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Preface

I was not very excited about the topic of this thesis as Mr. Münster assigned it
to me at the beginning. The fact that I’ve made a long detour before I finally
toddled off to the theoretical physics institute, which should’ve been done
several years ago, dulled my motivation somewhat. I couldn’t even choose
a topic myself at that time, since I really had no idea what would be a
reasonable start for me in theoretical physics, although, ironically, I’ve always
wanted to do it.

Bearing in mind that I have to finish this thesis no matter what, because
it would be my last shot to get my first degree title. I started to sniff for
clues about what I was dealing with, and soon I became absorbed in the
literature; this thesis, which touches the statistical field theory, turned out
to be a perfect guidance for a novice like me.

For the understanding of the fundamental concepts in field theory I have
mainly stuck to Michel Le Bellac and Anthony Zee’s interpretation [1,2], then
I combined and reformulated their explanation in my own words, and that
basically put up chapter 2. I was not afraid to dig into the details here, since
I wanted to make this part self-explanatory, in particular, the mechanism
of Wick contractions is the key to understand Feynman diagrams, which are
efficient ways to visualize the former, as we will see, those Feynman diagrams
are crucial to this thesis. In Chapter 1 I briefly introduced the phenomenon
of interface roughening near critical point and how statistical field theory is
related to the critical phenomena in condensed matter physics [1,3,4], together
with Chapter 2, they form the part I. Section 2.3 and 2.4 are about connected
correlation functions [1] and proper vertices [1,5], which are actually not closely
related to the core of this thesis, i.e. part II, yet belong to the perturbation
theory.

In chapter 3 I went on to the physical model of the kink interface, which is
set up near the critical point of a continuous phase transition. A perturbative
calculation around the classic kink solution followed in chapter 4; all the
Feynman diagrams up to 2-loop order was then carefully derived from the
generating functional, there Hoppe’s detailed handling in a similar situation [6]
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inspired me. As for the concrete calculations of selected diagrams, I adopted
the same method used by Michael Köpf [7].
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Part I

Motivation and foundation





1

Introduction

I like pushing boundaries.

— Lady Gaga

Interface is a surface forming a common boundary separating two portions of
matter. Many systems of statistical mechanics, such as liquid gas coexistence,
binary liquid mixtures or anisotropic ferromagnetism, possess interesting in-
terfaces.

P

T

gas

solid
liquid

critical point

Figure 1.1 Phase diagram

Typical pure substances have phase diagrams of the classic form shown
in Figure 1.1. As we can see, upon approaching a critical point the difference
between liquid and gas gradually vanishes, in other words, the width of their
otherwise sharp localized interface extends to all possible dimensions—we
call this interface roughening; at the same time, the density fluctuations get
larger, and the correlation length diverges. The fluid turns opaque once the
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linear dimensions of the fluctuations become comparable with the wavelength
of the light. Analogous phenomena have also been observed in a binary fluid
systems as well as at the ferromagnetic transitions. It turns out that these
systems exhibit universal behaviour of certain quantities when reaching the
critical point; they undergo second-order phase transitions, which are also
called the critical phenomena.

The long range correlation caused by the second-order phase transitions
could be troublesome as it plants divergency in the classic perturbation the-
ory; but on the other hand, ignoring the complexity in such large-scale coop-
erative phenomena, we might expect that some of its properties would only
depend on very general features (like order parameter) rather than details of
the interactions. This aspect is called universality. In fact the critical phe-
nomena of the systems mentioned above all belong to the same universality
class as the Ising model [9], which was developed to describe ferromagnetic
transition.

The Ising universality class can be alternatively accommodated in the
framework of the Ginzburg-Landau theory [10], which is a Euclidean, massive
and real ϕ4-theory. Its Lagrangian possesses a double well potential, whose
minima respectively correspond to, say, the two fluids A and B in a binary
fluid system. When a spontaneous symmetry breaking occurs in the system,
that is when the two components of the fluid begin to separate, we get the
picture in Figure 1.2,

a z

ϕ

fluid B

fluid A

Figure 1.2 The kink solution in ϕ4-theory

where ϕ is, according to the bold pick by Lev Davidovich Landau [11], the order
parameter, in this special case it can be defined as the difference between the
concentrations of the two fluids A and B; the interface is set perpendicular to
the z-axis, along which we see the separation of the fluids. The kink interface,
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which was proposed back then by Johannes Diderik van der Waals [12], can
then be explored in the field theory.

It is especially interesting to investigate the dependence of the interface
width on the system size, as it characterizes the roughening of the interface.
Earlier approaches involving capillary wave model [13] suggested that the in-
terface diverges in width logarithmically as its size L increases. By employing
the Ginzburg-Landau-Model Michael Köpf implemented the interfacial pro-
file 〈ϕ〉 into a properly defined interface width w, the analytical results [14]
based on the one-loop approximation of 〈ϕ〉 has shown encouraging agree-
ment with capillary wave theory and Monte Carlo simulations [15–18] of the
Ising model.

For a better quantitative comparison with Monte Carlo simulations, ap-
proximation of higher orders are required. For this purpose, a further explo-
ration of the interfacial profile 〈ϕ〉 up to 2-loop order will be presented in
this thesis.

5
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Critical phenomena

Questions about the cause and mechanism of the phase transitions belong to
the oldest problems in physics. Paul Ehrenfest [19] originally classified various
kinds of phase transitions by judging the different thermodynamic quantities
that go through discontinuous changes. In modern classification scheme the
second-order phase transitions, or continuous phase transitions, are those in
which basic thermodynamic quantities show sudden changes, but more gentle
than a discontinuous jump in the basic variables.

2.1 Ferromagnetic transition

The ferromagnetic transition serves as the most familiar example of a second-
order phase transition [1,3]. Once heated above the Curie-Temperature TC the
ferromagnet loses its magnetization, no preferred spatial direction of the fer-
romagnet can be identified, and the state is invariant under all rotations.
Below TC , by contrast, the ferromagnet possesses a spontaneous magnetiza-
tion, since it is not due to any applied field; from the microscopic point of
view this means that all the electrons in the incomplete inner shells of the
atoms within the ferromagnet have their spins effectively aligned in one pre-
ferred direction, since every spin is associated with a magnetic moment, all
of which add when aligned, thus producing the magnetization. The state of
the ferromagnet is then only invariant under rotations around axes parallel
to the magnetization direction. The phenomenon is known as spontaneous
symmetry breaking.

In addition one introduces the order parameter of the transition, the
macroscopic variables, which can only be meaningfully defined for the two
involved phases of the transition. For the above example the magnetization,
zero in the high-temperature phase and non-zero in the low-temperature
phase, are the order parameters of the ferromagnetic transition.
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2.2 Ising model

The first non-trivial model for ferromagnetism was suggested by Wilhelm
Lenz to his student Ernest Ising as a thesis subject. The interaction between
spins, which tends to align them, seems essential to ferromagnetism, it’s thus
reasonable to replace the atoms of the ferromagnet by the electrons, which are
responsible for the ferromagnetism, in other words, the electrons are placed
at the sites of the underlying crystal lattice. For further simplification only
the interaction between the adjacent spins are considered, so the simplest
Hamilton with a tendency to align the spins is

H = −J
∑
〈i,j〉

σiσj,

where J is a positive coupling constant, and the σi are Pauli matrices; the
notion 〈i, j〉 indicates summation over nearest neighbours. The Hamilton de-
fines the quantum Heisenberg model. Near the critical point, quantum fluctu-
ations are dominated by statistical fluctuations, hence the Pauli matrices σi
may be replaced by classical vectors Si of length 1, this defines the classical
Heisenberg model.

The resultant model is still too complicated, Lenz assumed another ap-
proximation, the vectors Si are replaced by scalers Si, which can only take
two values, S = +1 or Si = −1. Then the Hamilton can be written as

H = −J
∑
〈i,j〉

SiSj, Si,j = ±1,

and the partition function Z as

Z =
∑
{Si}

e
J
kT

∑
〈i,j〉 SiSj ,

with the first sum running over all configurations∑
{Si}

=
∑
S1=±1

∑
S2=±1

· · · .

The whole strategy is to find the equation simple enough to solve, yet not
to lose the essential features of the physics, but at that time there existed
absolutely no methods for assessing the approximations.

Ising calculated the free energy for the model in one dimension, but didn’t
find the phase transition as predicted, nonetheless, the model was named
after him. Until very much later, Rudolf Peierls [20] generalized the result and
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2.3 Ginzburg-Landau Theory

proved that in the absence of long-range interactions, no one-dimensional
system can display a phase transition. The solutions to the two dimensional
Ising model, especially Onsager’s calculation [21], proved the existence of a
ferromagnetic transition. A complete solution to the three-dimensional Ising
model still doesn’t exist until present, but the well known approximations
by now are so convincing, that hardly any additional information could be
expected from the precise analytical solution. Today we know that Ising
model is qualitatively a good model of ferromagnetism, but quantitatively
some of its predictions are poor.

2.3 Ginzburg-Landau Theory

As mentioned, Ising model is complicated, we needed approximation, and
many kinds of mean field theories were developed before, following the work
of Pierre Weiss [22]. However the approximations are not always reliable, and
they neglect the effects of fluctuations. This problem leads us to the theory
of Ginzburg and Landau, a statistical field theory, which is well adapted to
deal with fluctuations.

In his previous work Landau associated each phase transition with a bro-
ken symmetry, and used the order parameter to describe the nature and
extent of symmetry breaking, then he translated this idea into a mathemati-
cal theory, known as Landau theory, which is another classic approach to deal
with second-oder phase transitions. Based on Landau theory the Ginzburg-
Landau theory introduces a Hamiltonian H[ϕi] depending on the order pa-
rameter, or a field ϕi, which is defined on the sites i of a lattice and plays
the same role as the Ising spin, with the probability of the configuration ϕi
being proportional to e−H[ϕi]. The connection between Ginzburg-Landau the-
ory and the Ising model is not a priori clear, we merely assume they belong
to the same universality class.

It should be stressed that the Ginzburg-Landau Hamiltonian H[ϕi] is
intended to describe the physical system only in the vicinity of the critical
point, and it has the form

H[ϕi] = aD
∑
i

[
1

2
(∇ϕi)2 +

1

2
r0(T )ϕ2

i +
1

4!
u0ϕ

4
i

]
,

where a is the lattice spacing, the notations r0 and u0 are conventional in
statistical physics. By analogy with Ising model, interactions between nearest
neighbors are introduced by means of the discretized gradient ∇ϕi defined
by

∇ϕi = ∇ϕ(xi) =
1

a
[ϕ(xi + µ)− ϕ(xi)],

9



2 Critical phenomena

where the vector µ links site xi to one of the nearest neighbours. Instead
of ϕ(xi − µ)ϕ(xi) the formulation (∇ϕi)2 is adopted in the Hamiltonian, in
fact, when comparing both, the latter one only yields extra terms ϕ2

i , which
amounts to a redefinition of r0. Then the partition function is written as

Z =

∫ ∏
i

dϕi e−H[ϕi].

