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1 Einleitung

Das Verhalten der experimentell gefundenen Elementarteilchen lässt sich heute sehr ge-
nau mit dem Standardmodell beschreiben. Dieses Modell liefert eine kombinierte Dar-
stellung von dreien der vier Grundkräfte der Natur. Die starke Wechselwirkung ist eine
dieser vier elementaren Kräfte. Zu ihrer mathematischen Darstellung wird die Eichfeld-
theorie Quantenchromodynamik (QCD) [1–3] verwendet. Die anderen vom Standard-
modell beschriebenen Wechselwirkungen sind die elektromagnetsiche und die schwache
Wechselwirkung. Die Gravitation als die vierte elementare Kraft findet im Standardmo-
dell keine Berücksichtigung.

Die elementaren Teilchen, die vom Standardmodell beschrieben werden, sind zwölf Fer-
mionen mit halbzahligen Spin, ergänzt durch 12 Antiteilchen, und zusätzlichen bosoni-
sche Austauschteilchen.

Die Fermionen, die der QCD zugeordnet werden, sind die sechs Quarks, die in drei Ge-
nerationen gruppiert werden. Diese sechs Quarks, die sich durch verschiedene Flavours
voneinander unterscheiden, sind das up-, down-, strange-, charm- top- und bottom-
Quark. Bezeichnet werden sie häufig mit ihrem Anfangsbuchstaben, so dass die drei
Quark-Familien wie folgt geschrieben werden können:

(
u
d

)

,

(
c
s

)

,

(
t
b

)

.

Die bosonischen Austauschteilchen der QCD werden Gluonen genannt. Diese masselo-
sen und elektrisch ungeladenen Teilchen besitzen wie die Quarks einen weiteren Frei-
heitsgrad, der Farbe oder Farbladung genannt wird. Es existieren acht unterschiedlich
farbgeladene Gluonen. Teilchen, die sich aus Quarks zusammensetzen, sogenannte Ha-
dronen, sind immer “weiß”, was bedeutet, dass sie keine Farbladung tragen. Dies wird
in der Natur erreicht, indem sich Zustände aus zwei Quarks bilden, die mit einer Farbe
und der zugehörigen Antifarbe geladen sind. Ein solcher Zusammenschluss wird Meson
genannt.

Eine weitere Möglichkeit, ein farbungeladenes Teilchen zu erzeugen, ist die Verbindung
von drei Quarks zu einem Baryon. Die Quarks tragen dabei jeweils eine der drei un-
terschiedlichen Farben oder Antifarben, so dass es analog zur additiven Farbmischung
ebenfalls zu einem “weißen” Teilchen kommt. Dieses Zusammenhalten von Quarks in
einem Quark-Paar oder Quark-Triplett wird als Confinement bezeichnet.

David Gross, Frank Wilczek und David Politzer entdeckten 1971 [4, 5], dass dieser Zu-
sammenschluss bzw. die ihn bedingende Wechselwirkungsstärke für große Energien resp.
kleine Abstände asymptotisch gegen Null geht, während für große Abstände resp. kleine
Energien das besagte Confinement eintritt.
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1 Einleitung

In der Feldtheorie der elektromagnetischen Wechselwirkung, der Quantenelektrodyna-
mik, können Ergebnisse mittels Störungsrechnung gewonnen werden. Die Störungstheo-
rie liefert ein Schema, um die Wechselwirkung in verschiedenen Ordnungen zu organisie-
ren, wobei die Größe der Beiträge abnimmt und höhere Ordnungen nur Korrekturen zu
den vorherigen Ordnungen darstellen. Das funktioniert aber nur bei Kopplungstärken
< 1, was in der QED gegeben ist. In der QCD hingegen besitzt die Kopplungstärke
für kleine Energien größere Werte; dadurch wird es schwierig, mittels QCD theoretische
Vorhersagen für die starke Wechselwirkung bei kleinen Energien zu treffen.

Daher müssen bei kleinen Energien andere Wege gefunden werden, um Ergebnisse in der
QCD zu gewinnen. Ein sehr verbreitetes Mittel sind dabei numerische Simulationen [6].
Diese Simulationen, z.B. mit Hilfe des Monte-Carlo-Algorithmus, werten die Formeln
der QCD statistisch aus. Dazu ist es notwendig, die QCD für ein raumzeitliches Git-
ter zu formulieren, was als gitterregularisierte QCD oder kurz Gitter-QCD [7] bezeich-
net wird. Außerdem werden in den Simulationen die Quarkmassen unphysikalisch groß
gewählt, was die Simulationszeiten wesentlich verkürzt und somit Simulationen erst
praktisch durchführbar macht. Um die Ergebnisse der numerischen Betrachtung auf
das Kontinuum zu übertragen, werden die Simulationen für verschiedene Massen und
Gittergrößen durchgeführt und anschließend zu physikalischen Massen und einer kon-
tinuierlichen Raumzeit extrapoliert. Dabei ist jedoch nicht auszuschließen, dass durch
eventuelle Phasensprünge bei der Variation der Quarkmassen diese Extrapolation ins
Kontinuum fehlerbehaftet ist und deshalb angepasst werden muss.

Eine weitere Möglichkeit, Ergebnisse aus der Kontinuums-QCD zu gewinnen, bietet die
chirale Störungstheorie (χPTh) [8]. Diese besitzt anders als die QCD nicht Quarks als
Freiheitsgrade, sondern die für kleine Energien durch das Confinement auftretenden Ha-
dronen. Bei sehr niedrigen Energien sind die vorherrschenden Hadronen die sehr leichten
pseudoskalaren Mesonen. Somit beschreibt die chirale Störungstheorie als eine effektive
Theorie die QCD bei kleinen Energien und bietet damit eine Möglichkeit, analytische
Lösungen für diesen Energiebereich zu finden.

Ziel dieser Arbeit ist es nun, mittels chiraler Störungstheorie Phasensprünge der Gitter-
QCD bei Variation der Massen zu ermitteln. Hier werden dazu drei Quarkflavours (up,
down, strange) betrachtet. Die beiden leichtesten Quarks, das up- und das down-Quark,
werden dabei als masseentartet angenommen. Als zusätzlicher Parameter wird eine axi-
al verdrehte u- und d-Quarkmasse betrachtet. Diese wird in der Twisted-Mass-QCD
(tmQCD) [9] verwendet, einer Methode der Gitter-QCD, um Gitterartefakte, d.h. Feh-
ler, die durch die Diskretisierung auftreten, zu vermindern. Darüberhinaus unterbindet
eine verdrehte Masse Nullmoden des Diracoperators, die eine statistische Auswertung
erschweren.

In Kapitel 2 wird dazu eine kurze Einführung in die bisherige Entwicklung des Stan-
dardmodells und der QCD gegeben. Von besonderer Bedeutung sind dabei die chiralen
Symmetrien der QCD-Lagrangedichte, da an Hand dieser die chirale Störungstheorie
konstruiert wird. Darüber hinaus werden die spontane und explizite Brechung dieser
Symmetrie behandelt.

Im dritten Kapitel wird die Konstruktion der Lagrangedichte der chiralen Störungstheo-
rie bis zur vierten Ordnung (next to leading order ; NLO) nachvollzogen. Entscheidend
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ist dabei ein Theorem von Weinberg, das eine “Schablone” für die Konstruktion liefert.

Da das Verhalten der Gitter-QCD untersucht werden soll, ist es nötig, die Lagrangedichte
so anzupassen, dass sie effektiv Gitter-QCD beschreibt. Dazu wird in Kapitel 4 zunächst
ein kurzer Abriss der von Wilson entwickelten und nach ihm benannten Wilson-Wirkung
gegeben, die es ermöglicht, QCD auf dem Gitter zu beschreiben. Symanziks Arbeit
über eine effektive Gitterwirkung im Kontinuum liefert anschließend das Rüstzeug, die
Auswirkungen der Gitterregularisierung der Wilson-Wirkung auf die QCD in die chirale
Störungstheorie zu übertragen.

Im fünften Kapitel wird kurz auf die tmQCD und die daraus folgenden Modifikatio-
nen der konstruierten Lagrangedichte eingegangen. Hier wird lediglich die gemeinsame
Masse der u- und d-Quarks verdreht, die Masse des s-Quarks verbleibt ungedreht. Als
wichtigster Punkt ist dabei die zusätzliche Abhängigkeit von der gedrehten Masse fest-
zuhalten, die als ein weiterer Parameter zu den Quarkmassen hinzukommt.

Im sechsten Kapitel wird ein Einblick in die zu dieser Arbeit äquivalente Betrachtung
für Zwei-Flavour-Gitter-QCD gegeben. Dort treten zwei unterschiedliche Szenarien auf,
die beide kurz erläutert werden.

Informationen über das Minimum der Lagrangedichte sind für die Bildung von Vaku-
umerwartungswerten, die in Gittersimulationen berechnet werden, unabdingbar. Daher
wird in Kapitel 7 die Lagrangedichte der chiralen Störungstheorie so formuliert, dass
ihre Minima in Abhängigkeit von den drei betrachteten Massen, der gemeinsamen u-
und d-Quarkmasse, deren verdrehtem Anteil sowie der s-Quarkmasse, bestimmt werden
können. Dazu wird neben der geeigneten Parametrisierung für die Feldkonfigurationsma-
trix, die die Mesonenfelder enthält, eine Verschiebung der Quarkmassen vorgenommen.
Dadurch werden Terme proportional zum Quadrat der Gitterkonstanten, die aus der
Gitterformulierung resultieren, zu den Quarkmassen addiert. Schließlich wird noch eine
Näherung für kleine Quarkmassen eingeführt, die das Potential wesentlich vereinfacht.

Das so gewonnene Potential der Lagrangedichte wird in den anschließenden Kapiteln
auf sein absolutes Minimum und dessen Sprünge untersucht. Da wie erwähnt in Simu-
lationen unrealistisch große Quarkmassen verwendet werden, ist es wichtig, gerade für
kleinere Werte der Massen, die bei der Extrapolation durchlaufen werden, Phasensprün-
ge zu kennen. Daher wird das betrachtete Potential für kleine Massen genähert und so
vereinfacht. Es können bei dieser Näherung alle Terme ignoriert werden, die erst für sehr
große Massen einen spürbaren Einfluss auf das Potential entwickeln. Die verbleibenden
Terme sind zusätzlich abhängig von drei unbekannten Konstanten, die aus der chira-
len Störungstheorie stammen. Der Betrag dieser Konstanten konnte mit Hilfe von [10]
abgeschätzt werden. In Kapitel 8 wird dazu zunächst ein genähertes, lediglich aus drei
linearen Termen bestehendes Potential, untersucht.

In Kapitel 9 wird die Analyse des linearen Potentials um zwei zusätzliche Terme er-
weitert. Diese beiden Terme sind aufgrund der Größe der zugehörigen Konstante, für
kleine Massen die dominanten Beiträge. Da nur der Betrag dieser Konstanten bekannt
ist, wird die Analyse für beide Vorzeichen durchgeführt.

Im zehnten und letzten Kapitel werden schließlich alle Terme der Näherung für kleine
Massen berücksichtigt. Das Potential besitzt damit eine Abhängigkeit von allen drei
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1 Einleitung

unbekannten Konstanten, wobei jede der 8 verschiedenen Vorzeichenkombinationen se-
parat zu betrachtet ist.
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2 QCD - Symmetrien und
Symmetriebrechung

Im diesem Kapitel wird zunächst eine kurze Darstellung der geschichtlichen Entwick-
lung des Standardmodells der Elementarteilchen behandelt. Anschließend werden die
für diese Arbeit wesentlichen Bestandteile der Theorie skizziert. Diese sind neben der
Quantenchromodynamik (QCD), der Eichtheorie der Quarks und Gluonen, die spontane
und explizite Brechung von nicht-abelschen Symmetrien.

2.1 Das Standardmodell der Elementarteilchen

Das Standardmodell der Elementarteilchen stellt die grundlegende vereinheitlichte Theo-
rie zur Beschreibung der elementaren Teilchen dar. Es verbindet drei der vier grundle-
genden Kräfte der Natur in einem Modell, und zwar die elektromagnetische, die schwa-
che und die starke Wechselwirkung. Nicht berücksichtigt wird im Standardmodell die
Gravitation, die noch nicht zufriedenstellend integriert werden konnte. Das Standard-
modell wird mit Hilfe der Quantenfeldtheorie [11] beschrieben, die bereits in den 40er
Jahren durch die Quantenelektrodynamik (QED) entwickelt wurde. In Quantenfeldtheo-
rien spielen Eichtheorien eine zentrale Rolle. Maßgeblich an ihrer Entwicklung beteiligt
waren Feynman, Schwinger und Tomonaga [12]. Die Anfänge des Standardmodells rei-
chen in die 60er und 70er Jahre des letzten Jahrhunderts zurück, als es Glashow zu-
sammen mit Weinberg und Salam gelang, eine vereinheitlichte Beschreibung der elek-
tromagnetischen und schwachen Wechselwirkung, die elektroschwache Wechselwirkung
zu formulieren [13, 14].

Als der zweite wesentliche Schritt zur Vereinheitlichung des Standardmodells ist der von
Gell-Mann [1] und Zweig [2] zu nennen. Sie postulierten die Quarks als Konstituenten der
Hadronen und ordneten sie in SU(3) Multipletts an - Gell-Mann spricht vom “achtfachen
Weg” [15] - und legten damit den Grundstein der QCD und ihrer Eingliederung in das
Standardmodell.

Die sechs Quarks der QCD sind in Tabelle 2.1 aufgelistet. jedem Quark ist dabei ein na-
mensgebendes Flavour zugeordnet. Die angegebenen Massen in der Tabelle sind Strom-
quarkmassen.

Die Quarks sind elektrisch geladene Spin-1/2-Fermionen. Die starke Wechselwirkung
wird durch acht Gluonen vermittelt.

Durch die starke Wechselwirkung der Quarks treten diese ausschließlich in gebundenen
Zuständen auf. Diese Eigenschaft wird als Confinement bezeichnet. Es existieren zwei
verschiedene Bindungsarten der Quarks auch Hadronen genannt werden, und zwar die
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2 QCD - Symmetrien und Symmetriebrechung

Flavour Up Down Strange Charm Bottom Top

Ladung [e] 2/3 -1/3 -1/3 2/3 -1/3 2/3
Masse [GeV] 0,005 0,009 0,175 1,15 4,0 174,3

Tabelle 2.1: Elektrische Ladungen und Stromquarkmassen der sechs Quarkflavours

Mesonen und die Baryonen. Die Mesonen sind farbneutrale Zusammenschlüsse aus einem
Quark und einem Antiquark, die Baryonen bestehen hingegen aus drei Quarks.

Der nächste Abschnitt beschäftigt sich intensiver mit der starken Wechselwirkung und
den für die QCD wichtigen Symmetrien und deren Brechung. Ein ausführlicher Überblick
über die QCD findet sich z.B. in [3].

2.2 Die QCD-Lagrangedichte und ihre Symmetrien

Die starke Wechselwirkung wird durch eine nichtabelsche Eichtheorie, die QCD, be-
schrieben [3]. Die an dieser Wechselwirkung beteiligten Elementarteilchen sind die Quarks
und die Gluonen als zugehörige Austauschteilchen. Beide weisen einen zusätzlichen Frei-
heitsgrad auf, der Farbladung genannt wird. Dieser Freiheitsgrad macht die QCD zu
einer lokalen nichtabelschen SU(3)c-Eichtheorie, wobei der Index c für colour steht und
sich auf den inneren Farbladungsraum bezieht. Die Einführung dieses Freiheitsgrades
ist notwendig, um das Pauli-Prinzip zu erfüllen.

Der Index c wird hinzugefügt, um eine Verwechselung mit der zusätzlich vorhandenen
globalen Flavour SU(Nf )-Symmetrie zu vermeiden. Nf bezeichnet die Anzahl der in
die Theorie einbezogenen Quarks. In dieser Arbeit werden lediglich die drei leichtesten
Quarks berücksichtigt.

In der QCD werden die Quarkfelder durch fermionische Felder

q(x) = (qα,c,f(x)) (2.1)

beschrieben. Der Index f unterscheidet dabei die sechs verschiedenen Quarkflavours.
Der Index c gibt die Farbladung des Quarks (rot, grün, blau) an. Der Index α ist der
Spinorindex.

Die QCD-Lagrangedichte lautet:

LQCD =
∑

f

q̄f (iγµDµ −mf )qf −
1

4
Fµν,aF

µν
a . (2.2)

Die darin enthaltenen γµ sind die Dirac-Matrizen 1 .

Die Lagrangedichte (2.2) besitzt für masselose Quarks eine exakt erhaltene globale
SU(Nf )L × SU(Nf )R × U(1)V Flavoursymmetrie. Auch für massive Quarks ist diese
Symmetrie für Spezialfälle teilweise erfüllt.

1siehe Anhang A
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2.2 Die QCD-Lagrangedichte und ihre Symmetrien

Für eine weitergehende Betrachtung der Symmetrien werden die sechs Quarkflavours
in zwei Gruppen eingeteilt. Man unterscheidet dabei die Gruppe der leichten Quarks
(up, down, strange) und der schweren Quarks (charm, bottom, top). Anders als die drei
schweren können die drei leichten Quarks in einer groben Näherung als massenentartet
(mu = md = ms) angenommen werden. Die Lagrangedichte weist dann für die leichten
Quarks eine SU(3)-Flavoursymmetrie auf.

Da zusätzlich eine lokale SU(3)c-Eichsymmetrie für die QCD gefordert wird, ist es not-
wendig, die Lagrangedichte mit einer kovarianten Ableitung zu formulieren. Eine einfa-
che Viererableitung der Form ∂µ würde diese Forderung nach Invarianz unter der lokalen
Eichtransformation nicht erfüllen. Die kovariante Ableitung der QCD lautet:

Dµ = ∂µ − ig
8∑

a=1

λa

2
Aµ,a. (2.3)

Durch die Einführung dieser Ableitung kommt es zu einer Kopplung der Eichfelder Aµ,a,
der Gluonen, an die Quarks. Aus der Tatsache, dass lediglich eine einzige Kopplungs-
konstante g für alle acht Eichfelder existiert, ist ersichtlich, dass die Wechselwirkung
zwischen Quarks und Gluonen farbunabhängig ist. Die Gruppe SU(3) besitzt damit
sowohl als Eichgruppe als auch für den häufig betrachteten Spezialfall Nf = 3 mit mas-
seentarteten Quarks eine große Bedeutung für die QCD. Die SU(3) ist die Gruppe der
unitären Matrizen2 U mit Dimension 3 und der zusätzlichen Bedingung detU = +1. Sie
besitzt acht Generatoren, die nicht vertauschen. Diese sind bis auf den Faktor 1

2 iden-
tisch mit den Gell-Mann-Matrizen λa, a = 1,...,8. Die SU(3) ist somit eine nichtabelsche
Symmetriegruppe. Zusammen mit der Vertauschungsrelation

[
λa

2
,
λb

2

]

= ifabc
λc

2
(2.4)

bilden die Generatoren die Lie-Algebra der SU(3). Die Strukturkonstante fabc ist dabei
vollständig antisymmetrisch.

Um eine Wechselwirkung der Eichbosonen untereinander zu gewährleisten, beinhaltet
die QCD-Lagrangedichte einen zusätzlichen Term, der Yang-Mills-Term genannt wird.
Dieser ist ein Produkt aus Feldstärketensoren Fµν,a, die unabhängig von den Quarkfla-
vours sind. Im Fall der nichtabelschen Symmetriegruppe SU(3)c lautet der Feldstärke-
tensor:

Fµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c. (2.5)

Die bereits oben erwähnte Flavoursymmetrie für masselose Quarks soll im Anschluss nä-
her behandelt werden; man spricht in diesem Fall vom chiralen Limes. In diesem Limes
weist die QCD eine exakt erhaltene globale SU(3)L×SU(3)R×U(1)V -Flavoursymmetrie
auf, die sogenannte chirale Symmetrie. Die Lagrangedichte im chiralen Limes hat die
Form:

L0
QCD =

∑

f=u,d,s

q̄f iγµDµqf −
1

4
Fµν,aF

µν
a . (2.6)

2siehe Anhang B

11



2 QCD - Symmetrien und Symmetriebrechung

Diese Lagrangedichte kann mit Hilfe der Projektionsoperatoren

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5) (2.7)

auf ihre positiven und negativen Helizitätseigenzustände projeziert werden. Im betrach-
teten Fall masseloser Quarks entspricht die Helizität der Chiralität, man spricht von
rechts- und linkshändigen Quarks. Die Operatoren besitzen die Eigenschaften:

PR + PL = 1, P 2
R/L = PR/L, PRPL = PLPR = 0. (2.8)

Mit diesen Operatoren lässt sich die Lagrangedichte (2.6) in einen rechts- und einen
linkshändigen Anteil separieren und kann geschrieben werden als:

L0
QCD =

∑

f=u,d,s

(q̄R,f iγµDµqR,f + q̄L,f iγµDµqL,f )− 1

4
Fµν,aF

µν
a . (2.9)

Das Noether-Theorem sagt aus, dass zu jeder globalen kontinuierlichen Symmetrie der
Lagrangedichte und der zugehörigen Bewegungsgleichung ein erhaltener Strom existiert.
Aus der vorhandenen chiralen Symmetrie der QCD sollten folglich 2× (8 + 1) = 18 er-
haltene Ströme zu erwarten sein, die sich wie die Symmetrie selbst in links- und rechts-
händige Ströme unterteilen lassen. Anstelle dieser rechts- und linkshändigen Ströme, die
hier als Rµ,a und Lµ,a bezeichnet werden, werden häufig Kombinationen gebildet, die wie
ein Vektor bzw. ein Axialvektor unter Parität transformieren. Die so gebildeten Ströme
setzen sich, entsprechend der Symmetrie, aus zwei Oktett- und zwei Singulett-Strömen
zusammen:

V µ,a = Rµ,a + Lµ,a = q̄γµλa

2
q

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q

V µ = Rµ + Lµ = q̄γµq

Aµ = Rµ − Lµ = q̄γµγ5q. (2.10)

Im klassischen Fall sind diese Ströme immer erhalten. In der Quantentheorie ist der
Singulett-Axialvektorstrom Aµ, der zur Symmetrie U(1)A gehört, durch eine Anomalie
verletzt. Diese Betrachtungen gelten unter der Voraussetzung verschwindender Quark-
massen und somit exakt erfüllter Symmetrien. Dies ist in der Realität natürlich nicht
gegeben; vielmehr sind die Quarks massiv, dadurch kommt es zu Symmetriebrechungen,
und die Ströme (2.10) sind nicht sämtlich erhalten.

