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Kapitel 1
Einleitung

Eine der schonsten Seiten der Hochenergiephysik ist die Existenz des Neutrinos, des Geis-
terteilchens'. Sie spielen eine zentrale Rolle in der Physik der Wechselwirkungen. Obwohl
die Existenz dieses Teilchens seit 50 Jahren durch das Experiment von Reines und Cowan
nachgewiesen ist [12][13][15], ist seine Masse jedoch immer noch unbekannt und ihre Be-
stimmung ein aktuelles Thema der Hochenergiephysik. Viele Experimente haben gezeigt,
dass die oberen Grenze der Ruhemassen der Neutrinos (ve, v, v7) viel kleiner als die Masse
der zugehorigen geladenen Leptonen sind. Feste Werte sind jedoch unbekannt. Man kann
kaum glauben, dass es ein Teilchen gibt, dessen Masse ungefihr 250-Mal kleiner (nach
Mainz-Troisk-Experiment [3]) als die Masse des Elektrons ist. Die Theorien im Standard-
model der Elementarteilchen basieren darauf, dass die Neutrinos masselos sind. Aufgrund

der Oszillation-Experimenten ist man iiberzeugt, dass die Neutrinos Massen besitzen [3].

Es gibt verschidene Methoden, mit deren Hilfe man die Neutrino-Masse bestimmen kann.
Eine dieser Methoden ist die direkte Methode. In dieser Methode untersucht man das
Energie-Spektrum von Elektronen des —Zerfalls, um Informationen iiber die Masse des
Neutrinos zu gewinnen,wobei die Masse des Neutrinos anhand der fehlenden Energie der
Elektronen bestimmt werden kann. Es gab und gibt eine Reihe der Experimente zu diesem
Zweck. Ein aktuelles Experiment, das noch nicht in Betrieb ist, ist das Katrin-Experiment
[3], mit dem man die Neutrino-Masse direkt aus Energie-Spektrum des f—Zerfalls bestim-
men will. Da die Masse des Neutrinos sehr klein ist, muss man alle méglichen Faktoren, die
die Form des Spektrums beeinflussen, beriicksichtigen. Hierzu kann folgende Frage gestellt
werden:

Wie éndert sich das Spektrum der Elektronen-Energie, wenn neben der Erzeugung des

L Astronomie-Heute, Dez. 2004
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Elektrons und Neutrinos auch ein reelles Photon emittiert wird. Dieser radiative Zer-
fallsprozess erfolgt parallel zum normalen Zerfall, wobei sich die Zerfallsrate verdndert. In
der Kinematik des Zerfalls tritt ein zusédtzlicher Phasenraum-Integration auf, die mit dem
Photon verkniipft ist. Die mathematische Struktur der Zerfallsrate liefert dieselbe aber
das Matrixelement des Zerfalls muss neu berechent werden. Die Feynman-Amplitude des
radiativen Zerfalls wird unter Beriicksichtigung der Emission eines reellen Photons auf-
gestellt . Das Photon kann am Elektron, Proton oder schwachen Wechselwirkungs-Vertex

gekoppelt werden. In den beiden ersten Félle spricht man von der Bremsstrahlung.

In dieser Arbeit werden zuerst die Kinematik, das Matrixelement und die Zerfallsrate
des normalen Prozesses kurz erldautert. Mit Hilfe der Feynman-Regel und Spur-Theoreme
lasst sich das Matrixelement berechnen [1][6][9][10]. Beim normalen Neutonen-Zerfall han-
delt es sich um einen Dreikoérper-Zerfall. Der Vorgang wird im folgenden im Ruhesystem
(CMS) des Neutrons betrachten (s. Anhang A).

Im zweiten Teil werden die Zerfallsrate und das Matrixelement des radiativen —Zerfalls
analysiert. Die Berechnung der radiativen Zerfallsrate ist komplizierter, denn man muss
eine zusétzliche Integration iiber die Phasenrdumen der vier erzeugten Teilchen ausfiihren.
Das Matrixelement wird durch zwei unabhéngige Methoden berechnet. Die erste Metho-
de ist die Anwendung der Spinsummen- und Polarisationssummen-Formalismus, durch
den man auch das normale Matrixelement berechnet. Die zweite Methode ist die Heli-
zitdtsamplituden-Formalismus, der anders als die erste Methode ist, aber auf dasselbe
Ergebnis fiihrt. Diese Methode wird im Abschnitt (2.6) ausfiihrlich erklért.

Die beiden Methoden sind identisch, da sie diese physikalische Grofie beschreiben. Man
kann die Ergebnisse aus den beiden Methoden nummerisch vergleichen. Im letzten Ab-
schnitt wird der nummerische Vergleich der beiden Methoden erklart und es wird erwdhnt,

was zu diesem Vergleich beriicksichtigt werden muss.

Die Untersuchung des f—Zerfalls spielt auch eine entscheidende Rolle in der Bestiti-
gung des Standardmodell [SM] der Elementarteilchen [1]. Man kann durch das Studium
der Zerfallsrate des Prozesses und des Polarisationverhaltens der Photonen die schwa-
chen Kopplungskonstanten bestimmen. Das Energiespektrum des Photons des radiativen
(B—"Zerfalls in fithrender Ordnung ist proportional zu g‘Q/ + 39124 und g‘Q/ — 9124, wobei gy und

ga die Kopllungskonstaten der schwachen Wechselwirkung sind.
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Durch den Vergleich der experimentelllen Ergebnisse und der theoretischen Auswertungen

konnte die Giiltigkeit der V—A-Theorie bestéitigt werden.



Kapitel 2

Theorie

2.1 Schwache Wechselwirkung

Zwischen Fermionen besteht eine Form der Wechselwirkung, die man als schwache Wech-
selwirkung bezeichnet !. Die beobachteten schwachen Wechselwirkungen kénnen in drei

Typen eingeteilt werden:

e Rein leptonische, z. B.
poo—e +l+uv, . (2.1)
e Semileptonische, z. B.

n—p+e +0, (B—Zerfall) . (2.2)

e Nicht leptonische, z. B.

Kt —a04at | (2.3)

Diese Wechselwirkung wurde zum erstem Mal beim F—Zerfall beobachtet. Bei weiteren

Untersuchungen ist man auf zwei Uberrraschungen in Bezug auf den S—Zerfall getroffen
1. die Existenz eines neuen Teilchens, des Neutrinos

2. Paritéatverletzung

1Es gibt noch weitere Wechselwirkungen zwischen den Fermionen, welche nicht hier besprochen wird.
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Der 3—Zerfall konnte zunéchst gut durch die Fermi-Theorie beschrieben werden [4][12][13].
In dieser Theorie geht man von einer punktférmigen Wechselwirkung aus, in der vier
Fermionen beteiligt sind. Kurz nach Fermi hat Heisenberg gezeigt, dass diese Theorie nur
eine Niherung ist und sie erweitert werden muss [12]. Diese 4-Fermionen wechselwirken
durch den Austausch eines schweren Teilchens, des W —Bosons. Da dieses Austausch-Boson
sehr schwer ist, hat die Wechselwirkung nach der Heisenbergschen Unschdirfe-Relation
eine sehr kurze Reichweite und kann als punktformige Wechselwirkung gesehen werden.
Besonders bei niedrigen Energien ergibt sich eine effektive Punktwechselwirkung. Heute
weiB man, dass es zwei geladene Bosonen W und ein neutrales Boson Z gibt, die als
Austausch-Teilchen in der schwacher Wechselwirkung auftreten.

Was ist die Paritétverletzung? Man spricht von Paritdtserhaltung, wenn die Beschreibung
eines physikalischen Vorgangs und seines Spiegelbildes identisch sind. Bis 1957 galt die
Paritét als eine universelle Symmetrie. In diesem Jahr wurde jedoch von Frau Wu ein
Experiment durchgefiihrt, mit dessen Ergebnissen man feststellen konnte, dass die Paritét
bei der schwachen Wechselwirkung nicht erhalten ist. Im iibertragenen Sinne erh#lt man
also verschiedene Ergebnisse, wenn man das Experiment im Spiegel durchfiihrt. Der Grund
liegt in der Helizitét der Leptonen (e, 7). Die Helizitét ist definiert als die Projektion
des Spins in Impuls-Richtung des Teilchens

~

H=¢- (2.4)

Ein Jahr spéter im Jahr 1958 ist es Goldhaber und seinen Mitarbeitern gelungen, durch ein

=y

sehr schones und detailiertes Experiment die Helizitét des Neutrinos zu messen [12][13].
Das Experiment hat gezeigt, dass die Neutrino-Helizitdt H = —1 ist. Dies bedeutet, dass
in der Natur nur eine Spineinstellung des Neutrinos bzgl. seines Impulses in der schwachen
Wechselwirkung auftritt, und zwar der Spin des Neutrinos steht immer entgegengesetzt

gerichtet zu seinem Impuls. Nach heutigem Stand hat das Neutrino folgende Eigenschaften
e Die Helizitédt des Neutrino ist H ~ —1.
e Das Neutrino hat den Spin %, also es ist ein Fermion.

e Neutrinos unterliegen der schwachen Wechselwirkung. Sie gehtren zur Familie der

Leptonen.

e Neutrinos sind sehr schwer nachzuweisen, denn sie sind sehr leicht,neutral und schwach

wechselwirkend. Neutrinos besitzen auflerordentlich kleine Wirkungsquerschnitte.

e Das Neutrino fliegt fast so schnell wie das Photon (vg, ~ c).
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Die Untersuchung von zahlreichen Experimenten hat gezeigt, dass drei Familien von Neu-

trinos existieren. Zu jedem der Leptonen gibt es ein Neutrino. Diese drei Faimlien lauten

) ) (0

Die drei Neutrino-Sorten besitzten dieselben Eigenschaften. Nur ihre Massen sind unter-
schiedlich

My, > My, > My,

Neben diesen Familien stehen auch Familien der Antiteilchen. Zu jedem Lepton gibt es

auch ein Antilepton, d.h.

) ) ()

Das Neutrino ist ungeladen,aber sollte das Antineutrino auch ungeladen sein! Sind Neu-
trino und Antineutrino identisch? Ist das Neutrino ein Majorana-Teilchen 2!?

Die Antwort ist NEIN 3! Obwohl das Antineutrino im iibrigen dieselben Eigenschaften
wie das Neutrino hat, besitzt es eine andere Helizitét. Die Helizitdt des Antineutrinos ist
‘H = 1, d.h Spineinstellung und Impuls sind parallel. Der andere Grund dafiir ist, dass
das Neutrino und sein Antiteilchen verschiedene Reaktionen auslosen kénnen. Obwohl das
Heidelberg-Moskau- Experiment zeigen wollte, dass das Neutrino ein Majorana-Teilchen ist,
ist ein solcher Beweis nicht eindeutig gelungen.

In den kommenden Abschnitten werden der S—Zerfall, und die Zerfallsrate und sowie das

Matrixelement sowohl fiir den normalen als auch fiir den radiativen Zerfall berechnet.

2Die nach Ettore Majorana benannten Teilchen sind die Teilchen, die ihren Antiteilchen identisch sind.

Er war der Meinung, dass das Neutrino und Antineutrino dasselbe Teilchen sind.
3Diese drei Neutrino-Sorten sind als die leichten Neutrinos bekannt. Es gibt vielleicht weitere Neutrino-

Sorten , die schweren Neutrinos, die noch gesucht werden. Es kann sich sowohl um Majorana- als auch

Dirac-Teilchen handeln.
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2.2 V—-A-Theorie

Die Austauschteilchen der schwachen Wechselwirkung sind die geladenen Vektorbosonen
W und W~ welche die geladenen Strom-Reaktionen (CC) vermitteln, und das neutrale
Vektorboson Z° fiir die neutralen Strom-Reaktionen. Fermi hat bereits 1933 vorgeschlagen,
einen Wechselwirkungsmechanismus zu entwickeln, der analog zur elektromagnetischen
Wechselwirkung abléuft. Bei der elektromagnetischen Wechselwirkung ist der Hamiltonian
gegeben durch

Hon ~ [ 73)- A@) (25)
wobei e (die Elementarladung) die Kopplungskonstante, j die Stromdichte und A das
Vektorpotential ist. Fermis Vorschlag fiir die Beschreibung der neuen Wechselwirkung war,
entsprechende Vektorgroflen fiir Teilchen zusammen mit einer neuen Kopllungskonstante
gy zu verwenden (,, Vektorkopplung“). Der einfachste Ansatz fiir die Hamilton-Funktion

fiir den f—Zerfall, die die vier beteiligten Teilchen enthélt, ist gegeben durch

(V) (V) (2.6)

mit geeigneten Dirac-Operatoren (). Diese Funktion entspricht einem Prozess, bei dem ein
Neutrino in ein Elektron und gleichzeitig ein Neutron in ein Proton iibergeht (s. Abb. 2.2).

Als néchstes stellt sich die Frage, welche Dirac-Operatoren €2 in Frage kommt. Dann kann

Abbildung 2.1: Feynman-Graph zum [S—Zerfalls des Neutrons

man durch das Experiment feststellen, welche diese Operatoren iiberhaupt in der Natur
auftreten. Da es 16 linear unabhingige 4 x 4—Dirac-Matrizrn gibt, erhilt man 162 =
256 mathematisch mogliche Bilinearformen. Unter der Forderung der Lorentz-Invarianz

verbleiben nur fiinf Opertoren. Diese fiinf Operatoren lauten in der iiblichen kovarianten
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Schreibweise fiir die Dirac-Matrizen [13]

Qg = Skalar(.S)

Qp =15 Pseudoskalar(P)

v = Vektor(V) (2.7)
Qa4 =75 Axialer Vektor(A)

Qr = v — w7 Tensor(T)
w,v=20,1,23.

Unter Voraussetzung einer Lorenz-invarianten linearen Punktwechselwirkung ergibt sich
fir die Hamiltonfunktion des Neutronen-Zerfalls

H o= \2 [ 5@ G de (2.8)

j=S,P,V,A,T

wobei g; die Kopplungskonstanten jeder Wechselwirkungsformen sind. Die Integration er-
streckt sich iiber das Volumen.
Welche der Wechselwirkungen vorliegt, kann theoretisch nicht entschieden werden. Expe-
rimentell hat man den freien Neutronen-Zerfall studiert und festgestellt, dass von den fiinf
moglichen Termen nur zwei beitragen, die V- und A-Wechselwirkung [12][13][14].
Aus dem Goldhaber-Experiment weifl man, dass die Neutrino immer mit nur einer Spin-
richtung relativ zu ihrem Impuls, und zwar in entgegengesetze Richtung, emittiert werden.
Wenn man dies beriicksichtigt, ergibt sich die Hamiltonfunktion* des freien Neutronen-
Zerfalls

H ~ / [gv (VpQyihn) <1/JeQV <1 z%) 1/%)
+ g (UpQatin) (wem (1 ks 75) w)] dv

2

1 B _ B B
= 4/ [gV (¢p7ﬂ¢n) (we'h(l + '75)¢z/5) +ga (%75%%) (¢e75'7u(1 + 75)%/6)] dv

= 1/ [gV (&p'y,uwn) (1/;67;1(1 + '75)7/11/6) —9gA (&p757u¢n) (@Ze’m(l + 75)1#115)} dv

1
= 2 [ G (- 2a5) ) (Bl 4 90)0)
(2.9)
mit
A=94 <1,27. .10
av

4Um diese Funktion zu berechnen, braucht man den Projektionsoperator. Dieser Projektionsoperator

ist im Anhang C gegeben.
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2.3 [—Zerfall

Neben dem av— und y—Zerfall ist der f—Zerfall iber 100 Jahren bekannt. Dieser Zerfall ist
vielleicht der Interessanteste unter allen, weil immer noch unbekannte Seiten dieses Zerfalls
zu entdecken sind. Dieser Zerfall wird durch die schwache Wechselwirkung beschrieben.
Eines der wichtigsten Forschungsgebiete, in welchem dem Neutrino aus dem §—Zerfall eine
entscheidende Bedeutung zukommt, ist die Bestimmung der Masse des Neutrinos, die in
den néchsten Abschnitten diskutieren wird.

Es gibt drei Arten des 3—Zerfalls: 3~ —Zerfall, 31 —Zerfall, Elektronen-Einfang (e~ — cap-
ture EC). Der Gegenstand dieser Arbeit ist die Untersuchung des 5~ —Zerfalls und es wird

kurz erldutert, wie die anderen Zerfille ablaufen.

1. f~—Zerfall
Ein Neutron zerfillt in ein Proton, wobei ein Elektron und ein Antineutrino emittiert
werden
n—p+e +v . (2.11)

2. Bt —Zerfall
Ein Proton zerfillt in ein Neutron, wobei ein Positron ® und ein Neutrino emittiert

werden
p—nte +uv, . (2.12)

Da ein freies Proton eine kleinere Masse als ein Neutron besitzt, kann ein Proton
in ein Neutron unter Emission der anderen Teilchen umgewandelt werden (Energie-

Erhaltung). Dieser Zerfall kann nur beim gebundenen Protonen im Kern geschehen.

3. Elektronen-Einfang
Beim Elektronen-Einfang wird ein Elektron der inneren Schalen (K, L, ---) einge-
fangen und reagiert mit einem Proton aus dem Kern. Durch diese Reaktion etstehen

ein Neutron und ein Neutrino

pte —n+rve . (2.13)

®Positron ist Antiteilchen des Elektrons. Es hat dieselben Eigenschaften wie Elektron, aber hat eine

positive Ladung und seine Helizitét ist positiv.



KAPITEL 2. THEORIE 10

Am Anfang hat man den S—Zerfall so beschrieben, dass der Atomkern eines Elementes in
ein Elektron und den Restkern zerfillt. Mit dieser Beschreibung hitte man einen eindeu-
tigen Peak im Energiespektrum der Elektronen erwartet. Aber man hat den Peak nicht
gesehen. Das Energiespektrum der Elektronen wurde zum ersten Mal von James Chadwick
mit Hilfe eines Magnetspektrometers gemessen [12]. Es ist etwas iiberraschendes passiert.
Er hat ein kontinuierliches Spektrum gemessen.

