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1 Introduction

1 Introduction

The concept of a dissipative soliton has several areas of application within physics like in nonlinear
optics [I], [2] or in plasma physics [3] but also in other fields for example biology and medicine [4].
The term soliton describes localized solutions of differential equations that maintain their shape
and velocity after colliding with each other by balancing nonlinearity with dispersion effects [5].
In addition to that, dissipative solitons also balance the energy gain and loss so that they build a
stationary fixed point [6].

Dissipative solitons also occur in the context of passive mode-locked lasers, which are used for
the generation of self-shaped ultrashort laser pulses [7]. This is the main topic of this work.
The master equation for its description is the complex cubic-quintic Ginzburg-Landau equation.
Using this equation and a direct split-step Fourier approach it was possible to determine several
different stable localized soliton solutions. The plain pulse is the easiest solution but there exist
more complicated ones like the composite pulse which consists of a plain pulse and two fronts and
an expanded structure that fills the whole domain length with a constant height [8]. There are
moving, creeping, and snaking solitons that move through the domain (see [8],[7] and [9]), pulsating
solitons have got a pulsating width (see [7]) and exploding solitons where their pulse structure
gets destroyed and rebuild with time (see [7] and [10]). They have a lot of remarkable features
like asymmetric explosions [11] or control by higher-order terms [12], [I3] and also experimental
evidence [14]. Another interesting topic is the soliton resonance phenomenon. Here, at a given
parameter value the soliton energy rises exponentially while building a resonance, see for example
[15], [16] or [17]. This is important because it enables the building of high-energy solitons [I§].
One goal for this work is to summarize and further illuminate the connection between those
various kinds of localized soliton solutions. This is done via bifurcation diagram analysis. In
a bifurcation diagram, these different solution types are depicted as branches from bifurcation
points. Those branches can be connected, as it is shown later on, for example for the pulsating
soliton solution as it originates from an Andronov-Hopf bifurcation on the plain pulse branch.
The analysis of these connections between different branches via bifurcation diagrams is a useful
tool for the understanding of localized solutions of the complex cubic-quintic Ginzburg-Landau
equation. The second main topic within this work is the soliton resonance phenomenon. Here
again, a bifurcation diagram analysis is used to discuss and to get a new perspective on previously
published results within the topic of soliton resonance.

The bifurcation diagram is made with the help of numerical continuation. This method can be
used to find and follow solution branches and detect bifurcations. It is applied using pde2path,
which is a Matlab package for bifurcation and continuation analysis of elliptic partial differential
equations, see [19]. Mathematically speaking, it uses the finite element method to reiterate upon a
given initial solution. This initial solution is approximated using direct numerical methods using
a pseudo-spectral approach and the Runge-Kutta method. The continuation method can also
be used to understand the impact of parameter changes different from the primary continuation
parameter and attempt determine the region of existence of different solution types, using a

technique called fold continuation. Here a saddle-node bifurcation point can be followed along in



1 Introduction

phase space.

Using these methods it was possible to find a bifurcation diagram at which branches for the plain,
composite, moving, creeping, and pulsating soliton as well as the continuous wave solution occur
and are connected in some way. Also, the soliton resonance phenomenon was replicated and
discussed using bifurcation diagrams.

First, the theory behind this work necessary for understanding will be explained. This includes
the basic concepts of nonlinear physics. There the description of physics using ordinary or partial
differential equations as well as the appearance of stationary solutions and the impact of their
stability are highlighted. An explanation of what bifurcations are and which types can occur is
given afterwards. The next section addresses dissipative solitons and their history of origin, the
Ginzburg-Landau model, and its application onto passively mode-locked lasers. In addition, local-
ized solutions of the complex cubic-quintic Ginzburg-Landau equation like pulsating or composite
solitons and the soliton resonance phenomenon are depicted. Next, the methods required for the
numerical investigation of the overall system, such as the numerical continuation, are explained.
Here, the mathematical concepts of the direct and the continuation approach are discussed and
it is shown how they are implemented for the model under study. Then the results of this work
will be presented and explained starting with the dynamics of localized solutions and ending with
a discussion of soliton resonance. Finally, the results are summarized and an outlook on further

aspects is given.



2 Concepts of nonlinear physics

2 Concepts of nonlinear physics

This section describes the basic concepts of nonlinear physics to give a general introduction to the

methods used.

2.1 Ordinary and partial differential equations

A differential equation is an equation that describes a field, mathematically a function of variables,
in which derivative of the field with respect to certain variables occur. An ordinary differential
equation has the characteristic that derivatives occur just with respect to one variable. A known

example is the one-dimensional Newtons equation of motion
F=m-Z& (1)

where F' is the applied force, m the mass of the object under consideration, and & the resulting
acceleration [20]. If the force F' is not dependent on time, the ordinary differential equation is
called additionally autonomous. An example for this is the gravitational force I, = m - g with

acceleration due to gravity of g~ 9.815% [20]. By solving the resulting differential equation
m-g=m-ft, (2)

the movement of an object can be determined when knowing the initial conditions. In general, a

n-dimensional autonomous ordinary differential equation is given by

dz -

2 _ Bz, 3

7= 1@ (3)
where & = (z1,%a,...,2,) is a vector field and F = (F|, Fy, ..., F,) a n-dimensional vector [21].

The equation [3| in general describes an ordinary differential equation because every differential
equation of order n can be reduced to an n-dimensional system of ordinary differential equations.
w1 is called the control parameter which influences the system but is not dependant on time t.

Fixed points in the system are of particular interest. A fixed point Zf is defined by

F (&g, p) = 0. (4)

A fixed point has due to equation [3| no time dynamics and represents a singular point in phase
space, spanned by the components x; with i€ {1,2,...,n} [21].

The difference between an ordinary and a partial differential equation is that in the latter partial
derivates occur. Therefore the field depends on more than one variable, for example, time and

space. An example of a partial differential equation is the one-dimensional Heat equation

oT(x,t) a62T(x,t)
o 0x?

()



2.2 Stationary solutions and their stability

[22] where T is the temperature and a the thermal diffusivity coefficient. This is a partial differ-
ential equation because partial derivatives with respect to space x and time t occur. With the
equation, the propagation of heat can be viewed from a certain initial state.

For an ordinary differential equation, fixed points were of particular interest. An analogous to
these is formed by the stationary solutions in partial differential equations. Here the partial time
derivative vanishes.

In this work the complex cubic-quintic Ginzburg-Landau equation

OA DA 9 4 . . 2 L 0%A 4
1§+5W+|A| A+ plAl"A=10A+ie|A| A—HBW +in|Al" A.
will be discussed. This partial differential equation is the master equation to describe a system of

passively mode-locked lasers.

2.2 Stationary solutions and their stability

If a stationary solution of a partial differential equation is known, the stability of this solution is
a physically interesting question. What happens if a small perturbation is added to the system?
Is the solution stable or unstable under that perturbation?

A simple example that illustrates this topic is the damped pendulum. This pendulum has two

fixed points shown in the following figure

unstable

\

\

stable

O

Figure 1: Equilibrium positions of pendulum. On the left-hand side is the stable solution x; =
(0,0) and on the right-hand side the unstable one z3 = (7,0). The coordinates used
represent the angle ¢ and the angular velocity w, specified as a tuple (p,w). [23]

The two equilibrium positions 21 and 2 shown in the figure[I] are in mechanical equilibrium since
the mass of the pendulum does not experience any acceleration. Mathematically, the damped

pendulum is given by the system of differential equations
: g . B
W+ yw + jsm(ap) =0

p=w



2.2 Stationary solutions and their stability

[21]. To derive a fixed point, equation [4f must be applied:
g . !
F(xs) =0 = ~7 sin(p) = 0. (7)

Using the definition of the sinus, both fixed points z; = (0,0) and x2 = (7,0) follow directly.
Both fixed points can be explained by the fact that the gravitational force applied to the mass
of the pendulum acts downwards in figure [1| and since the length of the rod is constant, no
movement of the pendulum is triggered. This example shows the importance of the stability
of the equilibrium positions because the unstable solution x9 would change over to the stable
position x1 via oscillations if a small disturbance is applied. The stability of a solution is therefore
important for the physical application.

To calculate the stability of a solution mathematically, different concepts can be applied but the
mainly used concept is the concept of linear stability. There a small perturbation 0Z(t) is applied

to the fixed point Z¢
T = T+ 0Z. (8)

This ansatz is put into the ordinary differential equation (see equation |3) that should be analyzed

and then linearized for small perturbations

dig oz . dF(F,p) L2

— + — = F(Z,p) + ————= - 62+ O(|6z"), 9

B )+ S 5 0(gf) ©
where % = F'(Z, 1) = 0 is true because Zr is a fixed point. If one neglects the nonlinear terms in

dx it results in

Aoz dF (@, p) 5

—=——" ). 10
dt dz (10)
Hereby % is the Jacobian:
om0k OR
R g}crl Oz OTn
dF(Enp) | ae ' (1)
dz : Lo
OFn . ... OF
O0x1 Ozn 7 (2=74)
At this point the following ansatz
0E(t) = - e (12)

is used. Inserting this into equation [10]it results in an eigenvalue equation

dF('i'ﬁ /'l/) . ﬁ . €>\t

5 =X\-d-e (13)



2.3 Bifurcations

with the help of which the eigenvalues \; and the associated eigenfunctions ; can be determined
for the to be examined fixed point. At this point, one can see that in the one-dimensional case
only the sign of A decides the stability of the fixed point under perturbation (see equation .
Due to equation [§], follows

x=xp+u-e (14)
If A <0, than the perturbation dx subsides over time up to x = x so that the fixed point is stable
under small disturbances. For A > 0 the perturbation §z increases over time and the fixed point is
unstable regarding perturbations. In the case, A = 0 the system is marginally stable, which means
that the nonlinear terms neglected in equation [J] determine the stability of the system. If X has
an imaginary part, it generates an oscillation and is therefore irrelevant for the stability of the
solution.
In the more dimensional case, eigenvalues A1, Ag,..., A\, exists that influence the stability. The

general solution is a linear combination of those eigenmodes

n
07 = > ¢; -1 - e, (15)
i=1
which means that the fixed point is stable if all eigenfunctions ; are stable.
Using this linear stability analysis one can calculate the stability of the solution of the damped
pendulum example. In the one-dimensional case of the linear stability analysis, it follows
)< dF(zf) G1 @ g

1% 7008(9) (16)

If now the fixed points 1 and xo are put into the equation, it yields for x1 that A = —% < 0 there

it is a stable fixed point and for x5 follows A = +% > (0 and therefore it is unstable, as depicted in
figure

2.3 Bifurcations

With the help of the theory described above, it is possible to calculate fixed points (stationary
solutions) of an ordinary (partial) differential equation including their stability. Now, it is possible
that if a parameter is changed in such a way that it results in a change of stability of the solution
or it causes a new solution to arise. Such a change of the solution is called bifurcation and the
parameter value at which it occurs is called bifurcation point (see [21]).

Bifurcations are typically shown in a bifurcation diagram. Here the varied parameter is shown
compared to a solution norm. For a partial differential equation, it is common to use a L;,-norm.
Which norm is used depends on how the results can be presented clearly. In some systems, it
could be useful to take the total energy of the system or the propagation speed. In a bifurcation
diagram, stable solutions are marked with a solid line, whereas unstable solutions are shown with

dashed lines. There are different types of bifurcations to characterize the appearing bifurcation.

10



2.3 Bifurcations

The common local bifurcation types are called Pitchfork-, Saddle-Node, Andronov-Hopf, and
transcritical bifurcation.
The transcritical bifurcation is characterized by the fact that it exchanges the stability of two

known solutions. This bifurcation is shown in figure

X stable

Stable m— - - - - - unstable

unstable
Figure 2: Basic form of a transcritical bifurcation. [21]

Every bifurcation type has a normal form. A normal form is a simplified mathematical equation
that describes the behaviour of the equation. It is easy to understand the physical behaviour
looking at that equation and equations in this form show the same behaviour. The normal form
of a transcritical bifurcation is

dx 9

— =rx—-x°. 17

v (17)
Next up is the characteristic of a saddle-node bifurcation. There is a known solution that changes

its stability, which is shown in the following figure [3]

unstable - _ _

stable

Figure 3: Basic form of the saddle-node bifurcation. [21]

11
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The bifurcation point for the saddle-node bifurcations is also called fold point because of the fold-
like shape of this type of bifurcation. This notation will be used in this work. Its normal form is

given by

— =r+2. (18)

At a pitchfork bifurcation point, two new solutions with the same stability arise and the old
solution changes its stability. Due to the symmetrical shape of the new solutions, this bifurcation
looks like a pitchfork, hence the name. Here a distinction between subcritical and supercritical
pitchfork bifurcation is common. They differ in an exchange of signs in the considered equation.

In the following figure [ the two different types of pitchfork bifurcation are depicted.

unstable

stable

unstable

unstable

stable

stable

unstable

stable

Figure 4: Both types of a pitchfork bifurcation. On the left-hand side is the subcritical bifurcation
and on the right-hand side the supercritical one. [21]

The normal form of a pitchfork bifurcation is given by

— =rz+a’ (19)

where the + sign corresponds for plus to the subcritical case and for minus to the supercritical one.
The distinction between subcritical and supercritical is not unique to the pitchfork bifurcation. It
also occurs for the earlier discussed transcritical and saddle-node bifurcation. The key difference is
that in that case both are not equivalent when using symmetry operation but they are topologically
equivalent. The last part is not true for the pitchfork bifurcation, hence the distinction in this
case.

For the Andronov-Hopf bifurcation or short hopf bifurcation, a pair of complex conjugated eigen-

values crosses the imaginary axis as shown in figure [f

12



2.3 Bifurcations

Im(A;)
Ai

.
¢ Re(A;)

2 =
.

]

-\

Figure 5: Sketch of the complex conjugated eigenvalues changing sign in the case of a hopf bifur-
cation. [24]

In contrast to the other bifurcations where real eigenvalues change sign here the imaginary part
does it which ensures a temporally periodic behaviour of the solutions. Therefore there are stable

and unstable fixed points and limit cycle solutions.

13



3 Localized solutions and soliton resonance in cubic-quintic Ginzburg-Landau equation

3 Localized solutions and soliton resonance in cubic-quintic

Ginzburg-Landau equation

In this section, the theoretical basics are presented to get a better overview of the topic of mode-
locked laser and to understand the connection to the complex cubic-quintic Ginzburg-Landau
equation and soliton solutions. Aside from that existing numerical results of localized solutions
like the composite pulse or pulsating solitons and the phenomenon of dissipative soliton resonance

will be summarized.

3.1 Dissipative Solitons

,Soliton“ is a term, which is used to describe localized solutions of differential equations. Their
characteristic is to maintain their shape and velocity after colliding with each other [5]. Originally
the term was invented to describe nonlinear solitary wave solutions of integrable equations like
the nonlinear Schrodinger equation [25]. Then it was found, that solitary waves also exist in
non-integrable systems, so the term ,dissipative soliton arose. It started with nonlinear optical
systems with nonlinear gain or loss mechanisms like in [26] and [27]. That gave an interesting
new aspect into the stability of optical solitons. For conservative solitons, the nonlinearity of the
material works against the diffraction in spatial systems or against the dispersion in temporal
systems [25]. In addition to that, for dissipative solitons, another counterplay of energy loss and
gain could be added. It needs some energy input to remain intact while giving a certain energy

output. This dynamic is shown in the following picture in figure [6]

Hamiltonian system Dissipative system

Family of
Nonlinearity  soliton solutions Nonlinearity

J Flixed \
soliton
Sl
Diffraction/ Loss ‘ \D'ffraction/

i : . ?
dispersion dispersion

Figure 6: Balancing effects needed for solitons solutions in a conservative and dissipative systems.

5]

On the left side of figure [6] the conventional solitons can exist because of a balance between the
nonlinear effects of the system or the underlying material and the diffraction or dissipation. In
such a system it leads to an infinite number of solutions, a family of solutions, for one set of
parameters [5]. In a dissipative system, as shown on the right side of figure @ only one (localized)
fixed point occurs. This is due to the additional balance between energy gain and loss. Here

the shape of the soliton is not given by initial conditions, but by the system parameters. When

14



3.2 Complex cubic-quintic Ginzburg-Landau equation

changing the system parameters it is also possible to witness bifurcations. For example, the
existence of pulsating solitons, which form a limit cycle [7]. In this context, it was also shown

that there is a periodic doubling behaviour leading to chaos.

3.2 Complex cubic-quintic Ginzburg-Landau equation

As seen in the last section, the concept of solitons occurs in a wide range of applications not only
in nonlinear optics but also in other fields for example in plasma physics [3] or in biology and
medicine [4]. Dissipative solitons also occur in the context of passive mode-locked lasers, which are
used for the generation of self-shaped ultrashort laser pulses [7]. The resulting nonlinear dynamics
are discussed in this work.

The basis for numerical analyses is a mathematical model describing the system of passively mode-
locked lasers. There are many models describing laser systems with varying complexity because
they take different components into account. The first models made to describe mode-locking
were similar to the complex cubic Ginzburg-Landau equation, see [28] and [29]. Afterwards, a
quintic term was included to assure the stability of the solitons [5]. The basic idea behind that

concept will be explained using figure [7]

b
1Al ® IAl i

b3>0
\ bz<O

0 € €p 0 €
(a) cubic (b) cubic-quinitc

Figure 7: Example bifurcation diagrams described in [30] in respect to the there defined Ginzburg-
Landau equation in the form 9,4 = e A+ (by +ic1 )02 A+ (bs +ics) |A]* A+ (bs +ics) |A[* A.
a) supercritical bifurcation at € = 0 for b > 0 and b5 = ¢5 = 0, corresponding to a complex
cubic Ginzuburg-Landau equation. b) subcritical bifurcation for b3 < 0 and b5 > 0 for
stability, corresponding to a complex cubic quinitc Ginzburg-Landau equation.