It’s actually more convenient to calculate with a continuum formulation,
where xi varies continuously within the physical system, instead of insisting
upon the lattice, then xi → x, and the field ϕ(xi) becomes a function of the
point x, ϕ(xi)→ ϕ(x).

In the critical region the important fluctuations have the length scale
� a, so that the continuum formulation should be equivalent to the lat-
tice formulation. In the continuum limit the Ginzburg-Landau Hamiltonian
becomes

H[ϕ] =

∫
dDx

[
1

2
(∇ϕ)2 +

1

2
r0(T )ϕ2 +

1

4!
u0ϕ

4

]
.

The Hamiltonian is a functional of the field ϕ(x). In order to construct the
partition function we must integrate over all the configuration ϕ(x), i.e. we
must evaluate a path integral

Z =

∫
Dϕ e−H[ϕ]. (2.1)

The integration measure Dϕ is defined by

Dϕ = lim
a→0
N (a)

∏
i

dϕi ,

where N (a) is a factor chosen to ensure that the limit exists, these multi-
plicative constants are unimportant, since they cancel between numerator
and denominator during the calculation of correlation functions later. The
existence of such an integration measure still needs mathematical proof, in
tough cases we should go back to the lattice formulation.

10
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Perturbation theory

In order to start calculating the fluctuations in the phase transition, we still
need go through the basic concepts and techniques in field theory. From
the mathematical point of view, statistical field theory is closely related to
quantum field theory, they have similar formulations, so that we can borrow
the vocabulary and the notations from the quantum field theory. Accordingly
we could rewrite the Laundau-Ginzburg Hamiltonian as

H[ϕ] =

∫
dDx

[
1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

g

4!
ϕ4

]
, (3.1)

with r0 → m2 and u0 → g, where m is a mass and g a coupling constant.

3.1 Wick’s theorem and the generating functional

The essential aim is to evaluate the n-point correlation functions, which is
the expectation value of the product of n fields

〈ϕ(x1)ϕ(x2) · · ·ϕ(xn)〉 =
1

Z

∫
Dϕ ϕ(x1)ϕ(x2) · · ·ϕ(xn)e−H[ϕ],

with the partition function Z given by (2.1). Before diving into the details
of the calculation, I would like to demonstrate the simple cases first, then it
should be easier to follow the general idea.

Notice that the probability distribution e−H[ϕ] contains a Gaussian part.
A significant fraction of the theoretical physics literature consists of varying
and elaborating the basic Gaussian integral, [2] and here we start already with
a generating function Z(j) defined by

Z(j) =

∫
dx p(x)ejx =

∫
dx e−

1
2
ax2+jx, (3.2)
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where p(x) = e−
1
2
ax2 is a Gaussian probability distribution over a random

variable, you see, the generating function is actually a variation of Gaussian
integral. The moments 〈xn〉, defined by

〈xn〉 =

∫
dx xnp(x)∫
dx p(x)

,

can be obtained by differentiating the generating function Z(j)

〈xn〉 =
1

Z(0)

∂nZ

∂jn

∣∣∣∣
j=0

;

together with the evaluation

Z(j) =

√
2π

a
e
j2

2a = Z(0)e
j2

2a ,

we obtain

〈x2n〉 =
∂2n

∂j2n
e
j2

2a

∣∣∣∣
j=0

=
∂2n

∂j2n

∑
n

1

n!

(
j2

2a

)n∣∣∣∣
j=0

=
∂2n

∂j2n
1

n!

(
j2

2a

)n
= (2n− 1)(2n− 3) · · · 5 · 3 · 1 1

an
. (3.3)

Imagine 2n points and connect them in pairs, the first point can be connected
to one of the rest 2n − 1 points, the second point can now be connected to
the remaining 2n− 3 points, and so on, until all points are paired. We could
interpret the factor (2n−1)(2n−3) · · · 5·3·1 as the number of ways to connect
2n points in pairs, then to each pair a factor a−1 is assigned. Gian Carlo
Wick made this clever observation, which further leads to Wick’s theorem.
A pattern of pairing all the points is known as Wick contraction.

To make this important theorem more clear, that is, to really distinguish
the points, we promote the generating function (3.2) to the one with n vari-
ables

Z(j) =

∫ ∏
i

dxi e−
1
2
xTAx+jTx

=

[
(2π)n

detA

] 1
2

e
1
2
jTA−1j , (3.4)

where A is a real symmetric n × n matrix, x and j are both n-dimensional
vectors, with xTAx =

∑
i,j xiAijxj and j

Tx =
∑

i jixi.

12



3.1 Wick’s theorem and the generating functional

Accordingly the generalization of (3.3) yields a moment of order 2n

〈xkxl · · ·xpxq〉 =
∂2n

∂jk∂jl · · · ∂jp∂jq
e

1
2
jTA−1j

∣∣∣
j=0

=
∑
Wick

A−1ab · · ·A
−1
cd ,

where the set of indices {a,b,. . . ,c,d} represents a permutation of {k,l,. . . ,
q,p}, the way of pairing the indices under A−1 suggests a certain Wick con-
traction, and the sum is over all the possible Wick contractions. The calcu-
lation is straightforward, starting with a second moment

〈xmxn〉 =
∂2

∂jm∂jn

(
1

2

∑
k,l

jkA
−1
kl jl

)
= A−1mn, (3.5)

until finally Wick’s theorem is taking shape, all the moments of a Gaussian
distribution can be expressed as functions of the second moments alone. [1]

Now we’ve made enough preparation to discuss about correlation func-
tions. In the case of the field theory, similar to the generating function, we
introduce the generating functional

Z(j) =

∫
Dϕ exp

{
−H[ϕ] +

∫
dDx j(x)ϕ(x)

}
, (3.6)

where the function j(x) is called the source of the field ϕ. The 2n-point
correlation functions are nothing but the moments of order 2n, obtained by
differentiating the functional Z(j)

〈ϕ(xk)ϕ(xl) · · ·ϕ(xp)ϕ(xq)〉 =
1

Z(0)

δ2nZ

δj(xk)δj(xl) · · · δj(xp)δj(xq)

∣∣∣∣
j=0

.

It’s convenient to divide the Ginzburg-Landau Hamiltonian into a Gaussian
part H0

H0 =

∫
dDx

[
1

2
(∇ϕ)2 +

1

2
m2ϕ2

]
,

and a interaction part V

V =

∫
dDx V [ϕ] =

g

4!

∫
dDx ϕ4(x),

then Z(j) can be written as

Z(j) =

∫
Dϕ exp

{
−H0[ϕ]− V [ϕ] +

∫
dDx j(x)ϕ(x)

}
.

However, this formulation cannot be evaluated directly, that’s why we need
to expand it in a perturbation series.

13



3 Perturbation theory

3.2 The perturbation expansion and Feynman diagrams

In order to get familiar with the general rules for the perturbative calculation
of correlation functions, we further adopt the Ginzburg-Landau Hamiltonian,
or more exactly, the interaction ϕ4, and the results can be easily generalized
to other interactions.

Again we start with the simple case in one variable

Z(j) =

∫
dx e−

1
2
ax2− λ

4!
x4+jx.

It’s easy enough to calculate the integral, if we expand e−
λ
4!
x4 , so that

Z(j) =

∫
dx e−

1
2
ax2+jx

[
1− λ

4!
x4 +

1

2!

(
λ

4!

)2

x8 + · · ·

]

=

[
1− λ

4!

(
d
dj

)4

+
1

2!

(
λ

4!

)2( d
dj

)8

+ · · ·

]∫
dx e−

1
2
ax2+jx

= e−
λ
4!(

d
dj )

4
∫

dx e−
1
2
ax2+jx =

√
2π

a
e−

λ
4!(

d
dj )

4

e
j2

2a .

Here we’ve used the reformulation

f(x)ejx = f

(
∂

∂j

)
ejx,

which can be proved through a Taylor expansion of f
(
∂
∂j

)
near the origin.

Remember we still need to evaluate the moment 〈x2n〉 by

〈x2n〉 =
1

Z(0)

∫
dx x2ne−

1
2
ax2− λ

4!
x4 =

1

Z(0)

∂2nZ

∂j2n

∣∣∣∣
j=0

,

but first we want to take a closer look at the differentiation

∂2nZ

∂j2n

∣∣∣∣
j=0

=

√
2π

a

∂2n

∂j2n

[
e−

λ
4!(

d
dj )

4

e
j2

2a

]∣∣∣∣
j=0

=

√
2π

a

∂2n

∂j2n

{[
1− λ

4!

(
d
dj

)4

+
1

2!

(
λ

4!

)2( d
dj

)8

+ · · ·

]

×

[
1 +

j2

2a
+

1

2!

(
j2

2a

)2

+
1

3!

(
j2

2a

)3

+ · · ·

]}∣∣∣∣∣
j=0

, (3.7)

14



3.2 The perturbation expansion and Feynman diagrams

which boils down to an expansion in powers of λ. To obtain the term of order

λ, we obviously need to extract − λ
4!

(
d
dj

)4
from e−

λ
4!(

d
dj )

4

. Notice that only

the term 1
(2+n)!

(
j2

2a

)2+n
from the expansion of e

j2

2a survives after taking all

the differentiations, both ∂2n

∂j2n
and − λ

4!

(
d
dj

)4
; applying j = 0 in the end, then

without considering the factor
√

2π
a

we get

− λ
4!

(4 + 2n)!

(2 + n)!

1

(2a)2+n
,

analogous
1

2!

(
− λ

4!

)2
(8 + 2n)!

(4 + n)!

1

(2a)4+n

can be deduced for the term of order λ2. In general, the term of order λm is
written as

1

m!

(
− λ

4!

)m
(4m+ 2n)!

(2m+ n)!

1

(2a)2m+n

=
1

m!

(
− λ

4!

)m
(4m+ 2n− 1)(4m+ 2n− 3) · · · 5 · 3 · 1 1

a2m+n
.

This expression looks familiar compared to (3.3), and indeed we can figure out
a pattern here using Wick’s theorem. For the term of order λm we can think of
4m+2n points, with 2n external points originated from ∂2n

∂j2n
(or x2n) relating

to the moment of order 2n and 4m internal points from 1
m!

(
− λ

4!

)m ( d
dj

)4m
in the expansion of e−

λ
4!(

d
dj )

4

(or 1
m!

(
− λ

4!

)m
x4m in the expansion of e−

λ
4!
x4),

the rest, you already know, is to pair the points into Wick contractions.
Richard Feynman merged the 4m internal points into m vertices, with

each vertex sending out 4 open connections from one point as in Figure 3.1,
and presented each Wick contraction with lines drawn among the external
points and the vertices, the resultant diagram is known as a Feynman dia-
gram.