Die Energie des Elektrons variiert zwischen Null und zu einer Maximalenergie Fy,q-

dN/dE,
A

Abbildung 2.2: Das Energiespektrum der Elektronen im —Zerfall [17]

Daraus kann man 2 Schlussfolgerungen ziehen
e Die Energie- und Impuls-Erhaltung ist im allgemeinen verletzt, oder
e es gibt ein weiteres Teilchen.

Wolfgang Pauli hat im Jahr 1930 die Existenz eines weiteren Teilchens postuliertdie, um
die Giiltigkeit der Energie- und Impuls-Erhaltung zu retten. Damit kann man das kontinu-
ierliche Energiespektrum der Elektronen unter Energie- und Impuls-Erhaltung erkléren.
Es handelt sich um einen Dreikorperzerfall, wobei im Anhang A erklart wird, welche
Relationen zwischen den Energien und Impulsen der Teilchen stehen. Um den Ladungser-
haltungssatz zu beriicksichtigen, darf dieses Teilchen keine Ladung tragen. Deswegen hat
Pauli den Namen Neutrino (das kleine Neutron) vorgeschlagen.

Aus der Spineinstellung des Neutrons und Protons unterscheidet man zwischen zwei Ubergéngen:
e Fermi-Ubergang

e Gamow-Teller-Ubergang
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Beim Fermi-Ubergang sind die Spins von Neutron und Proton parallel. Aus der Drehimpuls-
Erhaltungssatz und der Tatsache, dass das Antineutrino Helizitéit H = 1 besitzt, steht der

Spin des Elektrons antiparallel zum Spin des Neutrinos

n(1) —p(1) +e (1) +7(1)  oder  n(l) —p(l)+e (1) +7e(l)

Im Gegensatz zum Fermi-Ubergang haben Neutron und Proton im Gamow-Teller-Uber-
gang eine antiparallele Spineinstellung. Aus oben genannten Griinden kann man leicht

sehen, dass Elektron und Neutrino eine parallele Spineinstellung besitzen:

n(T) —p(l) +e (1) +2(1) oder n(l) —p(T)+e (1) +ve(l)

Es stellt sich diese Frage, ob der —Zerfall so abliuft, wie er in der Gleichung (2.11) dar-
gestellt ist. Oder beschreibt diese nur einen Zerfall auf dem Kernniveau? Heute weifl man,
dass das Proton und das Neutron eine Unterstruktur besitzen. Sie bestehen aus Quarks.
Es gibt 6 Quarks (und 6 Antiquarks), u(Up), d(Down), s(Strange), ¢(Charm), b(Bottom)
und ¢(Top), von denen nur zwei die Nukleonen (Protonen und Neutronen) zusammenset-
zen. Das Proton besteht aus zwei u—Quarks und einem d—Quark und das Neutron aus
zwel d—Quarks und einem u—Quark
n = (u,d,d), p=(u,u,d).

Auf dem Elementarteilchen-Niveau lauft der f—Zerfall so ab, dass ein d—Quark in ein
u—Quark umgewandelt wird und dabei ein Elektron und ein Elektron-Antineutrino emit-

tiert

d—u+e +U . (2.14)

9

i

Abbildung 2.3: §—Zerfall auf der Elementarteilchen-Ebene

In den néchsten Abschnitten wird gezeigt, wie man die Zerfallsrate aus der Kinematik des
Zerfalls und das Matrixelent des §—Zerfalls aus der Feynman Amplitude explizit berechnen

kann.
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2.3.1 Feynman-Amplitude

Mit Hilfe der Feynman-Regeln, die im Anhang B aufgelistet sind,lésst sich die zugehorige

Feynman-Amplitude fiir den Neutronen-Zerfall
n(p,sn) — p,1mp) +e (leyre) + Ve(lp,, 75.) (2.15)

folgenderwmaflen schreiben

NI (=) i(—gas + 52 1 (1= )
M= <Z\/§> [U(Ze)’y Tv(lpe) ' k2 —mi, + ie e Tu(p)

(2.16)

Der Faktor @ kommt dadurch zustande, dass die Teilchen an der schwachen Wechsel-
wirkung mit der negativen Helizitdt (bzw. Antiteilchen mit der positiven Helizitét) in der
Reaktion teilnehmen.
Wie in den vorherigen Abschnitten erwithnt, finden im Neutronenzerfall zwei Ubergiinge,
der Fermi-Ubergang und der Gammow-Teller-Ubergang, statt. Diese Uberginge tereten
mit verschiedenen Kopplungskonstanten gy und g4 auf. Die Grofie A ist als das Verhéltnis
dieser beiden Konstanten definiert|1][12]

A=~ 267, (2.17)

ga

Da die Masse des W-Bosons sehr grof3 gegeniiber seinem Impuls ist, m%v > 1, reduziert

sich der Ausdruck fiir M auf

2

M = 8Tgn‘2/v [ﬂ(le)'}/a(l — 75)11([,76)] . [ﬂ(p,)’)/a(l — )\'75)u(p)] . (2.18)

Man fiihrt eine neue Konstante ein, die als Fermi-Konstante bekannt ist und durch fol-

genden Ausdruck definiert ist

Gr g9
AL , (2.19)
V2 8mi,
somit erhélt man fiir die Feynman-Amplitude
Gr (_ o i
M = ZZ [al)y™ (1 =" )olls)] - [60) a1 = Ms)u(p)] (2:20)

V2

Um das unpolarisierte Matrixelement |M|? zu erhalten, muss man iiber die Spins im

Anfangszustand mitteln und iiber die Spins im Endzustand summieren [6][7][9][10]. Es
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gilt
ME = 5SS ME
2
= O S S [y (1~ 27)0)] - [30 Viat — Ma)u(w)]

2
= CE (et moy(1 - 7)o~ — )
zAaﬁ,leptonischer Anteil
Tr [(# + mp)va(l = Xys) (B + mn)yp(1 = Ays)] (2.21)

=B,g,hadronischer Anteil

Die erste Spur in dieser Gleichung ist
A% = Tr [(Ie +me)y* (1 =) (fo —mp )y (1 - 75)}
= T [[r* (1= o221 =7)] = Tr L™ (1 = 47y (1= 47)]
+Tr [mev‘“(l — oA (1 - )] Tr [memma(l -7 (1 - 'f’)} :
(2.22)

Wenn man die Spur-Theoreme, die im Anhang D vollstindig beweisen werden, auf A%%
anwendet, kann man feststellen, dass die drei letzten Terme verschwinden. In diesen Ter-
men tauchen die Spuren einer ungeraden Anzahl von y—Matrizen auf. Der leptonischer

Anteil ist

A = Ty Loy (1= oA (1= 7))
=2(1—7s)

—
= Tr |5 (L= | = Tr [feyler" (1= 7))

= 217 [le’y“lmﬁ} ~Tr [Ievalmﬂvs] : (2.23)
Also
AP = 2Tr {levalaﬂﬁ } —~2Tr [Iw“laﬂﬁ 75] : (2.24)
Analog berechnet man den Ausdruck fiir den hadronischen Anteil

Bag = (14 N)Tr [Pvapys] — 20T [P vaps75] + mamp(L = A)Tr [Yays] -
(2.25)

Um das Quadrat der Feynman-Amplitude (das Matrixelement) |M|? zu finden, muss man

die Kontraktion A®3 . B,g berechnen. Unter Anwendung der Relationen im Anhang D
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ergibt sich fiir das unpolarisierte Matrixelment

‘M‘Q = ?‘Aaﬂ . Baﬁ
= 16GH {(L+N)?('le)(pls.) + (1 = X (0l ) (ple) — (1= X)mpmy(lels, )} -

(2.26)

Aus kinematischen Uberlegungen kann man zeigen,dass | M|? im Ruhesystem des Neutrons
(p = my,) winkelunabhéngig ist. Das Matrixelement berechnet sich im CMS vom Neutron

zu

MP = 1663 {1+ V2@ 0 Fr) + (1= N2l ) () = (1= N2y (L, )}
(2.27)

Die Skalarprodukte der Vierervektoren liefern die Winkel zwischen den Vektoren. Aus der
Vierer-Impuls-Erhaltung jedoch kann man zeigen, dass diese Terme unabhéngig von den
Winkeln sind. Es gilt

p=p+le+lp , (2.28)

(p—1)° = (p' + le)2 = pl.= = [mi - mf, —mZ+m2, — 2mnFEg,], (2.29)

(p—1.)* = (p' + l,;e)2 = Pl = % [mi - mf, +m2 —m2 — 2mpE.|, (2.30)

1
(p —p’)2 = (I, + le)2 = Iy, = 3 [mi + mf, —m? — m?,e — anE’] . (2.31)
Matrixelement des G—Zerfalls ist winkelunabhingig und kann, wie im néchsten Abschnitt,

in den Winkel-Integrationen als eine Konstante behandelt werden.

2.3.2 Zerfallsrate

Aus der allgemeinen Formel, die im Anhang B steht, ergibt sich die differentiele Zerfallsrate

fiir den Neutronen-Zerfall

o) a3y’ d3l. 3l
il — @.5(4)@_},’_16_[%). P : e
2my, (2m)32E" (27)32E. (2m)32Ej5,
1 w &Py dPle Py,
(27)>  16m,, E'  E. Ep

M

dW(p—p —le—15,)- (2.32)
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Zuerst wird im Ruhesystem des Neutrons iiber den Dreier-Impuls des Protons ];/ integriert.

Es gilt mit der relativistischen Energie-Impuls-Relation

1 | MP - -
ar = : 5(my — /(e + 15,)2 + m2 — E. — Ey,
(27'(')5 16mn (m \/( + e) +mp e)
1 Bl, 3y,

(2.33)

\/(l_; + fpe)Q + ml% Ee  Er
Aus der 3-dimensionalen —Funktion ergibt sich die Dreier-Impuls-Erhaltung im CMS des
Neutrons, d.h.

- —
/

0 = P+l+l, . (2.34)

Man kann die Dreier-Impulse in Kugelkoordinaten transformieren und erhélt dadurch

LM (B — (e + )2+ mE— B - By)
5 ’ P
(2m)> 16mn, EeBg /(o + I5,)2 + m3
A2dledQ - 12 dlp, dQ, (2.35)

ar

Unter Anwendung der relativistischen Energie-Impuls-Relation
E*=p*+m? , EdE=|pldp (2.36)

und Vernachlissigung der Masse des Neutrinos ergibt sich

1 |M\2 5(E—\/(l_;+l_l‘7€)2+m%—Ee—E,7€)
5 ’ Era—
(27T) 16mn EeEDe \/(le + lDC)Q + m]%
AeFedFEedQe - Uy, Ep,dE;,dd5, . (2.37)

ar

Bevor die letzte Integration iiber die Energie des Neutrinos ausgefithrt wird, sei darauf
hingewiesen, dass die Raumwinkel des Elektrons und des Neutrinos unabhingig vonenan-

der sind. Durch Integrationen iiber df2. und d€)z_ ergibt sich ein Faktor 47

LM S = Jl T4 mi — B - By
. . —
(27r) 16mn EeEﬂe \/(le + ll_/e)2 + ml%
. (peEedEe dQ€>(pl76El7€dEl_/e dQl_/e)
— —~
=Ar =4n
1 ’_/\/l|2 leEﬁe
(2r)® " 4m,  (mn — Be— Ey,)

ar

dE. . (2.38)
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In der letzten Gleichung wurde angenommen, dass die Masse des Neutrinos gegeniiber
seinem Impuls verschwindet. Es ist zu bemerken, dass Ejp, in dieser Gleichung ein Symbol

fiir den folgenden Ausdruck ist

m2 +m2 —m2—2m,FE.
E;, = i e — , (2.39)
2 [mn — Ee+ |le| cos Z(le, lz,)

der sich aus dem Argument in der §—Funktion

-

By = ma—Be—/(iL+17,)? +m2 (2.40)
ergibt. Im CMS (Ruhesystem) vom Neutron soll gelten
E = my=E +E, +E; . (2.41)

Nachdem man die Winkelintegrationen ausgefiihrt hat, wurde das Matrixelement iiber-
haupt nicht beriicksichtigt, ob es sich als winkelunabhingige Groéfle verhilt. Im letzten
Abschnitt wurde gezeigt, dass das Matrixelement winkelunabhéngig ist und als Konstante

bzgl. Winkelintegration betrachtet werden kann.

2.3.3 Untersuchung des nichtrelativistischen Limes fiir das Proton

Wie vorher erwéhnt kann man den Neutronen G—Zerfall als Umwandlung des Neutrons
in ein Proton unter der Erzeugung des Elektrons und Elektronenantineutrinos betrachten.
Bei diesem Prozess wird die freigesetzte Enrgie, die der Massendifferenz von Neutron und
Proton entspricht, in die Masse des erzeugten Elektrons und Elektronenantineutrinos,

sowie der kinetischen Energien der beteiligten Teilchen umgewandelt
Eo =my, —my = E. + Ey, + Ep, < mpy,my (2.42)

Diese Gleichung ist genau dann richtig, wenn man den Impuls des Protons gegeniiber sei-
ner Masse vernachlédssigen. Man weif, dass die Masse des Protons viel grofler ist als die
freigesetzte Energie und daher kann die Geschwindigkeit des Protons gegeniiber der Ge-
schwindigkeit des Elektrons oder Antinneutrinos vernachlissigt werden. Der Impuls ergibt
sich aus dem Produkt der Masse und der Geschwindigkeit und kann nicht vernachlassigt
werden. Wie kann die Gleichung (2.42) gelten? Um diese Relation zu beweisen, stellt man

den Energie-Erhaltungs-Satz im Ruhesystem des Neutron auf

mn=FE + E.+ Ep, . (2.43)
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Unter Anwendung der relativistischen Energie-Impuls-Relation léasst sich die obige Glei-

chung folgendermaflen schreiben

my, — E' = E, + By,

my — \/m%‘FP/Z :E6+El75

/ 2
r%—mp1+<p> — B+ E, . (2.44)
mp
Da die kinetische Energie des Protons Ej;, im Vergleich zu seiner Masse sehr klein ist,

entwickelt man in eine Taylor-Reihe

() o ((2))

S\ 4
Man kann die Terme, welche groflere Ordnungen als O <<n€p) > haben, weglassen, da

My, — My =FE.+ E; . (2.45)

diese Terme kleiner als O(107°%) sind. Auf diesem Grund erhilt man

1 p12
mn—mp—2<m>:Ee+El/5
P

Ey— EN™ = E. + Ey,
Ey = B + By, + EF™ . (2.46)
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2.4 Radiativer §—Zerfall

Wie vorher erwéhnt wurde, spielt das Neutrino in der Physik der Wechselwirkungen eine
groe Rolle. Daher ist es wichtig, seine Masse zu kennen. Da die Neutrinos der schwa-
chen Wechselwirkung unterliegen, ist die Bestimmung ihrer Massen nicht einfach. Bei der
direkten Methode zur Bestimmung der Elektronantineutrino-Masse untersucht man das
Spektrum von S—Elektronen. Dazu beobachtet man den Endpunkt des Spektrums, wo die
Energien der Elektronen maximal sind und kann aus der Energie-Erhaltung auf die Masse
des Neutrinos schliefen. Wie in der Abbildung 2.4 zu sehen ist, weist das Spektrum sehr

kleine Abweichung auf, wenn die Masse des Neutrinos von Null verschieden ist. Da sich

Zerfallsrate Zerfallsrate
1i2

1000

|
[ 800 |

0.8
[ 600

0.6} \
400 ™ m=0eV

o 200 o g I,
0.2 m=10 eV '
0
0551015 20 T — T —T, 0 10
Energie E [keV] E-E, [eV]

Abbildung 2.4: links: f—Spektrum aus dem Tritium-G—Zerfall, rechts: Vergleich des End-
punktes fiir my, = 0 eV und my, = 10 eV [3]

das Spektrum so empfindlich verhélt, muss man alle moglichen Stérungen beriicksichtigen,
die das Spektrum beeinflussen kénnen. Eine der Moglichkeiten ist die Beobachtung der
radiativen g—Zerfall, wo es sich um einen Vierkorperzerfall handelt. In diesem Prozess

wird zusétzlich ein Photon emittiert

n(p) — p(p') + e (le) + Ze(l.) + (k) - (2.47)

Im diesem Abschnitt wird nur die Zerfallsrate dieses Prozesses berechnet und in den
néchsten Abschnitten (2.5) und (2.6) wird das Matrixelement ausfithrich mit Hilfe der

Spin-Polarisation-Summen und Helizitédtsamplituden-Formalismen hergeleitet.
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2.4.1 Zerfallsrate

Die differentielle Zerfallsrate des radiativen Prozesses lisst sich analog zum normalen Pro-
zess aus den Gleichungen im Anhang B herleiten. Die totale Zerfallsrate ergibt sich durch
die Phasenraum-Integrationen iiber alle erzeugten Teilchen. Der Unterschied zum norma-
len Neutronen-3—Zerfall ist, dass man fiir diesen Prozess auch iiber den Phasenraum des
Photon integrieren muss. Die differentielle Zerfallsrate ist gegeben durch
(2m)* . > ‘ d3l, ‘ d®l5, ' 3k

2m,, (27)32E" (27)32E. (27)32E;, (27)32w

- M? 5(4)(17 —p' =l —lp, — k)

arr =

1 1
= —— &% Bl Bly, Pk ———
32mn(2m)8 7 . E'E.Ey,w

CAMP SO W L+ by, + BV (my — B~ B~ Ep —w) . (2.48)

Zuerst fithrt man die Integration iiber den Phasenraum des Protons aus. Zur Integration
verwendet man die relativistische Energie-Impuls-Relation des Protons B/ = /|p/|2 + m2
gilt

1

il = —— . &l - &>l - Pk -
32my,(2m)8 ¢

1
BeBpio /(i + T, + )2 + m2

W g — A/ Ty, 4 R 43— Be— By, —0) - IMB__ o

(2.49)
Man kann die Phasenraum-Integrationen in Kugel-Koordinaten formulieren. Aus der Energie-
Impuls-Relation ldsst sich die Formel EdE = |pldp durch partielle Ableitung herleiten.
Damit vereinfacht sich die differentielle Zerfallsrate zu
1

a0l = —— |l|dE.d. - I, |dE; dQy. - |k|dkdQy -
32mn(2ﬂ_)8 ‘ | | e‘ e e | | k‘

1
O+ T+ Ry m2

50 (et Ty, + )22~ Be = By, —w) IMB__ ¢ o

(2.50)

Als letztes integriert man iiber die Energie des Neutrinos. Aus der —Funktion ergibt sich

eine selbstkonsistente Gleichung fiir die Energie des Neutrinos,also

By = mn—Eo—w— /(. +1, +F)?+m?

