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Kapitel 1

Einleitung

Eine der schönsten Seiten der Hochenergiephysik ist die Existenz des Neutrinos, des Geis-

terteilchens1. Sie spielen eine zentrale Rolle in der Physik der Wechselwirkungen. Obwohl

die Existenz dieses Teilchens seit 50 Jahren durch das Experiment von Reines und Cowan

nachgewiesen ist [12][13][15], ist seine Masse jedoch immer noch unbekannt und ihre Be-

stimmung ein aktuelles Thema der Hochenergiephysik. Viele Experimente haben gezeigt,

dass die oberen Grenze der Ruhemassen der Neutrinos (νe, νµ, ντ ) viel kleiner als die Masse

der zugehörigen geladenen Leptonen sind. Feste Werte sind jedoch unbekannt. Man kann

kaum glauben, dass es ein Teilchen gibt, dessen Masse ungefähr 250-Mal kleiner (nach

Mainz-Troisk-Experiment [3]) als die Masse des Elektrons ist. Die Theorien im Standard-

model der Elementarteilchen basieren darauf, dass die Neutrinos masselos sind. Aufgrund

der Oszillation-Experimenten ist man überzeugt, dass die Neutrinos Massen besitzen [3].

Es gibt verschidene Methoden, mit deren Hilfe man die Neutrino-Masse bestimmen kann.

Eine dieser Methoden ist die direkte Methode. In dieser Methode untersucht man das

Energie-Spektrum von Elektronen des β−Zerfalls, um Informationen über die Masse des

Neutrinos zu gewinnen,wobei die Masse des Neutrinos anhand der fehlenden Energie der

Elektronen bestimmt werden kann. Es gab und gibt eine Reihe der Experimente zu diesem

Zweck. Ein aktuelles Experiment, das noch nicht in Betrieb ist, ist das Katrin-Experiment

[3], mit dem man die Neutrino-Masse direkt aus Energie-Spektrum des β−Zerfalls bestim-

men will. Da die Masse des Neutrinos sehr klein ist, muss man alle möglichen Faktoren, die

die Form des Spektrums beeinflussen, berücksichtigen. Hierzu kann folgende Frage gestellt

werden:

Wie ändert sich das Spektrum der Elektronen-Energie, wenn neben der Erzeugung des
1

”
Astronomie-Heute,Dez. 2004“

1



KAPITEL 1. EINLEITUNG 2

Elektrons und Neutrinos auch ein reelles Photon emittiert wird. Dieser radiative Zer-

fallsprozess erfolgt parallel zum normalen Zerfall, wobei sich die Zerfallsrate verändert. In

der Kinematik des Zerfalls tritt ein zusätzlicher Phasenraum-Integration auf, die mit dem

Photon verknüpft ist. Die mathematische Struktur der Zerfallsrate liefert dieselbe aber

das Matrixelement des Zerfalls muss neu berechent werden. Die Feynman-Amplitude des

radiativen Zerfalls wird unter Berücksichtigung der Emission eines reellen Photons auf-

gestellt . Das Photon kann am Elektron, Proton oder schwachen Wechselwirkungs-Vertex

gekoppelt werden. In den beiden ersten Fälle spricht man von der Bremsstrahlung.

In dieser Arbeit werden zuerst die Kinematik, das Matrixelement und die Zerfallsrate

des normalen Prozesses kurz erläutert. Mit Hilfe der Feynman-Regel und Spur-Theoreme

lässt sich das Matrixelement berechnen [1][6][9][10]. Beim normalen Neutonen-Zerfall han-

delt es sich um einen Dreikörper-Zerfall. Der Vorgang wird im folgenden im Ruhesystem

(CMS) des Neutrons betrachten (s. Anhang A).

Im zweiten Teil werden die Zerfallsrate und das Matrixelement des radiativen β−Zerfalls

analysiert. Die Berechnung der radiativen Zerfallsrate ist komplizierter, denn man muss

eine zusätzliche Integration über die Phasenräumen der vier erzeugten Teilchen ausführen.

Das Matrixelement wird durch zwei unabhängige Methoden berechnet. Die erste Metho-

de ist die Anwendung der Spinsummen- und Polarisationssummen-Formalismus, durch

den man auch das normale Matrixelement berechnet. Die zweite Methode ist die Heli-

zitätsamplituden-Formalismus, der anders als die erste Methode ist, aber auf dasselbe

Ergebnis führt. Diese Methode wird im Abschnitt (2.6) ausführlich erklärt.

Die beiden Methoden sind identisch, da sie diese physikalische Größe beschreiben. Man

kann die Ergebnisse aus den beiden Methoden nummerisch vergleichen. Im letzten Ab-

schnitt wird der nummerische Vergleich der beiden Methoden erklärt und es wird erwähnt,

was zu diesem Vergleich berücksichtigt werden muss.

Die Untersuchung des β−Zerfalls spielt auch eine entscheidende Rolle in der Bestäti-

gung des Standardmodell [SM] der Elementarteilchen [1]. Man kann durch das Studium

der Zerfallsrate des Prozesses und des Polarisationverhaltens der Photonen die schwa-

chen Kopplungskonstanten bestimmen. Das Energiespektrum des Photons des radiativen

β−Zerfalls in führender Ordnung ist proportional zu g2
V +3g2

A und g2
V − g2

A, wobei gV und

gA die Kopllungskonstaten der schwachen Wechselwirkung sind.
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Durch den Vergleich der experimentelllen Ergebnisse und der theoretischen Auswertungen

könnte die Gültigkeit der V−A-Theorie bestätigt werden.



Kapitel 2

Theorie

2.1 Schwache Wechselwirkung

Zwischen Fermionen besteht eine Form der Wechselwirkung, die man als schwache Wech-

selwirkung bezeichnet 1. Die beobachteten schwachen Wechselwirkungen können in drei

Typen eingeteilt werden:

• Rein leptonische, z. B.

µ− −→ e− + ν̄e + νµ . (2.1)

• Semileptonische, z. B.

n −→ p+ e− + ν̄e (β−Zerfall) . (2.2)

• Nicht leptonische, z. B.

K+ −→ π0 + π+ . (2.3)

Diese Wechselwirkung wurde zum erstem Mal beim β−Zerfall beobachtet. Bei weiteren

Untersuchungen ist man auf zwei Überrraschungen in Bezug auf den β−Zerfall getroffen

1. die Existenz eines neuen Teilchens, des Neutrinos

2. Paritätverletzung
1Es gibt noch weitere Wechselwirkungen zwischen den Fermionen, welche nicht hier besprochen wird.

4



KAPITEL 2. THEORIE 5

Der β−Zerfall konnte zunächst gut durch die Fermi-Theorie beschrieben werden [4][12][13].

In dieser Theorie geht man von einer punktförmigen Wechselwirkung aus, in der vier

Fermionen beteiligt sind. Kurz nach Fermi hat Heisenberg gezeigt, dass diese Theorie nur

eine Näherung ist und sie erweitert werden muss [12]. Diese 4-Fermionen wechselwirken

durch den Austausch eines schweren Teilchens, desW−Bosons. Da dieses Austausch-Boson

sehr schwer ist, hat die Wechselwirkung nach der Heisenbergschen Unschärfe-Relation

eine sehr kurze Reichweite und kann als punktförmige Wechselwirkung gesehen werden.

Besonders bei niedrigen Energien ergibt sich eine effektive Punktwechselwirkung. Heute

weiß man, dass es zwei geladene Bosonen W± und ein neutrales Boson Z gibt, die als

Austausch-Teilchen in der schwacher Wechselwirkung auftreten.

Was ist die Paritätverletzung? Man spricht von Paritätserhaltung, wenn die Beschreibung

eines physikalischen Vorgangs und seines Spiegelbildes identisch sind. Bis 1957 galt die

Parität als eine universelle Symmetrie. In diesem Jahr wurde jedoch von Frau Wu ein

Experiment durchgeführt, mit dessen Ergebnissen man feststellen konnte, dass die Parität

bei der schwachen Wechselwirkung nicht erhalten ist. Im übertragenen Sinne erhält man

also verschiedene Ergebnisse, wenn man das Experiment im Spiegel durchführt. Der Grund

liegt in der Helizität der Leptonen (e−, ν̄e). Die Helizität ist definiert als die Projektion

des Spins in Impuls-Richtung des Teilchens

H = ~σ · ~p
|~p|

. (2.4)

Ein Jahr später im Jahr 1958 ist es Goldhaber und seinen Mitarbeitern gelungen, durch ein

sehr schönes und detailiertes Experiment die Helizität des Neutrinos zu messen [12][13].

Das Experiment hat gezeigt, dass die Neutrino-Helizität H = −1 ist. Dies bedeutet, dass

in der Natur nur eine Spineinstellung des Neutrinos bzgl. seines Impulses in der schwachen

Wechselwirkung auftritt, und zwar der Spin des Neutrinos steht immer entgegengesetzt

gerichtet zu seinem Impuls. Nach heutigem Stand hat das Neutrino folgende Eigenschaften

• Die Helizität des Neutrino ist H ≈ −1.

• Das Neutrino hat den Spin 1
2 , also es ist ein Fermion.

• Neutrinos unterliegen der schwachen Wechselwirkung. Sie gehören zur Familie der

Leptonen.

• Neutrinos sind sehr schwer nachzuweisen, denn sie sind sehr leicht,neutral und schwach

wechselwirkend. Neutrinos besitzen außerordentlich kleine Wirkungsquerschnitte.

• Das Neutrino fliegt fast so schnell wie das Photon (vν̄e ≈ c).
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Die Untersuchung von zahlreichen Experimenten hat gezeigt, dass drei Familien von Neu-

trinos existieren. Zu jedem der Leptonen gibt es ein Neutrino. Diese drei Faimlien lauten(
e−

νe

)
,

(
µ−

νµ

)
,

(
τ−

ντ

)
.

Die drei Neutrino-Sorten besitzten dieselben Eigenschaften. Nur ihre Massen sind unter-

schiedlich

mντ > mνµ > mνe .

Neben diesen Familien stehen auch Familien der Antiteilchen. Zu jedem Lepton gibt es

auch ein Antilepton, d.h.(
e+

ν̄e

)
,

(
µ+

ν̄µ

)
,

(
τ+

ν̄τ

)
.

Das Neutrino ist ungeladen,aber sollte das Antineutrino auch ungeladen sein! Sind Neu-

trino und Antineutrino identisch? Ist das Neutrino ein Majorana-Teilchen 2!?

Die Antwort ist NEIN 3! Obwohl das Antineutrino im übrigen dieselben Eigenschaften

wie das Neutrino hat, besitzt es eine andere Helizität. Die Helizität des Antineutrinos ist

H = 1, d.h Spineinstellung und Impuls sind parallel. Der andere Grund dafür ist, dass

das Neutrino und sein Antiteilchen verschiedene Reaktionen auslösen können. Obwohl das

Heidelberg-Moskau-Experiment zeigen wollte, dass das Neutrino ein Majorana-Teilchen ist,

ist ein solcher Beweis nicht eindeutig gelungen.

In den kommenden Abschnitten werden der β−Zerfall, und die Zerfallsrate und sowie das

Matrixelement sowohl für den normalen als auch für den radiativen Zerfall berechnet.

2Die nach Ettore Majorana benannten Teilchen sind die Teilchen, die ihren Antiteilchen identisch sind.

Er war der Meinung, dass das Neutrino und Antineutrino dasselbe Teilchen sind.
3Diese drei Neutrino-Sorten sind als die leichten Neutrinos bekannt. Es gibt vielleicht weitere Neutrino-

Sorten , die schweren Neutrinos, die noch gesucht werden. Es kann sich sowohl um Majorana- als auch

Dirac-Teilchen handeln.
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2.2 V−A-Theorie

Die Austauschteilchen der schwachen Wechselwirkung sind die geladenen Vektorbosonen

W+ und W−, welche die geladenen Strom-Reaktionen (CC) vermitteln, und das neutrale

Vektorboson Z0 für die neutralen Strom-Reaktionen. Fermi hat bereits 1933 vorgeschlagen,

einen Wechselwirkungsmechanismus zu entwickeln, der analog zur elektromagnetischen

Wechselwirkung abläuft. Bei der elektromagnetischen Wechselwirkung ist der Hamiltonian

gegeben durch

Hem ∼
∫
~j(~x) · ~A(~x) , (2.5)

wobei e (die Elementarladung) die Kopplungskonstante, ~j die Stromdichte und ~A das

Vektorpotential ist. Fermis Vorschlag für die Beschreibung der neuen Wechselwirkung war,

entsprechende Vektorgrößen für Teilchen zusammen mit einer neuen Kopllungskonstante

gV zu verwenden (”Vektorkopplung“). Der einfachste Ansatz für die Hamilton-Funktion

für den β−Zerfall, die die vier beteiligten Teilchen enthält, ist gegeben durch(
ψ̄pΩψn

) (
ψ̄eΩψνe

)
, (2.6)

mit geeigneten Dirac-Operatoren Ω. Diese Funktion entspricht einem Prozess, bei dem ein

Neutrino in ein Elektron und gleichzeitig ein Neutron in ein Proton übergeht (s. Abb. 2.2).

Als nächstes stellt sich die Frage, welche Dirac-Operatoren Ω in Frage kommt. Dann kann

Abbildung 2.1: Feynman-Graph zum β−Zerfalls des Neutrons

man durch das Experiment feststellen, welche diese Operatoren überhaupt in der Natur

auftreten. Da es 16 linear unabhängige 4 × 4−Dirac-Matrizrn gibt, erhält man 162 =

256 mathematisch mögliche Bilinearformen. Unter der Forderung der Lorentz-Invarianz

verbleiben nur fünf Opertoren. Diese fünf Operatoren lauten in der üblichen kovarianten
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Schreibweise für die Dirac-Matrizen [13]

ΩS = 1 Skalar(S)

ΩP = γ5 Pseudoskalar(P )

ΩV = γµ Vektor(V )

ΩA = γ5γµ Axialer Vektor(A)

ΩT = γµγν − γνγµ Tensor(T )

(2.7)

µ, ν = 0, 1, 2, 3.

Unter Voraussetzung einer Lorenz-invarianten linearen Punktwechselwirkung ergibt sich

für die Hamiltonfunktion des Neutronen-Zerfalls

H =
1√
2

∫ ∑
j=S,P,V,A,T

gj

(
ψ̄pΩjψn

) (
ψ̄eΩjψνe

)
dv , (2.8)

wobei gj die Kopplungskonstanten jeder Wechselwirkungsformen sind. Die Integration er-

streckt sich über das Volumen.

Welche der Wechselwirkungen vorliegt, kann theoretisch nicht entschieden werden. Expe-

rimentell hat man den freien Neutronen-Zerfall studiert und festgestellt, dass von den fünf

möglichen Termen nur zwei beitragen, die V- und A-Wechselwirkung [12][13][14].

Aus dem Goldhaber -Experiment weiß man, dass die Neutrino immer mit nur einer Spin-

richtung relativ zu ihrem Impuls, und zwar in entgegengesetze Richtung, emittiert werden.

Wenn man dies berücksichtigt, ergibt sich die Hamiltonfunktion4 des freien Neutronen-

Zerfalls

H ∼
∫ [

gV

(
ψ̄pΩV ψn

)(
ψ̄eΩV

(
1 + γ5

2

)
ψνe

)
+ gA

(
ψ̄pΩAψn

)(
ψ̄eΩA

(
1 + γ5

2

)
ψνe

)]
dv

=
1
4

∫ [
gV

(
ψ̄pγµψn

) (
ψ̄eγµ(1 + γ5)ψνe

)
+ gA

(
ψ̄pγ5γµψn

) (
ψ̄eγ5γµ(1 + γ5)ψνe

)]
dv

=
1
4

∫ [
gV

(
ψ̄pγµψn

) (
ψ̄eγµ(1 + γ5)ψνe

)
− gA

(
ψ̄pγ5γµψn

) (
ψ̄eγµ(1 + γ5)ψνe

)]
dv

=
gV

4

∫ (
ψ̄pγµ (1− λγ5)ψn

) (
ψ̄eγ5γµ(1 + γ5)ψνe

)
,

(2.9)

mit

λ =
gA

gV
≈ 1, 267. (2.10)

4Um diese Funktion zu berechnen, braucht man den Projektionsoperator. Dieser Projektionsoperator

ist im Anhang C gegeben.
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2.3 β−Zerfall

Neben dem α− und γ−Zerfall ist der β−Zerfall über 100 Jahren bekannt. Dieser Zerfall ist

vielleicht der Interessanteste unter allen, weil immer noch unbekannte Seiten dieses Zerfalls

zu entdecken sind. Dieser Zerfall wird durch die schwache Wechselwirkung beschrieben.

Eines der wichtigsten Forschungsgebiete, in welchem dem Neutrino aus dem β−Zerfall eine

entscheidende Bedeutung zukommt, ist die Bestimmung der Masse des Neutrinos, die in

den nächsten Abschnitten diskutieren wird.

Es gibt drei Arten des β−Zerfalls: β−−Zerfall, β+−Zerfall, Elektronen-Einfang (e−− cap-

ture EC). Der Gegenstand dieser Arbeit ist die Untersuchung des β−−Zerfalls und es wird

kurz erläutert, wie die anderen Zerfälle ablaufen.

1. β−−Zerfall

Ein Neutron zerfällt in ein Proton, wobei ein Elektron und ein Antineutrino emittiert

werden

n −→ p+ e− + ν̄e . (2.11)

2. β+−Zerfall

Ein Proton zerfällt in ein Neutron, wobei ein Positron 5 und ein Neutrino emittiert

werden

p −→ n+ e+ + νe . (2.12)

Da ein freies Proton eine kleinere Masse als ein Neutron besitzt, kann ein Proton

in ein Neutron unter Emission der anderen Teilchen umgewandelt werden (Energie-

Erhaltung). Dieser Zerfall kann nur beim gebundenen Protonen im Kern geschehen.

3. Elektronen-Einfang

Beim Elektronen-Einfang wird ein Elektron der inneren Schalen (K, L, · · · ) einge-

fangen und reagiert mit einem Proton aus dem Kern. Durch diese Reaktion etstehen

ein Neutron und ein Neutrino

p+ e− −→ n+ νe . (2.13)
5Positron ist Antiteilchen des Elektrons. Es hat dieselben Eigenschaften wie Elektron, aber hat eine

positive Ladung und seine Helizität ist positiv.
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Am Anfang hat man den β−Zerfall so beschrieben, dass der Atomkern eines Elementes in

ein Elektron und den Restkern zerfällt. Mit dieser Beschreibung hätte man einen eindeu-

tigen Peak im Energiespektrum der Elektronen erwartet. Aber man hat den Peak nicht

gesehen. Das Energiespektrum der Elektronen wurde zum ersten Mal von James Chadwick

mit Hilfe eines Magnetspektrometers gemessen [12]. Es ist etwas überraschendes passiert.

Er hat ein kontinuierliches Spektrum gemessen.

Die Energie des Elektrons variiert zwischen Null und zu einer Maximalenergie Emax.

Abbildung 2.2: Das Energiespektrum der Elektronen im β−Zerfall [17]

Daraus kann man 2 Schlussfolgerungen ziehen

• Die Energie- und Impuls-Erhaltung ist im allgemeinen verletzt, oder

• es gibt ein weiteres Teilchen.

Wolfgang Pauli hat im Jahr 1930 die Existenz eines weiteren Teilchens postuliertdie, um

die Gültigkeit der Energie- und Impuls-Erhaltung zu retten. Damit kann man das kontinu-

ierliche Energiespektrum der Elektronen unter Energie- und Impuls-Erhaltung erklären.

Es handelt sich um einen Dreikörperzerfall, wobei im Anhang A erklärt wird, welche

Relationen zwischen den Energien und Impulsen der Teilchen stehen. Um den Ladungser-

haltungssatz zu berücksichtigen, darf dieses Teilchen keine Ladung tragen. Deswegen hat

Pauli den Namen Neutrino (das kleine Neutron) vorgeschlagen.

Aus der Spineinstellung des Neutrons und Protons unterscheidet man zwischen zwei Übergängen:

• Fermi-Übergang

• Gamow-Teller-Übergang
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Beim Fermi-Übergang sind die Spins von Neutron und Proton parallel. Aus der Drehimpuls-

Erhaltungssatz und der Tatsache, dass das Antineutrino Helizität H = 1 besitzt, steht der

Spin des Elektrons antiparallel zum Spin des Neutrinos

n(↑) −→ p(↑) + e−(↓) + ν̄e(↑) oder n(↓) −→ p(↓) + e−(↑) + ν̄e(↓) .

