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Zusammenfassung

Im Rahmen dieser Arbeit wurde mit dem in Fortran programmierten Numerov-Verfahren
das Manning-Potential behandelt. Die Verifizierung des Verfahrens erfolgte anhand analy-
tisch behandelbarer Potentiale. Es wurde der Vergleich mit dem Variationsansatz von Plen-
ter gezogen. Auf Basis der Parameter der Variationsrechnung konnten die Energien und
Energiedifferenzen benachbarter Zustdnde des Ammoniakmolekiils mit dem Manning-
Potential als Inversionspotential berechnet werden. Mittels einer Optimierungsrechnung
gelang es, optimale Potentialtiefen fiir das Manning-Potential zur Beschreibung der Inversi-
onsschwingung des Ammoniakmolekiils fiir verschiedene konstante reduzierte Massen und
Hohen der Potentialbarriere zu bestimmen, sodass eine genauere Berechnung der Inversi-
onsenergien erreicht werden konnte.



1 EINLEITUNG

1 Einleitung

Diese Arbeit reiht sich in eine Vielzahl von experimentellen und theoretischen Untersu-
chungen der Inversions- bzw. Regenschirmschwingung des Ammoniakmolekiils ein. Die
theoretische Untersuchung dieses physikalischen Problems wurde iiber die Jahrzente auf
unterschiedliche Weise angegangen. Die Arbeiten setzten sich grundlegend aus der Bestim-
mung eines spiegelsymmetrischen Doppelmuldenpotentials zur Beschreibung der Inver-
sionsschwingung und der Losung der korrespondierenden Schrédingergleichung zusam-
men.

In dlteren Arbeiten wie Manning [55] oder Swalen und Ibers [65] wurden funktionale
Formerﬂ des Inversionspotentials angenomen und auf deren Grundlage die Inversions-
energien fiir das Ammoniakmolekiil mittels verschiedenener Verfahren ermittelt. Im Ge-
gensatz dazu stehen die neueren Ab-initio-Rechnungen wie von Aquino et al. [48] oder Rush
und Wiberg [60]. Aquino et al. berechnen iiber die Dichtefunktionaltheorie eine Potential-
hyperfliche und ndhern diese entlang der Inversionskoordinate durch ein Polynom 20. Gra-
des an, um so das eindimensionale Potential fiir die quantenmechanische Betrachtung zu
erhalten. Die Schrodingergleichung l6sen Aqunio et al. mit einem Verfahren von Rivas-Silva
et al. [93], welches der in dieser Arbeit betrachteten numerischen Methode dhnelt.

Die Entwicklung der Verfahren zur Losung der resultierenden eindimensionalen Schro-
dingergleichung fiir die verschiedenen Inversionspotentiale orientierte sich stets an der Re-
chenleistung der vorhandenen Computer. So war Manning noch auf eine numerische L6-
sung von Kettenbriichen [57] beschrédnkt. In der Arbeit von Forster, Saenz und Wolff [71] da-
gegen wurde die Schrédingergleichung iiber einen computerbasierten Matrix-Algorithmus
mit hoher Genauigkeit gelost.

Durch die wachsende Rechenleistung der Computer konnte zudem die Betrachtung der
reduzierten Masse als Konstante zu einer positions-abhédngigen reduzierten Masse ange-
passt werden. Die resultierenden Ergebnisse repriasentieren die experimentellen Daten bes-
ser, jedoch steigt auch die Komplexitédt der zu l6senden Schrédingergleichung und somit
auch die Anforderungen an die numerischen Verfahren zur Losung dieser.

Gegenstand dieser Arbeit ist die Untersuchung des Manning-Potentials [56] mit dem
computergestiitzten Numerov-Verfahren nach Papenfort [22] und einer konstanten redu-
zierten Masse. Das Programmieren und Verifizieren des Numerov-Verfahrens zur Losung
eindimensionaler Schrodingergleichungen stellt den ersten Teil dieser Arbeit dar. Swalen
und Ibers [67] lobten die funktionale Form des Manning-Potentials zur Beschreibung der
Inversionschwingung des Ammoniakmolekiils und forderten eine Uberarbeitung der Rech-
nungen von Manning mit aktuellen experimentellen Daten und neueren numerischen Be-
rechnungsmethoden. Diese Aufarbeitung und die einhergehenden Vergleiche mit neueren
Verfahren stellt den zweiten Teil dieser Arbeit dar. Desweiteren spricht die Arbeit von Plenter
[19], welcher mittels Variationsrechnung die energetische Aufspaltung des Grundzustands
zum ersten angeregten Zustand fiir das Ammoniakmolekiil berechnet hat, als eine der Ursa-
chen fiir die Unsicherheit der Berechnungen, die Unkenntnis der genauen Potentialtiefe des
Manning-Potentials an. Die begrenzte Potentialtiefe unterscheidet das Manning-Potential
von anderen divergierenden Inversionspotentialen wie beispielsweise in Aquino et al. [48],
Rush und Wiberg [60] sowie Wall und Glockler [95]. Die Bestimmung der optimalen Potenti-
altiefe durch den Vergleich der mittels Numerov-Verfahren bestimmten Inversionsenergien
mit den experimentellen Werten stellt den dritten Teil dieser Arbeit dar. AbschlieBend wird
anhand der berechneten optimalen Potentialtiefen fiir verschiedene reduzierte Massen und
unter Bertiicksichtigung der Unsicherheit in dem Wert der Hohe der Potentialbarriere die In-
versionsenergien der ersten acht gebundenen Zustdnde des Ammoniakmolekiils berechnet
und mit den Werten der urspriingliche Rechnung von Manning und den Ergebnissen der
neueren Ab-initio-Rechnung von Aquino et al. verglichen.

IDer Begriff der funktionalen Form wird hier in Anlehnung an die englische Literatur und den Begriff func-
tional form gewdhlt.



2 THEORETISCHE GRUNDLAGEN

2 Theoretische Grundlagen

Die fiir diese Arbeit und das Verstdndnis des Lesers relevanten theoretischen Grundlagen
werden im Folgenden erldutert. Zuerst wird neben den fundamentalen Informationen zum
Ammoniakmolekiil NHs dessen Verbindung zum Manning-Potential geschildert. Es folgt
die Analyse des Manning-Potentials. Die grundlegende Theorie zur Quantenmechanik ist
ausfiihrlich in der Literatur wie Miinster [78] oder Griffiths [84] beschrieben, sodass hier
abschlielend nur eine Zusammenfassung der relevanten Aspekte erfolgt. Da ein Vergleich
mit den Rechnungen Anderer (Plenter [1], Papenfort [22] , Christiansen und Cunha[89], ex-
perimentelle Daten[91]) angestrebt wurde, ist die Notation an die entsprechenden Arbeiten
angelehnt, sodass ein Vergleich dem Leser dieser Arbeit erleichtert wird. Im Folgenden wird
zudem nicht mehr explizit die Terminologie fiir die Inversionsschwingung (Inversionspo-
tential, Inversionsenergie, usw.) genutzt, sondern einfach von Potential, Quantenzahl, Ener-
gie usw. gesprochen.

2.1 Das Ammoniakmolekiil NH; und dessen Verbindung zum Manning-Potential

Die Betrachtung des Ammoniakmolekiil NHj stellt ein dreidimensionales Vierkérperpro-
blem dar. Wie in der schematischen Darstellung in[Abbildung 2.1 ersichtlich, kann das Am-
moniakmolekiil ndherungsweise als dreiseitige Pyramide [56] mit Cs3,-Symmetrie [77] an-
gesehen werden.

Die drei Wasserstoffatome H bilden die dreieckige Grundfldche und die Spitze der Pyra-
mide markiert das Stickstoffatom N. Unter den sechs Eigenschwingungen des Ammoniak-
molekiils ist die anharmonische [61] Regenschirm- bzw. Inversionsschwingung Gegenstand
dieser Arbeit. Bei dieser schwingt das Stickstoffatom relativ zur Ebene der Wassterstoffa-
tome und kann auch auf die andere Seite der Hs-Ebene iiber den quantenmechanischen
Tunnelprozess ,umklappen®. Aus dem Tunnelprozess resultiert die Aufspaltung der Ener-
gieniveaus in Dubletts fiir symmetrische und antisymmetrische Zustdnde, wobei die sym-
metrischen Zustdnde aufgrund der erhdhten Augfenthaltswahrscheinlichkeit nahe der Po-
tentialbarriere energetisch tiefer liegen [76]. Die Aufspaltung zwischen symmetrischen und
antisymmetrischen Zustand nimmt mit steigender Energie monoton zu [66]. Die Inversi-
onskoordinate x stellt dabei den Abstand zwischen dem Stickstoffatom und der Grundfla-
che der Pyramide dar. Die Potentialhyperfliche des Ammoniakmolekiils muss fiir die Be-
trachtung der Inversionsschwingung in der eindimensionalen Quantenmechanik auf ein
eindimensionales effektives Potential entlang der Inversionskoordinate reduziert werden.
Bei der Annahme der funktionalen Form dieses Inversionspotentials sind folgende Aspekte
zu beriicksichtigen:

* Die Gleichgewichtspositionen x = +a des Stickstoffatoms oberhalb und unterhalb der
Hs-Ebene markieren die Position der Minima des Potentials. Die Position der Minima
folgt somit aus dem N-H-Bindungsabstand [75].

¢ Die H3-Ebene stellt fiir das Stickstoffatom N eine Potentialbarriere bei x = 0 dar.

* Eine begrenzte Potentialtiefe beriicksichtigt mégliche Dissoziationsvorgidnge bei de-
nen das Stickstoffatom aus dem Molekiil verschwindet.

Zur Beschreibung der Inversionsschwingung des Ammoniakmolekiils schlug Manning
das Manning-Potential [56] vor, welches schematisch in dargestellt ist. Aus
Mannings [56] Berechnungen folgte fiir die charakterisierenden Werte des Potentials:

e Abstand Stickstoffatom zur Wasserstoffebene (Position der Potentialminima): 0,37 A
e Hohe der Potentialbarriere: 2076 cm ™1

* ungefdhre Dissoziationsenergie: 5eV



2.1 DAS AMMONIAKMOLEKUL NH3; UND DESSEN VERBINDUNG ZUM
MANNING-POTENTIAL

Abbildung 2.1: Schematische Darstellungen der pyramidalen Form des Ammoniakmolekiils
[491.
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Abbildung 2.2: Schematische Darstellung des Manning-Potentials.

Die Position der Minima und die Héhe der Barriere konnten mittlerweile experimentell
genauer bestimmt werden:

e Position der Potentialminima: 0,383 A [75]

e Hohe der Potentialbarriere: (2021 +20)cm™! = (0,2506 + 0,0025) eV [87]

Einhergehend mit der Beschreibung des Ammoniakmolekiils durch ein effektives ein-
dimensionales Potential findet die Ndherung der Massenverhéltnisse durch eine reduzierte
Masse statt. Rush und Wiberg [62] ist zu entnehmen, dass der Weg der minimalen Energie
des Inversionsvorganges die Cs,-Symmetrie des Ammoniakmolekiils erhilt, jedoch die Bin-
dungslidnge zwischen dem Stickstoffatom und den Wasserstoffatomen im Verlauf der Inver-
sion variiert. Die quantenmechanische Betrachtung der resultierenden positions-abhidngigen
reduzierten Masse wie in Aquino et al. [53], Rush und Wiberg [62] oder Forster et al. [72]



2.2 DIEANALYSE DES MANNING-POTENTIALS

iibersteigt jedoch den Umfang dieser Arbeit, sodass die reduzierte Masse als konstant gené-
hert wird. Es wird nun geméil der urspriinglichen Arbeit von Manning [58] zwischen zwei
Situationen unterschieden, wobei deren mathematische Behandlung (d.h. die Formeln) aus
der Arbeit von Swalen und Ibers [70], Acquino et al. [52] oder Townes und Schawlow [92] zu
entnehmen ist:

* Der Abstand zwischen den Wasserstoffatomen bleibt aufgrund einer stéarkeren H-H-
Bindung wéhrend des Inversionsvorganges konstant und die dreieckige H3-Grund-
fliche des pyramidalen Ammoniakmolekiils bewegt sich als Einheit [58]. Die redu-
zierte Masse fiir diese Ndherung ergibt sich durch

3mHMN

=, 2.1
3myg+ My

Ho

wobei my =1,007825035u der Masse eines Wasserstoffatoms und My = 14,003074u
der Masse eines Stickstoffatoms entspricht [51]. Es resultiert fiir die konstante redu-
zierte Masse o = 4,12906991140916- 102 kg.

* Der Abstand zwischen Stickstoffatom und den Wasserstoffatomen wird aufgrund ei-
ner stirkeren N-H-Bindung wihrend des Inversionsvorganges als konstant angenom-
men [96]. Es resultiert eine reduzierte Masse die abhiangig vom Winkel  zwischen
Hj3-Ebene und N-H-Bindung (siehe[Abbildung 2.1} ist. Townes und Schawlow [92] ar-
gumentieren jedoch, dass die Winkelabhéngigkeit vernachléssigt werden konnte, um
die positions-abhédngige reduzierte Masse durch eine konstante reduzierte Masse an-
zundhern. Dazu wird der variable Winkel # durch den Winkel . der Gleichgewichts-
position ersetzt. Die reduzierte Masse berechnet sich dann mittels

3mHsin2ﬁe] 2.2)

=g |1+
u No[ Mn

wobei 8, = 22°13' dem Winkel 8 analog zu |Abbildung 2.1|zwischen der Hs Grundfli-
che und der Bindung zwischen N und H fiir den Fall der Gleichgewichtsposition des

Stickstoffatoms entspricht [51].

Da zum einen der Vergleich mit der Arbeit von Plenter [14] angestrebt wird und zum
anderen Manning [58], Swalen und Ibers [69], sowie Forster et al. [73] diese Ndherung be-
vorzugten, erfolgt die Berechnung der reduzierten Masse mittels der [Gleichung 2.2] Es er-
gibt sich der Wert u = 4,25652928924809 - 10-2" kg. Aufgrund des groRen Massendifferenz
zwischen einem Stickstoffatom und einem Wasserstoffatom ist der Unterschied zwischen
IGleichung 2.1{und|Gleichung 2.2|mit Ay = p— po = 1,27459378375284 - 1028 kg gering.

2.2 Die Analyse des Manning-Potentials

Im Folgenden werden die grundlegenden Figenschaften des Manning-Potentials erldutert.
Als Ausgangspunkt liegt das Manning-Potential [56] in der Form

V(x) = —Csech?® (i) + Dsech? (i) 2.3)
2p 2p
vor, wobei die charakterisierenden reellwertigen Parameter C = C(Vj, V,;) >0 und
D Wy, V) > 0 die Dimension Energie besitzten und abhingig von der Potentialtiefe V,; und
dem Wert des Potentials bei der Bariere Vj sind. Der Parameter im Argument der sech-
Funktionen p = p(a,C, D) besitzt die Dimension Linge und staucht bzw. streckt das Po-
tential entlang der x-Achse.



2.2 DIEANALYSE DES MANNING-POTENTIALS

Sekans Hyperbolicus: Da die Sekans Hyperbolicus Funktion die Grundlage des Manning-
Potentials darstellt, werden im Folgenden relevante Eigenschaften dieser Funktion erldu-
tert. Die Sekans Hyperbolicus Funktion ist eine Hyperbelfunktion und lésst sich ebenfalls
durch

2 1

sech(x) = e*+e*  cosh(x) (2.4)

darstellen. Die sech(x)-Funktion ist fiir Argumente —oo < x < co definiert und der Wer-
tebereich betrdgt 0 < sech(x) < 1. Fiir negative Argumente x ist die Funktion streng mono-
ton steigend und fiir positive x streng monoton fallend. Die sech-Funktion konvergiert fiir
x — *oo gegen Null. Das globale Maximum liegt bei x = 0 und betrédgt sech(0) = 1. Es liegen
keine Nullstellen, Sprungstellen oder Polstellen vor. Die Umkehrfunktion der sech-Funktion
ist die arsech-Funktion

y(x) = sech(x)

1
= x = arsech(y) = arcosh (;) , (2.5)

welche wiederum mittels der arcosh-Funktion dargestellt werden kann. Im Allgemeinen gilt
fiir eine bijektive Funktion f : A — B mit der Umkehrfunktion f~!: B — A

f(f'(x)) = x firralle xe B. (2.6)

Die sech-Funktion ist nicht {iber ihren gesamten Definitionsbereich bijektiv, sondern
nur separat betrachtet in den Bereichen x < 0 oder x = 0. Der Areasekans Hyperbolicus
besitzt folglich einen Definitionsbereich von 0 < x < 1 und einen Wertebereich von 0 <
arsech(x) < oo. Fiir den Areakosinus Hyperbolicus resultiert gemaf als Defi-
nitionsbereich 1 < x < co und als Wertebereich 0 < arcosh(x) < oco. Es folgt mit[Gleichung 2.6]

= sech(arsech(x)) = sech =X. 2.7

1
arcosh (—)
X

Mit einer beliebigen Konstante a im Argument der sech-Funktion resultiert fiir die Ab-
leitung des Sekans Hyperbolicus mit dem Exponent n

%sech" (ax) = —an-sech” (ax)tanh(ax), (2.8)

sinh(x)
cosh(x) *

wobei tanh(x) =

Parameter des Manning-Potentials: Der Wert des Potentials bei der Barriere (x = 0) ergibt
sich zu

VWwi=V(0)=-C+D. 2.9)

Mit|Gleichung 2.8|folgt fiir die Ableitung des Manning-Potentials

= ——tanh
ax p an

aV(x) 1 ( X )
— s (2.10)

—Csech? (i
2p

+2Dsech? (i)
2p

welche es gemill dem Extremal-Prinzip gleich Null zu setzten gilt, um die x-Werte der
Extrema zu bestimmen. Aufgrund der y-Achsensymmetrie korrespondiert eine Extremstelle
bei x mit einer Extremstelle bei —x.



