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1 Einleitung

Nach heutigem Verständnis bestand das Universum kurz nach dem Urknall aus einem
Materiezustand ungebundener Quarks und Gluonen, dem sogenannten Quark-Gluon-
Plasma (QGP). Bereits 10−5 s nach dem Urknall erfolgten durch die abkühlende Ent-
wicklung des Universums die Hadronisierung des Plasmas und der Übergang zur ge-
bundenen Phase. Die Bestimmung der Natur dieses Phasenübergangs ist Gegenstand
aktueller Forschung [1]. Experimentell ist die Region in der Umgebung der kritischen
Temperatur und verschwindenden chemischen Potentials durch Experimente an den
Teilchenbeschleunigern RHIC des Brookhaven National Laboratory und LHC am CERN
zugänglich.

Die asymptotische Freiheit und das resultierende wechselwirkungsarme Verhalten von
Quarks und Gluonen bei hohen Temperaturen ermöglichen eine perturbative Behand-
lung der thermischen Quantenchromodynamik (QCD) zur Untersuchung thermodyna-
mischer Aspekte des QGPs [2]. Im Fokus dieser Arbeit steht der thermodynamische
Druck des Plasmas, der durch Auswertung geschlossener Feynman-Diagramme berech-
net wird. Die perturbative Herangehensweise zur Bestimmung des Drucks stößt jedoch
infolge der Existenz von Infrarot-Divergenzen (IR-Divergenzen) an ihre Grenzen [3].
Durch die Bildung einer dimensional reduzierten effektiven Theorie, der magnetostati-
schen QCD (MQCD), können die IR-Divergenzen isoliert werden [4, 5]. Da die Berech-
nung des Drucks der MQCD bereits in führender Ordnung der effektiven Kopplungs-
konstante g2T

m mit IR-Divergenzen verknüpft ist, stellt die MQCD eine perturbativ
nicht zugängliche Theorie dar. Um die IR-Divergenzen zu dämpfen, wird eine durch
den Mechanismus der spontanen Symmetriebrechung eingeführte magnetische Masse
m ∼ g2T generiert. Damit die MQCD dennoch eine perturbative Behandlung zulässt,
ist eine Umstrukturierung der perturbativen Entwicklung mittels einer Resummations-
methode [6,7] notwendig. Unter Einführung eines Schleifen-Parameters l wird dabei ein
massenerzeugender Term addiert und wieder subtrahiert. Das Resummationsverfahren
begründet somit eine Störungstheorie, die nicht mehr Ordnung für Ordnung in die ef-
fektive Kopplungskonstante der Theorie eingeht, sondern in eine Potenzreihe in dem
Schleifen-Parameter l resultiert.

Die Zielsetzung dieser Arbeit kann durch die folgende nicht-triviale Fragestellung zu-
sammengefasst werden: Kann eine perturbative Behandlung des thermodynamischen
Drucks der nicht-perturbativen MQCD durch eine Umstrukturierung der perturbati-
ven Entwicklung mittels des Resummationsverfahrens realisiert werden? Das Resum-
mationsverfahren wurde bereits bei der Auswertung sogenannter gap-Gleichungen bzw.
von Selbstenergie-Diagrammen sowohl im Higgs-Modell, als auch im nichtlinearen σ-
Modell (NLσM) zur Bestimmung des Koeffizienten der magnetischen Masse m = Cg2T
angewandt [6–9]. Da die Berechnungen zumindest auf 1-Schleifen-Niveau ein eichinva-
riantes Ergebnis erzielen, besteht die Erwartung, dass die Methode auch für den thermo-
dynamischen Druck der MQCD ein zufriedenstellendes Resultat auf 2-Schleifen-Niveau
liefert, denn dazu ist lediglich eine weitere Impulsintegration einzufügen, die einer Ver-
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1 Einleitung

knüpfung der äußeren Beine eines Selbstenergie-Diagramms entspricht.
In Kapitel 2 werden die grundlegenden Kenntnisse zu thermischen Feldtheorien vor-

gestellt. Die Pfadintegraldarstellung thermischer Zustandssummen stellt dabei die Basis
für die Berechnung des thermodynamischen Drucks von Vielteilchensystemen wie dem
QGP dar. Die perturbative Entwicklung des thermodynamischen Drucks und der zu den
IR-Divergenzen korrespondierende Zusammenbruch der Störungstheorie werden in Ka-
pitel 3 behandelt. Da es sich bei dem Druck um eine physikalische Größe handelt, ist die
Eichinvarianz dieser Größe zu fordern. Am Beispiel der Quantenelektrodynamik (QED)
wird die Eichinvarianz des Drucks bis zur zweiten perturbativen Ordnung illustriert. Die
Herleitung der Kette der dimensional reduzierten Theorien (QCD→EQCD→MQCD)
und die damit verbundene Isolation der IR-Divergenzen in die MQCD werden in Kapi-
tel 4 aufgezeigt. Des Weiteren wird der Druck des QGPs bis zur perturbativ höchstmög-
lichen Ordnung g6 ln g präsentiert und die numerische Konvergenz in Abhängigkeit der
IR-Beiträge aus den beiden dimensional reduzierten effektiven Theorien diskutiert [10].
In Kapitel 5 wird das Resummationsverfahren vorgestellt, welches eine perturbative
Behandlung der MQCD zulässt. Dabei wird als massenerzeugender Term die Lagrange-
dichte des NLσMs verwendet, da die Dynamik des Eichfeldes in der ungebundenen
Phase weitgehend unabhängig vom Higgs-Feld ist und daher durch das NLσM approxi-
miert werden kann [8]. Der gegenüber dem Higgs-Modell daraus resultierende Vorteil ist
eine Reduzierung der Anzahl der Wechselwirkungsterme, wodurch eine perturbative Be-
handlung erheblich vereinfacht wird. In Kapitel 6 sind die Herleitung der resummierten
effektiven Lagrangedichte und die zu den Wechselwirkungstermen korrespondierenden
Berechnungen der Schleifen-Diagramme dargestellt. Abschließend werden die Ergebnisse
bzw. die Koeffizienten des Drucks der MQCD vorgestellt und diskutiert. Nach einer Zu-
sammenfassung in Kapitel 7 werden im Anhang unter anderem gruppentheoretische
Relationen für SU(N)-Generatoren sowie Lösungswege der in der Rechnung vorkom-
menden Integrale zusammengestellt.
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2 Quantenchromodynamik bei endlichen

Temperaturen

In diesem Kapitel wird ein kurzer historischer Überblick zur Entwicklung des Standard-
modells der Elementarteilchen gegeben und die Quantisierung von Feldtheorien mittels
des Pfadintegralformalismus vorgestellt. Die Pfadintegraldarstellung einer Feldtheorie
ermöglicht einen einfachen Zugang zur Beschreibung von Vielteilchensystemen und Be-
rechnung ihrer thermodynamischen Größen.

2.1 Das Standardmodell der Elementarteilchen

Das in den 60er und 70er Jahren begründete Standardmodell beschreibt alle bekann-
ten elementaren Teilchen und ihre Wechselwirkungen mit Ausnahme der Gravitation.
Es berücksichtigt also drei der vier in der Natur beobachtbaren fundamentalen Kräf-
te: die elektromagnetische, schwache und starke Wechselwirkung. Die Gravitation wird
hingegen durch eine klassische Theorie, die Allgemeine Relativitätstheorie, beschrieben.

Die Formulierung von Quantenfeldtheorien als Eichtheorien, d. h. Theorien, deren
Lagrangedichte invariant unter lokalen Eichtransformationen ist, bildet die Grundlage
für das Standardmodell.

2.1.1 Ein Quantum Geschichte

Yang und Mills [11] führten im Jahr 1954 die erste nicht-abelsche Eichtheorie ein, wel-
che eine Erweiterung der in den 40er Jahren begründeten QED darstellt. Die QED ist
ein Beispiel einer abelschen Eichtheorie und konstituierte die erste konsistente quanten-
theoretische Beschreibung eines physikalischen Feldes, d. h. des Photons als Eichboson
bzw. Vermittler der elektromagnetischen Wechselwirkung. Die theoretischen Vorhersa-
gen dieser Theorie korrespondieren in beeindruckender Präzision mit dem Experiment,
wie insbesondere das (g − 2)-Experiment am Brookhaven National Laboratory zeigt.

Die Entdeckung der spontanen Symmetriebrechung durch Goldstone, Nambu und
Jona-Lasinio [12,13] ebnete im Jahr 1967 den Weg zu einer Vereinheitlichung der QED
und der schwachen Wechselwirkung zum Glashow-Salam-Weinberg-Modell der elektro-
schwachen Wechselwirkung [14,15]. Die elektroschwache Wechselwirkung wird durch die
U(1)×SU(2)-Symmetriegruppe beschrieben und stellt einen der beiden Hauptbestand-
teile des Standardmodells dar.

Die QCD, die Theorie der starken Wechselwirkung, bildet den zweiten Hauptbestand-
teil des Standardmodells. Gell-Mann und Zweig gelang im Jahr 1964 mit dem statischen
Quarkmodell [16] eine erste Klassifizierung von Hadronen, d. h. aus Konstituentenquarks
zusammengesetzten Teilchen. Das statische Quarkmodell wird durch die SU(3)-Flavour-
Symmetriegruppe beschrieben, die aufgrund der gegenüber der typischen Zerfallsdauer
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2 Quantenchromodynamik bei endlichen Temperaturen

für einen starken Zerfall um etwa 14 Größenordnungen höheren Lebensdauer des Λ-
Teilchens (τΛ ∼ 10−10s) mit der Hypothese einer neuen Erhaltungsgröße, der Seltsam-
keit, eingeführt wurde. Die total-symmetrischen Wellenfunktionen (Orts-, Spin- und
Flavouranteil) der ∆++- und Ω−-Zustände in diesem Modell verletzen jedoch das Pauli-
Prinzip, weil sie aus identischen Quarks aufgebaut sind. Durch Einführung einer lokalen
SU(3)-Farb-Symmetriegruppe wurde das Problem gelöst. Dadurch war die Grundlage
für die Formulierung der starken Wechselwirkung durch die QCD geschaffen.

Die Zusammensetzung des Glashow-Salam-Weinberg-Modells und der QCD reprä-
sentiert das Standardmodell der Elementarteilchen, das durch die U(1)×SU(2)×SU(3)-
Symmetriegruppe charakterisiert wird. Die Vereinheitlichung des Standardmodells und
der Gravitationstheorie setzt eine quantentheoretische Beschreibung der Allgemeinen
Relativitätstheorie voraus und ist daher eine der zur Zeit größten Herausforderungen
der theoretischen Physik.

2.1.2 Die Lagrangedichte und Eigenschaften der QCD

Die QCD ist derzeit die etablierte Theorie zur Beschreibung der starken Wechselwirkung
zwischen farbladungstragenden Quarks und Gluonen, die in der Natur nur in hadroni-
schen farbneutralen Zuständen gebunden sind. Sie wird durch die Lagrangedichte

L = −1

4
F aµνF a

µν + ψ(x)(iγµD
µ −m)ψ(x) (2.1)

formuliert, wobei m die Masse der Quarks und γµ Dirac-Matrizen sind. Die Quark-Felder
ψ(x) = (ψα,c,f (x)) tragen einen Flavourindex f für die sechs verschiedenen Quarksor-
ten, einen Farbindex c und einen Spinorindex α. Der erste Term in Gleichung (2.1) ist
der von Yang und Mills postulierte Eichfeldterm, der aufgrund der Forderung nach Re-
normierbarkeit der einzige mögliche Ausdruck bei gegebener SU(N)-Symmetrie ist. Die
kovariante Ableitung

Dµ = ∂µ − igAa
µT

a, (2.2)

in der die Gluonfelder Aµ = Aa
µT

a wegen der geforderten lokalen SU(N)-Farbinvarianz
auftreten und mit den Quarkfeldern koppeln, definiert den Feldstärketensor

Fµν =
i

g
[Dµ,Dν ] =⇒ F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.3)

Die Generatoren T a der Gruppe SU(N) mit a = 1, ..., N2 − 1 unterliegen der Lie-
Algebra und genügen der Vertauschungsrelation

[T a, T b] = ifabcT c, (2.4)

wobei die fabc vollständig antisymmetrische Strukturkonstanten sind. Für SU(2) wer-
den die Generatoren durch die drei 2×2-Pauli-Matrizen und für SU(3) durch die acht
3×3-Gell-Mann-Matrizen dargestellt. Einige nützliche gruppentheoretische Relationen
für SU(N) Generatoren in der fundamentalen Darstellung sind im Anhang (Kap. A.1)
aufgeführt.

Aufgrund der Form des Feldstärketensors bzw. der Selbstwechselwirkung der masse-
losen Gluonen kommt es zu Effekten wie dem Quarkeinschluss in farbneutrale Hadronen,
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2.2 Pfadintegraldarstellung thermischer Zustandssummen

dem Confinement. Diese Eigenschaft impliziert, dass in der Natur keine freien Quarks
existieren.

Das nahezu wechselwirkungsfreie Verhalten von Quarks und Gluonen bei kurzen Ab-
ständen bzw. hohen Impulsüberträgen wird als asymptotische Freiheit bezeichnet. Im
Jahr 1973 veröffentlichten Politzer, Gross und Wilczek [17,18] die Entdeckung, dass die
laufende Kopplungskonstante g2 der QCD bzw. die negative β-Funktion αs als Funktion
der Impuls- bzw. Massenskala M logarithmisch gegen Null strebt:

αs =
g2

4π
=

12π

(11N − 2Nf ) ln
(

M2

Λ2

) . (2.5)

N bezeichnet die Anzahl der Farben, Nf die Anzahl der Quark-Flavour und Λ die
Energieskala der QCD. In der thermischen QCD ist die Impuls- bzw. Massenskala eine
Funktion proportional zur Temperatur, so dass infolge der asymptotischen Freiheit eine
perturbative Behandlung der QCD insbesondere bei hohen Temperaturen, in der unge-
bundene Quarks und Gluonen erwartet werden, möglich ist. Wie in Kapitel 3 deutlich
wird, kann durch das Auftreten von IR-Divergenzen die perturbative Berechnung des
thermodynamischen Drucks dennoch nicht bis in beliebig hohe Ordnungen durchgeführt
werden.

2.2 Pfadintegraldarstellung thermischer Zustandssummen

Um Vielteilchensysteme wie das Quark-Gluon-Plasma (QGP) beschreiben bzw. die
Thermodynamik dieser Systeme untersuchen zu können, bedarf es der Quantisierung
von Feldern. Neben der kanonischen Quantisierung existiert noch ein weiterer äquiva-
lenter Zugang: die Pfadintegralquantisierung, die im Folgenden in Anlehnung an [19]
vorgestellt wird (vgl. auch [2]).

2.2.1 Grundlagen

Das Verhalten aller Theorien bei endlichen Temperaturen und verschwindendem chemi-
schem Potential µ wird durch die kanonische Zustandssumme

Z = Tr [e−βH ] (2.6)

beschrieben, wobei β = 1/T die inverse Temperatur und H die Hamilton-Funktion der
Theorie kennzeichnen. Thermische Erwartungswerte von physikalischen Observablen O
sind gegeben durch

< O >=
1

Z
Tr [e−βHO]. (2.7)

Aus der Zustandssumme Z lassen sich alle thermodynamischen Eigenschaften eines Sys-
tems bestimmen, wie z. B. die freie Energie, Entropie oder der Druck

p =
∂

∂V
T lnZ, (2.8)

9



2 Quantenchromodynamik bei endlichen Temperaturen

wobei T die Temperatur und V das Volumen des Systems sind. Für große, homogene
Systeme entspricht der thermodynamische Druck der negativen freien Energie:

−f =
T

V
lnZ = p. (2.9)

Grundlage der Quantisierung von Feldern durch den Pfadintegralformalismus bei
endlichen Temperaturen ist die Umformulierung eines Erwartungswertes in eine un-
endliche Summe über alle möglichen Pfade zwischen Anfangs- und Endzustand eines
physikalischen Systems gewichtet mit dem Exponential ihrer euklidischen Wirkung SE :

Z = Tr [e−βH ] =

∫

dφ〈φ|e−βH |φ〉 =

∫

[dφ]e−SE [φ]. (2.10)

Das Funktionalintegral wird durch die Notation [dφ] gekennzeichnet. Die in der eu-
klidischen Raumzeit dargestellte Zustandssumme ist analog zur Zustandssumme eines
kontinuierlichen statistischen Systems mit βH = SE .

2.2.2 Bosonen und Fermionen

Die Zustandssumme bosonischer Felder φ ist gegeben durch

Z = N

∫

per.

[dφ] exp

(

−
∫ β

0
dτ

∫

d3xL
)

, (2.11)

wobei die periodischen Randbedingungen φ(x, 0) = φ(x, β) explizit Berücksichtigung
finden. Die Normierungskonstante N ist aufgrund des 3. Hauptsatzes der Thermody-
namik irrelevant. Der Satz besagt, dass die Entropie für T = 0 gegen einen festen
Grenzwert geht. Demnach verändert eine Multiplikation der Zustandssumme mit einer
temperaturunabhängigen Konstante die Thermodynamik nicht.

Aufgrund der endlichen zeitlichen Ausdehnung durch die Definition der Tempera-
tur existieren in dieser Richtung nur diskrete Frequenzen, die sogenannten Matsubara-
Frequenzen. Für Bosonen ergibt sich

ωn = 2nπT mit n ∈ N. (2.12)

Die Zustandssumme fermionischer Felder ψ ist gegeben durch

Z = N

∫

anti-per.

[dψ∗][dψ] exp

(

−
∫ β

0
dτ

∫

d3xL
)

(2.13)

und berücksichtigt die anti-periodischen Randbedingungen ψ(x, 0) = −ψ(x, β). Somit
folgt für die Matsubara-Frequenzen

ωn = (2n + 1)πT mit n ∈ N. (2.14)

Bei der Auswertung der Zustandssumme für Fermionen muss berücksichtigt werden,
dass über Grassmann-Zahlen anstelle von komplexen Zahlen integriert wird. Für die

10



2.2 Pfadintegraldarstellung thermischer Zustandssummen

Gauß-Integration ergibt sich dadurch ein Faktor -2 im Exponenten der zu berechnenden
Determinante gegenüber der Auswertung der Zustandssumme für Bosonen:

Z =

∫

[dφ] exp[−1

2
(φDφ)] ∼ (detD)−

1

2 , (2.15)

Z =

∫

[dψ∗][dψ] exp[−(ψ∗Dψ)] ∼ (detD). (2.16)

Für ein nichtwechselwirkendes Gas aus Bosonen oder Fermionen kann der Druck aus
dem Logarithmus der Zustandssumme

lnZ = V

∫

d3p

(2π)3
ln
(

1 ± e−β(ω−µ)
)±1

(2.17)

berechnet werden, wobei das obere Vorzeichen der Fermi-Dirac- und das untere Vorzei-
chen der Bose-Einstein-Statistik entspricht.

Der thermodynamische Druck von masselosen skalaren Feldern ohne chemisches Po-
tential ist:

p = −1

2

T

V

∑

n

∑

p

ln
(

β2(ω2
n + p2)

)

=
π2

90
T 4. (2.18)

Die entsprechende Rechnung ist dem Anhang (Kap. A.5) zu entnehmen.

