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Kapitel 1

Einleitung

Seitdem Maxwell die Elektrizitdt und den Magnetismus zu einer einheitlichen
Theorie des Elektromagnetismus zusammengefasst hat, ist es das Bestreben
vieler theoretischer Physiker, alle bekannten Kréifte auf einen gemeinsamen
Ursprung zuriickzufithren. Prominente Vertreter dhnlicher Strategien waren
im vergangenen Jahrhundert Einstein mit seiner einheitlichen Feldtheorie der
Gravitation und des Elektromagnetismus und Heisenberg mit der Nichtlinea-
ren Spinor-Theorie. Obwohl beide ihre Zielsetzung nicht erreichten, wurden
die Hoffnungen auf eine Vereinheitlichte Theorie durch die Vereinigung der
Quantenelektrodynamik (QED), also der Quantentheorie des Elektromagne-
tismus, und der Schwachen Kernkraft zur Glashow-Salam-Weinberg-Theorie
der Elektroschwachen Wechselwirkung weiter geschiirt.

Zur Zeit sind die Allgemeine Relativitétstheorie (ART) und das Standard-
modell der Elementarteilchen die beiden nebeneinander bestehenden Theo-
riekomplexe zur Beschreibung der physikalischen Phdnomene unserer Welt.
Die ART trifft Aussagen iiber die Gravitation und das Standardmodell iiber
die mikroskopischen Wechselwirkungen im Bereich der Elementarteilchen.
Diese Theorien sind dabei duflerst erfolgreich, sowohl in der qualitativen als
auch in der quantitativen Vorhersage. Wihrend allerdings die ART als klassi-
sche Theorie in gekriimmter Raumzeit formuliert ist, ist das Standardmodell
eine Quantentheorie in der flachen Minkowski-Raumzeit. Bisher ist es nicht
gelungen die ART als Quantentheorie konsistent zu formulieren und es diirfte
wohl noch einige Zeit vergehen, bis dieser Meilenstein bei der Vereinigung al-
ler heutzutage bekannten Grundkréfte erreicht sind. Die supersymmetrischen
Erweiterungen des Standardmodells und als etwas spekulativerer Ansatz die
Stringtheorien sind ein weiterer Schritt in diese Richtung.

In dieser Diplomarbeit soll auf dem bekannten und weithin akzeptierten
Fundament des Standardmodells gearbeitet werden. Die eine Saule dieses
Fundaments bilden die drei bereits erwédhnten Krifte Elektromagnetismus



und die starke und schwache Wechselwirkung. Diese sind als sogenannte
Eichtheorien formuliert und werden im Standardmodell durch die Gruppe
U(1) ® SU(2) ® SU(3) beschrieben. Der Begriff Eichtheorie bedeutet, dass
die Krifte durch sogenannte Eichbosonen vermittelt werden. Die Einfithrung
der Eichbosonen wird notwendig, wenn Invarianz unter lokalen Eichsymme-
trien gefordert wird. Die Eichgruppe des Standardmodells ist ein direktes
Produkt der Gruppen U(1) ® SU(2), die die Elektroschwache Wechselwir-
kung beschreiben und der SU(3), der Eichgruppe der Quantenchromodyna-
mik (QCD). Die Eichtheorien miissen invariant unter lokalen Eichtranforma-
tionen mit Elementen aus diesen Gruppen sein. Der Eichanteil der QCD soll
in dieser Arbeit mit geeigneten Methoden untersucht werden.

Die zweite Séule des Standardmodells bildet der Materiesektor. In dieses
Gebiet gehoren die fundamentalen Felder, die geméfl der oben beschriebenen
Krafte, durch den Austausch von Eichbosonen, wechselwirken. Die Materie-
felder werden in zwei Klassen eingeteilt: Quark- und Leptonfelder. Quarks
wechselwirken, obwohl sie auch an der elektroschwachen Wechselwirkung
teilnehmen, hauptséchlich iiber die auch als Farbkraft bezeichnete Starken
Wechselwirkung. Im Gegensatz dazu tragen die Leptonen keine Farbladung
und nehmen demensprechend auch nicht an der Starken Wechselwirkung teil.
Die Existenz des zur Massenerzeugung der Felder benotigten Higgs-Bosons
ist noch nicht experimentell verifiziert, allerdings wére seine Nicht-Existenz
eine gréBere Uberraschung als seine experimentelle Bestétigung.

Wie erwdahnt betrachte ich in dieser Arbeit den reinen Eichanteil der
QCD, d.h. die Eichgruppe SU(3). In der iiblichen Form lautet die zugehéorige
Lagrange-Dichte der reinen SU(3)-Eichtheorie in Minkowski-Raumzeit

1 a v
‘C:ZFP«VF‘f’ (11)
mit dem aus den Gluonenfeldern A§ aufgebauten Feldstirketensor £, . Die
Gluonen sind die Eichbosonen der QCD, und damit die Vermittler der Farb-
kraft. Die Lagrange-Dichte wird nach Integration iiber die vierdimensionale
Raumzeit zur sogenannten Yang-Mills-Wirkung

SYM:/d4I£ (1.2)

nach Yang und Mills, die analoge Wirkungen nichtabelscher Eichtheorien als
Erste betrachteten.

Um aus dieser Wirkung physikalische Informationen zu gewinnen bedarf
es geeigneter Naherungsmethoden. Da die Stérungstheorie aufgrund der Im-
pulsabhéngigkeit der Kopplungskonstanten g der QCD nur bei hohen Im-
pulsiibertréigen anwendbar ist, bedarf es zur quantitativen Berechnung von
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Groflen im Niederenergie-Sektor, also der gebundenen Zusténde wie Hadro-
nen, anderer Verfahren. In nichtabelschen Eichtheorien tragen die Eichbo-
sonen selbst Ladungen und nehmen daher an der durch sie vermittelten
Wechselwirkung teil. Dadurch kénnen Hadronen auch ausschliellich aus Eich-
bosonen bestehen. Die innerhalb dieser Arbeit betrachteten Glueballs sind
gebundene Systeme aus Gluonen, den Eichbosonen der SU(3).

Als geeignetes Naherungsverfahren erweist es sich, die physikalischen Theo-
rien auf einem Raumzeitgitter zu definieren. Dadurch lassen sich die fiir
Quantenfeldtheorien iiblichen Divergenzen regularisieren und es erschliefen
sich neue, auch qualitativ andere Naherungsverfahren, die in einer kontinu-
ierlichen Raumzeit nicht direkt anwendbar sind. Dazu gehoren die hier be-
handelten Entwicklungen in Potenzen der inversen quadrierten Kopplungs-
konstanten 8 = 29—12[, die ich hier zumeist als SCE (engl. Strong Coupling Ex-
pansions) abkiirze. Alle von mir in dieser Arbeit betrachteten physikalischen
Groflen werden als Potenzreihen in (§ dargestellt und untersucht. Aus der
Analyse der Potenzreihen lassen sich Riickschliisse auf das Auftreten und die
Eigenschaften von Singularitéten in den physikalischen Gréfien ziehen. Diese
Singularitdten konnen das Konvergenzverhalten der Potenzreihe beeinflussen
und Phaseniibergéinge kennzeichnen.

Die wesentlichen physikalischen Groflen, fiir die ich mich in dieser Ar-
beit interessiere, sind die freie Energie der SU(3), die Screening-Massen der
Glueballs und ihre jeweilige Temperaturabhéngigkeit. Da hier die fithrenden
Terme bei verschwindender Temperatur 71" bereits berechnet wurden, wer-
de ich versuchen, Aussagen iiber das Verhalten dieser Gréflen bei endlichen
Temperaturen zu erhalten. Vorher sollen allerdings die 7" = 0-Ergebnisse
ausfithrlich dargestellt werden, da die Rechnungen im endlichen Tempera-
turfall auf ihnen aufbauen.

Die SU(3)-Eichtheorie zeigt bei endlichen Temperaturen einen Phaseniiber-
gang, d.h. einen Ubergang von einer Confinement-Phase, also dem EinschluB
samtlicher Farbladung tragender Felder in Hadronen, in eine Phase mit De-
confinement. Im Falle der SU(3) wird im allgemeinen aufgrund von theoreti-
schen und numerischen Untersuchungen angenommen, dass dieser Ubergang
ein Phaseniibergang 1.0Ordnung ist. Demnach sollten die Reihenentwicklun-
gen der freien Energie und ihrer partiellen Ableitungen Informationen tiber
eine Singularitéit auf der rellen G-Achse enthalten. Ein Ziel ist es also, die La-
ge dieser Singularitdt auf analytischem Wege nédherungsweise zu bestimmen.

Die Arbeit beginnt nach dieser Einleitung mit einem einfithrenden Kapi-
tel iiber Feldtheorien bei verschwindenden und bei endlichen Temperaturen.
Ziele und Methoden von Starkkopplungsentwicklungen bei 7" = 0 sind der
Inhalt des dritten Kapitels. Dort werden einige bereits bekannte Ergebnisse



ausfiihrlich diskutiert und hergeleitet, um den Rahmen fiir die Erweiterungen
auf den T' # 0-Fall zu schaffen. Diese Erweiterungen werden dann im vierten
Kapitel beschrieben, wo auch die Unterschiede in den Rechenmethoden dar-
gestellt werden. Im darauffolgenden fiinften Kapitel werden diese Rechnungen
dann durchgefiihrt und die SCE der verschiedenen physikalischen Grofien bei
endlichen Temperaturen angegeben. Die Auswertung und Diskussion dieser
Resultate geschieht im sechsten Kapitel. Dabei soll auch auf eventuelle syste-
matische Schwachpunkte und damit verbundene zukiinftige Verbesserungen
der Methodik eingegangen werden. In einem ausfiihrlichen Anhang werden
diejenigen Teile der Rechnungen aufgelistet, die den Hauptteil der Arbeit nur
unnétig technisch und lang erscheinen lieflen.



Kapitel 2

Yang-Mills-Theorien

In den in einer kontinuierlichen Raumzeit definierten Quantenfeldtheorien

benutzt man iiblicherweise storungstheoretische Hilfsmittel bei schwacher

Kopplung um physikalische Groflen zu berechnen. Im Gegensatz dazu ermogli-
chen die Gitterfeldtheorien zusétzlich Stark-Kopplungs-Entwicklungen (SCE),
also Entwicklungen in Potenzen der inversen, quadrierten Kopplungskonstan-

ten.

In diesem Kapitel mochte ich zunéchst einige grundlegende Aspekte zu
Feldtheorien bei verschwindenden und bei endlichen Temperaturen erlautern.
Dabei kénnen die Feldtheorien entweder im Kontinuum oder auf einem Raum-
zeit-Gitter definiert sein. Die SCE der Gittertheorie werden sich dabei als
formal analog zu Hochtemperatur-Entwicklungen erweisen. Die Darstellung
der Yang-Mills-Theorien bei verschwindenden Temperaturen orientiert sich
an [1], wihrend endliche Temperaturen nach [2] behandelt werden.

2.1 Yang-Mills-Theorien bei verschwindenden
Temperaturen

2.1.1 SU(N)-Eichtheorie in euklidischer Raumzeit

In der Kontinuumstheorie der reinen SU(N)-Eichtheorie sind die grundlegen-
den Felder die Gluonfelder A,,(z). Diese Felder sind Elemente der Lie-Algebra
der Eichgruppe und somit spurlose, antihermitische (N x N)-Matrizen. Der

zugehorige Feldstérketensor lautet
Fu(z) = 0,Au(2) — 0, Au(x) + [A,(x), A, (). (2.1)

Die Felder lassen sich auch in Komponentenschreibweise, unter Benutzung
der Generatoren der Lie-Algebra, angeben. Die Generatoren T, sind N? — 1
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hermitische, spurlose (N x N)-Matrizen und erfiillen die Vertauschungsrela-
tionen der Lie-Algebra
[Taa Tb] = ifabc T. (22)

und werden fiir gewohnlich wie folgt normiert:
1
TI‘(TaTb) = 5 5ab‘ (23)

Als Linearkombinationen der Generatoren ausgedriickt lauten die Felder:

A, () = —ig A%(2) T, (2.4)
Ful) = —ig i (2) T, (2.5)

Bei der Definition der Komponentenfelder wurde die Kopplungskonstante ¢
eingefiihrt. Die Komponentenfelder sind nach Gl. (2.1) ebenfalls miteinander
verkniipft:

Fi,(x) = 0,A%(2) = 0, A} (%) + g fabe A}, (x) A (2) (2.6)

Die Dynamik der Eichfelder wird von der Yang-Mills-Wirkung beschrie-

ben: ) .
Sym = ey d'xTrF,, F,, = 1 / d'z F}, Fy, (2.7)

Die so definierte Wirkung enthilt kubische und quartische Selbstwechsel-
wirkungsterme. Im Gegensatz zur Quantenelektrodynamik (QED) sind also
nichtabelsche Eichtheorien nichttrivial in dem Sinne, dass sie Wechselwirkun-
gen der Konstituentenfelder enthalten.

Erwartungswerte von Observablen O lassen sich mithilfe der Wirkung als
Funktionalintegrale ausdriicken

1 1
(0) = E/HdAH(x)Oe_SYM[A] = E/DAOB_SYM[A], (2.8)

7 = / DAe~SymlAl (2.9)

Zur Berechnung ist diese Form allerdings nicht geeignet, da das Mafl DA ma-
thematisch nicht exakt definiert ist. Man kann den Ausdruck (2.8) allerdings
als formal richtigen Startpunkt fiir die Entwicklung einer Stérungsrechnung
nehmen. In diesem Sinne lassen sich mit dem Funktionalintegral viele Me-
thoden und Konzepte der Storungstheorie leichter als im Operatorformalis-
mus verstehen, obwohl letztlich beide Varianten dieselben Ergebnisse liefern
miissen.



2.1.2 Gittereichtheorie

In der Hochenergiephysik wurden Gittertheorien zunéchst als nicht-pertur-
bative Regularisierung eingefithrt. Durch den Ubergang von einer kontinu-
ierlichen Raumzeit zu diskreten Gitterpunkten erhélt man einen natiirlichen
Ultraviolett-Impuls-Cutoff. Ein weiterer Vorteil ist, dass es in einer Git-
tertheorie moglich ist, das Funktionalintegral mathematisch exakt zu defi-
nieren. Aus einer kontinuierlichen Raumzeit wird eine endliche Anzahl von
Gitterpunkten. Entsprechend der Diskretisierung der Raumzeit miissen auch
die Felder in den Gitterformalismus iibersetzt werden. Der wesentliche physi-
kalische Aspekt der Kontinuumstheorie, die lokale Eichinvarianz, soll inner-
halb der Gittertheorie beibehalten werden.

Das Gitter wird zumeist als vierdimensionales hyperkubisches Gitter ein-
gefiithrt. In diesem Fall ist es durch eine Gitterkonstante a und das Volumen
) = L? N, a* charakterisiert. Dabei bezeichnet V = L3a?® das rdaumliche Vo-
lumen und N;a die zeitliche Ausdehnung des Gitters. Physikalische Grofien
konnen an Gitterpunkten x und entlang ihrer Verbindungslinien, den soge-
nannten Links b, definiert werden. Die Links werden durch einen Ort x und
eine Richtung e, gekennzeichnet

b= (z,e,). (2.10)

Eine wichtige Rolle spielen geschlossene Wege auf dem Gitter, die als Schlei-
fen bezeichnet werden. Die kleinstmoglichen Schleifen bestehen aus vier Links
zwischen vier Gitterpunkten, die ein Quadrat bilden, und heiflen Plaketten
p. Eine Plakette ist eindeutig durch ihren Ort 2 und zwei Richtungen e, und
e, charakterisiert
p=(7,eu6). (2.11)

Hierbei ist aber der Umlaufsinn um die Plakette zu beriicksichtigen. Es gibt
also zwei Orientierungen einer Plakette.

