.636 0.644 0.296
result 1.016 1.089 0.435
σMCEP 0.025 0.097 0.054
true value 1.000 1.000 0.500

used in Sect. 4.4.1 is generated. For each time series the whole analysis is performed.
Figure 4.7 shows the results for each of the three parameters. By eye one can see that
the estimated error bars are of the same order of magnitude as the fluctuations over the
ensemble. For a quantitative assessment, the standard deviations of the parameter values
over the ensemble are compared to the mean MCEP errors. The results are listed in
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Fig. 4.6 Results of the optimization procedure for a system with multiplicative noise: D(1)(x) =

−x, D(2)(x) = 1 + 0.5x2. The analyzed time series consists of 106 data points with a sampling
interval τ1 = 1. The representation is analogous to Fig. 4.4.

Tab. 4.3 Comparison between the standard deviations σE of
estimated parameters in the ensemble of ten OU processes and
the mean errors σMCEP computed by the MCEP approach.

Parameter average σE σMCEP

a 1.0014 0.0035 0.0033
b 1.009 0.012 0.014
c −0.0006 0.0063 0.0116

Tab. 4.3. While the error of the parameter c is slightly overestimated, the other estimates
agree well.

4.6 Limitations of the approach
Now we use the MCEP approach to demonstrate the limitations of the KM analysis
caused by finite time effects and limited amount of data. To this end, we compute the
error estimates for the parameters a, b and c for synthetic time series with different
sampling intervals. The synthetic time series are generated in the same manner as
described in Sect. 4.4.1. All data sets consist of 106 data points.

The result is shown in Fig. 4.8. One can see that the estimation of the diffusion
parameters b and c breaks down around 2.5 relaxation times (τR = 1), while the drift
parameter a can still be estimated up to about 5 relaxation times. Above these values
it is difficult to obtain robust error estimates with the MCEP approach because the
afore-mentioned outliers become very frequent. However, using the MCEP approach
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Fig. 4.7 Estimated parameters for an ensemble of ten OU processes according to Eqs. (4.30)
with different noise realizations. The error bars are computed via the MCEP method. The
horizontal dashed lines indicate the true values of the parameters. The sampling interval τ of the
series is equal to the relaxation time τR = 1.

for sampling intervals above these values, one will clearly notice that the KM analysis
is no longer feasible.

Looking at Fig. 4.8, one further notices that the errors of b and c are strongly
correlated, which is not surprising. That the absolute sizes of the errors are almost equal
is only the case for the specific selection of parameters a = b = 1 and c = 0.

4.7 Parameter free examples
In this section we present two examples, where drift and diffusion coefficients are
represented as spline curves. The interpolation points of the spline curves serve as
optimization parameters. Therefore, the optimization is not really parameter free, but
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Fig. 4.8 Estimated MCEP errors for synthetic time series according to the model (4.30) with
parameters a = b = 1 and c = 0, as a function of the sampling interval τ.

no assumption about the form of drift and diffusion functions have to be made. The
disadvantage of this approach is that the optimization involves much more computational
effort because the AFPE has to be solved numerically and because the number of
optimization parameters (' 20) is larger. Therefore we waive the computation of error
estimates via the MCEP approach here because this would involve a large number of
optimization runs which would require the use of large parallel computers.

4.7.1 Bistable system
The next example is a bistable system with two symmetric stable fixed points separated
by an unstable fixed point:

D(1)(x) = x − x3 (4.34)

D(2)(x) = 1 (4.35)

In contrast to the other presented examples, the sampling interval of the synthetic time
series is chosen as τ1 = 0.1, which is one order of magnitude below the relaxation time.
This is done for two reasons. The first reason is to demonstrate that even with such
a small sampling interval, finite time effects on the diffusion coefficient can be quite
dramatic as one can see from the initial guess in Fig. 4.9. The second reason is that
because of the x3 term in the drift coefficient, it is very intricate to keep the numerical
integration of the AFPE stable, which has to be performed at least up to time τ1. An
integration up to a larger time τ would require more sophisticated methods than those
described in Sect. 4.8, e. g., an adaptive time-stepping method.

Instead of a polynomial representation of the drift and diffusion coefficients that was
used in the previous examples, now a representation via spline curves as described in
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Fig. 4.9 Bistable system with D(1)(x) = x − x3, D(2)(x) = 1. The analyzed time series consists
of 107 data points with a sampling interval τ1 = 0.1. The blue and red symbols are sampling
points, from which the corresponding curves (blue solid and red dotted lines) are computed as
spline interpolations, and serve as optimization parameters. The blue dots represent the initial
condition derived from the finite time coefficients D(1,2)

τ1 . The red squares show the result of the
optimization. The black dashed curves show the true coefficients for comparison.

Sect. 4.2 is utilized. The blue dots in Fig. 4.9 show the finite time coefficients D(1)
τ1

(left) and D(2)
τ1 (right) at the selected sampling points. They represent the initial guess

for the optimization parameters. The blue solid curves are the corresponding spline
interpolations that are used in the numerical integration of the AFPE. As one can see,
the deviations to the true coefficients, which are depicted by the black dashed curves,
are relatively small in the case of the drift but quite dramatic in the case of diffusion.
The red squares represent the resulting optimization parameters, and the red dotted
curves depict the corresponding spline interpolations. They agree quite well with the
true coefficients.

4.7.2 Phase dynamics
To analyze the synchronization tendency of a pair of coupled noisy phase oscillators φ1

and φ2, one can try to estimate the drift and diffusion coefficients for the phase difference
φ = φ1 − φ2. If one can identify a stable fixed point in the drift term, both oscillators
tend to synchronize. This tendency is of course counteracted by the noise, which is why
it is not trivial to identify.

In this case, the KM coefficients must be 2π periodic. This knowledge can be exploited
by defining the KM coefficients as

D(n)(x, t) = lim
τ→0

1
n!τ
〈[φ(t + τ) − φ(t)]n〉|φ(t) mod 2π=x . (4.36)

This means that the phase φ in the data set is defined in a way that it can become
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Fig. 4.10 Phase dynamics with D(1)(x) = 0.2 + cos(x), D(2)(x) = 0.5. The analyzed time series
consists of 107 data points with a sampling interval τ1 = 1. The representation is analogous to
Fig. 4.9.

arbitrarily large over time and is not restricted to the interval [0, 2π). This is important
to obtain correct phase increments. But since D(n)(x) = D(n)(x + 2π), one conditions on
phases taken modulo 2π to simplify the estimation of the conditional averages.

As an example, a system with

D(1)(x) = 0.2 + cos(x) (4.37)

D(2)(x) = 0.5 (4.38)

is simulated to construct a time series with 107 data points and a sampling interval of
τ1 = 1. As in the previous example, the drift and diffusion coefficients are represented
as spline curves in the optimization. Figure 4.10 shows the initial guess, the result, and
the true coefficients, in the same manner as in Fig. 4.9. The result agrees quite well
with the true coefficients. The largest deviations occur in the diffusion between x = 4
and x = 2π. This is because there is an attractive fixed point at x ≈ 1.8 and a repelling
fixed point at x ≈ 4.5. Therefore, the data density is very low in the latter region, which
affects the optimization.

4.8 A note on the numerics
A problem connected to the numerical integration of the AFPE (4.11) lies in the fact that
the integration domain is the whole R and the functions Wn,x(x′, t) do not need to fulfill
any boundary conditions. It turned out that the numerics work well with a forward time
centered space finite difference (FD) scheme with second order forward and backward
differences on the boundaries. To be specific, the spatial derivatives in the interior of the
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integration domain are computed via centered FDs:

f ′(xi) '
f (xi+1) − f (xi−1)

2h
, (4.39a)

f ′′(xi) '
f (xi−1) − 2 f (xi) + f (xi+1)

h2 . (4.39b)

On the left and right boundaries, second order forward and backward FDs, respectively,
are employed:

f ′(x1) '
−3 f (x1) + 4 f (x2) − f (x3)

2h
, (4.40a)

f ′(xn) '
f (xn−2) − 4 f (xn−1) + 3 f (xn)

2h
, (4.40b)

f ′′(x1) '
2 f (x1) − 5 f (x2) + 4 f (x3) − f (x4)

h2 , (4.40c)

f ′′(xn) '
− f (xn−3) + 4 f (xn−2) − 5 f (xn−1) + 2 f (xn)

h2 . (4.40d)

The time integration is done via the common fourth order Runge-Kutta method.
To compute the terms M(n)

τi (x j, σ) in the least square distance, Eq. (4.24), the AFPE
has to be integrated for each n and j individually with a different initial condition
Wn,x j(x′, 0) = (x′ − x j)n. Therefore, it is very easy and efficient to parallelize these
computations. The program written in the course of this thesis is OpenMP parallel
[OMP], which speeds up the calculations to a factor close to four on a desktop machine
with four CPUs.





5 Application to force measurement of optical
tweezers

This chapter presents an application of the method discussed in Chap. 4 to experimental
data of an optical trapping experiment. In this experiment, a micrometer-sized Brownian
particle is trapped by an optical tweezers system. The data used in this work were
measured by Florian Hörner at the Institute for Applied Physics in Münster. The results
are published in Ref. [HFHD12].

5.1 Description of the experiment
Figure 5.1 shows the setup of the optical trapping experiment. The sample is a thin liquid
water film containing micrometer sized polystyrene particles performing Brownian
motion. If the laser beam is focused on such a particle, it becomes trapped by the optical
light pressure. The particle is filmed by a CCD camera. From the recorded images,

Fig. 5.1 Illustration of the experimental setup. DM: dichroic mirror; C: CMOS camera; I:
illumination; MI: microscope; MO: microscope objective; T1, T2: telescope systems; SLM:
physe-only spatial light modulator; SP: sample plain. The picture is reproduced from Ref.
[HFHD12].

47
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x and y coordinates (perpendicular to the laser beam) of the position of the center of
mass of the particle are computed via an image processing algorithm. The sampling
frequency of the camera is 3966 Hz. The measured data set consists of 150 samples of a
time series of 9998 data points each. This makes a total amount of about 1.5 million data
points. For more details about the experiment, the reader is referred to Ref. [HFHD12].

5.2 Modeling
The equation of motion for a Brownian particle in an optical trap reads for one spatial
dimension [BM74]

mp ẍ(t) = Ffr(t) + Fop(x(t)) + Fth(t) , (5.1)

where mp is the mass of the particle, Ffr is the friction force, Fop is the force induced
by the optical trap and Fth denotes the thermal fluctuations. The general form of the
friction force reads

Ffr(t) = −

∫
γ(t − t′)ẋ(t′)dt′ , (5.2)

with a memory kernel γ(t). According to the fluctuation dissipation theorem [KTH91],
γ(t) is connected to the correlation function of the thermal fluctuations:

〈Fth(t)Fth(t′)〉 = kBTγ(|t − t′|) . (5.3)

Here, kB denotes the Boltzmann constant and T the absolute temperature. Assuming a
laminar velocity profile around a spherical particle and no-slip boundary conditions, the
kernel is given by

γ(t − t′) = 2δ(t − t′)6πηr (5.4)

where η is the dynamic viscosity of the fluid and r the radius of the particle. This yields
the well-known Stokes’ law

Ffr(t) = −λẋ(t) (5.5)

with the friction coefficient λ = 6πηr. On time scales τ � τI = mp/λ (τI ∼ 0.05µs in
our experimental setup), inertia can be neglected. With a linear optical force Fop = −kx,
this yields

ẋ(t) = −
k
λ

x(t) +
√

2D(2)Γ(t) , (5.6)
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with 〈Γ(t)Γ(t′)〉 = δ(t − t′) and the diffusion coefficient

D(2) =
kBT

6πη(T )r
, (5.7)

which is known as the Einstein-Stokes equation. For a constant temperature equal to the
room temperature of T = (294 ± 2) K, a particle diameter of 2r = (1.002 ± 0.043)µm,
and a viscosity of η =(1.00±0.02) · 10−3 Nsm−2, the Einstein-Stokes equation predicts a
diffusion constant of

D(2)
ES = (0.43 ± 0.03) (µm)2s−1 . (5.8)

A more realistic treatment goes beyond Stokes’ law and also considers the momentum
that is transferred from the particle to the fluid. Reference [BM74] gives a derivation
of Eqs. (5.1), (5.2), and (5.3) for a macroscopic sphere in an incompressible fluid from
linearized stochastic hydrodynamic equations. Thereby the Fourier transform of the
memory kernel is computed as

γ̂(ω) = 6πηr
[
1 + (1 − i)r

√
ωρ f

2η
−

iωρ f r2

9η

]
. (5.9)

Here, ρ f denotes the mass density of the fluid. This corresponds to a friction force

Ffr(t) = − λẋ(t) −
m f

2
ẍ(t)

− 6r2√πρ fη

t∫
−∞

dt′
ẍ(t′)
√

t − t′
, (5.10)

where m f = (4π/3)ρ f r3 is the mass of the displaced fluid. The correlation of the thermal
fluctuations shows a negative algebraically decaying tail

〈Fth(t)Fth(t′)〉 = −3r2kBT
√
πρ fη|t − t′|−3/2 (5.11)

for |t − t′|−3/2 > 0. The memory term in the friction force (5.10) and the long correla-
tions of the thermal fluctuations clearly obliterate the Markov property of the process.
However, it is possible that a finite ME time scale τME exists, which means that the
process can approximately be described by a Markov process for times larger than τME.
If such a time scale is found, one can try to find a model in form of Eq. (5.6) with an
effective drag coefficient λ and diffusion coefficient D(2) with our data analysis method.

To obtain a rough estimation of the ME time scale, we compare the mean squared
displacement MSD(t) = 〈(∆x(t))2〉 of the full hydrodynamic model MSDH(t), which was
computed by Clercx [CS92], with the MSD of the Markov model, Eq. (5.6), MSDM(t).
Figure 5.2 shows a plot of the MSDs for both models with the parameters according to
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Fig. 5.2 Mean squared displacement against time according to the full hydrodynamic model
(blue solid line) and the overdamped Markov model (red dashed line) as a double logarithmic
plot. The inset shows the relative deviation, Eq. (5.12), between both curves. Figure reproduced
from [HFHD12].

our experiment. In the overdamped Markov model (red dashed curve), there is only one
characteristic time scale τk = λ/k ∼ 10−4 s depending on the stiffness k of the optical
trap. Below this time scale, there is the so-called diffusive regime in which the MSD
grows linear with time, MSDM(t � τk) = 2D(2)t. Above this time scale, the MSD
saturates to the constant value 2kBT/k.

