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4.1.3 Beiträge von Polymeren mit Plaketten in höherdimen-
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Kapitel 1

Einleitung

Seitdem Maxwell die Elektrizität und den Magnetismus zu einer einheitlichen
Theorie des Elektromagnetismus zusammengefasst hat, ist es das Bestreben
vieler theoretischer Physiker, alle bekannten Kräfte auf einen gemeinsamen
Ursprung zurückzuführen. Prominente Vertreter ähnlicher Strategien waren
im vergangenen Jahrhundert Einstein mit seiner einheitlichen Feldtheorie der
Gravitation und des Elektromagnetismus und Heisenberg mit der Nichtlinea-
ren Spinor-Theorie. Obwohl beide ihre Zielsetzung nicht erreichten, wurden
die Hoffnungen auf eine Vereinheitlichte Theorie durch die Vereinigung der
Quantenelektrodynamik (QED), also der Quantentheorie des Elektromagne-
tismus, und der Schwachen Kernkraft zur Glashow-Salam-Weinberg-Theorie
der Elektroschwachen Wechselwirkung weiter geschürt.

Zur Zeit sind die Allgemeine Relativitätstheorie (ART) und das Standard-
modell der Elementarteilchen die beiden nebeneinander bestehenden Theo-
riekomplexe zur Beschreibung der physikalischen Phänomene unserer Welt.
Die ART trifft Aussagen über die Gravitation und das Standardmodell über
die mikroskopischen Wechselwirkungen im Bereich der Elementarteilchen.
Diese Theorien sind dabei äußerst erfolgreich, sowohl in der qualitativen als
auch in der quantitativen Vorhersage. Während allerdings die ART als klassi-
sche Theorie in gekrümmter Raumzeit formuliert ist, ist das Standardmodell
eine Quantentheorie in der flachen Minkowski-Raumzeit. Bisher ist es nicht
gelungen die ART als Quantentheorie konsistent zu formulieren und es dürfte
wohl noch einige Zeit vergehen, bis dieser Meilenstein bei der Vereinigung al-
ler heutzutage bekannten Grundkräfte erreicht sind. Die supersymmetrischen
Erweiterungen des Standardmodells und als etwas spekulativerer Ansatz die
Stringtheorien sind ein weiterer Schritt in diese Richtung.

In dieser Diplomarbeit soll auf dem bekannten und weithin akzeptierten
Fundament des Standardmodells gearbeitet werden. Die eine Säule dieses
Fundaments bilden die drei bereits erwähnten Kräfte Elektromagnetismus
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und die starke und schwache Wechselwirkung. Diese sind als sogenannte
Eichtheorien formuliert und werden im Standardmodell durch die Gruppe
U(1)⊗ SU(2)⊗ SU(3) beschrieben. Der Begriff Eichtheorie bedeutet, dass
die Kräfte durch sogenannte Eichbosonen vermittelt werden. Die Einführung
der Eichbosonen wird notwendig, wenn Invarianz unter lokalen Eichsymme-
trien gefordert wird. Die Eichgruppe des Standardmodells ist ein direktes
Produkt der Gruppen U(1)⊗ SU(2), die die Elektroschwache Wechselwir-
kung beschreiben und der SU(3), der Eichgruppe der Quantenchromodyna-
mik (QCD). Die Eichtheorien müssen invariant unter lokalen Eichtranforma-
tionen mit Elementen aus diesen Gruppen sein. Der Eichanteil der QCD soll
in dieser Arbeit mit geeigneten Methoden untersucht werden.

Die zweite Säule des Standardmodells bildet der Materiesektor. In dieses
Gebiet gehören die fundamentalen Felder, die gemäß der oben beschriebenen
Kräfte, durch den Austausch von Eichbosonen, wechselwirken. Die Materie-
felder werden in zwei Klassen eingeteilt: Quark- und Leptonfelder. Quarks
wechselwirken, obwohl sie auch an der elektroschwachen Wechselwirkung
teilnehmen, hauptsächlich über die auch als Farbkraft bezeichnete Starken
Wechselwirkung. Im Gegensatz dazu tragen die Leptonen keine Farbladung
und nehmen demensprechend auch nicht an der Starken Wechselwirkung teil.
Die Existenz des zur Massenerzeugung der Felder benötigten Higgs-Bosons
ist noch nicht experimentell verifiziert, allerdings wäre seine Nicht-Existenz
eine größere Überraschung als seine experimentelle Bestätigung.

Wie erwähnt betrachte ich in dieser Arbeit den reinen Eichanteil der
QCD, d.h. die Eichgruppe SU(3). In der üblichen Form lautet die zugehörige
Lagrange-Dichte der reinen SU(3)-Eichtheorie in Minkowski-Raumzeit

L =
1

4
F a

µν F µν
a , (1.1)

mit dem aus den Gluonenfeldern Aa
µ aufgebauten Feldstärketensor F a

µν . Die
Gluonen sind die Eichbosonen der QCD, und damit die Vermittler der Farb-
kraft. Die Lagrange-Dichte wird nach Integration über die vierdimensionale
Raumzeit zur sogenannten Yang-Mills-Wirkung

SY M =

∫
d4xL (1.2)

nach Yang und Mills, die analoge Wirkungen nichtabelscher Eichtheorien als
Erste betrachteten.

Um aus dieser Wirkung physikalische Informationen zu gewinnen bedarf
es geeigneter Näherungsmethoden. Da die Störungstheorie aufgrund der Im-
pulsabhängigkeit der Kopplungskonstanten g der QCD nur bei hohen Im-
pulsüberträgen anwendbar ist, bedarf es zur quantitativen Berechnung von
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Größen im Niederenergie-Sektor, also der gebundenen Zustände wie Hadro-
nen, anderer Verfahren. In nichtabelschen Eichtheorien tragen die Eichbo-
sonen selbst Ladungen und nehmen daher an der durch sie vermittelten
Wechselwirkung teil. Dadurch können Hadronen auch ausschließlich aus Eich-
bosonen bestehen. Die innerhalb dieser Arbeit betrachteten Glueballs sind
gebundene Systeme aus Gluonen, den Eichbosonen der SU(3).

Als geeignetes Näherungsverfahren erweist es sich, die physikalischen Theo-
rien auf einem Raumzeitgitter zu definieren. Dadurch lassen sich die für
Quantenfeldtheorien üblichen Divergenzen regularisieren und es erschließen
sich neue, auch qualitativ andere Näherungsverfahren, die in einer kontinu-
ierlichen Raumzeit nicht direkt anwendbar sind. Dazu gehören die hier be-
handelten Entwicklungen in Potenzen der inversen quadrierten Kopplungs-
konstanten β = 2N

g2 , die ich hier zumeist als SCE (engl. Strong Coupling Ex-

pansions) abkürze. Alle von mir in dieser Arbeit betrachteten physikalischen
Größen werden als Potenzreihen in β dargestellt und untersucht. Aus der
Analyse der Potenzreihen lassen sich Rückschlüsse auf das Auftreten und die
Eigenschaften von Singularitäten in den physikalischen Größen ziehen. Diese
Singularitäten können das Konvergenzverhalten der Potenzreihe beeinflussen
und Phasenübergänge kennzeichnen.

Die wesentlichen physikalischen Größen, für die ich mich in dieser Ar-
beit interessiere, sind die freie Energie der SU(3), die Screening-Massen der
Glueballs und ihre jeweilige Temperaturabhängigkeit. Da hier die führenden
Terme bei verschwindender Temperatur T bereits berechnet wurden, wer-
de ich versuchen, Aussagen über das Verhalten dieser Größen bei endlichen
Temperaturen zu erhalten. Vorher sollen allerdings die T = 0-Ergebnisse
ausführlich dargestellt werden, da die Rechnungen im endlichen Tempera-
turfall auf ihnen aufbauen.

Die SU(3)-Eichtheorie zeigt bei endlichen Temperaturen einen Phasenüber-
gang, d.h. einen Übergang von einer Confinement-Phase, also dem Einschluß
sämtlicher Farbladung tragender Felder in Hadronen, in eine Phase mit De-
confinement. Im Falle der SU(3) wird im allgemeinen aufgrund von theoreti-
schen und numerischen Untersuchungen angenommen, dass dieser Übergang
ein Phasenübergang 1.Ordnung ist. Demnach sollten die Reihenentwicklun-
gen der freien Energie und ihrer partiellen Ableitungen Informationen über
eine Singularität auf der rellen β-Achse enthalten. Ein Ziel ist es also, die La-
ge dieser Singularität auf analytischem Wege näherungsweise zu bestimmen.

Die Arbeit beginnt nach dieser Einleitung mit einem einführenden Kapi-
tel über Feldtheorien bei verschwindenden und bei endlichen Temperaturen.
Ziele und Methoden von Starkkopplungsentwicklungen bei T = 0 sind der
Inhalt des dritten Kapitels. Dort werden einige bereits bekannte Ergebnisse
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ausführlich diskutiert und hergeleitet, um den Rahmen für die Erweiterungen
auf den T 6= 0-Fall zu schaffen. Diese Erweiterungen werden dann im vierten
Kapitel beschrieben, wo auch die Unterschiede in den Rechenmethoden dar-
gestellt werden. Im darauffolgenden fünften Kapitel werden diese Rechnungen
dann durchgeführt und die SCE der verschiedenen physikalischen Größen bei
endlichen Temperaturen angegeben. Die Auswertung und Diskussion dieser
Resultate geschieht im sechsten Kapitel. Dabei soll auch auf eventuelle syste-
matische Schwachpunkte und damit verbundene zukünftige Verbesserungen
der Methodik eingegangen werden. In einem ausführlichen Anhang werden
diejenigen Teile der Rechnungen aufgelistet, die den Hauptteil der Arbeit nur
unnötig technisch und lang erscheinen ließen.
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Kapitel 2

Yang-Mills-Theorien

In den in einer kontinuierlichen Raumzeit definierten Quantenfeldtheorien
benutzt man üblicherweise störungstheoretische Hilfsmittel bei schwacher
Kopplung um physikalische Größen zu berechnen. Im Gegensatz dazu ermögli-
chen die Gitterfeldtheorien zusätzlich Stark-Kopplungs-Entwicklungen (SCE),
also Entwicklungen in Potenzen der inversen, quadrierten Kopplungskonstan-
ten.

In diesem Kapitel möchte ich zunächst einige grundlegende Aspekte zu
Feldtheorien bei verschwindenden und bei endlichen Temperaturen erläutern.
Dabei können die Feldtheorien entweder im Kontinuum oder auf einem Raum-
zeit-Gitter definiert sein. Die SCE der Gittertheorie werden sich dabei als
formal analog zu Hochtemperatur-Entwicklungen erweisen. Die Darstellung
der Yang-Mills-Theorien bei verschwindenden Temperaturen orientiert sich
an [1], während endliche Temperaturen nach [2] behandelt werden.

2.1 Yang-Mills-Theorien bei verschwindenden

Temperaturen

2.1.1 SU(N)-Eichtheorie in euklidischer Raumzeit

In der Kontinuumstheorie der reinen SU(N)-Eichtheorie sind die grundlegen-
den Felder die Gluonfelder Aµ(x). Diese Felder sind Elemente der Lie-Algebra
der Eichgruppe und somit spurlose, antihermitische (N ×N)-Matrizen. Der
zugehörige Feldstärketensor lautet

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)]. (2.1)

Die Felder lassen sich auch in Komponentenschreibweise, unter Benutzung
der Generatoren der Lie-Algebra, angeben. Die Generatoren Ta sind N2 − 1
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hermitische, spurlose (N ×N)-Matrizen und erfüllen die Vertauschungsrela-
tionen der Lie-Algebra

[Ta, Tb] = ifabc Tc (2.2)

und werden für gewöhnlich wie folgt normiert:

Tr(TaTb) =
1

2
δab. (2.3)

Als Linearkombinationen der Generatoren ausgedrückt lauten die Felder:

Aµ(x) = −ig Aa
µ(x) Ta (2.4)

Fµν(x) = −ig F a
µν(x) Ta (2.5)

Bei der Definition der Komponentenfelder wurde die Kopplungskonstante g
eingeführt. Die Komponentenfelder sind nach Gl. (2.1) ebenfalls miteinander
verknüpft:

F a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x) + gfabc Ab

µ(x) Ac
ν(x) (2.6)

Die Dynamik der Eichfelder wird von der Yang-Mills-Wirkung beschrie-
ben:

SY M = − 1

2g2

∫
d4x Tr Fµν Fµν =

1

4

∫
d4x F a

µν F a
µν (2.7)

Die so definierte Wirkung enthält kubische und quartische Selbstwechsel-
wirkungsterme. Im Gegensatz zur Quantenelektrodynamik (QED) sind also
nichtabelsche Eichtheorien nichttrivial in dem Sinne, dass sie Wechselwirkun-
gen der Konstituentenfelder enthalten.

Erwartungswerte von Observablen O lassen sich mithilfe der Wirkung als
Funktionalintegrale ausdrücken

〈O〉 =
1

Z

∫ ∏
x

dAµ(x) O e−SY M [A] ≡ 1

Z

∫
DA O e−SY M [A], (2.8)

mit

Z =

∫
DAe−SY M [A] (2.9)

Zur Berechnung ist diese Form allerdings nicht geeignet, da das Maß DA ma-
thematisch nicht exakt definiert ist. Man kann den Ausdruck (2.8) allerdings
als formal richtigen Startpunkt für die Entwicklung einer Störungsrechnung
nehmen. In diesem Sinne lassen sich mit dem Funktionalintegral viele Me-
thoden und Konzepte der Störungstheorie leichter als im Operatorformalis-
mus verstehen, obwohl letztlich beide Varianten dieselben Ergebnisse liefern
müssen.
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2.1.2 Gittereichtheorie

In der Hochenergiephysik wurden Gittertheorien zunächst als nicht-pertur-
bative Regularisierung eingeführt. Durch den Übergang von einer kontinu-
ierlichen Raumzeit zu diskreten Gitterpunkten erhält man einen natürlichen
Ultraviolett-Impuls-Cutoff. Ein weiterer Vorteil ist, dass es in einer Git-
tertheorie möglich ist, das Funktionalintegral mathematisch exakt zu defi-
nieren. Aus einer kontinuierlichen Raumzeit wird eine endliche Anzahl von
Gitterpunkten. Entsprechend der Diskretisierung der Raumzeit müssen auch
die Felder in den Gitterformalismus übersetzt werden. Der wesentliche physi-
kalische Aspekt der Kontinuumstheorie, die lokale Eichinvarianz, soll inner-
halb der Gittertheorie beibehalten werden.

Das Gitter wird zumeist als vierdimensionales hyperkubisches Gitter ein-
geführt. In diesem Fall ist es durch eine Gitterkonstante a und das Volumen
Ω = L3 Nt a

4 charakterisiert. Dabei bezeichnet V = L3a3 das räumliche Vo-
lumen und Nta die zeitliche Ausdehnung des Gitters. Physikalische Größen
können an Gitterpunkten x und entlang ihrer Verbindungslinien, den soge-
nannten Links b, definiert werden. Die Links werden durch einen Ort x und
eine Richtung eµ gekennzeichnet

b ≡ (x, eµ). (2.10)

Eine wichtige Rolle spielen geschlossene Wege auf dem Gitter, die als Schlei-
fen bezeichnet werden. Die kleinstmöglichen Schleifen bestehen aus vier Links
zwischen vier Gitterpunkten, die ein Quadrat bilden, und heißen Plaketten
p. Eine Plakette ist eindeutig durch ihren Ort x und zwei Richtungen eµ und
eν charakterisiert

p = (x, eµ, eν). (2.11)

Hierbei ist aber der Umlaufsinn um die Plakette zu berücksichtigen. Es gibt
also zwei Orientierungen einer Plakette.

Um die Yang-Mills-Wirkung zu diskretisieren, formuliert man die Theorie
zweckmässigerweise nicht über die Gluonfelder Aµ(x) direkt, sondern mithilfe
der sogenannten Linkvariablen U(b)

U(b) = U(x, eµ) = exp(−igaAb
µ(x)Tb). (2.12)

Die Linkvariablen erfüllen

U(b) = U(x, eµ) = U †(x + aeµ,−eµ) ≡ U †(−b). (2.13)

Die vier Linkvariablen einer Plakette bilden analog die Plakettvariable U(p).
Diese lautet mit a = 1 und in etwas kompakterer Notation

U(p) = U(x, µ̂)U(x + µ̂, ν̂)U(x + µ̂ + ν̂,−µ̂)U(x + ν̂,−ν̂). (2.14)

10



Die hermitisch konjugierte Größe U †(p) entspricht der Plakettvariablen bei
umgekehrtem Umlaufsinn.