Um die Yang-Mills-Wirkung zu diskretisieren, formuliert man die Theorie
zweckméssigerweise nicht tiber die Gluonfelder A, (x) direkt, sondern mithilfe
der sogenannten Linkvariablen U(b)

U(b) = Uz, e,) = exp(—iga A’ (x)T}). (2.12)
Die Linkvariablen erfiillen
Ub) =Ul(z,e,) = Ul(z + ae,, —e,) = UT(—D). (2.13)

Die vier Linkvariablen einer Plakette bilden analog die Plakettvariable U (p).
Diese lautet mit a = 1 und in etwas kompakterer Notation

U(p) = Uz, f)U(z + i, U (z + o+ o, —)U(x + 0, D). (2.14)
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Die hermitisch konjugierte Gréfie UT(p) entspricht der Plakettvariablen bei
umgekehrtem Umlaufsinn.

Da die Felder A, Lie-Algebrawertig sind, konnen die Linkvariablen als
SU(N)-Matrizen dargestellt werden. Sie transformieren unter lokalen Eichtran-
formationen geméaf

U(z,y) = AN2)U(z,y)A ' (y) A € SU(N) (2.15)

Dieses Transformationsverhalten gilt allgemein fiir zwei Punkte x und y,
die durch einen geschlossenen Zug von Linkvariablen miteinander verbunden
sind.

Bei dem Vorhaben, die Gitterwirkung eichinvariant zu formulieren, hilft
nun die Beobachtung, dass die Spuren von Linkvariablen iiber beliebige
geschlossene Wege C geméfl (2.15) unter Eichtransformationen invariante
Groflen sind. Aufgrund der zyklischen Invarianz der Spur ist

TrU'(C) = Tr U(C). (2.16)

Gehen ausschlieBlich entsprechende Grofien in die Wirkung ein, so ist diese
automatisch eichinvariant. Als weitere Einschréinkung soll die gesuchte Wir-
kung im Limes a — 0 die Yang-Mills-Wirkung (2.7) reproduzieren.

Die von K.G. Wilson vorgeschlagene Wirkung fiir die Eichgruppe SU(N),
die all diese Anforderungen erfiillt, lautet

S[U] :—ﬁz [% (TrU(p) + e U (p) — 1) | . (2.17)

Die Summation erstreckt sich iiber alle Plaketten des Gittervolumens mit
nur einer der beiden Orientierungen. Fiir den Beweis, dass diese Wirkung im
Kontinuumslimes die Yang-Mills-Wirkung reproduziert, sei auf [1] verwiesen.
Dort wird gezeigt, dass der fithrende Term der Entwicklung von (2.12) in
Potenzen von a und die Yang-Mills-Wirkung einander gleich sind, falls

2N
p= 7 (2.18)

gilt. Es lassen sich auch andere Wirkungen definieren, die diese Vorausset-
zungen erfiillen. Diese verbesserten Wirkungen dienen dazu, Gittereffekte zu
verringern und dadurch schneller den Kontinuumslimes zu erreichen. Hier
mochte ich mich aber mit der Wilson-Wirkung beschéftigen.

Analog zur Situation im Kontinuum werden mithilfe der Wirkung Erwar-
tungswerte von Observablen als Funktionalintegrale geschrieben

(0) = % / [[av®p) oV = % / DU O ¢S] (2.19)

11



wobei sich das Produkt im Integrationsmaf iiber alle Links b erstreckt. Die
Observablen O sind Funktionen der Konfiguration der Linkvariablen U (b).

Da die Linkvariablen Gruppenelemente der SU(N) sind, ist es notwen-
dig, das Integrationsmafl dU zu definieren. Das invariante Gruppenmafl oder
Haar-Maf erfiillt Eichinvarianz

/ﬂﬁ@ﬂz/ﬂﬁ@ﬂﬁi/ﬂﬁwm YVed  (220)
G G G
und ist normiert
/ U = 1. (2.21)
G

Die Zustandssumme der SU(N)-Gittereichtheorie lautet schlielich
26) = [ DU exp [-S)
g
= /DU(b) Hexp {—ﬁ (TtU(p) + TxUT(p) — 1) | . (2.22)

p

2.2 Yang-Mills-Theorien bei endlichen Tem-
peraturen

In diesem Kapitel soll das Verhalten der Yang-Mills-Theorien bei endlichen
Temperaturen untersucht werden. Die am Ende der Rechnungen interessie-
renden Groflen sind die Zustandssumme Z, die freie Energie F', die innere
Energie E und der Druck p, jeweils als Funktionen der Temperatur 7" und
des Volumens V. Zwischen diesen Grofien gelten die aus der Statistischen
Physik bekannten Relationen

F@V):—Tmﬂﬂw——FMZ@V) (2.23)
T
0 0
B(T.V) = T’ Z(T.V) = —%m Z(T,V) (2.24)
0 1 0

Der mit der Temperatur verkniipfte Parameter Or = 1 ist von der iiber die
inverse Kopplung definierte Gréfle § = o N zu unterschelden In diesem Sinne
gibt die Ableitung der freien Energie nach § nur eine formale innere Energie
wieder. Im folgenden ist mit § der inverse Kopplungsparameter gemeint, der
Temperaturparameter wird mit $7 gekennzeichnet.
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Aus obigen Gleichungen wird ersichtlich, dass die Kenntnis der Zustand-
summe Z fiir die Berechnung der thermodynamischen Groflen essentiell ist.
Allerdings kann Z zumeist nur ndherungsweise angegeben werden. Wéhrend
in der Kontinuumstheorie hauptséchlich storungstheoretische Methoden im
Schwachkopplungsbereich verwendet werden, um die Zustandssumme zu be-
stimmen, gehoren in der Gittertheorie SCE zu geeigneten Naherungsverfah-
ren.

2.2.1 Thermodynamik im Kontinuum

Die grundlegende Grofle in der Statistischen Physik ist die Zustandsumme
Z(T,V), die durch den Hamilton-Operator der zugrundeliegenden Theorie
definiert ist:

Z =Tr (e ) (2.26)

Die Spur erstreckt sich iiber alle Energieeigenzustédnde des Hamiltonians.
Damit ist die Berechnung der Zustandssumme zwar prinzipiell moglich, als
zweckméfig hat es sich jedoch erwiesen, die Spur als Funktionalintegral in
der Ortsdarstellung auszuwerten.

Fiir die Ubergangsamplitude von einem Ausgangszustand |¢,) nach ei-
ner Zeit t; wieder in den Zustand |¢,), gilt nach [2] bei verschwindender
Temperatur die Gleichung

4 ty
e sign) = [Hasless i [Mae [ @oean). o
0
Das Symbol [d¢] impliziert die Funktionalintegration, d.h. eine Integration
iiber alle Feldkonfigurationen. Da Ausgangs- und Endzustand iibereinstim-
men, gilt ¢(Z,0) = ¢(Z,tf), und die entsprechende Integration ist auf Konfi-
gurationen beschriankt, die diese Einschrankung erfiillen.

Die Zustandssumme einer Theorie lasst sich nun ebenfalls als Funktional-
integral schreiben. Es ergibt sich mit

z =t = 3 [ dooe o6, (2.28)

unter Benutzung von (2.27) in imaginére Zeitrichtung 7 = it gedreht, die

Formel
7 = /p [d¢] exp { /0 " dr / d%c(f,f)} (2.29)
- / dolexp =S (0. (2.30)

13



Die periodischen Randbedingungen erfordern an dieser Stelle, dass ¢(&,0) =
&(Z, Br). Die Temperatur geht in dieser Formel {iber die 7-Integration bis (r
ein. Bei hohen Temperaturen kann der Exponentialterm entwickelt werden
und liefert auf diese Weise Hochtemperaturentwicklungen.

2.2.2 Thermodynamik auf dem Gitter
Zustandssumme

Im wesentlichen analog zur Formulierung der Theorien bei endlichen Tempe-
raturen im Kontinuum, werden auch die Gittertheorien bei endlichen Tem-
peraturen definiert. Der Ausdruck fiir die Zustandsumme bei 7" # 0 lautet

Z(6r) = / DU(b) exp [-S(U; 6r)]

= /DU(b) I e {—%(TrU(p)—i—TrUT(p)—l) (2.31)

peQ(T)

Die Integration erstreckt sich dabei iiber alle Linkvariablen U (b) im Gittervo-
lumen Q(7T") = V- Nya. Temperatureffekte werden nun iiber die Beschrankung
der Integration in zeitlicher Richtung auf einen Wert N, < L, bei festge-
haltener Gitterkonstante a, erzielt. In diesem Sinne ist das Volumen Q(T)
temperaturabhéngig.

In GIl. (2.30) ist die Temperatur als Kehrwert der Integrationsgrenze [r
gegeben, analog ergibt sich auf dem Gitter die Temperatur als Kehrwert der

zeitlichen Gitterausdehnung
1

Auch auf dem Gitter miissen periodische Randbedingungen in euklidischer
Zeitrichtung gefordert werden. Dies bedeutet, dass Linkvariablen, die um N;a
in zeitlicher Richtung verschoben sind, identifiziert werden

(2.32)

U(z,e,) =U(x+ Nia-eq,e,). (2.33)

Der Index 4 soll die zeitliche Richtung definieren.

Aus Gl. (2.32) wird ersichtlich, dass Temperatureffekte auch durch eine
variable Gitterkonstante a in zeitlicher Richtung erzielt werden konnen. Hier
und im folgenden mochte ich allerdings die Temperatur als Funktion von Ny
betrachten.

14



Phaseniibergang

Aufgrund von numerischen Resultaten aus Monte-Carlo-Simulationen wird
angenommen, dass SU(N)-Gittereichtheorien bei 7' = 0 {iber den gesamten
Parameterbereich 0 < # < 0o keinen Phaseniibergang zeigen. Dieses Verhal-
ten dndert sich bei endlichen Temperaturen, und es gibt bei einem kritischen
Parameter (3. einen Phaseniibergang von einer Starkkopplungsphase mit Con-
finement in eine Phase mit Deconfinement. In dieser Deconfinement-Phase
sind die fundamentalen Felder der SU(N)-Eichtheorie, also die Gluonen, nicht
mehr in Glueballs eingeschlossen (engl. confined), sondern kénnen als freie
Teilchen, die aber natiirlich trotzdem noch den Wechselwirkungen unterwor-
fen sind, propagieren. Wahrend der Phaseniibergang in der SU(2) von zweiter
Ordnung ist, ist er in der SU(N) mit N > 3 von erster Ordnung.
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Kapitel 3

Starkkopplungsentwicklungen
bei T'=0

3.1 Clusterentwicklung der freien Energie

Die im vorrangegangenen Kapitel definierte Zustandssumme (2.22) soll an
dieser Stelle als Potenzreihe in der inversen Kopplung 3, bzw. dem damit ver-
bundenen Parameter u((3) entwickelt werden. Diese Entwicklung kann formal
analog zu den Hochtemperaturentwicklungen fiir (2.30) durchgefiihrt werden.
Dadurch erschliefen sich bereits bekannte Methoden aus der Statistischen
Physik, wie z.B. die Clusterentwicklung, fiir die Gittertheorie. Die forma-
le freie Energie, als Logarithmus der Zustandssumme, kann in einer solchen
Clusterentwicklung angegeben werden. Diese Prozedur wird ausfiihrlich in [1]
hergeleitet und soll hier kurz diskutiert werden. Die Notationen entsprechen
denen in diesem Lehrbuch. Soweit nicht explizit aufgefiihrt, soll weiter a = 1
gelten.

3.1.1 Starkopplungsentwicklung der Zustandssumme

Da die Plakettvariablen U(p) unabhingig von § sind, erscheint es sinnvoll
den Boltzmann-Faktor e~ in der Zustandssumme in Potenzen von 3 zu
entwickeln. Es erweist sich aber als zweckméfliger, fiir die einzelne exponen-
zierte Plaquette-Wirkung e~ eine Entwicklung nach Charakterfunktionen
anzusetzen

e~U) = Z dy ¢ (B) x»(U)

= () |1+ dya(8)x:(U) (3.1)



Die Charakterfunktionen x, einer irreduziblen Darstellung r sind als Spuren
iiber die zugehorigen Darstellungsmatrizen definiert und bilden eine Basis
im Raum der quadratintegrablen Klassenfunktionen iiber der Lie-Gruppe G.
Klassenfunktionen f(U) erfiillen

f(U)=fvuv="'  UVeQG. (3.2)

Also lassen sich alle Klassenfunktionen, wie der Term e, nach Charakter-
funktionen entwickeln. Konvention ist es, die Dimensionen d, der Darstel-
lungen r separat in der Summe in (3.1) aufzufithren. Dort wurden auch die
Entwicklungsparameter a,.((3) der einzelnen irreduziblen Darstellungen ein-
gefithrt. Bei den spéter aufzustellenden Potenzreihen kann es sinnvoll sein,
diese als Reihen in dem Entwicklungsparameter der fundamentalen Darstel-
lung ay = u zu schreiben. Fiir die a,(3) gilt allgemein

()
"oalB)

Die Berechnungen der - und u-Abhéngigkeiten der Entwicklungsparameter
a, und ¢, der niedrigsten Darstellungen der SU(2) und der SU(3) sind im
Anhang angegeben. Aus der Gleichung

exp|— H exp[— (3.4)

(3.3)

folgt zusammen mit (3.1)

- —COQH L+ Y dyar(B) xo (3.5)

r#0

wobei wesentlich ist, dass sich das Produkt nur iiber jede Plakette einzeln
erstreckt. Das heifit, dass jede Plakette nur mit héchstens einer Plakettvaria-
blen besetzt ist. Aus diesem Grund definiert man nun einen Graphen G als
eine Abbildung, die jeder Plakette p des Gittervolumens eine Variable in ei-
ner Darstellung r, zuordnet. Der einfachste Graph ist derjenige, bei dem alle
Plakettvariablen in der trivialen Darstellung sind. Weitere Graphen entste-
hen durch Anregungen einzelner Plaketten in Variablen hoherdimensionaler
Darstellungen. Somit lédsst sich das Produkt umschreiben als eine Summe
iiber alle moglichen Graphen

=" T dry an, (B) xi, (Uy)] - (3.6)

G peG
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Mit der Definition des Beitrags eines Graphen

2(G) = [ DU®) [] 4, 2, 3., U)) (3.7

peG

nimmt der Ausdruck fiir die Zustandssumme eine kompakte Form an
Z=c"> 9(G), (3.8)
€]

wobei sich die Graphen in ihre zusammenhéngenden Komponenten aufteilen
lassen, so dass diese untereinander paarweise disjunkt sind, also keinerlei ge-
meinsame Links besetzen. Diese Komponenten werden Polymere X; genannt
und es ist

(G = H d(X;). (3.9)

Die Zustandssumme lésst sich also in Abhéngigkeit einzelner Polymere schrei-

ben
Z:cgﬂ{lJrZH(I)(Xi)}. (3.10)
G 1

In dieser Formel wurde eine 1 aus der Summation herausgezogen, so dass diese
sich nun {iber alle nicht-trivialen Graphen mit zumindest einer angeregten
Plakettvariablen erstreckt. Der Vorteil der Form (3.10) liegt darin, dass die
Summation iiber Graphen einer Cluster-Entwicklung zugénglich ist.

