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”Nicht so viel Interessantes...außer Onsagers exakter Lösung des
zweidimensionalen Ising-Modells.“

Dies antwortete Wolfgang Pauli auf die Anfrage von H.B.G. Casimir, der auf-
grund des Zweiten Weltkriegs von den aktuellen Entwicklungen der Theore-
tischen Physik abgeschnitten war, was sich auf diesem Gebiet ereignet habe
[1, 2].
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5.3.9 Alternative: Wurzelnäherung für |ε(x)| . . . . . . . . . . . 90

6 Alternativer Zugang zur Energieaufspaltung 94
6.1 Die Idee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Charakterisierung über Fermion-Anregungen . . . . . . . . . . . 97

6.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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Kapitel 1

Einleitung

1.1 Zum Thema

Aus der Quantenfeldtheorie und der Statistischen Physik sind Systeme bekannt,
die spontane Symmetriebrechung zeigen. Als veranschaulichendes Beispiel die-
ses Phänomens aus der Alltagswelt diene ein Holzbalken, der senkrecht auf dem
Wasser schwimmend mit der Hand festgehalten werde. Durch Loslassen gerät
der Holzbalken (eine geeignete Präparation vorausgesetzt) in eine instabile Lage
und wird in eine beliebige Richtung wegkippen, die ihm eine stabile Lage ver-
spricht. Dadurch, daß er letztlich in nur eine der ihm dargebotenen Richtungen
wegkippt, wird die Symmetrie spontan gebrochen.
Liegt eine solche spontane Symmetriebrechung vor, können verschiedene Pha-
sen, die das System annehmen kann, einzeln existieren oder auch nebeneinan-
der koexistieren, wobei sie durch eine Grenzfläche voneinander getrennt werden.
Man denke sich hierzu einen Ferromagneten, in welchem unterhalb der Curie-
Temperatur T̃C verschiedene räumliche Bereiche vorliegen, die ein entgegenge-
setztes Vorzeichen in der Magnetisierung aufweisen und als Weißsche Bezirke
experimentell beobachtbar sind. Ebensogut mag man sich ein Gemisch zweier
Flüssigkeiten vorstellen, welches unterhalb einer kritischen Temperatur T̃C in
zwei Phasen separiert, in denen jeweils eine Flüssigkeitssorte überwiegt (z.B.
Cyclohexan und Anilin, T̃C = 30, 9 ◦C [3]).
Als prominentes Beispiel aus dem Bereich der Feldtheorie sei hierzu die φ4-
Theorie in der Phase gebrochener Symmetrie genannt. Auf dem Gebiet der
Elementarteilchenphysik steuert diese über den Higgs-Mechanismus einen wich-
tigen Bestandteil zum heutigen Standardmodell bei; sie ist aber auch weit ver-
breitet zur Beschreibung von Phasenübergängen im Rahmen einer statistischen
Feldtheorie.
Seitens einer rein statistischen Beschreibung ist spontane Symmetriebrechung
aber auch im Ising-Modell anzutreffen, welches sich unter der Annahme inter-
agierender nächstbenachbarter Spins, die nur zwei diskrete Zustände s = ±1
(”up“ und ”down“) annehmen können (Abb. 1.1), zu einem Standardmodell in
der Statistischen Physik entwickelt hat. Das Ising-Modell nimmt bis heute eine
Ausnahmestellung ein aufgrund seiner analytischen Lösbarkeit in zwei Dimen-
sionen bei gleichzeitiger Beinhaltung eines Phasenübergangs. Wie bereits Ising
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1. Einleitung

selber 1925 in [4] resümierte, tritt dieser in einer Dimension nicht auf; den
zweidimensionalen Fall konnte er allerdings noch nicht lösen. Die exakte Lö-
sung in zwei Dimensionen blieb Onsager [9] 1944 vorbehalten, nachdem sich in
den vorangehenden Jahren Hinweise auf einen Phasenübergang gehäuft hatten
[5, 6, 7, 8]. Da bis jetzt noch keine analytische Lösung in drei und höheren
Dimensionen vorliegt, gilt gerade dem zweidimensionalen Ising-Modell ein be-
sonderes Interesse, mit dem sich auch die vorliegende Arbeit beschäftigt.
Einem historischen Rückblick auf die Geschichte des Ising-Modells ist der Ab-
schnitt 1.3 gewidmet.
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Abbildung 1.1: Zweidimensionales Ising-Modell (L × T ): Die auf den Gitter-
punkten ansässigen Spins verfügen über zwei Einstellmöglichkeiten, wobei über
eine Kopplung J Wechselwirkungen zwischen benachbarten Spins bestehen

Die spontane Symmetriebrechung macht sich nun folgendermaßen im Ising-
Modell bemerkbar [10]:
Im unendlichen Volumen (L, T →∞) und unterhalb der kritischen Tempera-
tur existieren zwei energetisch entartete Grundzustände |+〉 und |−〉, die einen
nichtverschwindenden Spin-Erwartungswert 〈s〉 = ±µ mit µ>0 aufweisen und
einer größtmöglichen Magnetisierung in beiden Vorzeichen Rechnung tragen:

〈+| s |+〉 = +µ , 〈−| s |−〉 = −µ . (1.1)

Die Symmetrie s→ −s ist dadurch spontan gebrochen. Im endlichen Volumen
findet hingegen wohlbekanntermaßen keine spontane Symmetriebrechung statt
[11]: Infolge von Tunnelprozessen (Umklapprozessen) wird die Entartung auf-
gehoben und es existiert vielmehr ein einzelner und eindeutiger Grundzustand
|0+〉, in welchem der Erwartungswert 〈s〉 = 0 verschwindet. Die Energie die-
ses unter der Transformation s→ −s symmetrischen Grundzustands |0+〉 liegt
nun gerade um die Energieaufspaltung ∆E tiefer als die des antisymmetrischen
ersten angeregten Zustands |0−〉.
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1.1. Zum Thema

Diese Zustände lassen sich als folgende Überlagerungen darstellen [10]

|0+〉 = 1√
2

(
|+〉 + |−〉

)
, |0−〉 = 1√

2

(
|+〉 − |−〉

)
, (1.2)

wobei dann |+〉 und |−〉 diejenigen Zustände repräsentieren, die im Limes un-
endlicher Systemgröße gegen die entarteten Vakua konvergieren. In diesem Li-
mes finden die mit wachsendem Volumen rasch abnehmenden Tunnelprozesse
nicht mehr statt.

Die als Lücke im Spektrum auftretende Energieaufspaltung

∆E = E0− − E0+ (1.3)

offenbart sich somit als charakteristische Größe, die es gestattet abzulesen, ob
eine spontane Symmetriebrechung vorliegt (∆E = 0) oder nicht (∆E > 0), in
dem Sinne, daß sie angibt, wann eine Entartung der beiden energetisch niedrig-
sten Zustände eintritt.
Diese vollzieht sich gemäß obigen Überlegungen offensichtlich im Limes un-
endlicher Systemgröße limL,T→∞∆E = 0, wobei die Frage, wie dieser Limes
vonstatten geht, freilich noch unbeantwortet bleibt. Im Rahmen der vorliegen-
den Arbeit wird dieses Verhalten der Energieaufspaltung beim Übergang vom
endlichen zum unendlichen System näher untersucht. Insbesondere wird ein ex-
pliziter Ausdruck gesucht, der über die Angabe des Limes ∆E → 0 hinausgeht:
Vielmehr soll sich explizit ablesen lassen, wie die Energieaufspaltung kontinu-
ierlich mit zunehmender Anzahl an Freiheitsgraden gegen Null geht.

Diese Zusammenhänge sind übrigens ebenfalls in der eingangs erwähnten φ4-
Theorie wiederzufinden [12], die einen allgemeineren Feldbegriff φ verwendet,
der aber jederzeit mit dem lokalen Ordnungsparameter wie der spontanen Ma-
gnetisierung oder der Konzentrationsdifferenz zweier Flüssigkeiten inhaltlich
gefüllt werden kann. Diese Analogie begründet sich dahingehend, daß die φ4-
Theorie im Limes einer unendlich starken bloßen Selbstkopplung das Ising-
Modell be-inhaltet [13]. Die Analogie zwischen diesen Modellen äußert sich
auch in Hinblick auf die Universalitätshypothese [14], nach welcher die Viel-
falt physikalischer Systeme im kritischen Bereich in eine relativ kleine Anzahl
an Universalitätsklassen zerfällt, innerhalb derer sich universelle Eigenschaften
gleichen. Wie auch so manch reales System, beispielsweise das oben beschriebene
Flüssigkeitsgemisch, ist die feldbeschreibende φ4-Theorie in derselben Univer-
salitätsklasse [10, 12] wie das Ising-Modell anzusiedeln, welches eine statistische
Beschreibung auf mikroskopischer Ebene vornimmt.
Diese statistische Beschreibung des Ising-Modells aus den grundlegenden Mo-
dellannahmen heraus zu entwickeln und dabei die oben angedeuteten Zusam-
menhänge aufzufinden wird den Verlauf dieser Arbeit prägen.

Nachfolgend wird ein Überblick über die in dieser Arbeit abgehandelten The-
matiken gegeben, welcher ausführlich konzipiert ist und somit bei der Lektüre
als Leitfaden dienen kann.

3



1. Einleitung

1.2 Überblick über diese Arbeit

Die Grundlage zur analytischen Behandlung des zweidimensionalen Ising-Modells
stellt die Onsager-Lösung [9] dar, die in Kapitel 2 vorgestellt wird, allerdings
in der eleganteren Formulierung von Kaufman [15], die über Spindarstellun-
gen von Drehungen auf direktere Weise zu denselben Ergebnissen gelangt, und
welche im Folgenden als Onsager-Kaufman-Lösung bezeichnet sein soll. Das
Herzstück dieser algebraischen Herangehensweise stellt der Transfermatrixfor-
malismus dar, welcher es gestattet, die Lösung des Modells auf ein Eigenwert-
problem zu reduzieren: Die Zustandssumme als zentrale Größe schreibt sich
(bis auf eine wohldefinierte Konstante) in diesem Formalismus als Spur über
die T -fache Potenz eben der Transfermatrix V

Z ′ = Sp
(
V T

)
, (1.4)

die es somit zu diagonalisieren gilt. Dahinter verbirgt sich der kettengliedweise
Transfer entlang einer Reihe, die aus T physikalischen Elementen besteht; an-
gewandt auf das Ising-Gitter in Abb. 1.1 bedeutet dies, daß die Transfermatrix
auf einer Zeile dieses Gitters definiert wird und anschließend in T Schritten
zeilenweise durch das gesamte Gitter wandert, wodurch sämtliche Anordnungs-
konfigurationen berücksichtigt werden und woraus sich schließlich die Zustands-
summe ergibt.
Es erfolgt zunächst eine ausführliche Diagonalisierung für periodische Randbe-
dingungen. Diese bewirken eine Aufteilung der Zustandssumme

Z ′
++ = Sp

[
1
2
(1 + U)

(
V +

)T] + Sp
[
1
2
(1− U)

(
V −)T] (1.5)

symmetrischer Anteil antisymmetrischer Anteil

in einen symmetrischen und einen antisymmetrischen Anteil, welche jeweils über
einen Projektor 1

2(1± U) angewählt werden. Die Symmetrie U hat hierbei die
physikalische Bedeutung einer Spinumkehr s→ −s in einer gesamten Zeile des
Ising-Gitters.
Die Diskussion der auch graphisch dargestellten Eigenwerte wird ergeben, daß
die Zustandssumme durch zwei größte Eigenwerte λ0+ und λ0− dominiert wird.
Übereinstimmend mit dem Frobenius-Perron-Theorem [11] wird im endlichen
Gitter (L<∞) der aus dem symmetrischen Anteil stammende Eigenwert λ0+
stets etwas größer sein. In einem Gitter unendlicher Größe (L→∞) hingegen
tritt eine Entartung limL→∞ λ0+ = limL→∞ λ0− ein. Damit liegt genau die
eingangs erwähnte Situation vor.
Um die Formulierung auf Energieeigenwerte umzumünzen, bedient man sich
des Zusammenhangs [16]

V = exp [−H ] , (1.6)

welcher die Transfermatrix mit dem zugehörigen Hamiltonoperator H aus der
Quantentheorie verknüpft. Hierüber kristallisiert sich nun gerade das Vorhan-
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1.2. Überblick über diese Arbeit

densein einer Energieaufspaltung (”spectral gap“)

∆E = E0− − E0+ (1.7)

mit lim
L→∞

∆E = 0 (1.8)

im zweidimensionalen Ising-Modell heraus. Dessen Berechnung wird den Fort-
gang dieser Arbeit prägen.
Zunächst werden analytische Rechnungen die Randbedingungen betreffend durch-
geführt, die über den Zusammenhang der Energieaufspaltung mit Grenzflächen
motiviert werden. Letztere lassen sich in die Lösung des Ising-Modells mittels
antiperiodischer Randbedingungen einbauen, welche sich von den periodischen
Randbedingungen durch einen zusätzlichen Spinumklapp s → −s unterschei-
den. Basierend auf der Onsager-Kaufman-Lösung werden in Kapitel 3 Modifi-
kationen in den Randbedingungen und deren Auswirkungen auf die Zustands-
summen Zτxτt (Tab. 1.1) untersucht. Über den beteiligten Spinumkehroperator
U treten vor allem Veränderungen in den Projektoren 1

2(1 ± U) auf. Entspre-
chend den vier verschiedenen Zustandssummen ist von vier Sektoren die Rede.
Dieses Kalkül wird in zwei Darstellungen durchgeführt, die sich in der Pro-
pagationsrichtung der Transfermatrix unterscheiden, aber letztlich gegenseitig
bestätigen.

Sektor Zτxτt τx τt RB in x-Richtung RB in t-Richtung
++ Z++ +1 +1 periodisch periodisch
+− Z+− +1 −1 periodisch antiperiodisch
−+ Z−+ −1 +1 antiperiodisch periodisch
−− Z−− −1 −1 antiperiodisch antiperiodisch

Tabelle 1.1: Überblick über die Randbedingungen und Sektoren Zτxτt

Kapitel 4 stellt mit der fermionischen Darstellung nach Schultz, Mattis und Lieb
[17] eine interessante Lösungsalternative des zweidimensionalen Ising-Modells
vor, an der sich die bislang beschriebenen Eigenschaften wiederfinden und zu-
gleich veranschaulichen lassen. Ausgehend von der Transfermatrix, wie sie von
Onsager und Kaufman über Paulimatrizen formuliert wurde, kann diese nach
einer Basistransformation in Erzeugern und Vernichtern ausgedrückt werden.
Mittels einer Jordan-Wigner-Transformation [18] gelingt es, verbleibende boso-
nische Freiheitsgrade zu fermionisieren, so daß sich die Transfermatrix vollstän-
dig über Fermionoperatoren darstellen läßt, die den gewohnten Antikommuta-
torrelationen genügen. Nach erfolgter Diagonalisierung ergibt sich ein Hamil-
tonoperator, der in äußerst einfacher Gestalt freie Fermionen repräsentiert:

H =
∑
k

εk

(
ξ†k ξk − 1

2

)
. (1.9)

Hierbei sind ξ†k und ξk Fermion-Erzeuger und -Vernichter, und εk steht für die
Energien einzelner Fermionen, während über die möglichen Impulswerte sum-
miert wird. Diese Form des Hamiltonoperators erlaubt nun äußerst prägnante
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1. Einleitung

Veranschaulichungen. Insbesondere kann das Energiespektrum nach (1.9) durch
Fermionanregungen aus den jeweiligen Vakua erklärt werden. Einzelheiten wer-
den hierzu in 4.1.6 behandelt.
Da sich in dieser fermionischen Darstellung rein algebraische Ausdrücke aus
der Onsager-Kaufman-Lösung veranschaulichen lassen, ergänzen sich diese Lö-
sungsvarianten geradezu gegenseitig in den inhaltlichen Zusammenhängen und
eignen sich daher für den gemeinsamen parallelen Gebrauch. Abschnitt 4.2 hält
eine tabellarische Übersicht bereit.
Nach der erneuten und bestätigenden Aufstellung der Sektor-Zustandssummen
Zτxτt tritt hier noch ein anderer Typ von Zustandssummen zutage, nämlich die
fermionischen Zustandssummen ZF. Diesen liegen nicht die Konfigurationen der
Ising-Spins zugrunde, sondern sind auf die Fermionen an sich bezogen. Diese
erschließen sich aus grassmannwertigen Integralen [19, 20], können aber un-
ter geschickter Ausnutzung der Grassmann-Algebra direkt aufgestellt werden
[21], wobei auch hier wieder vier Sektoren ZF

εxεt mit unterschiedlichen Randbe-
dingungen auftreten. Diese fermionischen Zustandssummen ZF

εxεt lassen sich in
Beziehung zu den Spin-Zustandssummen Zτxτt setzen und in Doppelprodukte
umwandeln, welche eine besondere L-T -Symmetrie aufweisen. Letztere ist sehr
aufschlußreich, insbesondere was das Kalkül aus Kapitel 3 betrifft.

Kapitel 5 widmet sich schließlich der expliziten Berechnung der Energieauf-
spaltung ∆E bei einer großen Anzahl an Freiheitsgraden, sprich großen L.
Unter Rückgriff auf die in Kapitel 3 erzielten Ergebnisse läßt sich zunächst ein
Trend absehen, welcher auf eine enge Verknüpfung mit der Grenzflächenspan-
nung σ hinweist [10, 12, 22]. Diese läßt sich über die Differenz der reduzierten
Freien Energien in den Sektoren F+− und F++ definieren [23, 24]:

σ = lim
T→∞

lim
L→∞

F+− − F++ + lnT
L

. (1.10)

Aus der Betrachtung dominanter Beiträge ergibt sich damit folgende Vorhersage
im Falle großer L:

∆E ∼ exp
(
− Lσ

)
. (1.11)

Eventuelle Vorfaktoren, die lediglich noch potenzartig von L abhängen, ver-
schwinden in der Limesbildung und lassen sich hieraus noch nicht gewinnen.
Genau diese gilt es aber im weiteren Verlauf zu bestimmen.
Ein möglicher Ansatzpunkt, die Energieaufspaltung genauer unter die Lupe zu
nehmen, betrifft die Energielücke ∆E = E0− − E0+ an sich. Schwierigkeiten,
die sich aus der getrennten Limitenbildung (limL→∞ E0+ = limL→∞ E0−) ergä-
ben, werden von Privman und Fisher [25] geschickt umgangen, indem sie den
Gesamtausdruck nach Fourierkoeffizienten entwickeln, unter denen für große L
bereits der niedrigste Koeffizient cL maßgeblich dominiert:

∆E = −L
∞∑
j=0

c(2j+1)L = −LcL

[
1 + O

(
Korrekturen

)]
. (1.12)
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1.2. Überblick über diese Arbeit

Der verbleibende Integralausdruck ∆E = −LcL wird nach einer Verschiebung
des Integrationsweges in die komplexe Ebene auf eine Konturintegration längs
eines Schlitzes geführt, welche im Rahmen einer Sattelpunktsentwicklung ausge-
wertet wird und schließlich den erhofften Ausdruck für die Energieaufspaltung
in sich birgt.

Ein alternativer Ansatz zur Berechnung der Energieaufspaltung wird in Kapitel
6 verfolgt. Während diese zuvor grundlegend als Energielücke behandelt wurde,
wird nun deren Zusammenhang mit Grenzflächen direkt aufgegriffen, welcher
unter Hinzunahme der fermionischen Lösungsmethode tiefgreifend aufgedeckt
werden kann. In dieser finden sich Grenzflächen als angeregte Fermionen wieder,
wie bereits Beobachtungen bei der Jordan-Wigner-Transformation offenbaren.
Im Speziellen wird das Verhältnis der Zustandssummen Z−+

Z++
mit und ohne einer

Grenzfläche nach Fermion-Beiträgen charakterisiert. Mehrfache Grenzflächen-
Anordnungen werden hierbei in den Zustandssummen vernachlässigt, womit
eine Einschränkung auf die niedrigsten 0- und 1-Fermion-Anregungen einher-
geht.
Für eine große Anzahl an Freiheitsgraden findet sich unter diesen Annahmen
für die Energieaufspaltung das folgende Integral über die Konfigurationen der
Ein-Fermion-Energien |ε(x)|

∆̂E =

+1∫
−1

dx exp [− |ε(x)| · T ] , (1.13)

wodurch eine alternative Darstellung dieser Größe gegeben ist (aus formalen
Gründen weist ∆̂E hierbei eine L-T -Vertauschung gegenüber ∆E auf).
Dieses Integral wird ebenfalls im Rahmen einer Sattelpunktsentwicklung ausge-
wertet und bestätigt schließlich das frühere Ergebnis für die Energieaufspaltung
bestens. Darüber hinaus können noch sehr interessante analytische Beziehungen
gefunden werden, über welche sich die doch recht unterschiedlichen Verfahren
aus Kapitel 5 und 6 ineinander überführen lassen.

Kapitel 7 schließt resümierend diese Arbeit ab.
Nachfolgend sind diverse Anhänge aufgeführt, von denen vor allem Anhang A
hervorgehoben sei. Dieser behandelt einige im Hauptteil vorgebrachte Berech-
nungen anhand des eindimensionalen Ising-Modells, wodurch sie eine ungleich
einfachere und übersichtlichere Struktur erhalten.
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1. Einleitung

1.3 Historisches

1920 entwickelte Wilhelm Lenz in Rostock mit seiner Arbeit ”Beitrag zum Ver-
ständnis der magnetischen Erscheinungen in festen Körpern“ [26] eine Modell-
idee zur mikroskopischen Beschreibung des Ferromagnetismus. Insbesondere
sollte geklärt werden, wie sich eine spontane Magnetisierung ohne ein von au-
ßen angelegtes Magnetfeld ausbilden kann, welches dem Phasenübergang zwi-
schen der para- und ferromagnetischen Phase gleichkommt. Die Grundidee be-
stand darin, auf Gitterplätzen lokalisierte Elemente (”Spins“) mit ihren nächsten
Nachbarn wechselwirken zu lassen, wobei jedes Element nur zwei Zustände ein-
nehmen kann (”spin up“ und ”spin down“). Über die Wechselwirkung werden
gleiche Zustände benachbarter Elemente (d.h. die Parallelstellung der Spins)
energetisch bevorzugt. Mittlerweile in Hamburg seinen Forschungen nachge-
hend, übertrug er seinem Studenten Ernst Ising die Aufgabe, dieses Modell ma-
thematisch auszuarbeiten. Ising behandelte den eindimensionalen Fall in seiner
Dissertationsschrift [27] und veröffentlichte seine Resultate 1925 [4]. Er fand
keinen Phasenübergang in einer Dimension, konnte das zweidimensionale Mo-
dell allerdings nicht lösen. Dieses negative Ergebnis war für die Beteiligten Lenz
und Ising eine Enttäuschung. Insbesondere sagte die Weißsche Theorie den er-
hofften Phasenübergang auch in einer Dimension voraus; daß letztere auf der
Mean-Field-Näherung (dt.: Molekularfeldnäherung) beruhende Theorie gerade
die Fluktuationen vernachlässigt, die den Phasenübergang in einer Dimension
verhindern, wurde damals noch nicht erkannt. Dadurch wurde diesem Modell,
das später unter dem Namen Ising-Modell Berühmtheit erlangen sollte, zunächst
wenig Beachtung geschenkt. Die einzige zeitgenössische Zitierung stammt aus
dem Jahre 1928 von Werner Heisenberg [28], der aufgrund des vermeintlichen
Versagens seitens Lenz und Ising eine kompliziertere Formulierung der Wechsel-
wirkungen wählte, diese dann allerdings, wenn auch erfolgreich, in der Mean-
Field-Theorie abhandelte. Historisch rückblickend bringt S.G. Brush [29] die
inbegriffene Ironie treffend zum Ausdruck, indem er anmerkt, daß in Umkeh-
rung der üblichen wissenschaftlichen Vorgehensweise zuerst das kompliziertere
Heisenberg-Modell ausgiebig untersucht wurde, und man sich erst später dem
einfacheren Ising-Modell zuwandte.
Es dauerte nämlich bis 1936, ehe man die Bedeutung der Dimensionalität er-
kannte: Rudolf Peierls lieferte in seiner Arbeit ”On Ising’s Model of Ferroma-
gnetism“ [5], ohne das Modell lösen zu können, den Existenzbeweis für einen
Phasenübergang in zwei Dimensionen. Dies bedeutete eine schlagartige Wie-
derbelebung dieses zunächst vergessenen Modells; vermutlich hat Peierls auch
den Namen ”Ising-Modell“ geprägt.
(Hierzu gab es noch späte Nachträge: Griffiths [30] präsentierte 1964(!) eine
modifizierte Version dieses Beweises, nachdem diverse Autoren [29] auf eine feh-
lerhafte Abschätzung in Peierls’ Originalbeweis hingewiesen hatten, den Peierls
[31] jedoch 1966 als unbedeutend abtat.)
In den Folgejahren nach Peierls’ Veröffentlichung ging man entsprechend inten-
siv auf die Suche nach einer analytischen Lösung in zwei Dimensionen, die sich
allerdings als außerordentlich schwierig herausstellte. Anfang der 40er Jahre
fand man den Transfermatrixformalismus [6, 7, 8] als geeignetes algebraisches
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1.3. Historisches

Hilfsmittel, der die Lösung auf die Diagonalisierung der Transfermatrix bzw. auf
deren Eigenwertbestimmung reduziert. Innerhalb dieses Formalismus gelang es
Kramers und Wannier 1941 unter Verwendung einer sog. Dualitätstransforma-
tion zwischen Hoch- und Tief-Temperaturbereich [6], den kritischen Punkt T̃C
zu bestimmen, an dem der Phasenübergang stattfindet. Die Hinweise auf einen
solchen verdichteten sich also zusehends.
Diese Entwicklung gipfelte 1944 in der exakten Lösung des zweidimensionalen
Ising-Modells durch Lars Onsager [9], der ein hoher Stellenwert beizumessen ist.
Unter anderem zeigt sie, daß die statistische Physik in der Lage ist, Phasenüber-
gänge zu beschreiben, ohne auf Näherungsmethoden zurückgreifen zu müssen,
wobei das Ising-Modell bis heute das einzige nicht-triviale Modell geblieben ist,
bei welchem dies gelingt. Allerdings muß man sich auf zwei Dimensionen und
ein verschwindendes äußeres Magnetfeld beschränken, da für die sonstigen Fäl-
le bis heute noch keine analytische Lösung vorliegt. Insofern nimmt gerade das
zweidimensionale Ising-Modell eine Ausnahmestellung in der statistischen Phy-
sik ein.
Obwohl nun eine exakte Lösung zur Verfügung stand, blieb doch ein gewisses
Unbehagen bezüglich der aufwendigen und schwer nachzuvollziehenden Vorge-
hensweise Onsagers. Eine bedeutende Vereinfachung der ursprünglichen Onsager-
Lösung stammt 1949 von Bruria Kaufman [15], die mit Hilfe von Spindarstel-
lungen eleganter und leichter nachvollziehbar dasselbe Ergebnis erzielte. Eine
didaktische Aufbereitung findet sich in [32].
Nicht unerwähnt bleiben soll die Herleitung der spontanen Magnetisierung, des
interessierenden Ordnungsparameters, durch C.N. Yang [33] aus dem Jahre
1952, die den Phasenübergang eindeutig und endgültig untermauerte.
In den nachfolgenden Jahren kam die sog. kombinatorische Lösung auf, die auf
topologischem Geschick und Pfaffschen Normalformen beruht und mittlerweile
in den meisten Lehrbüchern zu finden ist (in dieser Arbeit aber keine Rolle
spielen wird). Die ersten Ideen hierzu stammen von van der Waerden [34] sowie
Kac und Ward [35].
Eine weitere exakte Lösung des zweidimensionalen Ising-Modells, der in dieser
Arbeit eine ebenso zentrale Bedeutung wie derjenigen nach Onsager und Kauf-
man zukommen wird, wurde 1964 von Schultz, Mattis und Lieb entwickelt.
Mittels einer Jordan-Wigner-Transformation (deren Klassiker [18] entnommen)
gelang ihnen eine geeignete Fermionisierung der klassischen Spin-Freiheitsgrade.
Die Transfermatrix wird in dieser alternativen Formulierung über Fermion-
operatoren in eine Besetzungszahldarstellung diagonalisiert. Anhand dieser Lö-
sungsvariante lassen sich rein algebraische Ausdrücke aus der Onsager-Kaufman-
Lösung mittels der Fermion-Sprache veranschaulichen, so daß sich diese beiden
Verfahren geradezu gegenseitig ergänzen.
Diese verschiedenen Lösungsmethoden spiegeln das große Interesse, das dem
Ising-Modell galt und bis heute gilt, welches sich zu einem Standardmodell in
der statistischen Physik entwickelt hat. Mittlerweile sind über 16 000 Veröffentli-
chungen zu diesem gezählt worden [36], siehe hierzu Abb. 1.2. Die Anwendungen
sind durchaus vielfältig. So bietet die analytische Lösung einen Prüfstand für
Theorien dar, z.B. kann mittels der exakt zu berechnenden kritischen Exponen-
ten die Gültigkeit der Skalengesetze einem ernsthaften und erfolgreichen Test

9



1. Einleitung

Abbildung 1.2: Anzahl jährlicher Veröffentlichungen über das
Ising-Modell basierend auf der INSPEC-Datenbank, die insgesamt
6,5 Millionen Einträge führt [36]

unterzogen werden [2]. Zum anderen können hierüber Näherungsmethoden auf
ihren Gültigkeitsbereich hin untersucht werden; ein Anwendungsfeld, welches
sich geradezu aus der Historie des Ising-Modells erschließt. Speziell sind in hö-
heren Dimensionen d > 2 mangels analytischer Lösungsmethoden heutzutage
Computersimulationen mit Monte-Carlo-Verfahren weit verbreitet [37].
Wendet man sich dem Ising-Modell in seiner allgemeineren Definition von zu-
nächst nicht näher bestimmten Elementen zu, die genau zwei diskrete Zustände
einnehmen können, bleibt dieses keineswegs auf eine Beschreibung des Ferro-
magnetismus beschränkt: Häufige Anwendung innerhalb der Physik findet die
Gittergas-Analogie [32]. Anstelle von ”spin up“ und ”spin down“ ist ein Git-
terpunkt entweder von einem Gasteilchen besetzt oder unbesetzt, wobei eine
anziehende Wechselwirkung für benachbarte besetzte Gitterplätze vorherrscht.
Über die Ausbildung von Clustern kristallisiert sich der Übergang zur flüssigen
Phase heraus. Auf ähnliche Weise lassen sich binäre Legierungen modellieren
[32].
Derartige Verallgemeinerungen blieben nicht nur auf die Physik bezogen, son-
dern sprangen auch auf benachbarte Wissenschaftszweige über, dabei neue in-
terdisziplinäre schaffend: Mittels des Prinzips der sozialen Imitation, welches
aussagt, daß sich das Verhalten eines Individuums nach dem seiner Nachbarn
richtet, werden kooperative Phänomene in vereinfachter Form einer mathemati-
schen Beschreibung erschlossen. Als besonders anschauliches Beispiel sei hierzu
der ”Ising-Fisch“ [38] von Callen und Shapero genannt, der in zwei entgegenge-
setzte Richtungen schwimmen kann, sich dabei aber nach seinen Nachbarn rich-
tet und somit durch soziale Imitation den Zusammenhalt eines Fischschwarms
erklärt. Kohring [39] wiederum verwendete einen analogen Ansatz zur Model-
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lierung der Meinungsbildung in einem Zwei-Parteien-System. Dem recht jungen
Zweig der Econophysics zuzuordnen ist der Versuch, auf diese Weise die in Kapi-
talmärkten beobachtbaren Kohärenzen zu beschreiben [40]. Das ebenfalls junge
Gebiet der künstlichen neuronalen Netze wurde maßgeblich von dem Hopfield-
Modell [41] feuernder und ruhender synaptisch gekoppelter Neuronen geprägt,
welches 1982 auf der Basis des Ising-Modells formuliert wurde.
Mittlerweile haben sich u.a. zur Beantwortung derartiger Fragestellungen Er-
weiterungen des Ising-Modells entwickelt, welche eine Ausweitung der Modell-
annahmen vorsehen: Während das Potts-Modell [42] mehr als zwei diskrete Zu-
stände pro Element zuläßt, geht das Sherrington-Kirkpatrick-Modell [43] von
einer vollständigen Vernetzung aller Elemente mit einer gaußförmig ausdünnen-
den Kopplung aus.

Ernst Ising, stets von der starken Resonanz auf das nach ihm benannte Modell
ergriffen, vergaß in späteren Jahren nicht, auf den ursprünglichen Urheber zu
verweisen:

”Ich weise gerne darauf hin, daß das Modell eigentlich Lenz-Ising-
Modell heißen sollte...Mein Lehrer, Dr. Wilhelm Lenz, hatte die
Idee...“ [36]
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Kapitel 2

Onsager-Lösung des
zweidimensionalen
Ising-Modells nach Kaufman

2.1 Grundlagen

Es sei ein rechteckiges zweidimensionales Ising-Gitter mit T Zeilen und L Spal-
ten gegeben. Die beiden Raumrichtungen werden mit t und x gekennzeichnet.
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Abbildung 2.1: zweidimensionales Ising-Gitter

Jeder Gitterpunkt verfüge über einen Spin, der lediglich zwei diskrete Zustände
einnehmen kann, wie durch die beiden unterschiedlichen Pfeilrichtungen ange-
deutet wird. Dies werde durch die klassische Spinvariable si = ±1 beschrieben.
Für alle Spins bestehe über die Kopplungskonstante J > 0 eine homogene und
isotrope Wechselwirkung nächster Nachbarn, die eine Parallelstellung zueinan-
der energetisch bevorzuge. Im Allgemeinen können sich die Spins zusätzlich in
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nach Kaufman

einem äußeren Magnetfeld ausrichten, was hier jedoch keine Beachtung finden
wird, da für diesen Fall keine analytische Lösung vorliegt.
Im Folgenden wird die Lösung nach Kaufman [15] vorgestellt, die in ihren
Grundzügen der ursprünglichen [9] von Onsager entspricht. Letztere ist jedoch
erheblich länger und verwickelter, während Kaufman [15] über die Spindarstel-
lungen von Drehungen auf direktere Weise dasselbe Ergebnis erzielt. Dies ist
ausführlich aufbereitet in [32].
Zunächst wird eine Zeilenvariable µt eingeführt, die die Spinkonfiguration der
t-ten Zeile beschreibt:

µt = {s1, s2, . . . , sL}t−teZeile .

Die Spinkonfiguration des gesamten Gitters ist dann durch {µ1, µ2, . . . , µT }
gegeben.
Im Rahmen dieser Arbeit werden Randbedingungen eine wichtige Rolle spielen,
besonders in Kapitel 3. Zu diesem Zeitpunkt ist aber erst einmal der einfachere
Fall periodischer Randbedingungen von Interesse. Die Periodizität beziehe sich
dabei auf Zeilen und Spalten, d.h.

µT+1 = µ1 , sL+1 = s1 . (2.1)

Topologisch bedeutet dies, daß das (bei freien Enden) flache zweidimensionale
Gitter nun die Gestalt eines Torus annimmt. Aus diesem Grund nennt man
(2.1) auch toroidale Randbedingungen.
Unter obigen Annahmen läßt sich die klassische Hamiltonfunktion H des Ising-
Gitters aufstellen, die (bei verschwindendem äußeren Feld) einzig durch die
Wechselwirkungen bestimmt ist. Zu diesem Zweck werden folgende zwei Fälle
unterschieden:
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� Wechselwirkung nächster Nachbarn, die sich in derselben Zeile befinden

Abbildung 2.2: Wechselwirkung innerhalb einer Zeile
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Für die t-te Zeile lautet der Wechselwirkungsterm:

H (µt) = −
L∑
k=1

sk sk+1 . (2.2)

Die graphische Veranschaulichung in Abb. 2.2 ist für das flache Gitter gegeben;
der letzte Summand in (2.2) stammt aus der toroidalen Randbedingung (2.1).
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� Wechselwirkung nächster Nachbarn, die sich in benachbarten Zeilen befinden

Abbildung 2.3: Wechselwirkung benachbarter Zeilen

Für die Zeilen µt und µt+1 ergibt sich

H (µt, µt+1) = −
L∑
k=1

s
(t)
k s

(t+1)
k , (2.3)

wenn s
(t)
k für die Spinvariable in der k-ten Spalte und t-ten Zeile steht.

Die GesamtwechselwirkungH ergibt sich dann aus (2.2) und (2.3), indem gemäß
(2.1) über alle Zeilen summiert wird:

H =
T∑
t=1

{H (µt) +H (µt, µt+1)} . (2.4)

Die zentrale Größe solch statistischer Problemstellungen ist die Zustandssumme
Z. In dem vorliegenden Fall ist sie gegeben durch

Z =
∑
µ1

. . .
∑
µT

exp (−βH) , (2.5)

wobei sich die Summation über sämtliche Spinkonfigurationen des Gitters er-
streckt. Im Folgenden nutzbringend ist die Kopplungskonstante J nicht in den
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Wechselwirkungstermen (2.2) und (2.3), sondern bereits in β enthalten, d.h. es
ist

β =
J

kBT̃
(2.6)

mit der Boltzmannkonstanten kB und der Temperatur T̃ .
Mit (2.4) schreibt sich die Zustandssumme (2.5)

Z =
∑
µ1

. . .
∑
µT

(
T∏
t=1

exp
[
− β {H (µt) +H (µt, µt+1)}

])
. (2.7)

Der Ausgangspunkt der Lösung ist die Transfermatrix. Sie beschreibt die Pro-
pagation entlang einer Kette physikalischer Elemente [17]. Im vorliegenden Fall
sei die Transfermatrix auf den Zeilen definiert über die Matrixelemente

〈µt |P|µt+1〉 = exp
[
− β {H (µt) +H (µt, µt+1)}

]
(2.8)

und propagiere in Richtung der t-Achse (ab Kapitel 3 gilt dies nur einge-
schränkt), was durch folgende Rechnung verdeutlicht wird.

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

✻

1 L
1

T

✻

✲

t

x

Abbildung 2.4: In t-Richtung propagierende Transfermatrix

Mittels (2.8) läßt sich die Zustandssumme (2.7) schreiben als

Z =
∑
µ1

. . .
∑
µT

〈µ1 |P|µ2〉 〈µ2 |P|µ3〉 . . . 〈µT |P|µT+1〉 (2.9)

=
∑
µ1

〈
µ1

∣∣PT ∣∣µ1〉
= Sp

(
PT

)
, (2.10)

wobei Gebrauch gemacht wurde von der Vollständigkeit der Zustände und den
periodischen Randbedingungen (2.1). Die Spur wird zweckmäßigerweise in der
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2.1. Grundlagen

Diagonalbasis berechnet, in der P folgende Form hat:

P =


ρ1

ρ2 0

0
. . .

ρ2L

 .

Es handelt sich um eine 2L×2L-Matrix, da jede Zeile 2L verschiedene Spinkon-
figurationen aufweist.

Damit lautet nun die Zustandssumme (2.10):

Z =
2L∑
i=1

(ρi)
T . (2.11)

Aus der Kenntnis der Eigenwerte der Transfermatrix läßt sich also die Zustands-
summe gewinnen. Der folgende Abschnitt beschäftigt sich mit deren Diagona-
lisierung.

Hierzu sei noch folgende Anmerkung beigefügt:

P ist nach (2.8) offensichtlich nicht symmetrisch. Dieser Umstand könnte be-
hoben werden durch eine entsprechende Symmetrisierung der Transfermatrix
(P → PS), so daß deren Diagonalisierbarkeit direkt ersichtlich wäre:

〈µt |PS |µt+1〉 = exp
[
− β

{
1
2 H (µt) +H (µt, µt+1) +

1
2 H (µt+1)

} ]
. (2.12)

Nach (2.3) ist der Anteil H (µt, µt+1) = H (µt+1, µt) bereits symmetrisch; der
gesamte Ausdruck PS wäre es daher entsprechend

〈µt |PS |µt+1〉 = 〈µt+1 |PS |µt〉 .

Eine derartige Symmetrisierung muß im vorliegenden Fall jedoch nicht durch-
geführt werden: Eine Diagonalisierung ist ebenfalls für die nichtsymmetrische
Variante P (2.8) möglich [32], wobei die oben erwähnte Diagonalbasis dann aus
einer nicht-orthogonalen Transformation hervorgeht.
Aufgrund ihrer einfacheren Form wird daher im Folgenden in Anlehnung an
[32] die Transfermatrix P (2.8) verwendet, deren Diagonalisierungsverfahren
nun erläutert wird.
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2. Onsager-Lösung des zweidimensionalen Ising-Modells
nach Kaufman

2.2 Diagonalisierung der Transfermatrix

2.2.1 Aufteilung von P in V2 und V ′
1

Die Transfermatrixelemente (2.8) zwischen den benachbarten Zeilen µ und µ′

〈
µ|P|µ′〉 = exp

[
− β

{
H (µ) +H

(
µ, µ′)} ]

lauten mit (2.2) und (2.3) ausgeschrieben:

〈
s1, . . . , sL |P| s′1, . . . , s′L

〉
=

L∏
k=1

exp [βsksk+1] · exp
[
βsks

′
k

]
.

