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1 Einleitung

Dem heutigen Kenntnisstand zufolge bilden die Quarks einen der Grundbausteine der
sichtbaren Materie. Sie wechselwirken mittels sogenannter Gluonen, den Eichbosonen
der starken Wechselwirkung. Die zugehörige Theorie wird als Quantenchromodynamik
(QCD) bezeichnet, da die ihr zugrunde liegenden Teilchen eine nicht beobachtbare Farb-
ladung („χρώµα“, griech. Farbe) tragen. Sie dient als Grundlage für die vorliegende
Arbeit.

Eine Eigenschaft dieser Theorie ist das Konzept des „confinement“ (engl. Ein-
schluss) [1], welches die Beobachtung einzelner Quarks und Gluonen bei niedrigen Tem-
peraturen verbietet. Dies erschwert natürlich den experimentellen Zugang beispielsweise
zu den Quarkmassen, da im niedrigen Energiebereich nur gebundene Zustände, soge-
nannte Hadronen, vermessen werden können. Hierdurch können nur Rückschlüsse auf
die Massen der Quarks gezogen werden, da die Anzahl der Quarks in einem Hadron
stark variiert. Das Proton besteht beispielsweise nicht nur aus den drei Konstituenten-
quarks (auch Valenzquarks genannt) uud („up“, „down“), sondern ebenso aus Seequarks,
welche kontinuierlich aus virtuellen Quark-Antiquark-Paaren und Gluonen entstehen.
Diese Bindungsenergie liefert den größten Beitrag zur Hadronenmasse.

Anders sieht dies bei hohen Temperaturen um ca. 200MeV aus: In der „deconfined“-
Phase, also einer Phase, in der die Quarks und Gluonen nicht mehr durch das Einschluss-
Prinzip gebunden sind, liegt ein Quark-Gluon-Plasma vor [2,3]. Dieses dominierte bereits
das sehr frühe Universum und soll mitunter am LHC („Large Hadron Collider“) [4] am
CERN untersucht werden. Allerdings kann auch so die genaue Masse eines Quarks nicht
bestimmt werden: Messungen im Plasma selbst sind nicht möglich, außerdem unterliegen
die Teilchen auch dort Wechselwirkungen, so dass einzelne Quarks nicht betrachtet
werden können.

Die in der Literatur angegebenen Werte [5] stammen alle von theoretischen Berech-
nungen dieser Massen. Besonders erfolgreich sind hier die HQET („Heavy Quark Ef-
fective Theory“) [6] sowie die NRQCD und die pNRQCD („(potential) Non-Relativistic
Quantum ChromoDynamics“) [7–9].

Die so berechneten schweren Quarkmassen des c- („charm“) und b-Quarks („bottom“)
setzen sich aus mehreren Termen zusammen [10, 11]. Einen Korrekturterm hierzu lie-
fert der quantenchromodynamische Feldstärkekorrelator, welcher im Fokus dieser Ar-
beit steht. Die Methoden zu seiner Berechnung reichen von rein analytischen Ansät-
zen im Kontinuum bis hin zu numerischen Verfahren auf dem Gitter. Die Ergebnisse
beider Methoden sind allerdings nicht direkt miteinander vergleichbar, da sie von der
Renormierungsskala und dem Renormierungsschema abhängen. Eine störungstheore-
tische Rechnung auf dem Gitter ist daher unumgänglich. Dies wird in Kapitel 6 genauer
diskutiert.

Zunächst finden sich allerdings in Kapitel 2 die Grundlagen für perturbative Berech-
nungen der QCD im Kontinuum, sowie eine Einführung in die Theorie der Renormie-
rung. Somit ist das Fundament für Kapitel 3 gegeben, in dem dann der Feldstärkekorre-
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1 Einleitung

lator und seine Komponenten betrachtet werden. Außerdem werden weitere Anwendun-
gen des Korrelators genannt, bevor sich im Anschluss daran eine ausführliche Rechnung
findet. Kapitel 4 fasst diese Ergebnisse zusammen und motiviert die Betrachtungen zur
QCD auf dem Gitter wie in Kapitel 5 diskutiert.

Nach einer Formulierung der QCD auf einem Raum-Zeit-Gitter, sowie der Vorstellung
der Gitterstörungstheorie erfolgt in Kapitel 6 die Betrachtung des Feldstärkekorrelators
und seiner verschiedenen Anwendungen auf dem Gitter. Hier findet sich einerseits ein
Abschnitt zu perturbativen Ansätzen auf dem Gitter, andererseits werden numerische
Zugänge diskutiert.

Abschließend werden in Kapitel 7 die Ergebnisse der Arbeit zusammengefasst. Im
Anhang werden die verwendeten Abkürzungen und Konventionen angegeben. Zudem ist
eine ausführliche Integralsammlung für Feynmandiagramme im Kontinuum enthalten,
ferner werden die auf dem Gitter auftretenden divergenten Integrale gelistet.
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2 Quantenchromodynamik (QCD) im
Kontinuum

Im Folgenden werden die Grundlagen für die Berechnungen im Kontinuum (siehe Kapi-
tel 3) bereitgestellt. Der erste Abschnitt beschreibt kurz die Entwicklung des Standard-
modells der Elementarteilchenphysik bis hin zur Theorie der Quantenchromodynamik.
Im zweiten Abschnitt wird der Pfadintegralformalismus vorgestellt, mittels dessen im
dritten Abschnitt die Störungstheorie im Kontinuum veranschaulicht wird. Außerdem
werden die hier verwendeten Konventionen festgelegt. Im letzten Teil dieses Kapitels
befinden sich eine Einführung in die Theorie der Renormierung sowie eine Vorstellung
verschiedener Regularisierungsschemata.

2.1 Das Standardmodell der Elementarteilchenphysik

In der Physik möchte man gerne mit möglichst einfachen Modellen und Theorien die
messbaren Ergebnisse reproduzieren und Vorhersagen treffen können. Dies war natür-
lich auch der Wunsch der Elementarteilchenphysiker, als es in den 1950er und 1960er zu
einem explosionsartigen Anstieg der bis dahin entdeckten sogenannten „Elementarteil-
chen“ kam. Schließlich wurde 1964 von Gell-Mann und Zweig das Quarkmodell vorge-
schlagen [12,13], welches endlich mit Hilfe von gruppentheoretischen Überlegungen Ord-
nung in das Spektrum der stark wechselwirkenden Teilchen bringen sollte. Dieses Modell,
welchem der 1961 von Gell-Mann und Ne’eman vorgeschlagene „Eightfold Way“ [14,15],
ein erster Ordnungsversuch für Hadronen, zugrunde liegt, besagt, dass Hadronen Pro-
duktdarstellungen aus zwei bzw. drei elementaren Konstituenten, den Quarks, seien. Die
hier zugrunde liegende Symmetriegruppe ist die SU(3)-Flavour Symmetrie.

Als dann 1974 das J/ψ Teilchen gleichzeitig von den Gruppen um Richter [16] sowie
um Ting [17] gefunden wurde, stieß das Quarkmodell an seine Grenzen: Die Symme-
triegruppe hätte nun aufgrund einer weiteren Quantenzahl („charm“, c) auf eine SU(4)-
Flavour erweitert werden müssen. Außerdem ließ sich immer noch nicht klären, warum
beispielsweise Vierquarkzustände nicht stabil sind oder warum das ∆++-Teilchen exis-
tiert, obwohl es allem Anschein nach das Pauli Prinzip verletzt.

Eine Lösung lieferten Han und Nambu sowie unabhängig davon Greenberg und Gell-
Mann [18–20], indem sie eine nicht beobachtbare Quantenzahl „colour“ einführten. Ers-
tere vermuteten bereits, dass Quarks mittels eines Eichbosonen-Oktetts wechselwirken,
so dass der 1954 von Yang und Mills entwickelten gleichnamigen SU(N)-Eichtheorie [21]
eine neue Bedeutung zukam. Somit war das Pauli Prinzip gerettet und die Quantenchro-
modynamik gefunden. Zusammen mit der schon in den 1960ern von Glashow, Weinberg
und Salam [22–24] entwickelten und nach ihnen benannten GWS-Theorie bildet die
QCD als Beschreibung der starken Wechselwirkung das Standardmodell der Elementar-
teilchenphysik. Die GWS-Theorie ist eine SU(2) × U(1) Eichtheorie, welche die schwache
und die elektromagnetische Wechselwirkung mittels Austauschbosonen beschreibt. Sie
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2 Quantenchromodynamik im Kontinuum

fand allerdings erst ab 1971 größere Beachtung, nachdem ’tHooft die Renormierbarkeit
von Eichtheorien mit und ohne spontaner Symmetriebrechung [25,26] bewies.

Das Standardmodell beschreibt drei der vier physikalischen Grundkräfte und hat be-
reits beeindruckende Übereinstimmungen mit den Experimenten hervorgebracht wie
z. B. die Messung des magnetischen Moments des Elektrons im Rahmen der Quante-
nelektrodynamik [27, Kap. 6.3]. Jedoch besitzt auch dieses Modell seine Schwächen: So
konnte bisher das Higgs-Boson, welches für die Generierung von Massen verantwortlich
ist, noch nicht nachgewiesen werden, außerdem kann die Baryonenasymmetrie des Uni-
versums im Rahmen des klassischen Standardmodells nicht erklärt werden. Hierzu sind
Erweiterungen notwendig, wie zum Beispiel die Supersymmetrie (eine Einführung findet
sich in [28]). Ein weiteres Defizit ist das Fehlen einer Quantentheorie der Gravitation,
so dass in diesem Rahmen noch keine Vereinheitlichung aller vier Grundkräfte existiert.

In dieser Arbeit wird die Quantenchromodynamik genauer betrachtet, dessen mathe-
matisches Gerüst, wie auch das des gesamten Standardmodells, die Quantenfeldtheorie
(QFT) ist. Diese lässt sich als Synthese von Quantenmechanik und spezieller Relati-
vitätstheorie verstehen. Hierzu gibt es zwei äquivalente Darstellungen: die kanonische
Quantisierung, bei der die Felder selbst quantisiert und somit zu Feldoperatoren werden,
und den Pfadintegralformalismus [29], der im Folgenden genauer betrachtet wird.

2.2 Der Pfadintegralformalismus in Quantenfeldtheorien

Der Pfadintegralformalismus wurde 1948 von Feynman entwickelt [30]. Leicht veran-
schaulichen lässt sich dieser Ansatz in der Quantentheorie für die Übergangsamplitude
eines Teilchens vom Ort x nach y:1

〈
x
∣∣e−iHt

∣∣ y
〉

=

∫
Dx eiS . (2.1)

In Worten bedeutet dies, dass die Übergangsamplitude gleich dem Integral über alle
möglichen Pfade gewichtet mit dem klassischen Wirkungsfunktional S ist. Diese Größe
ist mathematisch allerdings nicht wohldefiniert, da der Exponent oszilliert und somit
nicht konvergieren muss. Das Problem lässt sich jedoch durch eine Wickrotation ver-
meiden, welche eine Transformation zu imaginären Zeiten τ = it bedeutet. Die Wirkung
geht dann über in S = iSE, was zu einem exponentiell gedämpften Integranden führt.
Diese Transformation stellt einen Übergang vom Minkowski-Raum in die euklidische
Raum-Zeit dar; Vektoren werden definiert durch xE = (~x, x4), die zugehörige Metrik ist
gµν = δµν .2 Im Folgenden werden alle Größen in der euklidischen Raum-Zeit angegeben,
daher wird auf das Subskript verzichtet.

Das Prinzip des Pfadintegrals lässt sich nun auch auf Quantenfeldtheorien übertragen.
Eine wichtige Größe ist hier das erzeugende Funktional Z[J ], aus dem sich die für die
Störungstheorie benötigten Greensfunktionen berechnen lassen. Dieses ist gegeben als
die Vakuum-Vakuum Übergangsamplitude in Gegenwart einer externen Quelle J(x).

1In dieser Diplomarbeit werden alle Rechnungen in natürlichen Einheiten, also ~ = c = 1, angegeben.
2Hierdurch sind im Euklidischen kontra- und kovariante Vektoren identisch, es gilt:

xE = xµ = xµ = (x1, x2, x3, x4).
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2.3 Die Lagrangedichte der QCD

Für eine SU(N)-Eichtheorie ergibt sich3

Z[J ] =

∫
D[Aµ] exp

{
−
∫

d4x [L (x) − Jµ(x)Aµ(x)]

}
. (2.2)

Hierbei bezeichnet L die Lagrangedichte, die durch S =
∫

d4xL (x) definiert ist, die
Aµ(x) sind die Eichfelder mit den zugehörigen externen Quellen Jµ(x). Zusammenhän-
gende Greensfunktionen (auch n-Punkt-Funktionen genannt) erhält man dann mittels
Funktionalableitung durch

G(c)
n (x1, . . . , xn) =

[
1

Z[J ]

δnZ[J ]

δJ(x1) . . . δJ(xn)

] ∣∣∣∣∣
J=0

. (2.3)

Das Wegfallen aller nicht zusammenhängenden Greensfunktionen bewirkt der Normie-
rungsfaktor Z[J ]−1. Die Funktionalableitung ist definiert als:

δJ(y)

δJ(x)
=

δ

δJ(x)

∫
d4x J(x) δ(4)(x− y) = δ(4)(x− y) . (2.4)

Das Konzept der Störungstheorie beruht nun auf der Entwicklung der Exponentialfunk-
tion im erzeugenden Funktional, so dass für die weiteren Berechnungen lediglich noch
die Lagrangedichte diskutiert werden muss.

2.3 Die Lagrangedichte der QCD

Neben dem reinen Eichterm der SU(3)-Yang-Mills-Theorie, der die Gluonen beschreibt,
besteht die Lagrangedichte der Quantenchromodynamik aus einem fermionischen Anteil
zur Beschreibung der Quarks, so dass sich insgesamt ergibt:

L (ψ,ψ,Aµ) =
∑

f,c

ψf,c(γµDµ +mf )ψf,c +
1

4
FAµνF

A
µν . (2.5)

Hierbei läuft die Summe über alle verschiedenen Quarksorten („flavours“) f = 1, . . . , Nf

und alle Farbindizes c = 1, 2, 3. Die Fermionfelder ψf,c tragen weiterhin einen Dirac-
Spinorindex α und die γµ sind die Dirac’schen Gammamatrizen mit µ als Lorentzindex.
Dieser Ausdruck ist für die Lagrangedichte der einzig mögliche, der die Bedingungen
Lorentzinvarianz und Renormierbarkeit für Spin-1/2-Teilchen erfüllt. Daher taucht hier
die kovariante Ableitung Dµ = ∂µ + igAµ auf, durch die der Feldstärketensor Fµν defi-
niert ist mittels

[Dµ,Dν ] = igFAµνT
A. (2.6)

Die Matrizen TA sind die Generatoren der SU(3), sie genügen der Kommutatorrelation

[TA, TB ] = ifABCTC , A,B,C = 1, . . . , 8. (2.7)

Da die Rechnungen in Kapitel 3 in der adjungierten Darstellung der QCD durchge-
führt werden (eine detailiertere Einsicht in Darstellungstheorien liefert [31, Anhang A]),

3Es wird die Einstein’sche Summenkonvention verwendet, was eine Summation über gleiche Indizes
bedeutet: CµCµ ≡

P

µ CµCµ.
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2 Quantenchromodynamik im Kontinuum

wird diese schon jetzt verwendet. Hierbei wird statt eines Tripletts von Quarks wie in
der Fundamentaldarstellung ein nichtphysikalisches Oktett in der adjungierten Darstel-
lung4 betrachtet. Dazu werden die Gell-Mann-Matrizen durch die Strukturkonstanten
ersetzt:

T aadj = (T a)bc = −ifabc . (2.8)

Für eine SU(N)-Eichtheorie in adjungierter Darstellung gilt

facdf bcd = Nδab, sowie δaa = N2 − 1, a, b, c, d = 1, . . . , N2 − 1 . (2.9)

2.4 Störungstheorie im Kontinuum

Im Folgenden wird die kovariante Eichung ∂µAaµ = 0 verwendet, um die Lorentzinvari-
anz zu erhalten, was allerdings einen Hilbertraum mit indefiniter Metrik zur Folge hat
(Gupta-Bleuler-Formalismus, siehe [32, Kap. 5.5.3]). Dieses Problem lässt sich jedoch im
Rahmen des Faddeev-Popov-Ansatzes [33] lösen. Hierbei wird das Integrationsmaß aus
Gleichung (2.2) verändert gemäß

D[Aµ] −→ D[Aµ] (detMFP) δ[f(Aµ)] . (2.10)

Die Determinante führt nach Exponentierung auf die sogenannten Geistfelder c bzw. c,
welche das Integrationsmaß in beliebigen Eichungen konstant halten. Die Deltafunktion
entspricht einer Eichbedingung, die eine eindeutige Repräsentantenmannigfaltigkeit aus
dem Phasenraum auswählt und somit das Auftreten von nichtphysikalischen Freiheits-
graden verhindert.

2.4.1 Störungsentwicklung in kovarianter Eichung

Der Vakuumerwartungswert einer Observable O im Pfadintegralformalismus ist gegeben
als

〈O〉
L

≡ 1

Z

∫
D[ψ,ψ,Aµ]O(ψ,ψ,Aµ) e−

R

d4xL (x) , (2.11)

mit der Normierung Z = Z[J = 0]. Nach Aufspalten der Lagrangedichte in einen freien
und einen wechselwirkenden Anteil gemäß L = L0 +LI, lässt sich der Erwartungswert
schreiben als

〈O〉int ≡
〈
O e−

R

d4xLI(x)
〉
, (2.12)

wobei hier und im Folgenden für den freien Erwartungswert 〈. . .〉 ≡ 〈. . .〉0 verwendet
wird.

4Kleine lateinische Buchstaben laufen im Folgenden für die SU(3) in adjungierter Darstellung immer
von eins bis acht.
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2.4 Störungstheorie im Kontinuum

Mit Gleichung (2.5) gilt

L0 =
1

4
(∂µAν − ∂νAµ)

2 +
1

2ξ
(∂µA

a
µ)

2 − ca∂2ca (2.13)

LI = − g

2
fabc(∂µA

a
ν − ∂νA

a
µ)A

b
µA

c
ν

+
g2

4
fabcf cdeAaµA

b
νA

d
µA

e
ν

− gfabcca(∂µA
c
µ)c

b

+ igψγµA
a
µT

aψ . (2.14)

Die Geistfelder c und c sind skalare Grassmannfelder (vgl. [34, Kap. 1.3]), welche
der Fermi-Statistik genügen. Die für die Funktionalableitung benötigten zugehörigen
Quellen werden in Kapitel 2.4.2 mit η bzw. η bezeichnet, die der Fermionfelder mit χ
und χ. Der Term proportional zum Eichparameter ξ dient der Eichfixierung.

