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1 Introduction

Light waves are electromagnetic radiation that consists of spatially-varying electromag-
netic field, traveling in the propagation direction, carrying momentum and energy [1].
The transverse field direction refers to the plane perpendicular to the field propagation,
whereas longitudinal field direction is the plane of field propagation. Within an optical
cavity, both transverse and longitudinal modes are induced.

Structures that enable confinement of light in micro-scale volumes are called optical
micro-cavities [2]. Due to finite size of the spatial dimensions in micro-cavities, specific
optical effects act on the optical field. Optical cavities that allow for circulation of a
beam of light in a closed path are called optical resonators [2]. In a resonator, due to the
wave nature of light, longitudinal standing modes are induced that may interact with
each other. Another type of optical micro-cavity constricts light beams in the transverse
dimension only, allowing for longitudinal propagation, e.g., optical fibers [3].

In optical fibers, the dynamics of the optical pulse propagation is governed by the effects
of dispersion and Kerr nonlinearity [4]. Dispersion is a characteristic of the fiber medium
which causes different spectral components of pulse propagation to travel at different
speeds in the medium, leading to pulse broadening in certain frequency ranges. Whereas,
the nonlinear dependence of the refractive index on the pulse intensity, called Kerr
nonlinearity, is induced at high intensity regime and leads to phase modulation of the
pulse. The interplay between these two effects leads to the formation of shape-preserving
optical pulses called solitons in the conservation system with negligible fiber losses [4].
Additional effects of higher order dispersion into this optical system have been investi-
gated recently [5, 6, 7, 8] both analytically as well as experimentally. In this thesis, the
effects of quadratic and quartic dispersion along with Kerr nonlinearity are investigated.
In laser micro-cavities, however, the light matter interaction within the active com-
ponents in the micro-cavity, e.g., gain medium or nonlinear optical absorbers, causes
the nonlinear response, while the spatial coupling is largely dependent on the effects
of diffraction and diffusion. For lasing action, the optical micro-cavity acts as a res-
onator, introducing diffractive effects due to finite size as well as cavity losses with each
round-trip within the resonator leading to a dissipative system.

One such laser configuration is investigated in this thesis, called Mode-Locked Inte-
grated External-Cavity Surface-Emitting Laser (MIXSEL), where a micro-cavity with
integrated nonlinear absorber is externally coupled to a feedback cavity. The spatial
distribution of the laser field in a ring configuration micro-cavity, dependent on the ef-
fects of diffraction and field diffusion, resulted in the presence of localized structures
called Light Bullets were found [9]. In this thesis, the induced instability due to the
weak aberrations, approximated by an additional Bilaplacian term, and nonlinearity is
studied. Additionally, a potential is considered on the system domain that acts as a
wavefront curvature to the field within the micro-cavity.

Formation of transverse patterns in nonlinear optical systems is caused due to sponta-
neous symmetry breaking leading to spontaneous emergence of spatial order [10]. The
combined effects of spatial coupling and self-focusing nonlinearity at certain parameter
regimes which induces instability in the system leads to spontaneous pattern formation.
The role of nonlinearity generally includes selection of the type of patterns induced in the
domain out of various different possibilities, whereas the inhomogeneous spatial distri-
bution is due to spatial coupling, e.g., diffraction, dispersion etc. in optical systems. The
stability of these periodic structures is dependent on the geometric as well as intrinsic
symmetries of optical interactions.



Such nonlinear optical micro-cavities can be theoretically modeled using nonlinear partial
differential equations to analyze the solutions and their stability in the dynamical system.
Dynamical system equations of this type are usually studied using numerical methods.
Direct numerical analysis is one method that can be used to solve the system equation
numerically to examine steady state and dynamical solutions of the system. Another
approach is path continuation and bifurcation analysis that allows for studying the
evolution of steady state solutions in the control parameter space.

In this thesis, both numerical methods are presented to analyze dynamical systems
of two types of optical micro-cavities and different forms of transversal patterns that
might emerge in the system solutions. In Chapter 2, the theoretical models for two
optical micro-cavities are described, along with the numerical methods used to study
these nonlinear dynamical systems and their implementations. Chapter 3 presents the
analysis and continuation results of the solutions to the Quartic Dispersion Nonlinear
Schrodinger equation. The formation of transversal patterns as oscillating tails in the
soliton-like solutions is investigated in parameter space and their stability is analyzed. In
Chapter 4, the analytical solutions of the MIXSEL model equation are presented and the
dynamics of transversal patterns of these solutions are detailed. Linear stability of this
equation is presented in Chapter 5, as well as induced instability in the system that leads
to formation of transversal patterns in the one-dimensional spatial domain. Finally, the
transverse spatial pattern solutions of the MIXSEL model equation in two-dimensions
is presented in Chapter 6.



2 Theoretical Concepts

2.1 Theoretical Modeling of Optical Micro-Cavities
2.1.1 Generalized Nonlinear Schrodinger Equation

The propagation of nonlinear optical pulses in optical fibers for a slowly-varying complex
pulse envelope of the electric field ¢ = (7, z) which modulates the underlying carrier
wave is described by the Nonlinear Schrédinger Equation (NLSE) [4]

2
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where 7 is the retarded time in the frame of the pulse, z is the propagation distance,
B2 is the quadratic dispersion or group velocity dispersion parameter and ~ is the Kerr
nonlinearity parameter. The quadratic dispersion parameter 3 is obtained by the Taylor
expansion of the dispersion relation f(w) around the carrier frequency wy of the pulse

envelope ¥(7, z) as
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For the NLSE (2.1), in the retarded frame, the higher order dispersion terms (m =
3,4,..) are assumed to be negligible due to finite spectral width. Equation (2.1) has

bright soliton solutions [4] for anomalous quadratic dispersion 32 < 0 with positive Kerr
nonlinearity v > 0 that maintain their shape upon propagation of the form

W(r ) = \/? sech <| 2‘2‘ \T> explipz}, (2.4)

where parameter y is the rate of change of phase due to nonlinearity that vary the peak
powers and widths of each soliton solution. This parameter is also referred to as the
energy or the chemical potential coefficient. Similarly, experimentally observed Pure
Quartic Solitons (PQS) in a photonic crystal waveguide at a carrier frequency, where
quadratic dispersion parameter S and cubic dispersion parameter 53 were negligible,
leading order of dispersion being quartic (4, were also confirmed [7].

The Quartic Dispersion Nonlinear Schrodinger Equation (QDNLSE) extends the Non-
linear Schrodinger Equation for high-intensity nonlinear pulses by adding an additional
quartic dispersion term (4 obtained by the Taylor expansion of the dispersion relation
in (2.2)

where
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where 83 = 0.
Analytical solutions of this equation for #s < 0, 84 < 0 and v = 1.0 was reported by

Karlsson and Ho6k [11] :
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This represents a family of solutions corresponding to a fixed peak power, width and

o 24p9°
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where p is a free parameter. The Karlsson and H66k family of solutions (2.6) are a part
of a general super-family of solutions of Eq. (2.5) called the Generalized Dispersion Kerr
Solitons (GDKS) [12]. The solutions of Eq. (2.5) in the 53 > 0 and 84 < 0 parameter
regime is later investigated in detail.

(2.7)

2.1.2 MIXSEL Model Equation

The Mode-Locked Integrated External-Cavity Surface-Emitting Laser (MIXSEL) is a
type of saturable absorber-gain integrated Surface-Emitting Laser that allows for passive
mode-locking in a micro-cavity setup coupled to an external cavity [13]. A model of an
integrated micro-cavity of Distributed Bragg Reflectors (DBRs) coupled to an external
cavity that is used for describing the theoretical model in the following is shown in Fig.
2.1.

Mode-locking in a laser refers to the phenomenon where the induced oscillating longitu-
dinal modes within the laser resonator cavity develop a fixed definite phase relationship
between each other [14]. One method for achieving mode-locking is passive mode-locking
where, usually, a saturable absorber, with short upper state life-time, is used which ex-
ploits the nonlinear effects of saturation.

The Haus master equation [15] for Passive Mode-Locking, adapted to the long cavity
limit dynamics [16, 17], describes the slow evolution of the three dimensional intra-cavity
field E(r,,t,60) due to the dynamics of the population inversion in the gain medium NV;
and saturable absorber Ny as

O — [(1— )Ny + (1~ o) Ny — k4 £] B, (2.8)
N
aatl =n[Ji(r) = Ni] = Ny | B P, (2.9)
ON:
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e
E = {‘l Y
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Figure 2.1: A micro-cavity of Distributed Bragg Reflectors (DBRs) with a gain medium (blue) and a
saturable absorber (purple) coupled to an external cavity output mirror [18].

Here, t € [0, 7] represents the round-trip time in the external cavity with 7 being the
time taken for one round-trip, € is another dimensionless time scale normalized to 7,



corresponding to the slow evolution of the temporal profile under the combined effects
of gain, absorption and spatio-temporal filtering and the two transverse dimensions are
r1 = (x,y). The parameter k is the round-trip cavity losses while o 2 are the line-width
enhancement factors of the gain and absorber, respectively, that relax with time-scales
M, 21 towards the current Ji2. The saturation parameter s is the ratio of saturation
fluence of the absorber to the gain. Spatially localized optical pumping is taken into
account by the spatial dependence of Ji(r1) > 0 while saturable absorption is obtained
using Jo < 0.

In the long cavity limit, the spatio-temporal distribution of the carriers Njo(ry,t) is
dependent on the evolution of the optical field E(r, ,t, ) and, therefore, are not explicitly
dependent on the normalized time-scale 6. In this case, it can be assumed that a full
recovery of the carriers between pulses takes place, i.e., 71 27 > 1. Hence, the Dirichlet
condition Ni(r,,0) = Ji(rL) and Na(r,,0) = Jy can be applied for each round-trip in
the cavity. Since the intra-cavity field E(r,t,6) is spatio-temporally localized in the
cavity, periodic boundary conditions can be used in the variables (r,t).

For the effective cavity spatio-temporal linear operator £, the Fresnel Transform [19]
method is used to analytically calculate the transverse effects occurring at each round-
trip from the full round-trip Gauss ABCD matrix of the two micro-cavities in Fig. 2.1,
which includes diffraction and wavefront curvature incurred due to the quasi-4F cavity
telescope as well as the diffraction and thermal lensing (in the parabolic approximation)
that takes place in the micro-cavities. Additionally, the influence of weak spherical
aberrations are also considered due to the presence of wider angular distributions of the
optical fields at collimator lenses with short focal lengths.

In an optical setup, the self-imaging condition is met when a single round-trip through
the optical cavity results in the feedback mirror out-coupling aperture to be imaged at
its own plane. Deviation from this condition by introducing a small transversal offset to
the system results in an unstable cavity with diffraction losses. In this model, close to
self-imaging condition is taken into account, with the effects of the wavefront curvature,
diffraction as well as the spherical aberrations as small perturbations to the field profile
at each round-trip. Hence, in the limit of quasi self-imaging, and considering temporal
diffusion dy due to finite bandwidth of gain curve of the micro-cavities, the effective
linear operator L reads

82
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A real transverse diffusion parameter d accounts for the finite size of the lenses and the
numerical aperture of the optical system that penalizes high transverse spatial frequen-
cies. The parameters for effective wavefront curvature C, the effective diffraction B and
aberration parameter S are given by the following relations
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where h is intra-cavity coupling parameter related to the reflectivities of the two micro-
cavity mirrors, n is the out-coupling feedback mirror reflectivity, A is the wavelength,
l12,1 are the normalized micro-cavity diffraction lengths, o is a small aberration coef-
ficient at short focal length fy, and the coefficients B, C' are obtained from the ABCD
matrix of the micro-cavity.

New’s method [20] of Passive Mode-Locking exploits the scale separation between pulse
evolution, the fast stage in which stimulated emission is dominant and the slow stage
that is controlled by the gain recovery process. Under the strong approximation that
the spatio-temporal profile E(r, ,t,0) can be factored as

E(ry,t,0) = A(ry,0)p(t), (2.16)
where p(t) is a normalized temporal profile that corresponds to Temporal Localized

States (TLS) [21]. Therefore, using the Eqgs. (2.8) and (2.12), one obtains an approximate
equation for the slow evolution of the transverse profile A(r,0) as

o4 _ [(L=ia) Jig (| AP) + (1—ias) log (s | AP) = k + iCr?

00 (2.17)
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where J; and J are the current biases of the gain and absorber respectively. Here,

the fact that the stimulated terms are dominant in Egs. (2.8), (2.9) and (2.10) during

emission is utilized to yield the exponential terms in the nonlinear response function of

the two active media to a pulse P

1 —exp{—P}
g(P) = - p
Equation (2.17) forms the MIXSEL model PDE for analysis of transversal dynamics of
passively mode-locked integrated semiconductor laser micro-cavities at the limit of quasi
self-imaging.

For a spatially uniform pumping profile, the gain bias Ji(r,) = J; and is no longer
dependent on the transverse dimensions, given for a pulse P as

(2.18)
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The threshold bias of the gain, Jy, is reached when the nonlinear response function in
Eq. 2.18 approaches g(P) — 1 at saturation and is given by the following relation

J1(P) (2.19)
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The effective cavity losses parameter k is given by
h—1o (2.21)
1+m7
The equivalent 1D MIXSEL model equation is given by
0A . 2 . 2
= —ia) g AP) + (1—ia2) Bg(s| A~ b
- N o (2.22)

which is further analyzed in detail in later chapters.



2.2 Direct Numerical Simulation

A commonly used approach in solving nonlinear differential equations is through Direct
Numerical Simulation. With an initial condition as the starting point, the differential
equation is integrated numerically step-wise in time, as the solution evolves to stable
steady solutions or unstable dynamic states, depending on the defined state parameters.
Different methods and algorithms exist for simulation of nonlinear dynamical systems.
One such method called the Split-Step Method is described below along with two types
of discretization and integration techniques.

2.2.1 Split-Step Method

A pseudo-spectral numerical method called the Split-Step Fourier method is used for
solving nonlinear Partial Differential Equations. In this method, the nonlinear differen-
tial equation is split into two components, linear and nonlinear, and with the use of the
Fourier transform successive forward steps in time is executed.

For instance, the solution for a complex system variable A(x,t) of a partial differential
equation can found be using the Split-Step method as follows:

First, the partial differential equation is split into two parts L and N consisting of the
linear and nonlinear terms respectively.

0A L

S =|L+R]a 2.23
o = | (229
L is a functional that consists of linear terms, e.g., derivatives and partial derivatives
and N is a functional that gathers all the nonlinear terms. In order to take a step dt
forward in time, the two terms are evaluated separately. This leads one purely linear
and other purely nonlinear differential equations that need to be solved in sequential
order.

0A .
— =LA 2.24
at ) ( )
0A -
— = NA. 2.2
ot (2:25)
The solution of Eq. (2.23) is given by
Az, t +dt) = exp{(ﬁ + N)[A(z, t)]dt} x Az, t) (2.26)

Generally, L and N do not commute and so a simple splitting of the exponential does
not lead to high accuracy. Therefore, alternate splitting schemes are used to solve the
Eq. (2.23). It essentially means that the sequential order of integration of the linear and
nonlinear terms with each step size is done according to various schemes which results
in more accurate solutions.

For each step in the simulation, the linear and nonlinear parts can be solved using the
Euler method or by the spectral method, which is particularly useful in solving the linear
terms since it utilizes the Fourier space.

Azt +dt) = FL [exp{f[i]dt} X f[A(x,t)]} (2.27)

Here, F and F~! refers to Fourier and inverse Fourier transform. While, the nonlinear
part may be solved using the Euler method as



Az, t + dt) = A(z,1) x eXp{N[A(x,t)]dt}. (2.28)

Periodic boundary conditions are automatically imposed in the x—direction as a con-
sequence of differentiation in Fourier space. This method requires the use of a good
estimate as initial approximation that converges to a solution.