Dies legt folgende Aufteilung nahe, die auch bei den Wechselwirkungstermen
(Abb. 2.2 und Abb. 2.3) verwendet wurde:

P = V2 V ′
1 (2.13)

mit
〈
s1, . . . , sL |V2| s′1, . . . , s′L

〉
= δs1s′1 . . . δsLs′L

L∏
k=1

exp [βsksk+1] , (2.14)

〈
s1, . . . , sL

∣∣V ′
1

∣∣ s′1, . . . , s′L〉 =
L∏
k=1

exp
[
βsks

′
k

]
. (2.15)

V2 beschreibt damit die Kopplung in x-Richtung und V ′
1 diejenige in t-Richtung.

Im Falle einer symmetrisch gewählten Transfermatrix erhielte man anstatt (2.13)
eine kompliziertere Aufspaltung; z.B. ergäbe sich für obige Symmetrisierung
(2.12)

PS = V
1/2
2 V ′

1 V
1/2
2 .

Verschiedene Varianten, die für bestimmte Berechnungszwecke vorteilhaft sind,
werden in [17] diskutiert.
Hier wird die einfachere Aufteilung P = V2 V ′

1 (2.13) verwendet.

2.2.2 Darstellung von V2 und V ′
1 als direkte Produkte

A,B, . . . , C seien n p× p- Matrizen.
Definition: A×B × . . .× C heißt (n-faches) direktes Produkt, falls〈
ii′ . . . i′′ |A×B × . . .× C| jj′ . . . j′′

〉
=

〈
i |A| j

〉 〈
i′ |B| j′

〉
. . .

〈
i′′ |C| j′′

〉
. (2.16)

A× B × . . .× C ist somit pn × pn-dimensional. (2.16) ist so zu verstehen, daß
die Matrixelemente von A in der Basis |i〉, die Elemente von B in der Basis |i′〉,
usw. berechnet werden.
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2.2. Diagonalisierung der Transfermatrix

Aus der Definition (2.16) folgen die Eigenschaften:

(A×B × . . .× C) · (D × E × . . .× F ) = (AD)× (BE)× . . .× (CF ) ;

A×B × . . .× C = (A× 1× . . .× 1)·(1×B × . . .× 1)·. . .·(1× 1× . . .× C) .

V ′
1 und V2 (jeweils 2L× 2L-dimensional) können nun entsprechend den L Ising-
Spins pro Zeile durch L-fache direkte Produkte von Paulimatrizen geeignet
dargestellt werden.
(Man vergleiche mit dem eindimensionalen Modell: dort tritt lediglich eine ein-
zelne Paulimatrix auf; in Anhang A.5 wird speziell auf den Übergang zu zwei
Dimensionen eingegangen.)
Nach kurzer Rechnung [32] erhält man unter Benutzung der angegebenen Re-
chenregeln (siehe auch A.5):

V ′
1 = [2 sinh (2β)]

L
2 ·

L∏
α=1

exp
[
β̃ σx

α

]
= [2 sinh (2β)]

L
2 · V1 (2.17)

mit tanh β̃ = exp [−2β] ; (2.18)

V2 =
L∏
α=1

exp
[
β σz

α σz
α+1

]
, mit σz

L+1 = σz
1 wegen (2.1) ; (2.19)

σx =
(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
. (2.20)

Dabei wurde definiert:

σx
α = 1× 1× . . .× σx × . . .× 1 . (2.21)

σx
α ist ein L-faches direktes Produkt, wobei σx an α-ter Stelle und sonst die
Einheitsmatrix auftritt (σz

α analog).

(2.18) stellt die Dualitätstransformation zwischen der Hoch- und Tieftempe-
raturphase dar [6].

In der gewählten Darstellung ist offensichtlich V2 diagonal (auch an (2.14) er-
kennbar), während V1 dies nicht ist.
Entsprechende Basiszustände der Spins entnehme man A.5.

Somit ist (der Vorfaktor wurde in (2.17) herausdefiniert)

P = [2 sinh (2β)]
L
2 · V mit V = V2 · V1 . (2.22)

Für den nächsten Schritt wird die Kenntnis von Drehungen und deren Spindar-
stellungen benötigt, welche im folgenden Abschnitt bereitgestellt wird.
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2. Onsager-Lösung des zweidimensionalen Ising-Modells
nach Kaufman

2.2.3 Drehungen und deren Spindarstellungen

Sei {Γµ}µ=1,...,2L ein System von 2L antikommutierenden Matrizen, d.h.

Γµ Γν + Γν Γµ = 2 δµν , (2.23)

und jedes Γµ eine 2L × 2L-Matrix. Diese Matrizen mit der Eigenschaft (2.23)
sind allgemein untersucht worden von Brauer und Weyl [44].
Zunächst werden die {Γµ}µ=1,...,2L in einem 2L-komponentigen Spaltenvektor
zusammengefaßt:

(Γα) =


Γ1
Γ2
...
Γ2L

 .

Eine Drehung dieses Vektors in der 2-dimensionalen µν-Ebene um den (kom-
plexen) Winkel θ erreicht man mittels einer gewöhnlichen Drehmatrix ω(µν|θ):(

Γ′α
)
= ω(µν|θ) (Γα)

mit ω(µν|θ) =



1
. . .

cos θ · · · sin θ
...

...
− sin θ · · · cos θ

. . .
1


,

wobei die Winkelfunktionen in der µ-ten und ν-ten Spalte bzw. Zeile auftauchen.
Die folgenden beiden Sätze werden bei der Diagonalisierung der Transfermatrix
P bzw. V von enormem Nutzen sein. Die Beweise sind in [32] nachzulesen.

Satz 1:
(
Γ′α

)
= ω(µν|θ) (Γα) (2.24)

⇐⇒ Γ′α = S (ω) · Γα · S−1 (ω) (2.25)

mit S (ω) = Sµν (θ) = exp
[
−θ

2
ΓµΓν

]
.

ω transformiert in (2.24) einen 2L-komponentigen Vektor und hat demzufolge
die Dimension 2L×2L. S(ω) in (2.25) hingegen transformiert eine Komponente
dieses Vektors, die ihrerseits eine 2L × 2L-Matrix darstellt. Entsprechend hat
S(ω) die Dimension 2L × 2L.
Man nennt ω Drehung und S(ω) Spindarstellung der Drehung ω.
Gemäß Satz 1 kann also jeder Drehung eine Spindarstellung zugeordnet werden
und umgekehrt. Dies wird später explizit ausgenutzt.
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2.2. Diagonalisierung der Transfermatrix

Satz 2:

ω = ω (αβ|θ1) · ω (γδ|θ2) · . . . · ω (µν|θn) (2.26)

⇐⇒ S(ω) = exp
[
−1
2
θ1ΓαΓβ

]
· exp

[
−1
2
θ2ΓγΓδ

]
· . . . · exp

[
−1
2
θnΓµΓν

]
. (2.27)

Dabei hat ω die 2L Eigenwerte exp [±iθ1], exp [±iθ2], . . . , exp [±iθL] (2.28)

und S(ω) die 2L Eigenwerte exp
[
i

2
(±θ1 ± θ2 ± . . .± θn)

]
. (2.29)

In (2.29) sind sämtliche ± unabhängig zu wählen. (2.28) sind die gewohnten
Eigenwerte von Drehmatrizen. Satz 2 enthält also folgende Aussage: Aus der
Kenntnis der Eigenwerte der Drehung ω läßt sich auf die Eigenwerte der zuge-
hörigen Spindarstellung S(ω) schließen und umgekehrt.
Aus Satz 1 und Satz 2 folgt nun: Zur Diagonalisierung der Spindarstellung einer
Drehung ist es lediglich nötig, die (niederdimensionale) Drehung zu diagonali-
sieren.
Die Vereinfachung von Kaufmans Lösung [15] gegenüber der ursprünglichen von
Onsager [9] beruht auf der Ausnutzung dieses Sachverhalts.

2.2.4 Formulierung von V1 und V2 als Spindarstellungen

Die {Γµ}µ=1,...,2L aus dem vorigen Abschnitt lassen sich durch die Paulimatrizen
σi, i = x, y, z darstellen. Eine spezielle Wahl unter Verwendung von (2.21) ist

Γ2α = σx
1 σx

2 . . . σx
α−1 σy

α

Γ2α−1 = σx
1 σx

2 . . . σx
α−1 σz

α

für α = 1, . . . , L . (2.30)

Hieraus folgt:

Γ2αΓ2α−1 = iσx
α , α = 1, . . . , L ,

Γ2α+1Γ2α = iσz
α σz

α+1 , α = 1, . . . , L− 1 ,

Γ1Γ2L = − i U σz
L σz

1 (2.31)

mit U = σx
1 σx

2 . . . σx
L = σx× σx× . . .× σx . (2.32)

Damit lautet (2.17):

V1 =
L∏
α=1

exp [−iβ̃Γ2αΓ2α−1] . (2.33)

Vergleicht man diese Form mit (2.27), so erkennt man, daß V1 die Spindarstel-
lung einer Drehung ist.
Für V2 erhält man aus (2.19):

V2 = exp [iβUΓ1Γ2L]
L−1∏
α=1

exp [−iβΓ2α+1Γ2α] . (2.34)
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Bis auf den ersten Faktor exp [iβUΓ1Γ2L] handelt es sich bei V2 ebenfalls um
eine Spindarstellung. Er stammt aus der Randbedingung (2.1), die σz

L+1 = +σz
1

bewirkt.

2.2.5 Aufspaltung von V in V + und V − durch Randbedingungen

Der Ausdruck exp [iβUΓ1Γ2L] soll näher betrachtet werden. Aus den Antikom-
mutatorregeln folgt

(iUΓ1Γ2L)
2 = −UΓ1Γ2LUΓ1Γ2L = −U2 (Γ1Γ2L)

2 = +1 ,

da U2 = 1 und U mit einer geraden Anzahl an Γ -Matrizen vertauscht.
Da für Matrizen A mit A2 = 1 exp (θA) = cosh θ +A sinh θ gilt, folgt:

exp [iβUΓ1Γ2L] = coshβ + iUΓ1Γ2L sinhβ

=
[
1
2
(1 + U) +

1
2
(1− U)

]
︸ ︷︷ ︸

=1

[coshβ + iUΓ1Γ2L sinhβ]

=
1
2
(1 + U) [coshβ + iΓ1Γ2L sinhβ] +

1
2
(1− U) [coshβ − iΓ1Γ2L sinhβ]

wegen U2 = 1

=
1
2
(1 + U) exp [iβΓ1Γ2L] +

1
2
(1− U) exp [−iβΓ1Γ2L] (2.35)

da (iΓ1Γ2L)2 = 1 .

Mit (2.35) folgt für V = V2V1 mit (2.33) und (2.34):

V =
1
2
(1 + U)V + +

1
2
(1− U)V − (2.36)

mit V ± = exp [±iβΓ1Γ2L]
L−1∏
α=1

exp [−iβΓ2α+1Γ2α]
L∏
λ=1

exp [−iβ̃Γ2λΓ2λ−1]. (2.37)

V + und V − sind offensichtlich Spindarstellungen.
Es bleibt festzuhalten, daß die Aufspaltung (2.36) durch die Randbedingungen
(2.1) verursacht wurde.
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2.2. Diagonalisierung der Transfermatrix

2.2.6 Diagonalisierung von U

Da U, V + und V − kommutieren, können sie gleichzeitig diagonalisiert werden.
Mittels der Transformationsmatrix R werde U in Diagonalform gebracht:

Ṽ = RV R−1 =
1
2
(1 + Ũ) Ṽ + +

1
2
(1− Ũ) Ṽ −

mit Ṽ ± = RV ±R−1 ,

Ũ = RUR−1 =
(
1 0
0 −1

)
. (2.38)

In (2.38) ist 1 die 2L−1 × 2L−1-Einheitsmatrix. Ũ ergibt sich aus (2.32), indem
man in dessen Diagonalform σz× σz× . . .× σz +1 und −1 entsprechend um-
ordnet.
Aus der Vertauschbarkeit von Ũ mit Ṽ ± folgt:

Ṽ + =
(
A+ 0
0 B+

)
, Ṽ − =

(
A− 0
0 B−

)
.

1
2(1 + Ũ) und 1

2(1 − Ũ) sind offensichtlich Projektoren, die die Einheitsmatrix
auf die obere bzw. untere Matrixhälfte abbbilden. Sie sind komplementär zu-
einander, wie man an 1

2(1 + Ũ) · 12(1− Ũ) = 0 erkennt. Insbesondere folgt:

1
2
(1 + Ũ) Ṽ + =

(
A+ 0
0 0

)
,

1
2
(1− Ũ) Ṽ − =

(
0 0
0 B−

)
. (2.39)

A+ und B− (nicht notwendig diagonal) sind jeweils 2L−1×2L−1-dimensional und
haben dementsprechend 2L−1 Eigenwerte. Man kann also nach (2.39) mit einer
unabhängigen Diagonalisierung von 1

2(1 + Ũ)Ṽ + und 1
2(1 − Ũ)Ṽ − fortfahren

und anschließend deren beide Eigenwertsätze zusammen als Eigenwertsatz für
Ṽ und damit für V identifizieren. Letzterer enthält die gesuchten 2L Eigenwerte.

Es wird folgendermaßen fortgefahren:
V + und V − werden getrennt diagonalisiert, und man erhält jeweils 2L Eigen-
werte. Durch die Transformation zu Ṽ + und Ṽ − ändern sich diese selbstver-
ständlich nicht. Schließlich wird über 1

2(1 + Ũ)Ṽ + und 1
2(1− Ũ)Ṽ − jeweils die

Hälfte an Eigenwerten aussortiert, man behält also jeweils 2L−1. Diese zusam-
mengenommen ergeben dann die 2L gewünschten Eigenwerte.

2.2.7 Die Symmetrie U und Beiträge zur Zustandssumme

Obiger Sachverhalt kann noch in anderem Licht beleuchtet werden.
U ist eine Symmetrie, da U mit V vertauscht (zur Definition des Hamiltonope-
rators siehe Abschnitt 2.2.10). Die physikalische Bedeutung dieser Symmetrie
tritt in 3.1.2 zutage, wo U die Rolle eines Spinumkehroperators einnimmt.
Wegen U2 = 1 kann nach symmetrischen und antisymmetrischen Zuständen
unterschieden werden:
Aufgrund von

1
2
(1 + U)U = +

1
2
(1 + U)
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2. Onsager-Lösung des zweidimensionalen Ising-Modells
nach Kaufman

projiziert 1
2(1 + U) auf symmetrische Zustände |ψS〉, für die

U |ψS〉 = +|ψS〉 (2.40)

gilt.
Antisymmetrische Zustände |ψA〉 mit

U |ψA〉 = −|ψA〉 (2.41)

erhält man wegen

1
2
(1− U)U = −1

2
(1− U)

über den Projektor 1
2(1− U).

Damit lassen sich die Beiträge von V + und V − zur Zustandssumme (2.10)

Z = Sp
(
PT

)
geeignet charakterisieren. Dabei wird es sich im Weiteren als nützlich erweisen,
den Vorfaktor in (2.22) aus dieser und folgenden Zustandssummen herauszu-
nehmen:

Z = [2 sinh (2β)]
LT
2 · Z ′ . (2.42)

Mit (2.36) ergibt sich

Z ′ = Sp
[
1
2
(1 + U)V +

]T
+ Sp

[
1
2
(1− U)V −

]T
,

da die Spurbildung nach (2.39) getrennt erfolgen kann.
Aufgrund der Idempotenz der Projektoren

[
1
2
(1 + U)

]T
=
1
2
(1 + U) und

[
1
2
(1− U)

]T
=
1
2
(1− U) (2.43)

folgt:

Z ′ = Sp
[
1
2
(1 + U)

(
V +

)T] + Sp
[
1
2
(1− U)

(
V −)T] . (2.44)

Zur Zustandssumme trägt also von den 2L Eigenwerten von V + lediglich die-
jenige Hälfte bei, die zu symmetrischen Eigenvektoren gehört. Beiträge von
V − hingegen liefern nur die zu antisymmetrischen Eigenvektoren gehörenden
Eigenwerte.
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2.2. Diagonalisierung der Transfermatrix

2.2.8 Die Eigenwerte von V + und V −

Wie in Abschnitt 2.2.3 erläutert wurde, ist es zur Diagonalisierung der 2L×2L-
dimensionalen Spindarstellungen V ± lediglich nötig, die zugehörigen 2L × 2L-
dimensionalen Drehungen zu diagonalisieren.
Nach Satz 2 (Gln. (2.26) und (2.27)) lassen sich den V ± in (2.37) folgende
Drehungen Ω± zuordnen:

Ω± = ω
(
1, 2L| ∓ 2iβ

) L−1∏
α=1

ω
(
2α+ 1, 2α|+ 2iβ

) L∏
λ=1

ω
(
2λ, 2λ− 1|+ 2iβ̃

)
.

Die Diagonalisierung von Ω± erfolgt in einer längeren Rechnung, die aber kei-
ne prinzipiellen Hürden mehr in den Weg stellt. Es sei daher erlaubt, auf die
Ergebnisse in [15, 32] zu verweisen:

Eigenwerte von Ω+ : exp [±ε1], exp [±ε3], exp [±ε5], . . . , exp [±ε2L−1]; (2.45)
Eigenwerte von Ω− : exp [±ε0], exp [±ε2], exp [±ε4], . . . , exp [±ε2L−2]. (2.46)

Nach Satz 2 (Gln. (2.28) und (2.29)) haben die zugeordneten Spindarstellungen
V + und V − dann folgende Eigenwerte:

Eigenwerte von V + : exp
[
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]
; (2.47)

Eigenwerte von V − : exp
[
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
. (2.48)

Die Vorzeichen in (2.47) und (2.48) sind unabhängig zu wählen. Dies ergibt
jeweils 2L Eigenwerte für V + und V −.
Dabei ist

cosh (εk) = cosh (2β) cosh (2β̃)− sinh (2β) sinh (2β̃) cos
(
πk

L

)
;

Da die Kopplung in horizontaler und vertikaler Richtung die gleiche ist, gilt
aufgrund der Dualität (2.18)

sinh (2β) sinh (2β̃) = 1 , (2.49)

so daß die einfachere Form

cosh (εk) = cosh (2β) cosh (2β̃)− cos
(
πk

L

)
(2.50)

folgt. Mit

m0 = 2 |β − β̃| (2.51)

und cosh (2β) cosh (2β̃) = cosh (m0) + 1 ergibt sich eine nützliche Darstellung:

cosh (εk) = cosh (m0) + 1− cos (pk) ; (2.52)

pk =
πk

L
, k = 0, 1, . . . , 2L− 1 . (2.53)
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Lösungen zu (2.52) für εk können mit beiden Vorzeichen auftreten. Dies ist kein
Widerspruch, da in (2.45) - (2.48) ebenfalls beide Vorzeichen vorkommen. Man
muß sich allerdings für eine Vorzeichenkonvention entscheiden.
Für εk mit k �= 0 werde stets der positive Arcosh-Zweig verwendet:

εk = +Arcosh {cosh (m0) + 1− cos (pk)} , k = 1, . . . , 2L− 1 . (2.54)

Bei k = 0 folgt cosh (ε0) = cosh (m0), d.h. ε0 = ±m0 mit m0 > 0 sind zulässige
Lösungen. Obwohl es auf den ersten Blick unnötig kompliziert erscheint, hat es
im Folgenden Vorteile, daß ε0 am kritischen Punkt β = βC , gleichbedeutend
mit β = β̃ (siehe Abschnitt 2.4), sein Vorzeichen wechselt. Der Notation in [17]
folgend wird gewählt:

ε0 = 2(β̃ − β) =
{
+m0 für β < βC ,
−m0 für β > βC .

(2.55)

Als Eigenschaften folgen aus der Periodizität des Kosinus

|εk| = |ε2L−k| (2.56)

sowie aus dessen Verhalten

0 ≤ |ε0| < ε1 < ε2 < . . . < εL . (2.57)

Diese werden durch die folgenden Graphen verdeutlicht.

Abbildung 2.5: Die verschiedenen εk für L = 8
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Zur Veranschaulichung der k-Abhängigkeit bei festgehaltener Temperatur wird
die für große L quasikontinuierliche Variable x = k

L verwendet (man vergleiche
mit der späteren Definition (5.13)). In deren Abhängigkeit zeigt sich (unter
Aufhebung der Beschränkung der k-Werte in (2.53)) das Verhalten (2.56) und
(2.57):

Abbildung 2.6: |ε| in Abhängigkeit von x = k
L bei β = 0,5

2.2.9 Die Eigenwerte von V

Nachdem mit (2.47) und (2.48) jeweils 2L Eigenwerte für V + und V − gefunden
wurden, muß noch jeweils die Hälfte von ihnen aussortiert werden. Dies gelingt
über die Projektoren 1

2(1 + Ũ) und 1
2(1− Ũ).

Den Eigenwerten (2.47) und (2.48) lassen sich mit Satz 2 mögliche Diagonal-
formen von V + und V − entnehmen; diese sollen durch die Transformationsma-
trizen F und D erzeugt werden:

FṼ +F−1 = Ṽ +
F , DṼ −D−1 = Ṽ −

D .

Nach Abschnitt 2.2.6 sollten 1
2(1+Ũ)Ṽ + und 1

2(1−Ũ)Ṽ − (unabhängig) diagona-
lisiert werden. Daher muß die Transformation über F bzw. D auf den gesamten
Ausdruck wirken:

F

[
1
2
(1 + Ũ)Ṽ +

]
F−1 =

1
2

(
1 + FŨF−1

)
Ṽ +
F ,

D

[
1
2
(1− Ũ)Ṽ −

]
D−1 =

1
2

(
1−DŨD−1

)
Ṽ −
D .

Kaufman zeigt durch Konstruktion [15]:

FŨF−1 = Ũ , DŨD−1 = Ũ . (2.58)

Dies führt zu

F

[
1
2
(1 + Ũ)Ṽ +

]
F−1 =

1
2

(
1 + Ũ

)
Ṽ +
F ,

D

[
1
2
(1− Ũ)Ṽ −

]
D−1 =

1
2

(
1− Ũ

)
Ṽ −
D .
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In [15] wird gezeigt, daß 1
2(1 + Ũ) von den Eigenwerten (2.47),(2.48) diejeni-

gen mit einer geraden Anzahl an Minuszeichen auswählt, 1
2(1 − Ũ) hingegen

diejenigen mit einer ungeraden Anzahl an Minuszeichen. Es ergeben sich somit
folgende Eigenwerte für V :

exp
[
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]
aus V + ; (2.59)

mit gerader Anzahl an Minuszeichen

exp
[
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
aus V − . (2.60)

mit ungerader Anzahl an Minuszeichen

Es soll noch erwähnt werden, daß Kaufman in [15] eine andere Vorzeichenkon-
vention wählt als in Gl.(2.55) und Abb. 2.5. Zur Unterscheidung wird γk statt
εk verwendet. Sie wählt:

γ0 = −ε0 , γk = εk für k = 1, . . . , 2L− 1 . (2.61)

Dies hat zur Folge, daß die Diagonalisierung von Ṽ − nicht über D, sondern eine
andere Transformationsmatrix G geschieht. Wie [15] explizit zu entnehmen ist,
hat G dann im Gegensatz zu (2.58) die Eigenschaft GŨG−1 = −Ũ .
Damit werden sowohl bei V + und V − wegen

F

[
1
2
(1 + Ũ)Ṽ +

]
F−1 =

1
2

(
1 + Ũ

)
Ṽ +
F ,

G

[
1
2
(1− Ũ)Ṽ −

]
G−1 =

1
2

(
1 + Ũ

)
Ṽ −
G

Eigenwerte mit einer geraden Anzahl an Minuszeichen ausgewählt:

exp
[
1
2
(±γ1 ± γ3 ± γ5 ± . . .± γ2L−1)

]
aus V + ; (2.62)

mit gerader Anzahl an Minuszeichen

exp
[
1
2
(±γ0 ± γ2 ± γ4 ± . . .± γ2L−2)

]
aus V − . (2.63)

mit gerader Anzahl an Minuszeichen

Man macht sich schnell klar, daß (2.62),(2.63) wegen ±γ0 = ∓ε0 nach (2.61)
mit (2.59),(2.60) identisch ist.
Dieser Vergleich soll zudem verdeutlichen, daß die Auswahl der Hälfte an Ei-
genwerten stets eindeutig ist.
Nun wird auch ersichtlich, warum es ungünstig wäre, γ0 bzw. ε0 in beiden
Temperaturbereichen positiv zu wählen: Unterhalb der kritischen Temperatur
(β > β̃) hätte man von den Eigenwerten

exp
[
1
2
(±|ε0| ± ε2 ± ε4 ± . . .± ε2L−2)

]
diejenigen mit einer geraden Anzahl an Minuszeichen, oberhalb (β < β̃) dieje-
nigen mit einer ungeraden.
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2.2.10 Diskussion des Spektrums

λi bezeichne die 2L Eigenwerte (2.59), (2.60) von V . Es folgt deren graphische
Darstellung für verschiedene L.

Abbildung 2.7: L = 4 Abbildung 2.8: L = 6

Abbildung 2.9: L = 8 Abbildung 2.10: L = 10

Unterhalb der kritischen Temperatur, gleichbedeutend mit β > 0, 44 (siehe
Abschnitt 2.4) sind die beiden größten Eigenwerte nahezu entartet, insbesondere
für große L. Die nächst kleineren Eigenwerte folgen mit größerem Abstand.
Aufgrund von (2.57) lauten die beiden größten Eigenwerte:

λ0+ = exp
[
1
2
(+ ε1 + ε3 + ε5 + . . .+ ε2L−1)

]
; (2.64)

λ0− = exp
[
1
2
(+|ε0|+ ε2 + ε4 + . . .+ ε2L−2)

]
; (2.65)

dabei ist λ0+ ≥ λ0− .
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Das Gleichheitszeichen gilt im Limes L→∞, wo wegen

lim
L→∞

|ε2k| = lim
L→∞

|ε2k+1| (2.66)

Entartung eintritt.
λ0+ wird daher als λmax bezeichnet. Es gehört zu einem symmetrischen Zu-
stand, während λ0− einem antisymmetrischen entstammt.
Da λ0− wegen (2.55) für β < βC nicht im Spektrum liegt, ist in diesem Tempe-
raturbereich λ0+ mit Abstand einziger größter Eigenwert (vgl. [17]).
Das Entartungsverhalten wird verdeutlicht durch folgende Graphen, in denen
λi/λmax aufgetragen ist.

Abbildung 2.11: L = 4 Abbildung 2.12: L = 6

Abbildung 2.13: L = 8 Abbildung 2.14: L = 10
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Über die Transfermatrix V wird der Hamilton-Operator H im Sinne der Quan-
tentheorie folgendermaßen definiert:

V = exp [−H] . (2.67)

Es handelt sich dabei um die übliche Definition, vgl. z.B. [16]. Man erhält
hierüber ein analoges quantenmechanisches System in einer Raumdimension
bzw. ein quantenfeldtheoretisches in zwei Raum-Zeit-Dimensionen (aus diesem
Grund wurden die Raumrichtungen des Ising-Gitters mit x und t bezeichnet,
siehe u.a. Abb. 2.1). In [16] wird dies über die Analogie zum euklidischen Zeit-
entwicklungsoperator auf dem Gitter plausibel gemacht. Zur Verdeutlichung der
Dimensionalität der einzelnen Systeme diene Anhang A.5.
Aufgrund der Aufspaltung von V in V + und V − wird zudem definiert:

V + = exp
[
−H+

]
, V − = exp

[
−H−] . (2.68)

Nach (2.67) haben die Eigenwerte von V die Gestalt λi = exp [−Ei], wobei Ei
die 2L Eigenwerte zum Hamiltonoperator darstellen. Insbesondere wird wegen
(2.68) nach E+ und E− unterschieden. Mit (2.59) und (2.60) lauten diese:

E+ = −
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1) ; (2.69)

mit gerader Anzahl an Minuszeichen

E− = −
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2) . (2.70)

mit ungerader Anzahl an Minuszeichen

Der Grundzustand des Systems ist gegeben durch den kleinsten Energieeigen-
wert

E0+ = −
1
2
(+ε1 + ε3 + ε5 + . . .+ ε2L−1) . (2.71)

Der Grundzustand ist dementsprechend symmetrisch.
Der erste angeregte Zustand für β > 0, 44 hat die etwas höhere Energie

E0− = −
1
2
(+|ε0|+ ε2 + ε4 + . . .+ ε2L−2) (2.72)

und ist antisymmetrisch.
Deren Abstand definiert die Energieaufspaltung

∆E = E0− − E0+ . (2.73)

Im System mit endlich vielen Freiheitsgraden (L, T endlich) ist ∆E > 0 und es
gibt einen ausgezeichneten Grundzustand.
Im Limes unendlich vieler Freiheitsgrade L→∞ hingegen wird limL→∞∆E =
0 wegen (2.66); damit existieren zwei entartete Grundzustände.
Entsprechendes ist aus Quantenfeldtheorien mit spontan gebrochener Symme-
trie bekannt [10]. Dieser Vergleich manifestiert sich in der Universalitätshypo-
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these [14]. Im Speziellen befinden sich die φ4-Theorie in zwei Raum-Zeit-Dimen-
sionen und das zweidimensionale Ising-Modell in derselben Universalitätsklasse
[10, 22] (dort wird auf die Universalität in höheren Dimensionen eingegangen;
nach [14] kann auf diese in zwei Dimensionen geschlossen werden).

Das Ziel der vorliegenden Arbeit besteht darin, einen analytischen Ausdruck
für die Energieaufspaltung bei großen L im Ising-Modell zu finden.

Das Energieschema läßt sich graphisch veranschaulichen. Zu diesem Zweck wird
Ei − E0+, gleichbedeutend mit ln (λmax/λi), aufgetragen:

Abbildung 2.15: L = 4 Abbildung 2.16: L = 6

Abbildung 2.17: L = 8 Abbildung 2.18: L = 10

Der Grundzustand liegt in dieser Darstellung jeweils auf der Abszisse.
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Die dargestellten höheren Energieeigenwerte können unter Beachtung der er-
laubten Vorzeichenkombinationen und des Vorzeichens von ε0 folgendermaßen
erzeugt werden:

• im Bereich β < βC

E1−; k = E0− + εk , k gerade ; (2.74)
E2+; k, l = E0+ + εk + εl , k �= l ungerade ; (2.75)

• im Bereich β > βC

E2−; k, l = E0− + |εk|+ |εl| , k �= l gerade ; (2.76)
E2+; k, l = E0+ + εk + εl , k �= l ungerade ; (2.77)

usw. En±; k1,...,kn .
Dies legt eine Teilcheninterpretation nahe, die in Kapitel 4 durch die fermioni-
sche Darstellung bestätigt wird, die zu denselben Ergebnissen führt.
Insbesondere lassen sich die deutlich sichtbaren Bandstrukturen als unterschied-
liche Mehrteilchen-Anregungen erklären.

2.3 Die Zustandssumme

Mit den Eigenwerten λi von V ergibt sich nach (2.42) bzw. (2.11)

Z ′ =
2L∑
i=1

(λi)
T . (2.78)

Explizit ausgeschrieben lautet die Zustandssumme mit (2.59) und (2.60):

Z ′ =
∑

{gerade}
exp

[
T

2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]

+
∑

{ungerade}
exp

[
T

2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
. (2.79)

Mit den leicht zu verifizierenden Identitäten

∑
{gerade}

exp
[
T

2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]

=
1
2

{
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)}
, (2.80)

∑
{ungerade}

exp
[
T

2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]

=
1
2

{
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
−
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
(2.81)
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ergibt sich eine kompaktere Schreibweise:

Z ′ =
1
2

{
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)

+
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
−
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
. (2.82)

2.4 Thermodynamischer Limes und Phasenübergang

Bekanntlich treten in endlichen Systemen keine Phasenübergänge auf. Um sie
zu beobachten, muß man den thermodynamischen Limes ausführen, der im
vorliegenden Fall durch L, T →∞ gegeben ist.
Die Zustandssumme Z ′ (2.78) läßt sich folgendermaßen abschätzen:

(λmax)
T ≤ Z ′ ≤ 2L (λmax)

T .

Die Freie Energie pro Spin F ∝ 1
LT lnZ

′ kann damit wegen
1
L
ln (λmax) ≤

1
LT

lnZ ′ ≤ 1
L
ln (λmax) +

1
T
ln 2

im Limes über λmax ausgedrückt werden:

lim
L,T→∞

1
LT

lnZ ′ = lim
L→∞

1
L
ln (λmax) .

Letzterer Limes existiert, da λmax (2.64) von der Ordnung eL ist.
Die explizite Berechnung von limL→∞ 1

L ln (λ0+) führt schließlich auf die ther-
modynamischen Funktionen. Da diese nicht Thema der vorliegenden Arbeit
sind, sei nur kurz vermerkt, daß die spezifische Wärmekapazität ein vollstän-
diges elliptisches Integral erster Gattung enthält [32], welches eine Singularität
aufweist [59]. Physikalisch bedeutet dies, daß es sich um einen Phasenübergang
zweiter Ordnung handelt, was durch weitere Hinweise gestützt wird; hierzu ist
insbesondere die Berechnung der spontanen Magnetisierung von Yang [33] zu
nennen. Der kritische Punkt ergibt sich aus

sinh (2βC) = 1 , (2.83)

was auf den numerischen Wert [32]

βC = 0, 4406868 bzw.
kB
J

T̃C = 2, 269185 (2.84)

führt (siehe auch [6]).
Aufgrund der Dualität gilt (2.49), so daß aus (2.83)

sinh
(
2β̃C

)
= 1

und damit

βC = β̃C (2.85)

folgt.
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Kapitel 3

Einbau antiperiodischer
Randbedingungen
in zwei verschiedenen
Darstellungen

In diesem Kapitel wird explizit vorgeführt, welchen Einfluß die Ersetzung peri-
odischer Randbedingungen (RB) durch antiperiodische auf Eigenwerte und Zu-
standssummen hat. Entsprechend den Anordnungsmöglichkeiten von gemisch-
ten periodischen und antiperiodischen RB werden vier verschiedene Sektoren
auftreten. Für diese findet man jeweils zwei (äquivalente, wie in Abschnitt 4.5
gezeigt wird) Darstellungen, je nachdem in welche Richtung die Transferma-
trix propagiert. Bisher war dies die t-Richtung, weshalb diese Vorgehensweise,
Darstellung I genannt, zuerst behandelt wird.

3.1 Darstellung I: In t-Richtung propagierende
Transfermatrix

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

✻

1 L
1

T

✻

✲

t

x

µT+1 = τt · µ1

sL+1 = τx · s1

Abbildung 3.1: Transfermatrix in t-Richtung mit RB
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3. Einbau antiperiodischer Randbedingungen
in zwei verschiedenen Darstellungen

Die verschiedenen Randbedingungen sind gegeben durch

sL+1 = τx · s1 , µT+1 = τt · µ1 mit τx, τt ∈ {−1,+1} . (3.1)

Der Fall periodischer RB τx = +1, τt = +1 ist bereits ausführlich in Kapitel 2
beschrieben worden.

3.1.1 Antiperiodische RB in x-Richtung

Dies entspricht der Situation

τx = −1 , τt = +1 . (3.2)

Ausgehend von Kapitel 2 werden die dortigen Rechnungen nun entsprechend
modifiziert.
Aufgrund von (3.2) erfährt der Wechselwirkungsterm (2.2) eine Vorzeichenän-
derung im letzten Summanden:

H (µt) = −
L−1∑
k=1

sk sk+1 + sLs1 . (3.3)

Dies bedeutet, daß anstatt (2.14) nun abgewandelte Matrixelemente

〈
s1, . . . , sL |V ap2 | s′1, . . . , s′L

〉
= δs1s′1 . . . δsLs′L

L−1∏
k=1

exp [βsksk+1] exp [−βsLs1]

auftreten, was statt (2.19) in

V ap2 =
L−1∏
α=1

exp
[
β σz

α σz
α+1

]
exp

[
−β σz

L σz
1

]
(3.4)

resultiert. Die antiperiodischen RB gehen also direkt in die Transfermatrix ein.
V1 (2.17) bleibt hingegen unverändert, da es die Wechselwirkung in t-Richtung
(2.3) beschreibt, in der die RB nach (3.2) weiterhin periodisch ist. Formuliert
man V ap2 als Spindarstellung, so folgt anstatt (2.34) wegen (2.31):

V ap2 = exp [−iβUΓ1Γ2L]
L−1∏
α=1

exp [−iβΓ2α+1Γ2α] . (3.5)

Analog zu (2.22) wird

V ap = V ap2 · V1

definiert, was mit (3.5) und (2.33)

V ap = exp [−iβUΓ1Γ2L]
L−1∏
α=1

exp [−iβΓ2α+1Γ2α]
L∏
λ=1

exp [−iβ̃Γ2λΓ2λ−1] (3.6)
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3.1. Darstellung I: In t-Richtung propagierende Transfermatrix

ergibt.
Der einzige Unterschied zwischen V (siehe (2.34)) und V ap (3.6) liegt in dem
Vorzeichen des Faktors exp [±iβUΓ1Γ2L].
Für exp [−iβUΓ1Γ2L] in (3.6) erhält man im Gegensatz zu (2.35) in einer ana-
logen Rechnung:

exp [−iβUΓ1Γ2L] = coshβ − iUΓ1Γ2L sinhβ

=
[
1
2
(1 + U) +

1
2
(1− U)

]
︸ ︷︷ ︸

=1

[coshβ − iUΓ1Γ2L sinhβ]

=
1
2
(1 + U) [coshβ − iΓ1Γ2L sinhβ] +

1
2
(1− U) [coshβ + iΓ1Γ2L sinhβ]

=
1
2
(1 + U) exp [−iβΓ1Γ2L] +

1
2
(1− U) exp [+iβΓ1Γ2L] .

Dies bewirkt eine zu (2.36) veränderte Aufspaltung:

V ap =
1
2
(1 + U)V − +

1
2
(1− U)V + (3.7)

mit V ± = exp [±iβΓ1Γ2L]
L−1∏
α=1

exp [−iβΓ2α+1Γ2α]
L∏
λ=1

exp
[
−iβ̃Γ2λΓ2λ−1

]
.

V ± sind mit denen aus Kapitel 2 (2.37) identisch. Dementsprechend bleiben
auch die Eigenwerte von V + (2.47) und V − (2.48) dieselben.
Die Eigenwerte von V ap hingegen unterscheiden sich von denen von V (2.59),
(2.60), da die Rolle der Projektoren in (3.7) gegenüber (2.36) vertauscht ist.
Demzufolge wechselt auch die Zuordnung symmetrischer und antisymmetrischer
Eigenvektoren. Nach Abschnitt 2.2.9 ergeben sich folgende erlaubte Vorzeichen-
kombinationen:

exp
[
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]
aus V + ; (3.8)

mit ungerader Anzahl an Minuszeichen

exp
[
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
aus V − . (3.9)

mit gerader Anzahl an Minuszeichen

Die zugehörige Zustandssumme ist gegeben durch

Z ′ap = Sp
[
(V ap)T

]
(3.10)

und wird in Abschnitt 3.1.3 aufgestellt.
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3.1.2 Antiperiodische RB in t-Richtung

Dies ist der Fall (siehe Abb. 3.1)

τx = +1 , τt = −1 . (3.11)

Explizit ausgeschrieben bedeutet µT+1 = −µ1 die Umkehr aller Spins in einer
Zeile:

{s1, s2, . . . , sL}(T+1)−teZeile
!= {−s1,−s2, . . . ,−sL}1−teZeile .

Im Transfermatrixformalismus schrieb sich die Zustandssumme allgemein (2.9):

Z =
∑
µ1

. . .
∑
µT

〈µ1 |P|µ2〉 〈µ2 |P|µ3〉 . . . 〈µT |P|µT+1〉 .

Im letzten Matrixelement findet aufgrund von (3.11) die Spinumkehr statt. Die-
se wird über einen Operator Aap ausgeführt, so daß gilt:

〈µT |P|µT+1〉 = 〈µT |PAap|µ1〉 .

Damit ist

Zap = Sp
(
PTAap

)
. (3.12)

Im Gegensatz zum vorigen Abschnitt 3.1.1 werden die antiperiodischen RB
nicht in die Transfermatrix, sondern über einen Operator in die Spurbildung
eingebaut.
Die explizite Form des Spin-Umkehr-Operators Aap erhält man durch folgende
Überlegung: Im eindimensionalen Ising-Modell lassen sich bei entsprechend ge-
wählter Darstellung wie in (A.7) die Zustände eines Spins si = ±1 durch die
Basisvektoren∣∣si = +1

〉
=

(
1
0

)
und

∣∣si = −1〉 =
(
0
1

)
(3.13)

repräsentieren (s. [45] und A.1). Diese können die durch die 2×2-Transfermatrix
(A.7) beschriebenen Konfigurationen benachbarter Spins abfragen. Der Wechsel
zwischen den beiden Zuständen gelingt mittels der Paulimatrix σx (2.20):(

0 1
1 0

)(
1
0

)
=

(
0
1

) (
0 1
1 0

)(
0
1

)
=

(
1
0

)
.

