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1 Einleitung

Dem heutigen Kenntnisstand zufolge bilden die Quarks einen der Grundbausteine der
sichtbaren Materie. Sie wechselwirken mittels sogenannter Gluonen, den Eichbosonen
der starken Wechselwirkung. Die zugehorige Theorie wird als Quantenchromodynamik
(QCD) bezeichnet, da die ihr zugrunde liegenden Teilchen eine nicht beobachtbare Farb-
ladung (,xpdopec, griech. Farbe) tragen. Sie dient als Grundlage fiir die vorliegende
Arbeit.

Eine Eigenschaft dieser Theorie ist das Konzept des ,confinement‘ (engl. Ein-
schluss) [1], welches die Beobachtung einzelner Quarks und Gluonen bei niedrigen Tem-
peraturen verbietet. Dies erschwert natiirlich den experimentellen Zugang beispielsweise
zu den Quarkmassen, da im niedrigen Energiebereich nur gebundene Zustidnde, soge-
nannte Hadronen, vermessen werden kénnen. Hierdurch kénnen nur Riickschliisse auf
die Massen der Quarks gezogen werden, da die Anzahl der Quarks in einem Hadron
stark variiert. Das Proton besteht beispielsweise nicht nur aus den drei Konstituenten-
quarks (auch Valenzquarks genannt) wud (,,up®, ,down‘), sondern ebenso aus Seequarks,
welche kontinuierlich aus virtuellen Quark-Antiquark-Paaren und Gluonen entstehen.
Diese Bindungsenergie liefert den grofiten Beitrag zur Hadronenmasse.

Anders sieht dies bei hohen Temperaturen um ca. 200 MeV aus: In der ,deconfined*-
Phase, also einer Phase, in der die Quarks und Gluonen nicht mehr durch das Einschluss-
Prinzip gebunden sind, liegt ein Quark-Gluon-Plasma vor [2,3|. Dieses dominierte bereits
das sehr frithe Universum und soll mitunter am LHC (,Large Hadron Collider) [4] am
CERN untersucht werden. Allerdings kann auch so die genaue Masse eines Quarks nicht
bestimmt werden: Messungen im Plasma selbst sind nicht moglich, auferdem unterliegen
die Teilchen auch dort Wechselwirkungen, so dass einzelne Quarks nicht betrachtet
werden konnen.

Die in der Literatur angegebenen Werte [5] stammen alle von theoretischen Berech-
nungen dieser Massen. Besonders erfolgreich sind hier die HQET (,Heavy Quark Ef-
fective Theory*) [6] sowie die NRQCD und die pNRQCD (,,(potential) Non-Relativistic
Quantum ChromoDynamics®) [7-9].

Die so berechneten schweren Quarkmassen des ¢- (,charm®) und b-Quarks (,bottom®)
setzen sich aus mehreren Termen zusammen [10, 11|. Einen Korrekturterm hierzu lie-
fert der quantenchromodynamische Feldstarkekorrelator, welcher im Fokus dieser Ar-
beit steht. Die Methoden zu seiner Berechnung reichen von rein analytischen Ansét-
zen im Kontinuum bis hin zu numerischen Verfahren auf dem Gitter. Die Ergebnisse
beider Methoden sind allerdings nicht direkt miteinander vergleichbar, da sie von der
Renormierungsskala und dem Renormierungsschema abhéngen. Eine stérungstheore-
tische Rechnung auf dem Gitter ist daher unumgénglich. Dies wird in Kapitel 6 genauer
diskutiert.

Zunéchst finden sich allerdings in Kapitel 2 die Grundlagen fiir perturbative Berech-
nungen der QCD im Kontinuum, sowie eine Einfiihrung in die Theorie der Renormie-
rung. Somit ist das Fundament fiir Kapitel 3 gegeben, in dem dann der Feldstérkekorre-
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lator und seine Komponenten betrachtet werden. Aufierdem werden weitere Anwendun-
gen des Korrelators genannt, bevor sich im Anschluss daran eine ausfithrliche Rechnung
findet. Kapitel 4 fasst diese Ergebnisse zusammen und motiviert die Betrachtungen zur
QCD auf dem Gitter wie in Kapitel 5 diskutiert.

Nach einer Formulierung der QCD auf einem Raum-Zeit-Gitter, sowie der Vorstellung
der Gitterstorungstheorie erfolgt in Kapitel 6 die Betrachtung des Feldstédrkekorrelators
und seiner verschiedenen Anwendungen auf dem Gitter. Hier findet sich einerseits ein
Abschnitt zu perturbativen Ansétzen auf dem Gitter, andererseits werden numerische
Zugange diskutiert.

Abschlieftend werden in Kapitel 7 die Ergebnisse der Arbeit zusammengefasst. Im
Anhang werden die verwendeten Abkiirzungen und Konventionen angegeben. Zudem ist
eine ausfiihrliche Integralsammlung fiir Feynmandiagramme im Kontinuum enthalten,
ferner werden die auf dem Gitter auftretenden divergenten Integrale gelistet.



2 Quantenchromodynamik (QCD) im
Kontinuum

Im Folgenden werden die Grundlagen fiir die Berechnungen im Kontinuum (siehe Kapi-
tel 3) bereitgestellt. Der erste Abschnitt beschreibt kurz die Entwicklung des Standard-
modells der Elementarteilchenphysik bis hin zur Theorie der Quantenchromodynamik.
Im zweiten Abschnitt wird der Pfadintegralformalismus vorgestellt, mittels dessen im
dritten Abschnitt die Storungstheorie im Kontinuum veranschaulicht wird. Auflerdem
werden die hier verwendeten Konventionen festgelegt. Im letzten Teil dieses Kapitels
befinden sich eine Einfithrung in die Theorie der Renormierung sowie eine Vorstellung
verschiedener Regularisierungsschemata.

2.1 Das Standardmodell der Elementarteilchenphysik

In der Physik méchte man gerne mit moglichst einfachen Modellen und Theorien die
messbaren Ergebnisse reproduzieren und Vorhersagen treffen kénnen. Dies war natiir-
lich auch der Wunsch der Elementarteilchenphysiker, als es in den 1950er und 1960er zu
einem explosionsartigen Anstieg der bis dahin entdeckten sogenannten ,Elementarteil-
chen” kam. Schliefslich wurde 1964 von Gell-Mann und Zweig das Quarkmodell vorge-
schlagen [12,13], welches endlich mit Hilfe von gruppentheoretischen Uberlegungen Ord-
nung in das Spektrum der stark wechselwirkenden Teilchen bringen sollte. Dieses Modell,
welchem der 1961 von Gell-Mann und Ne’eman vorgeschlagene ,Eightfold Way* [14,15],
ein erster Ordnungsversuch fiir Hadronen, zugrunde liegt, besagt, dass Hadronen Pro-
duktdarstellungen aus zwei bzw. drei elementaren Konstituenten, den Quarks, seien. Die
hier zugrunde liegende Symmetriegruppe ist die SU(3)-Flavour Symmetrie.

Als dann 1974 das J/v Teilchen gleichzeitig von den Gruppen um Richter [16] sowie
um Ting [17] gefunden wurde, stief das Quarkmodell an seine Grenzen: Die Symme-
triegruppe hétte nun aufgrund einer weiteren Quantenzahl (,charm®, ¢) auf eine SU(4)-
Flavour erweitert werden miissen. Aufserdem lieft sich immer noch nicht klaren, warum
beispielsweise Vierquarkzustinde nicht stabil sind oder warum das AT T-Teilchen exis-
tiert, obwohl es allem Anschein nach das Pauli Prinzip verletzt.

FEine Losung lieferten Han und Nambu sowie unabhéngig davon Greenberg und Gell-
Mann [18-20], indem sie eine nicht beobachtbare Quantenzahl ,colour einfiithrten. Ers-
tere vermuteten bereits, dass Quarks mittels eines Eichbosonen-Oktetts wechselwirken,
so dass der 1954 von Yang und Mills entwickelten gleichnamigen SU(N )-Eichtheorie [21]
eine neue Bedeutung zukam. Somit war das Pauli Prinzip gerettet und die Quantenchro-
modynamik gefunden. Zusammen mit der schon in den 1960ern von Glashow, Weinberg
und Salam [22-24] entwickelten und nach ihnen benannten GWS-Theorie bildet die
QCD als Beschreibung der starken Wechselwirkung das Standardmodell der Elementar-
teilchenphysik. Die GWS-Theorie ist eine SU(2) x U(1) Eichtheorie, welche die schwache
und die elektromagnetische Wechselwirkung mittels Austauschbosonen beschreibt. Sie
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fand allerdings erst ab 1971 grofere Beachtung, nachdem 't Hooft die Renormierbarkeit
von Eichtheorien mit und ohne spontaner Symmetriebrechung [25,26] bewies.

Das Standardmodell beschreibt drei der vier physikalischen Grundkrifte und hat be-
reits beeindruckende Ubereinstimmungen mit den Experimenten hervorgebracht wie
z.B. die Messung des magnetischen Moments des Elektrons im Rahmen der Quante-
nelektrodynamik [27, Kap. 6.3]. Jedoch besitzt auch dieses Modell seine Schwéchen: So
konnte bisher das Higgs-Boson, welches fiir die Generierung von Massen verantwortlich
ist, noch nicht nachgewiesen werden, aufferdem kann die Baryonenasymmetrie des Uni-
versums im Rahmen des klassischen Standardmodells nicht erklért werden. Hierzu sind
Erweiterungen notwendig, wie zum Beispiel die Supersymmetrie (eine Einfithrung findet
sich in [28]). Ein weiteres Defizit ist das Fehlen einer Quantentheorie der Gravitation,
so dass in diesem Rahmen noch keine Vereinheitlichung aller vier Grundkrafte existiert.

In dieser Arbeit wird die Quantenchromodynamik genauer betrachtet, dessen mathe-
matisches Geriist, wie auch das des gesamten Standardmodells, die Quantenfeldtheorie
(QFT) ist. Diese lasst sich als Synthese von Quantenmechanik und spezieller Relati-
vitdtstheorie verstehen. Hierzu gibt es zwei dquivalente Darstellungen: die kanonische
Quantisierung, bei der die Felder selbst quantisiert und somit zu Feldoperatoren werden,
und den Pfadintegralformalismus [29], der im Folgenden genauer betrachtet wird.

2.2 Der Pfadintegralformalismus in Quantenfeldtheorien

Der Pfadintegralformalismus wurde 1948 von Feynman entwickelt [30]. Leicht veran-
schaulichen lisst sich dieser Ansatz in der Quantentheorie fiir die Ubergangsamplitude
eines Teilchens vom Ort 2 nach y:!

(z {e_th{ y) = /Dx el (2.1)

In Worten bedeutet dies, dass die Ubergangsamplitude gleich dem Integral iiber alle
moglichen Pfade gewichtet mit dem klassischen Wirkungsfunktional S ist. Diese Grofe
ist mathematisch allerdings nicht wohldefiniert, da der Exponent oszilliert und somit
nicht konvergieren muss. Das Problem lasst sich jedoch durch eine Wickrotation ver-
meiden, welche eine Transformation zu imaginédren Zeiten 7 = it bedeutet. Die Wirkung
geht dann iiber in S = iSE, was zu einem exponentiell geddmpften Integranden fiihrt.
Diese Transformation stellt einen Ubergang vom Minkowski-Raum in die euklidische
Raum-Zeit dar; Vektoren werden definiert durch xg = (Z, z4), die zugehorige Metrik ist
G = 5uv-2 Im Folgenden werden alle Grofen in der euklidischen Raum-Zeit angegeben,
daher wird auf das Subskript verzichtet.

Das Prinzip des Pfadintegrals lasst sich nun auch auf Quantenfeldtheorien tibertragen.
Eine wichtige Grofe ist hier das erzeugende Funktional Z[.J], aus dem sich die fiir die
Storungstheorie bendtigten Greensfunktionen berechnen lassen. Dieses ist gegeben als
die Vakuum-Vakuum Ubergangsamplitude in Gegenwart einer externen Quelle J(z).

'In dieser Diplomarbeit werden alle Rechnungen in natiirlichen Einheiten, also = ¢ = 1, angegeben.
2Hierdurch sind im Euklidischen kontra- und kovariante Vektoren identisch, es gilt:
2E =z = ¥ = (z1, T2, T3, Ta).
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Fiir eine SU(N)-Eichtheorie ergibt sich?

20 = [Pialen {- [dal2@ - L@@} 22)

Hierbei bezeichnet . die Lagrangedichte, die durch S = [ d*z Z(z) definiert ist, die
A, (z) sind die Eichfelder mit den zugehorigen externen Quellen J,(x). Zusammenhén-
gende Greensfunktionen (auch n-Punkt-Funktionen genannt) erhélt man dann mittels
Funktionalableitung durch

(2.3)

Gz, x,) = [Zl snZ[J) ]

[J]6J(x1)...0J ()

J=0

Das Wegfallen aller nicht zusammenhéngenden Greensfunktionen bewirkt der Normie-
rungsfaktor Z[J]~!. Die Funktionalableitung ist definiert als:

0J(y) 6
§J(z)  8J(x)

/ Az J(z) 8D (z —y) =D (z —y). (2.4)

Das Konzept der Storungstheorie beruht nun auf der Entwicklung der Exponentialfunk-
tion im erzeugenden Funktional, so dass fiir die weiteren Berechnungen lediglich noch
die Lagrangedichte diskutiert werden muss.

2.3 Die Lagrangedichte der QCD

Neben dem reinen Eichterm der SU(3)-Yang-Mills-Theorie, der die Gluonen beschreibt,
besteht die Lagrangedichte der Quantenchromodynamik aus einem fermionischen Anteil
zur Beschreibung der Quarks, so dass sich insgesamt ergibt:

_ — 1
LW, Ay) =Y gD+ mp)pe + i F - (2.5)
f7c
Hierbei lduft die Summe iiber alle verschiedenen Quarksorten (,flavours) f =1,..., Ny

und alle Farbindizes ¢ = 1,2,3. Die Fermionfelder ¢ . tragen weiterhin einen Dirac-
Spinorindex « und die 7, sind die Dirac’schen Gammamatrizen mit p als Lorentzindex.
Dieser Ausdruck ist fiir die Lagrangedichte der einzig mogliche, der die Bedingungen
Lorentzinvarianz und Renormierbarkeit fiir Spin-1/2-Teilchen erfiillt. Daher taucht hier
die kovariante Ableitung D, = 0, + igA,, auf, durch die der Feldstdrketensor F),, defi-
niert ist mittels

[Dn, D)) = igFa, T (2.6)
Die Matrizen T sind die Generatoren der SU(3), sie geniigen der Kommutatorrelation
(T4, 78] = ifABCTC, AB,C=1,...,8. (2.7)

Da die Rechnungen in Kapitel 3 in der adjungierten Darstellung der QCD durchge-
fithrt werden (eine detailiertere Einsicht in Darstellungstheorien liefert [31, Anhang A]),

3Es wird die Einstein’sche Summenkonvention verwendet, was eine Summation iiber gleiche Indizes
bedeutet: C,Cp =3, CuCl.
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wird diese schon jetzt verwendet. Hierbei wird statt eines Tripletts von Quarks wie in
der Fundamentaldarstellung ein nichtphysikalisches Oktett in der adjungierten Darstel-
lung? betrachtet. Dazu werden die Gell-Mann-Matrizen durch die Strukturkonstanten
ersetzt:

= (T%)pe = —if ™. (2.8)
Fiir eine SU(N)-Eichtheorie in adjungierter Darstellung gilt

facdfbcd _ N(Sab’ sowie 0% = N2 — 1, a, b, C, d= 1, e ,N2 —1. (29)

2.4 Storungstheorie im Kontinuum

Im Folgenden wird die kovariante Eichung 9, Aj; = 0 verwendet, um die Lorentzinvari-
anz zu erhalten, was allerdings einen Hilbertraum mit indefiniter Metrik zur Folge hat
(Gupta-Bleuler-Formalismus, siehe [32, Kap. 5.5.3]). Dieses Problem lésst sich jedoch im
Rahmen des Faddeev-Popov-Ansatzes |33] 1osen. Hierbei wird das Integrationsmafs aus
Gleichung (2.2) verdndert geméf

DIA,] — D[A,] (det Mpp)5[f(A,)]. (2.10)

Die Determinante fithrt nach Exponentierung auf die sogenannten Geistfelder ¢ bzw. ¢,
welche das Integrationsmafs in beliebigen Eichungen konstant halten. Die Deltafunktion
entspricht einer Eichbedingung, die eine eindeutige Reprasentantenmannigfaltigkeit aus
dem Phasenraum auswéhlt und somit das Auftreten von nichtphysikalischen Freiheits-
graden verhindert.