In the left figure[7a]a typical bifurcation diagram for the only cubic equation is shown. It consists of
a rather simple supercritical pitchfork, which is reasonable because of the mathematical structure
similar to its normal form. The point is that this behaviour is not expected for the solitons,
but a stabilized subcritical bifurcation due to quintic terms is. This is shown in figure [7b] The
soliton solution emerging from the bifurcation point is unstable until a saddle-node bifurcation
corresponding to the quintic term b5 > 0 (following the nomenclature in [30]) occurs. For this
parameter regime, there are stable soliton solutions for € < 0 or energy loss, which is an expected

result (see for example figure . For positive € no soliton solutions are expected because the

15



3.2 Complex cubic-quintic Ginzburg-Landau equation

global solution is unstable. Therefore a quintic term is needed for the description of passive
mode-locked lasers.

The complex cubic-quintic Ginzburg-Landau equation is normally given in the following form:

i% + %‘9;7? +|AP A+ pulA* A=idA+ic|AP A+ 15%4 +ip]Al* A. (20)
From that form one can see, that it is an extension of the nonlinear Schrodinger equation for
higher-order (cubic-quintic) and dissipative terms [5]. The left-hand side contains conservative
terms, while the right-hand side contains the dissipative ones. Equation [20]is non-integrable so in
general analytical solutions are not known. Just special cases are calculable so that a numerical
analysis of the equation is useful.

In equation the function A describes the normalized optical field envelope. It is a function
of z the normalized propagation distance and ¢ the retarded time. The parameter D is called
group velocity dispersion coefficient, corresponding if positive to an anomalous and if negative to
a normal regime. ¢ is the linear gain (6 > 0 or loss (§ < 0) coefficient, while € is the nonlinear
one. > 0 includes spectral filtering and p < 0 gives the saturation of the nonlinear gain, while
v represents the saturation of the nonlinear refractive index. All in all, every coefficient can be
related to physical parameters, see [31], [32] and [33].

To discuss the equation [20]in a more detailed way, it is useful to rearrange it so that the derivative
with respect to z stands alone on the left-hand side. By bringing the conservative terms onto the
right-hand side and multiplying by the imaginary unit i, the equation becomes
%:(ﬁ+21)@+5A+(5+i) A2 A+ (u+vi) A A. (21)
0z 2 ) Ot?

This is the standard form of a partial differential equation and is useful for mathematical and
numerical analysis in different forms. Normally the derivatives on the left-hand side correspond
to a time derivative so that the change with time can be better understood. Even if it does not
look like it at first glance, this principle also applies here. Formally both z and ¢ can be understood
as time parameters in this case. To explain this idea and to get a better understanding of the

physical meaning of the parameters, look at the following figure

Laser intensity
mirror mirror
h g '; detector

— \ >

Figure 8: Simplified sketch of a laser experiment to understand the meaning of both coordinates
t and z.
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3.2 Complex cubic-quintic Ginzburg-Landau equation

The basic principle of a laser is the optical amplification of light within the concept of stimulated
emission. For that light is reflected in between two mirrors until it fulfills the condition to leave
the laser. Let ¢ describe the distance between those two mirrors. Then it is possible to draw
the light profile within the laser, which is depicted as some sort of pulse shape. The laser emits
this profile within one round trip and it can be detected using for example a photodiode. There
a time-dependent intensity can be measured. Here the distance ¢ becomes a time because each
position between both mirrors arrives at a different time at the detector. At the next round trip
again a maybe different profile between both mirrors can be drawn and measured at the detector.
Let z be the round trip number. Then z can be understood as a time on the time axis of the
intensity measurement of the detector: The whole intensity profile consists of smaller ones with
width ¢ at the different round trips. That means one can mark the different round trips as time
on the time axis. All in all, the normalized propagation distance or round trip number z can be
understood as a time scale.

The setup shown in figure [§] is just a simplified sketch to understand the physical meaning of the
coordinates. An example for a real experimental setup for a so-called ,dissipative-soliton laser” is
shown in figure [0

a Pump/signal combiner

Double-clad ytterbium=-doped fibre

Collimataor BOP solator Collimator
tpt
h I-J::'i.l'.l'i.ﬂI SpEg trum at laser autp ut -'L*'.l'.!:-'. orrélation <!F'.|.'¢ COMmyprassion
104 81 FWHM =125 f5

O =
o =
I

=
™

ntensity {a.u.)

o

0.0 _’J L

0 T T
1040 1.060 1,080 400 =200 O 200 400

Wavelength {nmJ Delay (fs)

Figure 9: Ytterbium-doped mode-locked fibre laser a) experimental setup b) output spectrum and
autocorrelation. [5]
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3.3 Different solutions of the Ginzburg-Landau equation

Figure [Op shows the experimental setup of a Ytterbium-doped mode-locked fibre laser. It is called
a ,dissipative-soliton laser, because dissipative effects per roundtrip influence pulse formation
and stability [5]. In figure |§|b the characterization of the output pulse is shown. This design can
produce pulses with energies above 31J at a repetition rate of 70 MHz [5].

3.3 Different solutions of the Ginzburg-Landau equation

In this next paragraph, many different types of solutions of the complex cubic-quintic Ginzburg-
Landau equation will be shown to get an overview of the known structures. There are for example
localized solutions like a plain pulse or a composite pulse, pulsating and exploding solitons.

There are four important basic types of solutions, which can build more complex structures. They

are shown in the following figure [10]

(a) FRONT (b) PULSE
Al IA]
X X
(¢) SOURCE (d) SINK
Al | Yg g IA] "_g/\"i
X X

Figure 10: Sketch of different nonlinear wave states of the complex cubic-quintic Ginzburg-Landau
equation. 7,4 is the group velocity in the frame moving with the structure at velocity
v, the coordinate x corresponds to ¢ in equation Types: a) front b) pulse ¢) source
d) sink. [30]

The structures which are shown in figure [I0] were found to be fixed points of a simplified system
of ordinary differential equations of the Ginzburg-Landau equation, see [30]. The solutions are

nonlinear wave states of the Ginzburg-Landau equation because an ansatz of the form

A(t, z) = €% A(t - vz)

fl(t -vz) =a(n) . el8(n) (22)

with 17 = t — vz for the solution was taken. They found that front solutions are a two-parameter
family (plus a discrete set for respectively ¢ positive and negative). There is a discrete set of

sources, same for pulses and a one-parameter family of sinks [30].
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3.3 Different solutions of the Ginzburg-Landau equation

There are three basic types of localized solutions of the cubic-quintic Ginzburg-Landau equation,
called plain pulse, composite pulse, and also an ,expanded structure was found. These types
were first described in [§]. They observed them by selecting a wide, close to a rectangular shape
as the initial condition for a direct numerical analysis of equation The results are shown in
the following figure [T1]

INTERSITY
INTENSITY

(a) plain pulse (b) composite pulse

INTENSITY

o
TTAge -

(c) expanded structure

Figure 11: Dynamics of wide rectangular like pulse, building a coherent transition structure con-
sisting of two fronts and one source and then staying in three different types of stable
structures for different . System parameters: 6 = -0.5, 8 = 0.5, p = -1, v = -0.1
and D = 1. a) e = 2.51 plain pulse b) £ = 2.52 composite pulse ¢) £ = 2.53 expanded
structure (with mirrored z-axis in contrast to the others). [§]

The rectangle-like initial condition builds in all three cases after a few time steps a transition
structure, consisting of two fronts and one source. In the first two examples in figure and
both fronts move closer to each other and the structure shrinks. As they collide they either build
a plain pulse (see figure or a composite pulse (see figure . When both fronts move away
from each other, the structure expands and a homogeneous state is built as shown in figure [T1d

The two localized states of the plain and the composite pulse are similar to each other, so their

intensity and phase profile, and as well the spectrum is compared in the figure [12}
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3.3 Different solutions of the Ginzburg-Landau equation
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Figure 12: Comparison of the intensity, phase and spectrum between the plain pulse (dashed line)
and the composite pulse (solid line). System parameters: § = =0.5, 8 = 0.5, u = -1,
v=-0.1and D=1. [§]

The middle peak part of the composite soliton has the same height and form as the peak from the
plain pulse. This middle peak of the composite pulse still acts like a source with two motionless
fronts at the side, which can be seen in the spectrum. It consists of two peaks, corresponding to
the fronts and a drop, the source, in the middle.

Both localized solutions can exist at the same parameter values, as shown in figure [T3]

25 [ T T T
20k Composite Pulse ]
>
o
o 15 -
c -
L -

Moving Pulse

10 Plgin Pulse ]
5[ ) ) . |

1.65 1.70 1.75
Parameter €

Figure 13: Energy of the plaine, composite and moving pulse in dependance of . System param-
eters: 6 =-0.5, 5=0.5, u=-1,v=-0.1 and D = 1. [§]

It is shown that there is a regime at about ¢ = 1.75 where the composite and the plain pulse are
both stable. Both bistable solutions are at different energy levels. The energy, in this case, is
proportional to the intensity which is the area under the |A|2 curve. The energy of the composite

pulse is higher in contrast to the plain pulse, as explained by the intensity profile in figure [I2]
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3.3 Different solutions of the Ginzburg-Landau equation

In this figure [I3] there is also an additional solution type visible. The moving pulse results from an
instability of the composite pulse. A formation of the asymmetric moving pulse from a composite

pulse is shown in figure [T4]

IRTENSITY
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N
\:

> =
T g o

Figure 14: Formation of the moving pulse, after building a composite pulse. System parameters:

0=-0.1,5=05 pu=-08,vr=-0.1, D=1and ¢=1.8. [§]

It is possible to witness both left- and right-moving pulses. They are related to the symmetry ¢ <
—t of the Ginzburg-Landau equation (eq. [8]. The moving pulse is a nonlinear superposition
of a plain pulse and a front that results in an asymmetry which results in a movement of the pulse

to the side of the plain pulse. This superposition can be seen in figure [T5]
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Figure 15: Comparison of the intensity, phase and spectrum between the plain pulse (dashed line)
and the moving pulse (solid line). System parameters: 6 = -0.1, 8 = 0.5, p = -0.8,
v=-0.1,D=1and e=138. [§]

All in all, there are many different types of localized solutions. Now different types of localized

soliton structures that change their form with time are shown. Examples are pulsating, exploding,
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3.3 Different solutions of the Ginzburg-Landau equation

and creeping solitons. Starting with pulsating solitons, one period of such a soliton is shown in
the following picture (figure [L6)).

p=008, u=-0.1,v=-0.1
6=-0.1, ¢ =066 PN

14

W,
S— \}\Q\\\‘Sjs;\\‘\——
L —

N

[y (z,1)]

Figure 16: One period of a pulsating soliton. System parameters: 6 = —=0.1, 8 = 0.08, u = =0.1,
v=-0.1, D=1 and ¢ = 0.66. [7]

Those pulsating solitons build limit cycles because they change their form with time z: There is
a periodic repetition in a pulsating form. With the change of form also the pulse energy changes
with time. Such solitons can be observed when stationary pulse solutions become unstable in
isolated regions in parameter space [7].

A pulsating soliton can undergo period-doubling bifurcations for example by variation of €. After
such a bifurcation, instead of the repetition of the simple shape after only one period, it repeats
itself after two pulsation cycles. Therefore it has a double periodicity. At another period-doubling
bifurcation, another duplication occurs so that there is quadruple periodicity. The distance be-
tween bifurcation points €,,+1 — €, gets smaller for higher n until a transition into chaos occurs at
£c0, building a Feigenbaum diagram like the logistic map (see [2I]). In this case, it results in the
following diagram

o SELEE YRR R [ T T ]
L (a) .
! of (@ :
p=0.08, v=-0.08 i
F40r - g 7.0
o B i ’ o4 50 F g
20F A 2 [
;___L_.,._S_f._mwj
§0.1, wu=-0.115
ol .. 1 Foiod i Boas 40 : . '
072 074 076 078 08 0.78 0.79 0.8
€
Figure 17: Poincaré map of peak energy versus € with system parameters: § = -0.1, 8 = 0.08,

w=-0.115, v = =0.08 and D = 1. In a) the whole diagram with stationary pulse and
pulsating pulse including a hysteresis transition process is shown. On the right side,
the periodic doubleing process is shown. A zoom of it is shown in subfigure b). [7]
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3.3 Different solutions of the Ginzburg-Landau equation

To draw this diagram a time interval set to z = 500 for a certain value was numerically simulated.
Then the energy @ was calculated at each step resulting in an oscillating pattern due to the
pulsating shape. Each maximum is then taken and drawn into the diagram. A simple pulsating
soliton as in figure [16| has just one always repeating peak energy value. Therefore just one point
is present in the diagram for that ¢ value. If double periodicity is present there are two different
peak energy values and two different points can be seen in the poincaré map at that given € value.
Like this, the periodic doubling behaviour can be understood which is depicted in figure [I7 In
contrast, a chaotic regime is characterized by a lot of different points at random energy values.

To summarize, a lot of different concepts of nonlinear physics can be seen when discussing pulsating
solitons. But there are other types of localized solitons that change with time. Another class are

the creeping solitons which are shown in figure [I§]

[p(z,0)|

(a) example 1 (b) example 2

Figure 18: Two examples for creeping solitons. a) System parameters 6 = -0.1, § =0.101, p = 0.3,
v =-0.101, D =1 and € = 1.3. b) System parameters § = -0.1, § = 0.08, u = —0.11,
v=-0.08, D=1 and ¢ = 0.835. [7]

In figure [I84] there is a rectangular pulse with two fronts and a sink at the top. Those two fronts
are pulsating asymmetrically at both sides of the sink which results in a movement to the side
of the whole soliton. The pulse shape is in the form of a composite soliton. A creeping soliton
can have two different frequencies in its motion, an example is shown in figure This soliton
moves with a constant speed back and forth around a fixed value.

Creeping solitons form a different type to pulsating and exploding solitons because they exist in
an isolated parameter space [7]. Speaking of exploding solitons, they are the last here described

example. The evolution of an exploding soliton is shown in figure

The evolution, shown in figure starts with a stationary localized soliton, which is stable in
form for a few time steps. Then the from destabilizes and builds smaller peaks erupting from
the middle and moving to the sides. This destabilization gets bigger until the whole structure
consists of seemingly random peaks. Afterwards the form of the stationary localized soliton regains
stability and this exploding process starts again. Thereby this process is not periodic because two

explosions do not look the same, but it always ends up being the same localized structure.
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3.3 Different solutions of the Ginzburg-Landau equation
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Figure 19: Time evolution of two soliton explosions. System parameters: § = —0.1, § = 0.125,

pw=-0.1,v=-0.6, D=1and £ =1.0. [7]

The stability of exploding solitons was analyzed using a continuation approach in [12]. The basic
idea behind continuation is explained in section [4.2] ,Continuation approach* because the same
method will be used in this work. Their numerical results are shown in figure
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Figure 20: Numerical analysis with system parameters: § =0.125, u=-0.1, v = -0.6, D = 1 and
e = 1.0188. a) Bifurcation diagram of a localized soliton with continuation parameter ¢
and as a measure the maximum intensity. b) Direct numerical simulation of the space-
time evolution of a symmetrically-asymmetrically expolding localized soliton. c¢)/d)
intensity profile (black), real part of critical eigenvalue function (red) and real part of
the field (cyan) at § = 0.6 for asymmetric and symmetric soliton explosions. [12]

In figure a bifurcation diagram with the maximum intensity of the field against ¢ as an
axis is shown. The localized soliton solution branch emerges subcritical from a homogenous zero
state, which destabilizes at § = 0, then goes through a fold point (F') and stabilizes with a hopf
bifurcation (Hp). At that point, a pair of complex eigenvalues connected to symmetrical pulsation
is stabilized. Afterwards, a double hopf bifurcation (Hy, Hg) occurs and destabilizes the system.
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3.4 Soliton resonance

They are connected to symmetric and asymmetric perturbations as seen in the eigenmodes in the
figures and d [I2]. They showed that the double hopf bifurcations splits into two when taking

into account higher-order terms.

3.4 Soliton resonance

An experimentally interesting phenomenon is ultra-short high-energy laser pulses. Dissipative
solitons with high energy were found in the context of passively mode-locked lasers. By varying D
which corresponds to an anomalous or normal dispersion regime, the energy of the pulses changes
and it is forming a resonance. This so-called dissipative soliton resonance was discussed in [15],
[16] and [I8]. The results will be shortly summarized here.

Firstly the results in the normal dispersion regime D < 0 will be shown. In [I5] they used a split-
step Fourier method within a direct numerical analysis of the complex cubic-quintic Ginzburg-

Landau equation to draw a diagram by varying the dispersion parameter D as it is shown in figure
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Figure 21: Soliton energy () against D the dispersion parameter for three different values of e.
System parameters: 6 = 0.1, 5 =0.08, u =-0.003 and v = -0.01. [I5]

It is clear that the soliton energy rises with an increasing absolute value of D when looking at
figure 21} Also, the energy value reaches a very high value of over 1000 dimensionaless units. The
slope at that position suggests that even higher energy values might be possible which could even
increase indefinitely. The energy changes its order of magnitude rapidly as the logarithmic scale
on the ordinate suggests. This result is replicated in the same form for all three different ¢ values.
The three curves are just shifted to the side but the basic shape is maintained.