Berechnung von Beitriagen bei 7= 0

Zunéchst mochte ich allerdings zeigen, wie man den Beitrag von einzelnen
Graphen berechnen kann. Die Graphen bestehen wie erwéhnt aus Produkten
von Plakettvariablen, die wiederum Spuren iiber Darstellungsmatrizen irre-
duzibler Darstellungen der zugrundeliegenden Eichgruppe sind. Wie aus Gl.
(3.7) ersichtlich, wird iiber alle Linkvariablen integriert. Um dieses mehrfache
Integral auszuwerten ist die Integrationsregel

/dU Xr(VU) xs(U W) = % - (VW) (3.11)

von Nutzen. Aus ihr geht hervor, dass zwei Plakettvariablen x,.(U(p;)), die
sich in einem Link beriihren, je nach Orientierung in derselben oder in der
komplex-konjugierten Darstellung sein miissen. Jede dieser Integrationen lie-

fert einen Faktor di und verkniipft die nicht von der Integration betroffenen
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[aU vy UMW = Vv W

Abbildung 3.1: Integrationsregel

Linkvariablen der beiden Plaketten zu einer neuen Spur. Dies lésst sich auch
graphisch interpretieren, siche Abb. (3.1).
Eine weitere wichtige Integrationsregel ist

/ AU o (U) = 610 (3.12)

die besagt, dass die Ausreduktion der an einem Link zusammentreffenden
Darstellungsmatrizen die triviale Darstellung 1 enthalten muss. Ist dies nicht
der Fall, so verschwindet das Integral und somit der ganze Beitrag des ent-
sprechenden Polymers. Es folgt also, dass die beitragenden Polymere ge-
schlossene Oberflichen besitzen miissen. Ansonsten gébe es einzelne Links,
die nur mit einer Linkvariablen in einer nichttrivialen Darstellung besetzt
sind. Dies wiirde geméfl Gl. (3.12) das Verschwinden des Integrals und so-
mit des gesamten Beitrags bedeuten. Innerhalb der Oberflidche sind beliebige
Kombinationen von Darstellungsmatrizen U,, an einem Link gestattet, so-
lange

rM®r® - Qr,=16... (3.13)

gilt. Im folgenden betrachte ich nur Polymere mit geschlossener Oberflache.
Wendet man Gl. (3.11) sukzessive auf Polymere ohne innere Struktur an,
so gelangt man schlielich zu folgendem Integral

[avps @) @) = [an, 04 =1 319

welches geméfl (3.12) den Wert 1 liefert.

Diese Ausintegration mochte ich am einfachen Beispiel des Kubus einmal
explizit vorstellen. Alle Plakettvariablen sind in der fundamentalen Darstel-
lung. Die einzelnen Integrationsschritte sind in Abb. (3.2) graphisch darge-
stellt. Fiir den Kubus ergibt sich nach (3.7) folgendes Integral zu lésen

© = [ pu®) [Jardris(ty) =asds [ DUO [[ (W) (339)

i=1

Nach den vier in Abb. (3.2) graphisch dargestellten Integrationsschritten,
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Abbildung 3.2: Zur Integration des Kubus. Die Seiten, iiber die integriert
wird, sind punktiert.

4

1
und einem resultierenden Faktor TS erhalt man
f

P = a?d?/dprf (Up) x5 (Ug) = afcdfc (3.16)

wobei (3.14) benutzt wurde. Fiir alle in diesem Kapitel betrachteten Poly-
mere gilt analog

o =dj [ ar = dju™ (3.17)

Plaq

was bedeutet, dass jedes Polymer, das topologisch dquivalent zu einer Sphére
ist, einen Faktor dfc aus der Integration erhélt. Die Anzahl der Plaketten des
Polymers sei dabei N,. Ohne an dieser Stelle zu sehr in die topologischen Ei-
genschaften der SCE einzudringen, sei gesagt, dass bei Polymeren mit einer
toroidalen Struktur dieser Faktor dfc fehlt. Dies lasst sich durch explizite Aus-
integration zeigen. Die toroidalen Polymere werden in der T' # 0-Theorie von
besonderer Bedeutung sein, da die "temperaturabhéngigen” Polymere in den
fithrenden Ordnungen gerade eine solche topologische Struktur aufweisen.

3.1.2 Clusterentwicklung der formalen freien Energie

Um zur Clusterentwicklung der formalen freien Energie zu gelangen, schreibt
man die Darstellung (3.10) noch etwas um

Z:cgg{ui Z %@(Xl)--..@(xn)}. (3.18)

n=1 X1,.Xn

Der Faktor 1/n! kompensiert Mehrfachzihlungen, und die gestrichene Summe
soll andeuten, dass sich die Summation iiber paarweise disjunkte Polymere
erstreckt.

Mithilfe des Momenten-Kumulanten-Formalismus [1] ergibt sich der fol-
gende Ausdruck fiir die formale freie Energie F(u) und die formale freie
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Energiedichte f(u)

Flu) = —Nilnz (3.19)
fw =

| o .
= —6lncy — 9 ;CL(C)@(Xi) """ D(Xy) (3.20)

wobei sich die Summe {iber alle sogenannten Cluster C erstreckt, die als
zusammenhédngende Gebilde von Polymeren definiert sind. Der Momenten-
Kumulanten-Formalismus zeigt, dass nun statt iiber die unzusammenhéngen-
den Polymere, bei der freien Energiedichte als Logarithmus der Zustandss-
umme iiber die zusammenhéngenden Polymere zu summieren ist. Die Expo-
nenten n; geben mogliche Vielfachheiten einzelner Polymere in einem Cluster
an. Es ist demnach

C= (X" X572 ..). (3.21)

Der kombinatorische Faktor ist gegeben durch

(X1, ey X1, Xy ooy Xoy ooy X

= . 22
a(C) nylngl...ny! (3:22)
Die in diesem Ausdruck erscheinenden Kumulanten [...] sind iiber
(X1, X =) (D= DX XG) - (X X) (3.23)
P

durch die Momente (...) der einzelnen Polymere X; definiert, fir die

(Xp ..

X)) = { 1, falls jedes Paar (X,,, X,,) unverbunden ist (3.24)

1 0, sonst

gilt. Die Summation in (3.23) erstreckt sich dabei iiber alle Partitionen der
Elemente X; bis X,,.

Anhand von GI. (3.20) ist ersichtlich, dass die formale freie Energie F'(u)
im thermodynamischen Limes existiert. Da Cluster zusammenhéngende Ob-
jekte sind, ist die Anzahl wie oft einzelne Cluster durch Verschieben aus-
einander hervorgehen konnen, proportional zum Volumen des Gitters. Da
durch dieses Volumen 2 in der Gleichung geteilt wird, bleibt die formale
freie Energiedichte f(u) auch im thermodynamischen Limes, der im Grenz-
wert unendlichen Volumens definiert ist, endlich. Damit ist auch die Existenz
der formalen freien Energie gezeigt.
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Abbildung 3.3: Kuben in 4 Dimensionen, mit Plaketten in der (j = %)- und
in der (j = 1)-Darstellung (grau)

Bei einem Gitter mit periodischen Randbedingungen, also Translationsin-
varianz, lasst sich demnach die Summation tiber alle Cluster in (3.20) auf die
Summation {iber alle Cluster, die nicht durch Verschiebungen auseinander
hervorgehen, einschranken

flu) =—=6lnco— > a(C) H (X, (3.25)

wobei die gestrichene Summe dies andeuten soll. Die Volumenabhéngigkeit
kiirzt sich also in der Gleichung heraus, wie es fiir eine intensive Grofie sein
sollte. Die Formel (3.25) ist die Cluster-Entwicklung der formalen freien Ener-
giedichte der SU(N)-Gittereichtheorie mit Wilson-Wirkung.

3.2 Formale freie Energie der SU(2)

3.2.1 Berechnung der formalen freien Energiedichte

Aus der fiir alle SU(N) hergeleiteten Cluster-Entwicklung der formalen frei-
en Energiedichte mochte ich nun diese am Beispiel der SU(2) auch explizit
berechnen. In den Abbildungen 3.3 bis 3.6 sind Beispiele der Cluster oder
Polymere aus bis zu 12 Plaquetten angegeben. Dies sind alle Arten von Poly-
meren, die bei der Berechnung der freien Energiedichte bis einschliellich der
O(u'?) auftreten. Sind die entsprechenden Integrale, d.h. die Beitriige der
Graphen geméf8 (3.7) berechnet, so ist noch mit ihrer Anzahl zu multiplizie-
ren, um den gesamten Beitrag dieser Polymerklassen zur freien Energiedichte
zu erhalten.

Diese Anzahl ergibt sich zumeist aus einigen grundlegenden geometri-
schen Uberlegungen. Im hier betrachteten vierdimensionalen Raum gibt es
vier verschiedene Richtungen. Da ein Kubus, als kleinstes geschlossenes Poly-
mer mit nichtverschwindendem Volumen, in drei Richtungen ausgedehnt ist,
gibt es genau (g) = 4 verschiedene Kuben in vier Dimensionen. Damit lassen
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Abbildung 3.4: Doppelkuben: Polymere, die aus 10 Plaketten aufgebaut sind.
Die Doppelkuben konnen verwinkelt oder getreckt sein. Die gestreckten zeich-
nen eine der drei Richtungen, in der sie ausgedehnt sind, aus.

Abbildung 3.5: Cluster aus zwei Kuben

Abbildung 3.6: Polymere mit 12 Plaquetten
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sich bereits unter Beriicksichtigung der Gl. (3.16) die niedrigsten Ordnungen
der freien Energiedichte angeben

f(u) = —61ncy — 16u°, (3.26)

mit der tiblichen Abkiirzung a; = u. Da es keine geschlossenen Polymere mit
acht Plaketten gibt, gehtren zur néchsthéheren nichtverschwindenden Ord-
nung die Polymere aus Abb. (3.4). Um die Anzahl dieser Doppelkuben zu
erhalten, teilt man sie zweckméBigerweise in zwei Klassen ein: Doppelkuben
als Verbund zweier Einzelkuben, die unter einem rechten Winkel verbunden
sind und solche, die gestreckt sind. Es gibt vier Doppelkuben ohne rech-
ten Winkel, da diese Polymere in drei von vier Richtungen ausgedehnt sind.
Da jeder derartige Doppelkubus drei Richtungen auszeichnen kann, ergibt
sich ihre Anzahl zu N = 3 -4 = 12. Die Anzahl der verwinkelten Doppel-
kuben ist von der Anzahl der verschiedenen Plaketten in vier Dimensionen
abhéngig. Jede Plakette ist in zwei Richtungen ausgedehnt, daher gibt es
(;1) = 6 Plaketten in vier Dimensionen. Diese Plaketten sollen - ohne mit
einer Plakettvariablen besetzt zu sein - die beiden Einzelkuben des verwin-
kelten Doppelkubus verbinden. Die Anzahl, verschiedene Doppelkuben mit
rechtem Winkel bei festgelegter innerer Plakette aus Einzelkuben aufzubau-
en, betragt 4. Insgesamt erhélt man also 12 + 6 - 4 = 36 Doppelkuben. Da
dies die einzigen geschlossenen Polymere aus zehn Plaketten sind, ergibt sich
fiir die freie Energie bis einschlieBlich der Ordnung O(u!?)

f(u) = —61n ¢y — 16u° — 144u™, (3.27)

wobei auch die Doppelkuben, als topologisch einer Sphére dquivalent, einen
Integrationsfaktor d2 Jo = 4 enthalten.

In den hoheren Ordnungen sind Polymere mit Plaketten in héherdimen-
sionalen Darstellungen und Cluster aus mehreren Polymeren zu beriicksichti-
gen. Dies bedeutet keine prinzipiellen Schwierigkeiten. Die Herausforderung
bei der Berechnung héherer Ordnungen der formalen freien Energiedichte
besteht in der enorm wachsenden Anzahl von Graphen mit jeder Ordnung.
Das von Wilson bis einschliellich der Ordnung O(u??) berechnete Ergebnis
lautet

f(u) = —6Incy—16u’ — 144u™ + 156, 8 u'? — 1974 u™* + 5407 u'®
— 3,509 - 10 u'® + 1,452 - 10° u® — 7,846 - 10° u*?. (3.28)

Aus diesem Ausdruck lasst sich der Erwartungswert der formalen inneren
Energiedichte e(u) einer einzelnen Plakettvariable berechnen.
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3.2.2 Berechnung der formalen inneren Energie

Die formale innere Energiedichte e(u) = E(u)/V ist definiert iiber ihren
Funktionalintegralausdruck

e(u) = <1—%Tr (Up>>

AT (329)

und lésst sich aus der formalen freien Energiedichte durch Ableiten nach dem
Parameter 3 = 3% berechnen. Dies erklirt auch die Bezeichnung formale in-
nere Energiedichte, da die physikalische innere Energiedichte aus der freien
Energiedichte durch Ableiten nach der inversen Temperatur By = % her-
vorgeht. Diese Ableitungen sind einander natiirlich nicht gleich. Zudem wird
die physikalische freie Energiedichte bei endlichen Temperaturen berechnet,
wéahrend die formale freie Energie bei T" = 0 berechnet wird. Néheres dazu
wird in Kapitel 4 erldutert.

Wertet man die Ableitung nach dem inversen Kopplungsparameter 3 aus,
so lautet die innere Energiedichte in Abhéngigkeit von u

10 1 /du d
) = g5 0 = (55) (Grw)
= 1—u—4u®+8u" —62,67u’ + 197, 0utt
— 1349 + 5939 ! — 3,428 - 10* w!7

+ 1,755 - 10° u'® — 9,775 - 10° u?*. (3.30)
Dabei wurde benutzt, dass gilt:
0

~95 Incy(B) =1 —u. (3.31)

Das Ergebnis (3.30) wurde von Wilson berechnet, aber nicht von ihm veréffent-
licht. Fiir diese Arbeit ist es aus [1] entnommen. Es wird ebenfalls in [9]
zitiert.

3.3 Glueball-Massen

Die Existenz gebundener Zustédnde aus den Eichbosonen nichtabelscher Eich-
theorien wurde zuerst von Fritzsch und Gell-Mann im Jahre 1972 vorherge-
sagt [4]. Die leichtesten dieser Glueballs genannten Hadronen sind in reiner
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SU(3)-Eichtheorie stabile Teilchen und damit kann die Temperaturabhidngig-
keit ihrer Massen Informationen iiber den Confinement /Deconfinement-Uber-
gang liefern. Dieser Ubergang wird bei einer kritischen Temperatur von T, ~
250 MeV erwartet.

3.3.1 Allg. Berechnung der Glueball-Massen

Aus der Clusterentwicklung der SU(N)-Zustandsumme kann man Informa-
tionen {iber die Massen der niedrigsten, nichtangeregten Glueballs gewin-
nen. Diese Massen ergeben sich als die niedrigsten Eigenwerte des Hamilto-
nians iiber dem Vakuum bei verschwindendem Impuls. Betrachtet man die
zeitabhéngige Korrelationsfunktion eines Operators ¥ mit sich selbst

C(t) = (T ()T (0)) = (T(0)|e~"|¥(0)), (3.32)

so dominiert fiir grofle Zeiten ¢ der niedrigste Eigenwert m; der Eigenzusténde,
deren Projektion auf den Operator ¥ nicht verschwindet

(U(t — 00)|¥(0)) — Ke ™. (3.33)

Im folgenden sollen jeweils die zusammenhéngenden Korrelationsfunktionen
betrachtet werden.

