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1. Introduction

Localized structures (LSs) are objects which are densely concentrated on a background
which might be homogenous or periodic in space or time [GA12]. They are widely ob-
served in nature, science and engineering such as water waves [Her13], current densities
in semiconductors [Nie+92], in chemical reactions [Kos+18], in neuronal activities [EB31]
and in vegetation patterns [Mer+04]. LSs often appear in form of fronts or pulses, e.g.
pulses in the intensity of light beams in optics [Sei+20].
Observations of LSs can be modelled by differential equations which describe the dynam-
ics of the corresponding complex system. Despite other, partial differential equations
(PDEs) and delayed differential equations (DDEs) are distinguished. Spatially extended
systems are often described by PDEs, as the Turing model which explains different pat-
tern formations on the skin of animals [Lep04]. DDEs, however, model systems with
time delayed feedback, e.g. population models [Cla76]. Complex systems might also be
modelled by a combination of these types of differential equations as in the reaction-
diffusion system analyzed in [Gur13]. Besides the obvious differences between PDEs and
DDEs, they are investigated in similar frameworks. Nevertheless, there is an important
difference between them with respect to the symmetry. Since spatial systems often de-
scribe position space, they adapt the left-right and up-down symmetry, for example of a
medium. In contrast to that, time does not necessarily possess a parity symmetry result-
ing in a symmetry breaking in several temporal systems. The parity symmetry might
be broken due to an excitation which occurs for example as a response to a perturbation
as observed in nervous systems, e.g. [EB31]. The symmetry breaking leads to a wider
range of possible phenomena in temporal systems, e.g. depletion of the active material
gain that only recovers on a given time scale as discussed in [Jav+16], making them very
interesting. In this thesis an optical temporal system which produces LSs with a broken
parity symmetry is analyzed.
LSs can be interpreted as dissipative solitons, which are observed in non-conservative
systems, in the weak dissipative limit. Dissipative solitons obtain their stability from the
balance of gain and loss – especially gain and loss of an electric field for optical systems
as in [VT05] – and the balance between dispersion and nonlinearity. The stability of
classical solitons, however, is determined by the balance between dispersion and nonlin-
earity only. The LSs in the system analyzed in this thesis are called kinks or Φ-bits.
In contrast to other common LSs in optical systems, this study is not interested in LSs
in the intensity which exist independent of each other, but in kinks that are intrinsi-
cally phase bits in the phase space. These LSs are experimentally observed in [Gar+15]
and consist of 2π phase rotations. They obtain their stability, a certain robustness and
formability from the topology of the phase space of the nonlinear system, especially the
2π-periodicity.
LSs in optics are already investigated with the motivation of an application as regener-
ative memories, e.g. [Rom+16], since delayed self-feedback allows the storage of infor-
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mation in an optical cavity. Because optical communication networks already depend
strongly on semiconductor devices, the existence of LSs in semiconductor lasers is of
special interest. The additional robustness of the investigated kinks due to the topology
of the phase space is an important property regarding possible applications in this field.
A DDE, which describes the time evolution of the phase of an injection locked semicon-
ductor laser with delayed self-feedback, is derived in [Gar+15]. This equation is called
the Delayed Adler Equation (DAE). The steady states and periodic solutions consisting
of LSs in the phase are analyzed in [Mun19] and [MJG20]. Especially the emergence
of the periodic orbits from the steady states is investigated. This study is interested in
the interaction between kinks in one cavity and in how the position of the kinks inside
one cavity can be controlled, since it is a major requirement for possible applications in
optical communication networks.
A reduced model, called the equation of motion (EOM), is based on the interactions be-
tween LSs. It is derived in [Mun19] and [MJG20] and describes the evolution of positions
of LSs in a temporal cavity with less complex ordinary differential equations. Therefore,
direct numerical simulations (DNSs) of the EOM are superior in terms of computational
costs to DNSs of the DAE.
After an overview of the theoretical background, which is provided in chapter 2, this the-
sis is organized as follows: In chapter 3, a new way of determining the necessary values
of the reduced model is investigated in order to reduce mismatches between simulations
of the DAE and the EOM. The explicit model for periodic solutions containing two LSs
and necessary properties are derived in section 3.1.1. An overview of the simulations
used for the determination of the necessary values is given in section 3.1.2 and these
values are determined in section 3.1.3. The output of DNSs of the EOM with these
values are compared to DNSs of the DAE in section 3.1.4. In section 3.2 the distances,
which are observed between the LSs after the transient, are investigated with respect to
the delay time. Chapter 4 focuses on the control over the positions of the LSs in a cavity.
Therefore, an additional periodic potential is added to the DAE. Synchronization be-
tween the periodic potential and the periodic solutions containing multiple 2π-rotations
is observed experimentally in [Gar+17] for the corresponding PDE. Synchronization be-
tween LSs and an external periodic forcing is also found in other optical delayed systems,
e.g. [Cam+16]. The theoretical and numerical analysis of the impact of the periodic
potential on the periodic solutions of the DAE containing a LS is conducted in this chap-
ter. Thus, the extended equation is presented in section 4.1. The impact of the periodic
potential on the steady states which are calculated in [Mun19] and [MJG20] is explored
in section 4.2. The conditions of the existence of LSs in the DAE with periodic potential
are investigated in section 4.3. Section 4.4 discusses the phenomena of synchronization
between one LS and the periodic potential at a specific parameter set while section 4.5
compares the impact of different parameter sets on the region of synchronization. The
results of the periodic solutions containing one LS are extended to solutions containing
two LSs in section 4.6. An overall conclusion and outlook is given in chapter 5.
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2. Theoretical Background

This chapter contains a theoretical background on several topics necessary for this thesis.
The given definitions are used throughout the thesis. The main equation of this study,
the DAE reads

dθ (t)
dt

= ∆− sin (θ (t)) + χ sin (θ (t− τ)− θ (t)− ψ) := f(θ, θ (t− τ)) (2.1)

and is derived in section 2.6.1. It is a scalar nonlinear DDE for the evolution of the
phase θ(t) in time with the three control parameters detuning ∆, feedback strength χ

and additional phase ψ, which is added to the feedback, and fixed single delay of length
τ .

2.1. Differential Equations as Descriptions of the Dynamics of Complex
Systems

Time evolutions of a wide variety of systems in nature, science and engineering are often
described via (deterministic) differential equations, which define the dynamics of the cor-
responding systems. In most cases, it is defined by a set of differential equations and an
initial condition. If, as in this thesis, the initial condition gives the initial state or states
of a system at the starting point in time, it is an initial value problem (IVP). A differ-
ential equation involves a function an its derivatives. The highest derivative determines
the order of the differential equation and the number of equations in a set defines the
dimension of the system. However, for the sake of this thesis, considering a system with
one dimension is sufficient, since the subject of this thesis is a one-dimensional delayed
system with one delay term. The system is described by an IVP of a DDE. For a bet-
ter understanding, first, ordinary differential equations (ODEs) and partial differential
equations (PDEs) are introduced and next, DDEs are presented:

ODE An ODE of order N for an unknown quantity z(t) in one independent variable t
has the general form

f

(
z(t), dz(t)

dt
, ...,

dN−1z(t)
dtN−1 ,

dNz(t)
dtN

)
= 0. (2.2)

The initial condition z(t0) is the state of the system at a given time t0. It is the only
degree of freedom besides a change in any control parameters of the equation. Therefore,
all information needed for the prediction of the dynamics of a system described by an

IVP of an ODE rely on one initial value z(t0). Each of the derivatives diz(t)
dti

where
i = 1, ..., N depends on the independent variable t only. Usually, the time evolution of
the dynamics of a system calculated via DNSs are visualized in a 2D plot of z(t) against
t. For further details on the analysis of ODEs see [Str07].
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PDE A one-dimensional PDE of order N in time and order M in space for an un-
known quantity z(t, x) in multiple variables – here time t and position x ∈ [0, L] in the
(periodical) domain of length L – reads

f

(
t, x, z(t, x), ∂z(t, x)

∂t
,
∂z(t, x)
∂x

,
∂2z(t, x)
∂t2

,
∂2z(t, x)
∂t∂x

,
∂2z(t, x)
∂2x

, ...,

∂Nz(t, x)
∂tN

,
∂Mz(t, x)
∂xM

)
= 0. (2.3)

In contrast to an ODE, it contains the partial spatial derivatives up to order M and
boundary conditions are necessary, e.g. periodic boundary conditions where z(t, x =
0) = z(t, x = L). The initial condition z(t0, x) where x ∈ [0, L] is again the state of
the system at a given time t0. However, a PDE has infinitely many degrees of freedom
contrary to an ODE. Those arise from different values z(t0, x) at each of the positions
x ∈ [0, L] in the domain at the time t0. Hence, the dynamics of a system described by an
IVP of a PDE is defined by infinite number of values z(t0, x) on a domain x ∈ [0, L]. The
calculated time evolution of such a system is often presented in a so-called space-time
plot. It is a 2D color-plot with the time t and the position x as axes. The value of z(t, x)
is displayed with a color-scale. PDEs are further explained in [Tol20].

DDE In general, a DDE depends on states of the system at l previous times t −
τ1, ..., t − τl. It might also depend on the derivatives at those times. In this case, the
type of equation is called a neutral DDE and reads

f

(
z(t), z(t− τ1), ..., z(t− τl),

dz(t)
dt

,
dz(t− τ1)

dt
, ...,

dz(t− τl)
dt

, ...,

dNz(t)
dtN

,
dNz(t− τ1)

dtN
, ...,

dNz(t− τl)
dtN

)
= 0. (2.4)

An analysis of DDEs is given in [JQ13]. However, for the investigated system the general
form reduces to a first order (N = 1) DDE depending on one previous state z(t− τ) for
an unknown function without any spatial component z(t), which may be written as

f

(
z(t), z(t− τ), dz(t)

dt

)
= 0. (2.5)

The main difference to the previously introduced kinds of differential equations is that
a DDE does not solely depend on the present state – as an ODE or a PDE – but also on
previous states at time t−τ . The delay time is given by τ . Thus, z(t) for t ∈]t0−τ, t0] is
required for the calculation of an IVP of a DDE. Hence, the values at the time t̃ ∈]t−τ, t]
need to be stored during the calculation leading to a temporal domain of length τ .
Therefore, the initial condition has infinitely many degrees of freedom, as for the PDE.
In fact, a spatial domain of length L used in a PDE has similarities to a temporal domain
of length T̃ used in a DDE. Hence, the dynamics of a delayed system can be visualized in
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Figure 2.1: Time evolution of a stable solution containing one LS of the DAE, given
in eq. (2.1), at the parameter set ∆ = 1.2, χ = 0.3, ψ = 1.4, τ = 100 and ε = 0.
(Left) An extract of the time trace and (right) the whole time evolution in the co-
moving reference frame with respect to a round trip length of T̃ = τ is shown. For
a video which illustrates how the co-moving reference frame is obtained see https:
//uni-muenster.sciebo.de/s/H8D4LXXKobFZpUt. The blue and red lines highlight the
stable and unstable, respectively. These are introduced in detail in section 2.6.2.

a so-called co-moving reference frame which is the equivalent representation to a space-
time plot of a dynamics described by a PDE. The co-moving reference frame of the time
evolution calculated in the interval [t0, tend] is obtained by splitting up the calculated
values in intervals of length T̃ , also called the folding parameter, in time. R ∈ N

intervals are obtained: [t0 + rT̃ , t0 + (r + 1)T̃ [ for r = 0, 1, ..., R − 1 and [t0 + RT̃ , tend]
with tend − t0

T̃
−1 < R ≤ tend − t0

T̃
. The axes of the 2D color-plot are the interval number

r = 0, 1, ..., R also called the number of round trips and the time in a round trip [0, T̃ ]
which corresponds to the r-th interval. z(t) = z(div(t−t0, T̃ ),mod(t−t0, T̃ )) is displayed
via a color-scale. A video which shows the creation of a co-moving reference frame of
a time series is provided at https://uni-muenster.sciebo.de/s/H8D4LXXKobFZpUt.
The final frame of the video is presented in fig. 2.1. It shows the shape of the LSs
observed in dynamics which are created by the DAE, which is derived in section 2.6.1.
Such LSs are the main subject of this study. The co-moving reference frame indicates
that the solution is not periodic with the period τ , which is the length of a round trip,
since the LSs drifts. However, a period T̃ = T > τ can be found such that T̃ = T

corresponds to the period of this solution. In general, periodic solutions containing LSs
of the investigated systems have a period T > τ . Hence, T̃ = τ is not necessarily required
and T̃ 6= τ might give a more useful representation.

2.2. Concept of Excitability

Excitability is observed in a variety of complex systems from solids [Pin18] to nerve sys-
tems [EB31]. In general, an excitation is a significant response of a system to a relatively
small perturbation which overcomes a certain well-defined threshold. Therefore, it is of-
ten found as an amplification of a perturbation above a specific strength. A perturbation

https://uni-muenster.sciebo.de/s/H8D4LXXKobFZpUt
https://uni-muenster.sciebo.de/s/H8D4LXXKobFZpUt
https://uni-muenster.sciebo.de/s/H8D4LXXKobFZpUt
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∆ = 1.1

(a) ∆ = 1.1

∆ = 0.9

(b) ∆ = 0.9

∆ = −0.1

(c) ∆ = −0.1

Figure 2.2: Flow diagram of the phase θ given by eq. (2.6) for different values of ∆ on a
circle. The blue and the red dot illustrate stable and unstable fixed points, respectively.
(a) corresponds to ∆ = 1.1 leading to no fixed points, while (b) and (c) represent ∆ = 0.9
and ∆ = 0.1 where fixed points exist.

below this threshold leads to a response of the system in the same order of magnitude
as the perturbation. If the perturbation overcomes the threshold the system will be in
its excited state before it returns to the original state. The time of the excitation is
called refractory period. The system cannot be excited again by a perturbation above
the threshold as long as the system is in its excited state. An example for an excitable
system is given by systems described by the Adler Equation [Adl46]

dθ

dt
= ∆− sin (θ) . (2.6)

It describes the phase difference θ between two weakly coupled oscillators with a detuning
∆ of the frequencies. In general, the phase evolution of multiple identical oscillators is
described by the Kuramoto model [Kur75] which is given in eq. (2.7). Hence, eq. (2.6)
can also be obtained from the Kuramoto model.
Steady states of the Adler equation are found for ∆ ∈ [−1, 1] because values of θ exist
which meet the condition dθ

dt
= 0. The steady states correspond to a solution where the

phase difference between both oscillators is fixed. The flow diagram of the phase θ on
a circle is illustrated in fig. 2.2. The circle already indicates the 2π-periodicity of the
phase space. The stable and unstable steady states of the system are highlighted by blue
and red dots, respectively. They are connected by two heteroclinic orbits if both steady
states exists. The arrows indicate the direction that the phase θ is attracted to. A small
perturbation of the stable steady state in one of the two directions leads to a direct return
to the steady state. The system is not excited. In contrast to that, a perturbation which
kicks the phase above the unstable steady state results in an orbit which exhibits the
whole phase space. This orbit is the response of the system which is large compared to
the perturbation needed for an excitation. The relaxation of the orbit takes significantly
longer than a response of the perturbation below the threshold of excitation. Another
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perturbation of the magnitude of the threshold, which is applied to the system during
the refractory period, does not lead to another excitation of the system in general. The
necessary threshold for a perturbation which results in an excitation corresponds to the
distance between the stable and unstable steady state. It is smaller, the closer the fixed
points are together. The steady states annihilate for the critical values ∆ = ±1 leading
to a homoclinic orbit.

2.3. Arnold Tongue and Synchronization

The first mentioning of synchronization dates back to Huygens’ in 1665 who observed
synchronization between two clocks hanging on the wall [OM15]. Since then it has been
widely observed and used in applications, for example in radio communication systems
where a weak but precise signal stabilizes the frequency of a generator. The basic model
where synchronization is observed is called the Kuramoto model [Kur75] which reads

dθs
dt

= ωs + ν

N

∑
r

sin (θr − θs) . (2.7)

It describes the evolution of the phase θ of N equally coupled oscillators of intrinsic
natural frequency ω. The coupling is described by the coupling constant ν. For N = 1,
the Adler equation, given in eq. (2.6), is obtained. Synchronization is also observed
in systems with external periodic forcing, which is used to control the dynamics of
the systems, e.g. in the forced self-sustained Duffing oscillator [ZA14]. A detailed
introduction to synchronization is provided in [PRK01].
This thesis analyzes the impact of an external periodic potential on the behavior of
LSs which are observed in a system described by the DAE with periodic potential. In
section 2.8 it is explained that a setup which is described by the investigated equation
may also be regarded as multiple nested quasi-harmonic oscillators. Quasi-harmonic –
also called quasilinear – means that the oscillation of the solution on the limit cycle or
the attractor of the system is close to the form of a sine wave. At different stages of
the nesting, the system corresponds to a quasilinear oscillator which exhibits periodical
external forcing. Therefore, the general case of a periodical force applied to a quasilinear
oscillator is introduced:
The harmonic oscillation of a quasilinear oscillator is given by

z(t) = Z0 sin (ω0t+ φ0) (2.8)

with amplitude Z0, natural frequency ω0 and offset of the phase φ0. The periodic
potential

ϕ(t) = A cos (ωt) (2.9)
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with amplitude A and frequency ω leads to an external force that varies as F (t) =
Aω sin (ωt) = Ã sin (ωt). The force does not change the amplitude Z0 of the oscillation
of the quasilinear oscillator, since the orbit corresponds to an attracting orbit where no
point of the phase is exclusive. Thus, the systems response to small perturbations in
change of the amplitude is the return of the amplitude to the attracting orbit. Therefore,
the interest rests on the impact of the force on the phase which is 2π periodic. The phase
space may be visualized by a circle which is a frame where the periodicity is implemented.
The phase of positions z may be regarded as points on the circle and the phase of forces
F as arrows from the origin to those phase points on the circle indicating the direction of
the action. The phase of the force rotates with frequency ω in a resting frame. However,
a rotating frame of frequency ω is advantageous for this problem and therefore used.
In a rotating frame with frequency ω, the phase is constant. Thus, the force acts in a
constant direction. In this rotating frame, however, the phase point of the oscillation
rotates with a frequency ω0 − ω. It can be found that the phase difference between the
oscillation of the oscillator and the external force is defined as

φ(t) = ω0t+ φ0 − ωt = (ω0 − ω) t+ φ0. (2.10)

The phase point of the oscillation rotates clockwise for ω0 > ω and counterclockwise for
ω0 < ω. Over time it can be found at every position of the circle as long as ω0 6= ω. For
ω0 = ω it does not rotate and remains at a constant position.
As already determined, the force acts in a constant direction. An object which can move
freely on a circle and on which a force in a constant direction is acting on may be found
at rest at two positions of the circle, exactly where the direction of the force is orthogonal
to the circle. Those two positions on the circle are identified as stable and unstable fixed
points. The stable fixed point is at the position which is reobtained by the object after
a perturbation. Therefore, the force drags the phase point towards the position which
corresponds to the stable fixed point, independent of the position of the phase point on
the circle.
The previously mentioned free object which moves on the circle is identified with the
phase point of the oscillation. Additionally, it gets the property of the intrinsic oscillation
of the frequency ω0 − ω resulting from the quasilinear oscillator. In contrast to the
force which drags the object towards the stable fixed point, this oscillation drags the
object around the circle for ω0 6= ω. This indicates two qualitatively different behaviors
depending on which of the two impacts predominates.
If the force overbalances the intrinsic oscillation, the phase point of the oscillation in the
rotating reference frame of frequency ω will remain at a constant position at the stable
fixed point. Therefore, the frequency of this phase point corresponds to the frequency
of this rotating frame ω and hence to the frequency of the force. Although, the intrinsic
oscillation for the phase point given by the quasilinear oscillator is ω0 6= ω. The external
periodic force locks the frequency of the oscillation and synchronizes the oscillation to
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itself.
If the intrinsic oscillation outweighs the force, the phase point of the oscillation in the
rotating reference frame of the frequency ω will move around the circle at a non uniform
velocity. The velocity increases at the part of the circle where the force supports the
direction of the motion and it decreases at the parts where it counteracts the intrinsic
oscillation.
The impact of the force scales with its amplitude, whereas the impact of the intrinsic
oscillation scales with the phase difference ω0 − ω. The region of synchronization at a
constant amplitude of the force depends on the detuning of the frequencies ω0 − ω. If
the detuning exceeds a certain threshold, no synchronization between external force and
oscillation will be found. In general, the threshold increases for an increasing amplitude
of the external periodic force. The region of synchronization in the plane of the amplitude
A and the frequency ω of the external potential is called Arnold tongue.

2.4. Theoretical Analysis of DDEs

DDEs in general are introduced in section 2.1. In the following, the theoretical analysis
of first order DDEs with one delay is explained. Therefore, eq. (2.5) is rewritten as

dz(t)
dt

= f (z(t), z(t− τ)) . (2.11)

2.4.1. Steady States

A steady state zst is defined as a state of a system which remains stationary over time.
Mathematically speaking, steady states match

z(t) = zst ∀t (2.12)

This leads to the conditions

f(zst, zst) = 0 (2.13)

and

z (t− τ) = z(t) = zst ∀t (2.14)

for the determination of steady states.

