
A thesis submitted in partial fulfillment of the
requirements for the degree Master of Science

Identification of Stochastic Partial
Differential Equations from Data

Alina Barbara Steinberg
Born 8.10.92 in Bochum

2020

Institute of Theoretical Physics
Westfälische Wilhelms-Universität Münster



Primary supervisor: Prof. Dr. U. Thiele
Secondary supervisor: Dr. O. Kamps
Handover date: 27. August 2020



Abstract

This thesis seeks to identify stochastic partial differential equations from field data
by way of extending the method of maximum likelihood estimation to encompass
partial differential equations.

Applying this method to generated one-dimensional field data sets leads to the con-
clusion that there is no universal rule as to how noisy the data can be for the method
to succeed. The one-dimensional reaction-diffusion equation gives good results even
for relatively big noise levels, while data generated with the Swift-Hohenberg equa-
tion needs a low noise level for successful model identification. Nevertheless, given
a reasonable noise level, the method results in reliable results especially if combined
with sparsity promoting methods such as BIC or thresholding.

Applying the maximum likelihood estimation method to data generated from the
two-dimensional Brusselator equation further proves that successful identification
is possible in multiple dimensions.

Compared with the SINDy method for identification of stochastic partial differential
equations, the maximum likelihood estimation can accurately identify models from
data sets with bigger noise levels.

Applying the maximum likelihood estimation to field data of the Ising model, which
is generated as a cellular automaton, does not show results which match the original
data set. Some cases don’t even match the dynamic, others grow far beyond the
size of the spin values.
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1 Introduction

The topic of this thesis is the derivation of models in the form of stochastic partial
differential equations from field data.

The ability to derive models from data is of interest to many different areas of
science, such as ecology, climate science, epidemiology or neuroscience [7], as it
allows both a deeper understanding of the process and gives a chance at predicting
its behavior.

Models derived from spatially extended systems are particularly interesting for
studying pattern formation [19], fluid dynamics [24] and molecular dynamics [6].
An additional hope is to translate cellular automatons into differential equations.

Many different methods for model derivation from time series data exist, such
as using the SINDy algorithm [7], possibly in combination with kernel regression
methods to straighten the data [14], or a maximum likelihood approach [16].

The SINDy method has been extended for use with partial differential equations
[24], but can only handle small noise levels. Hoping that it will prove more resistant
to noise, this thesis focuses on adapting the maximum likelihood approach for use
on spatially extended data sets.

As a first step the basics of stochastic time series analysis for ordinary differential
equations are explained, starting with general information on models which describe
stochastic time series data (see subsection 2.1), followed by the basics of Bayesian
estimation of parameters (see subsection 2.2), which include the maximum likeli-
hood estimation and Markov chain Monte Carlo methods. The SINDy method is
explained in subsection 2.3 for the purpose of comparison.

Section 3 describes the adaption of the maximum likelihood approach to field data
and how the method is realized in a Python program. The method is then tested
on generated data sets for one- and two-dimensional fields, the results of which are
described in section 4.

Finally the maximum likelihood method is tested on field data of the two-dimensional
Ising model. The theory as well as the results are detailed in section 5.
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2 Basics of Stochastic Time Series Analysis

2.1 Stochastic Time Series Analysis

The key points of stochastic time series analysis are explained in the following
sections. For a more exhaustive overview see reference [14].

2.1.1 Stochastic Processes

The model of a stochastic process can be described by an 𝑁-point probability
density function (PDF) as defined in equation (2.1.1), where 𝑁 is the amount of
points in time.

𝑓𝑁(𝑞𝑁, 𝑡𝑁; 𝑞𝑁−1, 𝑡𝑁−1; ...; 𝑞1, 𝑡1) (2.1.1)

The PDF gives the probability that a stochastic process 𝑄(𝑡) returns the values
𝑞1, ..., 𝑞𝑁 at times 𝑡1, ..., 𝑡𝑁 and can be split into a product, as shown in equation
(2.1.2), where 𝑝 is a conditional PDF and 𝑓𝑁−1 is the (𝑁 − 1)-point PDF.

𝑓𝑁(𝑞𝑁, 𝑡𝑁; ...; 𝑞1, 𝑡1) = 𝑝(𝑞𝑁, 𝑡𝑁|𝑞𝑁−1, 𝑡𝑁−1; ...; 𝑞1, 𝑡1) ⋅ 𝑓𝑁−1(𝑞𝑁−1, 𝑡𝑁−1; ...; 𝑞1, 𝑡1)
(2.1.2)

2.1.2 Normal Distribution

The normal or Gaussian distribution (see also [2]) is a continuous probability dis-
tribution with the form seen in equation (2.1.3).

𝑁(𝜇, 𝜎) = 1
𝜎

√
2𝜋

exp (−(𝑥 − 𝜇)2

2𝜎2 ) (2.1.3)

𝜇 represents the mean which gives the position of the maximum of the distribution
and therefore the value that a random variable drawn from this distribution is most
likely to take.

𝜎 gives the standard deviation, which influences the width of the distribution and
therefore how likely it is for a random variable to stray far from the mean.
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2.1.3 Markov Processes

The Markov process is a stochastic process 𝑄(𝑡) where the probability of producing
the state 𝑞𝑁 depends on the state 𝑞𝑁−1 while information on other previous states
has no influence. A mathematical description is found in equation (2.1.4).

𝑝(𝑞𝑁, 𝑡𝑁|𝑞𝑁−1, 𝑡𝑁−1; ...; 𝑞1, 𝑡1) = 𝑝(𝑞𝑁, 𝑡𝑁|𝑞𝑁−1, 𝑡𝑁−1) (2.1.4)

Given a reasonable time step and unless a time delay is included, continuous dif-
ferential equations can be considered Markov processes since knowing the state 𝑞𝑖
and its time derivative ̇𝑞𝑖 at the time 𝑡𝑖 is all that is needed to make a prediction
of the state of the system at the time 𝑡𝑖+1.

Applying equation (2.1.2) to a Markov process makes it possible to describe the
PDF as a product of conditional PDFs and a PDF of the first state 𝑓1, as shown
in equation (2.1.5).

𝑓𝑁(𝑞𝑁, 𝑡𝑁; ...; 𝑞1, 𝑡1) = 𝑓1(𝑞1, 𝑡1)
𝑁−1
∏
𝑖=1

𝑝(𝑞𝑖+1, 𝑡𝑖+1|𝑞𝑖, 𝑡𝑖) (2.1.5)

If the process is stationary, therefore giving it a constant mean and variance, the
conditional PDF depends on the time step 𝜏 = 𝑡𝑖+1 − 𝑡𝑖 which is independent
of the specific value of 𝑖. This conditional PDF can be found in (2.1.6) and in
combination with the Chapman-Kolmogorov equation for 𝑝2𝜏 (see (2.1.7)) allows
complete information about the Markov process.

𝑝𝜏(𝑞′|𝑞) = 𝑝(𝑞′, 𝑡 + 𝜏|𝑞, 𝑡) (2.1.6)

𝑝2𝜏(𝑞″|𝑞) = 𝑓2(𝑞″, 𝑞)
𝑓1(𝑞)

= ∫ 𝑝𝜏(𝑞″|𝑞′)𝑝𝜏(𝑞′|𝑞)d𝑞′ (2.1.7)

2.1.4 Fokker-Planck Equation

The Fokker-Planck equation gives form to the transition PDFs by using the first two
moments of a Kramers-Moyal extension of a Taylor expansion of equation (2.1.7),
which is valid if the process is Gaussian distributed in the time limit 𝜏 → 0. It can
be found in equation (2.1.8) and uses the initial condition 𝑝(𝑞′, 𝑡′|𝑞, 𝑡) = 𝛿(𝑞′ −𝑞).

𝜕
𝜕𝑡′ 𝑝(𝑞′, 𝑡′|𝑞, 𝑡) = [− 𝜕

𝜕𝑞′ 𝐷(1)(𝑞′, 𝑡′) + 𝜕2

𝜕𝑞′2 𝐷(2)(𝑞′, 𝑡′)] 𝑝(𝑞′, 𝑡′|𝑞, 𝑡) (2.1.8)

3



2 Basics of Stochastic Time Series Analysis

𝐷(1) and 𝐷(2) are called Kramers-Moyal coefficients and can be calculated using
equation (2.1.9), where 𝑀 (𝑛)

𝜏 are called the conditional moments.

𝐷(𝑛)(𝑞, 𝑡) = lim
𝜏→0

1
𝑛!𝜏

⟨(𝑄(𝑡 + 𝜏) − 𝑄(𝑡))𝑛|𝑄(𝑡) = 𝑞⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑀(𝑛)

𝜏 (𝑞,𝑡)

(2.1.9)

𝐷(1)(𝑞, 𝑡) is also called drift coefficient and gives information about the time devel-
opment of the deterministic part of the system. 𝐷(2)(𝑞, 𝑡) is the diffusion coefficient
and gives information on the influence of the noise.

In the limit 𝜏 = 𝑡′ − 𝑡 → 0 the transition PDF as shown in equation (2.1.10) can
be derived. It is called short-time propagator.

𝑝(𝑞′, 𝑡 + 𝜏|𝑞, 𝑡) = 1
2√𝜋𝐷(2)(𝑞, 𝑡)𝜏

exp (−(𝑞′ − 𝑞 − 𝐷(1)(𝑞, 𝑡)𝜏)2

4𝐷(2)(𝑞, 𝑡)𝜏
) (2.1.10)

The Fokker-Planck equation in a multivariate case has the form seen in equation
(2.1.11), with a short-time propagator as shown in equation (2.1.12) [23]. 𝑑 is the
dimension of the vectors q and D(1). D(2) is a 𝑑 × 𝑑 matrix.

𝜕
𝜕𝑡′ 𝑝(q′, 𝑡′|q, 𝑡) = [−

𝑑
∑

𝑖

𝜕
𝜕𝑞′

𝑖
𝐷(1)

𝑖 (q′, 𝑡′) +
𝑑

∑
𝑖,𝑗

𝜕2

𝜕𝑞′
𝑖𝜕𝑞′

𝑗
𝐷(2)

𝑖𝑗 (q′, 𝑡′)] 𝑝(q′, 𝑡′|q, 𝑡)

(2.1.11)

𝑝(q′, 𝑡′|q, 𝑡) =
exp (− 1

4𝜏 [q′ − q − D(1)(q, 𝑡)𝜏 ][D(2)(q, 𝑡)]−1[q′ − q − D(1)(q, 𝑡)𝜏 ])

(2
√

𝜋𝜏)𝑑√Det[D(2)(q, 𝑡)]
(2.1.12)

The accompanying Kramers-Moyal coefficients can be found in equations (2.1.13)
and (2.1.14).

𝐷(1)
𝑖 (q, 𝑡) = lim

𝜏→0

1
𝜏

⟨𝑄𝑖(𝑡 + 𝜏) − 𝑄𝑖(𝑡)|Q(𝑡) = q⟩ (2.1.13)

𝐷(2)
𝑖𝑗 (q, 𝑡) = lim

𝜏→0

1
2𝜏

⟨(𝑄𝑖(𝑡 + 𝜏) − 𝑄𝑖(𝑡))(𝑄𝑗(𝑡 + 𝜏) − 𝑄𝑗(𝑡))|Q(𝑡) = q⟩ (2.1.14)

2.1.5 Langevin Equation

The Langevin equation is a dynamic evolution equation, derived from the Fokker-
Planck equation and can be found in (2.1.15).

̇𝑞(𝑡) = ℎ(𝑞(𝑡), 𝑡) + 𝑔(𝑞(𝑡), 𝑡)Γ(𝑡) (2.1.15)

4



ℎ represents the deterministic part of the dynamic, while 𝑔 is the amplitude of
the noise represented by a stochastic 𝛿-correlated force Γ(𝑡) with zero mean, which
therefore has to satisfy equations (2.1.16) and (2.1.17).

⟨Γ(𝑡)Γ(𝑡′)⟩ = 2𝛿(𝑡 − 𝑡′) (2.1.16)
⟨Γ(𝑡)⟩ = 0 (2.1.17)

The connection between the Langevin and the Fokker-Planck equation comes from
the connection between ℎ and 𝑔 with 𝐷(1) and 𝐷(2), which is shown in equations
(2.1.18) and (2.1.19).

𝐷(1)(𝑞, 𝑡) = ℎ(𝑞, 𝑡) (2.1.18)

𝐷(2)(𝑞, 𝑡) = 1
2

𝑔2(𝑞, 𝑡) (2.1.19)

The multi-dimensional version of equation (2.1.15) can be found in equation (2.1.20),
where h and Γ(𝑡) are vectors of length 𝑑 while G is a 𝑑 × 𝑑 matrix.

̇q(𝑡) = h(q(𝑡), 𝑡) + G(q(𝑡), 𝑡)Γ(𝑡) (2.1.20)

The multi-dimensional Γ(𝑡) works under the condition seen in (2.1.21), where 𝛿𝑖𝑗 is
the Kronecker symbol.

⟨Γ(𝑡)Γ(𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′) (2.1.21)

Individual rows of ̇q(𝑡) can be extracted using equation (2.1.22).

