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1 Einleitung

Das Verhalten der experimentell gefundenen Elementarteilchen ldsst sich heute sehr ge-
nau mit dem Standardmodell beschreiben. Dieses Modell liefert eine kombinierte Dar-
stellung von dreien der vier Grundkréfte der Natur. Die starke Wechselwirkung ist eine
dieser vier elementaren Kréfte. Zu ihrer mathematischen Darstellung wird die Eichfeld-
theorie Quantenchromodynamik (QCD) [1-3] verwendet. Die anderen vom Standard-
modell beschriebenen Wechselwirkungen sind die elektromagnetsiche und die schwache
Wechselwirkung. Die Gravitation als die vierte elementare Kraft findet im Standardmo-
dell keine Beriicksichtigung.

Die elementaren Teilchen, die vom Standardmodell beschrieben werden, sind zwolf Fer-
mionen mit halbzahligen Spin, ergénzt durch 12 Antiteilchen, und zusétzlichen bosoni-
sche Austauschteilchen.

Die Fermionen, die der QCD zugeordnet werden, sind die sechs Quarks, die in drei Ge-
nerationen gruppiert werden. Diese sechs Quarks, die sich durch verschiedene Flavours
voneinander unterscheiden, sind das up-, down-, strange-, charm- top- und bottom-
Quark. Bezeichnet werden sie hdufig mit ihrem Anfangsbuchstaben, so dass die drei
Quark-Familien wie folgt geschrieben werden kénnen:

@ @ )

Die bosonischen Austauschteilchen der QCD werden Gluonen genannt. Diese masselo-
sen und elektrisch ungeladenen Teilchen besitzen wie die Quarks einen weiteren Frei-
heitsgrad, der Farbe oder Farbladung genannt wird. Es existieren acht unterschiedlich
farbgeladene Gluonen. Teilchen, die sich aus Quarks zusammensetzen, sogenannte Ha-
dronen, sind immer “weifs”, was bedeutet, dass sie keine Farbladung tragen. Dies wird
in der Natur erreicht, indem sich Zustédnde aus zwei Quarks bilden, die mit einer Farbe
und der zugehorigen Antifarbe geladen sind. Ein solcher Zusammenschluss wird Meson
genannt.

FEine weitere Moglichkeit, ein farbungeladenes Teilchen zu erzeugen, ist die Verbindung
von drei Quarks zu einem Baryon. Die Quarks tragen dabei jeweils eine der drei un-
terschiedlichen Farben oder Antifarben, so dass es analog zur additiven Farbmischung
ebenfalls zu einem “weifsen” Teilchen kommt. Dieses Zusammenhalten von Quarks in
einem Quark-Paar oder Quark-Triplett wird als Confinement bezeichnet.

David Gross, Frank Wilczek und David Politzer entdeckten 1971 [4,5], dass dieser Zu-
sammenschluss bzw. die ihn bedingende Wechselwirkungsstéarke fiir grofse Energien resp.
kleine Abstédnde asymptotisch gegen Null geht, wiahrend fiir grofse Absténde resp. kleine
Energien das besagte Confinement eintritt.



1 Einleitung

In der Feldtheorie der elektromagnetischen Wechselwirkung, der Quantenelektrodyna-
mik, kénnen Ergebnisse mittels Stérungsrechnung gewonnen werden. Die Stérungstheo-
rie liefert ein Schema, um die Wechselwirkung in verschiedenen Ordnungen zu organisie-
ren, wobei die Grofe der Beitrdge abnimmt und héhere Ordnungen nur Korrekturen zu
den vorherigen Ordnungen darstellen. Das funktioniert aber nur bei Kopplungstarken
< 1, was in der QED gegeben ist. In der QCD hingegen besitzt die Kopplungstéirke
fiir kleine Energien grofere Werte; dadurch wird es schwierig, mittels QCD theoretische
Vorhersagen fiir die starke Wechselwirkung bei kleinen Energien zu treffen.

Daher miissen bei kleinen Energien andere Wege gefunden werden, um Ergebnisse in der
QCD zu gewinnen. Ein sehr verbreitetes Mittel sind dabei numerische Simulationen [6].
Diese Simulationen, z.B. mit Hilfe des Monte-Carlo-Algorithmus, werten die Formeln
der QCD statistisch aus. Dazu ist es notwendig, die QCD fiir ein raumzeitliches Git-
ter zu formulieren, was als gitterregularisierte QCD oder kurz Gitter-QCD [7] bezeich-
net wird. Auflerdem werden in den Simulationen die Quarkmassen unphysikalisch grofs
gewahlt, was die Simulationszeiten wesentlich verkiirzt und somit Simulationen erst
praktisch durchfithrbar macht. Um die Ergebnisse der numerischen Betrachtung auf
das Kontinuum zu iibertragen, werden die Simulationen fiir verschiedene Massen und
Gittergrofsen durchgefithrt und anschlieffend zu physikalischen Massen und einer kon-
tinuierlichen Raumzeit extrapoliert. Dabei ist jedoch nicht auszuschliefen, dass durch
eventuelle Phasenspriinge bei der Variation der Quarkmassen diese Extrapolation ins
Kontinuum fehlerbehaftet ist und deshalb angepasst werden muss.

Eine weitere Moglichkeit, Ergebnisse aus der Kontinuums-QCD zu gewinnen, bietet die
chirale Storungstheorie (xPTh) [8]. Diese besitzt anders als die QCD nicht Quarks als
Freiheitsgrade, sondern die fiir kleine Energien durch das Confinement auftretenden Ha-
dronen. Bei sehr niedrigen Energien sind die vorherrschenden Hadronen die sehr leichten
pseudoskalaren Mesonen. Somit beschreibt die chirale Storungstheorie als eine effektive
Theorie die QCD bei kleinen Energien und bietet damit eine Moglichkeit, analytische
Losungen fiir diesen Energiebereich zu finden.

Ziel dieser Arbeit ist es nun, mittels chiraler Storungstheorie Phasenspriinge der Gitter-
QCD bei Variation der Massen zu ermitteln. Hier werden dazu drei Quarkflavours (up,
down, strange) betrachtet. Die beiden leichtesten Quarks, das up- und das down-Quark,
werden dabei als masseentartet angenommen. Als zuséitzlicher Parameter wird eine axi-
al verdrehte u- und d-Quarkmasse betrachtet. Diese wird in der Twisted-Mass-QCD
(tmQCD) [9] verwendet, einer Methode der Gitter-QCD, um Gitterartefakte, d.h. Feh-
ler, die durch die Diskretisierung auftreten, zu vermindern. Dariiberhinaus unterbindet
eine verdrehte Masse Nullmoden des Diracoperators, die eine statistische Auswertung
erschweren.

In Kapitel 2 wird dazu eine kurze Einfithrung in die bisherige Entwicklung des Stan-
dardmodells und der QCD gegeben. Von besonderer Bedeutung sind dabei die chiralen
Symmetrien der QCD-Lagrangedichte, da an Hand dieser die chirale Storungstheorie
konstruiert wird. Dariiber hinaus werden die spontane und explizite Brechung dieser
Symmetrie behandelt.

Im dritten Kapitel wird die Konstruktion der Lagrangedichte der chiralen Stérungstheo-
rie bis zur vierten Ordnung (next to leading order; NLO) nachvollzogen. Entscheidend



ist dabei ein Theorem von Weinberg, das eine “Schablone” fiir die Konstruktion liefert.

Da das Verhalten der Gitter-QCD untersucht werden soll, ist es notig, die Lagrangedichte
so anzupassen, dass sie effektiv Gitter-QCD beschreibt. Dazu wird in Kapitel 4 zunéchst
ein kurzer Abriss der von Wilson entwickelten und nach ihm benannten Wilson-Wirkung
gegeben, die es ermoglicht, QCD auf dem Gitter zu beschreiben. Symanziks Arbeit
iiber eine effektive Gitterwirkung im Kontinuum liefert anschlieffend das Riistzeug, die
Auswirkungen der Gitterregularisierung der Wilson-Wirkung auf die QCD in die chirale
Storungstheorie zu iibertragen.

Im fiinften Kapitel wird kurz auf die tmQCD und die daraus folgenden Modifikatio-
nen der konstruierten Lagrangedichte eingegangen. Hier wird lediglich die gemeinsame
Masse der u- und d-Quarks verdreht, die Masse des s-Quarks verbleibt ungedreht. Als
wichtigster Punkt ist dabei die zusétzliche Abhéngigkeit von der gedrehten Masse fest-
zuhalten, die als ein weiterer Parameter zu den Quarkmassen hinzukommt.

Im sechsten Kapitel wird ein Einblick in die zu dieser Arbeit dquivalente Betrachtung
fiir Zwei-Flavour-Gitter-QCD gegeben. Dort treten zwei unterschiedliche Szenarien auf,
die beide kurz erlautert werden.

Informationen iiber das Minimum der Lagrangedichte sind fiir die Bildung von Vaku-
umerwartungswerten, die in Gittersimulationen berechnet werden, unabdingbar. Daher
wird in Kapitel 7 die Lagrangedichte der chiralen Stoérungstheorie so formuliert, dass
ihre Minima in Abhéngigkeit von den drei betrachteten Massen, der gemeinsamen u-
und d-Quarkmasse, deren verdrehtem Anteil sowie der s-Quarkmasse, bestimmt werden
konnen. Dazu wird neben der geeigneten Parametrisierung fiir die Feldkonfigurationsma-
trix, die die Mesonenfelder enthélt, eine Verschiebung der Quarkmassen vorgenommen.
Dadurch werden Terme proportional zum Quadrat der Gitterkonstanten, die aus der
Gitterformulierung resultieren, zu den Quarkmassen addiert. Schliefflich wird noch eine
Néherung fiir kleine Quarkmassen eingefiihrt, die das Potential wesentlich vereinfacht.

Das so gewonnene Potential der Lagrangedichte wird in den anschlieffenden Kapiteln
auf sein absolutes Minimum und dessen Spriinge untersucht. Da wie erwdhnt in Simu-
lationen unrealistisch grofe Quarkmassen verwendet werden, ist es wichtig, gerade fiir
kleinere Werte der Massen, die bei der Extrapolation durchlaufen werden, Phasenspriin-
ge zu kennen. Daher wird das betrachtete Potential fiir kleine Massen genédhert und so
vereinfacht. Es konnen bei dieser Naherung alle Terme ignoriert werden, die erst fiir sehr
grofe Massen einen spiirbaren Einfluss auf das Potential entwickeln. Die verbleibenden
Terme sind zusatzlich abhéngig von drei unbekannten Konstanten, die aus der chira-
len Stérungstheorie stammen. Der Betrag dieser Konstanten konnte mit Hilfe von [10]
abgeschétzt werden. In Kapitel 8 wird dazu zunéchst ein gendhertes, lediglich aus drei
linearen Termen bestehendes Potential, untersucht.

In Kapitel 9 wird die Analyse des linearen Potentials um zwei zusétzliche Terme er-
weitert. Diese beiden Terme sind aufgrund der Grofe der zugehdrigen Konstante, fiir
kleine Massen die dominanten Beitrdge. Da nur der Betrag dieser Konstanten bekannt
ist, wird die Analyse fiir beide Vorzeichen durchgefiihrt.

Im zehnten und letzten Kapitel werden schlieflich alle Terme der Ndherung fiir kleine
Massen beriicksichtigt. Das Potential besitzt damit eine Abhéingigkeit von allen drei
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unbekannten Konstanten, wobei jede der 8 verschiedenen Vorzeichenkombinationen se-
parat zu betrachtet ist.



2 QCD - Symmetrien und
Symmetriebrechung

Im diesem Kapitel wird zunéchst eine kurze Darstellung der geschichtlichen Entwick-
lung des Standardmodells der Elementarteilchen behandelt. Anschliefsend werden die
fiir diese Arbeit wesentlichen Bestandteile der Theorie skizziert. Diese sind neben der
Quantenchromodynamik (QCD), der Eichtheorie der Quarks und Gluonen, die spontane
und explizite Brechung von nicht-abelschen Symmetrien.

2.1 Das Standardmodell der Elementarteilchen

Das Standardmodell der Elementarteilchen stellt die grundlegende vereinheitlichte Theo-
rie zur Beschreibung der elementaren Teilchen dar. Es verbindet drei der vier grundle-
genden Kréfte der Natur in einem Modell, und zwar die elektromagnetische, die schwa-
che und die starke Wechselwirkung. Nicht beriicksichtigt wird im Standardmodell die
Gravitation, die noch nicht zufriedenstellend integriert werden konnte. Das Standard-
modell wird mit Hilfe der Quantenfeldtheorie [11] beschrieben, die bereits in den 40er
Jahren durch die Quantenelektrodynamik (QED) entwickelt wurde. In Quantenfeldtheo-
rien spielen Eichtheorien eine zentrale Rolle. Mafgeblich an ihrer Entwicklung beteiligt
waren Feynman, Schwinger und Tomonaga [12]|. Die Anfinge des Standardmodells rei-
chen in die 60er und 70er Jahre des letzten Jahrhunderts zuriick, als es Glashow zu-
sammen mit Weinberg und Salam gelang, eine vereinheitlichte Beschreibung der elek-
tromagnetischen und schwachen Wechselwirkung, die elektroschwache Wechselwirkung
zu formulieren [13,14].

Als der zweite wesentliche Schritt zur Vereinheitlichung des Standardmodells ist der von
Gell-Mann [1] und Zweig |2] zu nennen. Sie postulierten die Quarks als Konstituenten der
Hadronen und ordneten sie in SU(3) Multipletts an - Gell-Mann spricht vom “achtfachen
Weg” [15] - und legten damit den Grundstein der QCD und ihrer Eingliederung in das
Standardmodell.

Die sechs Quarks der QCD sind in Tabelle 2.1 aufgelistet. jedem Quark ist dabei ein na-
mensgebendes Flavour zugeordnet. Die angegebenen Massen in der Tabelle sind Strom-
quarkmassen.

Die Quarks sind elektrisch geladene Spin-1/2-Fermionen. Die starke Wechselwirkung
wird durch acht Gluonen vermittelt.

Durch die starke Wechselwirkung der Quarks treten diese ausschlieflich in gebundenen
Zusténden auf. Diese Eigenschaft wird als Confinement bezeichnet. Es existieren zwei
verschiedene Bindungsarten der Quarks auch Hadronen genannt werden, und zwar die
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‘ Flavour ‘ Up ‘ Down ‘ Strange‘ Charm ‘ Bottom‘ Top ‘
Ladung [e] | 2/3 -1/3 -1/3 2/3 -1/3 2/3
Masse [GeV] | 0,005 0,009 | 0,175 1,15 4,0 174,3

Tabelle 2.1: Elektrische Ladungen und Stromquarkmassen der sechs Quarkflavours

Mesonen und die Baryonen. Die Mesonen sind farbneutrale Zusammenschliisse aus einem
Quark und einem Antiquark, die Baryonen bestehen hingegen aus drei Quarks.

Der néchste Abschnitt beschéftigt sich intensiver mit der starken Wechselwirkung und
den fiir die QCD wichtigen Symmetrien und deren Brechung. Ein ausfiihrlicher Uberblick
tiber die QCD findet sich z.B. in [3].

2.2 Die QCD-Lagrangedichte und ihre Symmetrien

Die starke Wechselwirkung wird durch eine nichtabelsche Eichtheorie, die QCD, be-
schrieben [3]. Die an dieser Wechselwirkung beteiligten Elementarteilchen sind die Quarks
und die Gluonen als zugehorige Austauschteilchen. Beide weisen einen zusétzlichen Frei-
heitsgrad auf, der Farbladung genannt wird. Dieser Freiheitsgrad macht die QCD zu
einer lokalen nichtabelschen SU(3).-Eichtheorie, wobei der Index c fiir colour steht und
sich auf den inneren Farbladungsraum bezieht. Die Einfiithrung dieses Freiheitsgrades
ist notwendig, um das Pauli-Prinzip zu erfiillen.

Der Index ¢ wird hinzugefiigt, um eine Verwechselung mit der zusétzlich vorhandenen
globalen Flavour SU(Ny)-Symmetrie zu vermeiden. Ny bezeichnet die Anzahl der in
die Theorie einbezogenen Quarks. In dieser Arbeit werden lediglich die drei leichtesten
Quarks beriicksichtigt.

In der QCD werden die Quarkfelder durch fermionische Felder

Q(x) = (QQ,c,f(x)) (2'1)

beschrieben. Der Index f unterscheidet dabei die sechs verschiedenen Quarkflavours.
Der Index ¢ gibt die Farbladung des Quarks (rot, griin, blau) an. Der Index « ist der
Spinorindex.

Die QCD-Lagrangedichte lautet:
. 1
Loop =Y qs(iy" Dy — my)qy — 1 Fmale”. (2.2)
f
Die darin enthaltenen ~* sind die Dirac-Matrizen ! .

Die Lagrangedichte (2.2) besitzt fiir masselose Quarks eine exakt erhaltene globale
SU(Ny¢)r x SU(N¢)g x U(1)y Flavoursymmetrie. Auch fiir massive Quarks ist diese
Symmetrie fiir Spezialfille teilweise erfiillt.

lsiehe Anhang A
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2.2 Die QCD-Lagrangedichte und ihre Symmetrien

Fiir eine weitergehende Betrachtung der Symmetrien werden die sechs Quarkflavours
in zwei Gruppen eingeteilt. Man unterscheidet dabei die Gruppe der leichten Quarks
(up, down, strange) und der schweren Quarks (charm, bottom, top). Anders als die drei
schweren konnen die drei leichten Quarks in einer groben Naherung als massenentartet
(m,, = mg = mg) angenommen werden. Die Lagrangedichte weist dann fiir die leichten
Quarks eine SU(3)-Flavoursymmetrie auf.

Da zusétzlich eine lokale SU(3).-Eichsymmetrie fiir die QCD gefordert wird, ist es not-
wendig, die Lagrangedichte mit einer kovarianten Ableitung zu formulieren. Eine einfa-
che Viererableitung der Form 0, wiirde diese Forderung nach Invarianz unter der lokalen
Eichtransformation nicht erfiillen. Die kovariante Ableitung der QCD lautet:

8
. Z Aa
Dﬂ == 8;“’ — 19 EA“’CL. (23)

a=1

Durch die Einfiihrung dieser Ableitung kommt es zu einer Kopplung der Eichfelder A, 4,
der Gluonen, an die Quarks. Aus der Tatsache, dass lediglich eine einzige Kopplungs-
konstante g fiir alle acht Eichfelder existiert, ist ersichtlich, dass die Wechselwirkung
zwischen Quarks und Gluonen farbunabhéngig ist. Die Gruppe SU(3) besitzt damit
sowohl als Eichgruppe als auch fiir den héufig betrachteten Spezialfall Ny = 3 mit mas-
seentarteten Quarks eine grofse Bedeutung fiir die QCD. Die SU(3) ist die Gruppe der
unitdren Matrizen? U mit Dimension 3 und der zusétzlichen Bedingung det U = +1. Sie
besitzt acht Generatoren, die nicht vertauschen. Diese sind bis auf den Faktor % iden-
tisch mit den Gell-Mann-Matrizen A4, a = 1,...,8. Die SU(3) ist somit eine nichtabelsche

Symmetriegruppe. Zusammen mit der Vertauschungsrelation

DD L R\
[7,5} = 1fabc7 (24)

bilden die Generatoren die Lie-Algebra der SU(3). Die Strukturkonstante fgp. ist dabei
vollstandig antisymmetrisch.

Um eine Wechselwirkung der Eichbosonen untereinander zu gewihrleisten, beinhaltet
die QCD-Lagrangedichte einen zuséatzlichen Term, der Yang-Mills-Term genannt wird.
Dieser ist ein Produkt aus Feldstarketensoren Fj,, ,, die unabhingig von den Quarkfla-
vours sind. Im Fall der nichtabelschen Symmetriegruppe SU(3). lautet der Feldstérke-
tensor:

Fuy,a - 8MAu,a - 8VAu,a + gfabcA,u,bAu,c- (25)

Die bereits oben erwidhnte Flavoursymmetrie fiir masselose Quarks soll im Anschluss né-
her behandelt werden; man spricht in diesem Fall vom chiralen Limes. In diesem Limes
weist die QCD eine exakt erhaltene globale SU(3)r, x SU(3) g x U(1)y-Flavoursymmetrie
auf, die sogenannte chirale Symmetrie. Die Lagrangedichte im chiralen Limes hat die
Form: 1
‘C%CD = Z ijiryuDMQf - ZF,ul/,aFé“/- (26)
f=u,d,s

2siehe Anhang B
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2 QCD - Symmetrien und Symmetriebrechung

Diese Lagrangedichte kann mit Hilfe der Projektionsoperatoren

1 1
Pr = 5(1 +7), P = 5(1 —5) (2.7)

auf ihre positiven und negativen Helizitatseigenzusténde projeziert werden. Im betrach-
teten Fall masseloser Quarks entspricht die Helizitdt der Chiralitdt, man spricht von
rechts- und linkshéndigen Quarks. Die Operatoren besitzen die Eigenschaften:

Pr+Pp =1, P;/L = Pgrj,, PrPp=PLPr=0. (2.8)

Mit diesen Operatoren ldsst sich die Lagrangedichte (2.6) in einen rechts- und einen
linkshéndigen Anteil separieren und kann geschrieben werden als:

. . 1 v
Lhop = Y (@rsin"Dudnrs + Q" Dudr.s) = 7 Fuwa. (2.9)
f=u,d,s

Das Noether-Theorem sagt aus, dass zu jeder globalen kontinuierlichen Symmetrie der
Lagrangedichte und der zugehérigen Bewegungsgleichung ein erhaltener Strom existiert.
Aus der vorhandenen chiralen Symmetrie der QCD sollten folglich 2 x (8 + 1) = 18 er-
haltene Strome zu erwarten sein, die sich wie die Symmetrie selbst in links- und rechts-
héndige Strome unterteilen lassen. Anstelle dieser rechts- und linkshéndigen Stréome, die
hier als R*“ und L** bezeichnet werden, werden haufig Kombinationen gebildet, die wie
ein Vektor bzw. ein Axialvektor unter Paritét transformieren. Die so gebildeten Strome
setzen sich, entsprechend der Symmetrie, aus zwei Oktett- und zwei Singulett-Strémen
zusammen:

V/vaa — Rlu’7a + LILL70’ — qvﬂ%q

A
ARG = RIS — L = gyt

VE = RM + L — q,yﬂq
A¥ = RF L' = gyHvsq. (2.10)

Im klassischen Fall sind diese Stréme immer erhalten. In der Quantentheorie ist der
Singulett-Axialvektorstrom A*, der zur Symmetrie U(1)4 gehort, durch eine Anomalie
verletzt. Diese Betrachtungen gelten unter der Voraussetzung verschwindender Quark-
massen und somit exakt erfiillter Symmetrien. Dies ist in der Realitdt natiirlich nicht
gegeben; vielmehr sind die Quarks massiv, dadurch kommt es zu Symmetriebrechungen,
und die Stréome (2.10) sind nicht sdmtlich erhalten.