Linear Stability Analysis The stability of steady states is calculated via a linearization
of the system. Therefore, the impact of a small perturbation ε� 1 on the steady state
zst is investigated. It is assumed that the perturbed steady state z(t = 0) = zst + ε
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evolves as

z(t) = zst + ε exp(λt). (2.15)

This is a superposition of the non-evolving steady state and the exponentially growing
perturbation with the exponent λ ∈ C. Hence, the stability of the steady state is deter-
mined by λ, the so-called Lyapunov exponent. The perturbation decreases exponentially
for <(λ) < 0, indicating a stable steady state. An exponentially growing perturbation
as for <(λ) > 0 indicates an unstable steady state.
Inserting eq. (2.15) into eq. (2.11) and linearizing in ε leads to the eigenvalue problem

λε exp(λt) = ∂f (z(t), z(t− τ))
∂z(t) ε exp(λt) + ∂f (z(t), z(t− τ))

∂z(t− τ) ε exp (λ(t− τ)) . (2.16)

The exponential growth rate λ is the eigenvalue of this problem. Rearranging the eigen-
value problem by introducing the constants A and B results in the so-called characteristic
equation

⇔ λ = A+B exp (−λτ) (2.17)

where A =
[
∂f (z(t), z(t− τ))

∂z(t)

]
zst

(2.18)

and B =
[
∂f (z(t), z(t− τ))

∂z(t− τ)

]
zst

. (2.19)

Note that A and B are scalar numbers for a scalar DDE of first order. Equation (2.17)
is not solvable analytically due to the transcendental character of this equation. Never-
theless, rewriting it results in a known structure:

⇔τ(λ−A) exp (λτ) exp (A−A) =τB

⇔h exp (h) =τB exp (−A) where h = τ(λ−A). (2.20)

These are implicit Lambert W functions which are defined as any function W (H) = h

which satisfies

W (H) exp (W (H)) = H. (2.21)

They are introduced in [YNU10]. It is a complex valued function with complex argument
H. The inverse function W−1(h) = H reads

h exp (h) = W−1(h) (2.22)

and is not injective. Therefore, W (H) has multiple, in particular, infinitely many so-
lutions. Each of the solutions is denoted as a branch Wn(H) and cannot be presented
in elemental functions. However, they can be calculated numerically. For a detailed
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introduction see [YNU10].
Inserting the branches of the inverse Lambert W functions eq. (2.22) into eq. (2.20) leads
to an infinite number of discrete solutions of the eigenvalue problem in eq. (2.17):

λn = 1
τ

(Aτ +Wn (Bτ exp (−Aτ))) . (2.23)

The spectrum on which those eigenvalues lie is called pseudo-continuous spectrum.

Long Delay Limit Splitting up the complex eigenvalues into the form λ = α

τ
+iβ which

divides the real and the imaginary part α
τ
∈ R and β ∈ R respectively and inserting it

into eq. (2.17) leads to an approximation of the eigenvalues for long delays:

B exp (−α− iβ) = α

τ
+ iβ −A | multiply both sides with c.c.

⇒ |B|2 exp (−2α) = α2

τ2 + α

τ
(−iβ −A∗ + iβ −A) + |β|2 + |A|2 − iβ (A−A∗) (2.24)

Neglecting all terms scaling with 1
τ2 and 1

τ
for the long delay limit gives a relation

between the real and the imaginary part of eigenvalues:

⇒ α = 1
2 ln

(
|B|2

|A|2 + |β|2 − 2β=(A)

)

⇒ α = 1
2 ln

(
|B|2

|A|2 + |β|2

)
since =(A) = 0 for real valued DDEs (2.25)

The discrete eigenvalues λn given in eq. (2.23) converge with increasing τ to the long
delay limit which is given in eq. (2.25) and corresponds to a pseudo-continuous spectrum
in the complex-plane. It is effectively filled with discrete eigenvalues for τ →∞.

2.4.2. Periodic Solutions

Periodic solutions of period T are solutions which satisfy

z(t) = z(t+ T ). (2.26)

Although steady states are periodic solutions by definition, usually time dependent so-
lutions are meant by this expression. Note that solutions which satisfy eq. (2.26), also
meet the same condition of nT where n ∈ N+. The lowest value of T which matches
eq. (2.26) is called minimal period or in a short form just period.

First Return map Periodic solutions and their periodicity may be found by so-called
first return or Poincare maps [Str07]. First, it is assured that the solution has settled
on an attractor for several delay times τ and is not in a transition period by integrating
the system for a sufficiently long time. The (theoretically) continuous time series z(t) is
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discretized in time by the definition of an useful measure In at specific point n = 1, ..., N .
The measure depends on the system. Commonly used measures In are the value of the
n-th maximum in z(t) or the value z(nT ) at the n-th period, if a possible period is
already determined from the time series z(t). The first return map is produced by
plotting the value of the (n+ 1)-th measure In+1 against the value of the n-th measure
In. A sufficient number of those (In, In+1)-pairs should be taken into account. Two
qualitatively different kinds of visualizations may occur. A quasi-continuous spectrum
or quasi-filled plane of points and a number of discrete points. The first representation
indicates that the solution is not periodic with the given period T . The latter identifies
a periodic solution of period T . The number of discrete points determines the period of
the orbit. Two discrete points indicate a period-2 orbit of period T , which corresponds
to an period-1 orbit of period 2T .

Determination of Stability The stability of a periodic solution is determined by the
Floquet-multipliers which are the eigenvalues of a so-called monodromy matrix. The
underlying concept is the Floquet theory [Mar18] which does not completely exist for
linear DDEs, but the characteristic properties are defined in a similar matter [Jau17].
The theory is introduced for linear periodic differential systems first and finally trans-
ferred to a linear DDE. The stability of periodic solutions is defined via the response of
the system to a small perturbation of the periodic orbit similar to steady states. Thus,
it is determined by the linearized DDE as the stability of a fixed point in a nonlinear
system is determined by the linearized system.
Let the n × n-matrix A(t), which is periodic A(t) = A(t + T ) with period T , define a
linear first order ODE that reads

dy(t)
dt

= A(t)y(t). (2.27)

The linearly independent solutions of this system are the column vectors of the matrix
S(t, t0). Therefore, S(t, t0) is the principle matrix solution of the system. It satisfies

dS(t, t0)
dt

= A(t)S(t, t0). (2.28)

As the system, it is periodic with the same period S(t + T, t0 + T ) = S(t, t0). At some
point in time t = t0, S(t0, t0) corresponds to the unity matrix 1. The time evolution of
an arbitrary solution may be written as a linear combination of the linearly independent
solutions stored in the principle matrix leading to

y(t+ t0) = S(t+ t0, t0)y(t0). (2.29)

The evolution over one period T is described by S(T, t0), since

y(T + t0) = S(T + t0, t0)y(t0). (2.30)
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The evolution of a periodic solution yp(t) = yp(t + T ) which is perturbed by yε(t0) at
any time t0 evolves as

y(T + t0) = yp(T + t0) + yε(T + t0)

= S(T + t0, t0) (yp(t0) + yε(t0))

= S(T + t0, t0)yp(t0) + S(T + t0, t0)yε(t0) (2.31)

⇔ yε(T + t0) = S(T + t0, t0)yε(t0) (2.32)

The evolution of the perturbation is given by the eigenvalue problem in eq. (2.32). Any
perturbation yε(t0) will decrease over one period T if the absolute values of all eigenvalues
|µi| of S(T + t0, t0) lie inside the unit circle (|µi| < 1 ∀i ∈ {1, ..., n}). If the absolute
value of one eigenvalue exceeds 1 (∃i ∈ {1, ..., n} : |µi| > 1), a perturbation which grows
over one period exists. The matrix

M(t0) = S(T + t0, t0) (2.33)

is called monodromy matrix and its eigenvalues µi are the corresponding Floquet-
multipliers. Both, the monodromy matrix and the Floquet-multipliers, are independent
of the choice of t0. A Floquet-multiplier µi = 1 is called trivial Floquet-multiplier and
is disregarded for the determination of the stability as it corresponds to the eigenvector
of the periodic orbit leading to yp(t) = S(T + t, t0)yp(t0) = yp(T + t).
However, the principle matrix can be represented in terms of the n × n-matrices Q(t0)
and P (t, t0) = P (t+ T, t0) which is T -periodic

S(t, t0) = P (t, t0) exp ((t− t0)Q (t0)) . (2.34)

If t0 is chosen such that S(t0, t0) = 1, it will lead to P (T + t0, t0) = P (t0, t0) = 1. Hence,
the monodromy matrix may written as

M(t0) = S(T + t0, t0) = exp (TQ (t0)) . (2.35)

The previously mentioned conditions for the Floquet-multipliers µi are equivalent to
<(λi) < 0 ∀i ∈ {1, ..., n} for stable and ∃i ∈ {1, ..., n} : <(λi) > 0 for unstable periodic
solutions. λi are the eigenvalues of Q(t0) and called the Lyapunov exponents. Those
conditions are similar to the conditions for stability of steady states in section 2.4.1.
The dynamics of the system which is investigated in this thesis is described by a one-
dimensional DDE. However, it has infinitely many degrees of freedom as explained in
section 2.1. The dynamics can also be described by an infinite dimensional nonlinear
ODE where an infinitely small discretized state vector with 0 < δi = iδ1 < δi+1 =
(i+ 1) δ1 < τ ∀i ∈ N+ reads y(t) = (z(t), z (t− δ1) , z (t− δ2) , ..., z (t− τ))T . The
information of the values between t and t − τ is then stored in the state vectors, e.g.
the first feedback which is the initial condition y(t0). In theory, the monodromy matrix
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of the corresponding system is infinite dimensional leading to infinitely many Floquet-
multipliers.
The corresponding n-dimensional discretized ODE to eq. (2.11) is given by

dyi(t)
dt

= gi(y(t)) =

f (z1(t), zn(t)) i = 1

f (zi(t), zi−1(t)) ∀i : 2 ≤ i ≤ n
(2.36)

with the same nonlinear function f and the nonlinear functions gi which are similar to
the function f . However, the linearized ODE reads

dy(t)
dt

= Jg(t)y(t) where Jg(t) =
(
∂gi
∂yj

(t)
)
i,j=1,...,n

(2.37)

where Jg(t) is the Jacobian matrix. Finally, the form of eq. (2.27) is obtained.
Practically, the stability of a known periodic solution which is produced by the initial
condition y(t0) is calculated via the IVP. For this, the partial derivative with respect to
the initial condition y(t0) = y0 is applied to eq. (2.37) leading to

d

dt

∂y(t)
∂y0

= Jg(t)
∂y(t)
∂y0

. (2.38)

∂y(t)
∂y0

= S(t, t0) is identified by comparing eq. (2.38) to eq. (2.28). Moreover, ∂y(t0)
∂y0

=
S(t0, t0) = 1 is obtained, since y(t0) = y0. Therefore, the definition of the monodromy
matrix M(t0) = S(T + t0, t0) in eq. (2.33) indicates that the monodromy matrix is
calculated by solving the IVP

dS(t, t0)
dt

= Jg(t)S(t, t0) where S(t0, t0) = 1. (2.39)

The calculation of the monodromy matrix and its eigenvalues, the Floquet-multipliers,
is implemented in DDE-BIFTOOL. This continuation tool for DDEs is used in this study.
It is briefly introduced in section 2.5.2.

Types of Instabilities As the stability of periodic orbits depends on the Floquet-
multipliers being inside the unit circle, instabilities of periodic solutions are encountered
if one or more Floquet-multipliers leave the unit circle. Three different kinds of insta-
bilities are distinguished and an overview is illustrated in fig. 2.3.
If one Floquet-multiplier leaves the unit circle at µ = 1, as visualized in fig. 2.3 (a), it will
lead to either a fold bifurcation of periodic orbits, called fold, or a flip bifurcation. Those
bifurcations are distinguished in the bifurcation diagram. A fold bifurcation corresponds
to a turning point in the bifurcation diagram at which the stability of a branch changes.
Contrary to that, a branch changing its stability without a turning point indicates a flip
bifurcation.
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Figure 2.3: Overview of different instabilities of a periodic solution with respect to
Floquet-multipliers leaving the unit circle. (a) One Floquet-multiplier which is leaving
the unit circle at µ = 1 indicates a fold or a flip bifurcation. A fold bifurcation is found if
no periodic solution emerges at the other side of the bifurcation point with respect to the
continuation parameter. In contrast to that, a periodic solution exists at both sides of
the bifurcation point at a flip bifurcation. (b) A period doubling bifurcation is indicated
by one Floquet-multiplier leaving the unit circle at µ = −1. (c) A pair of complex
conjugated Floquet-multiplier leaving the unit circle leads to a torus bifurcation.

As the trivial Floquet-multiplier at µ = 1 corresponds the periodic solution of period T ,
a Floquet-multiplier at µ = −1 results in a periodic solution of doubled period 2T or
a period-2 orbit of period T . That is the reason why the bifurcation, where a Floquet-
multiplier leaves the unit circle at µ = −1 as shown in fig. 2.3 (b), is called period
doubling bifurcation. The Floquet-multiplier µ = −1 results in a solution with doubled
period because µ is an eigenvalue of the monodromy matrix. The matrix describes the
time evolution over one period T . Hence, applying the monodromy matrix two times
describes the time evolution over two periods 2T , leading to the multiplication of the
eigenvalues and resulting in (−1)2 = 1. This indicates a periodic orbit as it is a trivial
Floquet-multiplier of the squared monodromy matrix.
The behavior of the Floquet-multipliers of the third type of bifurcation is illustrated in
fig. 2.3 (c). Two complex conjugated Floquet-multiplier leave the unit circle at the same
point in parameter space resulting in a torus bifurcation. The name of the bifurcation is
inherited from the arising attractor which forms a torus around the solution undergoing
this bifurcation. The period of the oscillation on this attractor does not necessarily need
to be connected to the period of the periodic orbit [Lan73]. In theory, a period doubling
bifurcation is regarded as a special kind of torus bifurcation with a fixed ratio of the
both periods leading to an attractor in a form of a Möbius strip.

2.5. Numerical Methods

Numerical methods are used for the investigation of DDEs since analytical methods
have their limitations. Since the analyzed system is a continuous system, it needs to be
discretized in order to apply numerical methods. A discretization is also performed in



16

section 2.4.2 to use the Floquet theory for the determination of the stability of periodic
orbits of a DDE. As already mentioned before, the Floquet-multipliers are calculated
with a numerical tool called DDE-BIFTOOL which makes a discretization necessary in any
case. The theoretically infinite number of degrees of freedom of a DDE, as explained in
section 2.1, is reduced to the number of points used for the sampling of one feedback of
length τ .
Two different numerical tools are used throughout this study. Time series of the dy-
namics are calculated via DNSs. Continuations of periodic solutions and bifurcations
are performed with a continuation tool for DDEs called DDE-BIFTOOL. The position of a
LS in a periodic solution is defined via the maximum of the derivative of the profile due
to the shape of a kink which is illustrated in fig. 2.1. The positions of kinks in periodic
solutions obtained via DNSs or continuations are determined with the same subroutine
in order to obtain comparability. For the evaluation of the derivative, a running average
over a certain interval of the profile is used.

2.5.1. Direct Numerical Simulation – DNS

Two different schemes, a Runge-Kutta-4 (RK4) and a semi-implicit (SIMP) scheme
of second order are implemented in C. A RK4 scheme is of fourth (error) order in
general. However, when adding noise, it reduces to second or first order depending on
the implementation. Noise of a small amplitude ξ might prevent the solution to follow
strange attractors which might occur due to numerical properties. Both methods are
similar in input and output arguments. The SIMP scheme is used for DNSs performed
for this thesis, as its computational costs, in particular the run time, are lower. The
scheme and its derivation is provided in appendix A.1.
The DNS is calculated on an equidistant mesh. However, the number of mesh points
used for DNS can be chosen greater than the number of sample points of the final output.
Different ways of defining the initial condition are used. The initial condition is either
determined from analytics or a result of a previous time simulation is used. In the first
case, it is given by a superposition of a constant, which corresponds to the stable steady
state, and LSs proportional to arctan

(
exp

(√
a(t− t0)

))
where a is a constant to tune

the analytical LSs to resemble proper LSs of the system, t ∈ [−τ, 0] and t0 is the time
of the LS in the feedback. Moreover, a periodic solution containing a LS calculated by
DDE-BIFTOOL is used as an initial condition especially in cases where the LS calculated
from the given function does not survive several round trips.
Time evolutions of the positions of the LSs, which are described by the ODE given in
eq. (2.73), are calculated with scipy.integrate.odeint, which is a subroutine provided
in the Python-package SciPy for the integration of ODEs. For the website and the
documentation see [The20].
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2.5.2. Continuation Tool DDE-BIFTOOL

In contrast to the simulation of one specific initial condition via DNS, (path-)continuation
follows different kinds of solutions through parameter space. While DNSs provide stable
solutions only, unstable solutions can also be computed in continuation tools. In general,
steady states, periodic solutions and bifurcation points can be continued.
Continuation in parameter space of a solution z0 which is found at the parameter set ν0

assumes that another solution z1 exists at a slightly different parameter set ν1 = ν0 +δν.
It is expected that the solution z1 differs slightly from z0 and that this difference can
be predicted by the change in the parameter set δν. Different methods are known to
predict the next solution as the tangent prediction and the pseudo-arclength prediction.
The latter has the advantage that it does not fail at turning points like fold bifurcations.
After the new solution was predicted it must be corrected, as it needs to meet eq. (2.5).
For that, the Newton algorithm can be used, for example. This procedure is repeated
and step by step more solutions are calculated. They form a branch of solutions zi(νi).
An introduction to numerical continuation methods is provided in [AG12].
Common continuation tools are AUTO-07P (see [KD20]) for ODEs and PDEs, pde2path

(see [UWR12]) for PDEs and DDE-BIFTOOL (see [ELR02] and [ELS01]) for DDEs. The
3.3.1 version of DDE-BIFTOOL is used as a continuation tool in this study since a DDE is
investigated. It can be obtained from http://ddebiftool.sourceforge.net/ and the
manual is provided in [Sie+14]. For the theoretical background for computation of nor-
mal form coefficients see [Jan10] and for additional information about the normal form
implementation for Hopf-related cases see [Wag14] and [Bos16]. Moreover, the extension
ddebiftool extra psol is added as it implements the continuation of periodic orbits
and the corresponding fold, period doubling and torus bifurcations.
DDE-BIFTOOL uses a pseudo-arclength continuation which uses secant approximations for
tangents for the control of the parameters [Sie+14]. The profile of periodic solutions is
represented by a piecewise polynomial of degree d on an adaptive mesh with N points.
Which leads to dN+1 stored points due to the border. In this thesis, d = 5 and N = 100
is used resulting in 501 points per profile of a periodic solution. The stability of a periodic
solution is determined via the calculation of the monodromy matrix and its eigenvalues,
the Floquet-multipliers. The calculation of the stability of a solution is not included in
the continuation of a solution as it time consuming. Further methods are implemented
to determine the stability of the solution in a branch after the continuation. Bifurcation
points are detected as solutions where a Lyapunov exponent or a Floquet-multiplier of
periodic solutions changes their stability.

2.6. Delayed Adler Equation – DAE

The DDE which is investigated in this thesis is the DAE. It describes the dynamics of
the phase of an injection locked semiconductor laser with a delayed feedback loop as it
is presented in fig. 2.4. The slave laser is locked by the master laser. The beam of the

http://ddebiftool.sourceforge.net/
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not simply a harmonic solution of the fundamental period set by
the feedback loop.

As becomes evident from Fig. 2, independent topological
localized structures can be juxtaposed only in a space which is
large enough, otherwise interactions may set in. In the latter case
all the peaks would move all together. This is illustrated in Fig. 3a.
In this case, seven F-bits have been stored in the memory. At
about round-trip 100, the central structure vanishes sponta-
neously because of electronic noise in the bias current control
system, which also perturbs the other F-bits. At that point, we
observe that upon cancellation of one of the structures, the other
structures smoothly reorganize, the fourth one drifting to the left,
later followed by the fifth one. We notice that this reorganization
does not consist of an abrupt reconfiguration of the ensemble, but

a rather a slow motion of each pulse confirming their weak
interaction. The fluctuating distances indicate the degrees of
freedom associated with the separations between pulses, which we
analyse theoretically as the last part of our results.

In order to minimize the interaction between structures, the
feedback loop must be much larger than many times the typical
interaction distance. The experimental set-up is therefore
modified to increase the available space and the feedback mirror
is set at a distance of B1.65m. We show in Fig. 3 the addressing
of many F-bits and show that they can exist at different distances
from each other. We start (Fig. 3b) with six F-bits previously
nucleated and co-existing in the cavity. At round-trip 50,
a perturbation is applied that nucleates a new bit. This new
structure is nucleated with a temporal separation of 570 ps from

Slave EOM

OI

OI

M

Master

F
P

Run Stop Single

Figure 1 | Experimental set-up. The slave laser is submitted to optical injection by the master laser. Unidirectional coupling is ensured by an optical isolator

(OI) and phase perturbations can be applied to the slave laser via the fibre-coupled electro-optic phase modulator (EOM). The arrows show a schematic

view in the R(E), I(E) plane of several F-bits stored in the feedback loop.
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Figure 2 | Nucleation of two U-bits in space–time representation. (a) a phase perturbation is applied (black arrow) while the system is in a stable

stationary locked state. Following that perturbation, a pulse is nucleated and repeats with a periodicity close to the feedback delay time, as shown in b. The

space–time representation is chosen such that the pulse is almost stationary (see text). After some time a phase perturbation is applied again on the

system (black arrow), with the first F-bit already stored. The two F-bits now propagate in the feedback loop, without perturbing each other (c,d).