Im Gegensatz zum Fermi-Übergang haben Neutron und Proton im Gamow-Teller-Über-

gang eine antiparallele Spineinstellung. Aus oben genannten Gründen kann man leicht

sehen, dass Elektron und Neutrino eine parallele Spineinstellung besitzen:

n(↑) −→ p(↓) + e−(↑) + ν̄e(↑) oder n(↓) −→ p(↑) + e−(↓) + ν̄e(↓) .

Es stellt sich diese Frage, ob der β−Zerfall so abläuft, wie er in der Gleichung (2.11) dar-

gestellt ist. Oder beschreibt diese nur einen Zerfall auf dem Kernniveau? Heute weiß man,

dass das Proton und das Neutron eine Unterstruktur besitzen. Sie bestehen aus Quarks.

Es gibt 6 Quarks (und 6 Antiquarks), u(Up), d(Down), s(Strange), c(Charm), b(Bottom)

und t(Top), von denen nur zwei die Nukleonen (Protonen und Neutronen) zusammenset-

zen. Das Proton besteht aus zwei u−Quarks und einem d−Quark und das Neutron aus

zwei d−Quarks und einem u−Quark

n = (u, d, d) , p = (u, u, d).

Auf dem Elementarteilchen-Niveau läuft der β−Zerfall so ab, dass ein d−Quark in ein

u−Quark umgewandelt wird und dabei ein Elektron und ein Elektron-Antineutrino emit-

tiert

d −→ u+ e− + ν̄e . (2.14)

Abbildung 2.3: β−Zerfall auf der Elementarteilchen-Ebene

In den nächsten Abschnitten wird gezeigt, wie man die Zerfallsrate aus der Kinematik des

Zerfalls und das Matrixelent des β−Zerfalls aus der Feynman Amplitude explizit berechnen

kann.
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2.3.1 Feynman-Amplitude

Mit Hilfe der Feynman-Regeln, die im Anhang B aufgelistet sind,lässt sich die zugehörige

Feynman-Amplitude für den Neutronen-Zerfall

n(p, sn) −→ p(p′, rp) + e−(le, re) + ν̄e(lν̄e , rν̄e) (2.15)

folgenderwmaßen schreiben

M =
(
i
g√
2

)2 [
ū(le)γα (1− γ5)

2
v(lν̄e)

]
·
i(−gαβ + kαkβ

m2
W

)

k2 −m2
W + iε

·
[
ū(p′)γβ (1− λγ5)

2
u(p)

]
.

(2.16)

Der Faktor (1−γ5)
2 kommt dadurch zustande, dass die Teilchen an der schwachen Wechsel-

wirkung mit der negativen Helizität (bzw. Antiteilchen mit der positiven Helizität) in der

Reaktion teilnehmen.

Wie in den vorherigen Abschnitten erwähnt, finden im Neutronenzerfall zwei Übergänge,

der Fermi-Übergang und der Gammow-Teller-Übergang, statt. Diese Übergänge tereten

mit verschiedenen Kopplungskonstanten gV und gA auf. Die Größe λ ist als das Verhältnis

dieser beiden Konstanten definiert[1][12]

λ ≡ gV

gA
≈ 1, 267. (2.17)

Da die Masse des W-Bosons sehr groß gegenüber seinem Impuls ist, m2
W � 1, reduziert

sich der Ausdruck für M auf

M =
g2

8m2
W

[
ū(le)γα(1− γ5)v(lν̄e)

]
·
[
ū(p′)γα(1− λγ5)u(p)

]
. (2.18)

Man führt eine neue Konstante ein, die als Fermi-Konstante bekannt ist und durch fol-

genden Ausdruck definiert ist

GF√
2

≡ g2

8m2
W

, (2.19)

somit erhält man für die Feynman-Amplitude

M =
GF√

2

[
ū(le)γα(1− γ5)v(lν̄e)

]
·
[
ū(p′)γα(1− λγ5)u(p)

]
. (2.20)

Um das unpolarisierte Matrixelement |M|2 zu erhalten, muss man über die Spins im

Anfangszustand mitteln und über die Spins im Endzustand summieren [6][7][9][10]. Es
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gilt

|M|2 =
1
2

∑
r

∑
s

|M|2

=
G2

F

2
· 1
2

∑
r

∑
s

|
[
ū(le)γα(1− γ5)v(lν̄e)

]
·
[
ū(p′)γα(1− λγ5)u(p)

]
|2

=
G2

F

4
Tr
[
(l/e +me)γα(1− γ5)(l/ν̄e −mν̄e)γ

β(1− γ5)
]

︸ ︷︷ ︸
≡Aαβ ,leptonischer Anteil

· Tr
[
(p/′ +mp)γα(1− λγ5)(p/+mn)γβ(1− λγ5)

]︸ ︷︷ ︸
≡Bαβ ,hadronischer Anteil

. (2.21)

Die erste Spur in dieser Gleichung ist

Aαβ = Tr
[
(l/e +me)γα(1− γ5)(l/ν̄e −mν̄e)γ

β(1− γ5)
]

= Tr
[
l/eγ

α(1− γ5)l/ν̄eγ
β(1− γ5)

]
− Tr

[
l/eγ

α(1− γ5)mν̄eγ
β(1− γ5)

]
+ Tr

[
meγ

α(1− γ5)l/ν̄eγ
β(1− γ5)

]
− Tr

[
memν̄eγ

α(1− γ5)γβ(1− γ5)
]
.

(2.22)

Wenn man die Spur-Theoreme, die im Anhang D vollständig beweisen werden, auf Aαβ

anwendet, kann man feststellen, dass die drei letzten Terme verschwinden. In diesen Ter-

men tauchen die Spuren einer ungeraden Anzahl von γ−Matrizen auf. Der leptonischer

Anteil ist

Aαβ = Tr
[
l/eγ

α(1− γ5)l/ν̄eγ
β(1− γ5)

]
= Tr

l/eγ
αl/ν̄eγ

β

=2(1−γ5)︷ ︸︸ ︷
(1− γ5)2

 = Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
= 2 Tr

[
l/eγ

αl/ν̄eγ
β
]
− Tr

[
l/eγ

αl/ν̄eγ
βγ5
]

. (2.23)

Also

Aαβ = 2 Tr
[
l/eγ

αl/ν̄eγ
β
]
− 2 Tr

[
l/eγ

αl/ν̄eγ
βγ5
]

. (2.24)

Analog berechnet man den Ausdruck für den hadronischen Anteil

Bαβ = (1 + λ2)Tr
[
p/′γαp/γβ

]
− 2λTr

[
p/′γαp/γβγ5

]
+mnmp(1− λ2)Tr [γαγβ] .

(2.25)

Um das Quadrat der Feynman-Amplitude (das Matrixelement) |M|2 zu finden, muss man

die Kontraktion Aαβ · Bαβ berechnen. Unter Anwendung der Relationen im Anhang D
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ergibt sich für das unpolarisierte Matrixelment

|M|2 =
G2

F

4
Aαβ ·Bαβ

= 16G2
F

{
(1 + λ)2(p′le)(plν̄e) + (1− λ)2(p′lν̄e)(ple)− (1− λ2)mnmp(lelν̄e)

}
.

(2.26)

Aus kinematischen Überlegungen kann man zeigen,dass |M|2 im Ruhesystem des Neutrons

(p = mn) winkelunabhängig ist. Das Matrixelement berechnet sich im CMS vom Neutron

zu

|M|2 = 16G2
F

{
(1 + λ)2(p′le)(mnEν̄e) + (1− λ)2(p′lν̄e)(mnEe)− (1− λ2)mnmp(lelν̄e)

}
.

(2.27)

Die Skalarprodukte der Vierervektoren liefern die Winkel zwischen den Vektoren. Aus der

Vierer-Impuls-Erhaltung jedoch kann man zeigen, dass diese Terme unabhängig von den

Winkeln sind. Es gilt

p = p′ + le + lν̄e , (2.28)

(p− lν̄e)
2 =

(
p′ + le

)2 ⇒ p′le =
1
2
[
m2

n −m2
p −m2

e +m2
ν̄e
− 2mnEν̄e

]
, (2.29)

(p− le)
2 =

(
p′ + lν̄e

)2 ⇒ p′lν̄e =
1
2
[
m2

n −m2
p +m2

e −m2
ν̄e
− 2mnEe

]
, (2.30)

(
p− p′

)2 = (lν̄e + le)
2 ⇒ lelν̄e =

1
2
[
m2

n +m2
p −m2

e −m2
ν̄e
− 2mnE

′] . (2.31)

Matrixelement des β−Zerfalls ist winkelunabhängig und kann, wie im nächsten Abschnitt,

in den Winkel-Integrationen als eine Konstante behandelt werden.

2.3.2 Zerfallsrate

Aus der allgemeinen Formel, die im Anhang B steht, ergibt sich die differentiele Zerfallsrate

für den Neutronen-Zerfall

dΓ =
(2π)4

2mn
· δ(4)(p− p′ − le − lν̄e) ·

d3p′

(2π)32E′ ·
d3le

(2π)32Ee
· d3lν̄e

(2π)32Eν̄e

· |M|2

=
1

(2π)5
· |M|2

16mn
· δ(4)(p− p′ − le − lν̄e) ·

d3p′

E′ ·
d3le
Ee

· d
3lν̄e

Eν̄e

. (2.32)
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Zuerst wird im Ruhesystem des Neutrons über den Dreier-Impuls des Protons ~p′ integriert.

Es gilt mit der relativistischen Energie-Impuls-Relation

dΓ =
1

(2π)5
· |M|2

16mn
· δ(mn −

√
(~le +~lν̄e)2 +m2

p − Ee − Eν̄e)

· 1√
(~le +~lν̄e)2 +m2

p

· d
3le
Ee

· d
3lν̄e

Eν̄e

. (2.33)

Aus der 3-dimensionalen δ−Funktion ergibt sich die Dreier-Impuls-Erhaltung im CMS des

Neutrons, d.h.

~0 = ~p′ +~le +~lν̄e . (2.34)

Man kann die Dreier-Impulse in Kugelkoordinaten transformieren und erhält dadurch

dΓ =
1

(2π)5
· |M|2

16mn
·
δ(E −

√
(~le +~lν̄e)2 +m2

p − Ee − Eν̄e)

EeEν̄e

√
(~le +~lν̄e)2 +m2

p

· l2edledΩe · l2ν̄e
dlν̄edΩν̄e . (2.35)

Unter Anwendung der relativistischen Energie-Impuls-Relation

E2 = |~p|2 +m2 , EdE = |~p|dp (2.36)

und Vernachlässigung der Masse des Neutrinos ergibt sich

dΓ =
1

(2π)5
· |M|2

16mn
·
δ(E −

√
(~le +~lν̄e)2 +m2

p − Ee − Eν̄e)

EeEν̄e

√
(~le +~lν̄e)2 +m2

p

· leEedEedΩe · lν̄eEν̄edEν̄edΩν̄e . (2.37)

Bevor die letzte Integration über die Energie des Neutrinos ausgeführt wird, sei darauf

hingewiesen, dass die Raumwinkel des Elektrons und des Neutrinos unabhängig vonenan-

der sind. Durch Integrationen über dΩe und dΩν̄e ergibt sich ein Faktor 4π

dΓ =
1

(2π)5
· |M|2

16mn
·
δ(E −

√
(~le +~lν̄e)2 +m2

p − Ee − Eν̄e)

EeEν̄e

√
(~le +~lν̄e)2 +m2

p

· (peEedEe dΩe︸︷︷︸
=4π

)(pν̄eEν̄edEν̄e dΩν̄e︸︷︷︸
=4π

)

=
1

(2π)3
· |M|2

4mn
· leEν̄e

(mn − Ee− Eν̄e)
dEe . (2.38)
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In der letzten Gleichung wurde angenommen, dass die Masse des Neutrinos gegenüber

seinem Impuls verschwindet. Es ist zu bemerken, dass Eν̄e in dieser Gleichung ein Symbol

für den folgenden Ausdruck ist

Eν̄e =
m2

n +m2
e −m2

p − 2mnEe

2
[
mn − Ee+ |~le| cos ∠(l̂e, l̂ν̄e)

] , (2.39)

der sich aus dem Argument in der δ−Funktion

Eν̄e = mn − Ee−
√

(~le +~lν̄e)2 +m2
p (2.40)

ergibt. Im CMS (Ruhesystem) vom Neutron soll gelten

E = mn = E′ + Ee− + Eν̄e . (2.41)

Nachdem man die Winkelintegrationen ausgeführt hat, wurde das Matrixelement über-

haupt nicht berücksichtigt, ob es sich als winkelunabhängige Größe verhält. Im letzten

Abschnitt wurde gezeigt, dass das Matrixelement winkelunabhängig ist und als Konstante

bzgl. Winkelintegration betrachtet werden kann.

2.3.3 Untersuchung des nichtrelativistischen Limes für das Proton

Wie vorher erwähnt kann man den Neutronen β−Zerfall als Umwandlung des Neutrons

in ein Proton unter der Erzeugung des Elektrons und Elektronenantineutrinos betrachten.

Bei diesem Prozess wird die freigesetzte Enrgie, die der Massendifferenz von Neutron und

Proton entspricht, in die Masse des erzeugten Elektrons und Elektronenantineutrinos,

sowie der kinetischen Energien der beteiligten Teilchen umgewandelt

E0 = mn −mp = Ee + Eν̄e + E′
kin � mn,mp . (2.42)

Diese Gleichung ist genau dann richtig, wenn man den Impuls des Protons gegenüber sei-

ner Masse vernachlässigen. Man weiß, dass die Masse des Protons viel größer ist als die

freigesetzte Energie und daher kann die Geschwindigkeit des Protons gegenüber der Ge-

schwindigkeit des Elektrons oder Antinneutrinos vernachlässigt werden. Der Impuls ergibt

sich aus dem Produkt der Masse und der Geschwindigkeit und kann nicht vernachlässigt

werden. Wie kann die Gleichung (2.42) gelten? Um diese Relation zu beweisen, stellt man

den Energie-Erhaltungs-Satz im Ruhesystem des Neutron auf

mn = E′ + Ee + Eν̄e . (2.43)
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Unter Anwendung der relativistischen Energie-Impuls-Relation lässt sich die obige Glei-

chung folgendermaßen schreiben

mn − E′ = Ee + Eν̄e

mn −
√
m2

p + p′2 = Ee + Eν̄e

mn −mp

√
1 +

(
p′

mp

)2

= Ee + Eν̄e . (2.44)

Da die kinetische Energie des Protons E′
kin im Vergleich zu seiner Masse sehr klein ist,

entwickelt man in eine Taylor-Reihe

mn −mp

[
1 +

1
2

(
p′

mp

)2

+O

((
p′

mp

)4
)]

= Ee + Eν̄e . (2.45)

Man kann die Terme, welche größere Ordnungen als O
((

p′

mp

)4
)

haben, weglassen, da

diese Terme kleiner als O(10−6) sind. Auf diesem Grund erhält man

mn −mp −
1
2

(
p′2

mp

)
= Ee + Eν̄e

E0 − Ekin
p = Ee + Eν̄e

E0 = Ee + Eν̄e + Ekin
p . (2.46)
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2.4 Radiativer β−Zerfall

Wie vorher erwähnt wurde, spielt das Neutrino in der Physik der Wechselwirkungen eine

große Rolle. Daher ist es wichtig, seine Masse zu kennen. Da die Neutrinos der schwa-

chen Wechselwirkung unterliegen, ist die Bestimmung ihrer Massen nicht einfach. Bei der

direkten Methode zur Bestimmung der Elektronantineutrino-Masse untersucht man das

Spektrum von β−Elektronen. Dazu beobachtet man den Endpunkt des Spektrums, wo die

Energien der Elektronen maximal sind und kann aus der Energie-Erhaltung auf die Masse

des Neutrinos schließen. Wie in der Abbildung 2.4 zu sehen ist, weist das Spektrum sehr

kleine Abweichung auf, wenn die Masse des Neutrinos von Null verschieden ist. Da sich

Abbildung 2.4: links: β−Spektrum aus dem Tritium-β−Zerfall, rechts: Vergleich des End-

punktes für mν̄e = 0 eV und mν̄e = 10 eV [3]

das Spektrum so empfindlich verhält, muss man alle möglichen Störungen berücksichtigen,

die das Spektrum beeinflussen können. Eine der Möglichkeiten ist die Beobachtung der

radiativen β−Zerfall, wo es sich um einen Vierkörperzerfall handelt. In diesem Prozess

wird zusätzlich ein Photon emittiert

n(p) −→ p(p′) + e−(le) + ν̄e(lν̄e) + γ(k) . (2.47)

Im diesem Abschnitt wird nur die Zerfallsrate dieses Prozesses berechnet und in den

nächsten Abschnitten (2.5) und (2.6) wird das Matrixelement ausführich mit Hilfe der

Spin-Polarisation-Summen und Helizitätsamplituden-Formalismen hergeleitet.
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2.4.1 Zerfallsrate

Die differentielle Zerfallsrate des radiativen Prozesses lässt sich analog zum normalen Pro-

zess aus den Gleichungen im Anhang B herleiten. Die totale Zerfallsrate ergibt sich durch

die Phasenraum-Integrationen über alle erzeugten Teilchen. Der Unterschied zum norma-

len Neutronen-β−Zerfall ist, dass man für diesen Prozess auch über den Phasenraum des

Photon integrieren muss. Die differentielle Zerfallsrate ist gegeben durch

dΓ =
(2π)4

2mn
· d3p′

(2π)32E′ ·
d3le

(2π)32Ee
· d3lν̄e

(2π)32Eν̄e

· d3k

(2π)32ω

· |M|2 · δ(4)(p− p′ − le − lν̄e − k)

=
1

32mn(2π)8
· d3p′ · d3le · d3lν̄e · d3k · 1

E′EeEν̄eω

· |M|2 · δ(3)(~p′ +~le +~lν̄e + ~k)δ(1)(mn − E′ − Ee − Eν̄e − ω) . (2.48)

Zuerst führt man die Integration über den Phasenraum des Protons aus. Zur Integration

verwendet man die relativistische Energie-Impuls-Relation des Protons E′ =
√
|~p′|2 +m2

p

gilt

dΓ =
1

32mn(2π)8
· d3le · d3lν̄e · d3k · 1

EeEν̄eω
√

(~le +~lν̄e + ~k)2 +m2
p

· δ(1)(mn −
√

(~le +~lν̄e + ~k)2 +m2
p − Ee − Eν̄e − ω) · |M|2~p′=−(~le+~lν̄e+~k)

.

(2.49)

Man kann die Phasenraum-Integrationen in Kugel-Koordinaten formulieren. Aus der Energie-

Impuls-Relation lässt sich die Formel EdE = |~p|dp durch partielle Ableitung herleiten.

Damit vereinfacht sich die differentielle Zerfallsrate zu

dΓ =
1

32mn(2π)8
· |~le|dEedΩe · |~lν̄e |dEν̄edΩν̄e · |~k|dkdΩk ·

1√
(~le +~lν̄e + ~k)2 +m2

p

· δ(1)(mn −
√

(~le +~lν̄e + ~k)2 +m2
p − Ee − Eν̄e − ω) · |M|2~p′=−(~le+~lν̄e+~k)

.

(2.50)

Als letztes integriert man über die Energie des Neutrinos. Aus der δ−Funktion ergibt sich

eine selbstkonsistente Gleichung für die Energie des Neutrinos,also

Eν̄e = mn − Ee − ω −
√

(~le +~lν̄e + ~k)2 +m2
p

Eν̄e = mn − Ee − ω −
√
|~le|2 + |~lν̄e |2 + |~k|2 +~le ·~lν̄e +~le · ~k +~lν̄e · ~k +m2

p . (2.51)

Bevor man diese selbstkonsistente Gleichung löst, vereinbart man, dass die Impuls-Richtung

des Elektrons der z-Achse entspricht. Dies vereinfacht die obigen Gleichungen. Mit dieser
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Vereinbarung führt man zwei nützliche Größen ein

l̂e · l̂ν̄e = cos θν̄e ≡ xν̄e , l̂e · k̂ = cos θk ≡ xk . (2.52)

Die selbstkonsistente Gleichung für Eν̄e , Gleichung (2.51) lässt sich mit mathematischen

Umformungen lösen. Dazu löst man eine quadratische Gleichung nach Eν̄e . An dieser

Stelle wird der Rechenweg nicht näher erläutert und nur das Ergebniss mit Hilfe der oben

defienierten Größen angegeben

Eν̄e =
m2

n +m2
e −m2

p − 2mn(Ee + ω) + 2Eeω − 2~le · ~k

2
(
mn − Ee − ω + |~le|xν̄e + ~k · l̂ν̄e

) . (2.53)

Nach der Integration über Energie des Neutrinos ergibt sich für die differentielle Zerfalls-

rate

dΓ =
1

32mn(2π)8
· ωdω · |~le|dEe · dΩedΩν̄edΩk ·

Eν̄e |M|2p′=p−le−lν̄e−k

mn − Ee − ω − Eν̄e

. (2.54)

Bemerkung : Eν̄e in der Gleichung (2.54) ist nur ein Symbol für Eν̄e aus der Gleichung

(2.53). Eν̄e kommt in dieser Gleichung nicht mehr vor, da man über die Energie des

Neutrinos schon integriert hat.

