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Zusammenfassung

Im Rahmen dieser Arbeit wurde mit dem in Fortran programmierten Numerov-Verfahren
das Manning-Potential behandelt. Die Verifizierung des Verfahrens erfolgte anhand analy-
tisch behandelbarer Potentiale. Es wurde der Vergleich mit dem Variationsansatz von Plen-
ter gezogen. Auf Basis der Parameter der Variationsrechnung konnten die Energien und
Energiedifferenzen benachbarter Zustände des Ammoniakmoleküls mit dem Manning-
Potential als Inversionspotential berechnet werden. Mittels einer Optimierungsrechnung
gelang es, optimale Potentialtiefen für das Manning-Potential zur Beschreibung der Inversi-
onsschwingung des Ammoniakmoleküls für verschiedene konstante reduzierte Massen und
Höhen der Potentialbarriere zu bestimmen, sodass eine genauere Berechnung der Inversi-
onsenergien erreicht werden konnte.
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1 EINLEITUNG

1 Einleitung

Diese Arbeit reiht sich in eine Vielzahl von experimentellen und theoretischen Untersu-
chungen der Inversions- bzw. Regenschirmschwingung des Ammoniakmoleküls ein. Die
theoretische Untersuchung dieses physikalischen Problems wurde über die Jahrzente auf
unterschiedliche Weise angegangen. Die Arbeiten setzten sich grundlegend aus der Bestim-
mung eines spiegelsymmetrischen Doppelmuldenpotentials zur Beschreibung der Inver-
sionsschwingung und der Lösung der korrespondierenden Schrödingergleichung zusam-
men.

In älteren Arbeiten wie Manning [55] oder Swalen und Ibers [65] wurden funktionale
Formen1 des Inversionspotentials angenomen und auf deren Grundlage die Inversions-
energien für das Ammoniakmolekül mittels verschiedenener Verfahren ermittelt. Im Ge-
gensatz dazu stehen die neueren Ab-initio-Rechnungen wie von Aquino et al. [48] oder Rush
und Wiberg [60]. Aquino et al. berechnen über die Dichtefunktionaltheorie eine Potential-
hyperfläche und nähern diese entlang der Inversionskoordinate durch ein Polynom 20. Gra-
des an, um so das eindimensionale Potential für die quantenmechanische Betrachtung zu
erhalten. Die Schrödingergleichung lösen Aqunio et al. mit einem Verfahren von Rivas-Silva
et al. [93], welches der in dieser Arbeit betrachteten numerischen Methode ähnelt.

Die Entwicklung der Verfahren zur Lösung der resultierenden eindimensionalen Schrö-
dingergleichung für die verschiedenen Inversionspotentiale orientierte sich stets an der Re-
chenleistung der vorhandenen Computer. So war Manning noch auf eine numerische Lö-
sung von Kettenbrüchen [57] beschränkt. In der Arbeit von Förster, Saenz und Wolff [71] da-
gegen wurde die Schrödingergleichung über einen computerbasierten Matrix-Algorithmus
mit hoher Genauigkeit gelöst.

Durch die wachsende Rechenleistung der Computer konnte zudem die Betrachtung der
reduzierten Masse als Konstante zu einer positions-abhängigen reduzierten Masse ange-
passt werden. Die resultierenden Ergebnisse repräsentieren die experimentellen Daten bes-
ser, jedoch steigt auch die Komplexität der zu lösenden Schrödingergleichung und somit
auch die Anforderungen an die numerischen Verfahren zur Lösung dieser.

Gegenstand dieser Arbeit ist die Untersuchung des Manning-Potentials [56] mit dem
computergestützten Numerov-Verfahren nach Papenfort [22] und einer konstanten redu-
zierten Masse. Das Programmieren und Verifizieren des Numerov-Verfahrens zur Lösung
eindimensionaler Schrödingergleichungen stellt den ersten Teil dieser Arbeit dar. Swalen
und Ibers [67] lobten die funktionale Form des Manning-Potentials zur Beschreibung der
Inversionschwingung des Ammoniakmoleküls und forderten eine Überarbeitung der Rech-
nungen von Manning mit aktuellen experimentellen Daten und neueren numerischen Be-
rechnungsmethoden. Diese Aufarbeitung und die einhergehenden Vergleiche mit neueren
Verfahren stellt den zweiten Teil dieser Arbeit dar. Desweiteren spricht die Arbeit von Plenter
[19], welcher mittels Variationsrechnung die energetische Aufspaltung des Grundzustands
zum ersten angeregten Zustand für das Ammoniakmolekül berechnet hat, als eine der Ursa-
chen für die Unsicherheit der Berechnungen, die Unkenntnis der genauen Potentialtiefe des
Manning-Potentials an. Die begrenzte Potentialtiefe unterscheidet das Manning-Potential
von anderen divergierenden Inversionspotentialen wie beispielsweise in Aquino et al. [48],
Rush und Wiberg [60] sowie Wall und Glockler [95]. Die Bestimmung der optimalen Potenti-
altiefe durch den Vergleich der mittels Numerov-Verfahren bestimmten Inversionsenergien
mit den experimentellen Werten stellt den dritten Teil dieser Arbeit dar. Abschließend wird
anhand der berechneten optimalen Potentialtiefen für verschiedene reduzierte Massen und
unter Berücksichtigung der Unsicherheit in dem Wert der Höhe der Potentialbarriere die In-
versionsenergien der ersten acht gebundenen Zustände des Ammoniakmoleküls berechnet
und mit den Werten der ursprüngliche Rechnung von Manning und den Ergebnissen der
neueren Ab-initio-Rechnung von Aquino et al. verglichen.

1Der Begriff der funktionalen Form wird hier in Anlehnung an die englische Literatur und den Begriff func-
tional form gewählt.
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2 THEORETISCHE GRUNDLAGEN

2 Theoretische Grundlagen

Die für diese Arbeit und das Verständnis des Lesers relevanten theoretischen Grundlagen
werden im Folgenden erläutert. Zuerst wird neben den fundamentalen Informationen zum
Ammoniakmolekül NH3 dessen Verbindung zum Manning-Potential geschildert. Es folgt
die Analyse des Manning-Potentials. Die grundlegende Theorie zur Quantenmechanik ist
ausführlich in der Literatur wie Münster [78] oder Griffiths [84] beschrieben, sodass hier
abschließend nur eine Zusammenfassung der relevanten Aspekte erfolgt. Da ein Vergleich
mit den Rechnungen Anderer (Plenter [1], Papenfort [22] , Christiansen und Cunha[89], ex-
perimentelle Daten[91]) angestrebt wurde, ist die Notation an die entsprechenden Arbeiten
angelehnt, sodass ein Vergleich dem Leser dieser Arbeit erleichtert wird. Im Folgenden wird
zudem nicht mehr explizit die Terminologie für die Inversionsschwingung (Inversionspo-
tential, Inversionsenergie, usw.) genutzt, sondern einfach von Potential, Quantenzahl, Ener-
gie usw. gesprochen.

2.1 Das Ammoniakmolekül NH3 und dessen Verbindung zum Manning-Potential

Die Betrachtung des Ammoniakmolekül NH3 stellt ein dreidimensionales Vierkörperpro-
blem dar. Wie in der schematischen Darstellung in Abbildung 2.1 ersichtlich, kann das Am-
moniakmolekül näherungsweise als dreiseitige Pyramide [56] mit C3v -Symmetrie [77] an-
gesehen werden.

Die drei Wasserstoffatome H bilden die dreieckige Grundfläche und die Spitze der Pyra-
mide markiert das Stickstoffatom N. Unter den sechs Eigenschwingungen des Ammoniak-
moleküls ist die anharmonische [61] Regenschirm- bzw. Inversionsschwingung Gegenstand
dieser Arbeit. Bei dieser schwingt das Stickstoffatom relativ zur Ebene der Wassterstoffa-
tome und kann auch auf die andere Seite der H3-Ebene über den quantenmechanischen
Tunnelprozess „umklappen“. Aus dem Tunnelprozess resultiert die Aufspaltung der Ener-
gieniveaus in Dubletts für symmetrische und antisymmetrische Zustände, wobei die sym-
metrischen Zustände aufgrund der erhöhten Augfenthaltswahrscheinlichkeit nahe der Po-
tentialbarriere energetisch tiefer liegen [76]. Die Aufspaltung zwischen symmetrischen und
antisymmetrischen Zustand nimmt mit steigender Energie monoton zu [66]. Die Inversi-
onskoordinate x stellt dabei den Abstand zwischen dem Stickstoffatom und der Grundflä-
che der Pyramide dar. Die Potentialhyperfläche des Ammoniakmoleküls muss für die Be-
trachtung der Inversionsschwingung in der eindimensionalen Quantenmechanik auf ein
eindimensionales effektives Potential entlang der Inversionskoordinate reduziert werden.
Bei der Annahme der funktionalen Form dieses Inversionspotentials sind folgende Aspekte
zu berücksichtigen:

• Die Gleichgewichtspositionen x =±a des Stickstoffatoms oberhalb und unterhalb der
H3-Ebene markieren die Position der Minima des Potentials. Die Position der Minima
folgt somit aus dem N-H-Bindungsabstand [75].

• Die H3-Ebene stellt für das Stickstoffatom N eine Potentialbarriere bei x = 0 dar.

• Eine begrenzte Potentialtiefe berücksichtigt mögliche Dissoziationsvorgänge bei de-
nen das Stickstoffatom aus dem Molekül verschwindet.

Zur Beschreibung der Inversionsschwingung des Ammoniakmoleküls schlug Manning
das Manning-Potential [56] vor, welches schematisch in Abbildung 2.2 dargestellt ist. Aus
Mannings [56] Berechnungen folgte für die charakterisierenden Werte des Potentials:

• Abstand Stickstoffatom zur Wasserstoffebene (Position der Potentialminima): 0,37Å

• Höhe der Potentialbarriere: 2076cm−1

• ungefähre Dissoziationsenergie: 5eV
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2.1 DAS AMMONIAKMOLEKÜL NH3 UND DESSEN VERBINDUNG ZUM
MANNING-POTENTIAL

Abbildung 2.1: Schematische Darstellungen der pyramidalen Form des Ammoniakmoleküls
[49].

0

V
(x

)

x

V (x)

Abbildung 2.2: Schematische Darstellung des Manning-Potentials.

Die Position der Minima und die Höhe der Barriere konnten mittlerweile experimentell
genauer bestimmt werden:

• Position der Potentialminima: 0,383Å [75]

• Höhe der Potentialbarriere: (2021±20)cm−1 = (0,2506±0,0025)eV [87]

Einhergehend mit der Beschreibung des Ammoniakmoleküls durch ein effektives ein-
dimensionales Potential findet die Näherung der Massenverhältnisse durch eine reduzierte
Masse statt. Rush und Wiberg [62] ist zu entnehmen, dass der Weg der minimalen Energie
des Inversionsvorganges die C3v -Symmetrie des Ammoniakmoleküls erhält, jedoch die Bin-
dungslänge zwischen dem Stickstoffatom und den Wasserstoffatomen im Verlauf der Inver-
sion variiert. Die quantenmechanische Betrachtung der resultierenden positions-abhängigen
reduzierten Masse wie in Aquino et al. [53], Rush und Wiberg [62] oder Förster et al. [72]
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2.2 DIE ANALYSE DES MANNING-POTENTIALS

übersteigt jedoch den Umfang dieser Arbeit, sodass die reduzierte Masse als konstant genä-
hert wird. Es wird nun gemäß der ursprünglichen Arbeit von Manning [58] zwischen zwei
Situationen unterschieden, wobei deren mathematische Behandlung (d.h. die Formeln) aus
der Arbeit von Swalen und Ibers [70], Acquino et al. [52] oder Townes und Schawlow [92] zu
entnehmen ist:

• Der Abstand zwischen den Wasserstoffatomen bleibt aufgrund einer stärkeren H-H-
Bindung während des Inversionsvorganges konstant und die dreieckige H3-Grund-
fläche des pyramidalen Ammoniakmoleküls bewegt sich als Einheit [58]. Die redu-
zierte Masse für diese Näherung ergibt sich durch

µ0 = 3mH MN

3mH +MN
, (2.1)

wobei mH = 1,007825035u der Masse eines Wasserstoffatoms und MN = 14,003074u
der Masse eines Stickstoffatoms entspricht [51]. Es resultiert für die konstante redu-
zierte Masse µ0 = 4,12906991140916 ·10−27 kg.

• Der Abstand zwischen Stickstoffatom und den Wasserstoffatomen wird aufgrund ei-
ner stärkeren N-H-Bindung während des Inversionsvorganges als konstant angenom-
men [96]. Es resultiert eine reduzierte Masse die abhängig vom Winkel β zwischen
H3-Ebene und N-H-Bindung (siehe Abbildung 2.1) ist. Townes und Schawlow [92] ar-
gumentieren jedoch, dass die Winkelabhängigkeit vernachlässigt werden könnte, um
die positions-abhängige reduzierte Masse durch eine konstante reduzierte Masse an-
zunähern. Dazu wird der variable Winkel β durch den Winkel βe der Gleichgewichts-
position ersetzt. Die reduzierte Masse berechnet sich dann mittels

µ=µ0

[
1+ 3mH sin2βe

MN

]
, (2.2)

wobei βe = 22◦13′ dem Winkel β analog zu Abbildung 2.1 zwischen der H3 Grundflä-
che und der Bindung zwischen N und H für den Fall der Gleichgewichtsposition des
Stickstoffatoms entspricht [51].

Da zum einen der Vergleich mit der Arbeit von Plenter [14] angestrebt wird und zum
anderen Manning [58], Swalen und Ibers [69], sowie Förster et al. [73] diese Näherung be-
vorzugten, erfolgt die Berechnung der reduzierten Masse mittels der Gleichung 2.2. Es er-
gibt sich der Wert µ = 4,25652928924809 · 10−27 kg. Aufgrund des großen Massendifferenz
zwischen einem Stickstoffatom und einem Wasserstoffatom ist der Unterschied zwischen
Gleichung 2.1 und Gleichung 2.2 mit ∆µ=µ−µ0 = 1,27459378375284 ·10−28 kg gering.

2.2 Die Analyse des Manning-Potentials

Im Folgenden werden die grundlegenden Eigenschaften des Manning-Potentials erläutert.
Als Ausgangspunkt liegt das Manning-Potential [56] in der Form

V (x) =−C sech2
(

x

2ρ

)
+Dsech4

(
x

2ρ

)
(2.3)

vor, wobei die charakterisierenden reellwertigen Parameter C =C (V0,Va) > 0 und
D(V0,Va) > 0 die Dimension Energie besitzten und abhängig von der Potentialtiefe Va und
dem Wert des Potentials bei der Bariere V0 sind. Der Parameter im Argument der sech-
Funktionen ρ = ρ(a,C ,D) besitzt die Dimension Länge und staucht bzw. streckt das Po-
tential entlang der x-Achse.
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2.2 DIE ANALYSE DES MANNING-POTENTIALS

Sekans Hyperbolicus: Da die Sekans Hyperbolicus Funktion die Grundlage des Manning-
Potentials darstellt, werden im Folgenden relevante Eigenschaften dieser Funktion erläu-
tert. Die Sekans Hyperbolicus Funktion ist eine Hyperbelfunktion und lässt sich ebenfalls
durch

sech(x) = 2

ex +e−x = 1

cosh(x)
(2.4)

darstellen. Die sech(x)-Funktion ist für Argumente −∞< x <∞ definiert und der Wer-
tebereich beträgt 0 < sech(x) ≤ 1. Für negative Argumente x ist die Funktion streng mono-
ton steigend und für positive x streng monoton fallend. Die sech-Funktion konvergiert für
x →±∞ gegen Null. Das globale Maximum liegt bei x = 0 und beträgt sech(0) = 1. Es liegen
keine Nullstellen, Sprungstellen oder Polstellen vor. Die Umkehrfunktion der sech-Funktion
ist die arsech-Funktion

y(x) = sech(x)

⇒ x = arsech(y) = arcosh

(
1

y

)
, (2.5)

welche wiederum mittels der arcosh-Funktion dargestellt werden kann. Im Allgemeinen gilt
für eine bijektive Funktion f : A → B mit der Umkehrfunktion f −1 : B → A

f ( f −1(x)) = x für alle x ∈ B . (2.6)

Die sech-Funktion ist nicht über ihren gesamten Definitionsbereich bijektiv, sondern
nur separat betrachtet in den Bereichen x ≤ 0 oder x ≥ 0. Der Areasekans Hyperbolicus
besitzt folglich einen Definitionsbereich von 0 < x ≤ 1 und einen Wertebereich von 0 ≤
arsech(x) <∞. Für den Areakosinus Hyperbolicus resultiert gemäß Gleichung 2.5 als Defi-
nitionsbereich 1 ≤ x <∞ und als Wertebereich 0 ≤ arcosh(x) <∞. Es folgt mit Gleichung 2.6

⇒ sech(arsech(x)) = sech

[
arcosh

(
1

x

)]
= x . (2.7)

Mit einer beliebigen Konstante a im Argument der sech-Funktion resultiert für die Ab-
leitung des Sekans Hyperbolicus mit dem Exponent n

d

d x
sechn(ax) =−an · sechn(ax)tanh(ax) , (2.8)

wobei tanh(x) = sinh(x)
cosh(x) .

Parameter des Manning-Potentials: Der Wert des Potentials bei der Barriere (x = 0) ergibt
sich zu

V0 :=V (0) =−C +D . (2.9)

Mit Gleichung 2.8 folgt für die Ableitung des Manning-Potentials

dV (x)

d x
=− 1

ρ
tanh

(
x

2ρ

)[
−C sech2

(
x

2ρ

)
+2Dsech4

(
x

2ρ

)]
, (2.10)

welche es gemäß dem Extremal-Prinzip gleich Null zu setzten gilt, um die x-Werte der
Extrema zu bestimmen. Aufgrund der y-Achsensymmetrie korrespondiert eine Extremstelle
bei x mit einer Extremstelle bei −x.
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2.2 DIE ANALYSE DES MANNING-POTENTIALS

0
!= dV (x)

d x

⇔ 0
!=− 1

ρ
tanh

(
x

2ρ

)[
−C sech2

(
x

2ρ

)
+2Dsech4

(
x

2ρ

)]
⇒ x0 = 0

⇔ 0
!= sech2

(
x

2ρ

)[
−C +2Dsech2

(
x

2ρ

)]
⇒ lim

x→±∞V (x) = 0

⇔ 0
!=−C +2Dsech2

(
x

2ρ

)

⇒ xa = 2ρarsech

(
±

√
C

2D

)
= 2ρarcosh

(
±

√
2D

C

)
(2.11)

Das Extremum bei x0 = 0 entspricht dem lokalen Maximum der Potentialbarriere. Das
Konvergenzverhalten des Manning-Potentials für x → ±∞ ermöglicht ungebundene Zu-
stände mit Energien E > V (x)∀x ∈ R. Das Extremum bei xa weist auf die Position der glo-
balen Minima des Manning-Potentials hin, welche aufgrund der y-Achsensymmetrie des
Potentials bei

±a :=±2ρarcosh

(√
2D

C

)
(2.12)

liegen. Für C ,D > 0 und C ,D ∈ R gilt
√

2D
C > 0, wodurch die Lösung mit negativem Ar-

gument der arcosh-Funktion wegfällt2. Ebenfalls aus dem Definitionsbereich der arcosh-
Funktion resultiert

√
2D

C

!≥ 1 ⇒ C

2
≤ D , (2.13)

wobei im Fall der Gleichheit a = 0 resultiert und nur noch ein Minimum und keine Dop-
pelmuldengestalt vorliegt. Desweiteren muss D < C gelten, da für C ,D > 0 die Bedingung

V (0) =−C +D
!< lim

x→±∞V (x) = 0 gelten soll.