(e) superposition of a single F-bit waveform over 350 roundtrips. The very well-defined shape indicates the attractor nature of the F-bit. The ringing

following the pulse is attributed to the detection set-up. (f) Evolution of the distance between the two pulses in the course of time.
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Figure 2.4: Experimental set-up of a semiconductor laser with coherent optical injection
and delayed feedback loop [Gar+15]. The injection of the slave laser is produced by the
master laser. The feedback loop returns the output of the slave laser to itself.

slave laser is split up into two parts. One is extracted to measure the phase in case of
an experiment but has no further impact on the dynamics of the phase. The other part
enters the feedback loop and is mirrored back to the slave laser after a specific delay.

2.6.1. Derivation from the Class A Laser Equation

In this section the DAE is derived from the class-A laser equation which is written
in eq. (2.40). The derivation follows the derivation in the supplementary material of
[Gar+15] and is provided since the theoretical investigation of the resulting equation is
the main topic of this thesis.
The evolution of an optical field E in the shown experimental set-up illustrated in fig. 2.4
reads

dE

dt
= (1 + iα)

(
1− |E|2

)
E + Y + i∆E + η exp (−iΩ)Eτ (2.40)

with the linewidth enhancement factor α, the detuning ∆ between the frequencies of the
solitary laser and injected field, the field amplitude Y of the injection and the amplitude
η and the phase Ω of the optical feedback Eτ = E(t − τ) after the time delay τ . Note
that the index τ denotes the delayed value of a variable. Rewriting the complex field as
E = ρ exp (iφ) results in a DDE for the amplitude ρ

dρ

dt
=
(
1− ρ2

)
ρ+ Y cos (φ) + ηρτ cos (∆φ− Ω) (2.41)
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and the phase φ

dφ

dt
= α

(
1− ρ2

)
+ ∆ + Y

ρ
sin (φ) + η

ρτ
ρ

sin (∆φ− Ω) . (2.42)

A fast time-scale t1 and a slow time-scale t2 is introduced using a multiple time-scale
expansion with a time separation factor ε:

ρ = 1 + εr (t1, εt2) +O
(
ε2
)
, (2.43)

φ = φ (t1, εt2) , (2.44)
d

dt
= ∂

∂t1
+ ε

∂

∂t2
. (2.45)

Inserting the expansion in eq. (2.41) and eq. (2.42) and considering the first order in ε

gives a set of equations:

∂r

∂t1
= −2r + Y cos (φ) + η cos (φτ − φ− Ω) (2.46)

∂r

∂t2
= 0 (2.47)

∂φ

∂t1
= 0 (2.48)

∂φ

∂t2
= −2αr + ∆− Y sin (φ) + η sin (φτ − φ− Ω) (2.49)

The amplitude is independent of the slow and the phase is independent of the fast
time-scale in the first order in ε. The dynamics of the fast time-scale relaxes almost
instantaneously to equilibrium with respect to the slow time-scale. Hence, the corre-
sponding derivatives are set to ∂r

∂t1
= 0, since the overall dynamics is governed by the

motion of the slow time-scale. This technique is called adiabatic elimination [OP88] and
results in the relation

2r = Y cos (φ) + η cos (φτ − φ− Ω) . (2.50)

It is inserted in eq. (2.49) which leads to

1√
1 + α2

∂φ

∂t2
=− α√

1 + α2 (Y cos (φ) + η cos (φτ − φ− Ω))

+ ∆√
1 + α2 −

1√
1 + α2 (Y sin (φ) + η sin (φτ − φ− Ω)) . (2.51)

Defining sin (c) = α√
1+α2 < 1 and cos (c) = 1√

1+α2 < 1 gives c = arctan (α). Additionally,
rearranging eq. (2.51) by factorizing with respect to Y and η produces terms in the form
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of sin (p) cos (q)± sin (q) cos (p) = sin (p± q) which lead to

1√
1 + α2

∂φ

∂t2
= + ∆√

1 + α2 − Y sin (φ+ c) + η sin (φτ − φ− Ω− c) . (2.52)

Finally, the time and the delay is rescaled by the factor Y
√

1 + α2 and the detuning by
1

Y
√

1 + α2 . Additionally, the phase θ = φ + c = φ + arctan (α), the feedback strength

χ = η

Y
and the feedback phase ψ = Ω + c = φ+ arctan (α) are redefined. The DAE

dθ

dt
= ∆− sin (θ) + χ sin (θτ − θ − ψ) := f(θ, θτ ) (2.1 revisited)

is obtained. It is a scalar nonlinear DDE with the three control parameters detuning ∆,
feedback strength χ and additional phase ψ, which is added to the feedback, and fixed
single delay of length τ .

2.6.2. Analysis of Steady States

The previous theoretical study of the DAE investigated the steady states and their
stability in [Mun19] which is published in [MJG20]. As the steady states build the
background of periodic solutions containing LSs, the analysis is briefly reproduced. The
theoretical background of the analysis is provided in section 2.4.1.
Applying the conditions for steady states given in eq. (2.13) and eq. (2.14) to eq. (2.1)
leads to steady states for ∆− χ sin (ψ) ∈ [−1, 1]:

θs = arcsin (∆− χ sin (ψ)) + 2πn n ∈ Z (2.53)

θu = π − arcsin (∆− χ sin (ψ)) + 2πn n ∈ Z. (2.54)

The steady states collide where θs = θu leading to bifurcation points at the boundaries

∆±sn = ±1 + χ sin (ψ) . (2.55)

The stability of the steady states is determined by the Lyapunov exponents λ which
have the form of eq. (2.17). Inserting eq. (2.1) into eq. (2.18) and eq. (2.19), respectively
results in the coefficients

A = − cos (θs,u)− χ cos (ψ) , (2.56)

B = χ cos (ψ) . (2.57)

In case of no feedback χ = 0, the DAE provided in eq. (2.1) reduces to the Adler Equation
given in eq. (2.6) which is used for the explanation of excitability in section 2.2. The
Lyapunov coefficients of the steady states reduce to

λs,u = − cos(θs,u). (2.58)
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Therefore, stable steady states θs ∈ [−π2 + 2πn, π2 + 2πn] and θu ∈ [π2 + 2πn, 3π
2 + 2πn]

with n ∈ Z are identified as stable and unstable steady states, respectively. Thus, the
bifurcation points where θs = θu are identified as a saddle-node bifurcations for the Adler
and for DAE. A schematic of the flow diagram for the Adler Equation with |∆| < 1 is
given in fig. 2.2.
The stability of the steady states cannot be determined analytically in case of feedback
χ 6= 0. However, the relation eq. (2.25) which describes the quasi continuous spectrum is
valid in the long delay limit. The maximum of the real part α of this equation is obtained
for a vanishing imaginary part β. Thus, the instability of the steady states is obtained
for α = 0 and β = 0. The type of the occurring bifurcation corresponds to a saddle-node
or a Andronov-Hopf bifurcation depending on the leading discrete eigenvalues λ which
are real or a set of complex conjugates, respectively. The first kind results in the borders
of stability given in eq. (2.55) and the latter kind in

∆±s = ±
√

1− 4χ2 cos2 (ψ) + χ sin (ψ) cos (ψ) < 0 (2.59)

∆±u = ±
√

1− 4χ2 cos2 (ψ) + χ sin (ψ) cos (ψ) > 0. (2.60)

2.6.3. Analysis of Periodic Solutions containing a LS

The DAE is especially interesting because of its capability to produce periodic solutions
which contain LSs as they open a field of applications in optical communication networks.
Those solutions are superpositions of the stable steady state as background and 2π-shifts
corresponding to the kinks. Those kinds of solutions gain additional stability from the
topology of the 2π-periodic phase space. While this thesis focuses on in the interaction
between LSs in periodic solutions and the control of LSs in periodic solutions, an analysis
of periodic solutions in the DAE in general is performed in [Mun19] and [MJG20]. The
basic results are recalled as they are necessary for this work.
Two types of periodic solutions are produced by the DAE. Oscillating solutions are
defined as non-constant periodic solutions which do not perform a 2π-shift. They do
not contain a LS. Those solutions arise from the steady states via a Hopf bifurcation.
Rotating solutions are periodic solutions containing at least one 2π-shift. This thesis
concentrates on these kinds of solutions. A continuation of one branch of steady states,
oscillating and rotating periodic solutions indicates that the rotating solutions emerge
from the unstable steady states via a global bifurcation. The continued branches are
shown in fig. 2.5. The scaling of the periods of the rotating solutions close to the global
bifurcation suggests a connection via an homoclinic orbit. For a more detailed analysis
of fig. 2.5 and the global bifurcation see [MJG20].
The analysis of the stability of periodic solutions in general is explained in section 2.4.2.
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Figure 2.5: Continuation in τ of steady states, oscillating periodic solutions and rotating
periodic solutions of eq. (2.1) for the parameter set: ∆ = 0.7, χ = 1.0, ψ = 2, 84.
Q = δθ

2π
τ

T
is chosen as a measure since it corresponds to the amplitude of the oscillation

of the solution in one delay τ normalized with respect to one 2π-shift and to the period
T . Blue lines and red lines correspond to stable and unstable solutions, respectively.

2.7. Interaction Between LSs Described by the Equation of Motion – EOM

The co-moving reference frame is explained in section 2.1 and an example is presented
in fig. 2.1. It indicates that time evolutions, which contain LSs, are described well by the
position (of the center) of the LSs 0 < x(r) < T̃ in the round trip r in the representation
of the co-moving reference frame with respect to a round trip length T̃ . An ODE for
the evolution of the positions x(r) of the LSs of the DAE is derived in [Mun19] and
[MJG20]. It is called the EOM for the system. Additionally, an EOM is derived the
PDE that corresponds to the DAE in [Gar+15]. The derivation of the EOM for the
DAE is revisited in the following, as it is investigated further in this thesis.

2.7.1. Ansatz for a Periodic Solution Containing LSs

Periodic solutions containing i = 1, ..., n kinks are superpositions of the stable steady
state θs and n stable orbits θ̃i,r = θ̃i,r(t−xi(r)−rT̃ ) from 0 to 2π centered around xi(r).
Hence, they are written as

θ(t) = θs + θ̃LSs = θs +
∑
i

∑
r

θ̃i,r(t− xi(r)− rT̃ ) (2.61)

where θ̃LSs describes the 2π-shifts of the LSs. Inserting eq. (2.61) into eq. (2.1) leads to

d
(
θs + θ̃LSs

)
(t)

dt
= ˙̃θLSs(t) = F

(
θ̃LSs(t), θ̃LSs(t− τ)

)
= ∆− sin

(
θs + θ̃LSs(t)

)
+ χ sin

(
θ̃LSs(t− τ)− θ̃LSs(t)− ψ

)
. (2.62)

In a sufficient distance to the LS, the shape of a kink leaving (t < xi(r) + rT̃ ) and
entering (t > xi(r)+rT̃ ) the stable steady state can be approximated by a superposition
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Figure 2.6: Result of a DNS of the DAE after the transient for the parameter set:
∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8. (Black) Extracted part of the
time evolution of mod (θ(t), 2π) of a periodic solution which contains two kinks where
(dotted-black) the end of each period of length T ≈ 104.80 is marked. Blue and red
dotted lines correspond to the stable and unstable steady state, respectively. The y-axis
is rescaled in (b) to focus on the exponential tails of the LSs.

of exponential tails

θ̃i,r(t− xi(r)− rT̃ )

=

 <
(∑

j f
(j)
− exp

(
σ

(j)
−
(
t− xi(r)− rT̃

)))
for t < xi(r) + rT̃

2π+ <
(∑

j f
(j)
+ exp

(
σ

(j)
+
(
t− xi(r)− rT̃

)))
for t > xi(r) + rT̃

(2.63)

with eigenvalues σ(j)
± ∈ C and corresponding eigenvectors f (j)

± ∈ C. Complex eigenvalues
σ

(j)
± lead to oscillating tails and real eigenvalues to monotonic tails. An example for the

oscillating tails of the LSs is shown in fig. 2.6. Moreover, f (j)
± = 0 ∀j : <

(
σ

(j)
±
)
≷ 0 is

required, since a LS is a bounded structure. Sufficiently far from the kink, the exponential
tails in eq. (2.63) are characterized by the term with the highest negative (lowest positive)
real part of the eigenvalue σ(j)

− = σ− (σ(j)
+ = σ+) and the corresponding eigenvector

f
(j)
− = f− (f (j)

+ = f+). Using this approximation eq. (2.63) reduces to

θ̃i,r(t− xi(r)− rT̃ )

=

 <
(
f− exp

(
σ−
(
t− xi(r)− rT̃

)))
for t < xi(r) + rT̃

2π+ <
(
f+ exp

(
σ+
(
t− xi(r)− rT̃

)))
for t > xi(r) + rT̃ .

(2.64)

2.7.2. Derivation of σ± via an Eigenvalue Problem

The impact of a LSs, which is sufficient far away, on θ(t) in eq. (2.61) is neglectable
due to the exponential tails of the kinks. Hence, a periodic solution containing one LSs
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θ̃LSs = θ̃ has the form

θ(t) = θs + θ̃(t− x) = θs + <
(
f± exp

(
σ±
(
t− x(r)− rT̃

)))
(2.65)

where r ∈ N is chosen such that
∣∣∣t− x(r)− rT̃

∣∣∣ is minimal. In the following, r′ ∈ N is

chosen similarly such that
∣∣∣t− x(r′)− r′T̃ − τ

∣∣∣ is minimal. For T̃ close to T , r′ is usually
found to be r − 1. The structure is similar to eq. (2.15) and therefore leads to a similar
eigenvalue problem as in eq. (2.16)

σ±f± exp
(
σ±
(
t− x(r)− rT̃

))
= ∂F

∂θ̃(t)

(
θ̃(t), θ̃(t− τ)

)
f± exp

(
σ±
(
t− x(r)− rT̃

))
+ ∂F

∂θ̃(t− τ)

(
θ̃(t), θ̃(t− τ)

)
f± exp

(
σ±
(
t− x(r′)− r′T̃ − τ

))
. (2.66)

This derivation focuses on periodic solutions θ(t). The period T = τ+s is defined via the
drift of the solution s with respect to the delay τ . Hence, the term in brackets in the last
exponent is written as t−x(r′)−r′T̃ −τ = t−x(r)−rT̃ +x(r)−x(r′)+(r−r′)T̃ +s−T .
x(r) − x(r′) + (r − r′)T̃ is identified as the period T , since x(r) − x(r′) corresponds to
the mismatch between T and T̃ . Therefore, the term in brackets in the last exponent
reduces to t− x(r)− rT̃ + s. Similarly to eq. (2.17), the final eigenvalue problem reads

σ± = A+B exp (σ±s) (2.67)

with the same constantsA andB given in eq. (2.18) and eq. (2.19), respectively. Similarly
to the calculation in section 2.6.2

σ+ = 1
s

(As−W0 (−Bs exp (As))) (2.68)

and

σ− = 1
s

(As−W−1 (−Bs exp (As))) (2.69)

are obtained. The eigenvalue problem and therefore σ± is independent of the choice of
the folding parameter for the co-moving reference frame T̃ , but on the actual period
T = τ + s. Note that the period T of a periodic solution containing LSs cannot be
calculated analytically but with numerical methods as DNSs or DDE-BIFTOOL only.

2.7.3. Derivation of the Adjoint Problem Leading to the EOM

Periodic solutions containing two LSs may be written as θ̃LSs = θ̃1 + θ̃2. Each of the
i = 1, 2 kinks is a solution of eq. (2.62) for a single LS, ˙̃θi(t) = F

(
θ̃i(t), θ̃i(t− τ)

)
. Hence,
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the left hand side of eq. (2.62) reads

d
(
θs + θ̃1(t− x1) + θ̃2(t− x2)

)
dt

= (1− ẋ1) ˙̃θ1(t) + (1− ẋ2) ˙̃θ2(t)

=− ẋ1
˙̃θ1(t)− ẋ2

˙̃θ2(t) + ˙̃θ1(t)

+ F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
. (2.70)

In the vicinity of the second LS the right hand side of eq. (2.62) is approximated around
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
:

F
(
θ̃1(t− x1) + θ̃2(t− x2), θ̃1(t− x1 − τ) + θ̃2(t− x2 − τ)

)
' F

(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
+ θ̃1(t− x1) ∂

∂θ̃LSs(t)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
+ θ̃1(t− x1 − τ) ∂

∂θ̃LSs(t− τ)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
. (2.71)

Combining eq. (2.70) and eq. (2.71) results in

−ẋ1
˙̃θ1(t)− ẋ2

˙̃θ2(t) =− ˙̃θ1(t) + θ̃1(t− x1) ∂

∂θ̃LSs(t)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
+ θ̃1(t− x1 − τ) ∂

∂θ̃LSs(t− τ)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
=θ̃1(t− x1)

(
−σ± + ∂

∂θ̃LSs(t)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

))

+ θ̃1(t− x1 − τ) ∂

∂θ̃LSs(t− τ)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

)
=<

(
f± exp

(
σ±
(
t− x1(r)− rT̃

))
(
−σ± + ∂

∂θ̃LSs(t)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

))
+f± exp

(
σ±
(
t− x1(r′)− r′T̃ − τ

))
∂

∂θ̃LSs(t− τ)
F
(
θ̃2(t− x2), θ̃2(t− τ − x2)

))
(2.72)

since ˙̃θi,r(t) = σ±θ̃i,r(t) is obtained from eq. (2.65). The following steps on projecting
eq. (2.72) onto the neutral mode of the adjoint problem and simplifications which are
performed in advance are explained in [MJG20].

2.7.4. General Form of the EOM

The adjoint problem leads to the EOM for a periodic solution containing two kinks
[MJG20]. This result is generalized to a periodic solution containing i = 1, ..., n suffi-
ciently separated LSs. The time evolutions of the positions of the LSs are given by the
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ODE

ẋi(r) = <
(
F+ exp

(
σ+D

(i)
− (r)

)
+ F− exp

(
−σ−D(i)

+ (r)
))

(2.73)

where 0 ≤ D
(i)
+ (r) = xnext − xi(r) ≤ T (0 ≤ D

(i)
− (r) = xi(r) − xprevious ≤ T ) is the

distance from the i-th LSs xi(r) to the next xnext = x(i mod n)+1 (r + ((i+ 1) > n)) +
((i+ 1) > n) T̃ (previous xprevious = x((i−2) mod n)+1 (r − ((i− 1) < 1))) LSs and σ± ∈ C

are constants given by the eigenvalue problem in eq. (2.67). The constants F± ∈ C are
defined as

F± =
∫∞
−∞

˙̃θ†(y) exp (σ±y)
[
∂F
∂θ̃

(
θ̃, θ̃τ

)
− σ± + exp (σ±s) ∂F

∂θ̃τ

(
θ̃, θ̃τ

)]
dy∫∞

∞
˙̃θ†(y) ˙̃θ(y)dy

f±. (2.74)

The distances D± do not depend on the chosen folding parameter T̃ .

2.8. The DAE with Periodic Potential Built Up Component by Component

The phenomenon of synchronization is explained in section 2.3 using the example of a
quasilinear oscillator with additional external periodic forcing. The DAE with periodic
potential may be regarded as multiple nested systems in which synchronization occurs.
Therefore, the equation is built up term by term in the following.
The general Adler Equation without feedback (χ = 0) and without potential (A = 0)
written in eq. (2.6) describes the phase difference between two oscillators. In this study
those oscillators correspond to the two lasers – master and slave laser in fig. 2.4. The
master laser can be regarded as an external periodic force to the slave laser. Hence, the
phase of the slave laser is locked for weak detuning |∆| < 1 to the phase of the master
laser. In this case synchronization is observed, which corresponds to the fixed points in
the flow diagram shown in fig. 2.2 that are given by eq. (2.53) and eq. (2.54) for χ = 0.
Additionally, this system is excitable as mentioned in section 2.2.
This locked system as a whole may be regarded as an emitting laser and therefore as an
oscillator as well. It is extended by the feedback loop for χ 6= 0. As the slave laser was
previously fed with the beam of the master laser, this (locked) laser is fed with its own
delayed beam. Since the system is similar to the previous system of slave and master
laser, because it is an emitting laser with an additional input beam, the dynamics of the
phase difference between the two beams in the system is again described by a modified
Adler Equation. Hence, it can be regarded as a system of two nested Adler equations.
A modification is necessary since the input beam is not coming from an external master
laser, but is the delayed emitted beam returning from the feedback loop. However, the
complete system so far can be described by the DAE eq. (2.1). The steady states of
the general Adler equation still exist, but are modified as well which can be seen in
eq. (2.53) and eq. (2.54) for χ 6= 0. Additionally, periodic solutions with LSs occur.
Those solutions are the result of periodic excitations of the system. As periodic objects,
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they can be described by periodic motions as the result of an harmonic oscillator.
As a next step of the experimental investigation of a system which is described by
the DAE [Gar+15], an additional periodic potential is introduced to the experimental
setup [Gar+17]. This external periodic potential is meant to work on the periodic
solutions containing a LS which can be described similarly to the solutions of an harmonic
oscillator. Thus, again a system is created where synchronization can be observed. The
setting may also be regarded as a stationary potential (with respect to its own period)
which acts on a particle (here the LSs), since it is observed that the periodic potential
acts as a master clock to the (multiple) LSs which are trapped in the potential.
The DAE with periodic potential is given in eq. (4.1). In general, the similarities between
PDEs and DDEs which are mentioned in section 2.1 lead to a similar framework for the
analysis of both kinds of differential equations. Additionally, a corresponding PDE to
the DAE with periodic potential exists. It is investigated in [Gar+17]. Synchronization
between the potential and a periodic solution of multiple LSs is observed experimentally
and validated via DNSs.
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3. Interaction of LSs in the DAE

Interactions between LSs of the DAE are experimentally observed in [Gar+15] and
theoretically investigated with the model described by the EOM which is derived in
section 2.7. The understanding, description and control of LSs and therefore of their
interaction is important in order to use the advantages of topological LSs in applications
in optical communication systems and optical memories. Especially the interaction of
multiple LSs which are stored in one delay time τ is interesting for such applications.
Hence, a new method to obtain the important values F± is investigated for solutions
containing two LSs to improve the predictions about the dynamics made by the EOM.
Additionally, the impact of the delay time τ on the difference between these two LSs is
explored.