Um die totale Zerfallsrate des Prozesses zu erhalten, muss man über die gebliebenen

Phasenräume aller Teilchen integrieren. Es gilt

Γ =
1

32mn(2π)8

∫ ωmax

ωmin

ωdω

∫ Emax
e

me

|~le|dEe · Ω ·
Eν̄e |M|2p′=p−le−lν̄e−k

mn − Ee − ω − Eν̄e

, (2.55)

mit dem Winkelanteil Ω

Ω ≡
∫
dΩedΩkdΩν̄e . (2.56)

Die Relationen (2.52) können ohne weitere Probleme erweitert werden zu

cos θk = xk ⇒ − sin θk dθk = dxk ,

cos θν̄e = xν̄e ⇒ − sin θν̄e dθν̄e = dxν̄e . (2.57)

Man setzt diese Gleichungen in den Winkelanteil Ω ein. Man hat hierbei vereinbart, dass

als Flugrichtung des Elektrons die z-Achse gewählt wird. Damit erhält man für die Win-

kelintegration über das Elektron die Konstante 4π

Ω =
∫
dΩe︸ ︷︷ ︸

=4π

∫
dxkdϕk

∫
dxν̄edϕν̄e = 4π

∫
dxk

∫
dxν̄e

∫
dϕkdϕν̄e . (2.58)

Die Flugrichtung eines der verbleibenden Teilchen (ν̄e oder γ) kann bzgl. der Flugrich-

tung des Elektrons festgelegt werden und die Grenze für die φ−und θ−Winkel des an-

deren Teilchens in Abhängigkeit vom ersten Teilchen behandelt werden. Hier wird die
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Neutrino-Flugrichtung festgehalten, wobei die Integrationsgerenze für den Photonenanteil

aus kinematischen Überlegungen ermittelt werden können.

Ω = 4π
∫ xmax

k

xmin
k

dxk

∫ −1

1
dxν̄e

∫ 2π

0
dϕk

∫ ϕk−2π

ϕk

dϕν̄e

= 2(2π)2
∫ xmax

k

xmin
k

dxk

∫ −1

1
dxν̄e

∫ ϕk−2π

ϕk

dϕν̄e . (2.59)

Führt man eine neue Größe genannt φ− ein, um die Integrationsgrenze im dritten Integral

durch Konstanten zu ersetzen

φ− ≡ ϕk − ϕν̄e , (2.60)

es ergibt sich

Ω = 2(2π)2
∫ xmax

k

xmin
k

dxk

∫ −1

1
dxν̄e

∫ 2π

0
d(−φ−) = 2(2π)2

∫ xmax
k

xmin
k

dxk

∫ 1

−1
dxν̄e

∫ 2π

0
dφ−.

(2.61)

Damit ist auch der Winkelanteil bekannt. Jetzt erhält man für die totale Zerfallsrate des

radiativen β−Zerfalls die folgende Gleichung

Γ =
1

16mn(2π)6

∫ ωmax

ωmin

ωdω

∫ Emax
e

me

|~le|dEe

∫ xmax
k

xmin
k

dxk

∫ 1

−1
dxν̄e

∫ 2π

0
dφ−

·
Eν̄e |M|2p′=p−le−lν̄e−k

mn − Ee − ω − Eν̄e

. (2.62)

In diesem Integral stehen fünf Inetgartionsgrenzen, die noch unbekannt sind. Indem man

ωmax leicht berechnen kann, wird ωmin nicht einfach bestimmen, da es von der Auflösung

des Detektors abhängt. Wenn man den theoretischen Wert für die Auflösung des Gerätes

nicht kennen würde, könnte man die totale Zerfallsrate nicht ausrechnen. Um das Problem

zu beseitigen, kann man statt der totalen Zerfallsrate die differentielle Zerfallsrate nach der

Energie des Photons dΓ/dω berechnen, wo keine der Integrationsgrenze ωmin und ωmax

vorkommen. Die entsprechenden Grenzen werden statt dessen im nächsten Abschnitt aus

der Kinematik des Zerfalls berechnet.

Vor Abschluß dieses Kapitels, wird noch gezeigt wie die Energie des Neutrino direkt aus

der Vierer-Impuls-Erhaltung bestimmt werden kann. Es gilt

p = p′ + le + lν̄e + k . (2.63)

Im CMS des Neutrons lassen sich die Energie- und Impulssätze folgendermaßen schreiben

mn = E′ + Ee + Eν̄e + ω , (2.64)

0 = ~p′ +~le +~lν̄e + ~k . (2.65)
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Man kann die Gleichung (2.63) umformen und erhält so

p− p′ − lν̄e = le + k(
p− p′ − lν

)2 = (le + k)2

m2
n +m2

p +m2
ν̄e
− 2plν̄e − 2pp′ + 2p′lν̄e = m2

e + k2︸︷︷︸
=0

+2kle

m2
n +m2

e −m2
p − 2mn(Ee + ω) + 2Eeω − 2~le · ~k = 2p′lν̄e . (2.66)

Das Skalarprodukt der letzten Zeile kann in folgenden Ausdruck entwickelt werden

2p′lν̄e = 2E′Eν̄e − 2~p′ ·~lν̄e . (2.67)

Die Energie und den Impuls des Protons E′ ersetzt man aus der Gleichungen (2.64)

2p′lν̄e = 2(mn − Ee − Eν̄e − ω)Eν̄e + 2(~le +~lν̄e + ~k) ·~lν̄e

= 2(mn − Ee − ω)Eν̄e − 2 E2
ν̄e

+ 2 (~le + ~k) ·~lν̄e + 2 E2
ν̄e

= 2 (mn − Ee − ω +~le · l̂ν̄e + ~k · l̂ν̄e)Eν̄e . (2.68)

Die Energie des Neutrinos wird durch Einsetzen der obigen Gleichung in die Gleichung

(2.66) bestimmt, d.h.

Eν̄e =
m2

n +m2
e −m2

p − 2mn(Ee + ω) + 2Eeω − 2~le · ~k

2
(
mn − Ee − ω + ~le · l̂ν̄e + ~k · l̂ν̄e

) . (2.69)

Dies ist mit der Gleichung (2.53) identisch, wenn man die Definitionen für xk und xν̄e

verwendet.

Bemerkung : Bei der Herleitung aller Gleichungen in diesem Abschnitt wurde angenommen,

dass die Masse des Neutrinos gegenüber seinem Impuls zu vernachlässigen ist, was mit der

Relation Eν̄e = |~pν̄e | identisch ist.

2.4.2 Bestimmung der Integrationsgrenzen

An dieser Stelle werden die Integrationsgrenzen abgeleitet, die zur Berechnung der totalen

oder differentiellen Zerfallsrate bekannt sein müssen. Zunächst wird die maximale Energie

des Elektrons bestimmt. Ausgangspunkt ist die Vierer-Impuls-Erhaltung

p = p′ + le + lν̄e + k

p− le − k = p′ + lν̄e

m2
n +m2

e + k2︸︷︷︸
=0

+2kle − 2mnEe − 2mnω = m2
p + 2E′Eν̄e − 2~p′ ·~lν̄e . (2.70)
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Dadurch findet man eine Relation für die Energie des Elektrons

Ee =
m2

n +m2
e −m2

p − 2mnω − 2(E′Eν̄e − ~p′ ·~lν̄e)

2(mn − ω + ω |
~le|
Ee
l̂e · k̂)

. (2.71)

Der Term in der Klammer hat im Vergleich zur Masse des Protons einen kleinen Beitrag

m2
p + 2E′Eν̄e

(
1− |~p′|

E′

)
≈ m2

p − 2E′Eν̄e = m2
p

(
1− 2

E′Eν̄e

m2
p

)
≈ m2

p

(
1− 2

Eν̄e

mp

)
≈ m2

p , (2.72)

da 2Eν̄e
mp

� 1 ist. Die frei werdende Energie, die zur Erzeugung des Elektrons, Neutrinos,

Photons und ihrer Impulse verfügbar ist, beträgt E0 = mn −mp und ist im Vergleich zur

Masse des Protons geringer. Die Energie des Elektrons ist genau dann maximal, wenn sein

Impuls den größtmöglichen Wert annimmt. In diesem Fall werden die andere drei Teilchen

in eine dem Elektron entgegengesetzte Richtung emitiert. Für die maximale Energie erhält

man

Emax
e =

m2
n +m2

e −m2
p − 2mnω

2(mn − ω + ωβmax
e l̂e · k̂)

, (2.73)

mit βmax
e = |~le|max

Emax
e

.

Die erste unbekannte Integrationsgrenze ist durch diese selbstkonsistente Gleichung für

Emax
e mit vorgegebenem ω bestimmt.

Um die differentielle Zerfallsrate dΓ/dω auszurechnen, muss man zuerst die Größe k̂ · l̂ν̄e ,

die in der Gleichung für Eν̄e vorkommt, durch die Integrationsvariable darstellen. Dazu

transformiert man die beiden Vektoren, k̂ und l̂ν̄e , in Kugelkoordinaten und bildet ihr Ska-

larprodukt. Unter Anwendung der Additions-Theorem der trigonometrischen Funktionen

ergibt sich

k̂ · l̂ν̄e =
√

(1− x2
ν̄e

)(1− x2
k) cosφ− + xν̄exk . (2.74)

Die Integrationsgrenze für die xk−Integration folgt aus der Gleichung (2.53). Eν̄e ist eine

positive Größe und somit ist auch der Nenner in der Gleichung (2.53) immer positiv 6. Es

ergibt sich für den Zähler in diesem Ausdruck folgende Ungleichung

m2
n +m2

e −m2
p − 2mn(Ee + ω) + 2Eeω − 2~le · ~k ≥ 0 . (2.75)

6Es ist zu beachten, dass die Energien der erzeugten Teilchen im MeV-Bereich , die Masse des Neutrons

aber im GeV-Bereich liegen. Aufgrund dieses Arguments kann man sicher sein, dass der Nenner in der

Gleichung (2.53) immer positiv ist.
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Mit Hilfe der schon definierten Größe xk folgt

xk ≤ 1

2|~le|ω
[
(m2

n +m2
e −m2

p) + 2Eeω − 2mn(Ee + ω)
]

= xmax
k . (2.76)

Die untere Grenze für xk ist genauso wie die obere Grenze zu bestimmen. Zuerst setzt

man die Gleichung (2.53) in Ungleichung

mn −mp − Ee − Eν̄e − ω ≥ 0 (2.77)

ein. Man erhält so für xk

xk ≥ 1

2|~le|ω
[(
m2

n +m2
e −m2

p

)
+ 2Eeω − 2mn(Ee + ω)

− 2(mn −mp − Ee − ω)(mn − Ee − ω + |~le|xν̄e + ωk̂ · l̂ν̄e)
]

. (2.78)

Die Terme xν̄e und k̂·l̂ν̄e sind auf den Bereich -1 und 1 beschränkt, da folgende Beziehungen

gelten

xν̄e = cos θν̄e ∈ [−1, 1] , k̂ · l̂ν̄e = cos ∠(~k,~lν̄e) ∈ [−1, 1] . (2.79)

Um den minimalen Wert von xk zu erhalten, muss xν̄e seinen maximalen Wert annehmen,

d.h. xν̄e = 1, und k̂ · l̂ν̄e aus der Gleichung (2.74) mit xν̄e = 1 berechnet werden. Die

selbstkonsistente Gleichung für xmin
k lässt sich folgendermaßen lösen

xmin
k =

1

(2ω(Ee − |~le| −mn +mp + ω))
·[

2E2
e −m2

e + 2|~le|mn +m2
n − 2lemp − 2mnmp

+ m2
p − 2Ee(|~le|+mn −mp − ω)− 2|~le|ω − 2mnω + 2mpω + 2ω2

]
.(2.80)

Im vorherigen Abschnitt wurde erwähnt, dass der Wert ωmin durch die Auflösung des De-

tektors bestimmt ist. Aber die maximale Energie des Photons ist aus der Vierer-Impuls-

Erhaltung zu berechnen. Dieselben Gleichungen, die man für die Bestimmung der maxima-

len Energie des Elektrons Emax
e benutzt hat, werden hier gebraucht, um ωmax zu finden.

Aus diesen Gleichungen folgt für die Energie des Photons

ω =
(mn −me)2 −m2

p − 2mnEe

2(mn − Ee + |~le|l̂e · k̂)
. (2.81)

Das Photon hat seine maximale Energie bzw. seinen maximalen Impuls, wenn das Pho-

ton in eine Richtung und die anderen emmitierten Teilchen in entgegengesetzte Rich-

tung fliegen. In diesem Fall muss man zusätzlich berücksichtigen, dass der Zähler seinen

größtmöglichen Wert annimmt und der Nenner seinen kleinstmöglichen Wert. Mit dieser

Begründung nimmt die Energie des Elektrons ihren kleinstmöglichen Wert me an

ωmax =
(mn −me)2 −m2

p − 2mnme

2(mn −me)
. (2.82)
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2.5 Die Feynman-Amplituden des radiativen β−Zerfalls

Aus den Feynman-Regeln kann man die Feynamn-Amplitude für den radiativen β−Zerfall

n(p, sn) −→ p(p′, rp) + e−(le, re) + ν̄e(lν̄e , rν̄e) + γ(k, ε) (2.83)

aufstellen, wobei k der Vierer-Impuls des Photons mit der Energie ω und der Polarisation

ε bezeichnet.

Das Photon kann nicht vom Neurino emmitiert werden, da die Neutrinos der schwachen

und nicht der elektromagnetischen Wechselwirkung unterliegen. Es bleiben nur drei ver-

schiedene Möglichkeiten. Das Photon kann entweder am Elektron oder am Proton als

Bremsstrahlung oder am effektiven schwachen Wechselwirkung-Vertex gekoppelt werden.

Der Anteil für den Bremsstrahlunsbeitrag lässt sich gemäß der QED-Regeln folgenderma-

ßen schreiben

M = Ma +Mb

= iegV
GF√

2

{
ū(le)

2leε∗ + ε/∗k/

2(kle)
γα(1− γ5)v(lν̄e) · ū(p′)γα(1− λγ5)u(p)

− ū(le)γα(1− γ5)v(lν̄e) · ū(p′)
2p′ε∗ + ε/∗k/

2(kp′)
γα(1− λγ5)u(p)

}
. (2.84)

In der QED kann man die Photonen-Emission aus dem schwachen Wechselwirkungsvertex

gegenüber der Bremsstrahlungsbeiträge vernachlässigen [1] und muss dabei nur Matrix-

elemente zweier Prozesse und ihren Interferenzbeitrag berechnen.

Im folgenden werden die Quadrate der Feynman-Amplituden für die Bremstrahlungen

|Ma|2, |Mb|2 und der Mischungsterm MaM∗
b +M∗

aMb berechnet. Bevor die Bremsstrah-

lungsbeiträge und ihre Interferenzterme explizit berechnet werden, wird zuerst der Spin-

und Polarisationssummen-Formalismus anhand eines Beispiels ausführlich demonstriert.

2.5.1 Zerfall eines Fermions in 3 Teilchen und Photon

Da man in dieser Arbeit öfter auf Feynman-Amplituden und ihre Quadrate trifft, ist es

nützlich, einmal die komplette Herleitung anhand eines Beispiels darzustellen. Hier wird

die Herleitung des Bremsstrahlungsbeitrags vorgeführt, der durch die Photonenkopplung

am Elektron erzeugt wird. Hier wird dieser Beitrag auf der Elementarteilchenebene be-

trachtet. Auf dem Kernniveau steht in der Feynman-Amplitude des radiativen Zerfalls

im hadronischen Anteil eine Konstante λ = 1, 267 [1]. Auf der Elementarteichenebene

ist λ = 1. Mit λ 6= 1 tauchen zusätzliche Termen auf, die mit Relationen im Anhang D

leicht auszurechnen sind. Hier betrachtet man den Zerfall des d-Quarks in das Elektron,



KAPITEL 2. THEORIE 26

Abbildung 2.5: durch das Elektron erzeugte Bremsstrahlung

Elektronenantineutrino und u-Quark. Die Feynman-Amplitude dieses Prozesses ist

Ma = i
gV√

2

[
ū(le) · ieε/∗i ·

l/′e +me

l′2e −m2
e

γα (1− γ5)
2

v(lν̄e)
]

·
i(−gαβ +

k′αk′β
m2

W
)

k′2 −m2
W + iε

· i
gV√

2

[
ū(p′)γβ (1− γ5)

2
u(p)

]
. (2.85)

Da m2
W � 1 ist, vereinfacht sich der letzte Ausdruck auf

Ma = i
g2
V

2

[
ū(le) · ieε/∗i ·

l/′e +me

l′2e −m2
e

γα (1− γ5)
2

v(lν̄e)
]
·
igαβ

m2
W

·
[
ū(p′)γβ (1− γ5)

2
u(p)

]
.

(2.86)

Am QED-Vertex gilt noch die Relation le = l′e − k. Es ergibt sich

Ma = ie
g2
V

8m2
W︸ ︷︷ ︸

GF√
2

ū(le)
ε/∗(l/e +me + k/)

q2e −m2
e + k2︸︷︷︸

=0

+2(lek)
γα(1− γ5)v(lν̄e) · ū(p′)γα(1− γ5)u(p)

 .