E, = mn—Ee—w—\/yfe\u\fge\?ﬂé\uﬁ-fDe+fe-E+lge~l¥+mg .(2.51)

Bevor man diese selbstkonsistente Gleichung 16st, vereinbart man, dass die Impuls-Richtung

des Elektrons der z-Achse entspricht. Dies vereinfacht die obigen Gleichungen. Mit dieser
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Vereinbarung fiihrt man zwei niitzliche Groéflen ein

~

le - lp, = cosOp, = x5,

~

lp-k=cosl=x, . (2.52)

e i

Die selbstkonsistente Gleichung fiir Ey_, Gleichung (2.51) ldsst sich mit mathematischen
Umformungen l6sen. Dazu 16st man eine quadratische Gleichung nach Fj . An dieser
Stelle wird der Rechenweg nicht ndher erldutert und nur das Ergebniss mit Hilfe der oben

defienierten Groflen angegeben

B m2 +m? — mIQ) —2myu(Ee + w) + 2Eew — 2, - k ' (2.53)
2 <mn —FE, —w+ |l_;|:1:f,e + k- Zpe>

Nach der Integration iiber Energie des Neutrinos ergibt sich fiir die differentielle Zerfalls-
rate
Ep M2

my, — Ee —w — Ep,

1 -
A0 = —— wdw - |lL|dE, - dQudy, Y, -
Sam 2y Wl lel S

l:p_le_lﬁe_k

(2.54)

Bemerkung: Ej, in der Gleichung (2.54) ist nur ein Symbol fiir Ej;, aus der Gleichung
(2.53). Ep, kommt in dieser Gleichung nicht mehr vor, da man {iber die Energie des
Neutrinos schon integriert hat.
Um die totale Zerfallsrate des Prozesses zu erhalten, muss man {iber die gebliebenen
Phasenrédume aller Teilchen integrieren. Es gilt
ymaz pmas _ 2
r = W/wm wdw /m lo|dE, - Q - i;wg;pflﬁf . (2.55)

mit dem Winkelanteil €2

Q = /dQekodQl,e . (2.56)
Die Relationen (2.52) kénnen ohne weitere Probleme erweitert werden zu
cosbl, =z, = —sinb; df, =dzp
cosby, = x5, =  —sinby, dbp, =dry, . (2.57)

Man setzt diese Gleichungen in den Winkelanteil €2 ein. Man hat hierbei vereinbart, dass
als Flugrichtung des Elektrons die z-Achse gewihlt wird. Damit erhélt man fiir die Win-

kelintegration {iber das Elektron die Konstante 47
Q = /dQe/dackdcpk/deedcpye = 47T/dxk/d:c,,e/dcpkd<p,,e . (2.58)
=4

Die Flugrichtung eines der verbleibenden Teilchen (7, oder 7) kann bzgl. der Flugrich-
tung des Elektrons festgelegt werden und die Grenze fiir die ¢—und 6—Winkel des an-

deren Teilchens in Abhéingigkeit vom ersten Teilchen behandelt werden. Hier wird die
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Neutrino-Flugrichtung festgehalten, wobei die Integrationsgerenze fiir den Photonenanteil

aus kinematischen Uberlegungen ermittelt werden kiénnen.

maz 21 Pk — 21
QO = 4r / dxp, / dzp, / dpy / dpyp,
min Pk

= 2(2n) / dmk/ dx,,e/ dep, . (2.59)
min (p

Fiihrt man eine neue Grofle genannt ¢~ ein, um die Integrationsgrenze im dritten Integral

durch Konstanten zu ersetzen

¢ =k — . (2.60)

es ergibt sich

pmaz

'Ircnaz 2 k 27
Q = 2(2m) / dxk/ dxl,e/ = 2(2n) / dxk/ d&"ye/ do~.
261

Damit ist auch der Winkelanteil bekannt. Jetzt erhilt man fiir die totale Zerfallsrate des

radiativen 3—Zerfalls die folgende Gleichung

1 wT’LafL' E;VLHHL' '"LIZ‘L 1 27-(-
r — — d L|dE. d d de~
umm@mﬁl;m“’wﬁh L] /;m xﬂ[ o |49
Ef’e |M ‘?]’:p—le—lﬂe —k

2.62
mpy — Ee —w— By, ( )

In diesem Integral stehen fiinf Inetgartionsgrenzen, die noch unbekannt sind. Indem man
W™ leicht berechnen kann, wird w™™ nicht einfach bestimmen, da es von der Auflésung
des Detektors abhéngt. Wenn man den theoretischen Wert fiir die Auflésung des Gerétes
nicht kennen wiirde, konnte man die totale Zerfallsrate nicht ausrechnen. Um das Problem
zu beseitigen, kann man statt der totalen Zerfallsrate die differentielle Zerfallsrate nach der
min

max

Energie des Photons dI'/dw berechnen, wo keine der Integrationsgrenze w und w

vorkommen. Die entsprechenden Grenzen werden statt dessen im néchsten Abschnitt aus
der Kinematik des Zerfalls berechnet.
Vor Abschluf} dieses Kapitels, wird noch gezeigt wie die Energie des Neutrino direkt aus

der Vierer-Impuls-Erhaltung bestimmt werden kann. Es gilt
p = pHletls+k . (2.63)
Im CMS des Neutrons lassen sich die Energie- und Impulssétze folgendermaflen schreiben

m, = E'+E.+FE, +w |, (2.64)
0 = pPHl+i,+k . (2.65)
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Man kann die Gleichung (2.63) umformen und erhélt so

p—p —lp =le+k
2
(p—p 1) =+ k)
my +mo +mp, — 2ply, — 2pp + 2p'ls, = m? + k° +2kl,
=0
m2 4+ m? — mz — 2mp(Be + w) + 2Bow — 2, - k = 2p'ly, . (2.66)
Das Skalarprodukt der letzten Zeile kann in folgenden Ausdruck entwickelt werden

2wy, = 2E'E, —2p -1, . (2.67)

Die Energie und den Impuls des Protons E’ ersetzt man aus der Gleichungen (2.64)

2p’ll—,e = Q(mn — Ee — El-,e — w)E;e + 2(le ll—,e + ) . ll—/e
= 2(my—BEe—w)By, —2 B2 +2 (I, +k)-l, +2 E2.
= 2(mp—Be—wly-ly, +k-15)Es . (2.68)

Die Energie des Neutrinos wird durch Einsetzen der obigen Gleichung in die Gleichung
(2.66) bestimmt, d.h.

B - m2 +mZ —m2 — 2my(Ee + w) + 2Eew — 2 - k ‘ (2.60)

’ 2(mn—Ee—w+ZQ-i—e+£-i;e>

Dies ist mit der Gleichung (2.53) identisch, wenn man die Definitionen fiir z; und zp,
verwendet.

Bemerkung: Bei der Herleitung aller Gleichungen in diesem Abschnitt wurde angenommen,
dass die Masse des Neutrinos gegeniiber seinem Impuls zu vernachlissigen ist, was mit der

Relation Ej, = |pp, | identisch ist.

2.4.2 Bestimmung der Integrationsgrenzen

An dieser Stelle werden die Integrationsgrenzen abgeleitet, die zur Berechnung der totalen
oder differentiellen Zerfallsrate bekannt sein miissen. Zunéchst wird die maximale Energie

des Elektrons bestimmt. Ausgangspunkt ist die Vierer-Impuls-Erhaltung

p=p +le+lp +k
p—le—k=p +1y,

m2 +m? + k% +2kl, — 2m, Ee — 2mpw = m2 + 2E' By, — 29 - I, . (2.70)
=0
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Dadurch findet man eine Relation fiir die Energie des Elektrons

B m2 +m? — mg —2mpw — 2(E'Ey, — p' -, (2.71)
e - R N . .
2(my, —w + wlé—e!le k)

Der Term in der Klammer hat im Vergleich zur Masse des Protons einen kleinen Beitrag

) E'E,
my + 2E'Ep, ( - p’) ~m; — 2E'Ey, =m) (1 -2 ”6>

P 2
mp

~mp (1 - zi”p) ~mlo (2.72)
da 2:2—”; < 1 ist. Die frei werdende Energie, die zur Erzeugung des Elektrons, Neutrinos,
Photons und ihrer Impulse verfiigbar ist, betrdgt Ey = m,, —m, und ist im Vergleich zur
Masse des Protons geringer. Die Energie des Elektrons ist genau dann maximal, wenn sein
Impuls den gréftmoglichen Wert annimmt. In diesem Fall werden die andere drei Teilchen
in eine dem Elektron entgegengesetzte Richtung emitiert. Fiir die maximale Energie erhélt
man
m2 +m?2 —m? — 2m,w

Emer b _ , (273)
2(my, — w + wpmez], - k)

. |l_'e|maac

3 max
mit B = Sna
e

Die erste unbekannte Integrationsgrenze ist durch diese selbstkonsistente Gleichung fiir

ET* mit vorgegebenem w bestimmt.

Um die differentielle Zerfallsrate dI'/dw auszurechnen, muss man zuerst die Grofle ki - Z—e,
die in der Gleichung fiir Ejp, vorkommt, durch die Integrationsvariable darstellen. Dazu
transformiert man die beiden Vektoren, k und l:;u in Kugelkoordinaten und bildet ihr Ska-
larprodukt. Unter Anwendung der Additions-Theorem der trigonometrischen Funktionen

ergibt sich

k-l = \/(1 — 22 )(1 —23)cos¢p™ + zp.z - (2.74)

Die Integrationsgrenze fiir die x—Integration folgt aus der Gleichung (2.53). Ej, ist eine
positive Gréfe und somit ist auch der Nenner in der Gleichung (2.53) immer positiv ©. Es

ergibt sich fiir den Zahler in diesem Ausdruck folgende Ungleichung

m%—l—mg—mg—2mn(Ee+w)+2Eew—2ﬁ-E20 . (2.75)

SEs ist zu beachten, dass die Energien der erzeugten Teilchen im MeV-Bereich , die Masse des Neutrons
aber im GeV-Bereich liegen. Aufgrund dieses Arguments kann man sicher sein, dass der Nenner in der

Gleichung (2.53) immer positiv ist.
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Mit Hilfe der schon definierten Grofie x folgt

xp < [(m2 +m2 — mf,) + 2B.w — 2mp(Ee + w)] = 21" . (2.76)

2|le|w
Die untere Grenze fiir xj ist genauso wie die obere Grenze zu bestimmen. Zuerst setzt

man die Gleichung (2.53) in Ungleichung
My — My — Ee — Ep, —w >0 (2.77)

ein. Man erhélt so fiir x;,

1
Ty = [(mi +m?2 — m}%) +2E.w — 2my(Ee + w)
2|le|w
— 2(my —mp — Be — w)(my — Be — w + |lg|xn, +wk-15,)| . (2.78)

Die Terme z, und l%-l}e sind auf den Bereich -1 und 1 beschrénkt, da folgende Beziehungen

gelten
x5 =cosby, € [-1,1] ,  k-ly =cosZ(k,ly) € [-1,1] . (2.79)

Um den minimalen Wert von xj zu erhalten, muss zp, seinen maximalen Wert annehmen,
d.h. 2y, = 1, und I%-l:;e aus der Gleichung (2.74) mit x5, = 1 berechnet werden. Die

selbstkonsistente Gleichung fiir xZ”" lésst sich folgendermaflen 16sen
1

(2w(E. — |lo] — mn 4+ my + w))

min

Lk

2E2 — m? + 2|lc|my, +m?2 — 2l,my, — 2m,m,
+ m}% — 2B (|lo| + my — my —w) — 2)lo|w — 2mpw + 2mpw + Qwﬂ (2.80)

Im vorherigen Abschnitt wurde erwiihnt, dass der Wert w™" durch die Aufléssung des De-
tektors bestimmt ist. Aber die maximale Energie des Photons ist aus der Vierer-Impuls-

Erhaltung zu berechnen. Dieselben Gleichungen, die man fiir die Bestimmung der maxima-

len Energie des Elektrons E*** benutzt hat, werden hier gebraucht, um w™** zu finden.
Aus diesen Gleichungen folgt fiir die Energie des Photons
2 2
My, — Me)” —ms — 2myp E,
_ (mn—me) P = (2.81)

2(my — Ee + |le|le - k)
Das Photon hat seine maximale Energie bzw. seinen maximalen Impuls, wenn das Pho-
ton in eine Richtung und die anderen emmitierten Teilchen in entgegengesetzte Rich-
tung fliegen. In diesem Fall muss man zusétzlich beriicksichtigen, dass der Zidhler seinen
groBtmoglichen Wert annimmt und der Nenner seinen kleinstmoglichen Wert. Mit dieser
Begriindung nimmt die Energie des Elektrons ihren kleinstmdoglichen Wert m, an

(mp —me)? — mg — 2mpyme

mar . 2.82
v 2(my, —me) (2:82)
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2.5 Die Feynman-Amplituden des radiativen (—Zerfalls

Aus den Feynman-Regeln kann man die Feynamn-Amplitude fiir den radiativen §—Zerfall

n(p,sn) — p,rp) +e (esre) + Ve(lp,, 75.) + (k. €) (2.83)

aufstellen, wobei k der Vierer-Impuls des Photons mit der Energie w und der Polarisation
€ bezeichnet.

Das Photon kann nicht vom Neurino emmitiert werden, da die Neutrinos der schwachen
und nicht der elektromagnetischen Wechselwirkung unterliegen. Es bleiben nur drei ver-
schiedene Moglichkeiten. Das Photon kann entweder am FElektron oder am Proton als
Bremsstrahlung oder am effektiven schwachen Wechselwirkung-Vertex gekoppelt werden.
Der Anteil fiir den Bremsstrahlunsbeitrag lasst sich geméfi der QED-Regeln folgenderma-

Ben schreiben

M = M+ M,

iegv(\;/g {a(zawwm P Yolln) - (1 — Mys)u(p)

- (=)ol a) Lo

ol - m-,)u@)} o @2s)

In der QED kann man die Photonen-Emission aus dem schwachen Wechselwirkungsvertex
gegeniiber der Bremsstrahlungsbeitréige vernachlissigen [1] und muss dabei nur Matrix-
elemente zweier Prozesse und ihren Interferenzbeitrag berechnen.

Im folgenden werden die Quadrate der Feynman-Amplituden fiir die Bremstrahlungen
|Mq|?, [ Mp|? und der Mischungsterm M M} 4+ MM, berechnet. Bevor die Bremsstrah-
lungsbeitrage und ihre Interferenzterme explizit berechnet werden, wird zuerst der Spin-

und Polarisationssummen-Formalismus anhand eines Beispiels ausfiihrlich demonstriert.

2.5.1 Zerfall eines Fermions in 3 Teilchen und Photon

Da man in dieser Arbeit 6fter auf Feynman-Amplituden und ihre Quadrate trifft, ist es
niitzlich, einmal die komplette Herleitung anhand eines Beispiels darzustellen. Hier wird
die Herleitung des Bremsstrahlungsbeitrags vorgefiihrt, der durch die Photonenkopplung
am Elektron erzeugt wird. Hier wird dieser Beitrag auf der Elementarteilchenebene be-
trachtet. Auf dem Kernniveau steht in der Feynman-Amplitude des radiativen Zerfalls
im hadronischen Anteil eine Konstante A = 1,267 [1]. Auf der Elementarteichenebene
ist A = 1. Mit A # 1 tauchen zusétzliche Termen auf, die mit Relationen im Anhang D

leicht auszurechnen sind. Hier betrachtet man den Zerfall des d-Quarks in das Elektron,
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Abbildung 2.5: durch das Elektron erzeugte Bremsstrahlung

Elektronenantineutrino und u-Quark. Die Feynman-Amplitude dieses Prozesses ist
L9V |- e JLHme (1_'75)
M, = ZE |:u(le) ) Z@?Z*Z ’ lé _ mg 7a 9 U(lﬂe)
( Jop + )
k2 —mi, + i€

.g oy (1_75)
i [u@ >¢32u<p>] . (2.85)

Da m%,(, > 1 ist, vereinfacht sich der letzte Ausdruck auf
2 l 5 ; 5
.9 — . Ik e + Me a 1- 19a — - Y
Ma = 1% a1 iet'ic Je =0 BT o) 282 oy B ).