Figure 3.1 Vertex

15



3 Perturbation theory

The next step is to calculate Z(0) with

Z(0) =

∫
dx e−

1
2
ax2− λ

4!
x4+jx

∣∣∣∣
j=0

= e−
λ
4!(

d
dj )

4
∫

dx e−
1
2
ax2+jx

∣∣∣∣
j=0

=

(
2π

a

) 1
2

e−
λ
4!(

d
dj )

4

e
j2

2a

∣∣∣∣∣
j=0

=

(
2π

a

) 1
2

{[
1− λ

4!

(
d
dj

)4

+
1

2!

(
λ

4!

)2( d
dj

)8

+ · · ·

]

×

[
1 +

j2

2a
+

1

2!

(
j2

2a

)2

+
1

3!

(
j2

2a

)3

+ · · ·

]}∣∣∣∣∣
j=0

. (3.8)

If you compare the expansion with (3.7), only the differentiation ∂2n

∂j2n
is miss-

ing, which, by following the same idea in solving (3.7), simply means that
the external points are excluded from the Wick contractions, and only the
internal points, or the vertices are involved. The resultant Feynman diagrams
are known as vacuum fluctuations.

To obtain the moment 〈x2n〉, we must divide (3.7) by (3.8). Division by
Z(0) cancels all the diagrams containing vacuum fluctuations from (3.7).
Instead of the explicit calculation we can prove this in a general way.

A diagram of order λm in (3.7), with m = p + q; possesses a factor 1
m!

and m vertices, suppose p vertices of them form vacuum fluctuations, which
are disconnected from the rest of the diagram containing the external points,
and there are Cq

m ways of choosing p vertices out of m. Then (3.7) can be
written as ∑

m

∑
p+q=m

Cq
m

m!
[vacuum fluctuation(p)][rest(q)]

=
∑
p,q

1

p!q!
[vacuum fluctuation(p)][rest(q)]

=
∑
p

1

p!
[vacuum fluctuation(p)]

∑
q

1

q!
[rest(q)]

Notice that
∑

p
1
p!

[vacuum fluctuation(p)] is just Z(0), and the moment 〈x2n〉
is then given by

∑
q

1
q!

[rest(q)], which can be reconstructed using Wick’s
theorem.
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3.2 The perturbation expansion and Feynman diagrams

In addition, instead of λ we can expand Z(j) in powers of j as well

Z(j) =
∑
s

1

s!
js
∫

dx xse−
1
2
ax2− λ

4!
x4

= Z(0)
∑
s

1

s!
js〈xs〉. (3.9)

All these features in the case of one variable are structurally the same as
the corresponding features in field theory. For more details, we still want to
add the case of n variables

Z(j) =

∫ ∏
q

dxq e−
1
2
xTAx− λ

4!
x4+jTx

=

[
(2π)n

detA

] 1
2

e−
λ
4!

∑
i

(
∂
∂ji

)4
e

1
2
jTA−1j ,

where x4 =
∑

i x
4
i . Alternatively, as in (3.9) Z(j) can be written as

Z(j) =
∑
s

∑
i1,...,is

1

s!
ji1 · · · jis

∫ ∏
q

dxq xi1 · · · xise−
1
2
xTAx− λ

4!
x4

= Z(0)
∑
s

∑
i1,...,is

1

s!
ji1 · · · jis〈xi1 · · ·xis〉.

Now with Wick’s theorem we evaluate 〈xixj〉 up to order λ2

〈xixj〉 =
1

Z(0)

∫ ∏
q

dxq xixje−
1
2
xTAx

×

[
1− λ

4!

∑
n

x4n +
1

2!

(
− λ

4!

)2∑
m,n

x4mx
4
n +O(λ2)

]

The idea is to draw possible types of Feynman diagrams for each term, in-
volving all the external and internal points with the latter treated as vertices;
then the diagrams containing vacuum fluctuations are discarded, since they
are canceled after the division by Z(0). In this case xi and xj are the external
points, and the order in λ suggests the number of the vertices.

The term of order λ0, without vertices, simply yields A−1ij , as already
evaluated in (3.5). We can think of the index as labels for the sites on a
lattice, and the matrix element A−1ij , known as a propagator, describes the
propagation between i and j.

17



3 Perturbation theory

For the term of order λ there are two types of diagrams [1], shown in Figure
3.2.

Figure 3.2

The analytic expression corresponding to a diagram is evaluated accord-
ing to the Feynman rules : To every line joining two points, a propagator is
assigned; every vertex possesses a factor−λ, and over every vertex is summed;
for every diagram a multiplicative symmetry factor is calculated. Then the
first diagram in Figure 3.2 is written as

− λ
4!
· 12

∑
n

A−1in A
−1
nnA

−1
jn ,

The factor 12 suggests the number of all possible Wick contractions, the
whole factor 12

4!
= 1

2
yields the symmetry factor. The second diagram contains

vacuum fluctuation and does not feature in the expansion.
As for the term of order λ2 we find three types of diagrams containing no

vacuum fluctuations [1], shown in Figure 3.3.

Figure 3.3

Thus the term is summarized as

λ2
∑
m,n

[
1

6
· A−1im(A−1mn)3A−1jn +

1

4
· A−1imA−1mmA−1mnA−1nnA−1jn

+
1

4
· A−1im(A−1mn)2A−1nnA

−1
jn

]
,

with the summands corresponding to the order of the diagrams.

18



3.2 The perturbation expansion and Feynman diagrams

We should still pay attention that the vertices m and n can be permuted,
which yields a multiplicative factor 2!, but this is exactly canceled by the
factor 1

2!
from the expansion of e−

λ
4!
x4 . Analogues, for the term of order λn,

the factor n! from permuting the vertices is canceled by the factor 1
n!

from
the expansion of the exponential.

The discussion above can be almost directly carried over to the pertur-
bative field theory. For the Landau-Ginzburg Hamiltonian∫

dDx
[

1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

g

4!
ϕ4

]
the generating functional reads

Z(j) =

∫
Dϕ exp

{∫
dDx

(
−1

2
(∇ϕ)2 − 1

2
m2ϕ2 − g

4!
ϕ4 + jϕ

)}
= exp

[
− g

4!

∫
dDz

(
δ

δj(z)

)4
]

·
∫
Dϕ exp

[∫
dDx

(
−1

2
(∇ϕ)2 − 1

2
m2ϕ2 + jϕ

)]
= N exp

[
− g

4!

∫
dDz

(
δ

δj(z)

)4
]

· exp

(
1

2

∫
dDx dDy j(x)G0(x− y)j(y)

)
,

whereG0(x−y) is the two-point correlation function of the Gaussian model [1,8],
with

G0(x− y) =

∫
dDk

(2π)D
e−ik(x−y)

k2 +m2
, (3.10)

it plays the same role of A−1ij as the propagator; N represents a normalization
constant, it cancels during the calculation of correlation functions.

We can also expand Z(j) in j

Z(j) =
∑
s

1

s!

∫
dx1 · · · dxs j(x1) · · · j(xs)

∫
Dϕ ϕ(x1) · · ·ϕ(xs)e−H

= Z(0)
∑
s

1

s!

∫
dx1 · · · dxs j(x1) · · · j(xs)G(s)(x1, . . . , xs),

where G(s)(x1, . . . , xs) is known as the s-point correlation functions or s-point
Green’s functions, which are the analogues of the moments. In particular, the

19



3 Perturbation theory

2-point Green’s function reads

G(xi, xj) =
1

Z(0)

∫
Dϕ ϕ(xi)ϕ(xj)e−H ,

which share exactly the same type of Feynman diagrams with 〈xixj〉. In
the corresponding Feynman rules, A−1ij is replaced by G0(xi − xj) and the
summation over the vertices is replaced by integral.

We can take a further look at the 4-point Green’s function G(xi, xj, xk, xl)
up to order g

G(xi, xj, xk, xl)

=
1

Z(0)

∫
Dϕ ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)e−H

=
1

Z(0)

∫
Dϕ ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)e−H0

·
[
1− g

4!

∫
dDz ϕ(z)4 +O(g2)

]
Again the evaluation follows Wick’s theorem. The term of order g0 is the
sum of three disconnected diagrams [1] shown in Figure 3.4,

Figure 3.4

written as

G0(xi − xj)G0(xk − xl) +G0(xi − xk)G0(xj − xl) +G0(xi − xl)G0(xj − xk).

For the order g there are three types of diagrams [1], as in Figure 3.5.

Figure 3.5

The first type of diagram (from left to right in Figure 3.5) contains vac-
uum fluctuations, and is eliminated on division by Z(0); the second type

20



3.3 Connected correlation functions

represents disconnected diagrams, and can be written as product of two-
point correlation functions, which have already been calculated; the third
type, the most interesting one, is connected, and is expressed as

− g
4!
· 4!

∫
dDz G0(xi − z)G0(xj − z)G0(xk − z)G0(xl − z).

3.3 Connected correlation functions

As already observed in the example of G(xi, xj, xk, xl), the disconnected dia-
grams can be separated into two or more disjoint parts. To ease the calcula-
tion we want to limit ourselves to the connected diagrams, which cannot be
further decomposed without cutting at least one line.

In general the n-point correlation function G(s) can be subdivided into
connected diagrams∗, as in Figure 3.6.

∏
n

n︷︸︸︷ n︷︸︸︷ n︷︸︸︷
︸ ︷︷ ︸

qn

Figure 3.6

The subdiagrams are sorted out according to the number of their exter-
nal points, we assume that there are qn connected subdiagrams G(n)

c with
n external points, so that

∑
n nqn = s. The number of such disconnected

diagrams is
s!∏

n

qn!(n!)qn
.

By permuting the s external points of G(s) we generate s! candidates for the
disconnected diagrams, but the permutation of the qn subdiagrams G(n)

c or
the n external points connected to any of them leads to equivalent diagrams,

∗There might be print errors in the original proof given by Le Bellac [1], here I’ve redrawn
the schema in Figure 3.6, and modified the proof accordingly, yet I also came down to
the same conclusion, you may check it if you care.
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3 Perturbation theory

whence the division by
∏

n qn!(n!)qn . The generating function Z(j) then reads

Z(j)

Z(0)
=
∑
s

1

s!

∫
dx1 · · · dxs j(x1) · · · j(xs)G(s)(x1, . . . , xs)

=
∑
s

1

s!

∫
dx1 · · · dxs j(x1) · · · j(xs)

×
∑

∑
n nqn=s

G(1)
c (x1) · · ·G(n)

c (· · ·xs)

=
∑

q1,...,qn

∏
n

1

qn!

[∫
dx1 · · · dxn j(x1) · · · j(xn)G

(n)
c (x1, . . . , xn)

n!

]qn

= exp

(∑
n

1

n!

∫
dx1 · · · dxn j(x1) · · · j(xn)G(n)

c (x1, . . . , xn)

)
.

We actually found the generating functional W (j) of the connected correla-
tion function

W (j) = ln
Z(j)

Z(0)
=
∑
n

1

n!