To show that the energy @) can increase indefinitely and that a resonance occurs, an approximation

using a technique called the method of moments [34] was made, see [16]. Here five moments
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3.4 Soliton resonance
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were defined. They are not conserved for the complex cubic-quintic Ginzburg-Landau equation.
Then the system was truncated by taking the derivative with respect to z of all five moments and
a trial function

R
A(t,z) = Ag-e w? amut . ! (24)

was definite to approximate the localized solutions of the Ginzburg-Landau equation where Ag(z)
is the amplitude, w(z) is the width and ¢(z) is the chirp of the soliton and m an adjustment
constant. Using this ansatz a dynamical system of three coupled differential equations was derived
and a numerical analysis was performed. To see how accurate this model is in comparison to the
ansatz using the complex cubic-quintic Ginzburg-Landau equation as discussed before, the region

of stable solution were compared, as shown in figure

3 3
(b)
2 2L
w w

1t 1y

0
0 4 -2 0 -3 -2 -1 0

D D
(a) moment of methods (b) results of [I5]

Figure 22: Comparison of a) stable fixed points of the dynamical system using the method of
moments and b) numerical simulations of the Ginzburg-Landau equation from [I5].
The black curve is the Resonance curve and in light gray oscillating solutions like
pulsating solitons are depicted. They are not shown in diagram b). [16]
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3.4 Soliton resonance

As it can be seen in figure 22| the approximation of [16] is in relatively good agreement with the
results in [I5]. Now, this model can be used to reproduce figure The results are shown in

figure [23]
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(a) \ v=001

Be=20 5=-0.1
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Figure 23: Soliton energy @ against D the dispersion parameter for three different values of ¢ from
the modell in [16]. System parameters: 6 = —0.1, 8 = 0.08, u = —0.003 and v = —0.01.
[16]

The diagram in figure [23] shows a typical resonance curve with a nearly asymptotic increase of
the soliton energy. The left-hand side of the curve is an artifact of the approximation and may
represent unstable solutions. As in figure for different values of ¢, the whole curve is shifted to
the side, but the energy which could be reached is an order of magnitudes higher than before in
figure Near the resonance, the soliton increases in width while keeping its amplitude constant
at a value of about

A~y [- (25)

€
I
[16]. The resonance curve in figure could be approximated using system parameters and one

gets

Do (220089, 20

[16]. The resulting curve is approximately in agreement with the resonance curve shown in figure
2] By now setting the parameters in equation [26] to the values shown in figure 23] one can get
an approximation for the value D where the resonance occurs. This value is marked with dashed
horizontal lines in figure 23] and is in good agreement with the results.

In this section, the phenomenon of soliton resonance was only discussed in the normal dispersion
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3.4 Soliton resonance

regime. As shown in [I8] it can also occur in the anomalous regime. Here again simulations of
the complex cubic-quintic Ginzburg-Landau equation using a split-step technique were done. The

results are shown in figure 24
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(a) Region of existence of stable solitons (b) Dissipative soliton resonance

Figure 24: a) The region of existence of stable solitons in the (e, D) plane. The energy @ of
the soliton is marked with color where red corresponds to the highest values and blue
to the lowest. System parameters: § = -0.1, 5 = 0.08, u = —0.002 and v = -0.001. b)
Dissipative soliton resonance in anormalous dispersion regime, with resonance at about

D ~0.03. System parameters: ¢ = -0.1, 5 =0.08, u=-0.002, v = -0.001 and ¢ = 1. [I§]

In figure the region of existence of stable solitons in the (e, D) plane is shown. The dashed
line corresponds to the approximation in [I6]. The diagram shows that the resonance effect is
more dominant in the normal dispersion regime but can also occur in the anomalous regime as
shown in figure for € = 1. This value of € was used, because it is near the resonance curve in
figure for the given set of parameters. It can be seen that the energy increases but is limited

by numerical errors [I8].
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4 Numerical methods

4 Numerical methods

This work aims to evaluate these localized solutions of the Ginzburg-Landau equation and the
occuring soliton resonances, described in section »Localized solutions of the Ginzburg-Landau
equation‘ and ,Soliton resonance”, using bifurcation diagrams. This will be done using numer-
ical methods, where two methodically different methods will be applied. They can be separated
into a direct and an indirect numerical approach. In the direct approach, a solution to the equa-
tion is approximated directly without iterating to get a more exact solution. The latter is exactly
what is done in an indirect approach, like the here used continuation approach. The direct method
is used to get an initial solution for the indirect continuation method. How this works in detail,

is described in the following section.

4.1 Direct numerical method

The name ,direct method“ originates from the idea of getting the numerical solution of an equa-
tion by directly calculating it. Due to a finite number of steps, rounding errors, and possible
approximations done by calculating the solution, it will be an approximate solution. This method
stands in contrast to an ,jiterative method“, where an initial solution is improved step by step.
Such a direct method was used in [25], results shown for example in figure It was used to
get different types of solutions at different parameter regimes of the Ginzburg-Landau equation.
In principle, the same can be done in this work to confirm the previous results, but that is not
the reason it is useful here. The direct numerics solutions will be used as an initial solution for
the numerical continuation, which enables following its branch and in the end draw a bifurcation
diagram.

The direct method used here is the (pseudo-) spectral method. It can be used on a nonlinear
partial differential equation like the complex cubic-quintic Ginzburg-Landau equation which will
be examined. By taking the Fourier transformation, the numerical problem simplifies to an
ordinary differential equation, that is easier to work on. A typical framework is given by the
Runge-Kutta methods. This is a family of explicit and implicit methods, like the Euler method
or the RK4-method, which are used to obtain different approximate solutions of an ordinary
differential equation. So in the end those two methods need to be used for the Ginzburg-Landau

equation. In the last part of this section, it is shown how it was done.

4.1.1 Numerical methods for an ordinary differential equation

The central problem is to numerically approximate the solution of an initial value ordinary differ-

ential equation

dy(®) _

i flz,y) with x(0) =z (27)

where y : R - R and f : [a,b] x R > R are functions and [a,b] is a closed interval. Here the

problem is shown in a simplified way, in general the functions can exists on a more dimensional
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4.1 Direct numerical method

functional space.

The basic idea from Euler, was now to describe the t-axis with a grid of n + 1 equally distanced

lattice points xg, z1, ..., ,, with corresponding values g, y1, ..., yn of the function y(z) at the given

lattice points. If a point (z9, o) is known, the next one can be calculated by the following formula:
dy(zo) _

y1=y0+h'T—yo+h'f($0,yo) (28)

where h = x,, — ,_1 is the distance between two lattice points. This formula is based on the

following approximation explained by this illustration

YA

Slope = f(zy, o)

—
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h f{.!'u. y[p}
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Figure 25: Approximation of the solution using the Euler method. [35]

As shown in figure the basic idea behind the Euler method is the usage of the definition of
a derivative. Starting at the known point (xg, o), if now the slope at the point is known, then
the height difference between yy and y; can be approximated by multiplying the slope with the
equidistant step size h. To finally get an expression for y;, one can add the previous height to
this term. After also remembering equation 27} the expression in equation 28] follows.

Applying formula 28 again and again, the whole function y(x) can be approximated on the lattice

points and the iterative procedure is given by

yn=yn—1+h'f(xn717yn_l)' (29)

[36]. After all, this formalism has a high order of inaccuracy [37], so the mathematician Runge
improved upon this in his work published in 1895 [38]. He used the midpoint and the trapezoidal
rules to do so. The not yet calculated mid and endpoint were given a preliminary approximation
using the Euler method.

After that idea, especially Heun and Kutta developed the algorithm further so that there was a
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4.1 Direct numerical method

family of explicit and implicit Runge-Kutta methods, which all could be used to solve ordinary
differential equations [37]. This family of (explicit) methods of m-th stage can be described with
the following formula [30]

Y(@ne1) = yY(@ne1) = yn + b Y cik (30)
i1

with

kl = f(l‘nayn)
ko = f(xn + aoh,yn + hB21k1 (20, Yn))
(31)

m—1
km = f (xn + Oémh,yn +h- Z 5m7jkj) .
j=1
A method of this family can be specified by setting the parameters m, «; (for i =2,3,...,m), B ;
(for 1<j<i<m) and ¢j(for i =1,2,...,m) to a certain value [39)].
In this work, a classical fourth-order Runge-Kutta method (short: RK4) was used, which is given
by

0 k
1 1 l—f('rmyn})L ,
2 2
ko = nT gsIn —k
1 0 1 2 f(l" +2 Y +2 1)
2 2 h h
k3:f(xn+_ayn+_k2)
10 0 1 2 2 (32)
l l l l k4:f(xn+h>yn+hk3)
6 3 3 6

h
1= Yn+ = - (k1 +2ky + 2k3 + k).
Figure 26: Butcher tableau. [40] Yn+1 =Yn t ( )

The order of the numerical error is connected to the order of the Runge-Kutta method. The

fourth-order is given by

[Yns1 = Y(tns1)] < O(R), (33)

where y(t,+1) describes the exact solution of the differential equation [36]. An approximation of
the numerical error is indispensable, when interpreting numerical results, thus it is given here.
Comparing equationto the numerical error of the Euler method of O(h?) [36], the improvement
is visible. That comparable low error reinforces, why the classical fourth-order Runge-Kutta

method is used in this work.
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4.1 Direct numerical method

4.1.2 Numerical methods for a partial differential equation

In an ordinary differential equation, there are just derivatives with respect to one parameter. This
parameter often corresponds to a time or space derivative in physics. Examples of such a type
of differential equations are the newtons equation of motion, the Lotka-Volterra equations, or the
Lorenz system. But in a vast amount of applications there is not just a derivative with respect to
one parameter, but to more. An example for this so-called partial differential equation is the one
to be examined complex quintic-cubic Ginzburg-Landau equation (eq.

A ( 5.2 ) 9*A

o, =5 W+5A+(g+i)|A|2A+(M+yi)|A|4A

As described before there is a derivative with respect to the cavity round-trip number z and as
well with respect to the retarded time ¢. Due to the two distinct derivatives, the Runge-Kutta
method can not be applied directly. There needs to be some way to embed the t-derivative into
the existing algorithm. One example of how to cope with it is the pseudo-spectral approach. Here
the derivative can be expressed by using a Fourier transformation.

The Fourier transformation of an integrable function f(x) is defined by
F() =) = [ f(@)-eda. (34)

To understand how that helps this definition needs to be applied to a derivative %. By doing
that, it follows

() (o) v
=0 —_Zf(x) ' (%e‘ikz) dz )
=ik - foof(x) e kT g

=ik f(k).

Therefore the derivative % can be expressed as a multiplication by ik in Fourier space. This
phenomenon is now used in the (pseudo-) spectral approach: Here the differential equation will be
numerically solved in real space, but the disruptive derivatives for the Runge-Kutta method are
handled in Fourier space by using multiple Fourier transformations. That results in the ability to

apply the Runge-Kutta algorithm for a partial differential equation.

4.1.3 Implementation of the Ginzburg-Landau equation

This segment will be presented how the pseudo-spectral approach and the Runge-Kutta method
are applied to the Ginzburg-Landau equation. First from a more mathematical standpoint and

then what it results in for the program.
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4.1 Direct numerical method

Mathematically the pseudo-spectral approach needs to be applied to the equation. Looking at the
sorted form of the Ginzburg-Landau equation (21

0A D\ 0%A 9 4
— =B+ —=i]| =5 +JA+ (e +1)|A]" A+ (n+0vi)|A|" A.
= (5 51) G oA (E+DIAR A (ua )4
only the blue marked term needs to be rewritten using Fourier transformation as in the definition in
equation [34] Because there is no multiplication of two fields, there is no problem with convolution

and it follows

(5+§i)%27;4 - (6+§i)-}“1(—k2-}"(/1)). (36)

Inserting this into equation 21} the pseudo-spectral ansatz gives

D= (B D) F R F AN 5A AP A+ Gur ) A A, (37)
which is an ordinary differential equation when using Fourier transformations. Now the equation
is in the form, in which it can be numerically analyzed using the Runge-Kutta algorithm. How
this is done exactly as shown in the following paragraph.

The program for the direct numerical analysis is written in python, which is a simple and sufficient
language for what is needed. The program starts by first importing python packages to include

simple math tasks (line 1) and drawing pictures of the results (line 2).

import numpy as np

import matplotlib.pyplot as plt

After that, the parameter regime of the Ginzburg-Landau equation, which should be examined,
is defined (lines 3 to 9). Followed by the basic parameters of the numerical analysis like step size

and the number of grid points (lines 11 to 16).

define parameters

beta=0.08
D=1.0
delta=—0.2
epsilon=0.66
mu=—0.1
nu=—0.1

# settings
Tend = 500

h = 0.00005 # step size for z steps

33




14
15
16

17
18
19
20
21
22
23
24
25
26
27

28
29
30

31
32
33
34
35
36
37
38

4.1 Direct numerical method

totaltimesteps = int (Tend/h) total z—steps
N=2048 # number grid points in t—space

L=12%np. pi length of t—space

Next up is the definition of arrays for the different axis in real and Fourier space (lines 17 to 20)
and defining some initial guess (lines 22 to 27). Here a gauss-like function is taken because it gives
some pulse shape, which is expected when compared to other results (see figure . For other

solution types, like a continuous wave solution, another initial guess is better suited.

# define t,z and k space

t = np.linspace(int(—L/2),int(L/2) ,N,endpoint = False)

z = np.linspace (0,Tend, totaltimesteps-+1)

k = np. fft. fftfreq (N,L/(N*2xnp.pi)) mesh in k—space: k n=dx/(2x*pi)

initial value function
def AO(t):
return 10% np.exp(—t*x2/1.5)

A = np.zeros(t.size, dtype=np.complex)
Al:]= AO0(t)

Now the partial differential equation is simplified to an ordinary differential equation by using
the pseudo-spectral method. Therefore the right-hand side of the equation can be written using
the numerical (inverse) Fast-Fourier transformation and equation 37, This is expressed in the
definition of a function for the right-hand side (lines 26 to 28).

rhs of the ODE using pseudo—spectral method
def rhs(k,beta,D,delta ,epsilon ,mu,nu,A):
return (beta+(D/2)*1j)*np. fft.ifft(—k*x2 % np.fft.fft (A)) + deltax
A + (epsilon+1j)* abs(A)x*%2 %A +(mutnuxlj)*abs(A)**x4 x A

And in the last step, the classical Runge-Kutta method is applied to this right-hand side of the
ordinary differential equation (line 31-38).

# RK4 algorithm

for i in range(totaltimesteps):
k1l = rhs(k,beta ,D,delta ,epsilon ,mu,nu,A[:])
k2 = rhs(k,beta ,D,delta ,epsilon ,mu,nu,A[:]+(h/2)xkl)
k3 = rhs(k,beta,D,delta ,epsilon ,mu,nu,A[:]+(h/2)xk2)
k4 = rhs(k,beta,D,delta ,epsilon ,mu,nu,A[:]+hxk3)

Al:] =A[:] + (h/6) % (k1 + 2xk2 + 2xk3 +k4)
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4.2 Continuation approach

So in line 38 the approximation of the field A(¢, z) is given for a specific time z corresponding to
the index of the loop (line 32). With this information, there can be done a variety of things like
a profile plot of the field for a given z, a space-time plot, or just an export of the solution after

all time steps to import as an initial solution in the numerical continuation.

4.2 Continuation approach

The second method is the arclength continuation method, which can find and follow solutions
branches and detect bifurcations to be able to draw bifurcation diagrams. This method is applied
using pde2path, which is a matlab package for bifurcation and continuation analysis of elliptic
partial differential equations, see [19]. It uses the finite element method to reiterate an approximate
solution to get a better residuum and therefore a more exact approximation. Due to this, it is
an indirect numerical method, in contrast to the Runge-Kutta method as discussed in the last
paragraph.

In the following section, the mathematical basics behind the finite element method will be dis-
played firstly, to get an better understanding of the underlying principles which are used in the
pde2path formalism. The basic feature of the continuation approach will be explained afterwards.
In the last section, the implementation of the complex cubic-quintic Ginzburg-Landau equation

is shown.

4.2.1 Finite element method

The finite element method (or short FEM) is a widely used numerical method to approximate
solutions of differential equations. It can be used for elliptic partial differential equations and also
for space discretization in parabolic equations. The finite element method is a Galerkin method,
which uses finite elements as smaller and simpler parts to describe the problem. In this section,
an overview of the mathematically methods will be shown, for more detail see [41].

Galerkin methods are based on the energy minimization principle. In physics, a system always
strives for the state of minimal energy. So if X is a Function space and F : X — R an energy

functional, then the solution u can be derived by
u = argmax(E(z)) (38)
zeX
Now the subspace X}, ¢ X discretizes it to get a numerical discretization problem
up = arg max (E(zp)) (39)
acheXh

with uj being the approximate solution [41]. To now get u; as the minimum of the energy

functional, the functional derivative

d
d_EE(uh +exp) ‘620 =0 (40)

for every test function zj, € X}, can be taken. This idea helps now by the evaluation of a partial
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4.2 Continuation approach

differential equation because an elliptic partial differential equation can be derived from this energy
minimization so that it is mathematically equivalent to solving the equation.
To write this in a more mathematical way, a general Ritz-Galerkin method of a variational problem

with a bilinear form b: X x X - R and a function of the dual space of X

bu,0) = f(p)  VeoeX, (41)

is definite by

b(un, pn) = f(¢n) Von € Xp. (42)

[41]. The Existence and uniqueness of uy, follow by the Lax-Milgram theorem. Also, the equation
can be rewritten as a matrix-vector equation and therefore can be solved numerically.