2.4.1 Storungsentwicklung in kovarianter Eichung

Der Vakuumerwartungswert einer Observable O im Pfadintegralformalismus ist gegeben
als

Oy = 5 [PEbAIOG v A w20, )

mit der Normierung Z = Z[J = 0]. Nach Aufspalten der Lagrangedichte in einen freien
und einen wechselwirkenden Anteil geméf & = %) + .4, lasst sich der Erwartungswert
schreiben als

O) = (O Jd= ), (2.12)

wobei hier und im Folgenden fiir den freien Erwartungswert (...) = (...)o verwendet
wird.

4Kleine lateinische Buchstaben laufen im Folgenden fiir die SU(3) in adjungierter Darstellung immer
von eins bis acht.
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Mit Gleichung (2.5) gilt

1

1 a —=a a
Ly = S(0uA -~ DAL+ % (0uAL)? —2*0%¢ (2.13)
g aoc a a C
S o= —5f (0, A5 — 9,A%) AL AL
92 be ped b pd
+ AL AL AL A
— g (9 Ay
+ gy, ALT ) . (2.14)

Die Geistfelder ¢ und ¢ sind skalare Grassmannfelder (vgl. [34, Kap.1.3]), welche
der Fermi-Statistik geniigen. Die fiir die Funktionalableitung benétigten zugehorigen
Quellen werden in Kapitel 2.4.2 mit n bzw. 7 bezeichnet, die der Fermionfelder mit x
und Y. Der Term proportional zum Eichparameter £ dient der Eichfixierung.

Da der Ausdruck (2.12) geschlossen nicht mehr ausgewertet werden kann, entwickelt
man nun die Exponentialfunktion um kleine Kopplungskonstanten. Diese Naherung ist
in der Quantenelektrodynamik (QED) gut erfiillt, da dort die Kopplung im stérungs-
theoretisch relevanten Bereich mit oy ~ 1/137 klein gegen 1 ist. In der QCD ist
dies jedoch nicht der Fall. Hier ist die effektive Kopplungskonstante as(Q) nur fiir sehr
grofse Impulsiibertrige @ und somit sehr grofe Energien klein. Die Ursache hierfiir
liegt in der asymptotischen Freiheit. Diese verursacht einen ,, Anti-Screening-Effekt”, der
ein paramagnetisches Verhalten des physikalischen Vakuums bewirkt, so dass (farb-)
ladungstragende Eichfelder eine effektive Ladung nicht mehr abschirmen, sonder ver-
stiarken. Fiir kleine Energien ist die Schwachkopplungsentwicklung somit nicht sinnvoll,
es werden also alternative nichtperturbative Methoden bendtigt. Sehr erfolgreich ist hier
die Gitter-QCD, die in Kapitel 5 genauer vorgestellt wird.

2.4.2 Feynmanregeln

Die Feynmanregeln bilden das Grundgeriist der Stérungstheorie. Sie korrespondieren
zu einer graphischen Darstellung, so dass jeder Streuprozess als Summe sogenannter
Feynman-Diagramme dargestellt werden kann. Als Grundlage fiir diese Regeln dienen
die vollen n-Punkt-Funktionen aus Gleichung (2.3). Fiir den einfachsten Fall skalarer
Felder ¢ lassen sie sich schreiben als zeitgeordneter Vakuumerwartungswert

G (z1,...,xn) = (0T {p(z1) ... P(z4)}|0), . (2.15)

Nach dem Wick’schen Theorem (vgl. [35, Kap.4.2|) kann man diese kontrahieren zu
einer Summe iiber alle Permutationen aus freien Propagatoren A(xy, — ;) gemif

Tpy —Tpy) - Tp,_1—Zpn d
<O\T{¢(x1)...¢(xn)}!0>={ % Am ) - A ) meemade (2.16)

0 n ungerade.
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Propagatoren

Mit der Aufteilung der Lagrangedichte in Gleichung (2.13) und (2.14) zerfallt nun auch
das Funktionalintegral in einen wechselwirkenden, sowie drei freie Teile, so dass es sich
schreiben lasst als

6 o0 o0 & 6
Z[J,n,7, X, X] = exp {—/d‘*m-i’”l {E, 50 5 oy ﬁ} } ZALNZ I, Z9xX) -
(2.17)
Somit wird ersichtlich, dass es in der QCD drei Propagatoren gibt: einen Gluonpropaga-
tor fiir die Eichfelder A,,, einen Geistpropagator fiir die Geistfelder ¢ bzw. ¢, sowie einen
Fermionpropagator fiir die Quarkfelder ¢ und 1. Da die Berechnung in allen drei Féllen
dquivalent verlauft, geniigt es, sie anhand des Gluonpropagators genauer zu beschreiben.

Hierzu wird Zg geschrieben als

1
Z%[J] = / D[A,] exp {— / dz [iAZKggAI; - J;Ag]} (2.18)
mit
1
K =% {%32 —~ (1 —~ E) auay} : (2.19)

Mittels Gauf’scher Integration (vgl. |36, Kap. 6.2]) folgt hierfur

1 a al
23] = e { - [ ate a'y S0t~ )} (2:20)
wobel mit
d*k k,k, ] ekl@=y)

ab _ ab why

Dt (x—y) = 0 /(277)4 [@w—(l—g) - }T (2.21)
e=1 b d4k eik(:vfy)

= s, | —— 2.22
z /(2ﬂ)4 12 (2.22)

der Gluonpropagator im Ortsraum gefunden ist. In der zweiten Zeile haben wir die
Feynman-'t Hooft Eichung mit £ = 1 eingesetzt, die im weiteren Verlauf verwendet
wird.

Da die folgenden Rechnungen im Ortsraum durchgefiihrt werden, soll an dieser Stel-
le auch das in den Propagatoren auftretende Integral ausgewertet werden. Auch dies
verlauft fir alle benotigten Propagatoren dquivalent, so dass wieder stellvertretend der
Gluonpropagator betrachtet wird.

Mit Hilfe der Schwinger-Parametrisierung

1 1> Lz
(7 = r<a)/o dp gele P (2.23)



2.4 Stérungstheorie im Kontinuum

erhélt man fiir den Gluonpropagator in n Dimensionen

d"k eikz
D(z) = /(277)" k2

-
0 (2m)"
o0 n 7& dnq 2
dg g 2 e 45/— e
/0 (2m)"
1 & n _z22
r [ assies

22 Jo
NCRE

Aa pn—2

/d"q e =1

verwendet. Analog erhéilt man fiir den Geistpropagator

. . d"k eik:z
Dip(z) = 51’/(%)”?
I(3 - 1)
4z n2

—
*
~

(2.24)

Hier wurde bei (x) die Relation

w3

(2.25)

5t (2.26)

Der Quarkpropagator

B B n ikz
AZ_] (Z) — 6@] / d k: (]
B d"k elkz
— S — S 2.2
) / - (f —m) . (2.27)

mit f = ~,k* wird an dieser Stelle nicht explizit im Ortsraum berechnet, da er fiir den
weiteren Verlauf nicht benétigt wird.

Vertizes

Im Gegensatz zur abelschen Quantenelektrodynamik treten in der Lagrangedichte der
nicht-abelschen QCD fiir die Eichfelder Selbstkopplungsterme auf. Weiterhin wechsel-
wirken die Eichfelder mit den Geistfeldern, sowie den Quarks. Die Feynmanregeln fiir
die resultierenden Vertizes konnen hergeleitet werden, indem man die zugehorigen n-
Punkt-Funktionen der Felder nach Gleichung (2.3) bestimmt. Einfacher ist es, sie direkt
aus der Lagrangedichte zu entnehmen, hierbei miissen lediglich die Symmetriefaktoren
und Ableitungen in Gleichung (2.14) beriicksichtigt werden. Erstere erhélt man durch
Zahlen moglicher Invarianzen unter Vertauschung der Eichfelder. Aufgrund der Lor-
entzstruktur und der Forderung nach Antisymmetrie unter Vertauschung der Indizes
(b v, 1< 2 usw.) konnen die Vertizes dann mit Hilfe der total antisymmetrischen
Strukturkonstanten f®°¢ abgeleitet werden. Man findet dann:



2 Quantenchromodynamik im Kontinuum

i) 3-Gluon-Vertex:

k2a v, b
abe k;l y My G
9f [0 (ko — k1)x + 0 (ks — ko)
+ 5;0\(]{:1 - k3)u]
k37 Aa c
ii) 4-Gluon-Vertex:
k?y v, b k37 >\7 c
_92 [fabedee(éu)\(syw _ 6ﬂw5y)\)
+ facefbde(éuu(SAw - 6;1,w5u)\)
+ fadebee(éu)\(suw - 6uu6)\w) k17N7 a kg w,d
iii) Geist-Gluon-Vertex:
p,b
k,p,a —'
. a/bc b ) .
i .
9/ qu -
g, a
iv) Fermion-Gluon-Vertex:
q,C
k,p,a
—ig7u (T )e
p,b

2.5 Renormierung

Berechnet man konkret Feynmandiagramme in Ein-Schleifen-Ordnung, so stellt man
fest, dass diese ultraviolett divergieren. Dirac behauptete 1981 bei einer Konferenz in
Florida, dass dies auf eine physikalisch nicht sinnvolle Theorie hinweise. Jedoch lasst
sich dieses Problem elegant mittels der sogenannten Renormierung beheben (eine Uber-
sicht findet sich in [37]). Dies geschieht in zwei Schritten: Zunéchst wird das divergente
Integral regularisiert, so dass es fiir einen festen Regulator einen endlichen Wert be-
sitzt. Dann werden die auftretenden Felder, Massen und Kopplungskonstanten derart
neu definiert (renormiert), dass die Divergenzen verschwinden und der Regulator wieder
entfernt werden kann. Dieses Umdefinieren ist erlaubt, da zuvor nichts iiber die in der
Lagrangedichte auftretenden Felder, Massen und Kopplungskonstanten bekannt ist, ins-
besondere miissen sie nicht mit den experimentell gefundenen Werten iibereinstimmen.
Die Grofen in der urspriinglichen Lagrangedichte werden als nackte Grofsen bezeich-
net, welche von Beginn an divergieren. Mit den renormierten Groéfen lassen sich dann
physikalisch messbare Observable berechnen.
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2.5 Renormierung

2.5.1 Regularisierungsschemata
Pauli-Villars-Regularisierung

Die 1949 von Pauli und Villars eingefiihrte Methode besteht darin, den Propagator
umzuschreiben als

1 1 1
RN _
k2 + m? k24+m?2 k24 A2
A2 —m?

R ET (2.28)

wobei A2 > m?. Der so gewihlte Propagator fillt nun fiir groke k mit 1/k* ab und hat
dementsprechend einen kleineren Divergenzgrad (vgl. [34, Kap. 2.2]). Den urspriinglichen
Propagator erhélt man im Limes A — oo. Falls die auftretenden Integrale nach dieser
Regularisierung noch immer divergieren, kann die Prozedur wiederholt werden. Um die
Eichinvarianz in abelschen Theorien zu erhalten, kann der Regulator A auch direkt in
der Masse abgezogen werden. Im nicht-abelschen Fall bricht diese Methode allerdings
die Eichinvarianz.

Gitterregularisierung

Die Gitterregularisierung ist eine sogenannte ,Cut-off“-Regularisierung. In diesem Fall
wird die Raumzeit durch ein Gitter mit Gitterabstand a diskretisiert. Fiir die Integrale

gilt dann
0 q4k w/a d4k
— . 2.2
[ o — Loy 229

Die Impulsintegration wird also auf die erste Brillouin-Zone beschréankt. Dies verkleinert
allerdings die Translations- und Rotationsinvarianz, die Eichinvarianz bleibt hier aber
erhalten. Durch Limesbildung a — 0 erhdlt man schlieklich wieder das Kontinuums-
ergebnis. Dieses Verfahren eignet sich sehr gut fiir eine nichtperturbative Behandlung,
in Kapitel 6 wird diese Regularisierung jedoch auch storungstheoretisch verwendet.

Dimensionale Regularisierung

Fiir praktische Zwecke eignet sich im Kontinuum am besten die dimensonale Regula-
risierung nach 't Hooft und Veltman [38]. Bei dieser Methode wird die Dimension n
der Raumzeit wie eine kontinuierliche Variable behandelt. Da die Eichinvarianz nicht
von der Dimension abhéngt, bleibt diese, wie auch alle anderen Symmetrien, erhal-
ten. Ein Problem der dimensionalen Regularisierung ist allerdings die Wohldefiniertheit
von Tensoren in nichtganzzahligen Dimensionen (vgl. [32, Anhang B|). Dieses Problem
taucht beispielsweise bei chiralen Theorien auf, fiir die es demnach kein eichinvariantes
Regularisierungsverfahren gibt.

Anhand eines Beispiels soll die Vorgehensweise hier fiir den spéteren Gebrauch ver-

11



2 Quantenchromodynamik im Kontinuum

deutlicht werden. In Kapitel 3 wird das folgende Standardintegral benétigt:

;o / d"k 1
B 2m)™ (k2 + m2 + 2kp)A4
223 L% a1 g / A"k _pk2+2kp)
Sy A
R — / T ap A e Bt
(4n)3T(A) s
rA-=2
® LA-3) ! — (2.30)
(4m)3T(A) (m2 — )73
Bei (f) wurde die Definition der Gammafunktion
[(z) = / dtt*~te™! (2.31)
0
s (x) = / dt t*~ et (2.32)
0

verwendet. Das Ergebnis (2.30) soll fur beliebige n € R definiert sein. Dies bedeutet,
dass die Divergenzen des urspriinglichen Integrals nun als Polstellen der Gammafunktion
auftreten. Diese liegen bei Null sowie den negativen ganzen Zahlen. Nimmt man an, dass
die Dimension nah bei vier ist, kann man

n=4-2¢ (2.33)

ansetzten. Dies wird im gesamten ersten Teil der Diplomarbeit verwendet. Dann kann
um die Polstellen der Gammafunktion entwickelt werden mit

—_1\ym 7T2
I'(—m+e) = ( ni? {% +(m+1)+ %e [? + 3 (m +1) — ' (m + 1)] + 0(62)} ,
(2.34)
wobei
p(m+1) = 1+%+...+%—7E, (w(x) - dlndz(x)>
7'('2 i 7'('2
Y(m4+1) = - > llg Y1) = = (2.35)
=1

Es bezeichnet g die Euler-Mascheroni Konstante mit
(1) = —yg = —0,5772... .

Setzt man nun in (2.30) A =2 und p = 0, so erhélt man ein logarithmisch divergentes
Integral. Mit den Eigenschaften der Gammafunktion

IMNz+1) =aD(x), I'(e) = é — e+ O(e) (2.36)

und der Entwicklung
2° =T =14 elnz + O(?) (2.37)

12



2.5 Renormierung

zeigt sich diese Divergenz nach der dimensionalen Regularisierung wie folgt:

1 1
I= W (; —7E+1n47r—lnm2—|—(9(6)> . (2.38)

Das Integral besitzt nun einen endlichen Wert fiir ein festes . Betrachtet man den Limes
g — 0, so tritt die logarithmische Divergenz als Polstelle in € auf. Diese kann allerdings
durch die Renormierung fiir ein festes £ subtrahiert werden, so dass nach Redefinition
der urspriinglichen Parameter ein endlicher Wert fiir das Integral verbleibt.

2.5.2 Minimale Subtraktion
Definition

Wird dimensionale Regularisierung verwendet wie in Gleichung (2.38), so manifestie-
ren sich die ultravioletten Divergenzen als Polstellen in Abhéngigkeit von der Dimen-
sion n. Das 1973 von 't Hooft entwickelte Minimale Subtraktionsschema (MS-Schema)
besteht nun darin, diese Pole abzuziehen. Dazu subtrahiert man von der urspriingli-
chen Lagrangedichte %, welche von den nackten Groéfsen abhéngt, einen sogenannten
Gegenterm AL

[N (2.39)

Hierbei besitzt £ die gleiche Struktur wie die urspriingliche Lagrangedichte, jedoch
wurden alle nackten Grofen durch renormierte ersetzt. Dies hat zur Folge, dass die
Divergenzen in den Gegenterm absorbiert werden und die resultierende Lagrangedichte
endliche Resultate liefert. Diese Vorgehensweise gilt fiir beliebige Renormierungsschema-
ta; das MS-Schema zeichnet sich nun dadurch aus, dass nur die Pole abgezogen werden.
Dies bedeutet, dass die Gegenterme keine endlichen Teile enthalten und somit durch die
Pole eindeutig definiert sind.