Das Verfahren, die Glueball-Masse zu bestimmen, belduft sich also dar-
auf, Operatoren mit geeigneten Quantenzahlen zu finden und die zeitliche
Korrelation dieser Operatoren zu berechnen. Aus dem Ergebnis ldsst sich
dann die niedrigste Glueball-Masse mit den entsprechenden Quantenzahlen
iiber

1
m = —tlim gln(‘lf|e_Ht]\I/>

= _tlir?o % InC(t) (3.34)
extrahieren.

Als einfachste Operatoren in der Gittertheorie erweisen sich die Plakettva-
riablen Tr(U,). Wie bei der Berechnung der formalen inneren Energiedichte
gesehen, lassen sich Korrelationsfunktionen von Tr(U,) durch Ableitungen
der Zustandsumme berechnen

Ct) = (TrU(p) TrU(p2))

2
85162 an(ﬁ’ Bl’ﬁQ)‘51,2=ﬁ7 (335)

— NZ
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wobei die beiden Korrelationsplaketten aus rechentechnischen Griinden mit
unterschiedlichen Kopplungen f; versehen wurden, und diese am Ende der
Rechnung wieder zu ; = (3 gesetzt werden. Der Logarithmus der Zustands-
summe, der proportional der formalen freien Energie ist, ldsst sich mit der
Clusterentwicklung berechnen.

Da Cluster zusammenhéngende Objekte sind, muss jeder beitragende
Cluster beide Plaketten 3; und (3, besetzen. Sind beide Plaketten nun par-
allel, so ist das kleinste beitragende Polymer X, eine ”Plakettrohre” aus 4t
Plaketten, mit den beiden festgesetzten Plaketten an den Réndern. Eine sol-
che Plakettrohre ist in Abbildung (3.7) gezeigt. In fiihrender Ordnung ergibt
sich demnach allgemein fiir die zugrundeliegende Gruppe SU(N)

(Xo) = dju(fy) u(B2) u* (2 — On2) (3.36)

wobei der letzte Faktor aus der Tatsache resultiert, dass die SU(2) keine
komplex-konjugierten Darstellungen besitzt.

Da die Ableitungen aufgrund der Einfithrung unterschiedlicher Kopplun-
gen nur die Korrelationsplaketten betreffen, lasst sich nun die Korrelation
angeben zu

o, du

C(t) = ( 2 %>2 (2 —Ono)utt = Ae ™! (3.37)

wobei eine irrelevante Konstante A definiert wurde und fiir die Masse my gilt
nach (3.34)
mo = —41Inu(p). (3.38)

Zusétzlich lassen sich die Beitrige der Cluster, die aus der Plakettrohre und
zusétzlichen inneren Plaketten bestehen sowie der Komposition der Rohre
aus mehreren Clustern geschlossen aufsummieren, siche Abb. (3.7). Die Mog-

lichkeiten innere Plaketten hinzuzufiigen sind von der jeweiligen Eichgruppe
abhéngig. Fiir die SU(2) gilt

o = a0 S (o S ()

= a0 () eora -y
= D(Xo) (1+3v—4u®)". (3.39)

An jedem inneren Gitterplatz lésst sich eine Plakette in der j = 1-Darstellung
einfiigen, was einen Faktor 3v im Beitrag zur Folge hat. Zusétzlich dazu kann
man den urspriinglichen Cluster in mehrere zusammenhéngende Polymere
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Abbildung 3.7: Polymere ohne und mit inneren Plaketten in der SU(2). Diese
Plaketten in der j = 1-Darstellung sind schwarz eingezeichnet.

aufteilen. Jedes Polymer erhilt einen eigenen Faktor d} o =4 Der Term
(—1)* folgt aus dem kombinatorischen Faktor (3.22), der fiir einen Kette von
N Polymeren, bei denen ein gegebenes Polymer nur seinen vorderen und
hinteren Nachbarn beriihrt, gleich (—1) ist.

In der SU(3) lduft diese Aufsummation vollig analog, mit dem Unterschied
in der verdnderten Struktur der irreduziblen Darstellungen. Die einzigen Dar-
stellungen, die geméf der Regel (3.13) als innere Plakettvariablen zugelassen
sind, sind die Darstellungen 3,6 und 8. Bezeichnet man ihre Entwicklungs-
parameter als a3 = u,dgag = v und dgag = w, so erhdlt man mit einer zu
(3.39) analogen Rechnung

® = &(Xo) (1 +3u+v+w—18u?)" (3.40)

wobei zu beachten ist, dass der Anteil aus der Aufsummation der Polymer-
ketten einen zusétzlichen Faktor 2 enthélt, da die SU(3) komplex-konjugierte
Darstellungen enthélt, und die einzelnen Polymere demnach jeweils in zwei
verschiedenen Darstellungen eingefiigt werden kénnen. In Abb. (3.8) sind
einige Graphen dazu présentiert. Da jeder Cluster in den niedrigen Ordnun-
gen aus einer langeren Plakettrohre und zusétzlichen Dekorationen besteht,
ergeben sich diese Beitriage zusétzlicher innerer Plaketten als gemeinsame
Faktoren dieser Graphen.

Um nun die weiteren Korrekturen zur Glueball-Masse auszurechnen, reicht
es nicht aus, die Beitrédge der Cluster hoherer Ordnung hinzuzuaddieren. Da
die reinen Plakettoperatoren nicht auf einzelne Masseneigenzusténde des Ha-
miltonians projizieren, miissen zunéchst aus den Operatoren Eigenzustinde
gebildet werden. Diese Prozedur ist in [1] und [5] néher beschrieben. An dieser
Stelle reicht das Ergebnis, das fiir den 07 Glueball die folgende Kombination
liefert

1
\Ilo++ = g Z Re [TI' Ulg(f) + Tr UQg(f) + Tr U31 (f)] s (341)
wobei die Zahlen 1,2 und 3 die rdumlichen Richtungen bezeichnen und die
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Abbildung 3.8: Polymere ohne und mit inneren Plaketten in der SU(3).
Graue Plaketten entsprechen der 3-, schwarze Plaketten der 6- oder der 8-
Darstellung, bzw. ihren jeweils komplex-konjugierten Darstellungen.

Summation iiber ¥ Eigenzustdnde mit Impuls k= 0, also wirkliche Massen-
Eigenzustéande liefert.

Da der auf diese Weise konstruierte Operator Eigenzustand des Hamilto-
nians ist, muss auch die Korrektur zur niedrigsten Ordnung der Entwicklung
geméf

exp(—mt) = exp(—myt)exp(—Amt) (3.42)

exponenzieren. Dieses Verfahren soll im néchsten Unterkapitel am Beispiel
der SU(2) demonstriert werden.
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Abbildung 3.9: Faktor N = 8: Dekoration kann an vier Seiten angebracht
werden und fiir zwei verschiedene Korrelationsplaketten beitragen.

AREn | aEa,

Abbildung 3.10: Faktor N = 16: Dekoration an vier Seiten, in zwei Richtun-
gen und fiir zwei Korrelationsplaketten.

3.3.2 Glueball-Massen der SU(2)

Die Graphen der niichsthoheren Ordnung O(u?) in der Korrektur sind in den
Abbildungen (3.9) - (3.11) dargestellt. Von den Graphen jeder Abbildung
gibt es insgesamt N - t, wobei N der den einzelnen Graphen zugeordnete
Faktor ist. Dieser Faktor gibt an, wie oft der jeweilige Graph beitrédgt, wenn
statt der Korrelation zweier paralleler Plaketten die Korrelationen von (3.41)
berechnet werden. Addiert man diese Faktoren zusammen, so ergibt sich fiir
den Vorfaktor der Ordnung O(u*) die Zahl 34¢. Hohere Ordnungen lassen sich
dann entsprechend berechnen. Die ersten Terme der Reihe bis einschliellich
der Ordnung O(u?) lauten somit

m(0tT) = —4lnu—In(1+ 3v* — 4u?) — 34u?
= —4lnu+2u® - %u‘l. (3.43)

Da ich nur die Abhéngigkeit der 07 *-Glueball-Masse von der Temperatur
in den fithrenden Ordnungen in u betrachte, soll dieses Ergebnis an dieser
Stelle ausreichen. Fiir weitere Informationen zu diesem Thema sei erneut auf
[1] und [5] verwiesen.

il | ARy JAREe) JENE | iRl

Abbildung 3.11: Faktor N = 10: Dekoration in zwei Richtungen und fiir fiinf
Korelationsplaketten.
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3.3.3 Screening-Massen

Bei verschwindenden Temperaturen unterscheiden sich die als Korrelationen
in zeitlicher Richtung berechneten Glueball-Massen nicht von den Korrela-
tionen in rdumlicher Richtung

C(x) = (A(z)A(0)) — e~ M* (3.44)

wobei A ein lokaler, eichinvarianter Operator mit den gewiinschten Quanten-
zahlen ist. In der Gittertheorie sind dies Linearkombinationen der Plakett-
operatoren.

Die Korrelationen liefern im Limes z — oo iiber ihren exponentiellen
Abfall die sogenannten Screening-Massen M. Die Screening-Massen sind Ei-
genwerte der rdumlichen Transfer-Matrix bei verschwindendem Impuls und
liefern bei endlichen Temperaturen Informationen iiber die relevanten dyna-
mischen Lingenskalen im Plasma. Sie entsprechen der inversen Lénge iiber
der ein Medium im thermischen Gleichgewicht empfindlich gegeniiber dem
Hinzufiigen einer statischen Quelle mit den Quantenzahlen des Operators ist.
Jenseits von 1/M ist die Quelle abgeschirmt (engl. screened) und das Medi-
um bleibt dort ungestort, vgl [3]. Zur Berechnung der Screening-Masse des
0" *-Glueballs verwendet man in volliger Analogie zu Gl. (3.34)

M = —lim S (9(2)[9(0))

T—00 I

— lim = In C(z) (3.45)
T—00 I

mit x als einer der drei vom Gitter ausgezeichneten Raumrichtungen. Im
Gegensatz zu den Glueball-Massen, die {iber ihre zeitliche Korrelation defi-
niert sind und damit auch festgelegt sind, ist es bei den Screening-Massen
moglich, auch Korrelationen in Richtungen zu untersuchen, die nicht entlang
einer Gitterachse zeigen. Auf diese Weise ist es moglich die Wiederherstellung
der Rotationsinvarianz im Kontinuumslimes zu untersuchen.
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Kapitel 4

Starkkopplungsentwicklungen
bei T # 0

4.1 Clusterentwicklung bei 7' # 0

Da geméf (2.24) und (2.25) die innere Energie und der Druck durch Kenntnis
der freien Energie berechnet werden kénnen

9 (1
B(T.V) — a—ﬁT<ﬁ—TF(T,V)) (A1)
p(T,V) = —%% <%F(T,V)) (4.2)

und die Clusterentwicklung fiir die formale freie Energie gilt, mochte ich im
folgenden diese, bzw. genauer gesagt die freie Energiedichte, als Ausgangs-
punkt der weiteren Rechnungen betrachten.

Die physikalische freie Energiedichte ergibt sich sich aus der Differenz der
formalen freien Energiedichte bei endlichen Temperaturen und bei verschwin-
denden Temperaturen:

Af(Nt§ U) = f(Nt; u) - f(ooa U) (4-3)
flu) = r (V“). (4.4)

Um es noch einmal deutlich zu sagen: Die Grofle Af(Ny;u) bezeichnet die
physikalische freie Energiedichte, wahrend f(Ny;u) und f(oo;u) formale
freie Energiedichten sind. Die Differenzbildung entspricht einer Renormie-
rung, wobei f(N;;u) die unrenormierte Grofie darstellt und f(oco; u) ein Va-
kuumsbeitrag ist. Fiir gewohnlich bezeichnet f die physikalische freie Ener-
giedichte, aber um die Notation innerhalb dieser Arbeit konsistent zu halten,
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Abbildung 4.1: Ein Beispiel neu beitragender Polymere

werde ich weiterhin obige Schreibweise benutzen und die physikalische freie
Energiedichte durch Af angeben.

Geméfl (4.4) muss ich in der Clusterentwicklung nur diejenigen Terme
beriicksichtigen, die die verdnderten Randbedingungen spiiren. Diese Clus-
ter bestehen aus mindestens einer Polymerkette mit einer Ausdehnung in
zeitlicher Richtung grofier oder gleich Ny, wie z.B. in Abb. (4.1).

4.1.1 Gruppentheoretische Grundlagen

In den zu berechenenden Beitrdgen gewisser Graphen treten in den hier be-
trachteten Ordnungen Integrale iiber Charakterfunktionen verschiedener ir-
reduzibler Darstellungen der Eichgruppen auf. Da hier nur mit den niedrigs-
ten irreduziblen Darstellungen gerechnet wird, ist es unnotig eine komplette
gruppentheoretische Behandlung an dieser Stelle durchzufiithren. Trotzdem
ist es notwendig, einige grundlegende Aspekte der irreduziblen Darstellun-
gen der SU(2) und SU(3) zu behandeln. Die hier gewéhlte Notation orientiert
sich an [6].

Darstellungen der SU(2)
Die Lie-Algebra fiir die Generatoren J; der SU(2) lautet

[T, Jy) = i, (4.5)

mit dem total antisymmetrischen Levi-Civita-Symbol £%¢ und £!?* = 1. Die

Generatoren lassen sich in Matrixschreibweise als Pauli-Matrizen % schrei-

ben. Mithilfe der Lie-Algebra konnen alle irreduziblen Darstellungen klassifi-
ziert werden. Im Fall der SU(2) werden sie durch eine halb- oder ganzzahlige
Zahl j charakterisiert. Die Dimension der Darstellung ergibt sich dann zu

d; = 25+ 1. Fiir die im néchsten Kapitel folgenden Rechnungen sind nur die
Darstellungen 5 = 0, % und 1 von Belang. Wichtig ist an dieser Stelle nun

die Feststellung, dass das direkte Produkt der irreduziblen Darstellungen

11
3®501=0010162 (4.6)
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die triviale Darstellung enthélt, gem&f der Integrationsregel (3.12) also eine
erlaubte Kombination von Plakettvariablen an einem Link darstellt.

Darstellungen der SU(3)

Die SU(3) hat eine im Gegensatz zur SU(2) kompliziertere Struktur. Die
Lie-Algebra lautet
[Fu, Fy) = if*F.,, (4.7)

mit den Generatoren Fj, die als Matrizen die Form von Gell-Mann-Matrizen
annehmen. Die irreduziblen Darstellungen der SU(3) sind durch ein Paar
zweier ganzer Zahlen (p,q) charakterisiert und werden iiblicherweise nach
ihrer Dimension benannt. Der Zusammenhang zwischen p und ¢ und der
Dimension der Darstellung r lautet

dp=(14+p)(1+q) (1+¥>. (4.8)

In dieser Arbeit sind die Darstellungen

1 — (0,0)
3" — (0,1)
6 — (2,0)
6" — (0,2)
8 — (1,1)

von Interesse.

4.1.2 Beitriage von Polymeren in der fundamentalen
Darstellung

Das einfachste Polymer, dass aufgrund der verdnderten Randbedingungen
N; < L neu beitragt, ist ein Kubus, bei dem zwei Seitenflichen fehlen (siehe
Abb. 4.2).

