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Einleitung

Als 1964 von Zweig und Gell-Mann das Quarkmodell vorgeschlagen wurde, führte
dieses auf eine fundamentale Frage:

Wo sind die Quarks?

Die Quarks, welche nach diesem Modell die fundamentalen Bestandteile der mesoni-
schen und baryonischen Materie bilden, tauchen in keinem Experiment isoliert auf, ob-
wohl in Experimenten zu tiefinelastischer Leptonstreuung punktförmige Streuzentren
mit Quarkeigenschaften gefunden wurden. Die Beobachtungen, dass Quarks scheinbar
nicht isoliert in der Natur vorkommen, prägte den Begriff Quark-Confinement.
Quark-Confinement und die Beobachtung, dass sich die leichten Mesonen sowie Baryo-
nen nach sogenannten Regge-Trajektorien (siehe auch Kapitel (1.2)) anordnen lassen,
führte auf die Entwicklung naiver effektiver Modelle für die Bindungen zwischen den
Quarks. Zu diesen Modellen gehört die effektive Stringtheorie für Mesonen, nach der
die beiden im Meson enthaltenen Quarks durch einen Energiefaden mit konstanter
Energiedichte, einem String, ähnlich einem Gummiband, verbunden sind. Die po-
pulärsten der verschiedenen Ansätze für diese effektiven Stringtheorien werden in Ka-
pitel (II) behandelt.
Als dann die Quantenchromodynamik (QCD) (Für einen Überblick siehe [1].) zu Be-
ginn der 70er Jahre als Kandidat für die starke Wechselwirkung eingeführt und schließ-
lich aufgrund erfolgreicher Vorhersagen als grundlegende Theorie akzeptiert wurde,
führte diese zu einem neuen Freiheitsgrad bei den Quarks, der sogenannten Farbe
(engl.: color). Alle in den Experimenten beobachtbaren freien Teilchen tragen kei-
ne offene Farbladung, gehören also zu einem Farb-Singulett, was zu dem erweiterten
Begriff des Farb-Confinements führte [2]:

Alle in der Natur vorkommenden Teilchen gehören zu einem
Farb-Singulett!

Aufgrund der nichtverschwindenden Farbladung der Quarks ist Quark-Confinement
in diesem Prinzip enthalten.
Da Farb-Confinement bei kleinen Energien, also im Bereich starker Kopplung, be-
obachtet wird, ist eine pertubative Behandlung nicht möglich. Aufgrund der Kom-
plexität der QCD und des nichtabelschen Charakters der zugrundeliegenden loka-
len SU(3)-Eichinvarianz ist ein nicht-perturbativer, mathematischer Beweis des Farb-
Confinements auf der Grundlage der QCD ebenfalls nicht möglich. Eine qualitative
Erklärung liefert allerdings die, aus dem nichtabelschen Charakter der Theorie resul-
tierende Selbstwechselwirkung der Austauschbosonen, der sogenannten Gluonen.
Betrachtet man den Grenzfall statischer Quarks, so kann man effektive Potentialm-
odelle für die Bindung eines solchen statischen Quark-Antiquark Paares entwickeln
(Für einen Überblick siehe [3]). Durch die Selbstwechselwirkung der Gluonen können
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die Feldlinien eines solchen Zustandes in einer Röhre endlicher Dicke gebündelt sein,
einer Flussröhre mit konstanter Energiedichte. Diese Vorstellung liefert ein naives Mo-
dell für Mesonen. Für große Abstände zwischen den Quarks sollte sich diese Flussröhre
effektiv wie ein String verhalten, was zu dem Anschluß an die effektive Stringtheorie
führt. Anzumerken sei an dieser Stelle bereits, dass für diese Erklärung nur der nich-
tabelsche Charakter der Theorie entscheidend ist, nicht aber die Eichgruppe SU(N)
selber.
Eine Möglichkeit, um die Vorhersagen der effektiven Stringtheorien direkt mit Re-
sultaten aus der QCD zu vergleichen, liefern numerische Gittersimulationen (siehe
Kapitel (III)), die eine auf Wilson zurückgehende Darstellung der Feldtheorie auf
Raumzeitgittern nutzt (Für einen Überblick siehe [4].).
Ziel dieser Arbeit ist es mithilfe von numerischen Simulationen zu untersuchen, in
welchem Bereich mithilfe der effektiven Stringtheorien Aussagen bezüglich der QCD
gemacht werden können. Insbesondere ist es in dieser Hinsicht auch wichtig heraus-
zufinden, welche der möglichen effektiven Stringtheorien die besten Resultate liefert.
Im Eichsektor der vollen QCD, d.h. in vierdimensionaler SU(3)-Eichtheorie, sind die
dazu notwendigen Gittersimulationen jedoch relativ rechenintensiv und es ist schwie-
rig, die entscheidenden Resultate in akzeptabler Rechenzeit zu erhalten. In dieser
Arbeit werden deshalb Gittersimulationen in dreidimensionaler SU(2)-Eichtheorie
durchgeführt. Dieses dimensionsreduzierte Modell sollte ein qualitativ ähnliches Ver-
halten zeigen wie die QCD, hat allerdings numerisch einige Vorteile. Zudem wird ein
spezieller von Lüscher und Weisz (siehe Kapitel (3.3)) entwickelter Algorithmus ver-
wendet, um den Messfehler bei den Simulationen zu reduzieren.
Im ersten Kapitel dieser Arbeit werden zunächst die Grundlagen der effektiven Model-
le und deren Anschluß an die QCD skizziert. Das zweite Kapitel beschäftigt sich dann
explizit mit den effektiven Stringtheorien für große Abstände zwischen den Quarks,
mit denen die Resultate der Gittersimulationen verglichen werden sollen. Im dritten
Kapitel werden die grundlegenden Aspekte der Gittersimulationen diskutiert und der
spezielle verwendete Lüscher-Weisz Algorithmus zur Fehlerreduktion vorgestellt, so-
wie dessen Anwendung auf die Berechnung von angeregten String-Zuständen erläutert.
Im vierten Kapitel werden dann die Parameter der Gittersimulationen festgelegt und
letztlich, im fünften Kapitel, die Resultate der Simulationen dargestellt und diskutiert.



I Flussröhren und das statische qq̄-Potential

Hier werden zunächst die Grundlagen zu den Betrachtungen in den Kapiteln (II)
und (III) gelegt. Alle Betrachtungen beziehen sich auf eine beliebige nichtabelsche
SU(N)-Eichtheorie, sind also für den Eichsektor der QCD wie auch für die später in
den Gittersimulationen betrachtete reine SU(2)-Eichtheorie gültig. Die Ausnahme ist
der erste Abschnitt, der sich speziell auf die QCD und somit auf SU(3)-Eichtheorie
bezieht. Die darin vorkommenden Ausdrücke lassen sich allerdings für eine beliebige
SU(N)-Eichtheorie übernehmen.
Der erste Abschnitt gibt einen kurzen Einblick in die für diese Arbeit wichtigen
Grundlagen der QCD und erläutert Konventionen für die nächsten Abschnitte. Der
zweite Abschnitt beschreibt den Grundgedanken der effektiven Stringtheorien und
erläutert phänomenologisch den Zusammenhang zwischen Flussröhren und Strings.
Die nächsten beiden Abschnitte beschäftigen sich dann mit den Observablen für das
statische qq̄-Paar in Kontinuums-QCD. Der vierte Abschnitt dieses Kapitels erläutert
kurz den Übergang vom Kontinuum zum Gitter und gibt einige Resultate der dort
möglichen Starkkopplungsentwicklungen an, bei denen Flussröhren im Grenzfall star-
ker Kopplung explizit untersucht werden können. Der letzte Abschnitt dieses Kapitels
beschäftigt sich schließlich mit den Problemen der effektiven Modelle.

1.1 Grundlagen der Quantenchromodynamik

Die QCD ergibt sich aus der Forderung nach lokaler SU(3)-Eichinvarianz der zugehöri-
gen Lagrangedichte (Für einen Überblick siehe [1].). Die dabei auftretende Ladung
wird als Farbe [5] bezeichnet. Die Lagrangedichte der QCD lautet1

LQCD =
Nf∑

i=1

q̄i(x) (i γµ Dµ −mi) qi(x)− 1
4

Tr (Fµν(x) Fµν(x)) , (1.1)

wobei Dµ ≡ ∂µ − ig Aµ(x) die kovariante Ableitung ist, die wegen der geforderten
SU(3)-Eichinvarianz eingeführt werden muss und über die die Quarks mit der Kopp-
lungskonstanten g an das Eichfeld Aµ(x) koppeln. Das Eichfeld Aµ(x) ist ein Element
der Lie-Algebra der Gruppe SU(3) und besitzt somit acht unabhängige Freiheitsgrade,
deren zugehörige Austauschteilchen als Gluonen bezeichnet werden. Die fermionischen
Felder qi(x) beschreiben die Quarks und i = 1, . . . , Nf ist der Index, der die Nf ver-
schiedenen Quarkarten unterscheidet. Die Felder qi(x) tragen zudem einen weiteren
Farbindex, sowie einen Spinorindex, die hier unterdrückt werden.
Der letzte Term der Wirkung ist der übliche von Yang und Mills [6] betrachtete ki-
netische Term für die Eichfelder, wobei der Feldstärketensor Fµν(x) definiert ist über

1Bei allen Formeln in dieser Arbeit werden natürliche Einheiten ~ ≡ c ≡ 1 benutzt.
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den Kommutator
Fµν(x) ≡ i

g
[Dµ , Dν ] . (1.2)

Die Lagrangedichte der QCD enthält, aufgrund des nichtabelschen Charakters der
Theorie, über den kinetischen Term der Eichfelder kubische und quartische Selbst-
wechselwirkungsterme für diese, die unter Anderem veranwortlich für den hier be-
trachteten Effekt des Confinements sind.
Alternativ kann man die kovariante Ableitung auch mithilfe des Paralleltransporters

Uµ(x) ≡ ei g Aµ(x) ε = 1 + i g Aµ(x) ε+O (
ε2

)
(1.3)

ausdrücken, der ein Element der Eichgruppe SU(3) ist. ε ist dabei als infinitesimal
klein anzusehen. Die kovariante Ableitung lautet dann2

Dµ ψ(x) = lim
ε→0

µ̂

ε
[ψ(x)− Uµ(x− ε µ̂) ψ(x− ε µ̂)] . (1.4)

Der Paralleltransporter Uµ(x) beschreibt formal den chromoelektrischen Fluss zwi-
schen den infinitesimal getrennten Raumzeitpunkten x und x + εµ̂. Der chromoelek-
trische Fluss entlang eines Weges C lässt sich also schreiben als

U(C) ≡ P̂

 ∏

(x,µ)∈C
Uµ(x)


 , (1.5)

wobei der Operator P̂ für die Pfadordnung sorgt. Nach (1.3) kann man (1.5) analog
auch schreiben als

U(C) = exp
[
ig

∫

C
Aµ(x)dxµ

]
, (1.6)

wobei das Integral ein Linienintegral entlang des Weges C in der vierdimensionalen
Raumzeit bezeichnet. Die Beziehungen (1.1) bis (1.6) sind dabei ebenso für eine be-
liebige nichatbelsche SU(N)-Eichtheorie gültig, wobei die QCD durch den Spezialfall
N ≡ 3 gegeben ist.

1.2 Regge-Trajektorien und Flussröhren

1.2.1 Regge-Trajektorien

Trägt man bei den niederenergetischen Mesonen den Spin s gegen die quadrierte Mas-
se m2 auf (siehe Abbildung (1)), so erkennt man, dass sich die Punkte zu Gruppen
zusammenfassen lassen, die auf Geraden mit nahezu gleicher Steigung α liegen, den
linearen Regge-Trajektorien.

2µ̂ ist der Einheitsvektor in µ-Richtung.
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Abbildung (1): Links: Regge-Trajektorien für Mesonen, nach einer Abbildung aus
[3]. Rechts: Eine um ihren Mittelpunkt rotierende Flussröhre.

Diese Eigenschaft der Mesonen lässt sich durch ein einfaches Modell erklären. Ange-
nommen die Mesonen bestehen aus einem Paar masseloser Quarks und Antiquarks,
verbunden durch ein gerades röhrenförmiges Objekt der Länge R mit der konstanten
Energie pro Längeneinheit σ. Rotieren die Quarks an den Enden mit nahezu Lichtge-
schwindigkeit um das Zentrum des Systems, wie in Abbildung (1) gezeigt, so ist die
Energie des Systems gegeben durch

E = 2 σ
∫ R/2

0

1√
1− v2(r)

dr =
π

2
σ R ≡ m (1.7)

und der innere Drehimpuls ist

L = 2 σ
∫ R/2

0

r v(r)√
1− v2(r)

dr =
π

2
σ R2 ≡ s. (1.8)

Vergleicht man (1.7) und (1.8), so erkennt man den Zusammenhang

s = αm2 mit α =
1

2π σ
. (1.9)

Dieses naive Modell liefert eine Erklärung für die Steigung der Geraden, hat al-
lerdings einige Probleme. Z.B. haben die Geraden einen nichtverschwindenden y-
Achsenabschnitt, der durch dieses Modell nicht erklärt werden kann, und die Quarks
haben eine nichtverschwindende Masse.
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1.2.2 Flussröhren

Das Modell stimmt mit der zugrundeliegenden nichtabelschen Eichtheorie überein
wenn man annimmt, dass der chromoelektrische Fluss3 zwischen den Quarks durch
nicht perturbative Effekte in einer Röhre endlicher Dicke, einer Flussröhre (engl.: flux
tube), gebündelt wird, was sich qualitativ mit den bereits beschriebenen Selbstwech-
selwirkungen der Austauschteilchen erklären lässt. Das Ausbilden einer Flussröhre
bezeichnet man auch als chromoelektrischen Meissner-Effekt.
Wächst der Abstand R zwischen den Quarks an, so wird das Verhältnis zwischen Dicke
und Länge der Flussröhre infinitesimal klein [9] und sie wird effektiv zu einem Ener-
giefaden, einem String. Die Energie des Systems wächst dann linear mit steigendem
Abstand R zwischen den Quarks an

E = σ R. (1.10)

σ wird in diesem Kontext auch als String-Spannung bezeichnet.
Das Modell wird realistischer, wenn man auch Schwingungen für den String zulässt. In
diesem Fall sind die String-Koordinaten die entscheidenden Freiheitsgrade des Systems
für deren Dynamik man effektive Modelle entwickeln kann, während die Quarks als
statisch angesehen werden, was durch den Limes mq →∞ simuliert wird. Die Stärke
des anziehenden Potentials zwischen diesen statischen Quarks wird nur noch durch das
Wechselwirkungsfeld bestimmt und man spricht vom statischen QCD- oder Quark-
Antiquark-Potential.

1.3 Wilson-Loops und Flussröhren

Motiviert durch die Betrachtungen aus Kapitel (1.2) wird das Verhalten eines stati-
schen Quark-Antiquark Paares im Kontinuum untersucht. Zu diesem Zweck wird die
Propagation eines statischen qq̄-Paares zwischen den euklidischen Zeiten4 τ = 0 und
τ = T betrachtet.
Das statische qq̄-Paar wird beschrieben durch den Operator5

Q̂(R, τ) ≡ q̄(x1, τ)
(∏

y,j∈V(τ) Uj(y, τ)
)
q(x2, τ)

≡ q̄(x1, τ) F(R, τ) q(x2, τ),
(1.11)

mit dem Abstand R = |x1 − x2| zwischen den statischen Quarks. Der zugehörige
Zustand im Hilbert-Raum lautet mit dem Vakuum-Zustand |Ω〉

|Q(R, τ)〉 = Q̂(R, τ) |Ω〉 . (1.12)
3Der Einfachheit halber wird im folgenden immer von einer Farbladung der Quarks gesprochen,

unabhängig von der betrachteten SU(N)-Eichtheorie.
4D.h. es wurde eine Wick-Rotation t → −iτ zu imaginären Zeiten durchgeführt (siehe [1]).
5Dreidimensionale Vektoren des Ortsraumes werden in dieser Arbeit unterstrichen.
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Abbildung (2): Links: Beispiel für einen Operator, dessen Erwartungswert pro-
portional zur Korrelationsfunktion 〈Q(R, 0)Q+(R, T )〉 ist. Rechts: Rechteckiger
Wilson-Loop Ŵ (R, T ). Der Operator zugehörig zum Grundzustand der Bindung des
qq̄-Paares.

Der Operator F(R, τ) beschreibt den chromoelektrischen Fluss zwischen den stati-
schen Quarks, die sich zur Zeit τ im Abstand R befinden.
Die Propagation des statischen Quarks wird beschrieben über eine Wilson-Linie [7],
eine gerade Linie chromoelektrischen Flusses in Zeitrichtung. Die Propagation des An-
tiquarks wird beschrieben über eine konjugierte Wilson-Linie. Insgesamt erhält man
den Erwartungswert einer geschlossenen Kontur chromoelektrischen Flusses wie auf
der linken Seite von Abbildung (2), wobei die verbreiterten Linien des Flusses den
Operatoren F(R, 0), bzw. F+(R, T ) entsprechen.
Im Falle von großen Abständen zwischen den Quarks erwartet man nach Kapitel (1.2),
dass die Feldlinien in einem infinitesimal dünnen Bereich gebündelt werden. In diesem
Fall lässt sich der Operator F(R, τ) durch den Operator für den Fluss entlang einer
Verbindungslinie C(τ) zwischen den Quarks ersetzen. Der Operator auf der linken Seite
von Abbildung (2) wird dann zu einem Wilson-Loop Ŵ (C(R, T )) ≡ U (C(R, T )), einer
geschlossenen Linie chromoelektrischen Flusses entlang des Weges C(R, T ). Es ergibt
sich also für große R:

〈Q(R, 0)Q+(R, T )
〉 ∼

〈
Ŵ (C(R, T ))

〉
≡W (C(R, T )) (1.13)

Nach der Erwartung entspricht der Grundzustand einer geraden Linie chromoelek-
trischen Flusses zwischen den Quarks, also einem geraden String. Der zugehörige
rechteckige Wilson-Loop ist auf der rechten Seite von Abbildung (2) abgebildet.
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1.4 Spektraldarstellung und Energiezustände

Die Grundzustandenergie des statischen Quark-Antiquark Paares entspricht dem sta-
tische Potential. Über die Spektraldarstellung der Korrelationsfunktion erhält man
eine Verbindung zwischen diesem und dem Erwartungswert des Wilson-Loops, der in
Monte-Carlo-Simulationen numerisch berechnet werden kann.
Mithilfe des euklidischen Zeitentwicklungsoperators e−Ĥ T kann man den Propagator
des statischen qq̄-Paares im Hilbert-Raum schreiben als

〈Q+(R, 0) | Q+(R, T )
〉

=
〈Q+(R, 0)

∣∣ e−Ĥ T
∣∣Q+(R, 0)

〉
, (1.14)

wobei Ĥ der zugehörige Hamilton-Operator ist. Die Zustände |Q+(R, 0)〉 sind i.a.
keine Eigenzustände zum Hamilton-Operator. Man kann allerdings einen vollständigen
Satz von Eigenfunktionen |k 〉 zum Hamilton-Operator mit den zugehörigen, nach
Größe geordneten Eigenenergien Ek(R) einfügen und erhält dann

W (C(R, T ))
(1.13)∼ 〈Q(R, 0)Q+(R, T )

〉
=

∞∑

k=0

∣∣〈Q+(R, 0) | k〉∣∣2 e−Ek(R) T . (1.15)

Im Falle eines Wilson-Loops mit einem nichtverschwindenden Überlapp mit dem
Grundzustand, also z.B. bei einem rechteckigen Wilson-Loop Ŵ (R, T ) wie auf der
rechten Seite in Abbildung (2), kann man die rechte Seite umschreiben und erhält

W (R, T ) = α(R) e−E0(R) T

(
1 +

∞∑

k=1

βk(R) e−∆Ek(R) T

)
(1.16)

mit α(R) = c |〈Q+(R, 0) | 0〉|2 , βk(R) = 1
α |〈Q+(R, 0) | k〉|2 und ∆Ek(R) = Ek(R)−

E0(R).
Im Limes T → ∞ werden alle Terme in der runden Klammer gegenüber dem ersten
Term exponentiell gedämpft und für das statische Potential V (R) ≡ E0(R) ergibt sich
der Ausdruck

V (R) = − lim
T→∞

1
T

ln [W (C(R, T ))] . (1.17)

Im Fall schwacher Kopplung kann man über Gleichung (1.17) das statische Potential
perturbativ berechnen [10]. Allerdings gibt es analytisch keine weitere Methode, die
Energiezustände der Bindung zu untersuchen. Man verwendet deshalb die effektiven
Stringtheorien um Vorhersagen über die angeregten Energiezustände zu machen.
Einige Versuche wurden unternommen, effektive Feldtheorien für die äußeren Frei-
heitsgrade der Flussröhre herzuleiten. Dabei wird der Propagator 〈Q(R, 0)Q+(R, T )〉
im Pfadintegralformalismus betrachtet und man versucht, über die Entwicklung der
zugehörigen Wirkung um eine klassische Lösung die effektive Wirkung für die Fluktua-
tionen der Flussröhre in den d−2 transversalen Dimensionen herzuleiten [11],[12],[13].
Für eine Zusammenfassung sei hier auf [14] verwiesen.
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Da man im Eichsektor der vollen QCD selbst solche effektiven Wirkungen nicht di-
rekt aus der zugrundeliegenden Feldtheorie herleiten kann, werden zumeist effekti-
ve String-Wirkungen benutzt, die unabhängig von der zugrundeliegenden Feldtheo-
rie sind. Lüscher [15] gelang es dadurch zunächst, eine für nahezu alle effektiven
Stringtheorien gültige universelle 1/R-Korrektur zusätzlich zum linearen Term des sta-
tischen Potentials herzuleiten, so dass sich das Potential in allen effektiven Stringtheo-
rien schreiben lassen sollte als

V (R) = σ R+ V0 − π

24
(d− 2)

1
R

+O (
1/R2

)
. (1.18)

Die Konstante V0 absorbiert Abweichungen, die auftreten, wenn verschiedene Regula-
risierungen verwendet werden. Im Falle von Zeta-Funktions-Regularisierung, die auch
im nächsten Kapitel bei den effektiven Stringtheorien verwendet wird, ist V0 = 0. Bei
der Gitterregularisierung, die bei den Simulationen verwendet wird, ist V0 6= 0 und
die additive Konstante muss bei der Auswertung berücksichtigt werden.

