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Einleitung

Als 1964 von Zweig und Gell-Mann das Quarkmodell vorgeschlagen wurde, fithrte
dieses auf eine fundamentale Frage:

Wo sind die Quarks?

Die Quarks, welche nach diesem Modell die fundamentalen Bestandteile der mesoni-
schen und baryonischen Materie bilden, tauchen in keinem Experiment isoliert auf, ob-
wohl in Experimenten zu tiefinelastischer Leptonstreuung punktférmige Streuzentren
mit Quarkeigenschaften gefunden wurden. Die Beobachtungen, dass Quarks scheinbar
nicht isoliert in der Natur vorkommen, prigte den Begriff Quark-Confinement.
Quark-Confinement und die Beobachtung, dass sich die leichten Mesonen sowie Baryo-
nen nach sogenannten Regge-Trajektorien (siehe auch Kapitel (1.2)) anordnen lassen,
fiihrte auf die Entwicklung naiver effektiver Modelle fiir die Bindungen zwischen den
Quarks. Zu diesen Modellen gehort die effektive Stringtheorie fiir Mesonen, nach der
die beiden im Meson enthaltenen Quarks durch einen Energiefaden mit konstanter
Energiedichte, einem String, dhnlich einem Gummiband, verbunden sind. Die po-
pulérsten der verschiedenen Ansétze fiir diese effektiven Stringtheorien werden in Ka-
pitel (II) behandelt.

Als dann die Quantenchromodynamik (QCD) (Fiir einen Uberblick siche [1].) zu Be-
ginn der 70er Jahre als Kandidat fiir die starke Wechselwirkung eingefiihrt und schlief3-
lich aufgrund erfolgreicher Vorhersagen als grundlegende Theorie akzeptiert wurde,
fiihrte diese zu einem neuen Freiheitsgrad bei den Quarks, der sogenannten Farbe
(engl.: color). Alle in den Experimenten beobachtbaren freien Teilchen tragen kei-
ne offene Farbladung, gehoren also zu einem Farb-Singulett, was zu dem erweiterten
Begriff des Farb-Confinements fiihrte [2]:

Alle in der Natur vorkommenden Teilchen gehéren zu einem
Farb-Singulett!

Aufgrund der nichtverschwindenden Farbladung der Quarks ist Quark-Confinement
in diesem Prinzip enthalten.

Da Farb-Confinement bei kleinen Energien, also im Bereich starker Kopplung, be-
obachtet wird, ist eine pertubative Behandlung nicht moglich. Aufgrund der Kom-
plexitdt der QCD und des nichtabelschen Charakters der zugrundeliegenden loka-
len SU (3)-Eichinvarianz ist ein nicht-perturbativer, mathematischer Beweis des Farb-
Confinements auf der Grundlage der QCD ebenfalls nicht méglich. Eine qualitative
Erklarung liefert allerdings die, aus dem nichtabelschen Charakter der Theorie resul-
tierende Selbstwechselwirkung der Austauschbosonen, der sogenannten Gluonen.
Betrachtet man den Grenzfall statischer Quarks, so kann man effektive Potentialm-
odelle fiir die Bindung eines solchen statischen Quark-Antiquark Paares entwickeln
(Fiir einen Uberblick siehe [3]). Durch die Selbstwechselwirkung der Gluonen kénnen



die Feldlinien eines solchen Zustandes in einer Rohre endlicher Dicke gebiindelt sein,
einer Flussrohre mit konstanter Energiedichte. Diese Vorstellung liefert ein naives Mo-
dell fiir Mesonen. Fiir grofle Abstinde zwischen den Quarks sollte sich diese Flussrohre
effektiv wie ein String verhalten, was zu dem Anschlul an die effektive Stringtheorie
fithrt. Anzumerken sei an dieser Stelle bereits, dass fiir diese Erkliarung nur der nich-
tabelsche Charakter der Theorie entscheidend ist, nicht aber die Eichgruppe SU(N)
selber.

Eine Moglichkeit, um die Vorhersagen der effektiven Stringtheorien direkt mit Re-
sultaten aus der QCD zu vergleichen, liefern numerische Gittersimulationen (siche
Kapitel (III)), die eine auf Wilson zuriickgehende Darstellung der Feldtheorie auf
Raumzeitgittern nutzt (Fiir einen Uberblick siehe [4].).

Ziel dieser Arbeit ist es mithilfe von numerischen Simulationen zu untersuchen, in
welchem Bereich mithilfe der effektiven Stringtheorien Aussagen beziiglich der QCD
gemacht werden konnen. Insbesondere ist es in dieser Hinsicht auch wichtig heraus-
zufinden, welche der moglichen effektiven Stringtheorien die besten Resultate liefert.
Im Eichsektor der vollen QCD, d.h. in vierdimensionaler SU (3)-Eichtheorie, sind die
dazu notwendigen Gittersimulationen jedoch relativ rechenintensiv und es ist schwie-
rig, die entscheidenden Resultate in akzeptabler Rechenzeit zu erhalten. In dieser
Arbeit werden deshalb Gittersimulationen in dreidimensionaler SU(2)-Eichtheorie
durchgefiihrt. Dieses dimensionsreduzierte Modell sollte ein qualitativ dhnliches Ver-
halten zeigen wie die QCD, hat allerdings numerisch einige Vorteile. Zudem wird ein
spezieller von Liischer und Weisz (siehe Kapitel (3.3)) entwickelter Algorithmus ver-
wendet, um den Messfehler bei den Simulationen zu reduzieren.

Im ersten Kapitel dieser Arbeit werden zunéchst die Grundlagen der effektiven Model-
le und deren Anschlufl an die QCD skizziert. Das zweite Kapitel beschéftigt sich dann
explizit mit den effektiven Stringtheorien fiir grole Absténde zwischen den Quarks,
mit denen die Resultate der Gittersimulationen verglichen werden sollen. Im dritten
Kapitel werden die grundlegenden Aspekte der Gittersimulationen diskutiert und der
spezielle verwendete Liischer-Weisz Algorithmus zur Fehlerreduktion vorgestellt, so-
wie dessen Anwendung auf die Berechnung von angeregten String-Zusténden erlautert.
Im vierten Kapitel werden dann die Parameter der Gittersimulationen festgelegt und
letztlich, im fiinften Kapitel, die Resultate der Simulationen dargestellt und diskutiert.



I Flussrohren und das statische gg-Potential

Hier werden zunichst die Grundlagen zu den Betrachtungen in den Kapiteln (II)
und (IIT) gelegt. Alle Betrachtungen beziehen sich auf eine beliebige nichtabelsche
SU(N)-Eichtheorie, sind also fiir den Eichsektor der QCD wie auch fiir die spéter in
den Gittersimulationen betrachtete reine SU (2)-Eichtheorie giiltig. Die Ausnahme ist
der erste Abschnitt, der sich speziell auf die QCD und somit auf SU(3)-Eichtheorie
bezieht. Die darin vorkommenden Ausdriicke lassen sich allerdings fiir eine beliebige
SU(N)-Eichtheorie iibernehmen.

Der erste Abschnitt gibt einen kurzen Einblick in die fiir diese Arbeit wichtigen
Grundlagen der QCD und erldutert Konventionen fiir die nichsten Abschnitte. Der
zweite Abschnitt beschreibt den Grundgedanken der effektiven Stringtheorien und
erldutert phénomenologisch den Zusammenhang zwischen Flussrohren und Strings.
Die néchsten beiden Abschnitte beschéftigen sich dann mit den Observablen fiir das
statische ¢g-Paar in Kontinuums-QCD. Der vierte Abschnitt dieses Kapitels erlautert
kurz den Ubergang vom Kontinuum zum Gitter und gibt einige Resultate der dort
moglichen Starkkopplungsentwicklungen an, bei denen Flussrohren im Grenzfall star-
ker Kopplung explizit untersucht werden konnen. Der letzte Abschnitt dieses Kapitels
beschéftigt sich schlieflich mit den Problemen der effektiven Modelle.

1.1 Grundlagen der Quantenchromodynamik

Die QCD ergibt sich aus der Forderung nach lokaler SU (3)-Eichinvarianz der zugehori-
gen Lagrangedichte (Fiir einen Uberblick siehe [1].). Die dabei auftretende Ladung
wird als Farbe [5] bezeichnet. Die Lagrangedichte der QCD lautet!

Ny
Locn =Y @@) (17" Dy —mi) ai(a) — % Tr (F™ () Fu(2)),  (L1)
=1

wobei D,, = 0, —ig Au(x) die kovariante Ableitung ist, die wegen der geforderten
SU (3)-Eichinvarianz eingefiihrt werden muss und iiber die die Quarks mit der Kopp-
lungskonstanten g an das Eichfeld A, (x) koppeln. Das Eichfeld A, (z) ist ein Element
der Lie-Algebra der Gruppe SU(3) und besitzt somit acht unabhéngige Freiheitsgrade,
deren zugehorige Austauschteilchen als Gluonen bezeichnet werden. Die fermionischen
Felder g;(z) beschreiben die Quarks und i = 1,..., Ny ist der Index, der die Ny ver-
schiedenen Quarkarten unterscheidet. Die Felder g;(z) tragen zudem einen weiteren
Farbindex, sowie einen Spinorindex, die hier unterdriickt werden.

Der letzte Term der Wirkung ist der iibliche von Yang und Mills [6] betrachtete ki-
netische Term fiir die Eichfelder, wobei der Feldstérketensor F,, (x) definiert ist iiber

!Bei allen Formeln in dieser Arbeit werden natiirliche Einheiten i = ¢ = 1 benutzt.
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den Kommutator ,
i
Fu(z) = p (D, , D,]. (1.2)
Die Lagrangedichte der QCD enthélt, aufgrund des nichtabelschen Charakters der
Theorie, iiber den kinetischen Term der Eichfelder kubische und quartische Selbst-
wechselwirkungsterme fiir diese, die unter Anderem veranwortlich fiir den hier be-
trachteten Effekt des Confinements sind.

Alternativ kann man die kovariante Ableitung auch mithilfe des Paralleltransporters
Uu(x) = !9 An@) e — 1+igAu(z) e+ O () (1.3)

ausdriicken, der ein Element der Eichgruppe SU(3) ist. € ist dabei als infinitesimal
klein anzusehen. Die kovariante Ableitung lautet dann?

Dy () = lim & () = Unla — € ) v — e ). (1.4)
Der Paralleltransporter U, (z) beschreibt formal den chromoelektrischen Fluss zwi-
schen den infinitesimal getrennten Raumzeitpunkten x und = + €fi. Der chromoelek-

trische Fluss entlang eines Weges C lédsst sich also schreiben als

vy =P | ] Uu) ], (1.5)

(z,n)EC

wobei der Operator P fiir die Pfadordnung sorgt. Nach (1.3) kann man (1.5) analog
auch schreiben als

U(C) = exp [ig /C Au(x)d:c“] : (1.6)

wobei das Integral ein Linienintegral entlang des Weges C in der vierdimensionalen
Raumzeit bezeichnet. Die Beziehungen (1.1) bis (1.6) sind dabei ebenso fiir eine be-
liebige nichatbelsche SU(N)-Eichtheorie giiltig, wobei die QCD durch den Spezialfall
N = 3 gegeben ist.

1.2 Regge-Trajektorien und Flussrohren
1.2.1 Regge-Trajektorien

Trégt man bei den niederenergetischen Mesonen den Spin s gegen die quadrierte Mas-
se m? auf (siche Abbildung (1)), so erkennt man, dass sich die Punkte zu Gruppen
zusammenfassen lassen, die auf Geraden mit nahezu gleicher Steigung a liegen, den
linearen Regge-Trajektorien.

/1 ist der Einheitsvektor in p-Richtung.
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Abbildung (1): Links: Regge-Trajektorien fiir Mesonen, nach einer Abbildung aus
[3]. Rechts: Eine um ihren Mittelpunkt rotierende Flussrohre.

Diese Eigenschaft der Mesonen ldsst sich durch ein einfaches Modell erkldren. Ange-
nommen die Mesonen bestehen aus einem Paar masseloser Quarks und Antiquarks,
verbunden durch ein gerades rohrenformiges Objekt der Lénge R mit der konstanten
Energie pro Léngeneinheit 0. Rotieren die Quarks an den Enden mit nahezu Lichtge-
schwindigkeit um das Zentrum des Systems, wie in Abbildung (1) gezeigt, so ist die
Energie des Systems gegeben durch

peoo [ L 4 Ton 1.7
=20 —————dr=—-0R=m .
0 /1—v3(r) 2 (.7
und der innere Drehimpuls ist
R/2
L=2c ro@r) dr =" g R*=s. (1.8)

0 \1-—v2%(r) 2
Vergleicht man (1.7) und (1.8), so erkennt man den Zusammenhang

2 .
= t = —. 1.9
s=am” mit o= — (1.9)

Dieses naive Modell liefert eine Erklarung fiir die Steigung der Geraden, hat al-
lerdings einige Probleme. Z.B. haben die Geraden einen nichtverschwindenden y-
Achsenabschnitt, der durch dieses Modell nicht erklart werden kann, und die Quarks
haben eine nichtverschwindende Masse.



I Flussr6hren und das statische gg-Potential

1.2.2 Flussrohren

Das Modell stimmt mit der zugrundeliegenden nichtabelschen Eichtheorie iiberein
wenn man annimmt, dass der chromoelektrische Fluss® zwischen den Quarks durch
nicht perturbative Effekte in einer Rohre endlicher Dicke, einer Flussrohre (engl.: flux
tube), gebiindelt wird, was sich qualitativ mit den bereits beschriebenen Selbstwech-
selwirkungen der Austauschteilchen erklidren ldsst. Das Ausbilden einer Flussrohre
bezeichnet man auch als chromoelektrischen Meissner-Effekt.

Wichst der Abstand R zwischen den Quarks an, so wird das Verhiltnis zwischen Dicke
und Lénge der Flussrohre infinitesimal klein [9] und sie wird effektiv zu einem Ener-
giefaden, einem String. Die Energie des Systems wichst dann linear mit steigendem
Abstand R zwischen den Quarks an

E=0R. (1.10)

o wird in diesem Kontext auch als String-Spannung bezeichnet.

Das Modell wird realistischer, wenn man auch Schwingungen fiir den String zulésst. In
diesem Fall sind die String-Koordinaten die entscheidenden Freiheitsgrade des Systems
fiir deren Dynamik man effektive Modelle entwickeln kann, wihrend die Quarks als
statisch angesehen werden, was durch den Limes m, — oo simuliert wird. Die Stirke
des anziehenden Potentials zwischen diesen statischen Quarks wird nur noch durch das
Wechselwirkungsfeld bestimmt und man spricht vom statischen QCD- oder Quark-
Antiquark-Potential.

1.3 Wilson-Loops und Flussréhren

Motiviert durch die Betrachtungen aus Kapitel (1.2) wird das Verhalten eines stati-
schen Quark-Antiquark Paares im Kontinuum untersucht. Zu diesem Zweck wird die
Propagation eines statischen gg-Paares zwischen den euklidischen Zeiten* 7 = 0 und
7 =T betrachtet.

Das statische gg-Paar wird beschrieben durch den Operator®

~

O(R,7) =d1.7) (e Uiw:7)) als)

(1.11)
= (7(@1,7') f(RaT) Q(§237—)3
mit dem Abstand R = |z; — z5| zwischen den statischen Quarks. Der zugehorige
Zustand im Hilbert-Raum lautet mit dem Vakuum-Zustand [€2)
QR 7)) = QR,7) |2). (1.12)

3Der Einfachheit halber wird im folgenden immer von einer Farbladung der Quarks gesprochen,
unabhéngig von der betrachteten SU(N)-Eichtheorie.

“D.h. es wurde eine Wick-Rotation t — —i7 zu imaginéren Zeiten durchgefiihrt (siehe [1]).

5Dreidimensionale Vektoren des Ortsraumes werden in dieser Arbeit unterstrichen.



1.3 Wilson-Loops und Flussréhren

R

Abbildung (2): Links: Beispiel fiir einen Operator, dessen Erwartungswert pro-
portional zur Korrelationsfunktion (Q(R,0) QT (R,T)) ist. Rechts: Rechteckiger
Wilson-Loop W(R, T). Der Operator zugehorig zum Grundzustand der Bindung des
qq-Paares.

Der Operator F(R,7) beschreibt den chromoelektrischen Fluss zwischen den stati-
schen Quarks, die sich zur Zeit 7 im Abstand R befinden.

Die Propagation des statischen Quarks wird beschrieben iiber eine Wilson-Linie [7],
eine gerade Linie chromoelektrischen Flusses in Zeitrichtung. Die Propagation des An-
tiquarks wird beschrieben iiber eine konjugierte Wilson-Linie. Insgesamt erh&lt man
den Erwartungswert einer geschlossenen Kontur chromoelektrischen Flusses wie auf
der linken Seite von Abbildung (2), wobei die verbreiterten Linien des Flusses den
Operatoren F(R,0), bzw. F" (R, T) entsprechen.

Im Falle von grofien Absténden zwischen den Quarks erwartet man nach Kapitel (1.2),
dass die Feldlinien in einem infinitesimal diinnen Bereich gebiindelt werden. In diesem
Fall ldsst sich der Operator F(R,7) durch den Operator fiir den Fluss entlang einer
Verbindungslinie C(7) zwischen den Quarks ersetzen. Der Operator auf der linken Seite
von Abbildung (2) wird dann zu einem Wilson-Loop W (C(R, T)) = U (C(R, T)), einer
geschlossenen Linie chromoelektrischen Flusses entlang des Weges C(R,T'). Es ergibt
sich also fiir grofle R:

(Q(R,0) Q* (R, T)) ~ (W (C(R.,T))) = W(C(R,T)) (1.13)

Nach der Erwartung entspricht der Grundzustand einer geraden Linie chromoelek-
trischen Flusses zwischen den Quarks, also einem geraden String. Der zugehorige
rechteckige Wilson-Loop ist auf der rechten Seite von Abbildung (2) abgebildet.
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1.4 Spektraldarstellung und Energiezustinde

Die Grundzustandenergie des statischen Quark-Antiquark Paares entspricht dem sta-
tische Potential. Uber die Spektraldarstellung der Korrelationsfunktion erhilt man
eine Verbindung zwischen diesem und dem Erwartungswert des Wilson-Loops, der in
Monte-Carlo-Simulationen numerisch berechnet werden kann.

Mithilfe des euklidischen Zeitentwicklungsoperators e 7 kann man den Propagator
des statischen gg-Paares im Hilbert-Raum schreiben als

(Q(R,0) | Q" (R, T)) = (Q*(R,0)| e 7T |Q*(R,0)), (1.14)

wobei H der zugehorige Hamilton-Operator ist. Die Zustinde |Q1(R,0)) sind i.a.
keine Eigenzustinde zum Hamilton-Operator. Man kann allerdings einen vollstédndigen
Satz von Eigenfunktionen |k) zum Hamilton-Operator mit den zugehorigen, nach
Grofle geordneten Eigenenergien Eji(R) einfiigen und erhélt dann

w(C(r, 1) "~ (Q(R,0) QT (R, T)) = 3" [(QF(R,0) | K)[* e BT, (1.15)
k=0

Im Falle eines Wilson-Loops mit einem nichtverschwindenden Uberlapp mit dem
Grundzustand, also z.B. bei einem rechteckigen Wilson-Loop W (R,T') wie auf der
rechten Seite in Abbildung (2), kann man die rechte Seite umschreiben und erhélt

W (R,T) = a(R) e PR T (1 + Z@k e AEK(E T) (1.16)

mit a(R) = ¢ [(Q(R,0) | 0)*, Bp(R) = 1 (QF(R,0) | k)[* und AEk(R) = Ex(R) —
Ey(R).
Im Limes T — oo werden alle Terme in der runden Klammer gegeniiber dem ersten
Term exponentiell geddmpft und fiir das statische Potential V(R) = Ey(R) ergibt sich
der Ausdruck

V(R) = — lim — In[W(C(R,T))]. (1.17)

T—oo T

Im Fall schwacher Kopplung kann man tiber Gleichung (1.17) das statische Potential
perturbativ berechnen [10]. Allerdings gibt es analytisch keine weitere Methode, die
Energiezustdnde der Bindung zu untersuchen. Man verwendet deshalb die effektiven
Stringtheorien um Vorhersagen iiber die angeregten Energiezustéinde zu machen.
Einige Versuche wurden unternommen, effektive Feldtheorien fiir die #ufleren Frei-
heitsgrade der Flussrohre herzuleiten. Dabei wird der Propagator (Q(R,0) QT (R, T))
im Pfadintegralformalismus betrachtet und man versucht, iiber die Entwicklung der
zugehorigen Wirkung um eine klassische Losung die effektive Wirkung fiir die Fluktua-
tionen der Flussrohre in den d —2 transversalen Dimensionen herzuleiten [11],[12],[13].
Fiir eine Zusammenfassung sei hier auf [14] verwiesen.
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Da man im Eichsektor der vollen QCD selbst solche effektiven Wirkungen nicht di-
rekt aus der zugrundeliegenden Feldtheorie herleiten kann, werden zumeist effekti-
ve String-Wirkungen benutzt, die unabhéngig von der zugrundeliegenden Feldtheo-
rie sind. Lischer [15] gelang es dadurch zunéchst, eine fiir nahezu alle effektiven
Stringtheorien giiltige universelle 1/ R-Korrektur zusétzlich zum linearen Term des sta-
tischen Potentials herzuleiten, so dass sich das Potential in allen effektiven Stringtheo-
rien schreiben lassen sollte als

V(R):aR+V—l(d—2)l+0(1/R2). (1.18)
24 R

Die Konstante Vg absorbiert Abweichungen, die auftreten, wenn verschiedene Regula-
risierungen verwendet werden. Im Falle von Zeta-Funktions-Regularisierung, die auch
im néchsten Kapitel bei den effektiven Stringtheorien verwendet wird, ist Vo = 0. Bei
der Gitterregularisierung, die bei den Simulationen verwendet wird, ist V5 # 0 und
die additive Konstante muss bei der Auswertung beriicksichtigt werden.