3.1. Simulations of the Dynamics via DNSs of the EOM

The output of the EOM is compared to results obtained with the DNSs of the DAE
for different parameter sets in [Mun19] and [MJG20]. Both methods are compared us-
ing periodic solutions with two LSs. The coefficients σ± and F± are calculated using
eq. (2.68), eq. (2.69) and eq. (2.74). The ODE given in eq. (2.73) is reduced to the term
related to the smaller distance min

(
Di

+, D
i
−
)
.

For some parameter sets both methods lead to similar time evolutions which indicates
that the dynamics of LSs might be obtainable via the EOM. Nevertheless, for other
parameter sets a significant mismatch between both methods is reported, especially in
the transients before converging to a final distance. The calculation of the dynamics
of a periodic solution containing LSs via DNS of the ODE of the EOM (eq. (2.73)) re-
duces calculation time and memory costs significantly compared to the DNSs of the DAE
(eq. (2.1)). All in all, it illustrates the EOM as a promising model for the calculation
of dynamics of the DAE where further improvements need to be made. Therefore, this
thesis focuses on options how the use of the equation of the motion may be implemented
such that the mismatch to the dynamics calculated from the DAE reduces.
The parameters ∆ = 0.49, ψ = 2.1, χ = 0.99 and τ = 100 are chosen as this parameter
set corresponds to one which was investigated in [Mun19] and [MJG20] for the compar-
ison between the output of the EOM and the results of the DNSs of the DAE. The final
distances which are obtained after hundreds of round trips with both models match for
starting distances between 10 and 35. However, the evolutions over the round trips of
those distances – until the final distance is reached – does not match. The mismatch is
explained through the chosen parameter set which is in the vicinity of a period doubling
regime for a periodic solution containing one kink. A precursor of the period-doubling
instability is presented in fig. 3.1. According to [MJG20], the period-2 orbit modifies the
interaction which leads to the mismatch in the transient. However, fig. 2.6 shows that
periodic solutions containing two kinks do not show signs of a period-2 orbit. There-
fore, the calculation of F± via eq. (2.74), which uses the periodic solution of the DAE
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Figure 3.1: Result of the DNSs of the DAE after the transient for the parameter set:
∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8. (Black) Part of the time
evolution of mod (θ(t), 2π) of a periodic solution which contains one kink where (dotted-
black) the end of each period of length T ≈ 104.80 is marked. Blue and red dotted lines
correspond to the stable and unstable steady state, respectively. The y-axis is rescaled
in (b) to focus on the period-2 orbit of the solution.

containing one kink has a structural disadvantage. Instead of a calculation of F± via
eq. (2.74) using an algorithm implemented in DDE-BIFTOOL, as in [Mun19] and [MJG20],
this study fits those values from solutions which are obtained via DNSs of eq. (2.1).

3.1.1. Periodic Solutions Containing Two LSs

This thesis focuses on periodic solutions containing two LSs. Hence, eq. (2.73) reads

ẋ1(r) = <
(
F+ exp

(
σ+D

(1)
−
)

+ F− exp
(
−σ−D(1)

+
))

(3.1)

and

ẋ2(r) = <
(
F+ exp

(
σ+D

(2)
−
)

+ F− exp
(
−σ−D(2)

+
))

(3.2)

for two LSs. Moreover, the relations D(i)
+ (r) + D

(i)
− (r) = T and D

(1,2)
± (r) = D

(2,1)
∓ (r)

apply ∀r, i. Additionally, the minimal distance between the LSs is defined as

0 ≤ D(r) = min
(
D

(1,2)
− (r), D(1,2)

+ (r)
)

= min (|x2(r)− x1(r)| , T − |x2(r)− x1(r)|) ≤ T

2 (3.3)

and the sum of the positions of both LSs is inductively defined as

S(r) =


x1(r) + x2(r) + T if x1(r) + x2(r)− S(r − 1) ≈ −T
x1(r) + x2(r)− T if x1(r) + x2(r)− S(r − 1) ≈ T
x1(r) + x2(r) else.

(3.4)
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Despite the minimal and absolute value terms, eq. (3.3) still results in a continuous
evolution of D(r). The derivative of the minimal distance Ḋ(r) is given by

Ḋ(r) = (ẋ2(r)− ẋ1(r))
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Theoretically, a distance is constant over round trips if Ḋ != 0. Among others, this
condition is fulfilled for D − T

2 = 0 which is independent of σ± and F±, as eq. (3.6)
indicates. It corresponds to a periodic solution containing two LSs which are separated by
T

2 . Note that σ± ∈ C and hence the sinh-functions in eq. (3.6) have complex arguments,
in general.
Similarly to the Ḋ(r), Ṡ(r) is obtained. It reads

Ṡ(r) =< (F+ (exp (σ+ (T −D)) + exp (σ+D))

+F− (exp (−σ− (T −D)) + exp (−σ−D))) (3.7)
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(3.8)

in the final forms. Equation (3.8) shows that D = T

2 does not lead to Ṡ = 0 in general.
An example of the evolution of D(r) and S(r) for a periodic solution that contains two
LSs is given in fig. 3.2. The evolution is visualized in the co-moving reference frame with
respect to two different folding parameters T̃ . It shows that the evolution of S(r) and
hence also Ṡ(r) is dependent on the chosen folding parameter T̃ . The minimal distance
D(r) between the kinks, however, is constant in both cases and therefore Ḋ(r) = 0 is
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Figure 3.2: Example for the evolution of (green) the positions of the LSs xi(r), (purple)
the distance between both kinks D(r) defined in eq. (3.3) and (magenta) the sum of the
positions of both LSs S(r) given by eq. (3.4). (A) T̃ = T ≈ 104.80 and (b) T̃ ≈ 104.79
is chosen as the folding parameter for the co-moving reference frame. It is marked by
the dotted black line. The example is extracted from the result of a DNS of the DAE
for the parameter set: ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8.

obtained in both cases. It indicates that D(r) and especially Ḋ(r) is a more reliable
parameter than Ṡ since it is less dependent on the folding parameter.

3.1.2. Overview of the Investigated Data

101 long time DNSs of periodic solutions containing initially two LSs at different dis-
tances are calculated until tend = 50000τ for the parameters ∆ = 0.49, ψ = 2.1,
χ = 0.99, τ = 100 and ε = 1× 10−8. The initial kinks are placed in such a way
that D(1)

+ (r = 0) = D
(2)
− (r = 0) = T − D(1)

− (r = 0) = T − D(2)
+ (r = 0) ∈ [0, τ = 100].

The initial conditions are produced using the analytical ansatz which is described in
section 2.5.1. 82 out of the 101 simulations lead to periodic solutions which contain two
LSs. In the other 19 cases, the LSs are initially too close to each other such that they
collide and one LS gets destroyed leading to a periodic solution with one kink. Since
this study focuses on the interaction between LSs, the 82 simulations are further inves-
tigated.
The periods T of the periodic solutions are calculated for each simulation individu-
ally via auto-correlation of the last 500 delay times τ . The calculated periods of
the 82 simulations lie inside the interval [Tmean − 0.88× 10−4, Tmean + 2.12× 10−4].
The mean period is Tmean = 104.796184 with a standard deviation of 1.37× 10−4.
The period of all 19 periodic solutions containing one LS after a few round trips is
T0 = T0mean = 104.786486 = Tmean − 96.98× 10−4 with a standard deviation of 0. The
distances between the LSs D(r) in eq. (3.3) and the sums of the positions of the LSs
S(r) in eq. (3.4) are determined using the individually calculated periods. The mean
period of the 82 simulations leading to solutions, which contain two kinks, Tmean, is
used for all other calculations and simulations. Therefore, s = Tmean − τ ≈ 4.796184 is



3. Interaction of LSs in the DAE 33

Figure 3.3: Result of (grey-scaled color-plot) a DNS of the DAE, (green) the calculated
positions of the LSs xi(r), (purple) the distance between both LSs D(r) and (magenta)
the sum of the positions of both LSs S(r) in the co-moving reference frame with respect
to (dotted black) the period T ≈ 104.80 for the parameter set: ∆ = 0.49, ψ = 2.1,
χ = 0.99, τ = 100 and ε = 1× 10−8. The dynamics of the LSs is well described by the
calculated positions of the LSs.

Table 3.1: Overview of the final distances obtained in the DNSs of the DAE. The
mean value Dmean = Dmean(r → ∞), the standard deviation Dstd = Dstd(r → ∞),
the difference to between the maximal and the mean value Dmax −Dmean = Dmax(r →
∞)−Dmean(r →∞) and the difference between the mean and the minimal value Dmean−
Dmin = Dmean(r →∞)−Dmin(r →∞) are provided.

Dmean Dstd Dmax −Dmean Dmean −Dmin

15.93 4.7× 10−2 6.7× 10−2 3.3× 10−2

22.50 1.3× 10−3 5.2× 10−4 3.4× 10−3

29.73 4.8× 10−2 6.5× 10−2 3.9× 10−2

37.10 2.0× 10−3 2.0× 10−3 2.0× 10−3

44.50 1.8× 10−3 1.8× 10−3 1.8× 10−3

52.40 3.5× 10−7 1.3× 10−7 9.2× 10−7

found. Inserting this and eqs. (2.56) and (2.57) with eq. (2.53) into eqs. (2.68) and (2.69)
results in σ+ ≈ (−0.48111 + 0i) and σ− ≈ (0.15232 + 0.85797i), respectively. Thus, the
imaginary part of F+ has no impact on eqs. (3.1), (3.2) and (3.5) and therefore on the
dynamics. Hence, it is set to 0 and F+ ∈ R is obtained.
The positions of the LSs in the co-moving reference frame with respect to the period T

of each solution are extracted and used for further investigations. One example is visu-
alized in fig. 3.3. The dynamics of the LSs is well described by the calculated positions
of the LSs in the co-moving reference frame. Additionally, the evolution of the distance
between both LSs D(r) and the sum of the positions of both LSs S(r) is shown.
The evolution of the distances D(r) of the 82 DNSs of the DAE is shown in fig. 3.4.
The dynamics are resulting in specific final distances D(r → ∞) between the kinks.
These are illustrated by the blue lines and an overview is provided in table 3.1. Dstd,
Dmax and Dmin are in an order of magnitude of expected numerical errors or lower and
therefore not significant. The final distance Dmean = 52.40 ± 4.7× 10−2 is half of the
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Figure 3.4: Evolutions of the distance D(r) defined in eq. (3.3) of 82 simulations with
initially different distances between the LSs. The simulations are calculated for the
parameters ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8. (Green) Evolution
of the distances of all 82 DNSs of eq. (2.1), (lime) part of these which are used for the
fitting of F± and (blue) final distances which are reached after several round trips. An
overview of these distances is given in table 3.1.

mean period Tmean = 104.796184±1.37× 10−4 as expected through eq. (3.6). Moreover,
note that the final distances are not equidistantly separated, as 22.50−15.93 = 6.57 and
52.40− 44.50 = 7.9. However, the difference between the final distances Dmean increases
for increasing distances.
The dynamics of the distance D(r) is approximated by the ODE given in eq. (3.5).
Thus, the evolution of the distance at r > r0 is determined by the distance D1(r0) at
r = r0, as explained in section 2.1. However, it is independent of dynamics before r0.
The evolution of a distance D0(r0) 6= D1(r0), which passes by the initial distance of
D1 at a later round trip r1 > r0 (D0(r1) = D1(r0)), is identical to the evolution of
D1 for r > r1. Hence, the evolution D0 contains all information of D1 in addition to
the information of the evolution for r0 < r < r1. Therefore, the information of the 82
evolutions shown in fig. 3.4 are included in eleven simulations which are highlighted in
a lime color. These evolutions are used for the determination of F±. Moreover, the lime
color indicates which part of the dynamics are taken into account. In general, it is the
first part until the final distance is reached, however, a minimum of 0 < r < 200 round
trips are considered. For the evaluation of the derivative Ḋ(r), a running average over
100 round trips of the difference D(r) is used.
Figure 3.4 shows that the dynamics at higher distances take more round trips r to reach
their corresponding final distances and is therefore slower. Hence, the impact of the
interaction is decreasing for increasing distance.
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Figure 3.5: Ḋ-D-plane of (lime) the in fig. 3.4 highlighted DNSs of the DAE for the
parameters ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8, (blue) the final
distances, which are given in table 3.1, and (black) the fit of eq. (3.5) for F± through the
data with σ+ ≈ (−0.48111 + 0i) and σ− ≈ (0.15232 + 0.85797i). The fitted parameters
are F+ = 163.46± 0.37 and F− = ((−0.5638± 0.0014) + (1.2880± 0.0021)i).

3.1.3. Determination of F±

As already mentioned previously, this study does not determine F± through eq. (2.74)
as in [Mun19] and [MJG20], but through fitting the output of the DNSs of the DAE
with eq. (3.5). Hence, the data of the highlighted simulations in fig. 3.4 is visualized
in the Ḋ-D-plane in fig. 3.5. Ḋ(r) oscillates with decreasing amplitude for increas-
ing distances D(r) again indicating a decreasing impact of the interaction for increas-
ing distances. Ḋ(r) = 0 is obtained at the distances, that correspond to the final
distances, which are discussed with the help of fig. 3.4 and table 3.1. This behav-
ior is expected through eq. (3.5). The fit of eq. (3.5) through the data with σ+ ≈
(−0.48111 + 0i) and σ− ≈ (0.15232 + 0.85797i) determines F+ = 163.46 ± 0.37 and
F− = ((−0.5638± 0.0014) + (1.2880± 0.0021)i). The fit is in good agreement with the
data, especially at the final distances where Ḋ(r) = 0. The absolute values of the real
parts of σ± indicate that the terms in eqs. (3.1) and (3.2) related to F+ are dominant for
short distances D(1,2)

− � T

2 and terms related to F− are dominant for greater distances

D
(1,2)
+ ≈ T

2 . Hence, the dynamics for small minimal distances D(r) � T

2 is dominated
by one of the terms in eqs. (3.1) and (3.2) related to F+ and dynamics for greater minimal
distances D(r) ≈ T

2 are dominated by both terms related to F−. The order of magni-
tude of the absolute values of the fitted constants F± match to the previous observation
that fast dynamics are found for smaller distances and the slower ones are observed for
greater distances. The explained effect is illustrated in fig. 3.6. Additionally, it shows
that the terms related to F+ are dominant for D(r) . 15 and the terms related to F−
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Figure 3.6: Through eq. (3.7) calculated values of Ṡ(r) by using σ+ ≈ (−0.48111 + 0i)
and σ− ≈ (0.15232+0.85797i) and the values F+ ≈ 163.46 and F− ≈ (−0.5638+1.2880i)
fitted in fig. 3.5. The impact of both terms in eqs. (3.1) and (3.2) related to (dotted)
F+ and (dashed) F− is compared by setting F− = 0 and F+ = 0, respectively.

are dominant for D(r) & 20. Since the terms correspond to the interaction with the pre-
vious and the following kink, respectively, it also indicates that the interactions are not
reciprocal. Note that fitting F± through Ṡ(r), which is given in eq. (3.7), is not leading
to a result which describes the dynamics of the kinks as sufficient as fitting Ḋ(r). A
possible reason for this is explained in section 3.1.1 by fig. 3.2: The higher dependency
of Ṡ(r) on the folding parameter used for the co-moving reference frame compared to
Ḋ(r).

3.1.4. Simulations of the EOM Compared to Simulations of the DAE

The results of the DNSs of the DAE (eq. (2.1)) and the EOM (eqs. (3.1) and (3.2))
with the fitted parameters, which are obtained in fig. 3.5 and σ+ ≈ (−0.48111 + 0i) and
σ− ≈ (0.15232 + 0.85797i), are illustrated and compared in figs. 3.7 to 3.9. Figure 3.7
shows fig. 3.4 in addition to the results of the DNSs of the EOM. A zoomed in view of
fig. 3.7(a) is provided in fig. 3.8. Figure 3.9 compares the results of the DNSs of the
eleven initial conditions, which are used for the fit of F±, in the co-moving reference
frame. It shows that interactions are not reciprocal. Note that the individual calculated
periods and the mean period of all 82 DNSs of the DAE, Tmean = 104.796184, are used
as the folding parameter for the co-moving reference frame for the results of the DNSs
of the DAE and the EOM, respectively leading to a small mismatch between the folding
parameters.
In general, the results of the DNSs of the EOM are in good agreement to the DNSs of the
DAE. They match especially well for greater distances D(r) & 30, which is expected as
the EOM is an approximation based on great distances between the kinks. Nevertheless,
the qualitative behavior, as the overall evolutions of the distance and the final distances,
of the dynamics is still well described for D(r) & 10. However, fig. 3.9(a,b) indicates a
mismatch between the folding parameters used for the co-moving reference frame. Since
the EOM is a model which is meant to replace the numerically expensive simulations via
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(a) similar initial distances for the DNSs of the DAE and the EOM

(b) additional DNSs of the EOM with different initial distances

Figure 3.7: Added results of (orange) the DNSs of eqs. (3.1) and (3.2) with σ+ ≈
(−0.48111+0i) and σ− ≈ (0.15232+0.85797i) and the in fig. 3.5 fitted values F+ ≈ 163.46
and F− ≈ (−0.5638 + 1.2880i) to fig. 3.4 to obtain the evolutions of the distance D(r)
defined in eq. (3.3) of simulations with initially different distances between the LSs. The
parameters are ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8. (Green)
Evolution of the distances of all 82 DNSs of eq. (2.1), (lime) part of these which are
used for the fitting of F±, (blue) final distances which are reached after several round
trips. The DNSs of the EOM are started with (a) similar initial distances as the DNSs of
the DAE and (b) additional initial distances for the visualization of the range of initial
conditions approaching a specific final distance. A zoomed in view on the dynamics is
presented in fig. 3.8.
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(a) D(r →∞) ≈ 15.93 (b) D(r →∞) ≈ 22.50

(c) D(r →∞) ≈ 29.73 (d) D(r →∞) ≈ 37.10

(e) D(r →∞) ≈ 44.50 (f) D(r →∞) ≈ 52.40

Figure 3.8: Zoomed in view of fig. 3.4(a) for a better comparison of the evolution of
D(r) calculated by the DNSs of the (orange) the EOM and (green) DAE. The part of
the latter which is used for the fitting of F± is highlighted in lime and the final distances,
which are reached after several round trips, are indicated by blue lines. For the different
calculations the parameters ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8

are used for the DAE and σ+ ≈ (−0.48111 + 0i), σ− ≈ (0.15232 + 0.85797i) and the in
fig. 3.5 fitted values F+ ≈ 163.46 and F− ≈ (−0.5638 + 1.2880i) are used for the EOM.
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(a) D(r →∞)↗ 15.93 (b) D(r →∞)↘ 15.93 (c) D(r →∞)↗ 22.50

(d) D(r →∞)↘ 22.50 (e) D(r →∞)↗ 29.73 (f) D(r →∞)↘ 29.73

(g) D(r →∞)↗ 37.10 (h) D(r →∞)↘ 37.10 (i) D(r →∞)↗ 44.50

(j) D(r →∞)↘ 44.50 (k) D(r →∞)↗ 52.40

Figure 3.9: Comparison of DNSs of (lime) the DAE which are used for the fit of F± and
(orange) the EOM in the co-moving reference frame. The individually calculated period
is used as the folding parameter for the first kind of DNSs and the mean period of all
82 DNSs of the DAE, Tmean = 104.796184, for the DNSs of the EOM. For the different
calculations the parameters ∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100 and ε = 1× 10−8

are used for the DAE and σ+ ≈ (−0.48111 + 0i), σ− ≈ (0.15232 + 0.85797i) and the in
fig. 3.5 fitted values F+ ≈ 163.46 and F− ≈ (−0.5638 + 1.2880i) are used for the EOM.
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the DAE, it is not reasonable to use the individual period obtained from the result of the
corresponding DNS of the DAE, but the mean period Tmean for the DNSs of the EOM.
Those periods differ up to the order 10−4 leading to a mismatch in the order 10−2 after
100 round trips in the co-moving reference frame. Hence, the mismatch in fig. 3.9(a,b)
cannot be explained by the difference of the folding parameters, in contradiction to
the mismatch in fig. 3.9(i-k). Nevertheless, it may be explained by the impact of the
mismatch of the periods entering the DNSs of the EOM through the values of σ±, which
are determined by eqs. (2.68) and (2.69). Lower distances are not investigated as the
results of DNSs of the DAE lead to a collision of the LSs for D(r) . 10.
All in all, the results show that the approximations made in the derivation of the EOM
(section 2.7) are valid and that the model of the EOM describes the interaction between
the LSs for the given parameter set (∆ = 0.49, ψ = 2.1, χ = 0.99, τ = 100) well.
The investigated method to determine F± via fitting the results of some DNSs of the
DAE to eq. (3.5) leads to a significant improvement compared to the results obtained by
calculating F± through eq. (2.74) in [Mun19] and [MJG20] for the investigated parameter
set. An advantage of the method of fitting F± through eq. (3.5) instead of calculating
it through eq. (2.74) is that a qualitative difference in the profiles of periodic solutions
containing one and multiple LSs, as visualized by the comparison of figs. 2.6 and 3.1 due
to the period doubling regime for the solution containing one kink, does not effect the
fitting F±.

