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»Nicht so viel Interessantes...aufSer Onsagers exakter Losung des
zweidimensionalen Ising-Modells.

Dies antwortete Wolfgang Pauli auf die Anfrage von H.B.G. Casimir, der auf-
grund des Zweiten Weltkriegs von den aktuellen Entwicklungen der Theore-
tischen Physik abgeschnitten war, was sich auf diesem Gebiet ereignet habe

1, 2].
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Kapitel 1

Einleitung

1.1 Zum Thema

Aus der Quantenfeldtheorie und der Statistischen Physik sind Systeme bekannt,
die spontane Symmetriebrechung zeigen. Als veranschaulichendes Beispiel die-
ses Phinomens aus der Alltagswelt diene ein Holzbalken, der senkrecht auf dem
Wasser schwimmend mit der Hand festgehalten werde. Durch Loslassen gerét
der Holzbalken (eine geeignete Priparation vorausgesetzt) in eine instabile Lage
und wird in eine beliebige Richtung wegkippen, die ihm eine stabile Lage ver-
spricht. Dadurch, daB er letztlich in nur eine der ihm dargebotenen Richtungen
wegkippt, wird die Symmetrie spontan gebrochen.

Liegt eine solche spontane Symmetriebrechung vor, kénnen verschiedene Pha-
sen, die das System annehmen kann, einzeln existieren oder auch nebeneinan-
der koexistieren, wobei sie durch eine Grenzfldche voneinander getrennt werden.
Man denke sich hierzu einen Ferromagneten, in welchem unterhalb der Curie-
Temperatur T¢ verschiedene riumliche Bereiche vorliegen, die ein entgegenge-
setztes Vorzeichen in der Magnetisierung aufweisen und als Weiflsche Bezirke
experimentell beobachtbar sind. Ebensogut mag man sich ein Gemisch zweier
Fliissigkeiten vorstellen, welches unterhalb einer kritischen Temperatur Te in
zwei Phasen separiert, in denen jeweils eine Fliissigkeitssorte iiberwiegt (z.B.
Cyclohexan und Anilin, Te = 30,9 °C [3]).

Als prominentes Beispiel aus dem Bereich der Feldtheorie sei hierzu die ¢*-
Theorie in der Phase gebrochener Symmetrie genannt. Auf dem Gebiet der
Elementarteilchenphysik steuert diese iiber den Higgs-Mechanismus einen wich-
tigen Bestandteil zum heutigen Standardmodell bei; sie ist aber auch weit ver-
breitet zur Beschreibung von Phaseniibergéngen im Rahmen einer statistischen
Feldtheorie.

Seitens einer rein statistischen Beschreibung ist spontane Symmetriebrechung
aber auch im Ising-Modell anzutreffen, welches sich unter der Annahme inter-
agierender néchstbenachbarter Spins, die nur zwei diskrete Zustdnde s = 41
(,up“und ,down®) annehmen kénnen (Abb. 1.1), zu einem Standardmodell in
der Statistischen Physik entwickelt hat. Das Ising-Modell nimmt bis heute eine
Ausnahmestellung ein aufgrund seiner analytischen Losbarkeit in zwei Dimen-
sionen bei gleichzeitiger Beinhaltung eines Phaseniibergangs. Wie bereits Ising
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selber 1925 in [4] resiimierte, tritt dieser in einer Dimension nicht auf; den
zweidimensionalen Fall konnte er allerdings noch nicht 16sen. Die exakte Lo-
sung in zwei Dimensionen blieb Onsager [9] 1944 vorbehalten, nachdem sich in
den vorangehenden Jahren Hinweise auf einen Phaseniibergang gehduft hatten
[5, 6, 7, 8]. Da bis jetzt noch keine analytische Losung in drei und hoheren
Dimensionen vorliegt, gilt gerade dem zweidimensionalen Ising-Modell ein be-
sonderes Interesse, mit dem sich auch die vorliegende Arbeit beschéftigt.
Finem historischen Riickblick auf die Geschichte des Ising-Modells ist der Ab-
schnitt 1.3 gewidmet.

Abbildung 1.1: Zweidimensionales Ising-Modell (L x T): Die auf den Gitter-
punkten anséssigen Spins verfiigen iiber zwei Einstellmoglichkeiten, wobei iiber
eine Kopplung J Wechselwirkungen zwischen benachbarten Spins bestehen

Die spontane Symmetriebrechung macht sich nun folgendermafien im Ising-
Modell bemerkbar [10]:

Im unendlichen Volumen (L,T — oo) und unterhalb der kritischen Tempera-
tur existieren zwei energetisch entartete Grundzusténde |+) und |—), die einen
nichtverschwindenden Spin-Erwartungswert (s) = 4+p mit g >0 aufweisen und
einer grofftmoglichen Magnetisierung in beiden Vorzeichen Rechnung tragen:

(Hlsl+) = +u, (=lsl=) = —n. (1.1)

Die Symmetrie s — —s ist dadurch spontan gebrochen. Im endlichen Volumen
findet hingegen wohlbekanntermafien keine spontane Symmetriebrechung statt
[11]: Infolge von Tunnelprozessen (Umklapprozessen) wird die Entartung auf-
gehoben und es existiert vielmehr ein einzelner und eindeutiger Grundzustand
|0+), in welchem der Erwartungswert (s) = 0 verschwindet. Die Energie die-
ses unter der Transformation s — —s symmetrischen Grundzustands |0+) liegt
nun gerade um die Energieaufspaltung AF tiefer als die des antisymmetrischen
ersten angeregten Zustands [0—).
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Diese Zustinde lassen sich als folgende Uberlagerungen darstellen [10]

1 1
0+) = —(|+) +|—)), 0—) = —(|+) — |—)), 1.2
0+) ﬁ(|>\>) 0-) \/5(!>|>) (1.2)
wobei dann |+) und |—) diejenigen Zusténde reprisentieren, die im Limes un-
endlicher Systemgrofle gegen die entarteten Vakua konvergieren. In diesem Li-
mes finden die mit wachsendem Volumen rasch abnehmenden Tunnelprozesse
nicht mehr statt.

Die als Liicke im Spektrum auftretende Energieaufspaltung
AE = FEyg_ — Eygt (1.3)

offenbart sich somit als charakteristische Grofle, die es gestattet abzulesen, ob
eine spontane Symmetriebrechung vorliegt (AE = 0) oder nicht (AE > 0), in
dem Sinne, daf} sie angibt, wann eine Entartung der beiden energetisch niedrig-
sten Zustidnde eintritt.

Diese vollzieht sich gemif obigen Uberlegungen offensichtlich im Limes un-
endlicher Systemgrofe limy 7_..c AE = 0, wobei die Frage, wie dieser Limes
vonstatten geht, freilich noch unbeantwortet bleibt. Im Rahmen der vorliegen-
den Arbeit wird dieses Verhalten der Energicaufspaltung beim Ubergang vom
endlichen zum unendlichen System néher untersucht. Insbesondere wird ein ex-
pliziter Ausdruck gesucht, der iiber die Angabe des Limes AE — 0 hinausgeht:
Vielmehr soll sich explizit ablesen lassen, wie die Energieaufspaltung kontinu-
ierlich mit zunehmender Anzahl an Freiheitsgraden gegen Null geht.

Diese Zusammenhinge sind iibrigens ebenfalls in der eingangs erwihnten ¢*-
Theorie wiederzufinden [12], die einen allgemeineren Feldbegriff ¢ verwendet,
der aber jederzeit mit dem lokalen Ordnungsparameter wie der spontanen Ma-
gnetisierung oder der Konzentrationsdifferenz zweier Fliissigkeiten inhaltlich
gefiillt werden kann. Diese Analogie begriindet sich dahingehend, daf die ¢*-
Theorie im Limes einer unendlich starken bloflen Selbstkopplung das Ising-
Modell be-inhaltet [13]. Die Analogie zwischen diesen Modellen dufert sich
auch in Hinblick auf die Universalitétshypothese [14], nach welcher die Viel-
falt physikalischer Systeme im kritischen Bereich in eine relativ kleine Anzahl
an Universalitédtsklassen zerfallt, innerhalb derer sich universelle Eigenschaften
gleichen. Wie auch so manch reales System, beispielsweise das oben beschriebene
Fliissigkeitsgemisch, ist die feldbeschreibende ¢*-Theorie in derselben Univer-
salitdtsklasse [10, 12] wie das Ising-Modell anzusiedeln, welches eine statistische
Beschreibung auf mikroskopischer Ebene vornimmt.

Diese statistische Beschreibung des Ising-Modells aus den grundlegenden Mo-
dellannahmen heraus zu entwickeln und dabei die oben angedeuteten Zusam-
menhénge aufzufinden wird den Verlauf dieser Arbeit prigen.

Nachfolgend wird ein Uberblick iiber die in dieser Arbeit abgehandelten The-
matiken gegeben, welcher ausfiihrlich konzipiert ist und somit bei der Lektiire
als Leitfaden dienen kann.
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1.2 Uberblick iiber diese Arbeit

Die Grundlage zur analytischen Behandlung des zweidimensionalen Ising-Modells
stellt die Onsager-Losung [9] dar, die in Kapitel 2 vorgestellt wird, allerdings
in der eleganteren Formulierung von Kaufman [15], die iiber Spindarstellun-
gen von Drehungen auf direktere Weise zu denselben Ergebnissen gelangt, und
welche im Folgenden als Onsager-Kaufman-Losung bezeichnet sein soll. Das
Herzstiick dieser algebraischen Herangehensweise stellt der Transfermatrixfor-
malismus dar, welcher es gestattet, die Losung des Modells auf ein Eigenwert-
problem zu reduzieren: Die Zustandssumme als zentrale Gréfle schreibt sich
(bis auf eine wohldefinierte Konstante) in diesem Formalismus als Spur iiber
die T-fache Potenz eben der Transfermatrix V'

7' = Sp(v7h), (1.4)

die es somit zu diagonalisieren gilt. Dahinter verbirgt sich der kettengliedweise
Transfer entlang einer Reihe, die aus T' physikalischen Elementen besteht; an-
gewandt auf das Ising-Gitter in Abb. 1.1 bedeutet dies, dafl die Transfermatrix
auf einer Zeile dieses Gitters definiert wird und anschliefend in 7' Schritten
zeilenweise durch das gesamte Gitter wandert, wodurch sémtliche Anordnungs-
konfigurationen berticksichtigt werden und woraus sich schliefflich die Zustands-
summe ergibt.

Es erfolgt zunéchst eine ausfiihrliche Diagonalisierung fiir periodische Randbe-
dingungen. Diese bewirken eine Aufteilung der Zustandssumme

T

Zi = sz (Y] 4 sp|za-0) () (15)

symmetrischer Anteil antisymmetrischer Anteil

in einen symmetrischen und einen antisymmetrischen Anteil, welche jeweils iiber
einen Projektor (14 U) angewéhlt werden. Die Symmetrie U hat hierbei die
physikalische Bedeutung einer Spinumkehr s — —s in einer gesamten Zeile des
Ising-Gitters.

Die Diskussion der auch graphisch dargestellten Eigenwerte wird ergeben, dafl
die Zustandssumme durch zwei grofite Eigenwerte Ag4 und Ag— dominiert wird.
Ubereinstimmend mit dem Frobenius-Perron-Theorem [11] wird im endlichen
Gitter (L < o0) der aus dem symmetrischen Anteil stammende Eigenwert Aot
stets etwas grofer sein. In einem Gitter unendlicher Grofie (L — oo) hingegen
tritt eine Entartung limy o Aoy = limp oo Ao~ ein. Damit liegt genau die
eingangs erwdhnte Situation vor.

Um die Formulierung auf Energieeigenwerte umzumiinzen, bedient man sich
des Zusammenhangs [16]

V = exp[-H], (1.6)

welcher die Transfermatrix mit dem zugehorigen Hamiltonoperator H aus der
Quantentheorie verkniipft. Hieriiber kristallisiert sich nun gerade das Vorhan-
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densein einer Energieaufspaltung (,spectral gap®)

AE = Ey_ — Eoy (1.7)
mit lim AE = 0 (1.8)

im zweidimensionalen Ising-Modell heraus. Dessen Berechnung wird den Fort-
gang dieser Arbeit prigen.

Zunéchst werden analytische Rechnungen die Randbedingungen betreffend durch-
gefiihrt, die iiber den Zusammenhang der Energieaufspaltung mit Grenzflichen
motiviert werden. Letztere lassen sich in die Losung des Ising-Modells mittels
antiperiodischer Randbedingungen einbauen, welche sich von den periodischen
Randbedingungen durch einen zusétzlichen Spinumklapp s — —s unterschei-
den. Basierend auf der Onsager-Kaufman-Losung werden in Kapitel 3 Modifi-
kationen in den Randbedingungen und deren Auswirkungen auf die Zustands-
summen Z, ., (Tab. 1.1) untersucht. Uber den beteiligten Spinumkehroperator
U treten vor allem Verinderungen in den Projektoren %(1 + U) auf. Entspre-
chend den vier verschiedenen Zustandssummen ist von vier Sektoren die Rede.
Dieses Kalkiil wird in zwei Darstellungen durchgefiihrt, die sich in der Pro-
pagationsrichtung der Transfermatrix unterscheiden, aber letztlich gegenseitig
bestétigen.

| Sektor | Zrr | T 7 | RB in 2-Richtung | RB in {-Richtung
++ A +1 +1 periodisch periodisch
+— Ly +1 -1 periodisch antiperiodisch
—+ Z_4 -1 +1 antiperiodisch periodisch
—— Z__ -1 -1 antiperiodisch antiperiodisch

Tabelle 1.1: Uberblick iiber die Randbedingungen und Sektoren Z,, .,

Kapitel 4 stellt mit der fermionischen Darstellung nach Schultz, Mattis und Lieb
[17] eine interessante Losungsalternative des zweidimensionalen Ising-Modells
vor, an der sich die bislang beschriebenen Eigenschaften wiederfinden und zu-
gleich veranschaulichen lassen. Ausgehend von der Transfermatrix, wie sie von
Onsager und Kaufman iiber Paulimatrizen formuliert wurde, kann diese nach
einer Basistransformation in Erzeugern und Vernichtern ausgedriickt werden.
Mittels einer Jordan-Wigner-Transformation [18] gelingt es, verbleibende boso-
nische Freiheitsgrade zu fermionisieren, so daf} sich die Transfermatrix vollstén-
dig iiber Fermionoperatoren darstellen 148t, die den gewohnten Antikommuta-
torrelationen geniigen. Nach erfolgter Diagonalisierung ergibt sich ein Hamil-
tonoperator, der in duflerst einfacher Gestalt freie Fermionen repréisentiert:

H = ) & (f;:ﬁk - %) : (1.9)
K

Hierbei sind 5,1 und & Fermion-Erzeuger und -Vernichter, und ¢, steht fiir die
Energien einzelner Fermionen, wéihrend iiber die moglichen Impulswerte sum-
miert wird. Diese Form des Hamiltonoperators erlaubt nun duflerst pragnante
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Veranschaulichungen. Insbesondere kann das Energiespektrum nach (1.9) durch
Fermionanregungen aus den jeweiligen Vakua erklirt werden. Einzelheiten wer-
den hierzu in 4.1.6 behandelt.

Da sich in dieser fermionischen Darstellung rein algebraische Ausdriicke aus
der Onsager-Kaufman-Losung veranschaulichen lassen, ergénzen sich diese Lo-
sungsvarianten geradezu gegenseitig in den inhaltlichen Zusammenhéngen und
eignen sich daher fiir den gemeinsamen parallelen Gebrauch. Abschnitt 4.2 hélt
eine tabellarische Ubersicht bereit.

Nach der erneuten und bestéitigenden Aufstellung der Sektor-Zustandssummen
Zr,r, tritt hier noch ein anderer Typ von Zustandssummen zutage, ndmlich die
fermionischen Zustandssummen Z¥. Diesen liegen nicht die Konfigurationen der
Ising-Spins zugrunde, sondern sind auf die Fermionen an sich bezogen. Diese
erschlieflen sich aus grassmannwertigen Integralen [19, 20|, kénnen aber un-
ter geschickter Ausnutzung der Grassmann-Algebra direkt aufgestellt werden
[21], wobei auch hier wieder vier Sektoren Z{ . mit unterschiedlichen Randbe-
dingungen auftreten. Diese fermionischen Zustandssummen Z; ., lassen sich in
Beziehung zu den Spin-Zustandssummen Z, ., setzen und in Doppelprodukte
umwandeln, welche eine besondere L-T-Symmetrie aufweisen. Letztere ist sehr
aufschlufireich, insbesondere was das Kalkiil aus Kapitel 3 betrifft.

Kapitel 5 widmet sich schliellich der expliziten Berechnung der Energieauf-
spaltung AFE bei einer groflen Anzahl an Freiheitsgraden, sprich grofien L.
Unter Riickgriff auf die in Kapitel 3 erzielten Ergebnisse 148t sich zunéchst ein
Trend absehen, welcher auf eine enge Verkniipfung mit der Grenzflichenspan-
nung o hinweist [10, 12, 22]. Diese 148t sich iiber die Differenz der reduzierten
Freien Energien in den Sektoren F;_ und F definieren [23, 24]:

c = lim lim Fyo = Py —|-lnT‘
T—oo0 L—oo L

(1.10)

Aus der Betrachtung dominanter Beitréige ergibt sich damit folgende Vorhersage
im Falle grofler L:

AE ~ exp(—Lo). (1.11)

Eventuelle Vorfaktoren, die lediglich noch potenzartig von L abhéngen, ver-
schwinden in der Limesbildung und lassen sich hieraus noch nicht gewinnen.
Genau diese gilt es aber im weiteren Verlauf zu bestimmen.

Ein moglicher Ansatzpunkt, die Energieaufspaltung genauer unter die Lupe zu
nehmen, betrifft die Energieliicke AE = FEy_ — Ey. an sich. Schwierigkeiten,
die sich aus der getrennten Limitenbildung (limz o Eot = limy o Ep—) ergé-
ben, werden von Privman und Fisher [25] geschickt umgangen, indem sie den
Gesamtausdruck nach Fourierkoeffizienten entwickeln, unter denen fiir grofie L
bereits der niedrigste Koeffizient c¢;, mafigeblich dominiert:

AE = -—-L ZC(2j+1)L = —Le¢y, [1+O(Korrekturen)} . (1.12)
=0



1.2. Uberblick tiber diese Arbeit

Der verbleibende Integralausdruck AE = —L ¢, wird nach einer Verschiebung
des Integrationsweges in die komplexe Ebene auf eine Konturintegration langs
eines Schlitzes gefiihrt, welche im Rahmen einer Sattelpunktsentwicklung ausge-
wertet wird und schlieflich den erhofften Ausdruck fiir die Energieaufspaltung
in sich birgt.

Fin alternativer Ansatz zur Berechnung der Energieaufspaltung wird in Kapitel
6 verfolgt. Wahrend diese zuvor grundlegend als Energieliicke behandelt wurde,
wird nun deren Zusammenhang mit Grenzflichen direkt aufgegriffen, welcher
unter Hinzunahme der fermionischen Losungsmethode tiefgreifend aufgedeckt
werden kann. In dieser finden sich Grenzflichen als angeregte Fermionen wieder,
wie bereits Beobachtungen bei der Jordan-Wigner-Transformation offenbaren.
Im Speziellen wird das Verhéltnis der Zustandssummen % mit und ohne einer
Grenzflache nach Fermion-Beitrigen charakterisiert. Mehrfache Grenzflichen-
Anordnungen werden hierbei in den Zustandssummen vernachléssigt, womit
eine Einschriankung auf die niedrigsten 0- und 1-Fermion-Anregungen einher-
geht.

Fiir eine grole Anzahl an Freiheitsgraden findet sich unter diesen Annahmen
fiir die Energieaufspaltung das folgende Integral iiber die Konfigurationen der
Ein-Fermion-Energien |e(x)|

+1

AE = /dx exp [— |e(x)| - T] , (1.13)
“1

wodurch eine alternative Darstellung dieser Grofle gegeben ist (aus formalen
Griinden weist AE hierbei eine L-T-Vertauschung gegeniiber AFE auf).

Dieses Integral wird ebenfalls im Rahmen einer Sattelpunktsentwicklung ausge-
wertet und bestéatigt schliellich das frithere Ergebnis fiir die Energieaufspaltung
bestens. Dariiber hinaus kénnen noch sehr interessante analytische Beziehungen
gefunden werden, iiber welche sich die doch recht unterschiedlichen Verfahren
aus Kapitel 5 und 6 ineinander {iberfiithren lassen.

Kapitel 7 schliefit restimierend diese Arbeit ab.

Nachfolgend sind diverse Anhénge aufgefiihrt, von denen vor allem Anhang A
hervorgehoben sei. Dieser behandelt einige im Hauptteil vorgebrachte Berech-
nungen anhand des eindimensionalen Ising-Modells, wodurch sie eine ungleich
einfachere und tibersichtlichere Struktur erhalten.
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1.3 Historisches

1920 entwickelte Wilhelm Lenz in Rostock mit seiner Arbeit ,,Beitrag zum Ver-
stéindnis der magnetischen Erscheinungen in festen Korpern“[26] eine Modell-
idee zur mikroskopischen Beschreibung des Ferromagnetismus. Insbesondere
sollte geklédrt werden, wie sich eine spontane Magnetisierung ohne ein von au-
Ben angelegtes Magnetfeld ausbilden kann, welches dem Phaseniibergang zwi-
schen der para- und ferromagnetischen Phase gleichkommt. Die Grundidee be-
stand darin, auf Gitterplédtzen lokalisierte Elemente (,,Spins“) mit ihren néichsten
Nachbarn wechselwirken zu lassen, wobei jedes Element nur zwei Zusténde ein-
nehmen kann (,spin up“und ,spin down*). Uber die Wechselwirkung werden
gleiche Zustédnde benachbarter Elemente (d.h. die Parallelstellung der Spins)
energetisch bevorzugt. Mittlerweile in Hamburg seinen Forschungen nachge-
hend, iibertrug er seinem Studenten Ernst Ising die Aufgabe, dieses Modell ma-
thematisch auszuarbeiten. Ising behandelte den eindimensionalen Fall in seiner
Dissertationsschrift [27] und verdffentlichte seine Resultate 1925 [4]. Er fand
keinen Phaseniibergang in einer Dimension, konnte das zweidimensionale Mo-
dell allerdings nicht 16sen. Dieses negative Ergebnis war fiir die Beteiligten Lenz
und Ising eine Enttduschung. Insbesondere sagte die Weifische Theorie den er-
hofften Phaseniibergang auch in einer Dimension voraus; dafl letztere auf der
Mean-Field-Ndherung (dt.: Molekularfeldnéherung) beruhende Theorie gerade
die Fluktuationen vernachléissigt, die den Phaseniibergang in einer Dimension
verhindern, wurde damals noch nicht erkannt. Dadurch wurde diesem Modell,
das spéter unter dem Namen Ising-Modell Berithmtheit erlangen sollte, zunéchst
wenig Beachtung geschenkt. Die einzige zeitgendssische Zitierung stammt aus
dem Jahre 1928 von Werner Heisenberg [28], der aufgrund des vermeintlichen
Versagens seitens Lenz und Ising eine kompliziertere Formulierung der Wechsel-
wirkungen wiéhlte, diese dann allerdings, wenn auch erfolgreich, in der Mean-
Field-Theorie abhandelte. Historisch riickblickend bringt S.G. Brush [29] die
inbegriffene Ironie treffend zum Ausdruck, indem er anmerkt, daf§ in Umkeh-
rung der iiblichen wissenschaftlichen Vorgehensweise zuerst das kompliziertere
Heisenberg-Modell ausgiebig untersucht wurde, und man sich erst spater dem
einfacheren Ising-Modell zuwandte.

Es dauerte ndmlich bis 1936, ehe man die Bedeutung der Dimensionalitét er-
kannte: Rudolf Peierls lieferte in seiner Arbeit ,,On Ising’s Model of Ferroma-
gnetism“ [5], ohne das Modell 16sen zu koénnen, den Existenzbeweis fiir einen
Phaseniibergang in zwei Dimensionen. Dies bedeutete eine schlagartige Wie-
derbelebung dieses zunichst vergessenen Modells; vermutlich hat Peierls auch
den Namen , Ising-Modell* geprigt.

(Hierzu gab es noch spéte Nachtrige: Griffiths [30] présentierte 1964(!) eine
modifizierte Version dieses Beweises, nachdem diverse Autoren [29] auf eine feh-
lerhafte Abschétzung in Peierls’ Originalbeweis hingewiesen hatten, den Peierls
[31] jedoch 1966 als unbedeutend abtat.)

In den Folgejahren nach Peierls’ Veroffentlichung ging man entsprechend inten-
siv auf die Suche nach einer analytischen Losung in zwei Dimensionen, die sich
allerdings als auflerordentlich schwierig herausstellte. Anfang der 40er Jahre
fand man den Transfermatrixformalismus [6, 7, 8] als geeignetes algebraisches
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Hilfsmittel, der die Losung auf die Diagonalisierung der Transfermatrix bzw. auf
deren Eigenwertbestimmung reduziert. Innerhalb dieses Formalismus gelang es
Kramers und Wannier 1941 unter Verwendung einer sog. Dualitdtstransforma-
tion zwischen Hoch- und Tief-Temperaturbereich [6], den kritischen Punkt T¢
zu bestimmen, an dem der Phaseniibergang stattfindet. Die Hinweise auf einen
solchen verdichteten sich also zusehends.

Diese Entwicklung gipfelte 1944 in der exakten Losung des zweidimensionalen
Ising-Modells durch Lars Onsager [9], der ein hoher Stellenwert beizumessen ist.
Unter anderem zeigt sie, dafl die statistische Physik in der Lage ist, Phaseniiber-
génge zu beschreiben, ohne auf Naherungsmethoden zuriickgreifen zu miissen,
wobei das Ising-Modell bis heute das einzige nicht-triviale Modell geblieben ist,
bei welchem dies gelingt. Allerdings mufl man sich auf zwei Dimensionen und
ein verschwindendes dufleres Magnetfeld beschridnken, da fiir die sonstigen Fal-
le bis heute noch keine analytische Losung vorliegt. Insofern nimmt gerade das
zweidimensionale Ising-Modell eine Ausnahmestellung in der statistischen Phy-
sik ein.

Obwohl nun eine exakte Losung zur Verfiigung stand, blieb doch ein gewisses
Unbehagen beziiglich der aufwendigen und schwer nachzuvollziehenden Vorge-
hensweise Onsagers. Eine bedeutende Vereinfachung der urspriinglichen Onsager-
Losung stammt 1949 von Bruria Kaufman [15], die mit Hilfe von Spindarstel-
lungen eleganter und leichter nachvollziehbar dasselbe Ergebnis erzielte. Eine
didaktische Aufbereitung findet sich in [32].

Nicht unerwahnt bleiben soll die Herleitung der spontanen Magnetisierung, des
interessierenden Ordnungsparameters, durch C.N. Yang [33] aus dem Jahre
1952, die den Phaseniibergang eindeutig und endgiiltig untermauerte.

In den nachfolgenden Jahren kam die sog. kombinatorische Losung auf, die auf
topologischem Geschick und Pfaffschen Normalformen beruht und mittlerweile
in den meisten Lehrbiichern zu finden ist (in dieser Arbeit aber keine Rolle
spielen wird). Die ersten Ideen hierzu stammen von van der Waerden [34] sowie
Kac und Ward [35].