̇𝑞𝑖(𝑡) = ℎ𝑖(q(𝑡), 𝑡) + Σ𝑗𝐺𝑖𝑗(q(𝑡), 𝑡)Γ𝑗(𝑡) (2.1.22)

The connection to the Kramers-Moyal coefficients in the multi-dimensional case can
be found in equations (2.1.23) and (2.1.24).

𝐷(1)
𝑖 (q, 𝑡) = ℎ𝑖(q, 𝑡) (2.1.23)

𝐷(2)
𝑖𝑗 (q, 𝑡) = 1

2
∑

𝑘
G𝑖𝑘(q, 𝑡)G𝑗𝑘(q, 𝑡) (2.1.24)
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2 Basics of Stochastic Time Series Analysis

2.2 Bayesian Estimation of Parameters

The parameter estimation method described below seeks to determine the drift
and diffusion coefficients based on Bayesian statistics and works by finding the
maximum of the probability that the model describes the data set. The underlying
process is Markovian and the dynamic stationary in time.

2.2.1 Bayesian Statistics

Bayesian statistics give probabilities based on the available knowledge.

According to the Bayes’ theorem, a conditional probability 𝑝(𝑥|𝑦), called posterior,
can be described by the likelihood 𝑝(𝑦|𝑥), the prior 𝑝(𝑥) and the evidence 𝑝(𝑦) as
seen in equation (2.2.1).

𝑝(𝑥|𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)
𝑝(𝑦)

(2.2.1)

The prior 𝑝(𝑥) contains all the current information on the probability of 𝑥, prior to
involving 𝑦. If there is no information a flat prior is used, deeming each outcome
equally likely.

The likelihood 𝑝(𝑦|𝑥) gives the probability of 𝑦 under the condition 𝑥.

The evidence 𝑝(𝑦) primarily functions as a normalizer, which makes it unimportant
to the form of the probability distribution.

If the Bayes’ theorem is used to extract a model 𝑀 from data 𝐷 it has the following
form:

𝑝(𝑀|𝐷) = 𝑝(𝐷|𝑀)𝑝(𝑀)
𝑝(𝐷)

Under that condition the prior is the probability of the model without taking the
data into account and the likelihood is the probability of the model producing this
exact set of data.

A more extensive explanation can be found in reference [2].
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2.2.2 Maximum Likelihood Estimation

As described in reference [16] the maximum likelihood estimation (MLE) is used
to find a model defined by the parameters 𝑐𝑗 𝜖 c which describes the data set
𝑥0, … , 𝑥𝑁.

To that end a conditional probability is used to determined how likely it is for
different combinations of parameters to be a good fit for the data set, while also
taking the time step 𝜏 into consideration. Maximizing this conditional probability
leads to the parameter set that best describes the data. It is defined in equation
(2.2.2) and derived from the Bayes’ theorem as introduced in equation (2.2.1).

𝑝(c|𝑥𝑁, … , 𝑥0; 𝜏) = 𝑝(𝑥𝑁, … , 𝑥1|𝑥0; c, 𝜏)𝑝(c)
𝑝(𝑥𝑁, … , 𝑥1|𝑥0; 𝜏)

(2.2.2)

Without further information a flat prior on a reasonable interval is used, which
doesn’t affect the position of the maximum. Since the evidence also has no impact
on the position of the maximum equation (2.2.2) can be simplified, so that maxi-
mizing the posterior is equivalent to maximizing the likelihood, which is depicted
in equation (2.2.3).

𝑝(c|𝑥𝑁, … , 𝑥0; 𝜏) ∼ 𝑝(𝑥𝑁, … , 𝑥1|𝑥0; c, 𝜏) (2.2.3)

𝑝(𝑥𝑁, … , 𝑥1|𝑥0; c, 𝜏) comes from a Markov process, it can therefore be split into
a product of conditional probabilities as introduced in equation (2.1.5). Since the
logarithm is a strictly monotonic function, applying it means that maximizing the
likelihood gives the same result as maximizing ln[𝑝(𝑥𝑁, … , 𝑥1|𝑥0; c, 𝜏)]. The log-
likelihood function therefore has the form seen in equation (2.2.4).

𝐿(c) =
𝑁

∑
𝑖=1

ln[𝑝(𝑥𝑖|𝑥𝑖−1; c, 𝜏)] (2.2.4)

For the conditional probability found in equation (2.2.4) the short-time propagator
is the same as for the Fokker-Planck equation (see equation (2.1.10)). The one-
dimensional case is shown in equation (2.2.5).

𝐿(c) = −1
2

𝑁
∑
𝑖=1

[[𝑥𝑖 − 𝑥𝑖−1 − 𝐷(1)(𝑥𝑖−1, c)𝜏]2

2𝐷(2)(𝑥𝑖−1, c)𝜏
+ ln [𝐷(2)(𝑥𝑖−1, c)] + ln (4𝜋𝜏)]

(2.2.5)

The 𝐷(𝑛) are equations depending on the parameter set c. An example for a
polynomial ansatz for them is shown in equation (2.2.6).

𝐷(𝑛)(𝑥, c) = 𝑐0,𝑛 + 𝑐1,𝑛𝑥 + 𝑐2,𝑛𝑥2 + 𝑐3,𝑛𝑥3 + … (2.2.6)
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2 Basics of Stochastic Time Series Analysis

In case of multiple dimensions the log-likelihood is similarly derived using the short-
time propagator seen in equation (2.1.12). Here the x and D(1) are vectors of
dimension 𝑑, while D(2) is a square matrix of size 𝑑. The log-likelihood is depicted
in equation (2.2.7).

𝐿(c) = −1
2

𝑁
∑
𝑖=1

[ 1
2𝜏

[x𝑖 − x𝑖−1 − D(1)𝜏][D(2)]−1[x𝑖 − x𝑖−1 − D(1)𝜏]

+ ln [(4𝜋𝜏)𝑑Det[D(2)]]] (2.2.7)

2.2.3 Sparsity Promoting Methods

As described in reference [24] or [5] a lot of models which describe physical processes
consist of only a hand full of terms. In a high-dimensional function space the
governing equations are therefore sparse.

There are a lot of different methods which promote sparsity when analysing data.
All of them, in one way or another, aim to keep the amount of parameters 𝑐𝑗 ≠ 0
small.

Bayesian Information Criterion

The Bayesian information criterion (BIC) as explained in reference [5] is a model
selection method which promotes sparsity through a penalty term. The size of the
penalty depends on the amount of coefficients 𝑐𝑗 ≠ 0.

Instead of maximizing the likelihood, the BIC, as defined in equation (2.2.8), is
minimized.

𝐵𝐼𝐶 = 𝑘 ⋅ log(𝑛) − 2 ⋅ 𝐿max (2.2.8)

Here 𝑘 is the amount of coefficients 𝑐𝑗 ≠ 0, 𝑛 is the number of data points and 𝐿max
is the result of the maximized log-likelihood function.

The BIC is guaranteed to converge to the correct model in the large data limit, as
long as the correct model is part of the tested models.
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Thresholding

Another sparsity promoting method is thresholding, following the idea of sequential
thresholding which is discussed in subsection 2.3.2.

A thresholding parameter 𝜆 is chosen for truncation. All coefficients 𝑐𝑗 with |𝑐𝑗| < 𝜆
are set to zero during the maximization process.

Hyperparameter Optimization

Hyperparameters are parameters which are part of the model selection process, but
not the model itself. Examples for hyperparameters are the thresholding parameter
or the weight assigned to a penalty term.

The process of optimization gives the hyperparameter value which leads to the best
possible model.

The method used in this thesis is based on Bayesian hyperparameter optimization
from the hyperopt package in Python (see [3]). It operates by choosing the next hy-
perparameter as efficiently as possible, while a loss function evaluates how effective
the hyperparameter was. From the combination of hyperparameter ℎ and result
of the loss function 𝑔 a probability distribution 𝑝(ℎ|𝑔) is formed after a few test
runs, which can be described through Bayes’ theorem (see equation (2.2.1)). The
maximum of the probability distribution gives the best hyperparameter value to
choose for the next test, the result of which is then used to update the probability
distribution through a new and improved prior.

2.2.4 Markov Chain Monte Carlo Methods

Reference [2] gives a more exhaustive overview over Markov chain Monte Carlo
(MCMC) methods, but the key points are explained below.

Monte Carlo methods use sampling from a probability distribution 𝐷(𝑥) to ap-
proximate its shape. The resulting sample set {𝑥𝑖} can now substitute the actual
probability distribution when looking for things like the mean or maximum.

There are different methods of sampling, which mostly work by drawing from an
easier distribution 𝑄(𝑥) with 𝑄(𝑥) ≥ 𝐷(𝑥) and then either keeping or rejecting
the samples according to 𝐷(𝑥). A more efficient way of sampling which draws
preferably from regions with high probability are the Markov chain Monte Carlo
methods.
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2 Basics of Stochastic Time Series Analysis

MCMC methods use a random walk on a Markov chain, therefore choosing the next
sample 𝑥𝑖+1 according to the short-time propagator 𝑝(𝑥𝑖+1|𝑥𝑖). For this to work it
is necessary that every part of the probability distribution is reachable from other
parts of the parameter space.

The MCMC method used in this thesis is the affine-invariant MCMC ensemble
sampler from the emcee package for Python, as documented in reference [10].
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2.3 Sparse Identification of Nonlinear Dynamics

Given a (potentially noisy) data set (Ẋ, X) of a (potentially nonlinear) dynamical
system, where X and Ẋ are the time series data of the state x(𝑡) and its time
derivative ̇x(𝑡) respectively (see equation (2.3.1) and (2.3.2)), the ’Sparse Identifi-
cation of Nonlinear Dynamics’, or SINDy, (as proposed in references [7] and [24]
for ordinary and partial differential equations respectively) seeks to determine the
underlying governing equations.

X =
⎛⎜⎜⎜⎜
⎝

𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑛(𝑡1)
𝑥1(𝑡2) 𝑥2(𝑡2) ⋯ 𝑥𝑛(𝑡2)

⋮ ⋮ ⋱ ⋮
𝑥1(𝑡𝑚) 𝑥2(𝑡𝑚) ⋯ 𝑥𝑛(𝑡𝑚)

⎞⎟⎟⎟⎟
⎠

(2.3.1)

Ẋ =
⎛⎜⎜⎜⎜
⎝

̇𝑥1(𝑡1) ̇𝑥2(𝑡1) ⋯ ̇𝑥𝑛(𝑡1)
̇𝑥1(𝑡2) ̇𝑥2(𝑡2) ⋯ ̇𝑥𝑛(𝑡2)

⋮ ⋮ ⋱ ⋮
̇𝑥1(𝑡𝑚) ̇𝑥2(𝑡𝑚) ⋯ ̇𝑥𝑛(𝑡𝑚)

⎞⎟⎟⎟⎟
⎠

(2.3.2)

SINDy works under the assumption that the resulting model is sparse in the space
of possible functions and can therefore be described by only a few terms. To achieve
this it uses a combination of machine learning and sparsity promoting regression
methods.

For a dynamical system of the form ̇x(𝑡) = f(x(𝑡), 𝑡), where x(𝑡) represents the state
of the system at the time 𝑡 and f(x(𝑡), 𝑡) describes the dynamic of the system, a
library Θ(X(𝑡)) of possible building blocks of f(X(𝑡), 𝑡) in the form of a matrix is
constructed from the time series data. An example with polynomials, trigonometric
functions and a constant is shown in equation (2.3.3).

Θ(X) = ⎛⎜
⎝

| | | | |
1 X X𝑃2 ⋯ sin(X) cos(X)
| | | | |

⎞⎟
⎠

(2.3.3)

X𝑃2 represents all the different terms of the second order polynomial as shown in
equation (2.3.4).

X𝑃2 = ⎛⎜
⎝

𝑥2
1(𝑡1) 𝑥1(𝑡1)𝑥2(𝑡1) ⋯ 𝑥2

2(𝑡1) ⋯ 𝑥2
𝑛(𝑡1)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥2

1(𝑡𝑚) 𝑥1(𝑡𝑚)𝑥2(𝑡𝑚) ⋯ 𝑥2
2(𝑡𝑚) ⋯ 𝑥2

𝑛(𝑡𝑚)
⎞⎟
⎠

(2.3.4)

The dynamical system ̇x(𝑡) = f(x(𝑡), 𝑡) can now be represented by equation (2.3.5)
or rather equation (2.3.6) if we consider a noisy data set. Ξ consists of 𝑛 columns
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2 Basics of Stochastic Time Series Analysis

of (sparse) vectors which weight the influence of the accompanying building blocks
in the library matrix. Γ represents a noise matrix with the noise magnitude 𝜂.

Ẋ = Θ(X)Ξ (2.3.5)
Ẋ = Θ(X)Ξ + 𝜂Γ (2.3.6)

Equation (2.3.5) can now be viewed as a linear equation and therefore be solved
using linear regression, where each column of Ξ requires its own regression. De-
pending on the data set it might also be necessary to normalize the columns of the
library matrix (see [29]) otherwise small elements in polynomials can become so
small they show no impact during the regression.