Im zweidimensionalen Ising-Modell können in der hier gewählten Darstellung
(2.17), (2.19) die Basisvektoren (3.13) weiterhin verwendet werden; allerdings
treten anstelle von einfachen 2×2- Matrizen L-fache direkte Produkte von ihnen
auf (siehe A.5). Die in der Transfermatrix enthaltenen Konfigurationen können
mittels der Definition (2.16) entnommen werden, nach der die Elemente der
L beteiligten 2× 2- Matrizen jeweils über ihre 2-komponentigen Basisvektoren
(3.13) berechnet werden.
Eine Umkehr der L Spins in einer Zeile geschieht daher (gemäß den Rechen-
regeln aus 2.2.2) durch Multiplikation mit dem L-fachen direkten Produkt der
Paulimatrix σx (siehe auch A.5):

Aap = σx × σx × . . .× σx = σx
1 σx

2 . . . σx
L . (3.14)

38



3.1. Darstellung I: In t-Richtung propagierende Transfermatrix

Dies war aber gerade der Operator U (2.32):

Aap = U . (3.15)

Dies erlaubt eine Veranschaulichung der Symmetrie U , nach der die Eigenvekto-
ren unterschieden wurden (siehe Abschnitt 2.2.7): Bezüglich einer Spinumkehr
treten symmetrische (2.40) und antisymmetrische (2.41) Zustände auf.
Mit (3.15) lautet die Zustandssumme (3.12):

Zap = Sp
(
PTU

)
. (3.16)

Da U mit P vertauscht, kann die Diagonalisierung in derselben Basis wie bisher
erfolgen. Die endgültige Form der Zustandssumme ist dem nächsten Abschnitt
zu entnehmen.

3.1.3 Sektoren

Entsprechend den RB (3.1) treten insgesamt vier Sektoren auf. Die zugehörigen
Zustandssummen werden mit Zτxτt indiziert. Tabelle 3.1 gibt eine Übersicht.

Sektor Z τx τt RB in x-Richtung RB in t-Richtung
++ Z++ +1 +1 periodisch periodisch
+− Z+− +1 −1 periodisch antiperiodisch
−+ Z−+ −1 +1 antiperiodisch periodisch
−− Z−− −1 −1 antiperiodisch antiperiodisch

Tabelle 3.1: Überblick der Sektoren

Der Übersichtlichkeit wegen wird definiert:

E δα = −1
2

∑
k

(
± εk

)
, k = 0, 1, . . . , 2L− 1 (3.17)

mit α =
{
+1 für gerade Anzahl an Minuszeichen ,
−1 für ungerade Anzahl an Minuszeichen

(3.18)

und δ =
{
+1 für k gerade ,
−1 für k ungerade .

(3.19)

(3.17) deckt sämtliche Möglichkeiten auftretender Energieeigenwerte ab. Für
α = +1 gehören sie zu symmetrischen Eigenvektoren, für α = −1 zu antisym-
metrischen (Kapitel 2). Bei δ = +1 entstammen sie H−, bei δ = −1 H+ (2.68).
Desweiteren wird definiert:

Y δα =
∑
j

exp
[
−E δα, j · T

]
. (3.20)

Die Summation in (3.20) verlaufe über alle verschiedenen in Eδα enthaltenen
2L−1 Energieeigenwerte.
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3. Einbau antiperiodischer Randbedingungen
in zwei verschiedenen Darstellungen

Mit diesen Vorüberlegungen lassen sich nun die Zustandssummen aus Tabelle
3.1 aufstellen.

• Z++

Unter Verwendung von (3.20) folgt aus (2.44):

Z ′
++ = Sp

[
1
2
(1 + U)

(
V +

)T] + Sp
[
1
2
(1− U)

(
V −)T]

= Y −
+ + Y +

− . (3.21)

Dies ist das aus Kapitel 2 bekannte Ergebnis (2.79).
Mit (2.80) und (2.81) ergab sich die kompaktere Darstellung (2.82):

Z ′
++ =

1
2

{
+
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)

+
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
−
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
. (3.22)

• Z+−

Aus (3.12) in Abschnitt 3.1.2 ergibt sich mit U2 = 1

Z ′
+− = Sp

[
1
2
(1 + U)U

(
V +

)T] + Sp
[
1
2
(1− U)U

(
V −)T]

= Sp
[
1
2
(1 + U)

(
V +

)T] − Sp
[
1
2
(1− U)

(
V −)T]

= Y −
+ − Y +

− . (3.23)

Dementsprechend erhält man:

Z ′
+− =

1
2

{
+
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)

−
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
. (3.24)
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3.1. Darstellung I: In t-Richtung propagierende Transfermatrix

• Z−+

Mit (3.7) und (3.10) aus Abschnitt 3.1.1 ergibt sich

Z ′
−+ = Sp

[
1
2
(1− U)

(
V +

)T] + Sp
[
1
2
(1 + U)

(
V −)T]

= Y −
− + Y +

+ (3.25)

sowie mit zu (2.80) und (2.81) analogen Identitäten:

Z ′
−+ =

1
2

{
+
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
−
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)

+
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
. (3.26)

• Z−−

In diesem Fall wird sowohl die Transfermatrix wie in (3.7) modifiziert
als auch der Operator U wie in (3.12) in die Spur miteingebaut.

Z ′
−− = Sp

[
1
2
(1− U)U

(
V +

)T] + Sp
[
1
2
(1 + U)U

(
V −)T]

= − Sp
[
1
2
(1− U)

(
V +

)T] + Sp
[
1
2
(1 + U)

(
V −)T]

= −Y −
− + Y +

+ . (3.27)

Hierfür ergibt sich folgende kompakte Schreibweise:

Z ′
−− =

1
2

{
−
L−1∏
r=0

2 cosh
(
T

2
ε2r+1

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r+1

)

+
L−1∏
r=0

2 cosh
(
T

2
ε2r

)
+
L−1∏
r=0

2 sinh
(
T

2
ε2r

)}
. (3.28)
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3. Einbau antiperiodischer Randbedingungen
in zwei verschiedenen Darstellungen

3.2 Alternative Darstellung II: In x-Richtung
propagierende Transfermatrix

Grundlage bei der Berechnung der Zustandssummen war bisher (Kapitel 2 und
3.1) eine Transfermatrix, die auf den Zeilen definiert wurde und sich von Zei-
le zu Zeile durch das gesamte Ising-Gitter arbeitete. Diese Methode wurde als
Darstellung I bezeichnet.
Alternativ ist es genauso zulässig, die Transfermatrix auf den Spalten zu defi-
nieren und sie auf diesen vorrücken zu lassen.

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

✲

1 L
1

T

✻

✲

t

x

sT+1 = τt · s1

νL+1 = τx · ν1

Abbildung 3.2: Transfermatrix in x-Richtung mit RB

Dies führt auf eine andere, Darstellung II genannte Form der Sektor-Zustands-
summen, die jedoch der bisherigen äquivalent ist, wie in Abschnitt 4.5 bewiesen
wird.
Da insbesondere die algebraischen Methoden aus 3.1.1 und 3.1.2 zum Einbau
der antiperiodischen RB vertauschen, dient dies der Untermauerung der im ver-
gangenen Abschnitt erzielten Ergebnisse.
Zur Unterscheidung werden die Größen der Darstellung II mit ˆ gekennzeich-
net. Deren Aussehen läßt sich durch folgende Symmetrieüberlegung aus der
Darstellung I gewinnen:
Die Situation in Abb. 3.2 (Darstellung II) wird offensichtlich durch Vertau-
schung sowohl der Koordinatenachsen als auch von L und T auf diejenige in
Abb. 3.1 (Darstellung I) überführt:

L↔ T

Darstellung II, Abb. 3.2 ⇐⇒ Darstellung I, Abb. 3.1 (3.29)
x ↔ t

Mit einem ˆ versehene Größen aus Darstellung II sind daher im Folgenden
stets so zu verstehen, daß sie gemäß (3.29) aus den in Darstellung I erfolgten
Definitionen hervorgehen.
Auf Spalten definierte Größen Â (L, T ) erhält man dementsprechend aus auf
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3.2. Alternative Darstellung II: In x-Richtung
propagierende Transfermatrix

den Zeilen definierten Größen A (T, L) unter Vertauschung von L und T .
Zur besseren Unterscheidung wird dabei die Spaltenvariable, die die Spinkonfi-
guration einer gesamten Spalte zusammenfaßt, mit

νl = {s1, s2, . . . , sT }l−teSpalte .

bezeichnet (siehe Abb. 3.2).
Bei richtungsbezogenen Ausdrücken, wie es vor allem bei den Zustandssummen
der Fall ist, ist zudem die Vertauschung x↔ t zu beachten.

Aus diesen Symmetriebetrachtungen folgt also insbesondere für die Zustands-
summen Ẑτxτt in Darstellung II:

Ẑτxτt (L, T ) = Zτtτx (T, L) . (3.30)

Diesen Zusammenhang erhält man auch durch explizite Konstruktion der Ẑτxτt
mit Darstellung II -Größen [persönliche Aufzeichnungen des Autors]; diese ver-
läuft analog zum Vorgehen in Kapitel 2, wodurch keine neuen Aspekte auftreten,
und weshalb hier dem eleganteren Symmetrieargument (3.29) der Vorzug gege-
ben wurde.

Zur Vervollständigung werden die verschiedenen Sektor-Zustandssummen nun
explizit aufgeführt:

• Ẑ++

Bei periodischen RB folgt aus (2.36) bzw. (3.21):

Ẑ ′
++ = Sp

[
V̂ L

]
= Sp

[
1
2
(
1 + Û

)(
V̂ +

)L]
+ Sp

[
1
2
(
1− Û

)(
V̂ −)L]

= Ŷ −
+ + Ŷ +

− . (3.31)

• Ẑ+−

Senkrecht zur Propagationsrichtung der Transfermatrix sind die antiperi-
odischen RB in dieser selber in Form von V̂ ap enthalten, vgl. (3.7) bzw.
(3.25).

Ẑ ′
+− = Sp

[(
V̂ ap

)L]
= Sp

[
1
2
(
1− Û

)(
V̂ +

)L]
+ Sp

[
1
2
(
1 + Û

)(
V̂ −)L]

= Ŷ −
− + Ŷ +

+ . (3.32)
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3. Einbau antiperiodischer Randbedingungen
in zwei verschiedenen Darstellungen

• Ẑ−+

In Richtung der Transfermatrix (hier gerade die x-Richtung) bewirkt der
Spinumkehroperator Û antiperiodische RB (siehe (3.16) bzw. (3.23)):

Ẑ ′
−+ = Sp

[
V̂ L Û

]
= Sp

[
1
2
(
1 + Û

)(
V̂ +

)L] − Sp
[
1
2
(
1− Û

)(
V̂ −)L]

= Ŷ −
+ − Ŷ +

− . (3.33)

• Ẑ−−

Durch Kombination der oben aufgeführten Modifikationen erhält man
analog zu (3.27)

Ẑ ′
−− = Sp

[(
V̂ ap

)L
Û

]
= − Sp

[
1
2
(
1− Û

)(
V̂ +

)L]
+ Sp

[
1
2
(
1 + Û

)(
V̂ −)L]

= − Ŷ −
− + Ŷ +

+ . (3.34)

Man erhält auch hier mittels zu (2.80), (2.81) analogen Identitäten kompakte
Darstellungen wie in (3.22), (3.24), (3.26) und (3.28); an diesen bisherigen Er-
gebnissen können sie direkt nach (3.29) bzw. (3.30) abgelesen werden.

Da Zτxτt aus Darstellung I und Ẑτxτt aus Darstellung II offensichtlich denselben
physikalischen Sachverhalt beschreiben, sollten sie einander gleich sein. Dies zu
beweisen, gelingt in Kapitel 4 anhand der fermionischen Sektoren.
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3.3. Zusammenfassung und Vergleich der Methoden

3.3 Zusammenfassung und Vergleich der Methoden

Die verschiedenen Methoden zum Einbau antiperiodischer RB werden hier noch
einmal schematisch zusammengefaßt. In den Zeichnungen stehen die Abkürzun-
gen p für periodisch und ap für antiperiodisch.

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

✻

1 L
1

T

✻

✲

t

x

τt = +1 ⇒ Zτx,+ = Sp
[ (

V p/ap
)T ]

τt = −1 ⇒ Zτx,− = Sp
[ (

V p/ap
)T · U ]

τx = +1 ⇒ V p

τx = −1 ⇒ V ap

Abbildung 3.3: Einbau der RB in Darstellung I
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� � � � � � � � � � �
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✲

1 L
1

T

✻

✲

t

x

τt = +1 ⇒ V̂ p

τt = −1 ⇒ V̂ ap

τx = +1 ⇒

Ẑ+,τt = Sp
[ (

V̂ p/ap
)L ]

τx = −1 ⇒

Ẑ−,τt = Sp
[ (

V̂ p/ap
)L · Û]

Abbildung 3.4: Einbau der RB in Darstellung II
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3. Einbau antiperiodischer Randbedingungen
in zwei verschiedenen Darstellungen

Antiperiodische RB in Richtung der Transfermatrix werden durch den Einbau
des Paritätsoperators U bzw. Û in die Spur realisiert. Senkrecht zur Propagati-
onsrichtung gehen die antiperiodischen RB hingegen direkt in die Transferma-
trix ein.
Da diese algebraischen Methoden zum Einbau einer antiperiodischen RB in vor-
gegebener Richtung beim Wechsel zwischen Darstellung I und II jeweils vertau-
schen (besonders deutlich bei den RB τx = +1, τt = −1 oder τx = −1, τt = +1),
und in Kapitel 4.5 ein Äquivalenzbeweis von Darstellung I und II erfolgt, be-
stätigen sich diese Methoden gegenseitig und untermauern somit die dadurch
erhaltenen Ergebnisse.
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Kapitel 4

Fermionische Darstellung

1964 entwickelten Schultz, Mattis und Lieb eine weitere analytische Lösung
des zweidimensionalen Ising-Modells [17] unter Verwendung fermionischer Ope-
ratoren. Sie enthält einige für die vorliegende Thematik interessante Aspekte.
Insbesondere lassen sich rein algebraische Ausdrücke aus der Onsager-Kaufman-
Lösung in der Fermion-Sprache veranschaulichen. Der nächste Abschnitt skiz-
ziert diesen Lösungsweg.

4.1 Die Lösung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

Grundlage ist auch hier der Formalismus der Transfermatrix, in dem sich die
Zustandssumme als Spur über deren T -fache Potenz schreibt:

Z++ = Sp
(
PT

)
. (4.1)

Für diese Form propagiere die Transfermatrix P wie in Kapitel 2 und 3.1 entlang
der t-Achse (siehe Abb. 2.4) unter der Annahme periodischer Randbedingun-
gen (τx = +1, τt = +1), welche zuerst diskutiert werden; die Aufstellung der
verschiedenen Sektor-Zustandssummen bei antiperiodischen Randbedingungen
(Tab. 3.1) kann hier ebenfalls erfolgen und wird im Anschluß behandelt.

4.1.1 Alternative Formulierung der Transfermatrix

Ausgangspunkt ist die Transfermatrix

P = [2 sinh(2β)]
L
2 · V2 · V1

(2.17)-(2.22), wie sie nach Onsager und Kaufman in Kapitel 2 formuliert wurde.
Um diese für die nachfolgenden Zwecke geeignet umzuschreiben, wird zunächst
eine Ähnlichkeitstransformation der Paulimatrizen durchgeführt, unter der ihre
Eigenschaften bestehen bleiben:

σx
m → − σz

m

σy
m → σy

m

σz
m → σx

m .
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4. Fermionische Darstellung

Nach dieser lauten V1 (2.17) und V2 (2.19):

V1 = exp

[
− β̃

L∑
m=1

σz
m

]
; (4.2)

V2 = exp

[
β

L∑
m=1

σx
m σx

m+1

]
mit σx

L+1 = σx
1 wegen (2.1) . (4.3)

In dieser Darstellung ist offensichtlich V1 diagonal (vgl. A.1), während dies für
V2 nicht mehr gilt. In der Beschreibung aus Kapitel 2 war dies genau umge-
kehrt. Man vergleiche hierzu einen entsprechenden Kommentar im Abschnitt

”An Alternative Realization“ des Kaufman-Artikels [15].

Für eine verdeutlichende Matrix- und Vektor-Schreibweise werden im Folgen-
den vorübergehend die Größen ohne Indizes verwendet; der Übergang zu den
indizierten Größen als direkte Produkte nach (2.21) wird im Anschluß wieder
durchgeführt. Auftretende Matrizen werden dabei als Matrixdarstellungen für
Operatoren aufgefaßt, so daß diese Begriffe synonym verwendet werden.

Die oben vorgenommene Ähnlichkeitstransformation σi → S σi S−1 gelingt
über (vgl. [15])

S =
1√
2

(
1 −1
1 1

)
. (4.4)

Der dadurch bedingte Darstellungswechsel bewirkt folgendes verändertes Aus-
sehen der Spinzustände si = ±1 (”up“ und ”down“, siehe (3.13)):(

1
0

)
→ 1√

2

(
1
1

)
,

(
0
1

)
→ 1√

2

(
−1
+1

)
. (4.5)

Das Ziel dieser Transformation besteht darin, V1 und V2 durch Bilinearformen in
neuen Operatoren σ+ und σ− auszudrücken, welche folgendermaßen eingeführt
werden:

σ+ =
1
2
(
σx + iσy )

=
(
0 1
0 0

)
; (4.6)

σ− =
1
2
(
σx − iσy )

=
(
0 0
1 0

)
. (4.7)

Für deren Produkte ergibt sich

σ+ σ− =
1
2
(
1⊥ + σz )

=
(
1 0
0 0

)
, (4.8)

σ− σ+ =
1
2
(
1⊥ − σz )

=
(
0 0
0 1

)
. (4.9)
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4.1. Die Lösung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

Angewandt auf die Zustände (10) und (
0
1), die sich nach dem Darstellungswech-

sel nun nicht mehr auf die Spinzustände beziehen (sondern durch deren Line-
arkombination darstellbar sind), offenbaren sich σ+ und σ− als Erzeuger und
Vernichter:

σ+

(
0
1

)
=

(
1
0

)
; σ−

(
1
0

)
=

(
0
1

)
. (4.10)

Aus (4.6)-(4.9) erhält man die Antikommutatorrelationen{
σ+, σ−} = 1 ,

(
σ+

)2 = (
σ−)2 = 0 . (4.11)

Daraus wird ersichtlich, daß es sich bei σ+ und σ− um Fermion-Erzeuger und
-Vernichter sowie um zugehörige Fermionzustände handelt:(

1
0

)
=̂ Fermion ,

(
0
1

)
=̂ kein Fermion . (4.12)

Dies verdeutlicht den stattgefundenen Darstellungswechsel.

Beim Übergang zu den indizierten Größen σ± → σ±
m nach (2.21) muß genau

auf die Vertauschungsrelationen achtgegeben werden:
Entfalten σ+ und σ− auf denselben Gitterplätzen ihre Wirkung, wie es oben
der Fall war, erhält man die Antikommutatorrelationen{

σ+
m , σ−

m

}
= 1 ,

(
σ+
m

)2 = (
σ−
m

)2 = 0 , (4.13)

wie sie von Fermionoperatoren aus der zweiten Quantisierung im Operatorfor-
malismus bekannt sind.
Operationen an unterscheidlichen Gitterpunkten m,n hingegen sind jedoch un-
abhängig voneinander; dies führt auf die Kommutatorrelationen[

σ±
m , σ±

n

]
= 0 für m �= n , (4.14)

wie sie von bosonischen Operatoren her vertraut sind.

Die neuen Operatoren σ+
m und σ−

m sind also offensichtlich teilweise bosonischer
und teilweise fermionischer Natur. Der Umgang mit diesen gemischten Relatio-
nen wird im nächsten Abschnitt aufgezeigt.

Für den weiteren Verlauf verbleibt festzuhalten, daß sich die in V1 (4.2) und
V2 (4.3) enthaltenen Paulimatrizen folgendermaßen über σ±

m = 1
2

(
σx
m ± iσy

m

)
ausdrücken lassen:

σz
m = 2

(
σ+
m σ−

m − 1
2

)
,

σx
m = σ+

m + σ−
m .
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Damit lassen sich V1 (4.2) und V2 (4.3) bilinear in σ±
m formulieren:

V1 = exp

[
−2β̃

L∑
m=1

(
σ+
m σ−

m −
1
2

)]
, (4.15)

V2 = exp

[
β
L∑
m=1

(
σ+
m
+ σ−

m

) (
σ+
m+1 + σ−

m+1

)]
(4.16)

= exp

[
β

{ L−1∑
m=1

(
σ+
m
+ σ−

m

) (
σ+
m+1 + σ−

m+1

)
+

(
σ+
L
+ σ−

L

) (
σ+
1 + σ−

1

) }]
. (4.17)

V1 beschreibt weiterhin die Kopplung in t-Richtung und V2 diejenige in x-
Richtung.
In (4.17) ist der in (4.16) durch die periodischen Spin-Randbedingungen ent-
haltene Randterm ausgeschrieben. Dieser wird noch eine Rolle spielen.

Zusammengefaßt formulieren Schultz, Mattis und Lieb die aus der Onsager-
Kaufman-Lösung bekannte Transfermatrix alternativ über Erzeuger σ+

m und
Vernichter σ−

m, die gemischt fermionischen und bosonischen Vertauschungsrela-
tionen gehorchen.
Übrigens erwähnen Schultz, Mattis und Lieb den beschriebenen Darstellungs-
wechsel nur am Rande und widmen sich hauptsächlich einer Herleitung der
Transfermatrix über eine Rekursionsformel für reduzierte Dichtematrizen [17],
die auf dasselbe Ergebnis führt. Der Variante mit dem Darstellungswechsel wur-
de hier der Vorzug gegeben, um den Bezug zur Onsager-Kaufman-Lösung deut-
licher herauszustellen [46].

4.1.2 Transformation auf reine Fermion-Operatoren

Wie bereits im vorangehenden Abschnitt festgestellt wurde, sind die Erzeuger
σ+
m und Vernichter σ−

m teils bosonischen und teils fermionischen Charakters:[
σ±
m , σ±

n

]
= 0 für m �= n : bosonisch{

σ+
m , σ−

m

}
= 1 ,

(
σ+
m

)2 = (
σ−
m

)2 = 0 : fermionisch

Da die Invarianz dieser gemischten Relationen bei Transformationen schnell
verletzt wird, erscheint eine Diagonalisierung zunächst schwer durchführbar.
Den Ausweg bietet eine Transformation auf neue Operatoren Cm, C

†
m :

Cm = exp
[
πi
m−1∑
j=1

σ+
j σ−

j

]
σ−
m , (4.18)

C†
m = exp

[
πi
m−1∑
j=1

σ+
j σ−

j

]
σ+
m . (4.19)
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Bei Cm und C†
m handelt es sich dann um rein fermionische Operatoren, die dem

kompletten Satz an Antikommutatorregeln

{Ci , C†
j} = δij , {Ci , Cj} = {C†

i , C†
j} = 0 (4.20)

gehorchen, wie man durch Nachrechnen zeigen kann.
Die Transformation (4.18), (4.19) geht zurück auf Jordan und Wigner und
taucht bereits in ihrem Klassiker über die zweite Quantisierung von Fermion-
feldern aus dem Jahre 1928 auf [18]. Schultz, Mattis und Lieb verwenden diese
Transformation des Häufigeren [47, 48, 49]; eine gute Beschreibung zu dieser
findet man besonders in [47].

Diese Jordan-Wigner-Transformation (4.18), (4.19) kann noch unter einem an-
deren Aspekt beleuchtet werden. Hierzu beachte man zunächst, daß aus der
Relation exp(θA) = cosh(θ) + A sinh(θ) für Matrizen A mit A2 = 1 (und
θ ∈ C) folgt (siehe auch A.4):

exp
[
i π σ+

j σ−
j

]
(4.8)
= − σz

j . (4.21)

Da die Summanden im Exponenten kommutieren, können Cm und C†
m damit

in Produkte umgewandelt werden:

Cm =
m−1∏
j=1

(
−σz

j

)
σ−
m ; (4.22)

C†
m =

m−1∏
j=1

(
−σz

j

)
σ+
m . (4.23)

Über den Vergleich mit den (transformierten) Γ-Matrizen (2.30) wird übrigens
der immer noch bestehende Bezug zur Kaufman-Darstellung deutlich (vgl. [19]):

Cm = 1
2 (Γ2m−1 − iΓ2m) (4.24)

C†
m = 1

2 (Γ2m−1 + iΓ2m) (4.25)

Aufgrund des Darstellungswechsels σx
j → −σz

j bewirkt nun −σz
j die Spinum-

kehr am Gitterplatz j, wovon man sich mit Hilfe der Zustände (4.5) überzeugen
kann; der Spinumkehroperator U für die gesamte Zeile (siehe (3.14), (3.15))
lautet demzufolge

U =
L∏
j=1

(
−σz

j

)
. (4.26)

Bei Cm (4.22) und C†
m (4.23) hingegen findet offensichtlich eine Umkehr nur

der ersten m−1 Spins (innerhalb einer Zeile) statt:

Cm = Um−1 σ−
m ; (4.27)

C†
m = Um−1 σ+

m ; (4.28)

mit Um−1 |s1, . . . , sL〉 = | − s1, . . . ,−sm−1, sm, . . . , sL〉 . (4.29)
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Das herkömmliche U (3.14), das alle Spins in einer Zeile umdreht, ist in dieser
Notation als

U = UL
zu verstehen.
Die Erzeugung bzw. Vernichtung eines Fermions am Gitterplatzm bewirkt nach
(4.27), (4.28) also offenbar einen Kink der Spins an eben dieser Stelle (veran-
schaulicht in Abb. 6.1). Der sich dadurch aufdrängende Zusammenhang mit
einer Grenzfläche senkrecht zur x-Richtung wird in Kapitel 6 aufgegriffen.

Aus den Transformationsregeln (4.18) und (4.19) folgt:

σ+
m σ−

m = C†
mCm ;

σ+
m σ+

m+1 = C†
mC†

m+1 , σ−
m σ−

m+1 = −CmCm+1 ,

σ+
m σ−

m+1 = C†
mCm+1 , σ−

m σ+
m+1 = −CmC†

m+1 ,

 für m < L ;

σ+
L σ+

1 = − (−1)N C†
LC†

1 , σ−
L σ−

1 = (−1)N CLC1 ,

σ+
L σ−

1 = − (−1)N C†
LC1 , σ−

L σ+
1 = (−1)N CLC†

1 .

Hierbei ist

N =
L∑
m=1

σ+
m σ−

m =
L∑
m=1

C†
mCm (4.30)

der Teilchenzahloperator, der die Anzahl vorhandener Fermionen auf einer Zeile
angibt.
Bilinearformen der Operatoren σ±

m auf denselben und benachbarten Gitterplät-
zen bleiben also bilinear in den Fermionoperatoren Cm, C

†
m; für die in (4.17)

ausgeschriebenen Randterme, die durch die in x-Richtung periodischen Spin-
randbedingungen hervorgerufen werden, findet man etwas kompliziertere Aus-
drücke, die aber dennoch behandelt werden können.
Andere Kombinationen der Operatoren σ±

m überstehen diese Transformation
allerdings nicht bzw. in keiner weiter verwertbaren Gestalt. Dies beschränkt die
analytische Lösung auf nächste-Nachbar-Wechselwirkungen in zwei Dimensio-
nen sowie auf ein verschwindendes äußeres Magnetfeld, dessen Term aus diesem
Grund hier auch nicht angegeben wurde. Hierdurch erklärt sich auch die Not-
wendigkeit der Ähnlichkeitstransformation (4.4).
Gemäß den gefundenen Transformationsregeln lauten somit V1 und V2:

V1 = exp

[
−2β̃

L∑
m=1

(
C†
mCm −

1
2

)]
, (4.31)

V2 = exp

[
β

{ L−1∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)
− (−1)N

(
C†
L − CL

) (
C†
1 + C1

) }]
. (4.32)
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Man beachte den Randterm in V2 (4.32). Der nun folgende Abschnitt beschäftigt
sich mit dessen Auswirkungen.

4.1.3 Aufteilung von V in V + und V −

Der Randterm in V2 (4.32) enthält den Ausdruck (−1)N , wobei N der Fermion-
zähler (4.30) ist. Er soll näher untersucht werden.

Mit N =
∑

σ+
m σ−

m (4.30) folgt

(−1)N = exp(iπN) =
L∏
m=1

exp(iπσ+
mσ−

m)
(4.21)
=

L∏
m=1

(
−σz

m

) (4.26)
= U . (4.33)

(−1)N stellt also den Spinumkehroperator U (nach einer Basistransformation)
in der fermionischen Formulierung dar. Die Verwendung von (−1)N bietet aller-
dings im Folgenden neue Aspekte und hilft die aus Kapitel 2 bekannte Lösung
besser nachzuvollziehen.
Während der Charakter als Symmetrie und Erhaltungsgröße über die Ver-
tauschbarkeit mit V (respektive H) folgt, wird die Rolle als Paritätsoperator
direkt an dessen Form ersichtlich: (−1)N kann offenbar nur die Werte α = +1
und α = −1 annehmen, wobei nach Zuständen mit gerader und ungerader
Fermionzahl unterschieden wird:

α =
{
+1 für gerade Fermionzahl ,
−1 für ungerade Fermionzahl .

(4.34)

Aufgrund von (−1)N = U ist die Benennung mit α aus der früheren Definition
(3.18) (α = +1: gerade Anzahl an Minuszeichen in den Eigenwerten, α = −1:
ungerade Anzahl an Minuszeichen) bewußt gewählt; dieser Zusammenhang wird
weiter unten explizit aufgedeckt.
Die Zustände mit gerader Fermionzahl |ψg〉, für die wegen

(−1)N |ψg〉 = + |ψg〉

α = +1 gilt, sind demnach symmetrisch.
Zustände mit ungerader Fermionzahl |ψu〉, für die

(−1)N |ψu〉 = − |ψu〉

gilt, sind mit α = −1 hingegen antisymmetrisch.
Es ist daher sinnvoll, den Raum H der Eigenzustände in H+ und H− zu unter-
teilen (Hα mit α = ±1):

H+ : Raum der symmetrischen Eigenzustände (4.35)
mit gerader Fermionzahl

H− : Raum der antisymmetrischen Eigenzustände (4.36)
mit ungerader Fermionzahl
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Über eben diese Aufteilung der Räume gelingt es, den Randterm in V2 weiter
auszuwerten. Hierzu wird V2 folgendermaßen in V +

2 und V −
2 aufgespalten:

V +
2 = exp

[
β

{ L−1∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)
−

(
C†
L − CL

) (
C†
1 + C1

) }]
; (4.37)

V −
2 = exp

[
β

{ L−1∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)
+

(
C†
L − CL

) (
C†
1 + C1

) }]
. (4.38)

Damit wird V = V2 V1 in V + und V − geteilt.

Bei den hier behandelten periodischen Spin-Randbedingungen τx = +1, τt = +1
gilt offensichtlich

Eigenvektoren von V + sind aus H+ ,

Eigenvektoren von V − sind aus H− ,

wie man durch Vergleich von (4.37) und (4.38) mit (4.32) sieht.

Für die Zustandssumme Z ′
++ (die ohne den Vorfaktor wie in (2.42) definiert

wird) erhält man dementsprechend:

Z ′
++ = Sp

[
V T

]
= SpH+

[(
V +

)T ] + SpH−

[(
V −)T ] . (4.39)

Diese getrennte Spurbildung über V + und V − tritt ebenfalls auf in der Onsager-
Kaufman-Lösung aufgrund eines anders gearteten Randterms, der ebenfalls den
Symmetrieoperator U enthält. Die Identifizierung von V + und V − aus beiden
Lösungen wird später in 4.1.5 anhand der Eigenwerte offensichtlich werden.

4.1.4 Randbedingungen für Fermionoperatoren

Eine große Veranschaulichung besteht in dem nun folgenden Schritt. Hierzu
werden zunächst die in den Randtermen von V +

2 (4.37) und V −
2 (4.38) übrigge-

bliebenen Vorzeichen auf Randbedingungen für die Fermionoperatoren εx = ±1
in der x-Richtung umgeschrieben:
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V +
2 = exp

[
β
L∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)]

mit CL+1 = −C1 und C†
L+1 = −C†

1 ; (4.40)

antiperiodische RB εx = −1

V −
2 = exp

[
β
L∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)]

mit CL+1 = +C1 und C†
L+1 = +C†

1 . (4.41)

periodische RB εx = +1

Über eine diskrete Fouriertransformation

Cm =
e−iπ/4√

L

∑
k

exp(i pkm) C̃k

werden nun (Fermion-) Impulse pk eingeführt und die vorhandenen Größen
in deren Abhängigkeit formuliert. Nun ist aber bereits aus der elementaren
Statistik [45] bekannt, daß periodische bzw. antiperiodische Randbedingungen
zu einer Diskretisierung der Impulse in der folgenden Form führen:

V + : antiperiodische RB für Fermionen εx = −1

=⇒ pk =
π

L
,
3π
L

,
5π
L

, . . . ,
(2L− 1)π

L
; (4.42)

pk =
πk

L
mit k ungerade , k = 1, 3, 5, . . . , 2L− 1 ; (4.43)

V − : periodische RB für Fermionen εx = +1

=⇒ pk = 0 ,
2π
L

,
4π
L

, . . . ,
(2L− 2)π

L
; (4.44)

pk =
πk

L
mit k gerade , k = 0, 2, 4, . . . , 2L− 2 . (4.45)

Da sich die bisherige Indizierung der Operatoren auf die lokalisierten Gitter-
punkte in einem Gitter endlicher Größe bzw. in einer Gitterzeile der Länge L
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bezog, ist die Fouriertransformation von diskreter Art (endlicher Wertesatz);
dementsprechend erhält man in (4.42)-(4.45) auch nur endlich viele, nämlich
jeweils L Impulswerte. Im Limes L→∞ hingegen liegt ein Gitter unendlicher
Größe vor, und wie an (4.42)-(4.45) abzulesen ist, erhält man dann unendlich
viele sowie kontinuierliche Impulswerte.
Dieses Ergebnis erhalten ebenfalls Onsager und Kaufman, allerdings als rein
algebraische Bedingung während der Diagonalisierungsprozedur.

4.1.5 Ergebnis nach Diagonalisierung

Es verbleibt noch die eigentliche Diagonalisierung von V + und V −. Die Proze-
dur selber ist komplizierterer und längerer Art [17] und wird hier deshalb nicht
vorgeführt. Es sei nur kurz vermerkt, daß sich Ähnlichkeiten zur BCS-Theorie
der Supraleitung [51, 52] abzeichnen; wie in dieser hilft auch hier die Trans-
formation nach Bogolubov [53] und Valatin [54], die die fouriertransformierten
Erzeuger C̃†

k und Vernichter C̃k auf geschickte Weise zu neuen Erzeugern ξ†k und
Vernichtern ξk linearkombiniert. Das Resultat nach erfolgter Diagonalisierung
ist schließlich von bestechend einfacher Form:

V = exp

[
−

∑
k

εk

(
ξ†k ξk −

1
2

)]
. (4.46)

Durch die Fouriertransformation des vorigen Abschnitts tritt nun k aus den
Impulswerten als Index auf. Über die Auswahl ungerader k (4.43) bzw. gerader
k (4.45) erhält man aus (4.46) V + bzw. V −:

εx = +1 −→ V − ; k gerade , k = 0, 2, 4, . . . , 2L− 2 ; (4.47)
εx = −1 −→ V + ; k ungerade , k = 1, 3, 5, . . . , 2L− 1 . (4.48)

Der Fermionzahloperator in den neuen Fermionoperatoren ξ†k und ξk lautet nun

N =
∑
k

ξ†k ξk =
∑
k

nk , (4.49)

wobei nk (bei Anwendung auf Eigenzustände) aufgrund der Fermi-Statistik nur
die Werte 0 und 1 annehmen kann:

nk ∈ {0, 1} (4.50)

Hierzu sei angemerkt, daß sich die Anzahl vorhandener Fermionen bei den vor-
genommenen Transformationen nicht geändert hat [17].

Die ”Fermion-Energien“ εk ergeben sich identisch zu (2.52), (2.53) aus folgender
Beziehung:

cosh (εk) = cosh (m0) + 1− cos
(πk

L

)
. (4.51)

Die Vorzeichenwahl ist dieselbe wie in (2.54), (2.55). (Die dortige Vorzeichen-
wahl ist gerade dem Artikel von Schultz, Mattis und Lieb [17] entnommen.)
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Die Eigenwerte von V + und V − lassen sich nun direkt an (4.46) ablesen. Be-
zeichnet man die Eigenwerte von V + wie bisher mit λ+i , so erhält man gemäß
(4.49) mit nk ∈ {0, 1}:

EW zu V + : λ+i = exp

[
−

∑
k

ungerade

εk

(
nk −

1
2

)]
. (4.52)

Ist kein Fermion mit Impuls k vorhanden, d.h. nk = 0, so tritt in dem Summan-
den +1

2εk insgesamt ein Pluszeichen auf (unter Berücksichtigung aller Vorzei-
chen im Exponenten). Bei einem vorhandenen Fermion hingegen, d.h. nk = 1,
erhält der jeweilige Summand −1

2εk insgesamt ein Minuszeichen.

nk = 0 : kein Fermion ⇒ Pluszeichen
nk = 1 : Fermion ⇒ Minuszeichen

Damit ergeben sich aus (4.52) die Eigenwerte

λ+i = exp
[
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]
, (4.53)

wobei die Vorzeichen jeweils unabhängig zu wählen sind, da die nk sämtlich
unabhängig voneinander sind.

Für die Eigenwerte λ−
i von V − ergibt sich analog:

EW zu V − : λ−
i = exp

[
−

∑
k

gerade

εk

(
nk −

1
2

)]
(4.54)

= exp
[
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
. (4.55)

Die so erhaltenen Eigenwerte (4.53), (4.55) von V + und V − sind in Überein-
stimmung mit denen (2.47), (2.48) aus der Onsager-Kaufman-Lösung. Das Zu-
standekommen der Vorzeichen im Exponenten läßt sich hier allerdings anhand
der Besetzungszahldarstellung für Fermionen besser veranschaulichen.

Mit den nun bekannten Eigenwerten kann die Zustandssumme (4.39) bei peri-
odischen Spin-Randbedingungen

Z ′
++ = SpH+

[(
V +

)T ] + SpH−

[(
V −)T ]

explizit aufgestellt werden; hierbei müssen allerdings die Restriktionen bezüg-
lich H+ und H− berücksichtigt werden. H+ (4.35) verlangt die Beschränkung
auf die symmetrischen Eigenzustände mit einer geraden Fermionzahl; für die
Eigenwerte bedeutet dies nach obigen Überlegungen, daß von allen möglichen
Vorzeichenkombinationen nur diejenigen erlaubt sind, die eine gerade Anzahl
an Minuszeichen aufweisen. Bei H− (4.36) hingegen sind nur antisymmetrische
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Zustände mit einer ungeraden Fermionzahl erlaubt, und dementsprechend dür-
fen die Eigenwerte nur eine ungerade Anzahl an Minuszeichen vorweisen.
Die Restriktion Hα mit α = ±1 (4.34) sortiert damit jeweils die Hälfte der
Eigenwerte von V + und V − aus.

α = +1: gerade Fermionzahl, H+ ⇒ gerade Anzahl an Minuszeichen

α = −1: ungerade Fermionzahl, H− ⇒ ungerade Anzahl an Minuszeichen

Die bereits früher angedeutete Konsistenz mit der bisherigen Definition von
α (3.18) wird hier also offenkundig und rechtfertigt die Benennung mit α in
(4.34).
Die dadurch implizierte direkte Analogie zu Onsager und Kaufman läßt sich
mittels der Projektoren 1

2

(
1 ± (−1)N

)
= 1

2

(
1 ± U

)
herausstellen, die (4.39) in

die Form (2.44) bringen:

Z ′
++ = Sp

[
1
2

(
1 + (−1)N

)(
V +

)T]
+ Sp

[
1
2

(
1− (−1)N

)(
V −

)T]
. (4.56)

An (4.56) wird offensichtlich, wie sehr sich die hier diskutierten Lösungswege
im Ergebnis gleichen bei unterschiedlicher algebraischer Herangehensweise.
Insgesamt erhält man also in Übereinstimmung mit dem früheren Ergebnis
(2.79):

Z ′
++ =

∑
{geradeMZ}

exp
[
T

2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1)

]

+
∑

{ungeradeMZ}
exp

[
T

2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2)

]
. (4.57)

Um zur Kurzschreibweise mit den Größen Y δα (siehe Gln. (3.17)-(3.20)) über-
zugehen, beobachte man, daß die Größe δ = ±1 (3.19) zur Unterscheidung
zwischen geraden und ungeraden k-Werten offensichtlich mit der Fermion-RB
εx (4.47), (4.48) identisch ist:

εx = δ .

Unter Verwendung der Definitionen (3.17)-(3.20) erhält man somit:

Y δα = Y εxα = SpHα

[(
V −εx)T ] , (4.58)

wobei V −εx so zu verstehen ist, daß sich für εx = +1 V − und für εx = −1 V +

ergibt, wie an (4.47) und (4.48) abzulesen ist.