2.3 Spontane und explizite Symmetriebrechung

In diesem Abschnitt werden die beiden Arten von Symmetriebrechung erläutert: zum
einen die spontane Symmetriebrechung, die mit dem Goldstone-Theorem [16] verknüpft
ist, zum anderen die explizite Symmetriebrechung. Anschließend werden diese beiden
Konzepte auf die QCD angewandt. Eine genauere Betrachtung des Konzepts der Sym-
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metriebrechung ist [8] zu entnehmen.

2.3.1 Spontane Symmetriebrechung

In einer quantenfeldtheoretischen Betrachtung ist spontane Symmetriebrechung immer
mit einer Entartung des Grundzustandes verbunden. Spontane Symmetriebrechung fin-
det immer dann statt, wenn der Grundzustand, den das betrachtete System einnimmt,
weniger Symmetrien besitzt als die zugehörige Lagrangedichte [11]. Ein häufig verwen-
detes Beispiel für diese Art der Symmetriebrechung stellt die Lagrangedichte

L(φ1,φ2,φ3) =
1

2
∂µφi∂

µφi −
m2

2
φiφi −

λ

4
(φiφi)

2 (2.11)

mit m2 < 0, λ > 0 und φi hermitesch dar. Diese Lagrangedichte ist invariant bezüglich
der globalen, kontinuierlichen und nicht-abelschen SO(3)-Symmetriegruppe. Sucht man
nach Minima von (2.11), findet sich:

|φmin| =
√

−m2

λ
=: v. (2.12)

Die Minima liegen damit auf einer Kugeloberfläche, die um den Ursprung zentriert ist.
Von diesen Minima lässt sich ein beliebiger Grundzustand auswählen. Hier wird dieser
Grundzustand in die ~e3-Richtung gelegt. Das daraus resultierende Minimum entspricht
daher:

~φmin = v~e3. (2.13)

Dieses Minimum ist nicht invariant unter der vollen SO(3)-Gruppe. Lediglich Drehun-
gen um die dritte Achse lassen den Vektor ~φmin konstant. Somit ist der Vektor nur noch
invariant unter einer Untergruppe der vollen Gruppe SO(3). Die übrigen Transforma-
tionen, die nicht Element der Untergruppe sind, bilden keine eigene Gruppe, da die
Identität nicht enthalten ist. Entwickelt man den Grundzustand (2.13) mit

|~φmin| = v + η, (2.14)

setzt diesen Ausdruck in (2.11) ein und betrachtet lediglich die Potentialdichte V der
Lagrangedichte, so hat diese die folgende Gestalt:

V =
1

2
(−2m2)η2 + λvη

(
φ2

1 + φ2
2 + η2

)
+
λ

4

(
φ2

1 + φ2
2 + η2

)2 − λ

4
v4. (2.15)

Aus dieser Gleichung lässt sich ablesen, dass nach der spontanen Symmetriebrechung

zwei masselose Bosonen φ1, φ2 und ein massives Boson η mitmη =
(
−2m2

)1/2
existieren.

Die beiden masselosen Bosonen repräsentieren die Goldstone-Bosonen der spontanen
Symmetriebrechung.

2.3.2 Goldstone-Bosonen

Das Auftreten von Goldstone-Bosonen wird mit Hilfe des Goldstone-Theorems [16] be-
schrieben. Es trifft die Aussage, dass bei einem spontanen Bruch der Symmetrie masse-
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lose, bosonische Teilchen entstehen, die Goldstone-Bosonen genannt werden. Aus grup-
pentheoretischer Sicht existiert für jeden Generator einer Symmetriegruppe der Lagran-
gedichte, der deren Grundzustand nicht invariant lässt, ein Goldstone-Boson. Die Anzahl
der vorhandenen Goldstone-Bosonen lässt sich somit über die Generatoren ausdrücken:
Bezeichnet nG die Anzahl der Generatoren, die zur Symmetriegruppe der Lagrange-
dichte gehören, und nH die Anzahl der Generatoren der Untergruppe H von G, die den
Grundzustand invariant lassen, so ist die Zahl der Goldstone-Bosonen n gegeben durch
die Differenz n = nG − nH .

Für die im Abschnitt 2.3.1 betrachtete Gruppe SO(3), die drei Generatoren besitzt, lässt
lediglich einer der drei Generatoren den Grundzustand invariant. Es sollten demnach
3 − 1 = 2 Goldstone-Bosonen auftreten. Dies deckt sich mit den in Abschnitt 2.3.1
gefundenen Ergebnissen.

In dem hier behandelten Beispiel wird davon ausgegangen, dass von der Lagrangedichte
mehrere entartete Grundzustände ausgebildet werden, die weniger Symmetrien aufwei-
sen, als die Lagrangedichte selbst. Dies ist auf das Vorzeichen des quadratischen Terms
mit m2 < 0 in Gleichung (2.11) zurückzuführen. Diese Wahl des Vorzeichens von m2,
bei der spontane Symmetriebrechung und als Folge Goldstone-Bosonen auftreten, wird
Nambu-Goldstone-Modus genannt.

Im gegenteiligen Fall mit m2 > 0 existieren keine entarteten Grundzustände. Der ein-
zige Grundzustand φmin = 0 besitzt dieselben Symmetrien wie die Lagrangedichte und
es treten keine Goldstone-Bosonen auf. Dieser Modus wird als Wigner-Weyl-Modus be-
zeichnet.

2.3.3 Explizite Symmetriebrechung

Eine weitere, direkte Form der Symmetriebrechung ist die explizite Brechung einer Sym-
metrie. Explizite Symmetriebrechung tritt auf, wenn eine erfüllte Symmetrie durch einen
zusätzlichen Beitrag, z.B. durch einen zusätzlichen Term in der Lagrangedichte, verletzt
wird. Ist der Einfluss dieses Beitrages gering, kann die Symmetrie dennoch näherungs-
weise als erfüllt gelten. Trotzdem kann die Berücksichtigung eines solchen symmetrie-
brechenden Terms innerhalb einer Lagrangedichte entscheidende Konsequenzen für die
Goldstone-Bosonen einer zusätzlichen spontanen Symmetriebrechung haben. Als ein ein-
faches Beispiel wird zu der Lagrangedichte (2.11) ein zusätzlicher Term +aφ3 hinzuge-
fügt, der die bestehende SO(3)-Symmetrie explizit bricht. Wird nur die Potentialdichte
der so gewonnenen Lagrangedichte betrachtet, hat diese die Form:

V = +
m2

2
φiφi +

λ

4
(φiφi)

2 + aφ3. (2.16)

Für die Konstanten in diesem Ausdruck, die bereits in Abschnitt 2.3.1 eingeführt wur-
den, gelten dieselben Bedingungen wie im Fall der spontanen Symmetriebrechung. Zu-
sätzlich gilt für die neu auftretende Konstante a > 0. Das in dieser Weise explizit
gebrochene Potential weist lediglich eine SO(2)-Symmetrie auf. Das Vorgehen ist iden-
tisch zu dem ohne explizite Symmetriebrechung: Es wird ein Minimum ausgewählt, um
φmin entwickelt, und die Massen der auftretenden Bosonen werden ermittelt.
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2.3 Spontane und explizite Symmetriebrechung

Als wichtige Konsequenz der zusätzlichen expliziten Symmetriebrechung besitzen nun
alle drei auftretenden Bosonen nicht verschwindende Massen. Diese ergeben sich zu:

m2
φ1

= m2
φ2

= a

√

λ

−m2
,

m2
η =−2m2 + 3a

√

λ

−m2
. (2.17)

Die vormals masselosen Goldstone-Bosonen φ1 und φ2 haben durch die explizite Bre-
chung der Symmetrie der Lagrangedichte eine Masse erhalten. Diese massiven Bosonen
tragen daher die Bezeichnung Pseudo-Goldstone-Bosonen.

2.3.4 Spontane und explizite Symmetriebrechung in der QCD

Die in den vorangegangenen Abschnitten beschriebenen Konzepte der spontanen und
der expliziten Symmetriebrechung werden in diesem Abschnitt auf experimentell gewon-
nene Erkenntnisse angewandt. Die QCD für die drei leichten Quarks besitzt im chiralen
Grenzfall eine SU(3)L×SU(3)R×U(1)V -Symmetrie. Mit Hilfe der in Gl. (2.10) verwen-
deten Kombinationen lässt sich diese Symmetrie auch in eine axiale und eine vektorielle
Symmetrie umformulieren. Für die aus der Strom-Algebra folgenden Ladungsgenerato-
ren der Symmetriegruppen [8] ergibt sich damit:

Qa
V = Qa

R +Qa
L, Qa

A = Qa
R −Qa

L für a = 1,...8. (2.18)

Zu beachten ist, dass die axialen im Gegensatz zu den vektoriellen Generatoren kei-
ne geschlossene Algebra bilden. Die Symmetrie U(1)V bestimmt die Baryonenzahl und
teilt das Teilchenspektrum in Mesonen und Baryonen auf. Betrachtet man die weiteren
chiralen Symmetrien der Lagrangedichte der masselosen QCD, sollten sich die Teilchen
aufgrund der entgegengesetzten Parität und der Vertauschbarkeit der Generatoren mit
dem Hamiltonoperator der QCD in Multipletts anordnen, die bezüglich der Parität ent-
artet sind. In experimentell ermittelten Teilchenspektren finden sich aber nicht alle der
daraus zu erwartenden Teilchen, was eher auf eine SU(3)-Symmetrie schließen lässt. Wie
von Vafa und Witten [17] gezeigt wurde, besitzt der Grundzustand der QCD mindestens
eine SU(3)V ×U(1)V -Symmetrie.

Geht man daher davon aus, dass der Grundzustand anders als die Lagrangedichte nicht
invariant unter axialen Symmetrien ist, so sollten acht Goldstone-Bosonen existieren, die
aufgrund der Eigenschaften der Generatoren der SU(3)A pseudoskalare Teilchen sind.
Als Kandidaten für diese Bosonen bietet sich das pseudoskalare Mesonenoktett an. Diese
Mesonen besitzen jedoch, im Gegensatz zu den Goldstone-Bosonen, eine endliche, wenn
auch sehr geringe Masse.

In der Realität sind die Quarks nicht masselos. Wird die Quarkmasse berücksichtigt
und der resultierende Masseterm zur Lagrangedichte hinzugefügt, bricht dieser explizit
die im chiralen Grenzfall vorherrschende SU(3)L×SU(3)R Symmetrie. Als Folge daraus
sollten die Goldstone-Bosonen in Pseudo-Goldstone-Bosonen übergehen, was die geringe
Masse der pseudoskalaren Mesonen erklären würde.

Betrachtet man nicht die drei leichtesten Quarks, sondern lediglich das u- und das
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2 QCD - Symmetrien und Symmetriebrechung

d-Quark, so besitzt die QCD im chiralen Grenzfall eine SU(2)L × SU(2)R × U(1)V -
Symmetrie. Der Grundzustand weist entsprechend dem Fall von drei Quarks eine SU(2)V -
Symmetrie auf. Der Masseterm bricht auch hier diese Symmetrie explizit. Als Folge lässt
dieser Fall drei Pseudo-Goldstone-Bosonen erwarten, die als die drei Pionen (π0, π+,
π−) identifiziert werden.
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3 Die Lagrangedichte der QCD in der
chiralen Störungstheorie

Ziel dieses Kapitels ist es, eine effektive Lagrangedichte zu konstruieren, die die QCD bei
niedrigen Energien beschreibt. Diese effektive Theorie wird chirale Störungstheorie ge-
nannt [8,18]. Die Freiheitsgrade dieser Theorie sind nicht die freien Quarks und Gluonen
der QCD, sondern gebundene hadronische Zustände. Bei den hier betrachteten sehr ge-
ringen Massen werden diese Zustände durch das pseudoskalare Mesonen-Oktett gebildet,
welches sich aus den Pseudo-Goldstone-Bosonen der spontanen Symmetriebrechung der
QCD zusammensetzt (vgl. Kap. 2.3). Die Lagrangedichte der effektiven Theorie weist
entsprechend ihrer Konstruktion dieselbe SU(3)L× SU(3)R×U(1)V -Symmetrie auf wie
die zugrunde liegende QCD. Ebenso muss eine identische spontane Symmetriebrechung
stattfinden. Die explizite Symmetriebrechung durch die Quarkmassen muss ebenfalls in
die effektive Theorie eingegliedert werden.

3.1 Goldstone-Bosonen als Freiheitsgrade der chiralen
Störungstheorie

Die chirale Störungstheorie besitzt als Freiheitsgrade die acht Goldstone-Bosonen der
spontanen Symmetriebrechung der Drei-Flavour-QCD. Um die effektive Theorie auf-
stellen zu können, müssen die Transformationseigenschaften der Goldstone-Bosonen be-
kannt sein. Diese Eigenschaften lassen sich aus den Symmetrien der Lagrangedichte und
des Grundzustandes der QCD ermitteln [8].

Die Elemente der Symmetriegruppe der Lagrangedichte seien g ∈ G, die des Grundzu-
standes h ∈ H. Die entsprechenden Gruppen sind:

G =SU(3)L × SU(3)R = {(L,R)|L ∈ SU(3)L,R ∈ SU(3)R},
H ={(V,V )|V ∈ SU(3)V } ∼= SU(3)V . (3.1)

Die neuen Variablen der effektiven Theorie sind die Goldstone-Felder φi(x). Diese wer-
den in einem Vektor ~Π(x) angeordnet, der die Dimension n besitzt, was der Zahl
der Goldstone-Bosonen entspricht. Um das Transformationsverhalten der Goldstone-
Bosonen zu bestimmen, ist der Begriff der Linksnebenklasse

g̃H = {(L̃V,R̃V )|V ∈ SU(3)} (3.2)

einzuführen, wobei g̃ ein Element aus G bezeichnet. Diese Linksnebenklasse ist eindeutig
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durch eine SU(3)-Matrix U = R̃L̃† definiert:

(L̃V,R̃V ) = (L̃V, R̃L̃†L̃V ) = (1,R̃L̃†) (L̃V,L̃V )
︸ ︷︷ ︸

∈H

⇒ g̃H = (1, R̃L̃†
︸︷︷︸

=U

)H. (3.3)

Es lässt sich zeigen, dass U isomorph zu einem Vektor ~Π der Goldstone-Bosonen ist.
Das Transformationsverhalten von U unter g = (L,R) ∈ G erhält man somit aus der
Linksnebenklasse:

gg̃H = (L,RR̃L̃†)H = (1,RRR̃L̃†L†)(L,L)H = (1,R(R̃L̃†)L†)H. (3.4)

Für das Verhalten von U unter den betrachteten Transformationen bedeutet dies:

U = R̃L̃† → U ′ = R(R̃L̃†)L† = R(U)L†. (3.5)

Zu beachten ist, dass die Matrix U , ebenso wie die Goldstone-Felder, eine Raumzeit-
Abhängigkeit besitzt, die in den vorangegangenen Schritten zur besseren Übersichtlich-
keit nicht explizit dargestellt wurde.

Um die Goldstone-Felder zu beschreiben, muss eine zweckmäßige Parametrisierung für
die Matrix U(x) gewählt werden. Diese Parametrisierung ist nicht eindeutig, häufig wird
eine Exponentialdarstellung verwendet. Diese besitzt die Form:

U(x) = exp

(

i
φ(x)

F0

)

= exp

(

i
λaφa

F0

)

(3.6)

mit

λaφa =






φ3 + 1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8




 ≡






π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K− √

2K̄0 − 2√
3
η




 .

(3.7)

Dabei werden zur Parametrisierung die acht Gell-Mann-Matrizen λa verwendet. Die
Konstante F0 = hat die Dimension einer Energie und bewirkt, dass der Exponent di-
mensionslos wird.

Im Fall von nur zwei Flavours können die drei Pauli-Matrizen3 τi zu einer äquivalenten
Parametrisierung von U(x) verwendet werden. In diesem Fall besitzt U(x) die Form:

U(x) = exp

(

i
φ(x)

F0

)

= exp

(

i
τiπi

F0

)

(3.8)

mit

τiπi =

(
π3 π1 + iπ2

π1 − iπ2 −π3

)

≡
(

π0
√

2π+
√

2π− −π0

)

. (3.9)

In (3.8) bezeichnen die Felder πi die für SU(2) auftretenden drei Goldstone-Bosonen.
Mit den so gewonnenen Kenntnissen der Transformationseigenschaften der Goldstone-
Bosonen kann nun eine effektive Theorie formuliert werden.

3siehe Anhang B
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3.2 Zählschema nach Weinberg

Um eine effektive Lagrangedichte aus einer gegebene Theorie zu konstruieren, lässt sich
ein Theorem von Weinberg verwenden [19]. Dieses Theorem besagt, dass eine effektive
Lagrangedichte perturbativ aus allen mit der Symmetrie verträglichen Termen aufge-
stellt werden kann. Eine solche Lagrangedichte liefert die allgemeinste S-Matrix der
zugrundeliegenden Theorie, die den Konsistenzbedingungen der Analytizität, Unitari-
tät und Kausalität genügt. Eine so konstruierte Lagrangedichte wird im Allgemeinen
unendlich viele Terme und die dazugehörigen freien Parameter besitzen.

Im Fall der chiralen Störungstheorie beschreibt die effektive Theorie die Dynamik der
Goldstone-Bosonen; die Terme werden aufsteigend nach der Anzahl von Impulsen und
Quarkmassen sortiert. Dabei wird ein Quarkmassenterm mit dem Faktor 2 gewichtet,
da, wie sich mit (3.19) zeigen wird, die Quadrate der Mesonenmassen proportional zu
den Quarkmassen sind. Die Lagrangedichte ist ein Lorentz-Skalar, weshalb Ableitungen
immer in gerader Anzahl auftreten müssen, damit diese kontrahiert werden können.
Daraus ergibt sich:

Leff =
∑

n

L2n = L2 + L4 + L6 + · · · . (3.10)

Der erste Term mit n = 1 beinhaltet dabei sowohl zwei Ableitungen (Impulse), als auch
einen Quarkmasseterm und wird im Folgenden mit O(p2) bezeichnet.

Das Zählschema nach Weinberg liefert eine Möglichkeit, ein gegebenes Feynman-Diagramm
unter einer linearen Reskalierung der externen Impulse und einer quadratischen Reskalie-
rung der Quarkmassen zu untersuchen und ihnen eine Ordnung der effektiven Lagran-
gedichte zuzuordnen. Dabei ist die chirale Dimension D eines gegebenen Diagramms
gegeben durch:

M(tpi,t
2mq) = tDM(pi,mq). (3.11)

Die chirale Dimension ist über die Formel

D = 2 +
∞∑

n=1

2(n − 1)N2n + 2NL (3.12)

mit den möglichen zugehörigen Diagrammen verknüpft. Dabei steht N2n für die Anzahl
der Vertizes der Lagrangedichte L2n und NL ist die Anzahl der unabhängigen Schlei-
fen. Für kleine Massen und Impulse, wie sie in der chiralen Störungstheorie betrachtet
werden, sollten aufgrund von (3.11) Diagramme mit kleinem D (D = 2, D = 4) domi-
nieren. Nach Gleichung (3.12) sind das solche mit möglichst kleinen Werten für n, hier
mit n = 1. Diese sind gerade die Baum-Diagramme, die sich zu L2 zuordnen lassen.
Man erkennt darüber hinaus, dass Schleifen durch den Faktor 2NL stets unterdrückt
sind und erst in höheren Ordnungen (ab D = 4) vorkommen können.
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3.3 Konstruktion der Lagrangedichte der chiralen
Störungstheorie bis L4

Als nächstes wird die effektive Lagrangedichte der chiralen Störungstheorie der Form

L = L2 + L4 (3.13)

konstruiert [8,20]. Die Freiheitsgrade sind durch das Oktett der pseudoskalaren Mesonen
definiert, das durch die Matrix U repräsentiert wird. Die Lagrangedichte muss im chi-
ralen Grenzfall eine SU(3)L × SU(3)R ×U(1)V -Symmetrie besitzen. Der Grundzustand
muss invariant unter SU(3)V ×U(1)V sein. Der Massenterm der Lagrangedichte bricht
diese Symmetrien explizit. Zunächst wird die Lagrangedichte der niedrigsten Ordnung,
auch Leading Order (LO) genannt, ohne einen die Symmetrie brechenden Masseterm
betrachtet und daran die allgemeine Vorgehensweise bei der Konstruktion veranschau-
licht. Die Lagrangedichte L2 besteht nach Abschnitt 3.2 aus allen invarianten Termen
mit zwei Ableitungen der Feldkonfigurationsmatrix U . Allgemein gilt: Invariante Terme,
bestehend aus den invarianten Objekten A,B,C,... lassen sich aus der Spur des Produk-
tes der Art AB† aufstellen. Für höhere Ordnungen setzt sich die Lagrangedichte aus der
Spur von Produkten von einzelnen Elementen und aus Produkten von Spuren in der
Art

Tr
(

AB†CD†
)

, Tr
(

AB†
)

Tr
(

CD†
)

, · · ·

zusammen. Der einzige Term, der in der Ordnung O(p2) gebildet werden kann und von
Null verschieden ist, lautet

L2,k =
F 2

0

4
Tr

(

∂µU∂
µU †

)

(3.14)

und stellt somit die Lagrangedichte. Der freie Parameter F0 ist die Pion-Zerfalls-Kon-
stante und besitzt damit eine physikalische Relevanz. Sie kann aus der QCD bestimmt
werden. Die Gestalt des Vorfaktors F 2

0 /4 ist so gewählt, dass bei einer Entwicklung nach
den in U enthaltenden Felder der kinetische Anteil in führender Ordnung die bekannte
Form

L2,k =
1

2
∂µφa∂

µφa + · · · (3.15)

besitzt. Um den Masseterm der QCD

LM = −q̄RMqL − q̄LM †qR, M =





mu 0 0
0 md 0
0 0 ms



 (3.16)

korrekt in die effektive Theorie einzubauen, verwendet man die Methode der Spurion-
analyse. Dazu nimmt man an, dass der Masseterm invariant ist, wenn die Massematrix
wie

M → RML† (3.17)

transformiert. Damit konstruiert man die vermeintlich invarianten Terme der gesuchten
Ordnung. Diese Invarianten in der Ordnung O(p2) sind Tr

(
MU †) und Tr

(
UM †). Bildet
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3.3 Konstruktion der Lagrangedichte der chiralen Störungstheorie bis L4

man daraus einen Term für die Lagrangedichte L2, ergibt sich:

Ls.b. =
F 2

0B0

2
Tr

(

MU † + UM †
)

. (3.18)

Der freie Parameter B0 dieses Ausdrucks ist proportional zum chiralen Quarkkondensat
〈q̄q〉. Entwickelt man Ls.b. bis zur zweiten Ordnung in den in U enthaltenden Mesonen-
Feldern, erhält man mit mu = md = mq 6= ms die Massen der Pseudo-Goldstone-
Bosonen:

M2
π = 2B0mq,

M2
K = B0(mq +ms),

M2
η =

2

3
B0(mq + 2ms). (3.19)

Wie bereits in Abschnitt 3.2 vorweggenommen, sind die Mesonenmassen quadratische
Funktionen der Quarkmassen, was dort als Begründung für die Ordnung O(p2) ∼ O(m)
einer Quarkmasse verwendet wurde.