2.2 DIEANALYSE DES MANNING-POTENTIALS

L dV ()
© dx
1
s0= ——tanh(i) [—Csech2 (i) +2Dsech* (i) =X =0
0 2p 2p 2p
& 0= sech? (i) —C +2Dsech? (i)] = lim V(x)=0
2p Zp X—+00

<0 L —C +2Dsech? (i)
2p

| C [2D
= x4 = 2parsech (J_r 5) = 2parcosh(J_r F) (2.11)

Das Extremum bei xp = 0 entspricht dem lokalen Maximum der Potentialbarriere. Das
Konvergenzverhalten des Manning-Potentials fiir x — oo ermdglicht ungebundene Zu-
stdnde mit Energien E > V(x)Vx € R. Das Extremum bei x, weist auf die Position der glo-
balen Minima des Manning-Potentials hin, welche aufgrund der y-Achsensymmetrie des

Potentials bei
2D
ta:= inarcosh(\/?) (2.12)

liegen. Fiir C,D >0 und C,D € R gilt y/ % > 0, wodurch die Losung mit negativem Ar-

gument der arcosh-Funktion wegféillﬂ Ebenfalls aus dem Definitionsbereich der arcosh-
Funktion resultiert

2D

|
221 >-2<D, (2.13)
C

DO

wobei im Fall der Gleichheit a = 0 resultiert und nur noch ein Minimum und keine Dop-
pelmuldengestalt vorliegt. Desweiteren muss D < C gelten, da fiir C, D > 0 die Bedingung

!
V(0)=-C+D< lim V(x)=0 gelten soll.
X—+00

Zusammengefasst resultiert die Bedingung % < D < C fiir die Doppelmuldenform des
Manning-Potentials. Zur Bestimmung des Potentialwertes bei diesen Minima muss V(a)

berechnet werden
/2D 12D
— arcosh({/—||, (2.14)

wobei unter Beriicksichtigung der folgt

V(a) = —Csech? | arcosh + Dsech*

2

C
Vai=V(a) =~1D" (2.15)

Die Gleichungen und kénnen nun umgestellt werden, um Ausdriicke fiir
die charakterisierenden Parameter des Manning-Potentials in|Gleichung 2.3|zu erhalten

2Unter Beriicksichtigung des Definitionsbereiches der arcosh-Funktion.



2.3 ALLGEMEINES ZUR NICHTRELATIVISTISCHEN QUANTENMECHANIK SPINLOSER
TEILCHEN

(D - Vp)?
4D
©0=D*+22V, - Vo)D+ V¢

= Dyp=-2V,+ Vog+2\/ V2 -V, (2.16)
=>C1p=D-Vy=-2V,+2\/ V2 -V, V, (2.17)

wobei die Losungen fiir C und D mit negativer Wurzel in einer Verletzung von
chung 2.13|resultieren wiirden und daher ausgeschlossen werden. Die Umstellung von a
nach p ist trivial und ergibt

Vo=

a
p=— 4 (2.18)

2arcosh ( %)

2.3 Allgemeines zur nichtrelativistischen Quantenmechanik spinloser Teilchen

Zwar werden in dieser Arbeit lediglich eindimensionale und zeitunabhingige Probleme der
Quantenmechanik betrachtet, jedoch wird im Folgenden der Zusammenhang zur dreidi-
mensionalen und zeitabhéngigen Betrachtungsweise erldutert und Argumente fiir die Rele-
vanz dieser vereinfachten Betrachtungsweise gegeben. Abschlief$end ist die relevante zeitu-
nabhéngige eindimensionale Quantenmechanik fiir spiegelsymmetrische Potentiale aufge-
fiihrt. Jegliche Einfliisse durch Beriicksichtigung des Spins der betrachteten Teilchen oder
relativistische Effekte wurden vernachléssigt. Die Einfiihrung des in der Quantenmechanik
gebrduchlichen Formalismus wird hier vermieden, da dieser fiir die numerische Betrach-
tung keine Relevanz besitzt. Das Folgende ist eine Zusammenstellung der relevanten Theo-
rie aus Miinster (78] und Griffiths [84].

2.3.1 Zeitabhingige dreidimensionale Schrodingergleichung

In der Quantenmechanik wird ein Teilchen zur Zeit ¢ durch seine komplexwertige Wellen-
funktion (7, t) beschrieben. Die korrespondierende zeitabhzngige Schrédingergleichung
im Dreidimensionalen ist eine lineare partielle Differentialgleichung in # und lautet in Orts-
darstellung

0 K2
in—vY@,nH=|-——A+V@, |V, 1, (2.19)
ot 2m

wobei das Teilchen die Masse m besitzt und unter dem Einfluss des du8eren Potentials
V (7, t) liegt. Diese gibt die zeitliche Entwicklung der Wellenfunktion von einem Startzeit-
punkt %, aus vor. In der statistischen Interpretation entspricht die Aufenhaltswahrschein-
lichkeitsdichte (7, ) = |W(F, t)|* der Wahrscheinlichkeit, dass das betrachtete Teilchen am
Ort 7 zum Zeitpunkt ¢ anzutreffen ist. Es folgt fiir physikalische Wellenfunktionen als Rand-
bedingung der obigen Schrédingergleichung die Normierungsbedingung

f@(?, ndr=1, 2.20)
R3

welche versichert, dass das Teilchen zu einem Zeitpunkt ¢ irgendwo im Raum vorzufin-
den sein muss. Die Normierung erfolgt durch eine Normierungskonstante N € C, da fiir je-
de Losung W (7, £) auch NY (7, t) Losung der zeitabhidngigen Schrédingergleichung isﬂ Nur

3Fiir nicht zeitabhingiges N ist der Beweis trivial [85].
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quadratintegrable Wellenfunktionen sind normierbar und stellen somit physikalische Wel-
lenfunktionen gemR der statistischen Interpretation dar. Aus der Kontinuitétsgleichunﬂ

09(?,1‘) =2
oV Yid, 2.21
a7 J(@,1) (2.21)
wobei
i =-i0 (P*VY - PVE*) (2.22)
JnD= 2m '

der Wahrscheinlichkeitsstromdichte entspricht, resultiert, dass fiir das Integral
f|\1/(?, nI*d*r = const (2.23)
R3

keine zeitliche Anderung erfolgt. Somit bleibt die Normierung einer Wellenfunktion zeit-
lich erhalten.

2.3.2 Zeitunabhingige dreidimensionale Schriodingergleichung — Separationsansatz
Y (7, 1) = Py (T)

Die eigentliche Berechnung der ¥ (7, f) bei gegebener Ausgangswellenfunktion ¥ (7, fy) zum
Startzeitpunkt £, ist im Folgenden dargestelhﬂ Setzt man fiir zeitunabhéngige Potentiale
den Separationsansatz ¥ (7, £) = ¢(f)w(7) in obige Schrodingergleichung ein, so lédsst sich
tiber die zeitunabhingige Separationskonstante E € R eine gewohnliche Differentialglei-
chung erster Art in der Zeit ¢ von einer partiellen Differentialgleichung zweiter Art in den
rdumlichen Koordinaten separiererﬁ Aus der zeitlichen Gleichung folgt die Definition der
stationdren Zustidnde

(7, 1) = e 1 Ely(F), (2.24)

fiir welche |W (7, 1)|? = |y (7)|? und die zeitliche Konstanz ihrer Erwartungswerte gelterﬂ
Die zeitunabhédngigen Wellenfunktionen v () konnen tiber die zeitunabhingige Schrédin-
gergleichung

2 N .
[—%A+V(r) w(F) = Ey(F) (2.25)

bestimmt werden, wobei ¥ (7) wahlweise reellwertig ist. Die Separationskonstante E
entspricht der zur Wellenfunktion v () korrespondierenden Energieﬂ Aus jeder moglichen
Separationskonstanteﬂ E, ergibt sich eine Wellenfunktion v, (7). Es resultieren eine beliebi-
ge Anzahl stationdrer Zustédnde ¥, (7, t) (vollstindiger Satz stationédrer Zustédnde). Der Uber-
gang auf die allgemeine zeitabhéngige Wellenfunktion ¥ (7, ) erfolgt {iber die Linearkombi-
nation der stationdren Zustinde

4Beweis siehe [79].

5Eine direkte Berechnung der ¥ (7, £) mit der zeitabhiingigen Schridingergleichung ist selten méglich [86].

6Die Separationskonstante ist nur reell, sofern die Wellenfunktionen normierbar sind. Fiir Beweis siehe [80].

7Aus der Normierungsanforderung an ¥ (7, £) folgt somit auch die Normierungsanforderung an v (7).

8F beschreibt die Gesamtenergie der korrespondierenden Wellenfunktionen. Im Folgenden wird diese je-
doch nur noch als Energie bezeichnet, da eine Unterteilung in kinetische oder potentielle Energie entféllt.

9 Abhingig von dem jeweiligen Potential.
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o0 —iEp 00
WD =) capn@e m =) cy¥ulf, 1), (2.26)
n=1 n=1

dabei sind die Vorfaktoren c,, der Linearkombination so zu wéhlen, dass die Ausgangs-
wellenfunktion zum Zeitpunkt ty durch die Linearkombination realisiert wird. Die Erwar-
tungswerte und das Betragsquadrat von W (7, f) sind zeitlich nicht konstant [86]. Die Rele-
vanz der zeitunabhédngigen Betrachtungsweise und des Separationsansatzes ist somit ge-
zeigt.

2.3.3 Zeitunabhingige eindimensionale Schriédingergleichung — Separation der rdum-
lichen Koordinaten

Sofern eine Separation des Potentials in die jeweiligen raumlichen Koordinaten moglich ist,
resultieren die Wellenfunktionen im Dreidimensionalen aus dem Produkt der eindimen-
sionalen Wellenfunktionen der jeweiligen Raumrichtungen. Die zeitunabhéngige Schrédin-

gergleichung in|Gleichung 2.25|reduziert sich zu einer gewhnlichen Differentialgleichung
zweiter Ordnung in der betrachteten raumlichen Koordinate x

d? 2m
Wlll(x) = Wz [V(x)-Ely(x). (2.27)

In dieser Arbeit wurden nur gebundene Zustdnde analysiert. Zudem konvergieren die
betrachteten stetigen spiegelsymmetrischen Potentiale entweder fiir x — +oco gegen einen
konstanten Wert V4 > V(x) Vx € R (7, (x) gebundener Zustand fiir E;, < V}y,45) oder diver-
gieren gemil V(x — +oo) — oo (es existieren nur gebundene Zustinde). Die gebunden Zu-
stande v, (x) resultieren in einem diskreten Energiespektrum E;, [82]. Die Hauptquanten-
zahl n charakterisiert fiir eindimensionale Probleme eindeutig die Wellenfunktionen und
deren Energien. Die Indizierung ist nach aufsteigenden Energien sortier@ Der Knotensatz
liefert die fiir die numerische Bearbeitung notwenige Verkniipfung der Hauptquantenzah-
lerﬂ] n mit den durch den Numerov-Algorithmus berechneten Wellenfunktionen:

¢ Knotensatz [81]:

Lost v, (x) die|Gleichung 2.27| mit Energiewert E,,, so besitzt die Wellenfunktion n
einfache Nullestellen (bzw. Knotenpunkte)|

Dieser resultiert aus dem Oszillationssatz und dem Satz iiber das Wandern der Knoten, wel-
che in [24] bewiesen wurden. Fiir den Fall von spiegelsymmetrischen Potentialen gilt:

e Paritit der Wellenfunktionen v, (x) [83]:

Aufgrund der Spiegelsymmetrie des Potentials sind auch die Betragsquadrate der Wel-
lenfunktionen |y (x)|?> symmetrisch. Daraus folgt unmittelbar, dass die Wellenfunktio-
nen selbst entweder eine gerade oder ungerade Paritdt aufweiser@ Zusammen mit
dem Knotensatz ergibt sich fiir n = 0 (Grundzustand) eine Wellenfunktion wq(x) =
Wo(—x) mit gerader Paritét (Spiegelsymmetrie an y-Achse) und fiir n = 1 (erster ange-
regter Zustand) eine Wellenfunktion v (x) = —y(—x) mit ungerader Paritdt (Punkt-
symmetrie im Ursprung). Die Wellenfunktionen weisen alternierend gerade und un-
gerade Paritdten auf.

107e nach Potential startet die Nummerierung bei n =0 oder n=1.

UHjerbei ist die Nummerierung der Zustinde mit 7 = 0 beginnend anzufangen.

12Dje Grenzwerte fiir x — +oo werden dabei nicht als Knotenpunkte gezihlt

13Der Beweis kann iiber den verschwindenen Kommutator des Hamilton Operators A mit dem Parititsope-
rator [] erfolgen. Dieser ist in [83] gegeben

10
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3 Numerov-Verfahren

Die Bestimmung der Energien und Wellenfunktionen bestimmter quantenmechanischer
Probleme wie das Manning-Potential ist analytisch nicht mehr moglich und muss auf nu-
merische Art erfolgen. Durch die Diskretisierung des Problems wird die computergestiitzte
numerische Berechung moglich. Als unumgéngliches Resultat der Diskretisierung und in
Zusammenhang mit der endlichen maschinellen Genauigkeit des Computers sind die Lo-
sungen rein approximativ. Die Genauigkeit der Losungen ist unteranderem abhingig von
der gewdhlten maschinellen Genauigkeit, der intrinsischen Genauigkeit der verwendeten
Berechnungsmethodik und der Genauigkeit der Parameter, die dem Verfahren von aulien
iibermittelt werden. Das Uberpriifen der Berechnungsmethodik anhand von Vergleichen
mit analytisch bestimmten Losungen kann Aufschluss iiber die Genauigkeit des Verfahrens
liefern und eventuelle systematische Fehler aufdecken. Das hier angewendete und vorge-
stellte Numerov-Verfahren basiert auf der Arbeit von Papenfort [25] und wurde als Fortran-
Programm individuell auf die jeweiligen Probleme manuell angepasst. Es war dabei nicht
von Interesse, allgemein anwendbare Programme fiir verschiedenste Potentiale und Para-
meter zu schaffen, wie es in der Arbeit von Papenfort oder Kemper [42] das Ziel war. Ein all-
gemein anwendbares Programm hitte fiir die angestrebten Vergleiche in einem unverhalt-
nismélligen Aufwand in der Umrechnung der Parameter resultiert, ohne dabei von Mehr-
wert fiir zukiinftige Betrachtungen zu sein. Auch die detailierte Analyse der Genauigkeit der
Berechnungen analog zu Papenfort wére redundant und wurde demnach hier nicht betrie-
ben.

Im Folgenden werden die grundlegenden Aspekte des Numerov-Verfahrens geméif$ Pa-
penfort erldutert. Die relevanten Umformungen der eindimensionalen zeitunabhéngigen
Schrédingergleichung mit dem Manning-Potential fiir die jeweiligen Vergleiche werden vor-
gestellt. Es folgt die Erlduterung des geschriebenen Fortran-Programms, welches die Ba-
sis der verschiedenen Berechnungen darstellt. Zur Verifizierung des Fortran-Programs die-
nen die analytisch l6sbaren Potentiale des Harmonischen Oszillators und das Péschl-Teller
Potential. Der Vergleich mit dem Variationsrechnungsansatz von Plenter fiir verschiede-
ne Konfigurationen des Manning-Potentials erlaubt eine Bewertung der relativen Giite der
beiden Ansédtze in der Analyse des Manning-Potentials. Im Folgenden wird als Numerov-
Verfahren der gesamte numerische Algorithmus zur Bestimmung der Energieeigenwerte
zu verschiedenen Zustdnden angesehen. Von einer Ausgabe aus dem Fortran-Programm
der berechneten Wellenfunktionen zu Veranschaulichungszwecken wurde abgesehen, da
sich die Untersuchung auf die Energiewerte der gebundenen Zustdnde beschriankt. Zudem
stellt die Wellenfunktion keine quantenmechanische Observable dar, sodass man keinen
Vergleich zu experimentellen Werten hétte ziehen kénnen. Die Erweiterung aller Program-
me um die Ausgabe der Wellenfunktion kann jedoch ohne gro8en Aufwand durchgefiihrt
werden.

3.1 Allgemeines Vorgehen des Numerov-Verfahrens

Zu einer gegebenen Energie wird iterativ durch den Numerov-Algorithmus die korrespon-
dierende Wellenfunktion vom Startpunkt x = 0 aus berechnet. Die Analyse dieser Wellen-
funktion gibt Ausschluss iiber die Giite der Wahl der Energie. Je nach Art des Fehlverhaltens
der Wellenfunktion wird die Energie angepasst und erneut die korrespondierende Wellen-
funktion ermittelt. Dieses Vorgehen wird sukzessive durchgefiihrt bis die Wellenfunktion
das gewiinschte Verhalten aufweist. Die entsprechende Energie wird der Hauptquantenzahl
zugeordnet. Das gesamte Verfahren wird fiir die gewiinschte Anzahl von Quantenzahlen be-
trieben.
Im Folgenden sind die fiir das Numerov-Verfahren relevanten Folgerungen aus[Abschnitt 2|

rekapituliert:

* Aus spiegelsymmetrischen Potentialen folgen abwechselnd Wellenfunktionen mit ge-
rade und ungerader Paritit. Die Grundzustandswellenfunktion besitzt gerade Paritét.

11
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* Knotensatz: Die Anzahl der Knoten einer Wellenfunktion entspricht der Hauptquan-
tenzahln=0,1,2,....

* Physikalisch sinnvolle Wellenfunktionen sind quadratintegrabel und somit beliebig
normierbar.

Das Numerov-Verfahren resultiert in vielen Aspekten direkt aus der vorgestellten Quan-
tenmechanik. So basiert der Numerov-Algorithmus auf der Struktur der Schrodingerglei-
chung. Die Startwerte der Rekursion ergeben sich direkt aus den Uberlegungen zur Pa-
ritdit und Normierung. Die Randbedingungen basieren auf der Tatsache, dass gebundene
Zustdnde durch quadratintegrable Wellenfunktionen mit diskreten Energien reprdsentiert
werden und nutzten das Kriimmungsverhalten der Wellenfunktionen fiir abweichende Ener-
gien aus.

3.2 Der Numerov-Algorithmus

Durch die in[Abschnitt 2.3] erlduterten Reduktionen der Schrodingergleichung auf eine ge-
wohnliche Differentialgleichung zweiter Ordnung in der rdumlichen Koordinate x l4sst sich
das Numerov-Verfahren zur Berechnung der Energien und Wellenfunktionen anwenden.
Die im Numerov-Verfahren betrachteten eindimensionalen und zeitunabhingigen
Schrodingergleichungen weisen die Form

d*y(x)
dx?

+Fx)y(x)=0 (3.1)

mit F(x) = zh—’z” (E—V(x)) auf [26]. Die Symmetrie von V (x) wird auf F(x) {ibertragen. Die
betrachteten Potentiale besitzen alle eine Spiegelsymmetrie, sodass sich die Berechnungen
auf Werte von x = 0 beschrénken. Nur bei den Energien gebundener Zustidnde ldsst sich das
gewiinschte Fehlverhalten der Wellenfunktion bei falsch gew#hltem Energiewert beobach-
ten. Es werden folglich nur Potentiale und Energien der Zustdnde betrachtet, fiir die x — oo
in F(x) < 0 resultieren. Um dieses bei den betrachteten Potentialen zu gewédhrleisten, wur-
den die Potentiale, wenn notig, auf das Nullniveau angehoben.