Da die Felder Aµ Lie-Algebrawertig sind, können die Linkvariablen als
SU(N)-Matrizen dargestellt werden. Sie transformieren unter lokalen Eichtran-
formationen gemäß

U ′(x, y) = Λ(x)U(x, y)Λ−1(y) Λ ∈ SU(N) (2.15)

Dieses Transformationsverhalten gilt allgemein für zwei Punkte x und y,
die durch einen geschlossenen Zug von Linkvariablen miteinander verbunden
sind.

Bei dem Vorhaben, die Gitterwirkung eichinvariant zu formulieren, hilft
nun die Beobachtung, dass die Spuren von Linkvariablen über beliebige
geschlossene Wege C gemäß (2.15) unter Eichtransformationen invariante
Größen sind. Aufgrund der zyklischen Invarianz der Spur ist

Tr U ′(C) = Tr U(C). (2.16)

Gehen ausschließlich entsprechende Größen in die Wirkung ein, so ist diese
automatisch eichinvariant. Als weitere Einschränkung soll die gesuchte Wir-
kung im Limes a→ 0 die Yang-Mills-Wirkung (2.7) reproduzieren.

Die von K.G. Wilson vorgeschlagene Wirkung für die Eichgruppe SU(N),
die all diese Anforderungen erfüllt, lautet

S[U ] = −β
∑

p

[
1

2N

(
Tr U(p) + Tr U †(p)− 1

)]
. (2.17)

Die Summation erstreckt sich über alle Plaketten des Gittervolumens mit
nur einer der beiden Orientierungen. Für den Beweis, dass diese Wirkung im
Kontinuumslimes die Yang-Mills-Wirkung reproduziert, sei auf [1] verwiesen.
Dort wird gezeigt, dass der führende Term der Entwicklung von (2.12) in
Potenzen von a und die Yang-Mills-Wirkung einander gleich sind, falls

β =
2N

g2
(2.18)

gilt. Es lassen sich auch andere Wirkungen definieren, die diese Vorausset-
zungen erfüllen. Diese verbesserten Wirkungen dienen dazu, Gittereffekte zu
verringern und dadurch schneller den Kontinuumslimes zu erreichen. Hier
möchte ich mich aber mit der Wilson-Wirkung beschäftigen.

Analog zur Situation im Kontinuum werden mithilfe der Wirkung Erwar-
tungswerte von Observablen als Funktionalintegrale geschrieben

〈O〉 =
1

Z

∫ ∏
b

dU(b) O e−S[U ] ≡ 1

Z

∫
DU O e−S[U ] (2.19)
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wobei sich das Produkt im Integrationsmaß über alle Links b erstreckt. Die
Observablen O sind Funktionen der Konfiguration der Linkvariablen U(b).

Da die Linkvariablen Gruppenelemente der SU(N) sind, ist es notwen-
dig, das Integrationsmaß dU zu definieren. Das invariante Gruppenmaß oder
Haar-Maß erfüllt Eichinvarianz∫

G

dUf(U) =

∫
G

dUf(V U) =

∫
G

dUf(UV ) ∀ V ∈ G (2.20)

und ist normiert ∫
G

dU = 1. (2.21)

Die Zustandssumme der SU(N)-Gittereichtheorie lautet schließlich

Z(β) =

∫
DU(b) exp [−S(U)]

=

∫
DU(b)

∏
p

exp

[
− β

2N

(
TrU(p) + TrU †(p)− 1

)]
. (2.22)

2.2 Yang-Mills-Theorien bei endlichen Tem-

peraturen

In diesem Kapitel soll das Verhalten der Yang-Mills-Theorien bei endlichen
Temperaturen untersucht werden. Die am Ende der Rechnungen interessie-
renden Größen sind die Zustandssumme Z, die freie Energie F , die innere
Energie E und der Druck p, jeweils als Funktionen der Temperatur T und
des Volumens V . Zwischen diesen Größen gelten die aus der Statistischen
Physik bekannten Relationen

F (T, V ) = −T ln Z(T, V ) = − 1

βT

ln Z(T, V ) (2.23)

E(T, V ) = T 2 ∂

∂T
ln Z(T, V ) = − ∂

∂βT

ln Z(T, V ) (2.24)

p(T, V ) = T
∂

∂V
ln Z(T, V ) =

1

βT

∂

∂V
ln Z(T, V ). (2.25)

Der mit der Temperatur verknüpfte Parameter βT = 1
k T

ist von der über die
inverse Kopplung definierte Größe β = 2N

g2 zu unterscheiden. In diesem Sinne
gibt die Ableitung der freien Energie nach β nur eine formale innere Energie
wieder. Im folgenden ist mit β der inverse Kopplungsparameter gemeint, der
Temperaturparameter wird mit βT gekennzeichnet.
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Aus obigen Gleichungen wird ersichtlich, dass die Kenntnis der Zustand-
summe Z für die Berechnung der thermodynamischen Größen essentiell ist.
Allerdings kann Z zumeist nur näherungsweise angegeben werden. Während
in der Kontinuumstheorie hauptsächlich störungstheoretische Methoden im
Schwachkopplungsbereich verwendet werden, um die Zustandssumme zu be-
stimmen, gehören in der Gittertheorie SCE zu geeigneten Näherungsverfah-
ren.

2.2.1 Thermodynamik im Kontinuum

Die grundlegende Größe in der Statistischen Physik ist die Zustandsumme
Z(T, V ), die durch den Hamilton-Operator der zugrundeliegenden Theorie
definiert ist:

Z = Tr
(
e−βT H

)
(2.26)

Die Spur erstreckt sich über alle Energieeigenzustände des Hamiltonians.
Damit ist die Berechnung der Zustandssumme zwar prinzipiell möglich, als
zweckmäßig hat es sich jedoch erwiesen, die Spur als Funktionalintegral in
der Ortsdarstellung auszuwerten.

Für die Übergangsamplitude von einem Ausgangszustand |φa〉 nach ei-
ner Zeit tf wieder in den Zustand |φa〉, gilt nach [2] bei verschwindender
Temperatur die Gleichung

〈φa|e−iHtf |φa〉 =

∫
[dφ] exp

[
i

∫ tf

0

dt

∫
d3xL(~x, t)

]
. (2.27)

Das Symbol [dφ] impliziert die Funktionalintegration, d.h. eine Integration
über alle Feldkonfigurationen. Da Ausgangs- und Endzustand übereinstim-
men, gilt φ(~x, 0) = φ(~x, tf ), und die entsprechende Integration ist auf Konfi-
gurationen beschränkt, die diese Einschränkung erfüllen.

Die Zustandssumme einer Theorie lässt sich nun ebenfalls als Funktional-
integral schreiben. Es ergibt sich mit

Z = Tr e−βT H =
∑

i

∫
dφi〈φi|e−βT H |φi〉, (2.28)

unter Benutzung von (2.27) in imaginäre Zeitrichtung τ = it gedreht, die
Formel

Z =

∫
per.

[dφ] exp

[∫ βT

0

dτ

∫
d3xL(~x, τ)

]
(2.29)

=

∫
per.

[dφ] exp [−S(βT )] . (2.30)
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Die periodischen Randbedingungen erfordern an dieser Stelle, dass φ(~x, 0) =
φ(~x, βT ). Die Temperatur geht in dieser Formel über die τ -Integration bis βT

ein. Bei hohen Temperaturen kann der Exponentialterm entwickelt werden
und liefert auf diese Weise Hochtemperaturentwicklungen.

2.2.2 Thermodynamik auf dem Gitter

Zustandssumme

Im wesentlichen analog zur Formulierung der Theorien bei endlichen Tempe-
raturen im Kontinuum, werden auch die Gittertheorien bei endlichen Tem-
peraturen definiert. Der Ausdruck für die Zustandsumme bei T 6= 0 lautet

Z(βT ) =

∫
DU(b) exp [−S(U ; βT )]

=

∫
DU(b)

∏
p∈Ω(T )

exp

[
− β

2N

(
TrU(p) + TrU †(p)− 1

)]
.(2.31)

Die Integration erstreckt sich dabei über alle Linkvariablen U(b) im Gittervo-
lumen Ω(T ) = V ·Nta. Temperatureffekte werden nun über die Beschränkung
der Integration in zeitlicher Richtung auf einen Wert Nt < L, bei festge-
haltener Gitterkonstante a, erzielt. In diesem Sinne ist das Volumen Ω(T )
temperaturabhängig.

In Gl. (2.30) ist die Temperatur als Kehrwert der Integrationsgrenze βT

gegeben, analog ergibt sich auf dem Gitter die Temperatur als Kehrwert der
zeitlichen Gitterausdehnung

T =
1

Nta
. (2.32)

Auch auf dem Gitter müssen periodische Randbedingungen in euklidischer
Zeitrichtung gefordert werden. Dies bedeutet, dass Linkvariablen, die um Nta
in zeitlicher Richtung verschoben sind, identifiziert werden

U(x, eµ) ≡ U(x + Nt a · e4, eµ). (2.33)

Der Index 4 soll die zeitliche Richtung definieren.
Aus Gl. (2.32) wird ersichtlich, dass Temperatureffekte auch durch eine

variable Gitterkonstante a in zeitlicher Richtung erzielt werden können. Hier
und im folgenden möchte ich allerdings die Temperatur als Funktion von Nt

betrachten.
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Phasenübergang

Aufgrund von numerischen Resultaten aus Monte-Carlo-Simulationen wird
angenommen, dass SU(N)-Gittereichtheorien bei T = 0 über den gesamten
Parameterbereich 0 ≤ β <∞ keinen Phasenübergang zeigen. Dieses Verhal-
ten ändert sich bei endlichen Temperaturen, und es gibt bei einem kritischen
Parameter βc einen Phasenübergang von einer Starkkopplungsphase mit Con-
finement in eine Phase mit Deconfinement. In dieser Deconfinement-Phase
sind die fundamentalen Felder der SU(N)-Eichtheorie, also die Gluonen, nicht
mehr in Glueballs eingeschlossen (engl. confined), sondern können als freie
Teilchen, die aber natürlich trotzdem noch den Wechselwirkungen unterwor-
fen sind, propagieren. Während der Phasenübergang in der SU(2) von zweiter
Ordnung ist, ist er in der SU(N) mit N ≥ 3 von erster Ordnung.
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Kapitel 3

Starkkopplungsentwicklungen
bei T = 0

3.1 Clusterentwicklung der freien Energie

Die im vorrangegangenen Kapitel definierte Zustandssumme (2.22) soll an
dieser Stelle als Potenzreihe in der inversen Kopplung β, bzw. dem damit ver-
bundenen Parameter u(β) entwickelt werden. Diese Entwicklung kann formal
analog zu den Hochtemperaturentwicklungen für (2.30) durchgeführt werden.
Dadurch erschließen sich bereits bekannte Methoden aus der Statistischen
Physik, wie z.B. die Clusterentwicklung, für die Gittertheorie. Die forma-
le freie Energie, als Logarithmus der Zustandssumme, kann in einer solchen
Clusterentwicklung angegeben werden. Diese Prozedur wird ausführlich in [1]
hergeleitet und soll hier kurz diskutiert werden. Die Notationen entsprechen
denen in diesem Lehrbuch. Soweit nicht explizit aufgeführt, soll weiter a = 1
gelten.

3.1.1 Starkopplungsentwicklung der Zustandssumme

Da die Plakettvariablen U(p) unabhängig von β sind, erscheint es sinnvoll
den Boltzmann-Faktor e−S in der Zustandssumme in Potenzen von β zu
entwickeln. Es erweist sich aber als zweckmäßiger, für die einzelne exponen-
zierte Plaquette-Wirkung e−Sp eine Entwicklung nach Charakterfunktionen
anzusetzen

e−Sp(U) =
∑

r

dr cr(β) χr(U)

= c0(β)

[
1 +

∑
r 6=0

dr ar(β) χr(U)

]
(3.1)
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Die Charakterfunktionen χr einer irreduziblen Darstellung r sind als Spuren
über die zugehörigen Darstellungsmatrizen definiert und bilden eine Basis
im Raum der quadratintegrablen Klassenfunktionen über der Lie-Gruppe G.
Klassenfunktionen f(U) erfüllen

f(U) = f(V UV −1) U, V ∈ G. (3.2)

Also lassen sich alle Klassenfunktionen, wie der Term e−Sp , nach Charakter-
funktionen entwickeln. Konvention ist es, die Dimensionen dr der Darstel-
lungen r separat in der Summe in (3.1) aufzuführen. Dort wurden auch die
Entwicklungsparameter ar(β) der einzelnen irreduziblen Darstellungen ein-
geführt. Bei den später aufzustellenden Potenzreihen kann es sinnvoll sein,
diese als Reihen in dem Entwicklungsparameter der fundamentalen Darstel-
lung af ≡ u zu schreiben. Für die ar(β) gilt allgemein

ar =
cr(β)

c0(β)
. (3.3)

Die Berechnungen der β- und u-Abhängigkeiten der Entwicklungsparameter
ar und cr der niedrigsten Darstellungen der SU(2) und der SU(3) sind im
Anhang angegeben. Aus der Gleichung

exp[−S(U)] =
∏

p

exp[−Sp(U)] (3.4)

folgt zusammen mit (3.1)

e−S = c6Ω
0

∏
p

[
1 +

∑
r 6=0

dr ar(β) χr(U)

]
(3.5)

wobei wesentlich ist, dass sich das Produkt nur über jede Plakette einzeln
erstreckt. Das heißt, dass jede Plakette nur mit höchstens einer Plakettvaria-
blen besetzt ist. Aus diesem Grund definiert man nun einen Graphen G als
eine Abbildung, die jeder Plakette p des Gittervolumens eine Variable in ei-
ner Darstellung rp zuordnet. Der einfachste Graph ist derjenige, bei dem alle
Plakettvariablen in der trivialen Darstellung sind. Weitere Graphen entste-
hen durch Anregungen einzelner Plaketten in Variablen höherdimensionaler
Darstellungen. Somit lässt sich das Produkt umschreiben als eine Summe
über alle möglichen Graphen

e−S = c6Ω
0

∑
G

∏
p∈G

[
drp arp(β) χrp (Up)

]
. (3.6)
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Mit der Definition des Beitrags eines Graphen

Φ(G) =

∫
DU(b)

∏
p∈G

drp arp χrp (Up) (3.7)

nimmt der Ausdruck für die Zustandssumme eine kompakte Form an

Z = c6Ω
0

∑
G

Φ(G), (3.8)

wobei sich die Graphen in ihre zusammenhängenden Komponenten aufteilen
lassen, so dass diese untereinander paarweise disjunkt sind, also keinerlei ge-
meinsame Links besetzen. Diese Komponenten werden Polymere Xi genannt
und es ist

Φ(G) =
∏

i

Φ(Xi). (3.9)

Die Zustandssumme lässt sich also in Abhängigkeit einzelner Polymere schrei-
ben

Z = c6Ω
0

{
1 +

∑
G

∏
i

Φ(Xi)

}
. (3.10)

In dieser Formel wurde eine 1 aus der Summation herausgezogen, so dass diese
sich nun über alle nicht-trivialen Graphen mit zumindest einer angeregten
Plakettvariablen erstreckt. Der Vorteil der Form (3.10) liegt darin, dass die
Summation über Graphen einer Cluster-Entwicklung zugänglich ist.

