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Abstract

This thesis focuses on the theoretical analysis of passively mode-locked (PML) lasers and
in particular on the dynamics of mutually independent pulses called temporal localized
structures (TLSs). These can exist below the lasing threshold in the presence of a sat-
urable absorber with low saturation intensity and sufficiently large modulation of the
nonlinear absorption in relation to the amount of linear cavity losses. Pulses above a
critical energy may persist by first spending part of their energy to saturate the absorber
in order to achieve net gain and replenish the lost photons. In a long cavity regime, the
gain medium has enough time to fully rebuild the population inversion before the pulse
returns. However, when operating below threshold, the off solution remains stable and
small perturbations die out. This way, TLSs can be separated arbitrarily far apart without
additional pulses growing in between as they would, e.g., in the harmonic mode-locking
regime above threshold. Indeed, well separated pulses do not interact at all since the gain is
fully recovered and thus these optical pulses become independent, individually addressable
localized structures. They may be placed in arbitrary arrangements and naturally remain
at their relative positions if not moved by an additional perturbation such as a modulation
of the gain. This renders them of great interest for applications like telecommunications
because they could lead, for instance, to reconfigurable bit arrays.

In this thesis, models for four different setups are derived and analyzed both via direct
numerical simulations and numerical path continuation using the Matlab package DDE-
BIFTOOL. All of the models contain time-delay and the specific details of their numerical
treatment are discussed. In particular, a novel functional mapping approach is introduced
which significantly reduces the computational effort of simulating TLSs.

First, an already well established unidirectional ring laser delay differential equation
(DDE) model is used to build a baseline of TLS behavior with a focus on studying the
influence of the gain bias and linewidth enhancement factor (Henry factor), as well as their
interplay. The saddle-node bifurcations that give rise to the TLSs are found for a stable
single peak solution and several unstable profiles which exhibit additional ringing peaks.
Pairs of these solutions intersect at specific points in the parameter space thus forming an
intricate single manifold. In addition, an oscillatory regime is analyzed where the trailing
edge of the pulse oscillates due to amplitude-phase coupling mediated by the linewidth
enhancement factor.

Next, specific models for practically relevant vertical external-cavity surface-emitting
lasers (VECSELs) are investigated. Here, the modeling of strong feedback and multiple
reflections requires the use of delay algebraic equations (DAEs) that pose an additional
theoretical challenge as compared to standard DDEs. Specifically, models are considered
for a vertical-cavity surface-emitting laser coupled to a resonant saturable absorber mirror
and a mode-locked integrated external-cavity surface-emitting laser (MIXSEL). The cavity
geometry of coupled nonlinear mirrors incurs strong third order dispersion (TOD) that



Abstract

can induce a series of low intensity satellites on the leading edge of a pulse. In this regime,
a new kind of instability involving a global bifurcation with features of excitability is found
where a satellite replaces its parent pulse.

From the comparison of the results obtained in the different models it can be concluded
that the unidirectional ring laser DDE model in its standard form is not sufficient to accu-
rately describe all aspects of the dynamics in VECSEL setups. It neglects the dispersive
nature of microcavities that is conserved in the DAFE approach. In particular, we identify
TOD to be a dominant effect in pulse destabilization. It affects short pulses more strongly,
thus rendering the optimization of the pulse duration a trade-off inherent to such systems.

Finally, a Gires-Tournois interferometer containing a Kerr nonlinear medium is consid-
ered. This passive microcavity is arranged with an external cavity geometry where energy
is supplied via optical injection by a continuous wave (CW) laser. While this system is
qualitatively different from the VECSELs it can be modeled using the same DAE approach
and exhibits strong influence of TOD. The coherent CW pump is converted into phase-
locked pulses thus forming a Kerr frequency comb. They are made up of interlocking
fronts that connect two bistable CW background states and can form complex patterns of
TLSs.
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Kurzzusammenfassung

Diese Doktorarbeit befasst sich mit der theoretischen Analyse von passiv modengekoppel-
ten (PML, engl. passive mode-locking) Lasern, insbesondere mit der Dynamik von von-
einander unabhéngigen Pulsen, die als zeitlich lokalisierte Strukturen (TLS, engl. tempo-
ral localized structure) bezeichnet werden. In Gegenwart eines sittigbaren Absorbers mit
geringer Sittigungsintensitit und ausreichend grofler Modulation der nichtlinearen Ab-
sorption im Verhéltnis zu den linearen Resonatorverlusten kénnen solche Pulse unterhalb
der Laserschwelle existieren. Uber einem kritischen Energiewert kénnen Pulse dauerhaft
bestehen, indem sie zunéchst einen Teil ihrer Energie fiir die Séttigung des Absorbers
aufwenden, sodass eine Nettoverstarkung erzielt wird und die verlorenen Photonen zuriick
gewonnen werden kénnen. Unter Verwendung eines ausreichend langen Resonators hat das
Verstarkungsmedium genug Zeit, um die Populationsinversion vollstédndig wiederherzustel-
len, bevor der Puls im n&chsten Resonatorumlauf zuriickkehrt. Da man jedoch unterhalb
der Laserschwelle arbeitet, bleibt der homogene, ausgeschaltete Zustand stabil und kleine
Storungen sind geddmpft. Auf diese Weise konnen TLS beliebig weit voneinander getrennt
werden, ohne dass zwischen ihnen zusétzliche Pulse entstehen, wie es z.B. im harmonischen
Modenkopplungsbereich oberhalb des Schwellenwertes der Fall wire. In der Tat interagie-
ren weit getrennte Pulse iiberhaupt nicht miteinander, da sich das Verstarkungsmedium
dazwischen vollstindig wieder aufbaut und die optischen Pulse somit zu unabhéngigen,
individuell adressierbaren lokalisierten Strukturen werden. Sie konnen willkiirlich angeord-
net werden und bleiben von allein an ihren relativen Positionen, wenn sie nicht durch eine
zusétzliche Storung wie eine Modulation der Pumprate beeinflusst werden. Dies macht
sie sehr interessant fiir Anwendungen wie Telekommunikation, wo sie beispielsweise als
rekonfigurierbare Bit-Arrays eingesetzt werden konnten.

In dieser Doktorarbeit werden Modelle fiir vier verschiedene PML-Laser Aufbauten her-
geleitet und analysiert, sowohl mithilfe von direkten numerischen Simulationen als auch
durch numerische Pfad-Kontinuierung von Lésungséisten mithilfe des Matlab-Pakets DDE-
BIFTOOL. Alle Modelle enthalten zeitverzogerte Terme, deren numerische Behandlung im
Detail diskutiert wird. Insbesondere wird ein neuartiger Behandlungsansatz solcher Glei-
chungen als funktionale Abbildung eingefiihrt, der den Rechenaufwand fiir die Simulation
von TLS erheblich reduziert.

Zunédchst wird ein bereits gut etabliertes zeitverzogertes Differentialgleichungsmodell
(DDE, engl. delay differential equation) fiir einen unidirektionalen Ringlaser verwendet, um
eine Vergleichsgrundlage fiir das Verhalten von TLS zu erhalten, wobei der Schwerpunkt
auf der Untersuchung des Einflusses der Pumprate, des Steigerungsfaktors der Linienbreite
(Henry Faktor) und deren beider Zusammenspiel liegt. Die Sattel-Knoten-Bifurkationen,
die den TLS unterliegen, werden sowohl fiir eine stabile Losung mit einem einzelnen In-
tensitdtsmaximum, als auch fiir mehrere instabile Profile gefunden, welche zusétzliche lo-
kale Maxima aufweisen. Diese Losungen schneiden sich paarweise an bestimmten Punkten
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Kurzzusammenfassung

im Parameterraum und bilden so eine komplizierte zusammenhingende Gesamtstruktur.
Zusétzlich wird ein Instabilitdtsregime analysiert, bei dem die hintere Flanke eines Pul-
ses oszilliert. Dies geschieht aufgrund von Amplituden-Phasen-Kopplung, die durch den
Steigerungsfaktor der Linienbreiten vermittelt wird.

Als néichstes werden spezifische Modelle fiir anwendungsrelevante vertikale oberflichen-
emittierende Laser mit externem Resonator (VECSEL, engl. vertical external-cavity sur-
face-emitting laser) untersucht. Zur Modellierung starker Riickkopplungen mit Mehrfach-
reflexionen sind zeitverzogerte algebraische Gleichungen (DAEs, engl. delay algebraic equa-
tion) notwendig, deren theoretische Behandlung im Vergleich zu gewthnlichen DDEs eine
zuséitzliche Herausforderung darstellt. Konkret werden in diesem Zusammenhang zwei
Modelle betrachtet, erstens fiir einen oberflichenemittierenden Laser mit vertikalem Re-
sonator, der an einen resonanten séttigharen Absorberspiegel gekoppelt ist, und zweitens
fiir einen modengekoppelten integrierten oberflichenemittierenden Laser mit externem
Resonator. Die Resonatorgeometrie von gekoppelten nichtlinearen Spiegeln weist starke
Dispersion dritter Ordnung (TOD, engl. third order dispersion) auf, welche eine Reihe
von Satelliten mit geringer Intensitdt an der Vorderflanke eines Pulses induzieren kann. In
diesem Regime tritt eine neue Art von Instabilitdt auf, bei der ein Puls von einem seiner
Satelliten ersetzt wird. Diesem Verhalten liegt eine globale Bifurkation mit Merkmalen
von Erregbarkeit zugrunde.

Aus dem Vergleich der in den verschiedenen Modellen erzielten Ergebnisse kann ge-
schlossen werden, dass das unidirektionale Ringlaser DDE Modell in seiner klassischen
Form nicht ausreicht, um alle Aspekte der Dynamik in VECSEL-Aufbauten genau zu
beschreiben. Es vernachléssigt die dispersiven Effekte von Mikroresonatoren, die im DAE-
Ansatz erhalten bleiben, wo Dispersion dritter Ordnung als dominanter Effekt bei der
Pulsdestabilisierung identifiziert werden kann. Diese wirkt sich insbesondere auf kurze
Pulse aus, weshalb zur Optimierung der Pulsdauer in VECSEL Systemen Kompromisse
eingegangen werden miissen, da ihnen TOD inhé&rent ist.

SchlieBlich wird ein Gires-Tournois-Interferometer betrachtet, welches ein nichtlineares
Kerr-Medium enthélt. Ein solcher passiver Mikroresonator kann mit einem dufleren Reso-
nator gekoppelt werden, dem Energie durch optische Injektion mittels eines Dauerstrich-
lasers (CW, engl. continuous wave) zugefithrt wird. Obwohl sich dieses System qualitativ
von den vorher behandelten VECSELs unterscheidet, kann es mit demselben DAE-Ansatz
beschrieben werden und weist einen starken Einfluss von TOD auf. Die kohédrente CW-
Strahlung wird in phasengekoppelte Pulse umgewandelt, wodurch ein Kerr-Frequenzkamm
gebildet wird. Diese bestehen aus ineinandergreifenden Fronten, die zwei bistabile CW-
Hintergrundzusténde verbinden und komplexe TLS-Muster bilden kénnen.
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Resumen

Esta tesis se centra en el andlisis tedrico de ldseres con bloqueo de modo pasivo (PML,
por el acrénimo inglés de passive mode-locking) y, en particular, en la dindmica de pulsos
mutuamente independientes denominados estructuras localizadas temporales (TLS, por
el acrénimo inglés de temporal localized structure). Estos pueden existir por debajo del
umbral de emisién laser en presencia de un absorbente saturable con baja intensidad de
saturacién y modulacion de la absorcion no lineal suficientemente grande en relacién con
la cantidad de pérdidas lineales de cavidad. Los pulsos por encima de una energia critica
pueden persistir gastando un parte de su energia para saturar el absorbente con el fin de
experimentar una ganancia neta y reponer los fotones perdidos. En un régimen de cavidad
larga, el medio de ganancia tiene suficiente tiempo para recuperarse hasta que el pulso
regresa para recuperar completamente la inversion de la poblacién. Sin embargo, dado que
operamos por debajo del umbral, la solucién para el laser apagado permanece estable y las
pequenas perturbaciones desaparecen. De esta manera, los TLS se pueden separar arbitra-
riamente lejos sin que crezcan pulsos adicionales en medio, como lo harian, por ejemplo,
en el régimen de bloqueo de modo armoénico por encima del umbral. De hecho, los pulsos
bien separados no interactian en absoluto, ya que la ganancia se recupera completamente
y, por lo tanto, estos pulsos épticos se convierten en estructuras localizadas independientes
y direccionables individualmente. Pueden disponerse de forma arbitraria y, naturalmente,
permanecer en sus posiciones relativas si no son movidas por una perturbacién adicional
como la modulacién de la ganancia. Por eso, se vuelven de gran interés para aplicacio-
nes en campos como el de las telecomunicaciones, pues permitirian crear matrices de bits
reconfigurables.

En esta tesis, se derivan y analizan modelos para cuatro configuraciones diferentes me-
diante simulaciones numéricas directas y continuacién numérica de ramas de soluciones
utilizando el paquete Matlab DDE-BIFTOOL. Todos los modelos contienen retardo de
tiempo y se discuten los detalles especificos de su tratamiento numérico. En particular, se
introduce un enfoque nuevo llamado el mapeo funcional que reduce significativamente el
esfuerzo computacional de simular los TLS.

Primero, se utiliza un modelo de ecuacién diferencial de retardo (DDE, por el acrénimo
inglés de delay differential equation) ya bien establecido para un ldser de anillo unidirec-
cional. Asi se produce una linea de base del comportamiento de los TLS con un enfoque
en estudiar la influencia de la fuerza de la ganancia y el factor de aumento del ancho de
linea (factor de Henry) y su interaccién. Las bifurcaciones silla-nodo de ciclos limites que
dan lugar a los TLS, se encuentran para una solucién estable con un pico tnico y también
para varios perfiles inestables que exhiben picos adicionales. Estas soluciones se cruzan en
pares en puntos especificos del espacio de pardmetros, formando asi una tnica variedad
intrincada. Ademads, se analiza un régimen oscilatorio en el que el flanco de bajada del
pulso oscila debido al acoplamiento de amplitud-fase mediado por el factor de aumento
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del ancho de linea.

A continuacién, se investigan modelos especificos para ldseres emisores de superficie
con cavidad vertical externa (VECSEL, por el acrénimo inglés de vertical external-cavity
surface-emitting laser) que son relevantes en varias aplicaciones. Aqui, la descripcién de la
fuerte retroalimentacién y de las reflexiones multiples requiere utilizar ecuaciones algebrai-
cas con retardo (DAE, por el acrénimo inglés de delay algebraic equation) que plantean
un desafio tedrico adicional en comparacién con las DDE estandar. Especificamente, los
modelos se consideran para un ldser emisor de superficie de cavidad vertical acoplado a
un espejo resonante absorbente saturable y también un laser integrado de bloqueado de
modo emisor de superficie con cavidad externa (MIXSEL, por el acrénimo inglés de mode-
locked integrated external-cavity surface-emitting laser). La geometria de estas cavidades
con espejos no lineales acoplados incurre en una fuerte dispersién de tercer orden (TOD,
por el acrénimo inglés de third order dispersion) que puede inducir una serie de satélites
de baja intensidad en el flanco de subida de los pulsos. En este régimen, se encuentra un
nuevo tipo de inestabilidad que involucra una bifurcacién global con caracteristicas del
fenémeno de excitabilidad donde un satélite reemplaza al pulso principal.

De la comparacién de los resultados obtenidos en los diferentes modelos se puede concluir
que el modelo DDE de laser de anillo unidireccional en su forma estandar no es suficien-
te para describir con exactitud todos los aspectos de la dindmica en las configuraciones
VECSEL. El modelo DDE no contempla la naturaleza dispersiva de las microcavidades
que si se tiene en cuenta en el enfoque DAE. En particular, identificamos la TOD como un
efecto dominante en la desestabilizacion de los pulsos. Afecta a los pulsos cortos con més
fuerza, por lo que la optimizacién de la duracién del pulso se torna en una compensacién
inherente a dichos sistemas.

Finalmente, se considera un interferémetro de Gires-Tournois que contiene un medio no
lineal de tipo Kerr. Esta microcavidad pasiva se dispone con una geometria de cavidad
externa donde la energia se suministra por inyeccién Optica mediante un laser de onda
continua (CW, por el acrénimo inglés de continuous wave). Si bien este sistema es cua-
litativamente diferente de los VECSEL, se puede modelizar utilizando el mismo enfoque
DAE y exhibe una fuerte influencia de la TOD. La bomba CW coherente se convierte
en pulsos bloqueados en fase, formando asi un peine de frecuencia Kerr. Estdn formados
por frentes entrelazados que conectan dos estados de fondos CW biestables y que pueden
formar patrones complejos de TLS.

vi
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Aquesta tesi se centra en l'analisi teorica de lasers amb bloqueig de mode passivo (PML,
per Pacronim angles de passive mode-locking) i, en particular, en la dinamica de pol-
sos mutuament independents anomenats estructures localitzades temporals (TLS, per
Pacronim angles de temporal localized structure). Aquests poden existir per sota del llindar
d’emissié laser en presencia d’un absorbent saturable amb baixa intensitat de saturacié i
modulacié de I’absorcié no lineal prou gran en relacié amb la quantitat de perdues line-
als de cavitat. Els polsos per sobre d’una energia critica poden persistir gastant un part
de la seva energia per saturar ’absorbent per tal d’experimentar un guany net i reposar
els fotons perduts. En un regim de cavitat llarga, el mitja de guany té prou temps per
recuperar-se fins que el pols torna per recuperar completament la inversié de la poblacio.
No obstant aixo, ates que operem per sota del llindar, la solucié per el laser apagat roman
estable i les petites pertorbacions desapareixen. D’aquesta manera, els TLS es poden se-
parar arbitrariament lluny sense que creixin polsos addicionals entremig, com ho farien,
per exemple, en el regim de bloqueig de manera harmonica per sobre del llindar. De fet, els
polsos ben separats no interactuen en absolut, ja que el guany es recupera completament
i, per tant, aquests polsos Optics es converteixen en estructures localitzades independents
i direccionables individualment. Poden disposar-se de forma arbitraria i, naturalment, ro-
mandre en les seves posicions relatives si no sén mogudes per una pertorbacié addicional
com la modulacié del guany. Per aixo, es tornen de gran interes per a aplicacions en camps
com el de les telecomunicacions, ja que permetrien crear matrius de bits reconfigurables.

En aquesta tesi, es deriven i analitzen models per a quatre configuracions diferents mit-
jancant simulacions numeriques directes i continuacié numerica de branques de solucions
utilitzant el paquet Matlab DDE-BIFTOOL. Tots els models contenen retard de temps i
es discuteixen els detalls especifics del seu tractament numeric. En particular, s’introdueix
un enfocament nou anomenat el mapeig funcional que redueix significativament ’esforg
computacional de simular els TLS.

Primer, s’utilitza un model d’equacié diferencial de retard (DDE, per acronim angles
de delay differential equation) ja ben establert per a un laser d’anell unidireccional. Aix{
es produeix una linia de base del comportament dels TLS amb un enfocament en estudiar
la influéncia de la forca del guany i el factor d’augment de ’ample de linia (factor d’Henry)
i la seva interaccié. Les bifurcacions cadira-node de cicles limits que donen lloc als TLS, es
troben per a una solucié estable amb un pic tnic i també per a diversos perfils inestables
que exhibeixen pics addicionals. Aquestes solucions es creuen en parells en punts especifics
de I'espai de parametres, formant aixi una tnica varietat intricada. A més, s’analitza un
regim oscillatori en el qual el flanc de baixada del pols oscilla causa de 1’acoblament
d’amplitud-fase intervingut pel factor d’augment de I’ample de linia.

A continuacid, s’investiguen models especifics per a lasers emissors de superficie amb
cavitat vertical externa (VECSEL, per 'acronim angles de vertical external-cavity surface-
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emitting laser) que sén rellevants en diverses aplicacions. Aqui, la descripcié de la forta
retroalimentacié i de les reflexions multiples requereix utilitzar equacions algebraiques amb
retard (DAE, per 'acronim angleés de delay algebraic equation) que plantegen un desafia-
ment teoric addicional en comparacié amb les DDE estandard. Especificament, els models
es consideren per a un laser emissor de superficie de cavitat vertical acoblat a un mirall
ressonant absorbent saturable i també un laser integrat de bloquejat de mode emissor de
superficie amb cavitat externa (MIXSEL, per l'acronim angles de mode-locked integrated
external-cavity surface-emitting laser). La geometria d’aquestes cavitats amb miralls no
lineals acoblats incorre en una forta dispersié de tercer ordre (TOD, per I'acronim angles
de third order dispersion) que pot induir una serie de satellits de baixa intensitat en el
flanc de pujada dels polsos. En aquest régim, es troba un nou tipus d’inestabilitat que
involucra una bifurcacié global amb caracteristiques del fenomen de excitabilitat on un
satellit reemplaca al pols principal.

De la comparacié dels resultats obtinguts en els diferents models es pot concloure que el
model DDE de laser d’anell unidireccional en la seva forma estandard no és suficient per
descriure amb exactitud tots els aspectes de la dinamica en les configuracions VECSEL.
El model DDE no contempla la naturalesa dispersiva de les microcavitats que si es té en
compte en 'enfocament DAE. En particular, identifiquem la TOD com un efecte dominant
en la desestabilitzacié dels polsos. Afecta els polsos curts amb més forga, de manera
que I'optimitzacié de la durada del pols es torna en una compensacio inherent a aquests
sistemes.

Finalment, es considera un interferometre de Gires-Tournois que conté un mitja no lineal
de tipus Kerr. Aquesta microcavidad passiva es disposa amb una geometria de cavitat
externa on ’energia es subministra per injeccié optica mitjancant un laser d’ona continua
(CW, per Pacronim angles de continuous wave). Si bé aquest sistema és qualitativament
diferent dels VECSEL, es pot modelitzar utilitzant el mateix enfocament DAE i exhibeix
una forta influencia de la TOD. La bomba CW coherent es converteix en polsos bloquejats
en fase, formant aix{ una pinta de freqiiencia Kerr. Estan formats per fronts entrellacats
que connecten dos estats de fons CW biestables i que poden formar patrons complexos de
TLS.
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1 Introduction

On the verge of the past century new and, at the time, unexplainable experimental obser-
vations led to the paradigm shift of quantum physics. The explanation of the photoelectric
effect by A. Einstein [Ein05] made a strong case for the notion of the quantification of light
that was previously proposed by M. Planck [Pla01]. Light can neither be described by
particles nor waves alone, but as a wave packet that encompasses the properties of both.
These quanta of the electromagnetic field are called photons. Science and technology have
been striving to exploit the unique opportunities that lie in quantum effects ever since.

The quantum description of light and matter interaction [Einl7] allows for three dis-
tinct elementary processes: absorption, spontaneous emission and stimulated emission.
Figure shows schematics of these. In contrast to the random spontaneous emission
of a photon, the stimulated kind produces a true copy of an already present, resonant
photon. While both kinds have the same energy, as they are converted from the poten-
tial energy of an excited electronic transition, the stimulated photon indeed shares the
direction and phase of its parent. When the occupation number of excited electrons in
a medium is larger than for the ground state, the stimulated emission can outweigh the
resonant absorption, thus creating a coherent amplification of photons that pass through
the material. This situation is called population inversion and the amplification process is
referred to as gain. It paved the road for the development of the very influential MASER,
which is an acronym for Microwave Amplification by Stimulated Emission of Radiation
[ST58]. One of the most important and widely applied technologies of the modern age
is the laser which is derived from the same concept, but operates at optical frequencies.
The term laser simply comes from replacing the word microwave with light. The first
realization of such a device was build using a ruby crystal [Mai60].

Using gain, one can not only build lasers but also optical amplifiers that strengthen an
arbitrary incoming light signal at the price of the outgoing signal containing additional
noise. An important use case exists in long distance optical fiber communications to
counteract the attenuation of the signal. Nowadays, the term laser is typically used for
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Figure 1.1: Schematics of elementary light and matter interactions. An electron can tran-
sition between two distinct energy levels E; and F» together with the creation
or annihilation of photons (wavy arrows) corresponding to the energy differ-
ence. Initial and final occupations of electronic states are represented by red
and green circles, respectively.
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the combination of gain with optical feedback. A gain medium is placed in an optical
resonator called the laser cavity, typically formed by a set of mirrors. Depending on the
geometry, photons will go back and forth or in circles around the cavity, thus passing the
gain medium repeatedly. This way, the intensity of radiation in the cavity is able to grow
very large with a portion of it being extracted at each roundtrip. This process only works
for photons in a resonant mode of the cavity. If the angle of the propagation direction
diverges even slightly from the cavity axis, the photon will exit the cavity prematurely and
only experience limited gain. Therefore, the resulting laser signal is a highly directional
and monochromatic beam of light. Spontaneous emission into the laser mode creates a
superposition between coherent and incoherent emission. The latter is usually considered
an undesirable source of noise during laser operation. In addition, it reduces the gain
available to the resonant mode. Note, however, that this incoherent fraction is fundamental
in seeding the lasing process above threshold.

Lasers can generally be described by three differential equations: one each for the elec-
tromagnetic field, the polarization of the gain material and the population inversion of
its electronic states. Depending on the photon lifetime in the cavity and the materials
used, some of theses processes can be very fast relative to the others. Exploiting this
time scale separation, one may assume a fast equation to instantaneously follow another
which often allows for solving it as a function of the other and then substituting it. This
technique is called adiabatic elimination. Effectively, the number of dynamical equations
necessary to describe the laser is reduced. Depending on this number, lasers are usually
categorized as class A, B and C lasers [AH87|]. Here, class C means a full system using
all three variables, class B means the polarization is fast and eliminated and, finally, class
A means the inversion is also fast so only the differential equation for the field remains.
This thesis will concentrate on class B lasers which encompass, e.g., semiconductor and
solid state lasers.

Designing lasers encompasses a large variety of elements and their combinations so only
an incomplete overview of the most important ones can be given here. Many factors have to
be taken into consideration including output power, the noise and transverse polarization
of the signal, size and heat dissipation. For commercial use additional requirements come
into play, e.g. efficiency, temperature stability and resistance to damage. The choice of
resonator designs and gain media further depends on the required type of laser signal
such as single frequency continuous wave (CW) emission, tunability or pulse generation.
Generally optimization of any characteristic will incur compromises for others.

Typical cavity designs are Fabry-Pérot interferometers, ring topologies build with mir-
rors, waveguides on a chip, single or multi-mode fibers and monolithic structures where
the cavity is closed by reflective coatings or simply total internal reflection on the facets.

Gain media can be created using many materials that differ in a wide range of properties
like the bandwidth of the gain, its quantum efficiency, gain per unit length, the upper-state
lifetime and the damage threshold, to name but a few important ones. Some of the most
common types are discussed in the following: A comparatively simple setup is a confined
gas that is ionized by an electrical discharge. Ions offer sharp atomic transitions with
long lifetimes of the excited states. However, in a hot gas the movement and collisions
of an ion with other particles are detrimental as its velocity shifts the wavelength of the
emitted photon and the excited state can be perturbed. This issue does not occur when
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an insulator is doped with ions (typically rare earths or transition elements) because their
positions will be fixed. The corresponding gain media can be build in bulk using single
crystals or glass that usually has less desirable properties due to its amorphous structure
but is very cost-efficient. More recently, ceramic compounds have been used as well. In
addition, glass (usually in the form of fused silica) can be drawn into optical fibers that act
as a waveguide and are bendable. In contrast to gases, these types of gain media have to
be pumped optically since the insulating matrix does not conduct electricity. Depending
on the specific material, an appropriate laser may be required to pump, but in some cases a
simple flash lamp is sufficient. Another kind of optically pumped medium is a dye in liquid
solution, typically a complex florescent aromatic molecule [SL66,[SSV66]. Such compounds
offer a very wide bandwidth for both emission and pumping. Finally, an important class
is direct band gap semiconductors which provide a very large amount of gain as compared
to other materials at the cost of an increased linewidth |[Hen82]. Doped semiconductors
can be combined to build diodes and heterojunctions that allow for pumping with electric
current. They are often used to build optical pumps to drive other lasers. However, some
semiconductors can be optically pumped themselves without the need for doping.

Recently, a cavity design called Vertical-Cavity Surface-Emitting-Laser (VCSEL) has
been increasingly applied and investigated [JHST91]. Tt consists of an active layer sand-
wiched between two distributed Bragg reflectors (DBRs). These are made up of thin layers
with alternating refractive indices in a stacked arrangement. They hence feature very high
reflectivity around resonant wavelengths. Compared to other lasers, VCSELs can be build
very thin and compact while allowing wide lasing apertures such that large intensities can
be distributed in the transverse spatial dimension along with very good beam quality. It
is possible to build large arrays of VCSELs on a single wafer for cost savings or specific
applications. They are either pumped by current injection, typically from a circular elec-
trode around the lasing area, or optically by, e.g., a lower wavelength CW diode laser from
the side at the Brewster angle, where no light is reflected, for maximum efficiency.

1.1 Passive mode-locking

Pulsed laser emission is interesting from a technical point of view because of the high peak
powers that can be reached, e.g. for industrial cutting and welding, and to produce signals
that can be used in optical information transmission and processing.

A technique for high energy pulse generation is Q-switching. It consists in modulating
the losses of a laser, i.e. its Q (quality) factor. When the losses are high, no significant
resonant buildup of photons in the cavity is possible, hence, the gain can accumulate a
large inversion. The losses are then lowered for normal laser operation to occur. A large
intensity builds up until the gain is depleted again which results in a large pulse in the
output. The required Q-switch can be an active change in the cavity like, e.g., a shutter
or realignment of a mirror, but more recently passive Q-switches have been realized using
materials whose transmittivities are sensitive to the light intensity [SLLP64, [KMMG64,
BG64]. An important drawback of Q-switching is the relatively long duration of the
generated pulses which is incurred by the underlying gain lifetime.

For high peak power and high bandwidth data transmission the focus lies on the pulse
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Figure 1.2: Schematics of active materials used in passively mode-locked lasers. Occupied
electronic states are shown as purple circles, other representations are the same
as in Fig. [1.1] (a) In a gain device the carrier population must be inverted.
Photons can be created in a cascade thus realizing amplification of an initial
resonant photon. (b) Without carrier inversion, photons are annihilated in
exchange for excited states causing absorption. (c¢) Both processes will saturate
for sufficiently large intensities where the carriers approach the threshold of
inversion. Here, creation and annihilation of photons becomes equally likely,
effectively rendering the material transparent.

duration. To form short pulses a different mechanism must be found. Usually these
consists of a superposition of many laser modes. For their coherent sum to result in a
pulse, their relative phases must be properly aligned. This phase locking is therefore
called mode-locking [HEP64]. It can be achieved by modulating the cavity losses by
external means, e.g., by modulating the pump, the phase change per roundtrip or even by
blocking the beam. In this regime, the photons experience different amplification or losses
as a function of time and thus will concentrate at a favorable position, i.e., the intensity
will synchronize with the modulation. Due to the intrusive nature of this technique one
speaks of active mode-locking. The repetition rate and pulse length are limited by the
speed at which the external modulation can be imposed.

In order to overcome this limit one needs to exploit fast dynamics intrinsic to the used
materials. Such a form of pulse generation is consequently termed passive mode-locking
(PML). More recently Kerr-lensing was used to produce very short pulses [SSP91]. Here,
a high intensity causes a laser beam to self-focus when passing a Kerr nonlinear medium
while an iris cuts the outer part of the beam. A more focused beam experiences less
absorption and thus lumped intensities are preferred. Note, that to the end of reaching
shorter pulses other methods like pulse compression may be applied [Tre69]. These are,
however, a completely separate concept from PML and focus on modifying the output
signal instead of its generation.

The most common technique to implement PML is introducing a saturable absorber into
the cavity. This can simply be an unpumped section of the gain material in a monolithic
laser or an additional device like a resonant saturable absorber mirror (RSAM). A large
incident intensity will excite electrons in a semiconductor until the occupation of carriers
approaches the threshold to inversion, i.e. transparency. In this situation, an equilibrium
of absorption and stimulated emission is reached. Creation and annihilation of a photon
become equally likely, rendering the device transparent. Ultimately, this results in the
relative losses being intensity dependent. Figure shows schematics of the processes in
gain and absorber materials, as well as their saturation. In a gain medium a photon will
pass and interact with many excited electrons such that the amplification will depend not
only on the occupation inversion but on the length of the gain section as well. The same
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Figure 1.3: Schematic of the principle of passive mode-locking in a laser system with a
saturable absorber. The lines show the temporal profiles of the pulse intensity
in blue, the gain in green and the absorption in red. The light green (red) area
marked with plus (minus) signs represents the interval of net gain (losses). The
arrows highlight the different scales of the pulse width, the absorber recovery
and the repetition rate.

goes for the attenuation when crossing an absorber medium.

Figure shows how the interplay of the gain and absorber carrier densities can lead
to the formation of intensity pulses: The pulse spends a part of its photons in order to
saturate the absorber and significantly lower the losses. As a consequence, the gain may
outweigh the absorption for a time where the intensity can grow. This interval is limited
by the gain saturating in turn until absorption wins out again. The window where gain
is larger than absorption is called the net-gain window. Here, the pulse can replenish
the photons lost in the absorber, by attenuation and from signal extraction. Both gain
and absorber carriers recover after the pulse has passed and the cycle repeats at the next
roundtrip.

The time scales of the field evolution and the carrier relaxation are typically very dif-
ferent. This incurs a strong stiffness in the mathematical modeling of the phenomenon.
Several strategies have been used to model such systems. Pulse iterative models that
restrict the analysis to an area around the pulse can lead to a qualitative partial differen-
tial equation (PDE) model called the Haus master equations [Hau00]. One may further
assume a certain analytical pulse shape to obtain rate equations describing only the pulse
parameters [UA05D, [UA05a]. Further, delay differential equation (DDE) models, such as
[VT05], have been able to successfully describe many aspects of PML. At any fixed point
in the cavity, the field returns after one roundtrip. This happens after a roundtrip time
that corresponds to the cavity length divided by the propagation velocity. In other words,
the field depends both on the current state of the laser and itself in the past. Therefore,
lasers can naturally be described using time-delay.

Generally, delays are found where some process requires a certain of amount time to
complete before its result affects the system again. This can be as simple as the transport
to a destination and is thus a typical property of networks. Time-delays are encountered
in many scientific fields. Some examples in biology are neural networks, like the brain
and nervous system, hormone regulation and population dynamics where pregnancy and
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nursing periods are important factors. Similar effects are found throughout modern life in
logistics, traffic jams (caused by the finite reaction times of drivers) and the distribution of
information. Technological application of delays is prevalent in the form of control loops
used in manufacturing, process engineering and electronics; see [YG17] for a review. Of
particular interest to this thesis is the natural appearance of time-delays in the propagation
of electromagnetic waves and thus laser signals.

Among the most promising current subjects of investigation in the area of PML are
Vertical-External-Cavity Surface-Emitting-Lasers (VECSELs) that consist of a VCSEL
gain mirror coupled with an external cavity to promote PML [HDT™00, HPG™01, [HPAT(02,
TEG™04]. One way to both introduce saturable absorption and to close the external cav-
ity at the same time is to couple the VCSEL to an RSAM face to face. An alternative
lies in placing a saturable absorber layer directly into the VCSEL, i.e., next to the gain.
The external cavity can then be closed by a simple feedback mirror. Such a setup is called
a Mode-locked Integrated External-Cavity Surface-Emitting-Laser or in short MIXSEL
[MBR07, RWM™10]. The active mirrors are microcavities and are spaced far apart, i.e.,
they are very small (~1pm) as compared to the length of the external cavity where the
field propagates unperturbed (~10cm). Thus, the signal returns after one roundtrip to
become an injection to the microcavity which can be described using time-delay. The
roundtrip time of the internal microcavity field is very short in comparison to the external
cavity and can be modeled with ordinary differential equations (monomode microcavity).

Trains of consecutive pulses are periodic signals with their spectra being composed
of equally spaced modes. Because of its particular shape, such a spectrum is called a
frequency comb. The distance between modes is called the free spectral range and relates
to the repetition rate of the pulses. Frequency combs can be used as a set of well known
reference frequencies for spectroscopy and metrology by using beatings of a signal at
interest with the comb.

Another type of frequency comb generation is injected Kerr fiber loops that have a set
of cavity resonances. Since the group velocity in the fiber depends on the intensity of the
radiation, these resonances shift as a function of the intensity which causes second order
dispersion. In these systems, localized states can appear on the injected CW background.
This constitutes a distinct mechanism to achieve passive mode-locking which, due to the
injection, does not have phase invariance.

Typically, bright solitons, i.e. peaks on a low intensity background, appear under anoma-
lous dispersion [DSAT07] and dark solitons, i.e. dips on a high intensity background, for
normal dispersion [PRGK™16,(GWM™17]. Both types can have variable widths. However,
under the influence of third order dispersion both types can be found to coexist [T'G10].
Due to the distributed nature of the nonlinearity over the whole fiber cavity, these systems
are described very successfully by another PDE, namely the one-dimensional version of
the so-called Lugiato-Lefever equation [GBCC14].