2 2 2
2 Iz —m2 2 myy

K., k’

Am QED-Vertex gilt noch die Relation I, = I — k. Es ergibt sich

2 *
.Gy _ g (Je + me + K) a 5 S~
M, = =L le 1— ls,) - ol —
e 8m12/‘/ u( qg _mg + k2 +2(lek)’y ( f}/ )U( e) u(p )’y ( 75)u(p)
—— ~
¢y =0
vz
(2.87)
unter der Verwendung der Dirac-Gleichung u(l.)(—/c + m.) = 0 und der Gleichung
ﬁl*le = _,le¢>|< + 2165* (288)
erhilt man
o GE [ A A EH o
M, = Zeﬁ u(le) 2. k) Y1 =¥ )(ls.) - (P )va(l — v5)u(p)
G
= de—={a(le)Ow(lp,) - u(p ) Opu(p)} 2.89
7 = {all ~u(p)Opu(p) } (2.89)
mit
2lee* + o
o Hopa—) . ov=ml-1) (2.90)
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Zur Berechnung von |M,|?> muss man die Methode der Spin- und Polarisationssummen

anwenden. Es gilt

M= Y Y IMP

Polarisation  Spins

e2G2
- fF Z Z | {a(le)OlU(lr/e Ohu } |2

- ezg%gjsgs{-(z)o (I.) - u(p)O a(p)Ou(p') - (1, ) Opu(l
) i(1e)Oro(ls,) - u(p')Onu(p) } { a(p)Orup') - (1) Oru(le) }
A Spins
2
_ GFZ Tr (e +me)Oulfs, — mz)Oo| Tr [+ ma) 0w + my)On]
— QfF A°B,s . (2.91)

In der obigen Gleichung treten die Operatoren O, und O; auf. GeméiB der Definition lassen

sich die beiden Operatoren umschreiben [6]

On = 7057 =71 =) 0
= 201 =75)"73)70 =1 =73 )75)70 =101 —75)75 )70
= (1+75)10%07870% = (1 +75)78
On = v(l=15) , (2.92)

und

~ 2166* 4 g +
O = ”YOOf— 0= ’YO [(W) ’Yﬁ(l - 75)} ’YO
1

o] YO (1 = A5 H)yP (2el, + BT ¢T)A°

1
e

1

= (1 VY8 (2ele + #f)

O = O=+*1—-~9) (W) | (2.93)

Man kann mit Hilfe von O; und O; den Beitrag A%® berechnen. Hier wird jeder Schritt

ausfiihrlich erkldrt, damit die Herleitung nachvollziehbar scheint
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- E:@&M{TTbeuﬁ+fm¢“®”ﬂhnﬂl—fﬂkk+%ﬁ}

A

T [me(@ee” + # B0 (1 =772 (1= ) 2ele + HF))

= 7 [me(2es + £ B0 (1= 7" )ms, 1" (1 = 97) 2zl + )]

= T [fe@les™ + # (1= P (1= P el + B} (294
Die Spur im zweiten Term besteht aus einer ungeraden Anzahl von ~y—Matrizen und
verschwindet. Die beiden letzten Terme verschwinden auch, denn

1-7)1+)=1-(")2=1-1=0 . (2.95)

Durch Ausmultiplizieren erhélt man

A = oy ST (2L £ (=9 (L= 72l + )
€ A -

= (2k‘1l€)2 Z/\:TT Le(2lee™ + ¢ 1)L (2el, + 1) (1 — 7P)?

=2(1—7%)

= 2(};)2 ZTT _le(QleE* + )50 (2el, + Bé)(1 — 75)]
e )\ L

= 2(]{;1le)2 ; { Tr []teee*’ya,lDe’YBQ&le(l — 75)} +Tr [le¢*l¢7a196762€l6(1 _ 75)}
+ Tr |2y L HE (L =) + T (Lt By L R (L = 7)) }
1
R

{ng”w37WVaﬂbaﬁﬂ—vﬂ}+Ww5€mTTVwMW%a¢%1—WW]
+ e Tr Loy Loy e (L= 20)| + 2" Tr Lo brhr W (1 = 7))}
(2.96)

Fiir das reelle Photon (k? = 0) kann man ), %™ durch —g°™ ersetzen [1][6][11]. Damit
ergibt sich fiir A*?

MﬁzQéb{w@ﬂyﬁ%%uwﬂ+Mﬂﬂm%%ﬁm—ﬂ}

+ 2 Tr [[r o7 W (1= 7)| + 97 T Loy lo e (1 = 47)] |
(2.97)
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Wenn die Relationen

l'gleu = mz ) 'VT/le’YT = _2/16 (298)

in die letzte Gleichung eingesetzt werden, lisst sich diese umformen zu
4 = L L am? Tr 10" 2] 42 T [ o= 7))

2(kl.)? € ¢ ¢
+ 2T [ Lo B = 27)| + Tr (L lo (1= 77)]
LI ap AB(] _ P 2 0 (1 _ P
37 Ve Tr et (=07 + 22 T 1 7(1 = )

+ 2m2 Tr [y K+ 37| + T ey Bl (L +77)| |

_ —1 2 ay Bl _ A5 2 ay B(1_ 5

= 2L {4me Ir [Iev foy (1= )} +2mg Tr [/ﬁ oy (1= )}

+ 2m2 Tr [§y°1o"(1=77)| + (=2) Tr [Leby Loy B +7%)| } - (2.99)

Fiir die Berechnung des letzten Termes kann man die Gleichungen aus dem Anhang D
iibernehmen. Es miissen nur die Operatoren in der Spur zyklisch vertauscht werden und
die Formel ¥/, = 2kl, — J.¥ benutzt werden. So erhiilt man mit }¥ = k? =0

AP = Q(kli)g {4m§ Tr [Ievalmﬁ(l - 75)} +4m? Tr [/W‘Im[’(l - 75)}
+ (=2) Tr [Hlebr " (= 2)| }
—1

= S 4 T [fer T (= )] A T [ (1= 97)|
— 4kl Tr [/W“laevﬁ(l - 75)} +2Tr [Ie/%/%valmﬁ(l - 75)} } . (2.100)
Insgesamt ergibt sich fiir A*2
aot = s {(md = k) T [y (0= 7))+ m T [l 1= 4]}
(2.101)

Es gibt eine einfachere Herleitung fiir B,g, da in diesem Fall kein Photon mit dem u-
Quark koppelt, und der Term mit Photonen-Polarisation wegfillt. Fiir diesen Term kann

man folgenden Ausdruck ausrechnen

Bag = 2Tr[Kpyalnys(l—7s)]. (2.102)
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Mit Hilfe der obigen Gleichungen kann man das Quadrat des Matrixelementes |M,|? finden

e2G>
|MCL|2 = TFAaﬁBozﬁ

eQG% —2

PN TRE
A m2 = k) Tr 197" (0= 2%)| + m2 Tr [yl (1 = 7)) }
ATr Ipvafnvs(1 —5)]}

(2.103)

Die Produkte kénnen aus den Formeln, die am Ende vom Anhang D stehen, berechnet
werden, d.h.
2

IMo2 = —64 GQF(I;W [(m2 — ki) (kp) + m2(1ep))] (ln.p) - (2.104)

2.5.2 Die Kopplung des Photons am Elektron

Hier wird die Kopplung des Photons am Elektron betrachtet.

Abbildung 2.6: Kopplung des Photons am Elektron

Die Feynman-Amplitude fiir diesen Prozess ist

M, = “r g, qu =) vu(ls.) - w(@') ya(l = Ay5) u(p)
e —

1eqy —
gvﬂ

=H
= iegvi;/g {a(le)Ho(lz,) - a(p")Gu(p) }
(2.105)

Um |M,|? zu berechnen, muss man die Spinsummen, die im Abschnitt (2.3.1) erklirt

wurden, und die Polarisationssummen des Photons anwenden
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M= Y T M

Polarisation  Spins

o 5 v (et m s~ mo 1] T [+ mp)GG6 -+ m)d].

7Ab¥ﬁ EBQB

(2.106)

Im Abschnitt (2.5.1) steht die vollstindige Rechnung fiir die beiden Termen A%’ und
B,g. Der Ausdruck fiir A8 kann direkt aus dieser Rechnung iibernommen werden Im
Vergleich mit der Rechnungen im Abschnitt (2.5.1) gibt es hier nur einen Unterschied, und
zwar in der Rechnung fiir B, ist A # 1. Dies fiihrt zu zusétzlichen Termen die mit Hilfe

der Relationen im Anhang D leicht berechenbar sind. Man erhélt fiir diese Terme

a7 = s {2 = H0) Tr [0 =97+ T [l = )]}
(2.107)
und
B, = (1+ AT []5/’)/()(%’)/5} —2\T'r [ﬁ"ya]é'yg%} + mpmp(1 — AT [Yas] -
(2.108)

Damit ist | M, |?

2 2 G2 1
Maf* = g (k.
{( ki) [lmazye (A=) + m2 Tr [fr®ler®(1 7)) }
A )T [Prapys] — 20T [P vaprsvs) + mpma(l = X)Tr [vavsl}

+ (1= N)? [(m? = kL) (pk) + mZ(ple)] (9'l5.)
m2 —kle) (kly,) +mZ(lels,)] (mamy) } . (2.109)

Im CMS vom Neutron und unter der Beriicksichtigung der Tatsache, dass der Riickstof3

des entstandenen Protons gegeniiber seiner Energie sehr klein ist, erhiilt man fiir |M,|?
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mit dem der Vierer-Impuls des Photons k = (w, k)

2
2 _ € va 32
Mal” = SRUAE

{[0+33)Bp (@ + B + (1= 2)(E-
+ |0+ 3N EEy, + (1= (0, - I7,)| (kL) |

Fl

2.5.3 Die Kopplung des Photons am Proton

Dieser Abschnitt handelt von der Photonen-Kopplung am Proton. Die Feynman-Amplitude

Abbildung 2.7: Kopplung des Photons am Proton

sieht der Feynamn-Amplitude aus dem vorherigen Abschnitt dhnlich. Der Term, der die

Polarisation und den Vierer-Impuls des Photons enthélt, steht hier jedoch im hadronischen

Anteil
— ieav CE a4 (1 — ) ol ) PETEE
N =F

. Gp _
— iegv 2L [u(le) Evo(is, )] [4(p)) Pu(p)] (2.111)
V2
Fiir das Quadrat der Feynman Amplitude ergibt sich

M2 = © QVGF S° T (e +m)E(s, —m)E] - Tr [0+ my) (b +ma) F
Pol.
(2.112)

Um eine wiederholte Rechnung zu vermeiden, werden die einzelne Schritte, die bereits im

Abschnitt (2.5.1) und im Abschnitt (2.5.2) stehen, weggelassen. Es gilt fiir [M,|?

2 2 2
|Mb‘ - 2 (k‘ )2
(m

{ ( [

— kp') (kle) +my(0'le)] (pls.)
k‘p,) (klz,) —|—m pll’e)] (ple)
kp') (lels,) ] mnmp)}

[( mp =
) [(m} (2.113)
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Fiir den nichtrelativistischer Fall erhélt man unter der Annahme, dass die Terme der Ord-
nung (mip) kleiner gegeniiber der anderen Termen vernachléssigt werden konnen, erhélt
man fiir | M,|?

B 629‘2/G2F 32

2,,2
2 myw

My =

 mm3 - {(1 + 3N By, Be + (1 — A2)ly, - f} . (2.114)

2.5.4 Interferenzterm

Wenn man das Quadrat der Feynamn-Amplitude in der Gleichnug (2.84) bildet, erscheinen
neben den |M,|? und |M,|?—Termen zwei zusitzliche Terme M, M; und MM,

(Mp+Mp)? = (My+ M) (M + Mp)*
= [Ma|* + [Mp)? + M M+ MM, . (2.115)

Interferenzterm

=

Abbildung 2.8: Interferenzterm

Es geniigt, wenn man einen Term aus dem Mischungsterm aurechnet, da
MMy = (MEMp)" . (2.116)

Verwendet man die vorherigen Abkiirzungen, die y—Matrizen und die anderen zuvor ein-

gefithrten Operatoren, so erhélt man

62 2 2 } )
MaMy = Q#GF% DO ladle) Ho(ly,)) [u(p')Gu(p)] - [ﬂ(p)Fu(p’)} [@(lpg)Eu(ze)}
Spin Pol.
62 2 3 i
- QZGF Z Tr [(le +me)H(l5, — myE)E] -Tr [(pf’ +mp)G(p + mn)F}
Pol.
_ 629%‘GF S 00, . (2.117)
Pol.

Wie alle anderen Relationen aus den vorherigen Abschnitten und dem Abschnitt (2.5.1)

sind folgende Terme zu erhalten
vl = (kie) {@d") Tr [t/ = %) + Tr [Led Bl (1= 7|}
(2.118)
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und

1

34

Oap = g L2 Tr [F a5l — Ms)2] + Tr [Fradbrshd (1 — Ms)?]

+ 7"11177%(1 - >‘2) ((2p/¢) Tr [’Vcﬂ/ﬁ] + Tr [¢%70/75])}

‘ @2
MR = MM+ MM = & gV £S5 (090,54 + (1990,5)")

Pol.
_ CwGr 1
- 2 (kl)(kp)
)

{2 (1+M)*(lep
—2mymp(1 — )\2)(l —ep')(lels,)
[ (L+A)?(kle)(lep) (l.p) — (kD)

lele)(lz.p) + (le

( (
+ (1= N (kle) (lep) (l.p') = (kp') (lep) (Inle) + (Iep
)

[ (1+2)?(kle)
+ (1= A (kp

—1mpmy(

(lep') (l5.p) — (Kle)(P'P') (l5.p) + (kp
)

1= X%)(Lel, ) (Kle)

—mmp(1 —

(lep')Uzep) +2 (1= N)?(lep') (lep) (')

p)(kle) (ln.p)

lep )}
(p'p) (lep
1ep') (ln,p) — (Kle) (pp") (lp.p) + (kp )(lep)(uep )]

A?) [(Lep') (Klz,) — (Kle)(Pl5,) + (kp) (el )] }

(2.119)

(2.120)

Man kann jetzt untersuchen, was sich fiir (2.120) im nichtrelativistischen Fall im Ruhe-

system des Neutrons ergibt. Der Impuls des Protons wird im Vergleich zu seiner Gesamt-

energie vernachléssigt. Der Interferenz-Term ist

‘90Gy 32
2 mpw(kle)

MR = Mo MG+ MM = — &

{mnmg [(1 +3N2) By, (22 + Eow — ki) + (1 — A?) (2EJe T+

MMy [(1 + 3N\ E.Ey, + (I, - l_;-,g)} (mpw)}

2.5.5 Das gesamte Matrixelement

Wie im Abschnitt (2.5) erwdhnt wurde, besteht das Matrixelement des —Zerfalls aus drei

Termen, welche bereits berechnet wurden. Im nichtrelativstischen Grenzfall ergibt sich das

Matrixelement des §—Zerfalls
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2,2 (32
|M|2 _ _69#32.

{T(r;’;”;g : {(1 + 3By (w+ E) + (1= M) (k- 1y, + 1y, - ZZ)} (m? — ki)

mnm;"; 2 N
+ ot (L4 83 By, B+ (1 - M), - I
P

2
mpmy,

R S 2 = 2 -
il L+ 3X) Br, (282 + Eew — kle)
+(1—A2) (21_@@?e Ay, + Eck - fy)} }

(2.122)
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2.6 Helizitatsamplituden

In diesem Abschnitt wird eine Methode erklart, mit deren Hilfe man beliebige Feynman-
Amplituden mit externen Fermionen und Vektorbosonen berechnen kann. Solche Ampli-

tuden kénnen in Form der ,, Fermionen-Kette* (engl. fermion string) ausgedriickt werden
2]
1Padds - dnta (2.123)

a!' steht fiir beliebige Lorentz Vierer-Vektoren und ; fiir allgemeine Vierer-Spinoren

i = u(pi, \i) oder v(pi,A\i)

wobei p; der Vierer-Impuls und \; der Helizitdtseigenwert ist. In (2.123) ist der Helizitéts-
operator P, gegeben durch

1
PH:§(1+"€'Y5) , K==

Fiir alle Spinoren und y—Matrizen verwendet man die chirale Darstellung

0 o -1 0
™= ), = : (2.124)
a0 0 1

mit 2 X 2—Pauli-Matrizen

wensa- () (000 (00)

Fiihrt man 2-komponentige Weyl-Spinoren ein, die gemé&f

(Vi) -
i = ( (61)s ) , Y= ((wi)i,(d}i)*_) (2.125)

definiert sind, und 2 x 2—Matrizen (¢)+ mit

IV (U (O
d = w"—<(¢)_ . ) . (2.126)

Die (¢)+ lassen sich durch ihre Komponente umschreiben

a’ F a3 F(at —ia?)
)= ( F(a! +ia?) a + a3 > ' (2.127)

Die obige Relation ist leicht zu beweisen

—a " =a 0 ok ) _ 0 auof \ _ 0 (d)+
¢ = ”‘“(ﬁ 0>_<auaﬁ 0 >_<(¢) 0 > !
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a® F a3 F(a! —ia?) )

(d)+ = a0t = apl — a0y — axo? — azol = )
g F(a* +ia?) a® £ a?