Zusammengefasst resultiert die Bedingung C
2 < D < C für die Doppelmuldenform des

Manning-Potentials. Zur Bestimmung des Potentialwertes bei diesen Minima muss V (a)
berechnet werden

V (a) =−C sech2

[
arcosh

(√
2D

C

)]
+Dsech4

[
arcosh

(√
2D

C

)]
, (2.14)

wobei unter Berücksichtigung der Gleichung 2.7 folgt

Va :=V (a) =−C 2

4D
. (2.15)

Die Gleichungen 2.9, 2.12 und 2.15 können nun umgestellt werden, um Ausdrücke für
die charakterisierenden Parameter des Manning-Potentials in Gleichung 2.3 zu erhalten

2Unter Berücksichtigung des Definitionsbereiches der arcosh-Funktion.
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Va =− (D −V0)2

4D
⇔ 0 = D2 +2(2Va −V0)D +V 2

0

⇒ D1,2 =−2Va +V0 ±2
√

V 2
a −VaV0 (2.16)

⇒C1,2 = D −V0 =−2Va ±2
√

V 2
a −VaV0 , (2.17)

wobei die Lösungen für C und D mit negativer Wurzel in einer Verletzung von Glei-
chung 2.13 resultieren würden und daher ausgeschlossen werden. Die Umstellung von a
nach ρ ist trivial und ergibt

ρ = a

2arcosh
(√

2D
C

) . (2.18)

2.3 Allgemeines zur nichtrelativistischen Quantenmechanik spinloser Teilchen

Zwar werden in dieser Arbeit lediglich eindimensionale und zeitunabhängige Probleme der
Quantenmechanik betrachtet, jedoch wird im Folgenden der Zusammenhang zur dreidi-
mensionalen und zeitabhängigen Betrachtungsweise erläutert und Argumente für die Rele-
vanz dieser vereinfachten Betrachtungsweise gegeben. Abschließend ist die relevante zeitu-
nabhängige eindimensionale Quantenmechanik für spiegelsymmetrische Potentiale aufge-
führt. Jegliche Einflüsse durch Berücksichtigung des Spins der betrachteten Teilchen oder
relativistische Effekte wurden vernachlässigt. Die Einführung des in der Quantenmechanik
gebräuchlichen Formalismus wird hier vermieden, da dieser für die numerische Betrach-
tung keine Relevanz besitzt. Das Folgende ist eine Zusammenstellung der relevanten Theo-
rie aus Münster [78] und Griffiths [84].

2.3.1 Zeitabhängige dreidimensionale Schrödingergleichung

In der Quantenmechanik wird ein Teilchen zur Zeit t durch seine komplexwertige Wellen-
funktion ψ(~r , t ) beschrieben. Die korrespondierende zeitabhängige Schrödingergleichung
im Dreidimensionalen ist eine lineare partielle Differentialgleichung in t und lautet in Orts-
darstellung

iħ ∂

∂t
Ψ(~r , t ) =

[
− ħ2

2m
∆+V (~r , t )

]
Ψ(~r , t ) , (2.19)

wobei das Teilchen die Masse m besitzt und unter dem Einfluss des äußeren Potentials
V (~r , t ) liegt. Diese gibt die zeitliche Entwicklung der Wellenfunktion von einem Startzeit-
punkt t0 aus vor. In der statistischen Interpretation entspricht die Aufenhaltswahrschein-
lichkeitsdichte %(~r , t ) = |Ψ(~r , t )|2 der Wahrscheinlichkeit, dass das betrachtete Teilchen am
Ort~r zum Zeitpunkt t anzutreffen ist. Es folgt für physikalische Wellenfunktionen als Rand-
bedingung der obigen Schrödingergleichung die Normierungsbedingung

∫
R3

%(~r , t )d 3r
!= 1 , (2.20)

welche versichert, dass das Teilchen zu einem Zeitpunkt t irgendwo im Raum vorzufin-
den sein muss. Die Normierung erfolgt durch eine Normierungskonstante N ∈ C, da für je-
de LösungΨ(~r , t ) auch NΨ(~r , t ) Lösung der zeitabhängigen Schrödingergleichung ist3. Nur

3Für nicht zeitabhängiges N ist der Beweis trivial [85].
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2.3 ALLGEMEINES ZUR NICHTRELATIVISTISCHEN QUANTENMECHANIK SPINLOSER
TEILCHEN

quadratintegrable Wellenfunktionen sind normierbar und stellen somit physikalische Wel-
lenfunktionen gemäß der statistischen Interpretation dar. Aus der Kontinuitätsgleichung4

∂%(~r , t )

∂t
=−~∇~j (~r , t ) , (2.21)

wobei

~j (~r , t ) =− iħ
2m

(
Ψ∗∇Ψ−Ψ∇Ψ∗)

(2.22)

der Wahrscheinlichkeitsstromdichte entspricht, resultiert, dass für das Integral

∫
R3

|Ψ(~r , t )|2d 3r = const (2.23)

keine zeitliche Änderung erfolgt. Somit bleibt die Normierung einer Wellenfunktion zeit-
lich erhalten.

2.3.2 Zeitunabhängige dreidimensionale Schrödingergleichung – Separationsansatz
Ψ(~r , t ) =φ(t )ψ(~r )

Die eigentliche Berechnung derΨ(~r , t ) bei gegebener AusgangswellenfunktionΨ(~r , t0) zum
Startzeitpunkt t0 ist im Folgenden dargestellt5. Setzt man für zeitunabhängige Potentiale
den Separationsansatz Ψ(~r , t ) = φ(t )ψ(~r ) in obige Schrödingergleichung ein, so lässt sich
über die zeitunabhängige Separationskonstante E ∈ R eine gewöhnliche Differentialglei-
chung erster Art in der Zeit t von einer partiellen Differentialgleichung zweiter Art in den
räumlichen Koordinaten separieren6. Aus der zeitlichen Gleichung folgt die Definition der
stationären Zustände

Ψ(~r , t ) = e−
i
ħ Etψ(~r ) , (2.24)

für welche |Ψ(~r , t )|2 = |ψ(~r )|2 und die zeitliche Konstanz ihrer Erwartungswerte gelten7.
Die zeitunabhängigen Wellenfunktionen ψ(~r ) können über die zeitunabhängige Schrödin-
gergleichung

[
− ħ2

2m
∆+V (~r )

]
ψ(~r ) = Eψ(~r ) (2.25)

bestimmt werden, wobei ψ(~r ) wahlweise reellwertig ist. Die Separationskonstante E
entspricht der zur Wellenfunktion ψ(~r ) korrespondierenden Energie8. Aus jeder möglichen
Separationskonstante9 En ergibt sich eine Wellenfunktionψn(~r ). Es resultieren eine beliebi-
ge Anzahl stationärer ZuständeΨn(~r , t ) (vollständiger Satz stationärer Zustände). Der Über-
gang auf die allgemeine zeitabhängige WellenfunktionΨ(~r , t ) erfolgt über die Linearkombi-
nation der stationären Zustände

4Beweis siehe [79].
5Eine direkte Berechnung derΨ(~r , t ) mit der zeitabhängigen Schrödingergleichung ist selten möglich [86].
6Die Separationskonstante ist nur reell, sofern die Wellenfunktionen normierbar sind. Für Beweis siehe [80].
7Aus der Normierungsanforderung anΨ(~r , t ) folgt somit auch die Normierungsanforderung an ψ(~r ).
8E beschreibt die Gesamtenergie der korrespondierenden Wellenfunktionen. Im Folgenden wird diese je-

doch nur noch als Energie bezeichnet, da eine Unterteilung in kinetische oder potentielle Energie entfällt.
9Abhängig von dem jeweiligen Potential.
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Ψ(~r , t ) =
∞∑

n=1
cnψn(~r )e

−i En
ħ t =

∞∑
n=1

cnΨn(~r , t ) , (2.26)

dabei sind die Vorfaktoren cn der Linearkombination so zu wählen, dass die Ausgangs-
wellenfunktion zum Zeitpunkt t0 durch die Linearkombination realisiert wird. Die Erwar-
tungswerte und das Betragsquadrat von Ψ(~r , t ) sind zeitlich nicht konstant [86]. Die Rele-
vanz der zeitunabhängigen Betrachtungsweise und des Separationsansatzes ist somit ge-
zeigt.

2.3.3 Zeitunabhängige eindimensionale Schrödingergleichung – Separation der räum-
lichen Koordinaten

Sofern eine Separation des Potentials in die jeweiligen räumlichen Koordinaten möglich ist,
resultieren die Wellenfunktionen im Dreidimensionalen aus dem Produkt der eindimen-
sionalen Wellenfunktionen der jeweiligen Raumrichtungen. Die zeitunabhängige Schrödin-
gergleichung in Gleichung 2.25 reduziert sich zu einer gewöhnlichen Differentialgleichung
zweiter Ordnung in der betrachteten räumlichen Koordinate x

d 2

d x2ψ(x) = 2m

ħ2 [V (x)−E ]ψ(x) . (2.27)

In dieser Arbeit wurden nur gebundene Zustände analysiert. Zudem konvergieren die
betrachteten stetigen spiegelsymmetrischen Potentiale entweder für x →±∞ gegen einen
konstanten Wert Vmax >V (x) ∀x ∈R (ψn(x) gebundener Zustand für En <Vmax ) oder diver-
gieren gemäß V (x →±∞) →∞ (es existieren nur gebundene Zustände). Die gebunden Zu-
stände ψn(x) resultieren in einem diskreten Energiespektrum En [82]. Die Hauptquanten-
zahl n charakterisiert für eindimensionale Probleme eindeutig die Wellenfunktionen und
deren Energien. Die Indizierung ist nach aufsteigenden Energien sortiert10. Der Knotensatz
liefert die für die numerische Bearbeitung notwenige Verknüpfung der Hauptquantenzah-
len11 n mit den durch den Numerov-Algorithmus berechneten Wellenfunktionen:

• Knotensatz [81]:
Löst ψn(x) die Gleichung 2.27 mit Energiewert En , so besitzt die Wellenfunktion n
einfache Nullestellen (bzw. Knotenpunkte)12.

Dieser resultiert aus dem Oszillationssatz und dem Satz über das Wandern der Knoten, wel-
che in [24] bewiesen wurden. Für den Fall von spiegelsymmetrischen Potentialen gilt:

• Parität der Wellenfunktionenψn(x) [83]:
Aufgrund der Spiegelsymmetrie des Potentials sind auch die Betragsquadrate der Wel-
lenfunktionen |ψ(x)|2 symmetrisch. Daraus folgt unmittelbar, dass die Wellenfunktio-
nen selbst entweder eine gerade oder ungerade Parität aufweisen13. Zusammen mit
dem Knotensatz ergibt sich für n = 0 (Grundzustand) eine Wellenfunktion ψ0(x) =
ψ0(−x) mit gerader Parität (Spiegelsymmetrie an y-Achse) und für n = 1 (erster ange-
regter Zustand) eine Wellenfunktion ψ1(x) = −ψ1(−x) mit ungerader Parität (Punkt-
symmetrie im Ursprung). Die Wellenfunktionen weisen alternierend gerade und un-
gerade Paritäten auf.

10Je nach Potential startet die Nummerierung bei n = 0 oder n = 1.
11Hierbei ist die Nummerierung der Zustände mit n = 0 beginnend anzufangen.
12Die Grenzwerte für x →±∞ werden dabei nicht als Knotenpunkte gezählt
13Der Beweis kann über den verschwindenen Kommutator des Hamilton Operators Ĥ mit dem Paritätsope-

rator
∏̂

erfolgen. Dieser ist in [83] gegeben
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3 NUMEROV-VERFAHREN

3 Numerov-Verfahren

Die Bestimmung der Energien und Wellenfunktionen bestimmter quantenmechanischer
Probleme wie das Manning-Potential ist analytisch nicht mehr möglich und muss auf nu-
merische Art erfolgen. Durch die Diskretisierung des Problems wird die computergestützte
numerische Berechung möglich. Als unumgängliches Resultat der Diskretisierung und in
Zusammenhang mit der endlichen maschinellen Genauigkeit des Computers sind die Lö-
sungen rein approximativ. Die Genauigkeit der Lösungen ist unteranderem abhängig von
der gewählten maschinellen Genauigkeit, der intrinsischen Genauigkeit der verwendeten
Berechnungsmethodik und der Genauigkeit der Parameter, die dem Verfahren von außen
übermittelt werden. Das Überprüfen der Berechnungsmethodik anhand von Vergleichen
mit analytisch bestimmten Lösungen kann Aufschluss über die Genauigkeit des Verfahrens
liefern und eventuelle systematische Fehler aufdecken. Das hier angewendete und vorge-
stellte Numerov-Verfahren basiert auf der Arbeit von Papenfort [25] und wurde als Fortran-
Programm individuell auf die jeweiligen Probleme manuell angepasst. Es war dabei nicht
von Interesse, allgemein anwendbare Programme für verschiedenste Potentiale und Para-
meter zu schaffen, wie es in der Arbeit von Papenfort oder Kemper [42] das Ziel war. Ein all-
gemein anwendbares Programm hätte für die angestrebten Vergleiche in einem unverhält-
nismäßigen Aufwand in der Umrechnung der Parameter resultiert, ohne dabei von Mehr-
wert für zukünftige Betrachtungen zu sein. Auch die detailierte Analyse der Genauigkeit der
Berechnungen analog zu Papenfort wäre redundant und wurde demnach hier nicht betrie-
ben.

Im Folgenden werden die grundlegenden Aspekte des Numerov-Verfahrens gemäß Pa-
penfort erläutert. Die relevanten Umformungen der eindimensionalen zeitunabhängigen
Schrödingergleichung mit dem Manning-Potential für die jeweiligen Vergleiche werden vor-
gestellt. Es folgt die Erläuterung des geschriebenen Fortran-Programms, welches die Ba-
sis der verschiedenen Berechnungen darstellt. Zur Verifizierung des Fortran-Programs die-
nen die analytisch lösbaren Potentiale des Harmonischen Oszillators und das Pöschl-Teller
Potential. Der Vergleich mit dem Variationsrechnungsansatz von Plenter für verschiede-
ne Konfigurationen des Manning-Potentials erlaubt eine Bewertung der relativen Güte der
beiden Ansätze in der Analyse des Manning-Potentials. Im Folgenden wird als Numerov-
Verfahren der gesamte numerische Algorithmus zur Bestimmung der Energieeigenwerte
zu verschiedenen Zuständen angesehen. Von einer Ausgabe aus dem Fortran-Programm
der berechneten Wellenfunktionen zu Veranschaulichungszwecken wurde abgesehen, da
sich die Untersuchung auf die Energiewerte der gebundenen Zustände beschränkt. Zudem
stellt die Wellenfunktion keine quantenmechanische Observable dar, sodass man keinen
Vergleich zu experimentellen Werten hätte ziehen können. Die Erweiterung aller Program-
me um die Ausgabe der Wellenfunktion kann jedoch ohne großen Aufwand durchgeführt
werden.

3.1 Allgemeines Vorgehen des Numerov-Verfahrens

Zu einer gegebenen Energie wird iterativ durch den Numerov-Algorithmus die korrespon-
dierende Wellenfunktion vom Startpunkt x = 0 aus berechnet. Die Analyse dieser Wellen-
funktion gibt Ausschluss über die Güte der Wahl der Energie. Je nach Art des Fehlverhaltens
der Wellenfunktion wird die Energie angepasst und erneut die korrespondierende Wellen-
funktion ermittelt. Dieses Vorgehen wird sukzessive durchgeführt bis die Wellenfunktion
das gewünschte Verhalten aufweist. Die entsprechende Energie wird der Hauptquantenzahl
zugeordnet. Das gesamte Verfahren wird für die gewünschte Anzahl von Quantenzahlen be-
trieben.

Im Folgenden sind die für das Numerov-Verfahren relevanten Folgerungen aus Abschnitt 2
rekapituliert:

• Aus spiegelsymmetrischen Potentialen folgen abwechselnd Wellenfunktionen mit ge-
rade und ungerader Parität. Die Grundzustandswellenfunktion besitzt gerade Parität.
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• Knotensatz: Die Anzahl der Knoten einer Wellenfunktion entspricht der Hauptquan-
tenzahl n = 0,1,2, ... .

• Physikalisch sinnvolle Wellenfunktionen sind quadratintegrabel und somit beliebig
normierbar.

Das Numerov-Verfahren resultiert in vielen Aspekten direkt aus der vorgestellten Quan-
tenmechanik. So basiert der Numerov-Algorithmus auf der Struktur der Schrödingerglei-
chung. Die Startwerte der Rekursion ergeben sich direkt aus den Überlegungen zur Pa-
rität und Normierung. Die Randbedingungen basieren auf der Tatsache, dass gebundene
Zustände durch quadratintegrable Wellenfunktionen mit diskreten Energien repräsentiert
werden und nutzten das Krümmungsverhalten der Wellenfunktionen für abweichende Ener-
gien aus.

3.2 Der Numerov-Algorithmus

Durch die in Abschnitt 2.3 erläuterten Reduktionen der Schrödingergleichung auf eine ge-
wöhnliche Differentialgleichung zweiter Ordnung in der räumlichen Koordinate x lässt sich
das Numerov-Verfahren zur Berechnung der Energien und Wellenfunktionen anwenden.
Die im Numerov-Verfahren betrachteten eindimensionalen und zeitunabhängigen
Schrödingergleichungen weisen die Form

d 2ψ(x)

d x2 +F (x)ψ(x) = 0 (3.1)

mit F (x) = 2m
ħ2 (E −V (x)) auf [26]. Die Symmetrie von V (x) wird auf F (x) übertragen. Die

betrachteten Potentiale besitzen alle eine Spiegelsymmetrie, sodass sich die Berechnungen
auf Werte von x ≥ 0 beschränken. Nur bei den Energien gebundener Zustände lässt sich das
gewünschte Fehlverhalten der Wellenfunktion bei falsch gewähltem Energiewert beobach-
ten. Es werden folglich nur Potentiale und Energien der Zustände betrachtet, für die x →∞
in F (x) < 0 resultieren. Um dieses bei den betrachteten Potentialen zu gewährleisten, wur-
den die Potentiale, wenn nötig, auf das Nullniveau angehoben.

Der Vorteil gegenüber anderen Verfahren liegt in der höheren Berechnungsgenauigkeit
aufgrund der Berücksichtigung der Struktur der Schrödingergleichung [25]. Damit ist die
Eigenschaft

ψ(2)(x) =−F (x)ψ(x) (3.2)

ψ(4)(x) =− d 2

d x2

(
F (x)ψ(x)

)
(3.3)

der zweiten und vierten räumlichen Ableitung der Schrödingergleichung gemeint [27].
Diskretisierung der räumlichen Koordinate xi = i ·h mit einer konstanten Schrittweite h
erlaubt die Taylorentwicklung der Wellenfunktion ψ(x) nach der Schrittweite h. Zusam-
men mit obigen Struktureigenschaften der Schrödingergleichung und Näherung der zwei-
ten räumlichen Ableitung durch den Differentialquotienten resultiert die zweigliedrige Re-
kursionsformel des Numerov-Algorithmus [28]

ψ(x +h) = 2ψ(x)− h2

12

[
10F (x)ψ(x)+F (x −h)ψ(x −h)

]−ψ(x −h)

1+ h2

12 F (x +h)
+O

(
h6) , (3.4)

mit welcher der Wert der Wellenfunktionψ(x+h) aus den Werten der Wellenfunktionen
ψ(x) undψ(x−h) berechnet werden kann. Dieses ermöglicht eine iterative Berechnung der
gesamten Wellenfunktion für x ≥ 0.
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Im Interesse der Einschränkung der Länge dieser Arbeit und zur Vermeidung von Red-
undanzen wurde hier von einer umfangreicheren Herleitung der Rekursionsformel abgese-
hen. Eine ausführliche Herleitung kann entweder Papenfort [25] oder Kemper [43] entnom-
men werden. Die iterative Berechnung der Wellenfunktion gemäß Gleichung 3.4 setzt die
Kenntnis von zwei benachbarten (durch Schrittweite h getrennte) Werten der Wellenfunk-
tion voraus.