The advantage of using the Split-Step method is the treatment of the simulation in the
Fourier space which can be computationally cheaper if the Fast Fourier Transform (FFT)
algorithm is used.

2.2.2 Semi-Implicit Euler Scheme

A more precise time step estimation can be done using the Semi-Implicit Euler half-step
scheme where intermediate half steps dt/2 are taken in the Fourier space to evaluate
the linear part, while this central estimate is used to correct the nonlinear step. The
algorithm for this method is given in the following equations:

Ap(w,t+dt)2) = F! [exp{f[ﬁ]dt/z} x FlA(z, t)]} , (2.29)
Ay, t+dt)2) = Ag(x,t + dt/2) x exp{N[Af] dt/2}, (2.30)
An(@,t+dt) = Ap(a,t + dt/2) x exp{N[At] dt}, (2.31)
Az, t+dt) = F! [exp{f[f)] dt/2} w FlAn(z,t + dt)]} . (2.32)

An Euler half-step is taken in the Fourier space first to evaluate Ay for the linear part
using the spectral method, which is then used to calculate an estimate for the central
nonlinear approximation A; with an explicit Euler half-step. Then, an implicit Euler full
step is taken using the central nonlinear approximation to evaluate the nonlinear part
Ap, which in turn is used to calculate the other linear half step in the Fourier space.
Using this semi-implicit scheme allows for greater accuracy in the calculated solution due
to the additional implicit Euler corrective step taken. The algorithm above described in
Egs. (2.29)-(2.32) is used in iterative steps sequentially to calculate the solution of the
nonlinear system equation at every time step dt over the defined time ¢.

This scheme has been used for numerical simulation of solutions of the QDNLSE (2.5)
whose results are shown in later chapters.

2.2.3 Second Order Split-Step Scheme

The solution of the differential equation (2.23) given in Eq. (2.26) can be split in the
second order as

Az, t+dt) = exp{N[A] dt/Q} exp{ﬁ[A] dt} exp{N[A] dt/2} < A(z,t)  (2.33)

In this form the solution corresponds to first traversing a half-step in the nonlinear
part of the solution and using that half-step approximation to traverse a full step in the
linear part. Finally with another half-step, using the linear central approximation, in the
nonlinear part results in one full step forward for the entire dynamical system equation.
The algorithm for this method is given in the following equations:



An(z,t +dt/2) = E + (dt/2) x N[A(z,1)], (2.34)
Ap(z,t+dt) = F! [exp{—f[ﬁ] dt} x F[AN(z,t + dt/z)]} , (2.35)

Az, t +dt) = E + (dt/2) x N[Ap(z,t + dt)]. (2.36)

First, an explicit Euler half-step is taken in the nonlinear part of the system equation to
find a nonlinear central approximation of the solution. Next, a full step is executed using
spectral method to find the linear part of the solution using the central approximate.
Finally, the other explicit Euler half-step is executed using the full-step linear solution
estimate in order to complete a full-step forward in the whole dynamical system.

Using the Egs. (2.34)-(2.36) in iterative sequential order with time step dt over the
defined time period ¢, gives the time simulation solution of the nonlinear differential
equation. This scheme has been used for direct numerical simulation of solutions of the
MIXSEL model Equation (2.17) whose results are discussed in later chapters.

2.3 Numerical Path Continuation

Numerical Path Continuation can be used to study the steady and stationary states
of nonlinear PDEs in parameter space and their stability. Parameter continuation is a
technique that helps in the study of bifurcation points and different branches of states
of a nonlinear PDE with varying control parameters.

2.3.1 Principles of Continuation

The basic principle in Path Continuation is to determine branches of steady state solu-
tions (Oyu = 0), through the parameter space of a system of differential equations

ou = G(u, \), (2.37)

with system variables u and control parameter A [22]. An initial guess solution wug is used
to begin continuation and the control parameter A is varied by small step sizes to find
a new solution of Eq. (2.37). Calculating the new solution involves two distinct steps,
namely, prediction of the solution at the new control parameter value, and correcting
the predicted solution by solving Eq. (2.37) for a new control parameter value. This
predictor-corrector method is a well known method for analyzing differential equations
and different methods are employed for the prediction and correction steps [23].

This continuation treatment, i.e., increasing the control parameter A by a fixed step size
is called natural parameterization. With this parameterization, each solution along the
continuation branch depends on the control parameter A and next solution along the
branch is “pulled” depending on this parameter. However, this kind of parameterization
fails at points where the solution branch folds or turns. An alternate method can be
used where the solution u as well as the parameter A is parameterized with a different
parameter to avoid this problem.

One such method is called pseudo-arclength parameterization where the arclength s
of the solution branch is used as the continuation parameter. Both u and A\ become
functions of the arclength parameter s, i.e., u = u(s) and A = A(s). Therefore, the
additional system equation to be solved for the extended system is the pseudo-arclength
parameterization equation is given by



- (u—up) + A\ — Xo) = As, (2.38)

where z = (1, /\) is tangent or the direction of the branch given by the differential with
respect to continuation parameter arclength s, and As is the step size in s.

Two predictor methods that are used to predict the next solution along a continuation
branch are tangent predictor and secant predictor. In the tangent predictor method, the
initial guess for the next solution state (ug?**, \g’ 1) is found by following the direction
of the tangent of the previous solution state (u/, \) along the branch.

(ug? T, N? ™) = (W, V) + As 2 (2.39)

While for the secant predictor method, the next solution state is predicted from the
difference of the last two continuation steps as

(uo™, 207 ™) = (V) + As(u? — /™ N = V). (2.40)

The most commonly used corrector is the Newton’s method which converges well with
small enough step size As. For continuation with additional constrains can be easily
integrated into the system equations and one additional parameter is allowed to vary for
each constraint.

2.3.2 Stability and Bifurcations

The stability of the solutions obtained from continuation can be determined by calcu-
lating the eigenvalues of the Jacobian 0, G (u, \) of the system Eq. (2.37). If there exists
at least one eigenvalue whose real part is positive, it indicates that the steady state
solution is unstable, i.e., small perturbations to the state leads to the solution diverging
exponentially from the steady state. However, if the real parts of all eigenvalues are
negative, it indicates stable steady state solutions, i.e., nearby states rapidly converge to
the steady state solution. In case the real part of the largest eigenvalue by magnitude is
zero, then higher order terms in the Taylor expansion around the steady state determines
its stability.

If at a particular steady state (u;, A;), the real component of the eigenvalues of the
Jacobian changes sign, that point is called a local bifurcation point. It is accompanied
by a sudden change in the phase portrait of the dynamical system for a small variation
in the control parameter. These bifurcation points can be classified into different types
of bifurcations depending on the stability of the steady state solutions at either direction
from the bifurcation point. Two such bifurcations are discussed below.

A saddle-node bifurcation occurs when two steady states, one stable and the other
unstable, collide and vanish. It is also sometimes called a fold bifurcation point since
the steady state solution tends to fold back in the control parameter space.

At an Andronov-Hopf bifurcation point, a periodic orbit emerges from a steady state as
the steady state changes its stability. Periodic orbits refer to trajectories of the system
that are closed and the state traverses the same orbit path periodically. Andronov-Hopf
bifurcation points are detected for two or more dimensional systems when a complex
conjugated pair of eigenvalues of the Jacobian crosses the imaginary axis.

2.3.3 pde2path

The MATLAB [24] continuation and bifurcation package pde2path [25] is used for sys-
tems of nonlinear PDEs which allows for adding auxiliary equations, such as constrains
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for mass conservation, and study of bifurcation diagrams for continuation of stationary
and traveling waves. With the use of arclength continuation for a control parameter and
tangent predictors, different branches of states and bifurcation points are navigated for
a system of nonlinear PDEs.

In order to use pde2path to analyze the systems described by the Eqs. (2.5) and (2.22),
it is necessary to transform each equation into a set of nonlinear PDEs with appropriate
boundary conditions as constrains.

The pde2path continuation and bifurcation package treats PDE systems of the form

ou
Mda =—-G(u,\) =V - (cVu) —au+b® Vu+ f, (2.41)
where u = u(z,t) € RV with N components, t > 0, 2 € R? with d being the dimension-
ality of the system, My € RV*Y is the mass matrix, A € RP is the parameter vector, and
the coefficients ¢, a, b and nonlinearity f may depend on z, v or A\. Auxiliary equations

can also be added for ng > 1 constrains as

Q;(u, ) = 0. (2.42)

The parameter vector A consists of all parameters required to describe the system of
equations, including ng free parameters and the rest as fixed or control parameters.
The Finite Element Method (FEM) [26] uses spatial discretization for numerical analysis
which leads to a set of higher dimensional algebraic equations and is defined as follows
for steady states

G(U, )\) = Ktota[(u, /\) U — Ftota[(u, )\) = O, (243)

where u = u(t) € R™ with n, = Nnp, n, is the number of nodes in the FEM mesh
and NN is the number of system equations. K. is called the stiffness matrix composed
of N? blocks which may depend on u and Fju,; is the discretization of the nonlinearity
terms of the system of equations f = f(u) which can be combined with the mass matrix
for ease of analysis.

In the case of semilinear problems where the coefficient ¢ in Eq. (2.41) does not depend
on u, the stiffness matrix K can be preassembled into a linear differential matrix IC
composed of the Laplacian and mass matrix M, whereas the other terms are accounted
for in the matrix F'(u, A). This allows for easier implementation of the Jacobian 0, G(u)
with the equation

8uG(u, \) = K — 0uF(u, \), (2.44)

where 0, F(u, \) = M 0,f, i.e., the Jacobian is built from the differential matrix K and
M matrix times the local derivatives of the nonlinearity terms f. The eigenvalues of the
Jacobian matrix are used for stability analysis of the states and to detect bifurcation
points.

The implementation of the nonlinear PDEs given in Egs. (2.5) and (2.22) is described
in detail in the following subsections.

2.3.4 Quartic Dispersion Nonlinear Schrodinger Equation

In Eq. (2.5), the field ¥(7,z) is a complex quantity (¢» € C) and contains a fourth
order partial derivative term, along with a nonlinear term. Using the ansatz, (7, z) =
u(1T — vz) exp™?*, with u € C being the complex temporal profile with a variable rate of
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change of phase u, v being the velocity of this profile, and substituting into Eq. (2.5),
we get the following form after removing the phase exponential

ou By 0*u By 0*u 2

) ) — — +1— — +1 u|“u=0. 2.45
2 012 24 o4 tiylul ( )
Since for the path continuation implementation, the system variables are taken to be
real, we assume u = uj + iug where (uj,u2) € R. Substituting this into the above
equation gives a set of two equations with the use of separation of variables method for

the linear terms consisting of w1 and ug

Ouy Bo O*uy  Ba Ouy 2 2
—_— A — e _4
Y ar tpuzt 2 92 24 gt W2 (1”4 u2”) =0, (2.46)
Ous Bo O*uy  Ba Oy 2 2y _
v 877' —Huy — ? 87‘2 ﬁ 87'4 + Y U1 (Ul + u9 ) =0. (247)

In the implementation of the FEM matrices for this system, the second order derivative
is easily implemented using the differential matrix K;.tq due to the Bilaplacian in the
definition of Eq. (2.41) for a semilinear system. However, to account for the fourth order
derivative, additional system variables are defined as follows

82u1
U3 = 455 = Urrl1,
or (2.48)
Uyg = 78 U2 = u
4 — 87’2 — Urr 2.

Combining all the resulting equations, the system is defined as a set of four PDEs and
periodic boundary conditions with four real system variables U = (uy,ug2,us,us) € R
and a set of parameters A = (032, 84,7, 1, v) € R.

v Orul + pus + % Uy — 5—3 Orrlly — 7y U2 (u12 + uQQ) =0 (2.49)
v Orug — LUy — % ug + % Orrus + v us (u12 + u22) =0 (2.50)
Orrup —ug =0 (2.51)
Orruz —ug =0 (2.52)

This set of equations forms a steady state system of PDEs and the FEM matrices can
be easily generated for continuation where the nonlinearity f is taken as

uuz+%ZU4—'yu2 (u12+u22)
2 2
f= —pu — Fuz+yur (u? 4 u?) . (2.53)
—ug

Due to the periodic boundary conditions, additional auxiliary constrains have to be im-
plemented in order to maintain the symmetry of the phase shift between the real u;
and complex us components as well as translational invariance of the temporal profile
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u(7T —vz). The phase shift symmetry condition ¢; and the translational invariance con-
dition g2 form the constrain equations ); = 0. From the Goldstone modes of translation
and rotation symmetry breaking, the symmetry conditions are given as

F k1 k k k+1 k
o (qr) _ (U1 (UZ — U ) — ug” - (ul —u )
%= (‘J?) a ( o-UR . (UM —UF) : (2.54)

where ujk is the j—th component of the system variables vector U at the k—th iteration
of continuation. This set of constrains allows for defining two free parameters, namely
 which modulates the temporal phase and velocity v of the steady state solution.

2.3.5 MIXSEL Model Equation

In Eq. (2.17), the transverse field envelope A(r | ,#) is a complex quantity. Using a simple
one-dimensional ansatz in the co-moving frame for simplicity, A(z,6) = ¢(z — vf)e ?
where w is the frequency shift parameter and v is the velocity of the complex profile ¢.
Substituting this ansatz into Eq. (2.17) and using ¢ = ¢1 + i¢2, where (¢1, ¢2) € R, to
separate the real and complex terms into two equations results as

v 8;; —waa+ (1 + ar1d2)J1 g(| ¢ 1?) + (¢1 + asd2)Jo g(s | ¢ |?) — ke

(2.55)
5 2 Pp1 Pps Oy
—Cx ¢2+dax2 - B 22 _S8$4 =0,
olo , ,

Vg Twort (P2 —ard) 1 g(| ¢ 1%) + (P2 — a2d1) T2 g(s | & ) — ko -
2 2 4 2.56

(Gt v a9 OO g7

Ox2 0x2 oz

As described in the previous section for the QDNLSE, similarly to account for the fourth
order partial derivative additional system variables are defined as follows,

82
¢3 = aj; = :c$¢1

Py (2.57)
P =5 3 = Oaap2

Hence, using the above results, the MIXSEL model is defined as a system of four equa-
tions and periodic boundary conditions with system variables vector ® = (¢1, ¢2, ¢3, ®4)
where (41, 2, ¢3,04) € R and parameter vector A = (aq, ag, J1, Jo, h,s,n,d, B,C,S) €
R.

0 Opd1 —w b2 + (1 + a1¢2)J1 g(| ¢ [*) + (61 + aad2) 2 g(s | ¢ [*) — ke

-, ’ (2.58)
—Cx (ZSQ + d¢3 - B¢4 - Saxx¢4 =0
0 Opthy +w b1 + (2 — a191)J1 g(| ¢ [*) + (d2 — aagn) 2 g(s | ¢ ) — kepo (2.50)
+C2°¢1 + dos + B + SOpach3 = 0 '
81’x¢1 - ¢3 =0 (260)
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a:vac¢2 - ¢4 =0

(2.61)

These four equations form the steady state system of PDEs with the nonlinearity f is

defined as

where

fi
f2
f3
Ja

fi=—woa+ (o1 +a1¢2)J1 g(| ¢ I°) + (61 + aad2) 2 g(s | & )
—k¢r — Ca’ o,

fa=wor+ (¢2 —161)J1 g(| & [*) + (d2 — c201) 2 g(s | ¢ [*)
_k¢2 +C~’$2¢17

f3 = —¢3,

Jfi=—¢4.