2.3.1 SINDy for Partial Differential Equations

A partial differential equation can be described as seen in equation (2.3.7), therefore
knowledge of the spatial derivatives is needed to build a complete library matrix of
candidate functions.

𝜕𝑡u(𝑥, 𝑡) = f(u(𝑥, 𝑡), △u(𝑥, 𝑡), …) (2.3.7)

If the field is homogeneous in its behaviour the amount of data can be reduced by
sampling the data only at certain points of the field.

From there on the partial differential equation can be used just like an ordinary
differential equation.

2.3.2 Regression Methods

There are different regression methods proposed for SINDy ([7], [24], [19]). This
thesis focuses on four of them.

Ordinary Least Squares Regression

The ordinary least squares regression fits a linear model of the form 𝑦 = 𝑓(𝑥, 𝛼) =
𝑥⋅𝛼 to data points. The corresponding cost function has the form 𝑐(𝛼) = 1

2 ∑𝑖(𝑦𝑖 −
𝑓(𝑥𝑖, 𝛼))2 and is minimized using 𝜕𝑐

𝜕𝛼 = 0 [9].

For use in the SINDy algorithm, 𝛼 is considered a vector and 𝑥 a matrix of candidate
functions. This regression method is not inherently sparse, but can still work,
depending on the data set and the possible candidate functions.
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LASSO Regression

The LASSO (least absolute shrinkage and selection operator) regression, as pro-
posed in reference [27], works a lot like the ordinary least squares regression, but to
prevent overfitting, which causes very large coefficients, the cost function gets an
extra penalty term to discourage large parameter values.

The cost function now has the form 𝑐(𝛼)+𝜆 ∑𝑗 |𝛼𝑗| where the Lagrange parameter
𝜆 dictates how harsh the penalty is.

The LASSO regression penalizes every 𝛼𝑗 ≠ 0 and therefore promotes sparsity.

Sequential Thresholded Least-Squares

The sequential thresholded least-squares (STLS) method (see [7]) uses the ordi-
nary least squares regression in combination with a threshold value 𝜆 to promote
sparsity.

An initial linear regression gives a set of coefficients 𝛼𝑗. Every |𝛼𝑗| < 𝜆 is then
set to zero. Another least-squares solution with the remaining non-zero parts of
the problem is obtained and the result once again thresholded. Repeating this
eventually allows a hand full of remaining coefficients to converge.

Iterative Hard-Thresholding

The iterative hard-thresholding (IHT) (see [4]) also works with a thresholding value
𝜆, but unlike the sequential thresholded least-squares method it doesn’t work by
minimizing a cost function.

The iterative hard-thresholding starts with 𝛼 = ⃗0 and then iterates, using 𝛼𝑛+1 =
𝛼𝑛 +𝑥𝑇(𝑦−𝑥𝛼𝑛). Much like the sequential thresholded least-squares method, every
component of 𝛼 that’s smaller than the threshold value is set to zero. As long as
||𝑥||2 < 1 this method eventually converges to a fixed point.
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3 Stochastic Time Series Analysis for
Spatio-Temporal Data

3.1 Stochastic Spatio-Temporal Systems

Systems governed by a stochastic partial differential equations (SPDE) can also
take the form of a Langevin equation as introduced in reference [15].

Taking equation (2.1.19) into account, the Langevin equation for SPDEs takes the
form seen in equation (3.1.1).

𝜕𝑡𝑢(x, 𝑡) = 𝐷(1)[𝑢(x, 𝑡)] + √2𝐷(2)[𝑢(x, 𝑡)]Γ(x, 𝑡) (3.1.1)

Here 𝑢(x, 𝑡) is a state variable on a spatially extended field, which does not depend
explicitly on the point x. Instead that dependence stems from spatial derivatives.

3.2 Spatio-Temporal Short-Time Propagator

An incremental change in equation (3.1.1) leads to equation (3.2.1) [17].

𝑢𝑖+1 − 𝑢𝑖 = 𝐷(1)𝜏 + √2𝐷(2)Γ𝑖 (3.2.1)

Here Γ𝑖 is an incremental change of a stochastic Gaussian process (or Wiener pro-
cess), therefore it is normally distributed noise with zero mean (see subsection
(2.1.5)) and a standard deviation which depends linearly on

√
𝜏 [25]. According to

reference [18] equation (3.2.2) can be used to the same effect.

Γ𝑖 =
√

𝜏𝑁(0, 1) (3.2.2)

Applying equation (3.2.2) to equation (3.2.1) leads to equation (3.2.3), where 𝜇 and
𝜎 are the mean and standard deviation for 𝑢𝑖+1.

𝑢𝑖+1 = 𝑢𝑖 + 𝐷(1)𝜏⏟⏟⏟⏟⏟
𝜇

+ √2𝐷(2)𝜏⏟
𝜎

𝑁(0, 1) (3.2.3)
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Following from equation (3.2.3) the short-time propagator is derived in equation
(3.2.4) with the end result shown in equation (3.2.5) which matches the case for
ordinary differential equations seen in equation (2.1.10).

𝑝(𝑢𝑖+1|𝑢𝑖) ∼ 𝑁(𝜇, 𝜎) = 1√
2𝜋𝜎2

exp (−
(𝑢𝑖+1 − 𝜇)2

2𝜎2 ) (3.2.4)

= 1√
4𝜋𝐷(2)𝜏

exp (−
(𝑢𝑖+1 − 𝑢𝑖 + 𝐷(1)𝜏)2

4𝐷(2)𝜏
) (3.2.5)

3.3 Spatio-Temporal Maximum Likelihood Estimation

The SPDE equivalent for finding a model to describe a data set through Bayes
(as seen in equation (2.2.3)) is depicted in equation (3.3.1), where maximizing
the likelihood (right-hand side) maximizes the posterior (left-hand side), therefore
giving the best model with parameter set c to describe the data set 𝑢0, … , 𝑢𝑁.

𝑝(c|𝑢𝑁, … , 𝑢0; 𝜏) ∼ 𝑝(𝑢𝑁, … , 𝑢1|𝑢0; c, 𝜏) (3.3.1)

Applying the Markov chain according to equation (2.1.5) gives the likelihood seen
in equation (3.3.2).

𝑝(c|𝑢𝑁, … , 𝑢0; 𝜏) ∼
𝑁−1
∏
𝑖=0

𝑝(𝑢𝑖+1|𝑢𝑖; c, 𝜏) (3.3.2)

As established in section 2.2.2 maximizing the likelihood is the same as maximizing
the log-likelihood, which can be found in equation (3.3.3). Adding the short-time
propagator from equation (3.2.5) gives the finalized log-likelihood as seen in equa-
tion (3.3.4).

𝐿(c) =
𝑁

∑
𝑖=1

ln[𝑝(𝑢𝑖|𝑢𝑖−1; c, 𝜏)] (3.3.3)

=
𝑁

∑
𝑖=1

[−(𝑢𝑖 − 𝑢𝑖−1 − 𝐷(1)(c)𝜏)2

4𝐷(2)(c)𝜏
− 1

2
ln (4𝐷(2)(c)𝜋𝜏)] (3.3.4)

3.4 Multi-Dimensional Maximum Likelihood Estimation

Following the same steps as in subsection 3.2 for the multi-dimensional case leads to
the short-time propagator depicted in equation (3.4.1), which also matches with the
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3 Stochastic Time Series Analysis for Spatio-Temporal Data

one for multi-dimensional ordinary differential equations (see equation (2.1.12)).

𝑝(u𝑖|u𝑖−1) =
exp (− 1

4𝜏 [u𝑖 − u𝑖−1 − D(1)(c)𝜏][D(2)(c)]−1[u𝑖 − u𝑖−1 − D(1)(c)𝜏])

(2
√

𝜋𝜏)𝑑√Det[D(2)(c)]
(3.4.1)

For the multivariate case the drift and diffusion coefficients take the forms seen in
equations (3.4.2), with the accompanying log-likelihood seen in equation (3.4.3).

u = ⎛⎜
⎝

𝑢
𝑣
⋮

⎞⎟
⎠

D(1) = ⎛⎜⎜
⎝

𝐷(1)
𝑢

𝐷(1)
𝑣
⋮

⎞⎟⎟
⎠

D(2) = ⎛⎜⎜
⎝

𝐷(2)
𝑢𝑢 𝐷(2)

𝑢𝑣 ⋯
𝐷(2)

𝑣𝑢 𝐷(2)
𝑣𝑣 ⋯

⋮ ⋮ ⋱

⎞⎟⎟
⎠

(3.4.2)

𝐿(c) = −1
2

𝑁
∑
𝑖=1

[[u𝑖 − u𝑖−1 − D(1)(c)𝜏][D(2)(c)]−1[u𝑖 − u𝑖−1 − D(1)(c)𝜏]
2𝜏

+ ln [(4𝜋𝜏)𝑑Det[D(2)(c)]]] (3.4.3)

The easier two-dimensional case where D(2)(c) is a diagonal matrix gives the coef-
ficients seen in equation (3.4.4) and the log-likelihood seen in equation (3.4.5).

u = ( 𝑢
𝑣 ) D(1) = ( 𝐷(1)

𝑢

𝐷(1)
𝑣

) D(2) = ( 𝐷(2)
𝑢 0
0 𝐷(2)

𝑣
) (3.4.4)

𝐿(c) = −1
2

𝑁
∑
𝑖=1

[[𝑢𝑖 − 𝑢𝑖−1 − 𝐷(1)
𝑢 (c)𝜏]2

2𝐷(2)
𝑢 (c)𝜏

+ [𝑣𝑖 − 𝑣𝑖−1 − 𝐷(1)
𝑣 (c)𝜏]2

2𝐷(2)
𝑣 (c)𝜏

+ ln [𝐷(2)
𝑢 (c) ⋅ 𝐷(2)

𝑣 (c) ⋅ (4𝜋𝜏)2]] (3.4.5)

3.5 The Maximum Likelihood Estimation Program

The maximum likelihood estimation is programmed in Python. The log-likelihood
is estimated for every point in the field and then the mean taken, so that the
maximization gives the best possible parameters for as many points of the field as
possible.

The maximizing is done by minimizing the negative log-likelihood with local or
global minimization methods from the Python package scipy.optimize.
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The local minimization method is called fmin and uses the Nelder-Mead method of
minimization. It has 𝑑+1 test points for a 𝑑 dimensional problem, which define a
simplex in the function space. The worst test point is then consecutively replaced
by a point on a line projected through the geometrical centre of the simplex so that
it has a smaller value than the previous point. When reaching the minimum the
test points move progressively closer together until they converge [20].

The global minimization method is called differential_evolution. It uses several
start vectors spread out over the function space. Those vectors are mutated through
a weighted combination of three of the other vectors. Finally the resulting trial
vector is compared to the previous vector and the worse option discarded [26].
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4 Identifying Models of Generated
Spatio-Temporal Data Sets

4.1 1D Reaction-Diffusion Equation

4.1.1 Generating the Data Sets

The reaction-diffusion equation used in this thesis can be found in equation (4.1.1).

𝜕𝑡𝑢(x, 𝑡) = 𝜖Δ𝑢(x, 𝑡) + 𝑢(x, 𝑡) − 𝑢3(x, 𝑡) + √𝑞1 + 𝑞2𝑢2(x, 𝑡)Γ(x, 𝑡) (4.1.1)

The spatio-temporal time series data sets used in the following sections are gener-
ated with the diffusion coefficient 𝜖 = 0.25 and the magnitudes 𝑞1 and 𝑞2 for the
dynamic noise Γ(x, 𝑡) =

√
2𝜏𝑁(0, 1). The computational grid has 2562 points with

a length 𝐿 = 100 in 𝑥1- and 𝑥2-direction. The time interval is from 𝑇0 = 0 to
𝑇𝑛 = 1 with the time step 𝜏 = 0.01, giving it 𝑛 = 100 time steps after a noiseless
burn-in period. A short overview over results with other time steps can be found
in the appendix in table A.1.

The time steps are calculated using a pseudo-spectral method (see [8]), where the
data and the linear part of the equation are moved into the Fourier space using
a fast Fourier transformation. The nonlinear parts of the equation are calculated
in real space, before also being transformed. The resulting equation is then solved
through discretisation with the Runge-Kutta 4 method (see [13]) and the newly
generated data moved back to real space, where noise can be added.

Snapshots of data sets with different noise levels can be found in figure 4.1.

4.1.2 Results of the Maximum Likelihood Estimation

Different Noise Levels at a Minimum of Parameters

Giving the maximum likelihood estimation the minimal option of parameters (mean-
ing only the ones actually contained in the equation) as seen in equations (4.1.2)
and (4.1.3) while varying the noise levels gives the results detailed in table 4.1. The
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Figure 4.1: Snapshots of 1D reaction-diffusion data sets with different
noise levels.

minimization used here is the global minimization, followed by a local one, once
the general position of the minimum is found.