Da der Ausdruck (2.12) geschlossen nicht mehr ausgewertet werden kann, entwickelt
man nun die Exponentialfunktion um kleine Kopplungskonstanten. Diese Näherung ist
in der Quantenelektrodynamik (QED) gut erfüllt, da dort die Kopplung im störungs-
theoretisch relevanten Bereich mit αem ≈ 1/137 klein gegen 1 ist. In der QCD ist
dies jedoch nicht der Fall. Hier ist die effektive Kopplungskonstante αs(Q) nur für sehr
große Impulsüberträge Q und somit sehr große Energien klein. Die Ursache hierfür
liegt in der asymptotischen Freiheit. Diese verursacht einen „Anti-Screening-Effekt“, der
ein paramagnetisches Verhalten des physikalischen Vakuums bewirkt, so dass (farb-)
ladungstragende Eichfelder eine effektive Ladung nicht mehr abschirmen, sonder ver-
stärken. Für kleine Energien ist die Schwachkopplungsentwicklung somit nicht sinnvoll,
es werden also alternative nichtperturbative Methoden benötigt. Sehr erfolgreich ist hier
die Gitter-QCD, die in Kapitel 5 genauer vorgestellt wird.

2.4.2 Feynmanregeln

Die Feynmanregeln bilden das Grundgerüst der Störungstheorie. Sie korrespondieren
zu einer graphischen Darstellung, so dass jeder Streuprozess als Summe sogenannter
Feynman-Diagramme dargestellt werden kann. Als Grundlage für diese Regeln dienen
die vollen n-Punkt-Funktionen aus Gleichung (2.3). Für den einfachsten Fall skalarer
Felder φ lassen sie sich schreiben als zeitgeordneter Vakuumerwartungswert

G(c)
n (x1, . . . , xn) = 〈0|T {φ(x1) . . . φ(xn)} |0〉c . (2.15)

Nach dem Wick’schen Theorem (vgl. [35, Kap. 4.2]) kann man diese kontrahieren zu
einer Summe über alle Permutationen aus freien Propagatoren ∆(xpi

− xpj
) gemäß

〈0|T {φ(x1) . . . φ(xn)} |0〉 =

{
P

P

∆(xp1
−xp2

) ... ∆(xpn−1
−xpn) n gerade

0 n ungerade.
(2.16)
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2 Quantenchromodynamik im Kontinuum

Propagatoren

Mit der Aufteilung der Lagrangedichte in Gleichung (2.13) und (2.14) zerfällt nun auch
das Funktionalintegral in einen wechselwirkenden, sowie drei freie Teile, so dass es sich
schreiben lässt als

Z[J, η, η, χ, χ] = exp

{
−
∫

d4xLI

[
δ

δJµ
,
δ

δη
,
δ

δη
,
δ

δχ
,
δ

δχ

]}
Z0
A[J ]Z0

c [η, η]Z
0
ψ[χ, χ] .

(2.17)
Somit wird ersichtlich, dass es in der QCD drei Propagatoren gibt: einen Gluonpropaga-
tor für die Eichfelder Aµ, einen Geistpropagator für die Geistfelder c bzw. c, sowie einen
Fermionpropagator für die Quarkfelder ψ und ψ. Da die Berechnung in allen drei Fällen
äquivalent verläuft, genügt es, sie anhand des Gluonpropagators genauer zu beschreiben.

Hierzu wird Z0
A geschrieben als

Z0
A[J ] =

∫
D[Aµ] exp

{
−
∫

d4x

[
1

2
AaµK

ab
µνA

b
ν + JaµA

a
µ

]}
(2.18)

mit

Kab
µν = δab

{
δµν∂

2 −
(

1 − 1

ξ

)
∂µ∂ν

}
. (2.19)

Mittels Gauß’scher Integration (vgl. [36, Kap. 6.2]) folgt hierfür

Z0
A[J ] = exp

{
−1

2

∫
d4x d4y Jaµ(x)Dab

µν(x− y)Jbν(y)

}
, (2.20)

wobei mit

Dab
µν(x− y) = δab

∫
d4k

(2π)4

[
δµν − (1 − ξ)

kµkν
k2

]
eik(x−y)

k2
(2.21)

ξ=1
= δab δµν

∫
d4k

(2π)4
eik(x−y)

k2
(2.22)

der Gluonpropagator im Ortsraum gefunden ist. In der zweiten Zeile haben wir die
Feynman-’tHooft Eichung mit ξ = 1 eingesetzt, die im weiteren Verlauf verwendet
wird.

Da die folgenden Rechnungen im Ortsraum durchgeführt werden, soll an dieser Stel-
le auch das in den Propagatoren auftretende Integral ausgewertet werden. Auch dies
verläuft für alle benötigten Propagatoren äquivalent, so dass wieder stellvertretend der
Gluonpropagator betrachtet wird.

Mit Hilfe der Schwinger-Parametrisierung

1

(m2 − k2)α
=

1

Γ(α)

∫ ∞

0
dβ βα−1e−β(m2−k2) (2.23)
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2.4 Störungstheorie im Kontinuum

erhält man für den Gluonpropagator in n Dimensionen

D(z) =

∫
dnk

(2π)n
eikz

k2

=

∫ ∞

0
dβ

∫
dnk

(2π)n
e−βk

2+ikz

=

∫ ∞

0
dβ β−

n
2 e−

z2

4β

∫
dnq

(2π)n
e−q

2

(∗)
=

1

2nπ
n
2

∫ ∞

0
dβ β−

n
2 e−

z2

4β

=
Γ(n2 − 1)

4π
n
2 zn−2

. (2.24)

Hier wurde bei (∗) die Relation

∫
dnq e−q

2

= π
n
2 (2.25)

verwendet. Analog erhält man für den Geistpropagator

Dab
FP(z) = δab

∫
dnk

(2π)n
eikz

k2

= δab
Γ(n2 − 1)

4π
n
2 zn−2

. (2.26)

Der Quarkpropagator

∆ij(z) = δij
∫

dnk

(2π)n
eikz

/k +m

= δij
∫

dnk

(2π)n
(/k −m)

eikz

k2 −m2
(2.27)

mit /k = γµk
µ wird an dieser Stelle nicht explizit im Ortsraum berechnet, da er für den

weiteren Verlauf nicht benötigt wird.

Vertizes

Im Gegensatz zur abelschen Quantenelektrodynamik treten in der Lagrangedichte der
nicht-abelschen QCD für die Eichfelder Selbstkopplungsterme auf. Weiterhin wechsel-
wirken die Eichfelder mit den Geistfeldern, sowie den Quarks. Die Feynmanregeln für
die resultierenden Vertizes können hergeleitet werden, indem man die zugehörigen n-
Punkt-Funktionen der Felder nach Gleichung (2.3) bestimmt. Einfacher ist es, sie direkt
aus der Lagrangedichte zu entnehmen, hierbei müssen lediglich die Symmetriefaktoren
und Ableitungen in Gleichung (2.14) berücksichtigt werden. Erstere erhält man durch
Zählen möglicher Invarianzen unter Vertauschung der Eichfelder. Aufgrund der Lor-
entzstruktur und der Forderung nach Antisymmetrie unter Vertauschung der Indizes
(µ ↔ ν, 1 ↔ 2, usw.) können die Vertizes dann mit Hilfe der total antisymmetrischen
Strukturkonstanten fabc abgeleitet werden. Man findet dann:

9



2 Quantenchromodynamik im Kontinuum

i) 3-Gluon-Vertex:

gfabc [δµν(k2 − k1)λ + δνλ(k3 − k2)µ

+ δµλ(k1 − k3)ν ]

k1, µ, a

k2, ν, b

k3, λ, c

ii) 4-Gluon-Vertex:

−g2
[
fabef cde(δµλδνω − δµωδνλ)

+ facef bde(δµνδλω − δµωδνλ)

+ fadef cbe(δµλδνω − δµνδλω)
]

k1, µ, a

k2, ν, b

k4, ω, d

k3, λ, c

iii) Geist-Gluon-Vertex:

igfabcqµ

p, b

q, a

k, µ, a

iv) Fermion-Gluon-Vertex:

−igγµ(T
a)bc

q, c

p, b

k, µ, a

2.5 Renormierung

Berechnet man konkret Feynmandiagramme in Ein-Schleifen-Ordnung, so stellt man
fest, dass diese ultraviolett divergieren. Dirac behauptete 1981 bei einer Konferenz in
Florida, dass dies auf eine physikalisch nicht sinnvolle Theorie hinweise. Jedoch lässt
sich dieses Problem elegant mittels der sogenannten Renormierung beheben (eine Über-
sicht findet sich in [37]). Dies geschieht in zwei Schritten: Zunächst wird das divergente
Integral regularisiert, so dass es für einen festen Regulator einen endlichen Wert be-
sitzt. Dann werden die auftretenden Felder, Massen und Kopplungskonstanten derart
neu definiert (renormiert), dass die Divergenzen verschwinden und der Regulator wieder
entfernt werden kann. Dieses Umdefinieren ist erlaubt, da zuvor nichts über die in der
Lagrangedichte auftretenden Felder, Massen und Kopplungskonstanten bekannt ist, ins-
besondere müssen sie nicht mit den experimentell gefundenen Werten übereinstimmen.
Die Größen in der ursprünglichen Lagrangedichte werden als nackte Größen bezeich-
net, welche von Beginn an divergieren. Mit den renormierten Größen lassen sich dann
physikalisch messbare Observable berechnen.
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2.5 Renormierung

2.5.1 Regularisierungsschemata

Pauli-Villars-Regularisierung

Die 1949 von Pauli und Villars eingeführte Methode besteht darin, den Propagator
umzuschreiben als

1

k2 +m2
−→ 1

k2 +m2
− 1

k2 + Λ2

=
Λ2 −m2

(k2 +m2)(k2 + Λ2)
, (2.28)

wobei Λ2 ≫ m2. Der so gewählte Propagator fällt nun für große k mit 1/k4 ab und hat
dementsprechend einen kleineren Divergenzgrad (vgl. [34, Kap. 2.2]). Den ursprünglichen
Propagator erhält man im Limes Λ → ∞. Falls die auftretenden Integrale nach dieser
Regularisierung noch immer divergieren, kann die Prozedur wiederholt werden. Um die
Eichinvarianz in abelschen Theorien zu erhalten, kann der Regulator Λ auch direkt in
der Masse abgezogen werden. Im nicht-abelschen Fall bricht diese Methode allerdings
die Eichinvarianz.

Gitterregularisierung

Die Gitterregularisierung ist eine sogenannte „Cut-off“-Regularisierung. In diesem Fall
wird die Raumzeit durch ein Gitter mit Gitterabstand a diskretisiert. Für die Integrale
gilt dann

∫ ∞

∞

d4k

(2π)4
−→

∫ π/a

−π/a

d4k

(2π)4
. (2.29)

Die Impulsintegration wird also auf die erste Brillouin-Zone beschränkt. Dies verkleinert
allerdings die Translations- und Rotationsinvarianz, die Eichinvarianz bleibt hier aber
erhalten. Durch Limesbildung a → 0 erhält man schließlich wieder das Kontinuums-
ergebnis. Dieses Verfahren eignet sich sehr gut für eine nichtperturbative Behandlung,
in Kapitel 6 wird diese Regularisierung jedoch auch störungstheoretisch verwendet.

Dimensionale Regularisierung

Für praktische Zwecke eignet sich im Kontinuum am besten die dimensonale Regula-
risierung nach ’tHooft und Veltman [38]. Bei dieser Methode wird die Dimension n
der Raumzeit wie eine kontinuierliche Variable behandelt. Da die Eichinvarianz nicht
von der Dimension abhängt, bleibt diese, wie auch alle anderen Symmetrien, erhal-
ten. Ein Problem der dimensionalen Regularisierung ist allerdings die Wohldefiniertheit
von Tensoren in nichtganzzahligen Dimensionen (vgl. [32, Anhang B]). Dieses Problem
taucht beispielsweise bei chiralen Theorien auf, für die es demnach kein eichinvariantes
Regularisierungsverfahren gibt.

Anhand eines Beispiels soll die Vorgehensweise hier für den späteren Gebrauch ver-
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2 Quantenchromodynamik im Kontinuum

deutlicht werden. In Kapitel 3 wird das folgende Standardintegral benötigt:

I =

∫
dnk

(2π)n
1

(k2 +m2 + 2kp)A

(2.23)
=

1

Γ(A)

∫ ∞

0
dβ βA−1e−βm

2

∫
dnk

(2π)n
e−β(k2+2kp)

=
1

(4π)
n
2 Γ(A)

∫ ∞

0
dβ βA−

n
2
−1 e−β(m2−p2)

(†)
=

Γ(A− n
2 )

(4π)
n
2 Γ(A)

1

(m2 − p2)A−
n
2

. (2.30)

Bei (†) wurde die Definition der Gammafunktion

Γ(x) =

∫ ∞

0
dt tx−1e−t (2.31)

s−x Γ(x) =

∫ ∞

0
dt tx−1e−st (2.32)

verwendet. Das Ergebnis (2.30) soll für beliebige n ∈ R definiert sein. Dies bedeutet,
dass die Divergenzen des ursprünglichen Integrals nun als Polstellen der Gammafunktion
auftreten. Diese liegen bei Null sowie den negativen ganzen Zahlen. Nimmt man an, dass
die Dimension nah bei vier ist, kann man

n = 4 − 2 ε (2.33)

ansetzten. Dies wird im gesamten ersten Teil der Diplomarbeit verwendet. Dann kann
um die Polstellen der Gammafunktion entwickelt werden mit

Γ(−m+ ǫ) =
(−1)m

m!

{
1

ǫ
+ ψ(m+ 1) +

1

2
ǫ

[
π2

3
+ ψ2(m+ 1) − ψ′(m+ 1)

]
+ O(ǫ2)

}
,

(2.34)
wobei

ψ(m+ 1) = 1 +
1

2
+ . . .+

1

m
− γE ,

(
ψ(x) =

d lnΓ(x)

dx

)

ψ′(m+ 1) =
π2

6
−

m∑

l=1

1

l2
, ψ′(1) =

π2

6
. (2.35)

Es bezeichnet γE die Euler-Mascheroni Konstante mit

ψ(1) = −γE = −0, 5772 . . . .

Setzt man nun in (2.30) A = 2 und p = 0, so erhält man ein logarithmisch divergentes
Integral. Mit den Eigenschaften der Gammafunktion

Γ(x+ 1) = xΓ(x), Γ(ε) =
1

ε
− γE + O(ε) (2.36)

und der Entwicklung
xε = eε lnx = 1 + ε ln x+ O(ε2) (2.37)
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2.5 Renormierung

zeigt sich diese Divergenz nach der dimensionalen Regularisierung wie folgt:

I =
1

(4π)2

(
1

ε
− γE + ln 4π − lnm2 + O(ε)

)
. (2.38)

Das Integral besitzt nun einen endlichen Wert für ein festes ε. Betrachtet man den Limes
ε→ 0, so tritt die logarithmische Divergenz als Polstelle in ε auf. Diese kann allerdings
durch die Renormierung für ein festes ε subtrahiert werden, so dass nach Redefinition
der ursprünglichen Parameter ein endlicher Wert für das Integral verbleibt.

2.5.2 Minimale Subtraktion

Definition

Wird dimensionale Regularisierung verwendet wie in Gleichung (2.38), so manifestie-
ren sich die ultravioletten Divergenzen als Polstellen in Abhängigkeit von der Dimen-
sion n. Das 1973 von ’tHooft entwickelte Minimale Subtraktionsschema (MS-Schema)
besteht nun darin, diese Pole abzuziehen. Dazu subtrahiert man von der ursprüngli-
chen Lagrangedichte L0, welche von den nackten Größen abhängt, einen sogenannten
Gegenterm ∆L

L = L0 − ∆L . (2.39)

Hierbei besitzt L die gleiche Struktur wie die ursprüngliche Lagrangedichte, jedoch
wurden alle nackten Größen durch renormierte ersetzt. Dies hat zur Folge, dass die
Divergenzen in den Gegenterm absorbiert werden und die resultierende Lagrangedichte
endliche Resultate liefert. Diese Vorgehensweise gilt für beliebige Renormierungsschema-
ta; das MS-Schema zeichnet sich nun dadurch aus, dass nur die Pole abgezogen werden.
Dies bedeutet, dass die Gegenterme keine endlichen Teile enthalten und somit durch die
Pole eindeutig definiert sind.

Bei der Renormierung der Kopplungskonstanten ist zu beachten, dass die nackte
Kopplung g0 eine Massendimension in Abhängigkeit der Dimension n trägt. Daher muss
eine Massenskala ν eingeführt werden, für die in einer SU(3)-Yang-Mills-Theorie mit
n = 4 Dimensionen gilt

g0 → ν2−n
2 g . (2.40)

Die Vorteile dieses Schemas liegen in der automatischen Erhaltung der Symmetrien5,
sowie der problemlosen Behandlung masseloser Theorien. Außerdem sind die Berech-
nungen der divergenten Teile der Feynmandiagramme in Ein-Schleifen-Ordnung sehr
einfach. Der Nachteil liegt lediglich in der physikalischen Kontraintuitivität des Sche-
mas.

Allgemein wird eine Theorie als renormierbar bezeichnet, wenn der Gegenterm ∆L

von der gleichen Struktur ist wie die ursprüngliche Lagrangedichte, also falls der Ge-
genterm durch eine Redefinition der ursprünglichen Parameter der Lagrangedichte ab-
sorbiert werden kann. Müssen hingegen in jeder Ordnung Störungstheorie weitere Ge-
genterme hinzugefügt werden, so dass eine unendliche Anzahl neuer Parameter benötigt
wird, spricht man von einer nicht-renormierbaren Theorie.

5Die Ausnahme bilden chirale Symmetrien, wie im Abschnitt über dimensionale Regularisierung be-
schrieben.