3.2.1 Startwerte für den Numerov-Algorithmus

Die Berechnung der Startwerte der Rekursion ist abhängig von der Parität der betrachteten
Wellenfunktion und erfolgt im Programm über die Parität der Hauptquantenzahl n. Ent-
scheidend ist dabei die in Abschnitt 2 angesprochene Normierbarkeit der Wellenfunktion,
die in beiden Paritätsfällen die freie Wahl einer der beiden Startwerte ermöglicht.

Ungerade Parität [29]: Wellenfunktionen mit ungerader Parität weisen einen Knotenpunkt
im Ursprung14 auf. Es ist offensichtlich, dass der Wert der Wellenfunktion ψ(h) von Null
verschieden sein muss. Für kleine Schrittweiten kann die Wellenfunktion nah am Ursprung
als linear angenommen werden. Die Steigung ist aufgrund der beliebigen Normierung frei
wählbar. Für die Startwerte ergeben sich

ψ(0) =:ψ0 = 0 und ψ(h) =:ψ1 = h , (3.5)

welche analog zu [31] gewählt wurden.

Gerade Parität [30]: Bei gerader Parität darf der Wert der Wellenfunktion ψ(0) = 1 auf-
grund der Normierung frei gewählt werden. Es sei zu erwähnen, dass eine Wahl vonψ(0) = 0
nicht möglich ist, da zum Einhalten der Paritätsbedingung eine Nullstelle höheren geraden
Grades vorliegen müsste. Die aus der Schrödingergleichung resultierenden Wellenfunktio-
nen weisen lediglich einfache Nullstellen auf. Eine Wellenfunktion mit einer Nullstelle hö-
heren Grades entspricht der trivialen Lösung der Schrödingergleichung 15[23]. Einsetzen
vonψ(0) = 1 in Gleichung 3.4 und Berücksichtigung der Parität vonψ und F (x) resultiert für
die Startwerte

ψ0 = 1 und ψ1 =
1− 5h2

12 F (0)

1+ h2

12 F (h)
ψ0 +O

(
h6) , (3.6)

welche ebenfalls analog zu [32] gewählt wurden.

3.2.2 Divergenzverhalten der Wellenfunktion beim Numerov-Algorithmus

Wie bereits in Abschnitt 2 erwähnt, sind physikalisch sinnvolle Wellenfunktionen gebunde-
ner Zustände quadratintegrabel und resultieren in einem diskreten Energiespektrum. Stim-
men die Energien für die Berechnungen der Wellenfunktionen nicht exakt mit denen der
quadratintegrablen gebundenen Zustände überein, so resultiert eine divergente Wellen-
funktion (keine physikalisch realisierte Lösung). Die Divergenz folgt aus der Analyse des
Krümmungsverhaltens der Wellenfunktion für x →∞. Eine Erläuterung der Hintergründe
ist Nolting [94] zu entnehmen. Da Computer intrinsisch auf eine gewisse Anzahl von Stellen
in ihrer Genauigkeit beschränkt sind und nur diskretisierte Probleme bearbeiten können,
ist die exakte Wahl der Energie und eine resultierende quadratintegrable Wellenfunktion
nicht realisierbar. Die Divergenz der Wellenfunktion in der numerischen Berechnung ist so-
mit unumgänglich. Entscheidend ist jedoch, dass das Divergenzverhalten davon abhängt,

14Punktsymmetrie im Ursprung.
15Beweis ist trivial.
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Abbildung 3.1: „Schematische Darstellung des Verhaltens der nicht normierten Lösungen
der Schrödingergleichung bei Variation des Energiewertes E im Bereich F (x) < 0 “[34].

ob der gewählte Energiewert über dem „echten“ oder unter ihm liegt. Ist der Energiewert
zu klein gewählt, so divergiert die Wellenfunktion ohne einen neuen Knotenpunkt zu er-
zeugen [33]. Ist der Energiewert hingegen zu groß gewählt, so divergiert die Wellenfunktion
und erzeugt dabei einen neuen Knotenpunkt [33]. Eine schematische Darstellung dieses
Sachverhalts ist in Abbildung 3.1 gegeben. Die Berechnung der Energien der gebundenen
Zustände erfolgt demnach nur bis zu einer gewissen Genauigkeit.

3.2.3 Schießverfahren

Das Schießverfahren testet für eine bestimmte Energie das Verhalten der Wellenfunktion.
Mit dem Numerov-Algorithmus wird iterativ die Wellenfunktion erzeugt. Sobald ein Fehl-
verhalten der berechneten Wellenfunktion detektiert wird, bricht das Verfahren ab. Zu dem
Fehlverhalten einer Wellenfunktion gehören:

• Verletzung des Knotensatzes: Die Anzahl der Knoten übersteigt die Hauptquanten-
zahl n.

• Divergenz der Wellenfunktion.

Da aber die Divergenz resultierend aus einem zu hohen Energiewert mit der Erzeugung
eines weiteren Knotens verbunden ist, reduzieren sich die Bedingungen für ein Fehlverhal-
ten auf [35]

• Der Knotensatz ist verletzt. Der numerische Energiewert liegt über dem exakten Ener-
giewert des gebundenen Zustands.

• Der Knotensatz ist noch nicht verletzt (Anzahl Knoten ≤ n), jedoch divergiert die Wel-
lenfunktion. Der numerische Energiewert liegt unter dem exakten Energiewert des
gebundenen Zustands.

3.2.4 Bisektion

Die Bisektion bezeichnet ein klassisches Intervallhalbierungsverfahren bzw. Intervallschach-
telungsverfahren, in welches das Schießverfahren integriert ist. Zu Beginn des Numerov-
Verfahrens muss ein Startintervall [Emi n ,Emax ] für die Energie angegeben werden. Zwar
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3.3 DAS FORTRAN-PROGRAMM

kann mit einer möglichst geringen Intervallbreite die Rechenzeit reduziert werden, jedoch
ist es im Allgemeinen bei unbekannten Energien der gebundenen Zustände empfehlens-
wert, das Potentialminimum und -maximum [45] als untere und obere Intervallgrenze zu
nutzen16. Durch Anheben aller Potentiale auf Nullniveau beträgt die untere Grenze Null.
Die obere Grenze hängt von dem jeweiligen Potential ab. Eine zu niedrige Wahl der oberen
Grenze äußert sich in der frühen Divergenz aller berechneten Wellenfunktionen mit Ener-
gieeigenwerten, welche über der zu klein gewählten Grenze liegen. Das Schießverfahren un-
tersucht für die Energie [36]

E = Emax +Emi n

2
(3.7)

ein mögliches Fehlverhalten der Wellenfunktion. Je nach Art dieses Fehlverhaltens war
der getestete Energiewert zu hoch oder zu tief. Bei einem zu hohen Energiewert wird Emax

durch E ersetzt und das neue Energieintervall ist [Emi n ,E ]. Bei einem zu niedrigen Energie-
wert wird Emi n durch E ersetzt und das neue Energieintervall ist [E ,Emax ]. Nun wird wieder
der Mittelpunkt dieses neuen Intervalls an das Schießverfahren übergeben und analog ge-
testet. Mit jedem Iterationsschritt wird die Intervallgröße halbiert und der exakte Energie-
wert weiter eingeschachtelt. Das Prozedere wiederholt sich solange, bis die relative Geneau-
igkeit

r elE = Emax −Emi n

E
(3.8)

unter einem vom Nutzer bestimmten Grenzwert liegt [36]. Dabei wurde die obere Gren-
ze für die relative Genauigkeit von 10−8 gemäß der Forderung von Papenfort [41] nicht ver-
letzt. Der Mittelpunkt dieses letzten Intervalls ist die vom Numerov-Verfahren bestimmte
Energie eines gebundenen Zustands zur Hauptquantenzahl n. Der numerisch berechnete
Energiewert zur Hauptquantenzahl n stellt die untere Grenze für das Startintervall zur Be-
rechnung der Energie der Hauptquantenzahl17 n+1. Die obere Grenze wird auf den Wert des
Potentialmaximums zurückgesetzt. Die Genauigkeit nimmt in der Bisektion exponentiell zu
[45].

3.3 Das Fortran-Programm

Im Folgenden wird das Fortran-Programm zur Umsetzung des obigen Numerov-Verfahrens
erläutert. Die manuelle Anpassung an die individuellen Probleme wird in der jeweiligen Da-
tei bzw. in den korrespondierenden Abschnitten erläutert.

3.3.1 Parameter und Variablen

Alle Parameter und Variablen sind in doppelter Maschinengenauigkeit 18 angegeben.

Parameter:

• Obere Grenze der Quantenzahl qz

• Schrittweite h

• Grenzwert für die relative Genauigkeit r el

• Grenzwert für Divergenzverhalten di v

• Globales Maximum des Energiewerts E_g l obal _max
16Berechnungen erfolgen ja nur für gebundene Zustände.
17Liegt keine Entartung vor, so gilt für die Energien der gebundenen Zustände En < En+1.
18kind=8
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3.3 DAS FORTRAN-PROGRAMM

Variablen:

• aktuelle Quantenzahl n

• Anzahl der Knotenpunkte nst

• die drei benachbarten Wellenfunktionswerte

– psi _neu :=ψ(x +h)

– psi =ψ(x)

– psi _al t :=ψ(x −h)

• räumliche Koordinate x

• Energie E als Mittelpunkt des Energieintervalls [E_mi n,E_max]

• Variable F , die das Ergebnis der Rechnung im Unterprogramm für jedes x und E ent-
hält

• die relative Genauigkeit r el_E zu jedem Tupel (E ,E_mi n,E_max) gemäß Gleichung 3.8

3.3.2 Schleifenstruktur

Im Folgenden ist die Schleifenstruktur von Außen nach Innen erläutert.

Hauptquantenzahl n: Die äußerste Schleife dient der Iteration durch die Quantenzahlen
ab n = 0 bis zu einer vom Nutzer angegebenen Grenze qz. In der Schleife wird das erste
und größte Energieintervall für die jeweilige Quantenzahl initialisiert [0,E_g l obal _max]
bzw. [En−1,E_g l obal _max] und daraus der Mittelpunkt E gemäß Gleichung 3.7 berechnet.
Es folgt die Berechnung der relativen Genauigkeit gemäß Gleichung 3.8. Nach Durchlau-
fen der Schleifen für die Bisektion und dem Schießverfahren werden die Quantenzahl n,
der korrespondierende berechnete Energieeigenwert En und die relative Genauigkeit r elE

in eine Datei geschrieben. Die Ausgabe weiterer Informationen aus der Berechnung kann
manuell ergänzt werden.

Bisektion: Die Bisektion wird durch eine Schleife19 realisiert, welche ausgeführt wird, so-
fern die relative Genauigkeit r el_E über dem vom Nutzer bestimmten Grenzwert r el liegt.
Die räumliche Koordinate x wird auf Null initialisiert. Es erfolgt die Berechnung und Initia-
lisierung der Anfangsbedingungen gemäß Abschnitt 3.2.1, wobei nach Parität der Haupt-
quantenzahl n unterschieden wird. Das Schießverfahren kann nun ausgeführt werden. Nach
Ausführung des Schießverfahrens wird die neue Energie als Mittelpunkt des ermittelten
neuen Energieintervalls berechnet. Auch eine erneute Berechnung der relativen Genauig-
keit mit den neuen Energiewerten erfolgt.

Schießverfahren: Das Schießverfahren ist durch eine unendliche Schleife mit Abbruch-
bedingungen realisiert. Es wird iterativ die Wellenfunktion gemäß der Rekursionsformel
aus Gleichung 3.4 berechnet. Eine Nullstelle wird durch einen Vorzeichenwechsel zwischen
zweier aufeinander folgenden Wellenfunktionswerten registriert und in nst gespeichert.
Mit jedem Iterationsschritt wird auf Fehlverhalten der Wellenfunktion gemäß Abschnitt 3.2.3
getestet. Bei der Umsetzung des Knotensatzes ist zu beachten, dass hier nur der Bereich
x ≥ 0 betrachtet wird. Zudem ergibt sich für Wellenfunktionen mit ungerader Parität ein
Knotenpunkt im Ursprung, welcher berücksichtigt werden muss. Der Test nach Verletzung
des Knotensatzes ist folglich nach Parität der Hauptquantenzahl n getrennt. Die Abbruch-
bedingungen lauten:

19„do while“ Funktion
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• ungerade Parität: Anzahl Knoten größer als n+1
2

• gerade Parität: Anzahl Knoten größer als n
2

Resultierend wird die obere Grenze des Energieintervalls E_max durch E ersetzt. Nach
dem Test auf Verletzung des Knotensatzes folgt der Test auf Divergenz. Die Wellenfunktion
wird als divergent angesehen, sobald ein vom Nutzer vorgegebener Grenzwert di v übertrof-
fen wird. Um sprunghafte Divergenz mit einhergehendem Vorzeichenwechsel zweier be-
nachbarter Wellenfunktionswerte zu unterbinden, wurde die Divergenzbedingung entspre-
chend erweitert. Bei Divergenz wird die untere Grenze des Energieintervalls E_mi n durch
E ersetzt. Wenn keine der Abbruchbedingungen in einem Iterationsschritt erfüllt wird, so
erfolgt die Initialisierung der Wellenfunktionswerte

psi _al t = psi (3.9)

psi = psi _neu (3.10)

für die Berechnung des neuen Wellenfunktionswertes im nächsten Iterationsschritt.

3.3.3 Unterprogramme

Mittels einer Funktion erfolgt die Berechnung von F (x,E) für ein gegebenes Potential V (x).
Die Funktion besitzt als Argumente x und E , welche aus dem Hauptprogramm an das Un-
terprogramm übergeben werden. Als lokale Parameter oder Variablen des Unterprogramms
können ħ, m und potentialspezifische Parameter bzw. Variablen definiert werden. Das Un-
terprogramm übergibt in Form der Variable F (x,E) den berechneten Wert an das Haupt-
programm zurück. Die Veränderung dieser Funktion für ein spezifisches Potential stellt den
größten Teil der manuellen Anpassung dar.

3.4 Umformungen und Entdimensionalisierung der Schrödingergleichung zur
numerischen Bearbeitung

Im Folgenden wird das Manning-Potential in der Schrödinger-Gleichung der Form analog
zur Gleichung 3.1 betrachtet. Die Notation stimmt mit der Arbeit von Plenter [1] überein.
Die Umformungen wurden teilweise analog zu Plenter [4] vorgenommen, um die angestreb-
ten Vergleiche realisieren zu können, resultieren aber auch direkt aus einfachen mathemati-
schen Überlegungen. Als Ausgangspunkt liegt die einheitenbehaftete Schrödingergleichung

d 2

d x2ψ(x)+ 2m

ħ2

[
E −

(
−C sech2

(
x

2ρ

)
+Dsech4

(
x

2ρ

))]
ψ(x) = 0 (3.11)

vor. Mittels Skalierung [2] x̃ = x
2ρ folgt

d 2

d x̃2 ψ̃(x̃)+ 8mρ2

ħ2

[
E − (−C sech2 (x̃)+Dsech4 (x̃)

)]
ψ̃(x̃) = 0 . (3.12)

Zur besseren Übersicht und für die einfachere Implementierung in das Numerov-Verfahren

wird der Faktor 8mρ2

ħ2 mit den Variablen E ,C und D analog zu [2] verschmolzen

d 2

d x̃2 ψ̃(x̃)+

ε−
−C ′sech2 (x̃)+D ′sech4 (x̃)︸ ︷︷ ︸

Ṽ (x̃)


ψ̃(x̃) = 0 , (3.13)

wobei
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ε := 8mρ2E

ħ2 , C ′ := 8mρ2C

ħ2 und D ′ := 8mρ2D

ħ2 . (3.14)

Damit das Manning-Potential überhaupt mit dem Numerov-Verfahren bearbeitet wer-
den kann, muss es auf das Nullniveau angehoben werden. Die Potentialtiefe Va = V (±a) =
C

′2
4D ′ gilt es daher zu dem Potential zu addieren

d 2

d x̃2 ψ̃(x̃)+
[(
ε+ C

′2

4D ′

)
−

(
−C ′sech2 (x̃)+D ′sech4 (x̃)+ C

′2

4D ′

)]
ψ̃(x̃) = 0 , (3.15)

wobei die Schrödinger-Gleichung weiterhin erfüllt sein muss. Mit der Definition einer

neuen Variablen ε̂= ε+ C
′2

4D ′ resultiert

d 2

d x̃2 ψ̃(x̃)+

ε̂−
−C ′sech2 (x̃)+D ′sech4 (x̃)+ C

′2

4D ′︸ ︷︷ ︸
ˆ̃V (x̃)


ψ̃(x̃) = 0 . (3.16)

Soll das Manning-Potential noch intensiver untersucht werden, so erreicht man durch
eine erneute Skalierung [3] von x̃r = 2r x̃ eine Form des Manning-Potential, welche in ih-
rer Doppelmulden-Gestalt flexibel veränderbar ist20. Der Unterschied zur ursprünglichen
Form des Manning-Potentials mit ρ im Argument der sech-Funktion ist, dass r einheitenlos
ist, während ρ in Längeneinheiten vorliegt. Mit r ergibt sich

d 2

d x̃r
2 ψ̃r (x̃r )+ 1

4r 2

[
ε̂−

(
−C ′sech2

(
x̃r

2r

)
+D ′sech4

(
x̃r

2r

)
+ C

′2

4D ′

)]
ψ̃r (x̃r ) = 0 . (3.17)

Analog zu Plenter [3] werden nun die Variablen C ′
r = C ′

4r 2 , D ′
r = D ′

4r 2 und ε̂r = ε̂
4r 2 definiert.

Es resultiert

d 2

d x̃r
2 ψ̃r (x̃r )+

ε̂r −

−C ′
r sech2

(
x̃r

2r

)
+D ′

r sech4
(

x̃r

2r

)
+ C

′2
r

4D ′
r︸ ︷︷ ︸

V̂r (x̃r )


ψ̃r (x̃r ) = 0 . (3.18)

Es macht keinen Unterschied, ob man das Potential erst auf die Nulllinie anhebt (mit der
Potentialtiefe addiert) oder erst die erneute Reskalierung durchführt. Das Resultat in Glei-
chung 3.18 fällt identisch aus. Die verschiedenen Formen der Schrödingergleichung werden
für die unterschiedlichen Vergleiche benötigt.

3.4.1 Parameter der verschiedenen Potentialformen

Die für die Vergleiche relevante Berechnung der Parameter der verschiedenen Potentialfor-
men verläuft im Allgemeinen analog zu Abschnitt 2.2, weshalb hier von einer ausführlichen
Herleitung abgesehen wird. Für die auf Nullniveau angehobenen Potentiale beträgt der Po-
tentialwert an den Minima Null. Im Folgenden sind die Parameter für die Potentiale in Glei-
chung 3.13, Gleichung 3.16 und Gleichung 3.18 angegeben.

20Für Genaueres siehe Abschnitt 4.3.1.
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Gleichung 3.13: Für die simple Form des Potentials ohne einen Parameter im Argument
der sech-Funktionen folgt

Ṽ0 := Ṽ (0) =−C ′+D ′ (3.19)

Ṽa := Ṽ (ã) =− C
′2

4D ′ (3.20)

ã := arcosh

√
2D ′

C ′

 (3.21)

oder

D ′ =−2Ṽa + Ṽ0 +2
√

Ṽ 2
a − ṼaṼ0 (3.22)

C ′ = D ′− Ṽ0 =−2Ṽa +2
√

Ṽ 2
a − ṼaṼ0 , (3.23)

wobei die Umstellung nach C ′ und D ′ analog zu Gleichung 2.16 und Gleichung 2.17
verläuft. Es gilt trivialerweise weiterhin als Voraussetzung für die Doppelmuldengestalt des
Potentials

C ′

2
< D ′ <C ′ . (3.24)

Gleichung 3.16: Das Potential aus Gleichung 3.13 wurde durch Addition der Potentialtiefe
auf Nullniveau angehoben, sodass folgt

ˆ̃V0 := ˆ̃V (0) =−C ′+D ′+ C
′2

4D ′ (3.25)

ˆ̃Va := ˆ̃V (ã) = 0 (3.26)

ã := arcosh

√
2D ′

C ′

 (3.27)

ˆ̃VT := lim
x̃→±∞

ˆ̃V (x̃) = C
′2

4D ′ (3.28)

oder

C ′ = 2 ˆ̃VT +2

√
ˆ̃VT

ˆ̃V0 (3.29)

D ′ =C ′+ ˆ̃V0 − ˆ̃VT , (3.30)

welches durch einfache algebraische Umformungen aus ˆ̃V0 und ˆ̃VT folgt. Die Doppel-
muldenbedingung in Gleichung 3.24 bleibt bestehen.