𝐷(1)(a) = 𝑎1𝑢(x, 𝑡) + 𝑎2Δ𝑢(x, 𝑡) + 𝑎3𝑢3(x, 𝑡) (4.1.2)
𝐷(2)(b) = 𝑏1 + 𝑏2𝑢2(x, 𝑡) (4.1.3)

For a data set without noise the maximum likelihood estimation shows near perfect

𝑞1 𝑞2 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝛿
0 0 0.997 0.249 -0.997 0 0 0.3%

0.5 0 0.953 0.229 -0.955 0.501 -0.001 4.5%
1 0 0.909 0.229 -0.931 1.000 -0.001 6.6%

0.5 0.5 0.924 0.230 -0.921 0.509 0.474 7.2%
1 1 0.848 0.229 -0.870 1.021 0.924 10.7%

Table 4.1: Maximum likelihood estimation results for 1D reaction-
diffusion data sets with different noise levels and a minimum of parameters
according to equations (4.1.2) and (4.1.3), as well as the percent error 𝛿.

results. For noisy data sets only the data set with 𝑞1 = 𝑞2 = 1 leads to a result
with a relative error over ten percent to the expected result. All other noise levels
show parameter values which closely match the expected ones.

For comparison the SINDy method is applied to the same data sets, using a sample
of 400 data points and ordinary least squares regression, as there is no need for
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4 Identifying Models of Generated Spatio-Temporal Data Sets

sparsity with a minimum of possible parameters. The results can be found in table
4.2. The percent error to the real parameter values for both the maximum likelihood
estimation and the SINDy method are listed in table 4.3.

𝑞1 𝑞2 𝑎1 𝑎2 𝑎3

0 0 1 0.25 -1
0.5 0 0.919 0.221 -0.909
1 0 0.789 0.238 -0.833

0.5 0.5 0.846 0.226 -1.029
1 1 0.644 0.228 -0.713

Table 4.2: SINDy results with ordinary least squares regression for 1D
reaction-diffusion data sets with different noise levels and a minimum of
parameters according to equation (4.1.2).

𝑞1 𝑞2 𝛿SINDy 𝛿MLE

0 0 0.0 % 0.3 %
0.5 0 8.7 % 4.8 %
1 0 18.8 % 8.1 %

0.5 0.5 11.0 % 7.8 %
1 1 31.9 % 14.0 %

Table 4.3: Percent error 𝛿 for the 𝐷(1) results of the maximum likelihood
estimation and the SINDy method for 1D reaction-diffusion data sets with
different noise levels as found in tables 4.1 and 4.2.

For noisy data the results obtained through SINDy deviate much further from the
expected values than the ones from the maximum likelihood. In fact only the data
set with 𝑞1 = 0.5 and 𝑞2 = 0 leads to a percent error under ten percent. The data
set without noise on the other hand shows marginally better results with the SINDy
method.

Excess Amount of Parameters at Constant Multiplicative Noise

At a set noise level of 𝑞1 = 𝑞2 = 1 a full set of parameters up to the third polynomial
of 1, 𝑢, Δ𝑢 and Δ2𝑢 is tested via local minimization, where all starting values for
the parameters are set to 0. At twenty-two parameters minimizing the negative
log-likelihood only once isn’t enough to get a useful result; instead the result of the
previous minimization is set as the new starting value. This process is repeated for
several iterations with the final results shown in table 4.4.
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The results for twenty-one iterations have a relative error of 𝛿 = 10.6 % to the
expected values. For thirty-one iterations the relative error is 𝛿 = 7.2 %.

Running twenty-one or even thirty-one iterations of a twenty-two parameter min-
imization takes some time, but the final results can be considered pretty good,
especially for thirty-one iterations which lead to a relative error of less than ten
percent.

Applying the SINDy method with the same set of possible parameters while using
a sample of 400 data points leads to the result seen in table 4.5. For the regression
the iterative hard-thresholding is used.

The expected level of sparsity can be reached with thresholds between 0.13 and 0.17
and the result is reached much faster than with the maximum likelihood estimation
method, once a suitable threshold is found, but the resulting parameter values are
further from the expected ones with a percent error of 32.1 % to the real parameter
values.

Excess Amount of Parameters at Constant Multiplicative Noise with
Thresholding and Hyperparameter Opitimization

The thresholding method is applied to a data set with the noise 𝑞1 = 𝑞2 = 1
while all starting values in the local minimization are set to 0.5 (as to not start
under the likelier thresholding values). The optimal threshold 𝜆 is derived through
hyperparameter optimization, the full results of which can be found in the appendix
in tables A.4, A.5 and A.6. The important parts are summarized in tables 4.6 and
4.7.

Table 4.6 shows that one iteration of maximizing the likelihood without a thresh-
old isn’t enough to give useful results, while thresholds over 𝜆 = 0.507 cause all
parameters to go to 0, most likely because the starting values are too far below the
threshold for the the minimization to find better values.

𝜆 = 0.012 comes pretty close to the expected result, but the first threshold with the
optimal log-likelihood is 𝜆 = 0.0236, though the difference between their negative
log-likelihood values −𝐿(c) is very small.

An overview showing which of the other thresholds give optimal results can be
found in table 4.7. The optimal thresholds are marked in gray and it can be seen
that there is no range of optimal threshold sizes, which makes finding them without
the optimization process somewhat difficult.
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4 Identifying Models of Generated Spatio-Temporal Data Sets

Applying the thresholding method with 𝜆 = 0.1 to a parameter set up to the
third polynomial and then reducing the number of possible parameters with every
parameter that is truncated through thresholding gives the results seen in table 4.8.
The minimization method is local, starting with all parameter values at 0.5.

It takes only five iterations of minimization in total to reach the expected result,
less than half of the amount it takes without thresholding.

Excess Amount of Parameters at Constant Multiplicative Noise with BIC and
Thresholding

Applying the BIC to a system with a noise level of 𝑞1 = 𝑞2 = 1 and then optimiz-
ing the threshold 𝜆 for a minimum BIC value with starting values of 0.5 for the
local minimization leads to the results seen in table A.7. The important parts are
summarized in table 4.9.

The application of the BIC without any thresholds shows better results than not
using any sparsity promoting methods.

Applying the right threshold in addition to the BIC can set the expected parameters
to zero as depicted in the second to last column in table 4.9. The last column shows
the result if the system is optimized for the ideal thresholding hyperparameter with
the smallest possible BIC value. Most parameter values are set to zero, including
some that are part of the correct model.

In conclusion, hyperparameter optimization for thesholding is not guaranteed to
give ideal results when combined with the BIC.

4.1.3 Probability Distributions

The following probability distributions are calculated using Markov chain Monte
Carlo with only the minimum of parameters. Ten walkers are used, which each
draw 5000 samples after a burn-in period of 100 sample draws. The prior is set to
keep the parameter values within −50 < 𝑎𝑖 < 50 and the noise positive.

The resulting histograms (see figure 4.2) show relatively clear peaks which fit with
the expected parameter values, with only some small disturbances. Those distur-
bances explain the differences between the maximum likelihood estimation results
and the expected results.
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Figure 4.2: Histograms of the probability distributions for the parameters
of the 1D reaction-diffusion equation, where the blue lines represent the real
parameter values.
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4 Identifying Models of Generated Spatio-Temporal Data Sets

real 21 31
values iterations iterations

𝑏1 1 1.021 1.021
𝑏2 1 0.924 0.924
𝑢 1 0.833 0.901

Δ𝑢 0.25 0.231 0.249
Δ2𝑢 0 0 0
𝑢2 0 0.045 0.035

𝑢Δ𝑢 0 0.002 0
𝑢Δ2𝑢 0 0 0
(Δ𝑢)2 0 0 0

(Δ𝑢)(Δ2𝑢) 0 0 0
(Δ2𝑢)2 0 0 0

𝑢3 -1 -0.911 -0.937
𝑢2Δ𝑢 0 0.013 -0.005
𝑢2Δ2𝑢 0 0 0
𝑢(Δ𝑢)2 0 0.003 0.001

𝑢(Δ𝑢)(Δ2𝑢) 0 0 0
𝑢(Δ2𝑢)2 0 0 0
(Δ𝑢)3 0 0 0

(Δ𝑢)2(Δ2𝑢) 0 0 0
(Δ𝑢)(Δ2𝑢)2 0 0 0

(Δ2𝑢)3 0 0 0
1 0 -0.029 -0.006

Table 4.4: Maximum likelihood estimation results for a 1D reaction-
diffusion data set with the noise level 𝑞1 = 𝑞2 = 1, possible parameters
up to the third polynomial of 1, 𝑢, Δ𝑢 and Δ2𝑢 and different numbers of
iterations of minimization.

𝑢 Δ𝑢 𝑢3

0.636 0.227 -0.718
Table 4.5: SINDy results with iterative hard-thresholding for a 1D
reaction-diffusion data set with a noise level of 𝑞1 = 𝑞2 = 1 and possi-
ble parameters up to the third polynomial of 1, 𝑢, Δ𝑢 and Δ2𝑢. Only
parameters ≠ 0 are listed.
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𝜆 0.0000 0.0120 0.0236 0.5070 0.5319
−𝐿(c) -33.31163 -33.62259 -33.62264 26.11632 inf

𝑢 -0.34 0.84 0.86 0 0
Δ𝑢 0.29 0.23 0.23 0 0
𝑢2 1.14 -0.01 0 0 0

𝑢Δ𝑢 0.03 0 0 0 0
(Δ𝑢)2 0 0 0 0 0

𝑢3 0.61 -0.86 -0.88 0 0
Δ2𝑢 0 0 0 0 0

1 0.63 0 0 0 0
𝑞1 1.02 1.02 1.02 0.53 0
𝑞2 0.95 0.93 0.93 0 0

Table 4.6: Excerpts of the results of the hyperparameter optimization for
the thresholding parameter 𝜆 applied to a 1D reaction-diffusion data set
with ten parameters and one iteration of minimization.

0 0.0228 0.0382 0.0572 0.0949 0.1469 0.2553 0.5319
0.0117 0.0236 0.0395 0.0574 0.1000 0.1586 0.2674 0.5942
0.0120 0.0262 0.0414 0.0639 0.1018 0.1613 0.2912 0.6242
0.0127 0.0263 0.0425 0.0640 0.1098 0.1717 0.3009 0.6893
0.0129 0.0267 0.0431 0.0715 0.1122 0.1734 0.3094 0.7704
0.0146 0.0280 0.0435 0.0737 0.1139 0.1778 0.3490 0.7992
0.0158 0.0300 0.0483 0.0743 0.1212 0.1792 0.3510 0.9850
0.0161 0.0302 0.0488 0.0802 0.1234 0.1959 0.3758 0.9869
0.0165 0.0319 0.0489 0.0812 0.1271 0.2020 0.4166 0.4477
0.0189 0.0336 0.0504 0.0849 0.1313 0.2057 0.4189 0.4624
0.0193 0.0350 0.0520 0.0871 0.1321 0.2208 0.4477 0.5070
0.0203 0.0359 0.0537 0.0897 0.1416 0.2238 0.4624 0.5319
0.0206 0.0364 0.0571 0.0931 0.1424 0.2329 0.5070

Table 4.7: All tested thresholds from the hyperparameter optimization
applied to a 1D reaction-diffusion data set with ten parameters and one
iteration of minimization. Optimal thresholds are marked in gray.
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4 Identifying Models of Generated Spatio-Temporal Data Sets

real 1 2 2
values iteration iterations iterations

𝑏1 1 0.53 1.10 1.02
𝑏2 1 0.49 1.19 0.93
𝑢 1 0.44 0.51 0.87

Δ𝑢 0.25 0.40 0.63 0.23
Δ2𝑢 0 0.94 0 -
𝑢2 0 0.70 0.70 0

𝑢Δ𝑢 0 1.05 0.70 0
𝑢Δ2𝑢 0 0.95 0.70 0
(Δ𝑢)2 0 0.82 0.65 0

(Δ𝑢)(Δ2𝑢) 0 0.78 0 -
(Δ2𝑢)2 0 0 - -

𝑢3 -1 0.53 0.57 -0.89
𝑢2(Δ𝑢) 0 0.72 0.72 0
𝑢2(Δ2𝑢) 0 0.75 0.50 0
𝑢(Δ𝑢)2 0 0.77 0.81 0

𝑢(Δ𝑢)(Δ2𝑢) 0 0.72 0.17 0
𝑢(Δ2𝑢)2 0 -0.16 0 -
(Δ𝑢)3 0 0.53 -0.19 0

(Δ𝑢)2(Δ2𝑢) 0 0.37 0 -
(Δ𝑢)(Δ2𝑢)2 0 0 - -

(Δ2𝑢)3 0 0 - -
1 0 0 - -

Table 4.8: Maximum likelihood estimation results for a 1D reaction-
diffusion data set with thresholding at 𝜆 = 0.1, different numbers of it-
erations of minimization and a shrinking amount of possible parameters
according to the previous result.
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method no BIC BIC BIC BIC
𝜆 0.00 0.00 0.01 0.19

BIC - -33.6 -44.2 -53.3
𝑢 -0.34 0.88 0.86 0

Δ𝑢 0.29 0.25 0.23 0.24
𝑢2 1.14 0.04 0 0

𝑢Δ𝑢 0.03 0 0 0
(Δ𝑢)2 0 0 0 0

𝑢3 0.61 -0.85 -0.88 0
Δ2𝑢 0 0 0 0

1 0.63 -0.02 0 0
𝑞1 1.02 1.02 1.02 1.02
𝑞2 0.95 0.93 0.93 0.93

Table 4.9: Excerpt of the results of the hyperparameter optimization for
the thresholding parameter 𝜆 applied to a 1D reaction-diffusion data set
with the BIC as cost function, as well as a result without the BIC.
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4 Identifying Models of Generated Spatio-Temporal Data Sets

4.2 Swift-Hohenberg Equation

4.2.1 Generating the Data Sets

The Swift-Hohenberg equation used in this section is depicted in equation (4.2.1).
With the right parameter 𝑟 it shows the pattern formation of stripes [11].