A pulse can be viewed as a lump of photons that moves in the cavity periodically. If
one imagines to take a snapshot of the cavity at every roundtrip, i.e. at multiples of the
delay time, the pulse would appear to have an almost constant position. When cutting
the time trace into pieces with the length of the delay time and then stacking theses
pieces, we can observe the pulse as it slowly evolves from roundtrip to roundtrip. This
is called a pseudo-space-time representation. Here, the pseudo-time corresponds to the
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Figure 1.4: Schematic of the pseudo-space-time representation of a simple pulse. (a) A
regular pulse train obtained in a DDE model. Due to causality, the repetition
period is longer than the delay time. The dashed vertical lines mark multiples
of the delay time where the time trace is cut. (b) The resulting roundtrips are
shown in a stacked manner. (¢) The respective pseudo-space-time representa-
tion which always contains a residual staggered motion. (d) A corresponding
PDE representation for comparison. Here, the pulse drifts along the continuous
slow time variable. Such a drift can be canceled by introducing an advection

term.

roundtrip number and real time in the delay interval has become a space-like coordinate.
Note, that the slow roundtrip time is actually not a continuous dimension. A schematic
of these concepts and their relation is presented in Figure In this framework, the
idea to develop PDE models indeed appears intuitive [AGLM92| [GP96, EJWY1T7]. The
evolution of the pulse profile in the pseudo-space representation is then described with
the help of partial differential operators. Here, an advection term (the first derivative
of the profile) can be artificially added to the model with a prefactor that, when chosen
appropriately, compensates for the residual drift of the pulse thus rendering it stationary,
i.e., in a pseudo-space-time plot the pulse appears vertical. This would correspond to
taking snapshots at multiples of the actual period of the pulse rather than the cold cavity
roundtrip time.

1.2 Localized structures

Nature is full of examples for the spontaneous formation of self-organized patterns. They
can be the energetically favored in systems like the Swift-Hohenberg model for thermal
fluctuations on a convective instability [SH77] where a patterned state has the least free
energy. In open complex systems the collective behavior of many degrees of freedom
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can form so-called dissipative structures. They typically appear in out of equilibrium
situations where a system is energetically driven and, at the same time, subjected to
losses [AAOg]. This can be as simple as heating and cooling a substance, but may involve
a plethora of complex processes, e.g. in biological organisms. Usually such systems can
be described by PDEs containing spatial operators. Their homogeneous solutions can
undergo a Turing bifurcation which means that periodic perturbations around a dominant
finite wavelength become unstable and grow in amplitude, thus giving rise to periodic or
more complicated patterns. Prominent examples are convective flows in hydrodynamics
like Rayleigh-Bénard cells [Bén01], colloids in a dewetting suspension [MBPV™07], color
patterns on the skin of animals [Kon02] and naturally occurring vegetation patterns in low
precipitation regions [vHMSZO01]. Different types of patterns appear in, e.g., oscillatory
reaction-diffusion systems in chemistry like the famous Belousov-Zhabotinsky reaction
[SE03], the accumulation of granular media like dunes and sand ripples in the desert
caused by wind or underwater by currents [NO93|, filamentation of electric discharges in
gases [AP01], magnetization domains in ferromagnetism [LN79] and ice crystals in snow
[ML66].

One of the most prevalent equations in pattern formation is the cubic Ginzburg-Landau
equation (GLE) which is an amplitude equation, e.g. for an order parameter in systems
with phase transitions. Its real-valued form can model many macroscopic systems like
Rayleigh-Bénard convection. From a mathematical standpoint, it can be considered to be
the normal form of a finite wavelength instability [AK02]. In optics however, the nature of
the electromagnetic field requires a complex-valued version of the GLE. The cubic terms
of the standard equation suffice only to describe gain saturation. With additional quintic
terms a saturable absorber can be modelled in passive mode-locking, thus allowing for the
pattern state to become subcritical [vH92].

Another important model is the nonlinear Schrodinger equation which can be obtained
from the complex GLE by keeping only the imaginary parts of the complex parameters or,
vice versa, the GLE can be considered as a dissipative version of the nonlinear Schréodinger
equation. It describes passive waveguides and fibers with a Kerr nonlinearity [CGT64] that
can exhibit solitons [HT73, MSGS80], as well as many other phenomena in nature such as
gravity waves in deep water [Zak68] and plasma oscillations [Zak72].

The GLE and the nonlinear Schrédinger equation both have a phase invariance as
the equations only contain terms that are at least first order in the field. In contrast,
the Lugiato-Lefever equation [LL87] has a constant forcing term which describes a CW
pumping beam in an otherwise passive cavity. This breaks the phase symmetry, but
otherwise resembles a dissipative version of the nonlinear Schrédinger equation. Among
many things, it successfully describes Kerr frequency combs obtained in such systems.
The modes that constitute such combs can, in addition, be phase-locked to give pulses
which are called dissipative cavity solitons. In a sufficiently long fiber cavity these pulses
can become localized as their mutual interactions vanish with increasing distance.

Localized structures can appear in several ways. One possible scenario is the interlocking
of fronts that connect different domains of a system, e.g. liquid and solid phases. Another
example is bistability of a homogeneous background state and a periodic state where
a localized structure can be considered as a finite number of periods living on the stable
background state. Given a large aspect ratio between the domain and the correlation width



1.2 Localized structures

0.18 : : : : : 03
0.16 |
(a) 025
014 | (b)

0.2 |
o / ) i
S, 0.08

0.06 |- 4 0.1 F _ -
0.04 | .

0.05

[a. u]

0.02

0 50 100 150 200 250 300 0 50 100 150 200 250 300
time [a. u.] time [a. u.]

Figure 1.5: Schematic of the transition of PML pulses to the localized regime. The pulse
intensity is drawn in blue while gain and absorption are drawn in green and red,
respectively. (a) Three identical and equally spaced pulses in the subcritical
harmonic mode-locking regime below threshold. (b) The same system but with
a single pulse. The carriers have time to relax virtually to the equilibrium state
before the pulse returns, making it a temporal localized structure. Because of
the background being stable, the two regimes are bistable.

of such a structure, the interactions between neighbors can become negligible if they are
sufficiently far apart. In laser optics, an example is lasing spots in the transverse section
of wide area VCSEL called cavity solitons [BPT*05, [GBGT08]. These can individually
be arranged and moved around arbitrarily, provided they will not come too close to each
other.

Under certain conditions, PML pulses can become temporal localized structures (TLSs).
In standard PML the system is operated above threshold and the pulsation regime appears
in a supercritical Andronov-Hopf bifurcation [VRW11]. The off-state is unstable meaning
small perturbations will grow, causing the whole cavity to eventually become filled with
pulses. They are not independent but rather feel each other via the temporal trails they
leave in the form of gain depletion. In a stable pulsation regime, an equilibrium distance is
formed between all the pulses and the resulting situation is called harmonic mode locking.
Such a pulse train can be considered a periodic pattern state. If the dissipation of an
unsaturated absorber is stronger than the maximum gain the zero background remains
stable. Small perturbations decay as the corresponding photons are absorbed. However,
with a strong modulation of the absorption, combined with a low saturation energy of the
absorber as compared to that of the gain, a large enough pulse can cut a temporal hole
in the absorption. Similar to standard PML, this still opens a net-gain window for the
pulse to sustains itself. Thus, a stable pulsation pattern state can exist below threshold
which corresponds to a subcritical form of PML [MJBG14]. Unlike the supercritical PML
regime, a single pulse can exist alone in a long cavity as nothing else may grow from the
stable off-solution that occupies the rest of the cavity. Figure illustrates the transition
to this regime. Such pulses are TLSs and several of them can coexist in a large enough
cavity without significant interactions among them. They can be individually addressed
[JCMG16, [CIMGI16], i.e., they are writable, erasable and movable independently from each
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other. In VECSELs, such TLSs could potentially be combined with spatial localization
in the transverse section of the laser to confine light in all three dimensions of space, thus
forming so-called light bullets [WT02] Jav16, [GJ17, PJGVIE].

Note, that a pulse can only be considered a TLS when in the long cavity limit or when

the gain relaxation is virtually complete, i.e., the product of the gain relaxation rate -y
and the roundtrip time 7 must be large v7 > 1. In this case the word pulse will often be
used synonymously with TLS throughout this thesis.

1.3 Outline of this thesis

This thesis is organized as follows:

10

e In Chapter [2| the different time-delay models for PML which are analyzed in this

thesis are derived from first principles. These include a well-established delay differ-
ential equation model for a unidirectional ring laser [VT05] and differential equation
models for the internal fields of microcavities which are coupled to each other by
delay algebraic equations that are specifically tailored to the VECSEL setups at
interest [MBO05].

In Chapter [3] the methods used for the numerical treatment of the models are ex-
plained. These include the algorithms for direct numerical simulations, the imple-
mentations of the models in DDE-BIFTOOL [ELR02] for numerical path continua-
tion and finally a functional mapping approach that offers an efficient yet accurate
way to deal with the stiffness inherent to the localized regime [2].

Chapter 4] presents the results obtained for the unidirectional ring laser DDE model.
The existence of temporal localized structures in the model has already been pre-
sented in [MJJBG14]. Here, we concentrate on the influence of the linewidth enhance-
ment factors of the gain and absorber sections to set a baseline of TLS dynamics.
Both direct numerical simulations and numerical path continuation are applied for
extensive parameter scans and to compare with a corresponding Haus master PDE
model [I]. Finally this model is used to test and showcase the performance of the
functional mapping approach.

Chapter [5] presents the results obtained for a VCSEL coupled with an RSAM. TLSs
have previously been realized in a corresponding experimental setup by focusing the
beam on the RSAM [MJJBG15]. First we discuss how the experimental properties are
transferred to the model parameters. Using these, TLS pulse trains are simulated
using the full system to showcase the very good agreement with the experiment in
self-imaging conditions [3]. In addition, a new satellite instability is presented which
arises due to third order dispersion incurred by the particular cavity geometry [5].

Chapter [6] presents the results obtained for a MIXSEL system. It can be seen as a
simplified version of the VCSEL-RSAM system from the previous chapter but with
the same classes of behavior. An instructive parameter set is chosen to analyze the
origin of the satellite instability including limited numerical path continuation. The
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properties of the instability and how it relates to, and interferes with, other types of
TLS behavior is analyzed extensively and compared to both a corresponding Haus
master PDE model and the unidirectional ring laser [7].

Chapter [7] deals with a different kind of setup roughly related to Kerr fiber loops.
A microcavity with a layer of Kerr nonlinear material instead of the normally used
active material. As with the VECSELSs, an external cavity is closed by a mirror and
the same kind of DAE modeling can be applied here. The system as such is passive
and is driven by a CW injection beam. One finds bistability of CW solutions together
with dark and bright TLSs on respective high and low intensity backgrounds. A rich
set of solutions forms a transition between the two types of TLSs and is fully analyzed
using path continuation [6].

11






2 Theoretical Modeling

To begin, we will set some conventions that will be used throughout this thesis. We use
a complex description for the electric field in order to benefit from complex exponential
functions that can greatly simplify analytical calculations. Physically, the electric field is
real E, and several conventions exist how to convert between it and a complex description.
We will use the form E, = Re[E].

It is always possible to exchange the field, together with any equations containing it,
by their respective complex conjugates without changing the overall structure. For real
functions the Fourier transform will generally be symmetric and either half of the frequency
space is sufficient for a complete description. Physically, positive and negative frequencies
contain the same information if one considers the spectrum of a real variable.

We use the ansatz for rotating plane waves

E(z,t) = Egeldo7iwot (2.1)

propagating along the z-axis with a wave vector gy and a frequency wy as time ¢ increases.
With these sign conventions the wave moves toward positive z for positive gg and toward
negative z for negative qq, respectively. Along with this we use the following definition of
the Fourier transform

i) = [ et = o). (2.2)
Ff @)= 5 [ fwe o= 1), (2.3

and thus 5
Fiwf()] = S1(). (2.4)

2.1 Transverse electromagnetic wave equation

To analyze the properties of temporal localized structures we are interested in systems
that can be described by their temporal evolution alone. Therefore, we will reduce the
influences of transverse spatial dimensions down to a single guided transverse mode and
focus on the propagation direction that can be related to the time coordinate.

2.1.1 Maxwell’s equations in materials

We assume that the used materials in our system are non-magnetizable and that there are
no free charges or currents. In this situation Maxwell’s equations for the dynamics of the

13



2 Theoretical Modeling

electric field E and the magnetic flux density B are

V-D=0, (2.5)
V-B=0, (2.6)
VxE=-B, (2.7)
VxH=D, (2.8)

with the electric displacement and magnetic fields
D=¢c(1+x)E=¢E+P, (2.9)

H=—, (2.10)

B
Ho
where y and P are the electric susceptibility and polarization of the material, respectively,
while £y and pg are the respective permittivity and permeability of the vacuum [FLS11].

We will assume the electric susceptibility to separate into a background x}, and a non-
linear medium Yy, in the active region

D =¢o(1+ xb)E + coxnlE = €0e, E + Py, (2.11)
where Py is the nonlinear electric polarization and the relative electric susceptibility e,
is responsible for the background refractive index ny,.
2.1.2 Wave equation with electric polarization

We write the curl of the third Maxwell equation (2.7)) and use Eq. (2.10) and the linearity
of the curl ' ‘
V x (VxE)=V x (—B):—MOVXH. (2.12)

Using the vector calculus identity for a vector A
Vx(VxA)=V(V-A)- VA, (2.13)

on the left hand side and substitute the fourth Maxwell equation (2.8]) on the right, where
we can pull the time derivative out the curl, we get

V(V-E)—-V’E = —;yD. (2.14)

Here, for V - P,; < 1 we may assume V - E = 0 and use Eq. (2.9) to reach the wave
equation with nonlinear polarization

2
9 ne .. ..
V?E — C—;’E = 1Py . (2.15)
By applying the Fourier transform we can write the wave equation in the frequency domain
n2\ . .
<v2 - w2]2°> E = —w?uPy. (2.16)
c

Here, the hats mark the Fourier amplitudes.

14



2.1 Transverse electromagnetic wave equation

2.1.3 Transverse mode

Appropriate cavity design entails some kind of focusing, typically a waveguide, lenses or
curved mirrors, that can be modeled by a transverse profile of the background refractive
index nj (ry), where r denotes the position vector. We will assume a constant transverse
mode ®(r, ) [Sie86] that solves

2 w? 2 w? 2
VJ_—l—C—QnJ_(rJ_,w) @(rL,w):C—QneQ)(rJ_,w), (2.17)

with the effective refractive index n.. It factorizes with the field

N

B(r,w) =o(r,,w)F (z,w)e, , (2.18)

where e is a unit vector in the transverse plane and we insert this in the wave equation

82 2 R ~
(5 s+ V1 t2 ni (r,w )> O(r,w)Ei(z,w)er = —w Py, (2.19)
82 77,2
B(r.,w) (a ¥ wQ;) Bz w)er = —PugPa. (2.20)
Next, we multiply with the conjugate of the mode ®* and integrate over the transverse
dimensions
82 2 R
/ / rJ_\ d2rj_<82—|—w C)EJ_( :—w,u,g/ / *(r )Pl )der_.
(2.21)
For the transverse field the polarization reads
Pu(r) = coxa(r)@(r1)EL(2)eL (2.22)

so we can write the right hand side of (2.21)) as the projection of the suceptibility on the
transverse mode

R.H.S. _—/ / I‘J_ an r,,z ) (I'J_)erJ_EA’J_(Z)eJ_. (223)

We assume the active region to be centered around r; = 0 and the transverse profile of the
susceptibility xn1(ry,2) to be constant inside the active region (AR) and zero otherwise.
The projection then simplifies

R.H.S. = 02 // I‘J_ | d I‘J_an(o Z)EJ_( ) (2.24)

We define the transverse confinement factor as

J Jar 12( (r)]*dry
f f |(I) r| | dQI'J_

r, = (2.25)
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which we substitute to get

0? 5n2\ - w? ~
(822 +w cg) Ei(z)er = ——5Tixw(0,2)EL(2)eL, (2.26)
where we can now drop the unit vector e . Finally we define the transverse polarization
Py (2) = eoxm(0,2)EL (), (2:27)
so we can write the wave equation for the transverse field
;;EL - w2Z§EAL = —wuel Py . (2.28)

2.2 Electric susceptibility model

To describe the interplay of the laser light with the nonlinear medium we choose a semi-
classical approach. A polarization model containing the most important quantum effects
of a semiconductor medium is solved for the electric field. In Maxwell’s equations this
polarization is then used to calculate the field evolution, thus forming a self-consistent
theory. Following [CKSI94|, we assume a nonlinear region made of quantum wells that
have a simple parabolic band structure, see Figure for a schematic. This corresponds
to a free electron gas for the conduction electrons and analogously for the valence band
holes. For fast intraband relaxations, as compared to the rate of optical transitions,
one may further assume that the conduction band electrons and valence band holes will
each have a Fermi distribution. This approximation limits the validity of our model to
dynamics on a picosecond time scale. The population inversion can then be described by
the total carrier density N. Note, that this free carrier model only constitutes a valid
approximation for low carrier densities where many body coulomb effects are negligible.
Details like the explicit dependence of the Fermi distributions on temperature are hidden
by the following linearization. The numeric parameters that appear in the final model
will generally depend on the exact structure and composition of the material, the carrier
density and temperature. Precise quantitative prediction of these coefficients is an active
field of research in its own right and beyond the scope of this thesis, see [CKSI94] for an
entry point to the vast literature on this topic.

We will assume the gain spectrum to be broad as compared to the microcavity modes
such that the susceptibility does not depend on the frequency x(w) ~ x(wp) and linearize
it for a small change of the carrier density around the transparency level N/(t)

_ Oxm (tr)
Yot & S (W= N (2.29)
Here, we split the real and imaginary parts
_ (ORe[xu] , .0Im[xn] (tr)
Xnl = ( N +1 N (N—N ) ) (2.30)
and by defining the differential gain coefficient
aIm[an]
=———>— 2.31
90 ON ) ( 3 )
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2.2 Electric susceptibility model

Figure 2.1: Schematic band structure of a direct band gap semiconductor. The band gap
between the extrema E. and FE of the parabolic conduction and valence bands
determines the resonance energy of amplified photons. The bands are filled up
to the respective Fermi levels Ff. and Ff, as indicated by the shaded ar-
eas. Additional excited electrons have higher wavevectors k and the transition
energy increases. Thus, resonant photons become bluer which is illustrated
exaggeratedly.

and the linewidth enhancement factor
ORe[Xni]

— ON
o= Olm[xni] ’ (2.32)
ON

we can shorten the expression to reach the susceptibility model
Xl = g0 (a+ ) (N = N . (2.33)

This equation thus describes the gain (absorption) and the relative refractive index change
of the nonlinear medium.

The carrier evolution is modeled by a differential equation to capture the dynamic
saturation of the nonlinear material that is essential to passive model-locking. We only
consider radiative and nonradiative recombinations of carriers that are linear in A since we
limited ourselves to a free carrier model. Accordingly, the carrier density can be assumed
small enough to neglect nonlinear terms, e.g. bimolecular and Auger recombinations. The
model then reads IN

A b 2
nJ

with the carrier relaxation rate v and the scaled bias current J = 737, where 7 is the quan-
tum efficiency of the current injection, J is the current density, e is the elementary charge
and d is the thickness of the active region. Stimulated emission enters the equation as a
term proportional to the intensity of the field | E|?. With the approximative susceptibility

(2.33]) we get the carrier model
ON

- = — ) A/ 2
5 =T~ = a0 (N N )]E| . (2.35)
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2 Theoretical Modeling

2.3 Unidirectional traveling wave model

We assume a unidirectional monochromatic traveling plane wave with a carrier wave fre-

quency wp and the corresponding wave vector o = “£wp

E | (z,t) = E(z,t)e' @270t (2.36)

where E(z,t) is the slowly varying envelope of the electric field. It causes a polarization

of the form ‘
Py (z,t) = P(z,t)e!®0=wot) (2.37)

with P(z,t) being the slowly varying envelope of the polarization. The temporal Fourier
transform of this ansatz simply results in a shift of the frequency

By = FIEL ()] = / Bz, t)ellaos—wot) gty = (2.38)
B, = / E(z,t)eiqozeiA‘“tdt = E(Z,AW)eiqoz, (2.39)

where we defined the frequency shift Aw = w — wp that describes the sidebands around
the carrier wave frequency. The same goes for the polarization

P| = FIP.(2,1)] = P(z, Aw)e'®? (2.40)

Using this ansatz in the wave equation ([2.28)) we expand the spatial derivative term to
get

82 6 1 _1q0% Qng [ _iqoz 2 D102
72 + 22q08— — q Ee'% 4+ w c—QEe = —w el | Pe'?% (2.41)
where we can use ¢ = Zw and drop the exponential functions
0? 0 .
[8 5+ quga +q? - qo] E=—w?ul P. (2.42)

Now we perform the slowly varying approximation which consists in assuming the spatial
derivative of the field to be small 8 E < 1 such that the second order derivative can be

neglected E 0. After d1v1d1ng by the prefactor of the first derivative we have

0  @C—aq]p_ W
— E=——"_4T P. 2.43
[8,2 + 2iqq 2iqo Hot L ( )

We expand the wave vector around the carrier wave frequency

n dq 2
q(w) = wo + 2 . Aw + O(Aw?). (2.44)
With the group velocity v, as defined by
1 Jq
—_— == 2.45
vg 0w, (245)
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2.3 Unidirectional traveling wave model

the wave vector can be approximated as

Aw
o (2.46)
Vg

After plugging this in we have

[ b qg + 2q0%—: + (’)(Aoﬂ) — q% 2
+

A w A
EFE=——ul P 2.47
22q0 Hol | 17, ( )

0z 2iqo

where we can neglect higher order terms in Aw and simplify

0 Aw] ~ w? .
— —i—|E=———ul'| P. 2.48
E } ol (2.43)
On the polarization side, we then expand w and neglect higher terms again
[0 Aw] - 2+ 2woA R
Y2 o STl b b (2.49)
0z Vg | 2iq,

and by substituting go = “cwp we can simplify further

0 Awl - Wi + 2woAw .

— —i—|F=-2Y r,P 2.50
_82 ? vg | 22%&]0 ol 1 7, ( )
0 Awl - )
[ - iw} E=iS [@ + Aw} pol L P (2.51)
0z Vg Te L2

At this point we transform back to time using that —iAw — %

0 10 ¢ |w O
|:8Z + 1)g8t:| FE = n—e [12 — 8t:| ,LL[)FJ_P. (2.52)

The rate of change of the polarization is proportional to the relaxation rate v < wg and
can be neglected as compared to optical frequencies

0 10 c wy
—+——|E=il'] ——uP. 2.53
[82 * Vg at] ' e 2 Ho (2:53)
We write this with the nonlinear susceptibility instead of the polarization
0 10 c wp
— 4+ ——=|E=il'y) —— E 2.54
[8z + e (%] [ L2 HOEOXn1 L 5 (2.54)
0 10 wo
— 4+ —— | E=il E 2.55
[82 + g 8t] Lo (2:55)

and use the susceptibility approximation from previous section to reach a simple traveling
wave model [JB10a]

0, 19 _ o Wo , ~ar(tr)

[82 + o at] E=—il} 2 (o +1) (N N ) E, (2.56)
L N Sl o YRR Ve ()
[82 to at] B =gl = (V=N E. (2.57)

19
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If we assume that the change of reflective index with the frequency is negligible % <1
the group velocity will be

vg = (2.58)

With this we can write the traveling wave model in the alternative form

.
gL 220‘ (/\/—/\ﬂ“)) E. (2.59)

2.4 Unidirectional ring laser model

This section mostly follows the approach of [VT05]. We consider a ring shaped laser
cavity of length L in which light propagation is assumed to be unidirectional. It shall
contain an absorber section between zo < z < z3, a gain section between 23 < z < 24
and a filtering element between z5 < z < 21 + L, with z; in ascending order along the
propagation direction. A schematic of the setup is shown in Figure

We write a simple traveling wave model as discussed in the previous section for the
slowly varying electromagnetic field envelope E(t,z) and the excited carrier densities in
the active regions N, (¢, z). The subscript r distinguishes the different section (r = g gain,
r = q absorber, r = p passive, r = f filter)

OE 10E  wov 1 — iy (tr)

e N (N,, N )E (2.60)
a/\/r o €b (tr) 2
8t —xZ“_VTNr_ﬁgr (NT_NT ) ’E’ ’ (2'61)

with the propagation velocity v, differential gains g,, transverse confinement factors I';.,
line-width enhancement factors «,., transparency carrier densities ./\/T(tr), injection currents
Jr (Jy = 0) and carrier relaxation rates ;.

The field after the filter f/(w') in the angular frequency domain reads

EW,z1+L) = f'(W)EW, z), (2.62)
with w’ being the conjugate variable of t. Elsewhere free propagation is assumed

OFE 10F
St =0 (2.63)

2.4.1 Introducing a co-moving coordinate

In the traveling wave model the slowly varying electromagnetic field envelope is
described as a PDE similar to an advection equation. It can be transformed into an
ordinary differential equation (ODE) along a characteristic curve, i.e., in the co-moving
frame of a photon. We introduce a co-moving coordinate o = 2 + t [YG17] giving the

total derivative
d 0 dz gdt 0 0

W= odo Tords ~ o T o (2.64)
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21

Figure 2.2: Schematic setup of a ring cavity with absorber (red) and gain (green) sections
and a filtering element (blue) that describes the bandwidth of the nonlinear
material. The coordinates z; describe the interfaces between the sections and
free space along the propagation length of the cavity.

that we can use in Eq. (2.60). After multiplying Eq. (2.60) with v and dividing both
Egs. (2.60) and (2.61)) by v, we can write
10E  1—ia,

T % — 3 9N E (2.65)
LNy N, s NLER, (2.66)
Yq ot Yq
with the carrier inversion N, = N, — ./\fr(tr) and the rescaled gain parameters g. = %%’
injection currents J,. = (jr 'y,n./\/' )) Yq 1 and saturation factors s, = %%'

2.4.2 Dimensionless scaling

We can now normalize time to the absorber relaxation rate to get a system with the
dimensionless coordinates ¢ = v40, T = 4t and variables A(7,() = \/5,E, n,(1,() = g.N,

0A 1 —iq,
— = A, 2.67
ac 2 " (267)
on, Vr 2
=jr— —np — —nr|A| (2.68)
or Yq Sq
where j, = gl.J.. Substituting the ratios of the carrier relaxations I' = 3—3 and the sat-
uration parameters s = z—z = Z—Z, we expand the carrier rate equations for both active
sections
Ong _ ;1 AP 2
5, = Jg = Ing —nglAl%, (2.69)
Ing _ 2
By —Ja N ngs|A|”. (2.70)
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2.4.3 Integrating the co-moving coordinate
In the passive sections (2.63)) transforms to

9A(r, ¢)

—5c =0 (2.71)

i.e., the field just propagates freely and therefore

A(T,G) = A(T,¢2),  A(7,C) = A(7.G5) (2.72)
with (, = zk%‘]. We can divide Eq. (2.67)) by A to separate the variables and integrate

<104 1 —ia, [“
—Z2d¢ = [In(A))¢ = / nedcC . 2.73
| agedc =g = =5 [T (273)
After exponentiation we have relations of the field at the interfaces of the different sections

AT, G) ey

ArGs) e ) (2.74)
AT, Q3) _ Iirag
A e , (2.75)

where G(1) = [, C34 ngd¢ and Q(1) = — [, C; ngd( describe the cumulative gain and loss in
the respective sections after the field has passed through. To treat the intensity terms | A2|

in Egs. (2.69), (2.70) we write an ODE for the intensity using (2.67) and integrate

0 0A OA*
—(A"A) =A"—+ A =n,A"A, 2.
R (2.76)
G
A G = 1A G0 = [ nilArOPdC (277
k
With this, Eqgs. , (2.70) yield
oG
)~ go—TGHT) 1A P + 1A G (2.78)
oQ(t
U — gy - Q) + slA(r, o) - slA(r. G 219
where gy = ff; JgdC and qo = — f 4423 Jqd¢ are the integrated current injections. Finally,
using the relations (2.74)), (2.75)) and (2.72)) we obtain
Ar,G) = e 2 D=0 A, (), (2.80)
96(T) _ o~ 1G(r) — e (5@ = 1) |A(r )P (2.81)
or ’ ’
0 o
U gy Q) — s (19 a2, (282
-

where on the right hand side the field is only evaluated at (;.
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2.4 Unidirectional ring laser model

2.4.4 Introducing a causal filter
With w being the conjugate variable of 7, (2.62]) reads
A(w7 Cl + T) = F(W)A(w, C5) p (283)

where T = %L. The inverse Fourier Transform is a convolution

o0

A(r, G4 T) = F(r) + A(r, Gs) = / Flr— 0)A(6, C5)do . (2.84)

—0o0

The filter must be causal, i.e., its response function is not defined in the past. Therefore
it has to be of the form
Ft)=0@1)f(@1), (2.85)

with the Heaviside step-function ©(¢) making it vanish for negative time in the convolution.
This is equivalent to limiting the integral’s upper bound to 7

A(r G+ T) = /_ " (= 0) A6, )6 (2.86)

The ring shaped cavity implies the periodic boundary condition A(r,{ +T) = A(7 + T, ()
giving

A(r+T,() = /T f(r—6)R(9)A(6,(1)do, (2.87)

1—ia 1—ia
where R(7) = e 2 *G=—5""@_ All expressions now contain only (1, which can be discarded
A(r, (1) = A(7). After taking the derivative with respect to 7 the system reads

aA(g:T) _ % /_T f(r —0)R(0)A(0)d0, (2.88)
8?@ — g0 = TG(r) = =2 (60— 1) jA(r) P, (2.89)
U — gy - Q) — s (1- 790 Ja@) . (2:90)

2.4.5 Case of a Lorentzian filter

The response function ©(t)ye(~7+%0) corresponds to a Lorentzian line shape in Fourier

v
Space ~—r Ty Let

F(t) = Vel 7o)t (2.91)
represent both a bandwidth-limiting element and a beam-splitter with a power transmis-
sion ratio of k. Using Leibnitz’ Integral Rule on (2.88]) we get

IA(T+T) T 9
PATED) — FORMAR) + / Gl = 0RO A (2.92)
For the filter function it takes the form
QD) JRvR)A() + (o + i) [ se-or@aew. o
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where the integral is just A(7 + T'). After shifting 7 by T’

0A
35'7—) = VEYR(T — T)A(T = T) + (=7 + iwo) A(T) , (2.94)
we assume Ae’°7 to rotate its phase at the central frequency of the filter and divide by ~

to arrive at

L0 VRR( - T)e A~ T) - A, (2.95)

where ¢ = woT. Finally we expand R and shift 7 by 1" for the carrier terms to obtain a
system of ordinary delay differential equations [VT05]

10A 1-iag 1-iag '
: a(TT) _ e 7 EGOISMQMi0 A (r _T) — A(r) (2.96)
96(r) _ go —TG(7) — e 90 (eG(T) - 1) [A(r = T)?, (2.97)
or
99T _ gy - Qr) s (1- ) A~ T2 (298)

2.5 Alternative approach

An alternative approach to obtain Egs. (2.80)—(2.82)) using Green’s function [BMSMO05]
allowing for more intuitive coordinates at the cost of a longer calculation.

2.5.1 Scaled dimensionless model
We define ¢ = Vv—qz and use the other scalings from the previous section to get

0A  0A 1-—iaq,

Mada i, (2.99)
on ,
(T%q = jg — Tng — nglAJ?, (2.100)
on ,
8—: = jg — ng —ngs|A]. (2.101)

Note, that in this approach ¢ and 7 have purely spatial and temporal character, respec-
tively.

2.5.2 Constructing the general solution

We look at the operator
0 0
L = — + = 2.102
(C?T) 6+8C+8T7 ( )
with a small linear loss term e. For a given source & we shall call the corresponding
solution u

Lu(c, )] =S 7). (2.103)
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2.5 Alternative approach

For a Dirac ¢ source the solution is called Green’s function G
LG, 7)] =0(¢,7). (2.104)
In general, S can then be written as the convolution with §
S(¢,T1)= /OO /OO 5(¢ =<7 —7)S( g dr (2.105)
where § and 4 can be substituted by £ [u] and L [G], respectively

S(¢,7) = /_Oo /_Oo LG, 7= S mdd'dr' . (2.106)

L(¢,7) can then be pulled out as rest of integral depends only on ¢’ 7/

Lu((, 1) =L Um /OO G(¢— ¢ m—7)S(,Td¢dr'| . (2.107)
The operands must now be equal, thus we obtain the general solution
u(¢, 1) = /00 /OO G, ™S - —7hdldr, (2.108)
where we used the commutativity of the convolution for the sake of notation.

2.5.3 Calculating the Green’s function

To make use of the general solution we first have to solve the Green’s function which
becomes a trivial division in Fourier space

<e + 88( + ;T) [G(¢, )] =6(¢C,7), (2.109)
(e +iw+iq) Glq,w) = 1. (2.110)

Now, we first transform the following expression back to the time domain

G(q,7) = ————— = dw, (2.111)
oo €t W tig 2 2im ) w—wp

R /OO GZUJT dw 1 [e.9] eZUJT

where wy, = ie — ¢ is a pole. After introducing separate real and imaginary parts w =
wy + iw;, we look at the different limit cases. For w, — £o0 and w;T — oo

Wy T ,—WiT
e“rle !

lim——— =0, (2.112)

wr + 1w — wp

i.e., w; — oo for positive 7 and w; — —oo for negative 7, respectively. Therefore a line
integration of a closed loop around the upper complex half-space for 7 > 0 and around
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2 Theoretical Modeling

the lower half-space for 7 < 0, respectively, coincides with our integral. With the single
pole wp, in the upper half-space, applying the residue theorem yields

1 o) ein T ein )
Py dw = Z Res = lim (w—wp) — e~ (HaT  (2113)
2m J_ oo w— wp W—wp wowp W — wp
for 7 > 0 and
1
%in | dw = ZRes 0, (2.114)
for 7 < 0, and thus ‘
Glq,7) = O(r)e” (T (2.115)

Finally, we can transform back to space

/ @ —(e+iq)T zq( sq e~ €T /OO T)q (2.116)

G(¢,7) =O(r)e” (¢ = 7). (2.117)

2.5.4 Introducing a useful difference expression

We now use the found G in Eq. (2.108))

= / / O(r)e ' 5(¢" — YS(C — ' 7 — 7)d¢dr (2.118)
u(C,7) = / dr'e™" / §(¢ =S¢ - =7, (2.119)

0 —00
u(¢, 1) = / dT’e*ET/S(g - r—7). (2.120)

0
To continue after some coordinate transformations
0
u(C, ) = / e“S((+o,7+0)do, (2.121)
0

u((+a,7+a)—/ e“’S(C+a+o,7T+a+o0)do, (2.122)
u((+a,7+a)= / e IS¢ + 0,7+ 0)do, (2.123)

we have to neglect the passive losses € — 0 so we can build a useful difference expression
from the previous equations

0 0

. _pl v v
1%5 =L = ac t oo (2.124)
u((+a,7+a)—u(l,T) / S((+o,7+0)do. (2.125)

Note, that in order for the previous approach to work, the absence of linear losses along
the propagation is necessary as well.
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2.5 Alternative approach

2.5.5 Active and passive sections

For the active sections we bring the equations into the form of Eq. (2.103|)

1 [0A 0A 1 —da,
R i) . 2.12
[ac * 67} 5 " (2.126)
0 0 1 — i,
- 2.12
<8C 5y ) ln A] = 5 " (2.127)
We identify the terms
u(¢,7)=InA, (2.128)
1 —ia,
S(¢, )= 2@@ n, (2.129)

to plug into the difference expression ([2.125)). After exponentiation we get the relation of
the field after propagation

1—ia, [
2za / ny(C+o,7+0)do, (2.130)
0

Jo' ne(Cromtodo g(¢ 1y (2.131)

A +a,7+a)—InA(,T) =

l—iap

A(C+a,7+a)=e
In the passive sections the corresponding propagation is trivial

u(¢C,7) =4, S(71)=0, (2.132)
A(C+a,7+a) = A((, 7). (2.133)

2.5.6 Connecting the sections

We can now connect the different sections and define the lengths of the sections a;, =
(; — (. The first section is passive and only corresponds to a shift in time

A(Ge, T+ az1) = A(G1,7) - (2.134)

In the following absorber section we need to evaluate an integral over the carrier density
(<3’ . a31) - qu (7’-&-CL21)A(C27 T4+ a21) , (2135)

Q' (7 + az1) / (G + 0,7+ az +o)do, (2.136)
0

as well as for the gain section

A(Cor T+ an) = e 2 T 4Gy 7 + agy) (2.137)
G'(t+az)= /0a43 ng((z + 0,7+ as +o)do. (2.138)

After the second passive section
A(Gs, T+ as1) = A(G, T+ aa1), (2.139)
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2 Theoretical Modeling

we can sum up the effects of the sections so far

A(Cs, T+ as1) = R(1)A(C1, 7) (2.140)
R(T) — e#G’(T*f’aC’)l)il—;aq Q' (t+a21) ) (2.141)

This expression corresponds to Eq. (2.80)) and the rest of the way to Eq. (2.96]) is the same
as before. The time offset as; plus the time spend in the filter 7; directly add up to the
delay time 17" = a5y + 7.