Der Vorteil gegentiber anderen Verfahren liegt in der hheren Berechnungsgenauigkeit
aufgrund der Beriicksichtigung der Struktur der Schrédingergleichung [25]. Damit ist die
Eigenschaft

y? (x) = ~F(0y(x) (3.2)
d?
4) _
P (x) = pre (Fp(x) (3.3)

der zweiten und vierten rdumlichen Ableitung der Schrédingergleichung gemeint [27].
Diskretisierung der rdumlichen Koordinate x; = i - h mit einer konstanten Schrittweite h
erlaubt die Taylorentwicklung der Wellenfunktion v (x) nach der Schrittweite h. Zusam-
men mit obigen Struktureigenschaften der Schrédingergleichung und Ndherung der zwei-
ten rdumlichen Ableitung durch den Differentialquotienten resultiert die zweigliedrige Re-
kursionsformel des Numerov-Algorithmus [28]

2y(x) — % [I0F(0)y(x) + F(x—hw(x-h)]-y(x—h)

(x+h)= >
v 1+ ZF(x+h)

+0(h%), (3.4)

mit welcher der Wert der Wellenfunktion vy (x + k) aus den Werten der Wellenfunktionen
w(x) und ¥ (x — h) berechnet werden kann. Dieses ermdglicht eine iterative Berechnung der
gesamten Wellenfunktion fiir x = 0.

12
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Im Interesse der Einschrankung der Lange dieser Arbeit und zur Vermeidung von Red-
undanzen wurde hier von einer umfangreicheren Herleitung der Rekursionsformel abgese-
hen. Eine ausfiihrliche Herleitung kann entweder Papenfort [25] oder Kemper [43] entnom-
men werden. Die iterative Berechnung der Wellenfunktion gema® setzt die
Kenntnis von zwei benachbarten (durch Schrittweite i getrennte) Werten der Wellenfunk-
tion voraus.

3.2.1 Startwerte fiir den Numerov-Algorithmus

Die Berechnung der Startwerte der Rekursion ist abh#ngig von der Paritét der betrachteten
Wellenfunktion und erfolgt im Programm {iiber die Paritdt der Hauptquantenzahl n. Ent-
scheidend ist dabei die in angesprochene Normierbarkeit der Wellenfunktion,
die in beiden Paritdtsféllen die freie Wahl einer der beiden Startwerte ermdglicht.

Ungerade Paritiit [29]: Wellenfunktionen mit ungerader Paritdt weisen einen Knotenpunkt
im Ursprunﬂ auf. Es ist offensichtlich, dass der Wert der Wellenfunktion (/) von Null
verschieden sein muss. Fiir kleine Schrittweiten kann die Wellenfunktion nah am Ursprung
als linear angenommen werden. Die Steigung ist aufgrund der beliebigen Normierung frei
wihlbar. Fiir die Startwerte ergeben sich

w(0)=:wo=0und w(h) =1y, =h, (3.5)

welche analog zu [31] gewdhlt wurden.

Gerade Paritit [30]: Bei gerader Paritit darf der Wert der Wellenfunktion ¢ (0) = 1 auf-
grund der Normierung frei gewédhlt werden. Es sei zu erwdhnen, dass eine Wahl von w(0) =0
nicht méglich ist, da zum Einhalten der Paritdtsbedingung eine Nullstelle h6heren geraden
Grades vorliegen miisste. Die aus der Schrodingergleichung resultierenden Wellenfunktio-
nen weisen lediglich einfache Nullstellen auf. Eine Wellenfunktion mit einer Nullstelle ho-
heren Grades entspricht der trivialen Losung der Schrodingergleichung [23]. Einsetzen
von y(0) = 1 in[Gleichung 3.4lund Beriicksichtigung der Paritét von y und F(x) resultiert fiir
die Startwerte

5h?
1-55F(0)

yo=1lundy;=—12 —
1+ 2 F(h)

wo+0(h%), (3.6)
welche ebenfalls analog zu [32] gew&hlt wurden.

3.2.2 Divergenzverhalten der Wellenfunktion beim Numerov-Algorithmus

Wie bereits in[Abschnitt 2| erwihnt, sind physikalisch sinnvolle Wellenfunktionen gebunde-
ner Zustdnde quadratintegrabel und resultieren in einem diskreten Energiespektrum. Stim-
men die Energien fiir die Berechnungen der Wellenfunktionen nicht exakt mit denen der
quadratintegrablen gebundenen Zustédnde iiberein, so resultiert eine divergente Wellen-
funktion (keine physikalisch realisierte Losung). Die Divergenz folgt aus der Analyse des
Kriimmungsverhaltens der Wellenfunktion fiir x — co. Eine Erlduterung der Hintergriinde
ist Nolting [94] zu entnehmen. Da Computer intrinsisch auf eine gewisse Anzahl von Stellen
in ihrer Genauigkeit beschrankt sind und nur diskretisierte Probleme bearbeiten konnen,
ist die exakte Wahl der Energie und eine resultierende quadratintegrable Wellenfunktion
nicht realisierbar. Die Divergenz der Wellenfunktion in der numerischen Berechnung ist so-
mit unumginglich. Entscheidend ist jedoch, dass das Divergenzverhalten davon abhéngt,

14pyunktsymmetrie im Ursprung.
15Beweis ist trivial.
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Abbildung 3.1: ,,Schematische Darstellung des Verhaltens der nicht normierten Lésungen
der Schrodingergleichung bei Variation des Energiewertes E im Bereich F(x) < 0 “[34].

ob der gewdhlte Energiewert {iber dem ,echten“ oder unter ihm liegt. Ist der Energiewert
zu klein gewdhlt, so divergiert die Wellenfunktion ohne einen neuen Knotenpunkt zu er-
zeugen [33]. Ist der Energiewert hingegen zu gro8 gewéhlt, so divergiert die Wellenfunktion
und erzeugt dabei einen neuen Knotenpunkt [33]. Eine schematische Darstellung dieses

Sachverhalts ist in gegeben. Die Berechnung der Energien der gebundenen
Zustédnde erfolgt demnach nur bis zu einer gewissen Genauigkeit.

3.2.3 SchieRverfahren

Das SchieRverfahren testet fiir eine bestimmte Energie das Verhalten der Wellenfunktion.
Mit dem Numerov-Algorithmus wird iterativ die Wellenfunktion erzeugt. Sobald ein Fehl-
verhalten der berechneten Wellenfunktion detektiert wird, bricht das Verfahren ab. Zu dem
Fehlverhalten einer Wellenfunktion gehoren:

* Verletzung des Knotensatzes: Die Anzahl der Knoten iibersteigt die Hauptquanten-
zahl n.

* Divergenz der Wellenfunktion.

Da aber die Divergenz resultierend aus einem zu hohen Energiewert mit der Erzeugung
eines weiteren Knotens verbunden ist, reduzieren sich die Bedingungen fiir ein Fehlverhal-
ten auf [35]

* Der Knotensatz ist verletzt. Der numerische Energiewert liegt iiber dem exakten Ener-
giewert des gebundenen Zustands.

* Der Knotensatz ist noch nicht verletzt (Anzahl Knoten < n), jedoch divergiert die Wel-
lenfunktion. Der numerische Energiewert liegt unter dem exakten Energiewert des
gebundenen Zustands.

3.2.4 Bisektion

Die Bisektion bezeichnet ein klassisches Intervallhalbierungsverfahren bzw. Intervallschach
telungsverfahren, in welches das Schiellverfahren integriert ist. Zu Beginn des Numerov-
Verfahrens muss ein Startintervall [E;,;n, Emax] fiir die Energie angegeben werden. Zwar
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kann mit einer moglichst geringen Intervallbreite die Rechenzeit reduziert werden, jedoch
ist es im Allgemeinen bei unbekannten Energien der gebundenen Zustdnde empfehlens-
wert, das Potentialminimum und -maximum [45] als untere und obere Intervallgrenze zu
nutzelﬂ Durch Anheben aller Potentiale auf Nullniveau betrédgt die untere Grenze Null.
Die obere Grenze hingt von dem jeweiligen Potential ab. Eine zu niedrige Wahl der oberen
Grenze dulert sich in der frithen Divergenz aller berechneten Wellenfunktionen mit Ener-
gieeigenwerten, welche tiber der zu klein gew#hlten Grenze liegen. Das SchieRverfahren un-
tersucht fiir die Energie [36]

_ Emax + Emin
2

E 3.7)

ein mogliches Fehlverhalten der Wellenfunktion. Je nach Art dieses Fehlverhaltens war
der getestete Energiewert zu hoch oder zu tief. Bei einem zu hohen Energiewert wird E;,
durch E ersetzt und das neue Energieintervall ist [E};,;,, E]. Bei einem zu niedrigen Energie-
wert wird E;;, durch E ersetzt und das neue Energieintervall ist [E, Ej;4x]. Nun wird wieder
der Mittelpunkt dieses neuen Intervalls an das Schief$verfahren iibergeben und analog ge-
testet. Mit jedem Iterationsschritt wird die IntervallgréBe halbiert und der exakte Energie-
wert weiter eingeschachtelt. Das Prozedere wiederholt sich solange, bis die relative Geneau-
igkeit

E —E;
relg = w (3.8)

unter einem vom Nutzer bestimmten Grenzwert liegt [36]. Dabei wurde die obere Gren-
ze fiir die relative Genauigkeit von 108 gemaR der Forderung von Papenfort [41] nicht ver-
letzt. Der Mittelpunkt dieses letzten Intervalls ist die vom Numerov-Verfahren bestimmte
Energie eines gebundenen Zustands zur Hauptquantenzahl n. Der numerisch berechnete
Energiewert zur Hauptquantenzahl 7 stellt die untere Grenze fiir das Startintervall zur Be-
rechnung der Energie der Hauptquantenzah n+1. Die obere Grenze wird auf den Wert des
Potentialmaximums zuriickgesetzt. Die Genauigkeit nimmt in der Bisektion exponentiell zu
(45].
3.3 Das Fortran-Programm

Im Folgenden wird das Fortran-Programm zur Umsetzung des obigen Numerov-Verfahrens
erldutert. Die manuelle Anpassung an die individuellen Probleme wird in der jeweiligen Da-
tei bzw. in den korrespondierenden Abschnitten erldutert.

3.3.1 Parameter und Variablen

Alle Parameter und Variablen sind in doppelter Maschinengenauigkeit[l;g] angegeben.

Parameter:
* Obere Grenze der Quantenzahl gz
* Schrittweite h
* Grenzwert fiir die relative Genauigkeit rel
* Grenzwert fiir Divergenzverhalten div

* Globales Maximum des Energiewerts E_global_max

16Berechnungen erfolgen ja nur fiir gebundene Zustinde.
171 jegt keine Entartung vor, so gilt fiir die Energien der gebundenen Zustinde E;, < Ep4 1.
18kind=8
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3.3 DAS FORTRAN-PROGRAMM

Variablen:
¢ aktuelle Quantenzahl n
¢ Anzahl der Knotenpunkte nst
e die drei benachbarten Wellenfunktionswerte

- psi_neu:=y(x+h)
- psi=v(x)
- psi_alt:=y(x—h)

¢ rdaumliche Koordinate x
* Energie E als Mittelpunkt des Energieintervalls [E_min, E_max]

* Variable F, die das Ergebnis der Rechnung im Unterprogramm fiir jedes x und E ent-
halt

e dierelative Genauigkeit rel_E zujedem Tupel (E, E_min, E_max) gemal|Gleichung 3.8

3.3.2 Schleifenstruktur

Im Folgenden ist die Schleifenstruktur von Auflen nach Innen erldutert.

Hauptquantenzahl n: Die dullerste Schleife dient der Iteration durch die Quantenzahlen
ab n = 0 bis zu einer vom Nutzer angegebenen Grenze gz. In der Schleife wird das erste
und grofite Energieintervall fiir die jeweilige Quantenzahl initialisiert [0, E_global_max]
bzw. [E,-1, E_global_max] und daraus der Mittelpunkt E gemaR[Gleichung 3.7|berechnet.
Es folgt die Berechnung der relativen Genauigkeit geméa® Nach Durchlau-
fen der Schleifen fiir die Bisektion und dem SchielRverfahren werden die Quantenzahl n,
der korrespondierende berechnete Energieeigenwert E; und die relative Genauigkeit relg
in eine Datei geschrieben. Die Ausgabe weiterer Informationen aus der Berechnung kann
manuell ergdnzt werden.

Bisektion: Die Bisektion wird durch eine Schleifd"|realisiert, welche ausgefiihrt wird, so-
fern die relative Genauigkeit rel_E iiber dem vom Nutzer bestimmten Grenzwert rel liegt.
Die rdaumliche Koordinate x wird auf Null initialisiert. Es erfolgt die Berechnung und Initia-
lisierung der Anfangsbedingungen geméiR wobei nach Paritit der Haupt-
quantenzahl n unterschieden wird. Das SchieBverfahren kann nun ausgefiihrt werden. Nach
Ausfithrung des Schielverfahrens wird die neue Energie als Mittelpunkt des ermittelten
neuen Energieintervalls berechnet. Auch eine erneute Berechnung der relativen Genauig-
keit mit den neuen Energiewerten erfolgt.

Schiellverfahren: Das Schielverfahren ist durch eine unendliche Schleife mit Abbruch-
bedingungen realisiert. Es wird iterativ die Wellenfunktion gemi3 der Rekursionsformel
aus|Gleichung 3.4|berechnet. Eine Nullstelle wird durch einen Vorzeichenwechsel zwischen
zweier aufeinander folgenden Wellenfunktionswerten registriert und in nst gespeichert.
Mit jedem Iterationsschritt wird auf Fehlverhalten der Wellenfunktion gemaR[Abschnitt 3.2.3]
getestet. Bei der Umsetzung des Knotensatzes ist zu beachten, dass hier nur der Bereich
x = 0 betrachtet wird. Zudem ergibt sich fiir Wellenfunktionen mit ungerader Paritédt ein
Knotenpunkt im Ursprung, welcher beriicksichtigt werden muss. Der Test nach Verletzung
des Knotensatzes ist folglich nach Paritdt der Hauptquantenzahl n getrennt. Die Abbruch-
bedingungen lauten:

19 do while“ Funktion
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3.4 UMFORMUNGEN UND ENTDIMENSIONALISIERUNG DER
SCHRODINGERGLEICHUNG ZUR NUMERISCHEN BEARBEITUNG

n+l

* ungerade Paritdt: Anzahl Knoten grofer als 5~

* gerade Paritit: Anzahl Knoten groer als

Resultierend wird die obere Grenze des Energieintervalls E_max durch E ersetzt. Nach
dem Test auf Verletzung des Knotensatzes folgt der Test auf Divergenz. Die Wellenfunktion
wird als divergent angesehen, sobald ein vom Nutzer vorgegebener Grenzwert di v tibertrof-
fen wird. Um sprunghafte Divergenz mit einhergehendem Vorzeichenwechsel zweier be-
nachbarter Wellenfunktionswerte zu unterbinden, wurde die Divergenzbedingung entspre-
chend erweitert. Bei Divergenz wird die untere Grenze des Energieintervalls E_min durch
E ersetzt. Wenn keine der Abbruchbedingungen in einem Iterationsschritt erfiillt wird, so
erfolgt die Initialisierung der Wellenfunktionswerte

psi_alt = psi 3.9)
psi=psi_neu (3.10)

fiir die Berechnung des neuen Wellenfunktionswertes im nédchsten Iterationsschritt.

3.3.3 Unterprogramme

Mittels einer Funktion erfolgt die Berechnung von F(x, E) fiir ein gegebenes Potential V (x).
Die Funktion besitzt als Argumente x und E, welche aus dem Hauptprogramm an das Un-
terprogramm iibergeben werden. Als lokale Parameter oder Variablen des Unterprogramms
kdnnen 7, m und potentialspezifische Parameter bzw. Variablen definiert werden. Das Un-
terprogramm tibergibt in Form der Variable F(x, E) den berechneten Wert an das Haupt-
programm zuriick. Die Verdnderung dieser Funktion fiir ein spezifisches Potential stellt den
groflten Teil der manuellen Anpassung dar.

3.4 Umformungen und Entdimensionalisierung der Schriodingergleichung zur
numerischen Bearbeitung

Im Folgenden wird das Manning-Potential in der Schrédinger-Gleichung der Form analog
zur [Gleichung 3.1] betrachtet. Die Notation stimmt mit der Arbeit von Plenter [I] iiberein.
Die Umformungen wurden teilweise analog zu Plenter [4] vorgenommen, um die angestreb-
ten Vergleiche realisieren zu konnen, resultieren aber auch direkt aus einfachen mathemati-
schen Uberlegungen. Als Ausgangspunkt liegt die einheitenbehaftete Schrédingergleichung

& o+ 2 E—(—C h2(1)+D h4(i)) (x)=0 (3.11)
dxzw X n sec 20 sec 20 Y(x) = .
vor. Mittels Skalierung [2] X = ﬁ folgt
2 8mp?
TR+ [E - (- Csech? (%) + Dsech® ()] #(%) = 0. (3.12)

Zur besseren Ubersicht und fiir die einfachere Implementierung in das Numerov-Verfahren
8mp?

wird der Faktor 8

mit den Variablen E, C und D analog zu [2] verschmolzen

2
%w(xw ¢—| —C'sech® (%) + D'sech” (%) | | %(%) =0, (3.13)

V(%)

wobei

17
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SCHRODINGERGLEICHUNG ZUR NUMERISCHEN BEARBEITUNG

_ 8mpE . 8mp>C und D' 8mp?D

2 = T =z (3.14)

Damit das Manning-Potential iiberhaupt mit dem Numerov-Verfahren bearbeitet wer-
den kann, muss es auf das Nullniveau angehoben werden. Die Potentialtiefe V,, = V(+a) =

1 D, gllt es daher zu dem Potential zu addieren

c?
€+
4D’

wobei die Schrodinger-Gleichung weiterhin erfiillt sein muss. Mit der Definition einer

2
ae Vo

P(X) =0, (3.15)

c?
— | =C'sech? (%) + D'sech* (%
4D’

/2
neuen Variablen é = ¢+ % resultiert

A2 2
ﬁz/?()?)+ é— —C’sechz(x)+D’sech4(x)+m W(%) =0. (3.16)

\

_—

<v

(%)

Soll das Manning-Potential noch intensiver untersucht werden, so erreicht man durch
eine erneute Skalierung [3] von X, = 2rX eine Form des Manning-Potential, welche in ih-
rer Doppelmulden-Gestalt flexibel veranderbar is@ Der Unterschied zur urspriinglichen
Form des Manning-Potentials mit p im Argument der sech-Funktion ist, dass r einheitenlos
ist, wdhrend p in Lingeneinheiten vorliegt. Mit r ergibt sich

2

dx, 2 Wr(xr) +—

+D sech4

é— W, (%) =0. (3.17)

-C sechz(
2r

4r? 4D’

Analog zu Plenter [3] werden nun die Variablen C;. = 7;, D, = f—z

Es resultiert

und é, = % definiert.