∫
dx1 · · · dxn j(x1) · · · j(xn)G(n)

c (x1, . . . , xn).

3.4 Proper vertices

To further simplify the Feynman diagrams, we define the proper vertex, or 1-
particle irreducible vertex (1-PI vertex), which cannot be separated by cutting
a single internal propagator, and from which full propagators corresponding
to external lines are removed. A full propagator is just the 2-point Green’s
function, which can be written as

G(2) = G0 +G0ΣG
(2) = G0

(
1 +

∑
n

(ΣG0)
n

)
=

1

G−10 − Σ
,

where G0 is the bare propagator, as in (3.5), Σ is called self-engergy, the sum
of all 2-point 1-PI diagrams shorn of their external lines.

In the following we prove that the generating function of proper vertices
is the Legendre transform of W (j) [1,5].

The Legendre transformation of W (j) is written as Γ, given by

Γ[ϕc] = W (j)−
∫

dDx ϕc(x)j(x), with
δΓ[ϕc]

δϕc(x)
= −j(x)
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3.4 Proper vertices

where

ϕc(x) =
δW (j)

δj(x)
=

1

Z(j)

δZ(j)

δj(x)
=

1

Z(j)

∫
Dϕ ϕ(x)e−H[ϕ]+jϕ

is the mean value of ϕ(x) in the presence of j(x), also known as the classical
field, obviously, when j = 0, ϕc(x) takes the mean value 〈ϕ(x)〉.

By differentiating the identity

δ(x− y) =
δj(x)

δj(y)
= − δ2Γ

δϕc(x)δj(y)
= −

∫
dDz

δ2Γ

δϕc(x)δϕc(z)

δϕc(z)

δj(y)

= −
∫

dDz
δ2Γ

δϕc(x)δϕc(z)

δ2W

δj(z)δj(y)
(3.11)

with respect to j(w) we obtain∫
dDz

δ3Γ

δϕc(x)δϕc(z)δj(w)

δ2W

δj(z)δj(y)

+

∫
dDz

δ2Γ

δϕc(x)δϕc(z)

δ3W

δj(z)δj(y)δj(w)
= 0, (3.12)

which, with the same manipulation in (3.11), can be written as∫
dDz dDu

δ3Γ

δϕc(x)δϕc(z)δϕc(u)

δ2W

δj(u)δj(w)

δ2W

δj(z)δj(y)

+

∫
dDz

δ2Γ

δϕc(x)δϕc(z)

δ3W

δj(z)δj(y)δj(w)
= 0. (3.13)

Multiply (3.13) with
δ2W

δj(x)δj(v)
and integrate over x, we find the relation

∫
dDz dDu dDx

δ3Γ

δϕc(x)δϕc(z)δϕc(u)

δ2W

δj(u)δ(w)

δ2W

δj(z)δ(y)

δ2W

δj(x)δj(v)

= −
∫

dDz dDx
δ2Γ

δϕc(x)δϕc(z)

δ2W

δj(x)δj(v)

δ3W

δj(z)δj(y)δj(w)

=
δ3W

δj(v)δj(y)δj(w)
. (3.14)

Now apply j = 0 in (3.14) and define

Γ(3)(x, z, u) =
Γ3

δϕc(x)δϕc(z)δϕc(u)

∣∣∣∣
ϕc=〈ϕ〉

,
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3 Perturbation theory

we have∫
dDz dDu dDx Γ(3)(x, z, u)G(2)

c (u,w)G(2)
c (z, y)G(2)

c (x, v)

= G(3)
c (v, y, w). (3.15)

where G(2)
c = G(2) is the full propagator, G(3)

c is the 3-point connected cor-
relation function, so that Γ(3)(x, z, u) must be a 3-point proper vertex, with
all the full propagators explicitly removed.

By every successive functional differentiation of (3.14) with respect to j,
then applying j = 0, we get on the left-hand side of the equation higher oders
of the 1-PI irreducible terms including a n-point proper vertex

Γ(n)(x1 · · ·xn) =
δnΓ

δjx1 · · · δjxn

and other uninteresting 1-PI reducible terms, so the proof is complete.

3.5 The loop expansion

We can expand the generating functional Z(j) not only in powers of the
coupling constant g and the source j(x), but also in number of loops. For
this purpose we write Z(j) as

Z(j) =

∫
Dϕ exp

{
−βH[ϕ] +

∫
dDx j(x)ϕ(x)

}
= N exp

{
−β
∫

dDx V
(

δ

δj(x)

)}
· exp

{
1

2

∫
dDx dDy j(x)β−1G0(x, y)j(y)

}
,

as a result, every interaction (or vertex) is multiplied by β, and every propa-
gation (or line) is multiplied by β−1. Therefore every diagram with V vertices,
I internal lines and E external lines is multiplied by βV−I−E = β1−E−L, where
L = I − V + 1 is the number of loops. We can interpret the loops this way:
to connect all the vertices at least V − 1 internal lines are needed, an extra
internal line produces an extra loop, thus I − (V − 1) loops can be made.
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Part II

The roughening of the interface





4

The system with kink interface

The aim of this thesis is to further investigate the interfacial profile 〈ϕ〉 up to
2-loop order in a Landau-Ginzburg-system with boundary conditions. Here
we adopt the Landau-Ginzburg Hamiltonian

H[ϕ] =

∫
dDx H[ϕ] =

∫
dDx

[
1

2
(∇ϕ)2 − 1

4
m2

0ϕ
2 +

g0
4!
ϕ4 +

3

8

m4
0

g0

]
, (4.1)

notice that comparing to (3.1) the Hamiltonian density H[ϕ] in (4.1) now
has two local minima due to a sign change of the ϕ2 term, as we can see in
Figure 4.1, suggesting the possibility of a broken symmetry.

−v0 v0 ϕ

H

Figure 4.1 The broken symmetry

4.1 The interface and kink solutions

In order to describe the physical model we are about to work with, it would
be convenient to set it up in an orthogonal coordinate system with one di-
rection z extending to infinity, and the other directions (x1, . . . , xD−1) = ~x
restricted in space [0, L]D−1, so that any point within the system can be writ-
ten as (x1, . . . , xD−1, z). We want to ignore the surface effect in (x1, . . . , xD−1)



4 The system with kink interface

due to the limited dimension, and assume the periodic boundary conditions
ϕ(x1 + L, . . . , xD−1, z) = · · · = ϕ(x1, . . . , xD−1 + L, z) = ϕ(x1, . . . , xD−1, z).
To further feature an interface in the system we add in the z-direction the
boundary conditions

ϕ(x) =

{
v0, z → +∞
−v0, z → −∞,

(4.2)

which force the formation of a continuous transition from −v0 to v0 in the
system, where ϕ0 = ±v0 = ±

√
3m2

0/g0 are the two local minima of the
Hamiltonian density H[ϕ] with H[±v0] = 0, where ±v0 are the space inde-
pendent solutions of the equation

δH
δϕ

∣∣∣∣
ϕ=ϕ0

=

(
−∇2 − m2

0

2

)
ϕ0 +

g0
3!
ϕ3
0 = 0. (4.3)

Beside the pair of degenerate minima at ϕ0 = ±v0 the equation (4.3) also
possesses space dependent solutions, known as the kink solutions or Cahn-
Hilliard-profiles [23]

ϕ
(a)
0 = v0 tanh

[m0

2
(z − a)

]
, (4.4)

which are constructed, in particular, to meet the boundary conditions (4.2).
It has the profile that asymptotically approaches the two values ±v0 as z →
±∞, as shown in figure 4.2.

a z

ϕ
(a)
0

v0

−v0

Figure 4.2 The Cahn-Hilliard-profile

The parameter a ∈ R can take any value, and it indicates the intersection
of the kink with the z-axis.
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4.1 The interface and kink solutions

Now the mean value 〈ϕ〉 near the critical point shall be evaluated by
expanding it around one of the stable solutions ϕ0 := ϕ

(0)
0 , where the Hamil-

tonian has local minima. By defining the fluctuation η := ϕ−ϕ0, 〈ϕ〉 can be
written as

〈ϕ〉 = 〈ϕ0 + η〉 =
1

Z0

∫
Dη (ϕ0 + η)e−βH[ϕ0+η] = ϕ0 +

1

Z0

∫
Dη η e−βH[ϕ0+η]

= ϕ0 + 〈η〉, (4.5)

where
Z0 =

∫
Dη e−βH[ϕ0+η],

and H[ϕ0 + η] can be expanded in Taylor series

H[ϕ0 + η] = H[ϕ0] +
1

2!

∫
dDx η(x)

[
−∇2 − m2

0

2
+
g0
2
ϕ2
0(x)

]
η(x)

+
g0
3!

∫
dDx ϕ0(x)η3(x) +

g0
4!

∫
dDx η4(x), (4.6)

where, with a few steps, the value of H[ϕ0] can be worked out [6,7] as

H[ϕ0] = LD−1
2m3

0

g0
,

then the problem is reduced to the calculation of 〈η〉 in a loop expansion.
Clearly, the kink solutions are extrema of the Hamiltonian, by examining

the sign of the second derivatives ofH at kink solutions, which can be directly
read in (4.6), given by the so-called fluctuation operators [7]

K = −∇2 − m2
0

2
+
g0
2
v20 tanh2

[m0

2
(z − a)

]
,

we can see if the kink solutions are the local minima, and in fact, we are
dealing with the eigenvalue problem

Kη(x) = λη(x).

The eigenfunctions and eigenvalues of the fluctuation operator are analyti-
cally available, but we’ll discuss about them in detail later. For now we just
give the conclusion that all the eigenvalues ofK are positive except one, which
is zero, known as the translation mode or zero mode, thus the kink solutions
are local minima, or classically stable in all modes except the translation
mode.
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4 The system with kink interface

4.2 The translation mode

The existence of the translation mode originates from the translational in-
variance symmetry of equation (4.3) under the boundary conditions [24], this
results in a whole family of kink solutions in (4.4), all having the same shape,
yet differing from one another by a translation in z-axis. All these kink solu-
tions have the same energy H[ϕ

(a)
0 ], since the integration of the Hamiltonian

density goes through the whole space in z ∈ R, the parameter a can be
eliminated with a simple substitution, so that the kink solutions build a
equipotential curve in the functional space. By defining a small displacement
of the kink solution along the z-axis

δϕ
(a)
0 = ϕ

(a+δa)
0 − ϕ(a)

0 =
∂ϕ

(a)
0

∂a
δa+O

(
(δa)2

)
= −∂ϕ

(a)
0

∂z
δa+O

(
(δa)2

)
,

we obtain

H[ϕ
(a+δa)
0 ] = H[ϕ

(a)
0 + δϕ

(a)
0 ]

= H[ϕ
(a)
0 ] +

1

2!