13



2 Quantenchromodynamik im Kontinuum

MS-Schema

Verwendet man das MS-Schema, so stellt sich heraus, dass hier immer wieder der gleiche
Vorfaktor proportional zu ln 4π−γE auftritt. Daher ist es sinnvoll, diesen Faktor ebenfalls
zu subtrahieren, was im modifizierten MS-Schema, dem MS-Schema, geschieht. Dazu
wird der Massenparameter ν des MS-Schemas gemäß

ν2 = µ2 eγE

4π
(2.41)

umdefiniert.
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3 Berechnung des QCD-Feldstärke-
korrelators im Kontinuum

Im Folgenden wird die Berechnung des quantenchromodynamischen Feldstärkekorrela-
tors in nächster zur führenden Ordnung im Kontinuum vorgestellt. Diese wurde bereits
im Minkowski-Raum von Jamin [39] auf direktem Wege und von Eidemüller [40] im
Rahmen der „Heavy Quark Effective Theory“ (HQET) durchgeführt. Im ersten Ab-
schnitt werden der Feldstärkekorrelator so wie seine Komponenten genauer definiert,
anschließend folgt die ausführliche Berechnung des Korrelators in Störungstheorie bis
zur zweiten Ordnung in der Kopplungskonstanten O(g2).

3.1 Der QCD-Feldstärkekorrelator

Der eichinvariante1 QCD-Feldstärkekorrelator in der adjungierten Darstellung ist defi-
niert als

Dµνλω(z) =
〈
0
∣∣T
{
F aµν(y)P e−gf

abczτ
R 1

0
dσAc

τ (x+σz)F bλω(x)
}∣∣0
〉
. (3.1)

Hierbei bezeichnet F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν den Feldstärketensor im Euklidi-

schen und es ist z = y − x. Die Zeitordnung T ist definiert als

T exp

{∫ t

0
dt′O(t′)

}
= 1 +

∫ t

0
dt′O(t′) +

∫ t

0
dt′
∫ t′

0
dt′′O(t′)O(t′′) + . . . , (3.2)

die Pfadordnung P wird analog dazu gebildet.
Der Feldstärkekorrelator ist von besonderer Bedeutung für nicht-perturbative Nähe-

rungen der QCD, wie z. B. die SVZ Summationsregeln [41, 42]. Hierdurch ist der Kor-
relator auch eng mit der Gluon-Kondensation verknüpft [43]. Ebenso spielt er eine be-
deutende Rolle für das stochastische Vakuummodell [44–46] sowie für die Beschreibung
der Hochenergie Hadron-Hadron-Streuung [47–50]. Die Anwendungen des Korrelators
auf dem Gitter werden in Kapitel 6 genauer besprochen.

3.1.1 Die Schwinger-Linie

Im Allgemeinen lässt sich der Feldstärkekorrelator mit einer beliebigen Schwinger-Linie
(oder auch Schwinger-String) darstellen:

SabC (y, x) = P exp

{
−g fabczτ

∫ 1

0,C
dσ Acτ (x+ σz)

}
. (3.3)

Im Folgenden soll allerdings die Gerade als einfachste Form des Weges C verwendet
werden, weshalb die explizite Abhängigkeit von C unterdrückt wird.

1Die Eichinvarianz wird durch die Schwinger-Linie (siehe Kap. 3.1.1) sichergestellt.
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3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

3.1.2 Lorentz-Struktur

Der Feldstärkekorrelator lässt sich aufgrund seiner Lorentz-Struktur2 durch zwei skalare
Funktionen D(z2) und D1(z

2) parametrisieren [45]:

Dµνλω(z) = (δµλδνω − δµωδνλ)
(
D(z2) + D1(z

2)
)

+ (δµλzνzω − δµωzνzλ − δνλzµzω + δνωzµzλ)
∂D1(z

2)

∂z2
. (3.4)

Der Korrelator ist total antisymmetrisch unter Vertauschung von µ ↔ ν und λ ↔ ω.
Für spätere Zwecke ist es daher sinnvoll, die Notation

Dµνλω(z) ≡ D[µν][λω](z) = Dµνλω(z) − Dµνωλ(z) − Dνµλω(z) + Dνµωλ(z) (3.5)

einzuführen. Somit gilt

Dµνλω(z) = δµλδνω A(z2) + δµλ
zνzω
z2

B(z2) , (3.6)

und man kann identifizieren

2A(z2) = D(z2) + D1(z
2) (3.7)

1

z2
B(z2) =

∂D1(z
2)

∂z2
. (3.8)

3.2 Berechnung im Kontinuum

Um den vollen Feldstärkekorrelator berechnen zu können, muss er gemäß Gleichung (2.12)
entwickelt werden:

D[µν][λω](z) =
〈
0
∣∣∣T
{
F aµν(y)PS

ab(y, x)F bλω e−
R

d4y′LI(y
′)
}∣∣∣ 0

〉
. (3.9)

Setzt man die Definition für F aµν(x), sowie (2.14) für den Wechselwirkungsterm der
Lagrangedichte LI und (3.3) für die Schwingerlinie ein, so lässt sich der Korrelator
in der Kopplungskonstanten g entwickeln. Bis zur Ordnung O(g2) erhält man für die
Exponentialfunktion der Schwingerlinie

Sab(y, x) = δab − gfabczτ
∫ 1

0
dσAcτ (x+ σz)

+
g2

2
facdf cbezτzκ

∫ 1

0
dσ

∫ σ

0
dρAdτ (x+ σz)Aeκ(x+ ρz)

+ O(g3) , (3.10)

wobei für die Strukturkonstanten die Relation (vgl. 2.7)

(T dT e)ab = −fadcf ceb (3.11)

2Für beliebige Raum-Zeiten tritt an die Stelle der δµν der metrische Tensor gµν .
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3.2 Berechnung im Kontinuum

verwendet wurde. Für den 3-Gluon-Vertex des wechselwirkenden Teils der Lagrange-
dichte L

3g
I ergibt sich:

e−
R

d4y′L 3g
I

(y′) = 1 + i
g

2
fhij

∫
d4y′ (∂αA

h
β(y

′) − ∂βA
h
α(y

′))Aiα(y′)Ajβ(y
′)

− g2

4
fhijfklm

∫
d4y′ (∂αA

h
β(y

′) − ∂βA
h
α(y

′))Aiα(y′)Ajβ(y
′)

×
∫

d4y′′ (∂γA
k
δ (y

′′) − ∂δA
k
γ(y

′′))Alγ(y
′′)Amδ (y′′)

+ O(g3) . (3.12)

Die Entwicklungen der anderen Wechselwirkungsterme verläuft völlig analog. Für die
folgende Rechnung wird außerdem für den Vakuumerwartungswert die Schreibweise

〈φ(x)φ(y)〉 ≡ 〈0|T{φ(x)φ(y)}|0〉 (3.13)

eingeführt.3 Des Weiteren bezeichnet ∂xµ die Ableitung nach der Koordinate xµ. Ver-
wendet man z = y − x, so folgt ∂yµ = ∂zµ ≡ ∂µ = −∂xµ und es gilt

∂µ z
−n = ∂µ(zνz

ν)−
n
2 = −n zµ

zn+2
. (3.14)

Im Folgenden findet sich eine detaillierte Berechnung der einzelnen Beiträge; zusam-
mengefasst werden die Ergebnisse in Kapitel 4.

3.2.1 Führende Ordnung

Multipliziert man nun in Gleichung (3.9) alle Terme miteinander aus und sortiert nach
Potenzen in g, so erhält man in führender Ordnung O(g0) (siehe Abbildung 3.1)

D(0)
[µν][λω](z) =

〈
(∂µA

a
ν(y) − ∂νA

a
µ(y))δ

ab(∂λA
b
ω(x) − ∂ωA

b
λ(x))

〉
. (3.15)

Abbildung 3.1: Feldstärkekorrelator in führender Ordnung.

Dann folgt mit den Gleichungen (2.9), (2.24) und (2.33)

D
(0)
µνλω(z) =

〈
∂yµA

a
ν(y)δ

ab∂xλA
b
ω(x)

〉

= − ∂µ∂λD
aa
νω(z)

= (N2 − 1)Γ(1 − ε)(1 − ε)
δνω

2π2−ε

(
δµλ
z4−2ε

− 2(2 − ε)
zµzλ
z6−2ε

)
. (3.16)

Es ergibt sich

D(0)(z2) + D(0)
1 (z2) = 2A(0)(z2) = (N2 − 1)(1 − ε)

Γ(1 − ε)

π2−εz4−2ε

z2 ∂D
(0)
1 (z2)

∂z2
= B(0)(z2) = − (N2 − 1)(1 − ε)(2 − ε)

Γ(1 − ε)

π2−εz4−2ε
. (3.17)

3Im Euklidischen spielt die Zeitkomponente keine bevorzugte Rolle, somit gibt es dort keine Zeitord-
nung. Sie wird hier mitgeführt, um die Gültigkeit der Rechnung im Minkowski-Raum zu erhalten.

17



3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

Somit erhält man für die führende Ordnung im Limes ε→ 0

D(0)(z2) = 0

D(0)
1 (z2) =

N2 − 1

π2z4
. (3.18)

3.2.2 Ein-Schleifen-Ordnung

Kein Term der Entwicklung linear in g liefert einen Beitrag zum Feldstärkekorrelator,
da diese Terme eine ungerade Anzahl an Eichfeldern enthalten und somit nach dem
Wick’schen Theorem (2.16) verschwinden. Außerdem tragen Terme proportional zum
Propagator4 D(0) nicht bei, da gilt (vgl. [51, Kap. 4.3]):

D(0) = lim
ǫ→0

∫
d4k

(2π)4
1

k2 + ǫ

= lim
n→4

lim
ǫ→0

∫
dnk

(2π)n
1

k2 + ǫ

= lim
n→4

lim
ǫ→0

−ǫπ2

(2π)n

[
1

2 − n
2

+ ψ(2)

]

= 0 , (3.19)

wobei ψ(2) = 1 − γE die in Gleichung (2.35) definierte Digamma-Funktion ist.

Diagramme ohne Schwinger-Linien Anteil

In der Ein-Schleifen-Ordnung, also in der Ordnung O(g2), tragen Diagramme mit und
ohne Schwinger-Linien Anteil bei. Es bleiben die folgenden Diagramme ohne Schwinger-
Linien Anteil auszuwerten:

a) b)

c) d) e)

Abbildung 3.2: Ein-Schleifen Diagramme ohne Schwinger-Linien Anteil: a), b) Gluonenbei-
träge, c) Gluonen-, d) Geistteilchen- und e) Fermionenschleife.

4Mit D(0) wird hier sowohl der Gluon- als auch der Geistpropagator bezeichnet.
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3.2 Berechnung im Kontinuum

Diagramm 3.2 a). Für dieses Diagramm lässt sich direkt der antisymmetrisierte Bei-
trag berechnen:

D(2)a
µνλω(z) = g2f bcdf bef

〈
Acµ(y)A

d
ν(y)A

e
λ(x)A

f
ω(x)

〉

= g2f bcdf bef
[
0 +Dce

µλ(z)D
df
νω(z) +Dcf

µω(z)Dde
νλ(z)

]

= g2N(N2 − 1)
Γ2(1 − ε)

16π4−2εz4−4ε)
(δµλδνω − δµωδνλ) . (3.20)

Im Limes ε→ 0 kann man ablesen:

D(2)a(z2) =
g2N(N2 − 1)

16π4z4

D(2)a
1 (z2) = 0 . (3.21)

Diagramm 3.2 b). In der Entwicklung erhält man zwei Beiträge für dieses Diagramm.
Fasst man diese zusammen, so findet man

D
(2)b
µνλω(z) = −g

2

2
fafgfhij

∫
d4y′∂yµ〈Aaν(y)∂y

′

[αA
h
β](y

′)Aiα(y′)Ajβ(y
′)Afλ(x)A

g
ω(x)〉

= −g
2

2
N(N2 − 1)

∫
dy′∂yµ

{(
δy

′

ν[β∂
y′

α]D(y − y′)
)
D2(x− y′)δλ[αδβ]ω

+
(
δy

′

λ[β∂
y′

α]D(x− y′)
)
D(x− y′)D(y − y′)δν[βδα]ω

+
(
δy

′

ω[β∂
y′

α]D(x− y′)
)
D(x− y′)D(y − y′)δν[αδβ]λ

}
, (3.22)

wobei für die Notation mit (3.5) gilt:

∂[αAβ] = ∂αAβ − ∂βAα .

Nach Substitution y′ − y = z′ ⇒ y′ − x = z′ + z und Bildung der Ableitungen
∂y

′

= −∂z′ sowie ∂y = −∂z′ erhält man dann

D
(2)b
µνλω(z) =

g2

2
N(N2 − 1)

Γ3(n2 − 1)

43π
3n
2

(2 − n)

∫
d4z′

×
{(

δν[βδα]µ

z′n(z + z′)2n−4
− n

δν[βz
′
α]z

′
µ

z′n+2(z′ + z)2n−4

)
δλ[αδβ]ω

+ (2 − n)

(
δλ[β(z

′ + z)α]z
′
µ

z′n−2(z′ + z)2n−2
δν[βδα]ω +

δω[β(z
′ + z)α]z

′
µ

z′n(z′ + z)2n−2
δν[αδβ]λ

)}
.

(3.23)

Zur Lösung der Integrale lässt sich folgendes allgemeines Integral verwenden, dessen
Herleitung sich in Anhang A.4.4 findet:

∫
ddz′

1

(z′ − z1)n(z′ − z2)m
= π

d
2

Γ(n+m−d
2 )Γ(d−n2 )Γ(d−m2 )

Γ(n2 )Γ(m2 )Γ(d− m+n
2 )

1

(z1 − z2)n+m−d
. (3.24)

19



3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

Durch Ableiten liefert dieses Integral ebenfalls eine Lösung für die weiteren Integrale in
Gleichung (3.23); diese finden sich im Anhang in den Gleichungen (A.27) und (A.28).
Durch Einsetzen gelangt man dann für Diagramm b) zu

D
(2)b
µνλω(z) = −3g2N(N2 − 1)

Γ2(n2 − 1)Γ(3n
2 − 4)Γ(4 − n)Γ(3 − n

2 )

43π
3n
2
−2Γ(n− 2)Γ(7 − 3n

2 )

×
{
(δµλδνω − δµωδνλ)

2

z3n−8
− (δνωzµzλ − δνλzµzω)

3n
2 − 4

z3n−6

}
.(3.25)

Auch hier findet man wieder ein divergentes Ergebnis für n = 4. Nach Antisymmetri-
sierung erhält man für n = 4 − 2ε

A(2)b(z2) = −3g2N(N2 − 1)
Γ2(1 − ε)Γ(2 − 3ε)Γ(2ε)Γ(1 + ε)

32π4−3εΓ(2 − 2ε)Γ(1 + 3ε)z4−6ε

B(2)b(z2) = 3(2 − 3ε)g2N(N2 − 1)
Γ2(1 − ε)Γ(2 − 3ε)Γ(2ε)Γ(1 + ε)

16π4−3εΓ(2 − 2ε)Γ(1 + 3ε)z4−6ε
, (3.26)

und so ergibt sich nach Renormierung (vgl. Abschnitt 2.5.1):

D(2)b(z2) = 0

D(2)b
1 (z2) = −g2N(N2 − 1)

16π4z4
3(L+ 1) . (3.27)

Hierbei wurde die Abkürzung
L ≡ ln(πeγEν2z2) (3.28)

eingeführt mit der Massenskala ν des MS-Schemas (vgl. Gleichung (2.40)).

Diagramm 3.2 c). Für die Gluonschleife ergibt sich

D
(2)c
µνλω(z) = −g

2

4
f cdefhij

∫
d4y1 d4y2

〈
∂yµA

a
ν(y)∂

x
λA

a
ω(x)∂y1[αA

h
β](y1)

×Aiα(y1)A
j
β(y1)∂

y2
[γ A

c2
δ] (y2)A

d
γ(y2)A

e
δ(y2)

〉
. (3.29)

Aufgrund des Produktes von jeweils acht Eichfeldern, kommt es hier zu einer großen
Anzahl von Möglichkeiten bei der Wick-Kontraktion. Diese werden hier nicht explizit
aufgelistet. Folgt man allerdings den bereits vorgestellten Rechnungen, so stößt man
nach Einsetzten der Gluonpropagatoren und Zusammenfassen der Terme auf das fol-
gende Zwischenergebnis:

D
(2)c
µνλω(z) = 2(n− 2)2g2N(N2 − 1)

Γ4(n2 − 1)

44π2n
∂µ∂ν

∫
dny1 dny2

×
{
δνω

[
(y1 − y)α(y2 − x)α

(y − y1)n(x− y2)n(y1 − y2)2n−4
− (y1 − y)α(y2 − y1)α

(y − y1)n(x− y2)n−2(y1 − y2)2n−2

+
(y2 − x)α(y2 − y1)α

(y − y1)n−2(x− y2)n(y1 − y2)2n−2
− 1

(y − y1)n−2(x− y2)n−2(y1 − y2)2n−2

]

+

[
− (y1 − y)ω(y2 − x)ν

(y − y1)n(x− y2)n(y1 − y2)2n−4
+

(y1 − y)ω(y2 − y1)ν
(y − y1)n(x− y2)n−2(y1 − y2)2n−2

− (y2 − x)ν(y2 − y1)ω
(y − y1)n−2(x− y2)n(y1 − y2)2n−2

+
(2n − 1)(y2 − y1)ω(y2 − y1)ν

(y − y1)n−2(x− y2)n−2(y1 − y2)2n

]}
.