1.5 Feldtheorie auf dem Gitter und Confinement bei starker Kopp-
lung

1.5.1 Raumzeitgitter und Erwartungswerte fiir reine SU(N)-Eichtheorie

Die Feldtheorie auf dem Gitter ist die Grundlage fiir numerische Simulationen von
Quantenfeldtheorien und Kapitel (IIT) baut darauf auf. Es sollen deshalb im Folgen-
den kurz die Grundziige dieser Theorie erldutert werden, wobei die Betrachtungen
auf den Fall der reinen SU(N)-Eichtheorie beschréinkt bleiben, da die Quarks als sta-
tisch angesehen und die Simulationen in reiner SU (2)-Eichtheorie in drei Dimensionen
durchgefiihrt werden. Fiir eine ausfiihrliche Darstellung sei auf [4] verwiesen.
Zunéchst wird die d-dimensionale kontinuierliche Raumzeit mit den Ortsvektoren z
diskretisiert, wobei die Gitterkonstanten a, mit 4 = 0,...,d — 1 den Abstand zwi-
schen zwei Gitterpunkten in der jeweiligen Richtung angeben. Im Folgenden sind nur
symmetrische Gitter relevant, weshalb ag = a1 = - -+ = a4_1 = a gesetzt werden. Die
Raumzeitvektoren = zu den jeweilgen Gitterpunkten werden auf eine Zahl n abgebil-
det, so dass mit n der zugehorige Gittervektor x,, eindeutig definiert ist.

In reiner Eichtheorie auf dem Gitter sind beliebige Observablen F[U] Funktionale der
Paralleltransporter (1.3) auf dem Gitter, den Link-Variablen

Uu(n) =€ 9940 = 1 e>en +aj, (1.19)

die zwischen den Gitterplitzen angesiedelt sind und die Freiheitsgrade des chromo-
elektrischen Feldes A, (n) représentieren. Der Erwartungswert einer beliebigen Obser-
vablen F[U] ist gegeben iiber das Funktionalintegral [4]

(F[U]) :% /DUF[U] e~Salul, (1.20)
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ag(M) ® . ° ° . ® ¢(N)

R =5a

Abbildung (3): Der Grundzustand eines statischen Quark-Antiquark Paares auf
dem Gitter im Grenzfall starker Kopplung.

Das Integrationsmafl ist dabei definiert als

DU = [[dUpu(n), (1.21)

n,p

wobei iiber alle Gruppenelemente der Eichgruppe integriert wird. S¢[U] ist die iibliche
Wilson’sche Plakett-Wirkung

Sq Ul =ATr <Z {1 - % (Up + U;)D (1.22)
P

mit § = 29—%7 und der unrenormierten Gitterkopplung g. Up mit P = (n, i, ) bezeich-
net die Plakette

= Up =Uyu(n) Uy(n+ap) Uy (n+av) U (n) (1.23)

und die Summe iiber P luft {iber alle Plaquetten des Gitters. Z ist der entsprechende
Normierungsfaktor, der dafiir sorgt, dass gilt (1) = 1.

1.5.2 Confinement bei starker Kopplung

Farb-Confinement wird im Falle niedriger Energien, also im Bereich starker Kopplung
beobachtet, in dem die Storungstheorie der Kontinuums-QCD zusammenbricht. Bei
der Feldtheorie auf dem Gitter geht die inverse Kopplung /3 in die Wirkung (1.22) ein,
was dazu fiihrt, dass eine Entwicklung im Grenzfall starker Kopplung moglich ist.
Berechnet man den Erwartungswert eines rechteckigen Wilson-Loops mit den Sei-
tenlingen R und T im Grenzfall starker Kopplung, so ergibt sich [4]

(B/HET + ... fir N =2
W —{ () 4. mrNs2 (1.2

Nach Gleichung (1.17) wichst das Potential also, wie nach Gleichung (1.10) erwartet,
linear mit steigendem Abstand R zwischen den Quarks.

Der geeignete Formalismus, um Flussrohren direkt bei starker Kopplung zu betrach-
ten, ist der Hamilton-Formalismus [16], bei dem die Zeit 7 als kontinuierliche Variable
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q
qj.N M) ® Cg—y ® ¢(N)
' ‘ Q Q
ﬁQ Q'-g a(M) @ o ® ¢(N)
q@,

Abbildung (4): Links: String-Breaking bei einer Flussréhre zwischen den stati-
schen Quarks ¢ und ¢ durch Q@Q-Paarbildung. Rechts: String-Breaking im Hamilton
Formalismus durch Uberlagerung einer Fermionenkorrektur mit der String-Anregung.

betrachtet wird, wihrend die rdumlichen Dimensionen diskretisiert sind.

Der Grundzustand in Anwesenheit eines statischen Quark-Antiquark Paares ist in
diesem Fall wie erwartet eine gerade Linie zwischen den Quarks, wie in Abbildung
(3) gezeigt. Die hoheren angeregten Zusténde entsprechen Abweichungen von dieser
geraden Linie. Die resultierenden Energien zeigen ebenfalls den erwarteten linearen
Anstieg.

1.6 Dynamische Fermionen und String-Breaking

Bei den bisherigen Betrachtungen zum Confinement wurden nur statische, d.h. unend-
lich schwere, Quarks beriicksichtigt. In der Realitdt besitzen Quarks jedoch endliche
Massen.

Da die Energie des Systems mit wachsendem
Abstand nahezu linear anwéchst, entspricht die

Energie im System irgendwann der zweifachen aE(r)l; I T
Quarkmafle der leichtesten Quarks. In diesem r ®wg st ]
Fall kann aus dem Vakuum ein weiteres Quark- 08 Z*E“:H@i!f F
Antiquark-Paar entstehen, welches zwei neue osk Lt a
Bindungzustéinde dieser Quarks mit den stati- L

schen Quarks zuldsst. Die Flussrohre wird ge- oap et p
teilt, man spricht vom Brechen der Rohre bzw. o2l o ]
des Strings (engl.: string breaking). Der Vorgang L BT £y=0.3468, Li=a0?
ist auf der linken Seite von Abbildung (4) dar- N [ ‘Zlor/a
gestellt.

String-Breaking ldsst sich bei starker Kopp- Abbildung (5): Die ersten bei-
lung auch im Hamilton-Formalismus betrach- den Energiezustinde mit dynami-
ten. In Anwesenheit von dynamischen Quarks schen fundamentalen Feldern aus
treten dort zusitzliche Stérungsterme in Form [17]. String-breaking ist bei R = 15a
von Quark-Antiquark-Paaren auf. Uberlappt zu beobachten.

ein solcher Storungsterm wie auf der rechten
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Seite von Abbildung (4) mit den angeregten Link-Variablen zwischen den statischen
Quarks, so fiithrt dies zum String-Breaking.

String-Breaking wurde bereits in mehreren numerischen Studien untersucht. Dabei
werden verschiedene Operatoren fiir den gebrochenen und ungebrochenen Zustand
benutzt und aus diesen eine Korrelationsmatrix gebildet, um die Bindungsenergien zu
separieren. Dabei wurde zunéchst das SU(2) Higgs-Modell [17],[18] benutzt. Neueste
Studien konnten String-Breaking auch in voller QCD mit zwei Quarkarten simulie-
ren [19]. Ein Resultat der Berechnungen zum SU(2) Higgs-Modell, bei dem String-
Breaking zu erkennen ist, wird in Abbildung (5) gezeigt.

String-Breaking zeigt deutlich die Grenzen der effektiven Stringtheorie fiir das stati-
sche qg-Potential, da gerade in dem Bereich, in dem man erwartet, dass die Theorie
exakt giiltig wird, also im Bereich R — oo, String-Breaking auftritt. In einem interme-
didiren Bereich, dessen Grenzen noch genauer zu bestimmen sind, besteht jedoch die
Moglichkeit, dass sich das Verhalten der Flussrohre approximativ iiber eine effektive
Stringtheorie beschreiben lésst.
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In den Kapiteln (2.1) und (2.2) wird die Nambu-Stringtheorie angewendet auf
die Weltfliche des Wilson-Loops. Die Flussrohre, bzw. der String selbst wird weiter
klassisch betrachtet auf der Basis der zugrundeliegenden Feldtheorie und die Quanti-
sierung wird nur fiir die transversalen Schwingungen durchgefiihrt.

In Kapitel (2.1) wird die klassische Nambu-Stringtheorie dargestellt. Die Quantisie-
rung der transversalen Schwingungen wird in Kapitel (2.2) im Fock-Raum der zu-
gehorigen Fouriermoden durchgefiithrt. Das resultierende Potential wurde zunéchst
von Alvarez [20] im Grenzfall d — oo hergeleitet und spéter im allgemeinen Fall von
Arvis [21]. Hier wird eine eigene, leicht abgeéinderte Herleitung verwendet. Die in Kapi-
tel (2.2.4) diskutierte Klassifizierung der Eigenzusténde in 241 Dimensionen ist fiir die
spétere Identifizierung mit den Operatoren bei den Gitterrechnungen von Bedeutung.
Die Weyl-Anomalie verhindert allerdings die Konsistenz der Nambu-Stringtheorie in
quantisierter Form als effektive Stringtheorie fiir das statische gg-Potential.

In den Kapiteln (2.4) und (2.5) werden deshalb zwei weitere effektive Stringtheorien
diskutiert, bei denen die Weyl-Anomalie nicht auftritt. Wichtig ist die Tatsache, dass
das Spektrum beider Theorien bis zur Ordnung 1/R3 mit dem Spektrum der Nambu-
Stringtheorie iibereinstimmt. Hohere Ordnungen konnten in beiden Féllen bisher nicht
berechnet werden.

2.1 Nambu-Stringtheorie
2.1.1 Die Nambu-Goto-Wirkung

Betrachtet man einen String, so iiberschreitet dieser eine Flache X#(x, 7) in der Raum-
zeit, die hier parametrisiert wird iiber x € [0, 7]% und 7 € R. Diese Fliche lisst sich im
Falle des bosonischen Strings zwischen zwei statischen Quarks im Zeitintervall [0, 7]
direkt mit der Fliche eines Wilson-Loops identifizieren.

Betrachtet wird die Nambu-Goto-Wirkung [22]

Sng = —0 / dr /O " dr \/ (dnxy)” — () (aemy? (2.1)

fiir einen bosonischen String, dessen Weltfliche mit dem Wilson-Loop identifiziert
wird, wobei die Abkiirzungen

— YH
=X und

= X'*, (2.2)

SDer raumliche Flichenparameter wird hier entgegen der iiblichen Konvention mit x statt mit o
bezeichnet, um eine Verwechslung mit der String-Spannung auszuschlieflen.
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verwendet wurden. Die Wirkung ist invariant unter Reparametrisierungen von « und
7, was dazu ausgenutzt werden kann die Bewegungsgleichungen zu vereinfachen. Au-
Berdem ist zu bemerken, dass die Rechnungen hier nicht in euklidischer Zeit durch-
gefiithrt werden. Da allerdings nur die Energien mit den Gittersimulationen verglichen
werden, ist dieser Unterschied nicht relevant.

2.1.2 Bewegungsgleichungen und orthonormale Koordinaten

Die Bewegungsgleichungen ergeben sich aus dem Prinzip der extremalen Wirkung und
eine kurze Rechnung liefert [22],[23]

8, P*+ 8, P! =0, (2.3)

mit den kanonisch konjugierten Impulsen

oL

oL
Pt =0 — d P!= .
o) un A aaXL

g
m

(2.4)

Aufgrund der Reparametrisierungsinvarianz der Wirkung (2.1) kann man nun zu or-
thonormalen Koordinaten {ibergehen [23], die dariiber definiert sind, dass sie die Or-
thonormalitédtsbedingungen

i SN2
X1 X}, =0 and  (xX)7+ (%) =0 (2.5)
erfiillen. Die kanonisch konjugierten Impulse lauten dann
Pt=¢ X' und PF=og X" (2.6)
und aus den Bewegungsgleichungen (2.3) wird

(02 — 92] XH(k,T) =0. (2.7)

2.1.3 Parametrisierung und L6sung der Bewegungsgleichungen

Die Orthonormalitidtsbedingungen (2.5) lassen weitere Reparametrisierungen der Form

T = 74+ f(t+k)+ f(T—K)

W= ht )~ f(7 ) 29

zu [23]. Diese Eigenschaft wird dazu genutzt, eine spezielle Parametrisierung zu wéhlen,
die mit den Bedingungen (2.5) vertriglich ist.

Gesucht ist die allgemeine Losung der Bewegungsgleichung (2.7) fiir einen String zwi-
schen einem statischen Quark-Antiquark Paar. Der Einfachheit halber wird dabei
eines der Quarks in den Ursprung gelegt und das andere im Abstand R zum Ursprung
auf die 2'-Achse. Demnach gelten die riumlichen Randbedingungen

XYm,7)=R und X'0,7) = X"(0,7) = X'(r,7)=0 V7TER, (2.9)
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Abbildung (6): Links: Ein schwingender String mit fixierten Enden in physikali-
scher Eichung (2.10). Rechts: Weltfliche eines schwingenden Strings mit fixierten
Enden. Die Weltfliche entspricht einem Wilson-Loop.

wobei ¢ = 2,...,d — 1 die transversalen rdumlichen Komponenten durchnummeriert.
Es ist sinnvoll, die verbleibende Parametrisierungsinvarianz (2.8) auszunutzen, um zur
physikalischen Eichung iiberzugehen’, bei der

=7, k=2 X°=p’7 und Xlzgm (2.10)
gesetzt wird. Der String wird also parametrisiert wie auf der linken Seite von Abbil-
dung (6) und seine Weltfliche im Zeitintervall [0, 7] entspricht einem Wilson-Loop
wie auf der rechten Seite. Die Eichung ist konsistent mit den Orthonormalitdtsbedin-
gungen (2.5).
In diesem Fall ist die Impulsdichte gegeben durch P*(k,7) = P¥(k, ) [23]. Entspre-
chend fordert man in Analogie zum relativistischen Punktteilchen fiiri,7 = 2,...,d—1
die Poisson-Klammern

{X‘:(H,T) , Pj.(lﬁ/,’i')} =54 (5(& — ) | (2.11)
{X‘(/@,T) , X‘7</ﬁll,7')} = {Pl(n,T) , P](R/,T)} =0.

Die allgemeine Losung fiir die transversalen Komponenten X(k,7) des Strings lisst
sich als Fourier-Reihe schreiben

i 1 & aj(n) . i i —ilT
X'k, 7) = Vﬁ I_Z ZT sin(l k) mit al(r) = ai(0) e 7. (2.12)
20
Da das Feld X* reell ist, muss auflerdem gelten

al* =a' . (2.13)

"Es ist auch moglich Arvis’ weg zu folgen und zunichst keine Eichung zu wiihlen. Selbst in diesem
Fall muss allerdings die Eichung zu einem spéteren Zeitpunkt spezifiziert werden.
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Fiir die Fourier-Komponenten gelten dann die folgenden Poisson-Klammern:
{al , a?c*} = il 0¥ und {af, ai} = {al , al } 0 (2.14)

2.1.4 Klassische Energien

Die klassische Energie ergibt sich durch das Integral iiber die 0-Komponente der Im-

pulsdichte:
™ ™
> :/ g p0 20,210 / ki = 7o (2.15)
0 0

Zu berechnen ist der Parameter p°, den man iiber die Orthonormalititsbedingungen
(2.5) erhélt. Wie in Anhang (A.1) gezeigt, liefern diese fiir die Fourier-Komponenten

die Relationen:
d—1
> Za =0 (2.16)

l+k=m i=
m7#0
1 oo
02 [ =Y o
p () Mzzal 0 (2.17)
=2 l=—o0
140

Setzt man das Ergebnis (2.17) in Gleichung (2.15) ein, so ergeben sich mit (2.13) die
Energien

IS

-1 oo
E=0R Z a* al + al al*]. (2.18)
=1

I
N

7

Die Fouriermoden a;(7) der transversalen Schwingungen sind nun die freien Parameter
der Theorie und miissen geméfl des Korrespondenzprinzips quantisiert werden.

2.2 Quantisierung der transversalen Schwingungen
2.2.1 Kanonische Quantisierung und Fock-Raum

Im Rahmen der effektiven Stringtheorie wird die Flussrohre als klassischer bosonischer
String betrachtet. Die transversalen Schwingungen, deren Fouriermoden af nun die
Freiheitsgrade der Theorie sind, sollen quantisiert Werden. Die Quantisierung lsst
sich im Fock-Raum der Erzeuger und Vernichter al und af durchfithren. Nach dem
Korrespondenzprinzip werden bei der kanonischen Quantisierung die Fourier-Moden
a? mit [ > 0 zu Vernichtungsoperatoren und ai_l = af* zu Erzeugungsoperatoren a}*.
Die Poisson-Klammern (2.14) werden zu den entsprechenden Kommutatoren:

[a;‘(f), agj(f)] — 1667 und [af(T), a{;(T)} — [a;w), adt(r)] =0 (219
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Die Zusténde des Fock-Raumes sind beliebige Produkte von Erzeugungsoperatoren
al™, die auf den Vakuumzustand |0) wirken, der definiert ist iiber a{ |0) = 0 fiir alle
[ und i. Ein allgemeiner normierter angeregter Zustand des Fock-Raumes ist dann
gegeben {iiber

i+ Ny . N 1
ll_[ (f7)"" |0) mit C(Ny) = 7(]\[”)! T (2.20)

|M1> = C(Ny)

Der Ortsoperator der transversalen Schwingungen ergibt sich aus der Entwicklung
(2.12). Die Ortserwartungswerte (Ny;| X*(x) |Nj;) verschwinden Aufgrund der un-
gleichen Anzahl von Erzeugern und Vernichtern erwartungsgemifl. Ein qualitatives
Bild der Form der Schwingungen liefert die mittlere quadratische Abweichung vom
Grundzustand (| (X i(/ﬂ?))2 |NVji). Diese wird im allgemeinen Fall in Anhang (A.3)

berechnet.

2.2.2 Effektiver Hamilton-Operator und Energiezustinde

Die Energien der Zusténde sind gegeben iiber Gleichung (2.18), wobei man die quan-
tisierten Energien iiber den effektiven Hamilton-Operator berechnen kann, der sich
aus der Entwicklung der Wurzel in Gleichung (2.18) nach 1/R? ergibt. Der effektive
Hamilton-Operator wird also definiert als:

ﬁeff = oR

2w T
O'RQL

R (2.21)
= oR+F L5 (L) +55m (L) +...

Dabei wurde der Operator

U

-1

DN |

> lajt aj + af aft] (2.22)

=1

IX
N

A

eingefithrt. In O(1/R) entspricht der effektive Hamilton-Operator dem Hamilton-
Operator eines freien bosonischen Strings [22],[25].

Die Operatoren sind wie iiblich in Normalordnung zu schreiben, insbesondere natiirlich
auch der Operator L. Benutzt man die Kommutatoren (2.19) und fiihrt in dem resul-
tierenden Term ohne Fourier-Mode die Summe iiber die transversalen Freiheitsgrade
direkt aus, so ergibt sich

d—1 00

(2.23)
=1 1=2 =1

Der divergente zweite Term ldsst sich {iber die Riemannsche Zeta-Funktion regulari-
sieren [24]. Man benutzt dabei die Definition

s) = Zl_s fir s>1 und somit Zl =((-1) (2.24)
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und verwendet die analytische Fortsetzung der Riemannschen Zeta-Funktion fiir s < 1,

nach der gilt: {(—1) = —%. In regularisierter Form lautet der Operator L also:
oo d—1
. L d—2
L=>Y"> ajtaj- ( o ) (2.25)
I=1 i=2

Lésst man den Operator L auf einen beliebigen Zustand des Fock-Raumes wirken, so
ergibt sich die Eigenwertgleichung

. oo d—1 (d . 2)
L |Nyi) = ZZNM [ - o Wi ) - (2.26)
=1 i=2

Mit der Energiequantenzahl

oo d—1

> Y Nyl=n €N (2.27)

=1 i=2

ergeben sich dann die entarteten Energieniveaus

En:UR\/l—l—f;Q(n—;ll(d—%). (2.28)

Der Grundzustand Ej entspricht dem statischen gg-Potential,

™

V(R):aR\/l—mRz(d—Z), (2.29)

das von Alvarez und Arvis hergeleitet wurde. Das Potential reproduziert in O(1/R)
den Liischer Term aus (1.18).