2.2.3 Nicht-abelsche Eichtheorien

Infolge der Eichinvarianz entsprechen nicht-abelsche Eichtheorien Systemen mit ein-
geschränkten dynamischen Variablen, d. h. es existieren Variablen, die keine tatsäch-
lichen dynamischen Variablen sind. Um im Pfadintegralformalismus ein Überabzählen
von Feldkonfigurationen, die zum selben physikalischen Zustand gehören, zu verhindern,
ist eine Eichfixierung der Theorie erforderlich. Die Eichfixierung wird durch den Ansatz
von Faddeev und Popov [20] umgesetzt, mit der die Zustandssumme der Yang-Mills-
Eichtheorie in die folgende Form übergeht:

Z =

∫

[dAa
µ]δ(Gb) det

(

δGc

δωd

)

exp

(

−
∫ β

0
dτ

∫

d3xLYM

)

. (2.19)

Ga bezeichnet eine beliebige Eichfixierungsfunktion und LYM die euklidische Yang-Mills-
Lagrangedichte:

LYM =
1

4
F a

µνF
a
µν . (2.20)

Durch eine spezielle Wahl der Eichfixierungsfunktion Ga = ∂µA
a
µ = 0, der sogenann-

ten Lorenz-Eichung, und der Umformulierung der entsprechenden Determinante aus
(2.19) in ein Pfadintegral über grassmannwertige Variablen ergibt sich:

Z =

∫

[dAa
µ][d(ca)∗][dca] exp

(

−
∫ β

0
dτ

∫

d3x (LYM + Lgf + LFP)

)

. (2.21)
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2 Quantenchromodynamik bei endlichen Temperaturen

Lgf bezeichnet den Eichfixierungsterm und LFP die Lagrangedichte der Faddeev-Popov-
Geistfelder ca:

Lgf =
1

2ξ
(∂µA

a
µ)2, (2.22)

LFP = (∂µ(ca)∗)(∂µc
a) + gfabc(ca)∗cbAc

µ. (2.23)

Der Faddeev-Popov-Ansatz stellt eine Methode dar, um das unendlich-funktionale
Volumen der Eichorbits herauszudividieren, d. h. durch die Einführung der Geistfelder
und deren Kopplung an die Eichbosonen (2.23) werden die unphysikalischen Freiheits-
grade, die durch das Überabzählen von Feldkonfigurationen zustande kommen, abgezo-
gen. Demnach sind die Faddeev-Popov-Geistfelder lediglich ein mathematisches Hilfs-
mittel und korrespondieren daher nicht zu reellen Teilchen.

Die Eichfixierung führt auf einen modifizierten Propagator folgender Form:

Dab
µν =

δab

p2

(

δµν + (ξ − 1)
pµpν

p2

)

. (2.24)

Die Eichinvarianz physikalischer Größen bzw. ihre Unabhängigkeit vom Eichparame-
ter ξ ist eine notwendige Voraussetzung für den Erfolg einer Theorie. Die Eichfixierung
nicht-abelscher Eichtheorien bricht allerdings die allgemeine lokale Eichsymmetrie. Es
bleibt jedoch eine spezielle lokale Eichsymmetrie erhalten, die durch die sogenannten
BRS-Transformationen ausgedrückt wird [21]. Die Existenz dieser eleganten, aber kom-
plizierten Methode, die nach Becchi, Rouet und Stora benannt ist, stellt insbesondere
die Eichinvarianz physikalischer Größen einer Eichtheorie sicher.

Da sich in der analytischen Rechnung in Kapitel 6 speziell die Frage nach der Eichin-
varianz des thermodynamischen Drucks gestellt hat, wird im anschließenden Kapitel die
Eichinvarianz des Drucks in der QED bis zur zweiten perturbativen Ordnung illustriert.
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3 Perturbative Entwicklung des

thermodynamischen Drucks

Die perturbative Behandlung einer Theorie, in der die Kopplungskonstante sehr klein
gegenüber 1 ist, wird durch die Entwicklung der Zustandssumme in der Kopplungskon-
stante umgesetzt. Die Wirkung einer Theorie kann mit S = S0+SI in einen freien Anteil
S0 und einen Wechselwirkungsanteil SI zerlegt werden. Die perturbative Entwicklung
der Zustandssumme für ein skalares Feld φ ergibt somit:

Z =

∫

[dφ]e−(S0+SI) =

∫

[dφ]e−S0

(

1 − SI +
1

2
S2

I − ...

)

. (3.1)

Folglich tragen alle perturbativen Korrekturen, deren Wechselwirkungsterme mit ge-
schlossenen Feynman-Diagrammen bzw. Schleifen-Diagrammen assoziiert werden, direkt
zum Druck (2.8) bei.

Wegen der asymptotischen Freiheit von nicht-abelschen Eichtheorien ist eine per-
turbative Behandlung des QGPs bzw. der QCD bei hohen Temperaturen möglich. In
diesem Kapitel werden aufgrund des Auftretens von IR-Divergenzen die Grenzen der
Störungstheorie aufgezeigt.

3.1 Illustration der Eichinvarianz des thermodynamischen

Drucks am Beispiel der QED

Im Folgenden wird am Beispiel der QED die Eichinvarianz des thermodynamischen
Drucks, die für jede Ordnung in der Störungstheorie gelten muss, in führender Ordnung
und in O(g2) explizit gezeigt, da in betreffenden Lehrbüchern [19] zur Vereinfachung
stets Rechnungen in Feynman-Eichung durchgeführt werden. Die Kopplungskonstante
der QED

(

e2 = α ≈ 1
137

)

lässt dabei eine perturbative Behandlung zu.

3.1.1 Freies Photonengas

Die Zustandssumme des freien Photonengases in kovarianter Eichung G = ∂µAµ = 0
mit ρ als Eichfixierungsparameter ist gegeben durch

Z =

∫

[dAµ] det(∂2) exp

(

−
∫ β

0
dτ

∫

d3x (L0 +
1

2ρ
(∂µAµ)2)

)

, (3.2)

wobei L0 =
1

4
FµνFµν mit Fµν = ∂µAν − ∂νAµ. (3.3)

Die Determinante in (3.2) lässt sich nützlicherweise als Pfadintegral über grassmannwer-
tige Felder darstellen, die in der QCD als Faddeev-Popov-Geistfelder bezeichnet werden.
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3 Perturbative Entwicklung des thermodynamischen Drucks

In der QED dienen sie lediglich als mathematisches Hilfsmittel zur Auswertung folgender
Gauß-Integrale, um zwei der vier Freiheitsgrade der Photonen zu eliminieren:

Z =

∫

[dAµ] exp

(

−1

2

∫ β

0
dτ

∫

d3x

[

Aµ

(

δµν(− ∂2

∂τ2
−∇2) + (1 − 1

ρ
)∂µ∂ν

)

Aν

])

·
∫

[dc̄][dc] exp

(

−
∫ β

0
dτ

∫

d3x

[

c̄(− ∂2

∂τ2
−∇2)c

])

. (3.4)

Unter Ausnutzung von (2.15) und (2.16) und ln detD = Tr lnD folgt somit für den
Logarithmus der Zustandssumme im Impulsraum:

lnZ = ln detD1 −
1

2
ln detD2

= ln

[

∏

n

∏

p

(

β2
(

ω2
n + p2

))

]

− 1

2
ln

[

∏

n

∏

p

(

β8

ρ

(

ω2
n + p2

)4
)

]

=
∑

n

∑

p

[

1

2
ln ρ− 2 ln

(

β2(ω2
n + p2)

)

+ ln
(

β2(ω2
n + p2

)

]

= −
∑

n

∑

p

ln
(

β2(ω2
n + p2)

)

(3.5)

mit D2 =

















1
ξω

2
n + p2

(

1
ξ − 1

)

ωnp1

(

1
ξ − 1

)

ωnp2

(

1
ξ − 1

)

ωnp3
(

1
ξ − 1

)

ωnp1 ω2
n + p2 − 1

ξ p
2
1

(

1
ξ − 1

)

p1p2

(

1
ξ − 1

)

p1p3
(

1
ξ − 1

)

ωnp2

(

1
ξ − 1

)

p1p2 ω2
n + p2 − 1

ξp
2
2

(

1
ξ − 1

)

p2p3
(

1
ξ − 1

)

ωnp3

(

1
ξ − 1

)

p1p3

(

1
ξ − 1

)

p2p3 ω2
n + p2 − 1

ξp
2
3

















.

Dabei wurde der temperaturunabhängige Term wegen des Nernst’schen Theorems nicht
berücksichtigt, wodurch für den Druck des freien Photonengases Eichinvarianz erzielt
wird:

pb = −T
V

∑

n

∑

p

ln
(

β2(ω2
n + p2)

) (2.18)
=

π2

45
T 4. (3.6)

Der Unterschied zwischen diesem Ergebnis und dem für masselose skalare Felder (2.18)
entspricht einem Faktor 2 und spiegelt die zwei Polarisationszustände des Photons wider.
Die zwei zusätzlichen unphysikalischen Freiheitsgrade wurden durch die grassmannwer-
tigen Felder eliminiert. Für die Elektronen ergibt sich folgender fermionischer Beitrag
zum Druck der freien QED:

pf =
7π2

180
T 4. (3.7)

Die Berechnung des Drucks des freien Gluonengases in der QCD erfolgt analog, aller-
dings unter der Berücksichtigung der Anzahl der Gluonen mit N2−1. Die analoge Rech-
nung zu (3.5) ergibt den sogenannten Stefan-Boltzmann-Grenzwert des Drucks eines
idealen Gluonengases:

pSB =
(N2 − 1)π2

45
T 4. (3.8)
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3.1 Illustration der Eichinvarianz des thermodynamischen Drucks am Beispiel der QED

3.1.2 Erste Korrektur

Da die QED eine abelsche Eichtheorie darstellt, existieren zwischen den Photonen kei-
ne Selbstwechselwirkungen. Der einzige Wechselwirkungsterm der vollen QED ist die
Kopplung von Photonen und Elektronen mit der elektrischen Ladung bzw. Kopplungs-
konstante e:

LI = −eψ̄ /Aψ. (3.9)

Das dazu entsprechende Schleifen-Diagramm zur Berechnung der ersten Korrektur
des Drucks bildet sich folgendermaßen ab:

−1

2

T

V � = −1

2
e2
∑

∫

∑

∫
[

Tr [γµ(/p+m)(/q +m)γµ]

(p2 −m2)(q2 −m2)(p − q)2

+ (ρ− 1)
Tr [γµ(/p+m)(p− q)µ(p− q)ν(/q +m)γν ]

(p2 −m2)(q2 −m2)(p− q)4

]

. (3.10)

Das Minuszeichen resultiert aus dem fermionischen Charakter und der Faktor 1/2 steht
für den Symmetriefaktor des Schleifen-Diagramms. Die Frequenzsummenintegrale wer-
den üblicherweise mittels Kontur-Integration ausgewertet, die jedes reelle Teilchen au-
tomatisch auf seine Massenschale setzt. Wird die zweite Spur in (3.10) mit p2 = m2

und q2 = m2 ausgeführt, so liefert der Zähler, unabhängig von der Behandlung des
singulären Charakters der Frequenzsummenintegrale mittels Kontur-Integration, keinen
Beitrag. Daraus folgt, dass der eichabhängige Term insgesamt bei der Berechnung nicht
berücksichtigt werden muss:

Tr [γµ(/p+m)(p − q)µ(p − q)ν(/q +m)γν ] |p2=m2;q2=m2= 0. (3.11)

Somit trägt nur der erste Term in (3.10) zum Druck bei, was einer Berechnung in
Feynman-Eichung entspricht. Nach Auswertung der Spur für masselose Elektronen re-
sultiert daher

−1

2

T

V � = −1

2
e2
∑

∫

∑

∫ [

Tr [γµ/p/qγµ]

p2q2(p − q)2

]

= −2e2
[

(If (0))2 + 2If (0)Ib(0)
]

= − 5e2

288
T 4 (3.12)

mit If (0) =
∑

∫

pf

1

p2
= −T

2

24
, (3.13)

Ib(0) =
∑

∫

pb

1

p2
=
T 2

12
, (3.14)

wobei
∑

∫

= T
∑

ωn

∫

ddp

(2π)d
.

Die Indizes f bzw. b bezeichnen die Integration über Impulse von Fermionen bzw.
Bosonen. Sowohl die zugrunde liegenden Feynman-Regeln und benötigten Spurtheore-
me über Dirac-Matrizen, als auch die Lösung der Frequenzsummenintegrale sind dem
Anhang (Kap. A.2 und A.5) zu entnehmen.
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3 Perturbative Entwicklung des thermodynamischen Drucks

Zusammenfassend stellt sich der Druck der QED bis zur zweiten perturbativen Ord-
nung folgendermaßen dar:

pQED =
π2

45
T 4

(

1 +
7

4

)

− 5e2

288
T 4. (3.15)

3.2 Zusammenbruch der Störungstheorie in der QCD

3.2.1 Impulsskalen des Quark-Gluon-Plasmas

Die perturbative Behandlung des QGPs erscheint durch die asymptotische Freiheit mög-
lich. Bei hohen Temperaturen ist die Kopplungskonstante der QCD g2(T ) ∼ 1/ ln(T/Λ)
sehr klein (vgl. 2.5), d. h. das QGP entspricht einem idealen Gas von Quarks und Gluo-
nen. Daher lässt sich eine Hierarchie von Impulsskalen des QGPs angeben, die zur
Erzeugung von dimensional reduzierten effektiven Theorien (Kap. 4) genutzt wird.

Es existieren drei Impulsskalen des QGPs:

• Die Skala der sogenannten harten Moden (∼ 2πT ) gibt die typische Impulsskala
von massiven Quarks und energiereichen Gluonen wieder.

• Die Impulsskala der weichen Moden (∼ gT ) wird mit der Abschirmung durch
farb-elektrostatische Felder Aa

0 assoziiert und ist in der dimensional reduzierten
Theorie der elektrostatischen QCD (EQCD) enthalten.

• Die Impulsskala der ultra-weichen Moden (∼ g2T ) wird mit der Abschirmung
durch farb-magnetostatische Felder Aa

k assoziiert und ist in der dimensional redu-
zierten Theorie der nicht-perturbativen magnetostatischen QCD (MQCD) enthal-
ten.

3.2.2 Ring-Diagramme

Die perturbative Entwicklung des Drucks der QCD ist keine übliche Potenzreihe in
der Kopplungskonstante g2, sondern bildet sich wie folgt ab, wobei ck mit k = 1, ..., 6
numerische Koeffizienten sind:

p = T 4

[

c1 + c2g
2 + c3g

3 +

(

c′4 ln

(

1

g

)

+ c4

)

g4 + c5g
5 + c′6g

6 ln

(

1

g

)

+O(g6)

]

.(3.16)

Die Ursache dafür stammt aus der Summe einer Reihe unendlich vieler Ring-Diagramme

1

2

[

1

2 � − 1

3 � +
1

4 � − ...

]

, (3.17)

die für die Berechnung des Drucks benötigt werden, wobei � die Summe über
alle Selbstenergien kennzeichnet, in der alle Wechselwirkungsterme der Lagrangedichte
aus (2.21) beachtet werden. Die gewellten Linien repräsentieren hier die Gluonen, wo-
hingegen sie in der QED eine Abbildung für Photonen sind (vgl. 3.10).
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3.2 Zusammenbruch der Störungstheorie in der QCD

3.2.3 Infrarot-Divergenzen

Aufgrund der asymptotischen Freiheit bzw. des Verhaltens des QGPs als nahezu idealem
Gas bei sehr hohen Temperaturen liegt eine perturbative Herangehensweise nahe, die
bis in beliebig hohe Ordnungen in der Kopplungskonstante angestrebt wird. Lindé [3]
identifizierte jedoch eine Grenze, bei der infolge von IR-Divergenzen die Störungstheorie
zusammenbricht. Zur Untersuchung der IR-Divergenzen wird folgendes (l+1)-Schleifen-
Diagramm betrachtet:

�1 2 l l + 1 . (3.18)

Das Feynman-Diagramm besitzt 3l Gluon-Propagatoren und 2l 3er-Gluon-Vertizes
und leistet für den Druck den Beitrag

p ∼ g2l

(

T

∫

d3p

)l+1

p2l(p2 +m2)−3l, (3.19)

bei der ein eventueller IR-cutoff eingeführt wurde, d. h. eine effektive Masse des Gluons.
Der erste und dritte Faktor in (3.19) stammen aus den Feynman-Regeln des Vertex,
der zweite Faktor stammt aus der Schleifen-Integration und der letzte Faktor aus dem
Gluon-Propagator. Aus Übersichtsgründen wird hier nur eine vereinfachte Darstellung
gezeigt, die zur Illustration der Problemstellung vollkommen ausreichend ist.

In Abhängigkeit der Anzahl der Schleifen im aufgezeigten Diagramm (3.18) geht der
Beitrag des Drucks in folgende Ordnungen der Kopplungskonstante ein:

g2l für l = 1, 2,

g6T 4 ln(T/m) für l = 3,

g6T 4(g2T/m)l−3 für l > 3. (3.20)

Dabei wurde ein ultravioletter cutoff T in die Impulsintegration gesetzt. Eine pertur-
bative Behandlung der QCD mit masselosen Gluonen bzw. mit einem Gluonpropagator
aus (2.24) scheitert demnach, da für m = 0 und l > 2 das Diagramm infrarot divergiert.
Ohne die Einführung einer effektiven Masse in den Gluonpropagator ist eine perturbati-
ve Behandlung also nicht möglich. Für die magnetische Masse mmagn. ∼ g2T tragen alle
Schleifen-Diagramme mit l > 3 zu der Ordnung g6 bei, wonach die Berechnung unend-
lich vieler Diagramme nötig ist, um einen vollständigen Beitrag in dieser Ordnung zu
erhalten. Die Wahl der Massenskalen der harten Moden mhard ∼ 2πT bzw. der weichen
Moden mel. ∼ gT stellt im Gegensatz zur magnetischen Masse kein Problem in der
perturbativen Entwicklung dar.

Ein ähnliches Problem taucht bei der Berechnung von Gluon-Selbstenergien auf, bei
der die Störungstheorie bereits in der Ordnung g4 zusammenbricht. Die Isolierung des
Problems auf einen Teilbereich der Theorie erfolgt unter Beachtung der Impulsskalen-
hierarchie mittels dimensionaler Reduzierung, worauf sich das nächste Kapitel bezieht.

17



3 Perturbative Entwicklung des thermodynamischen Drucks
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4 Dimensionale Reduzierung

Alle perturbativen thermodynamischen Berechnungen in der QCD lassen sich wegen
der IR-Divergenzen nur begrenzt ausführen. Da in der thermischen QCD mit einer
effektiven Kopplungskonstante g2T

m und einem Gluon-Propagator mit m = 0 (siehe
2.24) perturbativ entwickelt wird, wirkt die Einführung einer effektiven Masse in der
Störungstheorie dämpfend auf die IR-Divergenzen. Die eichinvariante Einbindung einer
effektiven Masse in eine dimensional reduzierte effektive Theorie ist Gegenstand des
fünften Kapitels.

Im Folgenden wird zunächst die Bildung von zwei dimensional reduzierten effektiven
Theorien behandelt, um eine Isolation der IR-Divergenzen in eine effektive Theorie, die
MQCD, zu erzielen [4,5]. Die Konstruktion dieser effektiven Theorien setzt eine so kleine
Kopplungskonstante g voraus, dass alle drei Skalen der QCD infolge der Impulsskalen-
hierarchie g2T < gT < 2πT umstandslos separiert werden können.

Der thermodynamische Druck des QGPs setzt sich schließlich aus der Summe der
Beiträge der aus der Separation der Skalen resultierenden drei Teilbereiche der Theorie
zusammen. Die dimensionale Reduzierung der QCD auf zwei effektive Theorien und die
Berechnung des Drucks bis zur perturbativ höchstmöglichen Ordnung g6 ln(1/g) ist an
Kajantie et al. [10] orientiert.

4.1 Dreidimensionale effektive Theorien

Die zeitliche Dimension euklidischer Feldtheorien ist kompaktifiziert und der zugehöri-
ge Radius entspricht der inversen Temperatur β = 1/T . Bei sehr hohen Temperaturen
wird diese Größe beliebig klein, so dass die der Zeitrichtung zugeordneten Impulsfrei-
heitsgrade, d. h. die Matsubara-Moden, im Wesentlichen starr sind. Daher lassen sich
viele Eigenschaften des QGPs aus einer einfacheren dreidimensionalen effektiven Theorie
ableiten.

