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1 Einleitung

Nach heutigem Verstédndnis bestand das Universum kurz nach dem Urknall aus einem
Materiezustand ungebundener Quarks und Gluonen, dem sogenannten Quark-Gluon-
Plasma (QGP). Bereits 10~°s nach dem Urknall erfolgten durch die abkiihlende Ent-
wicklung des Universums die Hadronisierung des Plasmas und der Ubergang zur ge-
bundenen Phase. Die Bestimmung der Natur dieses Phaseniibergangs ist Gegenstand
aktueller Forschung [1|. Experimentell ist die Region in der Umgebung der kritischen
Temperatur und verschwindenden chemischen Potentials durch Experimente an den
Teilchenbeschleunigern RHIC des Brookhaven National Laboratory und LHC am CERN
zuganglich.

Die asymptotische Freiheit und das resultierende wechselwirkungsarme Verhalten von
Quarks und Gluonen bei hohen Temperaturen ermdglichen eine perturbative Behand-
lung der thermischen Quantenchromodynamik (QCD) zur Untersuchung thermodyna-
mischer Aspekte des QGPs [2]. Im Fokus dieser Arbeit steht der thermodynamische
Druck des Plasmas, der durch Auswertung geschlossener Feynman-Diagramme berech-
net wird. Die perturbative Herangehensweise zur Bestimmung des Drucks st6fst jedoch
infolge der Existenz von Infrarot-Divergenzen (IR-Divergenzen) an ihre Grenzen [3].
Durch die Bildung einer dimensional reduzierten effektiven Theorie, der magnetostati-
schen QCD (MQCD), koénnen die IR-Divergenzen isoliert werden [4,5]. Da die Berech-
nung des Drucks der MQCD bereits in fithrender Ordnung der effektiven Kopplungs-
konstante gQWT mit IR-Divergenzen verkniipft ist, stellt die MQCD eine perturbativ
nicht zugéngliche Theorie dar. Um die IR-Divergenzen zu démpfen, wird eine durch
den Mechanismus der spontanen Symmetriebrechung eingefithrte magnetische Masse
m ~ ¢*>T generiert. Damit die MQCD dennoch eine perturbative Behandlung zulisst,
ist eine Umstrukturierung der perturbativen Entwicklung mittels einer Resummations-
methode [6,7] notwendig. Unter Einfiihrung eines Schleifen-Parameters [ wird dabei ein
massenerzeugender Term addiert und wieder subtrahiert. Das Resummationsverfahren
begriindet somit eine Stérungstheorie, die nicht mehr Ordnung fiir Ordnung in die ef-
fektive Kopplungskonstante der Theorie eingeht, sondern in eine Potenzreihe in dem
Schleifen-Parameter [ resultiert.

Die Zielsetzung dieser Arbeit kann durch die folgende nicht-triviale Fragestellung zu-
sammengefasst werden: Kann eine perturbative Behandlung des thermodynamischen
Drucks der nicht-perturbativen MQCD durch eine Umstrukturierung der perturbati-
ven Entwicklung mittels des Resummationsverfahrens realisiert werden? Das Resum-
mationsverfahren wurde bereits bei der Auswertung sogenannter gap-Gleichungen bzw.
von Selbstenergie-Diagrammen sowohl im Higgs-Modell, als auch im nichtlinearen o-
Modell (NLoM) zur Bestimmung des Koeffizienten der magnetischen Masse m = Cg?T
angewandt [6-9]. Da die Berechnungen zumindest auf 1-Schleifen-Niveau ein eichinva-
riantes Ergebnis erzielen, besteht die Erwartung, dass die Methode auch fiir den thermo-
dynamischen Druck der MQCD ein zufriedenstellendes Resultat auf 2-Schleifen-Niveau
liefert, denn dazu ist lediglich eine weitere Impulsintegration einzufiigen, die einer Ver-



1 Einleitung

kniipfung der dufteren Beine eines Selbstenergie-Diagramms entspricht.

In Kapitel 2 werden die grundlegenden Kenntnisse zu thermischen Feldtheorien vor-
gestellt. Die Pfadintegraldarstellung thermischer Zustandssummen stellt dabei die Basis
fiir die Berechnung des thermodynamischen Drucks von Vielteilchensystemen wie dem
QGP dar. Die perturbative Entwicklung des thermodynamischen Drucks und der zu den
IR-Divergenzen korrespondierende Zusammenbruch der Storungstheorie werden in Ka-
pitel 3 behandelt. Da es sich bei dem Druck um eine physikalische Gréfe handelt, ist die
Eichinvarianz dieser Grofe zu fordern. Am Beispiel der Quantenelektrodynamik (QED)
wird die Eichinvarianz des Drucks bis zur zweiten perturbativen Ordnung illustriert. Die
Herleitung der Kette der dimensional reduzierten Theorien (QCD—EQCD—MQCD)
und die damit verbundene Isolation der IR-Divergenzen in die MQCD werden in Kapi-
tel 4 aufgezeigt. Des Weiteren wird der Druck des QGPs bis zur perturbativ héchstmog-
lichen Ordnung ¢%In g prisentiert und die numerische Konvergenz in Abhéngigkeit der
IR-Beitrége aus den beiden dimensional reduzierten effektiven Theorien diskutiert [10].
In Kapitel 5 wird das Resummationsverfahren vorgestellt, welches eine perturbative
Behandlung der MQCD zulésst. Dabei wird als massenerzeugender Term die Lagrange-
dichte des NLoMs verwendet, da die Dynamik des Eichfeldes in der ungebundenen
Phase weitgehend unabhéngig vom Higgs-Feld ist und daher durch das NLoM approxi-
miert werden kann [8]. Der gegeniiber dem Higgs-Modell daraus resultierende Vorteil ist
eine Reduzierung der Anzahl der Wechselwirkungsterme, wodurch eine perturbative Be-
handlung erheblich vereinfacht wird. In Kapitel 6 sind die Herleitung der resummierten
effektiven Lagrangedichte und die zu den Wechselwirkungstermen korrespondierenden
Berechnungen der Schleifen-Diagramme dargestellt. Abschliefend werden die Ergebnisse
bzw. die Koeffizienten des Drucks der MQCD vorgestellt und diskutiert. Nach einer Zu-
sammenfassung in Kapitel 7 werden im Anhang unter anderem gruppentheoretische
Relationen fiir SU(N)-Generatoren sowie Losungswege der in der Rechnung vorkom-
menden Integrale zusammengestellt.



2 Quantenchromodynamik bei endlichen
Temperaturen

In diesem Kapitel wird ein kurzer historischer Uberblick zur Entwicklung des Standard-
modells der Elementarteilchen gegeben und die Quantisierung von Feldtheorien mittels
des Pfadintegralformalismus vorgestellt. Die Pfadintegraldarstellung einer Feldtheorie
ermdglicht einen einfachen Zugang zur Beschreibung von Vielteilchensystemen und Be-
rechnung ihrer thermodynamischen Gréfsen.

2.1 Das Standardmodell der Elementarteilchen

Das in den 60er und 70er Jahren begriindete Standardmodell beschreibt alle bekann-
ten elementaren Teilchen und ihre Wechselwirkungen mit Ausnahme der Gravitation.
Es berticksichtigt also drei der vier in der Natur beobachtbaren fundamentalen Kraf-
te: die elektromagnetische, schwache und starke Wechselwirkung. Die Gravitation wird
hingegen durch eine klassische Theorie, die Allgemeine Relativitétstheorie, beschrieben.

Die Formulierung von Quantenfeldtheorien als Eichtheorien, d.h. Theorien, deren
Lagrangedichte invariant unter lokalen Eichtransformationen ist, bildet die Grundlage
fiir das Standardmodell.

2.1.1 Ein Quantum Geschichte

Yang und Mills [11] fithrten im Jahr 1954 die erste nicht-abelsche Eichtheorie ein, wel-
che eine Erweiterung der in den 40er Jahren begriindeten QED darstellt. Die QED ist
ein Beispiel einer abelschen Eichtheorie und konstituierte die erste konsistente quanten-
theoretische Beschreibung eines physikalischen Feldes, d. h. des Photons als Eichboson
bzw. Vermittler der elektromagnetischen Wechselwirkung. Die theoretischen Vorhersa-
gen dieser Theorie korrespondieren in beeindruckender Prézision mit dem Experiment,
wie insbesondere das (g — 2)-Experiment am Brookhaven National Laboratory zeigt.

Die Entdeckung der spontanen Symmetriebrechung durch Goldstone, Nambu und
Jona-Lasinio [12,13| ebnete im Jahr 1967 den Weg zu einer Vereinheitlichung der QED
und der schwachen Wechselwirkung zum Glashow-Salam-Weinberg-Modell der elektro-
schwachen Wechselwirkung [14,15|. Die elektroschwache Wechselwirkung wird durch die
U(1)xSU(2)-Symmetriegruppe beschrieben und stellt einen der beiden Hauptbestand-
teile des Standardmodells dar.

Die QCD, die Theorie der starken Wechselwirkung, bildet den zweiten Hauptbestand-
teil des Standardmodells. Gell-Mann und Zweig gelang im Jahr 1964 mit dem statischen
Quarkmodell [16] eine erste Klassifizierung von Hadronen, d. h. aus Konstituentenquarks
zusammengesetzten Teilchen. Das statische Quarkmodell wird durch die SU(3)-Flavour-
Symmetriegruppe beschrieben, die aufgrund der gegeniiber der typischen Zerfallsdauer
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fiir einen starken Zerfall um etwa 14 Grékenordnungen hoheren Lebensdauer des A-
Teilchens (74 ~ 10719) mit der Hypothese einer neuen Erhaltungsgréfe, der Seltsam-
keit, eingefithrt wurde. Die total-symmetrischen Wellenfunktionen (Orts-, Spin- und
Flavouranteil) der A**- und Q~-Zustinde in diesem Modell verletzen jedoch das Pauli-
Prinzip, weil sie aus identischen Quarks aufgebaut sind. Durch Einfiihrung einer lokalen
SU(3)-Farb-Symmetriegruppe wurde das Problem gelost. Dadurch war die Grundlage
flir die Formulierung der starken Wechselwirkung durch die QCD geschaffen.

Die Zusammensetzung des Glashow-Salam-Weinberg-Modells und der QCD repréi-
sentiert das Standardmodell der Elementarteilchen, das durch die U(1)xSU(2)xSU(3)-
Symmetriegruppe charakterisiert wird. Die Vereinheitlichung des Standardmodells und
der Gravitationstheorie setzt eine quantentheoretische Beschreibung der Allgemeinen
Relativitatstheorie voraus und ist daher eine der zur Zeit groften Herausforderungen
der theoretischen Physik.

2.1.2 Die Lagrangedichte und Eigenschaften der QCD

Die QCD ist derzeit die etablierte Theorie zur Beschreibung der starken Wechselwirkung
zwischen farbladungstragenden Quarks und Gluonen, die in der Natur nur in hadroni-
schen farbneutralen Zustdnden gebunden sind. Sie wird durch die Lagrangedichte

L=~ F EL, 4 (@)D — m)y() (2.1)

formuliert, wobei m die Masse der Quarks und +y,, Dirac-Matrizen sind. Die Quark-Felder
P(x) = (Ya,er(x)) tragen einen Flavourindex f fiir die sechs verschiedenen Quarksor-
ten, einen Farbindex ¢ und einen Spinorindex «. Der erste Term in Gleichung (2.1) ist
der von Yang und Mills postulierte Eichfeldterm, der aufgrund der Forderung nach Re-
normierbarkeit der einzige mogliche Ausdruck bei gegebener SU(N)-Symmetrie ist. Die
kovariante Ableitung

Dy, = 8, — igAST, (2.2)

in der die Gluonfelder A, = A{ T wegen der geforderten lokalen SU(N)-Farbinvarianz
auftreten und mit den Quarkfeldern koppeln, definiert den Feldstérketensor
Fl, = é[DM,DV] = F%, = 0,A% — 9,A% + gf AL AL (2.3)
Die Generatoren T% der Gruppe SU(N) mit @ = 1,..., N2 — 1 unterliegen der Lie-
Algebra und geniigen der Vertauschungsrelation

[Ta’ Tb] — Z‘fabCTC7 (24)

wobei die fo¢ vollstiandig antisymmetrische Strukturkonstanten sind. Fiir SU(2) wer-
den die Generatoren durch die drei 2x2-Pauli-Matrizen und fiir SU(3) durch die acht
3x3-Gell-Mann-Matrizen dargestellt. Einige niitzliche gruppentheoretische Relationen
fiir SU(N) Generatoren in der fundamentalen Darstellung sind im Anhang (Kap. A.1)
aufgefiihrt.

Aufgrund der Form des Feldstérketensors bzw. der Selbstwechselwirkung der masse-
losen Gluonen kommt es zu Effekten wie dem Quarkeinschluss in farbneutrale Hadronen,
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dem Confinement. Diese Eigenschaft impliziert, dass in der Natur keine freien Quarks
existieren.

Das nahezu wechselwirkungsfreie Verhalten von Quarks und Gluonen bei kurzen Ab-
standen bzw. hohen Impulsiibertrigen wird als asymptotische Freiheit bezeichnet. Im
Jahr 1973 veroffentlichten Politzer, Gross und Wilczek [17,18] die Entdeckung, dass die
laufende Kopplungskonstante g2 der QCD bzw. die negative 3-Funktion o als Funktion
der Impuls- bzw. Massenskala M logarithmisch gegen Null strebt:

2 12
a, =2 = T . (2.5)

4T (11N - 2N;)In (1‘[{—5)

N bezeichnet die Anzahl der Farben, Ny die Anzahl der Quark-Flavour und A die
Energieskala der QCD. In der thermischen QCD ist die Impuls- bzw. Massenskala eine
Funktion proportional zur Temperatur, so dass infolge der asymptotischen Freiheit eine
perturbative Behandlung der QCD insbesondere bei hohen Temperaturen, in der unge-
bundene Quarks und Gluonen erwartet werden, moglich ist. Wie in Kapitel 3 deutlich
wird, kann durch das Auftreten von IR-Divergenzen die perturbative Berechnung des
thermodynamischen Drucks dennoch nicht bis in beliebig hohe Ordnungen durchgefiihrt
werden.

2.2 Pfadintegraldarstellung thermischer Zustandssummen

Um Vielteilchensysteme wie das Quark-Gluon-Plasma (QGP) beschreiben bzw. die
Thermodynamik dieser Systeme untersuchen zu konnen, bedarf es der Quantisierung
von Feldern. Neben der kanonischen Quantisierung existiert noch ein weiterer dquiva-
lenter Zugang: die Pfadintegralquantisierung, die im Folgenden in Anlehnung an [19]
vorgestellt wird (vgl. auch [2]).

2.2.1 Grundlagen

Das Verhalten aller Theorien bei endlichen Temperaturen und verschwindendem chemi-
schem Potential p wird durch die kanonische Zustandssumme

Z = Tr[e PH] (2.6)
beschrieben, wobei 5 = 1/T die inverse Temperatur und H die Hamilton-Funktion der

Theorie kennzeichnen. Thermische Erwartungswerte von physikalischen Observablen O
sind gegeben durch

1
<0 >= T e PHO]. (2.7)

Aus der Zustandssumme Z lassen sich alle thermodynamischen Eigenschaften eines Sys-
tems bestimmen, wie z. B. die freie Energie, Entropie oder der Druck

p= %Tln Z, (2.8)



2 Quantenchromodynamik bei endlichen Temperaturen

wobei T’ die Temperatur und V das Volumen des Systems sind. Fiir grofe, homogene
Systeme entspricht der thermodynamische Druck der negativen freien Energie:

—fz%an:p. (2.9)

Grundlage der Quantisierung von Feldern durch den Pfadintegralformalismus bei
endlichen Temperaturen ist die Umformulierung eines Erwartungswertes in eine un-
endliche Summe iiber alle moglichen Pfade zwischen Anfangs- und Endzustand eines
physikalischen Systems gewichtet mit dem Exponential ihrer euklidischen Wirkung Sg:

Z=Tr[e ) = / dg (gl |g) = / (dgleS=9) (2.10)

Das Funktionalintegral wird durch die Notation [d¢] gekennzeichnet. Die in der eu-
klidischen Raumzeit dargestellte Zustandssumme ist analog zur Zustandssumme eines
kontinuierlichen statistischen Systems mit SH = Sg.

2.2.2 Bosonen und Fermionen

Die Zustandssumme bosonischer Felder ¢ ist gegeben durch

Z=N per.[dgb] exp (— /Oﬁ dT/dgm[,), (2.11)

wobei die periodischen Randbedingungen ¢(x,0) = ¢(x,3) explizit Beriicksichtigung
finden. Die Normierungskonstante N ist aufgrund des 3. Hauptsatzes der Thermody-
namik irrelevant. Der Satz besagt, dass die Entropie fiir 7' = 0 gegen einen festen
Grenzwert geht. Demnach verdndert eine Multiplikation der Zustandssumme mit einer
temperaturunabhingigen Konstante die Thermodynamik nicht.

Aufgrund der endlichen zeitlichen Ausdehnung durch die Definition der Tempera-
tur existieren in dieser Richtung nur diskrete Frequenzen, die sogenannten Matsubara-
Frequenzen. Fiir Bosonen ergibt sich

wp =2n7T mit n €N, (2.12)

Die Zustandssumme fermionischer Felder v ist gegeben durch

Z=N A [dip*][dnp]  exp (- /0 ’ dr / 3z £> (2.13)

und berticksichtigt die anti-periodischen Randbedingungen v (x,0) = —1(x, 3). Somit
folgt fiir die Matsubara-Frequenzen

wp=02n+ 1)7T mit neN. (2.14)

Bei der Auswertung der Zustandssumme fiir Fermionen muss beriicksichtigt werden,
dass iiber Grassmann-Zahlen anstelle von komplexen Zahlen integriert wird. Fiir die

10
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Gaufs-Integration ergibt sich dadurch ein Faktor -2 im Exponenten der zu berechnenden
Determinante gegeniiber der Auswertung der Zustandssumme fiir Bosonen:

2= [1dé)expl=5(6De)] ~ (det D), (2.15)
2= [1a6")dwexpl~(0" D)) ~ (det D). (2.16)

Fiir ein nichtwechselwirkendes Gas aus Bosonen oder Fermionen kann der Druck aus
dem Logarithmus der Zustandssumme

d’p —Blw—m) )
an—V/Wln(lj:e ) (2.17)

berechnet werden, wobei das obere Vorzeichen der Fermi-Dirac- und das untere Vorzei-
chen der Bose-Einstein-Statistik entspricht.