Eine weitere exakte Losung des zweidimensionalen Ising-Modells, der in dieser
Arbeit eine ebenso zentrale Bedeutung wie derjenigen nach Onsager und Kauf-
man zukommen wird, wurde 1964 von Schultz, Mattis und Lieb entwickelt.
Mittels einer Jordan-Wigner-Transformation (deren Klassiker [18] entnommen)
gelang ihnen eine geeignete Fermionisierung der klassischen Spin-Freiheitsgrade.
Die Transfermatrix wird in dieser alternativen Formulierung iiber Fermion-
operatoren in eine Besetzungszahldarstellung diagonalisiert. Anhand dieser Lo-
sungsvariante lassen sich rein algebraische Ausdriicke aus der Onsager-Kaufman-
Losung mittels der Fermion-Sprache veranschaulichen, so dafl sich diese beiden
Verfahren geradezu gegenseitig ergénzen.

Diese verschiedenen Losungsmethoden spiegeln das grofle Interesse, das dem
Ising-Modell galt und bis heute gilt, welches sich zu einem Standardmodell in
der statistischen Physik entwickelt hat. Mittlerweile sind iiber 16 000 Veroffentli-
chungen zu diesem gezihlt worden [36], siehe hierzu Abb. 1.2. Die Anwendungen
sind durchaus vielfiltig. So bietet die analytische Losung einen Priifstand fiir
Theorien dar, z.B. kann mittels der exakt zu berechnenden kritischen Exponen-
ten die Giiltigkeit der Skalengesetze einem ernsthaften und erfolgreichen Test
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Abbildung 1.2: Anzahl jéhrlicher Verotffentlichungen iiber das
Ising-Modell basierend auf der INSPEC-Datenbank, die insgesamt
6,5 Millionen Eintrége fithrt [36]

unterzogen werden [2]. Zum anderen koénnen hieriiber N&dherungsmethoden auf
ihren Giiltigkeitsbereich hin untersucht werden; ein Anwendungsfeld, welches
sich geradezu aus der Historie des Ising-Modells erschlieit. Speziell sind in ho-
heren Dimensionen d > 2 mangels analytischer Losungsmethoden heutzutage
Computersimulationen mit Monte-Carlo-Verfahren weit verbreitet [37].
Wendet man sich dem Ising-Modell in seiner allgemeineren Definition von zu-
néchst nicht ndher bestimmten Elementen zu, die genau zwei diskrete Zustinde
einnehmen koénnen, bleibt dieses keineswegs auf eine Beschreibung des Ferro-
magnetismus beschriankt: Hiufige Anwendung innerhalb der Physik findet die
Gittergas-Analogie [32]. Anstelle von ,spin up“ und ,spin down®ist ein Git-
terpunkt entweder von einem Gasteilchen besetzt oder unbesetzt, wobei eine
anziehende Wechselwirkung fiir benachbarte besetzte Gitterpléitze vorherrscht.
Uber die Ausbildung von Clustern kristallisiert sich der Ubergang zur fliissigen
Phase heraus. Auf &hnliche Weise lassen sich bindre Legierungen modellieren
[32].

Derartige Verallgemeinerungen blieben nicht nur auf die Physik bezogen, son-
dern sprangen auch auf benachbarte Wissenschaftszweige iiber, dabei neue in-
terdisziplindre schaffend: Mittels des Prinzips der sozialen Imitation, welches
aussagt, dafl sich das Verhalten eines Individuums nach dem seiner Nachbarn
richtet, werden kooperative Phéinomene in vereinfachter Form einer mathemati-
schen Beschreibung erschlossen. Als besonders anschauliches Beispiel sei hierzu
der ,Ising-Fisch“ [38] von Callen und Shapero genannt, der in zwei entgegenge-
setzte Richtungen schwimmen kann, sich dabei aber nach seinen Nachbarn rich-
tet und somit durch soziale Imitation den Zusammenhalt eines Fischschwarms
erklért. Kohring [39] wiederum verwendete einen analogen Ansatz zur Model-
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lierung der Meinungsbildung in einem Zwei-Parteien-System. Dem recht jungen
Zweig der Econophysics zuzuordnen ist der Versuch, auf diese Weise die in Kapi-
talmérkten beobachtbaren Kohérenzen zu beschreiben [40]. Das ebenfalls junge
Gebiet der kiinstlichen neuronalen Netze wurde mafigeblich von dem Hopfield-
Modell [41] feuernder und ruhender synaptisch gekoppelter Neuronen geprigt,
welches 1982 auf der Basis des Ising-Modells formuliert wurde.

Mittlerweile haben sich u.a. zur Beantwortung derartiger Fragestellungen Er-
weiterungen des Ising-Modells entwickelt, welche eine Ausweitung der Modell-
annahmen vorsehen: Wihrend das Potts-Modell [42] mehr als zwei diskrete Zu-
stinde pro Element zuléfit, geht das Sherrington-Kirkpatrick-Modell [43] von
einer vollstindigen Vernetzung aller Elemente mit einer gauf3férmig ausdiinnen-
den Kopplung aus.

Ernst Ising, stets von der starken Resonanz auf das nach ihm benannte Modell
ergriffen, vergafl in spéteren Jahren nicht, auf den urspriinglichen Urheber zu
verweisen:

,lch weise gerne darauf hin, daB das Modell eigentlich Lenz-Ising-
Modell heiflen sollte...Mein Lehrer, Dr. Wilhelm Lenz, hatte die
Idee...“ [36]

11
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Kapitel 2

Onsager-Losung des
zweidimensionalen
Ising-Modells nach Kaufman

2.1 Grundlagen

Es sei ein rechteckiges zweidimensionales Ising-Gitter mit T Zeilen und L Spal-
ten gegeben. Die beiden Raumrichtungen werden mit ¢ und = gekennzeichnet.

xT

Abbildung 2.1: zweidimensionales Ising-Gitter

Jeder Gitterpunkt verfiige iiber einen Spin, der lediglich zwei diskrete Zusténde
einnehmen kann, wie durch die beiden unterschiedlichen Pfeilrichtungen ange-
deutet wird. Dies werde durch die klassische Spinvariable s; = £1 beschrieben.
Fiir alle Spins bestehe iiber die Kopplungskonstante J > 0 eine homogene und
isotrope Wechselwirkung néchster Nachbarn, die eine Parallelstellung zueinan-
der energetisch bevorzuge. Im Allgemeinen kénnen sich die Spins zusétzlich in

13
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einem #dufleren Magnetfeld ausrichten, was hier jedoch keine Beachtung finden
wird, da fiir diesen Fall keine analytische Losung vorliegt.

Im Folgenden wird die Losung nach Kaufman [15] vorgestellt, die in ihren
Grundziigen der urspriinglichen [9] von Onsager entspricht. Letztere ist jedoch
erheblich ldnger und verwickelter, wiahrend Kaufman [15] tiber die Spindarstel-
lungen von Drehungen auf direktere Weise dasselbe Ergebnis erzielt. Dies ist
ausfiihrlich aufbereitet in [32].

Zunichst wird eine Zeilenvariable p; eingefiihrt, die die Spinkonfiguration der
t-ten Zeile beschreibt;:

Ht = {Sb 82y .- >8L}t—teZeile :

Die Spinkonfiguration des gesamten Gitters ist dann durch {uq,pa,. .., ur}
gegeben.

Im Rahmen dieser Arbeit werden Randbedingungen eine wichtige Rolle spielen,
besonders in Kapitel 3. Zu diesem Zeitpunkt ist aber erst einmal der einfachere
Fall periodischer Randbedingungen von Interesse. Die Periodizitéit beziehe sich
dabei auf Zeilen und Spalten, d.h.

UT41 = H1,  SL41 = S1. (2.1)

Topologisch bedeutet dies, daf das (bei freien Enden) flache zweidimensionale
Gitter nun die Gestalt eines Torus annimmt. Aus diesem Grund nennt man
(2.1) auch toroidale Randbedingungen.

Unter obigen Annahmen 148t sich die klassische Hamiltonfunktion H des Ising-
Gitters aufstellen, die (bei verschwindendem &uferen Feld) einzig durch die
Wechselwirkungen bestimmt ist. Zu diesem Zweck werden folgende zwei Fille
unterschieden:

® Wechselwirkung néchster Nachbarn, die sich in derselben Zeile befinden

T

t-te Zeile

Abbildung 2.2: Wechselwirkung innerhalb einer Zeile

14
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Fiir die t-te Zeile lautet der Wechselwirkungsterm:

L
H(w) = — Z Sk Sk+1 - (2.2)
k=1

Die graphische Veranschaulichung in Abb. 2.2 ist fiir das flache Gitter gegeben;
der letzte Summand in (2.2) stammt aus der toroidalen Randbedingung (2.1).

® Wechselwirkung néichster Nachbarn, die sich in benachbarten Zeilen befinden

T
(t+1)-te Zeile
A VA AR VA AR NG iR Rl Ve e I
t-te Zeile
t
1
1 L
x
Abbildung 2.3: Wechselwirkung benachbarter Zeilen
Fiir die Zeilen p; und py4 ergibt sich
- 1
H (s 1) = — ng) s (2.3)
k=1

wenn SS) fiir die Spinvariable in der k-ten Spalte und ¢-ten Zeile steht.

Die Gesamtwechselwirkung H ergibt sich dann aus (2.2) und (2.3), indem geméif3
(2.1) iiber alle Zeilen summiert wird:

T
Ho= > {H () +H (s )} (2.4)

t=1

Die zentrale Grofie solch statistischer Problemstellungen ist die Zustandssumme
Z. In dem vorliegenden Fall ist sie gegeben durch

Z = ZZ exp (—0H), (2.5)

wobei sich die Summation iiber sémtliche Spinkonfigurationen des Gitters er-
streckt. Im Folgenden nutzbringend ist die Kopplungskonstante J nicht in den
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Wechselwirkungstermen (2.2) und (2.3), sondern bereits in [ enthalten, d.h. es

ist

J
kpT

B (2.6)

mit der Boltzmannkonstanten kp und der Temperatur 7.
Mit (2.4) schreibt sich die Zustandssumme (2.5)

T
Z = Z'--Z(HeXp[_ﬁ{H(Nt)+H(Mt,Nt+1)}})- (2.7)

pr \t=1

Der Ausgangspunkt der Losung ist die Transfermatrix. Sie beschreibt die Pro-
pagation entlang einer Kette physikalischer Elemente [17]. Im vorliegenden Fall
sei die Transfermatrix auf den Zeilen definiert {iber die Matrixelemente

(o [Plpcss) = exp | = B{H () + H (s pes)} | (2.8)

und propagiere in Richtung der ¢-Achse (ab Kapitel 3 gilt dies nur einge-
schrinkt), was durch folgende Rechnung verdeutlicht wird.

Abbildung 2.4: In ¢t-Richtung propagierende Transfermatrix

Mittels (2.8) 148t sich die Zustandssumme (2.7) schreiben als

Z = Y . (m[Plpa) (ua|Plus) - (e [Pl prir) (2.9)
1 pr
= 2<M1 1PT] 1)
= Sp(P"), (2.10)

wobei Gebrauch gemacht wurde von der Vollstédndigkeit der Zustéinde und den
periodischen Randbedingungen (2.1). Die Spur wird zweckméBigerweise in der
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Diagonalbasis berechnet, in der P folgende Form hat:

P1

PaL

Es handelt sich um eine 2% x 2E-Matrix, da jede Zeile 2 verschiedene Spinkon-
figurationen aufweist.

Damit lautet nun die Zustandssumme (2.10):

2L

Z = > (). (2.11)

=1

Aus der Kenntnis der Eigenwerte der Transfermatrix 148t sich also die Zustands-
summe gewinnen. Der folgende Abschnitt beschéiftigt sich mit deren Diagona-
lisierung.

Hierzu sei noch folgende Anmerkung beigefiigt:

P ist nach (2.8) offensichtlich nicht symmetrisch. Dieser Umstand koénnte be-
hoben werden durch eine entsprechende Symmetrisierung der Transfermatrix
(P — Ps), so daBl deren Diagonalisierbarkeit direkt ersichtlich wére:

(e [Ps| 1) = eXP[—5{%H(Mt)+7f(uta/ﬁt+l)+%H(Htﬂ)}}- (2.12)

Nach (2.3) ist der Anteil H (ps, pe+1) = H (fee+1, p1¢) bereits symmetrisch; der
gesamte Ausdruck Pg wire es daher entsprechend

(e |Ps| 1) = (s [Ps|pe) -

FEine derartige Symmetrisierung mufl im vorliegenden Fall jedoch nicht durch-
gefithrt werden: Eine Diagonalisierung ist ebenfalls fiir die nichtsymmetrische
Variante P (2.8) moglich [32], wobei die oben erwihnte Diagonalbasis dann aus
einer nicht-orthogonalen Transformation hervorgeht.

Aufgrund ihrer einfacheren Form wird daher im Folgenden in Anlehnung an
[32] die Transfermatrix P (2.8) verwendet, deren Diagonalisierungsverfahren
nun erldutert wird.
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2.2 Diagonalisierung der Transfermatrix

2.2.1 Aufteilung von P in V;, und V/

Die Transfermatrixelemente (2.8) zwischen den benachbarten Zeilen p und p/

(ulPliy = exp | = B{H (u)+H (1 10)} ]
lauten mit (2.2) und (2.3) ausgeschrieben:
L
<81, A Z ,3'L> = H exp [ BskSk+1] - exp [68;&2} )
k=1

Dies legt folgende Aufteilung nahe, die auch bei den Wechselwirkungstermen
(Abb. 2.2 und Abb. 2.3) verwendet wurde:

P = WV (2.13)
L
mit  (s1,...,s0|Va|s], ..., s7) = 5818/1...55L5/LHexp[ﬁskskﬂ], (2.14)
5 k=1
(s1,...,sp|VI|sh,...,sL) = Hexp[ﬂsksz]. (2.15)
k=1

Vo beschreibt damit die Kopplung in x-Richtung und V| diejenige in t-Richtung.

Im Falle einer symmetrisch gewéhlten Transfermatrix erhielte man anstatt (2.13)
eine kompliziertere Aufspaltung; z.B. ergéibe sich fiir obige Symmetrisierung
(2.12)

Ps = WPV w”
Verschiedene Varianten, die fiir bestimmte Berechnungszwecke vorteilhaft sind,

werden in [17] diskutiert.
Hier wird die einfachere Aufteilung P = V5 V{ (2.13) verwendet.

2.2.2 Darstellung von V; und V| als direkte Produkte

A, B,...,C seien n p x p- Matrizen.
Definition: A x B x ... x C heifit (n-faches) direktes Produkt, falls

(it .. " |Ax Bx...xCljj...5" = (ilAl ) (' |B|j') ... (" |C| ") . (2.16)
A X B x...x C ist somit p" x p"-dimensional. (2.16) ist so zu verstehen, daf

die Matrixelemente von A in der Basis |i), die Elemente von B in der Basis |i’),
usw. berechnet werden.
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Aus der Definition (2.16) folgen die Eigenschaften:

(AXxBx...xC)- (DxEx...xF)=(AD) x (BE) x...x (CF);
AxBx..xC=(Ax1x...x1)(IxBx...x1)-...(Ix1x...xC).

V/ und V3 (jeweils 2% x 2l-dimensional) kénnen nun entsprechend den L Ising-
Spins pro Zeile durch L-fache direkte Produkte von Paulimatrizen geeignet
dargestellt werden.

(Man vergleiche mit dem eindimensionalen Modell: dort tritt lediglich eine ein-
zelne Paulimatrix auf; in Anhang A.5 wird speziell auf den Ubergang zu zwei
Dimensionen eingegangen.)

Nach kurzer Rechnung [32] erhilt man unter Benutzung der angegebenen Re-
chenregeln (siehe auch A.5):

L
v/ = [2sinh(26)]7 - [ exp [B ag] = [2sinh (26))% - W (2.17)
a=1
mit  tanh 3 = exp[-20]; (2.18)
L
Vo = H exp [BofoZ,], mit of, =0] wegen (2.1); (2.19)
a=1

a$:<(1)(1)>, JZ:<(1)_(1)). (2.20)

Dabei wurde definiert:

of = 1x1x...x0%x...x1. (2.21)

o ist ein L-faches direktes Produkt, wobei 0% an a-ter Stelle und sonst die

Einheitsmatrix auftritt (o7 analog).

(2.18) stellt die Dualitétstransformation zwischen der Hoch- und Tieftempe-
raturphase dar [6].

In der gewéhlten Darstellung ist offensichtlich V5 diagonal (auch an (2.14) er-
kennbar), wihrend V; dies nicht ist.
Entsprechende Basiszustinde der Spins entnehme man A.5.

Somit ist (der Vorfaktor wurde in (2.17) herausdefiniert)

(

P=[2sinh(28)]2-V mit V="V-V. (2.22)

Fiir den néchsten Schritt wird die Kenntnis von Drehungen und deren Spindar-
stellungen bendtigt, welche im folgenden Abschnitt bereitgestellt wird.
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2.2.3 Drehungen und deren Spindarstellungen
Sei {FM}#:1 5y ein System von 2L antikommutierenden Matrizen, d.h.
T, T, + T,T,) = 20, (2.23)

und jedes ', eine 2F x 2L-Matrix. Diese Matrizen mit der Eigenschaft (2.23)
sind allgemein untersucht worden von Brauer und Weyl [44].

-----

Loy,

Eine Drehung dieses Vektors in der 2-dimensionalen pv-Ebene um den (kom-
plexen) Winkel € erreicht man mittels einer gewshnlichen Drehmatrix w(uv|6):

(F;) = w(uv]d) (Ta)
1
cos@ --- sind

mit w(ur|d) =

—sinf --- cos@

1

wobei die Winkelfunktionen in der p-ten und v-ten Spalte bzw. Zeile auftauchen.
Die folgenden beiden Sétze werden bei der Diagonalisierung der Transfermatrix
P bzw. V von enormem Nutzen sein. Die Beweise sind in [32] nachzulesen.

Satz 1: (T,) = w(w|f) Ta) (2.24)
— T, = Sw) Ty -S 1w (2.25)

mit S (w) = S (0) =exp [—gFuFV} .

w transformiert in (2.24) einen 2L-komponentigen Vektor und hat demzufolge
die Dimension 2L x 2L. S(w) in (2.25) hingegen transformiert eine Komponente
dieses Vektors, die ihrerseits eine 2 x 2E-Matrix darstellt. Entsprechend hat
S(w) die Dimension 2% x 2F.

Man nennt w Drehung und S(w) Spindarstellung der Drehung w.

Geméf Satz 1 kann also jeder Drehung eine Spindarstellung zugeordnet werden
und umgekehrt. Dies wird spéter explizit ausgenutzt.
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2.2. Diagonalisierung der Transfermatrizx

Satz 2:
w=w(af|f1) w(y|02) ... w(uv|b,) (2.26)
<— S(w) =exp [—%Qlfafg} - exp [_%92F7F5:| ©...-exp [—%Hnl“ul“y]. (2.27)
Dabei hat w die 2L Eigenwerte exp [£i6,], exp [£i62], ..., exp [£ifL] (2.28)
und S(w) die 2F Eigenwerte exp [% (01 0,4+ ... + 9n)]. (2.29)

In (2.29) sind sé@mtliche + unabhingig zu wihlen. (2.28) sind die gewohnten
Eigenwerte von Drehmatrizen. Satz 2 enthilt also folgende Aussage: Aus der
Kenntnis der Eigenwerte der Drehung w 148t sich auf die Eigenwerte der zuge-
horigen Spindarstellung S(w) schlieen und umgekehrt.

Aus Satz 1 und Satz 2 folgt nun: Zur Diagonalisierung der Spindarstellung einer
Drehung ist es lediglich nétig, die (niederdimensionale) Drehung zu diagonali-
sieren.

Die Vereinfachung von Kaufmans Losung [15] gegeniiber der urspriinglichen von
Omnsager [9] beruht auf der Ausnutzung dieses Sachverhalts.

2.2.4 Formulierung von V|, und V; als Spindarstellungen

Die{l',},_, ., ausdem vorigen Abschnitt lassen sich durch die Paulimatrizen
o', i = x,vy, z darstellen. Eine spezielle Wahl unter Verwendung von (2.21) ist

Ty = 0% 0% ... 0% oY
“ b T i a=1,...,0. (2.30)
Fog—1 = 07 0y ... 0t | 0%
Hieraus folgt:
FQarga_l = ’L'O'g, 0421,. ,L,
F2a+1rga = igfvo-a+17 0421, ,L 1,
F1F2L = —Z'UO'i O"lz (2.31)
mit U = of0) ...07 = oc¥xo0"x...xo". (2.32)
Damit lautet (2.17):
L ~
Vi = ][] exp[~ifT20l20-1]. (2.33)
a=1

Vergleicht man diese Form mit (2.27), so erkennt man, daf8 V; die Spindarstel-
lung einer Drehung ist.
Fiir V5 erhélt man aus (2.19):

L—1
Vo = expliBUT1Taz] [] exp[—iBl241 2] - (2.34)

a=1
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Bis auf den ersten Faktor exp [;3UT'1T'or] handelt es sich bei V5 ebenfalls um
eine Spindarstellung. Er stammt aus der Randbedingung (2.1), die 07 | = +07
bewirkt.

2.2.5 Aufspaltung von V in V" und V~ durch Randbedingungen

Der Ausdruck exp [{3UT'1T'az] soll ndher betrachtet werden. Aus den Antikom-
mutatorregeln folgt

(iUT1Typ)? = —UT T UT Ty, = —U? (ThT2r)” = +1,

da U? =1 und U mit einer geraden Anzahl an I'- Matrizen vertauscht.
Da fiir Matrizen A mit A2 =1 exp (#A) = coshd + A sinh @ gilt, folgt:

exp [ifUT1T'ar] = cosh 8 + iUT' 1Ty, sinh 8

1 1
= 5(1+U)+§(1—U) [cosh B 4 iUT'1 'y, sinh 3]

=1

= %(1 + U) [cosh B + i['1 'y, sinh G] + %(1 — U) [cosh 8 — i1 T'gf, sinh 3]
wegen U?=1

1 . 1 ,
= 5(1 + U) exp [ifT1 o] + 5(1 — U)exp [=ifT'1 21 (2.35)
da (iT1T9r)* =1.

Mit (2.35) folgt fur V' = V5V) mit (2.33) und (2.34):

1 1
V:§G+UH”+§G—UH” (2.36)
L-1 L
mit Vi = exp [izﬂFngL] H exp [—iﬁrga+1rga] H exp [—iﬂrg)\rz)\,l]. (237)
a=1 A=1

V*+ und V™ sind offensichtlich Spindarstellungen.
Es bleibt festzuhalten, da§ die Aufspaltung (2.36) durch die Randbedingungen
(2.1) verursacht wurde.
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2.2. Diagonalisierung der Transfermatrizx

2.2.6 Diagonalisierung von U

Da U, V™' und V~ kommutieren, kénnen sie gleichzeitig diagonalisiert werden.
Mittels der Transformationsmatrix R werde U in Diagonalform gebracht:

- 1 -~ 1 -~
V=RVR ! = 5(1+U)V++§(1—U)V*
mit V¥ = RV*R!,
U = RUR1:<(1) _(1)>. (2.38)

In (2.38) ist 1 die 261 x 2L~ _Einheitsmatrix. U ergibt sich aus (2.32), indem
man in dessen Diagonalform 0% x 0% x ...x 0% +1 und —1 entsprechend um-
ordnet.

Aus der Vertauschbarkeit von U mit V* folgt:

~ AT 0 - A= 0
+ _
A T S I T
1+ U) und (11— U) sind offensichtlich Projektoren, die die Einheitsmatrix

auf die obere bzw. untere Matrixhilfte abbbilden. Sie sind komplementér zu-
einander, wie man an 1(1+U) - 3(1 — U) = 0 erkennt. Insbesondere folgt:

a0 = (X 0) qa-ov (g %) ew

A" und B~ (nicht notwendig diagonal) sind jeweils 2/~ x 2L~ 1-dimensional und
haben dementsprechend 2/~! Eigenwerte. Man kann also nach (2.39) mit einer
unabhingigen Diagonalisierung von (1 + U)V* und (1 - U)V~ fortfahren
und anschliefend deren beide Eigenwertsétze zusammen als Eigenwertsatz fiir
V und damit fiir V identifizieren. Letzterer enthilt die gesuchten 2~ Eigenwerte.

Es wird folgendermaflen fortgefahren:

V+ und V~ werden getrennt diagonalisiert, und man erhélt jeweils 2¢ Eigen-
werte. Durch die Transformation zu V* und V~ #ndern sich diese selbstver-
standlich nicht. Schlieflich wird {iber (1 + U)V+ und (11— U)V~ jeweils die
Hilfte an Eigenwerten aussortiert, man behilt also jeweils 2071, Diese zusam-
mengenommen ergeben dann die 2% gewiinschten Eigenwerte.

2.2.7 Die Symmetrie U und Beitriage zur Zustandssumme

Obiger Sachverhalt kann noch in anderem Licht beleuchtet werden.

U ist eine Symmetrie, da U mit V' vertauscht (zur Definition des Hamiltonope-
rators siehe Abschnitt 2.2.10). Die physikalische Bedeutung dieser Symmetrie
tritt in 3.1.2 zutage, wo U die Rolle eines Spinumkehroperators einnimmt.
Wegen U? = 1 kann nach symmetrischen und antisymmetrischen Zustinden
unterschieden werden:

Aufgrund von

1 1
SL+U)U = +5(1+0)
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projiziert 1(1+ U) auf symmetrische Zusténde |¢g), fiir die

Uls) = +vs) (2.40)

gilt.
Antisymmetrische Zusténde | 4) mit

Ula) = —[va) (2.41)

erhilt man wegen
1 1
5(1 -U)U = —5(1 -U)

iiber den Projektor (1 —U).
Damit lassen sich die Beitrige von V' und V= zur Zustandssumme (2.10)
Z = Sp (PT)

geeignet charakterisieren. Dabei wird es sich im Weiteren als niitzlich erweisen,
den Vorfaktor in (2.22) aus dieser und folgenden Zustandssummen herauszu-
nehmen:

LT
2

Z = [2sinh(28)]2 - Z'. (2.42)
Mit (2.36) ergibt sich
1 T 1 T

da die Spurbildung nach (2.39) getrennt erfolgen kann.
Aufgrund der Idempotenz der Projektoren

B(HU)]T:%(HU) und [%(I—U)]T:%(l—U) (2.43)
folgt:
Z' = Sp E(HU)(W)T] + Sp B(l—U)(V—)T] . (2.44)

Zur Zustandssumme trigt also von den 2Y Eigenwerten von V¥ lediglich die-
jenige Hilfte bei, die zu symmetrischen Eigenvektoren gehort. Beitrdge von
V'~ hingegen liefern nur die zu antisymmetrischen Eigenvektoren gehtrenden
Eigenwerte.
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2.2.8 Die Eigenwerte von V* und V'~

Wie in Abschnitt 2.2.3 erliutert wurde, ist es zur Diagonalisierung der 2% x 2~
dimensionalen Spindarstellungen V* lediglich nétig, die zugehérigen 2L x 2L-
dimensionalen Drehungen zu diagonalisieren.