Damit schreibt sich die Zustandssumme (4.39)

Z ′
++ = Y −

+ + Y +
− (4.59)

in Übereinstimmung mit (3.21).
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4.1.6 Erklärung des Energiespektrums

Für den Hamilton-Operator H erhält man gemäß (siehe (2.67))

V = exp [−H]

aus (4.46) folgende einfache Form:

H =
∑
k

εk

(
ξ†k ξk −

1
2

)
. (4.60)

Gemäß der Aufspaltung von V in V − und V + wird auch H in H− und H+

unterteilt:

εx = +1 −→ V − = exp
[
−H−] , H− =

∑
k

gerade

εk

(
ξ†k ξk −

1
2

)
; (4.61)

εx = −1 −→ V + = exp
[
−H+

]
, H+ =

∑
k

ungerade

εk

(
ξ†k ξk −

1
2

)
. (4.62)

Mit (4.49) und (4.50) lauten die zugehörigen Energie-Eigenwerte E− und E+:

Eigenwerte zu H− : E− =
∑

k
gerade

εk

(
nk −

1
2

)
(4.63)

= −1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2) ; (4.64)

Eigenwerte zu H+ : E+ =
∑

k
ungerade

εk

(
nk −

1
2

)
(4.65)

= −1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1) . (4.66)

Die Diskussion erfolgt zunächst für die allgemeinen Ausdrücke; die Projektion
auf die Unterräume H+ und H− wird weiter unten erörtert.

Anhand von (4.61) und (4.62) bzw. (4.63) und (4.65) läßt sich der Aufbau
des Energiespektrums nun folgendermaßen erklären:
Ausgangspunkt sind die Grundzustands-Energien von H+ und H−, die wie in
Kapitel 2 mit E0+ und E0− bezeichnet werden. Diese sind durch die kleinsten
Energieeigenwerte von E+ und E− gegeben (es sei β > βC und somit ε0 < 0,
vgl. mit (2.71) und (2.72)):

E0+ = −1
2
(+ε1 + ε3 + ε5 + . . .+ ε2L−1) ;

E0− = −1
2
(− ε0 + ε2 + ε4 + . . .+ ε2L−2)

= −1
2
(+|ε0|+ ε2 + ε4 + . . .+ ε2L−2) .

59



4. Fermionische Darstellung

Hierzu noch einige Worte: Entsprechend der oben vorgenommenen Aufteilung
sind H+ und H− getrennt zu betrachten, da keine Übergänge zwischen ge-
raden und ungeraden k-Werten möglich sind. Daher wird E0+ im Folgenden
als Grundzustandsenergie bezüglich H+ bezeichnet und E0− entsprechend als
Grundzustandsenergie von H−. Man denke sich hierzu eine entsprechende Un-
terteilung der Eigenzustände. (Diese Sprachweise vermeidet Mißverständnisse;
schließlich ist aus 2.2.10 bekannt, daß E0+ bei endlichem L der niedrigste aller
Energieeigenwerte ist und somit die Grundzustandsenergie des Gesamtsystems
stellt.)
Desweiteren fällt auf, daß E0+ (den 0 Minuszeichen entsprechend, s.o.) zu einem
Zustand mit 0 Fermionen gehört. Der entsprechende Grundzustand |0+〉 kann
daher als Vakuum interpretiert werden, in dem kein Fermion anwesend ist.
Bei E0− gestaltet sich dies etwas komplizierter: Offensichtlich gehört E0− zu ei-
nem Zustand |0−〉, in dem das ε0-Fermion anwesend ist. Es handelt sich gerade
um den Grundzustand, da ε0 < 0 ist, und |0−〉 somit die niedrigste Energie-
Konfiguration aufweist (alle anderen εk sind positiv). In diesem Sinne läßt sich
ε0 als negative Fermion-Energie auffassen. Der Zustand |0−〉 kann daher in
Anlehnung zur Dirac-Theorie folgendermaßen als Vakuumzustand interpretiert
werden: Der ”Dirac-See“ besteht aus nur einem einzigen negativen Energiezu-
stand, nämlich ε0. Der Vakuum- bzw. Grund-Zustand ist dann durch die Be-
setzung des Dirac-Sees gegeben, d.h. durch die Anwesenheit des ε0-Teilchens.
Dessen Fehlen hingegen entspricht einem Loch und damit einer Anregung.
Oberhalb der kritischen Temperatur β < βC ist diese Diskussion übrigens nicht
nötig, da dann ε0 > 0 ist und somit alle εk positiv sind; für die vorliegende
Arbeit interessiert aber der Tieftemperaturbereich. Man vergleiche hierzu die
Diskussion in [17].

Ausgehend von den Grundzuständen E0+ und E0− lassen sich nun nach (4.63)
und (4.65) höhere Energiezustände als n-Fermion-Anregungs-Zustände interpre-
tieren, die durch die Erzeugung von n Fermionen mit verschiedenen Energien
εk aus diesen Grundzuständen hervorgehen. Dies rechtfertigt auch die Bezeich-
nung der εk als Fermion-Energien in (4.51). Im Folgenden wird, um Mißver-
ständnisse zu vermeiden, von n-Fermion-Anregungs-Zuständen gesprochen, die
sich auf die jeweiligen Grundzustände beziehen. Diese Sprachweise ist eindeuti-
ger als der Begriff n-Fermion-Zustand und zudem besser an die noch folgende
Thematik angepaßt. Das nachfolgende Beispiel macht den Unterschied deutlich.

Nun läßt sich nämlich auch das in Abb. 2.15-2.18 dargestellte Energiespektrum
erklären, dessen Gestalt bereits die Idee zu einer Teilcheninterpretation liefer-
te. Entsprechend den dort erlaubten Vorzeichenkombinationen (2.69), (2.70),
die in der fermionischen Darstellung durch die Restriktion auf H+ und H− be-
schrieben werden, treten in diesem (für β > βC) offensichtlich nur geradzahlige
Fermion-Anregungen auf: An

E+ = −
1
2
(±ε1 ± ε3 ± ε5 ± . . .± ε2L−1) (4.67)

mit gerader Anzahl an Minuszeichen
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4.1. Die Lösung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

wird dies nach obigen Überlegungen schnell einsichtig: Der geraden Anzahl an
Minuszeichen entspricht eine gerade Anzahl an Fermionen; im Grundzustand
|0+〉 mit E0+ (0 Minuszeichen) ist kein Fermion vorhanden, so daß bezüglich
E0+ nur geradzahlige Fermion-Anregungen auftreten.
Um dies bei

E− = −
1
2
(±ε0 ± ε2 ± ε4 ± . . .± ε2L−2) (4.68)

mit ungerader Anzahl an Minuszeichen

und einer zunächst ungeraden Fermionzahl nachzuvollziehen, beachte man das
Vorhandensein eines Fermions (1 Minuszeichen in E0−) im Grundzustand |0−〉.
Auf diesen bezogen verbleiben demnach geradzahlige Fermion-Anregungen. Dies
läßt sich verdeutlichen mithilfe der negativen Energie ε0 = −|ε0| des im Grund-
zustand befindlichen Fermions, mit der E− umgeschrieben werden kann zu

E− = −
1
2
(±|ε0| ± ε2 ± ε4 ± . . .± ε2L−2) . (4.69)

mit gerader Anzahl an Minuszeichen

Bezüglich der Grundzustandsenergie E0− = −1
2 (+|ε0|+ ε2 + . . .+ ε2L−2) tre-

ten somit lediglich geradzahlige Fermionanregungen auf, da der Übergang zu
einem Minuszeichen in einem der Summanden einem aus E0− angeregten Fer-
mion entspricht.
Insgesamt sind somit in Z++ für β > βC lediglich n-Fermion-Anregungen mit
geradem n erlaubt.

Es sei also noch einmal in aller Ausdrücklichkeit betont, daß sich die Restriktion
H± auf eine gerade/ungerade Fermionzahl stets auf die insgesamt vorhandenen
Fermionen bezieht, während der Begriff der n-Fermion-Anregung stets auf die
Grundzustände von H+ und H− bezogen ist. Der Zusammenhang zwischen
diesen Begriffen hängt von der Art des Grundzustands ab; für β > βC gilt:

H+, E+ :{
gerade

ungerade

}
Fermionzahl ⇐⇒

{
gerade

ungerade

}
Fermion-Anregungen (4.70)

E0+ , |0+〉 : kein Fermion

H−, E− :{
gerade

ungerade

}
Fermionzahl ⇐⇒

{
ungerade
gerade

}
Fermion-Anregungen (4.71)

E0− , |0−〉 : energetisch negatives ε0-Fermion
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4. Fermionische Darstellung

Es stellt sich die Frage, ob sich dieser Zusammenhang für H−, E− nicht wie bei
H+, E+ vereinfachen ließe, indem man zu einer anderen Vorzeichenkonvention
für ε0 wie z.B. der von Kaufman (2.61) überginge.
Dies wäre in der Tat auf den ersten Blick möglich. Dafür bezahlte man allerdings
den Preis, daß obiger Wechsel gerade↔ ungerade tief im Diagonalisierungsver-
fahren steckte; man vergleiche hierzu die an (2.61) anschließenden Bemerkun-
gen: Dies geschähe nämlich über Änderungen in den Restriktionen H±. Die
Lösung verlöre dadurch viel an Übersicht und Anschaulichkeit, während obi-
ge Diskussion auch stets auf veranschaulichendem Niveau geführt werden kann
(zudem träte dieselbe Problematik dann im Hochtemperaturbereich auf). Aus
diesem Grund wurde für diese Arbeit die Vorzeichenkonvention aus [17] ver-
wendet.

Um die Zusammenhänge (4.70) und (4.71) noch prägnant in eine Formel zu
gießen, sei mit N die Gesamt-Fermionzahl und mit n (wie schon getan) die An-
zahl der Fermion-Anregungen bezeichnet. Zwischen diesen gilt nun für δ = ±1
in H−δ und E−δ:

(−1)N = (−δ) (−1)n . (4.72)

Für δ = −1 ist somit der Fall (4.70), für δ = +1 der Fall (4.71) enthalten.
In (4.67) sind also sowohl N als auch n gerade, während in (4.68) aus einem
ungeraden N ein gerades n folgt, wie an (4.69) gezeigt.

Bei endlichem L ist das Spektrum auf 2L Eigenwerte beschränkt (siehe hier-
zu die Abzählungen in Kapitel 2; in den Abbildungen zählt man aufgrund von
Entartungen weniger).
Durch Abzählen kann man sich davon überzeugen, daß von den in Abb. 2.15-
2.18 sichtbaren Bänderstrukturen im Bereich β > βC ein einzelnes Band zu
einer n-Fermion-Anregung mit festem n gehört. Das Band entsteht aufgrund
der unterschiedlichen, aber nahe beieinander liegenden Fermionenergien εk mit
variablem Impuls pk; die Beiträge zu einem Band stammen dabei sowohl von
H+ als auch von H−.
Beim Übergang zum Hochtemperaturbereich β < βC macht sich der Vorzei-
chenwechsel von ε0 bemerkbar. Man erkennt diesen am Abknicken der Kurven,
wovon die zu H− gehörigen Eigenwerte betroffen sind. In diesem Temperatur-
bereich entspricht die Gesamtfermionzahl auch für H− der Anzahl angeregter
Fermionen, da alle εk positiv sind, und der Grundzustand dann kein Teilchen
enthält ((4.71) und (4.72) gelten dann nicht mehr). Man könnte E0− dement-
sprechend auch als Tieftemperaturgrundzustand von H− bezeichnen, falls man
nicht auf den Dirac-See zurückgreifen möchte. Da somit für β < βC geradzahlige
Anregungen von H+ und ungeradzahlige von H− auftreten, ist dort aufgrund
deren Überlagerung keine gestaffelte Bandstruktur mehr erkennbar.

Auf das Konzept der Fermion-Anregungen wird später in Kapitel 6 noch zu-
rückgegriffen.
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Onsager-Kaufman-Lösung

4.2 Zusammenfassung: Vergleich der fermionischen
Darstellung mit der Onsager-Kaufman-Lösung

Im Verlauf des letzten Abschnitts hat sich herausgestellt, daß algebraische Aus-
drücke in der Zustandssumme der Onsager-Kaufman-Lösung zusätzliche physi-
kalische Bedeutung bzw. Veranschaulichung erlangen, wenn man zur fermioni-
schen Darstellung von Schultz, Mattis und Lieb übergeht.
Diese Korrespondenz wird in der folgenden Tabelle zusammengefaßt, die sich
an den Eigenschaften der auftretenden Eigenwerte geeignet festmachen läßt.

Eigenschaft der Beschreibung Beschreibung
Eigenwerte E δα in Onsager-Lösung in fermionischer Darstellung

α = +1 α = +1
gerade Anzahl symmetrische Zustände symmetrische Zustände
an Minuszeichen U |ψS〉 = + |ψS〉 (−1)N |ψg〉 = + |ψg〉

Projektor 1
2(1 + U) in Spur gerade Fermionzahl, H+

α = −1 α = −1
ungerade Anzahl antisymm. Zustände antisymm. Zustände
an Minuszeichen U |ψA〉 = − |ψA〉 (−1)N |ψu〉 = − |ψu〉

Projektor 1
2(1− U) in Spur ungerade Fermionzahl, H−

k gerade δ = +1 → V −, H− εx = δ = +1 → V −, H−

k = 0, 2, 4, . . . , 2L− 2 Diagonalisierung period. RB für Fermionen

k ungerade δ = −1 → V +, H+ εx = δ = −1 → V +, H+

k = 1, 3, 5, . . . , 2L− 1 Diagonalisierung antiperiod. RB für Fermionen

U (−1)N = UParitätsoperator
Spinumkehroperator N : Fermionzahloperator

Tabelle 4.1: Vergleich der Lösungsmethoden

Zudem sei noch an die Veranschaulichung der εk (2.52) als Fermionenergien und
der pk = πk

L (2.53) als Fermionimpulse erinnert, mit denen sich das Energie-
spektrum als Anregungsspektrum verstehen läßt.
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4. Fermionische Darstellung

Die Angaben in Tab. 4.1 sind für Darstellung I gegeben unter den im Text ge-
nannten Konventionen. Um zur Darstellung II überzugehen, sind die auftreten-
den Größen durch die mit einem Hut (ˆ) Versehenen sowie k = 0, 1, 2, . . . , 2L−1
durch l = 0, 1, 2, . . . , 2T−1 und εx durch εt zu ersetzen, da sich die Propagations-
Richtung der Transfermatrix ändert (siehe (3.29)).

4.3 Aufstellung der Sektor-Zustandssummen Zτxτt

Der Fall periodischer RB für die Spins

τx = +1 , τt = +1

ist bereits ausführlich in Abschnitt 4.1 behandelt worden.

Insbesondere fanden sich die Restriktionen:

Eigenvektoren von V + sind aus H+ ;

Eigenvektoren von V − sind aus H− .

Die Spinzustandssumme Z ′
++ ergab sich nach (4.39) durch unabhängige Spur-

bildung über V + und V − unter diesen Bedingungen; unter Beachtung von (4.58)
erhielt man:

Z ′
++ = SpH+

[(
V +

)T ] + SpH−

[(
V −)T ]

= Y −
+ + Y +

− .

Die weiteren Sektor-Zustandssummen aus Tabelle 3.1 erhält man durch den
Einbau antiperiodischer Randbedingungen für die (wohlgemerkt!) Spins.

Bei antiperiodischen RB senkrecht zur Richtung der Transfermatrix

τx = −1 , τt = +1

folgt anstatt (4.17):

V ap2 = exp

[
β

{ L−1∑
m=1

(
σ+
m
+ σ−

m

) (
σ+
m+1 + σ−

m+1

)
−

(
σ+
L
+ σ−

L

) (
σ+
1 + σ−

1

) }]
. (4.73)
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4.3. Aufstellung der Sektor-Zustandssummen Zτxτt

Die aus der Transformation (4.18), (4.19) folgenden Regeln führen anstatt (4.32)
auf

V ap2 = exp

[
β

{ L−1∑
m=1

(
C†
m − Cm

)(
C†
m+1 + Cm+1

)
+(−1)N

(
C†
L − CL

) (
C†
1 + C1

) }]
. (4.74)

Der Randterm unterscheidet sich im Vorzeichen von (4.32).
Behält man die Definition von V +

2 (4.37) und V −
2 (4.38) bei, so folgen aus dem

veränderten Vorzeichen die Restriktionen

Eigenvektoren von V + sind aus H− ;

Eigenvektoren von V − sind aus H+ .

Damit erhält man für die Zustandssumme

Z ′
−+ = SpH−

[(
V +

)T ] + SpH+

[(
V −)T ] (4.75)

= Y −
− + Y +

+

in Übereinstimmung mit (3.25).

In Richtung der Transfermatrix lassen sich antiperiodische RB

τx = +1 , τt = −1

realisieren durch den Einbau des Paritätsoperators U in die Spur, der zwischen
symmetrischen und antisymmetrischen Eigenzuständen unterscheidet (siehe Ab-
schnitt 3.1.2). Wie bereits in Gl. (4.33) festgestellt wurde, läßt sich U als (−1)N
darstellen, wobei N der Fermionzähler ist. Letztere Gestalt ist für die vorlie-
gende Formulierung über Restriktionen bezüglich gerader und ungerader Fer-
mionzahl geeigneter:

Z ′
+− = SpH+

[
(−1)N

(
V +

)T ] + SpH−

[
(−1)N

(
V −)T ]

= SpH+

[(
V +

)T ] − SpH−

[(
V −)T ]

= Y −
+ − Y +

− .

Dieses Ergebnis stimmt mit (3.23) überein.
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4. Fermionische Darstellung

Durch Kombination oben aufgeführter Modifikationen für

τx = −1 , τt = −1

ergibt sich

Z ′
−− = SpH−

[
(−1)N

(
V +

)T ] + SpH+

[
(−1)N

(
V −)T ]

= − SpH−

[(
V +

)T ] + SpH+

[(
V −)T ]

= − Y −
− + Y +

+ ,

was (3.27) entspricht.

Ebensogut kann man auch hier die Transfermatrix auf den Spalten definie-
ren und in x-Richtung wandern lassen (siehe Abb. 3.2). Man erhält dann die
Zustandssummen Ẑτxτt (3.31)-(3.34) in Darstellung II.

4.4 Fermionische Zustandssummen und Sektoren

Neben den bereits aus Kapitel 2 und 3 bekannten Spin-Zustandssummen Zτxτt
können in der fermionischen Darstellung Fermion-Zustandssummen ZF

εxεt auf-
gestellt werden. Diese ergeben sich unter Beachtung der Randbedingungen für
Fermionen. Letztere sind gegeben durch εx = ±1 , εt = ±1, so daß auch hier
vier Sektoren auftreten werden.

ferm. Sektor ZF εx εt

++ ZF
++ +1 +1

+− ZF
+− +1 −1

−+ ZF−+ −1 +1
−− ZF−− −1 −1

Tabelle 4.2: Übersicht der fermionischen Sektoren

Die Bezeichnung εx/t soll Verwechslungen mit den Spin-RB τx/t vermeiden.

4.4.1 Fermionische Zustandssummen in Darstellung I

Zur Vorgehensweise sei an Abbildung 2.4 erinnert. In Abschnitt 4.1 wurde be-
reits gefunden:

εx = δ =
{
+1 −→ V − , k gerade ,
−1 −→ V + , k ungerade ;

α =
{
+1 −→ H+ , gerade Anzahl an Minuszeichen ,
−1 −→ H− , ungerade Anzahl an Minuszeichen .
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4.4. Fermionische Zustandssummen und Sektoren

Mit den Definitionen (3.17)-(3.20) ergab sich der Zusammenhang (4.58)

Y δα = Y εxα = SpHα

[(
V −εx)T ] ;

dabei ist V −εx so zu verstehen, daß sich für εx = +1 V − und für εx = −1 V +

ergibt, wie an (4.61) und (4.62) abzulesen ist.
Die fermionische Zustandssumme erschließt sich nun aus der Spur über die
Teilräume H+ und H−.
Zuvor müssen aber noch die vertikalen RB εt = ±1 berücksichtigt werden.
Aus der Betrachtung der Zustandssumme als grassmannwertiges Integral folgt
in Richtung der Transfermatrix eine scheinbare Vertauschung periodischer und
antiperiodischer RB gegenüber dem Spin-Fall: Bei εt = +1 wird zusätzlich
(−1)N in die Spur eingebaut, bei εt = −1 hingegen nicht (siehe [21], S. 251).
Dieser Zusammenhang als Folge der Grassmann-Algebra ist in der Literatur
bekannt und braucht hier deshalb nicht aus ersten Prinzipien hergeleitet zu
werden. Damit lauten die fermionischen Zustandssummen ZF

εxεt :

ZF
εx,− = Sp

[(
V −εx)T ] = SpH+

[(
V −εx)T ] + SpH−

[(
V −εx)T ]

= Y εx+ + Y εx− , (4.76)

ZF
εx,+ = Sp

[(
V −εx)T (−1)N]

= SpH+

[(
V −εx)T ] − SpH−

[(
V −εx)T ]

= Y εx+ − Y εx− . (4.77)

Der Vorfaktor ist für das Folgende vorteilhaft gewählt worden.
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εt = +1 ⇒ ZF
εx,+ = Sp

[
(V −εx)T (−1)N

]
εt = −1 ⇒ ZF

εx,− = Sp
[
(V −εx)T

]

εx = +1 ⇒ V −

εx = −1 ⇒ V +

Abbildung 4.1: Fermionische RB in ZF
εx,εt

67



4. Fermionische Darstellung

Im Speziellen ergibt sich:

ZF
++ = Y +

+ − Y +
− ; (4.78)

ZF
+− = Y +

+ + Y +
− ; (4.79)

ZF
−+ = Y −

+ − Y −
− ; (4.80)

ZF
−− = Y −

+ + Y −
− . (4.81)

Vergleicht man (4.78)-(4.81) mit (3.21), (3.23), (3.25) und (3.27), so erkennt
man, daß sich die Spin-Zustandssumme eines jeden Sektors stets durch die vier
fermionischen Sektor-Zustandssummen ausdrücken läßt [19, 20]:

Z ′
++ =

1
2
(
−ZF

++ + ZF
+− + ZF

−+ + ZF
−−

)
; (4.82)

Z ′
+− =

1
2
(
+ZF

++ − ZF
+− + ZF

−+ + ZF
−−

)
; (4.83)

Z ′
−+ =

1
2
(
+ZF

++ + ZF
+− − ZF

−+ + ZF
−−

)
; (4.84)

Z ′
−− =

1
2
(
+ZF

++ + ZF
+− + ZF

−+ − ZF
−−

)
. (4.85)

Man beachte, an welchen Stellen die Minuszeichen auftreten.

Darüber hinaus liefert eine nähere Betrachtung von (4.78)-(4.81) mit Identi-
täten wie in (2.80) und (2.81) eine Produktdarstellung der fermionischen Zu-
standssummen:

ZF
++ =

2L−1∏
k

gerade

2 sinh
(
T

2
εk

)
; (4.86)

ZF
+− =

2L−1∏
k

gerade

2 cosh
(
T

2
εk

)
; (4.87)

ZF
−+ =

2L−1∏
k

ungerade

2 sinh
(
T

2
εk

)
; (4.88)

ZF
−− =

2L−1∏
k

ungerade

2 cosh
(
T

2
εk

)
. (4.89)

ZF
++ enthält den Faktor sinh (T2 ε0) und wird daher (als einzige) negativ für

β > βC .

Setzt man diese Produktdarstellungen (4.86)-(4.89) in (4.82)-(4.85) ein, so er-
hält man ein bekanntes Ergebnis, nämlich die kompakte Schreibweise der Spin-
Zustandssummen (3.22), (3.24), (3.26) und (3.28) aus Abschnitt 3.1.3. Neu hin-
zugekommen ist allerdings das Wissen um den fermionischen Ursprung der dort
auftretenden Summanden.
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4.4.2 Fermionische Zustandssummen in Darstellung II

Es wird also der Fall einer in x-Richtung wandernden Transfermatrix betrachtet
(Abb. 3.2). Die bisher auftretenden Größen werden daher (siehe Abschnitt 3.2,
Gl. (3.29)) durch die entsprechenden mit ˆ ersetzt und die RB aus Tabelle 4.2
erfahren eine andere Behandlung als in Abb. 4.1.
Mit den Überlegungen aus den Abschnitten 3.2 und 4.4.1 findet sich:

Aufgrund der x ↔ t-Vertauschung bewirkt nun die RB εt = ±1 die Auftei-
lung von V̂ in V̂ + und V̂ − und entspricht in dieser Darstellung daher δ (3.19):

εt = δ =
{
+1 −→ V̂ − , l gerade ,
−1 −→ V̂ + , l ungerade ,

l = 0, 1, 2, . . . , 2T − 1 .

Die Größe Ŷ δα (vgl. (4.58)) ergibt sich damit nach (3.29) zu

Ŷ δα = Ŷ εtα = SpĤα

[(
V̂ −εt

)L]
.

Die RB εx = ±1 in Richtung der Transfermatrix wird analog zu (4.76) und
(4.77) durch (−1)N̂ berücksichtigt.

ẐF
−,εt = Sp

[(
V̂ −εt

)L]
= SpĤ+

[(
V̂ −εt

)L]
+ SpĤ−

[(
V̂ −εt

)L]
= Ŷ εt+ + Ŷ εt− ,

ẐF
+,εt = Sp

[(
V̂ −εt

)L
(−1)N̂

]
= SpĤ+

[(
V̂ −εt

)L]
− SpĤ−

[(
V̂ −εt

)L]
= Ŷ εt+ − Ŷ εt− .

Die fermionischen Zustandssummen in Darstellung II lauten damit

ẐF
++ = Ŷ +

+ − Ŷ +
− ; (4.90)

ẐF
+− = Ŷ −

+ − Ŷ −
− ; (4.91)

ẐF
−+ = Ŷ +

+ + Ŷ +
− ; (4.92)

ẐF
−− = Ŷ −

+ + Ŷ −
− . (4.93)
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εt = +1 ⇒ V̂ −

εt = −1 ⇒ V̂ +

εx = +1 ⇒

ẐF
+,εt = Sp

[(
V̂ −εt)L(−1)N̂]

εx = −1 ⇒

ẐF−,εt = Sp
[(

V̂ −εt)L]

Abbildung 4.2: Fermionische RB in ẐF
εx,εt

Analog zu (4.82)-(4.85) erhält man:

Ẑ ′
++ =

1
2

(
− ẐF

++ + ẐF
+− + ẐF

−+ + ẐF
−−

)
; (4.94)

Ẑ ′
+− =

1
2

(
+ ẐF

++ − ẐF
+− + ẐF

−+ + ẐF
−−

)
; (4.95)

Ẑ ′
−+ =

1
2

(
+ ẐF

++ + ẐF
+− − ẐF

−+ + ẐF
−−

)
; (4.96)

Ẑ ′
−− =

1
2

(
+ ẐF

++ + ẐF
+− + ẐF

−+ − ẐF
−−

)
. (4.97)

Man beachte die Position des Minuszeichens und vergleiche mit Darstellung I.

Als Produktdarstellungen ergeben sich hier:

ẐF
++ =

2T−1∏
l

gerade

2 sinh
(
L

2
ε̂l

)
; (4.98)

ẐF
+− =

2T−1∏
l

ungerade

2 sinh
(
L

2
ε̂l

)
; (4.99)

ẐF
−+ =

2T−1∏
l

gerade

2 cosh
(
L

2
ε̂l

)
; (4.100)

ẐF
−− =

2T−1∏
l

ungerade

2 cosh
(
L

2
ε̂l

)
. (4.101)

ẐF
++ ist (als einzige) negativ für β > βC .

Das Einsetzen von (4.98)-(4.101) in (4.94)-(4.97) liefert (analog zum vorigen
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Abschnitt) eine kompakte Darstellung der Zustandssummen Ẑτxτt aus Abschnitt
3.2 (man vergleiche unter Beachtung von (3.29) mit (3.22), (3.24), (3.26) und
(3.28)).

4.5 Äquivalenzbeweis von Darstellung I und II

Die fermionischen Zustandssummen konnten in beiden Darstellungen (4.86)-
(4.89), (4.98)-(4.101) als Produkte geschrieben werden. Mit Hilfe gewisser Iden-
titäten können diese in Doppelprodukte umgewandelt werden, die die L-T -
Symmetrie besser aufzeigen. Insbesondere wird sich herausstellen, daß die fer-
mionischen Zustandssummen ZF

εxεt und ẐF
εxεt aus Darstellung I und II identisch

sind, was zu derselben Schlußfolgerung für die Spin-Zustandssummen Zτxτt ,
Ẑτxτt führt.

4.5.1 Doppelproduktdarstellung der ZF
εxεt (Darstellung I)

Im Anhang B.3 werden folgende Identitäten bewiesen [50]:

2T−1∏
l

gerade

{
cosh (ε)− cos (ql)

}
= 2−(T−2) sinh2

(
ε
T

2

)
, (4.102)

2T−1∏
l

ungerade

{
cosh (ε)− cos (ql)

}
= 2−(T−2) cosh2

(
ε
T

2

)
; (4.103)

mit ql =
πl

T
, l = 0, 1, 2, . . . , 2T − 1 . (4.104)

Die fermionische Zustandssumme ZF
++ (4.86) (aus Darstellung I) läßt sich somit

unter Ausnutzung von (2.52) umschreiben zu

[
ZF
++

]2 = 22L ·
2L−1∏

k
gerade

sinh2
(
εk

T

2

)

= 2LT ·
2L−1∏

k
gerade

2T−1∏
l

gerade

{
cosh (εk)− cos (ql)

}

= 2LT ·
2L−1∏

k
gerade

2T−1∏
l

gerade

{
cosh (m0) + 1− cos (pk)− cos (ql)

}

mit pk =
πk

L
, k = 0, 1, 2, . . . , 2L− 1 .

Beim Wurzelziehen muß auf das Vorzeichen geachtet werden; es ist aus (4.86)
bekannt:

ZF
++ = ± 2LT

2 ·
2L−1∏

k
gerade

2T−1∏
l

gerade

√
cosh (m0) + 1− cos (pk)− cos (ql) . (4.105)
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Das obere Vorzeichen gilt für β < βC , das untere für β > βC .
Auf analoge Weise erhält man mit (4.102) und (4.103):

ZF
+− = 2

LT
2 ·

2L−1∏
k

gerade

2T−1∏
l

ungerade

√
cosh (m0) + 1− cos (pk)− cos (ql) ; (4.106)

ZF
−+ = 2

LT
2 ·

2L−1∏
k

ungerade

2T−1∏
l

gerade

√
cosh (m0) + 1− cos (pk)− cos (ql) ; (4.107)

ZF
−− = 2

LT
2 ·

2L−1∏
k

ungerade

2T−1∏
l

ungerade

√
cosh (m0) + 1− cos (pk)− cos (ql) . (4.108)

Diese Umwandlung auf Doppelprodukte wurde bereits bis auf Randterme dis-
kutiert in [35, 55]. Einen anderen Zugang zu diesen über Grassmann-Integrale
findet man in [20].

4.5.2 Doppelproduktdarstellung der ẐF
εxεt (Darstellung II)

Analog zu den oben aufgeführten Identitäten (4.102) und (4.103) findet sich:

2L−1∏
k

gerade

{
cosh (ε̂)− cos (pk)

}
= 2−(L−2) sinh2

(
ε̂
L

2

)
, (4.109)

2L−1∏
k

ungerade

{
cosh (ε̂)− cos (pk)

}
= 2−(L−2) cosh2

(
ε̂
L

2

)
. (4.110)

Daraus folgt mit ε̂l und ql (4.104), die sich gemäß (3.29) aus εk (2.52) und pk
(2.53) ergeben,

[
ẐF
++

]2
= 22T ·

2T−1∏
l

gerade

sinh2
(
ε̂l
L

2

)

= 2LT ·
2T−1∏

l
gerade

2L−1∏
k

gerade

{
cosh (ε̂l)− cos (pk)

}

= 2LT ·
2T−1∏

l
gerade

2L−1∏
k

gerade

{
cosh (m0) + 1− cos (ql)− cos (pk)

}
,

was letztlich auf

ẐF
++ = ± 2LT

2 ·
2T−1∏

l
gerade

2L−1∏
k

gerade

√
cosh (m0) + 1− cos (ql)− cos (pk) (4.111)
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führt, wobei das Vorzeichen dasselbe wie in (4.105) ist.
Mit (4.109) und (4.110) lauten die weiteren Zustandssummen:

ẐF
+− = 2

LT
2 ·

2T−1∏
l

ungerade

2L−1∏
k

gerade

√
cosh (m0) + 1− cos (ql)− cos (pk) ; (4.112)

ẐF
−+ = 2

LT
2 ·

2T−1∏
l

gerade

2L−1∏
k

ungerade

√
cosh (m0) + 1− cos (ql)− cos (pk) ; (4.113)

ẐF
−− = 2

LT
2 ·

2T−1∏
l

ungerade

2L−1∏
k

ungerade

√
cosh (m0) + 1− cos (ql)− cos (pk) . (4.114)

Aus dem Vergleich von (4.105)-(4.108) mit (4.111)-(4.114) erkennt man nun
unmittelbar:

ẐF
++ = ZF

++ ; ẐF
+− = ZF

+− ;

ẐF
−+ = ZF

−+ ; ẐF
−− = ZF

−− .

Mit (4.82)-(4.85) und (4.94)-(4.97) folgt hieraus für die Spin-Zustandssummen:

Ẑ++ = Z++ ; Ẑ+− = Z+− ;

Ẑ−+ = Z−+ ; Ẑ−− = Z−− .

Über die Doppelproduktdarstellung fermionischer Zustandssummen wurde so-
mit die Äquivalenz von Darstellung I und II bewiesen, und zwar sowohl auf
Spin- als auch auf Fermion-Ebene.
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Kapitel 5

Berechnung der
Energieaufspaltung

Dieses Kapitel widmet sich der Berechnung eines analytischen Ausdrucks für die
Energieaufspaltung im zweidimensionalen Ising-Modell bei einer großen Zahl an
Freiheitsgraden (großes L). Nach einer Beleuchtung der physikalischen Hinter-
gründe erfolgt die Rechnung mittels einer komplexen Konturintegration entlang
eines Schlitzes sowie anschließender Sattelpunktsentwicklung in verschiedenen
Näherungsschemata.
Zur Vorbeugung von unerwünschten Singularitäten in nachfolgend auftretenden
Funktionen sei die Temperaturvariable β, soweit nicht anders erwähnt, auf den
interessierenden Tieftemperatur-Bereich βC < β <∞ beschränkt.

5.1 Aufstellung und Eigenschaften der
Energieaufspaltung

Der Begriff der Energieaufspaltung ist bereits in Abschnitt 2.2.10 bei der Dis-
kussion des Energiespektrums (Abb. 2.15 - 2.18) gefallen. Als Energielücke der
beiden niedrigsten Energiezustände wurde (2.73) gefunden:

∆E = E0− − E0+ .

Die Energieaufspaltung tritt aber noch im Zusammenhang mit anderen physi-
kalischen Größen in Erscheinung.

Dazu werde zunächst die Korrelation zweier Spins st1 x0 , st2 x0 mit t2 > t1
innerhalb derselben Spalte x0 betrachtet (Abb. 5.1).
Im Transfermatrixformalismus (Darstellung I, Kap. 2) lautet die Korrelations-
funktion

〈 st2 x0 st1 x0 〉 =
Sp

[
V T−t2 σz

x0 V t2−t1 σz
x0 V t1

]
Sp [V T ]

. (5.1)

Durch Einschieben von Energieeigenzuständen erhält man für T � t2 − t1 die
führenden Terme [16]
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Abbildung 5.1: Spin-Spin-Korrelation im Ising-Gitter

〈 st2 x0 st1 x0 〉 =
∑
m≥ 0+

∣∣∣ 〈 0+ |σz
x0 |m

〉 ∣∣∣2 exp{− (Em − E0+)(t2 − t1)
}
. (5.2)

Im endlichen Volumen ist der Erwartungswert im Grundzustand gegeben durch〈
0+ |σz

x0 | 0+
〉
. Da |0+〉 symmetrisch, σz

x0 jedoch antisymmetrisch bezüglich
einer Spinumkehr ist, verschwindet dieser aus Symmetriegründen; zu (5.2) tra-
gen folglich nur die Terme bei, in denen m einen antisymmetrischen Zustand
m = n− kennzeichnet.
Für große Abstände t2 − t1 � 1 dominiert dementsprechend der Term mit
m = 0−, so daß sich das Verhalten

〈 st2 x0 st1 x0 〉 ∼ const.1 · exp
{
−∆E (t2 − t1)

}
(5.3)

mit ∆E (2.73) ergibt. Man erkennt nun unmittelbar den Zusammenhang

∆E =
1
ξt

. (5.4)

Die Energieaufspaltung entspricht also dem Inversen einer Korrelationslänge ξt,
die als Tunnel-Korrelationslänge interpretiert wird [10, 24].

Im Limes unendlich vieler Freiheitsgrade L → ∞ geht die Energieaufspaltung
gegen Null (siehe 2.2.10). In diesem Fall wird der bislang führende Term (5.3) zu
einer Konstanten. Um im unendlichen Volumen die sog. Bulk-Korrelationslänge1

abzulesen, wird in (5.2) die nächstgrößere Energielücke als dominierender Term
miteinbezogen:

〈 st2 x0 st1 x0 〉 ∼ const.1 + const.2 · exp
{
− (E2−;k=0,l=2 − E0+) (t2 − t1)

}
.

Für L→∞ gilt

E2−;k=0,l=2 − E0+
L→∞−→ E2−;k=0,l=2 − E0− = |ε0|+ ε2

L→∞−→ 2m0

1Die deutsche Übersetzung
”
Volumen-Korrelationslänge“ trägt der Tatsache Rechnung, daß

diese für unendliches Volumen definiert ist.
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und somit

〈 st2 x0 st1 x0 〉 ∼ const.1 + const.2 · exp
{
− 2m0 (t2 − t1)

}
. (5.5)

Der konstante Term const.1 = |〈 0+ |σz
x0 | 0−〉|

2 wird durch die Einführung der
verbundenen Korrelationsfunktion

〈 st2 x0 st1 x0 〉C = 〈 st2 x0 st1 x0 〉 − 〈 st2 x0 〉 〈 st1 x0 〉 (5.6)

entfernt, indem die bei unendlichem Volumen nicht-verschwindenden Erwar-
tungswerte im Grundzustand abgezogen werden. Die Grundzustände |+〉 und
|−〉 des unendlichen Volumens gehen hierbei aus der Überlagerung von |0+〉
und |0−〉 hervor:

|+〉 =
1√
2

(
|0+〉 + |0−〉

)
,

|−〉 =
1√
2

(
|0+〉 − |0−〉

)
.

Bei |+〉 und |−〉 handelt es sich um (energetisch entartete) Extremalzustände,
die einer größtmöglichen Magnetisierung in beiden Vorzeichen Rechnung tragen
(man vergleiche mit feldtheoretischen Ansätzen [56], siehe auch Einleitung).
Die Berechnung von 〈 st1/2 x0 〉 in diesen beiden Zuständen ergibt〈

+ |σz
x0 |+

〉
= +

〈
0 + |σz

x0 | 0−
〉
,〈

− |σz
x0 | −

〉
= −

〈
0 + |σz

x0 | 0−
〉
,

wobei benutzt wurde, daß die Matrixelemente reell sind.
Damit erhält man jeweils

〈 st1 x0 〉 〈 st2 x0 〉 = const.1

und somit

〈 st2 x0 st1 x0 〉C ∼ const.2 · exp
{
− 2m0 (t2 − t1)

}
.

Die Bulk-Korrelationslänge ξ läßt sich nun ablesen zu

1
ξ

= 2m0 , (5.7)

was die Bezeichnung von m0 = 2|β− β̃| im Sinne einer Massenlücke rechtfertigt
(der Faktor 2 in (5.7) tritt oberhalb der kritischen Temperatur nicht auf, wie an
(2.74) zu sehen ist). Wie gewohnt divergiert die Bulk-Korrelationslänge ξ am
kritischen Punkt β → βC .

Der Zusammenhang der Energieaufspaltung mit Grenzflächen wird einsichtig
über die Zustandssummen bei periodischen und antiperiodischen Randbedin-
gungen.
Dazu betrachte man in Abb. 5.2 eine Grenzfläche senkrecht zur t-Richtung, die
zwei Domänen unterschiedlicher Spinausrichtung trenne.

76



5.1. Aufstellung und Eigenschaften der Energieaufspaltung

��✒
��

��✠��

1 L
1

T

✻

✲

t

x

Abbildung 5.2: Grenzfläche senkrecht zur t-Richtung

Die entsprechenden Zustandssummen Z ′
+− (3.23) und Z ′

++ (3.21), die zur Er-
füllung ihrer jeweiligen Randbedingungen eine ungerade sowie gerade Anzahl
an Grenzflächen enthalten können, wurden in Abschnitt 3.1.3 aufgestellt (Dar-
stellung I). Für T � 1 lauten diese über die Energieeigenwerte ausgedrückt:

Z ′
+− = exp{−E0+ T} − exp{−E0− T} + O(exp{−E2± T}) ,

Z ′
++ = exp{−E0+ T} + exp{−E0− T} + O(exp{−E2± T}) .