2.5.7 Carrier rate equations

We differentiate Eqgs. (2.138]) and (2.136]) to obtain the ordinary differential equations

!
OGUT +as1) _ o 16 + agr) — (2.142)
or
a43
—/ ng(CS+0,T+a31+0)|A(C3+0,T+a31+U)]2da,
0
o' (t+a
Q(;Tm) =qo— Q' (7t +as)+ (2.143)

as2
+5/ ng(Ce + 0,7+ az1 + 0)|A(G + 0,7+ az +0)‘2d0'»
0

where gy = as3j, and go = —azaj,. Using the difference expression ([2.125) again, we
obtain an expression to replace remaining integrals

N
<8< + 8T> [A*A] = n, A" A, (2.144)
u(¢,m) = A, S(¢,T) =n.|A]?, (2.145)

/a n(+o,7+0)|A+ o, 7+ 0)|?do = |A(C + a, 7 +a)]? — |A(C,T)\2 , (2.146)
0

After applying it we have

OGT £051) _ gy 1@+ agn) ~ 1A 7 + ) +AG. T +an)?,  (2147)
aQ/(gjaﬂ) =qo— Q' (T +an1) + s|A(G3, 7+ az1)|* — s|A(Ge, T+ az1)?. (2.148)
With the propagation relations , and we find
8(?’(7(:9:(131) = g0 — TG (1 + az1) — <€Gl(7+a3l) - 1) e~ QTR AG, TP (2.149)
8@’(;:—@1) =qo— Q' (T+az)—s (1 - e_Q,(TJram) |A(G,T)I? (2.150)

28



2.6 Injected microcavity with thin quantum well region

Finally we shift the time at which the carriers are evaluated to align the ODEs and get

Fas. (2:81) and (2:82)

900 _ gy~ 16(r) - 20 (50~ 1) 14(G 7). (2.151)
86;57) — - Q) — s (1 _ e—Qm) |A(C, 72, (2.152)
G(r) =G (t+azn), Q()=Q(t+an). (2.153)

Note, that these different points in time where hidden in the coordinates of the previous
approach.

2.6 Injected microcavity with thin quantum well region

In the following sections use the approach to model passive mode-locking introduced in
[IMBO05] for. A schematic of the principal injected microcavity setup is shown in Figure

2.6.1 Solving the intracavity field
We write the wave equation (2.28))

0%E(w, 2

8(:)22) + wQZ—QS(w, 2) = —w?uel 1 P(w, 2), (2.154)
where, P is the polarization of the quantum well (QW) region, I'; is the confinement
factor of the transverse mode and n the effective index of refraction of the transverse

Quantum Wells
. /
Y ~ L, = R,
D Cr s 720
o I_ = R
t1<—
i t ; > 2
0 [ L

Figure 2.3: Micro-cavity with a quantum well layer at | between two Bragg mirrors at
z = 0 and z = L. The intra-cavity field is split into left (—) and right (+)
moving waves to the left L and right R of the quantum wells. The output
and injected fields are denoted O and Y, respectively. The transmission and
reflection coefficients are indicated by ¢; and r;, respectively, where the index
j = 1 stands for the top and j = 2 for the bottom mirror. Primes mark the
case on the outside of the microcavity.
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2 Theoretical Modeling

mode. The transverse electromagnetic field in Fourier space E| has been replaced by £
for brevity. We assume the QW region to be very thin as compared to the wavelength
W <« A and located at z = 1.

32 2
<822 i wﬂ;) E(w,2) =~ uWT L P'(@)5(z — 1) (2.155)

To simplify notation we define P = WT'| P/ and integrate over z in a small interval around
the QW region

l+e (925(2) 2n2 l+e )
— = — Pi(z — 2.1
/l_6 9.2 +w 2 E(z)dz /l_6 wuoPo(z —1)dz, (2.156)
ag(z) l+e 2n2 l+e B )
[82] . +w = E(2)dz = —w uoP, (2.157)
o o 2nQ l+e B )
&E(Z +e)— &S(Z —€)tw =z E(z)dz = —w uoP . (2.158)

We define the field amplitudes to the left and right of the QW as L and R, respectively,
while subset + and — symbols mark right and left propagating waves, respectively. The
electric field can then be defined as

L =Lie" + L _e " f l
E(w, 2) = (w, 2) +€" +L_e ‘ or 0<z< , (2.159)
R(w,z) = Rie'®+ R_e "% for I<z<L
with the wave vector ¢ = w?. With this Eq. (2.158) reads
o o 2n2 l+e )
&R(Z +e€) — &L(l —€)Fw = E(z)dz = —w uoP, (2.160)
where we take the limit ¢ — 0 to get the boundary conditions at the QWs
L(w,l) = R(w,l) = E(w,1), (2.161)
0 0
— - =L = —wupP(w). 2.162
8ZR(W’Z) Iz (wal) W o (w) ( 6 )
The boundary conditions at the mirrors are
rmL_+tY =1L, (2.163)
roRyet = R_e~l (2.164)

and the output of the cavity is the superposition of the emission from the microcavity and
the reflection of the injected field Y

O=tL_+nrY, (2.165)

where 7;(w) and tj(w) are the frequency-dependent reflection and transmission coefficients
of the Bragg mirrors inside the cavity. The indices 1 and 2 stand for the top and bottom
mirror, respectively. Primes indicate the reverse case on the outside of the cavity.
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2.6 Injected microcavity with thin quantum well region

From the boundary conditions we know that

Ly=rL_+tY, L_= L*;flly (2.166)
R, = R‘i;m, R_ =ryR, ¥ (2.167)
and using Eq. yields
R, = HZ;(‘;LD R_ = 7% (2.168)
L, = W [ = m (2.169)

These we can use in Eq. (2.162)) when expanded as

iq (R+eiql —R_e M [ e 4 L,e_iql) = —woP. (2.170)
The term in parentheses then reads
& ro€ riefdle pthyeld  em2idg ¢y e~id (2.171)
1+ r2€27jq(L—l) ro + e2iq(l-L) 1+ r162iql rL+ e—2iql ’ :
and can be reduced to only two different denominators
1 + roe2ia(L=1) 1+ rpe2id 1+ re2id
After multiplication with both denominators Eq. (2.170)) can then be written as
Fi()€ = 52T (@)P + Fog)Y (2.173)
or equally
Fi(@)€ = i “D(q)P + Fa(q)Y | (2.174)
with
Fi(q) = 1 — rirge®* (2.175)
Fy(q) =t (14 rpe2aiD) | (2.176)
and the confinement factor
I'(g) = (1 + Tleziql> (1 + rge%q(L_l)) . (2.177)

In general the reflection coefficients are complex. We assume that the modulus does not
depend on the frequency and as such rj(w) = p; exp[ig;(w)]

Fi(q) = 1 — pyppeialtiontios (2.178)
Fy(q) = et (1 + pze%q@—””@) , (2.179)
D(g) = (1+ preation) (14 ppe2ialiitioe) (2.180)
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2.6.2 Expansion around a cavity mode

Injection and emission will take place around a carrier wave frequency wo, i.e. go = wo?,
at a minimum of F; leading to the condition

2q0L + ¢1(wo) + ¢2(wo) = 2rm ,m € Z, (2.181)

that describes the modes of the cavity. The position [ of the QW is chosen in order to
maximize the confinement factor yielding two more conditions

2qol + ¢1(wo) = 270y, (2.182)
QQO(L - l) + ¢2(w0) = 271'77,2 5 (2.183)

where n1 and no are integers. This guarantees the strongest possible coupling of the intra-
cavity field with the polarization as well as the injection, that shares one of the factors.
When adding these two equations together, we see that this condition will always coincide
with a cavity mode.

To get a temporal description of the dynamics of the field, we assuming small frequency
variations around the carrier wave frequency, i.e., w = wg + dw with dw < 1. We assume
the refractive index to be constant around the carrier wave frequency and expand F; up
to first order around wyp

oF . n
Fi(wp + dw) = Fi(wp) + = dw=1— p1p2 — 2ip1paLe—ow, (2.184)
OW | —o c
with the effective length
L= L+ =2 (61(w0) + dalwo)] (2.185)
e = om 7 1w 2(wo)] , .

that contains the linearized change of the group delays of the DBRs. After inserting

(12.184) in Eq. (2.174)) we have

F
Fl(WO) + %

(Sw] £ = iwg’l;—(;;F(wo)P + Fy(wp)Y . (2.186)
wo

w=

As the frequency of the injection wy was assumed to be close to the mode wy, we define

the small detuning A = wy — wg. We can then shift the small frequency variation by the

detuning dw = A + Aw and transform back to time using that —iAw — %

o€ . . c ;
oo (G5 i) = isn 5 (14 ) (L ) P (1 papn) € 4+ 66 (14 ) Y

ot
(2.187)
with the cavity roundtrip time 7. = 2L, .
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2.6 Injected microcavity with thin quantum well region

2.6.3 Scaling the fields

We define the photon lifetime r, the scaled detuning ¢, the polarization prefactor b and
the injection coupling factor A

1—
K = 7p1pp;p2 Tc_l (2188)
A
o= —, (2.189)
K
1 1
b— wo ( +pi)( + p2) : (2.190)
2nc. 1—pip2
N (on o1\ 1
R Gl ) RS (2.191)

L—pip2’

where we used ¢™? = eguo and the condition (2.182) for positioning the QW in the

microcavity. Note, that the factor exp[inni] = (—1)™ can alternatively be absorbed into

the definition of the injection field Y. Thus, we obtain a compact equation for the field

evolution

108 b

_— = —

ot 0]

Next, we will rescale the field £ in such a way that it has the same order of magnitude
as the injection Y. The second amplitude in (2.169)) can be written as

P — & +i6E +hY . (2.192)

—iql /

- =717 o , (2.193)
and at resonance where r is quasi-constant
. $q .
—1)Me i t/ —ip1
oo EUmeE o he™y (2.194)
1+ p I+m
which we substitute in the output relation (2.165)
- 91 .
—1)Mte tithe i1
o= ZUMhe s o (0 heT™ (2.195)
IL+m 1+pm
We define the prefactors
o1 .
(—1)™te" 2 , bt
_ B=r - = 2.196
3 s B=r——7 p (2.196)
to write the output as
O=¢+pY. (2.197)

We assume the DBRs to be loss-less so that the Stokes relations ¢/t = 1+7'r and r = —r/

hold ) ,
1- | —1)emio —py(1
B = —py = LM iy _ (17 = De nd+e) (2.198)
1+ 1+ p1
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Indeed, at resonance the DBR reflectivities become real numbers in this situation, i.e.
r1 = +p1. Assuming the reflective index outside the cavity is lower than the other materials
(typically air and semiconductors), 71 will be positive (i.e. ¢1 = 0) and | negative, causing
a m phase-shift upon reflection on the outer face of the microcavity. The prefactors then
simplify

(=)™t

- 2.199
§="17 o (2.199)
pi—1—p1—p}
B = = 1. (2.200)
1+

Finally, we rescale Eq. (2.192)) by defining the field E(t) = ££(¢,1) and the injection
coupling factor h = £€h where the powers of —1 cancel

tit] 1 1-— 1

Cl4pl—pip2 1= p1p2

The final scaled model of the response of a microcavity with a thin quantum well region
to an injected field is

oF b
1= =i —P—-E+iSE+hY, (2.202)
ot €0
or equivalently with the scaled electric susceptibility x = bxmu

E

5, = lix—1+id E+hY, (2.203)

and we can write the output relation simply as

O=E-Y. (2.204)

2.7 Delay algebraic differential equation model for VECSELs

We now consider using the microcavity in an external cavity design. Either a microcavity
may be coupled to itself using a feedback mirror or several microcavities can be coupled
head to head or in a V-shape. Such arrangements typically appear in the designs of
vertical-external-cavity surface-emitting lasers.

In the simplest case the output O will be re-injected into the microcavity, i.e., it will
become the new Y after a certain time of flight 7 that appears as a time-delay in

Y(t)=nOt—1)=n[Et—7)-Y(t—-"1)], (2.205)

where the attenuation factor per roundtrip 7 can be, e.g., the reflection coefficient from a
partly transmitting feedback mirror like in the schematic shown in Figure the trans-
mission of a beam-splitter or a fiber optic coupler. The resulting condition is a delay
algebraic equation (DAE).
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=

T2 T2 5 i Te
C . J C O ) / \ D
0 | S
] 1 Y
: t Z
Quantum Wells

Figure 2.4: Schematic of an external cavity setup consisting of a microcavity and a feed-
back mirror. The intra-cavity field E is shown along with the output of the
microcavity O which returns as the injection field Y after the external cavity
roundtrip time 7. It is attenuated by the external mirrors reflection coefficient
re. The coefficients of the Bragg mirrors are defined as in Fig.

We will use the slightly shorter notation A, = A(t — 7) in the following. Together with
the microcavity response (2.203)) we can now write a generic delay algebraic differential
equation model for our microcavity subjected to strong time-delayed feedback

ok
ﬂ*la =[ix —1+id] E+hY, (2.206)
Y =nlE;-Y;]. (2.207)

Notice how the DAE contains itself at an earlier time. This describes a recursive struc-
ture; it can be expanded by inserting the right hand side of the equation into itself with
increasing multiples of the delay time

Y =n(E; - Y;), (2.208)
Y =5 Br = (B — Vo) (2.209)
Y = n{ET 1| Bar = n(Bsr ~ Vi) } , (2.210)

Y:n<ET—n{E2T—n[EgT—n(E4T—Y4T)}}>, (2.211)

that we can rewrite as

Y =nE; —n*Esr + 13 E3r — 0 Ear + ..., (2.212)

Y = Z YWV E(t — jr). (2.213)
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For n <« 1 one can truncate this series, i.e. neglect multiple reflections, and obtain
week single roundtrip feedback similar to the Lang-Kobayashi model [LK80]. For n — 1,
however, one cannot easily argue at which j to truncate because none of the multiple
reflections will have a significantly lower influence than the previous one. This leaves
the DAE to be the appropriate description for systems subjected to strong time-delayed
feedback as it correctly describes all the multiple reflections that play an essential role in
the evolution of the these systems.

2.8 VCSEL coupled to resonant saturable absorber mirror

One possible VECSEL setup consists of separate microcavities for the gain and saturable
absorbers, respectively. Figure shows a schematic of the simplest implementation with
the nonlinear mirrors head to head and a beam splitter in the middle for signal extraction.

Using Egs. ([2.206)),(2.207) and (2.33)),(2.35) we write two sets of equations for the gain
mirror

/

gyt aaEtl = [ix1 — 1] B} + hYY, (2.214)
X1 = —bigi(ai +1) (Nl _Nl(tr)> ; (2.215)

N, eb () | EL [’
o0~ Ji — N1 — T (N1 - M ) ol (2.216)

and the absorber mirror
El

m;laatQ = [ixa — 1 + 0] By + hYy, (2.217)
X2 = —baga(as + 1) (N2 - /\/2(“)) : (2.218)

8/\/2 €b (tr) Eé ?

i — -2 — —= 2.21

5 To — 2Na 2792 (N2 N, ) 2 (2.219)

A mode of the gain mirror is chosen as the carrier wave frequency, i.e., the detuning term
only appears in the evolution of the absorber mirror. The injection fields are the delayed
outputs of the respective opposite mirror

Y = Oslt —7) = [E), — V4] (2220)
Yg = Ol (t - 7-) =" [ 1,7' - Yll,T] ) (2221)

with the transmission of the beam-splitter 1 = t..
To simplify, we first put the susceptibilities into the field evolutions

OF! .
Wt = [(1 —ia)bigi (/\/1 — A )) - 1} B} + hY{ (2.222)
OE, .
Ryl = [(1 —iaw)bagn (Nz — A >) 1+ 15} E} + hY{, (2.223)
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Figure 2.5: Schematic of a VECSEL consisting of a 1/2-VCSEL gain mirror and a resonant
saturable absorber mirror at a distance corresponding to the time of flight .
The fields in the microcavities are denoted Ej for the gain mirror j = 1 and the
absorber mirror j = 2, respectively. The output field O; of each mirror turns
into the injection field Y; of the other mirror after passing a beam splitter that
is used to extract a signal. The transmission and reflection coefficients of the
Bragg mirrors are denoted t¢,,, ; and 7, ;, respectively. Here, m = u and m = [
stand for the each of the top and bottom mirrors. Further, on the external
cavity side the coefficients are marked with primes. A similar version of this
figure was used in [5].

and shift the rescaled carrier densities by their transparency levels N; = b;g; (./\/'j — J\/'j(tr))

to obtain concise equations for the field evolutions

-1 8Ei . / /
Rl = [(1—dc1)Ny — 1] E] + hY], (2.224)
—1 8E§ . . / /
Ky 5 = [(1 —iag)No — 14 4] E5 + hY; . (2.225)
The carrier equations multiplied by b;g; read
8./\/ €h r E/»
bigi—," = bi9;T; — 1ibigiNG — bj 52 95” (Nj - N )) = (2.226)
ot 2h &
where we substitute the redefinition of the carriers from above
2
ON; (tr) €b i
¢ = 0395 = v (Nj + bigoN;) = SpgiN; ?j ; (2.227)
GNJ J; (tr) € 9j
L= bigi [ L - N ) =N — 22 NG B2 2.228
ot Y9595 (’Yj j ViiVj 2h’§j’2 J| ]| ( )
Be defining the scaled current J; = b;g; (‘%ﬂ —/\/j .(tr)) and the saturation factors s; =
;—‘;L | {gﬂz we can write the carriers evolution as
J
= = 5 =N = Njsjl Ejl (2.229)
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As a last step we rescale the fields F; = \/§E; and Y; = \/ﬁYJ’ and define the ratio of

2
the saturation energies s = 32 = 2 I€1°  The final scaled equations then read for the gain

. s1 g1 |£2‘2.
mirror
5;1% = [(1 —i0aq)Ny — 1] By 4+ hy Y71, (2.230)
% =(J1 — N1) — |E1|* NV, (2.231)
the absorber mirror
H;l%? =[(1—iag)Ny — 1+i6] By + hoYa, (2.232)
aaj\f = 72(J2 — Na) — s|Ea|*Na, (2.233)
and the injection fields
Vi = 5 [Ear — Yar (2.234)
Yo = |1, - Yid]. (2.235)

It can be convenient to rescale time with the photon lifetime of the gain mirror, i.e.
k1 = 1. This leads to all numbers being closer to one.

2.9 Mode-locked integrated external-cavity
surface-emitting-laser

The second case of possible VECSEL setups considered in this thesis uses a single mi-
crocavity containing both a gain and saturable absorber medium. Figure [2.6] shows a
schematic of an implementation where the external cavity is simply closed by a highly

reflective feedback mirror.
Using Egs. ([2.206),(2.207) and ([2.33),(2.35) we write

/
k1 %f: =lix — 1] E' + hY’, (2.236)
X = —bgi (a1 +1) (Nl - Nl(“)) — bga(an + ) (N2 - NS”) , (2.237)
ON; € o B P
8t’1 = Ji — YN — ﬁgl(/\/l — Ny ‘5‘ : (2.238)
6N €b r E 2
(%/2 = Jo = 6Ne = 2 ga(Na - NSy R (2.239)
Y'=0{t' —7')=n[E. -Y]], (2.240)

with the reflectivity of the feedback mirror n = r..
To simplify, we first shift the rescaled carrier densities by their transparency levels

Nj = bg; (/\/] - /\/j(tr)). We get

x = —(aj +4)N| — (ag + i) N5, (2.241)
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Figure 2.6: Schematic of a VECSEL where the microcavity contains both a gain medium
and a saturable absorber medium. The field in the microcavity is E, its output
O is re-injected, after one roundtrip of time 7, as Y after being reflected from
a feedback mirror that closes the external cavity. The coefficients of the Bragg
mirrors are defined as in Fig. [2:3] A similar version of this figure was used in
[7.

and

= 2.242
8t, fy‘] g] PY‘; i ( )

ON; b (‘%_N(tr)) —’y/-N/-—g—bg-N/»

After defining the scaled current J; = bgo ; (ii - ./\/;-(tr)> and the saturation factors s;- =
J

s | £|72 we can write the carrier evolutions as

ON; !
8t/ = 7.7
Also, we now substitute the susceptibility (2.241]) into the field evolution (2.236)) to get

(J; — Nj) — Nisi|E'|>. (2.243)

L OF
v

= [(1 —ia1)N] — (1 — i) Ny — 1] E' + hY" . (2.244)

Next, we will rescale the time variable t = xt’, 7 = k7’

OF'

o = (1 —ia)Ni — (1 —iag)Ny — 1] E' + hY", (2.245)
ON/
Kt = (= Nj) = NjsjlE' |, (2.246)
Y' =0kt — 7)), (2.247)
and lastly we rescale E(t) = /s|E'(kt') and Y (t) = /s]Y'(xt') and define N(t) =

N'(kt'), vj = Kk~ ’yj and s = 22 = 52 to reach the ﬁnal dimensionless scaled form of the
1
MIXSEL model

39



2 Theoretical Modeling

2~ [(1— i) Ny + (1~ o) Ny~ 1] B+ AY (2.248)
ON

78t1 = ’)/1((]1 — Nl) — |E|2N1 9 (2249)
ON.

78152 = '72(2]2 — Ng) - S|E|2N2, (2250)

Y =9[E — Y. (2.251)

2.10 Injected Gires-Tournois interferometer with Kerr
nonlinearity

If we insert a simple third order nonlinearity y = i|E|? for the susceptibility in equation
we get an equation that describes a VCSEL like microcavity with a Kerr nonlinear
medium instead of the quantum wells. Such a passive cavity can then be driven with a
CW injection beam with amplitude Yy through an external feedback mirror. A schematic
of such a setup is shown in Figure With appropriate scaling we get a DAE model for
this system

oE

ot

Y=n [ET - YT] t v 1-— |77|2Y0 ) (2'253)
where in (2.253)) we added the injection with the attenuation factor of the feedback mirror
in transmission to (2.207)).

[i (6 —|E]*) —1] E+hY, (2.252)

rh T reo T Te
C o= Offe o A
3 —
= {o-{HHH- v
/a ty

N\

Kerr Medium

Figure 2.7: Schematic of a setup that is geometrically similar to the MIXSEL but where
the microcavity contains a Kerr nonlinear medium. The system is driven by a
CW injection field Yy through the outside mirror. The fields and coefficients
are defined analogous to Fig. A similar version of this figure was used in

[6].
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3.1 Numerical integration of time-delayed equations

To integrate delay differential equation models one needs to remember the time trace of the
delayed variables for at least the delay time. Generally, one will only have access to those
points that have actually been calculated in the past. Any other point in time will have
to be interpolated using the closest points available. Models corresponding to temporal
localized structures inherently contain a large stiffness and one would be inclined to use
an adaptive mesh. However, the distance to the closest known points can vary strongly,
undermining the accuracy of the interpolated delay terms where the resolution is low.
We therefore choose an equidistant discretization. Thus, all needed points will either have
been calculated or can be interpolated consistently. Moreover, this allows for the consistent
introduction of noise. Figure [3.1] shows a schematic of the memory arrangement.

In addition to the current state of the system one needs M = AL additional points,

where T is the delay time and At the time step. One can put the delay memory and current
state together as a single structure with M + 1 elements. After calculating the next time
step with last known point, this last point is no longer needed and can be overwritten by
the newly calculated one. This is achieved by wrapping the index corresponding to the
current time into the interval, i.e., using the modulo operation with M + 1.

7

> i—M [i+1-M

- —|———————————————————————————————— 4

— s Pttt
—T —T7+At —At 0 At

Figure 3.1: Representation of the array data structure containing the memory for the
delayed variable and the current state of the system. The last points can be
used to interpolate delayed terms. The black arrows indicate all points used
in the calculation for the next. After a new step, the oldest point is no longer
needed and is overwritten. Thus, the index ¢ that represents the current time
loops through the array of size M + 1 as indicated by the red arrow.
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3.2 4th-Order Runge-Kutta with delay interpolation

Because of the exponential terms in the unidirectional ring model (2.96)—(2.98)) we are
limited to explicit methods. For a feasible compromise between accuracy and step size we
use the classical fourth-order Runge-Kutta (RK) method [PTVEQT7]

ky = At £,y ™), (3.1)
ko = At (1) + %,y“) n %), (3.2)
ks = At f(t ™ + %,y(") + %) , (3-3)
ky = At f(t + At y™ + k3), (3.4)
YD) — ) LI B B B (At%) (3.5)

6 3 3 6

where y(™ = (A("), G, Q(”)) is the state vector at the step n, f is the right hand side
of the model and At is the time step.

To retain fourth-order accuracy we need an appropriate interpolation scheme for the
delay term at the half steps y(”fM +3), We use fourth-order Hermite interpolation, i.e.,
we need to find a third order polynomial

y = ag + ait + ast® + ast®, (3.6)
y' = a1 + 2ast + 3a3t2 .

that crosses the known points with coinciding first derivatives. Figure[3.2|shows a schematic
demonstrating the method.

We choose the origin in the middle of the interval such that y(”_M +3) is at ¢t = 0. This
way we only need to find the constant coefficient of the polynomial

y(”_M+%) =ag + a10 + a20 + a30 = ag . (3.8)

The known points are then situated at t = j:% and yield four conditions

y(n—M) = ap — a17 + GQT — ag? s (39)

At At? At?
y(”_M'H) =ag+a;— +ay—— +az—, (3.10)

2 4 8
At At?
y M) — g — 2@7 + 3a37 , (3.11)
At At?
y/(n7M+1) = Qi + 20,2? + 3@37 . (312)
We add the first two together and substract the third from the fourth to get
At?
209 + 2ap = = "M 4y D) (3.13)
4(12& _ y/(n—M—f—l) . y/(n—M) ] (3‘14)
2
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Figure 3.2: Schematic for Hermite interpolation of the central point y(0) in green. A
third order polynomial is determined from two known points and their first
derivatives in red and green.

Here, the second equation defines the quadratic prefactor

y/(n—M+1) _ y/(n—M)

as = IAL s (315)
and that is all we need to solve the remaining equation
(n—M+1) _ ,H(n—M) At (n—M+1) + (n—M)
ag + 2 Y 5= Y 5 Y : (3.16)
The needed delay term is therefore
(n—M) (n—M+1)
n-M+ly _ Y +y At D T (o n—

The required first derivative must be remembered for the whole delay time. Conveniently,
it is immediately available from the RK integration.

Note, that noise can only be included to second order, limiting the asymptotic order of
this integration scheme. In practice however, for low noise levels this does not pose an
issue.

3.3 Semi-implicit leapfrog integration

The differential equation models used to represent the dynamics of the electric field in
microcavities allow for a semi-implicit integration algorithm that is computationally very
efficient and allows for consistent introduction of noise in the simulation. The delay alge-
braic equations that appear in the models to describe the external cavities are compatible
with this scheme as well.
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3.3.1 Concept

The models for the VECSELSs have a common structure of three recurring equations (cf.

sections

E=U(N)E+hY, (3.18)
N =~J - V(|E)*)N, (3.19)
Y =B, +Y;]. (3.20)

Notice that each of the differential equations is actually linear with a prefactor that de-
pends only on the respective other variable. As a result, we can trivially solve for implicit
terms. The fields and carriers may be approximated by applying the trapezoidal inte-
gration rule to combine the explicit and the implicit time-step. In addition we shift the
mesh-points of the carrier evolution by half a time step with respect to the fields

(3.18]) and (3.20). That way we can write

E@+l) _ g) 1 B ¢ plntl) y () 4 y(n+l)
2 T ynty)
A7 Uutnra 5 +h 5 + o&(t), (3.21)
(n+3) _ n(n+3) (n+3) (n+3)
NI - NTR g gyt N A VS (3.22)

At 2 '

where the trapezoidal approximation of the delay term can readily be computed from
already known points as it depends only on the past

y () 4 y(ntl) Em=M) _ y(n=-M) 4 p(n=M+1) _ y(n—M+1)
= 77 )
2 2

(3.23)

and must be saved to be used in the next delay interval.

The interspersed stepping—called leapfrog integration [PTVEQ7]—makes it so, that
the whole right hand side is effectively evaluated in the center of the integration interval.
Together with the trapezoid terms the resulting semi-implicit method is therefore accurate
to second order and is highly suitable for dealing the stiffness inherent to temporal localized
structures efficiently. Solving these equations then yields the final update rule for the
system variables

(1+4t00HD) B0 4 ALhY + VAl og
1— Atynts)

(14 4Ly ntD) N+3)
1— %V(n—i—l) ’

E+l)

: (3.24)

NOFD = Aty T+ (3.25)

where £ is a complex normally distributed random number with a standard deviation of
o that approximates a random walk to second order.

44



3.3 Semi-implicit leapfrog integration

3.3.2 VCSEL-RSAM update

Applying the semi-implicit leapfrog method to the VCSEL-RSAM system ([2.230)—([2.235))
yields the following updating rule

1 _
<1 + %th"+2)) E" £ AthY) +VAto &

(n+1)
E; = , (3.26)
(n+3)
1- 4ty e
1 _
- <14—%Né”+”>1%“—%Ath}a+«¢Ata§2
BT — (3.27)
(n+3) ’
1-4tu,"
3 (1+%H4M”)NY+5
n+s
N Y = Aty Ji + Ay D : (3.28)
2 71
5 (14—%§vf”+”)<Aé"+%>
(n+3
N2 = Aty Jo + a0 : (3.29)
2 72
with
U, = [(1 — ’iOq) Ny — 1] , U= [(1 — iOQ) No—1+ 2(5] , (3.30)
vﬁz—(wﬁﬂEﬁ>, w::—@@+smﬁ), (3.31)
and
(n—M) (n—M) (n—M+1) (n—M+1)
_ E -, E —Y,
¥y =y 1 , (3.32)
(n—M) _y (n—M) (n=M+1) (n—M+1)
%:nEQ Yz +§2 Yy (3.33)

3.3.3 MIXSEL update

Applying the semi-implicit leapfrog method to the MIXSEL system (2.248)—(2.251]) yields
the following updating rule

<L+%UW%0EWLHMhY+VAMf

E0+D — 3.34
[ EperD : (3.34)
n (n+3)
(n+3) (1L+ 5 V)N
N = Aty gy 4 . , (3.35)
1— Ttv(n—&-l)
1
a3 1 4+ Atpy(n+1) N(n+§)
M*ﬂ:mwb+(+2 ) Ny , (3.36)

1 — Stwn+D)
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with
U =[(1—iay) Ny + (1 —iag) No — 1] , (3.37)
V=—(n+BEP), (3.38)
= (2 +sIEP) (3.39)

and

3.3.4 KGTI update

In the case of the Kerr GTI the presence of the |E|?E nonlinearity in the evolution of
the F field itself prevents one from directly solving for the implicit step. An easy way to
circumvent the problem lies in using only the explicit value of E(™ in the nonlinearity.
That leads to a mixed form

At g 4 VAL
poiy _ L+ SU)E +:‘tthy+ Atog (3.41)
|- Aty
with
U:%&4HW§—1, (3.42)
and (n=M) _ y(n-M) | pn-M+1) _ y(n-M+1)
_ E(n— —_yn— En— _yn-
Y = i 1= [nP2Yp. (3.43)

2
Note, that asymptotically this algorithm is only strictly accurate to first order. One may
use the result as a predictor step to then recalculate E™1) up to second order

(14+5V) EM + AthY +VAto¢

E(n+1) _
A
1— ?t‘/

, (3.44)

with
EM 4 Bt |

v=ils—
‘ 2

—1, (3.45)

where F is approximated by a linear interpolation of E™ and a predicted E™tYD. In
practice, however, the additional error of using the mixed order single step integration
alone turns out to be very small.

3.4 Functional mapping
The concept of the functional mapping approach has been published in [2]. Figure

shows a schematic of this concept with the various details that are discussed in the following
sections.
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3.4 Functional mapping

Figure 3.3: Schematic illustrating the functional mapping concept . The intensity
I = |EJ? and gain carrier density N are shown for an exemplary PML regime
obtained in the unidirectional ring laser with. Integration of the system is
limited to a small box of size T,0x = 20 around pulse (fast stage). The time in
between the boxes is not drawn up to scale and can be very large (slow stage).
The boxes are numbered n and the next state n+ 1 is obtained from previous.
One needs the initial conditions at the beginning of the next box. For TLS the

intensity virtually vanishes in the slow stage. Thus I @) 1 = 0 and N,(j_)H can

n+
be calculated analytically from last known value Nﬁf ). In addition, the pulse
drift v must be negated. A similar version of this figure was used in [2].

3.4.1 Concept

When looking at a pulse train of temporal localized structures one notices that only the
pulses themself make the problem stiff. The system variables change quickly around the
pulse, also called the fast stage. The rest of the temporal profile of the electric field is
virtually constant, and in the case of passive mode-locking with a saturable absorber it
is generally zero. This causes the carrier inversions to recover exponentially during most
of the roundtrip, also called the slow stage. Thus, calculating the whole roundtrip with
a small time step appears very inefficient. In this section we will develop a method that
combines the efficiency of pulse iterative models while preserving the physical phenomena
predicted by time-delay models.

In the respective PML models discussed in this thesis, time-delayed terms only appear
for the electric fields. This means that only the field must be stored to define the state
of the system. For carrier inversions the last values are sufficient. One may choose to
integrate the equations in chunks of 7. The state of the system can then be numbered

B, = E(t), te[-7,0), (3.46)

plus the final carrier values
N = N(0). (3.47)

n
In this picture the next state is function of old state

Eni1 = f(En, NV, (3.48)
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i.e., the system has the structure of a functional mapping (FM).

When assuming the field to be zero outside of a small box around a pulse one can
actually constrict the integration to this box to save a lot of time. The speed-up factor is
on the order of the ratio 7/7pox. We position the box of size 2§ around a pulse at t = 0
such that the field profile of the state n is defined as

E,=E(t), te[-Tt—0§-1+7]. (3.49)
To calculate the next state n + 1
E.1 = E(t), te][-9,4], (3.50)
one needs the initial values for the carriers at the start of the next box
N9 = N(=5). (3.51)

They can typically be calculated analytically or at least with much larger time step from
last known carriers

N = N(—7+96). (3.52)

n

Note, that this method is not strictly limited to the zero background case, but can work
for any constant CW background.

3.4.2 Drift compensation

For causality reasons the period T of TLS is larger than the delay time 7. Pulses would
drift with respect to the FM integration box by an amount v = T'— 7 and thus slowly out
of it. Therefore, before each iteration the pulse needs to be shifted back to a fixed point in
the box, e.g. by fixing peak intensity in the center. One may simply shift by a number of
mesh points or use some continuous method via Fourier Transform or interpolation. For
the non-Fourier cases one has to choose whether to shift circularly or to discard points
on one side while padding on the other with the constant field value. With a sufficiently
large box this makes little difference in practice, however. An alternative view is that the
box is shifted forward in time by v. The old state is then

E,=E(t), te[-1—d+v,—T7+d+v]. (3.53)

The exact speed-up factor is then T'/Tpox.-

3.4.3 Carrier reconnection as a boundary condition

After the shift adjustment of F,, in the old box n by v the last known carrier values IV,
are still at t%f) = —7—J. However, we need them at tSJ)rl = —{§+wv for next step. The time
difference between them is therefore the delay time minus the box size and, importantly,
plus the shift

AT =T7—-20+w. (3.54)

Since we assume constant intensity the stimulated emission term in the carrier evolution
is a constant, specifically zero for TLS. The carrier model is then linear and just yields
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an exponential decay toward the equilibrium value Ny. Generally, the decay rate would
still depend on the stimulated emission while for TLS only the carrier relaxation rate vy
remains, i.e.,

N =Ny - (Ng ~ N >> e INAT (3.55)

3.4.4 Ring model implementation

For the unidirectional ring model (2.96)—(2.98) the implementation of the FM is straight
forward. One simply has to integrate the box using the known field envelope profile A,
and the initial conditions build from the integrated gain G,, and absorption @, values of
the previous step

A, =0, (3.56)
G, =T g — (F—lgo _ G;ﬁ) e TAT (3.57)
QSJ)A =qo— (QO — Qﬁf)) e AT (3.58)

3.4.5 VCSEL-RSAM implementation

For the implementation of the VCSEL-RSAM model (2.230)—(2.235|) one has to deal with
the fact that the temporal localized structures are alternating between two different cav-
ities. When choosing to start with the gain mirror, the state of the system is defined by

the absorber output Oz, and the final values of the carrier inversions Nl(];) , NQ(];) .
The value Y7 ,41 can already be calculated from the last step

Yint1 =102y . (3.59)

With this and the and initial conditions

E{) =0, (3.60)
NO = - <J1 - fo;)) e MAT (3.61)

the temporal profile of the gain intra-cavity field Ey,1 can be integrated. For absorber
mirror both previous fields then combine to form the injection field

Yont+1 =1 [Ein+1 — Yint] - (3.62)

Analogously as for the gain mirror, this is used to integrated the absorber field profile
Es 41 using the initial conditions

EY) =0, (3.63)
N = Jo = (o= NG ) e (3.64)

Finally both of the absorber fields combine to form the state of the next step

O2n41 = Ea 1 — Yo g1 (3.65)
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Integrating one box for each mirror like this constitutes a full step step of the FM.
Which mirror goes first is a matter of choice. Note, that for the VCSEL-RSAM setup the
roundtrip time is twice the delay time so the time between FM integration boxes is

AT =21 —-20+v. (3.66)

Shifting only one injection field before every full step is sufficient as the pulse is not
retarded much in either mirror. When shifting twice, the time difference must be adjusted
slightly

AT =27 —204+v1 +v2. (3.67)

3.4.6 MIXSEL implementation

The implementation of the MIXSEL (2.248)—(2.251)) is analogous to the VCSEL-RSAM
model from the previous section. However, it is simpler in having only one microcavity
and thus does not require the interspersed step.

The injection of the new step simply reads

Yi1 =10y (3.68)
Along with the initial conditions
EY, o, (3.69)
N == (B = N emma, (3.70)
N =y - (J2 S (3.71)

the new temporal field profile E, 1 is integrated. The next step can then be started from

On+1 - En+1 - Yn+1 . (372)

3.5 Continuation in DDE-BIFTOOL

DDE-BIFTOOL [ELR02] is a framework for bifurcation analysis of delay differential equa-
tions, however, it was not designed with delay algebraic equations in mind and cannot
handle this specific case directly. We therefore need to approximate DAEs in an appro-

priate form. Also, the symmetry in the complex phase of the systems has to be dealt with
specially for both DDE and DAE problems.

