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1. Introduction

Throughout the last decades, time-delayed systems (TDSs) have gained a large signif-
icance within different fields of nonlinear science. So-called delay-differential equations
(DDEs) are not only able to describe a multitude of physical systems very accurately,
but often they even contain observed dynamics which cannot be described by simpler
approaches. A simple example is the occurrence of oscillations in a one-dimensional first-
order ordinary differential equation, which is not possible until a delay is introduced.
This can be seen by considering an equation

#(t) = —z(t), (1.1)

which simply describes the decay of an amplitude x(tg) into the fixed point x = 0. Just
from imagination, there is no way to get from one side of the stable fixed point to the
other without passing the fixed point. To get any kind of oscillation, at least a second
degree of freedom is needed, e.g. a second component or a second derivative, which can
be rewritten as a two-dimensional dynamical system. In both cases, the system can
oscillate by circling the unstable fixed point in the phase plane as it is the case for the
conversion of potential into kinetic energy in the case of a harmonic oscillator. Including
a single delay time into Eq. (1.1) leads to

#(t) = —a(t — 1), (1.2)

where 7 is called the delay. Starting with an adequate deviation from the fixed point, the
system will not converge to the fixed point, but pass it, since the rate of change does not
depend on the current state but the history of the system. By looking closely one can
also notice that this is not a one-dimensional system in the sense of degrees of freedom.
Indeed, the system is infinite dimensional, since its initial condition needs to be defined
on a continuous interval t € [—7,0] | ]. The number of initial conditions needed to
initialize the system, always equals the number of degrees of freedom the system has.
Most real-world systems depend on the exchange of some type of information, which
takes a finite amount of time. Interactions and processes do not happen instantaneously,
which results in the current rate of change of a state depending on past states. In many
physical systems, however, the resulting effects are considered to be small and are thus
neglected. If the delay 7 is small compared to all other time scales in the system, this
becomes a valid approximation. For example Eq. (1.2) approaches Eq. (1.1) in the
limit of short delays. If, however, the time-delay becomes a relevant time scale it can
drastically influence the system’s behavior.

A little toy example is the description of a shower | ] which always takes a finite
time to adjust to a set temperature. If one sets a desired temperature T, water with that
temperature enters the shower hose and takes a time 7 to come out of the shower. Thus,
if someone constantly increases the set temperature until feeling the desired temperature
Ty, he will surpass Ty due to the delay. Here, the delay effects depend on the velocity
or intensity at which the person spins the water tap in response to the temperature
difference. This is due to the system having two time scales: The time scale on which
the tap is spun and the delay time. If the delay time becomes a relevant time scale,
delay effects such as oscillations between hot and cold water can occur.

Note, that a DDE could potentially depend on several delays. Thus, a DDE in its general
form can be written as

#(t) = fla(t), z(t — 1), oy 2(t — 7). 1), (1.3)



where = could be a state vector of any dimension. The initial condition for such a DDE
has to have the length of the longest delay.

There are many important fields, for which delay effects are of relevance, such as climate
models, where delayed feedback loops can play a role in transport times of mass or energy
[ ]. Here, DDEs have been used to, e.g., model the global energy balance or the El
Nino Southern Oscillation system. Delayed systems have also been used in economics,
to include the influence of the time-delay between the initiation of production and the

delivery of goods on price fluctuations of commodities | |, since supply usually
will not follow demand instantaneously. Another very intuitive example is traffic flow,
which is largely influenced by driver’s reaction times | il ]. In machine

learning, DDEs have found increasing attention lately as well, e.g. in a method that
allows reducing a large deep neural network into a single neuron using time-delayed
feedback with multiple delay times [ ]. These examples are only a few amongst
many. In this thesis, however, the focus will be on time-delayed models in laser physics,
where they are widely used for different laser systems such as ring cavities, passive-mode
locking in semiconductor lasers, and employing external cavities as feedback loops in
general [Lke79] [RBM11][Reb-+L1[LKS0].

To get an initial insight into the use of TDS in the modeling of laser systems, consider
a laser cavity containing circulating modes of an electric field. These modes will return
to any point after one round-trip. Hence the resulting electric field depends on the
current state as well as states from past round-trips | ]. The inclusion of time-
delays allows modeling these effects, serving as a natural boundary condition for the
field. As a result, DDEs could be used successfully, to describe e.g. passive-mode
locking in semiconductor lasers | ]. But time-delay can also be introduced in the
modeling of external feedback, as it is used in Vertical-external-cavity surface-emitting
lasers (VECSELS) | ]. This is based on the idea, that part of the output of a laser
cavity can be reinjected, for example by using constructions such as fiber loops or external
cavities. Assuming that the light takes a time 7 to travel towards the point where it
reenters the cavity, the injection at time ¢ depends on the output at time ¢ — 7. External
time-delayed feedback allows to control pulse-shape stabilizing terms such as second and
third order dispersion | i il il |. Finally, by adding a phase
at the feedback mirror within an external cavity, antiresonant feedback can be found,
which allows for the formation of stable plateau solutions such as square-waves (SWs).
TDSs are also known for being rich in fascinating dynamics. Interesting behavior such

as temporal localized structures | ], coarsening [ ] and pattern formation
[ |, as well as concepts like Eckhaus instability | |, chimera states | I,
e.g. when periodicity and chaos coexist, or chaos | il | has been shown in

different applications.



1.1. QOutline

Within this thesis the dynamics of square-waves (SWs) and pulsating periodic solutions
are discussed and analyzed. After the foregoing short introduction Section 2 will give
an overview over theoretical concepts and knowledge that is a prerequisite or at least
helpful for the understanding of this thesis and its context. It also contains a detailed
derivation of the systems that are analyzed in later sections. In Section 3, a short
introduction to the numerical methods used to contain the results presented in this work
will be given. Section 4 contains the analysis and discussion of the dynamics of SWs in
a Kerr Gires-Tournois interferometer (KGTT) which is a delay algebraic equation (DAE)
system and the main topic of this thesis. Using a combination of bifurcation analyses
and analytical calculations SWs are systematically described over extended parameter
regimes. In this context, two different mechanisms of SW formation are introduced.
Furthermore, the arising of period doubling routes to chaos as well as multi-plateau SWs
are discussed. Finally, the dynamics of more complex patterns consisting of temporal
localized structures of different sizes that are written on plateau values of stable SWs
are considered. Note that some of the results presented here have also been published
recently | ].

In Section 5 a second system is introduced. It is similar to the KGTI, however the
Kerr nonlinearity is replaced by a quantum well which is mathematically described
by a new and more complex susceptibility. Hence, the system is called Quantum well
Gires-Tournois interferometer (QGTI). Different parameter regimes are discussed for the
higher dimensional parameter space of this system and it is related to the KGTI and
the results found there. Dark and bright pulses as well as SWs are found and described
for the QGTT using numerical path continuation.

Motivated by the observation of periodic solutions in a limit of small cavity losses,
a normal form is derived in this limit in Section 6. The resulting partial differential
equation (PDE) system can help to give a better understanding of the systems dynamics
and the contributions of the involved parameters since it can be compared to other well
known PDEs describing pattern formation in nonlinear physics. The section closes with
an analysis of the PDE system trying to reproduce results such as temporal localized
states (TLSs) that have been observed in the QGTI system before. Section 7, finally,
will contain a short summary and an outlook on potential further research based on the
results provided in this thesis.






2. Theoretical Preliminary Remarks

2.1. Dynamical Systems and Stability

Most complex dynamics in nonlinear physics are mathematically modeled by dynamical
systems. A dynamical system can be described by a set of evolution equations with an
initial condition, i.e.

@(t) = F(x(t),t, 1), xo = x(to), (2.1)

where x(t) is a state vector and p a vector of parameters. A solution of this dynamical
system has to satisfy both, the evolution equation and the initial condition. In general,
physical systems are not described as first-order differential equations with the harmonic
oscillator as a well known example. Consider a differential equation of order n, where
2™ describes the n-th time derivative such as

2™ = fla(t),aD (), ..., eV @), ¢, ). (2.2)

A trajectory solving this equation can be identified with a curve ¢(t) in the n-dimensional
vector space with variables ¢; = 2, § = {0,...,n — 1}. The curve can be received using
a substitution ¢; = 2(* which leads to a new system of n first order differential equations

énfl(t) = f(C(](t), C1 (t), cey Cnfl(t), t, [L),
éan(t) = Cnfl(t)a

colt) = c1(t).
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The corresponding trajectory c(t) lives in the so-called phase space. While it is generally
complicated or even impossible to fully solve a nonlinear dynamical system, the toolbox
of nonlinear physics allows to understand a lot about the system without knowing its
exact solutions. Starting by interpreting F' as a vector field in the mentioned phase
space the uniqueness and existence theorem ensures that every initial condition has a
definite future. It effectively demands that the above described dynamical system F
and all it’s partial derivatives g—f;(m,t, p) are continuous for & € R™ on an open and
connected set D C R™. Then, it g € D it ensures a unique solution curve x(t) on
a time interval starting from the initial time ¢y [ Il . This theorem implies
that trajectories never intersect. The vector field may then have certain attracting
and repelling manifolds. If an initial condition lies in the basin of attraction of an
invariant manifold, it will converge towards it, which allows to describe the behavior of
the system in the long-term limit without actually solving it. The manifolds with the
lowest dimension are so-called fixed points z* that fulfill 0 = F'(x*, ¢, u).

A one-dimensional manifold that can act as an attractor is for example a limit cycle,
while a two-dimensional attractor is for example a torus. Further, attractors with fractal
dimensions can be found corresponding to chaotic long-term behavior. However, these
are not of importance for this thesis.

In many cases there is no interest in the transient solutions of a system describing the
trajectory towards some attractor, but in the stable solutions approached in the long-
term limit. Thus, from now on the term solution will always refer to a settled solution
such as «* satisfying F'(«*,t, u) = 0, while other solutions of &(t) = F(x(t),t, u) will be
called a point on a trajectory. In order to calculate the stability of such a solution the
linear stability analysis is introduced, where the solution is perturbed by a small d(t).



Inserting x(t) = *+6(¢) as a solution and expanding the system for a small perturbation
up to linear order yields the linearized time evolution of the perturbation which is an
eigenvalue equation. The resulting eigenvalues reveal whether the perturbation decays
or grows corresponding to unstable or stable solutions, respectively. This leads to

5(t) = F(a’ t,p) + (VF)(@,t, ) aea- 5(t) + O(67) (2.7)
— (VF)(@, 1, 1))|o—a-8(2) + O(82). (2.8)

Considering a system that does not depend on time explicitly, the Jacobian matrix
L = (VF)(x*) becomes a constant quantity since the dynamics on a fixed point are
time independent. This equation can be solved using an exponential ansatz &(t) = dpe,
which transforms the first order differential equation into an eigenvalue equation. £
is generally an n x n matrix, and 0y an n-component vector, for an n-dimensional
system. Thus, n eigenvalues and respective eigenvectors can be found. The eigenvalues
describe the time evolution around the fixed points in the local manifolds spanned by
the eigenvectors. In a two-dimensional case, the eigenvalues can be calculated from the
matrix £ by

A = % [tr + tr? — 4det] , (2.9)
where tr and det are the trace and determinant of £, respectively. A negative real part
of the eigenvalues generally belongs to a stable solution, while a solution with a positive
real part is unstable. In at least two-dimensional systems complex conjugated eigenval-
ues can be found as well, where the imaginary part describes a frequency. In that case,
the trajectory oscillates around the fixed point, where a positive or negative real part
leads to an outward or inward spiral in the phase space, respectively.

To determine the linear stability of periodic solutions z*(t) = z*(¢t + T) in an n-
dimensional phase space, Floquet theory can be used [ il ]. Consider an
n — 1 dimensional surface S which is transverse to the flow, meaning that all trajec-
tories, in particular the periodic solution, cut it in only one point. So a periodic orbit
in the n-dimensional phase space corresponds to a fixed point £* on the Poincare map.
To determine the linear stability of the periodic orbit, the linear stability of the fixed
point can be calculated. Firstly, an initial condition &* + d¢ will be introduced, which
is slightly perturbed from the fixed point on the surface S.

Now the interest is in the perturbation occurring after one round-trip of the flow. To
get there, one shall introduce the Poincare map P, which is defined as

¥+ 61 = 'P(:IZ* + 50) (2.10)

The Poincare map can be linearized using the definition * = P(x*) of a fixed point on
S, leading to

'+ 6 =x"+ (VP)(x") -+ h.o.t., (2.11)

where J(*) is the Jacobian of the Poincare map at the fixed point. This equation
yields

8 = T (). (2.12)

The eigenvalues \; of this so-called monodromie matrix [ | are the Floquet mul-
tipliers of the periodic solution. Since they describe a map, the absolute value of the



eigenvalues determines the stability, where |)\;| < 1 describes a decaying perturbation
for that eigenvector, while |A;| > 1 describes a growing perturbation. In general, only
if |\;] < 1 foralli=1,...,m — 1, the corresponding periodic solution is linearly stable,
although there is always one multiplier with A\ = 1, which describes perturbations that
occur along the periodic solution [ |. While this section rather aimed at introducing
the concepts and terminology of dynamical systems and stability, the resulting analyses
themselves tend to get more complicated for DDEs. The characteristic equation arising
in a linear stability analysis, e.g., is transcendental | | describing the infinite di-
mensional nature of DDE systems. Thus, numerical methods are needed to investigate
time-delayed systems effectively.

2.2. Bifurcations

A bifurcation describes a substantial change in topology of the phase space due to a
change in parameters. To get a better understanding of this phenomenon, a system
with a single control parameter p is introduced. Now the evolution of the phase space
topology shall be investigated if this parameter is varied. Any regular solution (x*, u*)
for 0 = F(x*, p*) is part of a unique one-dimensional continuum of states in p, which
is called a solution branch | ]. This is, due to this equation proposing an implicit
function. The implicit function theorem | | predicts a unique solution (x*, p*) with
a unique continuation for any implicit function, if the systems Jacobian L£(x*, u*) is of
full rank at this point. This condition is equivalent to all eigenvalues being unequal
to zero. Most solutions along a branch fulfill this requirement and the Jacobian is
invertible almost everywhere. This is different at bifurcation points since they break
with uniqueness. As a solution branches into two, the continuation of a solution is
not unique. Since also solutions change their stability, at least one eigenvalue crosses
the imaginary axis. This enables a reduced description of dynamics in the vicinity of
the bifurcation point, since the real part becomes small, which corresponds to very slow
dynamics. A separation of time scales is found, where all trajectories rapidly fall onto the
so-called center manifold, which is tangential to the eigenspace of the slow eigenvalue. As
a result, one can describe the behavior close to bifurcations with simplified normal forms,
which are one-dimensional differential equations, that contain the dynamics on the center
manifold. These also help with the identification and classification of bifurcations, even
in complicated systems. Within this section the most important types of bifurcations
for this thesis will be introduced.

2.2.1. Saddle-Node Bifurcation

The saddle-node bifurcation is a major mechanism for the creation or annihilation of
fixed points. It is described by the normal form

&= p— a2’ (2.13)

The Jacobian of this system is J = —2x. This reduced dynamical system has no real
solutions for p < 0. In this parameter regime, the one-dimensional flow pulls any initial
condition z(ty) towards positive x values. At u = 0 a saddle-node bifurcation appears,
thus the Jacobian J(0) = 0 is not invertible. The only eigenvalue of the linearized system
is here zero, which means that the flow becomes infinitely slow around the bifurcation
point, which is a preparation for the change of the flow direction between the two fixed
points after the bifurcation. For p > 0 two fixed points * = +,/p are found. In the
one-dimensional case, the Jacobian equals the eigenvalues, so z* = /u is the stable



fixed point due to the negative eigenvalue, while * = —,/p is unstable. All in all, at
a saddle-node bifurcation two steady states are created, where one is stable and one
unstable.

There is a saddle-node bifurcation of cycles as well, which is also referred to as fold
bifurcation. It occurs, when two cycles are created or collide and annihilate. This
bifurcation will be observed several times throughout this thesis. As a bifurcation of
periodic orbits, it can be seen in the Floquet multipliers, when a real multiplier crosses
the point A = 1, as shown in Fig. 2.2 b). Since a Floquet multiplier describes, how a
perturbation evolves after each repetition on a periodic orbit, a positive real multiplier
corresponds to monotonous growth or decay if it is out of or within the unit circle.

2.2.2. Hopf and Torus Bifurcations

8 - —— — —

7 T

Figure 2.1: a) Subcritical Hopf bifurcation where a stable fixed point collides with an
unstable limit cycle, losing stability in the process. b) Supercritical Hopf
bifurcation where a stable fixed point loses stability, creating a stable limit
cycle.

The Hopf bifurcation is another bifurcation occurring on fixed point branches, that can
only be found in an at least two-dimensional phase space. This is due to the need for
two complex conjugated eigenvalues for this type of bifurcation. Two types of Hopf
bifurcations are to be distinguished, both shown in Fig. 2.1: In a supercritical Hopf
bifurcation a) a stable fixed point loses stability in favor of a periodic limit cycle, which
is created in the bifurcation point, while in a subcritical Hopf bifurcation b) an unstable
fixed point becomes stable by creating an unstable limit cycle. In polar coordinates, the
normal form for the supercritical Hopf bifurcation reads

= pr — 13, (2.14)
0 =w+br? (2.15)



where p determines the stability of the fixed point, while w is the frequency of the
smallest limit cycle and ultimately b gives a frequency dependence on the amplitude.
Although the radius r is positive here, the first equation gives the normal form of a
so-called supercritical pitchfork bifurcation, which describes the creation of two stable
fixed points, when a third fixed point in the origin loses stability. Rewriting the system
in Cartesian coordinates yields the Jacobian matrix

7o [M —w] (2.16)
w
which has the eigenvalues
At = pEiw. (2.17)

Hence, for u = 0 a Hopf bifurcation occurs when two complex conjugated eigenvalues
cross the imaginary axis. A small perturbation oscillates around the fixed point. The
real part u switches sign at the Hopf bifurcation point, which corresponds to the transi-
tion from an inward to an outward spiral in the phase space, or the other way around.

A similar bifurcation can potentially occur on a branch, that is already periodic with
frequency wi. In that case, a second frequency ws is introduced in a secondary Hopf
bifurcation on the periodic branch. The corresponding Floquet multipliers are two com-
plex conjugated multipliers, that leave the unit circle, as seen in Fig. 2.2 a). They
describe a perturbation that oscillates around the limit cycle, while the new frequency
wo can be derived from the Floquets imaginary part. The resulting trajectories live on a
two-dimensional manifold, which is a torus. Thus, this type of bifurcation is referred to
as a Torus bifurcation. Considering the frequency relation 5—; two different cases have
to be distinguished: If % is a rational number, the total trajectory is a closed orbit on
the torus, which corresponds to a periodic solution. However, % could be an irrational
number. In that case, the trajectory on the torus will neither intersect itself, nor close
[ ]. It will also get arbitrarily close to any point on the torus surface.

2.2.3. Period-Doubling Bifurcation

Next, a stable branch of periodic solutions with a period of T shall be considered.
Generally, a period-doubling (PD) bifurcation can occur in two cases. In a supercritical
PD bifurcation, the stable branch of period T loses stability, and a new stable branch of
solutions with period 27" emerges. In the subcritical case, however, an unstable branch of
solutions with period 27T collides with the stable branch of period 7', which loses stability
again | ]. A PD bifurcation occurs when a Floquet multiplier passes A = —1 as
shown in Fig. 2.2 c¢). Note that the Floquet multipliers describe how a perturbation
on a periodic orbic has evolved after each round-trip, for a certain dimension. For A =
1 the perturbation stays unchanged, which happens always trivially for perturbations
tangential to the periodic orbit. However, A = —1 means that a perturbation e switches
sign to —e after each round-trip. If A < —1 and is real, this perturbation with period 27T
is growing, leading to a situation where the periodic solution itself becomes 27" periodic.
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Figure 2.2: The behavior of Floquet multipliers at a torus a), a fold b), and a period-
doubling (PD) bifurcation b) of periodic solutions . All three plots are cen-
tered around the origin, while the grey circle stands for the unit circle. The
axis shows the real R and imaginary < part of the multipliers which leave the
unit cycle, which corresponds to a transition from a stable, to an unstable
solution.