Der thermodynamische Druck von masselosen skalaren Feldern ohne chemisches Po-
tential ist:

17T 2/ 92 2 T, 4
p=-57 22 m(FPwi+p) = 5T (2.18)
n o p

Die entsprechende Rechnung ist dem Anhang (Kap. A.5) zu entnehmen.

2.2.3 Nicht-abelsche Eichtheorien

Infolge der Eichinvarianz entsprechen nicht-abelsche Eichtheorien Systemen mit ein-
geschrinkten dynamischen Variablen, d.h. es existieren Variablen, die keine tatséch-
lichen dynamischen Variablen sind. Um im Pfadintegralformalismus ein Uberabzihlen
von Feldkonfigurationen, die zum selben physikalischen Zustand gehoren, zu verhindern,
ist eine Eichfixierung der Theorie erforderlich. Die Eichfixierung wird durch den Ansatz
von Faddeev und Popov [20] umgesetzt, mit der die Zustandssumme der Yang-Mills-
Eichtheorie in die folgende Form iibergeht:

7 = /[dAZ]é(Gb)det <§Sd> exp (— /06 dT/d?’m cYM> . (2.19)

G“ bezeichnet eine beliebige Eichfixierungsfunktion und Ly die euklidische Yang-Mills-
Lagrangedichte:

1
Lyn = 1 Fly (2.20)

Durch eine spezielle Wahl der Eichfixierungsfunktion G* = 9, A}, = 0, der sogenann-

ten Lorenz-Eichung, und der Umformulierung der entsprechenden Determinante aus
(2.19) in ein Pfadintegral iiber grassmannwertige Variablen ergibt sich:

Z = / (A [d(c")*][de"] exp (- /0 " i / B (Cyyt + Ly + .cpp)> 221

11



2 Quantenchromodynamik bei endlichen Temperaturen

Lyt bezeichnet den Eichfixierungsterm und Lrp die Lagrangedichte der Faddeev-Popov-
Geistfelder ¢?:

1
2¢
Lrp = (9u(c") ) (Ouc) + gf (") P AL (2.23)

Lor = (0,487, (2.22)

Der Faddeev-Popov-Ansatz stellt eine Methode dar, um das unendlich-funktionale
Volumen der Eichorbits herauszudividieren, d.h. durch die Einfiihrung der Geistfelder
und deren Kopplung an die Eichbosonen (2.23) werden die unphysikalischen Freiheits-
grade, die durch das Uberabzihlen von Feldkonfigurationen zustande kommen, abgezo-
gen. Demnach sind die Faddeev-Popov-Geistfelder lediglich ein mathematisches Hilfs-
mittel und korrespondieren daher nicht zu reellen Teilchen.

Die Eichfixierung fithrt auf einen modifizierten Propagator folgender Form:

u 5ab p pV
Db = e (% +(6—1) ;2 > . (2.24)

Die Eichinvarianz physikalischer Grofen bzw. ihre Unabhéngigkeit vom Eichparame-
ter £ ist eine notwendige Voraussetzung fiir den Erfolg einer Theorie. Die Eichfixierung
nicht-abelscher Eichtheorien bricht allerdings die allgemeine lokale Eichsymmetrie. Es
bleibt jedoch eine spezielle lokale Eichsymmetrie erhalten, die durch die sogenannten
BRS-Transformationen ausgedriickt wird [21]. Die Existenz dieser eleganten, aber kom-
plizierten Methode, die nach Becchi, Rouet und Stora benannt ist, stellt insbesondere
die Eichinvarianz physikalischer Grofsen einer Eichtheorie sicher.

Da sich in der analytischen Rechnung in Kapitel 6 speziell die Frage nach der Eichin-
varianz des thermodynamischen Drucks gestellt hat, wird im anschlieffenden Kapitel die
Eichinvarianz des Drucks in der QED bis zur zweiten perturbativen Ordnung illustriert.

12



3 Perturbative Entwicklung des
thermodynamischen Drucks

Die perturbative Behandlung einer Theorie, in der die Kopplungskonstante sehr klein
gegeniiber 1 ist, wird durch die Entwicklung der Zustandssumme in der Kopplungskon-
stante umgesetzt. Die Wirkung einer Theorie kann mit S = Sy+.57 in einen freien Anteil
So und einen Wechselwirkungsanteil S7 zerlegt werden. Die perturbative Entwicklung
der Zustandssumme fiir ein skalares Feld ¢ ergibt somit:

Z = /[d¢]e—<50+51> = /[d¢]e—50 (1 —Sr+ %S% - > . (3.1)

Folglich tragen alle perturbativen Korrekturen, deren Wechselwirkungsterme mit ge-
schlossenen Feynman-Diagrammen bzw. Schleifen-Diagrammen assoziiert werden, direkt
zum Druck (2.8) bei.

Wegen der asymptotischen Freiheit von nicht-abelschen Eichtheorien ist eine per-
turbative Behandlung des QGPs bzw. der QCD bei hohen Temperaturen méoglich. In
diesem Kapitel werden aufgrund des Auftretens von IR-Divergenzen die Grenzen der
Storungstheorie aufgezeigt.

3.1 lllustration der Eichinvarianz des thermodynamischen
Drucks am Beispiel der QED

Im Folgenden wird am Beispiel der QED die Eichinvarianz des thermodynamischen
Drucks, die fiir jede Ordnung in der Storungstheorie gelten muss, in fithrender Ordnung
und in O(g?) explizit gezeigt, da in betreffenden Lehrbiichern [19] zur Vereinfachung
stets Rechnungen in Feynman-Eichung durchgefiihrt werden. Die Kopplungskonstante
der QED (62 =ar ﬁ) ldsst dabei eine perturbative Behandlung zu.

3.1.1 Freies Photonengas

Die Zustandssumme des freien Photonengases in kovarianter Eichung G' = 0,4, = 0
mit p als Eichfixierungsparameter ist gegeben durch

h 1
Z :/[dAu] det(9%) exp (—/ dT/d3ac (Lo + 2—((9“14#)2)) , (3.2)
0 P
1
wobel Lo :ZFIWFIW mit  Fj,, = 0,4, —0,A,. (3.3)
Die Determinante in (3.2) ldsst sich niitzlicherweise als Pfadintegral {iber grassmannwer-

tige Felder darstellen, die in der QCD als Faddeev-Popov-Geistfelder bezeichnet werden.
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3 Perturbative Entwicklung des thermodynamischen Drucks

In der QED dienen sie lediglich als mathematisches Hilfsmittel zur Auswertung folgender
Gauk-Integrale, um zwei der vier Freiheitsgrade der Photonen zu eliminieren:

:/[dAM] exp (-1 /6 dT/dgx [AM <5W(—38—j2 ~VH+(1- %)3,@) AVD
/[dc [dc] exp< / dT/d3 [ -2 -V D (3.4)

Unter Ausnutzung von (2.15) und (2.16) und Indet D = Tr In D folgt somit fiir den
Logarithmus der Zustandssumme im Impulsraum:

1
InZ =Indet Dy — §lndetD2

=In [HH (62 (w?1 —{—p2))

= Z Zln (8%(wn +p%) (3.5)

g+ 7 <% - 1) W1 <% - 1) Wnp2 (% - 1) Wnps

1 2,2 1,2 (1 1
z—lwwpr wp+p°—¢p <——1 P1p2 z—1)pips
: _ 3 n n £rl § §
mit Dy = 14, 1 2 5 19 )
3 nP2 |z Pp2 wp +p°— ¢y (% D2p3
%—1 Wnp3 %—1 P1P3 <%—1)P2p3 w2 + p? —gpg

Dabei wurde der temperaturunabhéngige Term wegen des Nernst’schen Theorems nicht
beriicksichtigt, wodurch fiir den Druck des freien Photonengases Eichinvarianz erzielt
wird:

(2.18) 2
ZZln (B%(w2 +p?) 45T4. (3.6)

Der Unterschied zwischen diesem Ergebnis und dem fiir masselose skalare Felder (2.18)
entspricht einem Faktor 2 und spiegelt die zwei Polarisationszustande des Photons wider.
Die zwei zusatzlichen unphysikalischen Freiheitsgrade wurden durch die grassmannwer-
tigen Felder eliminiert. Fiir die Elektronen ergibt sich folgender fermionischer Beitrag
zum Druck der freien QED:

EQT4
180

Die Berechnung des Drucks des freien Gluonengases in der QCD erfolgt analog, aller-
dings unter der Beriicksichtigung der Anzahl der Gluonen mit N2 — 1. Die analoge Rech-
nung zu (3.5) ergibt den sogenannten Stefan-Boltzmann-Grenzwert des Drucks eines
idealen Gluonengases:

Py = (3.7)

(N? — 1)r?

5 T (3.8)

PsB =
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3.1 Illustration der Eichinvarianz des thermodynamischen Drucks am Beispiel der QED

3.1.2 Erste Korrektur

Da die QED eine abelsche Eichtheorie darstellt, existieren zwischen den Photonen Kkei-
ne Selbstwechselwirkungen. Der einzige Wechselwirkungsterm der vollen QED ist die
Kopplung von Photonen und Elektronen mit der elektrischen Ladung bzw. Kopplungs-
konstante e:

Lr=—ephy. (3.9)

Das dazu entsprechende Schleifen-Diagramm zur Berechnung der ersten Korrektur
des Drucks bildet sich folgendermafien ab:

36 - gl

Tr [y (p + m)(p - q)u(p - q)u(yl +m)n
(p? —m?2)(q®> —m?)(p — ¢)*

+(p—1)

. (3.10)

Das Minuszeichen resultiert aus dem fermionischen Charakter und der Faktor 1/2 steht
fiir den Symmetriefaktor des Schleifen-Diagramms. Die Frequenzsummenintegrale wer-
den tiiblicherweise mittels Kontur-Integration ausgewertet, die jedes reelle Teilchen au-
tomatisch auf seine Massenschale setzt. Wird die zweite Spur in (3.10) mit p? = m?
und ¢> = m? ausgefiihrt, so liefert der Zahler, unabhingig von der Behandlung des
singuldren Charakters der Frequenzsummenintegrale mittels Kontur-Integration, keinen
Beitrag. Daraus folgt, dass der eichabhéngige Term insgesamt bei der Berechnung nicht

berticksichtigt werden muss:

Tr [f)/u(p + m)(p - Q)M(p - Q)u(ﬁ + m)PYV] ’p2:m2;q2:m2: 0. (311)

Somit trégt nur der erste Term in (3.10) zum Druck bei, was einer Berechnung in
Feynman-Eichung entspricht. Nach Auswertung der Spur fiir masselose Elektronen re-
sultiert daher

o @ ) zz[T [t ]

= —2¢? [(If(o))2 + 2@(0)1,,(0)} - ;§8T4 (3.12)
. 1 T2
mit I:(0) = zpf PR YE (3.13)
2
1,(0) = ]% _ % (3.14)

wobei Zﬁ:T%/%

Die Indizes f bzw. b bezeichnen die Integration iiber Impulse von Fermionen bzw.
Bosonen. Sowohl die zugrunde liegenden Feynman-Regeln und benétigten Spurtheore-
me {ber Dirac-Matrizen, als auch die Losung der Frequenzsummenintegrale sind dem
Anhang (Kap. A.2 und A.5) zu entnehmen.
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3 Perturbative Entwicklung des thermodynamischen Drucks

Zusammenfassend stellt sich der Druck der QED bis zur zweiten perturbativen Ord-
nung folgendermafen dar:

w2 7 5e2
=T (1+-) - =—T1% 3.15
PQED = 45 <+4> 283 (3.15)

3.2 Zusammenbruch der Storungstheorie in der QCD

3.2.1 Impulsskalen des Quark-Gluon-Plasmas

Die perturbative Behandlung des QGPs erscheint durch die asymptotische Freiheit mog-
lich. Bei hohen Temperaturen ist die Kopplungskonstante der QCD ¢*(T') ~ 1/In(T/A)
sehr klein (vgl. 2.5), d.h. das QGP entspricht einem idealen Gas von Quarks und Gluo-
nen. Daher ldsst sich eine Hierarchie von Impulsskalen des QGPs angeben, die zur
Erzeugung von dimensional reduzierten effektiven Theorien (Kap. 4) genutzt wird.

Es existieren drei Impulsskalen des QGPs:

e Die Skala der sogenannten harten Moden (~ 27T gibt die typische Impulsskala
von massiven Quarks und energiereichen Gluonen wieder.

e Die Impulsskala der weichen Moden (~ ¢T') wird mit der Abschirmung durch
farb-elektrostatische Felder Af assoziiert und ist in der dimensional reduzierten
Theorie der elektrostatischen QCD (EQCD) enthalten.

e Die Impulsskala der wultra-weichen Moden (~ ¢?T) wird mit der Abschirmung
durch farb-magnetostatische Felder Af assoziiert und ist in der dimensional redu-
zierten Theorie der nicht-perturbativen magnetostatischen QCD (MQCD) enthal-
ten.

3.2.2 Ring-Diagramme

Die perturbative Entwicklung des Drucks der QCD ist keine iibliche Potenzreihe in
der Kopplungskonstante g2, sondern bildet sich wie folgt ab, wobei ¢;, mit k = 1,...,6
numerische Koeflizienten sind:

1 1
p=T" {01 +e29” + c3g” + (Cﬁl In (;) + C4> 9"+ cs59° + cpg®In (;) + 0(96)] (3.16)

Die Ursache dafiir stammt aus der Summe einer Reihe unendlich vieler Ring-Diagramme

1|1 1 1
2[2®3Q+4{:§1, (3.17)

die fiir die Berechnung des Drucks bendtigt werden, wobei ~@~~ die Summe iiber
alle Selbstenergien kennzeichnet, in der alle Wechselwirkungsterme der Lagrangedichte
aus (2.21) beachtet werden. Die gewellten Linien représentieren hier die Gluonen, wo-
hingegen sie in der QED eine Abbildung fiir Photonen sind (vgl. 3.10).
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3.2 Zusammenbruch der Stérungstheorie in der QCD

3.2.3 Infrarot-Divergenzen

Aufgrund der asymptotischen Freiheit bzw. des Verhaltens des QGPs als nahezu idealem
Gas bei sehr hohen Temperaturen liegt eine perturbative Herangehensweise nahe, die
bis in beliebig hohe Ordnungen in der Kopplungskonstante angestrebt wird. Lindé [3]
identifizierte jedoch eine Grenze, bei der infolge von IR-Divergenzen die Storungstheorie
zusammenbricht. Zur Untersuchung der IR-Divergenzen wird folgendes (I + 1)-Schleifen-
Diagramm betrachtet:

‘ . | .
Das Feynman-Diagramm besitzt 3] Gluon-Propagatoren und 2! 3er-Gluon-Vertizes
und leistet fiir den Druck den Beitrag

I+1
p~g* (T / d3p> P +m?) Y, (3.19)

bei der ein eventueller IR-cutoff eingefiihrt wurde, d. h. eine effektive Masse des Gluons.
Der erste und dritte Faktor in (3.19) stammen aus den Feynman-Regeln des Vertex,
der zweite Faktor stammt aus der Schleifen-Integration und der letzte Faktor aus dem
Gluon-Propagator. Aus Ubersichtsgriinden wird hier nur eine vereinfachte Darstellung
gezeigt, die zur Illustration der Problemstellung vollkommen ausreichend ist.

In Abhéngigkeit der Anzahl der Schleifen im aufgezeigten Diagramm (3.18) geht der
Beitrag des Drucks in folgende Ordnungen der Kopplungskonstante ein:

¢ fir 1=1,2,
STHIn(T/m) fir =3,
STHPT/m)' =3 fir 1> 3. (3.20)

Dabei wurde ein ultravioletter cutoff T in die Impulsintegration gesetzt. Eine pertur-
bative Behandlung der QCD mit masselosen Gluonen bzw. mit einem Gluonpropagator
aus (2.24) scheitert demnach, da fiir m = 0 und [ > 2 das Diagramm infrarot divergiert.
Ohne die Einfiihrung einer effektiven Masse in den Gluonpropagator ist eine perturbati-
ve Behandlung also nicht moglich. Fiir die magnetische Masse myagn. ~ ¢°T tragen alle
Schleifen-Diagramme mit [ > 3 zu der Ordnung ¢® bei, wonach die Berechnung unend-
lich vieler Diagramme nétig ist, um einen vollstdndigen Beitrag in dieser Ordnung zu
erhalten. Die Wahl der Massenskalen der harten Moden myarq ~ 2771 bzw. der weichen
Moden my), ~ g7 stellt im Gegensatz zur magnetischen Masse kein Problem in der
perturbativen Entwicklung dar.

Ein dhnliches Problem taucht bei der Berechnung von Gluon-Selbstenergien auf, bei
der die Stérungstheorie bereits in der Ordnung ¢g* zusammenbricht. Die Isolierung des
Problems auf einen Teilbereich der Theorie erfolgt unter Beachtung der Impulsskalen-
hierarchie mittels dimensionaler Reduzierung, worauf sich das néachste Kapitel bezieht.
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3 Perturbative Entwicklung des thermodynamischen Drucks
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4 Dimensionale Reduzierung

Alle perturbativen thermodynamischen Berechnungen in der QCD lassen sich wegen
der IR-Divergenzen nur begrenzt ausfithren. Da in der thermischen QCD mit einer
effektiven Kopplungskonstante 92% und einem Gluon-Propagator mit m = 0 (siehe
2.24) perturbativ entwickelt wird, wirkt die Einfiihrung einer effektiven Masse in der
Storungstheorie ddmpfend auf die IR-Divergenzen. Die eichinvariante Einbindung einer
effektiven Masse in eine dimensional reduzierte effektive Theorie ist Gegenstand des
flinften Kapitels.

Im Folgenden wird zunéchst die Bildung von zwei dimensional reduzierten effektiven
Theorien behandelt, um eine Isolation der IR-Divergenzen in eine effektive Theorie, die
MQCD, zu erzielen [4,5]. Die Konstruktion dieser effektiven Theorien setzt eine so kleine
Kopplungskonstante g voraus, dass alle drei Skalen der QCD infolge der Impulsskalen-
hierarchie ¢?T < ¢T < 27T umstandslos separiert werden kénnen.