(2.87)

unter der Verwendung der Dirac-Gleichung ū(le)(−l/e +me) = 0 und der Gleichung

ε/∗l/e = −l/eε/
∗ + 2leε∗ (2.88)

erhält man

Ma = ie
GF√

2

{
ū(le)

2leε∗ + ε/∗k/

2(lek)
γα(1− γ5)v(lν̄e) · ū(p′)γα(1− γ5)u(p)

}
= ie

GF√
2

{
ū(le)Olv(lν̄e) · ū(p′)Ohu(p)

}
, (2.89)

mit

Ol =
2leε∗ + ε/∗k/

2(lek)
γα(1− γ5) , Oh = γα(1− γ5) . (2.90)
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Zur Berechnung von |Ma|2 muss man die Methode der Spin- und Polarisationssummen

anwenden. Es gilt

|Ma|2 =
1
2

∑
Polarisation

∑
Spins

|Ma|2

=
e2G2

F

4

∑
λ

∑
Spins

|
{
ū(le)Olv(lν̄e) · ū(p′)Ohu(p)

}
|2

=
e2G2

F

4

∑
λ

∑
Spins

{
ū(le)Olv(lν̄e) · u(p′)Ohu(p)

}{
ū(p)Õlu(p′) · v̄(lν̄e)Õlu(le)

}
=

e2G2
F

4

∑
λ

Tr
[
(l/e +me)Ol(l/ν̄e −mν̄e)Õl

]
Tr
[
p/+mn)Oh(p/′ +mp)Õh

]
=

e2G2
F

4
AαβBαβ . (2.91)

In der obigen Gleichung treten die Operatoren Õh und Õl auf. Gemäß der Definition lassen

sich die beiden Operatoren umschreiben [6]

Õh = γ0O
+
h γ0 = γ0(γβ(1− γ5))+γ0

= γ0((1− γ5)+γ+
β )γ0 = γ0((1− γ+

5 )γ+
β )γ0 = γ0((1− γ5)γ+

β )γ0

= (1 + γ5)γ0γ0γβγ0γ0 = (1 + γ5)γβ

Õh = γβ(1− γ5) , (2.92)

und

Õl = γ0O+
l γ

0 = γ0

[(
2leε∗ + ε/∗k/

2(lek)

)
γβ(1− γ5)

]+

γ0

=
1

2kle
γ0(1− γ5+)γβ+(2εle + k/+ε/∗+)γ0

=
1

2kle
γ0(1− γ5)γ0γβγ0

(
2εle + kµενγ

0γ0γµγ0γνγ0
)
γ0

=
1

2kle
(1 + γ5)γβ(2εle + k/ε/)

Õl = Õl = γβ(1− γ5)
(

2εle + k/ε/

2(kle)

)
. (2.93)

Man kann mit Hilfe von Ol und Õl den Beitrag Aαβ berechnen. Hier wird jeder Schritt

ausführlich erklärt, damit die Herleitung nachvollziehbar scheint
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Aαβ =
∑

λ

Tr

[
(l/e +me)

2leε∗ + ε/∗k/

2(kle)
γα(1− γ5)(l/ν̄e −mν̄e)γ

β(1− γ5)
2εle + k/ε/

2(kle)

]
=

∑
λ

1
(2kle)2

{
Tr
[
l/e(2leε∗ + ε/∗k/)γα(1− γ5)l/ν̄eγ

β(1− γ5)(2εle + k/ε/)
]

+ Tr
[
me(2leε∗ + ε/∗k/)γα(1− γ5)l/ν̄eγ

β(1− γ5)(2εle + k/ε/)
]

− Tr
[
me(2leε∗ + ε/∗k/)γα(1− γ5)mν̄eγ

β(1− γ5)(2εle + k/ε/)
]

− Tr
[
l/e(2leε∗ + ε/∗k/)γα(1− γ5)mν̄eγ

β(1− γ5)(2εle + k/ε/)
]}

. (2.94)

Die Spur im zweiten Term besteht aus einer ungeraden Anzahl von γ−Matrizen und

verschwindet. Die beiden letzten Terme verschwinden auch, denn

(1− γ5)(1 + γ5) = 1− (γ5)2 = 1− 1 = 0 . (2.95)

Durch Ausmultiplizieren erhält man

Aαβ =
1

(2kle)2
∑

λ

Tr
[
l/e(2leε∗ + ε/∗k/)γα(1− γ5)l/ν̄eγ

β(1− γ5)(2εle + k/ε/)
]

=
1

(2kle)2
∑

λ

Tr

l/e(2leε∗ + ε/∗k/)γαl/ν̄eγ
β(2εle + k/ε/) (1− γ5)2︸ ︷︷ ︸

=2(1−γ5)


=

1
2(kle)2

∑
λ

Tr
[
l/e(2leε∗ + ε/∗k/)γαl/ν̄eγ

β(2εle + k/ε/)(1− γ5)
]

=
1

2(kle)2
∑

λ

{
Tr
[
l/e2leε∗γαl/ν̄eγ

β2εle(1− γ5)
]

+ Tr
[
l/eε/

∗k/γαl/ν̄eγ
β2εle(1− γ5)

]
+ Tr

[
l/e2leε∗γαl/ν̄eγ

βk/ε/(1− γ5)
]

+ Tr
[
l/eε/

∗k/γαl/ν̄eγ
βk/ε/(1− γ5)

]}
=

1
2(kle)2

∑
λ{

4leµε∗µleνεν Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 2leνενε∗ρ Tr

[
l/eγρk/γ

αl/ν̄eγ
β(1− γ5)

]
+ 2leµε∗µετ Tr

[
l/eγ

αl/ν̄eγ
βk/γτ (1− γ5)

]
+ ε∗ρετ Tr

[
l/eγρk/γ

αl/ν̄eγ
βk/γτ (1− γ5)

]}
.

(2.96)

Für das reelle Photon (k2 = 0) kann man
∑

λ ε
σεπ durch −gσπ ersetzen [1][6][11]. Damit

ergibt sich für Aαβ

Aαβ =
−1

2(kle)2
{

4lµe leµ Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 2lρe Tr

[
l/eγρk/γ

αl/ν̄eγ
β(1− γ5)

]
+ 2lτe Tr

[
l/eγ

αl/ν̄eγ
βk/γτ (1− γ5)

]
+ gρτ Tr

[
l/eγρk/γ

αl/ν̄eγ
βk/γτ (1− γ5)

]}
.

(2.97)
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Wenn die Relationen

lµe leµ = m2
e , γτ l/eγ

τ = −2l/e (2.98)

in die letzte Gleichung eingesetzt werden, lässt sich diese umformen zu

Aαβ =
−1

2(kle)2
{

4m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 2 Tr

[
l/el/ek/γ

αl/ν̄eγ
β(1− γ5)

]
+ 2 Tr

[
l/eγ

αl/ν̄eγ
βk/l/e(1− γ5)

]
+ Tr

[
l/eγτk/γ

αl/ν̄eγ
βk/γτ (1− γ5)

]}
=

−1
2(kle)2

{
4m2

e Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 2m2

e Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+ 2m2
e Tr

[
γαl/ν̄eγ

βk/(1 + γ5)
]

+ Tr
[
γτ l/eγ

τk/γαl/ν̄eγ
βk/(1 + γ5)

]}
=

−1
2(kle)2

{
4m2

e Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 2m2

e Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+ 2m2
e Tr

[
k/γαl/ν̄eγ

β(1− γ5)
]

+ (−2) Tr
[
l/ek/γ

αl/ν̄eγ
βk/(1 + γ5)

]}
. (2.99)

Für die Berechnung des letzten Termes kann man die Gleichungen aus dem Anhang D

übernehmen. Es müssen nur die Operatoren in der Spur zyklisch vertauscht werden und

die Formel k/l/e = 2kle − l/ek/ benutzt werden. So erhält man mit k/k/ = k2 = 0

Aαβ =
−1

2(kle)2
{

4m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 4m2

e Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+ (−2) Tr
[
k/l/ek/γ

αl/ν̄eγ
β(1− γ5)

]}
=

−1
2(kle)2

{
4m2

e Tr
[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ 4m2

e Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

− 4kle Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+ 2 Tr
[
l/ek/k/γ

αl/ν̄eγ
β(1− γ5)

]}
. (2.100)

Insgesamt ergibt sich für Aαβ

Aαβ =
−2

(kle)2
{(
m2

e − kle
)
Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]}
.

(2.101)

Es gibt eine einfachere Herleitung für Bαβ , da in diesem Fall kein Photon mit dem u-

Quark koppelt, und der Term mit Photonen-Polarisation wegfällt. Für diesen Term kann

man folgenden Ausdruck ausrechnen

Bαβ = 2 Tr [k/pγαl/nγβ(1− γ5)] . (2.102)
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Mit Hilfe der obigen Gleichungen kann man das Quadrat des Matrixelementes |Ma|2 finden

|Ma|2 =
e2G2

F

4
AαβBαβ

=
e2G2

F

4
2

−2
(kle)2

·
{(
m2

e − kle
)
Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]}
· {Tr [l/pγαl/nγβ(1− γ5)]} .

(2.103)

Die Produkte können aus den Formeln, die am Ende vom Anhang D stehen, berechnet

werden, d.h.

|Ma|2 = −64 G2
F

e2

(kle)2
[
(m2

e − kle)(kp′) +m2
e(lep

′)
]
(lν̄ep) . (2.104)

2.5.2 Die Kopplung des Photons am Elektron

Hier wird die Kopplung des Photons am Elektron betrachtet.

Abbildung 2.6: Kopplung des Photons am Elektron

Die Feynman-Amplitude für diesen Prozess ist

Ma = iegV
GF√

2

ū(le)
2leε∗ + ε/∗k/

2(kle)
γα(1− γ5)︸ ︷︷ ︸

≡H

v(lν̄e) · ū(p′) γα(1− λγ5)︸ ︷︷ ︸
≡G

u(p)


= iegV

GF√
2

{
ū(le)Hv(lν̄e) · ū(p′)Gu(p)

}
.

(2.105)

Um |Ma|2 zu berechnen, muss man die Spinsummen, die im Abschnitt (2.3.1) erklärt

wurden, und die Polarisationssummen des Photons anwenden
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|Ma|2 =
1
2

∑
Polarisation

∑
Spins

|Ma|2

=
e2g2

VG
2
F

4

∑
λ

Tr
[
(l/e +me)H(l/ν̄e −mν̄e)H̃

]
︸ ︷︷ ︸

≡Aαβ

·Tr
[
(p/′ +mp)G(p/+mn)G̃

]
︸ ︷︷ ︸

≡Bαβ

.

(2.106)

Im Abschnitt (2.5.1) steht die vollständige Rechnung für die beiden Termen Aαβ , und

Bαβ . Der Ausdruck für Aαβ , kann direkt aus dieser Rechnung übernommen werden Im

Vergleich mit der Rechnungen im Abschnitt (2.5.1) gibt es hier nur einen Unterschied, und

zwar in der Rechnung für Bαβ ist λ 6= 1. Dies führt zu zusätzlichen Termen die mit Hilfe

der Relationen im Anhang D leicht berechenbar sind. Man erhält für diese Terme

Aαβ =
−2

(kle)2
{(
m2

e − kle
)
Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]}
,

(2.107)

und

Bαβ = (1 + λ2)Tr
[
p/′γαp/γβ

]
− 2λTr

[
p/′γαp/γβγ5

]
+mnmp(1− λ2)Tr [γαγβ] .

(2.108)

Damit ist |Ma|2

|Ma|2 = −
e2g2

VG
2
F

2
1

(kle)2
·{(

m2
e − kle

)
Tr
[
k/γαl/ν̄eγ

β(1− γ5)
]

+ m2
e Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]}
·
{

(1 + λ2)Tr
[
p/′γαp/γβ

]
− 2λTr

[
p/′γαp/γβγ5

]
+ mpmn(1− λ2)Tr [γαγβ]

}
= −

e2g2
VG

2
F

2
32

(kle)2
·{

(1 + λ)2
[(
m2

e − kle
)
(kp′) +m2

e(p
′le)
]
(plν̄e)

+ (1− λ)2
[(
m2

e − kle
)
(pk) +m2

e(ple)
]
(p′lν̄e)

− (1− λ2)
[(
m2

e − kle
)
(klν̄e) +m2

e(lelν̄e)
]
(mnmp)

}
. (2.109)

Im CMS vom Neutron und unter der Berücksichtigung der Tatsache, dass der Rückstoß

des entstandenen Protons gegenüber seiner Energie sehr klein ist, erhält man für |Ma|2
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mit dem der Vierer-Impuls des Photons k = (ω,~k)

|Ma|2 = −
e2g2

VG
2
F

2
32

(kle)2
·mnmp ·{[

(1 + 3λ2)Eν̄e(ω + Ee) + (1− λ2)(~k ·~lν̄e +~lν̄e ·~le)
] (
m2

e − kle
)

+
[
(1 + 3λ2)EeEν̄e + (1− λ2)(~le ·~lν̄e)

]
(kle)

}
. (2.110)

2.5.3 Die Kopplung des Photons am Proton

Dieser Abschnitt handelt von der Photonen-Kopplung am Proton. Die Feynman-Amplitude

Abbildung 2.7: Kopplung des Photons am Proton

sieht der Feynamn-Amplitude aus dem vorherigen Abschnitt ähnlich. Der Term, der die

Polarisation und den Vierer-Impuls des Photons enthält, steht hier jedoch im hadronischen

Anteil

Mb = −iegV
GF√

2

ū(le) γα(1− γ5)︸ ︷︷ ︸
≡E

v(lν̄e)

 ·
ū(p′) 2p′ε∗ + ε/∗k/

2(kp′)
γα(1− λγ5)︸ ︷︷ ︸

≡F

u(p)


= iegV

GF√
2

[ū(le)Ev(lν̄e)]
[
ū(p′)Fu(p)

]
. (2.111)

Für das Quadrat der Feynman Amplitude ergibt sich

|Mb|2 =
e2g2

VG
2
F

4

∑
Pol.

Tr
[
(l/e +me)E(l/ν̄e −mν̄e)Ẽ

]
· Tr

[
(p/′ +mp)F (p/n +mn)F̃

]
.

(2.112)

Um eine wiederholte Rechnung zu vermeiden, werden die einzelne Schritte, die bereits im

Abschnitt (2.5.1) und im Abschnitt (2.5.2) stehen, weggelassen. Es gilt für |Mb|2

|Mb|2 = −
e2g2

VG
2
F

2
32

(kp′)2
·{

(1 + λ)2
[(
m2

p − kp′
)
(kle) +m2

p(p
′le)
]
(plν̄e)

+ (1− λ)2
[(
m2

p − kp′
)
(klν̄e) +m2

p(p
′lν̄e)

]
(ple)

− (1− λ2)
[(
m2

p − kp′
)
(lelν̄e)

]
(mnmp)

}
. (2.113)
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Für den nichtrelativistischer Fall erhält man unter der Annahme, dass die Terme der Ord-

nung
(

1
mp

)
kleiner gegenüber der anderen Termen vernachlässigt werden können, erhält

man für |Mb|2

|Mb|2 = −
e2g2

VG
2
F

2
32

m2
pω

2
·mnm

3
p ·
{

(1 + 3λ2)Eν̄eEe + (1− λ2)~lν̄e ·~le
}

. (2.114)

2.5.4 Interferenzterm

Wenn man das Quadrat der Feynamn-Amplitude in der Gleichnug (2.84) bildet, erscheinen

neben den |Ma|2 und |Mb|2−Termen zwei zusätzliche Terme MaM∗
b und M∗

aMb

(Mb +Mb)2 = (Mb +Mb)(Mb +Mb)∗

= |Ma|2 + |Mb|2 +MaM∗
b +M∗

aMb︸ ︷︷ ︸
Interferenzterm

. (2.115)

Abbildung 2.8: Interferenzterm

Es genügt, wenn man einen Term aus dem Mischungsterm aurechnet, da

MaM∗
b = (M∗

aMb)∗ . (2.116)

Verwendet man die vorherigen Abkürzungen, die γ−Matrizen und die anderen zuvor ein-

geführten Operatoren, so erhält man

MaM∗
b =

e2g2
VG

2
F

2
1
2

∑
Spin

∑
Pol.

[ū(le)Hv(lν̄e)]
[
ū(p′)Gu(p)

]
·
[
ū(p)F̃ u(p′)

] [
v̄(lν̄e)Ẽu(le)

]
=

e2g2
VGF

4

∑
Pol.

Tr
[
(l/e +me)H(l/ν̄e −mν̄e)Ẽ

]
· Tr

[
(p/′ +mp)G(p/+mn)F̃

]
=

e2g2
VGF

4

∑
Pol.

ΨαβΘαβ . (2.117)

Wie alle anderen Relationen aus den vorherigen Abschnitten und dem Abschnitt (2.5.1)

sind folgende Terme zu erhalten

Ψαβ =
1

(kle)

{
(2leε/∗) Tr

[
l/eγ

αl/ν̄eγ
β(1− γ5)

]
+ Tr

[
l/eε/

∗k/γαl/ν̄eγ
β(1− γ5)

]}
.

(2.118)
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und

Θαβ =
1

2(kp′)
{(

2p′ε/
)
Tr
[
p/′γαp/γβ(1− λγ5)2

]
+ Tr

[
p/′γαp/γβk/ε/(1− λγ5)2

]
+ mnmp(1− λ2)

(
(2p′ε/) Tr [γαγβ] + Tr [ε/k/γαγβ]

)}
. (2.119)

|Mmix|2 = MaM∗
b +MbM∗

a =
e2g2

VG
2
F

4

∑
Pol.

(ΨαβΘαβ + (ΨαβΘαβ)∗)

= −
e2g2

VG
2
F

2
· 1
(kle)(kp′)

· 64 ·{
2 (1 + λ)2(lep′)(lep′)(lν̄ep) + 2 (1− λ)2(lep′)(lep)(lν̄ep

′)

−2mnmp(1− λ2)(l − ep′)(lelν̄e)[
(1 + λ)2(kle)(lep′)(lν̄ep)− (kp′)(lele)(lν̄ep) + (lep′)(kle)(lν̄ep)

+ (1− λ)2(kle)(lep)(lν̄ep
′)− (kp′)(lep)(lν̄e le) + (lep′)(klν̄e)(lep)

]
[

(1 + λ)2(kle)(lep′)(lν̄ep)− (kle)(p′p′)(lν̄ep) + (kp′)(lep′)(lν̄ep)

+ (1− λ)2(kp)(lep′)(lν̄ep)− (kle)(pp′)(lν̄ep
′) + (kp′)(lep)(lν̄ep

′)
]

−mnmp(1− λ2)(lelν̄e)(kle)

−mnmp(1− λ2)
[
(lep′)(klν̄e)− (kle)(p′lν̄e) + (kp′)(lelν̄e)

]}
.

(2.120)

Man kann jetzt untersuchen, was sich für (2.120) im nichtrelativistischen Fall im Ruhe-

system des Neutrons ergibt. Der Impuls des Protons wird im Vergleich zu seiner Gesamt-

energie vernachlässigt. Der Interferenz-Term ist

|Mmix|2 = MaM∗
b +MbM∗

a = −
e2g2

VG
2
F

2
· 32
mpω(kle)

·{
mnm

2
p

[
(1 + 3λ2)Eν̄e

(
2E2

e + Eeω − kle
)

+ (1− λ2)
(
2Ee

~le ·~lν̄e + Ee
~k ·~lν̄e

)]
mnmp

[
(1 + 3λ2)EeEν̄e + (~le ·~lν̄e)

]
(mpω)

}
. (2.121)

2.5.5 Das gesamte Matrixelement

Wie im Abschnitt (2.5) erwähnt wurde, besteht das Matrixelement des β−Zerfalls aus drei

Termen, welche bereits berechnet wurden. Im nichtrelativstischen Grenzfall ergibt sich das

Matrixelement des β−Zerfalls
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|M|2 = −
e2g2

VG
2
F

2
32 ·{

mnmp

(kle)2
·
[
(1 + 3λ2)Eν̄e(ω + Ee) + (1− λ2)(~k ·~lν̄e +~lν̄e ·~le)

] (
m2

e − kle
)

+
mnm

3
p

m2
pω

2
·
[
(1 + 3λ2)Eν̄eEe + (1− λ2)~lν̄e ·~le

]
+

mnm
2
p

mpω(kle)
·
[
(1 + 3λ2)Eν̄e

(
2E2

e + Eeω − kle
)

+(1− λ2)
(
2Ee

~le ·~lν̄e + Ee
~k ·~lν̄e

)]}
.

(2.122)
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2.6 Helizitätsamplituden

In diesem Abschnitt wird eine Methode erklärt, mit deren Hilfe man beliebige Feynman-

Amplituden mit externen Fermionen und Vektorbosonen berechnen kann. Solche Ampli-

tuden können in Form der ”Fermionen-Kette“ (engl. fermion string) ausgedrückt werden

[2]

ψ̄1Pκa/1a/2 . . . a/nψ2 . (2.123)

aµ
i steht für beliebige Lorentz Vierer-Vektoren und ψi für allgemeine Vierer-Spinoren

ψi = u(pi, λi) oder v(pi, λi) ,

wobei pi der Vierer-Impuls und λi der Helizitätseigenwert ist. In (2.123) ist der Helizitäts-

operator Pκ gegeben durch

Pκ =
1
2

(1 + κγ5) , κ = ± .

Für alle Spinoren und γ−Matrizen verwendet man die chirale Darstellung

γµ =

(
0 σµ

+

σµ
− 0

)
, γ5 =

(
−1 0

0 1

)
, (2.124)

mit 2× 2−Pauli-Matrizen

σµ
± = (1,±σ) =

((
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

))
.

Führt man 2-komponentige Weyl-Spinoren ein, die gemäß

ψi =

(
(ψi)−
(ψi)+

)
, ψ̄i =

(
(ψi)

†
+, (ψi)

†
−

)
(2.125)

definiert sind, und 2× 2−Matrizen (a/)± mit

a/ = aµγ
µ =

(
0 (a/)+

(a/)− 0

)
. (2.126)

Die (a/)± lassen sich durch ihre Komponente umschreiben

(a/)± =

(
a0 ∓ a3 ∓(a1 − ia2)

∓(a1 + ia2) a0 ± a3

)
. (2.127)

Die obige Relation ist leicht zu beweisen

a/ = aµγ
µ = aµ

(
0 σµ

+

σµ
− 0

)
=

(
0 aµσ

µ
+

aµσ
µ
− 0

)
=

(
0 (a/)+

(a/)− 0

)
,
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(a/)± = aµσ
µ
± = a01− a1σ

1
± − a2σ

2
± − a3σ

3
± =

(
a0 ∓ a3 ∓(a1 − ia2)

∓(a1 + ia2) a0 ± a3

)
.