Dieses Polymer hat nur dann einen von Null verschiedenen Beitrag, falls
die beiden Zeitscheiben, in denen die zwei fehlenden Plaketten liegen, identi-
fiziert werden. Das Gitter hat in diesem Fall also eine effektive Ausdehnung
von Ny = 1 in Zeitrichtung. Der Beitrag dieses Polymers ist allgemein nach

(3.7)
®— [ pU®) [[dsas(90 W ir)) (4.9)
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Abbildung 4.2: Kubus mit zwei unbesetzten Seiten bei N, = 1

Abbildung 4.3: Die Integrationen beim Kubus sind punktiert gezeichnet.

Das Integrationsmafl DU (b) soll in diesem und folgenden Fillen immer ein
Produkt iiber alle Linkvariablen der beteiligten Links beinhalten.

Nun werden aufgrund der periodischen Randbedingungen die Linkvaria-
blen an der linken und der rechten Seite identifiziert, siche Abb. (4.3). Die
viermalige Anwendung - je einmal fiir jeden Link - der Integrationsregel (3.11)
sorgt fiir einen Faktor 1/ d;%. Damit lautet das Zwischenergebnis fiir den Bei-
trag

o= [ DUy T v W) s (U10)). (4.10)

Diese vier Integrationen sind unabhéngig voneinander und kénnen sofort aus-
gefiithrt werden. Das Ergebnis ist geméaf der Integrationsregel (3.12) jeweils
ein Faktor Eins. Die Kreise in Abbildung (4.3) sollen andeuten, dass die
entsprechenden Punkte identifiziert worden sind.

Alles zusammengenommen ergibt sich fiir den Beitrag dieses Polymers
das Ergebnis

® = a}(p). (4.11)

Im Gegensatz zum Ergebnis fiir ein einzelnes Polymer bei T" = 0 fehlt ein
Faktor dfc. Dies gilt allgemein fiir analoge Polymere, bei denen ein zusam-
menhingendes Gebiet aufgrund der period. Randbedingungen in sich ge-
schlossen ist, die also die erwidhnte toroidale Topologie aufweisen. An der
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Abbildung 4.4: Doppelkubus mit vier unbesetzten Seiten und einer Plaquette
in hoherdimensionaler Darstellung j = 1 (schwarz)

Berechnung von geschlossenen Polymeren mit zeitlicher Ausdehnung kleiner
als V; geméafl Kapitel 2 dndert sich nichts.

4.1.3 Beitridge von Polymeren mit Plaketten in hdher-
dimensionalen Darstellungen

Sind Plaketten in hoherdimensionalen Darstellungen vorhanden, so dndert
sich nichts Prinzipielles an der Berechnung des Beitrages.
Der Beitrag des Polymers in Abb. (4.4) lautet

/DU )diay x1 (U(pr)) H dy2a1/2(8) X172 (U (ps)) - (4.12)

Auch hier lésst sich die Integrationsregel (3.11) anwenden. Aufgrund der peri-
od. Randbedingungen werden die sechs Linkvariablen in der 1/2-Darstellung
und die Linkvariable in der 1-Darstellung an den Réndern identifiziert. An-
wendung von (3.11) liefert einen Faktor d,°d;" und es verbleibt eine Inte-

gration iiber sechs Links, die jeweils einen Faktor Eins liefern.
Der Beitrag dieses Polymers lautet also

® = a (B)as(B). (4.13)

Auch hier gibt es also keinen der Dimension der Darstellungen entsprechen-
den Faktor.

Mit diesen Vorbemerkungen lassen sich die Berechnung der freien Energie
und der von ihr abgeleiteten Gréfien bei endlichen Temperaturen durchfiihren.
Weitere Integralsberechnungen finden sich im Anhang.
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4.2 Screening-Massen bei T # (

Um die Verdnderung der Screening-Massen bei endlichen Temperaturen zu
berechnen, reicht es wie bei der freien Energie aus, sich nur mit den tempe-
raturabhéngigen Graphen zu beschéftigen. Denn fiir die Differenz der Masse
M bei endlichen Temperaturen gilt

AM(T) = M(T)— M(0)
= — lim = InC(T;x) —InC(0; )]
T—00 I
.1 AC(T;x)
= —lim - |In(l4+ ———~2 4.14
Jm O+ o (4.14)
die durch Kenntnis der Differenz der Korrelationen
AC(T;z) =C(T;x) — C(0;x) (4.15)

bei verschwindenden und bei endlichen Temperaturen berechnet werden kann.

Wie in [7] gezeigt wird, werden die den Quantenzahlen des 07"-Glueballs
entsprechenden Operatoren durch dieselbe Kombination (3.41) von einzelnen
Plaketten wie bei T" = 0 konstruiert. Allerdings sind im endlichen Tempera-
turfall die Korrelationen von Plaketten mit zeitlicher Ausdehnung von denen
ohne zu unterscheiden. Da in dieser Arbeit aber nur die fithrende Ordnung in
der Differenz der Screening-Massen berechnet werden soll, wird diese Unter-
scheidung keine groBleren Probleme bereiten. Die Berechnung der rdumlichen
Korrelationen lduft genauso wie im 7" = 0-Fall ab.
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Kapitel 5

Berechnungen bei endlichen
Temperaturen

5.1 Freie Energie der SU(3)

Nachdem im vorherigen Kapitel die grundlegenden Rechenmethoden der
Theorie erlautert wurden, werde ich diese nun benutzen, um die gesuchten
Groflen zu bestimmen. Wie im letzten Kapitel erldutert, ergibt sich die freie
Energiedichte bei endlichen Temperaturen aus der Abweichung der forma-
len freien Energiedichte bei endlichen Temperaturen von der formalen freien
Energiedichte bei T' = 0

Af(Ni;u) = f(Ni;u) — f(oo;u). (5.1)

Das Ergebnis ist dann in einer Potenzreihe in u angegeben.

Bei der Berechnung der SCE der freien Energiedichte der SU(3)-Yang-
Mills-Theorie ist es moglich, bestimmte Klassen von Graphen geschlossen
aufzusummieren. Die Graphen bestehen aus einem sogenannten Grundpoly-
mer, siche Abb. (5.1), sowie geometrischen und gruppentheoretischen Deko-
rationen. Das Grundpolymer besteht aus einer Rohre von Plaketten, die als
Querschnittsfliche eine Plakette einschlieen und ist das kleinste Polymer,
dessen Beitrag zur freien Energiedichte sich durch die verédnderten Randbe-
dingungen verdndert. Geometrische Dekorationen bestehen aus zusétzlichen
Plaketten aulerhalb des Grundpolymers, gruppentheoretische Dekorationen
zeichnen sich durch zusétzliche Plaketten in hoherdimensionalen Darstellun-
gen innerhalb oder durch die Ersetzung von Plaketten am Grundpolymer
durch solche hoherdimensionalen Plaketten aus. Es konnen natiirlich auch
beide Dekorationstypen gemeinsam vorhanden sein. Zusétzlich ist es moglich,
dass durch zwei zusétzliche Plaketten in der fundamentalen Darstellung an
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Abbildung 5.1: Das Grundpolymer der temperaturabhéngigen Graphen, hier
bei einer zeitlichen Ausdehnung von N; = 5.

einem Punkt innerhalb des Grundpolymers dieses in zwei oder mehrere ein-
zelne Polymere geteilt wird. Auch diese Graphen sind zu beriicksichtigen.

Zusétzlich zu der Art der Dekorationen lassen sich die verschiedenen Gra-
phen auch noch in drei andere Gruppen einteilen. Da ich die Differenz der frei-
en Energie zwischen endlichen und verschwindenden Temperaturen berechne,
muss ich zwischen solchen Graphen unterscheiden, die bei endlichen Tem-
peraturen nicht mehr beitragen, und solchen die aufgrund der verénderten
Randbedingungen neu beitragen. Zusétzlich dazu kann es sein, dass Graphen
sowohl bei T' = 0, als auch bei T" # 0 beitragen, allerdings mit verdndertem
Wert. Die Typen nenne ich im folgenden neue und verbotene Graphen,sowie
Graphen mit verdndertem Beitrag. Die Beitrdge der dritten Gruppe wer-
den dann, je nach Vorzeichen der Verdnderung, zu einer der beiden anderen
Gruppen hinzugezihlt.

Nachdem ich im ersten Unterkapitel einige Vorbemerkungen zur Berech-
nung mache, werde ich im zweiten Unterkapitel diejenigen Graphenklassen
in den niedrigsten Ordnungen geschlossen aufsummieren, bei denen dieses
moglich ist. Im letzten Unterkapitel werde ich dann Korrekturen mit einbezie-
hen, die vor allem bei kleineren N; wichtig werden und sich als geometrische
Dekorationen &uflern. Weitere Details zu den Berechnungen spezieller Inte-
grale und zur Abzdhlung der Anzahl von Polymeren in einer Graphenklasse
sind im Anhang aufgefiihrt.

5.1.1 Vorbemerkungen

Zunéchst ist es notwendig einige Anmerkungen zu den Moglichkeiten des
Hinzufiigens von Plaketten zu machen. Zum Grundpolymer der Ausdehnung
N, konnen ebensoviele zusétzliche Plaketten innerhalb seiner geschlossenen
Oberflache zugefiigt werden. Das heifit aber, dass maximal drei Plaketten an
einem Link zusammentreffen kénnen. Da die Ausreduktion der Darstellungs-
matrizen der Linkvariablen die triviale Darstellung enthalten muss, ergibt
sich dadurch eine Beschrankung der moglichen Darstellungen der zusétzli-
chen Plaketten. Das Grundpolymer besteht aus Plaketten je einer der beiden
fundamentalen Darstellungen 3 oder 3*. Sind alle Plakettvariablen in der-
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Abbildung 5.2: Sind alle Plaketten eines Polymers mit denselben Darstellun-
gen besetzt, so unterscheiden sich die beiden an einem Link aufeinandertref-
fenden Linkvariablen in ihrer Orientierung.

selben Darstellung, wie es im Grundpolymer der Fall ist, so erhélt man an
jedem Link das Produkt 3 ® 3* =1 @ 8, siehe Abb. (5.2)

Daher lautet die Frage, welche irreduziblen Darstellungen der SU(3) die
triviale Darstellung enthalten, wenn man sie mit zwei fundamentalen Darstel-
lungen direkt multipliziert. Zur Beantwortung dieser Fragen sind sogenannte
Young-Tableaux geeignet, deren Formalismus in [6] beschrieben wird. Wen-
det man dieses Verfahren zur Ausreduktion von Produktdarstellungen an, so
ergibt sich

3®3®3 = 1d...
3IFRIRI = 16...
36 ®3 = 14...
3IFR6®3 = 16...
383" = 16...

wobei die Punkte fiir hoherdimensionale Darstellungen stehen. Da entspre-
chend Abb. 5.2 ein Link im Grundpolymer mit zwei Linkvariablen in der fun-
damentalen und ihrer komplex-konjugierten Darstellung besetzt ist, kann nur
die adjungierte Darstellung 8 als zusétzliche Plakette eingesetzt werden, ohne
dass sich die Orientierungen der beteiligten Plakettvariablen unterscheiden
miissen. Dies fithrt dazu, dass das Grundpolymer, das aufgrund der periodi-
schen Randbedingungen in sich selbst, also toroidal, geschlossen ist, nur mit
einer geraden Anzahl von zusétzlichen 3- oder 6*-Plaketten versehen werden
kann. Andernfalls wiirden an einem Link Integrale iiber entweder 3 ® 3 oder
3*® 3" vorliegen, welche geméB (3.12) verschwinden und somit den gesamten
Beitrag eines Graphen zu Null setzen. Eine vollkommen analoge Uberlegung
gilt dann auch fiir das Grundpolymer in der komplex-konjugierten Funda-
mentaldarstellung.

In der Klasse der verbotenen Graphen ist das nicht der Fall, da diese nicht
durch die verinderten Randbedingungen in sich selbst geschlossen werden.
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Hier ist es also unerheblich wie oft zusatzliche 3- oder 6-Plaketten hinzu-
gefiigt werden.

5.1.2 Aufsummation von Graphenklassen
Neue Graphen

Unter Beriicksichtigung der Vorbemerkungen gelingt also die geschlossene
Aufsummation der Beitrige des Grundpolymers und seiner gruppentheoreti-
schen Dekorationen

T 150 % f o o W T

m=0 =0

3
o

1 m-+l
o (3a+c0m)
_ %[(1+3u+v+w)Nt—|—(1—3u—v—|—w)Nt} (5.2)
_ % [aNt . bNt} ’ (5.3)

mit zwei zur Abkiirzung definierten Termen a und b. Der Index 1 soll dabei
andeuten, dass es sich um die fiihrenden Terme der freien Energie handelt.
Der Faktor 1/2[1 + (—1)™"] sorgt dafiir, dass nur Polymere mit einer gera-
den Anzahl von 3- und 6-Plaketten beitragen. Der Beitrag ¢; gilt nur fiir
ein einzelnes Polymer mit inneren Plaketten und muss noch mit 6/N; multi-
pliziert werden, um den gesamten Beitrag ® zur freien Energie zu erhalten.
Der Faktor 6 = 2 - 3 ergibt sich aus zwei Fundamentaldarstellungen und
drei verschiedenen Moglichkeiten fiir die Querschnittsplakette des Grundpo-
lymers. Die Division durch N; sorgt fiir eine korrekte Zahlung der Anzahl der
Graphen, die geméf Gl. (5.3) beitragen, da das Grundpolymer durch Transla-
tionen in zeitlicher Richtung wieder in sich selbst iibergeht. Insgesamt ergibt
sich demnach
3

of =+ [(1+3u+v+w)™ + (1= 3u—v+w)™] (54)
t

Verbotene Graphen

Rechnerisch analog geschieht die Aufsummation des Grundpolymers mit Sei-
tenplaketten und inneren gruppentheoretischen Dekorationen, als Prototyp
der verbotenen Graphen, siehe Abb. 5.3. Da diese Polymerklasse keine Rand-
bedingungen bzgl. der endlichen N;-Ausdehnung erfiillen muss, kénnen wie
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Abbildung 5.3: Der erste verbotene Graph.

Abbildung 5.4: Beispiel fiir einen Cluster aus mehreren Polymeren bei N; = 5

bereits erwdhnt auch ungerade Anzahlen von inneren 3- und 6*-Plaketten
auftreten. Innerhalb dieses Polymers ist Platz fiir maximal N, — 1 Plaketten,
und ein Faktor d2 muss hinzugenommen werden, der in der Berechnung der
entsprechenden Integrale gemaf Gl. (3.17) erscheint:

¢y =9(1+3u+v+w)Nt=94M1 (5.5)

Auch dies ist der Beitrag eines einzelnen Polymers mit Dekorationen und
muss noch mit der Anzahl der entsprechenden Polymere - hier: N = 6 -
multipliziert werden, um das Endergebnis zu erhalten. Erneut ergibt sich der
Faktor aus den beiden fundamentalen Darstellungen und den drei moglichen
Querschnittsplaketten. Allerdings muss in diesem Fall nicht durch N, geteilt
werden, da die Anzahl dieser Graphen in der T' = 0-Theorie gezéhlt werden
muss. Der gesamte Beitrag lautet damit

®; =54 (1 +3u+v+w)™ (5.6)

Graphen mit verindertem Beitrag

Als dritte Gruppe sind die Graphen mit verdndertem Beitrag zu beriicksich-
tigen. Hierzu zdhlen diejenigen Graphen, die aus mehreren aufeinanderfol-
genden Polymeren bestehen, siehe Abb. (5.4). Auch diese kénnen innere De-
korationen aufweisen. Allerdings ist die Summation in diesem Fall nicht ganz
so einfach wie zuvor. Da diese Cluster aus mehreren Polymeren bestehen, ist
ihr kombinatorischer Faktor a(C) in den Rechnungen zu berticksichtigen.