Die zentrale zu berechnende Größe ist der Druck des QGPs

pQCD(T ) = lim
V →∞

T

V
ln

∫

DAa
µDψDψ̄ exp (−SQCD) , (4.1)

wobei die euklidische Wirkung der QCD in der SU(N)-Eichgruppe mit Nf masselosen
Quarks den Ausgangspunkt bildet (ohne Eichfixierung):

SQCD =

∫ β

0
dτ

∫

ddxLQCD, (4.2)

LQCD =
1

4
F a

µνF
a
µν + ψ̄γµDµψ. (4.3)

Die Anzahl räumlicher Dimensionen der Theorie ist durch d gekennzeichnet. Die Län-
genskala 1

2πT der harten QCD entspricht dem typischen Teilchenabstand im QGP.
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4 Dimensionale Reduzierung

4.1.1 Elektrostatische QCD

Die Bildung der sogenannten elektrostatischen QCD erfolgt durch die Ausintegration
aller bosonischen und fermionischen Moden mit n 6= 0. Das elektrostatische Feld Aa

0

wird zu einem adjungierten Higgs-Feld, wodurch sich die Theorie der EQCD mit einer
dreidimensionalen effektiven super-renormierbaren Lagrangedichte folgendermaßen dar-
stellt:

pQCD(T ) = pE(T ) +
T

V
ln

∫

DAa
kDAa

0 exp (−SE), (4.4)

SE =

∫

ddxLE, (4.5)

LE =
1

2
TrF 2

kl + Tr [Dk, A0]
2 +m2

ETrA2
0 + λ

(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0, (4.6)

Fkl =
i

gE
[Dk,Dl], Dk = ∂k − igEAk.

Dadurch resultiert eine effektive Theorie für bosonische Matsubara-Nullmoden. Alle
höherdimensionalen Operatoren der Lagrangedichte (4.6) müssen nicht berücksichtigt
werden, weil nur alle bis zur Ordnung g6 im Druck relevanten Operatoren von Interesse
sind.

Die EQCD besitzt fünf verschiedene Anpassungskoeffizienten, welche die Verbindung
zur vollen vierdimensionalen Theorie herstellen. In führender Ordnung ergeben sie:

pE =
π2

180

(

4(N2 − 1) + 7NNf

)

T 4,

m2
E =

1

3

(

N +
1

2
Nf

)

g2T 2,

g2
E = g2T, (4.7)

λ
(1)
E =

(6 +N −Nf )

24π2
g4T,

λ
(2)
E =

(N −Nf )

12π2
g4T.

Die Längenskala 1
gT in der EQCD ist die durch Abschirmung der longitudinalen Anre-

gungen der Gluonen dynamisch generierte Längenskala.

4.1.2 Magnetostatische QCD

Der Übergang zur magnetostatischen QCD erfolgt durch Ausintegration der adjungier-
ten Higgs-Felder Aa

0:

T

V
ln

∫

DAa
kDAa

0 exp (−SE) = pM(T ) +
T

V
ln

∫

DAa
k exp (−SM), (4.8)

SM =

∫

ddxLM, (4.9)

LM =
1

2
TrF 2

kl, (4.10)

Fkl =
i

gM
[Dk,Dl], Dk = ∂k − igMAk.
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4.2 Der thermodynamische Druck des Quark-Gluon-Plasmas

Auch hier werden alle höherdimensionalen Operatoren der Lagrangedichte (4.10) jenseits
der Ordnung g6 nicht berücksichtigt. Die beiden Anpassungskoeffizienten der MQCD
ergeben in führender Ordnung:

pM =
1

12π
(N2 − 1)m3

ET,

g2
M = g2

E. (4.11)

Die Längenskala 1
g2T

in der dreidimensionalen reinen Eichtheorie ist die durch Abschir-
mung der transversalen Anregungen der Gluonen dynamisch generierte Längenskala.

Nach der Bildung der zweiten dimensional effektiven Theorie bleibt der Druck pG

aus der MQCD übrig, dessen Beitrag in führender Ordnung aus dimensionalen Gründen
folgendermaßen eingeht:

pG(T ) =
T

V
ln

∫

DAa
k exp (−SM) ∼ Tg6. (4.12)

Diese Abhängigkeit in der Kopplungskonstante in führender Ordnung entspräche zu
Beginn einer perturbativen Entwicklung der Berechnung von 4-Schleifen-Diagrammen
(vgl. 3.20). Da allerdings genau ab dieser Ordnung wegen der IR-Divergenzen der Zu-
sammenbruch der perturbativen Behandlung des Drucks eintritt, stellt die MQCD eine
perturbativ nicht zugängliche Theorie dar.

4.2 Der thermodynamische Druck des

Quark-Gluon-Plasmas

4.2.1 Das Gesamtresultat

Im vorliegenden Abschnitt werden die einzelnen Beiträge des Drucks für die drei Im-
pulsskalen bis zur Ordnung g6 zum vollständigen Druck des QGPs zusammengetragen:

pQCD(T ) = pE(T ) + pM(T ) + pG(T ). (4.13)

Während die harte und die elektrostatische QCD perturbativ zugänglich sind, scheint
eine Auswertung des Druckbeitrags für die Skala g2T der nicht-perturbativen MQCD
nur numerisch möglich. Aus dimensionalen Gründen besitzt der Beitrag des Drucks
nach [10] mit dA = N2 − 1 und CA = N folgende Form:

pG(T )

Tµ−2ǫ
= dAC

3
A

g6
M

(4π)4

[

αG

(

1

ǫ
+ 8 ln

µ̄

2mM

)

+ βG +O(ǫ)

]

. (4.14)

αG und βG kennzeichnen die zu bestimmenden Koeffizienten. Der ǫ-Pol und der ultra-
violette cutoff µ̄ resultieren aus der dimensionalen Regularisierung.

Eine strikte Anwendung der dimensionalen Regularisierung zur Behandlung ultravio-
letter Divergenzen (UV-Divergenzen) ergibt zur Bestimmung von pG bei der Berechnung
von 4-Schleifen-Diagrammen keinen Beitrag, weil in der MQCD keine perturbative ef-
fektive Masse mG enthalten ist. Eine einfache Einführung einer effektiven Masse in den
Gluonpropagator der MQCD (vgl. [10]) führt auf ein eichabhängiges Ergebnis:

pG(T )

Tµ−2ǫ
= dAC

3
A

g6
M

(4π)4

[

αG

(

1

ǫ
+ 8 ln

µ̄

2mG

)

+ β̃G(ξ) +O(ǫ)

]

. (4.15)
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4 Dimensionale Reduzierung

Die dimensionale Regularisierung der räumlichen Integration ist in perturbativen Be-
rechnungen eine übliche Methode, um alle UV-Divergenzen zu beheben, wobei die Im-
pulsintegration durch eine analytische Fortsetzung nach d = 3− 2ǫ Dimensionen ausge-
drückt wird:

∫

p
=

∫

ddp

(2π)d
= µ−2ǫ

[

µ̄2ǫ

(

eγ

4π

)ǫ ∫ ddp

(2π)d

]

. (4.16)

Mit µ̄ = µ(eγ/4π)−
1

2 wird eine Impulsskala eingeführt, die ein Abschneiden der ver-
bleibenden logarithmisch divergenten Integrale, die als ǫ-Pole auftauchen, bewirkt. Die
Einführung dieser Impulsskala entspricht im Übrigen dem Regularisierungsschema der
Minimalen Subtraktion.

Der vollständige Druck des QGPs bis zur Ordnung g6 besitzt folgendes Gesamtresul-
tat:

pQCD(T )

T 4µ−2ǫ
=
pE(T ) + pM(T ) + pG(T )

T 4µ−2ǫ

=g0αE1 + g2αE2 +
g3

(4π)

dA

3
α

3/2
E4

+
g4

(4π)2

[

αE3 − dACA

(

αE4

(

1

4ǫ
+

3

4
+ ln

µ̄

2gTα
1/2
E4

)

+
1

4
αE5

)]

+
g5

(4π)3

[

dAα
1/2
E4

(

1

2
αE6 −C2

A

(

89

24
+
π2

6
− 11

6
ln 2

))]

+
g6

(4π)4

[

βE1 −
1

4
dAαE4

(

(dA − 2)βE4 +
2dA − 1

Nc
βE5

)

− dACA

(

1

4
(αE6 + αE5αE7 + 3αE4αE7 + βE2 + αE4βE3)

+ (αE6 + αE4αE7)

(

1

4ǫ
+ ln

µ̄

2gTα
1/2
E4

))

+ dAC
3
A

(

βM + βG + αM

(

1

ǫ
+ 8 ln

µ̄

2gTα
1/2
E4

)

+αG

(

1

ǫ
+ 8 ln

µ̄

2g2TCA

))]

+O(g7) +O(ǫ). (4.17)

Die Koeffizienten αX sind bekannte Größen (vgl. [10] oder siehe Kapitel A.3). Die Be-
stimmung der bis dato unbekannten Koeffizienten βX erfordert eine Berechnung des
Drucks in der Ordnung g6. Insbesondere die Berechnung des Koeffizienten βG hat auf-
grund der vorigen Betrachtungen in (4.12) und (3.20) eine Auswertung unendlich vieler
Schleifen-Diagramme zur Folge.

Im Übrigen ist anzumerken, dass jeder Beitrag des Drucks pE, pM, pG für sich eine ska-
lenabhängige Größe ist. In der Summe heben sich jedoch die Koeffizienten der ǫ-Pole auf,
so dass sich der vollständige Druck (4.17) als wohldefinierte thermodynamische Größe
herausstellt. Es existieren also Korrekturen des Drucks bis einschließlich zur Ordnung
g6 ln(1/g).
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4.2 Der thermodynamische Druck des Quark-Gluon-Plasmas

Die Korrektur des Drucks in der Ordnung g6 ln(1/g) besitzt folgenden Wert:

pQCD(T )

T 4µ−2ǫ

∣

∣

∣

g6 ln(1/g)
= g6 dACA

(4π)4

[

(αE6 + αE4αE7) ln(gα
1/2
E4 )

− 8C2
A(αM ln(gα

1/2
E4 ) + 2αG ln(gC

1/2
A ))

]

. (4.18)

In diesem von Kajantie et al. bestimmten Ergebnis sind zwei verschiedene Logarithmen
mit unterschiedlichen nichtanalytischen Abhängigkeiten in gruppentheoretische Fakto-
ren enthalten.

4.2.2 Numerische Konvergenz

Die perturbative Behandlung einer physikalischen Größe ist nur dann sinnvoll, wenn
diese ein zufriedenstellendes Konvergenzverhalten bei Entwicklung nach der Kopplungs-
konstante aufweist. Zur Untersuchung der Konvergenz des thermodynamischen Drucks
des QGPs ist eine graphische Darstellung nützlich. Die numerische Bedeutung der Ord-
nung g6 ln(1/g) aus (4.18) ist hier von besonderem Interesse. Unumgänglich sind dazu
Annahmen über die noch unbestimmten Koeffizienten βX, die eine vollständige Angabe
des Drucks zur Ordnung g6 voraussetzen. Seitdem Arnold und Zhai [22] die Korrektur
des Drucks in g4 bestimmt haben, ist bekannt, dass die perturbative Entwicklung des
Drucks ein mangelhaftes Konvergenzverhalten aufweist. Die Berechnung der bis dato
höchsten Ordnung g6 ln(1/g) in (4.18) ändert nichts an dieser Tatsache.

Den größten Anteil an diesem Verhalten besitzen die Beiträge des Drucks pM und pG

aus den beiden dimensional reduzierten effektiven Theorien, da die effektive Kopplungs-
konstante dort nur g2T

meff.
beträgt. Im Gegensatz dazu besitzt die volle Theorie zur Bestim-

mung von pE die Kopplungskonstante g2, so dass dort ein gutes Konvergenzverhalten
zu erwarten ist. Aus diesem Grund wird hier lediglich der dreidimensionale Beitrag des
Drucks zur Untersuchung der Abhängigkeit des Ergebnisses aus (4.18) auf die unbe-
kannten g6 Koeffizienten betrachtet.

Der Beitrag des Drucks zur Ordnung (g6 ln(1/g) + g6) kann mit der Wahl µ̄ = 2πT
zu folgendem Ausdruck umformuliert werden:

δ

[

pQCD(T )

Tµ−2ǫ

]

g6 ln(1/g)

= 8dAC
3
A

g6
E

(4π)4

[

(αM + 2αG) ln
mE

g2
E

+ δ

]

. (4.19)

Für N = 3 und Nf = 0 ist in führender Ordnung mE/g
2
E ∼ 1/g. Die Größe δ enthält alle

bis dato unbekannten Koeffizienten βX aus (4.17). Der Koeffizient βE1 muss allerdings
alle Beiträge der ǫ-Pole aufheben und besitzt daher die folgende Struktur:

βE1 = dACA(αE6 + αE4αE7)
1

4ǫ
− dAC

3
A(αM + αG)

1

ǫ
+ βE6. (4.20)

Alle übrigen Koeffizienten βX sind endliche Größen, d. h. enthalten keine ǫ-Pole.
In Abb. 4.1 sind die Ergebnisse von (4.19) für verschiedene Werte von δ graphisch dar-

gestellt. Aufgetragen ist jeweils der auf den Stefan-Boltzmann-Grenzwert eines idealen
Gluonengases (siehe 3.8) normierte Druck der QCD mit Nf = 0 und N = 3 in Ab-
hängigkeit der reduzierten Temperatur T/ΛMS. Abb. 4.1 stellt im linken Diagramm die
Beiträge des Drucks bis zu den einzelnen Ordnungen der perturbativen Entwicklung dar,
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4 Dimensionale Reduzierung

Abbildung 4.1: Der normierte Druck der QCD pQCD/pSB in Abhängigkeit der reduzierten
Temperatur T/ΛMS mit [10]; links : Ergebnisse der einzelnen perturbativen Ordnungen ein-
schließlich der Ordnung g6 mit einer optimalen Wahl des Koeffizienten δ = 0, 7; rechts : Abhän-
gigkeit des g6-Beitrags von δ.

wobei für den Beitrag der Ordnung g6 die Wahl δ = 0, 7 getroffen wurde. Im rechten
Diagramm ist die Abhängigkeit des Druckbeitrags zur Ordnung g6 von der Wahl des
unbekannten Koeffizienten δ aufgetragen.

Die erste positive Beobachtung ist das Erreichen des Stefan-Boltzmann-Grenzwertes
bei sehr hohen Temperaturen. Die zweite wesentliche Erkenntnis ist, dass die Auswir-
kungen auf den Beitrag des Drucks zur Ordnung g6 in Abhängigkeit von δ erheblich
sind. Die Ergebnisse unterscheiden sich nicht nur quantitativ, sondern auch qualitativ
voneinander (vgl. Abb. 4.1 links). Für die Wahl δ = 0, 7 stimmt das Ergebnis jedoch mit
Gitterrechnungen in der vollen vierdimensionalen Theorie [23] gut überein (vgl. Abb.
4.1 rechts).

Eine konkrete Aussage betreffend der Übereinstimmung des Ergebnisses mit der Git-
terrechnung ist nur durch die vollständige Bestimmung der Koeffizienten βX gewährleis-
tet. Es ist jedoch anzumerken, dass genau in dem Bereich für T/ΛMS ∼ 2, ..., 3, in der
ein Vergleich mit den Gitterdaten möglich ist, die Impulsskalenhierarchie und somit die
notwendige Bedingung für die Begründung der beiden dimensional effektiven Theorien
verletzt wird. Daher könnte eine eventuelle vollständige Bestimmung der Koeffizienten
zur Ordnung g6 nicht als sichere Prognose zum Vergleich herangezogen werden. Es liesse
sich lediglich beobachten, ob ein glatter Übergang der Graphen aus dem Gültigkeitsbe-
reich des Ergebnisses zu den Gitterdaten erfolgen würde.

In einer kürzlich veröffentlichten Arbeit von Hietanen et al. [24] wurden Monte-Carlo-
Simulationen für die EQCD bzw. der dreidimensionalen SU(3) adjungierten Higgs-
Theorie aktualisiert, um eine genauere Abschätzung der IR-Beiträge des Drucks für
die QCD zu bestimmen. Die Ergebnisse sind in Abb. 4.2 dargestellt. Links ist der auf
T 4 normierte Druck in Abhängigkeit der Temperatur T/Tc abgebildet, wobei Tc die kri-
tische Temperatur kennzeichnet. Der Vergleich des Resultats des Beitrags aus der EQCD
mit Gitterdaten ist sehr ernüchternd. Deutlicher wird der Unterschied im rechten Dia-
gramm, in dem die Differenz der Energiedichte ǫ = T 2

V
∂ ln Z
∂V und des Druck gegenüber
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Abbildung 4.2: links: Der auf T 4 normierte Druck in Abhängigkeit von T/Tc; rechts: Die
Differenz der Energiedichte und des Drucks normiert auf T 4 [24].

der Temperatur abgebildet ist.
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5 Massenerzeugung für Gluon-Felder in

der MQCD

Der Fokus dieser Arbeit liegt auf der Bestimmung von pG bzw. des Koeffizienten βG

des Drucks der MQCD auf perturbative Weise. Die nicht-perturbative Natur der MQCD
stellt dabei ein großes Problem dar. Ein erster Beitrag von βG tritt erst in der 4-Schleifen-
Ordnung auf (vgl. 4.12), dessen Berechnung direkt mit IR-Divergenzen verknüpft ist.
Infolge der Behandlung der UV-Divergenzen durch dimensionale Regularisierung liefert
der Druck pG der MQCD sogar keinen Beitrag, da keine effektive Masse in der Theorie
enthalten ist.

Gegenstand dieses Kapitels ist die eichinvariante Massenerzeugung für Gluon-Felder
durch den Mechanismus der spontanen Symmetriebrechung im NLσM. Weiterhin wird
das Resummationsverfahren vorgestellt, welches die perturbative Entwicklung umstruk-
turiert und eine perturbative Behandlung der aus der MQCD resultierenden effektiven
Theorie realisiert.

5.1 Grundlagen der spontanen Symmetriebrechung

Wenn der Vakuumerwartungswert des Grundzustands eines quantenmechanischen Sys-
tems weniger Symmetrien aufweist als die zugehörigen Bewegungsgleichungen, ist die
Symmetrie des Systems spontan gebrochen. Das Coleman-Theorem trifft eine analo-
ge Aussage (vgl. z.B. [25]): Gegeben sei ein quantenmechanisches System mit einer
Lagrangedichte L und einem Zustand minimaler Energie, dem Vakuumzustand. Wirkt
eine definierte Transformation auf die Lagrangedichte L und auf den Vakuumzustand,
treten folgende Fälle auf:

1. Vakuumzustand und L sind jeweils invariant gegenüber dieser Transformation.
Das System besitzt exakte Symmetrie.

2. Vakuumzustand ist nicht invariant und

• L ist nicht invariant. Die Symmetrie des Systems ist explizit gebrochen.

• L ist invariant. Die Symmetrie des Systems ist spontan gebrochen.

Die spontane Symmetriebrechung einer globalen kontinuierlichen Symmetrie bewirkt
das Auftreten eines masselosen pseudoskalaren Teilchens, welches auch als Nambu-
Goldstone-Boson bekannt ist. Wird eine Eichsymmetrie spontan gebrochen, so tritt das
dazugehörige Nambu-Goldstone-Boson physikalisch nicht in Erscheinung, da das Eichbo-
son den entsprechenden Freiheitsgrad absorbiert. Durch das Auftreten des sogenannten
Higgs-Teilchens bzw. seiner Kopplung an alle Felder wird das Eichboson massiv.
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5 Massenerzeugung für Gluon-Felder in der MQCD

5.2 Resummationsverfahren mit dem nichtlinearen

σ-Modell

5.2.1 Eigenschaften des nichtlinearen σ-Modells

Eine alternative Beschreibung der spontanen Symmetriebrechung liefert das NLσM (vgl.
[26, 27]). Es wird in dieser Arbeit als Mechanismus zur eichinvarianten Erzeugung von
Massen für die in der MQCD vorkommenden Gluon-Felder genutzt.

In diesem Modell wird ein N -komponentiges skalares Feld φ(x) betrachtet, das der
orthogonalen Symmetriegruppe O(N) unterliegt und die Bedingung φ2(x) = 1 erfüllt.
Unter Beachtung der Symmetriebedingungen des Feldes besitzt die allgemeine Wirkung
folgenden Ausdruck:

S(φ) =
1

2

∫

ddx ∂µφi · ∂µφi mit i = 1, ..., N. (5.1)

Die perturbative Entwicklung dieser Theorie erfordert eine Parametrisierung des ska-
laren Feldes durch unabhängige Variablen. Eine für Renormierungszwecke geeignete
Parametrisierung der Bedingung φ2(x) = 1 ist die Wahl

φ(x) = (σ, π1, ..., πN−1) = (σ(x),π(x)) , (5.2)

wobei σ eine nichtlineare Funktion des (N − 1)-komponentigen Feldes π ist:

σ(x) =
(

1 − π(x)2
)− 1

2 . (5.3)

Diese Theorie ist eine phänomenologische Beschreibung eines O(N)-symmetrischen Sys-
tems, die um den Vakuumerwartungswert des skalaren Feldes < φ >= 1 spontan gebro-
chen ist. Jede Komponente πk entspricht dabei einem Zustand gebrochener Symmetrie.