Mit der Definition
χ = 2B0M (3.20)

lautet die vollständige Lagrangedichte bis zur Ordnung O(p2):

L2 =
F 2

0

4

〈

∂µU∂
µU †

〉

+
F 2

0

4

〈

χU † + Uχ†
〉

. (3.21)

Dabei wurde die Notation 〈. . .〉 = Tr(. . .) benutzt. Diese wird auch im Folgendem bei-
behalten.

Die Konstruktion der Lagrangedichte L4 (next to leading order oder NLO) verläuft
entsprechend. Sie wird aus allen invarianten Termen der Ordnung O(p4) gebildet. Die
vollständige Lagrangedichte der Ordnung O(p4) lautet:

L4 = L1

〈

∂µU∂µU
†
〉2

+ L2

〈

∂µU∂νU
†
〉2

+ L3

〈(

∂µU∂µU
†
)2

〉

+ L4

〈

∂µU∂µU
†
〉〈

χU † + Uχ†
〉

+ L5

〈

∂µU∂µU
†
(

χ†U + U †χ
)〉

+ L6

〈

χU † + Uχ†
〉2

+ L7

〈

χU † − Uχ†
〉2

+ L8

〈

χ†Uχ†U + U †χU †χ
〉

. (3.22)

Dabei sind äußere Quellen nicht berücksichtigt worden. Die acht zugehörigen Parame-
ter Li werden als Gasser-Leutwyler-Koeffizienten4 bezeichnet und müssen anders als die
Konstanten der Ordnung O(p2) experimentell oder durch Simulationen bestimmt wer-
den. Sie werden auch als Low-Energy-Constants (LEC) oder Gasser-Leutwyler-Konstanten
bezeichnet.

4siehe Anhang C
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4 Chirale Störungstheorie für
Gitter-QCD

Die Gleichungen der Quantenchromodynamik sind ohne einschränkende Annahmen nicht
analytisch lösbar. Eine Möglichkeit zur näherungsweisen Lösung besteht in einer stö-
rungstheoretischen Entwicklung in der Kopplungskonstanten. Diese perturbative Be-
trachtung liefert aufgrund der asymptotischen Freiheit der QCD lediglich für große
Energien sinnvolle Ergebnisse.

Eine weitere häufig genutzte nicht-perturbative Möglichkeit, Ergebnisse in der QCD zu
erhalten, stellt die numerische Bearbeitung, z.B.durch Monte-Carlo-Simulationen dar.
Dabei ist es erforderlich, sich auf ein diskretes und endliches raumzeitliches Gitter zu
beschränken. Diese Beschränkung bewirkt ein Abweichen der Gitter-Ergebnisse von z.B.
störungstheoretischen Betrachtungen im Kontinuum. Will man mit der hier verwende-
ten chiralen Störungstheorie Gitter-Ergebnisse interpretieren, muss die chirale Lagran-
gedichte den Gittereffekten entsprechend modifiziert werden [10] .

4.1 Gitterformulierung der QCD

Bevor eine chirale Störungstheorie für Gitter-QCD modifiziert wird, soll zunächst kurz
eine Darstellung der QCD auf dem Gitter gegeben werden. Der hier verwendete Ansatz
ist der von Wilson [21]. Eine genauere Darstellung kann [22] entnommen werden. Eine
grundlegende Einführung in die Gitter-QCD liefert [7]. Einen Überblick über die hier
verwendeten Methoden bietet auch [23].

Eine weitere Möglichkeit QCD, auf dem Gitter zu formulieren, bietet die der Staggered-
Fermionen, die hier jedoch nicht betrachtet wird. Für einen Einblick kann ebenfalls [22]
herangezogen werden.

4.1.1 Gitter-Wirkung nach Wilson

Der Übergang von der kontinuierlichen QCD zur Gitter-QCD erfolgt in zwei Schritten.
Zunächst wechselt man vom Minkowski-Raum in einen vierdimensionalen euklidischen
Vektorraum. Dies bedeutet eine Veränderung des metrischen Tensors. Er ändert sich
von

gµν = diag(1,− 1,− 1,− 1) (4.1)

im Minkowski-Raum in
gE
µν = δµν = diag(1,1,1,1) (4.2)
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4 Chirale Störungstheorie für Gitter-QCD

im euklidischen Raum. Dabei gehen die Indizes des Minkowski-Raumes µ = 0,1,2,3,
wobei die nullte Komponente die Zeitkoordinate beschreibt, über in µ = 1,2,3,4, wo
die neue vierte Komponente die der Zeit ist. Der Übergang zur euklidischen Metrik
entspricht einer Rotation der Zeitvariablen t gegen den Uhrzeigersinn zu rein imaginären
Werten:

t→ iτ. (4.3)

Diese Transformation wird Wick-Rotation genannt. Der Anti-Kommutator der Dirac-
Matrizen im Minkowski-Raum ist proportional zu dessen metrischem Tensor:

{γµ,γν} = 2gµν . (4.4)

Diese Relation muss ebenfalls, entsprechend angepasst für den euklidischen Raum, ge-
fordert werden5. Im euklidischem Raum gilt analog:

{γE
µ ,γ

E
ν } = 2δµν . (4.5)

Dies kann durch die geeignete Wahl von euklidischen Dirac-Matrizen erreicht werden:

γE
i = iγi, γE

4 = −γ0, iγµ∂µ = −γE
µ ∂

E
µ . (4.6)

Die euklidische Betrachtung besitzt den Vorteil, dass die bei der Berechnung von Greens-
Funktionen auftauchenden Exponentialfunktionen des Bolzmann-Faktors exp(−SE) re-
ell sind und so Oszillationen verhindert werden, was eine statistische Auswertung er-
möglicht, die z.B. mittels Gittersimulationen erfolgen kann.

Im zweiten Schritt wird der kontinuierliche euklidische Raum durch einzelne diskrete
Punkte ersetzt. Der Abstand der Gitterpunkte wird mit a bezeichnet. Die Fermionen-
felder befinden sich auf diesen Gitterpunkten. Die die Wechselwirkung vermittelnden
Gluonen sind hingegen auf den Verbindungslinien zwischen diesen Punkten lokalisiert.
Um dieser Diskretisierung Rechnung zu tragen, müssen Ableitungen in endliche Differen-
zen und Integrale über die Raumzeit in Summen über die Gitterpunkte überführt wer-
den. Eine durch diesen Übergang erhaltene Wirkung ist für Gitterkonstanten ungleich
Null, jedoch nicht eichinvariant. Auch im Kontinuumslimes a → 0 ist diese Invarianz
wegen der Eigenschaften der Renormierung verletzt. Es müssen somit weitere Modifi-
kationen vorgenommen werden, die eine Invarianz für alle Werte der Gitterkonstanten
gewährleisten. Eine Standardlösung für dieses Problem ist die von Wilson. In der sog.
Wilson’schen Wirkung [21] wird zunächst eine Eichinvarianz für die Gittertheorie for-
muliert und anschließend die Wirkung dementsprechend angepasst. Dieser Sachverhalt
wird im folgenden Abschnitt genauer untersucht.

Das Produkt von zwei Feldern ψ̄(x) · ψ(y), die an zwei verschiedenden Orten im Kon-
tinuum oder an zwei verschiedenen Gitterpunkten lokalisiert sind, ist nicht invariant
unter einer lokalen Eichtransformation Λ(x) ∈ SU(N). Bei der Konstruktion einer Git-
terwirkung nach Wilson treten aber gerade solche Produkte von Feldern für benachbarte
Gitterpunkte auf. In der Differentialgeometrie wird ein derartiges Produkt aus Feldern
durch eine multiplikativ hinzugefügte SU(N)-Matrix U(x,y,C) invariant, die Parallel-
transporter genannt wird. Dabei steht C für die Abhängigkeit von dem gewählten Pfad,

5siehe Anhang A
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4.1 Gitterformulierung der QCD

der die Felder verbindet. Zur Darstellung der Gitter-Wirkung ist somit ein Paralleltrans-
porter zwischen zwei benachbarten Gitterpunkten erforderlich; er wird als Link-Variable
bezeichnet. Der zugehörige Pfad, also die direkte Verbindung zwischen zwei benachbar-
ten Gitterpunkten, wird Link genannt. Die Link-Variable hat die Form

U(x,x+ aµ̂) ≡ Uxµ = exp
(

ig0aA
b
µ(x)Tb

)

(4.7)

und transformiert unter einer zugehörigen Eichtransformation Λ(x) gemäß:

Uxµ → Λ(x)Ux¸muΛ(x+ aµ̂)−1. (4.8)

Der Vektor µ̂ ist der Einheitsvektor in die Gitterrichtung µ = 1,2,3,4; die Konstante g0
beschreibt die nackte, d.h. unrenormierte, Kopplung. Terme mit Produkten aus Feldern
sind mit Hilfe der Link-Variablen eichinvariant und besitzen nun die Form:

∑

x,µ

ψ̄(x+ aµ̂)Uxµψ(x). (4.9)

Die Link-Variable ersetzt somit das Eichfeld der Kontinuums-QCD. Die Quark-Wirkung
auf dem Gitter besitzt nach dem Übergang zu Differenzen und Summen die Form

SF = a4
∑

x

ψ̄(x) (DW [U ] +m0)ψ(x) (4.10)

mit der nackten Quarkmasse m0 und dem Wilson-Dirac-Operator DW , der anstelle der
Eichfelder die Link-Variablen beinhaltet und somit eichinvariant ist. Dieser Operator
hat die Form:

DW =
1

2

[
γµ

(
∇∗

µ +∇µ

)
− ar∇∗

µ∇µ

]
. (4.11)

Der erste Term beschreibt die diskretisierte Ableitung. Der zweite Term wird Wilson-
Term genannt, wobei der darin enthaltende Wilson-Parameter r zu Eins gewählt werden
kann. Dieser Term unterbindet zwar das Auftreten von zusätzlichen Fermionen durch
den künstlich eingeführten Cut-Off einer endlichen Gitterlänge a, was als Dopplerpro-
blem bezeichnet wird, besitzt aber den Nachteil, nicht invariant unter axialen Trans-
formationen zu sein. Er bricht damit die chirale Symmetrie explizit. Die Vorwärts- und
Rückwärts-Differenzen-Operatoren beschreiben die eich-kovarianten Ableitungen und
besitzen die Form:

∇µψ(x) =
1

a
[Uxµψ(x+ aµ̂)− ψ(x)] ,

∇∗
µψ(x) =

1

a

[

ψ(x) − U †
xµψ(x− aµ̂)

]

. (4.12)

Neben der Quark-Wirkung muss auch die Yang-Mills-Wirkung der QCD in die Git-
terformulierung überführt werden. Ein eichinvarianter Ausdruck auf dem Gitter ist ein
geschlossener Pfad aus vier Links, die sog. Plaquette. Diese stellt die kleinste mögliche
Schleife auf dem Gitter dar. Der zugehörige Paralleltransporter

U(p) ≡ Ux;µν ≡ U(x,x+aν̂)U(x+aν̂,x+aµ̂+aν̂)U(x+aµ̂+aν̂,x+aµ̂)U(x+aµ̂,x) (4.13)
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4 Chirale Störungstheorie für Gitter-QCD

wird Plaquette-Variable genannt. Diese Variable wird für die Konstruktion der Gitter-
Yang-Mills-Wirkung benutzt und trägt daher den Namen Plaquette-Wirkung:

SG =
1

g2
0

∑

p

ReTr(1− U(p)). (4.14)

Die darin enthaltene Summe läuft über alle orientierten Plaquetten p. Die vollständige
Wilson-Wirkung auf dem Gitter ist durch die Summe aus der Quark- und der Plakette-
Wirkung gegeben:

S
[
U,ψ̄,ψ

]
= SF

[
U,ψ̄,ψ

]
+ SG [U ]

= a4
∑

x

ψ̄(x) (DW +m0)ψ(x) +
1

g2
0

∑

p

ReTr(1− U(p)). (4.15)

Einen Nachteil der Wilson-Gitter-Wirkung stellt die Verletzung der chiralen Symmetrie
dar, die im Kontinuumslimes der Gittertheorie jedoch wieder erfüllt sein sollte.

4.1.2 Verbesserte Gitter-Wirkung - Symanzik-Wirkung

Die im vorigen Abschnitt vorgestellte Gitter-Wirkung nach Wilson bewirkt bei der Be-
rechnung physikalischer Größen Beiträge, die auf die Diskretisierung zurückzuführen
sind. Solche Fehler können bis 30 Prozent ausmachen und zu einer falschen Extrapolati-
on in das Kontinuum führen. Durch das Einfügen von Gegentermen können diese Fehler
jedoch reduziert werden [24, 25]. Diese Gegenterme bewirken, dass die unerwünschten
Gittereffekte durch Subtraktion eliminiert werden. Eine Variante dazu stellt die ver-
besserte Wirkung nach Symanzik dar. Dazu wird eine effektive Kontinuumswirkung
konstruiert, die die Wilson-Wirkung für kleine Gitterkonstanten beschreibt. Neben der
Konstruktion der Gegenterme kann diese effektive Wirkung ebenfalls dazu genutzt wer-
den, die Wilson-Wirkung effektiv im Kontinuum zu beschreiben. Die Symanzik’sche
Wirkung lässt sich wie folgt darstellen:

S = S0 + aS1 + a2S2 + · · · . (4.16)

Der Term S0 beschreibt dabei die reine Kontinuumswirkung, während die weiteren Ter-
me die Gitter-Effekte proportional zu a, a2 usw. charakterisieren. Die einzelnen Terme
können mit

Sk =

∫

d4xLk(x) (4.17)

berechnet werden. Die Lagrangedichten mit k ≥ 1 werden aus allen möglichen lokalen
Operatorkombinationen mit der Dimension 4+k aufgebaut. Die Anzahl der Dimensionen
ist mit der Quarkmasse verknüpft, die mit den auftretenden Feldern multipliziert wird.

Die Anzahl der möglichen Operatorkombinationen für L1 kann durch zwei Überlegun-
gen verringert werden. Zum einen müssen sie den Symmetrien der zugrunde liegenden
Gitter-Theorie genügen, zum anderem kann durch partielle Integration ihre Anzahl wei-
ter reduziert werden. Für die zugehörige Lagrangedichte für Gitter-Effekte von O(a)
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4.1 Gitterformulierung der QCD

verbleiben fünf Kombinationen:

O1 = ψ̄σµνFµνψ,

O2 = ψ̄DµDµψ + ψ̄
←−
Dµ
←−
Dµ,

O3 = mTr(FµνFµν),

O4 = m
(

ψ̄γmuDµψ − ψ̄
←−
Dµγµψ

)

,

O5 = m2ψ̄ψ. (4.18)

Die Felder werden ebenfalls durch ein effektives, eichinvariantes Feld beschrieben:

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) + · · · . (4.19)

Die Felder der verschiedenden Ordnungen sind wie die effektive Lagrangedichte inva-
riant unter den Symmetrien der Gitter-Theorie. Die Liste von Operatorkombinationen
(4.18), die für die effektive Lagrangedichte relevant sind, kann unter Verwendung der
Feldgleichungen um die Kombinationen O2 und O4 weiter reduziert werden. Die ef-
fektive Lagrangedichte L1 ist somit aus den Operatorkombinationen O1, O3 und O5

aufgebaut. Will man die Wilson-Wirkung mittels eines Gegenterms um die Gittereffek-
te der Ordnung O(a) verbessern, bieten sich eben diese drei Operatorkombinationen
an:

δS = a5
∑

x

{c1Ô1(x) + c3Ô3(x) + c5Ô5(x)}. (4.20)

Die Dächer der Operatoren bringen zum Ausdruck, dass diese sich auf eine Gitterformu-
lierung beziehen. Die Operatoren Ô3 und Ô5 können in die Wilson-Wirkung integriert
werden, da sie die Struktur des Plakette-Feldes bzw. der skalaren Dichte besitzen, was
zu einem angepassten Verhalten der Wirkung unter einer Reskalierung führt. Der einzig
verbleibende Term ist ∼ Ô1 und trägt den Namen Pauli-Term. Die verbesserte Wilson-
Wirkung hat damit die Form:

Simp = SWilson + a5
∑

x

cSW ψ̄σµνF̂µνψ. (4.21)

Der einzige neue Koeffizient cSW wird als Sheikholeslami-Wohlert Koeffizient bezeichnet
und ist, abhängig von der verwendeten Gitterwirkung, eine komplizierte Funktion der
Eich-Kopplung.

Neben der Verbesserung der Wilson-Wirkung durch den gefundenen Gegenterm ist auch
die effektiv konstruierte Symanzik-Wirkung (4.16) selbst nützlich. Diese lautet:

S = S0 + acSW ψ̄σµνFµνψ. (4.22)

Der Term S0 kann dabei durch die QCD oder auch durch eine effektive Theorie wie die
chirale Störungstheorie gebildet werden. Ist Letzteres der Fall, so muss der Term aS1

für diese Zwecke in die chirale Störungstheorie überführt werden. Damit wird es dann
möglich, auf dem Gitter gewonnene Ergebnisse analytisch zu überprüfen.
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4 Chirale Störungstheorie für Gitter-QCD

4.2 Lagrangedichte der chiralen Störungstheorie für
Gitter-QCD

Um die Lagrangedichte der chiralen Störungstheorie (3.22) in die effektive Symanzik-
Wirkung umzuschreiben, muss diese in jeder Ordnung ihrer Entwicklung (vgl. Kap. 3.2)
mit Termen proportional zur Gitterkonstanten a angepasst werden [26]. Dabei wird zu
der Entwicklung in den Impulsen und den Quarkmassen die Gitterkonstante als ein
weiterer Entwicklungsparameter hinzugefügt. Die Ordnung O(a) wird dabei wie zwei
Impulse und wie eine Quarkmasse gezählt. Damit gilt für die betrachteten Ordnungen:

L2 ∼ O(p2, a),

L4 ∼ O(p4, p2a, a2).

Darüber hinaus muss die euklidische Formulierung auf dem Gitter, die in Abschnitt
4.1.1 eingeführt wurde, berücksichtigt werden. Dies führt zu abweichenden Vorzeichen
der Lagrangedichteterme gegenüber der Formulierung im Minkowski-Raum (3.22). Um
die benötigten Gitter-Terme zu konstruieren, benutzt man wie im Fall des Masseterms
der QCD die Spurionanalyse, die in analoger Weise durchgeführt werden kann. Dies
ist ohne weitere Annahmen möglich, da die beiden Größen Masse und Gitterkonstante
identische Eigenschaften aufweisen. Als Folge dessen brechen die zugehörigen Terme
auch auf dieselbe Art explizit die chirale Symmetrie. Für die Analyse wird acsw aus
(4.22), wie zuvor die Quarkmasse M , als Spurion A aufgefasst:

q̄acSWσµνFµνq ∼ q̄LAσµνFµνqR + q̄RA
†σµνFµνqL. (4.23)

Mit der Abkürzung
ρ = ρ01 = 2W0a, (4.24)

wobei cSW in W0 integriert ist, ergibt sich für die Ordnung O(p2, a) unter Berücksich-
tigung der euklidischen Formulierung folgende Lagrangedichte in LO:

L2 =
F 2

0

4

〈

∂µU∂
µU †

〉

− F 2
0

4

〈

χU † + Uχ†
〉

− F 2
0

4

〈

ρU † + Uρ†
〉

. (4.25)

Die Terme in NLO werden ebenfalls mittels Spurionanalyse gefunden. Durch die gleiche
Struktur des Masseterms der QCD und des Pauli-Terms der Symanzik-Wirkung ha-
ben die Gitterterme der chiralen Lagrangedichte dieselbe Form. Sie unterscheiden sich
neben den unterschiedlichen Spurions in den zugehörigen Konstanten, die im Fall der
Gitterterme mit W ′

i bezeichnet sind. Den Termen proportional zu p2a sind die Konstan-
ten Wi zugeordnet. Die Langrangedichte für die chirale Störungstheorie auf dem Gitter
lautet [27]:

L = L2 + L4

=
F 2

0

4

〈

∂µU∂µU
†
〉

− F 2
0

4

〈

χU † + Uχ†
〉

− F 2
0

4

〈

ρU † + Uρ†
〉

(4.26)
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− L1

〈

∂µU∂µU
†
〉2
− L2

〈

∂µU∂νU
†
〉

− L3

〈(

∂µU∂µU
†
)2

〉

+ L4

〈

∂µU∂µU
†
〉〈

χU † + Uχ†
〉

+W4

〈

∂µU∂µU
†
〉〈

ρ†U + U †ρ
〉

+ L5

〈

∂µU∂µU
†
(

χ†U + U †χ
)〉

+W5

〈

∂µU∂µU
†
(

ρ†U + U †ρ
)〉

− L6

〈

χU † + Uχ†
〉2
−W6

〈

χU † + Uχ†
〉 〈

ρ†U + U †ρ
〉

−W ′
6

〈

ρ†U + U †ρ
〉2
− L7

〈

χU † − Uχ†
〉2

−W7

〈

χU † − Uχ†
〉 〈

ρ†U − U †ρ
〉

−W ′
7

〈

ρ†U − U †ρ
〉2

− L8

〈

χ†Uχ†U + U †χU †χ
〉

−W8

〈

ρ†Uχ†U + U †ρU †χ
〉

−W ′
8

〈

ρ†Uρ†U + U †ρU †ρ
〉

. (4.27)

Damit ist die Konstruktion der Lagrangedichte der chiralen Störungstheorie zur Be-
schreibung der Gitter-QCD abgeschlossen. In der Gitter-QCD wird häufig eine axial
gedrehter Masseterm verwendet, was einige Vorteile mit sich bringt. Diese Technik soll
im folgenden Kapitel behandelt werden.
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5 Twisted-Mass-QCD

Die Twisted-Mass-Gitter-QCD (tmLQCD) bietet eine weitere Möglichkeit, neben der
im vorherigen Kapitel vorgestellten Konstruktion von Gegentermen mit dem Syman-
zik’schen Programm die Wilson-Gitter-Wirkung in der Ordnung O(a) zu verbessern.
Um diese Verbesserung zu erreichen, wird der Masseterm der Wilson-Wirkung axial im
Flavourraum gedreht. Wie sich zeigen wird, tritt die angestrebte Verbesserung bei einer
Drehung um π/2 auf, was auch mit maximal twist bezeichnet wird. Um die Betrachtung
zunächst übersichtlich zu halten, wird die Zwei-Flavour-QCD mit zwei degenerierten
Quarks zur Erläuterung gewählt. Am Ende des Kapitels wird der in dieser Arbeit un-
tersuchte Fall mit drei Flavours vorgestellt. Einführungen in die Twisted-Mass-QCD im
Kontinuum und auf dem Gitter bieten [9, 28].