1.5 Feldtheorie auf dem Gitter und Confinement bei starker Kopp-
lung

1.5.1 Raumzeitgitter und Erwartungswerte für reine SU(N)-Eichtheorie

Die Feldtheorie auf dem Gitter ist die Grundlage für numerische Simulationen von
Quantenfeldtheorien und Kapitel (III) baut darauf auf. Es sollen deshalb im Folgen-
den kurz die Grundzüge dieser Theorie erläutert werden, wobei die Betrachtungen
auf den Fall der reinen SU(N)-Eichtheorie beschränkt bleiben, da die Quarks als sta-
tisch angesehen und die Simulationen in reiner SU(2)-Eichtheorie in drei Dimensionen
durchgeführt werden. Für eine ausführliche Darstellung sei auf [4] verwiesen.
Zunächst wird die d-dimensionale kontinuierliche Raumzeit mit den Ortsvektoren x
diskretisiert, wobei die Gitterkonstanten aµ mit µ = 0, . . . , d − 1 den Abstand zwi-
schen zwei Gitterpunkten in der jeweiligen Richtung angeben. Im Folgenden sind nur
symmetrische Gitter relevant, weshalb a0 ≡ a1 ≡ · · · ≡ ad−1 ≡ a gesetzt werden. Die
Raumzeitvektoren x zu den jeweilgen Gitterpunkten werden auf eine Zahl n abgebil-
det, so dass mit n der zugehörige Gittervektor xn eindeutig definiert ist.
In reiner Eichtheorie auf dem Gitter sind beliebige Observablen F [U ] Funktionale der
Paralleltransporter (1.3) auf dem Gitter, den Link-Variablen

Uµ(n) = ei g a Aµ(n) =̂ n s s> n+ a µ̂, (1.19)

die zwischen den Gitterplätzen angesiedelt sind und die Freiheitsgrade des chromo-
elektrischen Feldes Aµ(n) repräsentieren. Der Erwartungswert einer beliebigen Obser-
vablen F [U ] ist gegeben über das Funktionalintegral [4]

〈F [U ]〉 =
1
Z

∫
DU F [U ] e−SG[U ]. (1.20)



10 I Flussröhren und das statische qq̄-Potential

Abbildung (3): Der Grundzustand eines statischen Quark-Antiquark Paares auf
dem Gitter im Grenzfall starker Kopplung.

Das Integrationsmaß ist dabei definiert als

DU ≡
∏
n,µ

dUµ(n), (1.21)

wobei über alle Gruppenelemente der Eichgruppe integriert wird. SG[U ] ist die übliche
Wilson’sche Plakett-Wirkung

SG [U ] = β Tr

(∑

P

[
1− 1

2N
(
UP + U+

P

)]
)

(1.22)

mit β ≡ 2N
g2 und der unrenormierten Gitterkopplung g. UP mit P ≡ (n, µ, ν) bezeich-

net die Plakette

s

s s

s>
∧

<
∨n =̂ UP ≡ Uµ(n) Uν(n+ a µ) U+

µ (n+ a ν) U+
ν (n) (1.23)

und die Summe über P läuft über alle Plaquetten des Gitters. Z ist der entsprechende
Normierungsfaktor, der dafür sorgt, dass gilt 〈1〉 = 1.

1.5.2 Confinement bei starker Kopplung

Farb-Confinement wird im Falle niedriger Energien, also im Bereich starker Kopplung
beobachtet, in dem die Störungstheorie der Kontinuums-QCD zusammenbricht. Bei
der Feldtheorie auf dem Gitter geht die inverse Kopplung β in die Wirkung (1.22) ein,
was dazu führt, dass eine Entwicklung im Grenzfall starker Kopplung möglich ist.
Berechnet man den Erwartungswert eines rechteckigen Wilson-Loops mit den Sei-
tenlängen R und T im Grenzfall starker Kopplung, so ergibt sich [4]

W (R, T ) =

{
(β/4)R T + . . . für N = 2(

β
2N2

)R T
+ . . . für N > 2.

(1.24)

Nach Gleichung (1.17) wächst das Potential also, wie nach Gleichung (1.10) erwartet,
linear mit steigendem Abstand R zwischen den Quarks.
Der geeignete Formalismus, um Flussröhren direkt bei starker Kopplung zu betrach-
ten, ist der Hamilton-Formalismus [16], bei dem die Zeit τ als kontinuierliche Variable
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Abbildung (4): Links: String-Breaking bei einer Flussröhre zwischen den stati-
schen Quarks q und q̄ durch QQ̄-Paarbildung. Rechts: String-Breaking im Hamilton
Formalismus durch Überlagerung einer Fermionenkorrektur mit der String-Anregung.

betrachtet wird, während die räumlichen Dimensionen diskretisiert sind.
Der Grundzustand in Anwesenheit eines statischen Quark-Antiquark Paares ist in
diesem Fall wie erwartet eine gerade Linie zwischen den Quarks, wie in Abbildung
(3) gezeigt. Die höheren angeregten Zustände entsprechen Abweichungen von dieser
geraden Linie. Die resultierenden Energien zeigen ebenfalls den erwarteten linearen
Anstieg.

1.6 Dynamische Fermionen und String-Breaking

Bei den bisherigen Betrachtungen zum Confinement wurden nur statische, d.h. unend-
lich schwere, Quarks berücksichtigt. In der Realität besitzen Quarks jedoch endliche
Massen.

Abbildung (5): Die ersten bei-
den Energiezustände mit dynami-
schen fundamentalen Feldern aus
[17]. String-breaking ist bei R ≈ 15a
zu beobachten.

Da die Energie des Systems mit wachsendem
Abstand nahezu linear anwächst, entspricht die
Energie im System irgendwann der zweifachen
Quarkmaße der leichtesten Quarks. In diesem
Fall kann aus dem Vakuum ein weiteres Quark-
Antiquark-Paar entstehen, welches zwei neue
Bindungzustände dieser Quarks mit den stati-
schen Quarks zulässt. Die Flussröhre wird ge-
teilt, man spricht vom Brechen der Röhre bzw.
des Strings (engl.: string breaking). Der Vorgang
ist auf der linken Seite von Abbildung (4) dar-
gestellt.
String-Breaking lässt sich bei starker Kopp-
lung auch im Hamilton-Formalismus betrach-
ten. In Anwesenheit von dynamischen Quarks
treten dort zusätzliche Störungsterme in Form
von Quark-Antiquark-Paaren auf. Überlappt
ein solcher Störungsterm wie auf der rechten
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Seite von Abbildung (4) mit den angeregten Link-Variablen zwischen den statischen
Quarks, so führt dies zum String-Breaking.
String-Breaking wurde bereits in mehreren numerischen Studien untersucht. Dabei
werden verschiedene Operatoren für den gebrochenen und ungebrochenen Zustand
benutzt und aus diesen eine Korrelationsmatrix gebildet, um die Bindungsenergien zu
separieren. Dabei wurde zunächst das SU(2) Higgs-Modell [17],[18] benutzt. Neueste
Studien konnten String-Breaking auch in voller QCD mit zwei Quarkarten simulie-
ren [19]. Ein Resultat der Berechnungen zum SU(2) Higgs-Modell, bei dem String-
Breaking zu erkennen ist, wird in Abbildung (5) gezeigt.
String-Breaking zeigt deutlich die Grenzen der effektiven Stringtheorie für das stati-
sche qq̄-Potential, da gerade in dem Bereich, in dem man erwartet, dass die Theorie
exakt gültig wird, also im Bereich R→∞, String-Breaking auftritt. In einem interme-
diären Bereich, dessen Grenzen noch genauer zu bestimmen sind, besteht jedoch die
Möglichkeit, dass sich das Verhalten der Flussröhre approximativ über eine effektive
Stringtheorie beschreiben lässt.



II Effektive Stringtheorie

In den Kapiteln (2.1) und (2.2) wird die Nambu-Stringtheorie angewendet auf
die Weltfläche des Wilson-Loops. Die Flussröhre, bzw. der String selbst wird weiter
klassisch betrachtet auf der Basis der zugrundeliegenden Feldtheorie und die Quanti-
sierung wird nur für die transversalen Schwingungen durchgeführt.
In Kapitel (2.1) wird die klassische Nambu-Stringtheorie dargestellt. Die Quantisie-
rung der transversalen Schwingungen wird in Kapitel (2.2) im Fock-Raum der zu-
gehörigen Fouriermoden durchgeführt. Das resultierende Potential wurde zunächst
von Alvarez [20] im Grenzfall d → ∞ hergeleitet und später im allgemeinen Fall von
Arvis [21]. Hier wird eine eigene, leicht abgeänderte Herleitung verwendet. Die in Kapi-
tel (2.2.4) diskutierte Klassifizierung der Eigenzustände in 2+1 Dimensionen ist für die
spätere Identifizierung mit den Operatoren bei den Gitterrechnungen von Bedeutung.
Die Weyl-Anomalie verhindert allerdings die Konsistenz der Nambu-Stringtheorie in
quantisierter Form als effektive Stringtheorie für das statische qq̄-Potential.
In den Kapiteln (2.4) und (2.5) werden deshalb zwei weitere effektive Stringtheorien
diskutiert, bei denen die Weyl-Anomalie nicht auftritt. Wichtig ist die Tatsache, dass
das Spektrum beider Theorien bis zur Ordnung 1/R3 mit dem Spektrum der Nambu-
Stringtheorie übereinstimmt. Höhere Ordnungen konnten in beiden Fällen bisher nicht
berechnet werden.

2.1 Nambu-Stringtheorie

2.1.1 Die Nambu-Goto-Wirkung

Betrachtet man einen String, so überschreitet dieser eine FlächeXµ(κ, τ) in der Raum-
zeit, die hier parametrisiert wird über κ ∈ [0, π]6 und τ ∈ R. Diese Fläche lässt sich im
Falle des bosonischen Strings zwischen zwei statischen Quarks im Zeitintervall [0, T ]
direkt mit der Fläche eines Wilson-Loops identifizieren.
Betrachtet wird die Nambu-Goto-Wirkung [22]

SNG = −σ
∫
dτ

∫ π

0
dκ

√(
ẊµX ′

µ

)2
−

(
Ẋµ

)2
(X ′µ)2 (2.1)

für einen bosonischen String, dessen Weltfläche mit dem Wilson-Loop identifiziert
wird, wobei die Abkürzungen

∂Xµ

∂τ
≡ Ẋµ und

∂Xµ

∂κ
≡ X ′µ, (2.2)

6Der räumliche Flächenparameter wird hier entgegen der üblichen Konvention mit κ statt mit σ
bezeichnet, um eine Verwechslung mit der String-Spannung auszuschließen.
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verwendet wurden. Die Wirkung ist invariant unter Reparametrisierungen von κ und
τ , was dazu ausgenutzt werden kann die Bewegungsgleichungen zu vereinfachen. Au-
ßerdem ist zu bemerken, dass die Rechnungen hier nicht in euklidischer Zeit durch-
geführt werden. Da allerdings nur die Energien mit den Gittersimulationen verglichen
werden, ist dieser Unterschied nicht relevant.

2.1.2 Bewegungsgleichungen und orthonormale Koordinaten

Die Bewegungsgleichungen ergeben sich aus dem Prinzip der extremalen Wirkung und
eine kurze Rechnung liefert [22],[23]

∂τ P
µ
τ + ∂κ P

µ
κ = 0, (2.3)

mit den kanonisch konjugierten Impulsen

Pµ
τ = σ

∂ L
∂Ẋµ

und Pµ
κ = σ

∂ L
∂X ′

µ

. (2.4)

Aufgrund der Reparametrisierungsinvarianz der Wirkung (2.1) kann man nun zu or-
thonormalen Koordinaten übergehen [23], die darüber definiert sind, dass sie die Or-
thonormalitätsbedingungen

Ẋµ X ′
µ = 0 and

(
X ′µ)2 +

(
Ẋµ

)2
= 0 (2.5)

erfüllen. Die kanonisch konjugierten Impulse lauten dann

Pµ
τ = σ Ẋµ und Pµ

κ = σ X ′µ (2.6)

und aus den Bewegungsgleichungen (2.3) wird
[
∂2

τ − ∂2
κ

]
Xµ(κ, τ) = 0. (2.7)

2.1.3 Parametrisierung und Lösung der Bewegungsgleichungen

Die Orthonormalitätsbedingungen (2.5) lassen weitere Reparametrisierungen der Form

τ ′ = τ + f(τ + κ) + f(τ − κ)
κ′ = κ+ f(τ + κ)− f(τ − κ) (2.8)

zu [23]. Diese Eigenschaft wird dazu genutzt, eine spezielle Parametrisierung zu wählen,
die mit den Bedingungen (2.5) verträglich ist.
Gesucht ist die allgemeine Lösung der Bewegungsgleichung (2.7) für einen String zwi-
schen einem statischen Quark-Antiquark Paar. Der Einfachheit halber wird dabei
eines der Quarks in den Ursprung gelegt und das andere im Abstand R zum Ursprung
auf die x1-Achse. Demnach gelten die räumlichen Randbedingungen

X1(π, τ) = R und X1(0, τ) = Xi(0, τ) = Xi(π, τ) = 0 ∀ τ ∈ R, (2.9)
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Abbildung (6): Links: Ein schwingender String mit fixierten Enden in physikali-
scher Eichung (2.10). Rechts: Weltfläche eines schwingenden Strings mit fixierten
Enden. Die Weltfläche entspricht einem Wilson-Loop.

wobei i = 2, . . . , d− 1 die transversalen räumlichen Komponenten durchnummeriert.
Es ist sinnvoll, die verbleibende Parametrisierungsinvarianz (2.8) auszunutzen, um zur
physikalischen Eichung überzugehen7, bei der

x0 = τ, κ = x1, X0 = p0 τ und X1 =
R

π
κ (2.10)

gesetzt wird. Der String wird also parametrisiert wie auf der linken Seite von Abbil-
dung (6) und seine Weltfläche im Zeitintervall [0, T ] entspricht einem Wilson-Loop
wie auf der rechten Seite. Die Eichung ist konsistent mit den Orthonormalitätsbedin-
gungen (2.5).
In diesem Fall ist die Impulsdichte gegeben durch Pµ(κ, τ) = Pµ

τ (κ, τ) [23]. Entspre-
chend fordert man in Analogie zum relativistischen Punktteilchen für i, j = 2, . . . , d−1
die Poisson-Klammern

{
Xi(κ, τ) , P j(κ′, τ)

}
= δij δ(κ− κ′)

{
Xi(κ, τ) , Xj(κ′, τ)

}
=

{
P i(κ, τ) , P j(κ′, τ)

}
= 0.

(2.11)

Die allgemeine Lösung für die transversalen Komponenten Xi(κ, τ) des Strings lässt
sich als Fourier-Reihe schreiben

Xi(κ, τ) =

√
1
π σ

∞∑

l=−∞
l 6=0

ai
l(τ)
l

sin(l κ) mit ai
l(τ) ≡ ai

l(0) e−i l τ . (2.12)

Da das Feld Xµ reell ist, muss außerdem gelten

ai ∗
l = ai

−l. (2.13)

7Es ist auch möglich Arvis’ weg zu folgen und zunächst keine Eichung zu wählen. Selbst in diesem
Fall muss allerdings die Eichung zu einem späteren Zeitpunkt spezifiziert werden.
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Für die Fourier-Komponenten gelten dann die folgenden Poisson-Klammern:
{
ai

l , a
j∗
k

}
= −i l δlk δij und

{
ai

l , a
j
k

}
=

{
ai∗

l , aj∗
k

}
= 0 (2.14)

2.1.4 Klassische Energien

Die klassische Energie ergibt sich durch das Integral über die 0-Komponente der Im-
pulsdichte:

E =
∫ π

0
dκ P 0 (2.6),(2.10)

= σ

∫ π

0
dκ p0 = π σ p0 (2.15)

Zu berechnen ist der Parameter p0, den man über die Orthonormalitätsbedingungen
(2.5) erhält. Wie in Anhang (A.1) gezeigt, liefern diese für die Fourier-Komponenten
die Relationen:

∑

l+k=m
m6=0

d−1∑

i=2

ai
l(τ) a

i
k(τ) = 0 (2.16)

p0 2 −
(
R

π

)2

− 1
π σ

d−1∑

i=2

∞∑

l=−∞
l 6=0

ai
−l(τ) a

i
l(τ) = 0 (2.17)

Setzt man das Ergebnis (2.17) in Gleichung (2.15) ein, so ergeben sich mit (2.13) die
Energien

E = σ R

√√√√1 +
π

σ R2

d−1∑

i=2

∞∑

l=1

[
ai∗

l ai
l + ai

l a
i∗
l

]
. (2.18)

Die Fouriermoden ai
l(τ) der transversalen Schwingungen sind nun die freien Parameter

der Theorie und müssen gemäß des Korrespondenzprinzips quantisiert werden.

2.2 Quantisierung der transversalen Schwingungen

2.2.1 Kanonische Quantisierung und Fock-Raum

Im Rahmen der effektiven Stringtheorie wird die Flussröhre als klassischer bosonischer
String betrachtet. Die transversalen Schwingungen, deren Fouriermoden ai

l nun die
Freiheitsgrade der Theorie sind, sollen quantisiert werden. Die Quantisierung lässt
sich im Fock-Raum der Erzeuger und Vernichter ai+

l und ai
l durchführen. Nach dem

Korrespondenzprinzip werden bei der kanonischen Quantisierung die Fourier-Moden
ai

l mit l > 0 zu Vernichtungsoperatoren und ai
−l = ai∗

l zu Erzeugungsoperatoren ai+
l .

Die Poisson-Klammern (2.14) werden zu den entsprechenden Kommutatoren:
[
ai

l(τ) , a
j+
k (τ)

]
= l δlk δ

ij und
[
ai

l(τ) , a
j
k(τ)

]
=

[
ai+

l (τ) , aj+
k (τ)

]
= 0 (2.19)
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Die Zustände des Fock-Raumes sind beliebige Produkte von Erzeugungsoperatoren
ai+

l , die auf den Vakuumzustand |0〉 wirken, der definiert ist über ai
l |0〉 = 0 für alle

l und i. Ein allgemeiner normierter angeregter Zustand des Fock-Raumes ist dann
gegeben über

|Nli 〉 ≡ 1
C(Nli)

∏

l,i

(
ai+

l

)Nli |0〉 mit C(Nli) =
1√

(Nli)! lNli
. (2.20)

Der Ortsoperator der transversalen Schwingungen ergibt sich aus der Entwicklung
(2.12). Die Ortserwartungswerte 〈Nli| Xi(κ) |Nli 〉 verschwinden Aufgrund der un-
gleichen Anzahl von Erzeugern und Vernichtern erwartungsgemäß. Ein qualitatives
Bild der Form der Schwingungen liefert die mittlere quadratische Abweichung vom
Grundzustand 〈Nli|

(
Xi(κ)

)2 |Nli 〉. Diese wird im allgemeinen Fall in Anhang (A.3)
berechnet.

2.2.2 Effektiver Hamilton-Operator und Energiezustände

Die Energien der Zustände sind gegeben über Gleichung (2.18), wobei man die quan-
tisierten Energien über den effektiven Hamilton-Operator berechnen kann, der sich
aus der Entwicklung der Wurzel in Gleichung (2.18) nach 1/R2 ergibt. Der effektive
Hamilton-Operator wird also definiert als:

Ĥeff ≡ σ R
√

1 + 2 π
σ R2 L̂

= σ R+ π
R L̂− π2

2 σ R3

(
L̂

)2
+ π3

2 σ2 R5

(
L̂

)3
+ . . .

(2.21)

Dabei wurde der Operator

L̂ ≡ 1
2

d−1∑

i=2

∞∑

l=1

[
ai+

l ai
l + ai

l a
i+
l

]
(2.22)

eingeführt. In O(1/R) entspricht der effektive Hamilton-Operator dem Hamilton-
Operator eines freien bosonischen Strings [22],[25].
Die Operatoren sind wie üblich in Normalordnung zu schreiben, insbesondere natürlich
auch der Operator L̂. Benutzt man die Kommutatoren (2.19) und führt in dem resul-
tierenden Term ohne Fourier-Mode die Summe über die transversalen Freiheitsgrade
direkt aus, so ergibt sich

L̂ =
∞∑

l=1

d−1∑

i=2

ai+
l ai

l +
(d− 2)

2

∞∑

l=1

l. (2.23)

Der divergente zweite Term lässt sich über die Riemannsche Zeta-Funktion regulari-
sieren [24]. Man benutzt dabei die Definition

ζ(s) ≡
∞∑

l=1

l−s für s > 1 und somit
∞∑

l=1

l =̂ ζ(−1) (2.24)
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und verwendet die analytische Fortsetzung der Riemannschen Zeta-Funktion für s ≤ 1,
nach der gilt: ζ(−1) = − 1

12 . In regularisierter Form lautet der Operator L̂ also:

L̂ =
∞∑

l=1

d−1∑

i=2

ai+
l ai

l −
(d− 2)

24
(2.25)

Lässt man den Operator L̂ auf einen beliebigen Zustand des Fock-Raumes wirken, so
ergibt sich die Eigenwertgleichung

L̂ |Nli 〉 =

( ∞∑

l=1

d−1∑

i=2

Nli l − (d− 2)
24

)
|Nli 〉 . (2.26)

Mit der Energiequantenzahl
∞∑

l=1

d−1∑

i=2

Nli l ≡ n ∈ N (2.27)

ergeben sich dann die entarteten Energieniveaus

En = σ R

√
1 +

2π
σ R2

(
n− 1

24
(d− 2)

)
. (2.28)

Der Grundzustand E0 entspricht dem statischen qq̄-Potential,

V (R) = σ R

√
1− π

12 σ R2
(d− 2), (2.29)

das von Alvarez und Arvis hergeleitet wurde. Das Potential reproduziert in O(1/R)
den Lüscher Term aus (1.18).
Dieses besitzt eine kritischen Abstand RC =

√
π

12 σ (d− 2), bei dem das Potential
und somit die Bindungsenergie imaginär wird. Dieser Effekt lässt sich interpretieren
als Tachyon im Stringspektrum.