𝜕𝑡𝑢(x, 𝑡) = 𝑟𝑢(x, 𝑡) − (Δ + 1)2𝑢(x, 𝑡) − 𝑢3(x, 𝑡) + √𝑞1 + 𝑞2𝑢2(x, 𝑡)Γ(x, 𝑡) (4.2.1)

The spatio-temporal time series data sets used in the following sections are gener-
ated with 𝑟 = 0.3 and the magnitudes 𝑞1 and 𝑞2 for the dynamic noise Γ(x, 𝑡) =√

2𝜏𝑁(0, 1). The computational grid has 1282 points with a length 𝐿 = 120 in 𝑥1-
and 𝑥2-direction. The time interval is from 𝑇0 = 0 to 𝑇𝑛 = 0.01 with the time
step 𝜏 = 0.0001, giving it 𝑛 = 100 time steps after a noiseless burn-in period. A
short overview over results with other integration parameters can be found in the
appendix in table A.2.

The time steps are calculated using a pseudo-spectral method (see [8]) in combi-
nation with an implicit-explicit Euler method (see [1]). The data and equation are
first moved into the Fourier space. Then Euler is applied, where the linear part
of the equation is treated implicitly, while the nonlinear part is treated explicitly.
Finally the equation is reshaped so that only the data for the next time step is on
the left-hand side of the equation. The newly generated data is then moved back
to real space where noise can be added.

Snapshots of data sets with and without noise after a noiseless burn-in period can
be found in figure 4.3.

4.2.2 Results of the Maximum Likelihood Estimation

Different Noise Levels at a Minimum of Parameters

Running the maximum likelihood estimation with only those parameters that are
part of the equation as seen in (4.2.2) and (4.2.3) while varying the noise level leads
to the results detailed in table 4.10. The minimization method is local with starting
values of zero for all parameters.

𝐷(1)(a) = 𝑎1𝑢(x, 𝑡) + 𝑎2Δ𝑢(x, 𝑡) + 𝑎3Δ2𝑢(x, 𝑡) + 𝑎4𝑢3(x, 𝑡) (4.2.2)
𝐷(2)(b) = 𝑏1 + 𝑏2𝑢2(x, 𝑡) (4.2.3)

As with the one-dimensional reaction-diffusion equation the result for a data set
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Figure 4.3: Snapshots of Swift-Hohenberg data sets with different noise
levels.

without noise is a near perfect match for the expected values.

The noise levels the data sets can exhibit before the maximum likelihood estimation
results differ more than ten percent from the expected result are a lot smaller than
they were for the one-dimensional reaction-diffusion equation. The highest noise
levels with good results are for data sets with 𝑞1 = 𝑞2 = 0.01 and with 𝑞1 = 0.05
and 𝑞2 = 0 respectively.

Applying the SINDy method to the same data sets while using a sample of 400
data points and ordinary least squares regression leads to the results seen in table
4.11.

The results for the maximum likelihood estimation for noisy data sets are a lot
closer to the expected results than the ones from the SINDy method. Without
noise the methods are nearly equal, though SINDy is faster.

Excess Amount of Parameters at Constant Multiplicative Noise with
Thresholding

At a set level of multiplicative noise of 𝑞1 = 𝑞2 = 0.01 a full set of parameters up to
the third polynomial of 1, 𝑢, Δ𝑢 and Δ2𝑢 is tested via local minimization, where
all starting values for the parameters are set to 0. It is also tested with a threshold
of 𝜆 = 0.05 and starting values of 0.5 for all parameters. The parameters for the
noise levels are exempt from truncation.
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𝑞1 𝑞2 𝑎1 𝑎2 𝑎3 𝑎4 𝑏1 𝑏2 𝛿
0 0 -0.699 -1.997 -0.999 -1.000 0.000 0.000 0.1 %

0.001 0 -0.682 -1.968 -0.989 -0.989 0.001 0.000 1.6 %
0.005 0 -0.649 -1.961 -0.993 -0.990 0.005 0.000 2.6 %
0.01 0 -0.683 -1.895 -0.979 -1.041 0.010 0.000 4.6 %
0.05 0 -0.719 -1.941 -0.981 -0.859 0.050 0.000 6.1 %
0.1 0 -0.480 -1.995 -0.978 -1.368 0.100 0.000 16.8 %

0.001 0.001 -0.709 -1.978 -0.992 -0.989 0.001 0.001 1.1 %
0.005 0.005 -0.696 -1.936 -0.980 -1.015 0.005 0.005 2.7 %
0.01 0.01 -0.573 -1.855 -0.970 -1.059 0.010 0.010 8.0 %
0.05 0.05 -1.021 -2.048 -0.994 -0.626 0.050 0.050 19.4 %
0.1 0.1 -0.718 -1.851 -0.976 -0.715 0.100 0.101 12.7 %

Table 4.10: Maximum likelihood estimation results for Swift-Hohenberg
data sets with varying noise levels and a minimum of parameters according
to equations (4.2.2) and (4.2.3), as well as the percent error 𝛿.

Minimizing the negative log-likelihood only once with or without thresholding is
not enough to find a minimum. Instead the result of the previous minimization is
set as the new starting value, which is then repeated for several iterations. The
results are shown in table 4.12.

The maximum likelihood estimation without thresholding reaches its minimum after
eighteen iterations, but doesn’t give the expected result.

If thresholding is added some of the parameters which are part of the correct result
are truncated and the minimization process is unable to correct in further iterations.
To prevent this normal minimization and thresholded minimization are alternated,
allowing for the reversal of incorrect truncations during the normal minimization.

Adding this alternating thresholding leads to the expected results. That it works
better than the normal minimization is to be expected because small changes in
parameter values which were not originally part of the equation are then compen-
sated through other additional parameters. As wrong parameters are set to zero,
there is less need for compensation, leaving only the correct result.

Using an excess amount of parameters with thresholding leads to a percent error
of 𝛿 = 2.1%, which is better than the result for the minimum amount of possible
parameters with the same noise level.

Applying the SINDy method to the same problem, again with a sample size of
400, gives the results found in table 4.13. There are no good results for either of
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𝑞1 𝑞2 𝑎1 𝑎2 𝑎3 𝑎4

0 0 -0.698 -1.996 -0.999 -1
0.001 0 -0.349 -1.973 -1.011 -1.377
0.005 0 -0.371 -1.632 -0.966 -0.964
0.01 0 -0.921 -1.824 -0.973 -0.039
0.05 0 -1.248 -2.512 -1.111 0.708
0.1 0 -1.763 -1.984 -0.875 -1.892

0.001 0.001 -0.77 -1.951 -0.971 -0.779
0.005 0.005 -1.422 -2.77 -1.175 -0.572
0.01 0.01 -0.329 -1.651 -0.908 -2.197
0.05 0.05 -0.832 -2.077 -0.998 -1.383
0.1 0.1 1.019 -1.406 -0.973 -2.813

Table 4.11: SINDy results with ordinary least squares regression and a
minimum of parameters according to equation (4.2.2) for Swift-Hohenberg
data sets with varying noise levels.

the tested regression methods. The respective thresholding or penalty values are
chosen so that they truncate as many parameters as possible, without truncating
those which are part of the expected result.

4.2.3 Probability Distributions

The following probability distributions are calculated using Markov chain Monte
Carlo with only the minimum of parameters. Twelve walkers are used, which each
draw 5000 samples after a burn-in period of 500 sample draws. The prior is set
to keep the parameter values within −50 < 𝑎𝑖 < 50 and the noise positive. The
resulting histograms can be found in figure 4.4.

If the peaks were smoothed, their maximum would fit with the expected parameter
values. In reality there are some local maxima at the top of the peaks, which are
often close, but do not match the real values. This explains why the maximum
likelihood estimation has trouble with the noisier data sets.

31



4 Identifying Models of Generated Spatio-Temporal Data Sets

real 18 20
values iterations iterations

𝜆 - 0 0.05
𝑏1 0.01 0.01 0.01
𝑏2 0.01 0.01 0.01
𝑢 -0.7 -0.788 -0.69

Δ𝑢 -2 -2.145 -2.025
Δ2𝑢 -1 -1.026 -1
𝑢2 0 0.493 0

𝑢Δ𝑢 0 0.627 0
𝑢Δ2𝑢 0 0.101 0
(Δ𝑢)2 0 0.257 0

(Δ𝑢)(Δ2𝑢) 0 0.118 0
(Δ2𝑢)2 0 0.016 0

𝑢3 -1 -0.659 -1.045
𝑢2(Δ𝑢) 0 0.465 0
𝑢2(Δ2𝑢) 0 0.125 0
𝑢(Δ𝑢)2 0 0.117 0

𝑢(Δ𝑢)(Δ2𝑢) 0 0.167 0
𝑢(Δ2𝑢)2 0 0.032 0
(Δ𝑢)3 0 0.055 0

(Δ𝑢)2(Δ2𝑢) 0 0.127 0
(Δ𝑢)(Δ2𝑢)2 0 0.05 0

(Δ2𝑢)3 0 0.005 0
1 0 -0.039 0

Table 4.12: Maximum likelihood estimation results for a Swift-Hohenberg
data set with the noise level 𝑞1 = 𝑞2 = 0.01, possible parameters up to the
third polynomial of 1, 𝑢, Δ𝑢 and Δ2𝑢 and different numbers of iterations
of minimization as well as thresholding with the parameter 𝜆.
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real STLS LASSO IHT
values 𝜆 = 0.4 𝜆 = 0.00027 𝜆 = 0.35

𝑢 -0.7 -0.464 -0.003 0.435
Δ𝑢 -2 -1.688 -1.367 -2.309
Δ2𝑢 -1 -0.841 -0.77 -0.471
𝑢2 0 -1.491 -0.798 0

𝑢Δ𝑢 0 -0.771 -0.549 -2.318
𝑢Δ2𝑢 0 0 0 0
(Δ𝑢)2 0 0 -0.189 0

(Δ𝑢)(Δ2𝑢) 0 0 0 0
(Δ2𝑢)2 0 0 0.023 0

𝑢3 -1 5.74 -1.028 3.001
𝑢2(Δ𝑢) 0 18.225 0 -4.995
𝑢2(Δ2𝑢) 0 4.278 0 0.601
𝑢(Δ𝑢)2 0 11.387 0 1.111

𝑢(Δ𝑢)(Δ2𝑢) 0 5.155 0.114 0
𝑢(Δ2𝑢)2 0 0.435 -0.088 0
(Δ𝑢)3 0 0 0 0

(Δ𝑢)2(Δ2𝑢) 0 0 0 0
(Δ𝑢)(Δ2𝑢)2 0 0 0 0

(Δ2𝑢)3 0 0 0 0
1 0 0 0 5.155

Table 4.13: SINDy results with different regression methods for a Swift-
Hohenberg data set with the noise level 𝑞1 = 𝑞2 = 0.01 and possible pa-
rameters up to the third polynomial of 1, 𝑢, Δ𝑢 and Δ2𝑢.
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Figure 4.4: Histograms of the probability distributions for the parameters
for the Swift-Hohenberg equation, where the blue lines represent the real
parameter values.
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4.3 The Brusselator

4.3.1 Generating the Data Sets

The Brusselator is a two dimensional SPDE system. It’s a model for an oscillating
chemical autocatalytic reaction [28] which is depicted in equation (4.3.1). It consists
of two fields 𝑢 = 𝑢(x, 𝑡) and 𝑣 = 𝑣(x, 𝑡).

𝜕𝑡𝑢 = 𝑑𝑢Δ𝑢 + 𝑎 − (𝑏 + 1)𝑢 + 𝑢2𝑣 + √𝑞1 + 𝑞2𝑢2Γ(x, 𝑡)

𝜕𝑡𝑣 = 𝑑𝑣Δ𝑣 + 𝑏𝑢 − 𝑢2𝑣 + √𝑞1 + 𝑞2𝑣2Γ(x, 𝑡) (4.3.1)

The spatio-temporal time series data sets used in the following sections are gener-
ated with 𝑑𝑢 = 5, 𝑑𝑣 = 12, 𝑎 = 3 and 𝑏 = 9. 𝑞1 and 𝑞2 are the magnitudes for
the dynamic noise Γ(x, 𝑡) =

√
2𝜏𝑁(0, 1). The computational grid has 1282 points

with a length 𝐿 = 120 in 𝑥1- and 𝑥2-direction. The time interval is from 𝑇0 = 0
to 𝑇𝑛 = 0.1 with the time step 𝜏 = 0.001, giving it 𝑛 = 100 time steps. The
initial condition is 𝑢(x, 𝑡) = 𝑣(x, 𝑡) = 3 with some normal distributed noise with a
magnitude of 0.1 on top. A short overview over results with other time steps can
be found in the appendix in table A.3.