Der thermodynamische Druck des QGPs setzt sich schlieflich aus der Summe der
Beitréage der aus der Separation der Skalen resultierenden drei Teilbereiche der Theorie
zusammen. Die dimensionale Reduzierung der QCD auf zwei effektive Theorien und die
Berechnung des Drucks bis zur perturbativ héchstmdglichen Ordnung ¢%1In(1/g) ist an
Kajantie et al. [10] orientiert.

4.1 Dreidimensionale effektive Theorien

Die zeitliche Dimension euklidischer Feldtheorien ist kompaktifiziert und der zugehori-
ge Radius entspricht der inversen Temperatur 8 = 1/T. Bei sehr hohen Temperaturen
wird diese Grofse beliebig klein, so dass die der Zeitrichtung zugeordneten Impulsfrei-
heitsgrade, d.h. die Matsubara-Moden, im Wesentlichen starr sind. Daher lassen sich
viele Eigenschaften des QGPs aus einer einfacheren dreidimensionalen effektiven Theorie
ableiten.

Die zentrale zu berechnende Grofie ist der Druck des QGPs

. T a -
pqcep(T) = Vlgnoo v ln/DAuZMﬁD?/) exp (—Sqcp) , (4.1)

wobei die euklidische Wirkung der QCD in der SU(V)-Eichgruppe mit N; masselosen
Quarks den Ausgangspunkt bildet (ohne Eichfixierung):

<
SQCD = / dT/ddx [,QCD, (4.2)
0
1 _
['QCD = ZFﬁyFﬁy + wwD;ﬂ/J- (4'3)

Die Anzahl rdumlicher Dimensionen der Theorie ist durch d gekennzeichnet. Die Lén-
genskala 27+T der harten QCD entspricht dem typischen Teilchenabstand im QGP.
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4 Dimensionale Reduzierung

4.1.1 Elektrostatische QCD

Die Bildung der sogenannten elektrostatischen QCD erfolgt durch die Ausintegration
aller bosonischen und fermionischen Moden mit n # 0. Das elektrostatische Feld A§
wird zu einem adjungierten Higgs-Feld, wodurch sich die Theorie der EQCD mit einer
dreidimensionalen effektiven super-renormierbaren Lagrangedichte folgendermaften dar-
stellt:

paco(T) =pe(T) + 1 n [ DATDAGexp (~55). (4.4
Sg = / d%z Ly, (4.5)
L= %Tr F2 1 Tt [Dy, Ao + mTr A2 4 XD (T 422 1 AQTr AL, (4.6)
F = giE[Dk’Dl]’ Dy = Ok — igp Ak

Dadurch resultiert eine effektive Theorie fiir bosonische Matsubara-Nullmoden. Alle
hoherdimensionalen Operatoren der Lagrangedichte (4.6) miissen nicht berticksichtigt
werden, weil nur alle bis zur Ordnung ¢® im Druck relevanten Operatoren von Interesse
sind.

Die EQCD besitzt fiinf verschiedene Anpassungskoeffizienten, welche die Verbindung
zur vollen vierdimensionalen Theorie herstellen. In filhrender Ordnung ergeben sie:

2
s
=— (4N?-1 NN T
PE 180(( ) + TN Ny) T,
2_1 1 22
9% =9°T, (4.7)
1 _ (64+N—Ny) A
Ap’ = 2472 g+
(2)_(N—Nf) Ap
A= 1272 '

Die Langenskala QLT in der EQCD ist die durch Abschirmung der longitudinalen Anre-

gungen der Gluonen dynamisch generierte Léngenskala.

4.1.2 Magnetostatische QCD

Der Ubergang zur magnetostatischen QCD erfolgt durch Ausintegration der adjungier-
ten Higgs-Felder Af:

%ln/DA%DAS exp (=Sg) =pm(T) + %hl/DAz exp (—Sm), (4.8)
Sy = / d%x L, (4.9)
Ly = %Tr F2, (4.10)
Fy = giM[Dk,Dl]a Dy, = O — igm Ay
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4.2 Der thermodynamische Druck des Quark-Gluon-Plasmas

Auch hier werden alle hoherdimensionalen Operatoren der Lagrangedichte (4.10) jenseits
der Ordnung ¢% nicht beriicksichtigt. Die beiden Anpassungskoeffizienten der MQCD
ergeben in fithrender Ordnung:

1
pM = E(NQ — 1)mgT,
9 = g (4.11)

Die Langenskala QQLT

mung der transversalen Anregungen der Gluonen dynamisch generierte Langenskala.

Nach der Bildung der zweiten dimensional effektiven Theorie bleibt der Druck pg
aus der MQCD iibrig, dessen Beitrag in fiihrender Ordnung aus dimensionalen Griinden
folgendermafen eingeht:

in der dreidimensionalen reinen Eichtheorie ist die durch Abschir-

T
pa(T) = v ln/DA% exp (—Sn) ~ Tgb. (4.12)

Diese Abhéngigkeit in der Kopplungskonstante in fiihrender Ordnung entspréche zu
Beginn einer perturbativen Entwicklung der Berechnung von 4-Schleifen-Diagrammen
(vgl. 3.20). Da allerdings genau ab dieser Ordnung wegen der IR-Divergenzen der Zu-
sammenbruch der perturbativen Behandlung des Drucks eintritt, stellt die MQCD eine
perturbativ nicht zugéngliche Theorie dar.

4.2 Der thermodynamische Druck des
Quark-Gluon-Plasmas

4.2.1 Das Gesamtresultat

Im vorliegenden Abschnitt werden die einzelnen Beitrage des Drucks fiir die drei Im-
pulsskalen bis zur Ordnung ¢% zum vollstéindigen Druck des QGPs zusammengetragen:

paen(T) = pe(T) + pm(T) + pa(T). (4.13)

Wiéhrend die harte und die elektrostatische QCD perturbativ zugénglich sind, scheint
eine Auswertung des Druckbeitrags fiir die Skala g7 der nicht-perturbativen MQCD
nur numerisch moglich. Aus dimensionalen Griinden besitzt der Beitrag des Drucks
nach [10] mit dq4 = N? — 1 und C4 = N folgende Form:

pa(T)
T,U'_QE

6
:dch(f%4 [Oc(; <%+81n2:;M>+ﬂ(;+0(6):|. (4.14)

ag und PBg kennzeichnen die zu bestimmenden Koeffizienten. Der e-Pol und der ultra-
violette cutoff [ resultieren aus der dimensionalen Regularisierung.

FEine strikte Anwendung der dimensionalen Regularisierung zur Behandlung ultravio-
letter Divergenzen (UV-Divergenzen) ergibt zur Bestimmung von pg bei der Berechnung
von 4-Schleifen-Diagrammen keinen Beitrag, weil in der MQCD keine perturbative ef-
fektive Masse mg enthalten ist. Eine einfache Einfiihrung einer effektiven Masse in den
Gluonpropagator der MQCD (vgl. [10]) fithrt auf ein eichabhéngiges Ergebnis:

pa(T)

—d.C3 91?/[ 1+81L _|_ﬁ~ _|-O( 4.15
260 — 1aCh B ag (14815 ) + dute) + 000 (1.15)

(47)
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4 Dimensionale Reduzierung

Die dimensionale Regularisierung der rdumlichen Integration ist in perturbativen Be-
rechnungen eine iibliche Methode, um alle UV-Divergenzen zu beheben, wobei die Im-
pulsintegration durch eine analytische Fortsetzung nach d = 3 — 2¢ Dimensionen ausge-

driickt wird:
[T (&) Sl w19

Mit o = p(e” /477)_% wird eine Impulsskala eingefiihrt, die ein Abschneiden der ver-
bleibenden logarithmisch divergenten Integrale, die als e-Pole auftauchen, bewirkt. Die
Einfithrung dieser Impulsskala entspricht im Ubrigen dem Regularisierungsschema der
Minimalen Subtraktion.

Der vollstandige Druck des QGPs bis zur Ordnung ¢° besitzt folgendes Gesamtresul-
tat:

pqep(T)  pe(T) + pm(T) + pa(T)

T4Mf2e T4Iul726

9> da 3/

0 2
=g ag1 + g ags + @?QEZI

4 B _
g 1 3 m 1
- aps —daCa | aps | — + > +In——— | + ~aps
(4m)? | < <46 4 ogral) 4

5 r 2
g 12 (1 5 (89 11
d Cape— O3 (4T 2
* amp |PAE (20@6 A (24 e "

[ 1 2d4 — 1
Br1 — ZdAOZE4 <(dA —2)0ra + ?\7 ﬁE5>

1
— daCy <Z(OCE6 + apsap7 + 3apaorr + Or2 + ap4fe3)

) -
+ (ape + apsoE7) (E +1In ﬁ))
g1 Opy

. i
+ daCh ( Bu+Ba+an | - +8m—L
€ 29T oy,

S (L S
ag | - n—s——
G\e 2g2TC »

+0(g") + O(e). (4.17)

Die Koeffizienten ax sind bekannte Grofen (vgl. [10] oder siche Kapitel A.3). Die Be-
stimmung der bis dato unbekannten Koeffizienten fFx erfordert eine Berechnung des
Drucks in der Ordnung ¢°. Insbesondere die Berechnung des Koeffizienten g hat auf-
grund der vorigen Betrachtungen in (4.12) und (3.20) eine Auswertung unendlich vieler
Schleifen-Diagramme zur Folge.

Im Ubrigen ist anzumerken, dass jeder Beitrag des Drucks pg, pu, pg fiir sich eine ska-
lenabhéngige Grofse ist. In der Summe heben sich jedoch die Koeffizienten der e-Pole auf,
so dass sich der vollstdndige Druck (4.17) als wohldefinierte thermodynamische Grofse
herausstellt. Es existieren also Korrekturen des Drucks bis einschlieflich zur Ordnung

9°In(1/g).
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4.2 Der thermodynamische Druck des Quark-Gluon-Plasmas

Die Korrektur des Drucks in der Ordnung ¢%In(1/g) besitzt folgenden Wert:

paco(T) _ 64940 1/2
Thu 2 |y~ myt (@20 T amiarr)laags)
— 8C% (am In(go?) + 2ac In(gCY?))| . (4.18)

In diesem von Kajantie et al. bestimmten Ergebnis sind zwei verschiedene Logarithmen
mit unterschiedlichen nichtanalytischen Abhéngigkeiten in gruppentheoretische Fakto-
ren enthalten.

4.2.2 Numerische Konvergenz

Die perturbative Behandlung einer physikalischen Grofle ist nur dann sinnvoll, wenn
diese ein zufriedenstellendes Konvergenzverhalten bei Entwicklung nach der Kopplungs-
konstante aufweist. Zur Untersuchung der Konvergenz des thermodynamischen Drucks
des QGPs ist eine graphische Darstellung niitzlich. Die numerische Bedeutung der Ord-
nung ¢%In(1/g) aus (4.18) ist hier von besonderem Interesse. Unumginglich sind dazu
Annahmen tiber die noch unbestimmten Koeffizienten (Jx, die eine vollstdndige Angabe
des Drucks zur Ordnung ¢® voraussetzen. Seitdem Arnold und Zhai [22] die Korrektur
des Drucks in ¢g* bestimmt haben, ist bekannt, dass die perturbative Entwicklung des
Drucks ein mangelhaftes Konvergenzverhalten aufweist. Die Berechnung der bis dato
hochsten Ordnung ¢%In(1/g) in (4.18) #ndert nichts an dieser Tatsache.

Den grofsten Anteil an diesem Verhalten besitzen die Beitrdge des Drucks pyr und pg
aus den beiden dimensional reduzierten effektiven Theorien, da die effektive Kopplungs-
konstante dort nur % betragt. Im Gegensatz dazu besitzt die volle Theorie zur Bestim-
mung von pg die Kopplungskonstante g%, so dass dort ein gutes Konvergenzverhalten
zu erwarten ist. Aus diesem Grund wird hier lediglich der dreidimensionale Beitrag des
Drucks zur Untersuchung der Abhéngigkeit des Ergebnisses aus (4.18) auf die unbe-
kannten g® Koeffizienten betrachtet.

Der Beitrag des Drucks zur Ordnung (g°In(1/g) + ¢°) kann mit der Wahl i = 27T
zu folgendem Ausdruck umformuliert werden:

pQCD(T)] 5 9% mg
5 [7 — 8d4C (am + 2a¢) In 2B 4 5] . (4.19)
T,quE g%1n(1/g) A (47T)4 9125)

Fiir N = 3 und Ny = 0 ist in fiihrender Ordnung mg/gé ~ 1/g. Die GréRe § enthilt alle
bis dato unbekannten Koeffizienten (x aus (4.17). Der Koeffizient fg; muss allerdings
alle Beitrdge der e-Pole auftheben und besitzt daher die folgende Struktur:

1 1
Br1 = daCa(ags + 04E404E7)4—6 —daC3(an + OéG)E + Bre- (4.20)

Alle iibrigen Koeffizienten Ox sind endliche Grofen, d. h. enthalten keine e-Pole.

In Abb. 4.1 sind die Ergebnisse von (4.19) fiir verschiedene Werte von § graphisch dar-
gestellt. Aufgetragen ist jeweils der auf den Stefan-Boltzmann-Grenzwert eines idealen
Gluonengases (siehe 3.8) normierte Druck der QCD mit Ny = 0 und N = 3 in Ab-
hingigkeit der reduzierten Temperatur 7'/ Agg. Abb. 4.1 stellt im linken Diagramm die
Beitréage des Drucks bis zu den einzelnen Ordnungen der perturbativen Entwicklung dar,
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Abbildung 4.1: Der normierte Druck der QCD pqcp/pss in Abhéngigkeit der reduzierten
Temperatur 7'/Agg mit [10]; links: Ergebnisse der einzelnen perturbativen Ordnungen ein-
schlieRlich der Ordnung g% mit einer optimalen Wahl des Koeffizienten § = 0, 7; rechts: Abhén-
gigkeit des g®-Beitrags von 4.

wobei fiir den Beitrag der Ordnung ¢% die Wahl § = 0,7 getroffen wurde. Im rechten
Diagramm ist die Abhiingigkeit des Druckbeitrags zur Ordnung ¢® von der Wahl des
unbekannten Koeffizienten § aufgetragen.

Die erste positive Beobachtung ist das Erreichen des Stefan-Boltzmann-Grenzwertes
bei sehr hohen Temperaturen. Die zweite wesentliche Erkenntnis ist, dass die Auswir-
kungen auf den Beitrag des Drucks zur Ordnung ¢® in Abhiingigkeit von § erheblich
sind. Die Ergebnisse unterscheiden sich nicht nur quantitativ, sondern auch qualitativ
voneinander (vgl. Abb. 4.1 links). Fiir die Wahl 6 = 0, 7 stimmt das Ergebnis jedoch mit
Gitterrechnungen in der vollen vierdimensionalen Theorie [23] gut iiberein (vgl. Abb.
4.1 rechts).

Eine konkrete Aussage betreffend der Ubereinstimmung des Ergebnisses mit der Git-
terrechnung ist nur durch die vollsténdige Bestimmung der Koeffizienten Gx gewéhrleis-
tet. Es ist jedoch anzumerken, dass genau in dem Bereich fiir T/Ayg ~ 2,...,3, in der
ein Vergleich mit den Gitterdaten moglich ist, die Impulsskalenhierarchie und somit die
notwendige Bedingung fir die Begriindung der beiden dimensional effektiven Theorien
verletzt wird. Daher kénnte eine eventuelle vollstdndige Bestimmung der Koeffizienten
zur Ordnung ¢% nicht als sichere Prognose zum Vergleich herangezogen werden. Es liesse
sich lediglich beobachten, ob ein glatter Ubergang der Graphen aus dem Giiltigkeitsbe-
reich des Ergebnisses zu den Gitterdaten erfolgen wiirde.

In einer kiirzlich verdffentlichten Arbeit von Hietanen et al. [24] wurden Monte-Carlo-
Simulationen fir die EQCD bzw. der dreidimensionalen SU(3) adjungierten Higgs-
Theorie aktualisiert, um eine genauere Abschétzung der IR-Beitrige des Drucks fiir
die QCD zu bestimmen. Die Ergebnisse sind in Abb. 4.2 dargestellt. Links ist der auf
T* normierte Druck in Abhéngigkeit der Temperatur T/T, abgebildet, wobei T, die kri-
tische Temperatur kennzeichnet. Der Vergleich des Resultats des Beitrags aus der EQCD
mit Gitterdaten ist sehr erniichternd. Deutlicher wird der Unterschied im rechten Dia-

gramm, in dem die Differenz der Energiedichte ¢ = TvQBér‘l/Z und des Druck gegeniiber
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Abbildung 4.2: links: Der auf 7% normierte Druck in Abh#ingigkeit von T/T,; rechts: Die
Differenz der Energiedichte und des Drucks normiert auf 74 [24].

der Temperatur abgebildet ist.
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5 Massenerzeugung fiir Gluon-Felder in

der MQCD

Der Fokus dieser Arbeit liegt auf der Bestimmung von pg bzw. des Koeffizienten (g
des Drucks der MQCD auf perturbative Weise. Die nicht-perturbative Natur der MQCD
stellt dabei ein grofes Problem dar. Ein erster Beitrag von Bg tritt erst in der 4-Schleifen-
Ordnung auf (vgl. 4.12), dessen Berechnung direkt mit IR-Divergenzen verkniipft ist.
Infolge der Behandlung der UV-Divergenzen durch dimensionale Regularisierung liefert
der Druck pg der MQCD sogar keinen Beitrag, da keine effektive Masse in der Theorie
enthalten ist.

Gegenstand dieses Kapitels ist die eichinvariante Massenerzeugung fiir Gluon-Felder
durch den Mechanismus der spontanen Symmetriebrechung im NLoM. Weiterhin wird
das Resummationsverfahren vorgestellt, welches die perturbative Entwicklung umstruk-
turiert und eine perturbative Behandlung der aus der MQCD resultierenden effektiven
Theorie realisiert.