2.3. Kerr Gires-Tournois Interferometer

This thesis will be an analysis of periodic solutions and bifurcations occuring in a vertical
external cavity delayed Kerr Gires-Tournois interferometer (KGTI) which is shown in
Fig. 2.3. The setup as shown in the figure differentiates between the microcavity field

Kerr Medium

Figure 2.3: Sketch of the Kerr Gires-Tournois interferometer (KGTI) | ]. It consists
of a microcavity with round-trip time 7. of the microcavity field F and an
external cavity with round-trip time 7. The external cavity field Y () consists
of the external injection Yy and the reflected output ne’O(t — 7). While
ro = 1 closes the cavity at one side, 1 < 1 which leads to a coupling of the
cavities. Within the microcavity, a nonlinear Kerr medium is placed, which
enables nonlinear effects such as pattern formation.

E, the external cavity field Y, the microcavity output O, and the external injection Yj.
The output O is reflected with e, where the magnitude of 1 determines the strength
of the feedback.

© = ¢+wrt describes an accumulated effective phase considering the fact that in traveling
around the external cavity the field with injection frequency w gains an additional phase
factor through the finite traveling time 7 that is proportional to w while the actual phase
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factor gained from the feedback mirror is ¢ as indicated in Fig. 2.3. The microcavity
input Y consists of the injection Yy as well as ne??O(t — 7), which is the output from
one round-trip before, that gained an additional prefactor when it was reflected. 7 is
the round-trip duration and thus the delay within the system equations. There is also
the microcavity round-trip time 7., which will however not be used here since it is small
compared to 7 for a long external cavity.

In general, the fields £, Y and Y{ denote the slowly varying envelope of electric fields
that will perform the presented nonlinear dynamics such as formation of SWs or pulses.
The fastly varying modes within the microcavity interact with the external feedback and
the nonlinear medium leading to a slow modulation as the envelope fields E and Y vary
in time and draw these temporal localized states (TLS) into the timetrace. Nevertheless,
FE and Y will be referred to as electric fields throughout this thesis.

The nonlinear Kerr medium will be placed within the microcavity described by a cubic
nonlinearity. It is responsible for the possible occurrence of bistability. In Fig. 2.3, two
reflection coefficients are shown as well. They describe the distributed Bragg mirrors
at each end of the microcavity that are assumed to be lossless which is why the Stokes
relations can be used to describe their properties within the derivation. Since there is
a part of the external cavity field Y, that is reflected at the outside of the microcavity,
with adequate scaling the output relation can be written down as

O=FE-Y. (2.18)
This will ultimately result in the external cavity field

Y(t) =ne? [E(t —7) =Y (t —1)] + 1 — n2Yp, (2.19)

which is the description of the feedback loop. The external cavity field Y (¢) will then be
injected into the microcavity and act as pumping for the field E. The previously derived
full KGTT system is described by

B(t) = [~1 -1 +4|E(t)|*] E(t) + hY (1), (2.20)
Y(t) =ne? [B(t —71) =Y (t —71)] + 1 — n2Yp, (2.21)

where ¢ is the detuning between the injection frequency and the microcavity mode, h is a
coupling strength between the cavities, n is the reflection coefficient of the feedback mir-
ror with ¢ as an additional phase and Yj is the external injection strength. Throughout
this thesis a perfectly reflecting mirror |ra| = 1 will be chosen which leads to h(ry,1) = 2
corresponding to the so-called Gires—Tournois interferometer regime | |. Finally one
may notice that the equation for Y (¢) does not contain a time derivative. Hence it has to
be seen as an algebraic constraint leading to a delay algebraic equation (DAE) system for
the KGTI. The constraint (2.21) can be inserted into (2.20) resulting in a dependence of
the current rate of change E(t) on Y (t — 7). Repeatedly inserting (2.21) shows how the
present dynamics depend on all previous roundtrips Y (¢ — n7) with n € N through the
algebraic constraint, especially in case of a strong feedback implied by a high reflection
coefficient 7.

2.4. System Derivation

Throughout the following section the KGTT system equations will be derived in detail
from first principles, namely the Maxwell equations. The derivation is based on | ]
and [ ], both discussing the derivation in a more general form. For simplification
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nonmagnetic materials as well as no currents and free charges will be assumed. The
corresponding Maxwell equations read:

V-D=0 (2.22)

V-B=0 (2.23)

VxE=-B (2.24)

V xH=D, (2.25)

with

D=¢(1+x)E=¢E+P (2.26)

H- 1B (2.27)

Ho

where x is the electric susceptibility and P the polarization. The electric susceptibility
is an important property for laser systems since it describes the ability of the material
to polarize in response to an external electric field. It contains, e.g., the absorption,
which is responsible for population inversion to surpass the lasing threshold. Thus, the
susceptibility will be used to describe the interaction between the Kerr medium and the
field within the microcavity. To do so the susceptibility is divided into a contribution of
the nonlinearity x,; and a background part x;, leading to

D =ey(1+ xp)E + coxnE = o6, E + Pyy. (2.28)

To describe the propagation of electromagnetic waves the wave equation can be derived,
which can be received by applying the curl operator onto the third Maxwell equation,
followed by the vector identity

Vx(VxA)=V(V-A)-V2A. (2.29)
One can then identify the time derivative on the right-hand side, to get
V(V-E) - V2E = —yD. (2.30)

Assuming V- Py < 1 results in VE = 0, due to the first Maxwell equation. Thereupon
inserting the equation for the electric displacement into D yields

2
V2E — %E = +uoPo, (2.31)

which can be Fourier transformed to get rid of the time derivatives:
2 21 2
[V +w 02} E = —wuoPy (2.32)

2.4.1. Transversal Modes

This sections main goal is a scalar differential equation for the electric field. A few
approximations have to be made in order to get there. Firstly, a radial symmetry will
be assumed combined with a separation ansatz to solve the radial part separately. In
this case, the remaining equation will describe the field amplitude along the longitudinal
z-direction, plotted in Fig. 2.4. A transverse profile of the background refractive index
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Figure 2.4: More detailed sketch of the fields within the KGTI . The microcavity field
has been divided by traveling directions and sides of the Kerr medium. The
mirrors are placed at z = 0 and z = [. This allows for good use of different
boundary conditions throughout the derivation of the system equations.

n, (r1) will be introduced and a constant transverse mode ¢(r,w) is assumed to solve
the eigenvalue equation

2
Vi + anJ‘((z;’w)) o(ry,w) = ijnz(]ﬁ(rbw), (2.33)

with the effective refractive index n.. Since the field vectors are always orthogonal to
the direction of propagation, it can be written with a transverse unit vector e as

E(r,w) =¢(r )€1 (z,w)ey, (2.34)

which is a separation ansatz with ¢(r) that contains the transverse profile, as well as
&1 (z,w), which varies along the propagation direction. Now the transverse and longi-
tudinal directions can be separated within the wave equation, to solve the transverse
eigenvalue problem:

2 2
[Vz + W2Z§] E= [83 + V2 + w2z;‘] d(r1)€ (z,w)ey (2.35)
= |02+ 55| ol )EL (s, w)en (2.36)
=¢(ry) {83 + w2%] E1(z,w)el = —wuoPy (2.37)

In the next step, both sides are multiplied by the complex conjugated mode, to get
the absolute value, followed by an integral over the plane spanned by the transverse
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dimensions which is

/ / o(r1)|?d?r, [524-6«1 ]SJ_(Z wel = —w Mo/ / ¢*(r 1 )Pu(r)dr,.

(2.38)

The polarization is the product of electric field and susceptibility. Although a separation
for the electric field is known, no assumptions regarding the susceptibility have been
made so far. Thus, the polarization cannot be fully separated, leading to

Pnl(r) = eoxnl(r)gb(rj_)é’l (Z, w)eJ_, (239)

which turns the right-hand side into an expectation value of the nonlinear susceptibility.
The right-hand side (rhs.) can be written as

rhs. = / / () Pxm(r)d?r £ (z,w)e (2.40)

where the relation eypug = c% has been used. Without limiting generality, the nonlinear
Kerr medium will be assumed to be centered around r; = 0. Also the transverse profile
of the susceptibility xni(r, , z) should be approximately constant within the active region,
but zero everywhere else. This simply assumes the active material to be homogeneous
without any directional dependencies. This results in xpn(ri, 2) = xn1(0, z), which leads
to a simplification of the integral to

rhs. = // (r ) 2d*r L xm(0,2)E1 (z,w)e. . (2.41)

The remaining integrals can be summarized within the so-called transverse confinement
factor | |:

[ [ag o) Pd?ry
J20 20 [o(r L) [2d?r

T = (2.42)

Due to all dependencies on the components r; being within I} where they vanish due to
integration, a rotational symmetry around the z-axis is found. The remaining equation

2+ 1) = ~S T uxn(0.9E. ) (2.43

= —CUQ,UOFJ_PJ_ (2.44)
describes the modulation of the electric field along the longitudinal axis, as demanded.

2.4.2. Microcavity with Thin Nonlinear Region

Now a microcavity with injection and feedback loop will be considered, as it is the case
for the KGTI. One can start with the final equation from last section, however n, = n
the removal of all 1 will be used for a simpler notation, leading to

s T w 02} E(w,z) = —w?polxn (2, w)E(w, 2). (2.45)
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If the nonlinear region with width W is considered thin compared to the wavelength and
located at z = zp, it can be described by a Dirac’s delta. This leads to the equation

02 n?
[822 + w2c2] E(w, 2) = =’ pox(w)d(z — 20)€(w, 2), (2.46)

where x(w) = I'W x,,;(w) describes the interaction between the mode w and the nonlinear
medium. The form of x(w) can be derived from material specific models. To get rid of
the Dirac’s delta, one can integrate over a small region around zp, leading to

0 zo+e€ 2n2 Foke 2
%6(0‘)7 Z)|Z076 tw 072 6(”) Z) =—w /«LOFX(W)E((’J’ ZO)' (247)
z0—€

The remaining integral can be investigated by splitting the electromagnetic field as shown
in Fig. 2.4. A mode propagating along the z-axis generally consists of a part propagating
in positive (+), as well as in negative (—) direction. For a microcavity of length | with
a nonlinear medium placed at z = zg

L(w,z) =Ly + L e %" Y0<z<z
E(w,z) = { (,2) =Ly ) (2.48)

R(w,2) = Ry + R_e™ % V< z<l

can be found, where the wave vector ¢ = “* is assumed to be the same on both sides of
the Kerr medium. Rewriting the field allows to simplify Eq. (2.47) to

0 0 2n2 Zote 9
&R(w, 2)|z04€ — @E(% 2)| 20— +w ) E(w,z) = —w upx(w)€(w, z9), (2.49)

20—¢€

which introduces the first boundary conditions. Looking at Eq. (2.49) with € — 0 leads
to

L(w, z9) = R(w, 20) = &(w, 20), (2.50)

forcing the field to be continuous at the nonlinear medium, but not its derivative due to

0 0
%R((’W Z)’ZO - &E(w? Z)‘Zo = _WQMOX(w)g(wa zO)' (2'51)

2.4.3. Injected Micro Cavity with Thin Nonlinear Medium

Further boundary conditions can be found by considering the KGTT setup explicitly as
in Fig. 2.4. Firstly, two distributed Bragg mirrors reflectivities ro and r; are considered.
|r2] = 1 is chosen, to close one side of the microcavity. With the reflection coefficients
r; and the transmission coefficients ¢;, one can write the output relation as

O =t Ry e + 7Y, (2.52)
while the microcavity input can be written as
R_e ' =1,Y +r R, " (2.53)
The reflection at the mirror located at z = 0 yields

rol_ = Ly. (2.54)
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The continuity condition Eq. (2.50) allows to write all fields as functions of the electric
field £(w, 2zp) at the nonlinear medium with an additional phase considering the distance
to the medium. &(w, z9) = £ will be introduced for notation purposes. The field at the
nonlinear medium is then

E =1L, [ e 0%, (2.55)

Once can now replace either L, or L_ to find

E =roL_e" %0 4 [_e~"9% (2.56)
E=1L,e"% 4 7}2L+e—iq20. (2.57)
For the other two fields
£ = R €' + (1Y + r R, ')l o0, (2.58)
as well as
£— :l(R_e—iql _ Y )e et 4 R_emiazo, (2.59)

is found. After rewriting, the equations for the four partial fields as functions of £ (w, 2p)
are

etz g
—iqzog
Ly=—2 __° (2.61)

e—2iqzo + 79

R_ 13 7 eZiali—20) (2.62)
. gefiQ(l*ZO) — t~ Y
__—iql 1
Ry =e T s (2.63)
These expressions can now be inserted in Eq.2.51 leading to
9 0 0
—Ww HOX(W)‘S = &R(w’z)yzo - &[,(W,Z)‘ZO | (2'64)
=1iq (R+ezqz(’ — R _e7'*0 — [, "0 4 L_e_’qzo) (2.65)
1— 2iq(l—20) 1— 2iqz0 2 iq(l—20)

—iq o ey L (2.66)

1+re iq(l—20) 1 + rye2iqzo 14+ 7‘1€2W(l 20)

which has several consequences. Firstly, it was possible to remove any integrals and
derivatives, secondly the equation does not depend on the position z. This is possible
due to the assumption that the field does not interact with the medium between the
mirrors and nonlinear medium. By including all interactions at mirrors and nonlinear
medium, the spatially extended field is fully described by the field value at the nonlinear
medium &(w, zg) and the injection Y. However, the equation can be further simplified
by multiplying it by the confinement factor

T(q) = (14 1200 (1 4 ppe¥ia), (2.67)
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which is the product of the two denominators. This leads to

—WQMOF(q)X(w)é’ :iq< (1 — 7“162"‘1“’20)) (1 + rge%qzo) £+ (1 + rleQiQ(l’ZO)) (1 — 7"2621”20) E

— (1+ rae?ie0) 2 chali==0)y ). (2.68)
The introduction of
Fi(q) = 1 — ryrpe®d (2.69)
Fy(q) = (1+ rzeQiq’ZO) fretall—=0) (2.70)
yields the compact equation
Fi()€ = Fa)Y =~ S2T(@)x ()€ (2.71)
= iw D (gx(@)E, (2.72)

where the definition of w(g) has been used as well. For a further simplification the entire
frequency dependence of the reflection coefficients can be assumed to be contained in
the phase, by writing r;(w) = pi'®(@) The newly introduced coefficients are

F(q) — (1 + ple2iq(l—Z0)+i¢1)(1 4 '02621'qz0—|—i¢>2>7 (273>
Fi(q) =1 — prpge@Hiortioz, (2.74)
Fa(q) = <1 i erQiqzo+i¢2) £, ial—=0) (2.75)

2.4.4. Expanding around a Cavity Mode

In the next step injection and emission are assumed to be close to a cavity wave frequency
wo = w(qo). The cavity wave frequencies are resonant within the microcavity, so their
frequency has to fit in a round-trip length which consists of twice the cavity length [
including the two phase jumps ¢1 and ¢o. Thus a cavity frequency fulfills

2qol + ¢1(wo) + ¢2(wo) = 2rm, m € N (2.76)

which is a resonance condition minimizing F; for a given p; and py. The same way the
nonlinear medium should be placed appropriately, leading to the two conditions

2q0(l — 20) + ¢1(wo) = 2y (2.77)

2q020 + ¢2(wo) = 2mny, (2.78)

which corresponds to a minimization of the confinement factor. The cavity wave fre-
quency minimizes F; by fulfilling

2igol+ig1+ide 20 I+ig1+ige o 1. (2.79)

p1p2e = p1p=2e

Considering frequencies w = wy + dw close to a cavity mode with a slight deviation dw
enables an expansion of F} around the cavity mode

OF

Fi(w) = Fy (wp) + 8T}HWZUJOM + O(6w?) (2.80)
(on, | O 92

=1-— pP1pP2 — 1 <2cl + % w=wq + &u‘w:w()) ,01p2(5w + O(éwz) (281)

=1-—p1p2— ippo%L(Sw + O(0w?), (2.82)
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which is cut after first order. L is called the effective round-trip length since it contains
2l with a linearized correction due to the phase jumps at the mirrors. The resulting
terms can be inserted into Eq. (2.72) which yields

. n . C
(1 — pip2 — zplpgzL(Sw) E=—(1—=pip2) €+ zw%f‘(qo)x(wo)g + Fa(qo)Y. (2.83)
This corresponds to
—ippo%L(5w£ = iwo%(l + 1) (1 + p2)x(wo)€ + (1 + py) Tel®l=20)y, (2.84)

2L = 7. will be the microcavity round-trip time, which is already known from Fig.
2.3. The frequency deviation dw consists of a small detuning A, the deviation between
injection frequency and cavity frequency, as well as remaining frequency variations Aw.
Latter turn into a time derivative operator —iAw — 0; after an inverse Fourier transform,
yielding

o , o
pLpaTe (a _ zA) £(8) = 0 (14 p1)(L+ p2)X(@0)E () + (14 po) Fie 0¥ (1)
(2.85)

2.4.5. Rescaling

This equation is already very close to the KGTT system equation. This will become more
apparent after some rescaling. After deviding by 1 — p1p2 one can introduce

1= pip2
K= ——77-1,

2.86
v (2.86)
—-A
§ = — 2.
- (2.87)
b— ﬂ(l'i‘pl)(l""/@) (2.88)
2nce 1—pip2
- oy 1+ p2
h=t 6z(7rn1 é¢1(wo))7‘ 2.89
4 s (2.89)

x~1 is the photon lifetime, approaching infinity for perfect reflectivities p; and po. 4 is
the scaled detuning that is already known from (2.20), while h is the injection coupling
factor where Eq. (2.77) has been used. b, finally, is the polarized prefactor, which will
be pulled into the susceptibility as £ y(wo) — x. This leads to

€

%S(t) — iSE() + ixE(D) + RY (1), (2.90)

In a last step the field £ will be scaled to the same order of magnitude as Y. Therefor
one can start with the output relation Eq. (2.52) and insert the equation for R, Eq.
(2.63):

O=tR. e + 7Y (2.91)
Eetall—20) _{|y

r1 +e—2iq(l—20)
=af + BY (2.93)

— 4 +rY (2.92)
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Assuming the Stokes relations ¢t = 1 + r’r and » = —r’ to hold for approximately
lossless distributed bragg mirrors and using r; = p1€’®! as well as the conditions derived
for resonant frequencies, yields

t1ty

p=r— 1 + e—2ia(l—20) (2:94)
- (1 4+ rir 2iq(l—z0)
=TT (2.95)
2
R s g (2.96)
14 p1
il 1—-r? g, (2.97)
14+, 1+ p1
_plei¢1 _ p%ewl + p%ewl — e~ 5 08
N 1+ p1 299
—id1 i1
__¢ T hpme (2.99)

L+ m

While vacuum or a refractive index of approximately one is assumed at the outside of the
microcavity, the materials within the microcavity have a substantially larger refractive
index. Thus 71 describing the reflection at the microcavity inside is positive and 7
is negative Together with the lossless distributed Bragg mirror one gets ¢1 = 0. This
corresponds to a m-phase shift occurring by reflection at the cavity outside | ].