3.5.1 Implementing a DAE as a singularly perturbed differential equation

We can add a singular perturbation to the generic delay algebraic equation (2.207) to
obtain a delay differential equation

Y =n[E, - Y], (3.73)
Y
e%zozn[ET—YT]—Y, (3.74)
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with € < 1. In the limit ¢ — 0 this DDE becomes equal to the original DAE. In this
approximate form we can analyze the DAE models in DDE-BIFTOOL at the cost of
introducing additional stiffness to the systems which can lead to numerical difficulties
when calculating the linear stability of periodic orbits.

3.5.2 Phase invariance

Due to the complex valued nature of the electric field, both the unidirectional ring and the
VECSEL models have an inherent phase symmetry. The fields may be rotated freely since
there is no fixed reference point. Thus, if a TLS profile is entirely rotated by some phase
the resulting dynamics will be exactly the same up to said phase offset which remains
conserved. For the solution structure this means that any steady state is actually an
infinite set of steady states. Branches for a given intensity—or temporal profile thereof—
are indeed tubes. During continuation in DDE-BIFTOOL, this means that the algorithm
would tend to not follow the desired branch but instead loop around the polar coordinate
of the tube, i.e., the complex phase of the solution. To counteract this problem one needs
to break the phase symmetry.

Let us consider a delay model in a generalized form

%f — f(B)E(t) + gt — ) E(t— 7). (3.75)

We write the ansatz E(t) = Ey(t) exp[—iwt]|, where w is the rate at which Ey(¢) will rotate
in the complex plane while retaining a constant phase profile. Introducing this ansatz in
the model we get

aant(t) ot _ ino(t)e_m _ f(t)Eo(t)e_m +g(t —71)Ep(t — T)e_iw(t_T) , (3.76)
al?t(t) = [f(t) + iw] Eo(t) + ¢“Tg(t — ) Eo(t — 7). (3.77)

We can implement this form of the model in standard DDE-BIFTOOL and introduce an
additional condition C' that determines the phase of Ey. A convenient choice for CW
solutions is

C =TmE;=0. (3.78)

The same can be defined for a specific mesh point of a periodic orbit. In the case of
temporal localized structures most of the field is close to zero and thus its phase is not
well defined. Therefore the mesh point containing the maximum field intensity is chosen
to lock the complex phase. After associating the new free continuation parameter w with
the extra condition, DDE-BIFTOOL will adjust it to fulfill the condition, thus reducing
the solution manifolds to simple branches.

Note that in the KGTI model , the intra-cavity field is phase-locked to
the injection, i.e. a driven oscillator. Thus, the problem does not appear here and the
standard methods of DDE-BIFTOOL are sufficient.
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Ring model implementation

The phase-locked form of the unidirectional ring model as implemented in DDE-BIFTOOL
reads

10A(r) _ 12109 G(r) - 29 Q (1) +i(T— ) _ Y
= Jre + AT —T) + (Zv 1)A(7), (3.79)
oG
65_7) = go— TG(7) — e Q(T) (eG(T) — 1) |A(T — T)|?, (3.80)
0
U — gy — @)~ 5 (19 |G D). (3:81)

MIXSEL implementation
The phase-locked form of the MIXSEL model as implemented in DDE-BIFTOOL reads

E
a@t — [(1 —ial)Nl—}- (1 —iag)NQ— 1+iw]E—l—hY, (382)
ON-
aitl = ’yl(J]_ — Nl) — |E|2N]_ 5 (383)
ON-:
87t2 = y2(Jo — No) — s|E|* N, (3.84)
Y =n[E, — Y ]e™T. (3.85)

3.5.3 Rotational symmetry extension

Alternatively to the extra condition approach , as of version 3 DDE-Biftool comes
with an extension for dealing with rotational symmetries. To make use of it, the complex
fields have to be split into their real and imaginary parts and then combined with the real
carrier inversions into a real valued vector-function. The state vector will be of the form

Re[F]
p=|Im[E]] . (3.86)
N

In addition, one has to provide a rotation matrix of the form

cos(wt) sin(wt) 0
R(wt) = | —sin(wt) cos(wt) 0] . (3.87)
0 0 1

It must contain rotations for the fields and unity for carriers. Alternatively, the generator

of the rotation matrix
0

10
G=|-100 (3.88)
0 00

can be used. Given such a matrix, the extension provides automated routines to set up
and use an extended system created from the original one containing the phase symmetry.
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The end result is equivalent to the phase invariant form. Note however, that as of now
the rotational symmetry extension is not compatible with user provided Jacobian functions
and is limited to using the numerical approximation supplied by DDE-BIFTOOL. This can
be detrimental to computational accuracy and efficiency in exchange for more convenient
usability.

Ring model implementation

For the implementation of the unidirectional ring model (2.96)—(2.98)) the state vector is

Re[A]
_ | Tm[A]
=1 c |- (3.89)
Q
the rotation matrix is
cos(wt) sin(wt) 0 0
| —sin(wt) cos(wt) 0 0O
R(wt) = 0 0 R E (3.90)
0 0 0 1
and the generator is
0 1 00
-1 0 0 0
e (3.91)
0 00O
MIXSEL implementation
For the implementation of the MIXSEL model (2.248))—(2.251)) the state vector is
Re[F]
Im[FE]
_ | RelY]
Ny
Ny
the rotation matrix is
cos(wt)  sin(wt) 0 0 00
—sin(wt) cos(wt) 0 0 00
B 0 0 cos(wt) sin(wt) 0 0
Rwt) = 0 0 —sin(wt) cos(wt) 0 0]’ (3.93)
0 0 0 0 10
0 0 0 0 0 1
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and the generator is

(3.94)

0 0
-1 0 0 Of"

0 0 00O
0 0 00O

0 1 0 0O0O
-1 0 0 0 0 O
0 1

0

|
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4 Unidirectional Ring Laser

We analyze the dynamics of temporal localized structures that appear in the widely used
model for passive mode-locking established in [VT05]. The focus lies on the influences of
gain bias and of the linewidth enhancement factors. This sets a baseline for TLS behavior
in order to compare with the more specific setups and models discussed in the subsequent
chapters. Most of the results presented in this chapter have been published in [I] and [2].

4.1 Lasing threshold

We use the model (2.96)—(2.98) where we refer to time as ¢ and to the delay as 7. Also,
we rescale the pump rate gg — I'gg so we have

LOA(t) _ — teagyy 1=i0agay g, 0\

57_\/@ G(t) Q(t) ¢A(t ) — A(t), (4.1)

agf) = T(g0 — G(t)) — e~ (60— 1) |A(t - 7)P2, (4.2)
90 _ gy~ Q) s (1 - 20 Ja = ). (43)

To find the CW solutions we use the ansatz A = Ape™™* with a constant amplitude Ag
and get

_inge—iwt _ \/Eeliéag G—iliéaq Q—iqﬁAOe—iw(t—T) _ Aoe_iwt, (44)
v
1% = Vre 7G5 Q =) (4.5)
Y

with constant carriers G and @ that solve

0="T(go— G) —e @ (e% — 1) |Ao|?, (4.6)
OZQQ—Q—S(l—eiQ) | Ag|%.

In the limit of |Ag| — O the carriers are simply

G= g0, (48)
Q =4qo, (49)

so the condition for a CW solution becomes
- ig _ \/Eelfgag 90— 229 gyt i(wr—9) ) (4.10)

v
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4 Unidirectional Ring Laser

Because of the exponential on the right hand side, the solutions of this equation are
transcendental. We take the modulus squared of this condition and solve for gg

2
go=¢qo —Ink +1In <1—|—{§2) . (4.11)
From this equation we know what gg to put in order to get a CW solution with frequency
w as a function of the other parameters, however, w may not be chosen freely. As will
be shown in the next paragraph, only a countable set of w = wk) yield actual solutions.
Among the possible w®), the smallest g(()k) will be the threshold of the laser and we see
that, indeed, we need to find the w®) closest to zero.
For a CW solution we must not only match the modulus of but also the complex
phase. We can write the imaginary part of as
o = Vksin (0 —0) .
T

(4.12)

where we defined the delay phase due to the frequency shift # = wr and the overall phase-
shift per roundtrip © = w + ¢. When considering the long delay limit 7 — oo,
we simply need to solve sin (© — ) = 0 which means § = © + 27z for any integer z € Z.
After substituting back the definition of 6 we get

O+ 27z
W= —7>
-

, €7 (4.13)
where we have to take the limit to infinite 7 again. This expression can the be interpreted
as equally spaced modes wk) = 277%, k € 7Z with a residual phase shift ©7! that tends
to zero for large delay times. See Figure for an illustration of the mode behavior. We
may therefore safely take the limit |w| — 0 in (4.11)) to get the threshold

(th)
9o = qo—Ink, (4.14)
in the long delay limit 7 — oo.
(a) RO (b) wth) (©) w™)
— b 2N _ — x %% —
= / \ 2m 5 / 3 =
- / N J * =
-, / | <, £ X . <,
= / \ I = - =
'z B N z % X I =
% e AN &0 x! A o0
\ \ N el lox \
-, | | | | | |
Ly~ | FWHM oc vy | L |FWHM oy | %, | FWHM o v |

frequency w

frequency w

frequency w

Figure 4.1: External cavity modes (crosses) of a laser with bandwidth ~. (a) The modes
spreading is approximately proportional to the inverse roundtrip (delay) time
771, (b) For large 7 a mode closer to the maximum of the gain curve (dashed
line) is available to become the threshold mode w®. (¢) The modes become
continuous in the long cavity (long delay) limit where the threshold frequency
can be chosen freely.
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4.2 Temporal localized structures

More generally, consider the phase exp[iwT] coming from the delay term. For some large
delay 7 > 1 a very small change in the frequency |Aw| < 1 is always sufficient to get an
arbitrary delay phase, i.e., wr € [—m, 7] that cancels any remaining phase contributions.
In the long delay limit the required change is infinitesimal such that the laser may operate
at the optimal gain frequency (cf. Panel (c) of Fig. [4.1)).

4.2 Temporal localized structures

The origin of the localized regime of pulses in the model at interest was explained in
[IMJIBG14] including fundamental results obtained via numerical path continuation and the
dynamics of stable temporal localized structures were investigated in [JCMG16, [CIMG16].
The following sections focus on the bifurcation analysis of these TLSs including the influ-
ence of the linewidth enhancement factors that can lead to oscillating pulse profiles.

4.2.1 Obtaining a TLS in DDE-BIFTOOL

A branch of TLS solutions typically connects to a CW solution in an Andronov-Hopf
bifurcation that is directly related to the delay time 7. In order for this bifurcation to
occur, the delay time needs to be sufficiently large. It roughly coincides with the period
of the periodic orbit born at the bifurcation. Otherwise the oscillation cannot fit into
the roundtrip and the CW solution remains stable. This makes 7 an important control
parameter for bifurcation analysis.

Directly beyond the bifurcation point, the periodic orbit can be easily constructed. A
small harmonic perturbation is created around the underlying steady CW solution as an
initial guess. After correction, this solution can then be continued up in 7 to compute
the branch of TLS solutions. It deforms from the initial harmonic perturbation into a
nonlinear pulse shape that corresponds to a typical passively mode-locked solution. Such
a pulse can already be intense enough to saturate the absorber sufficiently in order to be
continued down in the gain bias gy below threshold. From there 7 can then, in principle, be
increased to arbitrary numbers. The field intensity after the pulse will go increasingly close
to zero while the gain and absorber carriers will relax increasingly close to the bias values
go and qp, thus increasing the level of localization. See Figure for the development of
an exemplary TLS from the corresponding harmonic perturbation.

Note, that qualitatively different Andronov-Hopf instabilities of the CW state can exist,
where the period does not follow the delay time. Here, a possible occurrence of commen-
surate period and delay time would be purely coincidental and hence would not lead to
PML. A way to spot the right kind of bifurcation is to see whether additional Andronov-
Hopf bifurcations with similar frequency appear at multiples of the delay time for the
same CW solution. These give rise to periodic solutions with two or more periods of the
same original harmonic perturbation. They belong to the higher harmonics of the PML
solution which necessarily exist as well. Physically one can always imagine an external
cavity of twice the length with twice as many equal and equally spaced pulses to be an
almost equivalent system. The main difference is that higher harmonics offer additional
types of instabilities that stem from pulse interactions.
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Figure 4.2: Evolution of the solution profiles along a branch of periodic orbits starting
from an Andronov-Hopf bifurcation point with the delay time 7 increasing
from panels (a) to (f). The temporal profiles of the intensity in solid blue
originate from a small harmonic perturbation around the underlying unstable
CW solution in dashed orange and develop into a TLS with increasing period.

Alternatively one may choose to import a time trace form direct numerical simulations
that represents the periodic orbit. Ideally by integrating the equations in the form that
is used in DDE-BIFTOOL itself as described in Section Usually, this would involve
calculating a sufficiently accurate initial guess of the frequency shift associated with the
periodic orbit from the standard system. It can then be used to find the equivalent orbit
again. One might just try letting DDE-BIFTOOL correct the original trace and maybe
even free some of the parameters. However, this may result in an orbit far away from
the original one or on a different branch altogether and, of course, this approach is not
guaranteed to work at all.

In practice, too large a 7 will eventually lead to a situation where the number of mesh-
points is insufficient to accurately resolve the profiles. Interestingly, the continuation of
TLS solutions breaks only for rather large values of 7. This is due to the fact that, effec-
tively, the profile is only stiff around the pulse. Here, the field intensity is large and the
carriers evolve quickly while far from the pulse the carriers only relax slowly. This leads
the mesh adaption of DDE-BIFTOOL to cluster the majority of mesh-points at the pulse.

The issue lies in the fact that the field still evolves fast everywhere and thus becomes
undersampled for most of the roundtrip. Here, small errors on few meshpoints hardly
affect the residual error of the whole profile, however, the intensity is so small that the
relative errors are actually very large. This can lead to artifacts building up far from the
pulse while continuing a branch since the solutions are accepted anyway, yet eventually
the continuation gets stuck. More importantly, the strongly varying resolution makes the
Floquet analysis numerically unstable; the exponential tail of the gain carriers is under-
sampled which results in the Floquet multiplier of high frequency modes being spurious.
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4.2 Temporal localized structures

They tend to jump erratically, even for minute changes to the profile or mesh. The con-
tinuation of bifurcations points of periodic orbits does not work properly in this situation
either. This problem might be solved in the future by extending the approach introduced
in [YRSW19].

4.2.2 Parameter set

If not stated otherwise, the following set of parameters is used throughout this chapter.
The time scale of the model is normalized to the absorber relaxation time 7,, which for a
semiconductor medium it will be around 20 ps. The rate of the filter is set to v = 10 that
would then correspond to a bandwidth of v/(77,;) ~ 160 GHz as a Lorentzian spectral line
shape was assumed for the model. The gain relaxation rate is set to I' = 0.04 and thus
corresponds to 7, = 500 ps. The linear losses are set to x = 0.8 and the absorber bias to
go = 0.3 which corresponds to a modulation of the nonlinear losses of 1 —exp(—qg) ~ 26%.
The ratio of the gain to absorber saturation energies is set to s = 30. The delay time is
set to 7 = 100 which corresponds to 2ns. The product I'r = 4 means the gain has time
to relax by a factor of approximately e™* per roundtrip and is a good way to measure
the level of localization, i.e., the how much a pulse will interact with the next. The delay
phase is discarded, i.e. set to ¢ = 0, since in the long delay limit it can be negated by an
infinitesimal change of the frequency shift (cf. previous section).

Temporal localized structures always emerge subcritical, i.e., they exist only below the

lasing threshold. Thus, it is more convenient to work with a normalized gain coefficient
(th)
9=290/9 -

4.2.3 Typical TLS profile and branch structure

Figure shows results obtained using DDE-BIFTOOL for a typical typical branch of
TLSs. In panel (a) the branch is represented by the maximum of the intensity I = |A|?
of the corresponding pulse as a function of the normalized gain g. The curve reaches
very small intensities close to the threshold. Towards lower gain, it evolves as an unstable
solution on top of the stable off solution, i.e. subcritically. It then folds back toward higher
gain forming a typical C shape. The branch then continues on beyond the threshold where
secondary Andronov-Hopf (or torus) bifurcations destabilize it.

Panel (b) of Figure shows the so-called period deviation. In the long delay limit the
period approaches constant offset to the delay time § = T'—7. The period is on the order of
Ty = 7+ 1/~ where the 1/ term comes from the inertia of the filter. The period deviation
is then T — Ty which is the residual part of the period that is characteristic of a given
pulse profile. It is typically of small magnitude and close to zero, thus yielding a handy
measure to plot. For the stable part the period deviation decreases roughly proportional
to the peak intensity which hints at its connection with the absorber depletion; a large
pulse saturates the absorber faster and is thereby slowed less by passing it.

The panels (c) and (d) of Figure show the full temporal profiles of the periodic
orbits marked in the previous panels. The stable pulse in (c¢) is much larger than the
unstable one in (d). The absorber returns quickly to its equilibrium value as compared
to the gain which needs most of the roundtrip. A residual saturation of the gain always
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4 Unidirectional Ring Laser

remains in front of the pulse, mathematically this is unavoidable. However, the difference
to the equilibrium value is already relatively small at T' =~ 7 = 100 - approximately
exp(—I'T) =~ exp(—4) ~ 1.8%. Thus, one may consider this the beginning of the localized
regime.

Finally, panels (e) and (f) of Figure show a zoom on the area around pulse of the
profiles in (c) and (d), respectively. The pulse length is only on the order of ~1 which
is very short as compared to the roundtrip. Note however, that the effective length of
the localized structure is not defined by the pulse but by the trail it leaves in the carrier
inversion, specifically the gain recovery, which is the slowest variable. When imagining
a much larger external cavity with several pulses in it, their mutual interactions will be
governed by the gain trail of the respective pulse in front of each.

4.2.4 Bistable region

Figure |4.4) shows how the saturation ratio s and the linewidth enhancement factor « affect
the fold of the TLS branch. In panel (a) the full branches are illustrated using the peak
intensity of the pulse as a function of the normalized gain g for different values of s. With
a higher saturation ratio the fold moves further toward lower g, thereby increasing the
region where TLS are bistable with the off solution. This is intuitively clear from the fact
that less energy is needed to saturate the absorber, hence smaller pulses can do so and
less gain is needed to support them. Also for not too large s the peak intensity of the
pulses grows at a given g for the same reason. This effect is limited, however, as the gain
also saturates and a maximum pulse energy is reached. Further increases in s then only
affects the low g part of the branch and generally exhibits diminishing returns.

Panel (b) shows the branch of the fold itself as a function g and s for increasing o.
Generally one sees a diagonal trend of the fold curve and more g or s is required to make
up for the effect of a. High « typically leads to broader pulses, i.e., the pulse energy
is spread out more in time. This affects the evolution of the gain and absorber carriers
differently. Since the absorber recovers relatively quickly it becomes harder to saturate
for the broader pulse. It needs more time to pass the absorber and thus has to saturate
repeatedly the carriers that thermalize. At the same time the saturation happens slower
and becomes less effective. Indeed at some point the recovery would completely cancel
the saturation caused by the pulse. Overall this means more losses for a broadened pulse
and results in a bigger minimal pulse for stable existence. For the much slower gain there
is not such a big difference due to pulse broadening.

4.2.5 Multi-peak solutions

The previously introduced single pulses are not the only TLS solutions found in this sys-
tem. Using numerical continuation techniques one can explore the full solution space,
including all the unstable solutions which are inaccessible by direct numerical simulations.
There exists a series of mostly unstable TLS solutions with an increasing numbers of max-
ima in their intensity profiles, not unlike soliton molecules in dissipative systems [GSCO0S].
In Figure the first two of these multi-peak solutions are presented along with the sin-
gle pulse from before. Panel (a) shows the corresponding branches with the maximum
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Figure 4.3: Branch of the principal TLS as a function of the normalized gain g. (a) Inten-

sity at the peak of the pulse in solid orange for stable solutions and thin for
unstable. The blue line represents the CW solution branch with its intensity
multiplied by 102 for comparision. (b) Period deviation of the TLS from the
nominal period of the laser Ty = 7 + v~ . (c) Temporal profiles for the stable
solution marked in (a,b) at g = 0.8. (d) The respective unstable solution on
the opposite part of the branch. (e,f) Zoomed view of the profiles around the
pulses in (c,d). Other parameters are («, 3) = (0,0). A similar version of this
figure was used in [I].
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(a) C-shaped peak intensity of TLS branches as a function of the gain normal-
ized to threshold g. For an increasing saturation ratio s of the absorber the
existence region of the TLS grows, i.e., the fold of the branch moves to lower
g. Other parameters are («, 5) = (1,0.5). (b) The fold of the TLS branch as a
function of both ¢ and s at different values of the gain linewidth enhancement
factor . More gain or saturation ratio are necessary in order to achieve a
similar range of existence when increasing . A similar version of this figure
was used in [I].
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Figure 4.5: (a) Branches of the maximum intensities of TLS with multiple peaks as a
function of the normalized gain g. In this case, only the single peak pulse
becomes stable (thick orange) after a fold at gg% 1 = 0.7. The double (green)

and triple (blue) peak solutions stay unstable after their respective folds at

959212/ ;= 0.774 and 959312/ ; = 0.816. (b) The profiles of the three TLS solutions
at a common high gain level g = 0.95, see vertical dashed line in (a). The
extra maxima appear as small bumps on the leading edge. (c) The profiles
of the three TLS solutions at the respective folds. The various peaks are of
comparable size and clustered close together. (c) The profiles of the three
TLS solutions on the subcritical parts at a common maximum intensity of
max (/) = 0.05, see horizontal line in (a). The various peaks are ordered
with ascending intensity and relatively widely spread. Other parameters are
(o, B) = (0,0). A similar version of this figure was used in [IJ.

intensity as a function of the normalized gain g. For zero « and [ factors the branches
show little qualitative difference, apart from additional pairs of close by folds on the lower
part of the branches. Generally, the main folds go closer to the threshold for higher order
solutions and all but the single peak TLS remain unstable after their respective folds. This
structure appears keeps going to as many peaks as can fit in the cavity, which would be
infinitely many in the long delay limit. However, the folds approach the threshold and
potentially cross it for large order multi-peak TLS and are very unstable. Therefore, the
analysis of them was not continued much beyond the third order and representing them
here would not further the understanding of the system.

Panel (b) shows the temporal profiles of the intensity of the first three TLS at a common
high gain level g = 0.95, panel (c) at their respective folds and panel (d) at a small intensity
max (/) = 0.05 on the unstable lower part of the branches. Close to threshold the profiles
start as neighbouring separate small pulses of increasing size. Up the subcritical part of
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the branches the peaks move closer together and start to touch and merger around the
folds. The resulting pulse shapes on the upper part of the branches then appear as a main
pulse with a series of leading bumps of intensity.

4.3 Amplitude-phase coupling

Mathematically, temporal localized structures are themselves periodic orbits of the model
system. An oscillating TLS is therefore a higher order periodic orbit—in general a quasi-
periodic solution, since the periods of the pulse and the slower dynamics of its shape do not
have to be commensurate. Such oscillations are therefore not born in a normal Andronov-
Hopf bifurcation but a so-called secondary AH bifurcation also called torus bifurcation.
Analogous to a pair of complex conjugate eigenvalues that crosses the imaginary axis in
the standard AH case, here a pair of complex conjugate Floquet multipliers crosses the
unit circle. Such an instability appears for TLS in the unidirectional ring model for high
values of the gain linewidth enhancement factor o in combination with a large normalized
gain g parameter.

The « factor measures the strength of an indirect coupling of the amplitude and the
complex phase of the electromagnetic field in nonlinear semiconductor media. This cou-
pling is mediated via the carrier interactions as the refractive index changes dependent
on the carrier density. A pulse with a given intensity profile creates a smooth drop in
the carrier density due to stimulated emission when passing the respective sections. The
resultant index change leads to the pulse acquiring a non-constant phase profile called
chirp which equivalently means that the instantaneous frequency is not constant.

A special case of this is known as the Kerr effect which can be interpreted as instanta-
neously reacting carriers. In this regime, the carriers can be adiabatically eliminated so
they no longer appear in the model and the index change is approximated as the product
of a coeflicient with the intensity. The resulting effect on the pulse is then called self phase
modulation. For an accurate description of picosecond pulses in semiconductors, however,
the carrier dynamics need to be taken into account.

Qualitatively, one can envision a mechanism how this coupling leads to oscillations:
Larger pulse intensity leads to more acquired chirp from passing through the nonlinear
medium and, consequently, the spectrum of the pulse is broadened. However, these new
frequencies are less resonant with the cavity and are subject to additional linear losses or
damping. In addition, the pulse typically ends up further from the transform limit (where
a pulse is shortest for a given spectral bandwidth) and thus gets broader in time and flatter
in peak intensity. As discussed in the previous section this leads to a weaker saturation
of the absorber and therefore also more nonlinear losses. In this situation the pulse will
hence shrink. This in turn reduces the amplitude-phase coupling to inverse effect so the
pulse can become narrower and then grow again.

The absorber linewidth enhancement factor causes an opposed effect compared to the
gain. Both can compensate for each other when the parameters are appropriately chosen.
At realistic values for semiconductor materials, however, this plays a minor role in this
system.
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4 Unidirectional Ring Laser

4.3.1 Trailing edge instability

Figure shows an oscillating TLS at realistic values for the linewidth enhancement
factors of semiconductor materials « = 3.8 § = 0.5. The time trace of quasi-periodic
orbit at a high normalized gain g = 0.95 was obtained through direct numeric simulation.
Cutting the time-trace at multiples of the average period of the dynamics and stacking
them yields a pseudo-space-time representation of the intensity as a function of the (fast)
time variable and the (slow) roundtrip number. Using the average period instead of the
delay time has the advantage of adjusting for the drift of the pulse in the cavity that would
otherwise appear.

An oscillation of the overall intensity of the pulse is observed. While the leading edge
of the pulse is otherwise little affected, the trailing edge appears to move back and forth
a lot along with the intensity oscillation. This results in an oscillation of the width and
the asymmetry of the shape of the pulse as well. The peak of the pulse stays roughly at
the same position in this representation, i.e., the drift is approximately constant. This
becomes intuitively clear from the principle of causality. Only the interaction with the
nonlinear materials affects the pulse, namely by saturating the carrier inversion toward
transparency. For TLS where the pulses always hit quasi equilibrated carriers the back of
the pulse profile is affected by what came in front of it but never the other way around.
The increasing carrier saturation also means that the interaction with the gain has a higher
frequency on the leading edge than the trailing one and vice-versa for the absorber. With
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Figure 4.6: Pseudo-space-time representation of an oscillating TLS close to the lasing
threshold g = 0.95 and realistic linewidth enhancement factors for semicon-
ductor materials o = 3.8 and 8 = 0.5. The slow evolution from one roundtrip
to the next reveals an oscillation of the size of the pulse in both its peak in-
tensity and width of the temporal profile. This deformation is mostly located
at the trailing edge of the pulse that moves back and forth with the intensity
oscillation while the leading edge is affected little. A similar version of this
figure was used in [1J.
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4.3 Amplitude-phase coupling

the different timescales of the nonlinear sections their interplay leads to complicated phase
profile of the pulse.

4.3.2 Bifurcation diagrams

Figure [4.7 shows the results from direct numeric simulations for different values of o. The
minima and maxima of the peak intensities of the pulses are plotted to characterize the

dynamics

of a pulse tain. By increasing or decreasing the normalized ¢ in a step-wise

manner and then giving the dynamics time to converge to pass the resulting transients
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Figure 4.7: Results from direct numerical simulations of TLSs of Eqgs. (2.96)—(2.98) as a

function of the normalized gain ¢ for different values of the gain linewidth
enhancement factor o«. The plotted points are the minima and maxima of
the peak intensities of the TLSs in a time trace. (a) For a = 3.7 most of
the branch is stable with a secondary Andronov-Hopf bifurcation close to the
threshold. On the other end the branch folds down visibly. (b) For @ = 3.8
the torus bifurcation has moved to lower g. The dashed line is corresponds to
the pseudo-space-time diagram in Fig. [£.6] On the other end the branch ends
before completing the fold. (¢) For e = 4 the torus bifurcation kept moving
to lower g and the other end of the branch to higher g. (d) For a = 4.05 both
limits of the stable part are about to merge. (e) For a = 4.1 only oscillating
behavior remains after the merger. The corresponding periodic orbit ends
abruptly at the low g end. (f) For a = 5 a quasi-periodic regime appears on
top of the periodic orbit with a period tripling window. The low g end moved
to higher g and is clearly fold-shaped. Other parameters: g = 0.5. A similar
version of this figure was used in [1].
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one obtains a branch like structure. A single point means the peak intensity is constant,
indicating a stable pulse. Two points represent an oscillation between those two points.
The same goes for more than 2 points. Finally, an apparent horizontal line means there
are extrema of the peak intensity in the whole interval. This situation arises with quasi-
periodic oscillations made up of several frequencies. As the periods are not commensurate,
extrema appear anywhere between the extrema of the envelope of the slower frequency.
At lower « stable the whole branch remains stable in g and ends in a fold on the low
g side. Close below a = 3.7 a secondary Andronov-Hopf bifurcation enters the bistable
region below the lasing threshold. Panel (a) shows the situation shortly after this point.
The bifurcation point moves down in g for increasing a as shown in panel (b) where the
oscillation shown in the pseudo-space-time diagram of Figure is marked. In addition,
on the lower end of the branch a subcritical secondary AH bifurcation appears, i.e., the
branch simply stops which can be clearly seen in panel (¢). The corresponding periodic
orbit is unstable and cannot be found in the simulations. Both bifurcations move toward
each other (panel d) and finally merge. Panel (e) shows a point shortly after the merger,
where no stable pulses remain. Instead a periodic overlaps the formerly stable part of
the branch. This appears to be a connection with the unstable orbit from the subcritical
torus bifurcation. Finally a higher order torus develops on top of the already oscillating
dynamics. In panel (f) at high g a region of quasi periodic pulsing can be seen. It contains
a window with period tripling behavior, making the following quasi-periodic oscillations
potentially chaotic. In addition the orbit developed a clearly visible fold on left end.
Figure [£.§ takes a look from the opposite point of view, i.e., the branch is calculated
as a function of « for different g. Otherwise the method is the same as before. For
lower values of a the peak intensity is larger and the maximum occurs where « is close
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Figure 4.8: Results from direct numerical simulations of TLSs as a function of the gain
linewidth enhancement factor « for different values of the normalized gain
g. The plotted points are the minima and maxima of the peak intensities of
the TLSs in a time trace. (a) A fully stable branch at g = 0.75 with large
peak intensity at small values a. The maximum peak intensity lies close to
a ~ (. The branch tapers off toward larger «, then folds down and stops. (b)
For g = 0.9 the peak intensity has roughly doubled and the branch extends
much further in «. Close below o = 4 a secondary Andronov-Hopf bifurcation
destabilizes the branch causing a transition to an oscillatory pulse. Other
parameters: 3 = 0.5. A similar version of this figure was used in [IJ.
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4.3 Amplitude-phase coupling

to 8 = 0.5. Here, their mutual compensation is optimal and the pulse is least broadened
by the amplitude-phase coupling. Conversely, for larger o the peak intensity shrinks. For
a low gain level the whole branch is stable and ends in a fold at a ~ 3 as can be seen in
panel (a). With more gain the intensity grows along the whole branch which is shown in
panel (b). TLS exist for much higher values of a than before and also the stable region is
wider. Above a &~ 4, however, the periodic regime is entered.

4.3.3 Combined 2-parameter scan in the fully localized regime

Figure presents results of a high resolution 2-parameter scan that was conducted using
the functional mapping introduced in Sec[3:4] Calculating this diagram when simulat-
ing the full roundtrip would take several weeks. The concept used is a similar numerical
continuation scheme as used before; the final state of one point is the initial state for a
neighbouring point. Like this the whole manifold of solutions can be explored in an auto-
mated manner. Per point 3000 roundtrips where calculated, without any prior relaxation
in this case. The resolution is 501 points for both parameters.

The left panel shows the average peak intensity of the TLS which is largest for low «
high g. The border of the region of existence bends around « = 4 and is jagged for very
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Figure 4.9: Two-dimensional bifurcation diagrams in the normalized gain g and the gain
linewidth enhancement factor a obtained from direct numerical simulations
using the functional mapping (see Sec. with fully equilibrated carriers.
This corresponds to the fully localized regime in the long delay limit 7 = oo.
(left) Average maximum intensity of 3000 consecutive pulses. (right) Standard
deviation of the same data. A large region of stable pulses exists with its widest
extent in gain for a =~ . Towards the threshold a large peak intensity builds
up for low « while above it is not changing much. At high values of both «
and g there is a region of oscillating pulses. The onset of the oscillations moves
down in g quickly for increasing «. The drop to the off solution is visible as
thin line because of slow transients close to the responsible bifurcation. Other
parameters: 5 = 0.5.

67



4 Unidirectional Ring Laser

high « where the dynamics was found to be quasi-periodic before.

The right panel shows the standard deviation of the peak intensities. The borders of
stability become clearly visible in this representation. For high « we see the oscillatory
region that exhibits a pointy, cusp like shape on the low g side. The torus bifurcation
goes back down in « for large gain as it could be seen in Figure [4.7] Distinguishing the
quasi-periodic region from the simple oscillation is not possible in this representation, the
standard deviation appears to transition smoothly.

4.4 Solution manifold

The temporal localized structures form a manifold of solutions. In the direction of the
normalized gain g the solution branches are C-shaped. Considering that the bistable region
becomes smaller for increasing « this means slices of the manifold in « take the shape of a
loop. Overall, we can infer that the manifold has the shape of a cone with a rounded tip.

4.4.1 Symmetric case without absorber linewidth enhancement

By continuing the pulses in « for various g using DDE-BIFTOOL we can obtain the
loop shaped branches. One finds that each multi-peaked TLS is born in a saddle-node
bifurcation and each then develops its own loop in a when increasing the gain. Each loops
forms a cone shaped manifold with a rounded tip as a starting point stemming from the
respective saddle-node. Figure shows slices through the solution manifold. The loops
start out circular, then deform growing more pointed at low « and develop flat toe-like
extensions at large a. Along with this, the connecting parts in between become concave.
This behavior is roughly similar for the different multi-peaked solutions. The panels (a-c)
show the maximum pulse intensities along the branch while panels (d-f) show the period
deviation which are roughly proportional to the inverse of each other. However, for large g
the period deviation of the unstable part becomes concave in contrast to the peak intensity
that remains convex.

4.4.2 Transcritical crossover of multi-peaked solutions

For larger values g a series of crossovers between the various multi-peaked solutions occurs.
Figure shows the first of the crossovers. It recombines the single peak and the double
peak TLS loops. Roughly in the middle of the concave part of the single peak loop, a pair
of folds is born in a saddle-node bifurcation. The inner one of the folds then connects to
the fold of the double peak loop in a transcritical bifurcation. After this point the branches
split again such that the stable single peak TLS at high « now actually stems from the
unstable double peak solution and the loop possesses two separate stable sections.

The transcritical can be most readily seen in the zoomed insets. In the absence of ab-
sorber linewidth enhancement S = 0 the process happens symmetrically for both negative
and positive a. Indeed, in this case the crossovers happen always in pairs such that the
number of loops conserved. For large g increasingly higher order multi-peak solutions are
involved in further crossovers. This leads to a very complicated structure close to thresh-
old where it becomes hard to tell the multi-peaked solutions apart. They lie mixed up on
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Figure 4.10: Bifurcation diagrams of TLS branches in « for different values of g. The
branches are represented by both the peak intensity and the period deviation.
Stable solutions are shown with thick lines and unstable solutions with thin
lines. Loss of stability is marked with circles for folds and squares for torus
bifurcations. (a,d) At g = 0.707 the branch of the single peak TLS in solid
orange forms a loop in a. (b,e) At g = 0.784 a second loop for the double
peak solutions in dashed green has appeared. The first loop deforms and
develops toe-shaped extensions. (c,f) At g = 0.822 a third loop for the triple
peak solution in dash-dotted blue has appeared. The toes extend further. The
multi-peak solutions loops appear as saddle-node bifurcations when increasing
g. The period deviation is roughly proportional to the inverse peak intensity.
The loops are slices of a solution manifold and are symmetric in « for g = 0.
A similar version of this figure was used in [1J.

the various loops. Because of the crossovers all the multi-peak solutions really form just
one interconnected and self crossing manifold of a very intricate, yet symmetrical shape.

Figure shows a zoom on the transcritical bifurcation with the period deviation of
branches in small interval of g. The curvature of the folds on both branches grow rapidly
and diverge to infinity toward the transcritical bifurcation where they finally touch. At
this point, the two loops are connected in a degenerate solution, i.e., they truly crosses
each other. This crossing is therefore visible in any measure one chooses to represent
the branches and is not an artifact of the measure itself. Directly before and after the
bifurcation point the loops have virtually exactly the same shape, except close for the
crossover. However half of either loop has switched over to the respective other.
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Figure 4.11: Cross-over of the solution loops corresponding to the single and double peaked
TLS. Stability is indicated by thick lines and loss thereof is marked with circles
for folds and squares for torus bifurcations. (a) Period deviation at g = 0.879.
The loop of the double peak solutions in dashed green has come close to the
respective loop of the single peak TLS in solid orange. (b) At g = 0.898 the
loops have crossed over. Part of the single TLS loop is now connected to the
double peaked one and vice-versa. This happens symmetrically on both sides
at the same time. (c,d) The respective peak intensity representations of the
loops in (a,b) for the positive a side. A zoom on the crossover is shown in
the insets. The single peak TLS loop forms a small extra loop in order to
reconnect with the double peak loop. Other parameters: 8 = 0. A similar
version of this figure was used in [1].
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Figure 4.12: High resolution representation of the transcritical bifurcation responsible for
the crossover shown in Fig. The period deviation is shown for solution
loops in an interval of g € [0.8793;0.8812]. Other parameters: 5 = 0. A
similar version of this figure was used in [IJ.