Dieses besitzt eine kritischen Abstand Rc = /13- (d —2), bei dem das Potential
und somit die Bindungsenergie imagindr wird. Dieser Effekt lidsst sich interpretieren
als Tachyon im Stringspektrum.

2.2.3 Die Weyl-Anomalie

Die hier verwendete Losung mit der Eichung (2.10) ist nicht praktisch um die Weyl-
Anomalie zu betrachten, da in diesem Fall die Rotationsinvarianz der Theorie durch
die fixierten Enden explizit gebrochen ist. Um die Weyl-Anomalie betrachten zu
konnen, miissen die Enden des Strings beweglich sein.
Die Weyl-Anomalie selbst wird deshalb hier nicht explizit betrachtet. Wichtig ist aller-
dings die Tatsache, dass die Forderung nach Lorentz-Invarianz im Fall von beweglichen
Enden nur erfiillt wird, falls gilt [23]
oo 25
d=26 undsomit L = Z Zaﬁaf -1 (2.30)
I=1 i=2
Dies ist die Weyl-Anomalie, die das Hauptproblem der Nambu-Stringtheorie als effek-
tive Stringtheorie fiir die Flussrohre darstellt, da eine konsistente Quantisierung der
Theorie im wichtigen Fall d = 4 nicht méglich ist.



2.2 Quantisierung der transversalen Schwingungen
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Ey 1

E1 af

Ey (a1)? [ ay

E3 (a+)37 Cl;_ a;—a;—
E4 (ar)47 aii_ag—v (a;—)2 (af)Qa;a CLI

Tabelle (1): Die Zustéinde des Fockraumes zugehorig zu den niedrigsten fiinf Ener-
gieniveaus, sortiert nach (C, P)-Kanilen.

2.2.4 Kilassifizierung der Schwingungszustinde in 241 Dimensionen

Wichtig im Kontext dieser Arbeit, im Hinblick auf die Simulationen, ist das Modell in
2+ 1-Dimensionen, in dem es nur einen transversalen Freiheitsgrad mit den Erzeugern
al+ und Vernichtern und a; gibt. Um eine differenzierte Kopplung an die niedrigsten
vier Energieniveaus zu erreichen, kann man die Quantenzahlen beziiglich Ladungs-
konjugation und Paritdt (C, P) benutzen.

Das Verhalten der Erzeuger und Vernichter unter Ladungskonjugation und Paritéts-
transformation wird in Anhang (A.2) behandelt. Die Operatoren zu den untersten
fiinf Energieniveaus sortiert nach (C, P) sind in Tabelle (1) aufgelistet und die mittlere

quadratische Anweichung von der Stringachse der Grundzustédnde der Quantenzahlen

+—,—— und —+ in Abbildung (7) gezeigt.
Die Zusténde des Fock-Raumes kénnen nun nach drei Quantenzahlen klassifiziert wer-
den, ihrem Verhalten beziiglich (C, P), was als Kanal K = ++, +—, ——, —+ bezeich-

net wird, und dem Energieniveau m im jeweiligen Kanal. Die entarteten Eigenzusténde
zu diesen Quantenzahlen werden bezeichnet mit }an( > und die zugehorigen Energien
mit EX. Nach Tabelle (1) kann man identifizieren:

Betrachtet man Wilson-Loops mit speziellen Zustédnden ‘QK (R, 7)> (vergl. Kapitel
(1.3) und (1.4)), so gilt fiir deren Erwartungswerte W (R, T) nach Gleichung (1.15)

WERT) =33 (QF(R,0) | SL)|* e PRIT, (2.32)
L m=0

wobei der effektive Hamilton-Operator (2.21) fiir die Zeitentwicklung verwendet wur-
de. Die erste Summe lduft iiber alle Kanile L und die zweite Summe iiber die Ener-
gieniveaus m in den Kanilen, wobei eine Summation iiber die Entartung impliziert
wird.

Enstprechen die Quantenzahlen des Operators OF beziiglich (C, P) den Quantenzah-
len des Kanals K, so erwartet man, dass approximativ gilt

[(QX(R,0) | SE)® = [(Q% (R,0) | SKV|? 65T, (2.33)
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Abbildung (7): Die mittleren quadratischen Abweichungen (X?(x)) der Grund-
zustande der Kanéle +—, —— und —+.

und man kann in Analogie zu Gleichung (1.16) den Erwartungswert (2.32) schreiben
als

WH(R,T) = o (R) e B (R)T (1 + 3 BE(R) e AER () T) . (2.34)
m=1

Diese Zuordnung von Operatoren zu speziellen String-Kanélen erméglicht den Ver-
gleich von Gitterrechnungen mit den ersten vier Energieniveaus des Strings.

2.3 Dualitit zwischen offenen und geschlossenen Strings
2.3.1 Duale Interpretation der Polyakov-Loop-Korrelationsfunktion

In Kapitel (1.4) wurde die Spektraldarstellung fiir Wilson-Loops hergeleitet und ih-
re Beziehung zum statischen Quark-Antiquark Potential. Eine vollkommen analoge
Darstellung existiert auch fiir Polyakov-Loop-Korrelationsfunktionen (P*(0) P(R)),
wobei der Operator P(L) eine Linie von Links im Abstand L in z!-Richtung zum
Ursprung ist, die sich einmal um eine kompaktifizierte Zeitdimension z° der Linge T
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wickelt. Deren Korrelationsfunktion lésst sich schreiben als [26]
(PT(0) P(R)) =Y Bre PT = Z(R,T). (2.35)
k=0

Z(R,T) ist die Zustandssumme der reinen Eichtheorie in Anwesenheit eines stati-
schen ¢g-Paares mit dem Abstand R, die Ey(R) sind wie bei den Wilson-Loops die
Bindungsenergien des Zustandes.

Vollkommen analog kann man aber auch annehmen, dass statt der Zeitrichtung eine
der rdumlichen Dimensionen kompaktifiziert ist, z.B. die z'-Richtung mit der Linge
R. In diesem Fall kann man Polyakov-Loop-Korrelationsfunktionen zwischen zwei
Polyakov-Loops im Abstand T' voneinander betrachten. Diese entsprechen dann dem
Propagator eines geschlossenen Strings der Lange R im Zeitintervall 7', der um die
r!-Richtung gewickelt ist.

Nach Liischer und Weisz (Siehe [26] und darin enthaltene Literaturangaben.) impli-
ziert dies, dass sich die Korrelationsfunktion in einer Reihe von Bessel-Funktionen
K,,(z) entwickeln lidsst nach

o BT 1 (d-1) )
(PT(0) P(T)) = >~ Bu(T) ( S ) Ky (BT R). (230
k

Ist eine solche Entwicklung auch fiir die Zustandssumme Z(R,T') moglich, so gibt es
eine mogliche duale Beschreibung von offenen und geschlossenen Strings. Zu untersu-
chen ist im Einzelfall also, ob sich die Zustandssumme Z(R,T) fiir grofie R und T
geméf Gleichung (2.36) entwickeln lésst.

2.3.2 Dualitidt im Falle der Nambu-Stringtheorie

Eine Theorie, die die Dualitéit zwischen offenen und geschlossenen Strings erfiillt, ist
die Nambu-Stringtheorie, wie zuerst von Lischer und Weisz [26] und spéter auch von
Billé und Casselle [13] gezeigt wurde.

Die zur Theorie gehorige Zustandssumme l&dsst sich nach (2.35) und (2.28) schreiben
als

ZR,T)=> Bre AT mit E,=oR \/1 42T (k 1 (d— 2)). (2.37)
k=0

o R? 24

Nach einer lingeren Rechnung, die z.B. im Anhang von [26] skizziert wird, ldsst sich
diese Zustandssumme wie Gleichung (2.36) schreiben, wobei die Koeffizienten und
Energien des geschlossenen Strings gegeben sind als

- 81 1

aur) =% (5
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2.4 Liischer-Weisz-Stringtheorie
2.4.1 Die effektive Wirkung

Analog zum Wilson-Loop ergibt sich auch bei der Polyakov-Loop Korrelationsfunktion
das approximative Flachenverhalten

Z(RT)=e"A=ehT (2.39)

wobei A = R T die Flache zwischen den Polyakov-Loops ist. Um eine effektive
Stringtheorie fiir die Korrelationsfunktion zu erhalten, wihlt man deshalb den An-
satz

Z(R,T) = Z|(R,T) / DX St [X], (2.40)

Dabei wird der Polyakov-Loop in die z°2z!'-Ebene gelegt und die Fliche mit 7 und &
analog zu (2.10) parametrisiert, wobei hier der Einfachheit halber x € [0, R| gewé&hlt
wird. X%(k,7) mit i = 2,...,d — 1 sind die Felder der transversalen Freiheitsgrade
und es gelten die Randbedingungen:

X 0,7)=X(R,7) =0 und X'(k,7)=X"(k,7+T) (2.41)

Stw [X ’] ist die von Liischer und Weisz betrachtete Wirkung:

Spw = % / drdk [0,X" 0,X;) (2.42)
1 i i
+ 70 / dr [0:X" 0 Xi|, o+ 0x X' 0:Xi|,_p] (2.43)

1 . . . .
+ Z /delﬁ: [01 0a X" 0. X; Op X7 8ij + 9 0y X' Op X; 0, X7 8ij] 7(2.44)
4

Sie ist eine Entwicklung nach Ableitungen des Feldes X*, die alle Terme bis zu O(1/R?)
enthilt, die bestimmten Symmetrien [15],[26] geniigen. Fiir die Kopplungskonstanten
ergeben sich durch die Forderung nach Dualitdt zwischen offenen und geschlossenen
Strings bestimmte Einschréankungen.

Der Term in der ersten Zeile (2.42) korrespondiert mit einem freien bosonischen String
und ist der Term fithrender Ordnung. Der Term in der zweiten Zeile (2.43) ist der
Wechselwirkungsterm erster Ordnung, dessen Kopplungskonstante b die Dimension
[b] = [Lénge] hat und der nur auf den Rédndern des Polyakov-Loops wirkt. Die beiden
Terme in der dritten Zeile (2.44) sind die Terme néchster Ordnung und die zugehori-
gen Kopplungskonstanten ¢; und ¢z haben die Dimension [c1] = [c2] = [Linge]?. Die
Punkte représentieren Terme hoherer Ordnung, bei denen weitere Kopplungskonstan-
ten auftauchen.
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2.4.2 Die fiihrende Ordnung — Der freie bosonische String

In fithrender Ordnung besteht die effektive Wirkung nur aus dem Term aus Zeile
(2.42), was einem freien String entspricht. Das Funktionalintegral aus (2.40) lasst sich
dann auswerten [28],[29] und man erhélt in Zeta-Funktions-Regularisierung mit (2.39):

Zo(R,T) = ¢ BT [77 (e*“ %)} o (2.45)

Dabei ist n(q) die Eta-Funktion, die definiert ist iiber
1 oo
n(g) =q= [] (1 - q’“) : (2.46)
k=1
Entwickelt man (2.45) nach e™" R, s0 ergeben sich im Vergleich mit (2.35) die Energien

T 1
EQ(R) = — (k== (d-2 2.4
MR =0t (k- gy @-2). (2.47)
die mit den Energien der Nambu-Stringtheorie (2.28) in O(1/R) iibereinstimmen. Die
Dualitét zwischen offenen und geschlossenen Strings ist giiltig in fithrender Ordnung
und liefert die Energien

ENT) =0T + 4% <k - i (d — 2)) (2.48)

fiir den zugehorigen geschlossenen String [26].

2.4.3 Dualitit bis zur O(1/R?) und Energieniveaus

Um die Dualitét bis zur Ordnung 1/R3 zu untersuchen wird zunichst die Zustands-
summe perturbativ ausgewertet und die resultierenden Terme mit der entsprechenden
Entwicklung der Polyakov-Loop Korrelationsfunktion (2.36) verglichen. Fiir die De-
tails sei auf [26] verwiesen.

Die Prozedur liefert in Ordnung 1/R? einen Term proportional zu b, der nicht mit der
Dualitiit zu vereinen ist, weshalb b = 0 zu setzen ist. In Ordnung 1/R? ergibt sich die
algebraische Beziehung

d—4

20

(d — 2) c1+co = (2.49)

zwischen den Kopplunskonstanten ¢; und cs.

Berechnet man das Energiespektrum mit diesen Einschrinkungen, so erkennt man,
dass die Entartung der Energiezustéinde beziiglich verschiedener Drehimpulsquanten-
zahlen der Rotationen um die Stringachse im Allgemeinen aufgehoben ist. Es ergeben
sich nach [26] die Energien

E,, ZEng%zﬁ [n (& (d—2)—n) + any (c2+2c1)]

2.50
+(§—4)2§l;1§,[201+(d—1)62], (250
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wobei die Koeffizienten «,; die Entartung aufheben. Fiir die Koeffizienten selbst sei
auf Tabelle 2 aus [26] verwiesen.

Fiir diese Arbeit ist, wie bereits beschrieben, der Fall mit d = 2 + 1 relevant. Es
gibt dann nur ein transversales Feld X und die beiden Wechselwirkungsterme aus
Zeile (2.44) der effektiven Wirkung sind dquivalent. In diesem Fall ist das Verhéltnis

zwischen ¢; und co nicht festgelegt und man kann 0.B.d.A ¢o = —2 ¢; setzen. Nach
Gleichung (2.49) folgt dann ¢; = % und fiir die Energien ergibt sich
™ 1 2 1)? 1

E, = —(n-=) - (n—= — . 2.51

n=ol+ g <" 24> 20 R3 (” 24) +O<R5) (2:51)

Diese Energien stimmen bis zur Ordnung O(1/R?) mit den Energien der Nambu-
Stringtheorie (2.28) iiberein.

2.5 Polchinski-Strominger-Stringtheorie
2.5.1 Die Polchinski-Strominger-Wirkung

Um die Weyl-Anomaile zu vermeiden fithrte zunéchst Polyakov [30] einen zusétzlichen
Term mit einer intrinsischen Metrik in die Wirkung des freien bosonischen Strings ein.
Dies verhinderte zwar das Auftauchen der Weyl-Anomalie, sorgte allerdings auch fiir
einen zusétzlichen unphysikalischen Freiheitsgrad in Form einer Liouville-Mode.
Polchinski und Strominger [27] ersetzten die intrinsische Metrik durch die von der
Parametrisierung ™ und x~ induzierte Metrik hqp, = 9, X* 95X}, mit a,b = 4+, — und
der Weltfliche X#(xk*, ™) des Strings.

Die von Polchinski und Strominger betrachtete Wirkung lautet:

D2X1O_X, 0, X" X,

1
=_— YAk |H 2.52
Sps 27roz/dﬁ dk [ +ap 7E (2.52)
Dabei wurden folgende Konventionen verwendet®:
1
KE=T+k, Op=0,+, a=g5— und H=0.X"0_X, (2.53)
o

Die Felder X#(xT,x™) sind Felder einer zweidimensionalen konformen Feldtheorie
der String-Weltfliche in radialer Quantisierung mit den Parametern x* nach Anhang
(B.3). Einige Aspekte konformer Feldtheorien werden in Anhang (B) behandelt. Fiir
eine detaillierte Behandlung sei auf [31] verwiesen.

Die Wirkung (2.52) ist die fithrende Ordnung einer Reihenentwicklung in 1/R, die
alle Terme enthilt, die konsistent mit den String-Symmetrien sind und die Weyl-
Anomalie vermeiden. Dabei werden als einzige inverse Operatoren Terme der Form

8 .+

k" und k= werden hiufig als Lichtkegel-Koordinaten (engl.: ligh-cone) bezeichnet.
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H™" zugelassen, da diese im Falle des Vakuums eines langen Strings einen hohen
klassischen Erwartungswert haben. Auflerdem werden keine Terme mit

040_X" und 0+ XM01X,

berticksichtigt, da die Erwartungswerte des ersten Terms, Aufgrund der Bewegungs-
gleichung des freien Strings, genauso wie die des zweiten verschwinden.
Beriicksichtigt man diese Bedingungen und, dass jede erste Ableitung 0+ X* = O(R),
sowie jede hohere 97" X* = O(1) ist, so ldsst sich zeigen, dass die Wirkung (2.52) bis
zur Ordnung 1/RS alle moglichen Terme enthélt [32].

2.5.2 Entwicklung um das Vakuum des langen geschlossenen Strings

Im Folgenden wird ein geschlossener String betrachtet, der um die kompaktifizierte
Dimension x! der Linge R gewickelt ist. Fiir die Felder X* gilt dann allgemein

XM,k 4 21) = XP(1, k) + R 6" (2.54)

Die klassische Losung der freien Bewegungsgleichung fiir den Grundzustand lautet in
diesem Fall

R R 1
Xth=el —rt+e! —k7, mit (ei)Q =0 und ele_, = -5 (2.55)
m m

1
(04 Xy +0- Xp) = 5—R (et +e"). (2.56)

Nun wird das Fluktuationsfeld

ViKY D) = XF — X1 (2.57)
eingefiihrt, das Abweichungen von der klassischen Losung beschreibt. Diese Abwei-
chungen entsprechen den transversalen Freiheitsgraden der Theorie.

2.5.3 Energie-Impuls Tensor und Zentralladung

Die Wirkung (2.52) ist invariant unter den modifizierten konformen infinitesimalen
Transformationen

OXF =€ (k) 0-XH+et(kT) 0 XH

2.58)
——y OpXH d_XH (
02 (92 e (n) 2 4 02et (nh) 2 ).

Dabei sind et die Erzeuger infinitesimaler konformer Transformationen.

Die iibliche Prozedur liefert den Energie-Impuls-Tensor und eine Redefinition des
Fluktuationsfeldes Y# — Y*# fiihrt auf die Lagrange-Dichte (B.11) und die Energie-
Impuls-Tensoren (B.12) und (B.13). Fiir die Details der umfangreichen Rechnungen



26

II Effektive Stringtheorie

sei auf [32] verwiesen. Die Theorie fiir Y* entspricht einer quasifreien Theorie, was da-
zu fithrt, dass die Operatorprodukte analog zum freien Fall berechnet werden kénnen.
Fiir den Energie-Impuls Tensor ergeben sich bis zur Ordnung 1/R? die Operatorpro-
dukte

128+d  2T4+(0) n 0+T++(0)
2 (k)1 (kE)2 PR

Tyt (K5)Te1(0) ~ (2.59)
Der Vergleich dieses Resultats mit (B.5) liefert die Zentralladung ¢ = 12 5 + d. Die
resultierende Virasoro-Algebra (B.8) muss die Zentralladung ¢ = 26 besitzen, damit
die Weyl-Anomalie vermieden wird. Die Kopplungskonstante 3 wird durch diese Be-
dingung fixiert und es gilt

26 —d

P=—"15" (2.60)

2.5.4 Virasoro-Generatoren

Die priméren Felder der Theorie sind hier die Ableitungen des Fluktuationsfeldes, die
man analog zu (B.6) entwickelt als

8_Y“:\/§ Z aé‘e*il”_ und 04YH = \/> Z ale it (2.61)
l=—00

Dabei gilt fiir die Operatoren a”; = /" und analog @";, = @', auBerdem ist der

Impuls der Fluktuationen gegeben iiber

1
Py =15 (a0 +av), (2.62)
pt+

Die Operatoren a; = und af‘ sind d Generationen von Erzeugungs und Vernichtungs-
operatoren, ebenso wie die Operatoren df * und df , und es gelten die Vertauschungs-

relationen
lat, aft] = [al', ay ] = 16" bu. (2.63)

Alle anderen Kommutatoren verschwinden. Eine zu (B.7) analoge Entwicklung der
Energie-Impuls-Tensoren (B.12) und (B.13) liefert die Virasoro-Generatoren (B.15)
und (B.16). Die Virasoro-Nullmoden lauten also:

R /2

Lo= g/~ e aou+ 5 (af) 4+ Z a't ay, + +O(1/R?) (2.64)
~ R 2 o~ ~ A+~ 3
Lo= /> o+ (@)? + Z a + +O(1/R%) (2.65)
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2.5.5 Fock-Raum der Fluktuationen

In einer konformen Feldtheorie lésst sich der Fock-Raum stets durch einen bestimmten
Eigenzustand |k*) zu den Operatoren aff und af, aufbauen. Diese als Descendanten
bezeichneten Rédume zum Zustand |k*) sind geschlossen unter konformen Transfor-
mationen und Anwendung beliebiger, aus a', al'*, @' und @'" aufgebauter Operatoren
[31].