Wenn man den Helizitätsoperator auf Weyl-Spinoren anwendet

ψ̄iP+ =
(
0, (ψi)

†
−

)
, ψ̄iP− =

(
(ψi)

†
+, 0

)
, (2.128)

und diese in (2.123) einsetzen, erhält man eine neue Fermionen-Kette, in der statt der

4-komponentigen ψi−Spinoren die 2-komponentigen Weyl-Spinoren auftreten

ψ̄1P−κa/1a/2 . . . a/nψ2 = (ψ1)†κ [a1, a2, . . . , an]κ (ψ2)−δnκ . (2.129)

Hierbei gilt

[a1, a2, . . . , an]κ = a/κa/−κ . . . a/−δnκ , (2.130)

wobei die Definition δn = (−1)n verwendet wurde.

Jetzt will man eine Lorentz-Index-Kontration zwischen den verschiedenen Spinoren-Ketten

durchführen. Zu diesem Zweck benutzt man die Fierz -Identitäten [2](
σµ
±
)
ij

(σ∓µ)kl = 2δilδkj ,(
σµ
±
)
ij

(σ±µ)kl = 2 [δijδkl − δilδkj ] , (2.131)

i, j, k, l = 1, 2 .

Mit Hilfe der Fierz-Identitäten ist man in der Lage die Fermionen-Kette

(ψ1)†κ [a1, a2, . . . , an]κ (ψ2)η (2.132)

auszuwerten. Um dies durchzuführen, verwendet man die Helizität-Eigenzustände χ±(p)

~σ · ~p
|~p|

χλ(p) = λχλ(p) , p = (E, ~p) , (2.133)

als Basis der freien Spinoren u und v

u(p, λ)± = ω±λ(p)χλ(p) ,

u(p, λ)± = ±λω∓λ(p)χ−λ(p) , (2.134)

mit

ω±(p) =
√
E ± |~p| , (2.135)
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und

χ+(p) =
1√

2|~p| (|~p|+ pz)

(
|~p|+ pz

px + ipy

)
,

χ−(p) =
1√

2|~p| (|~p|+ pz)

(
−px + ipy

|~p|+ pz

)
. (2.136)

Diese Eigenzustände gelten für den Fall |~p| 6= pz. Falls |~p| = pz, sind die χ±(p) gegben

durch

χ+(p) =

(
0

1

)
, χ−(p) =

(
−1

0

)
. (2.137)

Die freien Spinoren u und v erfüllen die Dirac-Gleichung

p/±u(p, λ)± = mu(p, λ)∓ , p/±v(p, λ)± = −mv(p, λ)∓ , (2.138)

und sind wie folgt normiert

ū(p, λ)u(p, λ) = 2m , v̄(p, λ)v(p, λ) = −2m . (2.139)

Eine Verwendung der Helizitätzustände als Basis der freien Spinoren hat den Vorteil,

dass sich die Spinoren durch ihre Vierer-Impulse ausdrücken lassen. Somit kann man die

Spinoren-Kette (2.123) über die Vierer-Impulse pµ
i , p

µ
j wie folgt ausdrücken

(ψi)†κ [a1, a2, . . . , an]κ (ψj)η = CiCjωκλi
(pi)ωηλj

(pj)S (pi, a1, a2, . . . , an, pj)
κ
λiλj

.

(2.140)

Die Koeffizienten Ci, Cj sind konstant und hängen davon ab, ob die Spinoren ψi, ψj Fer-

mionen oder Antifermionen sind

Ck =

{
1 für (ψk)τ = u (pk, λk)τ

−λkτ für (ψk)τ = v (pk,−λk)τ

. (2.141)

Der Ausdruck S lässt sich einfach berechnen

S (pi, a1, . . . , an, pj)
κ
λiλj

= (χ)†λi
(pi) [a1, a2, . . . , an]κ (χ)λj

(pj) . (2.142)

2.6.1 Anwendung der Helitizätsamplituden auf den radiativen β−Zerfall

Man kann diese Methode auf den radiativen β−Zerfall anwenden. Der Vorteil dieser Me-

thode gegenüber den Spin- und Polarisationssummen besteht darin, dass man hier keine

Spuren ausrechnen muss. Die Spuren aus vier γ−Matrizen sind einfach zu berechnen, bei

sechs, acht und mehr γ−Matrizen muss man hingegen einen großen Aufwand betreiben um
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sie auszurechnen. Der andere Vorteil ist, dass sich das Matrixelement mit verschiedenen

Polarisationzuständen des Photons oder Spineinstellungen des Fermions leichter berechnen

lässt. Die Feynman-Amplitude ist schon im Abschnitt (2.5) gegeben durch

M = Ma +Mb

=
iegVGF√

2

{
ū(le)

2leε∗ + ε/∗k/

2(kle)
γρ(1− γ5)v(lν̄e) · ū(p′)γρ(1− λγ5)u(p)

− ū(le)γρ(1− γ5)v(lν̄e) · ū(p′)
2p′ε∗ + ε/∗k/

2(kp′)
γρ(1− λγ5)u(p)

}
.

(2.143)

Der Helizitätsoperator in der Fermionen-Kette hat die Form P−κ, wobei κ = ± ist. In der

Feynman-Amplitude des hier betrachteten Prozesses hat der Helizitätsoperator nicht die-

selbe Form. Durch eine einfache Überlegung kann man den Term (1−λγ5) folgendermaßen

zerlegen

1− λγ5 = α(1− γ5) + β(1 + γ5) , (2.144)

mit

α =
1
2
(1 + λ) , β =

1
2
(1− λ) . (2.145)

Mit Hilfe dieser Methode wird die Feynman-Amplitude für die Kopplung des Photons am

ElektronMa vollständig hergeleitet. Die Kopplung am Proton wird nicht weiter diskutiert,

da dieselbe Rechnung durchzuführen ist. Es wird daher nur das Ergebnis angegeben. Man

kann leicht sehen, wie sich diese Feynman-Amplitude durch S−Matrizen umformen lässt.

Eine Anwendung der Gleichung (2.144) auf Ma führt auf den Ausdruck

Ma =
iegVGF√

2
· 1
2(kle)

{[ū(le)(2leε∗ + ε/∗k/)γρ(1− γ5)v(lν̄e)][
β ū(p′)γρ(1 + γ5)u(p) + α ū(p′)γρ(1− γ5)u(p)

]}
≡ iegVGF√

2
· 1
2(kle)

A ·B . (2.146)

Die Beiträge A und B können getrennt bestimmt werden. Um A zu bestimmen, muss man

diesen Term in die Form der Gleichung (2.123) bringen. Dazu multipliziert man A mit

einem beliebigen festen Vierer-Vektor aρ. Am Ende zieht man diesen Faktor wieder aus

der erhaltenen Gleichung heraus

aρ = aρū(le)(2leε∗ + ε/∗k/)γρ(1− γ5)v(lν̄e)

= ū(le)(2leε∗ + ε/∗k/)a/(1− γ5)v(lν̄e)

= (2leε∗ū(le))a/(1− γ5)v(lν̄e) + ū(le)ε/∗k/a/(1− γ5)v(lν̄e) . (2.147)
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Im Vergleich zum Helizitätsoperator fehlt hier ein Faktor 1
2 . Dies ist durch eine Erweiterung

beider Terme um den Faktor 2 leicht zu beseitigen

aρ = 2 (2leε∗)ū(le)
(

1 + γ5

2

)
a/v(lν̄e) + 2 ū(le)

(
1 + γ5

2

)
ε/∗k/a/v(lν̄e)

= 2 (2leε∗)(u)
†
−(le) [a]− (v)−(lν̄e) + 2 (u)†−(le) [ε∗, k, a]− (v)−(lν̄e)

= aρ 2 (2leε∗)(u)
†
−(le)σ−ρ(v)−(lν̄e) + aρ 2 (u)†−(le) [ε∗, k]− σ−ρ(v)−(lν̄e).

(2.148)

Nun kann man wieder den Vierer-Vektor aρ weglassen

A = 2 (2leε∗)(u)
†
−(le)σ−ρ(v)−(lν̄e) + 2 (u)†−(le) [ε∗, k]− (v)−(lν̄e) . (2.149)

Eine ähnliche Rechnung führt für B auf den Ausdruck

B = 2 β (u)†+(p′)σρ
+u−(p) + 2 α (u)†−(p′)σρ

−(u)−(p) . (2.150)

Die beiden Terme A und B werden in die Gleichung (2.146) eingesetzt, um Ma zu be-

stimmen

Ma =
iegVGF√

2
· 1
2(kle)

A ·B

=
iegVGF√

2
· 4
2(kle)

·{
(2leε∗)(u)

†
−(le)σ−ρ(v)−(lν̄e) · β (u)†+(p′)σρ

+u+(p)

+ (2leε∗)(u)
†
−(le)σ−ρ(v)−(lν̄e) · α (u)†−(p′)σρ

−(u)−(p)

+ (u)†−(le) [ε∗, k]− (v)−(lν̄e) · β (u)†+(p′)σρ
+u+(p)

+ (u)†−(le) [ε∗, k]− (v)−(lν̄e) · α (u)†−(p′)σρ
−(u)−(p)

}
. (2.151)

Aus den Fierz -Identitäten (2.131) folgt

Ma =
iegVGF√

2
· 8
2(kle)

·{
β (2leε∗)(u)

†
−(le)(u)+(p) · (u)†+(p′)(v)−(ν̄e)

+ α (2leε∗)(u)
†
−(le)(v)−(ν̄e) · (u)†−(p′)(u)−(p)

− α (2leε∗)(u)
†
−(le)(u)−(p) · (u)†−(p′)(v)−(ν̄e)

+ β (u)†−(le) [ε∗, k]− (u)+(p) · (u)†+(p′)(v)−(ν̄e)

+ α (u)†−(le) [ε∗, k]− (v)−(ν̄e) · (u)†−(p′)(u)−(p)

− α (u)†−(le) [ε∗, k]− (u)−(p) · (u)†−(p′)(v)−(ν̄e)
}

.
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Jetzt werden u’s, v’s und die Kommutaroren durch die S−Matrizen und andere Größen,

die im letzten Abschnitt eingeführt wurden, identifiziert

Ma =
iegVGF√

2
· 8
2(kle)

·
{
α λν̄e ω−λeω−λν̄e

ω−λpω−λn ·[
(2leε∗)

(
S(le, lν̄e)λeλν̄e

· S(p′, p)λpλn − S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

)
+

(
S(le, ε∗, k, lν̄e)

−
λeλν̄e

· S(p′, p)λpλn − S(le, ε∗, k, p)−λeλn
· S(p′, lν̄e)λpλν̄e

)]
+ β λν̄e ω−λeω−λν̄e

ω+λpω+λn ·[
(2leε∗) S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

+ S(le, ε∗, k, p)−λeλn
· S(p′, lν̄e)λpλν̄e

]}
. (2.152)

Analog gilt für Mb

Mb =
iegVGF√

2
· 8
2(kp′)

·
{
α λν̄e ω−λeω−λν̄e

ω−λpω−λn ·[
(2p′ε∗)

(
S(le, lν̄e)λeλν̄e

· S(p′, p)λpλn − S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

)
+

(
S(le, lν̄e)λeλν̄e

· S(p′, ε∗, k, p)−λpλn
− S(le, p)λeλn · S(p′, ε∗, k, lν̄e)

−
λpλν̄e

)]
+ β λν̄e ω−λeω−λν̄e

ω+λpω+λn ·[
(2p′ε∗) S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

+ S(le, p)λeλn · S(p′, ε∗, k, lν̄e)
+
λpλν̄e

]}
. (2.153)

Die gesamte Feynman-Amplitude ist gegeben durch

M = Ma −Mb

=
iegVGF√

2

{
4

(kle)
·
{
α λν̄e ω−λeω−λν̄e

ω−λpω−λn ·[
(2leε∗)

(
S(le, lν̄e)λeλν̄e

· S(p′, p)λpλn − S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

)
+

(
S(le, ε∗, k, lν̄e)

−
λeλν̄e

· S(p′, p)λpλn − S(le, ε∗, k, p)−λeλn
· S(p′, lν̄e)λpλν̄e

)]
+ β λν̄e ω−λeω−λν̄e

ω+λpω+λn ·[
(2leε∗) S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

+ S(le, ε∗, k, p)−λeλn
· S(p′, lν̄e)λpλν̄e

]}
+

4
(kp′)

·
{
α λν̄e ω−λeω−λν̄e

ω−λpω−λn ·[
(2p′ε∗)

(
S(le, lν̄e)λeλν̄e

· S(p′, p)λpλn − S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

)
+

(
S(le, lν̄e)λeλν̄e

· S(p′, ε∗, k, p)−λpλn
− S(le, p)λeλn · S(p′, ε∗, k, lν̄e)

−
λpλν̄e

)]
+ β λν̄e ω−λeω−λν̄e

ω+λpω+λn ·[
(2p′ε∗) S(le, p)λeλn · S(p′, lν̄e)λpλν̄e

+ S(le, p)λeλn · S(p′, ε∗, k, lν̄e)
+
λpλν̄e

]}
. (2.154)
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Um das Matrixelement auszurechnen, muss man zuerst die Feynman-Amplitude M qua-

drieren, d.h. man muss M mit M∗ multiplizieren, und dann über alle möglichen Heli-

zitäten der Teilchen und Polarisationszustände des Photons summieren

|M|2 =
1
2

∑
λe,λν̄e ,λp,λn,εr.l

M ·M∗ . (2.155)

Der Faktor 1
2 tritt auf, da man über den Spin im Anfangszustand mitteln muss. Die

Polarisationsvektoren des Photons sind definiert durch [2]

εµ(k, λ = 1) =
1

|~k|
√

(k2
x + k2

y)

(
0, kxkz, kykz,−(k2

x + k2
y)
)

,

εµ(k, λ = 2) =
1√

(k2
x + k2

y)
(0,−ky, kx, 0) . (2.156)

Es ist leicht zu beweisen, dass diese Polarisationvektoren folgende Identitäten erfüllen

kµε
µ(k, λ) = 0 ,

εµ(k, λ)εµ(k, λ′) = −δλλ′ . (2.157)

Diese beiden Polarisationvektoren bilden zusammen mit dem Impulsvektor des Photons
~k ein kartesisches Dreibein. Über die Polarisationsvektoren kann man die zirkular polari-

sierten Zustände des Photons definieren. Sie sind gegeben durch

εµ(k, λ = r
l ) =

1√
2

[∓εµ(k, λ = 1)− iεµ(k, λ = 2)] . (2.158)



Kapitel 3

Numerische Auswertung

3.1 Numerischer Vergleich für |M|2

Im letzten Kapitel wurde das Matrixelement des radiativen β−Zerfalls durch zwei verschie-

dene Methoden berechnet. Die beiden Ergebnisse beschreiben dieselbe physikalische Größe

und sind daher identisch. Obwohl diese beiden Herleitungen nur auf mathematischen Um-

formungen und Ersetzungen beruhren, darf man nicht jeden beliebigen Vierer-Vektor zum

Vergleich in die beiden Ausdrücke für das Matrixelement |M|2 einsetzen. Es sind noch

einige Punkte zu berücksichtigen

• Die relativistischen Ergebnisse für Spinsummen müssen verwendet werden, d.h. man

darf nicht die nichtrelativistische Gleichungen im CMS des Neutrons benutzten.

• Die Vierer-Impuls-Erhaltung für jedes Zahlenbeispiel muss erfüllt sein .

• Die Vierer-Impulse müssen so zu konstruieren sein, dass die Massen der Teilchen

reell und positiv sind.

• Der Vierer-Impuls des Photons muss so ausgewählt werden, dass seine Masse Null

ist.

Man kann durch zwei unabhängige Verfahren untersuchen, ob diese beiden Methoden

identisch sind. Zuerst wird |M|2 aus der Spinsummen- und aus der Helizitätsamplituden-

Methode verglichen. Das zweite Verfahren ist komplizierter. Man kann zwar jede Feynman-

Amplitude getrennt vergleichen, d.h. man kann |Ma|2, |Mb|2 und den Interferenzterm aus

der Spinsummen- und aus der Helizitätsamplituden-Methode vergleichen, aber man darf

nicht die Ersetzung
∑
εσεπ = −gσπ durchführen. Der Grund liegt an der Eichinvarianz

der Theorie. Die einzelnen Feynman-Amplituden sind im allgemeinen nicht eichinvariant,

43
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während ihre Summe eichinvariant ist [6][11].

Man betrachte einen beliebigen Prozess mit einem reellen (externen) Photon. Die Feynman-

Amplitude kann in der Form

M = εαλ(~k)Mα(~k) (3.1)

geschrieben werden. Die Polarisationsvektoren sind natürlich eichabhängig. Beispielweise

wird ein freies Photon in der Lorentz-Eichung durch die ebene Welle

Aµ(x) = konst. εµλe
±ikx , mit λ = r, l Polarisationszustand ,

beschrieben. Unter Eichtransformationen

Aµ(x) −→ Aµ(x) + ∂µf(x) , mit f(x) = f̃(k)e±ikx , (3.2)

verändert sich der Polarisationsvektor des freien Photons gemäß

εµλe
±ikx −→ εµλe

±ikx ± ikµf̃(k)e±ikx . (3.3)

Die Amplitude in der Gleichung (3.1) ist unter der obigen Transformation invariant, wenn

folgende Beziehung erfüllt ist

kαMα(~k) = 0 . (3.4)

Damit ergibt sich für das Matrixelement

|M|2 = MαM∗
β

∑
λ=r,l

εαλ(~k)εβλ(~k) . (3.5)

Für ein reelles Photon, das keine Ruhemasse besitzt
(
k2 = 0

)
gilt∑

λ=r,l

εαλ(~k)εβλ(~k) = −gαβ − 1
(kn)2

[
kαkβ − (kn)(kαnβ + kαnβ)

]
, (3.6)

mit n = (1, 0, 0, 0). Dieser Vektor entspricht der zeitartigen Polarisation [6][11]. Das Ma-

trixelement des radiativen β−Zerfalls mit Kopplung des Photons am Elektron |Ma|2 wird

mit dieser Relation wieder neu berechnet. Bei der Berechnung von |Ma|2 tauchen zusätz-

liche Terme auf, welche durch den zweiten Term in der Gleichung (3.6) entstehen. Das

neue Matrixelement sieht komplizierter aus, da es einige zusätzliche Terme aufweist
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|Ma|2 = −
e2g2

VG
2
F

2
32

(kle)2
·{

(1 + λ)2
[(
m2

e − kle
)
(kp′) +m2

e(p
′le)
]
(plν̄e)

+ (1− λ)2
[(
m2

e − kle
)
(pk) +m2

e(ple)
]
(p′lν̄e)

− (1− λ2)
[(
m2

e − kle
)
(klν̄e) +m2

e(lelν̄e)
]
(mnmp)

+ (1 + λ)2
[
ξ(lep′) +

(
1
kn

)
(np′)− χ(p′k)

]
(plν̄e)

+ (1− λ)2
[
ξ(ple) +

(
1
kn

)
(kp)− χ(pk)

]
(p′lν̄e)

− (1− λ2)
[
χ(lelν̄e) +

(
1
kn

)
(nlν̄e) − χ(klν̄e)

]
(mnmp)

}
, (3.7)

mit

ξ =
1

(kn)2
− 2(nle)

(kle)(kn)
− 1

(kle)
, (3.8)

χ =
(nle)

(kle)(kn)
. (3.9)

Dasselbe Verfahren kann zur Berechnung von |Mb|2 angewendet werden.

Diese Gleichungen lassen sich mit einem Mathematik-Program, z.B. Mathematica oder

Maple, numerisch ausgewerten. Für den zweiten Formalismus, den Helizitätsamplituden-

Formalismus, braucht man nur die Gleichung (2.154). Zur Auswertung kann man entweder

ein Mathematik-Programm benutzten oder ein Programm zu diesem Zweck schreiben. Im

Anhang E ist ein Fortran-Unterprogramm zur Auswertung des Matrixelementes durch

den Helizitätsamplituden-Formalismus zu finden.
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3.2 Monte-Carlo Methode

Monte-Carlo Techniken sind manchmal der einzige Weg, komplizierte Integrale numme-

risch auszuwerten. Die Monte-Carlo-Methode verwendet Prinzipien der Wahrscheinlich-

keitsrechnung und Statistik, um komplexe Probleme zumindest näherungsweise zu lösen.

Bei Berechnungen der Zerfallsraten oder Wirkungsquerschnitte physikalischer Prozesse

trifft man oft solche Integrale, welche über mehrere Phasenräume aufintegrieren werden

müssen. Daher ist die Monte-Carlo-Integration in der Hochenergiephysik ein wichtiges

Hilfsmittel für die nummerischen Auswertungen und findet häufig Anwendung. Monte-

Carlo-Methoden bestehen häufig aus folgenden wesentliche Stufen:

• Für das ursprüngliche mathematische Modell muss ein stochastisches Modell gefun-

den werden, welches das Problem gut genug beschreibt.