2.3 Spontane und explizite Symmetriebrechung

In diesem Abschnitt werden die beiden Arten von Symmetriebrechung erldutert: zum
einen die spontane Symmetriebrechung, die mit dem Goldstone-Theorem [16] verkniipft
ist, zum anderen die explizite Symmetriebrechung. Anschliefsend werden diese beiden
Konzepte auf die QCD angewandt. Eine genauere Betrachtung des Konzepts der Sym-
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2.3 Spontane und explizite Symmetriebrechung

metriebrechung ist [8] zu entnehmen.

2.3.1 Spontane Symmetriebrechung

In einer quantenfeldtheoretischen Betrachtung ist spontane Symmetriebrechung immer
mit einer Entartung des Grundzustandes verbunden. Spontane Symmetriebrechung fin-
det immer dann statt, wenn der Grundzustand, den das betrachtete System einnimmt,
weniger Symmetrien besitzt als die zugehorige Lagrangedichte [11|. Ein haufig verwen-
detes Beispiel fiir diese Art der Symmetriebrechung stellt die Lagrangedichte

2 A
L(1.62.65) = SOubi0" 6 — "o gnn — 3 (6:6:)° (211)

mit m? < 0, A > 0 und ¢; hermitesch dar. Diese Lagrangedichte ist invariant beziiglich
der globalen, kontinuierlichen und nicht-abelschen SO(3)-Symmetriegruppe. Sucht man
nach Minima von (2.11), findet sich:

—m?2

A

|pmin| = =: 0. (2.12)
Die Minima liegen damit auf einer Kugeloberfliche, die um den Ursprung zentriert ist.
Von diesen Minima lésst sich ein beliebiger Grundzustand auswéhlen. Hier wird dieser
Grundzustand in die €3-Richtung gelegt. Das daraus resultierende Minimum entspricht
daher:

Bmin = V8. (2.13)
Dieses Minimum ist nicht invariant unter der vollen SO(3)-Gruppe. Lediglich Drehun-
gen um die dritte Achse lassen den Vektor ¢, konstant. Somit ist der Vektor nur noch
invariant unter einer Untergruppe der vollen Gruppe SO(3). Die iibrigen Transforma-

tionen, die nicht Element der Untergruppe sind, bilden keine eigene Gruppe, da die
Identitét nicht enthalten ist. Entwickelt man den Grundzustand (2.13) mit

|min| = v+ 1, (2.14)

setzt diesen Ausdruck in (2.11) ein und betrachtet lediglich die Potentialdichte V der
Lagrangedichte, so hat diese die folgende Gestalt:

1 A 2 A
V=S (=2m*)n® + don (61 + 65+ %) + 5 (6] + 65 +07)" — Jo. (2.15)

Aus dieser Gleichung ldsst sich ablesen, dass nach der spontanen Symmetriebrechung

. . . . /2 ..
zwei masselose Bosonen ¢1, ¢ und ein massives Boson 7 mit m,, = (—2m2) /? existieren.
Die beiden masselosen Bosonen reprisentieren die Goldstone-Bosonen der spontanen
Symmetriebrechung.

2.3.2 Goldstone-Bosonen

Das Auftreten von Goldstone-Bosonen wird mit Hilfe des Goldstone-Theorems [16] be-
schrieben. Es trifft die Aussage, dass bei einem spontanen Bruch der Symmetrie masse-
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2 QCD - Symmetrien und Symmetriebrechung

lose, bosonische Teilchen entstehen, die Goldstone-Bosonen genannt werden. Aus grup-
pentheoretischer Sicht existiert fiir jeden Generator einer Symmetriegruppe der Lagran-
gedichte, der deren Grundzustand nicht invariant l14sst, ein Goldstone-Boson. Die Anzahl
der vorhandenen Goldstone-Bosonen lésst sich somit iiber die Generatoren ausdriicken:
Bezeichnet ng die Anzahl der Generatoren, die zur Symmetriegruppe der Lagrange-
dichte gehoren, und ny die Anzahl der Generatoren der Untergruppe H von G, die den
Grundzustand invariant lassen, so ist die Zahl der Goldstone-Bosonen n gegeben durch
die Differenz n = ng — ngy.

Fiir die im Abschnitt 2.3.1 betrachtete Gruppe SO(3), die drei Generatoren besitzt, lasst
lediglich einer der drei Generatoren den Grundzustand invariant. Es sollten demnach
3 — 1 = 2 Goldstone-Bosonen auftreten. Dies deckt sich mit den in Abschnitt 2.3.1
gefundenen Ergebnissen.

In dem hier behandelten Beispiel wird davon ausgegangen, dass von der Lagrangedichte
mehrere entartete Grundzustéinde ausgebildet werden, die weniger Symmetrien aufwei-
sen, als die Lagrangedichte selbst. Dies ist auf das Vorzeichen des quadratischen Terms
mit m? < 0 in Gleichung (2.11) zuriickzufiihren. Diese Wahl des Vorzeichens von m?,
bei der spontane Symmetriebrechung und als Folge Goldstone-Bosonen auftreten, wird

Nambu-Goldstone-Modus genannt.

Im gegenteiligen Fall mit m? > 0 existieren keine entarteten Grundzustinde. Der ein-
zige Grundzustand ¢y = 0 besitzt dieselben Symmetrien wie die Lagrangedichte und
es treten keine Goldstone-Bosonen auf. Dieser Modus wird als Wigner-Weyl-Modus be-
zeichnet.

2.3.3 Explizite Symmetriebrechung

Eine weitere, direkte Form der Symmetriebrechung ist die explizite Brechung einer Sym-
metrie. Explizite Symmetriebrechung tritt auf, wenn eine erfiillte Symmetrie durch einen
zusatzlichen Beitrag, z.B. durch einen zusétzlichen Term in der Lagrangedichte, verletzt
wird. Ist der Einfluss dieses Beitrages gering, kann die Symmetrie dennoch nédherungs-
weise als erfiillt gelten. Trotzdem kann die Beriicksichtigung eines solchen symmetrie-
brechenden Terms innerhalb einer Lagrangedichte entscheidende Konsequenzen fiir die
Goldstone-Bosonen einer zusétzlichen spontanen Symmetriebrechung haben. Als ein ein-
faches Beispiel wird zu der Lagrangedichte (2.11) ein zusétzlicher Term +a¢p3 hinzuge-
fiigt, der die bestehende SO(3)-Symmetrie explizit bricht. Wird nur die Potentialdichte
der so gewonnenen Lagrangedichte betrachtet, hat diese die Form:

2
V= +m7¢i¢i + %(@'@)Z + a3 (2.16)

Fiir die Konstanten in diesem Ausdruck, die bereits in Abschnitt 2.3.1 eingefiihrt wur-
den, gelten dieselben Bedingungen wie im Fall der spontanen Symmetriebrechung. Zu-
sétzlich gilt fiir die neu auftretende Konstante a > 0. Das in dieser Weise explizit
gebrochene Potential weist lediglich eine SO(2)-Symmetrie auf. Das Vorgehen ist iden-
tisch zu dem ohne explizite Symmetriebrechung: Es wird ein Minimum ausgew&hlt, um
@min entwickelt, und die Massen der auftretenden Bosonen werden ermittelt.
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2.3 Spontane und explizite Symmetriebrechung

Als wichtige Konsequenz der zusétzlichen expliziten Symmetriebrechung besitzen nun
alle drei auftretenden Bosonen nicht verschwindende Massen. Diese ergeben sich zu:

[ A
2 2
My, = Mg, = A —m2’

m% =—2m? + 3a

— 3 (2.17)
Die vormals masselosen Goldstone-Bosonen ¢ und ¢9 haben durch die explizite Bre-
chung der Symmetrie der Lagrangedichte eine Masse erhalten. Diese massiven Bosonen

tragen daher die Bezeichnung Pseudo-Goldstone-Bosonen.

2.3.4 Spontane und explizite Symmetriebrechung in der QCD

Die in den vorangegangenen Abschnitten beschriebenen Konzepte der spontanen und
der expliziten Symmetriebrechung werden in diesem Abschnitt auf experimentell gewon-
nene Erkenntnisse angewandt. Die QCD fiir die drei leichten Quarks besitzt im chiralen
Grenzfall eine SU(3)r, x SU(3)r x U(1)y-Symmetrie. Mit Hilfe der in Gl. (2.10) verwen-
deten Kombinationen lasst sich diese Symmetrie auch in eine axiale und eine vektorielle
Symmetrie umformulieren. Fiir die aus der Strom-Algebra folgenden Ladungsgenerato-
ren der Symmetriegruppen [8] ergibt sich damit:

QU =Qh+Qh  Qi=Qh-Qf fir a=1.8 (2.18)

Zu beachten ist, dass die axialen im Gegensatz zu den vektoriellen Generatoren kei-
ne geschlossene Algebra bilden. Die Symmetrie U(1)y bestimmt die Baryonenzahl und
teilt das Teilchenspektrum in Mesonen und Baryonen auf. Betrachtet man die weiteren
chiralen Symmetrien der Lagrangedichte der masselosen QCD, sollten sich die Teilchen
aufgrund der entgegengesetzten Paritdt und der Vertauschbarkeit der Generatoren mit
dem Hamiltonoperator der QCD in Multipletts anordnen, die beziiglich der Paritit ent-
artet sind. In experimentell ermittelten Teilchenspektren finden sich aber nicht alle der
daraus zu erwartenden Teilchen, was eher auf eine SU(3)-Symmetrie schliefsen lasst. Wie
von Vafa und Witten [17] gezeigt wurde, besitzt der Grundzustand der QCD mindestens
eine SU(3)y x U(1)y-Symmetrie.

Geht man daher davon aus, dass der Grundzustand anders als die Lagrangedichte nicht
invariant unter axialen Symmetrien ist, so sollten acht Goldstone-Bosonen existieren, die
aufgrund der Eigenschaften der Generatoren der SU(3)4 pseudoskalare Teilchen sind.
Als Kandidaten fiir diese Bosonen bietet sich das pseudoskalare Mesonenoktett an. Diese
Mesonen besitzen jedoch, im Gegensatz zu den Goldstone-Bosonen, eine endliche, wenn
auch sehr geringe Masse.

In der Realitdt sind die Quarks nicht masselos. Wird die Quarkmasse beriicksichtigt
und der resultierende Masseterm zur Lagrangedichte hinzugefiigt, bricht dieser explizit
die im chiralen Grenzfall vorherrschende SU(3)r, x SU(3)r Symmetrie. Als Folge daraus
sollten die Goldstone-Bosonen in Pseudo-Goldstone-Bosonen iibergehen, was die geringe
Masse der pseudoskalaren Mesonen erklaren wiirde.

Betrachtet man nicht die drei leichtesten Quarks, sondern lediglich das u- und das
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2 QCD - Symmetrien und Symmetriebrechung

d-Quark, so besitzt die QCD im chiralen Grenzfall eine SU(2);, x SU(2)g x U(1)y-
Symmetrie. Der Grundzustand weist entsprechend dem Fall von drei Quarks eine SU(2)y -
Symmetrie auf. Der Masseterm bricht auch hier diese Symmetrie explizit. Als Folge lasst
dieser Fall drei Pseudo-Goldstone-Bosonen erwarten, die als die drei Pionen (7%, 7t,

7~ ) identifiziert werden.
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3 Die Lagrangedichte der QCD in der
chiralen Storungstheorie

Ziel dieses Kapitels ist es, eine effektive Lagrangedichte zu konstruieren, die die QCD bei
niedrigen Energien beschreibt. Diese effektive Theorie wird chirale Stérungstheorie ge-
nannt [8,18]. Die Freiheitsgrade dieser Theorie sind nicht die freien Quarks und Gluonen
der QCD, sondern gebundene hadronische Zustédnde. Bei den hier betrachteten sehr ge-
ringen Massen werden diese Zusténde durch das pseudoskalare Mesonen-Oktett gebildet,
welches sich aus den Pseudo-Goldstone-Bosonen der spontanen Symmetriebrechung der
QCD zusammensetzt (vgl. Kap. 2.3). Die Lagrangedichte der effektiven Theorie weist
entsprechend ihrer Konstruktion dieselbe SU(3)z, x SU(3)r x U(1)y-Symmetrie auf wie
die zugrunde liegende QCD. Ebenso muss eine identische spontane Symmetriebrechung
stattfinden. Die explizite Symmetriebrechung durch die Quarkmassen muss ebenfalls in
die effektive Theorie eingegliedert werden.

3.1 Goldstone-Bosonen als Freiheitsgrade der chiralen
Storungstheorie

Die chirale Stérungstheorie besitzt als Freiheitsgrade die acht Goldstone-Bosonen der
spontanen Symmetriebrechung der Drei-Flavour-QCD. Um die effektive Theorie auf-
stellen zu konnen, miissen die Transformationseigenschaften der Goldstone-Bosonen be-
kannt sein. Diese Eigenschaften lassen sich aus den Symmetrien der Lagrangedichte und
des Grundzustandes der QCD ermitteln |8].

Die Elemente der Symmetriegruppe der Lagrangedichte seien g € G, die des Grundzu-
standes h € H. Die entsprechenden Gruppen sind:

G ZSU(?))L X SU(?))R = {(L,R)’L S SU(3)L,R S SU(?))R},
H ={(V,V)|V € SU@3)y} = SU®3)y. (3.1)

Die neuen Variablen der effektiven Theorie sind die Goldstone-Felder ¢;(x). Diese wer-
den in einem Vektor ﬁ(m) angeordnet, der die Dimension n besitzt, was der Zahl
der Goldstone-Bosonen entspricht. Um das Transformationsverhalten der Goldstone-
Bosonen zu bestimmen, ist der Begriff der Linksnebenklasse

GH = {(LV,RV)|V € SU(3)} (3.2)

einzufithren, wobei g ein Element aus G bezeichnet. Diese Linksnebenklasse ist eindeutig
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3 Die Lagrangedichte der QCD in der chiralen Stérungstheorie

durch eine SU(3)-Matrix U = RL' definiert:

(LV,RV) = (LV,RL'LV) = (1,RLY) (LV,LV) = §H = (1,RL")H. (3.3)
U
€H =

Es lasst sich zeigen, dass U isomorph zu einem Vektor I der Goldstone-Bosonen ist.
Das Transformationsverhalten von U unter g = (L,R) € G erhalt man somit aus der
Linksnebenklasse:

9gH = (L,RRLY)H = (1,RRRL'L")(L,L)H = (1,R(RL" L") H. (3.4)
Fir das Verhalten von U unter den betrachteten Transformationen bedeutet dies:
U=RL'— U =R(RL"L' = RWU)L". (3.5)

Zu beachten ist, dass die Matrix U, ebenso wie die Goldstone-Felder, eine Raumzeit-
Abhéngigkeit besitzt, die in den vorangegangenen Schritten zur besseren Ubersichtlich-
keit nicht explizit dargestellt wurde.

Um die Goldstone-Felder zu beschreiben, muss eine zweckméfige Parametrisierung fiir
die Matrix U(x) gewéhlt werden. Diese Parametrisierung ist nicht eindeutig, haufig wird
eine Exponentialdarstellung verwendet. Diese besitzt die Form:

U(z) = exp (i%) — exp Q%) (3.6)

mit
G+ mos  G1—id2  G1—ids W+ Ly Vart VEKY
)‘a(ba = ¢1 + i¢2 _¢3 + %(ﬁg (b@ — i(b7 = \/571-* _7-(-0 + %n \/iKO
¢4+ 195 ¢6 +ig7 —%% V2K~ V2K° —%7(7 |
3.7

Dabei werden zur Parametrisierung die acht Gell-Mann-Matrizen A, verwendet. Die
Konstante Fy = hat die Dimension einer Energie und bewirkt, dass der Exponent di-
mensionslos wird.

Im Fall von nur zwei Flavours konnen die drei Pauli-Matrizen? 7; zu einer dquivalenten

Parametrisierung von U(x) verwendet werden. In diesem Fall besitzt U(x) die Form:

U(z) = exp <i¢g)> = exp G%) (3.8)

S 3 T + 1mg _ 70 V2ort (3.9)
v T — ima —3 WV =% ) '

In (3.8) bezeichnen die Felder m; die fiir SU(2) auftretenden drei Goldstone-Bosonen.
Mit den so gewonnenen Kenntnissen der Transformationseigenschaften der Goldstone-
Bosonen kann nun eine effektive Theorie formuliert werden.

3siehe Anhang B
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3.2 Zahlschema nach Weinberg

Um eine effektive Lagrangedichte aus einer gegebene Theorie zu konstruieren, lasst sich
ein Theorem von Weinberg verwenden [19]. Dieses Theorem besagt, dass eine effektive
Lagrangedichte perturbativ aus allen mit der Symmetrie vertréglichen Termen aufge-
stellt werden kann. Eine solche Lagrangedichte liefert die allgemeinste S-Matrix der
zugrundeliegenden Theorie, die den Konsistenzbedingungen der Analytizitdt, Unitari-
tdt und Kausalitét geniigt. Eine so konstruierte Lagrangedichte wird im Allgemeinen
unendlich viele Terme und die dazugehorigen freien Parameter besitzen.

Im Fall der chiralen Stérungstheorie beschreibt die effektive Theorie die Dynamik der
Goldstone-Bosonen; die Terme werden aufsteigend nach der Anzahl von Impulsen und
Quarkmassen sortiert. Dabei wird ein Quarkmassenterm mit dem Faktor 2 gewichtet,
da, wie sich mit (3.19) zeigen wird, die Quadrate der Mesonenmassen proportional zu
den Quarkmassen sind. Die Lagrangedichte ist ein Lorentz-Skalar, weshalb Ableitungen
immer in gerader Anzahl auftreten miissen, damit diese kontrahiert werden konnen.
Daraus ergibt sich:

EeH:ZEQn:E2+£4+£6+”'- (3.10)

Der erste Term mit n = 1 beinhaltet dabei sowohl zwei Ableitungen (Impulse), als auch
einen Quarkmasseterm und wird im Folgenden mit O(p?) bezeichnet.

Das Zahlschema nach Weinberg liefert eine Moglichkeit, ein gegebenes Feynman-Diagramm
unter einer linearen Reskalierung der externen Impulse und einer quadratischen Reskalie-
rung der Quarkmassen zu untersuchen und ihnen eine Ordnung der effektiven Lagran-
gedichte zuzuordnen. Dabei ist die chirale Dimension D eines gegebenen Diagramms
gegeben durch:

M(tp;,t*my) = tP M(piymy). (3.11)

Die chirale Dimension ist tiber die Formel
o
D=2+ 2(n—1)Ny, + 2Ny (3.12)
n=1

mit den méglichen zugehérigen Diagrammen verkniipft. Dabei steht Ny, fiir die Anzahl
der Vertizes der Lagrangedichte Lo, und Ny, ist die Anzahl der unabhéngigen Schlei-
fen. Fiir kleine Massen und Impulse, wie sie in der chiralen Stérungstheorie betrachtet
werden, sollten aufgrund von (3.11) Diagramme mit kleinem D (D = 2, D = 4) domi-
nieren. Nach Gleichung (3.12) sind das solche mit moglichst kleinen Werten fiir n, hier
mit n = 1. Diese sind gerade die Baum-Diagramme, die sich zu Lo zuordnen lassen.
Man erkennt dariiber hinaus, dass Schleifen durch den Faktor 2NNy stets unterdriickt
sind und erst in héheren Ordnungen (ab D = 4) vorkommen kénnen.
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3.3 Konstruktion der Lagrangedichte der chiralen
Storungstheorie bis £,

Als néchstes wird die effektive Lagrangedichte der chiralen Stérungstheorie der Form
L=Ly+ Ly (3.13)

konstruiert [8,20]. Die Freiheitsgrade sind durch das Oktett der pseudoskalaren Mesonen
definiert, das durch die Matrix U reprisentiert wird. Die Lagrangedichte muss im chi-
ralen Grenzfall eine SU(3)z, x SU(3)r x U(1)y-Symmetrie besitzen. Der Grundzustand
muss invariant unter SU(3)y x U(1)y sein. Der Massenterm der Lagrangedichte bricht
diese Symmetrien explizit. Zunéchst wird die Lagrangedichte der niedrigsten Ordnung,
auch Leading Order (LO) genannt, ohne einen die Symmetrie brechenden Masseterm
betrachtet und daran die allgemeine Vorgehensweise bei der Konstruktion veranschau-
licht. Die Lagrangedichte Lo besteht nach Abschnitt 3.2 aus allen invarianten Termen
mit zwei Ableitungen der Feldkonfigurationsmatrix U. Allgemein gilt: Invariante Terme,
bestehend aus den invarianten Objekten A,B,C,... lassen sich aus der Spur des Produk-
tes der Art ABT aufstellen. Fiir hohere Ordnungen setzt sich die Lagrangedichte aus der
Spur von Produkten von einzelnen Elementen und aus Produkten von Spuren in der
Art
Tr (ABT CDT) . Tr (ABT ) Tr ((JDT ) ,

zusammen. Der einzige Term, der in der Ordnung O(p?) gebildet werden kann und von
Null verschieden ist, lautet

2
Loy = %Tr <8MU8“UT) (3.14)

und stellt somit die Lagrangedichte. Der freie Parameter F{ ist die Pion-Zerfalls-Kon-
stante und besitzt damit eine physikalische Relevanz. Sie kann aus der QCD bestimmt
werden. Die Gestalt des Vorfaktors FO2 /4 ist so gewahlt, dass bei einer Entwicklung nach
den in U enthaltenden Felder der kinetische Anteil in fiihrender Ordnung die bekannte
Form

1
Lok = 50u¢ad"¢a + - (3.15)
besitzt. Um den Masseterm der QCD

m, O 0
Ly =—qrMq, —qLMiqr, M=| 0 mgq 0 (3.16)
0 0 mg

korrekt in die effektive Theorie einzubauen, verwendet man die Methode der Spurion-
analyse. Dazu nimmt man an, dass der Masseterm invariant ist, wenn die Massematrix
wie

M — RML! (3.17)

transformiert. Damit konstruiert man die vermeintlich invarianten Terme der gesuchten
Ordnung. Diese Invarianten in der Ordnung O(p?) sind Tr (MUT) und Tr (UMT). Bildet
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man daraus einen Term fiir die Lagrangedichte Lo, ergibt sich:
F?’B
Lo = =22 (MUt UMt). (3.18)

Der freie Parameter By dieses Ausdrucks ist proportional zum chiralen Quarkkondensat
(@q). Entwickelt man L bis zur zweiten Ordnung in den in U enthaltenden Mesonen-
Feldern, erhdlt man mit m, = mg = myq # m, die Massen der Pseudo-Goldstone-
Bosonen:

M? = 2Bym,,
M3% = By(mg +ms),
2
M} = 3 Bo(my + 2m). (3.19)
Wie bereits in Abschnitt 3.2 vorweggenommen, sind die Mesonenmassen quadratische

Funktionen der Quarkmassen, was dort als Begriindung fiir die Ordnung O(p?) ~ O(m)
einer Quarkmasse verwendet wurde.