Gleichung 3.18 Die Form des Potentials ist analog zur ursprünglichen Form des Manning-
Potentials21, welches ausführlich in Abschnitt 2.2 behandelt wurde. Unter Berücksichtigung
der Anhebung des Potential durch Addition der Potentialtiefe auf Nullniveau folgen mittels
den Transformationen

21Nur mit einer anderen Bezeichnung der Variablen und auf Nullniveau angehoben.
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C →C ′
r

D → D ′
r

a → ãr

ρ→ r

(3.31)

und den Resultaten für das ursprüngliche Manning-Potential

V̂a := V̂r (ãr ) = 0 (3.32)

ãr := 2r arcosh

(√
2D ′

r

C ′
r

)
(3.33)

V̂T := lim
x̃r →±∞

V̂r (x̃r ) = C
′2
r

4D ′
r

(3.34)

oder

C ′
r = 2V̂T +2

√
V̂T V̂0 (3.35)

D ′
r =C ′

r + V̂0 − V̂T (3.36)

r = ãr

2arcosh
(√

2D
C

) . (3.37)

3.5 Verifizierung des Numerov-Verfahrens anhand von Vergleichen

Im Folgenden sind die auf Basis des Numerov-Verfahrens angestrebten Vergleiche mit ana-
lytischen und numerischen Rechnungen aufgeführt. Die Berechnungsparameter des Numerov-
Verfahrens wurden der übersichtshalber weggelassen. Im Allgemeinen wurden die Rech-
nungen mit einer Schrittweite von h = 10−5, einer relativen Genauigkeit von r elE = 10−5,
durchgeführt. Der Grenzwert für das Divergenzverhalten und die oberste Intervallgrenze für
die Energie wurden für die jeweiligen Probleme individuell angepasst und sind bei Bedarf
den Programmen selbst zu entnehmen.

3.5.1 Vergleiche mit den analytischen Lösungen verschiedener Potentiale

Zur Verifikation der korrekten Funktionsweise des Numerov-Verfahrens wurden Vergleiche
mit den analytischen Lösungen verschiedenener Potentiale gezogen. Die Verifikation wurde
in Analogie zu der Arbeit von Papenfort [37] durchgeführt.

Harmonischer Oszillator: Als Vergleich wurden die analytisch bestimmten Energieeigen-
werte des harmonischen Oszillators genutzt. Für diese gilt mit ħ=ω= 1

En = n + 1

2
mit n ∈N0 , (3.38)

wobei n die entsprechende Hauptquantenzahl des Zustands ist. Es resultiert für F (x)

F (x) = 2 ·
[

E − x2

2

]
. (3.39)

Der Vergleich der numerisch ermittelten Energiewerte der ersten 25 gebundenen Zu-
stände mit den analytischen Lösungen ist grafisch in Abbildung 3.2 dargestellt.
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Abbildung 3.2: Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 25
Zustände des Harmonischen Oszillators mit den analytischen Resultaten. Die Daten dieser
Grafik und die absolute Abweichung der numerischen von den analytischen Werten sind
in Abschnitt A.4 aufgeführt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

Modifiziertes Pöschl-Teller Potential [88]: Das modifizierte Pöschl-Teller-Potential ist ein
spiegelsymmetrisches Potential mit einer Mulde. Damit das Potential mit dem Numerov-
Verfahren bearbeitet werden kann, müssen neben der Anhebung auf Nullniveau einige Um-
formungen durchgeführt werden. Diese sind aus der Arbeit von Papenfort [38] zu entneh-
men. Es resultiert gemäß Papenfort [39] für F (x)

F (x) = 2

[
E +100− 100

cosh2(x)

]
. (3.40)

Aus Papenfort [40] folgt für das auf n ≤ 13 beschränkte analytische Spektrum der gebun-
denen Zustände

En =−1

8
(
p

801−1−2n)2 +100 mit n ∈N0 . (3.41)

Der Vergleich der numerisch ermittelten Energiewerte der ersten 13 gebundenen Zu-
stände mit den analytischen Lösungen ist grafisch in Abbildung 3.3 dargestellt.

Die Übereinstimmung der numerischen Ergebnisse mit den analytischen Werten für das
Potential des harmonischen Oszillators und das modifizierte Pöschl-Teller-Potential ist ein-
deutig. Analog zu Papenfort [22] kann das in Fortran programmierte Numerov-Verfahren als
funktionstüchtig angesehen werden.
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Abbildung 3.3: Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 13
Zustände des Pöschl-Teller Potentials mit den analytischen Resultaten. Die Daten dieser
Grafik und die absolute Abweichung der numerischen von den analytischen Werten sind
in Abschnitt A.5 aufgeführt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

3.5.2 Vergleiche mit den numerischen Verfahren von Plenter sowie Christiansen und
Cunha

Im Folgenden soll nun das Numerov-Verfahren in der Anwendung mit dem Manning-
Potential getestet werden. Dazu wird der Vergleich mit verschiedenen Rechnungen von Plen-
ter [1] sowie der Arbeit Energy eigenfunctions for position-dependent mass particles in a new
class of molecular hamiltonians [89] von Christiansen und Cunha angestrebt. Da es sich bei
dem Verfahren von Thomas Plenter um einen Variationsansatz handelt, ist zu berücksichti-
gen, dass dieser lediglich eine obere Schranke für die Energieeigenwerte der jeweiligen Zu-
stände offeriert. Liegen die mit dem Numerov-Verfahren ermittelten Energien unterhalb der
von Plenter berechneten Werte, so ist dies durchaus konsistent mit der zu Grunde liegenden
Theorie. Zudem ist das Variationsverfahren von Plenter auf die Berechnung der Energien
zum Grundzustand und zum ersten angeregten Zustand limitiert.

Variationsrechnung von Thomas Plenter [6]: Zum Vergleich der Ergebnisse der Variati-
onsrechnung von Plenter mit den Ergebnissen des Numerov-Verfahren wurde die entdi-
mensionalisierte Schrödingergleichung der Form aus Gleichung 3.18 gelöst. Diese Form des
Potentials erlaubt die Variation der Potentialtiefe V̂T bei konstanter Höhe der Barriere V̂0

und konstanter Position der Minima ãr . So wurden für konstante ãr und V̂0 drei verschie-
dene Potentialtiefen betrachtet. Dieses ist für zwei verschiedene Kombinationen von V̂0 und
ãr durchgeführt worden.

Die jeweiligen Berechnungsparameter V̂T , V̂0 und ãr wurden dem Programm einge-
speist, welches daraufhin die korrespondierenden charakteristischen Parameter C ′

r ,D ′
r und

r des Potentials der Form aus Gleichung 3.18 mittels Gleichung 3.35, 3.36 und 3.37 berech-
nete22. Alle betrachteten Parameter resultierten in einem Doppelmulden-Potential. Für die
Parameter wurde dann das Numerov-Verfahren zur Berechnung der Energien bis zur ge-
wünschten Hauptquantenzahl n gestartet. Dazu wurde F (x,E ,C ′

r ,D ′
r ,r ) so angepasst, dass

22Ein weiteres Unterprogramm übernimmt die Berechnung der arcosh-Funktion.
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die berechneten Parameter aus dem Hauptprogramm an das Unterprogramm übergeben
und dort dann in das Potential eingesetzt worden sind. Es wurden die Energien ε̂r vom
Grundzustand (+) und dem ersten angeregten Zustand (-) für verschiedene Parameter be-
rechnet und zum Vergleich der beiden Verfahren in Tabelle 3.1 dargestellt.
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Abbildung 3.4: Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter für V̂0 = 2,56 und ãr = 1,146. Mit A1(V̂T ) := ε̂+,V

r − ε̂+,N
r ,

A2(V̂T ) := ε̂−,V
r − ε̂−,N

r und A3(V̂T ) := |∆εN
r −∆εV

r |. Die Daten der Berechnungen sind in Ab-
schnitt A.6 aufgeführt. Die Verbindungslinien repräsentieren keinen mathematischen Zu-
sammenhang, sondern dienen rein der Veranschaulichung.

Entsprechend der Theorie der Variationsrechnung fallen die mittels Numerov-Verfahren
berechneten Ergebnisse alle kleiner als die Ergebnissen von Plenter aus. Wie in Abbildung 3.4
und Abbildung 3.5 erkennbar, nehmen die Abweichungen A1(V̂T ) und A2(V̂T ) zwischen den
berechneten Energien des Numerov-Verfahrens ε̂N

r und der Variationsrechnung ε̂V
r mit hö-

herer Potentialtiefe zu. Die Abweichung der Energieaufspaltung A3(V̂T ) zeigt dagegen nur
für das erste Szenario in Abbildung 3.4 einen deutlichen Verlauf. Da die Variationsrechnung
nur ein Näherungsverfahren darstellt, ist eine genauere Analyse der Abweichung sinnlos.
Eine weitere Einschränkung der Vergleichbarkeit resultiert außerdem durch

• die endliche Genauigkeit und die einhergehenden Rundungsfehler der Umrechnun-
gen der Parameter aus der Arbeit von Plenter in eine Form, die mit dem Numerov-
Verfahren bearbeitet werden kann 23.

• Ungenauigkeiten aus den Umrechnungen die Plenter durchführen musste, um das
Potential mit seiner computergestützten Variationsrechnungsmethode [5] bearbeiten
zu können.

23s in ãr [8] und n, s in V̂0 [7]
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Abbildung 3.5: Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter für V̂0 = 1,44 und ãr = 0,7834. Mit A1(V̂T ) := ε̂+,V

r − ε̂+,N
r ,

A2(V̂T ) := ε̂−,V
r − ε̂−,N

r und A3(V̂T ) := |∆εN
r −∆εV

r |. Die Daten der Rechnungen sind in Ab-
schnitt A.6 aufgeführt. Die Verbindungslinien repräsentieren keinen mathematischen Zu-
sammenhang, sondern dienen rein der Veranschaulichung.
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ã
r

V̂
T

ε̂+
,N

r
ε̂−

,N
r

∆
εN r

:=
|ε̂−

,N
r

−ε̂
+,

N
r

|
ε̂+

,V
r

ε̂−
,V

r
∆
εV r

:=
|ε̂−

,V
r

−ε̂
+,

N
r

|

2,
56

0
1,

14
6

10
0

1,
72

84
2,

67
97

0,
95

13
1,

73
65

2,
68

13
0,

94
48

10
00

1,
83

46
2,

89
14

1,
05

67
1,

85
25

2,
89

97
1,

04
72

10
00

00
0

1,
88

50
2,

99
31

1,
10

81
1,

90
94

3,
00

73
1,

09
79

1,
44

0
0,

78
34

10
0

1,
58

33
3,

80
41

2,
22

08
1,

58
49

3,
80

44
2,

21
95

10
00

1,
68

24
4,

11
81

2,
43

57
1,

68
87

4,
12

30
2,

43
43

10
00

00
0

1,
72

91
4,

26
62

2,
53

71
1,

73
96

4,
27

65
2,

53
69

25



3.5 VERIFIZIERUNG DES NUMEROV-VERFAHRENS ANHAND VON VERGLEICHEN

Vergleich mit den Ergebnissen von Christiansen und Cunha [12]: Für den Vergleich mit
den Ergebnissen von Christiansen und Cunha wurde die Schrödingergleichung der Form in
Gleichung 3.16 mit C ′ = D ′ = 500 [12] gelöst. Das Potential wurde zusätzlich auf das Nullni-
veau hochgesetzt, um es mit dem Numerov-Verfahren behandeln zu können. Um den vom
Programm ausgegebenen Energieeigenwert ε̂ mit den Werten von Christiansen und Cunha
verlgeichen zu können, muss dieser dann wieder um den Betrag der Anhebung des Poten-
tials reduziert werden

ε= ε̂− C
′2

4D ′ . (3.42)

In Tabelle 3.2 sind die Ergebnisse des Numerov-Verfahren für die Energie zu dem Grund-
zustand ε+ und dem ersten angeregten Zustand ε− den Ergebnissen von Christiansen und
Cunha sowie den aus der Variationsrechnung resultierenden Ergebnissen von Plenter ge-
genübergestellt.

Tabelle 3.2: Energiewerte des Grundzustands (+) und des ersten angeregten Zustands(-) des
Manning-Potentials mittels Numerov-Verfahren und Variationsrechnung von Plenter sowie
den Ergebnissen von Christiansen und Cunha.

Numerov Variationsrechnung[11] Christiansen & Cunha[13]
ε+ ε− ε+ ε− ε+ ε−

-109,94118 -109,94050 -109,88711 -109,88627 -109,9412 -109,9405

Tabelle 3.3: Energieaufspaltung ∆ε = ε− − ε+ des Manning-Potentials mittels Numerov-
Verfahren, Variationsrechnung von Plenter sowie den Ergebnissen von Christiansen und
Cunha.

Numerov Variationsrechnung[11] Christiansen & Cunha[13]

∆εN ∆εV ∆εCC

6,8 ·10−4 8,4 ·10−4 7,0 ·10−4

Der Vergleich mit den Werten von Plenter bestätigt erneut, dass aus der Variationsrech-
nung nur eine obere Grenze für die Energien resultiert. Das computergestützte Berech-
nungsverfahren von Plenter [5] ist auf die Form der Schrödingergleichung in dieser Rech-
nung ausgerichtet, sodass keine mit Ungenauigkeiten verbundene Umrechnungen durch-
geführt werden mussten. Bei dem Vergleich mit den Werten von Christiansen und Cunha
muss der eventuelle „Druckfehler“[10] berücksichtigt werden, weshalb ein Vergleich rein
spekulativ ausfällt. Plenter [12] hat in seiner Arbeit verschiedene Szenarien für die Werte
von Christiansen und Cunha durchgespielt. Die Ergebnisse dieser Arbeit deuten darauf hin,
dass das Szenario24 der überflüssigen Neun das plausibelste ist, da die resultierenden Er-
gebnisse mit denen dieser Arbeit am besten übereinstimmen 25. Die Gegenüberstellung der
Energieaufspaltungen in Tabelle 3.3 bestätigt weiter die Vermutung von Plenter bezüglich
des Fehlers von Christiansen und Cunha.

24Bei Plenter die Tabelle 4 [13].
25Diese Ansicht hatte auch Plenter.

26



4 DAS AMMONIAKMOLEKÜL NH3

4 Das Ammoniakmolekül NH3

Der Fokus dieser Arbeit liegt in der Anwendung des Numerov-Verfahrens zur Analyse des
Inversionspotentials des Ammoniakmoleküls. Zuerst wird der Vergleich mit den Ergebnis-
sen für die Energieaufspaltung des Grundzustands zum ersten angeregten Zustand der Va-
riationsrechnung [18] von Plenter gezogen. Es folgt die Berechnung der Energien höherer
gebundener Zustände auf Basis der Parameter von Plenter und der Vergleich mit den Lite-
raturwerten von Spirko [91]. Durch eine Optimierungsrechnung wird anhand des Abgleichs
der numerisch bestimmten Energien der ersten zehn Zustände mit den Literaturwerten ein
besserer Wert für die Potentialtiefe des Manning-Potentials zur Beschreibung des Ammo-
niakmoleküls angestrebt. Zuletzt werden die Energien und die Energieaufspaltung benach-
barter Zustände, die mittels optimaler Potentialtiefe bestimmt wurden, mit den Literatur-
werten, den ursprünglichen Werten von Manning und den Ergebnissen moderner Ab-initio-
Rechnung von Aquino et al. verglichen. Im Folgenden entspricht eine Numerierung der Zu-
stände durch n = 0,1,2, .. der Notation mit Unterteilung in Zustände gerader und ungerader
Parität 0+,0−,1+,1−,2+,2−, ... . Mit Werten der Literatur sind im Folgenden die experimen-
tell bestimmten Werte von Spirko [91] gemeint.

4.1 Vergleich mit den Ergebnissen der Variationsrechnung von Plenter

Zur Berechnung und dem anschließenden Vergleich wurden die Daten C ′ = 11505,58059
und D ′ = 7032,864897 [15] von Plenter genutzt. Die Berechnung von C ′ und D ′, basierte
auf26

• Ṽa =−5,0608eV

• Ṽ0 =−4,8102eV

• ã = 0,39685Å

und wurde über die Berechnung von C , D und ρ durchgeführt [16]. Das Potential wurde

mittels C
′2

4D ′ auf die Nulllinie angehoben, sodass das Numerov-Verfahren die Schrödinger-
gleichung der Form Gleichung 3.16 löst. Die resultierenden Energien ergaben sich mittels

E = ħ2

8µ%2

[
ε̂− C

′2

4D ′

]
, (4.1)

wobei ħ2

8µ%2 = 0,00107546eV [16]. Die ermittelten Energien der ersten beiden gebunde-
nen Zustände sind in Tabelle 4.4 dargestellt.

Tabelle 4.4: Energiewerte in [eV] des Grundzustands (+) und des ersten angeregten Zustands
(-) des Ammoniakmoleküls mittels Numerov-Verfahren und Variationsrechnung von Plen-
ter.

Numerov Variationsrechnung[17]
E+ E− E+ E−

-5,00026eV -5,00017eV -4,99997eV -4,99995eV

Die resultierende Energiedifferenz zwischen dem Grundzustands und dem ersten ange-
regten Zustand sind in Tabelle 4.5 den Werten von Plenter und den experimentell bestimm-
ten Werten gegenübergestellt.

Die Variationsrechnung ermöglicht die genäherte Bestimmung der Energie von gebun-
denen Zuständen durch Angabe einer energetischen oberen Schranke. Dieses konnte er-
neut durch die Werte in Tabelle 4.4 bestätigt werden. Die Schwäche dieser Näherung wird

26Dabei wurde die hier etablierte Notation verwendet. Plenter nutzt die Bezeichnungen Va , V0 und a.
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4.2 BERECHNUNG DER ENERGIEN HÖHERER GEBUNDENER ZUSTÄNDE MIT DEN
PARAMETERN VON PLENTER

Tabelle 4.5: Energiedifferenz in [eV] des Grundzustandes und des ersten angeregten Zustan-
des des Ammoniakmoleküls mittels Numerov, Variationsrechnung und Experiment.