5.1 Grundlagen der spontanen Symmetriebrechung

Wenn der Vakuumerwartungswert des Grundzustands eines quantenmechanischen Sys-
tems weniger Symmetrien aufweist als die zugehorigen Bewegungsgleichungen, ist die
Symmetrie des Systems spontan gebrochen. Das Coleman-Theorem trifft eine analo-
ge Aussage (vgl. z.B. [25]): Gegeben sei ein quantenmechanisches System mit einer
Lagrangedichte £ und einem Zustand minimaler Energie, dem Vakuumzustand. Wirkt
eine definierte Transformation auf die Lagrangedichte £ und auf den Vakuumzustand,
treten folgende Félle auf:

1. Vakuumzustand und £ sind jeweils invariant gegeniiber dieser Transformation.
Das System besitzt exakte Symmetrie.

2. Vakuumzustand ist nicht invariant und

e [ ist nicht invariant. Die Symmetrie des Systems ist explizit gebrochen.

e [ ist invariant. Die Symmetrie des Systems ist spontan gebrochen.

Die spontane Symmetriebrechung einer globalen kontinuierlichen Symmetrie bewirkt
das Auftreten eines masselosen pseudoskalaren Teilchens, welches auch als Nambu-
Goldstone-Boson bekannt ist. Wird eine Eichsymmetrie spontan gebrochen, so tritt das
dazugehorige Nambu-Goldstone-Boson physikalisch nicht in Erscheinung, da das Eichbo-
son den entsprechenden Freiheitsgrad absorbiert. Durch das Auftreten des sogenannten
Higgs-Teilchens bzw. seiner Kopplung an alle Felder wird das Eichboson massiv.
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5 Massenerzeugung fiir Gluon-Felder in der MQCD

5.2 Resummationsverfahren mit dem nichtlinearen
o-Modell

5.2.1 Eigenschaften des nichtlinearen o-Modells

Eine alternative Beschreibung der spontanen Symmetriebrechung liefert das NLoM (vgl.
[26,27]). Es wird in dieser Arbeit als Mechanismus zur eichinvarianten Erzeugung von
Massen fiir die in der MQCD vorkommenden Gluon-Felder genutzt.

In diesem Modell wird ein N-komponentiges skalares Feld ¢(z) betrachtet, das der
orthogonalen Symmetriegruppe O(N) unterliegt und die Bedingung ¢?(z) = 1 erfiillt.
Unter Beachtung der Symmetriebedingungen des Feldes besitzt die allgemeine Wirkung
folgenden Ausdruck:

s<¢):%/ddxau¢i-au¢i mit i=1,..,N. (5.1)

Die perturbative Entwicklung dieser Theorie erfordert eine Parametrisierung des ska-
laren Feldes durch unabhéngige Variablen. Eine flir Renormierungszwecke geeignete
Parametrisierung der Bedingung ¢?(x) = 1 ist die Wahl

gb(:ﬂ) = (0-’771’"'77er1) = (0’(:[7),71’(5[7)), (52)
wobei ¢ eine nichtlineare Funktion des (N — 1)-komponentigen Feldes 7 ist:

NI

o(z) = (1—m(z)?) (5.3)

Diese Theorie ist eine phanomenologische Beschreibung eines O(N)-symmetrischen Sys-
tems, die um den Vakuumerwartungswert des skalaren Feldes < ¢ >= 1 spontan gebro-
chen ist. Jede Komponente 7, entspricht dabei einem Zustand gebrochener Symmetrie.

Fiir perturbative Zwecke wird die nichtlineare Realisierung der spontanen Symme-
triebrechung (5.3) einer Taylor-Entwicklung unterzogen. Die Wirkung stellt sich wie
folgt dar:

1
S(m) = 3 /ddx [(0pm)? + (- Opm)® + ... . (5.4)
Die Erzeugung der Gluonmassen fiir die MQCD, die der SU(NV)-Symmetriegruppe

unterliegt, erfolgt durch Addition von
Lo=Tr [(D@)T(Dicb)] (5.5)

zur Lagrangedichte aus (4.10) mit der kovarianten Ableitung D; = 0; — igar A?. Durch
eine entsprechende Parametrisierung des skalaren Feldes ®, welches eine komplexe N x
N-Matrix darstellt, koppeln die sogenannten Goldstone-Bosonen 7% und das Higgs-Feld
o an das Eichfeld und bewirken somit eine effektive Masse mg fiir die Gluon-Felder.
Fiir SU(2) wird die Parametrisierung

1
P = 5(0 +ire7?) (5.6)

mit den 2 x 2-Pauli-Matrizen 7% verwendet.
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5.2 Resummationsverfahren mit dem nichtlinearen o-Modell

5.2.2 Vorgehensweise der Resummation

Die Addition der Lagrangedichte aus (5.5) impliziert bei geeigneter Eichfixierung neue
Felder und deren Kopplungen sowohl an das Eichfeld als auch untereinander, woraus
das NLoM resultiert. Diese Methode dient zur eichinvarianten Erzeugung einer magne-
tischen Masse, um IR-Divergenzen zu regulieren.

Um das Ziel der perturbativen Berechnung des Drucks in der MQCD zu erreichen,
muss ein Verfahren entwickelt werden, in der die addierte Lagrangedichte (5.5) effek-
tiv wieder subtrahiert wird und dennoch der durch die magnetische Masse modifizierte
Eichfeld-Propagator in die perturbative Entwicklung eingeht. Dazu ist eine Umstruktu-
rierung der Storungstheorie mittels folgendem Resummationsschema notwendig:

Lo = % [EM(VIX) + La(ViX) ~ 1£a(VIX)| (5.7)
Ausgangspunkt ist die Lagrangedichte der MQCD (4.10). Die Lagrangedichte der skala-
ren Felder ® wird zu £y mittels der Einfithrung eines Schleifen-Parameters [ addiert und
wieder subtrahiert. Der Schleifen-Parameter [ skaliert alle in dieser effektiven Theorie
vorkommenden Felder X := AZ, 7%, ... und reorganisiert die perturbative Berechnung des
Drucks. Diese Berechnungen gehen nicht mehr Ordnung fiir Ordnung in die Kopplungs-
konstante ¢? ein, sondern resultieren in eine Potenzreihe in [. Das ist insofern vorteilhaft,
da der Druck der modifizierten MQCD, d.h. mit einer effektiven magnetischen Masse
mg, fiir jede Schleifen-Ordnung zu O(g%) beitriigt (vgl. 3.20 und 4.12). Die Auswertung
der freien effektiven Theorie geht in die Ordnung [° ein, wihrend die erste Korrektur
bzw. die Berechnung von 2-Schleifen-Diagrammen zur Ordnung [! beitrigt. Zudem tritt
der subtrahierte Term in (5.7) erst eine Schleifen-Ordnung hoher ein als der addierte
Term.

Das Resummationsverfahren begriindet also eine effektive Theorie durch die Addition
und Subtraktion einer geeigneten Wahl des massenerzeugenden Terms L,, mit

[reff. = [rO + ['m + Eint - Em; (58)

wobei der modifizierte Wechselwirkungsterm Lint — L, perturbativ entwickelt wird und
der modifizierte Propagator sich aus Ly + £, ableiten ldsst [6].

5.2.3 Motivation

Bei steigender Temperatur geht die uns bekannte hadronische Materie, in der Quarks
und Gluonen in farbneutrale Hadronen eingeschlossen sind, in die ungebundene Phase
der QCD bzw. das QGP {iiber. Ein erster Schritt zur Untersuchung der Natur dieses
Phaseniibergangs liefert die Bestimmung des Koeffizienten C' der magnetischen Masse
mg = Cg*T, d.h. der Masse des Eichfeldes in der ungebundenen Phase.

Zur Untersuchung des elektroschwachen Phaseniibergangs betrachteten Buchmiiller
und Philipsen [8] das dreidimensionale SU(2)-Higgs-Modell und berechneten die Massen
des Higgs-Teilchens und des Eichfeldes mittels sogenannter gap-Gleichungen. Diese bil-
den selbst-konsistente Bedingungen fiir die entsprechenden Massen, die im Ubrigen den
exponentiellen Abfall der zugehérigen 2-Punkt-Funktionen der Felder mit ~ e~"%~vl
bei grofser werdendem Abstand bestimmen. Der Pol des transversalen Teils des Eichfeld-
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5 Massenerzeugung fiir Gluon-Felder in der MQCD

Propagators sollte dabei fiir alle Schleifenordnungen auf der Massenschale bestehen blei-
ben:

Dirans. (p*) = ~ fi = —m?. 5.9
trans. (P°) P2+ m2 — irans. (02) P2 + m?2 ur-p m (5.9)

Daraus ergibt sich folgende gap-Gleichung fiir die Selbstenergie einer Theorie:

oIl rans.
Htrans.(p2 == —m2) (1 + 57]92(]?2 = —m2)> =0. (510)

Auf 1-Schleifen-Niveau folgt die Bedingung Ilians. (p? = —m?) = 0.
Im Higgs-Modell bzw. linearen Sigma-Modell wird das Higgs-Teilchen im Gegensatz
u (5.3) linear um seinen Vakuumerwartungswert verschoben. Zudem treten weitere
Terme in der Lagrangedichte

L, =Tr |(D;®)(D;®) + 2010 + 2X(0TD)? (5.11)

auf, die zu Ly addiert werden. A bezeichnet die Kopplung und p die Masse der skala-
ren Felder ®. Nach der Einbindung einer geeigneten Eichfixierung und der zugehorigen
Faddeev-Popov-Geistfelder entstehen viele Wechselwirkungsterme, die in der perturba-
tiven Berechnung beriicksichtigt werden miissen. Buchmiiller und Philipsen stellten fest,
dass die Dynamik des Eichfeldes in der ungebundenen Phase weitgehend unabhéngig
vom Higgs-Feld ist und daher durch die effektive Lagrangedichte des NLoMs approxi-
miert werden kann. Der daraus resultierende Vorteil ist vor allem eine Reduzierung der
Anzahl der Wechselwirkungsterme, wodurch eine perturbative Behandlung wesentlich
vereinfacht wird.

Die nachfolgenden Berechnungen von Eberlein [7, 9] bestétigen diese Approximati-
on. Eberlein behandelte das dreidimensionale SU(2)-NLoM unter Verwendung des Re-
summationsschemas (5.7) und wertete die gap-Gleichungen sowohl fiir das NLoM als
auch fiir das Higgs-Modell bis zur zweiten Schleifen-Ordnung aus. Um die Anzahl der
2-Schleifen-Diagramme zur Berechnung der Selbstenergien im NLoM weiter zu reduzie-
ren, folgte er dem Vorschlag von Jackiw und Pi [28], die eine exakte Ausintegration der
Goldstone-Felder und Faddeev-Popov-Geister durchfiithrten. Die resultierende effektive
Lagrangedichte entspricht der resummierten massiven Yang-Mills-Theorie, welche auch
als resummiertes NLoM in unitédrer Eichung, d.h. £ — oo, angesehen werden kann:

Lym = iﬂ‘;F;; + %mQAfAf - %m2A§A?. (5.12)

Das Higgs-Modell und das NLoM stellen BRS-invariante Theorien dar, so dass daraus
eichinvariante gap-Gleichungen und somit ein eichinvarianter Ausdruck fiir die magne-
tische Masse resultieren. Auf 1-Schleifen-Niveau wurde Eichinvarianz fiir beide Modelle
erzielt |7,8]. Allerdings ergab sich bei der Berechnung von 2-Schleifen-Diagrammen fiir
die magnetische Masse im Higgs-Modell eine Abhéngigkeit im Eichfixierungsparameter
¢ [9]. Diese Abhéngigkeit wiegt jedoch nicht schwer und ist ein Artefakt des Resum-
mationsschemas, d.h. der Umstrukturierung der perturbativen Entwicklung. Bei der
Berechnung hoherer Ordnungen wird eine Annulierung dieser Abhéngigkeiten erwartet.
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5.2 Resummationsverfahren mit dem nichtlinearen o-Modell

Das Ergebnis fiir die magnetische Masse des SU(2)-Higgs-Modells ergibt sich auf 1-
Schleifen-Niveau zu [8]:

2
mpp = 2 [% In3— 1—36] = 0,28%. (5.13)
Der Vergleich mit einem anderen massenerzeugenden Verfahren von Alexanian und Nair
ist erstaunlich, denn sie ermittelten einen Wert von man = %me [28] fiir die magneti-
sche Masse.

Infolge dessen liegt die Vermutung nahe, dass aufgrund der Eichinvarianz des Ergeb-
nisses (5.13) auch eine eichinvariante Berechnung des Drucks mit demselben Verfahren
realisierbar ist. Dieses begriindet sich, da sich die dafiir auszuwertenden geschlossenen
Feynman-Diagramme aus den FErgebnissen der Selbstenergie-Diagramme ableiten las-
sen. Dazu ist lediglich eine weitere Impulsintegration einzufiigen, die einer Verkniipfung
der Aufseren Beine eines Selbstenergie-Diagramms entspricht.

Im folgenden Kapitel wird der Druck pg der MQCD in einer mittels des NLoMs resum-
mierten effektiven Theorie perturbativ ausgerechnet. Infolge der Eichinvarianz in (5.13)
wird ebenso ein eichinvariantes Ergebnis zur Ordnung [, d.h. auf 2-Schleifen-Niveau,
fiir den Druck erwartet. Diese Berechnung wird in allgemeiner R¢-Eichung ausgefiihrt,
um ein manifest eichinvariantes Ergebnis zu erzielen. Insbesondere lasst sich damit die
Methode von Jackiw und Pi, d. h. die exakte Ausintegration aller unphysikalischen Fel-
der, bestéatigen.
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6 Perturbative Bestimmung des
Koeffizienten g

Eine perturbative Berechnung des Druckbeitrags aus der dimensional reduzierten effek-
tiven Theorie der MQCD ist aufgrund vorheriger Betrachtungen durchaus eine nicht-
triviale Aufgabe. Im Grunde kann die MQCD lediglich nicht-perturbativ behandelt wer-
den, da die auf IR-Divergenzen dimpfend wirkende Massenskala m ~ ¢?T der effektiven
Theorie eine Auswertung unendlich vieler Schleifen-Diagramme zur Bestimmung des
Drucks zur Ordnung ¢® zur Folge hat (vgl. (3.20) und (4.12)). Das Resummationsver-
fahren aus Kap. 5.2.2 ermoglicht hingegen eine perturbative Behandlung der MQCD,
da diese Methode die Stérungstheorie auf eine Potenzreihe in dem Schleifen-Parameter
[ umstrukturiert.

Das Ziel dieser Arbeit stellt die perturbative Bestimmung des Drucks pg der MQCD
aus (4.12) bzw. die eichinvariante Berechnung des Koeffizienten fg in (4.15) unter An-
wendung der Resummationsmethode (5.7) dar:

T 1
pa(T) :VIH/DAzeXp <—/ddaz §Trszl>

T y 1 [
= ;;CL(QZ =daCh (571;/[)4 [QG <E +8In ﬁ) + fc + 0(6)} . (6.1)

In der nachstehenden Rechnung wird fiir die effektive Kopplungskonstante bzw. effektive
magnetische Masse die Notation gy — ¢ bzw. mg — m verwendet.

Die Herleitung der mit dem NLoM resummierten effektiven Lagrangedichte und
der zugehorigen Feynman-Regeln wird zunéchst fiir SU(2) skizziert und anschliefend
ausfiihrlich fiir SU(NV) dargestellt. Die Ergebnisse aus der Berechnung der Schleifen-
Diagramme werden sowohl fiir SU(2) als auch fiir SU(N) bis zur zweiten Schleifen-
Ordnung présentiert und miteinander verglichen.

6.1 Herleitung der resummierten effektiven Lagrangedichte

6.1.1 Grundlage fiir das nichtlineare o-Modell
Ausgangspunkt ist die MQCD aus (4.10):

1
Ly =3Te F2, (6.2)

Fyy =—[Dy, D], Dy =0 —igAx.

i
g
Eine eichinvariante Methode Gluonen Masse anzuhéngen erfolgt iiber die Addition des
SU(N)-Higgs-Modells durch die Lagrangedichte aus (5.11):

Ly = Tr (D;®)(D;®) + p>Tr (9T®) + 2ATr (0Td)2. (6.3)
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6 Perturbative Bestimmung des Koeffizienten B¢

Damit die MQCD nicht verdndert wird, ist dieser massenerzeugende Term nach (5.8)
zu behandeln und wird durch das folgende Resummationsschema unter Einfiihrung des
Schleifen-Parameters [ addiert und subtrahiert:

Lo (VIX) = - [23(VIX) + £,(VIX) + £a(VIX) + Lrp(VIX)
— 1L, (VIX) = ILg(VIX) — chp(\/ZX)] . (6.4)

Dabei werden alle in der resummierten effektiven Theorie vorkommenden Felder X :=
Af,m®, ... mit [ skaliert. Der Eichfixierungsterm und der Faddeev-Popov-Geist-Term
stellt sich wie folgt dar:

Lo+ Lrp = 2—1£(G“)2 () Mt (6.5)
6G* = M.

Die Matrix M2 bezeichnet die infinitesimale Transformation der im Eichfixierungsterm
G° enthaltenden Felder. Aus spéter ersichtlichen Griinden wird in dieser Rechnung die
R¢-Eichung gewahlt:

1
Lot = 5% (8; A% + Emm®)?. (6.6)
Das Higgs-Modell geht schliefslich mit A, 4 — oo und einer nichtlinearen Parametri-
sierung der komplexen N x N-Matrix bzw. des skalaren Feldes ® in Abhéngigkeit der

(N? — 1) pseudoskalaren Goldstone-Bosonen 7 in das NLoM iiber:

L, = Tr (D;®)"(D;®). (6.7)
6.1.2 SU(2)
Die Parametrisierung fiir SU(2) ist durch
1
o = 5(0 +itm?) (6.8)

gegeben. 7% ist das Triplett der 2x2-Pauli-Matrizen und das Higgs-Feld o wird im
NLoM nichtlinear um den nichtverschwindenden Vakuumerwartungswert des skalaren
Feldes < ® >= v verschoben:

o? =v? — (792 (6.9)

Diese aus dem NLoM geforderte Bedingung entspricht der spontanen Symmetriebre-
chung des Systems um ihren Vakuumerwartungswert. Das Gluonfeld erlangt somit die
Masse:

gu
= —, 1
! (6.10)
Fiir die Summe aus (6.2) und (6.7) folgt mit (6.8):
1 a a 2 aoc Aa Cc 1 abe cae pAa Cc
" =7 (0:A% — 0; A7) + g™ AT AL, AS + 1926 beecde A2 AD AS AY (6.11)

+ Tr

T L) (] T, f T\ (] T4,
(<6¢—ZQEAZ'> <§O'—ZE7T >> <<8i—ngAi> (50—1777 >> .
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6.1 Herleitung der resummierten effektiven Lagrangedichte

Die Form des Feldstirketensors Fy; ergibt sich aus der Definition (6.2) und entspricht:

= 0;AY — 0; A} + ge" AYAS. (6.12)

be wird auch Levi-Civita-Tensor ge-

Die total-antisymmetrische Strukturkonstante e*
nannt.