2.2.3 Die Weyl-Anomalie

Die hier verwendete Lösung mit der Eichung (2.10) ist nicht praktisch um die Weyl-
Anomalie zu betrachten, da in diesem Fall die Rotationsinvarianz der Theorie durch
die fixierten Enden explizit gebrochen ist. Um die Weyl-Anomalie betrachten zu
können, müssen die Enden des Strings beweglich sein.
Die Weyl-Anomalie selbst wird deshalb hier nicht explizit betrachtet. Wichtig ist aller-
dings die Tatsache, dass die Forderung nach Lorentz-Invarianz im Fall von beweglichen
Enden nur erfüllt wird, falls gilt [23]

d = 26 und somit L̂ =
∞∑

l=1

25∑

i=2

ai+
l ai

l − 1. (2.30)

Dies ist die Weyl-Anomalie, die das Hauptproblem der Nambu-Stringtheorie als effek-
tive Stringtheorie für die Flussröhre darstellt, da eine konsistente Quantisierung der
Theorie im wichtigen Fall d = 4 nicht möglich ist.
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(+,+) (+,−) (−,−) (−,+)
E0 1
E1 a+

1

E2 (a+
1 )2 a+

2

E3 (a+
1 )3, a+

3 a+
2 a

+
1

E4 (a+
1 )4, a+

1 a
+
3 , (a+

2 )2 (a+
1 )2a+

2 , a
+
4

Tabelle (1): Die Zustände des Fockraumes zugehörig zu den niedrigsten fünf Ener-
gieniveaus, sortiert nach (C,P )-Kanälen.

2.2.4 Klassifizierung der Schwingungszustände in 2+1 Dimensionen

Wichtig im Kontext dieser Arbeit, im Hinblick auf die Simulationen, ist das Modell in
2+1-Dimensionen, in dem es nur einen transversalen Freiheitsgrad mit den Erzeugern
a+

l und Vernichtern und al gibt. Um eine differenzierte Kopplung an die niedrigsten
vier Energieniveaus zu erreichen, kann man die Quantenzahlen bezüglich Ladungs-
konjugation und Parität (C,P ) benutzen.
Das Verhalten der Erzeuger und Vernichter unter Ladungskonjugation und Paritäts-
transformation wird in Anhang (A.2) behandelt. Die Operatoren zu den untersten
fünf Energieniveaus sortiert nach (C,P ) sind in Tabelle (1) aufgelistet und die mittlere
quadratische Anweichung von der Stringachse der Grundzustände der Quantenzahlen
+−,−− und −+ in Abbildung (7) gezeigt.
Die Zustände des Fock-Raumes können nun nach drei Quantenzahlen klassifiziert wer-
den, ihrem Verhalten bezüglich (C,P ), was als Kanal K = ++, +−, −−, −+ bezeich-
net wird, und dem Energieniveaum im jeweiligen Kanal. Die entarteten Eigenzustände
zu diesen Quantenzahlen werden bezeichnet mit

∣∣SK
m

〉
und die zugehörigen Energien

mit EK
m . Nach Tabelle (1) kann man identifizieren:

E++
0 = E0, E+−

0 = E1, E−−0 = E2, E−+
0 = E3 (2.31)

Betrachtet man Wilson-Loops mit speziellen Zuständen
∣∣QK(R, τ)

〉
(vergl. Kapitel

(1.3) und (1.4)), so gilt für deren Erwartungswerte WK(R, T ) nach Gleichung (1.15)

WK(R, T ) =
∑

L

∞∑

m=0

∣∣〈QK(R, 0) | SL
m

〉∣∣2 e−EL
m(R) T , (2.32)

wobei der effektive Hamilton-Operator (2.21) für die Zeitentwicklung verwendet wur-
de. Die erste Summe läuft über alle Kanäle L und die zweite Summe über die Ener-
gieniveaus m in den Kanälen, wobei eine Summation über die Entartung impliziert
wird.
Enstprechen die Quantenzahlen des Operators Q̂K bezüglich (C,P ) den Quantenzah-
len des Kanals K, so erwartet man, dass approximativ gilt

∣∣〈QK(R, 0) | SL
m

〉∣∣2 =
∣∣〈QK(R, 0) | SK

m

〉∣∣2 δKL, (2.33)
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〈
a+

1

∣∣ X2(κ)
∣∣a+

1

〉
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<
X

2 >

κ

〈
a+

2

∣∣ X2(κ)
∣∣a+

2

〉
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<
X

2 >

κ

〈
a+

2 a
+
1

∣∣ X2(κ)
∣∣a+

2 a
+
1

〉
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<
X

2 >

κ

Abbildung (7): Die mittleren quadratischen Abweichungen
〈
X2(κ)

〉
der Grund-

zustände der Kanäle +−,−− und −+.

und man kann in Analogie zu Gleichung (1.16) den Erwartungswert (2.32) schreiben
als

WK(R, T ) = αK(R) e−EK
0 (R) T

(
1 +

∞∑

m=1

βK
m (R) e−∆EK

m(R) T

)
. (2.34)

Diese Zuordnung von Operatoren zu speziellen String-Kanälen ermöglicht den Ver-
gleich von Gitterrechnungen mit den ersten vier Energieniveaus des Strings.

2.3 Dualität zwischen offenen und geschlossenen Strings

2.3.1 Duale Interpretation der Polyakov-Loop-Korrelationsfunktion

In Kapitel (1.4) wurde die Spektraldarstellung für Wilson-Loops hergeleitet und ih-
re Beziehung zum statischen Quark-Antiquark Potential. Eine vollkommen analoge
Darstellung existiert auch für Polyakov-Loop-Korrelationsfunktionen 〈P+(0) P (R)〉,
wobei der Operator P (L) eine Linie von Links im Abstand L in x1-Richtung zum
Ursprung ist, die sich einmal um eine kompaktifizierte Zeitdimension x0 der Länge T
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wickelt. Deren Korrelationsfunktion lässt sich schreiben als [26]

〈
P+(0) P (R)

〉
=

∞∑

k=0

βk e
−Ek(R) T ≡ Z(R, T ). (2.35)

Z(R, T ) ist die Zustandssumme der reinen Eichtheorie in Anwesenheit eines stati-
schen qq̄-Paares mit dem Abstand R, die Ek(R) sind wie bei den Wilson-Loops die
Bindungsenergien des Zustandes.
Vollkommen analog kann man aber auch annehmen, dass statt der Zeitrichtung eine
der räumlichen Dimensionen kompaktifiziert ist, z.B. die x1-Richtung mit der Länge
R. In diesem Fall kann man Polyakov-Loop-Korrelationsfunktionen zwischen zwei
Polyakov-Loops im Abstand T voneinander betrachten. Diese entsprechen dann dem
Propagator eines geschlossenen Strings der Länge R im Zeitintervall T , der um die
x1-Richtung gewickelt ist.
Nach Lüscher und Weisz (Siehe [26] und darin enthaltene Literaturangaben.) impli-
ziert dies, dass sich die Korrelationsfunktion in einer Reihe von Bessel-Funktionen
Km(x) entwickeln lässt nach

〈
P+(0) P (T )

〉
=

∞∑

k

β̃k(T )

(
Ẽk(T )
2π R

) 1
2

(d−1)

K 1
2
(d−3)

(
Ẽk(T )R

)
. (2.36)

Ist eine solche Entwicklung auch für die Zustandssumme Z(R, T ) möglich, so gibt es
eine mögliche duale Beschreibung von offenen und geschlossenen Strings. Zu untersu-
chen ist im Einzelfall also, ob sich die Zustandssumme Z(R, T ) für große R und T
gemäß Gleichung (2.36) entwickeln lässt.

2.3.2 Dualität im Falle der Nambu-Stringtheorie

Eine Theorie, die die Dualität zwischen offenen und geschlossenen Strings erfüllt, ist
die Nambu-Stringtheorie, wie zuerst von Lüscher und Weisz [26] und später auch von
Billó und Casselle [13] gezeigt wurde.
Die zur Theorie gehörige Zustandssumme lässt sich nach (2.35) und (2.28) schreiben
als

Z(R, T ) =
∞∑

k=0

βk e
−Ek(R) T mit Ek = σ R

√
1 +

2π
σ R2

(
k − 1

24
(d− 2)

)
. (2.37)

Nach einer längeren Rechnung, die z.B. im Anhang von [26] skizziert wird, lässt sich
diese Zustandssumme wie Gleichung (2.36) schreiben, wobei die Koeffizienten und
Energien des geschlossenen Strings gegeben sind als

β̃k(T ) =
σ T

Ẽk

(π
σ

) 1
2

(d−2)
βk und Ẽk = σ T

√
1 +

8π
σ T 2

(
k − 1

24
(d− 2)

)
. (2.38)
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2.4 Lüscher-Weisz-Stringtheorie

2.4.1 Die effektive Wirkung

Analog zum Wilson-Loop ergibt sich auch bei der Polyakov-Loop Korrelationsfunktion
das approximative Flächenverhalten

Z‖(R, T ) = e−σ A = e−σ R T , (2.39)

wobei A = R T die Fläche zwischen den Polyakov-Loops ist. Um eine effektive
Stringtheorie für die Korrelationsfunktion zu erhalten, wählt man deshalb den An-
satz

Z(R, T ) = Z‖(R, T )
∫
DX e−SLW [Xi]. (2.40)

Dabei wird der Polyakov-Loop in die x0x1-Ebene gelegt und die Fläche mit τ und κ
analog zu (2.10) parametrisiert, wobei hier der Einfachheit halber κ ∈ [0, R] gewählt
wird. Xi(κ, τ) mit i = 2, . . . , d − 1 sind die Felder der transversalen Freiheitsgrade
und es gelten die Randbedingungen:

Xi(0, τ) = Xi(R, τ) = 0 und Xi(κ, τ) = Xi(κ, τ + T ) (2.41)

SLW

[
Xi

]
ist die von Lüscher und Weisz betrachtete Wirkung:

SLW =
1
2

∫
dτdκ

[
∂aX

i ∂aXi

]
(2.42)

+
1
4
b

∫
dτ

[
∂κX

i ∂κXi

∣∣
κ=0

+ ∂κX
i ∂κXi

∣∣
κ=R

]
(2.43)

+
1
4

∫
dτdκ

[
c1 ∂aX

i ∂aXi ∂bX
j ∂bXj + c2 ∂aX

i ∂bXi ∂aX
j ∂bXj

]
,(2.44)

+ . . .

Sie ist eine Entwicklung nach Ableitungen des FeldesXi, die alle Terme bis zuO(1/R3)
enthält, die bestimmten Symmetrien [15],[26] genügen. Für die Kopplungskonstanten
ergeben sich durch die Forderung nach Dualität zwischen offenen und geschlossenen
Strings bestimmte Einschränkungen.
Der Term in der ersten Zeile (2.42) korrespondiert mit einem freien bosonischen String
und ist der Term führender Ordnung. Der Term in der zweiten Zeile (2.43) ist der
Wechselwirkungsterm erster Ordnung, dessen Kopplungskonstante b die Dimension
[b] = [Länge] hat und der nur auf den Rändern des Polyakov-Loops wirkt. Die beiden
Terme in der dritten Zeile (2.44) sind die Terme nächster Ordnung und die zugehöri-
gen Kopplungskonstanten c1 und c2 haben die Dimension [c1] = [c2] = [Länge]2. Die
Punkte repräsentieren Terme höherer Ordnung, bei denen weitere Kopplungskonstan-
ten auftauchen.
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2.4.2 Die führende Ordnung – Der freie bosonische String

In führender Ordnung besteht die effektive Wirkung nur aus dem Term aus Zeile
(2.42), was einem freien String entspricht. Das Funktionalintegral aus (2.40) lässt sich
dann auswerten [28],[29] und man erhält in Zeta-Funktions-Regularisierung mit (2.39):

Z0(R, T ) = e−σ R T
[
η

(
e−π T

R

)]2−d
(2.45)

Dabei ist η(q) die Eta-Funktion, die definiert ist über

η(q) = q
1
24

∞∏

k=1

(
1− qk

)
. (2.46)

Entwickelt man (2.45) nach e−π T
R , so ergeben sich im Vergleich mit (2.35) die Energien

E0
k(R) = σ R+

π

R

(
k − 1

24
(d− 2)

)
, (2.47)

die mit den Energien der Nambu-Stringtheorie (2.28) in O(1/R) übereinstimmen. Die
Dualität zwischen offenen und geschlossenen Strings ist gültig in führender Ordnung
und liefert die Energien

Ẽ0
k(T ) = σ T +

4 π
T

(
k − 1

24
(d− 2)

)
(2.48)

für den zugehörigen geschlossenen String [26].

2.4.3 Dualität bis zur O(1/R3) und Energieniveaus

Um die Dualität bis zur Ordnung 1/R3 zu untersuchen wird zunächst die Zustands-
summe perturbativ ausgewertet und die resultierenden Terme mit der entsprechenden
Entwicklung der Polyakov-Loop Korrelationsfunktion (2.36) verglichen. Für die De-
tails sei auf [26] verwiesen.
Die Prozedur liefert in Ordnung 1/R2 einen Term proportional zu b, der nicht mit der
Dualität zu vereinen ist, weshalb b = 0 zu setzen ist. In Ordnung 1/R3 ergibt sich die
algebraische Beziehung

(d− 2) c1 + c2 =
d− 4
2 σ

(2.49)

zwischen den Kopplunskonstanten c1 und c2.
Berechnet man das Energiespektrum mit diesen Einschränkungen, so erkennt man,
dass die Entartung der Energiezustände bezüglich verschiedener Drehimpulsquanten-
zahlen der Rotationen um die Stringachse im Allgemeinen aufgehoben ist. Es ergeben
sich nach [26] die Energien

En,l = E0
n + π2

R3 c1
[
n

(
1
12 (d− 2)− n)

+ αn,l (c2 + 2 c1)
]

+
(

π
24

)2 d−2
2 R3 [2 c1 + (d− 1) c2] ,

(2.50)
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wobei die Koeffizienten αn,l die Entartung aufheben. Für die Koeffizienten selbst sei
auf Tabelle 2 aus [26] verwiesen.
Für diese Arbeit ist, wie bereits beschrieben, der Fall mit d = 2 + 1 relevant. Es
gibt dann nur ein transversales Feld X und die beiden Wechselwirkungsterme aus
Zeile (2.44) der effektiven Wirkung sind äquivalent. In diesem Fall ist das Verhältnis
zwischen c1 und c2 nicht festgelegt und man kann o.B.d.A c2 = −2 c1 setzen. Nach
Gleichung (2.49) folgt dann c1 = 1

2 σ und für die Energien ergibt sich

En = σ R+
π

R

(
n− 1

24

)
− π2

2 σ R3

(
n− 1

24

)2

+O
(

1
R5

)
. (2.51)

Diese Energien stimmen bis zur Ordnung O(1/R3) mit den Energien der Nambu-
Stringtheorie (2.28) überein.

2.5 Polchinski-Strominger-Stringtheorie

2.5.1 Die Polchinski-Strominger-Wirkung

Um die Weyl-Anomaile zu vermeiden führte zunächst Polyakov [30] einen zusätzlichen
Term mit einer intrinsischen Metrik in die Wirkung des freien bosonischen Strings ein.
Dies verhinderte zwar das Auftauchen der Weyl-Anomalie, sorgte allerdings auch für
einen zusätzlichen unphysikalischen Freiheitsgrad in Form einer Liouville-Mode.
Polchinski und Strominger [27] ersetzten die intrinsische Metrik durch die von der
Parametrisierung κ+ und κ− induzierte Metrik hab = ∂aX

µ ∂bXµ, mit a, b = +,− und
der Weltfläche Xµ(κ+, κ−) des Strings.
Die von Polchinski und Strominger betrachtete Wirkung lautet:

SPS =
1

2π α

∫
dκ+dκ−

[
H + α β

∂2
+X

µ ∂−Xµ ∂+X
ν ∂2−Xν

H2

]
(2.52)

Dabei wurden folgende Konventionen verwendet8:

κ± ≡ τ ± κ, ∂± ≡ ∂κ± , α =
1

2π σ
und H ≡ ∂+X

µ ∂−Xµ (2.53)

Die Felder Xµ(κ+, κ−) sind Felder einer zweidimensionalen konformen Feldtheorie
der String-Weltfläche in radialer Quantisierung mit den Parametern κ± nach Anhang
(B.3). Einige Aspekte konformer Feldtheorien werden in Anhang (B) behandelt. Für
eine detaillierte Behandlung sei auf [31] verwiesen.
Die Wirkung (2.52) ist die führende Ordnung einer Reihenentwicklung in 1/R, die
alle Terme enthält, die konsistent mit den String-Symmetrien sind und die Weyl-
Anomalie vermeiden. Dabei werden als einzige inverse Operatoren Terme der Form

8κ+ und κ− werden häufig als Lichtkegel-Koordinaten (engl.: ligh-cone) bezeichnet.



2.5 Polchinski-Strominger-Stringtheorie 25

H−n zugelassen, da diese im Falle des Vakuums eines langen Strings einen hohen
klassischen Erwartungswert haben. Außerdem werden keine Terme mit

∂+∂−Xµ und ∂±Xµ ∂±Xµ

berücksichtigt, da die Erwartungswerte des ersten Terms, Aufgrund der Bewegungs-
gleichung des freien Strings, genauso wie die des zweiten verschwinden.
Berücksichtigt man diese Bedingungen und, dass jede erste Ableitung ∂±Xµ = O(R),
sowie jede höhere ∂m±Xµ = O(1) ist, so lässt sich zeigen, dass die Wirkung (2.52) bis
zur Ordnung 1/R6 alle möglichen Terme enthält [32].

2.5.2 Entwicklung um das Vakuum des langen geschlossenen Strings

Im Folgenden wird ein geschlossener String betrachtet, der um die kompaktifizierte
Dimension x1 der Länge R gewickelt ist. Für die Felder Xµ gilt dann allgemein

Xµ(τ, κ+ 2π) = Xµ(τ, κ) +R δµ1. (2.54)

Die klassische Lösung der freien Bewegungsgleichung für den Grundzustand lautet in
diesem Fall

Xµ
kl = eµ+

R

2π
κ+ + eµ−

R

2π
κ−, mit

(
eµ±

)2 = 0 und eµ+e−µ = −1
2

(2.55)

und der zugehörige klassische Impuls ist

pµ
kl ≡

1
α

(
∂+ X

µ
kl + ∂− X

µ
kl

)
=

1
2π α

R
(
eµ+ + eµ−

)
. (2.56)

Nun wird das Fluktuationsfeld

Ỹ µ(κ+, κ−) = Xµ −Xµ
kl (2.57)

eingeführt, das Abweichungen von der klassischen Lösung beschreibt. Diese Abwei-
chungen entsprechen den transversalen Freiheitsgraden der Theorie.

2.5.3 Energie-Impuls Tensor und Zentralladung

Die Wirkung (2.52) ist invariant unter den modifizierten konformen infinitesimalen
Transformationen

δXµ = ε−(κ−) ∂−Xµ + ε+(κ+) ∂+X
µ

−β α
4

(
∂2− ε−(κ−) ∂+Xµ

H + ∂2
+ε

+(κ+) ∂−Xµ

H

)
.