∫
dDx δϕ(a)

0

[
−∇2 − m2

0

2
+
g

2

(
ϕ
(a)
0

)2]
δϕ

(a)
0 + · · ·

= H[ϕ
(a)
0 ] +

1

2!
(δa)2

∫
dDx

∂ϕ
(a)
0

∂z
K
∂ϕ

(a)
0

∂z
+O

(
(δa)3

)
(4.7)

notice that
H[ϕ

(a+δa)
0 ] = H[ϕ

(a)
0 ],

thus the term of order (δa)2 (including all the other terms containing higher
order of δa) in (4.7) must vanish, and this just suggests the translation mode.
It’s also possible to prove [6,7] that the normalized eigenfunction of the trans-
lation mode is

η
(a)
~0ξ0

=
1√
H[ϕ0]

∂ϕ
(a)
0

∂z
.

4.3 Collective coordinate methode

Unfortunately, the translation mode causes divergency of the Gaussian inte-
gral, to get around with this we propose the collective coordinate method [6,7],
which, in our case, isolates the equipotential coordinate a, and thus separates
the translation mode from the integral.

30



4.3 Collective coordinate methode

In this method we first define the expansion coefficient of the fluctuation
η(a) = ϕ− ϕ(a)

0 corresponding to the translation mode as

c0(a) :=

∫
dDx η(a)

1√
H[ϕ0]

∂ϕ
(a)
0

∂z
,

and introduce the identity

1 =

∫
dc0 δ(c0) =

∫
da

dc0
da

δ(c0),

where

dc0
da

=
d
da

(∫
dDx η(a)

1√
H[ϕ0]

∂ϕ
(a)
0

∂z

)

=

∫
dDx

(
∂η(a)

∂a

1√
H[ϕ0]

∂ϕ
(a)
0

∂z
+ η(a)

1√
H[ϕ0]

∂2ϕ
(a)
0

∂z∂a

)

=

∫
dDx

 1√
H[ϕ0]

(
∂ϕ

(a)
0

∂z

)2

− η(a) 1√
H[ϕ0]

∂2ϕ
(a)
0

∂z2


=
√
H[ϕ0]

(
1−

∫
dDx η(a)

1

H[ϕ0]

∂2ϕ
(a)
0

∂z2

)
.

Then by inserting the identity in the partition function∫
Dη(a) e−βH[ϕ(a)+η(a)],

we obtain∫
da
∫
Dη(a) dc0

da
δ(c0)e−βH[ϕ

(a)
0 +η(a)]

=
√
H[ϕ0]

∫
da
∫
Dη(a)

{(
1−

∫
dDx η(a)

1

H[ϕ0]

∂2ϕ
(a)
0

∂z2

)

· δ

(∫
dDx η(a)

1√
H[ϕ0]

∂ϕ
(a)
0

∂z

)
e−βH[ϕ

(a)
0 +η(a)]

}
. (4.8)

Each kink solution, independent of a, contributes equally to the integral,
hence we may replace ϕ(a)

0 by ϕ0, and integrate the parameter a only over
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4 The system with kink interface

the interval [−T
2
, T
2
], known as a regulation, then (4.8) becomes

T
√
H[ϕ0]

∫
Dη

{
δ

(∫
dDx η

1√
H[ϕ0]

∂ϕ0

∂z

)

·
(

1−
∫

dDx η
1

H[ϕ0]

∂2ϕ0

∂z2

)
e−βH[ϕ0+η]

}
, (4.9)

In order to see how the δ-function influences the functional integral, we ex-
pand the fluctuation η in the eigenfunctions ηi of the fluctuation operator K
with

η =
∑
i

ciηi,

where ci are the expansion coefficients. Accordingly, the functional measure
becomes

Dη → Ndc0
∏
n

dcn,

where N is a constant, which ensures the equivalency of the transformation,
then the functional integral in (4.9) can be written as

∫
Dη δ

(∫
dDx η

1√
H[ϕ0]

∂ϕ0

∂z

)
· · · =

∫
Dη δ

(∫
dDx η0

∑
i

ciηi

)
· · ·

→ N
∫

dc0 δ(c0)
∫ ∏

n

dcn · · · = N
∫ ∏

n

dcn · · · , (4.10)

where we used the orthonomality relation∫
dDx ηiηj = δij.

The reformulation in (4.10) basically means that the δ-function filters out
the translation mode. For this reason we can rewrite (4.9) as

T
√
H[ϕ0]

∫
N⊥
Dη
(

1−
∫

dDx η
1

H[ϕ0]

∂2ϕ0

∂z2

)
e−βH[ϕ0+η],

where the symbol N⊥ indicates that we shall integrate over the subspace
only containing fluctuations orthogonal to the translation mode, rather than
the space made up of all the fluctuations. With an added source j ∈ N⊥, the
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4.4 The spectrum of the fluctuation operator K(ϕ0)

generating functional Z of 〈η〉 can be written as

Z(j)

Z(0)
=

1

Z(0)
T
√
H[ϕ0]e

−βH[ϕ0]
N ′√
detK′

{(
1−

∫
dDx

1

H[ϕ0]

∂2ϕ0

∂z2
δ

δj

)

· exp

(
−g0

3!
β

∫
dDx ϕ0

δ3

δj3
− g0

4!
β

∫
dDx

δ4

δj4

)}

· exp

(
1

2

∫
dDx dDx′ j(x)β−1K′−1xx′ j(x

′)

)
, (4.11)

where N ′ is an unimportant renormalization constant; the new fluctuation
operator

K′ = K|N⊥

does not possess the translation mode and is thus invertible.

4.4 The spectrum of the fluctuation operator K(ϕ0)

To derive the propagator K′−1, which clearly plays a important part in the
functional integral, our first step is to analyze the spectrum of the fluctuation
operator K(ϕ0), i.e. to solve the eigenvalue equation

K(ϕ0)η(x) = λη(x)

i.e.
[
−∇2 − m2

0

2
+

3m2
0

2
tanh2

(m0

2
z
)]

η(x) = λη(x), (4.12)

which has already been thoroughly studied [6,24]. In the following we would
just like to summarize the result. To ease the problem, we divide the K(ϕ0)
in two parts, i.e.

K(ϕ0) = −∆(D−1) + K̃,

where K̃ only concerns the z-component of x

K̃ = −∂2z −
m2

0

2
+

3m2
0

2
tanh

(m0

2
z
)
.

With the separation of the variables method, we establish two eigenvalue
equations

−∆(D−1)η′~n(~x) = ζ~nη
′
~n(~x) (4.13)

and
K̃η̃ξ(z) = ξη̃ξ(z), (4.14)

33



4 The system with kink interface

then (4.12) is solved by

η~nξ(x) = η′~n(~x)η̃ξ(z),

with the eigenvalue
λ~nξ = ζ~n + ξ.

Remember the periodic boundary conditions for ~x ∈ [0, L]D−1, we obtain for
(4.13) the discrete spectrum

ζ~n =
4π2

L2
~n2, ~n = ZD−1,

with the normalized eigenfunctions

η′~n(~x) = L
1−D
2 exp

(
i
2π

L
~n · ~x

)
, ~x ∈ [0, L]D−1.

The eigenvalue problem (4.14), reformulated as{
− ~2

2m0

∂2z +
~2m0

4

[
3 tanh2

(m0

2
z
)
− 1
]}

η̃ξ =
~2

2m0

ξη̃ξ,

can be recognized as the Schrödingier equation for a particle in a one di-
mensional potential well. This is an exact soluble problem, it turns out to
have both discrete and continuous eigenvalues. Together with the normalized
eigenfunctions, the solutions are

ξ0 = 0, η̃ξ0(z) =

√
3m0

8
sech2

(m0

2
z
)

;

ξ1 =
3

4
m2

0, η̃ξ1(z) =

√
3m0

4
tanh

(m0

2
z
)
sech

(m0

2
z
)

and

ξp = m2
0 + p2 with p ∈ R,

η̃ξp(z) = Npeipz
[
2p2 +

m2
0

2
− 3

2
m2

0 tanh2
(m0

2
z
)

+ 3im0p tanh
(m0

2
z
)]

,

where the normalization constant [6]

Np = [2π(4p4 + 5m2
0p

2 +m4
0)]
− 1

2 ,

makes sure that ∫
dz η̃ξp(z)∗η̃ξp′ (z) = δ(p− p′).

As mentioned in previous sections the fluctuation operator K(ϕ0) possesses
one zero mode, that is

η~0ξ0 = L
1−D
2

√
3m0

8
sech2

(m0

2
z
)
.
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4.5 The propagator K′−1

4.5 The propagator K′−1

With the spectrum of the fluctuation operator K we can construct its inverse
kernel using the form

K′−1xx′ =
∑∫ ′ 1

λ~nξ
η~nξ(x)η∗~nξ(x

′),

where the prime symbol in
∑∫ ′

means we should throw out the translation

mode here, otherwise K would not be invertible, then we obtain

K′−1xx′ = L1−D

{∑
~n6=~0

L2

4π2n2

3m0

8
ei

2π
L
~n(~x−~x′)sech2

(m0

2
z
)
sech2

(m0

2
z′
)

+
∑
~n

1
4π2n2

L2 + 3
4
m2

0

3m0

4
ei

2π
L
~n(~x−~x′)

· tanh
(m0

2
z
)
sech

(m0

2
z
)

tanh
(m0

2
z′
)
sech

(m0

2
z′
)

+

∫
dp
∑
~n

1
4π2n2

L2 +m2
0 + p2

ei
2π
L
~n(~x−~x′)η̃ξp(z)η̃∗ξp′ (z

′)

}
. (4.15)

For x = x′, we get

K′−1xx = L1−D

{∑
~n6=~0

L2

4π2n2

3m0

8
sech4

(m0

2
z
)

+
∑
~n

1
4π2n2

L2 + 3
4
m2

0

3m0

4
tanh2

(m0

2
z
)
sech2

(m0

2
z
)

+

∫
dp
∑
~n

1
4π2n2

L2 +m2
0 + p2

|η̃ξp(z)|2
}
, (4.16)

with |η̃ξp(z)|2 in the last term calculated as

|η̃ξp(z)|2

= N 2
p

∣∣∣∣2p2 +
m2

0

2
− 3

2
m2

0 tanh2
(m0

2
z
)

+ 3im0p tanh
(m0

2
z
)∣∣∣∣2

= N 2
p

[
4p2 + 5m2

0p
2 +m4

0 − 3(m4
0 +m2

0p
2)sech2

(m0

2
z
)

+
9

4
m4

0sech
4
(m0

2
z
)]

=
1

2π
−N 2

p

[
3(m4

0 +m2
0p

2)sech2
(m0

2
z
)
− 9

4
m4

0sech
4
(m0

2
z
)]

.
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4 The system with kink interface

Now K′−1xx can be neatly summarized [7] as

K′−1xx = C1sech4
(m0

2
z
)

+ C2sech2
(m0

2
z
)

+ C0, (4.17)

where

C1 = L1−D

[∑
~n6=~0

L2

4π2n2

3m0

8
−
∑
~n

1
4π2n2

L2 + 3
4
m2

0

3m0

4

+
9

4
m4

0

∫
dp N 2

p

∑
~n

1
4π2n2

L2 +m2
0 + p2

]
,

C2 = L1−D

[∑
~n

1
4π2n2

L2 + 3
4
m2

0

3m0

4

−
∫

dp 3N 2
p (m4

0 +m2
0p

2)
∑
~n

1
4π2n2

L2 +m2
0 + p2

]
,

and
C0 = L1−D 1

2π

∫
dp
∑
~n

1
4π2n2

L2 +m2
0 + p2

;

pay attention that C0, C1 and C2 are all divergent, they need renormalization,
which is not going to be included in this thesis.
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5

The loop calculation

I don’t want to talk about time travel because
if we start talking about it then we’re going
to be here all day talking about it, making
diagrams with straws.