Berechnung von Beiträgen bei T = 0

Zunächst möchte ich allerdings zeigen, wie man den Beitrag von einzelnen
Graphen berechnen kann. Die Graphen bestehen wie erwähnt aus Produkten
von Plakettvariablen, die wiederum Spuren über Darstellungsmatrizen irre-
duzibler Darstellungen der zugrundeliegenden Eichgruppe sind. Wie aus Gl.
(3.7) ersichtlich, wird über alle Linkvariablen integriert. Um dieses mehrfache
Integral auszuwerten ist die Integrationsregel∫

dU χr(V U) χs(U
−1 W ) =

δrs

dr

χr(V W ) (3.11)

von Nutzen. Aus ihr geht hervor, dass zwei Plakettvariablen χri
(U(pi)), die

sich in einem Link berühren, je nach Orientierung in derselben oder in der
komplex-konjugierten Darstellung sein müssen. Jede dieser Integrationen lie-
fert einen Faktor 1

dr
und verknüpft die nicht von der Integration betroffenen
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∫
dU V U U−1 W V W=

Abbildung 3.1: Integrationsregel

Linkvariablen der beiden Plaketten zu einer neuen Spur. Dies lässt sich auch
graphisch interpretieren, siehe Abb. (3.1).

Eine weitere wichtige Integrationsregel ist∫
dU χr(U) = δr,0 (3.12)

die besagt, dass die Ausreduktion der an einem Link zusammentreffenden
Darstellungsmatrizen die triviale Darstellung 1 enthalten muss. Ist dies nicht
der Fall, so verschwindet das Integral und somit der ganze Beitrag des ent-
sprechenden Polymers. Es folgt also, dass die beitragenden Polymere ge-
schlossene Oberflächen besitzen müssen. Ansonsten gäbe es einzelne Links,
die nur mit einer Linkvariablen in einer nichttrivialen Darstellung besetzt
sind. Dies würde gemäß Gl. (3.12) das Verschwinden des Integrals und so-
mit des gesamten Beitrags bedeuten. Innerhalb der Oberfläche sind beliebige
Kombinationen von Darstellungsmatrizen Uri

an einem Link gestattet, so-
lange

r1 ⊗ r2 ⊗ · · · ⊗ rn = 1⊕ . . . (3.13)

gilt. Im folgenden betrachte ich nur Polymere mit geschlossener Oberfläche.
Wendet man Gl. (3.11) sukzessive auf Polymere ohne innere Struktur an,

so gelangt man schließlich zu folgendem Integral∫
dUpχf (Up) χf

(
U †

p

)
=

∫
dUp (1 + χad(Up)) = 1 (3.14)

welches gemäß (3.12) den Wert 1 liefert.
Diese Ausintegration möchte ich am einfachen Beispiel des Kubus einmal

explizit vorstellen. Alle Plakettvariablen sind in der fundamentalen Darstel-
lung. Die einzelnen Integrationsschritte sind in Abb. (3.2) graphisch darge-
stellt. Für den Kubus ergibt sich nach (3.7) folgendes Integral zu lösen

Φ =

∫
DU(b)

6∏
i=1

afdfχf (Upi
) = a6

fd
6
f

∫
DU(b)

6∏
i=1

χf (Upi
). (3.15)

Nach den vier in Abb. (3.2) graphisch dargestellten Integrationsschritten,
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−→

Abbildung 3.2: Zur Integration des Kubus. Die Seiten, über die integriert
wird, sind punktiert.

und einem resultierenden Faktor
1

d4
f

, erhält man

Φ = a6
fd

2
f

∫
dUpχf (Up) χf

(
U †

p

)
= a6

fd
2
f (3.16)

wobei (3.14) benutzt wurde. Für alle in diesem Kapitel betrachteten Poly-
mere gilt analog

Φ = d2
f

∏
Plaq

af = d2
f uNp (3.17)

was bedeutet, dass jedes Polymer, das topologisch äquivalent zu einer Sphäre
ist, einen Faktor d2

f aus der Integration erhält. Die Anzahl der Plaketten des
Polymers sei dabei Np. Ohne an dieser Stelle zu sehr in die topologischen Ei-
genschaften der SCE einzudringen, sei gesagt, dass bei Polymeren mit einer
toroidalen Struktur dieser Faktor d2

f fehlt. Dies lässt sich durch explizite Aus-
integration zeigen. Die toroidalen Polymere werden in der T 6= 0-Theorie von
besonderer Bedeutung sein, da die ”temperaturabhängigen” Polymere in den
führenden Ordnungen gerade eine solche topologische Struktur aufweisen.

3.1.2 Clusterentwicklung der formalen freien Energie

Um zur Clusterentwicklung der formalen freien Energie zu gelangen, schreibt
man die Darstellung (3.10) noch etwas um

Z = c6Ω
0

{
1 +

∞∑
n=1

′∑
X1,..Xn

1

n!
Φ(X1) · · · · · Φ(Xn)

}
. (3.18)

Der Faktor 1/n! kompensiert Mehrfachzählungen, und die gestrichene Summe
soll andeuten, dass sich die Summation über paarweise disjunkte Polymere
erstreckt.

Mithilfe des Momenten-Kumulanten-Formalismus [1] ergibt sich der fol-
gende Ausdruck für die formale freie Energie F (u) und die formale freie
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Energiedichte f(u)

F (u) = − 1

Nt

ln Z (3.19)

f(u) = −F (u)

V

= −6 ln c0 −
1

Ω

∑
C

a(C)Φ(Xi)
ni · · · · · Φ(Xk)

nk (3.20)

wobei sich die Summe über alle sogenannten Cluster C erstreckt, die als
zusammenhängende Gebilde von Polymeren definiert sind. Der Momenten-
Kumulanten-Formalismus zeigt, dass nun statt über die unzusammenhängen-
den Polymere, bei der freien Energiedichte als Logarithmus der Zustandss-
umme über die zusammenhängenden Polymere zu summieren ist. Die Expo-
nenten ni geben mögliche Vielfachheiten einzelner Polymere in einem Cluster
an. Es ist demnach

C = (Xn1
1 , Xn2

2 , ...) . (3.21)

Der kombinatorische Faktor ist gegeben durch

a(C) =
[X1, ..., X1, X2, ..., X2, ..., Xk]

n1!n2!...nk!
. (3.22)

Die in diesem Ausdruck erscheinenden Kumulanten [. . . ] sind über

[X1, . . . , Xn] ≡
∑

P

(−1)(n− 1)!〈X1 . . . Xj〉 · · · 〈Xk . . . Xn〉 (3.23)

durch die Momente 〈. . . 〉 der einzelnen Polymere Xi definiert, für die

〈Xk, . . . , Xl〉 =

{
1, falls jedes Paar (Xm, Xn) unverbunden ist
0, sonst

(3.24)

gilt. Die Summation in (3.23) erstreckt sich dabei über alle Partitionen der
Elemente X1 bis Xn.

Anhand von Gl. (3.20) ist ersichtlich, dass die formale freie Energie F (u)
im thermodynamischen Limes existiert. Da Cluster zusammenhängende Ob-
jekte sind, ist die Anzahl wie oft einzelne Cluster durch Verschieben aus-
einander hervorgehen können, proportional zum Volumen des Gitters. Da
durch dieses Volumen Ω in der Gleichung geteilt wird, bleibt die formale
freie Energiedichte f(u) auch im thermodynamischen Limes, der im Grenz-
wert unendlichen Volumens definiert ist, endlich. Damit ist auch die Existenz
der formalen freien Energie gezeigt.
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Abbildung 3.3: Kuben in 4 Dimensionen, mit Plaketten in der (j = 1
2
)- und

in der (j = 1)-Darstellung (grau)

Bei einem Gitter mit periodischen Randbedingungen, also Translationsin-
varianz, lässt sich demnach die Summation über alle Cluster in (3.20) auf die
Summation über alle Cluster, die nicht durch Verschiebungen auseinander
hervorgehen, einschränken

f(u) = −6 ln c0 −
′∑
C

a(C)
∏

i

Φ(Xi)
ni (3.25)

wobei die gestrichene Summe dies andeuten soll. Die Volumenabhängigkeit
kürzt sich also in der Gleichung heraus, wie es für eine intensive Größe sein
sollte. Die Formel (3.25) ist die Cluster-Entwicklung der formalen freien Ener-
giedichte der SU(N)-Gittereichtheorie mit Wilson-Wirkung.

3.2 Formale freie Energie der SU(2)

3.2.1 Berechnung der formalen freien Energiedichte

Aus der für alle SU(N) hergeleiteten Cluster-Entwicklung der formalen frei-
en Energiedichte möchte ich nun diese am Beispiel der SU(2) auch explizit
berechnen. In den Abbildungen 3.3 bis 3.6 sind Beispiele der Cluster oder
Polymere aus bis zu 12 Plaquetten angegeben. Dies sind alle Arten von Poly-
meren, die bei der Berechnung der freien Energiedichte bis einschließlich der
O(u12) auftreten. Sind die entsprechenden Integrale, d.h. die Beiträge der
Graphen gemäß (3.7) berechnet, so ist noch mit ihrer Anzahl zu multiplizie-
ren, um den gesamten Beitrag dieser Polymerklassen zur freien Energiedichte
zu erhalten.

Diese Anzahl ergibt sich zumeist aus einigen grundlegenden geometri-
schen Überlegungen. Im hier betrachteten vierdimensionalen Raum gibt es
vier verschiedene Richtungen. Da ein Kubus, als kleinstes geschlossenes Poly-
mer mit nichtverschwindendem Volumen, in drei Richtungen ausgedehnt ist,
gibt es genau

(
4
3

)
= 4 verschiedene Kuben in vier Dimensionen. Damit lassen
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Abbildung 3.4: Doppelkuben: Polymere, die aus 10 Plaketten aufgebaut sind.
Die Doppelkuben können verwinkelt oder getreckt sein. Die gestreckten zeich-
nen eine der drei Richtungen, in der sie ausgedehnt sind, aus.

Abbildung 3.5: Cluster aus zwei Kuben

Abbildung 3.6: Polymere mit 12 Plaquetten
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sich bereits unter Berücksichtigung der Gl. (3.16) die niedrigsten Ordnungen
der freien Energiedichte angeben

f(u) = −6 ln c0 − 16u6, (3.26)

mit der üblichen Abkürzung af = u. Da es keine geschlossenen Polymere mit
acht Plaketten gibt, gehören zur nächsthöheren nichtverschwindenden Ord-
nung die Polymere aus Abb. (3.4). Um die Anzahl dieser Doppelkuben zu
erhalten, teilt man sie zweckmäßigerweise in zwei Klassen ein: Doppelkuben
als Verbund zweier Einzelkuben, die unter einem rechten Winkel verbunden
sind und solche, die gestreckt sind. Es gibt vier Doppelkuben ohne rech-
ten Winkel, da diese Polymere in drei von vier Richtungen ausgedehnt sind.
Da jeder derartige Doppelkubus drei Richtungen auszeichnen kann, ergibt
sich ihre Anzahl zu N = 3 · 4 = 12. Die Anzahl der verwinkelten Doppel-
kuben ist von der Anzahl der verschiedenen Plaketten in vier Dimensionen
abhängig. Jede Plakette ist in zwei Richtungen ausgedehnt, daher gibt es(
4
2

)
= 6 Plaketten in vier Dimensionen. Diese Plaketten sollen - ohne mit

einer Plakettvariablen besetzt zu sein - die beiden Einzelkuben des verwin-
kelten Doppelkubus verbinden. Die Anzahl, verschiedene Doppelkuben mit
rechtem Winkel bei festgelegter innerer Plakette aus Einzelkuben aufzubau-
en, beträgt 4. Insgesamt erhält man also 12 + 6 · 4 = 36 Doppelkuben. Da
dies die einzigen geschlossenen Polymere aus zehn Plaketten sind, ergibt sich
für die freie Energie bis einschließlich der Ordnung O(u10)

f(u) = −6 ln c0 − 16u6 − 144u10, (3.27)

wobei auch die Doppelkuben, als topologisch einer Sphäre äquivalent, einen
Integrationsfaktor d2

1/2 = 4 enthalten.
In den höheren Ordnungen sind Polymere mit Plaketten in höherdimen-

sionalen Darstellungen und Cluster aus mehreren Polymeren zu berücksichti-
gen. Dies bedeutet keine prinzipiellen Schwierigkeiten. Die Herausforderung
bei der Berechnung höherer Ordnungen der formalen freien Energiedichte
besteht in der enorm wachsenden Anzahl von Graphen mit jeder Ordnung.
Das von Wilson bis einschließlich der Ordnung O(u22) berechnete Ergebnis
lautet

f(u) = −6 ln c0 − 16 u6 − 144 u10 + 156, 8 u12 − 1974 u14 + 5407 u16

− 3, 509 · 104 u18 + 1, 452 · 105 u20 − 7, 846 · 105 u22. (3.28)

Aus diesem Ausdruck lässt sich der Erwartungswert der formalen inneren
Energiedichte e(u) einer einzelnen Plakettvariable berechnen.
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3.2.2 Berechnung der formalen inneren Energie

Die formale innere Energiedichte e(u) ≡ E(u)/V ist definiert über ihren
Funktionalintegralausdruck

e(u) ≡
〈

1− 1

N
Tr (Up)

〉
=

1

Z

∫
DU(b)

(
1− 1

N
Tr (Up)

)
e−S(U)

= −1

6

∂

∂β
ln Z(β) (3.29)

und lässt sich aus der formalen freien Energiedichte durch Ableiten nach dem
Parameter β = 4

g2 berechnen. Dies erklärt auch die Bezeichnung formale in-
nere Energiedichte, da die physikalische innere Energiedichte aus der freien
Energiedichte durch Ableiten nach der inversen Temperatur βT = 1

T
her-

vorgeht. Diese Ableitungen sind einander natürlich nicht gleich. Zudem wird
die physikalische freie Energiedichte bei endlichen Temperaturen berechnet,
während die formale freie Energie bei T = 0 berechnet wird. Näheres dazu
wird in Kapitel 4 erläutert.

Wertet man die Ableitung nach dem inversen Kopplungsparameter β aus,
so lautet die innere Energiedichte in Abhängigkeit von u

e(u) =
1

6

∂

∂β
f (u(β)) =

1

6

(
du

dβ

) (
d

du
f(u)

)
= 1− u− 4u5 + 8u7 − 62, 67 u9 + 197, 0u11

− 1349 u13 + 5939 u15 − 3, 428 · 104 u17

+ 1, 755 · 105 u19 − 9, 775 · 105 u21. (3.30)

Dabei wurde benutzt, dass gilt:

− ∂

∂β
ln c0(β) = 1− u. (3.31)

Das Ergebnis (3.30) wurde von Wilson berechnet, aber nicht von ihm veröffent-
licht. Für diese Arbeit ist es aus [1] entnommen. Es wird ebenfalls in [9]
zitiert.

3.3 Glueball-Massen

Die Existenz gebundener Zustände aus den Eichbosonen nichtabelscher Eich-
theorien wurde zuerst von Fritzsch und Gell-Mann im Jahre 1972 vorherge-
sagt [4]. Die leichtesten dieser Glueballs genannten Hadronen sind in reiner
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SU(3)-Eichtheorie stabile Teilchen und damit kann die Temperaturabhängig-
keit ihrer Massen Informationen über den Confinement/Deconfinement-Über-
gang liefern. Dieser Übergang wird bei einer kritischen Temperatur von Tc ≈
250 MeV erwartet.

3.3.1 Allg. Berechnung der Glueball-Massen

Aus der Clusterentwicklung der SU(N)-Zustandsumme kann man Informa-
tionen über die Massen der niedrigsten, nichtangeregten Glueballs gewin-
nen. Diese Massen ergeben sich als die niedrigsten Eigenwerte des Hamilto-
nians über dem Vakuum bei verschwindendem Impuls. Betrachtet man die
zeitabhängige Korrelationsfunktion eines Operators Ψ mit sich selbst

C(t) ≡ 〈Ψ(t)|Ψ(0)〉 = 〈Ψ(0)|e−Ht|Ψ(0)〉, (3.32)

so dominiert für große Zeiten t der niedrigste Eigenwert mi der Eigenzustände,
deren Projektion auf den Operator Ψ nicht verschwindet

〈Ψ(t→∞)|Ψ(0)〉 −→ Ke−mit. (3.33)

Im folgenden sollen jeweils die zusammenhängenden Korrelationsfunktionen
betrachtet werden.