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

The FEM matrices for continuation are generated similarly to the previous section for
this steady state system of equations, along with the constrain equations @ for both
phase shift symmetry and translational invariance of the steady states as defined in Eq.
(2.54). The two free parameters which compensate for these constrains are w and v.

The analytical Jacobian of the system equations, (2.58)-(2.61), which is used for extract-
ing the stability information of the solutions obtained from continuation is calculated
according to the Eq. (2.44), where the local derivative of the nonlinearity f with respect
to the system variable matrix ® is

0o J1 Opyf1 Ogsf1 Opi 1
Opf2 Opyf2 Opsfo Oy, f2
Op f3 Opof3 Opsf3 Op,f3 |’
Op fa Opyfa Opyfa Opfa

Opf =

(2.67)

where 0, = 0/0¢. Similarly, the Jacobian for the auxiliary contrain condition is also
calculated for the contrain matrix in Eq. (2.54).
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3 Generalized Dispersion Kerr Solitons

The solutions of the Quartic Dispersion Nonlinear Schrédinger Equation (2.5) can be
analyzed by considering the linear part of the PDE, assuming weak Kerr nonlinearity
in the low-power regime for negative quartic dispersion. Using the following ansatz for
stationary solutions, which maintain the shape of the solitons, throughout propagation

U(1,2) = u(T)ei“Z, (3.1)

where u(7) € R is the temporal profile of the solution and p is the frequency shift, the
Eq. (2.5) takes the form of a nonlinear Ordinary Differential Equation (ODE).

d? d*
- B2 B A s (3.2)
T

For low-power tails, discarding the nonlinear term, the ODE has solutions that are linear
combinations of ", where roots A are given by

632 36627 24p
A= — — . 3.3
| Ba | - V' B2 Bl (3:3)

The roots A are either real or complex conjugate pairs and the critical value of p for
which the discriminant in Eq. (3.3) vanishes is

347
2| Ba |
The parabola (black) in Fig. 3.1 illustrates the critical value p as a function of parameter
B2. Thus, the Generalized Dispersion Kerr Solitons (GDKS) which are a family of
solutions of Eq. (2.5) can be classified into several regimes depending on the variations
in the values of ; and (2. For S2 < 0 and p < g, the roots A are real and the solutions
have exponentially decaying tails without oscillations, e.g., Karlsson and Hook solutions
given in Eq. (2.6). For B2 > 0 and p < po, the roots A are imaginary, the linear tails
become purely oscillatory and no localized pulse-like solutions exist. In case of u > uo,
for any s, A is complex and solutions with exponentially suppressed oscillating tails
exist with decreasing exponential decay rate of oscillatory tails as o increases. In the
following, 84 < 0 is always assumed.
These analytical findings are further confirmed in the following sections where first the
system is implemented assuming real field solutions and then it is extended for complex
field solutions to analyze pattern formation in this optical system with positive quadratic
dispersion, fs.

Lo (3.4)

3.1 Real Field Implementation

Arclength Path Continuation of the Quartic Dispersion Nonlinear Schrédinger Equation
given in Eq. (2.5) is implemented as described in Section 2.3.4 for real field envelope
(7, z) € R as solution using the Egs. (2.49) and (2.51) as system equations, along with
the condition for translational invariance as constrain. Accordingly, the velocity v in the
ansatz for the co-moving frame, (7, z) = u(7 — vz)e'"?, is the only free parameter in
this instance.

The Karlsson and Hook solution (2.6) is used as the initial guess for continuation defined
with the following parameters : o = —0.1, 84 = —1.0, v = 1.0, p = 0.0096. The
emergence of transversal patterns in the solution with increasing quadratic dispersion
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B2 is confirmed and the variations of these patterns with the change in parameter p is
analyzed in the following.

Continuation is performed using pde2path [25] with a tangent predictor for arc-length
and the residual tolerance is set to 107'*. Since the system is defined as real and
conservative, the solutions are always stable and for stationary solutions, the velocity is
ensured to be negligible, i.e., v = 0.

In Fig. 3.1, the parameter space of p versus f2 is illustrated and the different regions
classifying the tails of the solutions are highlighted using the critical value pg of the
parameter p given in Eq. (3.4). For the region where p < po and B2 > 0 (grey
shaded area), no pulse-like localized solutions could be obtained from continuation in
this parameter space.

In the region where u < po and By < 0 (light green shaded area), conventional soliton-
like solutions exist with exponentially decaying tails including the Karlsson and Hook
family of solutions, marked by the green dashed line (KH) in Fig. 3.1. Another solution
in this region, labeled (a) in Fig. 3.1, is shown in Fig. 3.2(a) which has exponentially
decaying tails.

1.4
o(h)
1.2+
1§ Oscillating Tails ——
Ho
e °(9)
< A
0.6 KA
0.4 P
0.2 - Exponentially
Decaying Tails No Localised Solutions
0 L 1
-1 -0.5 0 0.5 1

Figure 3.1: Solutions of Eq. (3.2) in the (p,82) plane for fixed 84 = —1.0 and v = 1.0. The parabola
(black) illustrates the critical value po in Eq. (3.4). The section under the parabola for
B2 < 0 (light green shaded area) is where exponentially decaying tails solutions exist like
the KH solutions (green dashed line) and the soliton solution marked as (a). No localized
solutions exists in the region under the parabola for 82 > 0 (grey shaded area). The region
above the parabola (white) consists of localized solutions that have increasingly oscillating
tails as B2 increases. The solutions marked in red circles (c, g, h) are Pure Quartic Solitons
(PQS) for increasing u, respectively. The solutions marked in blue circles (a, b, d, e, f)
correspond to solutions with fixed p = 0.4027 and increasing f2, respectively. The yellow
circles (i, j) mark solutions with fixed positive 82 = 0.3 and increasing u, respectively.

The regime of interest in this parameter space is for p > pg, i.e., the white region in Fig.
3.1, where solutions with oscillating tails or transversal patterns exist. Continuation in
this parameter space confirms the analytical results discussed in the previous section.
The profiles of the solutions labeled (a-f) in Fig. 3.1 are shown in Figs. 3.2(a-f) for a
fixed value of u = 0.4027. As can be seen from the intensity profiles, with increasing (o
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values the solutions become more oscillatory until the critical value pg is reached when
localized solutions no longer exist. The corresponding power spectrum are given in Figs.
3.2(i-vi).

Starting from the intensity profile shown in Fig. 3.2(a) and its power spectrum in
Fig. 3.2(i), with 82 = —0.7, the solution falls below the critical value of py and has
exponentially decaying tails along with single peak power in the Fourier domain. With
increasing o, in Fig. 3.2(b) and its power spectrum in Fig. 3.2(ii), corresponding to
B2 = —0.3, some spectral broadening to the peak in Fourier space is observed while the
peak intensity of the profile decreases slightly. Considering the Pure Quartic Soliton
(PQS) solution with 2 = 0.0 in Fig. 3.2(c) shows decreasing peak intensity, along with
further broadening of the spectral peak in Fig. 3.2(iii).

(a) ‘ (b) (c)

~N_0.5 N_0.5 ~N_0.5
= = =8
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40 20 0 20 40 40 20 0 20 40 40 20 0 20 40
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:50.5 :UO‘5 ]\ :UO.S /\
0 0 0
-10 0 10 ‘10 0 10 ‘10 0 10
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= A 0.1 = !Mﬂ
0 0
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Figure 3.2: Intensity profiles and their corresponding power spectrum of the solutions marked in Fig.
3.1 for fixed p = 0.4027 and increasing (2. Panels (a-f) show the profiles of the solutions for
values of parameter 82 = (—0.7,—0.3,0.0,0.3,0.45,0.51), respectively. The panels (i-vi) are
the corresponding power spectrum in Fourier domain of the solutions in (a-f), respectively.
Other parameters are : S84 = —1.0,v = 1.0.

Fig. 3.2(d) shows the intensity profile for § = 0.3 where oscillating tails start to emerge
in the solution and correspondingly the power spectrum peak starts to split two with
spectral broadening in the Fourier space as shown in Fig. 3.2(iv). The solution for
B2 = 0.45 has oscillatory tails as shown in Fig. 3.2(e) and its power spectrum in Fig.
3.2(v) has two peaks that are symmetric about the frequency ¢ = 0 in the Fourier
domain. Finally, the solution for 8y = 0.51 is shown in Fig. 3.2(e) along with its power
spectrum in Fig. 3.2(vi). This solution is highly oscillatory since it lies very close to the
critical value p > po = 0.39 in the (u-B2) plane. Similarly, the power spectrum shows
two symmetric narrow peaks of high spectral frequencies corresponding to the frequency
shift of the oscillatory tails.

Therefore, in summary of the continuation results in the region p > pg, for fixed value of
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w1 and increase in parameter 32, one finds the resulting solutions to be increasingly oscilla-
tory giving rise to transversal patterns along with decreasing peak intensities. Alongside,
the power spectrum shows spectral broadening until it splits into two symmetric peaks
with increasing spectral frequency shifts.
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Figure 3.3: Intensity profiles and their corresponding power spectrum of the solutions marked in Fig. 3.1
with red and yellow circles corresponding to fixed B2 values of (0.0 and 0.3), respectively, for
increasing p. The panels (c), (g), (h) shows the profiles of PQS solutions (82 = 0) for values
© = (0.4027,0.7801, 1.2656), respectively together with their corresponding power spectrum
in panels (k-m). The panels (d), (i), (j) shows the profiles of the solutions with fixed positive
B2 = 0.3 with increasing values of p = (0.4027,0.7801, 1.2656), respectively together with
their power spectrum in panels (n-p). Other parameters are : 84 = —1.0,y = 1.0.

Figure 3.3 shows the solutions from path continuation for different values of 1 while Sy
is kept fixed. The panels in Fig. 3.3(c), (g) and (h) are the intensity profiles of PQS
solutions (B2 = 0), for increasing values of yu, respectively. One can notice that the peak
intensity of the profile depends on the value of p, i.e., the intensity increases with the
increase in p. Their corresponding power spectrum is shown in Fig. 3.3(k-m) which is
the typical power spectrum of solitons which are formed by the effects of only quartic
dispersion and Kerr nonlinearity. However, some spectral broadening can be observed
due to the increasing value of u.

Another set of solutions for variable 1 and fixed B2 are shown in Figs. 3.3(d), (i) and
(j)- Here, a positive 2 = 0.3 is kept fixed for the solutions while the values of parameter
w are : (0.4027,0.7801,1.2656), respectively. Similarly for the PQS, the peak intensity
increases with p, on the other hand, the solution becomes less oscillatory as the distance
from the critical value pg increases in the parameter space as shown in Fig. 3.1. This
phenomenon is reflected in the panels showing corresponding the power spectrum of the
above solutions in Figs. 3.3(n-p).

The above results were achieved using a constant negative value of 84 = —1.0. Varying
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B4 yielded similar trends in the solutions for p and B2 corresponding to a different critical
value pg. Since the solutions are assumed to be real fields in a conservative system, the
stability of these solutions cannot be analyzed. To overcome this difficulty, the system is
extended into the complex regime where the stability information can be achieved from
the eigenvalue spectrum.

3.2 Complex Field Implementation

In order to perform Arc-length Path Continuation of the Quartic Dispersion Nonlinear
Schrodinger Equation for a complex field envelope ¢ (7, z) € C as solution, the procedure
as described in Section 2.3.4 is used. Unlike for the real system, four system equations
are used and hence, two auxiliary conditions, corresponding to phase shift symmetry
and translational invariance, are applied which results in two free parameters, u and v.
Again, the Karlsson and Ho66k solution given in Eq. (2.6) is used as the initial guess
with the complex components of the system variable vector set to zero, i.e., ug,us = 0.
Parameters used for the initial guess are : fo = —0.7, B4 = —1.0, v = 1.0, u = 0.4704.
Continuation is performed using pde2path [25] package with a secant arc-length predictor
and the residual tolerance is set to 10~'4. The first 100 eigenvalues of the numerical
Jacobian are used for checking the stability of the solution and for possible bifurcation
detection along the continuation branch.

Some of the stable resulting solutions of continuation in the same branch are shown in
Fig. 3.4. Along this stable solution branch from the intensity profiles shown in Figs.
3.4(a~d), one can observe that the tails of the solution becomes more oscillatory as /32
increases, similar to the results obtained in the previous section for real field envelope
solutions. Accordingly, the optical power peak in the spectral domain shown in Figs.
3.4(e-h) splits into two peaks corresponding to two peak spectral frequencies for highly
oscillatory solutions. The parameter pu is a free parameter and hence the peak intensity
for these solutions varies as continuation progresses.
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Figure 3.4: Intensity profiles of stable complex field envelope solutions and their corresponding power
spectrum. The profile in (a) corresponds to the parameter values 82 = —0.3 and p = 0.2465
with its power spectrum in panel (e). The profile in (b) corresponds to the parameter values
B2 = 0.0 and g = 0.1716 with its power spectrum in panel (f). The profile in (c¢) corresponds
to the parameter values B2 = 0.2321 and p = 0.0808 with its power spectrum in panel (g).
The profile in (d) corresponds to the parameter values 82 = 0.256 and p = 0.0.9835 with its
power spectrum in panel (h). Other parameters : 84 = —1.0 and v = 1.0.

However, unlike in the results for the real system implementation, from the Figs. 3.4(g-
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h), the power spectrum peaks are not symmetric about spectral frequency ¢ = 0. For
the solution shown in Fig. 3.4(d) and its spectrum in Fig. 3.4(h), one observes that
the peak power corresponding to the negative spectral frequency is higher than for the
positive spectral frequency.

Solutions from continuation along a different branch are shown in Fig. 3.5. Stable
solutions that have symmetric power spectrum peaks also exist, however, during con-
tinuation along the branch, they quickly settle into one of the asymmetric solutions. In
Fig. 3.5(a), another stable solution was found along a different branch that is highly
oscillatory due to being close of the critical value u in the parameter space. The cor-
responding power spectrum in Fig. 3.5(d) shows that the power peaks are asymmetric
with the peak corresponding to the positive spectral frequency being higher than for
the negative spectral frequency. It was found that the type of asymmetry, higher peak
power for either the positive or negative spectral frequencies, depend on the oscillation
frequency of the complex component of the solution.
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Figure 3.5: Intensity profiles of the complex field envelope solutions, their corresponding power spectrum
and stability eigenvalues. The stable solution profile in (a) corresponds to the parameter
values B2 = 0.4638 and p = 0.3607 with its power spectrum in panel (d) and stability
eigenvalues in (g). The quasi-stable solution profile in (b) corresponds to the parameter values
B2 = 0.4481 and p = 0.369 with its power spectrum in panel (e) and stability eigenvalues
in (h). The unstable solution profile in (c¢) corresponds to the parameter values B2 = 0.5072
and p = 1.1977 with its power spectrum in panel (f) and stability eigenvalues in (i). Other
parameters : B4 = —1.0 and v = 1.0.

For the complex system implementation, unstable solutions also exist along the contin-
uation branches, two examples of which are shown in Figs. 3.5(b-c). The profile of an
unstable solution is shown in Fig. 3.5(c) along with its power spectrum in Fig. 3.5(f)
which indicates spectral asymmetric power peaks. As can be observed from the stability
eigenvalues in Fig. 3.5(i) for this unstable solution, a pair of real conjugate eigenvalues
exist, the negative real eigenvalue of the Jacobian indicates instability.

In contrast, the stability eigenvalues of the stable solution in Fig. 3.5(a) in the same
continuation branch, Fig. 3.5(g), the eigenvalues of the Jacobian are imaginary conjugate
pairs, indicating stability of the solution. From the stability eigenvalues shown in Fig.
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3.5(h) and (i) for the two unstable solutions, the higher magnitude of the negative real
eigenvalue, the more unstable the solution becomes.