4.4.3 Asymmetric case with absorber linewidth enhancement

With absorber linewidth enhancement 3 # 0 the loops are no longer symmetric in «. The
crossovers no longer happen simultaneously in the negative and positive « half-planes.
Instead the pairs from the § = 0 case now appear at different values of g which leads to
the number of loops not being conserved. A single crossover between two loops joins them
together to form a double loop that goes around the center twice. In the opposite case
such a double loop can split into two single loops via a crossover with itself.

This does not necessarily happen in an interspersed order. A newly formed double loop
can connect to a third loop before splitting back up again on the other side. For g8 = 0.5
this leads to an even more intricate manifold of solutions than in the earlier symmetric
case. The first three crossovers are presented in Figures and showing the peak
intensity and the period deviation of the loops, respectively. The panels (a) and (b) show
the situation before and after the first crossover. It joins the single peak and the double
peak loops on the negative « side. Both loops now form a single loop going around twice.
Between panels (c¢) and (d) two crossovers occur on the positive « side. The double loop
crosses over itself to disjoin at that point while the innermost part joins with the triple
peak loop. The upper single peak part ended up being connected to the lower double
peak part. The toe shaped extended part at high « is now part of a loop that consists of
components stemming from all the multi peak loops up to order three.
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Figure 4.13: Bifurcation diagrams showing the peak intensity of TLS as branches in « for
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different values of g. Single, double and triple peak pulses are represented with
solid orange, dashed green and dash-dotted blue lines, respectively. Stability
is indicated by thick lines and loss thereof is marked with circles for folds
and squares for torus bifurcations. Several transcritical bifurcation lead to
crossovers between the different loops. This happens in an asymmetric fashion
for 8 = 0.5 such that the number of independent loops not conserved. (a) At
g = 0.879 the three loops exist independently. (b) At g = 0.898 The single
peak TLS loop has combined with the double peak loop on the negative « side
and form a double loop that goes around the center twice. (c) At g = 0.937
the combined loop comes closed to itself around a &~ 5 and to the triple peak
loop around a = 2. (d) At g = 0.956 two additional crossovers have occurred
at positive « in rapid succession. The double loop has split again such that
upper single peak half and lower double peak half form a loop. The rest has
combined with the triple peak loop. A similar version of this figure was used

in [1].
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Figure 4.14: Bifurcation diagram showing the period deviation of the TLS loops in
Fig. with the same color coding. The loops recombine in a complicated
pattern when increasing the normalized g toward the lasing threshold to form
a single manifold of solutions. For 8 = 0.5 this manifold is very complex as
the loops cross over asymmetrically in the positive and negative a half-planes
and in no particular order. Unlike the symmetric 8 = 0 case, the number of
independent loops is not constant. A similar version of this figure was used

in [I].
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4.5 Bifurcation branches

The temporal localized structures found in the ring laser model are themselves periodic
orbits in time. Two of their possible bifurcations are the saddle-node on limit cycle
bifurcation and the secondary Andronov-Hopf or torus bifurcation. These correspond to
a fold of the TLS branch or the onset of an oscillation of the TLS profile. Both can be
detected and continued using DDE-BIFTOOL while the oscillations stemming from torus
bifurcations form a quasi-periodic orbit that DDE-BIFTOOL cannot currently handle.

Figure shows results from the continuation of the folds of both the single and double
peaked pulses as well as the torus bifurcation of the single peak solutions. The first fold
defines the bistable region where TLS can exist. Its maximal protrusion below threshold
is found for @ ~ 8 and then it continues to slants up in a roughly straight line. The
torus bifurcation starts on the fold, first moves up in « and then back down toward the
lasing threshold. The first part is subrcitial and then switches to supercritical when the
« direction changes, as can be seen from direct numerical simulatins shown in Figures [4.7]
and The second fold branch of the double peak TLS has mostly the same shape as
the first fold. However, there exists a cusp point where the transcritical bifurcation from
the previous section occurs between the single and double peaked TLS. The point where
the torus is born on the fold curve and the cusp of the double peak fold are co-dimension
two bifurcation points.

34t

0.4 0.45 0.5
9

Figure 4.15: Two-dimensional bifurcation diagram of the TLSs in the gain pumping pa-
rameter gy and the gain linewidth enhancement factor o obtained with DDE-
BIFTOOL. The fold curve of the saddle-node bifurcation that gives birth to
the bistable TLS region (blue) is shown as well as the torus bifurcation (or-
ange) that destabilizes it. The fold of the double peak TLS (yellow) exhibits a
cusp where the transcritial bifurcation with the single peak solutions occurs.
Other parameters: § = 0.5.
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Figure 4.16: Intensity profiles of the pulses along the second fold branch in Fig. 4.15
The profiles are stacked to give an overview, the intensity scale is only for
reference. The upper end of the stack shows the profiles for lower «. The
double peak profile for « close to zero deforms into a single peak profile at
high a.

4.5.1 Secondary fold profiles

Figure [4.16] shows the profiles along the fold branch of the double peaked pulses. They
change from double to single bump as the crossover between the single and double peak
solutions occurs at the cusp found on the branch. The profiles are presented in a stacked
fashion meaning that the peak intensity axis is for reference only. Indeed all of the profiles
start and end with virtually zero intensity. The double peaked profiles on top of the stack
are for a close to zero. They then transform to single peaked profile on the bottom that
correspond to large values of o that have almost the same shape but require a rapidly
increasing minimal gain.

4.5.2 Convergence toward the localized regime

In order to test whether the chosen value of the delay time 7 = 100 yields pulses in
the localized regime the branches of the pulse bifurcations are compared to the case of
7 = 500, which is shown in Figure [4.17] No big changes can be observed however they are
systematic. The fold moves slightly toward lower gain go which is immediately intuitive
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Figure 4.17: Comparison of the principal fold and the torus bifurcation branches for 7 =
100 and 7 = 500. 7 = 100 can already be considered to be part of the localized
regime. No significant difference is observed for even larger delay times.

since the gain has more time to relax and therefore reaches a comparable value in front of
the pulse. The torus bifurcation moves slightly toward both lower gain and lower linewidth
enhancement « which is also intuitive when considering the slightly larger effective gain
reached by the longer relaxation. At the same value gy the 7 = 500 pulse will be larger than
the 7 = 100 one and therefore undergo stronger amplitude-phase coupling. The critical
amount is thus reached earlier. For even larger delay times one runs into difficulties with
DDE-BIFTOOL related to the resolution of the orbits, either numerical instabilities due
to bad resolution or bad scaling of the computation time for too many mesh points. as
the effect diminishes exponentially and would not yield significant differences. Overall one
can consider the case of 7 = 100 to be well enough converged toward full localization to
justify its use in the direct numerical simulations.

4.5.3 Comparision with direct numerical simulations

Figure [£.18] shows results from direct numerical simulations of the full DDE ring model
together with the bifurcation branches from DDE-BIFTOOL. Thus the bifurcations lim-
iting the stable region can be identified. The DNS data is represented by different colors
that correspond to different types of behavior. The off solution is easily detectable by
measuring the energy contained in the roundtrip profile. When it reaches below some
sufficiently small value the following dynamics can be assumed to keep falling to the off
solution, since the smallest stable pulse has significantly more energy. To analyze the
pulse dynamics, first their peak intensities are considered as a time trace. The minima
and maxima of that time trace contain all the necessary information. Stable oscillations
are characterized by having two points between which the time trace alternates, i.e. two
extrema. Period doubling has four such extrema and so on. Thus, one only needs to
search for clusters in the extrema of the peak intensities and count them to characterize
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Figure 4.18: Two-dimensional bifurcation diagram in the normalized gain parameter g
and the gain linewidth enhancement factor . The behavior observed in
direct numerical simulations is color-coded. Dark blue: off solution, blue:
stable TLS, light blue: periodic oscillation, yellow: quasi-periodic, orange:
period tripling. The bifurcation branches obtained with DDE-BIFTOOL are
superposed as a red dash-dotted line for the principal fold and a pink dashed
line for the torus bifurcation with a green circle marking their intersection.
Most of the stable pulse region is limited by the fold up to where the torus
bifurcation is born on the fold branch which is marked with a green circle.
The oscillatory region only starts where the torus bifurcation turns to slope
down changing from subcritical to supercritical. A similar version of this
figure was used in [IJ.

these dynamics. Quasi-periodic oscillations are characterized by not having clusters. In
practice, after some large amount of round-tips this situation can assumed.

On the low g side the single peak TLS fold is responsible for the destabilization up
to the co-dimension two point where the torus bifurcation is born on the fold branch.
After that point the stable pulses are already limited by the torus bifurcation for larger g
than the fold branch. In both cases the dynamics simply drops to the off solution. This
identifies the torus as subcritical in this section, i.e., the newly created orbit is unstable
around the bifurcation and cannot appear in the DNS. At a = 4 the torus bifurcations
turns to slope downward. This is another co-dimension two point where a regime of pulse
oscillations appears with a cusp shaped tip. The torus bifurcation has therefore become
supercritical. The associated dynamics are quasi-periodic orbits—the pulses are already
periodic orbits—and as such cannot be handled by DDE-BIFTOOL. However, we can see
from DNS (cf. Figure that the left border of the quasi-periodic region appears to be
a fold.
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4.5.4 Comparison with an exponential Haus PDE model

A Haus master partial differential model was derived from the unidirectional ring delay
differential equation model [CJMGI6]. A rigorous multiple timescale analysis is just pos-
sible in the uniform field limit (small changes per roundtrip) and expanding around the
empty cavity. This implies small gain and absorption as well as small intensities. The
exponential terms found in the DDE model are linearized.

Using a two timescale ansatz it is possible to keep the exponential terms [1]. While the
derivation is not strictly rigorous, the obtained equations yield results that agree much
better with the original DDE model. This exponential Haus master equation reads

OF _ lia_1-i80 10 1 62
730_ — <\/Ee ) 3 1+ —272 732’2 E, (4.15)
oG —Q (.G 2
5:r(GO—G)—e (e = 1) |EJ?, (4.16)
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As a PDE this equation has some advantages over the DDE model. The physical time ¢
is replaced by a space-like coordinate z and the effect of the delay is modeled by spatial
derivatives with respect to z. While the DDE has to be integrated along ¢ the PDE
is integrated in the slow time variable o that has the unit of the roundtrip time, i.e.,
the period of the TLS solutions. In contrast to ¢, there is no dependence on previous
points in the z domain. Thus, when integrating the PDE one can make use of various
parallelization schemes to speed up simulations significantly as compared to the DDE
model. In addition, the PDE model enables direct control of group velocity dispersion by
introducing an imaginary component to the second order partial derivative term. In the
original DDE model, an equivalent task can only be achieved with much greater difficulty
[PSHV1T].

Pulses are just steady states of the PDE while they are periodic orbits in the DDE.
Similarly, oscillations of pulses are periodic orbits and not quasi-periodic orbits and a
torus bifurcation in the DDE model reduces to Andronov-Hopf bifurcation in the PDE.
Figure[4.19)shows results from bifurcation analysis of the Haus PDE conducted in the path-
continuation software pde2path [UWRI14]. For comparison with DDE model the results
from DDE-BIFTOOL for the DDE model are superposed. The different fold curves are
reproduced very well by the PDE approximation as well as the co-dimension two points.
The AH curve of the PDE follows the torus curve of the DDE only close to the origin
on the fold. For increasing ¢ it does not bend back down which is qualitatively quite
different. It means that the prediction for a passively mode-locked laser made by the
Haus PDE is that for sufficiently large o one obtains stable pulsation below the lasing
threshold that destabilizes when reducing the gain below a certain critical value where it
starts to oscillate. This is exactly the opposite as for the DDE model which predicts the
onset of oscillations when turning the pump rate up instead.

Some discrepancy is not surprising when considering that the exponential Haus PDE
remains only an approximation. The PDE approach assumes continuous evolution of the
pulse profile while in the DDE model large changes per roundtrip can be observed in the
regime where gain and absorption are strong.
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Figure 4.19: Comparison with results from the Haus PDE for the unidirectional ring model
obtained with pde2path. For the DDE model the single peak fold is shown in
dotted red, the double peak fold in solid blue and the secondary AH bifurca-
tion in dotted pink. For the PDE model the fold points are depicted as green
circles and the AH points as cyan crosses. The folds lie in good agreement.
So do the co-dimension two points where the fold and AH branches connect,
as well as the cusps of the double peak fold branches. The AH branches,
however, take significantly diverging paths toward threshold. In the PDE
model the branch slopes upward in « which is qualitatively contrary to the
DDE model. An oscillatory region is found for low gain, not large. Other
parameters are § = 0.5. A similar version of this figure was used in [IJ.

4.6 Functional mapping performance

This section presents some sanity checks for the functional mapping method described
in Section using the example of the unidirectional ring laser model f. It
demonstrates how little of an effect the assumptions of the FM have in practice for the
TLS regime.

4.6.1 Timing jitter analysis

To compare the statistical properties of the TLS when simulated using the full DDE model
and the functional mapping time traces of over ten million roundtrips have been calculated
for each. For a delay time of 7 = 100 an even longer integration of the full DDE model
becomes too time consuming. The size of the integration box for the FM was only 2§ = 3.
Thus, the integration time is more than 30 times shorter and insignificant in comparison.
Under the influence of noise in the field evolution the pulse movement has a stochastic
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Figure 4.20: Statistical results for the temporal jitter of passively mode-locked pulses under
the influence of noise. (a) Relative position of the pulses as compared to the
average period of 20 time traces. The motion is a Brownian random walk. (b)
The standard deviation of the pulse jitter for (go,7) = (0.6,5), (0.5,10) and
(0.4,100. The lines show the results obtained using the functional mapping
while the circles are from integrating the full DDE system. The functional
mapping conserves the statistical properties of the original system. Other
parameters are « = 2 and 8 = 0.5. A similar version of this figure was used
in [2].

component. This manifests in a small variation of the repetition period that is called
timing jitter. When cutting the long pulse train at multiples of the average period one can
observe a residual movement of the pulse in the roundtrip that stems from the stochastic
component. When using the FM one simply remembers the amounts by which the pulses
were shifted back each roundtrip. The variance of the noise was set to o = 0.01. Note
that, this noise level is very strong when compared to realistic situation and thus creates
very strong jitter. Given the limited simulation time that can be achieved in the full DDE
integration, however, this is helpful for this analysis.

Figure [£.20] shows results from the analysis of the previously described time traces. The
consecutive trace was cut into 10000 pieces of 1000 roundtrips each. Using the position of
the first pulse in each piece as the origin one obtains 10000 random walks of length 1000.
Panel (a) shows the first 500 roundtrips of the first 20 pieces of the mapping time trace for
illustration. For each roundtrip number along the random walks the standard deviation
o of pulse position was calculated. From Brownian motion the standard deviation is
known to ¢ = v/2Dt with the diffusion coefficient D. A square root function was fitted
to the data points to obtain an estimate for D. Panel (b) shows the superposed standard
deviations as a function of the roundtrip number for both the full DDE and the FM at
different cavity lengths and appropriate pumping parameters. While residual differences
between the approaches are to be expected, the statistics still virtually coincide such that
it is not clear how much of the difference is systematic or inaccuracy due to the finite
sample size. Overall one may assume that the FM conserves the statistical properties of
the corresponding full system, even for very large noise amplitudes.
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Figure 4.21: Passively mode-locked pulses in the Q-switched regime. At a high repetition
rate and slow gain recovery the pulses experience undamped relaxation os-
cillations. (a) Time trace of the Q-switched regime close above the lasing
threshold. (b) Bifurcation diagram obtained by plotting the extrema of the
maximum peak intensities of the pulses obtained in the full DDE model. (c)
In the functional mapping the diagram is reproduced very accurately. Pa-
rameters are 7 = 2 and Q9 = 0.6. A similar version of this figure was used in

2.

4.6.2 Q-switched model-locking

Q-switched mode-locking [Hau76, KBK™95, HPMG™99] is an oscillatory instability that
stems from the interplay of pulse intensity with the carrier saturations and relaxations. It
typically appears for a repetition rate much higher than the gain recovery rate close above
the lasing threshold. The pulses are still short as compared to the roundtrip time and
the absorber saturates and relaxes quickly. In this situation low intensity pulses let the
lots of carrier inversion of the gain material build up. With the consequently strong gain
the pulses grow almost exponentially while the gain saturates over several roundtrips in a
step-wise manner. At some point the gain will be sufficiently saturated for the losses to
take over and the pulses shrink again. This keeps going until the gain carriers can recover
and the process repeats.

This regime is quite different from the temporal localized structures. The residual
intensity between pulses is much larger and impedes the carrier relaxation that mediates
the instability. For the functional mapping, however, the intensity was assumed to be zero
between pulses and the carriers to thus relax exponentially. In the case of Q-switched
mode-locking these assumptions are not justified. Deviations from the full DDE system
are therefore to be expected. Also, the potential speed-up is small as the pulses occupy
much more of the roundtrip. The single purpose of the analysis in this section is to
demonstrate how well the FM yet performs in this unfavourable situation. Indeed, for the
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very short roundtrip time used in the following example a more detailed traveling wave
model [JB10al JB10DbL [JB12] would be in order, rather than a DDE model.

Figure shows results in the Q-switched regime for both the full DDE model and
the respective FM implementation. The parameters are v = 40, Kk = 0.8, a = 2, 8 = 0.5,
¢=0,7=2 Qo= 0.6 and s = 30 and the integration box of the mapping is 20 = 1.
Panel (a) shows the oscillating pulse train obtained from integrating the full system. A
large modulation of the maximum peak intensity is observed. The pulses are short but
relatively closely spaced as seen in the zoomed inset. Panels (b) and (c) show bifurcation
diagrams of the Q-switching instability for both the full system and the FM, respectively,
with the gain bias gg as the control parameter. Minor deviations of the bifurcation points
are observed but the results are still very well reproduced. Indeed the qualitative behavior
remains until the pulse hardly fits into the FM integration box.

Note, that the Q-switched model-locking instability was not found in Haus PDE model
— which was discussed in the previous section. The functional mapping offers
comparable computational efficiency to PDEs while conserving all dynamic regimes of
the physically more accurate DDE model. Recently, carrier memory was successfully
introduced into the Haus PDE model as a boundary condition between consecutive pulses
using the same idea underlying the FM [HLGJ20].
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Mirror

This chapter describes the results obtained for the DAE model of a vertical-cavity surface-
emitting-laser coupled to a resonant saturable absorber mirror. Via the analysis of CW
solutions the parameters are matched to reproduce the properties of the nonlinear mir-
rors used in a corresponding experimental setup. With theses parameters the temporal
localized structures and pulse trains of the experiment are reproduced. In addition, a new
type of instability due to strong third order dispersion, which is incurred by the cavity
geometry, is discussed. Finally, this effect is compared to the influence of TOD in a dif-
ferent type of mode-locked laser. Some of the results presented in this chapter have been
published in [3], [5] and [4].

5.1 Continuous wave analysis

The nonlinear mirrors used in the corresponding experiment have been characterized by
measurements of their CW reflectivities. To match the parameters of the model to these
mirrors we can analyze the CW solutions in an analogous way.

5.1.1 Mirror reflectivities

Under CW injection the output of the mirrors will also be a CW when the carriers
have equilibrated. From the relation of the injection and output fields we can find
the reflectivity coefficients of the mirrors. We use the CW ansatz Y;(t) = Yj exp[—iwt],
E;(t) = Ejexp|—iwt], Oj(t) = O, exp|—iwt] and plug it in the model equations (2.230)-

2-233)

—Z‘;El = [(1 — ial)Nl — 1} Ei1+ Yy, (5.1)
1
—’iiEg = [(1 — ’iOéQ)NQ -1+ 2(5] Es 4+ hoYs, (5.2)
K2
0=mJ1— 1N — |E1|*Ny, (5.3)

0 =2J2 — 12N — | E2* Ny .
The reflection coefficient is defined by O = rY so we have to find

O _E-Y; _E

L= —1. .
T Y, Y, Y, (5.5)
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5 VCSEL with Resonant Saturable Absorber Mirror

The equations ([5.3) and ([5.4]) can easily be solved for the equilibrium carrier inversions

11 Y22
Ny= N, 22 5.6
ERETESTAR R (56)
After using these in the field evolutions (5.1)) and (5.2) we separating the E; and Y fields
to get

(1 — iozl)'lel LW :|
Y= |—— 2 14— | By, 5.7
wi =[Gl i) g, (5.7)
(1—1’042)72J2 . w
—hoYo=|———"=—1 o0+ — || Es. .
o { wrsBP 0T )] (5:8)

These equations can easily be brought into the form of (5.5) in order to reach the reflection
coefficients as functions of the parameters and the intra-cavity field intensities

hi
= -1 .
" 1 (]_ - ial)*lel LW ’ (5 9)
_—vna v
7 + | E1]? K1
ha
r9 = - —1. 5.10
i 1 M — (5 + w> (>10)
Y2 + s|Es]? K2

They can be used to match the model to given experimental conditions.

Figure shows reflectivity curves of |r3|? as a function of the injection wavelength at
various field intensities for an exemplary absorber mirror. The resonance of the microcavity
is assumed to be at 1.06 pm. A photon decay rate of kg = 1.17 x 103 57! yields a full
width at half maximum of circa 14nm. For very small injection amplitudes a maximum
absorption of about 25% is reached with the absorber bias set to Jo = —0.0718. Increasing
the amplitude leads to more saturation of the carriers and the relative losses reduce. The
other parameters were chosen as follows: the injection coupling factor ho = 2, the linewidth
enhancement factor ap = 0, the carrier relaxation rate v = ’1% and the saturation ratio
s = 10.

When considering a low power CW injection reach the unsaturated limit where the
carriers reach the scaled bias values

li N;: = J;. 5.11
lEjllggO J J ( )

Here, the unsaturated reflectivities read

h
= ! —— (5.12)
1-— (1 — iOél)Jl ——
R1
y — ha — -1, (5.13)
1—(1—i0¢2)J2—i<5—|—>
K2
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Figure 5.1: Reflectivity |re|? of the absorber mirror for different levels of injection intensity.
At large intensities the carrier density saturates to the transparency level. Jy =
—0.0718 is chosen for a maximal absorption of 25% and ko ~ 1.0885 x 1013 s~!
for a FWHM of 14 nm.

whereas the fully saturated cases are simply
ha

1—i— 1—i(0+2
K1 t Ko

Note, that in the limit of perfectly reflective bottom DBRs, where the coupling factors go
to hj — 2, the fully saturated reflectivities have unit modulus |7;| — 1.

Figure shows curves of the unsaturated reflectivity of |71|? as a function of the
injection wavelength at different pump rates for an exemplary gain mirror. The resonance
of the microcavity is again assumed to be at 1.06 pm. The photon decay rate is set to
kg = 2.51 x 1072571 which yields a full width at half maximum of about 3nm. A gain
bias of J; &~ 0.0455 leads to a maximum amplification of around 20%. Further, in this
example the injection coupling factor was set to h; = 2, the linewidth enhancement factor
a1 = 0.

™

5.1.2 Lasing threshold

Using the CW ansatz from before in ([2.234])—(2.235)) we have
}/l:ﬁ[EQ_}@]ein:ﬁOQinT:777'2}/26in, (515)
Y’Q :n[El_Y'l] ein:nolein :nrlyleium" (516)

When looking at the devices in series we can substitute and get
Yy =n’ryr Y1 ¥, (5.17)
which leads to the CW condition

riryn?e? T =1, (5.18)
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Figure 5.2: Unsaturated reflectivity |71|? of the gain mirror for different pump rates. A

maximal gain of 20% is reached at J; =~ 0.0455 and x1 ~ 2.51 x 102571 yields
a FWHM of 3nm.
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Figure 5.3: The combined attenuation factor as a function of w for different combinations
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of the gain current J; and the detuning ¢ for unsaturated reflectivities 7; of
the mirrors. When the local maximum of the curve touches the dotted line
at |r|2> = 1 the lasing threshold is reached. This can be achieved by simply
increasing J; (right half) or by changing the detuning, effectively moving the
resonances of the mirrors apart (left half). As emission is dominated by the
gain, this means less absorption over all. The frequency axis is shifted by the
detuning for clarity and the zero gain asymptotic J; = ¢ = 0 is marked by a
dashed line for reference.



5.2 Temporal localized structures

In the long delay limit 7 — oo any small variation of w can lead to an arbitrary phase
to compensate for the other phase contributions. Therefore virtually any w is a possible
mode and we can treat it as a continuous function (quasi-continuous spectrum). We
define the combined attenuation factor per roundtrip in the low intensity regime where
the unsaturated reflectivities hold

r=7T179 772 . (5.19)

The lasing threshold is reached when its absolute value is unity || = 1.

The pump rate J; and the detuning § between the microcavities are experimentally
easily accessible in some interval; in the latter case by changing the temperatures and thus
the widths and resonances of the cavities and distributed Bragg reflectors. Threshold can
be reached with either enough J; or enough § as demonstrated in Figure Typically,
the gain cavity bandwidth is narrow as compared to the absorber. Emission is always
close to the peak gain, thus the detuning can be used to set the level of absorption by
moving out of the absorber resonance. In principle, with enough pump one can always
reach threshold but experimentally this is limited. Setting the detuning can be vital to
reach threshold when operating in the strong absorber regime required to create temporal
localized structures. The parameters of the example in Figure [5.3| are: k1 = 1, ko = 3.5,
h1 =2, ho =1.997, a1 = 2, ap = 0.5, Jo = —0.07 and = +/0.98. It is often convenient to
scale time by the photon-lifetime of the gain, i.e. k1 = 1. The absorber injection coupling
factor ho < 2 can be used to model the unsaturable losses of the absorber.

5.2 Temporal localized structures

Temporal localized structures have been realized in an experimental setup and published
in [3] together with simulations of the corresponding to the model ([2.230)—(2.235). A 1/2-
VSCEL gain mirror and an RSAM were put face to face in a self-imaging condition using
focusing lenses in front of mirrors. These mirrors have been crafted to meet the specific
requirements of this experiment |[GHTT02, LMB™10, (CZF™18]. For signal extraction a
beam splitter with 98% intensity transmission was positioned in between such that it is
passed twice per external cavity roundtrip of circa 10.7ns. The photon lifetimes of the
gain mirror was 343 fs and of the RSAM 80 fs corresponding to bandwidths (FWHM) of
3.5nm and 15 nm, respectively. A maximum gain of 129% can be achieved at a resonance
wavelength of the mirrors around 1.06 pm. The satuarble absorption had a modulation of
25% and only 0.3% nonsaturable losses. The saturation energies of the gain and absorber
were 10 1J/ecm? and 2pJ/cm?, respectively. By varying the temperatures of the mirrors
individually their resonances could be shifted, thus making a small detuning between them
an easily accessible control parameter of the experiment. Indeed the lasing threshold
cannot be reached at resonance due to the strong absorber modulation. A minimum
detuning of 1.5 nm is needed where the modulation has dropped to 19%. The TLS were
measured at 3.4nm where modulation is 17%.

This section is on the simulation results for the described experiment. Regarding the
carrier relaxation times 800 ps were assumed for the gain medium and 50 ps for the ab-
sorber. Time was scaled such that the photon decay rate of the gain k1 = 1. The other
rates then read ko = 4.2875, y1 = 4.3 x 107* and v, = 6.9 x 1072 and the delay time
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5 VCSEL with Resonant Saturable Absorber Mirror

7 = 15600 where 27 corresponds to one roundtrip. Typical semiconductor linewidth en-
hancement factors were used; a; = 2.5 for the gain and as = 1 for the absorber. The
gain bottom Bragg mirror was assumed to be perfectly reflective giving h; = 2 while the
absorber bottom DBR was used to to model nonsaturable losses leading to he = 1.9985.
In order to match the RSAM used in the experiment the absorber parameters were set to
Jo = —0.07 for the bias and s = 5 for the saturation ratio. The beam splitter attenuation
in amplitude was n = 0.99.

5.2.1 Bistable TLS region and multistability

Figure shows the results from direct numerical simulations of TLS in the aforemen-
tioned situation. A bistable region of stable TLS exists below the threshold curve. For
this 2d-scan the functional mapping was used with complete gain recovery, i.e., in the
long delay limit. Due to the size of the modeled cavity the remaining gain saturation
Nexp(—%) ~ 1.5 x 1076 is negligible. The detuning parameter matching the experimen-
tal measurement is 6 = 0.42. Panel (a) shows the rather simple intensity profile of a typical
pulse with a duration of about 3 ps. Panel (b) shows the respective spectrum while panel
(c) shows the corresponding pulse train. The gain bias parameter for this pulse was set
to J1 = 0.0525 which corresponds to circa 24% maximum gain. Two such pulses can live
in the cavity simultaneously and moved around freely with respect to each other up to a
point without loosing intensity. If one pulse follows the other to closely it is pushed away
because the gain carrier inversion has not fully recovered yet. This is proof for the regime
of localized structures. Even more pulses can exist at the same time and a staircase of
multistable solutions is obtained where higher numbers of pulses show a shrinking bistable
region, i.e., more and more gain is needed for stable pulsation. The example of four pulses
is shown in panel (e) where the pulses have come significantly closer together than the
gain recovery time. Thus, there is less gain for each, resulting in smaller pulses overall.
When starting the pulses at different distances to each other a transient toward equal
distances and sizes is observed as the pulses feel each other via their gain depletion. This
constitutes the transition from the localized regime to normal harmonic mode-locking.
The maximum number of pulses was 8 as shown in panel (f). With even more at least one
of them becomes too small to saturate the absorber and survive. All of the pulse trains in
panels (c)-(f) where obtained by integrating the full DAE system. The theoretical results
mirrored the experimental data to high accuracy.

5.2.2 Influence of the linewidth enhancement factors

Figure [5.5| shows results from a parameter study in both linewidth enhancement factors
using the functional mapping in the long delay limit. Multiple panels are arranged in a
grid with absorber linewidth enhancement factor increasing to the right in an interval of
ag € [0.5,1.5] and the gain linewidth enhancement factor increasing downward an interval
of a1 € [1.5,5]. One can observe the pattern that larger ao is good for a large bistable
region while increasing a; has an adverse effect. From the sharp corners of the border
visible at e.g. (a1, a2) = (2,1) it can be inferred that more than one bifurcation is limiting
the stable region. For the low a; with high as combination the border appears to stem
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5.2 Temporal localized structures

from the principal saddle-node of the TLS manifold, whereas for the high a1 low a9 case
a subcritical torus bifurcation seems responsible. While the transient dynamics of the
pulses differ qualitatively, still, the type of the bifurcation cannot be fully ascertained
from numerical simulations alone.
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Figure 5.4: Region of existence of stable temporal localized structures in the Ji,§ plane

where the color scale indicates the dimensionless integrated pulse energy E.
The solid black line marks the lasing threshold. The dashed magenta line indi-
cates a gain of ~29% at J; = 0.065, corresponding to a gain mirror reflectivity
Rg of 129%. An exemplary TLS is marked by a black cross at J; = 0.0525,
0 = 0.42. The insets (a) and (b) show the temporal intensity profile and the
power spectrum of this TLS, respectively. Panels (c-f) show pulse trains of
such pulses with one, two, four and eight in the cavity at the same time. All
of these solutions are multistable. In the fist two cases the pulse energy does
not change, indicating a good localization regime. The last two show dropping
of the intensity as the gain does not have enough time to fully relax, i.e. the
pulses feel each other and their positions are not mutually independent. Thus,
a regime of higher harmonic mode-locking is reached and the pulses are no
longer localized structures. A similar version of this figure was used in [3].
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Figure 5.5: Bistable TLS region as in Fig. [p.4] for oy € [1.5,5] and as € [0.5,1.5]. The
stable region grows with as and shrinks with «;.
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5.3 Satellites on the leading edge

We now take a look at a specific effect of the coupled microcavities which is that pulses can
develop a series of leading satellites. This can readily be explained when taking a look at
the underlying cavity geometry. The corresponding delay algebraic description naturally
induces higher order dispersion which is otherwise very difficult to introduce into DDE
models [HBM10, [PSHV17].

5.3.1 The case of the empty cavity
We take a look at Egs. (2.206)), (2.207)) without susceptibility and detuning. For proper

scaling we set k1 = 1

OE
o = E+hY, (5.20)
Y =nlE, - Y:]. (5.21)

This is the simplest case of an empty microcavity with a feedback mirror and shall serve
as an instructive example to explain the existence of satellites.

For the VCSEL-RSAM system this would correspond to a gain bias J; = 0 such that
the carrier inversion will stay at N7y = 0 and the QWs are transparent to the field. The
top DBR of the absorber mirror is assumed to be perfectly reflective which corresponds
to an injection coupling factor he = 0. This way no photons may enter the mirror and its
field simply vanishes Fs = 0. Under these conditions the model simplifies significantly

E
5;1% = —E| + Y1, (5.22)
Y1 =n? [Bi(t — 27) — Yi(t — 27)] . (5.23)

Indeed this has the same form as the previous equations except for the indices, n? and the
double 7 that can all be removed or scaled appropriately.

When assuming a perfect bottom DBR of the microcavity the injection coupling factor
is h = 2. In this limit the microcavity resembles a Gires-Tournois interferometer (GTI)
[GT64] which is an optical element to control and usually cancel other sources of group
velocity dispersion. It is typically constructed as a glass plane on top of a mirror and
can thus be considered a Fabry-Pérot interferometer operated in reflection. Photons with
resonant frequencies can be trapped for significant times in the small glass cavity. The
typical trapping time depends on the detuning from the modes of the GTI. Thus, the
different frequencies that make up a pulse are delayed differently, thereby creating the
group velocity dispersion. Note, that at resonance the second order dispersion actually
goes through zero and changes sign as a function of the detuning. Still, higher order terms
can remain finite.

Figure shows direct numerical simulations of Egs. and in this situation.
Pulses develop a series of leading satellites over many roundtrips. This process is much
faster for narrow pulses than for broad pulses. The pulses in the example have a FWHM
of 7, = 1 and 7, = 5, respectively.
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50

Figure 5.6: Snapshots of different roundtrips showing the empty cavity response to pulses
of different width. The intensity is normalized to the peak intensity of the
pulse profile. A series of satellites develops in front of the pulse as part of it is
directly reflected from the top DBR while the rest is filtered by the microcavity.
The effect is much stronger for narrower pulses. A similar version of this figure
was used in [5].

During each roundtrip part of the pulse is reflected immediately from the top DBR
of the microcavity while the rest enters and is filtered before being re-emitted into the
external cavity. Qualitatively, the reflected and filtered signals combine again with a
small delay due to the filtering and the process repeats. Thus the highest order satellite
can be interpreted as those photons that never entered the microcavity, the second to last
satellite is made up from photons that entered once, the next consists of those that entered
twice and so on. In the intensity representation the phase of 1 remains unimportant until
the satellites have populated the whole cavity and feel the parent pulse in front because of
periodic boundary conditions. After normalizing the intensity the modulus of the feedback
attenuation factor |n| also becomes irrelevant. Indeed, the picture looks the same for any
complex valued n # 0.

For an alternative view we will derive a PDE model of the empty cavity using the
functional mapping structure of the DAE model Eq. , . First we transform the
microcavity field evolution to the frequency domain using % — —iw so we can solve for F

OF
— = _F+hY 5.24
E—iwE =hY , (5.25)
. h N
E = 5.26
1 —w ( )

When integrating in steps of single roundtrip numbered n we can identify the delay terms
as the previous iteration of a discrete mapping and plug in the expression for F

Yyt — [ B _ y(m] : (5.27)

Yyt — [ - 1} v (5.28)

1—w
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Assuming h = 2 we get a conservative microcavity as no photons are lost through the
bottom DBR and all are eventually re-emitted into the external cavity. For this case we
can define the linear operator

o c

2 171+iw
1 —dw Cl—iw O

(5.29)

that is a fraction of complex conjugates and is therefore unitary |£|* = 1.
We notice that we have a constant ratio between steps

y (n+1)

This type of discrete mapping can be solved by an exponential ansatz
Y (004 Ac) = (nL)27Y (09), (5.31)

where we introduced a slow timescale o that corresponds to roundtrips but is continuous.
Increments of Ac = 1 reproduces the original discrete mapping.
When assuming a slow continuous transformation of the pulse profile we may write the

derivative with respect to o R

oy = (Inp+1InL)Y. (5.32)
oo

To get an approximate PDE form of the model we expand the logarithm of the linear
operator in 4w

In £ = 2(iw) + g(iw)?’ + O(W®). (5.33)

For the sake of simplicity we truncate after the third order and substitute in Eq. (5.32])

gl{: = (11177 + 2(iw) + ;(iw)3> Y, (5.34)

We can now transform back to time using iw — —%

3
?;:: (11177—2;1—;;3)1/, (5.35)
to reach an approximate PDE model for the empty cavity.