Nach Satz 2 (Gln. (2.26) und (2.27)) lassen sich den V* in (2.37) folgende
Drehungen Q% zuordnen:

L—-1 L
0F = w(1,20] 72i8) [[w(a+1,20a+2i8) J]w(@r2)—1]+2i8).
a=1 A=1

Die Diagonalisierung von Q% erfolgt in einer lingeren Rechnung, die aber kei-
ne prinzipiellen Hiirden mehr in den Weg stellt. Es sei daher erlaubt, auf die
Ergebnisse in [15, 32] zu verweisen:

Eigenwerte von Q% : exp [+e1], exp [fe3], exp [Ee5), ..., exp [Fear_1]; (2.45)
Eigenwerte von Q7 : exp [fe¢], exp [£e2], exp [£e4], ..., exp [£ear_2]. (2.46)

Nach Satz 2 (Gln. (2.28) und (2.29)) haben die zugeordneten Spindarstellungen
V* und V'~ dann folgende Eigenwerte:

1

Eigenwerte von V' : exp [5 (£eytestes ...+ €2L_1)] ; (2.47)
1

Eigenwerte von V7~ : exp [5 (egteates+... £ EQL_Q)] . (2.48)

Die Vorzeichen in (2.47) und (2.48) sind unabhéngig zu wéhlen. Dies ergibt
jeweils 27 Eigenwerte fiir V* und V.
Dabei ist

cosh (e;) = cosh (28) cosh (26) — sinh (23) sinh (20) cos <%k> ;

Da die Kopplung in horizontaler und vertikaler Richtung die gleiche ist, gilt
aufgrund der Dualitét (2.18)

sinh (26) sinh (26) = 1, (2.49)
so daB die einfachere Form
cosh (e5) = cosh (28) cosh (25) — cos (%’“) (2.50)
folgt. Mit
my = 2[8-p| (2.51)

und cosh (20) cosh (26) = cosh (mg) + 1 ergibt sich eine niitzliche Darstellung:

cosh () = cosh(mg)+ 1 — cos(pk); (2.52)
k
o = % k=0,1,...,20 —1. (2.53)
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Losungen zu (2.52) fiir 5 konnen mit beiden Vorzeichen auftreten. Dies ist kein
Widerspruch, da in (2.45) - (2.48) ebenfalls beide Vorzeichen vorkommen. Man
muf sich allerdings fiir eine Vorzeichenkonvention entscheiden.

Fiir e mit k £ 0 werde stets der positive Arcosh-Zweig verwendet:

e = —Arcosh{cosh (mg)+1—cos(pr)} , E=1,...,2L—1. (2.54)
Bei k = 0 folgt cosh (eg) = cosh (myg), d.h. g = £mgy mit mo > 0 sind zuléssige
Losungen. Obwohl es auf den ersten Blick unnétig kompliziert erscheint, hat es
im Folgenden Vorteile, dal ¢y am kritischen Punkt 8 = (¢, gleichbedeutend

mit 3 = 3 (siche Abschnitt 2.4), sein Vorzeichen wechselt. Der Notation in [17]
folgend wird gewéhlt:

s = 2i-p={ T e AShe (2.55)

—mgy fir B> Bc.

Als Eigenschaften folgen aus der Periodizitit des Kosinus
ekl = lean—kl (2.56)
sowie aus dessen Verhalten
0<|eg|<e1<e2<...<er. (2.57)

Diese werden durch die folgenden Graphen verdeutlicht.

v&
_—

0.5¢

1 g,

Abbildung 2.5: Die verschiedenen ¢y, fiir L = 8
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2.2. Diagonalisierung der Transfermatrizx

Zur Veranschaulichung der k-Abh#ngigkeit bei festgehaltener Temperatur wird
die fiir grofle L quasikontinuierliche Variable z = % verwendet (man vergleiche
mit der spéteren Definition (5.13)). In deren Abhéngigkeit zeigt sich (unter
Aufhebung der Beschrankung der k-Werte in (2.53)) das Verhalten (2.56) und
(2.57):

2 [€]

-2 -1 0 1 2
x=k/L

Abbildung 2.6: |e| in Abhingigkeit von z = £ bei 3 =0,5

2.2.9 Die Eigenwerte von V/

Nachdem mit (2.47) und (2.48) jeweils 2” Eigenwerte fiir V und V'~ gefunden
wurden, mufl noch jeweils die Hélfte von ihnen aussortiert werden. Dies gelingt
iiber die Projektoren (1 + U) und (11— U).

Den Eigenwerten (2.47) und (2.48) lassen sich mit Satz 2 mogliche Diagonal-
formen von V' und V'~ entnehmen; diese sollen durch die Transformationsma-
trizen F' und D erzeugt werden:

FVTF =V}, DV D=V
Nach Abschnitt 2.2.6 sollten %(1+U)‘~/+ und %(1—0)‘7‘ (unabhéngig) diagona-
lisiert werden. Daher muf3 die Transformation iiber F' bzw. D auf den gesamten
Ausdruck wirken:

F [1(1 + U)f/*} Ft o=

5 (1 n FIJ*F*) Vi,

N = N

D B(l - U)f/—] ™t = S (1-pUD) V.

Kaufman zeigt durch Konstruktion [15]:
FUF'=U, DUD'=U. (2.58)

Dies fiithrt zu
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In [15] wird gezeigt, daB (1 + U) von den Eigenwerten (2.47),(2.48) diejeni-
gen mit einer geraden Anzahl an Minuszeichen auswihlt, %(1 -U ) hingegen
diejenigen mit einer ungeraden Anzahl an Minuszeichen. Es ergeben sich somit
folgende Eigenwerte fiir V:

1
exp [5 (£eytestes+... .+ 52L1)] aus V71, (2.59)

mit gerader Anzahl an Minuszeichen

1
exp [5 (feoteates£... £ €2L_2)] aus V7. (2.60)
mit ungerader Anzahl an Minuszeichen

Es soll noch erwihnt werden, dafl Kaufman in [15] eine andere Vorzeichenkon-
vention wihlt als in G1.(2.55) und Abb. 2.5. Zur Unterscheidung wird -, statt
¢, verwendet. Sie wahlt:

Yo = —€o, vy =¢p fur k=1,...,20L—1. (2.61)

Dies hat zur Folge, daB die Diagonalisierung von V ~ nicht iiber D, sondern eine
andere Transformationsmatrix G geschieht. Wie [15] explizit zu entnehmen ist,
hat G’ dann im Gegensatz zu (2.58) die Eigenschaft GUG™! = —U.

Damit werden sowohl bei V' und V™~ wegen

1 - 1 ~\ -
F [5(1 + U)V*} P S (1+ U) Vi
1 ~ o] 1 ~\ o
Glsu-0W-|6t = 5(1+U)VG
Eigenwerte mit einer geraden Anzahl an Minuszeichen ausgewahlt:

1
exp [5 (EntypntypEt... £ 72L—1)} aus V' (2.62)

mit gerader Anzahl an Minuszeichen

1 _
exp [5 (yvoxtyeEtymt...£ 72L2):| aus V. (2.63)
mit gerader Anzahl an Minuszeichen

Man macht sich schnell klar, daf$ (2.62),(2.63) wegen +7v9 = Feo nach (2.61)
mit (2.59),(2.60) identisch ist.

Dieser Vergleich soll zudem verdeutlichen, dafi die Auswahl der Hélfte an Ei-
genwerten stets eindeutig ist.

Nun wird auch ersichtlich, warum es ungiinstig wére, 7y bzw. g in beiden
Temperaturbereichen positiv zu wahlen: Unterhalb der kritischen Temperatur
(8> B) hatte man von den Eigenwerten

1
:i:’&“()‘ :|:€2 :|:€4 +... :EEQL_Q)

exp 5(

diejenigen mit einer geraden Anzahl an Minuszeichen, oberhalb (4 < B) dieje-
nigen mit einer ungeraden.
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2.2.10 Diskussion des Spektrums

\; bezeichne die 2! Eigenwerte (2.59), (2.60) von V. Es folgt deren graphische
Darstellung fiir verschiedene L.
i

140
25;

120

20
1004
15¢ 80
60
104
e —

40\

00.2 0.3 0.4 B 0.5 0.6 0.7

Abbildung 2.7: L =4 Abbildung 2.8: L =6

4ood

600/

30004
5001

400
2000+
300

2004

00.2 0.3 0.4 0.5 0.6 0.7 002 03 04 Y 08 07

Abbildung 2.9: L =38 Abbildung 2.10: L =10

Unterhalb der kritischen Temperatur, gleichbedeutend mit 8 > 0,44 (siehe
Abschnitt 2.4) sind die beiden gréfiten Eigenwerte nahezu entartet, insbesondere
fiir grofe L. Die néchst kleineren Eigenwerte folgen mit groflerem Abstand.
Aufgrund von (2.57) lauten die beiden grofiten Eigenwerte:

1

Aor = exp [5 (+e1 +es+es+...+ 52L_1)} : (2.64)
1

Ao = exp [5 (+|eo] +52+54+...+52L2)} : (2.65)

dabei ist  Aop > Ao—.
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Das Gleichheitszeichen gilt im Limes L — oo, wo wegen
lim |egr] = lim |egpyq] (2.66)
L—oo L—oo

Entartung eintritt.

Ao+ wird daher als A4, bezeichnet. Es gehort zu einem symmetrischen Zu-
stand, wiahrend Ag_ einem antisymmetrischen entstammt.

Da A\g— wegen (2.55) fiir 3 < B¢ nicht im Spektrum liegt, ist in diesem Tempe-
raturbereich \g; mit Abstand einziger grofiter Eigenwert (vgl. [17]).

Das Entartungsverhalten wird verdeutlicht durch folgende Graphen, in denen
i/ Amaz aufgetragen ist.

Ai/ Amax
1 1 —
08 08
06 06
04
0.2/74\
-

o

0.2 0.3 0.4 B 0.5 0.6 0.7

Abbildung 2.11: L =4 Abbildung 2.12: L =6

0.8 0.8

Abbildung 2.13: L =38 Abbildung 2.14: L =10
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Uber die Transfermatrix V wird der Hamilton-Operator H im Sinne der Quan-
tentheorie folgendermaflen definiert:

V = exp[-H]. (2.67)

Es handelt sich dabei um die iibliche Definition, vgl. z.B. [16]. Man erhilt
hiertiber ein analoges quantenmechanisches System in einer Raumdimension
bzw. ein quantenfeldtheoretisches in zwei Raum-Zeit-Dimensionen (aus diesem
Grund wurden die Raumrichtungen des Ising-Gitters mit  und t bezeichnet,
sieche u.a. Abb. 2.1). In [16] wird dies iiber die Analogie zum euklidischen Zeit-
entwicklungsoperator auf dem Gitter plausibel gemacht. Zur Verdeutlichung der
Dimensionalitéit der einzelnen Systeme diene Anhang A.5.

Aufgrund der Aufspaltung von V in V* und V'~ wird zudem definiert:

VT =exp [—Hﬂ , V™ =exp [—H_] . (2.68)

Nach (2.67) haben die Eigenwerte von V die Gestalt \; = exp [—F;], wobei E;
die 2 Eigenwerte zum Hamiltonoperator darstellen. Insbesondere wird wegen
(2.68) nach F; und E_ unterschieden. Mit (2.59) und (2.60) lauten diese:

1
E. :—é(islisgi%i...ign,l) ; (2.69)
mit gerader Anzahl an Minuszeichen

1

E_ = 9 (:f:E():i:&‘g:l:E4:i:...:|:€2L_2) . (270)

mit ungerader Anzahl an Minuszeichen

Der Grundzustand des Systems ist gegeben durch den kleinsten Energieeigen-
wert

1
Eoy = 5 (+e1+es+es+...+ean—1) - (2.71)

Der Grundzustand ist dementsprechend symmetrisch.
Der erste angeregte Zustand fiir 3 > 0,44 hat die etwas hohere Energie

1
Ey_ = _§(+|50| +ex2+est+... +ear o) (2.72)

und ist antisymmetrisch.
Deren Abstand definiert die Energieaufspaltung

AE = Eo_ — Eo,;. (2.73)

Im System mit endlich vielen Freiheitsgraden (L, T endlich) ist AE > 0 und es
gibt einen ausgezeichneten Grundzustand.

Im Limes unendlich vieler Freiheitsgrade L — oo hingegen wird limy ., AE =
0 wegen (2.66); damit existieren zwei entartete Grundzusténde.
Entsprechendes ist aus Quantenfeldtheorien mit spontan gebrochener Symme-
trie bekannt [10]. Dieser Vergleich manifestiert sich in der Universalitdtshypo-

31



2. Onsager-Losung des zweidimensionalen Ising-Modells
nach Kaufman

these [14]. Im Speziellen befinden sich die ¢*-Theorie in zwei Raum-Zeit-Dimen-
sionen und das zweidimensionale Ising-Modell in derselben Universalitéitsklasse
[10, 22] (dort wird auf die Universalitit in hoheren Dimensionen eingegangen;
nach [14] kann auf diese in zwei Dimensionen geschlossen werden).

Das Ziel der vorliegenden Arbeit besteht darin, einen analytischen Ausdruck
fiir die Energieaufspaltung bei grofien L im Ising-Modell zu finden.

Das Energieschema i3t sich graphisch veranschaulichen. Zu diesem Zweck wird
E; — Ey4, gleichbedeutend mit In (Aya0/ i), aufgetragen:

Ei- Eo-

N—

00.2 0.3 0.4 B 05 0.6 0.7

Abbildung 2.15: L =4

Abbildung 2.17: L =38

Abbildung 2.18: L =10

Der Grundzustand liegt in dieser Darstellung jeweils auf der Abszisse.



2.3. Die Zustandssumme

Die dargestellten hoheren Energieeigenwerte konnen unter Beachtung der er-
laubten Vorzeichenkombinationen und des Vorzeichens von gy folgendermaflen
erzeugt werden:

e im Bereich 8 < (¢
Ei_.., = Eo_+ e, k gerade; (2.74)
For.xi1 = FEor+ er + €, k # 1 ungerade; (2.75)
e im Bereich 8 > (¢

By k1 = Eo+lex| +lal k#1 gerade; (2.76)
Eorki = Eor+ er + e, k # | ungerade; (2.77)
USw. En:t; Ei,okn-
Dies legt eine Teilcheninterpretation nahe, die in Kapitel 4 durch die fermioni-
sche Darstellung bestétigt wird, die zu denselben Ergebnissen fiihrt.

Insbesondere lassen sich die deutlich sichtbaren Bandstrukturen als unterschied-
liche Mehrteilchen-Anregungen erkliren.

2.3 Die Zustandssumme

Mit den Eigenwerten \; von V ergibt sich nach (2.42) bzw. (2.11)

2L

z =Y )" (2.78)

=1

Explizit ausgeschrieben lautet die Zustandssumme mit (2.59) und (2.60):

T
7' = — e _
g exp {2 (e £estes+...tegp 1)]
{gerade}

T
+ Z exp [5 (egteates+... £ 52L2):| ) (2.79)

{ungerade}

Mit den leicht zu verifizierenden Identititen

T
exp —(:|:61:|:€3:|:€5:|:...:|:62L_1)
2

{gerade}
L-1 L-1
1 T . T
=3 { Tl_[O 2 cosh <§ 52T+1> + Tl_[O 2 sinh <5 52T+1> } , (2.80)

T
Z exXp |:§ (:t80:|:€2:|:84:i:...:|:82L2)]

{ungerade}
L—-1 L-1
1 T . T
=3 { TI;IO 2 cosh <§ EQT) — ,1;[() 2 sinh <5 52T> } (2.81)
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2. Onsager-Losung des zweidimensionalen Ising-Modells
nach Kaufman

ergibt sich eine kompaktere Schreibweise:

1 L-1 T L-1 T

7 = 3 { H 2 cosh (5 €2r+1> + H 2sinh <§ €2r+1>
r=0 r=0
L-1

T = T
+ TH02cosh (55%) — IIOQSinh (5 52T> } . (2.82)

2.4 Thermodynamischer Limes und Phaseniibergang

Bekanntlich treten in endlichen Systemen keine Phaseniibergéinge auf. Um sie
zu beobachten, mufl man den thermodynamischen Limes ausfithren, der im
vorliegenden Fall durch L,T — oo gegeben ist.

Die Zustandssumme Z’ (2.78) 148t sich folgendermafen abschétzen:

Amaz)? < 2" < 25 Anaa)”

Die Freie Energie pro Spin F' « ﬁ In Z' kann damit wegen
1 1 1 1
Eln (}\maz) S ﬁan’ S Zh’l ()\masn) + Tln?
im Limes iiber \;,q, ausgedriickt werden:

. 1 . 1
i gt = Jim I )

Letzterer Limes existiert, da Apqq (2.64) von der Ordnung el ist.

Die explizite Berechnung von limy, s %ln (Mo+) fiihrt schlielich auf die ther-
modynamischen Funktionen. Da diese nicht Thema der vorliegenden Arbeit
sind, sei nur kurz vermerkt, daf3 die spezifische Wirmekapazitéit ein vollstéin-
diges elliptisches Integral erster Gattung enthilt [32], welches eine Singularitéit
aufweist [59]. Physikalisch bedeutet dies, dafl es sich um einen Phaseniibergang
zweiter Ordnung handelt, was durch weitere Hinweise gestiitzt wird; hierzu ist
insbesondere die Berechnung der spontanen Magnetisierung von Yang [33] zu
nennen. Der kritische Punkt ergibt sich aus

sinh (28¢) = 1, (2.83)
was auf den numerischen Wert [32]
kn -
B = 0,4406868 bzw. 7BTC = 2,269185 (2.84)

fithrt (siehe auch [6]).
Aufgrund der Dualitédt gilt (2.49), so daB aus (2.83)

sinh (230) -1
und damit

Bc = Bc (2.85)
folgt.
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Kapitel 3

Einbau antiperiodischer
Randbedingungen

in zwei verschiedenen
Darstellungen

In diesem Kapitel wird explizit vorgefiihrt, welchen Einflul die Ersetzung peri-
odischer Randbedingungen (RB) durch antiperiodische auf Eigenwerte und Zu-
standssummen hat. Entsprechend den Anordnungsmoglichkeiten von gemisch-
ten periodischen und antiperiodischen RB werden vier verschiedene Sektoren
auftreten. Fiir diese findet man jeweils zwei (dquivalente, wie in Abschnitt 4.5
gezeigt wird) Darstellungen, je nachdem in welche Richtung die Transferma-
trix propagiert. Bisher war dies die ¢-Richtung, weshalb diese Vorgehensweise,
Darstellung I genannt, zuerst behandelt wird.

3.1 Darstellung I: In t-Richtung propagierende

Transfermatrix
HT+1 = Tt - U1
T
SL+1 = Tx * S1
t A
1
1 L
X

Abbildung 3.1: Transfermatrix in ¢-Richtung mit RB
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

Die verschiedenen Randbedingungen sind gegeben durch

S[4+1 = Tz " 81, Wre1 = Tt - U1 mit Ty, Tt € {—1,+1}. (3.1)
Der Fall periodischer RB 7,, = +1, 7 = +1 ist bereits ausfiihrlich in Kapitel 2
beschrieben worden.

3.1.1 Antiperiodische RB in z-Richtung

Dies entspricht der Situation
T, =—1, T =-+1. (3.2)

Ausgehend von Kapitel 2 werden die dortigen Rechnungen nun entsprechend
modifiziert.

Aufgrund von (3.2) erfihrt der Wechselwirkungsterm (2.2) eine Vorzeichenén-
derung im letzten Summanden:

L-1

H(,U,t) = — Zsk Sk+1 + SLS1.- (3.3)
k=1

Dies bedeutet, dafl anstatt (2.14) nun abgewandelte Matrixelemente

L-1
<517 <y 8L ’szap| 5/17 BEE) 5/L> = 6515’1 s 68L53: H exp [ Bsksk+1] exp [—BsLs1]
k=1
auftreten, was statt (2.19) in
L-1
Vot = H exp [Bol 0l ] exp[- B0} 0f] (3.4)
a=1

resultiert. Die antiperiodischen RB gehen also direkt in die Transfermatrix ein.
V1 (2.17) bleibt hingegen unverdndert, da es die Wechselwirkung in ¢-Richtung
(2.3) beschreibt, in der die RB nach (3.2) weiterhin periodisch ist. Formuliert
man V7 als Spindarstellung, so folgt anstatt (2.34) wegen (2.31):

L-1
Vs? = exp[—iBUT1Tas] [ exp[—ifT2041T24] . (3.5)

a=1

Analog zu (2.22) wird
Ve = Pev

definiert, was mit (3.5) und (2.33)

L—1 L
Vap = exp [—iﬁUl“ngL] H exp [—’iﬁrgaJrnga] H exp [—iBFQ/\FQ)\_l] (3.6)
a=1 A=1
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3.1. Darstellung I: In t-Richtung propagierende Transfermatriz

ergibt.

Der einzige Unterschied zwischen V' (siehe (2.34)) und V (3.6) liegt in dem
Vorzeichen des Faktors exp [+ifUT' 1"y ].

Fiir exp [—iBUT'1I'y] in (3.6) erhélt man im Gegensatz zu (2.35) in einer ana-
logen Rechnung:

exp [—ifUT'1T'er] = cosh § — iUT' Iy, sinh 5

= %(1 +U) + %(1 —U)| [cosh B — iUT' Ty, sinh 3]
=1
= %(1 + U) [cosh 8 — i1 Ty, sinh 3] + %(1 — U) [cosh 8 4 iT'1 'y, sinh ]
1 . 1 ,
= 5(1 + U)exp -1 Tap] + 5(1 —U)exp[+ifT1 2] .

Dies bewirkt eine zu (2.36) verdnderte Aufspaltung:

1 1
VP = 5(1 + UV~ + 5(1 ~-U)VT (3.7)
-1 L i
mit V* = exp [£iB01 ] H exp [—1T201124] H exp [—iﬁFzAFQ,\—l '
a=1 A=1

V* sind mit denen aus Kapitel 2 (2.37) identisch. Dementsprechend bleiben
auch die Eigenwerte von V1 (2.47) und V~ (2.48) dieselben.

Die Eigenwerte von V' hingegen unterscheiden sich von denen von V (2.59),
(2.60), da die Rolle der Projektoren in (3.7) gegeniiber (2.36) vertauscht ist.
Demzufolge wechselt auch die Zuordnung symmetrischer und antisymmetrischer
Eigenvektoren. Nach Abschnitt 2.2.9 ergeben sich folgende erlaubte Vorzeichen-
kombinationen:

1
exp [5 (£eytestes ...+ 52L—1)] aus V7 (3:8)

mit ungerader Anzahl an Minuszeichen

1
exp |:§ (:|:€0 +tegtes+... £ 52L—2)] aus V7. (3'9)

mit gerader Anzahl an Minuszeichen

Die zugehorige Zustandssumme ist gegeben durch
Z'% = Sp [(V“P)T] (3.10)
und wird in Abschnitt 3.1.3 aufgestellt.
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

3.1.2 Antiperiodische RB in t-Richtung
Dies ist der Fall (siehe Abb. 3.1)

TI:+1) Tt:_l' (311)
Explizit ausgeschrieben bedeutet pry1 = —p; die Umkehr aller Spins in einer
Zeile:
!
{51,802, .. -73L}(T+1)*teZeile = {-s1,—s2,..., —SL}kteZeile :

Im Transfermatrixformalismus schrieb sich die Zustandssumme allgemein (2.9):

Z = Dy [Pl pa) (u2 [Pl ps) - pr [Pl prsn) -

o wr

Im letzten Matrixelement findet aufgrund von (3.11) die Spinumkehr statt. Die-
se wird iiber einen Operator A,, ausgefiihrt, so daf gilt:

(wr [Pl pry1) = {ur|PAgp| ) -

Damit ist
Zapy = Sp(PTAy) . (3.12)

Im Gegensatz zum vorigen Abschnitt 3.1.1 werden die antiperiodischen RB
nicht in die Transfermatrix, sondern iiber einen Operator in die Spurbildung
eingebaut.

Die explizite Form des Spin-Umkehr-Operators A, erhélt man durch folgende
Uberlegung: Im eindimensionalen Ising-Modell lassen sich bei entsprechend ge-
wéhlter Darstellung wie in (A.7) die Zustdnde eines Spins s; = £1 durch die
Basisvektoren

|si=+1) = (é) und  |s;=-1) = <(1)> (3.13)

représentieren (s. [45] und A.1). Diese kénnen die durch die 2 x 2-Transfermatrix
(A.7) beschriebenen Konfigurationen benachbarter Spins abfragen. Der Wechsel
zwischen den beiden Zustéinden gelingt mittels der Paulimatrix o (2.20):

0 1 1\ _ (0 0 1 0y (1
EDE-0) (¢E)-()
Im zweidimensionalen Ising-Modell kénnen in der hier gew&dhlten Darstellung
(2.17), (2.19) die Basisvektoren (3.13) weiterhin verwendet werden; allerdings
treten anstelle von einfachen 2 x 2- Matrizen L-fache direkte Produkte von ihnen
auf (siehe A.5). Die in der Transfermatrix enthaltenen Konfigurationen kénnen
mittels der Definition (2.16) entnommen werden, nach der die Elemente der
L beteiligten 2 x 2- Matrizen jeweils iiber ihre 2-komponentigen Basisvektoren
(3.13) berechnet werden.

Eine Umkehr der L Spins in einer Zeile geschieht daher (geméfi den Rechen-
regeln aus 2.2.2) durch Multiplikation mit dem L-fachen direkten Produkt der
Paulimatrix o (siehe auch A.5):

Ay = 0" x0"x...x0" =0of05 ... 0F. (3.14)
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3.1. Darstellung I: In t-Richtung propagierende Transfermatriz

Dies war aber gerade der Operator U (2.32):
Ay = U. (3.15)

Dies erlaubt eine Veranschaulichung der Symmetrie U, nach der die Eigenvekto-
ren unterschieden wurden (siehe Abschnitt 2.2.7): Beziiglich einer Spinumkehr
treten symmetrische (2.40) und antisymmetrische (2.41) Zusténde auf.

Mit (3.15) lautet die Zustandssumme (3.12):

Zyp = Sp(PTU). (3.16)

Da U mit P vertauscht, kann die Diagonalisierung in derselben Basis wie bisher
erfolgen. Die endgiiltige Form der Zustandssumme ist dem néchsten Abschnitt
zu entnehmen.

3.1.3 Sektoren

Entsprechend den RB (3.1) treten insgesamt vier Sektoren auf. Die zugehorigen
Zustandssummen werden mit Z, _;, indiziert. Tabelle 3.1 gibt eine Ubersicht.

‘ Sektor ‘ A H Ta ‘ T ‘ RB in z-Richtung ‘ RB in ¢-Richtung ‘
++ A +1 +1 periodisch periodisch
+— Zy_ +1 -1 periodisch antiperiodisch
—+ Z_ 4 -1 +1 antiperiodisch periodisch
—— Z__ -1 -1 antiperiodisch antiperiodisch

Tabelle 3.1: Uberblick der Sektoren

Der Ubersichtlichkeit wegen wird definiert:

1
§
g = —5%:(igk), k=0,1,...,2L—1 (3.17)
it - +1 fiir gerade Anzahl an Minuszeichen, (3.18)
miha = -1 fir ungerade Anzahl an Minuszeichen '
_ +1 fir k  gerade,
und 0 = { -1  fiir % ungerade. (3.19)

(3.17) deckt sdmtliche Méglichkeiten auftretender Energieeigenwerte ab. Fiir
a = +1 gehoren sie zu symmetrischen Eigenvektoren, fiir « = —1 zu antisym-
metrischen (Kapitel 2). Bei 6 = +1 entstammen sie H~, bei d = —1 H™T (2.68).
Desweiteren wird definiert:

Y, = Y ew [—537 i T] . (3.20)
J

Die Summation in (3.20) verlaufe iiber alle verschiedenen in £ enthaltenen
2L=1 Energieeigenwerte.
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

Mit diesen Voriiberlegungen lassen sich nun die Zustandssummen aus Tabelle
3.1 aufstellen.

