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A B S T R A C T

The aim of this thesis is to understand passive mode-locking in
coupled optical micro-cavities.

Delayed algebraic differential equations (DADEs) are derived from
first principles for the dynamics of a mode-locked integrated external-
cavity surface-emitting laser (MIXSEL) and a vertical cavity surface-
emitting laser coupled to a saturable absorber mirror (VCSEL-
RSAM).

By the example of the MIXSEL it is shown that third order dispersion
induces a train of decaying satellites on the leading edge of a pulse.
As a consequence of the nonlinear interaction with the carriers, these
satellites may get amplified and destabilize the mode-locked state.

Depending on the parameters this instability stems either from a
global bifurcation of the saddle-node infinite-period type or locally
from an Andronov-Hopf bifurcation.

Multi-scale analysis and functional mapping are used to derive a
master equation for both the MIXSEL and the VCSEL-RSAM, where
for both equations third order dispersion is an essential ingredient.

The analysis of the MIXSEL is concluded by comparing the bifur-
cation diagrams for the master equation and the DADE yielding a
good agreement.

For the VCSEL-RSAM the emergence of wiggling temporal localized
states is investigated. The analysis shows that the wiggling instability
is due to an interplay between the third order dispersion induced
by the micro-cavities and their frequency mismatch. The frequency
mismatch defines the range of existence of stable emission.

The bifurcation scenario underlying the wiggling phenomenon is
revealed as stemming from a Bogdanov-Takens bifurcation. The
existence of a homoclinic bifurcation allows controlling the period
of the oscillation.

Further, a mechanism for the stabilization of a super mode-locked
state was discovered that is due to second order dispersion induced
by the frequency mismatch of the micro-cavities. The master equa-
tion successfully predicts the existence of all involved dynamical
regimes, including a regime of bistable chaos.

In conclusion, this thesis discovered and explained three mechanism
related to the stability of mode-locked states. It is the first time
that master equations were derived and a bifurcation analysis was
performed for DADE laser systems.





Z U S A M M E N FA S S U N G

Das Ziel dieser Arbeit ist es, die passive Modenkopplung in gekop-
pelten optischen Mikrokavitäten zu verstehen. Aus ersten Prinzipien
werden verzögerte algebraische Differentialgleichungen (DADEs)
abgeleitet für die Dynamik eines modengekoppelten integrierten
oberflächenemittierenden Lasers mit externem Resonator (MIXSEL)
und eines oberflächenemittierenden Lasers mit vertikalem Resonator
gekoppelt an einen sättigbaren Absorberspiegel (VCSEL-RSAM).

Am Beispiel des MIXSEL wird gezeigt, dass die Dispersion dritter
Ordnung einen Zug von abklingenden Satelliten an der Vorderflanke
eines Pulses induziert. Als Folge der nichtlinearen Wechselwirkung
mit den Ladungsträgern können diese Satelliten verstärkt werden
und den modengekoppelten Zustand destabilisieren.

Abhängig von den Parametern entstammt diese Instabilität entweder
von einer globalen Bifurkation des Saddle-Node-Typs mit unendli-
cher Periode oder lokal von einer Andronov-Hopf-Bifurkation.

Mit Hilfe der Multiskalenanalyse und der funktionalen Abbildung
wird eine Master-Gleichung sowohl für den MIXSEL als auch für
den VCSEL-RSAM abgeleitet, wobei für beide Gleichungen die Di-
spersion dritter Ordnung ein wesentlicher Bestandteil ist.

Die Analyse des MIXSEL wird durch den Vergleich der Bifurkations-
diagramme für die Master-Gleichung und die DADE abgeschlossen,
wobei eine gute Übereinstimmung festgestellt wird.

Für den VCSEL-RSAM wird das Auftreten von wackelnden zeitlich
lokalisierten Zuständen untersucht. Die Analyse zeigt, dass die
Wackel-Instabilität auf ein Zusammenspiel zwischen der durch die
Mikrokavitäten induzierten Dispersion dritter Ordnung und deren
Frequenzabweichung zurückzuführen ist. Es zeigt sich, dass die
Frequenzabweichung den Bereich der stabilen Emission festlegt.

Das Wackelphänomen ist auf eine Bogdanov-Takens-Bifurkation zu-
rückzuführen. Eine existierende homoklinen Bifurkation ermöglicht
es, die Periode der Oszillation zu kontrollieren.

Darüber hinaus wurde ein Mechanismus zur Stabilisierung eines
super modengekoppelten Zustands entdeckt, der auf die Dispersion
zweiter Ordnung zurückzuführen ist, die durch die Frequenzab-
weichung der Mikrokavitäten entsteht. Die Master-Gleichung sagt
erfolgreich die Existenz aller beteiligten dynamischen Regime vor-
aus, einschließlich eines Regimes von bistabilem Chaos.

Zusammenfassend wurden in dieser Arbeit drei Mechanismen im
Zusammenhang mit der Stabilität von modengekoppelten Zustän-
den entdeckt und erklärt. Zum ersten Mal wurden für DADE Laser-
systeme Master-Gleichungen hergeleitet und eine Bifurkationsanaly-
se durchgeführt.





R E S U M E N

El objetivo de esta tesis es comprender el bloqueo de modo pasivo
en microcavidades ópticas acopladas. Por eso, se derivan ecuaciones
diferenciales algebraicas retardadas (DADE) a partir de los primeros
principios para la dinámica de un láser emisor de superficie de
cavidad externa integrado con bloqueo de modo (MIXSEL) y un
láser emisor de superficie de cavidad vertical acoplado a un espejo
absorbente saturable (VCSEL-RSAM).

Con el ejemplo del MIXSEL se demuestra que la dispersión de tercer
orden induce un tren de satélites que decaen en el borde de ataque
de los pulsos. Como consecuencia de la interacción no lineal con los
portadores, estos satélites pueden amplificarse y desestabilizar el
estado de bloqueo de modo.

Dependiendo de los parámetros, esta inestabilidad proviene de una
bifurcación global del tipo nodo de silla con período infinito o
también de una bifurcación local de Andronov-Hopf.

El análisis multiescala y el metodo del mapeo funcional se utilizan
para derivar una ecuación maestra tanto para el MIXSEL como para
el VCSEL-RSAM, donde para ambas ecuaciones la dispersión de
tercer orden revela ser un ingrediente esencial.

El análisis del sistema MIXSEL se concluye comparando los diagra-
mas de bifurcación de la ecuación maestra y del modelo DADE,
destacando el buen acuerdo.

En el caso del VCSEL-RSAM se investiga la aparición de estados
localizados temporales ondulantes. El análisis muestra que la inesta-
bilidad del movimiento de los pulsos se debe a una interacción entre
la dispersión de tercer orden inducida por las microcavidades y su
desajuste de frecuencia. El desajuste de frecuencia define el rango
de existencia de la emisión estable.

El escenario de bifurcación que subyace al fenómeno de ondulación
se revela como derivado de una bifurcación de Bogdanov-Takens.
La existencia de una bifurcación homoclínica permite controlar el
período de oscilación.

Además, se identificó un mecanismo para la estabilización de un
estado de súper bloqueado de modos que se debe a la dispersión
de segundo orden inducida por el desajuste de frecuencia entre las
microcavidades. La ecuación maestra predice con éxito la existencia
de todos los regímenes dinámicos involucrados, incluido un régimen
de caos biestable.

En conclusión, esta tesis descubrió y explicó tres mecanismos rela-
cionados con la estabilidad de los estados de bloqueo de modo. Es
la primera vez que se derivan ecuaciones maestras y se realiza un
análisis de bifurcación para sistemas láser DADE.





R E S U M

L’objectiu d’aquesta tesi és comprendre el bloqueig de modo passivo
en microcavitats òptiques acoblades.

Per això, es deriven equacions diferencials algebraiques retardades
(DADE) a partir dels primers principis per a la dinàmica d’un làser
emissor de superfície de cavitat externa integrat amb bloqueig de
mode (MIXSEL) i un làser emissor de superfície de cavitat vertical
acoblat a un mirall absorbent saturable (VCSEL-RSAM).

Amb l’exemple del MIXSEL es demostra que la dispersió de tercer
ordre indueix un tren de satèl·lits que decauen a la vora d’atac
dels polsos. Com a conseqüència de la interacció no lineal amb
els portadors, aquests satèl·lits es poden amplificar i desestabilitzar
l’estat de bloqueig de manera.

Depenent dels paràmetres, aquesta inestabilitat prové duna bifur-
cació global del tipus node de cadira amb període infinit o també
duna bifurcació local d’Andronov-Hopf.

L’anàlisi multiescala i el mètode de mapatge funcional s’utilitzen per
derivar una equació mestra tant per al MIXSEL com per al VCSEL-
RSAM, on per a totes dues equacions la dispersió de tercer ordre
revela ser un ingredient essencial.

L’anàlisi del sistema MIXSEL es conclou comparant els diagrames
de bifurcació de l’equació mestra i del model DADE, destacant el
bon acord.

En el cas del VCSEL-RSAM, s’investiga l’aparició d’estats localitzats
temporals ondulants. L’anàlisi mostra que la inestabilitat del movi-
ment dels polsos es deu a una interacció entre la dispersió de tercer
ordre induïda per les microcavitats i el desajust de freqüència. El
desajust de freqüència defineix el rang d’existència de l’emissió
estable.

L’escenari de bifurcació subjacent al fenomen d’ondulació es revela
com a derivat d’una bifurcació de Bogdanov-Takens. L’existència
d’una bifurcació homoclínica permet controlar el període d’oscil·lació.

A més, es va identificar un mecanisme per a l’estabilització d’un estat
de súper bloquejat de modos que es deu a la dispersió de segon
ordre induïda pel desajust de freqüència entre les microcavitats.
L’equació mestra prediu amb èxit l’existència de tots els règims
dinàmics involucrats, inclòs un règim de caos biestable.

En conclusió, aquesta tesi va descobrir i explicar tres mecanismes
relacionats amb l’estabilitat dels estats de bloqueig de manera. És la
primera vegada que es deriven equacions mestres i es fa una anàlisi
de bifurcació per a sistemes làser DADE.
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1
I N T R O D U C T I O N

The study of light and optical phenomena has a long and illustrious
history, dating back to the time of the ancient Greeks [1]. At first,
optics was the theory of vision. It was in the 17th century that light
became the central entity of optics due to Kepler [2]. None of the
theories of light that existed until the 20th century could satisfactory
explain all the phenoma observed nowadays. Two theories about light
were the most widespread: One theory considered light as a particle
and was most notably advocated by Newton [3], while the other is a
wave description of light, advocated by Huygens and Fresnel, among
others [1]. The discovery of quantum mechanics revolutionized the
understanding of optics and resolved the ambiguity about the dual
nature of light [4–6].

In modern times, the study of light has taken on new importance with
the advent of lasers in the second half of the 20th century [7, 8]. Long
before that, in 1899, the foundation for these devices was laid by Fabry
and Pérot, who came up with the idea of an interference apparatus
consisting of two parallel reflecting mirrors, i. e., an optical cavity [9].

In 1917, Einstein postulated stimulated emission, which explained
the observed spectrum of black-body radiation [4]. Before, classical
electromagnetism could only explain the processes of absorption and
spontaneous emission. Twenty years after Einsteins prediction, Fab-
rikant came up with the idea to apply the effect of stimulated emission
to amplify radiation [10]. However, his efforts were delayed by the
Second World War and it was only until 1954 that a laser was finally
realized in an experiment by Townes [7].

It is difficult to overstate the relevance of laser applications, like optical
fibre communications [11, 12], cutting materials [13], data process-
ing [14], or in medicine [15–18] that are essential to many aspects of
contemporary life. Applications of lasers further include mass-market
consumer products like laser pointers, compact discs or laser printers.

Even if a laser’s pumping is constant, its output might be irregular [19].
While the irregular output was initially explained to stem from noise
and imperfections, it was later proposed that it may result from non-
linear interactions in the equations that govern the laser dynamics [20].
An intense and still ongoing study of dynamical systems ensued after
Lorenz demonstrated in 1963 that deterministic chaos, i. e., complex
dynamical behavior, exists in systems with merely three degrees of

1



2 introduction

Figure 1.1: Illustration of passively mode-locked dynamics in a laser with a
saturable absorber. Blue, green and red lines indicate the electrical
field intensity, the gain and the absorber population inversion,
respectively. The absorber evolves on a faster time scale than the
gain, which leads to the opening of a net gain window (+) around
the pulse and to net losses (−) elsewhere.

freedom [21]. In 1975, Haken demonstrated that the system studied
by Lorenz to explain fluid dynamics is identical to a single mode
laser [20].

In regular laser emission, the different modes, i. e., standing waves in
the laser cavity, oscillate independently with no fixed phase relation.
In this case, the output is roughly constant in intensity since the
ever changing modal superposition does not create high amplitude
fluctuations.

If the phase between the modes is fixed so that the modes interfere
constructively, the laser’s output is instead a train of intense and
short (on the order of femtoseconds) pulses, which is called mode-
locking [22–24]. The discovery of mode-locking [25] led to further
important technological applications, e. g., an optical clock or in medi-
cal surgeries [26–29].

The shortest and most intense pulses have been achieved with pas-
sive mode-locking (PML). This approach combines a gain medium
amplifying the light and a saturable absorber absorbing the light and
shortening the pulse duration. Both the absorption and amplification
of light decreases with increasing light intensity. Because the absorber
evolves on a faster time scale than the gain medium, a net gain win-
dow opens around the pulse, while net losses prevail elsewhere [30,
31]. Figure 1.1 illustrates this principle.

Coupled optical micro-cavities, which confine light in small volumes
and thereby increase the interaction with the medium, can emit PML
light with high output power and good beam quality. Two such laser
sources are investigated in this thesis: One is a mode-locked integrated
external-cavity surface-emitting laser (MIXSEL) [36, 37] and the other
one is a vertical-cavity surface-emitting laser coupled to a resonant
saturable absorber mirror (VCSEL-RSAM) [38–46].
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(a) MIXSEL

(b) VCSEL-RSAM

Figure 1.2: Schematics of the coupled micro-cavity setups investigated in
this thesis. (a) A mode-locked integrated external-cavity surface-
emitting laser (MIXSEL) where both a gain (blue) and a saturable
absorber medium (purple) are enclosed in a micro-cavity cou-
pled to an external feedback mirror. (b) A vertical cavity surface-
emitting laser coupled to a resonant saturable absorber mirror
(VCSEL-RSAM). The gain (blue) and saturable absorber medium
(purple) are enclosed in two different micro-cavities with a beam
splitter (green dotted line) in the middle. For both setups, the out-
put of a micro-cavity is injected into a micro-cavity after passing
some distance. Adapted with permission from [32–35].

Figure 1.2 (a,b) depicts the setups of both the MIXSEL and the VCSEL-
RSAM, respectively. In a MIXSEL both the gain and the saturable
absorber share the same micro-cavity coupled to an external feed-
back mirror. The VCSEL-RSAM consists of two micro-cavities, one
containing the gain and the other containing the saturable absorber.

Despite intensive research efforts toward the general understanding
of PML, its stability mechanisms are not fully understood yet due to
the complexity involved in the analysis of high dimensional, nonlinear
equations leading to many kinds of dynamical regimes. In this thesis,
the theory of dynamical systems sheds light on three of these stability
mechanisms.
A particular class of dynamical system is known as delayed dynam-
ical system. Delay arises naturally in the modeling process in many
different fields whenever information takes a finite amount of time to
propagate [47–51]. Combining so-called delayed differential equations
with algebraic constraints [52–55], the resulting equations are called
delayed algebraic differential equations (DADEs) [56–64]. Delayed
dynamical systems have strong links with spatially extended systems
such as the Ginzburg-Landau equation [65, 66] and, as mentioned, can
lead to a variety of dynamical behaviors [67–72].
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When coupled micro-cavities are modeled from first principles, the
governing equation is a DADE as the electrical field injected into
one micro-cavity equals the output of a micro-cavity at a past time.
While modeling coupled micro-cavities as DADEs is elegant and
intuitive, it complicates the analysis. Although DADE models for
coupled micro-cavities were proposed as early as 2005 [73], they have
not been widely used since due to the complexity of dealing with
the algebraic conditions and time delay. However, this thesis presents
instabilities of PML, which cannot be observed in models based on
the more commonly used delayed differential equations because their
dispersive effects are negligible [35]. One contribution of this thesis is
the implementation of numerical methods which enable the bifurcation
analysis of DADEs [74], which is a method revealing how a dynamical
system behaves in the control parameter space.

Direct numerical simulation and bifurcation analysis only sometimes
allow for an intuitive interpretation of the dynamics. Further, the
physical interpretation of the dynamics might stay hidden in the
structure of the time-delayed equations. Therefore, it is insightful to
derive a partial differential equation (PDE) as a so-called normal form
for the field amplitude that approximates the dynamics of the full
DADE model. In the PDE representation, the field depends on a slow
and a fast time. The slow time represents the evolution of the field
profile from one round-trip to the next, while the fast time describes
the evolution of the pulse within the round-trip. While this approach
has been used in several time-delayed systems [71, 72], such PDE
models are usually termed Haus master equations in the framework
of mode-locking as the Haus equation, at first a semiphenomenological
model, was originally derived to study active mode-locking [23].

The analysis of the MIXSEL and VCSEL-RSAM systems with direct
numerical simulations, bifurcation analyses and normal forms reveals
and explains three mechanisms related to the stability of PML pulses:
the satellite instability, wiggling and super mode-locking.

The satellite instability was experimentally observed recently in the
long cavity regime in a mode-locked VCSEL-RSAM [35]. At its core,
this unstable pulsating regime results from the face-to-face coupling
of the micro-cavities containing the gain and the saturable absorber
media. Operated in reflection, the gain and absorber micro-cavities
behave as dispersive Gires-Tournois interferometers (GTI) [75]. After
several round-trips, the third order dispersion induced by the disper-
sive micro-cavities gives rise to serrated waveforms that consist of a
decaying sequence of satellites accumulating in front of the leading
edge of the pulse. It is shown that these satellites may become unstable,
leading to low-frequency modulation of the pulse envelope on a slow
time scale, typically on the order of hundreds of round-trips.
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A wiggling mode-locked state is characterized by an amplitude and
position oscillating in time. Wiggling behavior was observed in a wide
range of setups including photovoltaic photorefractive crystals, wide-
aperture lasers with a saturable absorber, chemical systems, and as a
secondary instability of the cubic-quintic complex Ginzburg-Landau
equation [76–88]. The analysis shows that the wiggling instability is
due to an interplay between the third order dispersion induced by
the micro-cavities and their frequency mismatch. Furthermore, the
frequency mismatch defines the range of existence of stable emission.

In addition to the fundamental mode-locked (FML) solution depicted
in figure 1.1 a super mode-locked (SML) solution is discovered in
the VCSEL-RSAM. For low gain, the SML solution has satellites on
the leading edge. For higher gain, the SML solution is similar to the
fundamental mode-locked solution, although the power spectrum is
broader than the FML solution and asymmetrical. The analysis reveals
that the second order dispersion induced by the frequency mismatch
of the micro-cavities may stabilize the SML state. The corresponding
master equation successfully predicts the existence of all involved
dynamical regimes, including a regime of bistable chaos.

outline Chapter 1 introduces the topic of this thesis. Chapter 2 de-
tails the theory necessary to understand the results in the main part. In
particular, the models for the MIXSEL and the VCSEL-RSAM systems
are derived from first principles. The main part of this thesis starts
with chapter 3, which investigates the MIXSEL system. It is shown
how the delay algebraic modeling leads to third order dispersion. This
in turn might induce a satellite instability. The underlying principle is
explained with the master equation derived from the system’s equa-
tions. Chapter 4 explores the VCSEL-RSAM system. It is revealed how
an interplay of the frequency mismatch between the two micro-cavities
and third order dispersion results in a wiggling instability. Further, the
master equation for the VCSEL-RSAM is derived, and it is shown how
second order dispersion stabilizes a super mode-locked state. Chapter
5 concludes this thesis with a summary and an outlook on further
research directions.





2
T H E O RY

2.1 dynamical systems

A dynamical system describes how a given state evolves in time.
Using a formal general definition [89, 90] a dynamical system is a
tuple (T, X, Φ) where T is the time domain, X is the state space and
Φ : U ⊆ (T × X) → X with proj2(U) = X is the evolution function
(proj2 denotes the second projection map [91]). Further, φ satisfies

Φ(0, x) = x, (2.1)

Φ(t1, Φ(t2, x)) = Φ(t1 + t2, x). (2.2)

Then the evolution of an initial state x is given by

Φx(t) = Φ(t, x), (2.3)

where Φx(t) is called the flow through x. Often instead of Φx(t), the
convention is to write x(t).

The trajectory through x is defined as

Px = {Φx(t)|t ∈ T} (2.4)

and it is one of the goals of the theory of dynamical systems to make
statements about the trajectories of a given dynamical system [90].

In general, the evolution of a dynamical system is either given by an
iterative map with discrete time values T = Z relating the state at the
next time value with the state at the current time value as

xi+1 = f (xi) (2.5)

with xi ∈ Rd, f : Rd → Rd. The system (2.5) is then called a discrete
dynamical system. Alternatively, the evolution is given as a differential
equation with continuous time T = R, where the derivative of the state
at the current time is in some particular way related to the value of the
state. In this case, the system is called a continuous dynamical system.
The simplest form is given by an ordinary differential equation (ODE)
that can be written as

ẋ(t) = f (x(t)) (2.6)

with x(t) ∈ Rd, f : Rd → Rd. f is commonly called the right-hand side
of the dynamical system.

7
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Although f is not explicitly time-dependent, it might be implicitly by
introducing another component z = t with ż = 1 to the state vector x.

As many of the prevalent phenomena appearing in dynamical systems
can already be explained using ODEs, the following two subsections
are explained with ODEs summarizing from [89, 92]. Based on this,
delayed dynamical systems are introduced, and their properties are
discussed. Further, spatially extended systems given by partial differ-
ential equations are presented as they are closely linked to delayed
dynamical systems in the long delay limit.

2.1.1 Bifurcation Theory

Normally, one would like to obtain an analytical expression for the
time evolution of x, i. e., one would like to solve the map (2.5) or
differential equation (2.6) analytically.

If f is linear, a complete theory for this case exists [93, 94] and it is
possible to obtain an analytical solution. However, usually no such
solution even exists when f is given by seemingly simple nonlinear
expression. Therefore, a slightly weaker approach is used that aims to
make statements about the structure of the solution space. The goal is
to identify state space subsets that attract or repel close-by trajectories
under the flow. Although repelling subsets cannot be observed directly
in numerical simulations, they can still strongly influence the behavior
of the dynamical system.

Simple and often studied examples are steady states, closed trajectory
periodic orbits, and non-integer dimensional subsets that lead to
chaos. Bifurcation theory then examines how these sets’ existence and
stability change as control parameters vary.

2.1.2 Steady States

Steady states are states that do not change in time. They can be
determined from the ODE by solving

ẋ∗ = f (x∗) = 0, (2.7)

where x∗ is the steady state. As the next section shows, steady states
give insight into a dynamical system because they determine the
behavior of close-by states.

2.1.3 Linear Stability Analysis

Close to a steady state, trajectories are usually either attracted towards
the steady state or are repelled by it. If all trajectories in the vicinity
of the steady state converge to it, the steady state is called stable. On
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the other hand, if there is at least one direction from which nearby
trajectories diverge, the steady state is called unstable.

The stability of a steady state x∗ can be determined by investigating
the linear dynamics of the state

x = x∗ + δx, (2.8)

i. e., a state that is slightly perturbed from the steady state. If the
perturbation δx decays to zero, the steady state is stable. The steady
state is unstable if it grows exponentially in the linearized system.
Between exponential decay and exponential growth, the perturbation
can also stay constant in magnitude in a direction. If the steady state
is not unstable and the magnitude of the perturbation stays constant
in at least one direction, the steady state is called neutrally stable.

Inserting equation (2.8) into the ODE yields

ẋ = ẋ∗ + δ̇x = f (x∗ + δx). (2.9)

Equation (2.9) is potentially still nonlinear. Linearizing the right-hand
side around x∗ gives

f (x∗ + δx) ≈ f (x∗) + J(x∗)δx, (2.10)

where J(x∗) =
(

d fi

dxj
(x∗)

)
ij

is the Jacobian matrix of f , i. e., the matrix

of derivatives of f with regard to all components of x. Combining
equations (2.9) and (2.10) together with ẋ∗ = 0 and f (x∗) = 0 gives the
equation for the linear dynamics of δx as

δ̇x = J(x∗)δx. (2.11)

Such a linearized ODE can be solved analytically with the ansatz

δx(t) = veλt. (2.12)

Inserting equation (2.12) into equation (2.11) results in a linear eigen-
value problem

λv = J(x∗)v (2.13)

with eigenvalue λ and eigenvector v. According to elementary linear
algebra [95] a nontrivial solution v 6= 0 exists, if and only if

χ(λ) = |J(x∗)− 1λ|= 0. (2.14)

Equation (2.14) is called the characteristic equation of the dynamical
system with characteristic function χ. In a dynamical system where
all the components of x are real-valued, eigenvalues come in com-
plex conjugated pairs. Equation (2.14) has n (potentially degenerate)
solutions for λ, i. e., one for each dimension of the dynamical system.

The stability of a steady state is determined by the eigenvalues of the
Jacobi matrix of the dynamical system:
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• If there is at least one λ with Re[λ] > 0, a perturbation in the
direction of the respective eigenvector diverges exponentially
from the steady state. In this case, the steady state is unstable.

• If all eigenvalues λ have negative real part Re[λ] < 0, all pertur-
bations decay exponentially. Nearby trajectories converge to the
steady state. In this case, the steady state is stable.

• If the largest real part of the eigenvalues is zero, the steady state
is neutrally stable. In linear systems, the state does not move
along the axes of eigenvectors belonging to eigenvalues with
Re[λ] = 0. In nonlinear systems, higher-order terms decide if the
perturbation diverges from or converges to the steady state.

2.1.4 Periodic Orbits

Periodic orbits are trajectories of a dynamical system (2.5) that are
closed, i. e., where the state at a certain time t repeats itself after the
period T of the periodic orbit [96]. A state that is part of a periodic
orbit fulfills the relationship

x(t) = x(t + T). (2.15)

Let x n ∈ C be a profile of length T defined by

x n(t) = x(nT + t), (2.16)

where C = C([0, T], Rd) is the space of continuous real d-dimensional
vector functions on the interval [0, T].

From there, an iterative map can be defined for the dynamics of x as

x n+1 =MT[x n], (2.17)

whereMT is called the monodromy operator defined by the integral
over the right-hand side

MT[x n](t) = x(nT + t) +
T∫

0

f (x(nT + t + t′)) dt′. (2.18)

Periodic orbits x ∗ are steady states of equation (2.17), i. e., they fulfill

x ∗ =MT[x ∗]. (2.19)

This formulation allows determining the stability of a periodic orbit in
the same way as for any other iterative map: Linearizing the dynamics,
making an exponential ansatz and determining the eigenvalues. For
iterative maps, these eigenvalues are called Floquet multipliers.

Following section 2.1.3, the linear dynamics of the state

x n = x ∗ + δx n (2.20)
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close to a periodic orbit are determined, where δx n is the perturbation.
Inserting equation (2.20) into equation (2.17) leads to

x n+1 = x ∗ + δx n+1 =MT[x ∗ + δx n] ≈MTx ∗ + JTδx n. (2.21)

AsMTx ∗ = x ∗ the dynamics of the perturbation are given by

δx n+1 = JTδx n, (2.22)

where JT is the Jacobian ofMT.

The stability of the periodic orbit is determined by the Floquet multi-
pliers µ of JT:

• If there exists at least one Flowuet multiplier with |µ|> 1, then
the perturbation grows exponentially in magnitude with every
iteration. As a result, the periodic orbit is unstable.

• If for all Floquet multipliers |µ|< 1 holds, then the perturbation
decays exponentially in magnitude with every iteration. The
periodic orbit is stable.

• If for the Floquet multiplier with the largest modulus |µ|= 1
holds, then the perturbation stays constant in magnitude in the
direction of the respective eigenprofile with every iteration in the
linearized system. The periodic orbit is neutrally stable, and the
nonlinearities determine whether perturbations grow or decay.

2.1.5 Chaos

Chaos is a special kind of dynamic that is deterministic, aperiodic and
highly sensitive to initial conditions.

Deterministic means that the dynamics are not random but always
result in the same output from a given initial condition. Two states
that are identical to each other evolve the same over time. Although
being sensitive to initial conditions implies that it is difficult to make
predictions far into the future if the measurement of the current state
has uncertainty, the deterministic nature of the dynamics makes it
possible to make short-term predictions and to infer causality [97–99].

Further, chaotic dynamics are aperiodic, i. e., the state neither repeats
itself nor converges to a steady state. However, quasi-periodic motion
is not highly sensitive to initial conditions in contrast to chaos.

Finally, chaos is highly sensitive to initial conditions. Nearby initial
conditions diverge exponentially, as measured by the Lyapunuov-
exponent Λ [92]. In particular, two infinitesimal close initial conditions
with separation δx(t) diverge from each other with a rate given by

|δx(t)|≈ eΛt|δx(0)|. (2.23)
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(a) Time traces (b) State space representation

Figure 2.1: Evolution of the Lorenz system (2.24)-(2.26). The dynamics at the
parameter values (ρ, β, σ) = (28, 8/3, 10) are an example of chaotic
behaviour. While the time traces (a) seem unpredictable, the state
space representation (b) shows the dynamics’ inherent structure.

One famous example of a dynamical system exhibiting chaos is the
Lorenz system [21] that is given by

ẋ = σ(y− x), (2.24)

ẏ = x(ρ− z)− y, (2.25)

ż = xy− βz. (2.26)

For the parameter values (ρ, β, σ) = (28, 8/3, 10) a chaotic attractor is
globally stable. A time trace for this parameter set can be seen in
figure 2.1 (a). Although the time trace seems unpredictable, the dy-
namics’ inherent structure can be seen in the state space representation
depicted in figure 2.1 (b).

Four different routes lead to chaos in dynamical systems: period-
doubling, intermittency, the Ruelle-Takens route and the crisis route [21,
96, 100–102]. The two relevant routes for this thesis are period-doubling
and intermittency. The bifurcations involved are explained in more
detail in the next section.

As a system undergoes the period-doubling route to chaos, an infinite
cascade of period-doubling bifurcations (see section 2.1.6.9) occurs
that accumulates at some finite parameter value, after which a chaotic
attractor emerges.

As a system undergoes the intermittency route to chaos, a stable peri-
odic orbit disappears and is replaced by a chaotic attractor. The chaotic
attractor appears by either a fold of periodic orbits (see section 2.1.6.1),
a subcritical Andronov-Hopf bifurcation (see section 2.1.6.3) or an
inverse period-doubling bifurcation (see section 2.1.6.9) [102]. Almost
periodic dynamics interrupted by bursts characterize the intermittent
behavior.
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2.1.6 List of Bifurcations

Usually, when a control parameter of a dynamical system is changed,
the vector field defined by the right-hand side changes continuously
and remains topologically equivalent to the system with unchanged
parameters.

However, a slight change in a control parameter can also lead to
a sudden change in the phase portrait. Then, the system with the
changed control parameter is no longer topologically equivalent to that
with unchanged parameters. In this case, it is said that the dynamical
system experiences a bifurcation.

Bifurcations can be classified according to the following criteria:

• local vs. global: If the bifurcation type can be detected by a linear
stability analysis of a steady state, it is called local. Otherwise, it
is called global. Local bifurcations can be detected as one or more
eigenvalues cross the imaginary axis. An important concept for
local bifurcations is the normal form [103]. For a given local
bifurcation, the normal form is a simplified dynamical system
that is topologically equivalent to all dynamical systems close
around a steady state that undergoes the same type of bifurca-
tion. Global bifurcations differ from each other by the scaling of
the amplitude and period of the involved subsets.

• super- vs. subcritical: If the solution that emerges from a bifurca-
tion is stable, the bifurcation is called supercritical.

• structurally stable vs. unstable: A bifurcation is called structurally
stable if it persists when the dynamical system itself is slightly
perturbed. Otherwise, it is called structurally unstable. One
example of a structurally unstable bifurcation is the pitchfork
bifurcation (see section 2.1.6.2), as it possesses the symmetry
f (x) = − f (−x) that is broken when f is perturbed.

• codimension: The number of control parameters that must be
varied for the bifurcation to occur. Most of the bifurcations
presented in this subsection are of codimension-one. However,
the Bogdanov-Takens bifurcation (see section 2.1.6.6), for in-
stance, needs two parameters to unfold fully and is, therefore,
codimension-two.