Bei der Renormierung der Kopplungskonstanten ist zu beachten, dass die nackte
Kopplung go eine Massendimension in Abhéngigkeit der Dimension n tréagt. Daher muss
eine Massenskala v eingefithrt werden, fiir die in einer SU(3)-Yang-Mills-Theorie mit
n = 4 Dimensionen gilt

g — 12 2g. (2.40)

Die Vorteile dieses Schemas liegen in der automatischen Erhaltung der Symmetrien®,

sowie der problemlosen Behandlung masseloser Theorien. Aufserdem sind die Berech-
nungen der divergenten Teile der Feynmandiagramme in Ein-Schleifen-Ordnung sehr
einfach. Der Nachteil liegt lediglich in der physikalischen Kontraintuitivitdt des Sche-
mas.

Allgemein wird eine Theorie als renormierbar bezeichnet, wenn der Gegenterm A.Z
von der gleichen Struktur ist wie die urspriingliche Lagrangedichte, also falls der Ge-
genterm durch eine Redefinition der urspriinglichen Parameter der Lagrangedichte ab-
sorbiert werden kann. Miissen hingegen in jeder Ordnung Storungstheorie weitere Ge-
genterme hinzugefiigt werden, so dass eine unendliche Anzahl neuer Parameter benttigt
wird, spricht man von einer nicht-renormierbaren Theorie.

5Die Ausnahme bilden chirale Symmetrien, wie im Abschnitt iiber dimensionale Regularisierung be-
schrieben.
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2 Quantenchromodynamik im Kontinuum

MS-Schema

Verwendet man das MS-Schema, so stellt sich heraus, dass hier immer wieder der gleiche
Vorfaktor proportional zu In 47 —~g auftritt. Daher ist es sinnvoll, diesen Faktor ebenfalls
zu subtrahieren, was im modifizierten MS-Schema, dem MS-Schema, geschieht. Dazu
wird der Massenparameter v des MS-Schemas geméf

2

umdefiniert.
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3 Berechnung des QCD-Feldstarke-
korrelators im Kontinuum

Im Folgenden wird die Berechnung des quantenchromodynamischen Feldstarkekorrela-
tors in néchster zur fithrenden Ordnung im Kontinuum vorgestellt. Diese wurde bereits
im Minkowski-Raum von Jamin [39] auf direktem Wege und von Eidemiiller [40] im
Rahmen der ,Heavy Quark Effective Theory* (HQET) durchgefiihrt. Im ersten Ab-
schnitt werden der Feldstérkekorrelator so wie seine Komponenten genauer definiert,
anschliefsend folgt die ausfiihrliche Berechnung des Korrelators in Storungstheorie bis
zur zweiten Ordnung in der Kopplungskonstanten O(g?).

3.1 Der QCD-Feldstarkekorrelator

Der eichinvariante! QCD-Feldstirkekorrelator in der adjungierten Darstellung ist defi-
niert als
abc 27 c
Dywrw(?) <O|T{ y)P e 9f ffdoAs( m+az)Fb )HO> (3.1)

Hierbei bezeichnet Iy, = J,A7 — 6VA;‘; -9 fabCAZAi den Feldstéarketensor im Euklidi-
schen und es ist z = y — z. Die Zeitordnung T ist definiert als

T exp{/ot dt’O(t’)} = 1+/ dt' O / dt’/t/ a" oot +..., (3.2

die Pfadordnung P wird analog dazu gebildet.

Der Feldstarkekorrelator ist von besonderer Bedeutung fiir nicht-perturbative Nahe-
rungen der QCD, wie z. B. die SVZ Summationsregeln [41,42|. Hierdurch ist der Kor-
relator auch eng mit der Gluon-Kondensation verkniipft [43]. Ebenso spielt er eine be-
deutende Rolle fiir das stochastische Vakuummodell [44-46] sowie fiir die Beschreibung
der Hochenergie Hadron-Hadron-Streuung [47-50|. Die Anwendungen des Korrelators
auf dem Gitter werden in Kapitel 6 genauer besprochen.

3.1.1 Die Schwinger-Linie

Im Allgemeinen l&sst sich der Feldstdrkekorrelator mit einer beliebigen Schwinger-Linie
(oder auch Schwinger-String) darstellen:

1
$8.0) =Pep{ =g "5 [ do oo}, (33)
0,C

)

Im Folgenden soll allerdings die Gerade als einfachste Form des Weges C verwendet
werden, weshalb die explizite Abhéngigkeit von C' unterdriickt wird.

'Die Eichinvarianz wird durch die Schwinger-Linie (siehe Kap. 3.1.1) sichergestellt.
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

3.1.2 Lorentz-Struktur

Der Feldstérkekorrelator lisst sich aufgrund seiner Lorentz-Struktur? durch zwei skalare
Funktionen D(2?%) und Dj(2?) parametrisieren [45]:

Duu)\w(z) = (6;1)\61/(4} - 5,uw6l/>\) (D(ZQ) + DI(ZQ))
87)1 (22)

—a (3.4)

+ (0urnzv 20 — Opwzv 2y — OurZpzw + Ouwzu2))

Der Korrelator ist total antisymmetrisch unter Vertauschung von p < v und \ < w.
Fiir spatere Zwecke ist es daher sinnvoll, die Notation

’D;w)\w(z) = D[uu][)\w}(z) = -@;u/)\w(z) - -@uuwk('z) - -@Vu)\w(z) + -@Vuw)\(z) (3'5)

einzufithren. Somit gilt

Duro(2) = Gunbuw Al22) + %Z:# B(z?), (3.6)
und man kann identifizieren
2 2 2
2A(z%) = D(z%)+Di(z7) (3.7)

3.2 Berechnung im Kontinuum

Um den vollen Feldstéarkekorrelator berechnen zu konnen, muss er geméf Gleichung (2.12)
entwickelt werden:

Dy (2) = <0 ‘T {Fﬁu(y)P Sy, x) Fy,, e~/ 4 4W) H 0> ' (3.9)

Setzt man die Definition fiir Fj, (x), sowie (2.14) fiir den Wechselwirkungsterm der
Lagrangedichte 27 und (3.3) fiir die Schwingerlinie ein, so liasst sich der Korrelator
in der Kopplungskonstanten g entwickeln. Bis zur Ordnung O(g?) erhiilt man fiir die
Exponentialfunktion der Schwingerlinie

1
SOy, z) = 6% — gfabCzT/ do AS(z + 02)
0

2 1 o
+ %facdfcbeszﬁ/ do‘/ dp A7d_($ + O'Z)AZ(x + pz)
0 0
+ 0(93), (3.10)

wobei fiir die Strukturkonstanten die Relation (vgl. 2.7)

(TdTe)ab _ _fadCfceb (311)

2Fiir beliebige Raum-Zeiten tritt an die Stelle der 6., der metrische Tensor g...
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3.2 Berechnung im Kontinuum

verwendet wurde. Fiir den 3-Gluon-Vertex des wechselwirkenden Teils der Lagrange-
dichte £ ergibt sich:

e*fd4y/_2’&39(y’) = 1 —{—lgfhl_]/dlly/ (aaAg(yl) _ aﬁAZ(yl))Ala(y/)Ajﬁ(yl)
2 .. . .
=S pragiin [ aty 0,45) - 9pAL )AL AKW)
x/&M®#%M—%%WW%@%WWU

+0(g*). (3.12)

Die Entwicklungen der anderen Wechselwirkungsterme verlauft vollig analog. Fiir die
folgende Rechnung wird aufterdem fiir den Vakuumerwartungswert die Schreibweise

(0(x)d(y)) = (0]T{p(x)¢(y)}[0) (3.13)
eingefiihrt.> Des Weiteren bezeichnet 0, die Ableitung nach der Koordinate z,,. Ver-
wendet man z =y — z, so folgt 9}, = 0, = 0y = —0;; und es gilt

-n vy—Z ?
Oz " =0u(z2") 2 = —nzn’er . (3.14)

Im Folgenden findet sich eine detaillierte Berechnung der einzelnen Beitrage; zusam-
mengefasst werden die Ergebnisse in Kapitel 4.

3.2.1 Fiihrende Ordnung

Multipliziert man nun in Gleichung (3.9) alle Terme miteinander aus und sortiert nach
Potenzen in g, so erhélt man in fiihrender Ordnung O(g°) (siehe Abbildung 3.1)

Dl (2) = (a5 (y) = D, A5 ()8 (aAL () — A4 (). (3.15)

R AAAANANANNNNR)
Abbildung 3.1: Feldstarkekorrelator in fithrender Ordnung.
Dann folgt mit den Gleichungen (2.9), (2.24) und (2.33)

DOz = (91AUy)O D5 AL (2))

= — 9o\ Dyi(2)
5l/w 0 2R
= (V= DI —e)(1—e)5 57 (ﬁ —2(2—¢) Zg;g) . (3.16)
Es ergibt sich
I'(l—e¢
PO+ DY) = 240(22) = (N2 —1)(1 - E)WQ(_EZ4_§6
oD\ (22 T'(l-¢

22 % = BOZ?) =—(N*-1)(1-e)2- s)ﬁ. (3.17)

3Im Euklidischen spielt die Zeitkomponente keine bevorzugte Rolle, somit gibt es dort keine Zeitord-
nung. Sie wird hier mitgefiihrt, um die Giiltigkeit der Rechnung im Minkowski-Raum zu erhalten.
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

Somit erhélt man fiir die fithrende Ordnung im Limes € — 0

PO = 0
NZ—1

3.2.2 Ein-Schleifen-Ordnung

Kein Term der Entwicklung linear in g liefert einen Beitrag zum Feldstarkekorrelator,
da diese Terme eine ungerade Anzahl an Eichfeldern enthalten und somit nach dem
Wick’schen Theorem (2.16) verschwinden. Auferdem tragen Terme proportional zum
Propagator® D(0) nicht bei, da gilt (vgl. [51, Kap. 4.3]):

d*k 1
DO) = lm [ <& 2
(0) 61—%/ (2m)* k2 + €

L d™k 1
= limlm | —————
n—4 e—0 (27‘()" k2 4+ €

... —em? 1
- Il [ v
= 0, (3.19)

wobei 1(2) = 1 — g die in Gleichung (2.35) definierte Digamma-Funktion ist.

Diagramme ohne Schwinger-Linien Anteil

In der Ein-Schleifen-Ordnung, also in der Ordnung O(g?), tragen Diagramme mit und
ohne Schwinger-Linien Anteil bei. Es bleiben die folgenden Diagramme ohne Schwinger-
Linien Anteil auszuwerten:

c) d) e)

Abbildung 3.2: Ein-Schleifen Diagramme ohne Schwinger-Linien Anteil: a), b) Gluonenbei-
trage, ¢) Gluonen-, d) Geistteilchen- und e) Fermionenschleife.

“Mit D(0) wird hier sowohl der Gluon- als auch der Geistpropagator bezeichnet.
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3.2 Berechnung im Kontinuum

Diagramm 3.2 a). Fiir dieses Diagramm lésst sich direkt der antisymmetrisierte Bei-
trag berechnen:

DR (2) = g2 fPo el (AG () AL (y) AS () AL ()

= g2 [0+ DS (=) DL (2) + DL (=) DI ()|
(1 —¢)

= ¢°N(N? - 1)W(5M5W — 0wlun) - (3.20)
Im Limes € — 0 kann man ablesen:
IN(N?%-1)
DRa 2 g
(%) 167424
D2y — . 3.21
1

Diagramm 3.2 b). In der Entwicklung erhilt man zwei Beitrédge fiir dieses Diagramm.
Fasst man diese zusammen, so findet man

IR = =g [ atyonaz)o Al )AL W) A W) A ) A )

_gN(NQ - 1>/dy’32{(5u[gf9§]l?<y - y')) D*(x — y')8x1adp)u
+ (332D = ¥)) Dl = y)Dly = ¥')0, 00
+ <5w[6a§iD(x - y/)) D(z —y)D(y - y’)éy[aéw}, (3.22)
wobei fiir die Notation mit (3.5) gilt:
OaAp) = Oadp — IpAa.

Nach Substitution v/ —y = 2/ = ¢ — 2 = 2z’ + 2z und Bildung der Ableitungen

Y = —9% sowie Y = —9% erhilt man dann
e -1
g = LN -1 (3 e [a
T2

51/[62;]2;/1
{ ( ln Z+Z 2n 4 nZ/n+2(z’—|—z)2n—4 5>\[a55}w

gz + 2)a2 Suip(Z + 2)a1 2,
)< AlB } M S 12l (B 1%p 5@)\) )

/n— 2(z + z)2m2 v[BPaw (2 + z)2n2 via

+

(3.23)

Zur Losung der Integrale lasst sich folgendes allgemeines Integral verwenden, dessen
Herleitung sich in Anhang A.4.4 findet:

D(ep=)r(4Gn

/ddzl 1 - 2 )
(2 = z21)"(z' — z)™ LTI —

=) 1
n) (21 _ 22)n+mfd :

MI&.

(3.24)
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

Durch Ableiten liefert dieses Integral ebenfalls eine Losung fiir die weiteren Integrale in
Gleichung (3.23); diese finden sich im Anhang in den Gleichungen (A.27) und (A.28).
Durch Einsetzen gelangt man dann fiir Diagramm b) zu

(5 - 1)r(g —4rd —n)l

B-3%)
Brs “T(n—2)I(7 - 22)

7N () = —3¢*N(N?-1)

3n

X {(6M)\61/w - 5,uw(su)\)m - (5VWZHZ>\ o 5V)‘Z“Zw) Z23n*6

}.(3.25)

Auch hier findet man wieder ein divergentes Ergebnis fiir n = 4. Nach Antisymmetri-
sierung erhélt man fiir n =4 — 2¢

I2(1—¢)[(2 — 3)(2e)T(1 +¢)

@b,y — _3.2N(N?2_-1
A (Z ) 39 ( ) 327T4—38I‘(2 — 25) (1 + 38)24_68

I2(1—¢)[(2 — 3¢)(2e)T(1 +¢)
(2)br,2y _ 9 _ 2N(N? -1 2
BTG = 32— 399N ) T6rT 5T (2 — 20T (1 1 3e)or e+ (5:20)
und so ergibt sich nach Renormierung (vgl. Abschnitt 2.5.1):
D) = 0
2, 2y _ 2 N(N? - 1)

Hierbei wurde die Abkiirzung

L = In(me®122%) (3.28)

eingefiihrt mit der Massenskala v des MS-Schemas (vgl. Gleichung (2.40)).