The instability of the solutions shown in Fig. 3.5 is confirmed by direct numerical
simulation as described in Section 2.2 by analyzing the time evolution of each solution
and the results are shown in Fig. 3.6. Each solution was simulated for time ¢t = 200 with
time steps dt = 5 x 107°.
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Figure 3.6: Time evolution of the solutions given in Fig. 3.5(a-c) by direct numerical simulation respec-
tively in panels (a-c). Parameters for profile in panel (a) : f2 = 0.4638 and p = 0.3607.
Parameters for profile in panel (b) : S2 = 0.4481 and p = 0.369. Parameters for profile in
panel (¢) : B2 = 0.5072 and p = 1.1977. Other parameters : 84 = —1.0 and v = 1.0.

The panel in Fig. 3.6(a) shows the time evolution of the stable solution shown in
Fig. 3.5(a). The intensity profile of the solution remains unchanged as time increases.
The velocity of this solution which is a free parameter in the continuation system is
v = 0.0027.

In the panel Fig. 3.6(b), the time evolution of solution in Fig. 3.5(b) is shown. This
solution is unstable in time, as it shifts in the —x spatial direction progressively in time
due to the velocity of the solution being a magnitude higher than the stable solution at
v = 0.0167. This explains the lower magnitude of the negative real stability eigenvalues
of this solution. The intensity profile of the solution also evolves with time, but without
dissipating completely.

Finally, the panel in Fig. 3.6(c) illustrates the time evolution of the unstable solution
given in Fig. 3.5(c). The intensity profile of the solution continues to dissipate with time
along with shifts along the —z spatial direction until the solution leaves the domain
entirely. Radiative losses can be seen on the right flank of the solution profile. The
velocity of this unstable solution obtained from continuation v = 0.0992 confirms this
result.

In conclusion, with the implementation of the complex system, the results obtained in
the previous section for the real system for the emergence and dynamics of transversal
pattern formation in the solutions are confirmed. Asymmetric spectral peak solutions
along the continuation branches also exist. Additional instability in the solutions were
found and tested with direct numerical analysis.
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4 One-Dimensional MIXSEL model

4.1 Hermite Gauss Modes

The MIXSEL model equation described in Section 2.1.2 can be analytically solved by
considering the underlying linear system within a perfect empty cavity. In Eq. (2.22),
the PDE with one spatial transverse dimension is given for the transverse field envelope
A(z,0). This equation for a system in an empty cavity, i.e., J1 = Jo =0and h = 2,7 =1,
leads to

0A I A &
For monochromatic ansatz A(z, ) = e~ ™% A(z), where wy, is the frequency correspond-
ing to the eigenmode, the above linear PDE transforms into an equivalent linear ODE
for which analytical solutions exist. With boundary conditions requiring the solution to

be bounded in z — 400, forces the mode frequency w, to be within a specific range.
Then, the effective linear ODE becomes

. s At
(Ca?+wn) + B +5—|A=0. (4.2)

Two different cases are considered in the following sections, to find an analytical solution
of Eq. (4.2), a stable cavity without aberrations (S = 0) and an unstable cavity with
aberrations (S # 0).

4.1.1 Stable Cavity

In a stable cavity with S = 0, the solutions of Eq. (4.2) are called Hermite-Gauss modes,
M,, = M, (x) which are solutions to the ODE

d2M,,
dz?

+@2n+1—-2*)M, =0 (4.3)

of the form My (z) = H,(x) exp[—2?/2|, where H,(z) is the nth order Hermite poly-
nomial. Bounded solutions A(z) of the Eq. (4.2) exists if the waist o of the solution is
positive, which depends on the signs of the parameters B and C' as

o? = ”_Cf}‘ (4.4)

Hence, the monochromatic bounded solutions for a system with weak nonlinearity and
losses and no aberrations, in a stable cavity, are Hermite-Gauss modes with a specific
eigenfrequency for the mode number n given below as

A(z) = M, (;) , (4.5)

Wy = %(271 +1). (4.6)
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4.1.2 Unstable Cavity

Bounded analytical solutions of the Eq. (4.2) do not exist for S # 0, however with
ansatz given as

A(z) = (x) exp{ik z} with k; = % (4.7)

leads to the following ODE

d4w
dzt

B2 Qw . - d4¢
w<0x + wy, — 4S) 2Bd 5 i 8BSd 1 TS5+ =0. (4.8)
Neglecting the third and fourth order derivatives and assuming only lowest order solu-
tions, that are also proportional to the small parameter S one obtains the equation

B2 dZy
Y (C’x +wp, — 45) —2B— P =0 (4.9)
which reduces the system equation into a Hermite-Gauss ODE of the form given in
Eq. (4.3) in which the parameter B is replaced by —2B and, therefore, forms a stable
cavity. The mode-frequencies w, are shifted by an additional term B2/(4S). Hence, the
monochromatic bounded solutions for this system with weak nonlinearity and losses in
addition to small aberrations are called tilted Hermite-Gauss modes and are described
by the following equations.

A(z,0) = M, (f) expli(kz — wn)], (4.10)
—Ef@@ +1) (4 11)

UnTus T 2T '
S 26{3 (4.12)

Unlike for the case with S = 0, these tilted Hermite-Gauss modes require the parameters
B and C to have the same sign in order to ensure a positive waist ¢. The sign of
S determines the regime where the cavity might be destabilized, since k; € R, and
decomposing each mode in Eq. (4.10) into two family of solutions preserves the symmetry
of emission.

y(x,0) =M, <§) cos(kx) exp{—iw,0}, (4.13)
U, (z,0) = M, (%) sin(k ) exp{—iwnf)}. (4.14)

The modes T',(z,0) and ¥, (z,0) alternate between even and odd functions when the
modal index n is changed.
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4.2 Continuation Results

Arc-length Path Continuation of the 1D MIXSEL model equation given in Eq. (2.22)
is performed for the tilted Hermite-Gauss modes using the system equations and con-
straints as described in Section 2.3.5. Since k| is inversely proportional to v/S, each
mode becomes less oscillatory when S increases and the peak frequencies in the Fourier
domain power spectrum decreases. Using direct numerical simulation, as described in
Section 2.2, a stable solution is obtained for a particular set of system parameters which
is used as the initial guess for continuation to analyze the stability of the mode and the
effects of variations in the gain bias Ji, the effective diffraction B, the effective curvature
C and the aberration parameter S.

For continuation using pde2path [25], the residual tolerance was set at 10713 taking
the first 150 eigenvalues of the analytical Jacobian, given in Section 2.3.5, to check for
possible bifurcations points.

4.2.1 Fundamental Gaussian Mode

The fundamental Gaussian mode can be obtained from Eq. (4.5) with modal index
n = 0 and is shown in Fig. 4.1 along with its power spectrum in the Fourier domain.
Direct numerical simulation of this mode confirms it is stable with evolution in time for
parameters : a1 = 1.5, ap = 0.5, J; = 0.1541, Jo = —0.12, s = 15, h = 1.98, n = 0.833,
d = 107°. Since, this is a Hermite-Gauss mode, the sign of the parameters B and C
have to be opposite, as well as aberration S = 0.
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Im[A]

0.6

0.41.°

0.2}

N_
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Figure 4.1: Intensity of the fundamental Gaussian mode as solution of Eq. (4.2) in a stable cavity. The
real Re{A} and imaginary Im{A} components of the solution is shown in red and yellow
dashed lines, respectively, while the intensity | A |2 is shown in blue. The zoomed panel
shows the corresponding power spectrum. Parameters : a; = 1.5, az = 0.5, J1 = 0.1541,
Jo=-0.12, s =15 h=1981n=0833,d=10"° B=1.0,C = —1.5422 x 1072, § = 0.0,
wo = 0.2123, L, = 40.

In the following, we perform path continuation in the current J;. The continuation
branch for the fundamental Gaussian mode as a function of .J; /Jy, is shown in Fig. 4.2(a)
relative to the maximum of the field intensity I,,q,. The branch solutions are bi-stable
in Ji, consisting of a higher intensity stable branch (solid) along with a lower intensity
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unstable branch (dashed), connected via a saddle-node (cyan circle) bifurcation point,
which bifurcates into the off-state as J; — Jyp, called threshold. The higher intensity
branch also becomes unstable for increasing J; through a branching point (black circle)
and instability increases further and multiple Andronov-Hopf (red squares) bifurcation
points appear. In Fig. 4.2(b) the intensity profile of a sample solution on the stable
branch is given as well as the corresponding power spectrum in Fig. 4.2(c) that shows
the peak power at transverse wave number ¢; = 0.
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Figure 4.2: Continuation of the fundamental Gaussian mode as a function of Jy/Jin. (a) shows the
bifurcation branch in the maximum intensity of the field Im... Fold points (cyan circle),
a branching point (open black circle) and Andronov-Hopf bifurcation points (red squares)
separate the stable (solid blue) and unstable (dashed blue) regions of the continuation branch.
The open red circle labels the position of a profile in the branch shown in panel (b). Intensity
profile in panels (b) corresponds to J1/Ji, = 0.7075 and phase shift w = 0.2107. The panel
(c) shows the corresponding power spectrum as a function of transverse wave number ¢ .

4.2.2 T, Mode

The fundamental mode T’y can be obtained numerically from Eq. (4.13) with modal
index n = 0 and is shown in Fig. 4.3 along with the optical spectrum of the mode in
Fourier space. In this figure, it can be seen from the real component Re{I'y} (red dashed
line) of the field as well as the intensity (blue line) that the mode is symmetric and the
tails are oscillatory due to the cosine function. Direct numerical simulation of this mode
confirms that it is stable in time with parameters : a; = 1.5, as = 0.5, J; = 0.062,
Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001. Therefore, path continuation is
performed using this parameter set, the results of which are shown below.
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Figure 4.4:

Intensity of the fundamental mode I'g obtained numerically from Eq. (4.13) as a solution
of Eq. (4.2). The real Re{I'o} and imaginary Im{T'g} components of the solution is shown
in red and yellow dashed lines respectively while the intensity | I'g \2 is shown in blue. The
zoomed panel shows the corresponding power spectrum. Parameters : a1 = 1.5, s = 0.5,
J1 =0.062, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873, C = 4.97x 10~ %,
S =1.0, k1 =0.6274, wo = 0.0, L, = 80.
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Continuation of the tilted Hermite-Gauss mode I'g as a function of Ji/J:n. Panel (a) shows
the bifurcation branch in the maximum intensity of the field a2 A fold point (cyan circle)
separates the stable (solid blue) and unstable (dashed blue) branches which further loses
stability via Andronov-Hopf bifurcation points (red squares). Open black circles label the
position of three profiles in the branch shown in panels (b-d). Intensity profiles in panels
(b-d) correspond to values (0.6925, 0.6499, 0.6288) in Ji/Ju respectively. The panels (e-g)
shows the corresponding power spectrum as a function of transverse wave number ¢, . Other
parameters : a1 = 1.5, ae = 0.5, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001,
B =0.7873,C =4.97 x 10~*, § = 1.0, L, = 80.
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In the following, path continuation is performed on the I'y solution in some important
control parameters, starting with the current J;. The continuation branch for the I'g
mode as a function of Jy/Jy, is shown in Fig. 4.4(a) in the maximum of the field
intensity Iq.. It can be seen that the mode is bi-stable in Ji, creating a high intensity
stable branch (solid) along with a low intensity unstable branch (dashed) connected via
a limiting saddle-node (cyan circle) bifurcation point. The high intensity branch remain
stable till it loses stability through an Andronov-Hopf (red square) bifurcation point,
while the lower intensity branch continues to remain unstable till it bifurcates from the
off-state solution at threshold gain bias J; = Jy,. This bi-stable bifurcation branch is a
typical sub-critical diagram for this system which creates a separatrix along the branch
with the stable off solution below threshold. The intensity profiles shown in Figs. 4.4(b-
d) are in the stable high intensity branch for increasing values of Jj/Jy, respectively.
The intensity of the profiles increases with Ji. From the corresponding power spectrum
in Figs. 4.4(e-g), it can be seen that with decreasing intensity of the field the peak power
also decreases whereas the peak wave numbers remain unchanged.
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Figure 4.5: Continuation of the tilted Hermite-Gauss mode I'g as a function of S. Panel (a) shows
the bifurcation branch in the maximum of the field intensity Ijq,. The bifurcation branch
becomes stable (solid blue) or unstable (dashed blue) via Andronov-Hopf bifurcation points
(red squares). Open black circles label the position of four profiles shown in panels (b-e).
These intensity profiles correspond to values (0.0869, 1.3686, 3.5111, 4.9500) in S respectively.
The panels (f-i) show the corresponding power spectrum of fields (b-e) as a function of
transverse wave number g, . Other parameters : aq = 1.5, az = 0.5, J1/Ji, = 0.65, Jo =
—0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873, C' = 4.97 x 10~*, L, = 80.

The continuation branch of the I'g mode as a function of the aberration parameter .S is
shown in Fig. 4.5(a) with respect to the maximum intensity I,q, of the field. The mode
branch is stable for smaller values of aberration S with a decay in maximum intensity
Iz due to diffusion. Andronov-Hopf (red square) bifurcation points lead to a range of
unstable solutions till the branch becomes stable again at a lower maximum intensity
with further increase of S. The intensity profiles shown in Figs. 4.5(b-e) for increasing
values of S indicate that the solution becomes less oscillatory for higher values of S.
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In the corresponding power spectrum shown in Figs. 4.5(f-i), it can be noticed that
the more oscillatory the solution (for smaller S), the higher the peak wave number.
For sufficiently high values of S (see Fig. 4.5(e)), the solution loses its oscillatory tails
leading to a stable single peak soliton solution. From the power spectrum in Fig. 4.5(i),
it can be seen that stable asymmetric (in power spectrum) solutions also exist. Further,
for small values of .S, the solution is highly oscillatory with relatively higher peak wave
numbers.
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Figure 4.6: Continuation of the tilted Hermite-Gauss mode Ty as a function of B. Panel (a) shows
the bifurcation branch in the maximum intensity of the field I,,q.. The bifurcation branch
becomes stable (solid blue) or unstable (dashed blue) via Andronov-Hopf bifurcation points
(red squares) and fold points (cyan circles). Open black circles label the position of three
profiles shown in panels (b-d). These intensity profiles correspond to values (0.3247, 0.5676,
1.070) in B respectively. The panels (e-g) show the corresponding power spectrum of solutions
in (b-e) as a function of transverse wave number ¢, . Other parameters : a3 = 1.5, a2 = 0.5,
Ji/Jin = 0.65, J» = —0.06, s = 15, h = 1.98, = 0.95, d = 0.0001, C = 4.97x 107%, S = 1.0,
L, = 80.

The continuation branch for the T'g mode as a function of B is shown in Fig. 4.6(a) with
respect to the maximum intensity I,4; of the field. The bifurcation branch shows stable
solutions for small values of B with decaying intensity in between a saddle-node bifur-
cation point and an Andronov-Hopf bifurcation point which leads to instability. With
further increase in B, the mode becomes stable again at a higher maximum intensity
via another Andronov-Hopf bifurcation. In this region, the solution becomes increas-
ingly oscillatory as B increases, as shown in Figs. 4.6(c-d), along with increasing peak
transverse wave number ¢ (see Figs. 4.6(f-g)). For low values of B, the stable solutions
become less oscillatory with decreasing B and the power spectrum peak wave number
eventually shifts to 0 (see Fig. 4.6(e)).