In the full hydrodynamic model, the smallest characteristic time scale is the inertia
time scale τI ∼ 10−8 s. For times smaller than τI, the MSD grows quadratically with
time, MSDH(t � τI) = (kBT/m∗)t2, where m∗ = mp + m f /2. This corresponds to the
so-called ballistic regime1. Above the ballistic regime, it takes about four decades until
the MSD approaches the diffusive regime and coincides with the overdamped Markov
model. These four decades are influenced by hydrodynamic memory effects. The inset
of Fig. 5.2 shows the relative deviation

d(t) =
|MSDH(t) −MSDM(t)|

MSDH(t)
(5.12)

between the MSDs of the two models. According to this, the influence of the hydrody-
namic memory effects is still present at times t ∼ τk. For times larger than 0.4 ms, the
relative deviation becomes smaller than one percent. Therefore, a ME time scale of this

1Below this regime there is the additional characteristic time scale of sound propagation in which the
incompressibility assumption becomes invalid. But this is not covered by the full hydrodynamic
model.
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order of magnitude is expected. A direct test of our data for Markovianity is presented
in Sect. 5.3 yielding a ME time scale of τME ≈ 0.5 ms which is in good agreement to the
discussion above.

5.3 Preinvestigations
As a first preinvestigation, we take a look at the Markov property. A necessary condition
for a process to be Markovian on a specific time scale τ is the validity of the CKE (cf.
Eq. (2.8) in Sect. 2.2.2):

p2τ(x′|x) =

∫
dx′′pτ(x′|x′′)pτ(x′′|x) , (5.13)

where pτ(x′|x) := p(x′, t + τ|x, t) denotes the transition PDF of the process. We further
define

pCK
τ (x′|x) :=

∫
dx′′pτ/2(x′|x′′)pτ/2(x′′|x) , (5.14a)

fτ(x′, x) := pτ(x′|x) f (x) , (5.14b)

f CK
τ (x′, x) := pCK

τ (x′|x) f (x) . (5.14c)

To test our data for Markovianity on a time scale τ, estimates for the joint PDFs f2τ

and f CK
2τ are compared (cf. Ref. [FPST11]). The estimates are computed employing the

multivariate kernel estimator (3.33) with the bandwidth matrix (3.36). Figure 5.3 shows
the corresponding contour plots for τ = τs and τ = 2τs for the two components of the
process. For τ = τs (upper panels), one can see clear deviations between the contour
lines which indicate that the process is not Markovian on this time scale. For τ = 2τs

the deviations vanish. This leads to the conclusion that the process has a ME time
scale τME ≈ 2τs. Therefore we only include conditional moments with time increments
τ ≥ 2τs into the minimization of Eq. (4.24).

As a next step, we take a look at the ACFs

Cx(τ) =
〈X(t)X(t + τ)〉t
〈(X(t))2〉t

, (5.15a)

Cy(τ) =
〈Y(t)Y(t + τ)〉t
〈(Y(t))2〉t

, (5.15b)

to get an impression of the typical time scales of the system and to decide whether
the sampling interval τs is sufficiently small for a reliable KM analysis. The ACFs are
shown in Fig. 5.4. To evaluate the relaxation time as a typical time scale of the system,
an exponential, e−cτ, is fitted to the first points of the ACF and τR ≈ c−1 is taken as a
rough estimate. According to this estimate, τR ≈ 2τs. This means that the relaxation
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Fig. 5.3 Test of the validity of the CKE for a time scale equal to the sampling interval (upper
panels) and twice the sampling interval (lower panels) of the x component (left panels) and y
component (right panels) of the data set. The plots show contour lines of estimated joint PDFs,
according to Eqs. (5.14). In the lower panels the contour lines match well in contrast to the
upper panels indicating a ME time scale of τME ≈ 2τs.

time of the process is approximately equal to the ME time scale. Therefore, according
to the discussion in Sect. 4.6, the KM analysis should be possible.

The last step is to check whether it is possible or not to regard the x and y components
of the particle motion as two independent processes. To this end, the finite time drift
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Fig. 5.4 ACFs for the x (top) and y (bottom) component of the particle motion. To obtain a
rough estimation of the relaxation time τR, we fit an exponential exp(−cτ) to the first points of
the correlation function. This leads to the estimate τR ≈ c−1.

vector field D(1)(x, y, τ) = (D(1)
x (x, y, τ),D(1)

y (x, y, τ))> with

D(1)
x (x, y, τ) =

1
τ
〈X(t + τ) − X(t)|X(t) = x; Y(t) = y〉

D(1)
y (x, y, τ) =

1
τ
〈Y(t + τ) − Y(t)|X(t) = x; Y(t) = y〉

is measured for τ = τs employing the multivariate Nadaraya-Watson estimator (3.48),
where the bandwidth matrix is calculated as described in Sect. 3.1.3. It is assumed
that the qualitative form of the drift vector field is not affected that much from finite
time effects and deviations from the Markov property. In Fig. 5.5 we show contour
plots of D(1)

x (x, y, τ) (left) and D(1)
y (x, y, τ) (right). In a region with a radius of about

0.04µm around the origin of the coordinate system, where most of the data points are,
the contour lines of D(1)

x (x, y, τ) and D(1)
y (x, y, τ) are approximately linear and parallel to

the y axis and x axis, respectively. Hence,

D(1)
x (x, y, τ) = D(1)

x (x, τ) , (5.16a)

D(1)
y (x, y, τ) = D(1)

y (y, τ) . (5.16b)

Therefore, we treat the two components of the particle motion as independent processes.

5.4 Analysis results
To estimate the drift and diffusion coefficients for each of the two processes, we first
make a parametric ansatz in form of an OU process,

D(1)(x) = −γx (5.17)

D(2)(x) = α (5.18)
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Fig. 5.5 Contour plot of the x component (left) and the y component (right) of the measured
drift vector field. As one can see, the x component does not significantly depend on y and vice
versa.

with optimization parameters γ and α. The experience from synthetic time series data
is that the best results are achieved if one includes the finite time coefficients of the
n smallest time increments τi = iτs, such that τn is between one and two relaxation
times. Because of the finite ME time scale of 2τs, the conditional moments with τ = iτs,
i = 2, 3, 4 are included into the least squares potential, Eq. (4.24). The conditional
moments are estimated employing the Nadaraya-Watson estimator (3.46) with a reduced
rule-of-thumb bandwidth h = 0.8σ̂N−1/5 (cf. discussion in Sect. 3.2).

Tab. 5.1 Results for the optimization parameters γ and α
for the x and y components of the process together with
the error estimates σMCEP obtained by the MCEP method.

γ [s−1] α [(µm)2s−1]

x comp.

result 2004.6 0.32910
σMCEP 4.2 0.00064

y comp.

result 2212.4 0.32240
σMCEP 4.8 0.00067
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Fig. 5.6 Result of the optimization for drift (top) and diffusion (bottom) coefficients of the x
coordinate of the particle motion. The symbols with the error bars are the estimated finite time
coefficients for the smallest available time increment above the ME time scale, i. e. τ = 2τs. The
optimized coefficients are represented by the solid lines.

Table 5.1 shows the results of the optimization as well as the estimated errors by the
MCEP method for the x and y components of the process. A graphical representation
is depicted in Figures 5.6 and 5.7, respectively. A possible spatial dependence of
the temperature due to the heating of the laser cannot be resolved on the basis of the
experimental data. If one includes a quadratic term in the diffusion ansatz, D(2)(x) =

α + βx2, the error estimate for the parameter β is of the same size as the estimated value.
However, the model with linear drift and constant diffusion describes the process very
well, as we will see in Sect. 5.6.

The diffusion coefficients deviate by a factor of approximately 1.3 from the result
that was expected from the Stokes-Einstein equation (see Sect. 5.2). To understand
this deviation, also the diffusion coefficients of different freely diffusing particles are
measured. The results are presented in the following section. The stiffness of the trap
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Fig. 5.7 Result of the optimization for drift (top) and diffusion (bottom) coefficients of the y
coordinate of the particle motion. The representation is analogous to Fig. 5.6.

can nevertheless be calculated by

k = kBT
γ

α
. (5.19)

Assuming a temperature of (294±2) K, one obtains

kx = (24.72 ± 0.27)
pN
µm

, (5.20)

ky = (27.85 ± 0.31)
pN
µm

. (5.21)

5.5 Diffusion coefficient of freely diffusing particles
In order to understand the deviations from the Einstein-Stokes equation, the diffusion
coefficients for freely diffusing particles are determined. In the same manner as described
in Sect. 5.1, the positions of seven different particles that are not trapped by optical
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tweezers are measured. For each particle, one time series with approximately 104 time
steps at a sampling frequency of 3873 Hz is recorded. For these data we consider the
mean squared displacement (MSD) for which the relation

MSD(t) := 〈(x(t) − x(0))2〉 = 2D(2)t (5.22)

holds. Figure 5.8 shows the obtained MSDs for the x components of the seven particles.
The diffusion coefficients can be determined by linear fits. If one averages the determined
coefficients over all particles and both coordinate directions, one obtains

D(2) = (0.44 ± 0.06) (µm)2s−1 , (5.23)

which is in good agreement to the expected result according to the Einstein-Stokes
equation, Eq. (5.8). The reason for the higher standard deviation of 0.06 (µm)2s−1

might be that the fluctuations among the particle radii are larger than indicated by
the manufacturer. However, the low diffusion coefficient found in the optical trapping
experiment is inside the range of fluctuations of diffusion coefficients among different
particles.
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Fig. 5.8 Mean squared displacement of the x coordinate as a function of time for seven freely
diffusing particles. The diffusion coefficient can be determined by a linear fit for each particle.
The solid straight line shows the MSD that is expected according to the Einstein-Stokes equation,
Eq. (5.8).
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5.6 Comparison between model and data
In this section, a comparison between the estimated models and the experimental data is
presented. At first we consider the single point PDFs. The PDFs of the experimental
trajectories are estimated employing the Epanechnikov kernel (3.29) and a bandwidth
according to (3.30). The PDFs according to the OU model are given by

f (x) =

√
γ

2πα
exp

(
−
γ

2α
x2

)
. (5.24)

Figure 5.9 shows the estimated PDFs from the experimental data in comparison to the
ones from the model time series for the two processes. In both cases, the PDFs agree
very well.

The second quantity under consideration is the ACF, Eqs. (5.15). Figure 5.10 shows
the ACF of the experimental time series for the x and y components of the particle
motion, together with the ACFs of our model that are given by

C(τ) = exp(−γτ) . (5.25)

As one can also see in Fig. 5.4, the experimental ACFs are not exactly exponentially
shaped. The reason for this small deviation lies probably in the hydrodynamic memory
effects discussed in Sect. 5.2. However, one can see that the relaxation times of the
models and the experimental data sets coincide very well.
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Fig. 5.9 Comparison between the PDFs of the experimental data set (kernel density estimate)
and our model (Eq. (5.24)), for the x component (points and solid line, left vertical axis) and y
component (squares and dashed line, right vertical axis) of the particle motion.



5.6 Comparison between model and data 59

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.001 0.002 0.003 0.004 0.005
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
x(
τ)

C
y
(τ

)

τ [s]

data x
model x

data y
model y

Fig. 5.10 Comparison between the measured ACFs of the data set and the ACF of the OU
model, Eq. (5.25) for the x component (points and solid line, left vertical axis) and y component
(squares and dashed line, right vertical axis) of the particle motion.

-0.04
-0.02

0
0.02

0.04 10−3
10−2

10−1

-0.06
-0.04
-0.02

0
0.02
0.04
0.06
M(1)
τ (x) [µm]

data
model

x [µm]
τ [s]

M(1)
τ (x) [µm]

Fig. 5.11 Comparison between the first finite time conditional moment of the experimental data
set (red solid lines) and the model reconstruction (blue dashed lines) for the x component of the
particle motion.

As a next step, the first and second finite time conditional moments are compared.
They are depicted in Figs. 5.11 and 5.12, respectively for the x component. The
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Fig. 5.12 Comparison between the second finite time conditional moment of the experimental
data set (red solid lines) and the model reconstruction (blue dashed lines) for the x component of
the particle motion.

corresponding figures for the y component are not shown, but they are qualitatively
equal. The conditional moments of the OU model are given by

M(1)
τ (x) = −x

(
1 − e−γτ

)
, (5.26a)

M(2)
τ (x) = x2 (

1 − e−γτ
)2

+
α

γ

(
1 − e−2γτ

)
. (5.26b)

Apparently, the model fits very well to the data. Significant deviations do only occur
for the smallest τ = τs, which is below the ME time scale and was not included in the
optimization. Here the slope (with respect to x) of the first moment and the second
moment (for all x) of the data are smaller compared to the model. An inclusion of time
increments below the ME time scale would therefore lead to underestimated drift and
diffusion coefficients.

Instead of the fourth conditional moments, we regard the fourth finite time KM
coefficient, which for our model reads

D(4)
τ (x) =

1
24τ

[
(1 − zτ)4 x4 + 6

α

γ

(
1 − 2zτ + 2z3

τ − z4
τ

)
x2 + 3

(
α

γ

)2 (
1 − z2

τ

)2
]
.

(5.27)

Here we have used the abbreviation zτ = e−γτ. Figure 5.13 shows the estimated fourth
KM coefficient together with Eq. (5.27). As in the two previous plots, significant
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Fig. 5.13 Comparison between the fourth finite time KM coefficient of the data set (red solid
lines) and the model reconstruction (blue dashed lines) for the x component of the particle
motion.

deviations are only visible for the smallest τ = τs, where the coefficient estimated from
data is smaller than in the model. However, one can see that D(4)

τ (x) vanishes as τ
approaches zero. This is the requirement for the Pawula theorem that guarantees that
also the third and all higher KM coefficients vanish [Ris89].





6 Conclusion

The focus of the first part of this thesis is the problem of finite sampling interval effects
in the KM analysis of stochastic time series. In Chap. 4, a method developed by Lade
[Lad09] was presented that allows to make exact predictions of these effects for given
drift and diffusion coefficients. With help of this method it was demonstrated that there
are two limiting regimes in the space of the time increment τ separated by the relaxation
time τR of the process. For τ � τR, finite time effects can be safely neglected; for
τ � τR, all information about the true drift and diffusion coefficients is lost, and the KM
analysis is impossible.

Furthermore, an optimization procedure was presented that was developed in the
course of the current thesis [HF11, HFHD12]. It can be seen as an inversion of the
method of Lade as its purpose is to deduce the correct KM coefficients from measured
coefficients that suffer from finite time effects. In four examples with synthetic time
series, which cover many important applications, it was demonstrated that the method
works very well if the sampling interval is approximately of the same order of magnitude
as the relaxation time. Even optimizations with more than 20 parameters were proven to
be feasible.

In cases were analytic solutions of the AFPE are available, it is possible to calculate
error estimates for the optimized parameters employing a MCEP approach, which
increases the reliability of the obtained results. With help of these error estimates it is
demonstrated how the KM analysis fails when the sampling interval approaches the limit
of statistical independence discussed in Sect. 4.1.2. Unfortunately, the numerical effort
of th MCEP approach becomes very large if the AFPE has to be solved numerically.
Therefore, it has not been tested for those cases.