3.2. Investigation of the Final Distances at Different Delay Times

The interaction between the LSs lead to final distances between the kinks which are
presented in table 3.1 for the parameter set ∆ = 0.49, ψ = 2.1, χ = 0.99 and τ = 100.
The dynamics of the LSs and their interaction is investigated by the EOM in section 3.1.
The following investigation looks into the dependence of final distances on the delay time
τ at the same parameter set.
Six long time DNSs of the DAE of initial conditions containing two kinks which end up
in the six final differences given in table 3.1 are used to create six branches of periodic
solutions containing two LSs with different distances. These branches are continued in
τ and the distances between the LSs with respect to the continuation parameter τ is
presented in fig. 3.10. The periodic solutions corrected by DDE-BIFTOOL at τ = 100
have the same distances between the kinks as the solutions obtained by the DNSs of
the DAE and the EOM. The distance between the kinks of one of the branches changes
linearly with the delay time τ . This branch represents the solutions with a distance of
D(r →∞) = T

2 which is analytically expected by eq. (3.6). Since the distance between
the kinks is referred to as the minimal distance between the kinks by eq. (3.3) withD(r →
∞) ≤ T

2 , no branches are found in the region D(r → ∞) > T

2 . Moreover, the stability

of the branch at D(r → ∞) = T

2 changes its stability at each point where it collides
with the other branches. The Floquet-multipliers indicate a fold or flip bifurcation, but
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Figure 3.10: Continuation in τ of branches of periodic solutions containing two LSs
at different distances D(r → ∞) for the parameters ∆ = 0.49, ψ = 2.1 and χ = 0.99.
(Blue) Stable and (red) unstable parts are distinguished. (Black) The final distances,
that are obtained from the DNSs of the DAE and given in table 3.1, are shown for a
comparison.

the bifurcation points are not investigated further. The distance between the kinks of
these branches is constant in the delay time τ and they are stable. A small oscillation
of the distance between the kinks is observed in each of these branches if it is close
to the branch at D(r → ∞) = T

2 . In this case, the branch at D(r → ∞) = T

2 is
unstable. Figure 3.10 also indicates that the general observation, of one branch being
at D(r → ∞) = T

2 and additional ones existing well separated in the distance between

the kinks with D(r → ∞) < T

2 , is independent of the delay time τ and continues for
τ > 100. Additional unstable branches might exist between – in terms of the distance
D(r → ∞) – the displayed stable branches, but as the stable branches are of more
interest for possible applications, these are not explored.
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4. DAE with Periodic Potential

Synchronization between a periodic potential and multiple LSs in periodic solutions is
observed experimentally for the corresponding PDE with periodic potential [Gar+17]. It
is a promising property for applications in optical communication networks as it presents
an opportunity to control the multiple LSs inside one domain. For such applications the
impact of the potential on a LS in a periodic solution and the observed phenomena
of synchronization needs to be understood. A detailed analysis from a theoretical and
numerical point of view was not performed yet.
The following chapter investigates how the additional external periodic potential in-
fluences the dynamics of the system, especially of solutions containing one LS, from a
theoretical and numerical point of view. The impact of the potential on the steady
states is discussed. Additionally, the trapping of LSs by the potential, that is observed
in [Gar+17], is explored in detail for periodic solutions which contain one kink. The
conditions and borders of this kind of synchronization is analyzed. Moreover, the influ-
ence on the position of the LS with respect to the minima of the potential is examined
as the periodic potential might be a tool to control the dynamics of LSs. Moreover, the
investigation is extended to periodic solutions containing two LSs.

4.1. Extended Model Equation

The periodic potential is added to eq. (2.1) in a similar way as to the corresponding
PDE in [Gar+17]. The DAE with periodic potential reads

dθ

dt
= ∆− sin (θ +A cos (ωt)) + χ sin (θτ − θ − ψ) . (4.1)

The periodic potential of amplitude A and frequency ω is given by ϕ(t) = A cos (ωt)
resulting in the period T = 2π

ω
. The latter is used as the folding parameter T̃ = T for

the visualization in the co-moving reference frame in the following. The other parameters
correspond to the parameters in eq. (2.1) and are explained in section 2.6.1. The periodic
potential vanishes for amplitude A = 0 and the DAE as written in eq. (2.1) is reobtained.
The DAE with periodic potential is a non-autonomous DDE, since the potential depends
directly on the independent variable t. The continuation tool DDE-BIFTOOL, however,
requires the investigated system to be autonomous. Therefore, the DAE with periodic
potential is written as an autonomous system using the variable z = ωt. Additionally,
the variable z0 and an extra condition is introduced for the analysis of the system with
DDE-BIFTOOL to obtain a stationary periodic potential. This means that the first value
of the profile in each point of a branch corresponds to the value of the periodic potential
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ϕ = A. All in all, the equivalent system used for the analysis with DDE-BIFTOOL reads

dθ

dt
= ∆− sin (θ +A cos (z − z0)) + χ sin (θτ − θ − ψ)

dz

dt
= ω

where z − z0
!= 0 for the first value of the profile in each periodic solution.

(4.2)

4.2. From Steady States to Quasi-Steady-States

Equation (2.13) is a necessary condition for steady states which is not fulfilled for any
set of parameters for the DAE with periodic potential, due to the continuous changing
potential in time. However, if the phase θ changes fast compared to the potential ϕ,
it is assumed that the system undergoes its changes in the phase θ due to the evolving
potential ϕ by passing by the equilibrium states of the system for each value of the
potential ϕ as in thermodynamics. Resulting in a phase θ(t) at time t which corresponds
to a steady state of the same system, but with a potential of a constant value ϕ(t) = ϕc =
const. This state of the system will be called quasi-steady-state. The condition for the
steady states in eq. (2.13) holds for each quasi-steady-state where the potential is set to a
constant value ϕ(t) = ϕc = const. For a vanishing potential of no amplitude A the quasi-
steady-states correspond to the steady states of the DAE written in eq. (2.1). As long
as the phase θ follows the relatively slow potential ϕ immediately, the system passes
infinitely many of those quasi-steady-states. The parameter sets in this investigation
hold the condition of a relatively slow potential which is called quasi-steady-state-limit.
At a later point, the definition of a distance 0 ≤ d ≤ π between steady states θs,u
determined in section 2.6.2 will turn out as a useful quantity. Hence, it is introduced as

d = min (|θs − θu|)

=

π + 2 arcsin (∆− χ sin (ψ)) for ∆− χ sin (ψ) ∈ [−1, 0]

π − 2 arcsin (∆− χ sin (ψ)) for ∆− χ sin (ψ) ∈ [0, 1]
(4.3)

4.2.1. Without Feedback χ = 0

The periodic potential ϕ(t) can be replaced by the constant value ϕc in the quasi-steady-
state-limit. Applying eq. (2.13) as the condition for quasi-steady-states in this limit to
the DAE with periodic potential for χ = 0 and ϕ(t) = ϕc = const leads to the quasi-
steady-states

θqs = arcsin (∆)− ϕc + 2πn n ∈ Z (4.4)

θqu = π − arcsin (∆)− ϕc + 2πn n ∈ Z. (4.5)

The quasi-steady-states which are passed by the system in one period of the potential
are obtained by inserting different values of ϕc ∈ [−A,A] to the equations. For this
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Figure 4.1: Result of a DNS for the parameter set: ∆ = 0, χ = 0, ψ = 0, τ = 50,
ε = 1× 10−8, A = π

4 and ω = 2π
500. Time evolution of (orange) the phase θ(t), (blue)

the quasi-steady-state θqs and (purple) the potential ϕ(t) of the last three calculated
periods. θ(t) oscillates with amplitude A and frequency ω in antiphase to the periodic
potential ϕ(t) around the corresponding stable steady state θs = 0. θ(t) is sufficiently
well described by the stable quasi-steady-state θqs given by eq. (4.4) at the corresponding
time. This parameter set is clearly in the quasi-steady-state limit.

reason the quasi-steady-states θqs and θqu oscillate with amplitude A and frequency ω

in antiphase to the periodic potential around the corresponding steady state θs or θu
obtained with eq. (2.53) or eq. (2.54) (without periodic potential), respectively. The
results of the DNS presented in fig. 4.1 show that the oscillation of θ(t) follows the
quasi-steady-state θqs. Therefore, a period T = 500 of the potential is in the quasi-
steady-state limit. The shorter the period of the potential T becomes, the faster evolves
the potential. Hence, the phase θ(t) follows the quasi-steady-states with an increasing
delay and decreasing amplitude for decreasing periods T . At one point the approximation
that the system passes its equilibrium states holds no longer because the phase θ(t) does
not evolve fast enough anymore. The system is not in quasi-steady-state limit beyond
that point.
A tiny delay between θqs and θ(t) is indicated in fig. 4.2. Nevertheless, θ(t) is still
sufficiently well described by the stable quasi-steady-state θqs for T = 50. This value
for the period is mainly used in the following results, where the approximation that θ(t)
follows the states of θqs, given by eq. (4.4), applies.
The increasing delay between θ(t) and θqs is illustrated in fig. 4.3 for the period of the
potential T = 1. θ(t) and the quasi-steady-states are oscillating with the frequency ω

of the potential. However, the oscillation of θ(t) is almost π

2 behind the oscillation of
the quasi-steady-states and its amplitude is smaller. Therefore, an approximation of the
oscillation of θ(t) through the stable quasi-stable-state is not useful for periods of the
potential of the magnitude T ≈ 1 or less.
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Figure 4.2: Result of a DNS for the parameter set: ∆ = 0, χ = 0, ψ = 0, τ = 50,
ε = 1× 10−8, A = π

4 and ω = 2π
τ

= 2π
50 . (a) Time evolution of (orange) the phase

θ(t), (blue) the quasi-steady-state θqs and (purple) the potential ϕ(t) of the last three
calculated periods. (b) Co-moving reference frame with respect to the period T = 50.
Note that θ(t) is plotted as the grey scale instead of cos(θ). θ(t) oscillates with amplitude
A and frequency ω in antiphase to the periodic potential ϕ(t) around the corresponding
stable steady state θs = 0. Despite a tiny delay between θ(t) and θqs, θ(t) is still
sufficiently well described by the stable quasi-steady-state θqs given by eq. (4.4) at the
corresponding time. This parameter set is close to the edge of the quasi-steady-state
limit.
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Figure 4.3: Result of a DNS for the parameter set: ∆ = 0, χ = 0, ψ = 0, τ = 50,
ε = 1× 10−8, A = π

4 and ω = 2π
1 . Time evolution of (orange) the phase θ(t), (blue)

the quasi-steady-state θqs and (purple) the potential ϕ(t) of the last three calculated
periods. θ(t) oscillates with amplitude A and frequency ω but not antiphase to the
periodic potential ϕ(t) around the corresponding stable steady state θs = 0. θ(t) is not
described by the stable quasi-steady-state θqs given by eq. (4.4) at the corresponding
time. This parameter set is not in the quasi-steady-state limit.

4.2.2. With Feedback χ 6= 0

Similar to the previous calculations for χ = 0, eq. (2.13) is applied as the condition for
quasi-steady-states in the quasi-steady-state limit (ϕ(t) = ϕc = const) to the DAE with
periodic potential. Additionally, θ(t− τ) can be approximated by θ(t) for nT ≈ τ where
n ∈ N. This results in the quasi-steady-states

θqs = + arcsin (∆− χ sin (ψ))− ϕc + 2πn = θs − ϕc n ∈ Z (4.6)

θqu = π − arcsin (∆− χ sin (ψ))− ϕc + 2πn = θu − ϕc n ∈ Z. (4.7)

Figure 4.4 illustrates the results of a DNS for the same parameter set as fig. 4.2 but with
feedback χ = 1.

Nevertheless, the results are similar. θ(t) follows the states of θqs given by eq. (4.6).
The distance dq = min (|θqs − θqu|) = min (|θs − ϕc − θu + ϕc|) = min (|θs − θu|) = d

between the quasi-steady-states is identical to the distance between the steady states
which is defined in eq. (4.3), because the quasi-steady-states are parallel to each other
for different values of ϕc. This is also shown in fig. 4.4. The stability of the quasi-steady-
states is calculated in the following section.

4.2.3. Stability of Quasi-Steady-States

Since the quasi-steady-states are calculated similarly to steady states with the approxi-
mations of the quasi-steady-state limit, their stability is investigated by a linear stability
analysis as well. Therefore, the stability of the quasi-steady-states is determined by λ
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Figure 4.4: Result of a DNS for the parameter set: ∆ = 0, χ = 1, ψ = 0, τ = 50,
ε = 1× 10−8, A = π

4 and ω = 2π
τ

. (a) Time evolution of (orange) the phase θ(t), (blue)
the quasi-steady-state (dashed) θqs and (dashdotted) θqu and (purple) the potential ϕ(t)
of the last three calculated periods. (b) Co-moving reference frame with respect to the
period T = 50. Note that θ(t) is plotted as the grey scale instead of cos(θ). θ(t) oscillates
with amplitude A and frequency ω in antiphase to the periodic potential ϕ(t) around the
corresponding stable steady state θs = 0. Despite a tiny delay between θ(t) and θqs, θ(t)
is still sufficiently well described by the stable quasi-steady-state θqs given by eq. (4.6) at
the corresponding time. This parameter set is close to the edge of the quasi-steady-state
limit.
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Figure 4.5: Result of a DNS for the parameter set: ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50,
ε = 0, A = π

4 and ω = 0.12502. A 1-kink-solution is used as initial condition. Time
evolution of (orange) the phase θ(t), (blue) the quasi-steady-state θqs and (purple) the
potential ϕ(t) of the last two calculated periods. θ(t) can be split up into a background
and a 2π-shift. The background oscillates accordingly to the stable quasi-steady-state
θqs given by eq. (4.6). The 2π-shift is a LS – also called kink – which exists on the
background. Each of the plotted θqs at a given time corresponds to the same value due
to the 2π-periodicity of the phase space.

which is defined in eq. (2.17) via the constants

A = − cos (θqs,qu + θc)− χ cos (ψ) = − cos (θs,u)− χ cos (ψ) , (4.8)

B = χ cos (ψ) . (4.9)

They are obtained by applying eq. (2.18) and eq. (2.19), respectively to eq. (4.1) where
the potential is approximated by a constant ϕ(t) = ϕc in the quasi-steady-state limit.
The constants A and B are identical to the constants determined for the steady states
in eq. (2.56) and eq. (2.57), respectively. Hence, the stability of the quasi-stable-states
θqs,qu corresponds to the stability of the steady states θs,u. This fits to the previous
shown results that θ(t) is following θqs.
The oscillation of θ(t) accordingly to stable quasi-steady-state θqs builds the background
for the kink solutions of the DAE with periodic potential especially for lower amplitudes
A. An example is illustrated in fig. 4.5. θ(t) is a superposition of the stable quasi-steady-
state θqs and a repeating 2π-shift. The oscillation described by the stable quasi-steady-
state may be regarded as the background on which the kink exists. This raises the
question on conditions for the existence of kink solutions on the oscillating background
which is the topic of the following section.

4.3. Conditions for the Existence of Kinks

As mentioned in the beginning of this chapter, this thesis analyzes the dynamics of
kinks produced by the DAE with a periodic potential. Conditions for the existence of
stable 1-kink-solutions which have the same period T = 2π

ω
≈ τ as the potential are
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investigated. 1-kink-solutions are solutions which contain one 2π-shift in a time domain
of the approximated length τ or mathematically, solutions which meet the condition
|θ(t− τ − δ)− θ(t)| = 2π where |δ| � 1. The parameter sets used for the investigation
of the DAE with periodic potential are in the region T ≈ τ = 50 where the approxima-
tions of the quasi-steady-state limit hold and where the background follows the stable
quasi-steady-state θqs, as observed in section 4.2.1.
The main question for the existence of a kink is whether the kink survives several round
trips. In other words, does a 2π-shift which comes from the feedback loop produce an-
other 2π-shift also known as another excitation of the system. Therefore, it is assumed
that the feedback loop is a superposition of one 2π-shift and the oscillating background.
As explained in section 2.2, the perturbation of a system needs to cross a well-defined
threshold to excite the system. In the investigated system an excitation is a 2π-shift in
the phase θ(t) and the threshold is a perturbation which kicks the phase θ(t) just further
than the unstable steady (quasi-steady-)state. The phase θ(t) follows the stable quasi-
steady-state θqs as observed in the previous section. For that reason, the threshold is a
perturbation which kicks the phase θ(t) = θqs by the value of the distance dq between
the stable and unstable quasi-steady-state. Thus, the constant distance ds = d which is
calculated in eq. (4.3) is taken as a measure for the threshold at a given parameter set.
The reason for the perturbation of the phase θ(t) which excites the system is the kink that
is returning from the feedback loop. Its impact on the dynamics is described by the feed-
back term χ sin (θτ − θ − ψ). The assumption θ(t) ≈ θ(t − τ) for nT ≈ τ where n ∈ N

made previously to obtain the quasi-steady-states holds, except from the point when
θ(t− τ) describes the returning LS, because θ(t− τ) maps the whole phase space [0, 2π]
in a relatively short time compared to time delay τ . The argument of sin (θτ − θ − ψ)
also maps almost the whole phase space as a result. To sum up, sin (θτ − θ − ψ) is almost
constant expect when a kink is returning and it maps almost the whole interval [−1, 1].
This is independent of any parameter, in particular of ψ. The value of sin (θτ − θ − ψ) is
amplified by χ resulting the impact of a returning kink to scale with χ. For this reason,
χ is a measure of the perturbation produced by a returning kink.
All in all, two measures are obtained. d for the threshold of the strength of the perturba-
tion needed for the creation of a LS and χ as the strength of the perturbation produced
by a returning kink. The greater the distance d, the greater the feedback strength χ

needs to be in order for a kink to produce another kink and therefore survive. Note
that the creation of a kink by a returning kink is also highly dependent on the profile of
the returning kink. This must be taken into account when initial conditions are set for
DNSs.
The dependency of the survival of a kink on the feedback strength d for a given pa-
rameter set and similar initial conditions is illustrated in fig. 4.6. The initial 2π-shift
perturbs the phase θ(t), but not strong enough to produce another 2π-shift in fig. 4.6 (a)
and (b). This perturbation fades away in a few round trips taking more time for higher
feeback strength χ. The kink dies for χ = 1.5 and χ = 2.0. In fig. 4.6 (c) each from
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(a) χ = 1.5 (b) χ = 2.0

(c) χ = 3.5

Figure 4.6: Result of a DNS with an initial condition which contains one 2π-shift for
the parameter set: ∆ = 0.1, ψ = 0, τ = 50, ε = 0, A = π

4 and ω = 0.121. Note that a
2π-shift in the co-moving reference frame corresponds to passage from grey to grey via
black and white. (a), (b) The 2π-shift in the initial condition is not producing a 2π-shift
in the first round trip but a perturbation which decreases with every round trip until
fades away. This process takes a few more round trips in (b) compared to (a). (c) The
2π-shift in the initial condition excites the system and is therefore producing another
2π-shift which excites the system again leading to a surviving kink.
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Figure 4.7: Bifurcation diagram of a two parameter continuation in χ and ω (and z0)
of a fold bifurcation of a periodic 1-kink-solution for the parameter set: ψ = 0, τ = 50
and A = π

4 . These fold bifurcation are introduced in detail in section 4.4.2. Thick lines
correspond to a bifurcation between a stable and unstable solution and thin lines to
a bifurcation between two unstable solutions indicating the feedback strength χ which
is necessary to obtain a stable periodic 1-kink-solution at the given detuning ∆ which
corresponds to the distance of the quasi-steady-states d given by eq. (4.3).

the feedback loop returning kink perturbs the system above the necessary threshold and
creates another 2π-shift. Hence, the kink survives.
Different parameter sets with surviving kinks are observed in the results of DNSs. The
obtained 1-kink-solutions are then further investigated using DDE-BIFTOOL as explained
in detail in the following sections. Fold bifurcations between stable and unstable periodic
1-kink-solutions are found. Those bifurcations are continued in χ and ω. The results are
visualized in fig. 4.7. The thick lines correspond to bifurcations between a stable and
an unstable periodic 1-kink-solution and the thin lines to a bifurcations between two
unstable periodic 1-kink-solutions. The transition points between the thin and thick
lines indicate the feedback strength χ which is necessary to obtain a stable solution
with a surviving kink. The results shown in fig. 4.7 support the previously mentioned
dependency of the survival of a kink on the values for the feedback strength χ and the
distance between the quasi-steady-states d. The greater the distance d the greater the
necessary feedback strength χ for the creation of a 2π-shift by a returning kink from the
feedback loop.