The continuation branch for the I'y mode as a function of C' is shown in Fig. 4.7(a)
with respect to the maximum intensity I,,q, of the field. Narrow bands of stability
can be observed in the branch through Andronov-Hopf bifurcation points with higher
maximum intensity for smaller values of C'. From the intensity profiles in Figs. 4.7(b-d),
it can be seen that as C decreases, the solutions become more oscillatory in nature.
The power spectrum of these profiles shown in Figs. 4.7(e-g) confirms this as the peak
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Figure 4.7: Continuation of the tilted Hermite-Gauss mode Ty as a function of C. Panel (a) shows the
bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field I,,q4.. The bifurcation branch gains narrow bands of stability via Andronov-Hopf
bifurcation points (red squares) for positive values of C. Open black circles label the position
of three profiles shown in panels (b-d). These intensity profiles correspond to values (0.2523,
1.3071, 4.9090)(x1073) in C respectively. The panels (e-g) show the corresponding power
spectrum of fields (b-e) as a function of transverse wave number ¢;. Other parameters :
a1 = 1.5, az = 0.5, J1/Jw, = 0.65, J» = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001,

B =0.7873, S = 1.0, L, = 80.

transverse wave number also decreases accordingly. Additionally, as C approaches 0,
the bifurcation branch shifts back into C' > 0 region via a saddle-node bifurcation point
instead of traversing into C <0 quadrant since the tilted Hermite-Gauss mode require
B and C to have the same sign.

4.2.3 ¥, Mode

The fundamental mode ¥ is obtained from Eq. (4.14) with modal index n = 0 and
shown in Fig. 4.8 along with its power spectrum in Fourier space. From the real
component Re{¥(} (red dashed) of the field in this figure, one notices that the mode
is asymmetric with oscillatory tails due to the sine function. With direct numerical
simulation of this mode confirms this mode is stable in time with parameters : a3 = 1.5,
ag = 0.5, J; = 0.062, Jy, = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001. Therefore,
path continuation is performed using this parameter set, the results of which are shown
below.

The continuation branch for the ¥y mode as a function of the scaled current Jy/Jy, is
shown in Fig. 4.9(a) with respect to the maximum intensity Iq, of the field. Similar
to the I'gp mode, the sub-critical branches are bi-stable with the off-state, comprising
of a high intensity stable branch and a low intensity unstable branch connected via
a limiting saddle-node (cyan circle) bifurcation point. At threshold, the low intensity
unstable branch bifurcates into the off solution branch via Andronov-Hopf bifurcation
points, while the high intensity stable branch similarly loses stability as J; increases. In
Figs. 4.9(b-d), the intensity profiles of stable solutions are shown where the maximum
intensity of the modes decreases with decreasing J; and so does the peak powers in the
corresponding power spectrum in Figs. 4.9(e-g).

The continuation branch for the Wy mode as a function of S is shown in Fig. 4.10(a)
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Figure 4.8: Intensity of the fundamental mode ¥, obtained numerically from Eq. (4.14) as a solution
of Eq. (4.2). The real Re{WUo} and imaginary Im{¥,} components of the solution is shown
in red and yellow dashed lines respectively while the intensity | ¥o |* is shown in blue. The
zoomed panel shows the corresponding power spectrum. Parameters : a1 = 1.5, s = 0.5,
J1 =0.062, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873, C = 4.97x 1074,
S =10, k1 =0.6274, wo = 0.0, L, = 80.

2 N_
o (b) = 0.02 (e)
< T50.01
0 — 0
40 0 40 10 1
X ql
2 ~
o (c) = 0.02 (f)
=5 T50.01
0 — 0
40 0 40 10 1
X (]]L
2 N_
o (d) = 0.029)
< =0.01
40 0 40 -1 0 1
X ql

Figure 4.9: Continuation of the tilted Hermite-Gauss mode ¥y as a function of J1/Ji,. Panel (a) shows
the bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum inten-
sity of the field Imqz. A fold point (cyan circle) separates the stable and unstable branches
which further loses stability via Andronov-Hopf bifurcation (red square) points. Open black
circles label the position of three profiles in the branch shown in panels (b-d). Intensity
profiles in panels (b-d) correspond to values (0.6972, 0.6499, 0.6283) in J1/Ji, respectively.
The panels (e-g) shows the corresponding power spectrum as a function of transverse wave
number ¢, . Other parameters : a; = 1.5, a2 = 0.5, Jo = —0.06, s = 15, h = 1.98, n = 0.95,
d = 0.0001, B =0.7873, C = 4.97 x 107*, S = 1.0, L, = 80.
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with respect to the maximum intensity I,,q, of the field. The branch enters instabil-
ity for higher values of S via multiple Andronov-Hopf (red square) bifurcation points.
Within the stable region, the maximum intensity of the solution decreases for increasing
S. The intensity profiles in Figs. 4.10(b-d) shows that as the aberration parameter
S increases, the solutions become less oscillatory, along with decreasing peak power
transverse wavenumbers in the corresponding power spectrum shown in Figs. 4.10(e-g).
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Figure 4.10: Continuation of the tilted Hermite-Gauss mode ¥g as a function of S. Panel (a) shows the
bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field Inqz. The bifurcation branch becomes stable via Andronov-Hopf bifurcation
points (red squares) for higher values of S. Open black circles label the position of three
profiles shown in panels (b-d). These intensity profiles correspond to values (0.2932, 1.3415,
2.3557) in S respectively. The panels (f-1) show the corresponding power spectrum of fields
(b-e) as a function of transverse wave number g, . Other parameters : a1 = 1.5, as = 0.5,

Ji/Jih = 065, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873,
C'=4.97x107*, L, = 80.

The continuation branch for the ¥y mode as a function of B is shown in Fig. 4.11(a)
with respect to the maximum intensity I, of the field. It can be observed that the
solutions remains stable for a large range of values, including small negative values of
the parameter, becoming unstable via a branching point (black open circle) for negative
B~ —0.2, except for a narrow band of instability along the continuation branch. Similar
to the results obtained for continuation of the I') mode, the solution becomes more
oscillatory as B increases (see Figs. 4.11(b-e)). The corresponding power spectrum
in Figs. 4.11(f-i) of the illustrated solutions confirm this, since the magnitude of the
peak power transverse wavenumbers increases for more oscillatory solutions. For small
negative B, the solution takes the form as shown in Fig. 4.11(b) and its power spectrum
(see Fig. 4.6(f) shows that it has asymmetric spectral power peaks in the Fourier domain
indicating that symmetric spectral power peak solutions likely do not exist for this set
of parameters. The profile shown in Fig. 4.11(c) corresponds to effective diffraction
parameter B ~ 0. The intensity of the solution is only changed slightly along the
continuation branch for the chosen range of values of B.
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Figure 4.11: Continuation of the tilted Hermite-Gauss mode Wy as a function of B. Panel (a) shows the
bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field I,nq.. The bifurcation branch becomes unstable via Andronov-Hopf bifurcation
points (red squares) and branching points (open black circle). Open green circles label the
position of four profiles shown in panels (b-e). These intensity profiles correspond to values
(-0.1859, 0.00007, 0.348, 1.007) in B respectively. The panels (f-i) show the corresponding
power spectrum of fields (b-e) as a function of transverse wave number ¢, . Other parameters
: o = 1.5, a2 = 0.5, J1/Jih = 0.65, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001,
C=497x10"" =10, L, = 80.
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Figure 4.12: Continuation of the tilted Hermite-Gauss mode ¥g as a function of C. Panel (a) shows

the bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum
intensity of the field I,q4.. The bifurcation branch becomes unstable via Andronov-Hopf
bifurcation points (red squares) as C — 0. Open black circles label the positions of three
profiles shown in panels (b-d). These intensity profiles correspond to values (0.1107, 1.3122,
2.9134)(x107%) in C respectively. The pancls (e-g) show the corresponding power spectrum
of fields (b-d) as a function of transverse wave number ¢, . Other parameters : a; = 1.5,
as = 0.5, Ji/Jih = 0.65, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873,
S =1.0, L, = 80.
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The continuation branch for the ¥y mode as a function of C is shown in Fig. 4.12(a) with
respect to the maximum intensity I,,q. of the field. A narrow band of instability emerges
on the continuation branch as C' — 0 which becomes stable through an Andronov-Hopf
bifurcation (red square) as C increases along with decreasing maximum intensity. The
intensity profiles in Figs. 4.12(b-d) show that the solution becomes less oscillatory with
increasing C, however in the corresponding power spectrum in Figs. 4.12(e-g), the peak
wave number remains unchanged since the transverse wave vector k| does not depend
on C for the tilted Hermite-Gauss modes. Additionally, similar to the 'y mode, the
branch turns into C' > 0 quadrant as it approaches 0 in order to maintain a positive
value for the waist o.

4.2.4 T'; Mode

The mode I' is obtained from Eq. (4.13) with modal index n = 1 and shown in Fig.
4.13 along with its power spectrum in Fourier space. Unlike the fundamental mode Iy,
this mode is asymmetric. The power spectrum of this mode shows twice the number
of peaks at two different sets of peak transverse wave numbers ¢, due the increase in
modal index. Direct numerical simulation of this mode confirms that it is remains stable
in time with parameters : a1 = 1.5, ag = 0.5, J; = 0.062, Jo = —0.06, s = 15, h = 1.98,
n = 0.95, d = 0.0001. Therefore, path continuation is performed using this parameter
set, the results of which are shown below.
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Figure 4.13: Intensity of the mode I'; obtained numerically from Eq. (4.13) as a solution of Eq. (4.2).
The real Re{T"1} and imaginary Im{I';} components of the solution is shown in red and
yellow dashed lines respectively while the intensity | Ty |* is shown in blue. The zoomed
panel shows the corresponding power spectrum. Parameters : a1 = 1.5, s = 0.5, J1 =
0.062, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873, C = 4.97 x 107%,
S =1.0, k1 =0.6274, wo = 0.0, L, = 80.

The continuation branch for the I'; mode as a function of the scaled current Jy/Jy, is
shown in Fig. 4.14(a) with respect to the maximum intensity I, of the field. Similar to
the two fundamental modes, this mode also forms sub-critical branches that are bi-stable
with the off solution, and the intensity of the stable branch solution increases for increase
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Figure 4.14: Continuation of the tilted Hermite-Gauss mode I'; as a function of J;/Jy,. Panel (a) shows

the bifurcation branch in the maximum intensity of the field Imas. A fold point (cyan
circle) separates the stable (solid blue) or unstable (dashed blue) branches which further
loses stability via Andronov-Hopf bifurcations (red square). Open black circles label the
position of two profiles in the branch shown in panels (b-c). Intensity profiles in panels
(b-¢) correspond to values (0.6387,0.6207) in J1/Ji, respectively. The panels (d-e) show the
corresponding power spectrum of solutions in panels (b-c) as a function of transverse wave
number g . Other parameters : a1 = 1.5, as = 0.5, Jo = —0.06, s = 15, h = 1.98, n = 0.95,
d = 0.0001, B =0.7873, C = 4.97 x 10*, S = 1.0, L, = 80.
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Figure 4.15: Continuation of the tilted Hermite-Gauss mode I'1 as a function of S. Panel (a) shows the

bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field Inaz. The branch loses stability via Andronov-Hopf bifurcations (red squares)
for higher values of S. Open black circles label the position of three profiles in the branch
shown in panels (b-d). Intensity profiles in panels (b-d) correspond to values (0.2438, 0.6157,
0.9527) in S respectively. The panels (e-g) shows the corresponding power spectrum of the
solutions in panels (b-d) as a function of transverse wave number ¢, . Other parameters :
ar = 1.5, az = 0.5, Ji/Jsn = 0.65, J2» = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001,

B=0.7873, C =4.97 x 1074, L, = 80.

in J;. However, for this higher order mode, the branch is stable for only a narrow range of
values, then it becomes unstable passing through a saddle-node (cyan circle) bifurcation
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point and finally bifurcating at threshold, J; = Jy into the off-state solution. The
saddle-node bifurcation point separating the two bi-stable branches occurs at a smaller
value of Jj relative to those for the fundamental modes I'y and ¥y. Fig. 4.14(b-c)
shows the intensity profiles of two stable solutions along with their corresponding power
spectrum in Fig. 4.14(d-e).

The continuation branch for the I'y mode as a function of S is shown in Fig. 4.15(a) with
respect to the maximum intensity I,,q, of the field. Similar to the continuation results
of the asymmetric fundamental mode W, in parameter S, the branch for this mode
becomes unstable through Andronov-Hopf bifurcations (red squares) for higher values
of S. Within the stable region of the branch the maximum intensity I,,,, oscillates for
small S due to the symmetric nature of the intensity profile and then decreases with
further increase of S. From the intensity profiles in Fig. 4.15(b-d), it is seen that the
stable solutions become more oscillatory for smaller values of S along with the increase
of the peak wave numbers in the corresponding power spectrum given in Fig. 4.15(e-g).
Although the difference between the two set of symmetric peak wavenumbers remain
constant.
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Figure 4.16: Continuation of the tilted Hermite-Gauss mode I'; as a function of B. Panel (a) shows the
bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field Inaez. The branch loses stability via Andronov-Hopf bifurcations (red squares).
Open black circles label the position of three profiles in the branch shown in panels (b-
d). Intensity profiles in panels (b-d) correspond to values (0.3020, 0.450, 0.91197) in B
respectively. The panels (e-g) shows the corresponding power spectrum of the solutions in
panels (b-d) as a function of transverse wave number g, . Other parameters : a1 = 1.5, as =
0.5, Ji/Jen = 0.65, Jo = —0.06, s = 15, h = 1.98, = 0.95, d = 0.0001, C = 4.97 x 107%,
S =1.0, L, = 80.

The continuation branch for the I'; mode as a function of B is shown in Fig. 4.16(a)
with respect to the maximum intensity I,,q, of the field. From the bifurcation branch,
it is observed that the solution is stable for two range of values in B. For larger B,
the stable solutions are more oscillatory, along with larger transverse wave numbers
in Fourier domain as can be seen from the intensity profile given in Fig. 4.16(d) and
its corresponding power spectrum in Fig. 4.16(g). In case of smaller values of B, the
stable solutions are less oscillatory as seen in Figs. 4.16(b-c) and correspondingly the
peak wavenumbers in the Fourier space also decreases in Fig. 4.16(e-f). The exemplary
solution and its power spectrum shown in Fig. 4.16(b,e) confirms the presence of stable
asymmetric peak power solutions for this system.
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Figure 4.17: Continuation of the tilted Hermite-Gauss mode T'; as a function of C. Panel (a) shows the
bifurcation branch, stable (solid blue) or unstable (dashed blue), in the maximum intensity
of the field Imae. The branch loses stability via Andronov-Hopf bifurcations (red squares).
Open black circles label the position of three profiles in the branch shown in panels (b-d).
Intensity profiles in panels (b-d) correspond to values (0.5051, 2.5972, 4.2856)(x10™*) in
C respectively. The panels (e-g) shows the corresponding power spectrum of the solutions
in panels (b-d) as a function of transverse wave number ¢, . Other parameters : a; = 1.5,

a2 = 0.5, J1/Jin = 0.65, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873,
S =1.0, L, = 80.

The continuation branch for the I'; mode as a function of C' is shown in Fig. 4.17(a)
with respect to the maximum intensity I,,,q, of the field. From the bifurcation diagram,
it can be seen that the branch remains stable only for a narrow range of C' values, which
eventually enters instability by Andronov-Hopf bifurcation points (red squares). Com-
pared to the stable solutions obtained for the fundamental modes I'g and Wy, this higher
order mode has stable solutions for lower values of the potential C by one order of mag-
nitude. As can be seen in Figs. 4.17(b-d), the intensity profile of these stable solutions
become more oscillatory as C' — 0, while the peak wavenumbers in the corresponding
power spectrum (see Figs. 4.17(e-g)) does not shift. However, some modulation is the
power spectrum can be observed with the broadening of the peaks with increasing C’,
similar to other modes. The continuation branch remains within the C' > 0 quadrant as
required by tilted Hermite-Gauss modes.