(3.30)
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3.2 Berechnung im Kontinuum

Substituiert man nun y − y1 = z1 und y − y2 = z2, so erhält man Integrale vom Typ

Iαβ(z) =

∫
dnz1

∫
dnz2

z1α(z2 − z)β
zn1 (z2 − z)n(z2 − z1)2n−4

= π4 Γ2(3 − n
2 )Γ(4 − n)Γ(2n− 6)

Γ2(n2 )Γ(n− 2)Γ(10 − 2n)

(
δαβ
2

z2

2n− 7
− zαzβ

)
z12−4n, (3.31)

welche sich mit den Formeln aus Anhang A.4.4 bestimmen lassen. Insgesamt gibt es fünf
verschiedene Integrale, die sich alle auf die gleiche Form wie (3.31) bringen lassen. Nach
einer weiteren länglichen Rechnung gelangt man dann zu

D
(2)c
µνλω(z) = g2N(N2 − 1)

(6n − 5)Γ2(n2 − 1)Γ(4 − n)Γ2(3 − n
2 )Γ(2n − 6)

43π2n−4Γ(n− 2)Γ(10 − 2n)

×∂µ∂λ
(

δνω
4n− 14

z14−4n − zνzωz
12−4n

)
. (3.32)

Dies führt nach Ableiten und Antisymmetrisieren auf

D
(2)c
µνλω(z) = g2N(N2 − 1)

(6n − 5)Γ2(n2 − 1)Γ(4 − n)Γ2(3 − n
2 )Γ(2n − 6)

32π2n−4Γ(n− 2)Γ(10 − 2n)

×
(
δµλδνωz

12−4n − 2(12 − 4n)δνωzµzλz
10−4n

)
. (3.33)

Folglich findet man schließlich

A(2)c(z2) = g2N(N2 − 1)
(19 − 12ε)Γ2(1 − ε)Γ(2ε)Γ2(1 + ε)Γ(2 − 4ε)

32π4−4εΓ(2 − 2ε)Γ(2 + 4ε)z4−8ε
(3.34)

B(2)c(z2) = −g2N(N2 − 1)
(1 − 2ε)(19 − 12ε)Γ2(1 − ε)Γ(2ε)Γ2(1 + ε)Γ(2 − 4ε)

16π4−4εΓ(2 − 2ε)Γ(2 + 4ε)z4−8ε

und damit

D(2)c(z2) = 0

D(2)c
1 (z2) = g2N(N2 − 1)

48π4z4

19

4

(
L+

59

57

)
. (3.35)

Diagramm 3.2 d). Die Geistschleife liefert den folgenden Beitrag, wobei für den Geist-
propagator (vgl. Gleichung (2.26)) DFP(y − x) = 〈c(y)c(x)〉 verwendet wird:

D
(2)d
µνλω(z) =

g2

2
fhijfklm

∫
d4y1 d4y2

〈
∂yµA

a
ν(y)∂

x
λA

a
ω(x)ch(y1)

(
∂y1α A

j
α(y1)

)

×ci(y1)c
k(y2)

(
∂y2β A

m
β (y2)

)
cl(y2)

〉

=
g2

2
N(N2 − 1)∂µ∂ν

∫
d4y1 d4y2DFP(y2 − y1)DFP(y1 − y2)

×
{
δναδωβ

(
∂y1α D(y − y1)

)(
∂y2β D(x− y2)

)

+ δνβδωα

(
∂y2β D(y − y2)

)(
∂y1α D(x− y1)

)}
. (3.36)
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3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

Nach Bildung der Abeitungen nach y1 und y2, sowie der Substitution y − y1 = z1,
y − y2 = z2 findet man

D
(2)d
µνλω(z) =

g2

2
N(N2 − 1)

Γ4(n2 − 1)

44π2n
∂µ∂λ(2 − n)2

∫
d4z1 d4z2

(
z1ν(z2 − z)ω

zn1 (z2 − z)n(z1 − z2)2n−4
+

(z1 − z)νz2ω
zn2 (z1 − z)n(z1 − z2)2n−4

)
. (3.37)

Die beiden auftretenden Integrale liefern den gleichen Wert, da sie symmetrisch unter
Vertauschung von z1 und z2 sind. Mit den Formeln aus Anhang A.4.4 findet man für
das Integral

∫
d4z1 d4z2

z1ν(z2 − z)ω
zn1 (z2 − z)n(z1 − z2)2n−4

= π2 Γ(4 − n)Γ2(3 − n
2 )Γ(2n − 6)

Γ2(n2 )Γ(n− 2)Γ(10 − 2n)
. (3.38)

Eingesetzt ergibt dies

D
(2)d
µνλω(z) = g2N(N2 − 1)

Γ2(n2 − 1)Γ(4 − n)Γ2(3 − n
2 )Γ(2n − 6)

43π2n−4Γ(n− 2)Γ(10 − 2n)

×∂µ∂λ
(

δνω
4n− 14

z14−4n − zνzωz
12−4n

)
. (3.39)

Auswerten der Ableitung und Antisymmetrisierung liefert dann

D
(2)d
µνλω(z) = g2N(N2 − 1)

Γ2(n2 − 1)Γ(4 − n)Γ2(3 − n
2 )Γ(2n − 6)

32π2n−4Γ(n− 2)Γ(10 − 2n)

×
(
δµλδνωz

12−4n − 2(12 − 4n)δνωzµzλz
10−4n

)
, (3.40)

was zu den Koeffizienten

A(2)d(z2) = g2N(N2 − 1)
Γ2(1 − ε)Γ(2ε)Γ2(1 + ε)Γ(2 − 4ε)

32π4−4εΓ(2 − 2ε)Γ(2 + 4ε)z4−8ε

B(2)d(z2) = −g2N(N2 − 1)(1 − 2ε)
Γ2(1 − ε)Γ(2ε)Γ2(1 + ε)Γ(2 − 4ε)

16π4−4εΓ(2 − 2ε)Γ(2 + 4ε)z4−8ε
(3.41)

führt. Es ergibt sich also

D(2)d(z2) = 0

D(2)d
1 (z2) = g2N(N2 − 1)

48π4z4

1

4

(
L+

5

3

)
. (3.42)

Diagramm 3.2 e). Für die Fermionenschleife erhält man den Beitrag

D
(2)e
µνλω(z) = g2fhijfklm

∫
d4y1 d4y2 ∆jl(y1 − y2)∆

mi(y2 − y1)γ
ργσ

×
〈
∂yµA

a
ν(y)∂

x
λA

a
ω(x)Ahρ(y1)A

k
σ(y2)

〉
, (3.43)

mit den Gammamatrizen γµ und dem Quarkpropagator aus Gleichung (2.27). Die Rech-
nung wird an dieser Stelle nicht explizit ausgeführt, da hier nur die reine Eichtheorie
betrachtet wird. Das Ergebnis kann allerdings Kapitel 4 entnommen werden.
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3.2 Berechnung im Kontinuum

Diagramme mit Schwinger-Linien Anteil

Nun bleiben noch die folgenden Diagramme mit Schwinger-Linien Anteil zu berechnen:

f) g)

h) i)

Abbildung 3.3: Diagramme mit Schwinger-Linien Anteil.

Um diese Diagramme auswerten zu können, benötigt man modifizierte Propagator-
Integrale, um die Ergebnisse in dimensionaler Regularisierung angeben zu können. Be-
trachten wir zunächst den Propagator mit einfachem Schwinger-Linien Integral:

D̃(σz) ≡
∫

dnk

(2π)n

∫ 1

0
dσ

eikσz

k2

=
1

3 − n

Γ(n2 − 1)

4π
n
2 zn−2

. (3.44)

Hierbei wurde analog zu (2.24) verfahren; weiterhin verschwinden Integrale mit ungera-
dem Integranden über ein symmetrisches Intervall. Analog lässt sich das pfadgeordnete
Produkt zweier Propagatoren mit einfachem Schwinger-Linien Integral bestimmen zu

D̃(σz)D̃(σ)((1 − ρ)z) ≡
∫ 1

0
dσD(σz)

∫ σ

0
dρD((1 − ρ)z)

1−ρ=σ
=

∫ 1

0
dσD(σz)

∫ 1

1

2

dσD(σz)

= D̃(σz)
(
D̃(σz) −

∫ 1

2

0
D(σz)

)

=
(1 − 2n−3)

(n− 3)2
Γ2(n2 − 1)

16πnz2n−4
. (3.45)

Darüberhinaus wird der Propagator mit zweifachem Schwinger-Linien Integral benötigt.
Für diesen ergibt sich

˜̃
D((σ − ρ)z) ≡

∫
dnk

(2π)n

∫ 1

0
dσ

∫ σ

0
dρ

eik(σ−ρ)z

k2

= −
∫

dnk

(2π)n
eikz

(kz)2k2

=
1

n− 3

1

n− 4

Γ(n2 − 1)

4π
n
2 zn−2

. (3.46)

Mit diesen Integralen lassen sich nun die Diagramme aus Abbildung 3.3 auswerten.
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3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

Diagramm 3.3 f) und g). Für diese beiden Diagramme erhält man

D
(2)f+g
µνλω (z) =

g2

2
facdf cbezτzκ

∫ 1

0
dσ

∫ σ

0
dρ
〈(
∂yµA

a
ν(y)

)
Adτ (x+ σz)Aeκ(x+ ρz)

(
∂xλA

b
ω(x)

)〉

= −g
2

2
facdf cbezτzκ

[ (
∂µD̃

ad
ντ ((1 − σ)z)

) (
∂λD̃

(σ) eb
κω (ρz)

)

+
(
∂λD̃

db
τω(σz)

)(
∂µD̃

(σ) ae
νκ ((1 − ρ)z)

)
+
(
∂µ∂λD

ab
νω(z)

) ˜̃
D
de

τκ((σ − ρ)z)
]
.

(3.47)

Aufgrund der total antisymmetrischen Strukturkonstanten fällt hier der erste Term pro-
portional zu D̃ad((1− σ)z)D̃(σ) eb(ρz) sofort weg, da facaf cbb = 0 gilt. Im zweiten Term
findet man den Beitrag zu Diagramm 3.3 g), im dritten denjenigen zu Diagramm 3.3 f).
Der Beitrag zu Diagramm 3.3 g) verschwindet ebenfalls, da sich hierfür ergibt:

D
(2)g
µνλω(z) = −g

2

2
N(N2 − 1)

Γ2(n2 − 1)

16πn

∫ 1

0
dσ

∫ σ

0
dρ zνzω

(
∂µ(σz)

2−n
) (
∂λ((1 − ρ)z)2−n

)
,

(3.48)

so dass sich die Terme nach Antisymmetrisierung gegenseitig wegheben.
Für Diagramm 3.3 f) ergibt sich nach Bildung der Ableitung

D
(2)f
µνλω(z) =

g2

2

N(N2 − 1)(2 − n)

(n− 3)(n − 4)

Γ2(n2 − 1)

16πn
δνω(δµλz

4−2n − nzµzλz
2−2n) (3.49)

und damit

A(2)f (z2) =
g2

2
N(N2 − 1)

1 − ε

(1 − 2ε)ε

Γ2(1 − ε)

16π4−2εz4−4ε

B(2)f (z2) = −g
2

2
N(N2 − 1)

1 − ε

(1 − 2ε)ε

Γ2(1 − ε)(4 − 2ε)

16π4−2εz4−4ε
. (3.50)

Dieses Diagramm divergiert also für n = 4. Daher folgt nach Renormierung

D(2)f (z2) = −g2N(N2 − 1)

16π4z4

D(2)f
1 (z2) = g2N(N2 − 1)

16π4z4
(2L+ 5) . (3.51)

Diagramm 3.3 h). Hierfür findet man in der Entwicklung zwei gleichwertige Beiträge,
es genügt also, einen der beiden zu berechnen

D(2)h/2
[µν][λω](z) = g2fabcf bdezτ

∫ 1

0
dσ
〈
(∂µA

a
ν(y) − ∂νA

a
µ(y))A

c
τ (x+ σz)Adλ(x)A

e
ω(x)

〉

= g2fabcf bdezτ
{(

∂µD
ad
νλ(z)

)
D̃ce
τω(σz) +

(
∂µD

ae
νω(z)

)
D̃cd
τλ(σz)

−
(
∂νD

ad
µλ(z)

)
D̃ce
τω(σz) −

(
∂νD

ae
µω(z)

)
D̃cd
τλ(σz)

}

= g2 4 − 2n

3 − n

Γ2(n2 − 1)

16πnz2n−2
(δµλzνzω − δµωzνzλ − δνλzµzω + δνωzµzλ). (3.52)
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3.2 Berechnung im Kontinuum

Für die beiden Terme ergibt sich

D(2)h(z2) = g2N(N2 − 1)

8π4z4

D(2)h
1 (z2) = −g2N(N2 − 1)

8π4z4
. (3.53)

Diagramm 3.3 i). Dieses Diagramm liefert den Beitrag

D
(2)i
µνλω(z) = −g

2

2
fabcfhijzτ

∫ 1

0
dσ

∫
d4y′

〈(
∂yµA

a
ν(y)

)
Acτ (x+ σz)∂y

′

[αA
hy′

β]

×(y′)Aiα(y′)Ajβ(y
′)
(
∂xλA

b
ω(x)

)〉

= − g2

2
N(N2 − 1)zτ

∫
d4y′ ×

{(
∂yµ∂

y′

[αδ
y′

β]νD(y − y′)
) [

(δτβδαω − δταδβω)D̃(x+ σz − y′)
(
∂xλD(y′ − x)

) ]

+
(
∂y

′

[αδ
y′

β]τ D̃(x+ σz − y′)
)[

(δναδωβ − δνβδαω)
(
∂yµD(y − y′)

) (
∂xλD(y′ − x)

) ]

+
(
∂xλ∂

y′

[αδ
y′

β]ωD(y′ − x)
) [

(δταδνβ − δναδτβ)
(
∂yµD(y − y′)

)
D̃(x+ σz − y′)

]
.

(3.54)

Die hier auftretenden Integrale lassen sich nur sehr schwer im Ortsraum lösen, so dass
es einfacher ist, dieses Diagramm mittels Fouriertransformation

D(q) =

∫
dnz eiqz D(z)

D(z) =

∫
dnq

(2π)4
eiqz D(q) (3.55)

in den Impulsraum zu überführen. Das Ergebnis lässt sich dann durch Rücktransfor-
mation wieder im Ortsraum angeben. Zur Übersichtlichkeit wird im Folgenden nur die
zweite Zeile aus (3.54) betrachtet, die anderen beiden berechnen sich analog. Für den
Vorfaktor gilt die Abkürzung

C ≡ −g
2

2
N(N2 − 1)(δτβδαω − δταδβω) . (3.56)

Ferner wird zτ ≡ (i∂qτ ) e−iqz|q=0 verwendet. Man erhält

D
(2)i
µνλω(z) = iC ∂qτ

∫
dnz

∫
dny′

(
∂yµ∂

y′

[αδ
y′

β]ν

∫
dnk1

(2π)n
ei(y−y′)k1

k2
1

)

×
∫

dnk2

(2π)n

∫ 1

0
dσ

ei(x+σz−y′)k2

k2
2

(
∂xλ

∫
dnk3

(2π)n
ei(y′−x)k3

k2
3

)

= iC ∂qτ

∫
dnz

∫
dny′

dnk1

(2π)n

∫
dnk2

(2π)n

∫ 1

0
dσ

∫
dnk3

(2π)n

×
k1[αδβ]νk1µk3λ

k2
1k

2
2k

2
3

ei(σk2−q)zei(yk1+x(k2−k3))e−i(k1+k2−k3)y′ . (3.57)
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3 Berechnung des QCD-Feldstärkekorrelators im Kontinuum

Unter Verwendung der Darstellung der Dirac’schen Deltafunktion
∫

dny′ ei(k1+k2−k3)y′ = δ(k1 + k2 − k3) (3.58)

und anschließender Auswertung des Integrals über k3 = k1 + k2 gelangt man zu

D
(2)i
µνλω(z) = i

C

(2π)n
∂qτ

∫
dnz

dnk1

(2π)n

∫
dnk2

(2π)n

∫ 1

0
dσ
k1[αδβ]νk1µ(k1 + k2)λ

k2
1k

2
2(k1 + k2)2

ei(k1+σk2−q)z

= i
C

(2π)2n
∂qτ

∫
dnk2

(2π)n

∫ 1

0
dσ

(q − σk2)µ(q − σk2)[αδβ]ν(q + (1 − σ)k2)λ

(q − σk2)2k2
2(q + (1 − σ)k2)2

.

(3.59)

Im letzten Schritt wurde mit
∫

dnz ei(k1+σk2−q)z = δ(k1 + σk2 − q) das Integral über
k1 = q − σk2 berechnet. Substituiert man nun k = σk2, so erhält man schließlich

D
(2)i
µνλω(z) = i

C

(2π)2n
∂qτ

∫
dnk

(2π)n
(q − k)µ(q − k)[αδβ]ν

(q − k)2k2
2

∫ 1

0
dσ σ3−n (σq + (1 − σ)k)λ

(σq + (1 − σ)k)2
.

(3.60)
Die Integration über σ lässt sich nun mittels Feynmanparametrisierung

∫ 1

0
dx

xα−1(1 − x)β−1

(xa+ (1 − x)b)α+β
=

Γ(α)Γ(β)

Γ(α+ β)

1

aαbβ
(3.61)

auswerten und liefert für n = 4 − 2ε

∫ 1

0
dσ σ3−n (σq + (1 − σ)k)λ

(σq + (1 − σ)k)2
=
gλ
qk

+ Γ(ε)
kλ
k2
. (3.62)

Für die dritte und vierte Zeile in Gleichung (3.54) erhält man an dieser Stelle ent-
sprechende Variationen des Integrals, welche dann auf hypergeometrische Funktionen5

führen. Weiterhin ist bei der Berechnung dieses Beitrags darauf zu achten, dass es hier
zu einer Mischung von Operatoren A, B kommt. Die Gegenterme haben daher die Form
αA + βB mit α 6= β [34, S. 62ff]. Da der Fokus dieser Arbeit allerdings auf der in Ka-
pitel 6 folgenden Rechnung in Gitterstörungstheorie liegt, soll an dieser Stelle nur das
Endergebnis für Diagramm 3.3 i), entnommen aus [39], angegeben werden:

D(2)i(z2) = −g2N(N2 − 1)

32π4z4
(2L+ 1)

D(2)i
1 (z2) = g2N(N2 − 1)

8π4z4

(
L+

11

4
+

2π2

3

)
. (3.63)

5Die hypergeometrische Funktion ist definiert als

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
X

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
z ∈ C.

Ihre Eigenschaften werden in [52, Kap. 15] detailliert beschrieben.
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4 Diskussion der Kontinuumsergebnisse

In diesem Kapitel werden kurz die Ergebnisse der Kontinuumsrechnung diskutiert und
mit denen des Artikels von Eidemüller und Jamin [39] verglichen. Außerdem soll die in
Kapitel 6 folgende Rechnung motiviert werden.