4.4. Region of Synchronization and Arnold Tongue

The previous sections explain the modifications of the background of kink solutions and
conditions for the existence of kink solutions due to the additional periodic potential.
The following section focuses on the dynamics of 1-kink-solutions inside the periodic
potential. As an example the parameter set ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50 is used.
Different parameter sets are investigated afterwards.
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4.4.1. Synchronization of 1-Kink-Solutions and Periodic Potential

The results of the DNSs at different values of ω at A = π

4 illustrated in fig. 4.8 indicate
qualitatively different types of 1-kink-solutions in a periodic potential. The length of each
round trip corresponds to the period of the periodic potential T leading to a stationary
potential. As a result, the oscillation of the background is stationary as well as it follows
the quasi-steady-states which is explained in section 4.2. The simulations in (a) and
(d) represent solutions of a kink which travels with respect to the potential. This is
a qualitative difference to the simulations (b) and (c) which display stationary kinks
with respect to the potential. The kinks in the latter two simulations are travelling
to a specific position inside the potential in the beginning of the time evolution and
remain at that position. They are trapped inside the potential. The simulation at the
same parameter set but without periodic potential is illustrated in fig. 4.9. The initial
frequency of this periodic solution is found at ω0 ≈ 0.125015 which is greater than the
frequencies in fig. 4.8 (a) and (b) but less than the frequencies in (c) and (d). In fact,
these frequencies are symmetrically distributed around ω0. The kinks in the solutions
with a potential of a frequency which differs by |ω − ω0| ≈ 5× 10−6 are trapped in the
potential. The kinks in the other solutions where the frequency of the potential differs by
|ω − ω0| ≈ 15× 10−6 are not trapped. The periodic potential seems to synchronize the
frequency of the 1-kink-solution to its own frequency ω if the frequency of the potential is
in a certain interval close to the frequency ω0. Hence, the condition for synchronization
may be written as

ω ∈ [ω0 − δ−, ω0 + δ+] (4.10)

where δ− and δ+ are constants determined later. The borders of the phenomena of syn-
chronization between 1-kink-solutions and the periodic potential are further investigated
in the following section. The position of the kink with respect to the potential in the
synchronized cases seem to depend on ω since the kink is at the left side of the minimum
of the potential in fig. 4.8 (b) and at the right side in fig. 4.8 (c). The position of the
kinks with respect to the potential is also discussed in the next sections.
Furthermore, it is found that kinks of solutions with a frequency ω < ω0 − δ− of the
potential are travelling to left and kinks of solutions with a frequency ω > ω0 + δ+ are
travelling to the right. The velocity of the kinks with respect to the stationary potential
is not constant. However, the kinks move faster once they are close to the maximum of
the potential. This can also be seen in fig. 4.8. Moreover, the number of round trips a
kink needs until it travelled trough a potential depends on the difference between the
frequency of the potential and the border of the interval [ω0− δ−, ω0 + δ+]. The greater
the distance the less round trips are necessary for the kink to pass a potential. This is
shown by the comparison of fig. 4.8 (a) and (d) to fig. 4.10 (a) and (b).
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(a) ω = 0.12500 (b) ω = 0.12501

(c) ω = 0.12502 (d) ω = 0.12503

Figure 4.8: Results of a DNS with an initial condition which contains one 2π-shift for
the parameter set: ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50, ε = 0 and A = π

4 . The length of
each round trip corresponds to the period of the periodic potential T . Thus, the potential
and the oscillation of the background corresponding to the stable quasi-steady-state θqs
are stationary in those figures and the position of the kink is regarded with respect to
those. The kinks are travelling (a) to the left and (d) to the right from one potential
minima to the next. The kinks are not trapped inside one potential minima. The kinks
are moving to a specific position (b) at the left and (c) at the right side of one minima of
the potential in the beginning of the time evolution and remain at that position. Those
kinks are trapped inside the potential. The last part of the time evolution of (c) is also
illustrated in fig. 4.5.
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Figure 4.9: Result of a DNS with an initial condition which contains one 2π-shift for the
parameter set: ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50, ε = 0 and A = 0. The parameters are
identical to those in fig. 4.8, but the amplitude of the periodic potential is 0. The period
T ≈ 50.2594 of this solution is calculated via an autocorrelation and it corresponds to a
frequency ω0 ≈ 0.125015077.

(a) ω = 0.12499 (b) ω = 0.12504

Figure 4.10: Results of a DNS with an initial condition which contains one 2π-shift for
the parameter set: ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50, ε = 0 and A = π

4 . The length of
each round trip corresponds to the period of the periodic potential T . Thus, the potential
and the oscillation of the background corresponding to the stable quasi-steady-state θqs
are stationary in those figures. The position of the kink is regarded with respect to the
potential. The kinks are travelling (a) to the left and (b) to the right from one potential
minima to the next. The kinks are not trapped inside one potential minima.
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4.4.2. Borders of Synchronization between 1-Kink-Solutions and Periodic Potential
at Constant Amplitude

The phenomena of synchronization between 1-kink-solutions and the periodic potential
is observed in the results of the DNSs in the previous section. Those results indicate
that this phenomena is highly dependent on the frequency of the periodic potential. A
condition for the synchronization at A = π

4 is given by eq. (4.10). The main interest
is to find the edges of the synchronization region. The synchronized and therefore
periodic 1-kink-solutions from the direct numerics are imported into DDE-BIFTOOL and
a branch of periodic solutions is created. This branch is continued in the parameter ω
with DDE-BIFTOOL by using the DAE in the form given in eq. (4.2). In the following,
the position of a kink is defined with respect to the maxima of the periodic potential.
Additionally, a relative mesh with respect to the period of the potential T is used since
the frequency ω is varied throughout the investigation. Hence, the values of the position
of LSs lie in the interval [0, 1].
The result of the continuation is shown in fig. 4.11. The position of the kink is plotted
against the continuation parameter ω in the upper figure. Note that the axis ’position of
the kink’ is periodic, i.e. the positions at 0 and 1 coincide. Two different – a stable and an
unstable – periodic 1-kink-solutions exist at values for ω between ωmin = ω1 ≈ 0.125005
and ωmax = ω3 ≈ 0.125025 leading to δ− = ω0−ωmin ≈ 1× 10−5 and δ+ = ωmax−ω0 ≈
1× 10−5 from eq. (4.10). Especially δ− ≈ δ+ is obtained indicating that the region of
synchronization is symmetrical in ω. However, this symmetry is broken in the general
case which is discussed later. The position of the kink depends on the value of ω. It
seems like a continuous change in ω leads to a continuous change of the position of the
kink for both solutions. The position of the kink of the stable solution is closer to the
minimum of the periodic potential (at 0.5) than the position of the kink of the unstable
solution. The stable and the unstable solution meet at the bifurcation points at ωmin

and ωmax. One of the calculated Floquet-multipliers leave the unit circle at 1 indicating
a fold bifurcation of periodic solutions.
The bottom figure in fig. 4.11 illustrates four profiles θ of the 1-kink-solutions calculated
by the continuation. The time axis is chosen relative to the period T such that the
periodic potential looks identical for the different solutions. The black lines indicate
the calculated position of the kink in the profile and corresponds to the position of the
kink in the upper figure. The profiles look very similar. The background oscillates
accordingly to the stable quasi-steady-state as explained in section 4.2. The LS exists
on that background. The profiles differ in the position of the kink. There is no further
noticeable qualitative difference between the stable (solution 2) and the unstable solution
(solution 4) besides the position of the kink and their stability. As already mentioned,
the kink in the stable solution is closer to the minimum of the potential. The parameter
sets of the solution 2 and 4 correspond to the parameter sets of the results of the DNS
which are presented in fig. 4.8(c) and fig. 4.5. Since DNSs end on stable attractors



4. DAE with Periodic Potential 57

Figure 4.11: Continuation in ω (and z0) of periodic 1-kink-solutions for the parameter
set: ∆ = 0.8, χ = 3.5, ψ = 0, τ = 50 and A = π

4 . The upper figure illustrates the
position of the kinks versus the continuation parameter ω. The thin red lines correspond
to an unstable and the thick blue lines to a stable solution. ω0 ≈ 0.125015 is chosen
as an offset. The profiles of the phase θ of four different periodic solutions at ω1 ≈
0.1250049071, ω2,4 ≈ 0.12502 and ω3 ≈ 0.1250254253 are shown in the bottom figure as
examples. The dotted black lines in both figures correspond to the position of the kink
at the corresponding periodic 1-kink-solution. The periodic solution 2 corresponds to
the results presented in fig. 4.8(c) and fig. 4.5 which are calculated via DNS.
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Figure 4.12: Continuation in the A− ω−plane of (black) fold bifurcations of periodic
solutions and (blue and red corresponding to their stability) periodic 1-kink-solutions
continued in ω (and z0) at A = π

4 and A = 4 and in A (and z0) at ω ≈ 0.125015 for the
parameter set: ∆ = 0.8, χ = 3.5, ψ = 0 and τ = 50. The offset ω0 ≈ 0.125015 is chosen.
Synchronized solutions exist between the fold bifurcations. This region is called Arnold
tongue.

only, those previous results should correspond to solution 2. Comparing the position of
the kink at 0.6 to fig. 4.8(c) and the whole profile to fig. 4.5 actually shows that those
solutions correspond to each other. This supports the previous results and that both
numerical methods are initialized correctly.

4.4.3. Borders of Synchronization between 1-Kink-Solutions and Periodic Potential

In the previous section, the region of synchronization at A = π

4 is investigated. The
region of synchronization in the A − ω−plane is obtained as a next step. Hence, the
fold bifurcations, which are found at ωmin and ωmax, are used to set up a branch of fold
bifurcations of periodic solutions at both values. Those branches are continued in the
A− ω−plane. Additionally, branches of periodic 1-kink-solutions are continued in ω at
A = 4 and in A at ω ≈ 0.125015. All branches are shown in fig. 4.12. Synchronized
1-kink-solutions exist between the two fold bifurcations. Thus, those span a region of
synchronization between the periodic potential and the 1-kink-solution. Such a region
is called Arnold tongue. The theoretical background of the Arnold tongue is explained
in section 2.3. The tongue is getting smaller for decreasing amplitude A until both fold
bifurcations approximately meet at A = 0 and ω0 ≈ 0.125015, which is the frequency of
the 1-kink-solution not influenced by a potential. The corresponding result of the DNS is
illustrated in fig. 4.9. The results of the continuation and the direct numerical integration
fit to each other. As expected by Arnold tongues found in of other systems such as
mechanics [PRK01], a dependency of the width of the tongue in ω on the amplitude of
the potential A is found. This leads to the updated condition for synchronization

ω ∈ [ω0 − δ−, ω0 + δ+] where δ− = δ−(A) 6= δ+ = δ+(A) (4.11)
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where the constants δ− and δ+ depend on the amplitude. The width of the Arnold
tongue at a given amplitude A is given by

w(A) = δ−(A) + δ+(A). (4.12)

For the investigated parameter set w(A1) > w(A2) is obtained for A1 > A2 which is con-
venient with respect to the mechanical picture of a particle in a potential. The stronger
the potential the broader the region of synchronization. Hence, in this case the stronger
the potential the wider the interval [ω0 − δ−, ω0 + δ+] where the potential synchronizes
the frequency of the 1-kink-solution to its own.
The offset ω0 = 0.125015 in fig. 4.12 is chosen to point out the broken left-right-symmetry
of the Arnold tongue in ω resulting in δ−(A) 6= δ+(A). Usually, Arnold tongues are sym-
metrical with respect to the frequency of the potential [PRK01]. A first hypothesis is
that the symmetry breaking occurs due to the temporal aspect of the system because of
the time delay which also leads to a symmetry breaking in the profile of the phase θ of
a kink.
Figure 4.12 indicates that a stable and an unstable solution exists inside the Arnold
tongue for this parameter set. For a better visualization, a 3D-plot showing the axis A,
ω and the position of the kink of the already displayed branches is presented in fig. 4.13.
Additionally, the A-position-plane of the same branches is illustrated in fig. 4.14. Note
that the axis ’position of the kink’ is periodic, i.e. the positions at 0 and 1 coincide in
both figures.
Those figures show that two periodic 1-kink-solutions coexist inside the Arnold tongue.
The branch of periodic solutions continued in ω at A = 4 is very similar in the position−
ω−plane to the branch at A = π

4 which is already discussed previously. This leads to
the hypothesis that the stability and the position of the kink of a 1-kink-solution at an
arbitrary 0 < A < 4 and ω0 − δ−(A) < ω < ω0 + δ+(A) could be obtained by interpola-
tion out of the presented figures.
Especially fig. 4.14 illustrates that the position of the kink is independent of the am-
plitude of the potential A if ω does correspond to value such that the parameter set is
not in the vicinity of a fold bifurcation. In particular, the position of the kink at the
fold bifurcation is constant in A. Therefore, an experimental scan through the Arnold
tongue from ω < ω0− δ−(A) to ω > ω0 + δ+(A) at any 0 < A < 4 will lead to the follow-
ing result. For ω < ω0 − δ−(A) the 1-kink-solution travels to the left. A synchronized
1-kink-solution is obtained for ω0 − δ−(A) < ω < ω0 + δ+(A) and the position of the
kink changes from approximately 0.3 to approximately 0.8. After leaving the tongue for
ω > ω0 + δ+(A) a 1-kink-solution which travels to the right is obtained. This behavior
is independent of the amplitude. Hence, the impact of a variation in ω on the position
of the kink depends on the width of the tongue w(A) at the specific amplitude A. This
results in increasing changes of the position of the kink the lower the amplitude A for a
fixed variation in ω.
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(a)

(b)

Figure 4.13: Continuation in the A-ω-position-space at different angles of (black) fold
bifurcations of periodic solutions and (blue and red corresponding to their stability) in
ω (and z0) at A = 4 and in A (and z0) at ω ≈ 0.125015 of 1-kink-solutions for the
parameter set: ∆ = 0.8, χ = 3.5, ψ = 0 and τ = 50. The offset ω0 ≈ 0.125015 is chosen.
Note that the axis ’position of the kink’ is periodic, i.e. the positions at 0 and 1 coincide.
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Figure 4.14: Continuation in the A-position-plane of (black) fold bifurcations of peri-
odic solutions and (blue and red corresponding to their stability) in ω (and z0) at A = 4
and in A (and z0) at ω ≈ 0.125015 of 1-kink-solutions for the parameter set: ∆ = 0.8,
χ = 3.5, ψ = 0 and τ = 50. The position of the kink does not depend on the amplitude.
Note that the axis ’position of the kink’ is periodic, i.e. the positions at 0 and 1 coincide.

The position of the kink is dependent on A for values of ω that correspond to values
such that the parameter set is in the vicinity of a fold bifurcation. This is visualized
in figs. 4.13 and 4.14 where A is close to 0. The position of the kink which is contin-
ued in A changes to the corresponding value of the fold bifurcation for A close to 0.
The mismatch between the bifurcation point in that branch and the branch of the fold
bifurcation occurs due to numerical effects in the region for low amplitude A ≈ 0.

4.5. Arnold Tongues at Different Parameter Sets

The Arnold tongue at the parameter set ∆ = 0.8, χ = 3.5, ψ = 0 and τ = 50 is analyzed
in detail in the previous section. Further Arnold tongues are calculated for different
parameter sets. No Arnold tongue is obtained for ∆ = 0.1; χ = 2.0 and ∆ = 0.1;
χ = 1.0 because a stable 1-kink-solutions cannot be obtained for those parameter sets
as explained in section 4.3. An overview is given in fig. 4.15. All Arnold tongues show a
similar overall structure. The tongues are bounded in ω by fold bifurcations. The overall
shape of the tongues is triangular. The tongues are not symmetrical in ω. Two different
1-kink-solutions coexist inside the tongues. These effects are discussed in the previous
section at the Arnold tongue at the parameter set ∆ = 0.8, χ = 3.5, ψ = 0 and τ = 50.
The offsets in the frequency ω0 are chosen as the frequency where the fold bifurcations
meet at A = 0. Additionally, two more effects are found in some of the Arnold tongues
– an open Arnold tongue and a period doubling bifurcation inside the tongue. Both of
them are analyzed in the following sections. An additional section is dedicated to the
Arnold tongues at χ = 1.0 because the period doubling bifurcation reaches the region for
small amplitudes. This is noticeable since low amplitudes A . 0.5 can be produced in
experiments. Thus, the period doubling bifurcation may be observable in experiments.
The offsets in the frequency ω0, the width of the tongues at A = π

4 and A = 4 and the
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(a) ∆ = 0.9; χ = 3.5 (b) ∆ = 0.8; χ = 3.5 (c) ∆ = 0.1; χ = 3.5

(d) ∆ = 0.9; χ = 2.5 (e) ∆ = 0.8; χ = 2.5 (f) ∆ = 0.1; χ = 2.5

(g) ∆ = 0.9; χ = 2.0 (h) ∆ = 0.8; χ = 2.0

(i) ∆ = 0.9; χ = 1.0 (j) ∆ = 0.8; χ = 1.0

Figure 4.15: Overview of Arnold tongues at different parameters at constant ψ = 0
and τ = 50. The chosen offset ω0 for each parameter set is given in table 4.1. Black
lines represent fold bifurcations of periodic orbits and brown lines period doubling bi-
furcations. Blue and red lines indicate periodic solutions which are stable or unstable
respectively.



4. DAE with Periodic Potential 63

Table 4.1: Overview of the properties of the different Arnold tongues at ψ = 0 and
τ = 50 which are shown in fig. 4.15. The width w(A) which is defined in eq. (4.12) is
determined at A = π

4 and A = 4. ω0 corresponds to the point where the fold bifurcations
meet at A = 0. The distance d between the stable and unstable quasi-steady-state is
also listed.

∆ χ ω0 w(A = π
4 ) w(A = 4) d[π]

0.9 3.5 0.12506297 2.55× 10−5 9.68× 10−5 0.29
0.9 2.5 0.12483139 4.93× 10−5 1.57× 10−4 0.29
0.9 2.0 0.12462802 7.66× 10−5 2.27× 10−4 0.29
0.9 1.0 0.12357699 3.06× 10−4 8.67× 10−4 0.29
0.8 3.5 0.12501495 2.05× 10−5 1.10× 10−4 0.41
0.8 2.5 0.12474644 4.16× 10−5 2.26× 10−4 0.41
0.8 2.0 0.12450264 6.71× 10−5 3.66× 10−4 0.41
0.8 1.0 0.12311966 3.10× 10−4 1.83× 10−3 0.41
0.1 3.5 0.12470192 2.10× 10−5 1.06× 10−4 0.94
0.1 2.5 0.12408709 5.60× 10−5 2.92× 10−4 0.94

distance between the quasi-steady-states are given in table 4.1. Several dependencies of
those properties of the Arnold tongues on the parameters ∆ and χ are deduced. The
offset frequency ω0 decreases as ∆ and χ are decreased. The corresponding period is given
by T0 = 2π

ω0
. The period T0 is the period which is expected for a 1-kink-solution at the

given parameter set without periodic potential (A = 0). Therefore, the results indicate
an increasing period T0 of a 1-kink-solution without periodic potential for decreasing ∆
and decreasing χ. This is also found in a previous work on the DAE without periodic
potential [Mun19] for decreasing ∆.
The width of the tongues cannot be compared under the same conditions because some
of the tongues are open to the right side. However, comparing the width for an amplitude
which is lower than the occurrence of this effect is suitable. Thus w(A = π

4 ) is used. It

shows a wider tongue at A = π

4 for lower feedback strengths χ. No robust statement of

the dependency of w(A = π

4 ) on ∆ can be given on the basis of the results. The impact
of a change in the detuning ∆, however, is smaller than the impact of a change in the
feedback strength χ.