* Zi4

Unter Verwendung von (3.20) folgt aus (2.44):

Zi = sp|30+0) (V+)T} + Sp [%(1—U> v)"

= Y, +Y". (3.21)

Dies ist das aus Kapitel 2 bekannte Ergebnis (2.79).
Mit (2.80) und (2.81) ergab sich die kompaktere Darstellung (2.82):

1 L-1 T L-1 T
zL, = 5 { + Tl;[o 2 cosh (5 52r+1> + Tl;[g 2sinh (5 52r+1>

L-1 T L-1 T
+ l_[o 2 cosh <§ €2r> — 1_[0 2 sinh <§ 52r> } . (3.22)
r= r=

« Z,_
Aus (3.12) in Abschnitt 3.1.2 ergibt sich mit U? = 1
Z_ = Sp B(leU)U(V*)T} + Sp [%(1—U)U(V)T]
— Sp B (1+U) (v+)T} ~ Sp B (1-U) (v—)T]
= Y, -Y". (3.23)

Dementsprechend erhéalt man:

L-1

T T T
Z_ = 5 { + H 2cosh (5 52T+1) + H 2 sinh (5 52T+1>
r=0 r=0

L-1 T L-1 T
— [ 2cosh (5 ear) + J[2sinh (e ) . (3.24)
r=0 2 r=0 2
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3.1. Darstellung I: In t-Richtung propagierende Transfermatriz

o 7Z_

Mit (3.7) und (3.10) aus Abschnitt 3.1.1 ergibt sich

7' = Sp %(1—U) (V’L)T} + Sp B(lJrU) (v)"
— vyt (3.25)

sowie mit zu (2.80) und (2.81) analogen Identitéten:

Z' —1+LH_12 hT LH_IQ'hT
—+ =5 cos 5 €ort1 sin 5 €941
r=0 r=0
L—1 L—1
T . T
+ l_[o 2 cosh <§ 52,~> + 1_[0 2sinh <§ 62T> } . (3.26)
r= r=

o 7__

In diesem Fall wird sowohl die Transfermatrix wie in (3.7) modifiziert
als auch der Operator U wie in (3.12) in die Spur miteingebaut.

Z_ = Sp B (1-0U) U(V+)T] + Sp B (1+0U) U(V_)T}
— _¢Sp B (1-U) (V*)T] + Sp E 1+0) (V)T]
= —YZ 4V, (3.27)

Hierfiir ergibt sich folgende kompakte Schreibweise:

L-1

A = 1 —Ll_I_lQ(:osh ZE —|—H28inh Za
- = 2 1 2 2r+1 4 2 2r+1
-1 T L—1 T
+ H 2 cosh <§ 52r> + H 2 sinh <5 £2T> } . (3.28)

r=0 r=0
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

3.2 Alternative Darstellung II: In xz-Richtung
propagierende Transfermatrix

Grundlage bei der Berechnung der Zustandssummen war bisher (Kapitel 2 und
3.1) eine Transfermatrix, die auf den Zeilen definiert wurde und sich von Zei-
le zu Zeile durch das gesamte Ising-Gitter arbeitete. Diese Methode wurde als
Darstellung I bezeichnet.

Alternativ ist es genauso zuléssig, die Transfermatrix auf den Spalten zu defi-
nieren und sie auf diesen vorriicken zu lassen.

ST+1 = Tt 81

V41 =Tz " V1

x
Abbildung 3.2: Transfermatrix in z-Richtung mit RB

Dies fiihrt auf eine andere, Darstellung II genannte Form der Sektor-Zustands-
summen, die jedoch der bisherigen dquivalent ist, wie in Abschnitt 4.5 bewiesen
wird.

Da insbesondere die algebraischen Methoden aus 3.1.1 und 3.1.2 zum Einbau
der antiperiodischen RB vertauschen, dient dies der Untermauerung der im ver-
gangenen Abschnitt erzielten Ergebnisse.

Zur Unterscheidung werden die Groflien der Darstellung I mit = gekennzeich-
net. Deren Aussehen 1dt sich durch folgende Symmetrieiiberlegung aus der
Darstellung I gewinnen:

Die Situation in Abb. 3.2 (Darstellung II) wird offensichtlich durch Vertau-
schung sowohl der Koordinatenachsen als auch von L und T auf diejenige in
Abb. 3.1 (Darstellung I) iiberfiihrt:

LT
Darstellung II, Abb. 3.2 — Darstellung I, Abb. 3.1 (3.29)

r —1

Mit einem ~ versehene Groflien aus Darstellung II sind daher im Folgenden
stets so zu verstehen, daf sie geméaf (3.29) aus den in Darstellung I erfolgten
Definitionen hervorgehen.

Auf Spalten definierte Grofien A (L, T) erhélt man dementsprechend aus auf
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3.2. Alternative Darstellung II: In x-Richtung
propagierende Transfermatriz

den Zeilen definierten Groflen A (7', L) unter Vertauschung von L und 7.
Zur besseren Unterscheidung wird dabei die Spaltenvariable, die die Spinkonfi-
guration einer gesamten Spalte zusammenfafit, mit

vy ={s1,82,..., ST}l—teSpalte .

bezeichnet (siehe Abb. 3.2).
Bei richtungsbezogenen Ausdriicken, wie es vor allem bei den Zustandssummen
der Fall ist, ist zudem die Vertauschung z <» ¢t zu beachten.

Aus diesen Symmetriebetrachtungen folgt also insbesondere fiir die Zustands-
summen Z, - in Darstellung II:

ZTth (L, T) = Znr, (T,L). (3.30)

Diesen Zusammenhang erhélt man auch durch explizite Konstruktion der Z.z.rt
mit Darstellung I1- Groflen [personliche Aufzeichnungen des Autors]; diese ver-
lauft analog zum Vorgehen in Kapitel 2, wodurch keine neuen Aspekte auftreten,
und weshalb hier dem eleganteren Symmetrieargument (3.29) der Vorzug gege-
ben wurde.

Zur Vervollstandigung werden die verschiedenen Sektor-Zustandssummen nun
explizit aufgefiihrt:

© Zyy
Bei periodischen RB folgt aus (2.36) bzw. (3.21):
Z,, = Sp [VL}
5 B(lJrU) (Vﬂﬂ + Sp [%(1-&) (V)L]

= YD+ VYT (3.31)

o Z,_
Senkrecht zur Propagationsrichtung der Transfermatrix sind die antiperi-
odischen RB in dieser selber in Form von V enthalten, vgl. (3.7) bzw.

(3.25).

Z;, = Sp{
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

« 7,

In Richtung der Transfermatrix (hier gerade die z-Richtung) bewirkt der
Spinumkehroperator U antiperiodische RB (siehe (3.16) bzw. (3.23)):

ZL+ = Sp{f/LU}

= so[La )] - s [Sa- o)

<
—
h
—_

= Y, -Y". (3.33)

o 7__
Durch Kombination der oben aufgefiihrten Modifikationen erhélt man
analog zu (3.27)

Z_ = sp|(Vr)t U]

Man erhélt auch hier mittels zu (2.80), (2.81) analogen Identitéiten kompakte
Darstellungen wie in (3.22), (3.24), (3.26) und (3.28); an diesen bisherigen Er-
gebnissen konnen sie direkt nach (3.29) bzw. (3.30) abgelesen werden.

Da Z, -, aus Darstellung I und Zﬂm aus Darstellung II offensichtlich denselben
physikalischen Sachverhalt beschreiben, sollten sie einander gleich sein. Dies zu
beweisen, gelingt in Kapitel 4 anhand der fermionischen Sektoren.
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3.8. Zusammenfassung und Vergleich der Methoden

3.3 Zusammenfassung und Vergleich der Methoden

Die verschiedenen Methoden zum Einbau antiperiodischer RB werden hier noch
einmal schematisch zusammengefafit. In den Zeichnungen stehen die Abkiirzun-
gen p fiir periodisch und ap fiir antiperiodisch.

7=+1 = Z; 4+ =5p [ (Vp/“p)T}

n=-1 = Z, _=5p [ (velar)T . U}

T
Ty =+1 = VP
Ty =—1 = V®
t
1
1 L
x
Abbildung 3.3: Einbau der RB in Darstellung I
m=+1 = Vp
m=—-1= Vap
T
Te=+1 =
Zim = S0[ (V7/0)"]
- Tp = —1 =
I 7 n = Sp| (V7o) O]
1
1 L
x

Abbildung 3.4: Einbau der RB in Darstellung II
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3. Finbau antiperiodischer Randbedingungen
i zwet verschiedenen Darstellungen

Antiperiodische RB in Richtung der Transfermatrix werden durch den Einbau
des Paritdtsoperators U bzw. U in die Spur realisiert. Senkrecht zur Propagati-
onsrichtung gehen die antiperiodischen RB hingegen direkt in die Transferma-
trix ein.

Da diese algebraischen Methoden zum Einbau einer antiperiodischen RB in vor-
gegebener Richtung beim Wechsel zwischen Darstellung I und IT jeweils vertau-
schen (besonders deutlich bei den RB 7, = +1, 73 = —1 oder 7, = —1, 74 = +1),
und in Kapitel 4.5 ein Aquivalenzbeweis von Darstellung I und II erfolgt, be-
statigen sich diese Methoden gegenseitig und untermauern somit die dadurch
erhaltenen Ergebnisse.
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Kapitel 4

Fermionische Darstellung

1964 entwickelten Schultz, Mattis und Lieb eine weitere analytische Losung
des zweidimensionalen Ising-Modells [17] unter Verwendung fermionischer Ope-
ratoren. Sie enthélt einige fiir die vorliegende Thematik interessante Aspekte.
Insbesondere lassen sich rein algebraische Ausdriicke aus der Onsager-Kaufman-
Losung in der Fermion-Sprache veranschaulichen. Der néchste Abschnitt skiz-
ziert diesen Losungsweg.

4.1 Die L6sung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

Grundlage ist auch hier der Formalismus der Transfermatrix, in dem sich die
Zustandssumme als Spur iiber deren T-fache Potenz schreibt:

Ziy = Sp(P). (4.1)

Fiir diese Form propagiere die Transfermatrix P wie in Kapitel 2 und 3.1 entlang
der t-Achse (siehe Abb. 2.4) unter der Annahme periodischer Randbedingun-
gen (1, = +1, 7w = +1), welche zuerst diskutiert werden; die Aufstellung der
verschiedenen Sektor-Zustandssummen bei antiperiodischen Randbedingungen
(Tab. 3.1) kann hier ebenfalls erfolgen und wird im Anschlufi behandelt.

4.1.1 Alternative Formulierung der Transfermatrix
Ausgangspunkt ist die Transfermatrix
P = [2sinh(2B)]7 - V5 Wi

(2.17)-(2.22), wie sie nach Onsager und Kaufman in Kapitel 2 formuliert wurde.
Um diese fiir die nachfolgenden Zwecke geeignet umzuschreiben, wird zunéchst
eine Ahnlichkeitstransformation der Paulimatrizen durchgefiihrt, unter der ihre
Eigenschaften bestehen bleiben:

X z
O, — — O,

Y )
oy, — Oy

z T
oy, — Oy



4. Fermionische Darstellung

Nach dieser lauten V; (2.17) und V5 (2.19):
L
-8y Ufn] ; (4.2)
m=1

L
Vo = exp [ﬁ Z ol cerl] mit o7, =0 wegen (2.1). (4.3)

m=1

Vi = exp

In dieser Darstellung ist offensichtlich V; diagonal (vgl. A.1), wihrend dies fiir
V5 nicht mehr gilt. In der Beschreibung aus Kapitel 2 war dies genau umge-
kehrt. Man vergleiche hierzu einen entsprechenden Kommentar im Abschnitt
»An Alternative Realization“ des Kaufman-Artikels [15].

Fiir eine verdeutlichende Matrix- und Vektor-Schreibweise werden im Folgen-
den voriibergehend die GroBen ohne Indizes verwendet; der Ubergang zu den
indizierten Groflen als direkte Produkte nach (2.21) wird im Anschlufl wieder
durchgefiihrt. Auftretende Matrizen werden dabei als Matrixdarstellungen fiir
Operatoren aufgefafit, so dafl diese Begriffe synonym verwendet werden.

Die oben vorgenommene Ahnlichkeitstransformation o — So?S~! gelingt
iiber (vgl. [15])

S — % (} ‘1) (4.4)

Der dadurch bedingte Darstellungswechsel bewirkt folgendes verdndertes Aus-
sehen der Spinzustinde s; = +1 (,up” und ,,down“, siehe (3.13)):

) =50 () -5G)

Das Ziel dieser Transformation besteht darin, V7 und V5 durch Bilinearformen in
neuen Operatoren o+ und o~ auszudriicken, welche folgendermafien eingefiihrt
werden:

(0% +i0Y) = <8 (1)>; (4.6)

(0¥ —id¥) = <(1) 8). (4.7)

Fiir deren Produkte ergibt sich

N = N

otoT = %(]L-FO'Z) = (é 8 : (4.8)
oot = %(]J_—az) = (8 (1)> (4.9)

48



4.1. Die Lésung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

Angewandt auf die Zustéinde (§) und (), die sich nach dem Darstellungswech-
sel nun nicht mehr auf die Spinzustédnde beziehen (sondern durch deren Line-
arkombination darstellbar sind), offenbaren sich o™ und o~ als Erzeuger und

Vernichter:
S I I R

Aus (4.6)-(4.9) erhdlt man die Antikommutatorrelationen
{ot, o7} =1, (O’+)2 = (O'_)2 =0. (4.11)

Daraus wird ersichtlich, daf8 es sich bei 0™ und ¢~ um Fermion-Erzeuger und
-Vernichter sowie um zugehédrige Fermionzusténde handelt:

<(1)) = Fermion, <(1)> = kein Fermion. (4.12)

Dies verdeutlicht den stattgefundenen Darstellungswechsel.

Beim Ubergang zu den indizierten Grofen o* — of nach (2.21) muB genau

auf die Vertauschungsrelationen achtgegeben werden:
Entfalten 0 und o~ auf denselben Gitterplitzen ihre Wirkung, wie es oben
der Fall war, erhilt man die Antikommutatorrelationen

(o), on) =1, (o) = (03) = 0, (4.13)

wie sie von Fermionoperatoren aus der zweiten Quantisierung im Operatorfor-
malismus bekannt sind.

Operationen an unterscheidlichen Gitterpunkten m,n hingegen sind jedoch un-
abhéingig voneinander; dies fithrt auf die Kommutatorrelationen

[oF, 0] =0 fir m#n, (4.14)

m

wie sie von bosonischen Operatoren her vertraut sind.

Die neuen Operatoren o}, und o, sind also offensichtlich teilweise bosonischer
und teilweise fermionischer Natur. Der Umgang mit diesen gemischten Relatio-
nen wird im néichsten Abschnitt aufgezeigt.

Fiir den weiteren Verlauf verbleibt festzuhalten, daff sich die in V; (4.2) und
V5 (4.3) enthaltenen Paulimatrizen folgendermafen iiber o = 1 (0%, +i O'Zr/n)
ausdriicken lassen:



4. Fermionische Darstellung

Damit lassen sich V4 (4.2) und V4 (4.3) bilinear in o3, formulieren:
- X
Vi = exp|-28) (a; o 5)] : (4.15)

L
Vo = exp|f Z (cF +o ) (0} +0m+1)] (4.16)

m=
L-1
= e |{ X (07 +,) (7 + 7

+ (0f +07) (of +o07) }] : (4.17)

V1 beschreibt weiterhin die Kopplung in ¢-Richtung und V, diejenige in -
Richtung.

In (4.17) ist der in (4.16) durch die periodischen Spin-Randbedingungen ent-
haltene Randterm ausgeschrieben. Dieser wird noch eine Rolle spielen.

Zusammengefafit formulieren Schultz, Mattis und Lieb die aus der Onsager-
Kaufman-Losung bekannte Transfermatrix alternativ iiber Erzeuger o und
Vernichter o,,,, die gemischt fermionischen und bosonischen Vertauschungsrela-
tionen gehorchen.

Ubrigens erwihnen Schultz, Mattis und Lieb den beschriebenen Darstellungs-
wechsel nur am Rande und widmen sich hauptséchlich einer Herleitung der
Transfermatrix iiber eine Rekursionsformel fiir reduzierte Dichtematrizen [17],
die auf dasselbe Ergebnis fithrt. Der Variante mit dem Darstellungswechsel wur-
de hier der Vorzug gegeben, um den Bezug zur Onsager-Kaufman-Losung deut-
licher herauszustellen [46].

4.1.2 Transformation auf reine Fermion-Operatoren

Wie bereits im vorangehenden Abschnitt festgestellt wurde, sind die Erzeuger
o} und Vernichter o, teils bosonischen und teils fermionischen Charakters:

[O';tn, Uff] =0 fir m#n: bosonisch
{of, o} =1, (0;)2 = (U;L)2 =0: fermionisch

Da die Invarianz dieser gemischten Relationen bei Transformationen schnell
verletzt wird, erscheint eine Diagonalisierung zunéchst schwer durchfiihrbar.
Den Ausweg bietet eine Transformation auf neue Operatoren C,,, CL :

m—1

Cm = exp |:7Ti Z J;r O'j:| O s (4.18)
j=1
m—1

Cl = exp |:7Ti O';_ O'j_:| ol . (4.19)
j=1
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Bei C,,, und C;Ln handelt es sich dann um rein fermionische Operatoren, die dem
kompletten Satz an Antikommutatorregeln

{C;, Cly =05, {Ci, 5y ={C]. cl}=0 (4.20)

gehorchen, wie man durch Nachrechnen zeigen kann.

Die Transformation (4.18), (4.19) geht zuriick auf Jordan und Wigner und
taucht bereits in ihrem Klassiker iiber die zweite Quantisierung von Fermion-
feldern aus dem Jahre 1928 auf [18]. Schultz, Mattis und Lieb verwenden diese
Transformation des Haufigeren [47, 48, 49]; eine gute Beschreibung zu dieser
findet man besonders in [47].

Diese Jordan-Wigner-Transformation (4.18), (4.19) kann noch unter einem an-
deren Aspekt beleuchtet werden. Hierzu beachte man zun#chst, dafl aus der
Relation exp(fA) = cosh(f) + A sinh(f) fiir Matrizen A mit 42 = 1 (und
6 € C) folgt (siehe auch A.4):

exp [iwa}' O'j_} w5z (4.21)
Da die Summanden im Exponenten kommutieren, kénnen C,,, und C’Jn damit
in Produkte umgewandelt werden:

m—1

Cm = (=0%) om s (4.22)
j=1
m—1

o = (—0%) o . (4.23)
j=1

Uber den Vergleich mit den (transformierten) T'-Matrizen (2.30) wird iibrigens
der immer noch bestehende Bezug zur Kaufman-Darstellung deutlich (vgl. [19]):

Cm = 3(Tom-1—1iT2m) (4.24)
Cl, = 2 (Tom-1+iT2m) (4.25)
Aufgrund des Darstellungswechsels 07 — — o7 bewirkt nun — o die Spinum-
kehr am Gitterplatz j, wovon man sich mit Hilfe der Zusténde (4.5) iiberzeugen

kann; der Spinumkehroperator U fiir die gesamte Zeile (siehe (3.14), (3.15))
lautet demzufolge

L
U = [[(-03). (4.26)
j=1

Bei C), (4.22) und chy (4.23) hingegen findet offensichtlich eine Umkehr nur
der ersten m—1 Spins (innerhalb einer Zeile) statt:

Cn = Uno1 0o, (4.27)
Cl = Up_10} (4.28)
mit Up—1 [S1,.-.,80) = | —S1,-+os —Sm—1, Smy---,SL).  (4.29)
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4. Fermionische Darstellung

Das herkdmmliche U (3.14), das alle Spins in einer Zeile umdreht, ist in dieser
Notation als
U = U

zu verstehen.

Die Erzeugung bzw. Vernichtung eines Fermions am Gitterplatz m bewirkt nach
(4.27), (4.28) also offenbar einen Kink der Spins an eben dieser Stelle (veran-
schaulicht in Abb. 6.1). Der sich dadurch aufdringende Zusammenhang mit
einer Grenzfliche senkrecht zur z-Richtung wird in Kapitel 6 aufgegriffen.

Aus den Transformationsregeln (4.18) und (4.19) folgt:

of o, = Cl Cn;

T Ol = CTTannHv Om Omy1 = = COm Cya fir m < L
ah O+l = C;’rn Crmt1 Om Urtbﬂ =-Cn C;rn+1 ) ’
ofof =—(-)NVCicl,  opor = ()N CLO,
ofop == (-1 C’z Cy, o of = (=)NCy CI.
Hierbei ist
L L
N = > oho, =Y ClCn (4.30)

m=1 m=1

der Teilchenzahloperator, der die Anzahl vorhandener Fermionen auf einer Zeile
angibt.

Bilinearformen der Operatoren Oi auf denselben und benachbarten Gitterplat-
zen bleiben also bilinear in den Fermionoperatoren C,,, CI,Z; fiir die in (4.17)
ausgeschriebenen Randterme, die durch die in z-Richtung periodischen Spin-
randbedingungen hervorgerufen werden, findet man etwas kompliziertere Aus-
driicke, die aber dennoch behandelt werden konnen.

Andere Kombinationen der Operatoren o iiberstehen diese Transformation
allerdings nicht bzw. in keiner weiter verwertbaren Gestalt. Dies beschrénkt die
analytische Losung auf néchste-Nachbar-Wechselwirkungen in zwei Dimensio-
nen sowie auf ein verschwindendes dufleres Magnetfeld, dessen Term aus diesem
Grund hier auch nicht angegeben wurde. Hierdurch erklért sich auch die Not-
wendigkeit der Ahnlichkeitstransformation (4.4).

Geméf den gefundenen Transformationsregeln lauten somit Vi und Va:

L
Vi = exp —2@2 (CL Cm — %)] , (4.31)

m=1

i = o |0 3 (0l ) (Chs + G

m=1

VY (h-a) (cre) b e
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4.1. Die Lésung des zweidimensionalen Ising-Modells
mittels fermionischer Operatoren

Man beachte den Randterm in V5 (4.32). Der nun folgende Abschnitt beschéftigt
sich mit dessen Auswirkungen.

4.1.3 Aufteilung von V in V* und V-~

Der Randterm in V; (4.32) enthilt den Ausdruck (—1)", wobei N der Fermion-
zéhler (4.30) ist. Er soll n&her untersucht werden.

Mit N =Y o} o, (4.30) folgt

(4 26)

L L
(—=1)N = exp(inN) H exp(ino o H U. (4.33)

m=1

(—1)N stellt also den Spinumkehroperator U (nach einer Basistransformation)
in der fermionischen Formulierung dar. Die Verwendung von (—1)" bietet aller-
dings im Folgenden neue Aspekte und hilft die aus Kapitel 2 bekannte Losung
besser nachzuvollziehen.

Wiéhrend der Charakter als Symmetrie und Erhaltungsgrofie iiber die Ver-
tauschbarkeit mit V' (respektive H) folgt, wird die Rolle als Paritétsoperator
direkt an dessen Form ersichtlich: (—1)" kann offenbar nur die Werte o = +1
und o = —1 annehmen, wobei nach Zustdnden mit gerader und ungerader
Fermionzahl unterschieden wird:

" { +1 fiir gerade Fermionzahl, (4.34)

-1 fir ungerade Fermionzahl .

Aufgrund von (—1) = U ist die Benennung mit a aus der fritheren Definition
(3.18) (o = +1: gerade Anzahl an Minuszeichen in den Eigenwerten, o = —1:
ungerade Anzahl an Minuszeichen) bewuft gewéhlt; dieser Zusammenhang wird
weiter unten explizit aufgedeckt.

Die Zusténde mit gerader Fermionzahl |1),), fiir die wegen

(_1)N |¢g> = +|7w[’g>

a = +1 gilt, sind demnach symmetrisch.
Zustinde mit ungerader Fermionzahl [¢),), fir die

(_1)N WJU> = = Wu)

gilt, sind mit a = —1 hingegen antisymmetrisch.
Es ist daher sinnvoll, den Raum H der Eigenzusténde in Hy und H_ zu unter-
teilen (H, mit o = +1):

H+ : Raum der symmetrischen Eigenzusténde (4.35)

mit gerader Fermionzahl

H_ : Raum der antisymmetrischen Eigenzustéinde (4.36)

mit ungerader Fermionzahl
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4. Fermionische Darstellung

Uber eben diese Aufteilung der Riume gelingt es, den Randterm in Vs weiter
auszuwerten. Hierzu wird V5 folgendermaflen in V;r und V, aufgespalten:

TA— [B{ ;11 (Ch = Cm) (Chis + Cout)

- (c{ - CL> (CI + 01) } : (4.37)
Voo = exp [ﬁ{ > <C7Tn - Cm) <Cjn+1 + Cm-l—l)

m=1

+ (C{ - CL) (01T v 01) } (4.39)

Damit wird V = V5 V] in V' und V™~ geteilt.

Bei den hier behandelten periodischen Spin-Randbedingungen 7, = +1, 7, = +1
gilt offensichtlich

Eigenvektoren von VT sind aus H, ,
Eigenvektoren von V'~ sind aus H_ ,
wie man durch Vergleich von (4.37) und (4.38) mit (4.32) sieht.

Fiir die Zustandssumme Z/ , (die ohne den Vorfaktor wie in (2.42) definiert
wird) erhélt man dementsprechend:

Zyo = Sp[VT] = Spy, (V)] + s [(VD)T] . (4.39)

Diese getrennte Spurbildung iiber V* und V'~ tritt ebenfalls auf in der Onsager-
Kaufman-Losung aufgrund eines anders gearteten Randterms, der ebenfalls den
Symmetrieoperator U enthilt. Die Identifizierung von V' und V~ aus beiden
Losungen wird spéter in 4.1.5 anhand der Eigenwerte offensichtlich werden.

4.1.4 Randbedingungen fiir Fermionoperatoren

Fine grofle Veranschaulichung besteht in dem nun folgenden Schritt. Hierzu
werden zunéchst die in den Randtermen von V," (4.37) und V;~ (4.38) iibrigge-
bliebenen Vorzeichen auf Randbedingungen fiir die Fermionoperatoren €, = +1
in der z-Richtung umgeschrieben:
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V,h = exp [5 XL: (C’,Tn - Om> (C’;Jrl + Cm—i—l)

m=1

mit Cpp1=-C und C}, =-Cl; (4.40)

antiperiodische RB ¢, = —1

= o5 (0 =) (Chr+ o)

m=1
mit Cpp1=+C, und C} =+, (4.41)
periodische RB €, = +1

Uber eine diskrete Fouriertransformation

e—i7r/4

C = T S explipem) G
k

VL

werden nun (Fermion-) Impulse py eingefithrt und die vorhandenen Grofien
in deren Abhé#ngigkeit formuliert. Nun ist aber bereits aus der elementaren
Statistik [45] bekannt, dafl periodische bzw. antiperiodische Randbedingungen
zu einer Diskretisierung der Impulse in der folgenden Form fiihren:

vt antiperiodische RB fiir Fermionen ¢, = —1
T 3w 5w (2L —1)m
= =, =, ., 4.42
é pk L ) L ) L b 7 L ) ( )
wk .
P = mit k& ungerade, k=1,3,5,...,20 —1; (4.43)
V= periodische RB fiir Fermionen ¢, = +1
2 Am (2L — 2)w
=0, —, —, ..., ——; 4.44
:> pk ) L ) L b ) L ) ( )
wk )
P = mit k gerade, k=0,2,4,...,2L—2. (4.45)

Da sich die bisherige Indizierung der Operatoren auf die lokalisierten Gitter-
punkte in einem Gitter endlicher Gréfle bzw. in einer Gitterzeile der Linge L
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bezog, ist die Fouriertransformation von diskreter Art (endlicher Wertesatz);
dementsprechend erhélt man in (4.42)-(4.45) auch nur endlich viele, ndmlich
jeweils L Impulswerte. Im Limes L — oo hingegen liegt ein Gitter unendlicher
GroBe vor, und wie an (4.42)-(4.45) abzulesen ist, erhélt man dann unendlich
viele sowie kontinuierliche Impulswerte.