4.1 Ergebnisse

Zum einfacheren Vergleich wird zunächst nachstehende Notation für die beiden skalaren
Funktionen D(2)(z2) und D(2)

1 (z2) eingeführt:

D(2)(z2) = D(0)
1 (z2)G(2)(z2) , D(2)

1 (z2) = D(0)
1 (z2)G

(2)
1 (z2) , (4.1)

mit D(0)
1 (z2) = N2−1

π2z4 . Für die einzelnen Diagramme ergibt sich hiermit

G(2)a(z2) = N
αs

π

[
1

4

]
(4.2a)

G(2)f (z2) = N
αs

π

[
−1

4

]
(4.2b)

G(2)h(z2) = N
αs

π

[
1

2

]
(4.2c)

G(2)i(z2) = N
αs

π

[
−1

8
(2L+ 1)

]
, (4.2d)

und

G
(2)b
1 (z2) = N

αs

π

[
−3

4
(L+ 1)

]
(4.3a)

G
(2)c
1 (z2) = N

αs

π

[
19

48

(
L+

59

57

)]
(4.3b)

G
(2)d
1 (z2) = N

αs

π

[
1

48

(
L+

5

3

)]
(4.3c)

G
(2)f
1 (z2) = N

αs

π

[
1

4
(2L+ 5)

]
(4.3d)

G
(2)h
1 (z2) = N

αs

π

[
−1

2

]
(4.3e)

G
(2)i
1 (z2) = N

αs

π

[
1

2

(
L+

11

4

)
+
π2

3

]
. (4.3f)

Es bezeichnet αs = g2

4π und L = ln(πeγEν2z2), außerdem wurde die Rechnung in kova-
rianter Feynman-’tHooft Eichung mit Eichparameter ξ = 1 durchgeführt. Nicht aufge-
führte Diagramme liefern keinen Beitrag.1

1Die Beiträge (4.2d) und (4.3f) wurden [39] entnommen.
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4 Diskussion der Kontinuumsergebnisse

Möchte man diese Rechnung im MS-Schema ausdrücken, so muss ν2 = µ2 eγE

4π gesetzt
werden, wobei mit µ2 dann die Massenskala im MS-Schema bezeichnet wird.

Die Ergebnisse stimmen mit denen des Artikels von Eidemüller und Jamin überein.
Diese haben allerdings die Beiträge für die Gluon-, Geist- und Fermionschleife in allge-
meiner Eichung zusammengefasst zu

G
(2)e
1 (z2) = N

αs

π

[(
β1

2N
− 3

8
− ξ

8

)
L+

β1

3N
− 23

48
+
ξ

4
+
ξ2

16

]
, (4.4)

wobei β1 = (11N−2f) / 6 der erste Koeffizient der Betafunktion der QCD für f Flavours
ist.

Insgesamt hat man also für den Feldstärkekorrelator in Störungstheorie bis zur Ord-
nung O(g2)

D(2)(z2) = N(N2 − 1)
1

π2z4

αs

π

[
−1

4
L+

3

8

]
(4.5)

D(2)
1 (z2) = N(N2 − 1)

1

π2z4

αs

π

[(
β1

2N
− 1

4

)
L+

β1

3N
+

29

24
+
π2

3

]
. (4.6)

4.2 Motivation der Gitterrechnung

Der quantenchromodynamische Feldstärkekorrelator wurde bereits mehrfach auf dem
Gitter vermessen (siehe z. B. [53–55]). Daher ist es wünschenswert, die Ergebnisse der
Gitterrechnungen mit denen des Kontinuums zu vergleichen. Hierbei treten allerdings
einige Schwierigkeiten auf: Die Ergebnisse aus Kapitel 4.1 hängen sowohl von der Renor-
mierungsskala, als auch vom Renormierungsschema ab. Es kann also nicht einfach die
Entwicklungsgröße im Kontinuum αMS

s durch die entsprechende auf dem Gitter ersetzt
werden. Ein quantitativer Vergleich der Rechnungen ist somit nicht möglich, eine quali-
tative Auswertung findet sich in [39]. Die Übereinstimmungen beschränken sich dort in
der führenden Ordnung auf 20%, die höheren Korrekturen unterscheiden sich allerdings
im Vorzeichen.

Um nun einen quantitativen Vergleich der Ergebnisse zu erhalten, ist eine Berechnung
des Feldstärkekorrelators in Gitterstörungstheorie unumgänglich. Dies soll im Folgenden
genauer diskutiert werden.
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5 Quantenchromodynamik auf dem
Gitter

Im Folgenden wird die QCD in der Gitterformulierung vorgestellt. Zunächst wird der
Regularisierungsformalismus genauer erläutert, anschließend werden Eichfelder auf dem
Gitter diskutiert.1 Im zweiten Abschnitt wird dann die Gitterstörungstheorie für Kapi-
tel 6 bereitgestellt.

5.1 Gitterformulierung der QCD

Die Formulierung der QCD auf einem Raum-Zeit-Gitter entstand fast zur gleichen Zeit
wie die Theorie im Kontinuum in den frühen 1970ern (siehe z. B. [1]), allerdings be-
schränkte sich die Forschung in den Anfängen auf einen analytischen Zugang. Für den
numerischen Ansatz waren Monte Carlo Methoden zwar schon im Rahmen der statis-
tischen Physik seit den frühen 1950ern vorhanden [59], es mangelte jedoch noch an
Rechenleistung. Schließlich simulierten 1979 Creutz, Jacobs und Rebbi [60] zum ersten
Mal Eichtheorien auf dem Gitter, 1981 kamen dann auch Fermionen hinzu (z. B. [61]).

Wie in Kapitel 2 gesehen, ist die Kontinuums-QCD nur für große Impulsüberträge
oder für kleine Abstände störungstheoretisch zugänglich, weshalb die Gitter-QCD als
nichtperturbativer Ansatz im Bereich großer Abstände benötigt wird. Das Prinzip ist
hier die Einführung eines Raum-Zeit-Gitters als Regulator, welcher einem Impuls-„Cut-
off“ entspricht (vgl. auch Kap. 2.5.1). Basierend auf [56–58] wird dieses Verfahren im
Folgenden genauer beschrieben.

5.1.1 Gitterregularisierung

In Kapitel 2 wurde die Kontinuums-QCD im Rahmen des Pfadintegral-Formalismus
vorgestellt. Will man nun diese Theorie auf einem hyperkubischen Raum-Zeit-Gitter

Γ = aZ
4 = {a (nµ) |nµ ∈ Z, µ = 1, 2, 3, 4} (5.1)

mit Gitterabstand a definieren, so müssen folgende Ersetzungen durchgeführt werden:

xµ −→ nµa∫
d4x −→ a4

∑

n

. (5.2)

Jeder Gitterpunkt2 an besitzt vier nächste Nachbarpunkte entlang der positiven Koordi-
natenachsen, deren Einheitsvektoren mit µ̂ = 1̂, 2̂, 3̂, 4̂ bezeichnet werden. Die Verknüp-
fung zwischen zwei benachbarten Punkten wird Link genannt (siehe Abbildung 5.1).

1Fermionen auf dem Gitter werden in dieser Arbeit nicht betrachtet. Eine ausführliche Übersicht dazu
findet sich in der Literatur [56–58].

2Es gilt im Folgenden n ≡ (nµ).
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5 Quantenchromodynamik auf dem Gitter

Der Abstand a zwischen diesen Punkten bewirkt nun ein Abschneiden der Impulse im ul-
travioletten Regime. Dadurch wird der Wertebereich auf die sogenannte erste Brillouin-
Zone

BZ =
{
k
∣∣∣−π
a
< kµ ≤ π

a

}
(5.3)

beschränkt. Betrachtet man außerdem ein Gitter im endlichen Volumen V = L1L2L3L4,
so lässt sich die diskrete Summe über die Moden der ersten Brillouin-Zone durch Inte-
grale ausdrücken

1

V

∑

k

−→
∫

BZ

4∏

i=1

dki
2π

. (5.4)

Weiterhin muss beachtet werden, dass die Ableitungen zu endlichen Differenzen über-
gehen. Daher benötigt man eine sinnvolle Definition für die kovariante Ableitung Dµ auf
dem Gitter. Diese lässt sich mit Hilfe des Paralleltransporters finden, welcher z. B. in der
Allgemeinen Relativitätstheorie den Vergleich zweier Vektoren (oder Tensoren) an zwei
verschiedenen Raumzeitpunkten ermöglicht. Im Kontinuum lässt sich zeigen, dass die
Eichfelder Aµ(x) gerade den infinitesimalen Paralleltransport im Farbraum beschreiben,
so dass dieses Konzept auf das Gitter erweitert werden kann. Hier definiert man den
Paralleltransporter Uµ(n) auf dem Mittelpunkt des Links zwischen zwei benachbarten
Punkten n und n+ µ̂ mit den Eigenschaften

U−1
µ (n) = U †

µ(n) = U−µ(n+ µ̂), (5.5)

er wird im Folgenden als Linkvariable bezeichnet. Die kovariante Ableitung eines skala-
ren Feldes φ(x) lässt sich dann definieren als

Dµφ(x) =
1

a

(
U−1
µ (n)φ(n + µ̂) − φ(n)

)
. (5.6)

Möchte man physikalische Vorhersagen erhalten, so ist der Kontinuumslimes a → 0
zu bilden, da der Gitterabstand a selbst hier eine unphysikalische Größe ist. Demnach
ist eine fundamentale Bedingung an die Konstruktion einer Gittereichtheorie, dass in
diesem Limes auch tatsächlich das korrekte Kontinuumsergebnis reproduziert wird, was
somit z. B. bei der Konstruktion der Gitterwirkung zu beachten ist.

5.1.2 Eichfelder auf dem Gitter

Für die QCD betrachten wir nun die Linkvariable Uµ(n) ∈ SU(3)c (vgl. Gleichung (5.5)),
welche sich unter einer SU(Nc)-Gittereichtransformation Ω verhält wie

Uµ(n) −→ Ω(n)Uµ(n)Ω−1(n+ µ̂) . (5.7)

Aufgrund der Eigenschaften der Linkvariablen als Paralleltransporter sowie der Invari-
anz der Spur unter zyklischen Vertauschungen, erhält man eine eichinvariante Größe,
wenn man die Spur über ein Produkt aus Linkvariablen bildet, welches einem geschlos-
senen Weg entspricht. Die einfachste Form hierfür ist die Plakette

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n) , (5.8)

welche in Abbildung 5.1 gezeigt ist.
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5.1 Gitterformulierung der QCD

n n+ µ̂

n+ ν̂

Q
{

a

Abbildung 5.1: Zweidimensionale Darstellung eines Raum-Zeit-Gitters mit Gitterabstand a,
einer Linkvariablen zwischen zwei Gitterpunkten sowie einer elementaren Plakette.

Als Verbindung zwischen Gitter und Kontinuum dienen nun die Eichfelder Aµ(n),
welche Elemente der Lie Algebra su(Nc) sind. Die Verknüpfung zeigt sich dann durch
die Definition

Uµ(n) ≡ eiagTBAB
µ (n) ≡ eiaAµ(n) , (5.9)

mit den Generatoren TA in der fundamentalen Darstellung3. Unter Verwendung der
Entwicklung

Aµ(n+ ν̂) = Aµ(n) + a∂νAµ(n) + . . . , (5.10)

sowie der Baker-Campbell-Hausdorff-Formel (BCH-Formel)

eAeB = exp

{
A+B +

1

2
[A,B] +

1

12

(
[A, [A,B]] + [B, [B,A]]

)
+ . . .

}
, (5.11)

erhält man die folgende Beziehung zwischen der auf dem Gitter definierten Plakette Pµν
und dem Feldstärketensor Fµν

Pµν(n) = eiga2Gµν(n), Gµν(n) = Fµν(n) + O(a) . (5.12)

Somit ist die Verbindung zwischen Kontinuums- und Gittergrößen gefunden. Nutzt man
weiterhin, dass der Feldstärketensor spurfrei ist, so findet man

Re SpPµν(n) = Nc − g2

2
a4 SpF 2

µν(n) + O(a6) . (5.13)

Hiermit lässt sich nun die Wilson’sche Wirkung für eine reine SU(Nc)-Eichtheorie defi-
nieren:

SG = β
∑

x

∑

µ6=ν

(Nc − Re SpPµν). (5.14)

Es bezeichnet β = 2Nc
g2

; ferner wurde die Notation
∑

x ≡ a4
∑

n eingeführt. Entwickelt
man diesen Ausdruck für kleine a, so geht er im Limes verschwindender Gitterabstände
in die klassische Yang-Mills Wirkung über. Natürlich sind für die Wirkung beliebige
andere eichinvariante Wahlen möglich, solange diese die korrekten Symmetrien erhalten
und den richtigen Kontinuumslimes liefern.

3Die Generatoren in der Fundamentaldarstellung sind spurfrei und es gilt die Normierung:
Sp(T AT B) = 1

2
δAB .
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5 Quantenchromodynamik auf dem Gitter

5.2 Gitterstörungstheorie

In Kapitel 2.5 wurde das Gitter als Regulator eingeführt, um einen numerischen Zu-
gang zur QCD zu erhalten. Daher könnte die Überschrift dieses Kapitels die Frage
aufkommen lassen, warum man nun auf diesem Gitter Störungstheorie betreiben möch-
te, da der eigentliche Nutzen des Gitterformalismus in den numerischen Berechnungen
liegen sollte. Allerdings gibt es viele Anwendungen, in denen Störungsrechnungen auf
dem Gitter sinnvoll und sogar notwendig sind. Als Beispiel seien die Berechnungen der
Renormierungsfaktoren von Matrixelementen, sowie der nackten Parameter der Lagran-
gedichte genannt. Desweiteren dienen perturbative Gitterrechnungen als Verknüpfung
zwischen Gittersimulationen und Kontinuum: Mit jeder Gitterwirkung wird ein eige-
nes Regularisierungsschema ungleich dem im Kontinuum eingeführt. Somit können die
Ergebnisse der Monte Carlo Simulationen erst interpretiert und mit denen des Kontinu-
ums verglichen werden, wenn die Renormierungsgrößen durch eine störungstheoretische
Rechnung auf dem Gitter vollständig bekannt sind. Weitere Anwendungen und eine
ausführliche Übersicht zur Gitterstörungstheorie liefert der Beitrag von Capitani [62].

5.2.1 Funktionalintegral

Im Schwachkopplungsbereich lässt sich die Störungstheorie analog zum Kontinuum ein-
führen. Für kleine Kopplungskonstanten g wird das Funktionalintegral

Z =

∫ ∏

n,µ

DUµ(n) e−Stotal(n) (5.15)

von Werten um Uµ(n) = 1 dominiert, so dass eine Sattelpunktsentwicklung (vgl. [51,
Kap. 3.4]) um die klassischen Vakuumskonfigurationen sinnvoll ist. Entwickelt wird wie-
der in den Eichfeldern Aµ(n), weshalb die Wilson’sche Wirkung unter Verwendung von
Gleichung (5.9) umgeschrieben werden muss. Ein Problem hierbei ist, dass sie dann aus
einer unendlichen Anzahl von Termen besteht, die in jeder Ordnung in g eine stark wach-
sende Anzahl von Vertizes verursachen. Die meisten dieser neuen Vertizes verhalten sich
allerdings proportional zu Potenzen des Gitterabstands a, so dass sie im naiven Konti-
nuumslimes verschwinden. Sie müssen jedoch für die Gitterrechnungen stets mitgeführt
werden, da andernfalls die Eichinvarianz nicht mehr gegeben ist.

Für eine Entwicklung in den Eichfeldern lässt sich für die Rechnung in Kapitel 6
das Haar-Maß DUµ mit Hilfe der Funktionaldeterminanten auf eine Ableitung in den
Eichfeldern umschreiben. Dadurch tritt in der effektiven Wirkung ein zusätzlicher Maß-
Term auf

∏

n,µ

DUµ(n) = e−SM

∏

n,µ,a

dAaµ(n) , (5.16)

mit SM =
g2

8a2

∑

x

(Aaµ(x))
2. (5.17)

Obwohl dieser Term quadratisch in den Eichfeldern ist, ist dies also kein kinetischer Term
und muss bei der Berechnung der Feynmanregeln als Wechselwirkung miteinbezogen
werden. Er entspricht einem Massen-Gegenterm; das Gitter liefert somit automatisch
Gegenterme, die die Renormierbarkeit der Theorie sichern.
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5.2 Gitterstörungstheorie

5.2.2 Feynmanregeln

Zur Entwicklung der Feynmanregeln wird der wechselwirkende Anteil der vollständigen
Gitterwirkung Stotal benötigt. Letztere setzt sich zusammen aus der reinen Eichwirkung
aus Gleichung (5.14), dem Anteil des Maßes aus Gleichung (5.17), sowie dem Faddeev-
Popov- und dem Eichfixierungsterm („gauge fixing“ , GF):

Stotal = SG + SM + SFP + SGF. (5.18)

Der Eichfixierungsanteil mit Eichparameter ξ

SGF =
a2

2ξ

∑

n

(Aµ(n) −Aµ(n− µ̂))2 (5.19)

beinhaltet keinerlei Wechselwirkung und ist daher für die Berechnung der Vertizes nicht
relevant. Die verbleibenden Summanden der Wirkung werden im Folgenden kurz genauer
betrachtet.

Vertizes

Die Vertizes erhält man nun ähnlich wie im Kontinuum (vgl. Kapitel 2.4.2). Auf dem
Gitter ist es allerdings sinnvoll, sie mittels Fouriertransformation im Impulsraum zu
bestimmen. Weiterhin ist darauf zu achten, dass die Ableitungen auf dem Gitter in
Rechts- und Linksableitungen umgeschrieben werden müssen. Hierfür gilt

∂R
µ f(x) =

1

a
(f(x+ aµ̂) − f(x)),

∂L
µf(x) =

1

a
(f(x) − f(x− aµ̂)),

� = ∂R
µ ∂

L
µ . (5.20)

Außerdem müssen die Impulse umgeschrieben werden gemäß

kµ −→ k̃µ =
2

a
sin

(
akµ
2

)
. (5.21)

Eine detaillierte Herleitung der Vertizes und deren explizite Angabe findet sich in [57,
Kap. 14.4]. In dieser Arbeit wird daher nur eine grobe Übersicht über die auftreten-
den Wechselwirkungen im Grenzwert sehr kleiner Gitterabstände a gegeben. Die reinen
Gittervertizes, also diejenigen ohne Kontinuumsanalogon, werden kurz angegeben und
genauer vorgestellt.

3-/4-Gluon-Vertex. Diese Vertizes entstammen der reinen Eichwirkung SG. Um diese
zu extrahieren, muss die Definition der Plakette aus Gleichung (5.8) eingesetzt, sowie die
Baker-Campbell-Hausdorff-Formel aus Gleichung (5.11) verwendet werden. Nutzt man
weiterhin, dass Sp [Aµ, Aν ] aufgrund der Spurfreiheit der Generatoren T a verschwindet,
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5 Quantenchromodynamik auf dem Gitter

so findet man für kleine Gitterabstände a

SG = β
∑

x

∑

µ6=ν

(Nc − Re SpPµν(x))

=
1

2

∑

x

(1

2
(∂µA

a
ν(x) − ∂νA

a
µ(x))

2 (5.22a)

+ gfabc(∂µA
a
ν(x) − ∂νA

a
µ(x))A

b
µ(x)A

c
ν(x) (5.22b)

+
g2

2
fabcf cdeAaµ(x)A

b
ν(x)A

d
µ(x)A

e
ν(x) (5.22c)

+ O(a2)
)
.