As explained before the finite element method is also a type of Ritz-Galerkin method. The
different types can be differentiated by the choice of the subspace X},. The special choice of X},
also defines the finite element method. It divides the space ) into non-overlapping subspaces of
geometrical objects. A simple example are simplicial Lagrange elements. In two dimensions they
consist of triangles, in three dimensions tetrahedrons, and in n dimensions they are simplexes. A

s-dimensional simplex in R is defined by
S S
T := {:L’ERd ‘x: Z)\ia,;, A <0, Z/\”L = 1}, (43)
i=0 i=0

with s € {1,...,d} and the points ag, ...,as € R? are called edges [4I]. Those simplexes now need
to cover the space, on which the elliptic equation is defined €, in a certain way: A permissible

triangulation 7, is needed, which is defined by
= A{T; ‘ j=1,...,m and T} is d-dimensional simplex in R%} (44)

with the property, that if the intersection of two different simplexes T; nI’; consists of either one
point, which is the corner point of T; and T} or multiple points, then 7; T} is the edge of T; and
T; [41]. An example for such triangulation is shown in the following figure

Figure 27: Triangulation with triangles of a polygon Q with arbitrary numbered nods [42].
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4.2 Continuation approach

To now get the total definition of the space X} defined by the Galerkin method, there also needs
to be test functions 1, s, ..., v, to be able to model the partial differential equation. Those
functions are not equal to zero just on one simplex. An example in one dimension are triangle

like functions shown in the following figure

A

11 P3 Qi4
/ N\

\

/ \

\ | ~
| | | | | - x

0 T3 T4

Figure 28: Some triangular shaped test functions shown in an one dimensional space €2 [43].

The picture shows that in one dimension the triangulation of space just appears as a grid on the
x-axis with the simplexes being intervals with corner points. The test functions ¢; are defined on
distinct intervals but are zero in others.

The test functions ¢; are used to describe the numerical solution u; on the corner points of the

simplex by calculating

up = )¢ 05 (45)
J
with ¢; being the value of u;, on the corner points.
Following this, derivatives are defined in principle by the weak derivative: Normally with this
method, it is possible to assign a derivative to a non-differentiable function 1. For a continuously

differentiable test function ¢ on interval I = [a,b] the derivative of function 1) is given by

09 (x) _ W
I/ SO p(a) dar= - I[ o(x) -1/ (2) da. (46)

This condition is also true in the finite element formalism because it directly follows from inte-
gration by parts after neglecting the non-integral summand. The term vanishes for periodic or
Neumann boundary conditions.

This helps numerically because derivatives can be described as matrices. Those matrices are
specific for the to be examined differential equation. The matrix which evaluates a function on
finite elements is labeled as mass matrix M. K, is the matrix that also evaluates the function on
finite elements but also takes their derivative. Lastly the stiffness matrix K is taking additionally
the second derivative. (see [43]).

The matrix structure can be calculated directly using the definition of for example the K matrix
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4.2 Continuation approach

dpi 0p;

Kii= | B0 or ¥ (47)
[41], so using equation 45| it follows
i Ip;

K -up); = N e d 48
(K -un) Ox ; oz T (48)

dpi Ouy,
) e e )

To simply this term further, the more dimensional integration by parts rule must be used. For a
subset 2 c R™ with edge 0f2 and orientation in normalized direction 7i, as well as a continuously
differentiable vector field f and a continuously differentiable scalar field g, the following relation

is valid
[ F@)-v9@) di= [ F@)-g@)-iaf- [ 95@) 9(@) dz (50)
Q oN Q

[44]. Using this formula (eq. |50 in equation 49} then it follows

[0 Oun
()9 = [ 220 (1)
Q
_ 8uh N aQUh
o0 Q
aQUh

The last line follows again by applying the boundary conditions.

So to summarize, with the finite element method and the weak formulation it is possible to
derive substitution rules for the derivatives in differential equations. If a function ¢ needs to be
evaluated on finite elements, it is possible with M ¢. The first or respectively the second derivative

is evaluated on elements given by

%gb = Kx¢ (54)
82
om® = Ko (55)

For the stiffness matrix, an extra minus sign is present.

In summary, the finite element method is used to numerically evaluate an elliptic partial differential
equation. The finite element method is a Galerkin method with a spatial choice of the subspace
X}, of the Hilbert space X. It is built of test functions on a permissible triangulation of simplexes,
which can mathematically describe the numerical solution uj. The Galerkin method can be put in

a matrix-vector form for a simple computation. The derivatives in the partial differential equation
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4.2 Continuation approach

are not disturbing, because they can also be written as matrices.

The next topic is the numerical error of this method. There are two different ways to state the
error. There is an a priori and an a posteriori error. The first one is calculated before doing the
numerical procedure and therefore gives a wider error range. In contrast the a posteriori error
is calculating the error for the already determined wj. Mathematically calculating both errors
is quite hard, because a lot of steps must be taken from the Lemma of Cea over Interpolation
error estimator to the Lemma of Aubin-Nitsche. For this reason, the numerical errors will just be
stated here.

u is a solution of the elliptical partial differential equation and wuy is the solution of the corre-
sponding finite element procedure. If u e H5"1(Q) for a s in 1,...., k with k being the polynomial

degree of the functions defined by the finite element method, there is a constant ¢ so that

lu—unlrz2) < b’ |ulgsa(q)- (56)

This formula can still be improved with a few assumptions using the Interpolation error estimator
and the Lemma of Aubin-Nitsche. But this should be enough here. The space H?® is a typical

space when talking about norms in numerics for partial differential equations. It is defined by
ulieey = | S [ 10%u (57)
la|<m &

[41]. The a posteriori error is based on the residuum. For a equation g—z = f(u) it yields

R(un) = 9 - f(u) (58)

It expresses how good the partial differential equation is fulfilled and therefore also how exact the
approximation uy is. The solution is exact if the residuum is zero. Using this definition, it is

possible to derive the lower bound for the residuum in the form of
|R(un)|a-1(0) < ¢ nnun) (59)

with

1
2

1 .
nh(uh) = Z (h(T)2|f + Auh|i2(g) + Eh(T) Z |vuh : n|%2(5)) . (60)
Tery SedT 9N
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4.2 Continuation approach

4.2.2 Pde2path - A matlab package for Continuation

Pde2path is a matlab package, which is used for Continuation and Bifurcation analysis [19].
Throughout this work the 2.9 version [45] is used. It is an upgrade to the original version with
new features like fold continuation or easier use of auxiliary equations. Here is shown just a
simplified explanation of the functionality. To get a better overview, see [19], or [46] and the
mathematical concepts behind it, see for example [47] or [48].

Pde2path treats a partial differential equation in the general form
G(u,\):=-V-(c®Vu)+au-b®Vu-f=0 (61)

[19] with = € Q, where Q is the domain, where the function u(z) € R™ is defined. A is the

continuation parameter (vector). a,b,c and f are functions depending on z,u, Vu and parameters.
4.2.2.1 Continuation of solution branches

The goal of a continuation algorithm is to follow a stationary solution of a partial differential
equation in phase space under the variation of a control parameter. Throughout this also the
stability should be examined, to be able to detect bifurcation points and follow new solution
branches. In this paragraph, the basic ideas of the continuation of solution branches will be
explained. It consists in general of two steps, which will be illustrated using the following figure
29)

0 1 2

Figure 29: In this sketch of the functionalty of continuation the stationary solution y is shown in
phase space. It is calculated numerically at different control parameter values of A [49].

In figure the solution y is shown in phase space. A measure to show the solution on the
one-dimensional ordinate. On the abscissa, the control parameter A is shown. The solution is
approximated at \; with 7 € Ny in a distance AX. At those positions the stationary solution has

the value z; with ¢ € Ny. The algorithm starts at a known solution g9, which comes from the direct
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4.2 Continuation approach

numerics or might be calculated directly. In the first step a predictor y§0) for the solution y; at

A1 is assumed. It corresponds to the functional value at position A1 of the tangent in phase space
at point yg. The second step consists of using Newton’s method to iterate to the actual solution
y1 until a threshold is reached. Then the solution y; at position \; is known approximately. To
get more points, repeat the above steps: Use a predictor with the tangent and then calculate the
solution with Newton’s method.

The Newton method is a numerical method, which is used to approximate the zero values of a
function. To approximate them for a one dimensional function f(x), the procedure is as follows:
Choose a starting position xzg with f’(zo) # 0 and then calculate the intersection position z; of the
tangent at xg with the z-axis. It yields z; = xg + Az with an unknown distance Az. To calculate

it, a Taylor series of f(xz¢+ Ax) is performed

Fz1) = f(wo + Az) » fzo) + f/(20) - Az = 0 (62)

and this is then set to zero because a zero value is searched for. Now the formula is rearranged to

get the distance dz to get:

Agp=-T ,(5'30) . (63)
f'(x0)
All in all, there is an iterative formula to get the zero values of a function f:
Tie
mmaa -0 o ) An= ), (64
f'(wi1)

with Az; = x; — ;-1 (see [50]). To be able to apply that for the more dimensional system in
pde2path, like

05
E - G(yv)‘)v (65)

a more dimensional equivalent of the Newton’s method is needed. By analogy, it follows:
G5, \) - Mg = G(FY ), (66)

whereby G3(3(", ) is the Jacobian of G

oY1 0y2 Oyn

' Gy . .
Gy, ) = | 1 R (67)

Gn ... .. 0Gn

oy1 OYn

With the Newton method it is now possible to get from a starting value yi(o) to a solution y;. Next
up is to get the tangent to make a predictor yz.(o). Therefore the tangent direction % needs to be
calculated. By applying the partial derivate with respect to A and taking into account the chain

rule of the function G(7,\), it gives
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oG 9y aé_o

— +— =0, 68
0y O\ O\ (68)
whereby % is the Jacobian after equation (67). Therefore there is a system of equations
. 95  OG
G L = ——— 69
) )\ 6)\ ’ ( )

which can be used to derive the searched for tangent direction %. In general the predictor yj(g)l
starting from y; is given by
©) _ 9

yj+1—yj+A)\-5. (70)
After that basic explanation of the used mathematical methods, here is a short overview of how
this is applied in the more complex setting of pde2path while using the finite element method
(For a detailed explanation, see [19]).
Consider a branch s — z(s) := (u(s), (A\(s)) of steady solutions of equation [65] and setup the

system
=0 (71)

[46]. Here p is used to make the parametrization s to an approximation to the arclength of the
solution branch [46]. Then the tangent vector 7y at a given point (ug, Ag) := (u(so), A(s0)) is set
to 70 := (ug, Ag) = S (u(s), M) _,, B6]. It follows:

p(u, A, ) = € (ug,u(s) = uo) + (1= €) (A, A(s) = Ao} = (s = 50) (72)

[46]. Using this definitions, the predictor is given by (u', \!) = (ug, Ao)+(s—50)70 and the corrector

using Newton’s method is in the form:

Wt W o o
(Ajﬂ) = (Aj) — A, ) H (W, W) (73)

with

A:(Gﬁ‘ “ ) (74)
§ug (1-8)A

[46].
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4.2.2.2 Detecting Bifurcations

As described before in the chapter ,Bifurcations®, at bifurcation points there is a change in
stability of the solution. This results in eigenvalues of the Jacobian G, crossing the imaginary
axis. To determine the type of bifurcation there needs to be additional information, but the key
to detecting bifurcations is to detect eigenvalues changing sign. There are mainly two different
methods to use:

The first method is to look for sign changes on the determinant of G, (or more generally A). The
determinant is connected to a multiplication of all eigenvalues using matrix similarity. So if an
eigenvalue changes sign, it is seen in a sign change of the determinant, which corresponds to some
sort of bifurcation taking place. A big problem of this approach is therefore also clear: If two
eigenvalues change sign at the same time due to a too large step size or due to a hopf bifurcation
taking place, the determinant does not change sign. That results in no detection of a bifurcation,
even if there is one. In general, no hopf bifurcations can be observed with this algorithm.

That problem is not appearing in the second method. Here a chosen number of eigenvalues of
G, (or in general A) are calculated numerically. This is numerically much more demanding and
takes more time in each continuation step. So it is useful to only compute a few eigenvalues near
the imaginary axis. It works well if just a few eigenvalues are near zero but if not the number of
calculated eigenvalues might be too low and therefore bifurcations can be undetected.

Due to the fact, that hopf bifurcations are expected because there are time dependant solutions
like in [7] or [11], the second method will be used.

4.2.2.3 Phase shift symmetry and translation invariance

The complex quintic-cubic Ginzburg-Landau equation has two invariants, the phase shift sym-
metry, and translation invariance. For translation invariance, it means if a solution profile A(t)
is shifted to the side by dt, resulting in A(t + 0t), it also stays a solution of the problem. The
same is the case if a phase shift is present. Such a shift can occur due to for example numerical
errors, which results in a detection of a bifurcation point, even if the same solution with the same
eigenvalue is observed. To avoid this behaviour an additional constraint for both invariants must
be added. In the following paragraph, it is shown how the constraints need to look like.

Starting again with the translation invariance, where a new solution A(t) = A(t + 6t) is a shift of
the old solution A(t) by a small 6t «< 1. To gain a mathematical condition, so that it does not
result in a bifurcation, the Taylor series for §t << 1 must be calculated:

19%A

A(t+5t)mA(t)+%~(t+5t—t)+—

By simplifying the equation [75| and neglecting nonlinear orders in ¢, it looks like

A(L+5t) ~ A(L) + %—‘j o, (76)
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which is equivalent to

A(t +6t) - A(t) = % -5t (77)

This equation [77] states that the difference between old and new solution AA is proportional to
the derivative %—‘?. To prevent the detection of the new solution, this proportionality must not
occur. Nonproportionality in functional space means that both functions must be orthogonal to
each other, so their scalar product is equal to zero. The following constraint in equation [7§] does
exactly that:

0A |

AA-Z2 Ly,
-0 (78)

Next up is the analogous derivation of the constraint for the phase shift symmetry. The scalar
product of the phase derivative with the difference between new and old solution must be zero:
0A |
AA-— =0. 79
- (79)
The concrete implementation of both constraints is explained in the section ,,Additional

constraints®.

4.2.3 Implementation of the Ginzburg-Landau equation

In this section, the continuation formalism will be applied for the cubic-quintic complex Ginzburg-
Landau equation (equation. The basics of the numerical continuation are defined in a file called
glld init.m, like the parameters, boundary conditions, control parameter, or grid size. The output

of the continuation like the measure can be changed in glld bra.m.
4.2.3.1 Stationary solutions and a system of real equations

For the continuation the Ginzburg-Landau equation needs to be simplified and rewritten, which
consists of two steps: Firstly we search for stationary, localized solutions of equation like in
the direct numerics results depicted in section [3.3] ,Different solutions of the Ginzburg-Landau
equation®. That simplifies the equation and needs to be implemented. Secondly, the still complex
equation must be rearranged as a system of two real equations to be able to use the continuation
formalism.

To start the Ginzburg-Landau equation can be written as (see eq.

2
%:(ﬁ+%)%+5A+<6+i>|A|2A+(u+vi>|AI4A

using basic equivalent conversion. In this form, the order of magnitudes and of derivatives of the
field A(t, z) can be seen easier. This is useful in the first step, where the goal is to get stationary,

localized solutions. To get this type of solution the following ansatz

44



4.2 Continuation approach

At,z) = A(t —vz) - e %2 (80)

is used. Here v is the propagation speed and w is a spectral parameter. This ansatz in equation
now needs to be inserted into equation Therefore the second derivative with respect to t
and the first derivative with respect to z need to be calculated. Looking first at the ¢ derivatives,
using the chain rule, they can be written as:

0A(t,z) O0A(t-vz) i, OA(t-wvz) O(t-vz) ., O0A(t-vz) .

- = . R Pt S 1
ot o % T at-wn) ot ¢ T at-w) © (81)

and by analogy, it follows

O?A(t,z)  O*A(t-vz) iz (82)
o2 O(t-vz)? '

Using the product rule, the partial derivative with respect to z gives:

9A(t, 2) = —iwA(t-vz) - e7¥7 + OA(t —vz) ceWF (83)
0z 0z
Due to the following relation
OA(t-vz) OA(t-wz) O(t-wz) . OA(t —vz) (84)
0z C O(t-vz2) oz o(t-wvz)’
equation 83| can be simplified to
0A(t, z) 0 . .
- (- —iw | At - vz) e 85
P ( v(‘)(t—vz) 1w) (t-vz)-e (85)

By defining £ = t — vz, dropping the tilde and inserting the ansatz (eq. [80]) into equation [21| with
the calculated derivates in equation [82] and [85] it yields to

2A A : . . . ,
(5 t5 ) %ﬂ (?9_t +(0+wi)A-e7* + (e +1) |A . e_l‘”z‘z e+ (p+ i) ‘A : e_“"z|4 ceTWE,
(86)
Using also the relation

o7 = 1 (87)

and dividing by e™*?, the equation is finally simplified to

0?A  0A

0= (ﬁ+—1) 0 (Frwi) A (D) AP A+ (e i) A A, (88)

Now the second part, where next the equation needs to be rewritten as a system of real equations,
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can be done. To get this the complex equation is split into the real and imaginary part. This is

done by composing the function A out of a real a; and an imaginary function as:
A= al + iag (89)
The ansatz is inserted into the equation

+ (0 +wi)(a +iag)

~ 9%(ay +iaz) . O(ay +iaz)
0= (/BJF ) ar T o

+(e+1)|ag +iagl (a1 +ias) + (p + vi) a1 +iao|* (a1 +iaz)

and in the next step the terms must be sorted:

0? D (D 0
0= Ere) [(ﬂal - 5&2) +1 (Eal + ﬂag)] + a(val +vag)

+ [5@1 —wag) + i(wa1 — 5@2)] + [(80,1 - a2) + i(al + EQQ)] (a% + a%) (90)
+[(pay - vag) +i(vay + pas)] (a2 + a3)?.