Das Verfahren, die Glueball-Masse zu bestimmen, beläuft sich also dar-
auf, Operatoren mit geeigneten Quantenzahlen zu finden und die zeitliche
Korrelation dieser Operatoren zu berechnen. Aus dem Ergebnis lässt sich
dann die niedrigste Glueball-Masse mit den entsprechenden Quantenzahlen
über

m = − lim
t→∞

1

t
ln〈Ψ|e−Ht|Ψ〉

= − lim
t→∞

1

t
ln C(t) (3.34)

extrahieren.
Als einfachste Operatoren in der Gittertheorie erweisen sich die Plakettva-

riablen Tr(Up). Wie bei der Berechnung der formalen inneren Energiedichte
gesehen, lassen sich Korrelationsfunktionen von Tr(Up) durch Ableitungen
der Zustandsumme berechnen

C(t) = 〈Tr U(p1) Tr U(p2)〉

= N2 ∂2

∂β1β2

ln Z(β, β1, β2)|β1,2=β, (3.35)
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wobei die beiden Korrelationsplaketten aus rechentechnischen Gründen mit
unterschiedlichen Kopplungen βi versehen wurden, und diese am Ende der
Rechnung wieder zu βi = β gesetzt werden. Der Logarithmus der Zustands-
summe, der proportional der formalen freien Energie ist, lässt sich mit der
Clusterentwicklung berechnen.

Da Cluster zusammenhängende Objekte sind, muss jeder beitragende
Cluster beide Plaketten β1 und β2 besetzen. Sind beide Plaketten nun par-
allel, so ist das kleinste beitragende Polymer X0 eine ”Plakettröhre” aus 4t
Plaketten, mit den beiden festgesetzten Plaketten an den Rändern. Eine sol-
che Plakettröhre ist in Abbildung (3.7) gezeigt. In führender Ordnung ergibt
sich demnach allgemein für die zugrundeliegende Gruppe SU(N)

Φ(X0) = d2
f u(β1) u(β2) u4t (2− δN,2) (3.36)

wobei der letzte Faktor aus der Tatsache resultiert, dass die SU(2) keine
komplex-konjugierten Darstellungen besitzt.

Da die Ableitungen aufgrund der Einführung unterschiedlicher Kopplun-
gen nur die Korrelationsplaketten betreffen, lässt sich nun die Korrelation
angeben zu

C(t) =

(
d2

f

du

dβ

)2

(2− δN,2) u4t = A e−m0t (3.37)

wobei eine irrelevante Konstante A definiert wurde und für die Masse m0 gilt
nach (3.34)

m0 = −4 ln u(β). (3.38)

Zusätzlich lassen sich die Beiträge der Cluster, die aus der Plakettröhre und
zusätzlichen inneren Plaketten bestehen sowie der Komposition der Röhre
aus mehreren Clustern geschlossen aufsummieren, siehe Abb. (3.7). Die Mög-
lichkeiten innere Plaketten hinzuzufügen sind von der jeweiligen Eichgruppe
abhängig. Für die SU(2) gilt

Φ = Φ(X0)
t−1∑
n=0

(
t− 1

n

)
(d1v)n

t−1−n∑
m=0

(
t− 1− n

m

)
(−d1/2u)m

= Φ(X0)
t−1∑
n=0

(
t− 1

n

)
(3v)n(1− 4u2)t−1−n

= Φ(X0)
(
1 + 3v − 4u2

)t−1
. (3.39)

An jedem inneren Gitterplatz lässt sich eine Plakette in der j = 1-Darstellung
einfügen, was einen Faktor 3v im Beitrag zur Folge hat. Zusätzlich dazu kann
man den ursprünglichen Cluster in mehrere zusammenhängende Polymere
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1 1

Abbildung 3.7: Polymere ohne und mit inneren Plaketten in der SU(2). Diese
Plaketten in der j = 1-Darstellung sind schwarz eingezeichnet.

aufteilen. Jedes Polymer erhält einen eigenen Faktor d2
1/2 = 4. Der Term

(−1)t folgt aus dem kombinatorischen Faktor (3.22), der für einen Kette von
N Polymeren, bei denen ein gegebenes Polymer nur seinen vorderen und
hinteren Nachbarn berührt, gleich (−1)N ist.

In der SU(3) läuft diese Aufsummation völlig analog, mit dem Unterschied
in der veränderten Struktur der irreduziblen Darstellungen. Die einzigen Dar-
stellungen, die gemäß der Regel (3.13) als innere Plakettvariablen zugelassen
sind, sind die Darstellungen 3,6 und 8. Bezeichnet man ihre Entwicklungs-
parameter als a3 ≡ u, d6a6 ≡ v und d8a8 ≡ w, so erhält man mit einer zu
(3.39) analogen Rechnung

Φ = Φ(X0)
(
1 + 3u + v + w − 18u2

)t−1
(3.40)

wobei zu beachten ist, dass der Anteil aus der Aufsummation der Polymer-
ketten einen zusätzlichen Faktor 2 enthält, da die SU(3) komplex-konjugierte
Darstellungen enthält, und die einzelnen Polymere demnach jeweils in zwei
verschiedenen Darstellungen eingefügt werden können. In Abb. (3.8) sind
einige Graphen dazu präsentiert. Da jeder Cluster in den niedrigen Ordnun-
gen aus einer längeren Plakettröhre und zusätzlichen Dekorationen besteht,
ergeben sich diese Beiträge zusätzlicher innerer Plaketten als gemeinsame
Faktoren dieser Graphen.

Um nun die weiteren Korrekturen zur Glueball-Masse auszurechnen, reicht
es nicht aus, die Beiträge der Cluster höherer Ordnung hinzuzuaddieren. Da
die reinen Plakettoperatoren nicht auf einzelne Masseneigenzustände des Ha-
miltonians projizieren, müssen zunächst aus den Operatoren Eigenzustände
gebildet werden. Diese Prozedur ist in [1] und [5] näher beschrieben. An dieser
Stelle reicht das Ergebnis, das für den 0++ Glueball die folgende Kombination
liefert

Ψ0++ =
1

3

∑
~x

Re [Tr U12(~x) + Tr U23(~x) + Tr U31(~x)] , (3.41)

wobei die Zahlen 1, 2 und 3 die räumlichen Richtungen bezeichnen und die
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3 6 8

Abbildung 3.8: Polymere ohne und mit inneren Plaketten in der SU(3).
Graue Plaketten entsprechen der 3-, schwarze Plaketten der 6- oder der 8-
Darstellung, bzw. ihren jeweils komplex-konjugierten Darstellungen.

Summation über ~x Eigenzustände mit Impuls ~k = 0, also wirkliche Massen-
Eigenzustände liefert.

Da der auf diese Weise konstruierte Operator Eigenzustand des Hamilto-
nians ist, muss auch die Korrektur zur niedrigsten Ordnung der Entwicklung
gemäß

exp(−mt) = exp(−m0t)exp(−∆mt) (3.42)

exponenzieren. Dieses Verfahren soll im nächsten Unterkapitel am Beispiel
der SU(2) demonstriert werden.
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Abbildung 3.9: Faktor N = 8: Dekoration kann an vier Seiten angebracht
werden und für zwei verschiedene Korrelationsplaketten beitragen.

Abbildung 3.10: Faktor N = 16: Dekoration an vier Seiten, in zwei Richtun-
gen und für zwei Korrelationsplaketten.

3.3.2 Glueball-Massen der SU(2)

Die Graphen der nächsthöheren Ordnung O(u4) in der Korrektur sind in den
Abbildungen (3.9) - (3.11) dargestellt. Von den Graphen jeder Abbildung
gibt es insgesamt N · t, wobei N der den einzelnen Graphen zugeordnete
Faktor ist. Dieser Faktor gibt an, wie oft der jeweilige Graph beiträgt, wenn
statt der Korrelation zweier paralleler Plaketten die Korrelationen von (3.41)
berechnet werden. Addiert man diese Faktoren zusammen, so ergibt sich für
den Vorfaktor der OrdnungO(u4) die Zahl 34t. Höhere Ordnungen lassen sich
dann entsprechend berechnen. Die ersten Terme der Reihe bis einschließlich
der Ordnung O(u4) lauten somit

m(0++) = −4 ln u− ln (1 + 3v2 − 4u2)− 34 u4

= −4 ln u + 2 u2 − 98

3
u4. (3.43)

Da ich nur die Abhängigkeit der 0++-Glueball-Masse von der Temperatur
in den führenden Ordnungen in u betrachte, soll dieses Ergebnis an dieser
Stelle ausreichen. Für weitere Informationen zu diesem Thema sei erneut auf
[1] und [5] verwiesen.

Abbildung 3.11: Faktor N = 10: Dekoration in zwei Richtungen und für fünf
Korelationsplaketten.
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3.3.3 Screening-Massen

Bei verschwindenden Temperaturen unterscheiden sich die als Korrelationen
in zeitlicher Richtung berechneten Glueball-Massen nicht von den Korrela-
tionen in räumlicher Richtung

C(x) = 〈A(x)A(0)〉 → e−Mx (3.44)

wobei A ein lokaler, eichinvarianter Operator mit den gewünschten Quanten-
zahlen ist. In der Gittertheorie sind dies Linearkombinationen der Plakett-
operatoren.

Die Korrelationen liefern im Limes x → ∞ über ihren exponentiellen
Abfall die sogenannten Screening-Massen M . Die Screening-Massen sind Ei-
genwerte der räumlichen Transfer-Matrix bei verschwindendem Impuls und
liefern bei endlichen Temperaturen Informationen über die relevanten dyna-
mischen Längenskalen im Plasma. Sie entsprechen der inversen Länge über
der ein Medium im thermischen Gleichgewicht empfindlich gegenüber dem
Hinzufügen einer statischen Quelle mit den Quantenzahlen des Operators ist.
Jenseits von 1/M ist die Quelle abgeschirmt (engl. screened) und das Medi-
um bleibt dort ungestört, vgl [3]. Zur Berechnung der Screening-Masse des
0++-Glueballs verwendet man in völliger Analogie zu Gl. (3.34)

M = − lim
x→∞

1

x
ln 〈Ψ(x)|Ψ(0)〉

≡ − lim
x→∞

1

x
ln C(x) (3.45)

mit x als einer der drei vom Gitter ausgezeichneten Raumrichtungen. Im
Gegensatz zu den Glueball-Massen, die über ihre zeitliche Korrelation defi-
niert sind und damit auch festgelegt sind, ist es bei den Screening-Massen
möglich, auch Korrelationen in Richtungen zu untersuchen, die nicht entlang
einer Gitterachse zeigen. Auf diese Weise ist es möglich die Wiederherstellung
der Rotationsinvarianz im Kontinuumslimes zu untersuchen.
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Kapitel 4

Starkkopplungsentwicklungen
bei T 6= 0

4.1 Clusterentwicklung bei T 6= 0

Da gemäß (2.24) und (2.25) die innere Energie und der Druck durch Kenntnis
der freien Energie berechnet werden können

E(T, V ) =
∂

∂βT

(
1

βT

F (T, V )

)
(4.1)

p(T, V ) = − 1

βT

∂

∂V

(
1

βT

F (T, V )

)
(4.2)

und die Clusterentwicklung für die formale freie Energie gilt, möchte ich im
folgenden diese, bzw. genauer gesagt die freie Energiedichte, als Ausgangs-
punkt der weiteren Rechnungen betrachten.

Die physikalische freie Energiedichte ergibt sich sich aus der Differenz der
formalen freien Energiedichte bei endlichen Temperaturen und bei verschwin-
denden Temperaturen:

∆f(Nt; u) = f(Nt; u)− f(∞; u) (4.3)

f(u) =
F (u)

V
. (4.4)

Um es noch einmal deutlich zu sagen: Die Größe ∆f(Nt; u) bezeichnet die
physikalische freie Energiedichte, während f(Nt; u) und f(∞; u) formale
freie Energiedichten sind. Die Differenzbildung entspricht einer Renormie-
rung, wobei f(Nt; u) die unrenormierte Größe darstellt und f(∞; u) ein Va-
kuumsbeitrag ist. Für gewöhnlich bezeichnet f die physikalische freie Ener-
giedichte, aber um die Notation innerhalb dieser Arbeit konsistent zu halten,
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Abbildung 4.1: Ein Beispiel neu beitragender Polymere

werde ich weiterhin obige Schreibweise benutzen und die physikalische freie
Energiedichte durch ∆f angeben.

Gemäß (4.4) muss ich in der Clusterentwicklung nur diejenigen Terme
berücksichtigen, die die veränderten Randbedingungen spüren. Diese Clus-
ter bestehen aus mindestens einer Polymerkette mit einer Ausdehnung in
zeitlicher Richtung größer oder gleich Nt, wie z.B. in Abb. (4.1).

4.1.1 Gruppentheoretische Grundlagen

In den zu berechenenden Beiträgen gewisser Graphen treten in den hier be-
trachteten Ordnungen Integrale über Charakterfunktionen verschiedener ir-
reduzibler Darstellungen der Eichgruppen auf. Da hier nur mit den niedrigs-
ten irreduziblen Darstellungen gerechnet wird, ist es unnötig eine komplette
gruppentheoretische Behandlung an dieser Stelle durchzuführen. Trotzdem
ist es notwendig, einige grundlegende Aspekte der irreduziblen Darstellun-
gen der SU(2) und SU(3) zu behandeln. Die hier gewählte Notation orientiert
sich an [6].

Darstellungen der SU(2)

Die Lie-Algebra für die Generatoren Ji der SU(2) lautet

[Ja, Jb] = iεabcJc, (4.5)

mit dem total antisymmetrischen Levi-Civita-Symbol εabc und ε123 = 1. Die
Generatoren lassen sich in Matrixschreibweise als Pauli-Matrizen σi

2
schrei-

ben. Mithilfe der Lie-Algebra können alle irreduziblen Darstellungen klassifi-
ziert werden. Im Fall der SU(2) werden sie durch eine halb- oder ganzzahlige
Zahl j charakterisiert. Die Dimension der Darstellung ergibt sich dann zu
dj = 2j + 1. Für die im nächsten Kapitel folgenden Rechnungen sind nur die
Darstellungen j = 0, 1

2
und 1 von Belang. Wichtig ist an dieser Stelle nun

die Feststellung, dass das direkte Produkt der irreduziblen Darstellungen

1

2
⊗ 1

2
⊗ 1 = 0⊕ 1⊕ 1⊕ 2 (4.6)
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die triviale Darstellung enthält, gemäß der Integrationsregel (3.12) also eine
erlaubte Kombination von Plakettvariablen an einem Link darstellt.

Darstellungen der SU(3)

Die SU(3) hat eine im Gegensatz zur SU(2) kompliziertere Struktur. Die
Lie-Algebra lautet

[Fa, Fb] = ifabcFc, (4.7)

mit den Generatoren Fi, die als Matrizen die Form von Gell-Mann-Matrizen
annehmen. Die irreduziblen Darstellungen der SU(3) sind durch ein Paar
zweier ganzer Zahlen (p, q) charakterisiert und werden üblicherweise nach
ihrer Dimension benannt. Der Zusammenhang zwischen p und q und der
Dimension der Darstellung r lautet

dr = (1 + p)(1 + q)

(
1 +

p + q

2

)
. (4.8)

In dieser Arbeit sind die Darstellungen

1 ←→ (0, 0)

3 ←→ (1, 0)

3∗ ←→ (0, 1)

6 ←→ (2, 0)

6∗ ←→ (0, 2)

8 ←→ (1, 1)

von Interesse.

4.1.2 Beiträge von Polymeren in der fundamentalen
Darstellung

Das einfachste Polymer, dass aufgrund der veränderten Randbedingungen
Nt < L neu beiträgt, ist ein Kubus, bei dem zwei Seitenflächen fehlen (siehe
Abb. 4.2).

Dieses Polymer hat nur dann einen von Null verschiedenen Beitrag, falls
die beiden Zeitscheiben, in denen die zwei fehlenden Plaketten liegen, identi-
fiziert werden. Das Gitter hat in diesem Fall also eine effektive Ausdehnung
von Nt = 1 in Zeitrichtung. Der Beitrag dieses Polymers ist allgemein nach
(3.7)

Φ =

∫
DU(b)

4∏
i=1

dfaf (β)χf (U(pi)). (4.9)
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Abbildung 4.2: Kubus mit zwei unbesetzten Seiten bei Nt = 1

Abbildung 4.3: Die Integrationen beim Kubus sind punktiert gezeichnet.

Das Integrationsmaß DU(b) soll in diesem und folgenden Fällen immer ein
Produkt über alle Linkvariablen der beteiligten Links beinhalten.