Numerov Variationsrechnung [16] Literatur [91]

8,49 ·10−5 eV 2,21 ·10−5 eV 9,79 ·10−5 eV
Abweichung vom Literaturwert

1,30 ·10−5 eV 7,59 ·10−5 eV –

bei der Differenzbildung wie der Energieaufspaltung zwischen Grundzustand und erstem
angeregten Zustand deutlich. Plenter schlussfolgert, dass „die Genauigkeit des Variations-
verfahren offenbar nicht aus[reicht]“ [19], da die Energieaufspaltung „∆E ungefähr fünf
Größenordnungen kleiner als der Wert des Energieniveaus selber ist“ [19]. Für den Varia-
tionsrechnungsansatz müssen die Testwellenfunktionen so gewählt werden, dass sie die
realen Wellenfunktionen möglichst genau abbilden. Die Testwellenfunktionen von Plen-
ter müssen idealerweise ihr Maximum in der Gleichgewichtsposition des Stickstoffatoms
N haben. Zudem sollte die korrespondierende Energie des Grundzustands der Dissoziati-
onsenergie entsprechen27. Plenter musste „durch Ausprobieren [...] Werte für Va und a“
[14] finden, „für die die Dissoziationsenergie (−E+ = 5eV) und der Abstand des Stickstof-
fatoms (2ρα = 0,383Å) passen“ [14]. Plenter merkt selbst an, dass aufgrund der Näherung
durch Testwellenfunktionen „die Position der Maxima der Testwellenfunktion bei x = 2ρα
etwas näher am Ursprung liegt, als die Minima des Potenzials bei x = a“[19]. Zusammen-
gefasst ermittelt Plenter die Potentialtiefe und die Position der Minima für das Manning-
Potential durch die optimale Form der Testwellenfunktion. Anhand der Ergebnisse in Ta-
belle 4.5 und der Aussagen von Plenter kann gefolgert werden, dass das Variationsverfah-
ren als Berechnungsmethode für die Analyse der Inversionsschwingung des Ammoniak-
moleküls aufgrund der geringen Genauigkeit ungeeignet ist. Die Güte der Parameter von
Plenter (C ′ = 11505,58059 und D ′ = 7032,864897) mit denen auch die Rechnung mittels des
Numerov-Verfahren durchgeführt wurde, gilt es noch zu bestimmen.

4.2 Berechnung der Energien höherer gebundener Zustände mit den Parame-
tern von Plenter

Im Vergleich zum Variationsansatz von Plenter, welcher auf adäquater Wahl von Testwellen-
funktion zu den Wellenfunktionen des Grundzustandes und des ersten angeregten Zustan-
des basiert, lässt sich das Numerov-Verfahren auf die Betrachtung der Energien höherer Zu-
stände ohne zusätzlichen Aufwand erweitern. Überlegungen, analog zur Konstruktion von
passenden Testwellenfunktionen zu den Wellenfunktionen höherer Zustände die beim Va-
riationsansatz anfallen, müssen beim Numerov-Verfahren nicht getätigt werden, sondern
lediglich das Intervall der betrachteten Quantenzahlen auf den gewünschten Bereich ver-
größert werden. Analog zur Berechnung der Energien des Grundzustands und des ersten
angeregten Zustands in Abschnitt 4.1 wurden die Energien zu höheren Zuständen berech-
net und mit den Literaturwerten in Tabelle A.7.1 verglichen. Die Energie des Grundzustands
wurde auf das Nullniveau gesetzt.

In den Gegenüberstellungen in Abbildung 4.1 und Abbildung 4.2 der numerisch be-
rechneten Werte mit den Literaturwerten auf Basis der Daten von Plenter ist die abneh-
mende Übereinstimmung für höhere gebundene Zustände ersichtlich. Die Abweichung der
Energien und auch die der Energiedifferenzen benachbarter gebundener Zustände nehmen
mit der Hauptquantenzahl zu. Aufgrund der aus dem Tunneleffekt resultierenden Dubletts
im Inversionsspektrum von Ammoniak ist der ansteigende Trend der Abweichung bei den
Energiedifferenzen nicht unmittelbar erkennbar. Da Plenter die Parameter explizit für die

27Plenter betrachtet ein negatives Potential, welches für x →±∞ gegen Null konvergiert. Der Wert der Energie
des Grundzustand entspricht somit der Dissoziationsenergie.
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4.2 BERECHNUNG DER ENERGIEN HÖHERER GEBUNDENER ZUSTÄNDE MIT DEN
PARAMETERN VON PLENTER

Testwellenfunktionen der ersten beiden gebundenen Zustände anpasst, ist die zunehmen-
de Abweichung mit der Hauptquantenzahl n keine Überraschung. Die Wellenfunktionen
höherer gebundener Zustände weichen immer stärker von Plenters Testwellenfunktionen
ab, sodass auch die Berechnungsparameter nicht mehr für die Berechnung geeignet sind.
Folglich beschränkt sich die Eignung der Parameter von Plenter (C ′ = 11505,58059 und
D ′ = 7032,864897) auf die Analyse der beiden untersten gebundenen Zustände des Ammo-
niakmoleküls.
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Abbildung 4.1: Vergleich der mittels Numerov berechneten Energien der ersten zehn gebun-
denen Zustände des Ammoniakmoleküls mit den Literaturwerten auf Basis der Daten von
Plenter (C ′ = 11505,58059 und D ′ = 7032,864897). Die Daten zur Grafik sind in Abschnitt A.7
aufgeführt. Die Verbindungslinien zwischen den diskreten Energiewerten dienen rein der
Veranschaulichung.
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4.3 BESTIMMUNG DER OPTIMALEN POTENTIALTIEFE DES MANNING-POTENTIALS
ZUR BESCHREIBUNG VON NH3
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Abbildung 4.2: Vergleich der mittels Numerov berechneten Energiedifferenzen benachbar-
ter Zustände des Ammoniakmoleküls mit den Literaturwerten auf Basis der Daten von Plen-
ter (C ′ = 11505,58059 und D ′ = 7032,864897). Die Daten zur Grafik sind in Abschnitt A.7
aufgeführt. Die Verbindungslinien zwischen den diskreten Energiedifferenzen dienen rein
der Veranschaulichung.

4.3 Bestimmung der optimalen Potentialtiefe des Manning-Potentials zur Be-
schreibung von NH3

Die Güte des Manning-Potentials zur Beschreibung des Ammoniakmoleküls basiert grund-
legend auf der Wahl der charakteristischen Parameter. Besonders das Verhalten des Poten-
tials für x →±∞ ist schwer auf experimentelle Weise zu bestimmen. Für ein auf Nullniveau
(Wert des Potentials in den Minima Va := V (±a) = 0) angehobenes Manning-Potential ent-
spricht dieses gerade der Potentialtiefe VT := lim

x→±∞V (x). Anders als die Position der Minima

a = 0,383Å und die Höhe der Barriere V0 = (0,2506±0,0025)eV ist die Dissoziationsenergie
von ungefähr 5eV gemäß Manning [56] nicht genauer bekannt und dient als ein Anhalts-
punkt für die Potentialtiefe des Manning-Potentials. Setzt man die Parameter von Manning
[58] in dessen Potential [57] ein, so ergibt sich für die Potentialtiefe in Mannings Berech-
nungen ein Wert von 5,5966eV. Die angesprochenen Parameter dieser Rechnung sind je-
doch gemäß Swalen und Ibers [67] veraltet, sodass der Wert von 5,5966eV analog zu der
ungefähren Dissoziationsenergie von 5eV nur als grober Referenzwert für die Potentialtiefe
gilt. Eine simple Aufarbeitung des Manning-Potentials durch das Numerov-Verfahren mit
den experimentellen Werten für a und V0 sowie der Potentialtiefe VT = 5,5966eV von Man-
ning entfällt somit. Die Dissoziationsenergie ist eine theoretische Größe und entspricht in
diesem Fall jener Energie, die aufgebracht werden muss, um das Stickstoffatom aus den Bin-
dungen und somit aus dem Ammoniakmolekül selbst zu lösen. Generell wird zwischen zwei
Definitionen für ein auf Nullniveau gehobenes Potential unterschieden:

• ED = VT − En : Die Dissoziationsenergie entspricht der Differenz der Energie eines
Zustands zu der Potentialtiefe.

• E∗
D =VT : Die Dissoziationsenergie entspricht der Potentialtiefe.

Plenter [19] betrachet in seiner Arbeit ein negatives Potential, welches für x →±∞ gegen
Null konvergiert. Seine Definition der Dissoziationsenergie orientiert sich an ED , jedoch be-
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4.3 BESTIMMUNG DER OPTIMALEN POTENTIALTIEFE DES MANNING-POTENTIALS
ZUR BESCHREIBUNG VON NH3

schränkt er sich nur auf die Energie des Grundzustands (Plenter [14]: −E+ = 5eV). Es ist lei-
der nicht explizit bekannt auf welche Definition der Dissoziationsenergie sich Manning mit
seiner Aussage von 5eV bezogen hat, jedoch deuten die anderen Parameter seines Poten-
tials daraufhin, dass die 5eV ebenfalls dem Abstand zwischen Grundzustandsenergie und
dem Potential im Unedlichen lim

x→±∞V (x) = 0 entsprechen. In dieser Arbeit wird die Defini-

tion der Grundzustandsenergie analog zu Plenter und Manning gewählt. Bezieht man sich
bei der Definition ED nur auf den Grundzustand, so entspricht die Abweichung der Defini-
tionen

ED −E∗
D = E+ (4.2)

der Grundzustandsenergie. Plenter [19] wies bereits auf das Fehlen des absoluten Wertes
der Grundzustandsenergie in der Literatur hin und leitete daher einen ungefähren Wert für
diese anhand einer Grafik her. Es resultierte ein Wert von E+ ≈ 0,0608eV [20]. Anhand die-
ser Einschätzung der Größenordnung der absoluten Grundzustandsenergie und der Un-
genauigkeit in der Aussage von Manning bezüglich der 5eV kann der Unterschied der bei-
den Definitionen vernachlässigt werden. In welcher Weise die berechnete Potentialtiefe von
5,5966eV aus Mannings Rechnungen mit dieser Erkenntnis kompatibel ist, liegt vorallem in
der Interpretation und dem einhergehenden „Spielraum“ des ungefähren Wertes der Disso-
ziationsenergie von 5eV.

Aufgrund der Tatsache, dass weder die Dissoziationsenergie noch die absolute Grund-
zustandsenergie für das Manning-Potential exakt bekannt sind, die Daten zur Berechnung
der Potentialtiefe von 5,5966eV gemäß Swalen und Ibers [67] veraltet sind und aus Plen-
ters Vorgehen einer einfachen Addition der beiden ungefähren Werte zur Berechnung der
Potentialtiefe (VT = 5,0608eV [16]) in den in Abschnitt 4.2 erläuterten Abweichungen für
höhere gebundene Zustände resultiert, wird die Potentialtiefe als variable Größe für eine
Optimierungsrechnung genutzt.

Im Folgenden wird daher anhand der mittels Numerov-Verfahren berechneten Energi-
en der ersten zehn gebundenen Zustände die Potentialtiefe bestimmt, die die Summe der
quadratischen Abweichungen der numerisch ermittelten Energien von den experimentell
bestimmten Werten von Spirko [91] minimiert. Die funktionale Form des Potentials, die Hö-
he der Potentialbarriere, die Position der Minima und die konstante reduzierte Masse sind
dabei vorgegeben.

4.3.1 Umformung der Schrödingergleichung für die Optimierungsrechnung

Die einheitenbehaftete Schrödingergleichung in Gleichung 3.11 ermöglicht die gewünschte
unabhängige Änderung der Potentialtiefe bei konstanter Position der Minima und Höhe der
Barriere. Jegliche Änderung der Potentialtiefe affektiert die charakterisierenden Parameter
C und D , von denen auch die Position der Minima a und die Höhe der Potentialbarriere
V0 abhängig ist. Die Argumentation über C , D und ρ als veränderliche Variablen zur Be-
stimmung der Potentialform fällt einfacher aus. Sieht man die Parameter V0,VT und a als
mehrdimensionale Funktionen dieser Variablen an, so gilt

V0 =V0(C ,D) =−C +D + C 2

4D
(4.3)

VT =VT (C ,D) =+C 2

4D
(4.4)

a = a(ρ,C ,D) = 2ρarcosh

(√
2D

C

)
. (4.5)

Das totale Differential einer mehrdimensionalen Funktion gibt an, wie sich die Funktion an
einem Punkt bei kleinen Veränderungen der Variablen verhält. Da hier lediglich von Inter-
esse ist, ob eine Veränderung der Potentialtiefe unabhängig von der Position der Minima
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und dem Wert des Potentials an der Barriere durchgeführt werden kann, wird eine verein-
fachte Notation benutzt. An der genauen Art der Veränderung, die sich mittels dem totalen
Differential berechnen lässt, besteht in diesem Fall kein Interesse. In der folgenden Notati-
on entspricht ∆ einer beliebigen Veränderung des Parameters, auf den es angewendet wird.
Nun soll bei einer Veränderung der Potentialtiefe VT gelten

∆V0
!= 0 (4.6)

∆a
!= 0 . (4.7)

Eine Änderung in VT kann durch eine Änderung in C oder D erreicht werden. Damit V0 un-
ter dieser Veränderung konstant bleibt, muss der jeweils andere Parameter entsprechend
angepasst werden28. Anders als bei den Formen des Manning-Potential mit keinem Para-
meter in den sech-Funktionen wie in Gleichung 3.13 und 3.16, kann in dieser Form eine

Änderung in C , D und folglich eine Änderung in arcosh
(√

2D
C

)
durch eine entsprechende

Anpassung von ρ kompensiert werden, sodass keine Änderung in a resultiert. Auf die Limi-
tierung der Potentialformen ohne einem Parameter im Argument der sech-Funktion wurde
auch in Plenter [3] hingewiesen. Für die Bearbeitung mit dem Numerov-Verfahren muss die
Anhebung auf das Nullniveau erfolgen, sodass resultiert

d 2

d x2ψ(x)+ 2m

ħ2

[(
E + C 2

4D

)
−

(
−C sech2

(
x

2ρ

)
+Dsech4

(
x

2ρ

)
+ C 2

4D

)]
ψ(x) = 0 , (4.8)

wobei m = µ bzw. m = µ0 entspricht und x und ρ in Å angegeben sind. Die Parameter C , D
und ρ berechnen sich gemäß

C = 2VT +2
√

VT V0 (4.9)

D =C +V0 −VT (4.10)

ρ = a

2arcosh
(√

2D
C

) . (4.11)

Die durch Variation der Potentialtiefe VT zu minimierende Größe ist durch die Summe

Sn(VT ) =
9∑

i=0
|E Numerov

i −E Literatur
i |2 (4.12)

gegeben, wobei die Summe über die ersten zehn gebundenen Zustände gebildet wird.
E Numerov

i ist die Energie des i -ten gebundenen Zustands, welche mit dem Numerov-Verfahren
bestimmt wurde und E Literatur

i ist der korrespondierende Literaturwert.

4.3.2 Bestimmung der funktionalen Form von Sn(VT )

Die Optimierungsrechnung kann durch Kenntnis des groben Zusammenhangs zwischen
der Potentialtiefe VT und Sn(VT ) vereinfacht werden. So ist entscheidend, ob der betrachte-
te Zusammenhang nur durch ein globales Minimum charakterisiert ist, oder ob mehrere lo-
kale Extrema die Berechnungen erschweren. Es wurde folglich ein Programm geschrieben,
welches den Wert von Sn(VT ) für eine Zahl von verschiedenen Potentialtiefen VT ermittlet.
Die resultierenden Datenpunkte wurden in Abbildung 4.3 dargestellt.

Der Zusammenhang zwischen der Potentialtiefe VT und der zu minimierenden Größe
Sn(VT ) ist durch ein einziges globales Minimum charakterisiert. Dieses liegt zwischen VT =
6,32eV und VT = 6,34eV. Es liegen zudem keine lokalen Extrema vor. Die Funktion fällt von
beiden Seiten zum globalen Minimum hin streng monoton ab.

28Möchte man VT durch Änderung von C verändern, so muss D entsprechend angepasst werden, um die
Änderung von C nicht auf eine Änderung von V0 zu übertragen.
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Abbildung 4.3: Grafische Darstellung der funktionalen Form von Sn(VT ). Die Daten dieser
Grafik sind in Abschnitt A.8 in Tabelle A.8.1 aufgelistet.

4.3.3 Programme zur Bestimmung der optimalen Potentialtiefe

Auf Basis der gewonnenen Erkenntnisse über die funktionale Form von Sn(VT ) wurden drei
Programme in Fortran zur Ermittlung der optimalen Potentialtiefe V opt

T durch Minimierung
von Sn(VT ) entworfen. Im Folgenden bezieht sich die Schrittweite29 s auf die Iteration durch
die Potentialtiefe VT und ist von der Schrittweite h des Numerov-Verfahrens zu unterschei-
den.

Ermittlung des Minimums durch sukzessive Berechnung der Funktionswerte: Das ein-
facheste Programm zur Bestimmung der optimalen Potentialtiefe bestimmt das globale Mi-
nimum durch sukzessives Berechnen von Sn(VT ) zu anwachsenden Potentialtiefen. Sobald
Sn(VT ) mit ansteigender Potentialtiefe nicht mehr abnimmt, wird die zugehörige Potential-
tiefe30 als optimale Potentialtiefe V opt

T mit minimalem Wert von Sn(V qpt
T ) ausgegeben. Die

Berechnungsgeschwindigkeit ist dabei von der Schrittweite, welche auch der gewünschten
Genauigkeit entspricht und von dem Startwert der Potentialtiefe abhängig. Die Schrittweite
wird während der Optimierung konstant gehalten. Ein adäquater Startwert lässt sich aus der
funktionalen Form von Sn(VT ) ermitteln. Dieses Verfahren kann entweder von VT < V opt

T

aus mit steigenden Potentialtiefen oder von VT > V opt
T aus mit sinkenden Potentialtiefen

betrieben werden. Bei gleichem Abstand vom Optimum besteht kein Vorteil der Berech-
nungsgeschwindigkeit in einer der Berechnungsrichtungen. Durch Anwendung des Verfah-
rens in beide Berechnungsrichtungen kann die optimale Potentialtiefe jedoch auf ein In-
tervall

[
V mi n

T ,V max
T

]
beschränkt werden, da aus der Rechnung in Richtung steigender Po-

tentialtiefen eine untere Schranke und aus der anderen Berechnungsrichtung eine obere
Schranke resultiert.

Ermittlung des Minimums durch sukzessive Reduktion der Schrittweite: Eine offensicht-
liche Verbesserung und Beschleunigung des Programms resultiert durch die Implemen-
tierung einer sukzessiv reduzierten Schrittweite. Das Vorgehen ist analog zum voherigen

29In den Programmen mit step bezeichnet.
30Von der Potentieltiefe, welche in einem ansteigenden Wert von Sn(VT ) resultiert, muss eine Schrittweite

abgezogen werden, um die optimale Potentialtiefe zu erhalten.
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Programm, jedoch wird die Optimierungsrechnung mit einer großen Schrittweite begon-
nen. Sobald die Berechnung von Sn(VT ) analog zum einfachsten Programm aufgrund eines
ansteigenden Funktionswerts abbricht, wird jedoch nicht die korrespondierende Potential-
tiefe ausgegeben, sondern die Schrittweite reduziert. Die Optimierungsrechnung wird mit
der neuen kleineren Schrittweite beim vorletzten Wert der Potentialtiefe fortgeführt. Die-
ses wird bis zu einer gewünschten Schrittweite durchgeführt. Als optimale Potentialtiefe
V opt

T wird die letzte Potentialtiefe vor dem Abbruch bei der kleinsten Schrittweite ausge-

geben. Analog zum voherigen Programm ist auch hier die Berechnung von VT < V opt
T und

VT > V opt
T möglich. Resultierend lässt sich ein Intervall

[
V mi n

T ,V max
T

]
für die optimale Po-

tentialtiefe V opt
T bestimmen.