Mit der Definition
X =2BoM (3.20)

lautet die vollstindige Lagrangedichte bis zur Ordnung O(p?):
Fg Fg
Ly==L (guorut) + - (xut+Uxt). (3.21)
Dabei wurde die Notation (...) = Tr(...) benutzt. Diese wird auch im Folgendem bei-

behalten.

Die Konstruktion der Lagrangedichte L4 (next to leading order oder NLO) verlduft
entsprechend. Sie wird aus allen invarianten Termen der Ordnung O(p*) gebildet. Die
vollstindige Lagrangedichte der Ordnung O(p?*) lautet:

Li=1L, <3MU8MUT>2 + Ly <BMU8VUT>2 + Ls <(0MU5MUT)2>
+ L (8,08,U") (U + Ux') + L5 (9,00,U" (XU + U'X) )
+ L <XUT + UX*>2 ¥ L <XUT _ UX*>2 + L <X*UXTU + UTXU*X> . (3.22)

Dabei sind dufsere Quellen nicht berticksichtigt worden. Die acht zugehorigen Parame-
ter L; werden als Gasser-Leutwyler-Koeffizienten? bezeichnet und miissen anders als die
Konstanten der Ordnung O(p?) experimentell oder durch Simulationen bestimmt wer-
den. Sie werden auch als Low-Energy-Constants (LEC) oder Gasser-Leutwyler-Konstanten
bezeichnet.

“sieche Anhang C
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4 Chirale Storungstheorie fiir
Gitter-QCD

Die Gleichungen der Quantenchromodynamik sind ohne einschrinkende Annahmen nicht
analytisch losbar. Eine Moglichkeit zur naherungsweisen Losung besteht in einer sto-
rungstheoretischen Entwicklung in der Kopplungskonstanten. Diese perturbative Be-
trachtung liefert aufgrund der asymptotischen Freiheit der QCD lediglich fiir grofe
Energien sinnvolle Ergebnisse.

Eine weitere haufig genutzte nicht-perturbative Moglichkeit, Ergebnisse in der QCD zu
erhalten, stellt die numerische Bearbeitung, z.B.durch Monte-Carlo-Simulationen dar.
Dabei ist es erforderlich, sich auf ein diskretes und endliches raumzeitliches Gitter zu
beschrianken. Diese Beschrankung bewirkt ein Abweichen der Gitter-Ergebnisse von z.B.
storungstheoretischen Betrachtungen im Kontinuum. Will man mit der hier verwende-
ten chiralen Storungstheorie Gitter-Ergebnisse interpretieren, muss die chirale Lagran-
gedichte den Gittereffekten entsprechend modifiziert werden [10] .

4.1 Gitterformulierung der QCD

Bevor eine chirale Stérungstheorie fiir Gitter-QCD modifiziert wird, soll zunéchst kurz
eine Darstellung der QCD auf dem Gitter gegeben werden. Der hier verwendete Ansatz
ist der von Wilson [21]. Eine genauere Darstellung kann [22] entnommen werden. Eine
grundlegende Einfithrung in die Gitter-QCD liefert [7]. Einen Uberblick iiber die hier
verwendeten Methoden bietet auch [23].

FEine weitere Moglichkeit QCD, auf dem Gitter zu formulieren, bietet die der Staggered-
Fermionen, die hier jedoch nicht betrachtet wird. Fiir einen Einblick kann ebenfalls [22]
herangezogen werden.

4.1.1 Gitter-Wirkung nach Wilson

Der Ubergang von der kontinuierlichen QCD zur Gitter-QCD erfolgt in zwei Schritten.
Zunachst wechselt man vom Minkowski-Raum in einen vierdimensionalen euklidischen
Vektorraum. Dies bedeutet eine Verdanderung des metrischen Tensors. Er &ndert sich

von
Guv = dla’g(la -1,-1,- 1) (41)

im Minkowski-Raum in
gk, = 0 = diag(1,1,1,1) (4.2)
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4 Chirale Storungstheorie fiir Gitter-QCD

im euklidischen Raum. Dabei gehen die Indizes des Minkowski-Raumes p = 0,1,2,3,
wobei die nullte Komponente die Zeitkoordinate beschreibt, iiber in u = 1,2,3,4, wo
die neue vierte Komponente die der Zeit ist. Der Ubergang zur euklidischen Metrik
entspricht einer Rotation der Zeitvariablen ¢ gegen den Uhrzeigersinn zu rein imaginiren
Werten:

t — ir. (4.3)

Diese Transformation wird Wick-Rotation genannt. Der Anti-Kommutator der Dirac-
Matrizen im Minkowski-Raum ist proportional zu dessen metrischem Tensor:

{7} = 29" (4.4)

Diese Relation muss ebenfalls, entsprechend angepasst fiir den euklidischen Raum, ge-
fordert werden®. Im euklidischem Raum gilt analog:

(Al =26 (4.5)
Dies kann durch die geeignete Wahl von euklidischen Dirac-Matrizen erreicht werden:

W=n' o ow=—" 0=/, (4.6)
Die euklidische Betrachtung besitzt den Vorteil, dass die bei der Berechnung von Greens-
Funktionen auftauchenden Exponentialfunktionen des Bolzmann-Faktors exp(—Sg) re-
ell sind und so Oszillationen verhindert werden, was eine statistische Auswertung er-
moglicht, die z.B. mittels Gittersimulationen erfolgen kann.

Im zweiten Schritt wird der kontinuierliche euklidische Raum durch einzelne diskrete
Punkte ersetzt. Der Abstand der Gitterpunkte wird mit a bezeichnet. Die Fermionen-
felder befinden sich auf diesen Gitterpunkten. Die die Wechselwirkung vermittelnden
Gluonen sind hingegen auf den Verbindungslinien zwischen diesen Punkten lokalisiert.
Um dieser Diskretisierung Rechnung zu tragen, miissen Ableitungen in endliche Differen-
zen und Integrale tiber die Raumzeit in Summen iiber die Gitterpunkte iiberfithrt wer-
den. Eine durch diesen Ubergang erhaltene Wirkung ist fiir Gitterkonstanten ungleich
Null, jedoch nicht eichinvariant. Auch im Kontinuumslimes a — 0 ist diese Invarianz
wegen der Eigenschaften der Renormierung verletzt. Es miissen somit weitere Modifi-
kationen vorgenommen werden, die eine Invarianz fiir alle Werte der Gitterkonstanten
gewahrleisten. Eine Standardlésung fiir dieses Problem ist die von Wilson. In der sog.
Wilson’schen Wirkung [21] wird zunéchst eine Eichinvarianz fiir die Gittertheorie for-
muliert und anschliefend die Wirkung dementsprechend angepasst. Dieser Sachverhalt
wird im folgenden Abschnitt genauer untersucht.

Das Produkt von zwei Feldern ¢ (z) - ¥(y), die an zwei verschiedenden Orten im Kon-
tinuum oder an zwei verschiedenen Gitterpunkten lokalisiert sind, ist nicht invariant
unter einer lokalen Eichtransformation A(x) € SU(N). Bei der Konstruktion einer Git-
terwirkung nach Wilson treten aber gerade solche Produkte von Feldern fiir benachbarte
Gitterpunkte auf. In der Differentialgeometrie wird ein derartiges Produkt aus Feldern
durch eine multiplikativ hinzugefiigte SU(NN)-Matrix U(z,y,C) invariant, die Parallel-
transporter genannt wird. Dabei steht C fiir die Abhéngigkeit von dem gewéhlten Pfad,

®siehe Anhang A
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4.1 Gitterformulierung der QCD

der die Felder verbindet. Zur Darstellung der Gitter-Wirkung ist somit ein Paralleltrans-
porter zwischen zwei benachbarten Gitterpunkten erforderlich; er wird als Link-Variable
bezeichnet. Der zugehorige Pfad, also die direkte Verbindung zwischen zwei benachbar-
ten Gitterpunkten, wird Link genannt. Die Link-Variable hat die Form

U(z,x + ajt) = Uy, = exp (igoaAZ(x)Tb> (4.7)
und transformiert unter einer zugehorigen Eichtransformation A(z) geméf:
Usp — M@) Uy Mz + aft) ™' (4.8)

Der Vektor fi ist der Einheitsvektor in die Gitterrichtung p = 1,2,3,4; die Konstante gg
beschreibt die nackte, d.h. unrenormierte, Kopplung. Terme mit Produkten aus Feldern
sind mit Hilfe der Link-Variablen eichinvariant und besitzen nun die Form:

D@+ ap)Uputp(x). (4.9)

Z, [

Die Link-Variable ersetzt somit das Eichfeld der Kontinuums-QCD. Die Quark-Wirkung
auf dem Gitter besitzt nach dem Ubergang zu Differenzen und Summen die Form

Sp=a'y_(x) (Dw [U] + mo) 9 (x) (4.10)

mit der nackten Quarkmasse mg und dem Wilson-Dirac-Operator Dy, der anstelle der
Eichfelder die Link-Variablen beinhaltet und somit eichinvariant ist. Dieser Operator
hat die Form:

1
Dw = 3 Y (V5 + V) —arViV,]. (4.11)

Der erste Term beschreibt die diskretisierte Ableitung. Der zweite Term wird Wilson-
Term genannt, wobei der darin enthaltende Wilson-Parameter r zu Eins gewéhlt werden
kann. Dieser Term unterbindet zwar das Auftreten von zusétzlichen Fermionen durch
den kiinstlich eingefithrten Cut-Off einer endlichen Gitterlénge a, was als Dopplerpro-
blem bezeichnet wird, besitzt aber den Nachteil, nicht invariant unter axialen Trans-
formationen zu sein. Er bricht damit die chirale Symmetrie explizit. Die Vorwérts- und
Riickwérts-Differenzen-Operatoren beschreiben die eich-kovarianten Ableitungen und
besitzen die Form:

VMZ)(CU) =
V() =

[Um,u¢($ +afr) — P(z)],
(v(@) - Ul — )] (4.12)

QI

Neben der Quark-Wirkung muss auch die Yang-Mills-Wirkung der QCD in die Git-
terformulierung tiberfithrt werden. Ein eichinvarianter Ausdruck auf dem Gitter ist ein
geschlossener Pfad aus vier Links, die sog. Plaquette. Diese stellt die kleinste mdgliche
Schleife auf dem Gitter dar. Der zugehorige Paralleltransporter

U(p) = Upyw = U(z,04a0)U(z+av x+afi+av)U(v+afi+ab,x+ap)U(x+aji,z) (4.13)
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4 Chirale Storungstheorie fiir Gitter-QCD

wird Plaquette-Variable genannt. Diese Variable wird fiir die Konstruktion der Gitter-
Yang-Mills-Wirkung benutzt und tragt daher den Namen Plaquette-Wirkung:

Sg = gigz ReTr(1 — U(p)). (4.14)

Die darin enthaltene Summe lduft iiber alle orientierten Plaquetten p. Die vollstdndige
Wilson-Wirkung auf dem Gitter ist durch die Summe aus der Quark- und der Plakette-
Wirkung gegeben:

S[Uwy] = Sp [Ud] + Sc [U]
=q* Z () (Dy + mo) (x) + iQ Z ReTr(1 —U(p)). (4.15)

gop

Einen Nachteil der Wilson-Gitter-Wirkung stellt die Verletzung der chiralen Symmetrie
dar, die im Kontinuumslimes der Gittertheorie jedoch wieder erfiillt sein sollte.

4.1.2 Verbesserte Gitter-Wirkung - Symanzik-Wirkung

Die im vorigen Abschnitt vorgestellte Gitter-Wirkung nach Wilson bewirkt bei der Be-
rechnung physikalischer Grofen Beitrage, die auf die Diskretisierung zuriickzufiihren
sind. Solche Fehler kénnen bis 30 Prozent ausmachen und zu einer falschen Extrapolati-
on in das Kontinuum fiihren. Durch das Einfiigen von Gegentermen kénnen diese Fehler
jedoch reduziert werden [24,25]. Diese Gegenterme bewirken, dass die unerwiinschten
Gittereffekte durch Subtraktion eliminiert werden. Eine Variante dazu stellt die ver-
besserte Wirkung nach Symanzik dar. Dazu wird eine effektive Kontinuumswirkung
konstruiert, die die Wilson-Wirkung fiir kleine Gitterkonstanten beschreibt. Neben der
Konstruktion der Gegenterme kann diese effektive Wirkung ebenfalls dazu genutzt wer-
den, die Wilson-Wirkung effektiv im Kontinuum zu beschreiben. Die Symanzik’sche
Wirkung lasst sich wie folgt darstellen:

S:So+a51+a252+---. (4.16)

Der Term Sy beschreibt dabei die reine Kontinuumswirkung, wiahrend die weiteren Ter-
me die Gitter-Effekte proportional zu a, a?
kénnen mit

usw. charakterisieren. Die einzelnen Terme

Sy = / d*zL(x) (4.17)

berechnet werden. Die Lagrangedichten mit £ > 1 werden aus allen moglichen lokalen
Operatorkombinationen mit der Dimension 4+ k aufgebaut. Die Anzahl der Dimensionen
ist mit der Quarkmasse verkniipft, die mit den auftretenden Feldern multipliziert wird.

Die Anzahl der méglichen Operatorkombinationen fiir £; kann durch zwei Uberlegun-
gen verringert werden. Zum einen miissen sie den Symmetrien der zugrunde liegenden
Gitter-Theorie geniligen, zum anderem kann durch partielle Integration ihre Anzahl wei-
ter reduziert werden. Fiir die zugehorige Lagrangedichte fiir Gitter-Effekte von O(a)
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4.1 Gitterformulierung der QCD

verbleiben fiinf Kombinationen:

01 = &U,W/F,ulﬂba

- e —
02 - wDuD;ﬂ/} + wDuD;u
03 = mTr(FWFW),

Oy=m (&WmuD;ﬂb - &Eu’}ﬂuw) >
05 = mPu. (418)

Die Felder werden ebenfalls durch ein effektives, eichinvariantes Feld beschrieben:
ber(x) = ¢o(x) + adi(z) + a*po(x) + - - - . (4.19)

Die Felder der verschiedenden Ordnungen sind wie die effektive Lagrangedichte inva-
riant unter den Symmetrien der Gitter-Theorie. Die Liste von Operatorkombinationen
(4.18), die fiir die effektive Lagrangedichte relevant sind, kann unter Verwendung der
Feldgleichungen um die Kombinationen Oy und O4 weiter reduziert werden. Die ef-
fektive Lagrangedichte £ ist somit aus den Operatorkombinationen Op, O3 und Os
aufgebaut. Will man die Wilson-Wirkung mittels eines Gegenterms um die Gittereffek-
te der Ordnung O(a) verbessern, bieten sich eben diese drei Operatorkombinationen
an:

58S =a° Z{clél(x) + Cg@g(w) + C5@5($)}. (4.20)

Die Décher der Operatoren bringen zum Ausdruck, dass diese sich auf eine Gitterformu-
lierung beziehen. Die Operatoren O3 und Oy kénnen in die Wilson-Wirkung integriert
werden, da sie die Struktur des Plakette-Feldes bzw. der skalaren Dichte besitzen, was
zu einem angepassten Verhalten der Wirkung unter einer Reskalierung fithrt. Der einzig
verbleibende Term ist ~ @; und tragt den Namen Pauli-Term. Die verbesserte Wilson-
Wirkung hat damit die Form:

Simp = Swilson + a® Z CSW@U;WF;Ww- (4'21)
x

Der einzige neue Koeffizient cgy wird als Sheikholeslami-Wohlert Koeffizient bezeichnet
und ist, abhéngig von der verwendeten Gitterwirkung, eine komplizierte Funktion der
Eich-Kopplung.

Neben der Verbesserung der Wilson-Wirkung durch den gefundenen Gegenterm ist auch
die effektiv konstruierte Symanzik-Wirkung (4.16) selbst niitzlich. Diese lautet:

S =S+ acswouw Fui. (4.22)

Der Term Sy kann dabei durch die QCD oder auch durch eine effektive Theorie wie die
chirale Storungstheorie gebildet werden. Ist Letzteres der Fall, so muss der Term a5
fiir diese Zwecke in die chirale Stérungstheorie {iberfiihrt werden. Damit wird es dann
moglich, auf dem Gitter gewonnene Ergebnisse analytisch zu iiberpriifen.
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4 Chirale Storungstheorie fiir Gitter-QCD

4.2 Lagrangedichte der chiralen Storungstheorie fiir
Gitter-QCD

Um die Lagrangedichte der chiralen Stérungstheorie (3.22) in die effektive Symanzik-
Wirkung umzuschreiben, muss diese in jeder Ordnung ihrer Entwicklung (vgl. Kap. 3.2)
mit Termen proportional zur Gitterkonstanten a angepasst werden [26]. Dabei wird zu
der Entwicklung in den Impulsen und den Quarkmassen die Gitterkonstante als ein
weiterer Entwicklungsparameter hinzugefiigt. Die Ordnung O(a) wird dabei wie zwei
Impulse und wie eine Quarkmasse gezéhlt. Damit gilt fiir die betrachteten Ordnungen:

Ly~ O(p*, a),
Ly~ O, pa, a?).

Dariiber hinaus muss die euklidische Formulierung auf dem Gitter, die in Abschnitt
4.1.1 eingefiihrt wurde, beriicksichtigt werden. Dies fithrt zu abweichenden Vorzeichen
der Lagrangedichteterme gegeniiber der Formulierung im Minkowski-Raum (3.22). Um
die bendtigten Gitter-Terme zu konstruieren, benutzt man wie im Fall des Masseterms
der QCD die Spurionanalyse, die in analoger Weise durchgefiihrt werden kann. Dies
ist ohne weitere Annahmen moglich, da die beiden Grofsen Masse und Gitterkonstante
identische Eigenschaften aufweisen. Als Folge dessen brechen die zugehérigen Terme
auch auf dieselbe Art explizit die chirale Symmetrie. Fiir die Analyse wird acg, aus
(4.22), wie zuvor die Quarkmasse M, als Spurion A aufgefasst:

qacSWUMVFMVq ~ gLAUMVFMVqR + QRATUW/FMVQL- (423)

Mit der Abkiirzung
p = pol = 2Wya, (4.24)

wobei cgy in Wy integriert ist, ergibt sich fiir die Ordnung O(p?, a) unter Beriicksich-
tigung der euklidischen Formulierung folgende Lagrangedichte in LO:

Ly — %02 <8MU8"UT> - %02 <XUT + UXT> . %02 <pr n Uer>. (4.25)

Die Terme in NLO werden ebenfalls mittels Spurionanalyse gefunden. Durch die gleiche
Struktur des Masseterms der QCD und des Pauli-Terms der Symanzik-Wirkung ha-
ben die Gitterterme der chiralen Lagrangedichte dieselbe Form. Sie unterscheiden sich
neben den unterschiedlichen Spurions in den zugehoérigen Konstanten, die im Fall der
Gitterterme mit W/ bezeichnet sind. Den Termen proportional zu p?a sind die Konstan-
ten W; zugeordnet. Die Langrangedichte fiir die chirale Storungstheorie auf dem Gitter
lautet [27]:

L=Ly+ Ly
_F
4

<3MU8MUT> - FTOQ <XUT + UXT> - FTOQ <pUT + UpT>
(4.26)
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— I <6“U8ﬂUT>2 ~ L2 (,U0,U") — Ly <(aﬂUa“UT>2>
L, <a UBMUT> <XUT n UXT> + W, <3MU6MUT> <pTU n UTp>
+ Ly <a Ua,Ut (XTU + UTX)> W <8MU6MUT <pTU + UTp)>
~ L <x +UY > A <XUT + UXT> <pTU + UTp>
<pr + Ut > . <XUT - UXT>2
A <XUT ><pTU—UTp> — W <pTU—UTp>2
~ Ly (x{UXTU + UTUTY > A <pTUXTU + UT,oUTX>

— Wi <pTUpTU + UTpUTp> . (4.27)

Damit ist die Konstruktion der Lagrangedichte der chiralen Storungstheorie zur Be-
schreibung der Gitter-QCD abgeschlossen. In der Gitter-QCD wird héufig eine axial
gedrehter Masseterm verwendet, was einige Vorteile mit sich bringt. Diese Technik soll
im folgenden Kapitel behandelt werden.
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5 Twisted-Mass-QCD

Die Twisted-Mass-Gitter-QCD (tmLQCD) bietet eine weitere Moglichkeit, neben der
im vorherigen Kapitel vorgestellten Konstruktion von Gegentermen mit dem Syman-
zik’schen Programm die Wilson-Gitter-Wirkung in der Ordnung O(a) zu verbessern.
Um diese Verbesserung zu erreichen, wird der Masseterm der Wilson-Wirkung axial im
Flavourraum gedreht. Wie sich zeigen wird, tritt die angestrebte Verbesserung bei einer
Drehung um 7/2 auf, was auch mit mazimal twist bezeichnet wird. Um die Betrachtung
zunachst iibersichtlich zu halten, wird die Zwei-Flavour-QCD mit zwei degenerierten
Quarks zur Erlauterung gewédhlt. Am Ende des Kapitels wird der in dieser Arbeit un-
tersuchte Fall mit drei Flavours vorgestellt. Einfithrungen in die Twisted-Mass-QCD im
Kontinuum und auf dem Gitter bieten [9, 28].