Für perturbative Zwecke wird die nichtlineare Realisierung der spontanen Symme-
triebrechung (5.3) einer Taylor-Entwicklung unterzogen. Die Wirkung stellt sich wie
folgt dar:

S(π) =
1

2

∫

ddx
[

(∂µπ)2 + (π · ∂µπ)2 + ...
]

. (5.4)

Die Erzeugung der Gluonmassen für die MQCD, die der SU(N)-Symmetriegruppe
unterliegt, erfolgt durch Addition von

LΦ = Tr
[

(DiΦ)†(DiΦ)
]

(5.5)

zur Lagrangedichte aus (4.10) mit der kovarianten Ableitung Di = ∂i − igMAa
i . Durch

eine entsprechende Parametrisierung des skalaren Feldes Φ, welches eine komplexe N ×
N -Matrix darstellt, koppeln die sogenannten Goldstone-Bosonen πa und das Higgs-Feld
σ an das Eichfeld und bewirken somit eine effektive Masse mG für die Gluon-Felder.
Für SU(2) wird die Parametrisierung

Φ =
1

2
(σ + iτaπa) (5.6)

mit den 2 × 2-Pauli-Matrizen τa verwendet.
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5.2 Resummationsverfahren mit dem nichtlinearen σ-Modell

5.2.2 Vorgehensweise der Resummation

Die Addition der Lagrangedichte aus (5.5) impliziert bei geeigneter Eichfixierung neue
Felder und deren Kopplungen sowohl an das Eichfeld als auch untereinander, woraus
das NLσM resultiert. Diese Methode dient zur eichinvarianten Erzeugung einer magne-
tischen Masse, um IR-Divergenzen zu regulieren.

Um das Ziel der perturbativen Berechnung des Drucks in der MQCD zu erreichen,
muss ein Verfahren entwickelt werden, in der die addierte Lagrangedichte (5.5) effek-
tiv wieder subtrahiert wird und dennoch der durch die magnetische Masse modifizierte
Eichfeld-Propagator in die perturbative Entwicklung eingeht. Dazu ist eine Umstruktu-
rierung der Störungstheorie mittels folgendem Resummationsschema notwendig:

Leff. =
1

l

[

LM(
√
lX) + LΦ(

√
lX) − lLΦ(

√
lX)

]

. (5.7)

Ausgangspunkt ist die Lagrangedichte der MQCD (4.10). Die Lagrangedichte der skala-
ren Felder Φ wird zu LM mittels der Einführung eines Schleifen-Parameters l addiert und
wieder subtrahiert. Der Schleifen-Parameter l skaliert alle in dieser effektiven Theorie
vorkommenden FelderX := Aa

µ, π
a, ... und reorganisiert die perturbative Berechnung des

Drucks. Diese Berechnungen gehen nicht mehr Ordnung für Ordnung in die Kopplungs-
konstante g2 ein, sondern resultieren in eine Potenzreihe in l. Das ist insofern vorteilhaft,
da der Druck der modifizierten MQCD, d. h. mit einer effektiven magnetischen Masse
mG, für jede Schleifen-Ordnung zu O(g6) beiträgt (vgl. 3.20 und 4.12). Die Auswertung
der freien effektiven Theorie geht in die Ordnung l0 ein, während die erste Korrektur
bzw. die Berechnung von 2-Schleifen-Diagrammen zur Ordnung l1 beiträgt. Zudem tritt
der subtrahierte Term in (5.7) erst eine Schleifen-Ordnung höher ein als der addierte
Term.

Das Resummationsverfahren begründet also eine effektive Theorie durch die Addition
und Subtraktion einer geeigneten Wahl des massenerzeugenden Terms Lm mit

Leff. = L0 + Lm + Lint − Lm, (5.8)

wobei der modifizierte Wechselwirkungsterm Lint−Lm perturbativ entwickelt wird und
der modifizierte Propagator sich aus L0 + Lm ableiten lässt [6].

5.2.3 Motivation

Bei steigender Temperatur geht die uns bekannte hadronische Materie, in der Quarks
und Gluonen in farbneutrale Hadronen eingeschlossen sind, in die ungebundene Phase
der QCD bzw. das QGP über. Ein erster Schritt zur Untersuchung der Natur dieses
Phasenübergangs liefert die Bestimmung des Koeffizienten C der magnetischen Masse
mG = Cg2T , d. h. der Masse des Eichfeldes in der ungebundenen Phase.

Zur Untersuchung des elektroschwachen Phasenübergangs betrachteten Buchmüller
und Philipsen [8] das dreidimensionale SU(2)-Higgs-Modell und berechneten die Massen
des Higgs-Teilchens und des Eichfeldes mittels sogenannter gap-Gleichungen. Diese bil-
den selbst-konsistente Bedingungen für die entsprechenden Massen, die im Übrigen den
exponentiellen Abfall der zugehörigen 2-Punkt-Funktionen der Felder mit ∼ e−m|x−y|

bei größer werdendem Abstand bestimmen. Der Pol des transversalen Teils des Eichfeld-
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5 Massenerzeugung für Gluon-Felder in der MQCD

Propagators sollte dabei für alle Schleifenordnungen auf der Massenschale bestehen blei-
ben:

Dtrans.(p
2) =

1

p2 +m2 − Πtrans.(p2)
∼ 1

p2 +m2
für p2 = −m2. (5.9)

Daraus ergibt sich folgende gap-Gleichung für die Selbstenergie einer Theorie:

Πtrans.(p
2 = −m2)

(

1 +
∂Πtrans.

∂p2
(p2 = −m2)

)

= 0. (5.10)

Auf 1-Schleifen-Niveau folgt die Bedingung Πtrans.(p
2 = −m2) = 0.

Im Higgs-Modell bzw. linearen Sigma-Modell wird das Higgs-Teilchen im Gegensatz
zu (5.3) linear um seinen Vakuumerwartungswert verschoben. Zudem treten weitere
Terme in der Lagrangedichte

Lσ = Tr
[

(DiΦ)†(DiΦ) + µ2Φ†Φ + 2λ(Φ†Φ)2
]

(5.11)

auf, die zu LM addiert werden. λ bezeichnet die Kopplung und µ die Masse der skala-
ren Felder Φ. Nach der Einbindung einer geeigneten Eichfixierung und der zugehörigen
Faddeev-Popov-Geistfelder entstehen viele Wechselwirkungsterme, die in der perturba-
tiven Berechnung berücksichtigt werden müssen. Buchmüller und Philipsen stellten fest,
dass die Dynamik des Eichfeldes in der ungebundenen Phase weitgehend unabhängig
vom Higgs-Feld ist und daher durch die effektive Lagrangedichte des NLσMs approxi-
miert werden kann. Der daraus resultierende Vorteil ist vor allem eine Reduzierung der
Anzahl der Wechselwirkungsterme, wodurch eine perturbative Behandlung wesentlich
vereinfacht wird.

Die nachfolgenden Berechnungen von Eberlein [7, 9] bestätigen diese Approximati-
on. Eberlein behandelte das dreidimensionale SU(2)-NLσM unter Verwendung des Re-
summationsschemas (5.7) und wertete die gap-Gleichungen sowohl für das NLσM als
auch für das Higgs-Modell bis zur zweiten Schleifen-Ordnung aus. Um die Anzahl der
2-Schleifen-Diagramme zur Berechnung der Selbstenergien im NLσM weiter zu reduzie-
ren, folgte er dem Vorschlag von Jackiw und Pi [28], die eine exakte Ausintegration der
Goldstone-Felder und Faddeev-Popov-Geister durchführten. Die resultierende effektive
Lagrangedichte entspricht der resummierten massiven Yang-Mills-Theorie, welche auch
als resummiertes NLσM in unitärer Eichung, d. h. ξ → ∞, angesehen werden kann:

LYM =
1

4
F a

ijF
a
ij +

1

2
m2Aa

iA
a
i −

l

2
m2Aa

iA
a
i . (5.12)

Das Higgs-Modell und das NLσM stellen BRS-invariante Theorien dar, so dass daraus
eichinvariante gap-Gleichungen und somit ein eichinvarianter Ausdruck für die magne-
tische Masse resultieren. Auf 1-Schleifen-Niveau wurde Eichinvarianz für beide Modelle
erzielt [7, 8]. Allerdings ergab sich bei der Berechnung von 2-Schleifen-Diagrammen für
die magnetische Masse im Higgs-Modell eine Abhängigkeit im Eichfixierungsparameter
ξ [9]. Diese Abhängigkeit wiegt jedoch nicht schwer und ist ein Artefakt des Resum-
mationsschemas, d. h. der Umstrukturierung der perturbativen Entwicklung. Bei der
Berechnung höherer Ordnungen wird eine Annulierung dieser Abhängigkeiten erwartet.
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5.2 Resummationsverfahren mit dem nichtlinearen σ-Modell

Das Ergebnis für die magnetische Masse des SU(2)-Higgs-Modells ergibt sich auf 1-
Schleifen-Niveau zu [8]:

mBP =
g2
M

π

[

63

64
ln 3 − 3

16

]

= 0, 28g2
M. (5.13)

Der Vergleich mit einem anderen massenerzeugenden Verfahren von Alexanian und Nair
ist erstaunlich, denn sie ermittelten einen Wert von mAN = 4

3mBP [28] für die magneti-
sche Masse.

Infolge dessen liegt die Vermutung nahe, dass aufgrund der Eichinvarianz des Ergeb-
nisses (5.13) auch eine eichinvariante Berechnung des Drucks mit demselben Verfahren
realisierbar ist. Dieses begründet sich, da sich die dafür auszuwertenden geschlossenen
Feynman-Diagramme aus den Ergebnissen der Selbstenergie-Diagramme ableiten las-
sen. Dazu ist lediglich eine weitere Impulsintegration einzufügen, die einer Verknüpfung
der äußeren Beine eines Selbstenergie-Diagramms entspricht.

Im folgenden Kapitel wird der Druck pG der MQCD in einer mittels des NLσMs resum-
mierten effektiven Theorie perturbativ ausgerechnet. Infolge der Eichinvarianz in (5.13)
wird ebenso ein eichinvariantes Ergebnis zur Ordnung l1, d. h. auf 2-Schleifen-Niveau,
für den Druck erwartet. Diese Berechnung wird in allgemeiner Rξ-Eichung ausgeführt,
um ein manifest eichinvariantes Ergebnis zu erzielen. Insbesondere lässt sich damit die
Methode von Jackiw und Pi, d. h. die exakte Ausintegration aller unphysikalischen Fel-
der, bestätigen.
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5 Massenerzeugung für Gluon-Felder in der MQCD
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6 Perturbative Bestimmung des

Koeffizienten βG

Eine perturbative Berechnung des Druckbeitrags aus der dimensional reduzierten effek-
tiven Theorie der MQCD ist aufgrund vorheriger Betrachtungen durchaus eine nicht-
triviale Aufgabe. Im Grunde kann die MQCD lediglich nicht-perturbativ behandelt wer-
den, da die auf IR-Divergenzen dämpfend wirkende Massenskala m ∼ g2T der effektiven
Theorie eine Auswertung unendlich vieler Schleifen-Diagramme zur Bestimmung des
Drucks zur Ordnung g6 zur Folge hat (vgl. (3.20) und (4.12)). Das Resummationsver-
fahren aus Kap. 5.2.2 ermöglicht hingegen eine perturbative Behandlung der MQCD,
da diese Methode die Störungstheorie auf eine Potenzreihe in dem Schleifen-Parameter
l umstrukturiert.

Das Ziel dieser Arbeit stellt die perturbative Bestimmung des Drucks pG der MQCD
aus (4.12) bzw. die eichinvariante Berechnung des Koeffizienten βG in (4.15) unter An-
wendung der Resummationsmethode (5.7) dar:

pG(T ) =
T

V
ln

∫

DAa
k exp

(

−
∫

ddx
1

2
TrF 2

kl

)

⇒ pG(T )

Tµ−2ǫ
= dAC

3
A

g6
M

(4π)4

[

αG

(

1

ǫ
+ 8 ln

µ̄

2mG

)

+ βG +O(ǫ)

]

. (6.1)

In der nachstehenden Rechnung wird für die effektive Kopplungskonstante bzw. effektive
magnetische Masse die Notation gM → g bzw. mG → m verwendet.

Die Herleitung der mit dem NLσM resummierten effektiven Lagrangedichte und
der zugehörigen Feynman-Regeln wird zunächst für SU(2) skizziert und anschließend
ausführlich für SU(N) dargestellt. Die Ergebnisse aus der Berechnung der Schleifen-
Diagramme werden sowohl für SU(2) als auch für SU(N) bis zur zweiten Schleifen-
Ordnung präsentiert und miteinander verglichen.

6.1 Herleitung der resummierten effektiven Lagrangedichte

6.1.1 Grundlage für das nichtlineare σ-Modell

Ausgangspunkt ist die MQCD aus (4.10):

LM =
1

2
TrF 2

kl, (6.2)

Fkl =
i

g
[Dk,Dl], Dk = ∂k − igAk.

Eine eichinvariante Methode Gluonen Masse anzuhängen erfolgt über die Addition des
SU(N)-Higgs-Modells durch die Lagrangedichte aus (5.11):

Lσ = Tr (DiΦ)†(DiΦ) + µ2Tr (Φ†Φ) + 2λTr (Φ†Φ)2. (6.3)
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6 Perturbative Bestimmung des Koeffizienten βG

Damit die MQCD nicht verändert wird, ist dieser massenerzeugende Term nach (5.8)
zu behandeln und wird durch das folgende Resummationsschema unter Einführung des
Schleifen-Parameters l addiert und subtrahiert:

Leff.(
√
lX) =

1

l

[

LM(
√
lX) + Lσ(

√
lX) + Lgf(

√
lX) + LFP(

√
lX)

− lLσ(
√
lX) − lLgf(

√
lX) − lLFP(

√
lX)

]

. (6.4)

Dabei werden alle in der resummierten effektiven Theorie vorkommenden Felder X :=
Aa

µ, π
a, ... mit l skaliert. Der Eichfixierungsterm und der Faddeev-Popov-Geist-Term

stellt sich wie folgt dar:

Lgf + LFP =
1

2ξ
(Ga)2 − (ca)∗Mabcb, (6.5)

δGa =Mabωb.

Die Matrix Mab bezeichnet die infinitesimale Transformation der im Eichfixierungsterm
Ga enthaltenden Felder. Aus später ersichtlichen Gründen wird in dieser Rechnung die
Rξ-Eichung gewählt:

Lgf =
1

2ξ
(∂iA

a
i + ξmπa)2 . (6.6)

Das Higgs-Modell geht schließlich mit λ, µ → ∞ und einer nichtlinearen Parametri-
sierung der komplexen N × N -Matrix bzw. des skalaren Feldes Φ in Abhängigkeit der
(N2 − 1) pseudoskalaren Goldstone-Bosonen πa in das NLσM über:

Lσ = Tr (DiΦ)†(DiΦ). (6.7)

6.1.2 SU(2)

Die Parametrisierung für SU(2) ist durch

Φ =
1

2
(σ + iτaπa) (6.8)

gegeben. τa ist das Triplett der 2×2-Pauli-Matrizen und das Higgs-Feld σ wird im
NLσM nichtlinear um den nichtverschwindenden Vakuumerwartungswert des skalaren
Feldes < Φ >= v verschoben:

σ2 = v2 − (πa)2. (6.9)

Diese aus dem NLσM geforderte Bedingung entspricht der spontanen Symmetriebre-
chung des Systems um ihren Vakuumerwartungswert. Das Gluonfeld erlangt somit die
Masse:

m =
gv

2
. (6.10)

Für die Summe aus (6.2) und (6.7) folgt mit (6.8):

L′
add. =

1

4

(

∂iA
a
j − ∂jA

a
i

)2
+ gǫabcAa

iA
b
j∂iA

c
j +

1

4
g2ǫabeǫcdeAa

iA
b
jA

c
iA

d
j (6.11)

+ Tr

[

((

∂i − ig
τa

2
Aa

i

)(

1

2
σ − i

τ b

2
πb

))†((

∂i − ig
τ c

2
Ac

i

)(

1

2
σ − i

τd

2
πd

))

]

.
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6.1 Herleitung der resummierten effektiven Lagrangedichte

Die Form des Feldstärketensors F a
ij ergibt sich aus der Definition (6.2) und entspricht:

F a
ij = ∂iA

a
j − ∂jA

a
i + gǫabcAb

iA
c
j . (6.12)

Die total-antisymmetrische Strukturkonstante ǫabc wird auch Levi-Civita-Tensor ge-
nannt.

Die Symmetriebruch-Bedingung (6.9) muss für perturbative Zwecke nach den pseu-
doskalaren Goldstone-Bosonen entwickelt werden. Dabei reicht die erste Ordnung der
Taylor-Entwicklung aus, da lediglich Terme bis zur 2-Schleifen-Ordnung benötigt wer-
den:

σ =
√

v2 − (πa)2 = v

√

1 − (πa)2

v2
≈ v − 1

2

(πa)2

v
+O(π4)

⇒ ∂iσ = −1

v
πa∂iπ

a +O(π4). (6.13)

Daraus folgt mit Hilfe der gruppentheoretischen Relationen im Anhang (Kap. A.1):

L′
add. =

1

2
TrF 2

ij +
1

2
(∂iπ

a)2 +
g2v2

8
Aa

iA
a
i −

gv

2
Aa

i ∂iπ
a +

1

2
gǫabc∂iπ

aAb
iπ

c

+
1

2v2
(πa∂iπ

a)2 +O(π3A,π6). (6.14)

Aus Symmetriegründen ergibt der Term der Ordnung O(πA2) keinen Beitrag. Die Ord-
nung O(π2A2) entfällt wegen der Jacobi-Identität. Durch die Addition von (6.7) erlangen
die Gluon-Felder ihre Masse mit (6.10).

Die Wahl der Eichfixierung fällt auf die Rξ-Eichung aus (6.6), damit der unphysi-
kalische Mischterm mAa

i ∂iπ
a eliminiert wird. Der korrespondierende Beitrag aus den

Faddeev-Popov-Geistfeldern erfordert die infinitesimalen Eichtransformationen der Fel-
der durch

Φ → UΦ, Ai →
i

g
UDiU

† mit U = exp

(

−ig τ
a

2
ωa

)

, (6.15)

woraus folgt:

δAa
i = ∂iω

a − gǫabcωbAc
i , (6.16)

δπa = − 1

2
gσωa − 1

2
gǫabcωbπc. (6.17)

Damit ergibt sich für die Eichfixierung und die Faddeev-Popov-Lagrangedichte:

L′
gf + L′

FP =
1

2ξ
(Ga)2 − (ca)∗Mabcb (6.18)

=
1

2ξ
(∂iA

a
i + ξmπa)2

− (ca)∗
(

∂i(∂iδ
ab − gǫabcAc

i ) − ξm2δab − 1

2
gǫabcξmπc +

1

8
g2ξ(πc)2δab

)

cb

+O(π4c2).
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6 Perturbative Bestimmung des Koeffizienten βG

Nun lässt sich der vollständige Ausdruck für die mit dem NLσM resummierte effektive
Lagrangedichte (6.4) in SU(2) angeben. Unter Beachtung des Schleifen-Parameters l
folgt bis zur geforderten Ordnung l1 bzw. zur 2-Schleifen-Ordnung:

L′
eff. =

1

4

(

∂iA
a
j − ∂jA

a
i

)2
+

1

2ξ
(∂iA

a
i )

2 +
1

2
m2Aa

iA
a
i

+
1

2
(∂iπ

a)2 +
1

2
ξm2πaπa + (∂i(c

a)∗)(∂ic
a) + ξm2ca*ca

+ g
√
lǫabcAb

iA
c
j∂iA

a
j +

1

4
g2lǫabeǫcdeAa

iA
b
jA

c
iA

d
j

+
1

2
g
√
lǫabc (∂iπ

a)Ab
iπ

c + g
√
lǫabc(∂i(c

a)∗)Ab
ic

c − 1

2
g
√
lξmǫabcπacb(cc)∗

+
1

8

g2l

m2
δabδcdπaπc∂iπ

b∂iπ
d − 1

8
g2lξδadδbc(ca)∗πbπccd

− 1

2ξ
l (∂iA

a
i )

2 − 1

2
m2lAa

iA
a
i −

1

2
l (∂iπ

a)2 − 1

2
ξm2lπaπa

− l(∂i(c
a)∗)(∂ic

a) − ξm2lca*ca +O(l3/2, l2). (6.19)

Das Resultat ist eine resummierte effektive Theorie mit einem modifizierten massiven
Gluonpropagator, massiven Goldstone-Bosonen und Faddeev-Popov-Geistfeldern, die
in die perturbative Entwicklung der durch die Resummation modifizierten Wechselwir-
kungsterme eingehen.