Bei diesem Verfahren und der Form von Sn(VT ) ist es essentiell, dass bei Abbruch auf-
grund von ansteigenden Sn(VT )-Werten der Schritt zurück zum vorletzten Wert (zwei Schritt-
weiten zurück) erfolgt. Vorallem bei größeren Schrittweiten ist es möglich, einen Wert

Sn
(
V a

T

)> Sn
(
V opt

T

)
mit V a

T <V opt
T (4.13)

vor31 dem globalen Minimum zu erzeugen, der größer ist als der benachbarte Wert

Sn
(
V b

T

)
< Sn

(
V a

T

)
mit V a

T =
(
V b

T − s
)
<V opt

T <V b
T , (4.14)

welcher bereits hinter dem Minimum liegt. Der Abbruch erfolgt erst durch die Berech-
nung einens weiteren Wertes

Sn
(
V b

T

)
< Sn

(
V c

T

)
mit V a

T = (
V c

T −2s
)<V opt

T <V b
T + s =V c

T , (4.15)

welcher zwei Schrittweiten vom ursprünglichen Wert vor dem Minimum entfernt ist
und aufgrund des Monotonierverhaltens von Sn(VT ) hinter dem globalen Minimum auf
jeden Fall zum Abbruch führt. Würde nun das Programm analog zum ersten Verfahren zur
voherigen Potentialtiefe V b

T zurückgehen, so würde nach jeder Reduktion der Schrittwei-
te die Berechnung jedes beliebigen neuen Wertes Sn(V b

T ) < Sn(V neu
T ) < Sn(V c

T ) mit V b
T <

V neu
T < V c

T in einem Abbruch resultieren und schlussendlich V b
T als optimale Potentialtiefe

ausgegeben werden32. Dieses wird zudem dadurch verstärkt, dass Sn(VT ) von dem globa-
len Minimum aus nach rechts flacher ansteigt als nach links. Umso stärker die Differenz der
Steigung der Bereiche VT <V opt

T und VT >V opt
T , umso größer fällt die Abweichung von der

wahren optimalen Potentialtiefe aus. Die Argumentation ist für beide Richtungen der Opti-
mierungsrechnung gültig, auch wenn im vorliegenden Fall eine Optimierungsrechnung mit
wachsenden VT mehr davon betroffen wäre. Die endgültige Ausgabe nach dem letzten Ab-
bruch ist jedoch nicht der vorletzte Wert von VT sondern der letzte, da dieser ja in einem
niedrigeren Sn(VT ) resultierte als der vorherige33.

Intervallschachtelung nach dem goldenen Schnitt: Das dritte Verfahren stellt das kom-
plizierteste dar. Die beiden voherigen Programme nähern sich der optimalen Potentialtiefe
V opt

T sukzessive nur von einer Seite an. Zwar erfolgt die Berechnung von beiden Seiten her,
jedoch werden dabei „separate Programme“ durchlaufen, die untereinander keine Infor-
mationen austauschen. Die Berechnungsgeschwindigkeit ist einem Ansatz, bei dem das In-
tervall um die optimale Potentialtiefe V opt

T von beiden Seiten her sukzessive eingeschränkt
wird, unterlegen. Die Intervallschachtelung nach dem goldenen Schnitt ist der Bisektion

31Argumentation mit dem Verfahren in Richtung wachsender Potentialtiefen.
32Der Index neu repräsentiert jene Werte, welche von b aus durch kleinere Schrittweiten als die ursprüngliche

berechnet wurden.
33Bei hoher Genauigkeit (entsprechend kleiner minimaler Schrittweite) ist dies zu vernachlässigen.
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aus dem Numerov-Verfahren sehr ähnlich, jedoch halbiert sich das Intervall hier in jedem
Iterationsschritt nicht, sondern verkleinert sich auf das 0,61803-fache [90] der ursprüngli-
chen Größe in Analogie mit dem goldenen Schnitt. Als Referenz für die Intervallschachte-
lung nach dem goldenen Schnitt dient die Arbeit von Hartke [90]. Zu Beginn wird mittels
Abbildung 4.3 ein Intervall [α,β] um die optimale Potentialtiefe definiert. Es folgt die De-
finition eines beliebigen Punktes γ innerhalb dieses Intervalls. Analog zur Berechnung der
Daten als Grundlage für die Abbildung 4.3 werden nun für die Potentialtiefen α,β und γ

die korrespondierenden Funktionswerte Sn(VT ) berechnet und in Variablen gespeichert.
Aus der funktionalen Form von Sn(VT ) folgt, dass Sn(γ) kleiner als Sn(α) und Sn(β) ist. Als
nächstes wird ein vierter Punkt δ innerhalb von [α,β] erzeugt. Der Wert von δ berechnet
sich je nach Größe der Intervalle [α,γ] bzw. [γ,β] mittels [90]

• [α,γ] < [γ,β] >→ δ= γ+w · (β−γ)
• [α,γ] > [γ,β] → δ= γ−w · (γ−α)

,

wobei w = 3−p5
2 ≈ 1−0,61803. Es folgt die Berechnung von Sn(δ). Nachdem alle Sn(α),

Sn(β), Sn(γ) und Sn(δ) berechnet wurden, beginnt die Optimierungsrechnung. Aus α,β, γ
und δ müssen neue Punkte34 α′,β′ und γ′ folgen, sodass V opt

T ,γ′ ∈ [α′,β′] und

Sn(α′)+Sn(β′)+Sn(γ′) != mi n . (4.16)

Die Sn(α′),Sn(β′) und Sn(γ′) resultieren durch Initialisierung der korrespondierenden
Werte aus den Sn(α), Sn(β), Sn(γ) und Sn(δ). Es folgt die Berechnung von δ′ und Sn(δ′).
Das Verfahren wird so sukzessive fortgeführt. Die Berechnung von Sn(α), Sn(β) und Sn(γ)
erfolgt nur einmalig zu Anfang des Programms. Danach wird in jedem Iterationsschritt im-
mer nur δ und Sn(δ) neu berechnet.

Die Umsetzung dieses Algorithmus, das heißt die Kriterien für die Auswahl derα′,β′ und
γ′ aus den Wertenα,β,γ und δ des voherigen Iterationsschrittes gestaltet sich im Programm
wie folgt:

• für Sn(γ) > Sn(δ) folgt Sn(γ′) = Sn(δ) und γ′ = δ und

– für [α,γ] < [γ,β] folgt Sn(α′) = Sn(γ) und α′ = γ
– für [α,γ] > [γ,β] folgt Sn(β′) = Sn(γ) und β′ = γ

• für Sn(γ) < Sn(δ) folgt

– für [α,γ] < [γ,β] folgt Sn(β′) = Sn(δ) und β′ = δ
– für [α,γ] > [γ,β] folgt Sn(α′) = Sn(δ) und α′ = δ .

Die Optimierungsrechnung wird abgebrochen, sobald die Differenz zwischen α und β

einen bestimmten Grenzwert35 unterschreitet. Aus diesem Grenzwert folgt auch die Genau-
igkeit der Berechnung. Das Minimum der vier resultierenden Werte α′,β′,γ′ und δ′ wird als
optimale Potentialtiefe V opt

T ausgegeben.

4.3.4 Ergebnisse der Optimierungsrechnung

Im Folgenden werden die Ergebnisse der Optimierungsrechnungen der verschiedenen Pro-
gramme erläutert. Es folgt eine Analyse des Einflusses der reduzierten Masse und der Un-
sicherheit in der Höhe der Potentialbarriere. Abschließend werden die Energien der ers-
ten zehn gebundenen Zustände mittels der bestimmten optimalen Potentialtiefe mit dem

34Das ’ soll nur einen weiteren Iterationsschritt repräsentieren. Im Programm werden die alten Daten einfach
überschrieben.

35Im Programm der Parameter g r enze.
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Numerov-Verfahren berechnet und mit den Literaturwerten, den ursprünglichen Werten
von Manning und den Ergebnissen der Ab-initio-Rechnung von Aquino et al. verglichen.
Die beliebige Berechnungsgenauigkeit und die resultierenden Ergebnisse sind stets von den
als realistisch sinnvollen und physikalisch verifizierbaren Ergebnissen zu trennen.

Vergleich der Ergebnisse der unterschiedlichen Berechnungsverfahren: Für a = 0,383Å,
V0 = 0,2506eV und mit µ wurde gemäß der vorgestellten Optimierungsrechnungen die op-
timale Potentialtiefe V opt

T ermittelt 36.

Tabelle 4.6: Ergebnisse des ersten Optimierungsverfahren. Die erste Zahl für die Iterations-
schritte korrespondiert zu der Berechnung von V mi n

T mittels des Verfahrens in Richtung auf-
steigender VT und die zweite Zahl für die Iterationsschritte gehört zu der Berechnung von
V max

T mittels des Verfahrens in Richtung absteigender VT .

Schrittweite in [eV] Iterationsschritte V mi n
T in [eV] V max

T in [eV]
0,1 4 8 6,3 6,3

0,01 34 68 6,33 6,33
0,001 274 592 6,273 6,409
0,0001 3 4 6,0002 6,9997

0,00001 4 3 6,00000 6,99998

In Tabelle 4.6 sind die Resultate der Rechnungen mit dem ersten Verfahren dargestellt.
Das Verfahren wurde in beide Richtungen und mit verschiedenen Schrittweiten durchlau-
fen. Die Anzahl der Iterationsschritte und das resultierende Intervall für V opt

T indiziert, dass
die Genauigkeit des Verfahren auf eine Schrittweite von 0,001eV beschränkt ist. Für klei-
nere Schrittweiten bricht das Verfahren nahezu instantan ab, welches der geringen Anzahl
von Iterationsschritten zu entnehmen ist. Aufgrund der beschränkten Genauigkeit und den
flukturierenden Werten je nach Schrittweite eignet sich das einfachste Verfahren nicht zur
genaueren Bestimmung der optimalen Potentialtiefe. Mit dem einfachsten Verfahren lässt
sich die optimale Potentialtiefe V opt

T jedoch auf ein Intervall [6,273eV;6,409eV] beschrän-
ken, da kein offensichtlicher Widerspruch mit Abbildung 4.3 besteht und die Berechnung
aus einer höheren Anzahl von Iterationsschritten resultiert.

Tabelle 4.7: Ergebnisse des zweiten Optimierungs Verfahren. V mi n
T korrespondiert zu der

Berechnung des Verfahrens in Richtung aufsteigender VT und V max
T gehört zu der Berech-

nung des Verfahrens in Richtung absteigender VT .

Kleinste Schrittweite in [eV] V mi n
T in [eV] V max

T in [eV]

1 ·10−10 6,322200000 6,336964537

Das zweite Verfahren ist wesentlich schneller als das erste Verfahren, sodass die minima-
le Schrittweite deutlich verkleinert werden kann ohne in endlos langen Berechnungen zu re-
sultieren. Die Rechnungen von verschiedenen Startpunkten VT < V opt

T bzw. VT > V opt
T aus

resultieren in einem kleineren Intervall [6,322200000eV;6,336964537eV] für die optimale
Potentialtiefe V opt

T . Dieses Intervall liegt vollständig im Intervall des ersten Programms. Das
zweite Programm hat folglich zu einer erhöhten Genauigkeit der Berechnung der optimalen
Potentialtiefe geführt. Bei der beliebigen Wahl der Schrittweite und der korrespondierenden
Genauigkeit ist stets die Unsicherheit der anderen Parameter des Programms37 zu berück-
sichtigen.

36Für die Diskussion der reduzierten Masse siehe Abschnitt 2.1.
37Die Genauigkeit der von außen an das Programm übergebenen Werte sowie die Genauigkeit der Ergebnisse

des Numerov-Verfahrens
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Für das dritte Verfahren resultiert V opt
T = 6,328851792eV mit einem Grenzwert für das

Abbruchkriterium von 1 · 10−10 eV analog zum zweiten Verfahren. Dieser Wert liegt im In-
tervall der zweiten Rechnung. Einen Blick auf die zugrundeliegenden Daten in Tabelle A.8.1
von Abbildung 4.3 in Abschnitt A.8 verifizieren das Ergebnis des dritten Verfahrens. Die ers-
ten beiden Programme sind in ihrem Ansatz sehr ähnlich. Daher kann nicht ausgeschlossen
werden, dass ähnliche Unstimmigkeiten wie sie in dem ersten Programm auftreten auch aus
dem zweiten Programm resultieren.

4.3.5 Einfluss der Barrierehöhe und der reduzierten Masse auf die optimale Potential-
tiefe

Aufgrund der höheren Berechnungsgeschwindigkeit, der höheren Genauigkeit und der Über-
einstimmung mit der Abbildung 4.3 wird die Analyse des Einflusses der reduzierten Masse
µ bzw. µ0 und der Unsicherheit ∆V0 = 0,0025eV von V0 mit dem dritten Verfahren durch-
geführt. Wie bereits in Abschnitt 2.1 erläutert, ist die Betrachtung der reduzierten Masse für
die Betrachtung der Inversionsschwingung des Ammoniakmoleküls Gegenstand vieler wis-
senschaftlicher Arbeiten. Im Folgenden wird daher der resultierende Unterschied zwischen
µ und µ0 auf die optimale Potentialtiefe ermittelt. Die Position der Potentialminima wurde
frei von Unsicherheiten angenommen. Die funktionale Form der jeweiligen Sn(VT ) zu den
verschiedenen reduzierten Massen und den verschiedenen Höhen der Potentialbarriere ist
analog zu der in Abbildung 4.3.
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Abbildung 4.4: Dreidimensionale Darstellung des Zusammenhangs zwischen der optimalen
Potentialtiefe V opt

T , der reduzierten Masse µ bzw. µ0 und der Höhe der Potentialbarriere V0,
wobei ∆V0 = 0,0025eV der Unsicherheit von V0 entspricht.
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Tabelle 4.8: Ergebnisse der Analyse des Einflusses der reduzierten Masse µ bzw. µ0 und der
Unsicherheit von V0. Die Kombinationen aus V0 und V opt

T wurden in sechs Szenarien ein-
geteilt und durch a, b, c, d, e und f indeziert.

reduzierte Masse µ

Index Höhe der Potentialbarriere V0 [eV] optimale Potentialtiefe V opt
T in [eV]

a 0,2481 6,67
b 0,2506 6,33
c 0,2531 6,02

reduzierte Masse µ0

Index Höhe der Potentialbarriere V0 [eV] optimale Potentialtiefe V opt
T in [eV]

d 0,2481 5,04
e 0,2506 4,82
f 0,2531 4,62

In Abbildung 4.4 ist zur Veranschaulichung der Zusammenhang zwischen der optimalen
Potentialtiefe V opt

T , der reduzierten Masse µ bzw. µ0 und der Höhe der Potentialbarriere
V0 dargestellt. Aus der Unsicherheit in der Höhe der Potentialbarriere V0 resultiert für die
optimale Potentialtiefe für µ

V opt
T (µ) =

(
6,33+0,34

−0,31

)
eV (4.17)

und für µ0

V opt
T (µ0) =

(
4,82+0,22

−0,20

)
eV . (4.18)

In dieser Betrachtung überwiegt jedoch der Einfluss der reduzierten Masse deutlich. Für
die Differenz der optimalen Potentialtiefen resultiert

V opt
T (µ)−V opt

T (µ0) =
(
1,51+0,54

−0,53

)
eV , (4.19)

wobei 2,05eV der Abweichung zwischen maximalen V opt
T (µ) und minimalen V opt

T (µ0)
entspricht.

Zu den obigen sechs Tupeln aus verschiedenen Kombinationen von reduzierte Masse,
Höhe der Potentialbarriere und Potentialtiefe wurden die Energien der ersten zehn gebun-
denen Zustände des Ammoniakmoleküls und die korrespondierenden Werte von Sn be-
rechnet. Die Ergebnisse sind für µ in Tabelle 4.9 und für µ0 in Tabelle 4.10 dargestellt. In
Abbildung 4.6 sind die jeweiligen Sn einander gegenübergestellt. In dieser Betrachtung re-
sultiert der kleinste Wert von Sn aus dem Tupel des Szenarios a mit (VT = 6,68eV, V0 =
0,2481eV, µ). Der Wert von Sn nimmt für µ und µ0 streng monoton mit kleineren Werten
von V0 ab. Bildet man einen Mittelwert von Sn der jeweiligen drei Szenarien zu µ bzw. µ0, so
resultieren die Werte zu µ in einem geringeren Mittelwert38. Die reduzierte Masse µ eignet
sich folglich besser für die Berechnungen zu dem Ammoniakmolekül, da die resultierenden
Ergebnisse für die Energien der ersten zehn gebundenen Zustände näher an den Literatur-
werten liegen.

In Abbildung 4.5 ist die Entwicklung der Werte der Sn mit der Hauptquantenzahl n für
die sechs Szenarien gegenübergestellt. Für die Hauptquantenzahlen n = 0 und n = 1 lässt

38Nur Szenario d aus den Rechnungen mit µ0 resultiert in einem geringeren Wert für Sn als das „schlechteste“
Szenario c von µ.
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sich optisch kein Unterschied zwischen den Szenarien ausmachen. Die weitere Entwicklung
der Werte von Sn mit n für die verschiedenen Szenarien fällt sehr unterschiedlich aus. Mit
der Berücksichtigung von n = 2 in der Berechnung von Sn trennen sich die Szenarien a
und d durch einen Anstieg in Sn von den übrigen Szenarien ab. Der weitere Verlauf Sn des
Szenarios a ist relativ zu den anderen Szenarien konstant mit n. Die Szenarien c, e und f
hingegen erfahren einen besonders starken Anstieg von Sn für n = 3 bis n = 6. Für diese
n ist die Abweichung von dem jeweiligen Literaturwert groß. Im Bereich n = 6 bis n = 8
hingegen verbleibt Sn für alle Szenarien nahezu konstant. Der Anstieg von Sn durch das
Einbinden der korrespondierenden Werte zu n = 9 bei der Berechnung der Werte von Sn ist
bei den Szenarien c, d, e und f besonders stark. Es fällt zudem auf, dass Szenario b bis zur
letzten Hauptquantenzahl n = 9 mit dem niedriegsten Wert von Sn korrespondiert und erst
mit der Berücksichtigung von n = 9 in einem höheren Wert von Sn als Szenario a resultiert.
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Abbildung 4.5: Gegenüberstellung der Entwicklung der Werte von Sn mit der Hauptquan-
tenzahl n für die Szenarien a, b, c, d, e und f. Die Daten dieser Grafik sind in Abschnitt A.8 in
der Tabelle A.8.2 aufgeführt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

Aus der Rechnung auf Basis der Parameter von Plenter in Abschnitt 4.2 resultierte Sn(VT =
5,0608eV, a = 0,39685Å,V0 = 0,2506eV) = 2,3327 ·10−3 (eV)2. Die Werte für Sn fallen für al-
le Szenarien der Optimierungsrechnung mehrere Größenordnungen kleiner aus, als für die
Rechnung mit den Parametern von Plenter. Jedoch sind Plenters Parameter in der Lage, das
beste Ergebnis für die energetische Aufspaltung zwischen Grundzustand und erstem ange-
regten Zustand zu erzeugen. Die Abweichung zum Literaturwert betrug in der Berechnung
auf Basis der Parameter von Plenter 1,30 ·10−5 eV, während das beste Resultat 1,79 ·10−5 eV
der Optimierungsrechnung aus Szenario c folgt. Dies entsprach auch der Absicht und der
theoretischen Grundlage des Ansatzes von Plenter. Die „Entfremdung“ der Parameter, wel-
che passend zu den Testwellenfunktionen der ersten beiden gebundenen Zustände des Am-
moniakmoleküls bestimmt wurden, zur Berechnung der Energien höherer Zustände war
nicht vorgesehen und resultiert in den berechneten Abweichungen bei höheren gebunde-
nen Zuständen. Die Güte der Parameter (C ′ = 11505,58059 und D ′ = 7032,864897) von Plen-
ter zur Analyse der energetischen Aufspaltung zwischen Grundzustand und erstem ange-
regten Zustand gilt somit im Rahmen der betrachteten Alternativen als bestätigt.

Betrachtet man für die Daten der Optimierungsrechnung lediglich die energetische Auf-
spaltung zwischen dem Grundzustand und dem ersten angeregten Zustand, so ergeben
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kleinere Werte von V0 für µ und µ0 die besseren Ergebnisse relativ zum Literaturwert. Die
Ergebnisse zu µ fallen erneut besser aus als zu µ0.