5.1 Twisted-Mass-QCD im Kontinuum

Wird eine gedrehte Massematrix betrachtet, spricht man von der Twisted-Mass-QCD
(tmQCD). Zunéchst werden die Auswirkungen eines gedrehten Masseterms im Konti-
nuum betrachtet. In der QCD (2.2) kann der Masseterm allgemein in der Form

EQCD,m = )ZMeiw%TSX (5.1)

geschrieben werden. Wegen den Transformationseigenschaften der Quarkfelder x kann
mittels 73, das auf das Flavour-Doublett wirkt, durch eine axiale Transformation der
Form

b= er Ty,
) = xezn” (5.2)
der Massenterm der tmQCD zuriick in die geldufige Standardform
Locpm = My (5.3)

gebracht werden. Man spricht im Fall der Standardform von der physikalischen Basis
(physical basis); wird hingegen die Drehung nicht auf die Felder bezogen, sondern als eine
Drehung der Matrix M aufgefasst, so spricht man von einer verdrehten Basis (twisted
basis). Spaltet man die Exponentialfunktion aus (5.1) auf, so erhélt man eine in Real-
und Imaginérteil separierte Masse M:

Mewrs™ = M (cos(w) + iys73 sin(w)) ,
m = Mcos(w), p=Msin(w), M=+/m?+ u? (5.4)
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Von maximaler Verdrehung spricht man bei w = 7/2, wenn p maximal wird und somit
m verschwindet. Als wichtige Erkenntnis ist festzuhalten, dass die Physik aufgrund der
Symmetrien der Lagrangedichte durch eine Drehung des Masseterms im Kontinuum
nicht verandert wird.

5.2 Wilson-Twisted-Mass-QCD

In der Wilson-Twisted-Mass-QCD (WtmQCD) wird die Methode der axial gedrehten
Masse auf die Wilson-Wirkung angewandt. Die Wirkung der WtmQCD hat in der twisted
basis die Form:

S Ux,x] = a4ZX < (v (V3 4+ V) —arv;iv,) + mqei“%TS) x(x). (5.5)

Verlagert man die Drehung des Masseterms in die Felder, gelangt man zur physical basis.
Dabei hat die Wirkung der WtmQCD folgende Form:

SE U] = a4z¢ ( <'Yu (Vii+ V) — arvzvue_i“%T3> + mq> Y(z). (5.6)

Offenbar erhélt man anders als im Kontinuum bei der Gitter-Darstellung nicht die Stan-
dardform der betrachteten Wirkung, hier die Wilson-Wirkung, zuriick. Dies ist auf die
Eigenschaften des Wilson-Terms zuriickzufiihren, der nicht invariant unter Drehungen
im Flavourraum ist. Somit handelt es sich bei der WtmQCD und einer Gitter-QCD
mittels der Standard-Wilson-Wirkung um zwei unterschiedliche Regularisierungen auf
dem Gitter.

Die WtmQCD besitzt zwei entscheidende Vorteile. Der erste Vorteil ist eine automati-
sche O(a)-Verbesserung bei maximalem Twist. Der Wilson-Term wird in die Wirkung
eingefiigt, um das Dopplerproblem zu umgehen, sorgt jedoch fiir zusétzliche Gitteref-
fekte der O(a). Aufgrund seiner zu einem zuséatzlichen Masseterm dquivalenten Gestalt,
macht er neben den Standard-Renormierungen eine zuséatzliche additive Renormierung
der Form

m =My — Mey (5.7)

notwendig. Dabei ist m, die physikalische Quarkmasse und m,, die Verschiebung der
Masse durch den Wilson-Term. Durch die Abhéngigkeit der Masse vom Twistwinkel ist
auch die Physik abhéngig von diesem Winkel.

Will man eine automatische O(a)-Verbesserung erhalten [9,29], ldsst sich m, in der
Simulation so wihlen, dass diese Masse dem Einfluss des Wilson-Terms entspricht und
als Gegenterm fungiert. Aufgrund der Symmetrien der Kontinuums-QCD unter axialen
Drehungen des Masseterms lésst sich die Masse der entsprechenden Simulation voll-
standig in den Imaginérteil von mg verlegen, was einer maximalen Drehung von /2
entspricht. Der Realteil bleibt dabei bei dem um O(a) verbessernden Wert.

Der zweite Vorteil der WtmQCD besteht in der Vermeidung von Nullmoden des Dirac-
Operators, die eine statistische Auswertung von Observablen erschweren. Fiir weitere
Informationen kann auf [30| zuriickgegriffen werden.
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5.3 Twisted-Mass in der chiralen Storungstheorie

Wird die Methode der WtmQCD auf die chirale Storungstheorie angewandt [31,32], lasst
sich auch hier die Wirkung bzw. die Lagrangedichte sowohl in der physikalischen Basis
als auch in der verdrehten Basis formulieren. Die im folgendem verwendete Notation
entspricht [33|. Die invarianten Felder der QCD sind in der chiralen Stérungstheorie
durch die Matrix U ersetzt. Ist der Masseterm mit m, = mg = m, gemafs

x(w) = QBOTque_i“’T3 = 2Bg (m1 —iuts3) = X1 +ix473 (5.8)
gedreht, befindet man sich in der twisted basis. Die Masse m, lasst sich separieren in
m=mgcos(w), p=mysin(w), my= V2 + 2. (5.9)
Die Gittermatrix p behélt dabei ihre Standardform:
p = pol = 2Wpal. (5.10)
Die Lagrangedichte kann durch eine Drehung der Form

U= e—%w’r?’ lee—%wT3

(5.11)

in die physical basis transformiert werden, was jedoch eine Drehung der Gittermatrix p
zu Folge hat.

Diese hat dann die Gestalt:
plw) = 2Wpae™™ = pol +ipsr3. (5.12)
Entsprechend gilt in der twisted basis:
po =2Woacos(w),  p3 =2Wpasin(w),  p=/p + p3. (5.13)
In der physical basis ist die Masse ungedreht und besitzt die Standardform:
X = X0l = 2Bymg1. (5.14)

Eine vertiefte Darstellung der chiralen Stérungstheorie findet sich in [10].

5.4 Chirale Stérungstheorie mit Twisted-Mass-Term fiir
drei Quarkflavours

Gegenstand dieser Arbeit ist die Untersuchung der Phasenstruktur der Drei-Flavour-
QCD. Dabei wird der Spezialfall m,, = mg = my # m, betrachtet. Dafiir muss die oben
dargestellte Methode der tmQCD auf drei Flavours erweitert werden. Die allgemeine
Drehung der Massematrix y kann durch eine Matrix D ausgefithrt werden [34]. Diese
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allgemeine Drehmatrix hat die Gestalt:

e* 0 0
D=0 &% 0], (5.15)
0 0 e

wobei a4+ 8+ v = 0 stets erfiillt ist. In dem hier betrachteten Fall wird als Drehmatrix
D eine Matrix gewéahlt, die ausschliefslich die Massen m,, und my dreht, mg jedoch nicht
verdndert. Eine solche Drehung wird durch die Matrix

D =e W3 (5.16)

bewirkt. Die Matrix Az ist ein Generator der SU(3) und proportional zur dritten Gell-
Mann-Matrix. Eine mit

X(w) = x - D = xe " = 2B(diag(h,m,m) — ipds) (5.17)

gedrehte Massematrix besitzt die Form:

Xo +ix3 0 0
X(w) = 0 xo—1ixz3 0 |. (5.18)
0 0 Xs

Die darin enthaltenden Grofen sind durch

X0 = 230m7
X3 = _2B0M7
Xs = 2Bomy (5.19)

gegeben. Die gedrehte Matrix (5.18) ersetzt die ungedrehte Form in der Lagrangedichte
nach Gl. (4.26). Mit Hilfe der Spurionanalyse ldsst sich zeigen, dass dieser Austausch
bis zur Ordnung L4 ausreicht und keine neuen Terme in die Theorie einflieflen. Damit
ist die Herleitung einer effektiven Lagrangedichte fir WtmQCD mit einem Drehwinkel
abgeschlossen. Mit der so gewonnenen effektiven Gleichung lésst sich die Minimastruktur
der zugehorigen Gitterdarstellung ermitteln.

Bevor damit begonnen wird, soll im folgendem Kapitel noch ein kurzer Einblick in die
Phasenstruktur der entsprechenden Theorie mit zwei degenerierten Quarkflavours ohne
s-Quark gegeben werden.
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6 Phasenstruktur der
Twisted-Mass-Gitter-QCD fur zwei

Quarkflavours

In diesem Kapitel wird ein Uberblick iiber die Kenntnisse der Phasenstruktur in der
mg-p-Ebene fiir chirale Storungstheorie mit zwei Flavours gegeben. Eine ausfiihrlichere
Darstellung findet sich in [35-38|.

In den nachfolgenden Kapiteln wird die entsprechende Untersuchung fiir drei Flavours
durchgefiihrt.

6.1 Parametrisierung der chiralen Stérungstheorie fiir zwei
Quarkflavours

Um die Phasenstruktur der WtmQCD fiir zwei Quarkflavours zu ermitteln, muss das
Minimum der Lagrangedichte (4.26) bestimmt werden. In den hier benutzten Quellen
wirkt die Drehung in m3-Richtung. Das Minimum wird daher ebenfalls in diese Richtung
gelegt. Mit dieser Richtung des Minimums nimmt die Matrix U aus (3.8) die vereinfachte
Form

(6.1)

U iwsTs <cos w3 —isinws 0 >
= e =

0 cos w3 + isin ws.

an. Der Winkel w3 beschreibt die Verdrehung des Minimums in 73-Richtung und wird
daher Vakuumwinkel genannt. Eine Untersuchung ohne eine zuvor festgelegte Vakuum-
richtung ist in [39] wiedergegeben.

Das Potential (4.26) ldsst sich vereinfachen, indem eine von (3.8) abweichende Parame-
trisierung mit

3
U= u01—|—iZuiTi (62)
i=1

gewahlt wird. Mit einem Vakuum ausschliefslich in 73-Richtung vereinfacht sich dies zu:
U = ugl +iugTs. (6.3)

Die Parameter ug und ug lassen sich nun mit (6.1) als
ug = cos(ws), ug = sin(ws) (6.4)
identifizieren. Es gilt die aus det U = 1 und der Unitaritdt von U folgende Nebenbedin-

gung fiir U:
ud + @ = ud 4 ui = 1. (6.5)
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6 Phasenstruktur der Twisted-Mass-Gitter-QCD fiir zwei Quarkflavours

Mit dieser neuen Parametrisierung und durch die Wahl einer eingeschrankten Vakuum-
richtung vereinfacht sich das Potential der Lagrangedichte (4.26) zu:

V(ugp,us3) = —crug + Cng + cgus + 04u§ + csugus + Leonst- (6.6)

Die bei der Berechnung dieses Potentials auftretenden teilweise massenabhéngigen Ko-
effizienten ¢; ergeben sich zu:

a1 =F5 X,

co =—8[Lssx( — (2Lss — Wss) Xoro + (Lss — Wss + Weg) 03] »
€3 = — 2X§,a

¢y = — 8Lgg X5,

c5 = — 16Lsgxox5 + 8 (2Lss — Wse) X500-

Um eine kiirzere Form der Koeffizienten zu erhalten, ist fiir die Gasser-Leutwyler-
Konstanten die abkiirzende Schreibweise®

Xz'j = 2Xj + X; (67)

verwendet worden. Weiterhin werden zu dem Quarkmassenterm o Terme proportional
zu pg ~ a hinzuaddiert:

X0 = Xo +po =2Bo/, x4 =—2Bopu, (6.8)

was die Quarkmassen um Beitrdge proportional zur Gitterkonstanten verschiebt. Die in
der Formel (6.8) benutzten Grofen entsprechen der Notation aus Abschnitt 5.3.

6.2 Minima- und Phasenstruktur fur zwei Quarkflavours

Zur Untersuchung der Phasenstruktur fiir kleine Quarkmassen kann das Potential (6.6)
auf die Form
V = —ciug + coud + czus (6.9)

reduziert werden, da alle Terme, die proportional zu uf oder einer Masse sind geringere
Beitrage liefern als die linearen Terme. Der Koeffizient ¢q ist proportional zur gemein-
samen Masse der u- und d-Quarks, wiahrend c3 proportional zu der gedrehten Masse
ist. In Abhéngigkeit vom Vorzeichen des Koeffizienten ¢y, das nicht eindeutig bestimmt
ist, konnen zwei verschiedene Szenarien fiir die Phasenstruktur auftreten.

6.2.1 Aoki-Szenario

Wird der co > 0 gewahlt, tritt das sog. Aoki-Szenario ein [40]. Fiir den Fall einer nicht
vorhandenen gedrehten Masse p, ist ¢ = 0 und das Potential besitzt sein Minimum bei:

C1

= —. 6.10

€

Ssieche Anhang C
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6.2 Minima- und Phasenstruktur fiir zwei Quarkflavours

Ist |e| > 1, befindet sich der daraus resultierende Grundzustand je nach Vorzeichen des
Koeffizienten ¢; bei U = ugl = £1 und macht somit beim Vorzeichenwechsel einen
Sprung. Die SU(2);, x SU(2)g-Symmetrie wird durch die u- und d-Masse explizit zu
SU(2)y gebrochen. Der Grundzustand weist ebenfalls diese Symmetrie auf. Die drei
resultierenden Goldstone-Bosonen der Theorie, die Pionen, sind massiv:

1
m2 = ﬁ(lcl\ — 2¢9). (6.11)
0

Fiir kleine Quarkmassen und einem daraus resultierenden |e| < 1 ergibt sich nach GI.
(6.5) ein nicht verschwindender Wert fiir us. Das Auftreten von us bedeutet gemafs Gl.
(6.3) eine zusitzliche Komponente des Vakuums in 73-Richtung. Dies bewirkt eine Re-
duzierung der Symmetrien des Grundzustandes, wodurch es zu spontaner Brechung der
Flavour- und Paritdtssymmetrie kommt. Das Auftreten nicht verschwindender Beitrige
von ugT7y ist dabei mit dem Erwartungswert

(Yy5739) # 0 (6.12)

verkniipft. Die verbleibende Symmetrie ist eine U(1)-Symmetrie, und die vorliegende
Phase wird Aoki-Phase genannt. Neben den masselosen Goldstone-Bosonen m; und o
existiert ein massives m3-Meson mit der Masse:

2
m2, = = (1-¢). (6.13)
0
Fiir |e] = 1 existiert ein Phaseniibergang zweiter Ordnung, an dem alle drei Pionen

masselos sind.

Bei Werten i # 0 enthélt das Potential einen zusétzlichen Term proportional zu usg,
die Symmetrie ist dadurch explizit gebrochen. Das Minimum variiert im Gegensatz zu
1 = 0 kontinuierlich, wo ein Sprung von U = 41 nach U = —1 auftritt. Die Massen der
Pionen sind immer ungleich Null.

6.2.2 Normales Szenario

Wird der Koeffizient ¢o < 0 angenommen, tritt das sog. normale Szenario ein. Die
Betrachtung ohne gedrehte Masse ergibt einen Sprung des absoluten Minimums von
U = 41 bei positiven Quarkmassen nach U = —1 bei negativen Massen. Alle Pionen
sind massiv, mit:

9 1

my; = —5
F2
0

(lea] + 2lea]) - (6.14)

Fiir die Betrachtung mit gedrehter Quarkmasse ergeben sich nicht verschwindende Werte

von ug. Fiir nicht zu grofse Werte von p existiert weiterhin ein Sprung des Minimums

bei

_ leaf
2’02’ ’

ug = 1-—- us. (615)
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6 Phasenstruktur der Twisted-Mass-Gitter-QCD fiir zwei Quarkflavours

Dieser Ubergang stellt einen Phaseniibergang 1. Ordnung dar. Fiir den Wert

fle = |2 2
‘" F¢B

(6.16)

verschwindet dieser Sprung und der Ubergang wird kontinuierlich. Auf der Grenzlinie
des Uberganges mit ¢; = 0 und p < i, besitzt das neutrale Pion die Masse:

2 1

= —— (4¢2 — 3) ~ d?. 6.17
m7T3 2F02|C2| ( Co C3) a ( )

Die Masse der geladenen Pionen variiert kontinuierlich beim Ubergang von positiven zu
negativen Quarkmassen. Fiir ¢; = 0 besitzt die Masse der geladenen Pionen

ihr Minimum.
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7 Entwicklung eines vereinfachten
Potentials fiir drei Quarkflavours

Um das Verhalten des Grundzustandes der Wilson-Gitter-QCD in der chiralen Stérungs-
theorie fiir drei Quarkflavours zu ermitteln, wird der Anteil der potentiellen Energie-
dichte an der Lagrangedichte (4.26) betrachtet. Das Potential besteht aus allen Termen,
die keine Ableitungen der Feldkonfigurationsmatrix beinhalten:

FS [ it ot — 50 Lot 4+ v
V(U)Z—T<XU +Ux >—T<pU +Up>
2
~ L <XUT + UXT> A <XUT + UXT> <pTU + Ufp>
2
- é<pTU+ Ut > o <XUJr — UXT>
2

=Wy (Ut = Oty (U = Utp) = g (pfU - UT)

— Lg < TUVU + UTUTY > — Wy <pTUXTU + UTpUTX>

— W, <pTUpTU n UTpUTp> . (7.1)
Um dieses Potential leichter untersuchen zu kénnen, wird es in diesem Kapitel in drei
Schritten vereinfacht. Im ersten Schritt wird eine Parametrisierung fiir die Feldkonfi-
gurationsmatrix (3.6) der Goldstone-Bosonen gewéhlt; im zweiten Schritt werden die
Massen um pg ~ a verschoben. Dies Verschiebung ermoglicht einen direkten Vergleich

mit dem Fall Ny = 2 aus Kapitel 6. Schlieflich wird eine Ndherung fiir kleine Massen
durchgefiihrt, die die Grundlage bildet fiir die Berechnung der Kapitel 8 bis 10.

7.1 Parametrisierung der Feldkonfigurationsmatrix

Es muss eine Parametrisierung gewéahlt werden, mit der sich das Potential untersuchen
lasst. Das Vakuum liegt bei diesem Ansatz ausschlieflich in A3- und Ag-Richtung, wo-
durch die Matrix U folgende Form besitzt:

U= ei(¢3>\3+¢8\/§)\8)

cos(¢3 + ¢s) +isin(¢s + ¢ds) 0 0
= 0 cos(¢3 — ¢g) —isin(ps — ¢g) O . (7.2)
0 0 cos(2¢g) — isin(2¢s)
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7 Entwicklung eines vereinfachten Potentials fiir drei Quarkflavours

Diese Matrix wird nun parametrisiert durch:

a 0 O ai + iag 0 0
U=10 b 0] = 0 b1 + ibg 0 . (7.3)
0 0 c 0 0 c1 +icy

Der Vergleich von (7.2) und (7.3) liefert fiir die Parameter a, b und ¢ folgende Ausdriicke:

ar = cos(p3 + ¢g), ag = sin(¢p3 + ¢3),
by = cos(¢3 — ¢g), by = —sin(p3 — ¢g),
c1 = cos(2¢g), cy = —sin(2¢g). (7.4)

In einer nach (7.3) gewéhlten Parametrisierung beinhaltet das Potential sechs Parame-
ter. Aus (7.2) wird deutlich, dass a, b und ¢ stets den Betrag 1 besitzen. Damit lassen
sich die Imaginérteile iiber die dazugehorigen Realteile ausdriicken:

a3 =1—a?, as =uy/1—a?

bs =1—1b2, by = vy/1 — b
2=1-¢, co = wy/1—c2. (7.5)

Das Vorzeichen der Wurzelausdriicke ist dabei unbestimmt. Diese Mehrdeutigkeit wird
durch die Faktoren u, v und w beriicksichtigt, die die Werte +1 oder —1 annehmen
konnen.

:

Aus der zusétzlichen Bedingung, dass U eine spezielle unitiare Matrix ist, d.h. det U =
+1, ldsst sich eine zusétzliche Abhéngigkeit der Parameter untereinander ableiten:

c1 = —aghy + a1y = —uvy/1 — a%\/ 1— b% + a1by. (76)

Mit den Bedingungen (7.5) wird es somit moglich, die Abhéngigkeit des Potentials auf
die Grofen aj, by und ¢; zu reduzieren. Mit der Bedingung (7.6) lasst sich zusétzlich
die Grofe ¢; iber a; und by auszudriicken, was eine dreidimensionale grafische Auswer-
tung ermdglicht. Dabei fungieren die Gréfsen a1 und by als Koordinaten des Potentials

V(al,bl).

Bei der Bestimmung des Minimums muss die Doppeldeutigkeit der Parameter ao, b
und co beriicksichtigt werden. Das zu untersuchende Potential hat daher zusétzliche
Abhéngigkeiten und besitzt die Form V(aq,b1,u,0,w). Dass u, v und w lediglich zwei
mogliche Werte besitzen, stellt eine wesentliche Vereinfachung dar. Dennoch miissen
23 Parametersiitze untersucht werden um festzustellen, welcher das absolute Minimum
ausbildet.