Als Grundzustand wird hier der Zustand mit

_ o
o In) =t o) =[5k ) (2:66)

verwendet und fiir die Vernichter gilt die Relation
a' lp)y=a' p)=0 Vul>0. (2.67)

Angeregte Zustinde werden durch Erzeuger gebildet, die auf den Grundzustand wir-
ken, und fiir physikalische Zusténde gelten die Forderungen (B.9) und (B.10). Fiir die
Wirkung der Virasoro Nullmoden auf einen angeregten Zustand |¢) mit N;, Erzeu-
gern aj' * und Ny, Erzeugern ay " gilt dann nach (2.66) und den Kommutatorrelationen
(2.63):

R
Lo W)= | S () + e pvut 5+ N+ OB ) (269
L Ly a
- B _a w2 Ry B Y 3_
Lo [1) = 1 (py) +%€+pyu+§+ZlNk,,+O(l/R) [v) (2.69)
kv ]

Nach (B.10) gilt dann mit n = 1 ol (Nlu + Nlu) die Relation

% (pé)ﬁ% (e +e) ph+B+2n+O(1/R?) =2. (2.70)
n ist die jeweilige Energiequantenzahl des entarteten Energiezustandes. Die Bedingung
des verschwindenden transversalen Impulses in der geschlossenen Richtung des Strings
sowie die Bedingung (B.9) sorgen dafiir, dass genau d — 2 unabhéingige Komponenten
iibrigbleiben [27]. Es tauchen demnach keine zusétzlichen Freiheitsgrade auf, was die
Konsistenz der Theorie gewéhrleistet.

2.5.6 Energiezustinde

Der Gesamtimpuls des geschlossenen Strings ist gegeben iiber

R
PF =l +py = m o (e’i + ei) + b (2.71)
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Die Energie des Strings lautet dann

E=\/—(Pr)’ = \/<2WR&)2 — (o))" - % (e +¢) ph. (2.72)

Ausnutzen der Relation (2.70) liefert mit (2.53) und (2.60) die Energiezustande

En:aR\/lJrj]; (n—214(d—2)>+(’)(1/R5). (2.73)

Diese Energien stimmen mit den Energien des geschlossenen Strings der Nambu
Stringtheorie (2.38) bis zur Ordnung 1/R? iiberein.

Anzumerken sei, dass die Energiequantenzahl zunéchst auch halbzahlig sein kann. Be-
trachtet man allerdings den Propagator eines geschlossenen Strings, der zu der Kor-
relationsfunktion von zwei um eine kompaktifizierte Dimension gewickelten Polyakov-
Loops korrespondiert, so ergeben sich zusétzlich noch Dirichlet-Randbedingungen fiir
die rdumlichen Richtungen analog zu [13], die zu der zusétzlichen Bedingung

(Lo —Lo) o) =0 (2.74)

fiir alle physikalischen Zusténde |¢) fithren. Dies sorgt fiir die Bedingung Nlu = Ny,
und somit fiir stets ganzzahlige Energiequantenzahlen.
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Da eine analytische Betrachtung nicht-pertubativer QCD nicht moglich ist, ver-

wendet man Monte-Carlo Simulationen von Feldtheorien auf endlichen Raumzeitgit-
tern, um Erwartungswerte von Observablen zu bestimmen. Dabei nutzt man die for-
male Analogie zwischen statistischer Mechanik und dem Pfadintegral in der euklidi-
schen Feldtheorie.
In dieser Arbeit sind nur Monte-Carlo-Simulationen fiir reine Eichtheorie relevant,
weshalb das néchste Kapitel auf diese beschriinkt bleibt. Simulationen mit dynami-
schen Fermionen sind aufgrund der Grassmanwertigkeit der fermionischen Felder we-
sentlich komplizierter [4].

3.1 Monte-Carlo-Simulationen

In reiner Eichtheorie auf dem Gitter wird der Erwartungswert einer Observablen F[U]
berechnet {iber das Funktionalintegral (1.20). Dieses ist auf einem endlichen Gitter
zwar endlich-dimensional, hat allerdings im Allgemeinen immer noch zu viele Frei-
heitsgrade, um einer direkten numerischen Integration zugéinglich zu sein. Man be-
nutzt deshalb Monte-Carlo-Simulationen um die Erwartungswerte zu berechnen.

3.1.1 Ensemble-Mittelwerte

Das Funktionalintegral (1.20) entspricht formal einem Erwartungswert der statisti-
schen Mechanik mit der Wahrscheinlichkeitsverteilung

P({U}) = e~SeliUY (3.1)

der Feldkonfigurationen {U} des Eichfeldes. Man ersetzt deshalb formal den Erwar-
tungswert durch den Ensemblemittelwert eines Ensembles von N mit einem entspre-

chenden Algorithmus zuféllig erzeugter Feldkonfigurationen {U}, mit der Verteilung
P({U}). Es gilt dann

1 N
(FIU) =+ ZF[{U}i]' (3.2)

Der Algorithmus der die Feldkonfigurationen erzeugt, ist so zu wihlen, dass die Ver-
teilung der Feldkonfigurationen die Wahrscheinlichkeitsverteilung (3.1) approximiert
und im Grenzfall N — oo mit dieser identisch ist.

3.1.2 Update-Algorithmen

Die Feldkonfiguration {U}, wird unmittelbar aus der vorherigen Konfiguration {U},
erzeugt, wobei die Konfiguration {U}, , die neue Konfiguration nicht beeinflusst.
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Einen solchen Prozess bezeichnet man als Markov-Prozess. Einen Algorithmus, der
eine neue Feldkonfiguration {U}, aus einer alten {U}, mit der Ubergangswahrschein-
lichkeit Pj erzeugt, bezeichnet man als Update-Algorithmus.
Damit durch diesen das entsprechende Ensemble generiert wird, ist zu fordern, dass
jede Feldkonfiguration mit einer endlichen Wahrscheinlichkeit aus der unmittelbar
vorherigen erzeugt werden kann. Also muss fiir die Ubergangswahrscheinlichkeiten
gelten:

Zpik =1 und Pip>1 Vik (3.3)

k

Da der Update-Formalismus die Verteilung (3.1) generieren soll, muss diese der einzige
globale Fixpunkt des Update-Algorithmus sein.
Wahlt man eine beliebige Anfangskonfiguration, so muss diese nicht notwendigerweise
eine Konfiguration sein, deren Auftrittswahrscheinlichkeit in der Ndhe des Maximums
der Verteilung liegt. Da dies bei endlichen Messungen eine Rolle spielt, ist es deshalb
sinnvoll die ersten Messungen nicht zur Berechnung des Mittelwertes zu benutzen, da
diese andernfalls das Ergebnis beeinflussen kénnen. Man spricht vom Thermalisieren
des Gitters.
Fiir reine Eichtheorie ist der sogenannte Heatbath-Algorithmus [33] sehr effizient,
der in einer optimierten Variante [34] auch bei den Simulationen in dieser Arbeit
verwendet wird.

3.1.3 Messfehler und Jackknife-Methode

Bei Messungen mit N unkorrelierten Messergebnissen {f;} einer Observablen F' be-
rechnet sich der Messfehler up iiber

1
up = _IF mit der Varianz 012[7 = — Z [fi — <F>]2 (3.4)

VN —1 Nizl

Im Prinzip kénnen die statistischen Daten aus Monte-Carlo-Simulationen als Messwer-
te angesehen werden, wobei die einzelnen Messwerte f; = F'[{U},] durch den Update-
Algorithmus korreliert sind.

Eine typische Maf fiir die Korrelation die Autokorrelationszeit 77, die den exponen-
tiellen Abfall der Autokorrelationsfunktion

L(i) = ((fi = (F)) (fo—(F))) (3.5)

beschreibt. Fiir korrelierte Daten erhilt man fiir die Fehlerabschétzung die modifizier-
te Varianz

9 _ 27TF al 2
ob == D lfi— (P (3.6)
=1

Durch die Korrelation wird also die effektive Anzahl der Messwerte gemindert.
Es gibt nun zwei Moglichkeiten den Fehler bei korrelierten Messwerten zu bestim-
men. Die erste, die sogenannte I'-Methode, bestimmt den Fehler direkt aus einer
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Abschétzung fiir die Autokorrelationsfunktion [35]. Die zweite Methode ist die so-
genannte Jackknife-Methode.

Bei dieser Methode fast man zunsichst die Messwerte in N = N/M Blocken aus N — M
Messwerten zusammen und benutzt die Mittelwerte

B 1 N M
fe =531 ;f - ;fw (k=1)+1] (3.7)

als neue Messwerte. Bei hinreichender Statistik und optimalem M koénnen die neuen
Messwerte als unkorreliert angesehen werden und der Messfehler berechnet sich als

- §
PRECELE o [ A (35)
N k=1

Die Methode liefert auch die Moglichkeit, einen stabilen Messfehler fiir Observablen
anzugeben, die nicht direkt von den Eichfeldern abhingen sondern vom Mittelwert
einer Observablen (F'). Der Messfehler ug der Observablen G [(F)] ldsst sich dann
berechnen {iber

- g:G [fx] - (3.9)

k=1 k=1

2| =

- N
N -1 = 2 .
=TV S @A - @] mi ()
M lasst sich optimieren, indem man die Varianz der Observablen gegen die Gréfle der

Blocke auftrigt. Erreicht der Graph ein Plateau, so kann eine beliebiges M, dessen
Messfehler auf dem Plateau liegt, gewéhlt werden.

3.2 Operatoren fiir angeregte String-Zustinde

Nach Kapitel (I) ist der Wilson-Loop eine geeignete Observable um Flussrohren in Git-
terrechnungen zu untersuchen. Dieser ist eine geschlossene Linie gluonischen Flusses
und wird auf dem Gitter zu dem pfadgeordneten Produkt von Linkvariablen entlang
einer geschlossenen Linie. Ein rechteckiger Wilson-Loop mit den Kantenléingen R und
T auf dem Gitter ist in Abbildung (8) gezeigt.

Ziel ist es, mithilfe von Wilson-Loops die Energien der angeregten Zustdnde der
Flussrohren in Monte-Carlo-Simulationen zu berechnen.

3.2.1 Die Operatorbasis und die Korrelationsmatrix

Rechteckige Wilson-Loops sind dhnlich wie Polyakov-Loop-Korrelationsfunktionen wir-
kungsvolle Observablen um den Grundzustand des statischen Potentials zu betrachten.
Fiir die angeregten Zusténde sind beide Observablen ungeeignet, da nach der Spek-
traldarstellung von Wilson-Loops (1.16) und Polyakov-Loop-Korrelationsfunktionen
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Abbildung (8): Links: Rechteckiger Wilson-Loop mit den Kantenlingen R und T
auf dem Gitter. Rechts: Die bei den Simulationen dieser Arbeit verwendete Opera-
torbasis {S;}.

(2.35) der Beitrag der angeregten Zustinde exponentiell unterdriickt wird.

Bessere Observablen sind Wilson-Loops, deren Operatoren Q¥ (r,¢) auf den rdum-
lichen Linien definierte Quantenzahlen beziiglich Ladungskonjugation und Paritét
(C, P) besitzen. Dabei ist r die Linge der Operatoren in rdumlicher Richtung und
t die Zeitebene in der der Operator liegt, K = ++, +—, ——, —+ bezeichnet die
Kanéle. Der Erwartungswert eines Wilson-Loops zugehorig zum Kanal K wird defi-
niert als

WK (R, T) = <Tr [QK (R,0) 0 T(R,T)o (QX(R,T)) o TH(R. 0)] > . (3.10)

wobei 7 (r,t) das Produkt von zeitlichen Links entlang eine gerade Linie der Linge ¢
im Abstand r vom Startpunkt des Wilson-Loops ist. R ist die rdumliche Ausdehnung
entlang der geraden Achse des Loops, T die zeitliche Ausdehnung. Fiir ihren Erwar-
tungswert erwartet man eine Spektraldarstellung analog zu (2.34).

Die Operatoren QX sind nicht direkt bekannt, weshalb eine Operatorbasis von min-
destens vier Operatoren S; benutzt wird, die dem Produkt von Linkvariablen entlang
gekriimmter Wege an den Enden des Wilson-Loops entsprechen. Die in dieser Arbeit
verwendeten Basis-Operatoren sind auf der rechten Seite von Abbildung (8) gezeigt.
Die Eigenzusténde dieser Basis beziiglich den Quantenzahlen (C, P) entsprechen den
Operatoren QX

Man erhilt die Figenzustidnde, indem man mit den Basisoperatoren eine Korrelations-
matrix K bildet und diese diagonalisiert [25]. Die Eigenzustinde der Korrelationsma-
trix entsprechen in diesem Fall den Operatoren Q¥. Die Elemente der Korrelations-
matrix sind Erwartungswerte von Wilson-Loops mit dem Basisoperator S; am unteren
Ende und dem Basisoperator S; am oberen Ende, d.h.:

Kij = (Tr [Si(R,0) o T(R,T) o (S;(R,T))" o T*(R,0)]) (3.11)
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3.2.2 Die Eigenzustéinde der Korrelationsmatrix zur Operatorbasis {S;}

Im Falle der in dieser Arbeit verwendeten Operatorbasis kann man die Eigenzustinde
beziiglich (C, P) analytisch erhalten und muss nicht jeweils einzeln die Korrelations-
matrix berechnen.

Konjugiert man die Ladung, so werden Quark und Antiquark vertauscht, was zu einer
Spiegelung an der Ebene senkrecht zur rdumlichen Loop-Achse fiithrt. Unter dieser
Operation gilt also fiir die Operatoren

Sl <i> SQ und Sg <i> S4. (3.12)

Unter der Paritédtstransformation wird die Bewegungsrichtung umgedreht, was zu ei-
ner Spiegelung an der Verbindungslinie zwischen den Endpunkten fithrt und somit
zu
P P
Sl — Sg und SQ — S4. (3.13)

Mithilfe der Formeln (3.12) und (3.13) kann man die Eigenzustéinde durch einfache
Superpositionen erhalten. Die Eigenzustdnde lauten:

Q++:Sl+SQ+Sg+S4 Q+7:S1+82—S3—S4

(3.14)
Q™ =S1—-S2—-S3+ 84 Q " =-S1+S3—S3+S4

3.2.3 Berechnung der Energiezustinde

Bei den Simulationen sollen die Energien der Grundzustinde der einzelnen Kanéle
berechnet werden. Zu diesem Zweck werden die Erwartungswerte von Wilson-Loops
WX (R, T) nach Gleichung (3.10) mit den Operatoren QX aus Gleichung (3.14) berech-
net. In Spektraldarstellung lassen sich diese Erwartungswerte nach Gleichung (2.34)
schreiben als

WE(R,T) = o (R) e B (R)T (1 +) BR(R) eAEfi(R)T) : (3.15)
m=1

Die Faktoren o und 8% sind dabei im Allgemeinen unbekannt und die Energiediffe-
renzen AEX(R) werden grofier mit steigendem m.

Um die formale Korrespondenz mit den angeregten Zusténden des Strings deutlich zu
machen, werden die Kanéle im Folgenden durchnummeriert, wobei sich die jeweilige
Nummer auf die Korrespondenz der Grundzustandsenergie des Kanals mit dem ange-
regten Stringzustand bezieht. Nach Gleichung (2.31) werden die Kanile deshalb wie
folgt nummeriert;:

++=0; +-=1; ——=2; —+=3 (3.16)

Vernachléssigt man zunéchst die hoheren angeregten Zusténde in den Kanilen, so
ergeben sich die Energien iiber

(3.17)
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Die Energien E,,(R) werden im Folgenden als naive Energien bezeichnet.

Im Limes 71,75 — oo ist (3.17) korrekt und es miissen keine Korrekturen beriick-
sichtigt werden. Dieser Limes kann bei Gitterberechnungen allerdings nicht erreicht
werden. Es ist deshalb wichtig, die Energiekorrekturen abzuschétzen. Um die Korrek-
turen in erster Naherung zu beriicksichtigen werden deshalb die Energien iiber einen
Fit der Form

Wi (R,T:
En(R)= g In [

— 1T [ﬁn 1 e~ AEn1 Th (1 — ¢ AEna (TQ—Tl))]
2—41 ’

(3.18)

bestimmt, wobei E,, (R) als korrigierte Energien bezeichnet werden und 3, ; und AE;, 1
zusétzliche Fitparameter sind. Der Fit wird in Anhang (C.1) begriindet.

Da es sich um Fits mit drei freien Parametern handelt, miissen Wilson-Loops mit
mindestens drei verschiedenen Zeitausdehnungen berechnet werden. In diesem Fall
werden Wilson-Loops mit vier verschiedenen Zeitausdehnungen berechnet um eine
entsprechende Giite der Fits zu gewéhrleisten.

Die Fehler der korrigierten Energien sind mit der Jackknife-Methode zu bestimmen.
Dabei wird fiir jeden der gebildeten Blocke ein einzelner Fit durchgefithrt und der
resultierende Energiewert sowie der Fehler nach Gleichung (3.9) bestimmt.

3.2.4 Berechnung der Energiedifferenzen

Waéhrend bei den Energieniveaus der Kontinuumslimes aufgrund einer unphysikali-
schen additiven Konstanten nicht eindeutig ist, ist er es fiir die Energiedifferenzen,
weshalb diese wichtige Observablen sind. Auflerdem konnen bei den Simulationen
Fluktuationen der Eichfelder auftreten, die bei allen Energiewerten zu einem korre-
lierten Anwachsen oder Absinken der Energien fithren konnen. Betrachtet man die
Energiedifferenzen, so fallen diese korrelierten Schwankungen heraus, was zu einer
Reduktion des Messfehlers fithrt. Die Energiedifferenzen werden deshalb bei der Aus-
wertung getrennt betrachtet.

Um etwaige Korrekturen beziiglich der angeregten Zustédnde zu beriicksichtigen, die in
Anhang (C.1) diskutiert werden, wird fiir die Differenz AFE,,,,,(R) = E,(R) — E,(R)
ein Fit der Form

W, (R,Ts) Wy (R,T
ABEun(R) = —qiqy In {WnER,Tf;WmER,T;H

— e [(Bua = Bma) e BEna T (1 — = AFn1 (T711)) ]

(3.19)

mit den beiden weiteren Fitparametern (5, 1 —0Om,1) und AE;, 1 durchgefiihrt. Der Feh-
ler und die Energiedifferenz werden wiederum mit der Jackknife-Methode bestimmt.
3.2.5 Probleme bei grolen Wilson-Loops

Damit die Grundzustédnde in den Kanélen und somit die angeregten Energiezustéinde
und Energiedifferenzen moglichst genau bestimmt werden kénnen, muss der Beitrag
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der angeregten Zusténde in den Kanélen moglichst gering gehalten werden. Da dieser
exponentiell mit der Zeitausdehnung T des Wilson-Loops abnimmt, ist es wiinschens-
wert, den Erwartungswert von Wilson-Loops mit moglichst grofler Zeitausdehnung zu
berechnen.

Zudem wird das zu betrachtende Modell besser mit steigender Linge R der Flussréhre,
weshalb gleichzeitig Wilson-Loops mit groflen rdumlichen Ausdehnungen zu betrach-
ten sind. Diese beiden Tatsachen fithren darauf, dass die Wilson-Loops mit den besten
Eigenschaften eine sehr grofle Fliche besitzen.

Fiir den Erwartungswert des Wilson-Loops gilt das approximative Flachenverhalten

W(R,T) ~ e A =¢ BT, (3.20)

Bei sehr groflen Loops wird deshalb das Verhéltniss zwischen dem Signal des Wilson-
Loops und dem statistischen Rauschen der Simulationen sehr schlecht, so dass der
statistische Fehler unter Umstédnden grofer ist als der Erwartungswert. Zudem ist das
Signal des Erwartungswertes der Wilson-Loops zum Kanal n fiir n > 0 mit (E,, — Ep)
zusitzlich exponentiell geddmpft gegeniiber dem Erwartungswert rechteckiger Wilson-
Loops bzw. des Wilson-Loops zugehorig zum Grundzustand. Selbst bei der relativ
wenig rechenintensiven SU (2)-Eichtheorie in drei Dimensionen ist es deshalb nicht
moglich den Erwartungswert von Wilson-Loops der benétigten Grofe fiir die ange-
regten Zustdnde mit hinreichender Genauigkeit zu messen. Es ist also notwendig eine
Moglichkeit zu finden den statistischen Fehler zu reduzieren. Eine solche Moglichkeit
bietet der von Liischer und Weisz entwickelte Algorithmus, der im néchsten Kapitel
diskutiert wird.

3.3 Der Liischer-Weisz-Algorithmus

Der 2001 von Liischer und Weisz [36] vorgestellte Algorithmus nutzt die Lokalitét
der reinen Kichtheorie um den Messfehler von Observablen in Form grofler Loops,
wie Wilson-Loops und Polyakov-Loops, zu reduzieren. Die Lokalitdt kann allerdings
nur im Falle reiner Eichtheorie genutzt werden, da Monte-Carlo-Simulationen mit
Fermionen nicht-lokal sind.

3.3.1 Lokalitat und Untergitter

Mochte man die Erwartungswerte von Observablen in reiner Gittereichtheorie berech-
nen, so lassen sich diese berechnen iiber das Funktionalintegral (1.20). Die Eichwirkung
(1.22) entspricht der Summe iiber die Spuren aller Plaketten des Gitters und ist somit
eine lokale Wirkung, d.h. in den einzelnen Summanden treten nur direkt benachbarte
Links auf.