In der 7" = 0-Theorie ergibt sich der Faktor bei ¢ Polymeren, die wie eine
aufgeschnittene Kette aneinandergereiht sind, zu a(C) = (—1)". Zusitzlich
erhilt man aus der Ausintegration einen Faktor (9u?)” und aus der Anzahl der
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verschiedenen Darstellungen der Polymere einen Faktor 2¢. Da die Polymere
mit dem Faktor a(C) so nicht mehr beitragen, wird ihr Beitrag zur Gruppe
mit den verbotenen Beitréige gezihlt. Es ergibt sich analog zu Gl. (5.5) fiir
ein einzelnes Polymer mit inneren Zusétzen

¢ = 9(1+3u+v+w—18u*)N?
= 9(a— 18!
= 91 (5.7)

Damit lautet der gesamte Beitrag der verbotenen Graphen dieser Klasse von
Polymeren und Clustern, also inklusive derjenigen, die in (5.6) aufsummiert
wurden

d7(u) = bdulNMNt

= 54(1+3u+v+w—18u*)N 1 (5.8)

Wie bereits erwéhnt, verdndert sich durch die Randbedingungen der kom-
binatorische Faktor, da bei Clustern der Lange N; das Anfangs- und das
Endpolymer nun miteinander verbunden sind, die Kette also aufgrund der
verdnderten Struktur des Gitters geschlossen ist. Es ist dann

a(C) = i(—1)" (5.9)

wobei i wieder die Anzahl der Beriihrungsstellen zwischen den einzelnen Po-
lymeren angibt, bzw die Anzahl der Polymere selbst.
Der auf diese Weise verénderte Beitrag wird zu den neuen Graphen hin-

zugerechnet. Insgesamt ergibt sich dann bis auf den Faktor N%
ot = %i (V)= sy -
= % [a™ —(a+y)™ +yN(a+y)M] =
= % [aNt — Mt yNtcNt’l]
mit der Abkiirzung
y = —18u% (5.10)

Die Division durch 2 beriicksichtigt, dass im Term N% bereits ein Faktor 2
aufgrund der beiden Orientierungsmoglichkeiten des Grundpolymers hinzu-
multipliziert wurde.
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Der Beitrag dieser Klasse von Graphen lautet somit, inklusive derjenigen
aus (5.4)

6 1 1
O (u) = ﬁuNt 5 (aNt + bN*) + EyNtcNt_l +aMt — M (5.11)
t

Die Differenz der Beitrage und damit die gesuchte freie Energiedichte in
den niedrigsten Ordnungen ergibt sich zu

A®y(Nyju) = @ (u) — Py (u)

3
= —u™[(14+3u+v+w—18")" + (1 — 3u— v+ w)™]

N,
_ %um (e 4 b (5.12)
(5.13)
Af(Niu) = —AP(Nyu)(1+O(ut))
- —%U‘Wt (™ + %) (1+ O(ut)) (5.14)

und ist ein erstes Zwischenergebnis meiner Arbeit.

5.1.3 Weitere Korrekturen

Aufbauend auf dem letzten Kapitel miissen nun die Graphen mit geometri-
schen Dekorationen untersucht werden. Bei der Berechnung der entsprechen-
den Integrale und der Anzahl der auftretenden Polymere und Cluster gibt es
einige Schwierigkeiten. Diese Schwierigkeiten treten auf, wenn mehr als zwei
Plaketten an einem Link zusammentreffen, ohne dass zwei dieser Plaketten
mit Variablen in der fundamentalen Darstellung besetzt sind. An dieser Stelle
mochte ich nur die Ergebnisse angeben, deren Erlauterung, auch im Hinblick
der genauen Abzihlung der einzelnen Cluster- und Polymertypen, in den
Anhang verschoben wird.

Erste Korrektur

Die erste Korrektur zu den aufsummierten Graphen des Grundpolymers
stammt von Clustern mit einer geometrischen Form wie in Abb. (5.5) darge-
stellt. Die Anzahl dieser Art von Polymeren ist

N=2.3-(241)-4=T72 (5.15)

und somit 12/N;-mal hoher als die des einfachen Grundpolymers. Dieser Fak-
tor kommt dadurch zustande, dass die Dekoration an den vier Seiten des Ku-
bus angebracht sein und in insgesamt drei Richtungen zeigen kann. Zusétzlich
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Abbildung 5.5: Grundpolymere mit Kuben als Dekorationen.

dazu kann der Kubus innerhalb einer Seite an insgesamt N; Plaketten an-
gebracht werden. Da diese geometrische Dekoration fiir alle Graphentypen,
also die neuen und verbotenen Graphen und die Graphen mit verédndertem
Beitrag, hinzugefiigt werden kann, ergibt sich hieraus die Korrektur des Zwi-
schenergebnisses (5.14) zu

Ady(u) = AP (u)- (1+12N,u?)

— %u4Nt (™ + ™) (1412 N, u?) (5.16)
t

mit dem gemeinsamen Korrekturfaktor (1 + 12 Ny u?).

Ho6here Korrekturen

Im Anhang sind Graphen und Beitrdge von Korrekturen der Ordnungen
(O(u®)-O(u")) zusammengestellt, die nicht durch die Aufsummationen des
vorigen Abschnitts erfasst sind. Wahrend (5.16) fiir alle Ny > 2 gilt, muss
man bei den héheren Korrekturen zwischen N; = 2 und N; > 3, in den hier
betrachteten Ordnungen, unterscheiden.

Fiir N; > 3 gilt fiir die korrigierten Beitrige der neuen Graphen ®3und
der verbotenen Graphen ®;

27 1
o = (216u+72 (v+w) — 1068 u? + 008 whu? + ﬁzﬂu*?
+ 216 Nywu + 8Ly +1 viut 4216 (N, — 1) u® ) u*Nett
! 2048 8 !
(5.17)
d; = (2704 2754 Ny u) u*Neto, (5.18)

Insgesamt ergibt sich demnach fiir die Differenz der freien Energiedichte
bei endlichen Temperaturen fiir N; > 3 bis einschlieflich der Ordnung O(u")
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N, bo by bs by bs be by
2 =3 —=27| 135 —298,3 87,75 —1540 7938
3 -2 =54 | 216 —315 634, 5 —6159 | 2,226 - 10*
4 —-1,5| =81 | 297 —497,3 2396 | —1,558 - 101 | 4,727 - 10*
5 —-1,2 | —108 | 378 —922,5 6102 | —3,148-10* | 8,954 - 10*
6 —1 | —135| 439 —1712 | 1,248 - 10* | —5,623-10* | 1,666 - 10°
8 —0,75 | =189 | 621 —4871 | 3,617 - 10 | —1,498 - 10° | 5,889 - 10°
10 —0,6 | —243 | 783 | —1,095-10* | 7,931 -10* | —3,575- 105 | 1,922 - 10°
12 —0,5 | =297 | 945 | —2,091-10* | 1,477 -10° | —7,988-10° | 5,369 - 10°
16 | —0,375 | —405 | 1269 | —5,639 - 10* | 3,837 - 10° | —3,292-10° | 2,765 - 107

Tabelle 5.1: Koeffizienten der Starkkopplungsentwicklung der freien Energie-
dichte im Parameter u bei verschiedenen N,

das Ergebnis

Af(u) = —AdP(u) = —Ady(u) — O3 + O3
— —% (cNt + bNt) (14 12 N, u*)u*™
t

—  (216u — 366u” + (3888 — 2106 N )u®) M +*  (5.19)
Fir N; = 2 muss dieser Ausdruck mit
—Of = —44u™NH 4 36 4N (5.20)

fiir die bei dieser zeitlichen Ausdehnung zusétzlichen Polymere addiert wer-
den. Der Beitrag des geméafl des Anhangs bei N; = 2 nicht mehr beitragenden
Graphen 6.2 wurde hier beriicksichtigt.

Insgesamt erhélt man also fiir einige ausgewéhlte, niedrige IV, die folgende
Tabelle mit den Koeffizienten der freien Energiedichte in einer Entwicklung

nach u
7

Af(u)=>" byu", (5.21)

n=0

wobei der Koeffizient by fiir alle V; gleich Null ist.

46




5.2 Freie Energie der SU(2)

Die entsprechenden Uberlegungen zur geschlossenen Aufsummation koénnen
fiir die SU(2) benutzt werden. Hier ist die Situation fiir die fithrenden Terme,
also dem Grundpolymer mit gruppentheoretischen Dakorationen, einfacher
als im Falle der SU(3). Dies liegt an der einfacheren Struktur der irreduziblen
Darstellungen der SU(2). Als zusétzliche Plakettdarstellung kommt nur die
j = 1-Darstellung in Frage. Da die Berechnung, auch fiir die Graphen mit
verdandertem Beitrag, ansonsten vollig analog ist, kann ich das Ergebnis nach
kurzer Rechnung angeben zu

Ny

= 1202 (1430 — 40" + = (14 30 — 4u?)™ (5.22)

3
Ny

o = 12u22< t_l) v ZNtiz(Nt_]l_Z)(%)

J=
= 120 (1430 — 4u?)™ (5.23)

AD = % (1+ 30— 4u?)™". (5.24)

t

Die fithrenden Terme der freien Energiedichte der SU(2) Gittereichtheorie
ergeben sich damit zu

Af(u)=——(1+3v— 4u2)Nt : (5.25)

5.3 Screening-Massen

Betrachtet man die Korrelation in z-Richtung bei endlichen Temperaturen,
so sind, bei gegebenen z und N, die kleinsten zur Differenz der Masse bei-
tragenden Graphen Kreuze aus Plakettrohren mit Ausdehnungen z und N;.
Entsprechende Graphen sind in Abb. (5.6) dargestellt.

GeméB den Gln. (3.43) und (3.45) ergibt sich ihr Beitrag unter Beriick-
sichtigung der Summation iiber alle & zu

AD = 2Ny dj u(Br)u(B)u N 70(2 — oy 2) (5.26)
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Abbildung 5.6: Zur fithrenden Ordnung der Differenz der Screening-Massen
beitragende Polymere bei parallelen Korrelationsplaketten.

und die Differenz der Korrelationen lautet damit

du
dp

Damit gilt fiir die Massendnderung bei endlichen Temperaturen in der nied-
rigsten Ordnung

2
AC(T;z) = N? ( ) 2Ny dju N0 (2 = by ). (5.27)

AM(T) = —§Ntu4Nt6. (5.28)

Der Faktor 2/3 ergibt sich aus der Division durch 3 in Gl. (3.41) und der Tat-
sache, dass nur die Korrelationen zwischen parallelen Plaketten mit zeitlicher
Ausdehnung in dieser Ordnung beitragen. Das sind in diesem Fall - bei Korre-
lation in z-Richtung - die (x,t) und die (y, t)-Plaketten. Die (x, y)-Plaketten
bilden zur N;-Plakettrohre einen rechten Winkel, so dass zusétzliche Plaket-
ten erforderlich sind, um das Polymer zu schliefen. Die fiihrende Ordnung
der Differenz der Screening-Massen ist also unabhéngig von der zugrundelie-
genden Eichgruppe.
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Kapitel 6

Diskussion

6.1 Freie Energiedichte

6.1.1 Auswertung
Summierte Beitrige

Das Ergebnis Gl. (5.14) ist auch ohne die weiteren Korrekturen beachtens-
wert. Fiir ein freies Bosonengas gilt [2] im Kontinuum die Gleichung

nZ=V / (;i;;gm@ ) (6.1)

Mit der Dispersionsrelation

w(p) = Vp* +m?, (6.2)

gilt fiir die freie Energiedichte im klassischen, nichtrelativistischen Limes, der

durch T' <« w und
P

w(p) ~m+ 3 (6.3)
definiert ist ,
1 [ m\? _,
Afk’ont(T) = _B_T (ﬂ_ﬁT> e /BT, (64)

wobei die {ibliche Schreibweise der freien Energiedichte der Notation in dieser
Arbeit angepasst wurde.

Fiir die auf dem Gitter in einer SCE berechnete freie Energiedichte gilt
nach (5.14)

3
A fiat(Ng;u) = N u™ (14 3u+ v+ w— 18u*)M + (1 — 3u — v + w)™]
(6.5)
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Beachtet man nun noch die Aquivalenz

1
Na= = pr, (6.6)

so erkennt man, dass Gl (6.5) bis auf einen Vorfaktor Gl. (6.4) mit den
niedrigsten Glueball-Massen reproduziert. Diese sind in den fithrenden Ord-
nungen gegeben durch

m(A;) = —4Inu—In(1+3u+v+w—18u% (6.7)
m(E) = —4Inu—In(l+3u+v+w—18u?)
m(Ty) = —4lnu—In(l—-3u—v+w),

wobei Ay, E und T} irreduzible Darstellungen der kubischen Gruppe O sind.
Wie in [1] beschrieben wird, handelt es sich bei diesen Darstellungen um
die Gitteranaloga zu Spin-J-Teilchen im Kontinuum. Die Darstellung A; ist
eindimensional und entspricht einem J = 0-Glueball, E ist eine zweidimen-
sionale Darstellung und héngt mit J = 2 zusammen und 77 ist dreidimen-
sional und korrespondiert mit einem J = 1-Glueball. Die entsprechenden
Linearkominationen der Plakettoperatoren sind bis auf Normierung

AiH_ : Re (TI‘ U12 + Tr U23 + Tr U31) (610)
E++ . Re (TI"Ulg —TrU23),Re (TI'U13+TI'U23—2TI'U12)(6.11)
T : Im (Tr Upe), Im (Tr Uss), Im (Tr Usy). (6.12)

Die oberen Indizes der Darstellungen stehen fiir die Paritédt und die Ladungs-
paritat. Letztere ist dquivalent zur Komplexkonjugation von Wilson-Loops,
also von rechteckigen Schleifen aus Links. Da die SU(2) keine komplex-
konjugierten Darstellungen besitzt, tritt der letztgenannte Glueball in dieser
Eichgruppe nicht auf, da er negative Ladungsparitét besitzt.

Weitere Darstellungen kénnen aus den einfachen Plakettoperatoren nicht
erstellt werden. Wie in [1] weiterhin erldutert wird, entsprechen die Dar-
stellungen zusétzlich auch Kontinuumsdarstellungen mit héheren Spins. Da
allerdings angenommen wird, dass die niedrigsten Massen zu den niedrigsten
Spins gehoren, sollten die genannten Darstellungen die fithrenden Terme der
freien Energiedichte dominieren.