Berechnet man nun das Potential der Lagrangedichte nach (7.1) in der Parametrisierung
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7.2 FEinfithrung verschobener Quarkmassen und einer abkiirzenden Notation

(7.3) einschlieflich einer gedrehten Massematrix (5.18), so ergibt sich:

Vi(abie) = A@m)(ar +b1) + Ac(ma)er + Bluin)(a? +82) + Bo(m,)

+ C(m,p)arby + Ce(m,ms) (a1 + bi)er + D(p)(ag — ba)

+ E(m,u)aias + F(m,p)agby + Fe.(ms,p)c1(ag — ba)

+ G(m,p)arbs + Ge(ms,p)ca(ar — by) + H(m,u)bibe

+ J(m,p)agbs + Je(m,ms)ca(as + bz) + const. (7.7)

In diesem Potential sind die folgenden Koeffizienten verwendet worden:

2
A(R) = ~ 2 (xo + o),
2
Adlma) = =2 (x4 + po),
B(pm) = +4(x3 — x8) (L6 + L7 + Ls) — pp (W5 + W7 + Wg) — xopo(Ws + W7 + Wa)],
Be(my) = +4[=x3(Le + L7 + Lg) — pg(W§ + Wy + Wg) — xspo(Ws + Wr + Wy)],
C (ri,p) = —8[x5 L6 + X3 L7 + xopoWe + poWel,
Ce(i,ms) = —A4[2x0xs L + po(x0 + Xs)We + 205 W,
Iy
D(p) = —7X37
E(m,u) = —4[2xo0x3(Le + L7 + Lg) + x3(Ws + W7 + W),
F(m,pu) = —42x0x3(Le — L7) + x3p0(We — W7)],
Fe(ms,p) = —4[2x3xs L6 + x3p0Ws),
G (m,u) = +4[2x0x3(Le — L7) + x3p0(We — W7)],
Ge(ms,p) = —4[2x3xsL7 + x3p0W7],
H(m,u) = +4[2x0x3(Le + L7 + Lg) + x3p0(We + W7 4 Ws)],
J(,p) = +8[x3Le + XgW7 + xopoWr + pg Wi,
Je(m,ms) = +4[2x0xs L7 + XopoWr + po(xo + xs)Wr + 205 W], (7.8)

7.2 Einfiihrung verschobener Quarkmassen und einer
abkiirzenden Notation

In der Wilson-Gitter-Wirkung fiihrt der Wilson-Term zu einer Verschiebung der Quark-
massen (5.7). Dieser Effekt kann durch eine additive Renormierung der Quarkmassen
kompensiert werden. Dazu werden verschobene Quarkmassen wie folgt eingefiihrt:
Xo+p=Xo = Xo= X0~ Pos
Xstpo=Xs = Xs=X5— Po- (7.9)

Die neuen Massen erhalten damit einen zusatzlichen additiven Beitrag proportional zur
Gitterkonstanten a. Somit wechseln die drei linearen Masseterme mit den Koeflizienten
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7 Entwicklung eines vereinfachten Potentials fiir drei Quarkflavours

A, A. und D aus Gleichung (7.7) ihr Vorzeichen, wenn die verschobenen Quarkmassen
ihren Nulldurchgang vollziehen.

Fiir eine iibersichtliche Darstellung des Potentials werden zusétzlich die nachstehenden
Abkiirzungen” fiir typische Kombinationen der LE-Konstanten in (7.8) eingefiihrt:

L=L¢+Lr+Ls, W=Ws+ W7+ Ws, W' = Wg + W7 + Wy,
Ly =2L - W, Lwe = 2Lg — W, Lwr7 =2L7 — Wr,
Lyww=L-W+W' Lwywe=Ls—Ws+ Wi Lwwr=L;—W;+ Wi (7.10)

Damit erhalten die Koeffizienten (7.8) des Potentials die folgende, kiirzere Form:

F2
A(m/) = _70 6’
F2
Ac(m;) = _70 ;7
B(um') = —4[(x¢ — x3)L — xopoLw + pgLww],
Be(m}) = —4[xZL = XspoLw + piLww],
O/ \p) = =8[x¢Le + x3L7 — XopoLwe + paLwwe),
Ce(m/;m) = —42x0x5Le — (X0 + X5)poLwe + 205 Lwws),
F2
D(/’[/) = _70X37
E(m/ ;) = —42x0x3L + x3poLw],
F(m/,u) = —4[2xox3(Le — L7) — x3p0(Lwe — L)),
F.(mi,p) = —4[2xx3Le — x3p0Lws],
G(m' ) = +4[2x4x3(Le — L7) — x3p0(Lwe — Lwr)],
Ge(miy,p) = —4[2x%x3L7 — x3poLw],
H(m/\p) = +4[2x0x3L — x3poLw],
J(m' p) = +8[x¢ L7 + x3L6 — xopoLwr + pgLwwrl,
Je(m';my) = +42x0x, L7 — (Xo + X5)poLwr + 205 Lww)- (7.11)

7.3 Nadherung des Potentials fiir kleine Quarkmassen

Im dritten Schritt wird analog zu den erfolgten Untersuchungen fiir zwei Quarkflavours
aus Kapitel 6 das zu analysierende Potential fiir kleine Quarkmassen gendhert. Unter
der Annahme kleiner Massen ist es moglich, Terme, die quadratisch in den Massen sind,
zu ignorieren. Desweiteren konnen Terme proportional zu pg im Vergleich zu Termen,
die proportional zu p% sind vernachléssigt werden, da sie weit weniger zu dem Potential

"sieche Anhang C
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7.3 Néherung des Potentials fiir kleine Quarkmassen

beitragen. Die Liste (7.11) verkiirzt sich damit zu:

F2
A(Th/) = — 65
2
F2
Ac{m;) = 703(;’
B.(m)) = —4p3Lww,
C(m') = —8p§Lwwe,
Ce(m';m}) = —8p3 Lwwe,
F2
D(,U,) = _70X37
J(m) = +8pg Lwwr,
Jo(m';ml) = +8p% Lyywr. (7.12)
Das Potential nimmt damit die Form an:
F? F? F?
V(a1,b1,c1,a2,b2) = — 70X6(a1 +b1) — TOX/SCl - 70X3(a2 —bo)

— 4LWWp%(a% + b%) — 4LWWp%c%
— 8Lwwepiarby — 8Lywweps(ar + by)er
+ 8Lwwrpiasbs + 8Lwwrpica(as + ba). (7.13)

Es verbleiben damit, neben den Terme, die proportional zu einer Masse (A(m’), A.(m))
und D(u)) sind sechs weitere Terme. Diese weiteren Terme sind abhéngig von den Kon-
stanten Ly w, Lwwe und Lywr (vel. (7.10)). Die Werte der Konstanten W; und W/,
die das effektiv eingefiihrte Gitter charakterisieren, sind nicht bekannt. Sie sollten aber
eine vergleichbare Grofenordnung wie die Gasser-Leutwyler-Konstanten aufweisen, da
sie denselben Renormierungsgruppengleichungen geniigen. Dadurch ist es moglich, die
Grofe ihrer Betrdge abzuschétzen [10]. Zusammen mit den bekannten Konstanten L;
ergibt sich fiir die auftretenden Kombinationen der Konstanten eine ungefdhre Grofse
der Betrage von:

|Lww| < 0,035,  |Lwwe| < 0,012,  |Lwwr| < 0,012. (7.14)

Diese Naherung liefert fiir kleine Massen sehr genaue Werte der Parameter a, b und ¢ im
Minimum. Der Vorteil dieser Ndherung ist die Abhéngigkeit des Potentials von nur noch
drei der neun LE-Konstanten sowie von nur noch neun von fiinfzehn des ungenéherten
Potentials.
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7 Entwicklung eines vereinfachten Potentials fiir drei Quarkflavours
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8 Phasenstruktur des Potentials
bestehend aus den drei
masseabhangigen Termen

In den folgenden Kapiteln wird die Minimastruktur des Potentials (7.13) untersucht.
Das Potential ist abhéngig von den drei Konstanten Lyyw, Lwwe und Lyywr. Da de-
ren Betrag nur aus Abschitzungen bekannt ist, wird die Untersuchung fiir verschiedene
Vorzeichenkombinationen durchgefiihrt. In einem ersten Schritt werden sie aber als ver-
schwindend angenommen; das Potential setzt sich dann lediglich aus den zu A(m/),

Ac(ml) und D(u) gehorigen drei Termen zusammen:

V(al,bl,cl,ag,bg) = A(ﬁz')(al + bl) + Ac(m;)cl + D(,U,)(CLQ — b2) (81)

Fiir dieses Potential ist es moglich, das Verhalten der Parameter a, b und c¢ vollsténdig
analytisch zu ermitteln. Dies wird nicht immer moglich sein, wenn zusétzliche Terme
berticksichtigt werden.

Um eine tibersichtliche Form des Potentials zu erhalten, wir es durch die Konstante
FOQBO normiert. Die drei beriicksichtigten Terme sind damit ausschliefslich proportional
zu den drei betrachteten Massen. Zusétzlich wird, um eine grafische Kontrolle mit dem
Coputeralgebraprogramm Maple der Ergebnisse zu erméglichen, das Potential mit (7.5)
und (7.6) substituiert. Daraus resultiert ein dreidimensionalens Potential, das durch die
Faktoren u, v und w nicht eindeutig ist. Es muss gepriift werden, fiir welche Vorzei-
chen von u, v und w das absolute Minimum gebildet wird. Die Normierung und die
Substitution bringt das Potential auf die Form:

V'(ay,b1,u,0) = —i/ (a1 + b1) — mier + p(az — be)

= —fn'(al + bl) — m;(—um/ 1— a%\/ 1-— b% + albl)
+,u(U\/1 —a? —v\/l—b%). (8.2)

Das gestrichene Potential bezeichnet das normiert Potential. Da diese Normierung auf
die folgenden Ergebnisse keinen Einfluss hat wird der Strich im folgenden weggelassen.
Dieses Potential wird nun auf Spriinge des Minimums untersucht. Ebenfalls werden die
analytischen Losungen der Parameter a; und by sowie die Vorzeichen der Imaginérteile
u, v und w angegeben, soweit dies moglich ist. Der Parameter ¢; bzw. die Werte der
Imaginérteile ergeben sich aus den Nebenbedingungen (7.5) und (7.6).
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8 Phasenstruktur des Potentials bestehend aus den drei masseabhéangigen Termen
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Abbildung 8.1: Phasendiagramm des Potentials (8.3) mit u = 0 (links); Werte der
Parameter ap, by und ¢ fiir m/, = —1 in Bereich B (rechts).

Erlduterung fiir alle Phasendiagramme: durchgezogene Linien bedeuten
unstetige Ubergiinge, gestrichelte Linien beschreiben kontinuierliche
Ubergiinge.

8.1 Betrachtung der Phasenstruktur ohne gedrehte Masse 1

Zunéchst wird das Potential ohne eine Drehung der u- und d-Quarkmasse betrachtet.
Das Potential ist damit lediglich abhéngig von den beiden unterschiedlichen Quarkmas-
sen m’ und m/,. Es besitzt die Form:

V(al,bl,cl) = —fn'(al + bl) — m;cl. (8.3)

Die Verhalten der Minima ist in Abb. 8.1 (links) gezeigt. Es sind drei verschiedene
Bereiche zu erkennen, die mit Ay, As und B bezeichnet sind:

e In den Bereichen A; und A, existiert ein konstantes Minimum, dieses befindet
sich bei:

Aq: U = diag(-1, — 1, 1),
Ay - U = diag(1, 1, 1). (8.4)

Diese beiden Bereiche weisen fiir m/, > 0 eine gemeinsame Grenze bei m’ = 0 auf.
Durch die zwei unterschiedlichen Positionen des Minimums in A; und As springt
dieses beim Uberschreiten dieser Grenze. Der Sprung ist in Abb. 8.1 (links) durch
eine durchgezogene Linie gekennzeichnet.

Fiir negative Werte der s-Quarkmasse existiert zwischen den Gebieten A; und
Ay ein weiteres, mit B bezeichnetes Gebiet. Die Grenze zu den Gebieten A; ist
gegeben durch:

m = —2|m.|. (8.5)

e In Bereich B existieren zwei entartete Minima, die identische Werte der Realteile

a1, by und ¢; aufweisen, deren Imaginérteile jedoch beide Vorzeichen annehmen
konnen (u = v = w = £1). Die Realteile a; und b; besitzen im Minimum die
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8.2 Betrachtung der drei masseabhéngigen Terme einschliefslich der gedrehte Masse

Werte:
,':’*,Ll

a1 = b1 == (86)

2m/,’
Auf der durch Gl. (8.5) beschrieben Grenze besitzen alle Betriige der Realteile den
Wert 1, der Ubergang von B nach A; ist somit stetig, was hier (Abb. 8.1) (wie
auch in den folgenden Abbildungen) durch die gestrichelte Linie verdeutlicht ist.
Beispielhaft ist fiir den Wert m/, = —1 das Verhalten der Parameter a1, by und ¢;
in Abb. 8.1 (rechts) gezeigt.

Im Fall verschwindender u- und d-Quarkmassen existiert keine eindeutige Gestalt der
Feldkonfigurationsmatrix im Minimum, man findet:

mls>0:>01:1: ab=1 = a1 =by,
my<0=c=—1: ab=-1 = a3 =-b. (8.7)

Fiir positive Werte von m/ ist ¢; = 1 und a3 = by. Ist |a1] = |b1| # 1 besitzen die
zugehorigen Imaginéarteile entgegengesetzte Vorzeichen (u = —v). Im Fall negativer s-
Quarkmassen ist a; = —b; und ¢; = —1, die Imaginérteile besitzen fiir |ai| = |b1] # 1
identische Vorzeichen (u = v).

8.2 Betrachtung der Phasenstruktur einschlieBlich der
gedrehten Masse 1

Im zweiten Schritt wird die gedrehte Masse p in die Untersuchung einbezogen.

Das Potential hat mit einer zusétzlichen Abhéngigkeit von der gedrehten Masse die
Form:
V(al,bl,cl,ag,bg) = —fn/(al + bl) — m;cl + M(ag — bg). (8.8)

Zur besseren Ubersicht werden zuniichst zwei Schnittebenen durch den von 7/, m/,
und p aufgespannten Phasenraum des Potentials mit m’ = 0 bzw. m/, = 0 betrach-
tet; anschliefend wird das Verhalten des Potentials im dreidimensionalen Phasenraum
dargestellt.

(@) m' #0, m, =0, u#0

In der Ebene verschwindender s-Quarkmassen m/ = 0 befindet sich das Minimum
fir 4 = 0 abhéngig vom Vorzeichen der u- und d-Quarkmasse fiir m’ > 0 bei U =
diag(1, 1, 1) und fiir m’ < 0 bei U = diag(—1, — 1, 1). Durch den zuséitzlichen Beitrag
einer gedrehten Masse verschiebt sich das Minimum entlang der Achse a; = by. Diese
Parameter weisen dabei im Minimum die Werte

ml

a =b) = ———— 8.9
1 1 m/02+lu2 ( )
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8 Phasenstruktur des Potentials bestehend aus den drei masseabhéangigen Termen

auf. Der Parameter ¢ ist konstant und hat den Wert ¢; = 1. Die Imaginérteile der
Parameter a und b weisen entgegengesetzte Vorzeichen auf. Es gilt:

fiir w>0: u=—-v=—1,

fiir w<0: u=—v=1. (8.10)
Dieses Verhalten der Vorzeichen der Imaginérteile in Abhéngigkeit von der gedrehten
Masse wird im folgenden immer wieder auftreten. Der Sprung, der fiir u = 0 gefunden

wurde, tritt fiir g # 0 nicht linger auf, er weicht einer kontinuierlichen Verschiebung
entsprechend (8.9). Dieses Verhalten ist in Abb. 8.2 gezeigt.

Der Ubergang von positiven zu negativen gedrehten Massen ist ebenfalls stetig.

15 T T

a;, by mit =0
1 ag, by mit p=1 --——-—--
05 /,/’ i
O B =
-0.5 ) i
R |
] | | . |
2 1 0 1 ’
r—ﬁy

Abbildung 8.2: Verhalten der Parameter a; und by fiir m, = 0 bei 4 = 0 und bei p = 1.

(b) @ =0, m, #0, x#0

Fiir die Ebene mit m' = 0 ist das zugehorige Phasendiagramm in Abb. 8.3 (links)
gezeigt. Darin sind drei unterschiedliche Bereiche zu erkennen:

e Gebiete £ und Es:
In Bereich FE; existiert ein einziges Minimum bei U = diag(—i, i, 1). Ein unstetiger
Ubergang zu F» befindet sich bei positiven Werten der Masse m/, fiir u = 0. In
Gebiet Ey existiert ebenfalls ein Minimum, dieses besitzt die Werte U = diag(i, —
i, 1).

o Gebiet D:
Dieses Gebiet ist durch

= —2fm| (8.11)

von Fq bzw. Fy getrennt. In diesem Gebiet existieren zwei entartete Minima, die
beide auf der Achse a; = —by lokalisiert sind. Die Parameter a; und b; besitzen
in diesen Minima die Werte:

Aml? — 2
ap? = —bl? =+ ’ (8.12)

/
2m/;
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8.2 Betrachtung der drei masseabhéngigen Terme einschliefslich der gedrehte Masse
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Abbildung 8.3: Phasendiagramm des linear geniherten Potentials mit m’ = 0 (links);
Werte der Parameter ai, —b} und ¢; fiir m’, = —1 in Bereich B (rechts)

fiir g # 0.

Das Vorzeichen der gedrehten Masse ist dabei entsprechend GI. (8.10) bestimmt.
Beide Minima sind dabei mit einem w = +1 verkniipft. Da sich fiir g = 0 die
Minima bei |a1| = |b1| = 1 befinden, existiert anders als beim Wechsel fiir positive
Werte der s-Quarkmasse kein Sprung der Potentialminima.

Ist in Gebiet D die Masse p = 0 sind die Parameter ¢ und b im Minimum nicht
bestimmt und kénnen wie in Abschnitt 8.2 beliebige Werte a; = —b; annehmen.

(c)m’' #0, mg #0, p7#0

Mit den Kenntnissen des Verhaltens der Minima ohne gedrehte Masse und mit den
Informationen aus den betrachteten Schnittebenen ist es nun moglich, das Verhalten des
dreidimensionalen Phasenraumes darzustellen. Als Ausgangspunkt fiir die Beschreibung
dient dabei das zweidimensionale Phasendiagramm mit p = 0 entsprechend Abb. 8.1
(links). Dort sind drei Gebiete abgebildet, die mit A;, A2 und B bezeichnet sind. In
diesem Abschnitt werden diese Gebiete in p-Richtung erweitert.

e Erweiterung des Gebietes B aus Abb. 8.1 um pu # 0:
Das Gebiet B erweitert sich zu einem dreidimensionalen kegelférmigen Volumen,

das durch die Mantelflachen
p= £/ —m + 4m/?. (8.13)

begrenzt wird. Dabei ist der Kegel auf negative Werte der s-Quarkmasse limi-
tiert. Dieser Kegel ist in Abb. 8.4 dargestellt. Innerhalb des Kegels existieren zwei
entartete Minima, die durch

—,u2fn’ — w3+ \/_MZ(zm/QIuQ o4 — 4,u4m’82 + ,U4 _ Th’Qm;Q)

L2 _
" 20 + ) |
s ,u27”h' + m63 £ \/—u2(2ﬁ1’2p2 Y - 4M4m;2 + pd — 4ﬁ1’2m22)
by =— (8.14)

20 + W,
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8 Phasenstruktur des Potentials bestehend aus den drei masseabhéangigen Termen
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Abbildung 8.4: Aufweitung des Gebietes D aus Abschnitt 8.1 zu einem Kegel.
Dargestellt als dreidimensionaler Korper (links) und durch Schnit-
te fiir verschiedene Werte von p (rechts).

gegeben sind. Analysiert man die absoluten Minima innerhalb des Kegels (8.13)
genauer, finden sich dort zwei weitere kegelformige Gebiete mit den Mantelflichen:

—m’2 — 2m'm/,

W + 2/, (8.15)

Die erste der beiden Gleichungen (8.15) gilt dabei fiir positive u- und d-Quarkmassen,
die zweite fiir negative u- und d-Quarkmassen. Die Mantelflichen der Kegel (8.15)
beriihren sich an der m/-Achse und beriihren den Kegel (8.13) in der m/-m/,-Ebene.
Innerhalb dieser beiden Kegel (8.15) besitzen die Imaginérteile der Parameter a
und b gleiche Vorzeichen, auferhalb von (8.15), jedoch innerhalb von (8.13) entge-
gengesetzte Vorzeichen von ag und by. Dieser Ubergang, der im folgendem hiufiger
vorkommt, ist dennoch nicht mit einem Sprung der Potentialminima verbunden,
da der Parameter, dessen Imaginérteil das Vorzeichen wechselt, dabei den Wert
|1| annimmt und der Imaginirteil somit beim Ubergang verschwindet.

Das Verhalten der Vorzeichen vor und nach dem Ubergang ist in Tabelle 8.1 zusam-
mengefasst. Angegeben sind dort fiir die vier moglichen Vorzeichenkombinationen
von 7/ und p die Vorzeichen der Imaginérteile innerhalb (8.15), der Realteil, der
beim Ubergang den Wert |1| annimmt, und die Vorzeichen der Imaginérteile in-
nerhalb von (8.13) nach dem Ubergang.

e Erweiterung der Gebiete A; und Ay aus Abb. 8.1 um pu # 0:
Auferhalb des Kegel (8.13) existiert unabhéngig von den Massen ein einziges Mi-
nimum, das durch

m/

/le + ,U2 )
beschrieben wird und einem Zusammenschluss der Gebiete A1 und Ay entspricht.
Dieses Minimum wird durch ein Potential mit © = —v gebildet, was in ¢; = 1
resultiert. Es gibt keinen Sprung des Potentialminimums beim Nulldurchgang der

Masse m/ fiir g # 0 bzw. beim Nulldurchgang von p fiir m/ # 0 und m/, > 0. Beim
Ubergang der Minima aus dem Kegel (8.13) zu einem Minimum verhilt sich das

a) — b1 = (8.16)
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8.2 Betrachtung der drei masseabhéngigen Terme einschliefslich der gedrehte Masse

Minimum stetig.

Zusammenfassend ist festzuhalten, dass die m/-Achse mit m/, > 0 und p = 0 die einzige
Linie ist, bei deren Uberschreitung das Potentialminimum ein unstetiges Verhalten zeigt.