Die Berechnung des Drucks der freien effektiven Theorie erfolgt durch die Terme zur
Ordnung l0. Die erste Korrektur des Drucks erfordert die Auswertung aller Terme zur
Schleifen-Ordnung l1/2 und l1, wobei nun auch der subtrahierte Beitrag aus der Resum-
mation in die Berechnung eingeht. Die daraus notwendige Betrachtung der sogenannten
Gegenterme tragen wesentlich zur Auswertung der ersten Korrektur bei.

Im folgenden Abschnitt wird die Herleitung der resummierten effektiven Lagrange-
dichte für SU(N) dargestellt. Die SU(2)-Ergebnisse für die Koeffizienten αG, βG des
Drucks der MQCD können dadurch verallgemeinert werden. Insbesondere lässt sich fest-
stellen, ob die Koeffizienten farbzahlunabhängige Größen sind. Bestätigt sich der Fall,
dann wäre eine weiterführende perturbative Behandlung auf 3- und 4-Schleifen-Niveau
mit der einfacheren SU(2)-Theorie vorteilhaft.

6.1.3 SU(N)

Zur Herleitung der SU(N) effektiven Lagrangedichte wird eine alternative Parametri-
sierung, die sich durch folgende Exponentialform ergibt, betrachtet (vgl. [29]):

Φ =
1

2
(σ + iτaπa) =

1

2
v exp

(

iτaπ′a

v

)

. (6.20)

Die Felder π′a müssen dabei eine Funktion der der Felder πa ergeben, damit die Äqui-
valenz der beiden Parametrisierungen erfüllt ist. Für den Real- und Imaginärteil der
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6.1 Herleitung der resummierten effektiven Lagrangedichte

Parametrisierungen gilt:

1

2
σ =

1

2
v cos

(

τaπ′a

v

)

, (6.21)

1

2
iτaπa =

1

2
vi sin

(

τaπ′a

v

)

. (6.22)

Zur Bestimmung der SU(N)-Parmetrisierung wird der Imaginärteil mit den SU(N)-
Generatoren T a = 1

2τ
a in der fundamentalen Darstellung (Kap. A.1) untersucht:

T aπa =
1

2
v sin

(

2T aπ′a

v

)

(6.23)

=T aπ′a − 2

3v2
T aT bT cπ′aπ′bπ′c +

2

15v4
T aT bT cT dT eπ′aπ′bπ′cπ′dπ′e

− 4

315v6
T aT bT cT dT eT fT gπ′aπ′bπ′cπ′dπ′eπ′fπ′g + ... .

Daraus folgt:

T aπ′a =T aπa +
2

3v2
T aT bT cπaπbπc +

6

5v4
T a...T eπa...πe +

20

7v6
T a...T gπa...πg + ...

=
∞
∑

n=0

an

(2n + 1)v2n
(T aπa)2n+1. (6.24)

Zur vollständigen Äquivalenz der Parametrisierungen muss die Bestimmung der Koeffi-
zienten an sukzessiv weitergeführt werden. Die Annahme, dass

an =
(2n)!

(n!)2
(6.25)

gilt, muss noch für alle n > 3 bestätigt werden.
Die Koeffizienten a0 = 1, a1 = 2, a2 = 6, a3 = 20 reichen aus, um die effektive

Lagrangedichte bis zur Ordnung l3 bzw. zur 4-Schleifen-Ordnung zu entwickeln. Die
Transformation (6.24) erfüllt insbesondere die Äquivalenz des Realteils (6.21) mit

T aT b =
1

2N
δab

1N +
1

2
(dabp + ifabp)T p, (6.26)

so dass für SU(2) mit (6.9) folgt:

1

2

√

v2 − (πa)2 =
1

2
v cos

(

τaπ′a

v

)

=
1

2
v − 1

4

(πa)2

v
− 1

16

(πa)4

v3
− ... . (6.27)

Die Herleitung der SU(N) effektiven Lagrangedichte erfolgt schließlich mit der Parame-
trisierung des skalaren Feldes

φ =
1

2
vV =

1

2
v exp

(

2iT aπ′a

v

)

(6.28)

mit (6.24), wobei V eine unitäre Matrix kennzeichnet, d. h. V †V = 1N mit der N -
dimensionalen Einheitsmatrix 1N .
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6 Perturbative Bestimmung des Koeffizienten βG

Die zur MQCD zu addierende Lagrangedichte (6.7) lässt sich folgendermaßen aus-
drücken:

Lσ = Tr
[

(∂iΦ − igAiΦ)† (∂iΦ − igAiΦ)
]

= Tr
[

(∂iΦ
†)(∂iΦ) + igΦ†Ai∂iΦ − ig∂iΦ

†AiΦ + g2Φ†AiAiΦ
]

. (6.29)

Die SU(N)-Parametrisierung des skalaren Feldes Φ in (6.28) wird bis zur 2-Schleifen-
Ordnung entwickelt:

Φ =
v

2
exp

(

i
2

v
T aπ′a

)

=
v

2
+ iT aπ′a − 1

v
T aT bπ′aπ′b − 2

3v2
T aT bT cπ′aπ′bπ′c

+
1

3v3
T aT bT cT dπ′aπ′bπ′cπ′d +O(π′5)

=
v

2
+ iT aπa − 1

v
T aT bπaπb − 1

v3
T aT bT cT dπaπbπcπd +O(π6) (6.30)

⇒ ∂iΦ = iT a∂iπ
a − 1

v
T aT b(πa∂iπ

b + πb∂iπ
a) +O(π4). (6.31)

Die Äquivalenz der Parametrisierung (6.30) für N = 2 und der Parametrisierung (6.8)
ist wiederum ersichtlich und bestätigt somit die Richtigkeit der Transformation (6.24).

Unter Benutzung der gruppentheoretischen Relationen für SU(N)-Generatoren und
mit (6.10) folgt aus (6.29):

Lσ =
1

2
(∂iπ

a)2 −mAa
i ∂iπ

a +
1

2
m2Aa

iA
a
i +

1

2
gfabc∂iπ

aAb
iπ

c

+
1

8

g2

m2

(

2

N
δabδcd + dabedcde

)

πaπc∂iπ
b∂iπ

d

+O(π6, π3A,π3A2). (6.32)

Die dabc stellen total-symmetrische Strukturkonstanten dar und existieren für N = 2
nicht. Die Terme der Ordnung O(π3, A2π) verschwinden aus Symmetriegründen und der
Term O(π2A2) liefert wegen der Jacobi-Identität keinen Beitrag.

Zur Eliminierung des unphysikalischen Mischterms wird analog zum SU(2)-Fall die
Rξ-Eichung (6.6) verwendet. Der korrespondierende Beitrag der Faddeev-Popov-Geister
unterliegt wiederum den infinitesimalen Eichtransformationen

Φ → UΦ, Ai →
i

g
UDiU

† mit U = exp(−igT aωa), (6.33)

woraus folgt:

δAa
i = ∂iω

a − gfabcωbAc
i , (6.34)

δπa = −mωa +
1

2
gfabdπbωd

+
1

8

g2

m2

(

2

N
δabδcdωd + dabedcdeωd − fabef cdeωd

)

πbπc. (6.35)

38



6.1 Herleitung der resummierten effektiven Lagrangedichte

Damit ergibt sich für die Eichfixierung und die Faddeev-Popov-Lagrangedichte:

Lgf + LFP =
1

2ξ
(Ga)2 − (ca)∗Mabcb (6.36)

=
1

2ξ
(∂iA

a
i + ξmπa)2

− (ca)∗
(

∂i(∂iδ
ab − gfabcAc

i )
)

cb

− (ca)∗
(

−ξm2δac +
1

2
gfabcξmπb

)

cc

− (ca)∗
(

1

8
g2ξπbπc

(

2

N
δabδcd + dabedcde − fabef cde

))

cd

+O(π4c2).

Die mit dem SU(N)-NLσM resummierte effektive Lagrangedichte besitzt unter Be-
achtung des Schleifen-Parameters l folgende Form:

Leff. =
1

4

(

∂iA
a
j − ∂jA

a
i

)2
+

1

2ξ
(∂iA

a
i )

2 +
1

2
m2Aa

iA
a
i

+
1

2
(∂iπ

a)2 +
1

2
ξm2πaπa + (∂i(c

a)∗)(∂ic
a) + ξm2ca*ca

+ g
√
lfabcAb

iA
c
j∂iA

a
j +

1

4
g2lfabef cdeAa

iA
b
jA

c
iA

d
j

+
1

2
g
√
lfabc (∂iπ

a)Ab
iπ

c + g
√
lfabc(∂i(c

a)∗)Ab
ic

c − 1

2
g
√
lξmfabcπacb(cc)∗

+
1

8

g2l

m2

(

2

N
δabδcd + dabedcde

)

πaπc∂iπ
b∂iπ

d

− 1

8
g2lξ

(

2

N
δabδcd + dabedcde − fabef cde

)

(ca)∗πbπccd

− 1

2ξ
l (∂iA

a
i )

2 − 1

2
m2lAa

iA
a
i −

1

2
l (∂iπ

a)2 − 1

2
ξm2lπaπa

− l(∂i(c
a)∗)(∂ic

a) − ξm2lca*ca +O(l3/2, l2). (6.37)

Die SU(N) effektive Lagrangedichte Leff. lässt sich für N = 2 auf die Form L′
eff. in (6.19)

durch folgende Ersetzung bringen:

fabc → ǫabc, (6.38)

ǫabeǫcde = δacδbd − δadδbc. (6.39)

Die total-symmetrischen Strukturkonstanten dabc ergeben für N = 2 keinen Beitrag.
Die Äquivalenz der Ordnung O(π4) in beiden Lagrangedichten wird dadurch sofort er-
sichtlich. Mit (6.39) lässt sich der Term der Ordnung O(π2c2) in (6.37) auf die Form
in (6.19) zurückführen. Aus diesem Grund werden in dieser Arbeit die Ergebnisse der
Schleifen-Berechnung für SU(N) angegeben. Die explizit durchgeführten Rechnungen
in SU(2) wurden insbesondere durch die im Folgenden aufgezeichneten Rechnungen in
SU(N) bestätigt.
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6 Perturbative Bestimmung des Koeffizienten βG

6.2 Berechnung der Schleifen-Diagramme

Der Vergleich der Lagrangedichten für allgemeine N und für N = 2 zeigt, dass für die
SU(N)-Theorie keine zusätzlichen Vertizes auftauchen. Daher besitzen die Feynman-
Regeln bis auf die Farbzahl-Vorfaktoren dieselbe Struktur. Natürlich lassen sich aus
obigen Bertrachtungen die SU(N) Feynman-Regeln für N = 2 direkt angeben. Diese
korrespondieren selbstverständlich mit den Termen der SU(2)-Lagrangedichte. Im Fol-
genden wird daher der Fall für allgemeine N betrachtet.

6.2.1 Feynman-Regeln für Propagatoren

Zur Herleitung der Feynman-Regeln für die Propagatoren, Vertizes und Gegenterme
wird die Fourier-Transformation der Felder in den entsprechenden Termen der Lagrange-
dichte (6.37) betrachtet:

Aa
i =

∫

ddp

(2π)d
e−ipxÃa

i (p) =:

∫

p
e−ipxÃa

i (p). (6.40)

Für die quadratischen Terme der Gluonen folgt somit:

−
∫

ddxL(A2) =
1

2

∫

ddp

(2π)d
Ãa

i [Dij ]
−1Ãa

i ,

[Dij ]
−1 = p2δij + (ξ−1 − 1)pipj , (6.41)

wobei [Dij ]
−1 den inversen Gluon-Propagator kennzeichnet. Nach Invertierung dieser

Matrix folgt für den Gluon-Propagator Dab
ij (p) in allgemeiner Rξ-Eichung:�pi, a j, b =⇒ Dab

ij (p) = δab

[

δij − (1 − ξ)
pipj

p2 + ξm2

]

1

p2 +m2
(6.42)

= δab

[

δij +
pipj

m2

p2 +m2
−

pipj

m2

p2 + ξm2

]

(6.43)

= δab

[

δij − pipj

p2

p2 +m2
+

ξ
pipj

p2

p2 + ξm2

]

(6.44)

= δab

[

DT (p)

(

δij −
pipj

p2

)

+DL(p)
pipj

p2

]

= δabDij(p)

DT (p) =
1

p2 +m2
, DL(p) =

ξ

p2 + ξm2
.

Die Indizes T bzw. L kennzeichnen den transversalen und den longitudinalen Teil des
Gluon-Propagators. Die analoge Behandlung der quadratischen Terme der Lagrange-
dichte für die Goldstone-Bosonen und die Faddeev-Popov-Geistfelder resultieren in fol-
genden Propagatoren, wobei die gestrichelte Linie den Goldstone-Propagator ∆ab

π (p)
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6.2 Berechnung der Schleifen-Diagramme

und die gerichtete punktierte Linie den Faddeev-Popov-Geist-Propagator ∆ab
c (p) in all-

gemeiner Rξ-Eichung darstellen:�pa b =⇒ ∆ab
π (p) = δab 1

p2 + ξm2
, (6.45)

�pa b =⇒ ∆ab
c (p) = δab 1

p2 + ξm2
. (6.46)

6.2.2 Feynman-Regeln für Vertizes

Bevor eine Auflistung der Feynman-Regeln für die Vertizes der korrespondierenden Ter-
me der SU(N)-Lagrangedichte wiedergegeben wird, ist die Darstellung der Herleitung
einer Feynman-Regel am Beispiel der Ordnung O(π4) aufgezeichnet. Die detaillierte Il-
lustration der Herleitung ist sinnvoll, da die Gültigkeit der Feynman-Regeln die Basis
der anstehenden 2-Schleifen-Berechnungen bildet.

Aus dem Term der Ordnung O(π4) in (6.37) folgt über die Fouriertransformation der
Felder (6.40):

−
∫

ddxL(π4) = − 1

8

g2l

m2

(

2

N
δabδcd + dabedcde

)
∫

ddxπaπc∂iπ
b∂iπ

d (6.47)

= +
1

8

g2l

m2

(

2

N
δabδcd + dabedcde

)
∫

p

∫

q

∫

r

∫

s
qisiπ̃a(p)π̃b(q)π̃c(r)π̃d(s)

· δ(p + q + r + s).

Unter Beachtung der Symmetrien (a ↔ c, b ↔ d) ergeben sich für den folgenden Aus-
druck elf weitere Möglichkeiten:

12

(

2

N
δabδcd + dabedcde

)

qisi →
(

2

N
δabδcd + dabedcde

)

(piri + pisi + qiri + qisi)

+

(

2

N
δacδbd + dacedbde

)

(piqi + pisi + qiri + risi)

+

(

2

N
δadδbc + dadedbce

)

(piqi + piri + qisi + risi) .

Die Vertauschungsmöglichkeiten der vier Goldstone-Felder im Impulsraum erfordert
schließlich die Multiplikation des Faktors 4!, so dass für die Feynman-Regel des O(π4)-
Vertex folgt:

Γabcd(π4) =
1

4

g2l

m2

[ (

2

N
δabδcd + dabedcde

)

(piri + pisi + qiri + qisi)

+

(

2

N
δacδbd + dacedbde

)

(piqi + pisi + qiri + risi)

+

(

2

N
δadδbc + dadedbce

)

(piqi + piri + qisi + risi)

]

. (6.48)
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�sp
r

q

d,m

a, i

c, l

b, j

=⇒ Γabcd
ijlm(A4)= −g2l

[

fabef cde(δilδjm − δimδjl)

+ facef bde(δijδlm − δimδjl)

+ fadef bce(δijδlm − δilδjm)
]

�p r

q

a, i c, l

b, j

=⇒ Γabc
ijl (A3) = −ig

√
lfabc[(p− q)lδij + (q − r)iδjl + (r − p)jδil]

�r q

p

c b

a, i

=⇒ Γabc
i (Aπ2)= −1

2
ig
√
lfabc(r + q)i

�r q

p

c b

a, i

=⇒ Γabc
i (Ac2)= −ig

√
lfabcri

�r q

p

c b

a

=⇒ Γabc(πc2)=
1

2
g
√
lξmfabc

�s p

r

q

d

a

c

b

=⇒ Γabcd(π4)= (6.48)

�s p

r

q

d

a

c

b

=⇒ Γabcd(π2c2)=
1

4
g2lξ

(

2

N
δadδbc + dadedbce − fadef bce

)

Abbildung 6.1: Feynman-Regeln der effektiven resummierten Theorie (6.37).
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6.2 Berechnung der Schleifen-Diagramme

Alle weiteren Feynman-Regeln werden analog zu diesem Beispiel hergeleitet und sind
in Abbildung 6.1 aufgelistet. Des Weiteren existieren wegen der Resummation im sub-
trahierten Teil der Lagrangedichte (6.37) drei Massenterme, die jeweils einen Vertex als
Gegenterm darstellen:�pi, a j, b =⇒ Γab

ij,m(A2) = m2lδijδ
ab, (6.49)

�pa b =⇒ Γab
m(π2) = ξm2lδab, (6.50)

�pa b =⇒ Γab
m(c2) = ξm2lδab. (6.51)

Das Kreuz korrespondiert zu den Selbstenergien der Theorie, die zur Bestimmung der
Masse ausgewertet werden müssen. Der genaue Wert der Masse ist für die Berechnung
des Drucks bzw. der geschlossenen Feynman-Diagramme zunächst irrelevant. Die aus
(6.49)-(6.51) resultierenden geschlossenen Schleifen-Diagramme gehen in die Auswer-
tung der 2-Schleifen-Berechnung bzw. in die erste Korrektur zur Ordnung l1 ein.

Damit erfolgt die Auswertung folgender Feynman-Diagramme für die Bestimmung
des Drucks bis zur Schleifen-Ordnung l1:� + � + � (6.52)

+ � + � + � + � (6.53)

+ � + 	 + 

+ � + � + 
 . (6.54)

Die ersten drei Schleifen-Diagramme tragen zur Ordnung l0 bei. Die Auswertung
dieser Diagramme resultiert in die Bestimmung des Drucks der effektiven freien Theo-
rie. Zur Berechnung der ersten Korrektur ist die Entwicklung der sieben 2-Schleifen-
Diagramme und der drei Gegenterme notwendig. Diese tragen zur Schleifen-Ordnung
l1 bei. Da das SU(N)-NLσM eine Eichtheorie darstellt, ist ein eichinvariantes Ergebnis
für den Druck in den einzelnen Ordnungen zu erwarten, d. h. (6.52), (6.53) und (6.54)
müssen jeweils ein eichinvariantes Ergebnis erzielen.