Für deren Verhältnis folgt somit

Z ′
+−

Z ′
++

=
Z+−
Z++

∼ 1− exp{−∆E · T}
1 + exp{−∆E · T} ∼

∑
k

ungerade

1
k!

(
∆E·T
2

)k
∑

k
gerade

1
k!

(
∆E·T
2

)k ,

was für genügend große L, T wegen ∆E · T � 1 auf

Z+−
Z++

∼ 1
2
∆E · T (5.8)

führt. Dies entspricht der Mitnahme der niedrigsten (k = 0 und k = 1) Grenz-
flächenbeiträge und somit der in Abb. 5.2 dargestellten Situation einer einzelnen
Grenzfläche (vgl. Diskussion von Multikink-Beiträgen in [56]).
Über die Differenz der (reduzierten) Freien Energien F+− und F++ (F = − lnZ)
läßt sich die Freie Energie der Grenzfläche definieren:

FGrenz = F+− − F++ + lnT .

Der letzte Term berücksichtigt die T Anordnungsmöglichkeiten der Grenzfläche
im Gitter. Damit gelangt man zur Definition der (reduzierten) Grenzflächen-
spannung [23, 24]

σ = lim
T→∞

lim
L→∞

FGrenz
L

. (5.9)

als Freie Energie der Grenzfläche pro an der Grenzfläche beteiligten Gitterpunk-
ten. Mit (5.8) folgt

σ = lim
L→∞

(
− 1
L
ln∆E

)
. (5.10)
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Hieraus läßt sich bei großen L folgende Abhängigkeit der Energieaufspaltung
von der Anzahl an Freiheitsgraden, d.h. der Gittergröße, erkennen:

∆E ∼ exp{−Lσ} . (5.11)

Eventuelle Vorfaktoren, die lediglich potenzartig von L abhängen, werden durch
die Limesbildung unterdrückt.
Im Rahmen dieser Arbeit und speziell in diesem Kapitel wird (5.11) näher
untersucht; insbesondere wird der Vorfaktor berechnet, der sich aus der eben
aufgeführten Überlegung noch nicht ergibt. Diesen erhält man durch Berech-
nung der Energieaufspaltung ∆E als Lücke im Spektrum (2.73) aus der bisher
gewonnenen Kenntnis über die Eigenwerte, wie nachfolgend zu sehen ist. Ich
folge dabei Privman und Fisher [25].

5.2 Darstellung durch Fourierkoeffizienten

Die Energieaufspaltung (2.73) lautet mit (2.71) und (2.72) ausgeschrieben (die
ε2k+1 mit ungeradem Index sind stets positiv; ein Betragsstrich ist also nicht
vonnöten, kann aber nach Bedarf gesetzt werden):

∆E =
1
2

{
L−1∑
k=0

ε2k+1 −
L−1∑
k=0

|ε2k|
}

. (5.12)

Aufgrund von limL→∞ ε2k+1 = limL→∞ |ε2k| läßt sich bereits der Trend
limL→∞∆E = 0 ablesen. Ein analytischer Ausdruck, der diesen Limes be-
schreibt, läßt sich aus der getrennten Limitenbildung beider Summen in (5.12)
jedoch nicht gewinnen. Daher wird (5.12) im Folgenden in eine einzelne Summe
(positiver Summanden) umgeschrieben; dies gelingt durch die Entwicklung in
eine Fourierreihe. Zu diesem Zweck wird mittels der für große L quasikontinu-
ierlichen Variablen x = k

L die Funktion

|ε(x)| = +Arcosh {cosh(m0) + 1− cos(πx)} (5.13)

definiert (man vergleiche mit εk (2.52); die Definition (5.13) dient u.a. einer
genaueren Spezifikation des Arguments). Deren Periode beträgt 2 (siehe Abb.
2.6). Damit ist

∆E =
1
2

{
L−1∑
k=0

ε
(2k + 1

L

)
−
L−1∑
k=0

∣∣∣∣ε(2kL )∣∣∣∣
}

. (5.14)

Die komplexen Fourier-Entwicklungen lauten∣∣∣∣ε(2kL )∣∣∣∣ =
+∞∑
n=−∞

c′n exp
{
iπn

2k
L

}
,

ε
(2k + 1

L

)
=

+∞∑
n=−∞

c′n exp
{
iπn

2k + 1
L

}
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5.2. Darstellung durch Fourierkoeffizienten

mit denselben Fourierkoeffizienten c′n:

c′n =
1
2

+1∫
−1
|ε(x)| exp {−iπnx} dx .

Mit der im Anhang B.1 hergeleiteten Identität

L−1∑
k=0

exp
{
iπn

2k
L

}
=

{
L für n = sL ,
0 für n �= sL ,

(5.15)

mit L ∈ N, n, s ∈ Z

folgt:

L−1∑
k=0

∣∣∣∣ε(2kL )∣∣∣∣ =
+∞∑
n=−∞

c′n
L−1∑
k=0

exp
{
iπn

2k
L

}
= L

∑
s∈Z

c′s·L ;

L−1∑
k=0

ε
(2k + 1

L

)
= L

∑
s∈Z

(−1)s c′s·L .

Damit erhält man für die Energieaufspaltung (5.14)

∆E = −L
+∞∑
j=−∞

c′(2j+1)L .

Durch die Koeffizienten der reellen Fourierreihe

cn =

+1∫
−1
|ε(x)| cos(nπx) dx

ausgedrückt lautet diese

∆E = −L
∞∑
j=0

c(2j+1)L . (5.16)

Man vergleiche mit Privman und Fisher [25].
(5.16) ist Ausgangspunkt der weiteren Rechnung. Insbesondere ist

cL =

+1∫
−1
|ε(x)| cos(Lπx) dx . (5.17)

Der folgende Abschnitt widmet sich der Berechnung von cL und zeigt, daß die
restlichen Koeffizienten rasch abfallen.
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5. Berechnung der Energieaufspaltung

5.3 Berechnung des Integrals cL

Der in cL (5.17) enthaltene kompliziertere Ausdruck |ε(x)| stellt eine Quelle
von Schwierigkeiten dar. Es wird zunächst eine Berechnungsmethode detailliert
vorgestellt, und anschließend werden weitere Varianten aufgezeigt.
Eine nützliche Umformung von (5.13) ist

|ε(x)| = ln
[
cosh(m0) + 1− cos(πx) +

√
[cosh(m0) + 1− cos(πx)]2 − 1

]
. (5.18)

5.3.1 Partielle Integration

Aufgrund des Hinweises im Artikel von Privman und Fisher [25] wird die Be-
rechnung mit einer partiellen Integration beginnend durchgeführt, wobei der
Randterm wegfällt:

cL = − 1
L
Im

 +1∫
−1

sin(πx)√
[cosh(m0) + 1− cos(πx)]2 − 1

exp(iLπx) dx

. (5.19)
Das Augenmerk richtet sich daher auf das Integral

I =

+1∫
−1

h(x) exp(iLπx) dx (5.20)

mit h(x) =
sin(πx)√

[cosh(m0) + 1− cos(πx)]2 − 1
, (5.21)

welches analytisch in die komplexe Ebene fortgesetzt wird.

5.3.2 Auffinden der Verzweigungspunkte und Schlitze von h(z)

h(z) aus (5.21) mit z ∈ C enthält einen komplexen Wurzelausdruck. Aus der
Funktionentheorie ist wohlbekannt [57], daß die komplexe Wurzel zwecks Aus-
schluß von Mehrdeutigkeiten auf einer geschlitzten Ebene definiert wird; auf
dieser ist sie eindeutig und holomorph. Die Schlitze sind passend gewählte Ver-
bindungslinien von Verzweigungspunkte genannten Nichtanalytizitätsstellen.
Für die vorliegende Funktion h(z) in (5.21) finden sich die vier Verzweigungs-
punkte

z1 = + i
m0

π
, z2 = − i

m0

π
,

z3 = + i
2(β + β̃)

π
, z4 = − i

2(β + β̃)
π

,

mit |z1/2| ≤ |z3/4|

sowie die in Abb. 5.3 gezeigten endlichen Schlitze.
Die Rechnung hierzu ist Anhang C zu entnehmen.
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Abbildung 5.3: Lage der Schlitze von h(z) in der z-Ebene

5.3.3 Integration entlang des Schlitzes

Zur Berechnung des Integrals (5.20) wird nun der in Abb. 5.4 dargestellte Inte-
grationsweg Γ2 − Γ7 in der oberen Halbebene eingeschlagen. Der ursprüngliche
Weg Γ1 verläuft auf der reellen Achse. Eine Rechnung in der unteren Halbebene
verläuft analog und liefert dasselbe Ergebnis.
In Anhang D wird durch explizite Parametrisierung gezeigt, daß sich die Inte-
grale über die Wege Γ2 und Γ7 aufgrund der Periodizität von h(x) gegenseitig
aufheben, und daß die Integrale über Γ3 und Γ6 im Limes d→∞ jeweils keinen
Beitrag liefern. Diese Wege sind in Abb. 5.4 gestrichelt eingezeichnet.
Im Limes η → 0, d → ∞ verbleibt somit die Integration längs des linken und
rechten Schlitz-Ufers, Gl. (D.1):

I = i

∞∫
m0/π

lim
η→0

{
h(is+ η)− h(is− η)

}
exp(−Lπs) ds .

Aufgrund des Schlitzes ist das Argument von h(z) eindeutig durch Nebenbe-
dingungen festgelegt. Dies hat zur Folge, daß bei der Annäherung an dessen
gegenüberliegende Ufer das Argument einen Sprung um 2π macht [57]; demzu-
folge tritt eine Diskontinuität auf, die über

dish(s) = lim
η→0

{
h(is+ η)− h(is− η)

}
(5.22)

definiert wird. Da diese lediglich im Bereich des Schlitzes von Null verschieden
ist, folgt

I = i

2(β+β̃)/π∫
m0/π

dish(s) exp(−Lπs) ds .

Man integriert somit den Schlitz hinauf über die Diskontinuität, multipliziert
mit einer abfallenden Exponentialfunktion, wie in Abb. 5.5 veranschaulicht wird.
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Abbildung 5.4: Integrationsweg in der komplexen Ebene (η ≥ 0)
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Abbildung 5.5: Integration über Diskontinuität
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5.3. Berechnung des Integrals cL

Durch die Substitution s = r+m0
π wird das untere Schlitzende auf Null gesetzt:

I = exp (−Lm0) · i
a∫

0

dis(1)h (r) · exp(−Lπr) dr (5.23)

mit dis(1)h (r) = lim
η→0

{
h
(
ir + im0

π + η
)
− h

(
ir + im0

π − η
)}

(5.24)

und der Schlitzlänge a = |z3| − |z1| . (5.25)

An (5.23) läßt sich bereits ein exponentiell abfallender Term exp (−Lm0) able-
sen, wie er prinzipiell nach (5.11) zu erwarten war; das verbleibende Integral

i

a∫
0

dis(1)h (r) · exp(−Lπr) dr (5.26)

wird, wie sogleich zu sehen ist, die gesuchten Vorfaktoren enthalten, die potenz-
artig von L abhängen.
Wie in Unterkapitel 5.1 erörtert wurde, ist ein Ausdruck für große L von Inter-
esse. Damit läßt sich zum einen das Verhalten der weiteren Fourierkoeffizienten
in (5.16) absehen; bereits c3L ∼ exp (−3Lm0) fällt für L� 1 deutlich schneller
ab (vgl. [25]):

∆E = −L cL

[
1 + O

(
exp (−2Lm0)

)]
. (5.27)

Die Energieaufspaltung ergibt sich dann nach (5.19)-(5.21) zu

∆E = Im{I}
[
1 + O

(
exp (−2Lm0)

)]
. (5.28)

Zum anderen liefert es die Anleitung zur weiteren Berechnung des Integrals
(5.26): Im Integranden dominiert für L � 1 offensichtlich der exp (−Lπr)-
Term, der nur für kleine r nennenswerte Beiträge liefert. Die Diskontinuität
dis(1)h (r) (5.24) wird daher im Sinne einer Sattelpunktsentwicklung für r � 1
genähert werden. Die abschließende Berechnung der hierdurch auftretenden In-
tegrale wird durch folgende Abschätzung erleichtert:

a∫
0

dis(1)h (r) · exp(−Lπr) dr =

=

∞∫
0

dis(1)h (r) · exp(−Lπr) dr −
∞∫
a

dis(1)h (r) · exp(−Lπr) dr

r=t+a=

∞∫
0

dis(1)h (r) · exp(−Lπr) dr − exp (−Lπa) ·
∞∫
0

dis(2)h (t) · exp(−Lπt) dt

=

∞∫
0

dis(1)h (r) · exp(−Lπr) dr
[
1 + O

(
exp (−Lπa)

)]
. (5.29)
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5. Berechnung der Energieaufspaltung

5.3.4 Berechnung der Diskontinuität

Es sind die in (5.24) enthaltenen Limiten zu berechnen.
Begonnen wird mit

lim
η→0

h
(
ir + im0

π + η
)
=

(5.21)
=

limη→0 sin(iπr + im0 + πη)

limη→0

√[
cosh(m0) + 1− cos(iπr + im0 + πη)

]2 − 1
=

i sinh(πr +m0)

limη→0

√
w2
+ − 1

.

Um den Limes auszuführen, wird zur Darstellung der Wurzel die Definition der
allgemeinen Potenz im Komplexen verwendet [57]:

lim
η→0

√
w2
+ − 1 = lim

η→0
exp

[
1
2
ln

∣∣w2
+ − 1

∣∣ + 1
2
i ϕ+

]
. (5.30)

Das Argument ϕ+ = arg (w2
+ − 1) = arg (w+ + 1) + arg (w+ − 1) ist definiert

auf dem Hauptzweig ϕ ∈ [−π,+π] in der z-Ebene.
Die Trennung von Real- und Imaginärteil ergibt

lim
η→0

ϕ+ = arctan (0) = +π ;

von den möglichen Lösungen wurde +π ausgewählt, da am rechten Ufer der
imaginären Achse in der z-Ebene arg (w+ ± 1) = +1

2 π gilt (vgl. Anhang C).

Für den Betrag in (5.30) errechnet sich:

lim
η→0

∣∣w2
+ − 1

∣∣ =
∣∣∣[ cosh(m0) + 1− cosh(πr +m0)

]2 − 1∣∣∣
=

∣∣∣[1− 2 sinh(πr2 +m0

)
· sinh

(
πr
2

)]2 − 1∣∣∣
= 4 sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) ∣∣∣1− sinh(πr2 +m0

)
· sinh

(
πr
2

) ∣∣∣
= 4 sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) [
1− sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) ]
.

Der letzte Schritt folgt aus der Beschränkung auf kleine r, die im vorherigen
Abschnitt angekündigt wurde (m0 wird hierzu als nicht übermäßig groß ange-
nommen).

Damit lautet

lim
η→0

h
(
ir + im0

π + η
)
=

=
1

2
√
sinh

(
πr
2

) · sinh(πr +m0)√
sinh(πr2 +m0)

[
1− sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) ] .
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5.3. Berechnung des Integrals cL

Die Berechnung von

lim
η→0

h
(
ir + im0

π − η
)

=
i sinh(πr +m0)

limη→0

√
w2− − 1

erfolgt wegen limη→0 |w2− − 1| = limη→0 |w2
+ − 1| genauso bis auf die Bestim-

mung des Winkels ϕ− : Am linken Ufer der imaginären Achse gilt

lim
η→0

ϕ− = arctan (0) = −π ,

da das Argument ϕ am Schlitz um 2π springt. Oberhalb des Schlitzes findet
dieser Sprung nicht mehr statt, und die Diskontinuität verschwindet.
Somit ist

lim
η→0

h
(
ir + im0

π − η
)

= − lim
η→0

h
(
ir + im0

π + η
)
,

und es folgt für die Diskontinuität (5.24):

dis(1)h (r) =
1√

sinh
(
πr
2

) · sinh(πr +m0)√
sinh(πr2 +m0)

[
1− sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) ] .(5.31)

5.3.5 Sattelpunktsentwicklung

Hierzu wird die soeben ausgerechnete Diskontinuität dis(1)h (r) (5.31) für r � 1
näherungsweise nach Taylor entwickelt. Dies kann allerdings wegen des Terms

1√
sinh(πr

2 )
nicht direkt erfolgen; dieser Ausdruck wird separat behandelt:

1√
sinh

(
πr
2

) =
1√

πr
2 +

1
3!

(
πr
2

)3 +O(r5) =
1√
r
· 1√

π
2 +

1
3!

(
π
2

)3
r2 +O(r4)

=
1√
r

[√
2
π
− 1
2
1
3!

(π

2

)3/2
· r2 + O

(
r4

)]

=

√
2
π

1√
r
− 1

24
√
2
π3/2 · r3/2 + O

(
r7/2

)
.

Der zweite in dis(1)h (r) (5.31) enthaltene Ausdruck kann ganz gewöhnlich nach
Taylor entwickelt werden.
Die Entwicklung des Gesamtausdrucks (5.31) ergibt sich somit aus dem Produkt
der Taylorentwicklungen beider Teilausdrücke, die bis zur Ordnung O(r3/2) an-
gegeben wird:
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5. Berechnung der Energieaufspaltung

dis(1)h (r) =

[√
2
π

1√
r
− 1

24
√
2
π3/2 · r3/2 + O

(
r7/2

)]
·

·
[√

sinh(m0) +
π

4

(
sinh3/2(m0) +

3 cosh(m0)√
sinh(m0)

)
· r

+
π2

16

(
3
2
sinh5/2(m0) + 5 cosh(m0)

√
sinh(m0) +

+7
√
sinh(m0) −

5
2

cosh2(m0)
sinh3/2(m0)

)
· r2 + O

(
r3

) ]

⇒ dis(1)h (r) =

√
2 sinh(m0)

π
· 1√

r

+
√
π

2
√
2

(
sinh3/2(m0) +

3 cosh(m0)√
sinh(m0)

)
·
√
r

+
π3/2

2
√
2

(
3
8
sinh5/2(m0) +

5
4
cosh(m0)

√
sinh(m0) +

+
5
3

√
sinh(m0) −

5
8

cosh2(m0)
sinh3/2(m0)

)
· r3/2

+ O
(
r5/2

)
.

Während die niedrigeren Ordnungen O( 1√
r
) und O(

√
r ) aus einer einzigen Quel-

le stammen, entsteht die Ordnung O(r3/2) aus zwei Quellen: Zum einen aus dem
Produkt O( 1√

r
) ·O(r2), zum anderen aus O(r3/2) ·O(r0).

Das Einsetzen dieser Entwicklung in das Integral

∞∫
0

dis(1)h (r) · exp(−Lπr) dr

führt direkt auf Gammafunktionen (Eulersche Integrale zweiter Gattung); sie
sind in Anhang E aufgeführt.
Unter Berücksichtigung der Abschätzung (5.29) erhält man somit das Ergebnis
für das gesuchte Integral I (5.23) und damit nach (5.28) auch für die Energie-
aufspaltung ∆E:

∆E = exp (−Lm0)

∞∫
0

dis(1)h (r) · exp(−Lπr) dr

·
[
1 + O

(
exp (−Lπa)

)][
1 + O

(
exp (−2Lm0)

)]
.
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5.3.6 Ergebnis für die Energieaufspaltung ∆E

Unter den in L auftretenden Ordnungen fallen die aus den Abschätzungen (5.29)
und (5.27) stammenden Ordnungen O

(
exp (−Lπa)

)
und O

(
exp (−2Lm0)

)
für

L� 1 nur noch unwesentlich ins Gewicht, so daß das Ergebnis für die Energie-
aufspaltung ∆E lautet:

∆E = exp
(
− Lm0

) [√
2 sinh(m0)

π
· 1√

L
+ a1

1
L3/2

+ a2
1

L5/2
+

+ O
( 1
L7/2

)][
1 + O

(
exp (−Lπa)

)
+ O

(
exp (−2Lm0)

)]
(5.32)

mit a1 =
1

4
√
2π

(
sinh3/2(m0) +

3 cosh(m0)√
sinh(m0)

)
(5.33)

und a2 =
1

8
√
2π

(
9
8
sinh5/2(m0) +

15
4
cosh(m0)

√
sinh(m0) +

+5
√
sinh(m0) −

15
8

cosh2(m0)
sinh3/2(m0)

)
. (5.34)

Diese Formel für die Energieaufspaltung enthält den gesuchten Vorfaktor, der
eine L-Abhängigkeit zeigt. Für den O( 1√

L
)-Term besteht Übereinstimmung mit

den Ergebnissen von Privman und Fisher [25], wobei hier noch die nächsten
beiden Ordnungen O( 1

L3/2 ) und O(
1
L5/2 ) explizit angegeben sind.

An (5.32) läßt sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit
wachsender Zahl an Freiheitsgraden gegen Null geht.

5.3.7 Ergebnis für die Grenzflächenspannung σ

Für die Grenzflächenspannung σ, definiert durch die Freie Energie der Grenz-
fläche pro Gitterpunkt (Gl. (5.9)), wurde bereits mit Gl. (5.10) in Abschnitt 5.1
folgender Zusammenhang mit der Energieaufspaltung ∆E festgestellt:

σ = lim
L→∞

(
− 1
L
ln∆E

)
.

Durch Einsetzen des oben erhaltenen Ergebnisses (5.32) erhält man

σ = lim
L→∞

(
− 1
L
ln

[
exp

(
− Lm0

)])
+ lim

L→∞

(
− 1
L
ln

[√
2 sinh(m0)

π

1√
L
+ a1

1
L3/2

+ a2
1

L5/2
+ O

( 1
L7/2

)])
+ lim

L→∞

(
− 1
L
ln

[
1 + O

(
exp (−Lπa)

)
+ O

(
exp (−2Lm0)

)])
.

Übereinstimmend mit einer früheren Beobachtung liefern die potenzartig von
L abhängenden Vorfaktoren aus der zweiten Zeile im Limes L → ∞ keinen
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Beitrag; die dritte Zeile, bestehend aus Korrekturen vom endlichen Schlitz und
weiteren Fourierkoeffizienten, ergibt ebenso Null.
Somit verbleibt die erste Zeile, die zu folgendem Ergebnis führt:

σ = m0 . (5.35)

Die Grenzflächenspannung σ ist also die schon häufiger in dieser Arbeit ver-
wendete temperaturabhängige Größe m0 = 2 |β − β̃|. Dieses Ergebnis ist in
Übereinstimmung mit demjenigen Onsagers [9].
Die Einfachheit dieses exakten Ausdrucks stellt dabei eine Besonderheit des
zweidimensionalen Ising-Modells dar: In höheren Dimensionen erhält man für
die Grenzflächenspannung einen komplizierteren Ausdruck, der nach verschie-
denen Ordnungen einer Kopplungskonstanten im Rahmen der φ4-Theorie ent-
wickelt wird [10, 22].

5.3.8 Alternative: Rechnung ohne partielle Integration

Es wird der Frage nachgegangen, ob die in [25] genannte partielle Integration
zwingend notwendig ist.
Zu berechnen ist der Fourierkoeffizient (5.17)

cL = Re {I2} (5.36)

mit I2 =

+1∫
−1
|ε(x)| exp(iLπx) dx , (5.37)

wobei zur weiteren Berechnung für |ε(x)| der logarithmische Ausdruck (5.18)

|ε(x)| = ln
[
cosh(m0) + 1− cos(πx) +

√
[cosh(m0) + 1− cos(πx)]2 − 1

]
verwendet wird. Aufgrund des Logarithmus reicht der Schlitz von |ε(z)| mit
z ∈ C in der oberen Halbebene von im0

π bis i∞ (siehe Anhang C); am bisher
verwendeten Integrationsverfahren kann also prinzipiell festgehalten werden.
Durch Anwendung des bisherigen Parametrisierungsschemas in Anhang D (mit
|ε(x)| statt h(x)) folgt nach (5.23)-(5.25), wobei aufgrund des unendlichen
Schlitzes nun ∞ als obere Integrationsgrenze auftaucht:

I2 = exp (−Lm0) · i
∞∫
0

dis(1)ε (r) · exp(−Lπr) dr (5.38)

mit dis(1)ε (r) = lim
η→0

{ ∣∣ε(ir + im0
π + η

)∣∣ − ∣∣ε(ir + im0
π − η

)∣∣ }. (5.39)

Das untere Schlitzende wurde hierbei bereits durch Substitution auf Null ge-
setzt.
Zur Berechnung der einzelnen Limiten in (5.39) wird bereits die Näherung
r � 1 im Rahmen der Sattelpunktsentwicklung verwendet; für den interes-
sierenden Fall L � 1 läßt sich ja schon hier exp (−Lm0) als dominierender
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Term im Integranden (5.38) absehen, der nur für kleine r nennenswerte Bei-
träge liefert. Insbesondere wird der Logarithmus durch sein Argument angenä-
hert werden; hierdurch wird das obere Schlitzende auf den Wert der vergange-
nen Abschnitte gekürzt, was nach (5.29) aber nur die unwesentliche Korrektur
[1 + O(exp (−Lπa))] hervorruft.

lim
η→0

∣∣ε(ir + im0
π ± η

)∣∣
= lim

η→0
ln

[
1 + cosh(m0)− cosh(πr +m0 ∓ iπη) +

+
√
[cosh(m0) + 1− cosh(πr +m0 ∓ iπη)]2 − 1

]
;

hier greift wegen r � 1 die Näherung ln(1 + x) = x + O(x2) für x� 1 :

= lim
η→0

(
cosh(m0)− cosh(πr +m0 ∓ iπη)

)
+ lim
η→0

√
[cosh(m0) + 1− cosh(πr +m0 ∓ iπη)]2 − 1 +

quadratische
Ordnung

(5.3.4)
= cosh(m0)− cosh(πr +m0)

± 2i
√
sinh(πr2 ) ·

√
sinh(πr2 +m0)

[
1− sinh

(
πr
2 +m0

)
· sinh

(
πr
2

) ]
+

quadratische
Ordnung

.

Durch die Näherung des Logarithmus konnte die Rechnung somit auf die in
Abschnitt 5.3.4 berechneten Limiten zurückgeführt werden. Die quadratische
Ordnung bezieht sich dabei auf das Argument des Logarithmus.
Bei der Differenzbildung (5.39) hebt sich der Term cosh(m0)− cosh(πr +m0),
der von der Ordnung O(r) ist, weg. Die verbleibenden Wurzelterme werden wie
in 5.3.5 entwickelt:

dis(1)ε (r) = 2i
√
2π sinh(m0) ·

√
r + O

(
r3/2

)
. (5.40)

Die Ordnung O
(
r3/2

)
stammt dabei einerseits von der Taylorentwicklung der

Wurzelausdrücke, andererseits von der quadratischen Ordnung des Logarith-
mus: Nur der gemischte Term aus der Quadratbildung hebt sich in der Differenz
(5.39) nicht weg, und dessen niedrigste Ordnung lautet O(r) ·O

(√
r
)
= O

(
r3/2

)
.

Da diese also offensichtlich komplizierterer Natur ist, wird hier davon abgese-
hen, diese explizit anzugeben.
Mit dis(1)ε (r) in der genäherten Form (5.40) enthält I2 (5.38) bereits aus An-
hang E bekannte Gammafunktionen, und für die Energieaufspaltung ∆E =
−LcL

[
1 + O

(
exp (−2Lm0)

)]
folgt bis auf die exponentiellen Korrekturen

∆E = exp
(
− Lm0

) [√
2 sinh(m0)

π
· 1√

L
+ O

( 1
L3/2

)]
(5.41)
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5. Berechnung der Energieaufspaltung

in Übereinstimmung mit dem bisherigen Ergebnis (5.32) und [25].
Die Rechnung ohne partielle Integration führt also auch zum Ziel, allerdings ist
das Ordnen nach Potenzen erheblich verwickelter; aus diesem Grund wird hier
nur die niedrigste Ordnung angegeben.

5.3.9 Alternative: Wurzelnäherung für |ε(x)|
Ausgangspunkt ist erneut (5.36)-(5.39).
Zur Berechnung der Diskontinuität dis(1)ε (r) (5.39) im Rahmen der Sattelpunkt-
sentwicklung läßt sich ausgehend von (5.13) in der Nähe des kritischen Punktes
β ≈ βC und für kleines Argument eine einfache Formel für |ε(x)| finden:

cosh
(
|ε(x)|

)
= cosh(m0) + 1− cos(πx)

⇔ 2 sinh2
(
1
2 |ε(x)|

)
= 2 sin2

(
1
2 πx

)
+ 1

2 m2
F

mit m0 = 2 |β − β̃| , mF = 2 sinh
(
|β − β̃|

)
.

Aus β ≈ βC
(2.85)→ β ≈ β̃ folgt m0 � 1 und damit auch mF � 1 sowie m0 ≈ mF .

Für kleine x kann der Sinusterm durch sein Argument angenähert werden; für
m0 � 1 und kleine x ist |ε(x)| selber klein und der sinh-Term kann ebenfalls
durch sein Argument angenähert werden.
Damit ergibt sich die Näherungsformel

|ε(x)| ≈
√

m2
0 + π2x2 , (5.42)

welche im Folgenden als Wurzelnäherung bezeichnet wird. Deren Gültigkeits-
bereich wird in Abb. 5.6 verdeutlicht durch Vergleich mit dem ungenäherten
|ε(x)| aus Abb. 2.6.
Da aufgrund der Sattelpunktsentwicklung r � 1 ist und in der Nähe des kri-
tischen Punktes m0 � 1 gilt (sowie die Annahme eines kleinen η mit dem
Integrationsweg und der Limesbildung η → 0 verträglich ist), ist das Argument
von

∣∣ε(ir + im0
π ± η

)∣∣ in dis(1)ε (r) (5.39) klein und die Wurzelnäherung kann zur
Berechnung der Diskontinuität verwendet werden.
Eine Diskontinuität tritt dabei weiterhin auf wegen der komplexen Wurzel: Die
Verzweigungspunkte von

√
m2

0 + π2z2 mit z ∈ C liegen bei z1 = +im0
π und

z2 = −im0
π (vgl. Anhang C); der unendliche Schlitz wird wie in Abb. 5.7 gelegt.

Die prinzipielle Vorgehensweise bezüglich der Schlitzintegration aus den voran-
gehenden Abschnitten kann also beibehalten werden. Lediglich die exponentielle
Korrektur (5.29) aufgrund eines endlichen Schlitzes entfällt.
Mit der Methode aus 5.3.4 berechnet sich die Diskontinuität zu

dis(1)ε (r) = 2i
√

π2r2 + 2rm0π . (5.43)

Das Einsetzen in das Integral I2 (5.38) führt auf die MacDonald-Funktion
K1(Lm0) [58]:

I2 = − 2 m0

Lπ
K1(Lm0) .
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5.3. Berechnung des Integrals cL

Abbildung 5.6: Vergleich der Wurzelnäherung mit dem un-
genäherten Ausdruck für |ε(x)| bei festem β = 0,5
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Abbildung 5.7: Schlitzstruktur der Wurzelnäherung

Aus deren asymptotischen (L � 1) Form [59] (Kap. 9.1, Gl. (9.56d), S. 466)
bzw. [58] (Teil II, 8.451 Nr. 6, S. 360)

K1(Lm0) = exp(−Lm0)
[√

π

2m0

1√
L
+ O

( 1
L3/2

)]
folgt mit cL = Re{I2} (5.36) für die Energieaufspaltung ∆E = −LcL

[
1 +

O
(
exp (−2Lm0)

)]
(5.27) bis auf die exponentielle Korrektur:

∆E = exp
(
− Lm0

) [√
2m0

π
· 1√

L
+ O

( 1
L3/2

)]
. (5.44)
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5. Berechnung der Energieaufspaltung

Um zu höheren Ordnungen O
(

1
Ln/2

)
zu gelangen, wird (5.43) nach Taylor ent-

wickelt, was, in I2 (5.38) eingesetzt, erneut in Gammafunktionen (Anhang E)
resultiert; das Ergebnis für die Energieaufspaltung lautet dann:

∆E = exp
(
− Lm0

) [√
2m0

π
· 1√

L
+

3
4
√
2πm0

· 1
L3/2

− 15

64
√
2π m

3/2
0

· 1
L5/2

+
105

512
√
2π m

5/2
0

· 1
L7/2

+ O
( 1
L9/2

)]
. (5.45)

Eine Rechnung mit partieller Integration von (5.38) mit der zuvor eingesetzten
Wurzelnäherung führt übrigens auf dasselbe Ergebnis.
Der Vorteil der Wurzelnäherung (5.42) liegt also offensichtlich in dem komforta-
bleren Erhalt höherer Ordnungen. Der Nachteil indes besteht in der Einschrän-
kung β ≈ βC .

Der Fall β ≈ βC soll nachvollzogen werden mit dem Ergebnis (5.32)-(5.34),
das man aus dem ungenäherten |ε(x)| (5.13) erhielt (unter Vernachlässigung
der exponentiellen Korrekturen).
Da für β ≈ βC m0 � 1 gilt, werden hierzu die m0 enthaltenden hyperboli-
schen Funktionen in (5.32)-(5.34) nach Taylor entwickelt, und zwar ähnlich der
Methode aus 5.3.5. Um das Ergebnis aus der Wurzelnäherung zu reproduzie-
ren, wird es dabei ausreichen, innerhalb derselben L-Ordnung lediglich die für
m0 � 1 dominierende m0-Ordnung mitzunehmen.
So erhält man in der Ordnung O

(
1√
L

)
:

√
sinh(m0)

m0�1=
√
m0 + O

(
m

5/2
0

)
.

Innerhalb der Ordnung O
(

1
L3/2

)
dominiert im Koeffizienten a1 (5.33) der Aus-

druck

cosh(m0)√
sinh(m0)

m0�1=
1√
m0

+ O
(
m

3/2
0

)

gegenüber sinh3/2(m0), der bereits von der Ordnung O
(
m

3/2
0

)
ist.

Für die Ordnung O
(

1
L5/2

)
(Koeffizient a2 (5.34)) lautet der führende Term

cosh2(m0)
sinh3/2(m0)

m0�1=
1

m
3/2
0

+ O(
√
m0) ,

während die anderen Terme mindestens von der Ordnung O
(√

m0

)
bzw.

O
(
m

5/2
0

)
sind.

92



5.3. Berechnung des Integrals cL

Damit lautet das Ergebnis für die Energieaufspaltung (5.32)-(5.34) in der Nä-
herung β ≈ βC unter Mitnahme der am stärksten dominierenden Terme in
m0 :

∆E
m0�1≈ exp

(
− Lm0

) [√
2m0

π
· 1√

L
+

3
4
√
2πm0

· 1
L3/2

− 15

64
√
2π m

3/2
0

· 1
L5/2

+ O
( 1
L7/2

)]
. (5.46)

Dies ist in Übereinstimmung mit (5.45).
Das Ergebnis (5.45) aus der Wurzelnäherung, das im Bereich β ≈ βC gilt, läßt
sich also überzeugend bis inklusive der Ordnung O

(
1
L5/2

)
aus dem bisherigen,

allgemeineren Ergebnis (5.32)-(5.34) reproduzieren.
Innerhalb der Wurzelnäherung konnte dabei die Ordnung O

(
1
L7/2

)
noch explizit

angegeben werden.
Insofern stellt die Wurzelnäherung (5.42) eine brauchbare Approximation dar;
insbesondere aufgrund ihres einfacheren analytischen Verhaltens erlaubt sie bes-
seren Einblick in die Rechnungen und hat sich als ein geeignetes Instrument zur
Ergebnisüberprüfung herausgestellt.
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Kapitel 6

Alternativer Zugang zur
Energieaufspaltung

In diesem Kapitel wird eine alternative Berechnungsmethode der Energieauf-
spaltung vorgeführt, die auf anderen Grundüberlegungen basiert und dadurch
neue Einsichten eröffnet. Hierzu findet das in 4.1.6 eingeführte Konzept der
Fermionanregungen Anwendung. Mit dessen Hilfe wird der Zusammenhang zwi-
schen Ein-Fermion-Anregungen und einer Grenzfläche senkrecht zur x-Richtung
aufgedeckt, welcher sich bereits bei der Jordan-Wigner-Transformation andeu-
tete. Aus diesen Überlegungen ergibt sich unter Vernachlässigung exponentieller
Korrekturen für L, T � 1 die Energieaufspaltung als Integral über Ein-Fermion-
Energien, welches im Rahmen einer Sattelpunktsintegration berechnet wird. Die
in Kapitel 5 erhaltenen Ergebnisse werden hierdurch untermauert. Insbesondere
kann ein expliziter Zusammenhang gefunden werden zwischen dem hier berech-
neten Integral über Ein-Fermion-Energien und demjenigen (∆E = −LcL) in
Kapitel 5, das sich aus dem niedrigsten Fourierkoeffizienten cL ergab.

6.1 Die Idee

Die neue Idee basiert auf einer Beobachtung, die bei der Jordan-Wigner-Trans-
formation (4.18), (4.19) gemacht wurde: Die Erzeugung eines Fermions am Git-
terplatz m bewirkt nach (4.28)

C†
m = Um−1 σ+

m

offenbar eine Umkehr der ersten m−1 Spins in einer Zeile:

Um−1 |s1, . . . , sL〉 = | − s1, . . . ,−sm−1, sm, . . . , sL〉 .

Waren die Spins vor der Anwendung von Um−1 parallel zueinander ausgerichtet,
tritt danach ein Kink der Spins an der Stelle m (genauer ausgedrückt: von
m−1 zu m) auf, wie in Abb. 6.1 verdeutlicht wird. Dieser Kink trennt nun
zwei Domänen unterschiedlicher Spinausrichtung und repräsentiert somit eine
Grenzfläche, wie sie in Abb. 6.2 gezeigt ist.
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6.1. Die Idee

Erzeugung eines Fermions bei m ⇐⇒ Kink der Spins von m−1 zu m

✻

✲

si

Gitterplatz auf

einer Zeile

+1

−1

mm−1

Abbildung 6.1: Kink der Spins von m−1 zu m

�

�
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t

x

Abbildung 6.2: Grenzfläche senkrecht zur x-Richtung

Der sich dadurch abzeichnende Zusammenhang

Fermionerzeugung ⇐⇒ Grenzfläche senkrecht zur x-Richtung

soll daher Ausgangspunkt für eine Charakterisierung der entsprechenden Zu-
standssummen Zτx,+ mit (τx = −1) und ohne (τx = +1) derartige Grenzfläche
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6. Alternativer Zugang zur Energieaufspaltung

sein. Hierzu bietet sich eine Beschreibung mithilfe des Konzepts der Fermion-
anregungen an, welches in 4.1.6 eingeführt wurde. Aus den dort erfolgten Über-
legungen läßt sich schon der gewünschte Trend absehen:
Für periodische RB τx = +1,

Z ′
++ = SpH+

[(
V +

)T ] + SpH−

[(
V −)T ] ,

sind lediglich geradzahlige Anregungen aus den Grundzuständen zu H+ und H−

erlaubt (n gerade), wie in 4.1.6 bereits ausführlich diskutiert wurde.
Bei antiperiodischen RB τx = −1,

Z ′
−+ = SpH+

[(
V −)T ] + SpH−

[(
V +

)T ]
,

ist dies anders. Man beachte hierzu die entsprechenden Aussagen (4.70)-(4.72)
in 4.1.6: Bei V −/H− bewirkt die Restriktion H+ auf eine gerade Fermion-
Gesamtzahl nämlich ungerade Fermionanregungen, da ein Fermion im Grundzu-
stand von H− vorliegt (aus N gerade folgt n ungerade). Für V +/H+ hingegen
bedeutet die Restriktion H− auf eine ungerade Fermion-Gesamtzahl ungerade
Fermionanregungen, da im entsprechenden Grundzustand kein Teilchen vorhan-
den ist (sowohl N als auch n sind ungerade).
Antiperiodische RB rufen also ungerade (n = 1, 3, 5, . . .) Fermionanregungen
hervor, während die Zustandssumme bei periodischen RB nur gerade (n =
0, 2, 4, . . .) enthält:

τx = +1 ⇐⇒ geradzahlige Fermionanregungen ;
τx = −1 ⇐⇒ ungeradzahlige Fermionanregungen .

Nach den bisherigen Diskussionen von Zustandssummen-Beiträgen steht zu er-
warten, daß diese von den niedrigsten Anregungen (0 und 1) dominiert wer-
den (wie später noch explizit gezeigt wird). Eine Grenzfläche senkrecht zur x-
Richtung scheint sich also durch ein angeregtes Fermion gegenüber einer nicht
vorhandenen auszuzeichnen.

angeregtes Fermion ⇐⇒ Grenzfläche senkrecht zur x-Richtung .

Durch diese Beobachtungen wird das weitere Vorgehen inspiriert, bei dem sich
die geäußerten Zusammenhänge explizit wiederfinden werden.
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6.2. Charakterisierung über Fermion-Anregungen

6.2 Charakterisierung über Fermion-Anregungen

Im vorangehenden Abschnitt wurde die Idee nahegebracht, Zustandssummen
über ihre Fermionanregungen zu charakterisieren. Dies wird in diesem Unter-
kapitel formal umgesetzt. Nach einer Erläuterung der verwendeten Notation
werden zunächst die Grundgrößen Y δα, danach die daraus ableitbaren fermioni-
schen Zustandssummen ZF

εxεt , und schließlich die Spin-Zustandssummen Zτxτt
entsprechend umformuliert.