In this representation the derivatives with respect to time t are the different orders of
dispersion. The advection term —2% only causes the period T to be a bit larger than
the delay time 7 but causes no deformation. Therefore, it can be canceled by properly
choosing a co-moving frame. Third order dispersion thus becomes the dominating term.
It is the lowest order effect to break the parity symmetry—apart from the aforementioned
advection—and can induce drift [TBC™13, [LMK™13, PRGL™ 14| or convective instabilities
[CC97, WOTGO0, MLAT08]. In general the terms read —22% with k € N and odd.
These asymmetric terms are responsible for the creation of satellites to only one side. It
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is only in this empty cavity at resonance where the symmetric terms are zero. With other
parameters, e.g. some detuning, the symmetric terms no longer vanish but TOD can still
be very strong as compared to second order dispersion that causes pulse broadening. In
active systems with carrier interactions such a PDE cannot be found as easily and satellites
will only appear under specific combinations of parameters, notably when the influence of
TOD is not overpowered by second order dispersion.

Operating the microcavities in the GTI regime with small detuning yields a filtering
characteristic very different from the bandwidth limiting element assumed in the unidi-
rectional ring model. No photons are lost via transmission through the bottom DBR,
irrespective of frequency. Indeed, high frequency damping approaches a small asymptotic
value instead of a typical parabolic shape. Thus, only the phase is affected upon reflection.
Resonant photons can enter and stay in the microcavity but are transmitted back into the
external cavity eventually. Others get reflected immediately from the top DBR. Upon
recombination of the signal this causes strong TOD which can still dominate over second
order dispersion in the in the VCSEL-RSAM system. One could therefore wonder where
gain filtering appears in this VCSEL-RSAM model.

5.3.2 Satellites replacing the main pulse

An interesting regime of unstable pulses can be found for at; = as = 0. The pulse possesses
a series of satellites on the leading edge that are caused by the cavity geometry as explained
in the previous section. For sufficiently large feedback and gain the satellites can become
large enough to saturate the absorber mirror and consequently receive gain. This means
that the net-gain window of the pulse is opened prematurely. As a consequence the satellite
grows and starts to use up more and more gain carrier inversion before the main pulse even
arrives. Thus, the gain available to the main pulse decreases as it becomes increasingly
saturated by the leading satellite and it finally dies out. Indeed the first satellite grows
into a new pulse of the same shape as its parent which it effectively replaces and the
process repeats in a continuous cycle.

Figure shows a pseudo-space-time representation of the dynamics that appear as
a forward staggering motion of an oscillating pulse. The full set of parameters of this
example reads: k1 =1, ko = 10, a1 = 0, g = 0, hy = 2.0, hy = 1.9985, 79 = 1.4 x 1074,
J1 = 0.044, v = 0.01, Jo = —0.03, s = 5.4, § = 0, n = 0.985 and 7 = 6000. Except for
the linewidth enhancement factors and the detuning these parameters are intentionally
kept very close to the ones in the following Section Note, that this corresponds to a
normal passive mode-locking regime with the cavity being relatively short as compared to
the gain relaxation 27y, = 1.68. However, the same kind of dynamics can be obtained in
the localized long cavity regime as well with appropriately less gain.

5.3.3 Low frequency dynamics

The instability shown in the previous subsection exhibits a very long period close above the
bifurcation point. This is due to a barely unstable first order satellite that is only just able
to overcome the absorber and open the premature net-gain window. Thus the effective
gain per roundtrip is very small and the intensity of the satellite grows exponentially slow
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Figure 5.7: Unstable regime for zero linewidth enhancements o; = 0 and detuning 6 = 0.
An unstable satellite grows in front of the pulse that causes an increasing
early gain saturation. The parent pulse is deprived of gain and dies out. It
is replaced by the satellite that grows to the same shape as its parent. This
process repeats giving rise to a quasi-periodic oscillation.
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Figure 5.8: A time series of the peak intensity per roundtrip shortly after the onset of the
satellite instability. The pulse remains almost stationary, then rapidly erupts.
Closer to the bifurcation, the period becomes increasingly larger.
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5.4 Satellite instability

for a very large amount of roundtrips. Finally it erupts in an almost point like manner
when looking at the pulse train. Figure [5.8 shows an example of this situation where the
peak intensities of the pulses are plotted as a time series.

5.4 Satellite instability

In semiconductor lasers the linewidth enhancement factors play a strong role, limiting
the a; = 0 scenario discussed in the previous subsections to an academic interest. Under
certain conditions, however, they can appear for realistic parameters as well and destabilize
the pulse train.

5.4.1 Progression of the dynamics

Under the influence of linewidth enhancement pulses typically undergo chirped broadening.
The additional third order and higher dispersive effects induced by the cavity geometry
are usually not apparent in this situation where the pulse is relatively broad as compared
to the transform limit. However, for the right combination of parameters, especially with
the correct detuning ¢, the linewidth enhancement effects of the gain and absorber can
almost cancel out and satellites appear. Where this happens depends intricately on all the
parameters since the interplay of the fields and carriers is very complex. The manifold of
pulses with satellites proves very difficult to trace exactly in simulations. At least three
parameters have to be changed appropriately at the same time, otherwise one quickly
starts to exit the regime. In the intensity profile the satellites tend to smear out and fuse
with the leading edge when changing any one parameter alone. From a technical point of
view this can be good for stabilization. In an experiment one might avoid satellites and
related instabilities by, e.g., changing the detuning. Note, that even for parameters where
no satellites appear on stable pulses their effects can be very strong on transients. An
instability found in a similar experimental setup was presented in [MLA'18] and may be
directly related.

Figures [5.9H5.13| show pseudo-space-time representations of time series obtained from
DNS using the FM in the long delay limit for experimentally realistic parameters: x; = 1,
ko =10, ap = 1, hy = 2, hg = 1.9985, 71 = 5 x 1074, 75 = 0.01, Jo = —0.03, s = 3.66,
0 = 0. The remaining parameters «y, J; and 7 are varied as control parameters. They
illustrate the progression from a stable pulse with leading satellites to a stably oscillating
regime that is reminiscent of the staggered parent pulse replacement instability discussed
in the previous section. In addition to the intensity evolution in the upper left panels the
signal of a simulated photo detector with a bandwidth of 15 GHz is shown in the lower left
panels. The corresponding evolution of the spectrum is shown in the upper right panels.
Its average is depicted in the lower right panels.

Figure shows the stable pulse with leading satellites for oy = 2.5, J; = 0.0463 and
n = 0.985. It undergoes an AH instability and starts to oscillate as shown in Figure [5.10
for a; = 2.4, j1 = 0.0463 and 1 = 0.985. The satellites appear to oscillate along with the
main pulse. In Figure for ay = 2.5, 71 = 0.046 and 1 = 0.983 the satellites appear
to oscillate at twice the frequency of the main pulse which slightly moves back and forth
while growing and shrinking. This indicates a varying attraction to its first satellite that
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Figure 5.9: A pulse with satellites on the leading edge that are hardly visible in a corre-
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sponding simulated photo detector signal. In an experiment with realistic noise
levels this would not be expected to be apparent. The spectrum has strongly
asymmetric slopes to either side. Other parameters are a; = 2.5, J; = 0.0463,
n = 0.985.
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Figure 5.10: The pulse oscillates slightly in a breathing manner and its satellites just follow,
growing and shrinking with it. They remain hard to see in photo detector
signal. The spectrum developes tails on blue side, i.e., local maxima that
appear and disappear. The average spectrum remains monotonous. Other
parameters are oy = 2.4, 71 = 0.0463, n = 0.985.
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The satellites oscillate with half the period of parent pulse forming a spotted
pattern. The secondary peak of the oscillation is smaller and higher order
satellites more damped. In the photo detector signal the oscillation of the
main pulse is visibly stronger but the satellites are still not prominent. The
spectrum has developed a second set of tails and the average shows local
maximum on blue side. Other parameters are a; = 2.5, j; = 0.046, n = 0.983.
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Figure 5.12: The secondary satellite oscillation peak is stretched much longer in time. At
the end of it, the main pulse is attracted by it and slides toward it. In photo
detector signal the satellites are only slightly more visible. The spectrum has
become strongly asymmetric. Other parameters are a; = 2.5, j; = 0.046,
n = 0.9835.
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Figure 5.13: Finally, the parent pulse jumps onto the first satellite and merges with it to
remain at this position. Details are not obvious in photo detector signal. The
part of the spectrum due to satellites has reached a comparable amplitude
as for the parent pulse. A broad second frequency range is prominent in the
average spectrum. Other parameters are a; = 2.5, j1 = 0.0477, n = 0.982.
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5.4 Satellite instability

might be due to the varying chirp or the changing gain saturation that both result from
the intensity oscillation. Indeed, pulses and their satellites cannot clearly be identified as
two separate things. There is always an interplay of amplitude-phase coupling and higher
order dispersion. Figure shows an even stronger version of the instability at oy = 2.5,
j1 = 0.046 and n = 0.9835. The attraction makes the pulse visibly slide toward the first
satellite. Finally, in Figure the main pulse even jumps to the location of the first
satellite and apparently absorbs it. Here the other parameters are oy = 2.5, j; = 0.0477
and n = 0.982.

Generally the satellites remain barely visible in the photo detector signal. The noise
in an experimental measurement is likely going to hide their existence altogether. Only
a strong oscillation in intensity and width can be observed. Evidence of the satellite
instability should be visible in the average spectrum, though, that becomes increasingly
asymmetric and even develops a local maximum to one side where the satellite induced
dynamics are most visible.

5.4.2 Experimental parameters

Figure shows two examples of satellite induced stable oscillations using the following
parameter set: k1 = 1, ko = 10, ap = 1, by = 2.0, hg = 1.9985, v = 1.4 x 1074,
v9 = 0.01, Jo = —0.03, § = —0.5, n = 0.985 and 7 = 6000. These parameters correspond
to an experimental setup using the same gain mirror from Section [5.2] with a slightly
different RSAM that has a bandwidth (FWHM) of 40 nm and a maximum modulation
of 12%. The panels from left to right show pseudo-space-time representations of the
intensity, the resulting signal of a simulated photo detector with 15 Ghz bandwidth and
the corresponding spectrum.

The upper panels show a satellite instability similar to Figure for ag = 2.5, J1 =
0.044 and s = 5.4. The lower panels show another regime with a lower period for the
parameters a; = 2.3, J; = 0.041 and s = 5.1 that only slightly differ from the previous
example. Here, the pulse is chasing its building satellites, thus quickly drifting forward
and loosing intensity. It then stays still for a while to grow back. Similar dynamics have
been found in the corresponding experiment. Note, that the picture has been straightening
using the average period so that these dynamics appear as a sharp back and forth motion.
Whether this is interpreted as only forward or only backward motion in a stair shape is
up to choice. Physically the drift is always toward larger time.

These dynamics are slightly above the lasing threshold but remain stable because the
carrier inversion never fully recovers, at least exp(—277v1) &~ 18.64% of the gain saturation
caused by a pulse remains on its return. The threshold Jl(th) ~ 0.0404 differs only negligibly

between the two examples (as function of ay).

Both shapes of dynamics actually appear as part of a continuous manifold of stable
quasi-periodic orbits in the simpler MIXSEL system that will be the topic of the next
chapter. In the VCSEL-RSAM system they are most likely connected as well, but due to
the additional complexity a set of parameters where they are connected through a stable
transition remains elusive.
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Figure 5.14: (a-c) Satellite instability with nonzero detuning and very similar character-
istics to the situation in Figure 5.12] Parameters are oy = 2.5, J; = 0.044,
s = 5.4. (d-f) A pulse slowly sliding back and forth for slightly different
parameters o = 2.3, J; = 0.041, s = 5.1. The higher order dispersive effects
manifest in an oscillatory drift motion instead of leading satellites. An oscil-
lation like this has been observed in a corresponding experiment. A similar
version of this figure was used in [5].
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5.4 Satellite instability

5.4.3 Comparison with the CCQGLE

The Ginzburg-Landau equation is the normal form of a finite wavelength instability in
spatially extended systems while its complex variant is the normal form for a respective
Andronov-Hopf bifurcation. With cubic terms the bifurcations are supercritical, but the
addition of a quintic term allows for stable solutions that emerge subcritically. It is thus
prevalently investigated in the context of pattern formation, see [AK02] for a review. It
can also be considered as a generic PDE for PML in optical fibers where the extremely slow
gain can be averaged over the cavity as it remains uniform. The interplay of the cubic
and quintic terms describes the saturation of gain and absorption, respectively. Thus,
given appropriate parameters, it encompasses the subcritical Andronov-Hopf regime that
corresponds to TLS. Next to the unidirectional ring model (2.96)—(2.98) it offers another,
yet more generic, opportunity for comparison of TLS behaviour.

The complex cubic-quintic Ginzburg-Landau equation (CCQGLE) appears in the con-
text of soliton explosions [SCAAQ0]. Such explosions were first experimentally found in
Kerr lense mode-locking of a Ti:sapphire lasers [CSCAQ2]. A similar effect exists in the
mode-locking of Yb-doped fibers [RBE15]. Here, the CCQGLE was used successfully to
described the system with the addition of higher order terms [CD16].

The CCQGLE with higher order terms reads

04 _ AP A+ (ot i) AT D) 04
(%—5A+(e—l—z)|AA+(u+w)|A|A—|—(B+Z2>8t2 (5.36)
0A 0 9 . o|A|?
+63% — Sa (|A’ A) — lTRA ot s

with, the complex electric field amplitude A, the propagation distance or roundtrip number
z and the (fast) time ¢. The net gain is described by 0 while € and p parameterize the
nonlinearities of gain and absorption, respectively, and v measures to saturation of the
nonlinear refractive index. D represents the group velocity dispersion and 3 the spectral
filtering. The additional higher order terms in the second line of Eq. contain the
coefficients for TOD s, self-stepping s and intrapulse Raman scattering 7g.

A special kind of soliton explosions is one-sided, asymmetric explosions where the whole
soliton appears to have jumped to the side after a full cycle [LF10]. In the absence of
higher order terms these explosions happen equally likely to both sides thus resulting in a
random walk motion. With higher order terms, however, this symmetry is broken and the
probabilities of left and right sided explosion are no longer the same. Figure [5.16] shows
examples for these situations. Indeed, the bifurcations responsible for these instabilities
split in the parameter space [4] such that, given appropriate parameters, explosions may
only ever occur on one side.

Another type of soliton instability is the so-called breather solution [AKS87, [AEKSS].
Third order dispersion can induce such an oscillation with a strongly asymmetric space-
time profile as shown in Figure It possesses rather similar features as the dynamics
shown in panel (a) of Figure[5.14] albeit on the trailing edge as this example was calculated
with a positive TOD coefficient. A specific PDE model for the VCSEL-RSAM system will
require spatial derivative terms at least up to third order to encompass the appearance of
satellites and their instability.
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Figure 5.15:

Figure 5.16:
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Space-time diagram of solitons explosions in the CCQGLE with higher order
terms. (a) For vanishing higher order terms 83 = 0.0, s = 0.0, 7 = 0.0
the explosions happen equally likely to both sides. The net gain is set to
0 = —0.3. (b) For small third order dispersion 83 = 0.001 explosions are
favored to the left. The net gain is set to § = —0.45. (c) For larger third
order dispersion 3 = 0.01 explosions are favored to the right. The net gain
is set to 0 = —0.5. If not stated otherwise, the remaining parameters are
e=1.0188, y=—-0.1,v=—-0.6 5 =0.125, D =1, s = 0.009 and 7 = 0.032.
A similar version of this figure was used in [4].
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Space-time diagram of an oscillating breather soliton solution in the complex
quintic-cubic Ginzburg-Landau equation under the influence of third order
dispersion. The TOD induces a serrated temporal intensity profile of the
soliton that asymmetrically trails off to the right side due to the TOD coef-
ficent being positive. Like in the VCSEL-RSAM example from Fig. the
oscillations on the small intensity side reach their maxima increasingly late as
compared to the main pulse. Parameters are § = —1.0, ¢ = 1.0188, u = —0.1,
vr=-0.6p8=0.125 D =1, 83 = 0.075, s = 0.0 and 7 = 0.0. A similar
version of this figure was used in [4].



5.4 Satellite instability

Note that the model does not include carrier dynamics. In contrast to the VCSEL-
RSAM model, the absorber carriers have been assumed to react to the electric field instan-
taneously and have been adiabatically eliminated. The gain carriers on the other hand
have been assumed to react slowly and have been averaged out. Notwithstanding, the
dynamics of the CCQGLE bear some striking resemblance with the satellite instability
discussed before. This reinforces the notion that the satellite instability is induced princi-
pally by TOD. The unidirectional ring model does contain carrier dynamics but not TOD
and such instabilities are not found.
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6 Mode-locked Integrated External-Cavity
Surface-Emitting-Laser

This chapter describes the results obtained for the MIXSEL system that can be viewed
as a simplified version of the VCSEL-RSAM system. Compared qualitatively, the single
microcavity design removes the detuning  between the coupled microcavities as well as
the ratio of their bandwidths x;. However, the cavity geometry still induces TOD in the
same way. Thus, the system exhibits the same types of behavior, specifically pulses can
have satellites that cause instabilities or strongly influence oscillatory dynamics. Due to
the smaller number of variables and the reduced parameter set the satellites are easier to
analyze and bifurcation analysis was possible within limits. Some of the results presented
in this chapter have been published in [7].

6.1 Lasing threshold

To calculate the lasing threshold of the MIXSEL model (2.248)—(2.251) we start with
the continuous wave ansatz E(t) = Ege™ ™! with the frequency shift w and the constant
electric field amplitude Fy in the microcavity. The carrier evolutions are assumed to have
reached the corresponding steady equilibrium state so we have

—iwEp = [(1 —ia1)N1 + (1 — i) N2 — 1] Eg + hY, (6.1)
0=m(Ji = N1) — |Eo]* Ny, (6.2)

0 =72(J2 — Na) — s|Eo|* Ny, (6.3)

Y =n[Ey — Y]e™. (6.4)

In this case the injection field Y can easily be solved for £
neiwﬂ-

=—F 6.5
1+ nesz 05 ( )

ready to be substituted in the field evolution equation. The amplitude Fy remains only
as a linear factor and can thus be discarded to reach the CW condition
hneiwr

0:(1—2011)N1+(1—ZO[2)N2—1+ZW+W

(6.6)

The field amplitude still appears implicitly since the carrier inversions NN are functions
of it. For the threshold we have to consider the low intensity limit |Ey| — 0 where the
carriers simply equilibrate to their respective bias values IN; = J;. We will separate the
modulus and complex phase of the feedback parameter n = |n|e’¥ so we can reduce the
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number of complex expressions in the time-delayed feedback term in the CW condition to
one which simplifies the interpretation of this fraction in the following. After separating
the real and imaginary parts of the remaining equation we have

h|n|

0:(J1+J2—1)+z(w—a1J1—O&h)er‘

(6.7)
This can be simplified by introducing the natural frequency shift of the unsaturated mi-
crocavity wg = aqJi + asJs and the remainder Aw = wy — w

hin|

Ji=1—Jy —iAw — BT T+ i ,

(6.8)

with the shifted feedback phase ¢ = wgT + ¥ + 27Z where we can choose an appropriate
integer to limit its value into a single cycle || < 7.

We now need to find the external cavity modes wy that solve this relation to give a real
valued J;. The smallest Ji(wy) will then define the lasing threshold. In the long delay
limit 7 — oo the external cavity modes become a pseudo-continuous spectrum, i.e., the
distance to the neighboring external cavity modes vanishes. One can produce an arbitrary
finite phase in the feedback term with an infinitesimally small |[Aw| ~ £ < T to counteract
the phase of the —iAw term in Eq. . Therefore, we may safely set |[Aw| — 0 and

AwT = —p and see that wyg is indeed the threshold mode yielding the minimal
(th) hin|
J ' =1=Jy— . 6.9

6.2 Satellite instability

To analyze the satellites and their instabilities in the MIXSEL system we choose a set of
parameters with a focus on instructiveness over experimental feasibility. The time scales
still need to have realistic ratios but we may choose simple numbers. For the carrier
relaxation rates we use y; = 3 x 1073 for the gain and 72 = 0.1 for the saturable absorber.
Assuming a photon lifetime of 7. = 3 ps this corresponds to carrier relaxation times of
1ns and 30 ps, respectively. A delay value of 7 = 1000 then corresponds to a 3ns external
cavity roundtrip time. Most of the remaining parameters are chosen in order to emphasize
the first order satellite in order to showcase the general pattern of behavior. The case of
a perfect bottom DBR is experimentally sound and yields the simple value h = 2 for
the injection coupling. An absorber bias of Jo = —0.5 gives a very strong modulation of
88.9%. Along with this the saturation ratio s = 10 is also chosen to be relatively large so
the absorption becomes easy to saturate in spite of its strength. With these values we get
very pronounced modulation and hence a very wide range of bistability of pulses with the
off solution. In this situation of otherwise very stable pulses we can make a clear case for
the destabilization due to satellites. The feedback attenuation factor is chosen quite low
n = 0.7. This causes the higher order satellites to be strongly damped and only the first
satellite to remain relevant. A higher 7 close to one is interesting for the experimental case
as it minimizes linear losses where gain and absorber modulation are limited. However,
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6.2 Satellite instability

with n ~ 1 the dynamics can involve several orders of satellites that interact with the
main pulse and each other via inversion saturation and amplitude-phase coupling. While
originating from the same principle, the resulting dynamics are very complex and thus
difficult to interpret.

The pure form of the satellite instability appears for vanishing linewidth enhancement
factors a; = 0 and as = 0 where the satellites are fully developed, unperturbed by the
effects of chirp broadening. Figure shows the dynamics obtained for a gain bias of
J1 = 0.65 and a delay time of 7 = 1000. This bias corresponds to about 96.1% of the

10

Figure 6.1: Pure satellite instability dynamics for zero linewidth enhancement factors oy =
ag = 0. A sufficiently large satellite in front of the main pulse is able to open
a premature net-gain window and becomes unstable. The satellite grows into
a new full pulse thereby replacing its parent pulse that is deprived of gain.
(a) Pseudo-space-time diagram where a staggered forward movement of the
pulse becomes apparent, similar to Fig. (b) Time trace with intensities
of the microcavity field |E|? in blue and of the injection field |Y|? in orange.
The replacement oscillations are visible as dips in the intensity. The local
intensity maxima are highlighted by purple crosses where the early satellite
growth becomes visible. Other parameters are: J; = 0.65, 7 = 1000. A similar
version of this figure was used in [7].
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threshold value Jl(th) ~ 0.6765. Panel (a) shows a pseudo-space-time diagram where the
intensity profiles I = |E|? of the microcavity field are stacked for each roundtrip Ny;. The
pulse performs a forward staggering movement that appears as of a series of jumps. In
front of the pulse a small satellite exists due to a higher order dispersive effect caused by
the cavity geometry as explained in Section For the given parameters this satellite
is large enough to saturate the absorber sufficiently on its own to open a premature net-
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Figure 6.2: Satellite influenced quasi-periodic dynamics for realistic linewidth enhance-
ment factors oy = 2.1, g = 0.5. A satellite separates from main pulse on the
leading edge at about half of the maximum intensity. Both the satellite and
main pulse grow and separate more until the main pulse is attracted by its
satellite and moves forward quickly. The main pulse grows very quickly while
the satellite disappears again. Finally the main pulse shrinks back and the
cycle begins anew. This dynamics results from a mix of the satellite instability
and amplitude-phase coupling. (a) Pseudo-space-time diagram of the dynam-
ics. (b) Time trace with intensities of the microcavity field |E|? in blue and of
the injection field |Y|? in orange. The local intensity maxima are highlighted
by purple crosses Other parameters are: J; = 0.65, 7 = 1000. A similar ver-
sion of this figure was used in [7].
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gain window and consequently builds up more intensity over many roundtrips. Finally the
satellite erupts exponentially and grows to the same size and shape of its parent pulse. Due
to the increased gain saturation the parent is deprived of gain and dies, thus being replaced
by its satellite. The main pulses remain mostly unchanged until their satellites start to
grow quickly. This dynamics corresponds to Figure for the closely related VCSEL-
RSAM system discussed in the previous chapter. Panel (b) shows the corresponding time
trace of the microcavity field intensity |E|? in blue and the injection field intensity |Y|? in
orange. The local maxima of the |E|? pulse profiles are highlighted with purple crosses.
This makes the slow build-up of the satellites visible. Otherwise, the dynamics only appear
as dips in the intensity.

This constitutes the pure satellite instability that causes a stable pseudo-periodic orbit
as the pulse replacement repeats in an almost constant number of roundtrips. One can
define the moment of replacement as the roundtrip where the satellite has outgrown the
parent. Due to the non-continuous characteristics of dynamics per roundtrips only an
average period of the oscillation can be defined. One cycle takes some minimum number
of roundtrips Np but will sometimes need one more. This holds in the absence of noise; the
effects of noise on the period are discussed in Section For a barely unstable satellite
very close above the bifurcation point causing this instability the growth phase of the
satellite can become very large and can even diverge to infinity as discussed in Section [6.5

For realistic linewidth enhancement factors the satellite instability does not appear in
the pure form described above. The chirp broadening due to amplitude-phase coupling
often interferes with a clean separation of the main pulse and its satellites. However, the
dynamics of the pulse can be influenced by satellites significantly. A pulse that oscillates
significantly in its energy causes varying saturations of the carrier inversions and thus is
exposed to varying amounts of amplitude-phase coupling in turn. Figure shows results
from direct numerical simulations with realistic values for the linewidth enhancement
factors a3 = 2.1 and ag = 0.5. The peak intensity time trace of the pulse appears to
oscillate almost harmonically when compared to the case of the pure satellite instability
discussed above. However, when looking at the full intensity profile of the pulse this
oscillation looks very different from the trailing edge instability caused by amplitude-
phase coupling. When the pulse is small a satellite separates from the leading edge of
the pulse with about half the peak intensity at that time. The parent pulse then grows
again while its newborn satellite dies out. During this phase the pulse changes its drift
velocity significantly and moves quickly to the position where the satellite had been. This
separation and the subsequent attraction is one example of the interplay of amplitude-
phase coupling and higher order dispersion due to cavity geometry. Depending on the
combination of the linewidth enhancement factors these dynamics have rather different
shapes but they all contain satellite dynamics mixed into the oscillations.

6.2.1 Bistability

Stable pulsation and satellite influenced oscillations can be bistable for certain parameter
regions. For a; = 1 and as = 0 a stable quasi-periodic orbit exist that can be reached
by lowering the gain bias from above the lasing threshold. Figure [6.3] shows a pseudo-
space-time diagram depicting both the stationary and stably oscillating pulse solutions.
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Indeed the two pulses are TLSs coexisting in a single long external cavity with a roundtrip
time of 7 = 10000. The diagram is adjusted using the period of the stationary TLS thus
highlighting the difference in the respective drift velocities. Compared to the cavity length
this drift would only be important on macroscopic timescales where the TLSs would finally
run into each other. For the purpose of illustration the time between the TLS is trimmed.
The pulses are really much further apart and do not interfere with each other. The
stationary pulse is comparatively small and has no satellites. The oscillating pulse has a
larger peak intensity is lead by a series of satellites. The first satellite grows significantly
and attracts the main pulse that at some point quickly moves forward and merges with
its satellite into a large intensity pulse situated at the former satellites position. At the
same time the next satellite starts growing. This is likely triggered by the overgrown pulse
loosing photons to the next order satellite due to the cavity geometry. Thus, the satellite
becomes large enough to open a net-gain window and keep growing thereby starting the
next cycle. This scenario is the basic version of the one presented in Figure for the

180

160

- [
[ ] S
o o

roundtrip
=
[
[

80

60

40

20

10 15 20 25
trimmed time

Figure 6.3: Pseudo-space-time diagram for a; = 1, g = 0 in a long cavity 7 = 10000. A
stable TLS and another stably oscillating TLS exist in the same cavity with
the oscillating one having significantly higher energy overall and has leading
satellites. The first satellite grows until the parent moves toward it and they
merge into a single high energy pulse at the former position of the satellite.
The large pulse then shrinks again, the next satellite grows and the process
repeats. This behavior is similar to Fig. Time is trimmed around the
TLS for the sake of illustration and the snapshot interval is set to period of
the stable pulse. The TLS are actually much further apart and do not interact
with each other. Though the drift of the TLSs is not the same, traversing the
actual distance would take a very large number of roundtrips.
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VCSEL-RSAM system. The difference to the pure satellite instability is the non-zero
gain linewidth enhancement factor. The chirp resulting from increased amplitude-phase
coupling has a tendency to broaden the enlarged pulse. In stable pulses this typically
suppresses the satellites. The attraction to its satellite can be explained by the TLS
trying to focus is energy in order to saturate the losses more efficiently.

Figure shows time traces corresponding to the pseudo-space-time diagram in Fig-
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Full time trace of the bistable TLSs presented in the previous Fig. 6.3, (upper
panel) The intensities of microcavity field |E|? are depicted in blue and of
injection field |Y'|? in orange. The larger of the TLS is oscillating under the
influence of a growing satellite. (middle panel) Time is trimmed around the
pulses to reveal details of the dynamics. The growing satellite merges with the
main pulse causing the observed oscillation in peak intensity. (lower panel)
The carrier inversions of the gain in blue and the absorber in orange. Due to
the very long cavity both inversions have sufficient time to fully relax before
the other pulse arrives. This illustrates that both pulses are in the localized
regime. Other parameters are: a1 = 1, ag = 0,7 = 10000.
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ure In the upper panel the full time trace for several periods is presented by the
intensity of the microcavity field |E|? in blue and of the injection field |Y|? in orange.
The oscillation features an intensity bump on rising side before reaching the maximum
and is clearly far from harmonic. Interspersed, the stationary pulse remains at a constant
intensity. The middle panel shows the pulses with the time in between cut out so the full
profiles including the satellites remain visible. The growth of the satellite can be observed
as well as the subsequent merging with the main pulse which significantly grows in peak
intensity as a consequence. The lower panel shows the carrier inversions of the gain in
blue and of the absorber in orange. The cavity is large enough for the carrier inversions
to fully relaxation after each of the pulses, i.e., both are in the localized regime and do
not feel each other.

6.2.2 Regions of dynamical behaviors

Figure [6.5] shows results obtained from DNS with a delay of 7 = 1000. Two dimensional
parameters scans were performed in the gain bias J; normalized to the lasing threshold
Ji and linewidth enhancement factor a;. From a common starting point for two types of
stable pulses the scans worked through the parameter space continuously by using the final
state of one point as the initial state of the next neighboring point. The off solution could
be easily detected by the integrated pulse intensity dropping below a small critical value.
Pulses can be distinguished using the time series of their peak intensities per roundtrip.
Stable pulses are characterized by a constant value each. For oscillations the extrema of
the peak intensity form clusters. Normal oscillations have a pair of values that just stem
from the minimum and maximum while higher order oscillations have four clusters for
period doubling, six for period tripling and so on. Finally for quasi-periodic oscillations
of the pulses the extrema fill an interval. These analyzes can be automated to obtain a
2d-diagram of the different regions. By looking at the respective time traces one can then
characterize these regions.

The off solution is shown in blue and a large region of stable pulses is shown in cyan.
These pulses behave, for the most part, similarly as the ones in the unidirectional ring
model discussed in Chapter 4| (cf. especially Fig. . They are largest for low a1 and
become Andronov-Hopf unstable for large «;. This instability is virtually identical to
the trailing edge instability with the main differences that the bifurcation is supercritical
everywhere and a small part of the oscillating region overlapping the stable pulse region
which is depicted in bright green. Dynamically this oscillation looks basically the same
in both models. Unlike in the ring model, however, the high intensity pulses at the low
a1 edge exhibit a series of leading satellites that originates from the cavity geometry as
discussed in Section An exemplary intensity profile of such a pulse is shown in
Figure just in front of the satellite instability region. The first of these satellites
becomes unstable for a sufficiently large gain bias thus causing the satellite instability
discussed at the beginning of this section. At the border of the unstable region, again, we
find a small part that is bistable with the underlying stationary pulse and is drawn in pink.
In the unidirectional ring model a series of higher order pulses with an increasing number
of bumps on the leading edge was found by means of numerical path continuation but not
in simulations since all of them remained unstable for the chosen parameter ranges. The
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Figure 6.5: Bifurcation diagram showing the regions of dynamical behaviors. The off-
solution is presented in blue and stable pulses in cyan. At high «; the area
in green marks the trailing edge instability. The purple region at low aj
represents the pure satellite instability. The stable pulse profile in front of it
exhibits a leading satellite that is responsible for this instability. Parts at the
edges of both instabilities are bistable with the stable pulse background. An
additional larger stable pulse exists in the orange region for medium gain and
oy values. It is bistable with the smaller pulse, i.e., the cyan region extends
up to threshold underneath. Two pulse profiles at the same parameters are
shown where the upper profile corresponds to the orange region and the middle
profile to the cyan region, respectively. The pulse of the orange region starts
to oscillate for lower ar; which is indicated in red. This oscillation shows mixed
characteristics of the other two. Where regions overlap otherwise the colors
are blended. The delay time used in the DNS was 7 = 1000. A similar version
of this figure was used in [7].

first additional (single bump) solutions were born in a saddle-node bifurcation that in turn
began in a cusp bifurcation as shown in Figure In the MIXSEL model we can find
such single bump solutions to be stable with an example profile presented in Figure
These pulses are indeed bistable with the smaller pulses belonging to the underlying cyan
region. The respective profile of the small pulse at the same parameters is shown below the
single bump solution for comparison. The region of existence of the bistable single bump
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Figure 6.6: Bifurcation diagram obtained from DNS using the functional mapping in the
long delay limit. Blue means off, cyan stable pulses and green oscillation.
The brown area indicates the existence of two different bistable pulses and
yellow where either of them is oscillating. Due to the long cavity the pulses
experience more effective gain than in Fig. and the bifurcations appear a bit
earlier. However, there are no qualitative differences indicating that 7 = 1000
is already close to the localized regime.

pulse is shown in orange and red and shares the cusp shape of the ring model. Orange
stands for this pulse being stationary while in the red, lower a; part of the region it is
oscillating. This oscillation has mixed characteristics of both amplitude-phase coupling
and satellite dynamics and the example of the previous subsection is directly related to
it. The overlap with the trailing edge instability at larger a; is color-blended. Here, the
situation is the reversed, i.e., the single bump pulse is stable while the simple pulse is
oscillating.

Figure[6.6]shows results for similar two dimensional parameter scans using the functional
mapping approach corresponding to an infinite delay time 7 — oo where the TLS are
perfectly localized. The data was processed in the same way as described above. Blue
stands for the off-solution, light blue marks the stable principal TLS and green means
oscillations. Bistability is indicated with ocher for two stable pulses and yellow where
either is oscillating. The example of the previous subsection can be considered to be a
single point of this diagram. Due to the longer relaxation time of the carrier inversions the
effective gain is slightly higher then in the previous case for 7 = 1000. Thus, the solution
manifolds and bifurcations move toward smaller normalized gain bias. Pure TLS do not
add anything qualitatively new so 7 = 1000 is sufficient to analyze them.
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6.3 Numerical path continuation

6.3 Numerical path continuation

This section is on the results obtained using the singular perturbation approach discussed
in Section 3.5 and its limitations.

6.3.1 Typical pulse profiles

The singular perturbation approximation necessitates the introduction of an additional
stiffness factor 1/e. For e = 1/30 the solutions obtained with DDE-BIFTOOL reproduce
DNS with high fidelity. Figure|6.7|shows results obtained from both direct numerical sim-
ulation and numerical path continuation for comparison. The parameters of the presented
TLS are J; = 0.55 for the gain bias and vanishing linewidth enhancement factors a; = 0.
The rest of the parameters are the same as introduced in the previous section. In order
to reach the localized regime the delay time was set to 7 = 2000 which leaves a residual
gain saturation of circa exp(—~17) = exp(—6) ~ 0.25% after one roundtrip. Note, that
the time interval of these state vectors is not exactly the same. For the DNS it is fully
defined by the delay time 7 while in the continuation a full periodic orbit with period
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Figure 6.7: Comparison of temporal profiles of TLS obtained from direct numerical sim-
ulation (left column) and from numerical path continuation (right column).
(upper row) Zoom on the intensity profile around the pulse. The first satellite
is clearly visible. (middle row) Carriers inversions in the zoom interval. The
saturation occurs in steps which is clearly visible for the absorber. (lower row)
Carriers inversions for the full roundtrip. They relax virtually to the bias val-
ues indicating that the localized regime is already reached.
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T > 7 has to be considered. Interestingly, the carriers do not only saturate in steps but
the absorber even slightly recovers between the first pulse and its parent indicating their
clear separation in the zero linewidth enhancement case.

DDE-BIFTOOL uses mesh adaption to represent periodic orbits efficiently. Indeed, the
computational effort of its algorithms does not scale favorably with the overall system size
and calculations of whole branches of the TLS at interest already take significant amounts
of time. Thus, the mesh points are mostly concentrated at and in front of the main pulse
where the stiffness of the system comes into play. They are needed for a good resolution
of the satellites while the quasi-exponential relaxation of the gain carrier inversion needs
very few mesh points in comparison. This, however, has negative repercussion concerning
stability analysis as discussed at the end of this section. The details of the series of leading
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Figure 6.8: Zoom on the temporal intensity profile of the pulse in log scale obtained from
direct numerical simulation. The satellites continue down continuously but
interfere with the training edge due to periodic boundary conditions.
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Figure 6.9: Zoom on the temporal intensity profile of the pulse in log scale obtained from
numerical path continuation. The low order satellites are fully resolved. For
high order satellites the resolution is not sufficient which is irrelevant in prac-
tice.
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satellites is most readily visible in log scale. In DNS the satellites go all the way down
until they feel the trailing edge of their parent pulse as can be seen in Figure[6.8 Only the
high order satellites are not fully resolved by the numerical continuation, see Figure
In practice, this is of no concern.