Diagramm 3.2 c¢). Fiir die Gluonschleife ergibt sich
2
2)c g cde rhij a T AQ
72,2 = L fhj/d4y1 dtys (00 A% ()05 AL (2) 2 Aly ()

X AL (1) A% (1) 01 AS (92) A2 (12) A5 1) ) - (3.29)

Aufgrund des Produktes von jeweils acht Eichfeldern, kommt es hier zu einer groften
Anzahl von Méglichkeiten bei der Wick-Kontraktion. Diese werden hier nicht explizit
aufgelistet. Folgt man allerdings den bereits vorgestellten Rechnungen, so stéfst man
nach Einsetzten der Gluonpropagatoren und Zusammenfassen der Terme auf das fol-
gende Zwischenergebnis:

F4(n
2)e n n
Dyons(2) = 2n =2’ N(N* - 1)Wa % /d y1d"ys

o {5 [ (y1 —Y)a(y2 — 2)a B (y1 = Y)a(y2 — y1)a
Clly =y —y) (1 —y2)? (=g — )2y — ye)?n 2
(y2 — 2)a(Y2 — ¥1)a B 1 }
(y—y)" 2z —y2)" (1 —y2)* 2 (y—y1)" 2(x — y2)"2(y1 — y2)?" 2
[_ (W1 — Yw(y2 — )y (W1 — Ywly2 —y1)y
(y —y)™(@ —y2)"(y1 —y2)" ™ (y —y1)"(& — y2)"2(y1 — y2)?" 2
N (2 —2)u(y2 — Y1) L @n =D~ y)u(e —y) } }
(y—y)"2(x —y2)" (1 —y2)* 2 (y—y1)" 2(x —y2)"2(y1 —w2)>" | )
(3.30)
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3.2 Berechnung im Kontinuum

Substituiert man nun y — y; = 21 und y — y2 = 29, so erhélt man Integrale vom Typ

_ n, n, leé(ZQ — Z),@
Lpe) = [ama [ e
P-4 -n)(2n —6) (6,5 22
" T2 (n — 2)0(10 — 2n) <7 o —

== za25> 2274 (3.31)

welche sich mit den Formeln aus Anhang A.4.4 bestimmen lassen. Insgesamt gibt es fiinf
verschiedene Integrale, die sich alle auf die gleiche Form wie (3.31) bringen lassen. Nach
einer weiteren langlichen Rechnung gelangt man dann zu

(6n —5)I?(% — 1)I'(4 —n)[*(3 — 2)T'(2n — 6)

9 (2) = ¢#N({N?-1)

oo 4372n=4(n — 2)I'(10 — 2n)
Ovw  _14-dn 12—4n
— <v . .32
X 0,0 <4n_14z 2y 2% (3.32)

Dies fiihrt nach Ableiten und Antisymmetrisieren auf

(6n —5)I?(% — 1)I'(4 —n)[*(3 — 2)T'(2n — 6)
32w2n—4T(n — 2)I'(10 — 2n)

X (8un0uwz ™4 = 2(12 — 4n) 6z, 202074 | (3.33)

I (2) = FN(N?-1)

Folglich findet man schlieftlich

(19 — 126)T2(1 — e)I'(26)T2(1 + )['(2 — 4¢)
327474 (2 — 26)'(2 + 4e) 24 -8¢
(1 —2¢)(19 — 12e)T2(1 — )['(2e)T2(1 + &)['(2 — 4e)
167440 (2 — 22)[(2 + 4e) 24 8¢

A(Z)C(ZQ) _ QQN(NQ - 1)

(3.34)

8(2)0(22) — —gQN(NQ—l)

und damit

DPe(z2) = 0

@, 2v o N(N?—1)19 59

Diagramm 3.2 d). Die Geistschleife liefert den folgenden Beitrag, wobei fiir den Geist-
propagator (vgl. Gleichung (2.26)) Dpp(y — ) = (c(y)¢(z)) verwendet wird:

2 .
I = L [ty aty (ALwoRAL ) ) (02 Al w)
< ()7 (ye) (94 AF (v2) ) ¢ 32))
2
= %N(Nz - 1)3u5u/d4y1 d*y2Drp(y2 — y1) Dre(y1 — y2)

% {Bvadn (9 D(y = 1)) (9 Di — 12))
+ dudua (95 Dly = y2)) (04 Dz = 31) ) | - (3.36)
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

Nach Bildung der Abeitungen nach y; und ¥, sowie der Substitution y — y1 = 21,
Y — Yo = 2z findet man

2 F4 n_1
o) = S i Vg o0 fatsan,

QNS PN Y

2M(ze — 2)" (21 — 22)24  2B(21 — 2)" (21 — 29)27 2

Die beiden auftretenden Integrale liefern den gleichen Wert, da sie symmetrisch unter
Vertauschung von z; und zy sind. Mit den Formeln aus Anhang A.4.4 findet man fiir
das Integral

/ d'zy Az Z1v(22 = 2w _ 2T =3 =520 —6)
2 (22 = 2)" (21 — z2) [2(2)T(n — 2)0(10 — 2n)

(3.38)

Eingesetzt ergibt dies

r?2(2 —1)r@4—n)r?@3 - 2)r(2n—6)
3724 (n — 2)I'(10 — 2n)

ov,
X 0,0 <4n _w14z14_4" - z,,zwz12_4"> . (3.39)

@ﬁi);lw(z) = ¢’N(N%?-1)

Auswerten der Ableitung und Antisymmetrisierung liefert dann

(2 —1)r@4—n)?@B3—2)2n - 6)
327274 (n — 2)I'(10 — 2n)

X (00000224 = 2(12 — 4n) by 222 74) , (3.40)

7O (2) = PN(N?-1)

was zu den Koeflizienten

[2(1 —&)'(26)1%(1 +)(2 — 4e)
327474eT(2 — 26)'(2 + 4e) 24 —8¢

[2(1 —e)[(2e)I%(1 +¢)[(2 — 4e)

A(Q)d(ZQ) _ g2N(N2 o 1)

@42y = —¢®N(N? —1)(1 -2 41
B 9N =2 o oor@ ¢ ey o4
fiihrt. Es ergibt sich also
DA% = 0
(2)d 2 2 N(N?-1)1 b
D = —— L+ . 42
CE) = g\ g (3.42)
Diagramm 3.2 e). Fiir die Fermionenschleife erhélt man den Beitrag
2)e 7 m 1 mi oz
.@ﬁy)m(z) = g /d4y1 d*ys A7 (y1 — y2) A™ (y2 — y1)7*y
x (OUAL ()05 AL (@) Al (y) AL () . (3.43)

mit den Gammamatrizen 7, und dem Quarkpropagator aus Gleichung (2.27). Die Rech-
nung wird an dieser Stelle nicht explizit ausgefiihrt, da hier nur die reine Eichtheorie
betrachtet wird. Das Ergebnis kann allerdings Kapitel 4 entnommen werden.
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3.2 Berechnung im Kontinuum

Diagramme mit Schwinger-Linien Anteil

Nun bleiben noch die folgenden Diagramme mit Schwinger-Linien Anteil zu berechnen:

£)

ol B

h)

Abbildung 3.3: Diagramme mit Schwinger-Linien Anteil.

Um diese Diagramme auswerten zu konnen, bendtigt man modifizierte Propagator-
Integrale, um die Ergebnisse in dimensionaler Regularisierung angeben zu kénnen. Be-
trachten wir zunéchst den Propagator mit einfachem Schwinger-Linien Integral:

. d"k 1 eikaz

_ L G- (3.44)

3—n 471'% Zn—2

Hierbei wurde analog zu (2.24) verfahren; weiterhin verschwinden Integrale mit ungera-
dem Integranden iiber ein symmetrisches Intervall. Analog lasst sich das pfadgeordnete
Produkt zweier Propagatoren mit einfachem Schwinger-Linien Integral bestimmen zu

~ - 1 o
D(o)DO((1—p)2) = /0 do D(c2) /O dp D((1 — p)2)
17&20 1 z 1 g oz
= /OdUD(U)/dD()

D(cz)(D(oz) / D(o2)

(1—2n3) T%(%
(n— 3)2 167?"22” 4

(3.45)

Dariiberhinaus wird der Propagator mit zweifachem Schwinger-Linien Integral bendtigt.
Fiir diesen ergibt sich

D((o—p)2) = /dnk / da/ ap "

_ d"k eik:z
- / (2m)" (k2)?h?
_ 1 TGl (3.46)

n—3n—4 477%,2”*2

Mit diesen Integralen lassen sich nun die Diagramme aus Abbildung 3.3 auswerten.
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

Diagramm 3.3 f) und g). Fiir diese beiden Diagramme erhélt man
GOy = L pred e / do [ ap (a2 )Aa + 02 45 0+ p2) (G5 AL )

— 8 puetgiresran] (0,B2((1 - 0)2)) (00D (p2))
~de

+ (01D (02))(8, D ““((1 = p)2) )+(BuDDEL() ) Dr((0 = )2)]
(3.47)

Aufgrund der total antisymmetrischen Strukturkonstanten féllt hier der erste Term pro-
portional zu D ((1 — ¢)z) D@ (pz) sofort weg, da fo fP = ( gilt. Im zweiten Term
findet man den Beitrag zu Diagramm 3.3 g), im dritten denjenigen zu Diagramm 3.3 f).
Der Beitrag zu Diagramm 3.3 g) verschwindet ebenfalls, da sich hierfiir ergibt:

2 2(n _ 1 o
70 = e =i oo s @uios ) 10 =)
(3.48)

so dass sich die Terme nach Antisymmetrisierung gegenseitig wegheben.
Fiir Diagramm 3.3 f) ergibt sich nach Bildung der Ableitung

@(2)f (z) = ﬁN(NQ—l)(Q—n)FQ(%—l)
2

O (027" — nzyuzp2?2") (3.49)

AW (n—3)(n—4) 167"
und damit
2 2
(2)F (.2 _ g—NN2—1 1—c¢ F(l—ﬁ)
AT 2 ( )(1 — 2¢)e 167426 z4—4¢

2 1—¢ T2(1—¢)(4-2¢)
BAI(?) = L NN -1 . 3.50
(=9 2 ( )(1 —2e)e  16mi-2ex4-4e (3:50)
Dieses Diagramm divergiert also fiir n = 4. Daher folgt nach Renormierung
N(N? —1)
DAf(2y — 2tV T
(=) 167424
2
@)f,2 o N(N* —1)

Diagramm 3.3 h). Hierfiir findet man in der Entwicklung zwei gleichwertige Beitrége,
es geniigt also, einen der beiden zu berechnen

1
DML () = g pebe iiesT /O d0<(6“A,“/(y)—ayAﬁ(y))Aﬁ(x+0z)Af\l(:c)Af)(x)>
= g2 prean { (9,D()) Dit(oz) + (9,Di(2)) Dk (r2)

~ (0, (2)) Dt (o2) — (9, D3(2) ) DA (02) }
o4 —2n T35 —1)
3—n 16amz2n—2

(Ourzv 2w = Opw 22y — OurZpze + Ouwzu2y). (3.52)
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3.2 Berechnung im Kontinuum

Fiir die beiden Terme ergibt sich

N(N? —1)
h
PN = g
@h 2 o N(NV? —1)
Diagramm 3.3 i). Dieses Diagramm liefert den Beitrag
P (2) = f“bcfh” T / do / aty' (A (y)) As(x + 02)0f, Al
x(y)AL(y) AL (W) (854L()) )
92
= —EN(N —1)27 /d4y’><
{(3000,6,, D — 1)) (5800 — brad) Dl + 02 — ) (35D — 2)) |
+ ( (x+o0z— )>|:(5l/a6wﬁ — 0y80aw) (8ZD ) ( (y —x ) }
v (aAay 5, Dy — x)) [(5m5yﬁ — bya6:5) (4D(y — ) D@ + 02 — )} .
(3.54)

Die hier auftretenden Integrale lassen sich nur sehr schwer im Ortsraum losen, so dass
es einfacher ist, dieses Diagramm mittels Fouriertransformation

D(q) = / d"z €% D(z)

D(z) = /%eiq@(q) (3.55)

in den Impulsraum zu iiberfiihren. Das Ergebnis ldsst sich dann durch Riicktransfor-
mation wieder im Ortsraum angeben. Zur Ubersichtlichkeit wird im Folgenden nur die
zweite Zeile aus (3.54) betrachtet, die anderen beiden berechnen sich analog. Fiir den
Vorfaktor gilt die Abkiirzung

2
C= _%N(N2 —1)(6-00w — Oradp) - (3.56)

Ferner wird 2™ = (10%) e71%*|,—¢ verwendet. Man erhilt

(2)i . " y v dnkl ei(y*y/)kl
D) = 1C’8$/d z/d Yy (6}18[(156}”/—(2@” 7}{5%
y / d"kg /1 St [ / d”kg oy —2)ks
(2m)" k2 A k2
leaq/d"/d”'dkl dk2/da/dk3

k1(adp)uk1ka
TR

(ngfq)zei(ykl +:B(k27k3))efi(k1 +k27k3)y/ ) (357)
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3 Berechnung des QCD-Feldstirkekorrelators im Kontinuum

Unter Verwendung der Darstellung der Dirac’schen Deltafunktion
/dny' eikit+ka—ka)y" _ 6(/<:1 + ko — k3) (3.58)

und anschliefsender Auswertung des Integrals {iber ks = k1 + ko gelangt man zu

(2)i _ C I d"ky / d" ks /ld kl[a5ﬁ]uk1u(k1 + kg))\ (k1 +oka—q)=

Do ?) " 2m)n / ) o )0 B EL T k)2

. C q/ d"ksy /1 U(q — 0k2),(q — ok2)[a0p) (g + (1 — 0)ka)A
(2m)2 7T ) (2m)™ Jo (q — ok2)?k3(q + (1 — 0)ky)?

(3.59)

Im letzten Schritt wurde mit [d"ze!(F1Fok2=02 = §(k; + ok — ¢) das Integral {iber
k1 = q — okg berechnet. Substituiert man nun k = oks, so erhélt man schlieflich

@i . C o A"k (@=K)ula=R)udsy [P 5 (oq+ (1= o)k),
Dro(2) =1 (2m)2 o / (2m)n (q — k)2k2 /0 doo (aq+(1—o)lzr)2'

Die Integration iiber ¢ lasst sich nun mittels Feynmanparametrisierung

' 2 1(1-2)%1 D(@l(B) 1
/0 dz (wa—i- (1 — x)b)a-l—ﬁ - F(Oz +ﬁ) acbB (3.61)

auswerten und liefert fir n =4 — 2¢

1 o .

Fiir die dritte und vierte Zeile in Gleichung (3.54) erhélt man an dieser Stelle ent-
sprechende Variationen des Integrals, welche dann auf hypergeometrische Funktionen®
fiihren. Weiterhin ist bei der Berechnung dieses Beitrags darauf zu achten, dass es hier
zu einer Mischung von Operatoren A, B kommt. Die Gegenterme haben daher die Form
aA + BB mit a # (3 [34, S.62ff]. Da der Fokus dieser Arbeit allerdings auf der in Ka-
pitel 6 folgenden Rechnung in Gitterstérungstheorie liegt, soll an dieser Stelle nur das
Endergebnis fiir Diagramm 3.3 i), entnommen aus [39], angegeben werden:

. N(N? -1
D(2)Z(Z2) = —92W(2L + 1)
; N(N? —-1) 11 272
p@izy - N -1 (7 11 2m .
1 (27) 9 gy ot (3.63)
®Die hypergeometrische Funktion ist definiert als
2F1(a,b;c; z) = Z Llatn)l(b+n) 2 z€C.

I'(c+n) n!

Ihre Eigenschaften werden in [52, Kap. 15| detailliert beschrieben.
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4 Diskussion der Kontinuumsergebnisse

In diesem Kapitel werden kurz die Ergebnisse der Kontinuumsrechnung diskutiert und
mit denen des Artikels von Eidemiiller und Jamin [39] verglichen. Auferdem soll die in
Kapitel 6 folgende Rechnung motiviert werden.

4.1 Ergebnisse

Zum einfacheren Vergleich wird zundchst nachstehende Notation fiir die beiden skalaren

Funktionen D®)(z?) und D( )( 2) eingefiihrt:
D) =DM (?), DY) =D ()6, @)
mit D%O)(ZQ) N 1 . Fiir die einzelnen Diagramme ergibt sich hiermit
Gon(?) = N ﬂ (4.22)
1
GAF(2) = N% —ﬂ (4.2)
:1
GOh(2) = N% 5] (4.2¢)
Gi2) = N |_Lopin| ) 4.2d
8
s
und
s | 3
P2 = N% —Z(L+1)] (4.3a)
c s [19 (59
GPe?) = N <L+§>] (4.3b)
d Qs 1 5
[
G2 = NO‘? Z(2L+5)} (4.3d)
s 1
ng)h(zz) _ No‘? _5] (4.3¢)
; < 1 11 2
G2 = NO‘? 5 <L+ Z) + %] : (4.3f)

Es bezeichnet ag = % und L = In(re"®1222), aukerdem wurde die Rechnung in kova-
rianter Feynman-’t Hooft Eichung mit Eichparameter £ = 1 durchgefiihrt. Nicht aufge-

fithrte Diagramme liefern keinen Beitrag.

'Die Beitrige (4.2d) und (4.3f) wurden [39] entnommen.
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4 Diskussion der Kontinuumsergebnisse

Mochte man diese Rechnung im MS-Schema ausdriicken, so muss v? = pz‘j—f gesetzt

werden, wobei mit ;2 dann die Massenskala im MS-Schema bezeichnet wird.