• Es muss eine Folge von Zufallszahlen erzeugt werden, deren Folgenglieder mögliche

reale Situationen simulieren.

• Aus den Realisierungen der Zufallsgrößen müssen Schätzwerte für das Ausgangspro-

blem ermittelt werden.

Der Vorteil der Monte-Carlo Methode ist, dass sie eine einfache Struktur des Rechenalgo-

rithmuses hat. Man stellt zuerst einen Algorithmus auf, um einen zufälligen Versuch zu

realisieren. Dieser Versuch wird dann N-mal wiederholt. Da diese Versuche unabhängig

voneinander sind, können ihre Ergebnisse statistisch ausgewertet werden.

Bevor die Technik der Monte-Carlo Integration für eindimensionale Integrale beschrieben

wird, ist zunächst der Begriff Zufallsgröße zu definieren.

3.2.1 Zufallsgrößen

Der Kern von Monte-Carlo Methode ist das Erwürfeln von Zufallsgrößen.

Zufallsgröße oder zufällige Größe besagt, dass es nicht bestimmt ist, welchen konkreten

Wert diese Größe annehmen wird. Es bedeutet, dass man nicht weiß, welchen Wert eine

solche Größe in einem konkreten Fall annimmt, aber man weiß, welche Werte sie überhaupt

annehmen kann und mit welcher Wahrscheinlichkeit aus bestimmten Mengen angenommen

werden. Eine Zufallsgröße ist dadurch charakterisiert, welche Werte sie annehmen kann und

wie groß die Wahrscheinlichkeit für jeden einzelnen dieser Werte ist. Um diese Zufallszahlen

zu erzeugen, modelliert man eine Verteilung. Im folgenden werden solche Verteilungen

beschrieben:
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• Diskrete Zufallsgrößen: sie können eine diskrete Menge von Werten a1, a2, · · · , an

annehmen. Jedem Wert ak ordnet man eine Wahrscheinlichkeit (Verteilungsdichte)

pk zu, die folgende Bedingungen erfüllt

pk > 1 ,
n∑

k=1

pk = 1 . (3.10)

• Stetige Zufallsgrößen: sie können jeden Wert aus einem Intervall (a, b) annehmen.

Eine stetige Zufallsgröße ist durch Angabe des Intervalls (a, b) und einer Dichte-

Funktion (Verteilungsdichte) p(x) bestimmt. Analog zur Wahrscheinlichkeit pk für

eine diskerete Zufallsgröße erfüllt p(x) folgende Beziehungen

p(x) > 1 ,

∫ b

a
p(x)dx = 1 . (3.11)

• Normalverteilte (Gaußverteilte) Zufallsgrößen: sie können jeden reellen Wert aus

dem Intervall (∞,∞) annehmen. Die Verteilungsdichte ist gegeben durch

p(x) =
1√
2πσ

e
−(x−a)2

2σ2 , a, σ > 0 . (3.12)

Um diese Zufallsgrößen zu realisieren, unterscheidet man zwischen verschiedenen Verfah-

ren. Hier werden zwei dieser Verfahren kurz erläutert.

1. Generatoren von Zufallszahlen

Echte physikalische Zufallszahlengeneratoren produzieren Zufallszahlen aus echt zufälli-

gen Prozessen wie dem Fallen eines Spielwürfels oder dem Rauschen eines Wider-

standes oder eines Elektronenrohrs. Die Erzeugung von Zufallszahlen durch das Rau-

schen eines Elektronenrohrs basiert auf der Erzeugung von Geräuschimpulsen durch

das Rohr, welche innerhalb konstanter Intervalle mit Hilfe von Zähleinrichtungen in

Zufallszahlen umgewandelt werden.

2. Das Prinzip der Pseudozufallszahlen

Manchmal ist es nicht wichtig, wie Zufallszahlen eigentlich produziert werden. Sie

können nach einer gegebenen Formel berechnet werden. Zahlen, welche nach einer

bestimmten Formel erzeugt werden und die Werte einer Zufallsgröße modellieren,

heißen Pseudozufallszahlen. Sie werden durch einen deterministischen Algorithmus,

den sogennanten Pseudozufallszahlengenerator, berechnet, aber sie sehen zufällig

aus. Deterministisch bedeutet, dass bei jedem Start der Zufallszahlenberechnung

mit gleichem Startwert die gleiche Zahlenfolge erzeugt wird.
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3.2.2 Monte-Carlo Integration

Um eine Funktion durch Monte-Carlo Technik zu integrieren, wird diese an zufällig aus-

gewählten Punkten xk ausgewertet.

Zunächst betrachtet man eine eindimensionale Riemann-integrierbare Funktion f(x), die

auf dem Intervall (a, b)

I =
∫ b

a
f(x)dx (3.13)

näherungsweise integriert werden soll. Es ist vorausgesetzt,dass das Integral absolut kon-

vergiert, falls a oder b gegen ∞ geht. Da f nach Voraussetzung Riemann-Integrierbar ist,

gilt

I =
∫ b

a
f(x)dx ≈ b− a

n

n∑
k=1

f(xk) = IMC , (3.14)

wobei n die Anzahl der ausgewerteten Punkte bezeichnet. xk sind gleichverteilte Psedozu-

fallszahlen aus dem Intervall (a, b), die durch die Formel

xk = a+ γk(b− a) (3.15)

gegeben sind. Die γk sind hierbei auch Zufallszahlen aus dem intervall (0, 1), die über einen

Zufallszahlengenerator oder Pseudozufallszahlengenerator gewonnen werden. Die Varianz1

der Monte-Carlo-Schätzung lautet

V ar [IMC ] = V ar

[
b− a

n

n∑
k=1

f(xk)

]

=
(
b− a

n

)2
〈( n∑

k=1

f(xk)

)2〉
−

〈
n∑

k=1

f(xk)

〉2


=
(
b− a

n

)2

V ar

[
n∑

k=1

f(xk)

]

=
(
b− a

n

)2 n∑
k=1

V ar [f(xk)] , (3.18)

1Die Varianz ist ein Maß für die mögliche Abweichung (Streuung) einer Einzelbeobachtung vom Mit-

telwert. Die Varianz ist gegeben durch

V ar[x] = σ2 ≡
˙
(x− 〈x〉)2

¸
=

˙
x2¸

− 〈x〉2 , (3.16)

wobei 〈x〉 als Mittelwert (oder Erwartungswert) der Zufallsvariablen xk definiert ist durch

〈x〉 =

nX
k=1

p(xk)xk . (3.17)

Hierbei bezeichnet p(xk) die Wahrscheinlichkeitsdichte.
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wobei im letzten Schritt die Tatsache benutzt wurde, dass die Varianz der Summe gleich

der Summe der Varianten ist. Die Gleichung berechnet sich zu

V ar [IMC ] =
(b− a)2

n

n∑
k=1

1
n
V ar [f(xk)]

=
(b− a)2

n
V ar [V ar [f(xk)]] =

(b− a)2

n
V ar [f(xk)] . (3.19)

Bemerkung : Die Varianz ist eine Zahl und die Varianz einer Konstante ist gleich der

Konstante selbst. Es gilt

V ar [x] = a = konst. ,

V ar [V ar [x]] = V ar [a] = a = konst. .

Mit diesen Umformungen ergibt sich die Varianz der Monte-Carlo-Integration

V ar [IMC ] =
(b− a)2

n

[∑n
k=1(f(xk))2

n
−
(∑n

k=1 f(xk)
n

)2
]

=
1
n

[
(b− a)2 ·

∑n
k=1(f(xk))2

n
− I2

MC

]
. (3.20)

Die Varianz nimmt bei einer anwachsenden Anzahl n der ausgewählten Punkte mit 1
n ab.

Der Fehler des Integrals,
√
V ar [IMC ], nimmt hingegen mit 1√

n
ab.

Um zu einer besseren Konvergenz des Integrals zu gelangen, muss die Varianz schneller

minimiert werden. Dadurch verringert sich die Rechenzeit, die notwendig ist, die gewünsch-

te Genauigkeit zu erreichen. Eine Möglichkeit dazu ist die Verwendung der Importan-

ce Sampling Methode. Mit dem Importance Sampling möchte man nun erreichen, dass

möglichst viele Stützstellen in das Gebiet fallen, in dem f(x) groß ist, um die Varianz einer

einzelnen Schätzung zu verringern. Dafür benötigt man eine Verteilungsdichte p(x), die

auf dem Intervall [a, b] die Bedingungen (3.11) erfüllt. Der Verlauf dieser Verteilungsdichte

p(x) soll den Verlauf der Funktion f(x) möglichst gut nähern, so dass näherungsweise gilt

h(x) ≡ f(x)
p(x)

≈ konst. (3.21)

Mit der Definition von h(x) kann das Integral in der Gleichung (3.13) folgendermaßen

geschrieben werden

I =
∫ b

a
f(x)dx =

∫ b

a

f(x)
p(x)

p(x)dx =
∫ b

a
h(x)p(x)dx . (3.22)

Man hat p(x) so gewählt, dass h(x) ungefähr konstant ist. Der Wert des Integrals hängt

also stark von p(x) ab. Durch die Erzeugung von Zufallszahlen xk, die mit p(x) verteilt
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sind, ergibt sich nach der Auswertung von n Stellen∫ b

a
f(x)dx =

b− a

n

n∑
k=1

h(xk) =
b− a

n

n∑
k=1

f(xk)
p(xk)

, (3.23)

und dabei variieren die Summanden jetzt weniger, denn der Verlauf der Funktion p(x) der

Funktion f(x) ähnlich ist.

Die Varianz ist nun

V ar [IMC ] =
(b− a)2

n


∑n

k=1

(
f(xk)
p(xk)

)2

n
−

∑n
k=1

f(xk)
p(xk)

n

2
 . (3.24)

Die Varianz sollte klein sein, wenn die Funktion h(x) ungefähr konstant ist. Nach Gleichung

(3.23) benötigt man für das Importance Sampling Zufallszahlen, die nach der bestimmten

Verteilungsdichte p(x) gewonnen werden können. Dazu beginnt man mit Zufallszahlen

γk im Intervall [0, 1], welche gemäß der gleichförmigen, normierten Verteilungsdichte Γ

verteilt sind. Dann gilt

p(x)dx = Γdγ , (3.25)

und ∫ x

−∞
p(y)dy = P (x) = γ , (3.26)

wobei P (x) die Stammfunktion von p(x) ist. Aus dieser Gleichung folgt

xk = P−1(γk) . (3.27)

Für das Importance Sampling-Verfahren wird vorausgesetzt, dass die Verteilungsdichte

p(x) analytisch integrierbar und ihre Stammfunktion P (x) invertierbar ist.

Dasselbe Verfahren kann man auf ein n-dimensionales Integral anwenden.

Ein wichtiger Monte-Carlo-Integrator, der zur Reduktion der Varianz im Importance Samp-

ling-Verfahren benutzt, ist Vegas. Er wird im nächsten Abschnitt beschrieben und wird

erklärt, was man bei der Integration mit Hilfe von Vegas berücksichtigen muss.

3.2.3 Vegas

Der Vegas-Integrator verwendet ein iteratives Importance Sampling zur Reduktion der

Varianz. Man beginnt mit einer Teilung des Intervalls, z.B. in N gleiche Teile und würfelt

in jedem Teil gleich viele Zufallszahlen. Die Wahrscheinlichkeit dafür, dass eine Zahl für

jeden beliebigen Teil ausgewählt wird, ist konstant und ist für alle Teile 1
N . In jeder Iterati-

on wird die Verteilungsdichte p(x) an den Integrand angepasst, indem die Breite der Teile
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bei fester Anzahl N verändert wird, so dass die Dichte der Teile dort am größten bzw. am

kleinsten wird, wo der Wert des Integranden am größten bzw. am kleinsten ist. Dadurch

kann man mehr Punkte an diesen Stellen auswerten. Im letzten Schritt der Iteration wird

die Monte-Carlo-Integration durchgeführt.

Bei allen Integrationsverfahren kann die Zerfallsrate der betrachteten Prozesse durch eine

Integration über den Phasenraum bestimmt werden. Die zufälligen Phasenraumpunkte,

die zur Berechnung des Integrales benutzt werden, können auch als einzelne Ereignis-

se verwendet werden. Im endgültigen Datensatz sollen die Ereignisse entsprechend ihrer

Wahrscheinlichkeiten vertreten sein, damit die erhaltenen Verteilungen den physikalisch

erwarteten entsprechen.

Der Vegas-Integrator kann über eine Funktion nur im Intervall [0, 1] integrieren. Dazu

muss die Variable eines Integrals so substituiert werden, dass die Grenzen auf 0 bis 1

überführt werden. Im Allgemeinen ergibt sich für ein ein-dimensionales Integral

F (b)− F (a) =
∫ b

a
f(x)dx (3.28)

durch die Substitution

z =
x− a

b− a
(3.29)

das folgende Intgral

F (b)− F (a) =
∫ 1

0
(b− a) · f(z)dz . (3.30)

Nun muss die komplizierte Zerfallsrate

Γ =
1

16mn(2π)6

∫ ωmax

ωmin

ωdω

∫ Emax
e

me

|~le|dEe

∫ xmax
k

xmin
k

dxk

∫ 1

−1
dxν̄e

∫ 2π

0
dφ−

·
Eν̄e |M|2p′=p−le−lν̄e−k

mn − Ee − ω − Eν̄e

(3.31)

numerisch mit Hilfe des Vegas-Integrators ausgewertet werden. Dazu sind zwei Hinweise

zu beachten:

• Die Grenzen für alle 5 Integrale werden ausgerechnet.

• Die Variablen werden so substituiert, dass der Vegas-Integrator anwendbar ist.

Der erste Punkt wurde ganz ausführlich im Abschnitt (2.4.2) besprochen. Die Grenzen

wurden ebenfalls dort augerechnet. Für den zweiten Punkt müssen folgende Substitutionen
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ausgeführt werden

Ee = (Emax
e −me)x(1) +me ,

xk =
(
xmax

k − xmin
k

)
x(2) + xmin ,

xν̄e = 2x(3)− 1 ,

φ− = 2πx(4) ,

ω =
(
ωmax − ωmin

)
x(5) + ωmin . (3.32)

Dadurch erhält man für die totale Zerfallsrate

Γ =
1

16mn(2π)6

∫ 1

0

[(
ωmax − ωmin

)
x(5) + ωmin

]
dx(5)∫ 1

0

[
{(Emax

e −me)x(1) +me}2 +m2
e

] 1
2
dx(1)∫ 1

0

[(
xmax

k − xmin
k

)
x(2) + xmin

k

]
dx(2)∫ 1

0
[2x(3)− 1] dx(3)

∫ 1

0
[2π] dx(4)

·
Eν̄e |M|2p′=p−le−lν̄e−k

mn − [(Emax
e −me)x(1) +me]− [(ωmax − ωmin)x(5) + ωmin]− Eν̄e

.

(3.33)

Bemerkung : Im Matrixelement |M|2 müssen auch die alten Variablen durch die neuen

Variablen x(i), i = 1, · · · , 5, ersetzt werden. Der ωmin−Wert hängt von der Auflösung

des Detektors ab. Man kann an dieser Stelle jedoch nicht mit einem unbekannten Wert

ωmin die totale Zerfallsrate ausrechnen. Das Problem kann beseitigt werden, indem die

differentielle Zerfallsrate dΓ
dω (das Energiespektrum der Photonen) bei fester Energie des

Photons (ω = konst.) ausgewertet wird. So erhält man

dΓ
dω

=
1

16mn(2π)6
· ω ·

∫ 1

0

[
{(Emax

e −me)x(1) +me}2 +m2
e

] 1
2
dx(1)∫ 1

0

[(
xmax

k − xmin
k

)
x(2) + xmin

k

]
dx(2)

∫ 1

0
[2x(3)− 1] dx(3)

∫ 1

0
[2π] d(4)

·
Eν̄e |M|2p′=p−le−lν̄e−k

mn − [(Emax
e −me)x(1) +me]− ω − Eν̄e

, (3.34)

mit

Eν̄e =
mn +m2

e −m′2
p − 2mn(Ee + ω) + 2Eeω − 2~le · ~k

2
(
mn − Ee − ω + xν̄e

√
E2

e −m2
e + ~k · l̂ν̄e

) , (3.35)

wobei die Energie des Elektrons Ee durch (Emax
e −me)x(1) + me zu ersetzen ist. Es ist

nochmals zu erwähnen, dass ω in dieser Gleichung einen festen Wert hat.
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3.3 Auswertung

Bevor in diesem Abschnitt die numerische Ergebnisse für die differentielle Zerfallsrate und

Polarisation der emittierten Photonen präsentiert werden, müssen die Werte der Konstan-

ten angegeben werden. Die Konstanten, die für eine numerische Auswertung gebraucht

werden, sind gegeben durch [1]

α =
e2

4π~c
mit α =

1
137, 03599976

,

gV = 0, 985619 , GF = 1, 166639 · 10−11 1
(MeV )2

,

mn = 939, 56533 MeV ,mp = 939, 27200 MeV ,me = 0, 510998902 MeV ,

τn = 885, 7 s ≡ 885, 7 s
~

=
885, 7 s

6, 58 · 1022 MeV s
= 1, 3461 · 1024 1

MeV
.

Somit erhält man für die maximale Photonenenergie mit der in der Gleichung (2.82)

gegebenen Formel

ωmax =
(mn −me)2 −m2

p − 2mnme

2(mn −me)

den Wert ωmax = 0, 781975 MeV .

Abbildung 3.1: Das Spektrum der Photonenenergie in der Abhängigkeit von ω
me

In der Abbildung (3.1) ist das Spektrum der Photonenergie dΓ
dω in Abhängigkeit von der
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Photonenenergie ω dargestellt. In dieser Abbildung ist die Energie der Photonen in Ein-

heiten der Elektronenmasse angegeben. Für kleine ω−Werte wächst die differentielle Zer-

fallsrate stark an. Daher wurde nur das Spektrum für die ω−Werte, die größe1 als 0, 08 me

sind, dargestellt. Je größer die ω−Werte werden, umso schneller fällt das Spektrum. Im

Falle ω = me verschwindet die Photonenenergie. Um dieses Diagramm darzustellen, wurde

die Gleichung (2.155) für das Matrixelement und die Gleichung (2.62) für die Zerfallsrate

dieses Prozess verwendet. Man kann statt der Gleichung (2.155) die Gleichung (2.122) für

das Matrixelement benutzen. Man muss aber beachten, dass in der Herleitung von dieser

Gleichung die nichtrelativistische Näherung berücksichtigt wurde, während für die Herlei-

tung der Gleichung (2.155) keine Näherung angenommen wurde.

Als nächstes betrachtet man die Photonenpolarisation im radiativen Neutronen-Zerfall.

Im Allgemeinen ist die Polarisation P definiert durch

P =
Γr − Γl

Γr + Γl
. (3.36)

Abbildung 3.2: Die Polarisation des Photons in Abhängigkeit von der Energie des Photons

im radiativen β−Zerfall

Da man hier die totale Zerfallsrat nicht berechnen kann, definiert man die Polarisation

durch die Ersetzung von Γr,l mit dΓr,l. Abbildung (3.2) zeigt die Photonenpolarisation in

Abhängigkeit von der Photonenenergie. Zur Darstellung dieses Diagramms wurde das po-
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larisierte Matrixelement verwendet. Aus der Gleichung (2.155) kann man das polarisierte

Matrixelement erhalten, indem man eine Summation über die links- bzw. rechthändigen

Photonen durchführt. In Abbildung (3.2) ist zu sehen, dass die niederenergetischen Pho-

tonen unpolarisert sind. Die hochenergetischen Photonen sind nahezu vollständig in einer

Richtung und zwar linkshändig polarisiert. Unter Verwendung des Matrixelementes aus

dem Spin-Summen-Formalismus, Gleichung (2.122), erhält man dasselbe Polarisationsver-

halten der Photonen [1]. Nun kann man untersuchen, wie sich die Photonenpolarisation

ändert, wenn man die λ−Werte variiert. Dazu berechnet man die Polarisation für λ = 0, 9,

1, 2, 1, 5. Wie in der Abbildung (3.3) dargestellt wird, ändert sich die Polarisation für ver-

schiedene Werte von λ nicht.