Nun werden aufgrund der periodischen Randbedingungen die Linkvaria-
blen an der linken und der rechten Seite identifiziert, siehe Abb. (4.3). Die
viermalige Anwendung - je einmal für jeden Link - der Integrationsregel (3.11)
sorgt für einen Faktor 1/d4

f . Damit lautet das Zwischenergebnis für den Bei-
trag

Φ =

∫
DU(b) a4

f (β)
4∏

i=1

χf (U(b)) χf

(
U †(b)

)
. (4.10)

Diese vier Integrationen sind unabhängig voneinander und können sofort aus-
geführt werden. Das Ergebnis ist gemäß der Integrationsregel (3.12) jeweils
ein Faktor Eins. Die Kreise in Abbildung (4.3) sollen andeuten, dass die
entsprechenden Punkte identifiziert worden sind.

Alles zusammengenommen ergibt sich für den Beitrag dieses Polymers
das Ergebnis

Φ = a4
f (β). (4.11)

Im Gegensatz zum Ergebnis für ein einzelnes Polymer bei T = 0 fehlt ein
Faktor d2

f . Dies gilt allgemein für analoge Polymere, bei denen ein zusam-
menhängendes Gebiet aufgrund der period. Randbedingungen in sich ge-
schlossen ist, die also die erwähnte toroidale Topologie aufweisen. An der
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Abbildung 4.4: Doppelkubus mit vier unbesetzten Seiten und einer Plaquette
in höherdimensionaler Darstellung j = 1 (schwarz)

Berechnung von geschlossenen Polymeren mit zeitlicher Ausdehnung kleiner
als Nt gemäß Kapitel 2 ändert sich nichts.

4.1.3 Beiträge von Polymeren mit Plaketten in höher-
dimensionalen Darstellungen

Sind Plaketten in höherdimensionalen Darstellungen vorhanden, so ändert
sich nichts Prinzipielles an der Berechnung des Beitrages.

Der Beitrag des Polymers in Abb. (4.4) lautet

Φ =

∫
DU(b) d1a1 χ1 (U(p7)) (β)

6∏
i=1

d1/2a1/2(β) χ1/2 (U(pi)) . (4.12)

Auch hier lässt sich die Integrationsregel (3.11) anwenden. Aufgrund der peri-
od. Randbedingungen werden die sechs Linkvariablen in der 1/2-Darstellung
und die Linkvariable in der 1-Darstellung an den Rändern identifiziert. An-
wendung von (3.11) liefert einen Faktor d−6

1
2

d−1
1 und es verbleibt eine Inte-

gration über sechs Links, die jeweils einen Faktor Eins liefern.
Der Beitrag dieses Polymers lautet also

Φ = a6
1
2
(β)a1(β). (4.13)

Auch hier gibt es also keinen der Dimension der Darstellungen entsprechen-
den Faktor.

Mit diesen Vorbemerkungen lassen sich die Berechnung der freien Energie
und der von ihr abgeleiteten Größen bei endlichen Temperaturen durchführen.
Weitere Integralsberechnungen finden sich im Anhang.
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4.2 Screening-Massen bei T 6= 0

Um die Veränderung der Screening-Massen bei endlichen Temperaturen zu
berechnen, reicht es wie bei der freien Energie aus, sich nur mit den tempe-
raturabhängigen Graphen zu beschäftigen. Denn für die Differenz der Masse
M bei endlichen Temperaturen gilt

∆M(T ) ≡ M(T )−M(0)

= − lim
x→∞

1

x
[ln C(T ; x)− ln C(0; x)]

= − lim
x→∞

1

x

[
ln(1 +

∆C(T ; x)

C(0; x)
)

]
, (4.14)

die durch Kenntnis der Differenz der Korrelationen

∆C(T ; x) ≡ C(T ; x)− C(0; x) (4.15)

bei verschwindenden und bei endlichen Temperaturen berechnet werden kann.
Wie in [7] gezeigt wird, werden die den Quantenzahlen des 0++-Glueballs

entsprechenden Operatoren durch dieselbe Kombination (3.41) von einzelnen
Plaketten wie bei T = 0 konstruiert. Allerdings sind im endlichen Tempera-
turfall die Korrelationen von Plaketten mit zeitlicher Ausdehnung von denen
ohne zu unterscheiden. Da in dieser Arbeit aber nur die führende Ordnung in
der Differenz der Screening-Massen berechnet werden soll, wird diese Unter-
scheidung keine größeren Probleme bereiten. Die Berechnung der räumlichen
Korrelationen läuft genauso wie im T = 0-Fall ab.
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Kapitel 5

Berechnungen bei endlichen
Temperaturen

5.1 Freie Energie der SU(3)

Nachdem im vorherigen Kapitel die grundlegenden Rechenmethoden der
Theorie erläutert wurden, werde ich diese nun benutzen, um die gesuchten
Größen zu bestimmen. Wie im letzten Kapitel erläutert, ergibt sich die freie
Energiedichte bei endlichen Temperaturen aus der Abweichung der forma-
len freien Energiedichte bei endlichen Temperaturen von der formalen freien
Energiedichte bei T = 0

∆f(Nt; u) ≡ f(Nt; u)− f(∞; u). (5.1)

Das Ergebnis ist dann in einer Potenzreihe in u angegeben.
Bei der Berechnung der SCE der freien Energiedichte der SU(3)-Yang-

Mills-Theorie ist es möglich, bestimmte Klassen von Graphen geschlossen
aufzusummieren. Die Graphen bestehen aus einem sogenannten Grundpoly-
mer, siehe Abb. (5.1), sowie geometrischen und gruppentheoretischen Deko-
rationen. Das Grundpolymer besteht aus einer Röhre von Plaketten, die als
Querschnittsfläche eine Plakette einschließen und ist das kleinste Polymer,
dessen Beitrag zur freien Energiedichte sich durch die veränderten Randbe-
dingungen verändert. Geometrische Dekorationen bestehen aus zusätzlichen
Plaketten außerhalb des Grundpolymers, gruppentheoretische Dekorationen
zeichnen sich durch zusätzliche Plaketten in höherdimensionalen Darstellun-
gen innerhalb oder durch die Ersetzung von Plaketten am Grundpolymer
durch solche höherdimensionalen Plaketten aus. Es können natürlich auch
beide Dekorationstypen gemeinsam vorhanden sein. Zusätzlich ist es möglich,
dass durch zwei zusätzliche Plaketten in der fundamentalen Darstellung an
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Abbildung 5.1: Das Grundpolymer der temperaturabhängigen Graphen, hier
bei einer zeitlichen Ausdehnung von Nt = 5.

einem Punkt innerhalb des Grundpolymers dieses in zwei oder mehrere ein-
zelne Polymere geteilt wird. Auch diese Graphen sind zu berücksichtigen.

Zusätzlich zu der Art der Dekorationen lassen sich die verschiedenen Gra-
phen auch noch in drei andere Gruppen einteilen. Da ich die Differenz der frei-
en Energie zwischen endlichen und verschwindenden Temperaturen berechne,
muss ich zwischen solchen Graphen unterscheiden, die bei endlichen Tem-
peraturen nicht mehr beitragen, und solchen die aufgrund der veränderten
Randbedingungen neu beitragen. Zusätzlich dazu kann es sein, dass Graphen
sowohl bei T = 0, als auch bei T 6= 0 beitragen, allerdings mit verändertem
Wert. Die Typen nenne ich im folgenden neue und verbotene Graphen,sowie
Graphen mit verändertem Beitrag. Die Beiträge der dritten Gruppe wer-
den dann, je nach Vorzeichen der Veränderung, zu einer der beiden anderen
Gruppen hinzugezählt.

Nachdem ich im ersten Unterkapitel einige Vorbemerkungen zur Berech-
nung mache, werde ich im zweiten Unterkapitel diejenigen Graphenklassen
in den niedrigsten Ordnungen geschlossen aufsummieren, bei denen dieses
möglich ist. Im letzten Unterkapitel werde ich dann Korrekturen mit einbezie-
hen, die vor allem bei kleineren Nt wichtig werden und sich als geometrische
Dekorationen äußern. Weitere Details zu den Berechnungen spezieller Inte-
grale und zur Abzählung der Anzahl von Polymeren in einer Graphenklasse
sind im Anhang aufgeführt.

5.1.1 Vorbemerkungen

Zunächst ist es notwendig einige Anmerkungen zu den Möglichkeiten des
Hinzufügens von Plaketten zu machen. Zum Grundpolymer der Ausdehnung
Nt können ebensoviele zusätzliche Plaketten innerhalb seiner geschlossenen
Oberfläche zugefügt werden. Das heißt aber, dass maximal drei Plaketten an
einem Link zusammentreffen können. Da die Ausreduktion der Darstellungs-
matrizen der Linkvariablen die triviale Darstellung enthalten muss, ergibt
sich dadurch eine Beschränkung der möglichen Darstellungen der zusätzli-
chen Plaketten. Das Grundpolymer besteht aus Plaketten je einer der beiden
fundamentalen Darstellungen 3 oder 3∗. Sind alle Plakettvariablen in der-
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3 3∗ 3 3∗

Abbildung 5.2: Sind alle Plaketten eines Polymers mit denselben Darstellun-
gen besetzt, so unterscheiden sich die beiden an einem Link aufeinandertref-
fenden Linkvariablen in ihrer Orientierung.

selben Darstellung, wie es im Grundpolymer der Fall ist, so erhält man an
jedem Link das Produkt 3⊗ 3∗ = 1⊕ 8, siehe Abb. (5.2)

Daher lautet die Frage, welche irreduziblen Darstellungen der SU(3) die
triviale Darstellung enthalten, wenn man sie mit zwei fundamentalen Darstel-
lungen direkt multipliziert. Zur Beantwortung dieser Fragen sind sogenannte
Young-Tableaux geeignet, deren Formalismus in [6] beschrieben wird. Wen-
det man dieses Verfahren zur Ausreduktion von Produktdarstellungen an, so
ergibt sich

3⊗ 3⊗ 3 = 1⊕ . . .

3∗ ⊗ 3∗ ⊗ 3∗ = 1⊕ . . .

3⊗ 6? ⊗ 3 = 1⊕ . . .

3∗ ⊗ 6⊗ 3∗ = 1⊕ . . .

3⊗ 8⊗ 3∗ = 1⊕ . . .

wobei die Punkte für höherdimensionale Darstellungen stehen. Da entspre-
chend Abb. 5.2 ein Link im Grundpolymer mit zwei Linkvariablen in der fun-
damentalen und ihrer komplex-konjugierten Darstellung besetzt ist, kann nur
die adjungierte Darstellung 8 als zusätzliche Plakette eingesetzt werden, ohne
dass sich die Orientierungen der beteiligten Plakettvariablen unterscheiden
müssen. Dies führt dazu, dass das Grundpolymer, das aufgrund der periodi-
schen Randbedingungen in sich selbst, also toroidal, geschlossen ist, nur mit
einer geraden Anzahl von zusätzlichen 3- oder 6∗-Plaketten versehen werden
kann. Andernfalls würden an einem Link Integrale über entweder 3⊗ 3 oder
3∗⊗3∗ vorliegen, welche gemäß (3.12) verschwinden und somit den gesamten
Beitrag eines Graphen zu Null setzen. Eine vollkommen analoge Überlegung
gilt dann auch für das Grundpolymer in der komplex-konjugierten Funda-
mentaldarstellung.

In der Klasse der verbotenen Graphen ist das nicht der Fall, da diese nicht
durch die veränderten Randbedingungen in sich selbst geschlossen werden.
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Hier ist es also unerheblich wie oft zusätzliche 3- oder 6-Plaketten hinzu-
gefügt werden.

5.1.2 Aufsummation von Graphenklassen

Neue Graphen

Unter Berücksichtigung der Vorbemerkungen gelingt also die geschlossene
Aufsummation der Beiträge des Grundpolymers und seiner gruppentheoreti-
schen Dekorationen

φ+
1 =

Nt∑
n=0

(
Nt

n

)
wn

Nt−n∑
m=0

(
Nt − n

m

)
vm

Nt−m−n∑
l=0

(
Nt −m− n

l

)
(3u)l ∗

∗
(

1

2
(1 + (−1)m+l)

)
=

1

2

[
(1 + 3u + v + w)Nt + (1− 3u− v + w)Nt

]
(5.2)

≡ 1

2

[
aNt + bNt

]
, (5.3)

mit zwei zur Abkürzung definierten Termen a und b. Der Index 1 soll dabei
andeuten, dass es sich um die führenden Terme der freien Energie handelt.
Der Faktor 1/2[1 + (−1)m+l] sorgt dafür, dass nur Polymere mit einer gera-
den Anzahl von 3- und 6-Plaketten beitragen. Der Beitrag φ+

1 gilt nur für
ein einzelnes Polymer mit inneren Plaketten und muss noch mit 6/Nt multi-
pliziert werden, um den gesamten Beitrag Φ+

1 zur freien Energie zu erhalten.
Der Faktor 6 = 2 · 3 ergibt sich aus zwei Fundamentaldarstellungen und
drei verschiedenen Möglichkeiten für die Querschnittsplakette des Grundpo-
lymers. Die Division durch Nt sorgt für eine korrekte Zählung der Anzahl der
Graphen, die gemäß Gl. (5.3) beitragen, da das Grundpolymer durch Transla-
tionen in zeitlicher Richtung wieder in sich selbst übergeht. Insgesamt ergibt
sich demnach

Φ+
1 =

3

Nt

[
(1 + 3u + v + w)Nt + (1− 3u− v + w)Nt

]
(5.4)

Verbotene Graphen

Rechnerisch analog geschieht die Aufsummation des Grundpolymers mit Sei-
tenplaketten und inneren gruppentheoretischen Dekorationen, als Prototyp
der verbotenen Graphen, siehe Abb. 5.3. Da diese Polymerklasse keine Rand-
bedingungen bzgl. der endlichen Nt-Ausdehnung erfüllen muss, können wie
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Abbildung 5.3: Der erste verbotene Graph.

Abbildung 5.4: Beispiel für einen Cluster aus mehreren Polymeren bei Nt = 5

bereits erwähnt auch ungerade Anzahlen von inneren 3- und 6∗-Plaketten
auftreten. Innerhalb dieses Polymers ist Platz für maximal Nt− 1 Plaketten,
und ein Faktor d2

3 muss hinzugenommen werden, der in der Berechnung der
entsprechenden Integrale gemäß Gl. (3.17) erscheint:

φ−1 = 9 (1 + 3u + v + w)Nt−1 = 9 aNt−1. (5.5)

Auch dies ist der Beitrag eines einzelnen Polymers mit Dekorationen und
muss noch mit der Anzahl der entsprechenden Polymere - hier: N = 6 -
multipliziert werden, um das Endergebnis zu erhalten. Erneut ergibt sich der
Faktor aus den beiden fundamentalen Darstellungen und den drei möglichen
Querschnittsplaketten. Allerdings muss in diesem Fall nicht durch Nt geteilt
werden, da die Anzahl dieser Graphen in der T = 0-Theorie gezählt werden
muss. Der gesamte Beitrag lautet damit

Φ−
1 = 54 (1 + 3u + v + w)Nt−1. (5.6)

Graphen mit verändertem Beitrag

Als dritte Gruppe sind die Graphen mit verändertem Beitrag zu berücksich-
tigen. Hierzu zählen diejenigen Graphen, die aus mehreren aufeinanderfol-
genden Polymeren bestehen, siehe Abb. (5.4). Auch diese können innere De-
korationen aufweisen. Allerdings ist die Summation in diesem Fall nicht ganz
so einfach wie zuvor. Da diese Cluster aus mehreren Polymeren bestehen, ist
ihr kombinatorischer Faktor a(C) in den Rechnungen zu berücksichtigen.