Chapter 5 describes an application of the method discussed in Chap. 4 to real-world
stochastic data of an experiment where trajectories of Brownian particles trapped by
an optical tweezers system were measured. The measured time series has a sampling
interval of about half its relaxation time which leads to relevant finite time effects influ-
encing the KM analysis. Furthermore, a ME time scale was found that is approximately
equal to the relaxation time of the process. This can be explained by hydrodynamic
memory effects that are still present on this time scale. The large ME time has the
consequence that even if the trajectories of the particle were measured with a higher
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sampling frequency, finite time effects could not be reduced because time increments
below the ME time scale must not be regarded in the KM analysis.

On time scales above the ME time scale, the process can almost perfectly be recon-
structed by an OU process according to the classical overdamped Markov model of
Brownian motion. The data quality does not allow to detect deviations from linearity in
the drift term, which corresponds to the optical forces acting on the particle, or a spatial
dependence of the diffusion one could expect because the laser heats up the fluid.

The size of the measured diffusion coefficient was found to be about 1.3 times
smaller than the diffusion predicted by the Einstein-Stokes equation. For comparison,
also trajectories of different freely diffusing particles were measured with a similar
experimental setup. Averaged over all particles, the Einstein-Stokes equation was found
to be valid. The fluctuations of diffusion constants among different particles, which can
probably be traced back to fluctuations among particle radii, are large enough to explain
the low diffusion found for the trapped particle.

From a technical point of view, the new method presented in Chap. 4 could be
improved by employing a more sophisticated regression technique like local polynomial
regression [HMSW04]. This technique can significantly reduce the bias at a given
variance. It would also be worthwhile to pay more attention to the bandwidth selection
problem, no matter whether the Nadaraya-Watson estimator or some other estimator
is employed. This is especially important since the selected bandwidth influences the
estimated MCEP errors: The larger the variance of the estimator, the larger the MCEP
error. Since a bandwidth that is larger than optimal reduces the variance, it will lead to
an underestimated MCEP error, which makes the results appear more reliable than they
actually are, which of course is the general problem of too large bandwidths. Thus, as
long as the bandwidth-selection problem is not solved in a satisfying manner, it is safer
to use a rather smaller bandwidth.

In the method of Lade [Lad09], moments of the conditional PDF are calculated by
solving the AFPE. Alternatively, one can compute the complete conditional PDF by
solving the normal FPE. The problem is that this would involve a Dirac δ function as an
initial condition, which is expected to cause numerical intricacies. A third way consists
in simulating Langevin equations and measuring the conditional PDF from the resulting
time series. An optimization based on the third way was presented by Kleinhans et al.
[KFNP05, KF07]. A fourth way was recently introduced by Tang et al. [TAY13], who
employ the short time propagator, Eq. (2.16), as an approximation for the conditional
PDF instead. The advantage of the methods of Kleinhans and Tang as compared to the
method presented here is that the information of the whole conditional PDF is used
instead of only the first two moments. On the other hand, the method presented here
uses information of conditional PDFs for several time increments, while the other two
methods use only one. All three methods could be improved accordingly. In the method
presented here one could also include higher moments in the least square potential
(4.24). In the methods of Kleinhans and Tang the corresponding distance measures
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(the Kullback-Leibler divergence) that are minimized could be augmented by several
conditional PDFs for different time increments.

A direct comparison between the performances of the different methods has not
been drawn yet. Since the performances depend on many technical aspects, such as
the employed density estimation or regression techniques as well as the bandwidth
selection, an objective comparison is not trivial.

Since many interesting applications involve multivariate processes, a corresponding
extension of the method would be of great value. However, this imposes two major
problems. First, a multivariate extension requires the solution of several coupled AFPEs,
which increases the computational complexity significantly. Second, multivariate re-
gression requires a very good data quality. Therefore it is an open question whether or
not such an extension would be worth the effort.





Part II

Pattern formation of microscopic fluid
layers
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7 Introduction

The second part of this thesis deals with a theoretical description of experiments
[WDW+11, WC12] in the field of organic semiconductors. Since researchers had
first successes in producing conductive organic molecules and discovered electrolumi-
nescence in organic compounds in the 1950’s [Ber55], organic semiconductors have
become a large field of academic as well as industrial research [For04]. The interest
in organic semiconductors stems from potential applications in organic light emitting
diodes (OLEDs), solar cells, transistors, sensors, memories and so on. While the conduc-
tivity of the employed organic molecules is orders of magnitude below their inorganic
counterparts (e. g., silicon), advantages are the lower costs, an enhanced flexibility and
a reduced weight of the organic material. This allows one to create devices that one
is not able to build with inorganic conductors. One example that is currently under
development is a flexible full color display made of OLEDs that can be rolled up when
not in use.

The technological challenges connected to the development of organic opto- and
microelectronic devices are the chemical design of organic molecules for a specific
purpose (e. g., charge transfer or emission of light) and the preparation of a (structured)
thin film of this material on a substrate [For04]. While the former challenge is mainly
a task for chemists, many physicists are concerned with the latter one. For inorganic
conductors, photolithography is the most common technique for the device preparation
allowing for the creation of patterns with minimal feature sizes of a few tens of nanome-
ters [Del10]. Unfortunately, the various processing steps involved in photolithography
would deteriorate the functionalities of complex organic molecules. Concerning the
available methods for film preparation of organic devices, one has to distinguish between
small molecules and polymers [For04].

For the preparation of a homogeneous polymer film, one usually uses a solution of the
polymer in a volatile solvent. The solution can be transferred onto the substrate, e. g.,
by spraying techniques or spin coating. After or during the deposition of the solution,
the solvent evaporates leaving a uniform layer of the polymer. For the preparation of
structured films, the most common technique is ink-jet printing. Thereby, the substrate
is prestructured with polymer walls that enclose a specific area that is afterwards filled
with a polymer solution by a micrometer-scale nozzle. Employing this technique, full
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color polymer displays have already been manufactured, which are used in mobile
phones and other small electronic devices. There is also a first OLED TV on the market
that is produced by Sony [Son].

Regarding the preparation of thin films of small molecules, the most common tech-
nique is vacuum thermal evaporation (VTE), also referred to as organic molecular beam
deposition (OMBD). Here, a probe of the organic substance is sublimed in an oven
under ultrahigh vacuum conditions. The vaporized molecules are then deposited onto a
cooled substrate via condensation. To create patterns of small organic molecules, one
can put a shadow mask closely in front of the substrate [TBB+99]. Alternative methods
include stamping [KBF00] and printing [AMFL08].

The experiments that are modeled in this thesis use another strategy, namely area-
selective growth [WDZ+09]. Here, the deposition of small organic molecules is per-
formed via OMBD, but the substrate is chemically structured before the deposition in
such a way that the deposited molecules prefer to accumulate at specific sites. In the
experiments described in [WDZ+09, WDB+10, WDW+11, WC12], SiO2 substrates are
prestructured with Au stripes or dots. For the deposited molecules it is energetically
favorable to accumulate on the gold sites.

Since the experiments are conducted under ultra-high vacuum conditions, most of
the organic molecules sublimate in the oven and resublimate on the cooled substrate
surface without transition to the liquid phase. Only one employed molecule type,
N,N′−di[(N-(3,6-di-tert-butyl-carbazyl))-n-decyl] quinacridone (DtCDQA), which is
an orange light-emitting dye molecule [WDB+10], shows a liquid-like behavior on the
substrate [WDW+11].

The aim of this part of the thesis is to provide a theoretical model that can reproduce
the various structures (see Sect. 8.1) that are observed in experiments with DtCDQA
and to understand which structures develop under which conditions.

Basically, there are three fundamentally different ways to model the system. One
possibility is a description on the molecular scale. This means that one treats every
single molecule of the substrate and the deposited material as one particle and establishes
a specific form of interaction between these particles. A numerical simulation of such
a model can either be done via Molecular Dynamics, i. e., integrating the equations of
motion for every single molecule, or by kinetic Monte Carlo methods. In the latter,
one starts with a specific configuration of the system and computes the total energy of
all relevant interactions. Then one randomly chooses another test configuration and
compares its energy with the energy of the previous configuration. If the new energy
is lower than the old energy, the new configuration is typically accepted, otherwise
it is only accepted with a specific probability, which depends on the temperature of
the system and the energy difference. Repeating these steps, one slowly approaches
an energetically optimal configuration of the system. This method has already been
employed to model the experiments described above [LMW+12].

The other two approaches describe the layer of the deposited organic molecules as a
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continuum. In the case of a liquid film, a final configuration can be determined by mini-
mizing the surface energy under specific constraints. Experiments with water [GHLL99]
that show similar structures as observed in [WDW+11] were modeled employing this
approach [LBD+05]. Similar systems were also studied in [BDP99, BD00, LL00, BL02,
BHYM03].

A disadvantage of surface minimization techniques is that they are limited to the
investigation of equilibrium configurations. Here, we choose a dynamical approach that
is based on a thin film equation [ODB97, Thi10], which describes the temporal evolution
of the height profile of a thin liquid film. On the one hand, the stability of equilibrium
solutions of this equation is investigated employing continuation techniques, and on
the other hand, the time evolution is studied by direct numerical simulations (DNSs).
Similar stability analyses have been presented before in Refs. [TBBB03, MRD08],
direct numerical simulations of similar systems are described in Refs. [KS01, SBK+12].
The relation of the analysis presented here to these articles is discussed in the concluding
chapter at the end of this part of the thesis.

The overall outline of the second part is as follows. The next chapter presents
a detailed description of the experimental findings and formulates the aims of the
following investigation. Chapter 9 gives a summary of the derivation of the thin film
equation followed by a chapter describing the employed numerical methods, namely
DNS and numerical steady state continuation. The stability analysis is the topic of Chap.
11, results of the performed DNSs are presented in Chap. 12. The last chapter presents
a summary and discussion of the results.





8 Experiments and motivation for theoretical
modeling

This chapter provides a description of some results of the experiments conducted by
Wang and coworkers [WDW+11, WC12]. Based on these experiments, the motivation
and goals for a theoretical description are outlined.

8.1 Description of experimental results
The top left panel of Fig. 8.1 shows an atomic force microscopy (AFM) image of
DtCDQA molecules deposited by OMBD on a SiO2 surface prepatterned with Au
stripes. The width of the stripes varies from 0.3 to 2.3µm. One can identify three
different morphologies that the DtCDQA film develops. On the bare substrate without
gold stripes one can see small circular droplets with a diameter of 2 to 3µm. Cross-
sectional profiles (cf. top right and bottom panels of Fig. 8.1) reveal a spherical cap
shape of the droplets. The second type of morphologies are cylindrical ridges centered
on the gold stripes. At some positions the ridges break up and form bulges that also
partly cover the SiO2 substrate. These bulges are the third type of morphologies.

By evaluating cross-sectional profiles of AFM images, one can measure the contact
angles that are assumed by the different morphologies (cf. Fig 8.1). This yields
Θdrop = 20.6◦, Θrid = 12.3◦ and Θbulg = 20.0◦ for drops, ridges and bulges, respectively .
The latter two contact angles were measured in a direction perpendicular to the Au lines.

Figure 8.2 (c) shows sketches of different equilibrium morphologies that are observed
when different amounts of molecules are deposited. Panels (a) and (b) show examples of
AFM images for very small amounts of deposited molecules. In this case small droplets
form on the Au stripes. With increasing amount of molecules on the substrate, the
droplets grow until they reach the boundaries of the stripe and elongate afterwards until
the whole stripe is covered with a cylindrical ridge. If more molecules are added, at
some point bulges form that enter the bare SiO2 substrate. Under some conditions that
were not studied experimentally in detail, bulges can also form while the gold stripe is
not entirely covered with DtCDQA. A corresponding AFM image is shown in panel (d).

The height of the ridges seen in Fig. 8.1 is found to increase with the width of the
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Fig. 8.1 Top left: AFM image of DtCDQA molecules deposited on a SiO2 substrate patterned
with Au stripes. The width of the Au stripes is increasing from right to left from 0.3µm to
2.3µm. The mean film thickness is 50 nm. Since the diameter of one molecule is about 1 nm,
this corresponds to roughly 50 monolayers. Picture reproduced from [WC12]. The other panels
show cross-sectional profiles of the three different morphologies. The inlets show corresponding
three-dimensional AFM images. The latter three pictures are reproduced from [WDW+11].

Au stripes. This is a typical capillarity effect that is also seen in other experiments with
liquids on chemically striped surfaces [GHLL99, DTMW00]. The opposite behavior
is observed if instead of DtCDQA, N,N′-bis(1-naphyl)-N,N′-diphenyl-1,1′-biphenyl-
4,4′-diamine (NPB), a blue-light-emitting small organic molecule, is deposited. As can
be seen in Fig. 8.3, the height of NPB ridges on Au stripes is decreasing with increasing
stripe width.

Another evidence that DtCDQA is melted and NPB is sublimated is given by pho-
tographies of the materials before and after heating in the crucibles. Before the heating,
both materials are in the powder state, after the heating only NPB is. For DtCDQA
one has a clear indication that it was evaporated from the liquid state as one observes
droplets of condensating material on the wall of the crucible.
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d

Fig. 8.2 Different equilibrium morphologies that develop after deposition of DtCDQA molecules
on SiO2 substrates patterned with Au stripes. Panels (a) and (b) show AFM images of 3 nm and
10 nm mean deposit height of DtCDQA, respectively. Panel (c) shows sketches of the different
equilibrium morphologies. For small amounts of deposited molecules, small droplets form on
the Au lines (I). With increasing amount, the droplets grow until they reach the borders of the
stripe (II) and elongate afterwards (III). Finally, the whole stripe is covered with a cylindrical
ridge (V). At a certain amount of molecules, bulges form that also cover the bare SiO2 substrate
(VI). Panel (d) shows an AFM image of 200 nm DtCDQA on a substrate with gold stripes of
widths from 1.1 to 1.9µm. Here, bulges form whereas the gold stripes are not entirely covered,
which corresponds to another growth regime not sketched in panel (c). Pictures (a), (b) and (c)
are reproduced from [WDW+11], picture (d) is reproduced from [Mue12].

8.2 Motivation
The purpose of the experiments is to create patterns of the deposited small organic
molecules that image the prestructure of the substrate. The desired morphologies are
therefore regular ridges centered on the Au stripes without any bulges. There are two, in
this sense unwanted, instabilities that destroy the regular ridges. One is the formation of
bulges that is observed to occur when too much material is deposited for a given stripe
geometry. The second instability is the formation of droplets on the Au stripe such that
not the entire stripe is covered with the deposited material. This instability occurs if not
enough material is deposited for a given stripe geometry.