The rest of this subsection presents the bifurcations that appear in the
main part of this thesis.
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Figure 2.2: Steady states x∗ against the bifurcation parameter µ for the fold
normal form (2.27). Black solid line: Stable steady state. Black
dashed line: Unstable steady state. Blue point: Fold bifurcation.

2.1.6.1 Fold Bifurcation

In a fold bifurcation, two steady states collide and annihilate. Close
to a fold bifurcation, the dynamical system (2.6) is equivalent to the
normal form

ẋ = µ− x2. (2.27)

The steady states of equation (2.27) are given by x∗ = ±√µ and the
bifurcation occurs at µ = 0. Going from a negative to a positive value
of µ, a stable and an unstable steady state starts to exist. Reversing the
direction, a stable and an unstable steady state collide and annihilate.

The bifurcation is called fold bifurcation because the steady state curve
folds back, as depicted in figure 2.2. It is also known as saddle-node
bifurcation as a saddle (unstable steady state) collides with a node
(stable steady state).

The fold bifurcation is a local bifurcation that can be detected as an
eigenvalue of the Jacobi matrix crosses the origin.

It is one of two structurally stable codimension-one bifurcations, the
other being the Andronov-Hopf bifurcation (see section 2.1.6.3).

2.1.6.2 Pitchfork Bifurcation

In a pitchfork bifurcation, a steady state changes its stability as two
other steady states emerge. Close to a pitchfork bifurcation, the dy-
namical system (2.6) is equivalent to the normal form

ẋ = µx± x3, (2.28)

where the bifurcation is supercritical if a negative sign is chosen
and subcritical otherwise. The steady states of equation (2.28) are
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(a) Supercritical pitchfork (b) Subcritical pitchfork

Figure 2.3: Steady states x∗ against the bifurcation parameter µ for the pitch-
fork normal form (2.28). Black solid line: Stable steady state. Black
dashed line: Unstable steady state. Blue point: Pitchfork bifurca-
tion.

given by x∗ = 0 and x∗ = ±√±µ, where the ± inside the square
root has the same sign as in equation (2.28). At µ = 0 the steady
state at the origin loses its stability, and two steady states emerge.
In the supercritical case, both emerging steady states are stable, see
figure 2.3 (a). In the subcritical case, the emerging steady states are
unstable (cf. figure 2.3 (b)).

The pitchfork bifurcation is not structurally stable, as it possesses the
symmetry f (x) = − f (−x). If a constant or quadratic term is introduced
into equation (2.28), the pitchfork bifurcation ceases to exist. Figure 2.4
illustrates the consequences of a symmetry breaking with a bifurcation
diagram of a structural perturbed pitchfork normal form given by

ẋ = −3/2 + µx + 1/4x2 − x3. (2.29)

Instead of a single branch undergoing a pitchfork bifurcation, for
equation (2.29) two seperate branches exist, one of which folds.

-3 -2 -1 0 1 2 3

-2

-1

0

1

Figure 2.4: Steady states x∗ against the bifurcation parameter µ for the struc-
turally perturbed pitchfork normal form (2.29). Black solid line:
Stable steady state. Black dashed line: Unstable steady state. Blue
point: Fold bifurcation.
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2.1.6.3 Andronov-Hopf Bifurcation

At an Andronov-Hopf bifurcation, a periodic orbit emerges from a
steady state as the steady state changes its stability. The behaviour
of the dynamical system (2.6) close to the bifurcation is given by the
normal form

ṙ = µr± r3, (2.30)

θ̇ = 1. (2.31)

Note that the system (2.30)-(2.31) is represented in polar coordinates r
and θ, which relate to cartesian coordinates x and y as

x = r cos(θ), (2.32)

y = r sin(θ). (2.33)

Consequently, r = 0, θ̇ = 1 is considered a steady state because it is
steady in the cartesian coordinates, i. e., ẋ = ẏ = 0 holds.

While for µ < 0 the steady state at r = 0 at the origin is stable, it loses
its stability for µ > 0 as a periodic orbit emerges at µ = 0. Figure 2.5
depicts the bifurcation diagram of a supercritical Andronov-Hopf
bifurcation.

An Andronov-Hopf bifurcation can be detected from linear stability
analysis as a complex conjugated pair of eigenvalues crosses the
imaginary axis.

In the subcritical case without higher order terms, the system would
diverge to ±∞ for certain initial conditions. Including higher-order
terms, the unstable branch folds back and becomes stable resulting
in all trajectories staying bounded. The normal form of a subcritical
Andronov-Hopf bifurcation with the addition of a stabilizing fifth-
order term reads

ṙ = µr + r3 − r5, (2.34)

θ̇ = 1. (2.35)

At µ = 0 the steady state at the origin loses its stability in an Andronov-
Hopf bifurcation as an unstable periodic orbit emerges. This periodic
orbit folds back at µ = −1/4, where it becomes and remains stable.
The bifurcation diagram of the normal form with the addition of a
fifth-order term is depicted in figure 2.6.
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Figure 2.5: Bifurcation diagram of a supercritical Andronov-Hopf bifurca-
tion (2.30)-(2.31). As the bifurcation parameter µ passes zero, the
previously stable steady state in the origin loses its stability as a
stable periodic orbit emerges.

Figure 2.6: Bifurcation diagram of a subcritical Andronov-Hopf bifurca-
tion (2.34)-(2.35). As the bifurcation parameter µ passes zero,
the previously stable steady state in the origin loses its stability
as an unstable periodic orbit emerges. The unstable periodic orbit
regains its stability in a fold of periodic orbits. Stability is indi-
cated with a solid line, dashed otherwise. Blue dots mark the
bifurcation points.
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2.1.6.4 Homoclinic Bifurcation

In a homoclinic bifurcation, a periodic orbit collides with an unstable
steady state, after which the periodic orbit ceases to exist.

At the bifurcation point, a periodic orbit with an infinite period exists
that connects the steady state with itself. This orbit that connects an
unstable steady state with itself is called a homoclinic orbit.

As the homoclinic bifurcation is global, it cannot be detected by linear
stability analysis, and no normal form exists. An example system that
exhibits a homoclinic bifurcation is [92]

ẋ = y, (2.36)

ẏ = x + µy− x2 + xy, (2.37)

where the homoclinic bifurcation occurs at µ = µc ≈ −0.86. For µ < µc

a periodic orbit, a stable and an unstable steady state exist. At µ = µc

the periodic orbit collides with the unstable steady state forming a
homoclinic orbit. For µ > µc the periodic orbit ceases to exist, and
only the two steady states remain.

It can be shown that the period of the periodic orbit close to the
homoclinic bifurcation scales as O(log(µ− µc)) [92].

2.1.6.5 SNIPER Bifurcation

At a SNIPER bifurcation (short for saddle-node infinite period bifurca-
tion), a stable steady state collides with an unstable steady state as a
periodic orbit with infinite period and finite amplitude emerges.

An example system that exhibits the SNIPER bifurcation reads [92]

ṙ = r(1− r2), (2.38)

φ̇ = µ− sin(φ). (2.39)

The SNIPER bifurcation occurs at µ = µc = 1. For µ < 1 a stable and
an unstable steady state exist that collide at µ = 1, at which point a
periodic orbit of finite amplitude starts to exist. For µ > 1 the steady
states disappear, and only the periodic orbit remains.

It can be shown that the period of the periodic orbit close to the sniper
bifurcation scales as O((µ− µc)−

1
2 ) [92].

Table 2.1 summarizes the periodic orbit’s scaling of the amplitude
and period close to an Andronov-Hopf, a homoclinic and a SNIPER
bifurcation.
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Table 2.1: Scalings of a periodic orbit’s amplitude and period close to differ-
ent bifurcations [92]. µ is the control parameter of the bifurcation
that occurs at µ = 0.

Bifurcation Amplitude Period

Andronov-Hopf O(
√

µ) O(1)

Homoclinic O(1) O(log µ)

Sniper O(1) O(µ−
1
2 )

2.1.6.6 Bogdanov-Takens Bifurcation

The Bogdanov-Takens bifurcation is a codimension-two bifurcation
from which two branches of fold bifurcations, an Andronov-Hopf
bifurcation and a homoclinic bifurcation originate.

At the Bogdanov-Takens bifurcation, a steady state exists with an
eigenvalue λ = 0 with a multiplicity of two.

Close to the bifurcation and under certain non-degeneracy conditions,
the dynamical system (2.6) behaves as [104]

ẋ = y, (2.40)

ẏ = µ1 + µ2x + y2 ± xy, (2.41)

where the bifurcation occurs at (µ1, µ2) = (0, 0). Choosing a nega-
tive sign for ± results in a supercritical Andronov-Hopf bifurcation,
whereas a positive sign results in a subcritical Andronov-Hopf bifur-
cation.

The two fold curves are given by µ1 =
1
4

β2
2, β2 > 0 and β2 < 0. The

Andronov-Hopf curve is parameterized by the half line β1 = 0, β2 < 0.

The approximation of the homoclinic curve reads µ1 = − 6
25

µ2
2 +O(|µ2|3),

µ2 < 0 [104].

2.1.6.7 Fold of Periodic Orbits

In a fold of periodic orbits, two periodic orbits collide and annihilate
each other. As the dynamics for profiles of a specific length can be
written as an iterative map (see section 2.1.4), the bifurcation is con-
sidered a local bifurcation of the amended dynamical system acting
on periodic profiles.

As the system undergoes a fold of periodic orbits, one Floquet multi-
plier crosses through the unit circle at µ = 1.
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(a) µ < µc (b) µ > µc

Figure 2.7: Example time trace of a periodic orbit before µ < µc (a) and after
µ > µc (b) a torus bifurcation occurred. The dashed line indicates
the slowly varying envelope.

2.1.6.8 Torus Bifurcation

In a torus bifurcation, a periodic orbit changes its stability as a solution
with an additional frequency emerges. If the frequency ωT introduced
by the bifurcation is commensurate with the frequency of the original
periodic orbit ωP, i. e., ωT/ωP ∈ Q, the emerging solution is another
periodic orbit. Otherwise, the solution that emerges is quasi-periodic.

Figure 2.7 shows a simple example of a periodically repeating time
trace undergoing a torus bifurcation.

As the system undergoes a torus bifurcation, a pair of Floquet multi-
pliers crosses the unit circle at µ = e±iφ.

2.1.6.9 Period-Doubling Bifurcation

At a period-doubling bifurcation, a periodic orbit changes its stability
as a periodic orbit with twice the original period emerges.

An example of a period-doubling bifurcation is depicted in figure 2.8.

As the system undergoes a period-doubling bifurcation, a Floquet
multiplier crosses the unit circle at µ = −1.

2.1.7 Delayed Dynamical Systems

So far, for the introduction of dynamical systems ODEs have been
sufficient. They allow linking the rate of change to the state at the
current time.

However, as information takes a finite time to propagate, in some cases
it is necessary to incorporate the resulting delay into the modeling
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(a) µ < µc (b) µ > µc

Figure 2.8: Example time trace of a periodic orbit before µ < µc (a) and after
µ > µc (b) a period-doubling bifurcation occurred.

to obtain accurate results. Systems that link the rate of change to the
state at previous times are called delayed dynamical systems (DDS).

This section introduces the different delayed dynamical systems impor-
tant for this thesis and highlights the differences to ordinary dynamical
systems.

2.1.7.1 Delayed Differential Equations

A delayed differential equation (DDE) with a single constant delay
τ > 0 can be written as

ẋ(t) = f (x(t), x(t− τ)). (2.42)

While for ODEs (2.6) the state is conventionally written as a vector
of real numbers in Rd, for DDEs the state x at time t is a vector of
continuous real functions C = C([t− τ, t], Rd) on the interval [t− τ, t].
Therefore, the history of x from t − τ to t needs to be known to
determine the time evolution of x.

The method of steps [105, 106] illustrates why solutions of (2.42)
become smoother over time. The idea is to integrate one step of length
τ after the other. First, define xn(t) = x(nτ + t), n ∈ Z, t ∈ [0, τ] as the
solution of the nth step. The solution of the following step xn+1 can
then be computed as

xn+1(t) = xn(τ) +
t∫

0

f (xn+1(t′), xn(t′)) dt′. (2.43)

Hence, if xn is k times differentiable, xn+1 is at least k + 1 times differ-
entiable because of the integration that takes place in equation (2.43).
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Figure 2.9: Differences in the smoothing of discontinuities for DDEs and
NDDEs. (a) The DDE system ẋ = x(t− τ) with initial function
x(t) = 1, t < 0 has a jump discontinuity in the nth derivative at
t = (n− 1)τ, i. e., the solution becomes smoother over time. (b)
The NDDE system ẋ = ẋ(t− τ) with initial function x(t) = t, t < 0
has a discontinuity for ẋ at t = nτ, n ∈N, i. e., the solution retains
its smoothness.

One example system for the smoothing property of DDEs is

ẋ(t) = x(t− τ). (2.44)

The initial condition x(t) = 1 for t < 0 results in the nth derivative
having a jump discontinuity at t = (n− 1)τ. A time trace of this system
is depicted in figure 2.9 (a).

DDEs cannot be integrated back in time uniquely. The system

ẋ(t) = x(t− τ)(x(t)− 1) (2.45)

has the solution x(t) = 1 for t > 0 as long as x(0) = 1 holds independent
of the initial function. Figure 2.10 depicts three different time-traces of
equation (2.45) with the initial function fulfilling x(0) = 1.

Although the state space of DDEs is infinite-dimensional even for
infinitesimal delays, an attractor’s dimension is always finite, and only
a finite number of eigenvalues are involved in a local bifurcation.

2.1.7.2 Neutral Delayed Differential Equations

Neutral delayed differential equations (NDDEs) allow a delayed state
and a delayed derivative to appear in the right-hand side of the system.
NDDEs can be written as

ẋ(t) = f (x(t), x(t− τ), ẋ(t− τ)). (2.46)



2.1 dynamical systems 23

-1 0 1 2

-1

-0.5

0

0.5

1

-1 0 1 2

-1

-0.5

0

0.5

1

-1 0 1 2

-1

-0.5

0

0.5

1

(a) x0(t) = 1 (b) x0(t) = t + 1 (c) x0(t) = cos(8πt)

Figure 2.10: Demonstration that DDEs cannot be uniquely integrated back-
ward in time. The system ẋ(t) = x(t − τ)(x(t)− 1) with initial
function x(t) = x0(t), t < 0 has the solution x(t) = 1, t > 0 as
long as x(0) = 1 holds independent of the initial function.

In general, NDDEs do not have the same smoothing property as
discussed for DDEs but retain their smoothness. The smoothness
does not change because the integral in the method of steps (2.43)
additionally contains the derivative of x. The example system

ẋ(t) = ẋ(t− τ) (2.47)

with initial function x(t) = t for t < 0 has a jump discontinuity for ẋ(t)
at t = nτ, n ∈N. Figure 2.9 (b) shows the time-trace of equation (2.47).

In contrast to DDEs, NDDEs with neutral terms can uniquely be
integrated back in time because the the smoothness of the solution is
retained.

While for DDEs only a finite number of eigenvalues can be involved
in a local bifurcation, infinitely many eigenvalues may cross the imag-
inary axis simultaneously for NDDEs [107, 108].

In the context of this thesis, NDDEs appear in the derivations of
normal forms (see section 3.3) where the delayed algebraic differential
equations (see section 2.1.7.3) are rewritten as NDDEs to make the
calculations more compact.

2.1.7.3 Delayed Algebraic Differential Equations

The most general delayed equation considered in this thesis is called a
delay algebraic differential equation (DADE). Its characteristic is that
it combines time delay with algebraic conditions, which do not need
to contain a time derivative. A DADE can be written as

Mẋ(t) = f (x(t), x(t− τ)) (2.48)

with the mass matrix M ∈ Rn×n, which is allowed to be singular.
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When modeling coupled optical micro-cavities, DADEs appear natu-
rally because the output of one cavity is injected into another cavity.
Because the electrical field takes time to propagate from one cavity to
another, the injected field of each cavity is given as a delayed algebraic
condition. In contrast, the dynamics for the electrical field inside the
cavity and the carriers are given by ordinary differential equations.

The right-hand side of a DADE (2.48) does not allow for delayed
derivates, as is the case for NDDEs (2.46). However, every NDDE
can still be written as a DADE, implying that DADEs are a superset
of NDDEs. To demonstrate this, the new variable y = f (x, xτ , yτ) is
introduced, which allows to write equation (2.46) as

ẋ = f (x, xτ , yτ) (2.49)

0 = y− f (x, xτ , yτ). (2.50)

Therefore, every NDDE can be written as a DADE with, at maximum,
twice as many variables as the original NDDE system. Not every
DADE can be written as a NDDE as the next example shows.

Delay algebraic differential equations can be acausal, i. e., depend on
future times, although all delays point to past times. An example is
the system defined by

ẋ(t) = y(t) (2.51)

0 = y(t− τ) + x(t). (2.52)

Shifting equation (2.52) by τ, solving for y(t) and inserting it into
equation (2.51) reveals

ẋ(t) = x(t + τ), (2.53)

i. e., that the derivative of x depends on future times. DADEs with this
property are said to be of advanced type [109, 110].

2.1.7.4 Spectral Properties

Linearizing a DADE (2.48) around a steady state following the ap-
proach presented in section 2.1.3 results in the characteristic equation

|Jx(x∗) + eλτ Jxτ (x∗)−Mλ|= 0, (2.54)

where Jx and Jxτ are the Jacobi-matrices with respect to the non-
delayed variables x(t) and delayed variables x(t− τ), respectively.

In the limit of long delays τ → ∞, the spectrum becomes quasi-
continuous, which makes the analytical treatment of the characteristic
equation easier. As stated in [72, 111], making the ansatz

λ = − ln|Y(ω)|
τ

+ iω (2.55)
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Figure 2.11: Delayed-type spectrum of the characteristic function χ(λ) =
λ + 1/2 + e−λτ as it approaches the long delay limit. As τ → ∞,
the spectrum becomes quasi-continuous. Red dots: Eigenvalues.
Blue line: Quasi-continuous spectrum (2.55).

and inserting it into (2.54) as well as neglecting all terms of order
O
(
τ−1) results in

|−iωM + Jx(x∗) + Jxτ (x∗)Y(ω)| = 0. (2.56)

The eigenvalues in the long delay limit are given by equation (2.55),
where Y(ω) are solutions of equation (2.56). The transition of the
spectrum to the long delay limit is depicted in figure 2.11.

In contrast to ODEs, the characteristic function of a delayed dynamical
system is not a polynomial in the eigenvalue λ but an exponential
polynomial. Exponential polynomials can be written as

χ(λ) = P(λ) + Q(λ)e−λτ , (2.57)

where P(λ) and Q(λ) are polynomials in λ. Assuming Q(λ) 6≡ 0, there
are three cases for the zeros of χ(λ) depending on the degree of P and
Q [107, 108]:

1. Delayed case: If deg P > deg Q, then χ(λ) has only a finite amount
of zeros with a positive real part and an infinite amount of zeros
with an arbitrarily large negative real part.

2. Neutral case: If deg P = deg Q, then χ(λ) has an infinite amount
of zeros given by

λ =
1
τ
(ln(|K|) + i(Arg(K) + (2k− 1)π))+O(1), k ∈ Z (2.58)

where K = −q/p and q and p are the highest order coefficients
of Q and P, respectively. There are only a finite number of other
zeros.
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Figure 2.12: Example spectra of delayed dynamical systems. All spectra have
an infinite amount of eigenvalues. The characteristic functions
are χ(λ) = λ + 1/2 + e−λτ (a), χ(λ) = e−λτ + 2 (b) and χ(λ) =
λe−λτ − e−λτ/2− 1 (c).

3. Advanced case: If deg P < deg Q, then χ(λ) has only a finite
amount of zeros with a negative real part and an infinite amount
of zeros with an arbitrarily large positive real part.

Figure 2.12 shows exemplary spectra for each of the three cases.

2.1.8 Spatially Extended Systems

Dynamical systems that depend on time and space are called spatially
extended systems. The time evolution is given by a partial differential
equation (PDE) that can be written as

∂tψ(x, t) = f (ψ,∇,∇2, . . .), (2.59)

i. e., the right-hand side of the system is allowed to depend on partial
derivatives of the space variables of ψ, which are indicated with the
nabla operator ∇ =

(
∂

∂x1
, . . . , ∂

∂xn

)
.

PDEs are relevant in the context of this thesis as they appear as the
master equations [23] that are derived from the DADEs using multi-
scale analysis (see section 3.3) and the functional mapping method
(see section 3.1.3).

DDSs can be seen as spatially extended systems with unusual bound-
ary conditions. For this, one can define a space-like variable z ∈ [0, τ]
and a discrete time-like variable σ ∈N for the DDS (2.48) as

x(σ, z) = x(στ + z). (2.60)
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(a) Spontaneous
emission

(b) Absorption (c) Stimulated Emission

Figure 2.13: Light interacting with matter. An electron may transition be-
tween two energy levels spontaneously emitting a photon (a),
absorbing a photon (b) or stimulated by a photon emitting a
second photon (c).

Then the original DDS turns into a PDE with discrete time and the
boundary condition

x(σ + 1, 0) = x(σ, τ). (2.61)

If the delay is large, σ and z decouple to some extent because they
act on different time scales. This decoupling, in turn, might allow for
additional insights into the properties of the dynamical system [72].

For a more thorough review of the similarities between DDSs and
PDEs in the long delay limit, see [72].

2.2 laser modeling

A laser (short for light amplification by stimulated emission of ra-
diation) is a device that emits light by stimulated emission that is
optically amplified [112, 113].

Three processes involving electrons and photons are relevant for this
thesis: spontaneous emission, absorption and stimulated emission [4].
A schematic of these processes is depicted in figure 2.13.

Spontaneous emission (cf. figure 2.13 (a)) occurs when an electron
spontaneously transitions from an excited energy state to a lower
energy state. In the process, a photon is emitted with the energy of
the difference between the two states.

The reverse process is called absorption (see figure 2.13 (b)) . In this
process, a photon excites an electron from a lower energy state to
an excited state, after which the photon is annihilated. For this to
occur, the photon’s energy needs to be equal to the energy difference
between the two states of the electron.

Instead of occurring spontaneously, the transition of an electron from
a high to low energy state can be induced by a photon. This process is
called stimulated emission and results in a perfect copy of the photon
that initiated the process, see figure 2.13 (c).
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(a) Gain (b) Absorber (c) Transparency

Figure 2.14: Different electron distributions in optical media. (a) If most
electrons are in an excited state, passing photons are amplified
by stimulated emission. (b) If most electrons are in the lower
energy state, passing photons are absorbed. (c) If the likelihood
for an electron to be in the excited state is the same as in the low
energy state, the number of photons stays the same after passing
the medium.

Light is amplified, damped, or unchanged when passing a medium
depending on the electron state distribution inside a medium. These
three cases are depicted in figure 2.14.

The first case corresponds to a gain medium, see panel (a). The elec-
trons are mainly in a high-energy state called population inversion.
Therefore, an appropriate photon that passes is amplified by the pro-
cess of stimulated emission.

In an absorber, the scenario is reversed, see figure 2.14 (b). Most of the
electrons are in a lower energy state. As a result, passing photons are
absorbed, which leads to the electron transitioning to the excited state.

If the likelihood of an electron being in the excited state is the same
as in the low energy state, the number of photons stays the same
after passing the medium, cf. figure 2.14 (c). In this case, the medium
is transparent. In both an absorber and a gain medium the process
saturates for large intensities resulting in a transparent medium.

In general, a laser typically consists of three components: a gain
medium, an external energy source that inverses the population in
the gain medium and a cavity. The first two ensure that a photon
is amplified by the process of stimulated emission, while the latter
ensures that a photon passes the gain medium multiple times.

The most general way to model the dynamics of a laser system in-
cludes differential equations for electrical fields, carrier inversions and
polarizations induced by the active media. Depending on the laser
system, the polarizations and carrier inversions can be eliminated
adiabatically. Based on this, laser models are classified as either type
A, B or C [114]. Class A laser models contain only the electrical field,
class B laser models contain the electrical field and carrier inversions,
and class C laser models contain all three components.

All investigated systems in this thesis are modeled as class B lasers and
can be derived from first principles starting at Maxwell’s equations.



2.2 laser modeling 29

2.2.1 Model Derivation

In this thesis, a mode-locked integrated external-cavity surface-emitting
laser (MIXSEL) as well as a vertical cavity surface-emitting laser cou-
pled to a resonant saturable absorber mirror (VCSEL-RSAM) are inves-
tigated. A model for both setups can be derived from first principles
starting at Maxwell’s equations. What follows is a short a deriva-
tion sketch of the equations that govern both systems’ behavior. This
subsection follows [32], where further derivation are detailed.

2.2.1.1 Maxwell’s Equations

Maxwell’s equations for a non-magnetizable material without free
charges or currents for the electrical field E(r, t) and magnetic flux
density B(r, t) read

∇ · D = 0, (2.62)

∇ · B = 0, (2.63)

∇× E = −Ḃ, (2.64)

∇× H = Ḋ. (2.65)

The electric displacement D and the magnetic field H are given by

D = ε0E + P = ε0(1 + χ)E, (2.66)

H =
B
µ0

. (2.67)

Here, χ is the electric susceptibility, P = ε0χE is the material induced
polarization, ε0 is the permittivity and µ0 is the permeability of the
vacuum [115].

The polarization can be separated into a linear Pb and nonlinear Pnl
contribution, which read

P = Pb + Pnl = ε0χbE + ε0χnlE, (2.68)

where χb and χnl are the background electric susceptibility and the
nonlinear electric susceptibility, respectively. The electric displacement
can then be written as

D = ε0(1 + χb)E + ε0χnlE = ε0εrE + Pnl , (2.69)

where εr is the relative permittivity.
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2.2.1.2 Wave Equation

The derivation’s first step is obtaining a wave equation for the electrical
field in the transverse direction.

Rotating equation (2.64) yields

∇× (∇× E) = ∇× (−Ḃ) = −µ0∇× Ḣ. (2.70)

Making use of the vector identity

∇× (∇× E) = ∇(∇ · E)−∇2E, (2.71)

equation (2.70) transforms into

∇(∇ · E)−∇2E = −µ0D̈, (2.72)

where equation (2.65) was used to replace ∇× Ḣ.

Assuming the divergence of the nonlinear polarization is small, i. e.,
∇ · Pnl � 1, it follows from equations (2.62) and (2.69) that ∇ · E = 0.
Equation (2.72) then simplifies to

∇2E−
n2

b
c2 Ë = µ0P̈nl , (2.73)

where equation (2.69) has been used to replace D. In equation (2.73)
nb =

√
εr is the background reflective index and c = 1/

√
ε0µ0 is the

speed of light in vacuum.

Writing equation (2.73) equation in Fourier space ∂t → −iω gives(
∇2 + ω2 n2

b
c2

)
Ê = −ω2µ0P̂nl = −ω2

c2 χnl Ê (2.74)

as the nonlinear wave equation for the electrical field in three dimen-
sions.

From here, assume that the transverse mode Φ(r⊥) is constant so that
the separation ansatz

Ê(r, ω) = Φ(r⊥, ω)Ê⊥(z, ω)e⊥ (2.75)

is valid. The transverse mode Φ(r⊥, ω) solves the Helmholtz equation
with proper boundary conditions [116](

∇2
⊥ +

ω2

c2 n2
⊥(r⊥, ω)

)
Φ(r⊥, ω) =

ω2

c2 n2
e Φ(r⊥, ω). (2.76)

Inserting the ansatz for Ê into equation (2.74) and projecting on the
transverse mode by multiplying with the conjugate of the mode Φ∗

and integrating over the transverse dimensions leads to(
∂2

∂z2 + ω2 n2
e

c2

)
Ê⊥e⊥ = −ω2

c2 Γ⊥χnl(0, z)Ê⊥(z)e⊥. (2.77)
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In equation (2.77) the transverse confinement factor Γ⊥ is defined as

Γ⊥ =

∫∫
AR
|Φ(r⊥)|2d2r⊥

+∞∫∫
−∞
|Φ(r⊥)|2d2r⊥

, (2.78)

where AR is the active region. AR is assumed to be centered around
r⊥ = 0, while χnl is assumed to be constant inside AR and zero
otherwise.

Further, defining the transverse polarization P̂⊥ as

P̂⊥(z) = ε0χnl(0, z)Ê⊥(z) (2.79)

simplifies equation (2.77) to(
∂2

∂z2 + ω2 n2
e

c2

)
Ê⊥ = −ω2µ0Γ⊥P̂⊥ (2.80)

as the final version of the wave equation for the transverse field.

2.2.1.3 Electric Susceptibility Model

For the electric susceptibility, the quantum wells are assumed to have
a parabolic band structure following a Fermi distribution [117].

The susceptibility is assumed to be constant in frequency χ(ω) ≈
χ(ω0), i. e., a mono-mode response of the micro-cavity is assumed,
because the gain spectrum is broad compared to the micro-cavity
mode. Hence, the susceptibility is linearized around the transparency
level N (tr) as

χnl ≈
∂χnl

∂N

(
N −N (tr)

)
. (2.81)

The convention is to write equation (2.81) defining the differential
gain coefficient g0 = −∂N Im[χnl] and the linewidth enhancement fac-
tor (or Henry factor) α = (∂N Re[χnl])/(∂N Im[χnl]), which quantifies
the amplitude–phase coupling and accounts for the additional line
broadening in semiconductor lasers [118, 119]. Then χnl reads

χnl = −g0(α + i)(N −N (tr)). (2.82)

The time evolution of the carriers is given by a standard rate equation
that only considers linear terms in N that can be written as

∂N
∂t

= J − γN +
εb

2h̄
Im[χnl]|E|2. (2.83)

Here, J defines the population inversion, γ is the rate of sponta-
neous emission and the last term models the stimulated emission
proportional to the electrical field intensity.
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Figure 2.15: A schematic of a micro-cavity of length L with a quantum well
layer at z = zQW . The micro-cavity is closed by two distributed
Bragg reflectors. R and L denote the intra-cavity field to the
right and left of the quantum well, respectively, where − and +
indicate a left and right moving wave, respectively. Y is the
injection field, and O is the output field of the micro-cavity. ti
and ri denote transmission and reflection coefficients inside the
micro-cavity, respectively, with i = 1 indicating the top and i = 2
the bottom mirror. Coefficients from outside the micro-cavity are
marked with primes. Adapted with permission from [32].

Inserting the susceptibility model (2.82) into the rate equation (2.83)
yields the final model for the carriers

∂N
∂t

= J − γN − εb

2h̄
g0(N −N (tr))|E|2. (2.84)

2.2.1.4 Micro-Cavity with Quantum Well

This section derives a model for an injected micro-cavity setup with a
thin quantum well (QW) region following [73]. The setup is depicted
in figure 2.15.

Starting point is the wave equation (2.80) derived in section 2.2.1.2
that can be written as

∂2E
∂z2 + ω2 n2

c2 E (ω, z) = −ω2µ0Γ⊥P(ω, z), (2.85)

where E is the transverse electromagnetic field in Fourier space, P
is the polarization of the QW region, Γ⊥ is the confinement factor of
the transverse mode, and n is the effective index of refraction of the
transverse mode.

It is assumed that the quantum well region is thin compared to the
wavelength W � λ and positioned at z = zQW in a cavity of length L.
The polarization is therefore written with the Kronecker delta δ as

P(ω, z) = WP′(ω)δ(z− zQW). (2.86)
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The boundary conditions for the electrical field are obtained as follows.
Inserting equation (2.86) into equation (2.85) and integrating around
z = zQW leads to

∂

∂z
E (zQW + ε)− ∂

∂z
E (zQW − ε) + ω2 n2

c2

zQW+ε∫
zQW−ε

E (z)dz = −ω2µ0P (2.87)

with P = WΓ⊥P′ defined for notational convenience.