The prefactor § then becomes g = —1, while a reduces to
= T om0 T ey (2.100)
. $1
t i(mny—5-
e 2 (2.101)
1+m
£ et(mn1)
S — (2.102)
L+ p1
—1)"¢
= (1J2p11. (2.103)

Eventually E(t) = a€(t) as well as h = ah are introduced as new scaling, where h is

tltll 1 + £2

= 2.104
I+ p11—pip2 ( )
1L —pip2

This is the already known coupling factor, which becomes h = 2 for ps = 1 corresponding
to the before mentioned perfect mirror at one side of the microcavity. Using these two
scalings leads to the final equation system for the injected microcavity with a thin
nonlinear region

kIE =[-1— 16 +ix]E + hY, (2.106)
O=E-Y. (2.107)
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2.4.6. Kerr Gires-Tournois Interferometer System Equations

From here the KGTI system can be recovered easily. The time delay for the KGTI
system enters in the output relation, which describes the feedback loop through the
external cavity. The input consists of two contributions. The output gets reinjected
after one round-trip. Upon being reflected at the feedback mirror it will get damped by
7 and gain a potential phase ¢. The other contribution is the external injection beam
Yy, which also has to pass the feedback mirror. The resulting prefactor y/1 — n? can be
derived from the stokes relations as well. So the microcavity injection can be written as

Y =ne0 + /1 — n2Y,. (2.108)

In the case of a long external cavity, it becomes of increasing relevance, that the input
Y (t) depends on the output O(t — 1), where 7 is the external cavity round-trip time. As
a result an equation for the injection is found with

Y(t)=ne [BE(t —7) = Y(t — 1) + /1 —n2Y. (2.109)

Finally, the nonlinearity x has to be specified. For the standard KGTI a nonlinear Kerr
medium is used. The Kerr effect is a nonlinear optical effect where the slowly varying
envelope field experiences a change in refractive index that is proportional to its intensity
and hence described by x = |E|?. This leads to the third order nonlinearity, that has
been described before. For the KGTI with active medium that will be investigated
in later section, a quantum well will be used as nonlinearity, which is described by a
quantum well susceptibility | |, which reads

X(u,D) = =[In(u+1i—0b) —2In(u+i— D)+ In(u +7) — In(b)], (2.110)

1
7
where u is a rescaled injected frequency. The dynamics of the newly introduced carrier
density D are governed by a new differential equation

D(t) = v [-D(t) + SCO|EP] - (2.111)

2.5. Space-time Representation in the Long-delay Limit

A useful approach for the description of dynamics in systems with a delay that is long
compared to the other time scales is the folding of time in multiples of the delay. This
leads to a two-dimensional or quasi-space-time representation, since every point in time
can be described as t = 07 + o, where 7 is the delay, 8 € N and o is the remainder
[ il Il |. Here, o can be seen as the position within the quasi-spatial
dimension describing dynamics within a period of the system. There, 6 is the new
time scale describing the evolution of the system over many roundtrips. The long delay
leads to dynamics that evolve on separate time scales, which is important to make this
transformation applicable since well-separated time scales can be treated as independent
variables [ |. This representation facilitates to observe periodic solutions such as
pulses transforming or moving relative to the delay. Thus, purely temporal behavior
on different time scales becomes more transparent, when viewed in a space-time repre-
sentation and can be compared to one-dimensional spatially extended systems, showing
well-known phenomenons such as coarsening, drift, among others | |. Here, the
periodic solutions in the purely temporal dynamics become steady states in spatially ex-
tended systems and the corresponding bifurcations of limit cycles can be identified with
bifurcations of steady states. An example for coarsening in a space-time representation
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Figure 2.5: a) Extract of a timetrace showing four repetitions of a periodic solution with
a period of approximately 27. The dotted vertical lines indicate the cuts
that led to the space-time representation in b). b) Space-time representation
allowing for a compact analysis of a long time-trace. The scale o describes
dynamics within a round-trip of length 27 while 6 counts round-trips. The
space-time representation allows to observe the thin pulse decaying towards
full coarsening.

is shown in Fig. 2.5. Throughout this thesis, the systems will be treated mainly in the
long-delay limit, which makes this description well applicable. The separated time scales
in a long-delay limit also allow for other methods such as multiple-time-scale analysis,
which will find applications in later chapters. Note, that systems with several delays can
be compared to two-dimensional spatially extended systems in the same way, if both
delays are large and separated, such as 1 < 71 < 75. In such a case, the purely temporal
dynamics of a multiple delay system can be identified with well-known spatio-temporal
dynamics in a two-dimensional spatially extended system [Y(14].

Treating time-delayed systems in long-delay limit has an additional advantage. In this
limit the eigenvalue spectrum obtained by linear stability analysis will separate into a
discrete and a pseudo-continuous part [Sch21]. While the discrete part has an equivalent
for systems without a delay, the pseudo-continuous curve consists of an infinite number
of eigenvalues confined to a distance on the curve proportional 27“ [WYO06] that con-
verges to zero in long-delay limit. The resulting pseudo-continuous-curves can behave
analogously to the eigenvalue spectra in spatially extended systems, showing typical bi-
furcations for spatially extended systems such as Turing bifurcations. The corresponding
behavior such as short-wavelength pattern formation is then observed in the quasi-space-
time representation.

Furthermore, the quasi-continuous eigenvalues can be approximated as

A:V(Tw)ﬂ‘wﬂf)(l), (2.112)

72
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with y(w) defining a curve where the eigenvalues live on [Y(G17]. The transcenden-
tal equation obtained in a linear stability analysis can be simplified and approximately
solved using this ansatz [\Wol-+10], which enables a useful approach for the treatment
of time-delayed systems in long-delay limit. Finally, this eigenvalue discussion can be
utilized to explain the transformation from Eq. (1.2) into Eq. (1.1) for short delays.
Since the additional eigenvalues in the delay case have a distance proportional to 27”
they diverge to describe infinitely high frequencies when the delay strives towards zero.
On this occasion they move along the curve and their real part switches from positive to
negative. In the limit of a vanishing delay these additional eigenvalues gather at a real

part of —oo and only the eigenvalues from the equation without delay remain relevant.

2.6. Square-waves in Time-delayed Systems

Within the last chapter, the strong analogy between systems with long delay and spa-
tially extended systems has been outlined. Nevertheless, this thesis will focus on struc-
tures, which seem to be less typical for spatially extended systems, which are square-
waves (SWs).

Oo6 1 1 1 1 1

Figure 2.6: Exemplary square-wave (SW) solution consisting of two flat plateaus each
with a length of approximately 17, where 7 is the delay time. Hence, the
solution is approximately 27-periodic. This is already a solution for the Kerr
Gires-Tournois interferometer, which will be introduced in detail later this
section.

Coarsening dynamics in bistable systems with long delay have been mentioned before,
where fronts propagate and ultimately annihilate, similar to the behavior that can be
observed in spatially extended systems [Gia+12]. However, time-delayed systems are
also able to prevent coarsening via an arrest of domain walls through the ability of these
systems, to generate antiperiodic output, i.e., temporal traces getting inverted after each
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time delay 7 | ]. The concept of antiperiodicity can be understood by looking at
the equation

z(t) = e%a(t — 1), (2.113)

where only the cases ¢ = 0 and ¢ = 7 will be of interest here. The first case describes
a T-periodic solution. Any initial condition of length 7 will be repeated periodically. In
the case ¢ = 7, however, the solution will be inverted after each round-trip. An example
for this type of solutions are SWs consisting of two plateaus with sharp transitions, and
50% duty cycle as shown in Fig. 2.6. The sharp transitions after each round-trip are
due to the antiresonant feedback resulting from the phase ¢ = w. This also explains,
why SWs are typically observed, to have a period of approximately 27 [ 1 ],
although they have been observed to coexist with harmonic SWs of smaller periods 2311
[ ]. It is easy to understand, how such a solution can appear in delay differential
equations within the long-delay limit. To do so, one can investigate the equation

et =—x+ f(A\ z(t—1)), (2.114)

with a dimensionless time that has been transformed with respect to the delay 7 as f —t
and the smallness parameter ¢ = % This equation is investigated for f = ez (t — 1)
in the long-delay limit, which means ¢ — 0. This reproduces the equation from before
and thus, the observation of SWs for ¢ = w. The importance of a long delay for the

occurrence of SWs can be understood by solving this equation for &, after inserting
p=m

i =—71(z(t) +z(t—1)). (2.115)

This is a normal decay equation, so the system will try to minimize the right-hand side,
which is the case for z(t) = —z(t — 1). In the long-delay limit this will happen almost
instantaneously leading to sharp transition layers and thus, the possibility of SWs. SWs
have been observed and analyzed on several occasions. They have occurred especially
in several semiconductor laser systems, such as vertical-cavity surface-emitting lasers

(VCSELS) [ il |, edge-emitting lasers [ il |, semiconductor
ring lasers | I ], and quantum dot lasers| ]. From a theoretical per-
spective, Eq. (2.114) has been analyzed in detail by Mallet-Paret et al. | |. T.
Erneux describes the arising of SWs in a supercritical Hopf-bifurcation for the Ikeda
DDE | ], which is a special case of Eq. (2.114). Here the periodic solution arises,

again for small €, as a harmonic oscillation rapidly transforming into a SW with increas-
ingly sharp corners. The case of small € allows to treat the equation as a map. Also, it
corresponds to a long delay, where the map discretizes the time in terms of delays.
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3. Numerical Methods

3.1. Numerical Integration of Delay Differential Equations

In nonlinear physics, most problems are described by dynamical systems. Although
some of these can be solved analytical, for the vast majority even the attempt poses a
big problem. The term nonlinear itself hints at the occurrence of nonlinear terms, which
breaks the principle of superposition that can often be used to find analytical solutions
of a linear differential equation. It is because of this, but as well for the time saving, that
numerical methods are a good way, to tackle problems in nonlinear equations efficiently.
Hence, it is important to consider the necessary discretization in time and all spatial
variables. A very simple algorithm to calculate the temporal evolution of a system is
the so-called Euler’s method | ]. Tt can be applied to a one-dimensional DDE in its
general form

#(t) = f(z(t),z(t — 1), ...,x(t — TN), 1), (3.1)

with several delays 7,...7y. The time step h is chosen in a way that 3 = m; € N for
all delays 7;. In that case the initial condition consists of a discrete function zq(s) over
s € {—max;(7;), — max;(7;) + h, ..., —h,0}. For a shorter notation the labels ¢t = hn = ¢,
and x(t,) = z,, are introduced. Euler’s method assumes that between each point in the
discrete time the derivative is constant allowing to approximate a new point simply by
calculating the derivative from the system’s right-hand side, and multiplying it by A.
This poses a simple linear equation:

Tptl = Ty + h - f(xn, Tn—mqs - xn—mNatn) (32)

The points z,,_,, are known from the initial condition, or for larger times from the past
of the system. Although its simplicity is an advantage, the Euler’s method often fails
due to the fact, that a linear approximation of the derivative over an interval might
be not accurate enough, especially in nonlinear equations. The Euler method can be
compared to an expansion, which has been truncated after the linear order. The global
truncation error over the whole integration interval is O(h), while the local truncation
error is O(h?) | ]

Comparing the different numerical methods efficiency is a very important factor. Within
the framework of Runge-Kutta methods the Euler method is a first order method. It only
approximates the slope at the starting point of the interval. Higher order Runge-Kutta
methods use a mix of weighted approximation at both edges of the step as well as from
the middle. The order of the truncation error mirrors the number of approximations
for the slope that are being made for the first four Runge-Kutta methods. Note that
this is not the case for fifth and higher order Runge-Kutta schemes, where much more
computational effort is needed to increase the order of approximation any further. Thus,
the fourth order method Runkge-Kutta 4 (RK4) represents an optimal method in terms
of efficiency doing a global truncation error of O(h?*) and a local truncation error of
O(R%) | |. Nevertheless, this thesis uses an implicit Euler scheme, due to its low
computational effort for long simulations. For more information on RK4 schemes in
time-delayed systems, see B.1.

Now the implicit Euler scheme as it is used for the KGTI will be presented. Starting
from the equations

B = [—1+¢(1E\2—5)} E + 1Y, (3.3)

Y =ne'® (E, — Y;) + /1 — n2Yy, (3.4)
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once again E, 1 has to be calculated from FE,,, where E, 11 = E(t,+1). For simplicity
Lon=—1+i <\En]2 _ 5) (3.5)

is introduced. Euler’s method then leads to

EnJrl - En
——— =L, B, + hY, .
A7 L + (3.6)

Eni1=E,+ At (L, E, + hY,), (3.7)
where At is used for the timestep since h is a system parameter. Now implicit Euler

introduces t,1 on both sides of the equation to get a better approximation by using the
center of the timestep interval. This leads to

Epi1 = B, + At (ﬁn “; +h “; ) (1 - zﬁn) En1 (3.8)
At At
and finally
1 At At
Epy1=—F+— || 1+ =Ly ) En+ —h (Y, Y. - 1
+1 1—%t£n[(+2ﬁ> +5 (Yoq1 + )] (3.10)

Finally N = £; rounded to the next integer is introduced to write

Yn+1 = ne’i¢ (En—N - Yn—N) + V 1- 772}/67 (311)

which can be inserted for Y, into (3.10). This is the first order implicit Euler scheme
that is used for direct numerical simulations of the KGTI. To initialize a simulation
a parameter array is passed to the integrator, also containing the time delay 7 and
the timestep At. The delay is implemented through the number of timesteps fitting
into the delay which is the parameter N leading to a finite resolution of delay values.
However, this does not cause problems in long-delay limit where 7 > At is usually
given. The initial condition is a N X 4 array containing an interval of one delay in length
for the real and imaginary part of each of the two fields £ and Y. V(1,:) corresponds
to E(t —7) = E,—ny and Y(t — 7) = Y,_n while V(N,:) contains the present state
E(t)=FE, and Y(t) =Y,.

Finally, K simulation steps are specified where in each step a new point is calculated
using the scheme described above. The new point is then written over V(1,:) and either
the indices or the array can be shifted in a cyclic way. Additionally, it is possible to save
the whole timetrace of each simulation.

3.2. Numerical Path Continuation

Utilizing numerical path continuation, as it will be done throughout this thesis, holds
several advantages that other tools such as direct numerical simulation (DNS) do not
offer. With numerical path continuation, e.g., one can find and follow unstable solutions
or folded structures such as snaking, which are hard to find with other numerical meth-
ods.

An example can be seen in Fig. 3.1. Two branches have been plotted in blue and
turquoise, while the red and black dots represent DNSs from lower to higher and from
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higher to lower values of Y[, respectively. By only looking at the results from the DNSs,
it is hard to interpret the bifurcation structure in this bistable hysteresis regime. Espe-
cially when the simulation time per step is not long enough to settle on a stable attractor
transient points between the branches can occur as one can see for the black dots in par-
ticular. These do not represent real stable solutions. Only the continuation results shed
light on the fine snaking structure, which is hidden beyond the hysteresis regime.
Using numerical path continuation, bifurcation points can be identified and tracked
throughout the parameter space. This enables a good impression of structural changes
occurring along a branch.

In order to understand the basic principles of continuation one has to keep in mind that

0-2 1 1 1 1 1 1

0.15

(E)

0.1

0.05 .
0.5 0.52

0.54 0.56 0.58 0.6 Yy 0.62

Figure 3.1: A comparison of numerical path continuation as lines and direct numerical
simulations (DNSs) as dots. Both methods have used the result from the last
step as the initial condition for the next, but unlike the continuation results,
the DNSs will only fall onto stable attractors. Also, if the simulation time
has not been chosen long enough, transients occur as solutions.

the considered branches consist of settled solutions (x*, u*). Here, steady state solutions
are considered that are zeros of the function F'(x*, u*), since they fulfill

0=F(z*, p*). (3.12)

To start a branch an initial solution (x%, %) is needed from which a small step in the
parameter space can be taken such as u° — p% + Ay = p'. Now one has to find the
x!, which fulfills 0 = F(x!, ). There exist several algorithms for finding a zero of
a function, such as the Newton’s method | ], but they mostly need a good initial
prediction in order to converge. However, for a sufficiently small step Ay, x° could
be used as a first predictor. An even better strategy is the calculation of the branches
tangent in (x°, u°) by using the systems Jacobian and extrapolate a predictor for the
value of &' at p'. However, this method has still a few flaws. Due to the fixed step
Ay, it will break down at saddle-node or fold bifurcations, where the branch does a
turn around in p, leading to a situation where there is no unique solution in u. Thus,
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a substitute bifurcation parameter assigning a unique value to each point of the branch
would be desirable. A good option is the arclength, which behaves monotonous along
the branch, even at folds. This leads to the pseudo-arclength method | |, which
introduces the arclength s as an additional parameter. The arclength is approximated
locally as

(As)? = (Ap)? + (Ax)? (3.13)
ox ou
~ (mnt+l _ _n ntl _  n
~ (x x )83 As+ (p ,u )(98 As. (3.14)
This can be rewritten into a new function
ox ou
) — n+l _ .n n+l _  n o
p(x, p,s) =0=(x x )83 + (p i )—as As. (3.15)

The variable p is now treated as an additional dependant variable being a function of
the new control parameter s. Using the summary y = (x, 1), the extended system is

_ (Fy,9)) _
E(y,s) = <p(y,s)> =0. (3.16)

For a step s" — s" + As = s"T! a prediction for y"*! = (x(s"*1), u(s"*1)) can be
found by calculating the tangent at (y™,s™). Therefor the Jacobian of the extended
system E(y,s) has to be used. Finally, Newton’s method is applied to find the root
of E(y,s) = 0 and F(z,p) = 0 alike. For a more detailed derivation and further
explanations regarding this topic, see | ].
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4. Square-waves in an Injected Kerr Gires-Tournois
Interferometer

4.1. Preliminary Results

To give a better understanding of this system, now a short overview over previously
published results regarding the KGTT will be given. Due to the interplay of the Kerr
nonlinearity, the detuning, and second-order chromatic dispersion, the KGTI can exhibit

temporal-localized states (TLSs), such as dark and bright pulses | ]. This has
already been shown and analyzed, using a combination of direct numerical simulations
and path continuation with the MATLAB continuation tool DDE-BIFTOOL | | for
DDEs. Since this tool has not been designed for the implementation of DAE systems one
can rewrite the KGTI system using a singular perturbation ansatz [ |. By rewriting
the second equation as

€Y (t) = =Y (t) +ne [E(t —7) = Y (t — )] + /1 — n2Yy, (4.1)

for a small €, one can treat the DAE system as a DDE system.

Firstly, the KGTI shows continuous wave (CW) solutions which are the steady state
solutions of the system. They result from the constant injection beam Yy and can
become bistable for certain parameter regimes. The CW solution can be easily calculated
analytically by setting E(t) = E(t — 7) and Y (¢t) = Y (t — 7). It is described by

n?(h? — 2h) + [1 4 2ncos(p) + n*] [1 + (6 — I)?] — 2hn[cos(p) — (6 — I) sin(yp)] s
w07 |
(4.2)

Yol* =

where I = |E|? is the intensity | ]. Within the bistable CW regime branches of
periodic solution can be observed to emerge from Hopf bifurcations. These branches
feature bright and dark TLSs that coexist within the same parameter regimes with
hysteresis between them | ]. The dark and bright TLSs can coexist due to third-
order dispersion (TOD) within the system | il ]. Lately, a normal form
has been derived in the vicinity of the onset of bistability to extend the understanding of
the mechanisms behind the formation and behavior of TLS in the KGTI system | ]
It leads to a real cubic Ginzburg-Landau equation with additional terms such as third-
order dispersion and nonlinear drift. These terms are responsible for the locking of
domain walls in order to form pulses by providing each front with an oscillating tail that
acts as a potential for other fronts. In a good cavity limit, for an almost perfect (n — 1)
feedback mirror, the dynamics are dominated by TOD. In this regime, the KGTT can be
described by a Lugiato-Lefever equation | .

In order to compare the analytical results from the normal form with the first-principle
DAE model for the KGTI using numerical path continuation the DAE model needs to be
implemented into MATLAB. Since the system resulting from the singular perturbation
ansatz tends to be stiff for larger 7, a recently developed extension for DDE-BIFTOOL is
used throughout this thesis enabling the direct implementation of DAEs [ ].