Die Ergebnisse stimmen mit denen des Artikels von Eidemiiller und Jamin iiberein.
Diese haben allerdings die Beitrige fiir die Gluon-, Geist- und Fermionschleife in allge-
meiner Eichung zusammengefasst zu

e 2y _ O [(BL 3 & B2 ¢ &
G2 = N K 3 >L+3N—48+4+16 , (4.4)

wobei 31 = (11N —2f) /6 der erste Koeffizient der Betafunktion der QCD fiir f Flavours
ist.

Insgesamt hat man also fiir den Feldstarkekorrelator in Stérungstheorie bis zur Ord-
mung O(g?)

1 « 1 3
@02, _ 2y L oas[ 1.3
DO = N(N? -~ 1)~ [ 4L+8} (4.5)
@9, _ o L oas[(B 1 B 29 7
D) = NV - 1) K2N 4>L+3N+24+ S By

4.2 Motivation der Gitterrechnung

Der quantenchromodynamische Feldstéarkekorrelator wurde bereits mehrfach auf dem
Gitter vermessen (siehe z.B. [53-55]). Daher ist es wiinschenswert, die Ergebnisse der
Gitterrechnungen mit denen des Kontinuums zu vergleichen. Hierbei treten allerdings
einige Schwierigkeiten auf: Die Ergebnisse aus Kapitel 4.1 hangen sowohl von der Renor-
mierungsskala, als auch vom Renormierungsschema ab. Es kann also nicht einfach die
Entwicklungsgrofe im Kontinuum oM durch die entsprechende auf dem Gitter ersetzt
werden. Ein quantitativer Vergleich der Rechnungen ist somit nicht moglich, eine quali-
tative Auswertung findet sich in [39]. Die Ubereinstimmungen beschriinken sich dort in
der fithrenden Ordnung auf 20%, die hoheren Korrekturen unterscheiden sich allerdings
im Vorzeichen.

Um nun einen quantitativen Vergleich der Ergebnisse zu erhalten, ist eine Berechnung
des Feldstarkekorrelators in Gitterstérungstheorie unumgénglich. Dies soll im Folgenden
genauer diskutiert werden.
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5 Quantenchromodynamik auf dem
Gitter

Im Folgenden wird die QCD in der Gitterformulierung vorgestellt. Zunéchst wird der
Regularisierungsformalismus genauer erldutert, anschliefsend werden Eichfelder auf dem
Gitter diskutiert.! Im zweiten Abschnitt wird dann die Gitterstérungstheorie fiir Kapi-
tel 6 bereitgestellt.

5.1 Gitterformulierung der QCD

Die Formulierung der QCD auf einem Raum-Zeit-Gitter entstand fast zur gleichen Zeit
wie die Theorie im Kontinuum in den frithen 1970ern (siehe z.B. [1]), allerdings be-
schriankte sich die Forschung in den Anfdngen auf einen analytischen Zugang. Fiir den
numerischen Ansatz waren Monte Carlo Methoden zwar schon im Rahmen der statis-
tischen Physik seit den frithen 1950ern vorhanden [59], es mangelte jedoch noch an
Rechenleistung. Schliefslich simulierten 1979 Creutz, Jacobs und Rebbi [60] zum ersten
Mal Eichtheorien auf dem Gitter, 1981 kamen dann auch Fermionen hinzu (z. B. [61]).

Wie in Kapitel 2 gesehen, ist die Kontinuums-QCD nur fiir grofe Impulsiibertriage
oder fiir kleine Absténde storungstheoretisch zugénglich, weshalb die Gitter-QCD als
nichtperturbativer Ansatz im Bereich grofser Abstdnde benétigt wird. Das Prinzip ist
hier die Einfiihrung eines Raum-Zeit-Gitters als Regulator, welcher einem Impuls-,,Cut-
off entspricht (vgl. auch Kap. 2.5.1). Basierend auf [56-58| wird dieses Verfahren im
Folgenden genauer beschrieben.

5.1.1 Gitterregularisierung

In Kapitel 2 wurde die Kontinuums-QCD im Rahmen des Pfadintegral-Formalismus
vorgestellt. Will man nun diese Theorie auf einem hyperkubischen Raum-Zeit-Gitter

I=aZ*={a(n,)|n, €Z, n=1,2,3,4} (5.1)
mit Gitterabstand a definieren, so miissen folgende Ersetzungen durchgefiithrt werden:

T, — nua
/d4x — a4z. (5.2)

Jeder Gitterpunkt? an besitzt vier nichste Nachbarpunkte entlang der positiven Koordi-
natenachsen, deren Einheitsvektoren mit i = 1, 2, 3,4 bezeichnet werden. Die Verkniip-
fung zwischen zwei benachbarten Punkten wird Link genannt (siche Abbildung 5.1).

!Fermionen auf dem Gitter werden in dieser Arbeit nicht betrachtet. Eine ausfiihrliche Ubersicht dazu
findet sich in der Literatur [56-58].
2Es gilt im Folgenden n = (n,,).
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5 Quantenchromodynamik auf dem Gitter

Der Abstand a zwischen diesen Punkten bewirkt nun ein Abschneiden der Impulse im ul-
travioletten Regime. Dadurch wird der Wertebereich auf die sogenannte erste Brillouin-
Zone

BZ:{k‘—§<kugg} (5.3)

beschrankt. Betrachtet man auflerdem ein Gitter im endlichen Volumen V = LiLoL3Ly,
so lasst sich die diskrete Summe tiber die Moden der ersten Brillouin-Zone durch Inte-

grale ausdriicken
4
1 / dk;
— — . 54

Weiterhin muss beachtet werden, dass die Ableitungen zu endlichen Differenzen iiber-
gehen. Daher benotigt man eine sinnvolle Definition fiir die kovariante Ableitung D,, auf
dem Gitter. Diese lasst sich mit Hilfe des Paralleltransporters finden, welcher z. B. in der
Allgemeinen Relativitétstheorie den Vergleich zweier Vektoren (oder Tensoren) an zwei
verschiedenen Raumzeitpunkten ermoglicht. Im Kontinuum lésst sich zeigen, dass die
Eichfelder A, () gerade den infinitesimalen Paralleltransport im Farbraum beschreiben,
so dass dieses Konzept auf das Gitter erweitert werden kann. Hier definiert man den
Paralleltransporter U, (n) auf dem Mittelpunkt des Links zwischen zwei benachbarten
Punkten n und n + £ mit den Eigenschaften

U, (n) =Uf(n) =U_u(n+ p), (5.5)

er wird im Folgenden als Linkvariable bezeichnet. Die kovariante Ableitung eines skala-
ren Feldes ¢(z) lasst sich dann definieren als

D) = = (U (m)o(n + ) — 6(n)). (56

Mochte man physikalische Vorhersagen erhalten, so ist der Kontinuumslimes a — 0
zu bilden, da der Gitterabstand a selbst hier eine unphysikalische Grofe ist. Demnach
ist eine fundamentale Bedingung an die Konstruktion einer Gittereichtheorie, dass in
diesem Limes auch tatséchlich das korrekte Kontinuumsergebnis reproduziert wird, was
somit z. B. bei der Konstruktion der Gitterwirkung zu beachten ist.

5.1.2 Eichfelder auf dem Gitter

Fiir die QCD betrachten wir nun die Linkvariable Uy, (n) € SU(3)c¢ (vgl. Gleichung (5.5)),
welche sich unter einer SU(N¢)-Gittereichtransformation 2 verhalt wie

U(n) — QU ()@ (0 + 1) (5.7)

Aufgrund der Eigenschaften der Linkvariablen als Paralleltransporter sowie der Invari-
anz der Spur unter zyklischen Vertauschungen, erhélt man eine eichinvariante Grofe,
wenn man die Spur iiber ein Produkt aus Linkvariablen bildet, welches einem geschlos-
senen Weg entspricht. Die einfachste Form hierfiir ist die Plakette

P (n) = Uy(n)Uy (n + @)U (n + 2)US (n), (5-8)

welche in Abbildung 5.1 gezeigt ist.
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5.1 Gitterformulierung der QCD

n-+4v

a{ n| ntp

Abbildung 5.1: Zweidimensionale Darstellung eines Raum-Zeit-Gitters mit Gitterabstand a,
einer Linkvariablen zwischen zwei Gitterpunkten sowie einer elementaren Plakette.

Als Verbindung zwischen Gitter und Kontinuum dienen nun die Eichfelder A, (n),
welche Elemente der Lie Algebra su(N¢) sind. Die Verkniipfung zeigt sich dann durch
die Definition

Uu(n) = eiagTBAE(n) = eiaA#(n) ’ (59)

mit den Generatoren T4 in der fundamentalen Darstellung®. Unter Verwendung der
Entwicklung

Ay(n+v)=A,(n)+ad,Au(n) + ..., (5.10)
sowie der Baker-Campbell-Hausdorff-Formel (BCH-Formel)
A B 1 1
ete? —exp A+ B+ 3[4 B +ﬁ<[A, A, B]] + [B,[B,A]]) T N A )

erhilt man die folgende Beziehung zwischen der auf dem Gitter definierten Plakette P,
und dem Feldstarketensor Fj,,

P (n) = ¢9CGw™ — q () = F(n) + O(a) . (5.12)

Somit ist die Verbindung zwischen Kontinuums- und Gittergréfen gefunden. Nutzt man
weiterhin, dass der Feldstéarketensor spurfrei ist, so findet man

2
9
ReSp P (n) = Nc — 7a4 Sp Fiy(n) + 0(a%). (5.13)
Hiermit ldsst sich nun die Wilson’sche Wirkung fir eine reine SU(N¢)-Eichtheorie defi-
nieren:

Se=8Y_> (Nc—ReSpP). (5.14)

T pFv

Es bezeichnet g = 29#; ferner wurde die Notation Y, = a3 eingefiihrt. Entwickelt
man diesen Ausdruck fiir kleine @, so geht er im Limes verschwindender Gitterabsténde
in die klassische Yang-Mills Wirkung iiber. Natiirlich sind fiir die Wirkung beliebige
andere eichinvariante Wahlen méglich, solange diese die korrekten Symmetrien erhalten
und den richtigen Kontinuumslimes liefern.

3Die Generatoren in der Fundamentaldarstellung sind spurfrei und es gilt die Normierung:
Sp(T*T*) = 30a5.
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5 Quantenchromodynamik auf dem Gitter

5.2 Gitterstorungstheorie

In Kapitel 2.5 wurde das Gitter als Regulator eingefiihrt, um einen numerischen Zu-
gang zur QCD zu erhalten. Daher konnte die Uberschrift dieses Kapitels die Frage
aufkommen lassen, warum man nun auf diesem Gitter Stérungstheorie betreiben moch-
te, da der eigentliche Nutzen des Gitterformalismus in den numerischen Berechnungen
liegen sollte. Allerdings gibt es viele Anwendungen, in denen Stérungsrechnungen auf
dem Gitter sinnvoll und sogar notwendig sind. Als Beispiel seien die Berechnungen der
Renormierungsfaktoren von Matrixelementen, sowie der nackten Parameter der Lagran-
gedichte genannt. Desweiteren dienen perturbative Gitterrechnungen als Verkniipfung
zwischen Gittersimulationen und Kontinuum: Mit jeder Gitterwirkung wird ein eige-
nes Regularisierungsschema ungleich dem im Kontinuum eingefiihrt. Somit kénnen die
Ergebnisse der Monte Carlo Simulationen erst interpretiert und mit denen des Kontinu-
ums verglichen werden, wenn die Renormierungsgréfien durch eine stérungstheoretische
Rechnung auf dem Gitter vollsténdig bekannt sind. Weitere Anwendungen und eine
ausfiihrliche Ubersicht zur Gitterstérungstheorie liefert der Beitrag von Capitani [62].

5.2.1 Funktionalintegral

Im Schwachkopplungsbereich ldsst sich die Stérungstheorie analog zum Kontinuum ein-
fiihren. Fiir kleine Kopplungskonstanten g wird das Funktionalintegral

Z = / [[PU.(n) e St (5.15)
T,

von Werten um U,(n) = 1 dominiert, so dass eine Sattelpunktsentwicklung (vgl. [51,
Kap. 3.4]) um die klassischen Vakuumskonfigurationen sinnvoll ist. Entwickelt wird wie-
der in den Eichfeldern A,(n), weshalb die Wilson’sche Wirkung unter Verwendung von
Gleichung (5.9) umgeschrieben werden muss. Ein Problem hierbei ist, dass sie dann aus
einer unendlichen Anzahl von Termen besteht, die in jeder Ordnung in g eine stark wach-
sende Anzahl von Vertizes verursachen. Die meisten dieser neuen Vertizes verhalten sich
allerdings proportional zu Potenzen des Gitterabstands a, so dass sie im naiven Konti-
nuumslimes verschwinden. Sie miissen jedoch fiir die Gitterrechnungen stets mitgefiihrt
werden, da andernfalls die Eichinvarianz nicht mehr gegeben ist.

Fiir eine Entwicklung in den Eichfeldern lasst sich fiir die Rechnung in Kapitel 6
das Haar-Majf$ DU, mit Hilfe der Funktionaldeterminanten auf eine Ableitung in den
Eichfeldern umschreiben. Dadurch tritt in der effektiven Wirkung ein zusétzlicher Mafs-
Term auf

[[PU.(n) = e [] dAs(n), (5.16)
n, 4

nH,a

2
mit Sy = %Z(AZ(Q:))Q. (5.17)

Obwohl dieser Term quadratisch in den Eichfeldern ist, ist dies also kein kinetischer Term
und muss bei der Berechnung der Feynmanregeln als Wechselwirkung miteinbezogen
werden. Er entspricht einem Massen-Gegenterm; das Gitter liefert somit automatisch
Gegenterme, die die Renormierbarkeit der Theorie sichern.
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5.2 Gitterstorungstheorie

5.2.2 Feynmanregeln

Zur Entwicklung der Feynmanregeln wird der wechselwirkende Anteil der vollstéandigen
Gitterwirkung Siosa1 benotigt. Letztere setzt sich zusammen aus der reinen Eichwirkung
aus Gleichung (5.14), dem Anteil des Mafes aus Gleichung (5.17), sowie dem Faddeev-
Popov- und dem Eichfixierungsterm (,gauge fixing“, GF):

Stotal = Sc + Sm + Skp + Sar. (5.18)

Der Eichfixierungsanteil mit Eichparameter £

a2

Sar = gg D_(Au(n) = Auln — ))” (5.19)

n

beinhaltet keinerlei Wechselwirkung und ist daher fiir die Berechnung der Vertizes nicht
relevant. Die verbleibenden Summanden der Wirkung werden im Folgenden kurz genauer
betrachtet.

Vertizes

Die Vertizes erhélt man nun &hnlich wie im Kontinuum (vgl. Kapitel 2.4.2). Auf dem
Gitter ist es allerdings sinnvoll, sie mittels Fouriertransformation im Impulsraum zu
bestimmen. Weiterhin ist darauf zu achten, dass die Ableitungen auf dem Gitter in
Rechts- und Linksableitungen umgeschrieben werden miissen. Hierfiir gilt

R f(z) =

0y f(x)

(f(z +app) — f()),
(f (@) = f(z — ap)),

0=2a70,. (5.20)

QI

Auflerdem miissen die Impulse umgeschrieben werden geméis
~ 2 k
ky — ki, = = sin <a—“> . (5.21)

Eine detaillierte Herleitung der Vertizes und deren explizite Angabe findet sich in [57,
Kap. 14.4]. In dieser Arbeit wird daher nur eine grobe Ubersicht iiber die auftreten-
den Wechselwirkungen im Grenzwert sehr kleiner Gitterabstédnde a gegeben. Die reinen
Gittervertizes, also diejenigen ohne Kontinuumsanalogon, werden kurz angegeben und
genauer vorgestellt.

3-/4-Gluon-Vertex. Diese Vertizes entstammen der reinen Eichwirkung Sg. Um diese
zu extrahieren, muss die Definition der Plakette aus Gleichung (5.8) eingesetzt, sowie die
Baker-Campbell-Hausdorff-Formel aus Gleichung (5.11) verwendet werden. Nutzt man
weiterhin, dass Sp [4,,, A,] aufgrund der Spurfreiheit der Generatoren T verschwindet,
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5 Quantenchromodynamik auf dem Gitter

so findet man fiir kleine Gitterabstande a

Se = BY.> (Ne—ReSpPu(z))

T pFv
- = Z ( (0, AL(x) — B, A%(x))? (5.22a)
+ g f (0, AL (@) — By Ap(2)) A}, () A () (5.22b)
2
+ %fabCfcdeAz(x)Ag(x)AZ(x)AS(;U) (5.22¢)
+ O(a2)>.