5.1 Twisted-Mass-QCD im Kontinuum

Wird eine gedrehte Massematrix betrachtet, spricht man von der Twisted-Mass-QCD
(tmQCD). Zunächst werden die Auswirkungen eines gedrehten Masseterms im Konti-
nuum betrachtet. In der QCD (2.2) kann der Masseterm allgemein in der Form

LQCD,m = χ̄Meiωγ5τ3

χ (5.1)

geschrieben werden. Wegen den Transformationseigenschaften der Quarkfelder χ kann
mittels τ3, das auf das Flavour-Doublett wirkt, durch eine axiale Transformation der
Form

ψ = e
i

2
ωγ5τ3

χ,

ψ̄ = χ̄e
i

2
ωγ5τ3

(5.2)

der Massenterm der tmQCD zurück in die geläufige Standardform

LQCD,m = ψ̄Mψ (5.3)

gebracht werden. Man spricht im Fall der Standardform von der physikalischen Basis
(physical basis); wird hingegen die Drehung nicht auf die Felder bezogen, sondern als eine
Drehung der Matrix M aufgefasst, so spricht man von einer verdrehten Basis (twisted
basis). Spaltet man die Exponentialfunktion aus (5.1) auf, so erhält man eine in Real-
und Imaginärteil separierte Masse M :

Meiωγ5τ3

= M
(
cos(ω) + iγ5τ

3 sin(ω)
)
,

m̃ = M cos(ω), µ = M sin(ω), M =
√

m̃2 + µ2. (5.4)
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5 Twisted-Mass-QCD

Von maximaler Verdrehung spricht man bei ω = π/2, wenn µ maximal wird und somit
m̃ verschwindet. Als wichtige Erkenntnis ist festzuhalten, dass die Physik aufgrund der
Symmetrien der Lagrangedichte durch eine Drehung des Masseterms im Kontinuum
nicht verändert wird.

5.2 Wilson-Twisted-Mass-QCD

In der Wilson-Twisted-Mass-QCD (WtmQCD) wird die Methode der axial gedrehten
Masse auf die Wilson-Wirkung angewandt. Die Wirkung der WtmQCD hat in der twisted
basis die Form:

Stw
F [U,χ̄,χ] = a4

∑

x

χ̄(x)

(
1

2

(
γµ

(
∇∗

µ +∇µ

)
− ar∇∗

µ∇µ

)
+mqe

iωγ5τ3

)

χ(x). (5.5)

Verlagert man die Drehung des Masseterms in die Felder, gelangt man zur physical basis.
Dabei hat die Wirkung der WtmQCD folgende Form:

Sph
F

[
U,ψ̄,ψ

]
= a4

∑

x

ψ̄(x)

(
1

2

(

γµ

(
∇∗

µ +∇µ

)
− ar∇∗

µ∇µe−iωγ5τ3
)

+mq

)

ψ(x). (5.6)

Offenbar erhält man anders als im Kontinuum bei der Gitter-Darstellung nicht die Stan-
dardform der betrachteten Wirkung, hier die Wilson-Wirkung, zurück. Dies ist auf die
Eigenschaften des Wilson-Terms zurückzuführen, der nicht invariant unter Drehungen
im Flavourraum ist. Somit handelt es sich bei der WtmQCD und einer Gitter-QCD
mittels der Standard-Wilson-Wirkung um zwei unterschiedliche Regularisierungen auf
dem Gitter.

Die WtmQCD besitzt zwei entscheidende Vorteile. Der erste Vorteil ist eine automati-
sche O(a)-Verbesserung bei maximalem Twist. Der Wilson-Term wird in die Wirkung
eingefügt, um das Dopplerproblem zu umgehen, sorgt jedoch für zusätzliche Gitteref-
fekte der O(a). Aufgrund seiner zu einem zusätzlichen Masseterm äquivalenten Gestalt,
macht er neben den Standard-Renormierungen eine zusätzliche additive Renormierung
der Form

m̃ = mq −mcr (5.7)

notwendig. Dabei ist mq die physikalische Quarkmasse und mcr die Verschiebung der
Masse durch den Wilson-Term. Durch die Abhängigkeit der Masse vom Twistwinkel ist
auch die Physik abhängig von diesem Winkel.

Will man eine automatische O(a)-Verbesserung erhalten [9, 29], lässt sich mq in der
Simulation so wählen, dass diese Masse dem Einfluss des Wilson-Terms entspricht und
als Gegenterm fungiert. Aufgrund der Symmetrien der Kontinuums-QCD unter axialen
Drehungen des Masseterms lässt sich die Masse der entsprechenden Simulation voll-
ständig in den Imaginärteil von m0 verlegen, was einer maximalen Drehung von π/2
entspricht. Der Realteil bleibt dabei bei dem um O(a) verbessernden Wert.

Der zweite Vorteil der WtmQCD besteht in der Vermeidung von Nullmoden des Dirac-
Operators, die eine statistische Auswertung von Observablen erschweren. Für weitere
Informationen kann auf [30] zurückgegriffen werden.
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5.3 Twisted-Mass in der chiralen Störungstheorie

5.3 Twisted-Mass in der chiralen Störungstheorie

Wird die Methode der WtmQCD auf die chirale Störungstheorie angewandt [31,32], lässt
sich auch hier die Wirkung bzw. die Lagrangedichte sowohl in der physikalischen Basis
als auch in der verdrehten Basis formulieren. Die im folgendem verwendete Notation
entspricht [33]. Die invarianten Felder der QCD sind in der chiralen Störungstheorie
durch die Matrix U ersetzt. Ist der Masseterm mit mu = md = mq gemäß

χ(ω) = 2B0mqe
−iωτ3

= 2B0 (m̃1− iµτ3) = χ̃1 + iχ′
3τ3 (5.8)

gedreht, befindet man sich in der twisted basis. Die Masse mq lässt sich separieren in

m̃ = mq cos(ω), µ = mq sin(ω), mq =
√

m̃2 + µ2. (5.9)

Die Gittermatrix ρ behält dabei ihre Standardform:

ρ = ρ01 = 2W0a1. (5.10)

Die Lagrangedichte kann durch eine Drehung der Form

U = e−
i

2
ωτ3

U ′e−
i

2
ωτ3

(5.11)

in die physical basis transformiert werden, was jedoch eine Drehung der Gittermatrix ρ
zu Folge hat.

Diese hat dann die Gestalt:

ρ(ω) = 2W0ae
iωτ3

= ρ01 + iρ3τ
3. (5.12)

Entsprechend gilt in der twisted basis:

ρ0 = 2W0a cos(ω), ρ3 = 2W0a sin(ω), ρ =
√

ρ2
0 + ρ2

3. (5.13)

In der physical basis ist die Masse ungedreht und besitzt die Standardform:

χ = χ01 = 2B0mq1. (5.14)

Eine vertiefte Darstellung der chiralen Störungstheorie findet sich in [10].

5.4 Chirale Störungstheorie mit Twisted-Mass-Term für
drei Quarkflavours

Gegenstand dieser Arbeit ist die Untersuchung der Phasenstruktur der Drei-Flavour-
QCD. Dabei wird der Spezialfall mu = md = mq 6= ms betrachtet. Dafür muss die oben
dargestellte Methode der tmQCD auf drei Flavours erweitert werden. Die allgemeine
Drehung der Massematrix χ kann durch eine Matrix D ausgeführt werden [34]. Diese
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5 Twisted-Mass-QCD

allgemeine Drehmatrix hat die Gestalt:

D =





eiα 0 0
0 eiβ 0
0 0 eiγ



 , (5.15)

wobei α+ β + γ = 0 stets erfüllt ist. In dem hier betrachteten Fall wird als Drehmatrix
D eine Matrix gewählt, die ausschließlich die Massen mu und md dreht, ms jedoch nicht
verändert. Eine solche Drehung wird durch die Matrix

D = e−iωλ3 (5.16)

bewirkt. Die Matrix λ3 ist ein Generator der SU(3) und proportional zur dritten Gell-
Mann-Matrix. Eine mit

χ(ω) = χ · D = χe−iωλ3 = 2B0(diag(m̃,m̃,ms)− iµλ3) (5.17)

gedrehte Massematrix besitzt die Form:

χ(ω) =





χ0 + iχ3 0 0
0 χ0 − iχ3 0
0 0 χs



 . (5.18)

Die darin enthaltenden Größen sind durch

χ0 = 2B0m̃,

χ3 = −2B0µ,

χs = 2B0ms (5.19)

gegeben. Die gedrehte Matrix (5.18) ersetzt die ungedrehte Form in der Lagrangedichte
nach Gl. (4.26). Mit Hilfe der Spurionanalyse lässt sich zeigen, dass dieser Austausch
bis zur Ordnung L4 ausreicht und keine neuen Terme in die Theorie einfließen. Damit
ist die Herleitung einer effektiven Lagrangedichte für WtmQCD mit einem Drehwinkel
abgeschlossen. Mit der so gewonnenen effektiven Gleichung lässt sich die Minimastruktur
der zugehörigen Gitterdarstellung ermitteln.

Bevor damit begonnen wird, soll im folgendem Kapitel noch ein kurzer Einblick in die
Phasenstruktur der entsprechenden Theorie mit zwei degenerierten Quarkflavours ohne
s-Quark gegeben werden.
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6 Phasenstruktur der
Twisted-Mass-Gitter-QCD für zwei
Quarkflavours

In diesem Kapitel wird ein Überblick über die Kenntnisse der Phasenstruktur in der
mq-µ-Ebene für chirale Störungstheorie mit zwei Flavours gegeben. Eine ausführlichere
Darstellung findet sich in [35–38].

In den nachfolgenden Kapiteln wird die entsprechende Untersuchung für drei Flavours
durchgeführt.

6.1 Parametrisierung der chiralen Störungstheorie für zwei
Quarkflavours

Um die Phasenstruktur der WtmQCD für zwei Quarkflavours zu ermitteln, muss das
Minimum der Lagrangedichte (4.26) bestimmt werden. In den hier benutzten Quellen
wirkt die Drehung in τ3-Richtung. Das Minimum wird daher ebenfalls in diese Richtung
gelegt. Mit dieser Richtung des Minimums nimmt die Matrix U aus (3.8) die vereinfachte
Form

U = eiω3τ3 =

(
cosω3 − i sinω3 0

0 cosω3 + i sinω3.

)

(6.1)

an. Der Winkel ω3 beschreibt die Verdrehung des Minimums in τ3-Richtung und wird
daher Vakuumwinkel genannt. Eine Untersuchung ohne eine zuvor festgelegte Vakuum-
richtung ist in [39] wiedergegeben.

Das Potential (4.26) lässt sich vereinfachen, indem eine von (3.8) abweichende Parame-
trisierung mit

U = u01 + i

3∑

i=1

uiτi (6.2)

gewählt wird. Mit einem Vakuum ausschließlich in τ3-Richtung vereinfacht sich dies zu:

U = u01 + iu3τ3. (6.3)

Die Parameter u0 und u3 lassen sich nun mit (6.1) als

u0 = cos(ω3), u3 = sin(ω3) (6.4)

identifizieren. Es gilt die aus detU = 1 und der Unitarität von U folgende Nebenbedin-
gung für U :

u2
0 + ~u2

i = u2
0 + u2

3 = 1. (6.5)
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6 Phasenstruktur der Twisted-Mass-Gitter-QCD für zwei Quarkflavours

Mit dieser neuen Parametrisierung und durch die Wahl einer eingeschränkten Vakuum-
richtung vereinfacht sich das Potential der Lagrangedichte (4.26) zu:

V (u0,u3) = −c1u0 + c2u
2
0 + c3u3 + c4u

2
3 + c5u0u3 + Lconst. (6.6)

Die bei der Berechnung dieses Potentials auftretenden teilweise massenabhängigen Ko-
effizienten ci ergeben sich zu:

c1 =F 2
0χ

′
0,

c2 =− 8
[
L86χ

′2
0 − (2L86 −W86)χ

′
0ρ0 +

(
L86 −W86 +W ′

86

)
ρ2
0

]
,

c3 =− F 2
0χ

′
3,

c4 =− 8L86χ
′
3,

c5 =− 16L86χ
′
0χ

′
3 + 8 (2L86 −W86)χ

′
3ρ0.

Um eine kürzere Form der Koeffizienten zu erhalten, ist für die Gasser-Leutwyler-
Konstanten die abkürzende Schreibweise6

Xij = 2Xj +Xi (6.7)

verwendet worden. Weiterhin werden zu dem Quarkmassenterm χ0 Terme proportional
zu ρ0 ∼ a hinzuaddiert:

χ′
0 = χ̃0 + ρ0 = 2B0m̃

′, χ′
3 = −2B0µ, (6.8)

was die Quarkmassen um Beiträge proportional zur Gitterkonstanten verschiebt. Die in
der Formel (6.8) benutzten Größen entsprechen der Notation aus Abschnitt 5.3.

6.2 Minima- und Phasenstruktur für zwei Quarkflavours

Zur Untersuchung der Phasenstruktur für kleine Quarkmassen kann das Potential (6.6)
auf die Form

V = −c1u0 + c2u
2
0 + c3u3 (6.9)

reduziert werden, da alle Terme, die proportional zu u2
i oder einer Masse sind geringere

Beiträge liefern als die linearen Terme. Der Koeffizient c1 ist proportional zur gemein-
samen Masse der u- und d-Quarks, während c3 proportional zu der gedrehten Masse µ
ist. In Abhängigkeit vom Vorzeichen des Koeffizienten c2, das nicht eindeutig bestimmt
ist, können zwei verschiedene Szenarien für die Phasenstruktur auftreten.

6.2.1 Aoki-Szenario

Wird der c2 > 0 gewählt, tritt das sog. Aoki-Szenario ein [40]. Für den Fall einer nicht
vorhandenen gedrehten Masse µ, ist c3 = 0 und das Potential besitzt sein Minimum bei:

ǫ =
c1

2|c2|
. (6.10)

6siehe Anhang C
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6.2 Minima- und Phasenstruktur für zwei Quarkflavours

Ist |ǫ| > 1, befindet sich der daraus resultierende Grundzustand je nach Vorzeichen des
Koeffizienten c1 bei U = u01 = ±1 und macht somit beim Vorzeichenwechsel einen
Sprung. Die SU(2)L × SU(2)R-Symmetrie wird durch die u- und d-Masse explizit zu
SU(2)V gebrochen. Der Grundzustand weist ebenfalls diese Symmetrie auf. Die drei
resultierenden Goldstone-Bosonen der Theorie, die Pionen, sind massiv:

m2
π =

1

F 2
0

(|c1| − 2c2). (6.11)

Für kleine Quarkmassen und einem daraus resultierenden |ǫ| < 1 ergibt sich nach Gl.
(6.5) ein nicht verschwindender Wert für u3. Das Auftreten von u3 bedeutet gemäß Gl.
(6.3) eine zusätzliche Komponente des Vakuums in τ3-Richtung. Dies bewirkt eine Re-
duzierung der Symmetrien des Grundzustandes, wodurch es zu spontaner Brechung der
Flavour- und Paritätssymmetrie kommt. Das Auftreten nicht verschwindender Beiträge
von u3τ3 ist dabei mit dem Erwartungswert

〈ψ̄γ5τ3ψ〉 6= 0 (6.12)

verknüpft. Die verbleibende Symmetrie ist eine U(1)-Symmetrie, und die vorliegende
Phase wird Aoki-Phase genannt. Neben den masselosen Goldstone-Bosonen π1 und π2

existiert ein massives π3-Meson mit der Masse:

m2
π3

=
2c2
F 2

0

(
1− ǫ2

)
. (6.13)

Für |ǫ| = 1 existiert ein Phasenübergang zweiter Ordnung, an dem alle drei Pionen
masselos sind.

Bei Werten µ 6= 0 enthält das Potential einen zusätzlichen Term proportional zu u3,
die Symmetrie ist dadurch explizit gebrochen. Das Minimum variiert im Gegensatz zu
µ = 0 kontinuierlich, wo ein Sprung von U = +1 nach U = −1 auftritt. Die Massen der
Pionen sind immer ungleich Null.

6.2.2 Normales Szenario

Wird der Koeffizient c2 < 0 angenommen, tritt das sog. normale Szenario ein. Die
Betrachtung ohne gedrehte Masse ergibt einen Sprung des absoluten Minimums von
U = +1 bei positiven Quarkmassen nach U = −1 bei negativen Massen. Alle Pionen
sind massiv, mit:

m2
π =

1

F 2
0

(|c1|+ 2|c2|) . (6.14)

Für die Betrachtung mit gedrehter Quarkmasse ergeben sich nicht verschwindende Werte
von u3. Für nicht zu große Werte von µ existiert weiterhin ein Sprung des Minimums
bei

u3 = − |c2|
2|c2|

, u0 = 1− u3. (6.15)
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6 Phasenstruktur der Twisted-Mass-Gitter-QCD für zwei Quarkflavours

Dieser Übergang stellt einen Phasenübergang 1. Ordnung dar. Für den Wert

µc =
|c2|
F 2

0B0
∼ a2 (6.16)

verschwindet dieser Sprung und der Übergang wird kontinuierlich. Auf der Grenzlinie
des Überganges mit c1 = 0 und µ < µc besitzt das neutrale Pion die Masse:

m2
π3

=
1

2F 2
0 |c2|

(
4c22 − c23

)
∼ a2. (6.17)

Die Masse der geladenen Pionen variiert kontinuierlich beim Übergang von positiven zu
negativen Quarkmassen. Für c1 = 0 besitzt die Masse der geladenen Pionen

m2
π1

= m2
π2

=
2|c2|
F 2

0

∼ a2 (6.18)

ihr Minimum.
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7 Entwicklung eines vereinfachten
Potentials für drei Quarkflavours

Um das Verhalten des Grundzustandes der Wilson-Gitter-QCD in der chiralen Störungs-
theorie für drei Quarkflavours zu ermitteln, wird der Anteil der potentiellen Energie-
dichte an der Lagrangedichte (4.26) betrachtet. Das Potential besteht aus allen Termen,
die keine Ableitungen der Feldkonfigurationsmatrix beinhalten:

V (U) =− F 2
0

4

〈

χU † + Uχ†
〉

− F 2
0

4

〈

ρU † + Uρ†
〉

− L6

〈

χU † + Uχ†
〉2
−W6

〈

χU † + Uχ†
〉 〈

ρ†U + U †ρ
〉

−W ′
6

〈

ρ†U + U †ρ
〉2
− L7

〈

χU † − Uχ†
〉2

−W7

〈

χU † − Uχ†
〉 〈

ρ†U − U †ρ
〉

−W ′
7

〈

ρ†U − U †ρ
〉2

− L8

〈

χ†Uχ†U + U †χU †χ
〉

−W8

〈

ρ†Uχ†U + U †ρU †χ
〉

−W ′
8

〈

ρ†Uρ†U + U †ρU †ρ
〉

. (7.1)

Um dieses Potential leichter untersuchen zu können, wird es in diesem Kapitel in drei
Schritten vereinfacht. Im ersten Schritt wird eine Parametrisierung für die Feldkonfi-
gurationsmatrix (3.6) der Goldstone-Bosonen gewählt; im zweiten Schritt werden die
Massen um ρ0 ∼ a verschoben. Dies Verschiebung ermöglicht einen direkten Vergleich
mit dem Fall Nf = 2 aus Kapitel 6. Schließlich wird eine Näherung für kleine Massen
durchgeführt, die die Grundlage bildet für die Berechnung der Kapitel 8 bis 10.

7.1 Parametrisierung der Feldkonfigurationsmatrix

Es muss eine Parametrisierung gewählt werden, mit der sich das Potential untersuchen
lässt. Das Vakuum liegt bei diesem Ansatz ausschließlich in λ3- und λ8-Richtung, wo-
durch die Matrix U folgende Form besitzt:

U = ei(φ3λ3+φ8

√
3λ8)

=





cos(φ3 + φ8) + i sin(φ3 + φ8) 0 0
0 cos(φ3 − φ8)− i sin(φ3 − φ8) 0
0 0 cos(2φ8)− i sin(2φ8)



 . (7.2)
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Diese Matrix wird nun parametrisiert durch:

U =





a 0 0
0 b 0
0 0 c



 =





a1 + ia2 0 0
0 b1 + ib2 0
0 0 c1 + ic2



 . (7.3)

Der Vergleich von (7.2) und (7.3) liefert für die Parameter a, b und c folgende Ausdrücke:

a1 = cos(φ3 + φ8), a2 = sin(φ3 + φ8),

b1 = cos(φ3 − φ8), b2 = − sin(φ3 − φ8),

c1 = cos(2φ8), c2 = − sin(2φ8). (7.4)

In einer nach (7.3) gewählten Parametrisierung beinhaltet das Potential sechs Parame-
ter. Aus (7.2) wird deutlich, dass a, b und c stets den Betrag 1 besitzen. Damit lassen
sich die Imaginärteile über die dazugehörigen Realteile ausdrücken:

a2
2 = 1− a2

1, a2 = u
√

1− a2
1

b22 = 1− b21, b2 = v
√

1− b21

c22 = 1− c21, c2 = w
√

1− c21. (7.5)

Das Vorzeichen der Wurzelausdrücke ist dabei unbestimmt. Diese Mehrdeutigkeit wird
durch die Faktoren u, v und w berücksichtigt, die die Werte +1 oder −1 annehmen
können.

Aus der zusätzlichen Bedingung, dass U eine spezielle unitäre Matrix ist, d.h. detU =
+1, lässt sich eine zusätzliche Abhängigkeit der Parameter untereinander ableiten:

c1 = −a2b2 + a1b1 = −uv
√

1− a2
1

√

1− b21 + a1b1. (7.6)

Mit den Bedingungen (7.5) wird es somit möglich, die Abhängigkeit des Potentials auf
die Größen a1, b1 und c1 zu reduzieren. Mit der Bedingung (7.6) lässt sich zusätzlich
die Größe c1 über a1 und b1 auszudrücken, was eine dreidimensionale grafische Auswer-
tung ermöglicht. Dabei fungieren die Größen a1 und b1 als Koordinaten des Potentials
V (a1,b1).