6.2.1 Notation

Die im Folgenden angewandte Notation basiert im Wesentlichen auf den Grund-
überlegungen aus Kapitel 4.1.6.
Hierzu sei noch einmal ausdrücklich betont, daß der fortan zentrale Begriff der
Fermion-Anregung stets auf die Grundzustände von H+ und H− bezogen ist
(im Gegensatz zur Gesamt-Fermionzahl, siehe (4.70)-(4.72)); soweit nicht an-
ders erwähnt werde stets die Tieftemperaturphase β > βC betrachtet.

H−δ ⇒
{

δ = +1 : H− → gerade Impulse k = 0, 2, 4, . . . , 2L− 2 ;
δ = −1 : H+ → ungerade Impulse k = 1, 3, 5, . . . , 2L− 1 .

Grundzustände

|0+〉 : Grundzustand von H+,
Vakuumzustand, in dem kein Teilchen vorliegt;

H |0+〉 = E0+ |0+〉; E0+ = −1
2 (+ε1 + ε3 + . . .+ ε2L−1) .

|0−〉 : Grundzustand von H−,
Zustand mit aufgefülltem ”Dirac-See“, d.h. mit
anwesendem ε0-Teilchen negativer Energie (β > βC) ;

H |0−〉 = E0− |0−〉; E0− = −1
2 (+|ε0|+ ε2 + . . .+ ε2L−2) .

Um beide Grundzustände gleichzeitig ansprechen zu können, wird noch der
Vakuumzustand |Ω〉 eingeführt:

|Ω〉 = |0+〉 + |0−〉 . (6.1)

(Zugunsten einer später übersichtlicheren Zustandssumme wird auf eine Nor-
mierung verzichtet.)

Durch Anwendung der Erzeugungsoperatoren ξ†k auf |0+〉 und |0−〉 erhält man
die Fermion-Anregungen, die höhere Energiezustände darstellen. Die Energien-
bezeichnung En±; k1,...,kn aus 2.2.10 ist bereits an die Schreibweise angepaßt:
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1-Fermion-Anregungen

zu H+ gehörend: |1+; k〉 = ξ†k |0+〉, k ungerade: k = 1, 3, 5, . . . , 2L− 1 ;

H |1+; k〉 = E1+;k |1+; k〉 ; E1+;k = E0+ + εk .

zu H− gehörend: |1−; k〉 = ξ†k |0−〉, k gerade: k = 0, 2, 4, . . . , 2L− 2 ;

H |1−; k〉 = E1−;k |1−; k〉 ; E1−;k = E0− + |εk| .

Um die Zustände für gerade und ungerade k zusammenzufassen, wird deswei-
teren definiert:

|1; k〉 =

{
|1+; k〉 für k ungerade;
|1−; k〉 für k gerade;

k = 0, 1, 2, 3, . . . , 2L− 1 . (6.2)

2-Fermion-Anregungen

|2+; k, l〉 = ξ†k ξ
†
l |0+〉, k �= l ungerade ;

H |2+; k, l〉 = E2+;k,l |2+; k, l〉 ; E2+;k,l = E0+ + εk + εl .

|2−; k, l〉 = ξ†k ξ
†
l |0−〉, k �= l gerade ;

H |2−; k, l〉 = E2−;k,l |2−; k, l〉 ; E2−;k,l = E0− + |εk|+ |εl| .

3-Fermion-Anregungen

|3±; k, l,m〉 = ξ†k ξ
†
l ξ

†
m |0±〉, k �= l �= m �= k ungerade

gerade
;

usw.

H |n±; k1, . . . , kn〉 = En±;k1,...,kn |n±; k1, . . . , kn〉 .

| n± ; k1, . . . , kn 〉

✁
✁✁✕

Anzahl angeregter
Fermionen, bezogen
auf den jeweiligen
Grundzustand

✁✁☛
Impulse k der angeregten Fermionen;
aufgrund des Pauli-Prinzips jeweils
paarweise verschieden

✁
✁

✁☛

H+: ungerade Impulse

❆
❆

❆❑

H−: gerade Impulse
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Somit können die bei der Spurbildung über V T = exp [−HT ] auftretenden Ei-
genwerte exp [−En±;k1,...,kn·T ] durch die folgenden Diagonalelemente dargestellt
werden; auf diese Weise überblickt man direkt die Art der beteiligten Fermion-
Anregungen.

Grundzustands-Beiträge

exp [−E0+ · T ] = 〈0+| e−HT |0+〉 ; exp [−E0− · T ] = 〈0−| e−HT |0−〉 ;

1-Fermion-Beiträge

exp [−E1+;k · T ] = 〈1+; k| e−HT |1+; k〉 mit k ungerade ;
exp [−E1−;k · T ] = 〈1−; k| e−HT |1−; k〉 mit k gerade ;

usw.
n-Fermion-Beiträge

exp [−En±;k1,...,kn · T ] = 〈n±; k1, . . . , kn| e−HT |n±; k1, . . . , kn〉 .

6.2.2 Die Grundgrößen Y δ
α

Da sich sowohl die Fermion- als auch die Spin-Zustandssummen kompakt über
die Y δα darstellen lassen, erfolgt zunächst deren Charakterisierung. Die Zu-
standssummen können anschließend aus diesen zusammengesetzt werden.

Zur Erinnerung:

Y δ
α

(3.20)
=

∑
j exp

[
−E δα, j · T

] (4.58)
= SpHα

[(
V −δ)T]

✁
✁

✁☛

δ = +1 : k gerade; aus H−/V − stammend
δ = −1 : k ungerade; aus H+/V + stammend

❆
❆

❆❑

α = +1 : gerade Anzahl an MZ; gerade Fermion-Gesamtzahl
α = −1 : ungerade Anzahl an MZ; ungerade Fermion-Gesamtzahl

Die nachfolgenden Ergebnisse lassen sich direkt aus den Aussagen (4.70)-(4.72)
ableiten; zum besseren Nachverfolgen werden kleine Zwischenschritte einge-
streut.
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Y +
+ Y +

+ =
∑
j exp

[
−E++, j · T

]
Die Größe E++ wird vergleichbar zur Grundzustandsenergie E0− ausgedrückt:

E++ = −1
2

∑
k

gerade

(
± εk

)
gerade Anzahl an MZ

= −1
2
(± ε0 ± ε2 ± . . .± ε2L−2) gerade Anzahl an MZ

= −1
2
(±|ε0| ± ε2 ± . . .± ε2L−2) ungerade Anzahl an MZ .

Damit ergeben sich auf E0− = −1
2 (+|ε0|+ ε2 + . . .+ ε2L−2) bezogen folgende

Beiträge zu E++:

E1−;k = E0− + |εk| k gerade 1-Fermion-Anr.
E3−;k,l,m = E0− + |εk|+ |εl|+ |εm| k �= l �= m �= k gerade 3-Fermion-Anr.
E5−;k,l,m,n,p 5-Fermion-Anr.

usw.

In E++ respektive Y +
+ sind also nur ungerade Fermion-Anregungen bei ge-

raden Impulsen enthalten:

Y +
+ =

∑
k

gerade

exp [−E1−;k · T ] +
∑
k,l,m

k �=l �=m�=k
gerade

exp [−E3−;k,l,m · T ] + 5-F-Anr. + . . .

=
∑

k
gerade

〈1−; k| e−HT |1−; k〉 +
∑
k,l,m

k �=l �=m�=k
gerade

〈3−; k, l,m| e−HT |3−; k, l,m〉

+ 5-F-Anr. + . . .

Y +
− Y +

− =
∑
j exp

[
−E+−, j · T

]

E+− = −1
2

∑
k

gerade

(
± εk

)
ungerade Anzahl an MZ

= −1
2
(± ε0 ± ε2 ± . . .± ε2L−2) ungerade Anzahl an MZ

= −1
2
(±|ε0| ± ε2 ± . . .± ε2L−2) gerade Anzahl an MZ .
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Beiträge zu E+−:

E0− Grundzustand =̂ 0-Fermion-Anr.
E2−;k,l = E0− + |εk|+ |εl| k �= l gerade 2-Fermion-Anr.
E4−;k,l,m,n 4-Fermion-Anr.

usw.

Die Beiträge zu E+−/Y +
− bestehen somit aus geraden Fermion-Anregungen

bei geraden Impulsen:

Y +
− = exp [−E0− · T ] +

∑
k,l
k �=l

gerade

exp [−E2−;k,l · T ] + 4-F-Anr. + . . .

= 〈0−| e−HT |0−〉 +
∑
k,l
k �=l

gerade

〈2−; k, l| e−HT |2−; k, l〉 + 4-F-Anr. + . . .

Y −
+ Y −

+ =
∑
j exp

[
−E−+, j · T

]
Hier ist keine Verschiebung der Minuszeichen notwendig.

E−+ = −1
2

∑
k

ungerade

(
± εk

)
gerade Anzahl an MZ

= −1
2
(±ε1 ± ε3 ± . . .± ε2L−1) gerade Anzahl an MZ .

Auf den Grundzustand E0+ = −1
2 (+ε1 + ε3 + . . .+ ε2L−1) bezogen ergeben

sich somit folgende Beiträge zu E−+:

E0+ Grundzustand =̂ 0-Fermion-Anr.
E2+;k,l = E0+ + εk + εl k �= l ungerade 2-Fermion-Anr.
E4+;k,l,m,n 4-Fermion-Anr.

usw.

In E−+/Y −
+ sind demnach lediglich gerade Fermion-Anregungen mit unge-

raden Impulsen vertreten:

Y −
+ = exp [−E0+ · T ] +

∑
k,l
k �=l

ungerade

exp [−E2+;k,l · T ] + 4-F-Anr. + . . .

= 〈0+| e−HT |0+〉 +
∑
k,l
k �=l

ungerade

〈2+; k, l| e−HT |2+; k, l〉 + 4-F-Anr. + . . .

101



6. Alternativer Zugang zur Energieaufspaltung

Y −
− Y −

− =
∑
j exp

[
−E−−, j · T

]

E−− = −1
2

∑
k

ungerade

(
± εk

)
ungerade Anzahl an MZ

= −1
2
(±ε1 ± ε3 ± . . .± ε2L−1) ungerade Anzahl an MZ

Beiträge zu E−−:

E1+;k = E0+ + εk k ungerade 1-Fermion-Anr.
E3+;k,l,m = E0+ + εk + εl + εm k �= l �= m �= k ungerade 3-Fermion-Anr.
E5+;k,l,m,n,p 5-Fermion-Anr.

usw.

E−− respektive Y −
− besteht damit aus ungeraden Fermion-Anregungen bei

ungeraden Impulsen:

Y −
− =

∑
k

ungerade

exp [−E1+;k · T ] +
∑
k,l,m

k �=l �=m�=k
ungerade

exp [−E3+;k,l,m · T ] + 5-F-Anr. + . . .

=
∑

k
ungerade

〈1+; k| e−HT |1+; k〉 +
∑
k,l,m

k �=l �=m�=k
ungerade

〈3+; k, l,m| e−HT |3+; k, l,m〉

+ 5-F-Anr. + . . .

Damit ist die Aufstellung der Y δα komplett. Zur Überprüfung der Ergebnisse in
Kurzform sei an die Aussagen (4.70)-(4.72) erinnert.
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6.2.3 Fermionische Zustandssummen ZF

εxεt

Aus den entsprechend formulierten Y δα des vorangehenden Abschnitts lassen
sich die fermionischen Sektor-Zustandssummen ZF

εxεt zusammensetzen:

ZF
++ ZF

++ = Y +
+ − Y +

−

ZF
++ =

∑
k

gerade

exp [−E1−;k · T ] +
∑
k,l,m

k �=l �=m�=k
gerade

exp [−E3−;k,l,m · T ] + 5-F-Anr. + . . .

− exp [−E0− · T ] −
∑
k,l
k �=l

gerade

exp [−E2−;k,l · T ] − 4-F-Anr.− . . .

= − 〈0−| e−HT |0−〉 +
∑

k
gerade

〈1−; k| e−HT |1−; k〉

−
∑
k,l
k �=l

gerade

〈2−; k, l| e−HT |2−; k, l〉 +
∑
k,l,m

k �=l �=m�=k
gerade

〈3−; k, l,m| e−HT |3−; k, l,m〉

− 4-F-Anr. + 5-F-Anr. − . . . + . . .

ZF
++ enthält offensichtlich das gesamte Anregungsspektrum für gerade Impulse.

Geradzahlige und ungeradzahlige Anregungen sind jedoch mit anderen Vorzei-
chen gewichtet. Da die niedrigeren Anregungsbeiträge dominanter sind, zeigt
sich auch hier das negative Vorzeichen von ZF

++ (für β > βC , siehe (4.86)).

ZF
+− ZF

+− = Y +
+ + Y +

−

ZF
+− =

∑
k

gerade

exp [−E1−;k · T ] +
∑
k,l,m

k �=l �=m�=k
gerade

exp [−E3−;k,l,m · T ] + 5-F-Anr. + . . .

+ exp [−E0− · T ] +
∑
k,l
k �=l

gerade

exp [−E2−;k,l · T ] + 4-F-Anr. + . . .
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= 〈0−| e−HT |0−〉 +
∑

k
gerade

〈1−; k| e−HT |1−; k〉

+
∑
k,l
k �=l

gerade

〈2−; k, l| e−HT |2−; k, l〉 +
∑
k,l,m

k �=l �=m�=k
gerade

〈3−; k, l,m| e−HT |3−; k, l,m〉

+ 4-F-Anr. + 5-F-Anr. + . . .

ZF
+− summiert über das komplette Anregungsspektrum gerader Impulse.

ZF
−+ ZF−+ = Y −

+ − Y −
−

ZF
−+ = exp [−E0+ · T ] +

∑
k,l
k �=l

ungerade

exp [−E2+;k,l · T ] + 4-F-Anr. + . . .

−
∑

k
ungerade

exp [−E1+;k · T ] −
∑
k,l,m

k �=l �=m�=k
ungerade

exp [−E3+;k,l,m · T ] − 5-F-Anr.− . . .

= 〈0+| e−HT |0+〉 −
∑

k
ungerade

〈1+; k| e−HT |1+; k〉

+
∑
k,l
k �=l

ungerade

〈2+; k, l| e−HT |2+; k, l〉 −
∑
k,l,m

k �=l �=m�=k
ungerade

〈3+; k, l,m| e−HT |3+; k, l,m〉

+ 4-F-Anr. − 5-F-Anr. + . . . − . . .

In ZF−+ tritt das gesamte Anregungsspektrum für ungerade Impulse auf, erneut
mit verschiedenen Vorzeichen gewichtet, die sich allerdings von denen bei ZF

++

unterscheiden. In diesem Fall ist die Zustandssumme positiv (vgl. (4.88)). Der
Unterschied zu ZF

++ liegt hier (ungerade Impulse) im anders gearteten Grund-
zustand, in dem kein Teilchen vorhanden ist. Dementsprechend treten anders
bezogene Anregungen sowie, da ZF

εx+ durch Subtraktion (4.77) hervorgeht, eine
andere Vorzeichenverteilung auf.
Wäre in ZF

++ hingegen ε0 > 0 (β < βC), läge kein aufzufüllender Dirac-See
und damit auch kein Teilchen im Grundzustand vor: Die Anregungen und de-
ren Vorzeichengewichtung wären (bei geraden Impulsen) wie bei ZF−+. Dies
deckt sich mit dem früher gefundenen Zusammenhang, daß für ε0 <> 0 (β >< βC)
ZF
++

<
> 0 gilt (siehe (4.86)).
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ZF
−− ZF−− = Y −

+ + Y −
−

ZF
−− = exp [−E0+ · T ] +

∑
k,l
k �=l

ungerade

exp [−E2+;k,l · T ] + 4-F-Anr. + . . .

+
∑

k
ungerade

exp [−E1+;k · T ] +
∑
k,l,m

k �=l �=m�=k
ungerade

exp [−E3+;k,l,m · T ] + 5-F-Anr. + . . .

= 〈0+| e−HT |0+〉 +
∑

k
ungerade

〈1+; k| e−HT |1+; k〉

+
∑
k,l
k �=l

ungerade

〈2+; k, l| e−HT |2+; k, l〉 +
∑
k,l,m

k �=l �=m�=k
ungerade

〈3+; k, l,m| e−HT |3+; k, l,m〉

+ 4-F-Anr. + 5-F-Anr. + . . .

Hier wird über das komplette Anregungsspektrum ungerader Impulse summiert.

Nun kann sich den eigentlich interessierenden Spin-Zustandssummen zugewandt
werden.

6.2.4 Spin-Zustandssummen Zτxτt

Aus den bisherigen Ergebnissen lassen sich die Spin-Zustandssummen Zτxτt zu-
sammenstellen. Dies kann zum Einen über die Y δα nach (3.21), (3.23), (3.25)
und (3.27) geschehen, zum Anderen über die ZF

εxεt gemäß (4.82)-(4.85).
Unter den auftretenden Termen werden die für T � 1 dominierenden heraus-
gefiltert.

Z++ Z ′
++ = Y −

+ + Y +
− = 1

2

(
−ZF

++ + ZF
+− + ZF−+ + ZF−−

)

Z ′
++ = exp [−E0+ · T ] +

∑
k,l
k �=l

ungerade

exp [−E2+;k,l · T ] + 4-F-Anr. + . . .

+ exp [−E0− · T ] +
∑
k,l
k �=l

gerade

exp [−E2−;k,l · T ] + 4-F-Anr. + . . .
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= 〈0+| e−HT |0+〉 + 〈0−| e−HT |0−〉

+
∑
k,l
k �=l

ungerade

〈2+; k, l| e−HT |2+; k, l〉 +
∑
k,l
k �=l

gerade

〈2−; k, l| e−HT |2−; k, l〉

+ 4-F-Anr. + . . .

Hiermit bestätigt sich der geäußerte Zusammenhang

τx = +1 ⇐⇒ geradzahlige Fermionanregungen .

Dieses Ergebnis deckt sich zudem mit den bisherigen Resultaten aus den Kapi-
teln 2.2.10 und 5.1. In der Zustandssumme sind dabei sämtliche Impulse bzw.
Impulskombinationen vertreten.

Bei der Diskussion des zugehörigen Spektrums in 2.2.10 wurde bereits festge-
stellt, daß die hier durch die Grundzustände gekennzeichneten Beiträge deutlich
dominant sind für T � 1. Angeregte Fermionzustände stellen daher lediglich
exponentielle Korrekturen dar.

Unter Verwendung der Notation (6.1) kann Z ′
++ somit für T � 1 geschrie-

ben werden als

Z ′
++ = 〈Ω| e−HT |Ω〉 + O(2-F-Anr.) . (6.3)

Z+− Z ′
+− = Y −

+ − Y +
− = 1

2

(
+ZF

++ − ZF
+− + ZF−+ + ZF−−

)

Z ′
+− = exp [−E0+ · T ] +

∑
k,l
k �=l

ungerade

exp [−E2+;k,l · T ] + 4-F-Anr. + . . .

− exp [−E0− · T ] −
∑
k,l
k �=l

gerade

exp [−E2−;k,l · T ] − 4-F-Anr.− . . .
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= 〈0+| e−HT |0+〉 − 〈0−| e−HT |0−〉

+
∑
k,l
k �=l

ungerade

〈2+; k, l| e−HT |2+; k, l〉 −
∑
k,l
k �=l

gerade

〈2−; k, l| e−HT |2−; k, l〉

± 4-F-Anr. ± . . .

Wie zu erwarten, treten auch hier wegen τx = +1 nur geradzahlige Fermion-
anregungen auf. Aufgrund antiperiodischer RB in t-Richtung τt = −1 (Einbau
des Umkehroperators) werden die Beiträge mit unterschiedlichen Vorzeichen
gewichtet.
Unter Vernachlässigung der Zwei-Fermion-Anregungen (und höherer) ergibt
sich bei T � 1 wie in Abschnitt 5.1

Z ′
+− = 〈0+| e−HT |0+〉 − 〈0−| e−HT |0−〉 + O(2-F-Anr.) . (6.4)

Z−+ Z ′−+ = Y −
− + Y +

+ = 1
2

(
+ZF

++ + ZF
+− − ZF−+ + ZF−−

)

Z ′
−+ =

∑
k

ungerade

exp [−E1+;k · T ] +
∑
k,l,m

k �=l �=m�=k
ungerade

exp [−E3+;k,l,m · T ] + 5-F-Anr. + . . .

+
∑

k
gerade

exp [−E1−;k · T ] +
∑
k,l,m

k �=l �=m�=k
gerade

exp [−E3−;k,l,m · T ] + 5-F-Anr. + . . .

=
∑

k
ungerade

〈1+; k| e−HT |1+; k〉 +
∑

k
gerade

〈1−; k| e−HT |1−; k〉

+
∑
k,l,m

k �=l �=m�=k
ungerade

〈3+; k, l,m| e−HT |3+; k, l,m〉 +
∑
k,l,m

k �=l �=m�=k
gerade

〈3−; k, l,m| e−HT |3−; k, l,m〉

+ 5-F-Anr. + . . .
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Dieses Ergebnis entspricht dem erwarteten Zusammenhang

τx = −1 ⇐⇒ ungeradzahlige Fermionanregungen .

Auch hier sind sämtliche Impulse vertreten.

Die Frage nach den dominierenden Beiträgen muß hier etwas genauer formu-
liert werden. Im ungeraden Anregungsspektrum En±;k1,...,kn mit n = 1, 3, 5, . . .
treten aufgrund der verschiedenen Impulse ganze Bänder auf, die jeweils zu
einer n-Fermion-Anregung mit festem n gehören. Am niedrigsten liegt das Ein-
Fermion-Band mit E1±;k, darüber das Drei-Fermion-Band mit E3±;k,l,m; dabei
überlappt der obere Teil des Ein-Fermion-Bands mit dem unteren des Drei-
Fermion-Bands. Dies macht sich daran bemerkbar, daß die Energie einer 3-
Fermion-Anregung mit drei kleinen Impulsen um Null durchaus kleiner sein
kann als die Energie einer 1-Fermion-Anregung mit großem Impuls k ≈ L (bei
passenden Werten für L und β, z.B. L = 100 und β = 0,5): E1−;L > E3−;0,2,4.
Der Bänderüberlapp ist auch dem graphisch umgesetzten Spektrum von Z−+
in den Abbildungen 6.3 und 6.4 zu entnehmen.

Abbildung 6.3: Spektrum En± von
Z−+ für L = 8
(β > βC : n = 1, 3, 5, 7)

Abbildung 6.4: Spektrum En± von
Z−+ für L = 10
(β > βC : n = 1, 3, 5, 7, 9)

Das Augenmerk ist auf den interessierenden Temperaturbereich β > βC zu rich-
ten, in dem sich das beschriebene Verhalten zeigt. (Für β < βC treten andere
Anregungen bezüglich H− auf, da das Vorzeichen von ε0 wechselt; man erkennt
dies am Abknicken der Kurven.)
Diesen Abbildungen läßt sich aber auch entnehmen, daß der untere Teil des
1-Fermion-Bands den deutlichsten Beitrag zur Zustandssumme darstellt. Zur
Abschätzung der dominanten Ausdrücke in Z−+ werden daher die einzeln darin
auftretenden Summen, zu n-Fermion-Anregungen mit jeweils festem n gehö-
rend, gegeneinander abgewogen. Auf diese Weise ist es zulässig, das gesamte
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1-Fermion-Band mit dem gesamten 3-Fermion-Band zu vergleichen.
Aus diesem Vergleich geht eindeutig die Summe der 1-Fermion-Anregungen als
dominanter Beitrag zu Z−+ hervor. Bei Vernachlässigung der höheren Anre-
gungen (n ≥ 3) für T � 1 erhält man somit unter Verwendung der Notation
(6.2)

Z ′
−+ =

2L−1∑
k=0

〈1; k| e−HT | 1; k〉 + O(3-F-Anr.) . (6.5)

Mit (6.3) und (6.5) bestätigt sich also, was sich bereits angedeutet hatte: Die
Zustandssumme Z++ bei periodischen RB in x-Richtung τx = +1 ist haupt-
sächlich durch die Grundzustände (0-Fermion-Anregungen) geprägt, während
die Zustandssumme Z−+ für antiperiodische RB τx = −1 im wesentlichen durch
1-Fermion-Anregungen bestimmt ist.
Eine genauere Untersuchung von Z++ und Z−+, wobei im Blickpunkt deren
Verhältnis steht, erfolgt im nächsten Unterkapitel 6.3.

Zur Vervollständigung sei noch die Zustandssumme Z−− aufgeführt:

Z−− Z ′−− = −Y −
− + Y +

+ = 1
2

(
+ZF

++ + ZF
+− + ZF−+ − ZF−−

)

Z ′
−− = −

∑
k

ungerade

exp [−E1+;k · T ] −
∑
k,l,m

k �=l �=m�=k
ungerade

exp [−E3+;k,l,m · T ] − 5-F-Anr.− . . .

+
∑

k
gerade

exp [−E1−;k · T ] +
∑
k,l,m

k �=l �=m�=k
gerade

exp [−E3−;k,l,m · T ] + 5-F-Anr. + . . .

= −
∑

k
ungerade

〈1+; k| e−HT |1+; k〉 +
∑

k
gerade

〈1−; k| e−HT |1−; k〉

−
∑
k,l,m

k �=l �=m�=k
ungerade

〈3+; k, l,m| e−HT |3+; k, l,m〉 +
∑
k,l,m

k �=l �=m�=k
gerade

〈3−; k, l,m| e−HT |3−; k, l,m〉

± 5-F-Anr. ± . . .

Wegen τx = −1 treten auch hier nur ungeradzahlige Fermion-Anregungen auf,
die aufgrund von τt = −1 (Umkehroperator) mit unterschiedlichen Vorzeichen
versehen sind.
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Unter Vernachlässigung der 3-Fermion-Anregungen (und höherer) ergibt sich
für T � 1

Z ′
−− = −

∑
k

ungerade

〈1+; k| e−HT |1+; k〉 +
∑

k
gerade

〈1−; k| e−HT |1−; k〉

+ O(3-F-Anr.) . (6.6)

Z−− ist positiv, da die 1-Fermion-Anregungen für gerade k ein wenig schwerer
wiegen. (Siehe Abb. 6.3 und 6.4: Man erkennt dies daran, daß die abknicken-
den Kurven jeweils energetisch tiefer liegen; wegen ε0 → −ε0 gehören diese zu
geraden k.)

6.3 Aufstellung der Energieaufspaltung ∆̂E über das
Verhältnis von Z−+ und Z++

In diesem Abschnitt gelingt es, aus den zuletzt erzielten Formulierungen der
Zustandssummen einen Ausdruck für eine Energieaufspaltung ∆̂E zu gewinnen.
Der hier aufgestellte Ausdruck stellt sich dabei als Alternative zur bisherigen
Formulierung in Kapitel 5 heraus. Beim Vergleich mit dem dort erhaltenen ∆E
ist aus Symmetriegründen die Vertauschung L↔ T zu beachten.

6.3.1 Verhältnis der Zustandssummen

Ausgangspunkt zur Aufstellung der Energieaufspaltung ∆̂E ist das Verhältnis
der Zustandssummen Z−+ (6.5) und Z++ (6.3)

Z−+
Z++

∼
∑
k 〈1; k| e−HT |1; k〉

〈Ω| e−HT |Ω〉
(6.7)

∼

∑
k

gerade
exp [−E1−;k · T ] +

∑
k

ungerade
exp [−E1+;k · T ]

exp [−E0− · T ] + exp [−E0+ · T ]
(6.8)

bei antiperiodischen (τx = −1) und periodischen (τx = +1) Randbedingungen
in x-Richtung in der zuvor vorgenommenen Charakterisierung über Fermion-
anregungen.
Die Zustandssumme bei periodischen RB ist dabei durch die Grundzustandsbei-
träge geprägt bei Vernachlässigung der 2-,4-,6-,. . .-Fermion-Anregungen. Z−+
wird hingegen durch 1-Fermion-Anregungen dominiert unter Vernachlässigung
der 3-,5-,7-,. . .-Fermion-Beiträge. Diese höheren Anregungsbeiträge sind zwar
vergleichsweise gering (besonders für T � 1), aber prinzipiell in den Zustands-
summen enthalten.
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das Verhältnis von Z−+ und Z++

Dies legt folgende Vermutung nahe, die in das Bild der bisher gefundenen Zu-
sammenhänge paßt: Im Grundzustand (0 angeregte Fermionen) sind die Spins
parallel zueinander ausgerichtet; im Spin-Gitter tritt demzufolge keine Grenz-
fläche auf, das sich somit periodisch fortsetzen läßt: Dieses ist der dominante
Beitrag zu Z++. Bei einer Grenzfläche (↔ einem angeregten Fermion) ist ei-
ne periodische Fortsetzung des Gitters nicht möglich, lediglich die antiperiodi-
sche RB kann realisiert werden: Hierdurch ist der dominante Beitrag zu Z−+
gegeben. Bei einer geraden Anzahl an Grenzflächen (↔ 2-,4-,6-,. . .-Fermion-
Anregungen) ist wiederum eine periodische Abfolge des Gitters möglich, was
die höheren Anteile zu Z++ erklärt; diese 2-,4-,6-,. . .-Kink-Konfigurationen tre-
ten jedoch mit einer wesentlich geringeren Wahrscheinlichkeit auf und tragen
dementsprechend schwach zu Z++ bei. In Z−+ sind entsprechend schwächere
Beiträge von 3, 5, 7, . . . Grenzflächen (Kinks) enthalten.
Untersuchungen zu Multikink-Anordnungen im Rahmen der Feldtheorie findet
man u.a. in [56], wo auf die Beiträge zu Pfadintegralen eingegangen wird.
Die in (6.7), (6.8) erfolgte Einschränkung auf 0- und 1-Fermion-Anregungen
entspricht daher dem Fehlen und dem Vorhandensein genau einer Grenzfläche
senkrecht zur x-Richtung (siehe Abb. 6.2), wie es ursprünglich angedacht war,
und was für die folgenden Zwecke auch völlig ausreichend sein wird.

6.3.2 Bezug zu einer Energieaufspaltung

Um diesen herzustellen, sei zunächst an das Bewährte aus Kapitel 5 erinnert:
Die Energieaufspaltung ergab sich dort als Energielücke über die Differenz

∆E = E0− − E0+ =
1
2

{
L−1∑
k=0

ε
(
2k+1
L

)
−
L−1∑
k=0

∣∣ε(2kL )∣∣} .

Hierzu korrespondierte eine Grenzfläche senkrecht zur t-Richtung, wie sie in
Abb. 5.2 bzw. in Abb. 6.5 auf der linken Seite gezeigt ist. Durch deren Betrach-
tung erzielte man den Zusammenhang (5.8):

Z+−
Z++

∼ T

2
∆E .

Diese Überlegungen fanden in Darstellung I statt.
Nun könnte man dieselben Überlegungen analog in Darstellung II durchführen
und dort die Energielücke

∆̂E = Ê0− − Ê0+ =
1
2

{
T−1∑
r=0

ε̂
(
2r+1
T

)
−
T−1∑
r=0

∣∣ε̂ (2rT )∣∣}

berechnen; man erhielte damit dasselbe Ergebnis wie für ∆E (Darstellung I),
wenn man aus Symmetriegründen (siehe (3.29)) L durch T ersetzte.
Aus eben diesen Symmetriegründen (3.29) folgt hier die Zugehörigkeit zu einer
Grenzfläche senkrecht zur x-Richtung (siehe Abb. 6.2); in Abb. 6.5 ist diese zum
Vergleich auf der rechten Seite dargestellt. Über deren Einbeziehung ließe sich
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Abbildung 6.5: Zu ∆E und ∆̂E korrespondierende Grenflächen

folgender zu (5.8) analoger Zusammenhang finden:

Ẑ−+
Ẑ++

∼ L

2
∆̂E . (6.9)

Soweit führte man das bekannte Verfahren in der solang nichts Neues hervor-
bringenden Darstellung II aus.
Das neuartige Verfahren kommt nun über den Äquivalenzbeweis zwischen Dar-
stellung I und II ins Spiel: Wegen Ẑ−+ = Z−+ und Ẑ++ = Z++ gilt neben (6.9)
ebenfalls:

Z−+
Z++

∼ L

2
∆̂E . (6.10)

Auf der linken Seite stehen somit die im vorigen Abschnitt angesprochenen
Zustandssummen aus Darstellung I. Ziel ist es nun, deren bereits andiskutier-
tes Verhältnis auf der linken Seite entsprechend umzuformen, um daraus einen
Ausdruck für ∆̂E zu gewinnen.
Die Energieaufspaltung ∆̂E wird dabei (obwohl Darstellung I-Größen unter-
sucht werden) weiterhin mit einem Dach versehen sein, um deren T -Abhängigkeit
deutlich herauszustellen. Da die hier erfolgende Rechnung der Bestätigung des
in Kapitel 5 erhaltenen Ergebnisses dient, sollte das Resultat für ∆̂E unter Be-
achtung der L↔T -Vertauschung mit demjenigen für ∆E (5.32)-(5.34) identisch
sein.
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6.3.3 Energieaufspaltung: Integral über Fermion-Energien

Der Unterschied zwischen den am Verhältnis (6.8) beteiligten Zustandssummen
liegt in den 1-fachen Anregungen, die der Zähler gegenüber dem Nenner auf-
weist.
Mittels

E1±;k = E0± + |εk| für k ungerade
gerade

wird dieser durch Abtrennung der Grundzustandsanteile direkt sichtbar:

Z−+
Z++

∼
e−E0−·T ∑

k
gerade

exp [− |εk| · T ] + e−E0+·T ∑
k

ungerade
exp [− εk · T ]

e−E0−·T + e−E0+·T
.

Um die Sprachweise eindeutig zu gestalten, sollten die εk eigentlich als normierte
Ein-Fermion-Energien bezeichnet werden; für ein angeregtes Fermion repräsen-
tieren sie ja den Abstand zur jeweiligen Grundzustandsenergie. Soweit keine
Verwechslungsgefahr besteht, kann aber zum früheren, schlichteren Begriff der
(einzelnen) Fermion-Energien zurückgekehrt werden. Wie üblich darf bei unge-
raden k ein Betragsstrich ganz nach Bedarf gesetzt werden.
Zur weiteren Auswertung ist hilfreich zu bedenken, daß letztlich ein Ausdruck
der Energieaufspaltung bei großen L, T gesucht ist. Daher (L, T � 1) empfiehlt
sich für die im Zähler auftretenden Summen über normierte Ein-Fermion-Ener-
gien der Übergang von der Summation zur Integration. Da für diesen Schritt
eine (quasi-) kontinuierliche Variable formal geeigneter ist, wird auf x = k

L sowie
|ε(x)| (siehe Gl. (5.13)) zurückgegriffen.

2L−2∑
k=0
gerade

exp [− |εk| · T ] −→ 1
∆( kL)

2L−2
L∫
0

d( kL) exp
[
−

∣∣ε( kL)∣∣ · T ]
.

Das Rastervolumen ∆( kL) =
1
L∆k beträgt offenkundig ∆( kL) =

2
L , da der Index

k Zweiersprünge macht (∆k = 2). Zudem kann für große L die obere Grenze zu
2L−2
L ≈ 2 abgeschätzt werden:

2L−2∑
k=0

gerade

exp [− |εk| · T ] −→ L

2

2∫
0

dx exp [− |ε(x)| · T ] .

Die beim Übergang von der Summation zur Integration auftretenden Korrektur-
terme lassen sich mithilfe der Euler-MacLaurin-Summationsformel [60] (Kap.
23.1.30, siehe auch 23.1.32) abschätzen: Durch geeignete Verschiebung des In-
tegrationsbereichs ergeben sich als Korrektur lediglich Randterme der Ordnung

O
(
exp

[
− |ε(±1)| · T

])
= O

(
exp

[
− 2 (β + β̃) · T

])
. (6.11)

Diese exponentiell abfallende Ordnung trat bereits im vorigen Kapitel auf und
ist gegenüber den im Endergebnis vorkommenden Ordnungen vernachlässigbar.
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Auf ähnliche Weise wird von diversen Autoren [9, 61] der Übergang zur Integra-
tion beim größten Eigenwert diskutiert. Onsager selbst begründete die rasche
Konvergenz mit lediglich exponentiellen Korrekturen über die Trapezformel, in
anderen Bezügen wird ebenfalls die Euler-MacLaurin-Summationsformel ange-
führt (siehe [17]).
Für ungerade Impulse bleibt das Rastervolumen ∆( kL) =

2
L gleich, womit sich

wegen 1
L ≈ 0 und 2L−1

L ≈ 2 dasselbe Integral ergibt:

2L−1∑
k=1

ungerade

exp [− εk · T ] −→ L

2

2∫
0

dx exp [− |ε(x)| · T ] .

Man erkennt also insbesondere, daß sich die Summen über gerade und ungerade
Impulse für große L gleichen. Dies ist nicht weiter überraschend, da nach frühe-
ren Überlegungen limL→∞ |ε2k| = limL→∞ ε2k+1 gilt. Andererseits tritt hierüber
ein deutlicher Unterschied der Berechnungsmethoden zutage: Bei der bisheri-
gen Berechnung der Energielücke ∆E = E0−−E0+ als eben solche mußte diese
Differenz zunächst in eine Summe umgeschrieben werden, da der Ausdruck für
große L sonst direkt Null ergeben hätte. Hier tritt jedoch keine derartige Dif-
ferenz auf, und die Teilausdrücke können daher getrennt für L� 1 untersucht
bzw. bereits in Integrale umgewandelt werden.
Die im Nenner befindlichen Grundzustandsbeiträge können somit gekürzt wer-
den (für große L werden auch diese einander gleichen, man denke nur an limL→∞
∆E = 0), so daß sich für das Verhältnis der Zustandssummen

Z−+
Z++

∼ L

2

2∫
0

dx exp [− |ε(x)| · T ] (6.12)

ergibt. Es verbleiben also die Energie-Konfigurationen normierter 1-Fermion-
Zustände.

Mittels (6.10) gewinnt man damit folgenden Ausdruck für die Energieaufspal-
tung:

∆̂E =

2∫
0

dx exp [− |ε(x)| · T ] . (6.13)

Zur späteren Zweckmäßigkeit wurde hier ob der vernachlässigbaren Korrekturen
wieder ein Gleichheitszeichen gesetzt; man sollte jedoch in Erinnerung behalten,
daß in diese Gleichung gewisse Näherungen einflossen.
Diese Formel, auf die die bisherigen Überlegungen abzielten, ist auch der Aus-
gangspunkt der weiteren Rechnungen in diesem Kapitel. Offensichtlich unter-
scheidet sich dieser Ausdruck von der früheren Formulierung der Energieaufspal-
tung. Dessen Berechnung sollte daher neue Aufschlüsse bieten und, bei Erfolg,
die bisherigen Ergebnisse auf nicht-triviale Weise bestätigen.
Im Anschluß wird dieses Integral (6.13) im Zuge einer Sattelpunktsapproxima-
tion ausgewertet.
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6.4. Berechnung des Integrals ∆̂E

6.4 Berechnung des Integrals ∆̂E

Gegenstand ist die Berechnung der Energieaufspaltung ∆̂E als Integral über
die normierten Ein-Fermion-Energie-Konfigurationen

∆̂E =

2∫
0

dx exp [− |ε(x)| · T ]

mit |ε(x)| = +Arcosh [cosh(m0) + 1− cos(πx)] .

Die hierbei eine zentrale Rolle spielende Funktion |ε(x)|, die die verschiedenen
Fermionenergien repräsentiert, wird hierzu in der angegebenen Form verwendet.
Man erkennt bereits die reine T -Abhängigkeit des für ∆̂E resultierenden Aus-
drucks. Wie zuvor interessiert auch hier ein Ausdruck bei einer großen Zahl an
Freiheitsgraden, sprich großen T .

6.4.1 Vorbereitungen

Bei Betrachtung des Integranden exp [− |ε(x)| · T ] ist auffällig, daß dieser
Schwankungen durch |ε(x)| ausgesetzt ist, die für T � 1 erhebliche Ausmaße
annehmen. Insofern bietet sich für T � 1 eine Sattelpunktsapproximation an,
die um das Maximum des Integranden und dementsprechend um das Minimum
m0 der Funktion |ε(x)| stattfindet. Da |ε(x)| ein periodisches Verhalten aufweist,
verlangt dies allerdings zunächst die Verschiebung bzw. Einschränkung auf ein
geeignetes Integrationsintervall, in welchem ein einzelnes und eindeutiges Mini-
mum mit passendem Flankenanstieg vorliegt. Diese gelingt unter Ausnutzung
eben der Periodizität |ε(2± x)| = |ε(x)|:

2∫
0

dx exp [− |ε(x)| · T ] =

1∫
−1

dx exp [− |ε(x)| · T ]

= 2 ·
1∫

0

dx exp [− |ε(x)| · T ] . (6.14)

Zur schematischen Veranschaulichung dieser Zusammenhänge und des verfolg-
ten Vorgehens diene die Abbildung 6.6 (in Anlehnung an Abb. 2.6). Um bei
späteren Substitutionen die Bijektivität der Integrationsintervalle zueinander
zu gewährleisten, wird von vornherein die zuletzt aufgeführte Grenzenvariante
gewählt.
Somit ist für den weiteren Verlauf eine um das bei x = 0 befindliche Minimum
geplante Entwicklung

∆̂E = 2 ·
1∫

0

dx exp [− |ε(x)|um
x=0

· T ] (6.15)

festzuhalten. Die Indizierung ”
um
x=0“ soll darauf hinweisen, daß |ε(x)|um

x=0
eine um

diese Stelle genäherte Größe darstellt, die insbesondere nicht mehr die Periodizi-
tät der ursprünglichen Funktion aufweist, sondern einen steten Flankenanstieg.
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Abbildung 6.6: Entwicklung um ein ausgewähltes Minimum (schematisch)

Anhand des Minimums |ε(0)| = m0 läßt sich bereits der zu erwartende Trend

∆̂E ∼ exp
(
− T m0

)
absehen. Die restliche Entwicklung sollte demnach die potenzartig von T ab-
hängenden Vorfaktoren enthalten, welche nun explizit durchgeführt wird.