2 C’Z _
5 — () + | - ~C!sech? (Zr) + D.sech? (Zr) + 4Dr’ ¥, (%) =0. (3.18)
r

N

VE&

Es macht keinen Unterschied, ob man das Potential erst auf die Nulllinie anhebt (mit der
Potentialtiefe addiert) oder erst die erneute Reskalierung durchfiihrt. Das Resultat in
chung 3.18)féllt identisch aus. Die verschiedenen Formen der Schrédingergleichung werden
fiir die unterschiedlichen Vergleiche benétigt.

3.4.1 Parameter der verschiedenen Potentialformen

Die fiir die Vergleiche relevante Berechnung der Parameter der verschiedenen Potentialfor-
men verlduft im Allgemeinen analog zu[Abschnitt 2.2} weshalb hier von einer ausfiihrlichen
Herleitung abgesehen wird. Fiir die auf Nullniveau angehobenen Potentiale betrégt der Po-
tentialwert an den Minima Null. Im Folgenden sind die Parameter fiir die Potentiale in[Glei]
[chung 3.13}[Gleichung 3.16|und|Gleichung 3.18|angegeben.

20Fiir Genaueres siehe|Abschnitt 4.3.1
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[Gleichung 3.13; Fiir die simple Form des Potentials ohne einen Parameter im Argument
der sech-Funktionen folgt

Vo:=V(0)=-C'+D' (3.19)
. . c?
V,:=V(@a= 1D (3.20)
_ 2D
d := arcosh N 3.21)

oder

D' =2V, +Vy+24/ V2 -V, ¥ (3.22)
C'=D'-Vy=-2V,+2\/ V2 -V, W, (3.23)

wobei die Umstellung nach C’' und D' analog zu |Gleichung 2.16| und |Gleichung 2.17|
verlduft. Es gilt trivialerweise weiterhin als Voraussetzung fiir die Doppelmuldengestalt des
Potentials

!

C / !
?<D <C'. (3.24)

Gleichung 3.16; Das Potential aus|Gleichung 3.13|wurde durch Addition der Potentialtiefe

auf Nullniveau angehoben, sodass folgt

s o C
_ _ ’ ]
0:=V(0)=-C'+D' + D (3.25)
V,:=V(@=0 (3.26)
~ 2D’
a:= arcosh 3.27)
C/
N N c?
Vr:= lim V(&) = 3.28
T Xlrirlw (X) 4D’ ( )
oder
C =2V +2\/ Vi ¥y (3.29)
D' =C'+Vy-Vr, (3.30)

welches durch einfache algebraische Umformungen aus f}o und &T folgt. Die Doppel-

muldenbedingung in|Gleichung 3.24|bleibt bestehen.

Gleichung 3.18] Die Form des Potentials ist analog zur urspriinglichen Form des Manning-
Potentialﬂ welches ausfiihrlich in|Abschnitt 2.2|behandelt wurde. Unter Berticksichtigung
der Anhebung des Potential durch Addition der Potentialtiefe auf Nullniveau folgen mittels

den Transformationen

2INur mit einer anderen Bezeichnung der Variablen und auf Nullniveau angehoben.
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3.5 VERIFIZIERUNG DES NUMEROV-VERFAHRENS ANHAND VON VERGLEICHEN

C—C,
D— D,
a— ay
p—=r
(3.31)
und den Resultaten fiir das urspriingliche Manning-Potential
V,:=V.(a)=0 (3.32)
2D,
ay = 2rarcosh( ,r) (3.33)
C
2
N ~ . Cy
Vr = irll»niloo V(%) = _4Dlr (3.34)
oder
C:, = ZVT +2 ‘A/TVO (3.35)
D, =C.+Vy-Vr (3.36)
G
r= (3.37)

2arcosh (\/%) .

3.5 Verifizierung des Numerov-Verfahrens anhand von Vergleichen

Im Folgenden sind die auf Basis des Numerov-Verfahrens angestrebten Vergleiche mit ana-
lytischen und numerischen Rechnungen aufgefiihrt. Die Berechnungsparameter des Numerov-
Verfahrens wurden der {ibersichtshalber weggelassen. Im Allgemeinen wurden die Rech-
nungen mit einer Schrittweite von h = 1075, einer relativen Genauigkeit von relg = 1075,
durchgefiihrt. Der Grenzwert fiir das Divergenzverhalten und die oberste Intervallgrenze fiir
die Energie wurden fiir die jeweiligen Probleme individuell angepasst und sind bei Bedarf
den Programmen selbst zu entnehmen.

3.5.1 Vergleiche mit den analytischen Lésungen verschiedener Potentiale

Zur Verifikation der korrekten Funktionsweise des Numerov-Verfahrens wurden Vergleiche
mit den analytischen Lésungen verschiedenener Potentiale gezogen. Die Verifikation wurde
in Analogie zu der Arbeit von Papenfort [37] durchgefiihrt.

Harmonischer Oszillator: Als Vergleich wurden die analytisch bestimmten Energieeigen-
werte des harmonischen Oszillators genutzt. Fiir diese gilt miti=w =1

1
En:n+§ mit neNp, (3.38)

wobei n die entsprechende Hauptquantenzahl des Zustands ist. Es resultiert fiir F(x)

x2
F(x)=2~[E—— . (3.39)

2

Der Vergleich der numerisch ermittelten Energiewerte der ersten 25 gebundenen Zu-
stinde mit den analytischen Losungen ist grafisch in[Abbildung 3.2 dargestellt.
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26 ‘ \
Numerov-Verfahren
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Abbildung 3.2: Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 25
Zustinde des Harmonischen Oszillators mit den analytischen Resultaten. Die Daten dieser
Grafik und die absolute Abweichung der numerischen von den analytischen Werten sind
in aufgefiihrt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

Modifiziertes Poschl-Teller Potential [88]: Das modifizierte PGschl-Teller-Potential ist ein
spiegelsymmetrisches Potential mit einer Mulde. Damit das Potential mit dem Numerov-
Verfahren bearbeitet werden kann, miissen neben der Anhebung auf Nullniveau einige Um-
formungen durchgefiihrt werden. Diese sind aus der Arbeit von Papenfort [38] zu entneh-
men. Es resultiert geméal Papenfort [39] fiir F(x)

100

F(x)=2 E+100——2 .
cosh”(x)

(3.40)

Aus Papenfort [40] folgt fiir das auf n < 13 beschrinkte analytische Spektrum der gebun-
denen Zustdnde

1
En:—g(\/801—1—2n)2+100 mit 1 € Nj. (3.41)

Der Vergleich der numerisch ermittelten Energiewerte der ersten 13 gebundenen Zu-
stdinde mit den analytischen Losungen ist grafisch in[Abbildung 3.3|dargestellt.

Die Ubereinstimmung der numerischen Ergebnisse mit den analytischen Werten fiir das
Potential des harmonischen Oszillators und das modifizierte Pdschl-Teller-Potential ist ein-
deutig. Analog zu Papenfort [22] kann das in Fortran programmierte Numerov-Verfahren als
funktionstiichtig angesehen werden.
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Numerov-Verfahren
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Abbildung 3.3: Vergleich der mittels Numerov-Verfahren ermittelten Energien der ersten 13
Zustdnde des Poschl-Teller Potentials mit den analytischen Resultaten. Die Daten dieser
Grafik und die absolute Abweichung der numerischen von den analytischen Werten sind
in aufgefiihrt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

3.5.2 Vergleiche mit den numerischen Verfahren von Plenter sowie Christiansen und
Cunha

Im Folgenden soll nun das Numerov-Verfahren in der Anwendung mit dem Manning-
Potential getestet werden. Dazu wird der Vergleich mit verschiedenen Rechnungen von Plen-
ter [1] sowie der Arbeit Energy eigenfunctions for position-dependent mass particles in a new
class of molecular hamiltonians [89] von Christiansen und Cunha angestrebt. Da es sich bei
dem Verfahren von Thomas Plenter um einen Variationsansatz handelt, ist zu berticksichti-
gen, dass dieser lediglich eine obere Schranke fiir die Energieeigenwerte der jeweiligen Zu-
stdnde offeriert. Liegen die mit dem Numerov-Verfahren ermittelten Energien unterhalb der
von Plenter berechneten Werte, so ist dies durchaus konsistent mit der zu Grunde liegenden
Theorie. Zudem ist das Variationsverfahren von Plenter auf die Berechnung der Energien
zum Grundzustand und zum ersten angeregten Zustand limitiert.

Variationsrechnung von Thomas Plenter [6]: Zum Vergleich der Ergebnisse der Variati-
onsrechnung von Plenter mit den Ergebnissen des Numerov-Verfahren wurde die entdi-
mensionalisierte Schrodingergleichung der Form aus|Gleichung 3.18|gelost. Diese Form des
Potentials erlaubt die Variation der Potentialtiefe V7 bei konstanter Hohe der Barriere Vj
und konstanter Position der Minima d,. So wurden fiir konstante @, und Vj, drei verschie-
dene Potentialtiefen betrachtet. Dieses ist fiir zwei verschiedene Kombinationen von V; und
a, durchgefiihrt worden.

Die jeweiligen Berechnungsparameter V7, Vp und &, wurden dem Programm einge-
speist, welches daraufthin die korrespondierenden charakteristischen Parameter C;, D’r und
r des Potentials der Form aus|Gleichung 3.18| mittels [Gleichung 3.35} [3.36|und [3.37|berech-
neteFEl Alle betrachteten Parameter resultierten in einem Doppelmulden-Potential. Fiir die
Parameter wurde dann das Numerov-Verfahren zur Berechnung der Energien bis zur ge-
wiinschten Hauptquantenzahl n gestartet. Dazu wurde F(x, E,C}., D, r) so angepasst, dass

22Ein weiteres Unterprogramm iibernimmt die Berechnung der arcosh-Funktion.
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die berechneten Parameter aus dem Hauptprogramm an das Unterprogramm iibergeben
und dort dann in das Potential eingesetzt worden sind. Es wurden die Energien é, vom
Grundzustand (+) und dem ersten angeregten Zustand (-) fiir verschiedene Parameter be-
rechnet und zum Vergleich der beiden Verfahren in[Tabelle 3.1|dargestellt.

0,025 .
A1 (V1)
Az (V)
A3(Vr)

0,02 |
20,015 |
=
=
S
()

B
2 001 | 1
0,005 | 1
0 L L L
100 1000 1000000
Vr

Abbildung 3.4: Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter fiir \70 = 2,56 und da, = 1,146. Mit AI(VT) = é;r'v - é+'N,
AZ(VT) = é;’v - é;'N und Ag(VT) = IAe]rV - Aeyl. Die Daten der Berechnungen sind in
aufgefiihrt. Die Verbindungslinien reprisentieren keinen mathematischen Zu-

sammenhang, sondern dienen rein der Veranschaulichung.

Entsprechend der Theorie der Variationsrechnung fallen die mittels Numerov-Verfahren
berechneten Ergebnisse alle kleiner als die Ergebnissen von Plenter aus. Wie in[Abbildung 3.4]
und erkennbar, nehmen die Abweichungen A; (V) und A»(Vr) zwischen den
berechneten Energien des Numerov-Verfahrens éY¥ und der Variationsrechnung ¢, mit ho-
herer Potentialtiefe zu. Die Abweichung der Energieaufspaltung Az(V7) zeigt dagegen nur
fiir das erste Szenario in[Abbildung 3.4|einen deutlichen Verlauf. Da die Variationsrechnung
nur ein Ndherungsverfahren darstellt, ist eine genauere Analyse der Abweichung sinnlos.
Eine weitere Einschrankung der Vergleichbarkeit resultiert auerdem durch

¢ die endliche Genauigkeit und die einhergehenden Rundungsfehler der Umrechnun-
gen der Parameter aus der Arbeit von Plenter in eine Form, die mit dem Numerov-
Verfahren bearbeitet werden kann >3]

* Ungenauigkeiten aus den Umrechnungen die Plenter durchfiihren musste, um das
Potential mit seiner computergestiitzten Variationsrechnungsmethode [5] bearbeiten
zu konnen.

25in a, [8) und n, s in Vy [7]
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0,012 \ =
A1(V7)
0,01 - i
0,008 - :
0]
5
i) 0,006 - s
]
£
< 0,004 - i
0,002 - e
0 - i
100 1000 1000000
Vr

Abbildung 3.5: Abweichungen zwischen den Ergebnissen des Numerov-Verfahrens und der
Variationsrechnung von Plenter fiir Vy = 1,44 und a, = 0,7834. Mit A;(Vy) := &V —¢&>V,
AZ(VT) = é;’v - é;’N und Ag(VT) = IAeer - AEYI. Die Daten der Rechnungen sind in
aufgefiihrt. Die Verbindungslinien reprisentieren keinen mathematischen Zu-

sammenhang, sondern dienen rein der Veranschaulichung.
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Vergleich mit den Ergebnissen von Christiansen und Cunha [12]: Fiir den Vergleich mit
den Ergebnissen von Christiansen und Cunha wurde die Schrédingergleichung der Form in
mit C' = D' =500 [12] geldst. Das Potential wurde zusitzlich auf das Nullni-
veau hochgesetzt, um es mit dem Numerov-Verfahren behandeln zu kénnen. Um den vom
Programm ausgegebenen Energieeigenwert € mit den Werten von Christiansen und Cunha
verlgeichen zu konnen, muss dieser dann wieder um den Betrag der Anhebung des Poten-
tials reduziert werden

C?
€=€- . 3.42
1D (3.42)
In sind die Ergebnisse des Numerov-Verfahren fiir die Energie zu dem Grund-
zustand et und dem ersten angeregten Zustand ¢~ den Ergebnissen von Christiansen und
Cunha sowie den aus der Variationsrechnung resultierenden Ergebnissen von Plenter ge-

geniibergestellt.

Tabelle 3.2: Energiewerte des Grundzustands (+) und des ersten angeregten Zustands(-) des
Manning-Potentials mittels Numerov-Verfahren und Variationsrechnung von Plenter sowie
den Ergebnissen von Christiansen und Cunha.

Numerov Variationsrechnung[11] | Christiansen & Cunhal13]
e* € e* € et €
-109,94118 | -109,94050 | -109,88711 | -109,88627 | -109,9412 -109,9405

Tabelle 3.3: Energieaufspaltung Ae = ¢~ —¢* des Manning-Potentials mittels Numerov-
Verfahren, Variationsrechnung von Plenter sowie den Ergebnissen von Christiansen und
Cunha.

Numerov | Variationsrechnung[11] | Christiansen & Cunha(13]

AeN AeV Ae€C

6,8-1074 8,4-107% 7,0-1074

Der Vergleich mit den Werten von Plenter bestétigt erneut, dass aus der Variationsrech-
nung nur eine obere Grenze fiir die Energien resultiert. Das computergestiitzte Berech-
nungsverfahren von Plenter [5] ist auf die Form der Schrodingergleichung in dieser Rech-
nung ausgerichtet, sodass keine mit Ungenauigkeiten verbundene Umrechnungen durch-
gefithrt werden mussten. Bei dem Vergleich mit den Werten von Christiansen und Cunha
muss der eventuelle ,Druckfehler“[I0] beriicksichtigt werden, weshalb ein Vergleich rein
spekulativ ausfillt. Plenter [12] hat in seiner Arbeit verschiedene Szenarien fiir die Werte
von Christiansen und Cunha durchgespielt. Die Ergebnisse dieser Arbeit deuten darauf hin,
dass das Szenari der iiberfliissigen Neun das plausibelste ist, da die resultierenden Er-
gebnisse mit denen dieser Arbeit am besten ﬁbereinstimmen@ Die Gegeniiberstellung der
Energieaufspaltungen in bestitigt weiter die Vermutung von Plenter beziiglich
des Fehlers von Christiansen und Cunha.

24Bei Plenter die Tabelle 4 [13].
25Djese Ansicht hatte auch Plenter.
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4 Das Ammoniakmolekiil NH;

Der Fokus dieser Arbeit liegt in der Anwendung des Numerov-Verfahrens zur Analyse des
Inversionspotentials des Ammoniakmolekiils. Zuerst wird der Vergleich mit den Ergebnis-
sen fiir die Energieaufspaltung des Grundzustands zum ersten angeregten Zustand der Va-
riationsrechnung [18] von Plenter gezogen. Es folgt die Berechnung der Energien héherer
gebundener Zustidnde auf Basis der Parameter von Plenter und der Vergleich mit den Lite-
raturwerten von Spirko [91]. Durch eine Optimierungsrechnung wird anhand des Abgleichs
der numerisch bestimmten Energien der ersten zehn Zustdnde mit den Literaturwerten ein
besserer Wert fiir die Potentialtiefe des Manning-Potentials zur Beschreibung des Ammo-
niakmolekiils angestrebt. Zuletzt werden die Energien und die Energieaufspaltung benach-
barter Zustdnde, die mittels optimaler Potentialtiefe bestimmt wurden, mit den Literatur-
werten, den urspriinglichen Werten von Manning und den Ergebnissen moderner Ab-initio-
Rechnung von Aquino et al. verglichen. Im Folgenden entspricht eine Numerierung der Zu-
stdande durch n =0, 1,2,.. der Notation mit Unterteilung in Zustdnde gerader und ungerader
Paritdt 0+,0—,1+,1—,2+,2—,... . Mit Werten der Literatur sind im Folgenden die experimen-
tell bestimmten Werte von Spirko [91] gemeint.

4.1 Vergleich mit den Ergebnissen der Variationsrechnung von Plenter

Zur Berechnung und dem anschliefenden Vergleich wurden die Daten C’ = 11505,58059
und D’ = 7032,864897 [15] von Plenter genutzt. Die Berechnung von C’' und D', basierte

auf’9

e V,=-5,0608eV
o Vp=-4,8102eV
e d=0,39685A

und wurde iiber die Berechnung von C, D und p durchgefiihrt [16]. Das Potential wurde

mittels 4C—D2, auf die Nulllinie angehoben, sodass das Numerov-Verfahren die Schrodinger-
gleichung der Form|Gleichung 3.16|16st. Die resultierenden Energien ergaben sich mittels

Cc?

hZ
4D’

“oue? |

) (4.1)

wobei 8’7—22 =0,00107546¢€V [16]. Die ermittelten Energien der ersten beiden gebunde-

Lo
nen Zustdnde sind in[Tabelle 4.4|dargestellt.

Tabelle 4.4: Energiewerte in [eV] des Grundzustands (+) und des ersten angeregten Zustands
(-) des Ammoniakmolekiils mittels Numerov-Verfahren und Variationsrechnung von Plen-
ter.

Numerov Variationsrechnung(17]
E* E- E* E-
-5,00026eV | -5,00017eV | -4,99997eV | -4,99995eV

Die resultierende Energiedifferenz zwischen dem Grundzustands und dem ersten ange-
regten Zustand sind in[Tabelle 4.5/den Werten von Plenter und den experimentell bestimm-
ten Werten gegeniibergestellt.