6.3.2 Singular perturbation convergence

The convergence of the pulse profile with ¢ — 0 is rather fast as can be seen in Figure[6.10
For e = 1/10 the first five satellites are already clearly developed. At e = 1/30 there is
virtually no more change to the intensity profile of the higher order satellites while the
resolution becomes a limiting factor as we saw in the previous subsection. Before the
first satellite enters the microcavity the higher order satellites use up some gain inversion.
However, the convergence error in their influence on the onset of the satellite instability
becomes negligible very quickly. Thus, considering the first satellite a value of € = 1/20
appears justified and was used in the following analysis of its effects.
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Figure 6.10: Convergence of the intensity maxima of the pulse profile in the singular per-
turbation approximation of the delay algebraic term. The smaller, higher
order satellites converge slower but, over all, the convergence of the profile is

quite fast.
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Figure 6.11: The period of a TLS converges virtually one to one with the singular pertur-
bation smallness factor €. This is equivalent to a small artificial increase of
the drift.
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The singular perturbation also has an effect on the period of a TLS solution that is
shown in Figure It acts as an artificial filter whose inertia causes some additional
drift of the pulse. For small € this turns out to be simply a one to one relation §7T = .
This additional drift is not physical but it does not create any problems in the localized
regime where the additional carrier relaxation is negligible.

6.3.3 Stability limitations

The long cavity needed for TLS in conjunction with the singular perturbation approx-
imation results in a very large stiffness proportional to 7/e. As a consequence, profile
continuation is only feasible by using mesh adaption such that points are far apart in
most of the interval. Typically, there is not enough resolution to accurately represent the
Floquet modes of a given solution and thus the linear stability analysis in DDE-BIFTOOL
becomes spurious. Several Floquet multipliers move in a highly erratic and non-continuous
fashion when continuing a branch of solutions or even when recorrecting a solution after
optimizing its mesh. Often the multipliers jump in and out of the unit circle thus wrongly
indicating bifurcations. Figure shows an example to illustrate this issue. Conse-
quently, continuation of bifurcations of periodic orbits in the long cavity regime was not
possible in combination with the singular perturbation approximation.

6.3.4 Folding solution branch

The branch belonging to the TLS that undergoes the satellite instability can be followed
via numerical path continuation. It folds back and forth several times as can be seen in
Figure for the zero linewidth enhancement case a; = ag = 0. In this example the
delay was set to 7 = 1000 and the singular perturbation parameter e = 1/20. The stability
can be determined by comparison with results obtained in direct numerical simulations.
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Figure 6.12: Floquet analysis of a branch along the interval e € [0.001,1]. All Floquet
multipliers of all solutions along the branch are shown simultaneously. (a)
and (b) show path continuations from different starting points without mesh
adaption. Though both represent the same branch, the spectra are qualita-
tively very different. (¢) With enabled mesh adaption the spectrum behaves
erratically along the branch.

122



6.3 Numerical path continuation

—_ O
J_ DD D aDaD
G WIN® o@ee ...n.._‘?-_

' LYY Ty

men @ oo o omoes
PP A pu—,
Y

AR e ——

Figure 6.13: Bifurcation diagram for zero linewidth enhancement factors oy = g = 0. The
TLS branch obtained from continuation is shown in orange with a solid line
where stable and dashed where unstable. It folds back and forth several times
indicated by the red circles. The extrema of corresponding peak intensity
time traces obtained from DNS are superposed as blue dots. The first fold
F'; limits the bistable TLS region. The second fold Fg lies where the satellite
instability sets in abruptly with full amplitude at the critical gain current J7.
Shortly after, an additional degenerate unstable branch drawn as a dashed
magenta line appears at the branching point BP marked by a yellow star.
At the third fold F3 the peak intensity of the first satellite surpasses that of
the parent pulse. Other parameters are e = 1/20 and 7 = 1000. A similar
version of this figure was used in [7].

On the low gain side the bistable TLS region is limited by a typical saddle-node F;.
The satellite instability starts at a critical gain bias J{ with instantly full amplitude and
coincides with the second fold F5. This indicate that it does not stem from an Andronov-
Hopf bifurcation. After the last fold Fg the peak intensity of the satellite has become larger
than that of the parent pulse. A corresponding profile is shown in detail in Figure [6.14]

After the second fold an additional branch appears at the branching point BP. This
branch is degenerate with a complex conjugate pair of nonzero frequency shift in spite of
the vanishing linewidth enhancement while for «; # 0 it has two different parts. In the
ag = 0 case the system is symmetric in a3 via complex conjugation, making the two parts
switch with each other. The degenerate case is where these two parts cross over, i.e., BP
marks a transcritical bifurcation.
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Figure 6.14: Unstable pulse profile shortly after the third fold Fg in Fig. The peak

intensity of the first satellite has superseded the main pulse. The two large
peaks are far apart and the absorber saturation relaxes significantly in be-

carrier inversion

tween.

6.4 Linear stability analysis using the functional mapping

This section describes a first attempt to implement linear stability analysis using the
functional mapping in the long delay limit. It is inspired by Floquet theory, however,
it should not be considered mathematically rigorous nor complete. Furthermore, some
Floquet modes and their multipliers are spurious or missing when comparing with the full
system.

In the functional mapping approach (cf. Sec. a small integration box is sufficient
to calculate the evolution of a TLS such that only a limited number of mesh points is
required. For a perfect shift variable v = T — 7 the pulse becomes a true steady state
Ys of a discrete mapping. The shift will generally not be an integer multiple of the mesh
spacing so it must be implemented in Fourier space or with the use of interpolation. For
non-zero linewidth enhancement one has to correct for the phase shift per roundtrip in
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6.4 Linear stability analysis using the functional mapping

addition. The shift values of the position and complex angle are thus part of the steady
state and determined along with it.
Let us consider a Dirac delta perturbation of small size € < 1 at time ¢,

Yo (t) = Y(t) + et —t,). (6.10)

We will integrate a single roundtrip using the shifts of the steady state. From the resulting
profiles we subtracting the steady state profile and divide by epsilon

Y, = w’ (6.11)

where F' is the operator for one step of the functional mapping. This gives us the linearized
response Y, of the system to an elementary perturbation over the next roundtrip.

For all the possible Y}, i.e. t, at each mesh point, the ¥, form an n x n matrix with
n being the number of mesh points in the integration box. This matrix of responses to
perturbations is somewhat similar to the monodromy matrix calculated in Floquet theory,
though it has a much smaller size. It thus becomes numerically feasible to diagonalize
which yields self consistent perturbations as the eigenvectors. Their eigenvalues give the
growth rates per mapping step. In the following we shall call them pseudo-Floquet modes
and multipliers, respectively.

Modes with at least one multiplier |ux| > 1 will grow over several roundtrips corre-
sponding to an unstable perturbation. Bifurcations of periodic orbits are characterized
by multipliers that cross the unit circle. Figure [6.15] shows results from performing the
analysis for a stable pulse where a real multiplier is about to cross at g = 1. This corre-
sponds to the fold on limit cycle bifurcation where the satellite instability sets in. Another
example is the onset of the trailing edge instability which can be identified as a secondary
Andronov-Hopf or torus bifurcation. It consists in the crossing of a complex conjugate pair
of multipliers. Note, that the scheme works for both stable and unstable TLS. Unstable
profiles can be obtained from continuation where v is trivially found since T is part of the
solution.

The Floquet spectrum of a TLS in the long delay limit consists of a discrete part of
modes with profiles centered around the TLS and a pseudo-continuous spectrum with
modes that are close to harmonic perturbations around a constant background solution
[YRSW19]. The technique described in the aforementioned work assumes all system vari-
ables to quickly approach a constant away from the TLS. For our case this would include
the carriers. Consequently, the whole TLS would be effectively much larger than the pulse
alone due to the long gain recovery. Together with the resolution required by the stiffness
of the electric field the overall system is thus still too big to handle directly in this frame-
work. However, it might be sufficient to restrict the analysis to a short interval around
the net-gain window of the pulse. While the gain recovery phase is far from constant
yet, perturbations of the field will already be strictly damped, since the absorber recovers
much more quickly and net-losses set in. This could allow for finding the localized modes
responsible for destabilizing the pulse in a more efficient way.

Since the integration box of the mapping is finite only modulations with sufficiently
large frequencies can be represented by it. Thus, parts of the quasi-continuous spectrum
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Figure 6.15: Linear stability of a stable pulse close to the fold at the onset of the satellite
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instability. (a) Floquet multipliers calculated in DDE-BIFTOOL before and
after an additional mesh adaption drawn as crosses and circles, respectively.
The locations of the multipliers change and, importantly, the number of un-
stable multipliers is not conserved. (b) Pseudo-Floquet multipliers calculated
by diagonalizing the monodromy matrix obtained from integrating a single
step using the functional mapping in the long delay limit. The discrete spec-
trum of modes localized around the TLS are found accurately and there are
no spurious unstable multipliers. In both approaches the pseudo-continuous
spectrum is incomplete and partly spurious. A real multiplier close to one is
about to cross, thereby causing the fold. A doubly degenerate neutral multi-
plier at i = 1 corresponds to the time and phase symmetries present in the
System.
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Figure 6.16: Neutral modes of the stable pulse yielding the pseudo-Floquet spectrum in
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Fig. [6.15, They correspond to the translational (a) and phase shift (b) in-
variances and offer an easy way to check whether the algorithm is producing
sensible results. Real and imaginary parts are drawn in dashed yellow and
orange for the modes and in solid blue and purple for the pulse profile, re-
spectively.



6.5 Saddle-node infinite-period to Andronov-Hopf transition

will be missing in this approach. In addition, the boundary conditions cause some modes
to be inaccurate. When using interpolation one end of the box is padded with zeros while
the corresponding part on the other side is discarded. This results in some modes having
growing profiles toward the edges which is unphysical as they would correspond to non-
square-integrable modes in the full system. These modes are, however, strongly damped.
The modes of the discrete spectrum are reproduced accurately. They are responsible for
all bifurcations below threshold since the underlying off-solution remains strictly stable.

Figure [6.16] shows the intensity profiles of the neutral translation modes that equal the
derivatives of the complex amplitude profile of the pulse with respect to time and the
complex phase. These modes correspond to the degenerate real Floquet multipliers at
u = 1. The algorithm actually yields linear combinations of the two modes, since they
form a degenerate eigenspace, so they had too be separated manually. Comparing them
with the expected shape served as a sanity check for the algorithm.

6.5 Saddle-node infinite-period to Andronov-Hopf transition

This section is on the origin of the pure satellite instability at low linewidth enhancement.
The responsible bifurcation transforms from saddle-lode infinite-period to Andronov-Hopf
for increasing «;.

6.5.1 Period scaling

Figure [6.17] shows the period scaling of the satellite instability. Direct numerical simula-
tions where performed using the functional mapping approach in the long delay limit. The
period can easily be determined from the separation of the either the maxima or minima
of the peak intensity time trace. Conveniently, for the pure satellite instability the shift
variable v of the mapping can be saved. It has a virtually constant positive value except
when the replacement of the parent pulse occurs. Here, one finds a single large negative
shift value as the position of the maximum intensity jumps from the position of the parent
to the one of the satellite.

For a; = 0.01 the period tends to infinity at the bifurcation point. The scaling law
is 1/\/p, where p = J; — Jf is the distance from the critical gain bias value. This is
characteristic of a saddle-node infinite-period (SNIPER) bifurcation which consists in the
collision of a saddle-node bifurcation of a steady state with a limit cycle that has an infinite
period at the bifurcation point. Due to the diverging period the accurate detection of the
bifurcation point is not possible directly with finite computation time. Indeed, using the
scaling law is the most viable option to determine the critical gain bias Ji ~ 0.5637 by
fitting data points above the bifurcation. Another type of bifurcation where the periodic
orbit is born with infinite period is the homoclinic bifurcation with a distinct scaling law
—1In(p). For a3 = 0.02 the period starts at a constant finite value of about one thousand
roundtrips but quickly starts to follow the a; SNIPER curve as well. In this case the
bifurcation is of the Andronov-Hopf type.
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Figure 6.17: Scaling of the period close above the bifurcation points that cause the satellite
instability. For a; = 0.01 the scaling is proportional to 1/,/x which indicates
a SNIPER bifurcation. For a; = 0.02 the period starts at a finite period
characteristic of an Andronov-Hopf bifurcation. However, it soon follows the
SNIPER trend as well. The scaling of a homoclinic bifurcation —In(u) is
shown for comparison. The dashed and dotted gray lines are meant as guides
for the eye. A similar version of this figure was used in [7].

6.5.2 Andronov-Hopf oscillation

Figure shows a bifurcation diagram for oy = 0.02 where the satellite oscillation sets
in with an infinitessimal amplitude. In the corresponding Figure [6.13] for zero linewidth
enhancement the oscillation started with full amplitude. The branches from the vy = 0
case have reconnected at the branching point BP. The stable part of the multi fold branch
has joined with one half of degenerate branch while the unstable part has joined with the
other half of degenerate branch. For finite values of a; the degeneracy is no longer present,
i.e., in the high J; interval where the satellite instability resides the two branches differ
slightly in the a3 = 0.02 case. At small but finite a; the first branch has two folds.
On is just Fo that existed already at a; = 0 and the other one stems from the branch
recombination where BP turned into another fold. As long as Fg exists the satellite
instability bifurcation remains to be of the SNIPER type. At some a3 € (0.015,0.02) the
two folds have merged into the Andronov-Hopf bifurcation point H. The other branch has
no folds and remains entirely unstable.

Figure [6.19] shows time traces of the maximum pulse intensity in a very small gain
interval directly above the critical value J} for a; = 0.02. For the first trace in solid blue
only a small amplitude modulation is observed having a finite period. The responsible
bifurcation is of the Andronov-Hopf type. The second trace depicted in dashed orange has
already deformed into a strongly unharmonical shape with a significantly lower period.
Next, it develops a pronounced dip directly in front of the maximum of the oscillation
shown in dash-dotted yellow while the period keeps decreasing. Finally, the dotted purple
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Figure 6.18: Bifurcation diagram for a; = 0.02 similar to Fig. for y = 0 whose
branches have reconnected at the branching point its BP. The satellite insta-
bility starts with infinitessimal amplitude. The responsible Andronov-Hopf
bifurcation point H stems from a merger of the fold Fo and another fold that
was born from BP in the branch reconnection. A similar version of this figure
was used in [7].
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Figure 6.19: Time traces of the pulse peak intensity close above the onset of the satellite
instability for a; = 0.02. The oscillation starts with a finite period as a
small modulation in an Andronov-Hopf bifurcation. The periodic orbit then
very quickly deforms into the same eruption shape of the satellite instability
at @ = 0. The order of the graphical representations is solid blue, dashed
orange, dash-dotted yellow and finally dotted purple.
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curve is virtually indistinguishable from the eruptive satellite instability at c; = 0 for the
same gain bias. This transition proceeds very rapidly when increasing J; and afterwards
the period of the satellite instability is almost constant as a function of 1. The different
types of origin of the oscillations is thus only apparent in a tiny gain interval where its
period diverges for small «;.

6.5.3 Transition dynamics

Panel (a) of Figure shows the period scaling of the satellite instability for a; = 0.015.
This is very close to the Andronov-Hopf transition but still shows the characteristic scaling
of a SNIPER bifurcation. Panels (b-d) show pseudo-space-time diagrams obtained from

10 T
——SNIPER 250
5 X period
10° ¢ 1 0.1
200
4 0.08
« 10
£ o 150
< s o
§ 1031 g 006
= o 100
0.04
102
50 0.02
1 L L
10
10710 107
I 1 - 1 t
200 0.12
0.12
C 0.1
150 © 200 0.1
0.08 0.08
= a 150
= o = o~
§ 100 0.06 = § 006 >
g 3 100
0.04 0.04
50
0.02 50 0.02
0
5 10 15 20 25 50 100 150 200 250
t t

Figure 6.20: (a) The period of the satellite instability at a; = 0.015 still has the charac-
teristic scaling of a SNIPER bifurcation. (b-d) Pseudo-space-time diagrams
for increasing gain very close above the critical gain bias J{. The instabil-
ity starts as a small modulation that causes a small shift of the main pulse
toward its satellite. The attraction of the satellite becomes stronger very
quickly such that the main pulse merges with it. Soon after the main pulse
virtually jumps onto the satellite with only a small intensity connection left
between them.
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direct numerical simulations in the long delay limit using the functional mapping approach.
A fast progression of the dynamics is observed in a very small gain interval above the
bifurcation point. At first in panel (b) the unstable satellite only causes a small shift
of the main pulse toward it. Along with this shift goes a small modulation of the peak
intensity. This corresponds to the blue curve in Figure but with very long intervals
of virtually constant peak intensity between the modulations. Next in panel (c) the main
pulse slides along about half the distance to its growing satellite and the two merge in the
middle to form the next main pulse. Indeed, the next order satellite combines with part
of the first order satellite in their middle and so forth. This corresponds to the orange
curve in Figure but again occurs much more infrequently. Finally in panel (d) most of
the intensity basically jumps to the satellite with only a small rest of intensity indicating
any sort of drift movement in order to merge. Most of the intensity thus stems from
the unstable satellite alone using the gain inversion to grow while the main pulse mostly
dies out. Again, this is similar to the yellow curve in Figure [6.19] The periods of both
scenarios have come much closer to each other at this point. Soon after, virtually no further
distinction remains for any «q, provided it is small enough for the satellite instability to
persist. For high gain the oscillations look identical. This progression illustrates how the
two scenarios are indeed profoundly connected and how one may deform continuously into
the other as a function of the parameters.

6.6 Excitability

To introduce the concept of excitability we will take a look at a simple yet instructive
model that describes a self-sustained weakly nonlinear oscillator subjected to weak periodic
forcing. An approximation can be derived for the phase offset of the oscillator from the
forcing [PRKO01]. For the simplest case of a sine shaped forcing term it is called the Adler
equation [AdI46]

¥ =0—sind, (6.12)

which was extensively studied in the context of synchronization. Here, ¢ is the phase offset
of the oscillator to the forcing and ¢ is the detuning of their frequencies. In optics, with
the addition of a time-delay term, this equation can model the dynamics of a slave laser
injected by a master laser and subject to optical feedback which yields localized states
[GJTBI5].

For —1 < § < 1 Eq. has a stable and an unstable fix point. Close to the saddle
node bifurcation points |§| = 1 these two fix points lie very close. Together with the
periodicity of the system, this results in two qualitatively distinct trajectories from the
unstable toward the stable fix point depending on the direction. Figure shows a
schematic of such a scenario. Around the stable fixed point a small perturbation just
tends back to the fixed point. A sufficiently large perturbation, however, may push the
system beyond the unstable fix point, thus causing the system to go the other way round,
which will take significantly more time and incur a 27 phase shift. This process can be
randomly triggered under the influence of noise. Such a kind of behavior is generally
referred to as excitability, i.e., a perturbation can excite the system.
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A‘

Figure 6.21: Schematic for the Adler equation . A saddle-node pair of fix points
exists on a ring topology. Small perturbations (green arrow) from the stable
fix point (solid circle) lead to a fast relaxation (yellow arrow). Sufficiently
large perturbations (red arrow) beyond the unstable fix point (empty circle)
cause a much longer relaxation (blue arrow) the other way round, thus causing
a 27 phase shift in the angle ¥.

Typically an excitable medium needs to recover for a certain time after an excitation
occurred. This time is called the refractory period. Excitable media were found early in
biological and chemical systems [WinO1], especially in neurons [JBL46] as described by
the FitzHugh-Nagumo model [Fit55, NAY62]. In nonlinear optics, excitable behavior was
encountered, e.g., in a semiconductor laser with optical feedback |[GGGT97] and can be
induced by time-delayed feedback alone [PHBHO5].

Figure shows an example of the pure satellite instability dynamics for zero linewidth
enhancement «; = 0 under the influence of strong noise. The results were obtained
from direct numerical simulations using the functional mapping in the fully localized
regime. Panel (a) shows a pseudo-space-time representation of three thousand consecutive
roundtrips while panel (b) shows the respective intensity time trace of the microcavity field
with the maximum pulse intensities highlighted. One can see a strong variance in the time
intervals after which the individual satellite eruptions occur, indicating a strong influence
of noise on the instability.

A satellite needs enough energy to open a net-gain window in order to become unstable
and grow. Noise can interfere with the satellite constructively and increase its available
energy. This can help the satellite to become large enough when it is just below the
critical energy to trigger a consequent eruption. The following recovery of the gain carrier
inversion can be interpreted as the refractory period of an excitable medium. Conversely,
destructive interference can shrink a small satellite sufficiently to stall an ongoing eruption
in its early stage where the satellite only gains little additional energy per roundtrip. Both
processes can considerably influence the blow-up time of the satellite leading to a highly
irregular period of the dynamics.

Figure [6.23| shows statistics for a two dimensional parameter scan using the same kind
of simulations as for the Figure The control parameters are the distance of the gain
bias to the critical value of the satellite instability J; — J{ and the noise level oypise that
measures the standard deviation of a simulated random walk during each time step. The
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Figure 6.22: (a) Pseudo-space-time diagram of excitable dynamics in the satellite insta-
bility regime for zero linewidth enhancement o; = 0. The intensity I = |E 2
of the microcavity field as a function of time ¢ is stacked for each roundtrip
numbered Ny;. Close to the bifurcation point, noise has a strong influence on
the eruption time of the satellites. (b) The corresponding full time series with
the peak intensities marked by orange dots. Other parameters are J; = 0.564
and opoise = 1073, A similar version of this figure was used in 7.

statistics where performed over 100 consecutive eruptions per point with a cut-off at a
maximum of ten million simulated roundtrips. In principle satellite eruptions below the
critical current Ji may appear at any small noise level but they quickly become too rare
to track them feasibly. Panel (a) shows the average time between eruptions below the
critical gain bias where noise is needed to trigger them. For lower gain stronger noise is
needed to push the smaller satellite above its critical energy. The limited computation
time results in a visible cut-off line which appears straight in the double logarithmic axes.
Thus, one can roughly infer a powerlaw for the necessary noise as a function of the gain
bias distance for a given average rate of eruptions. Panel (b) shows the case above the
bifurcation point where the average period is mostly unaffected by the noise. Panel (c)
shows the standard deviation of the measured period in panel (a). The time between
eruptions are highly irregular at the cut-off edge, indeed the standard deviation reaches
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Figure 6.23: Mean value (a,b) and standard deviation (c,d) of the period of satellite erup-
tions close below (a,c) and above (b,d) the onset of the satellite instability
Ji. (a) Below the bifurcation point noise can trigger satellite eruptions. The
mean rate of occurence roughly scales as a powerlaw. (b) Above bifurcation
point the period remains largely unperturbed on average. (c¢) The statistical
variance of the erruptions is particularly large where they are rarest. (d)
Above the bifurcation the effect of small noise levels is less than the tem-
poral resolution of the used simulations. Generally, noise levels larger than
Onoise &= 5 x 1074 begin to dominate all of these statistics. A similar version
of this figure was used in [7].

a value similar to the average. Panel (d) shows the standard deviation of the period for
the points in (b). Directly above the bifurcation point strong irregularities remain for
sufficiently strong noise. For given values of the standard deviation, again, a powerlaw
can be inferred. In the low noise and high gain corner the values show numerical artifacts
and are virtually constant in opeise. This is due to the discrete nature of the dynamics.
The pulses get filtered by the microcavity once per roundtrip and thus do not evolve
continuously. Therefore the period can only be defined up to an integer accuracy. While
this poses no problem for finding the average period, some finite standard deviation always
remains even in the absence of noise. In all of the panels one observes that for noise levels
larger than opneise ~ 5 x 1074 the dynamics start to be dominated by the noise. Both
the average period and standard deviation vary little, independent of the gain bias except
close to the cut-off edge.

6.7 Comparison with a dispersive Haus-PDE model

A partial differential equation model for the MIXSEL system can be derived by applying
either the functional mapping or multiple timescale analysis approaches, see the appen-
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dices of [7] for the respective details. The DAE model is qualitatively different from the
unidirectional ring DDE model 7; in the GTI regime h = 2 there is no diffu-
sion such that third order dispersion dominates. However, like the exponential Haus PDE
f the MIXSEL PDE is expanded around threshold so similar inaccuracies must
be expected far below threshold and for large intensities. One obtains a slow time variable
& that corresponds to the evolution of the pulse over the roundtrips but is continuous. The
pulse profile itself is a function of the fast time z that can be viewed as a spatial dimension
in this scheme. Expansion around the lasing threshold yields the Haus-PDE model [7]

OE (1 +n)? . : hn
— =" (1 - N 1-— No—1+—| F
% I (1 —da1) Ny + (1 — iag) N + Trn
0 0?2 93
with the dispersion coefficients
(n+1)?
1—n2 (n+1)2
dy = 2’7 <77hn> , (6.15)
3 3
+1 +1
dy = — . (77}“7) . (6.16)
The carrier evolutions read
ON
721 =m(J1 — M) - |E’Ny, (6.17)
ON:
7822 =72(J2 — N2) — s|E]*Ns.. (6.18)

Note, that the second order dispersion term dy — 0 tends to zero in the conservative
cavity limit of n — 1 and h — 2 while third order dispersion stays finite d3 — —2/3. The
filtering function of the coupled microcavity geometry is asymptotically flat to the sides,
not a typical downward parabola shape. For n close to 1 the linear cavity losses become
especially low and therefore little net gain is required to maintain a pulse. This means the
gain peak is very low relative to the flat rest of the spectrum close to unity. Consequently,
this peak has a very small curvature which corresponds to very little diffusion.

Bifurcation analysis of the Haus-PDE is possible in the numerical path continuation
framework pde2path [UWRI14]. In order to compare the results of the PDE and DAE
models a different parameter set h = 2, Jo = —0.1, n = 0.9 and s = 15 was chosen.
The absorber modulation and feedback strength are closer to realistic values however the
absorber saturation ratio is rather large.

Direct numerical simulations in the long delay limit were performed using the functional
mapping. The standard deviation of the pulse peak intensity provides a simple measure
to characterize the behavior. When the laser is in the off-state virtually no deviations
exist. For stable pulsation a residual oscillation remains due to the resolution of the mesh
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grid. The drift per roundtrip of a TLS is generally not commensurate with it such that
the discrete representation of its profile moves through the mesh points slowly. Thus, not
the true maximum intensity is measured but rather the intensity at the mesh point closest
to the peak. Finally, quasi-periodic dynamics of the TLSs typically exhibit a substantial
variance of the peak energy. In practice the standard deviations of these three regimes
prove to be many orders of magnitude apart.

Panel (a) of Figure shows results obtained for zero absorber linewidth enhancement
as = 0 similar to Figures and On the low gain side pulse stability is limited by
the principal TLS fold. For medium «; the trailing edge instability sets in. It features a
dip on the lower gain part for the used parameter set. A large region corresponding to
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Figure 6.24: (a) Two-dimensional bifurcation diagram of the MIXSEL system for ay = 0
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with the gain bias J; normalized to the lasing threshold th and the gain
linewidth enhancement factor oy as control parameters. The colors represents
the standard deviation in logarithmic scale of the pulse energy found in the
DAE model in long delay limit. The blue region corresponds to the off solution
and the green and yellow regions to stable and oscillating pulses, respectively.
Bifurcation curves from numerical path continuation of the Haus-PDE model
are superposed. The solid magenta line represents a fold and the red dashed
lines stand for AH bifurcations. For the secondary pulse region the fold branch
is shown in dotted orange and an AH branch is indicated by red crosses. (b)
Zoom on the onset of the satellite instability. A branching point in dotted
blue and a fold in solid blue merge into an AH bifurcation. Other parameters
are h =2, Jo = —0.1, = 0.9 and s = 15. A similar version of this figure was
used in [7].
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Figure 6.25: Two-dimensional bifurcation diagram similar to Fig. but for g = 0.5.
The colors and line styles follow the same pattern. For the secondary pulse
region bifurcation analysis was unsuccessful. Other parameters are h = 2,
Jo = —0.1, 7 =0.9 and s = 15. A similar version of this figure was used in

.

the satellite instability resides at low «; while at high «; a secondary pulse region exists
for high gain. These secondary pulses are stable only close to the low gain edge of this
region. For comparison, continuation results obtained in pde2path are superposed. Both
the principal fold and the satellite instability are in very good agreement with the DAE
model. The trailing edge instability is identified as an Andronov-Hopf bifurcation while its
analogue in the DAE is a secondary Andronov-Hopf or torus bifurcation. It features the
same dip as in the DAE but slopes the wrong way for high gain which is somewhat similar
to the unidirectional ring case (c.f. Fig. in Sec. . In addition, the bifurcation
curves corresponding to the secondary pulses are shifted far toward lower gain.

Like for the parameter set used earlier in this chapter the bifurcation responsible for the
satellite instability is a fold and the period of the resulting oscillation diverges with the
same SNIPER scaling law. The fold then merges with a branching point into a Andronov-
Hopf bifurcation. The bifurcation curves of this transition are shown in detail in panel (b).
They correspond to BP, Fy and H that appeared in the examples shown in Figures [6.13]
and [6.18]

For non-zero absorber linewidth enhancement as = 0.5 the overall structure remains
similar. Figure [6.25| shows the corresponding results with the same pattern of representa-
tion that was used in Figure[6.24] The principal TLS region has moved up in «; while the
satellite instability has moved down with only a small area remaining in the positive oy
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range. Numerical path continuation of the Haus-PDE was again able to accurately predict
the corresponding fold while the trailing edge instability still slopes differently on the high
J1 in the two models. The secondary pulse region has moved to even higher values of oy
as compared to the as = 0 case and is completely disconnected from the principal pulses.
In pde2path, however, searching for the bifurcations corresponding to this region was not
successful.
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Interferometer

Kerr solitons may be used as addressable bits in all optical information storage and pro-
cessing [LCK™10, HBJ"13]. Such TLSs can be multistable, exhibiting variable widths
[CBHT13) [LLKGI5, XXL"15]. These can be shown to be build up from fronts that con-
nect domains of lower and higher CW background intensities [Ros96, PRKGG16]. Under
the influence of TOD, coexistence and hysteresis between dark and bright Kerr solitons
can be enabled via drifting fronts [PRGG17, TMMCI17|. Similarly structured TLSs were
found in parametric oscillators [OSF99, PRGH"19] and in the unidirectional ring laser
model, modified to introduce chromatic dispersion of a fiber loop, passively mode-locked
pulses were recently found to coexist with variable width as well [PAV20].

The Kerr GTT system is qualitatively different from the active laser systems discussed
in the previous chapters. With the microcavity only containing a Kerr nonlinear medium
the whole system is rendered passive. It is driven by a CW pumping beam, hence a
non-zero CW background always remains. Passively mode-locked pulses and TLSs are
again found but they are not completely independent from each other in contrast to the
previous chapters. There exists a fixed phase relation of the TLS to the CW background
and consequently among each other. Also, the system operates at a forced frequency rather
than being able to choose its frequency shift dynamically. Some of the results presented
in this chapter have been published in [6].

7.1 Continuous wave solutions

The Kerr GTT system Egs. , can be considered a kind of forced oscillator.
Its CW solutions are given by simple steady states of the form E(t) = E and Y () = Y.
The frequency is locked to the injection Yy and only a constant phase shift exists between
F and Yy. There is no need to introduce a frequency shift in the ansatz, unlike the
active systems discussed in the previous chapters that are free to adapt the instantaneous
frequency dynamically. Using the ansatz we get

0= [z (5—|E|2) —1}E+h?, (7.1)
Y:n[E—ﬂ +/1- 2. (7.2)

We separate the injection in the second equation
V1= p2Yy = (1+ pei‘p) Y — pe'¥E (7.3)

where we replaced 1 = pexp(ip). Here, ¢ = woT + ¢, is the phase of the feedback, p = |r|
is the modulus of the amplitude reflectivity of the feedback mirror and ¢, its phase shift.
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Next we solve Eq. ([7.1]) for Y

1—@(5—|E|2)E

Y = 4
. , (74)
that we substitute in the previous equation to reach the CW condition
A 1—i(6—|EP :
V1=p2Yy = | (14 pe'?) Z(h ) —pe¥ | E. (7.5)
By taking the absolute value of both sides one obtains after some algebra
p? (R* = 2h) + [1 4 2pcos ¢ + p?] [1 + (6 — I)z] — 2hpcosp — (0 — I)sin ]
|}/(]|2 = I,
h?(1—p?)
(7.6)

where I = |E|? stands for the intensity of the microcavity field.

We want to find E as function of Y. To that end, first we find I implicitly for a given
|Yo|? using (7.6) which yields the modulus of the amplitude |E| = v/I. By pugging this
back into the CW condition we can easily find the matching phase of Yy relative to E.
For convenience we may exploit the phase symmetry of the system by choosing to keep
Yy > 1 to act as a real-valued control parameter, i.e., we simply put the phase difference
in E. Panel (a) of Figure shows a branch of CW solutions obtained this way. As the
system is third order in E, optical bistability is possible for appropriate parameters. The
values used for the example are h = 2 for the injection coupling, § = 1.5 for the detuning
and n = 0.5 or equivalently p = 0.5 and ¢ = 0 for the feedback. If not stated otherwise,
the analyses presented in the following sections keep to this parameter set.

7.1.1 Linear stability in the long delay limit

In the limit of large delay 7 — oo the eigenvalue spectrum obtained by linear stability
analysis separates into a discrete and a pseudo-continuous part. The pseudo-continuous
spectrum consists of asymptotic curves that become densely filled with eigenvalues for
large 7. Bifurcations happen when an asymptotic curve crosses the imaginary axis. In
the long delay limit this means that an infinite number of neighboring eigenvalues crosses
together while for large but finite 7 a large number crosses virtually instantaneously. Note,
that the spectrum is confined within a small region around the imaginary axis with a size
proportional to 1/7. Otherwise this situation is analogous to spatially extended systems
and the following three types of bifurcations exist: Firstly, if the spectrum has a single tip
centered around the real axis it is called a uniform instability. Turing instability means that
a finite band of frequencies becomes unstable, thus causing oscillations around the central
frequency. The surrounding frequencies are also unstable but grow increasingly slower.
Small frequencies around zero, however, stay stable. Lastly, modulational instability is
similar to Turing but the spectrum always goes through the origin. Thus, at the bifurcation
point the frequencies next to zero are the first to become undamped but later some finite,
possibly further growing, frequency dominates. Still, all small frequencies are slightly
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Figure 7.1: Schematics for the different instabilities of the pseudo-continuous spectrum of

Egs. (2.252)), (2.253)) in the long delay limit. The real and imaginary axes
are indicated by the dashed lines. (a) Uniform instability: The spectrum

crosses into the right complex half plane at zero. Increasingly large frequencies
follow. (b) Turing instability: A finite band of frequencies crosses into the right
complex half plane. (c¢) Modulational instability: Frequencies around zero
become unstable while the zero frequency remains neutral, i.e., the spectrum
always crosses the origin.

unstable for this instability. Figure. shows schematics for each of these instabilities.
For the analyzed parameter set, uniform and Turing instabilities appear depending on the

feedback phase ¢.
In order to perform linear stability analysis of the CW solutions we can begin by sub-

stituting the delay algebraic equation (2.253) into the microcavity evolution ([2.252)) to
get

E=[i(6—|E]?) — 1] E+ hnE; — hnY; + hy/1 — [n|2Yy, (7.7)
that has a Y, = Y(t — 7) term. After shifting the field evolution (2.252) by the delay 7
E, = [i(6 - |B-*) — 1] B + hY;, (7.8)

we can multiply this by n and add it to the previous equation to obtain a neutral delay
differential equation (NDDE) that is an equivalent form of the DAE model which no longer
contains the field Y

E4+nE-=[i(0—|E?) =1 E+n[i(6—|E>) =1+ h| B- + hy/1— [n[*Y.  (7.9)

This form is more convenient in the following.
Next, we need to consider a small exponential perturbation around a steady CW state.
Using the ansatz E = E + AFEe we can expand the NDDE to first order

hnefAT

g AE —iE*AE*. (7.10)
ne=AT

0= [i(é—QE*E)—l—)\+l
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To build the Jacobian we need to use complex conjugates as well which leads to the
eigenproblem

—AT
i(é—QE*E)—l—/\+hL _iEE
1 _|_776—)\7'
det —0. (7.11)
o o hn* —AT
iB*E* i (288 —8) —1-a+ =L
1+77*€_ T

The resulting characteristic equation contains various combinations of A and e~*" and their
respective squares and rendering it transcendental. Note, that expanding the DAE model
leads to the same characteristic equation. Several zeros in the respective Jacobian cancel
many terms in the determinant thereby effectively reducing the dimension. Since the DAE
itself is only a condition for the evolution of E this phenomenon is indeed intuitive. We
can now perform linear stability analysis in the long delay limit following the approach
described in [YW10] which was originally developed in [Yan05, [WY06] to deal with the A
and e~*7 terms that appear simultaneously for DDEs. The DAE case is only slightly more
complicated as it contains products of the previous terms in addition, namely powers of
e M,

We have to separately consider two types of eigenvalues that differ in the scaling of their
respective real parts with 7. Those that behave like Re[\] o 1 yield a discrete, strongly
unstable part of the spectrum. For a large delay the contributions from e™*7 terms become
negligible if Re[\] > 0. In the limit 7 — oo the eigenproblem coincides with the Jacobian
for the instantaneous fields only

; (5 - 2E*E) 1) _iEE
det —0. (7.12)
iE*E* i (2EE* — 5) —1-2)

It leads to the characteristic polynomial
M 42X+ 3Er —4E* 5 +0°+1=0, (7.13)

that yields two eigenvalues. For the studied parameter ranges only one real eigenvalue
ever enters the right complex half plane while the other is real as well but always negative.
Both eigenvalues recombine to form a complex conjugate pair for some parameters but
no Andronov-Hopf bifurcation stems from it. Note however, that these eigenvalues are
quantitatively accurate only in the case of positive real parts.