(2.58)

Dabei sind ε± die Erzeuger infinitesimaler konformer Transformationen.
Die übliche Prozedur liefert den Energie-Impuls-Tensor und eine Redefinition des
Fluktuationsfeldes Ỹ µ → Y µ führt auf die Lagrange-Dichte (B.11) und die Energie-
Impuls-Tensoren (B.12) und (B.13). Für die Details der umfangreichen Rechnungen



26 II Effektive Stringtheorie

sei auf [32] verwiesen. Die Theorie für Y µ entspricht einer quasifreien Theorie, was da-
zu führt, dass die Operatorprodukte analog zum freien Fall berechnet werden können.
Für den Energie-Impuls Tensor ergeben sich bis zur Ordnung 1/R2 die Operatorpro-
dukte

T±±(κ±)T±±(0) ∼ 12 β + d

2 (κ±)4
+

2 T±±(0)
(κ±)2

+
∂±T±±(0)

κ±
. (2.59)

Der Vergleich dieses Resultats mit (B.5) liefert die Zentralladung c = 12 β + d. Die
resultierende Virasoro-Algebra (B.8) muss die Zentralladung c = 26 besitzen, damit
die Weyl-Anomalie vermieden wird. Die Kopplungskonstante β wird durch diese Be-
dingung fixiert und es gilt

β =
26− d

12
. (2.60)

2.5.4 Virasoro-Generatoren

Die primären Felder der Theorie sind hier die Ableitungen des Fluktuationsfeldes, die
man analog zu (B.6) entwickelt als

∂−Y µ =
√
α

2

∞∑

l=−∞
aµ

l e
−il κ− und ∂+Y

µ =
√
α

2

∞∑

l=−∞
ãµ

l e
−il κ+

. (2.61)

Dabei gilt für die Operatoren aµ
−l ≡ aµ+

l und analog ãµ
−l ≡ ãµ+

l , außerdem ist der
Impuls der Fluktuationen gegeben über

pµ
Y =

√
1

2 α
(a0 + ã0) , (2.62)

Die Operatoren aµ+
l und aµ

l sind d Generationen von Erzeugungs und Vernichtungs-
operatoren, ebenso wie die Operatoren ãµ+

l und ãµ
l , und es gelten die Vertauschungs-

relationen [
aµ

l , a
ν+
k

]
=

[
ãµ

l , ã
ν+
k

]
= l δµν δlk. (2.63)

Alle anderen Kommutatoren verschwinden. Eine zu (B.7) analoge Entwicklung der
Energie-Impuls-Tensoren (B.12) und (B.13) liefert die Virasoro-Generatoren (B.15)
und (B.16). Die Virasoro-Nullmoden lauten also:

L0 =
R

2π

√
2
α
eµ− a0µ +

1
2

(aµ
0 )2 +

∞∑

l=1

aµ+
l alµ +

β

2
+O(1/R3) (2.64)

L̃0 =
R

2π

√
2
α
eµ+ ã0µ +

1
2

(ãµ
0 )2 +

∞∑

l=1

ãµ+
l ãlµ +

β

2
+O(1/R3) (2.65)
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2.5.5 Fock-Raum der Fluktuationen

In einer konformen Feldtheorie lässt sich der Fock-Raum stets durch einen bestimmten
Eigenzustand |kµ 〉 zu den Operatoren aµ

0 und ãµ
0 aufbauen. Diese als Descendanten

bezeichneten Räume zum Zustand |kµ 〉 sind geschlossen unter konformen Transfor-
mationen und Anwendung beliebiger, aus aµ

l , a
µ+
l , ãµ

l und ãµ+
l aufgebauter Operatoren

[31].
Als Grundzustand wird hier der Zustand mit

aµ
0 |p〉 = ãµ

0 |p〉 =
√
α

2
pµ

Y |p〉 (2.66)

verwendet und für die Vernichter gilt die Relation

aµ
l |p〉 = ãµ

l |p〉 ≡ 0 ∀ µ, l > 0. (2.67)

Angeregte Zustände werden durch Erzeuger gebildet, die auf den Grundzustand wir-
ken, und für physikalische Zustände gelten die Forderungen (B.9) und (B.10). Für die
Wirkung der Virasoro Nullmoden auf einen angeregten Zustand |ψ 〉 mit Nlµ Erzeu-
gern aµ+

l und Ñkν Erzeugern ãν+
k gilt dann nach (2.66) und den Kommutatorrelationen

(2.63):

L0 |ψ 〉 =


α

4
(
pµ

Y

)2 +
R

2π
eµ− pY µ +

β

2
+

∑

l,µ

l Nlµ +O(1/R3)


 |ψ 〉 (2.68)

L̃0 |ψ 〉 =


α

4
(
pµ

Y

)2 +
R

2π
eµ+ pY µ +

β

2
+

∑

k,ν

l Ñkν +O(1/R3)


 |ψ 〉 (2.69)

Nach (B.10) gilt dann mit n ≡ 1
2

∑
l,µ l

(
Nlµ + Ñlµ

)
die Relation

α

2
(
pµ

Y

)2 +
R

2π
(
eµ− + eµ+

)
pµ

Y + β + 2 n+O(1/R3) = 2. (2.70)

n ist die jeweilige Energiequantenzahl des entarteten Energiezustandes. Die Bedingung
des verschwindenden transversalen Impulses in der geschlossenen Richtung des Strings
sowie die Bedingung (B.9) sorgen dafür, dass genau d− 2 unabhängige Komponenten
übrigbleiben [27]. Es tauchen demnach keine zusätzlichen Freiheitsgrade auf, was die
Konsistenz der Theorie gewährleistet.

2.5.6 Energiezustände

Der Gesamtimpuls des geschlossenen Strings ist gegeben über

Pµ = pµ
kl + pµ

Y =
R

2π α
(
eµ− + eµ+

)
+ pµ

Y . (2.71)
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Die Energie des Strings lautet dann

E ≡
√
− (Pµ)2 =

√(
R

2π α

)2

− (
pµ

Y

)2 − R

π α

(
eµ+ + eµ−

)
pµ

Y . (2.72)

Ausnutzen der Relation (2.70) liefert mit (2.53) und (2.60) die Energiezustände

En = σ R

√
1 +

8 π
σ R2

(
n− 1

24
(d− 2)

)
+O(1/R5). (2.73)

Diese Energien stimmen mit den Energien des geschlossenen Strings der Nambu
Stringtheorie (2.38) bis zur Ordnung 1/R3 überein.
Anzumerken sei, dass die Energiequantenzahl zunächst auch halbzahlig sein kann. Be-
trachtet man allerdings den Propagator eines geschlossenen Strings, der zu der Kor-
relationsfunktion von zwei um eine kompaktifizierte Dimension gewickelten Polyakov-
Loops korrespondiert, so ergeben sich zusätzlich noch Dirichlet-Randbedingungen für
die räumlichen Richtungen analog zu [13], die zu der zusätzlichen Bedingung

(
L0 − L̃0

)
|ψ 〉 = 0 (2.74)

für alle physikalischen Zustände |ψ 〉 führen. Dies sorgt für die Bedingung Ñlµ = Nlµ

und somit für stets ganzzahlige Energiequantenzahlen.
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Da eine analytische Betrachtung nicht-pertubativer QCD nicht möglich ist, ver-
wendet man Monte-Carlo Simulationen von Feldtheorien auf endlichen Raumzeitgit-
tern, um Erwartungswerte von Observablen zu bestimmen. Dabei nutzt man die for-
male Analogie zwischen statistischer Mechanik und dem Pfadintegral in der euklidi-
schen Feldtheorie.
In dieser Arbeit sind nur Monte-Carlo-Simulationen für reine Eichtheorie relevant,
weshalb das nächste Kapitel auf diese beschränkt bleibt. Simulationen mit dynami-
schen Fermionen sind aufgrund der Grassmanwertigkeit der fermionischen Felder we-
sentlich komplizierter [4].

3.1 Monte-Carlo-Simulationen

In reiner Eichtheorie auf dem Gitter wird der Erwartungswert einer Observablen F [U ]
berechnet über das Funktionalintegral (1.20). Dieses ist auf einem endlichen Gitter
zwar endlich-dimensional, hat allerdings im Allgemeinen immer noch zu viele Frei-
heitsgrade, um einer direkten numerischen Integration zugänglich zu sein. Man be-
nutzt deshalb Monte-Carlo-Simulationen um die Erwartungswerte zu berechnen.

3.1.1 Ensemble-Mittelwerte

Das Funktionalintegral (1.20) entspricht formal einem Erwartungswert der statisti-
schen Mechanik mit der Wahrscheinlichkeitsverteilung

P ({U}) = e−SG[{U}] (3.1)

der Feldkonfigurationen {U} des Eichfeldes. Man ersetzt deshalb formal den Erwar-
tungswert durch den Ensemblemittelwert eines Ensembles von N mit einem entspre-
chenden Algorithmus zufällig erzeugter Feldkonfigurationen {U}i mit der Verteilung
P ({U}). Es gilt dann

〈F [U ]〉 =
1
N

N∑

i=1

F [{U}i] . (3.2)

Der Algorithmus der die Feldkonfigurationen erzeugt, ist so zu wählen, dass die Ver-
teilung der Feldkonfigurationen die Wahrscheinlichkeitsverteilung (3.1) approximiert
und im Grenzfall N →∞ mit dieser identisch ist.

3.1.2 Update-Algorithmen

Die Feldkonfiguration {U}i wird unmittelbar aus der vorherigen Konfiguration {U}i−1

erzeugt, wobei die Konfiguration {U}i−2 die neue Konfiguration nicht beeinflusst.
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Einen solchen Prozess bezeichnet man als Markov-Prozess. Einen Algorithmus, der
eine neue Feldkonfiguration {U}k aus einer alten {U}i mit der Übergangswahrschein-
lichkeit Pik erzeugt, bezeichnet man als Update-Algorithmus.
Damit durch diesen das entsprechende Ensemble generiert wird, ist zu fordern, dass
jede Feldkonfiguration mit einer endlichen Wahrscheinlichkeit aus der unmittelbar
vorherigen erzeugt werden kann. Also muss für die Übergangswahrscheinlichkeiten
gelten: ∑

k

Pik = 1 und Pik > 1 ∀ i, k (3.3)

Da der Update-Formalismus die Verteilung (3.1) generieren soll, muss diese der einzige
globale Fixpunkt des Update-Algorithmus sein.
Wählt man eine beliebige Anfangskonfiguration, so muss diese nicht notwendigerweise
eine Konfiguration sein, deren Auftrittswahrscheinlichkeit in der Nähe des Maximums
der Verteilung liegt. Da dies bei endlichen Messungen eine Rolle spielt, ist es deshalb
sinnvoll die ersten Messungen nicht zur Berechnung des Mittelwertes zu benutzen, da
diese andernfalls das Ergebnis beeinflussen können. Man spricht vom Thermalisieren
des Gitters.
Für reine Eichtheorie ist der sogenannte Heatbath-Algorithmus [33] sehr effizient,
der in einer optimierten Variante [34] auch bei den Simulationen in dieser Arbeit
verwendet wird.

3.1.3 Messfehler und Jackknife-Methode

Bei Messungen mit N unkorrelierten Messergebnissen {fi} einer Observablen F be-
rechnet sich der Messfehler uF über

uF ≡ σF√
N − 1

mit der Varianz σ2
F =

1
N

N∑

i=1

[fi − 〈F 〉]2 . (3.4)

Im Prinzip können die statistischen Daten aus Monte-Carlo-Simulationen als Messwer-
te angesehen werden, wobei die einzelnen Messwerte fi ≡ F [{U}i] durch den Update-
Algorithmus korreliert sind.
Eine typische Maß für die Korrelation die Autokorrelationszeit τF , die den exponen-
tiellen Abfall der Autokorrelationsfunktion

Γ(i) ≡ 〈(fi − 〈F 〉) (f0 − 〈F 〉)〉 (3.5)

beschreibt. Für korrelierte Daten erhält man für die Fehlerabschätzung die modifizier-
te Varianz

σ2
F ≡

2 τF
N

N∑

i=1

[fi − 〈F 〉]2 . (3.6)

Durch die Korrelation wird also die effektive Anzahl der Messwerte gemindert.
Es gibt nun zwei Möglichkeiten den Fehler bei korrelierten Messwerten zu bestim-
men. Die erste, die sogenannte Γ-Methode, bestimmt den Fehler direkt aus einer
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Abschätzung für die Autokorrelationsfunktion [35]. Die zweite Methode ist die so-
genannte Jackknife-Methode.
Bei dieser Methode fast man zunächst die Messwerte in Ñ = N/M Blöcken aus N−M
Messwerten zusammen und benutzt die Mittelwerte

f̄k ≡ 1
N −M




N∑

i=1

fi −
M∑

j=1

f[M (k−1)+j]


 (3.7)

als neue Messwerte. Bei hinreichender Statistik und optimalem M können die neuen
Messwerte als unkorreliert angesehen werden und der Messfehler berechnet sich als

u2
F =

(Ñ − 1)
Ñ

Ñ∑

k=1

[
f̄k − 〈F 〉

]2
. (3.8)

Die Methode liefert auch die Möglichkeit, einen stabilen Messfehler für Observablen
anzugeben, die nicht direkt von den Eichfeldern abhängen sondern vom Mittelwert
einer Observablen 〈F 〉. Der Messfehler uG der Observablen G [〈F 〉] lässt sich dann
berechnen über

u2
G =

(Ñ − 1)
Ñ

Ñ∑

k=1

[
G

[
f̄k

]− 〈G〉]2 mit 〈G〉 ≡ 1
Ñ

M∑

k=1

G
[
f̄k

]
. (3.9)

M lässt sich optimieren, indem man die Varianz der Observablen gegen die Größe der
Blöcke aufträgt. Erreicht der Graph ein Plateau, so kann eine beliebiges M , dessen
Messfehler auf dem Plateau liegt, gewählt werden.

3.2 Operatoren für angeregte String-Zustände

Nach Kapitel (I) ist der Wilson-Loop eine geeignete Observable um Flussröhren in Git-
terrechnungen zu untersuchen. Dieser ist eine geschlossene Linie gluonischen Flusses
und wird auf dem Gitter zu dem pfadgeordneten Produkt von Linkvariablen entlang
einer geschlossenen Linie. Ein rechteckiger Wilson-Loop mit den Kantenlängen R und
T auf dem Gitter ist in Abbildung (8) gezeigt.
Ziel ist es, mithilfe von Wilson-Loops die Energien der angeregten Zustände der
Flussröhren in Monte-Carlo-Simulationen zu berechnen.

3.2.1 Die Operatorbasis und die Korrelationsmatrix

Rechteckige Wilson-Loops sind ähnlich wie Polyakov-Loop-Korrelationsfunktionen wir-
kungsvolle Observablen um den Grundzustand des statischen Potentials zu betrachten.
Für die angeregten Zustände sind beide Observablen ungeeignet, da nach der Spek-
traldarstellung von Wilson-Loops (1.16) und Polyakov-Loop-Korrelationsfunktionen
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Abbildung (8): Links: Rechteckiger Wilson-Loop mit den Kantenlängen R und T
auf dem Gitter. Rechts: Die bei den Simulationen dieser Arbeit verwendete Opera-
torbasis {Sj}.

(2.35) der Beitrag der angeregten Zustände exponentiell unterdrückt wird.
Bessere Observablen sind Wilson-Loops, deren Operatoren QK(r, t) auf den räum-
lichen Linien definierte Quantenzahlen bezüglich Ladungskonjugation und Parität
(C,P ) besitzen. Dabei ist r die Länge der Operatoren in räumlicher Richtung und
t die Zeitebene in der der Operator liegt, K = ++, +−, −−, −+ bezeichnet die
Kanäle. Der Erwartungswert eines Wilson-Loops zugehörig zum Kanal K wird defi-
niert als

WK(R, T ) ≡
〈
Tr

[
QK(R, 0) ◦ T (R, T ) ◦ (

QK(R, T )
)+ ◦ T +(R, 0)

]〉
, (3.10)

wobei T (r, t) das Produkt von zeitlichen Links entlang eine gerade Linie der Länge t
im Abstand r vom Startpunkt des Wilson-Loops ist. R ist die räumliche Ausdehnung
entlang der geraden Achse des Loops, T die zeitliche Ausdehnung. Für ihren Erwar-
tungswert erwartet man eine Spektraldarstellung analog zu (2.34).
Die Operatoren QK sind nicht direkt bekannt, weshalb eine Operatorbasis von min-
destens vier Operatoren Sj benutzt wird, die dem Produkt von Linkvariablen entlang
gekrümmter Wege an den Enden des Wilson-Loops entsprechen. Die in dieser Arbeit
verwendeten Basis-Operatoren sind auf der rechten Seite von Abbildung (8) gezeigt.
Die Eigenzustände dieser Basis bezüglich den Quantenzahlen (C,P ) entsprechen den
Operatoren QK .
Man erhält die Eigenzustände, indem man mit den Basisoperatoren eine Korrelations-
matrix K bildet und diese diagonalisiert [25]. Die Eigenzustände der Korrelationsma-
trix entsprechen in diesem Fall den Operatoren QK . Die Elemente der Korrelations-
matrix sind Erwartungswerte von Wilson-Loops mit dem Basisoperator Si am unteren
Ende und dem Basisoperator Sj am oberen Ende, d.h.:

Kij ≡
〈
Tr

[
Si(R, 0) ◦ T (R, T ) ◦ (Sj(R, T ))+ ◦ T +(R, 0)

]〉
(3.11)
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3.2.2 Die Eigenzustände der Korrelationsmatrix zur Operatorbasis {Sj}
Im Falle der in dieser Arbeit verwendeten Operatorbasis kann man die Eigenzustände
bezüglich (C,P ) analytisch erhalten und muss nicht jeweils einzeln die Korrelations-
matrix berechnen.
Konjugiert man die Ladung, so werden Quark und Antiquark vertauscht, was zu einer
Spiegelung an der Ebene senkrecht zur räumlichen Loop-Achse führt. Unter dieser
Operation gilt also für die Operatoren

S1
C←→ S2 und S3

C←→ S4. (3.12)

Unter der Paritätstransformation wird die Bewegungsrichtung umgedreht, was zu ei-
ner Spiegelung an der Verbindungslinie zwischen den Endpunkten führt und somit
zu

S1
P←→ S3 und S2

P←→ S4. (3.13)

Mithilfe der Formeln (3.12) und (3.13) kann man die Eigenzustände durch einfache
Superpositionen erhalten. Die Eigenzustände lauten:

Q++ = S1 + S2 + S3 + S4 Q+− = S1 + S2 − S3 − S4

Q−− = S1 − S2 − S3 + S4 Q−+ = −S1 + S2 − S3 + S4

(3.14)

3.2.3 Berechnung der Energiezustände

Bei den Simulationen sollen die Energien der Grundzustände der einzelnen Kanäle
berechnet werden. Zu diesem Zweck werden die Erwartungswerte von Wilson-Loops
WK(R, T ) nach Gleichung (3.10) mit den Operatoren QK aus Gleichung (3.14) berech-
net. In Spektraldarstellung lassen sich diese Erwartungswerte nach Gleichung (2.34)
schreiben als

WK(R, T ) = αK(R) e−EK
0 (R) T

(
1 +

∞∑

m=1

βK
m (R) e−∆EK

m(R) T

)
. (3.15)

Die Faktoren αK und βK
m sind dabei im Allgemeinen unbekannt und die Energiediffe-

renzen ∆EK
m (R) werden größer mit steigendem m.

Um die formale Korrespondenz mit den angeregten Zuständen des Strings deutlich zu
machen, werden die Kanäle im Folgenden durchnummeriert, wobei sich die jeweilige
Nummer auf die Korrespondenz der Grundzustandsenergie des Kanals mit dem ange-
regten Stringzustand bezieht. Nach Gleichung (2.31) werden die Kanäle deshalb wie
folgt nummeriert:

++ ≡ 0 ; +− ≡ 1 ; −− ≡ 2 ; −+ ≡ 3 (3.16)

Vernachlässigt man zunächst die höheren angeregten Zustände in den Kanälen, so
ergeben sich die Energien über

Ēn(R) = − 1
T2 − T1

ln
[
Wn(R, T2)
Wn(R, T1)

]
. (3.17)
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Die Energien Ēn(R) werden im Folgenden als naive Energien bezeichnet.
Im Limes T1, T2 → ∞ ist (3.17) korrekt und es müssen keine Korrekturen berück-
sichtigt werden. Dieser Limes kann bei Gitterberechnungen allerdings nicht erreicht
werden. Es ist deshalb wichtig, die Energiekorrekturen abzuschätzen. Um die Korrek-
turen in erster Näherung zu berücksichtigen werden deshalb die Energien über einen
Fit der Form

En(R) = − 1
T2−T1

ln
[
Wn(R,T2)
Wn(R,T1)

]

− 1
T2−T1

[
βn,1 e

−∆En,1 T1
(
1− e−∆En,1 (T2−T1)

)] (3.18)

bestimmt, wobei En(R) als korrigierte Energien bezeichnet werden und βn,1 und ∆En,1

zusätzliche Fitparameter sind. Der Fit wird in Anhang (C.1) begründet.
Da es sich um Fits mit drei freien Parametern handelt, müssen Wilson-Loops mit
mindestens drei verschiedenen Zeitausdehnungen berechnet werden. In diesem Fall
werden Wilson-Loops mit vier verschiedenen Zeitausdehnungen berechnet um eine
entsprechende Güte der Fits zu gewährleisten.
Die Fehler der korrigierten Energien sind mit der Jackknife-Methode zu bestimmen.
Dabei wird für jeden der gebildeten Blöcke ein einzelner Fit durchgeführt und der
resultierende Energiewert sowie der Fehler nach Gleichung (3.9) bestimmt.

3.2.4 Berechnung der Energiedifferenzen

Während bei den Energieniveaus der Kontinuumslimes aufgrund einer unphysikali-
schen additiven Konstanten nicht eindeutig ist, ist er es für die Energiedifferenzen,
weshalb diese wichtige Observablen sind. Außerdem können bei den Simulationen
Fluktuationen der Eichfelder auftreten, die bei allen Energiewerten zu einem korre-
lierten Anwachsen oder Absinken der Energien führen können. Betrachtet man die
Energiedifferenzen, so fallen diese korrelierten Schwankungen heraus, was zu einer
Reduktion des Messfehlers führt. Die Energiedifferenzen werden deshalb bei der Aus-
wertung getrennt betrachtet.
Um etwaige Korrekturen bezüglich der angeregten Zustände zu berücksichtigen, die in
Anhang (C.1) diskutiert werden, wird für die Differenz ∆Enm(R) ≡ En(R)− Em(R)
ein Fit der Form

∆Enm(R) = − 1
T2−T1

ln
[
Wn(R,T2)Wm(R,T1)
Wn(R,T1)Wm(R,T2)

]

− 1
T2−T1

[
(βn,1 − βm,1) e−∆En,1 T1

(
1− e−∆En,1 (T2−T1)

)] (3.19)

mit den beiden weiteren Fitparametern (βn,1−βm,1) und ∆En,1 durchgeführt. Der Feh-
ler und die Energiedifferenz werden wiederum mit der Jackknife-Methode bestimmt.

3.2.5 Probleme bei großen Wilson-Loops

Damit die Grundzustände in den Kanälen und somit die angeregten Energiezustände
und Energiedifferenzen möglichst genau bestimmt werden können, muss der Beitrag
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der angeregten Zustände in den Kanälen möglichst gering gehalten werden. Da dieser
exponentiell mit der Zeitausdehnung T des Wilson-Loops abnimmt, ist es wünschens-
wert, den Erwartungswert von Wilson-Loops mit möglichst großer Zeitausdehnung zu
berechnen.
Zudem wird das zu betrachtende Modell besser mit steigender Länge R der Flussröhre,
weshalb gleichzeitig Wilson-Loops mit großen räumlichen Ausdehnungen zu betrach-
ten sind. Diese beiden Tatsachen führen darauf, dass die Wilson-Loops mit den besten
Eigenschaften eine sehr große Fläche besitzen.
Für den Erwartungswert des Wilson-Loops gilt das approximative Flächenverhalten

W (R, T ) ∼ e−σA = e−σ R T . (3.20)

Bei sehr großen Loops wird deshalb das Verhältniss zwischen dem Signal des Wilson-
Loops und dem statistischen Rauschen der Simulationen sehr schlecht, so dass der
statistische Fehler unter Umständen größer ist als der Erwartungswert. Zudem ist das
Signal des Erwartungswertes der Wilson-Loops zum Kanal n für n > 0 mit (En−E0)
zusätzlich exponentiell gedämpft gegenüber dem Erwartungswert rechteckiger Wilson-
Loops bzw. des Wilson-Loops zugehörig zum Grundzustand. Selbst bei der relativ
wenig rechenintensiven SU(2)-Eichtheorie in drei Dimensionen ist es deshalb nicht
möglich den Erwartungswert von Wilson-Loops der benötigten Größe für die ange-
regten Zustände mit hinreichender Genauigkeit zu messen. Es ist also notwendig eine
Möglichkeit zu finden den statistischen Fehler zu reduzieren. Eine solche Möglichkeit
bietet der von Lüscher und Weisz entwickelte Algorithmus, der im nächsten Kapitel
diskutiert wird.