Diese Lokalitdt kann man sich zunutze machen, indem man alle raumartigen Plaketten
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auf bestimmten Zeitebenen des Gitters fixiert?. Ein Beispiel ist in Abbildung (9) ge-
zeigt, wobei die Verbindungslinien zwischen den Gitterpunkten fixierte Linkvariablen
bezeichnen.

Aufgrund der beschriebenen Lokalitdt der
Gitterwirkung sind die einzelnen Subgit-

ter zwischen den fixierten Ebenen phy- . ° .. o ° .. o ° .. o ° :
sikalisch vollkommen unabhéngig vonein- o i o

ander. Dies fiithrt dazu, dass die Wirkung, 24
die nur noch von den nichtfixierten Links
abhéngig ist, sich in effektive Wirkungen

fiir die Untergitter zerlegen l&sst. o ) o ® : o ) o* )
Es gilt also: * * i )
L ==
SGTU =380 (321 e e e e
s—1 ° ° ° L] ° ° ° °

Dabei ist Sém die Wirkung bei fixierten

Zeitebenen, 55" [U] die Wirkung auf dem Abbildung (9): Fixierte Zeitebenen auf
Untergitter s, wobei die Einschrinkung einem Gitter im Abstand 2a.

der Links U auf das Untergitter implizit

und K die Anzahl der Untergitter ist.

3.3.2 Berechnung von Erwartungswerten in mehreren Mittelungsstufen

Betrachtet man eine Observable F'[U], so kann man diese in Operatoren auf den
Untergittern zerlegen. Die Teile, die bei der Zerlegung auf den fixierten Zeitebenen
liegen, bleiben konstant, solange die Links fixiert sind. Eine Observable kann man also
schreiben als

Fle[u) =1 : (3.22)

K
[1 7w
s=1

wobei 7' der Zeitordnungsoperator ist, der dafiir sorgt, dass die zur Observablen gehori-
gen Untergitteroperatoren in der richtigen Reihenfolge zusammengesetzt werden. Ent-
scheidend ist die Wahl der Untergitteroperatoren, da diese gewéhrleisten, dass die
Zeitordnung bei der Multiplikation ebenfalls die Pfadordnung der Observablen F' ga-
rantiert. Anders gesagt: Gelingt es die Observable F' so zu zerlegen, dass die einzelnen
Operatoren nur noch zeitgeordnet aneinandermultipliziert werden miissen, so kann
man aus diesen Operatoren die Untergitteroperatoren aufbauen. Fiir Wilson-Loops
werden die entsprechenden Operatoren und das zugehorige Multiplikationsgesetz in
Kapitel (3.4) behandelt.

Weiterhin muss darauf geachtet werden, dass die Translationsinvarianz, die es nor-
malerweise erméglicht, iiber alle rdumlichen Startpunkte der Operatoren zu mitteln,

9Die fixierten Gitterebenen werden im Folgenden immer als Zeitebenen identifiziert. Ebensogut
konnen sie allerdings auch als rdumliche Ebenen angesehen werden.
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im Falle von fixierten Zeitebenen aufgrund der Randbedingungen durch die fixierten
Links gebrochen ist, solange der Operator auf mehreren Untergittern liegt. Liegen Tei-
le des Operators auf den fixierten Ebenen, so werden diese nach der Mittelung iiber
die Untergitter hinzugefiigt.

Im Falle von fixierten Gitterebenen faktorisiert das Funktionalintegral (1.20) aufgrund
von (3.21) und (3.22) und lédsst sich schreiben als

K
A pe A~ 1 su
mr=rll [zSub / (DU); Fe (U] e 5, (3.23)

s=1 S

wobei (DU )zub das eingeschriankte Integrationsmafl des entsprechenden Untergitters
ist. Die linke Seite wurde nicht als Erwartungswert von F' geschrieben, da bei Rech-
nungen, bei denen die Zeitebenen fixiert bleiben, die Mittelung nicht notwendigerweise
den gesuchten Erwartungswert beziiglich der Verteilung e ¢ approximiert. Dies liegt
daran, dass durch die fixierten Ebenen nicht jede beliebige Feldkonfiguration des Git-
ters mit nichtverschwindender Wahrscheinlichkeit erzeugt werden kann.

Der Erwartungswert auf den Untergittern wird definiert als

1 su
(Pt = o [ @U Fb ) e (3.24)

und es gilt

K
Frw =1 | T] #)3 (3.25)
s=1
Um den Erwartungswert zu approximieren fithrt man zusétzlich zu den Mittelungen
iiber die Untergitter noch Updates des gesamten Gitters durch und berechnet jeweils

die Werte Ff die dann als Messwerte benutzt werden. Der Erwartungswert von F

ist also gegeben durch
(F) = <Ffw> = <T > . (3.26)

Dieser Schritt zu einer Mittelung iiber Mittelwerte von Untergittern iiberzugehen kann
auch in diesen Untergittern iterativ angewendet werden, so dass mehrere Mittelungs-
stufen eingefithrt werden koénnen.

Dabei sollte stets darauf geachtet werden, dass geniigend Messwerte Efi herech-
net werden, da ansonsten eventuell der Einflul der fixierten Zeitebenen das Ergebnis
verfilscht, aufgrund des eben erwéhnten Effektes.

s=1

3.3.3 Algorithmus

Im Folgenden wird kurz der Algorithmus zur Berechnung der faktorisierten Erwar-
tungswerte angegeben:
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Zunichst wird das thermalisierte Gitter in K Untergitter mit der zeitlichen Aus-
dehnung ts unterteilt. s ist dabei der Index des einzelnen Untergitters, d.h. die
zeitliche Ausdehnung der einzelnen Untergitter muss nicht zwangsldufig gleich
sein.

Auf jedem dieser Untergitter wird der Mittelwert des entsprechenden Operators
F3% nach ng Updates des jeweiligen Untergitters berechnet, wobei nicht alle n
gleich sein miissen.

Falls gewiinscht, kann man nun schrittweise zu groflieren Untergittern tiberge-
hen, wobei nur noch ein Teil der fixierten Zeitebenen festgehalten wird und
bei der Mittelung nun die zuvor bestimmten Mittelwerte iiber die im gréfieren
Untergitter enthaltenen Untergitter verwendet werden.

Die Mittelwerte iiber die letzte Stufe der Unterteilung des Gitters werden dann
genutzt um einen Messwert fiir die Observable zu erhalten.

Nun werden einige Updates des gesamten Gitters durchgefiihrt. Die Zahl die-
ser Updates ist so zu wihlen, dass die Korrelation der beiden Konfigurationen
moglichst gering ist im Verhéltnis zur benotigten Rechenzeit. Anschliefend wird
von vorne begonnen um einen weiteren Messwert fiir die Observable zu erhalten.

Dabei gibt es einige Parameter, die iiber die Effizienz des Algorithmus entscheiden.

Diese miissen je nach der betrachteten Observablen, dem Update-Algorithmus und der
Kopplung 3 neu optimiert werden.
Die entscheidenden Groéfien sind:

e die Zahl der Mittelungs-Ebenen des Algorithmus.

e die Zeitausdehnungen der Untergitter: ¢,

(Dabei ist s, der Index des jeweiligen Untergitters in der z-ten Stufe.)

e die Anzahl der Untergitter-Updates: ng,
e die Anzahl der Gesamtupdates: N

Die Optimierung erfolgt dabei typischerweise in der obigen Reihenfolge, d.h. bei

einer vorgegeben Zahl von Mittelungs-Ebenen optimiert man die Zeitausdehnungen
der jeweiligen Untergitter. Die wesentlich wichtigeren Gréflen sind ng, und N bei
vorgegebenem Z und t,,. Ein Beispiel fiir die Optimierung der Gréflen bei Polyakov-
Loop Korrelatoren ist [37].

3.4 Anwendung des Algorithmus auf Wilson-Loops

Relevant fiir diese Arbeit sind wie zuvor betont groflie Wilson-Loops, auf die der
Liischer-Weisz Algorithmus angewendet werden soll. Dazu muss zunéchst der Wilson-
Loop in einzelne Operatoren zerlegt werden, die auf den Untergittern lokalisiert sind.
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To(R,t
b ARG
) ) )
(U (2, 1)) (Ulz + R, 1))
® [ ] ®
a ¢ t=n'a
R

Abbildung (10): Der Zweilinkoperator Ta(R, t) ist definiert {iber das Tensorprodukt
iiber die beiden Linkvariablen in Zeitrichtung.

3.4.1 Zerlegung von Wilson-Loops

Um Wilson-Loops auf die oben beschriebene Art zu zerlegen separiert man zunéchst
die rdumlichen Operatoren Q,(R,7) von der Zeitentwicklung, die nun iiber einen
neuen Operator T(R,T') beschrieben wird. Ein Wilson-Loop WR(R, T) aus Gleichung
(3.10) (K — n) ldsst sich dann schreiben als

W, (R, T) =Sp [Qu(R,0) 0 T(R,T)oQ}(R,T)]. (3.27)

Dieser Ansatz hat eine Korrespondenz zur Transfer-Matrix Darstellung von Streupro-
zessen, wobei @y, (R, 0) dem einlaufenden Zustand entspricht und Q;f (R, T) dem aus-
laufenden. Die formale Korrespondenz mit dem Operator im Kontinuum wird deutlich,
wenn man Gleichung (1.14) betrachtet. Die Operatoren Q, (R, 7) sind Superpositionen
von Produkten von Links, also Tensoren zweiter Stufe, Operatoren mit zwei freien In-
dizes. Der Zeitentwicklungsoperator T(R,T') besteht aus zwei separierten Produkten
von Linkvariablen und ist deshalb ein Tensor vierter Stufe.
Der Zeitentwicklungsoperator lisst sich als Produkt von sogenannten Zweilinkope-
ratoren Ty(R,t) schreiben [36]. Ein solcher Zweilinkoperator ist in Abbildung (10)
abgebildet. Der Zweilinkoperator To(R,t) am Ort = zur Zeit ¢ wird definiert iiber das
Tensorprodukt

(To(R,T)) o = (U*(2,8)) 0y (Ul + R1)),g (3.28)

wobei der rdumliche Startort x wie bei den Wilson-Loops nicht explizit aufgefiihrt
wird und z + R der Gitterplatz im Abstand R zu z entlang der Achse des Wilson-
Loops ist. U*(x, t) ist der zu U (z, t) komplex-konjugierte Link. Die Zweilinkoperatoren
entsprechen dem Zeitentwicklungsoperator fiir den Zeitschritt ¢ — t+a. Der Operator
fiir einen Zeitschritt ¢ — ¢ + 2a ist das Produkt aus den beiden Zweilinkoperatoren
fiir die Zeitschritte t — a und t + a — t + 2a. Fiir diese gilt das Multiplikationsgesetz

[T2(R7 t)o To(R,t + a)]abcd = (T2(R, t))aicj (T2(R,t + a))ibjd : (3.29)

Den Zeitentwicklungsoperator T(R,T') des Wilson-Loops, dessen unteres Ende in der
Zeitebene tg liegt, kann man dann schreiben als

[T(R,T)),pg = [T2(R, to) o Ta(R, to +a) o -+ 0 Ta(R, to + a(T — 1))] oy . (3-30)
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B 5
T 8
T = R 419
Lattice 243
Dicke der
Untergitter 2
Updates der 1000 (Alt)
Untergitter | 12000 : 1000 (Neu)
Messwerte 730 (Alt)
50 (Neu)
Rechenzeit 1100 min
L =1
CPU AMD
2.2 GHz

Abbildung (11): Links: Ein Wilson-Loop, dessen rdumliche Operatoren S; in der
Mitte von Untergittern der Zeitausdehnung 2a liegen. Rechts: Parameter der Gitter-
simulationen des direkten Vergleiches zwischen dem alten und dem neuen Algorithmus
bei gleicher Rechenzeit.

Das Multiplikationsgesetz fiir den Wilson-Loop (3.27) lautet dann:

A

Wi (R, T) = (Qu(R,0)) e (T(R,T))apea (@R, T))pg (3.31)

Die Operatoren auf den Untergittern fiir Wilson-Loops werden aus den Operatoren
Qn(R,t) und To(R,t) aufgebaut.

3.4.2 Urspriingliche und verbesserte Methode

Eine Methode zur Anwendung des Liischer-Weisz Algorithmus, die in dem urspriing-
lichen Artikel [36] vorgeschlagen wurde ist es, die rdumlichen Operatoren Q, (R, t) auf
fixierte Zeitebenen zu legen. Diese Form des Algorithmus wurde auch in [25] genutzt
um die angeregten Zusténde zu untersuchen. Die Erwartungswerte fiir die Untergitter
liefern dann nur fiir den Zeitentwicklungsoperator eine Fehlerreduktion, nicht aber fiir
die Operatoren der raumlichen Linien.

Statt die rdumlichen Operatoren auf die fixierten Zeitebenen zu legen, ist es sinnvoller,
diese in die Mitte eines Untergitters mit der Zeitausdehnung 2a zu legen. Ein Beispiel
eines resultierenden Loops mit den rdumlichen Operatoren S; ist auf der linken Seite
von Abbildung (11) abgebildet. Nun sorgen die Updates der Untergitter auch fiir eine
Reduktion des Fehlers der raumlichen Operatoren. Dies ist besonders niitzlich fiir die
Berechnung von angeregten Zusténden, bei denen die Operatoren durch Linearkom-
binationen der Operatoren §; erhalten werden. Eine dhnliche Form des Algorithmus
verwendeten auch Kratochvila und de Forcrand bei Rechnungen zum String-Breaking
mit Quarks in adjungierter Darstellung [38].
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ER(W1)/% ER(Wy)/% ER(W3)/%
R | Neu Alt | Neu Alt | Neu Alt
4 | 0.44 0.15 | 2.7 7.0 | 9.2 100
5 10.63 0.21 | 2.7 8.3 | 8.6 100
6 | 0.86 0.28 | 2.7 4.5 | 8.8 100
7111 0.35 | 2.9 7.3 | 88 100
8 | 1.4 0.45 | 3.1 551 9.5 100
9 | 1.7 0.56 | 3.6 10 | 11 100
10 | 2.1 0.74 | 4.2 11 | 14 100
11 | 2.7 1.0 | 5.8 27 | 22 100
12 | 3.5 1.7 | 8.6 88 | 44 100

Tabelle (2): Der relative Fehler der Erwartungswerte der Wilson-Loops W,, angege-
ben in Prozent, berechnet mit dem alten und dem neuen Algorithmus.

Waéhrend der urspriingliche Algorithmus fiir 8 = 5 lediglich in der Lage war, ein Signal
fiir Wilson-Loops W3(R,T') mit Zeitausdehnung 7" = 8 und rédumlicher Ausdehnung
R = 12 zu liefern [25], ist es mit dieser Modifikation moglich, Signale bis zu einer
Zeitausdehnung von T = 12 zu erhalten.

Ein direkter Vergleich der relativen Messfehler fiir die Erwartungswerte der Wilson-
Loops in SU(2)-Eichthorie bei gleicher Rechenzeit fiir beide Methoden ist in Tabelle
(2) angegeben. Die zugehorigen Simulationsparameter finden sich in der Tabelle auf
der rechten Seite von Abbildung (11).

An den Werten erkennt man, dass der neue Algorithmus den Fehler des Grundzustan-
des nicht reduziert, bei den angeregten Zustédnden jedoch fiir eine starke Fehlerreduk-
tion sorgt.

Eine weitere Reduktion des Messfehlers liefern Multihit-Links [39],[4]. Diese konnen
auf alle Links fiir die Zeittransporter und auf bestimmte Links der rdumlichen Ope-
ratoren angewendet werden.

3.4.3 Untergitter-Operatoren fiir die verbesserte Methode

Die rdumlichen Operatoren liegen auf der mittleren Zeitebene in einem Untergitter
mit der Zeitausdehnung t; = 2a. Der zugehorige Operator auf dem Untergitter setzt
sich also zusammen aus dem rédumlichen Operator und einem Zweilinkoperator. Als
Operatoren fiir die Untergitter die raumliche Operatoren enthalten benutzt man des-
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(3.32)
(RY)ap = (T2(R,to+ T = a)) gy (Qu(Rt0));;

wobei R,, jeweils der Operator im untersten Untergitter des Wilson-Loops ist und R},

der Operator im obersten.

Der restliche Wilson-Loop wird in (7'—2)/(¢s) Untergitter unterteilt, wobei ¢4 die Zeit-
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ausdehnung der Untergitter ist'?. Der Zeitentwicklungsoperator fiir das Untergitter s
ist gegeben iiber

Ty = To(R, tys) 0 To(R, tys +a)o---0To(R, tys + (ts — 1)a), (3.33)

wobei t, s = to + a + (s — 1)ts die untere fixierte Zeitebene des Untergitters ist.
Dabei diirfen Multihit-Links fiir alle Links der Operatoren T, verwendet werden. Bei
den Operatoren R,, muss man dabei vorsichtig sein. Plaketten die einen Multihit-Link
enthalten diirfen ndmlich keinen weiteren Multihit-Link des Operators enthalten, da
in diesem Fall die zugehorige Integration nicht mehr moglich ist. In dieser Arbeit
werden deshalb Multihit-Links fiir alle rdumlichen Links in Richtung der rdumlichen
Achse des Wilson-Loops verwendet, da dies die Zahl der Multihit-Links bei Loops mit
groffem R maximiert.

Hjer wird nur der Fall betrachtet indem die Zeitausdehnung aller Untergitter mit Zeitentwick-
lungsoperatoren aus Gleichung (3.33) gleich ist. Im allgemeinen muss dies nicht der Fall sein.
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Im Rahmen dieser Arbeit wurden numerische Monte-Carlo-Simulationen in drei-

dimensionaler SU (2)-Gittereichtheorie durchgefiihrt. Benutzt wurde die iibliche Wil-
son’sche Plakett-Wirkung (1.22) und die Feldkonfigurationen wurden mit einem ver-
besserten Heatbath-Algorithmus [34] generiert. Bei den Rechnungen wurden Wilson-
Loops W, (R,T') der rdumlichen Ausdehnung R und der zeitlichen Ausdehnung T’
berechnet, wobei zur Fehlerreduktion die in den Kapiteln (3.3) und (3.4) diskutierte
verbesserte Version des Liischer-Weisz Algorithmus mit einer Mittelungsebene ver-
wendet wurde.
Simuliert wurde mit zwei verschiedenen Kopplungen 8 = 5 und 8 = 7.5. Die ver-
wendeten Gitter, sowie die zugehorigen physikalischen Skalen werden in Kapitel (4.1)
diskutiert. In Kapitel (4.2) werden die Parameter des Liischer-Weisz Algorithmus op-
timiert, die resultierenden Parameter der Gittersimulationen werden in Kapitel (4.3)
angegeben.

4.1 Die Gitter und die zugehorigen Skalen

Der physikalische Abstand zwischen den Quarks, ab dem erwartet wird, dass die ef-
fektive Stringtheorie das Verhalten der Flussrohre beschreibt, liegt bei etwa 1 Fermi.
Bei kleineren Abstédnden werden Abweichungen von der effektiven Theorie erwartet.
Um zu untersuchen, in welchem Bereich die effektive Stringtheorie giiltig wird, werden
in dieser Arbeit Wilson-Loops mit einer physikalischen rdumlichen Ausdehnung von
etwa 0.5 bis 1.5 Fermi betrachtet.

Die Léngeneinheiten auf dem Gitter werden durch den Sommer Parameter ry festge-
legt, fiir den gilt 79 = 0.5fm [40]. Es werden dabei die bereits bekannten Werte fiir
B =5,7.5 [41] fir dreidimensionale SU (2)-Eichtheorie benutzt:

ro(8 =5) =3.9536(3) und 7ro(8 ="7.5) = 6.2875(10). (4.1)

Fiir 8 = 5 werden also Wilson-Loops mit R = 4 — 12 berechnet, wobei Loops mit
den Zeitausdehnungen T = 4,6,8 und 12 mit hinreichender Genauigkeit berechnet
werden konnten. Die Wilson-Loops mit R = 4 — 9 wurden auf 243-Gittern berechnet,
wihrend fiir R = 10 — 12 bei diesen Gittern verfilschende Effekte durch die endliche
Ausdehnung des Gitters auftreten kénnen. Um dies zu verhindern wurden die Wilson-
Loops mit R = 10 — 12 auf 483-Gittern berechnet.

Fiir 8 = 7.5 sind Wilson-Loops mit R = 7— 20 relevant. Um &quivalente physikalische
Zeitausdehnungen zu benutzen werden dabei Wilson-Loops mit T" = 6,10,14 und
18 berechnet. Das Program lduft optimal wenn eine ganzzahlige Anzahl von Wilson-
Loops in zeitlicher Richtung auf das Gitter passen, was dazu fiihrt, dass in diesem Fall
vier unterschiedliche Gitter betrachtet werden, namlich 363 fiir 7' = 6, 403 fiir T = 10,
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ER(W,)/%
Parameter: n ts=2 ts=4
6="1.5 T=10 R=28 1 6.3 2.8
#meas: 100 Lattice: 40° 2 50 12

Tabelle (3): Parameter und Resultate des Testlaufes fiir die Dicke der Untergit-
ter der Zeittransporter. ER(W,,) ist der relative Fehler des Erwartungswertes des
Wilson-Loops zugehoérig zum Kanal n. Es wurden 6000 Updates der Untergitter mit
den raumlichen Operatoren und 2000 Updates der Untergitter der Zeitentwicklungs-
operatoren durchgefiihrt.