Die Symmetriebruch-Bedingung (6.9) muss fiir perturbative Zwecke nach den pseu-
doskalaren Goldstone-Bosonen entwickelt werden. Dabei reicht die erste Ordnung der
Taylor-Entwicklung aus, da lediglich Terme bis zur 2-Schleifen-Ordnung benétigt wer-

den:

o= 1)2—(71'“)2:’0 1-—
1
= Qo= —;TI'G i + O(h). (6.13)

Daraus folgt mit Hilfe der gruppentheoretischen Relationen im Anhang (Kap. A.1):

1
L = 2TrF2 L2 + 9 v ALy - —A“@w + Sge e Al

to 1 s (n0m)? +0(W3A,7r ) (6.14)

Aus Symmetriegriinden ergibt der Term der Ordnung O(mwA?) keinen Beitrag. Die Ord-
nung O (72 A?) entfillt wegen der Jacobi-Identitit. Durch die Addition von (6.7) erlangen
die Gluon-Felder ihre Masse mit (6.10).

Die Wahl der Eichfixierung fallt auf die Re-Eichung aus (6.6), damit der unphysi-
kalische Mischterm mA{9;7® eliminiert wird. Der korrespondierende Beitrag aus den
Faddeev-Popov-Geistfeldern erfordert die infinitesimalen Eichtransformationen der Fel-
der durch

. a
O UD, A — UDU'  mit U=exp (-m%ﬂ) : (6.15)
g
woraus folgt:
SAY = 9w — ge®ewb AS, (6.16)
1 1
ot = — §gaw“ S 9¢ e ,bre, (6.17)

Damit ergibt sich fir die Eichfixierung und die Faddeev-Popov-Lagrangedichte:

Lyt + Lyp = (G“) — (V) ML (6.18)

5

— _~ (A A a\2
- 5 L 0,47 + emn)

1 1
— (Ca)* <ai(ai5ab _ geabcAlg) _ £m26ab _ ggeabcgmﬂ_c + §92£(ﬂ_0)26ab> Cb

+ O(xc?).
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6 Perturbative Bestimmung des Koeffizienten B¢

Nun lasst sich der vollstandige Ausdruck fiir die mit dem NLoM resummierte effektive
Lagrangedichte (6.4) in SU(2) angeben. Unter Beachtung des Schleifen-Parameters (
folgt bis zur geforderten Ordnung I* bzw. zur 2-Schleifen-Ordnung:

1 1
(0:45 = 0;42)° + 5¢ (0:A47)° + SmPAL A}

1
eff. — 4
+ % (8;m)? + %gm%%a + (8;(c)*)(Dic®) + Em2 P

1
+ gV1e™C AL ASO; AT + —gPle™e et AL AL AS A

4
1 1
+ §gﬂ€abc (81‘71'(1) A?T(c _i_g\/ieabc(ai(ca)*)A?cc _ §gﬂ§m€abcﬂ_acb(cc)*
192l abgsed,_a,_cq b d 12 ad cbe( a\*_b__c d
8m25 Yoy’ Oy <Y 1£6946% (") " e
_ = A2 _ A2 A _ = a2 T a._a
251(8Z B! 5™ [AS A 2[(&77 ) 2§m Imm
— 10 (™)) (8;c®) — EmP1e” ¢ + O(1%/2,12). (6.19)

Das Resultat ist eine resummierte effektive Theorie mit einem modifizierten massiven
Gluonpropagator, massiven Goldstone-Bosonen und Faddeev-Popov-Geistfeldern, die
in die perturbative Entwicklung der durch die Resummation modifizierten Wechselwir-
kungsterme eingehen.

Die Berechnung des Drucks der freien effektiven Theorie erfolgt durch die Terme zur
Ordnung [°. Die erste Korrektur des Drucks erfordert die Auswertung aller Terme zur
Schleifen-Ordnung '/ und I*, wobei nun auch der subtrahierte Beitrag aus der Resum-
mation in die Berechnung eingeht. Die daraus notwendige Betrachtung der sogenannten
Gegenterme tragen wesentlich zur Auswertung der ersten Korrektur bei.

Im folgenden Abschnitt wird die Herleitung der resummierten effektiven Lagrange-
dichte fir SU(N) dargestellt. Die SU(2)-Ergebnisse fiir die Koeffizienten aq, g des
Drucks der MQCD kénnen dadurch verallgemeinert werden. Insbesondere lasst sich fest-
stellen, ob die Koeffizienten farbzahlunabhéngige Groften sind. Bestétigt sich der Fall,
dann wire eine weiterfithrende perturbative Behandlung auf 3- und 4-Schleifen-Niveau
mit der einfacheren SU(2)-Theorie vorteilhaft.

6.1.3 SU(N)

Zur Herleitung der SU(N) effektiven Lagrangedichte wird eine alternative Parametri-
sierung, die sich durch folgende Exponentialform ergibt, betrachtet (vgl. [29]):

1 1 s —a.la
= (o +ir"n") = Svexp (” f > . (6.20)

Die Felder n'® miissen dabei eine Funktion der der Felder 7 ergeben, damit die Aqui-
valenz der beiden Parametrisierungen erfillt ist. Fiir den Real- und Imaginéarteil der
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6.1 Herleitung der resummierten effektiven Lagrangedichte

Parametrisierungen gilt:

1 1 a.la
50 =gucos <T ;T > , (6.21)
a.la
%iT“W“ = %m’ sin <T T ) . (6.22)
v

Zur Bestimmung der SU(N)-Parmetrisierung wird der Imaginérteil mit den SU(N)-
Generatoren 7% = 17 in der fundamentalen Darstellung (Kap. A.1) untersucht:

1 2Ta la
Tm% = 2V sin < T > (6.23)
(%

—Tarle _ 312thTch7T/¢z7_(/1;7_‘_/c + 152 4TaTchTdTeﬂ_laﬂ_lbﬂ_lcﬂ_ldﬂ_le
v v
4

- TerbreTdreTiTIg/agbylerldple/frle 4
31506

Daraus folgt:

2 6 20
Tor'0 = T  —_apbpepagbpe  — pa meqa pey Z-qa pgpa a9 4
3v2 5vt Tv6

o0
an 2n41
=Y (T2 (6.24)
7 (
= (2n 4+ 1)v?"

Zur vollstindigen Aquivalenz der Parametrisierungen muss die Bestimmung der Koeffi-
zienten a,, sukzessiv weitergefiihrt werden. Die Annahme, dass

(2n)!
(n!)?

gilt, muss noch fiir alle n > 3 bestétigt werden.

Die Koeffizienten ag = 1, a1 = 2, as = 6, ag = 20 reichen aus, um die effektive
Lagrangedichte bis zur Ordnung [? bzw. zur 4-Schleifen-Ordnung zu entwickeln. Die
Transformation (6.24) erfiillt insbesondere die Aquivalenz des Realteils (6.21) mit

(6.25)

Ay —

1 1
TaTb - = ab]l = (jabp - pabp TP 9
2N5 N+2(d + i fP)TP, (6.26)
so dass fiir SU(2) mit (6.9) folgt:

1 1 T\ 1 1(@)? 1 (a9)?
o2~ ()2 = - p— - - . 2
5 Vv (m2) 2?)008( ” > 5071 (6.27)

Die Herleitung der SU(N) effektiven Lagrangedichte erfolgt schlieflich mit der Parame-
trisierung des skalaren Feldes

1 1
¢ = §UV = —vexp(

(6.28)

2

27T’
v

mit (6.24), wobei V eine unitire Matrix kennzeichnet, d.h. VIV = 1 mit der N-
dimensionalen Einheitsmatrix 1.
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6 Perturbative Bestimmung des Koeffizienten B¢

Die zur MQCD zu addierende Lagrangedichte (6.7) lasst sich folgendermafen aus-
driicken:

L, =Tr [(aicp —igA;®) (8@ — igA; D)
- [(aiqﬁ)(ai@) +ig®! 4,00 — igd;dT A D + 92<I>TAiAi<I>] . (6.29)

Die SU(N)-Parametrisierung des skalaren Feldes ® in (6.28) wird bis zur 2-Schleifen-
Ordnung entwickelt:

2
o="2 exp (i—T“ﬂ'/a>
2 v

— g + Z'Taﬂ_/a _ lTaTbﬂ_/aﬂ_lb _ 32—2TaTbTC7TIa7TIb7T/C

1
+ TaTbTCTd la /b /c /d+O( )

303
1 1
= 5 +iT" — —T*Tlrn® — =TT TTn 7w + O(x%)  (6.30)
v v

1
= 0;® =iT"0;m" — ;T“Tb(ﬂa 0+ wl0m?) 4 O(nh). (6.31)

Die Aquivalenz der Parametrisierung (6.30) fiir N = 2 und der Parametrisierung (6.8)
ist wiederum ersichtlich und bestétigt somit die Richtigkeit der Transformation (6.24).
Unter Benutzung der gruppentheoretischen Relationen fiir SU(N)-Generatoren und
mit (6.10) folgt aus (6.29):
1

1 1
Lo = i(aﬂraﬁ — mAO;m® + §m2A§A§ + 59 feom® Abme

1 2
+ g % <N5ab5cd + dabe dcde) ﬂ_aﬂ_caiﬂ_baiﬂ_d

+O(n8, 73 A, 3 A?). (6.32)

Die d*c stellen total-symmetrische Strukturkonstanten dar und existieren fiir N = 2
nicht. Die Terme der Ordnung O(73, A%7) verschwinden aus Symmetriegriinden und der
Term O(72 A?) liefert wegen der Jacobi-Identitit keinen Beitrag.

Zur Eliminierung des unphysikalischen Mischterms wird analog zum SU(2)-Fall die
R¢-Eichung (6.6) verwendet. Der korrespondierende Beitrag der Faddeev-Popov-Geister
unterliegt wiederum den infinitesimalen Eichtransformationen

O UD, A —-UDU'  mit U= exp(—iglw?), (6.33)
g

woraus folgt:

SAY = 0w — gfrewb A, (6.34)
1
5 = — mw® + §gfabdﬂ_bwd
+ ég_2 <%5ab50dwd + dabedcdewd . fabefcdewd> 7_[_bﬂ_c. (635)
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6.1 Herleitung der resummierten effektiven Lagrangedichte

Damit ergibt sich fir die Eichfixierung und die Faddeev-Popov-Lagrangedichte:

Lgt + Lyp = (G“) — (V) M®L (6.36)

2€

— (Ca)* <ai(a 5ab fdbCAC))
§m25ac + gfabcfmw >

_ ( ) (Elég2£ﬂ_ (N(Sabé-cd + dabedcde _ fabefcde>> Cd

Die mit dem SU(N)-NLoM resummierte effektive Lagrangedichte besitzt unter Be-
achtung des Schleifen-Parameters [ folgende Form:

1 2 1 1

Lo =7 (0:A7 — 0;47)" + % (9 AD)? + g ALAL

1 *
+ (aiﬂ_a)2+§£m2ﬂ_aﬂ_a+(a( a)*)(aica)+£m20a Ca

N |

1
+ g\/ZfabcAi)A§aZA;L + Zg2lfabef0deA?A2AfA;l

+ lg\/z.fabc (81‘7Ta) Agﬂ'c +g\/ifabc(8i(ca)*)z4? c %gﬂgmfabcﬂ_acb(CC)*

1 g%
8 m?2

1
_ §g2lf (N(Sab(SCd + dabedcde _ fabefcde> ( )*ﬂ_bﬂ_ccd

( 5ab5cd + dabedcde> 7_l_atﬂ_cai7_(_bai7_(_d

1 2 1 o 1 2 1. o
— —1(0;AY)” — —mAlATAY — =1 (0;7*)" — = wir?
251((9@ B! 5™ LA7 A 2[(8, ) 2§m l

—1(0:(cV))(8;c®) — EmPL™ < + 0132, 1%). (6.37)

Die SU(N) effektive Lagrangedichte Leg. lésst sich fir N = 2 auf die Form Lg in (6.19)
durch folgende Ersetzung bringen:

fabc _ Eabc7 (638)
eabeecde — 5ac5bd _ 5ad6bc‘ (639)

Die total-symmetrischen Strukturkonstanten d®¢ ergeben fiir N = 2 keinen Beitrag.
Die Aquivalenz der Ordnung O(7*) in beiden Lagrangedichten wird dadurch sofort er-
sichtlich. Mit (6.39) ldsst sich der Term der Ordnung O(72c?) in (6.37) auf die Form
in (6.19) zurtickfithren. Aus diesem Grund werden in dieser Arbeit die Ergebnisse der
Schleifen-Berechnung fiir SU(NN) angegeben. Die explizit durchgefiihrten Rechnungen
in SU(2) wurden insbesondere durch die im Folgenden aufgezeichneten Rechnungen in
SU(N) bestétigt.
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6 Perturbative Bestimmung des Koeffizienten B¢

6.2 Berechnung der Schleifen-Diagramme

Der Vergleich der Lagrangedichten fiir allgemeine N und fiir N = 2 zeigt, dass fiir die
SU(N)-Theorie keine zuséitzlichen Vertizes auftauchen. Daher besitzen die Feynman-
Regeln bis auf die Farbzahl-Vorfaktoren dieselbe Struktur. Natiirlich lassen sich aus
obigen Bertrachtungen die SU(NN) Feynman-Regeln fiir N = 2 direkt angeben. Diese
korrespondieren selbstverstdndlich mit den Termen der SU(2)-Lagrangedichte. Im Fol-
genden wird daher der Fall fiir allgemeine N betrachtet.

6.2.1 Feynman-Regeln fiir Propagatoren

Zur Herleitung der Feynman-Regeln fiir die Propagatoren, Vertizes und Gegenterme
wird die Fourier-Transformation der Felder in den entsprechenden Termen der Lagrange-
dichte (6.37) betrachtet:

Al _/ ddp 7z'pm;1a( )_/ 7ip:vjla( ) (6 40)
P = (27T)d6 i(p) = pe i(p). .
Fiir die quadratischen Terme der Gluonen folgt somit:

_ d 2 _1/ ddp Aarm. 1—-1 Aa
[dtacear) =3 G ADy) AL

[Dij] ™t =p%6i; + (€1 = Dpipy, (6.41)

wobei [Dij]_l den inversen Gluon-Propagator kennzeichnet. Nach Invertierung dieser
Matrix folgt fiir den Gluon-Propagator D?jb(p) in allgemeiner R¢-Eichung:

. . [ DiDi 1
i,a "V\Z/)\m jib = ngb(p) =% dij — (1 — £)p2 ;ng} e (6.42)
:6ab —5ij + I;Zm—pQJ _ 1;11_1’; (6 43)
2+ m2  pEiEm? :
[0, — &2 ¢Bhd
= P 4 6.44
P2 + m2 +p2+£m2 (6.44)
=5 [Dro) (8- 25 ) + Do) 5]

=3 Dy;(p)
1 §
Dr(p) = ————, Dp(p)= ——> .
7(p) 2 +m2’ L(p) P2+ Em?2

Die Indizes T' bzw. L kennzeichnen den transversalen und den longitudinalen Teil des
Gluon-Propagators. Die analoge Behandlung der quadratischen Terme der Lagrange-
dichte fiir die Goldstone-Bosonen und die Faddeev-Popov-Geistfelder resultieren in fol-
genden Propagatoren, wobei die gestrichelte Linie den Goldstone-Propagator A2 (p)

40



6.2 Berechnung der Schleifen-Diagramme

und die gerichtete punktierte Linie den Faddeev-Popov-Geist-Propagator A% (p) in all-
gemeiner R¢-Eichung darstellen:

a a 1
a __;9__ b — Aﬂb(p) =0 bp72 §m2, (645)
A% (p) = §9 ! 6.46
N S0 =0 e (6.46)

6.2.2 Feynman-Regeln fiir Vertizes

Bevor eine Auflistung der Feynman-Regeln fiir die Vertizes der korrespondierenden Ter-
me der SU(N)-Lagrangedichte wiedergegeben wird, ist die Darstellung der Herleitung
einer Feynman-Regel am Beispiel der Ordnung O(7*) aufgezeichnet. Die detaillierte Il-
lustration der Herleitung ist sinnvoll, da die Giiltigkeit der Feynman-Regeln die Basis
der anstehenden 2-Schleifen-Berechnungen bildet.

Aus dem Term der Ordnung O(7%) in (6.37) folgt iiber die Fouriertransformation der
Felder (6.40):

1
- / dlz L(7%) = — gfn—é < sbged 4 dabed0d6> / d?z m 7 dmb 9 (6.47)
2 ~
_ 19 l ( 5ab50d dabedcde> ////qzs 7-(‘1 C(T)T{'d(s)

O(p+q+r+s).