Outside of the QW region, the electrical field can be written as left
and right propagating waves

E (ω, z) =

{
L(ω, z) = L+eiqz + L−e−iqz for 0 < z < zQW

R(ω, z) = R+eiqz + R−e−iqz for zQW < z < L
. (2.88)

Inserting equation (2.88) into equation (2.87) and taking the limit
ε→ 0 gives boundary conditions at the quantum well

L(ω, l) = R(ω, zQW) = E (ω, zQW) (2.89)
∂

∂z
R(ω, zQW)− ∂

∂z
L(ω, zQW) = −ω2µ0P(ω). (2.90)

The boundary conditions at the mirrors read

r1L+t
′
1Y = L+ (2.91)

r2R+eiqL = R−e−iqL. (2.92)

Combining equation (2.89) with the boundary conditions at the mir-
ror (2.91)-(2.92) results in

R+ =
e−iqzQWE

1 + r2e2iq(L−zQW ) , R− =
r2eiqzQWE

r2 + e2iq(zQW−L) , (2.93)

L+ =
r1eiqzQWE + t

′
1Y

1 + r1e2iqzQW
, L− =

e−iqzQWE − t
′
1Y

r1 + e−2iqzQW
. (2.94)

Inserting this back into equation (2.90) yields after some algebra

F1(q)E = iω
µ0c
2n

Γ(q)P + F2(q)Y (2.95)

with

F1(q) = 1− r1r2e2iqL, (2.96)

F2(q) = t
′
1eiqzQW

(
1 + r2e2iq(L−zQW )

)
, (2.97)

Γ(q) =
(

1 + r1e2iqzQW
) (

1 + r2e2iq(L−zQW )
)

. (2.98)

Here, Γ is the confinement factor, while F1 and F2 are introduced for
notational convenience. Further, it is assumed that the modulus of the
reflection coefficients does not depend on the frequency

ri(ω) = ρieiφi(ω), ρi ∈ R. (2.99)
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To obtain a temporal description, F1 is expanded around the cavity
mode ω0 that fulfills

2q0L + φ1(ω0) + φ2(ω0) = 2πc0, c0 ∈ Z, (2.100)

2q0zQW + φ1(ω0) = 2πc1, c1 ∈ Z, (2.101)

2q0(L− zQW) + φ2(ω0) = 2πc2, c2 ∈ Z. (2.102)

The first equation minimizes F1, and the latter two equations maximize
the confinement factor Γ.

The frequency is assumed to be close to the carrier frequency, i. e.,
ω = ω0 + δω, δω � 1. The linearization of F1 around ω0 reads

F1(ω + δω) ≈ F1(ω0) +
∂F1

∂ω

∣∣∣∣
ω=ω0

δω. (2.103)

Inserting (2.103) into equation (2.95) that was obtained from the bound-
ary conditions yields[

F1(ω0) +
∂F1

∂ω

∣∣∣∣
ω=ω0

δω

]
E = iω0

µ0c
2n

Γ(ω0)P + F2(ω0)Y. (2.104)

Finally, inserting F1, ∂F1
∂ω , F2 and Γ from equations (2.96)-(2.98) into (2.104)

results in the temporal description of the electrical field E

τcρ1ρ2

(
∂E
∂t
− i∆

)
= iω0

µ0c
2n

(1 + ρ1)(1 + ρ2)P− (1− ρ1ρ2)E

+ t
′
1eiq0zQW (1 + ρ2)Y, (2.105)

where τc is the cavity round-trip time defined as

τc = 2
n
c

L +
∂

∂ω
(φ1(ω0) + φ2(ω0)) . (2.106)

The model can be scaled to simplify the notation. For that the photon
lifetime κ, scaled detuning δ, polarization prefactor b and injection
coupling factor h̃ are defined as

κ =
1− ρ1ρ2

ρ1ρ2
τ−1

c , (2.107)

δ =
∆
κ

, (2.108)

b =
ω0

2nc
(1 + ρ1)(1 + ρ2)

1− ρ1ρ2
, (2.109)

h̃ = t
′
1ei(πn1−φ1(ω0)/2) 1 + ρ2

1− ρ1ρ2
. (2.110)

Equation (2.105) for the electrical field then becomes

κ−1 ∂E
∂t

= i
b
ε0

P− E + iδE + h̃Y. (2.111)
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Figure 2.16: A schematic of a mode-locked integrated external-cavity surface-
emitting laser (MIXSEL) that contains both a gain (blue) and a
saturable absorber medium (purple) coupled to a distant external
feedback mirror. E, Y and O denote the intra-cavity field, the
injection field and the output field, respectively. Reflection and
transmission coefficients are denoted the same as in figure 2.15.
Adapted with permission from [32, 33].

Further, E can be rescaled to be of the same order of magnitude as
Y, assuming a lossless distributed Bragg reflector (DBR) at resonance.
The input-output relation can be written as

O = ξE + βY (2.112)

with the prefactors

ξ =
(−1)c2 t1e−i φ1

2

1 + ρ1
, (2.113)

β = r
′
1 −

t1t
′
1e−iφ1

1 + ρ1
. (2.114)

Using the resonance conditions from equations (2.100)-(2.102) as well
as Stokes relations t′t = 1 + r′r and r = −r′ that hold due to the DBR
being assumed to be lossless, the prefactors simplify to

ξ =
(−1)c2 t1

1 + ρ1
, (2.115)

β = −1. (2.116)

Rescaling E = ξE , h = ξ h̃ and χ = b
ε P, the final model of the injected

micro-cavity response with a thin quantum well region is

κ−1Ė = [iχ− 1 + iδ]E + hY, (2.117)

O = E−Y. (2.118)

2.2.1.5 MIXSEL

The first setup considered in this thesis is a mode-locked integrated
external-cavity surface-emitting laser (MIXSEL) depicted in figure 2.16.
It consists of a micro-cavity that contains a gain and saturable absorber
medium coupled to a highly reflective feedback mirror.
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Taking equation (2.118) for the electrical field E, equation (2.118) for
the injection field Y, equation (2.84) for the gain and absorber car-
riers N1 and N2, respectively, and equation (2.82) for the nonlinear
susceptibility χnl gives the model for the MIXSEL as

κ−1Ė = [iχ− 1]E + hY, (2.119)

χ = −bg1(α1 + i)
(

N1 − N(tr)
1

)
− bg2(α2 + i)

(
N2 − N(tr)

2

)
,

(2.120)

Y = O(t− τ) = η[Eτ −Yτ], (2.121)

Ṅ1 = J1 − γ1N1 −
εb

2h̄
g1

(
N1 − N(tr)

1

)
|E|2, (2.122)

Ṅ2 = J2 − γ2N2 −
εb

2h̄
g2

(
N2 − N(tr)

2

)
|E|2, (2.123)

where the coupling efficiency into the micro-cavity is given by h =
(1 + |r2|)(1− |r1)/(1 + |r1r2|).

The notation can further be simplified as follows:

• The carrier densities are shifted by their transparency levels
Ñi = bgi

(
Ni − N(tr)

i

)
.

• The scaled current J̃i = bgi

(
Ji
γi
− N(tr)

i

)
and the saturation factors

si = εb
2h̄ gi are introduced.

• Time is rescaled as t̃ = κt, τ̃ = κτ.

• The electrical fields are rescaled as Ẽ =
√

s1E, Ỹ =
√

s1Y.

• Further, γ̃i = κ−1γi and s = s2
s1

= g2
g1

are introduced.

After these transformations and dropping the tildes for the sake of
clarity, the dimensionless scaled form of the MIXSEL reads

E = [(1− iα1)N1 + (1− iα2)N2 − 1]E + hY, (2.124)

N1 = γ1(J1 − N1)− |E|2N1, (2.125)

N2 = γ2(J2 − N2)− s|E|2N2, (2.126)

Y(t) = η [E(t− τ)−Y(t− τ)] . (2.127)

The delay algebraic condition from equation (2.127) incorporates all
infinitely many reflections at the external mirror. This can be seen by
iteratively reinserting equation (2.127) into itself

Y(t) = η [E(t− τ)−Y(t− τ)] ,

Y(t) = η [E(t− τ)− η [E(t− 2τ)−Y(t− 2τ)]] ,

Y(t) = η [E(t− τ)− η [E(t− 2τ)− η [E(t− 3τ)−Y(t− 3τ)]]] ,
...

Y(t) =
∞

∑
n=1

(−1)n+1ηnE(t− nτ). (2.128)
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Figure 2.17: A schematic of a vertical cavity surface-emitting laser coupled
to a resonant saturable absorber mirror (VCSEL-RSAM). Ei, Yi
and Oi denote the intra-cavity fields, the injection fields and the
output fields, respectively, where i = 1 indicates the gain mirror
and i = 2 the absorber mirror. After passing the beam splitter
(green dotted line), the output field of one cavity turns into the
injection field of the other cavity. Reflection and transmission
coefficients are denoted the same as in figure 2.15. Adapted with
permission from [32, 34, 35].

For weak feedback η � 1, the series can be truncated after the first
order of η considering only single round-trip feedback. The model
that results is similar to the Lang-Kobayashi model [120].

All reflections must be considered for strong feedback η → 1 because
their contributions are of the same order of magnitude. Therefore, the
delay algebraic approach without the truncation is more appropriate
for laser systems with strong feedback.

2.2.1.6 VCSEL-RSAM

The second setup considered in this thesis is a vertical cavity surface-
emitting laser coupled to a resonant saturable absorber mirror (VCSEL-
RSAM) depicted in figure 2.17.

The response of each cavity is given by equations (2.82), (2.84) and (2.117)

κ−1
i Ėi = [iχi − 1 + iδi]Ei + hiYi, (2.129)

χi = −bigi(αi + i)
(

Ni − N(tr)
i

)
, (2.130)

Ṅi = Ji − γiNi −
εb

2h̄

(
Ni − N(tr)

i

)
|Ei|2, (2.131)

where i = 1 for the gain cavity and i = 2 for the absorption cavity and
δ1 = 0. The injection fields Yi are the delayed outputs of the respective
other cavities after passing the beam splitter

Y1 = ηO2(t− τ) = η[E2(t− τ)−Y2(t− τ)], (2.132)

Y2 = ηO1(t− τ) = η[E1(t− τ)−Y1(t− τ)]. (2.133)
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The notation can be further simplified as follows:

• The carrier densities are shifted by their transparency levels
Ñi = bgi

(
Ni − N(tr)

i

)
.

• The scaled current J̃i = bgi

(
Ji
γi
− N(tr)

i

)
and the saturation factors

si = εb
2h̄ gi are introduced.

• Time is rescaled as t̃ = κt, τ̃ = κτ.

• The electrical fields are rescaled as Ẽ =
√

s1E, Ỹ =
√

s1Y.

• Further, γ̃i = κ−1γi, s = s2
s1

= g2
g1

and δ = δ2 are introduced.

After these transformations and dropping the tildes for the sake of
clarity, the dimensionless scaled form of the VCSEL-RSAM reads

κ−1
1 Ė1 = [(1− iα1)N1 − 1] E1 + h1Y1, (2.134)

κ−1
2 Ė2 = [(1− iα2)N2 − 1 + iδ] E2 + h2Y2, (2.135)

Ṅ1 = γ1(J1 − N1)− |E1|2N1, (2.136)

Ṅ2 = γ2(J2 − N2)− s|E2|2N2, (2.137)

Y1(t) = η [E2(t− τ)−Y2(t− τ)] , (2.138)

Y2(t) = η [E1(t− τ)−Y1(t− τ)] . (2.139)

2.2.2 Laser States

2.2.2.1 Off State

If a laser is in its off state, no emission takes place, and any electrical
field Ei = Yi = 0 equals zero. As a result, the carrier densities converge
to their biases, i. e., Ni = Ji, respectively.

Usually, the off state is stable until the gain bias J1 crosses the threshold
value Jth

1 for continuous wave emission.

2.2.2.2 Continuous Wave

For continuous wave (CW) solutions, the amplitude and frequency of
the electrical field is constant. That means that the electrical field can
be written as a single plane wave mode

Ei = Ei,0e−iωt+iφi,0 , Ei,0, ω, φi,0 ∈ R. (2.140)

As the the intensity is constant, and the carriers converge to a value of

Ni =
γi Ji

γi + si|Ei,0|2
(2.141)
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Figure 2.18: Example of mode-locked dynamics in time domain (a) and
Fourier space (b). Gray vertical lines, black vertical lines and
blue line in panel (b) indicate the frequencies of the different CW
modes, their power |Ê|2 and the Fourier transform of a single
pulse, respectively.

2.2.2.3 Mode-Locking

Mode-locking describes a technique that allows the emission of ultra-
short pulses [22–24].

In regular laser emission, the different CW modes oscillate indepen-
dently with no fixed phase relation. Hence, the output is roughly
constant in intensity since the ever changing modal superposition
does not create high amplitude fluctuations. If the phase between the
modes is fixed so that the modes interfere constructively, the laser’s
output is instead a train of short and intense pulses.

Mathematically, mode-locking is a superposition of CW modes with
appropriate frequencies ωn and relative phases φn

E = ∑
n

Ene−iωnt+iφn , En, ωn, φn ∈ R. (2.142)

The superposition yields a mode-locked solution for appropriate rela-
tions between En, ωn and φn.

In one specific case, the frequencies of the modes are approximately
equidistant and can be written as

ωn = ω0 + nδω, δω =
2π

T
, (2.143)

where T is the round-trip time of the laser. The electrical field am-
plitudes En are assumed to follow a monomodal distribution with
bandwidth γ. If φn = 0, then all modes interfere constructively. This
combination of En, ωn and φn yields a train of pulses of duration 1/γ,
which are T apart (see figure 2.18). The phases φn can also depend
linearly or quadratically on n, resulting in a modified pulse repetition
rate T or chirped pulses, respectively [121].
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Figure 2.19: Example of the satellite instablility as observed in the
MIXSEL (2.124)-(2.127). Adapted with permission from [33].

Experimentally, a distinction is made between active and passive mode-
locking [23, 122, 123]. Active modulation of the losses by external
forcing, e. g., with an electric optic modulator, is called active mode-
locking. On the other hand, if the modulation of the losses is self-
induced by the laser system and realized with passive components,
like a saturable absorber, one speaks of passive mode-locking.

2.2.2.4 Temporal Localized States

If the cavity round-trip time is small, passive mode-locking occurs
above the CW threshold. In this case, mode-locked solutions emerge
in a supercritical Andronov-Hopf bifurcation from a CW branch [124,
125]. Because the off state is unstable, small perturbations fill the cavity
with as many pulses as necessary in order for the average gain level
in between pulses to be low enough that the zero field solution is
(locally) stable. As the carriers do not have enough time to relax to
their biases, the carrier inversion population at the moment a pulse
enters the cavity contains information about the previous pulse. Hence,
the perturbation of one pulse impacts the consecutive pulse through
the interaction with the carriers.

If the cavity round-trip time is large enough the carriers have enough
time to relax to their bias. Then mode-locked states can exist below
the CW threshold and are bistable with the off solution [125, 126].
Further, consecutive pulses do not interact with each other in this
regime because the information about the previous pulse is lost when
the carrier reach their bias. Hence, pulses can be moved independently
from each other and are individually addressable. In this case, the
mode-locked solution becomes a temporal localized state (TLS).
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Figure 2.20: Example of a wiggling pulse train as observed in the VCSEL-
RSAM (2.134)-(2.139). An oscillating amplitude and position
characterize the wiggling motion. Adapted with permission
from [34].

2.2.2.5 Satellite Instability

The satellite instability is an instability in laser systems which are
governed by third order dispersion, where the gain bias is close to
the CW threshold. It exists in both the MIXSEL [33] and the VCSEL-
RSAM [35].

Informally, a system is governed by third order dispersion when losses
and linewidth enhancement factors are small. In this case, a gaussian
pulse develops satellites in front of it over time.

As the satellites lead in front of the pulse train, they are amplified
before the main pulse. If the amplification is sufficiently high, the
satellites can bleach the gain medium. When the gain medium is
depleted, the main pulse is not amplified anymore and dies out. Then
the biggest satellite becomes the new main pulse and the process
repeats (cf. figure 2.19).

Section 4.2 investigates the satellite instability as it appears in the
MIXSEL in more detail.

2.2.2.6 Wiggling

A wiggling mode-locked state is characterized by an amplitude and
position oscillating in time. An example of such a motion is depicted
in figure 2.20. In the VCSEL-RSAM system operated in the long delay
limit, the wiggling originates from an interplay between third order
dispersion and the detuning between the two micro-cavities.

Section 5.3 explains the wiggling instability as it appears in the VCSEL-
RSAM in more detail.
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2.2.3 Modal Structure

The modal structure of a laser system is composed of an ensemble of
CW solutions that can be written as

E = E0e−iωt, (2.144)

Y = Y0e−iωt, (2.145)

where E0, Y0 ∈ C are complex field amplitudes and ω ∈ R is the
CW frequency. For a Fabry–Pérot cavity without coupling, the CW
frequencies can easily be determined as ω = 2nπ/T, n ∈ Z with T
the round-trip time. However, coupling to an external mirror or cavity
considerably complicates the analysis, as we show now.

Inserting the CW ansatz (2.144)-(2.145) into the equation for the gen-
eral micro-cavity response (2.117) leads to

−iωE0 = [iχ− 1 + iδ]E0 + hY0. (2.146)

This means that in the CW case E0 and Y0 are linked as

E0 =
h

1− i(χ + ω + δ)
Y0. (2.147)

Inserting the constant intensity solution (2.144) into the rate equation
for the carriers N, e. g., equation (2.137) with dropped indices, shows
that the carriers converge to

N = N0 =
γJ

γ + s|E0|2
. (2.148)

E0 and Y0 are fixed by the input-output relation

Y = ηO(t− τ). (2.149)

For a micro-cavity coupled to an external feedback mirror O = E−Y
holds and equation (2.149) turns into

Y = η[E(t− τ)−Y(t− τ)]. (2.150)

Inserting the CW ansatz (2.144)-(2.145) and the relationship (2.147)
between E0 and Y0 into the input-output relation (2.150) yields the
characteristic equation

1 = ηeiωτ

[
h

1− i(χ + ω + δ)
− 1
]

. (2.151)

The equation (2.151) is transcendental because of the term eiωτ that
appears due to the time delay, and cannot be analytically solved.
The CW threshold is obtained taking the limit |E0|→ 0, |Y0|→ 0 (χ
implicitly depends on E0 and Y0). In the long delay limit τ → ∞, an
infinitesimal change in ω results in an arbitrary phase change of eiωτ.
Therefore, the condition for the phase can be assumed to be fulfilled.
Then, only the modulus of equation (2.151) is relevant.
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3.1 direct numerical simulation

3.1.1 Leapfrog Integration

For the direct numerical simulation (DNS) of the DADE systems (2.124)-
(2.127) and (2.134)-(2.139) investigated in this thesis, a semi-implicit
leapfrog method is used [32, 127]. It gets its name from the fact that
the electrical field and the carriers are updated at interleaved time
points, and thus the time points from the electrical field leapfrog over
the time points from the carriers and vice versa. To derive an updating
formula, recall that the laser models discussed in this thesis are of the
form

κ−1Ė = C(N)E + hY, (3.1)

Ṅ = γJ −U(|E|2)N, (3.2)

Y = O(t− τ). (3.3)

Notice that equations (3.1) and (3.2) are linear with the exception of the
prefactors C(N) and U(|E|2). Therefore, an implicit step is solvable if
the carriers in C(N) and the electrical field in U(|E|2) are replaced with
their average value. The updating formula for the electrical field (3.1)
for a time step of length δt reads

κ−1 E(n+1) − E(n)

δt
= C(n+ 1

2 ) E(n+1) + E(n)

2
+ h

Y(n) + Y(n+1)

2
. (3.4)

Here and in the following, the superscripts indicate the number of the
time step and C(n) = C(N(n)), U(n) = U(|E(n)|2) are used as shorthand
notations.

As C(n+ 1
2 ) depends on the value of the carrier at the time step n + 1

2 ,
the same updating scheme is applied to the carriers (3.2) but shifted
by a half step to obtain

N(n+ 3
2 ) − N(n+ 1

2 )

δt
= γJ + U(n+1) N(n+ 1

2 ) + N(n+ 3
2 )

2
. (3.5)

43
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Figure 3.1: A schematic representation of the leapfrog method for direct nu-
merical simulation. The values for the electrical field (blue points)
and the carriers (red points) are computed at interleaved points
in time. The updating formula for the electrical field “leapfrogs”
over the values of the carries and vice versa, giving the method
its name.

Solving equations (3.4) and (3.5) for E(n+1) and N(n+ 3
2 ), respectively,

one obtains the final update rule for the systems as

E(n+1) =

(
1 + κC(n+ 1

2 ) δt
2

)
E(n) + κh Y(n+1)+Y(n)

2 δt

1− κC(n+ 1
2 ) δt

2

, (3.6)

N(n+ 3
2 ) = δtγJ +

(
1 + U(n+1) δt

2

)
N(n+ 1

2 )

1−U(n+1) δt
2

, (3.7)

where the value for Y(n+1)+Y(n)

2 in equation (3.6) is determined from the
delay algebraic input-output relation (3.3) of the laser system at hand.

Figure 3.1 visualizes how an updating step is performed and how the
updating step for the electrical field “leapfrogs” over the step of the
carriers and vice versa.

Explicitly, the updating formulas for each of the investigated systems
read as follows.

Applying the leapfrog method to the MIXSEL (2.124)-(2.127) yields

E(n+1) =

(
1 + C(n+ 1

2 ) δt
2

)
E(n) + h Y(n+1)+Y(n)

2 δt

1− C(n+ 1
2 ) δt

2

, (3.8)

N(n+ 3
2 )

1 = γ1 J1δt +

(
1 + U(n+1)

1
δt
2

)
N(n+ 1

2 )
1

1−U(n+1)
1

δt
2

, (3.9)

N(n+ 3
2 )

2 = γ2 J2δt +

(
1 + U(n+1)

2
δt
2

)
N(n+ 1

2 )
2

1−U(n+1)
2

δt
2

(3.10)
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with

C(n) = (1− iα1)N(n)
1 + (1− iα2)N(n)

2 − 1, (3.11)

U(n)
1 = −(γ1 + |E(n)|2), (3.12)

U(n)
2 = −(γ2 + s|E(n)|2). (3.13)

The value of the injection field is given by

Y(n) = η[E(n−M) −Y(n−M)], M =
τ

δt
. (3.14)

The updating formula for the VECSEL-RSAM (2.134)-(2.139) reads

E(n+1)
1 =

(
1 + κ1C(n+ 1

2 )
1

δt
2

)
E(n)

1 + κ1h Y(n+1)
1 +Y(n)

1
2 δt

1− κ1C(n+ 1
2 )

1
δt
2

, (3.15)

E(n+1)
2 =

(
1 + κ2C(n+ 1

2 )
2

δt
2

)
E(n)

2 + κ2h Y(n+1)
2 +Y(n)

2
2 δt

1− κ2C(n+ 1
2 )

2
δt
2

, (3.16)

N(n+ 3
2 )

1 = γ1 J1δt +

(
1 + U(n+1)

1
δt
2

)
N(n+ 1

2 )
1

1−U(n+1)
1

δt
2

, (3.17)

N(n+ 3
2 )

2 = γ2 J2δt +

(
1 + U(n+1)

2
δt
2

)
N(n+ 1

2 )
2

1−U(n+1)
2

δt
2

(3.18)

with

C(n)
1 = (1− iα1)N(n)

1 − 1, (3.19)

C(n)
2 = (1− iα2)N(n)

2 − 1 + iδ, (3.20)

U(n)
1 = −(γ1 + |E(n)|2), (3.21)

U(n)
2 = −(γ2 + s|E(n)|2). (3.22)

The value of the injection fields is given by

Y(n)
1 = η[E(n−M)

2 −Y(n−M)
2 ], (3.23)

Y(n)
2 = η[E(n−M)

1 −Y(n−M)
1 ], M =

τ

δt
. (3.24)

3.1.2 Split-Step Method

The split-step method is used for integrating nonlinear partial differ-
ential equations that can be written as

dE
dt

= LE +N E, (3.25)
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where L and N are linear and nonlinear operators, respectively [128–
130]. The idea of the split-step method is to solve the purely linear
and purely nonlinear equation

dE
dt

= N E, (3.26)

dE
dt

= LE (3.27)

in a given sequential order, using the solution of one subproblem as
the initial condition of the next one.

Formally, the solution of equation (3.25) is given by

E(t + δt) = eδt(L+N )E(t). (3.28)

The simplest case is the first order splitting, where the linear and
nonlinear operators are solved independently after another, leading to

E(t + δt) ≈ eδtN eδtLE(t), (3.29)

which is exact, if and only if N and L commute. This approach is
equivalent to first exclusively solving the linear part (3.27) and using
the obtained solution as an initial condition to solve the nonlinear
part (3.26).

Other splits of eδt(L+N ) are possible to increase the accuracy of the
solution. In this thesis, a second order split-step method is employed,
which means that the solution is approximated as

E(t + δt) ≈ e
δt
2 N eδtLe

δt
2 N E(t), (3.30)

i. e., a half step of the nonlinear part (3.26) is solved, followed by a
whole step of the linear part (3.27), followed again by a half step of
the nonlinear part (3.26).

Concretely, the first half step of the nonlinear part is solved with an
explicit Euler step [131], the whole step of the linear part is solved
using the spectral method [132], and the second half step of the
nonlinear part is solved using an implicit Euler step [131]. These steps
leads to the updating formula

En+ 1
2 = En +

δt
2
N nEn, (3.31)

Ẽn+ 1
2 = F−1[eδtF [L]F [En+ 1

2 ]], (3.32)

En+1 =
Ẽn+ 1

2

1− δt
2N nEn

, (3.33)

where F and F−1 denote the Fourier transform and its inverse, re-
spectively.
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3.1.3 Functional Mapping

One solution type in laser systems is a pulse train of temporal local-
ized structures (see section 2.2.2.4). The pulse train is characterized by
having a fast stage, where the electrical field and the carrier change
rapidly, and a slow stage, where the electrical field intensity is approx-
imately constant and the carriers recover almost exponentially.

This observation saves computational effort by only simulating the
fast stage, while the slow stage is replaced with an analytical approxi-
mation. This concept is called the functional mapping method [133].

Figure 3.2 illustrates the functional mapping method, showing the
integration of two fast stages in the left and right panels and the
analytical approximation of the slow stage between the two fast stages
in the middle panels.

The fast stage is integrated with the leapfrog method (see section 3.1.1).
The system’s variables in the nth fast stage are defined as

En(t) = E(Tn + t), (3.34)

Nn(t) = N(Tn + t), (3.35)

where t ∈ [0, Tb], Tb is the time length of the fast stage, also referred
to as box length, and Tn is the beginning of the nth fast stage. Hence,
(Tn+1 − Tn) is the nth cavity round-trip time.

It is assumed that the electrical field intensity |E|2 is a constant for the
slow phase. For the MIXSEL and VCSEL-RSAM, this constant is zero.
For constant electrical field intensity, the differential equation for the
carriers (2.137) (with subindices dropped) has the general solution

N(t) =
γJ

γ + s|E|2 + e−(γ+s|E|2)tc, (3.36)

where c is a constant determined by the initial condition. The carriers
and the electrical field at the end of the last round-trip can therefore
be connected with the beginning of the next round-trip as

En+1(0) = |En(Tb)|ei(ω(Tn+1−Tn−Tb)+φn(Tb)), (3.37)

Nn+1(0) = Nn(Tb)ζ + (1− ζ)J, ζ = e−(γ+s|E|2)(Tn+1−Tn−Tb), (3.38)

where φn(Tb) is the phase of En at the end of the nth fast stage, ω is
the CW frequency of En, and ζ is the memory time effect for carriers.

Like this, the system’s variables at the next round-trip can be written
as an iterative map

En+1 = f (En, Nn), (3.39)

Nn+1 = f (En, Nn) (3.40)

giving the method its name.
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Figure 3.2: Illustration of the functional mapping method. The left and right
columns: Integration of the fast stage using the semi-implicit
leapfrog method. Center column: Analytical approximation of the
slow stage that is not integrated. Top and bottom row: Intensity of
the electrical field and the value of the gain carriers, respectively.
The dashed vertical line in the right column marks the previous
pulse position.

Due to causality, TLS solutions have a period slightly larger than the
round-trip time, leading to the pulse slowly drifting out of the box
(cf. figure 3.2). The drift is compensated by shifting the box after each
round-trip, centering the maximum pulse intensity and padding with
the electrical field intensity value during the slow phase.

The functional mapping method shrinks the computational effort
for solutions with period T by Tb/T. Hence, the functional mapping
method is particularly well suited for the long cavity regime because
there Tb � T holds.

Explicitly, the reconnection formulas for each of the investigated sys-
tems read as follows.

For the MIXSEL (2.124)-(2.127), the reconnection between two fast
stages reads

En+1(0) = 0, (3.41)

Nn+1
1 (0) = Nn

1 (Tb)ζ + (1− ζ)J1, ζ = e−(Tn+1−Tn−Tb)γ1 , (3.42)

Nn+1
2 (0) = Nn

2 (Tb)ζ + (1− ζ)J2, ζ = e−(Tn+1−Tn−Tb)γ2 . (3.43)

Yn+1(0) is determined from the delay algebraic condition (2.127) from
En(0) and Yn(0) as

Yn+1(0) = η[En(0)−Yn(0)]. (3.44)
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For the VCSEL-RSAM (2.134)-(2.139), the reconnection between two
fast stages is given by

En+1
1 (0) = 0, (3.45)

En+1
2 (0) = 0, (3.46)

Nn+1
1 (0) = Nn

1 (Tb)ζ1 + (1− ζ1)J1, ζ1 = e−(Tn+1−Tn−Tb)γ1 , (3.47)

Nn+1
2 (0) = Nn

2 (Tb)ζ2 + (1− ζ2)J2, ζ2 = e−(Tn+1−Tn−Tb)γ2 . (3.48)

Yn+1
1 (0) and Yn+1

2 (0) are determined from the delay algebraic condi-
tions (2.138)-(2.139) from En

1 (0), En
2 (0), Yn

1 (0) and Yn
2 (0) as

Yn+1
1 (0) = η[En

2 (0)−Yn
2 (0)], (3.49)

Yn+1
2 (0) = η[En

1 (0)−Yn
1 (0)]. (3.50)

3.2 bifurcation analysis

Direct numerical simulation allows observing the dynamical behav-
ior on an attractor, e. g., a stable steady state or a stable limit cycle.
However, DNS cannot observe unstable structures in the phase space,
which might significantly impact the dynamics. Therefore, to get a
more comprehensive picture of the structure of the phase space, a
bifurcation analysis can be performed, which allows following stable
and unstable solutions through the control parameter space.

The bifurcation analysis is performed with the MATLAB [134] con-
tinuation package DDE-BIFTOOL [135, 136]. Until recently, it was
impossible to perform a bifurcation analysis of DADEs using DDE-
BIFTOOL. One contribution of this thesis is the implementation of the
methods that enable the bifurcation analysis of DADEs [74]. Further,
the demos in appendix A show how to use the extension for DADEs.

3.2.1 Steady States

Steady states x(t) = x(t− τ) = x∗ are given as the zeros of the equation

0 = f (x∗, x∗), (3.51)

where f (x(t), x(t− τ)) is the right-hand side of the delayed dynamical
system (2.48).

Numerically, equation (3.51) can be solved iteratively using the Newton-
Raphson method [137–139]. The starting point of the method is an
initial guess x0. The value of the next iteration is found by approximat-
ing f with its tangent and using the tangent’s zero as the value for the
next iteration. The iteration is stopped once || f (xn, xn)|| is sufficiently
close to zero.
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(a) Converging example (b) Failing example

Figure 3.3: A schematic of the Newton-Raphson method. The starting point
of the method is an initial guess x0. A zero of a function f is found
by iteratively approximating f with its tangent and using the tan-
gent’s zero as the value for the next iteration. Black line: Value of
the function f . Blue dots: Value of f at one of the iteration points.
Solid red line: Tangent through the iteration points. Dashed red
lines guide the eye from the zero of the current iteration’s tangent
to the next function value.

The formula of the tangent t(x) through xn is given by

t(x) = f (xn, xn) + J(xn)(x− xn), (3.52)

where J(xn) is the Jacobi-matrix of f . Solving t(xn+1) = 0 for xn+1 results
in the updating formula for the Newton-Raphson method as

xn+1 = xn − J−1(xn) f (xn, xn), (3.53)

where J−1(xn) is the inverse of the Jacobi-matrix of f .

Figure 3.3 (a) depicts how the Newton-Raphson finds the zero of an
example function. As the initial guess is close enough to the zero
of f , the residuum || f (xn)|| decreases with every iteration until it is
sufficiently close to zero.

The Newton-Raphson method is not guaranteed to converge. Because
f is approximated locally around the current iteration value, the initial
guess x0 has to be sufficiently close to the zero of f to converge.
An example where the Newton-Raphson method fails is depicted in
figure 3.3 (b). Instead of converging to the zero of f , the iteration is
caught in a 2-cycle.

3.2.2 Linear Stability Analysis

Eigenvalues of steady states of DDSs and especially DADEs can be nu-
merically approximated by a pseudo-spectral method [140, 141] which
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discretizes the infinite-dimensional state into a finite-dimensional
mesh approximation.