423 fiir T = 14 und 543 fiir T = 18. Dabei werden alle riumlichen Ausdehnungen auf
denselben Gittern berechnet.

4.2 Optimieren der Parameter des LW-Algorithmus

4.2.1 Zeitliche Ausdehnung der Untergitter der Zeitentwicklungsopera-
toren

Zunéchst ist die optimale zeitliche Ausdehnung ts der Untergitter der Zeitentwick-
lungsoperatoren zu bestimmen. Die Zeitausdehnung der Untergitter mit den raumli-
chen Operatoren betragt 2a.

Bei 8 = 5 sollen Wilson-Loops der zeitlichen Ausdehnungen T' = 4, 6, 8 und 12 berech-
net werden. In diesem Fall ist es sinnvoll ts = 2 zu benutzen, da andernfalls Probleme
bei Wilson-Loops mit 7' = 4 und 8 auftreten.

Bei g = 7.5 soll die physikalische Distanz etwa gleich bleiben und somit Wilson-Loops
mit 7" = 6,10,14 und 18 berechnet werden. In diesem Fall ist es moglich Untergitter
mit ts = 2 oder ts = 4 zu benutzen'!. Eine kurze Rechnung mit den Parametern aus
Tabelle (3) liefert die relativen Fehler ER(W;) des ersten und zweiten Kanals mit
ts = 2 und ts = 4. Aus den Werten aus Tabelle (3) geht hervor, dass der Fehler mit
ts = 4 geringer ist als der mit ts = 2.

Wir verwenden also:

6=5: ts=2 und 6=T75: ts=4 (4.2)

4.2.2 Zahl der Updates der Untergitter

Nun gilt es die Zahl der Untergitterupdates fiir die einzelnen Operatoren zu finden.
Fiir Polyakov-Loop Korrelationsfunktionen und die zugehorigen Zeitentwicklungsope-
ratoren lisst sich eine Norm finden, deren Wert korreliert ist mit dem Abfallen des
Fehlers der Polyakov-Loop-Korrelationsfunktion [37].

HBei ts = 6 konnten nur Loops der GroBen T = 8,14, 20 und 26 berechnet werden, deren Signal
zu stark verrauscht ist.
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ER(Wy)/% ER(W1)/% ER(W2)/%
up #Hmeas | R=4 R=5|R=4 R=5|R=4 R=5
10 123445 | 0.011 0.15 | 0.46 111 1
100 19593 | 0.0016  0.012 | 0.18 0.34 | 1 1
1000 2136 | 0.0025 0.0044 | 0.24 0.36 | 1 1
2000 1080 | 0.0036 0.0056 | 1 0.28 | 1 1

Tabelle (4): Der relative Fehler ER(W,,) in Prozent fiir verschiedene Werte fiir us.
Dabei wurde mit 3 = 3 auf einem 243-Gitter mit ts =2, u; =1, R=4,5und T = 8,
bei einer Rechenzeit von ca. 48 Stunden simuliert.

Eine dhnliche Norm fiir die Zeitentwicklungsoperatoren von Wilson-Loops zu finden
ist wesentlich schwieriger. Benutzt man die in [37] verwendete Norm als MessgroBe, so
zeigt diese ein qualitativ anderes Verhalten als der tatséchliche Messfehler des Wilson-
Loops. Ein #hnliches Problem erhélt man bei moéglichen Normen fiir die rdumlichen
Operatoren, wie etwa deren Spur oder deren Determinante.

Betrachtet werden muss also der absolute Fehler des Wilson-Loops in Abhéngigkeit
von der Zahl der Updates der Untergitter mit Zeittransportern und mit rdumlichen
Linien. Diese beiden Zahlen werden von nun an in der Grofle iupd = wuq : usg zu-
sammengefasst, wobei u; die Zahl der Updates fiir die Untergitter mit rdumlichen
Operatoren und usy die Zahl der Updates der Untergitter mit Zeitentwicklungsopera-
toren ist. Diese Methode erfordert selbstverstédndlich wesentlich mehr Rechenleistung
als eine Optimierung mittels einer entsprechenden Norm.

Bei der tatsdchlichen Optimierung tritt auflerdem ein weiteres Problem auf. Es stellt
sich ndmlich heraus, dass bei Wilson-Loops dieser Art der Effekt der festgehalte-
nen Zeitebenen recht grof ist, d.h. die Erwartungswerte liefern erst nach etwa 1000
Gesamtmesswerten zuverlissige Resultate. Dies ist durch den in Kapitel (3.3.2) be-
schriebenen Effekt zu erkldren, dass durch die festgehaltenen Zeitebenen nicht das ge-
samte Gleichgewichtsensemble simuliert wird. Dies macht eine normale Optimierung
fiir 8 =5 oder 8 = 7.5 enorm zeitaufwendig, unter Umsténden sogar zeitaufwendiger
als die gesamten Messungen. Deshalb wird die Abhéingigkeit des Messfehlers von den
Parametern bei § = 3 betrachtet. § = 3 weist im Gegensatz zu 6 = 5 und 7.5 noch
viele Eigenschaften der starken Kopplung auf und es ist deshalb zu erwarten, dass in
diesem Fall wesentlich weniger Updates fiir die Untergitter notwendig sind.

Zunéchst wird der Effekt von ue untersucht und deshalb u; = 1 gesetzt. Dabei wur-
den alle Rechnungen in gleicher Rechenzeit von ungefihr 48 Stunden durchgefiihrt.
Die relativen Unsicherheiten der Erwartungswerte sind in Tabelle (4) angegeben. Fiir
{8 = 3 und einen Loop mit den Ausdehnungen 7' = 8 und R = 4,5 resultiert daraus
100 < ug < 1000 als optimaler Wert.

Nun wird der Effekt von u; untersucht. Dazu setzt man us = 100 und variiert u;
bei wiederum gleicher Simulationszeit von ca. 48 Stunden. Die Resultate fiir die re-
lativen Fehler der Wilson-Loops sind in Tabelle (5) angegeben. Eine bemerkenswerte
Tatsache ist das Signal fiir die Wilson-Loops Ws, das mit u; = 1 nicht zu sehen war.
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ER(Wo)/% ER(W1)/% | ER(W»)/%
u;  #Hmeas | R=4 R=5|R=4 R=5|R=4 R=5
10 10625 | 0.00083 0.0031 | 0.042 0.39 | 1 1

100 6293 | 0.00090 0.0024 | 0.016  0.079 | 0.32 0.52
1000 2111 | 0.0015  0.0040 | 0.024 0.15 | 0.72 1
2000 1111 | 0.0021  0.0055 | 0.032 0.16 | 0.73 1

Tabelle (5): Dieselben Werte wie in Tabelle (3) nur mit variierendem u; und ug =
100.

Wiederum scheint ein Wert von 100 < u; < 1000 optimal zu sein.

Eine weitere wichtige Eigenschaft ist die Tatsache, dass sich der optimale Wert fiir
up mit steigendem 7T etwa proportional zu diesem erhoht [37], wiahrend 7' auf den
optimalen Wert fiir u; einen weit geringeren Einfluss hat.

Mit diesen Resultaten wird nun das Schema fiir die Untergitterupdates gebildet, das im
folgenden Kapitel angegeben ist. Dabei bleibt anzumerken, dass die dort gew#hlten
Werte wesentlich hoher sind als die fiir § = 3 gefundenen. Dies hat verschiedene
Griinde. Zunéchst liegt 6 = 3 im Gegensatz zu § = 5 und 7.5 in einem Bereich der
sich qualitativ anders verhélt. Aulerdem soll ein Wert fiir Wilson-Loops W3 erhalten
werden, die wesentlich mehr Untergitter-Updates benGtigen. Ein weiterer Grund sind
die feineren Gitter und grofleren Loops.

4.3 Simulationsparameter

I6] R T ‘ ts Lattice tupd #meas
5 4-9 4 2 243 12000 : 1000 2000
6 12000 : 1500 2000
8 12000 : 2000 2000
12 12000 : 2500 2000
10-12 4 2 483 24000 : 1000 2000
6 24000 : 2000 2000
8 24000 : 6000 2000
12 24000 : 12000 2000
75 T7-—20 6 4 36° 36000 : 1500 4400
10 403 36000 : 3000 4400
14 423 36000 : 9000 4400
18 543 36000 : 18000 4400




V Resultate der Simulationen

Nun werden die Resultate der Simulationen mit den Parametern aus Kapitel (4.3)
diskutiert, die zum Teil bereits in [42] vertffentlicht wurden.
In Kapitel (5.1) werden die Ergebnisse fiir den Grundzustand also das statische ¢g-
Potential diskutiert. Dieses ist bereits in verschiedensten Simulationen untersucht wor-
den und die hier erhaltenen Ergebnisse werden mit diesen Simulationen verglichen.
In Kapitel (5.2) werden die Ergebnisse fiir die angeregten Zusténde dargestellt und
ebenfalls mit dhnlichen Simulationen verglichen. Dabei bleibt zu bemerken, dass Re-
sultate mit Wilson-Loops der hier verwendeten zeitlichen Ausdehnungen bisher nicht
existierten. In Kapitel (5.3) werden die Daten mit weiteren Ergebnissen von Git-
tersimulationen mit offenen und geschlossenen Strings in verschiedenen Eichtheorien
verglichen.

5.1 Der Grundzustand

Eine Reihe von Studien beschéfftigten sich mit den Eigenschaften des Grundzustandes
[43], so dass dessen Verhalten recht bekannt ist. Da es in dieser Arbeit primér darum
geht die angeregten Zusténde mit den Vorhersagen der effektiven Stringtheorien zu
vergleichen, wird das Potential der Nambu-Stringtheorie (2.29) benutzt, um die freien
Parameter, die String-Spannung o und ein Gitterartefakt in Form einer additiven
Konstanten 1V}, zu bestimmen. Verwendet wird ein Fit der Form

™

E(](R):O'R 1—m

+ Vo (5.1)

mit den Fitparametern o und Vj. Die Resultate aus den Gittersimulationen sind in
Anhang (C.2) in Tabelle (9) angegeben und die resultierenden Fitparameter in Ta-
belle (7). Die String-Spannung o stimmt im Falle von § = 5 gut mit dem Wert der
Polyakov-Loop-Korrelationsfunktionen iiberein. Die Werte stimmen im Rahmen der
Fehlergrenzen ebenfalls mit den Werten aus der sehr genauen Studie des Kontinu-
umslimes der Parameter des Grundzustandes [41] iiberein, wobei die Messfehler hier
grofer sind.

Um die Messwerte zwischen § = 5 und 7.5 direkt vergleichen zu kénnen ist es sinnvoll,

p=5 B="15
o Vo o Vo
0.0973(3) 0.216(2) 0.03852(2) 0.1745(2)

Tabelle (7): Resultate fiir die freien Parameter.
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Abbildung (12): Plot der Messergebnisse fiir den Grundzustand normiert auf Vyo =
0. e sind die korrigierten Energien Ej(R*) bei § =5 und + die zugehorigen Naiven,
o die korrigierten Energien fiir § = 7.5 und x die Naiven.

zu dimensionslosen Einheiten iiberzugehen mit
E:=E,/\y/o und R*=./0R. (5.2)

Das statische Potential in Nambu-Stringtheorie lautet dann nach Gleichung (2.29)

E; =V*(R*) = R* ‘/1—ﬁ. (5.3)

Die kritische Distanz bei der das Potential imaginiar wird, liegt in dieser Skala bei
Rf = 0.512, also weit unterhalb der hier betrachteten Werte von R*.

In Anbetracht der Resultate aus den Kapiteln (2.4) und (2.5), nach denen die Energie-
werte bis zu O(1/R?) in Nambu-, Polchinski-Strominger- und Liischer-Weisz-String-
theorie iibereinstimmen, wird zudem das Potential in fithrender Ordnung in 1/R*,
Vio(R*) und das Potential in néchst hoherer Ordnung V3, ,(R*) definiert iiber die
Entwicklung der Wurzel aus (5.3) in 1/(R*)%:

* o « T 1 w2 1
Vwro(B) = R =51 & ~ Tim (R*)3

(5.5)
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Diese beiden Potentiale sind fiir die drei effektiven Stringtheorien aus Kapitel (II)
gleichermafien giiltig.

In Abbildung (12) sind die Messergebnisse fiir den Grundzustand normiert auf die
Kurve (5.4) gegen die Kurven (5.3) und (5.5) aufgetragen. Der Fehler, der bei der
Skalierung mit den fehlerbehafteten Groen aus Tabelle (7) auftritt, wurde bei den
Fehlerbalken beriicksichtigt. Die oberen Punkte sind die naiven Messwerte und die
unteren die zugehorigen durch den Fit der Form (3.19) korrigierten Werte.

Fiir den Grundzustand liegen die Arvis-Kurve und die LO-Kurve bei R* = 1.5 bereits
so dicht beieinander, dass beide die Daten im Rahmen der Fehlergrenzen beschreiben.
Die NLO-Kurve erreicht die Daten fiir § = 7.5 bei etwa R* = 3.34, oder R/ro = 2.70.
Ein direkter Vergleich mit Werten aus [41] und [29] ist in diesem Fall schwierig, da

die dort betrachtete Observable ¢(R) = R; diYR(QR ), die fiir R — oo in den Liischer-
Term ¢ = —g; iibergehen sollte, hier nicht betrachtet wird. In [41] erreicht ¢(R) bei

dreidimensionaler SU(2)-Eichtheorie die Arvis-Kurve bei etwa R/rg ~ 2.75, wobei
hier die Daten der Arvis-Kurve folgen und nicht von dieser abweichen. Ein moglicher
Grund fiir diese Tatsache ist der verwendete Fit fiir den Grundzustand. Benutzt man
fir § = 5 allerdings die nicht von einem derartigen Fit abhéingigen Methode aus [41]
zur Berechnung der String-Spannung, so ergibt sich ¢ = 0.09729(2). Die beiden String-
Spannungen ¢ stimmen im Rahmen der Fehlergrenzen {iberein und das qualitative
Verhalten der Fits wird dadurch nicht geéndert.

Fiir SU(3)-Eichteorie mit d = 3, die in [29] betrachtet wird, erreicht ¢(R) die Arvis-
Kurve bei etwa R/ro =~ 1.8. Vergleichbare Resultate findet man auch fir d = 4
[29],[44]. Gerechnet wurde dort allerdings auf einem sehr groben Gitter, wobei noch
nicht von einem Kontinuumsverhalten ausgegangen werden kann.

5.2 Angeregte Zustinde
5.2.1 Die totalen Energiewerte

Die Resultate der Gittersimulationen fiir die totalen Energiewerte sind ebenfalls wie
die Werte fiir den Grundzustand in Tabelle (9) angegeben. Um direkt die Werte fiir
B8 =5 und 8 = 7.5 vergleichen zu konnen, werden die Werte wieder nach Gleichung
(5.2) skaliert. Die zu den Energien E,,(R) gehorigen Arvis-Kurven lauten nach (2.29):

* * * 2m 1
E*(R") =R \/1+(R*)2 <n—24> (5.6)

Die LO-Kurven und NLO-Kurven werden analog zu (5.4) und (5.5) definiert als:

1\ 1 7#2 1\? 1
E Y = R* B T .
nLoa () R+ <” 24> R 2 <” 24) (R*)? (5-8)
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Abbildung (13): Plot der angeregten Energiezustéinde. e sind jeweils die korrigierten
Energien Ej(R*) bei § = 5 und + die Naiven. o sind die korrigierten Energien fiir
£ = 7.5 und x die Naiven. Die schwarzen durchgezogenen Kurven entsprechen (5.6),
die grauen gestrichelten (5.7) und die griinen gestrichelten (5.8).

Das zusitzlich auftretende Gitterartefakt V4 ist fiir alle Energieniveaus gleich und
wurde durch den Fit fiir den Grundzustand bestimmt. Vi wird nun direkt bei den
Datenpunkten beriicksichtigt und taucht deshalb nicht mehr in den Kurven auf.

Die Resultate der Gittersimulationen sind in Abbildung (13) gegen die zugehorigen
Kurven (5.6) bis (5.8) aufgetragen. Die Notwendigkeit, die Korrekturen der hoheren
Zusténde zu berticksichtigen, wird daran deutlich, dass die unkorrigierten Werte des
ersten angeregten Zustandes die LO-Kurve relativ frith kreuzen, wihrend die korri-
gierten Messwerte sich deutlich der Arvis-Kurve anndhern. Dieser Effekt wurde bereits
in [25] ausfiihrlich diskutiert. Das stetige Anwachsen der Korrekturen lisst sich darauf
zuriickfithren, dass die Energiedifferenzen AFE, ; geringer werden mit steigendem R
und somit e 2Fn1 T — 1 strebt. AuBerdem tragen durch das Abnehmen der Energie-
unterschiede fiir R — oo immer mehr hohere angeregte Zustéinde zu den Korrekturen
bei, die somit anwachsen. Die Gréfenordnung der Korrekturen scheint auflerdem bei
den hoheren Zustédnden zuzunehmen. Die korrigierten Energien EY erreichen fiir § = 5
und 8 = 7.5 die Arvis-Kurve bei R* = 2.9, oder R/ry ~ 2.4, also bei einem #@hnlichen
Wert, bei dem ¢(R) in [41] die Arvis-Kurve erreicht. Dies entspricht etwa dem Bereich,
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ab dem zu erwarten ist, dass das effektive Modell gute Vorhersagen liefert.

Es lédsst sich weiterhin sagen, dass die Nambu Stringtheorie die Daten am ehesten
beschreibt, obwohl sich die Daten der angeregten Zustdnde mit n > 0 fir § = 7.5
fiir groffe R* wieder von dieser Kurve zu entfernen scheinen und sich stattdessen der
LO-Kurve annéhern. Bislang ist allerdings noch nicht sicher, ob dieser Effekt physi-
kalisch oder auf einen systematischen Fehler zuriickzufiihren ist. Die NLO-Kurve liegt
unterhalb der jeweiligen Arvis-Kurve und ist deutlich zu niedrig um die Daten korrekt
zu beschreiben.

5.2.2 Energiedifferenzen

Die Messwerte der Energiedifferenzen zwischen den Energiezusténden haben, wie be-
reits beschrieben, bessere Figenschaften als die Gesamtenergien. In diesem Abschnitt
werden diese deshalb separat ausgewertet. Die resultierenden Messwerte fiir die Ener-
giedifferenzen AFE,,,, = E,, — E,, sind in Tabelle (10) in Anhang (C.2) angegeben. Die
mit den Werten zu vergleichenden Kurven sind hier definiert als:

* o * 2 _ i . 27 _ i
AE,. = R \/1 + ") <n 24> \/1 + ") (m 24)] (5.9)
AEjom = m(n—m) % (5.10)
. 1 w2 1 1
ABNLonm = T(n—m) oo+ o [WQ —n’+ 5 (- m)] ") (5.11)

Die entsprechend skalierten Daten der Energiedifferenzen AFE], und AFE3, sind in
Abbildung (14) gegen die jeweiligen Kurven aufgetragen und die Energiedifferenzen
AE3 und AEY, in Abbildung (15). Fiir AE3, konnten die korrigierten Werte dabei
nur aus einem Fit beziiglich Wilson-Loops mit den drei niedrigsten Zeitausdehnungen
berechnet werden. Fiir AE3, funktionierte auch diese Methode nicht zuverldssig, so
dass die hier gezeigten Daten der Differenz der korrigierten Energien entsprechen. Bei
AFE3, konnten selbst diese Differenzen mit einer entsprechenden Genauigkeit nur fiir
(8 = 5 bestimmt werden.

Die naiven Energiedifferenzen néhern sich der LO-Kurve an, also den Vorhersagen
eines freien bosonischen Strings, und kreuzen im Falle der Energiedifferenz AEY}, die
Kurve sogar. Ein analoges Verhalten wurde auch in einer Studie von Juge, Kuti und
Morningstar [45] beobachtet. Dort wurden stark anisotrope Gitter und eine Reihe
von Gitteroperatoren verwendet um die angeregten Zusténde zu extrahieren. Dies
erscheint merkwiirdig, da die Daten fiir gréflere Abstéinde ndher an die LO-Kurve
riicken sollten, da die 1/R3-Korrekturterme kleiner werden. Die korrigierten Werte
zeigen tatsichlich ein qualitativ unterschiedliches Verhalten, sie ndhern sich mit stei-
gendem R der Vorhersage der Nambu Stringtheorie an.