In der T = 0-Theorie ergibt sich der Faktor bei i Polymeren, die wie eine
aufgeschnittene Kette aneinandergereiht sind, zu a(C) = (−1)i. Zusätzlich
erhält man aus der Ausintegration einen Faktor (9u2)i und aus der Anzahl der
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verschiedenen Darstellungen der Polymere einen Faktor 2i. Da die Polymere
mit dem Faktor a(C) so nicht mehr beitragen, wird ihr Beitrag zur Gruppe
mit den verbotenen Beiträge gezählt. Es ergibt sich analog zu Gl. (5.5) für
ein einzelnes Polymer mit inneren Zusätzen

φ−1 = 9 (1 + 3u + v + w − 18u2)Nt−1

= 9 (a− 18u2)Nt−1

≡ 9 cNt−1. (5.7)

Damit lautet der gesamte Beitrag der verbotenen Graphen dieser Klasse von
Polymeren und Clustern, also inklusive derjenigen, die in (5.6) aufsummiert
wurden

Φ−
1 (u) = 54 uNtcNt−1

= 54 (1 + 3u + v + w − 18u2)Nt−1. (5.8)

Wie bereits erwähnt, verändert sich durch die Randbedingungen der kom-
binatorische Faktor, da bei Clustern der Länge Nt das Anfangs- und das
Endpolymer nun miteinander verbunden sind, die Kette also aufgrund der
veränderten Struktur des Gitters geschlossen ist. Es ist dann

a(C) = i(−1)i (5.9)

wobei i wieder die Anzahl der Berührungsstellen zwischen den einzelnen Po-
lymeren angibt, bzw die Anzahl der Polymere selbst.

Der auf diese Weise veränderte Beitrag wird zu den neuen Graphen hin-
zugerechnet. Insgesamt ergibt sich dann bis auf den Faktor 6

Nt

φ+
1 =

1

2

Nt∑
i=2

(
Nt

i

)
(i− 1)(−18u2)iaNt−i =

=
1

2

[
aNt − (a + y)Nt + yNt(a + y)Nt−1

]
=

=
1

2

[
aNt − cNt + yNtc

Nt−1
]

mit der Abkürzung
y ≡ −18u2. (5.10)

Die Division durch 2 berücksichtigt, dass im Term 6
Nt

bereits ein Faktor 2
aufgrund der beiden Orientierungsmöglichkeiten des Grundpolymers hinzu-
multipliziert wurde.
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Der Beitrag dieser Klasse von Graphen lautet somit, inklusive derjenigen
aus (5.4)

Φ+
1 (u) =

6

Nt

uNt

[
1

2

(
aNt + bNt

)
+

1

2
yNtc

Nt−1 + aNt − cNt

]
(5.11)

Die Differenz der Beiträge und damit die gesuchte freie Energiedichte in
den niedrigsten Ordnungen ergibt sich zu

∆Φ1(Nt; u) = Φ+
1 (u)− Φ−

1 (u)

=
3

Nt

u4Nt
[
(1 + 3u + v + w − 18u2)Nt + (1− 3u− v + w)Nt

]
=

3

Nt

u4Nt
(
cNt + bNt

)
(5.12)

(5.13)

∆f(Nt; u) = −∆Φ1(Nt; u) (1 +O(u4))

= − 3

Nt

u4Nt
(
cNt + bNt

)
(1 +O(u4)) (5.14)

und ist ein erstes Zwischenergebnis meiner Arbeit.

5.1.3 Weitere Korrekturen

Aufbauend auf dem letzten Kapitel müssen nun die Graphen mit geometri-
schen Dekorationen untersucht werden. Bei der Berechnung der entsprechen-
den Integrale und der Anzahl der auftretenden Polymere und Cluster gibt es
einige Schwierigkeiten. Diese Schwierigkeiten treten auf, wenn mehr als zwei
Plaketten an einem Link zusammentreffen, ohne dass zwei dieser Plaketten
mit Variablen in der fundamentalen Darstellung besetzt sind. An dieser Stelle
möchte ich nur die Ergebnisse angeben, deren Erläuterung, auch im Hinblick
der genauen Abzählung der einzelnen Cluster- und Polymertypen, in den
Anhang verschoben wird.

Erste Korrektur

Die erste Korrektur zu den aufsummierten Graphen des Grundpolymers
stammt von Clustern mit einer geometrischen Form wie in Abb. (5.5) darge-
stellt. Die Anzahl dieser Art von Polymeren ist

N = 2 · 3 · (2 + 1) · 4 = 72 (5.15)

und somit 12Nt-mal höher als die des einfachen Grundpolymers. Dieser Fak-
tor kommt dadurch zustande, dass die Dekoration an den vier Seiten des Ku-
bus angebracht sein und in insgesamt drei Richtungen zeigen kann. Zusätzlich
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Abbildung 5.5: Grundpolymere mit Kuben als Dekorationen.

dazu kann der Kubus innerhalb einer Seite an insgesamt Nt Plaketten an-
gebracht werden. Da diese geometrische Dekoration für alle Graphentypen,
also die neuen und verbotenen Graphen und die Graphen mit verändertem
Beitrag, hinzugefügt werden kann, ergibt sich hieraus die Korrektur des Zwi-
schenergebnisses (5.14) zu

∆Φ2(u) = ∆Φ1(u) · (1 + 12 Nt u
4)

=
3

Nt

u4Nt
(
cNt + bNt

)
(1 + 12 Nt u

4) (5.16)

mit dem gemeinsamen Korrekturfaktor (1 + 12 Nt u
4).

Höhere Korrekturen

Im Anhang sind Graphen und Beiträge von Korrekturen der Ordnungen
(O(u5)-O(u7)) zusammengestellt, die nicht durch die Aufsummationen des
vorigen Abschnitts erfasst sind. Während (5.16) für alle Nt ≥ 2 gilt, muss
man bei den höheren Korrekturen zwischen Nt = 2 und Nt ≥ 3, in den hier
betrachteten Ordnungen, unterscheiden.

Für Nt ≥ 3 gilt für die korrigierten Beiträge der neuen Graphen Φ+
3 und

der verbotenen Graphen Φ−
3

Φ+
3 =

(
216 u + 72 (v + w)− 1068 u2 +

27

2048
w4 u−2 +

1

24
v4 u−2

+ 216 Nt w u +
81

2048
w4 u−1 +

1

8
v4 u−1 + 216 (Nt − 1) u3

)
u4Nt+4

(5.17)

Φ−
3 = (270 + 2754 Nt u) u4Nt+6. (5.18)

Insgesamt ergibt sich demnach für die Differenz der freien Energiedichte
bei endlichen Temperaturen für Nt ≥ 3 bis einschließlich der Ordnung O(u7)
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Nt b0 b2 b3 b4 b5 b6 b7

2 −3 −27 135 −298, 3 87, 75 −1540 7938

3 −2 −54 216 −315 634, 5 −6159 2, 226 · 104

4 −1, 5 −81 297 −497, 3 2396 −1, 558 · 104 4, 727 · 104

5 −1, 2 −108 378 −922, 5 6102 −3, 148 · 104 8, 954 · 104

6 −1 −135 459 −1712 1, 248 · 104 −5, 623 · 104 1, 666 · 105

8 −0, 75 −189 621 −4871 3, 617 · 104 −1, 498 · 105 5, 889 · 105

10 −0, 6 −243 783 −1, 095 · 104 7, 931 · 104 −3, 575 · 105 1, 922 · 106

12 −0, 5 −297 945 −2, 091 · 104 1, 477 · 105 −7, 988 · 105 5, 369 · 106

16 −0, 375 −405 1269 −5, 639 · 104 3, 837 · 105 −3, 292 · 106 2, 765 · 107

Tabelle 5.1: Koeffizienten der Starkkopplungsentwicklung der freien Energie-
dichte im Parameter u bei verschiedenen Nt

das Ergebnis

∆f(u) = −∆Φ(u) = −∆Φ2(u)− Φ+
3 + Φ−

3

= − 3

Nt

(
cNt + bNt

)
(1 + 12 Nt u

4)u4Nt

−
(
216u− 366u2 + (3888− 2106Nt)u

3
)
u4Nt+4 (5.19)

Für Nt = 2 muss dieser Ausdruck mit

−Φ+
4 = −44 u4Nt+4 + 36 u4Nt+6 (5.20)

für die bei dieser zeitlichen Ausdehnung zusätzlichen Polymere addiert wer-
den. Der Beitrag des gemäß des Anhangs bei Nt = 2 nicht mehr beitragenden
Graphen 6.2 wurde hier berücksichtigt.

Insgesamt erhält man also für einige ausgewählte, niedrige Nt die folgende
Tabelle mit den Koeffizienten der freien Energiedichte in einer Entwicklung
nach u

∆f(u) =
7∑

n=0

bn un, (5.21)

wobei der Koeffizient b1 für alle Nt gleich Null ist.
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5.2 Freie Energie der SU(2)

Die entsprechenden Überlegungen zur geschlossenen Aufsummation können
für die SU(2) benutzt werden. Hier ist die Situation für die führenden Terme,
also dem Grundpolymer mit gruppentheoretischen Dakorationen, einfacher
als im Falle der SU(3). Dies liegt an der einfacheren Struktur der irreduziblen
Darstellungen der SU(2). Als zusätzliche Plakettdarstellung kommt nur die
j = 1-Darstellung in Frage. Da die Berechnung, auch für die Graphen mit
verändertem Beitrag, ansonsten völlig analog ist, kann ich das Ergebnis nach
kurzer Rechnung angeben zu

Φ+ = − 3

Nt

Nt∑
i=0

(
Nt

i

)
(i− 1)(−4u2)i

Nt−i∑
j=0

(
Nt − i

j

)
(3v)j

= 12u2
(
1 + 3v − 4u2

)Nt−1
+

3

Nt

(
1 + 3v − 4u2

)Nt
(5.22)

Φ− = 12u2

Nt−1∑
i=0

(
Nt − 1

i

)
(−4u2)i

Nt−1−i∑
j=0

(
Nt − 1− i

j

)
(3v)i

= 12u2
(
1 + 3v − 4u2

)Nt−1
(5.23)

∆Φ =
3

Nt

(
1 + 3v − 4u2

)Nt
. (5.24)

Die führenden Terme der freien Energiedichte der SU(2) Gittereichtheorie
ergeben sich damit zu

∆f(u) = − 3

Nt

(
1 + 3v − 4u2

)Nt
. (5.25)

5.3 Screening-Massen

Betrachtet man die Korrelation in z-Richtung bei endlichen Temperaturen,
so sind, bei gegebenen z und Nt, die kleinsten zur Differenz der Masse bei-
tragenden Graphen Kreuze aus Plakettröhren mit Ausdehnungen z und Nt.
Entsprechende Graphen sind in Abb. (5.6) dargestellt.

Gemäß den Gln. (3.43) und (3.45) ergibt sich ihr Beitrag unter Berück-
sichtigung der Summation über alle ~x zu

∆Φ = zNt d
2
f u(β1)u(β2)u

4z+4Nt−6(2− δN,2) (5.26)
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z z

Nt

Abbildung 5.6: Zur führenden Ordnung der Differenz der Screening-Massen
beitragende Polymere bei parallelen Korrelationsplaketten.

und die Differenz der Korrelationen lautet damit

∆C(T ; z) = N2

(
du

dβ

)2

zNt d
2
f u4z+4Nt−6(2− δN,2). (5.27)

Damit gilt für die Massenänderung bei endlichen Temperaturen in der nied-
rigsten Ordnung

∆M(T ) = −2

3
Ntu

4Nt−6. (5.28)

Der Faktor 2/3 ergibt sich aus der Division durch 3 in Gl. (3.41) und der Tat-
sache, dass nur die Korrelationen zwischen parallelen Plaketten mit zeitlicher
Ausdehnung in dieser Ordnung beitragen. Das sind in diesem Fall - bei Korre-
lation in z-Richtung - die (x, t) und die (y, t)-Plaketten. Die (x, y)-Plaketten
bilden zur Nt-Plakettröhre einen rechten Winkel, so dass zusätzliche Plaket-
ten erforderlich sind, um das Polymer zu schließen. Die führende Ordnung
der Differenz der Screening-Massen ist also unabhängig von der zugrundelie-
genden Eichgruppe.

48



Kapitel 6

Diskussion

6.1 Freie Energiedichte

6.1.1 Auswertung

Summierte Beiträge

Das Ergebnis Gl. (5.14) ist auch ohne die weiteren Korrekturen beachtens-
wert. Für ein freies Bosonengas gilt [2] im Kontinuum die Gleichung

ln Z = V

∫
d3p

(2π)3
ln(1− e−βT ω). (6.1)

Mit der Dispersionsrelation

ω(p) =
√

p2 + m2, (6.2)

gilt für die freie Energiedichte im klassischen, nichtrelativistischen Limes, der
durch T � ω und

ω(p) ' m +
p2

2m
(6.3)

definiert ist

∆fkont(T ) = − 1

βT

(
m

πβT

) 3
2

e−mβT , (6.4)

wobei die übliche Schreibweise der freien Energiedichte der Notation in dieser
Arbeit angepasst wurde.

Für die auf dem Gitter in einer SCE berechnete freie Energiedichte gilt
nach (5.14)

∆flat(Nt; u) = − 3

Nt

u4Nt
[
(1 + 3u + v + w − 18u2)Nt + (1− 3u− v + w)Nt

]
(6.5)
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Beachtet man nun noch die Äquivalenz

Nt a =
1

T
= βT , (6.6)

so erkennt man, dass Gl. (6.5) bis auf einen Vorfaktor Gl. (6.4) mit den
niedrigsten Glueball-Massen reproduziert. Diese sind in den führenden Ord-
nungen gegeben durch

m(A1) = −4 ln u− ln(1 + 3u + v + w − 18u2) (6.7)

m(E) = −4 ln u− ln(1 + 3u + v + w − 18u2) (6.8)

m(T1) = −4 ln u− ln(1− 3u− v + w), (6.9)

wobei A1, E und T1 irreduzible Darstellungen der kubischen Gruppe O sind.
Wie in [1] beschrieben wird, handelt es sich bei diesen Darstellungen um
die Gitteranaloga zu Spin-J-Teilchen im Kontinuum. Die Darstellung A1 ist
eindimensional und entspricht einem J = 0-Glueball, E ist eine zweidimen-
sionale Darstellung und hängt mit J = 2 zusammen und T1 ist dreidimen-
sional und korrespondiert mit einem J = 1-Glueball. Die entsprechenden
Linearkominationen der Plakettoperatoren sind bis auf Normierung

A++
1 : Re (Tr U12 + Tr U23 + Tr U31) (6.10)

E++ : Re (Tr U13 − Tr U23), Re (Tr U13 + Tr U23 − 2Tr U12)(6.11)

T+−
1 : Im (Tr U12), Im (Tr U23), Im (Tr U31). (6.12)

Die oberen Indizes der Darstellungen stehen für die Parität und die Ladungs-
parität. Letztere ist äquivalent zur Komplexkonjugation von Wilson-Loops,
also von rechteckigen Schleifen aus Links. Da die SU(2) keine komplex-
konjugierten Darstellungen besitzt, tritt der letztgenannte Glueball in dieser
Eichgruppe nicht auf, da er negative Ladungsparität besitzt.

Weitere Darstellungen können aus den einfachen Plakettoperatoren nicht
erstellt werden. Wie in [1] weiterhin erläutert wird, entsprechen die Dar-
stellungen zusätzlich auch Kontinuumsdarstellungen mit höheren Spins. Da
allerdings angenommen wird, dass die niedrigsten Massen zu den niedrigsten
Spins gehören, sollten die genannten Darstellungen die führenden Terme der
freien Energiedichte dominieren.

Gewichtet man die Massen der einzelnen Glueballs nun mit ihrer Dimen-
sionalität, so ergibt sich aus (6.5)

∆flat(Nt; u) = − 1

Nt

[
e−m(A1)Nt + 2e−m(E)Nt + 3e−m(T1)Nt

]
, (6.13)

womit die obige Behauptung gezeigt ist.
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Zu dieser Interpretation passt auch das entsprechende SU(2)-Ergebnis

∆f(Nt; u) = − 3

Nt

(
1 + 3v − 4u2

)Nt · u4Nt . (6.14)

Da es wie erwähnt in der SU(2) keine komplex-konjugierten Darstellungen
gibt, tragen nur die A1- und E-Glueballs bei. Für diese gilt

m(A1) = −4 ln u− ln(1 + 3v − 4u2) (6.15)

m(E) = −4 ln u− ln(1 + 3v − 4u2) (6.16)

und man erhält

∆f
SU(2)
lat (Nt; u) = − 1

Nt

(
e−m(A1)Nt + 2e−m(E)Nt

)
. (6.17)

Der fehlende Vorfaktor in (6.4) kann vermutlich durch eine im Starkkopp-
lungsbereich modifizierte Dispersionsrelation erklärt werden. Trotzdem ist es
beachtlich, dass die SCE der freien Energiedichte das T → 0-Ergebnis der
entsprechenden Kontinuums-Rechnung wiedergibt. Dadurch erscheint es also
plausibel, dass die angewandte Methode, analytische Resultate bei endlichen
Temperaturen durch Starkkopplungsentwicklungen zu erhalten, durchaus ge-
rechtfertigt ist.