By defining a mesh

ΩN = {θi|i = 1, ..., N + 1∧−τ ≤ θ1 < θj < θj+1 < θN+1 = 0} (3.54)

of N + 1 distinct points in [−τ, 0], the state is discretized by only
considering state values at the mesh points as

xN =


x(t + θ1)

...

x(t + θN+1)

 . (3.55)

The eigenvalue problem given by equation (2.54) can then be approxi-
mated by

|AN − λMN |= 0. (3.56)

MN and AN are given as

MN =

(
InN×nN 0

0 M

)
(3.57)

and

(ANxN)i = (PxN)′(θi), i = 1, . . . , N (3.58)

(ANxN)N+1 = L(PxN), (3.59)

where PxN is the polynomial interpolation of xN and L is the linear
operator that belongs to the DDS (2.48).

3.2.3 Path Continuation

The process of following a solution through the control parameter
space is called path continuation.

In general, path continuation is as a repetition of two steps: The
prediction of the next point with varied control and its correction.

When starting from a single point, its tangent is used to predict the
second point. After that, a secant prediction through the last two points
predicts the next point [136]. As a corrector, the Newton-Raphson
method is used (see section 3.2.1).

However, folding solution curves complicate the continuation process.
While there might be a solution at a parameter value µ in this case, it
stops existing for µ + δµ. Keeping the parameter’s value µ fixed leads
to the continuation failing if a solution curve folds.
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Figure 3.4: A pseudo-arclength continuation following a folding solution. In
order to continue folding curves, the parameter µ is not kept fixed
but is allowed to vary freely. Instead, the correction is required to
lie orthogonal to the prediction. Solid black line: Solution curve.
Empty red dot: Predicted point. Solid blue dots: Corrected points.
Dashed lines: Secant through the last two points for prediction
and the orthogonal line on which the correction is allowed to lie.

Pseudo-arclength continuation [142] circumvents this challenge. Here,
the parameter value is not fixed but can vary freely. Instead, an ad-
ditional condition requires that the correction lies orthogonal to the
prediction which allows continuing curves around a fold. Figure 3.4
shows a pseudo-arclength following a folding solution.

3.2.4 Determining Systems

In addition to steady states, other types of solutions can be continued
by extending the original dynamical system appropriately.

Fold and Andronov-Hopf bifurcations (see sections 2.1.6.1 and 2.1.6.3,
respectively) are continued by solving the extended dynamical system

f (x∗, x∗; µ) = 0, (3.60)

∆(λ, µ, x∗)v = 0, (3.61)

cTv− 1 = 0, (3.62)

where f is the right-hand side from equation (2.48) with explicit de-
pence on the control parameter µ, ∆ is the characteristic matrix, λ and
v are an eigenvalue and -vector, respectively, and c is a normalization
vector.

Equation (3.60) ensures that the corrected point is a steady state of
the original dynamical system. Equation (3.61) results in λ being an
eigenvalue of the system with eigenvector v, which is normalized by
equation (3.62).

For a fold bifurcation the λ is zero and the v is real, while for an
Andronov-Hopf bifurcation v is complex and λ = ±iω, ω ∈ R.
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Periodic orbits are continued by solving the extended dynamical
system

Mẋ(t) = f (x(t), x(t− τ)), (3.63)

x(t) = x(t + T), (3.64)

θ(x, t) = 0, (3.65)

where θ(x, t) is the phase of x at time t.

While equation (3.63) ensures that the time trace of the periodic orbit
fulfills the right-hand side of the dynamic system, equation (3.64)
ensures that the time trace is periodic with period T. Further, a phase
condition is applied with equation (3.65) to single out one of the
infinitely many equivalent periodic orbits obtained by shifting the
profile cyclically [136, 143].

Similarly, higher-order bifurcations, e. g., bifurcations of periodic orbits
can be followed with a similar approach. For more details on the
extended systems for the torus bifurcation, fold of periodic orbits and
period-doubling, see [144].

3.2.5 Co-Rotating Frame

The system equations investigated in this thesis exhibit a phase sym-
metry that can be exploited to simplify the analysis. Because the
electrical fields are complex and there is no reference phase, shifting
the phase of an initial condition results in the same dynamics, albeit
the phase of the solution is shifted by the same amount as the initial
condition.

The right-hand side of a delayed dynamical system (2.48) is called
phase invariant if it fulfills

f (eAφx(t), eAφx(t− τ)) = eAφ f (x(t), x(t− τ)) (3.66)

for one specific generator matrix A and all value of the phase φ ∈ R.

Making the co-rotating ansatz

x(t) = eAωtχ(t), ω ∈ R (3.67)

the dynamical system (2.48) is rewritten in terms of the co-rotating
variable χ(t) instead of x(t) as

Mχ̇ = −MAωχ(t) + f (χ, χ(t− τ)). (3.68)

In this way, continuous wave solutions

x(t) = eAωtx0, x0 ∈ Rd (3.69)
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become stationary χ(t) = x0 and modulated wave solutions

x(t) = eA(ωt+Θ)xper(t), xper(t) = xper(t− T), Θ ∈ R (3.70)

become periodic solutions χ(t) = xper(t).

The new parameter ω is a free parameter in the continuation fixed by
an appropriate phase condition [136].

3.2.6 Starting Solutions

Starting solutions for the continuation can be obtained from direct
numerical simulation. DNS is a convenient choice for pulsed solutions
because it might be complicated to continue a known analytical CW
steady state to the solution of interest.

In contrast to bifurcation analysis, DNS allows the exploration of
regimes without knowing a stable solution beforehand. Converting
the results to a solution in the bifurcation software allows following the
solution to an unstable regime, which is impossible with DNS. On the
other hand, DNS verifies the result obtained from bifurcation analysis
in the stable regimes and allows observing transient behavior, chaos,
and modulated periodic orbits emerging from a torus bifurcation.

The frequency of the co-rotating frame (see section 3.2.5) is estimated
from a time trace as

ω ≈ φ(tend)− φ(tstart)
tend − tstart

, (3.71)

where φ is the angle of the complex field E1 and tend and tstart are the
time of the end and the beginning of the profile, respectively.

In order to save computational effort, the number of intervals and
the polynomial degree is chosen to minimize the dimension of the
resulting system. Combinations of the number of intervals and the
polynomial degree are tried until one of them successfully corrects.

3.3 multi-scale analysis

Multi-scale analysis constructs a uniformly valid approximation for
dynamical systems that evolve on different time scales [145]. This
thesis uses the multi-scale method to derive normal form PDEs from
DADE laser models close to the CW threshold. The time variable t is
split into multiple time scales T1, T2, . . . , Tn, which evolve on different
orders of magnitude, and are treated as if they were independent.

In detail, a nth order multi-scale analysis consists of the following
steps:



3.3 multi-scale analysis 55

1. A smallness parameter ε is defined that separates the different
time scales.

2. Using the smallness parameter, the different time scales can be
separated as

Ti = εit. (3.72)

3. The system’s variables are redefined by making the multi-scale
ansatz

x(t) = ∑
i

εixi(T0, T1, . . . , Tn), (3.73)

where xi(T0, T1, . . . , Tn) is the ith order solution of x(t).

4. The time variable t is eliminated from the system’s equations,
and the separated time scales are introduced. For that, the time
derivatives and time delays are rewritten using the chain rule

d
dt

= ∑
i

∂Ti

∂t
∂

∂Ti
= ∑

i
εi ∂

∂Ti
, (3.74)

x(t− τ) = x(T0 − τ, T1 − ετ, . . . , Tn − εnτ)

= ∑
i
Liε

ix(t− τ, T1, . . . , Tn) (3.75)

with Li obtained from the Taylor expansion of x(T0 − τ, T1 −
ετ, . . . , Tn − εnτ) around (T0 − τ, T1, . . . , Tn).

5. Inserting equations (3.73)-(3.75) into the dynamical system (2.48)
yields a polynomial equation in ε. All terms are sorted according
to the power of ε to obtain a hierarchy of equations for each
order of ε. The equation for each order is a linear algebraic
inhomogenous system that can be written as

Sx = b, (3.76)

where S is a non-invertible linear operator, x is the independent
variable and b is an inhomogeneity. Because S is non-invertible,
the solution equation (3.76) cannot simply be written as x = S−1b
and the existence of a solution has to be ensured by a solvability
condition.

6. Starting at the zeroth order of ε, a solvability condition is ob-
tained for each order through Fredholm’s alternative [146, 147].
It states that the system (3.76) has a solution if and only if for
all y with S†y = 0 it holds that y†b = 0, where † indicates the
adjoint. In other words: An inhomogeneous linear equation has
a solution if and only if the kernel of the adjoint is orthogonal to
the inhomogeneity. The result are solvability conditions relating
the different time scales Ti to each other.
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7. Finally, the uniformly valid PDE approximation is obtained by
reconstructing the time scale

∂x
∂ξ

=
(

d
dt
− ∂

∂T0

)
x, (3.77)

where the term −∂T0 x transforms a solution with period T into
a slowly drifting steady state from one round-trip to the next
one. The right side of equation (3.77) is made to depend only on
the time T0 by inserting the relations between the time scales as
obtained from Fredholm’s alternative.

3.3.1 Scaling Time

For delayed dynamical systems, if the period T is slightly larger than
the delay time τ, it is possible to incorporate the slow evolution on
the time scale T1 by scaling the zeroth order time scale T0 with the
frequency of the periodic solution ω = 2π/T, thereby eliminating T1

from the derivation. The modified ansatz reads

T0 = ωt, T1 = 0, Ti = εit, i ≥ 2, (3.78)

ω = 1 + ∑
i≥1

εiωi. (3.79)

Equations (3.78)-(3.79) propagate to equations (3.73)-(3.75), yielding

d
dt

=
n

∑
i=0

εiTi, (3.80)

E(t) =
n

∑
i=0

εiEi(T0, T2, . . . , Tn), (3.81)

E(t− τ) =
n

∑
i=0

εiLiE(T0 − τ, T2, . . . , Tn) =
n

∑
i=0

i

∑
j=0

εiLjEτ
i−j, (3.82)

where Eτ
i = Ei(T0 − τ, T2, . . . , Tn) is used as a shorthand.

The operators Ti are obtained by using the chain rule using the new
time scale and inserting the value of ω from equation (3.79). Similarly,
the operators Li are obtained from the Taylor expansion of E(t− τ) =
E(T0 − ωτ, T2 − ε2τ, . . . , Tn − εnτ) around (T0 − τ, T2, . . . , Tn). Explic-
itly, the resulting operators up to third order read

T0 = ∂0, T1 = ω1∂0, T2 = ω2∂0 + ∂2, T3 = ω3∂0 + ∂3, (3.83)

L0 = 1, (3.84)

L1 = −ω1∂0, (3.85)

L2 = −ω2∂0 +
ω2

1
2

∂2
0 − ∂2, (3.86)

L3 = −ω3∂0 −
ω3

1
6

∂3
0 + ω1ω2∂2

0 + ω1∂0∂2 − ∂3. (3.87)
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3.3.2 Example with Time-Delay

An example of how to apply the multi-scale analysis for a second
order approximation is the linear equation

Ė = −E + E(t− τ), τ � 1. (3.88)

After rescaling the time t → t/τ, the smallness parameter ε = 1/τ is
introduced to equation (3.88)

ε
d
dt

E = −E + E(t− 1). (3.89)

Inserting the ansatzes for
d
dt

, E(t) and E(t− 1) from equations (3.80),
(3.81) and (3.82), respectively, yields

ε
(
T0 + εT1 + ε2T2

) (
E0 + εE1 + ε2E2

)
= −

(
E0 + εE1 + ε2E2

)
+ [L0Eτ

0 + ε(L0Eτ
1 +L1Eτ

0 )

+ ε2(L0Eτ
2 +L1Eτ

1 +L2Eτ
0 )],

(3.90)

where Ei = Ei(T0, T2) and Eτ
i = Ei(T0 − 1, T2).

Next, equation (3.90) is sorted for powers of ε and the orders are
solved after each other starting from zeroth order.

The equation for ε0 reads

0 = −E0 +L0Eτ
0 . (3.91)

Inserting L0 = 1 leads to

0 = −E0 + Eτ
0 , (3.92)

which shows that E0 has period one.

The equation for ε1 reads

T0E0 = −E1 +L0Eτ
1 +L1Eτ

0 . (3.93)

Expanding T0, L0 and L1 from equations (3.83)-(3.85) results in

∂0E0 = −E1 −ω1∂0E0 + E1(t0 − 1) (3.94)

=⇒ E1 − E1(t0 − 1) = −(1 + ω1)∂0E0. (3.95)

After choosing ω1 = −1, the right side vanishes and E1 has period
one.

The equation for ε2 reads

T1E0 + T0E1 = −E2 + (L0Eτ
2 +L1Eτ

1 +L2Eτ
0 ) (3.96)

=⇒ E2 − E2(t− 1) = (1−ω2)∂0E0 +
1
2

∂2
0E0 − ∂2E0, (3.97)
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where equations (3.83)-(3.86) are were used to substitute Ti and Li.
After choosing ω2 = 1, the solvability condition is

∂2E0 =
1
2

∂2
0E0. (3.98)

Rebuilding the time derivative according to equation (3.77) gives

∂E0

∂ξ
= ω1∂0 + ε2∂2. (3.99)

Finally, inserting ω1 = −1 and equation (3.98) into equation (3.99)
results in

∂ξ E = −∂0E +
1
2

∂2
0E (3.100)

as the multi-scale approximation of equation (3.88).

3.3.3 Example without Time Scaling

Consider the same example without time scaling, i. e., ωi = 0, to see
the effects of the scaling on the derivation.

Inserting the regular ansatz (3.73)-(3.75) into equation (3.88) results in

ε
(
∂0 + ε∂1 + ε2∂2

) (
E0 + εE1 + ε2E2

)
= −

(
E0 + εE1 + ε2E2

)
+ [Eτ

0 + ε(Eτ
1 − ∂1Eτ

0 )

+ ε2(Eτ
2 − ∂1Eτ

1 +
(

1
2

∂2
1 − ∂2

)
Eτ

0 )].

,

(3.101)

where Ei = Ei(T0, T1, T2) and Eτ
i = Ei(T0 − τ, T1, T2).

The solvability condition for the zeroth order remains unchanged, i. e.,

0 = −E0 + Eτ
0 , (3.102)

which shows that E0 has period one.

The equation for ε1 reads

∂0E0 = −E1 + Eτ
1 − ∂1E0 (3.103)

=⇒ E1 − Eτ
1 = (∂0 + ∂1)E0. (3.104)

The solvability condition for equation (3.104) is

∂1 = −∂0, (3.105)

which when fulfilled shows that E1 has period one.
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The equation for ε2 reads

∂0E1 + ∂1E0 =− E2 + Eτ
2

− ∂1Eτ
1

+
(

1
2

∂2
1 − ∂2

)
Eτ

0 . (3.106)

Using the fact that E0 and E1 are period one allows rearranging
equation (3.106) to

E2 − Eτ
2 = − (∂0 + ∂1) E1 +

(
1
2

∂2
1 − ∂0 − ∂2

)
E0. (3.107)

Inserting equation (3.105) into (3.107) makes the term in front of E1

vanish and leaves the solvability condition

∂2 =
1
2

∂2
0 − ∂0. (3.108)

As the final step, rebuilding the time derivative remains. The general
formula for the rebuilt time derivative (3.77) is

∂

∂ξ
=
(

d
dt
− ∂

∂T0

)
= ε∂1 + ε2∂2. (3.109)

Inserting both solvability conditions from equations (3.105) and (3.108)
into (3.109) yields

∂ξ = −ε∂0 + ε2
(

1
2

∂2
0 − ∂0

)
. (3.110)

Rescaling time ∂0 → ∂0/ε and keeping the zeroth order in ε results in

∂E0

∂ξ
= −∂0 +

1
2

∂2
0 (3.111)

as the multi-scale approximation of equation (3.88) up to second order.

3.3.4 Example with the Functional Mapping Method

This section derives the normal form for equation (3.88) for a third
time using the functional mapping method. The functional mapping
method allows double-checking the results obtained from the multi-
scale analysis and vice versa. The approach consists of three steps:

1. Deriving an iterative map for the field evolution in Fourier space
from the original equation;

2. Assuming a PDE and integrating it in the slow time to obtain an
iterative map;

3. Matching both iterative maps, thereby obtaining the coefficients
for the PDE.
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Starting point is the scaled version with ε introduced

ε
d
dt

E = −E + E(t− 1). (3.112)

Assuming periodicity for E and transforming into Fourier space
d
dt
→

−iω results in

−iεωẼn = −Ẽn + Ẽn−1 (3.113)

=⇒ Ẽn =
1

1− iεω
Ẽn−1 =M(ω)Ẽn−1. (3.114)

Equation (3.114) shows that the evolution of E can be written as an
iterative map with linear multiplierM in Fourier space.

Assume that a PDE with two time scales ζ and T0 exists that can be
written as

∂E
∂ζ

= L(T0)E. (3.115)

Here, ζ is the slow time scale from one round-trip to another round-
trip, and T0 is the fast time scale.

Rearranging the terms and integrating equation (3.115) over one round-
trip ζ = n to ζ = n + 1 yields

n+1∫
n

1
E

∂E
∂ζ

dζ =
n+1∫
n

Ldζ (3.116)

=⇒ ln
En+1

En
= L (3.117)

=⇒ En+1 = eLEn. (3.118)

Comparing equation (3.118) with equation (3.114) shows that

M(ω) = eL (3.119)

=⇒ L = lnM(ω) (3.120)

= ln
(

1
1− iεω

)
(3.121)

= − ln(1− iεω) (3.122)

= iεω +
1
2

ε2ω2 +O(ε3). (3.123)

Inserting L into the PDE ansatz (3.115) and applying the reverse

Fourier transform −iω → ∂

∂T0
results in

∂E
∂ζ

=
(
− ∂

∂T0
+

1
2

∂2

∂T2
0

)
E (3.124)

as the normal form approximation of equation (3.112).
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The results presented in this chapter have been published in

[33] C. Schelte, D. Hessel, J. Javaloyes and S. V. Gurevich. “Dis-
persive Instabilities in Passively Mode-Locked Integrated External-
Cavity Surface-Emitting Lasers.” In: Physical Review Applied 13 (2020),
p. 054050.

4.1 model system

The schematic setup of a MIXSEL system is depicted in figure 4.1. The
gain and the absorber media are enclosed into a micro-cavity whose
length is of the order of the lasing wavelength. The two mirrors of the
latter provide additional degrees of freedom for controlling the light-
matter interaction; the interaction strength with the active medium
—that is only a few tens of nanometers long— can be dramatically
increased, at the expense of the available bandwidth, by using high-Q
cavities. Similarly, the effective saturation of the active material can
be increased (or decreased) by using resonant or anti-resonant cavity
designs, respectively. Because of the vast scale separation between
the external cavity length and that of the micro-cavity, the natural
framework for our theoretical analysis is that of time-delayed systems.
The latter appear not only as natural modeling approaches for PML
[73, 148] but in many branches of physics.

GainAbs.

E

Y

O

τ

Figure 4.1: A schematic of the MIXSEL configuration, where both gain (blue)
and saturable absorption (magenta) are contained in the same
micro-cavity. E denotes the field amplitude in the active region.
The output and injection fields in the external cavity are repre-
sented by O and Y, respectively. The external cavity round-trip
time is τ. Reprinted with permission from [33].
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We consider the case of a resonant cavity and we denote by E the
micro-cavity field and Y the field in the external cavity. The output
field is denoted by O, τ is the external cavity round-trip time, whereas
r1,2 are the top and bottom Distributed Bragg Reflector (DBR) reflec-
tivities, t1 is the transmission coefficient of the top DBR and re is
the external mirror reflectivity. We follow the approach presented in
section 2.2.1, which is briefly summarized again here, that consists in
solving the field propagation in the linear sections of the micro-cavity.
That way one obtains a dynamical model linking the two fields E and
Y. Their coupling is achieved considering the transmission and reflec-
tion coefficients of the top DBR. After normalization, one obtains the
rate equations for the field E, the gain N1 and absorber N2 population
inversions as

Ė = [(1− iα1) N1 + (1− iα2) N2 − 1] E + hY, (4.1)

Ṅ1 = γ1 (J1 − N1)− |E|2 N1, (4.2)

Ṅ2 = γ2 (J2 − N2)− s |E|2 N2, (4.3)

Y = ηO (t− τ) = η [E (t− τ)−Y (t− τ)] . (4.4)

We scaled equations (4.1)-(4.4) by the photon lifetime in the micro-
cavity κ−1, and α1 and α2 are the linewidth enhancement factors of
the gain and absorption, respectively. We set the bias and the recovery
time in the gain as (J1, γ1) and in the absorber section as (J2, γ2),
respectively. The ratio of the gain and absorber saturation intensities
is s. The cavity enhancement due to the high reflectivity mirrors can be
scaled out, making that E and Y are of the same order of magnitude.
This scaling has the additional advantage of simplifying the input-
output relation of the micro-cavity that then reads O = E− Y. The
minus sign represents the π phase shift of the incoming field Y upon
reflection from the top DBR. After a round-trip in the external cavity of
duration τ, the output field O (t− τ) is re-injected with an attenuation
factor η = re exp (iω0τ), with ω0τ the propagation phase, defining ω0

as the carrier frequency of the field. The coupling between E and Y
is given in equation (4.4) by a delayed algebraic equation (DAE), that
takes into account the multiple reflections in the external cavity. In
the limit of a very low external mirror reflectivity η � 1, one would
truncate the infinite hierarchy generated by equation (4.4) to obtain
Y = ηE (t− τ)+O

(
η2) leading to the so-called Lang-Kobayashi model

[120]. Yet, for mode-locked configurations η = O (1) and the multiple
reflections in the external cavity must be taken into account. Instead
of considering an infinite number of delayed terms in equation (4.1)
with values τ, 2τ, · · · , nτ, the DAE given by equation (4.4) allows for
an elegant representation of the strongly coupled cavity dynamics
without needing an a priori truncation.

The coupling efficiency of the external field Y into the micro-cavity
is given by the parameter h = (1 + |r2|) (1− |r1|) /(1− |r1r2|). There
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exist three instructive limit cases of this factor corresponding to certain
types of devices: A non-transmitting top DBR |r1| = 1 yields h = 0
— equivalent to a single mirror. Equal reflectivities for both DBRs
|r1| = |r2| yield h = 1 and correspond to a symmetric Fabry-Perot cav-
ity. Finally, a fully reflecting bottom DBR |r2| = 1 yields h = 2, which
corresponds to the Gires-Tournois interferometer case [75]. GTIs are
known for inducing controllable second order dispersion and they are
used as optical pulse-shaping elements. Photons transmitted into the
micro-cavity will remain on average for the photon lifetime. When
transmitted back into the external cavity they will have collected a
phase difference with respect to the photons that are directly reflected
from the top DBR. Note that this phase shift is a function of the
detuning of the photons to the closest micro-cavity mode. The recom-
bination of both types of photons in the external cavity then leads to
dispersion. This process is captured by equation (4.4). Second order
dispersion is typically the dominating effect and its amount is tunable
by choosing the detuning. Using red or blue detuning one can achieve
either normal or anomalous dispersion while around resonance third
order dispersion becomes the leading term as the second order contri-
bution vanishes and changes its sign. Gires-Tournois interferometers
are designed to conserve the photon number using high reflective
bottom mirrors and therefore yield purely dispersive spectrum in
models such as given by equations (4.1)-(4.4), see [35] for more details.

In order to achieve directional emission and low losses the bottom
DBRs of VCSELs and MIXSELs are optimized towards |r2| → 1, i.e.,
they are well approximated by the GTI regime and h→ 2. We set the
photon lifetime as κ−1 = 3 ps which corresponds to a full width at
half maximum of κπ−1 = 106 GHz. The gain and absorber lifetimes
are 1 ns and 30 ps, respectively, while we set the round-trip time in
the cavity to 3 ns, hence (γ1, γ2, τ) = (0.003, 0.1, 1000) . If not stated
otherwise, the other parameters are (J2, η, s, h) = (−0.5, 0.7, 10, 2).

4.2 satellite instability

Due to third order dispersion from the GTI-like micro-cavity pulses
can have a series of decaying satellites on the leading edge which
might cause an instability of the pulse train [35]. We exemplify the
importance of dispersion in equations (4.1)–(4.4) in figure 4.2, where
we depict the evolution of a short Gaussian pulse traveling in a lossless
external cavity (η = 1) coupled to a linear micro-cavity operated in
the Gires-Tournois regime (i. e., Nj = Jj = 0 and h = 2). In the pseudo-
space-time representation in figure 4.2, the drift is corrected so that the
remaining effect of the third order dispersion is visible. An identical
evolution can be obtained by solving the partial differential equation
for the field Ẽ(ξ, z) given by ∂ξ Ẽ == d3∂3

z Ẽ, which is discussed in
section 4.4 and results in equation (4.32). Here, ξ is the round-trip
number and z is the fast time variable along the propagation axis. The
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Figure 4.2: A pseudo-space-time diagram of the evolution of a Gaussian pulse
in a lossless linear micro-cavity coupled to a perfectly reflecting
mirror, i. e., Nj = Jj = 0 and (η, h) = (1, 2), integrating numerically
equations (4.1)–(4.4). The pulse profiles at different round-trips
are shown as insets. The dynamics are essentially governed by
third order dispersion. Reprinted with permission from [33].

coefficient d3 = −2/3 corresponds to the third order dispersion of the
micro-cavity at resonance.

Without linewidth enhancement factors α1 = α2 = 0 the satellites are
most clearly developed because of the absence of chirp, and their
instability can be better understood starting from this situation. In a
real semiconductor medium the change in carrier density along the
pulse profile causes a varying detuning with respect to the micro-cavity
resonance due to the alpha factors. The resulting mixture between
second and third order dispersion creates a more involved dynamics
that will be discussed later in section 4.3.

We operate in the regime of localization where the pulses are temporal
localized states (TLSs) that appear below the lasing threshold bias
defined, in the long cavity limit, as

Jth
1 = 1− J2 −

hη

1 + η
. (4.5)

As detailed in [125], the TLSs appear via a saddle-node bifurcation of
limit cycles. Sufficiently close to the lasing threshold, the main pulses
and therefore their parasitic satellites become large enough to bleach
the absorber and open the net gain window prematurely. As a conse-
quence, they grow exponentially from one round-trip towards the next
while the parent pulse meets an increasingly depleted gain carrier
density and eventually dies out. It is replaced by its satellite in front,
resulting in forward leaping motion that can best be seen in a pseudo-
space-time representation which is shown in figure 4.3 (a) where Nrt is
the number of round-trips. The corresponding temporal trace obtained
from direct numerical simulations (DNSs) of equations (4.1)-(4.4) is
depicted in figure 4.3 (b). It demonstrates how this cycle of creation
and annihilation leads to a low frequency modulation of the pulse
train (see the purple crosses).
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Figure 4.3: Pseudo-space-time diagram (a) and time trace (b) for the pulse
train in the unstable satellite regime obtained from DNSs of equa-
tions (4.1)-(4.4). The pulse intensity for E (blue) and Y (orange)
fields is shown. The purple crosses at the E field intensity peaks il-
lustrate the creation-annihilation cycle. For sufficiently large gain
the largest satellite is amplified, eventually replacing its parent
pulse. Parameters are (J1, α1, α2) = (0.65, 0, 0). Reprinted with
permission from [33].
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We show in figure 4.4 (a) a numerical two parameter bifurcation di-
agram in the (J1, α1) plane for the single pulse solution. The latter
is obtained using direct numerical integration. Here, the different
regimes of TLS behavior are color coded: the blue region corresponds
to the off state and cyan to stable TLSs, respectively. For high values of
the line-width enhancement factor of the gain α1, a quasiperiodic insta-
bility due to self-phase modulation is found, similar to that discussed
in [149]. This instability is found to be a local secondary Andronov-
Hopf bifurcation and is depicted in green. In addition to these regimes,
which also exist in the generic mode-locked ring- laser model of [148],
a different instability induced by third order dispersion is found
for low values of α1 (see the purple region). It corresponds to the
regime depicted in figure 4.3. In addition, around α1 ≈ 1, there exists
a bistability region close to threshold between the principal stable
TLS solution (cyan) and another stable passive-mode-locking regime
with higher-intensity pulses (color coded in orange). Further, a low-
frequency modulated passive mode locking (color coded in red) is also
bistable with the principal TLS regime (cyan); these latter quasiperi-
odic dynamics have the characteristics of both instabilities found for
low and high α1; this is discussed in more detail in section 4.3. Where
regions overlap, the colors are blended. Exemplary temporal proles
of three TLS are shown in solid white. Note that the parts along the
borders of the pure trailing-edge and satellite instabilities are also
bistable with the principal stable passive-mode-locking solution.

We plot in figure 4.4 (b) the branch for the single TLS solution in
orange, showing the peak intensity as a function of the scaled gain
bias J1/Jth

1 obtained using DDE-BIFTOOL [135]. At α1 = 0, the solution
branch folds three times at F1, F2, F3 (marked by red circles), with
the second fold F2 at a critical value of the current Jc

1 ∼ 0.86Jth
1 that

coincides with the onset of the satellite instability. The results from
the corresponding DNSs are superposed (blue points), indicating the
values of the pulse maxima of many round-trips. Shortly after the
second fold F2, a second unstable branch (dashed magenta) appears
in a pitchfork bifurcation point BP. Above Jc

1, no stable single-TLS
solutions exist and one observes the low-frequency periodic dynamics
discussed in figure 4.3.

It should be noted that for α1 � 1, this instability does not stem
from a local Andronov-Hopf bifurcation but from a global bifurcation.
The limit cycle is born with infinite period at the second fold F2

of the TLS branch in Fig 4.4 (b). To identify the type of the global
bifurcation, the scaling of the oscillations period close to the critical
value Jc

1 is analyzed. The resulting period scaling is presented in
figure 4.5 (a), where we show the period evolution for two exemplary
small values of α1 (blue and red crosses) and the characteristic scalings
for saddle-node innite-period (SNIPER) (µ1/2) and homoclinic (− ln µ)
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Figure 4.4: (a) Bifurcation diagram in the (J1, α1)-plane obtained with DNSs of equations (4.1)-(4.4) for
α2 = 0. The different regimes of TLS behavior are color coded blue for the off state, cyan for stable,
green for the trailing-edge instability at high α1, and purple for the satellite instability at low α1. A
bistable region between the principal (cyan) and a more energetic TLS is shown in orange. The latter can
become unstable and its oscillating regime is depicted in red. This oscillation exhibits mixed dynamics
of both previous instabilities. The cyan and green regions continue unaffected underneath this bistable
region. Where regions otherwise overlap, the colors are blended. Exemplary temporal profiles of three
TLSs are shown in solid white. These are mutually up to scale: the dashed white lines indicate their
parameters. The upper and central profiles correspond to orange and cyan regions, respectively. (b) A
branch of a single pulse solution showing the peak intensity max(I) as a function of the scaled gain
bias J1/Jth

1 , superposing results from DNS (blue points) and path continuation (orange line) for α1 = 0.
The branch has three folds Fi on the limit cycle (red circles) and stability is indicated by a solid line,
otherwise dashed. The satellite instability does not stem from secondary Andronov-Hopf bifurcation.
After the fold F2 on the unstable branch, there is a supercritical pitchfork bifurcation BP (yellow star)
that gives birth to another unstable branch (magenta). Reprinted with permission from [33].

Figure 4.5: (a) The dependence of the period on the distance to the bifurcation point Jc
1 for two different

values of α1. The crosses denote the period obtained from direct numerical simulations of equations
(4.1)-(4.4) for α1 = 0.01 (blue) and α1 = 0.02 (red). The asymptotic trends of the periods are infinity
and constant, respectively. The straight lines correspond to the theoretically predicted scaling behavior
for a homoclinic (green) and a SNIPER (purple) bifurcation, for comparison. The gray dashed and
dotted lines illustrate the evolution of the blue and red crosses and are guides for the eye. (b) A branch
of a single-TLS solution, showing the peak intensity as a function of the gain bias J1 scaled to Jth

1 ,
superposing results from direct numerical simulations (blue points) and path continuation (orange) for
α1 = 0.02. The branches have reconnected and the pitchfork BP and fold points F2 have merged into an
Andronov-Hopf bifurcation point H. The satellite instability now starts at H, with a small amplitude
and a finite period (see the inset). Reprinted with permission from [33].
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bifurcations as a function of the distance to the bifurcation point
Jc
1. The gray dashed and dotted lines illustrate the evolution of the

blue and red crosses and are guides for the eye. The results reveal
that for very small values of α1 (cf. the scaling for α1 = 0.01), the
satellite instability can be identified to be of the SNIPER type, since
the period diverges as an inverse square root as Jc

1 is approached (cf.
the characteristic scaling in magenta). However, for increasing α1, the
SNIPER bifurcation changes into a local Andronov-Hopf bifurcation.
Indeed, the scaling for α1 = 0.02 in figure 4.5 (a) indicates that in this
case the period is finite at the bifurcation point and fits neither the
SNIPER nor the homoclinic scaling laws. The corresponding branch
of the single TLS obtained from the continuation (orange line) and
direct numerical simulations (blue points) for α1 = 0.02 is shown in
figure 4.5 (b). One can see that the bifurcation structure is different
from that of figure 4.4 (b): here, there is no limiting point on the
high-power branch and it continues without the additional folds F2

and F3 and only becomes Andronov-Hopf unstable at the bifurcation
point H. The inset shows the emergence of the periodic solution with
the nite amplitude in the vicinity of the H bifurcation point.