Unter Beachtung der Symmetrien (a < ¢, b <> d) ergeben sich fiir den folgenden Aus-
druck elf weitere Moglichkeiten:

2 2
2 <N5ab5cd + dabedcde> qisi — <N5ab5€d + dabedcde> (pi"“i +pi5i + Qi + Qisi)
2
+ (Néacébd + d“cedbde> (Piqi + pisi + qiri +1i8;)
2
+ (Néadébc + dadedbce) (pigi + piri + qisi + 735i) -

Die Vertauschungsméglichkeiten der vier Goldstone-Felder im Impulsraum erfordert
schlieflich die Multiplikation des Faktors 4!, so dass fiir die Feynman-Regel des O(74)-
Vertex folgt:

1 g%l

Fabcd (7‘( ) 4 —
m

2

[ <N5“b56d + dabedCde> (piri + pisi + qiri + qiS;)
2

+ (N(S“Cébd + dacedbde) (Piqi + pisi + qiri +1i5;)

2
+ <N5“d5bc + d“dedbce> (Piqi + piri + qisi +1i8;) | - (6.48)
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6 Perturbative Bestimmung des Koeffizienten B¢

DoAY = —g?L | f f(8udjm — Simj1)
+ f“cefbde(éijélm - 5im5jl)
+ f‘ldefbce(éijélm — 5zl5jm)]

q
— T (A%) = —igVLf™((p — q)idi; + (g — r)idj + (r — p);64)
pr
a,? a,t ¢l
q — I‘?bc(sz): ——’L'g\/Zfabc(’l“ +Q)z
LN ?
¢ a,t b
gp
C g = TPAP)= —igVif™er
. AR N
c ' b
a
I
ks 1
Soa o = D™= JgViEmf
AN 2
. T .
¢ b
a b
N D v
X1 bed 4
SN = reee = (6.48
/, r\\ ()= ( )
d c
a b
N p /
> 1 2
s ..V,. — Fabcd 7T262 — —92l£ (_5ad5bc + dadedbce _ fadefbce>
RN (=398 §
d c

Abbildung 6.1: Feynman-Regeln der effektiven resummierten Theorie (6.37).
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6.2 Berechnung der Schleifen-Diagramme

Alle weiteren Feynman-Regeln werden analog zu diesem Beispiel hergeleitet und sind
in Abbildung 6.1 aufgelistet. Des Weiteren existieren wegen der Resummation im sub-
trahierten Teil der Lagrangedichte (6.37) drei Massenterme, die jeweils einen Vertex als
Gegenterm darstellen:

i,a N gb o= TP (A?%) =m?16;6", (6.49)

a-=-%X--1p = TPz =em6?, (6.50)
p

a- - X---b = TP =emilev. (6.51)
p

Das Kreuz korrespondiert zu den Selbstenergien der Theorie, die zur Bestimmung der
Masse ausgewertet werden miissen. Der genaue Wert der Masse ist fiir die Berechnung
des Drucks bzw. der geschlossenen Feynman-Diagramme zunéchst irrelevant. Die aus
(6.49)-(6.51) resultierenden geschlossenen Schleifen-Diagramme gehen in die Auswer-
tung der 2-Schleifen-Berechnung bzw. in die erste Korrektur zur Ordnung I ein.

Damit erfolgt die Auswertung folgender Feynman-Diagramme fiir die Bestimmung
des Drucks bis zur Schleifen-Ordnung [':

/’\\\ ””
+ o0+ : (6.52)
\s,/ ‘

//X\ X
+ + 00+ Ay (6.54)
\§//

Die ersten drei Schleifen-Diagramme tragen zur Ordnung [° bei. Die Auswertung
dieser Diagramme resultiert in die Bestimmung des Drucks der effektiven freien Theo-
rie. Zur Berechnung der ersten Korrektur ist die Entwicklung der sieben 2-Schleifen-
Diagramme und der drei Gegenterme notwendig. Diese tragen zur Schleifen-Ordnung
I bei. Da das SU(N)-NLoM eine Eichtheorie darstellt, ist ein eichinvariantes Ergebnis
fiir den Druck in den einzelnen Ordnungen zu erwarten, d.h. (6.52), (6.53) und (6.54)
miissen jeweils ein eichinvariantes Ergebnis erzielen.

In den folgenden Abschnitten werden die Rechnungen der drei Pakete von Schleifen-
Diagrammen skizziert und anschliefend zu einem Gesamtresultat fiir [ = 1 zusammen-
gefasst. Dadurch wird die Bestimmung der Koeflizienten ag und g erméglicht.
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6 Perturbative Bestimmung des Koeffizienten B¢

6.2.3 Schleifen-Ordnung [°

Der thermodynamische Druck der resummierten effektiven Theorie (6.37) zur Schleifen-
Ordnung 1° ergibt sich zu:

pan(®) = [aasln @yl oo (- [delan). 65

1 a a 2 1 a 1 a Aa
L0 =7 (0:A] = 0 A7)" + o2 (9:A7)° + Sm? A A

28
+ % (0m)? + %gm%awa F (0 (Bre™) + Em2e™ . (6.56)

Fiir die Zustandssumme folgt mit d = 3 — 2e:

Z = /[dAg] exp (-% /ddac A% [6;5(—02 +m?) + (1 — £1)0;0] A?)

' / [dm®] exp <—% / dz 7 [0} + €m?] wb>

: / [d(c?)*][dc?] exp (-% / Az (c*)* [-07 + &m?] cb> - exp(69)

= H (@ +m® P2 +m?)] T 0+ m?) 2T 0%+ m?) ™ - exp(6)
—H p* +m?) H&W [T@* +&m®) 2 T + €m*) T2 - exp(5°%). (6.57)

Dabei Wurde die Gaui?,—lntegratlon aus (2.15) und (2.16) benutzt. Der dritte und vierte
Faktor heben sich gegenseitig weg und der zweite Faktor trégt laut Nernst’schem Theo-
rem nicht zur Thermodynamik bei, da er eine temperaturunabhéngige Konstante ist.
Die Summation iiber die Farbindizes ergibt §%¢ = N2 — 1 und somit folgt fiir den Druck

(1) = (N? = 1) 3 n(p? +m?) !

d
— —(N2_1)T/ (;lﬂ];d ln(p2+m2)
3

= (N2 = )T2= +0(e) (6.58)

mit Zp =V (gil;)d und dem in dimensionaler Regularisierung ausgewerteten Integral

dd
[ S Zmr mt) = [ +m)
p

(2m)
:_m_3 1+e 21n(£)+§ +O(e?) (6.59)
o6 2m 3 ' .
d.h. fiir e — 0 folgt fp In(p? +m?) = _ZL_;'

Die resummierte effektive Theorie liefert also bereits auf 1-Schleifen-Niveau einen
eichinvarianten Beitrag zum Druck. Die Ursache hierfiir liegt in der eichinvarianten
Einbindung einer Gluon-Masse. Ist die effektive Masse der Theorie Null, so verschwindet
der Beitrag.
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6.2 Berechnung der Schleifen-Diagramme

6.2.4 Schleifen-Ordnung [!

Der Beitrag des Drucks der MQCD zur Schleifen-Ordnung ' erfordert die Auswer-
tung der insgesamt zehn 2-Schleifen-Diagramme aus (6.53) und (6.54). Die Schwierig-
keit dieser Rechnung besteht in der Reduzierung der teils langlichen Schleifen-Integrale
auf bekannte Standardintegrale. Die Struktur der aus den Schleifen-Diagrammen re-
sultierenden Integrale wird je komplexer, desto umfangreicher die Impulsstruktur der
Feynman-Regeln sich darstellt. Die Auswertung des Schleifen-Diagramms der Ordnung
O(A3) (vgl. die Feynman-Regel in Abb. 6.1) verlangt diesbeziiglich gréfte Sorgfalt. Das
Auftreten von zwei verschiedenen Massenskalen m? und £€m? im Gluon-Propagator berei-
tet der analytischen Rechnung einen zuséitzlichen Umstand. Im vorliegenden Abschnitt
wird zunéchst die Berechnung der drei Gegenterme aufgezeigt. Die Skizze der Berech-
nung des 2-Schleifen-Diagramms der Ordnung O(A*) soll als Beispiel fiir alle iibrigen
Diagramme wiedergegeben werden, da sonst der Rahmen der Diplomarbeit gesprengt
werden wiirde.

In der 2-Schleifen-Ordnung treten zwei Standardintegrale auf: das linear divergente
Integral A(m?) und das logarithmisch divergente Integral I(m?, m3, m3). Die dimensio-
nale Regularisierung erweist sich als geeignetes Schema zur Behandlung der divergenten
Integrale (vgl. 4.16). Die zwei Standardintegrale besitzen folgende Losungen (vgl. auch
Kap. A.4):

1 _m

m = [1 + € <21n% —|—2) +O(€2)] ; (6.60)

p
1
/q (P? +m3)(¢® +m3)((p — @) +m3)

1 o 1
= —+tnmh—+—-+4+0 . 6.61
[4e+nm1+m2+m3+2+ (6):| ( )

Die drei Gegenterme aus (6.54) ergeben den folgenden Beitrag zum Druck:

X X
{:} O ey ] (6.62)
=1 [y [opwrgaen + [ arorae) - [ arorme)].

pa.or(T) =T

Der Vorfaktor 1/2 des Gluon- und Goldstone-Boson-Gegenterms spiegelt den Symme-
triefaktor S = 2 der beiden Diagramme wider, da weder der Gluon- noch der Goldstone-
Boson-Propagator eine definierte Impulsrichtung besitzen. Fiir den Faddeev-Popov-
Geist-Gegenterm muss hingegen lediglich das Vorzeichen aufgrund des fermionischen
Charakters der Schleife berticksichtigt werden.

Mit (6.44)-(6.46) und (6.49)-(6.51) folgt somit:

1
paer(T) = §m25T5aa/
p

A U S SN
p2+m2 p2+m2 p2+é‘m2 p2 +§m2 p2 +§m2

- %mQZT(d —1)(N?% — 1) A(m?). (6.63)
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6 Perturbative Bestimmung des Koeffizienten B¢

Die rdumliche Dimension wird dabei durch §;; = d = 3 — 2¢ gekennzeichnet. Der Beitrag
der Faddeev-Popov-Geistfelder eliminiert wie erwartet die Eichabhéngigkeit bzw. die
Abhéangigkeit vom Eichfixierungsparameter . Mit (6.60) ergibt sich folgendes Resultat:

pG,CT(T) = —Z(N 1) T + O( ) (6.64)

47
Im Folgenden wird die Berechnung des Schleifen-Diagramms der Ordnung O(A%*)
skizziert. Die Notation

1
< Schleife >, = is—// < Vert. > -...- < Vert. > - < Prop. > -...- < Prop. > (6.65)
nJpJq

kennzeichnet den Ausgangspunkt der je n = 1,...,7 auszuwertenden Schleifen. S, ent-
spricht dem Symmetriefaktor des n-ten Schleifen-Diagramms und das Vorzeichen ist
von der Existenz einer fermionischen Schleife abhéingig. Die Integration erfolgt unter
Verwendung der Feynman-Regeln fiir die Vertizes aus Abb. 6.1 und Propagatoren aus
(6.42)-(6.46).

Das erste Schleifen-Diagramm liefert folgenden Beitrag:

{73 4 [ .
-5 | [T a0, D)

— §g2lfacefcae (5@]6lm _ 6]l6zm — 5215]m + 51]6lm)

<

/ Dij(p) Dim (q)
=5t s | [ D)y - 2040) D)

B d—1 ¢ d—1 ¢
_Cl/p/q [<p2+m2 +p?+§m2> <c12+m2 +q2+5m2>

. 5” pzp] o plp]
pr4m? - mA(p? +m?)  m2(p® + &{m?)

) 5@] i qiq; . q:4;
@ +m?  m2(¢®+m?)  m?(q® +E{m?)

=0 [(d—1)2A%(m?) + £2A4%(Em?) + 2(d — 1)EA(Em®) A(m?)]

_Cl// d+ p2 + 7 ' o+ (pzqz)(pyqj) - 51_224_ (PiQigfijj)
a| @ +m2)<q Fm?) (p? +Em?)(¢* + m?)
721_22 + (piQig](ijJ') (pz‘h)(p]‘b)
T @) T P e +5m2)] |

1 ace grcae 1
Cy = Zg%f feae = —ZgQZN(NQ —1).
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6.2 Berechnung der Schleifen-Diagramme

Die Kontraktionen der total-antisymmetrischen bzw. total-symmetrischen Tensoren
sind im Anhang (Kap. A.1) aufgefiihrt. Die Umformulierung des Ausdrucks

p2 m2

=1- 6.67
P2 + m2 P2 + m2 (6.67)

ist zur Reduzierung auf das Standardintegral (6.60) vorteilhaft, da in dimensionaler
Regularisierung fp 1 =0 ergibt. Auferdem gilt mit d = 3 — 2¢

1

(pia:) (pjgj) = 5p" ", (6.68)

so dass fiir (6.66) das folgende Resultat erzielt wird:

{:}i:} =g’ IN(N? - 1)

1, 3. 3 1
. 2 2 g2 2 g2 _
[A(m)( 74+ 4+4d>

+ eAlem)a@?) (~5a+1-57)

+ §2A4%(6m?) (—i + ﬁ)} : (6:69)

In Feynman-Eichung (£ = 1) und in unitérer Eichung (£ — o) folgt:

= 1
{:‘}{:} = QI - dld - ) A ?), (6:70)
(6200) oynina  vao ov (1 3, 3 1
{:}i} =) 2IN(N 1)A(m)< e ) IR (X2

Kontrollrechnungen in Feynman-Eichung und unitdrer Eichung bestétigen das vorlie-
gende Ergebnis.

Die Auswertung der niichsten Schleife der Ordnung O(A3) ist mit gréRerem Aufwand
verbunden. Beim Verbinden zweier Vertizes ist auf die korrekte Umbenennung der Im-
pulse in den Feynman-Regeln zu achten. Fiir die Reduzierung der entstehenden Integrale
auf die beiden Standardintegrale A?(m?) und I(m?,m3, m3) bieten sich folgende Um-
formulierungen an:

4 4
p .22 m
P mz P +p2+m2’
1
(pigi) = —5((p—q)2—p2—q2)-

Alle in der 2-Schleifen-Berechnung auftauchenden Integrale und das Ergebnis ihrer Re-
duzierung auf die beiden Standardintegrale sind im Anhang (Kap. A.6) aufgelistet.
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6 Perturbative Bestimmung des Koeffizienten B¢

Das Schleifen-Diagramm der Ordnung O(A?) liefert folgenden Beitrag:

@ 12 //Fgfbf (A%)rdef (A% Db (p) D3 (q) Dy (p — q).

Das Ausmaf dieser Berechnung wird offensichtlich, wenn dieser Ausdruck ausgeschrie-
ben wird:

/ / (0 + )8 + (q — 2p)id1 + (p — 24),041]

[_(p + Q)O6mn + (p - 2(1) 6110 + (q - 2]) mo]

djm PjPm p]pm
[p* +m?  m2(p* +m?)  m2(p® +&m?)
[ Oin 4iGn qiGn
Lg% +m?  m2(q? +m?) 2(¢% + &m?)
[ Sto (P—C])(p 2o N (r—q)ilp—qo }
Lp—@)24+m2  m?*((p—q@?+m?)  m%((p—q)%+E{m?)

Nach langer Rechnung ergibt sich folgendes Resultat:

@ =g’ IN(N? - 1)
o o (1, 3 1
'[A <m><zd—1—6‘@>
oo o (1 11
+ Algm?)am?) (56 - ¢+ 356+ 5)
+ aem?) (36 - €+ 56 1)
16

15
+ m2I(m? m? m?) (——d—i— >

+ m2I(¢m? Em?,m?) <_Z£ + %)] , (6.72)

@ D3 2N - - 1) [20) - T )], (67
@@%Nw -y [ (30- 5 - 1)

+ m2I(m? m? m?) <—§d + g)} : (6.74)

Kontrollrechnungen in Feynman-Eichung und unitirer Eichung bestatigen das vorlie-
gende Ergebnis.

Die von Jackiw and Pi [28] angewandte Ausintegration aller unphysikalischen Felder
impliziert die Durchfiihrung der Rechnung in der effektiven massiven Yang-Mills-Theorie
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6.2 Berechnung der Schleifen-Diagramme

bzw. im NLoM in unitirer Eichung. Demnach wiirde die Auswertung der beiden rei-
nen Gluon-Schleifen-Diagramme fiir £ — oo ausreichen und die Summe aus (6.71) und
(6.74) das Gesamtresultat reproduzieren. Das Ziel dieser Arbeit ein manifest eichinva-
riantes Ergebnis zu erzielen wird dadurch erreicht, dass alle eichabhéngigen Terme der
beiden Gluon-Schleifen durch die eichabhéngigen Beitrdge der iibrigen fiinf 2-Schleifen-
Diagramme eliminiert werden. Die Ergebnisse dieser Schleifen-Diagramme werden im
Folgenden aufgelistet:

fnny =1 [ [reean e (an) A ()as @D e - o
~_.7 pJq
— 2IN(N? - 1) [éA({mQ)A(mQ) + <%§ - %) A%(em?)
1 1 2 2 2 2
Enny (28 N (v ) [42(n?) — T, ). (676)
. . abc de ce a
=g [ A sl s @ e o
~-d
=g¢’IN(N? - 1) [—iA(@“mQ)A(mQ) + (—é£ + é) A?(Em?)
1 1 2 2 2 2
+ (E — Z£> m=~I(§m=,§Em=,m?)
- éém?f(sm%sm%smﬂ : (6.77)
s 2D _ ZOIN(N? = 1) [A%(m?) = m?I(m?,m?, m?)] (6.78)
-
. : A .
B ;__ - % /p/qrabC(WCQ)Fdef (r*)AY (p) AL () A (p — q)
= % GPIN(N? — 1)E2m2I(Em?, Em?, €m?), (6.79)
. : A .
____ (5;1) éQQZN(NQ _ 1)m2I(m2,m2,m2)- (680)
-

Diese drei Schleifen-Diagramme heben bereits den grofiten Anteil der Eichabhéngigkeit
auf. Die Summe iiber die ersten fiinf Diagramme resultiert lediglich in einen eichabhén-
gigen Restbeitrag von % GPIEN(N? — 1)A?%(ém?). Damit ist bereits ein eichinvarianter
Beitrag zum Standardintegral I(m3,m3,m3) bzw. zum Koeffizienten des e-Pols, d. h.

agq, erzielt worden.
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6 Perturbative Bestimmung des Koeffizienten B¢

Die letzten beiden Schleifen-Diagramme eliminieren den eichabhéngigen Beitrag zum
Standardintegral A%(m?):

S -7 pJq
1 1 _N?—
=w%<§NMﬂ—U—Z§ ~ )M@ma (6.81)
TN (=) 2 (1 n2 IN2-1\ o o
I — — _
\\/‘1\—,/ gz<8N(N 1) = ;= ) A%(m?), (6.82)
N T
.'/ 1 a0C al C
=g [rteeinteinto
2
_ (% N 1)+ >A2(§m2), (6.83)
|
N (£=1) 2 l 1N2 2/, 9
I z( TVOV? = 1) 4 g | A(m?), (6.84)

~=-7

Die Kontraktion iiber die total-symmetrischen Strukturkonstanten stellt sich dabei wie
folgt dar:

(N2 — 4)(N2 — 1)

dabc dabc _
N

(6.85)

Die Summe iiber alle sieben 2-Schleifen-Diagramme ist eichinvariant und ergibt den
folgenden Beitrag zum Druck:

1
pep =g ITN(N? —1) [(——dQ +d— E) A2%(m?)