Gewichtet man die Massen der einzelnen Glueballs nun mit ihrer Dimen-
sionalitét, so ergibt sich aus (6.5)

1

Aflat(Nt; u) = _F [e*m(Al)Nt + 9e~MU(E)Nt + Befm(TﬁNt} , (613)
t

womit die obige Behauptung gezeigt ist.
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Zu dieser Interpretation passt auch das entsprechende SU(2)-Ergebnis
3 2\ Nt 4N,
Af(Nt;u):—F (1+3v—4u®)"" - ut. (6.14)
t

Da es wie erwdhnt in der SU(2) keine komplex-konjugierten Darstellungen
gibt, tragen nur die A;- und E-Glueballs bei. Fiir diese gilt

m(A;) = —41Inu—In(1+3v—4u?) (6.15)
m(E) = —4Inu—In(1+3v—4u?) (6.16)
und man erhalt
1
Aflii](Z)(Nt; u) _ _ﬁ (e—m(A1)Nt + 2€—m(E)Nt) ) (617)
t

Der fehlende Vorfaktor in (6.4) kann vermutlich durch eine im Starkkopp-
lungsbereich modifizierte Dispersionsrelation erklért werden. Trotzdem ist es
beachtlich, dass die SCE der freien Energiedichte das 7" — 0-Ergebnis der
entsprechenden Kontinuums-Rechnung wiedergibt. Dadurch erscheint es also
plausibel, dass die angewandte Methode, analytische Resultate bei endlichen
Temperaturen durch Starkkopplungsentwicklungen zu erhalten, durchaus ge-
rechtfertigt ist.

Potenzreihen

Eines der urspriinglichen Ziele dieser Arbeit war es, mithilfe einer Reihen-
entwicklung der freien Energie bei endlichen Temperaturen, Informationen
iitber den Deconfinement-Phaseniibergang der reinen Eichtheorie zu erhal-
ten. Dieses Ziel kann man als noch nicht erreicht ansehen, wie eine Analyse
der Tabelle (5.1) zeigt, in der die Koeffizienten der niedrigsten Ordnungen der
freien Energiedichte der SU(3) fiir verschiedene NV, angegeben sind. Allgemein
entspricht ein Phaseniibergang zweiter Ordnung einer Singularitét auf der re-
ellen Parameterachse, hier der 5- oder u-Achse. Das asymptotische Verhéltnis

by,
Jm

=0 (6.18)

der Koeffizienten b, der Reihe sollte unter gewissen Voraussetzungen einen
Wert fiir den kritischen Parameter (3, liefern. Eine Voraussetzung wére dabei,
dass die gesuchte reelle Singularitét auch wirklich die am Entwicklungspunkt
B = 0 nichstgelegene Singularitét ist. Nimmt man diese Vorausetzung nun
als gegeben an, dann sollten die Verhéltnisse der berechneten Koeffizienten
einen Schéatzwert fiir die Lage des Phaseniibergangs liefern.
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Abbildung 6.1: Ergebnisse von Monte-Carlo-Simulationen des Drucks in der
reinen SU(3)-Eichtheorie. Drei verschiedene zeitliche Gitterausdehnungen
N; = 4,6 und 8 sind betrachtet worden. Unterhalb der kritischen Tempera-
tur ist der Druck, der der negativen freien Energiedichte entspricht praktisch
verschwindend. Die Abbildung ist der Referenz [8] entnommen.
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Wie in der Tabelle erkennbar, sind aber die Verhéltnisse der Koeffizienten
nicht von einheitlichem Vorzeichen. Dies ist aber notwendig, um aus dem
Verhéltnistest (6.18) eine reelle Singularitdt zu bestimmen. Es ist demnach
wahrscheinlich, dass die berechneten Reihen noch viel zu kurz sind, als dass
man aus den Koeffizienten die Lage der Singularitiat ablesen kénnte.

Wie man aus der Abbildung 6.1 entnehmen kann, ist der Druck, der
der negativen Energiedichte entspricht, unterhalb der kritischen Temperatur
praktisch nicht vorhanden. Dieses Verhalten l&dsst sich allerdings mit den
hier erzielten Ergebnissen verstehen. Die fithrende Ordnung in der freien
Energiedichte ist von der Ordnung O(u*™*), und da u typischerweise kleiner
als 1 ist, ist der gesamte Ausdruck fast Null.

6.1.2 Ausblick

Um die Lage des Phaseniibergangs zu bestimmen gibt es noch mehrere Még-
lichkeiten der Verbesserung, die im Rahmen dieser Arbeit allerdings nicht
oder nur teilweise beriicksichtigt werden konnten. Die einfachste Methode
wére es sicherlich, weitere Koeffizienten der Reihenentwicklung zu bestim-
men. Der Rechenaufwand steigt allerdings mit jeder weiteren Ordnung sehr
stark an, einerseits durch immer vielfiltigere geometrische Formen der Po-
lymere und andererseits durch die Einbeziehung hoherdimensionalerer Dar-
stellungen der Eichgruppen. Dadurch wird diese Moglichkeit in hohem Mafe
begrenzt. Die Nutzung von rechnergestiitzten Methoden kénnte hier zu einem
gewissen Grade helfen.

Eine weitere Moglichkeit besteht in der Verbesserung der Analysemetho-
den. Der oben angefiithrte Verhéltnistest ist zwar recht einfach, allerdings
auch ebenso abhéngig von langen Reihen oder schneller Konvergenz der
Verhéltnisse. Da die Koeffizienten der Entwicklung unabhéngig von der Re-
chenmethode sind, kann man versuchen aus ihnen weitere Informationen tiber
die gesuchte Funktion selbst herauszuholen. Sei diese Funktion nun allgemein
mit f(z) bezeichnet. Ein geeignetes Mittel konnen Padé- Approximanten sein.
Diese kurz Padés genannten rationalen Funktionen sind als Verhéltnisse zwei-
er Polynome Pp(z) und Qs (z) definiert. Die Grade L und M der Polynome
werden so gewéhlt, dass L+ M = n gilt, wobei 2™ eine bekannte Ordnung der
Taylorentwicklung der gesuchten Funktion ist. Die Polynome kénnen dann
durch die Forderung, dass die Padé-Approximante [L, M|

PL(Q:) o - a xn $n+1
QM(w)_Z W+ Oz ) (6.19)

i=1
mit der Taylorentwicklung in den bekannten niedrigsten Ordnungen iiber-
einstimmen soll, eindeutig bestimmt werden. Diese Verfahren werden in [12]

L, M ()

33



nédher erlautert.

Die Padés haben zwei offensichtliche Vorteile gegeniiber den Taylorent-
wicklungen. Zunéchst kénnen sie als rationale Funktionen im Limes x — oo
endliche Werte annehmen, wéhrend das Verhalten der trunkierten Taylorent-
wicklungen in diesem Limes durch das Vorzeichen der héchsten berechneten
Ordnung bestimmt wird, und entweder gegen +o0o oder —oo geht. Dies ist
natiirlich im Allgemeinen eher unphysikalisch. Auch der zweite Vorteil liegt
an ihrer Natur als rationale Funktion, denn sie kénnen durch Nullstellen
des Nenners auf natiirliche Weise Singularititen besitzen. Trunkierte Taylor-
entwicklungen konnen dagegen, da sie als Polynome analytische Funktionen
sind, keine Singularitdten aufweisen. Als Nachteil kann es sich allerdings zei-
gen, dass die Padés durchaus zusétzliche Singularititen aufweisen. Betrachtet
man nur eine einzelne Padé-Approximante, so ldsst sich nicht entscheiden,
welches die gesuchte und welches eine eventuelle iiberfliissige Singularitét
ist. Bei diesem Problem hilft die Freiheit, den Grad n der Taylorentwicklung
und das Paar (L, M) mit L + M = n zu variieren. Dadurch ist es moglich
eine ganze sogenannte Padé-Tafel zu erstellen, angefangen mit der trivialen
Padé-Approximante [0,0] tiber [1,0] und [0, 1] bis zu den héchsten mit der
berechneten Taylorentwicklung moglichen Approximante. Durch Analyse der
Singularitdten aller Padés in der Tafel sollten sich die iiberfliissigen von den
gesuchten Singularitdten trennen lassen. Die gesuchten Singularitédten werden
idealerweise fiir die meisten Padés in einem bestimmten engen Parameterbe-
reich liegen, wahrend die iiberfliissigen zuféllig verteilt sind. Zusammen mit
hoheren Ordnungen der Taylorentwicklung sollte dieses Verfahren bessere
Resultate zum Auffinden des Phaseniibergangs liefern.

6.2 Screening-Massen

Wie aus dem Ergebnis

2
AM(T) = —gNtu4Nt_6. (6.20)
ersichtlich, ist die Anderung der Screening-Masse unterhalb der kritischen
Temperatur 7, sehr klein. Im Falle der SU(3) liegt der kritische Wert des
Parameters ( fiir N; < 20 typischerweise im Bereich (. ~ 6. Geméaf$ der Gl.
(A.20) aus dem Anhang entspricht dies einem Wert fiir  von

(B ~ 6) ~ % (6.21)

Mit demselben Argument, dass die freie Energiedichte unterhalb der kriti-
schen Temperatur praktisch verschwindet, lésst sich demnach die geringe
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Differenz der Screening-Massen unterhalb von 7, vom 7" = 0-Fall verstehen.
Dieses Ergebnis wird auch durch numerische Resultate gestiitzt, siche [3] und
Referenzen in dem Artikel. Da die Starkkopplungsentwicklungen durch den
Phaseniibergang in ihrer Konvergenz beschréankt sind, ist es nicht moéglich die
durch numerische Resultate bei T' > T, gefundene Temperaturabhéngigkeit
der Screening-Massen mit den hier vorgestellten Methoden zu bestétigen.
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Anhang A

Entwicklungsparameter der
irreduziblen Darstellungen

Die Darstellung der Entwicklungsparameter folgt im wesentlichen der Notati-
on aus [1]. Im Falle der SU(3) sind die Formeln fiir die Entwicklungsparameter
[9] entnommen. Entsprechend der Gl. (3.1) sind die Entwicklungsparameter
¢, der irreduziblen Darstellungen der SU(N) definiert durch die Charakter-
entwicklung des Plakett-Boltzmannfaktors mit Wilson-Wirkung

exp [-S,(U)] = exp {— (TrU +TrUT — 2N)

wobei r die irreduziblen Darstellungen nummeriert. Geméfl den allgemeinen
Formeln fiir die Charakterentwicklung einer Klassenfunktion f(U)

U = > foxa(U) (A.2)

J = / dU x» (U) (A.3)

gilt somit fiir die Entwicklungsparameter

e (B) = _di,, /dUXr exp {% (Xf(U) + Xf(UT) — 2N) ) (A.4)

Al SU(2)

Im Fall der SU(2) ldsst sich das Integral in (A.4) berechnen und auf die
modifizierten Besselfunktionen zuriickfithren. Mit den speziell fiir die SU(2)
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geltenden Gleichungen

1 /. P
aU = 4—7r2dcde(n) (sm 5) (A.5)
sin(j + 1)
x;(U) = — 2+, (A.6)
sin 5

wobei der Winkel ¢ und der Einheitsvektor 7 die Elemente der Gruppe geméfl
U= (Cos g) 141 (sin g) n-T (A.7)

parametrisieren, erhélt man fiir die Entwicklungsparameter der SU(2):

2
Cj = BIQjJrl(ﬁ)e_ﬁ- (A.8)
Der Faktor dQ)(7) ist das Einheitsma$ auf der S?-Sphére und 7 ist der Vektor
aus den drei Pauli-Matrizen. Aus den ¢; folgt mit

() = 13 (A9)
fiir die Parameter a;
a;(8) = Izjj(lﬁ()ﬁ) (A.10)

A2 SU(3)

Im Gegensatz zu den Entwicklungsparametern in der SU(2), die als Verhélt-
nisse von modifizierten Besselfunktionen I, mit der inversen Kopplung 3 als
Argument, berechnet werden, lassen sich in der SU(3) diese Parameter a,.(/3)
nicht in so einfacher Form angeben. Die Berechnung der in dieser Arbeit
benutzten Parameter der Darstellungen 1,3,6 und 8 mochte ich an dieser
Stelle vorstellen. Dabei werden die Irreduziblen Darstellung statt durch ihre
Dimensionen durch zwei ganze Zahlen (p, q) definiert:

® o w =
I
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Die Zahlen p und ¢ durchlaufen alle natiirlichen Zahlen und charakterisieren
die Irreduziblen Darstellungen der SU(3) und ihre Dimensionen geméf}

dm@=(1+M(L+®<1+ggg>. (A.11)

Die Parameter der komplex-konjugierten Darstellungen stimmen mit denen
der nicht-konjugierten iiberein und brauchen nicht gesondert betrachtet zu
werden. Wird aus diesen beiden Zahlen p und ¢ ein Tripel

{A}={p+a.40}

gebildet, so ldsst sich der Ausdruck, mit dem die Entwicklungsparameter
berechnet werden, angeben als

o0

Z det])%—i-i-j—i—n (g) (A12)

1
d(p.g)

C(p,q) (B) =

n=—oo

wobei 7 die Zeile und j die Spalte der Matrix aus modifizierten Besselfunk-
tionen Iy (x) angeben [9]. Aus c(, 4 kann a,, mithilfe der folgenden Relation
berechnet werden

C(p.a) (B)

A(p,q) (ﬁ) - C(0,0) (ﬁ>

Da der fithrende Term der modifizierten Besselfunktion I;(z) von der Ord-
nung z* ist, ist es mit (A.12) mdoglich ¢(,, und damit a(,, zu berechnen.
Denn bei gegebener Ordnung reicht es aus, in der Summation nur die nied-
rigsten Summanden mitzunehmen. Man erhélt bis einschliellich der Ordnung
O(B") fiir den Parameter der trivialen Darstellung

(A.13)

oo ]n ]n—l—l ]n+2

a@B) = Y det(liy I I

n=—o00 [n—2 ]n—l In

= Z (I3 4+ Lol + 12 Lo — 20, 1 L dyyy — Lol 1yo)
1 1 1 13 11
= 142+ Bttt S T (A.14)

3 2 4 72 120

mit der zur Abkiirzung des Ausdrucks definierten Grofle t = %. Vollkommen
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analog berechnen sich die Parameter der hoherdimensionalen Darstellungen

1 o0 In+1 [n+2 [n+3
C?)(ﬁ) = g Z det Infl [n [nJrl

n=-—00 In—2 In—l [n

1, 1 5 13 77 139
= t+ -+ + P+ 0+

19 A
g ettt t Rt gt taget T (A19)

1 i In+2 In+3 ]n+4
eo(B) = ¢ D det Ly I I
n=-—00 In—2 [n—l [n

1 1 7 7 1 149
= '+ 0+ -t + P+ =t +

—t"+... (Al
R TR TR e Tt Tzt (4.16)

1 o0 In+2 [n+3 In+4
cs(B) = 3 det | I, Iny1 Ingo
n=-—00 In—2 In—l In
1 1 1 1 1
S T N SR L S (A.17)

8 12 8 12 480 30

und aus diesen, zusammen mit Gl. (A.13) die Abhéngigkeit der Entwick-
lungsparameter v = dgag der 6- und w = dgag der 8-Darstellung vom Ent-
wicklungsparameter u = ag(3) der fundamentalen Darstellung

9.2 20 4 891 5 1215 ¢ 18711 ,

= —u"— — — . A.18
TR TR TR T T (A.18)
81 81 1862 2187
w = 9u® — 9’ + ZUA‘ - ?ug’ + 50 u® — 10 u' 4+ ... (A.19)
Die -Abhéngigkeit von u((3) lautet
1 1 D 1 7 159
u=t+ -t — —tt+ P4 10+ t 4 (A.20)

376 72 24" 720 2160

wobei wiederum statt § der Parameter ¢t benutzt wurde.