29



4.2. Numerical Path Continuation
4.2.1. Square-waves from a Supercritical Hopf Bifurcation

Starting with results contained from numerical path continuation now several branches
of SW solution will be presented. In Fig. 4.1 such a SW branch for the parameter
set (0,h,n,o,7) = (0.1,2,0.9,7,300) is shown. It shows the formation of a periodic
SW solution from the CW state in a supercritical Hopf bifurcation Hi, that grows in
amplitude, and ultimately merges again with the CW state in another supercritical Hopf
bifurcation Hs. Throughout this thesis, the bold and solid lines represent stable solutions
while the thinner and dashed lines resemble unstable solutions. The measure (.) in the
dependant variable stands for an integral over an orbit of the squared electric field or
simply the squared electric field value in case of a periodic solution or a CW solution,
respectively. The continuation parameter acting as control variable is the injection Y.
(b,c) show two profiles for injection values marked by a dotted line in a). The one in

(|E|?) x 107

0.5 0.55 0.6 vy 0 0.5 T

Figure 4.1: Bifurcation diagram showing a supercritical square wave branch (blue),
emerging from a CW branch (black) that loses and recovers stability at the
Hy and Hj in two supercritical Hopf bifurcations. The measure (.) in the
dependant variable stands for an integral over an orbit of the squared electric
field or simply the squared electric field value in case of a periodic solution
or a CW solution, respectively. The continuation parameter is the injection
Yy. (b,c) show profiles, that have been taken from the square wave branch
at its cross sections with the accordingly marked dotted lines. Parameters:
(6,h,m,0,7) = (0.1,2,0.9,7,300) .

b) occurs right after the onset of SWs H; showing a small-amplitude sinus-like periodic
solution with a period T" =~ 27. The solution then transforms along the branch into
a well-developed SW with sharp transition layers as presented in c¢). This mechanism
behind the formation of SWs is already well known. It has been described for example
by | ]. The sharp transition layers connecting the plateaus of the fully developed
SWs exhibit almost no oscillating tail in accordance with the missing snaking in the
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branch structure. The occurrence of fronts with an oscillatory tail typically corresponds
to a branch with homoclinic snaking. This describes the possibility for different fronts
to lock on discrete distances into bound states through interactions induced by their
oscillatory tails [SJ(G22]. Such a behavior can be observed, if the detuning ¢ is increased
as discussed in the following section.

4.2.2. Square-waves from a Subcritical Hopf Bifurcation

In Fig. 4.2 a branch can be seen, where the detuning has been increased to 6 = 0.2, while
keeping all other parameters the same. As a consequence the lower Hopf bifurcation at

20

b)

18+t
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0.5 0.7 0.9 y, 0 0.0 T

Figure 4.2: CW branch (solid black) losing stability (dash-dotted black) at Hy in a sub-
critical Hopf bifurcation. The resulting SW branch (blue) experiences a series
of saddle-node bifurcations building a collapsed snaking structure around a
Maxwell line Yy prp =~ 0.54625. (b,c) Exemplary SW profiles marked in a).
The SW solution possessing a complex shape with non-equidistant plateaus
along the snaking region b), results in a SW with a 50% duty cycle ¢). Pa-
rameters: (4, h,n,p,7) = (0.2,2,0.9,7,300) .

H, became subcritical leading to a drastic change in the overall branch structure. At Hy
two pairs of unstable fronts emerge from the CW solution. Each of these pairs connects
the stable CW state to one of the two emerging plateaus. Starting at the first fold F}
the opposed fronts for each pair move away from each other along a vertical Maxwell
line [BIKO7] Yomp = 0.54625 where the velocity of opposing fronts is equal leading to
arrested dynamics.

This results in profiles as the one shown in b) indicated by a black dot in a) with complex
shaped solutions consisting of non-equidistant plateau regions. Due to the oscillatory
tails induced by third-order dispersion, the fronts can also lock at several positions in
the vicinity of the Maxwell line forming stable solutions at several preferred distances,
especially in the snaking regions at both ends line where fronts are close to each other
exerting a strong tail induced interaction. The top snaking then describes the situation
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when the CW solution almost disappeared, and the fronts get into each other’s potential
again. Finally, the horizontal part of the branch after F} contains a stable SW solution
with a 50% duty cycle like the one shown in c). This solution consists of two plateaus
connected by sharp transition layers each equipped with asymmetric oscillating tails.

4.2.3. Eigenvalues

Figure 4.3 shows the eigenvalue spectrum of the CW branch from Fig. 4.2 close to H;
and Hs in a) and b), respectively. The supercritical and subcritical cases do not differ
in terms of eigenvalues such that it is not necessary to compare them. One can see
the typical behavior at a Hopf bifurcation, where two complex conjugated eigenvalues
cross the imaginary axis, leading to an emerging branch of stable periodic solutions.
This process repeats for a whole cascade of frequencies. The resulting image shows
the pseudo-continuous eigenvalue spectrum, discussed in earlier sections. Here, the CW
solution shows an instability led by a branch with the longest finite wavelength T' ~ 27.
In Fig. 4.4 one can see the first five periodic branches that become unstable, with the
respective periods color coded. The n-th bifurcation belongs to a branch with a period
of approximately T = 23—21 in agreement with the results from other works | ]

0.5 . 0.5
a) b)

R - ®
= 0 @ = 0 %-
& & ®

-0.5 : -0.5 .
-10 -5 0 R(N) -10 -9 0 R(N)
%106 %1076

Figure 4.3: Eigenvalue spectrum of the CW branch from Fig. 4.2 at the two Hopf
points H; and Hj in a) and b), respectively. In terms of eigenvalues, the
supercritical and subcritical case do not differ. Parameters: (6, h,n, o, 7) =
(0.2,2,0.9,7,300) .
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The first five periodic branches, that bifurcate around the upper supercritical
Hopf point (H; in Fig. 4.2), with their respective periods in the bottom right
corner. This corresponds to the cascade of Hopf bifurcations, that has been
observed in Fig. 4.3. Parameters: (§,h,n,¢,7) = (0.2,2,0.9,7,300) .

33



4.2.4. Period Doubling Route to Chaos

For even higher d, the horizontal part of the SW branch loses stability over an increasingly
large injection interval. After the bifurcation point, a cascade of Floquet multipliers
leaves the unit circle at ® = —1 and § = 0 indicating several period-doubling (PD)
bifurcations. In contrast to a PD route to chaos consisting of consecutive PD bifurcations
on the newly formed branches, this cascade of PD bifurcations appears on the initial
branch. Accordingly the cascade of Floquet multipliers leaving the unit circle at ® = —1
and & = 0 belongs to several consecutive onsets of PD routes to chaos. This is shown in
Fig. 4.7 where several eigenvalues leave the unit circle in a cascade of PD bifurcations.
a) and b) show the left and right PD bifurcation points, respectively.

Since it can become hard to do a numerical path continuation of a period-doubling
route to chaos with increasingly long and complicated profiles, the behavior should be
examined with direct numerical simulations. One starts with a known initial condition
from the SW branch, close to the PD onset. Then, the injection is increased gradually,
while each simulation leads to a new initial condition. This way, one can find a quasi-
continuum of points that follow the stable attractor which connects to the branch. Since
a PD route to chaos splits into an infinite number of possible solutions, many initial
conditions have been started simultaneously with a small amount of noise to get the best
possible impression of the system’s behavior. Figure 4.5 shows the results for a detuning

PD, ./
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Figure 4.5: Bifurcation diagram, showing a subcritical square wave branch (blue), which
bifurcates into a circle of period two solutions (red) at PD;. The sec-
ond bifurcation point PDy on the SW branch (blue) is too close to al-
low for higher period solutions or chaos. Parameters: (6,h,n,¢,7) =
(0.6872,2,0.682, m,300) .

slightly above the onset of the PD bifurcations. The period-two solution bifurcates from
the main branch at PD;, but before a further period doubling can occur, it closes back
onto the horizontal part of the main branch in PDy. The presented period-two branches
are from another set of parameters with lower 7, where the PD has been detected for
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the first time, but it can be observed for n = 0.9 the same way.

At even higher values of §, the unstable section increases, leading to full PD routes to
chaos. This is apparent in Fig. 4.6. Noticeably the right PD route to chaos seems
to bypass several PD bifurcations. When doing direct numerics, coming from higher
injections, one will also find a period-doubling route to chaos, taking a different path
into chaos through solutions with odd periods like 37 and 57.

0.6 0.7 0.8 09 Y, 1

Figure 4.6: Bifurcation diagram, showing the same branch as in Fig. 4.5 for a
slightly higher detuning 6. The PD points have further separated, lead-
ing to a full period doubling route to chaos. Parameters: (9,h,n, o, 7) =
(0.75,2,0.682, 7, 300) .

4.2.5. Period 37-solutions

The 37-periodic solutions presented in this section consist of three different plateau
values of equal length of approximately 7. The triplet (p1, p2,ps3) of plateaus alternate
in constant order, clearly driven by the switching mechanism which is typical for SWs.
Hence, introducing plateau p; as initial condition would lead to an instant switch to ps
as response, followed by a switch to ps after one round-trip of length 7. It is due to this,
that these solutions will be called three-plateau SWs (SW3s).

An exemplary branch of these SW3 solutions is shown in Fig. 4.8. The two presented
37-periodic branches b3 and b3™ are each closed, not connecting to any other branch.
The zoom in Fig. 4.9 shows that the folds F™ of the branch b37 look like a continuation
of the two major folds F5™ of the branch b37 raising the impression that the snaking
structures collided leading to the separation of the branches.

The profiles in Fig. 4.8 (b,c) match this observation. In c¢) three pulses equidistant
pulses arise from the CW solution as it was the case for SW growth in case of a subcritical
Hopf bifurcation. The SW3 solution in b) results from fronts that have been locked in
a stable configuration after ascending along the Maxwell line. Finally the PD points in
Fig. 4.8 on b3™ as well as in Fig. 4.9 on b37 have to be mentioned marking onsets of the

35



i

1 RO\

Figure 4.7: Eigenvalue spectrum at the left a) and right b) PD bifurcation points in
Fig. 4.6, where a cascade of PD bifurcations sets in. Simultaneously
several Hopf bifurcations can be observed. Parameters: (§,h,n,¢,7) =
(0.75, 2,0.682, 7, 300) .
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Figure 4.8: a): Branches featuring periodic solutions consisting of three plateaus each
with a length of approximately 7. The respective branches bi)” and bgT are
detached to each other as well as the CW branch. b?7 is the respective SW
branch, reconnecting with the CW branch at the upper Hopf Hj. (b,c): one
profile from the two 37-periodic branches each. The branches and respective
profiles are colorized and labeled accordingly. b) shows that b37 is a branch of
SW3 solution, while c¢) only shows three pulses emerging from the CW sepa-
rated by 7 from each other. Parameters: (9, h,n, ¢, 7) = (0.8,2,0.682, 7, 300)
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Figure 4.9: Zoom on the 37-periodic branches to illustrate the detached branch structure.
The folds F¥™ and F37 are the major folds belonging to the branches 3™ and
b3™ from Fig. 4.8, respectively. Also another PD bifurcation arises when the
F}™ branch loses stability. Parameters: (3, h,n,¢,7) = (0.8,2,0.682, 7, 300)

previously mentioned alternative PD route to chaos. Though existent, solutions with
period 57 or higher are out of the scope for this thesis.

4.3. Two-parameter Continuations

Two-parameter diagrams can help to get a better understanding of the system’s behav-
ior. They allow for the tracking of different bifurcation points throughout the parameter
space. The important bifurcation points used for continuation are the PD onset, the
major folds visible in Fig. 4.2, and finally the Hopf points H; and Hs. The two figures
4.10 and 4.11 show the (Yj, §)-plane for the two different values of n from before. While
the structures seem to change in relative size and form, the essential structure of the
two diagrams remains the same. The inset in Fig. 4.11 shows the folded structure of
the before-mentioned period-doubling cascade. The folds are closer together here. One
can also see that the two Hopf (H) points are connected arising pairwise in two notable
points depending on the control variable. The Hopf point either arise in the minimum
in 0 or in the folding point Py = (Y, J.), if Yy is varied. Especially in Fig. 4.10, one
can see the fundamental fold pairs emerging in Py. This leads to the formation of the
snaking structure, which has been observed for the subcritical case. So at Py the left
Hopf bifurcation switches from supercritical to subcritical. Indeed, the colored areas em-
phasize three important sections. These are supercritical SW growth (red), subcritical
SW growth (blue), and PD region (green).

For the lower 7, the numerical path continuation could not recognize a fold in the §
vicinity of Py since the folding region became very flat for these § values. Thus, the
dotted points have been calculated manually. To mention is also the 37-periodic regime
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0.6 0.8 1 12 Y,

Figure 4.10: Bifurcation diagram of the (4,Yp) plane. It shows the continuations of the
most important bifurcation points. These are the Hopf (H) bifurcations,
where the SW branch arises from the CW solution, the onset of PD bifur-
cations, and the major folds marked in Fig. 4.2. The two dotted lines mark
Fig. 4.1 (6§ =0.1) and Fig. 4.2 (6 = 0.2). The major supercritical, subcrit-
ical, and chaotic regimes are colorized as red, blue, and green, respectively.
Parameters: (h,n,p,7) = (2,0.9,7,300) .
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Figure 4.11: Bifurcation diagram where the folded structure of the PD branch is empha-
sized. Parameters: (h,n,p,7) = (2,0.682,7,300) .
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F37 where the major folds from before have been plotted with dash-dotted lines. From
direct numerical simulation these three-plateau solutions can also be found in a vicinity
of this regime in the (Yp,d) plane. However, these are slow transients, decaying to the
SW or CW solution, depending on the regime one is on.

Finally, the hooks appearing on the fold branches have to be mentioned. They exist for
both parameter sets, but seemingly move below the period doubling region for a higher
7. In these regions, the Maxwell line splits into two parallel Maxwell lines, which leads
to novel behavior. However, the study of this novel regime is out of the scope of this
thesis.

To close this section, the behavior of the Hopf points for varying n and ¢ shall be
investigated. Especially the second contemplation is significant in order to check if SWs
are a unique feature for ¢ = 7 or if they continue to exist in a vicinity of that value.
By looking at Fig. 4.12 one can confirm that the SW branch exists for other values of
. Nevertheless, the behavior, especially for lower values yet of , has to be explored in
more detail.

Figure 4.13 shows, that minimum feedback (n > 0) is needed in order to find the SW
branch. It also shows, that in the good cavity limit higher injections are needed, to get
SWs.

o

1 2 Yy 3

Figure 4.12: Bifurcation diagram of the Hopf points (c.f. H; and Hy in Fig. 4.1) in
the (¢,Y)) plane. The value ¢ = 7 has been marked by a dotted line.
These results show that the square wave branches continue to exist in the
vicinity of ¢ = 7 and are not a unique phenomenon for this single value.
To be sure a few profiles for other values of ¢ have been calculated as well.
However, these are not included in this thesis. Parameters: (6, h,n,7) =
(0.37,2,0.682,300) .
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Figure 4.13: Two-parameter bifurcation diagram of the Hopf points in the (7, Y)) plane.
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Since 7 is a reflection coefficient, the asymptotic behavior in the limit n — 1
can be well understood. Higher injection values are needed to get SWs if
7 is raised towards this limit. Further, the branch shows that a minimum
feedback (n > 0) is needed, in order to find the SW branch. Parameters:
(0,h, o, 7) = (0.37,2,7,300) .



4.4. Plateau Analysis

In the following section an approach for describing SWs analytically is presented. This
is based on the idea to consider the SW solution as a steady state of the system within
a comoving frame, leading to E (t) = 0. Furthermore one can assume a two-plateau
approximation, where the simplified SW can be written as

(E1, Y1) ifteo,7]

. (4.3)
(Eq,Ys) ifte|r27]

(B, Y)(t) = {

with two plateaus (E1,Y]) and (Esq, Y2) of equal length 7. Inserting this into the system
yields four equations, since (E,Y)(t) = (E1, Y1) leads to (E,Y)(t — 7) = (E2,Y2) and
vice versa:

= (i[|E1|* = 8] — 1)Ey + hY; (4.4)
0=-—n[E—Y2] +V1-7*Yy -V (4.5)
= (i[| Bo|* = 8] = 1) Bz + hY? (4.6)
0=—nlEr -]+ V1-n*Y - Y> (4.7)

Replacing Eqgs. 4.4 and 4.6 as well as Eqs. 4.5 and 4.7 by their sum and difference and
inserting the resulting equations for Y; — Y5 and Y; + Y5 into the other two, yields

= (i[| Er|? = 8] = ) E1 — (i[|Ex|* = 6] = 1) B2 + h[Y1 - Y2 (4.8)
= (i[| Er|? = 8] = D E1 + (i[|E2|* — 6] — 1) B2 + h[Y1 + Y2 (4.9)
n

Yi-Yo=——[FE1 - F 4.1

1Yo 1[ 1 — Eo] (4.10)
1 —n2
Vi+Yy= (B + By 42Ty, (4.11)
n—1 L—=n
Thus, one can eliminate Y7 and Ys leading to a system of two algebraic equations

0 =i[|Er|* — 0| Ey —i[|E2|* — 0] By — ki [E1 — Ed) (4.12)
0 =i[|E1]> — 0| By +i[|B2|* — 0] By — k_[Fy + Es] + 2v0Y0, (4.13)
using the simplifications k; = %Th), k. = w, Y0 = h¥ L n = hy/1 1+” Since

Y1 and Y5 are functions of the £y and F», fully determlned through Egs. 4. 10 and 4.11,
the full information is conserved.
4.4.1. Continuous Wave Branch

From here one can find an expression for the CW branch by simply setting £} = Ey = E;
and solving

0 =i[|Es|* — §]Es — k4 Es + 70Yo, (4.14)

which results from Eq. (4.13), since Eq. (4.12) becomes trivial. Inserting the intensity

= |E4|? leads to
1 /11—
Yo =1 /Hn\/(k2 L, — 0]2) I, (4.15)

which can also be recovered from the CW solution presented in Section 4.1 by | ]

for ¢ = .
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4.4.2. Square-wave Branch

In the subcritical case, the CW solution survives as a third plateau along the Maxwell
line. Thus, an analytic calculation of the SW branch using the two-plateau assumption
will not be able to describe the full SW branches in any parameter set. However, the
horizontal part of the subcritical branches, as well as the whole supercritical branches,
should fulfill the assumptions. To get to a SW solution Eq. (4.12) is rewritten. Taking
the modulus square and inserting the respective plateau intensities leads to

(L= 6P +k) L= (L -0+ k%) L. (4.16)

This equation is fulfilled trivially for Iy = I, which corresponds to the CW solution. To
find another solution, one can use factorization since a solution of Eq. 4.16 is already
known. Since Eq. 4.16 is of third order in intensity the remaining polynomial is of
second order. Calculating

0=k} — L]+ L[ — 6]* — L[l — 8]? (4.17)
= kAL — L)+ L(IE — 2811 + 6°%) — (I3 — 2615 + 62) (4.18)
= (k% +6°)[I — L] + (I} — 261y) — (I3 — 2615) (4.19)
= (k2 + 0% — L) + I} — 201 — T3 + 2613 + [2011 15 — 2611 1] (4.20)
= (ki +0*—20(1h + L)) [ — L)+ I} — I3 + I} [, — I}, + 115 — [1I3]  (4.21)
= (k2 + 0+ I} + I3 + 1o — 26(I1 + I2))[I1 — Iy (4.22)
= [I} + I (1o — 26) + I3 — 261> + k3 + 6% [I1 — L], (4.23)

where at the blue terms the square is completed, leads to the other solutions as a second
order polynomial I(I3) or Is(17), which solves to

1
hz=3 (26 = Lo+ (40120 — 313, — 4k3 ). (4.24)

Now it is possible to calculate one plateau value I; as function of the other one. By
rewriting Eq. (4.12) as

ky —i(I —6)
ky —i(Iy —6)
another variable can be eliminated from the system. However, one should note, that Eq.
(4.24) yields two solutions for I; and I3 each, since Eq. (4.24) does not depend on the

injection Yy. An inserted value I; = I could be the lower plateau for one value of Y; and
the higher plateau for another. Thus the notation

Ey E, (4.25)

1
L= < 6 — T4 \/46T — 312 - 41@1) (4.26)

is preferred. To get the injection dependence one can use Eq. (4.13) with Eq. (4.25)
and take the modulus square again, yielding

2

1
L. (4.27)

Yo(I1, I2) = \/‘k‘ — [l — 8] + [k — [T — ]| ki —i[ly — ]

2k, ky — i[Ty — 6]

Plotting the plateau values (I, 1) over Yy(I, I1) results in the branch as shown in Fig.
4.14. The dotted lines illustrate how one inserted intensity I can belong to two different
SWs at different injection values, which correspond to the two solutions of the quadratic
equation I_(I) and Iy (7).
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Figure 4.14: The blue line shows the analytic results for the CW branch, while the red
lines are the solutions for the SW plateaus belonging to a supercritical SW
branch. The intensity value I is a plateau value of two square-waves oc-
curing for different injections Yy (7, I_) and Yy(Z, I+). The found quadratic
equation yields I+ = f([) since it does not depend on Yj. If one then inserts

I with one of its partners into the equation for Yj, the respective injection
value is found .