Bei der Bestimmung des Minimums muss die Doppeldeutigkeit der Parameter a2, b2
und c2 berücksichtigt werden. Das zu untersuchende Potential hat daher zusätzliche
Abhängigkeiten und besitzt die Form V (a1,b1,u,v,w). Dass u, v und w lediglich zwei
mögliche Werte besitzen, stellt eine wesentliche Vereinfachung dar. Dennoch müssen
23 Parametersätze untersucht werden um festzustellen, welcher das absolute Minimum
ausbildet.

Berechnet man nun das Potential der Lagrangedichte nach (7.1) in der Parametrisierung
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7.2 Einführung verschobener Quarkmassen und einer abkürzenden Notation

(7.3) einschließlich einer gedrehten Massematrix (5.18), so ergibt sich:

V (a,b,c) = A(m̃)(a1 + b1) +Ac(ms)c1 +B(µ,m̃)(a2
1 + b21) +Bc(ms)c

2
1

+ C(m̃,µ)a1b1 + Cc(m̃,ms)(a1 + b1)c1 +D(µ)(a2 − b2)
+ E(m̃,µ)a1a2 + F (m̃,µ)a2b1 + Fc(ms,µ)c1(a2 − b2)
+G(m̃,µ)a1b2 +Gc(ms,µ)c2(a1 − b1) +H(m̃,µ)b1b2

+ J(m̃,µ)a2b2 + Jc(m̃,ms)c2(a2 + b2) + const. (7.7)

In diesem Potential sind die folgenden Koeffizienten verwendet worden:

A(m̃) = −F
2
0

2
(χ0 + ρ0),

Ac(ms) = −F
2
0

2
(χs + ρ0),

B(µ,m̃) = +4[(χ2
3 − χ2

0)(L6 + L7 + L8)− ρ2
0(W

′
6 +W ′

7 +W ′
8)− χ0ρ0(W6 +W7 +W8)],

Bc(ms) = +4[−χ2
s(L6 + L7 + L8)− ρ2

0(W
′
6 +W ′

7 +W ′
8)− χsρ0(W6 +W7 +W8)],

C(m̃,µ) = −8[χ2
0L6 + χ2

3L7 + χ0ρ0W6 + ρ2
0W

′
6],

Cc(m̃,ms) = −4[2χ0χsL6 + ρ0(χ0 + χs)W6 + 2ρ2
0W

′
6],

D(µ) = −F
2
0

2
χ3,

E(m̃,µ) = −4[2χ0χ3(L6 + L7 + L8) + χ3(W6 +W7 +W8)],

F (m̃,µ) = −4[2χ0χ3(L6 − L7) + χ3ρ0(W6 −W7)],

Fc(ms,µ) = −4[2χ3χsL6 + χ3ρ0W6],

G(m̃,µ) = +4[2χ0χ3(L6 − L7) + χ3ρ0(W6 −W7)],

Gc(ms,µ) = −4[2χ3χsL7 + χ3ρ0W7],

H(m̃,µ) = +4[2χ0χ3(L6 + L7 + L8) + χ3ρ0(W6 +W7 +W8)],

J(m̃,µ) = +8[χ2
3L6 + χ2

0W7 + χ0ρ0W7 + ρ2
0W

′
7],

Jc(m̃,ms) = +4[2χ0χsL7 + χ0ρ0W7 + ρ0(χ0 + χs)W7 + 2ρ2
0W

′
7]. (7.8)

7.2 Einführung verschobener Quarkmassen und einer
abkürzenden Notation

In der Wilson-Gitter-Wirkung führt der Wilson-Term zu einer Verschiebung der Quark-
massen (5.7). Dieser Effekt kann durch eine additive Renormierung der Quarkmassen
kompensiert werden. Dazu werden verschobene Quarkmassen wie folgt eingeführt:

χ0 + ρ0 = χ′
0 ⇒ χ0 = χ′

0 − ρ0,

χs + ρ0 = χ′
s ⇒ χs = χ′

s − ρ0. (7.9)

Die neuen Massen erhalten damit einen zusätzlichen additiven Beitrag proportional zur
Gitterkonstanten a. Somit wechseln die drei linearen Masseterme mit den Koeffizienten
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7 Entwicklung eines vereinfachten Potentials für drei Quarkflavours

A, Ac und D aus Gleichung (7.7) ihr Vorzeichen, wenn die verschobenen Quarkmassen
ihren Nulldurchgang vollziehen.

Für eine übersichtliche Darstellung des Potentials werden zusätzlich die nachstehenden
Abkürzungen7 für typische Kombinationen der LE-Konstanten in (7.8) eingeführt:

L = L6 + L7 + L8, W = W6 +W7 +W8, W ′ = W ′
6 +W ′

7 +W ′
8,

LW = 2L−W, LW6 = 2L6 −W6, LW7 = 2L7 −W7,

LWW = L−W +W ′, LWW6 = L6 −W6 +W ′
6, LWW7 = L7 −W7 +W ′

7. (7.10)

Damit erhalten die Koeffizienten (7.8) des Potentials die folgende, kürzere Form:

A(m̃′) = −F
2
0

2
χ′

0,

Ac(m
′
s) = −F

2
0

2
χ′

s,

B(µ,m̃′) = −4[(χ′2
0 − χ2

3)L− χ′
0ρ0LW + ρ2

0LWW ],

Bc(m
′
s) = −4[χ′2

s L− χ′
sρ0LW + ρ2

0LWW ],

C(m̃′,µ) = −8[χ′2
0 L6 + χ2

3L7 − χ′
0ρ0LW6 + ρ2

0LWW6],

Cc(m̃
′,m′

s) = −4[2χ′
0χ

′
sL6 − (χ′

0 + χ′
s)ρ0LW6 + 2ρ2

0LWW6],

D(µ) = −F
2
0

2
χ3,

E(m̃′,µ) = −4[2χ′
0χ3L+ χ3ρ0LW ],

F (m̃′,µ) = −4[2χ′
0χ3(L6 − L7)− χ3ρ0(LW6 − LW7)],

Fc(m
′
s,µ) = −4[2χ′

sχ3L6 − χ3ρ0LW6],

G(m̃′,µ) = +4[2χ′
0χ3(L6 − L7)− χ3ρ0(LW6 − LW7)],

Gc(m
′
s,µ) = −4[2χ′

sχ3L7 − χ3ρ0LW7],

H(m̃′,µ) = +4[2χ′
0χ3L− χ3ρ0LW ],

J(m̃′,µ) = +8[χ′2
0 L7 + χ2

3L6 − χ′
0ρ0LW7 + ρ2

0LWW7],

Jc(m̃
′,m′

s) = +4[2χ′
0χ

′
sL7 − (χ′

0 + χ′
s)ρ0LW7 + 2ρ2

0LWW7]. (7.11)

7.3 Näherung des Potentials für kleine Quarkmassen

Im dritten Schritt wird analog zu den erfolgten Untersuchungen für zwei Quarkflavours
aus Kapitel 6 das zu analysierende Potential für kleine Quarkmassen genähert. Unter
der Annahme kleiner Massen ist es möglich, Terme, die quadratisch in den Massen sind,
zu ignorieren. Desweiteren können Terme proportional zu ρ0 im Vergleich zu Termen,
die proportional zu ρ2

0 sind vernachlässigt werden, da sie weit weniger zu dem Potential

7siehe Anhang C
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7.3 Näherung des Potentials für kleine Quarkmassen

beitragen. Die Liste (7.11) verkürzt sich damit zu:

A(m̃′) = −F
2
0

2
χ′

0,

Ac(m
′
s) = −F

2
0

2
χ′

s,

B(m̃′) = −4ρ2
0LWW ,

Bc(m
′
s) = −4ρ2

0LWW ,

C(m̃′) = −8ρ2
0LWW6,

Cc(m̃
′,m′

s) = −8ρ2
0LWW6,

D(µ) = −F
2
0

2
χ3,

J(m̃′) = +8ρ2
0LWW7,

Jc(m̃
′,m′

s) = +8ρ2
0LWW7. (7.12)

Das Potential nimmt damit die Form an:

V (a1,b1,c1,a2,b2) =− F 2
0

2
χ′

0(a1 + b1)−
F 2

0

2
χ′

sc1 −
F 2

0

2
χ3(a2 − b2)

− 4LWWρ2
0(a

2
1 + b21)− 4LWW ρ2

0c
2
1

− 8LWW6ρ
2
0a1b1 − 8LWW6ρ

2
0(a1 + b1)c1

+ 8LWW7ρ
2
0a2b2 + 8LWW7ρ

2
0c2(a2 + b2). (7.13)

Es verbleiben damit, neben den Terme, die proportional zu einer Masse (A(m̃′), Ac(m
′
s)

und D(µ)) sind sechs weitere Terme. Diese weiteren Terme sind abhängig von den Kon-
stanten LWW , LWW6 und LWW7 (vgl. (7.10)). Die Werte der Konstanten Wi und W ′

i ,
die das effektiv eingeführte Gitter charakterisieren, sind nicht bekannt. Sie sollten aber
eine vergleichbare Größenordnung wie die Gasser-Leutwyler-Konstanten aufweisen, da
sie denselben Renormierungsgruppengleichungen genügen. Dadurch ist es möglich, die
Größe ihrer Beträge abzuschätzen [10]. Zusammen mit den bekannten Konstanten Li

ergibt sich für die auftretenden Kombinationen der Konstanten eine ungefähre Größe
der Beträge von:

|LWW | < 0,035, |LWW6| < 0,012, |LWW7| < 0,012. (7.14)

Diese Näherung liefert für kleine Massen sehr genaue Werte der Parameter a, b und c im
Minimum. Der Vorteil dieser Näherung ist die Abhängigkeit des Potentials von nur noch
drei der neun LE-Konstanten sowie von nur noch neun von fünfzehn des ungenäherten
Potentials.
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8 Phasenstruktur des Potentials
bestehend aus den drei
masseabhängigen Termen

In den folgenden Kapiteln wird die Minimastruktur des Potentials (7.13) untersucht.
Das Potential ist abhängig von den drei Konstanten LWW , LWW6 und LWW7. Da de-
ren Betrag nur aus Abschätzungen bekannt ist, wird die Untersuchung für verschiedene
Vorzeichenkombinationen durchgeführt. In einem ersten Schritt werden sie aber als ver-
schwindend angenommen; das Potential setzt sich dann lediglich aus den zu A(m̃′),
Ac(m

′
s) und D(µ) gehörigen drei Termen zusammen:

V (a1,b1,c1,a2,b2) = A(m̃′)(a1 + b1) +Ac(m
′
s)c1 +D(µ)(a2 − b2). (8.1)

Für dieses Potential ist es möglich, das Verhalten der Parameter a, b und c vollständig
analytisch zu ermitteln. Dies wird nicht immer möglich sein, wenn zusätzliche Terme
berücksichtigt werden.

Um eine übersichtliche Form des Potentials zu erhalten, wir es durch die Konstante
F 2

0B0 normiert. Die drei berücksichtigten Terme sind damit ausschließlich proportional
zu den drei betrachteten Massen. Zusätzlich wird, um eine grafische Kontrolle mit dem
Coputeralgebraprogramm Maple der Ergebnisse zu ermöglichen, das Potential mit (7.5)
und (7.6) substituiert. Daraus resultiert ein dreidimensionalens Potential, das durch die
Faktoren u, v und w nicht eindeutig ist. Es muss geprüft werden, für welche Vorzei-
chen von u, v und w das absolute Minimum gebildet wird. Die Normierung und die
Substitution bringt das Potential auf die Form:

V ′(a1,b1,u,v) = −m̃′(a1 + b1)−m′
sc1 + µ(a2 − b2)

= −m̃′(a1 + b1)−m′
s(−uv

√

1− a2
1

√

1− b21 + a1b1)

+µ(u
√

1− a2
1 − v

√

1− b21). (8.2)

Das gestrichene Potential bezeichnet das normiert Potential. Da diese Normierung auf
die folgenden Ergebnisse keinen Einfluss hat wird der Strich im folgenden weggelassen.
Dieses Potential wird nun auf Sprünge des Minimums untersucht. Ebenfalls werden die
analytischen Lösungen der Parameter a1 und b1 sowie die Vorzeichen der Imaginärteile
u, v und w angegeben, soweit dies möglich ist. Der Parameter c1 bzw. die Werte der
Imaginärteile ergeben sich aus den Nebenbedingungen (7.5) und (7.6).
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Abbildung 8.1: Phasendiagramm des Potentials (8.3) mit µ = 0 (links); Werte der
Parameter a1, b1 und c1 für m′

s = −1 in Bereich B (rechts).

Erläuterung für alle Phasendiagramme: durchgezogene Linien bedeuten
unstetige Übergänge, gestrichelte Linien beschreiben kontinuierliche
Übergänge.

8.1 Betrachtung der Phasenstruktur ohne gedrehte Masse µ

Zunächst wird das Potential ohne eine Drehung der u- und d-Quarkmasse betrachtet.
Das Potential ist damit lediglich abhängig von den beiden unterschiedlichen Quarkmas-
sen m̃′ und m′

s. Es besitzt die Form:

V (a1,b1,c1) = −m̃′(a1 + b1)−m′
sc1. (8.3)

Die Verhalten der Minima ist in Abb. 8.1 (links) gezeigt. Es sind drei verschiedene
Bereiche zu erkennen, die mit A1, A2 und B bezeichnet sind:

• In den Bereichen A1 und A2 existiert ein konstantes Minimum, dieses befindet
sich bei:

A1 : U = diag(−1, − 1, 1),

A2 : U = diag(1, 1, 1). (8.4)

Diese beiden Bereiche weisen für m′
s > 0 eine gemeinsame Grenze bei m̃′ = 0 auf.

Durch die zwei unterschiedlichen Positionen des Minimums in A1 und A2 springt
dieses beim Überschreiten dieser Grenze. Der Sprung ist in Abb. 8.1 (links) durch
eine durchgezogene Linie gekennzeichnet.

Für negative Werte der s-Quarkmasse existiert zwischen den Gebieten A1 und
A2 ein weiteres, mit B bezeichnetes Gebiet. Die Grenze zu den Gebieten Ai ist
gegeben durch:

m̃′ = −2|m′
s|. (8.5)

• In Bereich B existieren zwei entartete Minima, die identische Werte der Realteile
a1, b1 und c1 aufweisen, deren Imaginärteile jedoch beide Vorzeichen annehmen
können (u = v = w = ±1). Die Realteile a1 und b1 besitzen im Minimum die
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8.2 Betrachtung der drei masseabhängigen Terme einschließlich der gedrehte Masse µ

Werte:

a1 = b1 = − m̃′

2m′
s

. (8.6)

Auf der durch Gl. (8.5) beschrieben Grenze besitzen alle Beträge der Realteile den
Wert 1, der Übergang von B nach Ai ist somit stetig, was hier (Abb. 8.1) (wie
auch in den folgenden Abbildungen) durch die gestrichelte Linie verdeutlicht ist.
Beispielhaft ist für den Wert m′

s = −1 das Verhalten der Parameter a1, b1 und c1
in Abb. 8.1 (rechts) gezeigt.

Im Fall verschwindender u- und d-Quarkmassen existiert keine eindeutige Gestalt der
Feldkonfigurationsmatrix im Minimum, man findet:

m′
s > 0⇒ c1 = 1 : ab = 1 ⇒ a1 = b1,

m′
s < 0⇒ c1 = −1 : ab = −1 ⇒ a1 = −b1. (8.7)

Für positive Werte von m′
s ist c1 = 1 und a1 = b1. Ist |a1| = |b1| 6= 1 besitzen die

zugehörigen Imaginärteile entgegengesetzte Vorzeichen (u = −v). Im Fall negativer s-
Quarkmassen ist a1 = −b1 und c1 = −1, die Imaginärteile besitzen für |a1| = |b1| 6= 1
identische Vorzeichen (u = v).

8.2 Betrachtung der Phasenstruktur einschließlich der
gedrehten Masse µ

Im zweiten Schritt wird die gedrehte Masse µ in die Untersuchung einbezogen.

Das Potential hat mit einer zusätzlichen Abhängigkeit von der gedrehten Masse die
Form:

V (a1,b1,c1,a2,b2) = −m̃′(a1 + b1)−m′
sc1 + µ(a2 − b2). (8.8)

Zur besseren Übersicht werden zunächst zwei Schnittebenen durch den von m̃′, m′
s

und µ aufgespannten Phasenraum des Potentials mit m̃′ = 0 bzw. m′
s = 0 betrach-

tet; anschließend wird das Verhalten des Potentials im dreidimensionalen Phasenraum
dargestellt.

(a) m̃
′ 6= 0, m′

s
= 0, µ 6= 0

In der Ebene verschwindender s-Quarkmassen m′
s = 0 befindet sich das Minimum

für µ = 0 abhängig vom Vorzeichen der u- und d-Quarkmasse für m̃′ > 0 bei U =
diag(1, 1, 1) und für m̃′ < 0 bei U = diag(−1, − 1, 1). Durch den zusätzlichen Beitrag
einer gedrehten Masse verschiebt sich das Minimum entlang der Achse a1 = b1. Diese
Parameter weisen dabei im Minimum die Werte

a1 = b1 =
m̃′

√

m′2
0 + µ2

(8.9)
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8 Phasenstruktur des Potentials bestehend aus den drei masseabhängigen Termen

auf. Der Parameter c ist konstant und hat den Wert c1 = 1. Die Imaginärteile der
Parameter a und b weisen entgegengesetzte Vorzeichen auf. Es gilt:

für µ > 0 : u = −v = −1,

für µ < 0 : u = −v = 1. (8.10)

Dieses Verhalten der Vorzeichen der Imaginärteile in Abhängigkeit von der gedrehten
Masse wird im folgenden immer wieder auftreten. Der Sprung, der für µ = 0 gefunden
wurde, tritt für µ 6= 0 nicht länger auf, er weicht einer kontinuierlichen Verschiebung
entsprechend (8.9). Dieses Verhalten ist in Abb. 8.2 gezeigt.

Der Übergang von positiven zu negativen gedrehten Massen ist ebenfalls stetig.
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-2 -1  0  1  2

m~’

a1, b1 mit µ=0
a1, b1 mit µ=1

Abbildung 8.2: Verhalten der Parameter a1 und b1 für m′
s = 0 bei µ = 0 und bei µ = 1.

(b) m̃
′ = 0, m′

s
6= 0, µ 6= 0

Für die Ebene mit m̃′ = 0 ist das zugehörige Phasendiagramm in Abb. 8.3 (links)
gezeigt. Darin sind drei unterschiedliche Bereiche zu erkennen:

• Gebiete E1 und E2:
In Bereich E1 existiert ein einziges Minimum bei U = diag(−i, i, 1). Ein unstetiger
Übergang zu E2 befindet sich bei positiven Werten der Masse m′

s für µ = 0. In
Gebiet E2 existiert ebenfalls ein Minimum, dieses besitzt die Werte U = diag(i, −
i, 1).

• Gebiet D:
Dieses Gebiet ist durch

µ = −2|m′
s| (8.11)

von E1 bzw. E2 getrennt. In diesem Gebiet existieren zwei entartete Minima, die
beide auf der Achse a1 = −b1 lokalisiert sind. Die Parameter a1 und b1 besitzen
in diesen Minima die Werte:

a1,2
1 = −b1,2

1 = ±

√

4m′
s
2 − µ2

2m′
s

. (8.12)
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Abbildung 8.3: Phasendiagramm des linear genäherten Potentials mit m̃′ = 0 (links);
Werte der Parameter a1

1, −b11 und c1 für m′
s = −1 in Bereich B (rechts)

für µ 6= 0.

Das Vorzeichen der gedrehten Masse ist dabei entsprechend Gl. (8.10) bestimmt.
Beide Minima sind dabei mit einem w = ±1 verknüpft. Da sich für µ = 0 die
Minima bei |a1| = |b1| = 1 befinden, existiert anders als beim Wechsel für positive
Werte der s-Quarkmasse kein Sprung der Potentialminima.

Ist in Gebiet D die Masse µ = 0 sind die Parameter a und b im Minimum nicht
bestimmt und können wie in Abschnitt 8.2 beliebige Werte a1 = −b1 annehmen.

(c) m̃
′ 6= 0, m

′
s 6= 0, µ 6= 0

Mit den Kenntnissen des Verhaltens der Minima ohne gedrehte Masse und mit den
Informationen aus den betrachteten Schnittebenen ist es nun möglich, das Verhalten des
dreidimensionalen Phasenraumes darzustellen. Als Ausgangspunkt für die Beschreibung
dient dabei das zweidimensionale Phasendiagramm mit µ = 0 entsprechend Abb. 8.1
(links). Dort sind drei Gebiete abgebildet, die mit A1, A2 und B bezeichnet sind. In
diesem Abschnitt werden diese Gebiete in µ-Richtung erweitert.

• Erweiterung des Gebietes B aus Abb. 8.1 um µ 6= 0:
Das Gebiet B erweitert sich zu einem dreidimensionalen kegelförmigen Volumen,
das durch die Mantelflächen

µ = ±
√

−m′2
0 + 4m′

s
2. (8.13)

begrenzt wird. Dabei ist der Kegel auf negative Werte der s-Quarkmasse limi-
tiert. Dieser Kegel ist in Abb. 8.4 dargestellt. Innerhalb des Kegels existieren zwei
entartete Minima, die durch

a1,2
1 =

−µ2m̃′ − m̃′3 ±
√

−µ2(2m̃′2µ2 + m̃′4 − 4µ4m′
s
2 + µ4 − m̃′2m′

s
2)

2(m̃′2 + µ2)m′
s

,

b1,2
1 =−

µ2m̃′ +m′3
0 ±

√

−µ2(2m̃′2µ2 + m̃′4 − 4µ4m′
s
2 + µ4 − 4m̃′2m′

s
2)

2(m̃′2 + µ2)m′
s

(8.14)
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Abbildung 8.4: Aufweitung des Gebietes D aus Abschnitt 8.1 zu einem Kegel.
Dargestellt als dreidimensionaler Körper (links) und durch Schnit-
te für verschiedene Werte von µ (rechts).

gegeben sind. Analysiert man die absoluten Minima innerhalb des Kegels (8.13)
genauer, finden sich dort zwei weitere kegelförmige Gebiete mit den Mantelflächen:

µ =±
√

−m̃′2 − 2m̃′m′
s

µ =±
√

−m̃′2 + 2m̃′m′
s. (8.15)

Die erste der beiden Gleichungen (8.15) gilt dabei für positive u- und d-Quarkmassen,
die zweite für negative u- und d-Quarkmassen. Die Mantelflächen der Kegel (8.15)
berühren sich an der m′

s-Achse und berühren den Kegel (8.13) in der m̃′-m′
s-Ebene.