Then it can now be split into two equations because the whole equation must be true for on the
one hand the real and on the other hand for the imaginary part. That results in a system of two

real equations, as it was searched for

Re) O—@(ﬁal 2a2)+%va1+(6a1—wa2) + (eay — az) |A]* + (pay - vas) |A*
91
Im) O—a—Q(Ba + fa )+gva + (way — 6az) + (a1 +eaz) | AP + (vai + pas) |Al* o
Taz\ g™ 2]+ 5 v 1 2 1 2 1+ paz

using |A|2 = a? + a3. The implementation of this system of equations in pde2path is done in the

form of equation [61] which can be simplified to

rhs = —(-K-A+K,-A+M-F) (92)
with
A= “1) (93)
a2
K -LK
-, ) (91)
M 0-M
M- (95)
= \0-M M
K, 0-K,
K=" (96)
— \0-K, v-K,
B (0ay —waz) + (cay — az)(a? + a2) + (pay — vaz)(a? + a3)? . (97)
(way - daz) + (a1 +caz)(a? + a3) + (vay + paz)(af + a3)?
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Equation 02 with the abbreviations [07] is implemented in the file glld_sg.m.
4.2.3.2 Jacobian and Fold continuation
For the numerical evaluation in pde2path the Jacobian for the to be examined equation is needed

(see equation |67 or . To calculate them the derivatives with respect to a1 and as of the system

of equations in equation [01] are needed:

ORe

P 4ua% + 61/@%@% + 1/@‘21 + 4,ua§’a2 + 4ua1ag
ai

ORe

P 4Va:15a2 + 4Va1a§ + ua% + Gua%ag + 5ua§

lin (98)

Pa Spai +6palal + pay — dvagal — dvayad
ai

Olm

P 4ua:1)’a2 + 4ua1ag - Vai1 - 61/@%@% - 5Va‘21
az

Together with the additional constraints g; and ¢o corresponding to phase shift symmetry and
translation invariance (see section [4.2.2.3,Phase shift symmetry and translation invariance®), the

Jacobian becomes:

ORe ORe

— 8a1 (9(12

=\ o om (99)
8a1 aag

and is implemented in glld sGjac.m.
Together with the additional constraints g; and ¢o corresponding to phase shift symmetry and
translation invariance and the resulting Lagrange parameters, namely the propagation speed v

and the spectral parameter w, there is an extended system, where the Jacobian becomes

ORe ORe 0ORe ORe
daq Oas Ow ov
Olm QOlm 9Im QOlm
_ | Oa; Oas Ow ov
J = 91 ¢ Oq  Oqu |” (100)
daq Oas Ow ov
992 092 92 Og2
Oaq Oas Ow ov

The derivatives of the constraints are calculated in glld gfjac.m.

For a fold continuation the derivative 9,(9,G¢) needs to be calculated using the pde2path pa-
rameter definition (see equation [45]. This implementation in simplified nodal finite element
method format allows for more efficient calculation in contrast to otherwise used finite differences.
0u(0,G@) is given by:

(101)

Ou(.C) - ((aﬁlfl)qbl (0 Oy f1) 02 (Duy Oy 1)1 + (D2, f1)¢2)

(831f2)¢1 + (8u18u2f2)¢2 (au1au2f2)¢1 + (831f2)¢2

with u = (u1,us), F = (f1, fo) and ¢ = (¢1, ¢2) [45] and implemented in glld _spjac.m.
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4.2.3.3 Additional constraints

Next up is the implementation of the two additional constraints given by equation [78 and [f9} An
explanation of the derivation is given in the associated section. Using the pde2path formalism
both equations are implemented in the file called glld qf.m.

First the implementation of phase shift symmetry given by equation [79]

AA-—=0.
9¢

The complex field A(t,2) = ag-€'® can be split into a real a; and an imaginary part as (like in

equation , which yields in vectorial form A = (a1, a2). The phase derivative is then given by

— =1iag-e” =(-az,a1), 102
96~ © (-az,a1) (102)
where the last expression is again written in vectorial form. Setting this into the scalar product
equation [79 results in
@1 new ~ A1 0ld ) —Q20ld | ! 0
a2 new — A2 0ld a1,0ld (103)
!
< q1:=01,01d(@2new — 42,0ld) — 02,01d (@1, new — @1,01d) = 0.

This equation is directly implemented in matlab, which is shown in the following program code.

ul = u(l:p.nu/2);
u2 = u(p.nu/2+1:p.nu);

ulo = p.u(l:p.nu/2);
u20 = p.u(p.nu/2+1:p.nu);

% new implementation: <uold phase’, u>=0, u_phase=iu

ql = +ulo’*«(u2-u20) —u2o0’x(ul—ulo);

In the first 5 lines, the fields a1 and ay are in defined in both old and new form. Herefore they
are renames form a to u. Afterwards in line 8 equation [I03]is implemented.

The second constraint (equation is given by the translational invariance

0A
AA-— =0.
ot
The derivative % is numerically given by the matrix K, using the finite element method (see

equation . AA is again given by the difference between old in new field like in equation m
The equation [78| therefore turns into
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4.2 Continuation approach

g = K, - (al,old) ) (al,new - al,old) ; 0 (104)

ag old a2 new — 42 old

Here no further simplifications are needed because both vectors can be implemented directly, as

shown below.

9 |uoz = p.mat.Kz0*p.u(l:p.nu);
10
11 |% phase condition in periodic case: <uold’,u>=0

12 |q2= woz(l:p.nu) '«(u(l:p.nu)-—p.u(l:p.nu));

The derivative is defined in line 9 and the translation-invariant constraint is implemented in line

12.
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5 Results

5 Results

First, the evaluation of the dynamics of localized states for passively mode-locked lasers is dis-

cussed. The results on the topic of soliton resonance are presented afterwards.

5.1 Dynamics of localized states

The goal of this analysis is to gain a better understanding of the dynamics of the localized states
described in section [3.3],Different solutions of the Ginzburg-Landau equation* within the topic of
mode-locked lasers. Using numerical continuation, bifurcation diagrams are produced to connect

the different types of solutions.

5.1.1 First steps and solution measure

There are a lot of different ideas to start this topic for example the dynamics of the exploding
solitons or creeping solitons. While a basic analysis for soliton explosions has been done (see
[12]), the starting point of this analysis is the pulsating solution as described before using figure
[16] Firstly, an initial solution using the direct numerical method has to be generated in order to
start the continuation process and to generate a bifurcation diagram. For a detailed explanation
of the used programs for continuation, see section ,Continuation approach® and for the direct
method, see section ,,Direct numerical method*.

The same parameters, namely § = 0.1, 8 = 0.08, u = -0.1, v = =0.1, D = 1 and ¢ = 0.66, are
used as in [7], on a domain given by L = [-40,40]. The numerical simulation is done for 100
dimensionless time steps (corresponding to the coordinate z) with a step size of h = 0.00025 and

2048 grid points for the spacial coordinate t. As the initial value function a Gauf like function
t2
A(t,z=0)=15-e"10 (105)
is used. The following figure |30 shows the direct numerical results.
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Figure 30: Direct numerical simulation of a pulsating solution for the system parameters: § = —0.1,
5=0.08, u=-0.1,v=-0.1, D=1 and € = 0.66.
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5.1 Dynamics of localized states

In figure [30] one can see that after a short settling phase a periodic pulsating solution is built
which is stable over time even if the stabilizing process is probably not finished yet. Thus the
results of [7] are reproduced. The pulsating soliton solution is time-dependent which excludes
it for inputting it as an initial solution into the continuation algorithm. A small adjustment is
needed to nevertheless investigate pulsating solitons without using them directly. To gain a stable
stationary solution within this parameter regime it is useful to change the control parameter until
the pulsating solution becomes unstable and a stationary solution is stable and then simply start
the simulation at the parameter value of the new parameter. The control parameter, in this case,
is the gain (or loss) parameter . For 6 = —0.2 and all other parameters unchanged a stable

stationary solution can be found via direct numerics, as shown in figure

-l
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Figure 31: Direct numerical simulation of a stationary solution for the system parameters: § =
-0.2, =0.08, 4 =-0.1, »v=-0.1, D=1 and ¢ = 0.66.

Here, in figure 31} for the first about ten time steps, the remainder of a pulsation fades away
until a stationary solution is stabilized. After the total simulation time, no change with time
can be seen on the shown scale. The profile at that last step is now exported so that it can be
implemented as an initial solution for the continuation. Here, periodic boundary conditions are

applied and the maximum intensity of a pulse profile A(t)

max

AR, = 3 max(|A(D) (106)

is used as a measure in the bifurcation diagram with L being total the domain length of the

domain L, as in [12]. In the following figure [32| the resulting bifurcation diagram is shown.
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5.1 Dynamics of localized states
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Figure 32: Bifurcation diagram for Apax against the gain or loss parameter § for the system
parameters: 8 =0.08, u=-0.1, v =-0.1, D =1 and £ = 0.66. Red circle corresponds
to a pitchfork bifurcation, blue cross to a fold point and green rhombus to a hopf
bifurcation.

One can see in figure[32] that the localized solution branch emerges subcritical from a homogeneous
zero state and is then stabilized by a fold point. Afterwards, the soliton grows in maximum
intensity until a hopf bifurcation occurs which destabilizes the branch again. Then a lot of
bifurcation points are stacked on top of each other in the shown scale. In the zoomed-in diagrams,
it can be seen that the solution changes stability multiple times while spiraling into a smaller
spiral. The simulation ends after a few spirals due to numerical dependencies (values can not be
distinguished within the machine precision), so it is not clear if the spiral continues indefinitely
or if it ends at some point and is building a new structure.

Nevertheless, the spiral prevents the view of the entire content of the bifurcation diagram and

therefore multiple zooms are needed. To alleviate this problem the measure for the graphical

2
int

depiction is changed. The new one is given by the total intensity of the pulse |A]

1
A== [ IA@PF a (107)
tel

and is proportional to the energy @ in a variety of resources dealing with soliton resonance (see
for example [I5], [16] or [I8]). Figure [33|shows the results with the new measure |A[>,. In figure

int*
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5.1 Dynamics of localized states

a few positions along the bifurcation diagram are highlighted. The corresponding profiles of
the solutions is shown in figure
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Figure 33: a) Bifurcation diagram of ﬁgurewith a different measure |A|i2nt and coloured positions

which are indicated with stars. The corresponding solution profile is shown in figure
b) for the different positions. System parameters: 8 =0.08, p=-0.1, v =-0.1, D =1
and ¢ = 0.66.

In the subdiagram the bifurcation diagram in figure [32| is shown with the changed measure

\A|i2nt which is given by equation If one follows the solution branch along at the beginning it
2

looks similar to the one with maximum intensity |A| ..

as the measure: It still emerges subcritical
from a homogeneous zero state, stabilized with a fold point, and undergoes a destabilizing hopf
bifurcation until the solution behaviour of the spiral in diagram |32 is shown more clearly without
the need for zooming. A similar appearance is to be expected because there was just a change of
the type of representation and the physical meaning stays the same.

Looking at the behaviour previously hidden within the spiral, one can see that a lot of hopf
bifurcations occur for positive §. This results from an unstable global bifurcation which acts like
a constant noise destabilizing the soliton solution. This fits with the narrative that no stable
solitons exist for § > 0. Within this regime of hopf bifurcations there exists a pitchfork bifurcation
and a fold point which directs the solution branch again towards the energy loss regime (0 < 0).
After a lot of stabilizing hopf bifurcations, the soliton branch rises in energy while periodically
changing stability. There is always a stabilizing pitchfork bifurcation followed by a stabilizing
fold point which results in a stable regime of the soliton branch that ends with a destabilizing
pitchfork bifurcation and a fold so that there are two unstable eigenvalues. This pattern repeats
itself four times until the numerical simulation stops due to numerical dependencies. As a result,
there is multistability.

In figure [33b] the solution profile of the marked spots in figure [33a) are shown. Without looking at
them it is unclear what structural change occurs at bifurcation points or in general when changing
the parameter §. Starting in the blue marked position number one there is just a plain pulse,
which grows with the decrease of the absolute value of § as seen in the profile of the green marked
position. After the regime of positive 4 the stable soliton solutions are composite pulses (see

marked positions number three to five) which grow in width when following along the soliton
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5.1 Dynamics of localized states

branch. Also, the previously unstable plain pulse solution can be seen as part of the solution
profile when comparing the marked profiles two and three.

There is a lot that needs to be discussed within the framework of this bifurcation diagram. For
example what kind of solutions emerge from the different pitchfork bifurcations or the hopf-
bifurcation and where the initial pulsating soliton solution can be found. A more detailed overview
will be given in the following sections. But first of all the question from earlier remains and needs
to be answered first: What happens if the branch is followed further along? In figure [33b] one can
see that the width of the pulse grows along with the energy. Therefore an interesting point occurs
when the pulse width is the same length as the whole domain. Due to numerical problems, it is
not possible to answer this question for the domain = [-40,40] with the given methods, but an
easy trick is to take a smaller domain size and make a similar analysis. This is done in the next

section.

5.1.2 Different domain sizes

In this section, the impact of a varying domain size will be shown and analyzed. The following

picture [34] shows the continuation results for four different domain sizes.

H b——————————————————————————————
by T
204 (a) b
o
»F | e
1.5 1 ) 44 BM
B 4) nE
=< 101 <<
3)¥ 2
0.5 : I
,’/ﬁ___/@-?)"') 1 [ &
0.0 , . ; , ; 0 ‘ e , , ' .
-0 -08 06 —-04 02 00 0.2 -12 -1.0 -08 —06 —04 -02 00 02
0 5
(a) L = [-40,40] (b) L =[-20,20]
% 6
© e T — ,‘
e 51 e -----
' | T
Toe i - »s." <
- = s — -
== 3 E= N e x
= I < L ... L
................................... .
21 24 ®
R
A 1 //_.--
. . . : . . . . . T , . . .
-2 -10 -08 -06 —04 -—02 00 02 -12 -1.0 -08 —06 —04 —02 00 02
)
(¢) L =[-15,15] (d) L =[-10,10]

Figure 34: Bifurcation diagrams with a different measure domain size. a) L = [-40,40] b) L =
[-20,20], ¢) L =[-15,15] and d) L = [-10,10]. System parameters: 3 = 0.08, u = —0.1,
v=-0.1, D=1 and € = 0.66.
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5.1 Dynamics of localized states

Figure shows the same bifurcation diagram as shown in the last section namely for a domain
size of L = [-40,40]. Here, the stability changing soliton branch ends abruptly due to numerical
errors. To gain more insight within the numerical restrictions the domain size is halved to L =
[-20,20] in the second picture The beginning of the bifurcation diagram looks similar to the
emerging unstable soliton branch that is stabilized by a fold-point and afterwards the rapid growth
of the intensity measure with the periodic change of stability can be seen. For this domain length,
it is possible to see further development of the soliton branch. After the stability changing area,
there is a small regime where the intensity measure grows further until presumably the complete
domain is filled. Then the unstable solution structure changes resulting in a decreasing intensity.
It then undergoes several bifurcations including pitchfork- and hopf-bifurcations as well as a fold-
point, resulting in a lot of unstable eigenvalues. The branch ends in a fold-point (like the starting
point), which means that it may be connected to another vastly different solution type that can
not be found in this way using continuation, or another behaviour that needs to be examined. A
very similar result can be seen in figure where the domain length is reduced to L = [-15,15].
In contrast to that a different behaviour can be seen in figure with L = [-10,10]. Here the
previous endpoint of the branch vanishes and the soliton undergoes a lot of different bifurcations
which sometimes act destabilizing and sometimes stabilizing but overall the soliton stays in the
unstable regime. In the end the soliton branch seems to grow indefinitely for a positive gain § > 0
(at least until ¢ = 10).

So all in all figure [34] can be separated into three different types: Firstly for L = [-40,40] where
the diagram is not complete and ends within the stability-changing regime. Secondly, for the two
sizes L =[-20,20] and [-15,15] the soliton branch ends in a fold-point. Lastly, for L = [-10, 10]
there is no connection of the soliton branch and it ends up increasing indefinitely with 6 > 0. Even
though this distinction follows practically from the results it is not expedient physically. This is
clear for L = [-40,40] where the diagram just ends due to numerical errors, so it does not make
sense to distinguish it from the others. But the same can be true for L = [-10,10] as well: The
domain length as a physical parameter is connected to the retarded time ¢ which also describes
the laser cavity (see section ,,Complex cubic-quintic Ginzburg-Landau equation“). That means
that the domain length is an arbitrarily large number and it does not make sense to minimize it.
Doing so might result in an inability to apply the framework of this Ginzburg-Landau equation.
So taking a smaller domain length in the numerical analysis, may not give physical results which
occur just because of the small domain length and not due to a physical reason. Under this
background, the bifurcation diagram might be also an artifact of the numerical simulation
due to a too-small domain length. Therefore the simulations for L = [-20,20] and [-15, 15] would
give the most accurate results.