Reference [LMW+12] provides a theoretical description of the experiments on the
molecular level employing kinetic Monte Carlo simulations. In this work, the different
morphologies that are observed in the experiments can be reproduced by varying the
interaction strength of the involved molecules. This is in some sense not satisfying
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Fig. 8.3 a) AFM image of Au stripes with increasing width from left to right from 700 nm to
1.5µm. (b) Same figure after deposition of NPB. (c) Height of the ridges, volume per unit length
and average film thickness against the width of the Au stripes. Picture taken from [WC12].

because in the experiments all morphologies are observed for the same interactions.
Only the geometry of the chemical pattern and the amount of deposited molecules is
altered.

In this part of the thesis we set up a continuum model in form of a PDE (see Sect.
9.1) that allows for the study of the two instabilities mentioned above. For a PDE more
mathematical analysis methods can be employed than for an agent-based model as the
one used in Ref. [LMW+12]. One of these methods, numerical continuation (cf. Chap.
10), allows us to investigate the dependence of the instability thresholds on the various
system parameters in an elegant way, without the need of tremendous computational
efforts.



9 Theoretical description of the dynamics of
microscopic fluid layers

9.1 The thin film equation
We consider a two-dimensional layer of a Newtonian, incompressible, non-volatile fluid
bounded below by an impermeable wall at z = 0 and above by an interface between the
fluid and a gas at z = h(x, t) (cf. Fig. 9.1). In the x direction the system is considered
to be infinitely large. We denote the horizontal component of the velocity field by
u and the vertical component by w. The dynamics of the velocity field is given by
the Navier-Stokes equation and the continuity condition for an incompressible fluid
[Dav04]:

ρ(∂tu + u∂xu + w∂zu) = −∂x p + η∆u (9.1a)
ρ(∂tw + u∂xw + w∂zw) = −∂z p + η∆w (9.1b)
∂xu + ∂zw = 0 (9.1c)

with ∆ = ∂2
x + ∂2

z . Here, ρ denotes the fluid density, p is the local pressure, and η is
the viscosity. Since we are interested in systems with typical mean film heights below
100 nm on horizontal substrates, we can safely neglect gravity [BEI+09].

At the bottom, the typical boundary conditions are no slip and no penetration, i. e.,
u(z = 0) = 0, w(z = 0) = 0. The former boundary condition is sometimes replaced
by allowing for a microscopic slip length to deal with the problem of the contact line
singularity, which is discussed in Sect. 9.2. The boundary conditions at the fluid-gas
interface at z = h(x, t) are

∂th = w − u∂xh kinematic boundary condition, (9.2)
T · n̂ = (Π + γκ)n̂ force equilibrium. (9.3)

In the last equation,

n̂ =
1√

1 + (∂xh)2

(
−∂xh

1

)
(9.4)
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liquid

gas

Fig. 9.1 Sketch of a two-dimensional liquid film with height profile h(x, t) bounded below by an
impermeable wall and above by a gas. u and w denote the horizontal and vertical components of
the fluid velocity field, respectively. The long-wave approximation requires that a typical lateral
length λ of the height profile pattern is large as compared to the characteristic film height d.

is the unit vector normal to the interface (pointing outward of the fluid), T is the stress
tensor of the fluid, γ is its surface tension, and κ is the mean curvature of the interface. Π
denotes the disjoining pressure (DP) and models the intermolecular interactions between
fluid and substrate molecules, which determine the wettability. It is described in more
detail in Sect. 9.3. Equation (9.2) identifies the vertical velocity of the interface with
the fluid velocity at the interface. This relation has to be modified for volatile fluids.
Equation (9.4) states that stresses at the interface are balanced.

The next step is to perform the long-wave approximation. The latter requires that
the ratio ε = λ/d between the characteristic lateral length λ of a pattern of the height
profile and the characteristic film height d is small, i. e., ε � 1. Expanding the non-
dimensionalized equations w. r. t. ε keeping only the lowest order and performing some
further calculations described in [ODB97] and [GMR06], one can derive the thin film
equation (in dimensional variables)

∂th = ∂x[Q∂xP] . (9.5)

For a two-dimensional surface, the thin film equation reads

∂th = ∇ · [Q∇P] , (9.6)

with ∇ = (∂x, ∂y)T . Here, Q(h) is the mobility term with

Q(h) = h3/(3η) , (9.7)

and P is the generalized pressure which is given by the sum of the Laplace pressure and
the DP:

P = −γ∆h − Π . (9.8)



9.1 The thin film equation 79

Now, ∆ = ∂2
x +∂2

y in contrast to the definition used in Eq. (9.1). The DP depends on h and
can also depend explicitly on x and y if the substrate is chemically or topographically
inhomogeneous1. Its explicit form is discussed in the next section.

The thin film equation is a PDE of fourth order in space. It is nonlinear in h because
of the nonlinear mobility term and the nonlinear dependence of the DP on h (cf. Sect.
9.3). These properties result in some difficulties concerning numerical simulations,
which are discussed in Sect. 10.2.

With the free energy functional

F[h] =

∫
dA

[
γ

2
(∇h)2 + φ(h)

]
(9.9)

the thin film equation (9.6) can also be expressed as a gradient dynamics [Thi11]

∂th = ∇ ·

[
Q∇

δF
δh

]
. (9.10)

The first term of the integrand in Eq. (9.9) is derived from the energy of the free surface

FS = γ

∫
dS , (9.11)

where S denotes curved surface coordinates. Transformation to Cartesian coordinates
yields

FS = γ

∫ √
1 + |∇h|2 dA (9.12)

≈ γ

∫
(1 + 1

2 |∇h|2) dA . (9.13)

The constant term can be ignored since only derivatives of the energy enter the dynamic
equation. The second term in the integrand of Eq. (9.9) corresponds to the wettability
of the substrate. It is related to the DP as shown in Sect. 9.3. The free energy functional
does also play the role of a Lyapunov functional as we will demonstrate in the following.

The total time derivative of the free energy is given by
dF
dt

=

∫
dA

δF
δh

dh
dt
. (9.14)

Insertion of Eq. (9.10) and a subsequent partial integration yields
dF
dt

=

∫
dA

δF
δh
∇ ·

[
Q∇

δF
δh

]
(9.15)

= −

∫
dA Q

(
∇
δF
δh

)2

. (9.16)

As Q is always positive, the final expression is negative, i. e., F is a Lyapunov functional.
As a consequence, equilibrium solutions of the thin film equation correspond to local
extrema or saddle points of the free energy functional F.

1A topographical inhomogeneity would also enter the mobility term Q.
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9.2 The contact line singularity
The introduced hydrodynamic model with the no-slip boundary condition at the substrate
leads to a singularity in the case of a moving three-phase contact line, where the
three phases vapor, liquid and solid meet. This problem was pointed out for the first
time by Huh and Scriven in [HS71]. As outlined in [BEI+09], the singularity can be
demonstrated as follows.

Consider the contact line of a drop that moves with a velocity U to the left along
a surface. For the purpose of an easier imagination we can also consider the contact
line as stationary and the substrate moving with velocity U to the right, as illustrated
in Fig. 9.2. If the fluid obeys the no-slip boundary condition, the horizontal velocity
u of the fluid at the boundary is also U, i. e., u(x, z = 0) = U. At a position x close
to the contact line, the velocity gradient can be approximated by du/dz ≈ U/h(x) and
h(x) ≈ Θx for a small contact angle Θ. The viscous dissipation rate per unit volume can
be approximated by

εvisc ≈ η

(
du
dz

)2

≈ η
(U

h

)2

≈ η
( U
Θx

)2

(9.17)

Next, we can estimate the dissipation per unit time and unit length of the contact line by

Dvisc ≈

L∫
0

εvisch dx ∝

L∫
0

1
x

dx , (9.18)

which diverges logarithmically.

Fig. 9.2 Sketch for the illustration of the contact line singularity. A static contact line with
contact angle Θ is considered on top of a substrate that moves with velocity U in positive x
direction. The arrow in the fluid illustrates a typical stream line.
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The difficulty in the modeling of the contact line region stems from the fact that mi-
croscopic influences on the molecular scale play a role, but one still needs a description
based on macroscopic hydrodynamics. There are different possibilities to overcome
this problem. One is to replace the no-slip boundary condition by the Navier boundary
condition u(z = 0) = b∂zu|z=0 [RD08] that takes into account that the fluid molecules
can move along the substrate surface. Here, the parameter b has the physical dimension
of a length and is called the slip length. This boundary condition leads to an amended
mobility coefficient

Q(h) =
1
η

(
h3/3 − bh2

)
. (9.19)

The no-slip boundary condition corresponds to b = 0.
Depending on the interactions between fluid and substrate molecules, sometimes

a thin precursor film exists in front of the contact line, which has a typical thickness
between one molecular monolayer and 10 nm [BEI+09]. In this case one can circumvent
the contact line problem by only considering regions that are covered either by the
precursor film or by a macroscopic fluid layer. This is the approach we choose in this
work. In our model based on the lubrication approximation and an effective DP, the
height of a precursor film coexisting with a macroscopic drop corresponds to the zero in
the DP, which is discussed in the next section.

9.3 The disjoining pressure
The DP was introduced in 1940 by Derjaguin [Der40] and is therefore also referred to as
the Derjaguin pressure. Modeling the intermolecular interactions among the molecules
of the liquid as well as between liquid and substrate molecules, it becomes relevant for
films with typical film heights below 100 nm [SV09, Isr11, dG85]. The DP is related to
the effective interface potential (EIP) φ by

Π(h) = −
∂φ(h)
∂h

(9.20)

The EIP is the energy per unit area that is necessary to maintain a wetting film of height
h [RD08]. Figure 9.3 shows a typical form of an EIP together with the corresponding
DP. The qualitative form stems from the sum of long-range repulsive forces that have a
destabilizing effect on flat films and short-range attractive forces that tend to stabilize a
flat film. The position of the minimum of the EIP (the zero of the DP) corresponds to the
precursor film height hp which is assumed between droplets of a partially wetting liquid.
The value of the minimum of the EIP φmin is connected to the equilibrium contact angle
Θeq via the Young-Laplace equation [RD08]

cosΘeq = 1 +
φmin

γ
. (9.21)
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Fig. 9.3 Sketch of a typical EIP φ(h) and the corresponding DP Π(h) = −φ′(h). The position of
the minimum of the EIP corresponds to the precursor film height hp, its value φmin determines
the equilibrium contact angle (cf. Eq. (9.21)). A linear stability analysis of the thin film equation
(9.6) reveals that a flat film solution of height h̄ is stable if φ′′(h̄) > 0 or, equivalently, Π ′(h̄) < 0.
Otherwise it is unstable and subject to spinodal dewetting. At larger film heights the influence of
the DP vanishes. Finally, thicker flat films are stabilized again by gravity.

Here, γ is again the surface tension.
A linear stability analysis of Eq. (9.6) (cf. Sect. 9.5) reveals that a flat film of height

h̄ is linearly stable (unstable) if φ′′(h̄) > 0 (φ′′(h̄) < 0), or, equivalently, Π ′(h̄) < 0
(Π ′(h̄) > 0). A linearly unstable flat film will break up and form droplets in the case
of low film heights or holes in the case of larger film heights [SK98]. This instability
is referred to as spinodal dewetting because of its mathematical resemblance to the
spinodal decomposition of a mixture of two solids or fluids [Mit93]. For further
increasing film heights, the influence of the DP becomes negligible and flat films are
eventually stabilized by gravity.

Concerning the concrete form of the DP, many different functions are discussed in
the literature [ODB97, dG85, SV09, Isr11]. However, for the qualitative behavior of a
thin film, the exact form of the DP is not crucial.

9.4 The specific model
In this work we use the DP

Π(h, x) =

(
−

A
h3 +

B
h6

)
(1 + ρg(x)) , (9.22)

which corresponds to the EIP

φ(h, x) =

(
−

A
2h2 +

B
5h5

)
(1 + ρg(x)) . (9.23)
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The first, h-dependent factor is the one proposed in [Pis02]. The second, x-dependent
factor takes into account the chemical stripe pattern of the substrate in the experiments.
With this kind of spatial modulation, the height of the precursor film hp is kept constant,
and only the equilibrium contact angle, i. e. the wettability, is x-dependent. The
dimensionless parameter ρ models the strength of the wettability contrast. The function
g(x) is periodic in x and describes the geometry of the stripe pattern.

For the numerical treatment we further non-dimensionalize Eq. (9.6) with Eqs. (9.7),
(9.8) and (9.22) by introducing non-dimensional variables h̃, x̃, ỹ, t̃ and φ̃ with

t = τt̃ , x = Lx̃ , y = Lỹ ,

h = dh̃ , φ = κφ̃ .

The scaling coefficients are chosen as

d = hp =

(B
A

)1/3

, L =

√
γ

A
d2 ,

κ =
A
d2 , τ =

3ηL2

κd
.

The chosen scaling coefficient d corresponds to the precursor film height hp, i. e., in
non-dimensional units we have hp = 1. Dropping the tilde, our final equation in
non-dimensional units reads

∂th = −∇ ·

{
Q(h)∇

[
∆h +

(
1
h6 −

1
h3

)
(1 + ρg(x))︸                     ︷︷                     ︸

Π(h,x)

]}
, (9.24)

with Q(h) = h3 (in Chaps. 11 and 12 also a mobility coefficients Q(h) = h is considered).
In the later analyses we use periodic boundary conditions in x and y direction.

In our model we ignore the process of condensation and assume that all material
is deposited instantaneously, forming an initial homogeneous layer. The effect of
continuing condensation has to be studied in the future.

In the next section we perform a linear stability analysis of the steady flat film solution
of Eq. (9.24) for the homogeneous case with ρ = 0. Chapter 11 presents an analysis of
the stability of steady ridge solutions for the inhomogeneous case. Finally, Chap. 12
provides results of DNSs of Eq. (9.24).