3.3 Der Lüscher-Weisz-Algorithmus

Der 2001 von Lüscher und Weisz [36] vorgestellte Algorithmus nutzt die Lokalität
der reinen Eichtheorie um den Messfehler von Observablen in Form großer Loops,
wie Wilson-Loops und Polyakov-Loops, zu reduzieren. Die Lokalität kann allerdings
nur im Falle reiner Eichtheorie genutzt werden, da Monte-Carlo-Simulationen mit
Fermionen nicht-lokal sind.

3.3.1 Lokalität und Untergitter

Möchte man die Erwartungswerte von Observablen in reiner Gittereichtheorie berech-
nen, so lassen sich diese berechnen über das Funktionalintegral (1.20). Die Eichwirkung
(1.22) entspricht der Summe über die Spuren aller Plaketten des Gitters und ist somit
eine lokale Wirkung, d.h. in den einzelnen Summanden treten nur direkt benachbarte
Links auf.
Diese Lokalität kann man sich zunutze machen, indem man alle raumartigen Plaketten
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auf bestimmten Zeitebenen des Gitters fixiert9. Ein Beispiel ist in Abbildung (9) ge-
zeigt, wobei die Verbindungslinien zwischen den Gitterpunkten fixierte Linkvariablen
bezeichnen.

Abbildung (9): Fixierte Zeitebenen auf
einem Gitter im Abstand 2a.

Aufgrund der beschriebenen Lokalität der
Gitterwirkung sind die einzelnen Subgit-
ter zwischen den fixierten Ebenen phy-
sikalisch vollkommen unabhängig vonein-
ander. Dies führt dazu, dass die Wirkung,
die nur noch von den nichtfixierten Links
abhängig ist, sich in effektive Wirkungen
für die Untergitter zerlegen lässt.
Es gilt also:

Sfix
G [U ] =

K∑

s=1

Ssub
s [U ] (3.21)

Dabei ist Sfix
G die Wirkung bei fixierten

Zeitebenen, Ssub
s [U ] die Wirkung auf dem

Untergitter s, wobei die Einschränkung
der Links U auf das Untergitter implizit
und K die Anzahl der Untergitter ist.

3.3.2 Berechnung von Erwartungswerten in mehreren Mittelungsstufen

Betrachtet man eine Observable F [U ], so kann man diese in Operatoren auf den
Untergittern zerlegen. Die Teile, die bei der Zerlegung auf den fixierten Zeitebenen
liegen, bleiben konstant, solange die Links fixiert sind. Eine Observable kann man also
schreiben als

F fix [U ] = T̂

[
K∏

s=1

F sub
s [U ]

]
, (3.22)

wobei T̂ der Zeitordnungsoperator ist, der dafür sorgt, dass die zur Observablen gehöri-
gen Untergitteroperatoren in der richtigen Reihenfolge zusammengesetzt werden. Ent-
scheidend ist die Wahl der Untergitteroperatoren, da diese gewährleisten, dass die
Zeitordnung bei der Multiplikation ebenfalls die Pfadordnung der Observablen F ga-
rantiert. Anders gesagt: Gelingt es die Observable F so zu zerlegen, dass die einzelnen
Operatoren nur noch zeitgeordnet aneinandermultipliziert werden müssen, so kann
man aus diesen Operatoren die Untergitteroperatoren aufbauen. Für Wilson-Loops
werden die entsprechenden Operatoren und das zugehörige Multiplikationsgesetz in
Kapitel (3.4) behandelt.
Weiterhin muss darauf geachtet werden, dass die Translationsinvarianz, die es nor-
malerweise ermöglicht, über alle räumlichen Startpunkte der Operatoren zu mitteln,

9Die fixierten Gitterebenen werden im Folgenden immer als Zeitebenen identifiziert. Ebensogut
können sie allerdings auch als räumliche Ebenen angesehen werden.
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im Falle von fixierten Zeitebenen aufgrund der Randbedingungen durch die fixierten
Links gebrochen ist, solange der Operator auf mehreren Untergittern liegt. Liegen Tei-
le des Operators auf den fixierten Ebenen, so werden diese nach der Mittelung über
die Untergitter hinzugefügt.
Im Falle von fixierten Gitterebenen faktorisiert das Funktionalintegral (1.20) aufgrund
von (3.21) und (3.22) und lässt sich schreiben als

F̂ fix = T̂
K∏

s=1

[
1

Zsub
s

∫
(DU)sub

s F sub
s [U ] e−Ssub

s [U ]

]
, (3.23)

wobei (DU)sub
s das eingeschränkte Integrationsmaß des entsprechenden Untergitters

ist. Die linke Seite wurde nicht als Erwartungswert von F geschrieben, da bei Rech-
nungen, bei denen die Zeitebenen fixiert bleiben, die Mittelung nicht notwendigerweise
den gesuchten Erwartungswert bezüglich der Verteilung e−SG approximiert. Dies liegt
daran, dass durch die fixierten Ebenen nicht jede beliebige Feldkonfiguration des Git-
ters mit nichtverschwindender Wahrscheinlichkeit erzeugt werden kann.
Der Erwartungswert auf den Untergittern wird definiert als

〈F 〉sub
s ≡ 1

Zsub
s

∫
(DU)sub

s F sub
s [U ] e−Ssub

s [U ] (3.24)

und es gilt

F̂ fix = T̂

[
K∏

s=1

〈F 〉sub
s

]
. (3.25)

Um den Erwartungswert zu approximieren führt man zusätzlich zu den Mittelungen
über die Untergitter noch Updates des gesamten Gitters durch und berechnet jeweils
die Werte F̂ fix, die dann als Messwerte benutzt werden. Der Erwartungswert von F
ist also gegeben durch

〈F 〉 =
〈
F̂ fix

〉
=

〈
T̂

[
K∏

s=1

〈F 〉sub
s

]〉
. (3.26)

Dieser Schritt zu einer Mittelung über Mittelwerte von Untergittern überzugehen kann
auch in diesen Untergittern iterativ angewendet werden, so dass mehrere Mittelungs-
stufen eingeführt werden können.
Dabei sollte stets darauf geachtet werden, dass genügend Messwerte F̂ fix berech-
net werden, da ansonsten eventuell der Einfluß der fixierten Zeitebenen das Ergebnis
verfälscht, aufgrund des eben erwähnten Effektes.

3.3.3 Algorithmus

Im Folgenden wird kurz der Algorithmus zur Berechnung der faktorisierten Erwar-
tungswerte angegeben:
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• Zunächst wird das thermalisierte Gitter in K Untergitter mit der zeitlichen Aus-
dehnung ts unterteilt. s ist dabei der Index des einzelnen Untergitters, d.h. die
zeitliche Ausdehnung der einzelnen Untergitter muss nicht zwangsläufig gleich
sein.

• Auf jedem dieser Untergitter wird der Mittelwert des entsprechenden Operators
F sub

s nach ns Updates des jeweiligen Untergitters berechnet, wobei nicht alle ns

gleich sein müssen.

• Falls gewünscht, kann man nun schrittweise zu größeren Untergittern überge-
hen, wobei nur noch ein Teil der fixierten Zeitebenen festgehalten wird und
bei der Mittelung nun die zuvor bestimmten Mittelwerte über die im größeren
Untergitter enthaltenen Untergitter verwendet werden.

• Die Mittelwerte über die letzte Stufe der Unterteilung des Gitters werden dann
genutzt um einen Messwert für die Observable zu erhalten.

• Nun werden einige Updates des gesamten Gitters durchgeführt. Die Zahl die-
ser Updates ist so zu wählen, dass die Korrelation der beiden Konfigurationen
möglichst gering ist im Verhältnis zur benötigten Rechenzeit. Anschließend wird
von vorne begonnen um einen weiteren Messwert für die Observable zu erhalten.

Dabei gibt es einige Parameter, die über die Effizienz des Algorithmus entscheiden.
Diese müssen je nach der betrachteten Observablen, dem Update-Algorithmus und der
Kopplung β neu optimiert werden.
Die entscheidenden Größen sind:

• die Zahl der Mittelungs-Ebenen des Algorithmus.

• die Zeitausdehnungen der Untergitter: tsz

(Dabei ist sz der Index des jeweiligen Untergitters in der z-ten Stufe.)

• die Anzahl der Untergitter-Updates: nsz

• die Anzahl der Gesamtupdates: N

Die Optimierung erfolgt dabei typischerweise in der obigen Reihenfolge, d.h. bei
einer vorgegeben Zahl von Mittelungs-Ebenen optimiert man die Zeitausdehnungen
der jeweiligen Untergitter. Die wesentlich wichtigeren Größen sind nsz und N bei
vorgegebenem Z und tsz . Ein Beispiel für die Optimierung der Größen bei Polyakov-
Loop Korrelatoren ist [37].

3.4 Anwendung des Algorithmus auf Wilson-Loops

Relevant für diese Arbeit sind wie zuvor betont große Wilson-Loops, auf die der
Lüscher-Weisz Algorithmus angewendet werden soll. Dazu muss zunächst der Wilson-
Loop in einzelne Operatoren zerlegt werden, die auf den Untergittern lokalisiert sind.
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Abbildung (10): Der Zweilinkoperator T2(R, t) ist definiert über das Tensorprodukt
über die beiden Linkvariablen in Zeitrichtung.

3.4.1 Zerlegung von Wilson-Loops

Um Wilson-Loops auf die oben beschriebene Art zu zerlegen separiert man zunächst
die räumlichen Operatoren Qn(R, τ) von der Zeitentwicklung, die nun über einen
neuen Operator T(R, T ) beschrieben wird. Ein Wilson-Loop Ŵn(R, T ) aus Gleichung
(3.10) (K → n) lässt sich dann schreiben als

Ŵn(R, T ) = Sp
[
Qn(R, 0) ◦ T(R, T ) ◦Q+

n (R, T )
]
. (3.27)

Dieser Ansatz hat eine Korrespondenz zur Transfer-Matrix Darstellung von Streupro-
zessen, wobei Qn(R, 0) dem einlaufenden Zustand entspricht und Q+

n (R, T ) dem aus-
laufenden. Die formale Korrespondenz mit dem Operator im Kontinuum wird deutlich,
wenn man Gleichung (1.14) betrachtet. Die Operatoren Qn(R, τ) sind Superpositionen
von Produkten von Links, also Tensoren zweiter Stufe, Operatoren mit zwei freien In-
dizes. Der Zeitentwicklungsoperator T(R, T ) besteht aus zwei separierten Produkten
von Linkvariablen und ist deshalb ein Tensor vierter Stufe.
Der Zeitentwicklungsoperator lässt sich als Produkt von sogenannten Zweilinkope-
ratoren T2(R, t) schreiben [36]. Ein solcher Zweilinkoperator ist in Abbildung (10)
abgebildet. Der Zweilinkoperator T2(R, t) am Ort x zur Zeit t wird definiert über das
Tensorprodukt

(T2(R, T ))abcd ≡ (U∗(x, t))ab (U(x+R, t))cd , (3.28)

wobei der räumliche Startort x wie bei den Wilson-Loops nicht explizit aufgeführt
wird und x + R der Gitterplatz im Abstand R zu x entlang der Achse des Wilson-
Loops ist. U∗(x, t) ist der zu U(x, t) komplex-konjugierte Link. Die Zweilinkoperatoren
entsprechen dem Zeitentwicklungsoperator für den Zeitschritt t→ t+a. Der Operator
für einen Zeitschritt t → t + 2a ist das Produkt aus den beiden Zweilinkoperatoren
für die Zeitschritte t→ a und t+ a→ t+ 2a. Für diese gilt das Multiplikationsgesetz

[T2(R, t) ◦ T2(R, t+ a)]abcd = (T2(R, t))aicj (T2(R, t+ a))ibjd . (3.29)

Den Zeitentwicklungsoperator T(R, T ) des Wilson-Loops, dessen unteres Ende in der
Zeitebene t0 liegt, kann man dann schreiben als

[T(R, T )]abcd = [T2(R, t0) ◦ T2(R, t0 + a) ◦ · · · ◦ T2(R, t0 + a(T − 1))]abcd . (3.30)
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β 5
T 8
R 4− 12

Lattice 243

Dicke der
Untergitter 2

Updates der 1000 (Alt)
Untergitter 12000 : 1000 (Neu)

Messwerte 730 (Alt)
50 (Neu)

Rechenzeit 1100 min
CPU AMD

2.2 GHz

Abbildung (11): Links: Ein Wilson-Loop, dessen räumliche Operatoren S1 in der
Mitte von Untergittern der Zeitausdehnung 2a liegen. Rechts: Parameter der Gitter-
simulationen des direkten Vergleiches zwischen dem alten und dem neuen Algorithmus
bei gleicher Rechenzeit.

Das Multiplikationsgesetz für den Wilson-Loop (3.27) lautet dann:

Ŵn(R, T ) = (Qn(R, 0))ac (T(R, T ))abcd (Q∗n(R, T ))bd (3.31)

Die Operatoren auf den Untergittern für Wilson-Loops werden aus den Operatoren
Qn(R, t) und T2(R, t) aufgebaut.

3.4.2 Ursprüngliche und verbesserte Methode

Eine Methode zur Anwendung des Lüscher-Weisz Algorithmus, die in dem ursprüng-
lichen Artikel [36] vorgeschlagen wurde ist es, die räumlichen Operatoren Qn(R, t) auf
fixierte Zeitebenen zu legen. Diese Form des Algorithmus wurde auch in [25] genutzt
um die angeregten Zustände zu untersuchen. Die Erwartungswerte für die Untergitter
liefern dann nur für den Zeitentwicklungsoperator eine Fehlerreduktion, nicht aber für
die Operatoren der räumlichen Linien.
Statt die räumlichen Operatoren auf die fixierten Zeitebenen zu legen, ist es sinnvoller,
diese in die Mitte eines Untergitters mit der Zeitausdehnung 2a zu legen. Ein Beispiel
eines resultierenden Loops mit den räumlichen Operatoren S1 ist auf der linken Seite
von Abbildung (11) abgebildet. Nun sorgen die Updates der Untergitter auch für eine
Reduktion des Fehlers der räumlichen Operatoren. Dies ist besonders nützlich für die
Berechnung von angeregten Zuständen, bei denen die Operatoren durch Linearkom-
binationen der Operatoren Si erhalten werden. Eine ähnliche Form des Algorithmus
verwendeten auch Kratochvila und de Forcrand bei Rechnungen zum String-Breaking
mit Quarks in adjungierter Darstellung [38].
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ER(W1)/% ER(W2)/% ER(W3)/%
R Neu Alt Neu Alt Neu Alt
4 0.44 0.15 2.7 7.0 9.2 100
5 0.63 0.21 2.7 8.3 8.6 100
6 0.86 0.28 2.7 4.5 8.8 100
7 1.1 0.35 2.9 7.3 8.8 100
8 1.4 0.45 3.1 5.5 9.5 100
9 1.7 0.56 3.6 10 11 100
10 2.1 0.74 4.2 11 14 100
11 2.7 1.0 5.8 27 22 100
12 3.5 1.7 8.6 88 44 100

Tabelle (2): Der relative Fehler der Erwartungswerte der Wilson-Loops Wn angege-
ben in Prozent, berechnet mit dem alten und dem neuen Algorithmus.

Während der ursprüngliche Algorithmus für β = 5 lediglich in der Lage war, ein Signal
für Wilson-Loops W3(R, T ) mit Zeitausdehnung T = 8 und räumlicher Ausdehnung
R = 12 zu liefern [25], ist es mit dieser Modifikation möglich, Signale bis zu einer
Zeitausdehnung von T = 12 zu erhalten.
Ein direkter Vergleich der relativen Messfehler für die Erwartungswerte der Wilson-
Loops in SU(2)-Eichthorie bei gleicher Rechenzeit für beide Methoden ist in Tabelle
(2) angegeben. Die zugehörigen Simulationsparameter finden sich in der Tabelle auf
der rechten Seite von Abbildung (11).
An den Werten erkennt man, dass der neue Algorithmus den Fehler des Grundzustan-
des nicht reduziert, bei den angeregten Zuständen jedoch für eine starke Fehlerreduk-
tion sorgt.
Eine weitere Reduktion des Messfehlers liefern Multihit-Links [39],[4]. Diese können
auf alle Links für die Zeittransporter und auf bestimmte Links der räumlichen Ope-
ratoren angewendet werden.

3.4.3 Untergitter-Operatoren für die verbesserte Methode

Die räumlichen Operatoren liegen auf der mittleren Zeitebene in einem Untergitter
mit der Zeitausdehnung ts = 2a. Der zugehörige Operator auf dem Untergitter setzt
sich also zusammen aus dem räumlichen Operator und einem Zweilinkoperator. Als
Operatoren für die Untergitter die räumliche Operatoren enthalten benutzt man des-
halb

(Rn)ab ≡ (Qn(R, t0))ij (T2(R, t0))iajb

(R∗n)ab ≡ (T2(R, t0 + T − a))aibj (Qn(R, t0))ij ,
(3.32)

wobei Rn jeweils der Operator im untersten Untergitter des Wilson-Loops ist und R∗n
der Operator im obersten.
Der restliche Wilson-Loop wird in (T−2)/(ts) Untergitter unterteilt, wobei ts die Zeit-
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ausdehnung der Untergitter ist10. Der Zeitentwicklungsoperator für das Untergitter s
ist gegeben über

Ts ≡ T2(R, tu,s) ◦ T2(R, tu,s + a) ◦ · · · ◦ T2(R, tu,s + (ts − 1)a), (3.33)

wobei tu,s = t0 + a+ (s− 1)ts die untere fixierte Zeitebene des Untergitters ist.
Dabei dürfen Multihit-Links für alle Links der Operatoren Ts verwendet werden. Bei
den Operatoren Rn muss man dabei vorsichtig sein. Plaketten die einen Multihit-Link
enthalten dürfen nämlich keinen weiteren Multihit-Link des Operators enthalten, da
in diesem Fall die zugehörige Integration nicht mehr möglich ist. In dieser Arbeit
werden deshalb Multihit-Links für alle räumlichen Links in Richtung der räumlichen
Achse des Wilson-Loops verwendet, da dies die Zahl der Multihit-Links bei Loops mit
großem R maximiert.

10Hier wird nur der Fall betrachtet indem die Zeitausdehnung aller Untergitter mit Zeitentwick-
lungsoperatoren aus Gleichung (3.33) gleich ist. Im allgemeinen muss dies nicht der Fall sein.
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Im Rahmen dieser Arbeit wurden numerische Monte-Carlo-Simulationen in drei-
dimensionaler SU(2)-Gittereichtheorie durchgeführt. Benutzt wurde die übliche Wil-
son’sche Plakett-Wirkung (1.22) und die Feldkonfigurationen wurden mit einem ver-
besserten Heatbath-Algorithmus [34] generiert. Bei den Rechnungen wurden Wilson-
Loops Wn(R, T ) der räumlichen Ausdehnung R und der zeitlichen Ausdehnung T
berechnet, wobei zur Fehlerreduktion die in den Kapiteln (3.3) und (3.4) diskutierte
verbesserte Version des Lüscher-Weisz Algorithmus mit einer Mittelungsebene ver-
wendet wurde.
Simuliert wurde mit zwei verschiedenen Kopplungen β = 5 und β = 7.5. Die ver-
wendeten Gitter, sowie die zugehörigen physikalischen Skalen werden in Kapitel (4.1)
diskutiert. In Kapitel (4.2) werden die Parameter des Lüscher-Weisz Algorithmus op-
timiert, die resultierenden Parameter der Gittersimulationen werden in Kapitel (4.3)
angegeben.

4.1 Die Gitter und die zugehörigen Skalen

Der physikalische Abstand zwischen den Quarks, ab dem erwartet wird, dass die ef-
fektive Stringtheorie das Verhalten der Flussröhre beschreibt, liegt bei etwa 1 Fermi.
Bei kleineren Abständen werden Abweichungen von der effektiven Theorie erwartet.
Um zu untersuchen, in welchem Bereich die effektive Stringtheorie gültig wird, werden
in dieser Arbeit Wilson-Loops mit einer physikalischen räumlichen Ausdehnung von
etwa 0.5 bis 1.5 Fermi betrachtet.
Die Längeneinheiten auf dem Gitter werden durch den Sommer Parameter r0 festge-
legt, für den gilt r0 = 0.5fm [40]. Es werden dabei die bereits bekannten Werte für
β = 5, 7.5 [41] für dreidimensionale SU(2)-Eichtheorie benutzt:

r0(β = 5) = 3.9536(3) und r0(β = 7.5) = 6.2875(10). (4.1)

Für β = 5 werden also Wilson-Loops mit R = 4 − 12 berechnet, wobei Loops mit
den Zeitausdehnungen T = 4, 6, 8 und 12 mit hinreichender Genauigkeit berechnet
werden konnten. Die Wilson-Loops mit R = 4− 9 wurden auf 243-Gittern berechnet,
während für R = 10− 12 bei diesen Gittern verfälschende Effekte durch die endliche
Ausdehnung des Gitters auftreten können. Um dies zu verhindern wurden die Wilson-
Loops mit R = 10− 12 auf 483-Gittern berechnet.
Für β = 7.5 sind Wilson-Loops mit R = 7−20 relevant. Um äquivalente physikalische
Zeitausdehnungen zu benutzen werden dabei Wilson-Loops mit T = 6, 10, 14 und
18 berechnet. Das Program läuft optimal wenn eine ganzzahlige Anzahl von Wilson-
Loops in zeitlicher Richtung auf das Gitter passen, was dazu führt, dass in diesem Fall
vier unterschiedliche Gitter betrachtet werden, nämlich 363 für T = 6, 403 für T = 10,
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ER(Wn)/%
Parameter: n ts = 2 ts = 4
β = 7.5 T = 10 R = 8 1 6.3 2.8
#meas: 100 Lattice: 403 2 50 12

Tabelle (3): Parameter und Resultate des Testlaufes für die Dicke der Untergit-
ter der Zeittransporter. ER(Wn) ist der relative Fehler des Erwartungswertes des
Wilson-Loops zugehörig zum Kanal n. Es wurden 6000 Updates der Untergitter mit
den räumlichen Operatoren und 2000 Updates der Untergitter der Zeitentwicklungs-
operatoren durchgeführt.