Die Variationsrechnung erméglicht die gendherte Bestimmung der Energie von gebun-
denen Zustdnden durch Angabe einer energetischen oberen Schranke. Dieses konnte er-
neut durch die Werte in bestitigt werden. Die Schwiéche dieser Ndherung wird

26pabei wurde die hier etablierte Notation verwendet. Plenter nutzt die Bezeichnungen V;, Vp und a.
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4.2 BERECHNUNG DER ENERGIEN HOHERER GEBUNDENER ZUSTANDE MIT DEN
PARAMETERN VON PLENTER

Tabelle 4.5: Energiedifferenz in [eV] des Grundzustandes und des ersten angeregten Zustan-
des des Ammoniakmolekiils mittels Numerov, Variationsrechnung und Experiment.

Numerov Variationsrechnung [16] | Literatur [91]

8,49-107°eV 2,21-10°eV 9,79-10°eV
Abweichung vom Literaturwert

1,30-107°eV 7,59-107°eV -

bei der Differenzbildung wie der Energieaufspaltung zwischen Grundzustand und erstem
angeregten Zustand deutlich. Plenter schlussfolgert, dass , die Genauigkeit des Variations-
verfahren offenbar nicht aus[reicht]“ [19], da die Energieaufspaltung ,AE ungefdhr fiinf
GroBenordnungen kleiner als der Wert des Energieniveaus selber ist“ [19]. Fiir den Varia-
tionsrechnungsansatz miissen die Testwellenfunktionen so gewihlt werden, dass sie die
realen Wellenfunktionen méglichst genau abbilden. Die Testwellenfunktionen von Plen-
ter miissen idealerweise ihr Maximum in der Gleichgewichtsposition des Stickstoffatoms
N haben. Zudem sollte die korrespondierende Energie des Grundzustands der Dissoziati-
onsenergie entsprecher@ Plenter musste ,durch Ausprobieren [...] Werte fiir V, und a“
[14] finden, ,fiir die die Dissoziationsenergie (—E" = 5eV) und der Abstand des Stickstof-
fatoms (2pa = 0,383A) passen“ [14]. Plenter merkt selbst an, dass aufgrund der Ndherung
durch Testwellenfunktionen ,die Position der Maxima der Testwellenfunktion bei x = 2pa
etwas ndher am Ursprung liegt, als die Minima des Potenzials bei x = a“[19]. Zusammen-
gefasst ermittelt Plenter die Potentialtiefe und die Position der Minima fiir das Manning-
Potential durch die optimale Form der Testwellenfunktion. Anhand der Ergebnisse in
und der Aussagen von Plenter kann gefolgert werden, dass das Variationsverfah-
ren als Berechnungsmethode fiir die Analyse der Inversionsschwingung des Ammoniak-
molekiils aufgrund der geringen Genauigkeit ungeeignet ist. Die Giite der Parameter von
Plenter (C’' = 11505,58059 und D’ = 7032,864897) mit denen auch die Rechnung mittels des
Numerov-Verfahren durchgefiihrt wurde, gilt es noch zu bestimmen.

4.2 Berechnung der Energien hoherer gebundener Zustinde mit den Parame-
tern von Plenter

Im Vergleich zum Variationsansatz von Plenter, welcher auf addquater Wahl von Testwellen-
funktion zu den Wellenfunktionen des Grundzustandes und des ersten angeregten Zustan-
des basiert, ldsst sich das Numerov-Verfahren auf die Betrachtung der Energien héherer Zu-
stinde ohne zusitzlichen Aufwand erweitern. Uberlegungen, analog zur Konstruktion von
passenden Testwellenfunktionen zu den Wellenfunktionen hoherer Zustdnde die beim Va-
riationsansatz anfallen, miissen beim Numerov-Verfahren nicht getétigt werden, sondern
lediglich das Intervall der betrachteten Quantenzahlen auf den gewiinschten Bereich ver-
grolert werden. Analog zur Berechnung der Energien des Grundzustands und des ersten
angeregten Zustands in [Abschnitt 4.1 wurden die Energien zu héheren Zustinden berech-
net und mit den Literaturwerten in[Tabelle A.7.I|verglichen. Die Energie des Grundzustands
wurde auf das Nullniveau gesetzt.

In den Gegeniiberstellungen in [Abbildung 4.1 und [Abbildung 4.2| der numerisch be-
rechneten Werte mit den Literaturwerten auf Basis der Daten von Plenter ist die abneh-
mende Ubereinstimmung fiir héhere gebundene Zustinde ersichtlich. Die Abweichung der
Energien und auch die der Energiedifferenzen benachbarter gebundener Zustinde nehmen
mit der Hauptquantenzahl zu. Aufgrund der aus dem Tunneleffekt resultierenden Dubletts
im Inversionsspektrum von Ammoniak ist der ansteigende Trend der Abweichung bei den
Energiedifferenzen nicht unmittelbar erkennbar. Da Plenter die Parameter explizit fiir die

27Plenter betrachtet ein negatives Potential, welches fiir x — +oco gegen Null konvergiert. Der Wert der Energie
des Grundzustand entspricht somit der Dissoziationsenergie.
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PARAMETERN VON PLENTER

Testwellenfunktionen der ersten beiden gebundenen Zustdnde anpasst, ist die zunehmen-
de Abweichung mit der Hauptquantenzahl n keine Uberraschung. Die Wellenfunktionen
hoherer gebundener Zustdnde weichen immer stirker von Plenters Testwellenfunktionen
ab, sodass auch die Berechnungsparameter nicht mehr fiir die Berechnung geeignet sind.
Folglich beschrinkt sich die Eignung der Parameter von Plenter (C' = 11505,58059 und
D' =7032,864897) auf die Analyse der beiden untersten gebundenen Zustinde des Ammo-
niakmolekiils.
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Abbildung 4.1: Vergleich der mittels Numerov berechneten Energien der ersten zehn gebun-
denen Zustinde des Ammoniakmolekiils mit den Literaturwerten auf Basis der Daten von
Plenter (C' = 11505,58059 und D’ = 7032,864897). Die Daten zur Grafik sind in[Abschnitt A.7]
aufgefiihrt. Die Verbindungslinien zwischen den diskreten Energiewerten dienen rein der
Veranschaulichung.
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4.3 BESTIMMUNG DER OPTIMALEN POTENTIALTIEFE DES MANNING-POTENTIALS
ZUR BESCHREIBUNG VON NHj3
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Abbildung 4.2: Vergleich der mittels Numerov berechneten Energiedifferenzen benachbar-
ter Zustdnde des Ammoniakmolekiils mit den Literaturwerten auf Basis der Daten von Plen-
ter (C' = 11505,58059 und D’ = 7032,864897). Die Daten zur Grafik sind in
aufgefiihrt. Die Verbindungslinien zwischen den diskreten Energiedifferenzen dienen rein
der Veranschaulichung.

4.3 Bestimmung der optimalen Potentialtiefe des Manning-Potentials zur Be-
schreibung von NH;

Die Giite des Manning-Potentials zur Beschreibung des Ammoniakmolekiils basiert grund-
legend auf der Wahl der charakteristischen Parameter. Besonders das Verhalten des Poten-
tials fiir x — +oo ist schwer auf experimentelle Weise zu bestimmen. Fiir ein auf Nullniveau
(Wert des Potentials in den Minima V,, := V(+a) = 0) angehobenes Manning-Potential ent-
spricht dieses gerade der Potentialtiefe V7 := xEer V(x). Anders als die Position der Minima

a = 0,383 A und die Hohe der Barriere Vg = (0,2506 + 0,0025) eV ist die Dissoziationsenergie
von ungefihr 5eV gemi Manning [56] nicht genauer bekannt und dient als ein Anhalts-
punkt fiir die Potentialtiefe des Manning-Potentials. Setzt man die Parameter von Manning
[58] in dessen Potential [57] ein, so ergibt sich fiir die Potentialtiefe in Mannings Berech-
nungen ein Wert von 5,5966eV. Die angesprochenen Parameter dieser Rechnung sind je-
doch gemdR Swalen und Ibers [67] veraltet, sodass der Wert von 5,5966eV analog zu der
ungefdhren Dissoziationsenergie von 5eV nur als grober Referenzwert fiir die Potentialtiefe
gilt. Eine simple Aufarbeitung des Manning-Potentials durch das Numerov-Verfahren mit
den experimentellen Werten fiir a und Vj sowie der Potentialtiefe V; = 5,5966 eV von Man-
ning entfillt somit. Die Dissoziationsenergie ist eine theoretische GrolRe und entspricht in
diesem Fall jener Energie, die aufgebracht werden muss, um das Stickstoffatom aus den Bin-
dungen und somit aus dem Ammoniakmolekiil selbst zu 16sen. Generell wird zwischen zwei
Definitionen fiir ein auf Nullniveau gehobenes Potential unterschieden:

e Ep = Vr — E;, : Die Dissoziationsenergie entspricht der Differenz der Energie eines
Zustands zu der Potentialtiefe.

* Ej, = Vr:Die Dissoziationsenergie entspricht der Potentialtiefe.

Plenter [19] betrachet in seiner Arbeit ein negatives Potential, welches fiir x — +oo gegen
Null konvergiert. Seine Definition der Dissoziationsenergie orientiert sich an Ep, jedoch be-

30
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schrankt er sich nur auf die Energie des Grundzustands (Plenter [14]: —E* =5eV). Es ist lei-
der nicht explizit bekannt auf welche Definition der Dissoziationsenergie sich Manning mit
seiner Aussage von 5eV bezogen hat, jedoch deuten die anderen Parameter seines Poten-
tials daraufhin, dass die 5eV ebenfalls dem Abstand zwischen Grundzustandsenergie und
dem Potential im Unedlichen xl—i>IPoo V(x) = 0 entsprechen. In dieser Arbeit wird die Defini-

tion der Grundzustandsenergie analog zu Plenter und Manning gewéhlt. Bezieht man sich
bei der Definition Ep nur auf den Grundzustand, so entspricht die Abweichung der Defini-
tionen

Ep-E},=E" (4.2)

der Grundzustandsenergie. Plenter [19] wies bereits auf das Fehlen des absoluten Wertes
der Grundzustandsenergie in der Literatur hin und leitete daher einen ungefdhren Wert fiir
diese anhand einer Grafik her. Es resultierte ein Wert von E* = 0,0608 eV [20]. Anhand die-
ser Einschitzung der Gr6fenordnung der absoluten Grundzustandsenergie und der Un-
genauigkeit in der Aussage von Manning beziiglich der 5eV kann der Unterschied der bei-
den Definitionen vernachléssigt werden. In welcher Weise die berechnete Potentialtiefe von
5,5966 eV aus Mannings Rechnungen mit dieser Erkenntnis kompatibel ist, liegt vorallem in
der Interpretation und dem einhergehenden ,Spielraum* des ungefahren Wertes der Disso-
ziationsenergie von 5eV.

Aufgrund der Tatsache, dass weder die Dissoziationsenergie noch die absolute Grund-
zustandsenergie fiir das Manning-Potential exakt bekannt sind, die Daten zur Berechnung
der Potentialtiefe von 5,5966eV gemall Swalen und Ibers [67] veraltet sind und aus Plen-
ters Vorgehen einer einfachen Addition der beiden ungefidhren Werte zur Berechnung der
Potentialtiefe (V; = 5,0608eV [16]) in den in erlduterten Abweichungen fiir
hohere gebundene Zustédnde resultiert, wird die Potentialtiefe als variable Grof3e fiir eine
Optimierungsrechnung genutzt.

Im Folgenden wird daher anhand der mittels Numerov-Verfahren berechneten Energi-
en der ersten zehn gebundenen Zustidnde die Potentialtiefe bestimmt, die die Summe der
quadratischen Abweichungen der numerisch ermittelten Energien von den experimentell
bestimmten Werten von Spirko [91] minimiert. Die funktionale Form des Potentials, die Ho-
he der Potentialbarriere, die Position der Minima und die konstante reduzierte Masse sind
dabei vorgegeben.

4.3.1 Umformung der Schriodingergleichung fiir die Optimierungsrechnung

Die einheitenbehaftete Schrodingergleichung in[Gleichung 3.11]erméglicht die gewiinschte
unabhingige Anderung der Potentialtiefe bei konstanter Position der Minima und Hohe der
Barriere. Jegliche Anderung der Potentialtiefe affektiert die charakterisierenden Parameter
C und D, von denen auch die Position der Minima a und die Héhe der Potentialbarriere
Vo abhingig ist. Die Argumentation iiber C, D und p als verdnderliche Variablen zur Be-
stimmung der Potentialform fillt einfacher aus. Sieht man die Parameter Vj, Vr und a als
mehrdimensionale Funktionen dieser Variablen an, so gilt

CZ
Vo=WC,D)=-C+D+ — 4.3
0= Vol ) 2D (4.3)
CZ
Vr=Vy(C,D)=+— 4.4
T=Vr( ) 1D (4.4)

a=a(p,C,D) =2parcosh (4.5)

2D
|
Das totale Differential einer mehrdimensionalen Funktion gibt an, wie sich die Funktion an
einem Punkt bei kleinen Verdnderungen der Variablen verhélt. Da hier lediglich von Inter-
esse ist, ob eine Verdnderung der Potentialtiefe unabhingig von der Position der Minima
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und dem Wert des Potentials an der Barriere durchgefiihrt werden kann, wird eine verein-
fachte Notation benutzt. An der genauen Art der Verdnderung, die sich mittels dem totalen
Differential berechnen ldsst, besteht in diesem Fall kein Interesse. In der folgenden Notati-
on entspricht A einer beliebigen Verdnderung des Parameters, auf den es angewendet wird.
Nun soll bei einer Verdnderung der Potentialtiefe V gelten

AVy=0 (4.6)
Aa=0. 4.7)

Eine Anderung in V7 kann durch eine Anderung in C oder D erreicht werden. Damit Vj un-
ter dieser Verdnderung konstant bleibt, muss der jeweils andere Parameter entsprechend
angepasst werderfﬂ Anders als bei den Formen des Manning-Potential mit keinem Para-
meter in den sech-Funktionen wie in |Gleichung 3.13| und 3.16} kann in dieser Form eine

Anderung in C, D und folglich eine Anderung in arcosh(\ / %) durch eine entsprechende

Anpassung von p kompensiert werden, sodass keine Anderung in a resultiert. Auf die Limi-
tierung der Potentialformen ohne einem Parameter im Argument der sech-Funktion wurde
auch in Plenter [3] hingewiesen. Fiir die Bearbeitung mit dem Numerov-Verfahren muss die
Anhebung auf das Nullniveau erfolgen, sodass resultiert

2

2 C?
T+ h—’;ﬂ (E+ —) - (—Csech2 (21) + Dsech? (i

C2
+ —_—
4D [ 2p) 4D )
wobei m = u bzw. m = yg entspricht und x und p in A angegeben sind. Die Parameter C, D
und p berechnen sich gemal3

p) =0, (4.8

C=2Vr+2/ ViV 4.9)

D=C+Vy-Vr (4.10)
a

p= 4.11)

2arcosh (\/?) .

Die durch Variation der Potentialtiefe V7 zu minimierende Grofe ist durch die Summe

9 .
Sn(Vrp) = Z | Ei.\lumerov _ E?lteraturlz (4.12)
i=0
gegeben, wobei die Summe iiber die ersten zehn gebundenen Zustidnde gebildet wird.
Ei.\]umem" ist die Energie des i-ten gebundenen Zustands, welche mit dem Numerov-Verfahren
bestimmt wurde und E iL“eratur ist der korrespondierende Literaturwert.

4.3.2 Bestimmung der funktionalen Form von Sn(Vr)

Die Optimierungsrechnung kann durch Kenntnis des groben Zusammenhangs zwischen
der Potentialtiefe Vy und Sn(V7) vereinfacht werden. So ist entscheidend, ob der betrachte-
te Zusammenhang nur durch ein globales Minimum charakterisiert ist, oder ob mehrere lo-
kale Extrema die Berechnungen erschweren. Es wurde folglich ein Programm geschrieben,
welches den Wert von Sn(Vr) fiir eine Zahl von verschiedenen Potentialtiefen V; ermittlet.
Die resultierenden Datenpunkte wurden in dargestellt.

Der Zusammenhang zwischen der Potentialtiefe V7 und der zu minimierenden GréQ3e
Sn(Vr) ist durch ein einziges globales Minimum charakterisiert. Dieses liegt zwischen V =
6,32eVund Vr =6,34eV. Es liegen zudem keine lokalen Extrema vor. Die Funktion féllt von
beiden Seiten zum globalen Minimum hin streng monoton ab.

28Mochte man Vy durch Anderung von C veridndern, so muss D entsprechend angepasst werden, um die
Anderung von C nicht auf eine Anderung von Vj zu iibertragen.
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Abbildung 4.3: Grafische Darstellung der funktionalen Form von Sn(Vr). Die Daten dieser
Grafik sind in{Abschnitt A.8|in[Tabelle A.8.1|aufgelistet.

4.3.3 Programme zur Bestimmung der optimalen Potentialtiefe

Auf Basis der gewonnenen Erkenntnisse iiber die funktionale Form von Sn(V7) wurden drei
Programme in Fortran zur Ermittlung der optimalen Potentialtiefe V; P! durch Minimierung
von Sn(Vr) entworfen. Im Folgenden bezieht sich die SchrittweiteEg] saufdie Iteration durch
die Potentialtiefe V; und ist von der Schrittweite & des Numerov-Verfahrens zu unterschei-
den.

Ermittlung des Minimums durch sukzessive Berechnung der Funktionswerte: Das ein-
facheste Programm zur Bestimmung der optimalen Potentialtiefe bestimmt das globale Mi-
nimum durch sukzessives Berechnen von Sn(Vy) zu anwachsenden Potentialtiefen. Sobald
Sn(Vr) mit ansteigender Potentialtiefe nicht mehr abnimmt, wird die zugehérige Potential-
tief als optimale Potentialtiefe V;p * mit minimalem Wert von Sn(VTq Pr ausgegeben. Die
Berechnungsgeschwindigkeit ist dabei von der Schrittweite, welche auch der gewiinschten
Genauigkeit entspricht und von dem Startwert der Potentialtiefe abhéngig. Die Schrittweite
wird wihrend der Optimierung konstant gehalten. Ein addquater Startwert ldsst sich aus der
funktionalen Form von Sn(Vr) ermitteln. Dieses Verfahren kann entweder von Vr < V;p !
aus mit steigenden Potentialtiefen oder von Vi > V;p " aus mit sinkenden Potentialtiefen
betrieben werden. Bei gleichem Abstand vom Optimum besteht kein Vorteil der Berech-
nungsgeschwindigkeit in einer der Berechnungsrichtungen. Durch Anwendung des Verfah-
rens in beide Berechnungsrichtungen kann die optimale Potentialtiefe jedoch auf ein In-
tervall [V}"i ",V "%*] beschrinkt werden, da aus der Rechnung in Richtung steigender Po-
tentialtiefen eine untere Schranke und aus der anderen Berechnungsrichtung eine obere
Schranke resultiert.