9.5 Linear stability analysis of a flat film on a
homogeneous substrate

In this section we study the linear stability of the steady flat film solution of height h̄ of
the one-dimensional version of Eq. (9.24) for a homogeneous substrate (ρ = 0). The
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analyzed equation reads

∂th = −∂x[h3∂x(∂2
xh + Π(h))] . (9.25)

We plug in the ansatz

h(x, t) = h̄ + η(x, t) (9.26)

where η(x, t) is a small perturbation of a flat film of height h̄. This leads to

∂tη = − ∂x [(h̄ + η)3 ∂x (ηxx + Π(h̄ + η))]

= − ∂x [(h̄ + η)3 (ηxxx + Π ′(h̄ + η) ηx)]

= − 3(h̄ + η)2 ηx [ηxxx + Π ′(h̄ + η) ηx]

− (h̄ + η)3
[
ηxxxx + Π ′′(h̄ + η)(ηx)2 + Π ′(h̄ + η)ηxx

]
, (9.27)

where the indices of η denote derivatives with respect to the index and the primes of the
DP denote derivatives with respect to its argument keeping x constant. Next, we expand
the right hand side (RHS) of (9.27) w. r. t. η, keeping only the linear terms. For this, we
need the expansions of the derivatives of the DP,

Π ′(h̄ + η) = Π ′(h̄) + ηΠ ′′(h̄) + O(η2) , (9.28)

Π ′′(h̄ + η) = Π ′′(h̄) + ηΠ ′′′(h̄) + O(η2) , (9.29)

and end up with

∂tη ' −h̄3[ηxxxx + Π ′(h̄)ηxx] . (9.30)

As perturbations, we allow for harmonic modulations in x with a wavenumber k that
may grow or decay exponentially with a growth rate β:

η(x, t) = eβt+ikx . (9.31)

Since the thin film equation can be represented as a gradient dynamics (cf. Sect. 9.1),
the growth rate β has to be real-valued. This can also be seen from the operator of the
RHS of Eq. (9.30). It only consists of even derivatives and is therefore self-adjoint.
Inserting (9.31) into (9.30), we obtain the dispersion relation

β(k) = −h̄3[k4 − Π ′(h̄)k2] . (9.32)

We notice that β can become positive if and only if Π ′(h̄) > 0. In this case, there exists
a band of wavenumbers 0 < k < kc =

√
Π ′(h̄) with β(k) > 0. The fastest growing

wavenumber is given by

kmax =

√
1
2
Π ′(h̄) =

1
√

2
kc (9.33)
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and the corresponding maximal growth rate reads

βmax = β(kmax) =
1
4

h̄3(Π ′(h̄))2 . (9.34)

For k = 0, the growth rate β is always zero corresponding to volume conservation.
Figure 9.4 shows a sketch of the dispersion relation for the unstable (solid curve) and
stable (dashed curve) case.

0

βmax

0 kmax kc

β

k

unstable

stable

Fig. 9.4 Sketch of the dispersion relation, Eq. (9.32). For Π ′(h̄) > 0 a band of unstable
wavenumbers 0 < k < kc with β(k) > 0 exists (solid curve). For Π ′(h̄) < 0, β(k) ≤ 0 ∀k (dashed
curve) and the flat film is linearly stable.

For ρ = 0 the DP employed in this work reads

Π(h) =

(
1
h6 −

1
h3

)
(9.35)

⇒Π ′(h) =

(
−

6
h7 +

3
h4

)
. (9.36)

Therefore, spinodal dewetting occurs for mean film heights

h̄ > h̄c = 21/3 ≈ 1.26 . (9.37)

For an inhomogeneous DP (ρ , 0), a flat film is no longer a steady solution of the
thin film equation because then the RHS of Eq. (9.25) reads for h = h̄

RHS = −h̄3∂2
xΠ(h̄, x) (9.38)

= −h̄3
(

1
h̄6
−

1
h̄3

)
ρg′′(x) , 0 . (9.39)
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Therefore, chemical inhomogeneities can lead to dewetting even if an initial flat film is
spinodally stable on every point of the substrate. This instability called heterogeneous
dewetting was studied both experimentally and theoretically, e. g., in Refs. [HFS+00]
and [KKS00a, KKS00b], respectively. It is found that the time scales of heterogeneous
dewetting are usually much smaller as compared to spinodal dewetting. Depending on
the geometry of chemical inhomogeneities, very regular structures can emerge.



10 Numerical Approach

In this chapter we briefly illustrate two numerical methods that are employed in our
analysis, namely steady state continuation and DNSs of a PDE. The first method is a
powerful tool to perform bifurcation analyses, i. e., to study equilibrium solutions of
nonlinear dynamical systems. The latter is used to compute concrete trajectories in time,
i. e., to study the dynamics.

10.1 Continuation
In the analysis presented in Chap. 11, we employ the continuation software package
AUTO-07p. In this section we confine ourselves to illustrate only the basic concept of
continuation (Sect. 10.1.1) and to mention some features of AUTO-07p that are impor-
tant for our applications (Sect. 10.1.2), without explaining the underlying mathematics
in detail. For a more comprehensive description we refer the reader to the manual of the
software [DO13] and to the lecture notes of Eusebius Doedel [Doe], who is one of the
main developers of AUTO-07p.

10.1.1 Basic concept
To introduce the basic concept of continuation, we consider a dynamical system

ẋ = F(x,α) (10.1)

with x, F ∈ Rn. The vector α ∈ Rp contains some constant parameters of the system.
Let us assume that we know that x0 is a fixed point for a specific set of parameters α0,
i. e.

F(x0,α0) = 0 . (10.2)

Let us further assume that the Jacobian of the vector field F at x0, i. e.
{
∂Fi
∂x j

(x0,α0)
}
,

is invertible. Then the implicit function theorem (see any basic calculus textbook like
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[CJ08]) guarantees that there exists a vicinity U ∈ Rn of x0, a vicinity V ∈ Rp of α0,
and a (continuously differentiable) function x : V → U such that

F(x(α),α) = 0 . (10.3)

We call x(α) a solution branch or family. That means that if we vary α0 slightly to
α = α0 + δα, there will exist another fixed point x = x0 + δx. The basic principle
of continuation is to compute the solution branch x(α) by incremently varying α and
finding the new fixed point, e. g., by a Newton method. This procedure is illustrated in
Fig. 10.1 (a). But with this simple method it is, e. g., not possible to follow a solution

Fig. 10.1 (a) Illustration of a basic continuation procedure. The test step is done in α direction
keeping x constant, and the corrector step in x direction keeping α constant. (b) Pseudo-arclength
continuation. Here, the test step is performed tangentially to the branch. The corrector step is
done in a direction orthogonal to the predictor step. This way it is possible to follow a branch
around a saddle node bifurcation point. Often also in basic continuation the predictor step is
tangentially to the branch, but as long as the corrector step is performed keeping α constant it is
not possible to follow a branch around a saddle node bifurcation point.

branch around a fold at a saddle node bifurcation. At such a fold the solution branch
can no longer be parameterized by the parameters α. An enhancement of the method is
pseudo-arclength continuation, which is illustrated in Fig. 10.1 (b). Here, the “test step”
is not done in the α direction for constant x as in the basic continuation, but tangential
to the solution branch in the (x,α) space. The next point of the branch is then searched
in a direction perpendicular to the test step. In this way it is possible to follow a solution
branch around a fold because the branch is then parameterized by its arclength. This
type of continuation is implemented in the software package AUTO-07p.

10.1.2 Important features of AUTO-07p
Branch point detection

With AUTO-07p it is possible to detect branch points of solution branches that occur,
e. g., at a pitchfork bifurcation. At the detected branch points one can tell the software
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to switch branches and to follow the intersecting solution branch.

Boundary value problems

The software can also handle boundary value problems. That means that in addition to
Eq. (10.1), one can set up boundary conditions for x(0) and x(1) and compute solutions
x(t) on the interval t ∈ [0, 1] (by rescaling the independent variable t, one can of course
compute solutions on an arbitrary interval). In this case AUTO-07p will automatically
discretize the problem with an adaptive grid in t. Starting from an analytic solution
for a specific set of parameters α0, which has to be provided by the user, the software
can again compute solution branches, where each point of the branch does no longer
correspond to a fixed point but to a specific solution x(t), t ∈ [0, 1], i. e. a fixed point in
function space. It is also possible to require that the determined solutions satisfy integral
conditions as further constraints.

Fold continuation

When AUTO-07p detects a fold w. r. t. one parameter, it can follow this saddle-node
bifurcation point as other parameters are varied. This is very useful to determine phase
diagrams as we will see in Chap. 11.

10.2 Time simulations
In this section we describe the DNS of Eq. (9.24). As we will see in the following, the
equation is stiff and therefore requires the use of an implicit time stepping algorithm. In
the next subsection we explain the property of stiffness and why this property requires
implicit time stepping schemes. In Sect. 10.2.2, we illustrate why the thin film equation
is stiff. In Sect. 10.2.3 we present the backward differentiation formulae, which are a
class of implicit time stepping methods that are employed in our time simulations.

10.2.1 Stiff ODEs
A linear ordinary differential equation (ODE)

ẋ = Ax (10.4)

is called stiff, if all eigenvalues λi of the matrix A have negative real parts and [Joh]

maxi |Re λi|

mini |Re λi|
� 1 . (10.5)
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A nonlinear ODE ẋ = f (x) can be regarded as locally stiff if the Jacobian of f has the
same properties as A. The solution of (10.4) can be expressed as

x j(t) =
∑

i

αi jeλit . (10.6)

For large t, only the terms with small absolute values of Re λi will contribute significantly
to the solution. However, an explicit time stepping method is only stable if the time step

δt .
1

maxi |Re λi|
. (10.7)

The exact relation depends on the specific time stepping method. This means that
although the fast time scales play no role for the long time solution, they require a
very small time step in explicit time stepping schemes. Since the interesting dynamics
typically takes place on the slow time scales, one needs to calculate a very large number
of iterations to see the relevant dynamics.

In order to provide an intuitive understanding for the stability criterion (10.7), let us
consider the simplest example

ẋ = −cx (10.8)

with c > 0 and x(0) = 1, the solution of which is given by x(t) = e−ct. The simplest
explicit time stepping scheme is the explicit Euler scheme,

xn+1 = xn − δt c xn

= (1 − δt c)xn . (10.9)

This stability criterion of this method is

δt <
2
c
. (10.10)

For δt > 2/c, |xn| → ∞ for n→ ∞.
If one employs an implicit time stepping scheme, one has no such strong stability

constraints as we demonstrate now with the same example and the implicit Euler scheme

xn+1 = xn − δt c xn+1

⇔xn+1 =
xn

1 + δt c
. (10.11)

We see that xn will go to zero for n → ∞, no matter how large we choose δt. But of
course, the larger δt, the less accurate is the computed solution. However, since the fast
time scales of a stiff problem are not relevant for the accuracy of the solution in the long
time limit, δt only has to be small compared to the slow time scales for accuracy reasons.
Therefore implicit time stepping schemes are the solution of the stiffness dilemma.



10.2 Time simulations 91

10.2.2 Why is the thin film equation stiff?
The stiffness of the thin film equation stems from the fourth order derivatives. This can
be illustrated approximating the height profile as a truncated Fourier series,

h(x, t) =

N∑
k=−N

h̃k(t)eikx , (10.12)

leading to a set of ODEs for the Fourier coefficients h̃k(t). The fourth derivative w. r. t. x
corresponds to a multiplication with k4 in Fourier space:

∂t h(x, t) = −∂4
x h(x, t) ←→ ∂t h̃k(t) = −k4 h̃k(t) (10.13)

Therefore, the modes with large k are damped away much more quickly than the modes
with small k. Although the former modes play no role in the long term solution of the
thin film equation, they enforce an extremely small time step if an explicit time stepping
algorithm is employed.

10.2.3 Backward differentiation formulae
Backward differentiation formulae (BDF) are a class of implicit time stepping methods
that are based on backward FDs. Since FD formulas exist in different orders of accuracy,
so do BDF methods. The afore-mentioned implicit Euler scheme is the simplest BDF
method of order one. It is based on the first order backward FD

g′(yi) =
g(yi) − g(yi−1)

δy
(10.14)

with δy = yi − yi−1. Applied to the time derivative of a set of ODEs ẋ = f (x), this yields

xn = xn−1 + δt f (xn) (10.15)

with xn = x(tn) and δt = tn − tn−1. Analogously, the second order BDF method is derived
from

g′(yi) =

3
2g(yi) − 2g(yi−1) + 1

2g(yi−2)
δy

(10.16)

which yields

xn = 4
3 xn−1 −

1
3 xn−2 + 3

2δt f (xn) . (10.17)

We see, that the general BDF method of order k takes the form

xn =

k∑
i=1

αixn−i + β0 δt f (xn) . (10.18)
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The problem of this equation, which arises in every implicit method, is that the function
f has to be evaluated at the point xn, which is not known in advance. Therefore one has
to solve a set of nonlinear algebraic equations for xn. This is usually done by a Newton
method, which we will briefly illustrate in the following section.

10.2.4 Solving the nonlinear algebraic equations
Finding a solution of a set of algebraic equations is analogous to finding a zero of a
vector field, i. e., we search for a vector y that satisfies

F(y) = 0 . (10.19)

The Newton method can be derived from the Taylor series of the vector field,

F(x + δx) = F(x) + Jδx + O(‖δx‖2) , (10.20)

where J is the Jacobian of F. Starting at some point x, we seek to find an appropriate
δx, such that F(x + δx) ≈ 0. This leads to

Jδx = −F(x) . (10.21)

The last equation is a linear algebraic equation that has to be solved for δx. Instead of
computing the inverse of the Jacobian, it is more efficient to solve this equation by an
LU-decomposition. That means, one decomposes the Jacobian into a product of a lower
triangular matrix L and an upper triangular matrix U. Then, one has

Jδx = −F(x) (10.22)
⇔ LUδx = −F(x) (10.23)
⇔ Ly = −F(x) and Uδx = y (10.24)

The last two equations can be solved simply by forward and backward substitution,
respectively. After δx has been computed, the process is iterated starting from a new
point xnew = x + δx, until some predefined convergence criterion is satisfied.

Eq. (10.21) applied to the BDF scheme (10.18) yields

(1 − β0 δt f′(x̃n)) δx = −x̃n + β0 δt f (x̃n) +

k∑
i=1

αixn−i . (10.25)

Here 1 is the unit matrix, f′ is the Jacobian of f , and x̃n is the trial point that is iterated.
The LU-decomposition has to be applied to the matrix 1 − β0 δt f′(x̃n).

For two-dimensional thin film equations on a grid with N2 grid points, the latter
matrix is an N2 × N2 matrix with N4 components. This can cause serious memory
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(and computation time) problems. For example, for N = 400 the matrix consists of
25.6 · 109 numbers. If the numbers are stored as 8-byte floating-point numbers, this
requires roughly 200 GB of memory, only to save the Jacobian!

However, if one uses a spatial discretization employing FDs, most of the entries of the
Jacobian are zero, i. e., the Jacobian is a sparse matrix. This results from the coupling
between the grid points via the spatial derivatives. For pseudo-spectral methods, on
the contrary, a spatial derivative depends on all grid points, which is why the Jacobian
is dense in this case. There are efficient algorithms for the LU-decomposition, where
the zero entries do not have to be stored and where also the computation time is highly
reduced by taking advantage of the sparsity of the matrix.

Another common method used for the linear algebra are Krylov subspace methods
[LS03]. The problem of the latter is that they are only efficient if a suitable preconditioner
matrix can be supplied, which is difficult in the case of the two-dimensional thin film
equation. A more detailed discussion about this issue can be found in Ref. [BT10].