Wenn man den Helizitdtsoperator auf Weyl-Spinoren anwendet
diPr = (0,@L) . wP = (W)l0) (2.128)

und diese in (2.123) einsetzen, erhilt man eine neue Fermionen-Kette, in der statt der

4-komponentigen 1; —Spinoren die 2-komponentigen Weyl-Spinoren auftreten

V1P dids ... dntby = (1)) [a1, a0, ... an)" (V2) 5, - (2.129)
Hierbei gilt

[a1,a2,... 00" = dud - d_5.kx (2.130)

wobei die Definition d,, = (—1)" verwendet wurde.
Jetzt will man eine Lorentz-Index-Kontration zwischen den verschiedenen Spinoren-Ketten

durchfiithren. Zu diesem Zweck benutzt man die Fierz-Identitéiten [2]

(Ui)ij (OFu)y = 200k
(0h); (oxuyy = 20030 — dad] (2.131)
1,7, k,1=1,2

Mit Hilfe der Fierz-Identitédten ist man in der Lage die Fermionen-Kette

(1) a1, az, ..., an)” (¥2), (2.132)

auszuwerten. Um dies durchzufiihren, verwendet man die Helizitét-Eigenzustéinde x4 (p)

- =

‘]Tfmp):m(p) . p=(E.9) (2.133)

als Basis der freien Spinoren v und v

u(p,\)x = wurlp)xalp)
u(p,Nx = Fdwga(p)x-ap) (2.134)

mit

wt(p) = VE£IP (2.135)
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und

X+(p) = 1 < WH)Z) :

2|ﬁ1 (|ﬁ| +pz) Py + 2.py

(p) = ! “Petipy 2.136
) 2|pw<|m+pz>< 71+ ps ) (2:130)

Diese Eigenzusténde gelten fiir den Fall |p] # p.. Falls |p] = p., sind die x+(p) gegben
durch

X+(p) = ( (1) ) , x-(p) = ( _01 ) : (2.137)

Die freien Spinoren u und v erfiillen die Dirac-Gleichung

prulp, N+ =mu(p,\)x , p+o(p, A+ = —mo(p,\)x (2.138)
und sind wie folgt normiert
a(p, Nulp, N =2m , o(p, No(p,\) = —2m (2.139)

Eine Verwendung der Helizitdtzustdnde als Basis der freien Spinoren hat den Vorteil,

dass sich die Spinoren durch ihre Vierer-Impulse ausdriicken lassen. Somit kann man die

F
7

Spinoren-Kette (2.123) iiber die Vierer-Impulse p p? wie folgt ausdriicken

W)l a1, a2, .., an]® (1)y = CiCjwpn, (pi)wya, () S (i, a1, az, ...  8ns D)3,
(2.140)

Die Koeffizienten Cj, C; sind konstant und héngen davon ab, ob die Spinoren 1);, ), Fer-

mionen oder Antifermionen sind

1 fii ;= S A
Cp = { ir (Yr)r = u (ks k), (2.141)
=\ fur (Yr)r = v Pk, =),
Der Ausdruck S lasst sich einfach berechnen
8 (pirar, -y anpj) = 004, (0) lar,az. @] (0, (2y) - (2.142)

2.6.1 Anwendung der Helitizidtsamplituden auf den radiativen —Zerfall

Man kann diese Methode auf den radiativen 3—Zerfall anwenden. Der Vorteil dieser Me-
thode gegeniiber den Spin- und Polarisationssummen besteht darin, dass man hier keine
Spuren ausrechnen muss. Die Spuren aus vier y—Matrizen sind einfach zu berechnen, bei

sechs, acht und mehr y—Matrizen muss man hingegen einen groflen Aufwand betreiben um
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sie auszurechnen. Der andere Vorteil ist, dass sich das Matrixelement mit verschiedenen
Polarisationzustdnden des Photons oder Spineinstellungen des Fermions leichter berechnen

lasst. Die Feynman-Amplitude ist schon im Abschnitt (2.5) gegeben durch

M = Mi+ M,
_degyGp [ o 2le* + 47K

— a(le)vp(1 = v5)v(ls,) - a(p')

V(1 =75)o(ls,) - a(p" )" (1 = Xy°)u(p)

217/8*"‘?[*/7/( )
WW (1—- /\75)u(p)}

(2.143)
Der Helizitatsoperator in der Fermionen-Kette hat die Form P_,, wobei x = =+ ist. In der

Feynman-Amplitude des hier betrachteten Prozesses hat der Helizitdtsoperator nicht die-

selbe Form. Durch eine einfache Uberlegung kann man den Term (1—\v°) folgendermafien

zerlegen
1-M° = a(l-~"")+801+7%) (2.144)
mit
1 1
a:§(1+)\) , 5:5(1—» . (2.145)

Mit Hilfe dieser Methode wird die Feynman-Amplitude fiir die Kopplung des Photons am
Elektron M, vollstéindig hergeleitet. Die Kopplung am Proton wird nicht weiter diskutiert,
da dieselbe Rechnung durchzufiihren ist. Es wird daher nur das Ergebnis angegeben. Man
kann leicht sehen, wie sich diese Feynman-Amplitude durch S—Matrizen umformen l#sst.
Eine Anwendung der Gleichung (2.144) auf M, fiithrt auf den Ausdruck

My = EEE s () 2L + ¢ P11 = 15)0(0,)
[8 a(p')y" (1 + 7 )u(p) + a a(@)y* (1 = +")u(p)] }
tegyGp 1

NG -Q(kle)A-B : (2.146)

Die Beitrdge A und B konnen getrennt bestimmt werden. Um A zu bestimmen, muss man

diesen Term in die Form der Gleichung (2.123) bringen. Dazu multipliziert man A mit
einem beliebigen festen Vierer-Vektor a”. Am Ende zieht man diesen Faktor wieder aus

der erhaltenen Gleichung heraus

a® = a’u(le)(2lee™ + ¢ K)vp(1 — v5)v(ls,)
= u(le)(2lee™ + ¢ H)d(1 — v5)v(l5.)
= e a1~ 15)0(0s,) + B0 HI — 5)el,) (2.147)



KAPITEL 2. THEORIE 40

Im Vergleich zum Helizitatsoperator fehlt hier ein Faktor . Dies ist durch eine Erweiterung

beider Terme um den Faktor 2 leicht zu beseitigen

I+

@ = 2 e (5 ) doltn) + 2 alt) (57 ) ¢ ol

= 2 (2 (w) (1) [a]” (0)-(n) + 2 ()L le) [, k]~ (v)- (1)
= a2 (2Le") (W) (l)op(v)-(ln.) + @ 2 (W)Ll [, K] 0p(v)-(In).

1+ s

(2.148)

Nun kann man wieder den Vierer-Vektor a” weglassen
A = 2 QL)) (o p(v)- () +2 (W) (L) [,k (0)-(z) . (2.149)

Eine dhnliche Rechnung fiihrt fiir B auf den Ausdruck
B = 28 wl@)ohu(p)+2a @)l (w)-(p) (2.150)

Die beiden Terme A und B werden in die Gleichung (2.146) eingesetzt, um M, zu be-

stimmen
. ievaF ) 1 )
Mo = =5 amgt P
. ievaF ) 4 ]
TV 2(k)
{CLe) W 1o p©)-z) B (W) B)ofu ()
)

+ (2ee®) (W) (l)o—p(v) - (I5,) - @ (W) (p)o? (u)-(p)
(W) e) [*, K] ()= (5,) - B ()} ()07 us
(W)’ (L) [, k) (0)=(ls,) - a (W) ())o” (u

Aus den Fierz-Identitdten (2.131) folgt

+
N _(p)} . (2.151)

ievaF 8

Mo = =5 <kz>'
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Jetzt werden u’s, v’s und die Kommutaroren durch die S—Matrizen und andere Grofien,

die im letzten Abschnitt eingefiithrt wurden, identifiziert

tegy G 8
. = . Ao Ap, Wy W, W Wy -
M NG 20kl {a o WA W— g, WA, W),

[(2lee®) (S(lesln)ars, - S@P)aprn — SUesP)rcrn - S®' 1) rrs, )

+ (S(leaf*ykjlr/e);em S, p)rapan — Ses e kD)5 'S(Pl,lae)Ap,\ae)}
+ 0 Ape W Wy, WA, Win, °
[(2lee™) S(lesp)rcnn - SO 1o ) a0,

+ S(l6)8*7k7p);€/\n . S(p/7ll7€)>\p)\,;e] } . (2152)

Analog gilt fiir M,

ievaF 8
Mb = \/i . 2(kp/) . {Oé )\Ije w_)\ew_,\gew_)\pw_)\n.

[2p'e") (S, o) rers, - S@ P)apr, — Sles P)acr, - S®' 15 )00, )
(Sl lidrene, - S Kp)s 0, = S, - S kb5, )|
+ 8 Ao, Wor W, WA, WA,
[(20'%) S(es P)rcrn - SO 15 ) Aps,
+ Sl P)acr, - S, €%, k,l,;e)jpx%]} . (2.153)

Die gesamte Feynman-Amplitude ist gegeben durch

M == Ma — 'Mb
iegyGr [ 4 fa A
v2 (kL) Pe WoAeWohpo Wod, Wk,
[(2165*) (S(le’ lDC)AE}‘ﬁe ’ S(p/7p))‘p>\n - S(l€7p)/\e>\n : S(p/7 ch))\p/\De)
* (S(le’ ek, lDE);\eAf/e ' S(p,’p)ApM = 5(e, €, k’p);\eAn S, lDe))\p)\De):|
+ 0 )\'76 WX W=, WX, W,
[(Qleg*) S(les P)rcrn ‘S(p/Jﬂe))\p/\,;e

* S(le’€*7k‘7p))_‘e>\n ) S(p/7l77€)/\p)\175:| }
4
k‘p/) . {a ADE WeW—Ape W=ApW—2p*

[(20e") (S, 1z )xers, - S@ P)Aprn — Ses P)acrs - S@' 15 ) 200, )

+ (S(lalﬂe))\c)\pe S kyp)y \, — SUesP)acr, - SO ", k,lae);pxge)}
+ B Ave WA Wor, WA, WA,

[(20'€") S(les P)rcrn - S@'s o) aphs,

+ Sl P)acr, - S, €%, k,lgﬁ)jpk%]} . (2.154)

—



KAPITEL 2. THEORIE 42

Um das Matrixelement auszurechnen, muss man zuerst die Feynman-Amplitude M qua-
drieren, d.h. man muss M mit M™* multiplizieren, und dann iiber alle méglichen Heli-

zitdten der Teilchen und Polarisationszustidnde des Photons summieren
1
2 *
(M2 =5 > oMM (2.155)
>\e,>\17€a>\p7>\n15r4l

Der Faktor % tritt auf, da man {iber den Spin im Anfangszustand mitteln muss. Die

Polarisationsvektoren des Photons sind definiert durch [2]

kA= 1) = !

= (0, koku kyha, — (W2 4+ E2)
%] <k3+k;>( ke =+ 1)

1
(kN =2) = —— (0, —ky, bz, 0) . (2.156)
(k3 + k)

Es ist leicht zu beweisen, dass diese Polarisationvektoren folgende Identitiaten erfiillen
kuet(k,A\) =0
eu(k, Nt (k,N) = —6xn (2.157)
Diese beiden Polarisationvektoren bilden zusammen mit dem Impulsvektor des Photons

k ein kartesisches Dreibein. Uber die Polarisationsvektoren kann man die zirkular polari-

sierten Zustdnde des Photons definieren. Sie sind gegeben durch

etk A= T) [Fe' (kA =1) — ich(k, A =2)] . (2.158)

1
V2



Kapitel 3

Numerische Auswertung

3.1 Numerischer Vergleich fiir |M?

Im letzten Kapitel wurde das Matrixelement des radiativen 3—Zerfalls durch zwei verschie-
dene Methoden berechnet. Die beiden Ergebnisse beschreiben dieselbe physikalische Grofie
und sind daher identisch. Obwohl diese beiden Herleitungen nur auf mathematischen Um-
formungen und Ersetzungen beruhren, darf man nicht jeden beliebigen Vierer-Vektor zum
Vergleich in die beiden Ausdriicke fiir das Matrixelement |M|? einsetzen. Es sind noch

einige Punkte zu beriicksichtigen

e Die relativistischen Ergebnisse fiir Spinsummen miissen verwendet werden, d.h. man

darf nicht die nichtrelativistische Gleichungen im CMS des Neutrons benutzten.
e Die Vierer-Impuls-Erhaltung fiir jedes Zahlenbeispiel muss erfiillt sein .

e Die Vierer-Impulse miissen so zu konstruieren sein, dass die Massen der Teilchen

reell und positiv sind.

e Der Vierer-Impuls des Photons muss so ausgewéihlt werden, dass seine Masse Null

ist.

Man kann durch zwei unabhingige Verfahren untersuchen, ob diese beiden Methoden
identisch sind. Zuerst wird | M|? aus der Spinsummen- und aus der Helizit4tsamplituden-
Methode verglichen. Das zweite Verfahren ist komplizierter. Man kann zwar jede Feynman-
Amplitude getrennt vergleichen, d.h. man kann |[M,|?, | M|? und den Interferenzterm aus
der Spinsummen- und aus der Helizitdtsamplituden-Methode vergleichen, aber man darf
nicht die Ersetzung ) e%¢™ = —¢°" durchfithren. Der Grund liegt an der Eichinvarianz

der Theorie. Die einzelnen Feynman-Amplituden sind im allgemeinen nicht eichinvariant,

43
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wéhrend ihre Summe eichinvariant ist [6][11].
Man betrachte einen beliebigen Prozess mit einem reellen (externen) Photon. Die Feynman-

Amplitude kann in der Form
M = § (k)M (k) (3.1)

geschrieben werden. Die Polarisationsvektoren sind natiirlich eichabhingig. Beispielweise

wird ein freies Photon in der Lorentz-Eichung durch die ebene Welle
A¥(z) = konst. Eﬁeﬂm , mit A=, Polarisationszustand
beschrieben. Unter Eichtransformationen
A(z) — AP(z)+ 0" (@), mit f(2) = f(k)ethe (3.2)
verindert sich der Polarisationsvektor des freien Photons geméafl
Eﬁeﬂk“ — E’;eiikx + ikF f(k)eth (3.3)

Die Amplitude in der Gleichung (3.1) ist unter der obigen Transformation invariant, wenn

folgende Beziehung erfiillt ist
KMo (K) =0 . (3.4)
Damit ergibt sich fiir das Matrixelement

MP = MM Y S REE) (3.5)
A=nr,l

Fiir ein reelles Photon, das keine Ruhemasse besitzt (k2 = O) gilt

S (R (E) = —g (k;)Q B — (k) (kn® + k)] (3.6)

mit n = (1,0,0,0). Dieser Vektor entspricht der zeitartigen Polarisation [6][11]. Das Ma-
trixelement des radiativen 3—Zerfalls mit Kopplung des Photons am Elektron |M,|? wird
mit dieser Relation wieder neu berechnet. Bei der Berechnung von |M,|? tauchen zusitz-
liche Terme auf, welche durch den zweiten Term in der Gleichung (3.6) entstehen. Das

neue Matrixelement sieht komplizierter aus, da es einige zusétzliche Terme aufweist
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M= T
{202 [(m2 — i) (') + m2(0')] (0l
+ (1= N [(m — kle) (pk) +mg (ple)] (9'11.)
— (1= X2) [(m2 — kle) (kly,) + m2(lely,)] (mnmy)
AP et)+ () ()~ X0/ )
=2 st + () ) = (o ﬂ 1)
(=) et + () Ol = )| )} (3)
mit
1 2ml) 1
S A AT A N 39
B (nle)
AN 39

Dasselbe Verfahren kann zur Berechnung von |M,|? angewendet werden.

Diese Gleichungen lassen sich mit einem Mathematik-Program, z.B. Mathematica oder
Maple, numerisch ausgewerten. Fiir den zweiten Formalismus, den Helizitdtsamplituden-
Formalismus, braucht man nur die Gleichung (2.154). Zur Auswertung kann man entweder
ein Mathematik-Programm benutzten oder ein Programm zu diesem Zweck schreiben. Im
Anhang E ist ein Fortran-Unterprogramm zur Auswertung des Matrixelementes durch

den Helizitatsamplituden-Formalismus zu finden.
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3.2 Monte-Carlo Methode

Monte-Carlo Techniken sind manchmal der einzige Weg, komplizierte Integrale numme-
risch auszuwerten. Die Monte-Carlo-Methode verwendet Prinzipien der Wahrscheinlich-
keitsrechnung und Statistik, um komplexe Probleme zumindest niherungsweise zu lésen.
Bei Berechnungen der Zerfallsraten oder Wirkungsquerschnitte physikalischer Prozesse
trifft man oft solche Integrale, welche {iber mehrere Phasenrdume aufintegrieren werden
miissen. Daher ist die Monte-Carlo-Integration in der Hochenergiephysik ein wichtiges
Hilfsmittel fiir die nummerischen Auswertungen und findet hiufic Anwendung. Monte-

Carlo-Methoden bestehen héufig aus folgenden wesentliche Stufen:

e Fiir das urspriingliche mathematische Modell muss ein stochastisches Modell gefun-

den werden, welches das Problem gut genug beschreibt.

e Es muss eine Folge von Zufallszahlen erzeugt werden, deren Folgenglieder mogliche

reale Situationen simulieren.

e Aus den Realisierungen der Zufallsgrofien miissen Schatzwerte fiir das Ausgangspro-

blem ermittelt werden.

Der Vorteil der Monte-Carlo Methode ist, dass sie eine einfache Struktur des Rechenalgo-
rithmuses hat. Man stellt zuerst einen Algorithmus auf, um einen zufiilligen Versuch zu
realisieren. Dieser Versuch wird dann N-mal wiederholt. Da diese Versuche unabhéngig
voneinander sind, konnen ihre Ergebnisse statistisch ausgewertet werden.

Bevor die Technik der Monte-Carlo Integration fiir eindimensionale Integrale beschrieben

wird, ist zunéchst der Begriff Zufallsgrifie zu definieren.

3.2.1 Zufallsgroflen

Der Kern von Monte-Carlo Methode ist das Erwiirfeln von Zufallsgréfien.

Zufallsgrofle oder zufillige Griffe besagt, dass es nicht bestimmt ist, welchen konkreten
Wert diese Grofle annehmen wird. Es bedeutet, dass man nicht weif3, welchen Wert eine
solche Grofle in einem konkreten Fall annimmt, aber man weifl, welche Werte sie iiberhaupt
annehmen kann und mit welcher Wahrscheinlichkeit aus bestimmten Mengen angenommen
werden. Eine Zufallsgrofe ist dadurch charakterisiert, welche Werte sie annehmen kann und
wie grof§ die Wahrscheinlichkeit fiir jeden einzelnen dieser Werte ist. Um diese Zufallszahlen
zu erzeugen, modelliert man eine Verteilung. Im folgenden werden solche Verteilungen

beschrieben:
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e Diskrete Zufallsgroflen: sie konnen eine diskrete Menge von Werten aq,as,- - ,a,
annehmen. Jedem Wert aj, ordnet man eine Wahrscheinlichkeit (Verteilungsdichte)

pi zu, die folgende Bedingungen erfiillt
n
pre > 1 ; d k=1 . (3.10)
k=1

e Stetige ZufallsgroBen: sie kénnen jeden Wert aus einem Intervall (a,b) annehmen.
Eine stetige Zufallsgrofie ist durch Angabe des Intervalls (a,b) und einer Dichte-
Funktion (Verteilungsdichte) p(x) bestimmt. Analog zur Wahrscheinlichkeit py fiir
eine diskerete Zufallsgrofle erfiillt p(z) folgende Beziehungen

b
p(z) > 1 , / plz)de =1 . (3.11)

e Normalverteilte (Gaufiverteilte) Zufallsgrofen: sie konnen jeden reellen Wert aus

dem Intervall (oo, 00) annehmen. Die Verteilungsdichte ist gegeben durch

1 —(z—a)?
e 207 ,  a,0>0 . (3.12)

p\x) =
(@) 2mo
Um diese Zufallsgréflen zu realisieren, unterscheidet man zwischen verschiedenen Verfah-

ren. Hier werden zwei dieser Verfahren kurz erldutert.