Ermittlung des Minimums durch sukzessive Reduktion der Schrittweite: Eine offensicht-
liche Verbesserung und Beschleunigung des Programms resultiert durch die Implemen-
tierung einer sukzessiv reduzierten Schrittweite. Das Vorgehen ist analog zum voherigen

29In den Programmen mit step bezeichnet.
30vyon der Potentieltiefe, welche in einem ansteigenden Wert von Sn(V7y) resultiert, muss eine Schrittweite
abgezogen werden, um die optimale Potentialtiefe zu erhalten.
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Programm, jedoch wird die Optimierungsrechnung mit einer groen Schrittweite begon-
nen. Sobald die Berechnung von Sn(Vr) analog zum einfachsten Programm aufgrund eines
ansteigenden Funktionswerts abbricht, wird jedoch nicht die korrespondierende Potential-
tiefe ausgegeben, sondern die Schrittweite reduziert. Die Optimierungsrechnung wird mit
der neuen kleineren Schrittweite beim vorletzten Wert der Potentialtiefe fortgefiihrt. Die-
ses wird bis zu einer gewiinschten Schrittweite durchgefiihrt. Als optimale Potentialtiefe
V;p " wird die letzte Potentialtiefe vor dem Abbruch bei der kleinsten Schrittweite ausge-
geben. Analog zum voherigen Programm ist auch hier die Berechnung von V7 < V})p " und
Vr > V;p g moglich. Resultierend ldsst sich ein Intervall [V{!’i n V%"“x ] fiir die optimale Po-
tentialtiefe V;fp ' bestimmen.

Bei diesem Verfahren und der Form von Sn(V7) ist es essentiell, dass bei Abbruch auf-
grund von ansteigenden Sn(V7)-Werten der Schritt zuriick zum vorletzten Wert (zwei Schritt-
weiten zuriick) erfolgt. Vorallem bei gréBeren Schrittweiten ist es moglich, einen Wert

sn(ve) > sn (V") mit v < v (4.13)

voﬁ dem globalen Minimum zu erzeugen, der grof3er ist als der benachbarte Wert

sn(vP)<sn(vf) mit vii=(vE-s)< vy < VP, (4.14)
welcher bereits hinter dem Minimum liegt. Der Abbruch erfolgt erst durch die Berech-
nung einens weiteren Wertes

sn(vP)<sn(v§) mit Vi =(Vi-25) < Vi < VP+s=Vf, (4.15)

welcher zwei Schrittweiten vom urspriinglichen Wert vor dem Minimum entfernt ist
und aufgrund des Monotonierverhaltens von Sn(Vr) hinter dem globalen Minimum auf
jeden Fall zum Abbruch fiihrt. Wiirde nun das Programm analog zum ersten Verfahren zur
voherigen Potentialtiefe V}’ zuriickgehen, so wiirde nach jeder Reduktion der Schrittwei-
te die Berechnung jedes beliebigen neuen Wertes Sn(VT?) < Sn(Vye") < Sn(Vy) mit V{Z <
V7i¢" < V7 in einem Abbruch resultieren und schlussendlich V%’ als optimale Potentialtiefe
ausgegeben werderfﬂ Dieses wird zudem dadurch verstérkt, dass Sn(V7) von dem globa-
len Minimum aus nach rechts flacher ansteigt als nach links. Umso stérker die Differenz der
Steigung der Bereiche Vr < V;p "und vy > V;p !, umso groBer fallt die Abweichung von der
wahren optimalen Potentialtiefe aus. Die Argumentation ist fiir beide Richtungen der Opti-
mierungsrechnung giiltig, auch wenn im vorliegenden Fall eine Optimierungsrechnung mit
wachsenden V; mehr davon betroffen wire. Die endgiiltige Ausgabe nach dem letzten Ab-
bruch ist jedoch nicht der vorletzte Wert von Vr sondern der letzte, da dieser ja in einem
niedrigeren Sn(Vr) resultierte als der vorherigﬂ

Intervallschachtelung nach dem goldenen Schnitt: Das dritte Verfahren stellt das kom-
plizierteste dar. Die beiden voherigen Programme nédhern sich der optimalen Potentialtiefe
V;p ! sukzessive nur von einer Seite an. Zwar erfolgt die Berechnung von beiden Seiten her,
jedoch werden dabei ,separate Programme* durchlaufen, die untereinander keine Infor-
mationen austauschen. Die Berechnungsgeschwindigkeit ist einem Ansatz, bei dem das In-
tervall um die optimale Potentialtiefe V; P’ yon beiden Seiten her sukzessive eingeschréankt

wird, unterlegen. Die Intervallschachtelung nach dem goldenen Schnitt ist der Bisektion

31 Argumentation mit dem Verfahren in Richtung wachsender Potentialtiefen.

32Der Index "¢¥ reprisentiert jene Werte, welche von ?
berechnet wurden.

33Bei hoher Genauigkeit (entsprechend kleiner minimaler Schrittweite) ist dies zu vernachlissigen.

aus durch kleinere Schrittweiten als die urspriingliche
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aus dem Numerov-Verfahren sehr dhnlich, jedoch halbiert sich das Intervall hier in jedem
Iterationsschritt nicht, sondern verkleinert sich auf das 0,61803-fache [90] der urspriingli-
chen GroBe in Analogie mit dem goldenen Schnitt. Als Referenz fiir die Intervallschachte-
lung nach dem goldenen Schnitt dient die Arbeit von Hartke [90]. Zu Beginn wird mittels

ein Intervall [a, 8] um die optimale Potentialtiefe definiert. Es folgt die De-
finition eines beliebigen Punktes y innerhalb dieses Intervalls. Analog zur Berechnung der

Daten als Grundlage fiir die [Abbildung 4.3| werden nun fiir die Potentialtiefen &, f und y
die korrespondierenden Funktionswerte Sn(Vr) berechnet und in Variablen gespeichert.
Aus der funktionalen Form von Sn(V7) folgt, dass Sn(y) kleiner als Sn(a) und Sn(p) ist. Als
néchstes wird ein vierter Punkt 6 innerhalb von [a, §] erzeugt. Der Wert von 6 berechnet
sich je nach Grof3e der Intervalle [«,y] bzw. [y, 8] mittels [90]

s [@y1<Iy,Bl>=6=y+w-(B-7)
s layl>lyBl—-8=y-w-(y-a),

wobei w = %5 =~ 1-0,61803. Es folgt die Berechnung von Sn(6). Nachdem alle Sn(a),
Sn(B), Sn(y) und Sn(6) berechnet wurden, beginnt die Optimierungsrechnung. Aus a, 8, y
und 6 miissen neue Punkt a', B/ und y’ folgen, sodass V;p t,y’ € [a/, '] und

Sn(a) + Sn(B) + Sn(y) = min. (4.16)

Die Sn(a’), Sn(f) und Sn(y’) resultieren durch Initialisierung der korrespondierenden
Werte aus den Sn(a), Sn(B), Sn(y) und Sn(d). Es folgt die Berechnung von &’ und Sn(d").
Das Verfahren wird so sukzessive fortgefiihrt. Die Berechnung von Sn(a), Sn(f) und Sn(y)
erfolgt nur einmalig zu Anfang des Programms. Danach wird in jedem Iterationsschritt im-
mer nur 6 und Sn(6) neu berechnet.

Die Umsetzung dieses Algorithmus, das heifit die Kriterien fiir die Auswahl der a’, ' und
¥’ aus den Werten «, 8,y und § des voherigen Iterationsschrittes gestaltet sich im Programm
wie folgt:

e fiir Sn(y) > Sn(d) folgt Sn(y") = Sn(6) und y’ = § und

- fiir [a,y] < [y, Bl folgt Sn(a’) = Sn(y) und a’' =y
— fiir [a,y] > [y, Bl folgt Sn(B") = Sn(y) und ' =y

e fiir Sn(y) < Sn(6) folgt

- fiir [a,y] < [y, B folgt Sn(B') = Sn(6) und ' =6
— fiir [a,y] > [y, Bl folgt Sn(a’) = Sn(6) und @’ = 6.

Die Optimierungsrechnung wird abgebrochen, sobald die Differenz zwischen a und
einen bestimmten Grenzwerunterschreitet. Aus diesem Grenzwert folgt auch die Genau-
igkeit der Berechnung. Das Minimum der vier resultierenden Werte ', f,y' und §’ wird als

. . 3. opt
optimale Potentialtiefe V. ausgegeben.

4.3.4 Ergebnisse der Optimierungsrechnung

Im Folgenden werden die Ergebnisse der Optimierungsrechnungen der verschiedenen Pro-
gramme erldutert. Es folgt eine Analyse des Einflusses der reduzierten Masse und der Un-
sicherheit in der Hohe der Potentialbarriere. Abschliefend werden die Energien der ers-
ten zehn gebundenen Zustédnde mittels der bestimmten optimalen Potentialtiefe mit dem

34Das’ soll nur einen weiteren Iterationsschritt reprisentieren. Im Programm werden die alten Daten einfach
tiberschrieben.
351m Programm der Parameter grenze.
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Numerov-Verfahren berechnet und mit den Literaturwerten, den urspriinglichen Werten
von Manning und den Ergebnissen der Ab-initio-Rechnung von Aquino et al. verglichen.
Die beliebige Berechnungsgenauigkeit und die resultierenden Ergebnisse sind stets von den
als realistisch sinnvollen und physikalisch verifizierbaren Ergebnissen zu trennen.

Vergleich der Ergebnisse der unterschiedlichen Berechnungsverfahren: Fiir a = 0,383 4,
Vo =0,2506 eV und mit u wurde gemil der vorgestellten Optimierungsrechnungen die op-
timale Potentialtiefe V; Pt ermittelt

Tabelle 4.6: Ergebnisse des ersten Optimierungsverfahren. Die erste Zahl fiir die Iterations-
schritte korrespondiert zu der Berechnung von VI’?”' " mittels des Verfahrens in Richtung auf-
steigender Vr und die zweite Zahl fiir die Iterationsschritte gehort zu der Berechnung von
V'4* mittels des Verfahrens in Richtung absteigender V7.

Schrittweite in [eV] | Iterationsschritte V{J”"’ in [eV] V;”“x in [eV]
0,1 4 8 6,3 6,3
0,01 34 68 6,33 6,33
0,001 274 592 6,273 6,409
0,0001 3 4 6,0002 6,9997
0,00001 4 3 6,00000 6,99998

In[Tabelle 4.6/sind die Resultate der Rechnungen mit dem ersten Verfahren dargestellt.
Das Verfahren wurde in beide Richtungen und mit verschiedenen Schrittweiten durchlau-
fen. Die Anzahl der Iterationsschritte und das resultierende Intervall fiir V; pt indiziert, dass
die Genauigkeit des Verfahren auf eine Schrittweite von 0,001 eV beschrinkt ist. Fiir klei-
nere Schrittweiten bricht das Verfahren nahezu instantan ab, welches der geringen Anzahl
von Iterationsschritten zu entnehmen ist. Aufgrund der beschrinkten Genauigkeit und den
flukturierenden Werten je nach Schrittweite eignet sich das einfachste Verfahren nicht zur
genaueren Bestimmung der optimalen Potentialtiefe. Mit dem einfachsten Verfahren lasst
sich die optimale Potentialtiefe V;p ! jedoch auf ein Intervall [6,273 eV;6,409eV] beschrin-
ken, da kein offensichtlicher Widerspruch mit besteht und die Berechnung
aus einer hoheren Anzahl von Iterationsschritten resultiert.

Tabelle 4.7: Ergebnisse des zweiten Optimierungs Verfahren. VT’”i” korrespondiert zu der
Berechnung des Verfahrens in Richtung aufsteigender V7 und V;"“* gehort zu der Berech-
nung des Verfahrens in Richtung absteigender V7.

Kleinste Schrittweite in [eV] | V/"/"in [eV] | V/"%" in [eV]

1-10710 6,322200000 | 6,336964537

Das zweite Verfahren ist wesentlich schneller als das erste Verfahren, sodass die minima-
le Schrittweite deutlich verkleinert werden kann ohne in endlos langen Berechnungen zu re-
sultieren. Die Rechnungen von verschiedenen Startpunkten Vr < V;fp "bzw. V> V}) P aus
resultieren in einem kleineren Intervall [6,322200000¢eV;6,336964537 eV] fiir die optimale
Potentialtiefe V; P! Dieses Intervall liegt vollstdndig im Intervall des ersten Programms. Das
zweite Programm hat folglich zu einer erh6hten Genauigkeit der Berechnung der optimalen
Potentialtiefe gefiihrt. Bei der beliebigen Wahl der Schrittweite und der korrespondierenden
Genauigkeit ist stets die Unsicherheit der anderen Parameter des Programms{gz] zu beriick-
sichtigen.

36F{ir die Diskussion der reduzierten Masse siehe|Abschnitt 2.1

37Die Genauigkeit der von auRen an das Programm iibergebenen Werte sowie die Genauigkeit der Ergebnisse
des Numerov-Verfahrens
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Fiir das dritte Verfahren resultiert V}) Pt = 6,328851792 eV mit einem Grenzwert fiir das
Abbruchkriterium von 1-1071%eV analog zum zweiten Verfahren. Dieser Wert liegt im In-
tervall der zweiten Rechnung. Einen Blick auf die zugrundeliegenden Daten in[Tabelle A.8.1]
von[Abbildung 4.3|in[Abschnitt A.8|verifizieren das Ergebnis des dritten Verfahrens. Die ers-
ten beiden Programme sind in ihrem Ansatz sehr Zhnlich. Daher kann nicht ausgeschlossen
werden, dass dhnliche Unstimmigkeiten wie sie in dem ersten Programm auftreten auch aus
dem zweiten Programm resultieren.

4.3.5 Einfluss der BarrierehGhe und der reduzierten Masse auf die optimale Potential-
tiefe

Aufgrund der hoheren Berechnungsgeschwindigkeit, der hoheren Genauigkeit und der Uber-
einstimmung mit der[Abbildung 4.3|wird die Analyse des Einflusses der reduzierten Masse
1 bzw. pg und der Unsicherheit AV = 0,0025eV von Vy mit dem dritten Verfahren durch-
gefiihrt. Wie bereits in[Abschnitt 2.1]erldutert, ist die Betrachtung der reduzierten Masse fiir
die Betrachtung der Inversionsschwingung des Ammoniakmolekiils Gegenstand vieler wis-
senschaftlicher Arbeiten. Im Folgenden wird daher der resultierende Unterschied zwischen
pund po auf die optimale Potentialtiefe ermittelt. Die Position der Potentialminima wurde
frei von Unsicherheiten angenommen. Die funktionale Form der jeweiligen Sn(Vr) zu den
verschiedenen reduzierten Massen und den verschiedenen Héhen der Potentialbarriere ist

analog zu der in|Abbildung 4.3

Optimale Potentialtiefe V;p !

55
5.2 |
4,9
4,6

Vo +AVy

Vo—AVy
Abbildung 4.4: Dreidimensionale Darstellung des Zusammenhangs zwischen der optimalen

Potentialtiefe VTO p [, der reduzierten Masse u bzw. up und der Hohe der Potentialbarriere Vj,
wobei AV = 0,0025eV der Unsicherheit von Vj entspricht.
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Tabelle 4.8: Ergebnisse der Analyse des Einflusses der reduzierten Masse p bzw. iy und der
Unsicherheit von V4. Die Kombinationen aus V und V})p ! wurden in sechs Szenarien ein-
geteilt und durch a, b, ¢, d, e und f indeziert.

reduzierte Masse

Index | Hohe der Potentialbarriere V) [eV] | optimale Potentialtiefe V}) Plin [eV]

a 0,2481 6,67

b 0,2506 6,33

C 0,2531 6,02
reduzierte Masse (i

Index | Hohe der Potentialbarriere V) [eV] | optimale Potentialtiefe V; P! in [eV]

d 0,2481 5,04
e 0,2506 4,82
f 0,2531 4,62

In[Abbildung 4.4|ist zur Veranschaulichung der Zusammenhang zwischen der optimalen
Potentialtiefe V;p , der reduzierten Masse u bzw. yy und der Hohe der Potentialbarriere
Vo dargestellt. Aus der Unsicherheit in der Hohe der Potentialbarriere Vj resultiert fiir die
optimale Potentialtiefe fiir p

r 0,34
VP =(6,337031) ev 4.17)
und fiir yg
VPP (o) = (4,827055 ) eV. (4.18)

In dieser Betrachtung iiberwiegt jedoch der Einfluss der reduzierten Masse deutlich. Fiir
die Differenz der optimalen Potentialtiefen resultiert

VPP = viP (o) = (151703 ev, (4.19)
wobei 2,05eV der Abweichung zwischen maximalen V;p t(,u) und minimalen V;p t(,uo)
entspricht.
Zu den obigen sechs Tupeln aus verschiedenen Kombinationen von reduzierte Masse,
Hohe der Potentialbarriere und Potentialtiefe wurden die Energien der ersten zehn gebun-
denen Zustinde des Ammoniakmolekiils und die korrespondierenden Werte von Sn be-

rechnet. Die Ergebnisse sind fiir p in[Tabelle 4.9| und fiir yy in[Tabelle 4.10| dargestellt. In

sind die jeweiligen Sn einander gegeniibergestellt. In dieser Betrachtung re-
sultiert der kleinste Wert von Sn aus dem Tupel des Szenarios a mit (Vr = 6,68eV, 1 =

0,2481eV, ). Der Wert von Sn nimmt fiir ¢ und py streng monoton mit kleineren Werten
von Vj ab. Bildet man einen Mittelwert von Sn der jeweiligen drei Szenarien zu p bzw. g, so
resultieren die Werte zu p in einem geringeren Mittelwert@ Die reduzierte Masse u eignet
sich folglich besser fiir die Berechnungen zu dem Ammoniakmolekiil, da die resultierenden
Ergebnisse fiir die Energien der ersten zehn gebundenen Zustdnde ndher an den Literatur-
werten liegen.