4.2.5 Higher Order Modes

The higher order mode I's is obtained from Eq. (4.13) with modal index n = 2 and shown
in Fig. 4.18 along with its power spectrum in Fourier space. The real component Re{I'y}
of this mode is symmetric and the power spectrum has thrice the number of peaks,
compared to the fundamental modes, at two different sets of conjugate peak transverse
wave numbers ¢, corresponding to the modal index. Direct numerical simulation of
this mode shows that it is quasi-stable with evolution in time given the parameters :
a1 = 1.5, ag = 0.5, J; = 0.0639, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001.
Performing path continuation using this mode as initial solution does not yield stable
solutions for the range of parameters used for other modes, however, this confirms the
existence of unstable higher order modes for the given system under consideration.
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Figure 4.18: Intensity of the quasi-stable mode I's obtained numerically from Eq. (4.14) as a solution
of Eq. (4.2). The real Re{I'z} and imaginary Im{I’>} components of the solution is shown
in red and yellow dashed lines respectively while the intensity | T’ |2 is shown in blue.
The zoomed panel shows the corresponding power spectrum. Parameters : a1 = 1.5,
as = 0.5, J; = 0.0639, Jo = —0.06, s = 15, h = 1.98, = 0.95, d = 0.0001, B = 0.7873,
C =2.486 x 107%, § = 1.0, k. = 0.6274, wo = 0.001, L, = 80.
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5 One-Dimensional Pattern Formation

5.1 Linear Stability Analysis

Stability analysis of the 1D MIXSEL model given in Eq. (2.22) for plane wave solutions
against small perturbation can be performed by linearization of the corresponding equa-
tion and finding the eigenvalues of the resultant coefficient matrix of the system. For
this analysis, the wavefront curvature parameter in the potential term in Eq. (2.22), is

assumed to be zero (C' = 0).
The 1D system equation in consideration, therefore, becomes

(9/123;9) = [(l—im) J1g (| Az, 0) 2) + (1 —ias) Jag(s| Az, 0) ) — k -
+<d+iB)aa; +Z‘Saax44 A(z, 0).

Using a plane wave ansatz for the transverse profile of the inter-cavity field, A(x,6) =
u(0) exp{i(gxr —wh)}, where u(d) € C is the amplitude profile, ¢ is the transverse
wavevector and w denotes the frequency of the solution. With this substitution, the
system equation turns into a nonlinear ODE

du . . )
0= zw—k+(1—za1)Jlg(|u|2)—t—(l—zag)Jgg(s\uF)
(5.2)

—d¢®—iB¢@®+iS ¢ u.

Splitting the complex-valued u(#) into its real and imaginary components as u = uj +
iug, where (u1,us) € R and separating the real and imaginary terms results into two
equivalent equations

du

dfgl = (u1 + oqug) Ji g (ur® + up®) + (u1 + aguz) Jo g (s(ur® + ua?)) (5.3)
—wuy — kup — dq2u1+Bq2uz—Sq4u2,

duz _ (ug — cquy) Ji g (ur® + u2®) + (uz — agur) J2 g (s(ur® + uz?))

a0 (5.4)

+wur — kug — dq2uQ+Bq2u1—Sq4u1.

For simplicity, the above two system equations can be expressed in matrix form, dividing
the linear and nonlinear terms into two operators L and N, respectively, as

v )
<5 =N+ LU, (5.5)

where the system variable vector U, linear operator L, nonlinear operator N (U) are

uy - —d ¢? Bq¢*—Sq* S fi
= L= - N = . .
u <U2> ’ <—B q2 + S q4 —d q2 ) (U) f2 (5 6)
The components fi; and fy are derived from the effective nonlinearity function of Eq.
(2.22), f(P) for a pulse P € R :

given as
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f(P)=(1—ia1)Jig(P) + (1 —iaz) Jag(sP)—k. (5.7)

The nonlinear function f(P) allows for spatially uniform steady solutions of the form,
A(x,0) = V/Pexp{iwd}, where w is defined as the carrier frequency. These solutions
solve the following equations

Re{f(P)}P = [J19(P) + J2 g(s P) — k|P =0, (5.8)

Im{f(P)} =aJi g(P)+ aJsg(s P) = w. (5.9)

The system equation is linearized for small perturbation using the Jacobian matrix, Jp,
of the nonlinear operator, N, obtained from the approximation in the first order of a
Taylor expansion around these uniform steady state pulse solutions. Using the conditions
in Egs. (5.8) and (5.9), on the nonlinear terms of the equivalent system equations given
in Egs. (5.3) and (5.4), one obtains the following expressions for the Jacobian Jp :

Jp = % % = <f11 f12> , with (5.10)
37]2 sz for fa2
0qg(I 15) I
fi1 = (w1 +ugay) Jp gil) + (u1 + ugag) Jo 98(51 )
og(I 0qg(s I
fi2 = (u1 + uga) Ju 9(1) + (u1 + ugae) Jo 9(s ),
Ous Ouz (5.11)
og(I 0g(s I '
Jo1 = (u2 —wia) Ji 89151) + (ug — urag) Ja %(51 ),
og(I 0 I
foz = (ug —uroq) Jy 8975,2) + (u2 — urcrp) Jo %(;2 )

where I = u1? + us?.

The resultant coefficient matrix, A, is obtained by combining the nonlinear Jacobian
matrix, Jp and the linear operator, L, for a small perturbation from the steady state
solution

i —d ¢+ fu Bq2—5q4+f12>
A= ~ . 5.12
(Comtsdim " lansrm (5.12)
To solve the system of equations for small perturbation AU, given by
dAU
—— =AA 1
0 U, (5.13)
the matrix method is used to find the eigenvalues, as follows
| A=\ |=0, (5.14)

where I is the identity matrix. The eigenvalues A = (A1, X2) gives insight into the
instabilities present in the system for plane periodic solutions. The real component of
the eigenvalues when negative indicates instability for the set of parameters chosen.

In Fig. 5.1 the real parts of the eigenvalues (A1, \2) are plotted as a function of the
transverse wavevector g. The left panel in the figure shows an unstable band at the
long wavelength regime in the range ¢ € [0,qa]. This corresponds to modulational
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Figure 5.1: Dispersion relation of the uniform steady solutions for two different values of the bias current,
Ji. The left panel corresponds to minimum intensity (I = 0.37 ) for the parameter set with
J1/Jen = 0.661. A band of long wavelength modulational instability is present in the range
g € [0, qar]. The real component of the eigenvalues in the right panel is obtained for uniform
intensity (I = 1.0) and J1/Ji, = 0.78. Along with the low frequency modulational instability,
another narrow unstable band arises above low frequency cut-off (yellow dashed line), ¢ > qc,
corresponding to Turing instability at gr = 3.0. Parameters : B = 1.0, C = 0, S =0.11,
a1 = 1.5, a2 =0.5, J, = —0.12, £k = 0.1, s = 15, d = 0.003.

instability at low frequency range for the set of parameters chosen for the solution at
minimum value of J; = 0.145, i.e., Ji/Jy, = 0.661. However, it can be observed that
another narrow band emerges at the finite wavelength regime in the real component of
the stability eigenvalues but remains negative for the chosen parameters.

The right panel in Fig. 5.1, on the other hand, it is observed that for J; = 0.171,
ie., Ji/Jyn = 0.78 and uniform intensity I = 1.0, a narrow unstable band at short
wavelength along with the expected modulational instability at long wavelength. This
unstable band corresponds to Turing instability that emerges due to the presence of the
Bilaplacian operator approximating aberrations in Eq. (2.17) which renders possible the
appearance of a Turing bifurcation. Turing instability in the eigenvalues at gr = 3.0
in the figure indicates to the formation of modulated patterns. The occurrence of this
Turing bifurcation depends on the parameters B and S and is related to the Turing
wavevector gr as

qr ~ (5.15)

B

In order to control the development of one form of instability, i.e., to suppress the
modulational instability such that Turing instability leads to the emergence of modulated
patterns in the solution, the finite transverse size L of the system is used which is
possible due to the inherent discretization of the allowed wavevectors in a system. A low
frequency cut-off g. = 27/L is chosen such that it is larger than the maximum of the
long wavelength modulational instability band, i.e., gas < g.. This results in formation of
patterns in the solution only due to Turing instability since the modulational instability
band occurs below the cut-off frequency ¢. imposed by the finite size of the system and
low spatial frequencies are inhibited.

To perform continuation on this system to enable formation of patterns due to Turing
instability by tuning the transverse size L, one has to take into account the periodic
boundary conditions imposed on the domain. Therefore, a resonant condition has to be
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satisfied by the chosen low frequency cut-off ¢. and the Turing wavevector g as

gr =ngq., withn eN. (5.16)

In Fig. 5.1, the right panel which satisfies the condition for Turing instability to arise
in the system, the yellow dashed line marks the chosen low frequency cut-off at q. =
0.75. With gr = 3.0, the above resonant condition is satisfied as ¢gr/q. = 4 and the
finite transverse size is L, = 8.3776. Setting the parameters according to these above
condition, the emergence of modulated patterns is investigated by path continuation.

5.2 Continuation Results

Arc-length Path Continuation is performed on the 1D MIXSEL model as given in Eq.
(2.22) for steady periodic and continuous wave solutions to analyze their stability as well
as emergence of transversal patterns using the system equations and auxiliary conditions
described in Section 2.3.5.

Firstly, the existence of stable periodic solutions for the system is confirmed through
direct numerical analysis as described in Section 2.2. Continuation of such a periodic
solution is performed to view the effects of variation in the gain bias J; and the effective
curvature potential parameter C on the stability of the solution.

Next, the formation of transversal patterns due to Turing instability is investigated
by defining the system with parameters as described in the stability analysis above.
The modulation of these pattern solutions under the effects of tuning the other system
parameters is also considered.

For continuation using pde2path [25] package, the residual tolerance is set at 107! and
the first 150 eigenvalues of the analytical Jacobian, given in Section 2.3.5, are used to
check for possible bifurcation points along the branch.

5.2.1 Periodic Solution

A periodic solution of the form A(z,0) = Agcos (ko) exp{iwf} is chosen as an initial
guess with constant amplitude Ag = 1.5, wavevector kg = 0.55 and oscillation frequency
w to verify the existence of stable periodic solutions to the system equation given in Eq.
(5.1). The transverse length of the system is chosen to be L = 80 for convenience.

The continuation results in the parameter J; is shown in Fig. 5.2, where the panel (a)
shows a narrow band of stable solutions in the high intensity regime. It shows a narrow
region of stable periodic solutions for a range of values of J; in the higher intensity or
upper branch of the bifurcation diagram. The intensity profile of a sample stable periodic
solution is shown in Fig. 5.2(b) along with its power spectrum in Fig. 5.2(c) which shows
two peak powers at low spectral frequencies. The wavefront curvature parameter C is
assumed to be zero.

Furthermore, to investigate the effects of adding the potential term to the system, path
continuation is performed in the effective curvature parameter C , the results of which
are shown in Fig. 5.3. The continuation branch shown in Fig. 5.3(a) shows that the
periodic solution is stable for small magnitudes of the effective curvature parameter C
for both negative and positive potential added to the system.
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Continuation of a periodic solution as a function of Ji/J,. Panel (a) show the solution
branch, stable (solid blue) and unstable (dashed blue), in the maximum intensity of the
solution Imaz. A fold point (cyan circle), several branching points (black open circles) and
Andronov-Hopf bifurcation points (red squares) are present along the branch. The intensity
profile of the point marked (b), corresponding to Ji1/Jen = 0.6275 and frequency shift w =
0.2063, in the narrow stable region of the branch is shown in panel (b). Panel (c) shows
the power spectrum of the stable periodic solution shown in (b). Parameters : a; = 1.5,
as = 0.5, Jp = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001, B = 0.7873, C = 0.0, S = 1.0.
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Figure 5.3: Continuation of a periodic solution as a function of C. Panel (a) show the bifurcation

branches in the maximum intensity of the solution Ijnas. Fold points (cyan circle) separates
the stable (solid blue) and unstable (dashed blue) region of the branches. Black open circles
marks the solutions whose intensity profile is given in panels (b)-(c). The profile shown in (b)
corresponds to a negative potential curvature parameter C = —1.174 x 10~° and frequency
shift w = 0.2071, while the profile in (c) is for ¢ = 1.534 x 107% and w = 0.2057. The
power spectrum of the solutions in (b-c) are shown in panels (d-c) respectively. Parameters
t o =15, ap = 0.5, J1/Jen = 0.6252, Jo = —0.06, s = 15, h = 1.98, n = 0.95, d = 0.0001,

B =0.7873, S = 1.0.
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The branches become unstable for magnitudes | C' | > 107 through saddle-node bifur-
cation points (cyan circles). The intensity profiles of two stable periodic solutions are
shown in Figs. 5.3(b-c) which illustrates the modulation of the amplitude of the solu-
tion due to the presence of corresponding negative or positive potential on the system.
The panels in Fig. 5.3(d-e) shows the power spectrum of the solutions in Fig. 5.3(b-c)
respectively. It can be noticed from the power spectrum that for the small magnitude
values of the parameter C, the power peaks show negligible shift in spectral frequencies.

5.2.2 Turing Instability

As discussed in the previous section, the Linear Stability Analysis (LSA) of the system
indicates the possibility of the emergence of modulated transversal patterns in a uniform
steady state solution by tuning the state parameters such that Turing instability is
induced. A uniform continuous wave solution of intensity I = 1.0 is considered for time
evolution using direct numerical analysis as described in Section 2.3.5 with the system
parameters chosen such that the resonant condition defined in Eq. (5.16) is satisfied
for the transverse length L, and the condition given in Eq. 5.15 is satisfied for the
parameters B and S at an appropriate Turing wavevector ¢p. It was seen that the
solution leads to the emergence of periodic pattern over time as shown in Fig. 5.4(a).
The intensity profile of the emergent periodic patterns can be seen in Fig. 5.4(b), while
its corresponding power spectrum is shown in Fig. 5.4(c). Conversely, the periodic
solution defined with wavevector equal to the Turing wavevector was found to be stable
against time evolution.
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Figure 5.4: Time simulation of a uniform continuous solution in one dimension of Eq. (5.1) at Turing
instability resulting in the emergence of transversal periodic patterns. Panel (b) shows the
intensity profile of the final periodic solution and (c) shows its corresponding power spectrum.
Parameters : an = 1.5, as = 0.5, J1/Jen, = 0.8043, Jo = —0.12, s = 15, h = 1.98, n = 0.833,
d =0.003, B =0.99988, C' = 0.0, S = 0.11, L, = 8.3776.