4.5.1. Open Arnold Tongues

In the detailed discussion of the Arnold tongue at ∆ = 0.8, χ = 3.5, ψ = 0 and τ = 50
in section 4.4.3, w(A1) > w(A2) is obtained for A1 > A2. It is also valid for those
Arnold tongues in fig. 4.15 which are not open at the right side of the tongue. But it
does not apply for the tongues which are open at their right side. The Arnold tongues
in fig. 4.15(a,d,g,i) show this phenomena. All of them are tongues at ∆ = 0.9. No
parameter set is found where the tongue opens up at its left side. The presented Arnold
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Figure 4.16: Continuation in the A− ω−plane of (black) fold bifurcations of periodic
solutions, (brown) period doubling bifurcations and (blue and red corresponding to their
stability) periodic 1-kink-solutions continued in ω (and z0) at A = π

4 , A ≈ 2.123 and
A = 4 and in A (and z0) at ω ≈ 0.1235770 for the parameter set: ∆ = 0.9, χ = 1.0, ψ = 0
and τ = 50. The offset ω0 ≈ 0.12357699 is chosen. The Arnold tongue corresponds to
the tongue shown in fig. 4.15 (i). The attention is turned to the opening at the right
side of the tongue. The fold bifurcation at lower potential A and the unstable part of
the 1-kink-solution at A ≈ 2.123 are not be continued further because the continuation
in DDE-BIFTOOL got stuck.

tongues at ∆ = 0.9 indicate a dependency of the amplitude at which the tongues open
up on the feedback strength χ. The lower the feedback strength χ the lower the value
for the amplitude where the tongue opens up. The opening of the Arnold tongue at
∆ = 0.9, χ = 1.0, ψ = 0 and τ = 50 is investigated further in the following.
The Arnold tongue is illustrated at a scale which turns the attention to the opening of
the tongue at the right side in fig. 4.16. The Arnold tongue opens up to a relatively large
region of synchronization compared to the tongue itself at the right side around the value
A ≈ 2.123 of the potential. However, the dependency of the width w(A1) > w(A2) of
the tongue on the amplitude is observed for amplitudes below the threshold Ahill > A1 >

A2. The branch of periodic solutions at A ≈ 2.123 shows that stable periodic 1-kink-
solutions exist for parameter sets inside this larger region of synchronization especially
for ω � ω0 + δ+(A < Ahill) with Ahill ≈ 2.122. The position of the kinks along and some
profiles of the solutions of the branch are illustrated in fig. 4.17. The solutions 1 and 2
lie inside the Arnold tongue. The figure indicates that the profile θ(t) – especially the
position of the kinks – looks similar to the previously investigated branches of periodic
solutions inside the Arnold tongue (figs. 4.11 and 4.13). At first, two different solutions
with different positions of the kink coexist at each value of ω. The change of stability
of the solutions inside the tongue instead of the change at ω = ω0 − δ(A ≈ 2.123) is
resulting from the period doubling bifurcation which is discussed in the following section.
Additionally, the position of the kink is close to the minimum of the potential for the
stable solutions. Secondly, it exists a solution for any position of the kink inside the
potential and this solution depends on ω. Third, the positions of the kink at the fold
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Figure 4.17: Continuation in ω (and z0) of periodic 1-kink-solutions for the parameter
set: ∆ = 0.9, χ = 1.0, ψ = 0, τ = 50 and A ≈ 2.123. The upper figure illustrates the
position of the kinks versus the continuation parameter ω. The thin red lines correspond
to an unstable and the thick blue lines to a stable solution. ω0 ≈ 0.12357699 is chosen
as an offset. The profiles of the phase θ of four different periodic solutions are shown in
the bottom figure as examples. The dotted black lines in both figures correspond to the
position of the kink at the corresponding periodic 1-kink-solution. Note that the axis
’position of the kink’ is periodic, i.e. the positions at 0 and 1 coincide.
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Figure 4.18: Continuation in the A-ω-position-space of (black) fold bifurcations of
periodic solutions, (brown) period doubling bifurcations and (blue and red corresponding
to their stability) periodic 1-kink-solutions continued in ω (and z0) at A = π

4 , A ≈ 2.123
and A = 4 and in A (and z0) at ω ≈ 0.1235770 for the parameter set: ∆ = 0.9, χ = 1.0,
ψ = 0 and τ = 50. The offset ω0 ≈ 0.12408709 is chosen. The Arnold tongue corresponds
to the tongue shown in fig. 4.15 (i).

bifurcation are approximately 0.3 and approximately 0.8. And finally, the background
oscillation of solutions follow the stable quasi-steady-state θqs.
The solutions 3 and 4 lie in the region where the Arnold tongue opens up to its right
side. Both of them are stable solutions as indicated by the blue lines. The transition in
the branch between the periodic solution inside the Arnold tongue and the additional
synchronized region is clearly visible at the bump of the axis ’position of the kink’.
Note that it is not determined whether the unstable part of the branch is connected
to the stable part of the branch at this point. The continuation of the unstable part
with DDE-BIFTOOL got stuck at this point which is the reason why the branch ends in
the figure. The position of the kink in the opened up synchronized region is almost
constant around 0.8 in the frequency ω, in contrast to the position of the kink inside
the Arnold tongue. Moreover, the periodic solutions differ stronger in their profiles θ(t)
for increasing ω. The stable quasi-steady-state does not describe the oscillation of the
background well for the solutions 3 and 4. Further, an additional little dip occurs in the
profile of solution 4.
Figures 4.18 and 4.19 indicate differences between the Arnold tongue at a lower A < Ahill

and at a higher amplitude A > Ahill than the amplitude of the opening of the tongue.
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Figure 4.19: Continuation in the A-position-plane of (black) fold bifurcations of peri-
odic solutions, (brown) period doubling bifurcations and (blue and red corresponding to
their stability) periodic 1-kink-solutions continued in ω (and z0) at A = π

4 , A ≈ 2.123
and A = 4 and in A (and z0) at ω ≈ 0.1235770 for the parameter set: ∆ = 0.9, χ = 1.0,
ψ = 0 and τ = 50. Note that the axis ’position of the kink’ is periodic, i.e. the positions
at 0 and 1 coincide.

The tongue looks similar to the previously discussed tongue at ∆ = 0.8, χ = 3.5, ψ = 0
and τ = 50 for amplitudes below the opening of the tongue besides the period doubling
bifurcation. The fold bifurcations are the borders of the tongue in ω and they occur at
a constant position of the kink at approximately 0.3 and approximately 0.8 in A. The
properties of the periodic branches inside the tongue are mentioned in the analysis of the
branch of periodic solutions at A ≈ 2.123. Additionally, those observations are made in a
region around the fold bifurcation at ω0−δ−(A > Ahill) for amplitudes above the opening
of the tongue. The position of the kink at the fold bifurcation at ω0 +δ+(A), however, is
increasing for a decreasing amplitude A above the opening of the tongue. Moreover, the
position of the kink of a periodic solution drops to 0 at the fold bifurcation. Therefore,
no solution exists where the kink is at a greater position than at the fold bifurcation for
A > Ahill.

4.5.2. Period Doubling Bifurcation Inside the Arnold Tongue

A period doubling bifurcation inside the Arnold tongue is found and continued for the
parameters ∆ = 0.1 and χ = 2.5, ∆ = 0.8 and χ = 1.0 and ∆ = 0.9, χ = 1.0 which
are presented in fig. 4.15(f,j,i), respectively. All three Arnold tongues look similar with
respect to the period doubling bifurcation. Therefore, the period doubling bifurcation
is analyzed for the parameter set ∆ = 0.9, χ = 1.0 which is already used for the inves-
tigation of the opening of the tongue. A 3D-plot of the Arnold tongue is presented in
fig. 4.18.
The branches of periodic 1-kink-solutions continued in ω at A ≈ 2.123 and A = 4
intersect two times with the branch of the period doubling bifurcation. The general bi-
furcations along such branches inside the Arnold tongue can be summarized. Starting at
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a stable periodic 1-kink-solution inside the tongue for decreasing ω, the first encountered
bifurcation is the period doubling bifurcation. The branches change their stability inside
the Arnold tongue ω0 − δ−(A) < ω < ω0 + δ+(A) because one Floquet-multiplier leaves
the unit circle at −1. The fold bifurcation at ω0 − δ−(A) is reached if ω is decreased
further. Another Floquet-multiplier leaves the unit circle at 1. Increasing ω and follow-
ing the branch further, a period doubling bifurcation is met and one Floquet-multipler
enters the unit circle at −1. More Floquet-multipliers first leave and then reenter the
unit circle via multiple fold and some torus bifurcations, if the branch is followed further
until a periodic solution with one unstable Floquet-multiplier is obtained again. Finally,
the unstable solution becomes stable through the fold bifurcation at ω0 + δ+(A). This
thesis focuses on the Arnold tongue and the transitions between stable and unstable
solutions inside the tongue. Hence, the other fold and torus bifurcations are not inves-
tigated further.
The branch of the period doubling bifurcation meets the branch of the fold bifurcation
at ω0−δ−(A ≈ 1.2). No period doubling bifurcation is found below that amplitude. The
branches of periodic solutions continued in ω inside the tongue are similar to the branch
shown in fig. 4.11. The branch of periodic solutions emerges at both sides with respect to
the axis ’position of the kink’ from the fold bifurcation for increasing amplitude A. The
part of the branch which is at the side of the fold bifurcation where the stable solutions
exist connects stable and unstable solutions inside the Arnold tongue. The other part
connects unstable and unstable solutions inside the Arnold tongue. This first one splits
the region inside the Arnold tongue in the A− ω−plane into two parts. A region where
a stable solutions exist, close to the fold bifurcation at ω0 + δ+(A), and a region where
no stable solutions exist, close to the fold bifurcation at ω0 − δ−(A).
The part of the branch which connects the stable and unstable solutions is investi-
gated further using DNSs. The periodic doubling bifurcation at A = 4 is found at
ωPD(A = 4) = 0.1232953648 = ω0 − 2.8163× 10−4. A stable periodic 1-kink-solution is
obtained by a DNS close to the period doubling bifurcation in the region where stable 1-
kink-solutions exist. Multiple long time calculations are performed while ω is decreased
in small steps at a constant value of A such that the period doubling bifurcation at
ωPD(A = 4) is crossed while the last calculated round trip of the previous calculation
is used as initial round trip for the next calculation. Two results – one at each side of
the bifurcation – are shown in fig. 4.20 as an example. The solution at the stable side
of the bifurcation which is illustrated in fig. 4.20(a) corresponds to the kind of solution
which is investigated in the last sections with a period T ≈ τ = 50. The solution of this
period changes its stability at the bifurcation point as obtained through the continua-
tion in DDE-BIFTOOL. However, unstable solutions are not found by long time DNSs with
little noise. Thus, fig. 4.20(b) corresponds to a stable solution at the other side of the
bifurcation which was called the unstable side of the period doubling bifurcation. More
precisely, this side must be called the unstable side of the period doubling bifurcation
for solutions of period T ≈ τ = 50. The stable solution which is calculated by a DNS
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(a) ω = ωPD(A = 4) + 0.46× 10−5 (b) ω = ωPD(A = 4)− 9.54× 10−5

Figure 4.20: Last round trips of long time DNSs (a) at the stable and (b) unstable side
of the period doubling bifurcation at ωPD(A = 4) = 0.1232953648 = ω0 − 2.8163× 10−4

for the parameter set: ∆ = 0.9, χ = 1.0, ψ = 0, τ = 50, ε = 1× 10−7 and A = 4. The
doubled period in (b) with respect to (a) is clearly visible at t ≈ 24.

seems to have a period of T ≈ 2τ = 100. The periodicity is checked by the creation of a
first return map.
The concept of a first return map is explained in section 2.4.2. The measure In is defined
as

In =
∫ 1

0
dx cos (θ (x)) where x = t

Tϕ
− n (4.13)

where Tϕ = 2π
ω

is the period of the periodic potential. The advantage of this measure,
over a measure as the position of the kink, is that in this case all values of the phase
in one period of the potential are taken into account. In particular, a change of the
background is measured, which was not the case if the measure would be defined as the
position of the kink.
Some first return maps are illustrated in fig. 4.21(a) as examples. At the stable side of
the bifurcation ω > ωPD the return map shows one point at In+1 = In indicating that
the period of the solution corresponds to the period that is chosen which is the period
of the potential T = Tϕ in this case. Two points are visible on the return maps at the
other side of the bifurcation ω < ωPD indicating a doubled period 2T of the solution.
Hence, the return maps confirm the periodicity that is visible in fig. 4.20. The distance
between the points in the return map increases the greater the distance between ω and
ωPD becomes for ω < ωPD. The distance In+1− In is therefore presented in fig. 4.21(b).
The smoothly increasing distance around the bifurcation point ωPD strongly indicates
a supercritical period doubling bifurcation.
The period doubling bifurcations for the parameters ∆ = 0.1 and χ = 2.5 and ∆ = 0.8
and χ = 1.0 are investigated similarly. For the latter ωPD(A = 4) = 0.1230701468 =
ω0−4.951× 10−5 is obtained from the continuation in DDE-BIFTOOL. However, the results
of the DNSs suggest ωPD(A = 4) = 0.1231201468 = ω0 + 4.9× 10−7. Both values differ
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(a) examples of the first return map (b) differences in the first return map

Figure 4.21: (a) First return map of the last 50 calculated periods at (blue) ω ≈
ωPD(A = 4) + 0.4× 10−5, (yellow) ω ≈ ωPD(A = 4)− 1.6× 10−5, (green) ω ≈ ωPD(A =
4) − 4.1× 10−5, (red) ω ≈ ωPD(A = 4) − 6.7× 10−5 and (purple) ω ≈ ωPD(A = 4) −
9.1× 10−5. (b) Difference In+1 − In between the points in the return maps of the last
20 periods. The results are obtained from direct numerics close to the period doubling
bifurcation at ωPD(A = 4) = 0.1232953648 = ω0 − 2.8163× 10−4 for the parameter set:
∆ = 0.9, χ = 1.0, ψ = 0, τ = 50, ε = 1× 10−7 and A = 4. The measure In is defined in
eq. (4.13).

by 5× 10−5 which is assumed to be an numerical inaccuracy. The results of the DNSs
are displayed in fig. 4.22. The same conclusions as for the previous period doubling
bifurcation at ∆ = 0.9 and χ = 1.0 apply. Again, a supercritical bifurcation is detected.
Figure 4.23 shows the outcome of the analysis of the period doubling bifurcation at ∆ =
0.8 and χ = 1.0. The supercritical period doubling bifurcation is found at ωPD(A = 4) =
0.1240126821 = ω0 − 7.441× 10−5. Additionally, to the period-1 and period-2 orbits,
each at one side of that bifurcation, period-4 orbits and further orbits are detected in the
first return map as it is presented in fig. 4.23(a). Figure 4.23(b) indicates a route to chaos
via period doubling. The supercritical period doubling bifurcation which corresponds
to the transition between period-2 and period-4 orbits is clearly visible around ω ≈
ωPD(A = 4)− 5× 10−5. It seems like further supercritical period doubling bifurcations
occur for decreasing ω until a chaotic window is reached. The co-moving reference frame
of the last round trips of the examples shown in the return map in fig. 4.23(a) are
illustrated in fig. 4.24. The period-2 and period-4 orbits can be identified. For values
of ω . ωPD(A = 4) − 7× 10−5 lower than the values for the chaotic window, stable
solutions of period-1 are detected again as before the first period doubling bifurcation
at ωPD. Note that this solution is not obtained in the further continuation in ω of the
branch of periodic solutions at A = 4 in DDE-BIFTOOL, because the results of DNSs might
have fallen on another attractor and DDE-BIFTOOL have not.
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(a) examples of the first return map (b) differences in the first return map

Figure 4.22: (a) First return map of the last 50 calculated periods at (blue) ω ≈
ωPD(A = 4) + 1.2× 10−5, (yellow) ω ≈ ωPD(A = 4) + 0.2× 10−5, (green) ω ≈ ωPD(A =
4) − 1.3× 10−5, (red) ω ≈ ωPD(A = 4) − 2.8× 10−5 and (purple) ω ≈ ωPD(A = 4) −
4.3× 10−5. (b) Difference In+1 − In between the points in the return maps of the last
20 periods. The results are obtained from direct numerics close to the period doubling
bifurcation at ωPD(A = 4) = 0.1231201468 = ω0 + 4.9× 10−7 for the parameter set:
∆ = 0.8, χ = 1.0, ψ = 0, τ = 50, ε = 1× 10−8 and A = 4. The measure In is defined in
eq. (4.13).

(a) examples of the first return map (b) differences in the first return map

Figure 4.23: (a) First return map of the last 50 calculated periods at (blue) ω ≈
ωPD(A = 4) + 0.2× 10−5, (yellow) ω ≈ ωPD(A = 4)− 1.8× 10−5, (green) ω ≈ ωPD(A =
4) − 4.8× 10−5, (red) ω ≈ ωPD(A = 4) − 5.8× 10−5 and (purple) ω ≈ ωPD(A = 4) −
6.3× 10−5. (b) Difference In+1 − In between the points in the return maps of the last
20 periods. The results are obtained from direct numerics close to the period doubling
bifurcation at ωPD(A = 4) = 0.1240126821 = ω0 − 7.441× 10−5 for the parameter set:
∆ = 0.1, χ = 1.0, ψ = 0, τ = 50, ε = 1× 10−8 and A = 4. The measure In is defined in
eq. (4.13).
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(a) ω ≈ ωPD(A = 4)− 1.8× 10−5 (b) ω ≈ ωPD(A = 4)− 4.8× 10−5

(c) ω ≈ ωPD(A = 4)− 5.8× 10−5 (d) ω ≈ ωPD(A = 4)− 6.3× 10−5

Figure 4.24: Part of last round trips of long time DNSs for an example of (a) period-2
and (b) period-4 orbits and (c) and (d) examples of orbits closer to the chaotic window
on the route of period doubling. The frequencies are given with respect period doubling
bifurcation at ωPD(A = 4) = 0.1232953648 = ω0 − 2.8163× 10−4 for the parameter set:
∆ = 0.9, χ = 1.0, ψ = 0, τ = 50, ε = 1× 10−7 and A = 4. The same examples as in the
return map in fig. 4.23 (a) are chosen.
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Table 4.2: Overview of the properties of the different Arnold tongues at χ = 1.0, ψ = 0
and τ = 50 which are shown in fig. 4.25. The width w(A) which is defined in eq. (4.12) is
determined at A = π

4 and A = 4. ω0 corresponds to the point where the fold bifurcations
meet at A = 0. The distance d between the stable and unstable quasi-steady-state is
also given. Additionally the minimal value of the amplitude APDmin for which the period
doubling bifurcation can be found and the corresponding frequency ωPD(APDmin) are
determined.

∆ ω0 w(A = π
4 ) w(A = 4) d[π] APDmin ωPD(APDmin)

0.90 0.12357699 3.06× 10−4 8.67× 10−4 0.29 1.13 −2.10× 10−4 + ω0
0.85 0.12335316 3.01× 10−4 1.58× 10−3 0.35 0.41 −7.79× 10−5 + ω0
0.80 0.12311966 3.10× 10−4 1.83× 10−3 0.41 0.26 4.99× 10−5 + ω0

4.5.3. Arnold Tongues at χ = 1.0

Figure 4.15(j) indicates that the period doubling bifurcation exists for values of low am-
plitude A < 0.5. This corresponds to the approximately maximal amplitude which can
be produced in experiments. Hence, the low amplitude region is especially interesting.
Figure 4.15(i,j) indicates the dependency of the position of the period doubling bifurca-
tion on ∆. The lower the detuning ∆ the lower the frequencies ω with respect to the
corresponding ω0 where the period doubling bifurcation is found. Therefore, ∆ is an
important parameter in order to shift the period doubling bifurcation inside the Arnold
tongue such that it reaches the low amplitude region A < 0.5.
The Arnold tongues at ∆ = 0.9, ∆ = 0.85 and ∆ = 0.8 are illustrated in fig. 4.25.
The corresponding parameters are given in table 4.2. The overall structure of the three
tongues is very similar. The widths of the tongues are identical with respect to the order
of magnitude, however, the width w(A = π

4 ) increases for decreasing detuning ∆. A
branch of a period doubling bifurcation is detected and continued in each of the Arnold
tongues. The opening of the tongues at the right side is found for ∆ = 0.9 and ∆ = 0.85.
Both of the effects are discussed in detail in sections 4.5.1 and 4.5.2.
The branch of the period doubling bifurcation is obtained at different positions inside
the tongue meaning that the frequencies where the bifurcation is found differs with re-
spect to the corresponding ω0. A good measure for the position of the period doubling
bifurcation in the Arnold tongue is the frequency ωPD(APDmin), where the branch of the
period doubling bifurcations meets a fold bifurcation. This corresponds to the minimal
value of the amplitude APDmin for which the period doubling bifurcation is found. The
frequency ωPD(APDmin) is increasing for decreasing ∆. The minimal value of the ampli-
tude APDmin depends on the value of the amplitude at the corresponding fold bifurcation
at ωPD(APDmin). The closer ωPD(APDmin) is to ω0 the lower APDmin . All in all, the period
doubling bifurcation may be detectable in experiments since APDmin can be adjusted by
changing the detuning ∆. Two parameter sets for which APDmin < 0.5 is in the low
amplitude region are already illustrated in this thesis.
The opening of the Arnold tongues is observed for ∆ = 0.9 and ∆ = 0.85. The am-
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(a) ∆ = 0.9

(b) ∆ = 0.85

(c) ∆ = 0.8

Figure 4.25: Overview of Arnold tongues at different parameters at constant χ = 1.0,
ψ = 0 and τ = 50. The chosen offset ω0 for each parameter set is given in table 4.2.
Black lines represent fold bifurcations of periodic orbits and brown lines period doubling
bifurcations. Blue and red lines indicate periodic solutions which are stable or unstable,
respectively.
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Figure 4.26: Continuation in the A− ω−plane of (black) fold bifurcations of periodic
solutions, (brown) period doubling bifurcations and (blue and red corresponding to their
stability) periodic 1-kink-solutions continued in ω (and z0) at A = π

4 , 2, 2.35, 2.5 and

A = 4 for the parameter set: ∆ = 1.0, χ = 1.0, ψ = π

2 and τ = 50. This parameter
set is at a saddle-node and close to a Hopf bifurcation point of the steady states for
the system without periodic potential. The offset ω0 ≈ 0.12107388 is chosen. The
widths w(A = π

4 ) = 3.17× 10−4 and w(A = 4) = 2.54× 10−3 are calculated. Moreover,
APDmin = 1.93 and ωPD(APDmin) = −1.15× 10−3 + ω0 is found.

plitude Ahill at which the tongue opens up is additionally dependent on the detuning
∆. A decreasing Ahill for decreasing feedback strength χ is already obtained previously
from fig. 4.15. The amplitude Ahill of the opening of the tongue decreases as well for an
increasing ∆ as visualized in fig. 4.25. Additionally, the shape of the right fold bifur-
cation at ω0 + δ(A) indicates an open Arnold tongue for A > 4. Thus, Arnold tongues
which are opening up in the low amplitude region might be obtained for ∆ > 0.9 or/and
smaller χ < 1.0. However, the conditions of the existence for a stable 1-kink-solution
might restrict the parameters ∆ and χ such that a tongue which opens up in the low
amplitude region does not exist.
Additionally, the Arnold tongue is obtained for a parameter set (∆ = 1.0, χ = 1.0,
ψ = π

2 , τ = 50) which is at an exceptional point in parameter space for the case without
periodic potential because it corresponds to a saddle-node bifurcation of the steady states
as given by eq. (2.55) and it is close to a Hopf bifurcation point of the steady states in
the long delay limit, as given by eq. (2.59). Since the stability of the quasi-steady-states
corresponds to the stability of the steady-states, this parameter set is also exceptional
for the case with periodic potential as the oscillating background is at or at least close
to two bifurcations. The Arnold tongue is shown in fig. 4.26. Two aspects differ signifi-
cantly from all previously discussed tongues. Nevertheless, except from those the tongue
is rather similar to the already presented ones. The two aspects are the branch of the
period doubling bifurcation and the branch of the fold bifurcation at ω0 − δ−(A). The
shape of the latter results in a significant increase of δ−(A) for a increasing amplitude
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π

4 . A . 3. Therefore, the width of the tongue w(A) increases as well leading to the
width w(A = 4) = 2.54× 10−3.
However, the branch of the period doubling bifurcation spans over the whole range
in ω of the tongue meeting the branches of the fold bifurcations at ω0 − δ−(A . 2)
and ω0 + δ+(A & 2). Additionally, the branch is restricted by the maximal amplitude
APDmax ≈ 3.57. As before, the period doubling bifurcation branch restricts the region of
stable periodic 1-kink-solutions inside the Arnold tongue. In this case from both sides
in ω. Hence, no stable 1-kink-solution exists for greater amplitudes than APDmax ≈ 3.57
even inside the Arnold tongue of this parameter set.