423 für T = 14 und 543 für T = 18. Dabei werden alle räumlichen Ausdehnungen auf
denselben Gittern berechnet.

4.2 Optimieren der Parameter des LW-Algorithmus

4.2.1 Zeitliche Ausdehnung der Untergitter der Zeitentwicklungsopera-
toren

Zunächst ist die optimale zeitliche Ausdehnung ts der Untergitter der Zeitentwick-
lungsoperatoren zu bestimmen. Die Zeitausdehnung der Untergitter mit den räumli-
chen Operatoren beträgt 2a.
Bei β = 5 sollen Wilson-Loops der zeitlichen Ausdehnungen T = 4, 6, 8 und 12 berech-
net werden. In diesem Fall ist es sinnvoll ts = 2 zu benutzen, da andernfalls Probleme
bei Wilson-Loops mit T = 4 und 8 auftreten.
Bei β = 7.5 soll die physikalische Distanz etwa gleich bleiben und somit Wilson-Loops
mit T = 6, 10, 14 und 18 berechnet werden. In diesem Fall ist es möglich Untergitter
mit ts = 2 oder ts = 4 zu benutzen11. Eine kurze Rechnung mit den Parametern aus
Tabelle (3) liefert die relativen Fehler ER(Wi) des ersten und zweiten Kanals mit
ts = 2 und ts = 4. Aus den Werten aus Tabelle (3) geht hervor, dass der Fehler mit
ts = 4 geringer ist als der mit ts = 2.
Wir verwenden also:

β = 5 : ts = 2 und β = 7.5 : ts = 4 (4.2)

4.2.2 Zahl der Updates der Untergitter

Nun gilt es die Zahl der Untergitterupdates für die einzelnen Operatoren zu finden.
Für Polyakov-Loop Korrelationsfunktionen und die zugehörigen Zeitentwicklungsope-
ratoren lässt sich eine Norm finden, deren Wert korreliert ist mit dem Abfallen des
Fehlers der Polyakov-Loop-Korrelationsfunktion [37].

11Bei ts = 6 könnten nur Loops der Größen T = 8, 14, 20 und 26 berechnet werden, deren Signal
zu stark verrauscht ist.
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ER(W0)/% ER(W1)/% ER(W2)/%
u2 #meas R = 4 R = 5 R = 4 R = 5 R = 4 R = 5
10 123445 0.011 0.15 0.46 1 1 1
100 19593 0.0016 0.012 0.18 0.34 1 1
1000 2136 0.0025 0.0044 0.24 0.36 1 1
2000 1080 0.0036 0.0056 1 0.28 1 1

Tabelle (4): Der relative Fehler ER(Wn) in Prozent für verschiedene Werte für u2.
Dabei wurde mit β = 3 auf einem 243-Gitter mit ts = 2, u1 = 1, R = 4, 5 und T = 8,
bei einer Rechenzeit von ca. 48 Stunden simuliert.

Eine ähnliche Norm für die Zeitentwicklungsoperatoren von Wilson-Loops zu finden
ist wesentlich schwieriger. Benutzt man die in [37] verwendete Norm als Messgröße, so
zeigt diese ein qualitativ anderes Verhalten als der tatsächliche Messfehler des Wilson-
Loops. Ein ähnliches Problem erhält man bei möglichen Normen für die räumlichen
Operatoren, wie etwa deren Spur oder deren Determinante.

Betrachtet werden muss also der absolute Fehler des Wilson-Loops in Abhängigkeit
von der Zahl der Updates der Untergitter mit Zeittransportern und mit räumlichen
Linien. Diese beiden Zahlen werden von nun an in der Größe iupd = u1 : u2 zu-
sammengefasst, wobei u1 die Zahl der Updates für die Untergitter mit räumlichen
Operatoren und u2 die Zahl der Updates der Untergitter mit Zeitentwicklungsopera-
toren ist. Diese Methode erfordert selbstverständlich wesentlich mehr Rechenleistung
als eine Optimierung mittels einer entsprechenden Norm.
Bei der tatsächlichen Optimierung tritt außerdem ein weiteres Problem auf. Es stellt
sich nämlich heraus, dass bei Wilson-Loops dieser Art der Effekt der festgehalte-
nen Zeitebenen recht groß ist, d.h. die Erwartungswerte liefern erst nach etwa 1000
Gesamtmesswerten zuverlässige Resultate. Dies ist durch den in Kapitel (3.3.2) be-
schriebenen Effekt zu erklären, dass durch die festgehaltenen Zeitebenen nicht das ge-
samte Gleichgewichtsensemble simuliert wird. Dies macht eine normale Optimierung
für β = 5 oder β = 7.5 enorm zeitaufwendig, unter Umständen sogar zeitaufwendiger
als die gesamten Messungen. Deshalb wird die Abhängigkeit des Messfehlers von den
Parametern bei β = 3 betrachtet. β = 3 weist im Gegensatz zu β = 5 und 7.5 noch
viele Eigenschaften der starken Kopplung auf und es ist deshalb zu erwarten, dass in
diesem Fall wesentlich weniger Updates für die Untergitter notwendig sind.
Zunächst wird der Effekt von u2 untersucht und deshalb u1 = 1 gesetzt. Dabei wur-
den alle Rechnungen in gleicher Rechenzeit von ungefähr 48 Stunden durchgeführt.
Die relativen Unsicherheiten der Erwartungswerte sind in Tabelle (4) angegeben. Für
β = 3 und einen Loop mit den Ausdehnungen T = 8 und R = 4, 5 resultiert daraus
100 . u2 < 1000 als optimaler Wert.
Nun wird der Effekt von u1 untersucht. Dazu setzt man u2 = 100 und variiert u1

bei wiederum gleicher Simulationszeit von ca. 48 Stunden. Die Resultate für die re-
lativen Fehler der Wilson-Loops sind in Tabelle (5) angegeben. Eine bemerkenswerte
Tatsache ist das Signal für die Wilson-Loops W2, das mit u1 = 1 nicht zu sehen war.
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ER(W0)/% ER(W1)/% ER(W2)/%
u1 #meas R = 4 R = 5 R = 4 R = 5 R = 4 R = 5
10 10625 0.00083 0.0031 0.042 0.39 1 1
100 6293 0.00090 0.0024 0.016 0.079 0.32 0.52
1000 2111 0.0015 0.0040 0.024 0.15 0.72 1
2000 1111 0.0021 0.0055 0.032 0.16 0.73 1

Tabelle (5): Dieselben Werte wie in Tabelle (3) nur mit variierendem u1 und u2 =
100.

Wiederum scheint ein Wert von 100 . u1 < 1000 optimal zu sein.
Eine weitere wichtige Eigenschaft ist die Tatsache, dass sich der optimale Wert für
u2 mit steigendem T etwa proportional zu diesem erhöht [37], während T auf den
optimalen Wert für u1 einen weit geringeren Einfluss hat.
Mit diesen Resultaten wird nun das Schema für die Untergitterupdates gebildet, das im
folgenden Kapitel angegeben ist. Dabei bleibt anzumerken, dass die dort gewählten
Werte wesentlich höher sind als die für β = 3 gefundenen. Dies hat verschiedene
Gründe. Zunächst liegt β = 3 im Gegensatz zu β = 5 und 7.5 in einem Bereich der
sich qualitativ anders verhält. Außerdem soll ein Wert für Wilson-Loops W3 erhalten
werden, die wesentlich mehr Untergitter-Updates benötigen. Ein weiterer Grund sind
die feineren Gitter und größeren Loops.

4.3 Simulationsparameter

β R T ts Lattice iupd #meas
5 4− 9 4 2 243 12000 : 1000 2000

6 12000 : 1500 2000
8 12000 : 2000 2000
12 12000 : 2500 2000

10− 12 4 2 483 24000 : 1000 2000
6 24000 : 2000 2000
8 24000 : 6000 2000
12 24000 : 12000 2000

7.5 7− 20 6 4 363 36000 : 1500 4400
10 403 36000 : 3000 4400
14 423 36000 : 9000 4400
18 543 36000 : 18000 4400
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Nun werden die Resultate der Simulationen mit den Parametern aus Kapitel (4.3)
diskutiert, die zum Teil bereits in [42] veröffentlicht wurden.
In Kapitel (5.1) werden die Ergebnisse für den Grundzustand also das statische qq̄-
Potential diskutiert. Dieses ist bereits in verschiedensten Simulationen untersucht wor-
den und die hier erhaltenen Ergebnisse werden mit diesen Simulationen verglichen.
In Kapitel (5.2) werden die Ergebnisse für die angeregten Zustände dargestellt und
ebenfalls mit ähnlichen Simulationen verglichen. Dabei bleibt zu bemerken, dass Re-
sultate mit Wilson-Loops der hier verwendeten zeitlichen Ausdehnungen bisher nicht
existierten. In Kapitel (5.3) werden die Daten mit weiteren Ergebnissen von Git-
tersimulationen mit offenen und geschlossenen Strings in verschiedenen Eichtheorien
verglichen.

5.1 Der Grundzustand

Eine Reihe von Studien beschäfftigten sich mit den Eigenschaften des Grundzustandes
[43], so dass dessen Verhalten recht bekannt ist. Da es in dieser Arbeit primär darum
geht die angeregten Zustände mit den Vorhersagen der effektiven Stringtheorien zu
vergleichen, wird das Potential der Nambu-Stringtheorie (2.29) benutzt, um die freien
Parameter, die String-Spannung σ und ein Gitterartefakt in Form einer additiven
Konstanten V0, zu bestimmen. Verwendet wird ein Fit der Form

E0(R) = σ R

√
1− π

12 σ R2
+ V0 (5.1)

mit den Fitparametern σ und V0. Die Resultate aus den Gittersimulationen sind in
Anhang (C.2) in Tabelle (9) angegeben und die resultierenden Fitparameter in Ta-
belle (7). Die String-Spannung σ stimmt im Falle von β = 5 gut mit dem Wert der
Polyakov-Loop-Korrelationsfunktionen überein. Die Werte stimmen im Rahmen der
Fehlergrenzen ebenfalls mit den Werten aus der sehr genauen Studie des Kontinu-
umslimes der Parameter des Grundzustandes [41] überein, wobei die Messfehler hier
größer sind.
Um die Messwerte zwischen β = 5 und 7.5 direkt vergleichen zu können ist es sinnvoll,

β = 5 β = 7.5
σ V0 σ V0

0.0973(3) 0.216(2) 0.03852(2) 0.1745(2)

Tabelle (7): Resultate für die freien Parameter.
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Abbildung (12): Plot der Messergebnisse für den Grundzustand normiert auf VLO =
0. • sind die korrigierten Energien E∗0(R∗) bei β = 5 und + die zugehörigen Naiven,
◦ die korrigierten Energien für β = 7.5 und × die Naiven.

zu dimensionslosen Einheiten überzugehen mit

E∗n = En/
√
σ und R∗ =

√
σ R. (5.2)

Das statische Potential in Nambu-Stringtheorie lautet dann nach Gleichung (2.29)

E∗0 ≡ V ∗(R∗) = R∗
√

1− π

12 (R∗)2
. (5.3)

Die kritische Distanz bei der das Potential imaginär wird, liegt in dieser Skala bei
R∗C = 0.512, also weit unterhalb der hier betrachteten Werte von R∗.
In Anbetracht der Resultate aus den Kapiteln (2.4) und (2.5), nach denen die Energie-
werte bis zu O(1/R3) in Nambu-, Polchinski-Strominger- und Lüscher-Weisz-String-
theorie übereinstimmen, wird zudem das Potential in führender Ordnung in 1/R∗,
V ∗LO(R∗) und das Potential in nächst höherer Ordnung V ∗NLO(R∗) definiert über die
Entwicklung der Wurzel aus (5.3) in 1/(R∗)2:

V ∗LO(R∗) ≡ R∗ − π

24
1
R∗

(5.4)

V ∗NLO(R∗) ≡ R∗ − π

24
1
R∗
− π2

1152
1

(R∗)3
(5.5)
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Diese beiden Potentiale sind für die drei effektiven Stringtheorien aus Kapitel (II)
gleichermaßen gültig.
In Abbildung (12) sind die Messergebnisse für den Grundzustand normiert auf die
Kurve (5.4) gegen die Kurven (5.3) und (5.5) aufgetragen. Der Fehler, der bei der
Skalierung mit den fehlerbehafteten Größen aus Tabelle (7) auftritt, wurde bei den
Fehlerbalken berücksichtigt. Die oberen Punkte sind die naiven Messwerte und die
unteren die zugehörigen durch den Fit der Form (3.19) korrigierten Werte.
Für den Grundzustand liegen die Arvis-Kurve und die LO-Kurve bei R∗ = 1.5 bereits
so dicht beieinander, dass beide die Daten im Rahmen der Fehlergrenzen beschreiben.
Die NLO-Kurve erreicht die Daten für β = 7.5 bei etwa R∗ = 3.34, oder R/r0 = 2.70.
Ein direkter Vergleich mit Werten aus [41] und [29] ist in diesem Fall schwierig, da
die dort betrachtete Observable c(R) ≡ R3

2
d2V (R)

dR2 , die für R → ∞ in den Lüscher-
Term c = − π

24 übergehen sollte, hier nicht betrachtet wird. In [41] erreicht c(R) bei
dreidimensionaler SU(2)-Eichtheorie die Arvis-Kurve bei etwa R/r0 ≈ 2.75, wobei
hier die Daten der Arvis-Kurve folgen und nicht von dieser abweichen. Ein möglicher
Grund für diese Tatsache ist der verwendete Fit für den Grundzustand. Benutzt man
für β = 5 allerdings die nicht von einem derartigen Fit abhängigen Methode aus [41]
zur Berechnung der String-Spannung, so ergibt sich σ = 0.09729(2). Die beiden String-
Spannungen σ stimmen im Rahmen der Fehlergrenzen überein und das qualitative
Verhalten der Fits wird dadurch nicht geändert.
Für SU(3)-Eichteorie mit d = 3, die in [29] betrachtet wird, erreicht c(R) die Arvis-
Kurve bei etwa R/r0 ≈ 1.8. Vergleichbare Resultate findet man auch für d = 4
[29],[44]. Gerechnet wurde dort allerdings auf einem sehr groben Gitter, wobei noch
nicht von einem Kontinuumsverhalten ausgegangen werden kann.

5.2 Angeregte Zustände

5.2.1 Die totalen Energiewerte

Die Resultate der Gittersimulationen für die totalen Energiewerte sind ebenfalls wie
die Werte für den Grundzustand in Tabelle (9) angegeben. Um direkt die Werte für
β = 5 und β = 7.5 vergleichen zu können, werden die Werte wieder nach Gleichung
(5.2) skaliert. Die zu den Energien En(R) gehörigen Arvis-Kurven lauten nach (2.29):

E∗n(R∗) = R∗
√

1 +
2π

(R∗)2

(
n− 1

24

)
(5.6)

Die LO-Kurven und NLO-Kurven werden analog zu (5.4) und (5.5) definiert als:

E∗LO,n(R∗) ≡ R∗ + π

(
n− 1

24

)
1
R∗

(5.7)

E∗NLO,n(R∗) ≡ R∗ + π

(
n− 1

24

)
1
R∗
− π2

2

(
n− 1

24

)2 1
(R∗)3

(5.8)
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Abbildung (13): Plot der angeregten Energiezustände. • sind jeweils die korrigierten
Energien E∗0(R∗) bei β = 5 und + die Naiven. ◦ sind die korrigierten Energien für
β = 7.5 und × die Naiven. Die schwarzen durchgezogenen Kurven entsprechen (5.6),
die grauen gestrichelten (5.7) und die grünen gestrichelten (5.8).

Das zusätzlich auftretende Gitterartefakt V0 ist für alle Energieniveaus gleich und
wurde durch den Fit für den Grundzustand bestimmt. V0 wird nun direkt bei den
Datenpunkten berücksichtigt und taucht deshalb nicht mehr in den Kurven auf.
Die Resultate der Gittersimulationen sind in Abbildung (13) gegen die zugehörigen
Kurven (5.6) bis (5.8) aufgetragen. Die Notwendigkeit, die Korrekturen der höheren
Zustände zu berücksichtigen, wird daran deutlich, dass die unkorrigierten Werte des
ersten angeregten Zustandes die LO-Kurve relativ früh kreuzen, während die korri-
gierten Messwerte sich deutlich der Arvis-Kurve annähern. Dieser Effekt wurde bereits
in [25] ausführlich diskutiert. Das stetige Anwachsen der Korrekturen lässt sich darauf
zurückführen, dass die Energiedifferenzen ∆En,1 geringer werden mit steigendem R
und somit e−∆En,1 T → 1 strebt. Außerdem tragen durch das Abnehmen der Energie-
unterschiede für R→∞ immer mehr höhere angeregte Zustände zu den Korrekturen
bei, die somit anwachsen. Die Größenordnung der Korrekturen scheint außerdem bei
den höheren Zuständen zuzunehmen. Die korrigierten Energien E∗1 erreichen für β = 5
und β = 7.5 die Arvis-Kurve bei R∗ ≈ 2.9, oder R/r0 ≈ 2.4, also bei einem ähnlichen
Wert, bei dem c(R) in [41] die Arvis-Kurve erreicht. Dies entspricht etwa dem Bereich,
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ab dem zu erwarten ist, dass das effektive Modell gute Vorhersagen liefert.
Es lässt sich weiterhin sagen, dass die Nambu Stringtheorie die Daten am ehesten
beschreibt, obwohl sich die Daten der angeregten Zustände mit n > 0 für β = 7.5
für große R∗ wieder von dieser Kurve zu entfernen scheinen und sich stattdessen der
LO-Kurve annähern. Bislang ist allerdings noch nicht sicher, ob dieser Effekt physi-
kalisch oder auf einen systematischen Fehler zurückzuführen ist. Die NLO-Kurve liegt
unterhalb der jeweiligen Arvis-Kurve und ist deutlich zu niedrig um die Daten korrekt
zu beschreiben.

5.2.2 Energiedifferenzen

Die Messwerte der Energiedifferenzen zwischen den Energiezuständen haben, wie be-
reits beschrieben, bessere Eigenschaften als die Gesamtenergien. In diesem Abschnitt
werden diese deshalb separat ausgewertet. Die resultierenden Messwerte für die Ener-
giedifferenzen ∆Enm ≡ En−Em sind in Tabelle (10) in Anhang (C.2) angegeben. Die
mit den Werten zu vergleichenden Kurven sind hier definiert als:

∆E∗nm = R∗
[√

1 +
2π

(R∗)2

(
n− 1

24

)
−

√
1 +

2π
(R∗)2

(
m− 1

24

)]
(5.9)

∆E∗LO,nm ≡ π (n−m)
1
R∗

(5.10)

∆E∗NLO,nm ≡ π (n−m)
1
R∗

+
π2

2

[
m2 − n2 +

1
12

(n−m)
]

1
(R∗)3

(5.11)

Die entsprechend skalierten Daten der Energiedifferenzen ∆E∗10 und ∆E∗20 sind in
Abbildung (14) gegen die jeweiligen Kurven aufgetragen und die Energiedifferenzen
∆E∗21 und ∆E∗30 in Abbildung (15). Für ∆E∗20 konnten die korrigierten Werte dabei
nur aus einem Fit bezüglich Wilson-Loops mit den drei niedrigsten Zeitausdehnungen
berechnet werden. Für ∆E∗21 funktionierte auch diese Methode nicht zuverlässig, so
dass die hier gezeigten Daten der Differenz der korrigierten Energien entsprechen. Bei
∆E∗30 konnten selbst diese Differenzen mit einer entsprechenden Genauigkeit nur für
β = 5 bestimmt werden.
Die naiven Energiedifferenzen nähern sich der LO-Kurve an, also den Vorhersagen
eines freien bosonischen Strings, und kreuzen im Falle der Energiedifferenz ∆E∗10 die
Kurve sogar. Ein analoges Verhalten wurde auch in einer Studie von Juge, Kuti und
Morningstar [45] beobachtet. Dort wurden stark anisotrope Gitter und eine Reihe
von Gitteroperatoren verwendet um die angeregten Zustände zu extrahieren. Dies
erscheint merkwürdig, da die Daten für größere Abstände näher an die LO-Kurve
rücken sollten, da die 1/R3-Korrekturterme kleiner werden. Die korrigierten Werte
zeigen tatsächlich ein qualitativ unterschiedliches Verhalten, sie nähern sich mit stei-
gendem R der Vorhersage der Nambu Stringtheorie an.
In einem intermediären Bereich existieren bereits Daten für die Energiedifferenz ∆E∗10

aus einer älteren Arbeit [46] mit β = 7.5 und 10, mit denen die hier erhaltenen Werte
kurz verglichen werden sollen. Die Werte sind zusammen mit den hier erhaltenen in
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Abbildung (16): Vergleich zwischen den Daten [46] für ∆E10 und den im Rahmen
dieser Arbeit erhaltenen Daten. • sind die hier erhaltenen Daten für β = 5 und ◦ für
β = 7.5. ¤ sind die Daten für β = 7.5 aus [46] und ∆ für β = 10.