10.2.5 Why we employ library routines
The introduced BDF scheme (10.18) is only valid for a constant size of the time step
δt. Schemes with a variable step size, which can be adapted to maintain a predefined
accuracy, are much more complicated in multistep methods such as BDF because then
the coefficients αi and β0 depend on the previous step sizes. However, adaptive time
stepping is extremely important for an efficient DNS.

The reader is now probably convinced that it would be very intricate to implement all
the different steps that are necessary for an efficient time simulation by hand. That is
why we use a library routine from the NAG Fortran library [NAG] for the time stepping.
It employs BDF methods of variable order and variable step sizes, and does also take
advantage of the sparsity of the Jacobian. The user of this library routine has to supply
the spatial discretization, the RHS of the equation, the initial condition and the output
routines for the results.

It turns out that the included linear algebra routines run into problems if two many
grid points are used. To be able to perform time simulations with the required accuracy
anyway, we employ finite differences with higher orders as described in the next section.

10.2.6 Spatial discretization
As we discussed in Sect. 10.2.4 implicit methods are only beneficial if the Jacobian of
the RHS of the PDE is sparse. Therefore, spectral or pseudo-spectral methods are not
suited for our problem. We employ FDs instead.

FD formulas, which approximate the spatial derivatives, exist in different orders of
accuracy. The higher the order, the more grid points are involved. For example, the
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central difference formula for the first derivative with second order accuracy reads

f ′(xi) =
1

2δx
( f (xi+1) − f (xi−1)) + O

(
δx2

)
, (10.26)

and involves the two neighboring grid points. With fourth order accuracy, the same
derivative reads

f ′(xi) =
1
δx

(
1

12 f (xi−2) − 2
3 f (xi−1) + 2

3 f (xi+1) − 1
12 f (xi+2)

)
+ O

(
δx4

)
, (10.27)

involving the four neighboring grid points.
FD formulas can either be derived from the Taylor series or be approximating the

function through a polynomial of the same order as the derivative that is needed. For
high orders of accuracy, these derivations become quite cumbersome and are also hard to
find in the literature. However, there is a useful command for the symbolic mathematics
software Mathematica [Mat] that calculates central FD formulas on a homogeneous grid
for arbitrary order of the derivative and accuracy from polynomial interpolations. It
reads:

Simplify[ D[ InterpolatingPolynomial[ Table[ {Subscript[x,
i] + k h, f[Subscript[x, i + k]]}, {k, -ng, ng, 1}] , z ],
{z, no} ] /. z -> Subscript[x, i]]

Here, ng has to be replaced by a positive integer number such that the formula incorpo-
rates 2ng + 1 grid points, and no has to be replaced by the order of the desired derivative.
For example, ng = 2 and no = 4 yields a formula for the fourth derivative including five
grid points, which is of second order accuracy.

A higher accuracy of the FDs brings along more non-zero elements of the Jacobian,
which requires more memory and computation time to perform the LU-decomposition.
On the other hand, a large accuracy allows us to decrease the number of grid points,
which lowers the memory and computation time costs. And, furthermore, a reduced
spatial resolution allows for larger time increments. However, since the numerical
problems of the NAG library restrict us to a relatively small number of grid points
anyway (cf. Sec. 10.2.5), we are forced to use finite differences of very high order. In
the simulations presented in Chap. 12 we employ formulas including 9 and 15 grid
points for the simulations with smaller and larger mean film heights, respectively. The
coefficients of the formulas are listed in Tabs. 10.1 and 10.2, respectively. To clarify
the notation, we give as an example the first derivative of the 15-point stencil:

f ′(xi) =
1
δx

[
− 1

24024 f (xi−7) + 7
10296 f (xi−6) − 7

1320 f (xi−5) + 7
264 f (xi−4)

− 7
72 f (xi−3) + 7

24 f (xi−2) − 7
8 f (xi−1) + 7

8 f (xi+1) − 7
24 f (xi+2)

+ 7
72 f (xi+3) − 7

264 f (xi+4) + 7
1320 f (xi+5) − 7

10296 f (xi+6)

+ 1
24024 f (xi+7)

]
+ O

(
δx14

)
. (10.28)
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Tab. 10.1 Coefficients of finite difference formulas including nine grid points.

-4 -3 -2 -1 0 1 2 3 4 order

f ′ 1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280 δx8

f ′′ -1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 -1/560 δx8

f ′′′ -7/240 3/10 -169/120 61/30 0 -61/30 169/120 -3/10 7/240 δx6

f ′′′′ 7/240 -2/5 169/60 -122/15 91/8 -122/15 169/60 -2/5 7/240 δx6

Tab. 10.2 Coefficients of finite difference formulas including 15 grid points. Only the
half stencil is shown, because the formulas for the first and third derivative are odd,
and the formulas for the second and fourth derivative are even. To clarify the notation,
Eq. (10.28) gives the formula of the first derivative as an example.

0 1 2 3 4 5 6 7 order

f ′ 0 7
8 − 7

24
7

72 − 7
264

7
1320 − 7

10296
1

24024 δx14

f ′′ − 266681
88200

7
4 − 7

24
7

108 − 7
528

7
3300 − 7

30888
1

84084 δx14

f ′′′ 0 − 90281
33600

222581
100800 − 247081

302400
31957

138600 − 2077
44352

20137
3326400 − 59

158400 δx12

f ′′′′ 54613
3780 − 90281

8400
222581
50400 − 247081

226800
31957

138600 − 2077
55440

20137
4989600 − 59

277200 δx12





11 Transversal linear stability analysis

The scope of this chapter is to analyze the stability of solutions with a ridge centered
on a more wettable stripe as various system parameters are varied. The relevant system
parameters include the mean film height h̄, which corresponds to the amount of material
that is deposited in the experiments, the strength of the wettability contrast ρ, and the
parameters for the geometry of the stripe pattern.

First, we outline the general procedure of the transversal linear stability analysis
and describe how it is implemented in the continuation software package AUTO-07p.
Subsequently, in Sect. 11.2 we illustrate the analysis with the most simple case of a
sinusoidal wettability modulation. In Sect. 11.3 we consider a more complex and more
realistic stripe geometry.

11.1 Description of the procedure and implementation
in AUTO-07p

First, we determine steady solutions with a ridge centered on a more wettable stripe.
To this end, it is sufficient to consider only the spatial dimension of the substrate plane
perpendicular to the chemical stripes (the x direction) and to look for stationary drop
solutions of the corresponding one-dimensional thin film equation that are centered
on the more wettable site. Such a solution can be extended homogeneously in the
dimension parallel to the stripe pattern (the y direction) corresponding to a stationary
solution of the two-dimensional thin film equation, where all y derivatives vanish. Then
one can perform a linear stability analysis about such a ridge solution.

To obtain one-dimensional stationary drop solutions h0(x), we regard Eq. (9.24) and
set ∂th0 = 0. Integrating twice in x leads to

∂2
x h0(x) + Π(h0, x) + C = 0 . (11.1)

The first integration constant corresponds to a net flux out of or into the integration
domain, which is zero in our case. The second integration constant C is the pressure,
which in mechanical equilibrium is constant along the drop profile.

97
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Note that Eq. (11.1) can also be derived by a variation of the dimensionless free
energy functional

F[h0] =

L∫
0

dx
[
1
2

(∂xh0)2 + f (h0, x)
]

(11.2)

under the constraint
L∫

0

dx h0 = Lh̄ , (11.3)

where L is the physical domain size. Then we see that the parameter C can also be
interpreted as a Lagrange multiplier that fixes the volume.

For the implementation in AUTO-07p we first have to transform Eq. (11.1), a second-
order ODE, into two first-order ODEs. Second, we introduce a rescaled space coordinate
ξ = x/L, such that ξ ∈ [0, 1]. We define the new variables

u1(ξ) = h0(Lξ) − h̄ (11.4)

u2(ξ) =
dh0

dx

∣∣∣∣∣
x=Lξ

. (11.5)

Since AUTO-07p only allows for autonomous ODEs, we need a third dependent variable
for space,

u7(ξ) = Lξ , (11.6)

and obtain the three ODEs

u̇1 =Lu2 (11.7)
u̇2 = − L[Π(h̄ + u1, u7) + C] (11.8)
u̇7 =L , (11.9)

where the dot denotes a derivative w. r. t. ξ. Later we will introduce the variables u3 to
u6 in the context of the transversal linear stability analysis.

To compute a solution branch with continuation, one first needs a starting solution for
a specific set of parameters. In our case we choose the trivial solution u1(ξ) = u2(ξ) =

0 ∀ ξ ∈ [0, 1] (and of course u7(ξ) = Lξ by definition) at ρ = 0 and C = −Π(h̄), which
corresponds to a flat film on a homogeneous substrate. From this trivial solution one
obtains by continuation a solution branch of non-trivial solutions as one changes ρ.

Starting from such a non-trivial, one-dimensional drop solution h0(x), we can perform
the transversal linear stability analysis of the corresponding two-dimensional ridge
solution. To this end, we make the ansatz

h(x, y, t) = h0(x) + εh1(x) exp(βt + iqy) , (11.10)
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where ε is a smallness parameter and β is the growth rate of a harmonic perturbation in
y direction with a wavenumber q. Inserting this ansatz into (9.24) and linearizing in ε
yields

βh1 = − Q(h0) (∂2
x − q2)

[
(∂2

x − q2)h1 + (∂hΠ(h0, x))h1

]
− (∂xQ(h0))∂x

[
(∂2

x − q2)h1 + (∂hΠ(h0, x))h1

]
. (11.11)

This eigenvalue equation has to be solved simultaneously with (11.1). To implement
this equation in AUTO-07p we introduce further variables:

u3(ξ) = h1(Lξ) (11.12)

u4(ξ) =
dh1

dx

∣∣∣∣∣
x=Lξ

(11.13)

u5(ξ) =
d2h1

dx2

∣∣∣∣∣∣
x=Lξ

(11.14)

u6(ξ) =
d3h1

dx3

∣∣∣∣∣∣
x=Lξ

. (11.15)

This leads to the additional ODEs

u̇3 =Lu4 (11.16)
u̇4 =Lu5 (11.17)
u̇5 =Lu6 (11.18)

u̇6 =L
{
−
βu3

Q0
+ q2u5 − ∂

2
x(h1∂hΠ0) −

∂xQ0

Q0

[
(u6 − q2u4 + ∂x(h1∂hΠ0)

]
+ q2

[
u5 − q2u3 + Π ′(h̄ + u1, u7)u3

] }
(11.19)

with Q0 = Q(u1 + h̄) and

∂x(h1∂hΠ0) = Π ′′(h̄ + u1, u7)u2u3 + Π ′(h̄ + u1, u7)u4 + Π ′x(h̄ + u1, u7)u3 (11.20)

∂2
x(h1∂hΠ0) = Π ′′′(h̄ + u1, u7)u2

2u3 + Π ′′(h̄ + u1, u7)(∂2
xh0)u3

+ 2Π ′′(h̄ + u1, u7)u2u4 + Π ′(h̄ + u1, u7)u5

+ 2Π ′x(h̄ + u1, u7)u4 + 2Π ′′x (h̄ + u1, u7)u2u3

+ Π ′xx(h̄ + u1, u7)u3 . (11.21)

Here, primes denote derivatives w. r. t. h, and the index x indicates a derivative w. r. t. x
while keeping h constant.

Now we have derived the complete dynamical system that has to be implemented in
AUTO-07p together with the boundary conditions

ui(0) = ui(1) for i = 1, . . . , 6 (11.22)
u7(0) = 0 , (11.23)



100 11 Transversal linear stability analysis

and the integral condition for mass conservation, Eq. (11.3), which reads in the new
variables

1∫
0

u1dξ = 0 . (11.24)

It should be noted that all eigenvalues β are real in our case because the thin film
equation can be interpreted as a gradient dynamics (cf. Sect. 9.1). A complex eigenvalue
would complicate the numerical treatment dramatically.

In the next section we will demonstrate the various continuation runs that are necessary
for our analysis, employing a simple sinusoidal wettability modulation.

11.2 Sinusoidal wettability modulation
We start with a simple harmonic form of the wettability modulation

g(x) = sin(2πx/Lper) , (11.25)

where Lper is the periodicity of the stripe pattern. We choose the domain size L equal to
Lper, i. e., we only investigate a single stripe. Starting from the trivial solution described
in the previous section, we use ρ as the main continuation parameter in the first run. This
yields the solution branches shown in Fig. 11.1. Each point of a branch corresponds to
one stationary height profile. Figure 11.2 shows three examples of solutions for ρ = 0.5
according to the labels in Fig. 11.1. Solutions 1 and 2 are unstable and correspond to
profiles with maxima located on the less wettable stripe (LWS). Solution 3 is stable and
corresponds to a drop centered on the more wettable stripe (MWS).

For the next continuation run, we start at the stable drop solution. We fix ρ and
select the growth rate β as the main continuation parameter (which was fixed at β = 0
before). For a fixed value of the wavelength q , 0, we expect a discrete spectrum of
eigenvalues β. At each discrete eigenvalue, a new solution branch which consists of
solutions with h1(x) , 0 is detected to branch off the trivial h1(x) = 0 branch. At a
detected branch point, one can tell AUTO-07p to follow the bifurcating branch. Adding
as a new integral condition the definition of the L2 norm of h1(x), we select ||h1|| as a new
continuation parameter, and follow the new branch until ||h1|| = 1, and hence “blow up”
the eigenfunction h1(x). With this procedure we obtain the two eigenfunctions depicted
in Fig. 11.3. One is a symmetric varicose mode, the other one an antisymmetric zigzag
mode.

In order to make a statement about the stability of the ridge solutions, we have to
compute the dispersion relations β(q) for the detected eigenfunctions. This is done by
a subsequent continuation run fixing ||h1|| = 1 and choosing β and q as continuation
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Fig. 11.1 Solution branches obtained by a first continuation in the wettability contrast ρ. As
a measure of the obtained solutions we select the maximum values of the height profiles
maxx h0(x). The solid and dashed parts of the branches represent stable and unstable solutions,
respectively. The parameters are h̄ = 3 and Lper = 50. The solutions according to the three labels
are depicted in Fig. 11.2. The solution at max h0 = h̄ corresponds to the trivial flat film solution.
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Fig. 11.2 Top: Three solutions according to the labels in Fig. 11.1. Bottom: The inhomogeneity
function g(x) (cf. Eq. (11.25)). The more (less) wettable area corresponds to g(x) ≈ −1
(g(x) ≈ 1). Solutions 1 and 2 are unstable. In those cases, more liquid is on the LWS. Solution
3 represents a stable drop on the MWS. The solutions are calculated with periodic boundary
conditions. The plotted x domain is chosen such that the MWS is in the center of the plot.

parameters. Figure 11.4 shows the corresponding dispersion relations for the two
eigenmodes of Fig. 11.3. One can see that for the varicose mode there exists a finite
band of wavenumbers 0 < q < qc with positive growth rate β. For q = 0, β must be zero
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Fig. 11.3 (a) The two most important eigenmodes h1(x). The solid curve is a symmetric varicose
mode, the dashed curve is an antisymmetric zigzag mode. Panels (b) and (c) show contour lines
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dispersion relations are plotted in Fig. 11.4. (ρ = 0.5, h̄ = 3).
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Fig. 11.4 Dispersion relations of the two eigenmodes shown in Fig. 11.3. Shown is the growth
rate β as a function of the transversal wave number q. The solid curve and the dashed curve
correspond to the varicose and zigzag mode, respectively.

due to mass conservation as long as the integral of the eigenmode is not zero. For the
zigzag mode, β(q) < 0 for all q.