4 (——d+ ig) 2I(mQ,mZ,mQ)} : (6.86)

Der vollstiandige Beitrag des Drucks zur Schleifen-Ordnung {! inklusive der Beitriige aus
den Gegentermen ist mit (6.60) und (6.61):

pap =g ITN(N? —1) [<—id2 +d— —> A?%(m?)

16
+ (—%d+ ig) 2I(m2,m2,m2)}
+ oml(d — 1)(N? ~ D) A(m?). (687)

2

Damit ist der Druck der MQCD pg bis zur perturbativen Schleifen-Ordnung 1! ge-
geben. Ein Koeffizientenvergleich mit (6.1) ermdglicht schlieflich die Bestimmung der
Koeffizienten ag und Bg.
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6.3 Das Gesamtresultat des Drucks der MQCD

6.3 Das Gesamtresultat des Drucks der MQCD

Die in Kap. 6.2 durchgefiihrten Auswertungen der Schleifen-Diagramme wurden zu-
néchst fiir die resummierte effektive Theorie in SU(2) (6.19) realisiert. Die SU(2)-
Berechnungen stellten sich als ein erfolgreicher Test fiir das Resummationsverfahren
(6.4) dar. Die Ergebnisse dieser Berechnungen wurden insbesondere durch eine Inte-
grationsroutine mittels des sogenannten FORM-Pakets [30] bestétigt. Die Vorausset-
zung fiir die Giiltigkeit der Ergebnisse besteht jedoch in der korrekten Herleitung der
Feynman-Regeln (vgl. Abb. 6.1). Im Ubrigen stimmen die SU(2)-Ergebnisse mit den
in dieser Arbeit vorliegenden SU(N)-Ergebnissen iiberein, was als weiteres Indiz fiir
die Aquivalenz der Parametrisierungen (6.8) und (6.28) bei gegebener Transformation
(6.24) bzw. fiir die Aquivalenz der Lagrangedichten (6.19) und (6.37) gewertet werden
kann.

Die in dieser Arbeit aufgezeichnete Darstellung der Berechnung in SU(NV) sollte also
zum einen die SU(2)-Ergebnisse bestétigen und zum anderen zeigen, ob eine Farbzahlab-
héngigkeit der Koeffizienten ag und (g vorliegt. Bei Farbzahlunabhéngigkeit wire dann
eine weitere perturbative Entwicklung in hoheren Schleifen-Ordnungen in der einfacher
zu behandelbaren resummierten effektiven SU(2)-Theorie vorteilhaft.

Zur Bestimmung der Koeffizienten des Drucks der MQCD werden die vorliegenden
Ergebnisse mit (6.1) verglichen:

T 1
pa(T) :Vln/DAiexp (—/ddx §Trszl>

] g
?;CL(J;Z = N3(N? - 1) (4971‘)4 [ac (% +8In ﬁ) + Ba + 0(6)} . (6.88)

Der Koeffizient des e-Pols bzw. aq ist bereits bekannt (vgl. [10]):

43 157 5
= — ——— 1 ~0,1 15. .
ag 9% 61447T 0,195715 (6.89)

Die Ergebnisse aus der 1-Schleifen-Berechnung (6.58) und der Auswertung der 2-
Schleifen-Diagramme (6.86) und Gegenterme (6.63) sind im Folgenden zusammenge-
fasst, wobei gy die effektive Kopplungskonstante der MQCD und mg die durch das
NLoM eingebundene effektive Masse ist:

pep(T) = = (N? = 1)TD(m,), (6.90)
1
pc,or(T) = §mélT(d - 1)(N? = 1)A(my), (6.91)
1 1
Py = GAITN(N? 1) [<—Zd2 d— 1-2) A2(m2)
3 15
+ <—Zd + 1—6> mé](m%,m%,mé)} : (6.92)
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6 Perturbative Bestimmung des Koeffizienten B¢

Die Resultate der insgesamt drei in dimensionaler Regularisierung ausgewerteten In-
tegrale sind mit d = 3 — 2e:

D(m¥) = /pln(p2 +md) = —?—% [1 + € <21n <L> + 2) 0(62)] ,

2ma
(6.93)
1 maG A 2
Amé)= | —— =—-—""11 2ln — 42 O 6.94
(mg) /pp2+mé 47T[+6< anG+>+ (6)]7 ( )
I mimty) = [ 1
Y pJq (0 +mg) (@ +mg)((p — q)* + m§)
1 [1 i1
= |+ 4 . .
1672 {46 e Ta T O(E)} (6.95)
Somit ergibt sich fiir den Druck
m3
pe(T) = (N? = 1)T =<, (6.96)
’ 67
2 m,
pa,or(T) = —I(N” - 1)ET’ (6.97)

3 m2 21 m?2 1 [ 1
pé,n =p *TIN(N? - 1)g3 & - _¢ (— ity 5)

M1716 (4m)2 16 (4m)? \4e 3mg
m2
- 2(452 + O(e)} , (6.98)

wobei in (6.96) und (6.97) bereits € — oo gesetzt wurde. Mit mg = C¢g*T und g3, = ¢*°T
(vgl. (4.7) und (4.11)) folgt

6

pao(T) =C3(N? - 1)g—7TT4, (6.99)
96

pe.or(T) = = COUN? = 1) =T, (6.100)
T

/

P 2 2 g° 21 (1 A
: =C*IN(N*- -1 —+41
24 ( ) c +4ln

(6.101)

mit z.B. C' = 0,28 fiir N =2 (vgl. 5.13).

Der Beitrag des Drucks der resummierten MQCD triagt erwartungsgemafs fiir jede
Schleifen-Ordnung ! zur Ordnung ¢® bei. Infolge der eichinvarianten Einbindung einer
effektiven Masse existiert bereits ein physikalischer Beitrag ab der 1-Schleifen-Ordnung,
d.h. der Koeffizient (g ist mit der resummierten effektiven Theorie (6.37) perturbativ
bestimmbar. Die Behandlung von UV-Divergenzen mittels dimensionaler Regularisie-
rung fiihrt auf einen Anteil zur Ordnung ¢%In g bzw. zum Koeffizienten aq. Im Folgen-
den werden die Koeffizienten durch den Vergleich der Resultate (6.99)-(6.101) mit (6.88)
bestimmt und diskutiert.
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6.3 Das Gesamtresultat des Drucks der MQCD

6.3.1 Der Koeffizient ag
Aus (6.101) lasst sich der Koeffizient des e-Pols direkt ablesen:

21 C?
!/ 2
ag =~ 2" l (6.102)

~ — 1,015582] firz.B. N=2 C=0,28.

Es ist festzustellen, dass oy nicht ag aus (6.88) entspricht. Zum einen ist die Relation des
Koeflizienten des e-Pols zum Koeffizienten des Logarithmus iiber die UV-Divergenzen
regulierende Impulsskala nicht &dquivalent

afy (% +4In ﬁ) £ ag (% +8In ﬁ) (6.103)
und zum anderen ist ag laut Kajantie et. al [10] eine farbzahlunabhéngige Groke. Zwar
ist der Koeffizient der effektiven Masse C' ebenfalls farbzahlabhéngig, jedoch besitzt er
aufgrund der dafiir zu bestimmenden gap-Gleichungen bzw. Selbstenergie-Diagramme
der resummierten effektiven Theorie (6.37) die Abhiingigkeit C ~ N(N? — 1), so dass
ag, im Gegensatz zu (6.89) insgesamt einer farbzahlabhéngigen Grofe entspricht.

Da der Druck der QCD bis zur Ordnung ¢%Ing bekannt ist, muss die resummier-
te MQCD nach der Auswertung unendlich vieler Korrekturen des Schleifen-Parameters
I =1 den Wert aus (6.89) reproduzieren. Aufserdem wiirde ein verédnderter Wert des
Koeffizienten ein e-Pol-abhéngiges Resultat des QCD-Drucks (4.17) bedeuten, was zu
einer unphysikalischen thermodynamischen Grofse fiihren wiirde. Es besteht daher die
Erwartung, dass bei der Auswertung der nichsten Schleifen-Ordnung /2, in der infolge
des resummierten Beitrags der Lagrangedichte 2-Schleifen-Gegenterme auftreten, der
Koeffizient ag aus (6.102) wieder subtrahiert wird und die Auswertung der darauf fol-
genden Schleifen-Ordnungen die korrekte Groke af, mit einer numerisch vernachléssig-
baren Farbzahlabhéngigkeit liefert. Anderenfalls wire die Methode der Resummation
zur Bestimmung des thermodynamischen Drucks der MQCD nicht haltbar.

6.3.2 Der Koeffizient (g

Die Werte des endlichen Beitrags bzw. des Beitrags der Ordnung ¢%, d.h. des Koeffizi-
enten g, erschliefen sich aus dem Vergleich der Resultate (6.99)-(6.101) mit (6.88):

128 C3
Pap =—573T (6.104)
=3,630132  fiirz.B. N=2,C=0,28,
C3
Ba.or = — 64lm7r3 (6.105)
= —5,445198]  fiirz.B. N =2,C =0,28,
15 2\ C? ,

=0,196301/  firzB. N=2,C =0,28.
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6 Perturbative Bestimmung des Koeffizienten B¢

Der vollstiandige mit (6.88) vergleichbare Ausdruck des Koeffizienten (g ergibt sich
aus der Summe der drei Teilergebnisse. Das Gesamtresultat entspricht schliefslich dem
Beitrag des Drucks der MQCD nach Abbruch der perturbativen Berechnung in der
Schleifen-Ordnung I':

ﬂG|1:1 = ﬂG,lO + ﬁG,CT + ﬁé,ll

15 2\ C? 64 C3
= | =4+21ln= ) =72 - ——_73 1
(2 n3> N2 3 N3 (6.107)

= —1,618765 firz.B. N=2, C=0,28.

Damit ergibt der Druck der resummierten MQCD

pa(T) | Pco(T)+pgn(T) +pacr(T)
M726T4 =1 - M726T4 -
= N3(N? - 1)9—6 ag E a4 Bali—y + O(e) (6.108)
(4m)4 € 2mg =1

mit ag, aus (6.102) und fBgl,_, aus (6.107).
Zur Untersuchung des Konvergenzverhaltens des Koeffizienten S¢ in der resummierten
effektiven Theorie ist der Vergleich der Werte aus dem Beitrag der Schleifen-Ordnung

19 und aus dem vollstéindigen Beitrag der Ordnung I! sinnvoll:
128 C% 4
ﬁG,lO = ?FTF (6109)
=3,630132 firz.B. N=2,C=0,28,
Ban =Bapn + Bacr (6.110)
15 2\ ., C? , c®

= —5,2488971  fiirz.B. N =2,C =0,28.

Betragsméakig ist der Wert der ersten Korrektur etwa 150% grofer als der Koeffizient der
freien effektiven Theorie. Die Ursache ist der resummierte Beitrag (6.105), der natiirlich
dieselbe Grofenordnung besitzt wie der Beitrag zur Ordnung 1° (6.104). Die Abhiingig-
keit des Koeffizienten in der Farbzahl N und somit entsprechend in den Koeffizienten
der effektiven Masse C &dndert wenig an diesem Umstand. Eine genauere Analyse des
Konvergenzverhaltens von (g ist allerdings erst nach weiterem Fortschreiten in der per-
turbativen Entwicklung moglich. Eine zufriedenstellende Analyse ist dann zu erwarten,
wenn die néchsten Korrekturen in der resummierten effektiven Theorie so klein werden,
dass (g fiir I = 1 gegen einen festen Grenzwert konvergiert. Es ist anzunehmen, dass
der Beitrag der in der Schleifen-Ordnung I? auszuwertenden 2-Schleifen-Gegenterme mit
dem Beitrag der reinen 2-Schleifen-Diagramme (6.106) betragsméfig zu vergleichen, d. h.
klein gegeniiber dem Beitrag der 1-Schleifen-Gegenterme ist, da die Werte (6.104) und
(6.105) ebenfalls von derselben Grofenordnung sind. Daher liegt die Vermutung nahe,
dass die Korrektur in der Schleifen-Ordnung /2 insgesamt vom Betrag her kleiner sein
wird als die erste Korrektur in I!. Der Beitrag der reinen 3-Schleifen-Diagramme konnte
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6.3 Das Gesamtresultat des Drucks der MQCD

daher bereits Aufschluf iiber das weitere Konvergenzverhalten in der nachsten Ordnung
13 geben.

Die Tatsache, dass die erste Korrektur des Drucks der MQCD betragsméafig grofier ist
als der Beitrag der freien Theorie, ist der Resummation geschuldet. Die Annahme, dass
diese Korrektur gleichzeitig den grofsten Beitrag zum Koeffizienten (g liefert bzw. die
weitere perturbative Behandlung ein zufriedenstellendes Konvergenzverhalten erzielt,
kann moglicherweise durch die Auswertung der néichsten beiden Schleifen-Ordnungen 12
und 2 bestitigt werden. Diese Berechnungen miissen dabei fiir allgemeine N durchge-
fithrt werden, da die Koeffizienten (6.102) und (6.107) farbzahlabhéngige Grofen dar-
stellen. Ist die Farbzahlabhéngigkeit des Koeffizienten g schliefslich numerisch gering,
so kann das in dieser Arbeit angewandte Resummationsverfahren als grofsen Erfolg an-
gesehen werden. Dazu ist allerdings auch die Kenntnis des Koeffizienten C nétig, die eine
Auswertung der gap-Gleichungen fiir allgemeine N bis zur entsprechenden perturbativen
Ordnung erfordert.

Nach der eventuellen Feststellung einer zufriedenstellenden Konvergenz des Koeffizi-
enten Sg und seiner geringen numerischen Abhéngigkeit in der Farbzahl N kann der
mittels Resummation ausgerechnete Druck der MQCD (6.108) in den Gesamtdruck der
QCD (4.17) eingegliedert und mit bekannten Gitterdaten verglichen werden (Kap. 4.2.2).
Diese Analyse erfolgt nach einer hoffnungsvoll erfolgreichen Auswertung der beiden an-
stehenden Schleifen-Ordnungen /2 und 3.
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7 Zusammenfassung und Ausblick

Im Fokus dieser Arbeit steht die perturbative Berechnung des thermodynamischen
Drucks der MQCD. Die Umstrukturierung der perturbativen Entwicklung in eine Po-
tenzreihe in dem Schleifen-Parameter [ mittels des Resummationsverfahrens realisiert
eine solche Behandlung und die Berechnungen in der resummierten effektiven Theorie
erzielen fiir die Schleifen-Ordnungen ° und [ jeweils ein eichinvariantes Ergebnis fiir
den Druck. Das Ziel dieser Arbeit konnte somit erreicht werden.

Grundlegende Betrachtungen in Kapitel 2 und 3 zeigen, unter welchen Voraussetzun-
gen die Eichinvarianz einer physikalischen Grofse gewéhrleistet ist. Insbesondere die nach
der Eichfixierung nicht-abelscher Eichtheorien existierenden BRS-Transformationen ga-
rantieren die Unabhéngigkeit vom Eichfixierungsparameter £. Des Weiteren werden
die Besonderheiten der perturbativen Entwicklung durch die Betrachtung der Ring-
Diagramme und der Zusammenbruch der Stérungstheorie aufgrund der Existenz von
IR-Divergenzen aufgezeigt. Fiir die magnetische Masse m ~ ¢?T tragen alle Schleifen-
Diagramme mit [ > 3 zur Ordnung ¢® bei, wonach die Berechnung unendlich vieler
Diagramme notig ist, um einen vollstdndigen Beitrag in dieser Ordnung zu erhalten.

In Kapitel 4 wird unter Ausnutzung der Impulsskalenhierarchie ¢?>7 < ¢T' < 2xT
eine Kette von dimensional reduzierten effektiven Theorien hergeleitet, wobei die IR-
Divergenzen in der MQCD isoliert werden. Da aus dimensionalen Griinden der fithrende
Beitrag des Drucks der MQCD g¢° ist und daher die entsprechenden Rechnungen direkt
mit [R-Divergenzen konfrontiert werden, stellt sich die Theorie als rein nicht-perturbativ
dar. Das Gesamtresultat fiir den Druck der QCD, das sich aus der Summe der Beitrége
der drei effektiven Theorien zusammensetzt, wird bis zur perturbativ héchstmoglichen
Ordnung ¢%In ¢ vorgestellt. Das schlechte Konvergenzverhalten in Abhéngigkeit des un-
bekannten Beitrags zur Ordnung ¢° ist den beiden dimensional effektiven Theorien ge-
schuldet, da die effektive Kopplungskonstante der thermischen QCD QQWT betragt.

Die eichinvariante Einbindung einer effektiven Gluon-Masse durch die Lagrangedichte
des NLoMs unter Anwendung des Resummationsverfahrens wird in Kapitel 5 vorgestellt
und ermoglicht eine perturbative Behandlung der MQCD. Durch das Resummationsver-
fahren wird unter Einfithrung des Schleifen-Parameters [ eine effektive Theorie durch die
Addition und Subtraktion der Lagrangedichte des NLoMs aufgestellt, in der die resultie-
renden modifizierten Wechselwirkungsterme in die Auswertung der korrespondierenden
Schleifen-Diagramme eingehen.

Die Herleitung der resummierten effektiven Lagrangedichte und der zugrunde lie-
genden Feynman-Regeln wird in Kapitel 6 behandelt. Die Aquivalenz der SU(2)- und
SU(N)-Parametrisierung des skalaren Feldes unter einer geeigneten Transformation der
Felder 7% — 7% erlaubt direkt eine Auswertung fiir die allgemeine SU(N)-Theorie. Die
Berechnungen in den Schleifen-Ordnungen [° und ' liefern jeweils ein eichinvariantes
Resultat fiir den thermodynamischen Druck der MQCD. Diese Tatsache ist bereits als
Erfolg des Resummationsverfahrens zu werten.
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7 Zusammenfassung und Ausblick

Die resultierenden Koeffizienten ag und fg|,_; sind farbzahlabhéngige Grofen. Wie
in Kapitel 6.3.1 festzustellen ist, entspricht der Koeffizient ag, nicht dem bereits bekann-
ten Beitrag zur Ordnung ¢%Ing, d.h. dem Koeffizienten aq. Die resummierte MQCD
muss nach der Auswertung unendlich vieler Korrekturen im Schleifen-Parameter [ = 1
den erwarteten Wert ergeben. Da diese Grofse jedoch keine Farbzahlabhangigkeit besitzt,
ist nach der Auswertung geniigend vieler Schleifen-Ordnungen eine numerisch vernach-
léassigbare Farbzahlabhéngigkeit des Koeffizienten oy, zu erwarten. Dieselbe Erwartung
gilt fiir den Koeffizienten Bg|,_;, der sich ebenfalls als farbzahlabhéngige Gréfe heraus-
stellt.