Ein genauerer Vergleich mit der von Manning angebenen Dissoziationsenegie von 5eV
(bzw. der ermittelten Potentialtiefe von 5,5966eV aus Mannings Rechnung) ist nicht sinn-
voll. Die Tiefe des Manning-Potentials wurde zu den gegebenen reduzierten Massen und
den verschiedenen Höhen der Potentialbarriere so angepasst, dass sich eine möglichst hohe
Übereinstimmung der resultierenden Energien mit den Literaturwerten ergibt. Es war da-
bei nicht das Ziel die Dissoziationsenergie möglichst gut nachzubilden, sodass ein Vergleich
der resultierenden Potentialtiefen mit der Dissoziationsenergie keine Bewertung der Gü-
te der Optimierungsrechnung zulässt. Dazu müsste die Variation eines anderen Parameters
erfolgen, sodass eine Potentialtiefe resultiert, die möglichst gut mit der Dissoziationsenergie
übereinstimmt. Der Vergleich mit einer Dissoziationsenergie für das Ammoniakmolekül aus
einer theoretischen Arbeit, wie der von Manning, würde in der vorliegenden Optimierungs-
rechnung lediglich Aufschluss über die Abweichung der konstanten Parameter dieser Rech-
nung zu den Parametern aus Mannings Rechnung ergeben. Da hier zusätzlich verschiedene
reduzierte Massen betrachtet wurden, kann mittels der korrespondierenden optimalen Po-
tentialtiefen in Referenz zur Dissoziationsenergie geschlussfolgert werden, dass durch µ die
reduzierte Masse zu hoch und durch µ0 zu niedrig angesetzt ist. Die höhere reduzierte Mas-
se µ wird in der Optimierungsrechung durch ein tieferes Potential kompensiert. Je nach V0

fällt die Kompensation unterschiedlich stark aus.
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Abbildung 4.6: Gegenüberstellung der Sn(V opt
T ) für die verschiedenen Szenarien a, b, c, d,

e und f aus Tabelle 4.8. Die Verbindungslinien repräsentieren keinen mathematischen Zu-
sammenhang, sondern dienen rein der Veranschaulichung.
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4.3.6 Vergleich mit den Ergebnissen von Manning und Aquino et al.

Da für Szenario a mit V opt
T (µ) = 6,67eV und V0 = 0,2481eV der minimale Wert von Sn für die

ersten zehn gebundenen Zustände resultiert, wird zuerst der Vergleich mit diesen Daten an-
gestrebt. Die Energien der ersten acht gebundenen Zustände des Ammoniakmoleküls aus
dem Numerov-Verfahren, der ursprünglichen Rechnungen von Manning aus 1935, der Ab-
initio-Rechnung von Aquino et al. und der experimentellen Bestimmung sind in Tabelle 4.11
dargestellt. Zudem wurde der korrespondierende Wert für Sn für die drei theoretischen Ver-
fahren bestimmt. Die Ergebnisse für die Energien sind grafisch in Abbildung 4.7 einander
gegenübergestellt. Die verschiedenen Verfahren liefern allesamt Ergebnisse, die so gut mit-
einander und der Literatur übereinstimmen, dass die Differenz grafisch kaum auszumachen
ist. Nur für höhere gebundene Zustände ab n = 5 weichen die Ergebnisse von Manning zu
tieferen Energien hin von den anderen Verfahren und der Literatur ab. Diese Abweichung
spiegelt auch der Wert für Sn des Manning-Verfahrens Sn = 6,17 · 10−5 (eV)2 im Vergleich
zu dem Numerov-Verfahren Sn = 1,2 · 10−6 (eV)2 und der Ab-initio-Rechnung von Aquino
et al. Sn = 1,4 ·10−6 (eV)2 wieder. Erstaunlich ist jedoch, dass hinsichtlich des Wertes für Sn
das Numerov-Verfahren mit optimaler Potentialtiefe die deutlich aufwendigere Ab-initio-
Rechnung mit positions-abhängiger reduzierter Masse von Aqunio et al. übertrifft39.

Soll die Unsicherheit der Höhe der Potentialbarriere analog zu der Unsicherheit der Po-
sition der Minima vernachlässigt werden, so ergeben sich die Ergebnisse für Szenario b in
Tabelle 4.12. Der resultierende Wert für Sn der ersten acht gebundenen Zustände des Am-
moniakmoleküls liegt mit 1,1 · 10−6 (eV)2 unterhalb des Wertes für Szenario a. Dieses ent-
spricht auch der Abbildung 4.5. Betrachtet man die Summe der quadratischen Abweichung
für die Zustände mit Hauptquantenzahl n = 8 und n = 9

Sn∗(VT ) =
9∑

i=8
|E Numerov

i −E Literatur
i |2 , (4.20)

so ergibt sich für Szenario a Sn∗ = 5 ·10−7 (eV)2 und für Szenario b
Sn∗ = 8·10−7 (eV)2. Die Abweichungen der Zustände mit Hauptquantenzahl n = 8 und n = 9
von den Literaturwerten fallen für Szenario b höher aus als für Szenario a. Für die Betrach-
tung der ersten acht gebundenen Zustände für den Vergleich mit den ursprünglichen Er-
gebnissen von Manning und den Ergebnissen der Ab-initio-Rechnung von Aquino et al.
liefert folglich Szenario b die bessere Übereinstimmung mit den Literaturwerten. Aus Abbil-
dung 4.5 und den Ergebnissen der Szenarien für Sn∗ folgt jedoch auch, dass der Unterschied
sehr gering ausfällt.

Beide Szenarien zeigen jedoch bessere Resultate bezüglich der Summe der quadrati-
schen Abweichungen der Energien zu den Literaturwerten als die ursprünglichen Ergebnis-
se von Manning und die Ergebnisse der Ab-initio-Rechnung von Aquino et al. . Jedoch muss
auch erwähnt werden, dass die Energiedifferenz zwischen Grundzustand und ersten ange-
regten Zustand für die Szenarien a und b größer von dem Literaturwert abweichen als die
Ergebnisse von Manning und Aquino et. al. .

In Analogie zu der Berechnung auf Basis der Parameter von Plenter sind in Tabelle 4.13
und Tabelle 4.14 die Energieaufspaltungen benachbarter Zustände für die beiden Szenari-
en im Vergleich mit den Ergebnissen der urspünglichen Rechnung von Manning, der Ab-
initio-Rechnung von Aquino et al. und den Literaturwerten angegeben. Desweiteren kann
ein Szenario zwar in einem geringen Wert für Sn resultieren, jedoch trotzdem eine schlech-
te Übereinstimmung mit den Energieaufspaltungen benachbarter Zustände der Literatur
aufweisen. Aufgrund der Tatsache, dass zur Berechnung von Sn die Betragsquadrate der
Abweichungen der Energien zu den Literaturwerten genutzt werden, spielt es für den Wert
einer Abweichung keine Rolle, ob die numerisch bestimmte Energie über oder unter dem

39Ein geringerer Wert für Sn.

43



4.3 BESTIMMUNG DER OPTIMALEN POTENTIALTIEFE DES MANNING-POTENTIALS
ZUR BESCHREIBUNG VON NH3

Literaturwert liegt. Für die Betrachtung der Energieaufspaltung ist es von Relevanz, ob die
numerisch bestimmte Energie zu einem gebundenen Zustand n über bzw. unter dem Li-
teraturwert liegt und zudem die numerisch bestimmte Energie zu n ±1 (benachbarter Zu-
stand) unter bzw. über dem Literaturwert liegt. Ein klares Fazit bezüglich der Abweichungen
der mittels Numerov-Verfahren bestimmten Energieaufspaltungen zu den Literaturwerten
lässt sich nicht ziehen. Zu manchen benachbarten Zuständen fallen die Abweichungen der
Ergebnisse des Numerov-Verfahrens geringer als die Resulate von Aquino et al. aus, und ge-
genüber anderen ist die Berechnungsmethodik von Aquino et al. überlegen.
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Abbildung 4.7: Grafische Darstellung des Vergleich der Energien der ersten acht gebunde-
nen Zustände des Ammoniakmoleküls aus den Rechnungen mit Numerov, von Manning,
von Aquino et. al. und den experimentellen Werten. Eine Unterscheidung zwischen den
Werten aus Szenario a und den Werten aus Szenario b würde optisch nicht erkennbar sein.
Die Grafik wurde mit den Daten aus Szenario a angefertigt. Die Verbindungslinien zwischen
den diskreten Energiewerten dienen rein der Veranschaulichung.
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5 SCHLUSSFOLGERUNG

5 Schlussfolgerung

Im ersten Teil dieser Arbeit konnte das in Fortran programmierte Numerov-Verfahren an-
hand des Potentials des harmonischen Oszillators und des Pöschl-Teller Potentials als funk-
tionstüchtig etabliert werden.

Der Vergleich mit den Rechnungen von Plenter bestätigte die zu Grunde liegende Theo-
rie. Die Ergebnisse aus der Variationsrechnung von Plenter stellten immer nur obere Schran-
ken dar, welche von den Ergebnissen des Numerov-Verfahren stets unterschritten wurden.
Es resultierten genauere Ergebnisse für alle Rechnungen. Zudem konnten die Ergebnisse
des Numerov-Verfahrens Aufschluss über den Irrtum in der Arbeit von Christiansen und
Cunha geben.

Bei der Betrachtung der energetischen Aufspaltung des Grundzustands zum ersten an-
geregten Niveau des des Ammoniakmoleküls führte das Numerov-Verfahren 8,49 · 10−5 eV
mit den Parameter von Plenter im Vergleich zur Variationsrechnung 2,21 · 10−5 eV zu ei-
ner deutliche Verbesserung des Ergebnisses im Vergleich zum Literaturwert [91] von 9,79 ·
10−5 eV. Zur Bestimmung der Energien höherer gebundener Zustände des Ammoniakmole-
küls eignen sich die Parameter von Plenter nicht mehr.

Mittels der Optimierungsrechnung konnten bessere Parameter zur Beschreibung der In-
versionsschwingung des Ammoniakmoleküls durch das Manning-Potential bestimmt wer-
den. Dazu wurde die funktionale Form Sn(VT ) der Summe der quadratischen Abweichun-
gen der mittels Numerov-Verfahren berechneten Energien der ersten zehn gebundnen Zu-
stände von den Werten der Literatur als Funktion der Potentialtiefe bestimmt. Aus der Tatsa-
che, dass diese funktionale Form nur aus einem globalen Minimum und keinen weiteren lo-
kalen Extrema bestand, wurden drei Programme zur Bestimmung der optimalen Potential-
tiefe durch Minimierung von Sn(VT ) in Fortran geschrieben. Nach Analyse der Güte der Pro-
gramme wurde die Intervallschachtelung nach dem goldenen Schnitt zur Berechnung der
optimalen Potentialtiefen zu den konstanten reduzierten Massen µ = 4,25652928924809 ·
10−27 kg und µ0 = 4,12906991140916 ·10−27 kg sowie den Höhen der Potentialbarriere V0 +
∆V0 = 0,2531eV, V0 = 0,2506eV und V0 −∆V0 = 0,2481eV genutzt. Für die optimale Potenti-
altiefe resultierte für µ

V opt
T (µ) =

(
6,33+0,34

−0,31

)
eV (5.1)

und für µ0

V opt
T (µ0) =

(
4,82+0,22

−0,20

)
eV . (5.2)

Für die sechs Tupel aus reduzierter Masse, Höhe der Potentialbarriere und optimale Po-
tentialtiefe wurden mittels des Numerov-Verfahrens die Energie der ersten zehn gebunde-
nen Zustände berechnet. Aus dem Vergleich der korrespondierenden Sn-Werte resultier-
te für das Tupel (VT = 6,67eV, V0 = 0,2481eV, µ) der kleinste Wert. Die Rechnungen mit
µ schnitten in Bezug auf die Werte von Sn und den Ergebnissen für die unterste Ener-
gieaufspaltung besser als die Ergebnisse von µ0 ab. Zudem bestätigte die Berechnung von
Sn für die Ergebnisse auf Basis der Parameter von Plenter die berechneten Abweichungen
für höhere gebundene Zustände. Die Betrachtung der Entwicklung der Werte von Sn mit
der Hauptquantenzahl n für die verschiedenen Szenarien offenbarte, dass Szenario b mit
(VT = 6,33eV, V0 = 0,2506eV, µ) bis zur Berücksichtigung von n = 9 bei der Berechnung von
Sn mit einem niedrigeren Wert von Sn korrespondierte als Szenario a.

Die Energien zu Szenario a mit (VT = 6,67eV, V0 = 0,2481eV, µ) und Szenario b mit
(VT = 6,33eV, V0 = 0,2506eV, µ) wurden abschließend mit den Ergebnissen der urspüng-
lichen Rechnung von Manning, den Ergebnissen der Ab-initio-Rechnung von Aquino et al.
und den Literaturwerten verglichen. Für das Numerov-Verfahrens mit optimaler Potential-
tiefe aus Szenario a resultierte der Wert für Sn = 1,2 ·10−6 (eV)2 und für Szenario b der Wert
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5 SCHLUSSFOLGERUNG

Sn = 1,1 ·10−6 (eV)2. Der Wert von Aquino et al. betrug Sn = 1,4 ·10−6 (eV)2. Für Manning
ergab sich Sn = 6,17 ·10−5 (eV)2, welches vorallem auf der Abweichung für höhere gebun-
dene Zustände basiert. Durch eine verbesserte Wahl der Parameter konnten die Ergebnisse
des Numerov-Verfahrens mit dem Manning-Potential nicht nur die ursprünglichen Ergeb-
nisse von Manning optimieren, sondern auch die deutlich aufwendigere und komplexere
Ab-initio-Rechnung von Aquino et al. übertreffen.

Eine direkte Verbesserung der Optimierungsrechnung könnte durch Anpassung der zu
minimierenden Summe Sn(VT ) resultieren. Durch Kenntnis der Unsicherheiten der einzel-
nen Energien der gebundenen Zustände für die Werte aus der Literatur lässt sich Sn(VT )
durch

χ2 =
N∑

i=0

|E Numerov
i −E Literatur

i |2(
∆E Literatur

i

)2 (5.3)

ersetzen. Die Rechnung würde die Literaturwerte dann mit ihrer Unsicherheit gewich-
ten, welches dazu führen würde, dass beispielsweise die experimentell gut bestimmbare
energetische Aufspaltung von Grundzustand und erstem angeregten Zustand stärker in der
Berechnung der Energien berücksichtigt wird als jene Werte, welche mit einer größeren Un-
sicherheit verbunden sind. Zu den verwendeten Literaturwerten konnten jedoch keine Un-
sicherheiten gefunden werden, sodass sich mit der Minimierung von Sn(VT ) abgefunden
werden musste.

Ein weiterer Aspekt ist die Behandlung der reduzierten Masse in den Berechnungen.
Aquino et al. [54] sowie Rush und Wiberg [63] reklamierten in ihren Arbeiten die schlechten
Resultate aus den Rechnungen mit einer konstanten reduzierten Masse. In [63] wird die Ab-
weichung der Energien von den Literaturwerten auf über 5% beziffert. Durch die Optimie-
rung der ohnehin unbekannten Potentialtiefe konnten die nachteiligen Effekte der konstan-
ten reduzierten Masse auf die Energien der gebundenen Zustände der Inversionsschwin-
gung des Ammoniakmoleküls ausgeglichen werden. Rein Mathematisch ist ein solches Vor-
gehen nicht falsch und ermöglicht eine genauere Berechnung der Energien der gebundenen
Zustände des Ammoniakmoleküls durch Anpassung der funktionalen Form des Manning-
Potentials. Die komplizierte Betrachtung einer positions-abhängigen reduzierten Masse in
der Schrödingergleichung konnte somit umgangen werden, ohne dabei die Resultate gemäß
der Aussagen von Aquino et al sowie Rush und Wiberg drastisch zu verschlechtern.

Durch eine Optimierungsrechnung ist man in der Lage, die Abweichungen aus theore-
tischen Näherungen oder die Unsicherheiten aus experimentellen Messungen durch Varia-
tion einer Größe40 so zu kompensieren, dass die resultierenden Ergebnisse von gewissen
Referenzgrößen minimal abweichen. Dadurch verliert der Wert der variierten Größe jedoch
seine physikalische Interpretation41. Umso geringer die Abweichungen bzw. die Unsicher-
heiten der konstanten Parameter, umso weniger weicht der Wert der variierten Größe von
einer physikalischen Referenzgröße ab. Verringert man nun die aus Näherungen wie ei-
ner konstanten reduzierten Masse resultierenden Abweichungen, so gewinnt die optimierte
Größe wieder an Güte als physikalischer Referenzwert. Durch die Wahl einer positionsab-
hängigen reduzierten Masse könnte die resultierende optimale Potentialtiefe als grober Re-
ferenzwert für die Dissoziationsenergie dienen. Die Wahl der räumlichen Koordinate zur
Beschreibung dieser Positionsabhängigkeit kann gemäß Aquino et al. [53] auf die Inversi-
onskoordinate x oder gemäß Rush und Wiberg [64] auf eine Winkelkoordinate fallen. Die
positionsabhängige Masse auf Basis der Inversionskoordinate x ermöglicht jedoch die ein-
fachere Integration in das vorliegende Verfahren und liefert im direkten Vergleich bessere

40Je nach Anzahl der Referenzpunkte (hier die Literaturwerte) können auch mehrere Größen variiert bzw.
optimiert werden.

41Eine Optimierung mittels der Position der Minima a hätte bei willkürlicher und konstanter Wahl der Poten-
tialtiefe zu einem Wert von a geführt, der nicht mehr der experimentell bestimmten Gleichgewichtsposition des
Stickstoffatoms entsprechen würde.
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Resultate [50]. Es gilt jedoch zu berücksichtigen, dass alleine die Vorgabe der funktionalen
Form des Manning-Potentials eine Näherung der physikalischen Realität darstellt und so-
mit die optimierte Größe stets versucht, diese Abweichung zu kompensieren.

Die Abweichungen der Ergebnisse der Berechnungen auf Basis der Parameter von Plen-
ter können auch in der Annahme der konstanten reduzierten Masse begründet liegen42. Der
Anteil der Abweichung der auf die Näherung der konstanten reduzierten Masse zurückgeht,
müsste genauer mit Hilfe einer positions-abhängigen Masse untersucht werden.

Zur Bewertung der Güte des Manning-Potentials mit der optimimalen Potentialtiefe als
Inversionspotential für das Ammoniakmolekül würde ein Vergleich mit den aus den Ab-
initio-Rechnungen von Aquino et al. [48] sowie Rush und Wiberg [60] stammenden Poten-
tialen sinnvoll sein. Vor allem das Potential aus der Arbeit von Spirko [91], welches analog
zur Berechnung der optimalen Potentialtiefe des Manning-Potentials aus dem Abgleich der
berechneten Energien mit den experimentellen Werten folgt, könnte interessante Folgerun-
gen für die Qualität des Manning-Potentials ergeben.

Um die Qualität des Numerov-Verfahrens zur Berechnung der Energien des Ammoniak-
moleküls zu bestimmen, würde sich ein Vergleich zum neueren Matrix-Ansatz von Förster
et al. [71] anbieten. Das von Kemper [42] vorgestellte renormalisierte Numerov-Verfahren
für beliebige Potentiale übersteigt in vielen Belangen die Anforderung an ein Programm zur
Lösung von spiegelsymmetrischen Potentialen wie sie bei der Betrachtung der Inversions-
schwingung des Ammoniakmoleküls auftauchen. Jedoch könnte das Einbinden des Feh-
lermaßes [46] und das somit mögliche Ersetzen des Schießverfahrens durch ein Matching-
Verfahren [44] und des Bisektionsverfahrens durch ein Sekantenverfahren die Genauigkeit
und Geschwindigkeit des Programms erhöhen. Kemper [47] merkt jedoch selbst an, dass es
auf das jeweilige Problem ankommt, ob das Matchingverfahren oder das Sekantenverfahren
überlegen ist.