1. Generatoren von Zufallszahlen
Echte physikalische Zufallszahlengeneratoren produzieren Zufallszahlen aus echt zufélli-
gen Prozessen wie dem Fallen eines Spielwiirfels oder dem Rauschen eines Wider-
standes oder eines Elektronenrohrs. Die Erzeugung von Zufallszahlen durch das Rau-
schen eines Elektronenrohrs basiert auf der Erzeugung von Gerduschimpulsen durch
das Rohr, welche innerhalb konstanter Intervalle mit Hilfe von Zahleinrichtungen in

Zufallszahlen umgewandelt werden.

2. Das Prinzip der Pseudozufallszahlen
Manchmal ist es nicht wichtig, wie Zufallszahlen eigentlich produziert werden. Sie
konnen nach einer gegebenen Formel berechnet werden. Zahlen, welche nach einer
bestimmten Formel erzeugt werden und die Werte einer Zufallsgrofle modellieren,
heiflen Pseudozufallszahlen. Sie werden durch einen deterministischen Algorithmus,
den sogennanten Pseudozufallszahlengenerator, berechnet, aber sie sehen zufillig
aus. Deterministisch bedeutet, dass bei jedem Start der Zufallszahlenberechnung

mit gleichem Startwert die gleiche Zahlenfolge erzeugt wird.
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3.2.2 Monte-Carlo Integration

Um eine Funktion durch Monte-Carlo Technik zu integrieren, wird diese an zufillig aus-
gewdhlten Punkten xj ausgewertet.
Zunichst betrachtet man eine eindimensionale Riemann-integrierbare Funktion f(x), die

auf dem Intervall (a,b)

b
I:/ f(z)dz (3.13)

ndherungsweise integriert werden soll. Es ist vorausgesetzt,dass das Integral absolut kon-
vergiert, falls @ oder b gegen oo geht. Da f nach Voraussetzung Riemann-Integrierbar ist,

gilt
b . n
= [ e 0 fw) = e (3.14)
a " k=1

wobei n die Anzahl der ausgewerteten Punkte bezeichnet. x; sind gleichverteilte Psedozu-

fallszahlen aus dem Intervall (a,b), die durch die Formel
zp=a+v(b—a) (3.15)

gegeben sind. Die v, sind hierbei auch Zufallszahlen aus dem intervall (0, 1), die iiber einen
Zufallszahlengenerator oder Pseudozufallszahlengenerator gewonnen werden. Die Varianz!

der Monte-Carlo-Schitzung lautet

Var[Iyce]) = Var

: (b‘“)ziwrmxkn , (315)

'Die Varianz ist ein MaB fiir die moégliche Abweichung (Streuung) einer Einzelbeobachtung vom Mit-

telwert. Die Varianz ist gegeben durch
Varlz] = 0 = {(z — (z))?) = (z°) — (x)* , (3.16)
wobei (x) als Mittelwert (oder Erwartungswert) der Zufallsvariablen xj, definiert ist durch
(@) => plzr)zr . (3.17)
k=1

Hierbei bezeichnet p(xy) die Wahrscheinlichkeitsdichte.
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wobei im letzten Schritt die Tatsache benutzt wurde, dass die Varianz der Summe gleich

der Summe der Varianten ist. Die Gleichung berechnet sich zu

—a 2. n
Var [Iyc] = (b n) Z%Var[f(mk)]
k=1

(b—a)’

= TVa,r Var[f(z)]] = (b—0a)

Var [f(zr)] - (3.19)

Bemerkung: Die Varianz ist eine Zahl und die Varianz einer Konstante ist gleich der

Konstante selbst. Es gilt

Var[z] = a = konst.

Var [Var|z]] = Var[a] = a = konst.

Mit diesen Umformungen ergibt sich die Varianz der Monte-Carlo-Integration

Var [Iye] = <b—na>2 [zzzlguk))?_(zzzz fm))?]
- H<b‘a>2'w—%a} : (3.20)

Die Varianz nimmt bei einer anwachsenden Anzahl n der ausgewéhlten Punkte mit % ab.
Der Fehler des Integrals, \/Var [Ij¢], nimmt hingegen mit ﬁ ab.

Um zu einer besseren Konvergenz des Integrals zu gelangen, muss die Varianz schneller
minimiert werden. Dadurch verringert sich die Rechenzeit, die notwendig ist, die gewiinsch-
te Genauigkeit zu erreichen. Eine Moglichkeit dazu ist die Verwendung der Importan-
ce Sampling Methode. Mit dem Importance Sampling mochte man nun erreichen, dass
moglichst viele Stiitzstellen in das Gebiet fallen, in dem f(x) grof} ist, um die Varianz einer
einzelnen Schétzung zu verringern. Dafiir ben6tigt man eine Verteilungsdichte p(x), die
auf dem Intervall [a, b] die Bedingungen (3.11) erfiillt. Der Verlauf dieser Verteilungsdichte

p(z) soll den Verlauf der Funktion f(z) moglichst gut nihern, so dass ndherungsweise gilt

h(z) f)gg ~ konst. (3.21)

Mit der Definition von h(x) kann das Integral in der Gleichung (3.13) folgendermafen
geschrieben werden
b ' f(@) b
I=| f(x)de= | ——=p(x)de= [ h(x)p(x)dx . (3.22)
a o P(@) a
Man hat p(z) so gewéhlt, dass h(x) ungefihr konstant ist. Der Wert des Integrals hingt

also stark von p(x) ab. Durch die Erzeugung von Zufallszahlen zj, die mit p(x) verteilt
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sind, ergibt sich nach der Auswertung von n Stellen

b —a " —a " X
/ f(x)de = b - > hlay) = b - > iéx:; : (3.23)
“ k=1 k=1

und dabei variieren die Summanden jetzt weniger, denn der Verlauf der Funktion p(x) der

Funktion f(z) dhnlich ist.

Die Varianz ist nun
2

no () no flzk)
oy [ (L e
Var[lye] = 097 | = () [ k=t ) . (3.24)

n n n

Die Varianz sollte klein sein, wenn die Funktion h(x) ungefihr konstant ist. Nach Gleichung
(3.23) benotigt man fiir das Importance Sampling Zufallszahlen, die nach der bestimmten
Verteilungsdichte p(z) gewonnen werden kénnen. Dazu beginnt man mit Zufallszahlen
v, im Intervall [0,1], welche gemé&f der gleichférmigen, normierten Verteilungsdichte I'

verteilt sind. Dann gilt

p(z)dr =Tdy (3.25)
und
/m p(y)dy = P(z) =~ , (3.26)

wobei P(z) die Stammfunktion von p(z) ist. Aus dieser Gleichung folgt
=P () (3.27)

Fir das Importance Sampling-Verfahren wird vorausgesetzt, dass die Verteilungsdichte
p(z) analytisch integrierbar und ihre Stammfunktion P(x) invertierbar ist.

Dasselbe Verfahren kann man auf ein n-dimensionales Integral anwenden.

Ein wichtiger Monte-Carlo-Integrator, der zur Reduktion der Varianz im Importance Samp-
ling-Verfahren benutzt, ist Vegas. Er wird im n#chsten Abschnitt beschrieben und wird

erklirt, was man bei der Integration mit Hilfe von Vegas beriicksichtigen muss.

3.2.3 Vegas

Der Vegas-Integrator verwendet ein iteratives Importance Sampling zur Reduktion der
Varianz. Man beginnt mit einer Teilung des Intervalls, z.B. in N gleiche Teile und wiirfelt
in jedem Teil gleich viele Zufallszahlen. Die Wahrscheinlichkeit dafiir, dass eine Zahl fiir
jeden beliebigen Teil ausgewihlt wird, ist konstant und ist fiir alle Teile % In jeder Iterati-

on wird die Verteilungsdichte p(x) an den Integrand angepasst, indem die Breite der Teile
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bei fester Anzahl N veridndert wird, so dass die Dichte der Teile dort am gréfiten bzw. am
kleinsten wird, wo der Wert des Integranden am grofiten bzw. am kleinsten ist. Dadurch
kann man mehr Punkte an diesen Stellen auswerten. Im letzten Schritt der Iteration wird
die Monte-Carlo-Integration durchgefiihrt.

Bei allen Integrationsverfahren kann die Zerfallsrate der betrachteten Prozesse durch eine
Integration iiber den Phasenraum bestimmt werden. Die zufilligen Phasenraumpunkte,
die zur Berechnung des Integrales benutzt werden, konnen auch als einzelne Ereignis-
se verwendet werden. Im endgiiltigen Datensatz sollen die Ereignisse entsprechend ihrer
Wahrscheinlichkeiten vertreten sein, damit die erhaltenen Verteilungen den physikalisch
erwarteten entsprechen.

Der Vegas-Integrator kann iiber eine Funktion nur im Intervall [0, 1] integrieren. Dazu
muss die Variable eines Integrals so substituiert werden, dass die Grenzen auf 0 bis 1

iiberfithrt werden. Im Allgemeinen ergibt sich fiir ein ein-dimensionales Integral

b
F(b) — F(a) = / f(z)dz (3.28)

durch die Substitution

r—a
_ 3.29
z T (3.29)

das folgende Intgral

1
F(b)— F(a) = / (b—a)- f(z)dz . (3.30)
0
Nun muss die komplizierte Zerfallsrate
1 wmaz Eénll(lf . x’]::n(l(lf 1 27-(-

' = ———~— d le|dEe d dzp do~

16mn(2ﬂ—)6 /L;'mzn waw /me | | /Q;Z’”n xk /;1 v ‘ /0 ¢

Ep |MP2_
. | ‘p =p le lye k (3'31)

mpy — Ee —w— By,
numerisch mit Hilfe des Vegas-Integrators ausgewertet werden. Dazu sind zwei Hinweise

zu beachten:
e Die Grenzen fiir alle 5 Integrale werden ausgerechnet.
e Die Variablen werden so substituiert, dass der Vegas-Integrator anwendbar ist.

Der erste Punkt wurde ganz ausfiihrlich im Abschnitt (2.4.2) besprochen. Die Grenzen

wurden ebenfalls dort augerechnet. Fiir den zweiten Punkt miissen folgende Substitutionen
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ausgefiihrt werden

Ee = (B —me)x(l)+me
neo= (- a@) + e
Ty, = 2a(3)-1
- = 2mx(4)
w = (WM — W™ p(5) + W™ (3.32)
Dadurch erhélt man fiir die totale Zerfallsrate
I = 16mn1(27r)6 /01 [(wmax — wmm) z(5) + wmm] dz(5)

1 1
/ [{(Egm —me)z(1) + me}? + mﬂ 2 dz(1)
01
/0 [(:czmm - xzmn) x(2) + xznm} dx(2)

1 1
/0 [22(3) — 1] dw(S)/O [27] dz(4)

. By [MP 1y i
My — (B2 —me) (1) +me] — [(wm** — w™in) z(5) + w™in] — By,
(3.33)

Bemerkung: Im Matrixelement |M|? miissen auch die alten Variablen durch die neuen
Variablen z(i),i = 1,---,5, ersetzt werden. Der w™"—Wert hingt von der Auflésung
des Detektors ab. Man kann an dieser Stelle jedoch nicht mit einem unbekannten Wert
w™n die totale Zerfallsrate ausrechnen. Das Problem kann beseitigt werden, indem die
differentielle Zerfallsrate (das Energiespektrum der Photonen) bei fester Energie des

Photons (w = konst.) ausgewertet wird. So erhélt man

1
= e [ E e 2] da()
! max min mein ! !
/0 (@ — 2im) 2(2) + 2] da(2) /O 22(3) — 1] da(3) /O 2] d(4)
VE‘M|p’—p le—lpe—k ’ (3‘34)

— [(EZ —me) 2(1) + me] —w — Ep,
mit

m —|—m —m 2 _2my(F. +w +2Ew—2l Tk
By, = — n )+ 25 : (3.35)

‘ 2(mn—Ee—w+xg€\/E€2—mg—l-k-lpe)

wobei die Energie des Elektrons E. durch (E7** —m,)z(1) + m. zu ersetzen ist. Es ist

nochmals zu erwdhnen, dass w in dieser Gleichung einen festen Wert hat.
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3.3 Auswertung

Bevor in diesem Abschnitt die numerische Ergebnisse fiir die differentielle Zerfallsrate und
Polarisation der emittierten Photonen préasentiert werden, miissen die Werte der Konstan-

ten angegeben werden. Die Konstanten, die fiir eine numerische Auswertung gebraucht

werden, sind gegeben durch [1]

e2 . 1

= mi = ——------

T drhe &~ 137,03599976
1

=0,985619 ,Gp=1,166639 107" ——
gV b b F ) (Mev)2 )
my, = 939,56533 MeV ,m, = 939,27200 MeV ,m, = 0,510998902 MeV |

885.7 s 885,7 s 1

=885,7Ts= —0 " = ’ =1,3461-10%* ——

n y n 6.58- 1022 MeV s MeV

Somit erhélt man fiir die maximale Photonenenergie mit der in der Gleichung (2.82)

gegebenen Formel

e _ (Mp —me)? — m% — 2mpyMme
2(my, —me)

den Wert w™* =0, 781975 MeV.

differentielle Zerfallsrate (Photonenenergie-Spektrum)

0.05

0,04 1

0,03 1

0.02 1

Tn e dr/d(ﬂ

0.01 1

Abbildung 3.1: Das Spektrum der Photonenenergie in der Abhéngigkeit von w%

In der Abbildung (3.1) ist das Spektrum der Photonenergie % in Abhéngigkeit von der
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Photonenenergie w dargestellt. In dieser Abbildung ist die Energie der Photonen in Ein-
heiten der Elektronenmasse angegeben. Fiir kleine w—Werte wichst die differentielle Zer-
fallsrate stark an. Daher wurde nur das Spektrum fiir die w—Werte, die groBel als 0,08 m,
sind, dargestellt. Je grofler die w—Werte werden, umso schneller fillt das Spektrum. Im
Falle w = m, verschwindet die Photonenenergie. Um dieses Diagramm darzustellen, wurde
die Gleichung (2.155) fiir das Matrixelement und die Gleichung (2.62) fiir die Zerfallsrate
dieses Prozess verwendet. Man kann statt der Gleichung (2.155) die Gleichung (2.122) fiir
das Matrixelement benutzen. Man muss aber beachten, dass in der Herleitung von dieser
Gleichung die nichtrelativistische Nédherung beriicksichtigt wurde, wahrend fiir die Herlei-
tung der Gleichung (2.155) keine Naherung angenommen wurde.

Als n#chstes betrachtet man die Photonenpolarisation im radiativen Neutronen-Zerfall.

Im Allgemeinen ist die Polarisation P definiert durch

I, -1,
p—_" (3.36)
Fr + I‘l
Polarisation des Photons P
0 0.5 1 15
04
02
€
~ 4]
5 o »=1267
-—
S 061
©
=
08 1
1
o/m,

Abbildung 3.2: Die Polarisation des Photons in Abhéngigkeit von der Energie des Photons

im radiativen §—Zerfall

Da man hier die totale Zerfallsrat nicht berechnen kann, definiert man die Polarisation
durch die Ersetzung von I',; mit dI';;. Abbildung (3.2) zeigt die Photonenpolarisation in

Abhé#ngigkeit von der Photonenenergie. Zur Darstellung dieses Diagramms wurde das po-
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larisierte Matrixelement verwendet. Aus der Gleichung (2.155) kann man das polarisierte
Matrixelement erhalten, indem man eine Summation iiber die links- bzw. rechthindigen
Photonen durchfiihrt. In Abbildung (3.2) ist zu sehen, dass die niederenergetischen Pho-
tonen unpolarisert sind. Die hochenergetischen Photonen sind nahezu vollstédndig in einer
Richtung und zwar linkshéndig polarisiert. Unter Verwendung des Matrixelementes aus
dem Spin-Summen-Formalismus, Gleichung (2.122), erhélt man dasselbe Polarisationsver-
halten der Photonen [1]. Nun kann man untersuchen, wie sich die Photonenpolarisation
dndert, wenn man die A—Werte variiert. Dazu berechnet man die Polarisation fiir A = 0, 9,
1,2, 1,5. Wie in der Abbildung (3.3) dargestellt wird, dndert sich die Polarisation fiir ver-

schiedene Werte von A nicht.

Polarisation des Photon in Abhingigkeit von A
0.0 05 10 L5
0 4
02
f-s\ « =09
&L, A=12
o ] e, -
£ =15
=
5 061
Js
at
.08 1
1
o/m,

Abbildung 3.3: Die Polarisation des Photons fiir die verschiedenen Werten von A

In Abbildung (3.4) wird die Photonenpolarisation in Abhingigkeit von der Elektronen-
energie . mit fest vorgegebenem w dargestellt. Wenn die Elektronen ihre Minimalenergie
(die Ruhemasse des Elektrons m,) besitzen,d.h. || = 0 , sind die Photonen linkshéindig
polarisiert. Diese gilt fiir alle vorgegebenen w—Werte. Die Polarisation nimmt mit der
steigenden Elektrononenergie ab. Je grofler der w—Wert ist, desto stérker nimmt die Pho-
tonenpolarisation ab. Fiir w = 0,005 MeV verschwindet die Photonenpolarisation, deren
kollerierte Elektronen Energien Ee Z 0,55 MeV besitzen, wihrend die Photonen der
Energie w = 0,1 MeV, deren kollerierte Elektronen Energien Fe = 0,55 MeV besitzen,
zu ungefihr 90% linkshéndig polarisiert sind. Es stellt sich noch die Frage, wie sich die
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Polarisations-Spektren dndern, wenn man die Nukleon-Struktur-Effekte beriicksichtigt. An
dieser Stelle ist darauf hingewiesen, dass diese Effekte kaum grofien Einfluss auf die Er-

gebnisse haben und vernachlissigt werden kénnen [1].

Polarisation des Photons bei verschiedenen Werten von @

Photonenenrgie o
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Abbildung 3.4: Die Polarisation des Photons in Abhéngigkeit von der Energie des Elektron

mit vorgegebenen w

Die Ergebnisse konnen fiir die Bestimmung der Neutrinomasse verwendet werden. Bei der
gegebenen Auflosung des Detektors kann man statt des Photonenenergie-Spektrums das
Elektronenspektrum im radiativen G—Zerfall berechnen. Aus dem Vegleich der Elektro-
nenspektren im normalen und radiativen §—Zerfall kann man ein genaueres Ergebniss fiir
die Neutrinomasse finden.