For arc-length continuation, the low frequency cut-off chosen is g. = 0.75, as shown
in Fig. 5.1, which corresponds to a transverse length L; = 8.3776 and the resonant
condition in Eq. (5.16) is met for Turing wavevector gr = 3.0 with gr/q. = 4. With
periodic boundary conditions assumed in the system, the domain length correspondingly
is seen to be equivalent to 4 wavelengths of the periodic solution.
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Figure 5.5: Continuation results of continuous wave (blue) and periodic (red) solutions of Eq. (5.1) as a
function of Ji/Ji,. Panel (a) show the bifurcation branches in the maximum intensity of the
solutions I,nqz. Fold points (cyan circle) separates the stable (solid blue line) and unstable
(dashed blue line) region of the continuous wave (CW) solution branch. A stable periodic
solution bifurcates from the CW at the branching point( black open circle). Three sample
solutions from the two branches are marked whose intensity profiles are given in panels (b)-
(d). The profile shown in (b) corresponds to Ji/Ji, = 0.8091 and frequency shift w = 0.1733,
while the profile in (c) is for Ji/Jiy = 0.7647 and w = 0.1631 and the profile in (d) is for
a continuous wave solution for Ji/Jy, = 0.696 and w = 0.1625. The power spectrum of the
solutions in (b-d) are shown in panels (e-g) respectively. Parameters : a1 = 1.5, s = 0.5,
Jy = —0.12, s = 15, h = 1.98, n = 0.833, d = 0.003, B = 0.99988, C' = 0.0, S = 0.11,

L, =8.3776.
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Figure 5.6: Continuation of a periodic solution of Eq. (5.1) as a function of C. Panel (a) show the
bifurcation branches in the maximum intensity of the solution I mee. Fold point (cyan circle)
and Andronov-Hopf bifurcation points (red square) separate the stable (solid blue line) and
unstable (dashed blue line) region of the branches. Black open circles mark the solutions
whose intensity profile is given in panels (b)-(c). The profile shown in (b) corresponds to a
negative potential curvature parameter C = —4.696 x 107° and frequency shift w = 0.1929,
while the profile in (c) is for C' = 4.859 x 1072 and w = 0.144. The power spectrum of the
solutions in (b-c) are shown in panels (d-e) respectively. Parameters : an = 1.5, as = 0.5,

Ji/Jen = 0.8043, J, = —0.12, s = 15, h = 1.98, = 0.833, d = 0.003, B = 0.99988, S = 0.11,
L, = 8.3776. 15



In the Fig. 5.5, the continuation of the uniform solution as a function of parameter J;
is shown. As can be observed in the bifurcation diagram in Fig. 5.5(a), the unstable
branch of the uniform continuous wave solution (blue) bifurcates from the off state at
threshold (J; = Jy;,) and becomes stable through a saddle-node bifurcation (cyan circle).
Beyond the fold point, with increasing J; along the stable higher intensity branch of
the continuous wave solution branch, a stable branch of a periodic wave solution (red)
bifurcates via a branching point (black open circle) till it becomes unstable through an
Andronov-Hopf bifurcation (red square).

The panels in Fig. 5.5(b-d) illustrates three intensity profiles for stable solutions of the
system. In Fig. 5.5(d), the profile of the continuous wave solution is shown along with
its power spectrum in Fig. 5.5(g). The emerging periodic pattern in the stable periodic
wave solution branch is shown in Figs. 5.5(b-c). The intensity of the periodic pattern
solution increases with increasing J; as expected. The corresponding power spectrum of
the patterned solutions are shown in Fig. 5.5(e-f) respectively, which shows two power
peaks emerging on either side of the central power peak at ¢; = 0.

The condition defined in Eq. (5.15) was met for this continuation results with /B/S =

3.015 ~ gr. The effective curvature parameter C' is zero as required by the assumption
imposed on the system during the stability analysis.

However, the effects of applying a small potential to the system on the periodic pattern
solution is also investigated via path continuation in the parameter C and the results
are presented in Fig. 5.6.

The bifurcation diagram shown in Fig. 5.6(a) shows the solutions are stable for small
values of parameter C < 5 x 1073. The intensity of the solution increases as the magni-
tude of the parameter C increases. The branch becomes unstable through a saddle-node
bifurcation (cyan circle) in the negative C regime while in the positive C' region insta-
bility in the branch occurs via a Andronov-Hopf bifurcation point (red square). The
intensity profiles of two illustrative solutions is shown in Fig. 5.6(b-c) which displays
the modulation of the intensity profile due to the potential term depending on the sign
of the parameter C. The corresponding power spectrum of the two intensity profiles in
Fig. 5.6(b-c) are shown in Fig. 5.6(d-e) respectively.

Since the Turing wavevector ¢ depends on the tuning parameters B and S for the
periodic pattern solutions, path continuation was performed on these two parameters as
well whose results are presented in Figs. 5.7 and 5.8. In the Fig. 5.7(a), the continuation
branch of the periodic solution as a function of B shows that the solution remains stable
for two narrow range of values of the parameter, the branch becoming unstable via
multiple saddle-node bifurcation points as well as Andronov-Hopf bifurcation points.
The intensity profiles of three stable solutions along the continuation branch are shown
in Fig. 5.7(b-d) along with their power spectrum in Fig. 5.7(e-g) respectively.

An interesting formation of periodic transversal patterns emerges while tuning the pa-
rameter for the smaller values of B, that are stable solutions of the system as shown
in Fig. 5.7(b). The intensity profile diverges from the plane periodic wave solution
of Fig. 5.7(d) and the parameter set further tunes the condition given in Eq. (5.15),

\/B/S = 3.00525 ~ qr. For the profile shown in Fig. 5.7(c), one observes the grad-
ual dissipation of this periodic pattern as B slightly decreases and the tuning condition

becomes 4/ B /S = 3.00477. Comparing the power spectrum of the solution profile in
Fig. 5.7(b) in panel (e), to those of the other solutions, one observers the increase in
peak power corresponding to the secondary spectral frequency peaks on either side of
the central power peak.
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Figure 5.7: Continuation results of a periodic solution of Eq. (5.1) as a function of B. Panel (a) show
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the bifurcation branch in the maximum intensity of the solutions Ipmq... Fold points (cyan
circle) and Andronov-Hopf bifurcation points (red squares) separates the stable (solid blue
line) and unstable (dashed blue line) region of the solution branch. Three sample solutions
are marked with green circles whose intensity profiles are given in panels (b)-(d). The profile
shown in (b) corresponds to B = 0.99347 and frequency shift w = 0.168, the profile in (c) is
for B = 0.99315 and w = 0.1604, and the profile in (d) is for B = 1.0019 and w = 0.1617. The
power spectrum of the solutions in (b-d) are shown in panels (e-g) respectively. Parameters
: a1 = 1.5, ax = 0.5, J1/Jen = 0.8043, Jo = —0.12, s = 15, h = 1.98, n = 0.833, d = 0.003,
C=0.0,8=0.11, L, = 8.3776.
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Figure 5.8: Continuation results of a periodic solution of Eq. (5.1) as a function of S. Panel (a) show the

bifurcation branch, stable (solid blue) and unstable (dashed blue), in the maximum intensity
of the solutions Imez. Fold points (cyan circle) and Andronov-Hopf bifurcation points (red
squares) separates the stable and unstable region of the solution branch. Three sample
solutions are marked with green circles whose intensity profiles are given in panels (b)-(d).
The profile shown in (b) corresponds to S = 0.10983 and frequency shift w = 0.1652, the
profile in (c) is for S = 0.11071 and w = 0.169, and the profile in (d) is for S = 0.11075
and w = 0.1603. The power spectrum of the solutions in (b-d) are shown in panels (e-g)
respectively. Parameters : a1 = 1.5, az = 0.5, Ji/Jen = 0.8043, Jo = —0.12, s = %P]
h =1.98, n=0.833, d = 0.003, B =10.99988 C' = 0.0, L, = 8.3776.



Similarly, with continuation of the periodic solution in the parameter S, as shown in Fig.
5.8(a), it is observed that there are two narrow stable regions on the continuation branch
where the stable region corresponding to the higher value of parameter S results in the
emergence of periodic patterns as the profile in Fig. 5.7(b). The solution profile in Fig.

5.8(c) corresponds to y/B/S = 3.00525 ~ ¢r and its corresponding power spectrum in
Fig. 5.8(f) is similar to the power spectrum of the solution in Fig. 5.7(e). As S increases
along the continuation branch this specific patterned solution dissipates into the profile

shown in Fig. 5.8(d) with tuning condition resulting to 1/ B/S = 3.00471.

In contrast, the stable region of the continuation branch for lower value of S in Fig.
5.8(a) consists of stable periodic solutions of the form shown in Fig. 5.8(b) along with
its power spectrum in Fig. 5.8(e).

The two emerging periodic pattern solutions obtained by tuning the parameters B and S,
shown in Figs. 5.7(b) and 5.8(c), are of interest and in the following, further continuation
is performed in the parameters J; and C on these solutions to confirm their stability
with variation in those parameters.

The continuation results on the periodic pattern solution shown in Fig. 5.7(b) in the
parameter Jj is given in Fig. 5.9. As can be observed from the bifurcation diagram in Fig.
5.9(a), the solution becomes stable via a saddle-node bifurcation around J;/Jy, ~ 0.78
and continues to remain stable well beyond the threshold gain bias Jy;,. With increase
in the parameter Jq, the maximum intensity I,,q, increases almost monotonically for a
large range of Jj.
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Figure 5.9: Continuation of the periodic pattern solution from tuning the parameter B shown in Fig.
5.7 as a function of J;/Ji,. Panel (a) show the bifurcation branch, stable (solid blue) and
unstable (dashed blue), in the maximum intensity of the solution Ima». Fold points (cyan
circle), and several Andronov-Hopf bifurcation points (red squares) are present along the
continuation branch. The intensity profiles of the three stable solutions along the continuation
branch marked in black open circles are shown in panels (b-d). The profile in (b) corresponds
to Ji/Jen = 1.0153 and frequency shift w = 0.1627, the solution profile in (c) is for Ji/Jth =
1.9692 and w = 0.1581, and the profile in (d) is for Ji/Jih = 3.58 and w = 0.1569. The
corresponding power spectrum are shown in panels (e-g). Parameters : a1 = 1.5, a2 = 0.5,
Jo = —0.012, s = 15, h = 1.98, = 0.833, d = 0.003, B = 0.99347, C = 0.0, S = 0.11,
L, =8.3776.
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Figure 5.10: Continuation of the periodic pattern solution from tuning the parameter S shown in Fig.
5.8 as a function of Ji/Jin. Panel (a) show the bifurcation branch, stable (solid blue)
and unstable (dashed blue), in the maximum intensity of the solution I,,q. Fold points
(cyan circle), and several Andronov-Hopf bifurcation points (red squares) are present along
the continuation branch. The intensity profiles of the three stable solutions along the
continuation branch marked in black open circles are shown in panels (b-d). The profile in
(b) corresponds to Ji/Ji, = 1.2138 and frequency shift w = 0.1617, the solution profile in
(c) is for Ji/Jth = 2,2427 and w = 0.1585, and the profile in (d) is for Ji/J:h = 4.2665
and w = 0.1574. The corresponding power spectrum are shown in panels (e-g). Parameters

a1 =15, az = 0.5, Jo = —0.012, s = 15, h = 1.98, ) = 0.833, d = 0.003, B = 0.99988,
€ =0.0, S =0.11071, L, = 8.3776.

The intensity profiles of three stable solutions along the continuation branch are shown in
Figs. 5.9(b-d) for increasing values of Jj respectively. The profile of the periodic pattern
solution is maintained during continuation without any dissipation in the modulated
intensity profile, while the intensity of the periodic solution continues to increase. Similar
trend is also observed in the respective power spectrum of the solution in Fig. 5.9(e-g)
where the peak power increases with increase in Jj.

The continuation results on the periodic pattern solution shown in Fig. 5.8(c) in the
parameter Jj is given in Fig. 5.10. The bifurcation in Fig. 5.10(a) shows that through a
saddle-node bifurcation (cyan circle) the solution becomes stable at around J;/Jy, =~ 0.8
and remains stable for a large range of values of J; beyond the threshold gain bias value
Jih = 0.22. Similar to the results obtained in Fig. 5.9, the intensity of the solution
increases monotonically with the increase in gain bias J;.

Three stable solutions along the continuation branch marked in Fig. 5.10(a) have their
intensity profiles given in Figs. 5.10(b-d) which shows that for periodic pattern solutions
for the other set of tuning parameter values also maintain the modulation in the intensity
of the solution with increasing values of J;. The corresponding power spectrum shown
in Figs. 5.10(e-g) confirm these findings.

The continuation results on the periodic pattern solution shown in Fig. 5.7(b) in the
parameter C is given in Fig. 5.11. From the continuation branch in Fig. 5.11, it can be
observed that the solution remains stable for small magnitudes of the effective curvature
parameter C, i.e., small effective potential on the domain of the system. For negative
C, the solution remains stable for slightly lower magnitude than for positive C.

The intensity profiles of two stable solutions are shown in Fig. 5.11(b-c) which have mod-
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Figure 5.11: Continuation of the periodic pattern solution from tuning the parameter B shown in Fig.
5.7 as a function of C. Panel (a) show the bifurcation branches, stable (solid blue) and
unstable (dashed blue), in the maximum intensity of the solution Ip,...The continuation
branch becomes unstable via fold points (cyan circles). Black open circles mark the solutions
whose intensity profile is given in panels (b)-(c). The profile shown in (b) corresponds to a
negative potential curvature parameter C = —1.5598 X 10~° and frequency shift w = 0.1704,
while the profile in (c) is for C =1.821 x 1072 and w = 0.1664. The power spectrum of the
solutions in (b-c) are shown in panels (d-e) respectively. Parameters : a3 = 1.5, ag = 0.5,
Ji/Jen = 0.8043, Jo = —0.12, s = 15, h = 1.98, n = 0.833, d = 0.003, B = 0.99347,
S =0.11, L, = 8.3776.

ulated amplitudes due to the presence of the potential term in the system parameters
according to the sign of C' as observed for other periodic solutions. The profile corre-
sponding to positive C in Fig. 5.11(c) shows that the solution maintains the periodic
patterns despite the effects of non-zero effective curvature parameter. The corresponding
power spectrum in Fig. 5.11(e) is similar to the initial solution given in Fig. 5.7(b) used
for continuation.

However, this changes in the continuation branch in the negative C' region where the
intensity profile, shown in Fig. 5.11(b), illustrates that the periodic patterns of the
solution slowly dissipates with increasing | C |, similarly to the solution shown in Fig.
5.7(c). The power spectrum of this solution is shown in Fig. 5.11(d) which shows rela-
tively higher central peak power than the power spectrum for the solution with positive
C given in Fig. 5.11(e) despite the intensity profile indicating decrease in intensity.

The continuation results on the periodic pattern solution shown in Fig. 5.8(c) in the
parameter C is given in Fig. 5.12. For the continuation branch in Fig. 5.12(a), stable
solutions exist for both positive and negative values of C , however the branch remain
becomes unstable via saddle-node bifurcations for much smaller magnitudes of C' in the
positive potential regime compared to negative potential.

Intensity profiles of two stable solutions along the branch are given in Fig. 5.12(b-c) with
modulated amplitudes according to the sign of the curvature potential parameter C. As
with the continuation results shown in Fig. 5.11, the stable solution corresponding to
positive C' maintains the periodic pattern intensity profile of the solution and the power
spectrum of this solution in Fig. 5.12(e) shows secondary power peaks on either side of

the central peak.
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Figure 5.12: Continuation of the periodic pattern solution from tuning the parameter S shown in Fig.
5.8 as a function of C. Panel (a) show the bifurcation branches, stable (solid blue) and
unstable (dashed blue), in the maximum intensity of the solution Ip,...The continuation
branch becomes unstable via fold points (cyan circles). Black open circles mark the solutions
whose intensity profile is given in panels (b)-(c). The profile shown in (b) corresponds to a
negative potential curvature parameter C' = —2.304 x 10~ and frequency shift w = 0.1759,
while the profile in (c) is for C =0.649 x 1072 and w = 0.1745. The power spectrum of the
solutions in (b-c) are shown in panels (d-e) respectively. Parameters : oy = 1.5, ag = 0.5,
Ji/Jen = 0.8043, Jo = —0.12, s = 15, h = 1.98, n = 0.833, d = 0.003, B = 0.99988,
S =0.11071, L, = 8.3776.

The intensity profile in Fig. 5.12(b) shows the solution for negative C. This solution
illustrates that with increasing magnitude of | C' |, the periodic pattern of the solution
slowly dissipates, similar to the solution shown in Fig. 5.8(d). The corresponding power
spectrum of this solution is given in Fig. 5.12(d) also has higher central power peak,
despite the decrease in intensity, compared to the solution for positive C.