Dieses Ergebnis erhalten ebenfalls Onsager und Kaufman, allerdings als rein
algebraische Bedingung wihrend der Diagonalisierungsprozedur.

4.1.5 Ergebnis nach Diagonalisierung

Es verbleibt noch die eigentliche Diagonalisierung von V*+ und V. Die Proze-
dur selber ist komplizierterer und liangerer Art [17] und wird hier deshalb nicht
vorgefiihrt. Es sei nur kurz vermerkt, daf8 sich Ahnlichkeiten zur BCS-Theorie
der Supraleitung [51, 52] abzeichnen; wie in dieser hilft auch hier die Trans-
formation nach Bogolubov [53] und Valatin [54], die die fouriertransformierten
Erzeuger 5,1 und Vernichter CNZ’k auf geschickte Weise zu neuen Erzeugern 5,1 und
Vernichtern &, linearkombiniert. Das Resultat nach erfolgter Diagonalisierung
ist schliefflich von bestechend einfacher Form:

-3 e (g ;)] . (1.46)

k

V = exp

Durch die Fouriertransformation des vorigen Abschnitts tritt nun k& aus den
Impulswerten als Index auf. Uber die Auswahl ungerader k (4.43) bzw. gerader
k (4.45) erhélt man aus (4.46) V' bzw. V™

€z = +1 — vV, k  gerade, k=0,2,4,...,2L—2; (4.47)
€z = —1 — vt k ungerade, k=1,3,5,...,2L—1. (4.48)

Der Fermionzahloperator in den neuen Fermionoperatoren 5}; und & lautet nun
N=>Yda=> . (4.49)
k k

wobei n, (bei Anwendung auf Eigenzusténde) aufgrund der Fermi-Statistik nur
die Werte 0 und 1 annehmen kann:

ne € {0,1} (4.50)

Hierzu sei angemerkt, dafl sich die Anzahl vorhandener Fermionen bei den vor-
genommenen Transformationen nicht geéindert hat [17].

Die ,,Fermion-Energien“ ¢j ergeben sich identisch zu (2.52), (2.53) aus folgender
Beziehung:

cosh (e;) = cosh(mg) + 1 — cos (%) . (4.51)

Die Vorzeichenwahl ist dieselbe wie in (2.54), (2.55). (Die dortige Vorzeichen-
wahl ist gerade dem Artikel von Schultz, Mattis und Lieb [17] entnommen.)
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Die Eigenwerte von V™ und V'~ lassen sich nun direkt an (4.46) ablesen. Be-
zeichnet man die Eigenwerte von VT wie bisher mit )\;r, so erhélt man gemé&f
(4.49) mit ng € {0,1}:

EW zu V™ : AT o= exp [— Z €k <nk - %)] ) (4.52)

k
ungerade

Ist kein Fermion mit Impuls k& vorhanden, d.h. ng = 0, so tritt in dem Summan-
den +%5k insgesamt ein Pluszeichen auf (unter Beriicksichtigung aller Vorzei-
chen im Exponenten). Bei einem vorhandenen Fermion hingegen, d.h. n; = 1,
erhélt der jeweilige Summand —%5k insgesamt ein Minuszeichen.

ni = 0: kein Fermion = Pluszeichen

nE=1: Fermion = Minuszeichen

Damit ergeben sich aus (4.52) die Eigenwerte
n 1
AT = exp 3 (teg £estest...+eor1)|, (4.53)

wobei die Vorzeichen jeweils unabhéingig zu wéhlen sind, da die n; sdmtlich
unabhéngig voneinander sind.

Fiir die Eigenwerte A;” von V™ ergibt sich analog:

EW zu V™ : A, = exp [— > ek <nk — %)] (4.54)

k

gerade

1
= exp |:§ (:|:€0 + €2 + €4 +...+£ 52L2):| . (455)

Die so erhaltenen Eigenwerte (4.53), (4.55) von V* und V~ sind in Uberein-
stimmung mit denen (2.47), (2.48) aus der Onsager-Kaufman-Losung. Das Zu-
standekommen der Vorzeichen im Exponenten 1é3t sich hier allerdings anhand
der Besetzungszahldarstellung fiir Fermionen besser veranschaulichen.

Mit den nun bekannten Eigenwerten kann die Zustandssumme (4.39) bei peri-
odischen Spin-Randbedingungen

Z, = Spy, [(V+)T} + Spy. [(V—)T}

explizit aufgestellt werden; hierbei miissen allerdings die Restriktionen beziig-
lich H4+ und H_ beriicksichtigt werden. Hy (4.35) verlangt die Beschrénkung
auf die symmetrischen Eigenzustéinde mit einer geraden Fermionzahl; fiir die
Eigenwerte bedeutet dies nach obigen Uberlegungen, daB von allen méglichen
Vorzeichenkombinationen nur diejenigen erlaubt sind, die eine gerade Anzahl
an Minuszeichen aufweisen. Bei H_ (4.36) hingegen sind nur antisymmetrische
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Zustande mit einer ungeraden Fermionzahl erlaubt, und dementsprechend diir-
fen die Eigenwerte nur eine ungerade Anzahl an Minuszeichen vorweisen.

Die Restriktion H, mit o = £1 (4.34) sortiert damit jeweils die Hilfte der
Eigenwerte von V* und V~ aus.

a=+1: gerade Fermionzahl, H, =  gerade Anzahl an Minuszeichen
a = —1: ungerade Fermionzahl, H_ = ungerade Anzahl an Minuszeichen

Die bereits frither angedeutete Konsistenz mit der bisherigen Definition von
a (3.18) wird hier also offenkundig und rechtfertigt die Benennung mit « in
(4.34).

Die dadurch implizierte direkte Analogie zu Onsager und Kaufman 148t sich
mittels der Projektoren (1 + (—1)Y) = 1(1 £ U) herausstellen, die (4.39) in
die Form (2.44) bringen:

Z., = Sp B (1 + (—1)N) (V*)T} + Sp E (1 - (—1)N) (V)T} . (4.56)

An (4.56) wird offensichtlich, wie sehr sich die hier diskutierten Losungswege
im Ergebnis gleichen bei unterschiedlicher algebraischer Herangehensweise.
Insgesamt erhélt man also in Ubereinstimmung mit dem fritheren Ergebnis
(2.79):

T
Zg__i_ = Z exp |:§ (:|:€1:|:63:i:€5:|:...:|:€2L_1):|
{gerade M Z}
T
+ Z exp |:§ (:l:é‘o teote ... £ EQL_Q):| . (457)
{ungerade M Z}

Um zur Kurzschreibweise mit den GroSen Y2 (siehe Gln. (3.17)-(3.20)) iiber-
zugehen, beobachte man, dafl die Grofle 6 = +1 (3.19) zur Unterscheidung

zwischen geraden und ungeraden k-Werten offensichtlich mit der Fermion-RB
€z (4.47), (4.48) identisch ist:

€z = 0.
Unter Verwendung der Definitionen (3.17)-(3.20) erhélt man somit:
Vi =Yg = Soy, (V)] (4.58)

wobei V¢ so zu verstehen ist, daf3 sich fiir e, = +1 V~ und fiire, = -1 V7T
ergibt, wie an (4.47) und (4.48) abzulesen ist.

Damit schreibt sich die Zustandssumme (4.39)
Z, = Y_+VY! (4.59)

in Ubereinstimmung mit (3.21).
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4.1.6 Erkliarung des Energiespektrums

Fiir den Hamilton-Operator H erhélt man geméif} (siehe (2.67))
V = exp|-H]

aus (4.46) folgende einfache Form:

B Ya(da-;). (4.60)

k
Gemifl der Aufspaltung von V in V™~ und V* wird auch H in H~ und H*

unterteilt:
t 1
=" G&—3 )5 (461)

k
gerade

€&z =+1 — V_:exp[—H_], H™

&z2=—-1 —  VT=exp [—H+] , Ht = Z €k <£;L§k — %) . (4.62)

k

ungerade

Mit (4.49) und (4.50) lauten die zugehorigen Energie-Eigenwerte E_ und F.:

1
Eigenwerte zu H~ : FE_ = Z £k <nk - 5) (4.63)
k

gerade

1
= _§(j:g-:oj:52j:€4j:...ﬂ:€2L—2); (4.64)

1
Ei t HT: E, = § - = 4.65
1genwerte zu + d €k (nk 2) ( )

ungerade
1
= -3 (Fe1xtezstes£...£ear1) . (4.66)

Die Diskussion erfolgt zuniichst fiir die allgemeinen Ausdriicke; die Projektion
auf die Unterrdume H und H_ wird weiter unten erortert.

Anhand von (4.61) und (4.62) bzw. (4.63) und (4.65) la8t sich der Aufbau
des Energiespektrums nun folgendermafien erkléren:

Ausgangspunkt sind die Grundzustands-Energien von H; und H_, die wie in
Kapitel 2 mit Ey; und FEy_ bezeichnet werden. Diese sind durch die kleinsten
Energieeigenwerte von F; und E_ gegeben (es sei § > ¢ und somit gy < 0,
vgl. mit (2.71) und (2.72)):

1
Bor = —g(tertestest...tea);
1
Ey. = _5(_50 +eates+ ... +ear9)
1
= 5 (Hleol +e2+est ... +eara) -
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4. Fermionische Darstellung

Hierzu noch einige Worte: Entsprechend der oben vorgenommenen Aufteilung
sind H, und H_ getrennt zu betrachten, da keine Ubergiinge zwischen ge-
raden und ungeraden k-Werten moglich sind. Daher wird Ep; im Folgenden
als Grundzustandsenergie beziiglich H; bezeichnet und Ey_ entsprechend als
Grundzustandsenergie von H_. Man denke sich hierzu eine entsprechende Un-
terteilung der Eigenzustinde. (Diese Sprachweise vermeidet Mifiverstindnisse;
schliefflich ist aus 2.2.10 bekannt, dafl Eg; bei endlichem L der niedrigste aller
Energieeigenwerte ist und somit die Grundzustandsenergie des Gesamtsystems
stellt.)

Desweiteren fallt auf, dal Eyy (den 0 Minuszeichen entsprechend, s.o0.) zu einem
Zustand mit 0 Fermionen gehort. Der entsprechende Grundzustand |0+) kann
daher als Vakuum interpretiert werden, in dem kein Fermion anwesend ist.
Bei Ey_ gestaltet sich dies etwas komplizierter: Offensichtlich gehort Fy— zu ei-
nem Zustand |0—), in dem das o-Fermion anwesend ist. Es handelt sich gerade
um den Grundzustand, da ¢y < 0 ist, und |0—) somit die niedrigste Energie-
Konfiguration aufweist (alle anderen e, sind positiv). In diesem Sinne 1&8t sich
o als negative Fermion-Energie auffassen. Der Zustand |0—) kann daher in
Anlehnung zur Dirac-Theorie folgendermafien als Vakuumzustand interpretiert
werden: Der ,Dirac-See“ besteht aus nur einem einzigen negativen Energiezu-
stand, ndmlich 9. Der Vakuum- bzw. Grund-Zustand ist dann durch die Be-
setzung des Dirac-Sees gegeben, d.h. durch die Anwesenheit des gqp-Teilchens.
Dessen Fehlen hingegen entspricht einem Loch und damit einer Anregung.
Oberhalb der kritischen Temperatur 8 < B¢ ist diese Diskussion iibrigens nicht
notig, da dann g9 > 0 ist und somit alle e positiv sind; fiir die vorliegende
Arbeit interessiert aber der Tieftemperaturbereich. Man vergleiche hierzu die
Diskussion in [17].

Ausgehend von den Grundzustdnden Epy und Ey_ lassen sich nun nach (4.63)
und (4.65) hohere Energiezustinde als n-Fermion-Anregungs-Zusténde interpre-
tieren, die durch die Erzeugung von n Fermionen mit verschiedenen Energien
€x aus diesen Grundzustéinden hervorgehen. Dies rechtfertigt auch die Bezeich-
nung der ¢ als Fermion-Energien in (4.51). Im Folgenden wird, um Mifiver-
stdndnisse zu vermeiden, von n-Fermion-Anregungs-Zusténden gesprochen, die
sich auf die jeweiligen Grundzustédnde beziehen. Diese Sprachweise ist eindeuti-
ger als der Begriff n-Fermion-Zustand und zudem besser an die noch folgende
Thematik angepafit. Das nachfolgende Beispiel macht den Unterschied deutlich.

Nun l&8t sich ndmlich auch das in Abb. 2.15-2.18 dargestellte Energiespektrum
erkldren, dessen Gestalt bereits die Idee zu einer Teilcheninterpretation liefer-
te. Entsprechend den dort erlaubten Vorzeichenkombinationen (2.69), (2.70),
die in der fermionischen Darstellung durch die Restriktion auf H und H_ be-
schrieben werden, treten in diesem (fiir 5 > (¢) offensichtlich nur geradzahlige
Fermion-Anregungen auf: An

1
E+ = —5 (:|:€1:|:53:|:€5:|:...:|:€2L_1) (467)

mit gerader Anzahl an Minuszeichen
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wird dies nach obigen Uberlegungen schnell einsichtig: Der geraden Anzahl an
Minuszeichen entspricht eine gerade Anzahl an Fermionen; im Grundzustand
|0+) mit Ep; (0 Minuszeichen) ist kein Fermion vorhanden, so daf beziiglich
Ey+ nur geradzahlige Fermion-Anregungen auftreten.

Um dies bei

1
E_= —5 (:l:é‘o + €9 + €4 +...+£ SQL_Q) (468)

mit ungerader Anzahl an Minuszeichen

und einer zunéchst ungeraden Fermionzahl nachzuvollziehen, beachte man das
Vorhandensein eines Fermions (1 Minuszeichen in Ey_) im Grundzustand [0—).
Auf diesen bezogen verbleiben demnach geradzahlige Fermion-Anregungen. Dies
148t sich verdeutlichen mithilfe der negativen Energie eg = —|g¢| des im Grund-
zustand befindlichen Fermions, mit der F_ umgeschrieben werden kann zu

1
B = (tleolter ke £, . koo s) . (4.69)

mit gerader Anzahl an Minuszeichen

Beziiglich der Grundzustandsenergie Fy_ = —% (+|eo] +e2+ ... +ear—2) tre-
ten somit lediglich geradzahlige Fermionanregungen auf, da der Ubergang zu
einem Minuszeichen in einem der Summanden einem aus Ey_ angeregten Fer-
mion entspricht.

Insgesamt sind somit in 7, fiir § > (¢ lediglich n-Fermion-Anregungen mit
geradem n erlaubt.

Es sei also noch einmal in aller Ausdriicklichkeit betont, dafl sich die Restriktion
H+ auf eine gerade/ungerade Fermionzahl stets auf die insgesamt vorhandenen
Fermionen bezieht, wihrend der Begriff der n-Fermion-Anregung stets auf die
Grundzustinde von HT und H~ bezogen ist. Der Zusammenhang zwischen

diesen Begriffen hingt von der Art des Grundzustands ab; fiir 8 > B¢ gilt:

H+, E+ .

gerade Fermionzahl <—— gerade Fermion-Anregungen (4.70)
ungerade ungerade

Eo+ , |0+) : kein Fermion

H , E_:

gerade Fermionzahl <«—— ungerade Fermion-Anregungen (4.71)
ungerade gerade

Eyp_, |0—) : energetisch negatives go-Fermion
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4. Fermionische Darstellung

Es stellt sich die Frage, ob sich dieser Zusammenhang fiir H—, E_ nicht wie bei
H™, E, vereinfachen liefle, indem man zu einer anderen Vorzeichenkonvention
fiir 9 wie z.B. der von Kaufman (2.61) iiberginge.

Dies wiare in der Tat auf den ersten Blick moglich. Dafiir bezahlte man allerdings
den Preis, dafl obiger Wechsel gerade « ungerade tief im Diagonalisierungsver-
fahren steckte; man vergleiche hierzu die an (2.61) anschliefenden Bemerkun-
gen: Dies geschihe némlich iiber Anderungen in den Restriktionen H.y. Die
Losung verlore dadurch viel an Ubersicht und Anschaulichkeit, wihrend obi-
ge Diskussion auch stets auf veranschaulichendem Niveau gefithrt werden kann
(zudem tréte dieselbe Problematik dann im Hochtemperaturbereich auf). Aus
diesem Grund wurde fiir diese Arbeit die Vorzeichenkonvention aus [17] ver-
wendet.

Um die Zusammenhéinge (4.70) und (4.71) noch prégnant in eine Formel zu
gieBen, sei mit NV die Gesamt-Fermionzahl und mit n (wie schon getan) die An-
zahl der Fermion-Anregungen bezeichnet. Zwischen diesen gilt nun fiir § = £+1
in H79 und E_s:

(DY = (=9) (=1)". (4.72)

Fiir § = —1 ist somit der Fall (4.70), fiir § = +1 der Fall (4.71) enthalten.
In (4.67) sind also sowohl N als auch n gerade, wihrend in (4.68) aus einem
ungeraden N ein gerades n folgt, wie an (4.69) gezeigt.

Bei endlichem L ist das Spektrum auf 2 Eigenwerte beschrinkt (siehe hier-
zu die Abzdhlungen in Kapitel 2; in den Abbildungen z&hlt man aufgrund von
Entartungen weniger).

Durch Abzéhlen kann man sich davon {iberzeugen, dafl von den in Abb. 2.15-
2.18 sichtbaren Bénderstrukturen im Bereich § > f¢ ein einzelnes Band zu
einer n-Fermion-Anregung mit festem n gehort. Das Band entsteht aufgrund
der unterschiedlichen, aber nahe beieinander liegenden Fermionenergien € mit
variablem Impuls pg; die Beitrdge zu einem Band stammen dabei sowohl von
H, als auch von H_.

Beim Ubergang zum Hochtemperaturbereich § < B¢ macht sich der Vorzei-
chenwechsel von g bemerkbar. Man erkennt diesen am Abknicken der Kurven,
wovon die zu H~ gehorigen Eigenwerte betroffen sind. In diesem Temperatur-
bereich entspricht die Gesamtfermionzahl auch fiir H~ der Anzahl angeregter
Fermionen, da alle ¢ positiv sind, und der Grundzustand dann kein Teilchen
enthélt ((4.71) und (4.72) gelten dann nicht mehr). Man kénnte Ey_ dement-
sprechend auch als Tieftemperaturgrundzustand von H~ bezeichnen, falls man
nicht auf den Dirac-See zuriickgreifen méchte. Da somit fiir 8 < ¢ geradzahlige
Anregungen von HT und ungeradzahlige von H ™~ auftreten, ist dort aufgrund
deren Uberlagerung keine gestaffelte Bandstruktur mehr erkennbar.

Auf das Konzept der Fermion-Anregungen wird spéter in Kapitel 6 noch zu-
riickgegriffen.
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Onsager-Kaufman-Ldsung

4.2 Zusammenfassung: Vergleich der fermionischen
Darstellung mit der Onsager-Kaufman-Loésung

Im Verlauf des letzten Abschnitts hat sich herausgestellt, daf§ algebraische Aus-
driicke in der Zustandssumme der Onsager-Kaufman-Losung zusétzliche physi-
kalische Bedeutung bzw. Veranschaulichung erlangen, wenn man zur fermioni-
schen Darstellung von Schultz, Mattis und Lieb iibergeht.

Diese Korrespondenz wird in der folgenden Tabelle zusammengefaft, die sich
an den Eigenschaften der auftretenden Eigenwerte geeignet festmachen 1af3t.

Eigenschaft der
Eigenwerte £2

Beschreibung
in Onsager-Losung

Beschreibung
in fermionischer Darstellung

gerade Anzahl
an Minuszeichen

a=+1
symmetrische Zusténde
Ulgs) = +s)

Projektor (14 U) in Spur

oa=+1
symmetrische Zusténde
(_1)N |¢g> =+ Wg)

gerade Fermionzahl, H

ungerade Anzahl
an Minuszeichen

a=—1
antisymm. Zusténde
Ulpa) = = ltha)

Projektor $(1 — U) in Spur

oa=-1
antisymm. Zusténde
(DN [thu) = — )

ungerade Fermionzahl, H_

k gerade
k=0,2,4,...,2L—2

=41 — V=, H-
Diagonalisierung

E:E = 6 = +1 — V_, H_
period. RB fiir Fermionen

k ungerade

§=-1 — V*t HT

€z=0=—-1 — V+ HT

k=1,3,5,...,2L—1 Diagonalisierung antiperiod. RB fiir Fermionen
e U (-)N¥N=1U
Paritat t
artatsoperator Spinumkehroperator N: Fermionzahloperator

Tabelle 4.1: Vergleich der Losungsmethoden

Zudem sei noch an die Veranschaulichung der €, (2.52) als Fermionenergien und
der pi = %k (2.53) als Fermionimpulse erinnert, mit denen sich das Energie-
spektrum als Anregungsspektrum verstehen 1af3t.
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Die Angaben in Tab. 4.1 sind fiir Darstellung I gegeben unter den im Text ge-
nannten Konventionen. Um zur Darstellung II iiberzugehen, sind die auftreten-
den Groflen durch die mit einem Hut (") Versehenen sowie k = 0,1,2,...,2L—1
durch!=0,1,2,...,27—1 und ¢, durch ¢; zu ersetzen, da sich die Propagations-
Richtung der Transfermatrix dndert (siehe (3.29)).
4.3 Aufstellung der Sektor-Zustandssummen Z, .,
Der Fall periodischer RB fiir die Spins
Te =41, 7 =+1

ist bereits ausfiihrlich in Abschnitt 4.1 behandelt worden.
Insbesondere fanden sich die Restriktionen:

Eigenvektoren von V1 sind aus H ;

Eigenvektoren von V'~ sind aus H_ .
Die Spinzustandssumme Z' | ergab sich nach (4.39) durch unabhéngige Spur-

bildung iiber V* und V™~ unter diesen Bedingungen; unter Beachtung von (4.58)
erhielt man:

Zy = Sow (V)] 4 S (V)]
= Y, +YT.

Die weiteren Sektor-Zustandssummen aus Tabelle 3.1 erhdlt man durch den
Einbau antiperiodischer Randbedingungen fiir die (wohlgemerkt!) Spins.

Bei antiperiodischen RB senkrecht zur Richtung der Transfermatrix
Te=—1, =41

folgt anstatt (4.17):



4.3. Aufstellung der Sektor-Zustandssummen Z, -,

Die aus der Transformation (4.18), (4.19) folgenden Regeln fithren anstatt (4.32)
auf

V2ap = exp [ﬁ{ Iil (CI,L — Cm> (C:n—i-l + Cm+1)

+(-D)Y (c] -cr) (cf+an) } (4.74)

Der Randterm unterscheidet sich im Vorzeichen von (4.32).
Behiilt man die Definition von V," (4.37) und V, (4.38) bei, so folgen aus dem
verdnderten Vorzeichen die Restriktionen

Eigenvektoren von V7 sind aus H_ ;

Eigenvektoren von V™ sind aus Hy .

Damit erhilt man fiir die Zustandssumme
/ T T
ZL = Sop_ (VO] + Sor, [(v0)] (4.75)

= Y- +Y7
in Ubereinstimmung mit (3.25).

In Richtung der Transfermatrix lassen sich antiperiodische RB
Te =+1, w=—1

realisieren durch den Einbau des Paritéitsoperators U in die Spur, der zwischen
symmetrischen und antisymmetrischen Eigenzustéinden unterscheidet (siche Ab-
schnitt 3.1.2). Wie bereits in Gl. (4.33) festgestellt wurde, 18t sich U als (—1)V
darstellen, wobei N der Fermionzéhler ist. Letztere Gestalt ist fiir die vorlie-
gende Formulierung iiber Restriktionen beziiglich gerader und ungerader Fer-
mionzahl geeigneter:

Z\,_ = Spy, [(—1)N(V+)T} + Spy_ {(—1)N(V7)T]
B e I
= Y, -YT .

Dieses Ergebnis stimmt mit (3.23) {iberein.
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4. Fermionische Darstellung

Durch Kombination oben aufgefiithrter Modifikationen fiir

m=-1, m=-1
ergibt sich
2= S (DY) Sow [N
— — Spy. [(V*)T} + Spy, [(V*)T}
= —Y_+VYT,

was (3.27) entspricht.

Ebensogut kann man auch hier die Transfermatrix auf den Spalten definie-
ren und in z-Richtung wandern lassen (siehe Abb. 3.2). Man erhilt dann die
Zustandssummen Z. -, (3.31)-(3.34) in Darstellung II.

4.4 Fermionische Zustandssummen und Sektoren

Neben den bereits aus Kapitel 2 und 3 bekannten Spin-Zustandssummen Z;
kénnen in der fermionischen Darstellung Fermion-Zustandssummen Z( ., auf-
gestellt werden. Diese ergeben sich unter Beachtung der Randbedingungen fiir
Fermionen. Letztere sind gegeben durch €, = £1, ¢, = £1, so dafl auch hier

vier Sektoren auftreten werden.

‘ ferm. Sektor ‘ ZF H € ‘ €t ‘
+4 A +1 +1
- v R
—+ Zr -1 +1
—— VA -1 -1

Tabelle 4.2: Ubersicht der fermionischen Sektoren
Die Bezeichnung €, /; soll Verwechslungen mit den Spin-RB 7, /; vermeiden.

4.4.1 Fermionische Zustandssummen in Darstellung I

Zur Vorgehensweise sei an Abbildung 2.4 erinnert. In Abschnitt 4.1 wurde be-
reits gefunden:

_ 5 = +1 — V=, k  gerade,
0 =0 = -1 — V7%, k ungerade;

- +1 — Hy, gerade Anzahl an Minuszeichen,
@ = —1 — H_, ungerade Anzahl an Minuszeichen.
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Mit den Definitionen (3.17)-(3.20) ergab sich der Zusammenhang (4.58)

Vi = Ve = Spy, (V)] s
dabei ist V¢ so zu verstehen, daf sich fiir e, = +1 V'~ und fiire, = -1 VT
ergibt, wie an (4.61) und (4.62) abzulesen ist.

Die fermionische Zustandssumme erschliet sich nun aus der Spur iiber die
Teilrdume H4 und H_.

Zuvor miissen aber noch die vertikalen RB €¢; = =1 beriicksichtigt werden.
Aus der Betrachtung der Zustandssumme als grassmannwertiges Integral folgt
in Richtung der Transfermatrix eine scheinbare Vertauschung periodischer und
antiperiodischer RB gegeniiber dem Spin-Fall: Bei ¢, = 41 wird zusétzlich
(—=1)V in die Spur eingebaut, bei ¢, = —1 hingegen nicht (siehe [21], S. 251).
Dieser Zusammenhang als Folge der Grassmann-Algebra ist in der Literatur
bekannt und braucht hier deshalb nicht aus ersten Prinzipien hergeleitet zu

werden. Damit lauten die fermionischen Zustandssummen Z{ _

zt = sp (V)| = Sor (V)] Sp [V

= Yo 4 Ye, (4.76)

—€x T _ —€x T —€x T
7y = SV 0N = so, [()T] = Sa [V
= Y7 -Y<. (4.77)
Der Vorfaktor ist fiir das Folgende vorteilhaft gewahlt worden.

e¢=+1 = ZF | = Sp [(V*EI)T(—l)N}

a=-1= 25 _ = Sp|(veo)]

€& =+1 = V~

€z=—-1= VTt

T

Abbildung 4.1: Fermionische RB in Z{
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Im Speziellen ergibt sich:

Z', = YI-Yh, (4.78)
Z8_ = YL +Yh; (4.79)
Zr, = Y -Y_; (4.80)
Z'_ = YD +YZ. (4.81)

Vergleicht man (4.78)-(4.81) mit (3.21), (3.23), (3.25) und (3.27), so erkennt
man, daf sich die Spin-Zustandssumme eines jeden Sektors stets durch die vier
fermionischen Sektor-Zustandssummen ausdriicken 1a8t [19, 20]:

1

zL, = 5( ZN 2N+ 75+ 28 (4.82)
1

Z_ = 5(+Zi+ _+ZE +Z8 ) (4.83)
1

zl, = §(+Zi++ZF, L2 (4.84)

zl_ = %( AN AN AR I (4.85)

Man beachte, an welchen Stellen die Minuszeichen auftreten.