4.3 combined instabilities

With realistic linewidth enhancement factors for semiconductor media
the satellite and self-phase modulation instabilities combine to form
a dynamics of the kind presented in [35]. By performing parameter
scans as a function of various parameters we were able to deduce
some general features of the satellite instability. Generally, the pulse-
width is proportional to the photon lifetime and can be written as
τp = κ−1 f (· · ·) with f (· · ·) a function that depends on all the other
parameters of the PML setup. Optimizing PML consists in finding
the parameter combination for which the function f approaches unity.
It is in these optimal cases for which τp ∼ κ−1 where, as depicted
in figure 4.3, the satellites become better resolved and are prone to
become unstable. Hence, the satellite instability can be obtained by
tuning any parameter leading to the optimal pulse-width, making it an
essential limitation in the optimization procedure to find the narrowest
pulse widths. For instance, increasing the saturation s or even the
linewidth enhancement factor of the absorber α2, if it compensates for
the chirp induced in the gain section. Note that in the VCSEL-SESAM
setup the detuning between the micro-cavities is an additional factor in
this balance. Finally, we show in figure 4.6 how the satellite instability
evolves in more realistic situations with α1 = 2.1 and α2 = 0.5. We note
that, in addition, this regime can be bistable with the stable pulsating
solution, see figure 4.4 (a).



4.3 combined instabilities 69

Figure 4.6: Pseudo-space-time diagram (a) and corresponding time trace (b)
for the single pulse train in the satellite unstable regime. The
pulse intensity for E (blue) and Y (orange) fields are shown.
With realistic values of the linewidth enhancement factors the dy-
namics is more involved due to the chirp that induces pulse
broadening. Here, instead of dying out completely the par-
ent pulse merges with its growing satellite. Parameters are
(J1, α1, α2) = (0.65, 2.1, 0.5). Reprinted with permission from [33].
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4.4 master equation

As bifurcation analysis does not always allows for an intuitive inter-
pretation of the dynamics, that can furthermore stay hidden in the
structure of time-delayed equations, even if they contain most of the
physics of PML, we derive in this section a partial differential equation
(PDE) for the field amplitude E that shall approximate the dynamics
of the full DADE model (4.1)-(4.4). In the PDE representation, the field
depends on a slow and a fast time, i.e. E ≡ E (ξ , z). Here, the slow
time ξ represents the evolution of the field profile from one round-trip
to the next while the “spatial variable” z describes the fast evolution of
the pulse within the round-trip. While this approach has been used in
several time-delayed systems, see e.g., [71, 72] for a review, such PDE
models are usually termed Haus master equations in the framework
of mode-locking as the Haus equation was originally derived to study
active mode-locking, see [23] for a review.

In the case of high frequency PML dynamics, i.e. the regimes in which
the cavity round-trip is much shorter than the gain recovery time,
a PDE approximating the dynamics of a ring cavity model based
upon delayed differential equations [148] was proposed in [150]. The
multiple time scales analysis method was used and the scaling of
parameters consisted in assuming low losses, low gain, and weak
spectral filtering. In the model of [148], these three physical effects
are controlled by three independent parameters. In the multiple time
scales approach one finds, at the lowest order, a periodic solution,
e.g., a pulse evolving over the fast time scale z that circulates in the
cavity without deformation. At third order in the expansion scheme,
a solvability condition allows finding that the dynamics on the slow
time scale ξ is governed by the weak effects of gain, loss and spectral
filtering. In the PDE representation, the gain filtering in the model of
[148] takes the form of a diffusion over the fast time, i.e. a term d2∂2

zE
with d2 > 0. While the smallness of gain, losses and filtering can be, in
some situations, debatable, the advantage of the approach presented
in [150] is the uniform accuracy of the PDE representation that was
not, e.g., limited to the vicinity of the lasing threshold. For instance,
no a priori conditions over the magnitude of the field were necessary.

However, it is interesting —and surprising— to notice that the afore-
mentioned approach fails if one tries to export it to the case of the
DADE model (4.1)-(4.4); the resulting PDE obtained similarly as a
third order solvability condition does possess gain and losses, yet it is
devoid of spectral filtering (d2 = 0) which leads to singular dynamics
and unphysical pulse collapse. The physical reason that underlies this
mathematical phenomenon is that the filtering of the micro-cavity in
our modeling approach is not independent from gain and losses. It
is the actual level of the population inversion in the micro-cavity that
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defines the breadth and hence the curvature of the resonance. This
effect is particularly pronounced in the Gires-Tournois regime (i.e.,
h = 2), where the empty cavity reflectivity is unity, which corresponds
to no curvature at all and d2 = 0. That is, positive (resp. negative) cur-
vature induces diffusion (resp. anti-diffusion). Generally, the average
gain experienced by the pulse must be positive to compensate for the
cavity losses incurred by the mirror reflectivity η.

A proper analysis of the model given by equations (4.1)-(4.4) shall
result in a PDE whose diffusion term d2 depends on other parameters
such as the cavity losses. This discussion materializes by taking the
cavity at the lasing threshold as the expansion point instead of the
empty cavity, as done in [150]. At the lasing threshold, the unsaturated
gain and losses exactly compensate. This modification will allow to
obtain the filtering induced by the cavity at threshold, instead of that
of the empty cavity. The drawback of our approach is that we have to
assume the pulse to be not too intense and treat the nonlinear effects
perturbatively.

We start by normalizing time by the cavity round-trip τ time as σ = t/τ

and define a smallness parameter ε = 1/τ. As we operate in the long
cavity limit, the carriers are not independent functions of time that can
lead to resonant terms and solvability conditions. Instead, the carrier
evolutions depend uniquely on the initial conditions at the beginning
of the round-trip, which in the long cavity limit is the equilibrium
value, and on the amplitude of the field, i.e., Nj = Nj

(
Jj, E

)
. Hence,

we can concentrate solely on the field dynamics that reads

ε
dE
dσ

= [(1− iα1) N1 + (1− iα2) N2 − 1] E + hY, (4.6)

Y (σ) = η [E (σ− 1)−Y (σ− 1)] . (4.7)

We assume a small deviation of the gain and absorber with respect to
their equilibrium values that we scales as

Nj = Jj + ε3nj (4.8)

with j ∈ [1, 2]. We also assume η to be real as the feedback case is
irrelevant in the long cavity regime. Defining the Fourier transform
of the field profiles at the n-th round-trip as (En, Yn) and using that
d

dσ
→ −iω we obtain

(1− Gt − iεω) En = hYn + ε3
2

∑
j=1

(
1− iαj

) (
njE
)

n , (4.9)

where total complex gain Gt = (1− iα1) J1 + (1− iα2) J2 was used as a
shorthand.
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Noticing that the DAE for Y (σ) in Fourier space reads

Yn + ηYn−1 = ηEn−1 (4.10)

and, by making a linear combination of En and ηEn−1 as well as
simplifying, we obtain the functional mapping

En = η
h− 1 + Gt + iεω

1− Gt − iεω
En−1 (4.11)

+ ε3 1
1− Gt − iεω

2

∑
j=1

(
1− iαj

) [(
njE
)

n + η
(
njE
)

n−1

]
.

We impose the value of Gt to be a convenient expansion point and set
the threshold condition through the linear multiplier µ

µ = η
h− 1 + Gt + iεω

1− Gt − iεω
= 1, (4.12)

which allows finding the lasing frequency shift at threshold as

εωt = α1 J1 + α2 J2. (4.13)

This leaves us with a real equation for the amplification factor

η
h− 1 + Nt

1− Nt
= 1 , (4.14)

where we defined Nt = J1 + J2. The last relation implies that the
threshold is defined by

Nt = J1 + J2 = 1− hη

1 + η
. (4.15)

We can now express the field multiplier µ from one round-trip towards
the next as

µ (ω, Nt) = η
h− 1 + Nt + iε (ω−ωt)

1− Nt − iε (ω−ωt)
(4.16)

and the functional mapping given by equation (4.11) reads

En = η
h− 1 + Nt + iε (ω−ωt)

1− Nt − iε (ω−ωt)
En−1 (4.17)

+ ε3 1
1− Nt − iε (ω−ωt)

2

∑
j=1

(
1− iαj

) [(
njE
)

n + η
(
njE
)

n−1

]
.

One only needs equation (4.17) to be accurate up to third order in ε

in order to obtain the proper expression of the diffusion, third order
dispersion and nonlinear terms. As such, we can simplify the last term
of equation (4.17) by replacing the value of En at the lowest order, i.e.,
we can set

En = η
h− 1 + Nt

1− Nt
En−1 +O (ε) = En−1 +O (ε) , (4.18)
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where we used the threshold definition given by equation (4.15). Using
that En = En−1 in the nonlinear term of equation (4.17), replacing the
expression of the threshold and noticing that all the frequencies are
relative to that of the lasing threshold, so that one can set ω̃ = ω−ωt,
yields the expression

En = η
h− 1 + Nt + iεω̃

1− Nt − iεω̃
En−1 (4.19)

+ ε3 (1 + η)2

hη

2

∑
j=1

(
1− iαj

) (
njE
)

n−1 +O
(

ε4
)

.

Now let us assume there exists a PDE for the field E (ξ , z) with ξ and
z the slow and fast times, respectively. In Fourier space for the variable
z, one obtains

∂ξ E = L (ω̃) E + ε3N (ξ , ω̃) . (4.20)

The form of equation (4.20) consists naturally of a linear operator
L (ω̃) that should correspond to the linear multiplier of the mapping
in equation (4.19), while N (σ, ω̃) accounts for nonlinear gain and
absorber effect. We assume that L (ω̃) is small, i.e, L (ω) ∼ 0 +O (ε).
Such a scaling is consistent with the definition of the lasing threshold
and will be checked a posteriori. Integrating equation (4.20) exactly
over a round-trip yields

En = eLEn−1 + ε3
∫ n

n−1
e(n−ξ)LN (ξ , ω̃) dξ . (4.21)

Because the integral term in equation (4.21) is already at third order in
ε, we can approximate e(n−ξ)L = 1 +O (ε) and evaluate the nonlinear
operator using the Euler explicit method. Indeed, since N depends
on the field, the error in the integration will be proportional to the
slow evolution of the field from one round-trip towards the next, i.e.,
∂ξN ∼ ∂ξ E ∼ O (ε). That is, we find

En = eLEn−1 + ε3N (n− 1, ω̃) +O
(

ε4
)

. (4.22)

Comparing equation (4.19) and equation (4.22) we deduce that

L = ln
(

η
h− 1 + Nt + iεω̃

1− Nt − iεω̃

)
. (4.23)

Using equation (4.15) the last expression can be simplifies as

L = ln

1 + iεη
1+η
hη ω̃

1− iε 1+η
hη ω̃

 . (4.24)

We can verify easily that L = O (ε̃) which allows to check a posteriori
our approximation regarding the order of the operator L. One can
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also expand equation (4.24) in ω̃ up to third order yielding the drift,
diffusion and third order dispersion coefficients d1, d2 and d3 as

L = d1 (−iεω̃) + d2
(
−ε2ω̃2) + d3

(
iε3ω̃3) +O

(
ε4
)

(4.25)

with

d1 = − (η + 1)2

hη
, (4.26)

d2 =
1− η2

2

(
η + 1
hη

)2

, (4.27)

d3 = −η3 + 1
3

(
η + 1
hη

)3

. (4.28)

The values of the coefficient dj are particularly instructive and, in par-
ticular, how they deviate from the expression one can find easily in the
case of an empty Gires-Tournois micro-cavity coupled to an external
mirror: (d1, d2, d3) = (−2, 0,−2/3). Here, we notice that although d1

and d3 are modified by the value of the cavity losses, the value of d2

is vanishing. In the good cavity limit η → 1, we have d2 ∼ 1− η → 0,
which explains why third order dispersion is important as it becomes
the leading order term.

Further, we identify the nonlinear operator N as

N (n− 1, ω̃) =
(1 + η)2

hη

2

∑
j=1

(
1− iαj

) (
njE
)

n−1 (4.29)

Finally, reverting equation (4.20) to direct space using that −iεω̃ → ∂z,
the sought PDE for the field E reads

∂ξ E =
(
d1∂z + d2∂2

z + d3∂3
z
)

E (4.30)

+
(1 + η)2

hη

2

∑
j=1

(
1− iαj

) (
Nj − Jj

)
E .

By using the definition of the lasing threshold and that of the carrier
frequency, we find that the dispersive master equation for the field E
in the long cavity limit reads

∂ξ E =
(
d1∂z + d2∂2

z + d3∂3
z
)

E (4.31)

+
(1 + η)2

hη

{
(1− iα1) N1 + (1− iα2) N2 − 1 +

hη

1 + η
− iωt

}
E ,

whereas the equations for the carriers N1 and N2 take the form

∂N1

∂z
= γ1(J1 − N1)− |E|2N1 , (4.32)

∂N2

∂z
= γ2(J2 − N2)− s|E|2N2 . (4.33)
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Figure 4.7: Space-time diagram of the satellite instability found in the DNS of
the master PDE (4.32)-(4.33). The pulse intensity I = |E|2 is shown.
Parameters are (J1, J2, α1, α2, η, s) = (0.119, −0.1, 0, 0, 0.9, 15).
Reprinted with permission from [33].

Note that the rotation term iωt in equation (4.32) is immaterial and
can be removed by setting Ẽ (ξ , z) = E (ξ, z) exp (iωtξ).

First, a numerical study of the PDE model (4.32)-(4.33) demonstrates
the existence of the satellite instability in the parameter space and the
resulting space-time diagram obtained for zero linewidth enhancement
factors α1 = α2 = 0 is shown in figure 4.7. Again, we observe the clean
cut satellite instability in this parameter range.

To compare the PDE (4.32)-(4.33) with the DAE (4.1)-(4.4) in detail we
performed bifurcation analysis of the PDE by using pseudo-arclength
continuation methods within the pde2path framework [151]. To this
aim, first we seek for the steady localized pulse solutions of equa-
tions (4.32)-(4.33) that can be found by setting E(z, ξ) = E(z− υξ)e−ivξ

leading to the following equation for the stationary field E

0 = υ
∂E
∂z

+ d2
∂2E
∂z2 + d3

∂3E
∂z3 + iv E (4.34)

+
(1 + η)2

hη

(
(1− iα)N1 + (1− iβ)N2 − 1 +

hη

1 + η

)
E .

Note that both the spectral parameter v and the drift velocity υ

become free parameters that can be found by imposing additional aux-
iliary integral conditions. In addition we set the following boundary
conditions for the domain z ∈ [0, L]

∂E
dz

∣∣∣
z=0,L

= 0 ,

N1|z=0 = J1 , −∂N1

∂z

∣∣∣
z=L

+ γ1 (J1 − N1|z=L) = 0 ,

N2|z=0 = J2 , −∂N1

∂z

∣∣∣
z=L

+ γ2 (J2 − N2|z=L) = 0 .
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Figure 4.8: Branches of the TLSs in the master PDE (4.32)-(4.33). The maxi-
mum of the field intensity I = |E|2 as a function of the normal-
ized pump current is shown. (a) For (α1, α2) = (0, 0) the pulse
profiles show defined satellites. The branch has three folds Fi
and a branching point BP. The second fold F2 coincides with an
infinite period limit cycle in a global SNIPER bifurcation. An un-
stable branch emerges from BP in a pitchfork bifurcation. (b) For
(α1, α2) = (1.5, 0.5), F2 and BP have merged into an Andronov-
Hopf bifurcation point H. The profiles only show intensity bumps
on the leading edge of the pulse and there is no longer a SNIPER.
Other parameters are (J2, η, s) = (−0.1, 0.9, 15). Reprinted with
permission from [33].

Next, we follow the TLS of the PDE (4.32)-(4.33) in parameter space
and in figure 4.8 we present two branches of TLSs for different values
of the linewidth enhancement factors. Panel (a) shows the intensity of
the TLS as a function of the normalized pump rate for the case of α1 =
α2 = 0. Like in the DAE case (cf. figure4.4), one can see that the branch
folds three times (points Fi) when continuing in the pump rate J1 and
the second fold F2 is responsible for the SNIPER bifurcation after the
first leading satellite becomes sufficiently large to saturate the absorber
(cf. figure 4.7). Note that an additional unstable branch connects to
the main one in a branching point BP. Panel (b) shows the same gain
interval for non-vanishing linewidth enhancement factors α1 = 1.5
and α2 = 0.5. Here, the branch continues without the additional folds
F2 and F3 and only becomes Andronov-Hopf unstable at large gain
value. Indeed, the second fold and the branching point have merged
while the part of the branch with the third fold has detached, giving a
qualitatively different scenario. The chirp induced by the linewidth
enhancement factors smears out the third order dispersion effect
responsible for the satellites.

Finally, in figure 4.9 we superpose the results on top of data obtained
through DNSs of the DAE model (4.1)-(4.4) in the long delay limit
using the functional mapping approach [133]. Pulses are fully local-
ized TLSs in this regime. In panel (a) the standard deviation of the
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pulse energy is shown as a function of the gain bias J1 normalized to
threshold Jth

1 and the gain linewidth enhancement factor α1 along with
the bifurcation curves from continuation. For small α1 one can see the
satellite unstable region which is similar to the previous parameter set,
i.e., close to α1 = 0 there is an additional fold presented in solid blue
and the satellite instability sets in as a global SNIPER bifurcation after
it. Panel (b) shows a zoom-in on this area where the fold merges with
a branching point (dotted blue), thereby forming an Andronov-Hopf
bifurcation depicted in dash dotted red. Both models quantitatively
agree in this area. The principal fold of the subcritical TLS branch in
solid red is also reproduced correctly. For higher α1 the stable pulse
region is limited by another Andronov-Hopf bifurcation correspond-
ing to self-phase modulation, shown as well in dash dotted red. In
contrast to the DAE, for the PDE model the bifurcation curve slopes
down in α1 for increasing gain. Both the nature of the instability and
the discrepancy found in the equivalent PDE are somewhat similar to
the bifurcation structure in the Vladimirov-Turaev model for passive
mode-locking in a unidirectional ring laser [148, 149].

For the parameters of figure 4.9 (a), the DAE system exhibits a region
close to threshold at high values of α1 that is partly stable. The corre-
sponding fold and Andronov-Hopf curves, shown in dotted orange
and indicated by red crosses, respectively, are found in the PDE with
a qualitatively similar shape but the position of this area is shifted
significantly towards lower gain as compared to the DAE. This region
corresponds to the bistable region for the previous parameter set. In-
deed we found that generally it moves and changes shape significantly
as a function of the other parameters and so do the principal pulse
and satellite instability regions. For example, by increasing α2, the
lower region of stable pulses shifts up in α1 by roughly the same
amount, while the satellite instability moves down. The second region
moves up in α1 much quicker and completely detaches, at least when
constricting one’s view at the area below threshold (see figure 4.10).
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Figure 4.9: (a) Bifurcation diagram in the (J1, α1) plane of the DAE
model (4.1)-(4.4) in the long delay limit superposed with the
bifurcation diagram of the equivalent PDE (4.32)-(4.33). The color
coding shows the standard deviation of the pulse energy obtained
by DNSs of the DAE. The evolution of the fold F1 is marked
by a solid red line, the satellite instability around α1 = 0 with
the corresponding fold F3 (branching point) is in solid (dotted)
blue and the Andronov-Hopf part in dash dotted red. The other
Andronov-Hopf bifurcation corresponding to self-phase mod-
ulation slopes down for the PDE case in contrast to the DAE.
The high α1 region in the PDE is significantly shifted with re-
spect to the DAE. Its fold branch is depicted in dotted orange
and Andronov-Hopf bifurcations are indicated by red crosses.
Parameters are (J2, α2, η, s) = (−0.1, 0, 0.9, 15). (b) Zoom-in on
the SNIPER region where a fold and a branching point merge
into an Andronov-Hopf bifurcation. Reprinted with permission
from [33].

Figure 4.10: For larger α2 the different regions move and deform. The stable
pulse region moves up in α1 by a similar amount while the satel-
lite region moves down. The high α1 region completely detaches
in the area below threshold. Results from bifurcation analysis
of the PDE strongly differs from the DAE in this region. Pa-
rameters are (J2, α2, η, s) = (−0.1, 0.5, 0.9, 15). Reprinted with
permission from [33].
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5.1 model system

The schematic setup the VCSEL-RSAM system is depicted in Fig. 5.1 (a).
It consists of two micro-cavities: a VCSEL gain mirror and a resonant
saturable absorber mirror separated by a time of flight τ. The fields
in the micro-cavities are denoted Ei, where i = 1, 2 correspond to the
gain and the absorber mirrors, respectively. The output field Oi of
each nonlinear mirror turns into the injection field Yi of the other after
passing a beam splitter that is used to extract a signal. The system
is operated in the regime where the round-trip time is much longer
than the semiconductor gain recovery time. In this so-called long cav-
ity regime, TLSs can be observed below the continuous wave (CW)
threshold [125, 133]. One typical time trace corresponding to stable
fundamental mode-locking in the long cavity regime is depicted in
Fig. 5.1 (b). There, the shape of the pulse does not change from round-
trip to round-trip as can be seen more easily in the pseudo space-time
representation in Fig.5.7 (a).

Following the approach developed in [35, 73, 133, 153] and presented
in section 2.2.1, one can write the dynamical model for the intra-cavity
fields Ei and population inversions Ni as

κ−1
1 Ė1 = [(1− iα1)N1 − 1] E1 + h1Y1 , (5.1)

κ−1
2 Ė2 = [(1− iα2)N2 − 1 + iδ] E2 + h2Y2 , (5.2)

Ṅ1 = γ1(J1 − N1)− |E1|2N1 , (5.3)

Ṅ2 = γ2(J2 − N2)− s|E2|2N2 . (5.4)

79
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Figure 5.1: (a) A schematic setup of the VCSEL-RSAM. (b) The system can
exhibit temporal localized structures below the threshold for
continuous wave emission. (b) is a time trace of equations (5.1)-
(5.5) for j = 0.5406. The time has been trimmed to contain only
the fast stage of the pulses. Reprinted with permission from [34].

Here, κ−1
i are the photon lifetimes, αi are the linewidth enhancement

factors and δ is the detuning between the two micro-cavities, Ji are the
bias in the gain and the absorber sections and γi are the corresponding
lifetimes. The ratio of the gain and absorber saturation intensities is s.
The field injected into a micro-cavity is denoted with Yi whilst the cou-
pling parameters hi ∈ [0, 2] depend on the cavity mirror reflectivities.
The two micro-cavities mutually inject each other and their outputs is
a superposition of the reflected and emitted fields. The link between
the two micro-cavities, considering all multiple reflections, is given by
two DADEs that physically correspond to the boundary conditions
linking the fields defined in the three cavities composing the system,

Y1,2(t) = η [E2,1(t− τ)−Y2,1(t− τ)] , (5.5)

where η is the amplitude transmission of the beam splitter and the
minus sign before the injected field represents a phase shift of π upon
reflection from the top Bragg mirror.

We choose the photon and carrier lifetimes as (κ−1
1 , κ−1

2 ) = (343, 80) fs
and (γ−1

1 , γ−1
2 ) = (800, 50) ps and the linewidth enhancement factors

are set to (α1 , α2) = (2.5, 1). The saturable absorption modulation
is 25%, which corresponds to J2 = −0.07, whereas the ratio of the
saturation energies of the gain and the absorber is s = 5 [126]. The
beam splitter losses per pass are 2 % in intensity hence η = 0.99.
The round-trip time is 2τ = 3.4 ns which fullfils the long cavity limit
condition for the fundamental mode-locking regime and for a full
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gain recovery since e−2γ1τ ' 0.01� 1. Further, time was scaled by κ1,
hence the time unit is 343 fs. The gain bottom Bragg mirror is assumed
to be perfectly reflective giving h1 = 2 and for the absorber, h2 = 1.9985
models the presence of non-saturable losses of 3%. Note that h1 = 2
corresponds to a Gires-Tournois interferometer regime [75]. The latter
are designed to conserve the photon number using highly reflective
bottom mirrors and yield a purely dispersive spectrum [35]. Models
based upon DADEs such as equations (5.1)-(5.5) correctly reproduce
this unitary, dispersive, response [35].

5.2 modal structure

As described in section 2.2.3, the modal structure is investigated with
the CW ansatz

Ei = ei exp(−iωt), (5.6)

Yi = yi exp(−iωt). (5.7)

We scale the time of the VCSEL-RSAM equations (5.1)-(5.5) as t→ κ1t,
introduce ρ = κ1/κ2, and insert the ansatz (5.6)-(5.7) to obtain

e1 − y1 = rgy1, (5.8)

e2 − y2 = ray2, (5.9)

y1 = ηeiωt(e2 − y2), (5.10)

y2 = ηeiωt(e1 − y1), (5.11)

where

ra =
h1

1− iω− N1(1− iα1)
− 1, (5.12)

rg =
h2

1− i (ρω + δ)− N2(1− iα2)
− 1 (5.13)

are the unsaturated reflectivities of the gain and absorption cavity,
respectively. They relate the output field to the injection field as

O1 = E1 −Y1 = rgY1, (5.14)

O2 = E2 −Y2 = raY2. (5.15)

For determining the CW threshold, Ni = Ji holds.

Inserting equation (5.8) into (5.11) and equation (5.9) into (5.10) yields

y1 = η exp(iωτ)ray2, (5.16)

y2 = η exp(iωτ)rgy1. (5.17)

Combining these two equations results in the CW condition

rgraη2 exp(2iωτ) = 1. (5.18)
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Figure 5.2: Gain value Jth
1 for which a CW mode with frequency ω emerges

from the off solution. If the delay τ is finite, the CW modes
are discrete (red points). As the delay increases, the frequency
distance between two neighboring modes decreases. Blue lines
indicate the long delay limit τ → ∞. Parameters are τ = 10, 40, 500
for (a), (b) and (c), respectively.

Seperating equation (5.18) into modulus squared and phase gives

RgRaη4 = 1, (5.19)

φ + 2ωτ + Arg[η] = 2kπ, k ∈ Z, (5.20)

where Rg and Ra are the squared magnitudes of rg and ra, respectively,
and φ is the phase of the product rgra.

After some algebra Rg, Ra and φ are given by

Rg =
(h1 − 1 + J1)

2 + (ω− α1 J1)
2

(1− J1)
2 + (ω− α1 J1)

2 , (5.21)

Ra =
(h2 − 1 + J2)

2 + (ρω + δ− α2 J2)
2

(1− J2)
2 + (ρω + δ− α2 J2)

2 , (5.22)

φ = arctan
ω− α1 J1

h1 − 1 + J1
+ arctan

ω− α1 J1

1− J1

+ arctan
ρω + δ− α2 J2

h2 − 1 + J2
+ arctan

ρω + δ− α2 J2

1− J2
. (5.23)

Solving the CW condition given by equation (5.18) exactly leads to
infinitely many discrete pairs (Jn

1 , ωn), n ∈N, where ωn+1−ωn ≈ π/τ.
The overall CW threshold is the minimum value of all Jn

1 values. The
values for ωn become quasi-continuous in the long delay limit. Then it
can be assumed that for every J1 there exists an ω that solves the phase
condition (5.20), and only the equation for the absolute value (5.19)
remains to be solved.

Figure 5.2 depicts three examples of the gain threshold Jth
1 (ω) as a

function of the different CW modes existing in the VCSEL-RSAM
for increasing delay values. The blue lines indicate the long delay
approximation τ → ∞.
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Figure 5.3: Graphical representation for determining the CW threshold fre-
quency. The blue and red lines depict the gain reflectivity Rg and
the inverse absorber reflectivity Ga = (η4Ra)−1, respectively. As
the gain bias J1 increases, the CW threshold is reached when both
curves intersect for the first time. Inset: Due to the curvature of
the inverse absorber reflectivity, the CW frequency ωth is located
slightly away from the maximum of the gain reflectivity J1α1. The
other quantities are explained in more detail in the main text.

For an intuitive understanding of the CW modes, it is instructive
to characterize the curves that are given by Rg and Ga = (η4Ra)−1,
referred to as the gain reflectivity and the inverse absorber reflectiv-
ity, respectively. Geometrically and in the long delay limit, the CW
threshold is given by the first intersection between the two curves as
J1 increases (cf. figure 5.3).

The limits for Ga and Rg for large frequencies are

lim
ω→±∞

Ga = η−4, (5.24)

lim
ω→±∞

Rg = 1. (5.25)

Equations (5.24)-(5.25) show an essential instability at η = 1, where an
infinite amount of modes emerge as the cavity setup becomes lossless.

The maximums of both curves are located at

ωmax
g = J1α1, (5.26)

ωmax
a =

J2α2 − δ

ρ
. (5.27)

If the gain curve is narrow compared to the inverse absorber reflectivity
curve, the overall CW threshold is close to the gain reflectivity peak
(cf. the inset of figure 5.3).
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The height at the maximum is given by

Gmax
a =

1
η4Rmin

a
=

(1− J2)2

η4(h2 + J2 − 1)2 , (5.28)

Rmax
g =

(h1 + J1 − 1)2

(1− J1)2 . (5.29)

As Ga has values between G∞
a and Gmax

a , for the overall CW threshold
Jth
1 (ωth) it holds that

1 + η2 − h1η2

1 + η2 ≤ Jth
1 (ωth) ≤ 1 + (h1 + h2 − h1h2 − 1)η2 − J2(1 + (h1 − 1)η2)

1 + (h2 − 1)η2 + J2(η2 − 1)
,

(5.30)

which can be shown by setting Rmax
g equal to G∞

a and Gmax
a and solving

the resulting equation for J1.

Let the width of a unimodal symmetric curve R(ω) be defined by the
difference between the two solutions of R(ω) = 1

2

(
Rmax − Rinf) + Rinf

with Rmax = max
ω

R(ω) and Rinf = lim
ω→∞

R(ω). Then the widths of Rg

and Ga are

wg = 2(1− J1), (5.31)

wa =
2|h2 − 1 + J2|

ρ
. (5.32)

The width of Rg decreases linearly with J1 and does not depend on
any other parameters. On the other hand, the width of Ga depends on
h2 and J2.

A further important control parameter compared to the MIXSEL sys-
tem is the detuning δ between the two micro-cavities. It shifts the
inversed absorber reflectivity curve Ga by δ/ρ. Therefore, it has a
major effect on the overall CW threshold if the gain reflectivity peak
is close to the peak of the inversed absorber reflectivity. This rela-
tionship between the CW threshold and the detuning is depicted in
figure 5.4 (a) and (c) where both Jth

1 as well as the corresponding CW
frequency ωth are shown as a function of the detuning δ.

While Jth
1 changes continuously with δ, ωth has multiple discontinuities

when varying δ. Figure 5.5 shows the different lasing modes that exist
as a function of δ. While the frequency of each mode changes continu-
ously with δ, the mode that emerges first from the off solution switches,
explaining the discontinuities in the overall threshold frequency. As
τ → ∞, the modes are separated by an infinitesimal amount and the
overall CW threshold frequency becoms pseudo-continuous.

For ρ > 1 the CW threshold curve has a cusp where the CW frequency
has a discontinuity independent of the delay (cf. figure 5.4 (b) and
(d)). The cusp can be understood using the graphical representation



5.2 modal structure 85

-1 -0.5 0 0.5 1

0.05

0.06

0.07

0.08

-4 -2 0 2 4

0.02

0.03

0.04

0.05

-1 -0.5 0 0.5 1

0

0.1

0.2

-4 -2 0 2 4

-0.5

0

0.5

1

Figure 5.4: Overall gain threshold Jth
1 (a, b) and the corresponding threshold

frequency ωth (c, d) as a function of the detuning δ. Parameters
are (τ, ρ) = (300, 1/4.2857) and (τ, ρ) = (10000, 2) for the left and
right column, respectively.