43



4.4.3. Calculating Bifurcation Points

Figure 4.14 also includes two red points, which mark the Hopf bifurcation points. The
discussion from the last section gives a simple condition for a bifurcation point: The
intensity values Iy of the bifurcation points are the only values where one solution of
the quadratic equation is I itself. They are not to be confused with the extremal values
of the branches, which correspond to the points where the square root disappears. Hence
one can write a condition for the extremal values Ig as

I (Ig) = 1-(Ig) # Ik, (4.28)

which is equivalent to a vanishing radicant. But more importantly the bifurcation points
can be rewritten as the two solutions of the equation I+ (If) = I, which have the simple

form
2 1 7 5
IH1,2 = §5 + g 52 - 3]€+ (429)

The injection value of the Hopf points can then be found by inserting Iy into the SW
solution Eq. 4.15.

4.4.4. Comparing Numerical and Analytical Results

To close this chapter on the analytical description of SWs in a KGTI system, a few
analytically calculated branches shall be presented and compared to their numerical
counterparts from earlier sections. In Fig. 4.15, one can see the supercritical branch
from Fig. 4.1 in plateau representation. This means that the upper and lower part of
the bubble belong to the same solution describing the upper and lower plateau value,
respectively. Blue lines belong to numerical results, while red lines come from the de-
rived equations. One can see that the two approaches result in a excellent agreement.
Interestingly, even close to the bifurcation point, the two-plateau approximation seems
to hold, which can be seen in b).

In Fig. 4.16 the branch from Fig. 4.2 can be seen. Here, there appears to be more
disagreement between numerical and analytical results, especially around the Maxwell
line. This was to be expected since the profiles respective do not fulfill a two-plateau
approximation, as visible in b). However, on the horizontal part of the branch, after
F!, the analytical prediction approaches the numerical results, as shown in ¢). Another
interesting result is the correct analytical prediction of the Hopf points, especially the
one lower in injection since it is in the region where the periodic branch itself is not
described correctly.

Due to this result, it seems like an obvious next step to compare the analytical and
numerical predictions for the Hopf points over a larger domain of parameters. This has
already been done in figs. 4.10 and 4.11, where the black-turquois striped line consists of
the numerical (black) and analytical (turquoise) results for the Hopf points. Thus, it can
be concluded that an appropriate analytical description for SWs in the KGTI system has
been derived successfully. A promising next step would be a plateau analysis based on a
three-plateau approximation to describe the behavior of SW3 solutions. Thinking ahead,
an n-plateau analysis could be interesting for future investigations. This is however out
of the scope of this thesis.
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Comparison of the results from numerical path continuation (blue) with the
analytical approximation (red) for the supercritical SW branch from Fig.
4.1. One can see the two plateau values emerging from the CW solution
at the Hopf points H; and Hs in a supercritical pitchfork bifurcation. The
dotted lines mark the injection values for which profiles have been plotted
in (b,c). Parameters: (3, h,n,¢,7) = (0.1,2,0.9,m,300) .
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Figure 4.16:
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Comparison of the results from numerical path continuation (blue) with the
analytical approximation (red) for the subcritical SW branch from Fig. 4.2.
The analytical prediction deviates from the branch close to the subcritical
Hopf bifurcation at H; since the profiles in that vicinity do not fulfill the
two plateau approximations, as indicated in b). ¢) shows a stable square
wave with plateau values well predicted by the analytical results. The
bifurcation point H; is also predicted correctly. Parameters: (d, h,n, ¢, 7) =
(0.2,2,0.9,7,300) .
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4.5. Evolution of Temporal Localized States on Square-waves

The presence of the oscillatory tails of SWs opens up the possibility to build more com-
plex patterns. As already discussed, the antiperiodicity in the square wave regime inverts
the whole solution after each roundtrip. Nevertheless, not every possible configuration
of fronts and pulses is stable.
Figure 4.17 is a schematic example of such an initial condition where an analytically
calculated plateau value hosts two regimes of different width of the respective part-
ner plateau value. The results are presented in a quasi-space-time representation, as
introduced in Section 2, where the full timetrace has been cut into sections of length
o = 27 + ¢, with € being a small correction to compensate drift. This can be done since
the long-delay limit is considered leading to a separation of timescales: The dynamics
within each period evolve on the scale o, while the dynamics between the periods evolve
in # direction. o can be compared to a quasi-spatial variable where the SW turns from
a periodic solution in the purely temporal dynamics into a steady state within the new
quasi-spatial variable. This steady state can then host other waveforms such as temporal
localized states that act as a perturbation of the steady state. Hence, one can observe
the temporal evolution of this perturbations that live on the SW where temporal evolu-
tion means the evolution in direction of the slow timescale 6.

The resulting dynamics can be described using concepts from spatially extended sys-

2.5 ;

Initial condition
A

B

1 0 ¢

Figure 4.17: Initial condition of length 7 consisting of a SW plateau (red) with two
intersections of the respective other plateau (blue). Only the interval ¢ €
[—1,0] has to be given as initial condition for numerical integration. Due
to the antiperiodic behavior in the square wave regime, the whole initial
condition is expected to be switched around after each roundtrip 7. The
plateaus can be taken from the analytical calculations

tems, such as coarsening. Coarsening describes a process in conserved dynamics governed
by diffusion. Consider two substances in a vessel which are conserved in their volume
since they cannot escape. Mixing them, e.g. by shaking the vessel, increases the gradi-
ent between these substances while a well-separated state minimizes it. Diffusive terms
strive towards such a phase-separation and punish gradients with an energy penalty.
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Due to conservation, the substances cannot disappear but coarsen towards long-finite-
wavelength patterns or full phase-separation. Since each plateau occurs equally in our
SWs due to the antiperiodicity, the plateau values describe a conserved quantity.
Written pulses on SWs correspond to a mixed configuration of the plateau values, which
is out of equilibrium. The system strives towards a fully state-separated square wave. If
fronts possess tails, their interaction can create metastable states, where the tail acts as
a potential barrier preventing coarsening. In this case, sufficiently big noise could push
the fronts over these barriers.

4.5.1. Subcritical without Noise

It is convenient to start in the subcritical case since it generally features more tail due
to the strong snaking structure. The parameter set has been taken from the branch in
Fig. 4.16. Figure 4.18 and Fig. 4.19 show the time evolution of a thick pulse with width
w = 15 and a thin pulse with width w = 5. By comparing the two figures, the no-
ticeable difference is in the drift speed of the pulses. The two pulses seem to experience
different drifting speeds due to their different width.

When the thinner pulse in Fig. 4.19 comes close to another front, the tail-induced po-
tential and the resulting preferred distances can be seen in the pulse’s irregular faltering
motion. Also the asymmetric tail itself can be seen as stripes above each front. It is
impossible to say if the thicker pulse is stationary or drifting on a very slow time scale.
In any case, the behavior of Fig. 4.19 shows, how fronts can interact and that certain
bound states are probably stable. To further investigate this question, one can induce
noise.

0 b)
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7 x 104

Figure 4.18: Space-time diagram showing the dynamics of a thicker peak with width w =
10 and without noise in the subcritical regime. One can see the asymmetric
tail as weaker stripes above each front. The pulse appears to be stationary,
at least on this time scale. b) The simulation’s solution of length 27 after
one roundtrip. c¢) The final 27 solution. (b,c) will show these two for all of
the following space-time diagrams.
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Figure 4.19: Space-time diagram showing the dynamics of a thinner peak with width
w = 55 and without noise in a subcritical regime. The pulse drifts towards
the next front, where the tail induced potential leads to a irregular faltering
motion and ultimately to a favorable configuration of the pulses.

4.5.2. Subcritical with Noise

The introduction of additive Gaussian white noise allows investigating the stability of
the found states against small perturbations. In Fig. 4.20 and Fig. 4.21, one can see
the time evolution of the same two initial conditions as before, but this time they get
perturbed. In (b,c) a good impression of the noise’s order of magnitude is given. It is
not strong enough to surpass any fronts but in a similar order of magnitude as the tail,
which should weaken the interaction. By comparing the two figures, one can see that the
thicker pulse’s fronts separate and drift around independently since their interaction is
too weak, while the fronts of the thinner pulse stay bound. Nevertheless, the fronts are
an insurmountable potential barrier for each other preventing full coarsening. Although
the noise can be increased in amplitude until the bound states break down, these results
demonstrate certain structural stability of the written pulses.
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Figure 4.20:

Figure 4.21:
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Dynamics of a thicker peak with w = {5 in the subcritical regime, where

Gaussian white-noise with amplitude 0.008 has been introduced. Further
separated fronts that are more weakly bound tend to drift around. When
two fronts get close enough, they tend to form bound states and drift to-
gether.

H 10 0 1 72
0 x 10*

Dynamics of a thinner peak with w = g5 in the subcritical regime, where
Gaussian white-noise with amplitude 0.008 has been introduced. The noise
is neither strong enough to break apart the bound state of the two fronts,
nor to let them annihilate, which would lead to full coarsening.
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4.5.3. Supercritical without Noise

Now the supercritical case shall be investigated, naturally showing less tail. Following
the argumentation from the last sections, bound states with written pulses should be less
stable. Fig. 4.22 shows the same pulse of width w = {5, which first shrinks in width and
then drifts upwards and collides with the next front. This looks like an elastic collision,
where the joined fronts drift slower due to their increased mass.

All in all, the plot suggests that the supercritical case shows a single stable distance of
fronts in agreement with the observation observation that the profile in Fig. 4.1 shows
little tail consisting of only a single notable peak. The observation is supported by Fig.
4.23, with the thin pulse, which was stable for the subcritical case. Here, however, the
fronts collapse since they are too close together, resulting in full coarsening.
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Figure 4.22: Dynamics of the thicker pulse w = {j in the supercritical regime, without
noise. Within the first roundtrips, the pulse becomes thinner, entering an
assumable more favorable configuration. It then drifts towards the next
front. In the following collision it transfers a part of it’s momentum onto
the front.

4.5.4. Supercritical with Noise

Finally, the supercritical case with noise, seen in Fig. 4.24, has to be considered. For
this figure, weaker noise has been used, than in the subcritical case, because otherwise,
the system would show an almost instant full coarsening. In this way, however, the
interaction can still be observed when fronts move together for some time, but ultimately
the system still coarsens. The behavior of fronts and pulses in the super- and subcritical
case with and without noise has been analyzed successfully. Especially in the subcritical
case, the bound states of fronts showed a certain robustness against perturbations due
to the tail-induced interaction.
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Figure 4.23: The thinner pulse with width w = 55 collapses in the supercritical regime
after only a few roundtrips, which leads to full coarsening.
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Figure 4.24: Dynamics of the stable pulse with width w = {5 in the supercritical regime

with Gaussian white-noise with amplitude 0.001.

Due to the weak tail
induced interactions the fronts annihilate at some point, when they come
too close to each other.
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5. Pulsating Dynamics in an Injected Quantum Well
Gires-Tournois Interferometer

In this section a new system will be introduced consisting of a Fabry-Perot microcavity,
as before, with a quantum well instead of a Kerr medium. Hence, this system will be
called a quantum well Gires-Tournois interferometer (QGTI). Except for the nonlinearity,
the setup stays the same. For its description the already mentioned quantum well
susceptibility | | is used, which reads

1
0

X(u,D)=—=[n(u+i—>0) —2In(u+i— D)+ In(u + i) — In(b)]. (5.1)
The susceptibility describes the medium’s response if incoming light with frequency
w hits the medium. In general, susceptibility describes a receptivity, here the ability
to absorb photons via excitation. Thus, the response depends on the time-dependent
carrier density. If, e.g., all carriers are excited, no light can be absorbed. The new
variable D = Nt is the carrier density, normalized with respect to the transparency level
at the band gap. So D = 0 would describe an empty conduction band, D = 0.3 would
describe a small inversion, and D = 1 describes transparency at the bandgap u = 0. u
is the frequency w, corrected by the band gap frequency wg as u = “=%G where v, is
the intraband polarization dephasing rate. b is the top-band frequency wr, corrected
the same way as u to b = “Z—%¢, Normally the band gap wg is assumed to be small
compared to wr.

The imaginary part of x describes the absorption, while the real part describes a phase
shift, hence a refraction index. Here small values of D corresponding to a vanishing
carrier density are considered. A negative u (frequency smaller than the band gap)
corresponds to almost no absorption and the imaginary part is zero. For a positive u,
however, the absorption goes towards one. The gain is defined as the negative imaginary
part, so the negative absorption. The real- and imaginary part of the susceptibility for
D =0 and D = 0.3 can be seen in Fig. 5.1 The resulting system is

E(t) =[ifx —1 -1 E(t) + hY (1), (5.2)
D(t) =y [-D(t) + S(IEP] (5.3)
Y(t) =ne¥ [E(t—7) =Y (t—7)] + Yo/ 1 — 12, (5.4)

which is a DAE system. The resulting new first order differential equation for D is a
transcendental equation, due to D appearing in the susceptibility x.

In order to compare the new system with the KGTI system the system will be treated
in long-delay limit. Here a problem arises with the delay and the scaled carrier lifetime
~. Despite the missleading name, v can be considered a decay frequency since small
values of v correspond to long living excitations. For small values, such as v ~ 1073,
a new large decay time scale is introduced, which is proportional to y~'. Thus, even
larger delays have to be chosen in order to fulfill v7 > 1 and stay in the long-delay limit,

which, however, may cause numerical inconveniences.

5.1. Comparing the System to the KGTI

The analysis of the QGTT system is started by looking for pulses, since they can be easily
recognized by the bistable CW region. To find pulses by using results from the KGTI
system it seems reasonable to find approximations in which the systems agree and choose
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Figure 5.1: The real (red) and negative imaginary (black) part of the susceptibility
X (u, D), for D = 0 (full line) and D = 0.3 (dotted lines) with b = 100.

the parameter according to possible shifts or rescalings. In a perfect scenario it would be
possible to find a transformation between the two systems. Hence, this section aims at
transforming the QGTI system into the KGTT system. For the KGTT the nonlinearity
contains only the Kerr effect arising from the second order of the refractive index. As
mentioned before the refractive index results from R(x(u, D)). Since R(x(u, D)) is large
for large negative u while the absorption from the imaginary part is small as shown in
Fig. 5.1 u <« 0 appears to be a good choice for a parameter regime where the novel
system might approach the KGTI. b > 0 corresponds to a large band which can be used
since it simplifies the equations while not influencing the results in a relevant way. Since
we are in a regime of small absorption x(u, D) is approximated with a Taylor expansion
for small D where the quadratic term from the refractive index |E|? and thus Kerr effect
is dominant. b > 0 and u < 0 are used as well, where the latter assumption allows for
a Taylor expansion of In(1+ %) around % =z = 0. Then, terms of order # are dropped
leading to the simplified susceptibility

X 71 In(—u) + (5.5)

There will be no further approximations for the moment. So a solution for this simplified
susceptibility should also exist for the full QGTI system within the proper parameter
regions. Inserting this simplified susceptibility into the system equations (5.2) - (5.4) for
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the QGTI system, yields

E= [—z’ 2f D—1—f7r—z'<6+fln(—u)>] E + hY, (5.6)

™
. 1 9

Y =ne [BE(t—1) =Y (t—7)] + Yo /1 — |n]?, (5.8)

which will be labeled the approximated QGTI (aQGTI) for reasons of distinction. Now,
the second equation, Eq. (5.7) can be multiplied by ZTfW, revealing the natural rescalings

. 2
p=2Lp (5.9)
—um
- 4/2
E= —fE (5.10)
—um
The other equations can be multiplied by ‘_/—Zz, revealing the same scaling for Yy and Y.

This unravels a shift in the injection regimes, where bistability can be expected. For ¢
as well the shift

o=0+ %zn(—u) (5.11)

can be found, defining an approximated and rescaled model for the QGTI (arQGTI)
system as

E= [—iﬁ—1+f— '5] B+ 1Y, (5.12)
uTm
D=~ (—f)+ |E|2), (5.13)

Y = e’ [E(t—T) —?(t—T)] + Yo /1 — |n2. (5.14)

Within an adiabatic elimination of the D equation this system is similar to our KGTI
system. It is to mention, that a CW state generally fulfills D = 0. The only difference
is the linear %E term, as well as the negative sign in front of —D. Since the first goal

is a search for bistable regimes the CW solution has to be calculated with E=Y =0,
leading to

2
hYo

D —1—a—is

2
V1=

B = -
1+ net#

T (5.15)

1—net®
D = |E|2. (5.16)

The switched sign of the iD can be compensated by a negative ¢, since the squared
absolute value does only depend on the magnitude and not the sign of the imaginary
part, and

—iD —i(—8) = (iD —id)*. (5.17)
Thus, a KGTI detuning SKGTI = —§ will transform to

6= _SKGTI — gln(—u). (5.18)
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Now these results can be applied by shifting a parameter set that is known for bistability
in the KGTI, using the derived transformations. The example presented here is 5KGT1 =
1.5, h = 2, p = 0 and n = 0.5, though a slightly higher n = 0.9 will be used. Pulses
appear for these parameters at an injection of 0 < Yy < 2. Up to this point the derivation
does not restrict the choice of f, u, and b to fulfill the approximations that connect the
two systems except for u <« —1 and large b. However, for a large negative u < —1 or a
very small f

—um ~

2D > D (5.19)

is found, which might cause problems since a used Taylor expansion demands small values
of D for the arQGTI model to be valid. From a physical perspective large negative u
and small positive f are preferred. However, to fulfill both approximations while still
maintaining reasonable parameter regimes, a compromise has to be accepted. Here
u = —20 and f = 10 will be used, leading to

D = 14.0496D, (5.20)

which corresponds to a relatively large u while keeping a relatively small D. For bistable
regimes in the KGTT at 0 < Yy < 2 the expected regime for bistability in the arQGTTI is
0 < Yy ~< 30. Finally SKGTI = 1.5 corresponds to § = —11.0357. This parameter set is
expected to show bistability in the QGTI system. The two remaining parameters v and
7 do not influence the form of the continuous wave state. They can be chosen later to
form the periodic solutions.

5.1.1. Results

For the derived set of parameters, bistability is found in the expected range of injections
Yp. To ultimately get towards periodic solutions 7 and ~ have to be chosen wisely. For
computation reasons, one can start with v = %. To stay within the long-delay limit,
which has already been 7 = O(10%) before, the delay will be increased by one order of
magnitude indicating 7 = 1000 as a reasonable choice.

The resulting bifurcation diagram can be seen in Fig. 5.2, where the bistable CW
branch is shown, with two periodic solutions. The branch in red is the branch of pulses
with a period of T' =~ 7, while the green branch has a period of T' ~ %T. In the upper
part of the inset, one can also see a section of stable pulses, which however lose stability
between the folds due to a Torus bifurcation, that can be seen in Fig. 5.4, where a) and
b) show the eigenvalues of a point right before and after the solution becomes stable.
In the lower saddle-node bifurcation SNy on the CW branch, one can observe another
interesting behavior, where the short-wavelength solution becomes unstable first in H;
while the real eigenvalue, resembling the saddle-node bifurcation, is the last to pass
the imaginary axis. In the space-time picture this behavior can be identified with a
Type-I instability in the Cross-Hohenberg classification [ ], describing the pattern
formation arising at a Turing bifurcation which can also be seen from the eigenvalue
behavior in Fig. 5.5 a).