In einem intermediéren Bereich existieren bereits Daten fiir die Energiedifferenz AEY,
aus einer #lteren Arbeit [46] mit § = 7.5 und 10, mit denen die hier erhaltenen Werte
kurz verglichen werden sollen. Die Werte sind zusammen mit den hier erhaltenen in
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Abbildung (14): Die Messwerte der Energiedifferenzen &~ AE}; (oben) und £ AE3,
(unten). Die Zuordnung der Symbole und Kurven entspricht Abbildung (13).
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Abbildung (15): Die Messwerte der Energiedifferenz & AE3, (oben) und £ AE3)
(unten). Die Zuordnung der Symbole und Kurven entspricht Abbildung (13).
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Abbildung (16): Vergleich zwischen den Daten [46] fiir AE;p und den im Rahmen
dieser Arbeit erhaltenen Daten. e sind die hier erhaltenen Daten fiir # =5 und o fiir
B =17.5. [ sind die Daten fiir § = 7.5 aus [46] und A fiir § = 10.

Abbildung (16) abgebildet. Man erkennt deutlich die Ubereinstimmung der Werte fiir
B = 7.5. An dem Vergleich erkennt man auch klar den Vorteil der neuen Version des
Liischer-Weisz-Algorithmus. Wiahrend fiir kleinere R*-Werte die Daten fiir 8 = 7.5
aufeinander liegen, scheinen die alten Daten mit steigendem R* von der Arvis-Kurve
abzuweichen. Bei den neueren zuverlissigeren Daten ist dieser Effekt nicht mehr zu
sehen. Die Daten folgen der Arvis-Kurve bis zu einem Wert von R* = 4. Wie man an
den alten Daten erkennt, ergibt sich wahrscheinlich fiir feinere Gitter ein Trend weg
von der Arvis-Linie in Richtung der LO-Kurve.

5.3 Vergleich mit dhnlichen Simulationen

Hier werden die in (5.2) erhaltenen Ergebnisse mit den Resultaten aus Gittersimulatio-
nen anderer Eichtheorien verglichen, sowie mit Gittersimulationen, die das Spektrum
von geschlossenen Strings, sogenannten Toleronen betrachten.
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5.3.1 Offene Strings

Im Falle des Eichsektors der QCD, also in vierdimensionaler SU(3)-Eichtheorie, wur-
den die angeregten Zustidnde ebenfalls in [45] berechnet. In vier Dimensionen ist eine
Klassifikation der Strinzusténde nur nach (C, P) und der Energiequantenzahl des je-
weiligen Niveaus nicht mehr ausreichend um selbst die Grundzusténde in den (C, P)-
Kanéilen zu bestimmen. Daher muss zusétzlich der zugehorige Drehimpuls beziiglich
der Stringachse als Quantenzahl zur Klassifizierung verwendet werden. Die resultieren-
den Zusténde weisen in Gittersimulationen eine komplizierte Feinstruktur auf. Allge-
mein zeigt sich qualitativ jedoch dasselbe Verhalten wie bei den Daten fiir die SU(2)-
FEichtheorie in drei Dimensionen.

Die Studie [45] beschéftigt sich ebenfalls mit dreidimensionaler U (1)-Eichtheorie, fiir
die analoge Resultate wie bei der SU(2)-Eichtheorie in drei Dimensionen gefunden
wurden.

Resultate in dreidimensionaler Z(2)-Eichtheorie sind in [12] und [14], sowie in [48]
angegeben. Das Verhalten entspricht in diesem Fall ebenfalls dem Verhalten in drei-
dimensionaler SU(2)-Eichtheorie und zeigt zudem ein gutes Skalenverhalten fiir un-
terschiedliche Kopplungen.

Die Resultate fiir verschiedene Eichtheorien implizieren, dass die bosonische Stringtheo-
rie ein guter Kandidat ist um die chromoelektrische Flussrohre zu beschreiben. Dabei
scheint die volle Nambu Stringtheorie bessere Vorhersagen zu liefern als die Approxi-
mation in fithrender Ordnung. Ausgeschlossen werden kann diese aufgrund der Daten
aber nicht, vor allem, da sich diese im Kontinuumslimes anscheinend von der Nambu-
Kurve fortbewegen. Insgesamt sieht man, dass die Daten beziiglich der jeweiligen
Flussrohre nicht, bzw. kaum, von der verwendeten Eichtheorie abzuhéngen scheinen.

5.3.2 Geschlossene Strings — Toleronen

Neuere Studien beschéftigen sich mit geschlossenen Flussrohren, sogenannten Tolero-
nen, indem sie Polyakov-Loop-Korrelatoren betrachten, die sich um kompaktifizierte
rdumliche Dimensionen winden. Durch verschiedene Operatoren ist es dann wiederum
moglich, die angeregten Zusténde zu betrachten.

Erste Studien zu Toleronen wurden in vierdimensionaler Z(2)-Eichtheorie von Kuti
u.A. [49] durchgefithrt und nochmals in [14] diskutiert. Die dort erhaltenen Wer-
te zeigen eher das Verhalten eines freien bosonischen Strings, als das Verhalten der
Nambu-Stringtheorie.

Fiir dreidimensionale SU(3) und SU(6) wurde das Toleron-Spektrum von Teper u.A.
[50] mit dhnlichen Methoden vermessen. Die dort erhaltenen Resultate weisen eine
deutliche Ubereinstimmung mit den Vorhersagen der Nambu-Stringtheorie auf, wobei
sich die Daten anders als hier ndher an der NLO-Kurve als an der LO-Kurve liegen.

Die Resultate fiir geschlossene Strings stimmen in etwa iiberein mit den hier disku-
tierten Resultaten fiir offene Strings. Nach [50] erreichen die Daten fiir geschlossene
Strings die Arvis-Kurve bereits bei R* = 2, ein Verhalten welches hier nicht beobachtet
werden konnte. Unklar ist in beiden Féllen noch der Kontinuumslimes.
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Zusammenfassung und Ausblick

Zusammenfassung

Im Rahmen dieser Arbeit wurden die Vorhersagen von effektiven Stringtheorien fiir
das Potential eines statischen Quark-Antiquark Paares betrachtet und mit Simulatio-
nen der dreidimensionalen SU(2)-Eichtheorie verglichen.

Im ersten Kapitel wurde gezeigt, wie sich Confinement im Rahmen von nichtabel-
schen Eichtheorien mithilfe von Flussrohren beschreiben lasst und im Grenzfall grofier
Abstéinde R der Anschlufl an eine Beschreibung durch effektive Stringtheorien herge-
stellt. Aulerdem wurde der Wilson-Loop als Operator eingefiihrt, um die angeregten
Zustdnde auf dem Gitter untersuchen zu kénnen.

Im zweiten Kapitel wurden die Resultate der effektiven Stringtheorien diskutiert.
Zunichst wurde die Nambu-Stringtheorie dargestellt, die eine geschlossene Losung
fiir die Energiezusténde der Flussrohre liefert. Allerdings tritt bei der Quantisierung
der transversalen Schwingungen die Weyl-Anomalie auf, die eine konsistente Quanti-
sierung in vier Dimensionen verhindert und somit die Nambu-Stringtheorie als ma-
thematisch konsistente effektive Stringtheorie fiir die Flussrohre ausschliefit.

Als néchstes wurde die effektive Stringtheorie von Liischer und Weisz diskutiert, bei
der bis zu O(1/R?) in d-Dimensionen eine unbestimmte Kopplungskonstante auftritt.
In drei Dimensionen wird diese Kopplungskonstante allerdings durch eine algebrai-
sche Gleichung, die aus der Dualitdt zwischen offenen und geschlossenen Strings re-
sultiert, eliminiert, so dass sich bis zu O(1/R?) dasselbe Spektrum wie bei der Nambu-
Stringtheorie ergibt. Die effektive Stringtheorie von Polchinski und Strominger, die
aus allen Thermen besteht, welche die Weyl-Anomalie vermeiden, liefert ebenfall das-
selbe Spektrum bis zu O(1/R?). Die dabei auftretende Kopplungskonstante wurde
durch die Forderung nach Lorentz-Invarianz fixiert.

Im dritten Kapitel wurden die Grundlagen der Gittersimulationen dargestellt. Ins-
besondere wurde gezeigt, wie man mithilfe bestimmter Operatoren und einer Korre-
lationsmatrix die angeregten Zustdnde auf dem Gitter untersuchen kann. Zusétzlich
wurde der Liischer-Weisz-Algorithmus diskutiert und eine verbesserte, speziell auf die
Operatoren fiir angeregten Zustéinde zugeschnittene, Version des Algorithmus prasen-
tiert.

In den Kapiteln Vier und Fiinf wurden dann die Resultate aus den Gittersimula-
tionen in dreidimensionaler SU (2)-Eichtheorie présentiert und mit den theoretischen
Vorhersagen des zweiten Kapitels verglichen.

Schlussfolgerungen

Ziel dieser Arbeit war es, mithilfe von Monte-Carlo-Simulationen, die Vorhersagen
effektiver Stringtheorien beziiglich angeregter Zustdnde von Flussrohren mit den Re-
sultaten aus der reinen Eichtheorie zu vergleichen. Insbesondere ist interessant, bei
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welchem Abstand R zwischen den statischen Quarks Aussagen iiber das Verhalten der
QCD mit den effektiven Stringtheorien gemacht werden kénnen.

Die Resultate fiir § = 5 und 3 = 7.5 zeigen in allen Bereichen eine erstaunlich gute
Ubereinstimmung mit der Nambu-Stringtheorie. Die Daten des ersten angeregten Zu-
standes erreichen die zugehorige Kurve bei etwa R/rg ~ 2.4 oder R ~ 1.2fm, wihrend
die Daten des Grundzustandes im Rahmen der Fehlergrenzen mit den Vorhersagen
der Nambu-Stringtheorie iibereinstimmen. Die Kurven in fithrender Ordnung in 1/R
sowie die Kurven in O(1/R?) stimmen nicht mit den Daten iiberein und beschreiben
die Daten erst bei sehr groflien Abstdnden R, bei denen die Korrekturen der Nambu-
Stringtheorie sehr klein werden.

Bei dieser Arbeit gab es zwei wesentliche Ziele:

Zum einen sollte eine verbesserte Fehlerreduktion mithilfe der neuen Version des
Liischer-Weisz-Algorithmus erzielt werden. Die Fehlerreduktion mit der neuen Me-
thode wurde in Kapitel (3.4.2) diskutiert und konnte auch anhand des Vergleiches
der neuen Daten mit den élteren Daten [46] gesehen werden. Zum anderen sollten die
angeregten Zustdnde des statischen gg-Potentials betrachtet werden, was ausfiihrlich
in Kapitel (V) geschah. Beide Ziele wurden also im Rahmen dieser Arbeit erreicht.

Ausblick

Die bisherigen Simulationen sind nicht ausreichend um bereits eine Kontinuumsextra-
polation zu erlauben. Zu diesem Zweck sind weitere Simulationen auf feineren Gittern
notwendig. Diese Simulationen werden derzeit durchgefiihrt, so dass die Resultate hof-
fentlich bald vorliegen werden.

Ein Problem stellt der dritte angeregte Zustand dar, fiir den bereits bei 8 = 7.5
kein zuverlédssiger Wert mehr berechnet werden konnte. Es mag sein, dass Operatoren
mit einem groBeren Uberlapp zu diesem Zustand benétigt werden. Untersuchungen
mit anderen Operatoren sind durchaus vorstellbar und {iber diese kénnte man unter
Umstédnden auch weitere angeregte Zusténde untersuchen. Unklarheit besteht derzeit
auch noch {iber die korrigierten Werte des zweiten angeregten Zustandes. Sobald je-
doch mehr Statistik vorhanden ist, konnen die Werte erneut iiberpriift werden.

Es ist denkbar die Simulationen auf SU(3)-Eichtheorie oder auf vier Dimensionen
auszuweiten und so den vollen Eichsektor der QCD zu betrachten. Allerdings steigt in
diesem Fall die benétigte Rechenleistung stark an, so dass mit der derzeitigen Fehlerre-
duktion exakte Ergebnisse nur unter Investition hoher Rechenzeiten erwartet werden
diirfen.



Anhang

A Herleitungen
A.1 Orthonormalititsbedingungen fiir die Fouriermoden

Ziel ist es aus den Orthonormalitdtsbedingungen (2.5) Bedingungen fiir die Fourier-
moden aus (2.12) herzuleiten. Die aus der Eichung (2.10) resultierenden Orthonorma-
litdtsbedingungen fiir die transversalen raumlichen Komponenten lauten

d—1 ) R 2 d-1 9 )
ci oyl 02 _ 1V _ i 2| _
z;XX —0 und (p°) (ﬂ) X;KX) +(X)]_0. (A1)
Nach Gleichung (2.12) folgt aus der ersten Bedingung

ZX% X' — — Z Z [Z aj akl sin(l ) cos(k k) + cos(l k) sin(k k)] = 0.

l=—oc0 k=—oc0 Li=2

1£0 k0

Mit dem Additionstheorem
sin(a+ 3) = sina cos 3 + cosa sin 3
und Umbenennung der Indizees mit m = [ + k erhélt man

0 00 d—1
Z Z [Z - GZ] sin(m k) = 0.

m=—00 k=—o0 Li=2
m#0  k#£0
Koeffizientenvergleich liefert dann fiir alle m die Bedingung

> Z; L= (A.2)

l+k=m 1=2
1,k,m=#0

Nach (2.12) gilt auBerdem

( ) :—E Z Z al at sin(l k) sin(k )

o0



60 Anhang

und mit dem Additionstheorem
cos(a+ 3) = cosa cos f — sina sin 3

sowie m = [ + k ergibt sich

SN2 9 1 ad o
Xz) XM= — [ ) )
( + (X") - Z Z aj aj, cos(m k) (A.3)
m=—0o0 [+k=m
1k#0
Summiert man in (A.3) {iber i und zieht den Teil mit m = 0 aus der ersten Summe
heraus, benutzt (A.2) und resubstituiert die Indizees, so ergibt sich

d—1 .2 5 1 oo d—1
Xi) /i _ i g
Z{( +(X>] o Zzaflal
1=2 l=—00 1=2
1£0
Einsetzen in die zweite Gleichung von (A.1) liefert die Beziehung

oo d—1

) (f)l LS a0 (A4)

l=—o00 1=2

140

A.2 Ladungskonjugation und Paritéit bei Erzeugern und Vernichtern

Zur Klassifizierung der Eigenzustéinde des Fock-Raumes aus Kapitel (2.2) wird das
Verhalten der Erzeuger und Vernichter a§+ und a} bendtigt.

Bei der Paritéitstransformation wird die Bewegungsrichtung umgekehrt und es gilt
Xi(k) L _x (k). Somit gilt fiir die Erzeuger und Vernichter nach Gleichung (2.12)

at = —a" und af > —qj. (A.5)

Bei der Ladungskonjugation werden Quark und Antiquark vertauscht und anschlie-
Bend wird das System an der Ebene senkrecht zur Stringachse ! in der Mitte zwischen
den Quarks gespiegelt. Der riumliche Parameter x ~ z! wird also vom anderen Ende
des Strings aus betrachtet, d.h. X%(k) < Xi(m — k). Nach (2.4) gilt dann fiir die
Erzeuger und Vernichter

ajt < (-1 gt und  af < (—1) al. (A.6)
A.3 Berechnung von <X 2(&)> im Fock-Raum der transversalen Schwin-
gungen

Ziel ist es den allgemeinen Erwartungswert (N;| (X (x))? |V;) in Nambu Stringtheorie
zu berechnen. Dabei wird der Einfachheit halber nur eine transversale Komponente
X (k) betrachtet, da sich das Ergebniss trivial auf (d — 2) Komponenten erweitern
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lésst.
Der Ortsoperator der transversalen Schwingungen ist nach Gleichung (2.12) gegeben
iiber
1 > (ag + a;
X (B0 G ). A7
=y X sink r) (A7)

In Normalordnung lautet der Operator X?(x) demnach:

1 1
c X (K) = — Z T sin(k; k) sin(ks k) {ak ak +ag, ag, +2 ak ak,| (A.8)
k:l,k2 1

Die beiden ersten Terme in der eckigen Klammer des Operators (A.8) verschwinden
in den Erwartungswerten aufgrund der Orthonormalitit der Zustéinde |A;). Der Er-
wartungswert reduziert sich also zu

N KO N = 2 2 sinGh ) sinlhs ) (MG o o, IND - (A9
T kel

Der Erwartungswert auf der rechten Seite lédsst sich mithilfe der Kommutatorrelation
(2.19) leicht berechnen und liefert

<M| a;l Ak, |M> = Nk?l k1 5k1k27 (A.l())

wobei Ny, die Zahl der angeregten Zusténde des Operators azrl in |N;) ist.
Setzt man dieses Ergebnis ein, so ergibt sich der allgemeine Ausdruck:

(M (X)) IAG) Wiz%m sin? (A11)

Die Funktionen zugehorig zu den quadratischen Abweichungen aus Abbildung (7)
lauten also:

(a1] (X(K))? |a1) = & sin’(x)
(as] (X (k))? |a2) = =L sin®(2 k) (A.12)
(aras| (X (k))? |araz) = % sin®(k) + -1 sin?(2 k)

B Aspekte der konformen Feldtheorie

Hier werden kurz einige Aspekte der konformen Feldtheorie zusammengefasst, die fiir
die Losung der Polchinski-Strominger Stringtheorie von Bedeutung sind. Dabei wird
kein Wert auf Vollstéindigkeit gelegt. Fiir eine detailiertere Diskussion sei auf [31]
verwiesen, deren Darstellung hier gefolgt wird.
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B.1 Konforme Transformationen

Konforme Transformationen sind per Definition Koordinatentransformationen v — 2/,
die den metrischen Tensor g, (x) bis auf lokale Skalentransformationen mit der Skala
A(x) invariant lassen, also Transformationen, fiir die gilt

gu (') = M) gu(2). (B.1)

Die Menge aller konformen Transformationen wird als Konforme Gruppe bezeichnet
und sie besitzt die Poincaré-Gruppe als Untergruppe mit A(x) = 1.
Ein beliebiges Feld ¢(x), welches das Transformationsgesetz

_h
d

Iy L R (B.2)

Bla) = ¢/(a') = | 5

unter konformen Transformationen erfiillt, wobei h die Skalendimension des Feldes
ist, wird als quasi-priméres Feld bezeichnet. Fiir die Anderung der Wirkung S unter
einer beliebigen infinitesimalen Translation x# — z* 4 €* gilt wie iiblich

68 = / A% T e, (B.3)

wobei T"(x) der zugehorige Energie-Impuls-Tensor ist, fiir den das Erhaltungsgesetz
9, T = 0 gilt.

B.2 Zwei Dimensionen, Operatorprodukte und die Zentralladung

Im folgenden werden zweidimensionale konforme Feldtheorien betrachtet mit den kon-
formen Variablen 2%, so dass fiir alle Felder gilt ¢ = ¢(z ", 27).
Korrelationsfunktionen werden typischerweise singulér, wenn die beiden Konstituen-
ten am selben Ort betrachtet werden. Bei der Operatorproduktentwicklung driickt
man einen beliebigen Erwartungswert, wobei die Klammern (...) weggelassen wer-
den, durch diese Singularitéten aus, so dass eine beliebige Korrelationsfunktion bzw.
der Operator innerhalb der Korrelationsfunktion geschrieben werden kann als

A(Z:I:) B(Z:t) ~ iv: Ck(zli) (B 4)
1 2 (Zi _ Zi)k‘ ’
k=1 ‘"1 2

Dabei driickt ~ aus, dass Terme, die sich regulér fiir zfﬁ — zgc verhalten vernachléssigt
werden und C’k(zf[) an der Stelle zli regulédre Operatoren sind.
Im Speziellen gelten fiir den Energie-Impuls-Tensor die Operatorprodukte:

i) N c 2 Tii(zf[) 8iTii(zli)

Tyt (2F) Tt (2
e R Tr e ST E e SR

(B.5)

Dabei ist ¢ die sogenannte Zentralladung, die proportional ist zur Casimir-Energie der
Feldtheorie.
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B.3 Radiale Quantisierung, Operatorformalismus und Virasoro-Algebra

Alle weiteren Betrachtungen werden in radialer Quantisierung mit Radius R = 1
durchgefiihrt, d.h., man bildet die Theorie auf einen Zylinder mit dem Radius R ab.
Hier wird explizit kT = 7 + x und K~ = 7 — k benutzt, wobei 7 mit einer Zeitkoor-
dinate und s mit einer 27-periodischen rdumlichen Koordinate assoziiert wird. Diese
Quantisierung ist besonders geeignet um Stringtheorie zu betrachten, bei der wie in
Kapitel (IT) die rdumliche Komponente der Weltfliche eine endliche Ausdehnung hat.
Auflerdem werden nur trivial-transformierende Felder mit A = 0 betrachtet.