Figure 5.5: The dependence of the CW mode frequency ω on the detuning δ
in a VCSEL-RSAM as given by equations (5.1)-(5.5) for τ = 300.
While the frequencies of the different CW modes (black lines)
change continuously with the detuning, the mode that emerges
first from the off solution (thick red line) switches, thereby ex-
plaining the discontinuouities seen in figure 5.4 (c).
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Figure 5.6: Intersections of the gain and inverse absorber reflectivity Rg
and Ga as a function of the detuning δ for the kink case ρ >
1. The blue line, red line and red point indicate the effective
gain reflectivity Rg, the inverse effective absorber reflectivity
Ga, and the intersection of the two curves, respectively. Because
the absorber curve is narrow compared to the gain curve, the
frequency jumps from the left to the right side of the gain curve
when the detuning is slightly changed, thereby explaining the
discontinuouity seen in figure 5.4 (d). Parameters are (ρ, δ) =
(2,−0.45) and (ρ, δ) = (2,−0.15) for (a) and (b), respectively.

of the reflectivities as for ρ > 1 the inversed absorption curve has
comparable width to the gain curve. Therefore, at a particular value
of δ, the mode where both curves intersect jumps from the right to
the left side of the gain curve (cf. figures 5.6 (a) and (b)). A similar
mechanism has been observed experimentally in a semiconductor
laser [154].

5.3 wiggling instability

In the following, we operate in the regime of localization, where
the pulses are TLSs that appear below the lasing threshold bias. We
denote with j = J1/Jmax

th the gain bias scaled with the maximum value
of the threshold for CW emission, i.e. Jmax

th = max Jth(δ), where Jth(δ)
is the CW threshold depending on δ. In the long delay limit, Jth(δ) is
computed by imposing the round-trip reflectivity of the full system
to be unity, i.e. R(ω, J1) = |ra||rg|η2. In the long cavity regime lasing
occurs very close to the frequency ωmax that maximizes R(ω, J1).

The long cavity and the multiscale nature of the problem render the di-
rect numerical simulations particularly tedious. To circumvent this dif-
ficulty, we use the functional mapping method (see section 3.1.3) [133].
For all numerical simulations the length of the integration time box in
the vicinity of the pulse was set to tbox = 140 ps which is 25 the typical
pulse width of ∼ 5.5 ps.

The functional mapping method allows us to perform efficient parame-
ter scans for the single TLS regime and we present some of our results
in Fig. 5.7. We start with the parameter set yielding a stable pulsating
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Figure 5.7: Pseudo space-time diagrams for the single pulse train found by di-
rect numerical simulations of equations (5.1)-(5.5). The intensities
|Y1|2 are shown. (a) Stable TLS; (b) Wiggling TLS; (c) The period
and the amplitude of the wiggling oscillation strongly increases.
Parameters are δ = −0.5 and j = (0.5406, 0.5398, 0.5356) for (a),
(b) and (c), respectively. Reprinted with permission from [34].

Figure 5.8: Details on the pulse profile in the wiggling regime (linear and
logarithmic scales) for the same parameters as in Fig. 5.7(c). Panels
(a,c) and (b,d) correspond to the round-trip numbers 47 and 281,
respectively. Reprinted with permission from [34].

regime (cf. Fig. 5.1 (b)) and its pseudo space-time representation is
presented in Fig. 5.7 (a). There, we used as a folding parameter the
exact period of the solution which results in a vertical spatio-temporal
trace. As the scaled gain bias j is decreased, keeping all other parame-
ters fixed, the pulse starts to oscillate in its amplitude and position,
see Fig.5.7 (b). We refer to these oscillations where the pulse moves
back and forth without a net drift as wiggling. Remarkably, by further
decreasing j, the period and the amplitude of the wiggling oscillations
can be made much larger letting j approach a specific value jHom.
Below jHom only the off solution is stable. The temporal evolution of
a TLS with j even closer to jHom can be seen in Fig. 5.7 (c) where the
period and the amplitude of the wiggling is remarkably larger than in
panel (b).
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It was shown in [35], that the third order dispersion stemming from
the lasing micro-cavity induces a train of decaying satellites on the
leading edge of the TLSs observed in this system. Due to the nonlinear
interaction with carriers, these satellites may get amplified, eventually
replacing the parent pulse that would die out. This regime was termed
a satellite instability, see Fig. 4(a) in [35]. A similar phenomenon also
appears in mode-locked integrated external-cavity surface-emitting
lasers, see section 4.2. There, the gain and the absorber share the
same micro-cavity, which leads to a somewhat simpler scenario. In the
present case, we note that the wiggling oscillations are not stemming
from a satellite instability since the parent pulse remains fully merged
with its leading satellite, see Fig. 5.8 (a,b), the latter could merely be
observed using a logarithmic scale as shown in Fig. 5.8 (c,d). However,
since this wiggling instability was also observed in [35] Fig. 4(b),
for slightly different parameters than for the satellite instability, we
shall conclude that, in all cases, third order dispersion remains at the
root of the observed oscillatory motion. Here, the emerging satellites
immediately melt within the main pulse which creates an overall,
apparent, wiggling motion.

In order to shed further light on the mechanism responsible for the
wiggling, we performed a bifurcation analysis of the system (5.1)-(5.5)
using the modified version of the continuation tool DDE-BIFTOOL [135]
adapted to DADEs.

Figure 5.9 (a) shows the part of a branch of a single TLS, where a
maximum of the injected field intensity |Y1|2 as a function of the
scaled gain bias j for the fixed detuning δ slightly smaller than in
Fig. 5.7. The TLSs are periodic orbits of the DADEs (5.1)-(5.5) and
they emerge in a saddle-node of limit cycles bifurcation at j = jF (blue
circle). The TLSs are unstable over the low power branch (dashed
black line) and stable on the upper branch close to the fold if j is
increased (solid black line). However, for increasing j, an Andronov-
Hopf bifurcation appears at j = jT (red circle) and a quasi-periodic
solution, that corresponds to a wiggling TLS, emerges. Since the
path-continuation of quasiperiodic orbits is not possible within DDE-
BIFTOOL, we conducted numerical simulations to reconstruct this
orbit (red line). Here, the maximum and minimum intensity values
per round-trip are represented. One can clearly see that the branch
corresponding to wiggling TLSs emerges supercritically and connects
two torus bifurcation points. Further increasing j, the high power
branch of TLS recovers its stability until j = jth. If the magnitude of |δ|
is increased, the wiggling orbit grows, see Fig.5.9 (b), until its lower
part touches the unstable TLS branch. This point j = jHom corresponds
to a fold of two emerging homoclinic bifurcations of periodic orbits. If
|δ| is further increased beyond this point (see Fig.5.9 (c)), the torus
orbit splits into two parts, each limited by a homoclinic bifurcation
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Figure 5.9: The branches of single TLS, showing the peak intensity |Y1|2
as a function of the normalized gain j for different values
of δ = (−0.475,−0.485,−0.49,−0.5) (a,b,c,d) superposing re-
sults from DDE-Bifftool and direct numerical simulations. Solid
(dashed) black line corresponds to the stable (unstable) TLS. Blue
points mark the folds. The quasi-periodic branch corresponding to
wiggling TLSs is in red. As the amplitude of the wiggling grows
with δ, the inflating red branch breaks in two parts (c,d) each ter-
minated by a homoclinic bifurcation. Reprinted with permission
from [34].

point (magenta circles) and a homoclinic orbit connecting these points,
which is schematically depicted in dashed magenta line. Note that in
the interval between the two dashed magenta lines, no stable solution
exists and the system converges to the off state. For larger values of |δ|,
the torus bifurcation points slowly move away from each other along
the TLS branch, whereas the homoclinic points are moving towards
the jT points, as presented in Fig.5.9 (d). Now the behaviour observed
in Fig. 5.7 becomes feasible: For high gain bias values, a TLS is stable,
see Fig.5.9 (d) and Fig. 5.7 (a). Decreasing j, a torus bifurcation sets in
at j = jT and a wiggling TLS occurs (cf. Fig. 5.7 (b)). Further decreasing
j one moves along the torus orbit and the oscillation period grows
(Fig. 5.7 (c)) and can be arbitrarily large approaching the homoclinic
point j = jHom, where it becomes theoretically infinite.

Finally, in Fig. 5.10 we present a two-parameter study that reveals
the interplay between the value of the bias current and the detuning
between the two micro-cavities. We depict the pulse energy E of the
Y1 field obtained from direct numerical simulations of equations (5.1)-
(5.5) in the (j, δ) plane. Intuitively, one understands that the region of
existence of the TLS solutions must be bounded between the threshold
line jth (black solid line) – where the (background) off solution becomes
unstable – and the fold of period orbits jF (blue solid line) where
the TLS branch emerges. However, studying the stability of the TLS
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Figure 5.10: (a) Two-parameter bifurcation diagram in the (j, δ) plane to-
gether with the pulse energy E of the injected field Y1 obtained
from direct numerical simulations of equations (5.1)-(5.5). (b)
and (c): Insets in the vicinity of the left and right co-dimension
two point, respectively. Black, blue, red and magenta solid lines
indicate the threshold for continuous wave emission jth, the
fold of periodic orbits jF, torus bifurcation line as well as ho-
moclinic bifurcation line of periodic orbits, respectively. Black
dashed lines from right to left correspond to the cross-sections
depicted in Figs. 5.9 (a)-(d), respectively. Reprinted with permis-
sion from [34].

solution imposes more stringent conditions and reveals the importance
of the detuning δ. While for small |δ| the TLS is stable for all bias values
between the two aforementioned bordering lines, two unstable regions
for both positive and negative detunings appear if |δ| is increased.
There, the onset of stable TLS emission is governed by the torus (red)
lines and the homoclinic bifurcations (magenta). Both lines collide
at one point in the (j, δ) plane where they meet with the fold line.
This point corresponds to a so-called co-dimension two point, which
is the analogon of a Bogdanov-Takens bifurcation point found in
dynamical systems governed by ordinary differential equations (see
section 2.1.6.6). The branches presented in Fig. 5.9 can be seen as
four cross-sections of the Fig. 5.15 (b,c) for different δ values, that are
indicated by the four dashed black labeled lines; the labels (from right
to left) correspond to the panels (a)-(d) of the Fig. 5.9, respectively.
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5.4 master equation

In this section, a Haus master equation for the intra-cavity field in
the gain section E1 (as an arbitrary choice instead of E2) is derived,
allowing an intuitive interpretation of the dynamics. The resulting
partial differential equation expands the dynamics to third order
around the CW threshold.

What follows is the derivation using the functional mapping method
(see section 3.3.4). Similarly, a multi-scale analysis (see section 3.3)
leads to the same results. For brevity, the multi-scale derivation is
attached in appendix C.2.

As a first step, the system’s variables are transformed into the co-
rotating frame that rotates with the lasing frequency ωl . For that the
ansatzes

Ei = eie−iωl t, (5.33)

Yi = yie−iωl t (5.34)

are inserted into the equations (5.1)-(5.5) for the VCSEL-RSAM, after
which one obtains

εė1 = [(1− iα1)N1 − 1 + iωl ] e1 + h1y1, (5.35)

ρεė2 = [(1− iα2)N2 − 1 + i(ρωl + δ)] e2 + h2y2, (5.36)

y1(t) = ζ [e2(t− 1)− y2(t− 1)] , (5.37)

y2(t) = ζ [e1(t− 1)− y1(t− 1)] . (5.38)

Here, the ratio of the photon lifetimes ρ = κ1/κ2 and the effective
amplitude transmission of the beam splitter ζ = ηeiωlτ were introduced
as shorthand notations. Further, time was scaled as t→ tτ so that the
smallness parameter ε = 1/τ could be introduced.

Let L1(ω), L2(ω) be defined as

L1(ω) = −[(1− iα1)Jth
1 − 1 + i(ωl + εω)], (5.39)

L2(ω) = −[(1− iα2)J2 − 1 + i(ρ(ωl + εω) + δ)], (5.40)

and denote L0
i = Li(0) and Li(ω) = Li for brevity. Introducing L1 and

L2 into equations (5.35)-(5.38) leads to the condition

0 = −L1(0)e1 + h1y1, (5.41)

0 = −L2(0)e2 + h2y2, (5.42)

0 = ζ[e2 − y2]− y1, (5.43)

0 = ζ[e1 − y1]− y2. (5.44)

Imposing a singular determinant on equations (5.41)-(5.44) yields the
same threshold condition as in section 5.2

R(0) = 1, R(ω) = ξ2 h2 − L2

L2

h1 − L1

L1
. (5.45)
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Next, the carriers are expanded around the CW threshold as

N1 = Jth
1 + ε3n1, (5.46)

N2 = J2 + ε3n2, (5.47)

J1 = Jth
1 + ε3 j1. (5.48)

In Fourier space the equations are of the form

L1(ω)e(n)
1 = h1y(n)

1 + ε3N (n)
1 , (5.49)

L2(ω)e(n)
2 = h2y(n)

2 + ε3N (n)
2 , (5.50)

0 = ζ[e(n−1)
2 − y(n−1)

2 ]− y(n)
1 , (5.51)

0 = ζ[e(n−1)
1 − y(n−1)

1 ]− y(n)
2 , (5.52)

where the superscripts indicate the round-tripe number. The nonlin-
earities N (n)

i are defined as

N (n)
1 = (1− iα1)(n1e1)(n), (5.53)

N (n)
2 = (1− iα2)(n2e2)(n). (5.54)

Now, the injection fields yi are eliminated from the equations. For that
take a linear combination of equations (5.49) and (5.50) to obtain

h2L1(ω)e(n)
1 + ζh1L2(ω)e(n−1)

2 = h1h2[y(n)
1 + ζy(n−1)

2 ]

+ h2ε3N (n)
1 + ζh1ε3N (n−1)

2 , (5.55)

h1L2(ω)e(n)
2 + ζh2L1(ω)e(n−1)

1 = h1h2[y(n)
2 + ζy(n−1)

1 ]

+ h1ε3N (n)
2 + ζh2ε3N (n−1)

1 . (5.56)

We rewrite equations (5.51) and (5.52) as

y(n)
1 + ζy(n−1)

2 = ζe(n−1)
2 , (5.57)

y(n)
2 + ζy(n−1)

1 = ζe(n−1)
1 , (5.58)

and insert these two relationships into equations (5.55) and (5.56),
respectively, to get two relationships for e(n)

i

e(n)
1 = ζ

h1

h2

h2 − L2(ω)
L1(ω)

e(n−1)
2 +

ε3

L1(ω)

[
N (n)

1 + ζ
h1

h2
N (n−1)

2

]
, (5.59)

e(n)
2 = ζ

h2

h1

h1 − L1(ω)
L2(ω)

e(n−1)
1 +

ε3

L2(ω)

[
N (n)

2 + ζ
h2

h1
N (n−1)

1

]
. (5.60)
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For further notational simplicity, the equations are rewritten in matrix
form. Define

vn =

(
e(n)

1

e(n)
2

)
, (5.61)

Ξ(ω) =

 0 ζ h1
h2

h2−L2(ω)
L1(ω)

ζ h2
h1

h1−L1(ω)
L2(ω) 0

 , (5.62)

Nn,n−1 =

(
L−1

1 (ω)[N (n)
1 + ζ h1

h2
N (n−1)

2 ]

L−1
2 (ω)[N (n)

2 + ζ h2
h1
N (n−1)

1 ]

)
. (5.63)

Equations (5.59) and (5.60) can then be written as

vn = Ξ(ω)vn−1 + ε3Nn,n−1. (5.64)

The linear part of equation (5.64) defined by Ξ(ω) is anti-diagonal, i. e.,
couples e1 to e2 and vice versa. By iterating equation (5.64), the linear
part can be made diagonal, which results in

vn = Ξ(ω)[Ξ(ω)vn−2 + ε3Nn−1,n−2] + ε3Nn,n−1

= Ξ2(ω)vn−2 + ε3[Ξ(ω)Nn−1,n−2 + Nn,n−1], (5.65)

where Ξ2 is given by

Ξ2(ω) = R(ω)

(
1 0

0 1

)
. (5.66)

Until now, equation (5.65) is an exact representation of the dynamics
of the VCSEL-RSAM. In order to match it with the assumed PDE, the
following two approximations are made:

First, it is assumed that the frequency deviation from the lasing fre-
quency is small so that in the nonlinear term Li(ω) can be replaced
with L0

i .

Because the nonlinearity is third order in ε, it is consistent to replace
the electrical fields that appear in the nonlinearity with a zeroth order
approximation as

vn = Ξvn−1 +O(ε). (5.67)

This approximation allows decoupling e1 and e2 in the nonlinearity.
For this e(n−1)

i in N (n−1)
i is replaced as given by equation (5.67).
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The equation for the electrical field with both approximations reads

vn = Ξ2(ω)vn−2 + ε3Ñn,n−2, (5.68)

with Ñn,n−2 being obtained after simplifications as

Ñn,n−2 =

 h1(1−iα1)

L0
1(h1−L0

1)
n(n−2)

1 + h2(1−iα2)

L0
2(h2−L0

2)
n(n−1)

2

h2(1−iα2)

L0
2(h2−L0

2)
n(n−2)

2 + h1(1−iα1)

L0
1(h1−L0

1)
n(n−1)

1

 ? vn−2, (5.69)

where ? denotes a convolution. Explicitly, for e1 one can write

e(n)
1 = R (ω) e(n−2)

1 +

(
h1 (1− iα1)

L0
1

(
h1 − L0

1

)n(n−2)
1 +

h2 (1− iα2)

L0
2

(
h2 − L0

2

)n(n−1)
2

)
? e(n−2)

1 .

(5.70)

Assume that a master equation with a linear and nonlinear operator
exists that can be written as

∂σE = L(ω)E + ε3N (σ, ω). (5.71)

Integrating equation (5.71) over a round-trip, i. e., 2 units of σ, yields

En = e2LEn−2 + ε3
∫ n

n−2
e(n−σ)LN (σ, ω) dσ, (5.72)

where En indicates the electrical field at the nth round-trip.

The integral (5.72) can be approximated using an Euler step

En = e2LEn−2 + 2ε3N (n− 2, ω). (5.73)

The final step is the comparison of equation (5.70) obtained from the
mapping with equation (5.73) obtained from the assumed PDE. The
comparison gives the values of the operator L and N .

For the linear operator the comparison results in

L =
1
2

ln R(ω). (5.74)

For the nonlinear operator the comparison yields

N (n− 2, ω) =
1
2

(
h1 (1− iα1)

L0
1

(
h1 − L0

1

)n(n−2)
1 +

h2 (1− iα2)

L0
2

(
h2 − L0

2

)n(n−1)
2

)
? E(n−2)

1 .

(5.75)
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Inserting both operators (5.74)-(5.75) into the PDE given by equa-
tion (5.71), expanding L to third order in ε and transforming back
into time space using −iεω → ∂z, reveals the sought PDE as

∂σE =

(
3

∑
j=1

dj∂
j
z

)
E (σ, z)

+
1
2

[
h1 (1− iα1)

L0
1

(
h1 − L0

1

) (N1 − Jth
1

)
+

h2 (1− iα2)

L0
2

(
h2 − L0

2

) (N2 − J2)

]
E (σ, z) ,

(5.76)

where equations (5.46)-(5.47) were used to replace n1 and n2.

The coefficients dj are obtained from the Taylor expansion of L as

dj =
dL
dε

∣∣∣∣
ε=0

(j! )−1(−i)−j. (5.77)

Explicitly, the first three coefficients can be written as

d1 =
h1

2(J1 − 1 + iω)(h1 − 1 + J1 + iω)

+ ρ
h2

2(J2 − 1 + i(ρω + δ))(h2 − 1 + J2 + i(ρω + δ)))
, (5.78)

d2 =
h1(h1 + 2(J1 − 1 + iω))

4(J1 − 1 + iω)2(h1 − 1 + J1 + iω)2

+ ρ2 h2(h2 + 2(J2 − 1 + i(ρω + δ))
4(J2 − 1 + i(ρω + δ))2(h2 − 1 + J2 + i(ρω + δ))2 , (5.79)

d3 =
h1
(
h2

1 + 3h1(J1 − 1 + iω) + 3(J1 − 1 + iω)2)
6(J1 − 1 + iω)3(h1 − 1 + J1 + iω)3

+ ρ3 h2
(
h2

2 + 3h2(J2 − 1 + i(ρω + δ)) + 3(J2 − 1 + i(ρω + δ))2)
6(J2 − 1 + i(ρω + δ))3(h2 − 1 + J2 + i(ρω + δ))3 .

(5.80)

The approximation of the linear operator L in equation (5.76) to third
order results in an unstable linear operator. Figure 5.11 depicts the
real part of the exact linear operator in Fourier space together with its
third order approximation where high frequencies are unstable in the
approximation. The truncated linear operator’s stability is different
from the MIXSEL because there the real part of the reflectivity curve
is symmetric around the expansion point, ensuring that the expansion
to third order results in a stable linear operator.

To obtain a stable linear operator, we insert another smallness pa-
rameter ρ = κ1/κ2, which corresponds to how broad the absorber
reflectivity curve is as compared to the gain reflectivity curve. The
absorber reflectivity curve in the limit ρ→ 0 is flat.
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Figure 5.11: Real part of the linear operator Re[L] (5.74) in Fourier
space (solid line) together with its third order approximation

Re[
3
∑
j=1

dj(−iω)j] (dashed line). In this case, the third order ap-

proximation leads to an operator where the frequencies ω ' 3
are unstable.

Two expansions follow: First, the CW threshold is expanded as a
function of ρ, i. e.,

ωth(ρ) = ∑
i

εiρi diωth

dρi

∣∣∣∣
ρ=0

, (5.81)

Jth
1 (ρ) = ∑

i
εiρi di Jth

1
dρi

∣∣∣∣∣
ρ=0

. (5.82)

Second, the coefficients di from equations (5.78)-(5.80) are expanded
in ρ up to the (3− i)th order. As ∂i

z is of ith order, the product di∂
i
z

then is of third order.

Inserting the expanded version of ωth and Jth
1 into the threshold equa-

tion R2 = 1,
dR2

dω
= 0 produces the expansion terms

ω0 = α1 J1,0 (5.83)

J1,0 =
1− η2(h1 − 1)Ra,0

η2Ra,0 + 1
(5.84)

ω′0 = −
η2h1

(
η2α2

1 J1,0Ra,0 −
(
α2

1 + 1
)

J1,0 + 1
)

(η2Ra,0 − 1) (η2Ra,0 + 1)2
dRa,0

dδ
(5.85)

J′1,0 = − η2α1h1

(η2Ra,0 + 1)2 J1,0
dRa,0

dδ
, (5.86)

where ω0 = ωth|ρ=0, Ra,0 = Ra|ρ=0 and J1,0 = Jth
1

∣∣
ρ=0 are shorthand

expressions, and primes indicate the derivative with regard to ρ.

Figure 5.12 shows the CW threshold as a function of ρ together with a
constant, linear and quadratic approximation of the threshold.
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Figure 5.12: A comparison of the exact CW threshold with a constant (a),
linear (b) and quadratic approximation (c) as a function of the
photon lifetime ratio ρ.

Inserting the approximated CW threshold (5.81)-(5.82) into the coef-
ficients di from equations (5.78)-(5.80) and expanding di up to the
(3− i)th order in ε yields

d1 = dg
1 + ρ

(
J
′
1

ddg
1

dJ1
− 2iω

′
0dg

2 + da
1

)

+ ρ2

(
J
′′
1

ddg
1

dJ1
+ J

′2
1

d2dg
1

dJ2
1
− 4i J

′
1ω

′
0

ddg
2

dJ1
− 6ω

′2
0 dg

3 − 2iω
′′
0dg

2

)
, (5.87)

d2 = dg
2 + ρ

(
J
′
1

ddg
2

dJ1
− 3iω

′
0dg

3

)
, (5.88)

d3 = dg
3 , (5.89)

where dg
i indicates the gain coefficients obtained by setting ρ = 0 in

equations (5.78)-(5.80) and da
i = di − dg

i . The linear operator given by
the new coefficients in the case of a broad absorber gives rise to a
stable linear operator.

Note that Im[d2] 6= 0, which correponds to second order dispersion
(or group velocity dispersion), is a critical difference compared to
the MIXSEL (see section 4.4) and is one cause for soliton formation
in photonic systems [155]. The following section shows how second
order dispersion leads to a stabilization of a super mode-locked state.

5.5 super mode-locking

This section investigates the VCSEL-RSAM system for a smaller delay
value τ = 100 ps, where the mode-locked branches emerge supercrit-
ically (as opposed to subcritically in the long cavity regime τ → ∞).
The parameters used are the same as in the previous sections except
for η = 0.95, J2 = −0.055 and τ = 100 ps. The value of the round-trip
time 2τ is chosen that e−sγ22τ � 1 while e−γ12τ = O(1), i. e., only the
absorption carriers with γ−1

2 = 50 ps recover to the absorption bias,
while the gain carriers with γ−1

1 = 800 ps do not.
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Figure 5.13: Two-dimensional diagrams in the (J1, δ)-plane showing the re-
gion of stable existence of the FML (bounded by a blue curve)
and SML (bounded by a red curve) solution obtained by direct
numerical simulation of equations (5.1)-(5.5). The color code rep-
resents (a) the pulse energy E, (b) the maximum pulse intensity
IM, (c) the skewness of the intensity µ3, (d) the full width at
half maximum ∆t, (e) the full width at half maximum of the
spectrum ∆ν and (f) the product ∆t∆ν. Regions outside the sta-
ble FML and SML solution are not shown for clarity. The labels
(1)-(4) refer to the corresponding columns in figure 5.14.

In this regime, two different mode-locked solutions appear and might
be stable. The first is the typical fundamental mode-locked solution
(FML) corresponding to one pulse per period. Additionally, another
mode-locked solution becomes stable for higher currents and high
enough detuning, referred to as the super mode-locked (SML) solu-
tion due to its higher peak power. The region of existence of these
two solutions in the (J1, δ) plane is depicted in figure 5.13 where re-
sults from direct numerical simulation are shown. The pulse shape
and optical spectrum for four different parameter sets can be seen
in figure 5.14. The FML shape and optical spectrum consist of one
symmetrical pulse (see fig. 5.14 (a)). We note that this is the case due
to non-zero linewidth enhancement factors (α1, α2) = (2.5, 1) and that
the FML solution has satellites for α1 = α2 = 0. On the other hand,
The SML solution is characterized by either having multiple satellites
(cf. fig. 5.14 (b)) or by having a slight asymmetrical pulse shape and
spectrum (cf. fig. 5.14 (c) and (d)). Figure 5.13 (c) shows best where
the SML solution transitions from having multiple satellites to a single
asymmetrical pulse shape. The skewness of the intensity µ3 in the
upper right regions transitions from a negative to a positive value as
the SML solution loses its satellites.
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Figure 5.14: The top row depicts the pulse shape |Y1|2 and the bot-
tom row the corresponding optical spectrum |Ŷ1|2 for
the FML (cyan, column (1)) and SML solution (or-
ange, columns (2)-(4)) obtained by direct numerical sim-
ulation of equations (5.1)-(5.5). Parameters are (J1, δ) =
((0.165, 0.057), (0.463, 0.057), (0.607, 0.057), (0.405, 0.449)), for (1)-
(4), respectively.
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Figure 5.15: (b) Two-parameter bifurcation diagram in the (J1, δ) plane of
equations (5.1)-(5.5). (c) and (e): Insets of (b) in the vicinity of
the crossing of torus bifurcation lines on the left and right side,
respectively. Red and blue indicate the torus bifurcation lines
T1

S , T2
S , T3

S , T1
F , T2

F of the SML (subindex S) and FML (subindex
F), respectively. Teal and grey indicate the fold lines FL

S , FM
S ,

FT
S of the SML and the threshold for continuous wave emission

CWTH , respectively. (a) and (d): Branches of the FML (cyan) and
SML (orange) solution, showing the peak intensity max|E1|2
as a function of the gain bias J1 for δ = 0.42 and δ = −0.55,
respectively. The star and triangle indicate the location of the
inset profiles of the SML and FML, respectively. A solid line
indicates stability, otherwise dashed.

In order to shed further light on the mechanism responsible for the
emergence and stability of the SML solution, a bifurcation analysis
of equations (5.1)-(5.5) is performed. Figure 5.15 (a) depicts both the
FML and SML branch as a function of the gain bias J1 for δ = 0.42
together with a profile of the electrical field intensity.

While the FML branch (cf. cyan line in figure 5.15 (a)) loses its stability
in the torus bifurcation T1

F (blue dot), the originally unstable SML
branch (orange) gains stability in the torus bifurcation T1

S (red dot) later
on. Between these two bifurcations is a region where both FML and
SML branches are unstable. Direct numerical simulations indicate that
the system behaves aperiodically in the interval between T1

F and T1
S .

Figure 5.16 (a) shows a zoom of figure 5.15 (a) together with the results
from direct numerical simulations. In addition, figure 5.17 shows the
maximum intensity per round-trip for two initial conditions separated
by white noise with a standard deviation of 10−6 for J1 = 0.174. Both
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(a) DADE (b) PDE

Figure 5.16: A comparison of the DADE model (5.1)-(5.5) with the normal
form PDE (5.76). (a) For the DADE model, the superposition
of results from direct numerical simulations (black points) and
path continuation (cyan line: FML solution, orange line: SML
solution). (b) Results from direct numerical simulations for the
PDE model. Star and triangle indicate the points from the upper
left and lower right profile inset, respectively.

initial conditions evolve aperiodically and diverge from each other,
hinting at chaos-like dynamics.

For δ = −0.55 the bifurcation scenario for the FML branch is the
same (cf. cyan line in figure 5.15 (d)), i. e., it loses its stability in the
torus bifurcation T1

F (blue dot). However, although the same torus
bifurcation T1

S (red dot) occurs for the SML branch (orange), the SML
branch remains unstable for all gain values. The analysis shows that
there exists another torus bifurcation line T2

S that limits the region
of stability for the SML solution (red line in figure 5.15 (b)). Because
of T2

S , stable SML solutions only exist for δ > δFT ≈ −0.049 where
δFT is the δ value at the point FTS (block square in figure 5.15 (b)).
For δ > δFT the torus bifurcation T3

S (red line in figure 5.15 (b)) limits
the region of stable SML solutions further. For the FML branch, the
stability is limited by either the torus bifurcation TF

1 or TF
2 , depending

on the value of δ (cf. blue lines in figures 5.15 (b), (c) and (e)).

Following the torus bifurcations TS
1 and TS

2 of the SML branch in J1

and δ shows that the chaos emerges from a crossing of two torus
bifurcations. Adding the continuation of the torus bifurcations TF

1
and TF

2 of the FML branch allows for predicting the parameter region
where chaotic behavior can be observed numerically. Figure 5.15 (b),
(c) and (e) depict the torus bifurcation lines T1

S , T2
S , T3

S , T1
F, T2

F of the
SML and FML branches in the (J1, δ)-plane. In figure 5.15 (c), it is
inbetween the stable torus line of the FML (either T1

F or T2
F) and the

stable torus line T1
S of the SML that the chaotic solution is stable.
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Figure 5.17: Maximum round-trip intensity max|E1|2 as a function of the
round-trip number for two initial conditions separated by white
noise with a standard deviation of 10−6 for J1 = 0.174.

Figure 5.18: First correction of the CW frequency ω
′
0 as a function of the

detuning δ. The vertical dashed line indicates the δ value of the
fold of torus lines FTS in figure 5.15 (b).

The normal form PDE (5.76) shows that it is for δ ≈ δFT that the first
correction to the CW threshold frequency ω′0 from equation (5.85)
changes its sign (cf. figure 5.18). This sign change also results in Im[d2]
changing its sign (see equation (5.88)) and therefore leads to a sec-
ond order dispersion induced stabilization of the SML branch. We
argue that the stabilization is a solitonic effect similar to the dynam-
ics observed in the nonlinear Schroedinger equation, where normal
dispersion allows for bright solitons but anomalous dispersion does
not [155]. For the MIXSEL d2 was purely real; hence, SML solutions
cannot be observed there.

Further, the PDE predicts all three observed cases: Stable FML, chaos
and stable SML (cf. figure 5.16 (b)). The quantitative agreement is
good close to the CW threshold, and the PDE shows qualitatively the
same behavior observed in the DADE.