As with the one-dimensional reaction-diffusion equation, the time steps are calcu-
lated using a pseudo-spectral method (see [8]) in combination with the Runge-Kutta
4 method (see [13]), before reversing the Fourier transformation on the newly gen-
erated data and adding the noise.

Snapshots of data sets after a noiseless burn-in period can be found in figures 4.5
and 4.6.
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Figure 4.5: Snapshot of a Brusselator data set with the noise magnitude
𝑞1 = 𝑞2 = 0.
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Figure 4.6: Snapshot of a Brusselator data set with the noise magnitude
𝑞1 = 𝑞2 = 0.5.

4.3.2 Results of the Maximum Likelihood Estimation

Different Noise Levels at a Minimum of Parameters

The maximum likelihood estimation is done with the minimum of possible parame-
ters, as seen in equations (4.3.2) to (4.3.4), while the noise level is changed. A local
minimization is used with zeroes as starting values for all parameters. The results
can be found in tables 4.14 and 4.15 for the 𝑢 and 𝑣 fields respectively.

𝐷(1)
𝑢 (a) = 𝑎1𝑢(x, 𝑡) + 𝑎2Δ𝑢(x, 𝑡) + 𝑎3𝑢2(x, 𝑡)𝑣(x, 𝑡) + 𝑎4 (4.3.2)

𝐷(1)
𝑣 (a) = 𝑎5Δ𝑣(x, 𝑡) + 𝑎6𝑢(x, 𝑡) + 𝑎7𝑢2(x, 𝑡)𝑣(x, 𝑡) (4.3.3)

𝐷(2)(b) = (𝑏1 + 𝑏2𝑢2(x, 𝑡) 0
0 𝑏3 + 𝑏4𝑣2(x, 𝑡)) (4.3.4)

The percent error 𝛿 to the expected results can be found in table 4.16.

The maximum likelihood estimation gives good results overall as the percent error
never rises over ten percent, but there is also no clear correlation between rising
noise levels and the percent error, which might be due to the unpredictable influence
of random noise.

As is to be expected, the noiseless data set gives the best results. Beyond that it
can be noted that the parameters 𝑎2, 𝑎3, 𝑎6 and 𝑎7 are close to the expected values,
no matter the noise level.
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𝑞1 𝑞2 𝑎1 𝑎2 𝑎3 𝑎4 𝑏1 𝑏2

0 0 -10.008 4.999 1.001 3.008 0 0
0.1 0 -9.875 4.779 0.97 3.415 0.099 0
0.5 0 -9.02 4.907 0.939 1.737 0.495 0.001
1 0 -9.801 4.809 0.951 3.731 0.989 0.001

0.1 0.1 -10.355 4.868 0.999 4.047 0.117 0.098
0.5 0.5 -9.499 4.927 0.983 2.034 0.557 0.494
1 1 -9.624 4.861 0.953 3.171 1.102 0.987

Table 4.14: Maximum likelihood estimation results for Brusselator data
sets with varying noise levels and a minimum of parameters according to
equations (4.3.2) and (4.3.4).

𝑞1 𝑞2 𝑎5 𝑎6 𝑎7 𝑏3 𝑏4

0 0 12.513 9.369 -1.041 0 0
0.1 0 11.26 9.051 -1.006 0.101 -0
0.5 0 11.188 8.725 -0.968 0.496 0.001
1 0 11.176 9.137 -1.016 1.011 -0.001

0.1 0.1 11.104 8.728 -0.969 0.144 0.095
0.5 0.5 11.189 8.746 -0.969 0.697 0.478
1 1 11.068 8.914 -0.978 1.477 0.944

Table 4.15: Maximum likelihood estimation results for Brusselator data
sets with varying noise levels and a minimum of parameters according to
equations (4.3.3) and (4.3.4).

𝑎1 and 𝑎5 stray a bit further from the expected values, but are still close enough
to be within one percent of the expected value. 𝑎1 shows a bit more variation in
values, while 𝑎5 consistently shows values closer to eleven than twelve.

The parameter 𝑎4 is the one which strays furthest from the expected value when
noise is added, but considering it functions as an offset it is the parameter most
directly influenced by unbalanced combinations of noise and dynamic evolution.

The noise levels are identified nearly perfectly in the case of 𝑞2 = 0. If 𝑞2 ≠ 0 the
results for 𝑏1 and 𝑏3 are a little less precise.

The results for the SINDy method with a sample of 400 data points of the same
data sets can be found in table 4.17. The regression is either ordinary least squares
(gray cells) or iterative hard-thresholding with a threshold of 𝜆 = 0.001, depending
on which led to better results.
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𝑞1 𝑞2 𝛿
0 0 3.3

0.1 0 4.7
0.5 0 9.6
1 0 6

0.1 0.1 7.7
0.5 0.5 7.3
1 1 6

Table 4.16: Percent error 𝛿 for the results of the maximum likelihood
estimation for Brusselator data sets with varying noise levels as found in
tables 4.14 and 4.15.

In table 4.18 the results for SINDy and the maximum likelihood estimation are
compared to the expected values through a percent error. With the exception of
the data set without noise the maximum likelihood estimation gives consistently
better results.

That different regression methods lead to different results becomes a problem when
the true result isn’t known, therefore leading to a need for additional tests to
determine which method to use for which data set, countering the advantage of
speed SINDy usually has over the maximum likelihood estimation.

𝑞1 𝑞2 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

0 0 -10.009 4.999 1.001 3.008 12.002 9.013 -1.001
0.1 0 -10.518 5.063 1.04 3.424 11.159 9.379 -1.043
0.5 0 -9.093 5.245 1.001 0.18 11.09 9.728 -1.144
1 0 -11.033 4.944 0.952 7.375 11.036 9.676 -1.08

0.1 0.1 -6.822 5.096 0.866 -2.776 11.386 7.189 -0.81
0.5 0.5 -6.804 5.172 0.842 -2.112 11.324 8.607 -0.95
1 1 -9.105 4.826 0.9 3.703 11.271 9.654 -1.019

Table 4.17: SINDy results with ordinary least squares (gray cells) or iter-
ative hard-thresholding with a threshold of 𝜆 = 0.001 for Brusselator data
sets with varying noise levels. A minimum of possible parameters is used
according to equations (4.3.2) and (4.3.3).
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𝑞1 𝑞2 𝛿SINDy 𝛿MLE

0 0 0.1 3.3
0.1 0 6.0 4.7
0.5 0 16.8 9.6
1 0 24.5 6

0.1 0.1 36.2 7.7
0.5 0.5 32.0 7.3
1 1 8.0 5.4

Table 4.18: Percent error 𝛿 for the 𝐷(1) results of the maximum likelihood
estimation and the SINDy method for Brusselator data sets with varying
noise levels as found in tables 4.14, 4.15 and 4.17.

4.3.3 Probability Distributions

The probability distributions are calculated using Markov chain Monte Carlo with
only the minimum of parameters. Twenty-two walkers are used, which each draw
10000 samples after a burn-in period of 500 sample draws. The prior is set to keep
the parameter values within −50 < 𝑎𝑖 < 50 and the noise positive.

The resulting histograms can be found in figures 4.7 and 4.8.

A lot of the peaks are not as distinct as they were for the one-dimensional reaction
diffusion system, but the expected results are in most cases at least close to the
maximum.

The most notable exception is the parameter 𝑎4 which describes the offset and is
expected to show a maximum at the value 3. Instead the probability distribution
is nearly flat, which makes identifying a clear maximum impossible.

But while the maximum likelihood estimation also didn’t identify the expected
parameter value it still fell into a range of 3 ± 1 which is a lot less spread out than
the histogram suggests. This is probably due to the fact that during the maximum
likelihood estimation a local minimization was used, which found the closest local
maximum for that value, instead of the global maximum.

The parameters 𝑎1 and 𝑎6 show similar problems. Their curves are not quite flat
and the peaks are still spread enough that a wide range of values could correspond
to the maximum. During the maximum likelihood estimation both were found with
more precision than the histogram suggests.

The histogram for 𝑎5 shows a peak at about eleven which explains why the maxi-
mum likelihood never gave the expected result of twelve.
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Figure 4.7: Histograms of the probability distributions for the parameters
of the 𝑢 field of the Brusselator equation, where the blue lines represent
the real parameter values.
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Figure 4.8: Histograms of the probability distributions for the parameters
of the 𝑣 field of the Brusselator equation, where the blue lines represent the
real parameter values.
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5 Identifying a Stochastic Partial Differential
Equation for Field Data of the Ising Model

5.1 The Two-Dimensional Ising Model

Ferromagnetic materials can show magnetization even without an external mag-
netic field to induce it, if their temperature 𝑇 is below the material specific Curie
temperature 𝑇𝐶. This is caused by the alignment of the electron spins with their
neighbors, due to an inner magnetic field which in turn is caused by spin interac-
tions. Above the Curie temperature thermal fluctuations of spin directions counter
the ordering effect of the alignment, leading to a phase transition from ferromag-
netic to paramagnetic behavior [12].

The phenomenon can be described by the Ising model. The following explanations
will be limited to the two-dimensional Ising model without influence of an external
magnetic field.

According to the model the ferromagnetic material consists of discrete magnetic
dipole moments (spins) arranged on a two-dimensional lattice of periodic structure.
Each spin 𝑆𝑖 can take on the values +1 and -1 and interacts with the spins on
neighboring lattice sites.

The energy of the system is given by the Hamiltonian function seen in equation
(5.1.1), where 𝑖 and 𝑗 are next neighbors, while 𝐽 is an interaction parameter
independent of the particular combination of 𝑖 and 𝑗 [21].

𝐻 = −𝐽 ∑
(𝑖,𝑗)

𝑆𝑖𝑆𝑗 (5.1.1)

Spins change their direction to minimize energy if too many of their neighbors
have opposing spin values. The process is opposed by thermal fluctuations: The
higher the temperature the more likely spins are to change direction even if it is
not energetically favorable.

Figure 5.1 shows the development of domains with different spin directions at tem-
peratures 𝑇 < 𝑇𝐶, starting from random spin directions.
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Figure 5.1: Example for the development of spins on a grid according to
the Ising model, where black and white denote different spin directions.

5.2 Generating the Data

The data set which simulates the Ising model is created using a cellular automaton
on a two-dimensional rectangular grid with periodic boundary conditions. The
algorithm is described below and follows the steps used in reference [22], while also
following their suggestion of updating non-interacting lattice sites simultaneously
to speed up computation time.

For every non-interacting lattice site the energy Δ𝐻 = 𝐻current state − 𝐻flipped state
is calculated according to equation (5.1.1).

If Δ𝐻 ≤ 0 the spin is flipped. If Δ𝐻 > 0 a random number 𝑟 between 0 and 1 is
generated. If 𝑟 < exp (Δ𝐻

𝑇 ) the spin is flipped anyway, representing the effect of
thermal fluctuation.

Repeating the above algorithm so that all lattice sites have been updated once
makes up one time step in the dynamic evolution of the grid. The final data set
consists of 100 time steps and to make the data more continuous it is blurred
through a Gaussian kernel provided by the Python package scipy.ndimage.filters.
The function is called gaussian_filter and the accompanying filter matrix is depicted
in equation (5.2.1).

1
256

⎛⎜⎜⎜⎜⎜⎜
⎝

0.87 3.62 5.97 3.62 0.87
3.62 15.01 24.73 15.01 3.62
5.97 24.73 40.74 24.73 5.97
3.62 15.01 24.73 15.01 3.62
0.87 3.62 5.97 3.62 0.87

⎞⎟⎟⎟⎟⎟⎟
⎠

(5.2.1)

Snapshots of the blurred data can be found in figure 5.2.
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Figure 5.2: Development of a blurred Ising data set at 𝑇 = 0.01, where
black and green denote different spin directions.

5.3 Results

The maximum likelihood estimation is tested on a data set of the Ising model
generated at low temperatures (𝑇 = 0.01) to minimize thermal fluctuations, thus
allowing to ignore noise parameters during the maximum likelihood estimation. The
data is blurred and the maximum likelihood estimation applied in combination with
thresholding with different thresholds 𝜆.

Using a full set of polynomials up to third order of 𝑢, Δ𝑢 and Δ2𝑢 as parameters
leads to the results depicted in table 5.1.

The resulting equation at a threshold of 𝜆 = 0.2 is depicted in equation (5.3.1).

𝜕𝑡𝑢 = −0.311𝑢 − 0.728Δ𝑢 + 0.311𝑢3 + 0.783𝑢2Δ𝑢 (5.3.1)

To test the validity of those results a new data set is calculated, starting from the
first field of the Ising data set and then adding new time steps using the pseudo-
spectral method in combination with Runge-Kutta 4, while the maximum likelihood
results build the right-hand side of the equation.

The resulting dynamics have no resemblance to the ones expected of the Ising
model. Snapshots can be found in figure 5.3.

Using the sum of the neighboring grid points in addition to the polynomials leads
to the results depicted in table 5.2.

The resulting equation at a threshold of 𝜆 = 0.2 is depicted in equation (5.3.2)
where 𝑁 is a field consisting of the sum of the next neighbors.