In den folgenden Abschnitten werden die Rechnungen der drei Pakete von Schleifen-
Diagrammen skizziert und anschließend zu einem Gesamtresultat für l = 1 zusammen-
gefasst. Dadurch wird die Bestimmung der Koeffizienten αG und βG ermöglicht.
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6 Perturbative Bestimmung des Koeffizienten βG

6.2.3 Schleifen-Ordnung l0

Der thermodynamische Druck der resummierten effektiven Theorie (6.37) zur Schleifen-
Ordnung l0 ergibt sich zu:

pG,l0(T ) =
T

V
ln

∫

[dAa
i ][dπ

a][d(ca)∗][dca] exp

(

−
∫

ddxLeff.,l0

)

, (6.55)

Leff.,l0 =
1

4

(

∂iA
a
j − ∂jA

a
i

)2
+

1

2ξ
(∂iA

a
i )

2 +
1

2
m2Aa

iA
a
i

+
1

2
(∂iπ

a)2 +
1

2
ξm2πaπa + (∂i(c

a)∗)(∂ic
a) + ξm2ca*ca. (6.56)

Für die Zustandssumme folgt mit d = 3 − 2ǫ:

Z =

∫

[dAa
i ] exp

(

−1

2

∫

ddxAa
i

[

δij(−∂2
i +m2) + (1 − ξ−1)∂i∂j

]

Ab
j

)

·
∫

[dπa] exp

(

−1

2

∫

ddxπa
[

−∂2
i + ξm2

]

πb

)

·
∫

[d(ca)∗][dca] exp

(

−1

2

∫

ddx(ca)∗
[

−∂2
i + ξm2

]

cb
)

· exp(δab)

=
∏

p

[

(p2 +m2)2(ξ−1p2 +m2)
]−1/2 ·

∏

p

(

p2 +m2
)−1/2 ·

∏

p

(

p2 +m2
)+1 · exp(δaa)

=
∏

p

(p2 +m2)−1 ·
∏

p

ξ1/2 ·
∏

p

(p2 + ξm2)−1/2 ·
∏

p

(p2 + ξm2)+1/2 · exp(δaa). (6.57)

Dabei wurde die Gauß-Integration aus (2.15) und (2.16) benutzt. Der dritte und vierte
Faktor heben sich gegenseitig weg und der zweite Faktor trägt laut Nernst’schem Theo-
rem nicht zur Thermodynamik bei, da er eine temperaturunabhängige Konstante ist.
Die Summation über die Farbindizes ergibt δaa = N2 − 1 und somit folgt für den Druck

pG,l0(T ) = (N2 − 1)
T

V

∑

p

ln(p2 +m2)−1

= − (N2 − 1)T

∫

ddp

(2π)d
ln(p2 +m2)

= (N2 − 1)T
m3

6π
+O(ǫ) (6.58)

mit
∑

p = V
∫ ddp

(2π)d und dem in dimensionaler Regularisierung ausgewerteten Integral
∫

ddp

(2π)d
ln(p2 +m2) =

∫

p
ln(p2 +m2)

= − m3

6π

[

1 + ǫ

(

2 ln
( µ̄

2m

)

+
8

3

)

+O(ǫ2)

]

, (6.59)

d. h. für ǫ→ 0 folgt
∫

p ln(p2 +m2) = −m3

6π .
Die resummierte effektive Theorie liefert also bereits auf 1-Schleifen-Niveau einen

eichinvarianten Beitrag zum Druck. Die Ursache hierfür liegt in der eichinvarianten
Einbindung einer Gluon-Masse. Ist die effektive Masse der Theorie Null, so verschwindet
der Beitrag.
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6.2 Berechnung der Schleifen-Diagramme

6.2.4 Schleifen-Ordnung l1

Der Beitrag des Drucks der MQCD zur Schleifen-Ordnung l1 erfordert die Auswer-
tung der insgesamt zehn 2-Schleifen-Diagramme aus (6.53) und (6.54). Die Schwierig-
keit dieser Rechnung besteht in der Reduzierung der teils länglichen Schleifen-Integrale
auf bekannte Standardintegrale. Die Struktur der aus den Schleifen-Diagrammen re-
sultierenden Integrale wird je komplexer, desto umfangreicher die Impulsstruktur der
Feynman-Regeln sich darstellt. Die Auswertung des Schleifen-Diagramms der Ordnung
O(A3) (vgl. die Feynman-Regel in Abb. 6.1) verlangt diesbezüglich größte Sorgfalt. Das
Auftreten von zwei verschiedenen Massenskalenm2 und ξm2 im Gluon-Propagator berei-
tet der analytischen Rechnung einen zusätzlichen Umstand. Im vorliegenden Abschnitt
wird zunächst die Berechnung der drei Gegenterme aufgezeigt. Die Skizze der Berech-
nung des 2-Schleifen-Diagramms der Ordnung O(A4) soll als Beispiel für alle übrigen
Diagramme wiedergegeben werden, da sonst der Rahmen der Diplomarbeit gesprengt
werden würde.

In der 2-Schleifen-Ordnung treten zwei Standardintegrale auf: das linear divergente
Integral A(m2) und das logarithmisch divergente Integral I(m2

1,m
2
2,m

2
3). Die dimensio-

nale Regularisierung erweist sich als geeignetes Schema zur Behandlung der divergenten
Integrale (vgl. 4.16). Die zwei Standardintegrale besitzen folgende Lösungen (vgl. auch
Kap. A.4):

A(m2) =

∫

p

1

p2 +m2
= −m

4π

[

1 + ǫ
(

2 ln
µ̄

2m
+ 2
)

+O(ǫ2)
]

, (6.60)

I(m2
1,m

2
2,m

2
3) =

∫

p

∫

q

1

(p2 +m2
1)(q

2 +m2
2)((p − q)2 +m2

3)

=
1

16π2

[

1

4ǫ
+ ln

µ̄

m1 +m2 +m3
+

1

2
+O(ǫ)

]

. (6.61)

Die drei Gegenterme aus (6.54) ergeben den folgenden Beitrag zum Druck:

pG,CT(T ) =T

[ � + � + � ]

(6.62)

=T

[

1

2

∫

p
Dab

ij (p)Γab
ij,m(A2) +

1

2

∫

p
∆ab

π (p)Γab
m(π2) −

∫

p
∆ab

c (p)Γab
m(c2)

]

.

Der Vorfaktor 1/2 des Gluon- und Goldstone-Boson-Gegenterms spiegelt den Symme-
triefaktor S = 2 der beiden Diagramme wider, da weder der Gluon- noch der Goldstone-
Boson-Propagator eine definierte Impulsrichtung besitzen. Für den Faddeev-Popov-
Geist-Gegenterm muss hingegen lediglich das Vorzeichen aufgrund des fermionischen
Charakters der Schleife berücksichtigt werden.

Mit (6.44)-(6.46) und (6.49)-(6.51) folgt somit:

pG,CT(T ) =
1

2
m2lT δaa

∫

p

[

d

p2 +m2
− 1

p2 +m2
+

ξ

p2 + ξm2
+

ξ

p2 + ξm2
− 2

ξ

p2 + ξm2

]

=
1

2
m2lT (d− 1)(N2 − 1)A(m2). (6.63)
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Die räumliche Dimension wird dabei durch δii = d = 3−2ǫ gekennzeichnet. Der Beitrag
der Faddeev-Popov-Geistfelder eliminiert wie erwartet die Eichabhängigkeit bzw. die
Abhängigkeit vom Eichfixierungsparameter ξ. Mit (6.60) ergibt sich folgendes Resultat:

pG,CT(T ) = −l(N2 − 1)
m3

4π
T +O(ǫ). (6.64)

Im Folgenden wird die Berechnung des Schleifen-Diagramms der Ordnung O(A4)
skizziert. Die Notation

< Schleife >n= ± 1

Sn

∫

p

∫

q
< Vert. > ·...· < Vert. > · < Prop. > ·...· < Prop. > (6.65)

kennzeichnet den Ausgangspunkt der je n = 1, ..., 7 auszuwertenden Schleifen. Sn ent-
spricht dem Symmetriefaktor des n-ten Schleifen-Diagramms und das Vorzeichen ist
von der Existenz einer fermionischen Schleife abhängig. Die Integration erfolgt unter
Verwendung der Feynman-Regeln für die Vertizes aus Abb. 6.1 und Propagatoren aus
(6.42)-(6.46).

Das erste Schleifen-Diagramm liefert folgenden Beitrag:� =
1

8

∫

p

∫

q
Γabcd

ijlm(A4)Dab
ij (p)Dcd

lm(q) (6.66)

=
1

8

∫

p

∫

q
Γaacc

ijlm(A4)Dij(p)Dlm(q)

=
1

8
g2lfacef cae (δijδlm − δjlδim − δilδjm + δijδlm)

∫

p

∫

q
Dij(p)Dlm(q)

=
1

8
g2lfacef cae

∫

p

∫

q
(2Dii(p)Djj(q) − 2Dij(p)Dij(q))

=C1

∫

p

∫

q

[(

d− 1

p2 +m2
+

ξ

p2 + ξm2

)(

d− 1

q2 +m2
+

ξ

q2 + ξm2

)

−
(

δij
p2 +m2

+
pipj

m2(p2 +m2)
− pipj

m2(p2 + ξm2)

)

·
(

δij
q2 +m2

+
qiqj

m2(q2 +m2)
− qiqj
m2(q2 + ξm2)

)]

=C1

[

(d− 1)2A2(m2) + ξ2A2(ξm2) + 2(d− 1)ξA(ξm2)A(m2)
]

− C1

∫

p

∫

q

[

d+ p2

m2 + q2

m2 +
(piqi)(pjqj)

m4

(p2 +m2)(q2 +m2)
−

p2

m2 +
(piqi)(pjqj)

m4

(p2 + ξm2)(q2 +m2)

−
q2

m2 +
(piqi)(pjqj)

m4

(q2 + ξm2)(p2 +m2)
+

(piqi)(pjqj)
m4

(p2 + ξm2)(q2 + ξm2)

]

,

C1 =
1

4
g2lfacef cae = −1

4
g2lN(N2 − 1).
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Die Kontraktionen der total-antisymmetrischen bzw. total-symmetrischen Tensoren
sind im Anhang (Kap. A.1) aufgeführt. Die Umformulierung des Ausdrucks

p2

p2 +m2
= 1 − m2

p2 +m2
(6.67)

ist zur Reduzierung auf das Standardintegral (6.60) vorteilhaft, da in dimensionaler
Regularisierung

∫

p 1 = 0 ergibt. Außerdem gilt mit d = 3 − 2ǫ

(piqi)(pjqj) =
1

d
p2q2, (6.68)

so dass für (6.66) das folgende Resultat erzielt wird:� = g2lN(N2 − 1)

·
[

A2(m2)

(

−1

4
d2 +

3

4
d− 3

4
+

1

4d

)

+ ξA(ξm2)A(m2)

(

−1

2
d+ 1 − 1

2d

)

+ ξ2A2(ξm2)

(

−1

4
+

1

4d

)]

. (6.69)

In Feynman-Eichung (ξ = 1) und in unitärer Eichung (ξ → ∞) folgt:� (ξ=1)
= − 1

4
g2lN(N2 − 1)d(d − 1)A2(m2), (6.70)

� (ξ→∞)
= g2lN(N2 − 1)A2(m2)

(

−1

4
d2 +

3

4
d− 3

4
+

1

4d

)

. (6.71)

Kontrollrechnungen in Feynman-Eichung und unitärer Eichung bestätigen das vorlie-
gende Ergebnis.

Die Auswertung der nächsten Schleife der Ordnung O(A3) ist mit größerem Aufwand
verbunden. Beim Verbinden zweier Vertizes ist auf die korrekte Umbenennung der Im-
pulse in den Feynman-Regeln zu achten. Für die Reduzierung der entstehenden Integrale
auf die beiden Standardintegrale A2(m2) und I(m2

1,m
2
2,m

2
3) bieten sich folgende Um-

formulierungen an:

p4

p2 +m2
= p2 −m2 +

m4

p2 +m2
,

(piqi) = −1

2
((p − q)2 − p2 − q2).

Alle in der 2-Schleifen-Berechnung auftauchenden Integrale und das Ergebnis ihrer Re-
duzierung auf die beiden Standardintegrale sind im Anhang (Kap. A.6) aufgelistet.
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Das Schleifen-Diagramm der Ordnung O(A3) liefert folgenden Beitrag:� =
1

12

∫

p

∫

q
Γabc

ijl (A3)Γdef
mno(A

3)Dbd
jm(p)Dae

in(q)Dcf
lo (p − q).

Das Ausmaß dieser Berechnung wird offensichtlich, wenn dieser Ausdruck ausgeschrie-
ben wird:� =

1

12
g2l N(N2 − 1)

·
∫

p

∫

q
[(p+ q)lδij + (q − 2p)iδjl + (p − 2q)jδil]

· [(p+ q)oδmn + (p − 2q)mδno + (q − 2p)nδmo]

·
[

δjm
p2 +m2

+
pjpm

m2(p2 +m2)
+

pjpm

m2(p2 + ξm2)

]

·
[

δin
q2 +m2

+
qiqn

m2(q2 +m2)
+

qiqn
m2(q2 + ξm2)

]

·
[

δlo
(p− q)2 +m2

+
(p− q)l(p − q)o

m2((p − q)2 +m2)
+

(p− q)l(p − q)o
m2((p − q)2 + ξm2)

]

.

Nach langer Rechnung ergibt sich folgendes Resultat:� = g2lN(N2 − 1)

·
[

A2(m2)

(

1

4
d− 3

16
− 1

4d

)

+ A(ξm2)A(m2)

(

1

2
dξ − ξ +

1

2d
ξ +

1

8

)

+ A2(ξm2)

(

1

4
ξ2 − 1

4d
ξ2 +

1

8
ξ − 1

16

)

+ m2I(m2,m2,m2)

(

−3

4
d+

15

16

)

+ m2I(ξm2, ξm2,m2)

(

−1

4
ξ +

1

16

)]

, (6.72)� (ξ=1)
=

3

4
g2lN(N2 − 1)(d − 1)

[

A2(m2) −m2I(m2,m2,m2)
]

, (6.73)� (ξ→∞)
= g2lN(N2 − 1)

[

A2(m2)

(

1

4
d− 3

16
− 1

4d

)

+ m2I(m2,m2,m2)

(

−3

4
d+

15

16

)]

. (6.74)

Kontrollrechnungen in Feynman-Eichung und unitärer Eichung bestätigen das vorlie-
gende Ergebnis.

Die von Jackiw and Pi [28] angewandte Ausintegration aller unphysikalischen Felder
impliziert die Durchführung der Rechnung in der effektiven massiven Yang-Mills-Theorie
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bzw. im NLσM in unitärer Eichung. Demnach würde die Auswertung der beiden rei-
nen Gluon-Schleifen-Diagramme für ξ → ∞ ausreichen und die Summe aus (6.71) und
(6.74) das Gesamtresultat reproduzieren. Das Ziel dieser Arbeit ein manifest eichinva-
riantes Ergebnis zu erzielen wird dadurch erreicht, dass alle eichabhängigen Terme der
beiden Gluon-Schleifen durch die eichabhängigen Beiträge der übrigen fünf 2-Schleifen-
Diagramme eliminiert werden. Die Ergebnisse dieser Schleifen-Diagramme werden im
Folgenden aufgelistet:� =

1

4

∫

p

∫

q
Γabc

i (Aπ2)Γdef
j (Aπ2)∆bf

π (p)∆ce
π (q)Dad

ij (p − q)

= g2lN(N2 − 1)

[

1

8
A(ξm2)A(m2) +

(

1

8
ξ − 1

16

)

A2(ξm2)

+

(

1

16
− 1

4
ξ

)

m2I(ξm2, ξm2,m2)

]

, (6.75)� (ξ=1)
=

3

16
g2lN(N2 − 1)

[

A2(m2) −m2I(m2,m2,m2)
]

, (6.76)

� = − 1

2

∫

p

∫

q
Γabc

i (Ac2)Γdef
j (Ac2)∆bf

c (p)∆ce
c (q)Dad

ij (p− q)

= g2lN(N2 − 1)

[

−1

4
A(ξm2)A(m2) +

(

−1

8
ξ +

1

8

)

A2(ξm2)

+

(

1

16
− 1

4
ξ

)

m2I(ξm2, ξm2,m2)

− 1

8
ξ2m2I(ξm2, ξm2, ξm2)

]

, (6.77)� (ξ=1)
= − 1

4
g2lN(N2 − 1)

[

A2(m2) −m2I(m2,m2,m2)
]

, (6.78)

� = − 1

2

∫

p

∫

q
Γabc(πc2)Γdef (πc2)∆bf

c (p)∆ce
c (q)∆ad

π (p− q)

=
1

8
g2lN(N2 − 1)ξ2m2I(ξm2, ξm2, ξm2), (6.79)� (ξ=1)

=
1

8
g2lN(N2 − 1)m2I(m2,m2,m2). (6.80)

Diese drei Schleifen-Diagramme heben bereits den größten Anteil der Eichabhängigkeit
auf. Die Summe über die ersten fünf Diagramme resultiert lediglich in einen eichabhän-
gigen Restbeitrag von 1

8g
2lξN(N2 − 1)A2(ξm2). Damit ist bereits ein eichinvarianter

Beitrag zum Standardintegral I(m2
1,m

2
2,m

2
3) bzw. zum Koeffizienten des ǫ-Pols, d. h.

αG, erzielt worden.

49



6 Perturbative Bestimmung des Koeffizienten βG

Die letzten beiden Schleifen-Diagramme eliminieren den eichabhängigen Beitrag zum
Standardintegral A2(m2):� =

1

8

∫

p

∫

q
Γabcd(π4)∆ad

π (p)∆bc
π (q)

= g2l

(

1

8
ξN(N2 − 1) − 1

4
ξ
N2 − 1

N

)

A2(ξm2), (6.81)� (ξ=1)
= g2l

(

1

8
N(N2 − 1) − 1

4

N2 − 1

N

)

A2(m2), (6.82)

� = − 1

2

∫

p

∫

q
Γabcd(π2c2)∆ab

c (p)∆cd
π (q)

= g2l

(

−1

4
ξN(N2 − 1) +

1

4
ξ
N2 − 1

N

)

A2(ξm2), (6.83)� (ξ=1)
= g2l

(

−1

4
N(N2 − 1) +

1

4

N2 − 1

N

)

A2(m2). (6.84)

Die Kontraktion über die total-symmetrischen Strukturkonstanten stellt sich dabei wie
folgt dar:

dabcdabc =
(N2 − 4)(N2 − 1)

N
. (6.85)

Die Summe über alle sieben 2-Schleifen-Diagramme ist eichinvariant und ergibt den
folgenden Beitrag zum Druck:

p′G,l1 = g2lTN(N2 − 1)

[(

−1

4
d2 + d− 15

16

)

A2(m2)

+

(

−3

4
d+

15

16

)

m2I(m2,m2,m2)

]

. (6.86)

Der vollständige Beitrag des Drucks zur Schleifen-Ordnung l1 inklusive der Beiträge aus
den Gegentermen ist mit (6.60) und (6.61):

pG,l1 = g2lTN(N2 − 1)

[(

−1

4
d2 + d− 15

16

)

A2(m2)

+

(

−3

4
d+

15

16

)

m2I(m2,m2,m2)

]

+
1

2
m2l(d− 1)(N2 − 1)A(m2). (6.87)

Damit ist der Druck der MQCD pG bis zur perturbativen Schleifen-Ordnung l1 ge-
geben. Ein Koeffizientenvergleich mit (6.1) ermöglicht schließlich die Bestimmung der
Koeffizienten αG und βG.
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6.3 Das Gesamtresultat des Drucks der MQCD

Die in Kap. 6.2 durchgeführten Auswertungen der Schleifen-Diagramme wurden zu-
nächst für die resummierte effektive Theorie in SU(2) (6.19) realisiert. Die SU(2)-
Berechnungen stellten sich als ein erfolgreicher Test für das Resummationsverfahren
(6.4) dar. Die Ergebnisse dieser Berechnungen wurden insbesondere durch eine Inte-
grationsroutine mittels des sogenannten FORM-Pakets [30] bestätigt. Die Vorausset-
zung für die Gültigkeit der Ergebnisse besteht jedoch in der korrekten Herleitung der
Feynman-Regeln (vgl. Abb. 6.1). Im Übrigen stimmen die SU(2)-Ergebnisse mit den
in dieser Arbeit vorliegenden SU(N)-Ergebnissen überein, was als weiteres Indiz für
die Äquivalenz der Parametrisierungen (6.8) und (6.28) bei gegebener Transformation
(6.24) bzw. für die Äquivalenz der Lagrangedichten (6.19) und (6.37) gewertet werden
kann.