There are a few different ideas to test this thesis. The first idea that comes to mind when discussing
different domain lengths is to do continuation using the domain length as the control parameter.
At first glance, that seems hard to do because the domain length is not a system parameter in
the complex cubic-quintic Ginzburg-Landau equation (equation . By redefining the time scale

t using for example t = Qt and inserting that into the equation one gets a parameter, namely €2,
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5.1 Dynamics of localized states

connected to the domain length and a continuation is possible. To do this, the Ginzburg-Landau
equation must be numerically implemented differently. Therefore another way might be more
efficient to examine. Here the change of the solution profile with the control parameter ¢ will be
analyzed for L = [-10,10] (and [-20,20]) to see differences and physically classify these.

In figure [35| the bifurcation diagram for L = [-10, 10] is shown. There are a few spots marked on
the diagram (figure ) with lightly blue stars. The solution profile of these positions is shown
in the other subfigures [35] to 9).
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Figure 35: a) Bifurcation diagrams with domain size L = [-10,10]. 1-9) Solution profile marked
in figure a) with lightly blue stars. System parameters: § = 0.08, u = -0.1, v = 0.1,
D =1 and € = 0.66.
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5.1 Dynamics of localized states

This figure [35]shows the solution profile at different points in the bifurcation diagram for a domain
size of L = [-10,10]. Position 1) and 2) show the expected profile as already seen with [-40,40] in
figure while 3) shows the profile with its width nearly as long as the domain length. Following
the soliton branch further along, the profile than gets more compact: the edges rise and the peak
drops while the form destabilizes as seen in 4). Close to the endpoint from the higher domain sizes,
the profile is close to the form of a sinusoidal function, see 5). Then over the next pictures 7-9) it
gets back into the form of a composite soliton with multiple peaks. It seems like it is composed
of more than two fronts like the standard composite soliton. All profiles 7-9) as well as the not
shown profiles in between suggesting that it exists just as a side effect of the small domain length
due to the lack of physical evidence. The existence of such a soliton seems interesting though
ignoring the fact that it is unstable and probably exists due to a numerical effect.

The next step is to take a deeper look at a bifurcation diagram in a regime where no numerical
side effects take place. It will be done in the next section using a domain length of L = [-67,67]
which is in between both here discussed length of [-20,20] and [-15,15].

5.1.3 Connection to previous numerical results

In this section, the bifurcation diagram for a domain length of L = [-67,67] will be examined
and the connection to the pulsating soliton, moving solitons, or other previous numerical results
described in section [3],,Localized solutions and soliton resonance in cubic-quintic Ginzburg-Landau

equation” will be shown. The resulting bifurcation diagram is shown in figure [36]

2
nt
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0

Figure 36: a) Bifurcation diagram. b) Zoom of the snaking regime (not included: the first stable
area) with a brown (gray for ¢) and pink for d)) coloured branch corresponding to
the pitchfork bifurcation. ¢) Zoom of the region of the first stable area of the snaking
regime. d) Zoom of the fold at about ¢ = 0. The hopf bifucation which is on the pink
line and not on the black soliton branch. System parameters: L = [-67,67], 5 = 0.08,
uw=-0.1,v=-0.1, D=1 and € = 0.66.
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5.1 Dynamics of localized states

First of all the rather strange-looking domain length of [-67,67] was taken to observe possible
differences in the bifurcation diagram, for example the sinusoidal shape (as in figure[356)). Maybe
this shape allows for a better fit of the solution profile into the domain. On first glance this is not
the case because the bifurcation diagram, shown in figure is similar to Just the periodic
sequence seems irregular at the snaking regime: At the end of a stable area, there occur two fold
points instead of the pitchfork bifurcation followed by a fold point. This changes nothing within
the context of the number of unstable eigenvalues and might be a numerical error, because of the
still changing curvature afterwards.

In the inset diagrams b-d) the side branches of several pitchfork bifurcation are shown. It
looks like there is always just one branch emerging because both branches share the same measure
which results in an overlap of both within the diagram. Picture[36{d shows a zoom of the pitchfork
bifurcation point near § = 0. Again, there occur a lot of hopf bifurcations due to the global
instability of solitons for positive gain § > 0. This results in a lot of hopf bifurcations on the
soliton- and the subcritical pitchfork bifurcation branch. The latter is stabilized by a fold-point,
giving a set of stable solutions. It is then as well destabilized by a hopf bifurcation (which only
occurs on the pink branch, not on the black one) and undergoes a series of destabilizing and
stabilizing fold-points while increasing its intensity measure. A similar behaviour can be seen
in the inset diagrams and c). At both pitchfork bifurcation points, a subcritical bifurcation
occurs and is afterwards stabilized by one fold-point. This results in periodically occurring stable
solutions for the transition from stable to unstable and periodically unstable solutions for the
other transition from unstable to stable.

So after understanding the behaviour of the emerging branches from the pitchfork bifurcations,
the same can be done, in theory, with the hopf bifurcations. The difference in analysis is the time
dependant branches of the hopf bifurcation which complicates the numerical process. To include
those solutions into the simulation a second coordinate, namely time z, needs to be added to the
continuation process. This not only needs a mean time-intensity measure but also complicates
the elliptical numerical problem. Therefore in this work no analysis of the branch structure of the
emerging branches of the hopf bifurcation is given. To still get values of the presence of a hopf
bifurcation: It is possible to use direct numerics to gain insight into the solution profile if there is
a stable branch emerging. In general direct numerics can be used to test the continuation results:
A stable solution profile of the continuation can be analyzed via direct numerics and if it then
stays stable within that simulation, it supports the stability claim, else there might be an error
within the simulation.

Now, to classify all different types of solutions within the bifurcation diagram [36] using the nomen-
clature of previous results (see section ,,Localized solutions and soliton resonance in cubic-quintic
Ginzburg-Landau equation®) the solution profile must be analyzed. In figure [37|on the next page,
the bifurcation diagram and several solution profiles are shown.

The plain pulse is the result of a direct numerical simulation (see picture and is therefore used
as a starting point for the numerical continuation. This means that a stable plain pulse exists (see
picture within the resulting bifurcation diagram. Its profile is shown in subfigure 1). The
plain pulse is found on the soliton branch emerging from the homogeneous zero state. Its height

grows along that branch until it is stabilized at a certain height with a fold-point.
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Figure 37: a) Bifurcation diagram with domain size L = [-6m,67]. 1-12) Solution profile marked
in figure a) with lightly blue stars. System parameters: 5 = 0.08, u = -0.1, v = -0.1,
D =1 and € = 0.66.
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5.1 Dynamics of localized states

There is also an upper limit to the peak height of the plain soliton, as a hopf bifurcation occurs
and the plain pulse solution becomes unstable. But this hopf bifurcation enables the existence of
the pulsating soliton solution (see picture . Even though the time dependant branches from
the hopf bifurcation were not analyzed using continuation, it is still possible to connect them to
the pulsating soliton because of the direct numerical analysis. As seen in picture 30} the pulsating
solution is stable for 6 = —0.1 which is the parameter regime where the hopf bifurcation occurs.
By varying different system parameters it can be seen that this bifurcation changes position or
vanishes completely and those changes can be seen as well in the direct numerical analysis. One
example of this is the change in €, as it is described in section [5.1.6],,Different parameter changes®.
When following the plain pulse branch further along towards the regime of § > 0 it can be seen
that the plain pulse (subfigure 1) slowly becomes a composite pulse (see picture . This can be
seen in subfigures 2 and 3). Next up, the composite soliton grows in width, as seen in the solution
profiles 3-6), building a straight line within the bifurcation diagram. The growth in width can be
seen in the lightly blue drawn absolute value profile, but the red coloured real part gives a better
insight into what is happening in this process. The real part of the composite soliton consists of
a periodic sequence of maxima and minima. When the pulse is growing in width the number of
peaks increases until no more peaks can be built because the maximum width is achieved. During
this snaking process, there is multistability of composite solitons with different widths at a given
0. This 0 can be called Maxwell-point and the growth of the composite soliton follows along
the corresponding Maxwell-line. This nomenclature originates from two colliding objects like two
fronts of the composite soliton in this case. The Maxwell point, as well as the Maxwell line, are
important to determine because higher energy solitons can be found there.

The next solution types that can be found within this bifurcation diagram are the moving solitons
(see[L4). They can be found as a part of the inset diagrams [37p-d). Marked with number 12) is a
stable moving soliton solution. It is part of the right-moving branch of the pitchfork bifurcation.
To make sure that it is indeed a moving solution the resulting profile was put in as an initial

condition for a direct numerical simulation. The outcome can be seen in figure

e 6
7
6 6

3 i
5 5
4 4

-~ 4] -~ o]
3 3
-3n 2 -an 2
1 1
rt’m 0 rén o

500

marked with 10 marked with 12

~

w

Figure 38: Direct numerics simulation of the solution profile of the marked points in figure
a) marked with 12 and b) marked with 10. System parameters: § = 0.08, pu = —0.1,
v=-0.1, D=1 and ¢ = 0.66.

Next to it, figure shows the direct numerical result for the second type of moving soliton
marked with 10) in figure It can be seen that both are indeed moving solitons. The difference
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5.1 Dynamics of localized states

in velocity comes from the more asymmetric position of the peak. Another aspect is that the
branches from all pitchfork bifurcations in the composite soliton regime follow along the Maxwell-
line and undergo several bifurcations. They all end somewhere within that line due to numerical
dependencies.

The stable regime of moving solutions is cut of by another hopf bifurcation. The emerging time
dependant branches might correspond to the creeping solutions of figure because of the added
time dependence which is needed for this type of solution. But these snaking solutions were not
be found using direct numerics which can be due to numerical errors.

There is a paper by Knobloch and Kao [5I] that gives an ansatz to calculate approximately the
Maxwell point which is useful because it characterizes the bifurcation diagram and has there-

fore also predictive usage. They used a different variation of the cubic-quintic Ginzburg-Landau

equation
A 2A A A*
04 _0A, .4 +1(a1 AP 24 1 o ap 24 ) FHIAP A=Al A, (108)
9z o2
and looked into stationary solutions of this equation [10§
2A A*
0- ‘?W +,uA+1(a1 AP 24 1 o ap 24 )+b|A|2A— AL A, (109)

and used it as a (real) fourth-order dynamical system, by taking into account the two continuous
symmetries, namely translation and phase shift symmetry. Due to Noether’s theorem, there are

two conserved quantities and they are given by [52]

Be= o+ 20,0 AP + |24 +g|A|4-(§+—“2(“16“”2))|A|6 (110)
i 0A" O0A ay+az, 4

Lt (222 04 mrar 111

(4% - % ) e (111)

Using this definition it is possible to define a potential U, to construct a linearized system, and
in the end to approximate the Maxwell-point.

In theory, it should be possible to do a similar ansatz that could be applied for the here used
version of the Ginzburg-Landau equation if the general solution set is restricted to a subset
with translation and phase shift symmetry. The problem is that in this case, it is hard to find
those two conserved quantities because in general, they are not conserved for the complex cubic-
quintic Ginzburg-Landau equation [53]. Therefore it was too hard to use this approach to gain
an approximation for the Maxwell point. Nevertheless, there was another idea that the Maxwell
point might be connected to the soliton resonance phenomenon due to the increase in energy on
the Maxwell line. This will be discussed in the section Soliton Resonance”.

Now the behaviour of the composite soliton within the Maxwell line following the regime of
maximum growth in the initially analyzed bifurcation diagram in picture will be examined.
As it can be seen in subfigure 7-9), the solution profile shows an analogous behaviour to the one
analyzed earlier for L = [-10,10] until the periodic sinusoidal structure occurred (see picture [35):
A deformation of the composite soliton takes place until it ends up in a fold point with a periodic

profile with eleven maxima at the end of the branch. In the following section, other possible
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5.1 Dynamics of localized states

connections to the fold point will be examined. One possible connection is the continuous wave

solution.

5.1.4 Continuous-wave solution

One possible connection to the fold point at the end of the soliton branch in figure [36| might be the
continuous-wave solution or for short cw solution. Continuous-wave solutions can be characterized
by their non-space t dependant profile causing a homogeneous intensity profile which still is
affected by time z dependant chances to its phase corresponding to its real and imaginary part.

Mathematically speaking these are solutions of the following type
A(t, z) = Ag -9, (112)

The idea behind the possible connection to the end of the soliton branch comes from the snaking
regime. At the end of it, the composite soliton nearly fills the whole domain length. Ignoring the
maximum in the middle that looks similar to a homogeneous solution so that a transition to that
type of solution is imaginable. Nevertheless, a direct transition does not occur possibly due to
a different structure or due to the domain length. Therefore the composite soliton deforms and
undergoes bifurcations until the branch ends in a fold point.

There are two different solution types for spatial homogeneous solutions. One is the above-
mentioned cw solution described by equation and the other is a true homogeneous solution
in space and time A(t, z) = Ag. The cw solution is a more likely candidate because of the more
similar structure to the time and space dependant soliton branch with the remaining phase in the
ansatz. Furthermore, the constant zero solution of the complex cubic-quintic Ginzburg-Landau
equation should be already connected to the beginning of the soliton branch.

To examine the possible connection, a numerical continuation of the cw branch is done. Therefore
the initial solution function from a direct numerical simulation needs to be inserted to start the
continuation process. There is an easy way to obtain such a result by calculating an ansatz for
the direct numerical approach:

First of all the cw ansatz of equation A(t,z) = Ag-e7*? is inserted into the complex cubic-
quintic Ginzburg-Landau equation (equation

oo =(ar5i 4 0A+ (e+) AP A+ (u+ri)|A* A (113)
z

0A (ﬁ D,) 9’A
2 ) ot?

which gives
—iwAg e = 15 A + (e +1)AS - e 4 (p+ Vi) A - eV, (114)

using the relation |A|2 = A(Q) and the t derivative vanishes due to the lack of ¢ dependency. Dividing

by e7“? the equation becomes

—iwAg = 6Ag + (e +1)Af + (u + vi) A, (115)

62



5.1 Dynamics of localized states

Now the equation is split up into a real and imaginary part

Re) 0=0A¢ +cA] + pA)

(116)
Im) -—w=A2+vAL

Now, to gain an ansatz for the direct numerical simulation, the real part equation can be evaluated

further to determine an equation for A2. The simplified real part equation is given by

0=0+ecA3+ nAg. (117)

therefore an expression for A(Z) can be calculated directly

Y Sy (118)
TR
2
- AZ--S 4 8—2—é. (119)
2 ps p

A solution of the equation exists if % > % due to the square root. Now the starting point of the
primary continuation parameter is in general a variable. To not have a problem with the existence
of the continuous wave solution, the continuation is started at § = 0, which simplifies the above

equation to

DT SR A (120)
07 9y 412
A2-_5 & 121
= 0779, %9, (121)
9 0
= A= (122)
I

so that the ansatz for the direct numerical approach is given by A% = —‘E—L.

To do a continuation for the continuous wave branch the number of additional constraints must
be adapted. Normally there are two additional constraints needed for the analysis of localized
solutions of the complex cubic-quintic Ginzburg-Landau equation namely phase-shift symmetry
and translation symmetry. Those symmetries are represented by the Lagrange parameters of
the phase-shift velocity w and v within the implementation. For more information about those
additional constraints see section ,Phase shift symmetry and translation invariance and
for their implementation section [£.2.3.3] ,Additional constraints".

The phase-shift invariance equation

0A
AA- — =
ot

I
=
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5.1 Dynamics of localized states

This relation is always true for the cw branch and therefore only the additional constraint for the
phase-shift symmetry must be added. Therefore for the continuation the translational invariance
parameter ¢2 is erased from the implementation for example in glld qf.m and glld sGjac.m.

The resulting bifurcation diagram for the cw branch with periodic boundary conditions is shown
in figure [39]
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Figure 39: Bifurcation diagram for the continuous wave branch with periodic boundary conditions.
System parameters: L = [-6m,67], 5 =0.08, p=-0.1, v=-0.1, D=1 and ¢ = 0.66.

The continuation is started at 6 = 0 and done twice once in the direction of positive § where
the branch stays stable and the other time into negative ¢ direction which gives a more complex
behaviour as seen in figure [39] The branch stays stable until it is destabilized by a lot of pitchfork
bifurcations. With a fold point, it develops again into the direction towards § = 0. Then a series
of stabilizing hopf bifurcations with destabilizing pitchfork bifurcations occur until just a few
eigenvalues are unstable and the branch ends in a fold point. Another important point is that the
number of changing stabilizing or destabilizing eigenvalues is twice as high for this simulation as
it would be expected for a hopf or pitchfork bifurcation. This is explained by the fact that there
might be more bifurcations in between which are restricted by the periodic boundary condition.
To verify this claim the same simulation is done with Neumann boundary conditions (vanishing
derivatives at the end of the domain). It can be seen in figure [40| on the next page.

In this picture [0] several more bifurcations can be seen in contrast to figure where the emerg-
ing branches correspond to non-periodic solutions. Here the number of eigenvalues that change
stability fits the expected amount. Therefore the bifurcation diagram with periodic boundary
conditions makes sense within this context.

The next step is to understand what kind of solutions can be found on the secondary pitchfork

bifurcation branches. This continuation is again done with the two auxiliary conditions connected
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Figure 40: Bifurcation diagram for the continuous wave branch with Neumann boundary condi-
tions. System parameters: L = [-67,67], 8 = 0.08, u = -0.1, v = =0.1, D = 1 and
e = 0.66.

to the free parameters w and v. If that continuation is done with only one additional constraint,
a lot of bifurcations get falsely detected due to the changing, not fixed free parameter. Therefore
to gain a meaningful result the continuation needs to be done with two constraints which makes
also sense because of the assumed connection to the soliton branch.