Die Untersuchung der Photonenpolarisation im radiativen Neutronen-Zerfall ist auch ein
guter Test des Standardmodells. Diese Herleitungen basieren auf der V—A-Theorie im
Standardmodell der Elementarteilchen. Die Aufgabe der Experimente, die zu Untersu-
chung der Photonenpolarisation im radiativen Neutronen-Zerfall aufgebaut sind, besteht
darin, Abweichungen von diesen theoretischen Ergbnissen zu messen.

Bemerkung: Wie im Abschnitt (2.4.2) gezeigt wurde, waren die Terme 2}** und a:znm die
Grengze fiir xp. In der numerischen Auswertung aber wurde festgestellt, dass diese Werte
nur das Supremum und Infimum von xj sind. Der Grund liegt daran, dass die Energie des
Neutrinos Fy, > 0 angenommen wurde, obwohl E;, = 0 physikalisch nichtrelavant ist. Da-

mazx min _

her wurden die numerische Ergebnisse bzw. die Diagramme mit 2;** = 1 und 27" = —1

berechnet. Diese Darstellungen stimmen mit den Ergebnissen in Ref. [1] tiberein.



Zusammenfassung

Das Ziel dieser Arbeit war, das Photonenenergie-Spektrum und die Photonenpolarisation
des radiativen Neutronen-Zerfalls zu untersuchen. Zuerst wurde der normale §—Zerfall
kurz besprochen und das Matrixelement und die differentielle Zerfallsrate dieses Prozesses
hergleitet. Um das Matrixelement zu berechnen, wurde der Spin-Summen-Formalismus
verwendet. Aus der Kinematik des Zerfalls wurde die Winkelunabhéngigkeit des Matrix-

elementes gezeigt.

Im zweiten Teil diser Arbeit wurde dieselbe Prozedur ausgefiihrt, um die Zerfallsrate und
das Matrixelement des radiativen Neutronen-Zerfalls zu erhalten. Da es in diesem Fall um
den Vierkorperzerfall ging, waren die Herleitungen relativ komplizierter und miihsamer.
Besonders bei der Berechnung des Matrixelementes begegnet man Produkten aus 6 oder 8
~v—Matrizen, die kaum vereinfacht werden kénnen. Dieses Problem konnte dadurch besei-
tigt werden, dass fiir die Matrixelemente aller radiativen Prozesse die nichtrelativistischen
Ausdrucke berechnet wurden. Mit Hilfe der Helizitétsamplituden lieflen sich die relativis-

tisch korrekten Formeln fiir alle vorkommenden Matrixelemente berechnen.

Im letzten Kapitel wurden die numerischen Ergebnisse présentiert, die sich durch das
Vegas-Programm ergaben. Das Energiespektrum der Photonen konnte durch die Zerfalls-
rate des radiativen Zerfalls und die Polarisationseigenschaften der Photonen ausgerechnet
werden. Es konnte gezeigt werden, wie sich die nieder- und hochenergetischen Photonen
verhalten. Es war hierbei leicht zu erkennen, dass die Polarisation der Photonen mit stei-
gender Photonenenergie zunahm und fiir eine feste Photonenenergie w mit wachsender
Elektronenenergie abnahm.

Die Untersuchung des Polarisationsverhaltens der Photonen wird als Test des Standard-

modells dienen.
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Anhang A

Dreiteilchenzerfall

Die Untersuchung des Dreikorperzerfalls ist im Ver- P,

gleich zum Zweikorperzerfall komplizierter. Im Fal-

le des Zweikorperzerfalls haben die erzeugten Teil-

chen festgelegte Energien. Beim Dreikorperzerfall —Ps

konnen die erzeugten Teilchen unterschiedliche Ener-

gien annehmen. Das Energiespektrum eines der Teil- P,

chen ist kontinuierlich. Der Dreiteilchenzerfall redu-

ziert sich auf einen Zweiteilchenzerfall, indem man  Abbildung A.1: Dreikorperzerfall

zwel von den erzeugten Teilchen als ein Teilchen mit dem Schwerpunkt S auffasst. Die

P3 Ps
Abbildung A.2: Zweikorperzerfall
Vierer-Impuls-Erhaltung wird zu
I=q+@+a=q¢+a@ (A1)
umgeformt. Im Ruhesystem des zerfallenden Teilchens M gilt
M=Es+Es
0=ps+7s (A.2)

und fiir die dem Schwerpunkt S zugeordnete Masse mg gilt
m2 = E?—pgz (M—E3)2—p§:M2+E§_2ME3_p§

S

= M’ +p5+mi—2ME; —p5 = M* + mj —2M B . (&.3)
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Man findet fiir die Energie und den Impuls der dritten Teilchen im Ruhesystem von M

M? +m2 —m?
E; = 3 s A4
3 M ) ( )

[(M? ~ (s + m3)2> (M2 — (s — mg)z)}

- . A.
P3 Wi (A.5)

1/2

Der Ausdruck fiir pg ist leicht zu beweisen

(M2 +m2 —m2)® — (mg - 2M)*

p2 _ E2 o m2 _ s
3 3 3 (M2
_ [(M2+m§—m§—2m3M) (M2+m§—m§+2m3M)]
- (2M)?
2 ms—+1m 2 2 mg — m 2
_ [(M? — (m, + 3222\%\24 ( 3)%)] ' (A.6)

FE3 bzw. p3 ist maximal, wenn mg minimal ist. Im folgenden wird die Bedingung bestimmt,

bei der mg minimal wird
m? = M?*+4+m?—-3—-2ME3;=M?+ E3 —p3—2MEF;
= (M-Es)*—ps=(q—q)° , (A7)

wobei im letzten Schritt die Ausdriicke fiir die Vierer-Impulse im Ruhesystem von M

verwendet worden sind
q= (Eam = (M7 O) 5 q3 = (E3>ﬁ3) . (AS)
Aus der Vierer-Impuls-Erhaltung folgt

2= @)= +e)P=¢+d+2q -9 =q+ ¢ +2(E1E2 — pip2 cos ).
(A.9)

m

2

¢ ist minimal, wenn cosf maximal ist, d.h. cos@ = 1 = 6 = 0. Dies ist genau dann

m
erfiillt, wenn die Teilchen 1 und 2 in gleicher Richtung fliegen wéhrend Teilchen 3 sich in

entgegengesetzter Richtung bewegt. Im Ruhesystem von my gilt

mg = (BEr+Ep)* =mi+pi+m;+p;+ 2615,

> m?+4mi+2E B,

> m% + m% +2mimg = (my1 + m2)2 ) (A.10)
ms > mi+mgo = mgm'” =my+my . (A.11)
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Genauso wie in den Gleichungen fiir das dritten Teilchen gilt fiir die Energien und die

Impulse von Teilchen 1 und 2 in CMS von mg

B = W : (A.12)
1/2

E5 = W , (A.14)
1/2

= K g—(m2+m1)2)27<ﬂ”:§—(mz—m1)2>] | (A15)

Im Ruhesystem von M ist F3 maximal, wenn mgs = m1 + mag, d.h.

M? +m2 — (mq + ma)?
Emaz 3 . A.16
3 oM (A-16)

Aber aus dieser Bedingung fiir mg ergibt sich

pi=p3=0 , (A.17)

bzw. die Geschwindigkeiten v und v5 im Ruhesystem von mg sind gleich Null

v =v3=0 . (A.18)

Da S und M Inertialsysteme sind, sind die Geschwindigkeiten in den beiden Systemen

gleich grof3
v =0V . (A.19)

Das Teilchen 3 hat im Ruhesystem von M seine Maximalenergie, wenn die Teilchen 1 und
2 in gleicher Richtung (in entgegengesetzter Richtung vom Teichen 3) und mit gleicher
Geschwindigkeit fliegen.

Die obigen Resultate kénnen fiir n-Korperzerfall verallgemeinert werden, indem man das
n-Korperproblem mit Hilfe der Einfiihrung eines , effektiven Teilchens® auf Zwei- bzw.

Dreiteilchenzerfall reduziert.



Anhang B

Feynman-Regeln der QED und der
schwachen WW

Die Feynman-Amplitude M, die einen Ubergang vom |i) in den |f)—Zustand beschreibt,

wird durch das entsprechende S—Matrixelement bestimmt

N
Spi = 6pi +i(2m) 6™ (Z(p’} —ﬁ)) M . (B.1)
k=1

Der Term §¢* (Zk 1( — 7} )) erfiillt die Vierer-Imulserhaltung an jedem Wechselwir-
kungsvertex.

Die differentielle Zerfallsrate eines Teilchens mit Vierer-Impuls p = (E, p), das in N Teil-
chen mit Vierer-Impulsen p}, = (E}, 1; p); k=1, N zerfillt, ist aus der Gleichung fiir
das S—Matrixelement herzuleiten [6][9][7]. Es ldsst sich mit der Normierung

Zﬁ(p,a)u(p, o) = p+m (B.2)

[

zu

N

d3p)
dr = (2m)46™ (Zp ) H 32’€E, IM|? (B.3)

schreiben. Um diese beiden Grofien auszuwerten, muss man zuerst die Feynman-Amplitude
bestimmen. Die anderen Unbekannten koénnen aus der Kinematik des Problems geholt
werden. Man erhiilt die Feynman-Amplitude M aus den Feynman-Regeln. Die wichtigsten

Feynman-Regeln werden im folgenden aufgelistet

1. Fiir jeden QED-Vertex schreibt man einen Faktor iey®.
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2. Fiir jeden schwachen Wechselwirkungsvertex ! schreibt man einen Faktor -igy® (1 — ~s),

wobei g eine dimensionlose Kopplungskonstante ist.

3. Propagatoren fiir die inneren Linien mit Vierer-Implus & (fiir Bosonen) und p (fiir

Fermionen) lauten

(a) Photon (mit dem Impuls k)

. 1 kky
lDMl/(k) - —1{327—15 uv — 272(1 - 5) ) (B4)

(b) Spin—3—Teilchen (mit dem Impuls p)

Saalp) = 5P (B.5)

(c) Vektorboson (mit dem Impuls k’)

kgkb
2
My B

i(—Guw + )

i\, = -
i k:’Z—m%/B—i—zs

(B.6)

wobei fiir Fermionen o und g Dirac-Indizes, fiir Photonen oder massive Vektorbo-
sonen u und v Polarisatoinindizes und ¢ als Eich-Parameter (in dieser Arbeit geht

es um Feynman-Eichung, d.h. £=1) stehen.

4. Fiir die &ufleren Linien schreibt man einen der folgenden Faktoren
(a) Fiir jedes ausgehende Fermion mit dem Impuls p und Spin s: @(p) s).
(b) Fiir jedes eingehende Fermion mit dem Impuls p und Spin s: u(p, s).

)
)
(c) Fiir jedes ausgehende Antifermion mit dem Impuls ¢ und Spin 7: v(q, 7).
(d) Fiir jedes eingehende Antifermion mit dem Impuls ¢ und Spin r: o(p, ).
)

(e) Fiir jedes ausgehende Photon (Vektorboson) mit dem Impuls & und Polarisation
e Eu(la-

(f) Fiir jedes eingehende Photon (Vektorboson) mit dem Impuls k& und Polarisation
% 5;(12)

5. Die Spinoren (y—Matrizen, So3(p), Vierer-Spinoren )sortiert man in Reihenfolge der

Pfeile des betrachteten Feynman-Graphen.

'Es gibt weitere schwache Wechselwirkungsvertexe, die hier nicht besprochen wird [6][8] [9].
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6. An jedem Vertex ist die Vierer-Impulserhaltung erfiillt. Man intergriert iiber jeden
Vierer-Implus p, [ dp, der nicht durch Vierer-Impluserhaltung festgelegt ist, mit ei-

nem Gewicht ﬁ.

7. Fir jede geschlossene Fermionen-Schleife (engl. closed fermion loop) nimmt man die

Spur und multipliziert mit (-1).



Anhang C
Die Dirac-Gleichung

Die Dirac-Gleichung beschreibt ein relativistisches Teilchen mit der Ruhemasse m,dem

Impuls p und dem Spin % Sie ist gegeben durch

0
isth = HY = By = (& 5+ fm)y | (C.1)

wobei a;,7 = 1,2,3, und 8 hermitische 4 x 4—Matrizen sind

1 0 0 oy
ﬁz(o _1> ; ai:(o_i 0) : (C.2)

mit 05,1 = 1,2,3, 2 x 2—Pauli-Matrizen. Durch die Einfithrung des Vierer-Impulses p =

(E,p) und der 4 x 4—Dirac-Matrizen (y—Matrizen), die folgendermaflen definiert sind

W= (8,8 ) , (C3)

0 __ 1 0 i 0 ag;
(20 (0 ) o

Die Dirac-Gleichung ldsst sich in kovariante Form umschreiben
(V'O —m)p =0 . (C.5)

Die Gleichung (C.5) beschreibt ein freies, relativistisches Fermion. Ein Fermion, das unter
elektromagnetischer Wechselwirkung steht, kann auch durch diese Gleichung beschrieben
werden, aber man muss die Vierer-Ableitung 0,, durch die kovariante Vierer-Ableitung

(O — eA,,) ersetzen

(17" (Op — eAy) —m)p =0 . (C.6)
Die yv—Matrizen erfiillen die folgende Antikommutatorrelation

Y =29 (C.7)
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und die Hermizitédtsbedingungen 7“T = 799#40, Eine fiinfte y—Matrix, die im Spurtheorem

wichtige Rolle spielt, ist definiert durch

, 01 i _
7 =iyt = ( Lo ) baw. " = ewpm VY (C.8)

wobei €, das total antisymmetrisch alternierende Symbol ist

(C.9)

+1, gerade Permutation von (0,1, 2,3) fiir (u,v, p,7,)
€pvpr =
e —1, ungerade Permutation von (0, 1,2, 3) fiir (i, v, p,,)

Man kann entsprechende y—Matrizen mit unteren Indizes 7, = g, v" definieren. Mit
Hilfe dieser Definition lisst sich einfach beweisen, dass v5 = 7° ist. 4° antikommutiert mit

. 1w =0,1,2,3, und hat die Eigenschaften

(A% =0, (¥)’=1, =4 . (C.10)

Es gibt weitere Eigenschaften von y—Matrizen, die im Anhang D noch besprochen werden.
Mit Hilfe der 4°—Matrix kann man die Projektions-Operatoren fiir die masselosen Dirac-

Teilchen definieren als

Py = 3(1 L) (C.11)



Anhang D

Kontraktions-Identitaten und

Spur-Theoreme

D.1 Kontraktions-Identititen

Unter Awendung des Antikommutators, der im Anhang C besprochen wurde, kann man

folgende algebraische Identitéiten beweisen.

YWy =4 (D.1)
WY ==, (D.2)
Y =4g¥ (D.3)
YV VP = =297 (D.4)

Diese Relationen erleichtern oft die Auswertung von den Spuren, die im néchsten Unter-
abschnitt vorgestellt werden.

Hier wird eine von Feynman eingefiihrte Schreibweise verwendet

d=""qu =" - (D.5)

Hier steht g, fiir einen beliebigen Vierer-Vektor. Mit Hilfe der Identitaten (D.2)-(D.4) und

der von Feynman definierten Schreibweise folgen die Kontraktions-Identitéten

Yud =24 (D.6)
YudPyt = da,b” = 4a”b, = 4a-b (D.7)
VudbeV" = —2¢pd . (D-8)

66



ANHANG D. KONTRAKTIONS-IDENTITATEN UND SPUR-THEOREME 67

Total antisymmetrischer Tensor e**P™ erfiillt die Kotraktionsidentitéiten

P pr = —24 (D.9)
6,uz/pozquﬁ — _695 7 (D]_O)
prio - _9 Y oa Y « D.11
s = =2 (9595 — 9595 ) - (D.11)

D.2 Spur-Theoreme

Im folgenden werden einige sehr niitzliche Relationen angegeben, die als Spur-Theoreme
bekannt sind. Diese Relationen vereinfachen die Berechnung der Spuren, die aus den ver-
schiedenen Kombinationen der y—Matrizen bestehen. Bevor diese Theoreme aufgelistet
werden, werden einige Regeln angegeben, die aus den Definitionen und Herleitungen im

Anhang C einfach zu beweisen sind

Tr [(75)2} —Tr[1]=4 | (D.12)
Tr[y°]=Trisl=0 |, (D.13)
Try*=Try=0 , (D.14)
Tr [y*4°] = =Tr [°y*] = 0 (D.15)
Tr[XY]=Tr[YX] , X,Y beliehige n x n — Matrizen (D.16)

Theorem 1

Die Spur des Produktes einer ungeraden Anzahl y—Matrizen ist stets Null.
Tr [y k2o =Tr [y Yo - Yu) =0, n=2k+1, kezZ . (D.17)

Beweis

Tr [yH1yk2 .. qhn] = T 7575 PRz ke | = (1) T [757“17“2 .. .7Mnfy5]
~—~—
=1

= (=1)" Tr [y°79yh2 - oqtin] = (=1)" T [yiahe - qfn]

Theorem 2

Die Spur des Produktes aus zwei oder vier y—Matrizen ist

Try'y" =44, (D.18)

Tr [y Y™y =4 (¢"°g™ — g"" g™ + g"'g") . (D.19)
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Beweis von ( D.18)
(" =26"
& Tri{(v" ] =Tri2g" & Triy"y" +9"9"]=2Tr[g"]
< Triy ]+ Triy"y"]=2¢"Tr[l] < 2Tr[y""]=84¢"
& Tr=4g¢"
Man kann mit denselben Umformungen und Relationen die Gleichung (D.19) beweisen.