Hierbei entspricht der erste Term (5.22a) dem kinetischen Eichterm, er trigt somit nicht
zur Wechselwirkung bei. Die 3-Gluon-Wechselwirkungen werden durch (5.22b) beschrie-
ben, die 4-Gluon-Wechselwirkungen durch (5.22¢); sie entsprechen den Kontinuumsver-
tizes und liefern daher bis zur Ordnung O(a?) keine neuen Beitriige.

2-Gluon-Vertex. Dieser neue Vertex ist ein reines Gitterartefakt und stammt aus dem

Mafterm )
g a
Sm = 32 E (Au(l“))Q

er verschwindet im naiven Kontinuumslimes a — 0.% Es ergibt sich:

g 5 S k1, a K b

42“1/ fvvv\x/vv\,-

Geist-Vertizes. Diese Vertizes haben ihren Ursprung im Faddeev-Popov-Term der
Wirkung

Sep = a* 3@ (n+ ) =) { Bl (A (n) = B (A ()" (n+ 1)}, (5.28)

wobel

Au(n),, = agfacAS(n),  E'(z)=

=> %(—x)", (5.24)
n=0 ’

mit den Bernoulli-Zahlen® B,, . Setzt man die ersten Terme der Summe ein, so erhélt
man schliefslich bis zur Ordnung O(g 2)

Spp = - abz 2)0*c(x (5.25a)

f“bcz (@) (9u A (@) (x) (5.25b)

xT

CL2 2
g (o poie 4 ot £hee) S () (0, A () (B, A (1)) (1)

+ O(a?). ' (5.25¢)

“Es sei daran erinnert, dass ). =a*}", gilt.
5Die Werte der bendtigten Bernoulli-Zahlen lauten Bo = 1, B; = -1 B, = é, siehe auch [52, S.804].
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5.2 Gitterstorungstheorie

Der erste Term (5.25a) ist wieder ein kinetischer Term und tragt nicht zur Wechselwir-
kung bei. Der zweite Term (5.25b) beschreibt die Geist-Geist-Gluon-Wechselwirkung,
der letzte Term (5.25¢) die Geist-Geist-Gluon-Gluon-Wechselwirkung. Dieser ist wieder
ein neuer, gitterspezifischer Vertex, er berechnet sich zu:

p,b P,a
a7
a292 aec pbdc adc pbec\~1 ~
g Ou (S fYE D D ;JJTF"LH’L
k? lu’? d kla Va €

Dies sind alle zusiitzlichen Gittervertizes® bis zur Ordnung O(g?).

Propagatoren

Die Berechnung des Gluonpropagators auf dem Gitter erfolgt in gleicher Weise wie die
Bestimmung im Kontiuum. Fiithrt man die Ersetzungen aus Gleichungen (5.20) und
(5.21) durch, so findet man fiir den Gluonpropagator im Impulsraum in kovarianter
Eichung
gab kuk
b _ pnhy
Dy (k) = = (5;“/ -(1- 5)?> : (5.26)
Hiermit ergibt sich fiir Berechnungen im Ortsraum nach Fouriertransformation und in
Feynman-'t Hooft-Eichung (£ = 1)

= d4k eik(a&—l—a%)
ab __ sab
DW(az) =4 5“”/_1 2m)? e ) (5.27)
wobei die Notation A
~ ~ 4 ak
2 2 .2 Ak
k=1 K
eingefiihrt wurde. Fiir den Geistpropagator erhélt man dann vollig analog
= d4k eik
ab _ sab
Dip(z) =06 /_E o 2 (5.29)

5Betrachtet man auch Fermionen, so ergibt sich ein zusitzlicher Fermion-Fermion-Gluon-Gluon-
Vertex, siehe [57, Kap. 14.4].
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6 Der QCD-Feldstarkekorrelator auf
dem Gitter

Im Folgenden wird der Feldstédrkekorrelator auf dem Gitter diskutiert. Dazu wird der
Korrelator im ersten Abschnitt im Gitterformalismus angegeben. Im zweiten Abschnitt
folgt dann die analytische Auswertung des Korrelators, was allerdings zu einigen Schwie-
rigkeiten fiihrt, weshalb sich im Anschluss daran eine Diskussion numerischer Methoden

findet.

6.1 Definition des Korrelators im Gitterformalismus

Auf dem Gitter ldsst sich der Feldstarkekorrelator angeben als
Dyuno(@) = (0| T { G (2)52%(2,0)G8, ()} 0) (6.1)
Es bezeichnet G, das Gitteranalogon zum Kontinuums-Feldstérketensor F,
G =2 F(2). (6.2)

Die adjungierte Schwinger-Linie ist definiert durch

Sy (2,0) = P exp {gf“bc /0 "4y Az<y>} . (6.3)

Hierbei wurde die Wegabhéngigkeit der Schwinger-Linie nicht mehr explizit genannt,
da wieder der einfachste Weg in Form einer Geraden verwendet wird (vgl. Kap. 3.1.1).
T und P bezeichnen wieder Zeit-, bzw. Pfadordnung analog zum Kontinuum. Die Lor-
entzstruktur des Korrelators ergibt sich auf dem Gitter in der schon in Kapitel 3.1.2
besprochenen Weise.

Eine weitere Interpretation des Feldstarkekorrelators findet auf dem Gitter viele An-
wendungen. Hierbei lasst sich der Korrelator als zwei Quellen, verbunden durch einen
adjungierten String, verstehen (siehe Abb. 6.1). Fiir grofe Absténde dieser Quellen ldsst
sich so die Masse des sogenannten ,Gluelumps“ [63] messen. Dieses System, bestehend
aus einer statischen adjungierten Quelle und eines dynamischen Gluons, kénnte bei Rea-
lisierung der Supersymmetrie den physikalischen Zustand des ,Glueballinos” darstellen.
Ergebnisse fiir diese Masse finden sich z. B. in [64,65].

6.2 Analytischer Zugang

Um den Feldstarkekorrelator nun stérungstheoretisch auf dem Gitter behandeln zu kon-
nen, miissen zunéchst alle auftretenden Gréfen in den Eichfeldern A, (x) dargestellt
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6 Der QCD-Feldstirkekorrelator auf dem Gitter

T

7

Abbildung 6.1: Der Feldstarkekorrelator auf dem Gitter

werden. Man findet insbesondere fiir den Feldstarketensor den Ausdruck

i

G = —%(P;w(x) —-1)
— ; _ JlaAu(z) JiaAy(z+afl) s —iaAy (z+ald) ,—iaAy, (x)
= (1 e'?niTe e e ) . (6.4)

Es sei daran erinnert, dass

Au(z) — gAu (o). (6.5)

Obiges eingesetzt liefert dann nach Entwicklung der Exponentialfunktionen sowie Ver-
wendung der BCH-Formel (5.11) und der Relation (5.10) fiir den Feldstérkekorrelator
bis zur Ordnung O(a)

Puns = (01~ (10uA.() - 2,4,0) = A, @), A (@)] + O(0))
(7 + 9 [ v act) + Lt [y Mo atanr +.)
X <i(8,\Aw(m) — 8, A(2)) — [Ax(z), Ao (z)] + (’)(a)> } ‘0> (6.6)
Setzt man nun fiir den Kommutator

[Au(@), Ay (2)] = 1f A (x) A7 ()T (6.7)

ein, so geht der Ausdruck fiir a — 0 direkt in das Kontinuumsergebnis iiber. Daher
wird fiir die Berechnung lediglich noch der wechselwirkende Teil der Lagrangedichte £
bendtigt, der sich jedoch aus Kapitel 5.2.2 iibernehmen léasst:

L) = = L0 AL () - 9,45 (@)) A () AL ()

2
I A () AL () A () A ()
2
— 2 A5 (@) Aj ()
— 92 (@) (D, A5 (e) e (@)
a22
(e e e ) () (9, A7 () (D A () ()

+ O(a?). (6.8)
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6.2 Analytischer Zugang

Verwendet man nun die Entwicklung aus Gleichung (3.9) sowie das Wick’sche Theorem
(2.16), so erhélt man die gleichen Diagramme wie im Kontinuum aus den Abbildungen
3.1, 3.2 und 3.3. Aufterdem treten die folgenden Diagramme als Beitrdge zum Feldstér-
kekorrelator auf dem Gitter auf:

j) k)

Abbildung 6.2: Zuséitzliche Diagramme fiir den Feldstarkekorrelator auf dem Gitter.

6.2.1 Theorem von Reisz

In der Gitterstorungstheorie ist man letztlich immer am physikalischen Kontinuumsli-
mes der auftretenden Diagramme interessiert. Im Allgemeinen lisst sich dieser allerdings
nicht finden, indem die Integrale fiir endliche Gitterabstande a ausgewertet werden und
anschlieftend der Limes a — 0 gebildet wird, da die komplizierten periodischen Struktu-
ren der Integranden oftmals schwierig zu behandeln sind. Allerdings lassen sich fiir Inte-
grale mit endlichem Kontinuumslimes Bedingungen angeben, fiir die in der Berechnung
direkt der naive Kontinuumslimes eingesetzt werden kann, was die Auswertung dieser
Integrale erheblich vereinfacht. Die Forderungen an den Integranden sind im ,Power
Counting* -Theorem von Reisz [66] zusammengefasst. Im Folgenden soll dieses in der
etwas abgeschwéchten Version von Liischer [67] vorgestellt werden.

Es wird ein allgemeines Feynmanintegral auf dem Gitter mit L Schleifen betrachtet,
welches von der Form

d*k; N(k,q; M, a)
M, 6.9
F(g; M, a) /BZH (2m)* D(k,q; M, a) (6.9)

ist, mit den externen Impulsen ¢; und der Masse! M. Der Zihler N setzt sich zusammen
aus den Beitriagen der Vertizes sowie den Zihlern der beitragenden Propagatoren; der
Nenner D entspricht dem Produkt der Nenner der Propagatoren und ist fiir I interne
Linien von der Form

I
D(k,q; M, a) = [ [ Di(li, My, a). (6.10)
=1

Die Impulse der Schleifen [;(k,q) sind Linearkombinationen der Integrationsvariablen
und der externen Impulse.
Das Theorem stellt nun die folgenden Bedingungen:

(N1) Es existiert eine Zahl m € Z und eine glatte Funktion f mit
N(k,q; M,a) =a ™ f(ak,aq;aM), (6.11)

wobei f periodisch in ak; und ein Polynom in aM ist.

'Falls F(q; M, a) von mehreren Massen abhiingt, so werden diese mit M bezeichnet: {M;} = M
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6 Der QCD-Feldstirkekorrelator auf dem Gitter

(N2) Der Kontinuumslimes des Zahlers lim, .o N(k, q; M, a) existiert.
(D1) Es existieren glatte Funktionen g; mit
Di(l;; M, a) = a~2g;(als; aMy), (6.12)
wobei g; periodisch in al; und ein Polynom in aM; ist.
(D2) Der Kontinuumslimes der Nenner D; existiert fiir alle ¢ und ist gegeben durch

lim D; (15 M;, a) = 1?2 4+ M2 (6.13)
a—

(D3) Es existieren positive Konstanten ag und C' mit
1Dyl My, )| > C(2 + M2) (6.14)
fiir alle a < ap und [; € BZ.
(11) Es gilt
L Ng
Li(k,q) = bk + > caq (6.15)
j=1 1=1
fiir alle 7 und b;; € Z, ¢y € R. Ng ist die Anzahl der externen Impulse.

(12) Fiir eine gegebene Linearkombination p;(k) = Z]LZI bijk; und die Menge
G={ki,...,kL,p1,...,pr} gilt fiir u; € G linear unabhéngig und d;; € Z:

L
j=1

Die letzten beiden Bedingungen sichern die Translationsinvarianz bei Verschiebungen
der Integrationsvariablen um 27 /a.

Fiihrende Ordnung
Die fithrende Ordnung auf dem Gitter

PO

@) = 0 (0,4 (x) — 0, A%(0)) (A AL(0) — 0, 43(0))  (617)

beinhaltet ein konvergentes Integral. Somit kann das Reisz’schen Theorem angewendet
werden und man stellt fest, dass die fithrende Ordnung diesem geniigt. Da der Korrelator
lediglich vom Abstand der beiden Quellen x abhéngt, findet man nach Einsetzen des
Propagators auf dem Gitter

@(0) (1_) _ (NZ . 1)5 P /% ﬁeik(x-i—a(%))i (6 18)
o PNz (2m)? 2 -
und mit dem Limes
lim 4 Zsin2 ok _ k2 (6.19)
a—0 a2 - 2 - '
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folgt nach Bildung der Ableitungen

0 61/w 6 A T, T\
A0t = (v - gy (2 - g, -
Somit ist
B = ot~ )
2(N? -1
_ (5ﬂ)\1’yxw - 5,Mxyx)\ — 51/)\1.;1200 + 5waux)\) % (621)

Dies entspricht exakt dem Kontinuumsergebnis (3.18).

Ein-Schleifen-Ordnung

Analog zur flihrenden Ordnung lassen sich nun die konvergenten Beitrdge der Dia-
gramme 3.2 a) sowie 3.3 g) und h) finden, welche wiederum mit den Ergebnissen aus
Abschnitt 3.2.2 {ibereinstimmen. Fiir die divergenten Diagramme kann das Theorem al-
lerdings nicht angewendet werden, so dass fiir diese Beitrige ein anderer Losungsansatz
verfolgt werden muss.

FEine direkte Losung mit Hilfe der Schwinger-Parametrisierung wie im Kontinuum
fithrt leider nicht zum gewiinschten Ergebnis, da die endlichen Integrationsgrenzen auf
nicht weiter 16sbare Fehlerfunktionen? erf(z) fiihren.

6.2.2 Divergente Integrale auf dem Gitter

Ublicherweise ist man bei storungstheoretischen Rechnungen auf dem Gitter an Ergeb-
nissen im Impulsraum interessiert. In diesem Fall lassen sich divergente Integrale in
Teile mit und ohne externe Impulse aufteilen. Dann werden auf dem Gitter lediglich die
Integrale mit verschwindendem Impuls berechnet, was technisch sehr viel einfacher ist.
Eine Beschreibung dieses Verfahrens findet sich in [62, Kap. 15.2].

Betrachtet man beliebige bosonische divergente Gitterintegrale der Form

vt R
(2m)4  Dg(k,m)r ’

‘7:(4)(]9;711,712,”3,714) :/ (622)

—Tr

mit Dg(k,m) = K2+ m?, so lassen sich diese im Impulsraum als Linearkombination der
drei Konstanten

™ A% 1
o = [ aoim (6.23)
™A'k (k)2 (ko)?
1 = — .24
! / L 2m)% 42 (6.24)
™ 44k 1
_ . 2 2
F = nlmanO <167r /W @m) (2 1 )2 + logm —i—’yE) (6.25)

2Die Fehlerfunktion ist definiert als
erf(z) = [ ds e, z e C.
0
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6 Der QCD-Feldstirkekorrelator auf dem Gitter

ausdriicken. Hierbei wurden die Impulse bereits in dimensionslose Grofen k& umgewan-
delt.