Hierbei entspricht der erste Term (5.22a) dem kinetischen Eichterm, er trägt somit nicht
zur Wechselwirkung bei. Die 3-Gluon-Wechselwirkungen werden durch (5.22b) beschrie-
ben, die 4-Gluon-Wechselwirkungen durch (5.22c); sie entsprechen den Kontinuumsver-
tizes und liefern daher bis zur Ordnung O(a2) keine neuen Beiträge.

2-Gluon-Vertex. Dieser neue Vertex ist ein reines Gitterartefakt und stammt aus dem
Maßterm

SM =
g2

8a2

∑

x

(Aaµ(x))
2 ,

er verschwindet im naiven Kontinuumslimes a→ 0.4 Es ergibt sich:

− g2

4a2
δµνδab k, µ, a k′, ν, b

.

Geist-Vertizes. Diese Vertizes haben ihren Ursprung im Faddeev-Popov-Term der
Wirkung

SFP = a2
∑

n

(cb(n+ µ̂) − cb(n))
{
E−1
ba (Aµ(n))ca(n) − E−1

ab (Aµ(n))ca(n+ µ̂)
}
, (5.23)

wobei

Aµ(n)ab = agfabcA
c
µ(n), E−1(x) =

x

1 − e−x
=

∞∑

n=0

Bn
n!

(−x)n, (5.24)

mit den Bernoulli-Zahlen5 Bn . Setzt man die ersten Terme der Summe ein, so erhält
man schließlich bis zur Ordnung O(g2)

SFP = − δab
∑

x

ca(x)∂2cb(x) (5.25a)

− gfabc
∑

x

ca(x)(∂µA
c
µ(x))c

b(x) (5.25b)

+
a2g2

12
δµν(f

aecf bdc + fadcf bec)
∑

x

cb(x)(∂µA
d
µ(x))(∂νA

e
ν(x))c

a(x)

+ O(a4). (5.25c)
4Es sei daran erinnert, dass

P

x = a4
P

n gilt.
5Die Werte der benötigten Bernoulli-Zahlen lauten B0 = 1, B1 = − 1

2
, B2 = 1

6
, siehe auch [52, S. 804].
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5.2 Gitterstörungstheorie

Der erste Term (5.25a) ist wieder ein kinetischer Term und trägt nicht zur Wechselwir-
kung bei. Der zweite Term (5.25b) beschreibt die Geist-Geist-Gluon-Wechselwirkung,
der letzte Term (5.25c) die Geist-Geist-Gluon-Gluon-Wechselwirkung. Dieser ist wieder
ein neuer, gitterspezifischer Vertex, er berechnet sich zu:

a2g2

12
δµν(f

aecf bdc + fadcf bec)p̃ ′
µp̃µ

k′, ν, ek, µ, d

p′, ap, b

.

Dies sind alle zusätzlichen Gittervertizes6 bis zur Ordnung O(g2).

Propagatoren

Die Berechnung des Gluonpropagators auf dem Gitter erfolgt in gleicher Weise wie die
Bestimmung im Kontiuum. Führt man die Ersetzungen aus Gleichungen (5.20) und
(5.21) durch, so findet man für den Gluonpropagator im Impulsraum in kovarianter
Eichung

Dab
µν(k) =

δab

k̃2

(
δµν − (1 − ξ)

k̃µk̃ν

k̃2

)
. (5.26)

Hiermit ergibt sich für Berechnungen im Ortsraum nach Fouriertransformation und in
Feynman-’tHooft-Eichung (ξ = 1)

Dab
µν(x) = δabδµν

∫ π
a

−π
a

d4k

(2π)4
eik(x+a µ̂−ν̂

2
)

k̃2
, (5.27)

wobei die Notation

k̃2 =

4∑

κ=1

(k̃κ)
2 =

4

a2

∑

κ

sin2 akκ
2

(5.28)

eingeführt wurde. Für den Geistpropagator erhält man dann völlig analog

Dab
FP(x) = δab

∫ π
a

−π
a

d4k

(2π)4
eikx

k̃2
. (5.29)

6Betrachtet man auch Fermionen, so ergibt sich ein zusätzlicher Fermion-Fermion-Gluon-Gluon-
Vertex, siehe [57, Kap. 14.4].
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6 Der QCD-Feldstärkekorrelator auf
dem Gitter

Im Folgenden wird der Feldstärkekorrelator auf dem Gitter diskutiert. Dazu wird der
Korrelator im ersten Abschnitt im Gitterformalismus angegeben. Im zweiten Abschnitt
folgt dann die analytische Auswertung des Korrelators, was allerdings zu einigen Schwie-
rigkeiten führt, weshalb sich im Anschluss daran eine Diskussion numerischer Methoden
findet.

6.1 Definition des Korrelators im Gitterformalismus

Auf dem Gitter lässt sich der Feldstärkekorrelator angeben als

Dµνλω(x) =
〈
0
∣∣∣T
{
Gaµν(x)S

ab
adj(x, 0)G

b
λω(0)

}∣∣∣ 0
〉
. (6.1)

Es bezeichnet Gµν das Gitteranalogon zum Kontinuums-Feldstärketensor Fµν

Gµν
a→0−→ Fµν(x). (6.2)

Die adjungierte Schwinger-Linie ist definiert durch

Sadj(x, 0) = P exp

{
gfabc

∫ x

0
dyµAcµ(y)

}
. (6.3)

Hierbei wurde die Wegabhängigkeit der Schwinger-Linie nicht mehr explizit genannt,
da wieder der einfachste Weg in Form einer Geraden verwendet wird (vgl. Kap. 3.1.1).
T und P bezeichnen wieder Zeit-, bzw. Pfadordnung analog zum Kontinuum. Die Lor-
entzstruktur des Korrelators ergibt sich auf dem Gitter in der schon in Kapitel 3.1.2
besprochenen Weise.

Eine weitere Interpretation des Feldstärkekorrelators findet auf dem Gitter viele An-
wendungen. Hierbei lässt sich der Korrelator als zwei Quellen, verbunden durch einen
adjungierten String, verstehen (siehe Abb. 6.1). Für große Abstände dieser Quellen lässt
sich so die Masse des sogenannten „Gluelumps“ [63] messen. Dieses System, bestehend
aus einer statischen adjungierten Quelle und eines dynamischen Gluons, könnte bei Rea-
lisierung der Supersymmetrie den physikalischen Zustand des „Glueballinos“ darstellen.
Ergebnisse für diese Masse finden sich z. B. in [64, 65].

6.2 Analytischer Zugang

Um den Feldstärkekorrelator nun störungstheoretisch auf dem Gitter behandeln zu kön-
nen, müssen zunächst alle auftretenden Größen in den Eichfeldern Aµ(x) dargestellt
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

Abbildung 6.1: Der Feldstärkekorrelator auf dem Gitter

werden. Man findet insbesondere für den Feldstärketensor den Ausdruck

Gaµν ≡ − i

a2g
(Pµν(x) − 1)

=
i

a2g

(
1 − eiaAµ(x)eiaAν(x+aµ̂)e−iaAν(x+aν̂)e−iaAν(x)

)
. (6.4)

Es sei daran erinnert, dass
Aµ(x) −→ gAµ(x). (6.5)

Obiges eingesetzt liefert dann nach Entwicklung der Exponentialfunktionen sowie Ver-
wendung der BCH-Formel (5.11) und der Relation (5.10) für den Feldstärkekorrelator
bis zur Ordnung O(a)

Dµνλω =
〈
0
∣∣∣T
{
− 1

g2

(
i(∂µAν(x) − ∂νAµ(x)) − [Aµ(x), Aν(x)] + O(a)

)
×

(
δab + gfabc

∫ x

0
dyτ Acτ (y) +

g2

2
facdf cbe

∫ x

0
dyτ

∫ y

0
dzκAdτ (y)Aκ(z)

e + . . .
)

×
(
i(∂λAω(x) − ∂ωAλ(x)) − [Aλ(x), Aω(x)] + O(a)

)} ∣∣∣0
〉
. (6.6)

Setzt man nun für den Kommutator

[Aµ(x), Aν(x)] = ifabcAbµ(x)A
c
ν(x)T

a (6.7)

ein, so geht der Ausdruck für a → 0 direkt in das Kontinuumsergebnis über. Daher
wird für die Berechnung lediglich noch der wechselwirkende Teil der Lagrangedichte LI

benötigt, der sich jedoch aus Kapitel 5.2.2 übernehmen lässt:

LI(x) = − g

2
fabc (∂µA

a
ν(x) − ∂µA

a
ν(x))A

b
µ(x)A

c
ν(x)

+
g2

4
fabcf cdeAaµ(x)A

b
ν(x)A

d
µ(x)A

e
ν(x)

− g2

4a2
Aaµ(x)A

a
µ(x)

− gfabc ca(x)(∂µA
c
µ(c))c

b(x)

+
a2g2

12
(faecf bdc + fadcf bec) cb(x)(∂µA

d
µ(x))(∂µA

e
µ(x))c

a(x)

+ O(a4). (6.8)
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6.2 Analytischer Zugang

Verwendet man nun die Entwicklung aus Gleichung (3.9) sowie das Wick’sche Theorem
(2.16), so erhält man die gleichen Diagramme wie im Kontinuum aus den Abbildungen
3.1, 3.2 und 3.3. Außerdem treten die folgenden Diagramme als Beiträge zum Feldstär-
kekorrelator auf dem Gitter auf:

j) k)

Abbildung 6.2: Zusätzliche Diagramme für den Feldstärkekorrelator auf dem Gitter.

6.2.1 Theorem von Reisz

In der Gitterstörungstheorie ist man letztlich immer am physikalischen Kontinuumsli-
mes der auftretenden Diagramme interessiert. Im Allgemeinen lässt sich dieser allerdings
nicht finden, indem die Integrale für endliche Gitterabstände a ausgewertet werden und
anschließend der Limes a→ 0 gebildet wird, da die komplizierten periodischen Struktu-
ren der Integranden oftmals schwierig zu behandeln sind. Allerdings lassen sich für Inte-
grale mit endlichem Kontinuumslimes Bedingungen angeben, für die in der Berechnung
direkt der naive Kontinuumslimes eingesetzt werden kann, was die Auswertung dieser
Integrale erheblich vereinfacht. Die Forderungen an den Integranden sind im „Power
Counting“ -Theorem von Reisz [66] zusammengefasst. Im Folgenden soll dieses in der
etwas abgeschwächten Version von Lüscher [67] vorgestellt werden.

Es wird ein allgemeines Feynmanintegral auf dem Gitter mit L Schleifen betrachtet,
welches von der Form

F (q;M,a) =

∫

BZ

L∏

i=1

d4ki
(2π)4

N(k, q;M,a)

D(k, q;M,a)
(6.9)

ist, mit den externen Impulsen qi und der Masse1 M . Der Zähler N setzt sich zusammen
aus den Beiträgen der Vertizes sowie den Zählern der beitragenden Propagatoren; der
Nenner D entspricht dem Produkt der Nenner der Propagatoren und ist für I interne
Linien von der Form

D(k, q;M,a) =
I∏

i=1

Di(li,Mi, a). (6.10)

Die Impulse der Schleifen li(k, q) sind Linearkombinationen der Integrationsvariablen
und der externen Impulse.

Das Theorem stellt nun die folgenden Bedingungen:

(N1) Es existiert eine Zahl m ∈ Z und eine glatte Funktion f mit

N(k, q;M,a) = a−mf(ak, aq; aM), (6.11)

wobei f periodisch in aki und ein Polynom in aM ist.

1Falls F (q; M, a) von mehreren Massen abhängt, so werden diese mit M bezeichnet: {Mi} ≡ M .
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

(N2) Der Kontinuumslimes des Zählers lima→0N(k, q;M,a) existiert.

(D1) Es existieren glatte Funktionen gi mit

Di(li;M,a) = a−2gi(ali; aMi), (6.12)

wobei gi periodisch in ali und ein Polynom in aMi ist.

(D2) Der Kontinuumslimes der Nenner Di existiert für alle i und ist gegeben durch

lim
a→0

Di(li;Mi, a) = l2i +M2
i . (6.13)

(D3) Es existieren positive Konstanten a0 und C mit

|Di(li;Mi, a)| ≥ C(l̃i
2 +M2

i ) (6.14)

für alle a ≤ a0 und li ∈ BZ.

(l1) Es gilt

li(k, q) =

L∑

j=1

bijkj +

NE∑

l=1

cilql (6.15)

für alle i und bij ∈ Z, cil ∈ R. NE ist die Anzahl der externen Impulse.

(l2) Für eine gegebene Linearkombination pi(k) =
∑L

j=1 bijkj und die Menge
G = {k1, . . . , kL, p1, . . . , pI} gilt für ui ∈ G linear unabhängig und dij ∈ Z:

ki =

L∑

j=1

dijuj . (6.16)

Die letzten beiden Bedingungen sichern die Translationsinvarianz bei Verschiebungen
der Integrationsvariablen um 2π/a.

Führende Ordnung

Die führende Ordnung auf dem Gitter

D(0)
[µν][λω](x) = δab

〈
(∂µA

a
ν(x) − ∂νA

a
µ(x))(∂λA

b
ω(0) − ∂ωA

b
λ(0))

〉
(6.17)

beinhaltet ein konvergentes Integral. Somit kann das Reisz’schen Theorem angewendet
werden und man stellt fest, dass die führende Ordnung diesem genügt. Da der Korrelator
lediglich vom Abstand der beiden Quellen x abhängt, findet man nach Einsetzen des
Propagators auf dem Gitter

D
(0)
µνλω(x) = (N2 − 1)δνω∂

x
µ∂

−x
λ

∫ π
a

−π
a

d4k

(2π)4
eik(x+a( ν̂−ω̂

2
)) 1

k̃2
(6.18)

und mit dem Limes

lim
a→0

4

a2

∑

κ

sin2 akκ
2

= k2 (6.19)
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folgt nach Bildung der Ableitungen

D
(0)
µνλω(x) = (N2 − 1)

δνω
2π2

(
δµλ
x4

− 4
xµxλ
x6

)
. (6.20)

Somit ist

D(0)
µνλω(x) = (δµλδνω − δµωδνλ)

(N2 − 1)

π2x4

− (δµλxνxω − δµωxνxλ − δνλxµzω + δνωxµxλ)
2(N2 − 1)

π2x6
. (6.21)

Dies entspricht exakt dem Kontinuumsergebnis (3.18).

Ein-Schleifen-Ordnung

Analog zur führenden Ordnung lassen sich nun die konvergenten Beiträge der Dia-
gramme 3.2 a) sowie 3.3 g) und h) finden, welche wiederum mit den Ergebnissen aus
Abschnitt 3.2.2 übereinstimmen. Für die divergenten Diagramme kann das Theorem al-
lerdings nicht angewendet werden, so dass für diese Beiträge ein anderer Lösungsansatz
verfolgt werden muss.

Eine direkte Lösung mit Hilfe der Schwinger-Parametrisierung wie im Kontinuum
führt leider nicht zum gewünschten Ergebnis, da die endlichen Integrationsgrenzen auf
nicht weiter lösbare Fehlerfunktionen2 erf(x) führen.

6.2.2 Divergente Integrale auf dem Gitter

Üblicherweise ist man bei störungstheoretischen Rechnungen auf dem Gitter an Ergeb-
nissen im Impulsraum interessiert. In diesem Fall lassen sich divergente Integrale in
Teile mit und ohne externe Impulse aufteilen. Dann werden auf dem Gitter lediglich die
Integrale mit verschwindendem Impuls berechnet, was technisch sehr viel einfacher ist.
Eine Beschreibung dieses Verfahrens findet sich in [62, Kap. 15.2].

Betrachtet man beliebige bosonische divergente Gitterintegrale der Form

F (4)(p;n1, n2, n3, n4) =

∫ π

−π

d4k

(2π)4
k̃2n1

1 k̃2n2

2 k̃2n3

3 k̃2n4

4

DB(k,m)p
, (6.22)

mit DB(k,m) = k̃2 +m2, so lassen sich diese im Impulsraum als Linearkombination der
drei Konstanten

Z0 =

∫ π

−π

d4k

(2π)4
1

k̃2
(6.23)

Z1 =

∫ π

−π

d4k

(2π)4
(k̃1)

2(k̃2)
2

4 k̃2
(6.24)

F0 = lim
m→0

(
16π2

∫ π

−π

d4k

(2π)4
1

(k̃2 +m2)2
+ logm2 + γE

)
(6.25)

2Die Fehlerfunktion ist definiert als

erf(x) =

Z x

0

ds e−s2

, x ∈ C.
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

ausdrücken. Hierbei wurden die Impulse bereits in dimensionslose Größen k umgewan-
delt.

In dieser Arbeit wird allerdings expizit ein Ergebnis im Ortsraum benötigt, um die
Renormierungsschemata auf dem Gitter und im Kontinuum vergleichen zu können. Das
Problem hierbei liegt nun in dem auftretenden Fourierfaktor eikx: Er bewirkt, dass die
Integrale auch für eine Reihenentwicklung der Exponentialfunktion nicht als Linear-
kombinationen der bekannten Standardintegrale Z0, Z1 und F0 (eine Berechnung dieser
findet sich in Abschnitt 6.3) geschrieben werden können.3 Dies wäre nur für sehr kleine
k erfüllt:

sin2 kµ
2

≈ kµ
2
, kµ ≪ 1, (6.26)

was hier allerdings nicht möglich ist, da über k im Intervall [−π, π] integriert wird.
Eine Lösung könnte der Artikel von Becher und Melnikov [68] liefern. Dort wird be-

schrieben, wie sich die Integrale der Gitterstörungstheorie durch einfachere Kontinuums-
integrale ausdrücken und letztlich berechnen lassen. Hierbei werden die Gitterintegrale,
z. B. F (d)(1; 0, 0, 0) ≡ F1, durch die Substitution

ηµ = tan
kµ
2

(
⇒ cos2 kµ

2
=

1

1 + η2
µ

)
(6.27)

auf die folgende Form gebracht

F1(m′) =
1

4πd

∫ ∞

−∞

d∏

κ=1

dηκ
(1 + η2

κ)

(
m′2 +DB(η)

)−1
. (6.28)

Hierbei bezeichnet

DB(η) =

d∑

κ=1

(ηκ)
2

(1 + η2
κ)
, m′ =

m

2
=
a

2
mphys. (6.29)

Der Kontinuumslimes ergibt sich also für m′ → 0. Um nun eine asymptotische Ent-
wicklung der Schleifenintegrale angeben zu können, wird ein analytischer Regulator δ
benötigt. Dieser sichert die Vertauschbarkeit der Taylorentwicklung in kleinen Parame-
tern und der Berechnung der Schleifenintegrale. In Gleichung (6.28) geht also der Faktor
(m′2 +DB(η))−1 über in (m′2 +DB(η))−1−δ . Abschließend muss dann der Limes δ → 0
betrachtet werden. Für F1(m′) ergeben sich somit zwei Beträge:

F1(m′) = F1
weich(m′) + F1

hart(m
′). (6.30)

Diese erhält man wie folgt:

• Weich: Betrachte ηκ ∼ m′ ≪ 1 und führe eine Taylor-Entwicklung in ηκ durch.