Theorem (1) und (2) kénnen auf das Produkt aus y—Matrizen mit beliebigen Vierer-

Vektoren (von Feynman eingefiihrten Symbol ¢)erweitert werden

Tr(dpl=4a-b (D.20)

Tr[dp¢d] =4 {(a-b)(c-d) = (a-c)(b-d) + (a-D)(c-d)} . (D.21)
Fiir beliebige Vierer-Vektoren a; gilt

firne Z

Trldidz - donta] =0 (D.22)

Trgada- - don] = (a1 - a2) Trdsda - don] — (a1 - a3) T [dada- - don]

+--+ (a1 -agm) Trideds - don-1] - (D.23)

In vielen speziellen Féllen kann man die Spur einfacher berechnen. Es gibt noch eine sehr
niitzliche Relation, die man aus der Antikommutativitdt der y—Matrizen herleiten kann.

Diese Relation ist

dp =2(ab) —pd . dd=a> . (D.24)
Falls @ und b antikommutieren (bzw. (ab) = 0),dann erhdlt man eine noch einfachere

Relation

b=—bd . (D.25)

Theorem 3

Fiir jedes Produkt von v—Matrizen gilt
Tr [k oyt = Tr [yt y2y5 ] (D.26)
Trildide - de] = Tr(dg - dad1] . (D.27)

Diese kann auch auf Produkte, welche v° enthalten, ausgedehnt werden. Hier stehen einige

wichtige Formeln
Tr [75} =Tr [757“] =Tr [757“7”79] =0 , (D.28)
Tr [757“7”7’)7”] = —4ielvPm | (D.29)
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Hier werden die wichtigsten Formeln, die oft in dieser Arbeit benutzt wurden, besonders

bei der Berechnung von Matrixelementen, aufgelistet

Tr :7“7“7”75} =4 (g"o‘g”ﬁ — g™ g™’ + g"” 9"‘”) : (D.30)
Tr }WIW] —4 (aabﬁ —(a-b)g*® + aﬁba) : (D.31)
Tr :v“vav”vﬂﬂ =—4ighh (D.32)
Tr :7“7“7”73 (1- 75)] - Tr [YpYayeys(1 = 75)] = 64glgy (D.33)
Tr [§7° 77 (1= 47| Tr [fradrs(l = 35)) = 64(a- )b d) (D.34)
Tr :’v“vav”vﬂ (1- 75)] - Tr pYaras(1 —75)] = 64ghgy (D.35)
T [17#y] - Tr rds) = 32 [(a - (b-d) + (a-d)(b-0)] . (D.36)
Tr [ 7") - Tr [fradns] = 32 - - d) — (a-d)b-0)] (D37
Tr (@577 (1= 7)) - Tr [frada(l = 15)] = 64 (a- )b d) (D.38)
Tr }mamﬁ] T [fradysy®] = 32 0 a'bcPdmer ™ (D.39)
Tr |y By°] - Tr ravsl = =32 (a-b) (D.40)
Tr [l dn” (L= 27)| + Tr ¢ dn® (1= 27|

= 2(ab) [7°477(1 = 77)] = 2(ca) [Jrd" (1 = 27)| +2(0) [dr°d" (1 = 7).
(D.41)



Anhang E

Fortran-Programm zur
Berechnugn der differentiellen

Zerfallsrate

In diesem Anhang wird das Program, mit dem man die differentielle Zerfallsrate (das

Energiespektrum der Photonen) ausgerechnet hat, kurz vorgestellt:

PROGRAM numerik

INTEGER ndim,ncomp, flags, mineval, maxeval, neval, fail,& nstart,nincrease
PARAMETER (ndim = 4)

PARAMETER (ncomp = 1)

PARAMETER (mineval = 0)

PARAMETER (mazeval = 50000)

PARAMETER (nstart = 1000)

PARAMETER (nincrease = 500)

DOUBLE PRECISION epsrel, epsabs, integral, error(ncomp),
& prob(ncomp)

PARAMETER (epsrel = 1.D — 3)

PARAMETER (epsabs = 1.D — 12)

EXTERNAL integrand

REAL kappa

COMMON/dif f/kappa

DO kappa =0.1,1.0,0.1

CALL vegas(ndim, ncomp, integrand,
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& epsrel, epsabs, verbose, mineval, maxeval,

& nstart, nincrease,

&  newval, fail,integral, error, prob)

PRINT '(D12.5, “+ —“ D12.5, “p=“ F8.3),
& integral,error(1), prob(1)

ENDDO

STOP

END

O sk sk sk sk ok sk okok 0k ok ok ok K ok sk ok ok K sk ok ok K sk oKk Kk KoK K R Kk K KR sk oKk KRk oKk KR K Kok R Sk ok oK KK
SUBROUTINE integrand(ndim, x, ncomp, f)
IMPLICIT NONFE

INTEGER ndim,ncomp

DOUBLE PRECISION xz(4), f(1)

REAL om,betae, me, Eemax, Ee,le, tkmax, rtkmin, xk,
& znu, phi, kinu, Enu, mp, mn, pi, M, Ma, Mb, Mmizx,
& lambda, e, Gf, gv, kappa, taun, beta, x1, x2
COMMON/dif f/kappa

mp = 938.27200

mn = 939.56533

me = 0.510998902

taun = 1.3461E 4+ 24 =1,

Gf = 1.16639E — 11

gv = 0.985619

e = 0.302822

pi = 3.141592653589793

lambda = 1.267

om = kappa * me

1 =0.6

2 =1.5

CALL isprob(zl,x2, Eemax)

Ee = (Eemax — me) x x(1) + me

le = sqrt(Fe * x2 — me  x2)

zkmax = 1.0

zkmin = —1.0

xk = (xkmax — xkmin) * x(2) + xkmin
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IF (zkmin.gt. — 1)) THEN

write(x,*) xkmin, Ee,om, z(1)

ENDIF

xnu=2x*x(3) —1

phi = 2 % pi x x(4)

klnu = Sqrt((1 — xk % x2) * (1 — znu * x2)) % cos(phi) + xk * xnu

Enu = (mn * %2+ me x %2 — mp * *2 — 2 x mn * (Fe + om) + 2 x Ee x om

&  —2xlexomxxk)/(2* (mn— Ee—om — le * znu + om * kinu))

Ma = (1/((FEe*om — le x om x xk) % x2)) * mn *x mp * (me x %2 — Ee x om + le x om * xk)
& x (14 3 xlambda x %2) * Enu x (Ee + om)

& +(

Mb = (1/(mp * om) * *2) * (mn * mp * *3) * ((1 + 3 * lambda * x2) x Enu x Ee
&  + (1 — lambda * %2) * le x Enu * xnu)

1 — lambda * %2) * (le * Enu * znu + Enu x om * kinu))

Mmix = (1/(mp * om x (Ee x om — le x om * xk)))

& smnxmp**2x* ((1+ 3 lambda * ¥2) x Enu

& % (2% Eex %24 Fexom — (Eex om — le x om x xk))

& 4 (1 —lambda * %2) % (2 % Ee x Enu x le x znu + Fe x Enu x om * kinu))
M = —64% (Ma+ Mb— Mmiz)

f(1) = me xtaun x (e * 2 * Gf * %2 % gv * x2/2) %

& (mp/(4 % (2% pi) *%6)) x om * le x (Eemax — me) x (xkmax — xkmin)

&  x2x% (2% pi)*x Enux M/(mn — Ee — om + le x znu + om * kinu)
RETURN

END
C**>|<>|<********>|<>|<********>|<>|<******************************************
Intervallschachtellungsmethode zur Bestimmung der Nullstelle o € [x1, z2] von g(z)
SUBROUTINE isprob(zl,x2,z0)

IMPLICIT NONFE

REAL z0,x1, 22, epsilon, fehler, g

epsilon = 0.000001

DO

fehler = abs(22 — x1)/2.0

IF (fehler.le.epsilon) exit

20 = (1 4+ 22)/2.0

IF (g(x0) * g(x1).1t.0.0) THEN

2 =20
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ELSE

zl =20

fehler = 0.5 x fehler

ENDIF

ENDDO

20 = (x1 4+ 22)/2.0

RETURN

END

O %% 5 o ok ok ok ok ok ok ko8 kKK K ok ok ok ok ok kKKK KKK R K ok ok ok ok ok kKK K KR R oK ok ok ok ok kKK K K R R Rk
FUNCTION g(x)

IMPLICIT NONFE

REAL g,z

REAL mn,mp, me,om

REAL kappa

COMMON/dif f [kappa

mp = 938.27200

mn = 939.56533

me = 0.510998902

om = kappa * me

g=x — (mn**2+mex**2—mpx+2—2xmnx*om)/(2* (mn— om x
& (14 (sqrt(x x %2 — me x x2)/x))))

RETURN

END
C************>|<>|<****************************************************
SUBROUTINE Msq(le,lnu, pp,p, k,b)

IMPLICIT NONE

REAL le(4),Inu(4),pp(4),p(4), k(4), ww(4),

& w(2),h(2),b, lambda, ndot(2), epsone(4), epstwo(4), kT, betk
INTEGER lambdae, lambdanu, lambdap, lambdan, lambdaeps
COMPLEX ss(4),sk(4), skp,eps(4), m(2),t,dot(2)

lambda = 1.267

b=0

DO lambdae = —1,1,2

DO lambdanu = —1,1,2

DO lambdap = —1,1,2
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DO lambdan = —1,1,2

DO lambdaeps = —1,1,2 Polarisationssumme der Photonen
CALL epsil(k,eps,lambdaeps)

CALL cdot(le, eps,dot(1))

CALL cdot(pp, eps, dot(2))

CALL rdot(le, k,ndot(1))

CALL rdot(pp, k,ndot(2))

CALL omega(le,lambdae, ww(1))

CALL omega(lnu, lambdanu, ww(2))

CALL omega(pp, lambdap, ww(3))

CALL omega(p, lambdan, ww(4))

CALL omeg(pp,lambdap,w(1))

CALL omeg(p,lambdan,w(2))

CALL sl(le,lnu,lambdae, lambdanu, ss(1))

CALL s1(pp,p,lambdap,lambdan, ss(2))

CALL sl(le,p,lambdae, lambdan, ss(3))

CALL s1(pp,Inu,lambdap, lambdanu, ss(4))

CALL s2(le,eps, k,lnu, lambdae, lambdanu, sk(1))

CALL s2(le, eps, k, p, lambdae, lambdan, sk(2))

CALL s2(pp, eps, k, p, lambdap, lambdan, sk(3))

CALL s2(pp, eps, k, Inu, lambdap, lambdanu, sk(4))

CALL s3(pp, eps, k, Inu, lambdap, lambdanu, skp)

h(1) = ((1 + lambda)/2) * lambdanu * ww(1) x ww(2) * ww(3) * ww(4)
h(2) = ((1 — lambda)/2) * lambdanu * ww(1) * ww(2) * w(1) * w(2)
m(1) = (4/ndot(1)) % (h(1) * (2.0 x dot(1) x (ss(1) * ss(2) — s5(3) * ss(4))
&+ (sk(1) % ss(2) — sk(2) x ss(4)))

& 4+ h(2) % (2.0 x dot(1) * ss(3) * ss(4) + sk(2) x ss(4)))

m(2) = (4/ndot(2)) = (h(1) * (2.0 x dot(2) * (ss(1) * ss(2) — s5(3) * ss(4))
& 4 (ss(1) x sk(3) — ss(3) x sk(4)))

& 4 h(2) % (2.0 x dot(2) * ss(3) * ss(4) + ss(3) * skp))

t=m(1l) —m(2)

b=b+t+x CONJG(t)

ENDDO

ENDDO

ENDDO
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ENDDO

ENDDO

b=05x%b

RETURN

END
C**********************>|<>|<******************************************
SUBROUTINE s1(pl,p2,lambdal,lambda2, s)
IMPLICIT NONE

INTEGER lambdal, lambda2

REAL pl(4),p2(4)

COMPLEX chil(2),chi2(2),s

CALL spinor(pl,lambdal, chil)

CALL spinor(p2,lambda2, chi2)

s =CONJG(chil(1)) * chi2(1) + CON JG(chil(2)) % chi2(2)
RETURN

END

O 5k k55 o ok 3k 3 3k ok koK ok Ko o K Ko ok K Kok oK K ok S K oK oK K oK ok K Kok ok K Kk ok K Kk ok K K ok R K K oK K oK ok K K ok o
SUBROUTINE spinor(p,lambda, chi)
IMPLICIT NONFE

INTEGER lambda

COMPLEX chi(2)

REAL anorm,absp, absval, p(4)

absp = absval(p)

anorm = SQRT (2 x absp * (absp + p(3)))

IF (absp + p(3).LT.1.0E — 6) THEN

IF (lambda.EQ.1)THEN

chi(1) = CMPLX(0.0,0.0)

chi(2) = CMPLX(1.0,0.0)

ELSE

chi(1) = CMPLX(~1.0,0.0)

chi(2) = CMPLX(0.0,0.0)

ENDIF

ELSE

IF (lambda.EQ.1) THEN

chi(l) = CMPLX (absp + p(3),0.0)/anorm
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chi(2) = CMPLX (p(1),p(2))/anorm

ELSE

chi(l) = CMPLX(—p(1),p(2))/anorm

chi(2) = CMPLX (absp + p(3),0.0)/anorm

ENDIF

ENDIF

RETURN

END
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FUNCTION absval(p)

IMPLICIT NONFE

REAL p(4)

REAL absval

absval = SQRT (p(1) x p(1) + p(2) * p(2) + p(3) * p(3))

RETURN

END
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SUBROUTINE s2(pl,kl,k2,p2, lambdal,lambda?2, s)

IMPLICIT NONFE
INTEGER lambdal,lambda2
REAL p1(4),p2(4), k2(4)
COMPLEX chil(2), chi2(2), v
CALL spinor(pl,lambdal, chil)
CALL spinor(p2,lambda2, chi2)
v(1) = (k2(4) — k2(3)) * chi2(1) + CMPLX (—k2(1), k2(2)) * chi2(2)

2),k1(4), s

v(2) = CMPLX(—k2(1),—k2(2)) x chi2(1) + (k2(4) + k2(3)) * chi2(2)
chi2(1) = (k1(4) + k1(3)) * v(1) + (k1(1) — (0.0,1.0) * k1(2)) % v(2)
chi2(2) = (k1(1) 4+ (0.0,1.0) * k1(2)) * v(1) + (k1(4) — k1(3)) * v(2)

s =CONJG(chil(1)) * chi2(1) + CON JG(chil(2)) * chi2(2)
RETURN

END

C %% 5 o ok ok ok ok ok ok ok ok ok K K K K ok ok ok ok ok ok kK KKK R K ok ok ok ok ok kKK K K R R R ok ok ok ok kKK K K R R ok
SUBROUTINE s3(pl,kl,k2,p2, lambdal,lambda2, s)

IMPLICIT NONE

INTEGER lambdal, lambda2
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REAL pl1(4),p2(4), k2(4)

COMPLEX chil(2), chi2(2),v(2), k1(4), s

CALL spinor(pl,lambdal, chil)

CALL spinor(p2,lambda2, chi2)

v(l) = (k2(4) + k2(3)) * chi2(1) + CMPLX (k2(1),—k2(2)) * chi2(2)

v(2) = CMPLX (k2(1),k2(2)) % chi2(1) 4+ (k2(4) — k2(3)) * chi2(2)

chi2(1) = (k1(4) — k1(3)) % v(1) + (—k1(1) + (0.0, 1.0) % k1(2)) * v(2)

hi2(2) = (—k1(1) — (0.0, 1.0) # K1(2)) # (1) + (K1(4) + K1(3)) * o(2)

s =CONJG(chil(1)) * chi2(1) + CON JG(chil(2)) % chi2(2)

RETURN

END
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SUBROUTINE omega(p, lambda, ww)

IMPLICIT NONFE

INTEGER lambda

REAL p(4), ww

ww = SQRT((p(4) — lambda x SQRT (p(1) * p(1) + p(2) * p(2) + p(3) * p(3))))
RETURN

END

O 5 55 5 ok 3k 3 ok ok KoK ok KK ok KK ok K Kok S K oK S K oK oK K oK ok KKk ok K KR SR KK SR K K SR KK K K oK oK K Kok o
SUBROUTINE omeg(p,lambda,w)

IMPLICIT NONFE

INTEGER lambda

REAL p(4),w

w = SQRT((p(4) + lambda x SQRT (p(1) * p(1) + p(2) * p(2) + p(3) * p(3))))
RETURN

END

O s %5 5 ok 5k o ok ok Kok ok KK oK K ok Kok Sk KoK S K K oK K oK ok KR R K KR R KR R K K R KK K K K R K Kk
SUBROUTINE cdot(p,q,pq)

IMPLICIT NONFE

REAL p(4)

COMPLEX q(4),pq

pq = p(4) *q(4) = p(1) * q(1) = p(2) * 4(2) — p(3) * 4(3)

RETURN

END
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C******************************************************************
SUBROUTINE rdot(p,q,pq)

IMPLICIT NONE

REAL p(4),q(4),pq

pa = p(4) * q(4) — p(1) * ¢(1) = p(2) * ¢(2) - p(3) * 4(3)

RETURN

END
C******************************************************************
SUBROUTINE epsil(k,eps,lambdaeps)

IMPLICIT NONFE

INTEGER lambdaeps

REAL k(4),epsone(4), epstwo(4), kT, betk

complex eps(4)

kT = sqrt(k(1) * 2 4+ k(2) % *2)

betk = sqrt(k(1) « %2 + k(2) % x2 + k(3) % *2)

epsone(1) = k(1) x k(3)/(kT * betk)

k(2) * k(3) /(KT * betk)

epsone(2) =

epsone(3) = —(k(1) x *2 + k(2) * x2) / (kT * betk)

epsone(4) = 0.0

epstwo(l) = —k(2)/kT

epstwo(2) = k(1)/kT

epstwo(3) = 0.0

epstwo(4) = 0.0

eps(1) = (—lambdaeps * epsone(1) — (0.0, 1.0) x epstwo(1))/SQRT(2.0)
eps(2) = (—lambdaeps * epsone(2) — (0.0,1.0) x epstwo(2))/SQRT(2.0)
eps(3) = (—lambdaeps * epsone(3) — (0.0,1.0) x epstwo(3))/SQRT(2.0)
eps(4) = (—lambdaeps * epsone(4) — (0.0, 1.0) x epstwo(4))/SQRT(2.0)
RETURN

END
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