As a next step, we compute the stability threshold for the transversal instability of the
ridge w. r. t. one system parameter, e. g., the mean film height h̄. To this end, we employ
the fold continuation feature of AUTO-07p. The maximum of the dispersion relation
β(q) corresponds to a fold in the corresponding function q(β). Via the fold continuation
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feature, we can follow this fold as several system parameters are varied. As we expect
the ridge to be stable for smaller film thicknesses h̄, we follow this fold as we vary h̄
until β and q become almost1 zero. In this way we approximate the stability threshold
w. r. t. h̄. In a subsequent fold continuation run, we fix β ≈ 0 and allow another system
parameter to vary, e. g., the wettability contrast ρ. This yields a curve in the [h̄, ρ] plane
that marks the linear stability threshold. This curve is plotted in Fig. 11.5. For each
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Fig. 11.5 Linear stability diagram for the transversal instability of a ridge in the [ρ, h̄] plane.

value of ρ there is a threshold h̄c(ρ), such that a ridge is linearly stable for h̄ < h̄c(ρ) and
unstable for h̄ > h̄c(ρ). If the ridge is unstable, perturbations in the form of the varicose
mode will grow. Therefore, we call the varicose mode the critical eigenmode.

In the main part of the plot, the function h̄c(ρ) is monotonously increasing, which is
in agreement with our intuition and the experimental findings. For small ρ this is not the
case. The reason for this will be discussed in Sect. 11.3.

11.3 Smoothed step-like wettability profile
Now we switch to a more realistic non-sinusoidal wettability modulation,

g(x) = tanh
[

1
ls

(
−frac

(
x

Lper

)
+ xA

)]
· tanh

[
1
ls

(
−frac

(
x

Lper

)
+ (1 − xA)

)]
, (11.26)

where frac denotes the fractional function frac(y) = y−floor(y). Here, the floor function
returns the largest integer value that is smaller as or equal to its argument. The function
g(x) is plotted in Fig. 11.6. As the sinusoidal wettability modulation of the last section,

1For numerical reasons, we can not detect the zero with arbitrary accuracy.
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Fig. 11.6 The wettability modulation g(x), Eq. (11.26), for the parameters Lper = 50, ls = 0.03
and xA = 0.3, where Lper is the period length; for ρ > 0 the lengths of the MWS (g(x) ≈ −1) and
the LWS (g(x) ≈ 1) are given by (1 − 2xA)Lper and 2xALper, respectively, and lsLper is the width
of the transition region between the MWS and the LWS.

it is periodic with a period Lper, but now the MWS and the LWS can have different
widths, which are determined by the parameter 0 < xA < 0.5. The widths of the LWS
and the MWS are given by 2xALper and (1 − 2xA)Lper, respectively. The parameter ls

governs the sharpness of the wettability contrast: The width of the transition region
between the MWS and LWS is given by lsLper.

11.3.1 Stationary ridge profiles
As in the previous section, we set L = Lper = 50 and start with the trivial solution for
ρ = 0 and use ρ as the main continuation parameter in the first runs. We select xA = 0.3,
which means that (for positive ρ) the MWS is thinner than the LWS. We obtain the
solution branches plotted in Fig. 11.7. In contrast to the case of the sinusoidal wettability
modulation (cf. Fig. 11.1), we do no longer have a symmetry between positive and
negative ρ values due to the difference in the width of the LWS and the MWS. For
positive ρ, we obtain a larger variety of unstable configurations. The different stable
and unstable solutions are plotted in Figures 11.8 and 11.9 for ρ = 0.5 and ρ = −0.5,
respectively.

The bifurcation diagram, Fig. 11.7, might not be complete. For symmetry reasons one
expects additional branches consisting of further unstable steady solutions. However,
for the following analysis these solutions are not important.
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contrast to Fig. 11.1, we use the energy (Eq. (9.9)) as a solution measure in order to assess
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Fig. 11.9 Solutions corresponding to the labels six to eight of Fig. 11.7 for ρ = −0.5. Lper = 50,
ls = 0.03, h̄ = 3 and xA = 0.3. Since ρ is negative, the more wettable area corresponds to the
region where g(x) ≈ 1. Here, solution eight is the only stable solution.

11.3.2 The linear stability diagram
Starting at the stable solution for ρ = 0.5 (label 5 in Figs. 11.7 and 11.8), we repeat
the steps presented in the previous section and obtain again a linear stability diagram
in the [ρ, h̄] plane (cf. Fig. 11.10). In contrast to the case of the sinusoidal wettability
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modulation (Fig. 11.5), the curve is non-monotonous. In the region 0.43 . ρ . 0.87
there are four different stability regions that deserve further investigation.

11.3.3 Detailed analysis for ρ = 0.5

To this end, we consider a constant ρ = 0.5, where we observe three critical values of
h̄, h̄1 ≈ 1.1, h̄2 ≈ 1.8 and h̄3 ≈ 2.4 (cf. Fig. 11.10). We continue the stable 1d solution
h0(x) and its critical eigenfunction h1(x) in the mean film thickness h̄. Figures 11.11 and
11.12 show the obtained functions h0(x) and h1(x), respectively. In Fig. 11.13 (a), we
plot the corresponding maximal growth rates

βmax = max
q
β(q) = β(qmax) (11.27)

and the corresponding qmax in the unstable regions h̄1 < h̄ < h̄2 and h̄ > h̄3. In the stable
regions h̄ < h̄1 and h̄2 < h̄ < h̄3, βmax = qmax = 0.

For very thin films (h̄ < h̄1), the 1d solutions are not yet droplets. They are better
described as piecewise flat films with a higher thickness on the MWS (cf. solution for
h̄ = 1.05 in Fig. 11.11). The film height is everywhere below the critical film height
where spinodal dewetting would occur on a homogeneous substrate (cf. Eq. (9.37) in
Sect. 9.5). Therefore, the piecewise flat film solutions are stable, also in two dimensions.

For h̄1 < h̄ < h̄2, the 1d solutions have a pronounced droplet shape (cf. solution for
h̄ = 1.5 in Fig. 11.11). The corresponding 2d ridge solutions are not stable, but this
instability is not the one that leads to the formation of bulges. This can be inferred from
the shape of the critical eigenfunction h1(x), which is depicted in Fig. 11.12 for different
h̄. It undergoes a shape transition from unimodal to bimodal with increasing film height.
The top panel of Fig. 11.14 shows the steady ridge profile h0(x) for h̄ = 1.5 together
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Fig. 11.11 Stationary solutions h0(x) for ρ = 0.5 and different mean film heights h̄.
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Fig. 11.12 Critical eigenfunction h1(x) for ρ = 0.5 and different mean film heights h̄. At
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and qmax are zero for ρ = 0.5; a ridge is stable in these cases.

with a sum of the ridge profile and a multiple of the corresponding eigenfunction h1(x).
One can see that the contact region is not shifted by the influence of the unimodal
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Fig. 11.14 Comparison of transversal instabilities with a unimodal eigenfunction h1(x) for small
film heights (top, h̄ = 1.5) and a bimodal h1(x) for larger film heights (bottom, h̄ = 3.0). Shown
are the steady ridge profiles (solid curves) together with the sum of the ridge profile and the
eigenfunction multiplied by a small constant δ (dashed curve). In the first case the contact line
stays fixed, in the second case it is shifted.

eigenfunction. This means that this instability leads to the formation of droplets on the
MWS and therefore belongs to the morphologies I to III observed in the experiments,
which are sketched in Fig. 8.2 (c).

In the region h̄2 < h̄ < h̄3 the critical eigenfunction has still only one maximum, but
the growth rates are negative for finite wavenumbers (and zero for q = 0). In this region
a ridge on the MWS is stable as it is no longer possible for the ridge to form droplets on
the MWS. This can be seen from the critical eigenfunction for h̄ = 2.1 in Fig. 11.12. It
becomes broader than the MWS. Since in this region it is not yet energetically favorable
for the ridge to leave the stripe, the ridge is stabilized by the wettability pattern. This
corresponds to the morphology of type V seen in the experiments (cf. 8.2 (c)).

For mean film heights above h̄3 it becomes energetically favorable for the liquid to
partly cover also the LWS and the maximal growth rate becomes positive (cf. Fig.
11.13 (a)). At a critical film thickness of h̄∗ ≈ 2.5, slightly greater than h̄3 ≈ 2.4, the
critical eigenfunction undergoes a shape transition from unimodal to bimodal. This is
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the instability that leads to the formation of bulges. This situation is sketched in the
bottom panel of Fig. 11.14 for h̄ = 3.0. Here, the eigenfunction shifts the contact line
region of the ridge. Therefore, the region h̄ > h̄3 corresponds to morphologies of type
VI (cf. Fig. 8.2 (c)).

11.3.4 Small wettability contrasts
For small wettability contrasts (ρ . 0.43) we observe the same shape transition in the
critical eigenmode, but the maximal growth rate remains positive for h̄ above the curve
in Fig. 11.10. This is demonstrated in Fig. 11.13 (b) for ρ = 0.3. Therefore, no stable
ridge solutions exist for small wettability contrasts.

Finally we remark that at ρ = 0 the curve of the instability threshold in Fig. 11.10
reaches the value h̄ ≈ 1.26. The same is true for the case with the sinusoidal wettability
modulation (cf. Fig. 11.5). This value of h̄ ≈ 1.26 corresponds, as it should be, to the
analytically obtained threshold of the spinodal instability of a flat film, which is given by
∂Π/∂h = 0 (cf. Eq. (9.37) in Sect. 9.5). This reinforces the interpretation that the first
instability for small ρ and h̄ is a spinodal instability. As one increases ρ from zero to a
small finite values while keeping h̄ constant, the 1d flat film solutions change towards
more and more pronounced droplet solutions with increasing maximal film heights.
This explains why the instability threshold with respect to h̄ decreases with increasing ρ.

11.3.5 Influence of the sharpness of the wettability transition
Next we investigate the influence of the sharpness of the wettability transition. The
dotted line in Fig. 11.10 shows the stability threshold in the [ρ, h̄] plane for ls = 0.001,
i. e. for a sharper wettability transition. In this case, stable ridges are possible at all for
lower wettability contrasts ρ. For small ρ the region in the parameter space of h̄ where
ridges are stable is also larger. This is because a larger wettability gradient increases
the pinning effect. On the other hand, for ρ & 0.57, the onset of the instability leading
to bulge formation is shifted towards lower h̄. This is probably due to the fact that the
effective width of the MWS decreases with decreasing ls.

11.4 Comparison to system with diffusive mobility
The steady state solutions obtained in this chapter were computed from Eq. (11.1),
which does not depend on the mobility coefficient Q(h) (cf. Eqs. (9.5) and (9.7)).
Therefore, one expects to observe the same equilibrium structures also with different
mobility coefficients. Only the time scales of the formation of the equilibrium structures
depend on the mobility.
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The cubic term of our employed mobility term is derived from the Navier-Stokes
equation and therefore results from a convective motion of the molecules on the substrate.
Although there is some experimental evidence that the deposited molecules are in the
liquid state after deposition (cf. Sect. 8.1) it is not clear whether or not the molecules
really move by convection, especially at very low film heights. Since single molecules
can only diffuse along the substrate, there has to be a transition from diffusive transport
to convective transport as the film height is increased. It is not clear at which minimal
film height one can assume a convective mobility.

Diffusive transport results in a mobility linear in h. This can be inferred from the
entropic contribution to the free energy functional of a thermodynamic field φ [CH58],

Fent[φ] = C
∫

dxφ(x) log φ(x) , (11.28)

with the functional derivative

δFent

δφ
= C(log φ + 1) . (11.29)

If the temporal evolution of φ is given by

∂tφ = ∂x

[
Q(φ)∂x

δFent

δφ

]
(11.30)

= ∂x

[
Q(φ)

C
φ
∂xφ

]
, (11.31)

a linear mobility Q(φ) = D̃φ leads to the diffusion equation

∂tφ = D∂2
xφ (11.32)

with D = D̃C. Thus, if we interpret the film height h as a thermodynamic field, diffusive
transport results in a linear mobility coefficient.

In order to compare our findings to the case of diffusive transport, we repeat the
calculations leading to Fig. 11.13 (a) with a mobility2 Q(h) = h. The result is depicted
in Fig. 11.15. While the fastest growing wavenumbers are almost identical for both
transport times, the growth rates β differ dramatically. One should stress that we cannot
make any statement about the absolute level of the growth rates since a prefactor in the
mobility term has been scaled out. But what we can say is that the growth rates for larger
film heights are, as expected, much smaller than for smaller film heights as compared to
the case of diffusive transport. However, as expected, the stability thresholds h̄1, h̄2, h̄3

do not depend on the mobility term.
2By rescaling time in the thin film equation, one can easily get rid of a constant prefactor of the mobility

term
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Fig. 11.15 Top: Maximal growth rates of the transversal instability for ρ = 0.5 against h̄. The
dotted line corresponds to a convective mobility. This curve is the same as in Fig. 11.13 (a),
only in logarithmic scaling. The solid line corresponds to a diffusive mobility term. Bottom:
The corresponding fastest growing wavenumbers. The growth rates are significantly larger
for the convective instability, especially in the bulge formation regime. The fastest growing
wavenumbers are almost identical for both mobilities. Also the stability thresholds remain the
same.



12 Results of the DNS

The results of the transversal stability analysis presented in the previous chapter indicate
that for low film heights and wettability contrasts, a ridge undergoes an instability
towards droplets that are located only on the MWS and belong to the morphologies of
type I to III rather than the bulges of type VI (cf. Fig. 8.2 (c)). In Sect. 12.1 we test
this hypothesis by a DNS of Eq. (9.24) in this parameter regime. Section 12.2 presents
a similar simulation with a mobility term that is only linear in h, corresponding to a
diffusive transport behavior. Finally, Sect. 12.3 discusses a DNS in the parameter regime
where bulge formation is expected.