Innerhalb dieser beiden Kegel (8.15) besitzen die Imaginärteile der Parameter a
und b gleiche Vorzeichen, außerhalb von (8.15), jedoch innerhalb von (8.13) entge-
gengesetzte Vorzeichen von a2 und b2. Dieser Übergang, der im folgendem häufiger
vorkommt, ist dennoch nicht mit einem Sprung der Potentialminima verbunden,
da der Parameter, dessen Imaginärteil das Vorzeichen wechselt, dabei den Wert
|1| annimmt und der Imaginärteil somit beim Übergang verschwindet.

Das Verhalten der Vorzeichen vor und nach dem Übergang ist in Tabelle 8.1 zusam-
mengefasst. Angegeben sind dort für die vier möglichen Vorzeichenkombinationen
von m̃′ und µ die Vorzeichen der Imaginärteile innerhalb (8.15), der Realteil, der
beim Übergang den Wert |1| annimmt, und die Vorzeichen der Imaginärteile in-
nerhalb von (8.13) nach dem Übergang.

• Erweiterung der Gebiete A1 und A2 aus Abb. 8.1 um µ 6= 0:
Außerhalb des Kegel (8.13) existiert unabhängig von den Massen ein einziges Mi-
nimum, das durch

a1 = b1 =
m̃′

√

m̃′2 + µ2
. (8.16)

beschrieben wird und einem Zusammenschluss der Gebiete A1 und A2 entspricht.
Dieses Minimum wird durch ein Potential mit u = −v gebildet, was in c1 = 1
resultiert. Es gibt keinen Sprung des Potentialminimums beim Nulldurchgang der
Masse m̃′ für µ 6= 0 bzw. beim Nulldurchgang von µ für m̃′ 6= 0 und m′

s > 0. Beim
Übergang der Minima aus dem Kegel (8.13) zu einem Minimum verhält sich das
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Minimum stetig.

Zusammenfassend ist festzuhalten, dass die m′
s-Achse mit m′

s > 0 und µ = 0 die einzige
Linie ist, bei deren Überschreitung das Potentialminimum ein unstetiges Verhalten zeigt.

Innerhalb (8.15) Innerhalb (8.13)
Massen u v w u v w

m̃′ > 0, µ > 0 +1 +1 −1 a1 → +1 −1 +1 −1
−1 −1 +1 b1 → +1 −1 +1 +1

m̃′ > 0, µ < 0 +1 +1 −1 b1 → +1 +1 −1 −1
−1 −1 +1 a1 → +1 +1 −1 +1

m̃′ < 0, µ > 0 +1 +1 +1 a1 → −1 −1 +1 −1
−1 −1 −1 b1 → −1 −1 +1 −1

m̃′ < 0, µ < 0 +1 +1 +1 b1 → −1 +1 −1 +1
−1 −1 −1 a1 → −1 +1 +1 −1

Tabelle 8.1: Vorzeichen der Imaginärteile der Parameter a, b und c in Abhängigkeit
der Vorzeichen der Massen m̃′ und µ, sowie Parameter a1, b1, der beim
Übergang den Betrag |1| besitzt.
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9 Phasenstruktur des um zwei
dominante Terme erweiterten
Potentials

Im vorherigen Kapitel wurden lediglich die drei massebehafteten Terme des Potentials
(7.13) in die Untersuchung der Minimastruktur einbezogen; für alle weiteren Konstan-
ten wurde der Wert Null gewählt. In diesem Kapitel wird die Analyse des Potentials
unter Berücksichtigung der zu LWW proportionalen Terme erweitert, da diese gemäß
der Abschätzung (7.14) den größten Beitrag zum Potential liefern sollten. Die andern
beiden Konstanten und die zugehörigen Terme werden weiterhin vernachlässigt. Da die
Abschätzung der Größe der Konstanten lediglich einen Wert für deren Betrag liefert, ist
die Untersuchung für beide Vorzeichen der Konstanten durchgeführt worden.

Das nun zu untersuchende Potential besitzt die Gestalt:

V (a1,b1,c1,a2,b2) =− F 2
0

2
χ′

0(a1 + b1)−
F 2

0

2
χ′

sc1 −
F 2

0

2
χ3(a2 − b2)

− 4LWWρ2
0(a

2
1 + b21)− 4LWW ρ2

0c
2
1 (9.1)

Um eine übersichtliche Form des Potentials zu erhalten, wird es wie in Kapitel 8 mittels
F 2

0B0 normiert. Ebenfalls werden über (7.5) und (7.6) die Imaginärteile der Parameter
durch ihre Realteile ausgedrückt. Das so normierte und zusätzlich substituierte Potential
hat die Form:

V (a1,b1,c1,u,v) = −m̃′(a1 + b1)−m′
sc1 + µ(a2 − b2)−K0(a

2
1 + b21)−K0c

2
1

= −m̃′(a1 + b1)−m′
s(−uv

√

1− a2
1

√

1− b21 + a1b1)

+µ(u
√

1− a2
1 − v

√

1− b21)

−K0(a
2
1 + b21)−K0(−uv

√

1− a2
1

√

1− b21 + a1b1)
2. (9.2)

Die in der Gleichung auftretende Konstante K0 ist ein abkürzende Schreibweise für:

K0 = 4LWW
ρ2
0

F 2
0B0

∼ a2. (9.3)

Die Konstante K0 besitzt damit dasselbe Vorzeichen wie die LE-Konstante LWW und
ist proportional zum Quadrat der Gitterkonstanten a.
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

9.1 Phasenstruktur des Potentials mit
LWW > 0und LWW6 = LWW7 = 0

9.1.1 Untersuchung ohne gedrehte u- und d-Quarkmassen

In dem hier betrachteten Fall ist das Potential (9.2) nur von den Massen m̃′ und m′
s

abhängig und hat die Form:

V (a1,b1,c1) = −m̃′(a1 + b1)−m′
sc1 −K0(a

2
1 + b21)−K0c

2
1. (9.4)

Die Gestalt des Phasendiagramms, das in Abb. 9.1 dargestellt ist, ähnelt stark dem des in
Kapitel 8 untersuchten Potentials. Es existieren ebenfalls drei Gebiete mit abweichenden
Minima. Im folgendem werden die Eigenschaften der drei Gebiete genauer betrachtet:

• Gebiete A1 und A2:
Die Gebiete A1 und A2 entsprechen denen aus Abb. 8.1 (links). Das Minimum
befindet sich bei:

A1 : U = diag(−1, − 1, 1),

A2 : U = diag(1, 1, 1). (9.5)

Für positive s-Quarkmassen und für m̃′ = 0 besitzen die Gebiete A1 und A2 einen
Übergang, an dem sich das Minimum unstetig verhält.

• Gebiet B:
Für negative Massen m′

s befindet sich zwischen den Gebieten A1 und A2 ein weite-
res Gebiet, das mit B bezeichnet ist. Die Grenze von B mit den anderen Gebieten
ist durch

m̃′ = −|m′
s| (9.6)

gegeben. In B existieren zwei Minima, die konstante Parameterwerte besitzen.
Diese sind:

B : U = diag(−1, 1, − 1), U = diag(1, − 1, − 1) (9.7)
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Abbildung 9.1: Phasendiagramm des Potentials mit K0 > 0 und µ = 0.
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9.1 Phasenstruktur des Potentials mit LWW > 0 und LWW6 = LWW7 = 0

Anders als in Kapitel 8 verhält sich das Minimum beim Übergang zwischen den
Gebieten Ai und B unstetig.

9.1.2 Untersuchung mit gedrehten u- und d-Quarkmassen

Im dem hier betrachteten Fall lautet das Potential:

V (a1,b1,c1,a2,b2) = −m̃′(a1 + b1)−m′
sc1 + µ(a2 − b2)−K0(a

2
1 + b21)−K0c

2
1. (9.8)

Im Phasendiagramm werden zunächst die beiden Schnittebenen mit m̃′ = 0 (a) und
m′

s = 0 (b) betrachtet. Anschließend wird das dreidimensionale Phasendiagramm in
Abhängigkeit zu allen drei Massen (c) untersucht.

(a) m̃
′ 6= 0, m′

s = 0, µ 6= 0

Zunächst wird das Potential in Abhängigkeit von den u- und d-Quarkmassen m̃′ be-
trachtet, die einen zusätzlichen gedrehten Anteil aufweisen. Für µ = 0 befand sich das
absolute Minimum bei U = diag(1, 1, 1) für m̃′ > 0 oder bei U = diag(−1, − 1, 1)
für m̃′ < 0. Eine zusätzliche gedrehte Masse verlegt das absolute Minimum entlang der
Achse a1 = b1 mit c1 = 1 näher an a1 = b1 = 0. Es kommt, anders als für das Potential
aus Kapitel 8, auch für µ 6= 0 zu einem Sprung des Minimums beim Vorzeichenwechsel
der Masse m̃′. Bei diesem Sprung ändert das Minimum seine Werte von a1 = b1 zu
−a1 = −b1. Die Imaginärteile besitzen abhängig von der gedrehten Masse Vorzeichen
wie in (8.10). Da sich für µ = 0 das Minimum bei |a1| = |b1| = c1 = 1 befindet, ist der
Übergang von positiven zu negativen gedrehten Massen stetig. Für größere Werte der
gedrehten Masse weicht der Sprung des Minimums beim Nulldurchgang der Masse m̃′

einem stetigem Übergang. Diese Änderung tritt bei

|µc| = 2K0 ∼ a2 (9.9)

auf. Für m̃′ = 0 befindet sich das Potentialminimum ab diesem Wert von µ bei a1 =
b1 = 0.

(b) m̃
′ = 0, m

′
s 6= 0, µ 6= 0

In diesem Abschnitt wird das Potential mit vollständig gedrehten u- und d-Quarkmassen
µ betrachtet, m̃′ nimmt den Wert Null an. Zusätzlich werden s-Quarks mit der Masse
m′

s berücksichtigt.

Das zugehörige Phasendiagramm ist in Abb. 9.2 gezeigt. Die dort dargestellten Gebiete
werden im folgendem näher betrachtet:

• Gebiete D1 und D2:
Für µ = 0 ergibt sich ein Sprung des absoluten Minimums beim Nulldurchgang
der Masse m′

s. Auch für µ 6= 0 findet sich ein solcher Sprung, der nun bei negati-
ven Werten der s-Quarkmasse auftritt. In beiden Gebieten D1 und D2 existieren
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Abbildung 9.2: Werte der Masse µ(m′
s) beim Sprung der Minima von a1 = b1 nach

a1 = −b1 inklusive Fit

zwei entartete Minima auf der Achse a1 = −b1. In diesen Minima besitzen die
Parameter a1 und b1 die Koordinaten:

a1,2
1 = −b1,2

1 = ± 1

12




6S1

K0
+

24
(

−6m′
sK0 + 9K2

0 +m′
s
2
)

K0S1
+

24 (m′
s + 3K0)

K0





1/2

.

(9.10)
Dabei ist S1 eine Abkürzung für:

S1 =
(

72m′
s
2
K0 − 216m′

sK
2
0 + 216K3

0 − 8m′
s
3 − 108K0µ

2

+12µ

√

−3
(
36m′

s
2K0 + 108m′

sK
2
0 − 4m′

s
3 − 27K0µ2 + 108K3

0

)

K0
K0





1/3

.

(9.11)

Der dritte Parameter c weicht im allgemeinen von c = c1 = 1 ab. Die Imaginärteile
von a2 und b2 weisen Vorzeichen entsprechend (8.10) auf. Für jedes der beiden
Minima besitzt c2 ein unterschiedliches Vorzeichen. Für µ = 0 ist |a1| = |b1| =
|c1| = 1, was einen stetigen Übergang des Minimums von D1 zu D2 zur Folge hat.

• Gebiete E1 und E2:
Außerhalb von Di existieren zwei weitere Gebiete. Diese sind in Abb. 9.2 mit E1

und E2 bezeichnet. Innerhalb dieser Gebiete treten je nach Wert von µ ein oder
zwei Minima auf. Der kritische Wert von µ für diesen Übergang ist derselbe wie
in Gl. (9.9). Ab diesem Wert befindet sich das alleinige Minimum bei a1 = b1 = 0.
Allgemein besitzen die Koordinaten der Minima die Werte:

a1,2
1 = b1,2

1 = ±
√

4K2
0 − µ2

2K0
. (9.12)

Der dritte Parameter c hat konstant den Wert c1 = 1. Die Imaginärteile a2 und
b2 besitzen wie in den Gebieten Di Vorzeichen entsprechend (8.10). Der Übergang
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9.1 Phasenstruktur des Potentials mit LWW > 0 und LWW6 = LWW7 = 0

von E1 zu E2 ist stetig, da |a1| = |b1| = |c1| = 1 für µ = 0 erfüllt ist.

(c) m̃
′ 6= 0, m

′
s
6= 0, µ 6= 0

In den bisherigen Untersuchungen der beiden zweidimensionalen Schnittebenen sind
sieben verschiedenen Gebiete benannt worden: A1, A2, B, D1, D2, E1 und E2. Für die
Untersuchung des dreidimensionalen Phasenraumes werden die drei Gebiete aus Abb.
9.1 in µ-Richtung erweitert:

• Erweiterung des Gebietes B aus Abb. 9.1 um µ 6= 0:
Bei der dreidimensionalen Erweiterung in µ-Richtung entwickeln sich die Grenzen
der dreieckigen Fläche B aus 9.1 bzw die beiden Flächen Di aus Abb. 9.2 zu
einem kegelförmigen Volumen. Die Mantelfläche des Kegels ist nicht analytisch
bestimmbar, numerisch ermittelte Werte sind in Abb. 9.3 dargestellt. Innerhalb

Abbildung 9.3: Werte der Masse µ(m̃′,m′
s) beim Sprung der Minima an den Übergängen

zwischen den Gebieten B und Ai (Abb. 9.1), bzw. Di und Ei (Abb. 9.2).

des dort gezeigten Kegels existieren zwei entartete Minima auf der Achse a1 = −b1.
Da diese Achse durch eine zusätzliche u- und d-Quarkmasse nicht beeinflusst wird,
können für m̃′ = 0 gefundenen Parameterwerte im Minimum (9.10) mit allen dort
getroffenen Aussagen übernommen werden.

• Erweiterung der Gebiete A1 und A2 aus Abb. 9.1 um µ 6= 0:
Außerhalb des kegelförmigen Volumens existiert ein einziges Minimum, das von
den zwei entarteten Minima aus den Gebieten Di durch einen unstetigen Übergang
auf der Kegelmantelfläche getrennt ist. Dieses eine Minimum befindet sich auf der
Achse a1 = b1 und c1 = 1 mit Imaginärteilen entsprechend (8.10). Die Position
des Minimums lässt sich analytisch nicht bestimmen.

Beim Nulldurchgang der Masse m̃′ wechselt das Vorzeichen der Parameter a1 und b1
unter der Bedingung, dass sich das System außerhalb des Kegelvolumens befindet. Un-
abhängig von der Masse des s-Quarks ist dieser Übergang bis zu dem Wert

|µc| = 2K0 (9.13)

unstetig. Für größere Werte von µ ergibt sich ein stetiger Übergang.
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

9.2 Phasenstruktur des Potentials mit
LWW < 0 und LWW6 = LWW7 = 0

In diesem Abschnitt wird das erweiterte Potential (9.2) mit der Randbedingung K0 < 0
untersucht. Wegen der Parallelen zu Abschnitt 9.1 erfolgt die Untersuchung der dort
angewandten Methodik.

9.2.1 Untersuchung ohne gedrehte u- und d-Quarkmassen

In Abb. 9.4 ist das Phasendiagramm des Potentials für K0 < 0 in der m̃′-m′
s-Ebene

gezeigt. Es sind fünf verschiedene Gebiete mit unterschiedlichen Minima zu erkennen.
Diese Gebiete sind mit A1, A2, B, C und D bezeichnet. Die Besonderheiten dieser
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Abbildung 9.4: Phasendiagramm mit K0 < 0 und µ = 0

Gebiete werden nachfolgend diskutiert:

• Gebiete A1 und A2:
In diesen Gebieten befindet sich das Minimum konstant bei den Werten

A1 : U = diag(−1, − 1, 1),

A2 : U = diag(1, 1, 1). (9.14)

Die Grenzen zu Gebiet B werden durch

m′
s = ±1

2
m̃′ − 3K0 (9.15)

beschrieben, während die Grenzen zu Gebiet C durch

m̃′ = ±2K0. (9.16)

gebildet werden.

• Gebiet B:
Innerhalb von Gebiet B sind die Parameter im Minimum von den betrachteten
Massen abhängig.
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9.2 Phasenstruktur des Potentials mit LWW < 0 und LWW6 = LWW7 = 0

In B existieren zwei Minima mit identischen Werten der Realteile a1 = b1. Diese
sind:

a1 = b1 =
121/3

(

S
2/3
2 +

(
K2

0 −m′
sK0

)
121/3

)

12S
1/3
2 K0

S2 = −K2
0



−9m̃′ +

√

12m′
s
3

K0
− 36m′

s
2K0 + 36m′

sK0 − 12K0 + 81m̃′2K0



 .

(9.17)

Die Imaginärteile der beiden Minima unterscheiden sich durch ihre Vorzeichen, es
gilt u = v = −w = ±1 für m̃′ > 0 und u = v = w = ±1 für m̃′ < 0 (vgl. Tabelle
8.1). Für m̃′ = 0 ist c1 = −1. Die Werte der Parameter a, b und c im Minimum
sind in Abb. 9.5 gezeigt.

Für m′
s > K0 tritt ein Sprung beim Nulldurchgang der Masse m̃′ auf. Diese ist in

Abb. 9.4 durch den vertikalen Strich bei m̃′ = 0 verdeutlicht, der in das Gebiet B
hineinragt. Der Übergang ins Gebiet D ist ebenfalls unstetig und wird in dem zu
D zugeordneten Abschnitt besprochen.
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Abbildung 9.5: Verhalten der Parameter a und b (links) und des Parameters c
(rechts) als Funktion von m̃′ für m′

s = −2 (oben) bzw. m′
s = −0,3

(unten) .

• Gebiet C:
Die Übergänge von Ai zu C sind ebenso durch eine kontinuierliche Änderung der
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

Parameter im Minimum geprägt wie die Übergänge von Ai nach B. Es existieren
zwei entartete Minima, die identische Werte der Realteile aufweisen. Diese lauten:

a1 = b1 = − m̃′

2K0
. (9.18)

Die Imaginärteile a2 und b2 besitzen entgegengesetzte Vorzeichen (u = −v = ±1)
und c1 den Wert 1. In Abb. 9.6 ist das Verhalten von a und b für u = −v = −1
gezeigt.

Beim Übergang nach D spaltet sich jedes der Minima in zwei auf, diese liegen
nicht länger auf der Achse a1 = b1.
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Abbildung 9.6: Verhalten der Parameter a und b (links) und des Parameters c
(rechts) für K0 < 0 und µ = 0 als Funktion von m̃′.

• Gebiet D:
Für kleine Beträge der Massen m̃′ und m′

s mit m′
s > 0 und m′

s < |m̃′| existie-
ren vier Minima, jeweils zwei für u = −v = ±1. Jedes weist dabei ein eigenes
Vorzeichen von c2 auf. Die Grenze zu Gebiet C bildet die Funktion

m′
s =

1

K0
m̃′2 −K0. (9.19)

Die Grenze zu Gebiet B wird durch m′
s = |m̃′| gebildet. Die Minima verhalten

sich beim Übergang über diese Grenze unstetig.

9.2.2 Untersuchung mit gedrehten u- und d-Quarkmassen

Wie in Abschnitt 9.1.2 werden auch hier zunächst die beiden Schnittebenen mit m̃′ = 0
(a) und m′

s = 0 (b) betrachtet. Anschließend wird das dreidimensionale Phasendia-
gramm in Abhängigkeit zu allen drei Massen (c) untersucht.

(a) m̃
′ 6= 0, m

′
s = 0, µ 6= 0

Abhängig von den Beträgen der Massen m̃′ und µ treten in der m̃′-µ -Ebene sechs
verschiedene Gebiete mit abweichenden Potentialminima auf. Vier dieser Gebiete sind
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9.2 Phasenstruktur des Potentials mit LWW < 0 und LWW6 = LWW7 = 0

für kleine Werte der betrachteten Massen durch einen Sprung getrennt, für größere
Massen hingegen kontinuierlich verbunden. Das Phasendiagramm dieser Schnittebene
ist in Abb. 9.7 (links) gezeigt.
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Abbildung 9.7: Werte von m̃′(µ) beim Übergang der Minima (links). Größe des Sprunges
der Realteile a1 und b1 bei diesem Übergang (rechts).

• Gebiete F1 und F2:
Die Gebiete F1 und F2 sind um den Ursprung (0,0) symmetrisch angeordnet und
weisen jeweils zwei entartete Minima auf. In F1 besitzen a1 und b1 negative, in
F2 hingegen positive Werte, ebenfalls besitzen die Minima in diesen Gebieten
unterschiedliche Vorzeichen von w. Die Gebiete entsprechen für µ = 0 Gebiet B
in Abb. 9.4. Für µ 6= 0 wandert, je nach Vorzeichen der Imaginärteile u = v =
±1, Parameter a1 oder b1 zu einem Potentialrand. Ein vergleichbares Verhalten
wurde bereits für K0 = 0 in Kapitel 8 beschrieben. Die Parameter verhalten sich
entsprechend Tabelle 8.1. Besitzt einer der beiden Parameter a1 oder b1 den Wert
|1|, kommt es zu einem Übergang in die Gebiete D1 oder D2, was mit dem Wechsel
des Vorzeichens des zu |a1| = 1 oder |b1| = 1 gehörigen Imaginärteils verbunden ist.
Für kleine Massen m̃′ und µ findet dieser Vorzeichenwechsel eines der Parameter
mit a1 6= |1| bzw. b1 6= |1| statt. Der Übergang ist damit unstetig. Die Größe dieser
Sprünge ist Abhängigkeit von der Masse m̃′ zeigt Abb. 9.7 (rechts).

• Gebiete D1 und D2:
In den Gebieten D1 und D2 existieren demnach ebenfalls zwei entartete Minima,
und die Imaginärteile a2 und b2 besitzen unterschiedliche Vorzeichen (vgl. Tabelle
8.1). Die Vorzeichen von u und v werden dabei durch das Vorzeichen der gedreh-
ten Masse festgelegt (vgl.(8.10)). Wird der Betrag der gedrehten Masse weiter
vergrößert, nähern sich die Minima der Achse a1 = b1 an.