Innerhalb (8.15) Innerhalb (8.13)

Massen U | v | w U | v | w
m' >0,u>0|+1 +1 -1 a; — +1 | —1 +1 -1
-1 -1 +1 by — +1 | -1 +1 +1

m' >0, u<0|+1 +1 -1 by — +1 | +1 -1 -1
-1 -1 +1 ap — +1 | +1 -1 +1

m <0, u>0]+1 +1 +1 a; — —1| —1 +1 -1
-1 -1 -1 by — -1 1] -1 +1 -1

m <0, u<0|+1 +1 +1 by — —1 | +1 -1 +1
-1 -1 -1 ap — —1 | +1 +1 -1

Tabelle 8.1: Vorzeichen der Imaginérteile der Parameter a, b und ¢ in Abhéngigkeit
der Vorzeichen der Massen m’ und u, sowie Parameter ay, by, der beim
Ubergang den Betrag |1] besitzt.
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O Phasenstruktur des um zwei
dominante Terme erweiterten
Potentials

Im vorherigen Kapitel wurden lediglich die drei massebehafteten Terme des Potentials
(7.13) in die Untersuchung der Minimastruktur einbezogen; fiir alle weiteren Konstan-
ten wurde der Wert Null gew&hlt. In diesem Kapitel wird die Analyse des Potentials
unter Beriicksichtigung der zu Ly proportionalen Terme erweitert, da diese geméf
der Abschétzung (7.14) den grofsten Beitrag zum Potential liefern sollten. Die andern
beiden Konstanten und die zugehorigen Terme werden weiterhin vernachlassigt. Da die
Abschétzung der Groke der Konstanten lediglich einen Wert fiir deren Betrag liefert, ist
die Untersuchung fiir beide Vorzeichen der Konstanten durchgefiihrt worden.

Das nun zu untersuchende Potential besitzt die Gestalt:

F? F? F?
V(a1,b1,c1,a2,b2) = — 70X6(a1 +b1) — 70)(;01 - 70)(3(@2 —bo)
— 4Lww pg(af +b}) — 4Lww pici (9.1)

Um eine iibersichtliche Form des Potentials zu erhalten, wird es wie in Kapitel 8 mittels
F2 By normiert. Ebenfalls werden {iber (7.5) und (7.6) die Imaginirteile der Parameter
durch ihre Realteile ausgedriickt. Das so normierte und zusétzlich substituierte Potential
hat die Form:

V(ay,by,cr,un) = =it (a1 + by) — mier + plag — b)) — Ko(af + b7) — Koci

= —fn'(al + bl) — m;(—um/ 1— a%\/ 1-— b% + albl)
+u(uy/1 — a2 — vy /1 —b?)
—Ko(a? +b7) — Ko(—uvy/1 — a3y /1 — b2 + a1by)?. (9.2)

Die in der Gleichung auftretende Konstante K ist ein abkiirzende Schreibweise fiir:
I 2

Ko =4L —— ~a”. 9.3

0 ww FOQBO a ( )

Die Konstante K besitzt damit dasselbe Vorzeichen wie die LE-Konstante Ly und
ist proportional zum Quadrat der Gitterkonstanten a.
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

9.1 Phasenstruktur des Potentials mit

Lww > Ound Lwwe = Lww7 =0

9.1.1 Untersuchung ohne gedrehte u- und d-Quarkmassen

In dem hier betrachteten Fall ist das Potential (9.2) nur von den Massen m’ und m/,
abhéngig und hat die Form:

V(al,bl,cl) = —Th/(al + bl) — mlscl — K()(CL% + b%) — K()C%. (94)

Die Gestalt des Phasendiagramms, das in Abb. 9.1 dargestellt ist, dhnelt stark dem des in
Kapitel 8 untersuchten Potentials. Es existieren ebenfalls drei Gebiete mit abweichenden
Minima. Im folgendem werden die Eigenschaften der drei Gebiete genauer betrachtet:

54

Gebiete A1 und As:
Die Gebiete Ay und A, entsprechen denen aus Abb. 8.1 (links). Das Minimum
befindet sich bei:

Ay U =diag(—1, — 1, 1),
Ay : U = diag(1, 1, 1). (9.5)

Fiir positive s-Quarkmassen und fiir m’ = 0 besitzen die Gebiete A; und Ay einen
Ubergang, an dem sich das Minimum unstetig verhilt.

Gebiet B:
Fiir negative Massen m/, befindet sich zwischen den Gebieten A1 und As ein weite-
res Gebiet, das mit B bezeichnet ist. Die Grenze von B mit den anderen Gebieten
ist durch

m' = —|ml] (9.6)
gegeben. In B existieren zwei Minima, die konstante Parameterwerte besitzen.
Diese sind:

B: U =diag(-1,1, — 1), U =diag(l, —1, —1) (9.7)
1 T T
05 | _
AL Az
"E(n 0+ ]
0.5 | B —
-1 1 | 1
-1 -0.5 0 0.5 1
r’ﬁy

Abbildung 9.1: Phasendiagramm des Potentials mit Ky > 0 und p = 0.



9.1 Phasenstruktur des Potentials mit Ly w > 0 und Lywe = Lwwr =0

Anders als in Kapitel 8 verhilt sich das Minimum beim Ubergang zwischen den
Gebieten A; und B unstetig.

9.1.2 Untersuchung mit gedrehten u- und d-Quarkmassen

Im dem hier betrachteten Fall lautet das Potential:

V(al,bl,cl,ag,bg) = —fn'(al + bl) — m;cl + M(ag — bg) — Ko(a% + b%) — KOC%. (9.8)

Im Phasendiagramm werden zunéchst die beiden Schnittebenen mit m’ = 0 (a) und
m) = 0 (b) betrachtet. Anschliefflend wird das dreidimensionale Phasendiagramm in
Abhéngigkeit zu allen drei Massen (c) untersucht.

(@)m' A0, m, =0, u#0

Zunichst wird das Potential in Abhangigkeit von den u- und d-Quarkmassen m’ be-
trachtet, die einen zusétzlichen gedrehten Anteil aufweisen. Fiir u = 0 befand sich das
absolute Minimum bei U = diag(1, 1, 1) fiir m’ > 0 oder bei U = diag(—1, —1, 1)
fiir m’ < 0. Eine zusitzliche gedrehte Masse verlegt das absolute Minimum entlang der
Achse a1 = by mit ¢; = 1 ndher an a; = b; = 0. Es kommt, anders als fiir das Potential
aus Kapitel 8, auch fiir p # 0 zu einem Sprung des Minimums beim Vorzeichenwechsel
der Masse m/. Bei diesem Sprung dndert das Minimum seine Werte von a; = by zu
—a1 = —by. Die Imaginérteile besitzen abhéngig von der gedrehten Masse Vorzeichen
wie in (8.10). Da sich fiir g = 0 das Minimum bei |a1| = |b;| = ¢; = 1 befindet, ist der
Ubergang von positiven zu negativen gedrehten Massen stetig. Fiir grofere Werte der
gedrehten Masse weicht der Sprung des Minimums beim Nulldurchgang der Masse m’
einem stetigem Ubergang. Diese Anderung tritt bei

el = 2K ~ o (9.9)

auf. Fiir m’ = 0 befindet sich das Potentialminimum ab diesem Wert von p bei a1 =

by =0.

(b) m' =0, mg #0, u#0

In diesem Abschnitt wird das Potential mit vollstdndig gedrehten u- und d-Quarkmassen
i betrachtet, m/ nimmt den Wert Null an. Zusétzlich werden s-Quarks mit der Masse
m/, berticksichtigt.

Das zugehorige Phasendiagramm ist in Abb. 9.2 gezeigt. Die dort dargestellten Gebiete
werden im folgendem néher betrachtet:

e Gebiete Dy und Ds:
Fiir g = 0 ergibt sich ein Sprung des absoluten Minimums beim Nulldurchgang
der Masse m/,. Auch fiir u # 0 findet sich ein solcher Sprung, der nun bei negati-
ven Werten der s-Quarkmasse auftritt. In beiden Gebieten Dy und Do existieren
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Abbildung 9.2: Werte der Masse p(m)) beim Sprung der Minima von a; = b; nach
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a1 = —by inklusive Fit

zwel entartete Minima auf der Achse a1 = —b1. In diesen Minima besitzen die
Parameter a; und b; die Koordinaten:

1/2
2 2
g2 g2 L (65 24 <—6m'sK0 + 9K +my ) L (m!, + 3Ko)
1 1 12 | Ky KoSq Ko
(9.10)
Dabei ist Sp eine Abkiirzung fiir:
S = (72m’82K0 — 216m. K2 + 216K3 — 8m,® — 108 Kou>
1/3
—3 (36m}* Ko + 108m} K2 — 4m/* — 27Ku? + 108K)
+12u e Ko
(9.11)

Der dritte Parameter ¢ weicht im allgemeinen von ¢ = ¢; = 1 ab. Die Imaginéarteile
von ag und by weisen Vorzeichen entsprechend (8.10) auf. Fiir jedes der beiden
Minima besitzt cp ein unterschiedliches Vorzeichen. Fir p = 0 ist |ai| = |b1] =
lc1| = 1, was einen stetigen Ubergang des Minimums von D; zu Dy zur Folge hat.

e Gebiete £ und Es:
Aufserhalb von D; existieren zwei weitere Gebiete. Diese sind in Abb. 9.2 mit Ey
und FEs bezeichnet. Innerhalb dieser Gebiete treten je nach Wert von p ein oder
zwei Minima auf. Der kritische Wert von p fiir diesen Ubergang ist derselbe wie
in Gl. (9.9). Ab diesem Wert befindet sich das alleinige Minimum bei a; = b; = 0.
Allgemein besitzen die Koordinaten der Minima die Werte:

AKG — 412

12,172

(9.12)

Der dritte Parameter ¢ hat konstant den Wert ¢; = 1. Die Imaginéarteile as und
by besitzen wie in den Gebieten D; Vorzeichen entsprechend (8.10). Der Ubergang



9.1 Phasenstruktur des Potentials mit Ly w > 0 und Lywe = Lwwr =0

von E; zu Ej ist stetig, da |a1]| = |b1| = |e1| = 1 fiir p = 0 erfiillt ist.

(c) ' #0, m, 0, u#0

In den bisherigen Untersuchungen der beiden zweidimensionalen Schnittebenen sind
sieben verschiedenen Gebiete benannt worden: Ay, Ao, B, D1, Dy, E1 und Es. Fiir die
Untersuchung des dreidimensionalen Phasenraumes werden die drei Gebiete aus Abb.
9.1 in p-Richtung erweitert:

e Erweiterung des Gebietes B aus Abb. 9.1 um u # 0:
Bei der dreidimensionalen Erweiterung in p-Richtung entwickeln sich die Grenzen
der dreieckigen Fliche B aus 9.1 bzw die beiden Flachen D; aus Abb. 9.2 zu
einem kegelférmigen Volumen. Die Mantelfliche des Kegels ist nicht analytisch
bestimmbar, numerisch ermittelte Werte sind in Abb. 9.3 dargestellt. Innerhalb

Abbildung 9.3: Werte der Masse p(/,m’,) beim Sprung der Minima an den Ubergéingen
zwischen den Gebieten B und A; (Abb. 9.1), bzw. D; und E; (Abb. 9.2).

des dort gezeigten Kegels existieren zwei entartete Minima auf der Achse a; = —b;.
Da diese Achse durch eine zusétzliche u- und d-Quarkmasse nicht beeinflusst wird,
konnen fiir m’ = 0 gefundenen Parameterwerte im Minimum (9.10) mit allen dort
getroffenen Aussagen iibernommen werden.

e Erweiterung der Gebiete A; und Ay aus Abb. 9.1 um u # 0:
Auferhalb des kegelférmigen Volumens existiert ein einziges Minimum, das von
den zwei entarteten Minima aus den Gebieten D; durch einen unstetigen Ubergang
auf der Kegelmantelfliche getrennt ist. Dieses eine Minimum befindet sich auf der
Achse a; = b; und ¢; = 1 mit Imaginérteilen entsprechend (8.10). Die Position
des Minimums lasst sich analytisch nicht bestimmen.

Beim Nulldurchgang der Masse m’ wechselt das Vorzeichen der Parameter a; und by
unter der Bedingung, dass sich das System aufserhalb des Kegelvolumens befindet. Un-
abhingig von der Masse des s-Quarks ist dieser Ubergang bis zu dem Wert

el = 2K (9.13)

unstetig. Fiir grokere Werte von p ergibt sich ein stetiger Ubergang.
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

9.2 Phasenstruktur des Potentials mit
LWW < 0 und LWWG = wa7 =0

In diesem Abschnitt wird das erweiterte Potential (9.2) mit der Randbedingung Ky < 0
untersucht. Wegen der Parallelen zu Abschnitt 9.1 erfolgt die Untersuchung der dort
angewandten Methodik.

9.2.1 Untersuchung ohne gedrehte u- und d-Quarkmassen

In Abb. 9.4 ist das Phasendiagramm des Potentials fiir Ky < 0 in der m/-m/-Ebene
gezeigt. Es sind fiinf verschiedene Gebiete mit unterschiedlichen Minima zu erkennen.
Diese Gebiete sind mit A, A, B, C und D bezeichnet. Die Besonderheiten dieser

N B O RPN W A O
T

Abbildung 9.4: Phasendiagramm mit Ky < 0 und g =0

Gebiete werden nachfolgend diskutiert:

e Gebiete A; und As:
In diesen Gebieten befindet sich das Minimum konstant bei den Werten

Aq: U = diag(—1, —1, 1),
Ay: U =diag(l, 1, 1). (9.14)
Die Grenzen zu Gebiet B werden durch

1
ml = iifn’ — 3Ky (9.15)

beschrieben, wiahrend die Grenzen zu Gebiet C' durch
m = +2Kj. (9.16)

gebildet werden.

e Gebiet B:
Innerhalb von Gebiet B sind die Parameter im Minimum von den betrachteten
Massen abhéngig.
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9.2 Phasenstruktur des Potentials mit Lyw < 0 und Lywe = Lwwr =0

In B existieren zwei Minima mit identischen Werten der Realteile a; = b;. Diese

sind:
123 (S5/° 4 (K3 — miLo) 121/%)
al = b1 = 1/3
1251 K,

12m.3
Sy =—KZ | —97 + \/ ;; — 36m.2Ky + 36m. Ko — 12K + 812K

(9.17)

Die Imaginérteile der beiden Minima unterscheiden sich durch ihre Vorzeichen, es
gilt u=v=—w==1fiir M >0und u=v=w= =1 fir M <0 (vgl. Tabelle
8.1). Fiir m’ = 0 ist ¢; = —1. Die Werte der Parameter a, b und ¢ im Minimum
sind in Abb. 9.5 gezeigt.

Fiir m/, > Ky tritt ein Sprung beim Nulldurchgang der Masse m’ auf. Diese ist in
Abb. 9.4 durch den vertikalen Strich bei m’ = 0 verdeutlicht, der in das Gebiet B
hineinragt. Der Ubergang ins Gebiet D ist ebenfalls unstetig und wird in dem zu
D zugeordneten Abschnitt besprochen.

15 T T

I aq, 61 mit u=v=1
ay, by mitu=v=1 ----—--

1

0.5
0

-0.5

r"ﬁv
S U ‘ay, by mitu=v=1 ——— S I ¢, mitu=v=l —
— 1, by Mitu=v= 1 e
1 mg'=-0.3 ay, by mitu=v=1 -----—-

3} o

Abbildung 9.5: Verhalten der Parameter ¢ und b (links) und des Parameters c

(rechts) als Funktion von m/’ fiir m), = —2 (oben) bzw. m/, = —0,3
(unten) .

o Gebiet C:

Die Uberginge von A; zu C sind ebenso durch eine kontinuierliche Anderung der
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

Parameter im Minimum geprigt wie die Ubergéinge von A; nach B. Es existieren
zwel entartete Minima, die identische Werte der Realteile aufweisen. Diese lauten:

~ !

b m
a1 =b = — .
1 1 2K,
Die Imaginérteile ag und by besitzen entgegengesetzte Vorzeichen (u = —v = £1)

und ¢; den Wert 1. In Abb. 9.6 ist das Verhalten von a und b fir u = —v = —1

gezeigt.

Beim Ubergang nach D spaltet sich jedes der Minima in zwei auf, diese liegen

nicht langer auf der Achse a; = b;.

15 F T I ay, bllmit u=-ve-1 L 15 7 I I ICl I
Cy -------
1
05
0 e
0.5
.1 -
1 1 1 1 1
1 0.5 0 0.5 1
I:h’

Abbildung 9.6: Verhalten der Parameter a und b (links) und des Parameters c
(rechts) fiir Ky < 0 und g = 0 als Funktion von m/'.

e Gebiet D:
Fiir kleine Betridge der Massen m/ und m/, mit m/, > 0 und m/ < |m/| existie-
ren vier Minima, jeweils zwei fiir « = —v = +1. Jedes weist dabei ein eigenes

Vorzeichen von ¢y auf. Die Grenze zu Gebiet C bildet die Funktion

1
m; = FOmIQ - KO
Die Grenze zu Gebiet B wird durch m/ = |m/| gebildet. Die Minima verhalten

sich beim Ubergang iiber diese Grenze unstetig.

9.2.2 Untersuchung mit gedrehten u- und d-Quarkmassen

Wie in Abschnitt 9.1.2 werden auch hier zunéchst die beiden Schnittebenen mit m’ =0
(a) und m, = 0 (b) betrachtet. Anschliefend wird das dreidimensionale Phasendia-

gramm in Abhéngigkeit zu allen drei Massen (c) untersucht.

(@) ﬁl,#o,m;:o,p;ﬁo

Abhéngig von den Betrigen der Massen m’ und u treten in der /-y -Ebene sechs
verschiedene Gebiete mit abweichenden Potentialminima auf. Vier dieser Gebiete sind
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9.2 Phasenstruktur des Potentials mit Lyw < 0 und Lywe = Lwwr =0

fiir kleine Werte der betrachteten Massen durch einen Sprung getrennt, fiir grofere
Massen hingegen kontinuierlich verbunden. Das Phasendiagramm dieser Schnittebene

ist in Abb. 9.7 (links) gezeigt.

2 [ T El T T T T 1 ><><><| T T T A|a1 |<F
1 Xy Ab
15+ 08 XXy 1 X i
N
1 0.6 Xty
Uoemmmmeel el N o r Xy —
0.5 _’/’,—’ RENE - ~3 ><><><
0.5 |\ e 7 - X,
\. 0.2 « .
SN D, P
15 b "l‘E -------------------- - 0 Lttt bt by
2
2 | ] ] 1 1 1 1 1 1 1 1

-0.2

0 01 02 03 04 05 06

m’

0.7

Abbildung 9.7: Werte von 7/ (1) beim Ubergang der Minima (links). Gréfe des Sprunges

der Realteile a; und b; bei diesem Ubergang (rechts).

e Gebiete F] und Fy:

Die Gebiete F} und F» sind um den Ursprung (0,0) symmetrisch angeordnet und
weisen jeweils zwei entartete Minima auf. In F} besitzen a; und b; negative, in
Fy hingegen positive Werte, ebenfalls besitzen die Minima in diesen Gebieten
unterschiedliche Vorzeichen von w. Die Gebiete entsprechen fiir 4 = 0 Gebiet B
in Abb. 9.4. Fiir 4 # 0 wandert, je nach Vorzeichen der Imaginérteile u = v =
41, Parameter a; oder b; zu einem Potentialrand. Ein vergleichbares Verhalten
wurde bereits fiir Ko = 0 in Kapitel 8 beschrieben. Die Parameter verhalten sich
entsprechend Tabelle 8.1. Besitzt einer der beiden Parameter a; oder by den Wert
|1], kommt es zu einem Ubergang in die Gebiete Dy oder Dy, was mit dem Wechsel
des Vorzeichens des zu |a1| = 1 oder |b;| = 1 gehorigen Imaginérteils verbunden ist.
Fiir kleine Massen m’ und p findet dieser Vorzeichenwechsel eines der Parameter
mit ay # |1] baw. by # |1| statt. Der Ubergang ist damit unstetig. Die GréRe dieser
Spriinge ist Abhéngigkeit von der Masse m’ zeigt Abb. 9.7 (rechts).

Gebiete Dy und Ds:

In den Gebieten D1 und D existieren demnach ebenfalls zwei entartete Minima,
und die Imaginérteile as und by besitzen unterschiedliche Vorzeichen (vgl. Tabelle
8.1). Die Vorzeichen von u und v werden dabei durch das Vorzeichen der gedreh-
ten Masse festgelegt (vgl.(8.10)). Wird der Betrag der gedrehten Masse weiter
vergrofert, ndhern sich die Minima der Achse a; = by an.

Gebiet E1 und FEs:
Die jeweils zwei Minima aus Dy und Dy vereinen sich auf der Achse a; = by und
c1 =1 (u=—v==1). In diesem Gebiet existiert nur noch ein Minimum.

(b) @ =0, m, #0, u#0

Das Phasendiagramm dieser Schnittebene ist in Abb. 9.8 (links) gezeigt. Es existieren
fiinf Gebiete, die im folgenden naher beschrieben werden:
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- 1fhay o+ E
Ab; X ><><><
X i
0.8,<*%%%***%*%% ><><><
06 * -
n
0.4 N -
02 o 4
+
ol T
1 1 1
2 15 -1 0.5 0

Abbildung 9.8: Werte von m’,(u) beim Ubergang der Minima (links). Gréke des Sprun-

62

ges der Realteile a; und by bei diesem Ubergang (rechts).

e Gebiet F':

In Gebiet F existieren wie im vorherigem Abschnitt zwei entartete Potentialmini-
ma. Die Imaginérteile as und by weisen identische Vorzeichen auf und es existiert
fiir jede Kombination aus v = v &+ 1 ein Minimum der Parameter ¢; = —1. Der
Ubergang zu den Gebieten D; und D, ist dabei immer mit einem Sprung ver-
bunden. Die Grofe des Sprunges der Parameter a; und b; in Abhéngigkeit von
der Masse m/, ist in Abb. 9.8 (rechts) dargestellt. Beim Nulldurchgang der Masse
w findet anders als in den anderen in dieser Schnittebene auftretenden Gebieten
kein Sprung des Minimums statt.

Gebiete Dy und Dsy:
Die Minima in D; kénnen analytisch ermittelt werden und besitzen die Koordina-
ten:

1/2

/ 2 12
a2 o L2 ii 651 N 24 (—6msKo +9K5 +m; ) . 24 (m!, + 3K,)
1 1 12 KO K(]Sl KO

(9.20)
Dabei ist Sp eine Abkiirzung fiir:

S = (72m’82K0 — 216m, K2 + 216K3 — 8m.,* — 108Kou?