• Hart: Betrachte ηκ ∼ 1 ≫ m′ und führe eine Taylor-Entwicklung in m′ durch.

3Dies gilt nur für den rein bosonischen Sektor, der hier betrachtet wird. Werden darüberhinaus auch
Fermionen in die Berechnungen miteinbezogen, so werden insgesamt 15 Basisintegrale benötigt.
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Es kann gezeigt werden, dass Regionen, in denen sowohl weiche als auch harte Kompo-
nenten existieren, nicht beitragen [68, S. 3]. Als Beispiel sollen einmal beide Anteile des
zweidimensionalen Integrals

F (2)(1; 0, 0) = F1(m) =

∫ π

−π

d2k

(2π)2
1

k̃2 +m2
(6.31)

berechnet werden.

Weicher Anteil. Bringt man das Integral mit (6.27) auf die Form (6.28), so erhält man
nach Taylor-Entwicklung in ηκ

F1
weich(m′) =

1

4π2

∫ ∞

−∞
d2η

1 − η2
1 − η2

2

(η2 +m′2)1+δ
+ O(η4

κ). (6.32)

Verwendet man nun

∫
ddη

1

(η2 +m′2)α

d∏

κ=1

(η2
κ)
aκ = (m′)d−2α+2

P

κ aκ
Γ(α− d

2 −
∑

κ aκ)

Γ(α)

∏

κ

Γ(1
2 + aκ) ,

(6.33)
so erhält man mit den Entwicklungen der Gammafunktion und der Potenz aus Ab-
schnitt 2.5.1 für den weichen Anteil:

F1
weich(m′) =

1

4π

(
1

δ
+ ln

1

m′2
−m′2

(
1

2δ
+

3

4
+ ln

1

m′

)
+ O(m′4) + O(δ)

)
. (6.34)

Harter Anteil. Für die Taylor-Entwicklung in m′ findet man

F1
hart(m

′) =
1

4π2

{
H({1, 1}; 1) −m′2(1 + δ)H({1, 1}; 2)

+
m′4

2
(1 + δ)(2 + δ)H({1, 1}; 3) + O(η6

κ)

}
, (6.35)

mit den Funktionen

H({aκ};n) ≡
∫ ∞

−∞

d∏

κ=1

dηκ
(1 + η2

κ)
aκ

(DB(η))−n−δ , (6.36)

welche analytisch ausgewertet werden können. Für die Berechnung genügen

H({1, 1}; 1) = −π
δ

+ 3π ln 2 + O(δ) (6.37)

H({1, 1}; 2) = − π

2δ
+
π

2
+

3π

2
ln 2 + O(δ), (6.38)

so dass man für den harten Anteil findet:

F1
hart(m

′) =
1

4π

(
−1

δ
+ 3 ln 2 +m′2(1 + δ)

(
1

2δ
+

1

2
− 3

2
ln 2

)
+ O(m′4) + O(δ)

)
.

(6.39)
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

Insgesamt heben sich die Pole in δ gegenseitig auf und der Limes δ → 0 kann gebildet
werden. Es ergibt sich für das Integral

F1(m′) = F1
weich(m′) + F1

hart(m
′) =

1

4π
ln

32

a2m2
phys

+ O(a), (6.40)

was mit den Literaturwerten übereinstimmt [64, S. 6].
Für die Berechnung der Intgrale im Ortsraum muss dieses Verfahren nun angepasst

werden: Die Exponentialfunktion muss durch ihre Potenzreihe ersetzt werden, wodurch
Integrale der Form ∫ π

−π

d4k

(2π)4
kn1
µ . . . knn

ω

(k̃2 +m2)α
(6.41)

mit ni ∈ {0, 1} gelöst werden müssen. Dies ist ein interessanter Ansatz für zukünftige
Arbeiten (siehe hierzu auch Kap. 6.4).

6.3 Numerischer Zugang

Da die analytischen Ansätze bisher nicht zum Ziel führten, soll im Folgenden ein nu-
merischer Zugang vorgestellt werden. Das Problem hierbei ist die Abhängigkeit der
Integrale vom Abstand x der beiden Quellen. Das Integral muss also für verschiedenste
Werte von x ausgewertet werden, so dass anschließend Rückschlüsse auf die analytische
Abhängigkeit gezogen werden können.

6.3.1 Die CUBA-Bibliothek

Für mehrdimensionale numerische Integrationen eignet sich die CUBA-Bibliothek [69]
sehr gut, welche die Integrationsalgorithmen Cuhre, Divonne, Vegas und Suave bereit-
stellt. Sie können unter C/C++, Fortran oder Mathematica verwendet werden. Die
Berechnungen in dieser Arbeit wurden mit Fortran erstellt. Der Cuhre-Algorithmus ap-
proximiert die Integranden durch Polynome; für stark oszillierende Integranden ist er
also nicht die beste Wahl. Hierfür lassen sich die Algorithmen Divonne, Suave und Ve-
gas verwenden, sie greifen für die Integration auf (Quasi-)Zufallszahlen zurück.4 Der
Suave-Algorithmus wird im Folgenden nicht verwendet.

Als Test der Algorithmen werden zunächst die bekannten Standardintegrale Z0, Z1

und F0 (vgl. Abschnitt 6.2.2) berechnet. Hierfür ergeben sich mit Hilfe des Cuhre-
Algorithmus die Werte aus Tabelle 6.1, welche mit den Literaturwerten übereinstimmen
[62, S. 159].

Z0 0,154933(4)
Z1 0,107781(2)
F0 4,3692(7)

Tabelle 6.1: Numerische Werte der Standard-Gitterintegrale.

4Der Divonne-Algorithmus kann wahlweise auch auf Approximation durch Polynome zurückgreifen
und bildet somit eine Schnittstelle zwischen Cuhre und Vegas/Suave.
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6.3.2 Ergebnisse der numerischen Integration

Zunächst wurde versucht, das einfachste auftretende Gitterintegral numerisch auszuwer-
ten. Dieses lautet in dimensionslosen Größen k und n

I
(0)
µλ (n) = −

∫ π

−π

d4k

(2π)4
kµkλ eikn

4
∑

κ sin2 kκ

2

(6.42)

und stammt aus dem Beitrag der führenden Ordnung. Da der Wert hierfür aus Glei-
chung (6.21) bekannt ist, ergibt sich für n = (1, 1, 1, 1), µ = 1 und λ = 2

I
(0)
1 2 (1, 1, 1, 1) = − 1

π225
= −0, 003166 . . . . (6.43)

Die numerische Integration mit Hilfe der CUBA-Bibliothek liefert hierfür sehr schlechte
Ergebnisse: Der Cuhre-Algorithmus gibt einen Wert von 0, 178(3) − 0.0167(3) i an, Ve-
gas erhält gar 1, 12(2) − 1, 59(5) i. Der Divonne-Algorithmus führt zu keinem Ergebnis.
Lediglich Mathematica liefert mit −0, 00366(3) − 0, 0000000(1) i zumindest die richtige
Größenordnung, im Rahmen des angegebenen Fehlers stimmt dieser Wert aber ebenfalls
nicht mit dem realen überein. Ein Problem bei der Verwendung von Mathematica ist
allerdings, dass der Quellcode nicht bekannt ist und somit nicht klar ist, an welchen Stel-
len die Schwierigkeiten bei den Integrationen auftreten. Weiterhin versagt Mathematica
bei den Berechnungen der achtdimensionalen Diagramme der Einschleifen-Ordnung.

Somit ist eine numerische Bestimmung der auftretenden Gitterintegrale mit Hilfe der
CUBA-Bibliothek nicht ohne Weiteres möglich. Der Integrand oszilliert zu stark, so dass
diese Integrationsroutinen kein stabiles Ergebnis liefern.

6.4 Ortsraum-Methode nach Lüscher und Weisz

Da sowohl die analytischen, als auch die numerischen Methoden bislang nicht zur Lösung
der Gitterintegrale geführt haben, soll nun der Limes großer Abstände x betrachtet
werden. Dann ergibt sich für den Korrelator ein Verhalten (vgl. [54])

Dµνλω

|x|→∞
≃ β(g)

g
〈Gaµν(0)Gaµν (0)〉 e−x/λG , (6.44)

mit dem Gluonkondensat β(g)/g〈Gaµν (0)Gaµν (0)〉 sowie der Korrelationslänge [55, 70]
λG = 1/MG als Inversem der Gluelumpmasse [64, 65].

Für eine analytische Lösung im Bereich großer Abstände kann nun die Ortsraum-
Methode („Coordinate-Space-Method“) von Lüscher und Weisz [71] verwendet werden,
welche auf unveröffentlichten Arbeiten von Vohwinkel aufbaut. Allerdings wird dieser
Ansatz für numerische Berechnungen auf dem Gitter eingeführt, da die Störungstheorie
im Bereich großer Abstände nicht wohldefiniert ist. Somit ergibt sich hier nicht unbe-
dingt ein exponentiell abfallendes Verhalten.

Das Verfahren wird nun anhand des freien Propagators vorgestellt. Dazu wird die
Hilfsfunktion I(x) benötigt:

I(x) =

∫ ∞

−∞

d4k

(2π)n
eikxe−k

2

Q(k)(k2)−n (6.45)
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

mit dem Polynom Q(k) vom Grad d und einer ganzen Zahl n ≥ 1 mit d − 2n ≥ 3.
Dann ist I(x) absolut konvergent und wohldefiniert für alle x ∈ R. Benötigt wird das
Verhalten der Hilfsfunktion für große x. Betrachten wir dazu zwei Fälle:

n = 1. So ergibt sich

I(x) =

∫ ∞

−∞

d4k

(2π)4
eikx

k2
e−k

2

Q(k)

= Q(−i∂x)

∫ ∞

−∞

d4k

(2π)4
eikx

∫ ∞

1
dt e−tk

2

= Q(−i∂x)

∫ ∞

1
dt

1

t2
e−

x2

4t

∫ ∞

−∞

d4k′

(2π)n
e−k

′2

=
Q(−i∂x)

4π2x2

(
1 − e−

x2

4

)
. (6.46)

Hierbei wurden die Substitution k′ =
√
tk − ix/2

√
t durchgeführt sowie (A.24) und die

Eigenschaften der Gammafunktion (siehe Anhang A.4.1) verwendet. Für große x ergibt
sich also ein Verhalten

I(x)
x→∞∼ Q(−i∂x)

1

4π2x2
(6.47)

bis auf exponentiell abfallende Korrekturen.
n ≥ 2. Hierzu wird der Taylor-Operator Tm eingeführt, der durch seine Wirkung auf

eine stetig differenzierbare Funktion f(x) definiert wird

Tmf(x) ≡
m∑

j=0

1

j!
xµ1

. . . xµj
∂µ1

. . . ∂µj
f(x)

∣∣∣∣
x=0

, (6.48)

wobei m ≡ 2n − 4 ist. Da nach Definition für den Grad des Polynoms Q(k) gilt, dass
d > m, so lässt sich schreiben

Q(k)eikx = Q(−i∂x)(1 − Tm)eikx. (6.49)

Hiermit folgt unter Verwendung der Schwinger-Parametrisierung (A.20)

I(x) =

∫ ∞

−∞

d4k

(2π)4
e−k

2

(k2)−nQ(−i∂x)eikx

=
Q(−i∂x)

(n − 1)!

∫ ∞

1
dt (t− 1)n−1(1 − Tm)

∫ ∞

−∞
eikx−tk2

=
Q(−i∂x)

24π2(n− 1)!

∫ ∞

1
dt (t− 1)n−1t−2(1 − Tm)e−

x2

4t

=
Q(−i∂x)

(n − 1)!

∫ ∞

1
dt (t− 1)n−1(4πt)−2(1 − Tm) e−

x2

4t . (6.50)

Differentiation und Integration können hier vertauscht werden, da (1−Tm)eikx−k2

(k2)−n

absolut integrierbar ist. Nun kann t = s−1 substituiert werden und mit Hilfe des bino-
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mischen Lehrsatzes5 findet man

I(x) =
1

(4π)2

n−1∑

j=0

(−1)n−1−j

(n− j − 1)!j!
Q(−i∂x)

∫ 1

0
dt t−j

{
e−

x2

4
t −

j−1∑

l=0

1

l!

(
−x

2

4
t

)l}
. (6.51)

Wendet man nun auf alle Terme j ≤ 1 partielle Integration an, so erhält man einen
Vorfaktor (j − 1)!−1(−x2/4)j−1 und sie lassen sich auf die folgende Form bringen

∫ 1

0
dt t−1

(
e−

x2

4
t − 1

)
= −γE − Γ(0,

x2

4
) − ln(

x2

4
)

x→∞∼ − ln(x2) + const.+ . . . . (6.52)

Hierbei ist

Γ(a, x) =

∫ ∞

x
dt ta−1e−t (6.53)

die unvollständige Gammafunktion. Insgesamt erhält man somit die asymptotische Ent-
wicklung für die Hilfsfunktion bis auf exponentiell abfallende Korrekturen

I(x)
x→∞∼ 1

(4π)2
Q(−i∂x)





(−1)n−1

(n− 1)!

4

x2
+
n−1∑

j=1

(−1)n−1

(j − 1)!j!(n − 1 − j)!

(
x2

4

)j−1

ln(x2)



 .

(6.54)
Um nun das Verhalten des Propagators für große x zu erhalten, so muss eine glatte
Funktion h(k), k ∈ R

4 mit der folgenden Eigenschaft eingeführt werden

h(k) =

{
1, für |k| < 1,
0, für |k| > 2.

(6.55)

Dies bewirkt ein symmetrisches Abschneiden des Integrationsintervalls, so dass dieses
ausgedehnt werden kann. Der Gluonpropagator auf dem Gitter (5.27) stimmt nun über-
ein mit

Dh(x) =

∫ ∞

−∞

d4k

(2π)4
eikx h(k) (k̃2)−1. (6.56)

Um nun das Ergebnis des Hilfsintegrals I(x) anwenden zu können, muss der Gitterimpuls
k̃2 (5.28) als Potenzreihe ausgedrückt werden. Dazu betrachte man die Reihendarstel-
lung des Quadrates der Sinus-Funktion:

sin2(x) = −1

4

(
e2ix + e−2ix − 1

)

= −1

4

(
∞∑

k=0

(2x)k

k!
(ik + (−i)k) − 1

)

(∗)
=

1

4

∞∑

n=1

(2k)2n

(2n)!
2 (−1)n+1. (6.57)

5Der binomische Lehrsatz lautet für n ∈ N:

(a + b)n =

n
X

k=0

 

n

k

!

a
n−k

b
k
.
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6 Der QCD-Feldstärkekorrelator auf dem Gitter

Bei (∗) wurde verwendet, dass die Reihe für ungerade k verschwindet. Somit lässt sich
schreiben

k̃2 = 2

∞∑

n=1

(−1)n+1

(2n)!
k2n. (6.58)

Wenn man nun

ek
2

(k̃2)−1 = (k2)−1 + 1 +
1

12
k4(k2)−2 +

1

2
k2 +

1

12
k4(k2)−1

− 1

360
k6(k2)−2 +

1

144
(k4)2(k2)−3 + . . . (6.59)

berechnet und anschließend mit e−k
2

multipliziert, so hat man den Propagator auf die
Form des Hilfsintegrals (6.45) gebracht. Subtrahiert man dies nun vom Integranden in
(6.56), so ist die Singularität in p = 0 geglättet. Da hier der Grenzfall großer x von
Interesse ist, kann die Funktion h(k) wieder weggelassen werden, denn große Abstände
x sind mit kleinen Impulsen k verknüpft; das Integral wird somit abgeschnitten. Als
Ergebnis erhält man dann

D(x)
x→∞∼

∫ ∞

−∞

d4k

(2π)4
eikxe−k

2

{
1

k2
+

1

12

k4

(k2)2
+ . . .

}
, (6.60)

welches dann mit den Berechnungen für das Hilfsintegral die asymptotische Entwicklung
des Propagators liefert:

D(x)
x→∞
=

1

4π2x2

{
1 − x2

48
∂4 ln(x2) − x2

1440
∂6 ln(x2) +

x2

4806
(∂4)2x2 ln(x2)

}
+ O(|x|−8)

(6.61)

x→∞∼ 1

4π2x2

{
1 − 1

x2
+ 2

x4

(x2)3
− 4

1

(x2)2
+ 16

x4

(x2)4
− 48

x6

(x2)5
+ 40

(x4)2

(x2)6
+ . . .

}
.

(6.62)

Für die Ableitungen gilt ∂2 = ∂xµ∂
x
µ. Der Lorentzindex wird unterdrückt, da insgesamt

nur quadratische Terme vorkommen. Bei Ausführung der Ableitungen ist zu beachten,
dass x4 6= (x2)2 ist (vgl. Definition (5.28)), man erhält also Terme der Form P (x)(x2)−m

mit einem Polynom P und m ∈ Z.
Somit steht die Methodik zur Verfügung, das Verhalten der divergenten Gitterinte-

grale für große x anzugeben. Dies wäre ein interessanter Ansatz für spätere Projekte.