The other type of eigenvalues scales like Re[A] o< 1/7 so we may write A = v/7+iu. We
define Z = e~ e~ ™7 whose modulus and argument are functions of v and pu, respectively.
After substituting the exponential terms in the determinant we have

| 1z
[2(5—2E E>—1—m}+1+nz —iEE
det —0, (7.14)
. o BE : hn*Z
E*E* [(2EE*— )—1— } e
i i ) i +1—|—77*Z
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Figure 7.2: (a) Branch of CW solutions represented by the microcavity field intensity | E|?
as a function of the injection amplitude Yy. A region of bistability exists
between two folds. Both the upper and lower parts are stable while the con-
necting middle part is unstable. (b) Linear stability in the long delay limit for
the point on the unstable part in (a) marked by a red dot at Yj ~ 0.534. The
pseudo-continuous spectrum is uniformly unstable; it has penetrated into the
right complex half plane symmetrically around the real axis thereby causing
the folds. Other parameters are h = 2, § = 1.5 and n = 0.5, i.e. p = 0.5 and
o =0.

which leads to a second order polynomial in Z. Solving for Z then yields two solutions
that are functions of p. Though the argument arg Z = —iAr itself still depends on p we
find that in the long delay limit it effectively becomes a free parameter. Any phase can be
obtained with an infinitesimal change of ;1 since 7 — oo. Thus, two solutions Z; () exist for
any value of 1. We can then easily find () = —In|Z;| which define curves in the (v, p1)-
plane. These two branches of eigenvalues constitute the pseudo-continuous spectrum.
Given any finite 7, the combinations of u and Z must form self-consistent solutions of
the transcendental characteristic equation. For larger 7 the phase of Z oscillates faster
and solutions are found more often along the imaginary direction. The asymptotic curves
7v;(p) are populated by these solutions increasingly densely for 7 — oo with the distance
between neighboring eigenvalues tending to Au =~ 27 /7.

Figure[7.2]shows the CW solution branch for the case of vanishing feedback phase ¢ = 0.
Here, the branch folds twice thus forming a range of bistability between an upper and a
lower intensity part. These are connected by a uniformly unstable part. The branch of
the pseudo-continuous spectrum belonging to the uniform instability consists of an od(ﬂ
number of eigenvalues. It possesses a single real eigenvalue at its tip that causes the folds
of the CW branch, thus forming the bistable region. Due to the asymptotic spacing the
first complex conjugate pair around the central real eigenvalue will have imaginary parts of
approximately p11 = +27 /7. This corresponds to a harmonic perturbation commensurate

! Though the eigenvalues along any branch of the pseudo-continuous spectrum form an infinite countable

set, their total number is either odd or even. The spectrum is symmetric around the real axis, so
most eigenvalues come in complex conjugate pairs. The question of parity comes down to whether
there is a real eigenvalue in the middle or not.
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Figure 7.3: (a) Branch of CW solutions similar to Fig. n (b) Linear stability in the long
delay limit for the point on the upper CW branch in (a) marked by a red dot
at Yy ~ 0.765. The pseudo-continuous spectrum is Turing unstable; a complex
conjugate pair of finite frequency bands penetrates into the right complex half
plane thereby causing oscillations on the upper CW state. Other parameters
are h =2, 0 = 1.5 and n = —0.5¢, i.e. p=0.5 and p = —7/2.

with the full external cavity, i.e. the delay time 7, and can give birth to TLSs as we will
see in the following sections. Figure shows a similar example where the upper CW
state has become Turing unstable at ¢ = —m/2. The oscillations that appear in this
scenario could be used to seed TLS in the system when modulating ¢ by slightly moving
the feedbackmirror, e.g. with a Piezo stage.

In contrast to the previous situation shown in Figure around ¢ ~ 7 the second
branch of the pseudo-continuous spectrum can become uniformly unstable instead of the
first as shown in Figure [7.4] Here, the branch is made up entirely of pairs of eigenvalues
resulting in an even number, so there is no real eigenvalue directly at the tip. The imagi-
nary parts of the first pair are then uiq ~ +7/7 which corresponds to a period of twice
the delay time and thus two external cavity roundtrips. Thus, this uniform instability
causes an Andronov-Hopf bifurcation that leads to a regime of square waves where the
system is alternating between two CW states with different intensities at the end of each
roundtrip [Niz04l [JAH15]. Note however, that there is no underlying bistability of CW
solutions in this case, indeed there is no stable CW solution at all.

Transitions between odd and even numbered branches of the pseudo-continuous spec-
trum can occur in two ways. A complex pair at the tip may split into two different real
eigenvalues. One remains at the tip of the branch while the other moves further into the
right complex half plane. It thus separates from the pseudo-continuous part and enters
the strongly unstable discrete part of the spectrum. This can readily be observed as the
crossing of a single real eigenvalue of the instantaneous spectrum. Such a transition oc-
curs for larger detuning for the parameters at interest. Alternatively, by crossing over
each other two branches can both switch between odd and even at the same time without
changing the overall number of eigenvalues constituting the pseudo-continuous part.

144



7.2 Temporal localized structures

IE| 7
@ 4f
3t of
2F oy
N ; 1
1f , 21
| 43_
Yo F

05 10 15 20

Figure 7.4: (a) Partly unstable branch of CW solutions represented by the microcavity field
intensity | E|? as a function of the injection amplitude Yy. Unlike in Figures
and there is no bistability. (b) Linear stability in the long delay limit for
the point in (a) marked by a red dot at Yy ~ 1.025. The pseudo-continuous
spectrum is uniformly unstable over an interval of the otherwise stable branch,
albeit, there are no folds. Instead the instability gives rise to square waves.
Other parameters are h =2, § = 1.5 and n = —0.5, i.e. p=0.5 and ¢ = 7.

7.2 Temporal localized structures

The Kerr GTT is pumped by a coherent CW beam which is qualitatively quite different from
the systems discussed in the previous chapters. There, temporal localized structures were
sustained by the active materials in the microcavities and required a stable background of
zero intensity. Thus, in the fully localized limit different pulses became truly independent.
In the Kerr GTI, however, TLSs live on a constant CW background that causes them to
be phase locked to it and thus to each other. Another important difference is the absence
of a saturation trail in the carrier materials. This allows for the size of a TLS to indeed
relate to its intensity profile, rather than to the gain recovery.

7.2.1 Dark and bright solitons

Figure shows two different types of TLS found in direct numerical simulations of the
Kerr GTI system , . The injection amplitude Yy = 0.515 is close to the
middle of the bistable CW region and the delay time is 7 = 50. Otherwise the parameters
from the CW example in Figure are reused. Panel (a) shows a TLS that exists on top
of the low intensity CW solution. It consists of a significant rise in intensity so we will
refer to it as a bright TLS. It features some visible intensity oscillations on the leading
edge whose origin lies in the cavity geometry and is related to the satellites encountered in
the previous chapters. Panel (c) shows its counterpart on the high intensity CW solution.
This TLS exhibits a stark drop in intensity and will henceforth be called a dark TLS.
It features the same kind of oscillations due to third order dispersion. Via these small
oscillations different TLSs can interact with each other, similar to Cherenkov radiation
modeled by TOD in the Lugiato-Lefever equation [VGTIS8]. Note, that the peak intensity
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Figure 7.5: (a) Temporal profile of a bright TLS (solid blue) on a low intensity CW back-
ground (dashed orange). (c) Temporal profile of a dark TLS (solid green) on a
high intensity CW background (dashed purple). The insets show correspond-
ing pulse trains. (b,d) The respective frequency spectra. The delay is 7 = 50.
A similar version of this figure was used in [6].

of the bright TLS is very close to the high intensity CW solution and likewise the dark
TLS drops to about the level of the low intensity CW solution. The panels (b) and (d)
show the frequency power spectra of the bright and dark TLSs, respectively. Because of
the CW backgrounds the zero frequency is quite large and has been cut for clarity. Both
feature a slight asymmetry while the bright spectrum is much broader and has extra peaks
on the sides. These features correspond to the satellite oscillation due to TOD.

7.2.2 Hysteresis

Figure [7.6] shows a bifurcation diagram obtained via direct numerical simulations of both
the TLS in Figure and their respective CW background states with the injection
amplitude Y{ as the control parameter. To represent the different types of dynamics
distinguishably in a single diagram the microcavity field intensity |E|? is averaged over
one roundtrip. When changing the injection amplitude during the simulations different
types of hysteresis are encountered. One can go back and forth between the high and low
CW states when moving over the respective folds of the CW branch that limit the region
of bistability, see Figure[7.2] Here, the intensity transitions smoothly to the opposite state
over several roundtrips. This transition becomes quite sharp when Y{ is far out of the
bistable region. Doing this for only a few roundtrips and then going back into the bistable
region can create the TLS.

For the given parameters the bright TLS branch extends further toward low injection
amplitudes while the dark TLS branch extends further toward higher values. Both overlap
in a large region and thus hysteresis can occur between the two types of TLS as well.
Specifically dropping from the low injection edge of the dark TLS branch one can reach
the bright TLS branch and, vice-versa, for sufficiently large injection one can go back to
the dark TLS. At these points the TLS actually split apart into a pair of sharp front-like
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Figure 7.6: (a) Solution branches obtained from direct numerical simulations. The inten-
sity is averaged over one roundtrip to better compare TLS and CW solutions.
The upper (lower) CW solution is drawn in purple (orange) while the bright
(dark) TLS is drawn in blue (green). Various hysteretic transitions between
these states are observed as indicated by the dotted gray lines. (b) Shows a
zoom on the TLS branches. A similar version of this figure was used in [6].

motions that switch from either CW state to the opposite. The hysteresis between dark
and bright TLS is realized by those fronts moving apart and then reconnecting again to
form the opposite TLS. This process is possible due to the periodic boundary conditions
imposed by the external cavity. At the outer edges a transitions to the CW background
happens via a simple collapse of the TLS, i.e., it just shrinks and dies out. When quickly
moving far to the other side where only the opposite CW background is stable the fronts
extinguish each other completely when they finally collide.

Figure [7.7] shows a pseudo-space-time diagram of a TLS transition from bright to dark
obtained from a direct numerical simulation. During the simulation the injection ampli-
tude Yy is changed back and forth several times between two values. At Yy = 0.515 the
bright TLS starts out stable and only a small drift is observed. The value Yy = 0.527 is
slightly above the bright TLS range of existence but still inside the respective dark TLS
region. Here, the bright TLS speeds up and then quickly splits into a pair of fronts that
drift apart. When going back to Yy = 0.515 for a while the fronts quickly go to a similar
speed and hardly move with respect to each other over many roundtrips. For Yy = 0.527
they move further apart again and finally recombine the other way around as they meet
again due to periodic boundary conditions. The resulting dark TLS quickly moves in
the opposite direction as the unstable bright one did before splitting. Finally, back at
Yp = 0.515 the dark TLS drifts at a very similar speed as the bright one did.

Stopping the relative motion of the fronts can be done at any point along the transition
that is not too close to the initial or final TLS states where fronts always interlock. The
exact value where the distance is perfectly constant can be called a Maxwell point [BKOT,
JAHIS, TFHET19] in analogy to systems with phase transitions where two phases coexist
and the net exchange rates of particles are zero.
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Figure 7.7: Pseudo-space-time representation of the transition from a bright to a dark TLS
via a pair of moving fronts. The injection amplitude Y} is changed several times
along the simulation as indicated by dashed gray lines. Both the bright and
dark TLSs are stable at a common Yj. Also the distance between the fronts
is virtually arrested if that value is set at any time during the transition. A
similar version of this figure was used in [6].

7.3 Bifurcation analysis

Figure shows the solution structure underlying the hysteresis discussed in the previous
section. The data was obtained using numerical path continuation in DDE-BIFTOOL
with a singular perturbation smallness parameter of ¢ = 1/20. Two unstable periodic
solutions are born close to each of the CW folds on the unstable connection in supercritical
Andronov-Hopf bifurcations. Both periodic orbits start as small harmonic perturbations
that grow into the dark and bright TLSs toward the middle of the bistable region and
then each stabilize in a fold. The branches continue to fold back and forth with the folds
converging toward a common asymptotic value Yy & 0.51524 where they finally combine.
This point indeed corresponds to the Maxwell point encountered in the direct numerical
simulations of the previous section. The stability of the periodic orbits switches with
snaking. This scenario may be called a kind of double collapsing homoclinic snaking
KW03).

The Andronov-Hopf bifurcations points that create the TLS solutions move onto the
CW folds asymptotically for large delays. This is due to the CW branch being uniformly
unstable in the long delay limit. The tip of the pseudo-continuous spectrum is shaped
like parabola around the real axis, see Figure The bistable region is born in a cusp
bifurcation when the central real eigenvalue on the tip of the spectrum crosses the imag-
inary axis. Toward the middle of the resulting unstable CW connection the spectrum
increasingly protrudes into the right complex half plane. For larger 7 the spectrum gets
filled more densely with complex conjugate pairs of eigenvalues that gradually come in
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Figure 7.8: Bifurcation diagram obtained using numerical path continuation. It directly
corresponds to Fig. [7.6] As a solution measure the average intensity per
roundtrip is shown. (a) The stable high (low) intensity CW branch is pre-
sented in dash-dotted purple (orange) while the unstable CW connection is
depicted in dotted dark blue. A TLS branch connects the CW solutions very
close to the folds. It is drawn with thick black lines where stable and thin red
lines where unstable. The dark and bright primary TLS branches are high-
lighted in green and light blue, respectively. (b) Zoom on the TLS solutions.
The TLS branches exhibit a kind of double collapsed snaking from both the
dark and bright sides. They all tend to an asymptotic value Yy ~ 0.51524
where a continuous connection of the TLSs takes place. This is indicated by a
vertical gray dashed line. A similar version of this figure was used in [6].

from 400 toward the tip on the real axis. For any point on the unstable CW branch this
means that increasing 7 causes a series of Andronov-Hopf bifurcation similar to harmonic
mode locking solutions. The first of these bifurcations creates the principal TLS. Since
the grade of protrusion becomes less toward the CW folds more 7 is necessary for this to
occur. In the long delay limit an infinitesimal part of the spectrum is sufficient so that
the fold and Andronov-Hopf bifurcations virtually coincide.

Figure shows the temporal intensity profiles of the sequence of periodic solutions
on the snaking TLS branch at the Maxwell point (MP). The profiles are stacked in the
same order as the snaking TLS branch crosses the Maxwell point in Figure where the
first and last profiles correspond to the half-grown bright and dark TLS, respectively. A
staggered transition between bright and dark TLS with alternating stability is found. The
TLSs split into a pair of fronts whose distance changes with a roughly constant speed
along the snaking. Both fronts exhibit leading satellite oscillations because of the third
order dispersions induced by the cavity geometry. A front can stably interlock with the
next one at any order of these oscillations leading to a series of preferred distances or
slots. Close to the Maxwell point the evolution of the system will dynamically choose
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Figure 7.9: Transition of bright to dark TLS periodic solutions. The temporal intensity
profiles are stacked rendering the y-axis for relative reference only. Stable
(unstable) periodic orbits are shown in solid black (dashed red). The principal
TLSs are highlighted in blue and green for bright and dark, respectively. A
similar version of this figure was used in [6].

one of the neighboring slots and settle on it. The point where this choice flips directly
corresponds to the interspersed unstable limit cycles. Thus the fronts do not actually just
stop moving when setting an appropriate injection amplitude but rather form the closest
stable solution. This limits the analogy to the original concept of a Maxwell point.

The amplitude of the leading satellite oscillations tapers off with increasing distance from
the front. This is the reason for the snaking to collapse toward the Maxwell point. The
locking force becomes weaker for higher order slots and starts to loose against the tendency
of the fronts to drift apart. Thus the widths of the stable branches become increasingly
narrow. For finite delays some width of the overall structure always remains. Only in the
long delay limit one may strictly speak of a Maxwell point as this width shrinks to zero.
Note the small shift of the front distance in the middle of Figure that stands against
the linear trend. This is indeed an effect of the rather small 7 used in the continuations.
Due to the stiffness introduced by the singular perturbation a significantly larger delay
would disturb the stability analysis of the periodic orbits and prevent continuation of their
bifurcation.

7.3.1 Coinciding drift velocities

Figure. shows a bifurcation diagram of the drift velocities belonging the periodic so-
lutions along the collapsing homoclinic snaking branch. In this representation the branch
crosses itself many times with most of the crossings forming a cluster around the asymp-
totic Maxwell point. Generally the drift of predominantly bright structures increases with
the injection amplitude while predominantly dark ones become slower. Also the speed of
higher order parts of the snaking branch diverges from Maxwell point. For the 7 = 50
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Figure 7.10: Bifurcation diagram showing the drift velocity v = T'— 7 of the periodic solu-
tions on the snaking TLS branch. Stable (unstable) solutions are represented
by solid black (dashed red) lines. The primary bright and dark TLS branches
are highlighted in blue and green, respectively. (a) The complete snaking
branch. (b—d) Consecutive zooms on the areas indicated by the gray boxes in
the respective previous panel. Several crossings of stable branches exist with
most of them in a cluster around the asymptotic Maxwell point.

example the branch forms a small loop around the cluster which is a direct consequence
finite delay, see panel (d). Towards the long delay limit this loop would further deform
to create more crossings leaving an even closer residual loop. The rest of the branch is
hardly affected anymore. The corresponding solutions would generally resemble a broad
rectangular bright or dark TLS of variable width. If we imagines several of such structures
in a single long external cavity we can infer from this their relative drift speeds and thus
estimate the time they take to run into each other. This can be used to judge the grade
of metastability of the possible combinations.

In panel (c) one finds two crossings of stable solutions that clearly diverge from the
Maxwell point in both drift speed and injection amplitude. They correspond to the com-
binations of the principle dark and bright TLSs and the principle dark TLS with the second
order bright TLS. Indeed the branches of the principal TLS branches lie quite far from the
others that virtually form a single cross from this point of view. This makes the principle
TLS incompatible with the higher order structures on long time scales spanning many
roundtrips. Indeed they cannot be metastably combined at all because this would require
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switching between the CW background states somewhere in between opposite pairs of
TLS. Those fronts however move with the asymptotic lines of the crossing at the maxwell
point and would therefore eventually hit the TLS.

7.3.2 Regions of localized solutions

Figure. shows bifurcation diagrams of fold bifurcation branches obtained via numer-
ical path continuation. For the example detuning of 6 = 1.5 the bistability of the CW
background exists in more than half of the full interval of the delay phase ¢ € [—7,7) as
shown in panel (a). This region slants toward higher injection amplitude Y, when increas-
ing ¢ and is limited by cusps in the negative ¢, low Yy and positive ¢, high Yy corners. It
is centered around ¢ = 0.27 where the bistability is widest in Y. The regions of the first
order TLS solutions follow the same trend with the bright TLS region almost connecting
the CW folds. In contrast the dark TLS region is much narrower in Yj; and ends roughly in
the center of the bright TLS and CW bistability regions. Panel (b) shows the situation for
a fixed delay phase ¢ = 0 and uses the detuning as the second control parameter instead.
Again the bistable region slants toward higher Y for more detuning but continues to grow
wider. The principal CW cusp defines a minimum detuning for bistability at 6 = 1/v/3
for the given parameter set.

These regions only correspond to the existence of solutions but do not imply their
stability. Indeed the feedback phase is an important control parameter that can cause
several bifurcations of the CW background solutions in addition to the folds that create
the bistable region. When increasing it beyond about ¢ > 0.1 a Turing instability appears
on the high intensity CW solution. Therefore dark TLS are no longer found in direct
numerical simulations as the corresponding background will oscillate. In the beginning,

0.3 0.6 0.9 YO 0.2 0.5 0.8 Y0

Figure 7.11: Two dimensianal bifurcation diagrams showing the evolution of fold bifurca-
tions. The folds of the CW solutions are depicted as dotted blue lines. The
area between bright (dark) TLS folds is filled with light (dark) gray. (a) The
feedback phase ¢ against the injection amplitude Yy. Other parameters are
d = 1.5, p = 0.5. (b) The detuning § against the injection amplitude Yp.
Other parameters are, p = 0.5 and ¢ = 0. A similar version of this figure was
used in [6].
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the principal bright TLS is hardly affected by this but its higher order cousins begin to
destabilize. This becomes intuitively clear when interpreting these TLSs as a pair of fronts
switching between the lower and upper CW states. Since the upper state is unstable the
time that can be spend close to it is limited. Increasing ¢ further causes the principal
bright TLS to enter an oscillating regime. The leading low to high CW front remains stable
but is followed by quasi-periodic or even chaotic oscillations of the intensity that finally
drops back to the low CW background. These oscillations can even result in the creation
of new leading fronts such that an oscillating TLS effectively splits and the external cavity
gets populated by them. Finally, the Turing instability dominates any dynamics that are
not confined to the stable lower CW state. Indeed, this effect can be exploited to create
TLS when the system is in the upper CW state. By moving the feedback mirror by a sub
wavelength amount the feedback phase can easily be changed. The resulting oscillations
decay into TLSs when moving the mirror back toward its original position.

7.4 Complex patterns

The concept of using the interlocking of fronts at variable distances to create temporal
localized structurs opens up the possibility to build very complex shapes. In a long external
cavity they can be combined into patterns almost arbitrarily.

7.4.1 Complex molecules

The existence of bright and dark TLSs implies that both types of fronts connecting the
CW solutions can interlock to their counterpart. Thus, there is no reason why the second
front should not be able to lock to a third and so on. Here, the only requirement is that
fronts appear in an alternating order, and indeed always in pairs, to preserve continuity.
Complicated molecular shapes can be formed when using many front pairs. In principle
each front can lock to any of the leading oscillations of the next front. Figure shows
an example with three pairs that form a single localized structure. Such TLS can be
categorized and labeled by the numbers of the locking slots and their background states.
The example is a 0-1-1-3-2 molecule on the low intensity CW background or simply a
bright 0-1-1-3-2 TLS. For an appropriate injection amplitude any number of pairs can be
combined in an arbitrary fashion provided that the external cavity be long enough. The
highest possible oscillation order to interlock stably depends on distance to the Maxwell
point.

7.4.2 Coexistence of TLSs

Different TLS can in a sufficiently long external cavity. At large distances their mutual
coupling is negligible and they remain fully localized. Figurel[7.13 shows an example with
a double bright 0-1-0 molecule and a single principal bright 0 TLS. By modulation of
the injected CW pumping beam the TLS can be manipulated. Both amplitude an phase
modulation can be used to create, erased and move them around similar to solitons in
injected Kerr fibers [JECM15]. The natural relative movement of different types of TLSs
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Figure 7.12: Temporal intensity profile of a single TLS molecule made up of three pairs
of fronts. The numbers signify at which order of the satellite oscillations the
fronts have interlocked. This example is labeled a bright 0-1-1-3-2 molecule.
Arbitrary combinations are possible, limited only by the delay and the dis-
tance from the Maxwell point.
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Figure 7.13: Temporal intensity profile of different TLSs coexisting independently in a
long external cavity. A single bright TLS and two others locked together as a
0-1-0 molecule. Their mutual distance will vary over many roundtrips as the
drift velocities are not exactly equal. Such mixed states are thus metastable.

may be suppressed by locking them to a modulation profile that has period similar to the
roundtrip time.

One can build very complex combinations of fronts and move them around with respect
to each other. Figure shows an example of a long external cavity containing the
simplest bright and dark 0, 1 and 2 TLS followed by the lowest order 0-0-0 and 0-0-0-0-0
molecules on their respective low and high intensity backgrounds. Several transitions be-
tween the background states are realized with single fronts and the simplest combinations
of odd numbers, i.e., 0-0 up and down fronts. The whole temporal profile is stable except
for small drift variations among the fronts and TLSs, thus recombinations occur after
many roundtrips. Indeed most of the possible combinations are only metastable , see also
Section Such patterns correspond to highly specific frequency comb spectra.
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Figure 7.14: Temporal intensity profile in a long external cavity = = 3000. One can put
many fronts and combine low and high CW sections containing different TLS
molecules inside. Both panels together represent a single metastable state.

7.5 Time-advanced equation

Mathematically the TLSs are periodic orbits of the differential equation that con-
tains delayed terms. Due to causality the period of such a solution must be larger than
the delay time T' > 7 which results in a residual drift v =T — 7. In the long delay limit
this drift approaches an asymptotic value, i.e., T' and 7 both grow to infinity with a con-
stant difference. Virtually the whole time domain is then filled with an almost constant
background state. Thus, an alternative interpretation arises by considering the TLS to be
homoclinic orbits of a slightly different system, namely where the time-delay is replaced
by a time-advance equal to the drift v, i.e. E(t —7) — E(t+wv). A good approximation of
v can be found via numerical path continuation when using a sufficiently long delay. The
aforementioned periodic and homoclinic orbits of the respective systems indeed coincide
in the long delay limit. This approach can be used for stability analysis of TLSs in delayed
systems [YRSW19]. The spectrum decomposes into a discrete part of localized modes that
affect the TLS directly but quickly decay to the sides and a pseudo-continuous spectrum
that corresponds to the stability of the background state. Figurel[7.15] shows concept of
the delay to advance transformation.

We can now use the time-advance, i.e. a negative delay, in the stability analysis of the
CW background solution. The obtained eigenvalues with the smallest moduli of the real
parts can be interpreted as an unstable background mode in front of the TLS and a stable
one behind, respectively. These (un)damped oscillations can be fitted to the temporal TLS
profile in order to find matching prefactors. Figures. and show an exemplary
pulse with the matched exponential modes. The satellite oscillations due to third order
dispersion are very well described by these modes. Hence, the prefactors may in principle
be used to build an interaction potential that describes the interlocking of the switching
fronts as a force.
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Figure 7.15: Evolution of the temporal profile of an initial principal bright TLS in solid
blue and in dashed blue after one roundtrip. The offset v = T — 7 can be
reinterpreted as an advance 7 — —v. The periodic orbit of the delayed system
thus becomes a homoclinic orbit of the advanced system instead.
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Figure 7.16: Temporal intensity profile of a bright TLS in solid blue with matching expo-
nential modes of the background in dashed orange (yellow) for the leading
(trailing) edge. The prefactors of the modes are chosen to fit the TLS.
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Figure 7.17: Profile of Fig. in blue represented by the modulus of its amplitude offset
to the CW background (a) and the corresponding complex phase (b). The
matched modes are superposed in thin orange and yellow for the leading and
trailing edges, respectively.
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8 Summary and Outlook

Passive mode-locking and temporal localized structures can be obtained in vertical-external-
cavity surface-emitting-lasers. Their transverse dimensions can be exploited for high power
applications and TLSs can potentially be compatible with spatial pattern formation and
localization in such systems. For this thesis, models specifically tailored to describing
them have been derived from first principles. First, a well established unidirectional ring
laser DDE model for passive mode-locking [VT05] was used for comparison with the other
models that consider the specific aspects of VECSELs and coupled microcavities. They
consist of differential equations for the evolution of the electric field in the microcavities
that contain a thin region of quantum wells as the active material and are subjected to
injection [MBO05]. The microcavities are coupled in such a way that they inject each other
or re-inject themselves with their outputs after one roundtrip in the external cavity. This
leads to delay algebraic equations that describe all the multiple reflections which appear in
the regime of strong feedback. While this DAE approach departs from models used in the
literature, we argue that the DAEs simply represents the boundary conditions of the wave
equation in the multiple sections. The DAE modeling approach exhibits the influence of
strong TOD that emerges as a direct consequence of the coupled microcavity geometry.
This can severely modify the pulse shape by creating satellites. These can destabilize the
pulse, thus introducing additional regions of oscillatory dynamics in the parameter space.

A functional mapping for the efficient simulation of PML and TLSs was developed and
implemented for all three of the semiconductor PML laser models discussed in this thesis.
It mainly consists in the separate treatment of the so called fast and slow stages of a
pulsed laser. The interval around the pulse, where the dynamics of the field and carriers
are fast, is integrated fully while the recovery of the gain between consecutive pulses
can be approximated by an analytic solution when assuming the field intensity to be
zero. This approximation proves valid in the comparison with numerical results of the full
system. Accurate results are obtained for the most important types of behavior including
fundamental mode-locking, Q-switched mode-locking and slow pulse instabilities. This
is a clear advantage as compared to approaches utilizing approximate partial differential
equation models, also called Haus master equations [Hau00]. While having a similar
computational efficiency such models lack certain behaviors like Q-switched mode-locking.
The FM allows for the simulation of macroscopic time scales to analyze, e.g., timing jitter
or thermal effects. Numerical path continuation of the FM itself is in principle possible
and may be developed into an efficient algorithm.

Continuation of the full models has been achieved in DDE-BIFTOOL directly for the
unidirectional ring laser and for the MIXSEL and Kerr GTI where the DAE can be ap-
proximated by a singularly perturbed delay differential equation. This approach, however,
introduces additional stiffness that severely limits stability analysis and bifurcation point
continuation of periodic solutions in combination with large delay. The DAE models con-
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sidered in this manuscript can be written in the form of neutral delay differential equations
that can be treated in DDE-BIFTOOL with an experimental extension [BKWO06]. As they
avoid the additional stiffness introduced by the singular perturbation approach this poses
a promising route for improvements and further study. It could potentially be further
improved using the techniques developed in [YRSW19].

The analysis of the unidirectional ring laser model provides a baseline of expectable
TLS behavior. Gain linewidth enhancement induces amplitude-phase coupling and causes
pulses to flatten by spreading out their intensity in time. This can induce a type of
oscillation which is termed a trailing edge instability due to the shape of the dynamics
when regarded in a pseudo-space-time representation. Absorber linewidth enhancement
has been observed to counteracts this effect. Multiple types of solutions with an increas-
ing number of intensity peaks have been found via numerical path continuation. The
manifolds corresponding to the higher orders start unstable but they can cross over with
the stable principal one and among each other in transcritical bifurcations thus forming
a large interconnected structure. Without path continuation this difference in the origin
of stable solutions is not obvious. A Haus PDE approximation can be derived where a
slow time variable describes the roundtrip dynamics of a pulse that exists as a profile in a
pseudo space dimension which corresponds to a fast time scale. Here, the pulse dynamics
are influenced by spatial derivative terms instead of delayed feedback which allows for
parallelization along the spatial dimension in simulations. Also, this makes the model
interesting from a bifurcation analysis points of view as many techniques and tools are
available for the treatment of PDEs. Overall, the solution structure and region of TLS
existence is well conserved by this approximation, but the border of the oscillation region
can be qualitatively different from the original DDE model.

The VCSEL-RSAM model has been successfully able to describe results obtained in a
corresponding experimental realization. With parameters matching the nonlinear mirror
properties the behavior of TLSs and the transition to harmonic pulse trains was predicted
accurately. Further, an additional kind of instability has been found in simulations and
dynamics similar to it could be seen in the experiments. This instability could not be found
in the unidirectional ring laser model. The coupled microcavities constitute a significantly
different geometry that causes strong third order dispersion. For appropriate combinations
of the linewidth enhancement factors and the detuning between the microcavities TOD
can dominate over second order dispersion. In this regime pulses can have a leading series
of decaying but significantly large satellites. Intuitively, these can be interpreted as the
part of the pulse that was directly reflected and not filtered by the microcavity during the
previous roundtrip. These satellites can become unstable when large enough to bleach the
absorber. In this situation the net-gain window is opened prematurely and the satellite
grows. As a consequence the gain saturation encountered by the parent pulse is reduced
and it starts to die out to finally be replaced by its satellite. Indeed, this process can
repeat and thus result in a stable quasi-periodic oscillation.

The MIXSEL system can be considered a simpler version of the VCSEL-RSAM system
with both gain and saturable absorber in a single microcavity. Thus, it only has half the
number of electric field variables and the bandwidth ratio and detuning parameters of the
two cavities no longer appear. Yet, the same types of dynamics encountered in the more
complicated system are retained. This makes the analysis of the satellite instability much
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easier. Using numerical path continuation the solution branches can be obtained. For
zero linewidth enhancement factors a branch with multiple folds has been found. At a
high gain saddle node bifurcation the satellite oscillation sets in with infinite period in a
global SNIPER bifurcation. For some small gain linewidth enhancement factor the origin
of the satellite instability transforms into an Andronov-Hopf bifurcation, yet the resulting
dynamics remain the same for most of the satellite unstable region. With more realistic
values for the linewidth enhancement parameters the situation becomes more complex.
A larger pulse with leading satellites is bistable with a smaller single pulse. In a part of
the bistable region the larger satellite pulse is unstable with the resulting quasi-periodic
dynamics showing characteristics of both the satellite instability and amplitude-phase
coupling mixed together. As a consequence, optimization of the pulse width becomes
a trade-off. Too narrow a pulse will grow satellites and destabilize thus limiting the
possibility of stable narrow pulses. Apart from the satellite instability the behavior of
TLSs remains similar to what is already known from the unidirectional ring laser. The
Haus PDE approach delivers similar results as well. Like in the ring laser model the folds
responsible for the principal TLS region and the satellite instability are well preserved. So
is the transition from SNIPER to Andronov-Hopf and the corresponding branch. However,
the trailing edge and mixed dynamics are, again, qualitatively different.

The Kerr GTI is a different type of system as compared to the VECSEL systems dis-
cussed earlier but can also be described in a similar framework involving a DAE. Its
microcavity containing a Kerr nonlinear medium is passive and coupled to an external
cavity which is coherently pumped by a CW injection beam. It can be build with the
same technologies applied for VECSELs. The passive microcavity can be imagined as
a standard VCSEL but with the QW resonance far off the microcavity resonance and
injection frequency. The Kerr GTI DAE model can be derived as well for an analogous
system comprised of a short Kerr fiber loop, that resembles the microcavity, coupled to a
long delay fiber loop that forms the external cavity. Thus, an alternative route for exper-
imental implementation is accessible with established technology. Note, that one of the
advantages of using mirrors over fibers lies in the ease of adjusting their mutual distance
which renders the repetition rate of the system tunable.

For sufficiently large detuning the system has two bistable continuous wave solutions
with distinctly different intensities. Via linear stability analysis in the long delay limit, a
uniform instability has been identified to both cause the folds of the CW branch and give
rise to temporal localized structures that can live on the CW backgrounds. Principally, a
bright TLS shaped as a peak on the low intensity CW background and dark TLS shaped
as a dip on the high background are found. A hysteretic transition exists between them.
The TLS can split into a pair of fronts that each connect the two CW states, forming
an intensity profile that is roughly rectangular in time. Those fronts move at different
drift velocities and eventually meet again, due to the periodic boundary conditions of the
external cavity, where they can recombine to form the TLS of the opposite type. This
relative movement can be arrested completely at various distances, similar to systems
with phase transitions. In analogy, the effect is termed a Maxwell point. Very similar
behavior is known to exist in injected Kerr fibers where, in contrast, the nonlinear effects
are distributed along the whole cavity.

The underlying solution structure consists of a single TLS solution branch which snakes
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8 Summary and Outlook

around and toward the asymptotic Maxwell point from both CW background states and
thus connects them in the middle. This can be called a double collapsing homoclinic
snaking scenario. While snaking back and forth, the branch keeps alternating between
stable and unstable parts. The fronts appear together with leading satellite oscillations on
the preceding CW state which are caused by third order dispersion incurred by the cavity
geometry, not unlike the satellites leading mode-locked pulses in the previous systems.
The satellite structure allow the fronts to lock at different orders of these oscillations,
thereby creating a series of stable distances that form the transition.

While TLSs are normally regarded as periodic orbits of a system with time-delayed
feedback, they can be reinterpreted as homoclinic orbits of an equivalent system with time-
advanced feedback. Here, the time-advance is given by the offset between the time-delay
and the actual period of the orbit. In the long delay limit this offset indeed approaches a
finite asymptotic value. Stability analysis of these homoclinics yields a set of exponentially
growing and shrinking oscillations on the left and right tail of the TLS peak, respectively.
These oscillations fit the satellite oscillations of the pulse profiles very accurately and could
be used to derive an interaction potential that describes the attraction and interlocking
of fronts as a force. Several front pairs can be combined to form molecules that, in the
localization regime, can be arranged into arbitrary temporal patterns. Such patterns might
be useful as LIDAR (light detection and ranging) signals for being well distinguishable.
Since the relative drift speeds are small, the patterns are metastable and vary little over
many roundtrips, potentially leaving them recognizable in the reflection signal.

A distinct class of dynamics observed in the Kerr GTI model is square waves that
appear for destructive feedback phases. The field stays at some CW intensity for a whole
roundtrip and then switches to another pseudo CW state. In the simplest case the intensity
alternates between two such states but there can be more. Transitions happen via period
doubling as well as period tripling bifurcations and possibly even higher orders. This
regime may thus exhibit chaotic behavior. It is possible to approximate the square waves
by a discrete mapping. In the long delay limit the transitions between CW intensity levels
become negligibly short and the field in the microcavity is merely the equilibrated reaction
to a virtually constant injection of the external cavity field from the previous roundtrip.
Both then combine to form the next state of this injection. The delay algebraic equation of
the full model thus reduces to a simple relation of the current and following discrete states.
Given this rather concise description, additional study on this regime can be carried out
with reduced computational effort.

More complex setups using Kerr microcavities can be envisioned. Two separate in-
jections beams could be coupled into a single KGTI such that, when modulating their
intensities or phase offset, the cumulative injection would change. Thus, one should be
able to switch the state of the microcavity field as a function of two inputs. Such a switch-
ing element might be used to build photonic logic gates to serve as building blocks for
photonic circuits.
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