Meanwhile, at SNo, the CW branch loses stability first in a saddle-node bifurcation,
followed by the Hopf bifurcation that belongs to the branch with the longest finite
period T' ~ 7. The affiliated eigenvalue structure can be seen in Fig. 5.5 b). Here the
seemingly obvious correspondence to a Type-III instability fails, since the leading zero
eigenvalue due to the SN bifurcation will not lead to constant growth. The eigenvalue
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Figure 5.2: A bistable CW branch, featuring two branches of periodic solutions, with
period T' ~ 7 (red) and T ~ %7 (green). The short wavelength instabil-
ity Hi1 happens before the lower saddle-node bifurcation SNj, while the
branch with the longest wavelength T ~ 7 bifurcates at SIN;. Meanwhile, at
S Na, the long-finite-wavelength solution becomes unstable first. Parameters:
(6,h,m, 0, 7,u, f,b,7) = (—11.0357,2,0.9,0, 1000, —20, 10, 1000, 0.1) .
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Figure 5.3: The T' ~ 7 branch from Fig. 5.2, with two profiles. b) shows a profile from
the stable dark pulses in the upper snaking. Besides the squared electric field
|E|? the carrier density D has been plotted here, to demonstrate that it is
small compared to E. ¢) shows an unstable mixed state between a bright and
dark pulse that appears in the lower snaking but is unstable. Parameters:
(0, h,n, ¢, 7,u, f,b,v) = (—11.0357,2,0.9,0, 1000, —20, 10, 1000, 0.1) .
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Figure 5.4:
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Figure 5.5:
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Eigenvalue behavior at the point where the dark pulse regime loses sta-
bility.  The eigenvalues show a cascade of Torus bifurcations. The
trivial eigenvalue A = 1 cannot be seen in a) because only the
first eigenvalues are shown. Parameters:  (6,h,n, ¢, 7, u, f,b,y) =
(—11.0357,2,0.9,0, 1000, —20, 10, 1000, 0.1).

x 1074

The eigenvalue behavior at the SN bifurcations of the CW branch in Fig.
5.2. a) shows the short-wave instability at the lower SN bifurcation while
b) shows a long-finite-wavelength instability at the upper SN bifurcation.
(6,h,m, 0, 7,u, f,b,7) = (—11.0357,2,0.9, 0, 1000, —20, 10, 1000, 0.1).



structure is rather a long-finite-wavelength instability similar to the behavior found for
SWs. However, the SWs did not show the real eigenvalue becoming unstable since the
bifurcations did not occur at a SN bifurcation. In Fig. 5.3 one can see a few profiles
from the periodic branch with 7'~ 1000. The profile in b) comes from the stable region
within the upper snaking, which shows a dark pulse with an asymmetric tail. The profile
in ¢) shows a mixture of a dark and bright pulse, which also is not stable.

Finally, Fig. 5.6 shows a two-parameter continuation of the two major top folds, which
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Figure 5.6: Two-parameter diagram of the two major folds in the dark pulse regime (red)
and the Hopf bifurcations (blue) of the parameter set (9, h,n, @, 7, u, f,b,7) =
(—11.0357,2,0.9,0, 1000, —20, 10, 1000, 0.1), as shown in a). The starting
parameter values are marked by the dotted lines. (e,f) to suggest, that long-
delay limit is conserved. In b), e) and f) one can see that there is neither a
regime where the regime of periodic solutions becomes larger, nor where it
is more centered relative to the bistability.

feature stable pulses, and the Hopf bifurcations. Both are marked and color coded in a).
The Hopf branches (blue) frame the region of bistability, that contain periodic solutions.
Interestingly, b)-d) show that in most variables there is no way to increase the domain
of periodic solutions, without increasing the bistable regime. (e,f) seem to indicate, that
long-delay limit is contained, at least with regard to folding points positions that are
approximately stationary down to low delays such as 7 = 100.

5.1.2. Looking at lower Delays

The general structure of periodic branches and locations of bifurcation points is robust
against delay variations in long-delay limit. To further investigate this, lower delay
values can be investigated explicitly. The CW solution cannot change its form, since it
does not depend on 7, but bifurcation points on the CW branch can shift. This can
be observed in Fig. 5.7, where the CW branch loses stability in a new bifurcation point
B,,. Also, the periodic solution loses its stability everywhere, which shows that 7 = 700
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Figure 5.7: Only the delay has been decreased, leading to a new bifurcation
point B,, where the CW branch loses stability. Also, the periodic
branch is unstable everywhere. Parameters: (6,h,n, o, 7,u, f,b,7) =
(—11.0357,2,0.9,0,700, —20, 10, 1000, 0.1).
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Figure 5.8: A very low delay leads to well separated eigenvalues, which allows to have
a good look on the new instability B, of the CW branch. The branches
(green) emerge in a low-wavelength instability, similar to Fig. 5.5 a). They
reconnect to the CW branch in an order, similar to the one in b). Parameters:
(6, h,n, 0, 7,u, f,b,7) = (—11.0357,2,0.9, 0, 50, —20, 10, 1000, 0.1).
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is not in the long-delay limit for this set of parameters, although the folding points do
not change their position as it has been shown in Fig. 5.6.

Figure 5.8 shows a bifurcation diagram for an even lower delay of 7 = 50. Here, the
eigenvalues are well separated, allowing for a numerical path continuation of the solutions
arising at the newly found bifurcations which led to the branches shown in (green). The
eigenvalue behavior is similar to the one observed in the QGTI’s bistable regimes, where
branches with medium wavelength solutions arise first. When they bifurcate back on the
CW branch, they reorder by wavelength. However, the bifurcation points are separated
due to the long delay. Although there are more interesting observations to be made, this
is not the main topic of this thesis so it will be dropped here.

5.2. Parameter Set for a Normal Form Limit

As mentioned in section 4, a normal form has been derived for the KGTI in a good cavity
limit | | corresponding to small cavity losses. To compare the systems, this thesis
intends to derive a normal form in the same limit with A = 2 and 1 — 1 presuming the
necessity of existence of stable periodic solutions in that regime in the QGTI. Accepting
the limitations in the possibility to approximate the new system with the KGTI which
would have led to a very similar normal form in the according regimes of the new pa-
rameters u, f, v and b the following section will discuss new promising choices of these
parameters. A parameter set where bistability can be found is

(6,h,n, 0,7, f,u,b,7) = (—0.01,2,0.98,0,0.1, 1,0.65,1000,1000). This set will be the
starting point for optimizations regarding nice periodic solutions in the vicinity of a
good cavity limit that could serve as expansion point for a normal form. The main dif-
ference to the last section is the choice of a small u(w) which corresponds to an injection
frequency w that is close to the band gap. Figure 5.1 predicts a strong nonlinear response
of the medium leading to the occurrence of a decent absorption (imaginary part) and
refractive index (real part) likewise.

The chosen parameter set leads to a branch, which can be seen in Fig. 5.9. The
two profiles demonstrate that this branch possesses stable bright and stable dark pulses,
whereby the regime of dark pulses is shifted to lower injections and not centered around
the Maxwell line. To improve understanding of the behavior of solutions in this param-
eter regime a two-parameter continuation is carried out whose results are presented in
Fig. 5.10.

As before in two-parameter diagrams, the dotted grey lines mark the starting parameter
set from Fig. 5.9. This time, the major folds of the stable bright and dark pulses have
been looked at. The resulting branches are plotted in a bright purple and dark red,
respectively, while the SN bifurcations limiting the bistable regime are plotted in dark-
blue for reference. The panels b), d), and e) demonstrate a very interesting switching
dynamic, where the choice of the respective parameters d, u and ¢ determines the oc-
currence of dark pulses, bright pulses, or both. The regimes of pulsed periodic solutions,
however, are small in the overlapping domain.

The two parameters f and 7 influence the behavior in a different way: An increase of
the parameter increases the size of bistability and the regime of periodic solutions. In
order to get a small f, one would have to increase n as compensation.

Finally, a continuation in « has been included. The dotted grey line is in a region where
the regimes of dark and bright pulses are separated. A choice of v = 1 already leads to a
regime where bright and dark pulses extend over larger injection regimes. These results
can now be used to optimize the bifurcation diagram by setting v = 1 and decreasing
f. The latter leads to a smaller regime of periodic solutions, which can be counteracted
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Figure 5.9: A periodic branch for the new parameter set with a small positive value
of u. The branch features stable dark and bright pulses, which can
be seen in b) and c), respectively. Parameters: (d,h,n,¢,v, f,u,b,7) =
(—0.01,2,0.98,0,0.1,1,0.65, 1000, 1000).

by increasing 1. Due to the increase in v one can decrease 7 as well to accelerate the
numerical calculations.

Fig. 5.11 compares the behavior of the major folds limiting the range of stable light
pulses in a two-parameter continuation of 7 and ~, each over the injection, where one
can see that a change of 7 would not have the same influence on the dynamics as a
change in ~y, within this range of parameters.

The parameter set Qg = (6, h,n, ©,7, f,u,b,7) = (0.015,2,0.99,0, 1,0.2,0.65, 1000, 250)
leads to the bifurcation diagram that can be seen in Fig. 5.12. It features stable dark
and bright pulses over an extended injection range. In a later section a normal form
derivation in the vicinity of these solutions will be presented which is the reason why
this point in the parameter space will be labeled 2.
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Figure 5.10: Two-parameter diagram for the parameter set (d,h,n,p,v, f,u,b,7) =
(—0.01,2,0.98,0,0.1,1,0.65, 1000, 1000) from Fig. 5.9. One can see the dark
pulse (dark red) and bright pulse (bright purple) regimes, framed by the
bistability (dark blue). a) demonstrates how the choice of v influences the
dynamics. b), d), and e) emphasize that the bright and dark pulse regimes
are shifted relative to each other, with a small overlap section within the
largest bistability regime. Increasing f and 7 both increase the bistability
and pulse regimes .
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Figure 5.11: Comparing the two-parameter continuation for the bright-pulse regime of
the (v,Yp) and (7,Yp) plane in a) and b), respectively, for the parameter
set (6, h,n, 0,7, f,u,b,7) = (-0.01,2,0.98,0,0.1,1,0.65, 1000, 1000). One
can see how even small changes of v have a significant influence on the fold
positions, while they seem to be robust against changes of 7 in this regime.
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Figure 5.12: A branch featuring stable bright and dark pulses, with an increased value
of v and a reduced delay 7, as well as some slight parameter adjustments.
The periodic branch is more symmetric and also the first periodic branch,
bifurcating in the Hopf cascade at SN; and SNo. The set of parameters
(6,h,n, 0,7, f,u,b,7) = (0.015,2,0.99,0, 1,0.2,0.65, 1000, 250) will be im-
portant for the next section and will be called €)g..
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5.3. Square-waves in the QGTI

Empirically, SWs have often been found in similar regimes as the regular periodic solu-
tions. The important difference is the phase ¢, which needs to adjusted in order to get
antiresonant feedback. Indeed, by setting ¢ = 7, one can find SWs, as shown in Fig.
5.13.

The branch is similar in its appearance to the subcritical SW branches found in the

200 - - - - 400
a) b)
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S 100} t
S 1 24
50}
07, 0
10 20 30 40 y,50 o 1 2%

Figure 5.13: SWs, emerging in a supercritical Hopf bifurcation at H; and a subcriti-
cal Hopf bifurcation at Hs. Such a branch will be referred to as a sub-
critical SW branch of the QGTI. b) shows a solution with three plateaus
at the Maxwell line, while ¢) shows a stable SW with 50% duty cycle.
(6, h,n, 0,7, f,u,b,7) =(-0.01,2,0.98,7,0.1, 1,0.65, 1000, 1000).

KGTI. It features stable SWs with sharp transition layers on the back of the branch, as
shown in c), and a behavior similar to the KGTI’s along the Maxwell line is visible in
b). However, the subcritical Hopf bifurcation is now the Hopf bifurcation Hy at higher
injections, so the branch seems to be flipped around. Also, the whole branch extends
over a huge region of injection values. So a natural next step is to look at the two
parameters that mainly control the width and injection domain of periodic branches,
which are f and 7. The resulting two-parameter diagrams, which show the positions of
the Hopf bifurcation points H; and Hs, can be seen in Fig. 5.14.

Reducing either n or f decreases the width of the SW branch and shifts it to lower
injection values. Especially the reduction of 1 can shift the whole branch below Yy = 10.
However, the two parameters are not independent in a way that reducing the one limits
the options of reducing the other. In both two-parameter diagrams, one can also see
a folding point that reminds of the point Py found in Section 4.3, which marked the
transition between subcritical and supercritical SWs.

Figure 5.15 shows this transition in 1 at the point Py = (Y, n°) = (3.300,0.865). The
folding point labeled Py in Fig. 5.14 appears on the part of the branch that describes the
position of the Hopf bifurcation H; while the transition from subcritical to supercritical
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Figure 5.14: Two-parameter continuation of the Hopf points, belonging to the subcritical
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SW branch from a). b) shows the (7, Yp) plane, featuring a folding point Py.
c¢) shows the (f,Yy) plane. Both diagrams indicate that SWs exist at lower
injections if n or f are decreased. Parameters: (6,h,n,v,7, f,u,b,7) =
(—0.01,2,0.98, 7, 0.1, 1,0.65, 1000, 1000).
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Figure 5.15: Several SW branches, showing the transition from subcritical to super-
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critical case around the folding point Py from Fig. 5.14. Parameters:
(6, h, 0,7, f,u,b,7) = (—0.01,2,7,0.1,1,0.65,1000, 1000).



takes place at the other Hopf Hy. The exemplary bifurcation diagram for n = 0.86
is shown in Fig. 5.16, where c¢) displays the same type of SW growth observed in the
KGTI. The branch is fully stable showing sinus-alike periodic solution in the vicinity
of its onset in panel ¢) that transform into fully developed SWs with sharp transition
layers as shown in panel b).

Finally, Fig. 5.17 shows the associated two-parameter diagram of the Hopf points, where
the grey lines mark the starting parameter set. In f and n a similar behavior is observed
as for the subcritical case. Increasing these parameters leads to a growing regime of
SWs, though this does not say anything about their stabiliy. The other parameters de-
fine limited regimes, where SWs exist. Here, especially the behavior in ¢ differs from the
behavior observed for the KGTI in Section 4.3, where the two-parameter continuations
of he Hopf bifurcations in the (Y, d) plane looked similar to the Hopf branches for n and
f that are observed in Fig. 5.17. However, one has to keep in mind that the relations
derived in Section 5.1 for the transformation between the systems show an f dependence
in the transformation of §.
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Figure 5.16: An exemplary branch for the supercritical regime, close to the transi-
tion at Py. The two profiles in b) and c) show a stable as well as
a just emerging SW, respectively. Parameters: (4, h,n,p,v, f,u,b,7) =
(—0.01,2,0.86,7,0.1,1,0.65, 1000, 1000).
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Figure 5.17: Two-parameter continuation of the Hopf points, where the SW branch

from Fig. 5.16 emerges. Parameters: (9, h,n,@,v, f,u,b,7) =
(—0.01,2,0.86,7,0.1,1,0.65, 1000, 1000).
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6. Deriving a Normal Form in a Good Cavity Limit

6.1. Normal Form Settings

In the last section, dark and bright temporal localized states (TLSs) have been found in
a good cavity limit represented by choosing n — 1 and h = 2, especially in the vicinity
of the point 2y in parameter space that was introduced in Section 5.2. The high 7 leads
to very small external cavity losses, hence a strong feedback. This represents a good
expansion point for a weakly nonlinear analysis leading to a normal form which is done
in this section for the QGTI system and can be compared to the one derived in | ]
for the KGTI in the same limit. The resulting system of partial differential equations
(PDEs) can help to get a better understanding on how the parameters influence the
dynamics of TLSs in the QGTI. The system reads

E(t)=[ifx —1 -4 E(t) + hY (1), (6.1)
D(t) =y [-D(t) + S(IEI] (6.2)
Y(t) =ne [E(t — 1) = Y(t — 7)] + Yo /1 — n2. (6.3)
with
(1, D) = % (In(u+i—b) —2In(uti—D)+In(uti)—In@®).  (6.4)

From now on ¢ = 0 will be used. Going from a DAE to a neutral delay differential
equation (NDDE) allows to eliminate Y'(¢). This can be achieved by adding Eq. (6.1)
at time ¢ onto itself at time ¢ — 7, multiplied by 1. One can then recognize and insert
Eq. (6.3), which eliminates Y (¢) and leads to

() +nB(t 7)) = [ifx(D(t) =1 = 0] B@) +n ifx(D(t = 1)) = 1 = id] E(t — 7)
+hnE(t —7) + Yy /(1 — n?). (6.5)

6.1.1. Time Scaling

First, the system is rescaled with ¢t — % and % = ¢, yielding

¢ (B +nb(t —1)) = (D) =1 = i8] E®) +nlif (Dt = 1)) = 1= id] E(t — 1)
+ hnE(t — 1) + hYo /(1 — 1?), (6.6)
eD =y [-D(t) + S(x(D))|E[*] . (6.7)
It now has a period of T' =~ 1 defining the fastest timescale ¢y. To avoid drift, the period

T or equivalently the frequency w can be expanded allowing for higher order corrections.
This leads to a stretch in ¢g:

to = wt, (6.8)
t =0, (6.9)
ty = €t, (6.10)
t3 = €t (6.11)
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6.1.2. Parameter Expansions

In the following, the parameters will be expanded based on the knowledge about the
system as well as some practical thoughts:

Yo =€y + 62’}/2 + 63’}/3, (6.12)
n=1+nn. (6.13)

As mentioned before, the normal form is derived in a good cavity limit by choosing
n — 1 and h = 2 eliminating h from the equation. Furthermore, choosing Yy being
O(e) combined with the choice of 7 leads to an injection that comes in at O(e?). The
detuning § will not be expanded, nevertheless  will be assumed to be small at some
point of the derivation. The parameters v and b only appear within x, hence they will
not be considered for the moment. Finally, the major parameter to be discussed is f
determining the strength of the nonlinearity.

6.1.3. Nonlinearity

In general the nonlinearity should enter at O(e®) limiting nonlinear effects. The most
obvious path is the choice f = O(e?). In that case however, it appears to be hard
to access the nonlinearity itself from the argument of y. Another way is to choose f
in a lower order such as f = e2f and rlescale the ﬁeldl, as the following example will
demonstrate. Consider ' — €2&, Y — €2) and Y — €2))y. This leads to:

eD(t) = v [=D(1) + S(x(D)|E] (6.14)
Now D — €D is an obvious consequence to be able to divide each term by € yielding
eD(t) =~ [-D(t) + S(x(eD))E] (6.15)
as well as x(eD) in general. For Eq. (6.6) one finds
€e <€(t) + né(t — 1)) —e2 [ie? fx(eD) — 1 — id] E(t)
+ ez [ie fx(eD(t — 1)) — 1 — i8] £(t — 1)

+€%h’l7(€(t— 1) +e%hyg\ﬂ1 — ). (6.16)

Here €2 can be taken away from each term to reproduce the old equation only differing in
the argument of y. To write the susceptibility as a polynomial in €, a Taylor expansion
can be included for small €, leading to:

x(eD) =x(0) + ex’(0)D + O(?). (6.17)

Note that the higher order terms will not occur in the final equation if only a total order
of O(e3) is considered. The terms x(0) and x’(0) are the complex terms

1 u+1—>b 1 1 1 1 -1 1
— (P ot (s ~ o = In(—u—i
x(0) ﬂn((u+i)b) Wn(b u—i—z’) Wn(u—i—i) 7rn( u—1),
(6.18)

12 12(u—i)

/
- e S 1
X' (0) Tu+i—0 wut+1’ (6.19)
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which do not depend on the fields. Here, b > 1 has been used. This approximation is
optional and can be omitted easily, if needed, since the susceptibility will be inserted in
the final equation. The imaginary part of x(0) can be isolated using the Arg function:

—In(—u—1) =—1In|u+i| — tArg(—u — 1) (6.20)
=—InVul+1+i [g + arctan(u)} . (6.21)
This leads to

1 11 .