Als Anmerkung sei erwähnt, dass eine Entwicklung für kleine x, welche im störungs-
theoretisch relevanten Bereich sinnvoller als die Entwicklung für große x wäre, sich auf
dem Gitter als sehr schwierig gestaltet: Möchte man den Ansatz von Becher und Melni-
kov (vgl. 6.2.2) verfolgen, so müssen die Integrale in dimensionslösen Größen vorliegen.
Die in allen zu lösenden Integralen vorkommende Exponentialfunktion eikx kann daher
dort nicht um kleine x = an entwickelt werden, da die kleinsten erlaubten Werte für
die dimensionslose Größe n = 0 oder n = 1 sind. Letzterer führt nicht zum Ziel, da
die Vorraussetzungen für eine Entwicklung (n ≪ 1) nicht erfüllt sind. Für n = 0 erhält
man die schon bekannten Gitter-Standardintegrale (vgl. 6.3.1) und somit keinen neuen
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Erkenntnisgewinn für den Korrelator. Auch für numerische Methoden ist dies kein Lö-
sungsweg, da auch hier die Integrale nicht dimensionsbehaftet sein dürfen. Somit muss
für alle noch zu lösenden Interale ein anderer Weg gefunden werden. Eine Liste dieser
Integrale findet sich in Anhang A.5.
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7 Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse der Arbeit zusammengetragen und diskutiert.
Anschließend wird ein kurzer Ausblick auf weitere Lösungsansätze sowie interessante
Fragestellungen für zukünftige Projekte gegeben.

Zusammenfassung

Im Fokus dieser Arbeit steht der Feldstärkekorrelator der QCD. Nach der Einleitung
in Kapitel 1 sowie einer kurzen Beschreibung der Grundlagen der QCD im Kontinuum
(Kapitel 2) findet sich in Kapitel 3 schließlich die Berechnung des Feldstärkekorrelators
im Kontinuum. Die hier gefundenen Ergebnisse stimmen mit denen des Artikels von
Eidemüller und Jamin [39] überein (vgl. Kapitel 4).

Nachdem die Betrachtung des Korrelators auf dem Gitter motiviert wird, werden in
Kapitel 5 die Grundlagen für die QCD auf dem Gitter bereitgestellt. In Kapitel 6 folgt
dann die Darstellung des Korrelators in Gitterstörungstheorie. Es wird gezeigt, dass die
führende Ordnung mit Hilfe des Reisz’schen Theorems (Kapitel 6.2.1) berechnet werden
kann und das Ergebnis mit dem im Kontinuumsfall erhaltenen übereinstimmt. Gleiches
gilt für die nicht-divergenten Anteile der nächsten zur führenden Ordnung.

Für die divergenten Beiträge werden verschiedene Ansätze betrachtet: Zunächst wird
der analytische Ansatz von Becher und Melnikov verfolgt (Kapitel 6.2.2). Dieser führt
allerdings nicht zum gewünschten Ziel, so dass in Kapitel 6.3 ein numerischer Zugang
vorgestellt wird. Mit Hilfe der CUBA-Bibliothek wird versucht, die divergenten Gitter-
integrale zu lösen. Die dort zur Verfügung gestellten Algorithmen eignen sich gut um
die Standard-Gitterinterale Z0, Z1 und F0 zu berechnen. Sie scheitern jedoch schon an
der Berechnung des einfachsten Gitterintegrals der führenden Ordnung, dessen Ergebnis
bekannt ist.

In Kapitel 6.4 wird abschließend die Ortsraum-Methode nach Lüscher und Weisz
vorgestellt. Durch das dort verwandte Verfahren ist es möglich, ein Verhalten für große
Abstände x der Quellen anzugeben. Dies ermöglicht die Berechnung der Gluelumpmasse,
jedoch ist diese Entwicklung für die Störungstheorie eher ungeeignet. Dafür wäre eine
Entwicklung für kleine Abstände x interessant, was sich allerdings ebenfalls als sehr
schwierig herausstellt.

Ausblick

Das ursprüngliche Ziel dieser Arbeit, die Berechnung des Feldstärkekorrelators der QCD
in Gitterstörungstheorie, hat sich als zu ambitioniert erwiesen. Es ist bislang nicht gelun-
gen, einen geschlossenen analytischen Ausdruck für den Korrelator in Gitterstörungs-
theorie zu finden, da sämtliche bislang bekannten Ansätze Integrale im Impulsraum
behandeln. Lediglich die Methode von Lüscher und Weisz arbeitet im Ortraum, selbst
diese wurde aber ebenfalls für Berechnungen im Impulsraum geschaffen. Die vorliegende
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Diplomarbeit sollte jedoch ein Ergebnis im Ortsraum liefern, wofür die auf dem Gitter
auftretende diskrete Fouriertransformation ein erhebliches Problem darstellt.

Vielversprechende Lösungsansätze für dieses Problem liegen allerdings in einer inten-
siveren Betrachtung der Methode von Becher und Melnikov. Hier taucht das Problem
der Mischung von Gitterimpulsen und „normalen“ Impulsen auf. Könnte man dieses
durch geschickte Substitution lösen, so wäre eine geschlossene Darstellung des Korrela-
tors möglich.

Des Weiteren wäre eine numerische Betrachtung mit Hilfe der sogenannten „Fast Fou-
rier Transform“ (FFT) möglich [72]. Die dort verwendeten Algorithmen sind extra auf
oszillierende Integranden angepasst und könnten demnach eher zu Ergebnissen führen
als die hier verwendeten nicht weiter spezialisierten CUBA-Algorithmen. Die Ungenau-
igkeit der Ergebnisse könnte sich dort allerdings als eine Schwierigkeit erweisen.

Zusammenfassend lässt sich sagen, dass zwar eine geschlossene analytische Darstel-
lung des Korrelators nicht erreicht werden konnte; jedoch wurden viele Methoden zu-
sammengetragen sowie an Beispielen diskutiert. Aus dieser Arbeit ergeben sich mithin
einige vielversprechende Ansätze für zukünftige Projekte.
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A Anhang

A.1 Notation

A.1.1 Einheiten

In dieser Arbeit werden natürliche Einheiten mit ~ = c = 1 verwendet. Eine Umrechnung
in andere Einheitensysteme erfolgt durch geeignetes Multiplizieren mit

~c = 197, 326 968 (17) MeV fm, (c = 299 792 458m s−1) (A.1)

bis sich die korrekten Dimensionsabhängigkeiten ergeben. Die Werte wurden entnommen
aus [5].

A.1.2 Vierervektoren im Euklidischen

Vierervektor:
xµ = xµ = (x1, x2, x3, x4) = (~x, x4) (A.2)

Vergleich zur Minkowski’schen Raumzeit:

~xE = ~xM, xE
4 = τ = it = ixM

0 (A.3)

Metrik:
gµν = δµν = diag{1, 1, 1, 1} (A.4)

Skalarprodukt:

a · b ≡ ab ≡ aµbµ = ~a ·~b+ a4b4, mit aµbµ ≡
∑

µ

aµbµ (A.5)

Ableitung:

∂µ ≡ ∂

∂xµ
= (

∂

∂t
,∇) (A.6)

Dirac’sche Gamma-Matrizen in vier Dimensionen:

{γµ, γν} = 2δµν (A.7)

Gamma-Matrizen in höheren Dimensionen findet man in [32, Anhang B].

A.2 Formelsammlung

Eine gute Näherung für ε≪ 1 ist

xε = eε lnx = 1 + ε lnx+ O(ε2), x ∈ R. (A.8)
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Baker-Campbell-Hausdorff-Formel:

eAeB = exp

{
A+B +

1

2
[A,B] +

1

12

(
[A, [A,B]] + [B, [B,A]]

)
+ . . .

}
(A.9)

A.3 Generatoren der speziellen unitären Gruppe SU(N)

Für die Generatoren TA der SU(N) gilt die Kommutatorrelation

[TC , TB ] = ifABCTC , mit A,B,C = 1, . . . , N2 − 1, (A.10)

mit den total antisymmetrischen reellen Strukturkonstanten1 fABC . Die Generatoren
sind spurfrei und hermitesch.

A.3.1 Adjungierte Darstellung

In der adjungierten (regulären) Darstellung wählt man

TAadj = (T a)bc = −ifabc. (A.11)

Für die Spur gilt

Sp (T aT b) = −f cadfdbc = Nδab, δaa = N2 − 1. (A.12)

A.3.2 Fundamentale Darstellung

In der Fundamentaldarstellung, auch definierende Darstellung genannt, kann man die
Gell-Mann-Matrizen λA als Generatoren wählen

TAfund =
λA

2
. (A.13)

Für die Spur gilt

Sp (TATB) =
1

2
δAB , δAA = N. (A.14)

A.4 Integraltabelle für Feynmandiagramme

A.4.1 Gammafunktion

Die Gammafunktion ist für komplexe Zahlen z definiert als

Γ(z) =

∫ ∞

0
dt tz−1e−t (Re(z) > 0) (A.15)

mit der Funktionalgleichung

Γ(z + 1) = z Γ(z)

1Die Werte der Strukturkonstanten findet man in [34, S. 98].
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und den Eigenschaften

Γ(n+ 1) = n! (n ∈ N0)

Γ(1
2) =

√
π . (A.16)

Für kleine ε lässt sie sich gemäß

Γ(−m+ ǫ) =
(−1)m

m!

{
1

ǫ
+ ψ(m+ 1) +

1

2
ǫ

[
π2

3
+ ψ2(m+ 1) − ψ′(m+ 1)

]
+ O(ǫ2)

}

(A.17)
entwickeln, wobei

ψ(m+ 1) = 1 +
1

2
+ . . . +

1

m
− γE ,

(
ψ(x) =

d ln Γ(x)

dx

)

ψ′(m+ 1) =
π2

6
−

m∑

l=1

1

l2
, ψ′(1) =

π2

6
. (A.18)

Hierbei ist ψ(x) die Digammafunktion, außerdem bezeichnet γE die Euler-Mascheroni
Konstante mit

ψ(1) = ζ(2) = −γE = −0, 5772 . . . .

Die Euler-Mascheroni Konstante kann also ebenfalls über die Riemann’sche Zetafunktion
ζ(x) definiert werden.

Die unvollständige Gammafunktion ist definiert als

Γ(a, x) =

∫ ∞

x
dt ta−1e−t. (A.19)

A.4.2 Schwinger-Parametrisierung

1

(m2 − k2)α
=

1

Γ(α)

∫ ∞

0
dβ βα−1e−β(m2−k2) (A.20)

A.4.3 Feynman-Parametrisierung

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1 − x)β−1

(xa+ (1 − x)b)α+β
(A.21)

1

abc
=

∫ 1

0
dy 2y

∫ 1

0
dx

1

[ayx+ by(1 − x) + c(1 − y)]3
(A.22)

1

aα1 a
β
2 . . . a

ω
n

=
Γ(α+ β + . . .+ ω)

Γ(α)Γ(β) . . . Γ(ω)

∫ 1

0
dx1dx2 . . . dxn δ(1 −

n∑

i=1

xi)

× xα−1
1 xβ−1

1 . . . xω−1
n

(a1x1 + a2x2 + . . .+ anxn)α+β+...+ω
(A.23)
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A.4.4 Integrale in d Dimensionen

Allgemeines

In d-Dimensionen findet man das Standard-Integral
∫

ddq e−q
2

= π
d
2 . (A.24)

Außerdem ergibt sich in dimensionaler Regularisierung
∫

ddk

(2π)d
(k2)α = 0, α ∈ R. (A.25)

Integraltabelle

Insgesamt werden in dieser Arbeit die folgenden drei Integrale für die Rechnungen in
dimensionaler Regularisierung benötigt:

I =

∫
ddz′

1

(z′ − z1)n(z′ − z2)m
= π

d
2

Γ(n+m−d
2 )Γ(d−n2 )Γ(d−m2 )

Γ(n2 )Γ(m2 )Γ(d− m+n
2 )

1

(z1 − z2)n+m−d

(A.26)

Iα =

∫
ddz′

z′α
(z′ − z1)n(z′ − z2)m

= π
d
2

Γ(n+m−d
2 )Γ(d−n2 )Γ(d−m2 )

Γ(n2 )Γ(m2 )Γ(d− m+n
2 + 1)

d−n
2 z2α + d−m

2 z1α

(z1 − z2)n+m−d

(A.27)

Iαβ =

∫
ddz′

z′αz
′
β

(z′ − z1)n(z′ − z2)m
= π

d
2

Γ(n+m−d
2 )Γ(d−n2 )Γ(d−m2 )

Γ(n2 )Γ(m2 )Γ(d− m+n
2 + 2)

1

(z1 − z2)n+m−d

×
{

(d−n2 + 1)(d−n2 )z2αz2β

+ (d−m2 )(d−n2 )(z2αz1β + z1αz2β)

+ (d−m2 − 1)(d−m2 )z1αz1β

+
δαβ

2

(d−m2 )(d−n2 )

(n+m−d
2 − 1)

(z1 − z2)
2
}
. (A.28)

Das einfachste Integral (A.26) lässt sich mit Hilfe des Integrals

I ′ =

∫
ddk

(2π)d
1

(k2 + 2kp +m2)A
=

Γ(A− d
2)

(4π)
d
2 Γ(A)

1

(m2 − p2)A−
d
2

(A.29)

berechnen, welches nun explizit ausgewertet wird: Mit Hilfe der Schwinger-Parametri-
sierung (A.20), der Gammafunktion (A.15), sowie (A.24) erhält man

∫
ddk

(2π)d
1

(k2 + 2kp +m2)A
=

1

Γ(A)

∫ ∞

0
dβ βA−1

∫
dk

(2π)d
e−β(k2+2kp+m2)

=
1

Γ(A)

∫ ∞

0
dβ βA−1− d

2 e−β(m2−p2)

∫
dl

(2π)d
e−l

2

=
1

(4π)
d
2 Γ(A)

∫ ∞

0
dβ βA−1− d

2 e−β(m2−p2)

=
Γ(A− d

2 )

(4π)
d
2 Γ(A)

1

(m2 − p2)A−
d
2

. (A.30)
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A.5 Sammlung der divergenten Gitterintegrale

Hieraus ergeben sich durch Ableiten nach pα, pα und pβ, sowie pα, pβ und pγ die fol-
genden weiteren Hilfsintegrale:

I ′α =

∫
ddk

(2π)d
kα

(k2 + 2kp +m2)A
= − Γ(A− d

2)

(4π)
d
2 Γ(A)

pα

(m2 − p2)A−
d
2

(A.31)

I ′αβ =

∫
ddk

(2π)d
kαkβ

(k2 + 2kp +m2)A
=

1

(4π)
d
2 Γ(A)

×

×
[
pαpβ

Γ(A− d
2 )

(m2 − p2)A−
d
2

+
δαβ
2

Γ(A− 1 − d
2)

(m2 − p2)A−1− d
2

]
(A.32)

I ′αβγ =

∫
ddk

(2π)d
kαkβkγ

(k2 + 2kp +m2)A
=

−1

(4π)
d
2 Γ(A)

[
pαpβpγ

Γ(A− d
2)

(m2 − p2)A−
d
2

+
1

2
(δαγpβ + δβγpα + δαβpγ)

Γ(A− 1 − d
2 )

(m2 − p2)A−1− d
2

]
. (A.33)

Das Integral (A.26) erhält man dann durch Verwenden der Feynman-Parametrisierung
(A.21), sowie mit Hilfe von (A.29) durch

I =

∫
ddz′

1

(z′ − z1)n(z′ − z2)m

=

∫
ddz′[(z′ − z1)

2]−
n
2 [(z′ − z2)

2]−
m
2

=
Γ(n+m

2 )

Γ(n2 )Γ(m2 )

∫ 1

0
dx

∫
ddz′

x
n
2
−1(1 − x)

m
2
−1

[x(z′ − z)2 + (1 − x)(z′ − z2)2]
n+m

2

= π
d
2

Γ(n+m−d
2 )

Γ(n2 )Γ(m2 )
(z1 − z2)

d−n−m

∫ 1

0
dxx

d−m
2

−1(1 − x)
d−n

2
−1

= π
d
2

Γ(n+m−d
2 )Γ(d−n2 )Γ(d−m2 )

Γ(n2 )Γ(m2 )Γ(d− m+n
2 )

1

(z1 − z2)n+m−d
, (A.34)

wobei im letzten Schritt verwendet wurde
∫ 1

0
dxxa(1 − x)b =

Γ(a+ 1)Γ(b + 1)

Γ(a+ b+ 2)
. (A.35)

Die Integrale Iα, bzw. Iαβ erhält man völlig analog zur Rechnung (A.34) unter Verwen-
dung des jeweiligen Hilfsintegrals I ′α, bzw. I ′αβ. Das Integral I ′αβγ wurde zur Berechnung
von Diagramm 3.3 i) benötigt und wird der Vollständigkeit halber hier noch einmal ge-
listet. Außerdem würde ein weiteres Integral Iαβγ analog zu den oben schon angegebenen
Integralen mittels des letzten Hilfsintegrals berechnet werden.

A.5 Sammlung der divergenten Gitterintegrale

Im Folgenden findet sich eine Liste der divergenten Gitterintegrale in dimensionslosen
Größen. Alle Integrale, die zur Berechnung des Feldstärkekorrelators auf dem Gitter
benötigt werden, lassen sich auf die nachstehenden Integrale zurückführen. Die hoch-
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gestellten Buchstaben beziehen sich auf die Diagramme, in denen das Integral auftritt.
Die benötigten Ableitungen werden ebenfalls mit angegeben, da diese im Falle einer
numerischen Behandlung vor der Integration ausgeführt werden müssen. Die Integrale
lauten:

I
d j)
µλ (n) = ∂nµ∂

n
λ

∫ π

−π

d4k

(2π)4
eikn

(k̃2)2
(A.36a)

I
d f)
µλ (n) = ∂nµ∂

n
λ

∫ π

−π

d4k

(2π)4
eikn

k2 k̃2
(A.36b)

I
d b)
µλ (n) = ∂nµ

∫ π

−π

d4k

(2π)4

∫ π

−π

d4k1

(2π)4
kλe

−i(k+k1)n

k̃2 k̃2
1 (k +̃ k1)2

(A.36c)

I
d i)
µλ (n) = ∂nµ∂

n
λ

∫ π

−π

d4k

(2π)4

∫ π

−π

d4k1

(2π)4
e−ikn − eik1n

(k + k1)ω k̃2 k̃2
1 (k +̃ k1)2

(A.36d)

I
d c)
µλ (n) = ∂nµ∂

n
λ

∫ π

−π

d4k

(2π)4

∫ π

−π

d4k1

(2π)4
kν k1ω e−i(k+k1)n

k̃2 k̃2
1 ((k +̃ k1)2)2

(A.36e)

I
d d)
µλ (n) = ∂nµ∂

n
λ

∫ π

−π

d4k

(2π)4

∫ π

−π

d4k1

(2π)4
(k + k1)ν(k + k1)ω ei(k+k1)n

k̃2 k̃2
1 ((k +̃ k1)2)2

. (A.36f)
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