𝜕𝑡𝑢 = −1.485𝑢 − 0.699Δ𝑢 − 0.362𝑢3 + 0.674𝑢2Δ𝑢 + 0.232𝑁 (5.3.2)

Building a data set with any of these results requires time steps of 𝜏 = 10−13 and
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𝜆 0 0.05 0.1 0.15 0.2
𝑢 -0.296 -0.284 -0.313 -0.279 -0.311

Δ𝑢 -0.910 -0.849 -0.836 -0.777 -0.728
Δ2𝑢 0.175 0.157 0.144 0.151 0
𝑢2 -0.001 0 0 0 0

𝑢Δ𝑢 0.036 0 0 0 0
𝑢Δ2𝑢 0.008 0 0 0 0
(Δ𝑢)2 -0.068 -0.055 0 0 0

(Δ𝑢)(Δ2𝑢) 0.039 0 0 0 0
(Δ2𝑢)2 -0.003 0 0 0 0

𝑢3 0.297 0.284 0.312 0.279 0.311
𝑢2Δ𝑢 0.980 0.935 0.821 0.855 0.783
𝑢2Δ2𝑢 -0.160 -0.155 -0.160 -0.161 0
𝑢(Δ𝑢)2 0.012 0 0 0 0

𝑢(Δ𝑢)(Δ2𝑢) 0.035 0 0 0 0
𝑢(Δ2𝑢)2 0.001 0 0 0 0
(Δ𝑢)3 0.220 0.128 0.100 0 0

(Δ𝑢)2(Δ2𝑢) -0.151 -0.050 0 0 0
(Δ𝑢)(Δ2𝑢)2 0.034 0 0 0 0

(Δ2𝑢)3 -0.002 0 0 0 0
Table 5.1: Maximum likelihood estimation results for a blurred Ising data
set at 𝑇 = 0.01 with parameters up to the third polynomial of 𝑢, Δ𝑢 and
Δ2𝑢. Different thresholds 𝜆 are used for truncation.

leads to a dynamic which shows at least some ordering effect similar to the one
expected from the Ising model, even while the range of the field 𝑢 quickly grows
beyond the spin values.

The results look very similar no matter which threshold is used. Snapshots of the
results for the case of 𝜆 = 0.15 can be found in figure 5.4.

Despite what those results suggest, it is not impossible to recreate dynamics which
look similar to those of the Ising model. Using equation (5.3.3) for data set creation
leads to the results seen in figures 5.6 and 5.7.

Figure 5.6 shows that starting from total chaos (left) leads to a result (right) which
only vaguely resemble the result of the blurred Ising data set after three time steps
(middle).

Figure 5.7 shows that using the more ordered first time step (left) as a starting
value leads to a result (right) which matches the expected result (middle) fairly
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Figure 5.3: Snapshots of data sets calculated from the results of the max-
imum likelihood estimation seen in table 5.1.

well.

The maximum likelihood estimation however does not consider these good results.

𝜕𝑡𝑢 = 𝑢 + Δ𝑢 − 𝑢3 (5.3.3)
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𝜆 0 0.05 0.1 0.15
𝑢 -1.467 -1.449 -1.461 -1.485

Δ𝑢 -0.883 -0.834 -0.805 -0.699
Δ2𝑢 0.178 0.147 0.138 0
𝑢2 0 0 0 0

𝑢Δ𝑢 0.099 0.100 0.108 0
𝑢Δ2𝑢 0.010 0 0 0
(Δ𝑢)2 -0.038 0 0 0

(Δ𝑢)(Δ2𝑢) 0.040 0 0 0
(Δ2𝑢)2 -0.004 0 0 0

𝑢3 -0.348 -0.356 -0.353 -0.362
𝑢2Δ𝑢 0.645 0.661 0.650 0.674
𝑢2Δ2𝑢 -0.156 -0.135 -0.137 0
𝑢(Δ𝑢)2 -0.176 -0.169 -0.100 0

𝑢(Δ𝑢)(Δ2𝑢) -0.033 0 0 0
𝑢(Δ2𝑢)2 0 0 0 0
(Δ𝑢)3 0.271 0.146 0.100 0

(Δ𝑢)2(Δ2𝑢) -0.201 -0.050 0 0
(Δ𝑢)(Δ2𝑢)2 0.034 0 0 0

(Δ2𝑢)3 -0.002 0 0 0
Σ neighbors 0.227 0.226 0.227 0.232

Table 5.2: Maximum likelihood estimation results for a blurred Ising data
set at 𝑇 = 0.01 with parameters up to the third polynomial of 𝑢, Δ𝑢 and
Δ2𝑢 and an additional parameter for the sum of the neighboring spins.
Different thresholds 𝜆 are used for truncation.
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Figure 5.4: Snapshots of the data set calculated from the result of the
maximum likelihood estimation with the threshold 𝜆 = 0.15 seen in table
5.2.
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Figure 5.6: Snapshot of a blurred Ising data set at 𝑡 = 0 (left) as well as
after three time steps (middle) and a snapshot from a data set calculated
from equation (5.3.3) with the 𝑡 = 0 field as starting field (right).
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Figure 5.7: Snapshot of a blurred Ising data set at 𝑡 = 𝜏 (left) as well
as after two more time steps (middle) and a snapshot from a data set
calculated from equation (5.3.3) with the 𝑡 = 𝜏 field as starting field (right).
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6 Conclusion and Outlook

Applying the maximum likelihood estimation to generated one-dimensional field
data sets while only allowing a minimum of building blocks for the equation leads
to reliable results given a reasonable noise level. What passes as a reasonable noise
level varies depending on the equation and the parameters the data set is generated
from.

While the one-dimensional reaction-diffusion equation gives good results even for
relatively big noise levels, the Swift-Hohenberg equation needs a low noise level and
smaller time steps for the method to succeed.

Compared to the maximum likelihood approach SINDy works faster and with equal
or even minimal better precision on data sets without noise, but it can’t handle noisy
data nearly as well.

Giving the maximum likelihood estimation an excess amount of parameters only
gives good results for the reaction-diffusion equation, though it takes a lot of itera-
tions until the minimization is successful. Adding sparsity promoting methods such
as BIC or thresholding can reduce those iterations and in case of the thresholding
also allows for reliable results for the Swift-Hohenberg equation.

The hyperparameter optimization for the thresholding parameter exposed some
weaknesses of the sparsity promoting methods, such as the difficulty in choosing
the right threshold outside of optimization, as well as problems when combining
thresholding with the BIC, where too many parameters were truncated. Finding a
sparsity promoting method which works reliably for a variety of problems instead
of only in localized instances could be a topic of further research.

Applying the maximum likelihood estimation to the two-dimensional data set gen-
erated from the Brusselator equation demonstrates that the method is valid in
multiple dimensions, but also shows that some parameters are easier to identify
correctly than others.

Trying the method on a data set generated from the two-dimensional Ising model,
which is a cellular automaton, does not lead to results which match the original
dynamic when only polynomials of 𝑢, Δ𝑢 and Δ2𝑢 up to third order are used.
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It takes adding a parameter for the sum of the neighboring grid points to get a
dynamic that looks at least a little like the one from the Ising model, but even then
the results do not stay in a range from -1 to 1, but grows rapidly after a few very
small time steps.

Further testing is needed to determine if and how better results can be found, and
whether these difficulties exist because cellular automatons can not be translated
into partial differential equations with this method, or because the Ising model in
particular is not suited to it, due to only allowing two spin directions.
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A Appendix

A.1 Parameters for Data Set Generation and their MLE
Results

How much information about the dynamic evolution a data set holds depends on the
parameters it is generated with, namely the amount of points in the discretisation
grid, the size of the grid, the amount of time steps, the size of those time steps
and the noise level. The following tables show test results with different parameter
combinations and how the maximum likelihood estimation handles the resulting
data sets.

The results for the one dimensional reaction-diffusion equation can be found in table
A.1, the results for the Swift-Hohenberg equation in table A.2 and the results for the
Brusselator in table A.3. As it is of interest if the maximum likelihood estimation
can identify the dynamic evolution, only the results for 𝐷(1) are depicted.

parameters MLE results
grid time step noise 𝐷(1)

points length size amount 𝑞1 𝑞2 𝑢 Δ𝑢 𝑢3

2562 [0.100]2 0.01 101 0 0 1.00 0.25 -1.00
2562 [0.100]2 0.01 101 0.5 0 0.95 0.23 -0.96
2562 [0.100]2 0.01 101 1 0 0.91 0.23 -0.93
2562 [0.100]2 0.01 101 0.5 0.5 0.92 0.23 -0.92
2562 [0.100]2 0.01 101 1 1 0.85 0.23 -0.87
2562 [0.100]2 0.05 101 0.5 0.5 0.72 0.16 -0.72
2562 [0.100]2 0.005 101 0.5 0.5 0.95 0.24 -0.99

Table A.1: MLE results for 𝐷(1) for 1D reaction-diffusion data sets gen-
erated with different parameters.
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parameters MLE results
grid time step noise 𝐷(1)

points length size amount 𝑞1 𝑞2 𝑢 Δ𝑢 Δ2𝑢 𝑢3

1282 [0, 32]2 1e-2 101 0 0 -0.75 -2.01 -0.99 -0.98
1282 [0, 32]2 1e-2 101 1e-8 0 -0.68 -1.98 -0.99 -1.04
1282 [0, 32]2 1e-2 101 1e-7 0 -0.59 -1.66 -0.90 -1.22
1282 [0, 32]2 1e-2 101 1e-4 0 2.3 1.75 -0.21 0.87
642 [0, 32]2 1e-2 101 1e-7 0 -0.70 -2.00 -1.00 -1.05
642 [0, 32]2 1e-2 101 1e-6 0 -0.70 -2.00 -1.00 -1.05
642 [0, 32]2 1e-2 101 1e-5 0 -0.73 -2.01 -1.00 -0.97
642 [0, 32]2 1e-2 101 1e-4 0 -0.51 -1.78 -0.95 -1.23
642 [0, 32]2 1e-3 101 1e-4 0 -0.73 -1.99 -1.00 -0.96
642 [0, 32]2 1e-3 101 1e-3 0 -0.58 -1.94 -0.99 -1.04
642 [0, 32]2 1e-4 101 1e-3 0 -0.66 -1.95 -1.00 -0.95
642 [0, 32]2 1e-4 101 1e-2 0 0.63 -1.87 -1.00 -0.80
642 [0, 32]2 1e-5 101 1e-2 0 1.94 -1.89 -1.00 -1.57
322 [0, 32]2 1e-3 101 1e-3 0 -0.65 -1.95 -0.99 -0.97
322 [0, 32]2 1e-3 101 1e-2 0 -0.90 -2.07 -1.01 -0.88
322 [0, 32]2 1e-3 101 1e-2 1e-2 0.22 -1.65 -0.97 -0.91
1282 [0, 90]2 1e-4 101 1e-4 0 -0.70 -1.98 -0.99 -0.98
1282 [0, 90]2 1e-4 101 1e-3 0 -0.67 -1.93 -0.97 -1.02
1282 [0, 90]2 1e-4 101 1e-2 0 -0.56 -1.75 -0.93 -0.87
1282 [0, 100]2 1e-4 101 1e-2 0 -0.62 -1.82 -0.95 -1.07
1282 [0, 100]2 1e-3 101 1e-2 0 0.06 -0.89 -0.71 -0.97
1282 [0, 100]2 1e-4 101 1e-2 1e-2 -0.54 -1.85 -0.96 -1.10
642 [0, 60]2 1e-4 101 1e-2 1e-2 -1.07 -2.03 -0.97 -0.33
1282 [0, 120]2 1e-4 101 1e-2 1e-2 -0.57 -1.85 -0.97 -1.06
1282 [0, 120]2 1e-4 101 1e-3 1e-3 -0.71 -1.98 -0.99 -0.99
1282 [0, 120]2 1e-4 101 5e-3 5e-3 -0.70 -1.94 -0.98 -1.01
1282 [0, 120]2 1e-4 101 5e-3 0 -0.65 -1.96 -0.99 -0.99
1282 [0, 120]2 1e-4 101 1e-3 0 -0.68 -1.97 -0.99 -0.99
1282 [0, 120]2 1e-4 101 1e-2 0 -0.68 -1.90 -0.98 -1.04
1282 [0, 120]2 1e-4 101 1e-1 0 -0.48 -1.99 -0.98 -1.37
1282 [0, 120]2 1e-4 101 0 0 -0.70 -2.00 -1.00 -1.00
1282 [0, 120]2 1e-4 101 1e-1 1e-1 -0.72 -1.85 -0.98 -0.72
Table A.2: MLE results for 𝐷(1) for 1D Swift-Hohenberg data sets gener-
ated with different parameters.
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parameters MLE results
grid time step noise 𝐷(1)

𝑢 𝐷(1)
𝑣

points length size amount 𝑞1=𝑞3 𝑞2=𝑞4 𝑢 Δ𝑢 𝑢2𝑣 1 Δ𝑣 𝑢 𝑢2𝑣
1282 [0, 120]2 0.005 101 0 0 -10.00 5.00 1.00 3.00 12.00 9.00 -1.00
1282 [0, 120]2 0.005 101 0.5 0.5 -7.85 4.37 0.79 2.12 8.44 7.83 -0.86
1282 [0, 120]2 0.001 101 0 0 -10.00 5.01 1.00 3.00 12.01 9.00 -1.00
1282 [0, 120]2 0.001 101 0.5 0 -9.51 4.85 0.94 3.17 11.11 8.86 -0.99
1282 [0, 120]2 0.001 101 1 0 -8.94 4.86 0.93 1.84 11.23 8.51 -0.95
1282 [0, 120]2 0.001 101 0.5 0.5 -10.34 4.75 0.98 4.97 11.20 8.70 -0.97
1282 [0, 120]2 0.001 101 1 1 -9.62 4.86 0.95 3.17 11.07 8.92 -0.98

Table A.3: MLE results for 𝐷(1) for 2D Brusselator data sets generated
with different parameters.