Hohere Ordnungen in den Entwicklungsparametern lassen sich mithilfe
von Rekursionsrelationen berechnen, vgl. [10]. Damit kénnen die Parameter
im Prinzip in beliebig hohen Ordnungen angegeben werden.
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Anhang B

Berechnung spezieller Integrale

Bei der Berechnung des Beitrags gewisser Graphen treten Integrale auf, die
nicht so einfach wie die im Haupttext beschriebenen zu losen sind. Die ex-
plizite Berechnung soll an dieser Stelle geschehen.

Im folgenden benutzte Gleichungen sind die Integrationsregeln (3.11) und
(3.12) und die fiir alle SU(N) giiltigen Relationen [11]

1
/ AU U;U U Ul = 7 7 OudskOmpOno + dipOmidjodnr) =
1
- m(aﬂ@oémp(snk + 0ip0kOmidno)- (B.1)
und 1
/dU Uiljl . Uinjn = m5i1,_.in5j1...jn (BZ)

Die Integrale sollen fiir einen Beispielgraphen mit wenigen Plaketten be-
rechnet werden, da die Verallgemeinerung auf Graphen mit einer grofleren
Anzahl von Plaketten keinerlei Schwierigkeiten bereitet.

Drei Plakettvariablen an einem Link

Die erste Integration entspricht dem Zusammentreffen von drei Plaketten in
der fundamentalen Darstellung an einem Link. Ein entsprechender Graph ist
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Abbildung B.1: Drei Plakettvariablen an einem Link.

Abbildung B.2: Drei Kuben mit einer gemeinsamen Plakette.

in Abb. (B.1) dargestellt und die Berechnung lautet

11

I = / puut'dy' ] TeU(p:)
=1

= u''d} / dU TrU TeU TrU

1
11 53
= Uu dfﬁgir“iz\r Eirin

= u'ld} (B.3)

wobei im vorletzten Schritt die Integrationsregel (B.2) ausgenutzt wurde.

Die Beitrage der beiden an der mittleren Plakette anschlieBenden Ku-
ben werden durch insgesamt 8 Integrationen geméfl (3.11) ausintegriert, bis
schliellich nur noch ein Integral iiber die vier Links der mittleren Plakette
iibrigbleibt. Der Integrand besteht dann aus drei Plaketten, wobei alle Plaket-
ten dieselbe Orientierung annehmen. Dieses Integral wird dann als Spezialfall
der Regel (B.2) berechnet.

Das Integral zum Graphen aus Abb. (B.2), bei dem drei Kuben an einer

61



Abbildung B.3: Vier Plaketten in der Fundamentaldarstellung wurden gegen
Plaketten in der 8-Darstellung getauscht. Zuséitzlich wurden zwei weitere
Fundamentalplaketten eingefiigt.

gemeinsamen Plakette anschlieflen, lautet

16
I = / DU dffu' T U (1)
i=1

= dju' / U [TrU)? [TeUt]?

i 2N* 2N
! N2—1 N(N2-1)
= 2dju'’. (B.4)

Hier wurde die Integrationsregel (B.1) benutzt.

Graphen mit hoherdimensionalen Plakettvariablen

Ein weiteres nichttriviales Integral ist bei der Ausintegration des Beitrags
des in Abb. (B.3) gezeigten Graphen zu berechnen.Es ergibt sich

16

I = / DU u?dg? agdg [ [ xn (Uy,)

i=1

= dgulzag/dU1dU2X3(U1)X3(U1)XB(U1)X3(U2)X3(U2)X8(U2)
— dhual (B.5)

wobei die dufleren Plaketten in der 3- und die inneren Plaketten in der 8-
Darstellung ausintegriert wurden und ein Integral iiber zwei Plaketten mit
je drei Plakettvariablen in der 3-, 3- und der 8-Darstellung iibrigblieben.
Diese beiden letzten Integrale ergeben jeweils eine Eins in Ubereinstimmung
mit der Integrationsregel (3.12). Die Rechnung fiir ein &hnliches Polymer mit
Plaketten in der 6-Darstellung lduft vollig analog ab.
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Abbildung B.4: Vier Plakettvariablen an einem Link, davon drei in der
fundamentalen Darstellung mit derselben Orientierung und eine in der 8-
Darstellung.

AN

Abbildung B.5: Zwei Polymere deren Beitrag sich unter den neuen Randbe-
dingungen nicht dndert.

Ein weiterer Graph mit Plaketten in hoherdimensionalen Darstellungen
ist in (B.4) abgebildet, und das dazugehérige Integral berechnet sich zu

16
1= [ pvaretu ] v W)
=1
= d;%’ulS'LU/dUldUQdUgX3(U1UQ)X3(UlU3)X8(UlUg)Xg(UQUg)Xg(UQUg)

— d?ulsw/dUldU;ng(UlUg)X3(U1U3)X8(U1U3)
= df’culf’w (B.6)

Weitere Graphen

Zusétzlich dazu gibt es auch einige Graphen bei denen sich der Beitrag nicht
andert, diese also nicht zur freien Energiedichte beitragen, bei denen sich die
Berechnung des Beitrages aber vom 1" = 0-Fall unterscheidet. Diese Graphen
sind in Abb. (B.5) gezeigt. Im 7" = 0-Fall ergeben beide Polymere einen
Beitrag

P — d?u4Nt+6 — 9u4Nt+6 (B.7)

Dass der Beitrag auch im 7" # 0-Fall, wenn sich zwei Links an der linken
und rechten Seite der Polymere beriihren, ebenfalls diesen Wert liefert, ist
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Us

Us Us

Abbildung B.6:

nicht offensichtlich. Eine kurze Rechnung soll dies bestédtigen. Nimmt man
das linke Polymer als Beispiel, so ergibt sich zunéchst fiir den expliziten Fall
Nt — 5

26
I = /DUu%dfﬁ [ U =
i=1
= WM / AU dU,dUsdU, Tr (Uy Uy Us Uy) Te (U UL U UTY (B.8)

wobei die Integration bis auf die beiden in Abb. (B.6) dargestellten Inte-
grationswege durchgefiithrt wurde. Bei T" # 0 werden die Linkvariablen bei
Uy und Uy im Gegensatz zum Fall verschwindender Temperaturen identifi-
ziert. Aus diesem Grund ist es nicht offensichtlich, dass der Beitrag derselbe
bleibt. Rechnet man allerdings weiter, so erhélt man mit der angesprochenen
[dentifizierung unter Beriicksichtigung der Orienierungen der Linkvariablen

I = u®d / AU dU,dUs Tr (U, Uy Us UY) Tr (U, UL UL UY) =

= u®d; / dU,dUs Tr (Up Us US Up UL U =

= u26 df Tr (1) =
u® 2 (B.9)

Es ist demnach zuléssig, diese und dhnliche Graphenklassen bei der Berech-
nung der freien Energiedichte nicht zu beriicksichtigen.
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Anhang C

Auflistung verschiedener
Klassen von Graphen

Alle temperaturabhéngigen Graphen haben gemeinsam, dass sie eine Aus-
dehnung in Zeitrichtung gréfler oder gleich N, besitzen. Zwei Beispiele sind
in Abb. (C.1) fiir N; = 5 aufgefiihrt. Das linke Diagramm dieser Abbildung
zeigt das Polymer mit der geringsten Anzahl an Plaketten, dass durch das
verdnderte Gitter einen neuen Beitrag zur Freien Energie liefert. In einer
Entwicklung nach Potenzen des Parameters v = a;((3), liefert dieser Graph
einen Beitrag zur Ordnung v*"t. Da es moglich ist, gewisse Klassen von Gra-
phen geschlossen aufzusummieren, méchte ich an dieser Stelle diese Klassen
durch einige Beispiele skizzieren und ihren Beitrag zur Cluster-Entwicklung
der Freien Energie angeben.

Wie bereits erwihnt kann man die temperaturabhéngigen Graphen in drei
Typen aufteilen: Neue Cluster, verbotene Cluster und Cluster mit verdnder-
tem Beitrag. Im Allgemeinen zeichnen sich die neuen Cluster durch eine toro-
idale Struktur aus, d.h. sie sind durch die Randbedingungen in sich selbst ge-
schlossen. Die Cluster mit verbotenem Beitrag sind im Prinzip von derselben
Form wie diejenigen in der T' = 0-Theorie, jedoch ist es bei einigen Graphen
moglich, dass sich ihr Beitrag aufgrund der verkleinerten N;-Ausdehnung des
Gitters verédndert und sie in diesem Fall die Gruppe der Cluster mit verdnder-
tem Beitrag definieren.

Abbildung C.1: Graphen mit Temperturabhédngigkeit bei N; =5
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Abbildung C.2: Koordinatensystem: Die rdaumlichen Achsen sind beliebig, die
Zeit- bzw. Temperatur-Achse ist die horizontale Achse.

Das Koordinatensystem ist bei allen folgenden Abbildungen so gewahlt
(siche Abb. C.2), dass die Horizontale die Zeit- bzw. Temperatur-Achse dar-
stellt, und die drei iibrigen Richtungen beliebige der drei Raumrichtungen
sind. Die jeweiligen Graphen der niedrigsten Ordnungen fiir die zwei Félle
N; = 2 und N; > 3 werden in diesem Kapitel dargestellt. Letztere dabei
jeweils am Beispiel V; = 5. Die auftretenden Formen gelten dann aber ent-
sprechend fiir alle N; > 3. Fiir N; = 2 gibt es einige besondere geometrische
Formen, die bei N; > 3 in den betrachteten Ordnungen nicht auftreten.

Graphen fiir N, > 3

In diesem Kapitel werde ich die einzelnen Graphen auflisten. Alle hier ge-
zeichneten Graphen kénnen mit inneren Plaketten versehen werden, also ge-
schlossen aufsummiert werden. Daher werde ich nur die niedrigsten Polymere
einer Klasse angeben. Mit der Auflistung der Graphen ist die Arbeit noch
nicht getan, es miissen noch ihre Integrale und ihre Anzahl angegeben wer-
den. Dies wird in Tabelle (C.1) préasentiert. Die Berechnung der Integrale
kann mit den im Haupttext oder im vorherigen Kapitel des Anhangs ange-
gebenen Methoden geschehen.
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Polymer Integral | a(C) | Anzahl Beitrag

5.1 dg utNe+s 112:3-(2+1)-4 ot = 216N t?

6.1 a dgag u*Nr 112:3-(241)-4 Ot = 72wyt
6.1Db dgag u*Nr 112-3-(2+1)-4 Ot = 720yt

6.2 WS | 1 2.3.(241) -4 O+ = 72y ANiH6

6.3 a d3 uANeto 1(22.3-(2+41)-4 P = —1296 yNe o
6.3 b ButNets | 122,324+ 1) O+ = —324 tNe+0
6.4 a d3 agutNe=2 1/2-3 ot = 2wt uthe?
6.4 b d2 ag utNe=2 112-3 oF = Loty

6.5 a Byt | 1 (2.3 O~ = 54Ne+o

6.5b BytNers | 112.3.2.2 O~ = 216y Ne+o

6.6 uANe+6 112-3-4-2 Pt = 48 Nt H6

6.7 2d3 y Nt +6 1]2%.3-2 PF = 432 yNet0

7.1 ds dgag utNet? 1{2-3-(24+1)-4-N; | & =216 Ny w u* N5
7.2 a d3 agutNe=1 1/12-3 ot = S wtuthe!
72 b d3 ag utNe=1 1{2-3 Ot = Loty

7.3 a iyt T 112-3-N O~ = 162 N, u*Net7
73D By 1]2.3.2.2.N, O~ = 648 N, utNetT
7.4 QRUNHT | 112.3.2.(N,—1) | & =648 (N, — 1) utNet7
7.5 d3 w7 112:-3-(2+1)-4-N; | & = 944 N, uNe+7

Tabelle C.1: Graphen und ihre Beitrage fiir NV, > 3
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Abbildung C.3: Graph 5.1: Einziges Polymer der Ordnung O(u°) in der Kor-
rektur: Die grau eingefarbten Plaketten sind dem restlichen Polymer entge-
gengesetzt orientiert.

0 0]

Abbildung C.4: Graph 6.1: Polymere der Ordnung O(u®) in der Korrektur,
hier mit jeweils einer zusétzlichen Plakette in der 8- bzw. 6-Darstellung.

AN

Abbildung C.5: Graph 6.2: Polymer mit Doppelkubus als Dekoration.

L/

Abbildung C.6: Graph 6.3: Jeweils ein Cluster aus zwei Polymeren.

Abbildung C.7: Graph 6.4: Vier Plakettvariablen in der Fundamentaldarstel-
lung am Grundpolymer wurden durch héherdimensionale Plaketten ersetzt.
Zusétzlich wurden an den Ubergangsstellen 3-Plaketten eingefiigt.
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Abbildung C.8: Graph 6.5: Polymere dieser Form mit einer zeitlichen Aus-
dehnung grofler oder gleich N; gehéren zu den verbotenen Clustern.

Abbildung C.9: Graph 6.6: Polymer, dessen Dekoration sich in vier Dimen-
sionen ausdehnt.

Abbildung C.10: Graph 6.7: Grundpolymer mit zusétzlichem Kubus.

Q0

Abbildung C.11: Graph 7.1: Polymer aus Graph 5.1, mit zusétzlicher 8-
Plakette. Siehe dazu die Integration in Gl. (B.6).

Abbildung C.12: Graph 7.2: Polymere aus Graph 6.4 mit zusétzlicher Pla-
kette in fundamentaler Darstellung.
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Abbildung C.13: Graph 7.3: Polymere aus Graph 6.5 mit zusétzlicher innerer
Plakette.

y

Abbildung C.14: Graph 7.4: Graph 6.7 mit zusétzlicher Plakette in 3-
Darstellung.

Abbildung C.15: Graph 7.5: Verbotener Graph mit Dekoration und zusétzli-
cher Plakette.
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Zusitzliche Graphen und Beitriage fiir N, = 2

Polymer | Integral | Anzahl | Beitrag

4.1 uthttt 12.3.2 | @F = 124Nt
4.2 uthNett 1 2.3.4 | @F = 24 4Netd
4.3 utNett 1 2.4 Pt = gytVetd
6.8 utNtt6 1 2.3.2 | T = 124Nt t6
6.9 utNet6 1 2.3.4 | T =244 F6

Tabelle C.2: Graphen und ihre Beitrige fiir N, = 2

e

Abbildung C.16: Graph 4.1: Zwei Doppelkuben mit gemeinsamer Seite, nicht
verwinkelt.

Zusitzliche Graphen fiir N, = 2

Bei N; = 2 gibt es aufgrund der geringen zeitlichen Gitterausdehnung bereits
in niedrigen Ordnungen in u Polymere, die nicht nur aus Dekorationen am
Grundpolymer bestehen, sondern ganz eigene geometrische Formen anneh-
men. Diese Polymere, die in den betrachteten Ordnungen nur bei N, = 2
auftreten mochte ich in diesem Unterkapitel angeben. Bis auf den Graphen
6.2 aus Abb. (C.5) tragen alle Polymere aus Tabelle (C.1) auch fiir NV; = 2
bei. Die zusétzlichen Graphen sind in Tabelle (C.2) dargestellt.

NN N

Abbildung C.17: Graph 4.2: Zwei Doppelkuben mit gemeinsamer Seite, ver-
winkelt.
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Abbildung C.18: Graph 4.3

Abbildung C.19: Graph 6.8: Polymer aus Graph 4.1 mit zwei zusétzlichen
Plaketten in fundamentaler Darstellung.

Abbildung C.20: Graph 6.9: Polymer aus Graph 4.2 mit zwei zusétzlichen
Plaketten in fundamentaler Darstellung.
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