Dariiber hinaus liefert eine néhere Betrachtung von (4.78)-(4.81) mit Identi-
taten wie in (2.80) und (2.81) eine Produktdarstellung der fermionischen Zu-
standssummen:

2L—1
T
Zy, = ]] 2sinh (5 5k>; (4.86)

T
zZi_ = H 2 cosh Sk (4.87)

gerade

(z%)
Zr, = 2ﬁ1 2 sinh (gf‘sz) ; (4.88)
(

ungerade

201 T
AN H 2 cosh 5&%) (4.89)

k
ungerade

Z%, enthilt den Faktor sinh(Z ep) und wird daher (als einzige) negativ fiir

B> Be.

Setzt man diese Produktdarstellungen (4.86)-(4.89) in (4.82)-(4.85) ein, so er-
hélt man ein bekanntes Ergebnis, ndmlich die kompakte Schreibweise der Spin-
Zustandssummen (3.22), (3.24), (3.26) und (3.28) aus Abschnitt 3.1.3. Neu hin-
zugekommen ist allerdings das Wissen um den fermionischen Ursprung der dort
auftretenden Summanden.
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4.4.2 Fermionische Zustandssummen in Darstellung II

Es wird also der Fall einer in x-Richtung wandernden Transfermatrix betrachtet
(Abb. 3.2). Die bisher auftretenden Grofien werden daher (siehe Abschnitt 3.2,
Gl. (3.29)) durch die entsprechenden mit * ersetzt und die RB aus Tabelle 4.2
erfahren eine andere Behandlung als in Abb. 4.1.

Mit den Uberlegungen aus den Abschnitten 3.2 und 4.4.1 findet sich:

Aufgrund der z < t-Vertauschung bewirkt nun die RB ¢ = +1 die Auftei-
lung von V in V' und V'~ und entspricht in dieser Darstellung daher § (3.19):

+1 — V- , 1| gerade,
et = 5 = A
-1  — V%t [ ungerade,

1=0,1,2,...,2T — 1.
Die GroBe Y7 (vgl. (4.58)) ergibt sich damit nach (3.29) zu

A~

3 = ¥ = Spy, {(v—eﬂ .

Die RB ¢, = #1 in Richtung der Transfermatrix wird analog zu (4.76) und
(4.77) durch (—1)" beriicksichtigt.

= s [(V_Q)L] = Spy, [(f/—et)L] + Spy,_ [(f/—etﬂ

= V¢4V,

7 = sl ] = s [(7)] 3o [

= V¢ -ve.

Die fermionischen Zustandssummen in Darstellung II lauten damit

VAN S (4.90)
75 = YL -V (4.91)
7', = YI+vr, (4.92)
7' = Yi+YZ. (4.93)
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4. Fermionische Darstellung

€& =+4+1 = V-

€ =—1 :>‘V+

T
€&z =+1 =
A N L G
2 = [0 1
€&z =—1 =
t 1 ZAEM _ Sp[(V—et)L}
1 L

x

Abbildung 4.2: Fermionische RB in ZEFI@

Analog zu (4.82)-(4.85) erhélt man:

7., = % (— 28 V2T _ 4+ ZF + ZE_) ; (4.94)
A % (+ 28 7Y 4 ZF .+ ZE_) ; (4.95)
2y o= (v B - m ) (4.96)
2 o= (v -2 (4.97)

Man beachte die Position des Minuszeichens und vergleiche mit Darstellung I.

Als Produktdarstellungen ergeben sich hier:

2T -1
. L
728, = ]J 2sinh 5@); (4.98)
l

gerade

. L
Z5_ = ] 2sinh S é ) (4.99)

gerade

27T—-1

. _ L

- _ = 2 cosh [ = ¢
: 2

ungerade

(
7r, = Qﬁl 2 cosh (
(

)
él> ; (4.100)
)

(4.101)

A~

ZY | ist (als einzige) negativ fiir 5 > (B¢.
Das Einsetzen von (4.98)-(4.101) in (4.94)-(4.97) liefert (analog zum vorigen
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., aus Abschnitt
3.2 (man vergleiche unter Beachtung von (3.29) mit (3.22), (3.24), (3.26) und
(3.28)).

Abschnitt) eine kompakte Darstellung der Zustandssummen Z,

4.5 Aquivalenzbeweis von Darstellung I und II

Die fermionischen Zustandssummen konnten in beiden Darstellungen (4.86)-
(4.89), (4.98)-(4.101) als Produkte geschrieben werden. Mit Hilfe gewisser Iden-
titdten konnen diese in Doppelprodukte umgewandelt werden, die die L-T-
Symmetrie besser aufzeigen. Insbesondere wird sich herausstellen, daf§ die fer-
mionischen Zustandssummen Zf . und meGt aus Darstellung I und II identisch
sind, was zu derselben Schluifolgerung fiir die Spin-Zustandssummen Z, ;,,
Z. r, fiihrt.

x

4.5.1 Doppelproduktdarstellung der ZF  (Darstellung I)

Im Anhang B.3 werden folgende Identitéten bewiesen [50]:

2T-1

H {cosh (€) — cos (ql)} = 27172 gipp? (a%) , (4.102)
l
gerade
Zﬁl {cosh (€) — cos (ql)} = 272 ¢ogh? <Eg> ; (4.103)
!
ungerade
mit q,:%l, 1=0,1,2,...,2T — 1. (4.104)

Die fermionische Zustandssumme Z% | (4.86) (aus Darstellung I) 1&8t sich somit
unter Ausnutzung von (2.52) umschreiben zu

) 2L—-1 T
[z, = 220 H sinh? (6k5)
ger];de
2L—-1 2T-1

— olLT . H H {COSh(Ek)—COS(QI)}

gerade gerade

2L—1 2T—1
— olT. H H {cosh (mp) + 1 — cos (pg) — cos (QI)}

gerade gerade

7k

mit pp=-—, k=012 20-1.

Beim Wurzelziehen mufl auf das Vorzeichen geachtet werden; es ist aus (4.86)
bekannt:
2L—1 2T—1
Zl, = +2% . H H /cosh (mg) + 1 — cos (pg) — cos (q;) . (4.105)

k l

gerade gerade
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4. Fermionische Darstellung

Das obere Vorzeichen gilt fiir 8 < B¢, das untere fiir 5 > [¢.
Auf analoge Weise erhilt man mit (4.102) und (4.103):

2L-1 2T-1

Zi_ = 2% . H H v/cosh (mg) +1 — cos (py) — cos (q;); (4.106)
ger’;de ungelrade
2L—1 2T-1

Z5, = 272 . H H v/cosh (mg) +1 — cos (pr) —cos (q1); (4.107)
k 1
ungerade gerade

2L-1  2T—1
VAN H H V/cosh (mg) + 1 — cos (pg) — cos (). (4.108)
k l

ungerade ungerade

Diese Umwandlung auf Doppelprodukte wurde bereits bis auf Randterme dis-

kutiert in [35, 55]. Einen anderen Zugang zu diesen iiber Grassmann-Integrale
findet man in [20].

4.5.2 Doppelproduktdarstellung der Z;Et (Darstellung IT)
Analog zu den oben aufgefiihrten Identitédten (4.102) und (4.103) findet sich:

2L-1

H {cosh (é) — cos (pk)} = 2772 ginp? (ég), (4.109)

k
gerade

2L-1

H {cosh (é) — cos (pk)} = 2772 (cogh? (ég) . (4.110)

k
ungerade

Daraus folgt mit & und ¢; (4.104), die sich geméf8 (3.29) aus € (2.52) und py
(2.53) ergeben,

27T-1

L2 I
{Z_L_} = 2% H sinh? <él§>
1

gerade

2T—-1 2L-1

_ 9lLT, H H {cosh(él)—COS(pk:)}

l k
gerade gerade

2T-1 2L-1

— olLT, H H {cosh (mg) + 1 — cos (¢q;) — cos (pk)} )

l k
gerade gerade

was letztlich auf

271 2L—1
v = +27% . H H v/cosh (mg) +1 — cos (q;) — cos (pr)  (4.111)

l k

gerade gerade
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4.5. Aquivalenzbeweis von Darstellung I und II

fithrt, wobei das Vorzeichen dasselbe wie in (4.105) ist.
Mit (4.109) und (4.110) lauten die weiteren Zustandssummen:

27—1  2L—1
ZAi_ = 272 . H H v/cosh (mg) +1 — cos (q) — cos (pr); (4.112)
l k

ungerade gerade

2r—1  2L-1

ZE+ = 272 . H H V/cosh (mg) +1 — cos (q) — cos (pr); (4.113)
gerade  ungerade
27—1  2L—1

75 = 2. H H V/cosh (mg) + 1 — cos (q;) — cos (py) . (4.114)

l k
ungerade ungerade

Aus dem Vergleich von (4.105)-(4.108) mit (4.111)-(4.114) erkennt man nun
unmittelbar:

Zi+ = ZY . ZAJFrf = Z

—

Mit (4.82)-(4.85) und (4.94)-(4.97) folgt hieraus fiir die Spin-Zustandssummen:

iy = Zyy; Ly = 2y

N A~

Z7+ = Z,+; Z,, = fo .

Uber die Doppelproduktdarstellung fermionischer Zustandssummen wurde so-
mit die Aquivalenz von Darstellung I und II bewiesen, und zwar sowohl auf
Spin- als auch auf Fermion-Ebene.
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Kapitel 5

Berechnung der
Energieaufspaltung

Dieses Kapitel widmet sich der Berechnung eines analytischen Ausdrucks fiir die
Energieaufspaltung im zweidimensionalen Ising-Modell bei einer groflen Zahl an
Freiheitsgraden (grofies L). Nach einer Beleuchtung der physikalischen Hinter-
griinde erfolgt die Rechnung mittels einer komplexen Konturintegration entlang
eines Schlitzes sowie anschlieender Sattelpunktsentwicklung in verschiedenen
Naherungsschemata.

Zur Vorbeugung von unerwiinschten Singularitéten in nachfolgend auftretenden
Funktionen sei die Temperaturvariable (3, soweit nicht anders erwéhnt, auf den
interessierenden Tieftemperatur-Bereich o < 6 < oo beschriankt.

5.1 Aufstellung und Eigenschaften der
Energieaufspaltung

Der Begriff der Energieaufspaltung ist bereits in Abschnitt 2.2.10 bei der Dis-
kussion des Energiespektrums (Abb. 2.15 - 2.18) gefallen. Als Energieliicke der
beiden niedrigsten Energiezustdnde wurde (2.73) gefunden:

AE = FE,_ — E..

Die Energieaufspaltung tritt aber noch im Zusammenhang mit anderen physi-
kalischen Groflen in Erscheinung.

Dazu werde zunéchst die Korrelation zweier Spins s¢, 4o, Styaz, mit t2 > t1
innerhalb derselben Spalte xy betrachtet (Abb. 5.1).

Im Transfermatrixformalismus (Darstellung I, Kap. 2) lautet die Korrelations-
funktion

Sp [VI—t of, Vit gz Vi

<St2 zo Sti o > = Sp [VT] (5'1)

Durch Einschieben von Energieeigenzustéinden erhdlt man fiir T > to — t1 die
fithrenden Terme [16]
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5.1. Aufstellung und Eigenschaften der Energieaufspaltung

T

x

Abbildung 5.1: Spin-Spin-Korrelation im Ising-Gitter

(Staae Sua0) = 3 |(0+]0%,1m) ‘2 exp{ = (Bn = For)(t — 1) }. (5.2)
m> 0+

Im endlichen Volumen ist der Erwartungswert im Grundzustand gegeben durch
(0+4|0Z,10+ ). Da |0+) symmetrisch, 02, jedoch antisymmetrisch beziiglich
einer Spinumkehr ist, verschwindet dieser aus Symmetriegriinden; zu (5.2) tra-
gen folglich nur die Terme bei, in denen m einen antisymmetrischen Zustand
m = n— kennzeichnet.

Fiir groe Abstande t2 — t; > 1 dominiert dementsprechend der Term mit
m = 0—, so daf} sich das Verhalten

(Stymy Styzg) ~ const.- exp{ — AFE (tg — tl)} (5.3)
mit AE (2.73) ergibt. Man erkennt nun unmittelbar den Zusammenhang
1
AE = —. (5.4)
&t

Die Energieaufspaltung entspricht also dem Inversen einer Korrelationslinge &,
die als Tunnel-Korrelationsldnge interpretiert wird [10, 24].

Im Limes unendlich vieler Freiheitsgrade L — oo geht die Energieaufspaltung
gegen Null (siehe 2.2.10). In diesem Fall wird der bislang fithrende Term (5.3) zu
einer Konstanten. Um im unendlichen Volumen die sog. Bulk-Korrelationsléinge'
abzulesen, wird in (5.2) die néichstgroBere Energieliicke als dominierender Term
miteinbezogen:

(Styzy Styzg) ~ const.y + const.o - exp{ — (Ey—j=0,1=2 — Eo4) (t2 — tl)}.

Fiir L — oo gilt

L—o00 L—oo
Eo_j—0i=2— Eor — FEo_j—0i=2—Eo— = |eo|+e2 — 2my

!Die deutsche Ubersetzung ,Volumen-Korrelationslinge“ trigt der Tatsache Rechnung, daf
diese fiir unendliches Volumen definiert ist.
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5. Berechnung der Energieaufspaltung

und somit

(Stymy Styzg) ~ const.; + const.o - exp{ —2my (tg — tl)}. (5.5)

Der konstante Term const.; = [(0+ |07, [0— )|? wird durch die Einfiihrung der
verbundenen Korrelationsfunktion

<St2wo Sty zo >C = <3t2x0 8t1900> - <St2I0><5t1560> (5'6)

entfernt, indem die bei unendlichem Volumen nicht-verschwindenden Erwar-
tungswerte im Grundzustand abgezogen werden. Die Grundzusténde |4+) und
|—) des unendlichen Volumens gehen hierbei aus der Uberlagerung von |0+)
und |0—) hervor:

1= = (1o4) +10-)

= % ,
1

= —(lo+) = Jo— ) .

) = 5 (lo+) = o)
Bei |+) und |—) handelt es sich um (energetisch entartete) Extremalzusténde,
die einer grofitmoglichen Magnetisierung in beiden Vorzeichen Rechnung tragen
(man vergleiche mit feldtheoretischen Ansétzen [56], siche auch Einleitung).
Die Berechnung von (¢, , 4, ) in diesen beiden Zusténden ergibt

(+oZ,|+) = +(0+]|0Z |0—),
(=loi =) = —(0+]o%, 10—),

wobei benutzt wurde, dafl die Matrixelemente reell sind.
Damit erhélt man jeweils

<5t1 o > <5t2 ) > = const.1

und somit
(Stowo Stimo ) ~ const.o - exp { —2myg (tg — tl)} .

Die Bulk-Korrelationslénge £ 1483t sich nun ablesen zu

% — 2mp, (5.7)

was die Bezeichnung von mg = 2|3 — 3| im Sinne einer Massenliicke rechtfertigt
(der Faktor 2 in (5.7) tritt oberhalb der kritischen Temperatur nicht auf, wie an

(2.74) zu sehen ist). Wie gewohnt divergiert die Bulk-Korrelationsldnge £ am
kritischen Punkt 8 — (G¢.

Der Zusammenhang der Energieaufspaltung mit Grenzflichen wird einsichtig
iiber die Zustandssummen bei periodischen und antiperiodischen Randbedin-
gungen.

Dazu betrachte man in Abb. 5.2 eine Grenzflache senkrecht zur ¢-Richtung, die
zwei Doménen unterschiedlicher Spinausrichtung trenne.
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5.1. Aufstellung und Eigenschaften der Energieaufspaltung

T

; s

T

Abbildung 5.2: Grenzfliche senkrecht zur ¢-Richtung

Die entsprechenden Zustandssummen Z/, _ (3.23) und Z' | (3.21), die zur Ei-
fiilllung ihrer jeweiligen Randbedingungen eine ungerade sowie gerade Anzahl
an Grenzflichen enthalten kénnen, wurden in Abschnitt 3.1.3 aufgestellt (Dar-
stellung I). Fiir 7' > 1 lauten diese iiber die Energieeigenwerte ausgedriickt:

Z,_ = exp{—Eo+T} — exp{—Eo-T} + O(exp{—Eo+T}),
Z,. = exp{—Eo+T} + exp{—Eo-T} + O(exp{—E2+T}) .

Fiir deren Verhéltnis folgt somit

1 (AET\F
Z' . Zy 1 —exp{—AE T} ;gfmde w(537)
7 Z., 1 “AE-T} L ABT\F
e S et booT h(AET)
was fiir gentigend grofle L, T wegen AF - T < 1 auf
A 1
- ~ —AFE-T (5.8)

fithrt. Dies entspricht der Mitnahme der niedrigsten (k = 0 und k& = 1) Grenz-
flichenbeitrdge und somit der in Abb. 5.2 dargestellten Situation einer einzelnen
Grenzflache (vgl. Diskussion von Multikink-Beitrégen in [56]).

Uber die Differenz der (reduzierten) Freien Energien Fy_ und F,  (F = —In Z)
148t sich die Freie Energie der Grenzfliche definieren:

FGrenz = F+_ —F+++11’1T.

Der letzte Term beriicksichtigt die T" Anordnungsmdglichkeiten der Grenzfliche
im Gitter. Damit gelangt man zur Definition der (reduzierten) Grenzflichen-
spannung (23, 24]

F,
o = lim lim -9rens, (5.9)
T—oo L—oo

als Freie Energie der Grenzfliche pro an der Grenzflache beteiligten Gitterpunk-
ten. Mit (5.8) folgt

o = lim <—% lnAE) . (5.10)

L—oo
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5. Berechnung der Energieaufspaltung

Hieraus 148t sich bei groflen L folgende Abhingigkeit der Energieaufspaltung
von der Anzahl an Freiheitsgraden, d.h. der Gittergrofie, erkennen:

AE ~ exp{—Lo}. (5.11)

Eventuelle Vorfaktoren, die lediglich potenzartig von L abhéngen, werden durch
die Limesbildung unterdriickt.

Im Rahmen dieser Arbeit und speziell in diesem Kapitel wird (5.11) ndher
untersucht; insbesondere wird der Vorfaktor berechnet, der sich aus der eben
aufgefithrten Uberlegung noch nicht ergibt. Diesen erhiilt man durch Berech-
nung der Energieaufspaltung AF als Liicke im Spektrum (2.73) aus der bisher
gewonnenen Kenntnis iiber die Eigenwerte, wie nachfolgend zu sehen ist. Ich
folge dabei Privman und Fisher [25].

5.2 Darstellung durch Fourierkoeffizienten

Die Energieaufspaltung (2.73) lautet mit (2.71) und (2.72) ausgeschrieben (die
€9k+1 mit ungeradem Index sind stets positiv; ein Betragsstrich ist also nicht
vonnoten, kann aber nach Bedarf gesetzt werden):

1 L-1 L-1
AE = 5{’;0 Eobil — kz_o \5%\}. (5.12)

Aufgrund von limy o €9x+1 = limp . |e2k| 188t sich bereits der Trend

limy ..o AE = 0 ablesen. Ein analytischer Ausdruck, der diesen Limes be-
schreibt, 148t sich aus der getrennten Limitenbildung beider Summen in (5.12)
jedoch nicht gewinnen. Daher wird (5.12) im Folgenden in eine einzelne Summe
(positiver Summanden) umgeschrieben; dies gelingt durch die Entwicklung in
eine Fourierreihe. Zu diesem Zweck wird mittels der fiir grole L quasikontinu-
ierlichen Variablen z = % die Funktion

le(z)] = + Arcosh{cosh(mg) + 1 — cos(mz)} (5.13)

definiert (man vergleiche mit e (2.52); die Definition (5.13) dient u.a. einer
genaueren Spezifikation des Arguments). Deren Periode betréigt 2 (sieche Abb.

2.6). Damit ist
L—-1
2k
€(f>‘} . (5.14)

O DECES

Die komplexen Fourier-Entwicklungen lauten

E(%)’ = io c; exp{iﬂn%},

+oo
5<2k;1> = Z c;hb exp{iwn2k;1}
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mit denselben Fourierkoeffizienten ¢/, :

+1
1
d = 5 /]5($)| exp {—imnz} dx .
-1

Mit der im Anhang B.1 hergeleiteten Identitit

. 2k L ful" n = SL’
kzo exp {Zﬂnf} - { 0 fir n#sL, (5.15)
mit LeN, n,secZ
folgt:
L—1 oo I
2k / . 2k .
es(f)‘ = Z Cp, Zexp {mnf} = LZ nr
k:(] n=—oo k:O SGZ
L—1

8(2]{:2—1) _ LZ(_USC;.L~

k=0 SEZ

Damit erhélt man fiir die Energieaufspaltung (5.14)

+oo
AE = =L Y ¢

j=—oc

Durch die Koeflizienten der reellen Fourierreihe
+1
n = /|£(a:)\ cos(nmz) dx
-1
ausgedriickt lautet diese
o0
AE = —L) cojir. (5.16)
§=0

Man vergleiche mit Privman und Fisher [25].
(5.16) ist Ausgangspunkt der weiteren Rechnung. Insbesondere ist

+1
c, = /|e(x)\ cos(Lmzx) dx . (5.17)
1

Der folgende Abschnitt widmet sich der Berechnung von ¢y, und zeigt, daf} die
restlichen Koeffizienten rasch abfallen.
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5. Berechnung der Energieaufspaltung

5.3 Berechnung des Integrals cp,

Der in ¢y, (5.17) enthaltene kompliziertere Ausdruck |e(z)| stellt eine Quelle
von Schwierigkeiten dar. Es wird zunéichst eine Berechnungsmethode detailliert
vorgestellt, und anschlieffend werden weitere Varianten aufgezeigt.

Eine niitzliche Umformung von (5.13) ist

le(x)| = In|cosh(mg) + 1 — cos(mz) + \/[cosh(mg) + 1 — cos(mz)]2 — 1. (5.18)

5.3.1 Partielle Integration

Aufgrund des Hinweises im Artikel von Privman und Fisher [25] wird die Be-
rechnung mit einer partiellen Integration beginnend durchgefiihrt, wobei der
Randterm wegfallt:

sin(7x)

+1
_/1 V/[cosh(mg) + 1 — cos(mz)]2 — 1

1
cL = -7 Im exp(iLnzx) dz|. (5.19)

Das Augenmerk richtet sich daher auf das Integral

+1
I = h(zx) exp(iLwz) dr (5.20)
/

sin(7x)
V/[cosh(mg) + 1 — cos(mx)]2 — 1

: (5.21)

welches analytisch in die komplexe Ebene fortgesetzt wird.

5.3.2 Auffinden der Verzweigungspunkte und Schlitze von h(z)

h(z) aus (5.21) mit z € C enthélt einen komplexen Wurzelausdruck. Aus der
Funktionentheorie ist wohlbekannt [57], dafl die komplexe Wurzel zwecks Aus-
schlufl von Mehrdeutigkeiten auf einer geschlitzten Ebene definiert wird; auf
dieser ist sie eindeutig und holomorph. Die Schlitze sind passend gew&hlte Ver-
bindungslinien von Verzweigungspunkte genannten Nichtanalytizitatsstellen.
Fiir die vorliegende Funktion h(z) in (5.21) finden sich die vier Verzweigungs-
punkte

21 = +’i@, Z2 = _i@a
T ™
2 3 2 3
o= 4 2BEH) B0
T T

mit  [21/9] < [23/4]

sowie die in Abb. 5.3 gezeigten endlichen Schlitze.
Die Rechnung hierzu ist Anhang C zu entnehmen.
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z3 @

21

22

24

Abbildung 5.3: Lage der Schlitze von h(z) in der z-Ebene

5.3.3 Integration entlang des Schlitzes

Zur Berechnung des Integrals (5.20) wird nun der in Abb. 5.4 dargestellte Inte-
grationsweg I's — I'7 in der oberen Halbebene eingeschlagen. Der urspriingliche
Weg TI'; verlauft auf der reellen Achse. Eine Rechnung in der unteren Halbebene
verlduft analog und liefert dasselbe Ergebnis.

In Anhang D wird durch explizite Parametrisierung gezeigt, dafl sich die Inte-
grale iiber die Wege I'y und I'; aufgrund der Periodizitidt von h(x) gegenseitig
aufheben, und dafl die Integrale iiber I's und I'g im Limes d — oo jeweils keinen
Beitrag liefern. Diese Wege sind in Abb. 5.4 gestrichelt eingezeichnet.

Im Limes n — 0, d — oo verbleibt somit die Integration lings des linken und
rechten Schlitz-Ufers, Gl. (D.1):

I = i / lim {h(is +n) — h(is — 1)} exp(—Lws) ds.
n—0
mo /7

Aufgrund des Schlitzes ist das Argument von h(z) eindeutig durch Nebenbe-
dingungen festgelegt. Dies hat zur Folge, dafl bei der Anndherung an dessen
gegeniiberliegende Ufer das Argument einen Sprung um 27 macht [57]; demzu-
folge tritt eine Diskontinuitéit auf, die iiber

disp(s) = lim {h(is+n) — h(is —n)} (5.22)
n—0
definiert wird. Da diese lediglich im Bereich des Schlitzes von Null verschieden
ist, folgt
2(8+5)/7
I = i / disp(s) exp(—Lws) ds.
mo/m

Man integriert somit den Schlitz hinauf iiber die Diskontinuitét, multipliziert
mit einer abfallenden Exponentialfunktion, wie in Abb. 5.5 veranschaulicht wird.
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f “ f

+1i-d,
Iy ‘ d>0 ‘ I';

| NI |
r
! !
1 I Iy +1

Abbildung 5.4: Integrationsweg in der komplexen Ebene (1 > 0)

z3

|23]
I=i [ disp(s) - exp(—Lms) ds

|21]

<1

+1 +1
I = [ h(z) exp(iL7z) dz
1

Abbildung 5.5: Integration iiber Diskontinuitéit
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5.3. Berechnung des Integrals cy,

Durch die Substitution s = r+"¢ wird das untere Schlitzende auf Null gesetzt:
a
I = exp(—Lmy)- i/dis%)(r) -exp(—Lmzr) dr (5.23)
0

. (D) T . - Mo _ 1 L
mit dis} (r) = %{r}){h(zr—l—z 0 tp) — h(ir+i™ —n)}  (5.24)

und der Schlitzlinge a = |z3| — |21] - (5.25)

An (5.23) 1d8t sich bereits ein exponentiell abfallender Term exp (—L my) able-
sen, wie er prinzipiell nach (5.11) zu erwarten war; das verbleibende Integral

a

z'/dis(}lz(r) -exp(—Lmr) dr (5.26)
0

wird, wie sogleich zu sehen ist, die gesuchten Vorfaktoren enthalten, die potenz-
artig von L abhéngen.
Wie in Unterkapitel 5.1 erortert wurde, ist ein Ausdruck fiir groffe L von Inter-
esse. Damit 148t sich zum einen das Verhalten der weiteren Fourierkoeffizienten
in (5.16) absehen; bereits c31, ~ exp (=3 L'myg) féllt fur L > 1 deutlich schneller
ab (vgl. [25]):

AE = —Le [1 —I—O(exp(—QLmo))]. (5.27)
Die Energieaufspaltung ergibt sich dann nach (5.19)-(5.21) zu
AE = Im{l} [1 + O(exp (—2Lm0))} . (5.28)

Zum anderen liefert es die Anleitung zur weiteren Berechnung des Integrals
(5.26): Im Integranden dominiert fiir L > 1 offensichtlich der exp (—Lnr)-
Term, der nur fiir kleine r nennenswerte Beitriage liefert. Die Diskontinuitéit
dis®(r) (5.24) wird daher im Sinne einer Sattelpunktsentwicklung fiir r < 1
genéhert werden. Die abschlieende Berechnung der hierdurch auftretenden In-
tegrale wird durch folgende Abschéitzung erleichtert:

/dis(,ll)(r) ~exp(—Lzr) dr =

dis!) (r) - exp(—Lnr) dr — /dis(}l: (r) - exp(—Lmr) dr

a

0
0/

reLte /dis(,?(r) -exp(—Lmxr) dr — exp(—Lma) - /dis(,?(t) -exp(—Lmt) dt
0 0
/diS(}lz(T) -exp(—Lmr) dr {1 + O(exp (—L?TCL))} . (5.29)
0
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5.3.4 Berechnung der Diskontinuitéit
Es sind die in (5.24) enthaltenen Limiten zu berechnen.