In[Abbildung 4.5]ist die Entwicklung der Werte der Sn mit der Hauptquantenzahl n fiir
die sechs Szenarien gegeniibergestellt. Fiir die Hauptquantenzahlen n = 0 und n = 1 lasst

38Nur Szenario d aus den Rechnungen mit i resultiert in einem geringeren Wert fiir Sn als das ,,schlechteste*
Szenario c von p.
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sich optisch kein Unterschied zwischen den Szenarien ausmachen. Die weitere Entwicklung
der Werte von Sn mit # fiir die verschiedenen Szenarien fillt sehr unterschiedlich aus. Mit
der Bertiicksichtigung von n = 2 in der Berechnung von Sn trennen sich die Szenarien a
und d durch einen Anstieg in Sn von den tibrigen Szenarien ab. Der weitere Verlauf Sn des
Szenarios a ist relativ zu den anderen Szenarien konstant mit n. Die Szenarien c, e und f
hingegen erfahren einen besonders starken Anstieg von Sn fiir n = 3 bis n = 6. Fiir diese
n ist die Abweichung von dem jeweiligen Literaturwert grof3. Im Bereich n = 6 bis n = 8
hingegen verbleibt Sn fiir alle Szenarien nahezu konstant. Der Anstieg von Sn durch das
Einbinden der korrespondierenden Werte zu n = 9 bei der Berechnung der Werte von Sn ist
bei den Szenarien c, d, e und f besonders stark. Es fillt zudem auf, dass Szenario b bis zur
letzten Hauptquantenzahl n = 9 mit dem niedriegsten Wert von Sz korrespondiert und erst
mit der Beriicksichtigung von 7 =9 in einem hdheren Wert von Sn als Szenario a resultiert.

T T T T T T
Szenario a ——— f

Szenario b ———

1,25-107 |- Szenario ¢ —— 1
Szenario d
Szenario e —=—
S 1,00-10 - Szenariof o 8
E
= 7,50-107% 7
N "
> 6
= 5,00-1076 |- |
V%)
2,50-1075 .
0,00 &

0 1 2 3 4 5 6 7 8 9

Hauptquantenzahl n

Abbildung 4.5: Gegeniiberstellung der Entwicklung der Werte von Sn mit der Hauptquan-
tenzahl n fiir die Szenarien a, b, ¢, d, e und f. Die Daten dieser Grafik sind in[Abschnitt A.8]in
der[Tabelle A.8.2aufgefiihrt. Die Verbindungslinien zwischen den diskreten Energiewerten
dienen rein der Veranschaulichung.

Aus der Rechnung auf Basis der Parameter von Plenter in[Abschnitt 4.2]resultierte Sn(Vr =
5,0608eV, a = 0,39685A, V;, = 0,2506eV) = 2,3327-1073 (eV)2. Die Werte fiir Sn fallen fiir al-
le Szenarien der Optimierungsrechnung mehrere GréBenordnungen kleiner aus, als fiir die
Rechnung mit den Parametern von Plenter. Jedoch sind Plenters Parameter in der Lage, das
beste Ergebnis fiir die energetische Aufspaltung zwischen Grundzustand und erstem ange-
regten Zustand zu erzeugen. Die Abweichung zum Literaturwert betrug in der Berechnung
auf Basis der Parameter von Plenter 1,30-10~° eV, wihrend das beste Resultat 1,79-107° eV
der Optimierungsrechnung aus Szenario c folgt. Dies entsprach auch der Absicht und der
theoretischen Grundlage des Ansatzes von Plenter. Die ,Entfremdung” der Parameter, wel-
che passend zu den Testwellenfunktionen der ersten beiden gebundenen Zustdnde des Am-
moniakmolekiils bestimmt wurden, zur Berechnung der Energien héherer Zustinde war
nicht vorgesehen und resultiert in den berechneten Abweichungen bei hoheren gebunde-
nen Zustinden. Die Giite der Parameter (C' = 11505,58059 und D' = 7032,864897) von Plen-
ter zur Analyse der energetischen Aufspaltung zwischen Grundzustand und erstem ange-
regten Zustand gilt somit im Rahmen der betrachteten Alternativen als bestétigt.

Betrachtet man fiir die Daten der Optimierungsrechnung lediglich die energetische Auf-
spaltung zwischen dem Grundzustand und dem ersten angeregten Zustand, so ergeben
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kleinere Werte von Vj fiir ¢ und pg die besseren Ergebnisse relativ zum Literaturwert. Die
Ergebnisse zu p fallen erneut besser aus als zu .

Ein genauerer Vergleich mit der von Manning angebenen Dissoziationsenegie von 5eV
(bzw. der ermittelten Potentialtiefe von 5,5966 eV aus Mannings Rechnung) ist nicht sinn-
voll. Die Tiefe des Manning-Potentials wurde zu den gegebenen reduzierten Massen und
den verschiedenen Héhen der Potentialbarriere so angepasst, dass sich eine moglichst hohe
Ubereinstimmung der resultierenden Energien mit den Literaturwerten ergibt. Es war da-
bei nicht das Ziel die Dissoziationsenergie moglichst gut nachzubilden, sodass ein Vergleich
der resultierenden Potentialtiefen mit der Dissoziationsenergie keine Bewertung der Gii-
te der Optimierungsrechnung zuldsst. Dazu miisste die Variation eines anderen Parameters
erfolgen, sodass eine Potentialtiefe resultiert, die moglichst gut mit der Dissoziationsenergie
tibereinstimmt. Der Vergleich mit einer Dissoziationsenergie fiir das Ammoniakmolekiil aus
einer theoretischen Arbeit, wie der von Manning, wiirde in der vorliegenden Optimierungs-
rechnung lediglich Aufschluss iiber die Abweichung der konstanten Parameter dieser Rech-
nung zu den Parametern aus Mannings Rechnung ergeben. Da hier zusitzlich verschiedene
reduzierte Massen betrachtet wurden, kann mittels der korrespondierenden optimalen Po-
tentialtiefen in Referenz zur Dissoziationsenergie geschlussfolgert werden, dass durch u die
reduzierte Masse zu hoch und durch py zu niedrig angesetzt ist. Die h6here reduzierte Mas-
se u wird in der Optimierungsrechung durch ein tieferes Potential kompensiert. Je nach Vj
fallt die Kompensation unterschiedlich stark aus.

Sn(V2Ph

1,4-107° H §
1,2-107°
&
5; 1-107°
g
— 8-107°
Se
~
= 6-107°
%)
4-1076
2-1076
opt
VT

Abbildung 4.6: Gegeniiberstellung der Sn(V;fp ") fiir die verschiedenen Szenarien a, b, ¢, d,
e und f aus|[Tabelle 4.8] Die Verbindungslinien reprasentieren keinen mathematischen Zu-
sammenhang, sondern dienen rein der Veranschaulichung.
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4.3.6 Vergleich mit den Ergebnissen von Manning und Aquino et al.

Da fiir Szenario a mit VTO P t(p) =6,67eVund V, = 0,2481 eV der minimale Wert von S# fiir die
ersten zehn gebundenen Zustidnde resultiert, wird zuerst der Vergleich mit diesen Daten an-
gestrebt. Die Energien der ersten acht gebundenen Zustdnde des Ammoniakmolekiils aus
dem Numerov-Verfahren, der urspriinglichen Rechnungen von Manning aus 1935, der Ab-
initio-Rechnung von Aquino et al. und der experimentellen Bestimmung sind in[Tabelle 4.11]
dargestellt. Zudem wurde der korrespondierende Wert fiir S fiir die drei theoretischen Ver-
fahren bestimmt. Die Ergebnisse fiir die Energien sind grafisch in [Abbildung 4.7 einander
gegeniibergestellt. Die verschiedenen Verfahren liefern allesamt Ergebnisse, die so gut mit-
einander und der Literatur iibereinstimmen, dass die Differenz grafisch kaum auszumachen
ist. Nur fiir hohere gebundene Zustdnde ab n = 5 weichen die Ergebnisse von Manning zu
tieferen Energien hin von den anderen Verfahren und der Literatur ab. Diese Abweichung
spiegelt auch der Wert fiir Sn des Manning-Verfahrens Sn = 6,17 -107° (eV)? im Vergleich
zu dem Numerov-Verfahren Sn = 1,2-107% (eV)? und der Ab-initio-Rechnung von Aquino
etal. Sn=1,4-107% (eV)? wieder. Erstaunlich ist jedoch, dass hinsichtlich des Wertes fiir Sn
das Numerov-Verfahren mit optimaler Potentialtiefe die deutlich aufwendigere Ab-initio-
Rechnung mit positions-abhéngiger reduzierter Masse von Aqunio et al. ﬁbertrifft{sr_gl

Soll die Unsicherheit der Hohe der Potentialbarriere analog zu der Unsicherheit der Po-
sition der Minima vernachldssigt werden, so ergeben sich die Ergebnisse fiir Szenario b in
Der resultierende Wert fiir Sn der ersten acht gebundenen Zustinde des Am-
moniakmolekiils liegt mit 1,1-107 (eV)? unterhalb des Wertes fiir Szenario a. Dieses ent-
spricht auch der[Abbildung 4.5 Betrachtet man die Summe der quadratischen Abweichung
fiir die Zustande mit Hauptquantenzahl n =8 und n =9

9 .
sn* (Vp) = Z | E?Tumerov _ E%lteratur|2’ (4.20)
i=8

so ergibt sich fiir Szenario a Sn* =5-1077 (eV)? und fiir Szenario b
Sn* =8-1077 (eV)2. Die Abweichungen der Zustinde mit Hauptquantenzahl n =8und n =9
von den Literaturwerten fallen fiir Szenario b hoher aus als fiir Szenario a. Fiir die Betrach-
tung der ersten acht gebundenen Zustédnde fiir den Vergleich mit den urspriinglichen Er-
gebnissen von Manning und den Ergebnissen der Ab-initio-Rechnung von Aquino et al.
liefert folglich Szenario b die bessere Ubereinstimmung mit den Literaturwerten. Aus[Abbil-]
[dung 4.5lund den Ergebnissen der Szenarien fiir Sn* folgt jedoch auch, dass der Unterschied
sehr gering ausfillt.

Beide Szenarien zeigen jedoch bessere Resultate beziiglich der Summe der quadrati-
schen Abweichungen der Energien zu den Literaturwerten als die urspriinglichen Ergebnis-
se von Manning und die Ergebnisse der Ab-initio-Rechnung von Aquino et al. . Jedoch muss
auch erwidhnt werden, dass die Energiedifferenz zwischen Grundzustand und ersten ange-
regten Zustand fiir die Szenarien a und b gréRer von dem Literaturwert abweichen als die
Ergebnisse von Manning und Aquino et. al. .

In Analogie zu der Berechnung auf Basis der Parameter von Plenter sind in [Tabelle 4.13]
und [Tabelle 4.14]die Energieaufspaltungen benachbarter Zusténde fiir die beiden Szenari-
en im Vergleich mit den Ergebnissen der urspiinglichen Rechnung von Manning, der Ab-
initio-Rechnung von Aquino et al. und den Literaturwerten angegeben. Desweiteren kann
ein Szenario zwar in einem geringen Wert fiir Sn resultieren, jedoch trotzdem eine schlech-
te Ubereinstimmung mit den Energieaufspaltungen benachbarter Zustéinde der Literatur
aufweisen. Aufgrund der Tatsache, dass zur Berechnung von Sn die Betragsquadrate der
Abweichungen der Energien zu den Literaturwerten genutzt werden, spielt es fiir den Wert
einer Abweichung keine Rolle, ob die numerisch bestimmte Energie {iber oder unter dem

39Ein geringerer Wert fiir Sn.
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Literaturwert liegt. Fiir die Betrachtung der Energieaufspaltung ist es von Relevanz, ob die
numerisch bestimmte Energie zu einem gebundenen Zustand » iiber bzw. unter dem Li-
teraturwert liegt und zudem die numerisch bestimmte Energie zu n + 1 (benachbarter Zu-
stand) unter bzw. iber dem Literaturwert liegt. Ein klares Fazit beziiglich der Abweichungen
der mittels Numerov-Verfahren bestimmten Energieaufspaltungen zu den Literaturwerten
lasst sich nicht ziehen. Zu manchen benachbarten Zustdnden fallen die Abweichungen der
Ergebnisse des Numerov-Verfahrens geringer als die Resulate von Aquino et al. aus, und ge-
geniiber anderen ist die Berechnungsmethodik von Aquino et al. iiberlegen.

0,35 Numerov — i
Manning ———
Aquino
0,3 Lit —=— 1
0,25 - |
5
5 02 1
g
2 015 | 1
=
62|
0,1 - i
0,05 + i
0 i i | | | | | | ]

0 1 2 3 4 5 6 7

Hauptquantenzahl n

Abbildung 4.7: Grafische Darstellung des Vergleich der Energien der ersten acht gebunde-
nen Zustinde des Ammoniakmolekiils aus den Rechnungen mit Numerov, von Manning,
von Aquino et. al. und den experimentellen Werten. Eine Unterscheidung zwischen den
Werten aus Szenario a und den Werten aus Szenario b wiirde optisch nicht erkennbar sein.
Die Grafik wurde mit den Daten aus Szenario a angefertigt. Die Verbindungslinien zwischen
den diskreten Energiewerten dienen rein der Veranschaulichung.
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5 Schlussfolgerung

Im ersten Teil dieser Arbeit konnte das in Fortran programmierte Numerov-Verfahren an-
hand des Potentials des harmonischen Oszillators und des Péschl-Teller Potentials als funk-
tionstiichtig etabliert werden.

Der Vergleich mit den Rechnungen von Plenter bestétigte die zu Grunde liegende Theo-
rie. Die Ergebnisse aus der Variationsrechnung von Plenter stellten immer nur obere Schran-
ken dar, welche von den Ergebnissen des Numerov-Verfahren stets unterschritten wurden.
Es resultierten genauere Ergebnisse fiir alle Rechnungen. Zudem konnten die Ergebnisse
des Numerov-Verfahrens Aufschluss {iber den Irrtum in der Arbeit von Christiansen und
Cunha geben.

Bei der Betrachtung der energetischen Aufspaltung des Grundzustands zum ersten an-
geregten Niveau des des Ammoniakmolekiils fithrte das Numerov-Verfahren 8,49 -107° eV
mit den Parameter von Plenter im Vergleich zur Variationsrechnung 2,21-107°¢eV zu ei-
ner deutliche Verbesserung des Ergebnisses im Vergleich zum Literaturwert [91] von 9,79 -
107° eV. Zur Bestimmung der Energien hoherer gebundener Zustinde des Ammoniakmole-
kiils eignen sich die Parameter von Plenter nicht mehr.

Mittels der Optimierungsrechnung konnten bessere Parameter zur Beschreibung der In-
versionsschwingung des Ammoniakmolekiils durch das Manning-Potential bestimmt wer-
den. Dazu wurde die funktionale Form Sn(Vy) der Summe der quadratischen Abweichun-
gen der mittels Numerov-Verfahren berechneten Energien der ersten zehn gebundnen Zu-
stdnde von den Werten der Literatur als Funktion der Potentialtiefe bestimmt. Aus der Tatsa-
che, dass diese funktionale Form nur aus einem globalen Minimum und keinen weiteren lo-
kalen Extrema bestand, wurden drei Programme zur Bestimmung der optimalen Potential-
tiefe durch Minimierung von S»n(Vr) in Fortran geschrieben. Nach Analyse der Giite der Pro-
gramme wurde die Intervallschachtelung nach dem goldenen Schnitt zur Berechnung der
optimalen Potentialtiefen zu den konstanten reduzierten Massen u = 4,25652928924809 -
1072"kg und po = 4,12906991140916 - 10~2" kg sowie den Hohen der Potentialbarriere V; +
AVy=0,2531¢eV, Vy =0,2506eV und V — AV =0,2481 eV genutzt. Fiir die optimale Potenti-
altiefe resultierte fiir p

VP = (633703 ) ev (5.1)
und fiir yg
VPP (o) = (4827055 ev. (5.2)

Fiir die sechs Tupel aus reduzierter Masse, Hohe der Potentialbarriere und optimale Po-
tentialtiefe wurden mittels des Numerov-Verfahrens die Energie der ersten zehn gebunde-
nen Zustdnde berechnet. Aus dem Vergleich der korrespondierenden Sn-Werte resultier-
te fiir das Tupel (Vr = 6,67eV, Vy = 0,2481¢eV, u) der kleinste Wert. Die Rechnungen mit
u schnitten in Bezug auf die Werte von Sn und den Ergebnissen fiir die unterste Ener-
gieaufspaltung besser als die Ergebnisse von py ab. Zudem bestitigte die Berechnung von
Sn fiir die Ergebnisse auf Basis der Parameter von Plenter die berechneten Abweichungen
fiir hohere gebundene Zustinde. Die Betrachtung der Entwicklung der Werte von Sn mit
der Hauptquantenzahl » fiir die verschiedenen Szenarien offenbarte, dass Szenario b mit
(Vr =6,33¢eV, V =0,2506eV, u) bis zur Beriicksichtigung von n = 9 bei der Berechnung von
Sn mit einem niedrigeren Wert von Sn korrespondierte als Szenario a.

Die Energien zu Szenario a mit (Vr = 6,67eV, Vj = 0,2481eV, y) und Szenario b mit
(Vr =6,33eV, Vy = 0,2506€V, u) wurden abschliefend mit den Ergebnissen der urspiing-
lichen Rechnung von Manning, den Ergebnissen der Ab-initio-Rechnung von Aquino et al.
und den Literaturwerten verglichen. Fiir das Numerov-Verfahrens mit optimaler Potential-
tiefe aus Szenario a resultierte der Wert fiir Sn = 1,2 - 1078 (€V)? und fiir Szenario b der Wert
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Sn=1,1-10"% (eV)2. Der Wert von Aquino et al. betrug Sn =1,4- 1075 (eV)2. Fiir Manning
ergab sich Sn = 6,17-107° (eV)?, welches vorallem auf der Abweichung fiir h6here gebun-
dene Zustinde basiert. Durch eine verbesserte Wahl der Parameter konnten die Ergebnisse
des Numerov-Verfahrens mit dem Manning-Potential nicht nur die urspriinglichen Ergeb-
nisse von Manning optimieren, sondern auch die deutlich aufwendigere und komplexere
Ab-initio-Rechnung von Aquino et al. tibertreffen.

Eine direkte Verbesserung der Optimierungsrechnung kénnte durch Anpassung der zu
minimierenden Summe Sz (Vr) resultieren. Durch Kenntnis der Unsicherheiten der einzel-
nen Energien der gebundenen Zustédnde fiir die Werte aus der Literatur ldsst sich Sn(Vr)
durch

Numerov Literatur |2
| E i -E i |

N
2 _
x= ;) (AELiteratur)z (5.3)
i

ersetzen. Die Rechnung wiirde die Literaturwerte dann mit ihrer Unsicherheit gewich-
ten, welches dazu fithren wiirde, dass beispielsweise die experimentell gut bestimmbare
energetische Aufspaltung von Grundzustand und erstem angeregten Zustand stérker in der
Berechnung der Energien bertiicksichtigt wird als jene Werte, welche mit einer grof3eren Un-
sicherheit verbunden sind. Zu den verwendeten Literaturwerten konnten jedoch keine Un-
sicherheiten gefunden werden, sodass sich mit der Minimierung von Sn(Vr) abgefunden
werden musste.