— Older Joe in Looper

With the help of the generating functional (4.11) we can easily construct
the Feynman diagrams of 〈η〉 using the Feynman rules, where

〈η〉 =
1

Z(0)

∂Z(j)

∂j

∣∣∣∣
j=0

. (5.1)

For the purpose of the this thesis, we only consider the Feynman diagrams
up to 2-loop order.

Recall that our final goal is to calculate 〈ϕ〉, as we have shown before in
(4.5), it can be further formulated as

〈ϕ〉 = ϕ0 + 〈η〉

=

√
3m2

0

g0
tanh

(m0

2
z
)

+ 〈η〉

=

√
3m2

0

g0

[
tanh

(m0

2
z
)

+

√
g0

3m2
0

〈η〉
]
. (5.2)

5.1 The loop expansion of 〈η〉

The form of (4.11) tells that we are not working with a simple ϕ4-theory (in
our case, η4) any more, but an extended one with terms containing η, η3 and



5 The loop calculation

η4, in particular we have [6]

propagator : = β−1K′−1

3-point vertex : = −βϕ0g0 = −βm0

√
3g0 tanh

(m0

2
z
)

4-point vertex : = −βg0

internal point : = − 1

H[ϕ0]

∂2ϕ0

∂z2
= −L1−D

√
3g0

2m2
0

∂2

∂z2
tanh

(m0

2
z
)
,

and basically the calculation of (5.1) can be sorted in loop order as

〈η〉 =
α1(
√
g0) + α2(g0

√
g0) +O(g20

√
g0)

1 + β1(g0) +O(g20)

= α1(
√
g0) + (α2 − α1β1)(g0

√
g0) +O(g20

√
g0), (5.3)

where the terms are presented together with their orders in g0 shown in the
brackets, and it is straightforward to identify the diagrams contributing to
α1, β1 and α2. For α1 we have

1

2
+ ,

with the symmetry factor directly given in front of the diagrams, and the
corresponding analytical expression reads

− 1

2
β−1m0

√
3g0

∫
dDx′ K′−1xx′K

′−1
x′x′ tanh

(m0

2
z′
)

− β−1L1−D
√

3g0
2m2

0

∫
dDx′ K′−1xx′

∂2

∂z′2
tanh

(m0

2
z′
)
.

It’s easy to show that the order of β−1 corresponds to the order of g0 in
a certain way, since both of them indicate the loop order, for the sake of
simplicity we just let β = 1 in the following.
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5.1 The loop expansion of 〈η〉

The denominator in (5.3) consists of all the vacuum diagrams, and β1 can
be represented as

1

8
+

1

8
+

1

12
+

1

2
.

The product α1β1 simply yields eight disconnected diagrams, they are all
included in α2 except the diagram in Figure 5.1.

Figure 5.1

This diagram, which possesses two internal points, purely results from
the division in (5.3), it cannot be acquired through perturbative calculation,
since we don’t expand the term

1

H[ϕ0]

∂2ϕ0

∂z2
δ

δj

in the generating functional, thus at most one internal point can be involved
in a resultant Feynman diagram. In consequence, the subtraction of α1β1
from α2 cancels all the disconnected diagrams in α2, yet also attaches the
extra diagram in Figure 5.1 to the order of g0

√
g0, the expression of which,

that is α2 − α1β1, as a result, can be summarized as

1

4
+

1

4
+

1

4

+
1

8
+

1

6
+

1

4

+
1

2
+

1

2
+

1

2
− 1

2
.
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5 The loop calculation

5.2 The Calculation of 〈η〉 to order
√
g0

The 1-loop diagram

:= α
(1)
1

in α1 has already been studied [7], and the solution is found as

α
(1)
1 = −

√
3g0
m0

{[
2

3
C1 tanh

(m0

2
z
)

+ (C0 + C2)
m0

2
z

]
sech2

(m0

2
z
)

+ C0 tanh
(m0

2
z
)}

(5.4)

Now we only have to evaluate the second diagram in α1

:= α
(2)
1 .

Following the same strategy to solve the 1-loop diagram, we can create a
differential equation by multiplying the diagram with the fluctuation operator
K′, and we obtain

K′α(2)
1 (x) =

∫
dDx′′ K′xx′′α

(2)
1 (x′′)

= −L1−D
√

3g0
2m2

0

∫
dDx′ dDx′′ K′xx′′K′−1x′′x′

∂2

∂z′2
tanh

(m0

2
z′
)

= −L1−D
√

3g0
2m2

0

∂2

∂z2
tanh

(m0

2
z
)

= L1−D
√

3g0
4

tanh
(m0

2
z
)
sech2

(m0

2
z
)
. (5.5)

Note that the solution of this inhomogeneous differential equation doesn’t
contain homogeneous part due to the definition of K′. But in order to use
the variation of the constants method we need to extend (5.5) to the whole
fluctuation space, i.e. we replace K′ by K. This won’t cause trouble, since if
the resultant special solution contains component in the translation mode,
we can simply remove it. With the ansatz

α
(2)
1 = sech2

(m0

2
z
)
f,
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5.2 The Calculation of 〈η〉 to order
√
g0

the left-hand side of (5.5) can be rewritten as

2m0 tanh
(m0

2
z
)
sech2

(m0

2
z
)
f ′ − sech2

(m0

2
z
)
f ′′,

so that (5.5) becomes

2m0 tanh
(m0

2
z
)
f ′ − f ′′ = L1−D

√
3g0
4

tanh
(m0

2
z
)
,

and the solution for f can be easily identified as

f = L1−D
√

3g0
8m0

z,

hence α(2)
1 is solved with

α
(2)
1 = L1−D

√
3g0

8m0

z sech2
(m0

2
z
)
.

This solution lies obviously in N⊥, since∫
dDx α(2)

1 η~0ξ0 = 0.

Apply the results of α(1)
1 and α(2)

1 in (5.2), with 〈η〉 up to order √g0, we are
able to reveal 〈ϕ〉 as

〈ϕ〉 =

√
3m2

0

g0

[
tanh

(m0

2
z
)

+

√
g0

3m2
0

(
α1 +O(g0

√
g0)
)]

=

√
3m2

0

g0

[
tanh

(m0

2
z
)

+

√
g0

3m2
0

(
1

2
α
(1)
1 + α

(2)
1 +O(g0

√
g0)

)]

=

√
3m2

0

g0

{
tanh

(m0

2
z
)
− g0

2m2
0

[(
2

3
C1tanh

(m0

2
z
)

+
(

(C0 + C2)
m0

2
− 1

4L2

)
z

)
sech2

(m0

2
z
)

+ C0tanh
(m0

2
z
)]

+O(g20)

}
,

where we only considered the 3-dimensional case D = 3.
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5 The loop calculation

5.3 The Calculation of selected diagrams in order g0
√
g0

The easiest 2-loop diagram to calculate would be

= m0g0
√

3g0

∫
dDx′ dDx′′ K′−1xx′′K

′−1
x′′x′′K

′−1
x′x′′K

′−1
x′x′

· tanh
(m0

2
z′
)

:= α
(1)
2 ,

because we could still adopt the same method we used for the calculation in
order √g0. Multiply α(1)

2 by K′ and we get

K′α(1)
2 =

∫
dDx′′′ K′xx′′′α

(1)
2 (x′′′)

= m0g0
√

3g0

∫
dDx′ dDx′′ dDx′′′ K′xx′′′K′−1x′′′x′′K

′−1
x′′x′′K

′−1
x′x′′K

′−1
x′x′ tanh

(m0

2
z′
)

= K′−1xx m0g0
√

3g0

∫
dDx′ K′−1xx′K

′−1
x′x′ tanh

(m0

2
z′
)

= −g0K′−1xx α
(1)
1 , (5.6)

directly inserting (4.17) and (5.4) in (5.7) yields

K′α(1)
2 =

g0
√

3g0
m0

[
C1sech4

(m0

2
z
)

+ C2sech2
(m0

2
z
)

+ C0

]
·

{[
2

3
C1 tanh

(m0

2
z
)

+ (C0 + C2)
m0

2
z

]
sech2

(m0

2
z
)

+ C0 tanh
(m0

2
z
)}

. (5.7)
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5.3 The Calculation of selected diagrams in order g0
√
g0

Again we replace K′ by K and apply the variation of the constants method,
then instead of (5.7) we write

2m0 tanh
(m0

2
z
)
sech2

(m0

2
z
)
f ′ − sech2

(m0

2
z
)
f ′′ =

g0
√

3g0
m0

[
2

3
C2

1 tanh
(m0

2
z
)
sech6

(m0

2
z
)

+

(
2

3
C1C2 + C0C1

)
tanh

(m0

2
z
)
sech4

(m0

2
z
)

+

(
2

3
C0C1 + C0C2

)
tanh

(m0

2
z
)
sech2

(m0

2
z
)

+ C1(C0 + C2)
m0

2
z sech6

(m0

2
z
)

+ C2(C0 + C2)
m0

2
z sech4

(m0

2
z
)

+ C0(C0 + C2)
m0

2
z sech2

(m0

2
z
)

+ C2
0 tanh

(m0

2
z
)]
. (5.8)

The inhomogeneity on the right-hand side of (5.8) consists of seven summands
si, i = 1, · · · , 7, where

s1 =
g0
√

3g0
m0

2

3
C2

1 tanh
(m0

2
z
)
sech6

(m0

2
z
)

s2 =
g0
√

3g0
m0

(
2

3
C1C2 + C0C1

)
tanh

(m0

2
z
)
sech4

(m0

2
z
)

s3 =
g0
√

3g0
m0

(
2

3
C0C1 + C0C2

)
tanh

(m0

2
z
)
sech2

(m0

2
z
)

s4 =
g0
√

3g0
m0

C1(C0 + C2)
m0

2
z sech6

(m0

2
z
)

s5 =
g0
√

3g0
m0

C2(C0 + C2)
m0

2
z sech4

(m0

2
z
)

s6 =
g0
√

3g0
m0

C0(C0 + C2)
m0

2
z sech2

(m0

2
z
)

s7 =
g0
√

3g0
m0

C2
0 tanh

(m0

2
z
)
.