The SML and FML branch emerge from two different CW mode
as figure 5.19 shows. Due to technical difficulties the mode-locked
branches were corrected to the Andronov-Hopf bifurcation with a
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Figure 5.19: Details on the emergence of the FML and SML solutions from
two different CW modes. Black, cyan and orange lines indicate
CW modes, the FML and SML solution, respectively. Dots and
the vertical dashed line mark the Andronov-Hopf bifurcation
from which the mode-locked branches emerge and the overall
CW threshold, respectively. Parameters are δ = −0.55.

special system condition attached in appendix B.1. The SML branch
folds and reconnects with the CW mode at a high gain bias (FT

S
in figure 5.10 (b)). This reconnection was previously observed in a
ring laser model in the short cavity regime. For higher delay, the
two Andronov-Hopf points, where the mode-locked branch emerges
and reconnects from and to the CW, collide, after which the branch
detaches from the CW solution [125].

The two-parameter continuation further reveals that the torus curve T2
S

connects with the upper fold curve FT
S in a codimension-two Bogdanov-

Takens bifurcation. Further, two other fold curves FL
S and FM

S exist
which are connected to the torus bifurcation lines of the SML solution,
i. e., T2

S connects with FL
S and T3

S connects with FM
S in two Bogdanov-

Takens bifurcations, see figure 5.15 (b).
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S U M M A RY A N D O U T L O O K

In this thesis, the dynamics of coupled optical micro-cavities modeled
as delayed algebraic differential equations (DADEs) were investigated
using direct numerics and bifurcation analysis. One contribution of
this thesis was the implementation of the methods that enable the
bifurcation analysis of DADEs [74]. Further, master partial differential
equations (PDE) were derived with multi-scale analysis and the func-
tional mapping method, allowing for a more intuitive understanding
of the dynamics.

In total, three different mechanisms related to the stability of mode-
locked states were discovered: The satellite instability, wiggling and
super mode-locking. The corresponding master equations explain all
three mechanisms.

The first mechanism is the satellite instability which was investigated
by the example of a mode-locked integrated external-cavity surface-
emitting laser (MIXSEL) but is also present in other systems [35,
156, 157]. Satellites on the leading edge of pulses, which exist due
to third order dispersion stemming from the dispersive micro-cavity,
can become unstable when reaching sufficient energy to open a pre-
mature net-gain window. With the aid of a first-principle dynamical
model based on delay algebraic equations and using a combination
of direct time simulations and path-continuation methods we recon-
structed the branch of a single pulse solution in the limit of vanishing
linewidth enhancement factors as well as long delay and show that
the onset of the satellite instability is associated with a global bifur-
cation of the saddle-node infinite period (SNIPER) type. In the case
of non-vanishing linewidth enhancement factors, we showed that the
satellite and self-phase modulation instabilities can combine leading
to intricate oscillating dynamics. Finally, we derived an approximate
dispersive master PDE model by expanding close around the thresh-
old for continuous wave emission and performed a full bifurcation
analysis. We demonstrate that this PDE reproduces the satellite as
well as the low linewidth enhancement factor SNIPER and Andronov-
Hopf bifurcation structure but it becomes increasingly inaccurate at
high linewidth enhancement factor values. This is expected, as the
normal form derivation assumes parameters close to the threshold for
continuous wave emission and small electrical field intensities.

105
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Second, wiggling mode-locked solutions were observed in a model for
a vertical cavity surface-emitting laser coupled to a resonant saturable
absorber mirror (VCSEL-RSAM). The wiggling results from the inter-
play between the third order dispersion stemming from the dispersive
micro-cavity and their respective detuning. The latter is identified as
an experimentally crucial design parameter that defines the range
of existence of stable temporal localized states. The wiggling is the
result of the interaction between the pulse and its emerging unstable
satellites with which the pulse further coalesces thereby creating an
apparent wiggling motion that fully explains the results obtained by
[35]. Further, the existence of a homoclinic bifurcation of limit cycles
was revealed allowing for a controllable tuning of the wiggling os-
cillation period. Both the satellite and wiggling instability highlight
the importance of the DADE modeling approach: As both instabilities
are due to third order dispersion, they cannot be observed in models
based on the more commonly used delayed differential equations
because their dispersive effects are negligible [35].

Third, apart from a conventional fundamental mode-locked state
(FML) corresponding to one pulse per period, super mode-locked
(SML) pulses were discovered in the model of the VCSEL-RSAM.
For low gain, the SML solution has satellites on the leading edge.
For higher gain, the SML solution is similar to the FML solution,
although the power spectrum is broader than the FML solution and
asymmetrical. If the detuning is high enough, a region exists where
the SML solution is stable. Bifurcation analysis reveals that the FML
and SML solutions emerge from two different CW branches. Further,
it was shown that torus bifurcations border the stability of the SML
region. The results were confirmed and complemented with direct
numerical simulations, which show that a bistable chaos-like region
exists between the FML and SML solutions. The master PDE predicts
all three dynamical regimes involved in this scenario, i. e., FML, SML
and bistable chaos. The threshold value for the existence of the stable
SML solution was obtained from the master equation. There the value
of the second order dispersion changes its sign as the SML solution
first becomes stable.

The results from this thesis give rise to various exciting research direc-
tions that fall into three categories: Improving the numerical methods,
further exploring the different dynamical regimes, and investigating
other related laser systems.

First, regarding the numerical methods, further investigation into the
stability computation for periodic orbits is needed. The remeshing
procedure tends to allocate most mesh points in the vicinity of the
pulse and relatively few points where no pulse is present. This leads
to a distorted mesh that is far from equidistant. This, in turn, might
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lead to computing spurious Floquet multipliers that are highly de-
pendent on the discretization of the monodromy operator and are
not Floquet multipliers of the actual monodromy operator [158]. One
direction would be to explore a new criterion for how periodic orbits
are remeshed. Another promising direction is exploiting the spectral
properties of the pulses in the long-delay limit [159].
Another further improvement would be the implementation of dif-
ferent zero solvers. Although the standard Newton-Raphson method
is sufficient in most cases, the radius of convergence can be small,
especially for torus bifurcations.
A further research topic could be the heuristic that chooses the num-
ber of discretization points for the stability computation of steady
states. For the systems investigated here, the maximum imaginary
part of the computed eigenvalue set increases with the number of
discretization points. Supposing one has a priori information about
the stability-changing eigenvalue, the information could be exploited
to use the minimally necessary number of discretization points that
still resolve the critical eigenvalue.

Second, parts of the dynamical regimes of the MIXSEL and VCSEL-
RSAM model systems are yet to be explored. Unexplored regimes
include the behavior and bifurcation scenarios of multi-pulse solutions
that were left out in this thesis.
Another promising regime in the VCSEL-RSAM system is that of
a narrow absorber, i. e., where the photon lifetimes in the gain and
absorber section are comparable. The investigation of the modal struc-
ture already indicates some novel results for this case.
Further, the transition between the short and long delay limits has
yet to be fully explored. It is known from ring laser systems that
the mode-locked solution emerges from a supercritical bifurcation in
the short delay regime and a subcritical bifurcation in the long delay
limit [125]. Preliminary results indicate that this transition also exists
in the models for the MIXSEL and VCSEL-RSAM.
It would be interesting to investigate the bifurcation scenario of the
satellite instability and the wiggling changes in the short delay limit.
The other way around, it might be interesting to see if there are differ-
ent stable mode-locked states in the long delay limit.
In the future, one might also delve into the effects of the detuning
on the Andronov-Hopf bifurcations of the different CW modes in the
VCSEL-RSAM.

Third, applying the approach of bifurcation analysis and normal form
derivation to closely related systems appears promising. Encouraging
candidates are V-shaped setups [160–162] or the Kerr-Gires-Tournouis-
interferometer, where this approach has already successfully been
used [163].
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Experimental results indicate that it might be necessary to include
parasitic reflections at the beam splitter to explain certain observations.
Including parasitic reflections leads to a modified input-output rela-
tion, which correspond to non-local perturbations in the normal form.
Finally, the investigations were concerned with the temporal evolu-
tion of coupled micro-cavities. A further step is the inclusion of the
transverse dynamics, where bifurcation analysis can be carried out
with existing continuation software like pde2path [151]. Recent experi-
ments show that for this case spatio-temporal Turing patterns can be
observed [164].
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a.1 kerr-gti

Listing A.1: DDE-BIFTOOL demo demonstrating the DDAE extension on a
Kerr-Gires-Tournois interferometer

1 %% DDAE demo - Kerr Gires-Tournois interferometer

2 % This demo demonstrates using the extension for delay differential

3 % algebraic equations (DDAE) on a Kerr Gires-Tournois interferometer

4 % (KGTI). It assumes familiarity with the normal version of DDE-BIFTOOL

5 % which otherwise can be found in the manual or the other demos.

6 %

7 %

8 % The KGTI is a mono-mode micro-cavity containing a nonlinear Kerr medium

9 % coupled to a long external feedback cavity under continuous wave (CW)

10 % injection. The system's equation are given by

11 %

12 % $$\left\{

13 % \begin{array}{l}

14 % \dot{E}(t) = i (|E(t)|^2 - \delta) E(t) - E(t) + h Y(t) \\

15 % 0 = \eta [ E(t-\tau) - Y(t-\tau) ] + \sqrt{1-|\eta|^2} Y_0 - Y(t)

16 % \end{array}\right.$$

17 %

18 % where $E$ and $Y$ are the slowly varying electrical field amplitude in

19 % the micro-cavity and feedback cavity, respectively. The injection field

20 % is characterized by the injection field amplitude $Y_0$ and the detuning

21 % $\delta$ with respect to the closest micro-cavity mode. $\eta$ is the

22 % attenuation factor of the external mirror, $h$ is a coupling factor

23 % between the micro-cavity and the external cavity and $\tau$ is the

24 % round-trip time in the external cavity scaled to the photon lifetime.

25 %

26 % Both $E$ and $Y$ are complex, i. e. the system's dynamic variables are

27 % $\Re(E)$, $\Im(E)$, $\Re(Y)$ and $\Im(Y)$ while the other variables

28 % $\delta$, $h$, $\eta$, $Y_0$ are real parameters and $\tau$ is the

29 % time delay. Notice that that there is no time derivative in the

30 % second line, making the system delay algebraic.

31 %

32 % The setup is depicted in the figure that follows:

33 %

34 % <<kgti.png>>

35 %
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36 % At difference with similar models like the Long-Kobayashi model [1] this

37 % system does not exhibit any phase invariance, as the injection field

38 % breaks it. For a example of a DDAE system with phase invariance see the

39 % <../../mixsel_demo/html/mixsel_demo.html MIXSEL demo>. Further, this model

40 % takes into account multiple reflections in the external cavity.

41 %

42 % This demo reproduces figure 4 (a) from [2] showing a branch of continous

43 % wave solutions in a bistable regime together with a branch of periodic

44 % orbits connecting the CW branch with itself.

45 %

46 % In [2] a singular perturbation approach was used, which replaces the $0$

47 % in the left hand side of the the system's equation for $Y$ with

48 % $\epsilon \dot{Y}$ with small $\epsilon$, thereby approximating the

49 % DDAE system with a delay differential equation.

50 %

51 %

52 % Here the proper DDAE system will be analyzed using the DDAE extension.

53 % For that the continuation is started at a trivial steady state which is

54 % then continued to the target parameter set from [2], although with lower

55 % $\tau$. A lower value of $\tau$ is chosen, because the steady states

56 % don't depend on the value of $\tau$ and this will make it easier to

57 % continue the periodic solutions later on.

58 %

59 % The resulting steady state is then continued in $Y_0$ showing a region of

60 % bistability. The stability of the branch is computed to find a Hopf

61 % bifurcation. Starting from this Hopf bifurcation the emerging periodic

62 % orbit is continued in $\tau$ to the same value as [2], because as opposed

63 % to the steady states the periodic orbits depend on the proper value of

64 % $\tau$.

65 %

66 % Finally, the periodic orbit is continued in $Y_0$ showing a snaking

67 % branch of periodic solutions connecting the branch of steady states with

68 % itself.

69 %

70 % Plotting both branches of steady states and periodic orbits then

71 % reproduces figure 4 (a) from [2].

72 %

73 % References:

74 %

75 % [1] Lang, R. and Kobayashi, K. (1980) 'External optical feedback effects

76 % on semiconductor injection laser properties,' IEEE journal of quantum

77 % electronics, 16(3), pp. 347-355. doi: 10.1109/jqe.1980.1070479.

78 %

79 % [2] Schelte, C. et al. (2019) 'Tunable Kerr frequency combs and temporal

80 % localized states in time-delayed Gires-Tournois interferometers,'

81 % Optics letters, 44(20), pp. 4925-4928. doi: 10.1364/OL.44.004925.
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82

83 %% New parameters of DDAE extension

84 % Using the DDAE extension of DDE-BIFTOOL works just like the normal

85 % version with two key differences:

86 %

87 % * There is a new key in the |set_funcs| function called |'lhs_matrix'|

88 % with which you can define the left hand mass matrix $M$ of the system

89 % given by $M \dot{x} = f(x, x_\tau)$.

90 % In this example |'lhs_matrix'| will be set to |diag([1, 1, 0, 0])| as

91 % there is a time derivative of the field $\Re(E)$ and $\Im(E)$ but not for

92 % the field $\Re(Y)$ and $\Im(Y)$.

93 %

94 % * There is a new type of collocation implemented for periodic orbits that

95 % is preffered for the DDAE case and is called Chebychev collocation.

96 % Chebychev collocation for periodic orbits can be activated by suppling

97 % the key value pairs |'submesh'|, |'cheb'| and |'collocation_parameters'|,

98 % |'cheb'| to the |SetupPsol| function. Both options will be used in the

99 % continuation of periodic orbits below.

100

101 %% Load DDE-BIFTOOL and extension into path and initialize the system

102

103 % load DDE-BIFTOOL into path

104 base = [pwd(), '/../../'];

105 addpath([base, 'ddebiftool/'], ...

106 [base, 'ddebiftool_extra_psol/'], ...

107 [base, 'ddebiftool_utilities/'], ...

108 [base, 'ddebiftool_extra_rotsym/']);

109

110 % make parameters accessible by name

111 % for that define the struct ip, so that ip.<parameter name> will be the

112 % index number corresponding to the parameter name

113 parnames = {'delta', 'h', 'eta', 'Y0', 'tau'};

114 cs = [parnames;num2cell(1:length(parnames))];

115 ip = struct(cs{:});

116

117 % pass the rhs function |kgti_rhs| to |set_funcs| to define the system

118 % notice the use of |lhs_matrix| to define the equations for $\Re(Y)$ and

119 % $\Im(Y)$ as delay algebraic

120 funcs = set_funcs('sys_rhs', @kgti_rhs, ...

121 'sys_tau', @() ip.tau, ...

122 'x_vectorized', true, ...

123 'lhs_matrix', diag([1, 1, 0, 0]));

124

125 %% Continuation of trival steady state to parameter set of interest

126 %

127
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128 % start with a trivial steady state and continue it to the parameter set

129 % used in [2]

130 start.x = [1; 0; 1; 0];

131 start.parameter = [1, ... delta 1

132 1, ... h 2

133 0, ... eta 3

134 1, ... Y0 4

135 1, ... tau 5

136 ];

137

138 figure;

139 % continue in h

140 subplot(2, 2, 1);

141 xlabel('h');

142 br_h = SetupStst(funcs,'step', 0.1, 'contpar', ip.h,...

143 'x', start.x, 'parameter', start.parameter, ...

144 'max_bound', [ip.h, 2]);

145 br_h = br_contn(funcs, br_h, 1000);

146 start = br_h.point(end);

147

148 % continue in delta

149 subplot(2, 2, 2);

150 xlabel('\delta');

151 br_delta = SetupStst(funcs, 'step', 0.001, 'contpar', ip.delta, ...

152 'x', start.x, 'parameter', start.parameter, ...

153 'max_bound', [ip.delta, 1.5]);

154 br_delta = br_contn(funcs, br_delta, 1000);

155 start = br_delta.point(end);

156

157 % continue in eta

158 subplot(2, 2, 3);

159 xlabel('\eta');

160 br_eta = SetupStst(funcs,'step', 0.001,'contpar', ip.eta, ...

161 'x', start.x, 'parameter', start.parameter, ...

162 'max_bound', [ip.eta, 0.5]);

163 br_eta = br_contn(funcs, br_eta, 1000);

164 start = br_eta.point(end);

165

166 % continue in tau

167 % here $\tau = 5$ instead of $\tau = 50$ is used, because steady states

168 % don't depend on the value of $\tau$ and this makes the continuation of

169 % the periodic orbits below easier.

170 subplot(2, 2, 4);

171 xlabel('\tau');

172 br_tau = SetupStst(funcs, 'step', 0.001, 'contpar', ip.tau, ...

173 'x', start.x, 'parameter', start.parameter, ...
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174 'max_bound', [ip.tau, 5]);

175 br_tau = br_contn(funcs, br_tau, 1000);

176 start = br_tau.point(end);

177

178 suptitle('continuation of trivial steady state to target parameters');

179

180 %% Steady state continuation in Y0

181 %

182

183 % setup branch in Y0

184 br_stst = SetupStst(funcs, 'step', -0.01, 'contpar', ip.Y0,...

185 'x', start.x, 'parameter', start.parameter, ...

186 'min_bound', [ip.Y0, 0], ...

187 'max_bound', [ip.Y0, 1.2], ...

188 'max_step', [ip.Y0, 1e-2]);

189

190 % use (Y0, |E|^2) as the plot measure

191 xm.field = 'parameter';

192 xm.subfield = '';

193 xm.row = 'all';

194 xm.col = 'all' ;

195 xm.func = @(p) p(ip.Y0);

196

197 ym.field = 'x';

198 ym.subfield = '';

199 ym.row = 'all';

200 ym.col = 'all' ;

201 ym.func = @(x) x(1)^2 + x(2)^2;

202

203 br_stst.method.continuation.plot_measure.x = xm;

204 br_stst.method.continuation.plot_measure.y = ym;

205

206 % continue in Y0

207 figure;

208 xlabel('Y_0'); ylabel('|E|^2')

209 br_stst = br_contn(funcs, br_stst, 1000);

210 br_stst = br_rvers(br_stst);

211 br_stst = br_contn(funcs, br_stst, 1000);

212

213 title('branch of continous wave steady state solutions');

214

215 % compute stability to find bifurcation points (in particular Hopf)

216 br_stst = br_stabl(funcs, br_stst, 0, 0);

217 nunst = GetStability(br_stst, 'exclude_trivial', true);

218

219 % find bifurcation points by checking number of unstable eigenvalues
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220 ind_hopf = find(abs(diff(nunst)) == 2);

221 ind_fold = find(abs(diff(nunst)) == 1);

222 % if the desired delay of $\tau = 50$ would have already been used above,

223 % more than two eigenvalues would cross the imaginary axis between

224 % two steps. The step size would have to be decreased to a unresonably

225 % small value to seperately detect the Hopf bifurcations.

226 % As the position of steady states is independent of the delay, only the

227 % periodic orbits are continued to the correct value of $\tau$.

228

229 %% Continuation of periodic orbits

230 %

231

232 % Periodic orbits branching off at Hopf bifurcation of steady states

233 % notice the use of 'submesh', 'cheb' and 'collocation_parameters', 'cheb'

234 br_psol_tau = SetupPsol(funcs, br_stst, ind_hopf(1), 'contpar', ip.tau, ...

235 'submesh', 'cheb', ...

236 'collocation_parameters', 'cheb', ...

237 'radius', 0.01, 'degree', 8, 'intervals', 20);

238 br_psol_tau.method.point.adapt_mesh_after_correct = 1;

239 br_psol_tau.parameter.max_bound = [ip.tau, 50];

240

241 % The periodic solution is continued to a value of $\tau = 50$ first before

242 % doing the continuation in $Y_0$.

243 figure;

244 xlabel('\tau'); ylabel('amplitude');

245 br_psol_tau = br_contn(funcs, br_psol_tau, 1000);

246

247 % Setup branch of periodic solutions to continue in Y0

248 br_psol = ChangeBranchParameters(funcs, br_psol_tau, ...

249 length(br_psol_tau.point), ...

250 'contpar', ip.Y0, 'step', 0.01);

251

252 br_psol.parameter.max_step = [ip.Y0, 1e-3];

253 % stop the continuation if one of the folds is reached:

254 Y0s_fold = [br_stst.point(ind_fold(1)).parameter(ip.Y0), ...

255 br_stst.point(ind_fold(2)).parameter(ip.Y0)];

256 br_psol.parameter.min_bound = [ip.Y0, min(Y0s_fold)];

257 br_psol.parameter.max_bound = [ip.Y0, max(Y0s_fold)];

258

259 % Continue in Y0 up to lower and upper fold

260 figure;

261 xlabel('Y_0'); ylabel('amplitude')

262

263 br_psol=br_contn(funcs, br_psol, 400);

264 br_psol=br_rvers(br_psol);

265 br_psol=br_contn(funcs, br_psol, 400);
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266

267 %% Plot results

268 xx_stst = br_measr(br_stst, xm);

269 yy_stst = br_measr(br_stst, ym);

270

271 xx_psol = br_measr(br_psol,xm);

272 % use the helper function |integrate_profile| as the measure for the

273 % periodic orbits:

274 yy_psol = arrayfun(@(p) integrate_profile(p), br_psol.point);

275

276 figure;

277 plot(xx_stst, yy_stst, 'k-')

278 hold on

279 plot(xx_psol, yy_psol, 'r-')

280 xlabel('Y_0');

281 ylabel('<|E|^2>');

282 xlim([0.3 0.7]);

Listing A.2: Right-hand side of the KGTI model.

1 function y = kgti_rhs(x, p)

2 E = x(1,1,:) + 1i*x(2,1,:);

3 Etau = x(1,2,:) + 1i*x(2,2,:);

4 Y = x(3,1,:) + 1i*x(4,1,:);

5 Ytau = x(3,2,:) + 1i*x(4,2,:);

6

7 p = num2cell(p);

8 [delta, h, eta, Y0] = p{:};

9

10 dE = (-1 + 1i*(abs(E).^2 - delta)).*E + h*Y;

11 dY = eta*(Etau - Ytau) + sqrt(1-eta^2)*Y0 - Y;

12 y = vertcat(real(dE), imag(dE), real(dY), imag(dY));

13 end

Listing A.3: Helper function that computes the pulse energy of a periodic
solution.

1 function y=integrate_profile(point)

2 y=0;

3 msh=point.mesh;

4 EI=point.profile(1,:).^2+point.profile(2,:).^2;

5 for ii=1:numel(msh)-1

6 y = y+(EI(ii+1)+EI(ii))/2*(msh(ii+1)-msh(ii));

7 end

8 end



116 demos for dde-biftool

a.2 mixsel

Listing A.4: DDE-BIFTOOL demo demonstrating the DDAE extension on a
modelocked integrated external-cavity surface-emitting laser

1 %% DDAE demo - Modelocked integrated external-cavity surface-emitting laser

2 % This demo demonstrates using the extension for delay differential

3 % algebraic equations (DDAE) with phase symmetry on a modelocked integrated

4 % external-cavity surface-emitting laser (MIXSEL). It assumes familiarity

5 % with the normal version of DDE-BIFTOOL which otherwise can be found in

6 % the manual or the other demos.

7 %

8 % The MIXSEL is a micro-cavity enclosing gain and absorber media coupled to

9 % a long external feedback cavity. The system's equation are given by

10 %

11 % $$\left\{

12 % \begin{array}{l}

13 % \dot{E}(t) = ((1 - i\alpha_1) N_1

14 % + (1 - i\alpha_2) N_2 - 1) E(t) + h Y(t) \\

15 % \dot{N_1} = \gamma_1 (J_1 - N_1) - |E|^2 N_1 \\

16 % \dot{N_2} = \gamma_2 (J_2 - N_2) - s |E|^2 N_2 \\

17 % 0 = \eta [ E(t-\tau) - Y(t-\tau) ] - Y(t)

18 % \end{array}\right.$$

19 %

20 % where $E$ and $Y$ are the slowly varying electrical field amplitude in

21 % the micro-cavity and feedback cavity, respectively. $N_1$ and $N_2$

22 % denote the gain and absorber population inversions, respectively. The

23 % bias, the recovery time and the line-width enhancement factor are

24 % $(J_1, \gamma_1, \alpha_1)$ in the gain and $(J_2, \gamma_2, \alpha_2)$

25 % in the absorber section, respectively. The ratio of the gain and absorber

26 % saturation intensities is $s$. $\eta$ is the attenuation factor of the

27 % external mirror, $h$ is a coupling factor between the micro-cavity and

28 % the external cavity and $\tau$ is the round-trip time in the external

29 % cavity scaled to the photon lifetime.

30 %

31 % Both $E$ and $Y$ are complex, i. e. the system's dynamic variables are

32 % $\Re(E)$, $\Im(E)$, $\Re(Y)$, $\Im(Y)$, $N_1$ and $N_2$ while the other

33 % appearing symbols are real parameters where $\tau$ is the time delay.

34 % Notice that that there is no time derivative in the last line, making the

35 % system delay algebraic.

36 %

37 % The setup is depicted in the figure that follows:

38 %

39 % <<mixsel.png>>

40 %

41 %

42 %
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43 % This demo reproduces the bifurcation analysis part of figure 5 (b), one

44 % part of a branch of figure 4 (b), and figure 11 (b) from [1]. In contrast

45 % to [1] the parameter $\eta$ in this demo is kept the same in every figure

46 % for didactical purposes.

47 %

48 % The first two figures show how temporal localized structures depend on

49 % the gain $J_1$ for $\alpha_1 = 0.02$ and $\alpha_1 = 0$,

50 % respectively. The third figure shows the transition between those two

51 % parameter regimes by following a fold of periodic orbits and a torus

52 % bifurcation in $J_1$ and $\alpha_1$.

53 %

54 % The continuation in this demo is structured as follows:

55 %

56 % First, a branch of rotating waves is continued in $J_1$ for

57 % $\alpha_1 = 0.02$ starting from a simple guess and the stability of the

58 % branch is computed.

59 %

60 % Then, the first Hopf-bifurcation is detected, with the goal of

61 % continueing the emerging (modulated wave) periodic orbit to a regime of

62 % localized structures with $\tau = 800$. This is done in four steps:

63 %

64 % 1. Start the continuation with a few steps in $J_1$. Starting the

65 % continuation directly with $\tau$ is difficult, because the Hopf line is

66 % almost vertical in $\tau$.

67 %

68 % 2. Change the parameter to $\tau$ and continue until $\tau = 200$ is

69 % reached. For higher values of $\tau$ it is likely to switch branches by

70 % accident, if the value of $J_1$ is too high.

71 %

72 % 3. Decrease $J_1$ until $J_1 = 0.9 J_1^{th}$ is reached.

73 %

74 % 4. Increase $\tau$ to the final value of $\tau = 800$.

75 %

76 % Next, the obtained branch is continued in $J_1$ which will result in the

77 % branch shown in figure 5 (b) from [1].

78 %

79 % From there the branch is continued to $\alpha_1 = 0$ where the same

80 % continuation in $J_1$ is followed through, leading to figure 4 (b) from

81 % [1]. Further, a fold of periodic orbit continuation is done for one of

82 % the folds.

83 %

84 % The demo concludes with the continuation of a torus bifurcation and

85 % plotting the obtained branch together with the fold of periodic orbits.

86 % This the reproduction of figure 11 (b) from [1], although $\eta$ is equal

87 % to $0.7$ here as in the previous figures and not to $0.9$ as in the

88 % referenced article.
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89 %

90 %

91 % References:

92 %

93 % [1] Schelte, C. et al. (2020) 'Dispersive instabilities in passively

94 % mode-locked integrated external-cavity surface-emitting lasers,'

95 % Physical review applied, 13(5). doi: 10.1103/physrevapplied.13.054050.

96 %

97 % [2] Breda, D. et al. (2006) 'Pseudospectral approximation of eigenvalues

98 % of derivative operators with non-local boundary conditions,' Applied

99 % Numerical Mathematics, 56(3), pp.318-331.

100 % doi:10.1016/j.apnum.2005.04.011.

101

102 %% New parameters of DDAE extension

103 % Using the DDAE extension of DDE-BIFTOOL works just like the normal

104 % version with two key differences:

105 %

106 % * There is a new key in the |set_funcs| function called |'lhs_matrix'|

107 % with which you can define the left hand mass matrix $M$ of the system

108 % given by $M \dot{x} = f(x, x_\tau)$.

109 % In this example |'lhs_matrix'| will be set to |diag([1, 1, 0, 0, 1, 1])|

110 % as there is a time derivative for the dynamic variables $\Re(E)$ and

111 % $\Im(E)$, $N_1$ and $N_2$ but not for $\Re(Y)$ and $\Im(Y)$.

112 %

113 % * There is a new type of collocation implemented for periodic orbits that

114 % is preffered for the DDAE case and is called Chebychev collocation.

115 % Chebychev collocation for periodic orbits can be activated by suppling

116 % the key value pairs |'submesh'|, |'cheb'| and |'collocation_parameters'|,

117 % |'cheb'| to the |SetupPsol| function. Both options will be used in the

118 % continuation of periodic orbits below.

119

120 %% Load DDE-BIFTOOL and extension into path and initialize the system

121

122 % load DDE-BIFTOOL into path

123 base=[pwd(),'/../../'];

124 addpath([base,'ddebiftool/'],...

125 [base,'ddebiftool_extra_psol/'],...

126 [base,'ddebiftool_utilities/'],...

127 [base,'ddebiftool_extra_rotsym/']);

128

129

130 % make parameters accessible by name

131 % for that define the struct ip, so that ip.<parameter name> will be the

132 % index number corresponding to the parameter name

133 parnames={'alpha1', 'alpha2', 'gamma1', 'gamma2', ...

134 'J1', 'J2', 's', 'eta', 'h', 'tau', 'omega'};
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135 cs=[parnames;num2cell(1:length(parnames))];

136 ip=struct(cs{:});

137

138 get_parameter = @(br, name) arrayfun(@(p) p.parameter(ip.(name)), br.point);

139

140 % Define the matrix $A$ that generates the rotation as well as the optional

141 % function $\phi \mapsto \exp(A \phi)$ and pass it to |set_rotfuncs|

142 % so that the system has the rotational symmetry $\exp(A \phi)$ with anti

143 % symmetric $A$

144 Crot = [0, -1; 1, 0];

145 A = blkdiag(Crot, Crot, 0, 0);

146

147 Crotphi = @(phi)[cos(phi), -sin(phi); sin(phi), cos(phi)];

148 expA = @(phi) blkdiag(Crotphi(phi), Crotphi(phi), 1, 1);

149

150 % in this demo the rhs is defined using symbolic functions

151 % see |generate_mixsel_sym_funcs| for how the sym_funcs are generated.

152 sfuncs = set_symfuncs(@mixsel_sym_funcs, ...

153 'sys_tau', @() ip.tau, 'p_vectorized', false);

154

155 % define the rotational funcs from the symbolic functions

156 % notice the use of |lhs_matrix| to define the equations for $\Re(Y)$ and

157 % $\Im(Y)$ as delay algebraic and that we pass |A| and |expA| for the

158 % rotational symmetry.

159 rfuncs = set_rotfuncs('sys_rhs',sfuncs.sys_rhs, 'sys_tau', @() ip.tau, ...

160 'sys_dirderi', sfuncs.sys_dirderi, ...

161 'x_vectorized', true, ...

162 'rotation', A, 'exp_rotation', expA, ...

163 'lhs_matrix', diag([1, 1, 0, 0, 1, 1]));

164

165 %% Setup initial parameter and state values

166 % start with low tau (35) and

167 % J1 slightly above continuous wave threshold (0.68)

168 % all other parameters are the same as in [1]

169 par0 = [0.02 0 0.003, 0.1, 0.68, -0.5, 10, 0.7, 2, 35, 0];

170 % start with a simple guess: small amplitude for E, smaller amplitude for Y

171 % and N1 and N2 are equal to J1 and J2, respectively.

172 x0 = [0.01; 0.01; 0.005; 0.005; 0.68; -0.5];

173

174 % threshold for continuous wave from analytical derivation

175 J1_th = 1 - par0(ip.J2) - par0(ip.h)*par0(ip.eta)/(1 + par0(ip.eta));

176

177 % define plot measures for live plotting

178 % parameters

179 m_tau = df_measr(0, ip.tau, '');

180 m_J1 = df_measr(0, ip.J1, '');
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181 m_J1.func = @(J1) J1/J1_th;

182

183 m_alpha1 = df_measr(0, ip.alpha1, '');

184

185 % intensities for periodic orbits and steady states, respectively

186 m_max_intensity.field = 'profile';

187 m_max_intensity.subfield = '';

188 m_max_intensity.row = 'all';

189 m_max_intensity.col = 'all' ;

190 m_max_intensity.func = @(profile) max(sum(profile(1:2, :).^2));

191

192 m_intensity.field = 'x';

193 m_intensity.subfield = '';

194 m_intensity.row = 'all';

195 m_intensity.col = 'all' ;

196 m_intensity.func = @(x) x(1).^2 + x(2).^2;

197

198 %% Continue branch of continuous wave emission in J1

199

200 % initialize branch for continuation in J1 (and omega)

201 rw_branch=SetupStst(rfuncs, 'x', x0, 'parameter', par0, ...