The following figure [41| (on the next page) shows the solution profile at different positions on the
cw branch and secondary branches.

The solution profile on the cw branch, see ﬁgureproﬁle 1), is by construction a constant solution
in space t with a phase that changes with time z. The height of the solution changes along the
branch and is stable until a certain threshold under which it changes stability. In the solution
profile 2-4), there are periodic sinusoidal solutions with a changing periodicity corresponding to
a certain amount of maxima existing within the domain size. This number is connected to the
order in which the bifurcations occur. So the seventh bifurcation has seven maxima as shown in
figure 1). As a reminder, there are twice as much unstable eigenvalues as the bifurcation point
number due to the periodic boundary conditions. The three shown branches all reconnect to
another pitchfork bifurcation of the cw branch after the fold point. This is true for most of the
other bifurcation points but there are a few exceptions like the first bifurcation which secondary
branch has moving solutions and does not seem to reconnect again to the cw branch.

By comparing the end of the soliton branch in figure|379) and secondary branch from the eleventh
bifurcation point in figure [41| 3) they have close to the same solution structure. Therefore those
two branches might be connected via a pitchfork bifurcation. This will be examined closer in the

next section.
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Figure 41: a) Bifurcation diagram for the continuous wave branch and secondary branches with
periodic boundary conditions and marked positions. 1-4) Solution profile marked in
figure a) with lightly blue stars. System parameters: L = [-67,67], 8 =0.08, u=-0.1,
v=-0.1, D=1 and € = 0.66.
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5.1.5 Connection between cw branch and soliton branch

To examine the connection between the cw and the soliton branch both will be shown together in
the following figure

2
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Figure 42: a) Bifurcation diagram for the soliton and the cw branch. In the inset diagrams a zoom
b

of b) the end c) the beginning of the soliton branch is shown. System parameters:
L =[-6m,67], 8=0.08, u=-0.1, »v=-0.1, D=1 and ¢ = 0.66.

In figure [42] the soliton branch and the cw with the secondary branch of the eleventh pitchfork
bifurcation in the case of periodic boundary conditions. There are also two inset diagrams that
show the beginning and the end of the soliton branch. Starting with the end of the branch in

subfigure [42b one can see that the fold point of the soliton branch is in fact connected to the
2

pitchfork bifurcation point of the purple secondary cw branch when looking at the shown |A[;
measure. To verify this claim a continuation of the branch emerging from the pitchfork bifurcation
of the secondary cw branch is done. As the graphic suggests, the emerging branch is indeed the
soliton branch. Therefore the end of the soliton branch is connected to a secondary bifurcation of
the continuous wave branch.

Another connection between the cw and the soliton branch can be seen in subfigure [42. Here the
fold point of the black soliton branch connects to the last pitchfork bifurcation on the cw branch.
It is number 26 counted within the periodic boundary conditions. This connection is again verified
using another continuation of the cw branch. The continuous wave branch ends in a fold point at
0 = 0 connecting to the constant zero solution.

To sum up, the cw branch is connected to the soliton branch once directly and indirectly over a
secondary cw branch. In general, there are a lot of either not shown or not analyzed pitchfork and
hopf bifurcations on the soliton, cw, and on the secondary cw branches. Due to the number of
bifurcations and their high amount of unstable eigenvalues it is hard to find, select and evaluate

those which might show another interesting behaviour change of the solution possibly leading to
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5.1 Dynamics of localized states

new stable solution types. The analysis in this work includes a lot of important structural changes
but there might be more.
The next section it is analyzed how and if at all the soliton, cw branch, or its connection changes

when varying different system parameters.

5.1.6 Different parameter changes

In this section, the impact of parameter changes on the bifurcation diagram is of interest. There
are a lot of possibly interesting changes that can occur like bifurcations vanishing or new ones
arising. Especially the impact on the connection between the cw and the soliton branch will be

analyzed.

5.1.6.1 Impact of the domain size L

First up is the evaluation of the bifurcation diagram when the domain size is changed. The results

are shown in figure [43]

10

(a) o \A\z 71
— Re(A) 6
6 54

8

SAAVAVAVAVAVAVAVAVAVAVA IPR-
L=

2 e~ 3 3

10

—10 0

(c) L =[-15,15] (d) L =[-10,10]

Figure 43: Bifurcation diagram for the continuous wave branch and soliton branch to show their
connection for a varying domain size. The solution profile of the last point on the
soliton branch which is marked as a light blue star is also shown within the figure. a)
L =[-20,20] b) L = [-6m,67] ¢) L =[-15,15] d) L = [-10,10]. System parameters:
£5=0.08, u=-0.1, v=-0.1, D=1 and € = 0.66.
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By comparing the subfigures from [#3a] to [£3d] it can be seen that the number of maximums at
the connection point is correlated to the domain size and the bifurcation point number on the
continuous wave branch: For the similar domain length of L = [-6m,67] and [-20,20] (as shown
in figure and the connection to the cw branch is at the eleventh bifurcation point and
here the solution profile shows also a sinus-like solution with eleven peaks. If now the domain
size is smaller like for L = [-15,15] as in figure it can be seen that in both cases the number
shrinks to nine.

The last subdiagram shows why there is no connection between both branches for L =
[-10,10], because there are no bifurcation points on the branch before the destabilizing fold
point. Therefore there can not be a reconnection of secondary pitchfork bifurcation branch from a
bifurcation point before the fold point to one after it, which causes the missing connection between
the cw and the soliton branch for this domain size. The connection at the beginning of the soliton

branch with the cw branch remains.

5.1.6.2 Impact of the nonlinear gain ¢

The next parameter which is changed is the nonlinear gain or loss that depends on the sign of
€. In contrast to the domain size L it is possible, for this parameter, to do continuations using e
as control parameter due to the appearance in the Ginzburg-Landau equation (eq. [20) and the
implementation in the numerical model. This enables more methods to analyze the impact of
changes in € onto the bifurcation diagram. One of them is the fold continuation. Here a fold point
within an already simulated bifurcation diagram can be selected and changes onto its position
can be analyzed by drawing its position in phase space while changing one parameter (here ¢). If
this is done with all fold points one can get an understanding of the impact of € changes onto the
initial bifurcation diagram. Here the fold continuation will be done using figure [37] as a reference

point. The results are shown in figure [14]
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Figure 44: Fold continuation of the different fold points of the bifurcation diagram in figure
The number of the fold point is counted from the bottom beginning of the soliton
branch. System parameters: L = [-67,67], 8 =0.08, u =-0.1, v = -0.1, D = 1 and
e =0.66.
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To understand this fold continuation diagram it is useful to look at the behaviour of the different
fold points step by step. The biggest changes can be seen for the first fold point indicated by the
red line. For € - 0 the fold points position is also shifted to § — 0. Therefore the diagram is
shifted to the right side when decreasing €. That works also the other way around: By increasing
€ the diagram moves to more negative §. Here occurs an endpoint because at about € = 1.17 the
line ends which means that the structure of the soliton branch changes so much that the fold
point disappears. The same can be seen for the higher numbered fold points. Their branches all
lay next to each other in the d-¢ plain because they all occur at roughly the same § within the
Maxwell line. They all seem to disappear at given values and show the same behaviour.

To now understand the structural changes onto the bifurcation diagram a few diagrams are made

by varying e. A basic overview can be seen in the following figure [45]
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Figure 45: Bifurcation diagram for different e values. a) e =0.5b) e =0.57 ¢) £ =0.66 d) € =0.75
e) € = 0.8 and f) e = 1.0983. System parameters: L = [-67,67], 8 = 0.08, u = -0.1,
v=-0.1and D=1.
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For € = 0.5 and ¢ = 0.57 (subfigure and it can be seen that the majority of the soliton
branch is in the area of positive § and is therefore unstable like the composite solitons on the
Maxwell line or the moving ones. Only the stable soliton solution is the plain pulse. The subfigure
represents the already analyzed diagram [37] with all different kind of stable soliton solutions.
This was discussed in-depth and is shown as a reference point to the other diagram with different
€. Figure shows the bifurcation diagram for € = 0.75. Here the second fold point does not
appear and with it the stable moving soliton solution. Also the hopf bifurcation point responsible
for the pulsating soliton solution is shifted further along the soliton branch and is nearly collided
with the next bifurcation point. The impact of this can be seen in figure [45€] this hopf bifurcation
vanishes and no pulsating solitons exist in this parameter regime. e = 1.0983 is near the value
of the end of the first fold point branch in the fold continuation (figure [{4). It can be seen that
the whole Maxwell branch disappeared and only stable plain pulses exist. All in all, it can be
seen that changes in ¢ result in a shift to the side of the soliton branch as predicted with the fold
continuation diagram.

Using those bifurcation diagrams it is possible to roughly estimate the region of existence of
different types of solitons. To make a good guess a smaller step size is needed which takes a lot
of computing time. But it is possible to compare the results to other works where this region was

estimated with more detail as in [7]. Their results can be seen in the following figure
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Figure 46: Estimation of the region of existance of different kind of solutions like fronts (horizon-
tally hatched lines) stationary pulses (vertically hatched lines), period doubled (gray
area) and chaos (white area) in the v-¢ plain. The enclosed regime is the region of
existance for pulsating solitons. System parameters: g = 0.08, p = -0.1, D = 1 and
0=-0.1. [7]

By taking the cross section at v = —0.1 this diagram shows the region of existence of different
solutions in the here analyzed parameter regime. It can be seen that at § = —=0.1 there should be
plain pulses for € = 0.5 and 0.57 (subfigure and , pulsating solitons exist at about € = 0.66
(subfigure and front solutions are stable for higher € namely ¢ = 0.75, 0.8 and 1.0983 (figure
to . This fits to the results in figure The only differing point is that for the higher
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€ values only the statement can be made that there is no stable soliton solution, but it is likely

that there can be continuous wave solutions or a front solution.
5.1.6.3 Impact of other parameters

Lastly, the impact of the remaining parameter namely p, v, 8, and D will be depicted. A basic
overview of their impact will be analyzed using fold continuation diagrams. The fold continuation

diagrams for the different parameters are shown in the following figure 7]
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Figure 47: Fold continuation of the different fold points of the bifurcation diagram in figure
The number of the fold point is counted from the bottom beginning of the soliton
branch and the continuation is done in a) pu b) v ¢) f d) D. System parameters:
L =[-6m,67], 8=0.08, u=-0.1, v=-0.1, D=1 and ¢ = 0.66.

All fold continuation diagrams have in common that the higher fold points all vanish and some
bifurcations collide as it can be seen clearly for figure and the line corresponding to fold points
three and four. Even if for some continuations it seems like the higher fold points have a more
interesting behaviour change, this vanishing of the snaking regime occurs in all diagrams at some
parameter value. The change of the first fold point within all diagrams seems to change more
drastically. If the secondary parameter change results in a § value near § = 0 a big part of the
bifurcation diagram will be in the positive gain regime and therefore all soliton solutions there
are unstable. The graph of the first fold point shows in which direction the bifurcation diagram

is shifted if the control parameter is changed. This can be symmetric as for 5 or in a nonlinear

72



5.2 Soliton Resonance

way which can be seen for the other parameters. In general, the stability of branches and the
appearance of bifurcations will change with the continuation parameter as well. This was seen
for the change in ¢ in figure [45] and is also expected here. To verify this a more in-depth analysis
is needed. This is not done here because a bifurcation diagram analysis of the stable regime of

different soliton solutions is not only inaccurate and inefficient but also not the main goal here.

5.2 Soliton Resonance

To analyze the soliton resonance phenomenon the parameter set is changed into the region of
normal dispersion D < 0. This is done to fit the parameter regime of previous results as depicted
in ﬁgureand The changed parameters are L = [-67,67], d = -0.1,e =1, 5 =0.08, u = -0.003
and v = —-0.01. Note that J is not the primary continuation parameter and fixed in this case. Now
D is taking up that role to be able to see the resonance.

First, the resonance results in figure are reproduced using direct numerics. This is done by
starting at a certain D value (here D = —1) and then simulating 15 numerical time steps. The
results are taken as an initial condition for the next step with a step size of AD = +0.02. By
repeating these steps a numerical continuation diagram can be made. It is shown in figure [4§]

below. Note that a different solution measure in comparison to earlier
2 2
Q=1L = [ AP at (123)
teL

is used here. This is done to make the results comparable to previous works in the context of

soliton resonance where they use the energy () as a measure.

25000 1 : — =2

20000 4

15000 -

10000 -

10°4
5000 -
10-14

T T T T T 102 T T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 -16 -14 -12 -1.0 -08 -06 -04 -02 0.0
D D

(a) normal scale (b) logarithmic scale

Figure 48: Direct numeric results that show a soliton resonance for € = 1 or 2 by varying D in
normal scale a) and logarithmic scale b). System parameters: L = [-67,67], 6 = —0.1,
B =0.08, u=-0.003 and v = -0.01.

As it can be seen in figure [48] the energy of the soliton connected to @ rises exponentially like in
the previous results in figure This continues when decreasing D until it hits a threshold and

the solution stays on the same energy level. Another difference is the not-shown branch for ¢ = 3.
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This is because there was no stable soliton solution at the starting point D = —1.0.

While switching to positive D there is also a small maximum, this is due to the insufficient
evaluation duration of 15 dimensionless timesteps. If the numerical process is evaluated further
the solution drops exactly to a constant zero solution for D = 0. This phenomenon probably
occurs because the soliton branch becomes unstable there and more timesteps are needed to find
the stable solution.

To understand where those differences come from the solution profile is shown in figure [49] for a

few positions within the diagram.
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Figure 49: a) Soliton resonance diagram with marked positions. Their profile is shown in 1-6).
System parameters: L =[-6m,67], § =-0.1, =1, §=0.08, u=-0.003 and v = -0.01.

The plain pulse in subfigure 5) grows in width and height when decreasing D until it reaches the
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resonance area (see subfigure 4). At that point, the plain soliton just increases in width which
can be seen in subfigure 2 and 3. Afterwards, it changes its shape to a homogeneous one and
stays on the same energy level (subfigure 1). That profile structure does not change anymore by
decreasing D. For positive D only a constant zero solution exists (subfigure 6).

By looking at the direct numeric results there seems to be a bifurcation occurring that switches
from the soliton branch to the constant zero solution and one where the soliton branch switches to
the cw branch. Also, that growth in width while increasing in energy might again be connected to
a snaking process. To test those claims the next step is to use continuation to make a bifurcation
diagram to recreate the direct numerics results.

Again the stable plain soliton at D = —1.0 is the starting point of the numerical analysis. The

continuation results are shown in figure [50]
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Figure 50: Bifucation diagram within the regime of soliton resonance with normal scale a) and
logarithmic scale b). The inset diagrams show the snaking regime. System parameters:
L=[-6m,67],6=-0.1,e=1, 3=0.08, u=-0.003 and v = -0.01.

In figure [50] the resulting bifurcation diagram is shown in normal and logarithmic scale. The
logarithmic scale is important for the comparison with the other results and the normal scale
allows for an easier view of the bifurcation behaviour of the high energy solitons. This simulation
is numerically tedious due to the high increase in energy therefore a lot of steps are simulated
with a high steps size and a low amount of calculated eigenvalues which results in not detected
bifurcations. An example of that is the transition from positive to negative D. There is a stability
change present but no bifurcation is detected. The bifurcation probably occurs at D = 0, because
the point of stability change is shifted further to it the more eigenvalues are calculated. This is
also in agreement with the direct numeric results in figure [4§] where a transition to the constant
zero solution occurs at D = 0.