4.6. 2-Kink-Solutions Inside the Periodic Potential

The behavior of a 1-kink-solution in a periodic potential of one minimum is investigated
in detail in the previous sections. However, multiple kinks in one domain are observed
in [Gar+17]. Especially, a stable background of six kinks inside a periodic potential of
six minima, while an additional kink is hopping from one minima of the potential to the
next is found. The background of N kinks in a periodic potential of N minima is essen-
tial for the presented behavior. Since the previous part studied the case for N = 1, the
following section analyzes 2-kink-solutions in a periodic potential of two minima which
corresponds to N = 2.
The parameters ∆ = 0.8, χ = 2.0, ψ = 0 and τ = 50 are used for the investigation
as an example. The corresponding Arnold tongue for the case N = 1 where T ≈ τ is
illustrated in fig. 4.15(h). A potential with two minima is obtained in two different ways:
Doubling the period of the solution T → 2T and doubling the frequency of the periodic
potential ω → 2ω. Both of them are leading to a doubled period of the solution with
respect to the period of the potential T = 2Tϕ = 22π

ω
.

The first option is a starting point for a further research on periodic solutions and Arnold
tongues around period doubling bifurcations which are discussed in section 4.5.2, because
solutions, which are found to have period-2, have period-1 in the T → 2T picture. Thus,
the solutions on both sides of the period doubling bifurcations might be detected and
continued as periodic solutions by DDE-BIFTOOL. The Arnold tongue for parameter sets
where a period doubling bifurcation is detected might differ from the Arnold tongue ob-
tained for T → T which are presented in fig. 4.15. Nevertheless, those tongues without a
period doubling bifurcation do not change because the phase in the first and the second
half of the solution with the period T → 2T does not differ. An example is illustrated in
fig. 4.27. The properties and the shape of the Arnold tongue are identical to the Arnold
tongue which is shown in fig. 4.15(h). However, doubling the period of the solution
T → 2T does not investigate 2-kink-solutions which are solutions containing two kinks
in one time domain of approximated length T ≈ τ corresponding to the definition given
in the beginning of section 4.3. Therefore, it cannot be used to analyse solutions of
multiple kinks in one time domain.
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Figure 4.27: Continuation in the A-ω-position-space of (black) fold bifurcations of
periodic solutions and (blue and red corresponding to their stability) in ω (and z0) at
A = π

4 and A = 4 of solutions of the period T → 2T for the parameter set: ∆ = 0.8,
χ = 2.0, ψ = 0 and τ = 50. This leads to T ≈ 100. The offset and all other properties
are identical to the corresponding parameter set in table 4.1. Note that the axis ’position
of the kink’ is periodic, i.e. the positions at 0 and 1 coincide. Additionally, all branches
are scattered twice in the plot due to the two kinks in the solution which leads to two
positions of kinks.
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(a) ω = 0.248850 (b) ω = 0.249142

(c) ω = 0.249

Figure 4.28: Results of a DNS with an initial condition which contains two 2π-shift
for the parameter set: ∆ = 0.8, χ = 2.0, ψ = 0, τ = 50, ε = 0 and A = π

4 . The length
of each round trip corresponds to twice the period of the periodic potential T = 2Tϕ.
Thus, the potential and the oscillation of the background are stationary in those figures
and the position of the kink is regarded with respect to those. The kinks are travelling
(a) to the left and (b) to the right from one potential minima to the next. The kinks are
not trapped inside one potential minima. (c) Each kink is moving to a specific position
of one minima of the potential in the beginning of the time evolution and remains at
that position. Those kinks are trapped inside the potential.

The second option of doubling the frequency of the periodic potential ω → 2ω leads to
2-kink-solutions. Thus, it is used for the investigation of two kinks inside a potential of
two minima. It is performed similarly to the study of the 1-kink-solution in section 4.4.
Similar results are found.
Calculations of the time evolution of the phase via DNS are performed for different fre-
quencies ω. Examples are illustrated in fig. 4.28. As before, two qualitative different
types of solutions are observed. The kinks are travelling from one minima of the potential
to the next in fig. 4.28(a,b). The LSs and the periodic potential are not synchronized.
In contrast to this, each of the kinks is trapped inside one minima of the potential in
fig. 4.28(c) and synchronization is observed. The behavior of the 2-kink-solution is iden-
tical to the behavior of the 1-kink-solution which is studied in section 4.4.1. Therefore,
the explanations and conclusions given in that section can be extended for the case of



4. DAE with Periodic Potential 79

the 2-kink-solutions in similar parameter sets.
The branch of the periodic solutions continued in ω at A = π

4 is shown in fig. 4.29. In
general, the figure is similar to fig. 4.11 besides the extension from a 1-kink-solution to a
2-kink-solution leading again to similar conclusions about the region of synchronization
at constant amplitude as for the 1-kink-solution which are written in section 4.4.2. More-
over, the approximation of the oscillating background by the stable quasi-steady-state
is still reasonable for this parameter set.
Nevertheless, a difference is found in the calculated Floquet-multipliers. At the bifur-
cation point of the 1-kink-solution one Floquet-multipler leaves the unit circle at 1.
However, for the 2-kink-solution two Floquet-multipler leave the unit circle at 1. Never-
theless, setting up a branch of bifurcations points with DDE-BIFTOOL does not converge.
Instead several branches of periodic solutions are continued which gives an impression of
the shape of the Arnold tongue for the 2-kink-solution. Additionally, a branch of period
doubling bifurcations is detected and continued. It is illustrated in fig. 4.26. The shape
of the branches continued in ω indicate an opening of the Arnold tongue at its right side.
Moreover, the period doubling bifurcations restricts the area of stable solutions inside
the tongue. Both of the phenomena are discussed previously in sections 4.5.1 and 4.5.2,
respectively. The results of the 1-kink-solution may be adapted to 2-kink-solutions.
Under the condition that the phase θ(t) is identical in the intervals [0, 1

2T = Tϕ] and

[12T = Tϕ, T = 2Tϕ] with respect to the 2π-periodicity, the 2-kink-solutions of the period

T = 2Tϕ ≈ τ may be regarded as 1-kink-solutions of the period T = Tϕ ≈
1
2τ . The

profiles illustrated in fig. 4.29 indicate the before mentioned. A further comparison of
both halves of the profiles calculated by DDE-BIFTOOL for example by subtraction of
both is not very reasonable because of the adaptive mesh which is used in DDE-BIFTOOL.
Therefore, an interpolation between the mesh points would be necessary which would
lead to numerical inaccuracies. Since the differences in the profiles are expected to be
very small, a difference due to numerical reasons could not be distinguished to a differ-
ence due to an actual difference in the profile. Nevertheless, under the assumption that
the phase θ(t) in both halves of the 2-kink-solutions are identical, they correspond to
the 1-kink-solutions of the period T = Tϕ ≈

1
2τ .

Therefore, the Arnold tongue for the 1-kink-solutions of the period T = Tϕ ≈
1
2τ is

calculated and presented in fig. 4.31. The bifurcations which are the borders of this
Arnold tongue are different to all previously obtained borders. The Floquet-multiplier
at the branches continued in ω indicate a fold and a period doubling bifurcation at those
borders of the tongue since one Floquet-multiplier leaves the unit circle at 1 and another
at −1. Thus, the number of unstable Floquet-multipliers changes from 0 to 2. The
continuation of the bifurcations in DDE-BIFTOOL shows that the branches of both kinds
of bifurcations are identical in the A − ω−plane. Since the Floquet-multipliers of the
branch continued in ω for the 2-kink-solutions of the period T = 2Tϕ ≈ τ indicate a fold
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Figure 4.29: Continuation in ω (and z0) of periodic 1-kink-solutions for the parameter
set: ∆ = 0.8, χ = 2.0, ψ = 0, τ = 50 and A = π

4 . The length of one period corresponds
to twice the period of the periodic potential T = 2Tϕ. The upper figure illustrates the
position of the kinks versus the continuation parameter ω. The thin red lines correspond
to an unstable and the thick blue lines to a stable solution. ω0 ≈ 0.2490053 is chosen as an
offset. The profiles of the phase θ of two different periodic solutions at ω1 ≈ 0.249 (stable)
and ω2 ≈ 0.24902 (unstable) are shown in the bottom figure as examples. The dotted
black lines in both figures correspond to the position of the kinks at the corresponding
periodic 2-kink-solution. The periodic solution 1 corresponds to the results presented in
fig. 4.28(c).
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Figure 4.30: Continuation in the A−ω−plane of (brown) period doubling bifurcations
and (blue and red corresponding to their stability) periodic 2-kink-solutions continued in
ω (and z0) at A = 0.05, 0.25, 0.5, 0.75, π4 , 1.0, 1.25, 1.5, 1.75, 2.0, ,A = 2.25, 2.5 and A = 4
and in A (and z0) at ω = 0.249 for the parameter set: ∆ = 0.8, χ = 2.0, ψ = 0 and
τ = 50. The length of each round trip corresponds to twice the period of the periodic
potential T = 2Tϕ ≈ τ leading to 2-kink-solutions. ω0 ≈ 0.2490053 is chosen as an offset.
The widths w(A = π

4 ) = 2.66× 10−4 and w(A = 4) = 1.06× 10−3 are calculated.

Figure 4.31: Continuation in the A− ω−plane of (black) fold bifurcations of periodic
solutions and (blue and red corresponding to their stability) periodic 1-kink-solutions
continued in ω (and z0) at A = π

4 and A = 4 for the parameter set: ∆ = 0.8, χ = 2.0,

ψ = π

2 and τ = 50. The length of each round trip corresponds to once the period of the

periodic potential T = Tϕ ≈
1
2τ leading to 1-kink-solutions. ω0 ≈ 0.2490053 is chosen

as an offset. The widths w(A = π

4 ) = 2.66× 10−4 and w(A = 4) = 1.06× 10−3 are
calculated. Moreover, Ahill ≈ 2.57 is found.
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Figure 4.32: Continuation in the A − ω−plane of (black) fold bifurcations of pe-
riodic 1-kinks-solutions from fig. 4.31, of (brown) period doubling bifurcations from
fig. 4.30 and (blue and red corresponding to their stability) periodic 2-kink-solutions from
fig. 4.30 continued in ω (and z0) at A = 0.05, 0.25, 0.5, 0.75, π4 , 1.0, 1.25, 1.5, 1.75, 2.0,
,A = 2.25, 2.5 and A = 4 and in A (and z0) at ω = 0.249 for the parameter set:
∆ = 0.8, χ = 2.0, ψ = π

2 and τ = 50. ω0 ≈ 0.2490053 is chosen as an offset. The

widths w(A = π

4 ) = 2.66× 10−4 and w(A = 4) = 1.06× 10−3 are calculated. Moreover,
Ahill ≈ 2.57 is found.

bifurcation, the borders of the Arnold tongue are displayed via the branches of the fold
bifurcations.
The shape of the Arnold tongue of the 1-kink-solutions fits very well to the branches
continued for the 2-kink-solutions. To supports that point the branches of the fold bi-
furcations of the 1-kink-solutions are added to fig. 4.30 in fig. 4.32. This shows the
assumption that the 1-kink-solutions of the period T = Tϕ ≈

1
2τ correspond to the

obtained 2-kink-solutions of the period T = 2Tϕ ≈ τ . Nevertheless, the continuation of
2-kink-solutions is a more general approach because it might lead to solutions where the
phase differs between the two halves after a period doubling bifurcation. Such a solution
cannot be obtained using 1-kink-solutions of the period T = Tϕ ≈

1
2τ . The continuation

of period-2 solutions after period doubling bifurcations might be a starting point for a
further investigation of this topic.
All in all, the behavior of the 1-kink-solutions of period T = Tϕ ≈ τ is adapted by the
2-kink-solution of period T = 2Tϕ ≈ τ . Those results fit to the stable periodic back-
ground of the multiple kink solution which is observed in [Gar+17]. N of the N + 1
kinks are trapped in one of the N minima of the potential. This suggests that the results
of the 1-kink-solutions inside a periodic potential with one minima may be extended to
N -kink-solutions inside a potential with N minima. Nevertheless, the computational
cost to calculate the obtained results for solutions containing more kinks exceeds the
capacity of this thesis.
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5. Conclusions and Outlook

The investigation of the interactions of the LSs shows, that it is well described by the
model of the EOM. The determination of the values F± through a fit of the derivative
of the difference between the kinks of some, specifically selected, DNSs of the DAE im-
proved the output obtained by DNSs of the EOM significantly compared to the results
obtained through calculating F± via analytics from a solution which contains one kink,
as performed in [Mun19] and [MJG20]. It is illustrated, that an assumption made in
[MJG20] about the connection of a periodic solution containing one LS and two LSs
is not valid for the investigated parameter set. However, this assumption is crucial for
the determination of F± via analytics. Hence, the presented method to determine F±
through a fit has advantages for parameter sets where periodic solutions containing two
kinks do not consist of a superposition of two identical periodic solutions containing one
LSs. The comparison of DNSs from the EOM to the DAE illustrates that the evolution
of the distance between the LSs is well described by the DNSs of the EOM, especially
for greater distances. However, a qualitatively good agreement between both kinds of
simulations is also observed for smaller distances. It is found analytically, that a distance
of half the period between two LSs is a distance which remains constant over round trips.
Moreover, it is shown numerically, through DNSs and continuations, that this kind of
solutions, in fact, exist for different values of the delay time and that they are stable in
general, except if a stable solution exists with a slightly smaller distance between the
kinks. In this case, they are unstable. Additionally, several branches with a constant
distance between the LSs with respect to a change in the delay time are found. The
difference between the kinks in these branches is well separated and smaller than half
the period.
Adding a periodic potential to the DAE leads to two different kinds of solutions for
the LS on a stable background. The LS is either moving from a potential minimum
to the next or is trapped inside the potential and therefore synchronized with it. The
borders of the phenomena of synchronization in the amplitude-frequency-plane form a
not symmetrical Arnold tongue which is getting wider in the frequency for an increasing
amplitude. Two solutions with different positions of the LS with respect to the potential
coexist for each parameter set inside the tongue. In general, one solution is stable and
the other one is unstable. Some parameter sets are found where the stable region inside
the tongue is restricted by a supercritical period doubling bifurcation. The position of
this bifurcation in the amplitude-frequency-plane can be controlled by the parameters
for the detuning and the feedback strength. Also depending on these parameters, the
Arnold tongue is opening up at higher frequencies to a relatively huge region of synchro-
nization compared to the interval in the frequency of the tongue. Especially the period
doubling bifurcation might also be observable in experiments since the obtained depen-
dencies strongly support the existence of parameter sets which show the phenomena and
which lie in the low amplitude region that might be obtainable in experiments. The
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position of the kink inside the potential depends on the frequency. These results may be
adapted to solutions containing multiple LSs, which fits to the experimental data which
is published so far.
Therefore, the position and periodicity of the LS and the stability of the solutions may
be controlled by the additional periodic potential. These properties are essential for
applications in optical communication networks.
The presented method to determine F± through a fit of the derivative of the distance
between the LSs obtained from the dynamics of the DAE need to be evaluated at other
parameter sets. Moreover, a robust and effective method could be found to determine
which DNSs of the DAE are at least necessary to obtain sufficient agreement between
the DNSs of the EOM and the DNSs of the DAE. The EOM is investigated for peri-
odic solutions containing two LSs only. However, the dynamics of solutions containing
multiple kinks is of great interest, especially for applications in optical communication
networks. Thus, the model could be investigated for periodic solutions containing more
than two kinks. The final distances between the kinks, that are approached in such
solutions, could be compared to the final distances obtained for solutions containing
two LSs. Since it is shown that the position of the LSs can be controlled by a periodic
potential through synchronization, the implementation of the periodic potential into the
EOM is an interesting topic for future work as well.
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A. Appendix

A.1. DNS – SIMP Scheme

A semi-implicit (SIMP) scheme of second order is used for the DNSs in this research.
Hence, a detailed overview of this topic is provided. The goal is to simulate the dynamics
given by eq. (2.11) with an additional noise term ε(t)

dz(t)
dt

= f (z(t), zτ (t), t) + ε(t) where zτ (t) = z(t− τ). (A.1)

Therefore, the continuous dynamic is discretized in time steps of length ∆t. The inte-
gration of eq. (A.1) of one time step from t0 to t0 + ∆t is given by

∫ t0+∆t

t0

dz(t)
dt

dt = z(t0 + ∆t)− z(t0) = I + dW where (A.2)

I =
∫ t0+∆t

t0
f (z(t), zτ (t), t) dt and (A.3)

dW =
∫ t0+∆t

t0
ε(t)dt. (A.4)

dW is called the differential of the Wigner process. For small time steps ∆t, f is
approximated by the Taylor expansion up to first order which is used for the calculation
of

I '
∫ t0+∆t

t0
f (z(t0), zτ (t0), t0) dt

+
∫ t0+∆t

t0

∂f

∂z

∣∣∣∣
[z(t0),zτ (t0),t0]

(z(t)− z(t0)) dt

+
∫ t0+∆t

t0

∂f

∂zτ

∣∣∣∣
[z(t0),zτ (t0),t0]

(zτ (t)− zτ (t0)) dt

+
∫ t0+∆t

t0

∂f

∂t

∣∣∣∣
[z(t0),zτ (t0),t0]

(t− t0) dt. (A.5)

The structure ∫ t0+∆t

t0
a (x(t)− x0) dt = a

∫ t0+∆t

t0
x(t)dt− ax0∆t (A.6)

with constants a and x0 is identified in the first order terms. The integral of the ob-
servable x(t) is approximated by the values at t0 and t0 + δt with the Trapez-method∫ t0+∆t
t0

x(t)dt ' ∫ t0+∆t
t0

x(t0)dt+
∫ t0+∆t
t0

x(t0+∆t)−x(t0)
∆t (t− t0)dt. Which leads to

∫ t0+∆t

t0
a (x(t)− x0) dt ' 1

2a (x(t0 + ∆t)− x(t0)) ∆t. (A.7)
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Inserting this result into eq. (A.5) gives

I 'f (z(t0), zτ (t0), t0) ∆t

+ 1
2
∂f

∂z

∣∣∣∣
[z(t0),zτ (t0),t0]

(z(t0 + ∆t)− z(t0)) ∆t

+ 1
2
∂f

∂zτ

∣∣∣∣
[z(t0),zτ (t0),t0]

(zτ (t0 + ∆t)− zτ (t0)) ∆t

+ 1
2
∂f

∂t

∣∣∣∣
[z(t0),zτ (t0),t0]

(t0 + ∆t− t0) ∆t. (A.8)

Hence, the whole integral in eq. (A.2) reads

[z(t0 + ∆t)− z(t0)]
[
1− 1

2
∂f

∂z

∣∣∣∣
[z(t0),zτ (t0),t0]

∆t
]

'1
2∆t

[
2f (z(t0), zτ (t0), t0) + ∂f

∂zτ

∣∣∣∣
[z(t0),zτ (t0),t0]

(zτ (t0 + ∆t)− zτ (t0))

+ ∂f

∂t

∣∣∣∣
[z(t0),zτ (t0),t0]

∆t+ 2dW∆t

]
. (A.9)

Rearranging leads to the final result

z(t0 + ∆t) ' z(t0) +
[
2f (z(t0), zτ (t0), t0) + ∂f

∂zτ

∣∣∣∣
[z(t0),zτ (t0),t0]

(zτ (t0 + ∆t)− zτ (t0))

+∆t ∂f
∂t

∣∣∣∣
[z(t0),zτ (t0),t0]

+ 2dW∆t

] 1
2∆t

1− 1
2∆t ∂f∂z

∣∣∣
[z(t0),zτ (t0),t0]

. (A.10)

For the DAE with periodic potential which is given in eq. (4.1),

f (θ, θτ , t) = ∆− sin (θ +A cos (ωt)) + χ sin (θτ − θ − ψ) , (A.11)
∂f

∂θ
= − cos (θ +A cos (ωt))− χ cos (θτ − θ − ψ) (A.12)

∂f

∂θτ
= +χ cos (θτ − θ − ψ) , (A.13)

∂f

∂t
= Aω sin (ωt) cos (θ +A cos (ωt)) and (A.14)

dW =
√

∆tεr (A.15)

– where ε is the amplitude of the noise and r ∈ [0, 1] is a random number – are obtained.
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