Ein weiterer Aspekt ist die Behandlung der reduzierten Masse in den Berechnungen.
Aquino et al. [54] sowie Rush und Wiberg [63] reklamierten in ihren Arbeiten die schlechten
Resultate aus den Rechnungen mit einer konstanten reduzierten Masse. In [63] wird die Ab-
weichung der Energien von den Literaturwerten auf iiber 5% beziffert. Durch die Optimie-
rung der ohnehin unbekannten Potentialtiefe konnten die nachteiligen Effekte der konstan-
ten reduzierten Masse auf die Energien der gebundenen Zustdnde der Inversionsschwin-
gung des Ammoniakmolekiils ausgeglichen werden. Rein Mathematisch ist ein solches Vor-
gehen nicht falsch und ermoglicht eine genauere Berechnung der Energien der gebundenen
Zustinde des Ammoniakmolekiils durch Anpassung der funktionalen Form des Manning-
Potentials. Die komplizierte Betrachtung einer positions-abhingigen reduzierten Masse in
der Schrodingergleichung konnte somit umgangen werden, ohne dabei die Resultate gemaR
der Aussagen von Aquino et al sowie Rush und Wiberg drastisch zu verschlechtern.

Durch eine Optimierungsrechnung ist man in der Lage, die Abweichungen aus theore-
tischen Ndherungen oder die Unsicherheiten aus experimentellen Messungen durch Varia-
tion einer Grbﬁ so zu kompensieren, dass die resultierenden Ergebnisse von gewissen
Referenzgroflen minimal abweichen. Dadurch verliert der Wert der variierten Grof3e jedoch
seine physikalische Interpretatiorﬂ Umso geringer die Abweichungen bzw. die Unsicher-
heiten der konstanten Parameter, umso weniger weicht der Wert der variierten GréRe von
einer physikalischen Referenzgré3e ab. Verringert man nun die aus Ndherungen wie ei-
ner konstanten reduzierten Masse resultierenden Abweichungen, so gewinnt die optimierte
GroBe wieder an Giite als physikalischer Referenzwert. Durch die Wahl einer positionsab-
hingigen reduzierten Masse kdnnte die resultierende optimale Potentialtiefe als grober Re-
ferenzwert fiir die Dissoziationsenergie dienen. Die Wahl der rdumlichen Koordinate zur
Beschreibung dieser Positionsabhédngigkeit kann gemall Aquino et al. [53] auf die Inversi-
onskoordinate x oder geméald Rush und Wiberg [64] auf eine Winkelkoordinate fallen. Die
positionsabhingige Masse auf Basis der Inversionskoordinate x ermdoglicht jedoch die ein-
fachere Integration in das vorliegende Verfahren und liefert im direkten Vergleich bessere

40Je nach Anzahl der Referenzpunkte (hier die Literaturwerte) konnen auch mehrere Gréen variiert bzw.
optimiert werden.

41Eine Optimierung mittels der Position der Minima a hitte bei willkiirlicher und konstanter Wahl der Poten-
tialtiefe zu einem Wert von a gefiihrt, der nicht mehr der experimentell bestimmten Gleichgewichtsposition des
Stickstoffatoms entsprechen wiirde.
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Resultate [50]. Es gilt jedoch zu beriicksichtigen, dass alleine die Vorgabe der funktionalen
Form des Manning-Potentials eine Ndherung der physikalischen Realitét darstellt und so-
mit die optimierte Grof3e stets versucht, diese Abweichung zu kompensieren.

Die Abweichungen der Ergebnisse der Berechnungen auf Basis der Parameter von Plen-
ter konnen auch in der Annahme der konstanten reduzierten Masse begriindet liege Der
Anteil der Abweichung der auf die Ndherung der konstanten reduzierten Masse zuriickgeht,
miisste genauer mit Hilfe einer positions-abhingigen Masse untersucht werden.

Zur Bewertung der Giite des Manning-Potentials mit der optimimalen Potentialtiefe als
Inversionspotential fiir das Ammoniakmolekiil wiirde ein Vergleich mit den aus den Ab-
initio-Rechnungen von Aquino et al. [48] sowie Rush und Wiberg [60] stammenden Poten-
tialen sinnvoll sein. Vor allem das Potential aus der Arbeit von Spirko [91], welches analog
zur Berechnung der optimalen Potentialtiefe des Manning-Potentials aus dem Abgleich der
berechneten Energien mit den experimentellen Werten folgt, konnte interessante Folgerun-
gen fiir die Qualitidt des Manning-Potentials ergeben.

Um die Qualitdt des Numerov-Verfahrens zur Berechnung der Energien des Ammoniak-
molekiils zu bestimmen, wiirde sich ein Vergleich zum neueren Matrix-Ansatz von Forster
et al. [71] anbieten. Das von Kemper [42] vorgestellte renormalisierte Numerov-Verfahren
fiir beliebige Potentiale {ibersteigt in vielen Belangen die Anforderung an ein Programm zur
Losung von spiegelsymmetrischen Potentialen wie sie bei der Betrachtung der Inversions-
schwingung des Ammoniakmolekiils auftauchen. Jedoch konnte das Einbinden des Feh-
lermalles [46] und das somit mogliche Ersetzen des Schie3verfahrens durch ein Matching-
Verfahren [44] und des Bisektionsverfahrens durch ein Sekantenverfahren die Genauigkeit
und Geschwindigkeit des Programms erhohen. Kemper [47] merkt jedoch selbst an, dass es
auf das jeweilige Problem ankommt, ob das Matchingverfahren oder das Sekantenverfahren
liberlegen ist.

Zusammenfassend kann die Aussage von Swalen und Ibers [67] beziiglich der Giite der
Arbeit von Manning im Jahre 1935 bestitigt werden. Das Manning-Potential eignet sich
hervorragend zur Beschreibung der Inversionsschwingung des Ammoniakmolekiils. Da die
Rechnungen auf Basis des Manning-Potentials jedoch nicht einer Ab-initio-Rechnung ent-
sprechen, sind die Berechnungen stark von den vorgegebenen Parametern abhingig. Die-
se Arbeit konnte den Einfluss einiger Parameter in der Berechnung der Inversionsenergien
darstellen und beziiglich der Potentialtiefe des Manning-Potentials mit Riicksicht auf die
betrachtete reduzierte Masse ein sinnvolles Intervall etablieren, sodass die berechneten In-
versionsenergien des Ammmoniakmolekiils méglichst nah an den experimentellen Werten
lagen.

42Es findet keine Kompensation der Niherung durch eine Optimierungsrechnung statt.
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A ANHANG

A Anhang

A.1 Naturkonstanten

Fiir die Berechnungen mit Einheiten behafteten GréBen wurden folgende Naturkonstanten
benutzt:

Tabelle A.1.1: Naturkonstanten [21]

299792458 ms ™!
1,6021766208-10~19C
4,135667662-10"1° eVs
6,582119514-10" ' eVs

SEH S| O

A.2 Umrechnungstabelle Energieeinheiten

Fiir die Umrechnung der Energiewerte und der Parameter aus der Literatur wurden folgen-
de Umrechnungen benutzt:

Tabelle A.2.1: Umrechnung der Energieeinheiten [21]

cm™! eV Joule
1 1,239841974-10~% | 1,986445824-10~%
8,065544006 1 1,6021766208-10~19
5,034116652:10%% | 6,241509126-10'8 1

A.3 Umrechnung der Literaturwerte fiir die Energieeigenwerte von Ammoniak

Es ergeben sich folglich fiir die Energiewerte von Ammoniak aus [91] mit der Energie des
Grundzustandes auf Null gesetzt:

Tabelle A.3.1: Literaturwerte der Energien der Zustdnde von Ammoniak

Zustand | Ein [cm™}] Ein [eV]

0+ 0 0

0- 0,79 0,0000979475159
1+ 932,43 0,1156065851817
1- 968,12 0,1200315811869
2+ 1598,47 0,1981850200180
2- 1882,18 0,2333605766623
3+ 2384,17 0,2955994039152
3- 2895,61 0,3590098818334
4+ 3448 0,4274975126352
4- 4045 0,5015160784830
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A.4 VERGLEICH MIT DEN ANALYTISCHEN ERGEBNISSEN DES HARMONISCHEN

OSZILLATORS - DATEN

A.4 Vergleich mit den analytischen Ergebnissen des harmonischen Oszillators —

Daten

Tabelle A.4.1: Vergleich der mittels Numerov-Verfahren bestimmten Energieeigenwerte der

Quantenzahlen von 0 bis 25 des harmonischen Oszillators mit den analytischen Werten

n | Numerov | Analytisch | Abweichung
0 | 0,50000 0,5 1-1076

1 | 1,50000 1,5 2-1076

2 | 2,50001 2,5 8-107°

3 | 3,50001 3,5 6-1076

4 | 4,49998 4,5 -1,7-107°
5 | 5,50002 5,5 2,1-107°
6 | 6,50002 6,5 2,0-1075
7 | 7,49999 7,5 -9-107%
8 | 8,50002 8,5 1,7-107°
9 | 9,50002 9,5 2,0-107°
10 | 10,50003 10,5 2,9-1075
11 | 11,49998 11,5 -1,8-107°
12 | 12,50003 12,5 2,9-107°
13 | 13,49999 13,5 -8-1076
14 | 14,50006 14,5 5,7-107°
15 | 15,49994 15,5 -5,8-1075
16 | 16,49996 16,5 —-4,0-1075
17 | 17,50000 17,5 0

18 | 18,49994 18,5 -5,8-1075
19 | 19,50000 19,5 0

20 | 20,49996 20,5 -4,5-1075
21 | 21,49999 21,5 -1,3-107°
22 | 22,50009 22,5 9,2-1075
23 | 23,49993 23,5 -7,0-1075
24 | 24,50001 24,5 1,1-107°
25 | 25,50009 25,5 9,3-1075
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A.5 VERGLEICH MIT DEN ANALYTISCHEN ERGEBNISSEN DES POSCHL-TELLER

POTENTIALS — DATEN

A.5 Vergleich mit den analytischen Ergebnissen des Poschl-Teller Potentials —

Daten

Tabelle A.5.1: Vergleich der mittels Numerov-Verfahren bestimmten Energieeigenwerte der
Quantenzahlen von 0 bis 13 des Pdschl-Teller-Potentials mit den analytischen Werten

n | Numerov | Abweichung
0 | 6,82551 2,1-107°

1 | 19,97649 3,0-107°
2 | 32,12734 | -8,6-107°
3 | 43,27853 | 1,26-107*
4 | 53,42932 | -5,3-107°
5 | 62,58030 | —4,4-107°
6 | 70,73139 7,6-107°
7 | 77,88194 | —3,54-107*
8 | 84,03326 -3-1076
9 | 89,18411 | —1,27-107%
10 | 93,33540 | 1,80-107*
11 | 96,48580 | —3,99-107*
12 | 98,63750 | 3,46-107%
13 | 99,78780 | —2,90-107*

A.6 Abweichungen zwischen dem Numerov-Verfahren und der Variationsrech-

nung von Plenter

Tabelle A.6.1: Resultierende Abweichungen aus dem Vergleich zwischen Numerov-
Verfahren und Variationsrechnung von Plenter. Die Daten fiir die Rechnungen entstammen

Parameter Abweichung
Vo a, Vr A\(Vp)i=eV —ebN | Ayvp) =V —epN | As(Vp) =A€Y — Al
100 0,00808 0,001594 0,006486
2,560 | 1,146 1000 0,0179 0,00832 0,00954
1000000 0,0244 0,01423 0,0174
100 0,00157 0,000256 0,00131
1,440 | 0,7834 | 1000 0,00625 0,00486 0,00139
1000000 0,0105 0,0103 0,000224
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AMMONIAKPOTENTIALS

A.7 Tabellen mit Daten zu Energien hherer Zustiinde des Ammoniakpotentials

Tabelle A.7.1: Vergleich der mittels Numerov berechneten Energien der Zustdinde von Am-

moniak mit den Literaturwerten.

Zustand | Numerov E in [eV] | Literaturwert E in [eV] [] | Betrag der Abweichung in [eV]

0+ 0 0 0

0- 8,49-107° 9,79-107° 1,30-107°
1+ 0,1113427 0,1156066 4,2639-1073
1- 0,1147725 0,1200316 5,2591-1073
2+ 0,1932852 0,1981850 4,8998-1073
2- 0,2227060 0,2333606 1,06545-1072
3+ 0,2818196 0,2955994 1,37798-1072
3- 0,3390522 0,3590099 1,99577-1072
4+ 0,4031241 0,4274975 2,43734-1072
4- 0,4704189 0,5015161 3,10972-1072
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A.8 ABBILDUNGEN UND DATEN ZUR OPTIMIERUNGSRECHNUNG

A.8 Abbildungen und Daten zur Optimierungsrechnung

Tabelle A.8.1: Bestimmung der funktionalen Form von Sn (V7).

Potentialtiefe V7 in [eV] | Sn(V7) in [(eV)?]
1,00 2,6077897-1072
2,00 6,951416-1073
3,00 2,362752-1073
4,00 7,72654-1074
5,00 1,83991-107%
6,00 1,0583-107°
6,10 6,066-106
6,20 3,267-107°
6,28 2,189:1076
6,29 2,121-1076
6,30 2,067-1076
6,31 2,027-1078
6,32 2,015-1078
6,33 2,001-1076
6,34 2,001-1078
6,40 2,355-1076
6,50 4,018-107
6,60 6,982:1076
6,70 1,1148:107°
6,80 1,6436-107°
6,90 2,2777-107°
7,00 3,0126-107°
8,00 1,44737-107%
9,00 3,06932-10~*
10,00 4,92034-107%
15,00 1,448606-1073
30,00 3,468586:1073

100,00 6,695825-1073
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A.9 UBERSICHT UND ERLAUTERUNG DER DATEIEN

A.9 Ubersicht und Erliuterung der Dateien

Die Fortran-Programme der jeweiligen Berechnungen befinden sich auf der beigefiigten
CD. Zu jedem Programm (.f03) ist auch die ausgegebene Textdatei (.txt) mit den Daten der
Rechnung aufgefiihrt. Die Programme fiir die Bearbeitung der verschiedenen Probleme sind
in Ordnern sortiert:

¢ Harmonischer Oszillator:

— Numerov_Harmonischer Oszillator.f03 — In dieser Datei ist das Numerov-Verfahren
erldutert und dient als Referenz fiir die verwendeten Numerov-Verfahren in den
restlichen Dateien.

— Numerov_Harmonischer_ Oszillator.txt

Poschl-Teller:

— Numerov_modifiziertes_Poeschl_Teller Potential.f03

— Numerov_modifiziertes_Poeschl_Teller_Potential.txt

Vergleich Plenter:

Numerov_Manning Vergleich_Plenter.f03
Numerov_Manning Vergleich_Plenter.txt
Numerov_Manning Vergleich_Christiansen_und_Cunha.f03

Numerov_Manning Vergleich_Christiansen_und_Cunha.txt

¢ Ammoniakmolekul:

— Daten Plenter:

*

*

*

*

Numerov_Ammoniak_Vergleich_Plenter.f03
Numerov_Ammoniak_Vergleich_Plenter.txt
Numerov_Ammoniak_hoehere_Zustaende.f03
Numerov_Ammoniak_hoehere_Zustaende.txt

- Optimierungsrechnung:

*

*

*

Numerov_Ammoniak_Optimierung Zusammenhang.f03
Numerov_Ammoniak_Optimierung_Zusammenhang.txt
Numerov_Ammoniak_Optimierung Programm_1_Combi.f03
Numerov_Ammoniak_Optimierung Programm_1_Combi.txt
Numerov_Ammoniak_Optimierung Programm_2_Combi.f03
Numerov_Ammoniak_Optimierung_Programm_2_Combi.txt
Numerov_Ammoniak_Optimierung_Programm_3.f03
Numerov_Ammoniak_Optimierung Programm_3.txt
Numerov_Ammoniak_Optimale_Potentialtiefe.f03
Numerov_Ammoniak_Optimale_Potentialtiefe.txt
Umrechnung Aquino_Manning Berechnung Sn.f03
Umrechnung Aquino_Manning Berechnung Sn.txt

Die einzelnen Dateien sollten in obiger Reihenfolge chronologisch betrachtet werden,
da die Kommentierung des Quelltextes aus Griinden der Ubersicht und zur Vermeidung
von Redundanz nicht in jeder Datei erneut vollstindig vorliegt.

67



	 Zusammenfassung
	Einleitung
	Theoretische Grundlagen
	Das Ammoniakmolekül NH3 und dessen Verbindung zum Manning-Potential
	Die Analyse des Manning-Potentials
	Allgemeines zur nichtrelativistischen Quantenmechanik spinloser Teilchen
	Zeitabhängige dreidimensionale Schrödingergleichung
	Zeitunabhängige dreidimensionale Schrödingergleichung – Separationsansatz (, t)=(t)()
	Zeitunabhängige eindimensionale Schrödingergleichung – Separation der räumlichen Koordinaten


	Numerov-Verfahren
	Allgemeines Vorgehen des Numerov-Verfahrens
	Der Numerov-Algorithmus
	Startwerte für den Numerov-Algorithmus
	Divergenzverhalten der Wellenfunktion beim Numerov-Algorithmus
	Schießverfahren
	Bisektion

	Das Fortran-Programm
	Parameter und Variablen
	Schleifenstruktur
	Unterprogramme

	Umformungen und Entdimensionalisierung der Schrödingergleichung zur numerischen Bearbeitung
	Parameter der verschiedenen Potentialformen

	Verifizierung des Numerov-Verfahrens anhand von Vergleichen
	Vergleiche mit den analytischen Lösungen verschiedener Potentiale
	Vergleiche mit den numerischen Verfahren von Plenter sowie Christiansen und Cunha


	Das Ammoniakmolekül NH3
	Vergleich mit den Ergebnissen der Variationsrechnung von Plenter 
	Berechnung der Energien höherer gebundener Zustände mit den Parametern von Plenter
	Bestimmung der optimalen Potentialtiefe des Manning-Potentials zur Beschreibung von NH3
	Umformung der Schrödingergleichung für die Optimierungsrechnung
	Bestimmung der funktionalen Form von Sn(VT)
	Programme zur Bestimmung der optimalen Potentialtiefe
	Ergebnisse der Optimierungsrechnung
	Einfluss der Barrierehöhe und der reduzierten Masse auf die optimale Potentialtiefe
	Vergleich mit den Ergebnissen von Manning und Aquino et al.


	Schlussfolgerung
	Anhang
	Naturkonstanten
	Umrechnungstabelle Energieeinheiten
	Umrechnung der Literaturwerte für die Energieeigenwerte von Ammoniak
	Vergleich mit den analytischen Ergebnissen des harmonischen Oszillators – Daten 
	Vergleich mit den analytischen Ergebnissen des Pöschl-Teller Potentials – Daten 
	Abweichungen zwischen dem Numerov-Verfahren und der Variationsrechnung von Plenter
	Tabellen mit Daten zu Energien höherer Zustände des Ammoniakpotentials
	Abbildungen und Daten zur Optimierungsrechnung
	Übersicht und Erläuterung der Dateien