The continuation towards more negative D shows the more interesting resonance phenomenon.
The soliton branch starts to rise in energy and undergoes a few fold points they seem to change
the stability of the branch only in a very small parameter regime, but after the hopf bifurcation
the branch expands while undergoing a lot of fold and pitchfork bifurcation points as it can be

seen in subfigure b). Here is also a constant change of stability as in the earlier discussed snaking
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5.2 Soliton Resonance

regime. The occurring pitchfork bifurcations all reconnect onto the branch at a later fold point (see
subfigure c). At a certain height, the branch becomes completely unstable and stops increasing in
height until it ends in a few fold points. Therefore it seems that there is another snaking regime
that is connected to an energy increase. Maybe it is as well connected to a Maxwell point. Another
interesting point is the solution structure of the secondary pitchfork bifurcation branches. Their

and a few other profiles can be seen in the following figure
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Figure 51: Bifurcation diagram with marked positions. Their profile is shown in 1-9). System
parameters: L = [-6m,67], d =-0.1, e =1, =0.08, u=-0.003 and v = —0.01.
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5.2 Soliton Resonance

In general, the profile on the soliton branch follows along the direct numerics results of figure [49]
Here the solution also increases in width and height (subfigure 1-2) until it is only increasing in
its width (subfigure 3-5). In contrast to the Maxwell point earlier where a composite pulse was
increasing in energy, here it seems to be a plain pulse. By looking into the real part of the snaking
regime one can see two periodic structures with a high frequency at both ends of the soliton.
Their high frequency seems to decrease along the snaking regime so that there is a decreasing
phase-shift velocity w. In the end, some periodic structure is found on the side of the solution in
its absolute value. It is an unstable structure with a vast amount of maxima and minima at the
edge (see subfigure 6). The profiles in figures 7 to 9 fit the ones directly on the soliton branch and
do not show much difference.
Next up is the analysis of the possible transition onto the cw branch. Therefore the cw branch
needs to be added to the bifurcation diagram again. Possible values for the amplitude of the cw
branch were already calculated in section [5.1.4] ,Continuous-wave solution“. Equation [I19] yields

A% -5, i _ é

2u 4p? p

This shows that the continuous wave solution is independent of the parameter D and the amplitude
can be caluclated using this equation by inserting the other parameters. The independence has two
main implication for the analysis. Firstly it is not useful to do a continuation of the cw branch
because it will just ,jump“around the real solution due to numerical errors and no additional
information will be gained. But secondly it also means that the cw branch can be drawn into the
bifurcation diagram as a constant line by calculating its measure because of the independence of
D. This is done in figure [52] for both ¢
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Figure 52: Bifucation diagram within the regime of soliton resonance with cw solution added for
€ =1 and 2 with a logarithmic scale. The dashed line represents the prediction of the
value where the resonance occurs by equation . System parameters: L = [-67,67],
6=-0.1, 8=0.08, = -0.003 and v = -0.01.
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5.2 Soliton Resonance

It can be seen that the cw branch fits perfectly on top of the soliton branch for both e. This
explains the transition onto the cw branch in the direct numerics results. The results for € = 2
are in shape and form similar to the one for € = 1. It is just shifted in position which fits with the
numerical results in 48| and with the previous results in figure

By comparing the results with those of the approximation by the method of moments in figure
one can see that the left-hand side is an artifact of that approximation but the exponential
increase and the position seems to fit better. The slight increase for positive D in the diagram
can not be seen within the here described results. Only the direct numerics results in figure
show also a slight increase, but this is due to an insufficient number of timesteps for the given D
value. In general, there should not be a stable soliton solution for D > 0 and that might be as well
an artifact of the approximation. But there is another benefit of this method because it allowed

them to make an approximation of the value at which the resonance occurs (equation

b (3.8V ) 6.333)&
I €

This value is marked with a dashed line in figure 52l This line just fits for e = 1 but especially
for € = 2, it seems to just hit the general region of the resonance. The same can be seen for the
results of Akhmediev etc in figure 21] and Therefore the equation fits for € = 1 but in general
it makes an approximation for the general region where the resonance is occurring.

The next step is to analyze whether it is possible to increase the energy of a soliton infinitely.
The cw branch is capping the soliton branch in energy so if the width of the domain is increased,
the soliton branch occurs at higher energy. Therefore maximum energy of the soliton should be
connected to the domain length and for an infinite domain, there could be infinite energy solitons.
It is hard to widen the domain in length due to numerical problems in the continuation as discussed
earlier in section[5.1.2],,Different domain sizes”. Therefore the same analysis is done with decreasing
domain length to understand the connection between domain length and maximum soliton energy.
The results of the continuation can be seen in the following continuation diagram (see figure
on the next page).

In figure 53] it can be seen that the height of the cw branch and therefore the maximum energy
of a stable soliton indeed scales with the domain length. The energy of a solution is connected to
the area under the absolute value curve. So for a solution constant in the absolute value like the
cw solution the domain length directly influences the area under the curve. This effect occurs as
well for the soliton branch which can be seen in figure 53] Therefore in principle if the connection
between both branches remains and the wide soliton stays stable for even higher domain lengths
it is reasonable to assume that the soliton energy is uncapped.

The next topic is the non-existing stable soliton branch for € = 3. To better understand that
behaviour, a continuation from the stable € = 2 branch in e direction is done. The result is shown
in figure [54] which can be seen on the next page.

It can be seen that a destabilizing bifurcation occurs at about € = 2,9. This explains why there
was no stable branch for € = 3 neither in the continuation nor in the direct numerical analysis.

The reason why this might still agree to the other results in figure 2I] and 23] can be the domain
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Figure 53: Bifucation diagram within the regime of soliton resonance for three different domain
sizes L = [—6m,67], [-5.57,5.57] and [57,57]. System parameters: § = -0.1, € = 1,
5 =0.08, 4 =-0.003 and v = -0.01.
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Figure 54: Continuation with ¢ as primary continuation parameter. System parameters: D = —1.0,
6=-0.1,6=0.08, u=-0.003 and v = -0.01.
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5.2 Soliton Resonance

length. A change in domain length might shift this bifurcation to the side and allow for stability
of the € = 3 branch.

In the last section, the parameter regime is shifted back to the anomalous dispersion regime to
analyze possible changes in that part of the parameter space. First, the same parameter set as
in [I8] will be used to see the bifurcation structure in that case, and afterwards the parameter
regime of the pulsating soliton earlier in this work will be used to refer to those results in the end.

Both results are shown in the next figure [55] in different subfigures due to similar results.
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(a) parameters: § = -0.1, 8 = 0.08, u = -0.002, v = (b) parameters: § = -0.1 , 5 =0.08, p = -0.1, v =
-0.001l and e =1 —-0.1 and £ = 0.66

Figure 55: Bifurcation diagram of the soliton resonance in the anomalous dispersion regime. a)
System parameters: § = -0.1, 8 = 0.08, u = -0.002, v = -0.001 and € = 1. b) System
parameters: § = -0.1, 8 =0.08, u=-0.1, v =-0.1 and € = 0.66.

In figure the bifurcation diagram of was replicated using numerical continuation. Here
the results are as well as before strongly depending on the number of eigenvalues used so that the
right destabilizing boundary at about 0.3 is not accurate. The general height of the stable soliton
regime seems to fit the results of figure 24D] with the baseline being on the same energy level at
under 100. Though the maximum energy value of a soliton is slightly higher in this bifurcation
diagram which is maybe due to numerical problems in the direct numerics because the solution
just jumps to the cw branch as in or might be due to an insufficient number of eigenvalues
used in the continuation. Nevertheless, the branch ends in a vast amount of stability changing
pitchfork bifurcation and fold point as it can be seen in the zoomed-in subfigure b). The branch
is not calculated to the end due to numerical problems. The last regime with partially even stable
solutions seems inaccurate due to a constant stability change without bifurcations. Because the
stability can not be verified by direct numerics this is probably a numerical error. An explanation
for this error might be that the in this case unstable eigenvalue is at some evaluation steps within
the 500 analyzed eigenvalues and in others not. This might cause a constant stability change
without bifurcation. The whole soliton branch is at much lower values than the continuous wave

branch is calculated to be. A connection is still expected due to the simulation stopping because
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of numerical dependencies.

The figure shows a more familiar behaviour, like in figure [52]in the normal dispersion regime
only that it occurs at lower energies.

To sum up, the soliton resonance occurs in both the normal and the anomalous dispersion regime

even if the maximum energy of the anomalous one is not as high as in the normal regime.
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6 Conclusion and outlook

In this work, the dynamics of localized states in the complex quintic-cubic Ginzburg-Landau
equation were analyzed using numerical methods namely the arclength continuation method im-
plemented in pde2path and a direct numerical analysis using a Fourier approach and the Runge-
Kutta method. The goal was to create bifurcation diagrams to further investigate the connection
of various localized solutions like the composite and the moving soliton and the energy increase
within the soliton resonance. The purpose of this section is to provide a final summary of what
has been achieved while highlighting the most important points and giving an outlook on further
aspects.

The starting point of the analysis was to find a parameter regime with a stationary and stable
solution to start the continuation process. The time evolution of a stationary solution can be
seen in figure Because the exploding solitons were already analyzed in [12], a parameter space
corresponding to pulsating solitons namely D = 1.0, 8 =0.08, u=-0.1, v = -0.1 and € = 0.66 with
0 as primary continuation parameter as in [7] was used. To draw a bifurcation diagram a solution
ilax (see equation
of the soliton as the measure but due to shrinking spirals as in ﬁgure it was hard to display
all the information at once without zooming in multiple times. Therefore the total intensity divided
by the domain length |A[?,
With this measure, it was possible to highlight different aspects like the Maxwell line or the hopf

measure must be chosen. The initial idea was to take the maximum intensity |A|

(see equation [107) was used in the following bifurcation diagrams.

instabilities in the positive d regime even though the division by the domain length was obstructive
in the soliton resonance case mostly because of the different measure of other results for example
as [16] or [I8]. Thus it was omitted in that context and the energy ) was used as a measure. It
is in principle possible to adjust the measure to @) in the first case as well, but the logarithmic
scale makes it more unintuitive to understand.

Next up, an appropriate domain size for the numerical analysis was chosen. In general, the
quality of a numerical simulation, in this case, depends on the step size, the number of calculated
eigenvalues, the tolerance of excepting a solution, and the quality of the initial function. One
recurring problem is that the output Matrix can be singular to working precision due to small
structures for example within the snaking area which can limit the numerical analysis. This
can be seen for the simulation with a domain length of L = [-20,20] in figure Here the
numerical simulation ends without finding the end of the branch. To circumvent that problem a
smaller domain length was needed, but not too small because then it might impact the physical
behaviour of the soliton which can be seen in figure and A continuation with the domain
length as the primary continuation parameter might give further insight into that topic. In the
end, a domain length of [-67,67] was used for the rest of the analysis. The 7 periodicity seems
to have no impact on the soliton branch which can be seen by comparing figure [34b] and [36]
With the outside factors set it was finally possible to draw a bifurcation diagram of the full soliton
branch. This can be seen in figure[37] where the black soliton branch and three secondary pitchfork
bifurcation branches are depicted in zooms. Several positions are marked with light blue stars

within the diagram to show the solution profile at that point. With those profiles, it is possible to
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connect parts of the soliton branch to different localized solution types. Using this the plain pulse,
the composite pulse, pulsating solitons, and moving solitons were found within the diagram. The
creeping soliton solution was theorised to be emerging from the hopf bifurcation on the moving
pulse branch. To verify their stability the solution were exported and put in as the initial solution
for the direct numerical method. Besides the stability, this also shows possible time behaviour of
the solutions as for the moving soliton in figure Taking a look at the results of the numerical
derivation of the eigenfunctions and eigenvalues were done rudimentary but a more in-depth
analysis might give further insight. The pulsating soliton branch was not numerically simulated
due to the time dependant nature of the hopf bifurcation. This would result in significantly
longer and more complicated continuations but to get the full bifurcations diagram it is needed
for completion. In the bifurcations diagram a snaking process where the composite pulse growths
in energy due to an increasing width can be seen. Here, the real part of the solution consists of a
periodic sequence of maxima and minima the number of which is increasing until no more peaks
can be built because the maximum width, namely the domain length, is achieved. The § value
where the snaking process occurs is called Maxwell-point and the growth of the composite soliton
follows along the Maxwell-line. A few ideas of the calculation of the Maxwell-point were discussed
but the idea depicted in a paper by Knobloch and Kao [51] seems to be the best approach. For
this approximation, two conserved symmetries for localized solutions need to be calculated for the
complex cubic-quintic Ginzburg-Landau equation. This seems hard to do because of the more
general terms within the equation but should be possible due to Noether’s theorem. An in-depth
calculation of the Maxwell point is useful because it corresponds to higher energy soliton solutions
as it can be seen in the bifurcation diagram 37} It can also be connected to the soliton resonance
as discussed in the so-called section.

The next point was the possible connection of the soliton branch to other branches at both
ending points. It was expected that the soliton branch emerges from the homogeneous zero with
a subcritical pitchfork bifurcation, but especially the ending connection of the fold point was
of interest. To find the other branch a transition to the constant absolute value solution was
theorized due to the increase of the soliton width until it was nearly as wide as the domain length.
An ansatz for a continuous wave solution (equation was used to calculate the cw branch
in theory and gain an ansatz for the initial solution function which is given by A2 = —g. The
resulting bifurcation diagram was shown with periodic (figure and with Neumann boundary
conditions (figure due to a changing number of occurring bifurcation points. The branch
stays stable until it is destabilized by a lot of pitchfork bifurcations. Their secondary branches are
reconnecting onto the cw branch after a fold point. After that fold point, a series of stabilizing hopf
bifurcations with destabilizing pitchfork bifurcations occur until just one eigenvalue is unstable
and the branch ends in a fold point, where it possibly reconnects to the homogeneous zero solution
branch. The secondary pitchfork bifurcation branches have a periodic sinusoidal solution profile
with a changing periodicity corresponding to a certain amount of maxima existing within the
domain size. This number is connected to the order in which the bifurcations occur and looks

a lot like the solution profile at the ending fold point of the soliton branch. To gain a deeper
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understanding of the cw branch and its bifurcations a continuation of the secondary branches
within the Neumann boundary conditions or the hopf bifurcations can be useful. This might show
more connections or similarities to the soliton branch or a completely new stable branch.

To finally determine the connection between the cw and the soliton branch both are shown together
in a bifurcation diagram (see figure . There a zoom into both ends of the soliton branch is shown
and for both points, a connection can be seen: The starting fold point of the soliton branch equals
a pitchfork bifurcation point of the cw branch. For the ending point, it is a pitchfork bifurcation
on the secondary cw branch with eleven maxima. This connection is verified in both cases by
calculating the branch emerging from the pitchfork bifurcation. If they are indeed connected than
the branch should be the soliton branch which was the case.

Those two connections seem to be rather random, especially the eleventh bifurcation branch. This
opens several questions like why the connection appears at that branch and not any other one,
how the connection changes with other parameters, and if the beginning connection stays the
same under those parameter changes. Those questions were tried to be answered by numerically
calculating bifurcation diagrams for different parameter changes. First of all, the domain size was
changed and the results were shown in figure It was seen that the number of maxima at the
ending connection point is correlated to the domain size and the bifurcation point number on the
continuous wave branch: For L = [-67,67] and [-20,20] the connection occurred at the eleventh
bifurcation point and for L = [-15,15] it was the ninth. A few more domain sizes were analyzed
and all seem to be odd numbers, which seems to be a coincidence of the analyzed domain sizes,
but the same occurred while changing €. Using this small sample it was not possible to predict the
connecting cw branch, but it might correlate to the length of the snaking regime. To understand
that connection a more in-depth analysis is needed. Nevertheless, diagram shows why there is
no connection between both branches for L = [-10, 10], because there are no bifurcation points on
the branch before the destabilizing fold point which means that no reconnection between the two
pitchfork bifurcation points occurs. Therefore there can not be a connection between the cw and
the soliton branch in that way. This raises the question of why this is the case and how exactly it
depends on the domain size. Here again, a continuation in the domain size or a fold continuation
of the ending fold point of the soliton branch with the domain size as the continuation parameter
might be a good tool for further analysis.

The impact of the other parameter changes was analyzed using fold continuation diagrams. For ¢
the results are shown in ﬁgure. It can be seen that the diagram is shifted to the right side when
decreasing € and the other way around. Here occurs an endpoint because at about € = 1.17 the
line ends which means that the structure of the soliton branch changes so much that the fold point
disappears. The same can be seen for the higher numbered fold points because they vanish, some
by colliding with other ones, at roughly the same € value. What this means for the bifurcation
diagram, is depicted in figure The branch is completely unstable for positive d and higher
values of € the pulsating soliton hopf bifurcation disappears, the same happens for the snaking
bifurcations and in the end as well for the fold point corresponding to stable plain pulses. It would

be useful to see the transitions in a more detailed way, so more steps in between are needed to get
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a full picture. Then those bifurcation diagrams can be used to estimate the region of existence of
different types of solitons like they did in [7] for example (figure . The rest of the parameter
changes were shown in figure 7 All fold continuation diagrams have in common that the higher
fold points all vanish and some bifurcations collide as it can be seen clearly for and the line
corresponding to fold points three and four. To see changes in the stability of branches and the
appearance of bifurcations a more in-depth analysis is needed. In general, the fold continuation
is inaccurate due to the low tolerance of 107 and it often occurs that the continuation jumps
between two branches, especially for higher fold points. A lot of branches within the bifurcation
diagrams could be followed along further if an even lower tolerance is excepted. This changing
of parameters might have the most potential for further analysis because a lot of variations and
different analysis techniques can be used.

Lastly, the soliton resonance phenomenon was analyzed. It started by recreating the soliton
resonance results with direct numerics. There (see ﬁgure and it can be seen that a resonance
and high energies about 10000 dimensionless units occur. The simulation ends in a constant
solution, the continuous wave branch. Only the branch of € = 3 is not shown within both diagrams,
because there was no stable plain pulse. A continuation in € (see figure shows a bifurcation
at about € = 2.9 which explains the instability. This can still agree with the other results in figure
and [23| because a different domain length was used. The results of the continuation are shown
in figure At first glance it can be seen that the results are inaccurate, because of existing
stability changes without a detection of a bifurcation, this is likely due to a too low number of
calculated eigenvalues even if a relatively high amount of 500 and more was already used. This is
true for all following bifurcation diagrams and is one point to improve upon. In general, the profile
on the soliton branch follows along the direct numerics results but at the end of the branch, the
branch undergoes again some kind of snaking only that here the plain pulse increases in width.
The cw branch can not be evaluated by continuation because of the lack of D dependence (see
equation , therefore it is calculated and added by hand. The same is done for the estimate
of the resonance equation 26| by [16]. In figure 52| it can be seen that the cw branch seems to be
a threshold to the soliton energy and that the prediction of the resonance is good for € =1 and
deviating a lot more for € = 2. In the anomalous dispersion regime the resonance was capped at
a lower energy (see figure . Finally, the domain size was changed to see the dependence of
the maximum energy of a stable soliton on it and if it is possible to increase the soliton energy
indefinitely by increasing the domain size. A connection between the maximum energy and the
domain size was shown (figure , but the infinite increase was not shown nor ruled out. Further
analysis with a higher domain size is needed to answer that question. Other interesting points
are the change of the branch with Neumann boundary conditions instead of periodic ones and the

connection between soliton and continuous wave branch in the regime of soliton resonance.
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