Ein interessanter Aspekt wird das Konvergenzverhalten des Koeffizienten fGg|,_; sein.
Der zum Beitrag der effektiven freien Theorie relativ kleine Beitrag der reinen 2-Schleifen-
Auswertung (ohne Gegenterme) lidsst hoffnungsvoll auf die anstehende Auswertung der
3- und 4-Schleifen-Diagramme blicken. Erst die Ergebnisse der Beitrdge der Ordnungen
12 und [ konnen eine gesicherte Aussage iiber das Konvergenzverhalten der perturbati-
ven Entwicklung einerseits und iiber die numerische Bedeutung der Farbzahlabhéngig-
keit der Koeflizienten andererseits liefern.
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A.1 Gruppentheoretische Relationen

Einige niitzliche gruppentheoretische Relationen fiir SU(N)-Generatoren 7% in der fun-
damentalen Darstellung sind im Folgenden angegeben (vgl. auch [31]). Die Generatoren
T® mit a = 1,..., N> — 1 sind hermitesch, spurlos und geniigen der Lie-Algebra

[T“, Tb} = j fabere (A.1)

mit den total-antisymmetrischen Strukturkonstanten f®¢. Der Anti-Kommutator der
Generatoren definiert die total-symmetrischen Strukturkonstanten d®%¢:

{Ta,Tb} - %Mf’m + debere, (A.2)

Damit kann das Produkt zweier Generatoren mittels beider Typen von Strukturkon-
stanten formuliert werden:

1 1
TOT? = S50y + S (A i) T". (A.3)

Die fiir die Herleitung der Lagrangedichten (6.19) und (6.37) benutzten Spur-Theoreme
tiber die SU(N)-Generatoren 7% sind:

T T =0, (A4)
1
T 7Tt = 55@”, (A.5)
1
Te ToTbT° = - (d“bc +i f“bc) , (A.6)
4
Tr TaTchTd — %(Wbécd + é [dabedcde _ fabefcde 43 (dabefcde + fabedcde)] ) (A?)

Die Jacobi-Identitdt der total-antisymmetrischen Strukturkonstanten ist:
fabefcde + facefbde + fadejz-bce —0. (AS)

FEinige Kontraktionen der Strukturkonstanten sind im Folgenden aufgelistet:

Foe° =, (A.9)

e =0, (A.10)

facefbce — N(Sab, (All)
N2 -4

dacedbce _ 5 5ab7 (A12)

faeedbee =0. (A.13)
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Fiir die SU(2)-Generatoren 7* = 27 gelten analoge Relationen mit

fabc N Eabc’ (A14)
d®e =0 (A.15)

und dem Levi-Civita-Tensor €2¢:
eabeecde _ 5ac(5bd _ 5ad5bc. (A16)

Die Verallgemeinerung von (A.16) auf SU(N) ist:
2
abe pcde __ ac sbd _ sad sbe ace jbde _ jade jbce
feef —N(55 65>+(d d d**“d > (A.17)

A.2 Feynman-Regeln der QED und Spurtheoreme iiber
Dirac-Matrizen

Die Feynman-Regeln fiir den Photon-Elektron-Vertex I', den Fermion-Propagator G und
den Photon-Propagator D, bilden sich wie folgt ab:

1 v
b A~~~ Vv — DMV =— 5MV + (p — 1)]7“]27 , (A.18)
p p p
1
R = g=—, (A.19)
y pom
1
= I'=—eyy. (A.20)

Damit ergibt sich fiir das 2-Schleifen-Diagramm:

—%% @ = — %eQZzTr (G (P)G(0) Dy (p — 0)7"] - (A.21)

Die Dirac-Matrizen bzw. y-Matrizen erfiillen die Anti-Kommutator-Relation
"} =29 (A.22)

mit 4 = 0,...,3 und den Komponenten der Minkowski-Metrik g"”. Die fiir die Berech-
nung des 2-Schleifen-Diagramms benétigten Spur-Theoreme iiber die y-Matrizen sind
im Folgenden aufgelistet:

Try* =0, (A.23)
Tryty” =4¢g" = Trghp=4a-b, (A.24)
Tr gy py” =4 (a"V” — (a - b)g"” + a”b"), (A.25)
Trab¢d =4[(a-b)(c-d) —(a-c)(b-d)+ (a-d)(b-c)]. (A.26)

Hierbei wird ¢ = «y*a, mit dem Vierervektor a, gekennzeichnet.
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A.3 Koeffizienten des Drucks der QCD

A.3 Koeffizienten des Drucks der QCD

Zur Vollstandigkeit des Gesamtresultats des Drucks der QCD (4.17) fir SU(N) und
Ny masselosen Quarks werden in diesem Abschnitt alle bekannten Koeffizienten ax
aufgelistet. Damit ist der Druck der QCD bis zur Ordnung ¢°1In g bekannt:

2

dd +7d A27
Qg1 = 180( A+ F) ( )
da 5
- T A2
ap2 = — 70 <CA+2 F) (A.28)
da 12 194 @ 116 220 ('(—1)  38¢'(—3)
Ci(=+5 i dy + =2 .
s = 144[ < A T+ 5 T3 C(C) 3 ¢(-3)
12 169, 5 1121 157
T = e
+ Ca F( + 5 + 50 n2+ 8y
146(( 1) 1{(=3 )>
¢(=1)  3¢(=3)
20 & 1 88 16¢(-1)  8¢(-3)
2 (Tm s oy
* F<3n47rT+3 5 At ) T3 ()
1
+ CpTr (% — % 2” , (A.29)
1
OzE4:§(CA+TF), (A.30)
2 e P ¢(-1)
= n - T (It v 2 2 A.31
ES 3{CA<H47TT+g(—1) FIr\nggty -2+ gy )|, (A3
22 pe’ b5 14 pe” 16
2
—2(Zm Tr(—m?  Zmoyi
AL CA(Q 47TT+9>+CAF<9 uxT 9 +>
o (8, pe 16 4\ _
—|—TF < 91 T 9 In2+ 9> QCFTF, (A.32)
22 pe” 1 8 jpe’ 16
- In Rl A g Zln2 A
BT = CA<3 47TT+3> F<3n4wT+3n>’ (A.33)
43 491
_43 A.34
M T3 T 61ad (A.34)
13 157
2 ob A
Y6796 G1ad (4.35)

mit dg = N, dp = NNy, Ca =Ty = N2 =1, Cp = =1 und T = .
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A.4 Standardintegrale

Die in der Schleifen-Rechnung auftauchenden Standardintegrale werden mittels dimen-
sionaler Regularisierung ausgewertet. Die dimensionale Regularisierung ist in perturba-
tiven Berechnungen eine iibliche Methode, um alle UV-Divergenzen zu beheben, wobei
die Impulsintegration durch eine analytische Fortsetzung nach d = 3 — 2¢ Dimensionen

[~ T (&) Sl 39

Mit g = pu(e?/ 47?)7% wird eine Impulsskala eingefiihrt, die ein Abschneiden der verblei-
benden logarithmisch divergenten Integrale, die als e-Pole auftauchen, bewirkt. Fiir eine
Funktion f(p) gelten folgende Eigenschaften:

1. Translation: fp flp+q) = fp f(p)

ausgedriickt wird:

2. Dilatation: fp fAp) =M fpf(p)

3. Faktorisierung: fp fq fo)flq) = fp f(p) fq f(q)

Daraus folgt: fp 1=0, fp # =0 mit nel.
Es existieren drei Standardintegrale in der Rechnung;:

D(m?) = /pln(p2 +m?) = —;”—j [1 te <2ln (ﬂ) + g) +O(62)} . (A.37)

2m
A(m?) = /m =i (2m v 2) 1 o@), (A.38)
1
1, mym? // @+ m?) (@ +m?)((p— 9)? +m?)
- [—6+1 3L+1+0( )} (A.39)

Als Beispiel wird der Losungsweg des Integrals A(m?) aufgezeichnet:

Y2\ € 3—2¢
A(m2)2<eu> / ’ 37]; 2 : 2
47 (2m)3=2¢p2 +m
B’Y[LQ € d3—25p [e'S) ) )
(5) [ s || om0

e'yﬂQ € d3726p 1 o] 5 o
~ \Udr 2 e f, P (_Wp >6Xp(_5)'

Dabei wurde mit ¢ = % substituiert. Es folgt:

Y 1 60
e’ > )3 T /2€m326/ ds 873/2+e exp(—s)
0

(2
() wen ()
(2

>m7r 3/2973(~2)y/r  mit I'(1/2) = /.
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A.5 Frequenzsummenintegrale

Die I'-Funktion ist wie folgt definiert:

r 1 &
() =L@+ _ / dt =" exp(—t). (A.40)
5'3 0
Es folgt:
2y m e i*\°
Alm™) = 4 ( 4m )
__m . 2
--2 [1 te <2ln =+ 2) +O(e )] . (A.41)
Fiir Integrale des folgenden Typs erhélt man analog:
1 1 (k-9 1
Ap(m?) = = 2 : A.42
k(%) /p(p2+m2)k (4m)d2 T(k) (m2)k—d2 (A.42)

A.5 Frequenzsummenintegrale

Die Formel (2.18) gibt den thermodynamischen Druck eines masselosen skalaren Feldes
an:

1T

P="3y
n

Zp: In (8% (w2 +p?)) = g—;T4. (A.43)

Zum Beweis wird zunéchst der massive Fall mit w? = p? + m? und den bosonischen
Matsubara-Moden w,, = 2mnT betrachtet:

1T

p= - §VZZIH (8%(wh +1%)

Es folgt:

17 P 1 )
2

1T w1 2
=_-= do*- (1+—"—

QV;/l 9( +e(’—1>
_ lfz/ﬁwda I
2V —~ )i e —1)°

Der zweite Term wird dabei wegen des Nernst’schen Theorems nicht berticksichtigt.
Unter Vernachlassigung der Nullpunktsenergie —%ﬁw ergibt die Losung des Integrals

mitm:Ounde:Vf%:

= p:—T/%ln(l—eﬁp>

= — Ti2 dp p*In (1 - eiﬁp) . (A.44)
2w 0
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Dieses Ergebnis wird im Ubrigen auch durch die Betrachtung des harmonischen Oszilla-
tors erzielt. Die Zustandssumme des skalaren Feldes entspricht namlich dem Produkt der
Zustandssummen des harmonischen Oszillators. Die Impulsintegration muss schliefilich
partiell integriert werden und mit

00 3
p
I'(4)((4) = d A4
e = [ (A.45)
ol
bei 4) =— =6
wobei C(4) = 1=, T(4)
folgt:
p= —TL - dpp®In (1 — e_ﬁp> = 7T—2T4 (A.46)
27'('2 0 90 ' .

Die I'- und die ¢-Funktion sind wie folgt definiert:

I'(z) = / t* e tdt = kz/ e Mgt mit k& = const., (A.47)
0 0

((s)=> n*. (A.48)
n=1

Zur Losung der Frequenzsummenintegrale I(0) und I£(0) aus der Auswertung der
2-Schleifen-Diagramme der QED betrachte man die Integrale

Jy(m2) = z E In(w? + uﬂ)} , (A.49)
hm?) = s = () (A.50)

w2 4+w?  mdm

w274

50 - Die Summen-Notation kennzeichnet

mit w? = p?+m?, w, = 27nT und J,(0) = —
das Frequenzsummenintegral mit

d
ZSZT%:/(ZTI)Z und  d=3— 2. (A.51)

Die Losung des Integrals I(m?) erfordert eine Seperation der Frequenzsumme in einen
Beitrag mit der Matsubara-Nullmode und einen Anteil mit n # 0:

Z: 2;#0 T /,, . (A.52)

Das Ergebnis des d-dimensionalen Integrals I,,—g ist bereits bekannt und entspricht dem
Standardintegral A(m?) aus (A.42) mit:

Li—o(m?) = TA;(m?). (A.53)
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A.6 Reduzierung von 2-Schleifen-Integrale auf Standardintegrale

Damit bleibt das folgende Integral mit w,, o zu l6sen:

Tnto(m TZ/ w2+p +m?

o
dd o 21

_QTZ/ 1S l[@mT?; +p"

—QT;ZZ% 1d/2 (fﬂ iz)%) (27mT§21+2—d

:2T(47T)d/2(12ﬁ = < 2:;) > (ll“(szi 1)%)4(2l+2—d). (A.54)

Dabei wurde Gleichung (A.42) ausgenutzt. Schlieflich folgt:
[b(mz) = In;,go(mz) + Inzo(m2)
T2 mT  2m? me’ 1 m*
=—— —— (In— — = O =] A.55
12 4n (47r)2<n47rT 2>+ <T2> (A.35)
Die Losung des fermionischen Frequenzsummenintegrals ergibt sich aus der Betrachtung

der Relation der Frequenzsummen S(T') = T f(wn) mit w, = 27nT fiir Bosonen
und wy, = (2n + 1)7T fiir Fermionen:

T
S¢(T) =28, <5> — Sp(T). (A.56)
Damit folgt:
T2 2m? me?’ 1 m*
2 = —_—— —_—— — [
It(m*) = 51~ (i) (ln T 2) +O<T2>. (A.57)
Somit ergibt sich:
T2
L,(0) =35 (A.58)
T2
I = - —. A.
7(0) 51 (A.59)

A.6 Reduzierung von 2-Schleifen-Integrale auf
Standardintegrale

Aus Ubersichtsgriinden werden folgende Abkiirzungen benutzt:
1
(p* +m?)(¢* +m?)’
1
B(&,1) =
V= pran@
1
C(1,1,1) = ,
) = G o 4 m?) (o= 07 + )
1

(p? +Em?)(g* + m?)((p — ¢)* + m?)’

B(1,1) =

c,1,1) =
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Im Folgenden ist eine Auflistung von Integralen dargestellt, die in den Auswertungen
der 2-Schleifen-Diagramme (6.53) vorgekommen und auf die beiden Standardintegrale
A(m?) und I(m?, m?,m?) reduziert worden sind:
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L/qB(1,1).
/p/qB(l,l)-

B(1,1)-
B(1,1)
B(£1)-
B(1,¢) -
B(¢,1) -

T e e T o o
— e T T T T

—— e
—

— e e o o
— T T T T

Cc(1,1,1) -
0(57 57 1) :

C(la 55 E) :

Cc(1,1,1) -
C(&,6.6) -
C(1,1,¢) -
C(.¢&1)-
C(€,1,1) -

C(la 55 E) :

(p%) = —m*A%(m?),
(P2q?) = m*AX(m?),

(10 cos? 6) = 5B(1,1) - (1%0?) = m*A%(m?),

d

- (pgcos ) =0,

(p?) = —Em>A(Em?) A(m?),

(p2) _ AQ(mQ) _ m2](m2’m2’m2),
(%) = Algm*) A(m?) — Em*1(Em?, &m?, m?),

(p?) = A%(&m?) — m2I(m?, Em?, Em?),

(p!) = =3m®>A%(m®) + m*I(m*,m*,m?),

(p") = —3¢m>A%(Em?) + £2m* I(Em?, Em?, Em?),

(r") = =2+ Em>A(Em*) A(m®) + m I(m®,m®, Em?),
(p") = =€ + )m>AEm*) A(m®) + Em*I(Em>, &m®, m?),
(p") = =2+ M A2 (m?) + Em 1 (Em®,m?, m?),

(") = —(2¢ + 1)m2 A%(Em?) + m*1(m?, Em?, Em?),



A.6 Reduzierung von 2-Schleifen-Integrale auf Standardintegrale

— e T T
— e T T

C(1,1,1)

— o
— T

C(1,¢,¢)

— e
—

C(1,1,1)

— e T T T
— T T T T

~

I
s
S~
Pl

q

Cc(1,1,1) -
C(§,6.¢)-
C(,1,1) -
C(1,1,¢) -

0(57 ga 1) :

C(la 1, 5) :

c(1,1,1) -
c,11)-

0(57 ga 1) :

C(1,1,¢) -
C(1,&1)-
C(€,1,1) -
C(1,£,¢) -

C(g’ 1, 5) :

(P°q%) = —2m®A*(m?) + m*I(m? m* m?),

(p%¢%) = —26m>A%(Em?) + Em 1(Em?, Em®, Em?),

(r°¢%) = —m?A%(m?) — Em*A(Em®) A(m?) + Em*I(Em*, m?, m?),
(p°q°) = —2m*A(Em®) A(m?) +m*I(m?,m?, Em®),

(P*q®) = —26m*A(Em®) A(m?) + Em I (Em?, Em? m?),

25
: (pG) = §m4A2(m2) - m6I(m25m2am2),

(") = <52 rgt 3) m A€m®) A(m?) — m®I(m?, m?, €m?),

09 = (e w2 ) i) -, ),

(p2q2(p o q)2) — 3m4A2(m2) o m6I(m2,m2,m2),
(P°¢°(p — 9)°) = m*A*(m?) + 26m* A(Em*) A(m?) — EmOI(Em?, ...),

(P°d*(p — )?) = Em A (Em?) + 26m  A(6m®) A(m?) — €m°I(...),

- (p*¢?) = 4m* A% (m?) — m®I(...) + X,

(r'®) = B+ M A(Em*)A(m®) — mOI(...) + X,
(v'a?) = m* A (m?) + (€ + 25)m* A(6m*) A(m?) — ém°I(.) + X,

(#'d®) = 2+ Om A2 (m?) + €m  A(Em®) A(m?) — E€m°I(..) + X,
(p'¢®) = (26 + Em* A(Em®) + m* A(6m®) A(m®) — €m°I(..) + X,

(p'¢?) = €m" A2 (em?) + (26 + m" A(6m*) A(m?) — €m°I(...) + X,

m2’
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