• Gebiet E1 und E2:
Die jeweils zwei Minima aus D1 und D2 vereinen sich auf der Achse a1 = b1 und
c1 = 1 (u = −v = ±1). In diesem Gebiet existiert nur noch ein Minimum.

(b) m̃
′ = 0, m

′
s
6= 0, µ 6= 0

Das Phasendiagramm dieser Schnittebene ist in Abb. 9.8 (links) gezeigt. Es existieren
fünf Gebiete, die im folgenden näher beschrieben werden:
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Abbildung 9.8: Werte von m′
s(µ) beim Übergang der Minima (links). Größe des Sprun-

ges der Realteile a1 und b1 bei diesem Übergang (rechts).

• Gebiet F :
In Gebiet F existieren wie im vorherigem Abschnitt zwei entartete Potentialmini-
ma. Die Imaginärteile a2 und b2 weisen identische Vorzeichen auf und es existiert
für jede Kombination aus u = v ± 1 ein Minimum der Parameter c1 = −1. Der
Übergang zu den Gebieten D1 und D2 ist dabei immer mit einem Sprung ver-
bunden. Die Größe des Sprunges der Parameter a1 und b1 in Abhängigkeit von
der Masse m′

s ist in Abb. 9.8 (rechts) dargestellt. Beim Nulldurchgang der Masse
µ findet anders als in den anderen in dieser Schnittebene auftretenden Gebieten
kein Sprung des Minimums statt.

• Gebiete D1 und D2:
Die Minima in Di können analytisch ermittelt werden und besitzen die Koordina-
ten:

a1,2
1 = −b1,2

1 = ± 1

12




6S1

K0
+

24
(

−6m′
sK0 + 9K2

0 +m′
s
2
)

K0S1
+

24 (m′
s + 3K0)

K0





1/2

.

(9.20)
Dabei ist S1 eine Abkürzung für:

S1 =
(

72m′
s
2
K0 − 216m′

sK
2
0 + 216K3

0 − 8m′
s
3 − 108K0µ

2

+12µ
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−3
(
36m′

s
2K0 + 108m′

sK
2
0 − 4m′

s
3 − 27K0µ2 + 108K3
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K0
K0


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.

(9.21)

Die Vorzeichen der Imaginärteile entsprechen (8.10) und w ergibt sich aus Ta-
belle 8.1. Die Gebiete D1 und D2 besitzen für −K0 > m′

s > 0 und µ = 0 eine
gemeinsame Grenze. Beim Überschreiten dieser Grenze wechseln die Vorzeichen
der Imaginärteile ihre Vorzeichen und es kommt somit zu einem Sprung des Mi-
nimums.
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9.2 Phasenstruktur des Potentials mit LWW < 0 und LWW6 = LWW7 = 0

Für
µ = ±2(m′

s +K0) (9.22)

vereinen sich die Minima von D1 bzw. D2 auf der Achse a1 = b1 mit c1 = 1.

• Gebiete E1 und E2:
In diesen Gebieten existiert jeweils nur ein Minimum. Dieses befindet sich bei:

E1, µ > 0 : U = diag(−i, i, 1),

E2, µ < 0 : U = diag(i, − i, 1). (9.23)

Der Übergang zwischen dieses beiden Gebieten ist für m′
s > −K0 mit einem

Sprung verbunden.

(c) m̃
′ 6= 0, m

′
s 6= 0, µ 6= 0

Abschließend wird das dreidimensionale Phasendiagramm für K0 < 0 untersucht. Es
wird mit Hilfe der Schnittebenen für µ 6= 0 aus Abb. 9.4 ergänzt. Die Untersuchung des
Potentials (9.8) erfolgt in diesem Fall durch Ergänzungen zu den bisherigen Betrach-
tungen. Als Ausgangsbasis wird dazu Abb. 9.4 herangezogen:

• Erweiterung der Gebiete A1 und A2 aus Abb. 9.4
Es existiert ein einziges Minimum auf der Achse a1 = b1 und c1 = 1. In den Abb.
9.7 und 9.8 sind die entsprechenden Gebiete mit E1 und E2 bezeichnet. Die ent-
gegengesetzten Vorzeichen der Imaginärteile a2 und b2 ergeben sich gemäß (8.10).
Je größer der Betrag von µ ist, desto näher befindet sich das absolute Minimum
an der Position a1 = b1 = 0 und c1 = 1. Da für µ = 0 |a1| = |b1| = |c1| = 1 gilt, ist
der Nulldurchgang der gedrehten Masse mit einem stetigen Übergang verknüpft.
Auch beim Vorzeichenwechsel der s-Quarkmasse ist das Verhalten stetig.

• Erweiterung des Gebietes C aus Abb. 9.4
Wie bei der Erweiterung der Gebiete A1 und A2 in µ-Richtung befindet sich das
einzige Minimum auf der Achse a1 = b1 mit c1 = 1. Da für µ = 0 |a1| = |b1| =
|c1| 6= 1 gilt, ist der Nulldurchgang der gedrehten Masse mit einem unstetigen
Übergang verknüpft. Alle anderen Aussagen können von dem vorangegangenen
Punkt übernommen werden. Zusätzlich ist der Übergang von positiven zu negati-
ven u- und d-Quarkmassen stetig.

• Erweiterung des Gebietes B aus Abb. 9.4 Das bei der Erweiterung des Gebietes B
in µ-Richtung entstehende Volumen ist in Abb. 9.9 (links) gezeigt. Die Form dieses
Volumens ähnelt zwei miteinander verschmolzenen Kegeln. In den Schnitten für
m̃′ = 0 bzw. m′

s = 0 (Abb. 9.7 und Abb. 9.8) wurde das für µ 6= 0 entstehende
Gebiet mit F bezeichnet.

Innerhalb dieses Volumens existieren zwei entartete Minima, deren Imaginärteile
a2, b2 identische Vorzeichen aufweisen. Das Vorzeichen von c2 verhält sich gemäß
Tabelle 8.1. Wird der Betrag von µ vergrößert, kommt es zu einem Vorzeichen-
wechsel eines der Imaginärteile (u = −v). Für kleine Beträge der Masse m̃′ ist
dieser Übergang unstetig (vgl. Abb. 9.8), für größere Beträge stetig, da der Real-
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

teil des zugehörigen Parameters beim Übergang den Wert |1| annimmt. Die Größe
dieses Sprunges in Abhängigkeit von m̃′ und m′

s ist in Abb. 9.10 gezeigt.

Für µ = 0 existiert ein Sprung beim Nulldurchgang der Masse m̃′ für 0 > ms > K0.
Dieser Sprung tritt für µ 6= 0 und für 0 > ms > K0 in dem hier betrachteten Gebiet
ebenfalls auf.

Abbildung 9.9: Grenzfläche des Vorzeichenwechsels eines Imaginärteils fürK0 < 0;
teilweise ist der Vorzeichenwechsel mit einem Sprung verbunden
(links) und Grenzfläche des Überganges von zwei zu einem Mini-
mum für K0 < 0 (rechts).
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s.

• Erweiterung von D aus Abb. 9.4
Der in Abb. 9.9 (links) gezeigte “Doppelkegel” wird durch einen weiteren “Doppel-
kegel” mit ebenfalls zwei entarteten Minima umschlossen. Dieser ist für µ = 0 mit
D bezeichnet und ist in Abb. 9.9 (rechts) dargestellt.

Beim Übergang von diesem Gebiet in die Gebiete E1 oder E2 findet kein Sprung
des Minimums statt. Die zwei in D existierenden Minima laufen auf der Achse
a1 = b1 und c1 = 1 zusammen.
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10 Phasenstruktur unter
Berücksichtigung aller neun
Potentialterme

Die Phasenstruktur des in Kapitel 9 untersuchten Potentials stellt bereits eine gute
Approximation des Potentials (7.7) für kleine Massen dar. Um diese Näherung weiter
zu verbessern, werden nun alle unter (7.12) aufgelisteten Koeffizienten des Potentials
für die Analyse der Phasenstruktur berücksichtigt. Dies führt gegenüber dem Potential
(9.2) zu vier zusätzlichen Termen.

Wie in den vorangegangenen Kapiteln wird dieses Potential mit F 2
0B0 normiert und die

Imaginärteile der Parameter über die Realteile ausgedrückt. Das so gewonnene Potential
lautet:

V (a1,b1,u,v,w) =− m̃′(a1 + b1)−m′
s(−uv

√

1− a2
1

√

1− b21 + a1b1)

+ µ(u
√

1− a2
1 − v

√

1− b21)

−K0(a
2
1 + b21)−K0(−uv

√

1− a2
1

√

1− b21 + a1b1)
2

− 2K1a1b1 − 2K1(a1 + b1)(−uv
√

1− a2
1

√

1− b21 + a1b1)

+ 2K2uv
√

1− a2
1

√

1− b21

+ 2K2w

√

1− (−uv
√

1− a2
1

√

1− b21 + a1b1)2(u
√

1− a2
1 + v

√

1− b21)
(10.1)

Zusätzlich zur Konstanten K0 aus Gl. (9.3) ergeben sich zwei weitere Konstanten, die
von LWW6 und LWW7 abhängen. Diese Konstanten besitzen die Form:

K1 = 4LWW6
ρ2
0

F 2
0B0

, K2 = 4LWW7
ρ2
0

F 2
0B0

. (10.2)

Anders als in der weniger genauen Approximation in Kapitel 9, in dem nur K0 zu
berücksichtigen war, ist hier das Verhältnis der Konstanten von Bedeutung. Für die
Konstanten werden Werte entsprechend (7.14) verwendet. Für eine vollständige Unter-
suchung müssen damit für jede Konstante beide Vorzeichen berücksichtigt werden.
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10 Phasenstruktur unter Berücksichtigung aller neun Potentialterme

10.1 Phasenstruktur des Potentials mit
LWW > 0 und |LWW6| = |LWW7| 6= 0

Im vorherigen Kapitel wurde abhängig vom Vorzeichen der Konstante K0 zwei unter-
schiedliche Szenarien gefunden. Da die vier in diesem Kapitel zusätzlich betrachteten
Terme wegen ihrer Größe lediglich Korrekturen zu dem dort gefundenem Verhalten lie-
fern, wird auch in diesem Kapitel die Betrachtung für beide Vorzeichen von K0 getrennt
durchgeführt. Die Bezeichnungen der Gebiete in diesem Kapitel decken sich mit de-
nen aus Kapitel 9. Gebiete mit gleichen Bezeichnungen in beiden Kapiteln weisen auch
gleiche Eigenschaften auf.

Für jedes Vorzeichen vonK0 werden dabei alle Vorzeichenkombinationen der Konstanten
K1 und K2 betrachtet.

10.1.1 Untersuchung ohne Drehung der u- und d-Quarkmasse

Werden sowohl u- und d-Quarks wie auch s-Quarks als massiv angenommen, gibt es für
alle möglichen Vorzeichenkombinationen Gemeinsamkeiten. Es finden sich, wie aus Abb.
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Abbildung 10.1: Verhalten der Minima in der m̃′-m′
s-Ebene für K0 > 0, K1 > 0 und

K2 > 0 (links) und für K0 > 0, K1 > 0 und K2 < 0 (rechts).
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10.1 Phasenstruktur des Potentials mit LWW > 0 und |LWW6| = |LWW7| 6= 0

10.1 und 10.2 ersichtlich, vier verschiedene Gebiete, die mit A1, A2, B und C bezeichnet
sind und sich durch die Lage des Minimums unterscheiden.

• A1 : U = diag(−1, − 1, 1)

• A2 : U = diag(1, 1, 1)

• B: U = diag(−1, − 1, 1), U = diag(1, − 1, − 1)

• C: a1 = b1, c u = v = w = ±1
In C existieren zwei Minima mit identischen Werten von a1 = b1. Die Minima
unterscheiden sich durch die Vorzeichen der Imaginärteile.

Diese vier Gebiete sind sämtlich durch Sprünge getrennt. Gebiet C tritt dabei lediglich
bei negativer Konstante K2 auf. Im folgendem werden die einzelnen Vorzeichenkombi-
nationen separat betrachtet:

K0 > 0, K1 > 0, K2 > 0 (Abb. 10.1 (links)): Sind alle Konstanten größer Null, be-
sitzt das Phasendiagramm eine ähnliche Form wie in der vorrausgegangenen Approxi-
mation für K0 > 0 in Kapitel 9, die m̃′- und die m′

s-Achse sind lediglich um −2K1

verschoben.

Für diese Kombination der Vorzeichen treten lediglich die drei Gebiete A1, A2 und B
auf. Die Grenze zwischen A1 und A2 ist für m′

s > −2K1 bei m̃′ = −2K1.

Ist ms < −2K1, weisen die Gebiete A1 und A2 eine Grenze zu B auf. Diese Grenze ist
gegeben durch m′

s = m̃′ und m′
s = m̃′ − 2K1.

K0 > 0, K1 > 0, K2 < 0 (Abb. 10.1 (rechts)): Für diese Vorzeichenkombination tritt
zusätzlich das Gebiet C auf.

Die Grenzen zwischen den Gebieten Ai und B bzw. C können nicht analytisch ermittelt
werden und wurden daher numerisch bestimmt.

Die Gebiete A1 und A2 besitzen eine gemeinsame Grenze für m′
s > 0 und m̃′ = −2K1.

Für s-Quarkmassen von 0 bis −0,9 besitzt das Gebiet A2 eine Grenze zu Gebiet C, für
m′

s < −0,9 eine Grenze zu Gebiet B. A1 grenzt für alle Werte von m′
s < 0 ausschließlich

an Gebiet C.

K0 > 0, K1 < 0, K2 > 0 (Abb. 10.2 (links)): Das Verhalten ähnelt deutlich dem Fall
mit K0 > 0, K1 > 0, K2 > 0. Es besteht lediglich ein Unterschied durch das entgegenge-
setzte Vorzeichen der Konstanten K1 und einer daraus resultierenden entgegengesetzten
Verschiebung der m̃′- und der m′

s-Achse.

K0 > 0, K1 < 0, K2 < 0 (Abb. 10.2 (rechts)): Es treten vier unterschiedliche Ge-
biete auf. Die Phasengrenzen besitzen bei m̃′ = ms = −2K1 einen gemeinsamen Punkt.

Für die hier betrachtet Kombination der Vorzeichen grenzt A1 neben A2 ausschließlich
an B, diese nichtlineare Grenze konnte analytisch nicht ermittelt werden.

Die Gebiete A1 und A2 berühren sich für m′
s > −2K1 bei m̃′ = −2K1.
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10 Phasenstruktur unter Berücksichtigung aller neun Potentialterme

A2 besitzt eine Grenze zu C, diese ist analytisch gegeben durch:

m′
s = m̃′. (10.3)

10.1.2 Untersuchung mit Drehung der u- und d-Quarkmasse

Anders als in den Kapiteln 8 und 9 sind hier keine dreidimensionalen Phasendiagramme
erstellt worden. Diese sind entweder äquivalent zu denen aus Kapitel 9 oder weisen ein so
komplizierte Struktur auf, dass sie zu unübersichtlich wären. Daher wird das Verhalten
der dreidimensionalen Phasendiagramme ausschließlich mit Hilfe von Schnittebenen des
Phasenraumes erläutert.

K0 > 0, K1 ≶ 0, K2 > 0: Für diese Kombination aus Vorzeichen tritt kein neues Ver-
halten der Potentialminima gegenüber Abschnitt 9.1.2 auf. Das Phasendiagramm ist le-
diglich verschoben und zwei unterschiedliche zweidimensionale Schnitte sind in den Abb.
10.3 und 10.4 gezeigt. Es existiert, erweitert man Abb. 10.3 und 10.4 in die jeweils feh-
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10.1 Phasenstruktur des Potentials mit LWW > 0 und |LWW6| = |LWW7| 6= 0

lende Richtung, ein kegelförmiges Gebiet mit zwei entarteten Minima. Die Mantelfläche
des Kegels stellt eine Grenze dar, an der sich die Minima unstetig verhalten.

Außerhalb des Kegels, was den Gebieten Ei entspricht, existiert ein Minimum mit a1 =
b1 und c1 = 1. Dieses springt bei m̃′ = −2K1 für den Fall, dass

|µc| < 2K0 + 2K1 − 2K2 (10.4)

ist, von positiven zu negativen Werte der Parameter a1 = b1. Haben die Konstanten K1

und K2 identische Werte, ergibt sich daraus der Wert für µc nach Gleichung (9.9) aus
Abschnitt 9.1.2.

K0 > 0, K1 ≶ 0, K2 < 0: Für µ = 0 existieren in der m̃′-m′
s-Ebene Abb. 10.1 (rechts)

und 10.2 (rechts) vier verschiedene Gebiete. Wird zusätzlich die gedrehte Masse µ be-
trachtet, ergibt sich erneut ein kegelförmiges Gebiet mit zwei entarteten Minima. In-
nerhalb dieses kegelförmigen Gebietes, existieren für einige Werte der Massen stetige
Übergänge, die mit Vorzeichenwechsel der Imaginärteile verbunden sind. Die Gebiete,
zwischen denen dieser Übergang stattfindet, sind in den Abb. 10.5, 10.6 und 10.7 mit
F und Di bezeichnet. Das Verhalten entspricht dem in Abschnitt 9.2 beschriebenen
Übergang von F nach Di (vgl. Gl. (8.10) und Tabelle 8.1). Aus den Abbildungen 10.5
und 10.6 ist ersichtlich, dass sich für kleinere Werte der s-Quarkmassen die Bereiche Di

vergrößern. Aus Abb. 10.6 (rechts) ist ersichtlich, dass die Gebiete Di nicht für belie-
big große Werte das Gebiet F umschließen. Besitzen die Gebiete Di eine gemeinsame
Grenze, ist das Verhalten der Minima beim Übergang stetig.

Für µ = 0 existierte ein Sprung des Minimums beim Übergang von B nach C (vgl.
Abb. 10.1 (rechts) und 10.2 (rechts)). Dieses nichtstetige Verhalten tritt auch für kleine
Werte von µ 6= 0 in dem nun mit F benannten Gebiet auf, wie aus Abb. 10.5 und 10.6
ersichtlich ist.

Außerhalb des kegelförmigen Gebietes existiert ein einziges Minimum mit a1 = b1,
c1 = 1 und Vorzeichen der Imaginärteile entsprechend (8.10). In den Diagrammen aus
Abb. 10.5, 10.6 und 10.7 sind diese Gebiete mit Ei bezeichnet. Der Übergang von den
zwei Minima innerhalb des Kegels zu dem einen Minimum außerhalb des Kegels ist
unstetig.

In den Gebieten Ei existiert ein Sprung bei m̃′ = −2K1. Dieser tritt bis

|µc| = 2K0 + 2K1 − 2K2 (10.5)

auf und ist in Abb. 10.6 (links) zu erkennen. In sämtlichen anderen Abbildungen ist
dieser Sprung nicht dargestellt, da µc für diese Massewerte innerhalb des Kegels und
der zugehörigen Gebieten F oder Di liegt und somit ein Sprung nicht stattfindet.
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10.2 Phasenstruktur des Potentials mit
LWW < 0 und |LWW6| = |LWW7| 6= 0

Die im vorherigem Abschnitt mit K0 > 0 durchgeführte Untersuchung wird im folgen-
dem mit K0 < 0 wiederholt. Es ergeben sich ähnliche Resultate wie bei der mit K0 < 0
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10.2 Phasenstruktur des Potentials mit LWW < 0 und |LWW6| = |LWW7| 6= 0

und K1 = K1 = 0 in Abschnitt 9.2 durchgeführten Untersuchung. Durch die Berücksich-
tigung der Konstanten K1 und K2 kommt es jedoch zu Verschiebungen der in Abschnitt
9.2 dargestellten Ergebnisse.

10.2.1 Untersuchung ohne Drehung der u- und d-Quarkmasse

Wird die m̃′-m′
s-Ebene betrachtet, ergeben sich für alle möglichen Vorzeichenkombina-

tionen der Konstanten ähnliche Gebiete. Sie sind in Abb. 10.8 mit A1, A2, B1, B2, C
und D bezeichnet. Deren Eigenschaften werden im folgenden zunächst beschrieben:

• Im Gebiet A1 befindet sich das Minimum bei U = diag(−1, − 1, 1) in A2 bei
U = diag(1, 1, 1). Der Übergang von den Gebieten A1 und A2 in die benachbarten
Gebiete Bi und C ist immer stetig.

• Im Gebiet B1 besitzen die Parameter a1 und b1 negative Werte, die Imaginärteile
besitzen die Vorzeichen: u = v = w = ±1. Beim nichtstetigen Übergang in das
Gebiet B2 springen die Realteile a1 und b1 zu positiven Werten und die Imagi-
närteile der Parameter besitzen die Vorzeichen u = v = −w = ±1. Es existieren
immer zwei entartete Minima.

• Zusätzlich existieren mit C und D zwei weitere Gebiete, die sich durch die Anzahl
der Minima unterscheiden. In C existiert ein Minimum mit a1 = b1 und c1 = 1,
in D gibt es hingegen zwei Minima. In beiden Gebieten sind die Vorzeichen der
Imaginärteile der Parameter a und b entgegengesetzt (u = −v). Der Übergang von
C nach D ist stetig.

Im folgenden werden die möglichen Vorzeichenkombinationen getrennt erörtert:

K0 < 0, K1 > 0, K2 > 0: Das Phasendiagramm für diese Kombination von Vorzei-
chen ist in Abb. 10.8 (oben links) gezeigt.

In den Gebieten B1 und B2 befindet sich die absoluten Minima auf der Achse a1 = b1 und
somit unterscheiden sich die Minima lediglich durch die Vorzeichen ihre Imaginärteile.

Es kommt zu einem Sprung der Potentialminima von positiven zu negativen Werten von
a1 = b1, dieser Sprung erfolgt an der Grenze zwischen B1 und C bzw. an der Grenze
zwischen B1 und B2. Zwischen D, in dem zwei Minima existiert und B2, in dem ein
Minimum vorhanden ist, kommt es ebenfalls zu einem Sprung.

K0 < 0, K1 > 0, K2 < 0: Das Phasendiagramm für diese Kombination von Vorzei-
chen ist in Abb. 10.8 (oben rechts) gezeigt.

In den Gebieten B1 und B2 befindet sich das absolute Minimum auf der Achse a1 =
b1. Somit unterscheiden sich diese Minima ebenfalls nur durch ihre Imaginärteile. Es
kommt zu einem Sprung von positiven zu negativen Werten der Parameter a1 = b1
beim Übergang von B1 nach B2 bzw. nach A2.