202 'contpar', [ip.J1, ip.omega],...

203 'extra_condition', 1, ...

204 'max_step', [ip.J1, 1e-4], 'step', 1e-4, ...

205 'plot_measure', struct('x', m_J1, 'y', m_intensity));

206

207 figure;

208 xlabel('J_1 / J_1^{th}'); ylabel('|E|^2');

209

210 rw_branch = br_contn(rfuncs, rw_branch, 750);

211 rw_branch = br_rvers(rw_branch);

212 rw_branch = br_contn(rfuncs,rw_branch, 20);

213 rw_branch = br_rvers(rw_branch);

214

215 % compute the stability of the rw_branch using the Breda discretization [2]

216 % with Chebyshev polynomials. The mesh is adaptively increased until 20

217 % eigenvalues nearest to 0 are accurate.

218 [stat_nunst, ~, ~, rw_branch.point] = GetStability(rw_branch, ...

219 'funcs', rfuncs, ...

220 'exclude_trivial', true, ...

221 'pointtype_list', @rot_pointtype_list, ...

222 'nearest', 0);

223

224 %% Continue emerging periodic orbit to target parameter

225 %

226
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227 % we start the continuation of the periodic orbit from the first Hopf

228 % bifurcation

229 ind_hopf = find(diff(stat_nunst) == 2);

230 ind_hopf = ind_hopf(1);

231

232 % our goal is to reach a value of tau = 800

233 % this is done in four steps:

234 % - first, continue for a few points in J1

235 % - then continue to a value of tau = 200, if you go higher one will get

236 % problems with switching to another branch by accident.

237 % - Therefore, once tau = 200 is reached go back in J1 until the value

238 % is at 0.9 times cw threshold

239 % - go higher in tau until the desired value of 800 is reached.

240 % higher values of tau can be reached the same way. however, it might be

241 % necessary to repeat this process a couple of this, i. e. increasing tau,

242 % then decreasing J1 and so on.

243

244 % set up the branch of periodic orbits in J1

245 % note the use of |collocation_parameters|, 'cheb' as well as |submesh|,

246 % 'cheb'

247 mw_branch = SetupPsol(rfuncs, rw_branch, ind_hopf,...

248 'contpar', [ip.J1 ip.omega], ...

249 'dir', ip.J1, ...

250 'intervals', 150, ...

251 'degree', 5, ...

252 'submesh', 'cheb',...

253 'collocation_parameters', 'cheb', ...

254 'newton_nmon_iterations', 5, ...

255 'newton_max_iterations', 50, ...

256 'extra_condition', 1, ...

257 'matrix','sparse', ...

258 'max_step',[], ...

259 'max_bound', [ip.J1 1.5*J1_th], ...

260 'plot_measure', struct('x', m_J1 ,'y', m_max_intensity));

261

262 figure;

263 subplot(2, 2, 1);

264 xlabel('J_1 / J_1^{th}'); ylabel('max |E|^2');

265 mw_branch=br_contn(rfuncs,mw_branch, 50);

266

267

268 % go up in tau

269 mw_branch = ChangeBranchParameters(rfuncs, mw_branch, ...

270 length(mw_branch.point), ...

271 'contpar', [ip.tau, ip.omega], ...

272 'max_bound', [ip.tau 200], ...
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273 'max_step', [ip.tau, 10], ...

274 'plot_measure', struct('x', m_tau ,'y', m_max_intensity));

275

276 subplot(2, 2, 2);

277 xlabel('\tau'); ylabel('max |E|^2');

278 mw_branch =br_contn(rfuncs,mw_branch, 1000);

279

280

281 % go lower in J1

282 mw_branch = ChangeBranchParameters(rfuncs, mw_branch, ...

283 length(mw_branch.point), ...

284 'contpar', [ip.J1, ip.omega], ...

285 'step', -1e-3, ...

286 'max_step', [ip.J1 1e-2], ...

287 'min_bound', [ip.J1 0.9*J1_th], ...

288 'plot_measure', struct('x', m_J1 ,'y', m_max_intensity));

289

290 subplot(2, 2, 3);

291 xlabel('J_1 / J_1^{th}'); ylabel('max |E|^2');

292 mw_branch=br_contn(rfuncs, mw_branch, 1000);

293

294

295 % go up in tau again

296 mw_branch = ChangeBranchParameters(rfuncs, mw_branch, ...

297 length(mw_branch.point), ...

298 'contpar', [ip.tau, ip.omega], ...

299 'max_bound', [ip.tau 800], ...

300 'max_step', [ip.tau, 10], ...

301 'plot_measure', struct('x', m_tau ,'y', m_max_intensity));

302

303 subplot(2, 2, 4);

304 xlabel('\tau'); ylabel('max |E|^2');

305 mw_branch =br_contn(rfuncs,mw_branch, 1000);

306

307 suptitle('Continuation to temporal localized state regime with long delay')

308 %% Plot the profile of the localized state

309 localized_state = mw_branch.point(end);

310

311 figure;

312 plot(localized_state.mesh*localized_state.period, ...

313 sum(localized_state.profile(1:2, :).^2));

314 xlabel('t'); ylabel('|E|^2');

315 xlim([430 460]);

316

317 %% Reproduce figure 5 (b) from [1]

318
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319 mw_branch = ChangeBranchParameters(rfuncs, mw_branch, ...

320 length(mw_branch.point), ...

321 'contpar', [ip.J1, ip.omega], ...

322 'step', 1e-3, ...

323 'max_step', [ip.J1 1e-2], ...

324 'max_bound', [ip.J1 J1_th], ...

325 'min_bound', [ip.J1 0], ...

326 'plot_measure', struct('x', m_J1 ,'y', m_max_intensity));

327

328 figure;

329 xlabel('J_1 / J_1^{th}'); ylabel('max |E|^2');

330

331 mw_branch = br_contn(rfuncs,mw_branch, 200);

332 mw_branch = br_rvers(mw_branch);

333 mw_branch = br_contn(rfuncs, mw_branch, 1000);

334

335 %% Change to zero alpha1 regime

336

337 left_fold_ind = find(islocalmin(get_parameter(mw_branch, 'J1'), ...

338 'MinProminence', 0.01));

339 close_above_fold_ind = left_fold_ind - 3;

340

341 mw_branch_zero_alpha1 = ChangeBranchParameters(rfuncs, mw_branch, ...

342 close_above_fold_ind, 'contpar', [ip.alpha1, ip.omega], ...

343 'step', -1e-3, ...

344 'max_step', [ip.alpha1 1e-3], ...

345 'min_bound', [ip.alpha1 0], ...

346 'plot_measure', struct('x', m_alpha1 ,'y', m_max_intensity));

347

348 figure;

349 ylim([0 0.3]);

350 xlabel('\alpha_1'); ylabel('max |E|^2');

351 mw_branch_zero_alpha1 = br_contn(rfuncs, mw_branch_zero_alpha1, 500);

352

353 %% Reproduce figure 4 (b) from [1]

354 mw_branch_zero_alpha1 = ChangeBranchParameters(rfuncs, ...

355 mw_branch_zero_alpha1, ...

356 length(mw_branch_zero_alpha1.point), ...

357 'contpar', [ip.J1, ip.omega], ...

358 'step', 1e-3, ...

359 'max_step', [ip.J1 5e-3], ...

360 'max_bound', [ip.J1 0.95*J1_th], ...

361 'min_bound', [ip.J1 0], ...

362 'plot_measure', struct('x', m_J1 ,'y', m_max_intensity));

363

364 figure;
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365 xlabel('J_1'); ylabel('max |E|^2');

366 mw_branch_zero_alpha1 = br_contn(rfuncs,mw_branch_zero_alpha1, 250);

367 mw_branch_zero_alpha1 = br_rvers(mw_branch_zero_alpha1);

368 mw_branch_zero_alpha1 = br_contn(rfuncs, mw_branch_zero_alpha1, 250);

369

370

371 %% Reproduce figure 11 (b) - modulated wave fold and torus continuation

372 %

373

374 right_fold_ind = find(islocalmax(get_parameter(mw_branch_zero_alpha1, 'J1')));

375

376 % continue the fold of periodic orbits

377 [pofoldfuncs,pofold,suc]=SetupMWFold(rfuncs, ...

378 mw_branch_zero_alpha1, right_fold_ind, ...

379 'contpar', [ip.J1 ip.alpha1 ip.omega], ...

380 'dir',ip.alpha1, 'step', 0.0025, ...

381 'min_bound', [ip.alpha1 0], ...

382 'max_step',[ip.alpha1 5e-3; ip.J1 1e-4], ...

383 'plot_measure', struct('x', m_J1, 'y', m_alpha1));

384

385 figure;

386 xlabel('J_1 / J_1^{th}'); ylabel('\alpha_1');

387 pofold = br_contn(pofoldfuncs, pofold, 50);

388

389 % continue torus bifurcation next

390 % for that determine the number of unstable Floquet multipliers first

391 [po_nunst, ~, ~, mw_branch.point] = GetStability(mw_branch, ...

392 'funcs', rfuncs, ...

393 'exclude_trivial', true, ...

394 'pointtype_list', @rot_pointtype_list);

395

396 % normally, one would detect the torus bifurcation with

397 % torus_ind = find(diff(po_nunst) == 2);

398 % but here fold and torus bifurcation are so close to each other

399 % that the last point with 2 unstable multipliers is chosen

400 [trfuncs, tr_branch] = SetupMWTorusBifurcation(rfuncs, ...

401 mw_branch,...

402 find(po_nunst == 2, 1, 'last'), ...

403 'contpar',[ip.J1, ip.alpha1, ip.omega], ...

404 'dir', ip.J1, ...

405 'step', -0.001, ...

406 'max_bound', [ip.alpha1 0.05], ...

407 'max_step', [ip.alpha1 0.002, ip.J1 0.001], ...

408 'plot_measure', struct('x', m_J1, 'y', m_alpha1));

409

410 figure;
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411 xlabel('J_1 / J_1^{th}'); ylabel('\alpha_1');

412

413 tr_branch = br_contn(trfuncs, tr_branch, 30);

414 tr_branch = br_rvers(tr_branch);

415 tr_branch = br_contn(trfuncs, tr_branch, 100);

416

417 % Plot fold of periodic orbits and torus bifurcation in one diagram

418 figure; hold on;

419 xlabel('J_1 / J_1^{th}'); ylabel('\alpha1');

420 plot(get_parameter(pofold, 'J1'), get_parameter(pofold, 'alpha1'));

421 plot(get_parameter(tr_branch, 'J1'), get_parameter(tr_branch, 'alpha1'));

422 ylim([0 0.05]);

423 legend('PO Fold', 'Torus', 'Location', 'NorthWest');

Listing A.5: The script generating the right-hand side of the MIXSEL system.

1 %% Clear working space, make sure biftool is in path.

2 clear

3 base=[pwd(),'/../../'];

4 addpath([base,'ddebiftool'],[base,'ddebiftool_extra_symbolic']);

5 if dde_isoctave()

6 pkg load symbolic

7 end

8

9 %% create parameter names as strings

10 parnames={'alpha1', 'alpha2', 'gamma1', 'gamma2', ...

11 'J1', 'J2', 's', 'eta', 'h', 'tau'};

12 % Create symbols for parameters, states and delayed states

13 % The array |par| is the array of symbols in the same order as parnames.

14 % Due to the following two lines we may, for example, use either tau or

15 % par(4) to refer to the delay.

16 syms(parnames{:}); % create symbols for parameters

17 par=cell2sym(parnames); % now a is par(1), tau is par(4) etc.

18 for i=1:length(parnames)

19 assume(par(i),'real');

20 end

21

22 % create symbols for E(t) E(t-tau), Y(t), Y(t-tau)

23 syms Er Ei Ertau Eitau Yr Yi Yrtau Yitau n1 n2 n1tau n2tau

24

25 % define dynamic variables

26 E=Er+1i*Ei;

27 Etau=Ertau+1i*Eitau;

28 Y=Yr+1i*Yi;

29 Ytau=Yrtau+1i*Yitau;

30 % define rhs

31 dE_dt=((1-1j*alpha1)*n1+(1-1j*alpha2)*n2-1)*E+h*Y;
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32 Y_a=eta*(Etau-Ytau)-Y;

33 dn1_dt=real(gamma1*(J1-n1)-conj(E)*E*n1);

34 dn2_dt=real(gamma2*(J2-n2)-s*conj(E)*E*n2);

35

36 % split rhs in real and imaginary part

37 dEr_dt=real(dE_dt);

38 dEi_dt=imag(dE_dt);

39 Yr_a=real(Y_a);

40 Yi_a=imag(Y_a);

41

42 %% Differentiate and generate code, exporting it to mixsel_sym_funcs

43 [fstr,derivs]=dde_sym2funcs(...

44 ... % n x 1 array of derivative symbolic expressions

45 [dEr_dt;dEi_dt;Yr_a;Yi_a;dn1_dt;dn2_dt], ...

46 ... % n x (ntau+1) array of symbols for states (current & delayed)

47 [Er,Ertau; Ei,Eitau; Yr,Yrtau; Yi,Yitau; n1, n1tau; n2, n2tau],...

48 ... % 1 x np (or np x 1) array of symbols used for parameters

49 par, ...

50 ... % optional argument specifying output file

51 'filename','mixsel_sym_funcs', ...

52 'directional_derivative', true, ...

53 'maxorder', 2);



B
C O D E S A M P L E S

b.1 sys_cond for cw andronov-hopf correction

Listing B.1: sys_cond for CW Andronov-Hopf correction

1 function [res, cond] = sys_cond_cw_andronov_hopf(p)

2 if strcmp(p.kind, 'psol')

3 p.parameter(15) = 0;

4 IE1 = sum(p.profile(1:2, :).^2);

5 E_re = p.profile(1, :);

6 E_im = p.profile(2, :);

7 % https://en.wikipedia.org/wiki/Smooth_maximum

8 alpha = 1e6;

9 S_alpha = nan;

10 while(isnan(S_alpha))

11 S_alpha = sum(IE1.*exp(alpha*IE1)) / ...

12 sum(exp(alpha*IE1));

13 grad_S_alpha = exp(alpha*IE1) / ...

14 sum(exp(alpha*IE1)) .* ...

15 (1 + alpha*(IE1 - S_alpha));

16 alpha = alpha/10;

17 end

18

19 res(1) = S_alpha - mean(IE1);

20 cond(1) = p_axpy(0 , p, []);

21 cond(1).profile(1, :) = 2*E_re.*grad_S_alpha ...

22 - 2*E_re/size(p.profile, 2);

23 cond(1).profile(2, :) = 2*E_im.*grad_S_alpha ...

24 - 2*E_im/size(p.profile, 2);

25 cond(1).parameter(15) = 0;

26

27 res(1) = res(1)*10.^3;

28 cond(1).profile(1, :) = cond(1).profile(1, :)*10.^3;

29

30 else

31 error('SYS_COND: point is not psol.');

32 end

33 end
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c.1 mixsel

We consider in this appendix the derivation of the PDE Eq. (4.32) by
the use of multi-scale analysis. Our starting point is Eqs. (4.6)-(4.7)
and, for the sake of simplicity, we set αj = 0 and assume that η is real.
It is also convenient for our analysis to transform the DADE system
as given by Eqs. (4.6)-(4.7) into a neutral differential delay equation
(NDDE) reading

ε

[
dE
dσ

(σ) + η
dE
dσ

(σ− 1)
]

= [(N1 + N2) E] (σ)− E (σ)

+ η [(N1 + N2) E] (σ− 1)

+ (h− 1) ηE (σ− 1) . (C.1)

We can define small deviations of the carriers as

Nj = Jj + ε3nj (C.2)

with j ∈ [1, 2] and scale the field, for convenience, as E = ε
3
2 A. Inserting

these scaling relations in Eq. (C.1), we find

A (σ) = η
h− 1 + Nt

1− Nt
A (σ− 1) +

ε3N̄ − εL̄
1− Nt

, (C.3)

with Nt = J1 + J2 the threshold inversion given in Eq. (4.15) and the
filtering L̄ and nonlinear operator N̄ defined by

L̄ =
d

dσ
[A (σ) + ηA (σ− 1)] , (C.4)

N̄ = (nA) (σ) + η (nA) (σ− 1) . (C.5)
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We can now use the definition of threshold given in Eq. (4.15) to find
the system upon which one can perform the multi-scale analysis

A (σ) = A (σ− 1) +
1 + η

hη

(
ε3N̄ − εL̄

)
. (C.6)

By inspecting Equation (C.6), one notices that the solutions are weakly
perturbed period one (P1) orbits. Because we assume that the nonlinear
term scales as ε3, we can safely restrict our analysis to the multi-scale
analysis on the linear part of Eq. (C.6), that is

A (σ) = A (σ− 1)− ε̃
d

dσ
[A (σ) + ηA (σ− 1)] , (C.7)

where we defined the short-hand ε̃ = ε (1 + η) /(hη). The linear NDDE
as given by Eq. (C.7) only depends on one parameter, which are the
cavity losses, and the smallness parameter. It is also an excellent toy
model to test various multi-scale schemes. Notice that such a linear
NDDE can be solved in the Fourier domain directly. We, however,
solve the dynamics by defining a multi-scale expansion. The fast time
is σ0 = σ/T with T the natural period of the solution. The period
T shall be close to unity and its deviation leads to the slow drift in
the PDE representation. We set T = 1 + ε̃a where a can be chosen to
cancel resonant terms in the multi-scale expansion at first order. This
approach avoids introducing altogether the intermediate time scale
σ1 = εσ (as explained and exemplified in sections 3.3.1-3.3.3). However,
one can also analytically find the period of the solution using the
functional mapping method which yields a = 1 + η. Finally, we define
the slow times σ2 = ε̃2σ and σ3 = ε̃3σ in order to take into account the
effect of nonlinearity, diffusion and third order dispersion. The chain
rule yields

d
dσ

=
1
T

∂

∂σ0
+ ε̃2 ∂

∂σ2
+ ε̃3 ∂

∂σ3
, (C.8)

while for the conjugated Fourier variables, we have

ωσ =
1
T

ω0 + ε̃2ω2 + ε̃3ω3. (C.9)

We expand the solution as

A (σ0, σ2, σ3) =
∞

∑
j=0

εj Aj (σ0, σ2, σ3) . (C.10)

The various solvability conditions lead to several conditions of the
form L̄Ã (ω0, ω2, ω3) = 0 where Ã (ω0, ω2, ω3) is the (triple) Fourier
transform of A (σ0, σ2, σ3). The expression of L̄ is

L̄ (ωσ) = exp (iωσ)− 1 + iε̃ωσ [1 + η exp (iωσ)] . (C.11)
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The zeroth order operator reads naturally

L̄0 = eiω0 − 1, (C.12)

hence showing that P1 solutions on the fast scale σ0, i.e. A0 (σ0 − 1, σ2, σ3) =
A0 (σ0, σ2, σ3), belong to the kernel of L̄0. The first order solvability is
trivially solved since L̄1 = 0 due to our adequate choice of the period
T. The other operators found at second and third order are more
complex, yet they simplify when acting on P1 solutions to

L̄2 =
(
η2 − 1

)
ω2

0 + 2iω2, (C.13)

L̄3 = −i
η3 + 1

3
ω3

0 −
η − 1

2
(η + 1)2 ω2

0 + iω3. (C.14)

One can then build the conjugated variable to the slow time ωξ as

ωξ =
(

1
T
− 1
)

ω0 + ω2 ε̃2 + ω3 ε̃3. (C.15)

We note that adding the −ω0 corresponds to the stroboscopic effect
that transforms a T-periodic solution into a slowly drifting steady state
from one round-trip to the other. Upon simplification, we find

−iωξ = i (1 + η) ω̃ +
η2 − 1

2
ω̃2 − i

η3 + 1
3

ω̃3 +O (ε) , (C.16)

where we defined ε̃ω0 = ω̃. Using the definition of ε̃ and going back
to the original variable, i. e., εω0 → ω, gives the following expression
for the slow evolution

ωξ = d1ω− id2ω2 − d3ω3 (C.17)

with the coefficients dj defined in Eq. (4.32). Finally, using that −iω →
∂z we get

∂ξ = d1∂z + d2∂2
z + d3∂3

z . (C.18)

As we assumed that the nonlinear term scales as ε3, it can simply be
added to the highest order solvability condition found for the operator
L̄3. By using that the carriers are also P1 solutions on the fast time
scale (σ0), we get that

(
nj A

)
(σ0 − 1, σ2, σ3) =

(
nj A

)
(σ0, σ2, σ3) with

j ∈ [1, 2], which allows finding the PDE in the main text.
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c.2 vcsel-rsam

In this section, the multi-scale analysis is used to derive a normal form
PDE to third order for the VCSEL-RSAM (5.1)-(5.5). After rewriting
the system’s equations in matrix form as a neutral delayed differential
equation, the approach from section 3.3 is followed.

We shift the time of the absorber’s variables by τ relative to the
variables of the gain. Thereby, the variables of both cavities are aligned,
and one obtains

εĖ1 = f̃1E1 + h1Y1 = f̃1E1 + h1ηE2 − h1ηY2 (C.19)

ρεĖ2 = f2E2 + h2Y2 = f2E2 + h2ηSE1 − h2ηSY1 (C.20)

Y1 = η (E2 −Y2) (C.21)

Y2 = η (SE1 − SY1) , (C.22)

where ρ = κ1/κ2 is the ratio of photon lifetimes, S is the time-shift
operator defined by SX(t) = X(t− 2τ), and f̃1 and f2 are defined for
notational convenience as f̃1 = J1 − 1 + iω and f2 = J2 − 1 + i(ρω + δ).

Next, Y1 and Y2 are eliminated from eqs. (C.19)-(C.22). For that we
solve eq. (C.20) for Y2, and insert it into eq. (C.19). Furthermore, we
shift eq. (C.19) by applying S to both sides and solve it for SY1 and
insert it into eq. (C.20). The resulting system reads

εdtE1 = f̃1E1 + h1ηE2 −
h1

h2
η(ρεdtE2 − f2E2) (C.23)

ρεdtE2 = f2E2 + h2ηSE1 −
h2

h1
η(εSdtE1 − S f̃1SE1). (C.24)

We expand the system (C.23)-(C.24) around the CW threshold and
ignore the nonlinearities because they are straight forward to include
in the derivation. This results in f̃1 being replaced with f1 = Jth

1 − 1 + iω.
Rewriting equations (C.23)-(C.24) then in matrix form yields

(A− εBdt)E = 0 (C.25)

with

A =

 f1 (
h1

h2
f2 + h1)η

((
h2

h1
f1 + h2)η)S f2

 =:

(
f1 g1η

g2ηS f2

)
,

(C.26)

B =

 1
h1

h2
ηρ

h2

h1
ηS ρ

 , (C.27)

E =

(
E1

E2

)
. (C.28)
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Eq. (C.25) is the starting point of the multi-scale analysis. Rewriting
the matrices in powers of ε, i. e.,

A = ∑
i≥0

εi Ai (C.29)

B = ∑
i≥0

εiBi (C.30)

and further inserting in the multi-scale ansatzes (3.80)-(3.82) one ob-
tains

∑
i,j≥0

εi+j AiEj − ∑
i,j,k≥0

εi+j+k+1BiTjEk = 0. (C.31)

Sorting eq. (C.31) according to powers of ε yields

εi : ∑
j+k=i
j,k≥0

SjEk = 0 (C.32)

with

Sj = Aj − ∑
k+l=j−1

k,l≥0

BkTl . (C.33)

After inserting the values of Aj, Bk one obtains

S0 = A0 =

(
f1 g1

g2S f2

)
, (C.34)

Si =


−Ti−1 −h1

h2
ηrTi−1g2Li −

h2

h1
η ∑

k+l=i−1
k,l≥0

LkTl

 S −rTi−1

 , i ≥ 1.

(C.35)

Because the system is expanded close around the CW threshold, in
the following S = 1 holds.

Slightly rewriting eq. (C.32) shows that the equation for the ith power
of ε is a linear system with inhomogeneity for Ei

εi : S0Ei = bi, (C.36)

bi = − ∑
j+k=i

j≥1, k≥0

SjEk. (C.37)

We apply Fredholm’s alternative to eq. (C.36) and start by determining
the kernel of the adjoint of S0

A†
0w = 0 (C.38)

=⇒ w = µ

 − g†
2

f †
1

1

 =

(
w†

1

1

)
. (C.39)
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The vector perpendicular to w is

u = µ

 1
g†

2

fL†
1

 =

(
1

−w†
1

)
. (C.40)

Fredholm’s alternative gives the solvability condition of eq. (C.36) as

w†b = 0. (C.41)

The general solution is obtained by projecting onto u

u†S0Ei = u†bi. (C.42)

Equation (C.42) allows relating the components E1,i and E2,i of Ei as

=⇒ E1,i = ( f1 − g2w1)−1u†bi −
g1

f1
E2,i. (C.43)

Because the calculations are involved, the next pages show Mathemat-
ica [165] code, which explicitly computes all the solvability conditions
to third order, reconstructs the PDE and determines the linear PDE
coefficients in agreement to section 5.4.



In[1]:= (* This notebook computes the linear

coefficients of the normal form PDE for the VCSEL-

RSAM with the multi-scale analysis method. *)

In[2]:= (* defining frequency Ω and Taylor

expansion coefficients L, see section 3.3.1. *)

In[3]:= Ω = 1 + ϵ * ω[1] + ϵ^2 * ω[2] + ϵ^3 * ω[3];

In[4]:= dt = Ω * d[0] + ϵ^2 * d[2] + ϵ^3 * d[3];

In[5]:= L1 = -ω[1] * d[0];

L2 = -ω[2] * d[0] + ω[1]^2  2 * d[0]^2 - d[2];

L3 = -ω[3] * d[0] - ω[1]^3  6 * d[0]^3 +

ω[1] * ω[2] * d[0]^2 + ω[1] * d[0] * d[2] - d[3];

In[8]:= L = {1, L1, L2, L3};

In[9]:= T = CoefficientList[dt, ϵ];

In[10]:= (* t[i] and l[i] are corresponding

to equations 3.83-3.87. *)

In[11]:= t[i_] := T〚i + 1〛; l[i_] := L〚i + 1〛;

In[12]:= TimeScales = {d[0], d[2], d[3]};

In[13]:= (* Define the S matrix C.34-C.35 *)

In[14]:= S[0] = {{f1, g1 * η}, {g2 * η, f2}};

S[i_] :=

-t[i - 1], -h1  h2 * η * r * t[i - 1], g2 * η * l[i] - h2  h1 *

η * Sum[l[i - 1 - j] * t[j], {j, 0, i - 1}], -r * t[i - 1]

In[16]:= (* Define the inhomogeneity b C.37. *)

In[17]:= b[0] := {0, 0};

b[i_ /; i > 0] := -Sum[S[j].e[i - j], {j, 1, i}];

In[19]:= wdagger = {w1, 1};

In[20]:= udagger = {1, -w1};

In[21]:= (* shorthand for the

electrical field vector E_1, E_2 *)

In[22]:= e[i_] := {el[i][1], el[i][2]};

In[23]:= (* Later, we substitute all occurences

of E_2 with E_1 using equation C.43. *)

In[24]:= ElSubstitution[imax_: Infinity] :=

el[i_][1] /; i < imax :> f1 - η * g2 * w1^(-1) *

udagger.b[i] - η * g1  f1 * el[i][2];

In[25]:= (* Note that we replace η
according to the CW threshold condition

η^2 g1 g2  f1 f2 ⩵ 1. *)
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In[26]:= VarSub = f1 → J1 - 1 + ⅈ * ω,
f2 → J2 - 1 + ⅈ * (r * ω + δ) ,
g1 → h1  h2 * f2 + h1,
g2 → h2  h1 * f1 + h2,
w1 → -η * g2  f1,
η → Sqrtf1 * f2  g1 * g2;

In[27]:= SolvabilityCondition[i_] := Block[

{fredholm, previousωs, fredholmByScale, containsω},
previousωs = Catenate[ωSol /@ Range[1, i - 1]];

(* Fredholm's alternative states that wdagger.b has

to be zero in order for a solution to exist. *)

fredholm = wdagger.b[i] //. ElSubstitution[i] //.

previousωs ;
(* We split the solvability condition

by time scales... *)

fredholmByScale = MonomialList[

fredholm, TimeScales];

(* ... and choose ω[i] in such a way

that the maximum number of terms in

front of the time scales vanish. *)

containsω = MemberQ[Variables[#], ω[i]] & /@

fredholmByScale;

ωSol[i] = First@Solve[Thread[

Pick[fredholmByScale, containsω] ⩵ 0], ω[i]];
(* What remains is the solvability condition

that relates d[i] with d[0]. *)

Plus @@ Pick[fredholmByScale, Not /@ containsω] ⩵ 0 /.

TimeScaleRelation[i - 1]];

In[28]:= ωSol[i_] := Module[{},

SolvabilityCondition[i];

ωSol[i]];

In[29]:= TimeScaleRelation[i_] := If[i < 2, {},

First@Solve[SolvabilityCondition[i], d[i]] // Simplify]

In[30]:= ωSols = ωSol[1]~Join~ωSol[2]~Join~ωSol[3];

In[31]:= TimeScaleRelations =

TimeScaleRelation[2]~Join~TimeScaleRelation[3];

In[32]:= PDEAllOrders = (Ω - 1) * d[0] + ϵ^2 * d[2] + ϵ^3 * d[3] /.

TimeScaleRelations /. ωSols;

In[33]:= (* This is the reconstructed PDE

with consistent order approximation: *)

In[34]:= PDE =

CoefficientPDEAllOrders /. d[0] → d[0]  ϵ, ϵ, 0;

In[35]:= (* We split the PDE into derivatives of

d[0] to obtain the diffusion coefficients. *)
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In[36]:= PDEbyScales = CoefficientList[PDE, d[0]];

In[37]:= (* We are basically done now,

what follows is cosmectics to display

the coefficients in a human readable way. *)

In[38]:= (* We divide the coefficients by two to ensure

the same scaling of the slow time for the multi-

scale analysis and the mapping approach

derivation corresponds to scaling

the time by either τ or 2τ. *)

In[39]:= CoefficientRaw[i_] := PDEbyScales〚i + 1〛  2 //. VarSub;

In[40]:= CoefficientGain[i_] :=

CoefficientRaw[i] /. r → 0 // Simplify

In[41]:= CoefficientAbsorber[i_] :=

CoefficientRaw[i] - CoefficientGain[i] // Simplify;

In[42]:= CoefficientHumanReadable[i_] :=

CoefficientGain[i] + CoefficientAbsorber[i];

In[43]:= CoefficientHumanReadable[1]

Out[43]=

h1

2 -1 + J1 + ⅈ ω -1 + h1 + J1 + ⅈ ω
+

h2 r

2 J2 + ⅈ ⅈ + δ + r ω h2 + J2 + ⅈ ⅈ + δ + r ω

In[44]:= CoefficientHumanReadable[2]

Out[44]=

h1 -2 + h1 + 2 J1 + 2 ⅈ ω
4 -1 + J1 + ⅈ ω2 -1 + h1 + J1 + ⅈ ω2

+

h2 r2 h2 + 2 J2 + 2 ⅈ ⅈ + δ + r ω
4 J2 + ⅈ ⅈ + δ + r ω2 h2 + J2 + ⅈ ⅈ + δ + r ω2

In[45]:= CoefficientHumanReadable[3]

Out[45]=

h1 h12 + 3 h1 -1 + J1 + ⅈ ω + 3 -1 + J1 + ⅈ ω2

6 -1 + J1 + ⅈ ω3 -1 + h1 + J1 + ⅈ ω3
+

h2 r3 h22 + 3 h2 J2 + ⅈ ⅈ + δ + r ω + 3 J2 + ⅈ ⅈ + δ + r ω2

6 J2 + ⅈ ⅈ + δ + r ω3 h2 + J2 + ⅈ ⅈ + δ + r ω3

In[46]:= (* As expected,

the coefficients are equal to equations 5.79-
5.81 obtained from the mapping approach. *)
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