Zusammenfassend kann die Aussage von Swalen und Ibers [67] bezüglich der Güte der
Arbeit von Manning im Jahre 1935 bestätigt werden. Das Manning-Potential eignet sich
hervorragend zur Beschreibung der Inversionsschwingung des Ammoniakmoleküls. Da die
Rechnungen auf Basis des Manning-Potentials jedoch nicht einer Ab-initio-Rechnung ent-
sprechen, sind die Berechnungen stark von den vorgegebenen Parametern abhängig. Die-
se Arbeit konnte den Einfluss einiger Parameter in der Berechnung der Inversionsenergien
darstellen und bezüglich der Potentialtiefe des Manning-Potentials mit Rücksicht auf die
betrachtete reduzierte Masse ein sinnvolles Intervall etablieren, sodass die berechneten In-
versionsenergien des Ammmoniakmoleküls möglichst nah an den experimentellen Werten
lagen.

42Es findet keine Kompensation der Näherung durch eine Optimierungsrechnung statt.

51



LITERATUR

Literatur

[1] T. Plenter; Anwendung des Ritzschen Variationsverfahren auf das Manning-Potential
(2017), Bachelorarbeit WWU Münster

[2] a. a. O., S.4

[3] a. a. O., S.5

[4] a. a. O., S4-6

[5] a. a. O., S.8-10

[6] a. a. O., S.11-15

[7] a. a. O., S.11 Gleichung (4.2)

[8] a. a. O., S.11 Gleichung (4.3)

[9] a. a. O., S.13 Tabelle 1

[10] a. a. O., S.16

[11] a. a. O., S.16 Tabelle 2

[12] a. a. O., S.16-17

[13] a. a. O., S.17 Tabelle 4

[14] a. a. O., S.21

[15] a. a. O., S.21-22

[16] a. a. O., S.22

[17] a. a. O., S.22 Tabelle 7

[18] a. a. O., S.21-25

[19] a. a. O., S.24

[20] a. a. O., S.25

[21] a. a. O., S.30 Tabelle 8

[22] L. J. Papenfort; Numerische Lösung der Schrödingergleichung mit dem Numerov-
Verfahren (2011), Bachelorarbeit WWU Münster

[23] a. a. O., S.7

[24] a. a. O., S.7-9

[25] a. a. O., S.10

[26] a. a. O., S.10 Gleichung (2.28)

[27] a. a. O., S.11 Gleichung (2.31) und (2.32)

[28] a. a. O., S.11

[29] a. a. O., S.12

[30] a. a. O., S.12-13

[31] a. a. O., S.12 Gleichung (2.36)

52



LITERATUR

[32] a. a. O., S.13 Gleichung (2.38)

[33] a. a. O., S.13

[34] a. a. O., S.14 Abbildung 2.1

[35] a. a. O., S.15

[36] a. a. O., S.19 Gleichung (3.1)

[37] a. a. O., S.20-29

[38] a. a. O., S.26-28

[39] a. a. O., S.28 Gleichung (3.22)

[40] a. a. O., S.28 Gleichung (3.25)

[41] a. a. O., S.41

[42] M. Kemper; Numerische Verfahren zur Lösung der stationären Schrödin- gergleichung
(2012), Bachelorarbeit WWU Münster

[43] a. a. O., S.11

[44] a. a. O., S.18

[45] a. a. O., S.19

[46] a. a. O., S.19 Gleichung G3.35

[47] a. a. O., S.44

[48] N. Aquino, G. Campoy, H. Yee-Madeira. The inversion potential for NH3 using a DFT
approach (1998), Chemical Physics Letter 296 S.111-116

[49] a. a. O., S.112

[50] a. a. O., S.112 Tabelle 2

[51] a. a. O., S.113

[52] a. a. O., S.113-114

[53] a. a. O., S.114 Gleichung 3

[54] a. a. O., S. 114

[55] M. F. Manning; Energy Levels of a Symmetrical Double Minima Problem with Ap-
plications to the NH3 and ND3 Molecules (1935), Journal of Chemical Physics 3
S.136-138, http://aip.scitation.org/doi/pdf/10.1063/1.1749619 aufgerufen
am 02.05.2018

[56] a. a. O., S.136

[57] a. a. O., S.137

[58] a. a. O., S.138

[59] a. a. O., S.138 Tabelle 1

[60] D. J. Rush, K. B. Wiberg; Ab Initio CBS-QCI Calculations of the Inversion Mode of Am-
monia (1997), Journal of Physical Chemistry A 101 S.3143-3151

53

http://aip.scitation.org/doi/pdf/10.1063/1.1749619


LITERATUR

[61] a. a. O., S.3143

[62] a. a. O., S.3144

[63] a. a. O., S.3148

[64] a. a. O., S.3144-3145

[65] J.D. Swalen, J. A. Ibers; Potential Function for the Inversion of Ammonia (1961), Journal
of Chemical Physics 36 S.1914-1918

[66] a. a. O., S.1914

[67] a. a. O., S.1918

[68] a. a. O., S.1917

[69] a. a. O., S.1917 Gleichung 11

[70] a. a. O., S.1917 Gleichung 10 und 11

[71] J. Förster, A. Saenz, U. Wolff; Matrix algorithm for solving Schrödinger equations with
position-dependent mass or complex optical potentials (2011)

[72] a. a. O., S.7 Gleichung 21

[73] a. a. O., S.9 Gleichung 22

[74] I.V. Hertel, C.-P. Schulz; Atome, Moleküle und optische Physik 2 (2010), S.104-125

[75] a. a. O., S.104

[76] a. a. O., S.107

[77] a. a. O., S.111

[78] G. Münster; Quantentheorie (2010) (2. Auflage) De Gruyter

[79] a. a. O., S.10-11

[80] a. a. O., S.31

[81] a. a. O., S.65

[82] a. a. O., S.74

[83] a. a. O., S.81-82

[84] D. J. Griffiths; Quantenmechanik (2012) (2. aktualisierte Auflage) Pearson

[85] a. a. O., S.34

[86] a. a. O., S.52

[87] W. Klopper, C. C. M. Samson, G. Tarczay, A. G. Császár: Equilibrium Inversion Barrier of
NH3 from Extrapolated Coupled-Cluster Pair Energies (2001), Journal of Computational
Chemistry, Vol. 22, No. 13, S.1313

[88] G. Pöschl, E. Teller, Bemerkungen zur Quantenmechanik des anharmonischesn Oszilla-
tors (1933) Z. Physik 83 S.141-151

[89] H. R. Christiansen, M. S. Cunha; Energy eigenfunctions for position-dependent
mass particles in a new class of molecular hamiltonians (2014), J. Math. Phys. 55,
092102,https://arxiv.org/abs/1403.0302, S.10, Tabelle 1

54

https://arxiv.org/abs/1403.0302


LITERATUR

[90] B. Hartke; Einführung in die Numerische Mathematik für Chemiker (2017) (1. Aufla-
ge) S.65, https://ravel.pctc.uni-kiel.de/wp-content/uploads/numerik.pdf
aufgerufen am: 20.06.2018

[91] V.J. Spirko; (1983) Journal of Molecular Spektroscopy 101 S.30

[92] C.H. Townes, A.L. Schawlow; Microwave Spectroscopy (1955) (British issue of first editi-
on) McGraw-Hill Publishing Company LTD S.306

[93] J.F. Rivas-Silva, G. Campoy, A. Palma; (1991) International Journal of Quantum Che-
mistry 40 S.455

[94] W. Nolting; Grundkurs Theoretische Physik 5/1: Quantenmechanische-Grundlagen
(2009) (7. aktualisierte Auflage) Springer Verlag S.251-252

[95] F. T. Wall, G. Glockler, (1937) Journal of Chemical Physics 5 S.314

[96] H. Sheng, E. F. Barker, D. M. Dennison; Further Resolution of Two Parallel Bands of
Ammonia and the Interaction between Vibration and Rotation (1941) Physical Review 60
S.786-794

55

https://ravel.pctc.uni-kiel.de/wp-content/uploads/numerik.pdf


ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

2.1 Schematische Darstellungen der pyramidalen Form des Ammoniakmoleküls
[49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Schematische Darstellung des Manning-Potentials. . . . . . . . . . . . . . . . . . 4
3.1 „Schematische Darstellung des Verhaltens der nicht normierten Lösungen der

Schrödingergleichung bei Variation des Energiewertes E im Bereich F (x) < 0
“[34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 25
Zustände des Harmonischen Oszillators mit den analytischen Resultaten. Die
Daten dieser Grafik und die absolute Abweichung der numerischen von den
analytischen Werten sind in Abschnitt A.4 aufgeführt. Die Verbindungslinien
zwischen den diskreten Energiewerten dienen rein der Veranschaulichung. . . 21

3.3 Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 13
Zustände des Pöschl-Teller Potentials mit den analytischen Resultaten. Die
Daten dieser Grafik und die absolute Abweichung der numerischen von den
analytischen Werten sind in Abschnitt A.5 aufgeführt. Die Verbindungslinien
zwischen den diskreten Energiewerten dienen rein der Veranschaulichung. . . 22

3.4 Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter für V̂0 = 2,56 und ãr = 1,146. Mit A1(V̂T ) :=
ε̂+,V

r − ε̂+,N
r , A2(V̂T ) := ε̂−,V

r − ε̂−,N
r und A3(V̂T ) := |∆εN

r −∆εV
r |. Die Daten der

Berechnungen sind in Abschnitt A.6 aufgeführt. Die Verbindungslinien reprä-
sentieren keinen mathematischen Zusammenhang, sondern dienen rein der
Veranschaulichung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter für V̂0 = 1,44 und ãr = 0,7834. Mit A1(V̂T ) :=
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A ANHANG

A Anhang

A.1 Naturkonstanten

Für die Berechnungen mit Einheiten behafteten Größen wurden folgende Naturkonstanten
benutzt:

Tabelle A.1.1: Naturkonstanten [21]

c 299792458ms−1

e 1,6021766208·10−19 C
h 4,135667662·10−15 eVs
ħ 6,582119514·10−16 eVs

A.2 Umrechnungstabelle Energieeinheiten

Für die Umrechnung der Energiewerte und der Parameter aus der Literatur wurden folgen-
de Umrechnungen benutzt:

Tabelle A.2.1: Umrechnung der Energieeinheiten [21]

cm−1 eV Joule
1 1,239841974·10−4 1,986445824·10−23

8,065544006 1 1,6021766208·10−19

5,034116652·1022 6,241509126·1018 1

A.3 Umrechnung der Literaturwerte für die Energieeigenwerte von Ammoniak

Es ergeben sich folglich für die Energiewerte von Ammoniak aus [91] mit der Energie des
Grundzustandes auf Null gesetzt:

Tabelle A.3.1: Literaturwerte der Energien der Zustände von Ammoniak

Zustand E in [cm−1] E in [eV]
0+ 0 0
0- 0,79 0,0000979475159
1+ 932,43 0,1156065851817
1- 968,12 0,1200315811869
2+ 1598,47 0,1981850200180
2- 1882,18 0,2333605766623
3+ 2384,17 0,2955994039152
3- 2895,61 0,3590098818334
4+ 3448 0,4274975126352
4- 4045 0,5015160784830
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A.4 VERGLEICH MIT DEN ANALYTISCHEN ERGEBNISSEN DES HARMONISCHEN
OSZILLATORS – DATEN

A.4 Vergleich mit den analytischen Ergebnissen des harmonischen Oszillators –
Daten

Tabelle A.4.1: Vergleich der mittels Numerov-Verfahren bestimmten Energieeigenwerte der
Quantenzahlen von 0 bis 25 des harmonischen Oszillators mit den analytischen Werten

n Numerov Analytisch Abweichung

0 0,50000 0,5 1 ·10−6

1 1,50000 1,5 2 ·10−6

2 2,50001 2,5 8 ·10−6

3 3,50001 3,5 6 ·10−6

4 4,49998 4,5 −1,7 ·10−5

5 5,50002 5,5 2,1 ·10−5

6 6,50002 6,5 2,0 ·10−5

7 7,49999 7,5 −9 ·10−6

8 8,50002 8,5 1,7 ·10−5

9 9,50002 9,5 2,0 ·10−5

10 10,50003 10,5 2,9 ·10−5

11 11,49998 11,5 −1,8 ·10−5

12 12,50003 12,5 2,9 ·10−5

13 13,49999 13,5 −8 ·10−6

14 14,50006 14,5 5,7 ·10−5

15 15,49994 15,5 −5,8 ·10−5

16 16,49996 16,5 −4,0 ·10−5

17 17,50000 17,5 0

18 18,49994 18,5 −5,8 ·10−5

19 19,50000 19,5 0

20 20,49996 20,5 −4,5 ·10−5

21 21,49999 21,5 −1,3 ·10−5

22 22,50009 22,5 9,2 ·10−5

23 23,49993 23,5 −7,0 ·10−5

24 24,50001 24,5 1,1 ·10−5

25 25,50009 25,5 9,3 ·10−5
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A.5 VERGLEICH MIT DEN ANALYTISCHEN ERGEBNISSEN DES PÖSCHL-TELLER
POTENTIALS – DATEN

A.5 Vergleich mit den analytischen Ergebnissen des Pöschl-Teller Potentials –
Daten

Tabelle A.5.1: Vergleich der mittels Numerov-Verfahren bestimmten Energieeigenwerte der
Quantenzahlen von 0 bis 13 des Pöschl-Teller-Potentials mit den analytischen Werten

n Numerov Abweichung

0 6,82551 2,1 ·10−5

1 19,97649 3,0 ·10−5

2 32,12734 −8,6 ·10−5

3 43,27853 1,26 ·10−4

4 53,42932 −5,3 ·10−5

5 62,58030 −4,4 ·10−5

6 70,73139 7,6 ·10−5

7 77,88194 −3,54 ·10−4

8 84,03326 −3 ·10−6

9 89,18411 −1,27 ·10−4

10 93,33540 1,80 ·10−4

11 96,48580 −3,99 ·10−4

12 98,63750 3,46 ·10−4

13 99,78780 −2,90 ·10−4

A.6 Abweichungen zwischen dem Numerov-Verfahren und der Variationsrech-
nung von Plenter

Tabelle A.6.1: Resultierende Abweichungen aus dem Vergleich zwischen Numerov-
Verfahren und Variationsrechnung von Plenter. Die Daten für die Rechnungen entstammen
Tabelle 3.1

Parameter Abweichung

V̂0 ãr V̂T A1(VT ) := ε̂+,V
r − ε̂+,N

r A2(VT ) := ε̂−,V
r − ε̂−,N

r A3(VT ) := |∆εV
r −∆εN

r |

2,560 1,146
100 0,00808 0,001594 0,006486

1000 0,0179 0,00832 0,00954
1000000 0,0244 0,01423 0,0174

1,440 0,7834
100 0,00157 0,000256 0,00131

1000 0,00625 0,00486 0,00139
1000000 0,0105 0,0103 0,000224
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A.7 TABELLEN MIT DATEN ZU ENERGIEN HÖHERER ZUSTÄNDE DES
AMMONIAKPOTENTIALS

A.7 Tabellen mit Daten zu Energien höherer Zustände des Ammoniakpotentials

Tabelle A.7.1: Vergleich der mittels Numerov berechneten Energien der Zustände von Am-
moniak mit den Literaturwerten.

Zustand Numerov E in [eV] Literaturwert E in [eV] [] Betrag der Abweichung in [eV]
0+ 0 0 0

0- 8,49 ·10−5 9,79 ·10−5 1,30 ·10−5

1+ 0,1113427 0,1156066 4,2639 ·10−3

1- 0,1147725 0,1200316 5,2591 ·10−3

2+ 0,1932852 0,1981850 4,8998 ·10−3

2- 0,2227060 0,2333606 1,06545 ·10−2

3+ 0,2818196 0,2955994 1,37798 ·10−2

3- 0,3390522 0,3590099 1,99577 ·10−2

4+ 0,4031241 0,4274975 2,43734 ·10−2

4- 0,4704189 0,5015161 3,10972 ·10−2
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A.7 TABELLEN MIT DATEN ZU ENERGIEN HÖHERER ZUSTÄNDE DES
AMMONIAKPOTENTIALS
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A.8 ABBILDUNGEN UND DATEN ZUR OPTIMIERUNGSRECHNUNG

A.8 Abbildungen und Daten zur Optimierungsrechnung

Tabelle A.8.1: Bestimmung der funktionalen Form von Sn(VT ).

Potentialtiefe VT in [eV] Sn(VT ) in [(eV)2]

1,00 2,6077897·10−2

2,00 6,951416·10−3

3,00 2,362752·10−3

4,00 7,72654·10−4

5,00 1,83991·10−4

6,00 1,0583·10−5

6,10 6,066·10−6

6,20 3,267·10−6

6,28 2,189·10−6

6,29 2,121·10−6

6,30 2,067·10−6

6,31 2,027·10−6

6,32 2,015·10−6

6,33 2,001·10−6

6,34 2,001·10−6

6,40 2,355·10−6

6,50 4,018·10−6

6,60 6,982·10−6

6,70 1,1148·10−5

6,80 1,6436·10−5

6,90 2,2777·10−5

7,00 3,0126·10−5

8,00 1,44737·10−4

9,00 3,06932·10−4

10,00 4,92034·10−4

15,00 1,448606·10−3

30,00 3,468586·10−3

100,00 6,695825·10−3
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A.9 ÜBERSICHT UND ERLÄUTERUNG DER DATEIEN

A.9 Übersicht und Erläuterung der Dateien

Die Fortran-Programme der jeweiligen Berechnungen befinden sich auf der beigefügten
CD. Zu jedem Programm (.f03) ist auch die ausgegebene Textdatei (.txt) mit den Daten der
Rechnung aufgeführt. Die Programme für die Bearbeitung der verschiedenen Probleme sind
in Ordnern sortiert:

• Harmonischer Oszillator:

– Numerov_Harmonischer_Oszillator.f03→ In dieser Datei ist das Numerov-Verfahren
erläutert und dient als Referenz für die verwendeten Numerov-Verfahren in den
restlichen Dateien.

– Numerov_Harmonischer_Oszillator.txt

• Pöschl-Teller:

– Numerov_modifiziertes_Poeschl_Teller_Potential.f03

– Numerov_modifiziertes_Poeschl_Teller_Potential.txt

• Vergleich Plenter:

– Numerov_Manning_Vergleich_Plenter.f03

– Numerov_Manning_Vergleich_Plenter.txt

– Numerov_Manning_Vergleich_Christiansen_und_Cunha.f03

– Numerov_Manning_Vergleich_Christiansen_und_Cunha.txt

• Ammoniakmolekül:

– Daten Plenter:

* Numerov_Ammoniak_Vergleich_Plenter.f03

* Numerov_Ammoniak_Vergleich_Plenter.txt

* Numerov_Ammoniak_hoehere_Zustaende.f03

* Numerov_Ammoniak_hoehere_Zustaende.txt

– Optimierungsrechnung:

* Numerov_Ammoniak_Optimierung_Zusammenhang.f03

* Numerov_Ammoniak_Optimierung_Zusammenhang.txt

* Numerov_Ammoniak_Optimierung_Programm_1_Combi.f03

* Numerov_Ammoniak_Optimierung_Programm_1_Combi.txt

* Numerov_Ammoniak_Optimierung_Programm_2_Combi.f03

* Numerov_Ammoniak_Optimierung_Programm_2_Combi.txt

* Numerov_Ammoniak_Optimierung_Programm_3.f03

* Numerov_Ammoniak_Optimierung_Programm_3.txt

* Numerov_Ammoniak_Optimale_Potentialtiefe.f03

* Numerov_Ammoniak_Optimale_Potentialtiefe.txt

* Umrechnung_Aquino_Manning_Berechnung_Sn.f03

* Umrechnung_Aquino_Manning_Berechnung_Sn.txt

Die einzelnen Dateien sollten in obiger Reihenfolge chronologisch betrachtet werden,
da die Kommentierung des Quelltextes aus Gründen der Übersicht und zur Vermeidung
von Redundanz nicht in jeder Datei erneut vollständig vorliegt.
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