Abbildung 3.3: Die Polarisation des Photons für die verschiedenen Werten von λ

In Abbildung (3.4) wird die Photonenpolarisation in Abhängigkeit von der Elektronen-

energie Ee mit fest vorgegebenem ω dargestellt. Wenn die Elektronen ihre Minimalenergie

(die Ruhemasse des Elektrons me) besitzen,d.h. |~le| = 0 , sind die Photonen linkshändig

polarisiert. Diese gilt für alle vorgegebenen ω−Werte. Die Polarisation nimmt mit der

steigenden Elektrononenergie ab. Je größer der ω−Wert ist, desto stärker nimmt die Pho-

tonenpolarisation ab. Für ω = 0, 005 MeV verschwindet die Photonenpolarisation, deren

kollerierte Elektronen Energien Ee ' 0, 55 MeV besitzen, während die Photonen der

Energie ω = 0, 1 MeV , deren kollerierte Elektronen Energien Ee ≈ 0, 55 MeV besitzen,

zu ungefähr 90% linkshändig polarisiert sind. Es stellt sich noch die Frage, wie sich die
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Polarisations-Spektren ändern, wenn man die Nukleon-Struktur-Effekte berücksichtigt. An

dieser Stelle ist darauf hingewiesen, dass diese Effekte kaum großen Einfluss auf die Er-

gebnisse haben und vernachlässigt werden können [1].

Abbildung 3.4: Die Polarisation des Photons in Abhängigkeit von der Energie des Elektron

mit vorgegebenen ω

Die Ergebnisse können für die Bestimmung der Neutrinomasse verwendet werden. Bei der

gegebenen Auflösung des Detektors kann man statt des Photonenenergie-Spektrums das

Elektronenspektrum im radiativen β−Zerfall berechnen. Aus dem Vegleich der Elektro-

nenspektren im normalen und radiativen β−Zerfall kann man ein genaueres Ergebniss für

die Neutrinomasse finden.

Die Untersuchung der Photonenpolarisation im radiativen Neutronen-Zerfall ist auch ein

guter Test des Standardmodells. Diese Herleitungen basieren auf der V−A-Theorie im

Standardmodell der Elementarteilchen. Die Aufgabe der Experimente, die zu Untersu-

chung der Photonenpolarisation im radiativen Neutronen-Zerfall aufgebaut sind, besteht

darin, Abweichungen von diesen theoretischen Ergbnissen zu messen.

Bemerkung : Wie im Abschnitt (2.4.2) gezeigt wurde, waren die Terme xmax
k und xmin

k die

Grenze für xk. In der numerischen Auswertung aber wurde festgestellt, dass diese Werte

nur das Supremum und Infimum von xk sind. Der Grund liegt daran, dass die Energie des

Neutrinos Eν̄e ≥ 0 angenommen wurde, obwohl Eν̄e = 0 physikalisch nichtrelavant ist. Da-

her wurden die numerische Ergebnisse bzw. die Diagramme mit xmax
k = 1 und xmin

k = −1

berechnet. Diese Darstellungen stimmen mit den Ergebnissen in Ref. [1] überein.



Zusammenfassung

Das Ziel dieser Arbeit war, das Photonenenergie-Spektrum und die Photonenpolarisation

des radiativen Neutronen-Zerfalls zu untersuchen. Zuerst wurde der normale β−Zerfall

kurz besprochen und das Matrixelement und die differentielle Zerfallsrate dieses Prozesses

hergleitet. Um das Matrixelement zu berechnen, wurde der Spin-Summen-Formalismus

verwendet. Aus der Kinematik des Zerfalls wurde die Winkelunabhängigkeit des Matrix-

elementes gezeigt.

Im zweiten Teil diser Arbeit wurde dieselbe Prozedur ausgeführt, um die Zerfallsrate und

das Matrixelement des radiativen Neutronen-Zerfalls zu erhalten. Da es in diesem Fall um

den Vierkörperzerfall ging, waren die Herleitungen relativ komplizierter und mühsamer.

Besonders bei der Berechnung des Matrixelementes begegnet man Produkten aus 6 oder 8

γ−Matrizen, die kaum vereinfacht werden können. Dieses Problem konnte dadurch besei-

tigt werden, dass für die Matrixelemente aller radiativen Prozesse die nichtrelativistischen

Ausdrucke berechnet wurden. Mit Hilfe der Helizitätsamplituden ließen sich die relativis-

tisch korrekten Formeln für alle vorkommenden Matrixelemente berechnen.

Im letzten Kapitel wurden die numerischen Ergebnisse präsentiert, die sich durch das

Vegas-Programm ergaben. Das Energiespektrum der Photonen konnte durch die Zerfalls-

rate des radiativen Zerfalls und die Polarisationseigenschaften der Photonen ausgerechnet

werden. Es konnte gezeigt werden, wie sich die nieder- und hochenergetischen Photonen

verhalten. Es war hierbei leicht zu erkennen, dass die Polarisation der Photonen mit stei-

gender Photonenenergie zunahm und für eine feste Photonenenergie ω mit wachsender

Elektronenenergie abnahm.

Die Untersuchung des Polarisationsverhaltens der Photonen wird als Test des Standard-

modells dienen.
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Anhang A

Dreiteilchenzerfall

Die Untersuchung des Dreikörperzerfalls ist im Ver-

Abbildung A.1: Dreikörperzerfall

gleich zum Zweikörperzerfall komplizierter. Im Fal-

le des Zweikörperzerfalls haben die erzeugten Teil-

chen festgelegte Energien. Beim Dreikörperzerfall

können die erzeugten Teilchen unterschiedliche Ener-

gien annehmen. Das Energiespektrum eines der Teil-

chen ist kontinuierlich. Der Dreiteilchenzerfall redu-

ziert sich auf einen Zweiteilchenzerfall, indem man

zwei von den erzeugten Teilchen als ein Teilchen mit dem Schwerpunkt S auffasst. Die

Abbildung A.2: Zweikörperzerfall

Vierer-Impuls-Erhaltung wird zu

q = q1 + q2 + q3 = qs + q3 (A.1)

umgeformt. Im Ruhesystem des zerfallenden Teilchens M gilt

M = E3 + Es ,

~0 = ~p3 + ~ps , (A.2)

und für die dem Schwerpunkt S zugeordnete Masse ms gilt

m2
s = E2

s − p2
s = (M − E3)2 − p2

s = M2 + E2
3 − 2ME3 − p2

s

= M2 + p2
3 +m2

3 − 2ME3 − p2
3 = M2 +m2

3 − 2ME3 . (A.3)
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Man findet für die Energie und den Impuls der dritten Teilchen im Ruhesystem von M

E3 =
M2 +m2

3 −m2
s

2M
, (A.4)

p3 =

[(
M2 − (ms +m3)

2
)(

M2 − (ms −m3)
2
)]1/2

2M
. (A.5)

Der Ausdruck für p3 ist leicht zu beweisen

p2
3 = E2

3 −m2
3 =

(
M2 +m2

3 −m2
s

)2 − (m3 · 2M)2

(2M)2

=

[(
M2 +m2

3 −m2
s − 2m3M

) (
M2 +m2

3 −m2
s + 2m3M

)]
(2M)2

=

[(
M2 − (ms +m3)2

) (
M2 − (ms −m3)2

)]
(2M)2

. (A.6)

E3 bzw. p3 ist maximal, wenn ms minimal ist. Im folgenden wird die Bedingung bestimmt,

bei der ms minimal wird

m2
s = M2 +m2 − 3− 2ME3 = M2 + E2

3 − p2
3 − 2ME3

= (M − E3)2 − p2
3 = (q − q3)2 , (A.7)

wobei im letzten Schritt die Ausdrücke für die Vierer-Impulse im Ruhesystem von M

verwendet worden sind

q = (E, ~p) = (M, 0) , q3 = (E3, ~p3) . (A.8)

Aus der Vierer-Impuls-Erhaltung folgt

m2
s = (q − q3)2 = (q1 + q2)2 = q21 + q22 + 2q1 · q2 = q21 + q22 + 2(E1E2 − p1p2 cos θ).

(A.9)

m2
s ist minimal, wenn cos θ maximal ist, d.h. cos θ = 1 ⇒ θ = 0. Dies ist genau dann

erfüllt, wenn die Teilchen 1 und 2 in gleicher Richtung fliegen während Teilchen 3 sich in

entgegengesetzter Richtung bewegt. Im Ruhesystem von ms gilt

m2
s = (E1 + E2)2 = m2

1 + p2
1 +m2

2 + p2
2 + 2E1E2

≥ m2
1 +m2

2 + 2E1E2

≥ m2
1 +m2

2 + 2m1m2 = (m1 +m2)2 , (A.10)

ms ≥ m1 +m2 ⇒ mmin
s = m1 +m2 . (A.11)
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Genauso wie in den Gleichungen für das dritten Teilchen gilt für die Energien und die

Impulse von Teilchen 1 und 2 in CMS von ms

Es
1 =

m2
s +m2

1 −m2
2

2ms
, (A.12)

ps
1 =

[(
m2

s − (m1 +m2)
2
)(

m2
s − (m1 −m2)

2
)]1/2

2ms
, (A.13)

Es
2 =

m2
s +m2

2 −m2
1

2ms
, (A.14)

ps
2 =

[(
m2

s − (m2 +m1)
2
)(

m2
s − (m2 −m1)

2
)]1/2

2ms
. (A.15)

Im Ruhesystem von M ist E3 maximal, wenn ms = m1 +m2, d.h.

Emax
3 =

M2 +m2
3 − (m1 +m2)2

2M
. (A.16)

Aber aus dieser Bedingung für ms ergibt sich

ps
1 = ps

2 = 0 , (A.17)

bzw. die Geschwindigkeiten vs
1 und vs

2 im Ruhesystem von ms sind gleich Null

vs
1 = vs

2 = 0 . (A.18)

Da S und M Inertialsysteme sind, sind die Geschwindigkeiten in den beiden Systemen

gleich groß

v1 = v2 . (A.19)

Das Teilchen 3 hat im Ruhesystem von M seine Maximalenergie, wenn die Teilchen 1 und

2 in gleicher Richtung (in entgegengesetzter Richtung vom Teichen 3) und mit gleicher

Geschwindigkeit fliegen.

Die obigen Resultate können für n-Körperzerfall verallgemeinert werden, indem man das

n-Körperproblem mit Hilfe der Einführung eines ”effektiven Teilchens“ auf Zwei- bzw.

Dreiteilchenzerfall reduziert.



Anhang B

Feynman-Regeln der QED und der

schwachen WW

Die Feynman-Amplitude M, die einen Übergang vom |i〉 in den |f〉−Zustand beschreibt,

wird durch das entsprechende S−Matrixelement bestimmt

Sfi = δfi + i(2π)4δ(4)

(
N∑

k=1

(pk
f − pk

i )

)
M . (B.1)

Der Term δ(4)
(∑N

k=1(p
k
f − pk

i )
)

erfüllt die Vierer-Imulserhaltung an jedem Wechselwir-

kungsvertex.

Die differentielle Zerfallsrate eines Teilchens mit Vierer-Impuls p = (E, ~p), das in N Teil-

chen mit Vierer-Impulsen p′k = (E′
k,
~p′k); k = 1, · · · , N zerfällt, ist aus der Gleichung für

das S−Matrixelement herzuleiten [6][9][7]. Es lässt sich mit der Normierung∑
σ

ū(p, σ)u(p, σ) = p/+m (B.2)

zu

dΓ = (2π)4δ(4)

(
(

N∑
k=1

p′kf )− p

)
· 1
2E

·
N∏

k=1

d3p′k
(2π)32E′

k

· |M|2 (B.3)

schreiben. Um diese beiden Größen auszuwerten, muss man zuerst die Feynman-Amplitude

bestimmen. Die anderen Unbekannten können aus der Kinematik des Problems geholt

werden. Man erhält die Feynman-Amplitude M aus den Feynman-Regeln. Die wichtigsten

Feynman-Regeln werden im folgenden aufgelistet

1. Für jeden QED-Vertex schreibt man einen Faktor ieγα.
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2. Für jeden schwachen Wechselwirkungsvertex 1 schreibt man einen Faktor -igγα (1− γ5),

wobei g eine dimensionlose Kopplungskonstante ist.

3. Propagatoren für die inneren Linien mit Vierer-Implus k (für Bosonen) und p (für

Fermionen) lauten

(a) Photon (mit dem Impuls k)

iDµν(k) =
i

−k2 − iε

[
gµν −

kµkν

k2
(1− ξ)

]
, (B.4)

(b) Spin−1
2−Teilchen (mit dem Impuls p)

iSαβ(p) =
−i(m+ p/)αβ

m2 − p2 − iε
, (B.5)

(c) Vektorboson (mit dem Impuls k’)

i∆µν =
i(−gµν +

k′αk′β
m2

V B
)

k′2 −m2
V B + iε

, (B.6)

wobei für Fermionen α und β Dirac-Indizes, für Photonen oder massive Vektorbo-

sonen µ und ν Polarisatoinindizes und ξ als Eich-Parameter (in dieser Arbeit geht

es um Feynman-Eichung, d.h. ξ=1) stehen.

4. Für die äußeren Linien schreibt man einen der folgenden Faktoren

(a) Für jedes ausgehende Fermion mit dem Impuls p und Spin s: ū(~p, s).

(b) Für jedes eingehende Fermion mit dem Impuls p und Spin s: u(~p, s).

(c) Für jedes ausgehende Antifermion mit dem Impuls q und Spin r: v(~q, r).

(d) Für jedes eingehende Antifermion mit dem Impuls q und Spin r: v̄(~p, r).

(e) Für jedes ausgehende Photon (Vektorboson) mit dem Impuls k und Polarisation

µ: εµ(~k).

(f) Für jedes eingehende Photon (Vektorboson) mit dem Impuls k und Polarisation

µ: ε∗µ(~k).

5. Die Spinoren (γ−Matrizen, Sαβ(p), Vierer-Spinoren )sortiert man in Reihenfolge der

Pfeile des betrachteten Feynman-Graphen.
1Es gibt weitere schwache Wechselwirkungsvertexe, die hier nicht besprochen wird [6][8] [9].
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6. An jedem Vertex ist die Vierer-Impulserhaltung erfüllt. Man intergriert über jeden

Vierer-Implus p,
∫
dp, der nicht durch Vierer-Impluserhaltung festgelegt ist, mit ei-

nem Gewicht 1
(2π)4

.

7. Für jede geschlossene Fermionen-Schleife (engl. closed fermion loop) nimmt man die

Spur und multipliziert mit (-1).



Anhang C

Die Dirac-Gleichung

Die Dirac-Gleichung beschreibt ein relativistisches Teilchen mit der Ruhemasse m,dem

Impuls p und dem Spin 1
2 . Sie ist gegeben durch

i
∂

∂t
ψ = Hψ = Eψ = (~α · ~p+ βm)ψ , (C.1)

wobei αi, i = 1, 2, 3, und β hermitische 4× 4−Matrizen sind

β =

(
1 0

0 -1

)
, αi =

(
0 σi

σi 0

)
. (C.2)

mit σi, i = 1, 2, 3, 2× 2−Pauli-Matrizen. Durch die Einführung des Vierer-Impulses p =

(E, ~p) und der 4× 4−Dirac-Matrizen (γ−Matrizen), die folgendermaßen definiert sind

γµ = (β, β · αi) , (C.3)

γ0 =

(
1 0

0 -1

)
, γi =

(
0 σi

−σi 0

)
. (C.4)

Die Dirac-Gleichung lässt sich in kovariante Form umschreiben

(iγµ∂µ −m)ψ = 0 . (C.5)

Die Gleichung (C.5) beschreibt ein freies, relativistisches Fermion. Ein Fermion, das unter

elektromagnetischer Wechselwirkung steht, kann auch durch diese Gleichung beschrieben

werden, aber man muss die Vierer-Ableitung ∂µ durch die kovariante Vierer-Ableitung

(∂µ − eAµ) ersetzen

(iγµ(∂µ − eAµ)−m)ψ = 0 . (C.6)

Die γ−Matrizen erfüllen die folgende Antikommutatorrelation

{γµ, γν}+ = 2gµν , (C.7)
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und die Hermizitätsbedingungen γµ† = γ0γµγ0. Eine fünfte γ−Matrix, die im Spurtheorem

wichtige Rolle spielt, ist definiert durch

γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
bzw. γ5 ≡ i

4!
εµνρπγ

µγνγργπ , (C.8)

wobei εµνρπ das total antisymmetrisch alternierende Symbol ist

εµνρπ =

{
+1 , gerade Permutation von (0, 1, 2, 3) für (µ, ν, ρ, π, )

−1 , ungerade Permutation von (0, 1, 2, 3) für (µ, ν, ρ, π, )
. (C.9)

Man kann entsprechende γ−Matrizen mit unteren Indizes γν ≡ gµνγ
µ definieren. Mit

Hilfe dieser Definition lässt sich einfach beweisen, dass γ5 = γ5 ist. γ5 antikommutiert mit

γµ, µ = 0, 1, 2, 3, und hat die Eigenschaften{
γµ, γ5

}
+

= 0 ,
(
γ5
)2 = 1 , γ5† = γ5 . (C.10)

Es gibt weitere Eigenschaften von γ−Matrizen, die im Anhang D noch besprochen werden.

Mit Hilfe der γ5−Matrix kann man die Projektions-Operatoren für die masselosen Dirac-

Teilchen definieren als

P± ≡
1
2
(1± γ5) . (C.11)



Anhang D

Kontraktions-Identitäten und

Spur-Theoreme

D.1 Kontraktions-Identitäten

Unter Awendung des Antikommutators, der im Anhang C besprochen wurde, kann man

folgende algebraische Identitäten beweisen.

γµγ
µ = 4 , (D.1)

γµγ
λγµ = −2γλ , (D.2)

γµγ
λγδγµ = 4gλδ , (D.3)

γµγ
λγδγργµ = −2γργδγλ . (D.4)

Diese Relationen erleichtern oft die Auswertung von den Spuren, die im nächsten Unter-

abschnitt vorgestellt werden.

Hier wird eine von Feynman eingeführte Schreibweise verwendet

q/ = γµqµ = γµq
µ . (D.5)

Hier steht qµ für einen beliebigen Vierer-Vektor. Mit Hilfe der Identitäten (D.2)-(D.4) und

der von Feynman definierten Schreibweise folgen die Kontraktions-Identitäten

γµa/γ
µ = −2a/ , (D.6)

γµa/b/γ
µ = 4aνb

ν = 4aνbν = 4a · b , (D.7)

γµa/b/c/γ
µ = −2c/b/a/ . (D.8)
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Total antisymmetrischer Tensor εµνρπ erfüllt die Kotraktionsidentitäten

εµνρπεµνρπ = −24 , (D.9)

εµνραεµνρβ = −6gα
β , (D.10)

εµνϑαεµνωβ = −2
(
gϑ
ωg

α
β − gϑ

βg
α
ω

)
. (D.11)

D.2 Spur-Theoreme

Im folgenden werden einige sehr nützliche Relationen angegeben, die als Spur-Theoreme

bekannt sind. Diese Relationen vereinfachen die Berechnung der Spuren, die aus den ver-

schiedenen Kombinationen der γ−Matrizen bestehen. Bevor diese Theoreme aufgelistet

werden, werden einige Regeln angegeben, die aus den Definitionen und Herleitungen im

Anhang C einfach zu beweisen sind

Tr
[(
γ5
)2] = Tr [1] = 4 , (D.12)

Tr
[
γ5
]

= Tr [γ5] = 0 , (D.13)

Tr [γµ] = Tr [γµ] = 0 , (D.14)

Tr
[
γµγ5

]
= −Tr

[
γ5γµ

]
= 0 , (D.15)

Tr [XY ] = Tr [Y X] , X, Y beliebige n× n−Matrizen . (D.16)

Theorem 1

Die Spur des Produktes einer ungeraden Anzahl γ−Matrizen ist stets Null.

Tr [γµ1γµ2 · · · γµn ] = Tr [γµ1γµ2 · · · γµn ] = 0 , n = 2k + 1, k ∈ Z . (D.17)

Beweis

Tr [γµ1γµ2 · · · γµn ] = Tr

γ5γ5︸︷︷︸
=1

γµ1γµ2 · · · γµn

 = (−1)n Tr
[
γ5γµ1γµ2 · · · γµnγ5

]
= (−1)n Tr

[
γ5γ5γµ1γµ2 · · · γµn

]
= (−1)n Tr [γµ1γµ2 · · · γµn ] .