Potenzreihen

Eines der ursprünglichen Ziele dieser Arbeit war es, mithilfe einer Reihen-
entwicklung der freien Energie bei endlichen Temperaturen, Informationen
über den Deconfinement-Phasenübergang der reinen Eichtheorie zu erhal-
ten. Dieses Ziel kann man als noch nicht erreicht ansehen, wie eine Analyse
der Tabelle (5.1) zeigt, in der die Koeffizienten der niedrigsten Ordnungen der
freien Energiedichte der SU(3) für verschiedene Nt angegeben sind. Allgemein
entspricht ein Phasenübergang zweiter Ordnung einer Singularität auf der re-
ellen Parameterachse, hier der β- oder u-Achse. Das asymptotische Verhältnis

lim
n→∞

bn

bn−1

= βc (6.18)

der Koeffizienten bn der Reihe sollte unter gewissen Voraussetzungen einen
Wert für den kritischen Parameter βc liefern. Eine Voraussetzung wäre dabei,
dass die gesuchte reelle Singularität auch wirklich die am Entwicklungspunkt
β = 0 nächstgelegene Singularität ist. Nimmt man diese Vorausetzung nun
als gegeben an, dann sollten die Verhältnisse der berechneten Koeffizienten
einen Schätzwert für die Lage des Phasenübergangs liefern.
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Abbildung 6.1: Ergebnisse von Monte-Carlo-Simulationen des Drucks in der
reinen SU(3)-Eichtheorie. Drei verschiedene zeitliche Gitterausdehnungen
Nt = 4, 6 und 8 sind betrachtet worden. Unterhalb der kritischen Tempera-
tur ist der Druck, der der negativen freien Energiedichte entspricht praktisch
verschwindend. Die Abbildung ist der Referenz [8] entnommen.
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Wie in der Tabelle erkennbar, sind aber die Verhältnisse der Koeffizienten
nicht von einheitlichem Vorzeichen. Dies ist aber notwendig, um aus dem
Verhältnistest (6.18) eine reelle Singularität zu bestimmen. Es ist demnach
wahrscheinlich, dass die berechneten Reihen noch viel zu kurz sind, als dass
man aus den Koeffizienten die Lage der Singularität ablesen könnte.

Wie man aus der Abbildung 6.1 entnehmen kann, ist der Druck, der
der negativen Energiedichte entspricht, unterhalb der kritischen Temperatur
praktisch nicht vorhanden. Dieses Verhalten lässt sich allerdings mit den
hier erzielten Ergebnissen verstehen. Die führende Ordnung in der freien
Energiedichte ist von der Ordnung O(u4Nt), und da u typischerweise kleiner
als 1 ist, ist der gesamte Ausdruck fast Null.

6.1.2 Ausblick

Um die Lage des Phasenübergangs zu bestimmen gibt es noch mehrere Mög-
lichkeiten der Verbesserung, die im Rahmen dieser Arbeit allerdings nicht
oder nur teilweise berücksichtigt werden konnten. Die einfachste Methode
wäre es sicherlich, weitere Koeffizienten der Reihenentwicklung zu bestim-
men. Der Rechenaufwand steigt allerdings mit jeder weiteren Ordnung sehr
stark an, einerseits durch immer vielfältigere geometrische Formen der Po-
lymere und andererseits durch die Einbeziehung höherdimensionalerer Dar-
stellungen der Eichgruppen. Dadurch wird diese Möglichkeit in hohem Maße
begrenzt. Die Nutzung von rechnergestützten Methoden könnte hier zu einem
gewissen Grade helfen.

Eine weitere Möglichkeit besteht in der Verbesserung der Analysemetho-
den. Der oben angeführte Verhältnistest ist zwar recht einfach, allerdings
auch ebenso abhängig von langen Reihen oder schneller Konvergenz der
Verhältnisse. Da die Koeffizienten der Entwicklung unabhängig von der Re-
chenmethode sind, kann man versuchen aus ihnen weitere Informationen über
die gesuchte Funktion selbst herauszuholen. Sei diese Funktion nun allgemein
mit f(x) bezeichnet. Ein geeignetes Mittel können Padé-Approximanten sein.
Diese kurz Padés genannten rationalen Funktionen sind als Verhältnisse zwei-
er Polynome PL(x) und QM(x) definiert. Die Grade L und M der Polynome
werden so gewählt, dass L+M = n gilt, wobei xn eine bekannte Ordnung der
Taylorentwicklung der gesuchten Funktion ist. Die Polynome können dann
durch die Forderung, dass die Padé-Approximante [L, M ]

[L, M ](x) ≡ PL(x)

QM(x)
=

n∑
i=1

anx
n +O(xn+1) (6.19)

mit der Taylorentwicklung in den bekannten niedrigsten Ordnungen über-
einstimmen soll, eindeutig bestimmt werden. Diese Verfahren werden in [12]
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näher erläutert.
Die Padés haben zwei offensichtliche Vorteile gegenüber den Taylorent-

wicklungen. Zunächst können sie als rationale Funktionen im Limes x→∞
endliche Werte annehmen, während das Verhalten der trunkierten Taylorent-
wicklungen in diesem Limes durch das Vorzeichen der höchsten berechneten
Ordnung bestimmt wird, und entweder gegen +∞ oder −∞ geht. Dies ist
natürlich im Allgemeinen eher unphysikalisch. Auch der zweite Vorteil liegt
an ihrer Natur als rationale Funktion, denn sie können durch Nullstellen
des Nenners auf natürliche Weise Singularitäten besitzen. Trunkierte Taylor-
entwicklungen können dagegen, da sie als Polynome analytische Funktionen
sind, keine Singularitäten aufweisen. Als Nachteil kann es sich allerdings zei-
gen, dass die Padés durchaus zusätzliche Singularitäten aufweisen. Betrachtet
man nur eine einzelne Padé-Approximante, so lässt sich nicht entscheiden,
welches die gesuchte und welches eine eventuelle überflüssige Singularität
ist. Bei diesem Problem hilft die Freiheit, den Grad n der Taylorentwicklung
und das Paar (L, M) mit L + M = n zu variieren. Dadurch ist es möglich
eine ganze sogenannte Padé-Tafel zu erstellen, angefangen mit der trivialen
Padé-Approximante [0, 0] über [1, 0] und [0, 1] bis zu den höchsten mit der
berechneten Taylorentwicklung möglichen Approximante. Durch Analyse der
Singularitäten aller Padés in der Tafel sollten sich die überflüssigen von den
gesuchten Singularitäten trennen lassen. Die gesuchten Singularitäten werden
idealerweise für die meisten Padés in einem bestimmten engen Parameterbe-
reich liegen, während die überflüssigen zufällig verteilt sind. Zusammen mit
höheren Ordnungen der Taylorentwicklung sollte dieses Verfahren bessere
Resultate zum Auffinden des Phasenübergangs liefern.

6.2 Screening-Massen

Wie aus dem Ergebnis

∆M(T ) = −2

3
Ntu

4Nt−6. (6.20)

ersichtlich, ist die Änderung der Screening-Masse unterhalb der kritischen
Temperatur Tc sehr klein. Im Falle der SU(3) liegt der kritische Wert des
Parameters β für Nt ≤ 20 typischerweise im Bereich βc ' 6. Gemäß der Gl.
(A.20) aus dem Anhang entspricht dies einem Wert für u von

u(β ' 6) ' 1

3
. (6.21)

Mit demselben Argument, dass die freie Energiedichte unterhalb der kriti-
schen Temperatur praktisch verschwindet, lässt sich demnach die geringe
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Differenz der Screening-Massen unterhalb von Tc vom T = 0-Fall verstehen.
Dieses Ergebnis wird auch durch numerische Resultate gestützt, siehe [3] und
Referenzen in dem Artikel. Da die Starkkopplungsentwicklungen durch den
Phasenübergang in ihrer Konvergenz beschränkt sind, ist es nicht möglich die
durch numerische Resultate bei T > Tc gefundene Temperaturabhängigkeit
der Screening-Massen mit den hier vorgestellten Methoden zu bestätigen.
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Anhang A

Entwicklungsparameter der
irreduziblen Darstellungen

Die Darstellung der Entwicklungsparameter folgt im wesentlichen der Notati-
on aus [1]. Im Falle der SU(3) sind die Formeln für die Entwicklungsparameter
[9] entnommen. Entsprechend der Gl. (3.1) sind die Entwicklungsparameter
cr der irreduziblen Darstellungen der SU(N) definiert durch die Charakter-
entwicklung des Plakett-Boltzmannfaktors mit Wilson-Wirkung

exp [−Sp(U)] = exp

[
β

2N

(
Tr U + Tr U † − 2N

)]
=

∑
r

dr cr(β) χr(U) (A.1)

wobei r die irreduziblen Darstellungen nummeriert. Gemäß den allgemeinen
Formeln für die Charakterentwicklung einer Klassenfunktion f(U)

f(U) =
∑

r

fr χr(U) (A.2)

fr =

∫
dU χr f(U) (A.3)

gilt somit für die Entwicklungsparameter

cr(β) = − 1

dr

∫
dU χr exp

[
β

2N

(
χf (U) + χf (U

†)− 2N
)]

. (A.4)

A.1 SU(2)

Im Fall der SU(2) lässt sich das Integral in (A.4) berechnen und auf die
modifizierten Besselfunktionen zurückführen. Mit den speziell für die SU(2)
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geltenden Gleichungen

dU =
1

4π2
dϕ dΩ(~n)

(
sin

ϕ

2

)
(A.5)

χj(U) =
sin(j + 1

2
)ϕ

sin 1
2
ϕ

, (A.6)

wobei der Winkel ϕ und der Einheitsvektor ~n die Elemente der Gruppe gemäß

U =
(
cos

ϕ

2

)
1 + i

(
sin

ϕ

2

)
~n · ~τ (A.7)

parametrisieren, erhält man für die Entwicklungsparameter der SU(2):

cj =
2

β
I2j+1(β)e−β. (A.8)

Der Faktor dΩ(~n) ist das Einheitsmaß auf der S2-Sphäre und ~τ ist der Vektor
aus den drei Pauli-Matrizen. Aus den cj folgt mit

ar(β) =
cr(β)

c0(β)
(A.9)

für die Parameter aj

aj(β) =
I2j+1(β)

I1(β)
. (A.10)

A.2 SU(3)

Im Gegensatz zu den Entwicklungsparametern in der SU(2), die als Verhält-
nisse von modifizierten Besselfunktionen Ik, mit der inversen Kopplung β als
Argument, berechnet werden, lassen sich in der SU(3) diese Parameter ar(β)
nicht in so einfacher Form angeben. Die Berechnung der in dieser Arbeit
benutzten Parameter der Darstellungen 1,3,6 und 8 möchte ich an dieser
Stelle vorstellen. Dabei werden die Irreduziblen Darstellung statt durch ihre
Dimensionen durch zwei ganze Zahlen (p, q) definiert:

1 = (0, 0)

3 = (1, 0)

6 = (2, 0)

8 = (1, 1).
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Die Zahlen p und q durchlaufen alle natürlichen Zahlen und charakterisieren
die Irreduziblen Darstellungen der SU(3) und ihre Dimensionen gemäß

d(p,q) = (1 + p) (1 + q)

(
1 +

p + q

2

)
. (A.11)

Die Parameter der komplex-konjugierten Darstellungen stimmen mit denen
der nicht-konjugierten überein und brauchen nicht gesondert betrachtet zu
werden. Wird aus diesen beiden Zahlen p und q ein Tripel

{λi} = {p + q, q, 0}

gebildet, so lässt sich der Ausdruck, mit dem die Entwicklungsparameter
berechnet werden, angeben als

c(p,q)(β) =
1

d(p,q)

∞∑
n=−∞

detIλi−i+j+n

(
β

3

)
(A.12)

wobei i die Zeile und j die Spalte der Matrix aus modifizierten Besselfunk-
tionen Ik(x) angeben [9]. Aus c(p,q) kann a(p,q) mithilfe der folgenden Relation
berechnet werden

a(p,q)(β) =
c(p,q)(β)

c(0,0)(β)
(A.13)

Da der führende Term der modifizierten Besselfunktion Ik(x) von der Ord-
nung xk ist, ist es mit (A.12) möglich c(p,q) und damit a(p,q) zu berechnen.
Denn bei gegebener Ordnung reicht es aus, in der Summation nur die nied-
rigsten Summanden mitzunehmen. Man erhält bis einschließlich der Ordnung
O(β7) für den Parameter der trivialen Darstellung

c1(β) =
∞∑

n=−∞

det

 In In+1 In+2

In−1 In In+1

In−2 In−1 In


=

∞∑
n=−∞

(I3
n + In−2I

2
n+1 + I2

n−1In+2 − 2In−1InIn+1 − In−2InIn+2)

= 1 + t2 +
1

3
t3 +

1

2
t4 +

1

4
t5 +

13

72
t6 +

11

120
t7 + . . . (A.14)

mit der zur Abkürzung des Ausdrucks definierten Größe t = β
6
. Vollkommen
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analog berechnen sich die Parameter der höherdimensionalen Darstellungen

c3(β) =
1

3

∞∑
n=−∞

det

In+1 In+2 In+3

In−1 In In+1

In−2 In−1 In


= t +

1

6
t2 +

1

3
t3 +

5

24
t4 +

13

72
t5 +

77

720
t6 +

139

2160
t7 + . . . (A.15)

c6(β) =
1

6

∞∑
n=−∞

det

In+2 In+3 In+4

In−1 In In+1

In−2 In−1 In


=

1

12
t2 +

1

12
t3 +

7

72
t4 +

7

90
t5 +

1

18
t6 +

149

4320
t7 + . . . (A.16)

c8(β) =
1

8

∞∑
n=−∞

det

In+2 In+3 In+4

In In+1 In+2

In−2 In−1 In


=

1

8
t2 +

1

12
t3 +

1

8
t4 +

1

12
t5 +

31

480
t6 +

3

80
t7 + . . . (A.17)

und aus diesen, zusammen mit Gl. (A.13) die Abhängigkeit der Entwick-
lungsparameter v ≡ d6a6 der 6- und w ≡ d8a8 der 8-Darstellung vom Ent-
wicklungsparameter u ≡ a3(β) der fundamentalen Darstellung

v =
9

2
u2 − 27

8
u4 +

891

40
u5 − 1215

16
u6 +

18711

80
u7 + . . . (A.18)

w = 9u2 − 9u3 +
81

4
u4 − 81

2
u5 +

1862

20
u6 − 2187

10
u7 + . . . (A.19)

Die β-Abhängigkeit von u(β) lautet

u =
1

3
t +

1

6
t2 − 5

72
t4 +

1

24
t5 +

7

720
t6 +

159

2160
t7 + . . . (A.20)

wobei wiederum statt β der Parameter t benutzt wurde.
Höhere Ordnungen in den Entwicklungsparametern lassen sich mithilfe

von Rekursionsrelationen berechnen, vgl. [10]. Damit können die Parameter
im Prinzip in beliebig hohen Ordnungen angegeben werden.
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Anhang B

Berechnung spezieller Integrale

Bei der Berechnung des Beitrags gewisser Graphen treten Integrale auf, die
nicht so einfach wie die im Haupttext beschriebenen zu lösen sind. Die ex-
plizite Berechnung soll an dieser Stelle geschehen.

Im folgenden benutzte Gleichungen sind die Integrationsregeln (3.11) und
(3.12) und die für alle SU(N) gültigen Relationen [11]∫

dU UijU
†
klUmnU

†
op =

1

N2 − 1
(δilδjkδmpδno + δipδmlδjoδnk)−

− 1

N(N2 − 1)
(δilδjoδmpδnk + δipδjkδmlδno). (B.1)

und ∫
dU Ui1j1 . . . Uinjn =

1

N !
εi1...inεj1...jn (B.2)

Die Integrale sollen für einen Beispielgraphen mit wenigen Plaketten be-
rechnet werden, da die Verallgemeinerung auf Graphen mit einer größeren
Anzahl von Plaketten keinerlei Schwierigkeiten bereitet.