12.1 Droplets on the MWS
We choose a wettability contrast ρ = 0.5 and an initial film height h̄ = 1.16, which
corresponds to the largest maximal growth rate βmax w. r. t. h̄ and roughly coincides with
the maximum in the corresponding fastest growing wavenumber qmax (cf. Fig. 11.13).
This has the advantage that the wavelength of the transversal instability is minimal and
we can select a smaller domain size in y direction. At h̄ = 1.16, qmax ≈ 0.188, which
corresponds to a fastest growing wavelength Λmax = 2π/qmax ≈ 33. We set the domain
size in y direction to 100, such that three wavelengths fit into the domain. For the spatial
discretization we use 230 × 200 grid points and employ a nine-point finite difference
stencil, whose coefficients are listed in Tab. 10.1. Periodic boundary conditions are
applied in both x and y direction.

During the time simulation, the free energy functional, Eq. (9.9), is measured. Figure
12.1 shows the corresponding time series. We can identify four energy plateaus. Each
plateau corresponds to a transient configuration that is closely related to a steady state
solution. They are shown in Figure 12.2. The last one is the final absolutely stable state.

Starting from a flat film configuration which is slightly perturbed by white noise,
the first plateau is reached very quickly after about 200 dimensionless time units. This
plateau corresponds to a configuration with a uniform ridge centered on the MWS (cf.
top left panel of Fig. 12.2). Figure 12.3 shows the profile of this ridge configuration.
For comparison, also the profile obtained by steady state continuation is shown. Both
profiles agree perfectly. This proves that the state considered in the transversal linear

113
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Fig. 12.1 Time series of the energy during a simulation of the thin film equation (9.24) with
h̄ = 1.16 and ρ = 0.5 (solid curve). The dashed horizontal line shows the energy corresponding
to the ridge profile computed by steady state continuation (cf. Chap. 11). It coincides with the
level of the first energy plateau. The configurations that correspond to the four energy plateaus
are plotted in Fig. 12.2.

stability analysis presented in Chap. 11 is really assumed (and maintained for a long
time) during the dynamical evolution, even if it is linearly unstable. This justifies the
approach of Chap. 11 retrospectively.

It takes approximately 1400 more time units until the ridge begins to break up into
three droplets. Since the domain size in y direction is approximately three times the
wavelength of the fastest growing mode of the transversal instability, at first three
droplets are formed on the MWS (cf. top right panel of Fig. 12.2). Two of them
vanish in successive coarsening events. Thereby the volume of the vanishing droplet is
transferred to the neighboring droplet(s) while the centers of all droplets hardly move.
Eventually, only one droplet remains that is slightly elongated in the stripe direction (cf.
bottom panels of Fig. 12.2). Figure 12.4 shows a cut through the drop profile at y = 10,
the broadest part of the drop, together with the wettability profile. We see that the drop
is still pinned to the MWS. This confirms our hypothesis about the instability for small
film thicknesses that was stated in Sect. 11.3.

12.2 Comparison to diffusive mobility
We repeat the same simulation of the previous section, but replace the cubic mobility
term Q(h) = h3 in Eq. (9.24) by a linear one, Q(h) = h, which corresponds to a diffusive
transport behavior. Thereby, the same sequence of transient configurations is passed,
only the time scales change as can be seen in Fig. 12.5, which shows the energy time
series of the diffusive simulation together with the convective case. This observation is
in agreement with the discussion in Sect. 11.4.
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Fig. 12.2 Snapshots of a time simulation of the thin film equation (9.24) with h̄ = 1.16 and
ρ = 0.5. Figure 12.1 shows the time series of the energy of the same simulation. The four
snapshots at times t = 1000 (top left), t = 3000 (top right), t = 6000 (bottom left), and t = 15000
(bottom right) correspond to the four energy plateaus in Fig. 12.1.
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Fig. 12.3 Comparison between the time simulation and the 1d continuation. The solid line
shows the result of the 1d continuation, the dots show a cut through the ridge configuration at
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Fig. 12.4 Top: Cut through the final droplet at y = 10. Bottom: Wettability profile g(x). The
droplet is pinned to the MWS. This configuration belongs to the morphologies of type II (cf.
Fig. 8.2 (c)).

12.3 Bulge formation
Now we perform a simulation in the parameter regime where, according to Sect. 11.3,
bulge formation is expected to occur. Justified by the discussions of Sects. 11.4 and
12.2, we select a diffusive mobility term Q(h) = h, because this makes the numerics
more stable. Again, we set ρ to 0.5, but choose a larger initial film height h̄ = 2.8.
The fastest growing wave number is qmax ≈ 0.04 which corresponds to a wavelength
Λmax ≈ 157. Therefore we choose the domain size in y direction as Ly = 300. In x
direction the domain size is again Lx = 50. We employ a 210 × 210 grid, periodic
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Fig. 12.5 Time series of the energy during a simulation with the same parameters as in Fig. 12.1
for diffusive mobility (solid curve) and a convective mobility (dashed curve). The diffusive case
shows the same energy plateaus, only the time scales are larger as compared to the convective
case.

boundary conditions in both x and y direction, and a 15 point finite difference stencil,
whose coefficients are listed in Tab. 10.2.

Figure 12.6 shows four snapshots from the time simulation. As in the simulations of
Sect. 12.1, the homogeneous ridge configuration (panel (a) in Fig. 12.6) is assumed
quickly. The system stays close to this unstable steady state for a long time. Eventually
the ridge shows undulations in y direction (panel (b)). These undulations grow and form
large bulges (panel (c)). Finally, the material between two neighboring bulges is soaked
up by the bulges (panel (d)). The emerged configurations resemble the experimental
AFM image shown in Fig. 8.2 (d).

When the bulge configuration is assumed, the spatial resolution is too low to compute
the large derivatives in y direction with sufficient accuracy. As a consequence, the norm

N =
1

LxLyh̄

Lx∫
0

dx

Ly∫
0

dy h(x, y) , (12.1)

which should stay constant at N = 1, is observed to decrease rapidly in the time
simulation. At time t = 1.045 · 106 (panel (d)), N is still larger than 0.99, i. e., more
than 99% of the initial volume is conserved. However, because of the subsequent,
numerically caused evaporation, one cannot be sure whether the configuration shown in
panel (d) is the final, absolutely stable state. It is possible that the remaining bulges will
coarsen on a long time scale in a similar manner as in the simulations of the previous
sections such that only one bulge remains in the end.
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(a)

(b)

(c)

(d)

Fig. 12.6 Snapshots of a time simulation of the thin film equation (9.24) with h̄ = 2.8 and
ρ = 0.5 and a diffusive mobility term Q(h) = h. Panels (a), (b), (c), and (d) show snapshots at
times t = 0.5 · 106, t = 0.9 · 106, t = 1.0 · 106, and t = 1.045 · 106, respectively.



13 Conclusion

In the second part of the thesis we have investigated the pattern formation of a thin layer
of small organic molecules on a substrate with a periodic chemical stripe pattern which
was studied experimentally before. To this end, a thin film equation was employed that
describes the temporal evolution of the height profile of the molecule layer.

In Chap. 11 the stability of steady state solutions which correspond to homogeneous
ridges centered on stripes with increased wettability was analyzed employing numerical
continuation techniques. Thereby, two types of instabilities were found that were also
observed in the experiments. For small layer thicknesses ridges can break up into small
droplets that are pinned to the MWS. For large layer thicknesses ridges can develop large
bulges that also cover the region between two neighboring MWSs. For sufficiently large
wettability contrasts the ridges are stable for intermediate layer thicknesses. A linear
stability diagram in the parameter space of the mean layer thickness and the wettability
contrast was determined for a fixed stripe geometry. Furthermore, the influence of the
mobility of the molecules on the stability of ridge solutions was investigated. It was
found that the stability thresholds do not depend on whether the molecules move by
convection or by diffusion. Only the time scales of the instabilities are influenced by the
mobility.

The outline of the transversal linear stability analysis employing numerical continua-
tion was introduced in Refs. [BKTB02, TBBB03]. In these works the diffuse interface
model for the disjoining pressure [PP00] is used together with a sinusoidal wettability
profile. In [BKTB02] the transversal instability is studied only for fixed mean film
height and for a single stripe in dependence of the wettability contrast and the period
of the stripe pattern. In [TBBB03] the authors also investigate the interaction of two
neighboring stripes finding four major eigenfunctions that correspond to in-phase and
anti-phase varicose and zigzag modes, respectively. A comprehensive analysis of the
stability of ridges in dependence of various system parameters is not presented.

A very similar analysis is also presented in Ref. [MRD08]. The authors employ
a disjoining pressure and a wettability profile that is qualitatively similar to the one
considered here. But in this work only the second kind of instability for larger film
heights, the bulge formation, is investigated. Instead of the mean film height h̄, the
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excess cross section of the ridge

V =

∫
dx(h0(x) − hp) (13.1)

is used as a control parameter. This makes the results more independent of the overall
system size as compared to the results presented here. However, the mean film height
h̄ is the quantity that is accessible by experimentalists. The authors find the stability
criterion dP/dV > 0, where P is the generalized pressure inside the ridge, which
corresponds to our parameter C in Eq. (11.1). This means that a ridge is stable with
respect to bulge formation if the pressure increases with the cross-sectional area. For
chemical channels with a smooth transition of equilibrium contact angles Θeq, they find
the stability criterion d

dx lnΘeq(x) > 1
x , where x is the lateral distance from the stripe

center. Furthermore, the influence of a body force parallel to the stripe is investigated.
It turns out that a driven flow has a stabilizing effect on the ridge as it decreases the
critical transversal wavenumber, but does not change the stability criteria. However, a
linear stability diagram like Fig. 11.10 showing the stability of ridges depending on
explicit system parameters has, to the author’s best knowledge, not been presented in
the literature before.

Our findings of the linear stability analysis were complemented by three direct
numerical simulations of the thin film equation, presented in Chap. 12. The first
simulation is performed in the parameter regime where the first kind of instability is
predicted. As expected, the final absolutely stable configuration is a small droplet
on the MWS. The second simulation is done with the same parameters but employs a
diffusive mobility term instead of a convective one. The same kind of structures are seen,
only the time scales of the dynamics change. The third simulation does also employ
a diffusive mobility term and is carried out for parameters where bulge formation is
predicted by the stability analysis. In this simulation the emerged bulges soak up the
molecules between them, leaving parts of the MWS uncovered. Similar morphologies
have been experimentally observed, however, more frequently one finds bulges on top
of a regular ridge. Overall, the obtained results confirm the predictions of the linear
stability analysis.

In the course of all simulated time evolutions the homogeneous ridge state is assumed
very quickly and is maintained for quite a long time although it is linearly unstable. This
shows that unstable steady states play an important role in the dynamics of nonlinear
systems, which in turn demonstrates the power of continuation techniques which allow
one to study also unstable steady states systematically.

Time simulations of a thin film equation for two-dimensional substrates with a
chemical stripe pattern are also presented in Refs. [KS01, SBK+12]. In both articles
the wettability profile is a periodic step function. This is on the one hand unphysical
because wettability profiles result from intermolecular interactions that vary smoothly
in space. On the other hand it is problematic because the wettability gradient in the
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simulation then depends on the grid resolution. However, the focus of both articles does
not lie in the instabilities of individual ridges, but on the way the geometry of stripe
patterns influences the templating behavior. It is found that if the width of the LWSs are
above a critical value, they do not dewet completely and are covered with droplets. If
the width of the LWS is below another critical value, it might not dewet at all, or only
every nth LWS might dewet. The critical values depend on specific length scales of
the system. For intermediate widths, perfect templating can occur. Morphologies that
resemble the bulges on top of regular ridges, as seen in the AFM image, Fig. 8.1 (a), are
not observed in these simulations.

This thesis shows how the stability of homogeneous ridges, the morphology that is
desired by experimentalists, can be analyzed systematically by continuation techniques.
This analysis can be continued to study a larger variety of stripe geometries. Especially
configurations with larger distances between MWSs are interesting. The experiments
as well as the theoretical analysis in [SBK+12] show that for large distances droplets
appear on the LWSs. Employing the methodology presented here, one could study
systematically under which conditions these droplets emerge. Also many experiments
employ stripe patterns of alternating widths of the MWS, like for instance, the AFM
images of Fig. 2 of Ref. [WDW+11] show. Therefore, an analysis of such geometries
would also be worthwhile.

Concerning the bulge formation, an interesting open question is whether or not the
employed model does also contain equilibrium configurations corresponding to a bulge
on top of a regular ridge. This is probably the case for different stripe geometries and
mean layer thicknesses. This question cannot be answered by stability analyses and
therefore requires more extensive time simulations. The DNSs presented here suffered
from the problem that the library routine for the implicit time stepping had problems in
the linear algebra routines that did not allow us to employ higher grid resolutions. This
problem has to be solved in order to perform more extensive simulations.

Throughout the whole analysis the process of condensation was not considered. The
system was treated as if the whole material was deposited onto the substrate instanta-
neously, forming an initial homogeneous layer. The similarity of the morphologies found
in the DNSs with those seen in the experiments suggests that the system approaches
nevertheless the same equilibrium structures. However, it would be interesting to study
the influence of condensation (and different condensation rates) on the dynamics as well
as on the final equilibrium morphologies.





A Existence of the second moment

In the following it is shown that the second moment of the stationary PDF of a Langevin
process with D(1)(x) = −γx and D(2)(x) = α + βx2 exists for γ > β, and diverges
otherwise. This is important because it explains why the corresponding finite time
diffusion coefficient (4.17) diverges for β ≥ γ as τ goes to infinity. The following
calculation shows that this is in accordance with Eq. (4.22b).

The stationary solution of the one-dimensional FPE for stationary drift and diffusion
coefficients reads [Ris89]

f (x) =
N

D(2)(x)
exp


x∫

D(1)(x′)
D(2)(x′)

dx′
 . (A.1)

For D(1)(x) = −γx and D(2)(x) = α + βx2 this yields

f (x) =
N

α + βx2 exp
{
−
γ

2β
ln

(
1 +

β

α
x2

)}

=
N
α

(
1 +

β

α
x2

)− γ
2β

1 +
β

α
x2

=
N
α

(
1 +

β

α
x2

)− γ
2β−1

(A.2)

with the normalization constant

N =

√
αβΓ

(
1 +

γ

2β

)
√
πΓ

(
β+γ

2β

) . (A.3)

The second moment is defined as

〈x2〉 =
N
α

∞∫
−∞

x2
(
1 +

β

α
x2

)− γ
2β−1

dx . (A.4)
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For the existence of the integral, only the asymptotic behavior of the integrand for
x→ ±∞ is important. This goes with x−

γ
β . We have∫

x−
γ
β ∝ x−

γ
β+1 , (A.5)

so the second moment exists for γ > β.
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