Begonnen wird mit

. . - _
71713(1) h(zr—i—z — +77) =

(5.21) limy, ¢ sin(inr + img + mn)

lim,, o \/[cosh(mo) + 1 — cos(imr + img + 7777)] > 1

i sinh(zwr + myg)

lim,, .o \/wi -1

Um den Limes auszufiihren, wird zur Darstellung der Wurzel die Definition der
allgemeinen Potenz im Komplexen verwendet [57]:

. . 1 2 1
%&I})\/wi—l = Tl}:r% exp[§ In |w} — 1| +gies] (5.30)

Das Argument ¢ = arg(w? —1) = arg (w4 + 1) + arg (wy — 1) ist definiert
auf dem Hauptzweig ¢ € [—m, +7] in der z-Ebene.
Die Trennung von Real- und Imaginérteil ergibt

liH(l) v+ = arctan (0) = +m;
77—)

von den moglichen Losungen wurde +7 ausgewéhlt, da am rechten Ufer der
imagindren Achse in der z-Ebene arg(wy +1) = —|—% 7 gilt (vgl. Anhang C).

Fiir den Betrag in (5.30) errechnet sich:
lim ‘wi -1 = ’[cosh(mo) + 1 — cosh(mr + mo)]2 = 1‘

n—0
= |[1= 2 sinh (% +mo) -sinn(F)]” ~ 1

= 4 sinh(% +mg) - sinh(%) ‘1 — sinh (% + mo) - sinh (%) )
= 4sinh (% +mo) - sinh(F) |1 —sinh(§ +mo) -sinh(%) |

Der letzte Schritt folgt aus der Beschréankung auf kleine r, die im vorherigen
Abschnitt angekiindigt wurde (mg wird hierzu als nicht iiberméfig grofl ange-
nommen).

Damit lautet
Jim h(ir +4i22 +q) =
1 . sinh(zr + my)
2 4 /sinh (%) \/sinh(% + mo) [1 — sinh(% + mo) .sinh(%)]
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5.3. Berechnung des Integrals cy,

Die Berechnung von
i sinh(mr + myg)

lim,, ¢ 4 Jw? — 1

erfolgt wegen lim, o |w? —1| = lim,_o |w? — 1| genauso bis auf die Bestim-
mung des Winkels ¢_ : Am linken Ufer der imagindren Achse gilt

%i_)n% h(z’r—i—z’% —77) =

lim ¢_ = arctan(0) = —m,
n—0

da das Argument ¢ am Schlitz um 27 springt. Oberhalb des Schlitzes findet
dieser Sprung nicht mehr statt, und die Diskontinuitét verschwindet.
Somit ist

. L mg oy L mg
71}13[1) h(ir +i™0 —n) 71]21(1) h(ir + im0 + 1) |

und es folgt fiir die Diskontinuitét (5.24):

1 inh
dis? (r) = : sinh(rr + mo) (5.31)

\/sinh (%) \/sinh(% + mo)[1 — sinh(% +my) - sinh(%) |

5.3.5 Sattelpunktsentwicklung

Hierzu wird die soeben ausgerechnete Diskontinuitét dis') (r) (5.31) fiir r < 1
ndherungsweise nach Taylor entwickelt. Dies kann allerdings wegen des Terms
m nicht direkt erfolgen; dieser Ausdruck wird separat behandelt:

Sin. 5

1 1 1 1
() \FedE 000 V5@ e or
1] 2 11 mee A
_W[\/;_§§(§> 400
2 1 1

< 1 3/2 . .3/2 7/2
G 24\/§7r r —l—O(r )

Der zweite in dis}(r) (5.31) enthaltene Ausdruck kann ganz gewdhnlich nach
Taylor entwickelt werden.

Die Entwicklung des Gesamtausdrucks (5.31) ergibt sich somit aus dem Produkt
der Taylorentwicklungen beider Teilausdriicke, die bis zur Ordnung O(’I“3/ 2) an-
gegeben wird:
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5. Berechnung der Energieaufspaltung

2 1 1
) _ s+ 3/2 ,3/2 7/2\ |
dis}) (r) [ T 7 YW T 2+ O(r )]
4 sinh(my)

2
3
+ = < sinh®?(mg) + 5 cosh(mg)+/sinh(mg) +

16
coshQ( 0) 9 3
+7\/smh mg —_— " + O(r )

2 ginh3/2 (myp)

S disl(r) = o 25nhtmo) Sin:(mo) %
VT inh®/2(m 3 cosh(mo) \ -
+ 2v/2 < b (mo) + sinh(m0)> vr

w

3/2 5
< sinh®?(mg) + 2 cosh(mg)+/sinh(mg) +

"o
5 cosh?(mo) ) 302
8 sinh®?(my)

Ut

+3 sinh(mg) —

+ O(TS/Q) .

Wiéhrend die niedrigeren Ordnungen O( \[) und O(+/7) aus einer einzigen Quel-

le stammen, entsteht die Ordnung O(r%/2) aus zwei Quellen: Zum einen aus dem
Produkt O(%) - O(r?), zum anderen aus O(r%/2) - O(r0).
Das Einsetzen dieser Entwicklung in das Integral

o0

/dis%) (r) - exp(—Lmr) dr

0

fithrt direkt auf Gammafunktionen (Eulersche Integrale zweiter Gattung); sie
sind in Anhang E aufgefiihrt.

Unter Beriicksichtigung der Abschitzung (5.29) erhilt man somit das Ergebnis
fiir das gesuchte Integral I (5.23) und damit nach (5.28) auch fiir die Energie-
aufspaltung AFE:

AE = exp(—Lmyg) [ dis) (r)-exp(—Lnr) dr
p( 0 0/ p(
. {1 + O(exp (—L?TCL))} {1 + O(exp (—2Lm0))} .
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5.3. Berechnung des Integrals cy,

5.3.6 Ergebnis fiir die Energieaufspaltung AFE

Unter den in L auftretenden Ordnungen fallen die aus den Abschitzungen (5.29)
und (5.27) stammenden Ordnungen O( exp (—Lma)) und O(exp (—2 L my)) fiir
L > 1 nur noch unwesentlich ins Gewicht, so dafl das Ergebnis fiir die Energie-
aufspaltung AFE lautet:

2 sinh(mg) 1 n 1 n 1 n
- JL e T TR

AE = exp(—Lmo)[

1
—i—O(m) 1 + O(exp(—Lma)) + O(exp(—2Lm0))] (5.32)
) 1 ) 3 cosh(myg)
t = h?/2 + 7) 5.33
o 427 (sm (mo) sinh(my) (5.33)
=L (9 s 15 :
und  ay = W (8 sinh®/*(mg) + 1 cosh(mg)+/sinh(mg) +
1 h?
5 VA - ) )
8  sinh®/?(my)

Diese Formel fiir die Energieaufspaltung enthélt den gesuchten Vorfaktor, der

eine L-Abhéngigkeit zeigt. Fiir den O(ﬁ)—Term besteht Ubereinstimmung mit

den Ergebnissen von Privman und Fisher [25], wobei hier noch die néchsten
beiden Ordnungen O(#) und O( L51/2) explizit angegeben sind.
An (5.32) 1a8t sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit

wachsender Zahl an Freiheitsgraden gegen Null geht.

5.3.7 Ergebnis fiir die Grenzflaichenspannung o

Fiir die Grenzflichenspannung o, definiert durch die Freie Energie der Grenz-
fliche pro Gitterpunkt (Gl. (5.9)), wurde bereits mit Gl. (5.10) in Abschnitt 5.1
folgender Zusammenhang mit der Energieaufspaltung AF festgestellt:

1
= 1 —— IhAFE | .
o = i (~pmar)

Durch Einsetzen des oben erhaltenen Ergebnisses (5.32) erhélt man

o = lim (—% ln:eXP(_LmO)D

L—oo

i (—L [ /2t 1 L s s
* LIEEO( c VT R T ume T 2R +0(57)

+  lim (—% In :1 + O(exp(—Lma)) + O(exp(—2Lm0))D :

L—oo

Ubereinstimmend mit einer fritheren Beobachtung liefern die potenzartig von
L abhéngenden Vorfaktoren aus der zweiten Zeile im Limes L — oo keinen
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5. Berechnung der Energieaufspaltung

Beitrag; die dritte Zeile, bestehend aus Korrekturen vom endlichen Schlitz und
weiteren Fourierkoeflizienten, ergibt ebenso Null.
Somit verbleibt die erste Zeile, die zu folgendem Ergebnis fiihrt:

o = my. (5.35)

Die Grenzflichenspannung o ist also die schon h#ufiger in dieser Arbeit ver-
wendete temperaturabhéngige Grofie mg = 2|8 — B| Dieses Ergebnis ist in
Ubereinstimmung mit demjenigen Onsagers [9].

Die Einfachheit dieses exakten Ausdrucks stellt dabei eine Besonderheit des
zweidimensionalen Ising-Modells dar: In héheren Dimensionen erhélt man fiir
die Grenzflichenspannung einen komplizierteren Ausdruck, der nach verschie-
denen Ordnungen einer Kopplungskonstanten im Rahmen der ¢*-Theorie ent-
wickelt wird [10, 22].

5.3.8 Alternative: Rechnung ohne partielle Integration

Es wird der Frage nachgegangen, ob die in [25] genannte partielle Integration
zwingend notwendig ist.
Zu berechnen ist der Fourierkoeffizient (5.17)

cr, = Re{ly} (5.36)
+1

mit I, = le(x)| exp(ilnz) dx, (5.37)
/

wobei zur weiteren Berechnung fiir |e(z)| der logarithmische Ausdruck (5.18)

le(z)] = In [cosh(mo) + 1 — cos(mz) + /[cosh(myg) + 1 — cos(mz)]? — 1}

verwendet wird. Aufgrund des Logarithmus reicht der Schlitz von |e(z)| mit
z € C in der oberen Halbebene von i7¢ bis ico (siehe Anhang C); am bisher
verwendeten Integrationsverfahren kann also prinzipiell festgehalten werden.
Durch Anwendung des bisherigen Parametrisierungsschemas in Anhang D (mit
le(z)| statt h(z)) folgt nach (5.23)-(5.25), wobei aufgrund des unendlichen
Schlitzes nun oo als obere Integrationsgrenze auftaucht:

I, = exp(—Lmy)- i/dis?(r) -exp(—Lmxr) dr (5.38)
0

mit dis®(r) = %13%{ [e(ir +im0 )| — Je(ir +i —n)| b (5.39)
Das untere Schlitzende wurde hierbei bereits durch Substitution auf Null ge-
setzt.
Zur Berechnung der einzelnen Limiten in (5.39) wird bereits die N&herung
r < 1 im Rahmen der Sattelpunktsentwicklung verwendet; fiir den interes-
sierenden Fall L > 1 148t sich ja schon hier exp (—Lmyg) als dominierender
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5.3. Berechnung des Integrals cy,

Term im Integranden (5.38) absehen, der nur fiir kleine r nennenswerte Bei-
trage liefert. Insbesondere wird der Logarithmus durch sein Argument angeni-
hert werden; hierdurch wird das obere Schlitzende auf den Wert der vergange-
nen Abschnitte gekiirzt, was nach (5.29) aber nur die unwesentliche Korrektur
[1 + O(exp (—Lma))] hervorruft.

%ii% ‘E(ir + im0 + )|

= lin% In [1 + cosh(myg) — cosh(mr + mo F imn) +
77—)

+ v/[cosh(mg) + 1 — cosh(mr 4+ mg F imn)]2 — 1 ] ;
hier greift wegen r < 1 die Néherung In(1 +2) = o + O(2?) fiir x < 1:

= lin% (cosh(mg) — cosh(mr + mg F imn))
/r]—)

dratische
I h 1 — cosh )2 -1 + 40
+ limy V/[cosh(mo) + cosh(mr + mo F imn)] T Ordnung

(534) cosh(myg) — cosh(mr + my)

= 21 [sinh (%) - \/sinh(%F + mo) [1 — sinh (% + mo) - sinh (%) ]

quadratische
Ordnung

Durch die Ndherung des Logarithmus konnte die Rechnung somit auf die in
Abschnitt 5.3.4 berechneten Limiten zuriickgefithrt werden. Die quadratische
Ordnung bezieht sich dabei auf das Argument des Logarithmus.

Bei der Differenzbildung (5.39) hebt sich der Term cosh(mg) — cosh(mr + my),
der von der Ordnung O(r) ist, weg. Die verbleibenden Wurzelterme werden wie
in 5.3.5 entwickelt:

dis(r) = 2iy/2msinh(mo)-vr + O(r*?). (5.40)

Die Ordnung O(r3/ 2) stammt dabei einerseits von der Taylorentwicklung der
Wurzelausdriicke, andererseits von der quadratischen Ordnung des Logarith-
mus: Nur der gemischte Term aus der Quadratbildung hebt sich in der Differenz
(5.39) nicht weg, und dessen niedrigste Ordnung lautet O(r)-O(y/r) = O(r%/2).
Da diese also offensichtlich komplizierterer Natur ist, wird hier davon abgese-
hen, diese explizit anzugeben.

Mit dis?(r) in der gendherten Form (5.40) enthélt I (5.38) bereits aus An-
hang E bekannte Gammafunktionen, und fiir die Energieaufspaltung AE =
—Lecy, [1 + O( exp (—2 L mo))} folgt bis auf die exponentiellen Korrekturen

2 sinh(mg) 1 n O( 1 ) (5.41)

AE = exp(—Lmo)[ F s 5
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5. Berechnung der Energieaufspaltung

in Ubereinstimmung mit dem bisherigen Ergebnis (5.32) und [25].

Die Rechnung ohne partielle Integration fiihrt also auch zum Ziel, allerdings ist
das Ordnen nach Potenzen erheblich verwickelter; aus diesem Grund wird hier
nur die niedrigste Ordnung angegeben.

5.3.9 Alternative: Wurzelndherung fiir |e(x)|

Ausgangspunkt ist erneut (5.36)-(5.39).

Zur Berechnung der Diskontinuitét dis? (r) (5.39) im Rahmen der Sattelpunkt-
sentwicklung 1a8t sich ausgehend von (5.13) in der Néhe des kritischen Punktes
B ~ P und fiir kleines Argument eine einfache Formel fiir |¢(z)| finden:

cosh(|5(:r)|) = cosh(mg) + 1 — cos(mx)
o 2 (} W) = 250t + bk

mit mg = 2|ﬁ—5\, mF:2sinh(|ﬁ—B]).
(2.85) o . .
Aus B~ o — = (folgt mg < 1 und damit auch mp < 1 sowie mg = mp.
Fiir kleine  kann der Sinusterm durch sein Argument angenéhert werden; fiir
mo < 1 und kleine z ist |¢(z)| selber klein und der sinh-Term kann ebenfalls
durch sein Argument angenihert werden.
Damit ergibt sich die Ndherungsformel

le(z)] =~ \/md+ w222, (5.42)

welche im Folgenden als Wurzelnéherung bezeichnet wird. Deren Giiltigkeits-
bereich wird in Abb. 5.6 verdeutlicht durch Vergleich mit dem ungen&herten
le(z)| aus Abb. 2.6.

Da aufgrund der Sattelpunktsentwicklung r < 1 ist und in der Néahe des kri-
tischen Punktes my < 1 gilt (sowie die Annahme eines kleinen 7 mit dem
Integrationsweg und der Limesbildung n — 0 vertréglich ist), ist das Argument
von |e(ir + ™2 4 n)| in dis? (r) (5.39) klein und die Wurzelnéherung kann zur
Berechnung der Diskontinuitat verwendet werden.

Eine Diskontinuitét tritt dabei weiterhin auf wegen der komplexen Wurzel: Die
Verzweigungspunkte von /m3 + 7222 mit z € C liegen bei 23 = +i7=% und
73 = —i72 (vgl. Anhang C); der unendliche Schlitz wird wie in Abb. 5.7 gelegt.
Die prinzipielle Vorgehensweise beziiglich der Schlitzintegration aus den voran-
gehenden Abschnitten kann also beibehalten werden. Lediglich die exponentielle
Korrektur (5.29) aufgrund eines endlichen Schlitzes entféllt.

Mit der Methode aus 5.3.4 berechnet sich die Diskontinuitét zu

dis@(r) = 2iv72r2 + 2rmor. (5.43)

Das Einsetzen in das Integral Iy (5.38) fithrt auf die MacDonald-Funktion
K1 (L mo) [58]

IQ = —2@K1(Lm0).
L
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5.3. Berechnung des Integrals cy,

-2 -1 0 1 2

Abbildung 5.6: Vergleich der Wurzelndherung mit dem un-
gendherten Ausdruck fiir |e(x)| bei festem 5 = 0,5

Abbildung 5.7: Schlitzstruktur der Wurzelnéherung

Aus deren asymptotischen (L > 1) Form [59] (Kap. 9.1, GL. (9.56d), S. 466)
baw. [58] (Teil 11, 8.451 Nr. 6, S. 360)

Kol = it [ 1+ o( )

folgt mit ¢, = Re{ly} (5.36) fiir die Energieaufspaltung AE = — Lcy [1 +
O(exp (—2Lmy))] (5.27) bis auf die exponentielle Korrektur:

(5.44)

2m 1 1
AE = exp(—Lmo) [ 71—0 ﬁ + O(m)
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5. Berechnung der Energieaufspaltung

Um zu héheren Ordnungen O(ﬁ) zu gelangen, wird (5.43) nach Taylor ent-

wickelt, was, in Io (5.38) eingesetzt, erneut in Gammafunktionen (Anhang E)
resultiert; das Ergebnis fiir die Energieaufspaltung lautet dann:

2my 1 3 1
AE = L JE2T L .
exp( mo) [ . NG7 + NI EE
15 1 105 1 1
- : + : + O(—)].(5.45)
64v2r miy/? L?  512v27 mi/? LT LI/

Eine Rechnung mit partieller Integration von (5.38) mit der zuvor eingesetzten
Wurzelndherung fiithrt iibrigens auf dasselbe Ergebnis.

Der Vorteil der Wurzelnéherung (5.42) liegt also offensichtlich in dem komforta-
bleren Erhalt hoherer Ordnungen. Der Nachteil indes besteht in der Einschrin-

kung (8 =~ B¢.

Der Fall § ~ (¢ soll nachvollzogen werden mit dem Ergebnis (5.32)-(5.34),
das man aus dem ungeniherten |e(z)| (5.13) erhielt (unter Vernachldssigung
der exponentiellen Korrekturen).

Da fiir 8 =~ Bc mg < 1 gilt, werden hierzu die mg enthaltenden hyperboli-
schen Funktionen in (5.32)-(5.34) nach Taylor entwickelt, und zwar dhnlich der
Methode aus 5.3.5. Um das Ergebnis aus der Wurzelndherung zu reproduzie-
ren, wird es dabei ausreichen, innerhalb derselben L-Ordnung lediglich die fiir
mg < 1 dominierende mo-Ordnung mitzunehmen.

So erhélt man in der Ordnung O(%):

\/sinh(my) TSt e+ O(mg/z).

Innerhalb der Ordnung O( L31/2) dominiert im Koeffizienten a1 (5.33) der Aus-
druck

cosh(mp) me<1 1 3/2
—— = —— + O(m
/sinh(my) VMo (")
gegeniiber sinh®/? (myg), der bereits von der Ordnung O(mg/ 2) ist.
Fiir die Ordnung O ( #) (Koeffizient as (5.34)) lautet der fiihrende Term

cosh?(mg)  me<1 1
_Costimo)  ms + 0 (o)
sinh3/2(m0) mg/2 ( O)

wahrend die anderen Terme mindestens von der Ordnung O(w /mg) bzw.
O(m'?) si
(mo ) sind.
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Damit lautet das Ergebnis fiir die Energieaufspaltung (5.32)-(5.34) in der Ni-
herung 6 =~ f¢ unter Mitnahme der am stérksten dominierenden Terme in

mo:
AE M ~L Y S
exp (— Lmo) NG + e I
15 1 1
- . 4+ O(—=)]|- (5.46)
64/ 27 mg/2 L5/2 <L7/2>

Dies ist in Ubereinstimmung mit (5.45).

Das Ergebnis (5.45) aus der Wurzelniherung, das im Bereich § =~ (¢ gilt, 148t
sich also iiberzeugend bis inklusive der Ordnung O(ﬁ) aus dem bisherigen,
allgemeineren Ergebnis (5.32)-(5.34) reproduzieren.
Innerhalb der Wurzelndherung konnte dabei die Ordnung O(
angegeben werden.

Insofern stellt die Wurzelndherung (5.42) eine brauchbare Approximation dar;
insbesondere aufgrund ihres einfacheren analytischen Verhaltens erlaubt sie bes-
seren Kinblick in die Rechnungen und hat sich als ein geeignetes Instrument zur

Ergebnisiiberpriifung herausgestellt.

1
L7/2

) noch explizit
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Kapitel 6

Alternativer Zugang zur
Energieaufspaltung

In diesem Kapitel wird eine alternative Berechnungsmethode der Energieauf-
spaltung vorgefiihrt, die auf anderen Grundiiberlegungen basiert und dadurch
neue Einsichten ercffnet. Hierzu findet das in 4.1.6 eingefiihrte Konzept der
Fermionanregungen Anwendung. Mit dessen Hilfe wird der Zusammenhang zwi-
schen Ein-Fermion-Anregungen und einer Grenzfliche senkrecht zur z-Richtung
aufgedeckt, welcher sich bereits bei der Jordan-Wigner-Transformation andeu-
tete. Aus diesen Uberlegungen ergibt sich unter Vernachlissigung exponentieller
Korrekturen fiir L, T > 1 die Energieaufspaltung als Integral iiber Ein-Fermion-
Energien, welches im Rahmen einer Sattelpunktsintegration berechnet wird. Die
in Kapitel 5 erhaltenen Ergebnisse werden hierdurch untermauert. Insbesondere
kann ein expliziter Zusammenhang gefunden werden zwischen dem hier berech-
neten Integral iiber Ein-Fermion-Energien und demjenigen (AEF = —Lc¢y) in
Kapitel 5, das sich aus dem niedrigsten Fourierkoeffizienten cy, ergab.

6.1 Die Idee

Die neue Idee basiert auf einer Beobachtung, die bei der Jordan-Wigner-Trans-
formation (4.18), (4.19) gemacht wurde: Die Erzeugung eines Fermions am Git-
terplatz m bewirkt nach (4.28)

CTTn = Um—l O';,CL
offenbar eine Umkehr der ersten m—1 Spins in einer Zeile:
Un—1 181,--.,8L) = | =81,y —Sm—1, Smy---,SL) -
Waren die Spins vor der Anwendung von U,,,_1 parallel zueinander ausgerichtet,
tritt danach ein Kink der Spins an der Stelle m (genauer ausgedriickt: von
m—1 zu m) auf, wie in Abb. 6.1 verdeutlicht wird. Dieser Kink trennt nun

zwel Doménen unterschiedlicher Spinausrichtung und représentiert somit eine
Grenzflache, wie sie in Abb. 6.2 gezeigt ist.
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Erzeugung eines Fermions bei m <= Kink der Spins von m—1 zu m

S;
A
+1
. ‘ Gitterplatz auf
mel m einer Zeile
-1
Abbildung 6.1: Kink der Spins von m—1 zu m
T
t
1
1 L
x

Abbildung 6.2: Grenzfliche senkrecht zur z-Richtung

Der sich dadurch abzeichnende Zusammenhang
Fermionerzeugung <=  Grenzfliche senkrecht zur z-Richtung

soll daher Ausgangspunkt fiir eine Charakterisierung der entsprechenden Zu-
standssummen Z,, 4 mit (7, = —1) und ohne (7, = +1) derartige Grenzfléche
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6. Alternativer Zugang zur Energieaufspaltung

sein. Hierzu bietet sich eine Beschreibung mithilfe des Konzepts der Fermion-
anregungen an, welches in 4.1.6 eingefithrt wurde. Aus den dort erfolgten Uber-
legungen 148t sich schon der gewiinschte Trend absehen:

Fiir periodische RB 7, = +1,

Zo = o [(VDT] + sm [00)7]

sind lediglich geradzahlige Anregungen aus den Grundzustinden zu H* und H ™~
erlaubt (n gerade), wie in 4.1.6 bereits ausfiihrlich diskutiert wurde.
Bei antiperiodischen RB 7, = —1,

ZL = So (V)] + s [(VD)T]

ist dies anders. Man beachte hierzu die entsprechenden Aussagen (4.70)-(4.72)
in 4.1.6: Bei V= / H™ bewirkt die Restriktion Hy auf eine gerade Fermion-
Gesamtzahl ndmlich ungerade Fermionanrequngen, da ein Fermion im Grundzu-
stand von H~ vorliegt (aus N gerade folgt n ungerade). Fiir V™ / H' hingegen
bedeutet die Restriktion H_ auf eine ungerade Fermion-Gesamtzahl ungerade
Fermionanregungen, da im entsprechenden Grundzustand kein Teilchen vorhan-
den ist (sowohl N als auch n sind ungerade).

Antiperiodische RB rufen also ungerade (n = 1,3,5,...) Fermionanregungen
hervor, wihrend die Zustandssumme bei periodischen RB nur gerade (n =
0,2,4,...) enthilt:

=41 << geradzahlige Fermionanregungen ;

7. =—1 <= ungeradzahlige Fermionanregungen .

Nach den bisherigen Diskussionen von Zustandssummen-Beitragen steht zu er-
warten, daf diese von den niedrigsten Anregungen (0 und 1) dominiert wer-
den (wie spéter noch explizit gezeigt wird). Eine Grenzfliche senkrecht zur z-
Richtung scheint sich also durch ein angeregtes Fermion gegeniiber einer nicht
vorhandenen auszuzeichnen.

angeregtes Fermion <= Grenzfliche senkrecht zur x-Richtung .