In dieser Arbeit wird allerdings expizit ein Ergebnis im Ortsraum bendtigt, um die
Renormierungsschemata auf dem Gitter und im Kontinuum vergleichen zu kénnen. Das
Problem hierbei liegt nun in dem auftretenden Fourierfaktor e**: Er bewirkt, dass die
Integrale auch fiir eine Reihenentwicklung der Exponentialfunktion nicht als Linear-
kombinationen der bekannten Standardintegrale Zy, Z; und Fy (eine Berechnung dieser

findet sich in Abschnitt 6.3) geschrieben werden kénnen.? Dies wiire nur fiir sehr kleine

k erfullt:

k
~ K k, <1, (6.26)

b B
2 2

si

was hier allerdings nicht moglich ist, da iiber k im Intervall [—m, 7| integriert wird.
Eine Losung konnte der Artikel von Becher und Melnikov [68] liefern. Dort wird be-
schrieben, wie sich die Integrale der Gitterstorungstheorie durch einfachere Kontinuums-

integrale ausdriicken und letztlich berechnen lassen. Hierbei werden die Gitterintegrale,
z.B. F(49(1;0,0,0) = F', durch die Substitution

7, = tan k—; <:> cos? k_; =7 —:n2> (6.27)
auf die folgende Form gebracht
P =1 [ TT =2 (2 4 () (6.28)
Amd | oo 22 (1+n3)
Hierbei bezeichnet
()’ ,_m_a
Dg(n) = ; T (6.29)

Der Kontinuumslimes ergibt sich also fiir m’ — 0. Um nun eine asymptotische Ent-
wicklung der Schleifenintegrale angeben zu kénnen, wird ein analytischer Regulator ¢
benotigt. Dieser sichert die Vertauschbarkeit der Taylorentwicklung in kleinen Parame-
tern und der Berechnung der Schleifenintegrale. In Gleichung (6.28) geht also der Faktor
(m' + Dg(n))~! diber in (m/2 + Dg(n))~'7%. Abschliekend muss dann der Limes § — 0
betrachtet werden. Fiir F!(m/) ergeben sich somit zwei Betrige:

fl(m,) = fvlveich(m/) + fﬁart(m/)' (630)
Diese erhélt man wie folgt:
e Weich: Betrachte 7, ~ m’ < 1 und fiihre eine Taylor-Entwicklung in 7, durch.

e Hart: Betrachte 7, ~ 1 > m' und fiihre eine Taylor-Entwicklung in m’ durch.

3Dies gilt nur fiir den rein bosonischen Sektor, der hier betrachtet wird. Werden dariiberhinaus auch
Fermionen in die Berechnungen miteinbezogen, so werden insgesamt 15 Basisintegrale benotigt.
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6.2 Analytischer Zugang

Es kann gezeigt werden, dass Regionen, in denen sowohl weiche als auch harte Kompo-
nenten existieren, nicht beitragen [68, S.3]. Als Beispiel sollen einmal beide Anteile des
zweidimensionalen Integrals

T 2 1
]—"(2)(1;0,0):}“1(m):/ —(d u

_— 31
27)2 k2 + m? (6.31)

berechnet werden.

Weicher Anteil. Bringt man das Integral mit (6.27) auf die Form (6.28), so erhilt man
nach Taylor-Entwicklung in 7,

1 ! 1 I 77% - 77% 4
Feien(m') = o) _Ood UW + O(n,)- (6.32)

Verwendet man nun
d d
1 - Pla—§ =2, ax)
dal77 nz ak _ m/ d—2042%7, ax 2 K T 1 +a),
/ (,'72 _|_ m/z)a ’!]1( ) ( ) F(Oé) ]J (2 )
(6.33)

so erhalt man mit den Entwicklungen der Gammafunktion und der Potenz aus Ab-
schnitt 2.5.1 fiir den weichen Anteil:

1 /1 1 1 3 1
Faeicn (m /):E<S+lnm_ml2<25+ HHH)JFO( )+O(5)>. (6.34)

Harter Anteil. Fiir die Taylor-Entwicklung in m’ findet man

f}}lart(m,) = # {H({l, 1}; 1) - m’2(1 + 6)H({1, 1}; 2)
+ m7,4(1 +0)(2+4 6)H ({1,1};3) +0(n,§)}, (6.35)

mit den Funktionen

dnﬁ —n—4§
" ) 6.36
Aoy = [ H e (Do) (6:30)
welche analytisch ausgewertet werden kénnen. Fiir die Berechnung gentigen
H({1,1}:1) = —% + 372+ O®) (6.37)
™ w3
H({1,1};2) = —%%— 5 +71n2+(9(5) (6.38)

so dass man fur den harten Anteil findet:

R S ” 1 13 1
fhart(m)—4ﬂ 5+3ln2+m (1+9) 5 * 3 21112 +O0(m"™) +0(9) ) .
(6.39)
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6 Der QCD-Feldstirkekorrelator auf dem Gitter

Insgesamt heben sich die Pole in ¢ gegenseitig auf und der Limes § — 0 kann gebildet
werden. Es ergibt sich fiir das Integral

1 32
‘7:1 (ml) = fvlveich(m/) + fﬁart(m/) =—In "o o + O(CL), (640)
4 azmphys

was mit den Literaturwerten iibereinstimmt [64, S.6].
Fiir die Berechnung der Intgrale im Ortsraum muss dieses Verfahren nun angepasst
werden: Die Exponentialfunktion muss durch ihre Potenzreihe ersetzt werden, wodurch

Integrale der Form
™ Ak Kl .LKDe
/ L= (6.41)
—T (277) (kﬁQ + m2)0‘

mit n; € {0,1} gelost werden miissen. Dies ist ein interessanter Ansatz fiir zukiinftige
Arbeiten (siehe hierzu auch Kap. 6.4).

6.3 Numerischer Zugang

Da die analytischen Ansétze bisher nicht zum Ziel fiihrten, soll im Folgenden ein nu-
merischer Zugang vorgestellt werden. Das Problem hierbei ist die Abhangigkeit der
Integrale vom Abstand x der beiden Quellen. Das Integral muss also fiir verschiedenste
Werte von x ausgewertet werden, so dass anschliefsend Riickschliisse auf die analytische
Abhéngigkeit gezogen werden kénnen.

6.3.1 Die CUBA-Bibliothek

Fiir mehrdimensionale numerische Integrationen eignet sich die CUBA-Bibliothek [69]
sehr gut, welche die Integrationsalgorithmen Cuhre, Divonne, Vegas und Suave bereit-
stellt. Sie konnen unter C/C-++, Fortran oder Mathematica verwendet werden. Die
Berechnungen in dieser Arbeit wurden mit Fortran erstellt. Der Cuhre-Algorithmus ap-
proximiert die Integranden durch Polynome; fiir stark oszillierende Integranden ist er
also nicht die beste Wahl. Hierfiir lassen sich die Algorithmen Divonne, Suave und Ve-
gas verwenden, sie greifen fiir die Integration auf (Quasi-)Zufallszahlen zuriick.* Der
Suave-Algorithmus wird im Folgenden nicht verwendet.

Als Test der Algorithmen werden zunéchst die bekannten Standardintegrale Zy, Z3
und Fy (vgl. Abschnitt 6.2.2) berechnet. Hierfiir ergeben sich mit Hilfe des Cuhre-
Algorithmus die Werte aus Tabelle 6.1, welche mit den Literaturwerten iibereinstimmen

62, S.159)].

Zo | 0,154933(4)
Z1 | 0,107781(2)
F | 4,3692(7)

Tabelle 6.1: Numerische Werte der Standard-Gitterintegrale.

“Der Divonne-Algorithmus kann wahlweise auch auf Approximation durch Polynome zuriickgreifen
und bildet somit eine Schnittstelle zwischen Cuhre und Vegas/Suave.
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6.4 Ortsraum-Methode nach Liischer und Weisz

6.3.2 Ergebnisse der numerischen Integration

Zunachst wurde versucht, das einfachste auftretende Gitterintegral numerisch auszuwer-
ten. Dieses lautet in dimensionslosen Groften k£ und n

s 4 ikn
(0) d*k  kukye
I = — 42
o () / « (2m)1 4%, sin K (042

und stammt aus dem Beitrag der fiihrenden Ordnung. Da der Wert hierfiir aus Glei-
chung (6.21) bekannt ist, ergibt sich fir n = (1,1,1,1), g =1 und A = 2

0%(1,1,1,1) = = —0,003166. .. . (6.43)

122
Die numerische Integration mit Hilfe der CUBA-Bibliothek liefert hierfiir sehr schlechte
Ergebnisse: Der Cuhre-Algorithmus gibt einen Wert von 0, 178(3) — 0.0167(3) i an, Ve-
gas erhélt gar 1,12(2) — 1,59(5)i. Der Divonne-Algorithmus fiithrt zu keinem Ergebnis.
Lediglich Mathematica liefert mit —0,00366(3) — 0,0000000(1)1i zumindest die richtige
Grofsenordnung, im Rahmen des angegebenen Fehlers stimmt dieser Wert aber ebenfalls
nicht mit dem realen iiberein. Ein Problem bei der Verwendung von Mathematica ist
allerdings, dass der Quellcode nicht bekannt ist und somit nicht klar ist, an welchen Stel-
len die Schwierigkeiten bei den Integrationen auftreten. Weiterhin versagt Mathematica
bei den Berechnungen der achtdimensionalen Diagramme der Einschleifen-Ordnung.

Somit ist eine numerische Bestimmung der auftretenden Gitterintegrale mit Hilfe der
CUBA-Bibliothek nicht ohne Weiteres moglich. Der Integrand oszilliert zu stark, so dass
diese Integrationsroutinen kein stabiles Ergebnis liefern.

6.4 Ortsraum-Methode nach Liischer und Weisz

Da sowohl die analytischen, als auch die numerischen Methoden bislang nicht zur Lésung
der Gitterintegrale gefiihrt haben, soll nun der Limes grofser Abstdnde z betrachtet
werden. Dann ergibt sich fiir den Korrelator ein Verhalten (vgl. [54])

D 5 A8 G, (0)65, ) e, (6.44)
mit dem Gluonkondensat ((g)/g(Gy,, (0)GY,(0)) sowie der Korrelationslinge [55, 70]
Mg = 1/Mg als Inversem der Gluelumpmasse [64,65].

Fiir eine analytische Losung im Bereich grofer Abstdnde kann nun die Ortsraum-
Methode (,Coordinate-Space-Method“) von Liischer und Weisz [71| verwendet werden,
welche auf unveréffentlichten Arbeiten von Vohwinkel aufbaut. Allerdings wird dieser
Ansatz flir numerische Berechnungen auf dem Gitter eingefiihrt, da die Stérungstheorie
im Bereich grofer Abstdnde nicht wohldefiniert ist. Somit ergibt sich hier nicht unbe-
dingt ein exponentiell abfallendes Verhalten.

Das Verfahren wird nun anhand des freien Propagators vorgestellt. Dazu wird die
Hilfsfunktion I(z) benotigt:

_ * ﬂeikxe—kQ 2\—n
1) = [ g QU (6.45)

—00
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6 Der QCD-Feldstirkekorrelator auf dem Gitter

mit dem Polynom @Q(k) vom Grad d und einer ganzen Zahl n > 1 mit d — 2n > 3.
Dann ist I(x) absolut konvergent und wohldefiniert fiir alle x € R. Benétigt wird das
Verhalten der Hilfsfunktion fiir grofe x. Betrachten wir dazu zwei Félle:

n = 1. So ergibt sich

[e's) d4k‘ eika: )
I(z) = / W?eik Q(k)

= Q(-i0") / N ((21:; e / e
o] 41/
= Q(—i@“”)/l dt—e_Tt/ . k e k"
- 7@2(—18;) (1— > (6.46)

A2y

Hierbei wurden die Substitution k' = v/tk — iz/2v/t durchgefiihrt sowie (A.24) und die
Eigenschaften der Gammafunktion (sieche Anhang A.4.1) verwendet. Fiir groke x ergibt

sich also ein Verhalten
1

I(x) “ =™ Q(—iam)m (6.47)

bis auf exponentiell abfallende Korrekturen.
n > 2. Hierzu wird der Taylor-Operator T, eingefiihrt, der durch seine Wirkung auf
eine stetig differenzierbare Funktion f(z) definiert wird

Z T, Oy - O f)] (6.48)

0 z=0

wobei m = 2n — 4 ist. Da nach Definition fiir den Grad des Polynoms Q(k) gilt, dass
d > m, so lasst sich schreiben

Q(k)er® = Q(—id%)(1 — T}, )e*™. (6.49)

Hiermit folgt unter Verwendung der Schwinger-Parametrisierung (A.20)

< dik 2 ;
I@) = [ oo )i

oo (2m)

M > _1\n—1/1 _ > eika}—th

(n—1)!/1 dt (t — 1)"(1 Tm)/oo

%/1 dt (t— 1" 21— Tp)e™ &

Q(=19%) [ D 4 2(1 — e_%

A0 [yt o nye T 050

Differentiation und Integration kénnen hier vertauscht werden, da (1— T, )el** =+ (§2)=—n
absolut integrierbar ist. Nun kann ¢ = s~! substituiert werden und mit Hilfe des bino-
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6.4 Ortsraum-Methode nach Liischer und Weisz

mischen Lehrsatzes® findet man

1

1)n 1—j . 1 i J— l _x_Q l
I(z) = (4WQJZ% R Q(—id )/0 dt t { “2 ( 4t> } (6.51)

l

Wendet man nun auf alle Terme j < 1 partielle Integration an, so erhélt man einen
Vorfaktor (j — 1)!71(—22/4)7~! und sie lassen sich auf die folgende Form bringen

1 22 2 2
[aret(eFo1) = —m-r0. ) -
0

T —In(a?) 4 const. + ... . (6.52)
Hierbei ist -
I(a,z) = / dtt* et (6.53)
x

die unvollstédndige Gammafunktion. Insgesamt erhélt man somit die asymptotische Ent-
wicklung fiir die Hilfsfunktion bis auf exponentiell abfallende Korrekturen

O D e ) e = S e N
10" e s S G (7).

(6.54)
Um nun das Verhalten des Propagators fiir grofe x zu erhalten, so muss eine glatte
Funktion h(k), k € R* mit der folgenden Eigenschaft eingefiihrt werden

1, fir |k < 1,
hk) = { 0, fiir |k| > 2. (6.55)

Dies bewirkt ein symmetrisches Abschneiden des Integrationsintervalls, so dass dieses
ausgedehnt werden kann. Der Gluonpropagator auf dem Gitter (5.27) stimmt nun iiber-
ein mit

00 4 .
Dy(z) = / . (;];4 e*T h(k) (K2 ~L (6.56)

Um nun das Ergebnis des Hilfsintegrals I(x) anwenden zu kénnen, muss der Gitterimpuls
k% (5.28) als Potenzreihe ausgedriickt werden. Dazu betrachte man die Reihendarstel-
lung des Quadrates der Sinus-Funktion:

sin®(z) = -

0
® ii G (=)™t (6.57)

47



6 Der QCD-Feldstirkekorrelator auf dem Gitter

Bei () wurde verwendet, dass die Reihe fiir ungerade k verschwindet. Somit l&sst sich
schreiben

k=2 i ﬂk%. (6.58)
— (2n)!
Wenn man nun
ek2(’]52)—1 _ (kQ)_l—|—1—|—ik4(/€2)_2+1k2+ik4(/€2)_1
12 2 12
—%kﬁ(ﬁ)_? + ﬁ(k”‘)Z(kQ)_g +o (6.59)

berechnet und anschlieRend mit e+ multipliziert, so hat man den Propagator auf die
Form des Hilfsintegrals (6.45) gebracht. Subtrahiert man dies nun vom Integranden in
(6.56), so ist die Singularitdt in p = 0 gegldttet. Da hier der Grenzfall grofser x von
Interesse ist, kann die Funktion h(k) wieder weggelassen werden, denn grofe Absténde
2 sind mit kleinen Impulsen k verkniipft; das Integral wird somit abgeschnitten. Als
Ergebnis erhdlt man dann

< Ak . 2 (1 1 k*
D TR — ket o .
(x) /OO o) e {k2 + 12 ()2 + }, (6.60)

welches dann mit den Berechnungen fiir das Hilfsintegral die asymptotische Entwicklung
des Propagators liefert:

D) "= - 2 g1 In(z?) — . In(z?) + 5”—2(04)%2 In(z2) $ + O(|z|®)
An22? 48 1440 4806
(6.61)
U | 1 x4 1 x4 26 (x1)?
N S 4 16 — 48 40 b
47.‘.2.%.2{ 1.2 + (.%'2)3 (.%'2)2 + (1.2)4 (.%'2)5 + (.%'2)6 + }
(6.62)

Fiir die Ableitungen gilt 9% = 0,,0;;. Der Lorentzindex wird unterdriickt, da insgesamt
nur quadratische Terme vorkommen. Bei Ausfiithrung der Ableitungen ist zu beachten,
dass x* # (22)? ist (vgl. Definition (5.28)), man erhilt also Terme der Form P(z)(z?)~™
mit einem Polynom P und m € Z.

Somit steht die Methodik zur Verfiigung, das Verhalten der divergenten Gitterinte-
grale fiir grofse x anzugeben. Dies wire ein interessanter Ansatz fiir spatere Projekte.