Um den Hilbert-Raum der Theorie untersuchen zu kénnen entwickelt man die Ope-
ratoren nach k% bzw. nach k~. Man schreibt die priméren Felder als

d(k™) = Z ape *" und (k) = Z ay e~k (B.6)

k=—00 k=—o0

wobei Abhéngigkeit von den Parametern als scheinbar entkoppelt angesehen wird. Die
jeweilige Abhéngigkeit vom anderen Parameter ist jedoch stets implizit vorhanden.
ag = ag ist dabei proportional zum Impuls des Feldes ¢. Die Operatoren a; werden
als Rechtsdreher (engl.: right-mover) und die Operatoren @; als Linksdreher (engl.:
left-mover) bezeichnet. Analog entwickelt man die beiden wichtigen Komponenten des
Energie-Impuls-Tensors nach

T__ (k™) = Z Ly e t®+25" ynd Ty (k%) = Z Ly et (k+2)sT (B.7)

k=—o00 k=—o00

Die Entwicklungsoperatoren L; und L, werden als Virasoro-Generatoren bezeichnet,
denn sie generieren lokale konforme Transformationen. Wie sich zeigen lésst, erfiillen
diese stets die Virasoro-Algebra

Ly, Lin) = (n—m) Ly + 15 n(n? —1) On,—m [Ln , ﬂm} =0

[in , im} = (n = m) Ly + 5 (02 = 1) 5.

Speziell der Operator Ly + Ly generiert Translationen in der Zeit und kann deshalb
als Hamilton-Operator H = Lo + L aufgefasst werden. Der Hilbert-Raum lisst sich
iiber die Moden a; und a, oder die Virasoro-Generatoren L, und I:n aufspannen,
wobei fiir physikalische Zustéinde [i)) stets gelten muss

Ln ) =1L, [¥)=0 fir n> -1, (B.9)

damit der Erwartungswert (T4 (x¥)) endlich ist fiir k* — 0. Weiterhin gelten die
Bedingungen

(Lo—1) [¢) = (Lo—1) ) =0. (B.10)
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B.4 Lagrange-Dichte und Energie-Impuls Tensor des Fluktuationsfeldes
der Polchinski-Strominger Stringtheorie

Nach der Umdefinition des Flukuationsfeldes Y* — Y*, die im Detail in [32] diskutiert
wird, erhdlt man aus der Wirkung (2.52) die Lagrange-Dichte
R? 1

”w 4
o+ 0LV Y, + O(1/RY), (B.11)

Lps=—

Die zugehorigen relevanten Komponenten des Energie-Impuls Tensors lauten:

T =-Beoy,-Loavyroy, -5l a3y,
‘ (B.12)
8B [t 93Y, ¢ DY, — el 02V, ¢ O2Y,] + O(1/R3)
T++ :—76_,'_84,_}/ —*8_|_Y'U‘6+Y 271—'6 “83Y ( )
B.13
I B [ DY, e 01Y, — et 2, ¢ B2Y,] + O(1/R?)

Die Wirkung (B.11) entspricht einer freien Theorie mit einem konstanten Zusatzterm.
Das Operatorprodukt Y#Y" ist deshalb gegeben iiber

YH(kT, k7)Y"(0,0) ~ —% In (k7 &™) + Y]et_g, (B.14)

wobei ) ~ 1/R? ein irrelevanter zusitzlicher Term ist. Mithilfe dieses Operatorpro-
duktes lassen sich die Operatorprodukte (2.59) berechnen.

Eine Entwicklung der Form (B.7) der Energie-Impuls Tensoren (B.12) und (B.13)
liefert mit den Entwicklungen (2.61) die Virasoro-Generatoren:

R 2

(B.15)
2
2R /T b gy, — W el el S radl ayr +O(1/R?)

= R /2
Ly, —E\/7€+aku+ S ot +5 Sro

2
_M V'S e ap, - W e et Y o rap_yay: TO(1/RY)

:...: bezeichnet dabei wie iiblich normalgeordnete Ausdriicke.

(B.16)

C Details der numerischen Methoden

C.1 Beriicksichtigung der angeregten Zustéinde bei den Gitterrechnungen

Fit fiir die Energiewerte

Die naiven Energien (3.17) werden berechnet ohne die Beitrige der angeregten Zustéande
in den Kanélen zu beriicksichtigen. Eine Mo6glichkeit dies zu tun ergibt sich iiber einen
Dreiparameterfit, dessen Form nun kurz hergeleitet wird.
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Dividiert man die Erwartungswerte zweier Wilson-Loops W, (R, T;) fiir die Zeiten T,
und 77 und bildet auf beiden Seiten der Gleichung den Logarithmus, so gilt nach
Gleichung (3.15)!2 (K — n):

In [&ZE%” = _(T2 - TI) En +h’l [1 + ZZ?Z]. ﬁmkl eiAEn,kl T2]
— h’l [1 —|— ZZ;):]_ 617/7]62 eiAEn,kQ Tl]

Entwickelt man die Logarithmen In(1 + x) fir kleine # und nimmt nur die linearen
Terme mit, da alle anderen Terme mindestens O (6*2 AE"J) sind, und vernachléssigt
alle Terme der Ordnung O (e‘AEnJC) mit k > 1, so ergibt sich:

W, (T _ _
n I:W ET?” = —(Tg — Tl) En + /Bn,l e ABna Ty 57171 e ABn1 Ty + h.O.
Durch eine einfach Umformung erhélt man dann:
1 Wi (13) Bl _AE..T —AEn; (Ty-T:
B, =-— 1 _ o T (1 AP (BTT)) 13 0, (O
" 1o — T " I:Wn(Tl)] Tz—T1e ‘ * (€-1)

Diese Gleichung ist die Grundlage fiir den Fit (3.18).

Fit fiir die Energiedifferenzen

Eine analoge Gleichung lésst sich auch fiir die Energiedifferenzen herleiten. Zu diesem
Zweck bildet man das Viererprodukt

W (T2) Wo, (1)

_ o~ (EnmE) (To=T)) T

wobei Cy, (T3, T1) das Viererprodukt aus den entsprechenden Korrekturtermen ist.
Bildet man den Logarithmus dieser Gleichung, so ergibt sich (AE,,,, = E,, — E,,)

L (W) W), 1

AFE,,, = — n
" T —T Wo(T1) W (T) | T — Ty

In [Crm (T2, T1)] . (C.2)

Beriicksichtigt man bei den Korrekturtermen wieder nur Terme der fithrenden Ord-

nung, so folgt
In [Crn (T2, Th)] = —fBpp e AFn1 T (1 — g7 AFna (T=T1))
+Bma e ABma T (1 — emAEma (T:=T=1)) + 4 0.

(C.3)

In fithrender Ordnung (Siehe freier bosonischer String, Kapitel (3.2.2).) sind die Ener-
giedifferenzen AE,, 1 und AE,, ; gleich. Dies fiihrt zu der Annahme, dass die Korrek-
turen (C.3) mit AE, ; = AE,, 1 zum Ausdruck

1 [Crom (T2, T1)] = — (Bt — Bpg) €A1 T (1 — e DBna <T2—T1>) (C.4)

2Die riumliche Ausdehnung wird dabei im Folgenden der Einfachheit halber unterdriickt.
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R 1/2 (ﬁn,l — ﬁm,l) AEn,l ﬂn,l AEn,l _ﬂm,l A-E7n,1 AE‘lO

6 0.37(4) 0.34(6) | 0.37(4) 0.34(6) 0.37(4) 0.34(6) | 0.417(3)
7 0.50(4) 0.36(6) | 0.50(7) 0.36(9) 0.50(7) 0.36(9) | 0.371(4)
8 0.43(2) 0.30(6) | 0.43(3) 0.29(7) 0.43(3) 0.29(7) | 0.332(5)

Tabelle (8): Vergleich der Fitparameter eines Fiinfparameter- und eines Dreipara-
meterfits fiir die Energiedifferenz AE1g bei § = 5. Anzumerken ist, dass die Daten aus
einer Rechnung mit einer alteren Version des Algorithmus stammen als die restlichen
Daten.

vereinfacht werden kénnen. Diese Annahme lésst sich iiberpriifen, indem man fiir den-
selben Datensatz einen Dreiparameterfit, zugehorig zu den Energiedifferenzen (C.2)
mit den Korrekturen (C.4), und einen Fiinfparameterfit, zugehorig zu (C.2) mit (C.3),
durchfiihrt.

Fiir Wilson-Loops bei 3 = 5 auf einem 242 Gitter, mit 7' = 4,8,12,16 und R =6, 7,8
sind die resultierenden Fitparameter fiir die Energiedifferenz AFE1g in Tabelle (8) an-
gegeben. Man erkennt deutlich die Ubereinstimmung, die Annahme, dass (C.4) ein
guter Korrekturterm fiir die Energiedifferenzen ist, ist im Rahmen der Messungenau-
igkeit bei den Messungen dieser Arbeit also korrekt.

Die Gleichungen (C.2) und (C.4) sind die Grundlage fiir den Fit (3.19).

C.2 Ergebnisse der Simulationen

In den Tabellen (9) und (10) sind die Ergebnisse der Gittersimulationen fiir die totalen
Energiewerte und die Energiedifferenzen angegeben. Die Messfehler wurden tiber die
Jackknife-Methode mit Blockgréflen von 80 Messwerten im Falle von f = 5 und
100 Messwerten im Falle von 8 = 7.5 berechnet. Bei den korrigierten Energiewerten
wurde fiir jeden der Blocke ein einzelner Fit nach den Formeln (3.18) und (3.19)
durchgefithrt. Der Messfehler ergibt sich aus diesen Blockwerten iiber die iibliche
Formel fiir Jackknife-Fehler. Alle Groflen werden dabei in Gittereinheiten angegeben.
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R| B B | E B | B B | B s
B=5
4 | 05725(3)  0571(1) | 1.143(2)  1.126(3) | 1.541(9)  1.46(3) | 1.90(8)  1.72(4)
5 | 0.6776(4)  0.674(2) | 1.184(2)  1.161(3) | 1.540(8)  1.48(2) | 1.90(7)  1.72(3)
6 | 0.7801(6)  0.775(2) | 1.230(2)  1.206(4) | 1.557(8)  1.50(2) | 1.94(9)  1.76(8)
7 | 0.8826(9) 0.8781(6) | 1.300(3)  1.252(8) | 1.589(9)  1.51(2) | 1.91(6)  1.77(3)
8 | 0.983(2)  0.9779(8) | 1.362(3)  1.31(2) | 1.635(10)  1.56(2) | 1.94(7)  1.80(3)
9 | 1.085(2)  1.077(1) | 1.446(4)  1.38(2) | 1.69(1) 1.62(2) | 2.01(8)  1.87(3)
10 | 1.1847(4)  1.170(5) | 1.5146(3) 1.459(3) | 1.745(3)  1.688(6) | 2.06(2) 1.923(7)
11| 1.2862(4)  1.268(4) | 1.6070(9) 1.537(4) | 1.809(3)  1.747(5) | 2.13(2) 1.989(7)
12 | 1.3858(5)  1.364(6) | 1.684(1)  1.618(4) | 1.877(4)  1.809(5) | 2.19(2) 2.047(6)
8=15
7 | 0.4267(2) 0.4249(3) | 0.7830(9) 0.753(2) | 1.034(4)  0.95(9) | 1.27(7)
8 | 0.4682(2) 0.4658(3) | 0.7986(9) 0.767(2) | 1.036(4)  0.97(4) | 1.27(7)
9 | 0.5095(3) 0.5061(4) | 0.8200(9) 0.785(3) | 1.040(4)  0.98(3) | 1.27(7)
10 | 0.5502(3)  0.5462(5) | 0.8411(9) 0.805(3) | 1.050(4)  0.99(3) | 1.28(7)
11| 0.5912(4) 0.5859(6) | 0.8692(9) 0.827(3) | 1.061(4)  1.01(2) | 1.30(7)
12 | 0.6317(4) 0.6255(7) | 0.8940(9) 0.851(3) [ 1.076(4)  1.03(3) | 1.31(7)
13 | 0.6724(5) 0.6650(8) | 0.927(1)  0.877(3) | 1.093(4)  1.05(3) | 1.33(7)
14 | 0.7128(6) 0.7043(9) | 0.954(1)  0.904(4) | 1.113(4)  1.07(3) | 1.35(6)
15 | 0.7535(6)  0.744(1) | 0.990(2)  0.933(4) | 1.134(4)  1.10(2) | 1.37(7)
16 | 0.7937(7)  0.783(2) | 1.019(2)  0.963(4) | 1.157(4)  1.13(2) | 1.39(7)
17 | 0.8345(8)  0.822(2) | 1.057(2)  0.995(5) | 1.181(5)  1.15(1) | 1.42(9)
18 | 0.8746(8)  0.861(2) | 1.088(3)  1.027(6) | 1.207(6)  1.18(1) | 1.5(1)
19 | 0.9153(9)  0.900(2) | 1.127(4)  1.061(7) | 1.233(7)  1.21(2) | 1.5(2)
20 | 0.956(1)  0.939(2) | 1.158(5)  1.095(9) | 1.261(9)  1.24(2) | 1.6(3)

Tabelle (9): Resultate der Gittersimulationen fiir die totalen Energiewerte mit den
Simulationsparametern aus Kapitel (4.3) und 3 = 5, bzw. 3 = 7.5. E,, sind die naiven
Energien, berechnet durch Wilson-Loops mit 7" = 4 und 8, und FE,, die mit dem
Fit (3.18) korigierten Energien. Die korrigierten Energiezustinde Fy und F3 konnten
jeweils nur durch Fits mit den drei niedrigsten Zeitausdehnung der Wilson-Loops
bestimmt werden. Bei den Fits fiir £y bei § = 7.5 unterhalb der Trenlinie gibt es
moglicherweise noch systematische Fehler.
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R| ABEw ABy | ARy  ABy | ABy  ABy | ARy ABs
B=5
4| 0.558(3)  0.551(4) | 0.94(2) 0.92(2) | 0.384(9)  0.33(3) | 1.29(10)  1.15(3)
5| 0.489(3)  0.478(5) | 0.844(10)  0.83(2) | 0.355(8)  0.32(2) | 1.19(9)  1.04(3)
6 | 0.434(3)  0.426(4) | 0.759(9)  0.75(1) | 0.325(7)  0.29(2) | L1(1)  0.99(8)
7 [0.398(4)  0.378(7) | 0.683(10)  0.66(2) | 0.284(8)  0.26(2) | 0.90(7)  0.89(3)
8 | 0.362(3) 0.341(10) | 0.629(10)  0.61(2) | 0.268(8)  0.24(2) | 0.83(7)  0.82(2)
9 | 0.338(4)  031(2) | 058(2) 0.57(2) | 0.244(10)  0.23(3) | 0.80(9)  0.79(3)
10 | 0.309(1)  0.287(3) | 0.544(3)  0.534(2) | 0.235(2)  0.228(8) | 0.81(2)  0.753(9)
11]0295(1)  0.267(3) | 0.506(3)  0.497(3) | 0.211(3)  0.209(7) | 0.77(2)  0.721(8)
12| 0275(2)  0.250(3) | 0.474(3)  0.462(4) | 0.199(3)  0.191(7) | 0.73(2)  0.683(9)
B=175

7 10.332(2)  0.328(3) | 0.57(3) 0.55(4) | 0.23(2)  0.20(9)
8 | 0.306(2)  0.302(2) | 0.53(3) 0.52(3) | 0.23(2)  0.20(4)
9 | 0.284(2)  0.278(3) | 0.50(2) 0.49(2) | 021(2)  0.19(4)
10 | 0.265(2)  0.258(3) | 0.47(2) 0.46(2) | 0.21(2) 0.19(3)
11| 0.249(2)  0241(3) | 0.44(2) 0.44(2) | 019(1)  0.18(2)
12 | 0.234(2)  0.225(3) [042(2)  0.417(10) | 0.188(9)  0.18(2)
13| 0222(2)  0.212(4) | 0.400(10)  0.397(9) | 0.178(8)  0.17(3)
14 ] 0.210(2)  0.199(4) | 0.382(9)  0.380(8) | 0.172(7)  0.17(3)
15| 0.201(2)  0.190(4) | 0.365(8)  0.364(7) | 0.164(7)  0.17(2)
16| 0.191(2)  0.180(4) | 0.350(8)  0.349(7) | 0.159(7)  0.16(2)
17 [0.184(2)  0.171(4) | 0.337(8)  0.336(7) | 0.152(7)  0.16(2)
18 | 0176(2)  0.165(4) | 0.324(9)  0.324(7) | 0.148(8)  0.16(2)
19| 0.171(3)  0.156(6) | 0.313(10)  0.313(8) | 0.142(9)  0.15(2)
20 | 0.164(4)  0.151(8) | 0.30(2) 0.304(7) | 0.14(2) 0.15(2)

Tabelle (10): Resultate der Gittersimulationen fiir die Energiedifferenzen mit den
Simulationsparametern aus Kapitel (4.3) und 8 =5, bzw. 8 = 7.5. AE,, = E, — Ep,
sind die naiven Energiedifferenzen, berechnet mit Wilson-Loops mit 7' = 4 und 8, und
AE, die nach mit dem Fit (3.18) korigierten Energien. Bei AF;y konnten die Werte
bei # = 5 oberhalb der Trennlinie, und bei # = 7.5 unterhalb der Trennlinie, nur aus
Fits mit den niedrigsten drei Zeitausdehnungen berechnet werden. Bei AFyy wurden
alle Werte aus Fits beziiglich der niedrigsten drei Zeitausdehnungen gewonnen. Dabei
gibt es bei = 7.5 unterhalb der Trennlinie, wie auch schon bei den Gesamtenergien,
moglicherweise noch systematische Fehler. Die Werte fiir A Fo; wurden aus den korri-
gierten Energien aus Tabelle (9) berechnet. Aufgrund der dort auftretenden Probleme
sind auch hier die Werte unterhalb der Trennlinie nicht zuverldssig. Fiir § = 7.5 war
aufgrund der hohen Fehler der Loops zugehorig zum dritten angeregten Zustand eine
Auswertung der Energiedifferenzen nicht moglich.
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C.3 Test der verwendeten Fits

Fiir die Schluifolgerungen in Kapitel (V) sind vor allem die Fits (3.19) fiir die kor-
rigierten Energien AFE,,, relevant, da diese die finalen Messresultate sind. Die Fits
miissen dementsprechend unter Kontrolle gehalten werden, sollen keine falschen Werte
beriicksichtigung finden.

Man kann die Fits mit einer recht einfachen Methode tiberpriifen. Zu diesem Zweck
triagt man in einem Diagramm die Funktion

fa=hf (C.5)
mit
fi = g5ty [(Bug = Bua) e A8 1o (1= 3B (BT
(C.6)
B W, (R,To) W (RT1)
fo= *TQiTl In [WnER,ngmeR,T;)} — AEnm

auf, mit allen moglichen Werten von 77 und 7%, wobei Gleichung (C.5) dann dem Fit
aus Gleichung (3.19) entspricht.

Liegen alle Messwerte auf dieser Geraden, so scheint der Fit zu funktionieren. An-
zumerken ist dazu noch, dass f; einen Korrekturwert angibt und fo die jeweilige
Abweichung des einzelnen Messwertes, zugehorig zu den unterschiedlichen T} und 75,
von dem letztlichen extrapolierten Wert, so dass es nicht sinnvoll ist, bei diesen sehr
grofle Werte zuzulassen. Hier werden deshalb nur Werte mit f; < 0.15 beriicksich-
tigt, was bei allen vertrauenswiirdigen Fits im allgemeinen auch erfiillt ist. Auflerdem
berticksichtigen wir nicht den Messwert mit dem héchsten 75 und T3, also 7o = 12
und 77 = 8 bei 8 =5 und 15 = 18 und 177 = 14 bei § = 7.5, aufgrund der sehr hohen
Messfehler bei diesen Werten.

Die Resultate fiir die Fits zu AFEqg mit allen vier Zeitausdehnungen der Wilson-Loops
sind in Abbildung (17) gezeigt. Auch wenn natiirlich sehr viele Messwerte in diesen
Plots angegeben sind, erkennt man doch, dass diese alle auf der Geraden liegen. Die
einzigen Ausnahmen bestehen bei 8 =5 fiir R < 7, sowie 8 = 7.5 fiir R > 16, wo die
Punkte zugehorig zu den hoheren T-Werten von der Geraden abweichen. Dies sind
die entsprechenden Werte, fiir die in Tabelle (10) die Messwerte als unzuverldssig an-
gegeben werden.

In Abbildung (18) wird dann mit AFEy(R = 9) fiir 5 = 7.5 (oben) ein typisches
Beispiel fiir den Fall gezeigt, bei dem ein Fit recht gut funktioniert, obwohl nur die
niedrigsten drei Zeitausdehnungen der Wilson-Loops berticksichtigt wurden, wahrend
der untere Fit fiir AFEsy(R = 17) nicht einhundertprozentig zuverlissig funktioniert,
was an der relativ hohen Abweichung zweier Messwerte zu sehen ist, so dass der aus
dem Fit resultierende Wert in Frage zu stellen ist.
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Oben: Abbildung von den Messwerten zu (C.5) fiir AEjg,

mit allen Werten fiir R. Dabei wurden bei dem Fit alle Wilson-Loops beriicksichtigt.
Unten: Dieselbe Abbildung wie oben, nur fiir g = 7.5.

Abbildung (17)
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Abbildung (18): Oben: Abbildung der Messwerte zu (C.5) fir 8 = 7.5 und
AFE5 (R =9). Bei dem Fit wurden nur Wilson-Loops mit den niedrigsten drei Zeitaus-
dehnungen beriicksichtigt. Unten: Analog zur oberen Abbildung fiir AEs (R = 17).
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