Da es hier anders als in den übrigen Fällen keine Gebiete C oder D gibt und damit A1

und A2 eine gemeinsame Grenze aufweisen, kommt es für alle Werte der Masse m′
s zu

einem Sprung des Minimums (Übergang von A1 nach A2, von B1 nach A2 und B1 nach
B2).
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Abbildung 10.8: Verhalten der Minima in der m̃′-m′
s-Ebene fürK0 < 0 und verschiedene

Vorzeichenkombinationen von K1 und K2.

K0 < 0, K1 < 0, K2 > 0: Das Phasendiagramm für diese Kombination von Vorzei-
chen ist in Abb. 10.8 (unten links) gezeigt.

Ein Sprung des Minimums existiert zwischen B2 und B1 sowie zwischen B2 und D.

Anders als in allen anderen Fällen existiert kein Sprung zwischen B1 und D. Dies ist
mit einer Aufspaltung der Minima in B1 verknüpft, die ebenfalls nur für die an dieser
Stelle betrachtete Kombination der Vorzeichen auftritt.

K0 < 0, K1 < 0, K2 < 0: Das Phasendiagramm für diese Kombination von Vorzei-
chen ist in Abb. 10.8 (unten rechts) gezeigt.

In den Gebieten B1 und B2 befindet sich das absolute Minimum auf der Achse a1 = b1.
Der Sprung von positiven zu negativen Werten von a1 und b1 bildet die Grenze zwischen
B2 und B1, B2 und D und zwischen B2 und C.

Der Übergang der Minima in Gebiet B1 zu denen in Gebiet D ist ebenfalls mit einem
Sprung verbunden.

10.2.2 Untersuchung mit Drehung der u- und d-Quarkmasse

Wie im Fall für K0 > 0 wird hier das Verhalten im dreidimensionalen Phasenraum
mit Hilfe von Schnitten erläutert. In diesen Schnittflächen treten ähnliche Gebiete wie
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10.2 Phasenstruktur des Potentials mit LWW < 0 und |LWW6| = |LWW7| 6= 0

in Abschnitt 9.2.2 auf, das Verhalten der Minima des dort und des hier betrachteten
Potentials ähnelt sich stark.

Die Bezeichnungen der Gebiete aus Abschnitt 9.2.2 sind übernommen worden. Wie
bereits dort gefunden existiert auch für K0 < 0 ein kegelförmiger Bereich, der vom
Rest des Phasenraumes nicht durch einen Sprung des Minimums getrennt wird, sondern
durch einen kontinuierlichen Übergang gekennzeichnet ist.

Die für K0 < 0 und |LWW6| = |LWW7| 6= 0 auftretenden Gebiete werden zunächst kurz
erläutert:

• Die Gebiete E1 und E2 der nachfolgenden Abbildungen 10.10 bis 10.16 entsprechen
der Erweiterung der Gebiete A1 und A2 aus Abb. 10.8 für eine zusätzliche Masse
µ. Als Folge verschiebt sich das Minimum entlang der Achse a1 = b1 mit c1 = 0.
Die Vorzeichen der Imaginärteile der Parameter a2 und b2 folgen dabei Gl. (8.10).

• Werden die Gebiete Bi für µ 6= 0 betrachtet, entstehen Gebiete Fi. Dabei befinden
sich in F1 die Minima bei negativen Werten der Parameter a1 = b1 und die Ima-
ginärteile besitzen die Vorzeichen u = v = w = ±1. In F2 sind die Werte der Pa-
rameter positiv und die Imaginärteile besitzen die Vorzeichen u = v = −w = ±1.
Der Übergang zwischen den Gebieten Fi ist anders als bei dem in Abschnitt 9.2.2
beschriebenen Fall immer mit einem Sprung verbunden.

• Zusätzlich treten noch mit Di bezeichnete Gebiete auf. Diese weisen, wie die Ge-
biete E1 und E2, Minima mit identischen Vorzeichen der Imaginärteile und Ab-
hängigkeiten von der Masse µ (vgl. Gl. (8.10) auf. Existiert ein Übergang von D1

zu D2, ist dieser immer mit einem Sprung verbunden.

Nachfolgend werden alle Vorzeichenkombinationen von K1 und K2 separat diskutiert:
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10 Phasenstruktur unter Berücksichtigung aller neun Potentialterme

K0 < 0, K1 > 0, K2 > 0: Für diese Kombination sind in den Abb. 10.9 und 10.10
verschiedene Schnitte des dreidimensionalen Phasenraums gezeigt.

In Abb. 10.9 ist zu erkennen, wie die Gebiete D1 und D2 das Gebiet F1 umschließen, das
aus B1 für µ 6= 0 hervorgeht. Für die in diesem Schnitt betrachte u- und d-Quarkmasse
(m̃′ = 0) ist der Übergang von Gebiet F in die Gebiete Di immer mit einem Sprung der
Minima verbunden. Dieser Sprung ist auch in Abb. 10.10 (links) zu erkennen.

Auch wird in Abb. 10.10 (links) deutlich, dass, wenn sich die Gebiete F1 und F2 berüh-
ren, die Minima sich bei diesem Übergang unstetig verhalten.

In Abb. 10.10 (rechts) ist zu erkennen, dass, besteht eine gemeinsame Grenze zwischen
F1 und Ei, die Minima sich an dieser Grenze unstetig verhalten. Diese Grenze tritt für
genügend große s-Quarkmassen auf.

Der Übergang zwischen D1 und D2 ist ebenfalls mit einem Sprung der Minima verbun-
den. Alle weiteren Übergänge sind stetig.
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Abbildung 10.9: Verhalten der Minima in der m′
s-µ-Ebene für K0 < 0, K1 > 0 und
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10.2 Phasenstruktur des Potentials mit LWW < 0 und |LWW6| = |LWW7| 6= 0

K0 < 0, K1 > 0, K2 < 0: Bei dieser Kombination existieren für µ = 0 keine Gebiete
D oder C. Wie aus Abb. 10.11 ersichtlich treten für µ 6= 0 sehr wohl Gebiete Di auf.
Diese umschließen F1 und F2 erst für größere Werte der gedrehten Masse und wachsen
für kleinere Werte der Masse m′

s.

Wie in Abb. 10.12 zu erkennen kommt es auch für diese Vorzeichenkombination zu
einem Sprung der Parameter a1 und b1 von positiven zu negativen Werten innerhalb des
kegelförmigen Bereichs in den Gebieten Fi und Di. Die Linie des Überganges entspricht
dabei einem Teil der Grenze von F1.

Berühren sich die Gebiete F1 und die F2 umschließenden Gebiete Di, kommt es ebenfalls
zu einem Sprung der Potentialminima.

Es existieren ebenfalls Massenwerte, bei denen sich, wie in Abb. 10.11und 10.12 (links)
zu sehen, F1 und Ei berühren. Der beim Überschreiten dieser Grenze stattfindende
Übergang ist ebenso unstetig.
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10 Phasenstruktur unter Berücksichtigung aller neun Potentialterme

K0 < 0, K1 < 0, K2 > 0: Für diese Vorzeichenkombination tritt ein wesentlicher Un-
terschied zu den bisher betrachteten Fällen auf. Die zugehörigen Abbildungen sind Abb.
10.13 und 10.14.

Durch die negative Konstante K1 wird das Phasendiagramm “gespiegelt”. Die Gebiete
F1 und F2 vertauschen ihre Größenverhältnisse. Dies ist mit einer Veränderung des
Überganges von positiven zu negativen Werten der Parameter a1 und b1 verbunden.
Dieser Übergang folgt nun der Form von Gebiet F2.

Bis auf diesen Unterschied können alle für K0 < 0, K1 > 0, K2 > 0 getroffenen Aussagen
für diese Kombination aus Vorzeichen übernommen werden.

Die zu den hier betrachteten Vorzeichen zugehörigen Abbildungen sind Abb. 10.13 und
10.14.
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10.2 Phasenstruktur des Potentials mit LWW < 0 und |LWW6| = |LWW7| 6= 0

K0 < 0, K1 < 0, K2 < 0: In dieser Kombination der Vorzeichen tritt kein neues Ver-
halten der unstetigen Übergänge des Potentials gegenüber K0 < 0, K1 < 0, K2 > 0 auf.
Alle unstetigen Übergänge entsprechen den dort gefundenen. Es treten lediglich leichte
Verschiebungen auf, so ist beispielweise der Bereich D für µ = 0 wesentlich kleiner.

Das Verhalten der einzelnen Bereiche und ihrer Übergänge ist in den Abb. 10.15 und
10.16 dargestellt.
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Abbildung 10.16: Verhalten der Minima für m′
s = 0,0 (links) und m′

s = 1,2 (rechts) für
K0 < 0, K1 < 0 und K2 < 0.

Zusammenfassen ist festzustellen, dass bis auf K0 < 0, K1 > 0, K2 < 0, wo die Gebiete
D und C für µ = 0 nicht auftreten, kaum Veränderungen zu Abschnitt 9.2.2 existie-
ren. Ein Unterschied, der auf die Verschiebung des Phasenraums durch die zusätzlichen
Terme zurückzuführen ist, ist, dass lediglich ein F1 oder F2 teilweise umschließenden
Übergang auftritt. Damit ist das Phasendiagramm nicht länger Spiegelsymmetrisch zur
Ebene mit m̃′ = 0 (vgl. 9.7 (links)).

77



10 Phasenstruktur unter Berücksichtigung aller neun Potentialterme

78



11 Zusammenfassung und Ausblick

Die Arbeit hat die Ermittlung der Minimastruktur des Potentials der chiralen Störungs-
theorie für Wilson-Twisted-Mass-QCD zum Thema. Von besonderem Interesse waren
dabei Sprünge des Potentialminimums, die bei kontinuierlicher Variation der Massen
auftreten. Dabei wird neben masseentarteten u- und d-Quarks ein zusätzliches s-Quarks
betrachtet, so dass insgesamt drei Quarkflavours berücksichtigt wurden.

Nach einer kurzen Einführung in das Thema im ersten Kapitel wurden im zweiten Ka-
pitel einige Grundlagen der QCD sowie deren beschrieben. Diese chiralen Symmetrien
und ihre spontane und explizite Brechung waren die Voraussetzungen, um im dritten
Kapitel die Lagrangedichte der chiralen Störungstheorie für QCD zu konstruieren. Da
die Minimastruktur von Gitter-QCD betrachtet worden ist, musste die Lagrangedichte
der chiralen Störungstheorie für QCD in eine effektiven Lagrangedichte für eine gitter-
regularisierte Theorie überführt werden. Dazu wurde in Kapitel vier neben der Wilson-
Wirkung die Symanzik-Wirkung vorgestellt und damit die nötigen Modifikationen an
der Lagrangedichte vorgenommen. Ein zusätzliche hier berücksichtigte Technik ist die
Twisted-Mass-QCD. Dabei wird ein Flavourdublett, hier das des u- und d-Quark, axial
gedreht. Das bewirkt eine automatische Verbesserung der in Gitter-QCD gewonnenen
Ergebnisse bei maximal twist um O(a). Wird die tmQCD in der Lagrangedichte der
chiralen Störungstheorie berücksichtigt, kommt es neben der Abhängigkeit der Lagran-
gedichte und damit des Potentialminimums von der u-, d- und der s-Quarkmasse zu
der zusätzlichen Abhängigkeit von dem gedrehten Anteil der u- und der d-Quarkmasse.
In Kapitel sechs wurde als Ausgangspunkt für die eigene Analyse eine Untersuchung
der Phasenstruktur für Zwei-Flavour-Wilson-QCD in chiraler Störungstheorie für zwei
entartete Quarkflavours mit Twisted-Mass wiedergegeben. Eine solche Untersuchung für
drei Quarkflavours wurde in den anschließenden Kapiteln ausführlich dargestellt.

Im siebten Kapitel wurde die Lagrangedichte der chiralen Störungstheorie für Drei-
Flavour-Twisted-Mass-Gitter-QCD auf eine Form gebracht, die für die Analyse der Mi-
nimastruktur geeignet war. Dazu wurde eine Parametrisierung der Feldkonfigurations-
matrix gewählt, in der das Potential eine Abhängigkeit von drei im Allgemeinem kom-
plexen Parametern aufwies. Durch Nebenbedingungen wurden die drei Parameter allein
über ihre Realteile, ergänzt durch die drei Faktoren u, v und w, die die Werte ±1 anneh-
men konnten und die Vorzeichen der Imaginärteile charakterisieren, ausgedrückt. Dies
ermöglichte neben analytischen und numerischen Methoden eine zusätzliche grafische
Auswertung der Minimastruktur. Neben dieser Substitution der Imaginärteile durch
ihre Realteile sind zusätzlich die Quarkmassen um die Größenordnung O(a) verscho-
ben worden, was zu einem “natürlichen” Verhalten des Potentials führte: Das Potential
wechselt sein Vorzeichen, wenn die Massen ihr Vorzeichen wechseln. Diese Verschiebung
resultierte aus der Gitteranpassung der chiralen Störungstheorie. In Kapitel sieben wur-
de ebenfalls das Potential für kleine Quarkmassen genähert. Mit dieser Näherung wurde
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erreicht, dass das Potential, das vormals fünfzehn Terme aufwies, sich nur noch aus neun
Termen zusammensetzte.

In Kapitel acht wurde mit der Analyse des Potentials und dessen Minimastruktur begon-
nen. Das Potential wurde zunächst durch drei Terme, jeder proportional zu einer Masse,
grob genähert. In dieser Approximation war es möglich, das Verhalten der Parameter,
die das Minimum charakterisieren, analytisch zu ermitteln. Die Größe des Betrages die-
ser drei verbleibenden Konstanten konnte abgeschätzt werden. Terme, die erst bei sehr
großen Massen relevant werden, wurden zunächst ignoriert. Die Berücksichtigung dieser
Terme führte zu sechs weiteren Termen, die proportional zur Gitterkonstanten a2, sowie
zu drei Kombinationen aus teilweise unbekannten Gasser-Leutwyler-Konstanten waren.

In Kapitel neun wurden die Terme proportional zu der größten der drei Konstanten
in die Untersuchung einbezogen. Als Folge waren die Minima nur noch teilweise analy-
tisch bestimmbar. Statt dessen wurden das Verhalten der Minima numerisch bestimmt
und die Ergebnisse wurden grafisch überprüft. Die Berücksichtigung beider möglichen
Vorzeichen der Konstanten führte zu zwei verschiedenen Szenarien mit unterschiedli-
cher Struktur der Potentialminima. So konnte ähnlich wie bei dem Zwei-Flavour-Fall
für ein Vorzeichen der Konstanten ein Sprung des Minimums beim Vorzeichenwechsel
der gemeinsamen u- und d-Quarkmasse gefunden werden. Im Fall eines entgegensetzten
Vorzeichens wurde ein kontinuierlicher Übergang festgestellt.

Im zehnten Kapitel wurde schließlich alle sechs zusätzlichen Potentialterme in die Un-
tersuchung einbezogen. Es ergaben sich dabei für jede Vorzeichenkombination der nur
vom Betrag bekannten drei Konstanten abweichende Verhaltensweisen der Potentialmi-
nima. Die zwei Szenarien, die für die Betrachtung mit ausschließlich der dominierende
Konstante identifiziert wurden, sind dabei aber stets zu erkennen und nur durch Ver-
zerrungen der zusätzlichen Potentialterme überlagert.

Das Minimum wurde in dieser Arbeit in die λ3- und λ8-Richtung gelegt. Für eine wei-
tergehende Untersuchung könnte diese Richtung verallgemeinert werden, so dass nicht
nur eine diagonale Feldkonfigurationsmatrixzu betrachten wäre.

Auch ist es möglich, das hier betrachtete Potential auf andere Arten zu nähern. So
könnte z.B. das Potential für große Massen genähert werden, um einen vollständigen
Überblick über die Phasenstruktur zu gewinnen. Alternativ kann die hier verwendete
Näherung durch Hinzunahme weiterer Terme für einen größeren Massebereich Gültigkeit
erhalten.

Darüber hinaus könnten die Untersuchungen dieser Arbeit für nicht-masseentartete u-
und d-Quarks ausgedehnt werden. Auch könnte ein weiteres Quark, das charm-Quark,
mit in die Analyse einbezogen werden. Dies brächte die Möglichkeit mit sich, zwei un-
terschiedliche Twist-Winkel einzuführen und in beiden Flavour-Dublettes zu drehen.

Schließlich wäre es noch eine denkbare Erweiterung dieser Arbeit, sie mit genauer be-
kannten LECs erneut durchzuführen. Damit ließen sich für Sprünge der Minima eindeu-
tige Massewerte angeben.
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A Dirac-Matrizen

Sowohl in der QCD-Lagrangedichte als auch bei der Konstruktion der Symanzik-Wirkung
traten Dirac-Matrizen im Minkowski-Raum auf. Für die Gitterformulierung der QCD
mussten diese in den euklidischen Raum überführt werden.

A.1 Dirac-Matrizen im Minkwoski-Raum

Die Dirac-Matrizen erfüllen im Minkowski-Raum die Antikommutatorrelation:

[γµ,γν ] = 2gµν
1. (A.1)

Es existieren vier Dirac-Matrizen, die aus den Pauli-Matrizen und der Einheitsmatrix
aufgebaut sind. Die Gamma-Matrizen haben die Gestalt:

γ0 =

(
0 1

1 0

)

, γ1 =

(
0 τ1
−τ1 0

)

,

γ2 =

(
0 τ2
−τ2 0

)

, γ3 =

(
0 τ3
−τ3 0

)

.

Mit Hilfe der vier Dirac-Matrizen lässt sich eine fünfte Matrix formulieren:

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)

.

Außerdem lässt sich mit den Dirac-Matrizen die antisymmetrische Matrix

σµν =
i

2
[γµ,γν ]

konstruieren.

A.2 Dirac-Matrizen im euklidischen Raum

Im euklidischen Raum können ebenfalls Dirac-Matrizen formuliert werden. Diese erfüllen
die Antikommutatorrelation:

[γE
µ ,γ

E
ν ] = 2δµν

1.
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Eine Möglichkeit, die Dirac-Matrizen im euklidischen Raum zu formulieren ist:

γE
1 =

(
0 −iτ1
iτ1 0

)

, γE
2 =

(
0 −iτ2
iτ2 0

)

,

γE
3 =

(
0 −iτ3
iτ3 0

)

, γE
4 =

(
0 −1

−1 0

)

.

Im euklidischen Fall wird die fünfte Dirac-Matrix analog zu A1 gebildet:

γE
5 = iγE

1 γ
E
2 γ

E
3 γ

E
4 =

(
1 0
0 −1

)

.

Auch wird mit den euklidischen Dirac-Matrizen eine antisymmetrische Matrix gebildet:

σE
µν =

i

2
[γE

µ ,γ
E
ν ]
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B Gruppe SU(N)

Eine Symmetriegruppe besteht aus einer Menge und einer Rechenvorschrift. Im Fall
der Gruppe SU(N) wird die Menge der speziellen unitären Matrizen mit Dimension N
betrachtet. Sie ist eine kompakte einfache Lie-Gruppe und besitzt N2− 1 Generatoren.

Die SU(N) ist in der Physik unter anderem als Symmetriegruppe der QCD-Lagrangedichte
relevant. In dieser Arbeit wurde die QCD-Lagrangedichte mit zwei und mit drei Quark-
flavours behandelt; folglich kamen die Gruppen SU(2) und SU(3) zur Anwendung.

B.1 Gruppe SU(2)

Die Generatoren der Gruppe SU(2) sind proportional zu den drei Pauli-Matrizen:

Ti =
τi
2

i = 1, . . . ,3

Die Paulimatrizen besitzen die Form:

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

Die Gruppe SU(2) bildet zusammen mit dem Kommutator

[
τi
2
,
τj
2

] = iǫijk
τk
2

eine Lie-Algebra.

B.2 Gruppe SU(3)

Die Generatoren der Gruppe SU(3) sind proportional zu den acht Gell-Mann-Matrizen.

Ti =
λa

2
a = 1, . . . ,8
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Die Gell-Mann-Matrizen lauten:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

Wie die Gruppe SU(2) bildet auch die Gruppe SU(3) bezüglich ihrer Kommutatorrela-
tion eine Lie-Algebra:

[
λa

2
,
λb

2
] = ifabc

λc

2
.

Die Strukturkonstante fabc dieser Lie-Algebra hat in neun Fällen von Null abweichende
Werte, die in der folgenden Tabelle dargestellt sind:

f123 f147 f156 f246 f257 f345 f367 f458 f678

1 1
2 −1

2
1
2

1
2

1
2 −1

2

√
3

2

√
3

2
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C Verwendete Konstanten

C.1 Größe der verwendeten Konstanten und LECs

In der Lagrangedichte der chiralen Störungstheorie treten verschiedene dimensionslose
Niederenergiekonstanten auf. Die Größen dieser Konstanten für NLO ist [41] entnommen
worden:

L1 = 0,43 · 10−3

L2 = 0,73 · 10−3

L3 = −2,53 · 10−3

L4 = 0

L5 = 0,97 · 10−3

L6 = 0

L7 = −0,31 · 10−3

L8 = 0,60 · 10−3

Die Konstanten Wi und Wi′ sind nicht genau bekannt und wurden mit Hilfe von [10]
abgeschätzt:

|Li| ∼ |Wi| ∼ |W ′
i | ∼

1

(4π)2
∼ 0,6 · 10−2

W0 ist nicht dimensionslos und nimmt eine Sonderrolle ein, für sie wird der Wert ent-
sprechend [34,42] verwendet.

|W0| ∼ 107 MeV3

Desweiteren werden folgende Konstanten verwendet, die ebenfalls [42] entnommen sind:

F0 = 86 MeV,

B0 = 3100 MeV,

a =
1

1975
MeV = 0,1 fm.

85



C Verwendete Konstanten

C.2 Für Nf = 2 verwendete Relationen

In Kapitel 6 werden für die Vereinfachung der LECs folgende Relationen benutzt:

L54 = 2L4 + L5,

L86 = 2L6 + L8,

W54 = 2W4 +W5,

W86 = 2W6 +W8,

W ′
86 = 2W ′

6 +W ′
8.

Allgemein folgen diese Kombinationen der Gleichung:

Xij = 2Xi +Xj .

C.3 Für Nf = 3 verwendete Relationen

Für drei Quarkflavours wurden abweichende Kombinationen der LECs verwendet. Als
zweckmäßig stellten sich folgende Abkürzungen heraus:

L = L6 + L7 + L8, W = W6 +W7 +W8, W ′ = W ′
6 +W ′

7 +W ′
8,

LW = 2L−W, LW6 = 2L6 −W6, LW7 = 2L7 −W7,

LWW = L−W +W ′, LWW6 = L6 −W6 +W ′
6, LWW7 = L7 −W7 +W ′

7.
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