Theorem 2

Die Spur des Produktes aus zwei oder vier γ−Matrizen ist

Tr [γµγν ] = 4 gµν , (D.18)

Tr [γµγργπγν ] = 4 (gµρgπν − gµπgρν + gµνgρπ) . (D.19)
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Beweis von ( D.18 )

{γµ, γν}+ = 2 gµν

⇔ Tr
[
{γµ, γν}+

]
= Tr [2 gµν ] ⇔ Tr [γµγν + γνγµ] = 2 Tr [gµν ]

⇔ Tr [γµγν ] + Tr [γνγµ] = 2 gµνTr [1] ⇔ 2 Tr [γµγν ] = 8 gµν

⇔ Tr [γµγν ] = 4 gµν .

Man kann mit denselben Umformungen und Relationen die Gleichung (D.19) beweisen.

Theorem (1) und (2) können auf das Produkt aus γ−Matrizen mit beliebigen Vierer-

Vektoren (von Feynman eingeführten Symbol a/)erweitert werden

Tr [a/b/] = 4 a · b , (D.20)

Tr [a/b/c/d/] = 4 {(a · b) (c · d)− (a · c) (b · d) + (a · b) (c · d)} . (D.21)

Für beliebige Vierer-Vektoren ai gilt

für n ∈ Z

Tr [a/1a/2 · · · a/2n±1] = 0 , (D.22)

Tr [a/1a/2 · · · a/2n] = (a1 · a2) Tr [a/3a/4 · · · a/2n]− (a1 · a3) Tr [a/2a/4 · · · a/2n]

+ · · ·+ (a1 · a2n) Tr [a/2a/3 · · · a/2n−1] . (D.23)

In vielen speziellen Fällen kann man die Spur einfacher berechnen. Es gibt noch eine sehr

nützliche Relation, die man aus der Antikommutativität der γ−Matrizen herleiten kann.

Diese Relation ist

a/b/ = 2(ab)− b/a/ , a/a/ = a2 . (D.24)

Falls a und b antikommutieren (bzw. (ab) = 0),dann erhält man eine noch einfachere

Relation

a/b/ = −b/a/ . (D.25)

Theorem 3

Für jedes Produkt von γ−Matrizen gilt

Tr [γµ1γµ2 · · · γµk ] = Tr [γµk · · · γµ2γµ1 ] , (D.26)

Tr [a/1a/2 · · · a/k] = Tr [a/k · · · a/2a/1] . (D.27)

Diese kann auch auf Produkte, welche γ5 enthalten, ausgedehnt werden. Hier stehen einige

wichtige Formeln

Tr
[
γ5
]

= Tr
[
γ5γµ

]
= Tr

[
γ5γµγνγρ

]
= 0 , (D.28)

Tr
[
γ5γµγνγργπ

]
= −4iεµνρπ . (D.29)
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Hier werden die wichtigsten Formeln, die oft in dieser Arbeit benutzt wurden, besonders

bei der Berechnung von Matrixelementen, aufgelistet

Tr
[
γµγαγνγβ

]
= 4

(
gµαgνβ − gµνgαβ + gµβgαν

)
, (D.30)

Tr
[
a/γαb/γβ

]
= 4

(
aαbβ − (a · b)gαβ + aβbα

)
, (D.31)

Tr
[
γµγαγνγβγ5

]
= −4 i gµανβ , (D.32)

Tr
[
γµγαγνγβ(1− γ5)

]
· Tr [γργαγπγβ(1− γ5)] = 64gµ

ρ g
ν
π , (D.33)

Tr
[
a/γαb/γβ(1− γ5)

]
· Tr [c/γαd/γβ(1− γ5)] = 64(a · c)(b · d) , (D.34)

Tr
[
γµγαγνγβ(1− γ5)

]
· Tr [γργαγπγβ(1− γ5)] = 64gµ

ρ g
ν
π , (D.35)

Tr
[
a/γαb/γβ

]
· Tr [c/γαd/γβ] = 32 [(a · c)(b · d) + (a · d)(b · c)] , (D.36)

Tr
[
a/γαb/γβγ5

]
· Tr [c/γαd/γβγ5] = 32 [(a · c)(b · d)− (a · d)(b · c)] , (D.37)

Tr
[
a/γαb/γβ(1− γ5)

]
· Tr [c/γαd/γβ(1− γ5)] = 64 (a · c)(b · d) , (D.38)

Tr
[
a/γαb/γβ

]
· Tr

[
c/γαd/γβγ

5
]

= 32 i aµbνcρdπερµπν , (D.39)

Tr
[
a/γαb/γβ

]
· Tr [γαγβ] = −32 (a · b) , (D.40)

Tr
[
a/b/c/γαd/γβ(1− γ5)

]
+ Tr

[
c/b/a/γαd/γβ(1− γ5)

]
= 2(ab)

[
c/γαd/γβ(1− γ5)

]
− 2(ca)

[
b/γαd/γβ(1− γ5)

]
+ 2(bc)

[
a/γαd/γβ(1− γ5)

]
.

(D.41)



Anhang E

Fortran-Programm zur

Berechnugn der differentiellen

Zerfallsrate

In diesem Anhang wird das Program, mit dem man die differentielle Zerfallsrate (das

Energiespektrum der Photonen) ausgerechnet hat, kurz vorgestellt:

PROGRAM numerik

INTEGER ndim, ncomp, flags,mineval,maxeval, neval, fail,& nstart, nincrease

PARAMETER (ndim = 4)

PARAMETER (ncomp = 1)

PARAMETER (mineval = 0)

PARAMETER (maxeval = 50000)

PARAMETER (nstart = 1000)

PARAMETER (nincrease = 500)

DOUBLE PRECISION epsrel, epsabs, integral, error(ncomp),

& prob(ncomp)

PARAMETER (epsrel = 1.D − 3)

PARAMETER (epsabs = 1.D − 12)

EXTERNAL integrand

REAL kappa

COMMON/diff/kappa

DO kappa = 0.1, 1.0, 0.1

CALL vegas(ndim, ncomp, integrand,
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& epsrel, epsabs, verbose,mineval,maxeval,

& nstart, nincrease,

& neval, fail, integral, error, prob)

PRINT ′(D12.5, “ +−“ , D12.5, “p = “ , F8.3)′,

& integral, error(1), prob(1)

ENDDO

STOP

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE integrand(ndim, x, ncomp, f)

IMPLICIT NONE

INTEGER ndim, ncomp

DOUBLE PRECISION x(4), f(1)

REAL om, betae,me,Eemax,Ee, le, xkmax, xkmin, xk,

& xnu, phi, klnu,Enu,mp,mn, pi,M,Ma,Mb,Mmix,

& lambda, e,Gf, gv, kappa, taun, beta, x1, x2

COMMON/diff/kappa

mp = 938.27200

mn = 939.56533

me = 0.510998902

taun = 1.3461E + 24 = τn

Gf = 1.16639E − 11

gv = 0.985619

e = 0.302822

pi = 3.141592653589793

lambda = 1.267

om = kappa ∗me
x1 = 0.6

x2 = 1.5

CALL isprob(x1, x2, Eemax)

Ee = (Eemax−me) ∗ x(1) +me

le = sqrt(Ee ∗ ∗2−me ∗ ∗2)

xkmax = 1.0

xkmin = −1.0

xk = (xkmax− xkmin) ∗ x(2) + xkmin
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IF (xkmin.gt.− 1)THEN

write(∗, ∗) xkmin,Ee, om, x(1)

ENDIF

xnu = 2 ∗ x(3)− 1

phi = 2 ∗ pi ∗ x(4)

klnu = Sqrt((1− xk ∗ ∗2) ∗ (1− xnu ∗ ∗2)) ∗ cos(phi) + xk ∗ xnu
Enu = (mn ∗ ∗2 +me ∗ ∗2−mp ∗ ∗2− 2 ∗mn ∗ (Ee+ om) + 2 ∗ Ee ∗ om
& − 2 ∗ le ∗ om ∗ xk)/(2 ∗ (mn− Ee− om− le ∗ xnu+ om ∗ klnu))
Ma = (1/((Ee ∗ om− le ∗ om ∗ xk) ∗ ∗2)) ∗mn ∗mp ∗ (me ∗ ∗2−Ee ∗ om+ le ∗ om ∗ xk)
& ∗ ((1 + 3 ∗ lambda ∗ ∗2) ∗ Enu ∗ (Ee+ om)

& + (1− lambda ∗ ∗2) ∗ (le ∗ Enu ∗ xnu+ Enu ∗ om ∗ klnu))
Mb = (1/(mp ∗ om) ∗ ∗2) ∗ (mn ∗mp ∗ ∗3) ∗ ((1 + 3 ∗ lambda ∗ ∗2) ∗ Enu ∗ Ee
& + (1− lambda ∗ ∗2) ∗ le ∗ Enu ∗ xnu)
Mmix = (1/(mp ∗ om ∗ (Ee ∗ om− le ∗ om ∗ xk)))
& ∗mn ∗mp ∗ ∗2 ∗ ((1 + 3 ∗ lambda ∗ ∗2) ∗ Enu
& ∗ (2 ∗ Ee ∗ ∗2 + Ee ∗ om− (Ee ∗ om− le ∗ om ∗ xk))
& + (1− lambda ∗ ∗2) ∗ (2 ∗ Ee ∗ Enu ∗ le ∗ xnu+ Ee ∗ Enu ∗ om ∗ klnu))
M = −64 ∗ (Ma+Mb−Mmix)

f(1) = me ∗ taun ∗ (e ∗ ∗2 ∗Gf ∗ ∗2 ∗ gv ∗ ∗2/2) ∗
& (mp/(4 ∗ (2 ∗ pi) ∗ ∗6)) ∗ om ∗ le ∗ (Eemax−me) ∗ (xkmax− xkmin)

& ∗ 2 ∗ (2 ∗ pi) ∗ Enu ∗M/(mn− Ee− om+ le ∗ xnu+ om ∗ klnu)
RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Intervallschachtellungsmethode zur Bestimmung der Nullstelle x0 ∈ [x1, x2] von g(x)

SUBROUTINE isprob(x1, x2, x0)

IMPLICIT NONE

REAL x0, x1, x2, epsilon, fehler, g

epsilon = 0.000001

DO

fehler = abs(x2− x1)/2.0

IF (fehler.le.epsilon) exit

x0 = (x1 + x2)/2.0

IF (g(x0) ∗ g(x1).lt.0.0) THEN

x2 = x0
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ELSE

x1 = x0

fehler = 0.5 ∗ fehler
ENDIF

ENDDO

x0 = (x1 + x2)/2.0

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
FUNCTION g(x)

IMPLICIT NONE

REAL g, x

REAL mn,mp,me, om

REAL kappa

COMMON/diff/kappa

mp = 938.27200

mn = 939.56533

me = 0.510998902

om = kappa ∗me
g = x− (mn ∗ ∗2 +me ∗ ∗2−mp ∗ ∗2− 2 ∗mn ∗ om)/(2 ∗ (mn− om ∗
& (1 + (sqrt(x ∗ ∗2−me ∗ ∗2)/x))))

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE Msq(le, lnu, pp, p, k, b)

IMPLICIT NONE

REAL le(4), lnu(4), pp(4), p(4), k(4), ww(4),

& w(2), h(2), b, lambda, ndot(2), epsone(4), epstwo(4), kT, betk

INTEGER lambdae, lambdanu, lambdap, lambdan, lambdaeps

COMPLEX ss(4), sk(4), skp, eps(4),m(2), t, dot(2)

lambda = 1.267

b = 0

DO lambdae = −1, 1, 2

DO lambdanu = −1, 1, 2

DO lambdap = −1, 1, 2



ANHANG E. FORTRAN-PROGRAMM ZUR BERECHNUGN DER DIFFERENTIELLEN ZERFALLSRATE74

DO lambdan = −1, 1, 2

DO lambdaeps = −1, 1, 2 Polarisationssumme der Photonen

CALL epsil(k, eps, lambdaeps)

CALL cdot(le, eps, dot(1))

CALL cdot(pp, eps, dot(2))

CALL rdot(le, k, ndot(1))

CALL rdot(pp, k, ndot(2))

CALL omega(le, lambdae, ww(1))

CALL omega(lnu, lambdanu,ww(2))

CALL omega(pp, lambdap,ww(3))

CALL omega(p, lambdan,ww(4))

CALL omeg(pp, lambdap,w(1))

CALL omeg(p, lambdan,w(2))

CALL s1(le, lnu, lambdae, lambdanu, ss(1))

CALL s1(pp, p, lambdap, lambdan, ss(2))

CALL s1(le, p, lambdae, lambdan, ss(3))

CALL s1(pp, lnu, lambdap, lambdanu, ss(4))

CALL s2(le, eps, k, lnu, lambdae, lambdanu, sk(1))

CALL s2(le, eps, k, p, lambdae, lambdan, sk(2))

CALL s2(pp, eps, k, p, lambdap, lambdan, sk(3))

CALL s2(pp, eps, k, lnu, lambdap, lambdanu, sk(4))

CALL s3(pp, eps, k, lnu, lambdap, lambdanu, skp)

h(1) = ((1 + lambda)/2) ∗ lambdanu ∗ ww(1) ∗ ww(2) ∗ ww(3) ∗ ww(4)

h(2) = ((1− lambda)/2) ∗ lambdanu ∗ ww(1) ∗ ww(2) ∗ w(1) ∗ w(2)

m(1) = (4/ndot(1)) ∗ (h(1) ∗ (2.0 ∗ dot(1) ∗ (ss(1) ∗ ss(2)− ss(3) ∗ ss(4))

& + (sk(1) ∗ ss(2)− sk(2) ∗ ss(4)))

& + h(2) ∗ (2.0 ∗ dot(1) ∗ ss(3) ∗ ss(4) + sk(2) ∗ ss(4)))

m(2) = (4/ndot(2)) ∗ (h(1) ∗ (2.0 ∗ dot(2) ∗ (ss(1) ∗ ss(2)− ss(3) ∗ ss(4))

& + (ss(1) ∗ sk(3)− ss(3) ∗ sk(4)))

& + h(2) ∗ (2.0 ∗ dot(2) ∗ ss(3) ∗ ss(4) + ss(3) ∗ skp))
t = m(1)−m(2)

b = b+ t ∗ CONJG(t)

ENDDO

ENDDO

ENDDO
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ENDDO

ENDDO

b = 0.5 ∗ b
RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE s1(p1, p2, lambda1, lambda2, s)

IMPLICIT NONE

INTEGER lambda1, lambda2

REAL p1(4), p2(4)

COMPLEX chi1(2), chi2(2), s

CALL spinor(p1, lambda1, chi1)

CALL spinor(p2, lambda2, chi2)

s = CONJG(chi1(1)) ∗ chi2(1) + CONJG(chi1(2)) ∗ chi2(2)

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE spinor(p, lambda, chi)

IMPLICIT NONE

INTEGER lambda

COMPLEX chi(2)

REAL anorm, absp, absval, p(4)

absp = absval(p)

anorm = SQRT (2 ∗ absp ∗ (absp+ p(3)))

IF (absp+ p(3).LT.1.0E − 6) THEN

IF (lambda.EQ.1)THEN

chi(1) = CMPLX(0.0, 0.0)

chi(2) = CMPLX(1.0, 0.0)

ELSE

chi(1) = CMPLX(−1.0, 0.0)

chi(2) = CMPLX(0.0, 0.0)

ENDIF

ELSE

IF (lambda.EQ.1) THEN

chi(1) = CMPLX(absp+ p(3), 0.0)/anorm
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chi(2) = CMPLX(p(1), p(2))/anorm

ELSE

chi(1) = CMPLX(−p(1), p(2))/anorm

chi(2) = CMPLX(absp+ p(3), 0.0)/anorm

ENDIF

ENDIF

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
FUNCTION absval(p)

IMPLICIT NONE

REAL p(4)

REAL absval

absval = SQRT (p(1) ∗ p(1) + p(2) ∗ p(2) + p(3) ∗ p(3))

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE s2(p1, k1, k2, p2, lambda1, lambda2, s)

IMPLICIT NONE

INTEGER lambda1, lambda2

REAL p1(4), p2(4), k2(4)

COMPLEX chi1(2), chi2(2), v(2), k1(4), s

CALL spinor(p1, lambda1, chi1)

CALL spinor(p2, lambda2, chi2)

v(1) = (k2(4)− k2(3)) ∗ chi2(1) + CMPLX(−k2(1), k2(2)) ∗ chi2(2)

v(2) = CMPLX(−k2(1),−k2(2)) ∗ chi2(1) + (k2(4) + k2(3)) ∗ chi2(2)

chi2(1) = (k1(4) + k1(3)) ∗ v(1) + (k1(1)− (0.0, 1.0) ∗ k1(2)) ∗ v(2)

chi2(2) = (k1(1) + (0.0, 1.0) ∗ k1(2)) ∗ v(1) + (k1(4)− k1(3)) ∗ v(2)

s = CONJG(chi1(1)) ∗ chi2(1) + CONJG(chi1(2)) ∗ chi2(2)

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE s3(p1, k1, k2, p2, lambda1, lambda2, s)

IMPLICIT NONE

INTEGER lambda1, lambda2
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REAL p1(4), p2(4), k2(4)

COMPLEX chi1(2), chi2(2), v(2), k1(4), s

CALL spinor(p1, lambda1, chi1)

CALL spinor(p2, lambda2, chi2)

v(1) = (k2(4) + k2(3)) ∗ chi2(1) + CMPLX(k2(1),−k2(2)) ∗ chi2(2)

v(2) = CMPLX(k2(1), k2(2)) ∗ chi2(1) + (k2(4)− k2(3)) ∗ chi2(2)

chi2(1) = (k1(4)− k1(3)) ∗ v(1) + (−k1(1) + (0.0, 1.0) ∗ k1(2)) ∗ v(2)

chi2(2) = (−k1(1)− (0.0, 1.0) ∗ k1(2)) ∗ v(1) + (k1(4) + k1(3)) ∗ v(2)

s = CONJG(chi1(1)) ∗ chi2(1) + CONJG(chi1(2)) ∗ chi2(2)

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE omega(p, lambda,ww)

IMPLICIT NONE

INTEGER lambda

REAL p(4), ww

ww = SQRT ((p(4)− lambda ∗ SQRT (p(1) ∗ p(1) + p(2) ∗ p(2) + p(3) ∗ p(3))))

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE omeg(p, lambda,w)

IMPLICIT NONE

INTEGER lambda

REAL p(4), w

w = SQRT ((p(4) + lambda ∗ SQRT (p(1) ∗ p(1) + p(2) ∗ p(2) + p(3) ∗ p(3))))

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE cdot(p, q, pq)

IMPLICIT NONE

REAL p(4)

COMPLEX q(4), pq

pq = p(4) ∗ q(4)− p(1) ∗ q(1)− p(2) ∗ q(2)− p(3) ∗ q(3)

RETURN

END



ANHANG E. FORTRAN-PROGRAMM ZUR BERECHNUGN DER DIFFERENTIELLEN ZERFALLSRATE78

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE rdot(p, q, pq)

IMPLICIT NONE

REAL p(4), q(4), pq

pq = p(4) ∗ q(4)− p(1) ∗ q(1)− p(2) ∗ q(2)− p(3) ∗ q(3)

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SUBROUTINE epsil(k, eps, lambdaeps)

IMPLICIT NONE

INTEGER lambdaeps

REAL k(4), epsone(4), epstwo(4), kT, betk

complex eps(4)

kT = sqrt(k(1) ∗ ∗2 + k(2) ∗ ∗2)

betk = sqrt(k(1) ∗ ∗2 + k(2) ∗ ∗2 + k(3) ∗ ∗2)

epsone(1) = k(1) ∗ k(3)/(kT ∗ betk)
epsone(2) = k(2) ∗ k(3)/(kT ∗ betk)
epsone(3) = −(k(1) ∗ ∗2 + k(2) ∗ ∗2)/(kT ∗ betk)
epsone(4) = 0.0

epstwo(1) = −k(2)/kT

epstwo(2) = k(1)/kT

epstwo(3) = 0.0

epstwo(4) = 0.0

eps(1) = (−lambdaeps ∗ epsone(1)− (0.0, 1.0) ∗ epstwo(1))/SQRT (2.0)

eps(2) = (−lambdaeps ∗ epsone(2)− (0.0, 1.0) ∗ epstwo(2))/SQRT (2.0)

eps(3) = (−lambdaeps ∗ epsone(3)− (0.0, 1.0) ∗ epstwo(3))/SQRT (2.0)

eps(4) = (−lambdaeps ∗ epsone(4)− (0.0, 1.0) ∗ epstwo(4))/SQRT (2.0)

RETURN

END

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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