A.2 Hyperparameter Optimization Results

The full results for the hyperparameter optimization for thresholding with the neg-
ative log-likelihood −𝐿(c) as a loss function, which is discussed in subsection 4.1.2,
are detailed in tables A.4 to A.6.

The full results for the hyperparameter optimization discussed in subsection 4.1.2,
which optimizes a thresholding parameter with the BIC as loss function can be
found in table A.7.

𝜃 −𝐿(c) 𝑢 Δ𝑢 𝑢2 𝑢Δ𝑢 (Δ𝑢)2 𝑢3 Δ2𝑢 1 𝑞1 𝑞2
0.0000 -33.31163 -0.34 0.29 1.14 0.03 0.00 0.61 0.00 0.63 1.02 0.95
0.0117 -4.93939 0.48 0.94 0.25 0.80 0.02 0.75 0.01 0.36 1.38 0.04
0.0120 -33.62259 0.84 0.23 -0.01 0.00 0.00 -0.86 0.00 0.00 1.02 0.93
0.0127 -20.80984 -1.79 0.54 -1.48 0.58 0.01 3.89 0.00 -0.05 1.77 0.73
0.0129 -33.47890 0.90 0.24 2.16 0.06 0.00 -0.64 0.00 -0.79 1.04 0.92
0.0146 -30.94999 -0.16 0.34 0.19 0.03 0.00 1.26 0.00 0.65 0.72 0.95
0.0158 19.26082 0.24 0.95 0.03 0.87 0.02 1.12 0.00 0.34 1.26 -0.05
0.0161 19.26082 0.24 0.95 0.03 0.87 0.02 1.12 0.00 0.34 1.26 -0.05
0.0165 5.61403 0.12 1.06 -0.17 0.85 0.03 1.47 0.02 0.41 1.74 0.00
0.0189 8.83601 0.12 1.07 -0.18 0.87 0.03 1.48 0.00 0.41 1.76 0.00
0.0193 8.61585 0.12 1.07 -0.19 0.87 0.03 1.48 0.00 0.41 1.76 0.00
0.0203 7.59982 0.12 1.06 -0.18 0.86 0.02 1.48 0.00 0.41 1.74 0.00
0.0206 8.37096 0.14 1.03 -0.12 0.83 0.03 1.42 0.00 0.43 1.66 0.03
0.0228 15.85587 0.14 1.04 0.09 0.86 0.03 1.24 0.00 0.39 1.57 -0.08
0.0236 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93

Table A.4: Part one of the results of the MLE for the 1D reaction-diffusion
equation with ten parameters, hyperparameter optimization for threshold-
ing and one iteration of minimization. Grey cells mark optimal results.
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𝜃 𝑙𝑜𝑔 𝑢 Δ𝑢 𝑢2 𝑢Δ𝑢 (Δ𝑢)2 𝑢3 Δ2𝑢 1 𝑞1 𝑞2
0.0262 17.57620 0.39 0.98 -0.03 1.01 0.03 1.14 0.00 0.25 1.39 0.06
0.0263 17.57620 0.39 0.98 -0.03 1.01 0.03 1.14 0.00 0.25 1.39 0.06
0.0267 23.71658 0.31 0.98 -0.13 1.00 0.03 1.12 0.00 0.28 1.42 -0.06
0.0280 -33.56906 -0.10 0.24 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.0300 11.97995 0.21 0.93 0.16 0.96 0.03 1.11 0.00 0.39 1.61 0.00
0.0302 11.97995 0.21 0.93 0.16 0.96 0.03 1.11 0.00 0.39 1.61 0.00
0.0319 10.90231 0.00 1.09 0.11 0.93 0.03 1.38 0.00 0.40 1.95 0.00
0.0336 15.35780 0.06 1.06 0.14 0.93 0.04 1.29 0.00 0.40 1.86 0.00
0.0350 15.35780 0.06 1.06 0.14 0.93 0.04 1.29 0.00 0.40 1.86 0.00
0.0359 15.35780 0.06 1.06 0.14 0.93 0.04 1.29 0.00 0.40 1.86 0.00
0.0364 15.35780 0.06 1.06 0.14 0.93 0.04 1.29 0.00 0.40 1.86 0.00
0.0382 -33.35133 0.31 0.25 1.18 0.06 0.00 -0.19 0.00 0.65 0.99 0.96
0.0395 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0414 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0425 -33.32378 0.20 0.25 1.12 0.07 0.00 0.22 0.00 0.57 1.00 0.92
0.0431 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0435 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0483 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0488 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0489 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0504 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0520 -33.59932 0.00 0.23 0.06 0.00 0.00 -0.46 0.00 -0.06 1.02 0.93
0.0537 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0571 -33.10567 -0.11 0.25 1.30 0.07 0.00 0.41 0.00 0.92 0.99 1.08
0.0572 -33.10567 -0.11 0.25 1.30 0.07 0.00 0.41 0.00 0.92 0.99 1.08
0.0574 -32.99509 -0.17 0.27 1.31 0.08 0.00 0.56 0.00 1.00 0.96 1.13
0.0639 -33.10869 0.00 0.26 1.32 0.08 0.00 0.40 0.00 0.95 1.05 0.92
0.0640 -33.10869 0.00 0.26 1.32 0.08 0.00 0.40 0.00 0.95 1.05 0.92
0.0715 -29.99966 0.00 0.24 0.00 0.00 0.00 -0.29 0.00 -0.42 1.61 0.00
0.0737 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0743 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0802 -33.59930 0.00 0.23 0.00 0.00 0.00 -0.45 0.00 0.00 1.02 0.93
0.0812 -33.59930 0.00 0.23 0.00 0.00 0.00 -0.45 0.00 0.00 1.02 0.93
0.0849 -33.23563 -0.09 0.27 0.75 0.00 0.00 0.99 0.00 -0.79 1.01 0.96
0.0871 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0897 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0931 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.0949 -33.59930 0.00 0.23 0.00 0.00 0.00 -0.45 0.00 0.00 1.02 0.93
0.1000 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.1018 1.57314 0.65 0.93 0.59 0.55 0.00 0.93 0.00 0.52 1.26 0.14
0.1098 1.57314 0.65 0.93 0.59 0.55 0.00 0.93 0.00 0.52 1.26 0.14
0.1122 1.57314 0.65 0.93 0.59 0.55 0.00 0.93 0.00 0.52 1.26 0.14
0.1139 1.57314 0.65 0.93 0.59 0.55 0.00 0.93 0.00 0.52 1.26 0.14
0.1212 -1.46512 0.65 0.92 0.58 0.53 0.00 0.95 0.00 0.54 1.30 0.16

Table A.5: Part two of the results of the MLE for the 1D reaction-diffusion
equation with ten parameters, hyperparameter optimization for threshold-
ing and one iteration of minimization. Grey cells mark optimal results.
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𝜃 𝑙𝑜𝑔 𝑢 Δ𝑢 𝑢2 𝑢Δ𝑢 (Δ𝑢)2 𝑢3 Δ2𝑢 1 𝑞1 𝑞2
0.1234 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.1271 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.1313 -0.84717 0.59 0.92 0.58 0.54 0.00 1.01 0.00 0.66 1.29 0.15
0.1321 -0.84717 0.59 0.92 0.58 0.54 0.00 1.01 0.00 0.66 1.29 0.15
0.1416 -29.96135 -0.39 0.25 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00
0.1424 -29.96135 -0.39 0.25 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00
0.1469 -29.96135 -0.39 0.25 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.00
0.1586 2.48781 0.63 1.01 0.48 0.63 0.00 1.21 0.00 0.65 1.50 0.20
0.1613 2.48781 0.63 1.01 0.48 0.63 0.00 1.21 0.00 0.65 1.50 0.20
0.1717 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.1734 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.1778 0.76396 0.62 0.97 0.49 0.63 0.00 1.15 0.00 0.64 1.45 0.22
0.1792 0.76396 0.62 0.97 0.49 0.63 0.00 1.15 0.00 0.64 1.45 0.22
0.1959 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.2020 -32.80158 0.35 0.33 -1.22 0.00 0.00 0.61 0.00 1.00 1.06 0.66
0.2057 -32.88287 0.33 0.30 -0.79 0.00 0.00 0.55 0.00 1.34 0.88 1.24
0.2208 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.2238 -33.62264 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.2329 -32.10818 0.54 0.30 0.90 0.00 0.00 1.03 0.00 0.98 1.21 0.49
0.2553 -33.53857 0.80 0.26 -0.60 0.00 0.00 -0.71 0.00 0.73 1.02 0.94
0.2674 -33.53903 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.2912 -33.41063 0.44 0.29 -0.31 0.00 0.00 0.00 0.00 0.65 1.03 0.92
0.3009 -33.36636 0.45 0.30 -0.37 0.00 0.00 0.00 0.00 0.65 1.01 0.95
0.3094 -33.37760 0.35 0.31 0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.93
0.3490 -32.99775 0.00 0.35 0.00 0.00 0.00 0.48 0.00 0.50 1.02 0.98
0.3510 -33.06134 0.00 0.35 0.00 0.00 0.00 0.35 0.00 0.00 1.03 0.93
0.3758 -29.78457 0.57 0.45 0.50 0.00 0.00 0.63 0.00 0.64 0.82 0.71
0.4166 -32.32744 0.00 0.42 0.00 0.00 0.00 0.51 0.00 0.00 1.06 0.93
0.4189 -32.29926 0.00 0.42 0.00 0.00 0.00 0.66 0.00 0.00 1.06 0.92
0.4477 -11.11968 0.53 0.47 0.54 0.48 0.00 0.60 0.00 0.51 0.57 0.56
0.4624 -31.66911 0.00 0.00 0.00 0.00 0.00 -1.81 0.00 0.00 1.09 0.91
0.5070 26.11632 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00
0.5319 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5942 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6242 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6893 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7704 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7992 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9850 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9869 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.6: Part three of the results of the MLE for the 1D reaction-
diffusion equation with ten parameters, hyperparameter optimization for
thresholding and one iteration of minimization. Grey cells mark optimal
results.
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𝜆 BIC 𝑢 Δ𝑢 𝑢2 𝑢Δ𝑢 (Δ𝑢)2 𝑢3 Δ2𝑢 1 𝑏1 𝑏2
0.000 -33.626 0.88 0.25 0.04 0.00 0.00 -0.85 0.00 -0.02 1.02 0.93
0.012 -44.219 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.013 -30.135 -0.41 0.25 0.79 0.02 0.00 0.41 0.00 -0.48 1.02 0.94
0.021 -41.724 0.81 0.23 0.00 0.00 0.00 -0.85 0.00 0.00 1.60 0.00
0.022 -41.724 0.81 0.23 0.00 0.00 0.00 -0.85 0.00 0.00 1.60 0.00
0.041 -44.219 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.049 -48.778 0.00 0.23 0.00 0.00 0.00 -0.45 0.00 0.00 1.02 0.93
0.069 -41.724 0.81 0.23 0.00 0.00 0.00 -0.85 0.00 0.00 1.60 0.00
0.074 -44.219 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.085 -48.778 0.00 0.23 0.00 0.00 0.00 -0.45 0.00 0.00 1.02 0.93
0.117 -44.219 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.134 -41.724 0.81 0.23 0.00 0.00 0.00 -0.85 0.00 0.00 1.60 0.00
0.168 -53.321 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.177 -44.219 0.86 0.23 0.00 0.00 0.00 -0.88 0.00 0.00 1.02 0.93
0.183 -34.635 0.58 0.23 -0.30 0.00 0.00 -0.43 0.00 1.07 1.02 0.97
0.187 -53.321 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.192 -53.321 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.245 -53.320 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.272 -53.238 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.93
0.306 -48.369 0.33 0.31 0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.93
0.345 -47.567 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.78 1.02 0.99
0.366 -44.984 1.04 0.00 0.00 0.00 0.00 -2.32 0.00 0.00 1.08 0.91
0.463 -44.984 1.04 0.00 0.00 0.00 0.00 -2.32 0.00 0.00 1.08 0.91
0.507 -49.662 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.00
0.533 inf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.7: Results of the MLE for the 1D reaction-diffusion equation
with ten parameters, BIC and hyperparameter optimization for threshold-
ing after one iteration of minimization. Grey cells mark results closest to
expected values, blue cells mark smallest BIC values.
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