X(0)=—=Invu2+1+1i [2 + - arctan(u)} = Ry + ily, (6.22)
™ ™
2 u—1
) — =2 — iT 2

YO =280 gy, (6.23)

which yields an approximated susceptibility
x(€D) = Ry + iy + (R, + il,)D + O(€?), (6.24)
with the nonlinear term in O(e3). Inserting these results one finds for D

eD(t) = [-D(t) + S(x(eD)) €[] (6.25)
v [=D(t) + (Io + eL1D(1)[E®)?] - (6.26)

6.2. Derivation
6.2.1. Time Derivative and Drift Operator
Now the corresponding time derivative operator is:

O = wdy + €20, + €305. (6.27)

To equalize the drift the expression w = 1 + ew; + €2ws + €2ws3 can be used which leads
to:

Oy = Do + ew10y + €2 (wad1 Do) + €3 (w3dp + D3) + O(eY) (6.28)
=To+ €T + T + T3, (6.29)

The field has to be written with respect to the new time scale. Thus, E(t) = E(to, t2, t3),
but also £(t — 1) = E(ty — w,ta — €2, t3 — €3) has to be used. In order to sort the system
by orders of ¢ an expansion for small € can be used to rewrite the time-delayed field

E(to —w, ty — €ty — 63) =E(tg—1—ewy — Cwy — Ews, ty — €2, t5 — 63) (6.30)
:g(to — 1,t2, tg) + 6(—W180)5(t0 — 1,t2,t3)

2 (W06 _ o _
+e€ 9 w260 82 g(to 1,t2,t3) (6.31)
_ 383
+é3 <wéo + wlec‘)g + w10902 — w30y — (93> E(to — 1,ta,t3)

The found prefactors correspond to the shift operator S fulfilling

g(to - w,t2 - 62,t3 - 63) - Sg(to - 1) (632)
= (14 €51 + €S + €683) E(to — 1), (6.33)
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with the reduced notation E(tg — 1,ta,t3) = E(to — 1).

Using the operators introduced above all definitions can be inserted into Eq. (6.16) and
Eq. (6.26). Additionally, the fields are expanded in a power series as & = &) + €£1 +
€28 + 33 + O(e*). Afterwards the resulting expressions will be sorted in orders of e
which will be considered separately. For a full derivation, see sections B.2 and B.3. Only
main results from each order will be presented here.

6.2.2. Solving by Orders

Starting with the lowest order O(e”) one obtains
Eo(to) — Eo(to—1) =0, (6.34)

describing a simple periodic solution.
Using this, from O(e!)

51(t0) — 51 (t() — 1) = <—UJ1 — (522-|-1> 8050(t0), (6.35)

is found. This equation describes a periodic solution with a periodicity disturbed by a
drift term elucidating the meaning of the expansion in w as compensation for potential
drift. Without the first order term w;0y&y(tp) a nonvanishing drift of & on the time
scale t( is observed. The drift is compensated through the result for the small frequency
correction ew; by choosing

(6.36)

For O(€?), the lower orders will be used once again leading to wy = w?. Furthermore,

the solvability condition

Da&y = {—iawjag - LQ] Eo + Ty, (6.37)
is found with

Ly = W — (n2 +i02), (6.38)

[y = 'nﬁ. (6.39)

The operator Ly contains the first term from the expansion of the susceptibility, but
the nonlinearity itself does not enter until O(e3). Here, w3 = w} is found. The final
solvability condition for the third order containing all simplifications, has the form

.30

1—
03EY + 02E1 = — z?wi”ﬁgé‘o + 30

2
- W3O
B Wi10pco

2
+ [ND — WILQ]g() + [—1(50‘)218(2) — L2:| E1+ g +wilg, (6.40)
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with
_2(fly —ifRy)

= — ] 41

2 1+ ) (n2 +i62), (6.41)
2y/—2

Iy = 71?&5772’ (6.42)
2y/—2

I's = WTZ';]Q’ (6.43)

_ 2f(iRy — In)
N == (6.44)

Equation (6.2) of the D field that has been rewritten to
eD(t) = 7 [~D(t) + (Io + L D(t))[E(1)]*] (6.45)

has to be discussed as well. Inserting the time derivative operator as well as the nonlin-
earity leads to

(€do + w10y + €3 (w20p + 02)) D(t) = v [-D(t) + (Ip + L D) E(t)*] . (6.46)

6.3. Assembling the Full Partial Differential Equation System

Finally the PDE shall be deduced from the previous results. Therefor, an effective time
scale

Dp = €20y + 603 (6.47)

is introduced. The results are now included by using & = &y + €£1, where higher orders
of the field fall into O(e*) due to the definition of the time scale. This leads to:

WP 2/=2m9
895 262 <|:—7/5218§ — L2:| 5 + (’71 + 672)1—1_25>
— 362 /=
+é (1 1235 WIORE + IND — w1 L)€ +wim 214_35772) . (6.48)

Next, space can be rescaled as €|w1|0y — Oy, where the absolute value leads to a switch
in sign of the third order dispersion:

€ = [280 E(—my + 20, 192)] E+ M A

2f(ify — 1) . VI—?
s|aflvdity — ) o _ V1-n? A
+e€ [ 116 D —wi(—m2 +2W 202):|5+ew1hy0 ey + O(eh).

(6.49)

Applying the parameter expansions yields €?(n +i0) + O(e?) = ne® — 1. Also, 2f — f
is reset and small terms containing ew; are removed, yielding

. I A )
8052[1582 2f 0~ ifo —1—1—17@’9}54—11370”

2 7 T (1+i6)? 146
1-36% 4 2f(iRy — I) 4
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One can progress by multip%ying both sides of the equation by ¢> and inverting the field’s
scaling with £e2 — FE, Ype2 — Yy and De — D, which results in

25 : 1362 4 2f(iRy — I)
iR —i2 arctan 1 —n?
2f(1+ 5)0 — 1 + e~ 2arctan(d) E+hY07V1_I_Z,;7. (6.51)

Here, the original fields from Eqgs. (6.1) - (6.4) are recovered. This is necessary to
compare the derived PDE with the underlying DAE system.

After expanding the exponential function for small values of § only the coefficients Ry,
Iy, Ry, and I; remain. Hence, the approximation for the susceptibility shall be finally
inserted leading to

25 — 362 4f (1 +du)(1 —id)
E=—0°F — SE + — DE
% % o %P+ (1+u2)(1+ 62)
InvVuZ+1+72 t
| H g il I Farctan(v) o arctan(d) | B
T (14 62)
/1 _ 2

which is this section’s final PDE for E. The second equation
(edo + w10y + €(wadp + 02))D(t) = v [=D(t) + (Io + e1D(¢))|E(t) ] (6.53)

will be simplified using e|lw1|0p = 9, as well as €20, + w303 = 9y. However, one needs
to keep in mind that the fields involved still have to be rescaled. Thus, g3 — F and
De — D are applied. This leads to

1 1 -1 1
<80 — 6(80 + 69) + 63(4)2(90 + w4w380> -D = |:D + (Io + IlfD)*’E‘Q ,
—wq € € € €
(6.54)

which is equivalent to

=2 [-D+(Io+ LD)|E?]. (6.55)

w1 €

(6 — €Dy + €0p — w10y — € w18>€

Here, the relations wy = w? and w3 = w? have been used to rewrite all derivative
operators with the new scales o and §. Now each side is multiplied by €. In a first
attempt the lowest order can be used to describe the dynamics of D as

9oD = —w1y [-D + (I + L D)|E|?] . (6.56)

However, interpreting o as a quasi-spatial variable and 6 as the time variable this is not
a differential equation in time o. Indeed this section leads to a PDE in E(t) with a
constraint for the field D(t). The resulting system is
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—id 1— 362 4f (1 +du)(1 —i6)
WE =——02F — B+ — DE
0 2 70 12 77T T (T+u?)(1+62)
2 Invu?+1+7% t
A P s +2'zmcamu)—1+4r—ﬂnmamu® E
™ (1+462)
V1 —n?
hYo——— 6.57
TS (6.57)
0=-0,D+—— |-2D+ 1—1—23L1"(:tan(u)—é ! D | I|E? (6.58)
T 1+ 62 ™ Tu?+1 ' '
The equations are finally simplified to
. /1 — n2
%E:@@%+@@+QE+NDE+M&TE%, (6.59)
0= (0 — 2~ G|E|*) D+ GIEP, (6.60)
with
0
30% — 1
ds = .62
3 12 ’ (6 6 )
2 InVu? + 14 § + arct
L= ——f(l - id)ﬂ mve 2 Qarc an(w) — 14 n —i2narctan(d), (6.63)
n (1+5)
A4f (1 +1u)(1 —id)
_4f 64
N 7 (1+u?)(1+62)’ (6:64)
2
G = <1 + — arctan(u)> , (6.65)
4 1
= (6.66)
1+ 62
(3=— : (6.67)
~
6.4. Calculating the Continuous Wave Solution
For the CW solution the fields are constant on both scales leading to
0= LE+ NDE + hy, Y1 = (6.68)
- "1t '
0= (-2-G|EP)D+G|EP (6.69)

The latter equation describes a relation D(|E|?) that can be inserted into the former
equation to find a CW solution Yy(E). For plotting purposes the electric field will be
rewritten with intensities I = | E|?:

o 1407 2
Y= g e N DR (6.70)
o af
D) = 52 (6.71)
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The resulting CW states are shown in Fig. 6.1 where the two CW branches NFq, and
NFg have been calculated analytically from Eqgs. (6.70) - (6.71). They are compared
to the CW branch PCgq, from the point €}y in parameter space which was a result of
Section 5.2 for the DAE system Eqgs. (6.1) - (6.4). The branch was shown before in Fig.
5.12 and has been calculated using numerical path continuation. This particular branch
is chosen here since the respective parameter set 2y was used as an example for bright
and dark TLS regimes in a good cavity limit.

One can see that NFq, diverges from PCgq, showing no bistable regime at all. However,
for slight parameter adjustments, namely a detuning value of 6 = 0.044, u = 0.52 and
v = 10, a bistable regime establishes for the PDE almost identical to the results from
numerical path continuation. The corresponding new set of parameters will be called
Q. From the two-parameter diagram in Fig. 5.10 b) one can see that the existence of a
bistable regime has a limited detuning range in the DAE system as well. This indicates
a small shift in parameters between PDE and DAE results.

15
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(1E])

——————

O 1 1 1 1 1
0.6 0.62 0.64 0.66 0.68 0.7 Yo 0.72

Figure 6.1: Comparing the CW solution gained from the Normal form (NF) with the
solution from numerical path continuation (PC) for the parameter set (g
shown in Fig. 5.12. The bistable region for the respective CW branch fea-
tures dark and bright TLS regimes in extended regions around a vertical
Maxwell line. The respective parameters for Qg are (0, h,n, p,7, f,u,b,7) =
(0.015,2,0.99,0, 1,0.2,0.65, 1000, 250). To obtain the bistable branch NFg
the parameters have been slightly adjusted to the new parameter set  with
the differences v = 0.52, § = 0.044 and v = 10.

76



6.5. Periodic Solutions

The next natural step is to investigate the PDE system derived in this section in more
detail looking for TLS and comparing it with the underlying DAFE system for the QGTT.
This is achieved by implementing the PDE system Egs. (6.59) and (6.60) and performing
direct numerical simulations. If the approximations and assumptions throughout the
derivation are reasonable for the QGTI system in a good cavity limit it should be possible
to establish stable TLS for a good choice of parameters and initial conditions that are
similar to those observed in the DAE system Eqgs. (6.1) - (6.4). Since Fig. 6.1 indicates
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Figure 6.2: a): Time evolution of a bright TLS for the QGTI PDE occurring for the
parameter set Q at injection Yy = 0.6437. The simulation shows 12000
roundtrips indicating that the appearing TLS is a stable solution. b): Initial
condition taken from the periodic branch for the respective DAE system at
) found in Section 5.2. c): The bright TLS at the end of the time simulation
is locked at second locking distance, indicated by the single convolution of

an oscillatory tail in the peak. The profile for D (orange) is shown as well.

a bistable regime for the PDE system in the parameter set € that is almost identical to
the bistable regime occurring in the DAE system for g, points from the periodic the
respective periodic branch found for €2y in Section 5.2 will be used as initial conditions.
The numerical simulation is done using a split-step based pseudo-spectral method for
the evolution of F in # direction. The dynamics of D are evaluated in ¢ direction using
an implicit Euler scheme for each roundtrip. Results are plotted in the quasi-space-time
representation where 6 is the time direction and ¢ the new spatial variable with periodic
boundary conditions.

Figure 6.2 a) shows the time evolution of a bright TLS that stabilizes within the bistable
CW regime visible for the branch NFg from Fig. 6.1. The respective initial condition
shown in b) is a bright TLS taken from periodic solutions found for y. In panel c) the
profile of the resulting TLS is shown which seems to be invariant over the whole time
simulation. However, the fronts lock at the second locking distance which can be seen
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from the single convolution of a tail in the peak. This is also visible in panel a) where the
lightblue line resembling the TLS shows a darker line in the middle. Indeed, it does not
seem to be possible to lock fronts in the closest locking distance for bright pulses in the
DAE system. This is different for dark TLSs as shown in Fig. 6.3. In a) one can observe
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Figure 6.3: a): Time evolution of a dark TLS for the QGTI PDE occurring for the
parameter set Q at injection Yy = 0.6491. The simulation shows 12000
roundtrips indicating that the appearing TLS is a stable solution. b): Initial
condition taken from the periodic branch for the respective DAE system at
Q. ¢): The dark TLS at the end of the time simulation shows a strong
asymmetric oscillating tail as it also was the case for the dark pulse obtained
from Qg for the DAE system which is shown in Fig. 5.12. The profile for D
(orange) is shown as well.

the time evolution of a seemingly stable dark TLS. The initial condition visible in b) is a
single dark TLS that evolves into a dark TLS with strong asymmetric oscillatory tail as
seen in ¢). The oscillatory tail can also be recognized in a) by the accompanying stripes
that fade away with increasing distance.

Finally, Fig. 6.4 shows the time evolution of an initial bright TLS for an increased
injection value. Apparently, appearing fronts show different drifting speeds due to the
injection value being higher than the Maxwell line and snaking region that is expected to
occur in the PDE system as well. In a) one can observe a resulting increase of the higher
plateau value regime (light blue) until the lower plateau value (dark blue) regime is fully
consumed. This results in a CW solution as shown in ¢). Comparing the profiles of
the stable TLS from the PDE with DAE results it is noticable that the initial condition
which is a TLS, where the fronts are locked in closest locking distance evolves into a
TLS where the fronts are further separated. Figure 6.5 shows that TLSs of this type are
stable the DAE system as well. However, they occur not on the lowest region of stable
TLSs, but at the one above indicating that the snaking structure for the PDE is missing
the lowest regime. Also, the dark TLSs from the PDE seems to have more oscillatory
tail than its counterpart from the DAE system. However, the tendency of dark TLSs
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Figure 6.4: a): Time evolution of a bright TLS for the QGTI PDE occurring for the
parameter set Q at injection Yy = 0.6524. Apparently, appearing fronts
show different drifting speeds due to the injection value being higher than
the Maxwell line and snaking region. This leads to an increase of the higher
plateau value (light blue) until the lower plateau value (dark blue) is fully
consumed. b) Initial bright TLS. c): Steady state solution at the end of the
time simulation. The profile for D (orange) is shown as well.
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to feature more oscillatory tail than bright TLSs in this parameter regimes is preserved
from the DAE to the PDE.

Finally, one should discuss the the sets of parameters Qg and Q. While the differences in
u and J can be explained by a small parameter shift between the PDE and DAE system
the value of v grows from v, = 1 to 75 = 10 by an order of magnitude. The parameter
v, called the scaled carrier lifetime, plays an important role as it defines a time scale for
the DAE system. As shown in Fig. 5.10 a) values below v ~ 1 strongly influence the
branch structure of the periodic branches. So it is possible that the PDE system does
not describe the DAE system for lower values of 7. This could be investigated in more
detail using numerical path continuation for the PDE system in future works.

All in all these results demonstrate that the PDE system derived within this section is
a promising candidate for a adequate description of the dynamics of TLS occurring in
the DAE system for the QGTI in a good cavity limit.
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Figure 6.5: The branch already shown in Fig. 5.12 branch featuring stable bright and
dark pulses. However, a stable bright TLS from the second lowest regime
of stable periodic solution has been chosen in ¢) showing a split peak as the
solutions observed for the PDE system. Parameters: (9, h,n, ¢, v, f,u,b,7) =
(0.015,2,0.99,0, 1,0.2,0.65, 1000, 250).
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7. Summary and Outlook

In this thesis, SWs and pulsating dynamics in time-delayed active micro-cavities have
been investigated using the example of a dispersive microcavity with Kerr nonlinearity
as well as with a quantum well. The system has been described using a DAE model
with a single delay describing the round-trip duration for the external cavity acting as
feedback loop.

The first part of this thesis consisted of a bifurcation analysis for recently found SW
regimes in the KGTI. Therefor a MATLAB implementation for the system was used allow-
ing for a numerical path-continuation additionally utilizing the DDE-BIFTOOL package.
Amongst the most important results is the distinction of two qualitatively different types
of SW emergence. Firstly, SWs can emerge in a supercritical Hopf bifurcation, leading
to a plainly shaped bridge of stable SWs that arise from a sinus-alike solution in the
vicinity of their onset. Secondly, SWs can emerge in a subcritical Hopf bifurcation where
two pairs of unstable fronts arise from the stable CW solution connecting it to the later
plateau values. The opposing fronts for each pair then gradually separate along a verti-
cal Maxwell line interacting through their oscillatory tails. This leads to a multitude of
preferred distances and hence stable configurations. The branch resembles these configu-
rations in a collapsed snaking structure around the Maxwell line. In both cases the fully
developed SWs consist of two plateaus with sharp transition layers and a 50% limit cycle.
For certain parameter sets chaotic regimes have been observed arising on the SW branches
in a PD route to chaos. These were investigated using direct numerical simulation that
allow to illustrate the higher period solutions. Also, another type of SWs consisting of
three plateaus of equal length could be observed and described.

Furthermore an analytical description of SWs has been provided to further investigate
and potentially support these observation. On this occasion an equation for the SW
branches as well as the bifurcation points where they arise from the CW branch has
been derived successfully.

The analytical description was mainly based on a so-called two-plateau approximation
that assumes simple SW solutions consisting only of two plateaus of equal length. While
this approximation proofs to be successful in the description of SW regimes featuring
solutions with a 50% limit cycle the analytically calculated branches fail to depict the
Maxwell line and snaking parts of the SW branches from numerical continuation. This
can be explained with the profiles along the Maxwell line which generally consist of
three plateaus of unequal length and hence do not fulfill the underlying approximation.
However the bifurcation points have been predicted in accordance with the numerical
continuation.

The observation of SWs equipped with strong oscillatory tails motivated an attempt
to write fronts and pulses onto stable SWs to investigate the stability of more com-
plex bound states. Throughout the corresponding section the role of the tail-induced
potential for the formation of bound states has been observed and discussed in detail.
Especially in the subcritical case the tail-induced locking of fronts showed to form bound
states on the plateaus that can be robust against noise, while in the supercritical case
initial conditions result in full coarsening at some point under the influence of noise.
Note that some of the results presented in this part have also been published recently
[Koc+22].

In the second major part of this thesis a bifurcation analysis has been done for the
QGTT system which is similar to the KGTI, however containing a quantum well acting
as nonlinearity. The first investigations aimed at finding bistable regimes with periodic
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pulsed solutions. An attempt to connect the two systems using adequate approximations
led to first results for periodic pulsed solutions in a bistable CW regime. In a second
attempt bright and dark pulses have been found in a weakly dissipative regime which is
also called the good cavity limit due to the high reflection coefficient 7 minimizing the
overall cavity losses. In a similar regime, only varying the phase to ¢ = m, SWs occur
in the QGTI. A bifurcation analysis revealed the same transition from a subcritical to a
supercritical case. However, the branches are mirrored in a way that the subcritical Hopf
bifurcation and hence the snaking region appear at the Hopf bifurcation that is located
higher in injection. Finally, the mentioned good cavity limit has been investigated for
the KGTI in recent publications, particularly it represents a good expansion point for a
weakly nonlinear analysis leading to a normal form. Accordingly, in the final section a
normal form has been derived for the QGTI in the same parameter regime which aims at
extending the understanding of the system and its relation to the KGTI. The resulting
PDE system was able to reproduce bistable continuous wave regimes as well as bright
and dark pulses in only slightly shifted parameter regimes relative to the DAE results.
Features such as the stronger oscillatory tail in dark compared to bright pulses have
been successfully reproduced.