1/3
ey \/ —3 (36m,2Ko + 1O8m’SK02[; Am/? — 2TKop? + 108K3) K, .
0

(9.21)

Die Vorzeichen der Imaginérteile entsprechen (8.10) und w ergibt sich aus Ta-
belle 8.1. Die Gebiete Dy und Ds besitzen fir —Ky > m/, > 0 und p = 0 eine
gemeinsame Grenze. Beim Uberschreiten dieser Grenze wechseln die Vorzeichen
der Imaginérteile ihre Vorzeichen und es kommt somit zu einem Sprung des Mi-
nimums.



9.2 Phasenstruktur des Potentials mit Lyw < 0 und Lywe = Lwwr =0

Fir
= +2(m) + Ko) (9.22)

vereinen sich die Minima von Dy bzw. Dy auf der Achse a1 = by mit ¢ = 1.

e Gebiete Fq und Es:
In diesen Gebieten existiert jeweils nur ein Minimum. Dieses befindet sich bei:

Ey,, pn>0: U = diag(—i, i, 1),
Ey, p<O0: U = diag(i, —1, 1). (9.23)

Der Ubergang zwischen dieses beiden Gebieten ist fiir m. > —Kj mit einem
Sprung verbunden.

(c) @' #0, m, £0, 1 #0

Abschliefsend wird das dreidimensionale Phasendiagramm fiir Ky < 0 untersucht. Es
wird mit Hilfe der Schnittebenen fiir u # 0 aus Abb. 9.4 ergédnzt. Die Untersuchung des
Potentials (9.8) erfolgt in diesem Fall durch Ergénzungen zu den bisherigen Betrach-
tungen. Als Ausgangsbasis wird dazu Abb. 9.4 herangezogen:

e Erweiterung der Gebiete A; und Ay aus Abb. 9.4

Es existiert ein einziges Minimum auf der Achse a; = b; und ¢; = 1. In den Abb.
9.7 und 9.8 sind die entsprechenden Gebiete mit £ und Fo bezeichnet. Die ent-
gegengesetzten Vorzeichen der Imaginérteile ag und by ergeben sich geméf (8.10).
Je grofler der Betrag von p ist, desto ndher befindet sich das absolute Minimum
an der Position a1 = by = 0 und ¢; = 1. Da fiir g = 0 |a1] = [b1| = [e1] = 1 gilt, ist
der Nulldurchgang der gedrehten Masse mit einem stetigen Ubergang verkniipft.
Auch beim Vorzeichenwechsel der s-Quarkmasse ist das Verhalten stetig.

e Erweiterung des Gebietes C aus Abb. 9.4
Wie bei der Erweiterung der Gebiete A; und As in p-Richtung befindet sich das
einzige Minimum auf der Achse a; = b; mit ¢; = 1. Da fiir p = 0 |a1| = |b1]| =
|01| # 1 gilt, ist der Nulldurchgang der gedrehten Masse mit einem unstetigen
Ubergang verkniipft. Alle anderen Aussagen kénnen von dem vorangegangenen
Punkt iibernommen werden. Zusitzlich ist der Ubergang von positiven zu negati-
ven u- und d-Quarkmassen stetig.

e Erweiterung des Gebietes B aus Abb. 9.4 Das bei der Erweiterung des Gebietes B
in p-Richtung entstehende Volumen ist in Abb. 9.9 (links) gezeigt. Die Form dieses
Volumens &hnelt zwei miteinander verschmolzenen Kegeln. In den Schnitten fiir
m’ = 0 bzw. m, = 0 (Abb. 9.7 und Abb. 9.8) wurde das fiir u # 0 entstehende
Gebiet mit F' bezeichnet.

Innerhalb dieses Volumens existieren zwei entartete Minima, deren Imaginérteile
as, by identische Vorzeichen aufweisen. Das Vorzeichen von ¢y verhélt sich gemafs
Tabelle 8.1. Wird der Betrag von p vergrofert, kommt es zu einem Vorzeichen-
wechsel eines der Imaginirteile (v = —v). Fiir kleine Betrdge der Masse m’ ist
dieser Ubergang unstetig (vgl. Abb. 9.8), fiir grokere Betriige stetig, da der Real-
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9 Phasenstruktur des um zwei dominante Terme erweiterten Potentials

teil des zugehorigen Parameters beim Ubergang den Wert |1 annimmt. Die GroRe
dieses Sprunges in Abhéingigkeit von 7/ und m/ ist in Abb. 9.10 gezeigt.

Fiir 1 = 0 existiert ein Sprung beim Nulldurchgang der Masse m/ fiir 0 > mg > K.
Dieser Sprung tritt fiir 4 # 0 und fiir 0 > mg > Ky in dem hier betrachteten Gebiet
ebenfalls auf.

Abbildung 9.9:

Grenzflache des Vorzeichenwechsels eines Imaginarteils fiir Ko < 0;

teilweise ist der Vorzeichenwechsel mit einem Sprung verbunden
(links) und Grenzfliiche des Uberganges von zwei zu einem Mini-

mum fiir Ky < 0 (rechts).
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Abbildung 9.10: Gréke der Spriinge Aay (links) und Ab; (rechts) beim Ubergnag

e Erweiterung von D aus Abb. 9.4

von Gebiet F; nach D; abhingig von m/ fiir verschiedene Werte
/
von m.

Der in Abb. 9.9 (links) gezeigte “Doppelkegel” wird durch einen weiteren “Doppel-
kegel” mit ebenfalls zwei entarteten Minima umschlossen. Dieser ist fiir ;1 = 0 mit
D bezeichnet und ist in Abb. 9.9 (rechts) dargestellt.

Beim Ubergang von diesem Gebiet in die Gebiete E; oder E5 findet kein Sprung
des Minimums statt. Die zwel in D existierenden Minima laufen auf der Achse
a1 = by und ¢ = 1 zusammen.
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10 Phasenstruktur unter
Beriicksichtigung aller neun
Potentialterme

Die Phasenstruktur des in Kapitel 9 untersuchten Potentials stellt bereits eine gute
Approximation des Potentials (7.7) fiir kleine Massen dar. Um diese Ndherung weiter
zu verbessern, werden nun alle unter (7.12) aufgelisteten Koeffizienten des Potentials
fiir die Analyse der Phasenstruktur berticksichtigt. Dies fiihrt gegeniiber dem Potential
(9.2) zu vier zusétzlichen Termen.

Wie in den vorangegangenen Kapiteln wird dieses Potential mit Fy By normiert und die
Imaginarteile der Parameter iiber die Realteile ausgedriickt. Das so gewonnene Potential
lautet:

V(ay,bruv,w) = —m'(a; + by) — mlh(—uvy /1 — a%m + a1by)
+ p(uy/1 - af —UM)
— Ko(a? + b3) — Ko(—uvy/1 — a%m +arby)?
—2Kja1b; — 2K (a1 + by)(—uvy /1 — a%ﬂ—i— aiby)
+ 2Kouvy/1 —a%ﬂ

+2K2w\/1—(—uv\/l—a%\/l—b%+a1b1)2(u\/1—a%—|—v\/1—b%)

(10.1)

Zusétzlich zur Konstanten Ky aus Gl. (9.3) ergeben sich zwei weitere Konstanten, die
von Ly we und Lyyw7 abhéngen. Diese Konstanten besitzen die Form:

2 2

Po Po
—_— Ko =4L . 10.2
FZBy’ 2 WW7 F2B, (10.2)

K1 =4Lwws

Anders als in der weniger genauen Approximation in Kapitel 9, in dem nur Ky zu
berticksichtigen war, ist hier das Verhéltnis der Konstanten von Bedeutung. Fiir die
Konstanten werden Werte entsprechend (7.14) verwendet. Fiir eine vollstindige Unter-
suchung miissen damit fiir jede Konstante beide Vorzeichen beriicksichtigt werden.
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10 Phasenstruktur unter Beriicksichtigung aller neun Potentialterme

10.1 Phasenstruktur des Potentials mit
LWW >0 und ‘LWWGl = ‘wa7| 7é 0

Im vorherigen Kapitel wurde abhéngig vom Vorzeichen der Konstante Ky zwei unter-
schiedliche Szenarien gefunden. Da die vier in diesem Kapitel zusétzlich betrachteten
Terme wegen ihrer Grofe lediglich Korrekturen zu dem dort gefundenem Verhalten lie-
fern, wird auch in diesem Kapitel die Betrachtung fiir beide Vorzeichen von Ky getrennt
durchgefiihrt. Die Bezeichnungen der Gebiete in diesem Kapitel decken sich mit de-
nen aus Kapitel 9. Gebiete mit gleichen Bezeichnungen in beiden Kapiteln weisen auch
gleiche Eigenschaften auf.

Fiir jedes Vorzeichen von Ky werden dabei alle Vorzeichenkombinationen der Konstanten
K4 und K9 betrachtet.

10.1.1 Untersuchung ohne Drehung der u- und d-Quarkmasse

Werden sowohl u- und d-Quarks wie auch s-Quarks als massiv angenommen, gibt es fiir
alle moglichen Vorzeichenkombinationen Gemeinsamkeiten. Es finden sich, wie aus Abb.

1 1 T T T
05 F . os L |
0 - -
05 F - oFr A T
£ a1t . £ 05 .
1.5 | . 4L |
2+ .
s | | 15 F c -
-3

Abbildung 10.1: Verhalten der Minima in der m/-m/-Ebene fir Ky > 0, K1 > 0 und
Ky > 0 (links) und fir Ky > 0, K7 > 0 und K < 0 (rechts).
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Abbildung 10.2: Verhalten der Minima in der m/-m/-Ebene fiir Ky > 0, K1 < 0 und
K5 > 0 (links) und fir Ky > 0, K7 < 0 und K < 0 (rechts).
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10.1 und 10.2 ersichtlich, vier verschiedene Gebiete, die mit Ay, A2, B und C' bezeichnet
sind und sich durch die Lage des Minimums unterscheiden.
o A;: U =diag(—1, — 1, 1)
o Ay U = diag(1, 1, 1)
o B: U =diag(—-1, —1,1), U =diag(l, —1, —1)
o (- ap=bi,c u=v=w==1
In C existieren zwei Minima mit identischen Werten von a; = b;. Die Minima

unterscheiden sich durch die Vorzeichen der Imaginérteile.

Diese vier Gebiete sind samtlich durch Spriinge getrennt. Gebiet C' tritt dabei lediglich
bei negativer Konstante Ky auf. Im folgendem werden die einzelnen Vorzeichenkombi-
nationen separat betrachtet:

Ko >0, K; >0, Ky >0 (Abb. 10.1 (links)): Sind alle Konstanten grofer Null, be-
sitzt das Phasendiagramm eine dhnliche Form wie in der vorrausgegangenen Approxi-
mation fiir Ky > 0 in Kapitel 9, die /m/- und die m/-Achse sind lediglich um —2K;
verschoben.

Fiir diese Kombination der Vorzeichen treten lediglich die drei Gebiete Ay, A2 und B
auf. Die Grenze zwischen A; und Ay ist fiir m/, > —2K; bei m’ = —2K;.

Ist my < —2K7, weisen die Gebiete A7 und As eine Grenze zu B auf. Diese Grenze ist
gegeben durch m/, = m’ und m), = m’ — 2K;.

Ko > 0, K; > 0, K2 < 0 (Abb. 10.1 (rechts)): Fiir diese Vorzeichenkombination tritt
zusatzlich das Gebiet C auf.

Die Grenzen zwischen den Gebieten A; und B bzw. C' konnen nicht analytisch ermittelt
werden und wurden daher numerisch bestimmt.

Die Gebiete Ay und Ay besitzen eine gemeinsame Grenze fiir m/, > 0 und m’ = —2Kj.

Fiir s-Quarkmassen von 0 bis —0,9 besitzt das Gebiet Ay eine Grenze zu Gebiet C, fiir
m), < —0,9 eine Grenze zu Gebiet B. A; grenzt fiir alle Werte von m/, < 0 ausschlieflich
an Gebiet C.

Ko > 0, Ky <0, K2 > 0 (Abb. 10.2 (links)): Das Verhalten éhnelt deutlich dem Fall
mit Ky > 0, K1 > 0, Ko > 0. Es besteht lediglich ein Unterschied durch das entgegenge-
setzte Vorzeichen der Konstanten K; und einer daraus resultierenden entgegengesetzten
Verschiebung der m/- und der m/-Achse.

Ko >0, K; <0, Kz <0 (Abb. 10.2 (rechts)): Es treten vier unterschiedliche Ge-
biete auf. Die Phasengrenzen besitzen bei m’ = ms = —2K einen gemeinsamen Punkt.

Fiir die hier betrachtet Kombination der Vorzeichen grenzt A; neben A, ausschliefslich
an B, diese nichtlineare Grenze konnte analytisch nicht ermittelt werden.

Die Gebiete A1 und Aj beriihren sich fiir m/, > —2K; bei m' = —2Kj.
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Ajg besitzt eine Grenze zu C, diese ist analytisch gegeben durch:

!/

ml, = /. (10.3)

10.1.2 Untersuchung mit Drehung der u- und d-Quarkmasse

Anders als in den Kapiteln 8 und 9 sind hier keine dreidimensionalen Phasendiagramme
erstellt worden. Diese sind entweder dquivalent zu denen aus Kapitel 9 oder weisen ein so
komplizierte Struktur auf, dass sie zu uniibersichtlich wéren. Daher wird das Verhalten
der dreidimensionalen Phasendiagramme ausschlieftlich mit Hilfe von Schnittebenen des
Phasenraumes erléutert.

Ko >0, K1 0, K2 > 0: Fiir diese Kombination aus Vorzeichen tritt kein neues Ver-
halten der Potentialminima gegeniiber Abschnitt 9.1.2 auf. Das Phasendiagramm ist le-
diglich verschoben und zwei unterschiedliche zweidimensionale Schnitte sind in den Abb.
10.3 und 10.4 gezeigt. Es existiert, erweitert man Abb. 10.3 und 10.4 in die jeweils feh-

Abbildung 10.3: Verhalten der Minima in der m/-u-Ebene fir Ky > 0, K; < 0 und

Ky > 0.
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Abbildung 10.4: Verhalten der Minima in der m/-u-Ebene fir Ky > 0, K7 > 0 und
Ky > 0 (links) und fir Ky > 0, K7 < 0 und K > 0 (rechts).
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lende Richtung, ein kegelformiges Gebiet mit zwei entarteten Minima. Die Mantelflache
des Kegels stellt eine Grenze dar, an der sich die Minima unstetig verhalten.

Aufserhalb des Kegels, was den Gebieten FE; entspricht, existiert ein Minimum mit a1 =
b1 und c¢; = 1. Dieses springt bei m/ = —2K fiir den Fall, dass

’Mc’ < 2Ky + 2K — 2K, (104)

ist, von positiven zu negativen Werte der Parameter a; = b;. Haben die Konstanten K;
und K> identische Werte, ergibt sich daraus der Wert fiir p. nach Gleichung (9.9) aus
Abschnitt 9.1.2.

Ko >0, K; 0, Ky <0: Fiir g = 0 existieren in der m/-m/-Ebene Abb. 10.1 (rechts)
und 10.2 (rechts) vier verschiedene Gebiete. Wird zusétzlich die gedrehte Masse p be-
trachtet, ergibt sich erneut ein kegelférmiges Gebiet mit zwei entarteten Minima. In-
nerhalb dieses kegelférmigen Gebietes, existieren fiir einige Werte der Massen stetige
Ubergiinge, die mit Vorzeichenwechsel der Imaginirteile verbunden sind. Die Gebiete,
zwischen denen dieser Ubergang stattfindet, sind in den Abb. 10.5, 10.6 und 10.7 mit
F und D; bezeichnet. Das Verhalten entspricht dem in Abschnitt 9.2 beschriebenen
Ubergang von F nach D; (vgl. Gl. (8.10) und Tabelle 8.1). Aus den Abbildungen 10.5
und 10.6 ist ersichtlich, dass sich fiir kleinere Werte der s-Quarkmassen die Bereiche D;
vergrofern. Aus Abb. 10.6 (rechts) ist ersichtlich, dass die Gebiete D; nicht fiir belie-
big grofse Werte das Gebiet F' umschliefsen. Besitzen die Gebiete D; eine gemeinsame
Grenze, ist das Verhalten der Minima beim Ubergang stetig.

Fiir 1 = 0 existierte ein Sprung des Minimums beim Ubergang von B nach C (vgl.
Abb. 10.1 (rechts) und 10.2 (rechts)). Dieses nichtstetige Verhalten tritt auch fiir kleine
Werte von p # 0 in dem nun mit £’ benannten Gebiet auf, wie aus Abb. 10.5 und 10.6
ersichtlich ist.

Aufserhalb des kegelférmigen Gebietes existiert ein einziges Minimum mit a1 = by,
¢1 = 1 und Vorzeichen der Imaginérteile entsprechend (8.10). In den Diagrammen aus
Abb. 10.5, 10.6 und 10.7 sind diese Gebiete mit E; bezeichnet. Der Ubergang von den
zwel Minima innerhalb des Kegels zu dem einen Minimum aufserhalb des Kegels ist
unstetig.

In den Gebieten FE; existiert ein Sprung bei m’ = —2K. Dieser tritt bis
’Mc’ = 2Ky +2K7 — 2K> (105)

auf und ist in Abb. 10.6 (links) zu erkennen. In sdmtlichen anderen Abbildungen ist
dieser Sprung nicht dargestellt, da u. fiir diese Massewerte innerhalb des Kegels und
der zugehodrigen Gebieten F' oder D; liegt und somit ein Sprung nicht stattfindet.
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10 Phasenstruktur unter Beriicksichtigung aller neun Potentialterme

Abbildung 10.5: Verhalten der Minima fiir K¢ > 0, K1 < 0 und K5 < 0 bei verschiede-
nen Werten von m/,.
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Abbildung 10.6: Verhalten der Minima fiir Ky > 0, K1 > 0 und K5 < 0 bei verschiede-
nen Werten von m,.
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Abbildung 10.7: Verhalten der Minima in der m/-u-Ebene fir Ky > 0, K; > 0 und
Ky < 0 (links) und Ky > 0, K1 < 0 und Ky < 0 (rechts).

10.2 Phasenstruktur des Potentials mit
Lww < 0 und ‘LWW6| = ‘LWW7| ;é 0

Die im vorherigem Abschnitt mit Ky > 0 durchgefiihrte Untersuchung wird im folgen-
dem mit Ky < 0 wiederholt. Es ergeben sich @hnliche Resultate wie bei der mit Ky < 0
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und K7 = K7 = 0in Abschnitt 9.2 durchgefiihrten Untersuchung. Durch die Berticksich-
tigung der Konstanten K; und Ky kommt es jedoch zu Verschiebungen der in Abschnitt
9.2 dargestellten Ergebnisse.

10.2.1 Untersuchung ohne Drehung der u- und d-Quarkmasse

Wird die m/-m/-Ebene betrachtet, ergeben sich fiir alle moglichen Vorzeichenkombina-
tionen der Konstanten dhnliche Gebiete. Sie sind in Abb. 10.8 mit A;, Ay, By, By, C
und D bezeichnet. Deren Eigenschaften werden im folgenden zunéchst beschrieben:

e Im Gebiet A; befindet sich das Minimum bei U = diag(—1, — 1, 1) in Ay bei
U = diag(1, 1, 1). Der Ubergang von den Gebieten A; und As in die benachbarten
Gebiete B; und C ist immer stetig.

e Im Gebiet Bj besitzen die Parameter a1 und b, negative Werte, die Imaginarteile
besitzen die Vorzeichen: w = v = w = +1. Beim nichtstetigen Ubergang in das
Gebiet By springen die Realteile a; und by zu positiven Werten und die Imagi-
nérteile der Parameter besitzen die Vorzeichen u = v = —w = £1. Es existieren
immer zwel entartete Minima.

e Zusitzlich existieren mit C' und D zwei weitere Gebiete, die sich durch die Anzahl
der Minima unterscheiden. In C' existiert ein Minimum mit a1 = b und ¢; = 1,
in D gibt es hingegen zwei Minima. In beiden Gebieten sind die Vorzeichen der
Imaginirteile der Parameter a und b entgegengesetzt (v = —v). Der Ubergang von
C nach D ist stetig.

Im folgenden werden die moglichen Vorzeichenkombinationen getrennt erdrtert:

Ko <0, Ky >0, Ko >0: Das Phasendiagramm fiir diese Kombination von Vorzei-
chen ist in Abb. 10.8 (oben links) gezeigt.

In den Gebieten B; und B befindet sich die absoluten Minima auf der Achse a1 = b; und
somit unterscheiden sich die Minima lediglich durch die Vorzeichen ihre Imaginé&rteile.

Es kommt zu einem Sprung der Potentialminima von positiven zu negativen Werten von
a1 = by, dieser Sprung erfolgt an der Grenze zwischen B und C bzw. an der Grenze
zwischen B; und By. Zwischen D, in dem zwei Minima existiert und Bs, in dem ein
Minimum vorhanden ist, kommt es ebenfalls zu einem Sprung.

Ko <0, Ky >0, Ko <0: Das Phasendiagramm fiir diese Kombination von Vorzei-
chen ist in Abb. 10.8 (oben rechts) gezeigt.

In den Gebieten B; und Bsy befindet sich das absolute Minimum auf der Achse a1 =
b1. Somit unterscheiden sich diese Minima ebenfalls nur durch ihre Imaginéarteile. Es
kommt zu einem Sprung von positiven zu negativen Werten der Parameter a1 = by
beim Ubergang von Bj nach By bzw. nach As.

Da es hier anders als in den iibrigen Féllen keine Gebiete C' oder D gibt und damit Ay
und As eine gemeinsame Grenze aufweisen, kommt es fiir alle Werte der Masse m/, zu
einem Sprung des Minimums (Ubergang von A; nach As, von By nach As und Bj nach
By).
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Abbildung 10.8: Verhalten der Minima in der m/-m/,-Ebene fiir Ky < 0 und verschiedene
Vorzeichenkombinationen von K7 und Ks.

Ko <0, Ky <0, Ke >0: Das Phasendiagramm fiir diese Kombination von Vorzei-
chen ist in Abb. 10.8 (unten links) gezeigt.

Ein Sprung des Minimums existiert zwischen By und Bj sowie zwischen By und D.

Anders als in allen anderen Féllen existiert kein Sprung zwischen By und D. Dies ist
mit einer Aufspaltung der Minima in By verkniipft, die ebenfalls nur fiir die an dieser
Stelle betrachtete Kombination der Vorzeichen auftritt.