Die in dieser Arbeit aufgezeichnete Darstellung der Berechnung in SU(N) sollte also
zum einen die SU(2)-Ergebnisse bestätigen und zum anderen zeigen, ob eine Farbzahlab-
hängigkeit der Koeffizienten αG und βG vorliegt. Bei Farbzahlunabhängigkeit wäre dann
eine weitere perturbative Entwicklung in höheren Schleifen-Ordnungen in der einfacher
zu behandelbaren resummierten effektiven SU(2)-Theorie vorteilhaft.

Zur Bestimmung der Koeffizienten des Drucks der MQCD werden die vorliegenden
Ergebnisse mit (6.1) verglichen:

pG(T ) =
T

V
ln

∫

DAa
k exp

(

−
∫

ddx
1

2
TrF 2

kl

)

⇒ pG(T )

Tµ−2ǫ
=N3(N2 − 1)

g6
M

(4π)4

[

αG

(

1

ǫ
+ 8 ln

µ̄

2mG

)

+ βG +O(ǫ)

]

. (6.88)

Der Koeffizient des ǫ-Pols bzw. αG ist bereits bekannt (vgl. [10]):

αG =
43

96
− 157

6144
π2 ≈ 0, 195715. (6.89)

Die Ergebnisse aus der 1-Schleifen-Berechnung (6.58) und der Auswertung der 2-
Schleifen-Diagramme (6.86) und Gegenterme (6.63) sind im Folgenden zusammenge-
fasst, wobei gM die effektive Kopplungskonstante der MQCD und mG die durch das
NLσM eingebundene effektive Masse ist:

pG,l0(T ) = − (N2 − 1)TD(m2
G), (6.90)

pG,CT(T ) =
1

2
m2

GlT (d− 1)(N2 − 1)A(m2
G), (6.91)

p′G,l1 = g2
MlTN(N2 − 1)

[(

−1

4
d2 + d− 15

16

)

A2(m2
G)

+

(

−3

4
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15

16

)

m2
GI(m

2
G,m

2
G,m

2
G)

]

. (6.92)
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6 Perturbative Bestimmung des Koeffizienten βG

Die Resultate der insgesamt drei in dimensionaler Regularisierung ausgewerteten In-
tegrale sind mit d = 3 − 2ǫ:

D(m2
G) =

∫

p
ln(p2 +m2

G) = −m
3
G

6π

[

1 + ǫ

(
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(
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)
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)
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,

(6.93)
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∫
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]

, (6.94)
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2
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2
G) =

∫
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G)((p − q)2 +m2
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1

16π2

[

1

4ǫ
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3mG
+

1

2
+O(ǫ)

]

. (6.95)

Somit ergibt sich für den Druck

pG,l0(T ) = (N2 − 1)T
m3

G

6π
, (6.96)

pG,CT(T ) = − l(N2 − 1)
m3

G

4π
T, (6.97)

p′G,l1 =µ−2ǫT lN(N2 − 1)g2
M

[

− 3

16

m2
G

(4π)2
− 21

16

m2
G

(4π)2

(

1

4ǫ
+ ln

µ̄

3mG
+

1

2

)

+
3

8

m2
G

(4π)2
+O(ǫ)

]

, (6.98)

wobei in (6.96) und (6.97) bereits ǫ→ ∞ gesetzt wurde. Mit mG = Cg2T und g2
M = g2T

(vgl. (4.7) und (4.11)) folgt

pG,l0(T ) =C3(N2 − 1)
g6

6π
T 4, (6.99)

pG,CT(T ) = − C3l(N2 − 1)
g6

4π
T 4, (6.100)

p′
G,l1

µ−2ǫT 4
=C2lN(N2 − 1)

g6

(4π)2

[

−21

64

(

1

ǫ
+ 4 ln

µ̄

2Cg2T

)

+
3

16
− 21

32
− 21

16
ln

2

3
+O(ǫ)

]

(6.101)

mit z. B. C = 0, 28 für N = 2 (vgl. 5.13).
Der Beitrag des Drucks der resummierten MQCD trägt erwartungsgemäß für jede

Schleifen-Ordnung l zur Ordnung g6 bei. Infolge der eichinvarianten Einbindung einer
effektiven Masse existiert bereits ein physikalischer Beitrag ab der 1-Schleifen-Ordnung,
d. h. der Koeffizient βG ist mit der resummierten effektiven Theorie (6.37) perturbativ
bestimmbar. Die Behandlung von UV-Divergenzen mittels dimensionaler Regularisie-
rung führt auf einen Anteil zur Ordnung g6 ln g bzw. zum Koeffizienten αG. Im Folgen-
den werden die Koeffizienten durch den Vergleich der Resultate (6.99)-(6.101) mit (6.88)
bestimmt und diskutiert.
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6.3 Das Gesamtresultat des Drucks der MQCD

6.3.1 Der Koeffizient αG

Aus (6.101) lässt sich der Koeffizient des ǫ-Pols direkt ablesen:

α′
G = − 21

4

C2

N2
π2l (6.102)

≈ − 1, 015582l für z. B. N = 2, C = 0, 28.

Es ist festzustellen, dass α′
G nicht αG aus (6.88) entspricht. Zum einen ist die Relation des

Koeffizienten des ǫ-Pols zum Koeffizienten des Logarithmus über die UV-Divergenzen
regulierende Impulsskala nicht äquivalent

α′
G

(

1

ǫ
+ 4 ln

µ̄

2mG

)

6= αG

(

1

ǫ
+ 8 ln

µ̄

2mG

)

(6.103)

und zum anderen ist αG laut Kajantie et. al [10] eine farbzahlunabhängige Größe. Zwar
ist der Koeffizient der effektiven Masse C ebenfalls farbzahlabhängig, jedoch besitzt er
aufgrund der dafür zu bestimmenden gap-Gleichungen bzw. Selbstenergie-Diagramme
der resummierten effektiven Theorie (6.37) die Abhängigkeit C ∼ N(N2 − 1), so dass
α′

G im Gegensatz zu (6.89) insgesamt einer farbzahlabhängigen Größe entspricht.
Da der Druck der QCD bis zur Ordnung g6 ln g bekannt ist, muss die resummier-

te MQCD nach der Auswertung unendlich vieler Korrekturen des Schleifen-Parameters
l = 1 den Wert aus (6.89) reproduzieren. Außerdem würde ein veränderter Wert des
Koeffizienten ein ǫ-Pol-abhängiges Resultat des QCD-Drucks (4.17) bedeuten, was zu
einer unphysikalischen thermodynamischen Größe führen würde. Es besteht daher die
Erwartung, dass bei der Auswertung der nächsten Schleifen-Ordnung l2, in der infolge
des resummierten Beitrags der Lagrangedichte 2-Schleifen-Gegenterme auftreten, der
Koeffizient α′

G aus (6.102) wieder subtrahiert wird und die Auswertung der darauf fol-
genden Schleifen-Ordnungen die korrekte Größe α′

G mit einer numerisch vernachlässig-
baren Farbzahlabhängigkeit liefert. Anderenfalls wäre die Methode der Resummation
zur Bestimmung des thermodynamischen Drucks der MQCD nicht haltbar.

6.3.2 Der Koeffizient βG

Die Werte des endlichen Beitrags bzw. des Beitrags der Ordnung g6, d. h. des Koeffizi-
enten βG, erschließen sich aus dem Vergleich der Resultate (6.99)-(6.101) mit (6.88):

βG,l0 =
128

3

C3

N3
π3 (6.104)

= 3, 630132 für z. B. N = 2, C = 0, 28,

βG,CT = − 64l
C3

N3
π3 (6.105)

= − 5, 445198l für z. B. N = 2, C = 0, 28,

β′G,l1 = −
(

15

2
+ 21 ln

2

3

)

l
C2

N2
π2 (6.106)

= 0, 196301l für z. B. N = 2, C = 0, 28.
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6 Perturbative Bestimmung des Koeffizienten βG

Der vollständige mit (6.88) vergleichbare Ausdruck des Koeffizienten βG ergibt sich
aus der Summe der drei Teilergebnisse. Das Gesamtresultat entspricht schließlich dem
Beitrag des Drucks der MQCD nach Abbruch der perturbativen Berechnung in der
Schleifen-Ordnung l1:

βG|l=1 =βG,l0 + βG,CT + β′G,l1

= −
(

15

2
+ 21 ln

2

3

)

C2

N2
π2 − 64

3

C3

N3
π3 (6.107)

= − 1, 618765 für z. B. N = 2, C = 0, 28.

Damit ergibt der Druck der resummierten MQCD

pG(T )

µ−2ǫT 4

∣

∣

∣

∣
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=
pG,l0(T ) + p′

G,l1(T ) + pG,CT(T )

µ−2ǫT 4

∣

∣

∣

∣

∣
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=N3(N2 − 1)
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(4π)4

[

α′
G

(

1

ǫ
+ 4 ln

µ̄

2mG

)

+ βG|l=1 +O(ǫ)

]

(6.108)

mit α′
G aus (6.102) und βG|l=1 aus (6.107).

Zur Untersuchung des Konvergenzverhaltens des Koeffizienten βG in der resummierten
effektiven Theorie ist der Vergleich der Werte aus dem Beitrag der Schleifen-Ordnung
l0 und aus dem vollständigen Beitrag der Ordnung l1 sinnvoll:

βG,l0 =
128

3

C3

N3
π3 (6.109)

= 3, 630132 für z. B. N = 2, C = 0, 28,

βG,l1 =β′G,l1 + βG,CT (6.110)

= −
(

15

2
+ 21 ln

2

3

)

l
C2

N2
π2 − 64l

C3

N3
π3

= − 5, 248897l für z. B. N = 2, C = 0, 28.

Betragsmäßig ist der Wert der ersten Korrektur etwa 150% größer als der Koeffizient der
freien effektiven Theorie. Die Ursache ist der resummierte Beitrag (6.105), der natürlich
dieselbe Größenordnung besitzt wie der Beitrag zur Ordnung l0 (6.104). Die Abhängig-
keit des Koeffizienten in der Farbzahl N und somit entsprechend in den Koeffizienten
der effektiven Masse C ändert wenig an diesem Umstand. Eine genauere Analyse des
Konvergenzverhaltens von βG ist allerdings erst nach weiterem Fortschreiten in der per-
turbativen Entwicklung möglich. Eine zufriedenstellende Analyse ist dann zu erwarten,
wenn die nächsten Korrekturen in der resummierten effektiven Theorie so klein werden,
dass βG für l = 1 gegen einen festen Grenzwert konvergiert. Es ist anzunehmen, dass
der Beitrag der in der Schleifen-Ordnung l2 auszuwertenden 2-Schleifen-Gegenterme mit
dem Beitrag der reinen 2-Schleifen-Diagramme (6.106) betragsmäßig zu vergleichen, d. h.
klein gegenüber dem Beitrag der 1-Schleifen-Gegenterme ist, da die Werte (6.104) und
(6.105) ebenfalls von derselben Größenordnung sind. Daher liegt die Vermutung nahe,
dass die Korrektur in der Schleifen-Ordnung l2 insgesamt vom Betrag her kleiner sein
wird als die erste Korrektur in l1. Der Beitrag der reinen 3-Schleifen-Diagramme könnte
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6.3 Das Gesamtresultat des Drucks der MQCD

daher bereits Aufschluß über das weitere Konvergenzverhalten in der nächsten Ordnung
l3 geben.

Die Tatsache, dass die erste Korrektur des Drucks der MQCD betragsmäßig größer ist
als der Beitrag der freien Theorie, ist der Resummation geschuldet. Die Annahme, dass
diese Korrektur gleichzeitig den größten Beitrag zum Koeffizienten βG liefert bzw. die
weitere perturbative Behandlung ein zufriedenstellendes Konvergenzverhalten erzielt,
kann möglicherweise durch die Auswertung der nächsten beiden Schleifen-Ordnungen l2

und l3 bestätigt werden. Diese Berechnungen müssen dabei für allgemeine N durchge-
führt werden, da die Koeffizienten (6.102) und (6.107) farbzahlabhängige Größen dar-
stellen. Ist die Farbzahlabhängigkeit des Koeffizienten βG schließlich numerisch gering,
so kann das in dieser Arbeit angewandte Resummationsverfahren als großen Erfolg an-
gesehen werden. Dazu ist allerdings auch die Kenntnis des Koeffizienten C nötig, die eine
Auswertung der gap-Gleichungen für allgemeine N bis zur entsprechenden perturbativen
Ordnung erfordert.

Nach der eventuellen Feststellung einer zufriedenstellenden Konvergenz des Koeffizi-
enten βG und seiner geringen numerischen Abhängigkeit in der Farbzahl N kann der
mittels Resummation ausgerechnete Druck der MQCD (6.108) in den Gesamtdruck der
QCD (4.17) eingegliedert und mit bekannten Gitterdaten verglichen werden (Kap. 4.2.2).
Diese Analyse erfolgt nach einer hoffnungsvoll erfolgreichen Auswertung der beiden an-
stehenden Schleifen-Ordnungen l2 und l3.
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7 Zusammenfassung und Ausblick

Im Fokus dieser Arbeit steht die perturbative Berechnung des thermodynamischen
Drucks der MQCD. Die Umstrukturierung der perturbativen Entwicklung in eine Po-
tenzreihe in dem Schleifen-Parameter l mittels des Resummationsverfahrens realisiert
eine solche Behandlung und die Berechnungen in der resummierten effektiven Theorie
erzielen für die Schleifen-Ordnungen l0 und l1 jeweils ein eichinvariantes Ergebnis für
den Druck. Das Ziel dieser Arbeit konnte somit erreicht werden.

Grundlegende Betrachtungen in Kapitel 2 und 3 zeigen, unter welchen Voraussetzun-
gen die Eichinvarianz einer physikalischen Größe gewährleistet ist. Insbesondere die nach
der Eichfixierung nicht-abelscher Eichtheorien existierenden BRS-Transformationen ga-
rantieren die Unabhängigkeit vom Eichfixierungsparameter ξ. Des Weiteren werden
die Besonderheiten der perturbativen Entwicklung durch die Betrachtung der Ring-
Diagramme und der Zusammenbruch der Störungstheorie aufgrund der Existenz von
IR-Divergenzen aufgezeigt. Für die magnetische Masse m ∼ g2T tragen alle Schleifen-
Diagramme mit l > 3 zur Ordnung g6 bei, wonach die Berechnung unendlich vieler
Diagramme nötig ist, um einen vollständigen Beitrag in dieser Ordnung zu erhalten.

In Kapitel 4 wird unter Ausnutzung der Impulsskalenhierarchie g2T < gT < 2πT
eine Kette von dimensional reduzierten effektiven Theorien hergeleitet, wobei die IR-
Divergenzen in der MQCD isoliert werden. Da aus dimensionalen Gründen der führende
Beitrag des Drucks der MQCD g6 ist und daher die entsprechenden Rechnungen direkt
mit IR-Divergenzen konfrontiert werden, stellt sich die Theorie als rein nicht-perturbativ
dar. Das Gesamtresultat für den Druck der QCD, das sich aus der Summe der Beiträge
der drei effektiven Theorien zusammensetzt, wird bis zur perturbativ höchstmöglichen
Ordnung g6 ln g vorgestellt. Das schlechte Konvergenzverhalten in Abhängigkeit des un-
bekannten Beitrags zur Ordnung g6 ist den beiden dimensional effektiven Theorien ge-
schuldet, da die effektive Kopplungskonstante der thermischen QCD g2T

m beträgt.

Die eichinvariante Einbindung einer effektiven Gluon-Masse durch die Lagrangedichte
des NLσMs unter Anwendung des Resummationsverfahrens wird in Kapitel 5 vorgestellt
und ermöglicht eine perturbative Behandlung der MQCD. Durch das Resummationsver-
fahren wird unter Einführung des Schleifen-Parameters l eine effektive Theorie durch die
Addition und Subtraktion der Lagrangedichte des NLσMs aufgestellt, in der die resultie-
renden modifizierten Wechselwirkungsterme in die Auswertung der korrespondierenden
Schleifen-Diagramme eingehen.

Die Herleitung der resummierten effektiven Lagrangedichte und der zugrunde lie-
genden Feynman-Regeln wird in Kapitel 6 behandelt. Die Äquivalenz der SU(2)- und
SU(N)-Parametrisierung des skalaren Feldes unter einer geeigneten Transformation der
Felder πa′ → πa erlaubt direkt eine Auswertung für die allgemeine SU(N)-Theorie. Die
Berechnungen in den Schleifen-Ordnungen l0 und l1 liefern jeweils ein eichinvariantes
Resultat für den thermodynamischen Druck der MQCD. Diese Tatsache ist bereits als
Erfolg des Resummationsverfahrens zu werten.
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7 Zusammenfassung und Ausblick

Die resultierenden Koeffizienten α′
G und βG|l=1 sind farbzahlabhängige Größen. Wie

in Kapitel 6.3.1 festzustellen ist, entspricht der Koeffizient α′
G nicht dem bereits bekann-

ten Beitrag zur Ordnung g6 ln g, d. h. dem Koeffizienten αG. Die resummierte MQCD
muss nach der Auswertung unendlich vieler Korrekturen im Schleifen-Parameter l = 1
den erwarteten Wert ergeben. Da diese Größe jedoch keine Farbzahlabhängigkeit besitzt,
ist nach der Auswertung genügend vieler Schleifen-Ordnungen eine numerisch vernach-
lässigbare Farbzahlabhängigkeit des Koeffizienten α′

G zu erwarten. Dieselbe Erwartung
gilt für den Koeffizienten βG|l=1, der sich ebenfalls als farbzahlabhängige Größe heraus-
stellt.