6.4.2 Sattelpunktsapproximation

Zu deren Ausführung wird die Taylorentwicklung von |ε(x)| um x = 0 benötigt,
welche hier bis zur Ordnung O(x6) angegeben wird. Wie sich sogleich zeigen
wird, reicht diese aus, um die bisherigen Ergebnisse bis zu derselben Ordnungs-
tiefe zu reproduzieren. Da die Funktion |ε(x)| = |ε(−x)| achsensymmetrisch ist,
treten nur gerade Potenzen auf:

|ε(x)|um
x=0

= m0 +
π2

2 sinh(m0)
· x2 − π4

24

(
1

sinh(m0)
+
3 cosh(m0)
sinh3(m0)

)
· x4

+
π6

6!

(
1

sinh(m0)
+
15(cosh(m0)− 1)

sinh3(m0)
+
45 cosh2(m0)
sinh5(m0)

)
· x6 + O(x8)

bzw. in Kurzform

|ε(x)|um
x=0

= m0 +
π2

2 sinh(m0)
· x2 + Rest(x) .

Letztere soll das weitere, für eine Sattelpunktsintegration typische Entwick-
lungsschema von (6.15) aufzeigen, welches um die aus der quadratischen Ord-
nung stammende Gaußfunktion stattfindet:

∆̂E = exp
(
− T m0

)
· 2

1∫
0

dx exp
[
− T π2

2 sinh(m0)
· x2

]
exp

[
− T · Rest(x)

]
.
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Um die in Rest(x) enthaltenen, wegen x�1 schwächeren Ordnungen in einem
analytischen Rahmen zu behandeln, wird exp

[
− T · Rest(x)

]
nach Taylor um

Eins entwickelt:

exp
[
− T · Rest(x)

]
= 1 − T · Rest(x) + 1

2
T 2 · Rest2(x) + T 3 ·O

[
Rest3(x)

]
.

Auf diese Weise verbleiben letztlich Integrale über Gaußfunktionen mit Poly-
nomen, welche nach Verschiebung der Integrationsgrenze ins Unendliche den
gängigen Standardwerken zu entnehmen sind. Hierzu ist folgende Abschätzung
hilfreich:

1∫
0

dx exp
[
− αx2

]
{1 + O(x4)} =

∞∫
0

dx exp
[
− αx2

]
{1 + O(x4)}

−
∞∫
1

dx exp
[
− αx2

]
{1 + O(x4)}

mit α =
T π2

2 sinh(m0)
, d.h. von der Ordnung T ;

∞∫
1

dx exp
[
− αx2

]
{1 + O(x4)} =

y=x−1
=

∞∫
0

dy exp
[
− α (y + 1)2

]
{1+O((y+1)4)}

≤ exp [−α ] ·
∞∫
0

dy exp
[
− αy2

]
· const.{1 + O(y)} .

Der Korrekturterm ist somit um Faktor O
(
exp [−α ]

)
= O

(
exp

[
− T π2

2 sinh(m0)

])
geringer. Anschaulich wird in diesem auch nur noch über den flachen Ausläufer
einer um x=0 zentrierten Gaußglocke integriert, die bei x=1 bereits um eben
dieses O(exp [−α ]) abgefallen ist. Ergänzend sei an die Abschätzung über das
Fehlerintegral erf(x) [59] erinnert.
Für T � 1 ist daher diese exponentiell abfallende Ordnung vernachlässigbar
(m0 sei hierzu hinreichend klein, bzw. da m0 als endlich vorausgesetzt wur-
de, kann T � 1 entsprechend größer gewählt werden) gegenüber den aus der
restlichen Approximation

∆̂E = 2 ·
∞∫
0

dx exp
[
− |ε(x)| · T

]
Gauß
um
x=0

·
[
1 + O

(
exp

[
− T π2

2 sinh(m0)

])]
kommenden potenzartigen Termen in T .

Explizit erhält man durch Einsetzen der Taylorentwicklungen in das obige Aus-
wertungsschema:
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∆̂E = exp
(
− T m0

)
· 2

∞∫
0

dx exp
[
− T π2

2 sinh(m0)
· x2

]
·

{
1 + T · π

4

24

(
1

sinh(m0)
+
3 cosh(m0)
sinh3(m0)

)
· x4

− T · π
6

6!

(
1

sinh(m0)
+
15(cosh(m0)− 1)

sinh3(m0)
+
45 cosh2(m0)
sinh5(m0)

)
· x6

+ T ·O(x8) + 1
2
T 2

[
− π4

24

(
1

sinh(m0)
+
3 cosh(m0)
sinh3(m0)

)
· x4 +O(x6)

]2

+ T 3
[
O(x4)

]3} {
1 + O

(
exp

[
− T π2

2 sinh(m0)

])}
.

Die Mitnahme höherer Ordnungen des Rests liegt darin begründet, daß die aus
den Integralen resultierenden Ordnungen in T interessieren. Da der Exponent
ebenfalls ein T enthält, sind diese jedoch nicht direkt ablesbar; so führt T ·O(x6)
ebenso wie T 2·O(x8) aus dem quadratischen Restterm auf die Ordnung O

(
1
T 5/2

)
.

Um die resultierenden Ordnungen in T deutlicher zu gestalten, empfiehlt sich
daher die Substitution

y =
T π2

2 sinh(m0)
· x2 ,

die das T aus dem Exponenten entfernt.
Unter Mitnahme der oben angegebenen Ordnungen erhält man

∆̂E = exp
(
− T m0

)
·
√
2 sinh(m0)

π
·

∞∫
0

dy exp(−y)
1
√
y
·

{
1√
T
+

1
6

(
sinh(m0) +

3 cosh(m0)
sinh(m0)

)
· y2 · 1

T 3/2

− 1
90

(
sinh2(m0) + 15

(
cosh(m0)− 1

)
+ 45

cosh2(m0)
sinh2(m0)

)
· y3 · 1

T 5/2

+
1
72

(
sinh2(m0) + 6 cosh(m0) + 9

cosh2(m0)
sinh2(m0)

)
· y4 · 1

T 5/2

+ O
( 1
T 7/2

)} {
1 + O

(
exp

[
− T π2

2 sinh(m0)

])}
.

Die verschiedenen Ordnungen in T sind nun deutlich sichtbar. Man erkennt,
daß O

(
1√
T

)
und O

(
1
T 3/2

)
jeweils aus einer Quelle stammen, während O

(
1
T 5/2

)
wie oben aufgezeigt aus zwei Quellen zusammengesetzt werden muß. Letzte-
res bedingte die Hinzunahme des quadratischen Restterms zumindest in seiner
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niedrigsten Ordnungsstufe. Man mag nun einsehen, daß die Ausrechnung höhe-
rer Terme O

(
1
Tn/2

)
durchaus verwickelt wird. Die Beschränkung auf die explizite

Angabe bis einschließlich zur Ordnung O
(

1
T 5/2

)
entspricht derjenigen in Kapitel

5.3 und ist damit auch ausreichend zum gegenseitigen Ergebnisvergleich.
Die verbleibenden Integrale sind vom Typ der Gammafunktionen [59]

∞∫
0

dx xn exp(−x) = Γ(n+ 1) mit n > −1 ; (6.16)

in Anhang E sind die hier benötigten Γ
(
2k+1
2

)
mit k ∈ N angegeben.

6.4.3 Ergebnis für die Energieaufspaltung ∆̂E

Nach dem Ordnen und Zusammenfassen der verschiedenen Terme erhält man
somit folgendes Endresultat für ∆̂E:

∆̂E = exp
(
− T m0

) [√
2 sinh(m0)

π
· 1√

T
+ a1

1
T 3/2

+ a2
1

T 5/2
+

+ O
( 1
T 7/2

)][
1 + O

(
exp

[
− T π2

2 sinh(m0)

])]
(6.17)

mit a1 =
1

4
√
2π

(
sinh3/2(m0) +

3 cosh(m0)√
sinh(m0)

)
(6.18)

und a2 =
1

8
√
2π

(
9
8
sinh5/2(m0) +

15
4
cosh(m0)

√
sinh(m0) +

+5
√
sinh(m0) −

15
8

cosh2(m0)
sinh3/2(m0)

)
. (6.19)

Erneut läßt sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit
wachsender Systemgröße abnimmt. Im Limes unendlich vieler Freiheitsgrade
verschwindet sie: limT→∞ ∆̂E = 0.
Vergleicht man dieses Ergebnis unter Beachtung der L-T -Vertauschung mit
demjenigen für ∆E (5.32)-(5.34) aus Kapitel 5, so stellt man eine hervorragen-
de Übereinstimmung der erzielten Resultate fest: Bis einschließlich zur Ordnung
O
(

1
T 5/2

)
bzw. O

(
1
L5/2

)
gleichen sich die berechneten Koeffizienten.

Hierbei sollte noch einmal betont werden, daß sich die in Kapitel 5 und 6 be-
schriebenen Verfahren grundlegend und nicht-trivial unterscheiden: Die Über-
einstimmung der erzielten Ergebnisse ist daher als wertvolle Bestätigung zu wer-
ten.
Eine tiefergehende Untersuchung dieser Korrespondenz ist in Abschnitt 6.5 zu
finden, die u.a. zeigt, daß der Unterschied in den angegebenen exponentiellen
Korrekturtermen als nebensächlich und unbedeutend anzusehen ist.
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6. Alternativer Zugang zur Energieaufspaltung

Mithilfe der Wurzelnäherung für |ε(x)|, die sich als nützliche Approximation
um den kritischen Punkt bewährt hat, soll diese Übereinstimmung auch für
O
(

1
T 7/2

)
überprüft werden.

6.4.4 Überprüfung mit Wurzelnäherung

Bei der Berechnung der Energieaufspaltung

∆̂E = 2 ·
∞∫
0

dx exp
[
− |ε(x)| · T

]
Gauß
um
x=0

·
[
1 + O (Korrektur)

]
,

für welche die Entwicklung der Funktion |ε(x)| um die Stelle x = 0 benötigt
wird, kann erneut auf die Wurzelnäherung (5.42)

|ε(x)|um
x=0

=
√

m2
0 + π2 x2 für β ≈ βC

zurückgegriffen werden; diese gilt ja gerade für kleines Argument x sowie um
den kritischen Punkt. Die Sattelpunktsapproximation kann dann mit dieser ein-
facheren Funktion durchgeführt werden, wofür man die Einschränkung β ≈ βC
bzw. m0 � 1 in Kauf nimmt. Die Erleichterung aufgrund ihres unkomplizierte-
ren Verhaltens ist hierbei nicht so groß wie bei der Methode der Schlitzintegra-
tion; allerdings ist die Taylorentwicklung mit geringerem Aufwand verbunden,
so daß sie hier bis einschließlich O(x8) geführt wird:√

m2
0 + π2 x2 = m0 +

π2

2m0
· x2 − π4

8m3
0

· x4 + π6

16m5
0

· x6

− 5π8

128m7
0

· x8 + O(x10) .

Letztendlich soll das Endergebnis die explizite Angabe der Ordnung O
(

1
T 7/2

)
beinhalten. Im Entwicklungsschema werden hierzu folgende Terme benötigt:

∆̂E = exp
(
− T m0

)
· 2

∞∫
0

dx exp
(
− T π2

2m0
· x2

)
·

{
1 + T · π4

8m3
0

· x4 − T · π6

16m5
0

· x6 + T · 5π8

128m7
0

· x8 + T ·O(x10)

+
1
2
T 2

[
− π4

8m3
0

· x4 + π6

16m5
0

· x6 + O(x8)
]2

− 1
3!

T 3

[
− π4

8m3
0

· x4 + O(x6)
]3

+ T 4
[
O(x4)

]4}
.

Auf die Angabe der exponentiellen Korrektur
{
1 + O

(
exp

[
− Tπ2

2m0

])}
wurde

hier verzichtet.
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6.4. Berechnung des Integrals ∆̂E

Wie zuvor führen T·O(x6) sowie T 2·O(x8) auf dieselbe Ordnung O
(

1
T 5/2

)
. Für die

neu hinzukommende Ordnung O
(

1
T 7/2

)
kommen gar drei Quellen in Betracht:

T · O(x8) aus dem linearen Term, T 2 · O(x10) aus dem gemischt-quadratischen
und T 3 ·O(x12) aus dem kubischen Term. Die Substitution

y =
T π2

2m0
· x2

verschafft hierüber Klarheit:

∆̂E = exp
(
− T m0

)
·
√
2m0

π
·

∞∫
0

dy exp(−y)
1
√
y
·

{
1√
T
+

1
2m0

· y2 · 1
T 3/2

− 1
2m2

0

· y3 · 1
T 5/2

+
1
8m2

0

· y4 · 1
T 5/2

+
5
8m3

0

· y4 · 1
T 7/2

− 1
4m3

0

· y5 · 1
T 7/2

+
1

48m3
0

· y6 · 1
T 7/2

+ O
( 1
T 9/2

)}
.

Die verbleibenden Gammafunktionen (6.16) sind in Anhang E aufgeführt.

Nach dem Sortieren der Terme ergibt sich somit folgendes Endergebnis für ∆̂E

∆̂E = exp
(
− T m0

) [√
2m0

π
· 1√

T
+

3
4
√
2πm0

· 1
T 3/2

− 15

64
√
2π m

3/2
0

· 1
T 5/2

+
105

512
√
2π m

5/2
0

· 1
T 7/2

+ O
( 1
T 9/2

)]
, (6.20)

welches sich unter Beachtung der L-T -Vertauschung als identisch zum früheren
Resultat (5.45) aus Abschnitt 5.3.9 herausstellt.
Somit wird ebenfalls die im Rahmen der Wurzelnäherung explizit berechnete
Ordnung O

(
1
T 7/2

)
bzw. O

(
1
L7/2

)
mittels beider Methoden gegenseitig bestätigt.

Des Weiteren diente dies der Kontrolle der Berechnungen innerhalb dieses Ka-
pitels. Denn erneut liefert die für m0 � 1 gültige Wurzelnäherung innerhalb
einer jeden Ordnung O

(
1
Tn/2

)
lediglich den Term führender m0-Ordnung aus

dem allgemeinen Ergebnisausdruck (6.17)-(6.19). Dies trifft übrigens auch für
die einzelnen Quellterme zu, wenn eine Ordnung aus mehreren dieser zusam-
mengesetzt wurde.

Die Grenzflächenspannung σ, um die Auflistung der Ergebnisse zu vervollstän-
digen, bleibt übrigens identisch, da diese weder von L noch von T abhängt.
Explizit erhält man die Grenzflächenspannung hier über die Differenz der redu-
zierten Freien Energien

F̂Grenz = F̂−+ − F̂++ + lnL ,
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6. Alternativer Zugang zur Energieaufspaltung

welche um den Entropieterm lnL aufgrund der L Anordnungsmöglichkeiten
einer Grenzfläche senkrecht zur x-Richtung ergänzt und auf die an der Grenz-
schicht beteiligten T Gitterpunkte bezogen wird:

σ = lim
L→∞

lim
T→∞

F̂Grenz
T

= lim
T→∞

(
− 1

T
ln ∆̂E

)
.

Hierüber ergibt sich das aus 5.3.7 bekannte Resultat

σ = m0 = 2|β − β̃| , (6.21)

welches lediglich von der Temperatur abhängt.

6.5 Analytische Beziehungen zu ∆E = −L cL

Es ist bereits mehrfach darauf hingewiesen worden, daß sich die angewandten
Verfahren zur Berechnung der Energieaufspaltung auf nicht-triviale Weise un-
terscheiden und dennoch im Ergebnis bestens bestätigen.
Es wäre daher interessant, eine Korrespondenz zwischen den Formelansätzen
auf höherer Ebene als dem Endresultat zu finden.
Bei dem in Kapitel 5 angewandten Verfahren ergab sich die Energieaufspaltung
ursprünglich aus einer Fourierreihenentwicklung ∆E = −L

∑∞
j=0 c(2j+1)·L, wel-

che nach dem ersten Koeffizienten cL abgebrochen werden konnte, da bereits der
nächste c3L deutlich schwächer war und lediglich eine exponentiell abfallende
Korrektur hervorbrachte:

∆E = −L cL

[
1 + O

(
exp (−2Lm0)

)]
.

Dieser Korrekturterm wird im Folgenden nicht weiter beachtet; der Vergleich
wird sich also auf das Integral ∆E = −LcL beschränken.
Durch Konturverschiebung am Schlitz entlang fand sich hierfür folgender Inte-
gralausdruck über die Diskontinuität dish(s)

∆E =

|z3|∫
|z1|

dish(s) · exp(−Lπs) ds mit
|z1| = m0

π

|z3| = 2(β+β̃)
π ,

wobei bereits benutzt wurde, daß die Diskontinuität reell ist. Mit dish(s) =
2 · limη→0 h(is+ η) folgte weiter:

∆E = 2

|z3|∫
|z1|

lim
η→0

h(is+ η) · exp(−Lπs) ds .

In Kapitel 5 wurde nun zunächst das untere Schlitzende durch Substitution
auf Null gesetzt, und anschließend die Diskontinuität ausgerechnet. Hier bie-
tet sich zum besseren Vergleich der beiden Integralausdrücke die umgekehrte
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6.5. Analytische Beziehungen zu ∆E = −LcL

Vorgehensweise an: Nach der in 5.3.4 vorgestellten Methode berechnet sich der
Limes am rechten Schlitzufer zu

lim
η→0

h(is+ η) =
sinh(πs)√∣∣∣[ cosh(m0) + 1− cosh(πs)

]2 − 1∣∣∣
=

sinh(πs)√
1−

[
cosh(m0) + 1− cosh(πs)

]2 ; (6.22)

für die letzte Umformung wird verwendet, daß aufgrund des Exponentialfaktors
exp(−Lπs) im Integranden nur kleine s− |z1| = s− m0

π merklich zum Integral
beitragen, was auch den Anlaß zur Sattelpunktsentwicklung in Abschnitt 5.3.5
gab und in deren Rahmen daher eine verträgliche Annahme darstellt (m0 sei
hierzu nicht übermäßig groß bzw. s − m0

π � 1 sei entsprechend klein gewählt
gegenüber dem als endlich vorausgesetzten m0).

Als für den nachfolgenden Vergleich wichtiges Zwischenresultat ergibt sich da-
mit

∆E = 2

|z3|∫
|z1|

sinh(πs)√
1−

[
cosh(m0) + 1− cosh(πs)

]2 · exp(−Lπs) ds . (6.23)

Via Substitution s = r + |z1| = r + m0
π , die das untere Schlitzende auf Null

setzt, erhält man den Ausdruck

∆E = exp(−Lm0) ·
|z3|−|z1|=a∫

0

dis(1)h (r) · exp(−Lπr) dr (6.24)

mit dis(1)h (r) = 2 · sinh(πr +m0)√
1−

[
cosh(m0) + 1− cosh(πr +m0)

]2 , (6.25)

welcher nach hyperbolischer Umformung die aus 5.3.4 gewohnte Form aufweist:

dis(1)h (r) =
sinh(πr +m0)√

sinh(πr2 +m0) sinh(πr2 )
[
1− sinh(πr2 +m0) sinh(πr2 )

] . (6.26)

Soweit zum Integral ∆E = −LcL.
Der andere Ausgangspunkt zur Berechnung der Energieaufspaltung, welcher
in Kapitel 6 Anwendung fand, basierte auf dem Verhältnis der Zustandssum-
men Z−+

Z++
mit und ohne einer Grenzfläche senkrecht zur x-Richtung. Höhe-

re Multikink-Konfigurationen, zu mehrfachen Grenzflächen gehörend, wurden
hierbei in den Zustandssummen vernachlässigt. Dies bedeutete eine Einschrän-
kung auf die niedrigsten 0- und 1-Fermion-Anregungen unter der Kenntnis, daß
die höheren 2-,4-,6-,. . . bzw. 3-,5-,7-,. . . -Anregungsbeiträge nur exponentielle
Korrekturen darstellen. Für eine große Anzahl an Freiheitsgraden wurde unter
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6. Alternativer Zugang zur Energieaufspaltung

diesen Annahmen das folgende Integral über die Konfigurationen normierter
Ein-Fermion-Energien gefunden:

∆̂E = 2

1∫
0

dx exp [− |ε(x)| · T ] .

Durch L-T -Vertauschung erhält man:

∆E = 2

1∫
0

dx exp [− |ε(x)| · L ] .

Es soll nun eine analytische Beziehung zu dem Ausdruck ∆E = −LcL herge-
stellt werden. Dies geschieht über die Substitution

y =
|ε(x)|
π

.

Mit |ε(0)|
π = m0

π = |z1| und |ε(1)|
π = 2(β+β̃)

π = |z3| folgt zunächst

∆E = 2

|z3|∫
|z1|

dy J(y) exp(−Lπy) mit J(y) =
π

d
dx |ε(x)|

.

Mit etwas Geschick gelingt es, die Jacobiante durch y auszudrücken; unter Ver-
wendung von cos(πx) = cosh(m0) + 1− cosh(|ε(x)|) folgt nämlich

d

dx
|ε(x)| =

π sin(πx)√[
cosh(m0) + 1− cos(πx)

]2 − 1
= π

√
1−

[
cosh(m0) + 1− cosh(πy)

]2
sinh(πy)

,

und man erhält nach erfolgter Substitution den Integralausdruck

∆E = 2

|z3|∫
|z1|

sinh(πy)√
1−

[
cosh(m0) + 1− cosh(πy)

]2 · exp(−Lπy) dy . (6.27)

Letzterer erweist sich nun als identisch zum Diskontinuitätsausdruck (6.23).
Nach Umsetzung der Integrationsgrenzen und hyperbolischer Umformung er-
hält man selbstverständlich auch die anderen Formulierungen (6.24)-(6.26).

Es ist also in der Tat gelungen, auf analytischem Wege eine Brücke zwischen
den verwendeten Verfahren zu schlagen:

∆E = − L cL =

+1∫
−1

dx exp [− |ε(x)| · L ] . (6.28)
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6.5. Analytische Beziehungen zu ∆E = −LcL

Dieser interessante Zusammenhang bezieht sich hier wohlgemerkt auf die nied-
rigsten und damit dominierenden Beiträge in beiden Ansätzen. Speziell scheint
der niedrigste Fourierkoeffizient cL gerade der Mitnahme der niedrigsten Fermion-
Anregungen zu entsprechen.
Diese Korrespondenz hilft, ein tieferes Verständnis für die Energieaufspaltung
zu gewinnen:
Auf der einen Seite steht aus Kapitel 5 mit ∆E = −LcL die Energielücke, wo-
mit die Energieaufspaltung Privman und Fisher folgend grundlegend behandelt
wird. Die Onsager-Kaufman-Lösung bietet hierfür einen ausreichenden Rah-
men.
Auf der anderen Seite wird in Kapitel 6 der Zusammenhang der Energieauf-
spaltung mit Grenzflächen aufgegriffen. Dieser kann durch Hinzunahme der von
Schultz, Mattis und Lieb erdachten fermionischen Lösungsmethode tiefgreifend
aufgedeckt werden, wobei sich die Grenzflächen in dieser Beschreibung als an-
geregte Fermionen wiederfinden. In diesem Bild ergibt die Energieaufspaltung
den rechts aufgeführten Integralausdruck über einzelne Fermionbeiträge.
Diese unterschiedlichen Ansichten wurden nun überzeugend ineinander über-
führt.
Weiterhin offen und interessant bleibt in diesem Zusammenhang noch, ob sich
diese Korrespondenz auch zwischen höheren Fourierkoeffizienten (c3L, c5L, . . .)
und höheren Fermion-Anregungen (n = 3, n = 5, . . .) wiederfinden läßt. Diese
Fragestellung ist durchaus nicht-trivial, läßt sich allerdings im Rahmen der hier
gemachten Approximationsansätze noch nicht beantworten. Insbesondere wäre
hierzu eine Einbeziehung mehrfacher Grenzflächen-Konfigurationen notwendig.
Ein möglicher Ansatzpunkt könnte dann auch in der Berücksichtigung höherer
Beiträge als in (5.8) bzw. (6.9) liegen.
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Kapitel 7

Resümee

Innerhalb dieser Arbeit wurde das zweidimensionale Ising-Modell aus den grund-
legenden Modellannahmen heraus gründlich durchleuchtet. Ausgangspunkt der
analytischen Betrachtungen waren die exakten Lösungsverfahren nach Onsager
und Kaufman [15] sowie nach Schultz, Mattis und Lieb [17], die in Kapitel 2 und
4 jeweils ausführlich vorgestellt wurden. Ersteres basierte auf Spindarstellungen
von Drehungen, wodurch das Problem auf die Diagonalisierung dieser zugeord-
neten Drehungen reduziert wurde. Letzteres verlagerte die Problemstellung auf
Fermionoperatoren, die in eine Besetzungszahldarstellung diagonalisiert wur-
den. Zwischen diesen Lösungsverfahren wurden deutliche Parallelen herausge-
arbeitet, die zur Ergänzung in inhaltlichen Zusammenhängen beitrugen.
Besonderes Augenmerk galt hierbei der Energieaufspaltung ∆E = E0− − E0+,
welche die im endlichen Volumen (L <∞) vorhandene Energielücke zwischen
dem Grundzustand |0+〉 und dem ersten angeregten Zustand |0−〉 angibt. Die-
se Energieaufspaltung verschwindet im unendlichen Volumen limL→∞∆E = 0
aufgrund einer eintretenden Entartung und ist somit ein wichtiger Indikator für
das Auftreten einer spontanen Symmetriebrechung im Limes L → ∞. Diese
Arbeit befaßte sich im Speziellen damit, eine Formel für die Energieaufspaltung
bei großen L zu finden, um diesen Limes näher zu begründen.
Erste Anhaltspunkte im Falle L � 1 ergaben sich aus einer geeigneten Defini-
tion der Grenzflächenspannung σ:

∆E ∼ exp
(
− Lσ

)
. (7.1)

Ein verfolgter Ansatz zur genaueren Untersuchung betraf die Energielücke ∆E =
E0− − E0+ an sich. Um eine Aufhebung dieser Differenz im Falle großer L
(limL→∞ E0− = limL→∞ E0+) zu verhindern, wurde Privman und Fisher [25]
folgend der Gesamtausdruck ∆E nach Fourierkoeffizienten entwickelt. Unter
diesen dominiert bereits der niedrigste Koeffizient cL:

∆E = −LcL

[
1 + O

(
exp(−2Lm0)

)]
(7.2)

mit cL =

+1∫
−1
|ε(x)| cos(Lπx) dx , (7.3)

wobei |ε(x)| = +Arcosh {cosh(m0) + 1− cos(πx)} . (7.4)
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Hierbei stellt

m0 = 2 |β − β̃| (7.5)

die zweifache Differenz zwischen der Temperaturvariablen β = J
kB T̃

und ihrem
dualen Pendant β̃ dar.

Die Berechnung des Integralausdrucks (7.3), welche von Privman und Fisher
einst knapp skizziert worden war [25], wurde hier ausführlich vorgeführt, wo-
bei zuweilen Alternativen aufgezeigt wurden. Dieses Kalkül erforderte einige
Maßnahmen wie die Verschiebung des Integrationsweges in die komplexe Ebene
entlang eines Schlitzes (Abb. 5.4) sowie eine anschließende Sattelpunktsentwick-
lung.
Als Resultat dieser Berechnungen ist der folgende Ausdruck für die Energieauf-
spaltung festzuhalten:

∆E = exp
(
− Lm0

) [√
2 sinh(m0)

π
· 1√

L
+ a1

1
L3/2

+ a2
1

L5/2
+

+ O
( 1
L7/2

)][
1 + O

(
exponentielle Korrekturen

)]
(7.6)

mit a1 =
1

4
√
2π

(
sinh3/2(m0) +

3 cosh(m0)√
sinh(m0)

)
(7.7)

und a2 =
1

8
√
2π

(
9
8
sinh5/2(m0) +

15
4
cosh(m0)

√
sinh(m0) +

+5
√
sinh(m0) −

15
8

cosh2(m0)
sinh3/2(m0)

)
. (7.8)

Hieran läßt sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit
wachsender Anzahl an Freiheitsgraden gegen Null geht.
Das Ergebnis in der Ordnung O( 1√

L
) stimmt mit demjenigen seitens Priv-

man und Fisher [25] überein; darüber hinaus konnten hier noch die Ordnungen
O( 1
L3/2 ) und O(

1
L5/2 ) explizit angegeben werden.

Eine interessante Näherung betraf die Funktion |ε(x)|, deren analytisches Ver-
halten für kleine Impulse in der Nähe des kritischen Punktes bedeutend simpli-
fiziert werden konnte:

|ε(x)| ≈
√

m2
0 + π2x2 für x� 1, β ≈ βC . (7.9)

Innerhalb dieser Näherung ließ sich das obige Ergebnis mit der Beschränkung
β ≈ βC ⇒ m0 � 1 korrekt reproduzieren, wobei hier sogar noch die Ordnung
O( 1
L7/2 ) in expliziter Form angegeben werden konnte (Gl. (5.45)).
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7. Resümee

Für die Grenzflächenspannung σ ergab sich aus (7.6) das recht einfache Er-
gebnis, daß diese mit obigem m0 übereinstimmt:

σ = m0 = 2 |β − β̃| . (7.10)

Dieses Ergebnis ist seit Onsager [9] bekannt.

Um die weitreichend berechneten höheren Ordnungen einer Bestätigung zu un-
terziehen, wurde in Kapitel 6 ein alternativer Formelausdruck für die Ener-
gieaufspaltung gesucht und gefunden. Dieser basierte auf dem Zusammenhang
der Energieaufspaltung mit Grenzflächen und konnte mithilfe des zunächst ent-
wickelten Konzepts der Fermion-Anregungen deutlich herausgestellt werden.
Unter Einbeziehung der niedrigsten 0- und 1-Fermion-Anregungen gelang es,
diesen in folgende alternative Formel umzumünzen:

∆E =

+1∫
−1

dx exp [− |ε(x)| · L ] . (7.11)

(Die formale L-T -Vertauschung wurde hier bereits rückgängig gemacht.)
Auch dieses Integral wurde im Rahmen einer Sattelpunktsentwicklung berech-
net und ergab eine glänzende Übereinstimmung der erzielten Resultate. Da sich
die verwendeten Verfahren grundlegend unterscheiden, ist dies als wertvolle Be-
stätigung des Ergebnisses (7.6)-(7.8) anzusehen.
Abschließend wurde noch eine Korrespondenz zwischen den angewandten Ver-
fahren aufgefunden; durch geschicktes Substituieren ließen sich die beiden An-
sätze direkt ineinander überführen:

∆E = − L cL =

+1∫
−1

dx exp [− |ε(x)| · L ] . (7.12)

Die Mitnahme der Ein-Fermion-Anregungen entspricht also gerade der Einbe-
ziehung des niedrigsten Fourierkoeffizienten cL. Offen bleibt in diesem Zusam-
menhang noch, ob sich diese Korrespondenz in höheren Fermion-Anregungen
und Fourierkoeffizienten wiederfindet.

Ich möchte daher mit den folgenden Worten von Itzykson und Drouffe [19]
schließen:

”As suggested by the previous examples, numerous quantities can
be analytically evaluated for the two-dimensional Ising-model, at the
price of an ever increasing amount of mathematical sophistication.“
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Anhang A

Grenzflächen im
eindimensionalen Ising-Modell

Das eindimensionale Ising-Modell läßt sich im Gegensatz zu seinem zweidimen-
sionalen Pendant sehr einfach abhandeln. Dennoch lassen sich bereits die al-
gebraischen Grundzüge erkennen, was in dieser einfacheren Formulierung dem
Verständnis hilft.

A.1 Beschreibung des eindimensionalen Ising-Modells

Das 1-D-Ising-Modell besteht aus einer linearen Kette von N lokalisierten Spins
(Abb. A.1), für die die Grundannahmen aus Kapitel 2.1 gelten: Jeder Spin
werde durch die klassische Spinvariable si = ±1 (i = 1, . . . , N) beschrieben,
und zwischen nächsten Nachbarn bestehe eine homogene Wechselwirkung (der
Zusatz ”isotrop“ erübrigt sich in einer Dimension), die deren Parallelstellung
energetisch bevorzuge. Letztere werde über eine positive Kopplungskonstante
J > 0 vermittelt, die wie gewohnt in der inversen Temperaturvariablen

β =
J

kBT̃
(A.1)

enthalten ist (siehe (2.6)). Die zusätzliche Kopplung mit einem äußeren Ma-
gnetfeld ließe sich in einer Dimension problemlos einbauen [45], wird hier aber
nicht miteinbezogen, da diese in zwei Dimensionen ja bekanntlich nicht behan-
delt werden kann.
Für die Spins gelten zunächst periodische RB

sN+1 = s1 ; (A.2)

die lineare Kette wird dadurch topologisch zu einem Ring geschlossen, wie in
Abb. A.1 dargestellt wird.
Unter diesen Annahmen lauten die klassische Hamiltonfunktion

H = −
N∑
i=1

si si+1 (A.3)
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Abbildung A.1: 1-D-Ising-Modell

sowie die kanonische Zustandssumme:

Z+ =
∑
s1=±1

. . .
∑
sN=±1

exp(−βH)

=
∑
s1=±1

. . .
∑
sN=±1

(
N∏
i=1

exp (β si si+1)

)
. (A.4)

Durch die Einführung der Transfermatrix T über deren Elemente

〈si | T | si+1〉 = exp (β si si+1) (A.5)

gelingt es, die Zustandssumme Z+ (A.4) als Spur über deren N -fache Potenz
darzustellen:

Z+ =
∑
s1=±1

. . .
∑
sN=±1

〈s1 | T | s2〉 〈s2 | T | s3〉 . . . 〈sN | T | sN+1〉

=
∑
s1=±1

〈s1 | T N | s1〉

= Sp
(
T N

)
. (A.6)

Dabei fanden die periodischen Randbedingungen (A.2) sowie die Vollständig-
keit der Spinzustände Anwendung.
Die durch (A.6) beschriebene Propagation entlang der Kettenpunkte wird in
Abb. A.1 durch einen ”Transferpfeil“ angedeutet, wodurch sich auch die Na-
mensgebung der Transfermatrix erklärt.

Die Transfermatrix T lautet nach (A.5) ausgeschrieben:
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A. Grenzflächen im eindimensionalen Ising-Modell

si = +1 −1 si+1 =

T =

 exp(+β) exp(−β)

exp(−β) exp(+β)

 +1

−1
(A.7)

Entsprechend den vier verschiedenen Anordnungsmöglichkeiten zweier benach-
barter lokalisierter Spins handelt es sich um eine 2× 2-Matrix. An (A.7) lassen
sich folgende Basiszustände für die Ising-Spins si = ±1 (”up“ und ”down“)
ablesen [45]:∣∣si = +1

〉
=

(
1
0

)
;

∣∣si = −1〉 =
(
0
1

)
. (A.8)

Diese werden an einigen Stellen dieser Arbeit verwendet.

Da die Transfermatrix nach (A.7) und (A.5) symmetrisch ist, wird diese zur
Spurberechnung in (A.6) mittels einer orthogonalen Transformation D in Dia-
gonalgestalt gebracht; hierzu wird diese zunächst mit der Paulimatrix σx (2.20)
umgeschrieben:

T = exp(+β) 1⊥ + exp(−β) σx ;

D σx D−1 = σz

⇒ D T D−1 = exp(+β) 1⊥ + exp(−β) σz =

 2 cosh(β) 0

0 2 sinh(β)

 .

(Man vergleiche übrigens mit dem Darstellungswechsel (4.4) in Kapitel 4, der
V1 in Diagonalgestalt brachte; zum Zusammenhang zwischen V1 und T siehe
A.5.)

Es ergeben sich also die beiden Eigenwerte der Transfermatrix

λ+ = 2 cosh(β) , λ− = 2 sinh(β) , (A.9)

mit denen die Zustandssumme bei periodischen RB (A.6) lautet:

Z+ = λ
N
+ + λ

N
− . (A.10)

Für β <∞ (J <∞, T̃ > 0 ) gilt

λ+ > λ− ,

so daß im thermodynamischen Limes N → ∞ nur der größere der beiden Ei-
genwerte eine Rolle spielt:

Z+ = λ
N
+

[
1 +

(
λ−
λ+

)N ]
N→∞−→ λ

N
+ .
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A.2. Antiperiodische RB durch Spinumkehr

Aus den nun leicht berechenbaren thermodynamischen Größen folgt, daß das
Ising-Modell in einer Dimension keinen Phasenübergang aufweist [32, 45]; ins-
besondere gibt es keine spontane Magnetisierung. In zwei Dimensionen findet
bekanntlich ein Phasenübergang statt [9, 33].

A.2 Antiperiodische RB durch Spinumkehr

Es werden nun antiperiodische RB

sN+1 = − s1 (A.11)

und deren Auswirkungen auf die Zustandssumme untersucht.
In deren Formulierung im Transfermatrixformalismus

Z =
∑
s1=±1

. . .
∑
sN=±1

〈s1 | T | s2〉 〈s2 | T | s3〉 . . . 〈sN | T | sN+1〉

werden die antiperiodischen RB (A.11) durch einen Spinumkehroperator Aap
im letzten Matrixelement berücksichtigt:

〈sN | T | sN+1〉 = 〈sN | T Aap | s1〉 ;

hierzu klappt Aap einen Spin um gemäß

Aap | s1〉 = |− s1〉 . (A.12)

Die Zustandssumme Z− bei antiperiodischen RB ergibt sich somit zu

Z− = Sp
(
T NAap

)
. (A.13)

Die explizite Form des Spinumkehroperators Aap (A.12) läßt sich folgenderma-
ßen ermitteln: Gesucht ist eine Matrix, die die Spinzustände (A.8) ineinander
überführt; nach kurzer Suche findet sich die Paulimatrix σx (2.20) mit dieser
Eigenschaft:

σx ∣∣ si = +1
〉
=

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
=

∣∣ si = −1〉 ;

σx ∣∣ si = −1〉 =
(
0 1
1 0

)(
0
1

)
=

(
1
0

)
=

∣∣ si = +1
〉
;

=⇒ Aap = σx . (A.14)

(Man vergleiche mit dem zweidimensionalen Fall: Dort tritt entsprechend den
L Ising-Spins pro Zeile, die es umzuklappen gilt, ein L-faches direktes Produkt
der Paulimatrix σx mit sich selber auf.)

Damit lautet Z− (A.13):

Z− = Sp
(
T Nσx )

. (A.15)
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A. Grenzflächen im eindimensionalen Ising-Modell

Da T und σx kommutieren, kann deren Diagonalisierung simultan erfolgen.

Z− = Sp
[
D T ND−1D σxD−1 ] = Sp

[
D T ND−1 σz ]

= Sp

[(
λ
N
+ 0
0 λ

N
−

)(
1 0
0 −1

)]

⇒ Z− = λ
N
+ − λ

N
− . (A.16)

Der Unterschied zu Z+ liegt also in dem Vorzeichen zwischen dem kleineren
und größeren Eigenwert:

Z−
Z+

=
λ
N
+ − λ

N
−

λ
N
+ + λ

N
−

. (A.17)

Bei Betrachtung der Eigenvektoren in der Diagonaldarstellung fällt auf, daß der
zum größeren Eigenwert λ+ gehörige Eigenvektor (10) symmetrisch bezüglich der
(diagonalisierten) Spinumkehr D σxD−1 = σz ist

σz
(
1
0

)
= +

(
1
0

)
,

während sich der zum kleineren Eigenwert λ− gehörende Eigenvektor (01) als
antisymmetrisch herausstellt:

σz
(
0
1

)
= −

(
0
1

)
.

Dadurch erklärt sich obiger Vorzeichenwechsel bei Einbau des Umkehroperators
in die Spur.
Man vergleiche hierzu die Zustandssummen (3.21), (3.23) und deren Verhältnis
im zweidimensionalen Fall.

A.3 Grenzfläche bei antiferromagnetischer Kopplung

Der soeben gefundene Zusammenhang kann noch auf andere Weise hergeleitet
werden. Die Idee hierzu stammt von Onsager [9].
Grundlage ist eine antiferromagnetische Kopplung, die eine antiparallele Spin-
ausrichtung (”staggered magnetization“) bewirkt (Abb. A.2).