Accordingly we can make seven ansatzes fi for them, then we solve

2m0 tanh
(m0

2
z
)
sech2

(m0

2
z
)
f ′i − sech2

(m0

2
z
)
f ′′i = si
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5 The loop calculation

separately, and the solution for (5.8) can be simply given as

f =
∑
i

fi.

The ansatzes for s2, s3 and s7 are already found in the calculation of the
1-loop diagram α

(1)
1 , the solutions are

f2 =
2

3

g0
√

3g0
m3

0

(
2

3
C1C2 + C0C1

)
tanh

(m0

2
z
)

f3 =
g0
√

3g0
m3

0

(
2

3
C0C1 + C0C2

)
m0

2
z

f7 =
g0
√

3g0
2m3

0

C2
0 [sinh (m0z) +m0z] .
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5.3 The Calculation of selected diagrams in order g0
√
g0

For the rest of the summands we can utilize the function DSolve built in
Mathematica [25] to solve the differential equations, the results are

f1 =
g0
√

3g0
9m3

0

C2
1

[
2 tanh

(m0

2
z
)

+ tanh
(m0

2
z
)
sech2

(m0

2
z
)]

f4 = −g0
√

3g0
105m3

0

C1(C0 + C2)

{
6 sinh(m0z) + 24m0z cosh(m0z)

+ 3m0z cosh(2m0z) + 72m0z ln
(
1 + e−m0z

)
− 72Li2

(
−e−m0z

)
− 36m0z ln

[
cosh

(m0

2
z
)]
− 48 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 6 ln
[
cosh

(m0

2
z
)]

sinh(2m0z)− 15m0zsech2
(m0

2
z
)

40 tanh
(m0

2
z
)

+ 18m2
0z

2

}
f5 = −g0

√
3g0

30m3
0

C2(C0 + C2)

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z) + 24m0z ln
(
1 + e−m0z

)
− 24Li2

(
−e−m0z

)
− 12m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z) + 6m2
0z

2

}
f6 = −g0

√
3g0

24m3
0

C0(C0 + C2)

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z) + 12m0z ln
(
1 + e−m0z

)
− 12Li2

(
−e−m0z

)
− 12m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z) + 3m2
0z

2 − 3m0z

}
.

It is still not time to take a breath yet, since, as we mentioned previously,
the result may contain component in zero mode, which should have the form

λ · sech2
(m0

2
z
)
,

where λ is just a constant, and in this case, we should get rid of it, that is,
to find out the λ. Note that the solution in the whole fluctuation space has
the form

f · sech2
(m0

2
z
)
,

hence the final solution, which lies in N⊥, could be written as

(f − λ)sech2
(m0

2
z
)
,
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5 The loop calculation

which fulfills ∫
dDx (f − λ)sech2

(m0

2
z
)
η~0ξ0 = 0,

or equivalently

λ

∫
dDx sech4

(m0

2
z
)

=

∫
dDx f · sech4

(m0

2
z
)
. (5.9)

At first glance there are indeed many terms in fi, but as we further scru-
tinize each one of them with the consideration of (5.9), it is not hard to
see that only the even functions in fi contribute to the zero mode; with
that in mind, the only terms need to be considered are those containing
m0z ln(1 + e−m0z), Li2(−e−m0z) and m2

0z
2, whose coefficients seem always

have the same proportion 4 : −4 : 1 in each fi.
We could immediately start calculating the λ, but first we need to ex-

tract the even part from m0z ln(1 + e−m0z) and Li2(−e−m0z), which can be
separately obtained as

1

2

[
m0z ln

(
1 + e−m0z

)
−m0z ln (1 + em0z)

]
=

1

2
m0z ln

1 + e−m0z

1 + em0z

=
1

2
m0z ln

e−m0z(1 + em0z)

1 + em0z

= −1

2
m2

0z
2

and

1

2

[
Li2
(
−e−m0z

)
+ Li2 (−em0z)

]
=

1

2

[
Li2
(
−e−m0z

)
+ Li2

(
1

−e−m0z

)]
=

1

2

[
Li2
(
−e−m0z

)
− Li2

(
−e−m0z

)
− 1

2
ln2
(
e−m0z

)
− π2

6

]
=

1

2

[
−1

2
m2

0z
2 − π2

6

]
.

Together with the right coefficients, the relevant function in each fi con-
tributing to the zero mode is proportional to

4 ·
(
−1

2
m2

0z
2

)
− 4 · 1

2

[
−1

2
m2

0z
2 − π2

6

]
+m2

0z
2 =

π2

3
, (5.10)
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5.3 The Calculation of selected diagrams in order g0
√
g0

and the rest is to let (5.9) do the job, so we simply find that

λi ∝
π2

3
,

where λi corresponds to fi, e.g.

λ4 = −18g0
√

3g0
105m3

0

C1(C0 + C2)
π2

3
,

and so on. Then finally α(1)
2 can be summarized as

α
(1)
2 = sech2

(m0

2
z
)∑

i

(fi − λi), (5.11)

and the matching λi for those fi, which don’t contain even functions, are
simply zero.
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5 The loop calculation

To be more exact, we write down the final solution

α
(1)
2 =

g0
√

3g0
m3

0

sech2
(m0

2
z
){1

9
C2

1tanh
(m0

2
z
)
sech2

(m0

2
z
)

+
1

7
C1(C0 + C2)m0zsech2

(m0

2
z
)

+

(
4

63
C1C2 +

2

7
C0C1 +

2

9
C2

1

)
tanh

(m0

2
z
)

+

(
5

12
C2

0 +
2

35
C0C1 +

3

20
C0C2 +

2

35
C1C2 +

1

15
C2

2

)
sinh(m0z)

−
(

1

3
C2

0 +
8

35
C0C1 +

3

5
C0C2 +

8

35
C1C2 +

4

15
C2

2

)
m0zcosh(m0z)

−
(

1

24
C2

0 +
1

35
C0C1 +

3

40
C0C2 +

1

35
C1C2 −

1

30
C2

2

)
m0zcosh(2m0z)

+

(
1

2
C2

0 +
12

35
C0C1 +

9

10
C0C2 +

12

35
C1C2 +

2

5
C2

2

)
m0z ln

[
cosh

(m0

2
z
)]

+

(
2

3
C2

0 +
16

35
C0C1 +

6

5
C0C2 +

16

35
C1C2 +

8

15
C2

2

)
sinh(m0z) ln

[
cosh

(m0

2
z
)]

+

(
1

12
C2

0 +
2

35
C0C1 +

3

20
C0C2 +

2

35
C1C2 +

1

15
C2

2

)
sinh(2m0z) ln

[
cosh

(m0

2
z
)]

−
(

1

2
C2

0 +
24

35
C0C1 +

13

10
C0C2 +

24

35
C1C2 +

4

5
C2

2

)
m0z ln

(
1 + e−m0z

)
+

(
1

2
C2

0 +
24

35
C0C1 +

13

10
C0C2 +

24

35
C1C2 +

4

5
C2

2

)
Li2
(
−e−m0z

)
−
(

1

8
C2

0 +
6

35
C0C1 +

13

40
C0C2 +

6

35
C1C2 +

1

5
C2

2

)
m2

0z
2

+

(
5

8
C2

0 +
1

3
C0C1 +

5

8
C0C2

)
m0z

+
π2

3

(
1

8
C2

0 +
6

35
C0C1 +

13

40
C0C2 +

6

35
C1C2 +

1

5
C2

2

)}
.

Intuitively we would like to try this method with all the rest of the diagrams
in order g0

√
g0, hoping that we could go further. The good news is that we
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5.3 The Calculation of selected diagrams in order g0
√
g0

can indeed still solve three more diagrams. The first one is

= −
(
m0

√
3g0

)3∫
dDx′ dDx′′ dDx′′′ K′−1xx′′′K

′−1
x′′′x′′K

′−1
x′′x′′K

′−1
x′′′x′K

′−1
x′x′

· tanh
(m0

2
z′′′
)

tanh
(m0

2
z′′
)

tanh
(m0

2
z′
)

:= α
(2)
2 ,

without repeating the arguments, we write

K′α(2)
2 =

∫
dDx′′′′ K′xx′′′′α

(2)
2 (x′′′′)

= −
(
m0

√
3g0

)3∫
dDx′ dDx′′ dDx′′′ dDx′′′′ K′xx′′′′K′−1x′′′′x′′′K

′−1
x′′′x′′K

′−1
x′′x′′

·K′−1x′′′x′K
′−1
x′x′ tanh

(m0

2
z′′′
)

tanh
(m0

2
z′′
)

tanh
(m0

2
z′
)

= −
(
m0

√
3g0

)3
tanh

(m0

2
z
)∫

dDx′ dDx′′ K′−1xx′′K
′−1
x′′x′′K

′−1
xx′K

′−1
x′x′

· tanh
(m0

2
z′′
)

tanh
(m0

2
z′
)

= −m0

√
3g0 tanh

(m0

2
z
)(

α
(1)
1

)2
= −m0

√
3g0 tanh

(m0

2
z
)

· 3g0
m2

0

{[2

3
C1 tanh

(m0

2
z
)

+ (C0 + C2)
m0

2
z
]
sech2

(m0

2
z
)

+ C0 tanh
(m0

2
z
)}2

,

follow the same routine, we obtain

2m0 tanh
(m0

2
z
)
sech2

(m0

2
z
)
f ′ − sech2

(m0

2
z
)
f ′′

= −3g0
√

3g0
m0

tanh
(m0

2
z
)[4

9
C2

1 tanh2
(m0

2
z
)
sech4

(m0

2
z
)

+
4

3
C1(C0 + C2)

m0

2
z tanh

(m0

2
z
)
sech4

(m0

2
z
)

+ (C0 + C2)
2m

2
0

4
z2sech4

(m0

2
z
)

+
4

3
C0C1 tanh2

(m0

2
z
)
sech2

(m0

2
z
)

+ C0(C0 + C2)
m0

2
z tanh

(m0

2
z
)
sech2

(m0

2
z
)

+ C2
0 tanh2

(m0

2
z
)]
. (5.12)
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5 The loop calculation

Then we try to find the ansatzes for the six summands si of the homogeneity
in (5.12) with

s1 = −4g0
√

3g0
3m0

C2
1 tanh3

(m0

2
z
)
sech4

(m0

2
z
)

s2 = −4g0
√

3g0
m0

C1(C0 + C2)
m0

2
z tanh2

(m0

2
z
)
sech4

(m0

2
z
)

s3 = −3g0
√

3g0
m0

(C0 + C2)
2m

2
0

4
z2 tanh

(m0

2
z
)
sech4

(m0

2
z
)

s4 = −4g0
√

3g0
m0

C0C1 tanh3
(m0

2
z
)
sech2

(m0

2
z
)

s5 = −3g0
√

3g0
m0

C0(C0 + C2)
m0

2
z tanh2

(m0

2
z
)
sech2

(m0

2
z
)

s6 = −3g0
√

3g0
m0

C2
0 tanh3

(m0

2
z
)
,
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5.3 The Calculation of selected diagrams in order g0
√
g0

and the solutions are

f1 = −2g0
√

3g0
9m3

0

C2
1

[
tanh

(m0

2
z
)