Abbildung (16) abgebildet. Man erkennt deutlich die Übereinstimmung der Werte für
β = 7.5. An dem Vergleich erkennt man auch klar den Vorteil der neuen Version des
Lüscher-Weisz-Algorithmus. Während für kleinere R∗-Werte die Daten für β = 7.5
aufeinander liegen, scheinen die alten Daten mit steigendem R∗ von der Arvis-Kurve
abzuweichen. Bei den neueren zuverlässigeren Daten ist dieser Effekt nicht mehr zu
sehen. Die Daten folgen der Arvis-Kurve bis zu einem Wert von R∗ = 4. Wie man an
den alten Daten erkennt, ergibt sich wahrscheinlich für feinere Gitter ein Trend weg
von der Arvis-Linie in Richtung der LO-Kurve.

5.3 Vergleich mit ähnlichen Simulationen

Hier werden die in (5.2) erhaltenen Ergebnisse mit den Resultaten aus Gittersimulatio-
nen anderer Eichtheorien verglichen, sowie mit Gittersimulationen, die das Spektrum
von geschlossenen Strings, sogenannten Toleronen betrachten.
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5.3.1 Offene Strings

Im Falle des Eichsektors der QCD, also in vierdimensionaler SU(3)-Eichtheorie, wur-
den die angeregten Zustände ebenfalls in [45] berechnet. In vier Dimensionen ist eine
Klassifikation der Strinzustände nur nach (C,P ) und der Energiequantenzahl des je-
weiligen Niveaus nicht mehr ausreichend um selbst die Grundzustände in den (C,P )-
Kanälen zu bestimmen. Daher muss zusätzlich der zugehörige Drehimpuls bezüglich
der Stringachse als Quantenzahl zur Klassifizierung verwendet werden. Die resultieren-
den Zustände weisen in Gittersimulationen eine komplizierte Feinstruktur auf. Allge-
mein zeigt sich qualitativ jedoch dasselbe Verhalten wie bei den Daten für die SU(2)-
Eichtheorie in drei Dimensionen.
Die Studie [45] beschäftigt sich ebenfalls mit dreidimensionaler U(1)-Eichtheorie, für
die analoge Resultate wie bei der SU(2)-Eichtheorie in drei Dimensionen gefunden
wurden.
Resultate in dreidimensionaler Z(2)-Eichtheorie sind in [12] und [14], sowie in [48]
angegeben. Das Verhalten entspricht in diesem Fall ebenfalls dem Verhalten in drei-
dimensionaler SU(2)-Eichtheorie und zeigt zudem ein gutes Skalenverhalten für un-
terschiedliche Kopplungen.
Die Resultate für verschiedene Eichtheorien implizieren, dass die bosonische Stringtheo-
rie ein guter Kandidat ist um die chromoelektrische Flussröhre zu beschreiben. Dabei
scheint die volle Nambu Stringtheorie bessere Vorhersagen zu liefern als die Approxi-
mation in führender Ordnung. Ausgeschlossen werden kann diese aufgrund der Daten
aber nicht, vor allem, da sich diese im Kontinuumslimes anscheinend von der Nambu-
Kurve fortbewegen. Insgesamt sieht man, dass die Daten bezüglich der jeweiligen
Flussröhre nicht, bzw. kaum, von der verwendeten Eichtheorie abzuhängen scheinen.

5.3.2 Geschlossene Strings – Toleronen

Neuere Studien beschäftigen sich mit geschlossenen Flussröhren, sogenannten Tolero-
nen, indem sie Polyakov-Loop-Korrelatoren betrachten, die sich um kompaktifizierte
räumliche Dimensionen winden. Durch verschiedene Operatoren ist es dann wiederum
möglich, die angeregten Zustände zu betrachten.
Erste Studien zu Toleronen wurden in vierdimensionaler Z(2)-Eichtheorie von Kuti
u.A. [49] durchgeführt und nochmals in [14] diskutiert. Die dort erhaltenen Wer-
te zeigen eher das Verhalten eines freien bosonischen Strings, als das Verhalten der
Nambu-Stringtheorie.
Für dreidimensionale SU(3) und SU(6) wurde das Toleron-Spektrum von Teper u.A.
[50] mit ähnlichen Methoden vermessen. Die dort erhaltenen Resultate weisen eine
deutliche Übereinstimmung mit den Vorhersagen der Nambu-Stringtheorie auf, wobei
sich die Daten anders als hier näher an der NLO-Kurve als an der LO-Kurve liegen.
Die Resultate für geschlossene Strings stimmen in etwa überein mit den hier disku-
tierten Resultaten für offene Strings. Nach [50] erreichen die Daten für geschlossene
Strings die Arvis-Kurve bereits bei R∗ = 2, ein Verhalten welches hier nicht beobachtet
werden konnte. Unklar ist in beiden Fällen noch der Kontinuumslimes.
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Zusammenfassung und Ausblick

Zusammenfassung

Im Rahmen dieser Arbeit wurden die Vorhersagen von effektiven Stringtheorien für
das Potential eines statischen Quark-Antiquark Paares betrachtet und mit Simulatio-
nen der dreidimensionalen SU(2)-Eichtheorie verglichen.
Im ersten Kapitel wurde gezeigt, wie sich Confinement im Rahmen von nichtabel-
schen Eichtheorien mithilfe von Flussröhren beschreiben lässt und im Grenzfall großer
Abstände R der Anschluß an eine Beschreibung durch effektive Stringtheorien herge-
stellt. Außerdem wurde der Wilson-Loop als Operator eingeführt, um die angeregten
Zustände auf dem Gitter untersuchen zu können.
Im zweiten Kapitel wurden die Resultate der effektiven Stringtheorien diskutiert.
Zunächst wurde die Nambu-Stringtheorie dargestellt, die eine geschlossene Lösung
für die Energiezustände der Flussröhre liefert. Allerdings tritt bei der Quantisierung
der transversalen Schwingungen die Weyl-Anomalie auf, die eine konsistente Quanti-
sierung in vier Dimensionen verhindert und somit die Nambu-Stringtheorie als ma-
thematisch konsistente effektive Stringtheorie für die Flussröhre ausschließt.
Als nächstes wurde die effektive Stringtheorie von Lüscher und Weisz diskutiert, bei
der bis zu O(1/R3) in d-Dimensionen eine unbestimmte Kopplungskonstante auftritt.
In drei Dimensionen wird diese Kopplungskonstante allerdings durch eine algebrai-
sche Gleichung, die aus der Dualität zwischen offenen und geschlossenen Strings re-
sultiert, eliminiert, so dass sich bis zu O(1/R3) dasselbe Spektrum wie bei der Nambu-
Stringtheorie ergibt. Die effektive Stringtheorie von Polchinski und Strominger, die
aus allen Thermen besteht, welche die Weyl-Anomalie vermeiden, liefert ebenfall das-
selbe Spektrum bis zu O(1/R3). Die dabei auftretende Kopplungskonstante wurde
durch die Forderung nach Lorentz-Invarianz fixiert.
Im dritten Kapitel wurden die Grundlagen der Gittersimulationen dargestellt. Ins-
besondere wurde gezeigt, wie man mithilfe bestimmter Operatoren und einer Korre-
lationsmatrix die angeregten Zustände auf dem Gitter untersuchen kann. Zusätzlich
wurde der Lüscher-Weisz-Algorithmus diskutiert und eine verbesserte, speziell auf die
Operatoren für angeregten Zustände zugeschnittene, Version des Algorithmus präsen-
tiert.
In den Kapiteln Vier und Fünf wurden dann die Resultate aus den Gittersimula-
tionen in dreidimensionaler SU(2)-Eichtheorie präsentiert und mit den theoretischen
Vorhersagen des zweiten Kapitels verglichen.

Schlussfolgerungen

Ziel dieser Arbeit war es, mithilfe von Monte-Carlo-Simulationen, die Vorhersagen
effektiver Stringtheorien bezüglich angeregter Zustände von Flussröhren mit den Re-
sultaten aus der reinen Eichtheorie zu vergleichen. Insbesondere ist interessant, bei
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welchem Abstand R zwischen den statischen Quarks Aussagen über das Verhalten der
QCD mit den effektiven Stringtheorien gemacht werden können.
Die Resultate für β = 5 und β = 7.5 zeigen in allen Bereichen eine erstaunlich gute
Übereinstimmung mit der Nambu-Stringtheorie. Die Daten des ersten angeregten Zu-
standes erreichen die zugehörige Kurve bei etwa R/r0 ≈ 2.4 oder R ≈ 1.2fm, während
die Daten des Grundzustandes im Rahmen der Fehlergrenzen mit den Vorhersagen
der Nambu-Stringtheorie übereinstimmen. Die Kurven in führender Ordnung in 1/R
sowie die Kurven in O(1/R3) stimmen nicht mit den Daten überein und beschreiben
die Daten erst bei sehr großen Abständen R, bei denen die Korrekturen der Nambu-
Stringtheorie sehr klein werden.
Bei dieser Arbeit gab es zwei wesentliche Ziele:
Zum einen sollte eine verbesserte Fehlerreduktion mithilfe der neuen Version des
Lüscher-Weisz-Algorithmus erzielt werden. Die Fehlerreduktion mit der neuen Me-
thode wurde in Kapitel (3.4.2) diskutiert und konnte auch anhand des Vergleiches
der neuen Daten mit den älteren Daten [46] gesehen werden. Zum anderen sollten die
angeregten Zustände des statischen qq̄-Potentials betrachtet werden, was ausführlich
in Kapitel (V) geschah. Beide Ziele wurden also im Rahmen dieser Arbeit erreicht.

Ausblick

Die bisherigen Simulationen sind nicht ausreichend um bereits eine Kontinuumsextra-
polation zu erlauben. Zu diesem Zweck sind weitere Simulationen auf feineren Gittern
notwendig. Diese Simulationen werden derzeit durchgeführt, so dass die Resultate hof-
fentlich bald vorliegen werden.
Ein Problem stellt der dritte angeregte Zustand dar, für den bereits bei β = 7.5
kein zuverlässiger Wert mehr berechnet werden konnte. Es mag sein, dass Operatoren
mit einem größeren Überlapp zu diesem Zustand benötigt werden. Untersuchungen
mit anderen Operatoren sind durchaus vorstellbar und über diese könnte man unter
Umständen auch weitere angeregte Zustände untersuchen. Unklarheit besteht derzeit
auch noch über die korrigierten Werte des zweiten angeregten Zustandes. Sobald je-
doch mehr Statistik vorhanden ist, können die Werte erneut überprüft werden.
Es ist denkbar die Simulationen auf SU(3)-Eichtheorie oder auf vier Dimensionen
auszuweiten und so den vollen Eichsektor der QCD zu betrachten. Allerdings steigt in
diesem Fall die benötigte Rechenleistung stark an, so dass mit der derzeitigen Fehlerre-
duktion exakte Ergebnisse nur unter Investition hoher Rechenzeiten erwartet werden
dürfen.
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A Herleitungen

A.1 Orthonormalitätsbedingungen für die Fouriermoden

Ziel ist es aus den Orthonormalitätsbedingungen (2.5) Bedingungen für die Fourier-
moden aus (2.12) herzuleiten. Die aus der Eichung (2.10) resultierenden Orthonorma-
litätsbedingungen für die transversalen räumlichen Komponenten lauten

d−1∑

i=2

Ẋi X ′i = 0 und
(
p0

)2 −
(
R

π

)2

−
d−1∑

i=2

[(
Ẋi

)2
+

(
X ′i)2

]
= 0. (A.1)

Nach Gleichung (2.12) folgt aus der ersten Bedingung

d−1∑

i=2

Ẋi X ′i =
1
π σ

∞∑

l=−∞
l 6=0

∞∑

k=−∞
k 6=0

[
d−1∑

i=2

ai
l a

i
k

]
[sin(l κ) cos(k κ) + cos(l κ) sin(k κ)] = 0.

Mit dem Additionstheorem

sin(α+ β) = sinα cosβ + cosα sinβ

und Umbenennung der Indizees mit m = l + k erhält man

∞∑
m=−∞

m6=0

∞∑

k=−∞
k 6=0

[
d−1∑

i=2

ai
m−k a

i
k

]
sin(m κ) = 0.

Koeffizientenvergleich liefert dann für alle m die Bedingung

∑

l+k=m
l,k,m6=0

d−1∑

i=2

ai
l a

i
k = 0. (A.2)

Nach (2.12) gilt außerdem

(
Ẋi

)2
= − 1

π σ

∞∑

l=−∞
l 6=0

∞∑

k=−∞
k 6=0

ai
l a

i
k sin(l κ) sin(k κ)

(
X ′i)2 =

1
π σ

∞∑

l=−∞
l 6=0

∞∑

k=−∞
k 6=0

ãi
l ã

i
k cos(l κ) cos(k κ)
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und mit dem Additionstheorem

cos(α+ β) = cosα cosβ − sinα sinβ

sowie m = l + k ergibt sich

(
Ẋi

)2
+

(
X ′i)2 =

1
π σ

∞∑
m=−∞

∑

l+k=m
l,k 6=0

ai
l a

i
k cos(m κ). (A.3)

Summiert man in (A.3) über i und zieht den Teil mit m = 0 aus der ersten Summe
heraus, benutzt (A.2) und resubstituiert die Indizees, so ergibt sich

d−1∑

i=2

[(
Ẋi

)2
+

(
X ′i)2

]
=

1
π σ

∞∑

l=−∞
l 6=0

d−1∑

i=2

ai
−l a

i
l.

Einsetzen in die zweite Gleichung von (A.1) liefert die Beziehung

(
p0

)2 −
(
R

π

)2

− 1
π σ

∞∑

l=−∞
l 6=0

d−1∑

i=2

ai
−l a

i
l = 0. (A.4)

A.2 Ladungskonjugation und Parität bei Erzeugern und Vernichtern

Zur Klassifizierung der Eigenzustände des Fock-Raumes aus Kapitel (2.2) wird das
Verhalten der Erzeuger und Vernichter ai+

l und ai
l benötigt.

Bei der Paritätstransformation wird die Bewegungsrichtung umgekehrt und es gilt
Xi(κ) P→ −Xi(κ). Somit gilt für die Erzeuger und Vernichter nach Gleichung (2.12)

ai+
l

P→ −ai+
l und ai

l
P→ −ai

l. (A.5)

Bei der Ladungskonjugation werden Quark und Antiquark vertauscht und anschlie-
ßend wird das System an der Ebene senkrecht zur Stringachse x1 in der Mitte zwischen
den Quarks gespiegelt. Der räumliche Parameter κ ∼ x1 wird also vom anderen Ende
des Strings aus betrachtet, d.h. Xi(κ) C→ Xi(π − κ). Nach (2.4) gilt dann für die
Erzeuger und Vernichter

ai+
l

C→ (−1)l+1 ai+
l und ai

l
C→ (−1)l+1 ai

l. (A.6)

A.3 Berechnung von
〈
X2(κ)

〉
im Fock-Raum der transversalen Schwin-

gungen

Ziel ist es den allgemeinen Erwartungswert 〈Nl| (X(κ))2 |Nl 〉 in Nambu Stringtheorie
zu berechnen. Dabei wird der Einfachheit halber nur eine transversale Komponente
X(κ) betrachtet, da sich das Ergebniss trivial auf (d − 2) Komponenten erweitern
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lässt.
Der Ortsoperator der transversalen Schwingungen ist nach Gleichung (2.12) gegeben
über

X(κ, τ) =

√
1
π σ

∞∑

k=1

(ak + a+
k )

k
sin(k κ). (A.7)

In Normalordnung lautet der Operator X2(κ) demnach:

: X2(κ) :=
1
π σ

∞∑

k1,k2=1

1
k1 k2

sin(k1 κ) sin(k2 κ)
[
a+

k1
a+

k2
+ ak1 ak2 + 2 a+

k1
ak2

]
(A.8)

Die beiden ersten Terme in der eckigen Klammer des Operators (A.8) verschwinden
in den Erwartungswerten aufgrund der Orthonormalität der Zustände |Nl 〉. Der Er-
wartungswert reduziert sich also zu

〈Nl| (X(κ))2 |Nl 〉 =
1
π σ

∞∑

k1,k2=1

2
k1 k2

sin(k1 κ) sin(k2 κ) 〈Nl| a+
k1
ak2 |Nl 〉 . (A.9)

Der Erwartungswert auf der rechten Seite lässt sich mithilfe der Kommutatorrelation
(2.19) leicht berechnen und liefert

〈Nl| a+
k1
ak2 |Nl 〉 = Nk1 k1 δk1k2 , (A.10)

wobei Nk1 die Zahl der angeregten Zustände des Operators a+
k1

in |Nl 〉 ist.
Setzt man dieses Ergebnis ein, so ergibt sich der allgemeine Ausdruck:

〈Nl| (X(κ))2 |Nl 〉 =
1
π σ

∞∑

l=1

2
l
Nl sin2(l κ) (A.11)

Die Funktionen zugehörig zu den quadratischen Abweichungen aus Abbildung (7)
lauten also:

〈a1| (X(κ))2 |a1 〉 = 2
π σ sin2(κ)

〈a2| (X(κ))2 |a2 〉 = 1
π σ sin2(2 κ)

〈a1a2| (X(κ))2 |a1a2 〉 = 2
π σ sin2(κ) + 1

π σ sin2(2 κ)

(A.12)

B Aspekte der konformen Feldtheorie

Hier werden kurz einige Aspekte der konformen Feldtheorie zusammengefasst, die für
die Lösung der Polchinski-Strominger Stringtheorie von Bedeutung sind. Dabei wird
kein Wert auf Vollständigkeit gelegt. Für eine detailiertere Diskussion sei auf [31]
verwiesen, deren Darstellung hier gefolgt wird.
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B.1 Konforme Transformationen

Konforme Transformationen sind per Definition Koordinatentransformationen x→ x′,
die den metrischen Tensor gµν(x) bis auf lokale Skalentransformationen mit der Skala
Λ(x) invariant lassen, also Transformationen, für die gilt

gµν(x′) = Λ(x) gµ(x). (B.1)

Die Menge aller konformen Transformationen wird als Konforme Gruppe bezeichnet
und sie besitzt die Poincaré-Gruppe als Untergruppe mit Λ(x) = 1.
Ein beliebiges Feld φ(x), welches das Transformationsgesetz

φ(x)→ φ′(x′) =
∣∣∣∣
∂x′

∂x

∣∣∣∣
−h

d

φ(x) (B.2)

unter konformen Transformationen erfüllt, wobei h die Skalendimension des Feldes
ist, wird als quasi-primäres Feld bezeichnet. Für die Änderung der Wirkung S unter
einer beliebigen infinitesimalen Translation xµ → xµ + εµ gilt wie üblich

δS =
∫
ddx Tµν ∂µεν , (B.3)

wobei Tµν(x) der zugehörige Energie-Impuls-Tensor ist, für den das Erhaltungsgesetz
∂µT

µν = 0 gilt.

B.2 Zwei Dimensionen, Operatorprodukte und die Zentralladung

Im folgenden werden zweidimensionale konforme Feldtheorien betrachtet mit den kon-
formen Variablen z±, so dass für alle Felder gilt φ ≡ φ(z+, z−).
Korrelationsfunktionen werden typischerweise singulär, wenn die beiden Konstituen-
ten am selben Ort betrachtet werden. Bei der Operatorproduktentwicklung drückt
man einen beliebigen Erwartungswert, wobei die Klammern 〈. . .〉 weggelassen wer-
den, durch diese Singularitäten aus, so dass eine beliebige Korrelationsfunktion bzw.
der Operator innerhalb der Korrelationsfunktion geschrieben werden kann als

A(z±1 )B(z±2 ) ∼
N∑

k=1

Ck(z±1 )
(z±1 − z±2 )k

. (B.4)

Dabei drückt ∼ aus, dass Terme, die sich regulär für z±1 → z±2 verhalten vernachlässigt
werden und Ck(z±1 ) an der Stelle z±1 reguläre Operatoren sind.
Im Speziellen gelten für den Energie-Impuls-Tensor die Operatorprodukte:

T±±(z±1 ) T±±(z±2 ) ∼ c

2 (z±1 − z±2 )4
+

2 T±±(z±1 )
(z±1 − z±2 )2

+
∂±T±±(z±1 )
(z±1 − z±2 )

(B.5)

Dabei ist c die sogenannte Zentralladung, die proportional ist zur Casimir-Energie der
Feldtheorie.
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B.3 Radiale Quantisierung, Operatorformalismus und Virasoro-Algebra

Alle weiteren Betrachtungen werden in radialer Quantisierung mit Radius R = 1
durchgeführt, d.h., man bildet die Theorie auf einen Zylinder mit dem Radius R ab.
Hier wird explizit κ+ = τ + κ und κ− = τ − κ benutzt, wobei τ mit einer Zeitkoor-
dinate und κ mit einer 2π-periodischen räumlichen Koordinate assoziiert wird. Diese
Quantisierung ist besonders geeignet um Stringtheorie zu betrachten, bei der wie in
Kapitel (II) die räumliche Komponente der Weltfläche eine endliche Ausdehnung hat.
Außerdem werden nur trivial-transformierende Felder mit h = 0 betrachtet.
Um den Hilbert-Raum der Theorie untersuchen zu können entwickelt man die Ope-
ratoren nach κ+ bzw. nach κ−. Man schreibt die primären Felder als

φ(κ−) =
∞∑

k=−∞
ak e

−ik κ− und φ(κ+) =
∞∑

k=−∞
ãk e

−ik κ+
, (B.6)

wobei Abhängigkeit von den Parametern als scheinbar entkoppelt angesehen wird. Die
jeweilige Abhängigkeit vom anderen Parameter ist jedoch stets implizit vorhanden.
a0 = ã0 ist dabei proportional zum Impuls des Feldes φ. Die Operatoren ak werden
als Rechtsdreher (engl.: right-mover) und die Operatoren ãl als Linksdreher (engl.:
left-mover) bezeichnet. Analog entwickelt man die beiden wichtigen Komponenten des
Energie-Impuls-Tensors nach

T−−(κ−) =
∞∑

k=−∞
Lk e

−i (k+2) κ− und T++(κ+) =
∞∑

k=−∞
L̃k e

−i (k+2) κ+
. (B.7)

Die Entwicklungsoperatoren Lk und L̃k werden als Virasoro-Generatoren bezeichnet,
denn sie generieren lokale konforme Transformationen. Wie sich zeigen lässt, erfüllen
diese stets die Virasoro-Algebra