Drei Plakettvariablen an einem Link

Die erste Integration entspricht dem Zusammentreffen von drei Plaketten in
der fundamentalen Darstellung an einem Link. Ein entsprechender Graph ist
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Abbildung B.1: Drei Plakettvariablen an einem Link.

Abbildung B.2: Drei Kuben mit einer gemeinsamen Plakette.

in Abb. (B.1) dargestellt und die Berechnung lautet

I =

∫
DUu11d11

f

11∏
i=1

TrU(pi)

= u11d3
f

∫
dU TrU TrU TrU

= u11d3
f

1

N !
εi1···iN εi1···iN

= u11d3
f (B.3)

wobei im vorletzten Schritt die Integrationsregel (B.2) ausgenutzt wurde.
Die Beiträge der beiden an der mittleren Plakette anschließenden Ku-

ben werden durch insgesamt 8 Integrationen gemäß (3.11) ausintegriert, bis
schließlich nur noch ein Integral über die vier Links der mittleren Plakette
übrigbleibt. Der Integrand besteht dann aus drei Plaketten, wobei alle Plaket-
ten dieselbe Orientierung annehmen. Dieses Integral wird dann als Spezialfall
der Regel (B.2) berechnet.

Das Integral zum Graphen aus Abb. (B.2), bei dem drei Kuben an einer
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8

Abbildung B.3: Vier Plaketten in der Fundamentaldarstellung wurden gegen
Plaketten in der 8-Darstellung getauscht. Zusätzlich wurden zwei weitere
Fundamentalplaketten eingefügt.

gemeinsamen Plakette anschließen, lautet

I =

∫
DU d16

f u16

16∏
i=1

TrU(pi)

= d4
fu

16

∫
dU [TrU ]2

[
TrU †]2

= d4
fu

16

[
2N2

N2 − 1
− 2N

N(N2 − 1)

]
= 2 d4

fu
16. (B.4)

Hier wurde die Integrationsregel (B.1) benutzt.

Graphen mit höherdimensionalen Plakettvariablen

Ein weiteres nichttriviales Integral ist bei der Ausintegration des Beitrags
des in Abb. (B.3) gezeigten Graphen zu berechnen.Es ergibt sich

I =

∫
DU u12d12

3 a4
8d

4
8

16∏
i=1

χri
(Upi

)

= d4
3u

12 a4
8

∫
dU1dU2 χ3(U1) χ3(U1) χ8(U1) χ3(U2) χ3(U2) χ8(U2)

= d4
3u

12 a4
8 (B.5)

wobei die äußeren Plaketten in der 3- und die inneren Plaketten in der 8-
Darstellung ausintegriert wurden und ein Integral über zwei Plaketten mit
je drei Plakettvariablen in der 3-, 3- und der 8-Darstellung übrigblieben.
Diese beiden letzten Integrale ergeben jeweils eine Eins in Übereinstimmung
mit der Integrationsregel (3.12). Die Rechnung für ein ähnliches Polymer mit
Plaketten in der 6-Darstellung läuft völlig analog ab.
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8

Abbildung B.4: Vier Plakettvariablen an einem Link, davon drei in der
fundamentalen Darstellung mit derselben Orientierung und eine in der 8-
Darstellung.

Abbildung B.5: Zwei Polymere deren Beitrag sich unter den neuen Randbe-
dingungen nicht ändert.

Ein weiterer Graph mit Plaketten in höherdimensionalen Darstellungen
ist in (B.4) abgebildet, und das dazugehörige Integral berechnet sich zu

I =

∫
DU d15

3 u15 w
16∏
i=1

χri
(U(pi))

= d4
fu

15 w

∫
dU1dU2dU3 χ3(U1U2)χ3(U1U3)χ8(U1U3)χ3(U2U

†
3)χ3(U2U

†
3)

= d3
fu

15 w

∫
dU1dU3 χ3(U1U3) χ3(U1U3) χ8(U1U3)

= d3
fu

15 w (B.6)

Weitere Graphen

Zusätzlich dazu gibt es auch einige Graphen bei denen sich der Beitrag nicht
ändert, diese also nicht zur freien Energiedichte beitragen, bei denen sich die
Berechnung des Beitrages aber vom T = 0-Fall unterscheidet. Diese Graphen
sind in Abb. (B.5) gezeigt. Im T = 0-Fall ergeben beide Polymere einen
Beitrag

Φ = d2
fu

4Nt+6 = 9u4Nt+6 (B.7)

Dass der Beitrag auch im T 6= 0-Fall, wenn sich zwei Links an der linken
und rechten Seite der Polymere berühren, ebenfalls diesen Wert liefert, ist
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U4

U3

U2

U1

Nt = 5

Abbildung B.6:

nicht offensichtlich. Eine kurze Rechnung soll dies bestätigen. Nimmt man
das linke Polymer als Beispiel, so ergibt sich zunächst für den expliziten Fall
Nt = 5

I =

∫
DU u26 d26

f

26∏
i=1

Tr U(pi) =

= u26 d2
f

∫
dU1dU2dU3dU4 Tr (U1 U2 U3 U4) Tr (U †

4 U †
3 U †

2 U †
1) (B.8)

wobei die Integration bis auf die beiden in Abb. (B.6) dargestellten Inte-
grationswege durchgeführt wurde. Bei T 6= 0 werden die Linkvariablen bei
U2 und U4 im Gegensatz zum Fall verschwindender Temperaturen identifi-
ziert. Aus diesem Grund ist es nicht offensichtlich, dass der Beitrag derselbe
bleibt. Rechnet man allerdings weiter, so erhält man mit der angesprochenen
Identifizierung unter Berücksichtigung der Orienierungen der Linkvariablen

I = u26d2
f

∫
dU1dU2dU3 Tr (U1 U2 U3 U †

2) Tr (U2 U †
3 U †

2 U †
1) =

= u26df

∫
dU2dU3 Tr ( U2 U3 U †

2 U2 U †
3 U †

2) =

= u26 df Tr (1) =

= u26 d2
f (B.9)

Es ist demnach zulässig, diese und ähnliche Graphenklassen bei der Berech-
nung der freien Energiedichte nicht zu berücksichtigen.
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Anhang C

Auflistung verschiedener
Klassen von Graphen

Alle temperaturabhängigen Graphen haben gemeinsam, dass sie eine Aus-
dehnung in Zeitrichtung größer oder gleich Nt besitzen. Zwei Beispiele sind
in Abb. (C.1) für Nt = 5 aufgeführt. Das linke Diagramm dieser Abbildung
zeigt das Polymer mit der geringsten Anzahl an Plaketten, dass durch das
veränderte Gitter einen neuen Beitrag zur Freien Energie liefert. In einer
Entwicklung nach Potenzen des Parameters u ≡ af (β), liefert dieser Graph
einen Beitrag zur Ordnung u4Nt . Da es möglich ist, gewisse Klassen von Gra-
phen geschlossen aufzusummieren, möchte ich an dieser Stelle diese Klassen
durch einige Beispiele skizzieren und ihren Beitrag zur Cluster-Entwicklung
der Freien Energie angeben.

Wie bereits erwähnt kann man die temperaturabhängigen Graphen in drei
Typen aufteilen: Neue Cluster, verbotene Cluster und Cluster mit veränder-
tem Beitrag. Im Allgemeinen zeichnen sich die neuen Cluster durch eine toro-
idale Struktur aus, d.h. sie sind durch die Randbedingungen in sich selbst ge-
schlossen. Die Cluster mit verbotenem Beitrag sind im Prinzip von derselben
Form wie diejenigen in der T = 0-Theorie, jedoch ist es bei einigen Graphen
möglich, dass sich ihr Beitrag aufgrund der verkleinerten Nt-Ausdehnung des
Gitters verändert und sie in diesem Fall die Gruppe der Cluster mit veränder-
tem Beitrag definieren.

Abbildung C.1: Graphen mit Temperturabhängigkeit bei Nt = 5
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Abbildung C.2: Koordinatensystem: Die räumlichen Achsen sind beliebig, die
Zeit- bzw. Temperatur-Achse ist die horizontale Achse.

Das Koordinatensystem ist bei allen folgenden Abbildungen so gewählt
(siehe Abb. C.2), dass die Horizontale die Zeit- bzw. Temperatur-Achse dar-
stellt, und die drei übrigen Richtungen beliebige der drei Raumrichtungen
sind. Die jeweiligen Graphen der niedrigsten Ordnungen für die zwei Fälle
Nt = 2 und Nt ≥ 3 werden in diesem Kapitel dargestellt. Letztere dabei
jeweils am Beispiel Nt = 5. Die auftretenden Formen gelten dann aber ent-
sprechend für alle Nt ≥ 3. Für Nt = 2 gibt es einige besondere geometrische
Formen, die bei Nt ≥ 3 in den betrachteten Ordnungen nicht auftreten.

Graphen für Nt ≥ 3

In diesem Kapitel werde ich die einzelnen Graphen auflisten. Alle hier ge-
zeichneten Graphen können mit inneren Plaketten versehen werden, also ge-
schlossen aufsummiert werden. Daher werde ich nur die niedrigsten Polymere
einer Klasse angeben. Mit der Auflistung der Graphen ist die Arbeit noch
nicht getan, es müssen noch ihre Integrale und ihre Anzahl angegeben wer-
den. Dies wird in Tabelle (C.1) präsentiert. Die Berechnung der Integrale
kann mit den im Haupttext oder im vorherigen Kapitel des Anhangs ange-
gebenen Methoden geschehen.
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Polymer Integral a(C) Anzahl Beitrag

5.1 d3 u4Nt+5 1 2 · 3 · (2 + 1) · 4 Φ+ = 216 u4Nt+5

6.1 a d8a8 u4Nt+4 1 2 · 3 · (2 + 1) · 4 Φ+ = 72 w u4Nt+4

6.1 b d6a6 u4Nt+4 1 2 · 3 · (2 + 1) · 4 Φ+ = 72 v u4Nt+4

6.2 u4Nt+6 1 2 · 3 · (2 + 1) · 4 Φ+ = 72 u4Nt+6

6.3 a d2
3 u4Nt+6 -1 22 · 3 · (2 + 1) · 4 Φ+ = −1296 u4Nt+6

6.3 b d2
3 u4Nt+6 -1 22 · 3 · (2 + 1) Φ+ = −324 u4Nt+6

6.4 a d2
3 a4

8 u4Nt−2 1 2 · 3 Φ+ = 27
2048

w4 u4Nt−2

6.4 b d2
3 a4

6 u4Nt−2 1 2 · 3 Φ+ = 1
24

v4 u4Nt−2

6.5 a d2
3 u4Nt+6 1 2 · 3 Φ− = 54 u4Nt+6

6.5 b d2
3 u4Nt+6 1 2 · 3 · 2 · 2 Φ− = 216 u4Nt+6

6.6 u4Nt+6 1 2 · 3 · 4 · 2 Φ+ = 48 u4Nt+6

6.7 2d2
3 u4Nt+6 1 22 · 3 · 2 Φ+ = 432 u4Nt+6

7.1 d3 d8a8 u4Nt+5 1 2 · 3 · (2 + 1) · 4 ·Nt Φ+ = 216 Nt w u4Nt+5

7.2 a d3
3 a4

8 u4Nt−1 1 2 · 3 Φ+ = 81
2048

w4 u4Nt−1

7.2 b d3
3 a4

6 u4Nt−1 1 2 · 3 Φ+ = 1
8
v4 u4Nt−1

7.3 a d3
3 u4Nt+7 1 2 · 3 ·Nt Φ− = 162 Nt u

4Nt+7

7.3 b d3
3 u4Nt+7 1 2 · 3 · 2 · 2 ·Nt Φ− = 648 Nt u

4Nt+7

7.4 2 d2
3 u4Nt+7 1 2 · 3 · 2 · (Nt − 1) Φ+ = 648 (Nt − 1) u4Nt+7

7.5 d3
3 u4Nt+7 1 2 · 3 · (2 + 1) · 4 ·Nt Φ− = 944 Nt u

4Nt+7

Tabelle C.1: Graphen und ihre Beiträge für Nt ≥ 3
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Abbildung C.3: Graph 5.1: Einziges Polymer der Ordnung O(u5) in der Kor-
rektur: Die grau eingefärbten Plaketten sind dem restlichen Polymer entge-
gengesetzt orientiert.

8 6

Abbildung C.4: Graph 6.1: Polymere der Ordnung O(u6) in der Korrektur,
hier mit jeweils einer zusätzlichen Plakette in der 8- bzw. 6-Darstellung.

Abbildung C.5: Graph 6.2: Polymer mit Doppelkubus als Dekoration.

Abbildung C.6: Graph 6.3: Jeweils ein Cluster aus zwei Polymeren.
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8

3
6

Abbildung C.7: Graph 6.4: Vier Plakettvariablen in der Fundamentaldarstel-
lung am Grundpolymer wurden durch höherdimensionale Plaketten ersetzt.
Zusätzlich wurden an den Übergangsstellen 3-Plaketten eingefügt.
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Abbildung C.8: Graph 6.5: Polymere dieser Form mit einer zeitlichen Aus-
dehnung größer oder gleich Nt gehören zu den verbotenen Clustern.

Abbildung C.9: Graph 6.6: Polymer, dessen Dekoration sich in vier Dimen-
sionen ausdehnt.

Abbildung C.10: Graph 6.7: Grundpolymer mit zusätzlichem Kubus.

8

Abbildung C.11: Graph 7.1: Polymer aus Graph 5.1, mit zusätzlicher 8-
Plakette. Siehe dazu die Integration in Gl. (B.6).
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Abbildung C.12: Graph 7.2: Polymere aus Graph 6.4 mit zusätzlicher Pla-
kette in fundamentaler Darstellung.
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Abbildung C.13: Graph 7.3: Polymere aus Graph 6.5 mit zusätzlicher innerer
Plakette.

Abbildung C.14: Graph 7.4: Graph 6.7 mit zusätzlicher Plakette in 3-
Darstellung.

Abbildung C.15: Graph 7.5: Verbotener Graph mit Dekoration und zusätzli-
cher Plakette.
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Zusätzliche Graphen und Beiträge für Nt = 2

Polymer Integral Anzahl Beitrag

4.1 u4Nt+4 2 · 3 · 2 Φ+ = 12 u4Nt+4

4.2 u4Nt+4 2 · 3 · 4 Φ+ = 24 u4Nt+4

4.3 u4Nt+4 2 · 4 Φ+ = 8 u4Nt+4

6.8 u4Nt+6 2 · 3 · 2 Φ+ = 12 u4Nt+6

6.9 u4Nt+6 2 · 3 · 4 Φ+ = 24 u4Nt+6

Tabelle C.2: Graphen und ihre Beiträge für Nt = 2

Abbildung C.16: Graph 4.1: Zwei Doppelkuben mit gemeinsamer Seite, nicht
verwinkelt.

Zusätzliche Graphen für Nt = 2

Bei Nt = 2 gibt es aufgrund der geringen zeitlichen Gitterausdehnung bereits
in niedrigen Ordnungen in u Polymere, die nicht nur aus Dekorationen am
Grundpolymer bestehen, sondern ganz eigene geometrische Formen anneh-
men. Diese Polymere, die in den betrachteten Ordnungen nur bei Nt = 2
auftreten möchte ich in diesem Unterkapitel angeben. Bis auf den Graphen
6.2 aus Abb. (C.5) tragen alle Polymere aus Tabelle (C.1) auch für Nt = 2
bei. Die zusätzlichen Graphen sind in Tabelle (C.2) dargestellt.

Abbildung C.17: Graph 4.2: Zwei Doppelkuben mit gemeinsamer Seite, ver-
winkelt.
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Abbildung C.18: Graph 4.3

Abbildung C.19: Graph 6.8: Polymer aus Graph 4.1 mit zwei zusätzlichen
Plaketten in fundamentaler Darstellung.

Abbildung C.20: Graph 6.9: Polymer aus Graph 4.2 mit zwei zusätzlichen
Plaketten in fundamentaler Darstellung.
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