Ein interessanter Aspekt wird das Konvergenzverhalten des Koeffizienten βG|l=1 sein.
Der zum Beitrag der effektiven freien Theorie relativ kleine Beitrag der reinen 2-Schleifen-
Auswertung (ohne Gegenterme) lässt hoffnungsvoll auf die anstehende Auswertung der
3- und 4-Schleifen-Diagramme blicken. Erst die Ergebnisse der Beiträge der Ordnungen
l2 und l3 können eine gesicherte Aussage über das Konvergenzverhalten der perturbati-
ven Entwicklung einerseits und über die numerische Bedeutung der Farbzahlabhängig-
keit der Koeffizienten andererseits liefern.
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A Anhang

A.1 Gruppentheoretische Relationen

Einige nützliche gruppentheoretische Relationen für SU(N)-Generatoren T a in der fun-
damentalen Darstellung sind im Folgenden angegeben (vgl. auch [31]). Die Generatoren
T a mit a = 1, ..., N2 − 1 sind hermitesch, spurlos und genügen der Lie-Algebra

[

T a, T b
]

= ifabcT c (A.1)

mit den total-antisymmetrischen Strukturkonstanten fabc. Der Anti-Kommutator der
Generatoren definiert die total-symmetrischen Strukturkonstanten dabc:

{

T a, T b
}

=
1

N
δab

1N + dabcT c. (A.2)

Damit kann das Produkt zweier Generatoren mittels beider Typen von Strukturkon-
stanten formuliert werden:

T aT b =
1

2N
δab

1N +
1

2
(dabc + ifabc)T c. (A.3)

Die für die Herleitung der Lagrangedichten (6.19) und (6.37) benutzten Spur-Theoreme
über die SU(N)-Generatoren T a sind:

TrT a = 0, (A.4)

TrT aT b =
1

2
δab, (A.5)

TrT aT bT c =
1

4

(

dabc + ifabc
)

, (A.6)

TrT aT bT cT d =
1

4N
δabδcd +

1

8

[

dabedcde − fabef cde + i
(

dabef cde + fabedcde
)]

. (A.7)

Die Jacobi-Identität der total-antisymmetrischen Strukturkonstanten ist:

fabef cde + facef bde + fadef bce = 0. (A.8)

Einige Kontraktionen der Strukturkonstanten sind im Folgenden aufgelistet:

faae = 0, (A.9)

daae = 0, (A.10)

facef bce =Nδab, (A.11)

dacedbce =
N2 − 4

N
δab, (A.12)

facedbce = 0. (A.13)
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A Anhang

Für die SU(2)-Generatoren τa = 2T a gelten analoge Relationen mit

fabc → ǫabc, (A.14)

dabc = 0 (A.15)

und dem Levi-Civita-Tensor ǫabc:

ǫabeǫcde = δacδbd − δadδbc. (A.16)

Die Verallgemeinerung von (A.16) auf SU(N) ist:

fabef cde =
2

N

(

δacδbd − δadδbc
)

+
(

dacedbde − dadedbce
)

. (A.17)

A.2 Feynman-Regeln der QED und Spurtheoreme über

Dirac-Matrizen

Die Feynman-Regeln für den Photon-Elektron-Vertex Γ, den Fermion-Propagator G und
den Photon-Propagator Dµν bilden sich wie folgt ab:�pµ ν =⇒ Dµν =

1

p2

[

δµν + (ρ− 1)
pµpν

p2

]

, (A.18)

�/p =⇒ G =
1

/p−m
, (A.19)

�µ =⇒ Γ = −eγµ. (A.20)

Damit ergibt sich für das 2-Schleifen-Diagramm:

−1

2

T

V � = − 1

2
e2
∑

∫

∑

∫

Tr [γµG(p)G(q)Dµν (p− q)γν ] . (A.21)

Die Dirac-Matrizen bzw. γ-Matrizen erfüllen die Anti-Kommutator-Relation

{γµ, γν} = 2gµν (A.22)

mit µ = 0, ..., 3 und den Komponenten der Minkowski-Metrik gµν . Die für die Berech-
nung des 2-Schleifen-Diagramms benötigten Spur-Theoreme über die γ-Matrizen sind
im Folgenden aufgelistet:

Tr γµ = 0, (A.23)

Tr γµγν = 4gµν ⇒ Tr /a/b = 4a · b, (A.24)

Tr /aγµ/bγν = 4 (aµbν − (a · b)gµν + aνbµ) , (A.25)

Tr /a/b/c/d = 4 [(a · b) (c · d) − (a · c) (b · d) + (a · d) (b · c)] . (A.26)

Hierbei wird /a = γµaµ mit dem Vierervektor aµ gekennzeichnet.
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A.3 Koeffizienten des Drucks der QCD

A.3 Koeffizienten des Drucks der QCD

Zur Vollständigkeit des Gesamtresultats des Drucks der QCD (4.17) für SU(N) und
Nf masselosen Quarks werden in diesem Abschnitt alle bekannten Koeffizienten αX

aufgelistet. Damit ist der Druck der QCD bis zur Ordnung g6 ln g bekannt:

αE1 =
π2

180
(4dA + 7dF ) , (A.27)

αE2 = − dA

144

(

CA +
5

2
TF

)

, (A.28)

αE3 =
dA

144

[

C2
A

(

12

ǫ
+

194

3
ln

µ̄

4πT
+

116

5
+ 4γ +

220

3

ζ ′(−1)

ζ(−1)
− 38

3

ζ ′(−3)

ζ(−3)

)

+ CATF

(

12

ǫ
+

169

3
ln

µ̄

4πT
+

1121

60
− 157

5
ln 2 + 8γ

+
146

3

ζ ′(−1)

ζ(−1)
− 1

3

ζ ′(−3)

ζ(−3)

)

+ T 2
F

(

20

3
ln

µ̄

4πT
+

1

3
− 88

5
ln 2 + 4γ +

16

3

ζ ′(−1)

ζ(−1)
− 8

3

ζ ′(−3)

ζ(−3)

)

+ CFTF

(

105

4
− 24 ln 2

)]

, (A.29)

αE4 =
1

3
(CA + TF ) , (A.30)

αE5 =
2

3

[

CA

(

ln
µ̄

4πT
+
ζ ′(−1)

ζ(−1)

)

+ TF

(

ln
µ̄

4πT
+

1

2
− ln 2 +

ζ ′(−1)

ζ(−1)

)]

, (A.31)

αE6 =C2
A

(

22

9
ln
µ̄eγ

4πT
+

5

9

)

+ CATF

(

14

9
ln
µ̄eγ

4πT
− 16

9
ln 2 + 1

)

+ T 2
F

(

−8

9
ln
µ̄eγ

4πT
− 16

9
ln 2 +

4

9

)

− 2CFTF , (A.32)

αE7 =CA

(

22

3
ln
µ̄eγ

4πT
+

1

3

)

− TF

(

8

3
ln
µ̄eγ

4πT
+

16

3
ln 2

)

, (A.33)

αM =
43

32
− 491

6144
π2, (A.34)

αG =
43

96
− 157

6144
π2 (A.35)

mit dA = N , dF = NNf , CA = TA = N2 − 1, CF = N2−1
2N und TF =

Nf

2 .
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A.4 Standardintegrale

Die in der Schleifen-Rechnung auftauchenden Standardintegrale werden mittels dimen-
sionaler Regularisierung ausgewertet. Die dimensionale Regularisierung ist in perturba-
tiven Berechnungen eine übliche Methode, um alle UV-Divergenzen zu beheben, wobei
die Impulsintegration durch eine analytische Fortsetzung nach d = 3 − 2ǫ Dimensionen
ausgedrückt wird:

∫

p
=

∫

ddp

(2π)d
= µ−2ǫ

[

µ̄2ǫ

(

eγ

4π

)ǫ ∫ ddp

(2π)d

]

. (A.36)

Mit µ̄ = µ(eγ/4π)−
1

2 wird eine Impulsskala eingeführt, die ein Abschneiden der verblei-
benden logarithmisch divergenten Integrale, die als ǫ-Pole auftauchen, bewirkt. Für eine
Funktion f(p) gelten folgende Eigenschaften:

1. Translation:
∫

p f(p+ q) =
∫

p f(p),

2. Dilatation:
∫

p f(λp) = |λ|−d
∫

p f(p),

3. Faktorisierung:
∫

p

∫

q f(p)f(q) =
∫

p f(p)
∫

q f(q).

Daraus folgt:
∫

p 1 = 0,
∫

p
1

p2n = 0 mit n ∈ N.
Es existieren drei Standardintegrale in der Rechnung:

D(m2) =

∫

p
ln(p2 +m2) = −m

3

6π

[

1 + ǫ

(

2 ln
( µ̄

2m

)

+
8

3

)

+O(ǫ2)

]

, (A.37)

A(m2) =

∫

p

1

p2 +m2
= −m

4π

[

1 + ǫ
(

2 ln
µ̄

2m
+ 2
)

+O(ǫ2)
]

, (A.38)

I(m2,m2,m2) =

∫

p

∫

q

1

(p2 +m2)(q2 +m2)((p − q)2 +m2)

=
1

16π2

[

1

4ǫ
+ ln

µ̄

3m
+

1

2
+O(ǫ)

]

. (A.39)

Als Beispiel wird der Lösungsweg des Integrals A(m2) aufgezeichnet:

A(m2) =

(

eγ µ̄2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

1

p2 +m2

=

(

eγ µ̄2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

∫ ∞

0
dt exp

(

−t(p2 +m2)
)

=

(

eγ µ̄2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ

1

m2

∫ ∞

0
ds exp

(

− s

m2
p2
)

exp (−s) .

Dabei wurde mit t = s
m2 substituiert. Es folgt:

⇒ A(m2) =

(

eγµ̄2

4π

)ǫ
1

m2

1

(2π)3−2ǫ
π3/2−ǫm3−2ǫ

∫ ∞

0
ds s−3/2+ǫ exp(−s)

=

(

eγµ̄2

4π

)ǫ

mπ−3/22−3Γ

(

−1

2
+ ǫ

)

=

(

eγµ̄2

4π

)ǫ

mπ−3/22−3(−2)
√
π mit Γ(1/2) =

√
π.

62



A.5 Frequenzsummenintegrale

Die Γ-Funktion ist wie folgt definiert:

Γ(x) =
Γ(x+ 1)

x
=

∫ ∞

0
dt tx−1 exp(−t). (A.40)

Es folgt:

A(m2) = − m

4π

(

eγ µ̄2

4π

)ǫ

= − m

4π

[

1 + ǫ
(

2 ln
µ̄

2m
+ 2
)

+O(ǫ2)
]

. (A.41)

Für Integrale des folgenden Typs erhält man analog:

Ak(m
2) =

∫

p

1

(p2 +m2)k
=

1

(4π)d/2

Γ
(

k − d
2

)

Γ(k)

1

(m2)k−d/2
. (A.42)

A.5 Frequenzsummenintegrale

Die Formel (2.18) gibt den thermodynamischen Druck eines masselosen skalaren Feldes
an:

p = −1

2

T

V

∑

n

∑

p

ln
(

β2(ω2
n + p2)

)

=
π2

90
T 4. (A.43)

Zum Beweis wird zunächst der massive Fall mit ω2 = p2 + m2 und den bosonischen
Matsubara-Moden ωn = 2πnT betrachtet:

p = − 1

2

T

V

∑

n

∑

p

ln
(

β2(ω2
n + p2)

)

= − 1

2

T

V

∑

n

∑

p

ln
(

(2πn)2 + β2ω2
)

.

Es folgt:

⇒ p = − 1

2

T

V

∑

p

∑

n

[

∫ β2ω2

1
dθ2 1

θ2 + (2πn2)2
+ ln

(

1 + (2πn)2
)

]

= − 1

2

T

V

∑

p

∫ β2ω2

1
dθ2 1

θ

(

1 +
2

eθ − 1

)

= − 1

2

T

V

∑

p

∫ βω

1
dθ

(

1 +
2

eθ − 1

)

.

Der zweite Term wird dabei wegen des Nernst’schen Theorems nicht berücksichtigt.
Unter Vernachlässigung der Nullpunktsenergie −1

2βω ergibt die Lösung des Integrals

mit m = 0 und
∑

p = V
∫ d3p

(2π)3 :

⇒ p = − T

∫

d3p

(2π)3
ln
(

1 − e−βp
)

= − T
1

2π2

∫ ∞

0
dp p2 ln

(

1 − e−βp
)

. (A.44)
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Dieses Ergebnis wird im Übrigen auch durch die Betrachtung des harmonischen Oszilla-
tors erzielt. Die Zustandssumme des skalaren Feldes entspricht nämlich dem Produkt der
Zustandssummen des harmonischen Oszillators. Die Impulsintegration muss schließlich
partiell integriert werden und mit

Γ(4)ζ(4) =

∫ ∞

0
dp

p3

ep − 1
, (A.45)

wobei ζ(4) =
π4

90
, Γ(4) = 6

folgt:

p = −T 1

2π2

∫ ∞

0
dp p2 ln

(

1 − e−βp
)

=
π2

90
T 4. (A.46)

Die Γ- und die ζ-Funktion sind wie folgt definiert:

Γ(z) =

∫ ∞

0
tz−1e−tdt = kz

∫ ∞

0
tz−1e−ktdt mit k = const., (A.47)

ζ(s) =

∞
∑

n=1

n−s. (A.48)

Zur Lösung der Frequenzsummenintegrale Ib(0) und If (0) aus der Auswertung der
2-Schleifen-Diagramme der QED betrachte man die Integrale

Jb(m
2) =

∑

∫
[

1

2
ln(ω2

n + ω2)

]

, (A.49)

Ib(m
2) =

∑

∫

1

ω2
n + ω2

=
1

m

d

dm
Jb(m

2) (A.50)

mit w2 = p2 +m2, ωn = 2πnT und Jb(0) = −π2T 4

90 . Die Summen-Notation kennzeichnet
das Frequenzsummenintegral mit

∑

∫

= T
∑

ωn

∫

ddp

(2π)d
und d = 3 − 2ǫ. (A.51)

Die Lösung des Integrals Ib(m2) erfordert eine Seperation der Frequenzsumme in einen
Beitrag mit der Matsubara-Nullmode und einen Anteil mit n 6= 0:

∑

∫

=
∑

∫

ωn6=0

+T

∫

p
. (A.52)

Das Ergebnis des d-dimensionalen Integrals In=0 ist bereits bekannt und entspricht dem
Standardintegral A(m2) aus (A.42) mit:

In=0(m
2) = TA1(m

2). (A.53)
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A.6 Reduzierung von 2-Schleifen-Integrale auf Standardintegrale

Damit bleibt das folgende Integral mit ωn 6=0 zu lösen:

In 6=0(m
2) =T

∑

ωn6=0

∫

ddp

(2π)d
1

ω2
n + p2 +m2

= 2T

∞
∑

n=1

∫

ddp

(2π)d

∞
∑

l=0

(−1)l
m2l

[(2πnT )2 + p2]l+1

= 2T

∞
∑

n=1

∞
∑

l=0

(−1)lm2l 1

(4π)d/2

Γ
(

l + 1 − d
2

)

Γ(l + 1)

1

(2πnT )2l+2−d

= 2T
1

(4π)d/2(2πT )2−d

∞
∑

l=0

( −m2

(2πT )2

)

Γ
(

l + 1 − d
2

)

Γ(l + 1)
ζ(2l + 2 − d). (A.54)

Dabei wurde Gleichung (A.42) ausgenutzt. Schließlich folgt:

Ib(m
2) = In 6=0(m

2) + In=0(m
2)

=
T 2

12
− mT

4π
− 2m2

(4π)2

(

ln
meγ

4πT
− 1

2

)

+O

(

m4

T 2

)

. (A.55)

Die Lösung des fermionischen Frequenzsummenintegrals ergibt sich aus der Betrachtung
der Relation der Frequenzsummen S(T ) = T

∑

ωn
f(ωn) mit ωn = 2πnT für Bosonen

und ωn = (2n + 1)πT für Fermionen:

Sf (T ) = 2Sb

(

T

2

)

− Sb(T ). (A.56)

Damit folgt:

If (m2) = −T
2

24
− 2m2

(4π)2

(

ln
meγ

πT
− 1

2

)

+O

(

m4

T 2

)

. (A.57)

Somit ergibt sich:

Ib(0) =
T 2

12
, (A.58)

If (0) = − T 2

24
. (A.59)

A.6 Reduzierung von 2-Schleifen-Integrale auf

Standardintegrale

Aus Übersichtsgründen werden folgende Abkürzungen benutzt:

B(1, 1) =
1

(p2 +m2)(q2 +m2)
,

B(ξ, 1) =
1

(p2 + ξm2)(q2 +m2)
,

C(1, 1, 1) =
1

(p2 +m2)(q2 +m2)((p − q)2 +m2)
,

C(ξ, 1, 1) =
1

(p2 + ξm2)(q2 +m2)((p − q)2 +m2)
.
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Im Folgenden ist eine Auflistung von Integralen dargestellt, die in den Auswertungen
der 2-Schleifen-Diagramme (6.53) vorgekommen und auf die beiden Standardintegrale
A(m2) und I(m2,m2,m2) reduziert worden sind:

∫

p

∫

q
B(1, 1) ·

(

p2
)

= −m2A2(m2),

∫

p

∫

q
B(1, 1) ·

(

p2q2
)

= m4A2(m2),

∫

p

∫

q
B(1, 1) ·

(

p2q2 cos2 θ
)

=
1

d
B(1, 1) ·

(

p2q2
)

=
1

d
m4A2(m2),

∫

p

∫

q
B(1, 1) · (pq cos θ) = 0,

∫

p

∫

q
B(ξ, 1) ·

(

p2
)

= −ξm2A(ξm2)A(m2),

∫

p

∫

q
B(1, ξ) ·

(

p2
)

= −m2A(ξm2)A(m2),

∫

p

∫

q
B(ξ, 1) ·

(

p2q2
)

= ξm4A(ξm2)A(m2),

∫

p

∫

q
B(ξ, ξ) ·

(

p2
)

= −ξm2A2(ξm2),

∫

p

∫

q
B(ξ, ξ) ·

(

p2q2
)

= −ξm2A2(ξm2),

∫

p

∫

q
C(1, 1, 1) ·

(

p2
)

= A2(m2) −m2I(m2,m2,m2),

∫

p

∫

q
C(ξ, ξ, 1) ·

(

p2
)

= A(ξm2)A(m2) − ξm2I(ξm2, ξm2,m2),

∫

p

∫

q
C(1, ξ, ξ) ·

(

p2
)

= A2(ξm2) −m2I(m2, ξm2, ξm2),

∫

p

∫

q
C(1, 1, 1) ·

(

p4
)

= −3m2A2(m2) +m4I(m2,m2,m2),

∫

p

∫

q
C(ξ, ξ, ξ) ·

(

p4
)

= −3ξm2A2(ξm2) + ξ2m4I(ξm2, ξm2, ξm2),

∫

p

∫

q
C(1, 1, ξ) ·

(

p4
)

= −(2 + ξ)m2A(ξm2)A(m2) +m4I(m2,m2, ξm2),

∫

p

∫

q
C(ξ, ξ, 1) ·

(

p4
)

= −(2ξ + 1)m2A(ξm2)A(m2) + ξ2m4I(ξm2, ξm2,m2),

∫

p

∫

q
C(ξ, 1, 1) ·

(

p4
)

= −(2 + ξ)m2A2(m2) + ξ2m4I(ξm2,m2,m2),

∫

p

∫

q
C(1, ξ, ξ) ·

(

p4
)

= −(2ξ + 1)m2A2(ξm2) +m4I(m2, ξm2, ξm2),
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A.6 Reduzierung von 2-Schleifen-Integrale auf Standardintegrale

∫

p

∫

q
C(1, 1, 1) ·

(

p2q2
)

= −2m2A2(m2) +m4I(m2,m2,m2),

∫

p

∫

q
C(ξ, ξ, ξ) ·

(

p2q2
)

= −2ξm2A2(ξm2) + ξ2m4I(ξm2, ξm2, ξm2),

∫

p

∫

q
C(ξ, 1, 1) ·

(

p2q2
)

= −m2A2(m2) − ξm2A(ξm2)A(m2) + ξm4I(ξm2,m2,m2),

∫

p

∫

q
C(1, 1, ξ) ·

(

p2q2
)

= −2m2A(ξm2)A(m2) +m4I(m2,m2, ξm2),

∫

p

∫

q
C(ξ, ξ, 1) ·

(

p2q2
)

= −2ξm2A(ξm2)A(m2) + ξ2m4I(ξm2, ξm2,m2),

∫

p

∫

q
C(1, 1, 1) ·

(

p6
)

=
25

3
m4A2(m2) −m6I(m2,m2,m2),

∫

p

∫

q
C(1, 1, ξ) ·

(

p6
)

=

(

ξ2 +
13

3
ξ + 3

)

m4A(ξm2)A(m2) −m6I(m2,m2, ξm2),

∫

p

∫

q
C(1, ξ, ξ) ·

(

p6
)

=

(

16

3
ξ2 + 2ξ + 1

)

m4A2(ξm2) −m6I(m2, ξm2, ξm2),

∫

p

∫

q
C(1, 1, 1) ·

(

p2q2(p− q)2
)

= 3m4A2(m2) −m6I(m2,m2,m2),

∫

p

∫

q
C(ξ, 1, 1) ·

(

p2q2(p − q)2
)

= m4A2(m2) + 2ξm4A(ξm2)A(m2) − ξm6I(ξm2, ...),

∫

p

∫

q
C(ξ, ξ, 1) ·

(

p2q2(p− q)2
)

= ξ2m4A2(ξm2) + 2ξm4A(ξm2)A(m2) − ξ2m6I(...),

∫

p

∫

q
C(1, 1, 1) ·

(

p4q2
)

= 4m4A2(m2) −m6I(...) +X,

∫

p

∫

q
C(1, 1, ξ) ·

(

p4q2
)

= (3 + ξ)m4A(ξm2)A(m2) −m6I(...) +X,

∫

p

∫

q
C(1, ξ, 1) ·

(

p4q2
)

= m4A2(m2) + (ξ2 + 2ξ)m4A(ξm2)A(m2) − ξm6I(...) +X,

∫

p

∫

q
C(ξ, 1, 1) ·

(

p4q2
)

= (2 + ξ)m4A2(m2) + ξ2m4A(ξm2)A(m2) − ξ2m6I(...) +X,

∫

p

∫

q
C(1, ξ, ξ) ·

(

p4q2
)

= (2ξ2 + ξ)m4A2(ξm2) +m4A(ξm2)A(m2) − ξm6I(...) +X,

∫

p

∫

q
C(ξ, 1, ξ) ·

(

p4q2
)

= ξ2m4A2(ξm2) + (2ξ + 1)m4A(ξm2)A(m2) − ξ2m6I(...) +X,

X =

∫

p

∫

q

p2

q2 +m2
.
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