[Ln , Lm] = (n−m) Ln+m + c
12 n(n2 − 1) δn,−m ;

[
Ln , L̃m

]
= 0

[
L̃n , L̃m

]
= (n−m) L̃n+m + c

12 n(n2 − 1) δn,−m.
(B.8)

Speziell der Operator L0 + L̃0 generiert Translationen in der Zeit und kann deshalb
als Hamilton-Operator H = L0 + L̃0 aufgefasst werden. Der Hilbert-Raum lässt sich
über die Moden ak und ãk, oder die Virasoro-Generatoren Ln und L̃n aufspannen,
wobei für physikalische Zustände |ψ 〉 stets gelten muss

Ln |ψ 〉 = L̃n |ψ 〉 = 0 für n ≥ −1, (B.9)

damit der Erwartungswert 〈T±±(κ±)〉 endlich ist für κ± → 0. Weiterhin gelten die
Bedingungen

(L0 − 1) |ψ 〉 =
(
L̃0 − 1

)
|ψ 〉 ≡ 0. (B.10)
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B.4 Lagrange-Dichte und Energie-Impuls Tensor des Fluktuationsfeldes
der Polchinski-Strominger Stringtheorie

Nach der Umdefinition des Flukuationsfeldes Ỹ µ → Y µ, die im Detail in [32] diskutiert
wird, erhält man aus der Wirkung (2.52) die Lagrange-Dichte

LPS = − R2

16 π α
+

1
2π α

∂+Y
µ ∂−Yµ +O(1/R4). (B.11)

Die zugehörigen relevanten Komponenten des Energie-Impuls Tensors lauten:

T−− = − R
π α e

µ
− ∂−Yµ − 1

α ∂−Y
µ ∂−Yµ − 2π β

R eµ+ ∂
3−Yµ

−8π2 β
R2

[
eµ+ ∂

3−Yµ e
ν
+ ∂−Yν − eµ+ ∂2−Yµ e

ν
+ ∂

2−Yν

]
+O(1/R3)

(B.12)

T++ = − R
π α e

µ
+ ∂+Yµ − 1

α ∂+Y
µ ∂+Yµ − 2π β

R eµ− ∂3
+Yµ

−8π2 β
R2

[
eµ− ∂3

+Yµ e
ν− ∂+Yν − eµ− ∂2

+Yµ e
ν− ∂2

+Yν

]
+O(1/R3)

(B.13)

Die Wirkung (B.11) entspricht einer freien Theorie mit einem konstanten Zusatzterm.
Das Operatorprodukt Y µY ν ist deshalb gegeben über

Y µ(κ+, κ−)Y ν(0, 0) ∼ −α
2

ln
(
κ+ κ−

)
+ Y|κ±=0 , (B.14)

wobei Y ∼ 1/R2 ein irrelevanter zusätzlicher Term ist. Mithilfe dieses Operatorpro-
duktes lassen sich die Operatorprodukte (2.59) berechnen.
Eine Entwicklung der Form (B.7) der Energie-Impuls Tensoren (B.12) und (B.13)
liefert mit den Entwicklungen (2.61) die Virasoro-Generatoren:

Lk = R
2π

√
2
α e

µ
− akµ + 1

2

∑∞
l=−∞ : aµ

k−l alµ : +β
2 δk0

−2π β k2

R

√
α
2 e

µ
+ akµ − 2π2 β α n2

R2 eµ+ e
ν
+

∑∞
l=−∞ : aµ

k−l alµ : +O(1/R3)
(B.15)

L̃k = R
2π

√
2
α e

µ
+ ãkµ + 1

2

∑∞
l=−∞ : ãµ

k−l ãlµ : +β
2 δk0

−2π β k2

R

√
α
2 e

µ
− akµ − 2π2 β α n2

R2 eµ+ e
ν
+

∑∞
l=−∞ : aµ

k−l alµ : +O(1/R3)
(B.16)

: . . . : bezeichnet dabei wie üblich normalgeordnete Ausdrücke.

C Details der numerischen Methoden

C.1 Berücksichtigung der angeregten Zustände bei den Gitterrechnungen

Fit für die Energiewerte

Die naiven Energien (3.17) werden berechnet ohne die Beiträge der angeregten Zustände
in den Kanälen zu berücksichtigen. Eine Möglichkeit dies zu tun ergibt sich über einen
Dreiparameterfit, dessen Form nun kurz hergeleitet wird.
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Dividiert man die Erwartungswerte zweier Wilson-Loops Wn(R, Ti) für die Zeiten T2

und T1 und bildet auf beiden Seiten der Gleichung den Logarithmus, so gilt nach
Gleichung (3.15)12 (K → n):

ln
[
Wn(T2)
Wn(T1)

]
= −(T2 − T1) En + ln

[
1 +

∑∞
k1=1 βn,k1 e

−∆En,k1
T2

]

− ln
[
1 +

∑∞
k2=1 βn,k2 e

−∆En,k2
T1

]

Entwickelt man die Logarithmen ln(1 + x) für kleine x und nimmt nur die linearen
Terme mit, da alle anderen Terme mindestens O (

e−2 ∆En,1
)

sind, und vernachlässigt
alle Terme der Ordnung O (

e−∆En,k
)

mit k > 1, so ergibt sich:

ln
[
Wn(T2)
Wn(T1)

]
= −(T2 − T1) En + βn,1 e

−∆En,1 T2 − βn,1 e
−∆En,1 T1 + h.O.

Durch eine einfach Umformung erhält man dann:

En = − 1
T2 − T1

ln
[
Wn(T2)
Wn(T1)

]
− βn,1

T2 − T1
e−∆En,1 T1

(
1− e−∆En,1 (T2−T1)

)
+h.O. (C.1)

Diese Gleichung ist die Grundlage für den Fit (3.18).

Fit für die Energiedifferenzen

Eine analoge Gleichung lässt sich auch für die Energiedifferenzen herleiten. Zu diesem
Zweck bildet man das Viererprodukt

Wn(T2)Wm(T1)
Wn(T1)Wm(T2)

= e−(En−Em) (T2−T1) + Cnm(T2, T1),

wobei Cnm(T2, T1) das Viererprodukt aus den entsprechenden Korrekturtermen ist.
Bildet man den Logarithmus dieser Gleichung, so ergibt sich (∆Enm ≡ En −Em)

∆Enm = − 1
T2 − T1

ln
[
Wn(T2)Wm(T1)
Wn(T1)Wm(T2)

]
+

1
T2 − T1

ln [Cnm(T2, T1)] . (C.2)

Berücksichtigt man bei den Korrekturtermen wieder nur Terme der führenden Ord-
nung, so folgt

ln [Cnm(T2, T1)] = −βn,1 e
−∆En,1 T1

(
1− e−∆En,1 (T2−T−1)

)

+βm,1 e
−∆Em,1 T1

(
1− e−∆Em,1 (T2−T−1)

)
+ h.O..

(C.3)

In führender Ordnung (Siehe freier bosonischer String, Kapitel (3.2.2).) sind die Ener-
giedifferenzen ∆En,1 und ∆Em,1 gleich. Dies führt zu der Annahme, dass die Korrek-
turen (C.3) mit ∆En,1 = ∆Em,1 zum Ausdruck

ln [Cnm(T2, T1)] = − (βn,1 − βm,1) e−∆En,1 T1

(
1− e−∆En,1 (T2−T1)

)
(C.4)

12Die räumliche Ausdehnung wird dabei im Folgenden der Einfachheit halber unterdrückt.



66 Anhang

R 1/2 (βn,1 − βm,1) ∆En,1 βn,1 ∆En,1 −βm,1 ∆Em,1 ∆E10

6 0.37(4) 0.34(6) 0.37(4) 0.34(6) 0.37(4) 0.34(6) 0.417(3)
7 0.50(4) 0.36(6) 0.50(7) 0.36(9) 0.50(7) 0.36(9) 0.371(4)
8 0.43(2) 0.30(6) 0.43(3) 0.29(7) 0.43(3) 0.29(7) 0.332(5)

Tabelle (8): Vergleich der Fitparameter eines Fünfparameter- und eines Dreipara-
meterfits für die Energiedifferenz ∆E10 bei β = 5. Anzumerken ist, dass die Daten aus
einer Rechnung mit einer älteren Version des Algorithmus stammen als die restlichen
Daten.

vereinfacht werden können. Diese Annahme lässt sich überprüfen, indem man für den-
selben Datensatz einen Dreiparameterfit, zugehörig zu den Energiedifferenzen (C.2)
mit den Korrekturen (C.4), und einen Fünfparameterfit, zugehörig zu (C.2) mit (C.3),
durchführt.
Für Wilson-Loops bei β = 5 auf einem 243 Gitter, mit T = 4, 8, 12, 16 und R = 6, 7, 8
sind die resultierenden Fitparameter für die Energiedifferenz ∆E10 in Tabelle (8) an-
gegeben. Man erkennt deutlich die Übereinstimmung, die Annahme, dass (C.4) ein
guter Korrekturterm für die Energiedifferenzen ist, ist im Rahmen der Messungenau-
igkeit bei den Messungen dieser Arbeit also korrekt.
Die Gleichungen (C.2) und (C.4) sind die Grundlage für den Fit (3.19).

C.2 Ergebnisse der Simulationen

In den Tabellen (9) und (10) sind die Ergebnisse der Gittersimulationen für die totalen
Energiewerte und die Energiedifferenzen angegeben. Die Messfehler wurden über die
Jackknife-Methode mit Blockgrößen von 80 Messwerten im Falle von β = 5 und
100 Messwerten im Falle von β = 7.5 berechnet. Bei den korrigierten Energiewerten
wurde für jeden der Blöcke ein einzelner Fit nach den Formeln (3.18) und (3.19)
durchgeführt. Der Messfehler ergibt sich aus diesen Blockwerten über die übliche
Formel für Jackknife-Fehler. Alle Größen werden dabei in Gittereinheiten angegeben.
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R Ē0 E0 Ē1 E1 Ē2 E2 Ē3 E3

β = 5

4 0.5725(3) 0.571(1) 1.143(2) 1.126(3) 1.541(9) 1.46(3) 1.90(8) 1.72(4)
5 0.6776(4) 0.674(2) 1.184(2) 1.161(3) 1.540(8) 1.48(2) 1.90(7) 1.72(3)
6 0.7801(6) 0.775(2) 1.230(2) 1.206(4) 1.557(8) 1.50(2) 1.94(9) 1.76(8)
7 0.8826(9) 0.8781(6) 1.300(3) 1.252(8) 1.589(9) 1.51(2) 1.91(6) 1.77(3)
8 0.983(2) 0.9779(8) 1.362(3) 1.31(2) 1.635(10) 1.56(2) 1.94(7) 1.80(3)
9 1.085(2) 1.077(1) 1.446(4) 1.38(2) 1.69(1) 1.62(2) 2.01(8) 1.87(3)
10 1.1847(4) 1.170(5) 1.5146(8) 1.459(3) 1.745(3) 1.688(6) 2.06(2) 1.923(7)
11 1.2862(4) 1.268(4) 1.6070(9) 1.537(4) 1.809(3) 1.747(5) 2.13(2) 1.989(7)
12 1.3858(5) 1.364(6) 1.684(1) 1.618(4) 1.877(4) 1.809(5) 2.19(2) 2.047(6)

β = 7.5

7 0.4267(2) 0.4249(3) 0.7830(9) 0.753(2) 1.034(4) 0.95(9) 1.27(7)
8 0.4682(2) 0.4658(3) 0.7986(9) 0.767(2) 1.036(4) 0.97(4) 1.27(7)
9 0.5095(3) 0.5061(4) 0.8200(9) 0.785(3) 1.040(4) 0.98(3) 1.27(7)
10 0.5502(3) 0.5462(5) 0.8411(9) 0.805(3) 1.050(4) 0.99(3) 1.28(7)
11 0.5912(4) 0.5859(6) 0.8692(9) 0.827(3) 1.061(4) 1.01(2) 1.30(7)
12 0.6317(4) 0.6255(7) 0.8940(9) 0.851(3) 1.076(4) 1.03(3) 1.31(7)
13 0.6724(5) 0.6650(8) 0.927(1) 0.877(3) 1.093(4) 1.05(3) 1.33(7)
14 0.7128(6) 0.7043(9) 0.954(1) 0.904(4) 1.113(4) 1.07(3) 1.35(6)
15 0.7535(6) 0.744(1) 0.990(2) 0.933(4) 1.134(4) 1.10(2) 1.37(7)
16 0.7937(7) 0.783(2) 1.019(2) 0.963(4) 1.157(4) 1.13(2) 1.39(7)
17 0.8345(8) 0.822(2) 1.057(2) 0.995(5) 1.181(5) 1.15(1) 1.42(9)
18 0.8746(8) 0.861(2) 1.088(3) 1.027(6) 1.207(6) 1.18(1) 1.5(1)
19 0.9153(9) 0.900(2) 1.127(4) 1.061(7) 1.233(7) 1.21(2) 1.5(2)
20 0.956(1) 0.939(2) 1.158(5) 1.095(9) 1.261(9) 1.24(2) 1.6(3)

Tabelle (9): Resultate der Gittersimulationen für die totalen Energiewerte mit den
Simulationsparametern aus Kapitel (4.3) und β = 5, bzw. β = 7.5. Ēn sind die naiven
Energien, berechnet durch Wilson-Loops mit T = 4 und 8, und En die mit dem
Fit (3.18) korigierten Energien. Die korrigierten Energiezustände E2 und E3 konnten
jeweils nur durch Fits mit den drei niedrigsten Zeitausdehnung der Wilson-Loops
bestimmt werden. Bei den Fits für E2 bei β = 7.5 unterhalb der Trenlinie gibt es
möglicherweise noch systematische Fehler.
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R ∆Ē10 ∆E10 ∆Ē20 ∆E20 ∆Ē21 ∆E21 ∆Ē30 ∆E30

β = 5

4 0.558(3) 0.551(4) 0.94(2) 0.92(2) 0.384(9) 0.33(3) 1.29(10) 1.15(3)
5 0.489(3) 0.478(5) 0.844(10) 0.83(2) 0.355(8) 0.32(2) 1.19(9) 1.04(3)
6 0.434(3) 0.426(4) 0.759(9) 0.75(1) 0.325(7) 0.29(2) 1.1(1) 0.99(8)
7 0.398(4) 0.378(7) 0.683(10) 0.66(2) 0.284(8) 0.26(2) 0.90(7) 0.89(3)
8 0.362(3) 0.341(10) 0.629(10) 0.61(2) 0.268(8) 0.24(2) 0.83(7) 0.82(2)
9 0.338(4) 0.31(2) 0.58(2) 0.57(2) 0.244(10) 0.23(3) 0.80(9) 0.79(3)
10 0.309(1) 0.287(3) 0.544(3) 0.534(2) 0.235(2) 0.228(8) 0.81(2) 0.753(9)
11 0.295(1) 0.267(3) 0.506(3) 0.497(3) 0.211(3) 0.209(7) 0.77(2) 0.721(8)
12 0.275(2) 0.250(3) 0.474(3) 0.462(4) 0.199(3) 0.191(7) 0.73(2) 0.683(9)

β = 7.5

7 0.332(2) 0.328(3) 0.57(3) 0.55(4) 0.23(2) 0.20(9)
8 0.306(2) 0.302(2) 0.53(3) 0.52(3) 0.23(2) 0.20(4)
9 0.284(2) 0.278(3) 0.50(2) 0.49(2) 0.21(2) 0.19(4)
10 0.265(2) 0.258(3) 0.47(2) 0.46(2) 0.21(2) 0.19(3)
11 0.249(2) 0.241(3) 0.44(2) 0.44(2) 0.19(1) 0.18(2)
12 0.234(2) 0.225(3) 0.42(2) 0.417(10) 0.188(9) 0.18(2)
13 0.222(2) 0.212(4) 0.400(10) 0.397(9) 0.178(8) 0.17(3)
14 0.210(2) 0.199(4) 0.382(9) 0.380(8) 0.172(7) 0.17(3)
15 0.201(2) 0.190(4) 0.365(8) 0.364(7) 0.164(7) 0.17(2)
16 0.191(2) 0.180(4) 0.350(8) 0.349(7) 0.159(7) 0.16(2)
17 0.184(2) 0.171(4) 0.337(8) 0.336(7) 0.152(7) 0.16(2)
18 0.176(2) 0.165(4) 0.324(9) 0.324(7) 0.148(8) 0.16(2)
19 0.171(3) 0.156(6) 0.313(10) 0.313(8) 0.142(9) 0.15(2)
20 0.164(4) 0.151(8) 0.30(2) 0.304(7) 0.14(2) 0.15(2)

Tabelle (10): Resultate der Gittersimulationen für die Energiedifferenzen mit den
Simulationsparametern aus Kapitel (4.3) und β = 5, bzw. β = 7.5. ∆Ēnm ≡ Ēn− Ēm

sind die naiven Energiedifferenzen, berechnet mit Wilson-Loops mit T = 4 und 8, und
∆En die nach mit dem Fit (3.18) korigierten Energien. Bei ∆E10 konnten die Werte
bei β = 5 oberhalb der Trennlinie, und bei β = 7.5 unterhalb der Trennlinie, nur aus
Fits mit den niedrigsten drei Zeitausdehnungen berechnet werden. Bei ∆E20 wurden
alle Werte aus Fits bezüglich der niedrigsten drei Zeitausdehnungen gewonnen. Dabei
gibt es bei β = 7.5 unterhalb der Trennlinie, wie auch schon bei den Gesamtenergien,
möglicherweise noch systematische Fehler. Die Werte für ∆E21 wurden aus den korri-
gierten Energien aus Tabelle (9) berechnet. Aufgrund der dort auftretenden Probleme
sind auch hier die Werte unterhalb der Trennlinie nicht zuverlässig. Für β = 7.5 war
aufgrund der hohen Fehler der Loops zugehörig zum dritten angeregten Zustand eine
Auswertung der Energiedifferenzen nicht möglich.
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C.3 Test der verwendeten Fits

Für die Schlußfolgerungen in Kapitel (V) sind vor allem die Fits (3.19) für die kor-
rigierten Energien ∆Enm relevant, da diese die finalen Messresultate sind. Die Fits
müssen dementsprechend unter Kontrolle gehalten werden, sollen keine falschen Werte
berücksichtigung finden.
Man kann die Fits mit einer recht einfachen Methode überprüfen. Zu diesem Zweck
trägt man in einem Diagramm die Funktion

f2 = f1 (C.5)

mit
f1 = 1

T2−T1

[
(βn,1 − βm,1) e−∆En,1 T1

(
1− e−∆En,1 (T2−T1)

)]

f2 = − 1
T2−T1

ln
[
Wn(R,T2)Wm(R,T1)
Wn(R,T1)Wm(R,T2)

]
−∆Enm

(C.6)

auf, mit allen möglichen Werten von T1 und T2, wobei Gleichung (C.5) dann dem Fit
aus Gleichung (3.19) entspricht.
Liegen alle Messwerte auf dieser Geraden, so scheint der Fit zu funktionieren. An-
zumerken ist dazu noch, dass f1 einen Korrekturwert angibt und f2 die jeweilige
Abweichung des einzelnen Messwertes, zugehörig zu den unterschiedlichen T1 und T2,
von dem letztlichen extrapolierten Wert, so dass es nicht sinnvoll ist, bei diesen sehr
große Werte zuzulassen. Hier werden deshalb nur Werte mit f1 < 0.15 berücksich-
tigt, was bei allen vertrauenswürdigen Fits im allgemeinen auch erfüllt ist. Außerdem
berücksichtigen wir nicht den Messwert mit dem höchsten T2 und T1, also T2 = 12
und T1 = 8 bei β = 5 und T2 = 18 und T1 = 14 bei β = 7.5, aufgrund der sehr hohen
Messfehler bei diesen Werten.
Die Resultate für die Fits zu ∆E10 mit allen vier Zeitausdehnungen der Wilson-Loops
sind in Abbildung (17) gezeigt. Auch wenn natürlich sehr viele Messwerte in diesen
Plots angegeben sind, erkennt man doch, dass diese alle auf der Geraden liegen. Die
einzigen Ausnahmen bestehen bei β = 5 für R < 7, sowie β = 7.5 für R > 16, wo die
Punkte zugehörig zu den höheren T -Werten von der Geraden abweichen. Dies sind
die entsprechenden Werte, für die in Tabelle (10) die Messwerte als unzuverlässig an-
gegeben werden.
In Abbildung (18) wird dann mit ∆E20(R = 9) für β = 7.5 (oben) ein typisches
Beispiel für den Fall gezeigt, bei dem ein Fit recht gut funktioniert, obwohl nur die
niedrigsten drei Zeitausdehnungen der Wilson-Loops berücksichtigt wurden, während
der untere Fit für ∆E20(R = 17) nicht einhundertprozentig zuverlässig funktioniert,
was an der relativ hohen Abweichung zweier Messwerte zu sehen ist, so dass der aus
dem Fit resultierende Wert in Frage zu stellen ist.
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Abbildung (17): Oben: Abbildung von den Messwerten zu (C.5) für ∆E10, β = 5
mit allen Werten für R. Dabei wurden bei dem Fit alle Wilson-Loops berücksichtigt.
Unten: Dieselbe Abbildung wie oben, nur für β = 7.5.
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Abbildung (18): Oben: Abbildung der Messwerte zu (C.5) für β = 7.5 und
∆E20(R = 9). Bei dem Fit wurden nur Wilson-Loops mit den niedrigsten drei Zeitaus-
dehnungen berücksichtigt. Unten: Analog zur oberen Abbildung für ∆E20(R = 17).
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lationen für β = 7.5 wurden auf dem Linux-Cluster KABRU am Institute of Ma-
thematical Sciences, Chennai (Indien), durchgeführt. Ich bin beiden Instituten dafür
dankbar, mir diese Kapazitäten zur Verfügung gestellt zu haben.

13http://www.cs.wisc.edu/condor
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Selbstständigkeitserklärung

Hiermit versichere ich, die vorliegende Arbeit selbst angefertigt und keine anderen als
die angegeben Hilfsmittel verwendet zu haben.

Bastian Brandt,
Münster, den 08.01.2008.