Ko <0, Ky <0, Ko <0: Das Phasendiagramm fiir diese Kombination von Vorzei-
chen ist in Abb. 10.8 (unten rechts) gezeigt.

In den Gebieten By und Bs befindet sich das absolute Minimum auf der Achse a1 = b;.
Der Sprung von positiven zu negativen Werten von a; und by bildet die Grenze zwischen
Bs und Bj, By und D und zwischen By und C.

Der Ubergang der Minima in Gebiet B; zu denen in Gebiet D ist ebenfalls mit einem
Sprung verbunden.

10.2.2 Untersuchung mit Drehung der u- und d-Quarkmasse

Wie im Fall fiir Ky > 0 wird hier das Verhalten im dreidimensionalen Phasenraum
mit Hilfe von Schnitten erldutert. In diesen Schnittflachen treten dhnliche Gebiete wie
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in Abschnitt 9.2.2 auf, das Verhalten der Minima des dort und des hier betrachteten
Potentials dhnelt sich stark.

Die Bezeichnungen der Gebiete aus Abschnitt 9.2.2 sind iibernommen worden. Wie
bereits dort gefunden existiert auch fiir Ky < 0 ein kegelférmiger Bereich, der vom
Rest des Phasenraumes nicht durch einen Sprung des Minimums getrennt wird, sondern
durch einen kontinuierlichen Ubergang gekennzeichnet ist.

Die fiir Ky < 0 und |Lwwse| = |Lwwr| # 0 auftretenden Gebiete werden zunéchst kurz
erldutert:

e Die Gebiete Fq und Fs der nachfolgenden Abbildungen 10.10 bis 10.16 entsprechen
der Erweiterung der Gebiete A; und As aus Abb. 10.8 fiir eine zusédtzliche Masse
. Als Folge verschiebt sich das Minimum entlang der Achse a; = b; mit ¢; = 0.
Die Vorzeichen der Imaginérteile der Parameter ag und by folgen dabei Gl. (8.10).

e Werden die Gebiete B; fiir p # 0 betrachtet, entstehen Gebiete F;. Dabei befinden
sich in F; die Minima bei negativen Werten der Parameter a; = b; und die Ima-
gindrteile besitzen die Vorzeichen v = v = w = £1. In F5 sind die Werte der Pa-
rameter positiv und die Imaginérteile besitzen die Vorzeichen v = v = —w = +1.
Der Ubergang zwischen den Gebieten Fj ist anders als bei dem in Abschnitt 9.2.2
beschriebenen Fall immer mit einem Sprung verbunden.

e Zusétzlich treten noch mit D; bezeichnete Gebiete auf. Diese weisen, wie die Ge-
biete Ey und Fs, Minima mit identischen Vorzeichen der Imaginérteile und Ab-
hiingigkeiten von der Masse p (vgl. Gl. (8.10) auf. Existiert ein Ubergang von Dy
zu Ds, ist dieser immer mit einem Sprung verbunden.

Nachfolgend werden alle Vorzeichenkombinationen von K; und Ky separat diskutiert:
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10 Phasenstruktur unter Beriicksichtigung aller neun Potentialterme

Ko <0, Ky >0, Ko > 0: Fiir diese Kombination sind in den Abb. 10.9 und 10.10
verschiedene Schnitte des dreidimensionalen Phasenraums gezeigt.

In Abb. 10.9 ist zu erkennen, wie die Gebiete D7 und Dy das Gebiet F; umschliefsen, das
aus By fiir p # 0 hervorgeht. Fiir die in diesem Schnitt betrachte u- und d-Quarkmasse
(' = 0) ist der Ubergang von Gebiet I in die Gebiete D; immer mit einem Sprung der
Minima verbunden. Dieser Sprung ist auch in Abb. 10.10 (links) zu erkennen.

Auch wird in Abb. 10.10 (links) deutlich, dass, wenn sich die Gebiete F} und F beriih-
ren, die Minima sich bei diesem Ubergang unstetig verhalten.

In Abb. 10.10 (rechts) ist zu erkennen, dass, besteht eine gemeinsame Grenze zwischen
F} und F;, die Minima sich an dieser Grenze unstetig verhalten. Diese Grenze tritt fiir
geniigend grofe s-Quarkmassen auf.

Der Ubergang zwischen D; und Dy ist ebenfalls mit einem Sprung der Minima verbun-
den. Alle weiteren Uberginge sind stetig.

Ky >0
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Abbildung 10.10: Verhalten der Minima fiir m/, = 0,0 (links) und m} = 0,5 (rechts) fiir
Ky <0, Ky >0und Ky > 0.
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Ko <0, Ky >0, Ko <0: Bei dieser Kombination existieren fiir 4 = 0 keine Gebiete
D oder C. Wie aus Abb. 10.11 ersichtlich treten fiir ;1 # 0 sehr wohl Gebiete D; auf.
Diese umschliefen F; und Fs erst fiir grofere Werte der gedrehten Masse und wachsen
fur kleinere Werte der Masse m/.

Wie in Abb. 10.12 zu erkennen kommt es auch fiir diese Vorzeichenkombination zu
einem Sprung der Parameter a; und b; von positiven zu negativen Werten innerhalb des
kegelformigen Bereichs in den Gebieten F; und D;. Die Linie des Uberganges entspricht
dabei einem Teil der Grenze von Fj.

Beriihren sich die Gebiete F; und die Fy umschliefsenden Gebiete D;, kommt es ebenfalls
zu einem Sprung der Potentialminima.

Es existieren ebenfalls Massenwerte, bei denen sich, wie in Abb. 10.11und 10.12 (links)
zu sehen, F; und E; beriihren. Der beim Uberschreiten dieser Grenze stattfindende
Ubergang ist ebenso unstetig.
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Abbildung 10.11: Verhalten der Minima in der m/-u-Ebene fir Ky < 0, K; > 0 und

Ko <0
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Abbildung 10.12: Verhalten der Minima fiir m/, = 0,0 (links) und m/, = 2,5 (rechts) fiir
Ky <0, K1 >0und Ky <0.
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Ko <0, Ky <0, Ke > 0: Fiir diese Vorzeichenkombination tritt ein wesentlicher Un-
terschied zu den bisher betrachteten Fallen auf. Die zugehorigen Abbildungen sind Abb.
10.13 und 10.14.

Durch die negative Konstante K; wird das Phasendiagramm “gespiegelt”. Die Gebiete
Fy und F, vertauschen ihre Grofenverhéltnisse. Dies ist mit einer Verdnderung des
Uberganges von positiven zu negativen Werten der Parameter a; und b; verbunden.
Dieser Ubergang folgt nun der Form von Gebiet F.

Bis auf diesen Unterschied kénnen alle fiir Ko < 0, K7 > 0, Ko > 0 getroffenen Aussagen
flir diese Kombination aus Vorzeichen iibernommen werden.

Die zu den hier betrachteten Vorzeichen zugehérigen Abbildungen sind Abb. 10.13 und
10.14.
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Abbildung 10.14: Verhalten der Minima fiir m/, = 0,0 (links) und m} = —1 (rechts) fiir
Ky <0, K1 <0und Ky > 0.

76



10.2 Phasenstruktur des Potentials mit Lyw < 0 und |Lwwe| = |[Lww7| # 0

Ko <0, K; <0, Ky <0: In dieser Kombination der Vorzeichen tritt kein neues Ver-
halten der unstetigen Ubergiinge des Potentials gegeniiber Ky < 0, K1 < 0, K5 > 0 auf.
Alle unstetigen Ubergéinge entsprechen den dort gefundenen. Es treten lediglich leichte
Verschiebungen auf, so ist beispielweise der Bereich D fiir y = 0 wesentlich kleiner.

Das Verhalten der einzelnen Bereiche und ihrer Ubergéinge ist in den Abb. 10.15 und
10.16 dargestellt.

Abbildung 10.15: Verhalten der Minima in der m/-u-Ebene fir Ky < 0, K; < 0 und

Ko <0
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Abbildung 10.16: Verhalten der Minima fiir m/, = 0,0 (links) und m/, = 1,2 (rechts) fiir
Ky <0, K1 <0und K5 <0.

Zusammenfassen ist festzustellen, dass bis auf Ky < 0, K7 > 0, Ko < 0, wo die Gebiete
D und C fir g = 0 nicht auftreten, kaum Verdnderungen zu Abschnitt 9.2.2 existie-
ren. Ein Unterschied, der auf die Verschiebung des Phasenraums durch die zusétzlichen
Terme zuriickzufiihren ist, ist, dass lediglich ein F} oder F5 teilweise umschliefenden
Ubergang auftritt. Damit ist das Phasendiagramm nicht linger Spiegelsymmetrisch zur
Ebene mit m’ =0 (vgl. 9.7 (links)).
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11 Zusammenfassung und Ausblick

Die Arbeit hat die Ermittlung der Minimastruktur des Potentials der chiralen Stérungs-
theorie fiir Wilson-Twisted-Mass-QCD zum Thema. Von besonderem Interesse waren
dabei Spriinge des Potentialminimums, die bei kontinuierlicher Variation der Massen
auftreten. Dabei wird neben masseentarteten u- und d-Quarks ein zuséatzliches s-Quarks
betrachtet, so dass insgesamt drei Quarkflavours beriicksichtigt wurden.

Nach einer kurzen Einfiihrung in das Thema im ersten Kapitel wurden im zweiten Ka-
pitel einige Grundlagen der QCD sowie deren beschrieben. Diese chiralen Symmetrien
und ihre spontane und explizite Brechung waren die Voraussetzungen, um im dritten
Kapitel die Lagrangedichte der chiralen Stérungstheorie fiir QCD zu konstruieren. Da
die Minimastruktur von Gitter-QCD betrachtet worden ist, musste die Lagrangedichte
der chiralen Stérungstheorie fiir QCD in eine effektiven Lagrangedichte fiir eine gitter-
regularisierte Theorie {iberfithrt werden. Dazu wurde in Kapitel vier neben der Wilson-
Wirkung die Symanzik-Wirkung vorgestellt und damit die nétigen Modifikationen an
der Lagrangedichte vorgenommen. Ein zusétzliche hier beriicksichtigte Technik ist die
Twisted-Mass-QCD. Dabei wird ein Flavourdublett, hier das des u- und d-Quark, axial
gedreht. Das bewirkt eine automatische Verbesserung der in Gitter-QCD gewonnenen
Ergebnisse bei mazimal twist um O(a). Wird die tmQCD in der Lagrangedichte der
chiralen Stérungstheorie beriicksichtigt, kommt es neben der Abhéngigkeit der Lagran-
gedichte und damit des Potentialminimums von der u-, d- und der s-Quarkmasse zu
der zusétzlichen Abhéngigkeit von dem gedrehten Anteil der u- und der d-Quarkmasse.
In Kapitel sechs wurde als Ausgangspunkt fiir die eigene Analyse eine Untersuchung
der Phasenstruktur fiir Zwei-Flavour-Wilson-QCD in chiraler Stérungstheorie fiir zwei
entartete Quarkflavours mit Twisted-Mass wiedergegeben. Eine solche Untersuchung fiir
drei Quarkflavours wurde in den anschlieffenden Kapiteln ausfiihrlich dargestellt.

Im siebten Kapitel wurde die Lagrangedichte der chiralen Storungstheorie fiir Drei-
Flavour-Twisted-Mass-Gitter-QCD auf eine Form gebracht, die fiir die Analyse der Mi-
nimastruktur geeignet war. Dazu wurde eine Parametrisierung der Feldkonfigurations-
matrix gewdhlt, in der das Potential eine Abhéngigkeit von drei im Allgemeinem kom-
plexen Parametern aufwies. Durch Nebenbedingungen wurden die drei Parameter allein
iiber ihre Realteile, ergénzt durch die drei Faktoren w, v und w, die die Werte +1 anneh-
men konnten und die Vorzeichen der Imaginarteile charakterisieren, ausgedriickt. Dies
ermoglichte neben analytischen und numerischen Methoden eine zusétzliche grafische
Auswertung der Minimastruktur. Neben dieser Substitution der Imaginérteile durch
ihre Realteile sind zusétzlich die Quarkmassen um die Grofenordnung O(a) verscho-
ben worden, was zu einem “natiirlichen” Verhalten des Potentials fiihrte: Das Potential
wechselt sein Vorzeichen, wenn die Massen ihr Vorzeichen wechseln. Diese Verschiebung
resultierte aus der Gitteranpassung der chiralen Storungstheorie. In Kapitel sieben wur-
de ebenfalls das Potential fiir kleine Quarkmassen gendhert. Mit dieser Naherung wurde
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erreicht, dass das Potential, das vormals fiinfzehn Terme aufwies, sich nur noch aus neun
Termen zusammensetzte.

In Kapitel acht wurde mit der Analyse des Potentials und dessen Minimastruktur begon-
nen. Das Potential wurde zunéchst durch drei Terme, jeder proportional zu einer Masse,
grob gendhert. In dieser Approximation war es moglich, das Verhalten der Parameter,
die das Minimum charakterisieren, analytisch zu ermitteln. Die Grofle des Betrages die-
ser drei verbleibenden Konstanten konnte abgeschétzt werden. Terme, die erst bei sehr
groken Massen relevant werden, wurden zunéchst ignoriert. Die Berticksichtigung dieser
Terme fiihrte zu sechs weiteren Termen, die proportional zur Gitterkonstanten a?
zu drei Kombinationen aus teilweise unbekannten Gasser-Leutwyler-Konstanten waren.

, sowie

In Kapitel neun wurden die Terme proportional zu der grofiten der drei Konstanten
in die Untersuchung einbezogen. Als Folge waren die Minima nur noch teilweise analy-
tisch bestimmbar. Statt dessen wurden das Verhalten der Minima numerisch bestimmt
und die Ergebnisse wurden grafisch {iberpriift. Die Beriicksichtigung beider méglichen
Vorzeichen der Konstanten fiithrte zu zwei verschiedenen Szenarien mit unterschiedli-
cher Struktur der Potentialminima. So konnte &hnlich wie bei dem Zwei-Flavour-Fall
fiir ein Vorzeichen der Konstanten ein Sprung des Minimums beim Vorzeichenwechsel
der gemeinsamen u- und d-Quarkmasse gefunden werden. Im Fall eines entgegensetzten
Vorzeichens wurde ein kontinuierlicher Ubergang festgestellt.

Im zehnten Kapitel wurde schlieflich alle sechs zusétzlichen Potentialterme in die Un-
tersuchung einbezogen. Es ergaben sich dabei fiir jede Vorzeichenkombination der nur
vom Betrag bekannten drei Konstanten abweichende Verhaltensweisen der Potentialmi-
nima. Die zwei Szenarien, die fiir die Betrachtung mit ausschliefslich der dominierende
Konstante identifiziert wurden, sind dabei aber stets zu erkennen und nur durch Ver-
zerrungen der zusatzlichen Potentialterme iiberlagert.

Das Minimum wurde in dieser Arbeit in die Asz- und Ag-Richtung gelegt. Fiir eine wei-
tergehende Untersuchung konnte diese Richtung verallgemeinert werden, so dass nicht
nur eine diagonale Feldkonfigurationsmatrixzu betrachten wére.

Auch ist es moglich, das hier betrachtete Potential auf andere Arten zu nédhern. So
kénnte z.B. das Potential fiir groffe Massen gendhert werden, um einen vollstdndigen
Uberblick iiber die Phasenstruktur zu gewinnen. Alternativ kann die hier verwendete
Néherung durch Hinzunahme weiterer Terme fiir einen groferen Massebereich Giiltigkeit
erhalten.

Dariiber hinaus kénnten die Untersuchungen dieser Arbeit fiir nicht-masseentartete u-
und d-Quarks ausgedehnt werden. Auch kénnte ein weiteres Quark, das charm-Quark,
mit in die Analyse einbezogen werden. Dies brachte die Mo6glichkeit mit sich, zwei un-
terschiedliche Twist-Winkel einzufiihren und in beiden Flavour-Dublettes zu drehen.

Schlieklich wére es noch eine denkbare Erweiterung dieser Arbeit, sie mit genauer be-
kannten LECs erneut durchzufithren. Damit lieffen sich fiir Spriinge der Minima eindeu-
tige Massewerte angeben.
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A Dirac-Matrizen

Sowohl in der QCD-Lagrangedichte als auch bei der Konstruktion der Symanzik-Wirkung
traten Dirac-Matrizen im Minkowski-Raum auf. Fiir die Gitterformulierung der QCD
mussten diese in den euklidischen Raum tiberfiihrt werden.

A.1 Dirac-Matrizen im Minkwoski-Raum

Die Dirac-Matrizen erfilllen im Minkowski-Raum die Antikommutatorrelation:
[ "] = 2g""1. (A.1)

Es existieren vier Dirac-Matrizen, die aus den Pauli-Matrizen und der Einheitsmatrix
aufgebaut sind. Die Gamma-Matrizen haben die Gestalt:

0 _ 01 1 _ 0 1
=1 0) 7 7 0)°
0 0
2 _ 2 3 _ 3
i ) B
Mit Hilfe der vier Dirac-Matrizen ldsst sich eine fiinfte Matrix formulieren:
-1 0
5 _ .. 0.1.2 3
Auflerdem lédsst sich mit den Dirac-Matrizen die antisymmetrische Matrix
i

o = 50 ]

konstruieren.
A.2 Dirac-Matrizen im euklidischen Raum

Im euklidischen Raum konnen ebenfalls Dirac-Matrizen formuliert werden. Diese erfiillen
die Antikommutatorrelation:
My Y] =20 1.
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Eine Moglichkeit, die Dirac-Matrizen im euklidischen Raum zu formulieren ist:

0 —ir 0 —ir
E _ 1 E _ 2
71_(171 0)’ 72_(172 0>’
0 —ir 0 -1
E _ 3 E _

73_<173 0>’ 74_(—1 0)'

Im euklidischen Fall wird die fiinfte Dirac-Matrix analog zu Al gebildet:
. 1 0
% =R B = (0 _1>-

Auch wird mit den euklidischen Dirac-Matrizen eine antisymmetrische Matrix gebildet:

i
UEI/ - 5[75775]
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B Gruppe SU(N)

FEine Symmetriegruppe besteht aus einer Menge und einer Rechenvorschrift. Im Fall
der Gruppe SU(N) wird die Menge der speziellen unitdren Matrizen mit Dimension N
betrachtet. Sie ist eine kompakte einfache Lie-Gruppe und besitzt N? — 1 Generatoren.

Die SU(N) ist in der Physik unter anderem als Symmetriegruppe der QCD-Lagrangedichte

relevant. In dieser Arbeit wurde die QCD-Lagrangedichte mit zwei und mit drei Quark-
flavours behandelt; folglich kamen die Gruppen SU(2) und SU(3) zur Anwendung.

B.1 Gruppe SU(2)

Die Generatoren der Gruppe SU(2) sind proportional zu den drei Pauli-Matrizen:

Die Paulimatrizen besitzen die Form:

(01 (0 i /1 0
n=10)0 27\ o) TT\lo -1

Die Gruppe SU(2) bildet zusammen mit dem Kommutator

[

T; Tj
272

Tk
= 1€k

eine Lie-Algebra.

B.2 Gruppe SU(3)

Die Generatoren der Gruppe SU(3) sind proportional zu den acht Gell-Mann-Matrizen.
za
2
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B Gruppe SU(N)

Die Gell-Mann-Matrizen lauten:

010 0 —i 0 1 0 0
=100, x=[i 0 0 =0 -1 o],
00 0 0 0 0 0 0 0
00 1 00 00 0
M=(0oo00], x=[0o0 =00 1],
10 0 i0 010
00 0 10
=100 —il, 01 .
0 i 0 300—2

Wie die Gruppe SU(2) bildet auch die Gruppe SU(3) beziiglich ihrer Kommutatorrela-
tion eine Lie-Algebra:
Aa A ) A

[5751)] = lfabt:?c
Die Strukturkonstante f,. dieser Lie-Algebra hat in neun Féllen von Null abweichende
Werte, die in der folgenden Tabelle dargestellt sind:

fi23 | fiar | fis6 | foas | fos7 | faas | fae7 | fass | fers
1 1 1 1 1 1 1 V3 V3
) 2

2 2 2 2 2 2
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C Verwendete Konstanten

C.1 Grole der verwendeten Konstanten und LECs

In der Lagrangedichte der chiralen Stérungstheorie treten verschiedene dimensionslose
Niederenergiekonstanten auf. Die Grofen dieser Konstanten fiir NLO ist [41] entnommen
worden:

Ly =043-1073

Ly=0,73-1073
Ly =-253-1073

Ly,=0
Ls =0,97-1073
Lg=0

L;=-0,31-10"3
Ls=0,60-1073

Die Konstanten W; und W;/ sind nicht genau bekannt und wurden mit Hilfe von [10]
abgeschétzt:

1 -2
s~ 0,610

Li| ~ [Wi| ~ [W{| ~
L ~ Wil ~ Wi~

(2

Wy ist nicht dimensionslos und nimmt eine Sonderrolle ein, fiir sie wird der Wert ent-
sprechend [34, 42| verwendet.
[Wo| ~ 10" MeV?

Desweiteren werden folgende Konstanten verwendet, die ebenfalls [42] entnommen sind:

FO = 86 MeV,
By = 3100 MeV,
a= L MeV = 0,1 fm.
1975
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C Verwendete Konstanten

C.2 Fur N; = 2 verwendete Relationen

In Kapitel 6 werden fiir die Vereinfachung der LECs folgende Relationen benutzt:

L5y = 2L4 + Ls,
Lsg = 2L¢ + Ls,
Wiy = 2Wy + W,
Wge = 2We + W,
Wi = 2W, + W,

Allgemein folgen diese Kombinationen der Gleichung:

Xij =2X; + Xj.

C.3 Fiir Ny = 3 verwendete Relationen

Fiir drei Quarkflavours wurden abweichende Kombinationen der LECs verwendet. Als
zweckmélig stellten sich folgende Abkiirzungen heraus:

L=1Lg+ L;+ Lg, W = Wg + Wy + Wy, W' = W{+ Wi + WY,
Ly =2L—-W, Lwe = 2Lg — W, Lyr7 = 2Ly — Wr,
Lww=L-W+W' Lwwe=Ls—Ws+W{, Lwwr=Lr—Wr+ W],
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