All in all this thesis was able to discuss and outline some of the rich behavior that can
be found in active micro-cavities. Different types of SWs and pulsed solutions have been
found and described systematically providing bifurcation analyses as well as analytical
investigations. Nevertheless this topic still has a lot to offer for future investigations of
which a few examples shall now be introduced.

While SWs have been found in multistable regimes, especially around the Maxwell line
in the subcritical regime, they mostly arise even from constant initial conditions when
the CW state becomes unstable. This makes them easily accessible for direct numerical
simulations, but also for potential experimental realizations which could be useful for
future research. Furthermore, the bifurcation analyses for the KGTI can be extended,
e.g. for other values of the phase ¢ where this thesis already demonstrated that SWs can
exist. This could be combined with an extended research on multi-plateau SWs such as
the three-plateau SW3 solutions introduced earlier. One could investigate their general
behavior and stability over larger parameter regimes as well as their origin, i.e. where
they probably connect to the CW branch. In that context it would also be interesting
to see if the analytical two-plateau description can be extended to higher plateau SWs.
Since the plateaus in the case of SW3 solutions occur in a fixed order a three-plateau
approximation should lead to six coupled algebraic equations connecting each plateau
value to its precursor plateau. Furthermore it might be interesting to do a more detailed
analysis of chaotic regimes occurring in the KGTI. While this thesis focused on periodic
solution and hence mostly avoided chaotic regimes, there is still a lot to explore in the
structure and emergence of chaotic attractors and routes towards them.

For the newly introduced QGTT system initial analyses have been provided giving a good
perspective on the rich behavior that this system has to offer. While the already found
regimes of dark and bright pulses as well as SWs could be interesting for experimental
realizations of the system, the high dimensional parameter space might still hide a vari-
ety of regimes that are interesting for further theoretical investigations. Especially the
provided proposition for a normal form of the system in a good cavity limit is a promising
candidate to help gaining a better understanding of the QGTI and the influence which
the many parameters have on the resulting dynamics. A possible next step here would
be a bifurcation analysis of the proposed system to investigate to what extend it is able
to describe and explain the dynamics in the underlying DAE system.
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B. Appendix

B.1. Runge-Kutta 4 for Time-delayed Systems

A very popular method is the fourth-order Runge-Kutta (RK4) method | ], which
follows the scheme

h
Tp+l = Tp + E(kl +2]{32—|—2k3+k4). (Bl)

The numbers k; can be calculated for the system as

k1 = f(@n, Tnmys s Tn—my, tn), (B.2)
h h

kQ = f(l'n + 5]?1, $nim1+%, ...,:anmNJr%, tn, + 5), (B3)
h

kg = f(:L’n + 5]62, xn—mﬁ—%’ ""xn—mN-i-%’tn + 5), (B4)

—~
0
(S}

N—

ky = f(.%'n + hks, Tpemi+1y s Tn—my+1,tn + h)

As one can see the four approximations k; for the derivative within the interval enter in
Eq. (B.1) with different weights. Looking at k; one can recognize the Euler’s method,
which is based at the start of the time step and weighted with %. k4 has the same
weight and is located at the end of the interval. ki and k4 together are a second order
method, which improves the first order method, by taking the average derivative from
both corner points of the time step. ko and k3 are based in the middle of the interval
and are each weighted % In the DDE case, these two terms pose a problem, they also
depend on half steps from the past, as well as their derivative.

A Hermite interpolation | ] can be implemented to solve this problem as it has
been used in Runge-Kutta based methods for DDEs before, such as ARCHI | ]
It expresses the value Tt} 28 function of the two neighbored values x,_,,, and
Tn—m,;+1, as well as their derivatives. Therefor the coefficients of a third-order polynomial

p(t) = ag + aqt + ast? + ast?, (B.6)
p(t) = ay + 2a9t + 3ast?, (B.7)
have to be calculated. The polynomial has to agree with the two values x,,_,,, and

Tn—m;+1 as well as their derivatives at the respective relative time values. The origin
t=0 can be chosen freely and is best placed at the half step, yielding

xT

Q. (B.8)

1 =
n*mi+§

Since the known points x,,—,; and z,,—m,,+1 are now located at ¢ = i% on the polynomial,

h? h3
Tn—m; = CQ — Oélgt + OQZ — Oégg, (Bg)
h2
i’n_mi = 1 — a2h + 3(1317 (BlO)
h h? h3
xn,mi+1 = a0+a1§t+a21+a3§, (Bl].)
h2
jf'n—mi—&-l = a1 +agh + 30431. (B.IQ)
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is found. The sum of the Eqgs. B.9 and B.11 leads to
h2
200 + 20421 = Tp—m;+1 + Tn-m,, (B.13)

which eliminates «; and a3 Finding the difference between the remaining two equations
for the derivatives leads to

4025 = Enmi1 — Enom; (B.14)

which eliminates aa, if inserted into Eq. (B.13). The result is

Tn—m; T Tn—m;+1 h . .
Ty = =g+ g = Enmi). (B.15)

B.2. Normal Form Calculations

In this appendix section the steps from the calculation of the normal form are contained
in more detail. Inserting only f and the nonlinearity, the equation turns to

€T [E{t) +nE({t —1)] = — [1 +i0|E(t) + [h — 1 —i6]nE(t — 1) + hYo\/1 — 12
+f(iRo — Ip)(E(t) + nE(t - 1))
+Ef(iRy — ) (D()E(t) +nD(t — 1)E(t —1)).  (B.16)
This can be solved for E(t):
[h—1—€2fIy] —i[0 — €2 f Ro)

PO =i i - e Y
E(t) +nE(t — 1) N
a 6T[l +e2f1o) +i[d — €2 fRy) +h¥o (14 €2fIo] +i[6 — €2 fRo)
+é J(if — 1) (D®)E{#) +nD(t —1)E(t—1)).  (B.17)

(14 €2fIo] +i[6 — €2 fRy)

_ [p—=1—€2fIo]—i[6—€% fRo]

In the next step the term W = [1+62ffoﬁi-i[5—62fRo]o
the first parameter h = 2 can be inserted. So the expansion turns into

1—i6  52(fIo —ifRo)

is expanded for small e. Alongside

= 4 B.1
W=itin “ azrap TOW (B-18)

-,

= 1 — 2+ 0(). (B.19)

The same way V = [1+62f10]ji[5_62fR0] can be written as

1 o fIo —if Ry 4

_ _ B.2

V=175 "¢ gz TO€) (B-20)
1 2 4

- ey . B.21
1130 ‘Wi + O(e%) ( )

These two expansions where able to remove any orders of € from the denominators which
is important to treat the orders of € separately. Including the found expansions leads to

1—46 E+nE(t—1
1+ ZénE(t — )= W B(E = 1) =T +177+(it(5 L EWAT (B() +nE(t - 1)
V1= iR, — I
+2Y, 1+¢; +63f(11-1m<5 ) (D(t)E(t) + nD(t — 1)E(t — 1)) . (B.22)
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The expansion of W leads to a new term, which is of O(€?) describing the small shift in &
and the constant due to the active medium. The expansion of V introduces a new term
of O(e?). Since all other terms containing V' are at least O(€?), only the ﬁlu; survives.
Especially the injection term, though not yet obvious, will be of O(€?) as well.

The term L—rig = ¢ is a phase since |%I§g| = 1. This leads to # = —2arctan(J), using
the arg function again. Assuming small values of J the imaginary part becomes small as
well. This enables an expansion for small § into § = €26, + €303. In total the expansion

18

ne? = (1 + no)(1 + €%ify + €3i63) (B.23)
=1+ (2 +i02) + 313 + O(e), (B.24)

resulting in two new terms. Now one can insert n =1+ 62772 and Yy = ey1 + €22 which
leads to

E+ (1+€em)E(lt-1)

E=E(t—1)—¢T — 2(—ng +2W) —ife)E(t — 1)

1+
+ e + 672)2\1/:7 +EWIT (E(t) + E(t - 1))
éw (D()E(t) + D(t — VE(t — 1)) (B.25)

A Taylor simplifies the square root

I = im TP <
= \/—2€2n + €*n3 (B.27)
= e\/—2m2 + €23 (B.28)

(

= e/ =21 + O(3). B.29)

B.26)

Inserting it in the injection term reveals its true order of €. At this point the equation
has turned into

+ (14 ) E(t — 1)

E=B(t-1)—TZ 2+ 2W — i) E(t — 1)

14146
o+ ) Y SWAT (B(0) + Bt - 1))
LU= D) by By 4 Dl — 1) B — 1)) (B.30)

1+

This result shall now be reduced by collecting and redefining constants. At this point
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one has to ensure that no orders of € are included in the new constants

Ly = —np + 2Wy —if (B.31)
Iy = vlﬁ, (B.32)
Iy = VQW, (B.33)
N3 = W, (B.34)
Vo = leé (B.35)
Vi = : _1i5. (B.36)

The reduced equation is

E=E({t—1)— e\, T(E+E({t—1))— LyE(t — 1) + €Iy + €Ty
+ (Vo + W)TE(t — 1)+ EWLTE() + N3 (D()E(t) + D(t — 1)E(t — 1)) .

(B.37)
To improve the previous result a small trick can be done. Since
ol + 10
10
— =1 B.38
176 (B.38)
a 1 can be introduced without limiting generality an expanded into
14140
1= + 2,6(1 + iy + 3ifs), (B.39)
—1
V2 s
= (14 €%ify + €”i63). (B.40)
0

This leads to

E=E(t—1)—eT(VWE+V{E(t—1)) — €LyE(t — 1) + €Ty
4+ Ty + E(=Vyne + Wi — iV 0)TE(t — 1) + EWNTE(t)
+ N3 (D()E(t) + D(t — 1)E(t — 1)) + O(e*) (B.41)
=E(t—1)—eTVE+VFE(lt—1)) — LaE(t — 1) + €T

+ 8Ty + (= Vine + ‘V/—Owl —iV§0)TE(t — 1) + SWITE(t)
0
+ N3 (D)E(t) + D(t — 1)E(t — 1)) + O(e*). (B.42)

Another trick was used by introducing Vv%* in a third order term since the correction
terms fall into O(e’). The usefulness of this step will become clear later. Now

V*
Ly = (=V5m + 32 Wi = iV 0a), (B.43)
0

is introduced, yielding

E=E(t—1)—eT(VWE+VFE(t—1)) — €LyE(t — 1) + €Ty

+ Ty + EL3TE( — 1) + WL TE(t) + N3 (D) E() + D(t — 1)E(t — 1)).
(B.44)
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Time Operator, Shift Operator and Field Expansion:
Now the new time scales and the shift operator will be included explicitly:
E(tg) =SE(to — 1) — €T (VoE(to) + V§SE(to — 1)) — €LaSE(tg — 1) + T + ¢’T'3
+ €3L3TE<t0 — 1) + 63W1TE(t0) + €3N3 (D(to)E(to) + D(to — 1>E(t0 - 1))
+ O(eh). (B.45)
For the third order terms, only Sy = 1 enters. Using this as well as the time derivative
operator T leads to
E(to) =SE(to — 1) — €(To + €T1 + €T2(VoE(to) + V' SE(to — 1))
— EQLQSE(tO — 1) + 62F2 -+ 63F3 + 63L3TE(t0 — 1)
+ EWLToE(to) + € N3 (D(to)E(tg) + D(tg — 1)E(tg — 1))  +O(e*), (B.46)

and with the full shift operator

E(to) — E(to — 1) =e ([S1 — Vg To] E(to — 1) — VW E(to))
€2 ([Sy — Vi TyS1 — VgTy — Lo] E(tg — 1) — VoT1 E(to) + T'p)
+ 3([S3 — VyToSy — ViT1S1 — ViTy — LaSt + L3do) E(to — 1) + T'z
+ [W100 — VoTa] E(to) + N3(D(to) E(to) + D(to — 1)E(to — 1)))
+ O(eh). (B.47)

Finally the field expansion E(t) = Eo(t) + €F1(t) + €2E(t) + €3 E3(t) yields

(Eo(to) — Eo(to — 1))
+e(E1(to) — E1(to — 1))
+e*(Ba(to) — Ba(to — 1))
+e*(Bs(to) — Es(to — 1)) =€ ([S1 — V5 To] Eo(to — 1) — VoToEo(to))
2([S1 — V§To] Er(to — 1) — VoToEx (o))
+ [S2 = Vo ToS1 — Vo Th — Lo Eo(to — 1) — VT Eo(to) + T'2)
3([S1 — V5 Ty] Eo(to — 1) — VoToFa(to))
+[So = ViToS1 — ViTh — Lo) Er(to — 1) — VoT1E1(tg) + T's
+ [S3 — Vi ToSe — Vi T1S1 — Vg Te — LSt + L3dg] Ep(to — 1)
+ (W18 — VoTs) Eo(to) + N3(D(to)Eolto) + D(to — 1)Eo(to — 1))
+ O(eh). (B.48)

This results in the full equation, which has to be solved separated by orders of e.

B.3. Normal Form Orders in Detail
O(e%):

Eo(to) — Eo(to — 1) = 0. (B.49)

This equation describes a simple periodic solution.
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O(e):
Using the results from O(EO), the next order becomes

Eq(to) — E1(to — 1) = [S1 — Vi'To] Eo(to — 1) — VoToEo(to) (B.50)
= (51— Vo'To — VoTo) Eo(to) (B.51)

1—i0+1+1i6

= <—w1 — 522_'_1) 0o Eo(to). (B.53)

To get periodic solutions in every order the parameters can be chosen in a way that
the right-hand side vanishes. This also clarifies the meaning of the expansion in w as
compensation for potential drift. Without the first order term w9y Ey(to) a nonvanishing
drift of Ejy on the time scale £ is observed. The drift is compensated through the result
for the small frequency correction ew; by choosing;:

-2
= . B.54
YT Tt 62 (B:54)
Note as well
Vo+ V5 = —w (B.55)
for later simplifications.
O(€2):
Collecting the second order leads to
Es(to) — Ea(to — 1) =[S1 — Vi'To] E1(to — 1) — VoTo E1(to))
+ [SQ — VO*TQSl — V()*Tl — LQ] Eo(to — 1)
— V()TlEo(t()) +I's. (B.56)
Then the result from O(e”) can be included, to find
[S1 — Vo'To — VoTo|Er(to — 1) = 0, (B.57)
which can be solved with the result for w; from O(e!). The remaining terms are
0= [52 — VO*T()Sl — V()*Tl — Wi — LQ}Eo(t()) + Iy ( .58)
2
Wi 52 w1 w1 /=21,
— |12 0o — La| Ep(t
[230 we0y — 32+1_5a 1_1,53 1—{—50 2 0(0)+'Yl 14346
(B.59)
2w1 w? w1
= |—wy — —— | oEo(t Eo(to) + (—02 — L) Ey(t [s.
[w2 1+52}30 0(0)+[2+1_5]30 0(to) + (=02 — L2) Eo(to) + I'2
(B.60)
The first bracket yields
wy = w7, (B.61)
while the diffusion term reduces to
cﬁ wi “ﬁ 2w(1 + i) (B.62)
2 " 1-is 2 2(1+062) '
2 2
Wi Wi :
== - — B.
5 5 (1+16) (B.63)
2
= —7;5“—21. (B.64)
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The resulting PDE
L wi o
82E0(t0) = —15780 - L2 EO(tO) + FQ (B65)

can be used as solvability condition in later orders. The operator Lo contains the first
term from the nonlinearity. But the third-order nonlinearity does not enter until O(e?).
With all the results from above, one can write yet again:

Es(to) = Ea(to — 1). (B.66)

O(e):
One finds

Eg(t()) — Eg(tg — 1) = [Sl — VO*TQ] Eg(t() — 1) — VQT()Eg(to))
+ [S2 = Vi ToS1 — Vo' Th — Lo En(to — 1) — WTh Ei(to) + T's
+ [53 — ‘/O*TOSQ — VO*T151 — VO*TQ — LS + L380] Eo(to — 1)
+ [W10o — VoT2] Eo(to) + N3(D(to)Eo(to) + D(to — 1)E0(t0(— 1)))-
B.67

Collecting the results from the first orders, a few simplifications can be done already
0= [S1— Vi'To — VoTo) E2(to), (B.68)

is an equation that has already appeared before. It is solved by w; = Next

=2
1+62°

0 =[S2 — Vy'TuS1 — (Vo + Vi) Th — Lo)Eq(to) + I's + 2N3D(to) Ep(to)
+ [S3 — Vg ToSy — ViT1S1 — (Vi + Vo) Ty — LaSy + L3do + W10o)Eo(to)  (B.69)
=[Sy — VgToS1 + w1 Ty — Lo Ey (to) + I's + 2N3D(to) Eo(to)
+ [S3 — Vi ToSe — ViT1S1 + wiTe — LaS1 + L3dy + W10 Eo(to) (B.70)

is found. This equation can be brought into the more organized form

O3By + 0L B :[2N3D(t0) + S3 — VO*T()SQ — %*T151 +w1Ty — LoS1 + L3dy + Wlao]Eo(to)

(B.71)
:[ND + S35 — VO*T()SQ — V0*T151 + w11y — LoS1 + L3Oy + Wlao}Eo(t(])
(B.72)
= [—ws + wiwa + Lowy + Lg + W] 0o Eo (o)
+ [wiws — Viw? + Viwa) 92 Eo(to) (B.73)
g Lw?
+ [61 - % 21] 85 Eo(to)
+ [w180 + Vo*a() + wl] 82E0(t0)
2
+NDEy + [—Mu;lag - L2} Eq(to) + ', (B.74)
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where AN/ = 2N3 has been used. For d,F the solvability condition from the last order
can be inserted, yielding
03Eg + O 1 = [—wg + wiwg + Lowy + L3 + W1] aoEQ(to)
+ [wiws + V5w + Vg'wa]85 Eo(to)

W
+[ 6 -V }C%Eo(to)

+ [wlal + Vb*ao + wl] <[—15 80 L2:| Eo(to) + Fg)

2
+ /\/DEO + [—15(‘0216(2) — L2:| El(to) +1I'3 (B.75>
= [—wg + wiwy + Lowy + Lg + W1 — ‘/O*LQ — wng] 80E0(t0)

+ [wiws + Viw? 4+ Vyws — ]50E0(750)
3 2 2 3

w7 - - - 1}83Eo<to>

+ [ND — wlLQ]EU + [—15(’;183 — L2:| Eq (to) + I's +wils. (B76)

For ws this orders drift correction term reduces to ws = w% since the three other terms,
all coming from the nonlinearity, cancel out:

w3 = w% + Lowi + Ly +Wp — VO*LQ —wiLe (B.77)
— W+ Ly + Wy — Vi Ly (B.78)
V*
— Vo + 70W1 — iV Oy + Wi + Vina — 2VEW + iV 6y (B.79)
0
3 VE)* *
1+i6 1—1i6 2
3
- _ B.81
w1+W1<1—z'5+1—¢5 1—2'5) (B.81)
= wj. (B.82)

This simplification is possible due to the previously mentioned trick with the factor “//—‘g
Otherwise a complex frequency ws would be found.
The diffusion simplifies to

3 0
[w1w2 + V()*w% + VO*CUQ - Zé%]@%E@(T@) = —i%wi”@%Eo(to), (B.83)
while the third order dispersion can be written as
W3 *w2 w? w? ! w? WP
Tl — Vg (Wo—— ioL ]8§E0(t0) — { 61 vz 1 15?1(1/0 —|—w1)} 9 Eo(to)
(B.84)
3 2 2 ;
[ wy LT wl 1 0| 43
= |:6—VO 5 + 60— (52:| (90E0(t0)
(B.85)
52
= L2 ek Ea(ro). (B.56)
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The final equation for the third order containing all simplifications, has the form

30 1 — 362
03Ey + OBy = — Z?W%agEo(to) + 12

2
+ [ND — w1 Lo| Ey + |:—i50J218§ — L2:| Eq(to) + T's +wils. (B.87)

wi O Eo(to)
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