+ tanh3
(m0

2
z
)]

f2 =
2g0
√

3g0
105m3

0

C1(C0 + C2)

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z) + 24m0z ln
(
1 + e−m0z

)
− 24Li2

(
−e−m0z

)
− 12m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z)

− 80 tanh
(m0

2
z
)

+ 6m2
0z

2

}
f3 =

g0
√

3g0
30m3

0

(C0 + C2)
2

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z) + 84m0z ln
(
1 + e−m0z

)
− 84Li2

(
−e−m0z

)
− 16m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z)

− 15m2
0z

2 tanh
(m0

2
z
)

+ 21m2
0z

2

}
f4 = −2g0

√
3g0

3m3
0

C0C1

[
3m0z − 4 tanh

(m0

2
z
)]

f5 =
g0
√

3g0
40m3

0

C0(C0 + C2)

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z)− 36m0z ln
(
1 + e−m0z

)
+ 36Li2

(
−e−m0z

)
− 12m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z)

− 9m2
0z

2 − 15m0z

}
f6 = −3g0

√
3g0

2m3
0

C2
0 sinh

(m0

2
z
)
.
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5 The loop calculation

After removing the component in zero mode using (5.11), we get the final
solution

α
(2)
2 =

g0
√

3g0
m3

0

sech2
(m0

2
z
){(8

7
C0C1 −

32

21
C1C2 −

2

9
C2

1

)
tanh

(m0

2
z
)

− 2

9
C2

1tanh
3
(m0

2
z
)
− 3

2
C2

0sinh
(m0

2
z
)

+

(
7

60
C2

0 +
4

105
C0C1 +

11

60
C0C2 +

4

105
C1C2 +

1

15
C2

2

)
sinh(m0z)

+

(
7

15
C2

0 +
16

105
C0C1 +

11

15
C0C2 +

16

105
C1C2 +

1

15
C2

2

)
m0zcosh(m0z)

+

(
7

120
C2

0 +
2

105
C0C1 +

11

120
C0C2 +

2

105
C1C2 +

1

30
C2

2

)
m0zcosh(2m0z)

−
(

5

6
C2

0 +
8

35
C0C1 +

41

30
C0C2 +

8

35
C1C2 +

8

15
C2

2

)
m0z ln

[
cosh

(m0

2
z
)]

−
(

14

15
C2

0 +
32

105
C0C1 +

22

15
C0C2 +

32

105
C1C2 +

8

15
C2

2

)
sinh(m0z) ln

[
cosh

(m0

2
z
)]

−
(

7

60
C2

0 +
4

105
C0C1 +

11

60
C0C2 +

4

105
C1C2 +

1

15
C2

2

)
sinh(2m0z) ln

[
cosh

(m0

2
z
)]

+

(
19

10
C2

0 +
16

35
C0C1 +

47

10
C0C2 +

16

35
C1C2 +

14

5
C2

2

)
m0z ln

(
1 + e−m0z

)
−
(

19

10
C2

0 +
16

35
C0C1 +

47

10
C0C2 +

16

35
C1C2 +

14

5
C2

2

)
Li2
(
−e−m0z

)
+

(
19

40
C2

0 +
4

35
C0C1 +

47

40
C0C2 +

4

35
C1C2 +

7

10
C2

2

)
m2

0z
2

−
(

3

8
C2

0 + 2C0C1 +
3

8
C0C2

)
m0z

− π2

3

(
19

40
C2

0 +
4

35
C0C1 +

47

40
C0C2 +

4

35
C1C2 +

7

10
C2

2

)}
.

The diagram

= L1−D g0
√

3g0
2m2

0

∫
dDx′ dDx′′ K′−1xx′′K

′−1
x′′x′′K

′−1
x′′x′

· ∂
2

∂z2
tanh

(m0

2
z′
)

:= α
(3)
2
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√
g0

can also be solved, start with

K′α(3)
2 =

∫
dDx′′′ K′xx′′′α

(3)
2 (x′′′)

= L1−D g0
√

3g0
2m2

0

∫
dDx′ dDx′′ dDx′′′ K′xx′′′K′−1x′′′x′′K

′−1
x′′x′′K

′−1
x′′x′

· ∂
2

∂z2
tanh

(m0

2
z′
)

= L1−D g0
√

3g0
2m2

0

K′−1xx

∫
dDx′ K′−1xx′

∂2

∂z2
tanh

(m0

2
z′
)

= g0K′−1xx α
(2)
1

= L1−D g0
√

3g0
8m0

[
C1sech4

(m0

2
z
)

+ C2sech2
(m0

2
z
)

+ C0

]
z sech2

(m0

2
z
)

we obtain

2m0 tanh
(m0

2
z
)
sech2

(m0

2
z
)
f ′ − sech2

(m0

2
z
)
f ′′

= L1−D g0
√

3g0
8m0

[
C1sech4

(m0

2
z
)

+ C2sech2
(m0

2
z
)

+ C0

]
· z sech2

(m0

2
z
)
, (5.13)

and for the summands si of the homogeneity in (5.14) with

s1 = L1−D g0
√

3g0
8m0

C1z sech6
(m0

2
z
)

s2 = L1−D g0
√

3g0
8m0

C2z sech4
(m0

2
z
)

s3 = L1−D g0
√

3g0
8m0

C0z sech2
(m0

2
z
)
,
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5 The loop calculation

we separately found the solutions

f1 = −L1−D g0
√

3g0
420m4

0

C1

{
6 sinh(m0z) + 24m0z cosh(m0z)

+ 3m0z cosh(2m0z) + 72m0z ln
(
1 + e−m0z

)
− 72Li2

(
−e−m0z

)
− 36m0z ln

[
cosh

(m0

2
z
)]
− 48 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 6 ln
[
cosh

(m0

2
z
)]

sinh(2m0z)− 15m0zsech2
(m0

2
z
)

+ 40 tanh
(m0

2
z
)

+ 18m2
0z

2

}
f2 = −L1−D g0

√
3g0

120m4
0

C2

{
2 sinh(m0z) + 8m0z cosh(m0z)

+m0z cosh(2m0z) + 24m0z ln
(
1 + e−m0z

)
− 24Li2

(
−e−m0z

)
− 12m0z ln

[
cosh

(m0

2
z
)]
− 16 ln

[
cosh

(m0

2
z
)]

sinh(m0z)

− 2 ln
[
cosh

(m0

2
z
)]

sinh(2m0z) + 6m2
0z

2

}
f3 = −L1−D g0

√
3g0

96m4
0

C0

{
2 sinh(m0z) + 8m0z cosh(m0z)
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}
.

Again we need to remove the component in zero mode, same as before, to
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5.3 The Calculation of selected diagrams in order g0
√
g0

obtain the final result

α
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.

Another diagram

= −L1−D g0
√

3g0
2m2

0

(
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√
3g0

)2
·
∫
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2
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2
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)

:= α
(4)
2 ,

is solved as well, actually its structure is quite similar to α(2)
2 , it might be
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5 The loop calculation

boring, but we have to repeat the same routine over and over again, that is

K′α(4)
2 =
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,

then we have
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, (5.14)

again we write down the three summands si of the homogeneity in (5.14) as
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√
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,

56



5.3 The Calculation of selected diagrams in order g0
√
g0

then we found the solutions
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and after taking out the component in zero mode, we receive the final ex-
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pression
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So far we have worked out four diagrams in order g0
√
g0, yet trivially, we can

still solve the disconnected diagram in Figure (5.1), we name it α(5)
2 , which

consists of two parts, note that we have already calculated one of them,
that is α(2)

1 , and the other part is already done within the framework of a
dimensional regulation by Hoppe [6], i.e.

= − g0
m0

[
0.795774716(2) · 10−2 ln(m0L) + 0.578689881(6) · 10−1

]
+O

(
m0Le

−m0L
)

+O(ε),
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where ε = 3−D, hence

α
(5)
2 = −L1−D g0

√
3g0

8m2
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z sech2
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2
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·
{[
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)

+O(ε)
}
.

The rest unsolved diagrams in 2-loop order require different approach, which
might exceed the scope of a diploma thesis.

5.4 A glimpse of the unsolved diagram

You might be curious about how to riddle the rest of the 2-loop diagrams,
personally I would prefer to look for a shortcut to ease the problems ahead,
but wether it’s feasible really depends on the luck of the draw. However, as
a backup plan, we could always try to solve the integral more directly, and I
can illustrate this point by knocking on the diagram

= m0g0
√
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Remember the spectrum representations of the propagator K′−1xx′ and K′−1xx

are already given in (4.15) and (4.16) respectively; we could of course apply
them in α

(6)
2 straightforwardly, or we could first convert the integral to a

differential equation just like before
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then, as you can see, it all comes down to the evaluation of the integral∫
dDx′

(
K′−1xx′

)2K′−1x′x′ , (5.15)
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5 The loop calculation

but doing which is not as easy as it looks like. After inserting (4.15) and
(4.16) in (5.15) we obtain the integral
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which can be further divided into 18 integrals. To carry out the full calcula-
tion, approximations and numerical methods might be needed; the relevant
techniques could be found in Hoppe’s doctoral thesis [6].
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Closing Words

I was sort of relieved as Mr. Münster allowed me to close my work like this,
which means I must have done something right. It took me around two years
to finally grind out this thesis, that is definitely much longer than what is
really needed, and then I realized that no great achievement is possible with-
out persistent work; ennui might be inevitable at some point, no matter how
overwhelming the initial interest seems to be, therefore certain willingness of
enduring boredom becomes essential.

Anyway, this thesis can be regarded as the follow-up study of Köpf’s the-
sis [7]. We followed a statistical field theory approach to study the interfacial
roughening. The perturbative calculation based on the kink solution defines
the interfacial profile, which is the key to investigate the interface width;
attention ought to be paid while establishing the Feynman diagrams, which
can all be traced back to the carefully prepared generating functional. The
correction I added in the one-loop approximation is negligible for large inter-
face size L; I only managed to solve some of the Feynman diagrams in 2-loop
order, basically I adopted the same technique that Köpf had used in his the-
sis, that is, I turned the integrals into inhomogeneous differential equations,
which can be worked out via the variation of the constants method, the so-
lutions to the corresponding Feynman diagrams then easily follow. The rest
of the Feynman diagrams are more stubborn to deal with, in general, solving
them must be a tour de force if no tricks are applied in advance, yet in my
opinion the following diagrams

should have the same difficulty due to the similarity in their topologies. On



Closing Words

a more complex level lie these two diagrams,

especially the latter one, which is probably the most difficult diagram in the
2-loop category.
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