Als Anmerkung sei erwahnt, dass eine Entwicklung fiir kleine x, welche im stérungs-
theoretisch relevanten Bereich sinnvoller als die Entwicklung fiir grofse x wire, sich auf
dem Gitter als sehr schwierig gestaltet: Méchte man den Ansatz von Becher und Melni-
kov (vgl. 6.2.2) verfolgen, so miissen die Integrale in dimensionslésen Grofen vorliegen.
Die in allen zu 16senden Integralen vorkommende Exponentialfunktion e'**
dort nicht um kleine x = an entwickelt werden, da die kleinsten erlaubten Werte fiir
die dimensionslose Grofse n = 0 oder n = 1 sind. Letzterer fithrt nicht zum Ziel, da
die Vorraussetzungen fir eine Entwicklung (n < 1) nicht erfiillt sind. Fiir n = 0 erhalt
man die schon bekannten Gitter-Standardintegrale (vgl. 6.3.1) und somit keinen neuen

kann daher
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6.4 Ortsraum-Methode nach Liischer und Weisz

Erkenntnisgewinn fiir den Korrelator. Auch fiir numerische Methoden ist dies kein Lo-
sungsweg, da auch hier die Integrale nicht dimensionsbehaftet sein diirfen. Somit muss
fiir alle noch zu lésenden Interale ein anderer Weg gefunden werden. Eine Liste dieser
Integrale findet sich in Anhang A.5.
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7 Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse der Arbeit zusammengetragen und diskutiert.
Anschliefsend wird ein kurzer Ausblick auf weitere Losungsansitze sowie interessante
Fragestellungen fiir zukiinftige Projekte gegeben.

Zusammenfassung

Im Fokus dieser Arbeit steht der Feldstérkekorrelator der QCD. Nach der Einleitung
in Kapitel 1 sowie einer kurzen Beschreibung der Grundlagen der QCD im Kontinuum
(Kapitel 2) findet sich in Kapitel 3 schlieflich die Berechnung des Feldstérkekorrelators
im Kontinuum. Die hier gefundenen Ergebnisse stimmen mit denen des Artikels von
Eidemiiller und Jamin [39] iiberein (vgl. Kapitel 4).

Nachdem die Betrachtung des Korrelators auf dem Gitter motiviert wird, werden in
Kapitel 5 die Grundlagen fiir die QCD auf dem Gitter bereitgestellt. In Kapitel 6 folgt
dann die Darstellung des Korrelators in Gitterstorungstheorie. Es wird gezeigt, dass die
fithrende Ordnung mit Hilfe des Reisz’schen Theorems (Kapitel 6.2.1) berechnet werden
kann und das Ergebnis mit dem im Kontinuumsfall erhaltenen iibereinstimmt. Gleiches
gilt fiir die nicht-divergenten Anteile der néchsten zur fithrenden Ordnung.

Fiir die divergenten Beitrage werden verschiedene Ansétze betrachtet: Zundchst wird
der analytische Ansatz von Becher und Melnikov verfolgt (Kapitel 6.2.2). Dieser fiihrt
allerdings nicht zum gewiinschten Ziel, so dass in Kapitel 6.3 ein numerischer Zugang
vorgestellt wird. Mit Hilfe der CUBA-Bibliothek wird versucht, die divergenten Gitter-
integrale zu l6sen. Die dort zur Verfiigung gestellten Algorithmen eignen sich gut um
die Standard-Gitterinterale Zy, Z; und Fy zu berechnen. Sie scheitern jedoch schon an
der Berechnung des einfachsten Gitterintegrals der fithrenden Ordnung, dessen Ergebnis
bekannt ist.

In Kapitel 6.4 wird abschlieftend die Ortsraum-Methode nach Liischer und Weisz
vorgestellt. Durch das dort verwandte Verfahren ist es moglich, ein Verhalten fiir grofse
Absténde x der Quellen anzugeben. Dies ermdglicht die Berechnung der Gluelumpmasse,
jedoch ist diese Entwicklung fiir die Stérungstheorie eher ungeeignet. Dafiir wére eine
Entwicklung fiir kleine Absténde x interessant, was sich allerdings ebenfalls als sehr
schwierig herausstellt.

Ausblick

Das urspriingliche Ziel dieser Arbeit, die Berechnung des Feldstérkekorrelators der QCD
in Gitterstorungstheorie, hat sich als zu ambitioniert erwiesen. Es ist bislang nicht gelun-
gen, einen geschlossenen analytischen Ausdruck fiir den Korrelator in Gitterstérungs-
theorie zu finden, da sdmtliche bislang bekannten Ansétze Integrale im Impulsraum
behandeln. Lediglich die Methode von Liischer und Weisz arbeitet im Ortraum, selbst
diese wurde aber ebenfalls fiir Berechnungen im Impulsraum geschaffen. Die vorliegende
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7 Zusammenfassung und Ausblick

Diplomarbeit sollte jedoch ein Ergebnis im Ortsraum liefern, wofiir die auf dem Gitter
auftretende diskrete Fouriertransformation ein erhebliches Problem darstellt.

Vielversprechende Losungsansétze fiir dieses Problem liegen allerdings in einer inten-
siveren Betrachtung der Methode von Becher und Melnikov. Hier taucht das Problem
der Mischung von Gitterimpulsen und ,normalen” Impulsen auf. Kénnte man dieses
durch geschickte Substitution 16sen, so wére eine geschlossene Darstellung des Korrela-
tors moglich.

Des Weiteren wére eine numerische Betrachtung mit Hilfe der sogenannten ,Fast Fou-
rier Transform* (FFT) moglich [72]. Die dort verwendeten Algorithmen sind extra auf
oszillierende Integranden angepasst und konnten demnach eher zu Ergebnissen fiithren
als die hier verwendeten nicht weiter spezialisierten CUBA-Algorithmen. Die Ungenau-
igkeit der Ergebnisse konnte sich dort allerdings als eine Schwierigkeit erweisen.

Zusammenfassend ldsst sich sagen, dass zwar eine geschlossene analytische Darstel-
lung des Korrelators nicht erreicht werden konnte; jedoch wurden viele Methoden zu-
sammengetragen sowie an Beispielen diskutiert. Aus dieser Arbeit ergeben sich mithin
einige vielversprechende Ansétze fiir zukiinftige Projekte.
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A Anhang

A.1 Notation

A.1.1 Einheiten

In dieser Arbeit werden natiirliche Einheiten mit & = ¢ = 1 verwendet. Eine Umrechnung

in andere Einheitensysteme erfolgt durch geeignetes Multiplizieren mit

he = 197,326 968 (17) MeV fm, (c=299792458ms 1)

(A1)

bis sich die korrekten Dimensionsabhéangigkeiten ergeben. Die Werte wurden entnommen

aus [5].

A.1.2 Vierervektoren im Euklidischen

Vierervektor:
ot =z, = (21,02, 23,14) = (T, 74)

Vergleich zur Minkowski’schen Raumzeit:

T = TM, xE:T:it:iZUg/[
Metrik:
Guv = O = diag{1,1,1,1}
Skalarprodukt:
a-b=ab=ayb, =a- b+ asby, mit aub, = Zaubu
m
Ableitung:
0 0
oy=—=(=,V
= Ogm (8t’ )

Dirac’sche Gamma-Matrizen in vier Dimensionen:

{’7;“ ’VV} = 26w/

Gamma-Matrizen in hoheren Dimensionen findet man in [32, Anhang B].

A.2 Formelsammlung
Eine gute Ndherung fiir € < 1 ist

2 = e — 1 4 clnx + O(e?), x €R.

(A.8)
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A Anhang

Baker-Campbell-Hausdorff-Formel:

eAeP — exp {A + B+ 3[4, B)+ = ([A[4, B] + [B,B, A]) +. } (A.9)

A.3 Generatoren der speziellen unitdaren Gruppe SU(XV)
Fiir die Generatoren T4 der SU(N) gilt die Kommutatorrelation
[7¢, 78] =ifAB°T¢ mit A,B,C=1,...,N*>—1, (A.10)

mit den total antisymmetrischen reellen Strukturkonstanten® f4B¢. Die Generatoren
sind spurfrei und hermitesch.

A.3.1 Adjungierte Darstellung
In der adjungierten (reguléren) Darstellung wahlt man

Ty = (T")e = =1/ (A.11)
Fiir die Spur gilt

Sp (TaTb) — _fcadfdbc — N(Sab, 590 — N2 —1. (A12)

A.3.2 Fundamentale Darstellung

In der Fundamentaldarstellung, auch definierende Darstellung genannt, kann man die
Gell-Mann-Matrizen A als Generatoren wéhlen

A
A A (A.13)
fund 9 .

Fiir die Spur gilt

Sp (TAT?) = %MB . MM =N (A.14)

A.4 Integraltabelle fiir Feynmandiagramme

A.4.1 Gammafunktion

Die Gammafunktion ist fiir komplexe Zahlen z definiert als
o0
T() = / dt et (Re(z) > 0) (A.15)
0

mit der Funktionalgleichung

Nz+1) = zI(2)

'Die Werte der Strukturkonstanten findet man in [34, S.98].
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A.4 Integraltabelle fiir Feynmandiagramme

und den Eigenschaften

I'ln+1) = nl (n € Np)

r3) = r. (A.16)
Fiir kleine ¢ lasst sie sich geméaf
_1\ym 2
Nﬂn+d:(£?{%+¢W%H)+%{%ﬁ%ﬂm+l%wﬂm+lﬂ+Ok%}
(A.17)
entwickeln, wobei
Ppim+1) = 1+%+...+%—7E, (w(x):‘“r;il;c(xv
m 2
wwwmzz% Z% wm:%. (A.18)

Hierbei ist 9 (x) die Digammafunktion, auferdem bezeichnet vg die Euler-Mascheroni
Konstante mit

Y(1) =((2) = =g = —0,5772... .

Die Euler-Mascheroni Konstante kann also ebenfalls iiber die Riemann’sche Zetafunktion
¢(x) definiert werden.

Die unvollstdndige Gammafunktion ist definiert als
o
I'(a,z) :/ dttete (A.19)
x

A.4.2 Schwinger-Parametrisierung

1 1 > a—1_—B(m?—k?
7 e / dp g te Pm =) (A.20)

A.4.3 Feynman-Parametrisierung

1 (a +5) [t o711 — z)Pt
o i 2T 0) / dx @a+ (1= 2)0)°7P (A.21)
1 1
abe / dy?y/ ay:c+by<1—x>+c<1—y>]3 (4.2
i Tr( Ty At drst 2

—1,_6-1 _
y xf xf coopett (4.23)
(a1 + agra + ... + anxn)a-f'ﬁ-l—...—i—w
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A.4.4 Integrale in d Dimensionen
Allgemeines

In d-Dimensionen findet man das Standard-Integral

/ddq et =%, (A.24)
Auflerdem ergibt sich in dimensionaler Regularisierung
dk o
/ (zw)d(zﬂ) =0, ack. (A.25)

Integraltabelle

Insgesamt werden in dieser Arbeit die folgenden drei Integrale fiir die Rechnungen in
dimensionaler Regularisierung benétigt:

R — _gresmEhrerds)
(2 = 21)"(2) — z)™ T(B)D(2)T(d — BF) (21 — zg)ntm—d
(A.26)
I, = /ddzl 2o — F(nJrgLid)F(diTn F(d%) d’T”zQa + d*Tmzm
(2 = z1)" (2" —2z2)™ D(BD(B)T(d — 22 +1) (21 — z9)m 1
(A.27)

e [ A gremrires
(2' = z1)" () — z)™ L(Hrg)rd

T)(dT (Zzazm + Z1a225)

df
St)21a218

Das einfachste Integral (A.26) ldsst sich mit Hilfe des Integrals

, d?k 1 _TA-9 1
I'= / ( = (A.29)

2m)® (k2 4+ 2kp +m?)A  (47)30(A) (m2 — p2)A—2

berechnen, welches nun explizit ausgewertet wird: Mit Hilfe der Schwinger-Parametri-
sierung (A.20), der Gammafunktion (A.15), sowie (A.24) erhélt man

/ dd]{) 1 _ 1 /OO d/B /BA_l / dl{) e—ﬁ(k2+2kp+m2)
(2m) (k2 + 2kp + m2)4 r'(A) Jy (2m)d
_ 1 o0 A-1-2 __B(m2—p?) / dl 2
= ), Wt en

o / "4ttt
(4m)2T(A) Jo

= F(Ad_%) ! . (A.30)

(4m)T(A) (m? — p?)*~3
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A.5 Sammlung der divergenten Gitterintegrale

Hieraus ergeben sich durch Ableiten nach p,, p, und pg, sowie p,, pg und p, die fol-
genden weiteren Hilfsintegrale:

o / 4k ke, _ F(A — %) Pa (A 31)
@ (27T)d (kz2 + 2kp + m2)A (471')%F(A) (mQ _ pQ)A—%
I/ o / ddk kakﬁ = 1 X
o (2m) (k2 4 2kp + m2)A (47)20(A)
PA-%) 5 D(A-1-19)
X |paps—r 2 + =" Sor| (A%
(m2 — p2)A—3 2 (m?—p2)A-1-3
1= = PaPpPy ¥ d
By (2m) (k2 4 2kp + m2)A (47)2T(A) o (m2 — p2)A=2
1 NA-1-9)
+ —(0a +05yPa + 0a 2 A.33
2( vPB T OBy D) (m? — pQ)Aflfg ( )

Das Integral (A.26) erhélt man dann durch Verwenden der Feynman-Parametrisierung
(A.21), sowie mit Hilfe von (A.29) durch

I =

o I(2tm=d) d ! d—m _y dn_j
= M2 (2 — )" m/ dex 2 T (1—x) 2
L(3rig) 0
__aT(EE(EN(5”) 1 A34)
T TN - ) (o )i d #
(2) (2) ( 2 ) Rl — 22
wobel im letzten Schritt verwendet wurde
! [(a+1DI(b+1)
dzz%(1 —z)? = . A.
/0 zat(l -2 T(a+b+2) (4.35)

Die Integrale I, bzw. I, erhélt man vollig analog zur Rechnung (A.34) unter Verwen-
dung des jeweiligen Hilfsintegrals I;,, bzw. I{ 5. Das Integral I(’lm wurde zur Berechnung
von Diagramm 3.3 i) benotigt und wird der Vollstdndigkeit halber hier noch einmal ge-
listet. Auferdem wiirde ein weiteres Integral I3, analog zu den oben schon angegebenen
Integralen mittels des letzten Hilfsintegrals berechnet werden.

A.5 Sammlung der divergenten Gitterintegrale

Im Folgenden findet sich eine Liste der divergenten Gitterintegrale in dimensionslosen
Grofsen. Alle Integrale, die zur Berechnung des Feldstéarkekorrelators auf dem Gitter
bendtigt werden, lassen sich auf die nachstehenden Integrale zuriickfithren. Die hoch-

o7



A Anhang

gestellten Buchstaben beziehen sich auf die Diagramme, in denen das Integral auftritt.
Die benotigten Ableitungen werden ebenfalls mit angegeben, da diese im Falle einer
numerischen Behandlung vor der Integration ausgefithrt werden miissen. Die Integrale
lauten:

0 4 ikn
4y — gnan [ 4k e
Ly (n) = 0,04 /_ﬂ @n! ()2 (A.36a)
T 4 ikn
af)  onen d*k e
I;U)\ (n) = 8}1,8)\ /ﬂ W m (A36b)
T 34 T 14 —i(k+k1)n
db) n d*k / d*k1  kye
I = —= A.
LA (n) au /7T (271')4 - (27T)4 52 k‘% (k"—\i—/kl)Q ( 36(3)
; T d4]€ T d4]€ —ikn _ ,ikin
1w = oy / : / O R (A.36d)
a e @m)t S 2t (k4 k) K2 K2 (K F k)2
. ™ Q4K ™ 4k ky, k1o —i(k+k1)n
"9m) = 8"8;‘/ / L v iw® - (A.36e)
g ) e @m)t o 2m)t R2E2 (KT ky)2)2

T 34 T 34 i(k+k1)n
dd) . d4k / Ad4ky (K + k1)u(k + k) e
I n:aa/ SR T . (A.36f
o () m s @m)t ), (2m) k2 k2 ((k =+ k1)2)2 ( )
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