� � � � � � � �� � � �

� � � �
s1 sN

Abbildung A.2: Antiparallele Spinausrichtung für J < 0
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A.3. Grenzfläche bei antiferromagnetischer Kopplung

Diese wird im Gegensatz zu vorher (A.1, ferromagnetischer Fall) durch eine
negative Kopplungskonstante J < 0 beschrieben. Durch den Wechsel J → −J
erhält man ein zusätzliches Minuszeichen in der Temperaturvariablen β = J

kB T̃

β → − β ,

wobei dann weiterhin β > 0 gilt.
Da die im ferro- und antiferromagnetischen Fall bevorzugten Spinausrichtun-
gen (komplett parallel bzw. antiparallel) dieselbe klassische Energiekonfigurati-
on (βH mit respektive J >< 0) aufweisen, und dies auch für Abweichungen von
der jeweiligen Idealordnung gilt, lassen sich die Ergebnisse des vorangehenden
Abschnitts auf dieser Grundlage reproduzieren.

Bei gleichbleibender HamiltonfunktionH (A.3) lautet dann die Zustandssumme
Zaf :

Zaf =
∑
s1=±1

. . .
∑
sN=±1

exp(+βH)

=
∑
s1=±1

. . .
∑
sN=±1

(
N∏
i=1

exp (−β si si+1)

)
.

Mithilfe der Transfermatrixelemente

〈si | Taf | si+1〉 = exp (−β si si+1) (A.18)

erhält man bei periodischer Fortsetzung der Kette durch Ringschließung

sN+1 = s1

die Zustandssumme der antiferromagnetischen Kette:

Zaf = Sp
[(
Taf

)N]
=

(
λ
af
+

)N
+

(
λ
af
−

)N
. (A.19)

Die weiterhin symmetrische Transfermatrix Taf unterscheidet sich nach (A.18)
in den Vorzeichen von T (A.7):

si = +1 −1 si+1 =

Taf =

 exp(−β) exp(+β)

exp(+β) exp(−β)

 +1

−1
= exp(−β) 1⊥ + exp(+β) σx .

Durch Diagonalisierung mittels der Orthogonaltransformation D σxD−1 = σz

erhält man die Eigenwerte

λ
af
+ = 2 cosh(β) , λ

af
− = − 2 sinh(β) . (A.20)

Offensichtlich ist der Eigenwert λaf− negativ.
Diese Eigenwerte lassen sich (β → −β entsprechend) auf diejenigen im ferro-
magnetischen Fall (A.9) zurückführen:

λ
af
+ = λ+ , λ

af
− = −λ− . (A.21)
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A. Grenzflächen im eindimensionalen Ising-Modell

Die Frage, ob bei der periodischen Fortsetzung der Kette in Abb. A.2 eine
Grenzfläche auftritt, die die antiparallele Spinausrichtung unterbricht (Onsager:

”one misfit seam“), hängt davon ab, ob die Anzahl an Kettenpunkten gerade
oder ungerade ist:

• N = 2m (m ∈ N)
Die Aneinanderreihung erfolgt ohne Störung der antiparallelen Ausrich-
tung, wie man sich an Abb. A.2 (dort N = 8) klarmachen kann.
Für die Zustandssumme ergibt sich nach (A.19) und (A.20):

Z
(N=2m)
af =

[
2 cosh(β)

]2m +
[
2 sinh(β)

]2m
(A.9)
= λ

N
+ + λ

N
− .

Dieses Ergebnis ist offensichtlich mit (A.10) identisch:

Z
(N=2m)
af = Z+ .

• N = 2m+ 1 (m ∈ N)
Bei der Aneinanderreihung tritt eine Grenzfläche auf, die die antiparallele
Spinausrichtung unterbricht (”one misfit seam“). Man verdeutliche sich
dies anhand von Abb. A.2, indem man die dort dargestellte Kette (N = 8)
um einen Spin erweitere.

Z
(N=2m+1)
af =

[
2 cosh(β)

]2m+1 − [
2 sinh(β)

]2m+1
(A.9)
= λ

N
+ − λ

N
− .

In diesem Fall erhält man dasselbe Ergebnis wie aus der antiperiodischen
Zustandssumme (A.16):

Z
(N=2m+1)
af = Z− .

Hier war allerdings kein Spinumkehroperator vonnöten.

Für das Verhältnis der Zustandssummen mit und ohne Grenzfläche erhält man
also sowohl im ferro- als auch im antiferromagnetischen Fall

Z
(N=2m+1)
af

Z
(N=2m)
af

=
Z−
Z+

=
λ
N
+ − λ

N
−

λ
N
+ + λ

N
−

.

Im Zuge solcher Überlegungen im zweidimensionalen Ising-Modell gelingt es
Onsager, die Grenzflächenspannung in diesem zu bestimmen [9].
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A.4 Fermionische Beschreibung des 1-D-Modells

Die fermionische Formulierung bot im zweidimensionalen Fall neue Aspekte auf,
die das Verständnis für die Lösung förderten. Daher wird diese nun ebenfalls
für das eindimensionale Modell vorgestellt, die sich mit vergleichbar geringem
Aufwand realisieren läßt. Dabei werden sich einige bekannte Facetten wieder-
finden. Wie zu erwarten, werden sich die beiden Eigenwerte direkt an einer
Besetzungszahldarstellung ablesen lassen.
Hierzu wird die Transfermatrix T (A.7) zunächst einer Umformung unterzogen,
nach der sie eine deutliche Ähnlichkeit zu ihrem zweidimensionalen Pendant
aufweist: Über die duale Temperaturvariable tanh β̃ = exp(−2β) ausgedrückt
lautet diese

T = exp(+β) 1⊥ + exp(−β) σx = exp(+β)
(
1⊥ + tanh β̃ · σx) ;

wegen (σx)2 = 1⊥ gilt exp
[
β̃ σx ]

= cosh β̃
(
1⊥ + tanh β̃ · σx), so daß sie

umgeschrieben werden kann zu

T =
√
2 sinh(2β) · exp

[
β̃ σx ]

. (A.22)

Um (A.22) noch in eine geeignete Form für die fermionische Darstellung zu
bringen, wird über die Ähnlichkeitstransformation (4.4)

σx → S σx S−1 = −σz

ein Darstellungswechsel herbeigeführt, nach dem T lautet:

T =
√
2 sinh(2β) · exp

[
− β̃ σz ]

. (A.23)

In dieser Darstellung ist T diagonal (vgl. [15]); man könnte bereits hier direkt
die Eigenwerte √

2 sinh(2β) · exp(+β̃) = 2 cosh(β) = λ+

und
√
2 sinh(2β) · exp(−β̃) = 2 sinh(β) = λ−

ablesen. Der nächste Schritt, der auf die fermionische Darstellung führt, er-
scheint daher in einer Dimension eher aufgesetzt, zeigt aber interessante Paral-
lelen auf.
Führt man die neuen Operatoren σ+ und σ− gemäß σ± = 1

2 (σ
x ± iσy) ein,

gilt

σz = 2
(
σ+σ−− 1

2

)
,

und man erhält

T =
√
2 sinh(2β) · exp

[
− 2 β̃

(
σ+σ− − 1

2

) ]
. (A.24)

Wie bereits in Kapitel 4.1 festgestellt wurde, handelt es sich bei σ+ und σ− um
Fermion-Erzeuger und -Vernichter. Da hier keine indizierten Größen auftreten,
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A. Grenzflächen im eindimensionalen Ising-Modell

gehorchen σ+ und σ− rein fermionischen Antikommutatorrelationen

{σ+, σ−} = 1, (σ+)2 = (σ−)2 = 0 , (A.25)

und eine Jordan-Wigner-Transformation (siehe 4.1.2) ist nicht vonnöten.
Dann ist offensichtlich

nF = σ+σ−

der Fermionzähler; angewandt auf einen Eigenzustand gibt er an, ob ein Fermion
anwesend ist oder nicht,

nF ∈ {0, 1} ,

und die Transfermatrix liegt in fermionischer Besetzungszahldarstellung vor:

T =
√
2 sinh(2β) · exp

[
− 2 β̃

(
nF − 1

2

) ]
. (A.26)

Hieran lassen sich mit nF ∈ {0, 1} die beiden Eigenwerte ablesen (vgl. oben):

nF = 0 ⇒ λ+ = 2 cosh(β) ;
nF = 1 ⇒ λ− = 2 sinh(β) .

Als Resultat für die Zustandssumme bei periodischen RB ergibt sich damit

Z+ = Sp
(
T N

)
= λ

N
+ + λ

N
− ,

was mit dem bisherigen Ergebnis (A.10) übereinstimmt. Die Spur wurde hierzu
über die Eigenzustände mit nF = 0 und nF = 1 ausgeführt.

Neben dieser Grundlösung tritt nun eine weitere Facette zutage: In der fermio-
nischen Beschreibung kann der Einbau antiperiodischer RB um eine Variante
erweitert werden. Hierzu beachte man, daß der Spinumkehroperator (A.14),
der aufgrund des Darstellungswechsels σx → −σz nun das Aussehen −σz

aufweist, in die Form (−1)nF gebracht werden kann:

(−1)nF = exp (i π nF ) = exp
(
i π σ+σ−) = exp

(
i π2 (1⊥+ σz)

)
= i exp

(
i π2 σz) (σz)2=1⊥

= −σz .

Die Zustandssumme bei antiperiodischen RB (A.13) läßt sich dementsprechend
folgendermaßen aufstellen:

Z− = Sp
[
T N (−1)nF

]
. (A.27)

Über den Paritätsoperator (−1)nF kann wie zuvor (vgl. A.2) nach symmetri-
schen und antisymmetrischen Eigenvektoren unterschieden werden:

nF = 0 ⇒ (−1)nF = +1 ⇒ Eigenvektor zu λ+ ist symmetrisch;

nF = 1 ⇒ (−1)nF = −1 ⇒ Eigenvektor zu λ− ist antisymmetrisch.
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Führt man nun die Spur über die Eigenzustände mit nF = 0 und nF = 1
aus, erhält man für die Zustandssumme bei antiperiodischen RB

Z− = Sp
[
T N (−1)nF

]
= λ

N
+ · (−1)nF=0 + λ

N
− · (−1)nF=1

= λ
N
+ − λ

N
−

in Übereinstimmung mit dem früheren Ergebnis (A.16).

Wollte man die Zustandssummen Z+ und Z− wie in Kapitel 6 über ihre Fermion-
Anregungen charakterisieren, ist dies nach der schon erfolgten Vorarbeit schnell
getan. Hierzu müssen lediglich ein geeigneter Vakuumzustand und zugehöriger
Anregungszustand definiert werden, was aber keinerlei Schwierigkeiten bereitet,
da das Vakuum hier als naiver, kein Teilchen beherbergender Zustand aufgefaßt
werden kann:

|0〉 =̂ Vakuum-Zustand, kein Fermion ;

|1〉 =̂ Anregungszustand, 1 Fermion ;

oder kurz |nF 〉.
Damit gelingt folgende Charakterisierung:

Z+ = 〈0| T N |0〉 + 〈1| T N |1〉 , (A.28)

Z− = 〈0| T N |0〉 − 〈1| T N |1〉 . (A.29)

Für N � 1 liefert der Vakuumbeitrag in Form von λ
N
+ deutlich stärkere An-

teile, so daß er im thermodynamischen Limes N →∞ den einzigen Beitrag zu
beiden Zustandssummen darstellt.
Man erkennt hieran ebenfalls, daß stets ein einzelner und eindeutiger Grund-
zustand existiert; so mußte nicht wie in der zweidimensionalen Notation zwi-
schen dem Grundzustand bezüglich H+ und demjenigen zu H− unterschieden
werden, deren Entartung im Limes unendlich vieler Freiheitsgrade aufgehoben
wurde. Insofern tritt die behandelte Energieaufspaltung im eindimensionalen
Ising-Modell nicht auf, aber eine spontane Symmetriebrechung war bei einem
fehlenden Phasenübergang und dementsprechend nicht stattfindender Domä-
nenbildung ja auch nicht zu erwarten.

Die fermionischen Zustandssummen ZF, die auf der Berücksichtigung der Rand-
bedingungen für Fermionen beruhen, lassen sich hier schnell abhandeln, da die
eine Dimension folglich mit der Propagationsrichtung der Transfermatrix iden-
tisch ist. In dieser ist aber bereits als Folge der Grassmann-Algebra [21] auf die
scheinbare Vertauschung periodischer und antiperiodischer RB gegenüber dem
Spin-Fall hingewiesen worden. Somit wird in ZF

+ zusätzlich (−1)nF in die Spur
eingebaut, in ZF− hingegen nicht (siehe auch direkt in [21], Anhang C, S. 251),
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A. Grenzflächen im eindimensionalen Ising-Modell

und man erhält den recht einfachen Zusammenhang

ZF
+ = Sp

[
T N (−1)nF

]
= Z− , (A.30)

ZF
− = Sp

[
T N

]
= Z+ . (A.31)

In zwei Dimensionen stellt sich der Zusammenhang zwischen den Fermion-
und Spin-Zustandssummen etwas komplizierter dar: Dort wird eine Sektor-
Spinzustandssumme jeweils aus der Summe bzw. Differenz aller vier fermioni-
schen Sektorzustandssummen zusammengesetzt [19]. Dies liegt darin begründet,
daß die (in einer Dimension nicht vorhandene) Randbedingung senkrecht zur
Wanderungsrichtung der Transfermatrix recht unterschiedliche Auswirkungen
auf Fermionen und Spins ausübt.

A.5 Übergang zu zwei Dimensionen

Dieser Abschnitt soll ein Gespür dafür vermitteln, welche Änderungen sich bei
einer Erweiterung auf zwei Dimensionen ergeben.
Besonders augenfällig ist das Auftreten eines zweidimensionalen rechteckigen
Gitters anstelle einer eindimensionalen Kette (Abb. A.3), so als hätte man pro
Kettenpunkt eine ganze Zeile der Länge L in horizontaler Richtung eröffnet.
Im Transfermatrixformalismus Z = Sp

[
(Transfermatrix)T

]
äußert sich dies

in der Transfermatrix selber. Anstelle einer Transfermatrix T (A.7), die ketten-
gliedweise die eindimensionale Kette entlang wandert, erhält man eine Trans-
fermatrix P = V2 V

′
1 , die nach unterschiedlichen Mechanismen in V ′

1 und V2
unterteilt werden kann: V ′

1 ist für die vertikale Kopplung zwischen benachbar-
ten Zeilen in Propagationsrichtung zuständig, und V2 beschreibt die horizontale
Kopplung innerhalb einer Zeile (siehe hierzu Abb. 2.2 und Abb. 2.3).
Während somit für V2 kein Analogon in einer Dimension vorliegt, lassen sich
V ′
1 und T , mit vergleichbaren Aufgaben vertraut, algebraisch ineinander über-
führen: Untersucht man nämlich die Matrixelemente (2.15) von V ′

1

〈
s1, . . . , sL

∣∣V ′
1

∣∣ s′1, . . . , s′L〉 =
L∏
k=1

exp
[
βsks

′
k

]
,

so fällt auf, daß V ′
1 ein L-faches direktes Produkt (siehe (2.16)) von T (A.5)

mit sich selber ist [32]:

V ′
1 = T × T × . . .× T . (A.32)

Verwendet man für T die Darstellung (A.22)

T =
√
2 sinh(2β) · exp

[
β̃ σx ]

,
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ergibt sich V ′
1 nach den Rechenregeln des direkten Matrizenprodukts wie in

(2.17) zu

V ′
1 = [2 sinh (2β)]

L
2 ·

L∏
α=1

exp
[
β̃ σx

α

]
(A.33)

mit σx
α = 1⊥× 1⊥× . . .× σx × . . .× 1⊥ .

↑
α-te Stelle

Dies läßt sich insofern anschaulich verstehen, als daß anstelle eines einzelnen
Punkt-zu-Punkt-Transfers dieser nun L mal stattfindet, nämlich für jede der L
Spalten, und zwar unabhängig voneinander (Abb. A.3).
Für die Beschreibung solcher Vorgänge ist das direkte Produkt entsprechend
seiner Definition (2.16) geradezu prädestiniert. Man vergleiche hierzu die Be-
schreibung von Mehrteilchensystemen in der Quantenmechanik.
Als Basiszustände für T und damit für einen einzelnen Spin dienten in der oben
gewählten Darstellung (siehe (A.8))∣∣si = +1

〉
=

(
1
0

)
und

∣∣si = −1〉 =
(
0
1

)
.

Diese lassen sich im zweidimensionalen Modell weiter verwenden unter Beach-
tung der Definition des direkten Matrizenproduktes: Hiernach werden die Ele-
mente der L beteiligten 2× 2-Matrizen in (A.32) über diese zweikomponentige
Basis berechnet. Etwas eleganter ist die Einführung eines entsprechend definier-
ten tensoriellen Produkts der Vektoren [62]

|s1〉 × |s2〉 × . . .× |sL〉 = |s1, s2, . . . , sL〉 ,

die zudem verständlicher macht, wie der Zustand auf der rechten Seite zu lesen
ist.

In zwei Dimensionen kommt noch die durch V2 beschriebene horizontale Kopp-
lung hinzu. In der oben gewählten Darstellung erhält man für diese [15, 32, 17]

V2 =
L∏
α=1

exp
[
β σz

α σz
α+1

]
. (A.34)

Obigen Überlegungen entsprechend treten auch hier L-fache direkte Produkte
auf, hier mit der Paulimatrix σz . Diese horizontale Kopplung läßt sich anschau-
lich an Abb. A.3 nachvollziehen, wenn man bedenkt, daß sich der Index α in
σz
α auf den Spaltenplatz innerhalb einer Zeile bezieht. Im letzten Term ist die
horizontale RB σz

L+1 = ±σz
1 (periodisch/antiperiodisch) zu berücksichtigen,

die in zwei Dimensionen neu hinzukommt und anders behandelt werden muß
als diejenige in Propagationsrichtung.

Die folgende Abbildung und Aufstellung sollen noch einmal die Änderungen
verdeutlichen, die beim Übergang von einer zu zwei Dimensionen auftreten.
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A. Grenzflächen im eindimensionalen Ising-Modell

�
�
�
�
�
�
�
�

�
1

T

=⇒

�
�
�
�
�
�
�
�

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
1

T

1 L

✻
t

✻
t

✲ x

Abbildung A.3: Übergang zu zwei Dimensionen

D = 1 D = 2

1 Spin auf Kettenpunkt =⇒ L Spins pro Zeile

2 Einstellmöglichkeiten pro Spin =⇒ 2L Einstellmöglichkeiten pro Zeile

2× 2-Transfermatrix T =⇒ 2L × 2L-Transfermatrix P

P = V2 V
′
1

T : Kopplung in vertikaler =⇒ V ′
1 = T × T × . . .× T :

Kettenrichtung Kopplung in vertikaler Richtung
V2 : Kopplung in horizontaler Richtung

L-fache direkte Produkte
einfache Paulimatrix σx =⇒ von Paulimatrizen σx

α , α = 1, . . . , L :
σx
α = 1⊥× 1⊥× . . .× σx × . . .× 1⊥

↑
α-te Stelle

T =
√
2 sinh(2β) · exp

[
β̃ σx ]

=⇒ V ′
1 = [2 sinh (2β)]

L
2 ·

L∏
α=1

exp
[
β̃ σx

α

]
V2 =

L∏
α=1

exp
[
β σz

α σz
α+1

]
142



A.5. Übergang zu zwei Dimensionen

Auswirkungen periodischer RB auf Topologie:

Kette→ Ring =⇒ flaches, rechteckiges Gitter→ Torus .

Als prominentes Beispiel einer Größe beim Übergang von einer zu zwei Dimen-
sionen sei noch einmal an den Spinumkehroperator erinnert:

σx =⇒ σx × σx × . . .× σx = σx
1 · σx

2 · . . . · σx
L .

Anstelle eines einzelnen Kettenpunktes müssen alle Spaltenplätze α = 1, . . . , L
einer Zeile über σx

α angesprochen werden, ihren Spin umzuklappen. Hierzu dient
das angegebene L-fache direkte Produkt.

In Zusammenhang mit den fermionischen Darstellungen im ein- (A.4) sowie
zweidimensionalen Fall (Abschnitt 4.1) kann noch genauer auf die Frage nach
der Anzahl an Dimensionen der zugehörigen Quantensysteme eingegangen wer-
den. Wie in 2.2.10 erläutert wurde, ergibt sich aus dem Vergleich mit dem eu-
klidischen Zeitentwicklungsoperator auf dem Gitter folgender Zusammenhang
zwischen der Transfermatrix V und dem HamiltonoperatorH der Quantentheo-
rie:

V = exp [−H] .

Im zweidimensionalen Ising-Modell wurde die Transfermatrix V aus Gründen
der Zweckmäßigkeit ohne den Vorfaktor in P (2.22) bzw. (A.33) definiert:

P = [2 sinh (2β)]
L
2 · V . (A.35)

Der zugehörige Hamiltonoperator wurde damit in 4.1.6, Gl. (4.60) gefunden zu

H =
∑
k

εk

(
ξ†k ξk −

1
2

)
.

Man erhält somit ein quantenmechanisches System in einer räumlichen Dimen-
sion. Bei Beschränkung auf gerade (4.47) bzw. ungerade (4.48) k-Werte erhält
man genau L Fermionen, die angesichts der Form des Hamiltonoperators als
frei bezeichnet werden können.
Im eindimensionalen Ising-Modell bietet es sich an, analog zu (A.35) (P =
[2 sinh (2β)]

L
2 · V (D=2))

T =
√
2 sinh (2β) · V (D=1)

zu definieren (vgl. (A.32)). Damit ergibt sich nach (A.24) und V = exp[−H]
folgender Hamiltonoperator:

H = 2 β̃
(
σ+σ− − 1

2

)
. (A.36)

Dieser beschreibt ein einzelnes Fermion. Das zugehörige quantenmechanische
System besitzt also keine Raumdimension. Dies entspricht der Aussage in [63].
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A. Grenzflächen im eindimensionalen Ising-Modell

In beiden beschriebenen Modelldimensionen kommt noch eine Zeitentwicklung
hinzu, die obigen Überlegungen entsprechend über exp[−Ht] = V t bzw. mit
t = T über exp[−HT ] = V T vermittelt wird. In der Formulierung einer eu-
klidischen Feldtheorie taucht diese als explizite Dimension auf. Das eindimen-
sionale Ising-Modell weist also in einer quantentheoretischen Formulierung eine
euklidische Raum-Zeit-Dimension auf, und das zweidimensionale Ising-Modell
entsprechend zwei Raum-Zeit-Dimensionen.
Da in der klassischen statistischen Beschreibung die Zeitdimension als räumli-
che Propagationsrichtung der Transfermatrix erscheint (Darstellung I), wurde
diese Raumrichtung in Abb. A.3 und allen anderen Abbildungen stets mit t
gekennzeichnet, um den Bezug zur Zeitentwicklung herauszustellen.

1-D-Ising-Modell 2-D-Ising-Modell

H = 2β̃
(
σ+σ− − 1

2

)
H =

∑
k

εk

(
ξ†k ξk − 1

2

)
1 Fermion L Fermionen

quantenmechanisches System quantenmechanisches System

mit 0 Raum-Dimensionen mit 1 Raum-Dimension

jeweils plus eine

Zeit-Dimension

1 euklidische 2 euklidische

Raum-Zeit-Dimension Raum-Zeit-Dimensionen

Diese Aufschlüsselung soll die in Abschnitt 2.2.10 angedeuteten Zusammen-
hänge verdeutlichen.
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Anhang B

Identitäten am Einheitskreis

B.1 Beweis der Identität (5.15)

Bewiesen wird die Relation

L−1∑
k=0

exp
{
±iπn

2k
L

}
=

{
L für n = sL ,
0 für n �= sL ,

(B.1)

mit n, s ∈ Z, L ≥ 2 ∈ N .

Der Fall L = 1 führt auf die triviale Identität 1 = 1 und wäre durch die obere
Zeile abgedeckt. Er wird aus dem Beweis herausgenommen, um unnötigen Fall-
unterscheidungen vorzubeugen.
Für n = 1 enthält (B.1) die Aussage, daß die Summe über die verschiedenen
L-ten Einheitswurzeln verschwindet [64], was sich geometrisch in der Polardar-
stellung veranschaulichen läßt [57]. Eine derartige Veranschaulichung von (B.1)
bei Potenzierung der Einheitswurzeln mit n �= 1 ist ebenfalls möglich, soll aber
durch den folgenden algebraischen Beweis untermauert werden.
Nach der Moivreschen Formel gilt:

L−1∑
k=0

exp
{
±iπn

2k
L

}
=

L−1∑
k=0

[
cos

(2π
L

nk
)
± i sin

(2π
L

nk
)]

.

Da (B.1) für Real- und Imaginärteil gelten muß, verbleibt zu zeigen:

L−1∑
k=0

sin
(2π

L
nk

)
= 0 , (B.2)

L−1∑
k=0

cos
(2π

L
nk

)
=

{
L für n = sL ,
0 für n �= sL ;

(B.3)

für n, s ∈ Z, L ≥ 2 ∈ N .
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B. Identitäten am Einheitskreis

• Beweis der Sinusrelation (B.2)
Dem Gradstein/Ryshik [58] (Teil I, 1.341 Nr. 1, S. 57) ist folgende Identi-
tät zu entnehmen:

L−1∑
k=0

sin (x+ k y) =
sin

(
x+ L−1

2 y
)
sin

(
L
2 y

)
sin

(
1
2 y

) .

Für x = 0 und y = 2π
L n folgt

L−1∑
k=0

sin
(2π

L
nk

)
=

sin
(
L−1
L nπ

)
sin (nπ)

sin
(
nπ
L

) .

1. Für n = sL ergibt jeder Sinusterm auf der linken Seite bereits Null
und damit die Summe die gewünschte Null; für die rechte Seite er-
hält man im Limes n → sL nach der Regel von l’Hospital durch
Differenzieren nach n ebenfalls Null.

2. Für n �= sL ist bei endlichem L stets sin
(
nπ
L

)
�= 0, so daß die rechte

Seite Null ergibt.
Im Falle L→∞ erhält man nach l’Hospital ebenso Null.

• Beweis der Kosinusrelation (B.3)
Ebenfalls aus [58] (Teil I, 1.341 Nr. 3, S. 58) stammt die Identität

L−1∑
k=0

cos (x+ k y) =
cos

(
x+ L−1

2 y
)
sin

(
L
2 y

)
sin

(
1
2 y

) ,

die für x = 0 und y = 2π
L n lautet:

L−1∑
k=0

cos
(2π

L
nk

)
=

cos
(
L−1
L nπ

)
sin (nπ)

sin
(
nπ
L

) .

1. Für n = sL ist jeder Kosinusterm auf der linken Seite 1 und die
Summe über L dieser Kosinusterme ergibt L; für die rechte Seite
erhält man ebenfalls L, indem man für n→ sL gemäß der Regel von
l’Hospital nach n differenziert.

2. Für n �= sL gilt bei endlichem L stets sin
(
nπ
L

)
�= 0 , so daß die rechte

Seite Null wird.
Der Fall L→∞ ergibt nach l’Hospital ebenfalls Null.
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B.2. Weitere Relationen

B.2 Weitere Relationen

Bewiesen wird die Identität

T−1∑
r1,r2,...,rm=0
jeweils paarweise

verschieden

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
= 0 (B.4)

für T ≥ m+ 1 .

Der Fall m = 1 entspricht der Tatsache, daß die Summe der Einheitswurzeln
verschwindet [64] und wurde bereits in Abschnitt B.1 bewiesen (Gl. (B.1) für
n = 1):

T−1∑
r=0

exp
(
− 2πir

T

)
= 0 für T ≥ 2 . (B.5)

(Für T = 1 ist diese Aussage nicht gültig.)

Aus (B.5) folgt:(
T−1∑
r=0

exp
(
− 2πir

T

))m
= 0

⇔
T−1∑

r1,r2,...,rm=0

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
= 0

⇔
T−1∑

r1,r2,...,rm=0
jeweils paarweise

verschieden

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)

+
T−1∑

r1,r2,...,rm=0
mind. 2 Indizes

gleich

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
= 0 .

Der Beweis von (B.4) reduziert sich damit auf den Beweis der Relation

T−1∑
r1,r2,...,rm=0
mind. 2 Indizes

gleich

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
= 0 . (B.6)

Diese wird bewiesen für genau l gleiche Indizes (2 ≤ l ≤ m), die oBdA mit
1, 2, . . . , l durchnumeriert werden:

T−1∑
r1,r2,...,rm=0

mit r1=r2=...=rl ,
{rl,...,rm} paarweise verschieden

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
=
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B. Identitäten am Einheitskreis

=
T−1∑
r=0

(
exp

(
− 2πir

T

))l T−1∑
rl+1,rl+2,...,rm=0

jeweils paarweise
verschieden

exp
(
− 2πirl+1

T

)
· . . . · exp

(
− 2πirm

T

)
;

aufgrund der Voraussetzungen m ≥ l ≥ 2 und T ≥ m + 1 gilt T ≥ l + 1 > 0
und somit stets l �= sT (s ∈ Z), weswegen nach (B.1)

T−1∑
r=0

(
exp

(
− 2πir

T

))l
=
T−1∑
r=0

exp
{
− iπl

2r
T

}
= 0

folgt. Damit gelten auch (B.6) und (B.4).

B.3 Beweis von (4.102) und (4.103)

Dieser Abschnitt hat seinen Ursprung in [50].
Zum Beweis der in Abschnitt 4.5.1 benötigten Identität (4.102) wird zunächst
folgende Relation bewiesen:

2T−1∏
l

gerade

sinh
(ε

2
± i

ql
2

)
= 2−(T−1) (±i)T (∓i) sinh

(
T

ε

2

)
(B.7)

mit ql =
πl

T
, l = 0, 1, 2, . . . , 2T − 1 .

Hierzu werden die in
2T−1∏

l
gerade

sinh
(ε

2
± i

ql
2

)
=

1
2T

T−1∏
r=0

(
exp

(
+

ε

2
± i

πr

T

)
− exp

(
−ε

2
∓ i

πr

T

))

auftretenden Terme nach Potenzen von exp
(
ε
2

)
geordnet.

In höchster
(
exp

(
T ε2

))
und niedrigster

(
exp

(
− T ε2

))
Ordnung treten auf:

2T−1∏
l

gerade

sinh
(ε

2
± i

ql
2

)
=

1
2T

[
exp

(
T

ε

2

)
· exp

(
± iπ

T−1∑
r=0

r

T

)

T gerade

±
T ungerade

exp
(
−T

ε

2

)
· exp

(
∓ iπ

T−1∑
r=0

r

T

)

+ andere Ordnungen

]
. (B.8)

Mit
T−1∑
r=0

r

T
=

T − 1
2

und exp
(
∓ iπ

T − 1
2

)
=

T gerade

∓
T ungerade

exp
(
± iπ

T − 1
2

)
=

T gerade

∓
T ungerade

(±i)T (∓i)
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B.3. Beweis von (4.102) und (4.103)

folgt:
2T−1∏

l
gerade

sinh
(ε

2
± i

ql
2

)
= 2−(T−1) (±i)T (∓i) sinh

(
T

ε

2

)
+

+ andere Ordnungen . (B.9)

Um (B.7) zu beweisen, verbleibt somit zu zeigen, daß alle anderen Ordnungen
in (B.9) bzw. (B.8) verschwinden.
Für T = 1 treten diese weiteren Ordnungen nicht auf. Ab T ≥ 2 gibt es außer
den in (B.8) angegebenen Ausdrücken Terme O

(
exp

(
± (T − 2) ε2

))
der Form

exp
(
±(T − 2) ε

2

)
·
[
exp

(
± iπ

(
−0 + 1

T + . . .+ T−1
T

) )]
+ exp

(
±(T − 2) ε

2

)
·
[
exp

(
± iπ

(
+0− 1

T + . . .+ T−1
T

) )]
...

+ exp
(
±(T − 2) ε

2

)
·
[
exp

(
± iπ

(
+0 + 1

T + . . .− T−1
T

) )]
(B.10)

= exp
(
±(T − 2) ε

2

)
· exp

(
± iπ

T−1∑
r=0

r

T

)
·

·
[
exp

(
∓ 2πi

T
· 0

)
+ exp

(
∓ 2πi

T
· 1

)
+ · · ·+ exp

(
∓ 2πi

T
· (T − 1)

)]

= exp
(
±(T − 2) ε

2

)
· exp

(
± iπ

T−1∑
r=0

r

T

)
·
T−1∑
r=0

exp
(
∓ 2πi

T
· r

)
= 0 ;

diese ergeben Null, da nach (B.5) bzw. (B.1)
T−1∑
r=0

exp
(
∓ 2πi

T
· r

)
= 0

für T ≥ 2 gilt.

Im Allgemeinen treten ab T ≥ m + 1 neue Terme auf, die aufgrund mehre-
rer Minuszeichen im Exponenten von (B.10) den Faktor

T−1∑
r1,r2,...,rm=0
jeweils paarweise

verschieden

exp
(
− 2πir1

T

)
· exp

(
− 2πir2

T

)
· . . . · exp

(
− 2πirm

T

)
= 0

enthalten, der nach (B.4) für T ≥ m + 1 Null ergibt; die Indizes müssen paar-
weise verschieden sein, da die Minuszeichen vor verschiedenen Summanden im
Exponenten (vgl. (B.10)) auftreten.

Die in (B.9) genannten anderen Ordnungen verschwinden somit allesamt, und
(B.7) ist bewiesen.
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B. Identitäten am Einheitskreis

Mithilfe der Umformung

cosh (ε)− cos (ql) = 2 sinh
(ε

2
+ i

ql
2

)
· sinh

(ε

2
− i

ql
2

)
(B.11)

folgt unter Verwendung von (B.7) die zu beweisende Identität (4.102):

2T−1∏
l

gerade

{
cosh (ε)− cos (ql)

}
= 2−(T−2) sinh2

(
T

ε

2

)
.

Zum Beweis der Relation (4.103) wird analog zu (B.7) bewiesen:

2T−1∏
l

ungerade

sinh
(ε

2
± i

ql
2

)
= 2−(T−1) (±i)T cosh

(
T

ε

2

)
. (B.12)

Daraus folgt mit (B.11) die Identität (4.103)

2T−1∏
l

ungerade

{
cosh (ε)− cos (ql)

}
= 2−(T−2) cosh2

(
T

ε

2

)
.

Die in Abschnitt 4.5.2 benötigten Identitäten (4.109) und (4.110) finden sich
völlig analog.
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Anhang C

Verzweigungspunkte und
Schlitze

h(z) aus (5.21) mit z ∈ C enthält einen Wurzelausdruck der Form√
w(z)2 − 1

mit w(z) = cosh(m0) + 1− cos(πz) . (C.1)

Für
√

w(z)2 − 1 (ein beliebtes Standardbeispiel) liegen die Verzweigungspunk-
te bei w = ±1; der Schlitz in der w-Ebene kann (wahlweise) wie in Abb. C.1
gelegt werden [57].

✻

✲

	w

� ���������������������������
−1 +1

Abbildung C.1: Schlitze und Verzweigungspunkte von h(z) in der w-Ebene
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C. Verzweigungspunkte und Schlitze

Aus w(z) = ±1 lassen sich mit (C.1) die Verzweigungspunkte in der z-Ebene
berechnen:

w(z) = +1 ⇔ cosh(m0) + 1− cos(πz) = +1
⇔ cosh(m0) = cosh(iπz)

⇔ z1 = + i
m0

π
, z2 = − i

m0

π
;

w(z) = −1 ⇔ cosh(m0) + 1− cos(πz) = −1
⇔ cosh

[
2(β + β̃)

]
− 1− cos(πz) = −1

⇔ cosh
[
2(β + β̃)

]
= cosh(iπz)

⇔ z3 = + i
2(β + β̃)

π
, z4 = − i

2(β + β̃)
π

;

dabei ist |z1/2| ≤ |z3/4| .

Die Lage des Schlitzes in der z-Ebene erschließt sich aus dem Verhalten der
Funktion w(z) in der Nähe der Verzweigungspunkte z1-z4; zu diesem Zweck
wird w(z) um diese mit kleinem τ > 0 nach Taylor entwickelt:

w(z1 ± iτ) = +1 ∓ π sinh(m0) · τ + O(τ2) , (C.2)

w(z2 ± iτ) = +1 ± π sinh(m0) · τ + O(τ2) , (C.3)

w(z3 ± iτ) = −1 ∓ π sinh
[
2(β + β̃)

]
· τ + O(τ2) , (C.4)

w(z4 ± iτ) = −1 ± π sinh
[
2(β + β̃)

]
· τ + O(τ2) . (C.5)

Darüber hinaus ist

w(iy) = cosh(m0) + 1− cosh(πy) . (C.6)

Verfolgt man nun die in Abb. C.2 gezeigten Wege ©1 −©4 und ©5 −©8 entlang
der imaginären Achse in der z-Ebene, so entsprechen sie in der w-Ebene nach
(C.2)-(C.6) den in Abb. C.3 eingezeichneten auf der reellen Achse.
Aus der bekannten Lage der Schlitze in der w-Ebene kann auf diese Weise auf
deren Lage in der z-Ebene geschlossen werden; sie sind in Abb. C.2 bzw. im
Haupttext in Abb. 5.3 eingezeichnet.

Für die Funktion ln
[
w(z) +

√
w2(z)− 1

]
kommt noch aufgrund des Loga-

rithmus ein Verzweigungspunkt im Unendlichen der w-Ebene hinzu [57] (Null
ist hier kein Verzweigungspunkt, da das Argument nie Null werden kann). Da-
her reicht bei entsprechender Wahl der Schlitz in der w-Ebene zusätzlich bis
nach −∞ und gemäß obigen Überlegungen dementsprechend in der z-Ebene
bis nach + i∞ in der oberen Halbebene und nach − i∞ in der unteren.
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Abbildung C.2: Bewegung auf imaginärer Achse in der z-Ebene
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Anhang D

Parametrisierungsschema

Die komplexen Kurvenintegrale

Ji =
∫
Γi

h(z) exp(iLπz) dz

aus Abb. 5.4, die hier zur Verdeutlichung noch einmal als Abb. D.1 aufgeführt
ist, lauten in geeigneter Parametrisierung:

J1 = I =

+1∫
−1

h(s1) exp(iLπs1) ds1 ,

J2 =

d∫
0

h(is2 − 1) exp(−Lπs2) exp(−iLπ) i ds2 ,

J3 =

−η∫
−1

h(id+ s3) exp(iLπs3) exp(−Lπd) ds3 ,

J4 =

m0/π∫
d

h(is4 − η) exp(−Lπs4) exp(−iLπη) i ds4 ,

J5 =

d∫
m0/π

h(is5 + η) exp(−Lπs5) exp(+iLπη) i ds5 ,

J6 =

+1∫
+η

h(id+ s6) exp(iLπs6) exp(−Lπd) ds6 ,

J7 =

0∫
d

h(is7 + 1) exp(−Lπs7) exp(+iLπ) i ds7 .

Der Hilfsweg Γ̃ verschwindet im Limes η → 0.
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Es gilt somit: I = lim
η→0

7∑
i=2

Ji .

Aufgrund der Periodizität von h (5.21) ist

h(is− 1) = h(is+ 1) ,

so daß sich wegen der entgegengesetzten Laufrichtung die Integrale über die
Wege Γ2 und Γ7 gegenseitig aufheben:

J2 + J7 = 0 .

Da h(id+ s) in J3 und J6 lediglich von der Ordnung O(d) ist, und folglich der
Betrag des Integranden vom exp(−Lπd)-Term dominiert wird, verschwinden
diese Integrale für d→∞ nach Standardabschätzung:

lim
d→∞

J3 = lim
d→∞

J6 = 0 .

155



D. Parametrisierungsschema

Im Limes η → 0, d→∞ verbleibt somit die Integration entlang des linken und
rechten Schlitz-Ufers:

I = lim
η→0

lim
d→∞

(J4 + J5)

= i

∞∫
m0/π

lim
η→0

{
h(is+ η)− h(is− η)

}
exp(−Lπs) ds . (D.1)
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Anhang E

Gammafunktionen

Im Kapitelabschnitt 5.3 werden folgende Integrale benötigt [59]:
∞∫
0

1√
r
exp(−Lπr) dr =

Γ(12)√
Lπ

=
1√
L
;

∞∫
0

√
r exp(−Lπr) dr =

Γ(32)
(Lπ)3/2

=
1
2π
· 1
L3/2

;

∞∫
0

r3/2 exp(−Lπr) dr =
Γ(52)
(Lπ)5/2

=
3
4π2

· 1
L5/2

;

∞∫
0

r5/2 exp(−Lπr) dr =
Γ(72)
(Lπ)7/2

=
15
8π3

· 1
L7/2

;

∞∫
0

r7/2 exp(−Lπr) dr =
Γ(92)
(Lπ)9/2

=
105
16π4

· 1
L9/2

;

∞∫
0

r9/2 exp(−Lπr) dr =
Γ(112 )
(Lπ)11/2

=
945
32π5

· 1
L11/2

.

Dabei wurde benutzt:

Γ(12) =
√
π und Γ(x+ 1) = x · Γ(x) .

Da diese in Kapitel 6.4 benötigt werden, seien sie einzeln aufgeführt:

Γ(32) =
√
π

2
, Γ(52) =

3
4
√
π , Γ(72) =

15
8
√
π ,

Γ(92) =
105
16
√
π , Γ(112 ) =

945
32
√
π , Γ(132 ) =

10395
64

√
π .

Eine Substitution auf Gauß-Integrale liefert übrigens dieselben Ergebnisse.
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