With these continuation results the findings of the stability analysis of the system equa-
tion in Eq. (5.1) for periodic and uniform steady state solutions are confirmed. The
emergence of modulated periodic patterns due to Turing instability as well as periodic
pattern formation in the solutions by tuning the system parameters was observed. The
stability of these solutions under the effects of the potential term are also detailed.
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6 Two-Dimensional Pattern Formation

6.1 Two-Dimensional Turing Instability

As discussed previously, in Section 5.1, the dispersion relation of the eigenvalues of the
coefficient matrix of the 1D MIXSEL model Equation (2.22) indicate a narrow band of
Turing instability for high frequencies that can lead to emergence of spatially periodic
solutions. For the two-dimensional system of the MIXSEL model Equation (2.17) with
wavefront curvature parameter C' = 0, a similar linear stability analysis shows that
instead of a fixed Turing wavevector ¢r, only the magnitude of the unstable wave-vector
| g7 | is fixed. This leads to a various unstable wave-vectors in the two-dimensional plane
q1 = (g, qy) that satisfy the condition for Turing instability.

Depending on the system parameters used as well as the finite transverse dimension sizes
L, and L, various patterns modulated two-dimensional patterns can emerge from the
numerical simulation of uniform solutions. Various simulation results at different system
parameters are shown below considering the Turing wave-vector gr ~ 3.

The resonant condition given in Eq. (5.16) is satisfied as qr/q. = 4 for the cut-off
frequency q. = (2m)/L; such that the transverse dimension size in the z—direction is

L, — 42", (6.1)
qar

With this set of parameters, two different types of domain sizes in the y—direction is
considered. A square domain is when L, = L, for the sizes of the transverse dimensions,
while hexagonal domain is when L, = (v/3/2)L,.
For direct numerical simulation of a uniform solution with intensity I = 1.0, the method
described in Section 2.2 is used for two transverse dimensions r| = (x,y) to investigate
the dynamics at the spectral frequencies that induce Turing instability. Tuning the
parameters B and S gives rise to different forms of two-dimensional patterns in the
solutions as per Eq. (5.15).
Simulation results of two-dimensional uniform solutions within a square domain are given
in Figs. 6.1 and 6.2 corresponding to two stripped patterned solutions, as well as Fig.
6.3 which shows square patterns in the solution. In Fig. 6.1, the pattern that emerges
for the particular set of tuning parameters for a square domain are vertical stripes in the
two-dimensional intensity profile in Fig. 6.1(b). The corresponding power spectrum, in
the log scale, is given in Fig. 6.1(c) which shows the expected distribution of spectral
frequencies in the Fourier domain for such a patterned solution.
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Figure 6.1: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a) and
(b) shows the intensity profile of the solution and the power spectrum (log scale) is shown
in panel (¢). The profile shows the emergence of stripes in the square domain. Parameters:
ap = 1.5, ap = 0.5, Ji/Ju, = 0.777, Jo = —0.12, s = 15, h = 1.98, n = 0.833, d = 0.003,
B =0.99988, S = 0.11, L, = L, = 8.3776.
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Figure 6.2: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a) and
(b) shows the intensity profile of the solution and the power spectrum (log scale) is shown
in panel (c). The profile shows the emergence of stripes in the square domain. Parameters:
a1 = 1.5, ag = 0.5, J1/Jon = 0.777, Jo = —0.12, s = 15, h = 1.98, 5 = 0.833, d = 0.003,
B =0.99988, S = 0.11071, L, = L, = 8.3776.
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Figure 6.3: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a) and
(b) shows the intensity profile of the solution and the power spectrum (log scale) is shown
in panel (c). The profile shows the emergence of square patterns in the square domain.
Parameters : a1 = 1.5, ag = 0.5, J1/Jen, = 0.777, Jo = —0.12, s = 15, h = 1.98, n = 0.833,

d =0.003, B =0.99347, S =0.11, L, = L, = 8.3776.

Figure 6.4: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a)
and (b) shows the intensity profile of the solution and the power spectrum (log scale) is
shown in panel (c). The profile shows the emergence of hexagons in the hexagonal domain.
Parameters : a1 = 1.5, ag = 0.5, J1/Jen = 0.777, Jo = —0.12, s = 15, h = 1.98, n = 0.833,
d =0.003, B= 0.99988, S =0.11, L, = 8.3776, L, = 7.2552.

Similarly, another solution is shown in Fig. 6.2 for the system in the square spatial
domain where the patterns that emerge from the uniform solution are horizontal stripes,
see Fig. 6.2(a). The power spectrum in the Fourier domain, Fig. 6.2(c) is also typical
spectrum expected from the horizontal stripped patterns. This solution is obtained by
slight tuning in the aberration parameter S from the parameter state defined for the
solution given in Fig. 6.2.
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However, the results shown in Fig. 6.3 correspond to the emergence of square patterns
within the spatial domain as shown in Fig. 6.3(b) and is also obtained by slightly tuning
the parameter B. The power spectrum of the square pattern solution, shown in Fig.
6.3(c) is characteristically different from those of the stripes with additional spectral
frequency peaks.

In the case for the system defined with a hexagonal domain, the primary patterns that
emerge from simulation of uniform solutions around ¢r are hexagons. Some examples
of such hexagonal solutions are shown in Figs. 6.4, 6.5 and 6.6 obtained from direct
numerical simulation in two dimensions.

Figure 6.5: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a) and
(b) shows the intensity profile of the solution and the power spectrum (log scale) is shown
in panel (c). The profile shows the emergence of inverse hexagons in the hexagonal domain.
Parameters : a1 = 1.5, as = 0.5, J1/Jep, = 0.777, Jo = —0.12, s = 15, h = 1.98, n = 0.833,

d =0.003, B =0.99347, S =0.11, L, = 8.3776, L, = 7.2552.

Figure 6.6: Stable solution of Eq. (2.17) in two dimensions by direct numerical simulation. Panel (a) and
(b) shows the intensity profile of the solution and the power spectrum (log scale) is shown
in panel (c). The profile shows the emergence of inverse hexagons in the hexagonal domain.
Parameters : a1 = 1.5, ag = 0.5, J1/Jen, = 0.777, Jo = —0.12, s = 15, h = 1.98, n = 0.833,

d = 0.003, B = 0.99988, S = 0.11071, L, = 8.3776, L, = 7.2552.

In Fig. 6.4, the emergent patterns are hexagons whose intensity profile is shown in Fig.
6.4(b). The corresponding power spectrum in Fig. 6.4(c) is the typical Fourier domain
spectral peaks for hexagonal solutions in two dimensions.

Two other solutions from direct numerical simulation are obtained by tuning the param-
eters B and S that resulted into hexagonal patterns, given in Figs. 6.5 and 6.6. However,
the intensity profile of these solutions are inverted as compared to the solution in Fig.
6.4(b), while the power spectrum of all three solutions have similar spectral frequency
peaks in the Fourier space.

The hexagonal pattern in the spatial intensity profile in Fig. 6.5(a) and 6.6(a) is clearly
observed. The difference between the profiles in Fig. 6.5(b) and 6.6(c) is simply the
relative orientation in the hexagonal patterns in the defined transverse spatial domain.
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These simulation results of modulated patterns emerging from steady solutions of uni-
form intensity confirms the results of the linear stability analysis performed on the
two-dimensional system in Section 5.1. While the results obtained from linear stabil-
ity analysis predict instability and wavelength of the solution, the pattern selection is
dependent on the nonlinearity. The nonlinearity due to light-matter interaction in the
MIXSEL model Eq, (2.17) favors the formation of hexagonal patterns in the solution.
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7 Conclusion

In this thesis, the dynamics of transversal patterns that can emerge in optical micro-
cavities due to the interaction of two different types of nonlinear effects along a fourth-
order partial derivative were studied and presented. The first part deals with the Quartic
Dispersion Nonlinear Schrédinger Equation (QDNLSE) (2.5) which has multiple families
of pulse solutions called Generalized Dispersion Kerr Solitons (GDKS) [12]. In the
second part, the dynamics of the solutions of a MIXSEL model Equation (2.17) that
describes the effects of light matter interaction in an gain-absorber integrated system
along with effects of micro-cavities with small chromatic dispersion coupled with an
external feedback.

The Split-Step Method for direct numerical simulation using spectral techniques for the
two nonlinear PDEs were described in Chapter 2, along with two different schemes, Semi-
Implicit Euler and Second Order Split-Step, for integrating the two differential equations.
This method of direct analysis was used for select solutions to analyze stability of the
solutions and their dynamics in later chapters.

Furthermore, the principles of arc-length Path Continuation were discussed in Chapter
2 which is another method of analyzing steady solutions to differential equations and
their stability. The MATLAB [24] package pde2path [25] that was used to perform path
continuation on the two nonlinear system equations was described and the implemen-
tation for path continuation on the two PDEs was given in detail. The method for
implementation of nonlinear PDEs with higher order partial derivatives for continuation
in pde2path is a generalized technique and can be used for other nonlinear PDEs as well.
In Chapter 3, the results of continuation of the Generalized Dispersion Kerr Solitons
were presented. First, a general analysis was performed on the QDNLSE such that the
only real field solutions were allowed. This led to the eigenvalue equation (3.3) and
the critical value of the phase parameter po that divided the parameter plane of the
system into sections corresponding to the nature of the oscillating tails of the solution.
Arc-length Path continuation performed on the system equation (3.2) confirmed the
existence of these families of soliton solutions called GDKS.

It was confirmed that for negative values of the second order dispersion parameter and
phase parameter below the critical value, the solutions are soliton-like with exponen-
tially decaying tails. However, when the phase parameter goes above the critical value,
patterns in the solution start to emerge that have oscillating tails, becoming more os-
cillatory as the second order dispersion parameter becomes more positive. Whereas, no
localized solutions were found, either by direct simulation or through continuation for
positive second order dispersion parameter values with below critical values of the phase
parameter. A special family of GDKS solutions called Pure Quartic Solitons [7], that
correspond to zero second order dispersion, was also presented.

Next, the system was extended into the complex regime to analyze the stability of these
solutions to the QDNLSE (2.5) by Arclength Path Continuation. The resulting solutions
presented in Chapter 3, were for complex field profiles. Stable steady state solutions
were found in confirmation of the results for the real field implementation. Oscillatory
transverse patterns were observed in the solutions for positive second order dispersion
above the critical value of the phase parameter. Spectrally asymmetric solutions were
also found that were stable.

The eigenvalues of these complex field steady state solutions were analyzed and unsta-
ble complex envelope solutions were found. The stability of the solutions as obtained
from the eigenvalues of the Jacobian during continuation was confirmed later via direct
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numerical simulation as well. Two unstable solutions had been discussed, one that was
a traveling wave solution and the other being a dissipative solution that had modulated
intensity due to radiative losses. Thus, in contrast to the Nonlinear Schrédinger Equa-
tion (2.1), it was found that adding a quartic dispersion term to the system led to the
steady state solutions with oscillating tails for certain parameter regimes.

In Chapter 4, the 1D MIXSEL model Eq. (2.22) was analytically solved, assuming
weak nonlinearity and losses, which led to a class of solutions called Hermite-Gauss
modes for the ODE system (4.2) in a stable cavity with no aberrations. In an unstable
cavity with aberrations, tilted Hermite-Gauss modes are the analytical solutions that
shifts the mode-frequencies. The wavevectors of these tilted Hermite-Gauss modes are
determined by the values of the effective diffraction and the aberration parameters,
as well as determine the parameter regime where the cavity becomes stable. Direct
numerical analysis on these modes confirmed the analytical results as stable steady
state solutions of the system. The tilted Hermite-Gauss modes were classified into two
sub-classes and continuation was performed with each of the fundamental modes as well
as of higher order modes.

The continuation results with the gain bias current as the control parameter on the three
modes yielded similar trends in the bifurcation diagrams. The solution branch bifurcates
from the stable off-state solution at threshold via an Andronov-Hopf bifurcation and
becomes unstable as the gain bias current decreases. It again becomes stable via a
saddle-node bifurcation as the branch turns and gain bias current increases. This leads
to bi-stability of the solution since for every value of the gain bias current, there exists
one low intensity unstable solution and a high intensity stable solution. From the relation
for the gain current in Eq. (2.19), bi-stable solutions was expected along with the stable
off-state.

For continuation on the aberration parameter as the control for these modes, it was
found that the oscillatory tails of the mode always become more oscillatory as aberration
approached zero, along with higher spectral frequencies in the power spectrum of the
mode. This result is consistent with the analytical expression for the wave-vector of
these modes given in Eq. (4.7) which indicated that for smaller aberration parameter
values the transverse spectral frequencies increase in magnitude and the modes become
highly oscillatory.

In contrast, relation (4.7) indicates that for smaller values of the effective diffraction
parameter, the spectral frequencies decrease in magnitude and, hence, the mode loses its
highly oscillatory transverse patterns. This finding was also confirmed via continuation
with the effective diffraction parameter as the control parameter for the three modes.
The effects of the potential term on the spatial domain was also analyzed from the
bifurcation diagrams with the wavefront curvature as the control parameter. The three
tilted Hermite-Gauss modes were found we be stable for relatively small values of the
wavefront curvature parameter, forming more oscillatory transversal patterns in the
solution modes as the parameter values decreased. Other higher modes were found to
be unstable by direct numerical simulation.

In Chapter 5, linear stability analysis of the MIXSEL model Eq. (2.17) with the wave-
front curvature parameter being zero, i.e., no potential effect on the spatial domain, is
presented. The eigenvalues obtained from the effective coefficient matrix of the linearized
system indicated the presence of modulational instabilty for the long wavelength regime
in the dispersion relation. However, for certain set of parameter values, the dispersion
relation showed the presence of a narrow band of Turing instability in the system. The
wavevector at which the Turing instability was present, called Turing wavevector, gave
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rise to a resonant condition with the finite transverse domain length (5.16) as well as a
tuning condition dependent on the effective diffraction and aberration parameter (5.15).
This Turing instability that leads to the emergence of periodic patterns in a uniform
continuous wave solution was confirmed by continuation with the gain bias as the con-
trol parameter at the defined parameter regime, where the bifurcation diagram shows
the branching of a periodic solution branch from the uniform solution branch. The
emergence of patterns in uniform solution was also confirmed with direct numerical
simulation. Furthermore, with continuation in the tuning parameters, various periodic
pattern solutions were also observed.

The effects of adding potential to the transverse spatial domain of the periodic pattern
solution was also investigated by continuation with wavefront curvature parameter as
control. As can be expected, the potential term modulated the solution depending on
the sign of the wavefront curvature parameter. The results indicated that the periodic
pattern solutions of the MIXSEL model were stable for small values of potential, both
negative and positive. For positive potential to the system, the periodic pattern solutions
maintained their modulated amplitudes while for negative potential the solutions slowly
lost their periodic pattern profile.

In Chapter 6, the dispersion relation obtained from the linear stability analysis for the 1D
MIXSEL model Eq. (5.1) was extended to the two-dimensional transverse spatial domain
and the effects of Turing instability was investigated. From direct numerical simulation
of uniform intensity two-dimensional transverse profiles, various steady periodic pattern
solutions emerged dependent on the two-dimensional transverse domain sizes that were
defined for the system.

Stripes and square patterns were found in a system with equal domain sizes of the two
spatial dimensions, while for a hexagonal domain, hexagons were the preferred intensity
pattern of the steady state solutions. Different patterns were found to emerge from
direct numerical simulation by tuning the effective diffraction and aberration parameters,
confirming the validity of the relation in Eq. (5.15).

Therefore, the different kinds of transversal patterns that might emerge in the solutions
of differential equations describing two types of optical micro-cavities were presented
and their dynamics were analyzed in this thesis.
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