Durch diese Beobachtungen wird das weitere Vorgehen inspiriert, bei dem sich
die geduflerten Zusammenhénge explizit wiederfinden werden.
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6.2 Charakterisierung iiber Fermion-Anregungen

Im vorangehenden Abschnitt wurde die Idee nahegebracht, Zustandssummen
iiber ihre Fermionanregungen zu charakterisieren. Dies wird in diesem Unter-
kapitel formal umgesetzt. Nach einer Erlduterung der verwendeten Notation
werden zunichst die GrundgroBen Y2, danach die daraus ableitbaren fermioni-
schen Zustandssummen Z( ., und schliefllich die Spin-Zustandssummen Z._r,

entsprechend umformuliert.

6.2.1 Notation

Die im Folgenden angewandte Notation basiert im Wesentlichen auf den Grund-
iiberlegungen aus Kapitel 4.1.6.

Hierzu sei noch einmal ausdriicklich betont, dafl der fortan zentrale Begriff der
Fermion-Anrequng stets auf die Grundzustinde von H™ und H~ bezogen ist
(im Gegensatz zur Gesamt-Fermionzahl, siehe (4.70)-(4.72)); soweit nicht an-
ders erwihnt werde stets die Tieftemperaturphase 8 > (B¢ betrachtet.

H_(; 0=+1: H- —  gerade Impulse £k =0,2,4,...,2L — 2;
= d=—-1: H* — ungerade Impulse k=1,3,5,...,2L —1.

Grundzustinde

|0+) :  Grundzustand von H™,

Vakuumzustand, in dem kein Teilchen vorliegt;

H |0+> = Fo+ ‘04—); FEoy :—%(+€1+63—}—...+62L_1) .

|0—) :  Grundzustand von H ™,
Zustand mit aufgefiilltem , Dirac-See®, d.h. mit

anwesendem £o-Teilchen negativer Energie (8 > f¢);

H |0_> = EO— ‘O_>7 EO— :_%(+’€0‘+52+...+82L_2) .

Um beide Grundzustédnde gleichzeitig ansprechen zu koénnen, wird noch der
Vakuumzustand |€2) eingefiihrt:

|2) = [0+) + |0—). (6.1)

(Zugunsten einer spiter iibersichtlicheren Zustandssumme wird auf eine Nor-
mierung verzichtet.)

Durch Anwendung der Erzeugungsoperatoren §;£ auf |0+) und |0—) erhélt man
die Fermion-Anregungen, die hohere Energiezustinde darstellen. Die Energien-
bezeichnung E, ., .k, aus 2.2.10 ist bereits an die Schreibweise angepaft:

n
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6. Alternativer Zugang zur Energieaufspaltung

1-Fermion- Anregungen

zu HT gehorend:  |[1+;k) = {}; |0+), k ungerade: k=1,3,5,...,2L —1;
H|1+:k) = By [145k); Eipg = Eot +eg.

zu H™ gehorend: |[1—;k) = 5,1 |0—), k gerade: k=0,2,4,...,2L —2;
H ‘1—;k> = Fi_y ‘1—;k>; Ei_ = Eo_ + ‘Ek‘

Um die Zusténde fiir gerade und ungerade k zusammenzufassen, wird deswei-

teren definiert:

|[14+; k) fur k ungerade;
k) = k=0,1,2,3,....2L—1. (6.2)

|l1—; k) fir k& gerade;

2-Fermion-Anregungen

|2+ k, 1) = {,15; |0+), k #1 ungerade;
H 24:k,0) = By 243k, 1) 5 Eaygy = Eoy +ep+e.

2—3k,0) = &l [0=), k#1 gerade;
H ‘2—; k,l) = EQ,;]M ’2—; k,l>; E27;k7l = E()_ + |5k‘ + ‘El‘ .

3-Fermion-Anregungen

ungerade |
gerade ’

35k, 0,m) = L&l el 108), kAIEmMAR
usw.

H \nj:; kl, e ,kn> = Eni;kl,...,kn ]n:l:; kl, ceey kn> .

H™: ungerade Impulse

/ Impulse £ der angeregten Fermionen;
¥ aufgrund des Pauli-Prinzips jeweils

| n :|: ; kl; cee kn > paarweise verschieden

{

Anzahl angeregter H™: gerade Impulse
Fermionen, bezogen

auf den jeweiligen

Grundzustand
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6.2. Charakterisierung tber Fermion-Anregungen

Somit kénnen die bei der Spurbildung iiber V' = exp [~ HT | auftretenden Ei-
genwerte exp [—Ep4.k, .k, 1] durch die folgenden Diagonalelemente dargestellt
werden; auf diese Weise iiberblickt man direkt die Art der beteiligten Fermion-
Anregungen.

Grundzustands-Beitrige

exp [—Eor T] = (0+|e "7 [0+); exp[—Eo—-T] = (0—|e " [0-);

1-Fermion-Beitrige

exp[~Eipg-T] = (1+;kle AT 14;k) mit k ungerade;
exp[~Ei_y-T] = (1—kle AT |1—k) mit k gerade;

usw.

n-Fermion-Beitrige

exp[—Eptiky . kn L] = (nE5ki, ... ky e HT Int; ki, ... kn).

6.2.2 Die Grundgriéflen Yg

Da sich sowohl die Fermion- als auch die Spin-Zustandssummen kompakt iiber
die Y9 darstellen lassen, erfolgt zunichst deren Charakterisierung. Die Zu-
standssummen konnen anschliefend aus diesen zusammengesetzt werden.

Zur Erinnerung:

0=+1: k gerade; aus H~/V~ stammend

/ § = —1: k ungerade; aus H*/V*t stammend

YO‘Z 25 exp [, 1] " spy [(V)]

\ a=+41: gerade Anzahl an MZ; gerade Fermion-Gesamtzahl
a = —1: ungerade Anzahl an MZ; ungerade Fermion-Gesamtzahl

Die nachfolgenden Ergebnisse lassen sich direkt aus den Aussagen (4.70)-(4.72)
ableiten; zum besseren Nachverfolgen werden kleine Zwischenschritte einge-
streut.
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6. Alternativer Zugang zur Energieaufspaltung

+ _
Yy Yi =3, e [‘&J'T}

Die Grofle £ i wird vergleichbar zur Grundzustandsenergie Ey_ ausgedriickt:

SI = —% Z (:i: ak) gerade Anzahl an MZ
k

gerade

1
= -5 (£ep teat...te9r9) gerade Anzahl an MZ

1
= ) (£leg] £ea £ ... £eop9) ungerade Anzahl an MZ.

Damit ergeben sich auf Ey_ = —% (+|eo| + €2+ ... + e21,—2) bezogen folgende

Beitriige zu Si:

Ei_y = FEo_ + |k k gerade 1-Fermion-Anr.

Es_kim = Eo— + |ek| + |ei] + lem| Kk #1# m #k gerade 3-Fermion-Anr.

Es_.kimmnp 5-Fermion-Anr.
usw.

In& i respektive Yi sind also nur ungerade Fermion-Anregungen bei ge-
raden Impulsen enthalten:

Yi — Z exp[—E1_;-T] + Z exp [—E3—;k:,l,m -T] +5-F-Anr. + ...
k k,,m
gerade k;él;ém;ék

gerade

= Y (=skleT ™ =k) + Y B=ikLm|e T 3=k, 1,m)

k k,l,m
gerade k;élyﬁm;ék
gerade
+ 5-F-Anr. + ...
+ + _ +
y+ Yt = 3 exp {—5_7j-T}
1
EX = 5 Z (j: 8k) ungerade Anzahl an MZ
k

gerade

1
= 73 (eg £eat...Ltear9) ungerade Anzahl an MZ

1
= -3 (£leg| £ea £ ... £eop9) gerade Anzahl an MZ.
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6.2. Charakterisierung tber Fermion-Anregungen

Beitrige zu £*:

Ey_ Grundzustand = O0-Fermion-Anr.

Eo_ 1 = Eo— + |ex| + |ei] k # 1 gerade 2-Fermion-Anr.

Ey_kimmn 4-Fermion-Anr.
usw.

Die Beitriige zu £ / YT bestehen somit aus geraden Fermion-Anregungen
bei geraden Impulsen:

YT = exp[-FEo_-T] + Z exp[—Fs_p;-T] + 4-F-Anr. + ...
k.l
kAl

gerade

= (0 "Tj0—) + > @2k lle T2k, 1) + 4F-Anr. + ...
k,l

ey
gerade
il v e[
Hier ist keine Verschiebung der Minuszeichen notwendig.
1
EL = —3 ; (:I: ek) gerade Anzahl an MZ
ungerade

1
= ——(te1test...+eor 1) gerade Anzahl an MZ .

2
Auf den Grundzustand Fyy = —% (+e1 +e3+...+e2r-1) bezogen ergeben
sich somit folgende Beitrdge zu £ :
Eo+ Grundzustand =  0O-Fermion-Anr.
Eoykg = Eoy +e+ g k # 1 ungerade 2-Fermion-Anr.
Eivkimn 4-Fermion-Anr.
USW.

In £ /Y7 sind demnach lediglich gerade Fermion-Anregungen mit unge-
raden Impulsen vertreten:

Y, = exp[-FEo-T] + Z exp |[—Foypy-T] + 4-F-Anr. + ...
k,l
k£l

ungerade

= 0+ e "To+) + > @+ikdle TT245k,1) + 4-F-Anr. 4 ...
k,l
k#£l

ungerade
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6. Alternativer Zugang zur Energieaufspaltung

Y> Yo = 3 exp [—8:7].-T}
1
EZ = 5 zk: (igk) ungerade Anzahl an MZ
ungerade

1
= -3 (£er1test...£eor1) ungerade Anzahl an MZ

Beitrige zu £ :

Eiip = Fo+ + €k k ungerade 1-Fermion-Anr.

Estiim=For +ex+ei+em  k#1#m#k ungerade 3-Fermion-Anr.

Estiktmmnp 5-Fermion-Anr.
usw.

E” respektive Y _ besteht damit aus ungeraden Fermion-Anregungen bei
ungeraden Impulsen:

Y2 = ) exp[-Ey-T] + Y exp[—Esypim-T] +5F-Anr 4.
k k,l,m
ungerade k;ﬁl;ﬁm;ﬁk
ungerade

= > (ke TIHE) + ) B4k Lmle T34k, 1,m)

k k,l,m
ungerade k#l#m#k
ungerade
+ 5-F-Anr. + ...

Damit ist die Aufstellung der Y2 komplett. Zur Uberpriifung der Ergebnisse in
Kurzform sei an die Aussagen (4.70)-(4.72) erinnert.
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6.2. Charakterisierung tber Fermion-Anregungen

6.2.3 Fermionische Zustandssummen Z;et

Aus den entsprechend formulierten Y2 des vorangehenden Abschnitts lassen

sich die fermionischen Sektor-Zustandssummen Z{ _ zusammensetzen:

— v+ +

Zi, = Z exp|[—Fi_-T] + Z exp |[—F3_pim-T]| +5-F-Anr. + ...

k klm
gerade k;ﬁl;ﬁm;ﬁk

gerade
— exp[~Eo_-T] — > exp[-Ey_y, - T] — 4-F-Anr. — ..
k,l
kAL

gerade

= — (0= TT0=) + > (1—ikle M7 [1—k)

k

gerade
— Y@=k lle T R=k D) + Y 3=k Lmle T [3=k,1,m)
k,l k,lm
kAl k£lEm£k
gerade gerade
— 4-F-Anr. + 5-F-Anr. —... +...

ZY . enthilt offensichtlich das gesamte Anregungsspektrum fiir gerade Impulse.
Geradzahlige und ungeradzahlige Anregungen sind jedoch mit anderen Vorzei-
chen gewichtet. Da die niedrigeren Anregungsbeitrige dominanter sind, zeigt
sich auch hier das negative Vorzeichen von Z | (fiir 8 > ¢, siche (4.86)).

- Zi_ =YI+YE
Zi_ = Z exp[—FEi_-T] + Z exp |[—E3_pim-T] +5-F-Anr. + ...
k k,lm
gerade k:;él;ém;ék

gerade

+ exp [_E(Jf . T] + Z exp [_EZ—;k,l . T] + 4-F-Anr. + ...
k,l
k£l

gerade
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6. Alternativer Zugang zur Energieaufspaltung

= (0—feTjo-) + > (A=Kl T 1=k

k

gerade
+ )@k le T 2=k 1) + Y Bk Lm|e T3k, 1,m)
k,l k,l,m
K kAL mtk
gerade gerade

+ 4-F-Anr. + 5-F-Anr. +...

Z! _ summiert iiber das komplette Anregungsspektrum gerader Impulse.

ZF,. =Y, - Y=

7', = exp|-Eoy-T] + Y exp[—Eppys-T] + 4-F-Anr. + ...

k.l
k#l
ungerade
- > exp[~Eipw-T] — Y exp[-Esppim - T] —5-F-Anr. — ...
k k,lm
ungerade k;él;ém;ék
ungerade

= 0+ e o) — Y (ke T 14 k)

k

ungerade

+ 3 @ik dle T2kl — Y Bk Lml e T34k, 1,m)

k,l k,l,m
k#l kAlAm#Ak
ungerade ungerade

+ 4-F-Anr. — 5-F-Anr. +... —...

In ZF | tritt das gesamte Anregungsspektrum fiir ungerade Impulse auf, erneut
mit verschiedenen Vorzeichen gewichtet, die sich allerdings von denen bei ZY |
unterscheiden. In diesem Fall ist die Zustandssumme positiv (vgl. (4.88)). Der
Unterschied zu Z% , liegt hier (ungerade Impulse) im anders gearteten Grund-
zustand, in dem kein Teilchen vorhanden ist. Dementsprechend treten anders
bezogene Anregungen sowie, da Z , durch Subtraktion (4.77) hervorgeht, eine
andere Vorzeichenverteilung auf.

Wire in ZI | hingegen €9 > 0 (8 < fc¢), ldge kein aufzufiillender Dirac-See
und damit auch kein Teilchen im Grundzustand vor: Die Anregungen und de-
ren Vorzeichengewichtung wiéren (bei geraden Impulsen) wie bei ZF . Dies
deckt sich mit dem frither gefundenen Zusammenhang, da8 fiir g S 0 (8 2 G¢)

Y S0 gilt (siche (4.86)).
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6.2. Charakterisierung tber Fermion-Anregungen

zZF _ 7' = Y[+ YC
Z¥ = exp|-Eops-T] + Z exp |[—Faypy-T] + 4-F-Anr. + ...
k.l
k#l
ungerade
+ Z exp|[—Fiy-T] + Z exp [—Esypim - T] +5-F-Anr. + ...
k klm
ungerade k;ﬁl;ﬁm;ﬁk
ungerade

= 0+ e To+) + D (Lskle P14 k)

k

ungerade
+ ) @Rkl T Ruk D + ) Bk Lmle T 3+ k,1,m)
k,l k,l,m
kAl kel tmAk
ungerade ungerade

+ 4-F-Anr. + 5-F-Anr. +...

Hier wird iiber das komplette Anregungsspektrum ungerader Impulse summiert.

Nun kann sich den eigentlich interessierenden Spin-Zustandssummen zugewandt
werden.

6.2.4 Spin-Zustandssummen Z. .,

Aus den bisherigen Ergebnissen lassen sich die Spin-Zustandssummen Z, ., zu-
sammenstellen. Dies kann zum Einen iiber die Y nach (3.21), (3.23), (3.25)
und (3.27) geschehen, zum Anderen iiber die Z{ ., gemif (4.82)-(4.85).

Unter den auftretenden Termen werden die fiir 7 > 1 dominierenden heraus-
gefiltert.

Zi+ Ziy = Y7+ Y =g (-2 28 +Z0 27
Z, = exp[—Fo+ - T] + Z exp |[—Fay - T] + 4-F-Anr. + ...
k,l
k£l
ungerade

+ exp [—E()_ . T] + Z exp [_E2—;k’,l : T] + 4-F-Anr. + ...
k,l
k£l

gerade
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= O0+|e BT 104+) + (0—|e HT|0-)

+ 3 @k e T 24k, 1) + Y 2k, e T 12— k,0)

k,l k.l
k#l k4l
ungerade gerade

+ 4-F-Anr. +...

Hiermit bestétigt sich der geduflerte Zusammenhang
7w =41 <= geradzahlige Fermionanregungen.

Dieses Ergebnis deckt sich zudem mit den bisherigen Resultaten aus den Kapi-
teln 2.2.10 und 5.1. In der Zustandssumme sind dabei sédmtliche Impulse bzw.
Impulskombinationen vertreten.

Bei der Diskussion des zugehorigen Spektrums in 2.2.10 wurde bereits festge-
stellt, daf} die hier durch die Grundzustéinde gekennzeichneten Beitrédge deutlich
dominant sind fiir 7' > 1. Angeregte Fermionzustéinde stellen daher lediglich
exponentielle Korrekturen dar.

Unter Verwendung der Notation (6.1) kann Z’, | somit fiir T > 1 geschrie-
ben werden als

7. = Qe fTI0) + O(2-F-Anr.) . (6.3)
Z,_ Z._ =Y. -Yt =L (+28, -2 _+ZF, +2Z7)
A exp|[—Fot+ - T] + Z exp|[—Fay - T] + 4-F-Anr. + ...
k,l
k#l
ungerade

— exp [_EO_ . T] — Z exp [_E2—;k,l . T] — 4-F-Anr. — ...
k,l
k#l

gerade
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= <0—H€_HT|0+> — <O—|6_HT\O—)

+ Y @nk e T2k 1) — D @k e T 2— k1)

k.l Kl
KAl iy
ungerade gerade

+ 4-F-Anr. =+...

Wie zu erwarten, treten auch hier wegen 7, = +1 nur geradzahlige Fermion-
anregungen auf. Aufgrund antiperiodischer RB in ¢-Richtung 7, = —1 (Einbau
des Umkehroperators) werden die Beitrdge mit unterschiedlichen Vorzeichen
gewichtet.

Unter Vernachlidssigung der Zwei-Fermion-Anregungen (und hoherer) ergibt
sich bei T' > 1 wie in Abschnitt 5.1

Z'_ = 0+ e T o+) — (0—|eHT|0-) + O(2-F-Anr.) . (6.4)

Z—+ Zl, =Y_ 4+ Y] =g (+20, 428 -2 27 )

zl = Z exp[—E14p-T] + Z exp [—Esqim - T] +5-F-Anr. + ...
P klm

ungerade k;él;ém;ék
ungerade
+ Z exp[—FEi_y-T] + Z exp [—E3_im - T] +5-F-Anr. + ...
k Elm
gerade k;ﬁl;ﬁmgﬁk
gerade

= > (ke Tk + > (I—skle T 1 k)

k k

ungerade gerade

+ Z (3+; k,l,m| e HT 1343k, l,m) + Z (3—;k,1,m)| e HT |I3—; k, 1, m)

k,l,m k,l,m
kAlEmAk kAlEmatk
ungerade gerade

+ 5-F-Anr. +...
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Dieses Ergebnis entspricht dem erwarteten Zusammenhang
T, = —1 <= ungeradzahlige Fermionanregungen .
Auch hier sind sdmtliche Impulse vertreten.

Die Frage nach den dominierenden Beitrdgen mufl hier etwas genauer formu-
liert werden. Im ungeraden Anregungsspektrum F,, i, ., mit n=1,3,5,...
treten aufgrund der verschiedenen Impulse ganze Bénder auf, die jeweils zu
einer n-Fermion-Anregung mit festem n gehoéren. Am niedrigsten liegt das Ein-
Fermion-Band mit E4.;, dariiber das Drei-Fermion-Band mit E3.;; ,; dabei
iiberlappt der obere Teil des Ein-Fermion-Bands mit dem unteren des Drei-
Fermion-Bands. Dies macht sich daran bemerkbar, daf3 die Energie einer 3-
Fermion-Anregung mit drei kleinen Impulsen um Null durchaus kleiner sein
kann als die Energie einer 1-Fermion-Anregung mit groem Impuls k& ~ L (bei
passenden Werten fiir L und 3, z.B. L = 100 und 5 =0,5): E1_.;, > E3_2.4.
Der Bénderiiberlapp ist auch dem graphisch umgesetzten Spektrum von Z_
in den Abbildungen 6.3 und 6.4 zu entnehmen.

Ei - E()+

Abbildung 6.3: Spektrum FE,t von Abbildung 6.4: Spektrum FE,. von
Z_4 fir L =28 Z_4 fur L =10
(8> Bc: n=1,3,57T) (8> Bc: n=1,3,5,7,9)

Das Augenmerk ist auf den interessierenden Temperaturbereich 8 > (¢ zu rich-
ten, in dem sich das beschriebene Verhalten zeigt. (Fiir 5 < (¢ treten andere
Anregungen beziiglich H~ auf, da das Vorzeichen von £y wechselt; man erkennt
dies am Abknicken der Kurven.)

Diesen Abbildungen 148t sich aber auch entnehmen, dafl der untere Teil des
1-Fermion-Bands den deutlichsten Beitrag zur Zustandssumme darstellt. Zur
Abschétzung der dominanten Ausdriicke in Z_ 4 werden daher die einzeln darin
auftretenden Summen, zu n-Fermion-Anregungen mit jeweils festem n geho-
rend, gegeneinander abgewogen. Auf diese Weise ist es zulissig, das gesamte
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1-Fermion-Band mit dem gesamten 3-Fermion-Band zu vergleichen.

Aus diesem Vergleich geht eindeutig die Summe der 1-Fermion-Anregungen als
dominanter Beitrag zu Z_, hervor. Bei Vernachldssigung der héheren Anre-
gungen (n > 3) fiir 7' > 1 erhilt man somit unter Verwendung der Notation
(6.2)

2L—1
Z'y = > (Lke T Lk) + O(3-F-Anr.) . (6.5)
k=0

Mit (6.3) und (6.5) bestétigt sich also, was sich bereits angedeutet hatte: Die
Zustandssumme Z, bei periodischen RB in z-Richtung 7, = +1 ist haupt-
séchlich durch die Grundzustinde (0-Fermion-Anregungen) geprigt, wiahrend
die Zustandssumme Z_ fiir antiperiodische RB 7, = —1 im wesentlichen durch
1-Fermion-Anregungen bestimmt ist.

Eine genauere Untersuchung von Z;; und Z_,, wobei im Blickpunkt deren
Verhéltnis steht, erfolgt im néchsten Unterkapitel 6.3.

Zur Vervollstdndigung sei noch die Zustandssumme Z_ _ aufgefiihrt:

7= -YI+YL = (+Z5, 425 _+2ZF, —-2ZF)
Z' = =Y exp[-Eiy-T] — Y exp|-FEsipym-T] —5F-Anr. — ...
k k,l,m
ungerade k#l#mik
ungerade

+ E exp[—E1_-T] + E exp [—Es_jim-T] +5-F-Anr. + ...
k k,l,m
gerade kilimik

gerade

= = ) (hkle TRk + ) (ke T 1—k)
k k

ungerade gerade

— Z<3+;k,l,m|eiHT]3+;k:,l,m> + Z<3—;k,l,m|67HT]3—;k,l,m>

k,l,m k,l,m
koAl mtk kAlEm#R
ungerade gerade

+ 5-F-Anr. 4...

Wegen 7, = —1 treten auch hier nur ungeradzahlige Fermion-Anregungen auf,
die aufgrund von 7z = —1 (Umkehroperator) mit unterschiedlichen Vorzeichen
versehen sind.
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Unter Vernachldssigung der 3-Fermion-Anregungen (und hoherer) ergibt sich
fir T'> 1

7 = = ) (ke T k) + ) (I—skle T 15 k)
ungeljrade gerlfnde
+ O(3-F-Aunr.) . (6.6)

Z__ ist positiv, da die 1-Fermion-Anregungen fiir gerade k ein wenig schwerer
wiegen. (Siehe Abb. 6.3 und 6.4: Man erkennt dies daran, daf die abknicken-
den Kurven jeweils energetisch tiefer liegen; wegen €9 — —eg gehoren diese zu
geraden k.)

6.3 Aufstellung der Energieaufspaltung AE iiber das
Verhéltnis von Z_, und Z

In diesem Abschnitt gelingt es, aus den zuletzt erzielten Formulierungen der
Zustandssummen einen Ausdruck fiir eine Energieaufspaltung AE zu gewinnen.
Der hier aufgestellte Ausdruck stellt sich dabei als Alternative zur bisherigen
Formulierung in Kapitel 5 heraus. Beim Vergleich mit dem dort erhaltenen AF
ist aus Symmetriegriinden die Vertauschung L < T zu beachten.

6.3.1 Verhiltnis der Zustandssummen

Ausgangspunkt zur Aufstellung der Energieaufspaltung AFE ist das Verhéltnis
der Zustandssummen Z_ (6.5) und Z; 4 (6.3)

Z >y (LKl e T 15 k) 61
i (=T 10)

Ek exXp [_Elf;k"T] + Zk exp [_E1+;k'T]

~ gerade ungerade (68)

exp[—FEo--T] + exp[—Eot T]

bei antiperiodischen (7, = —1) und periodischen (7, = +1) Randbedingungen
in z-Richtung in der zuvor vorgenommenen Charakterisierung iiber Fermion-
anregungen.

Die Zustandssumme bei periodischen RB ist dabei durch die Grundzustandsbei-
trage gepriagt bei Vernachliassigung der 2-,4-.6-,...-Fermion-Anregungen. Z_
wird hingegen durch 1-Fermion-Anregungen dominiert unter Vernachléssigung
der 3-,5-,7-,...-Fermion-Beitrdge. Diese hoheren Anregungsbeitrige sind zwar
vergleichsweise gering (besonders fiir 7' >> 1), aber prinzipiell in den Zustands-
summen enthalten.
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das Verhdltnis von Z_1 und Z+

Dies legt folgende Vermutung nahe, die in das Bild der bisher gefundenen Zu-
sammenhénge pafit: Im Grundzustand (0 angeregte Fermionen) sind die Spins
parallel zueinander ausgerichtet; im Spin-Gitter tritt demzufolge keine Grenz-
fliche auf, das sich somit periodisch fortsetzen 148t: Dieses ist der dominante
Beitrag zu Z . Bei einer Grenzfliche (< einem angeregten Fermion) ist ei-
ne periodische Fortsetzung des Gitters nicht moglich, lediglich die antiperiodi-
sche RB kann realisiert werden: Hierdurch ist der dominante Beitrag zu Z_
gegeben. Bei einer geraden Anzahl an Grenzflichen (« 2-,4-,6-,...-Fermion-
Anregungen) ist wiederum eine periodische Abfolge des Gitters moglich, was
die hoheren Anteile zu Z, 1 erklért; diese 2-,4-,6-,. . .-Kink-Konfigurationen tre-
ten jedoch mit einer wesentlich geringeren Wahrscheinlichkeit auf und tragen
dementsprechend schwach zu Z, bei. In Z__ sind entsprechend schwichere
Beitrége von 3,5,7, ... Grenzflachen (Kinks) enthalten.

Untersuchungen zu Multikink-Anordnungen im Rahmen der Feldtheorie findet
man u.a. in [56], wo auf die Beitridge zu Pfadintegralen eingegangen wird.

Die in (6.7), (6.8) erfolgte Einschrinkung auf 0- und 1-Fermion-Anregungen
entspricht daher dem Fehlen und dem Vorhandensein genau einer Grenzfliche
senkrecht zur z-Richtung (siehe Abb. 6.2), wie es urspriinglich angedacht war,
und was fiir die folgenden Zwecke auch véllig ausreichend sein wird.

6.3.2 Bezug zu einer Energieaufspaltung

Um diesen herzustellen, sei zunéchst an das Bewahrte aus Kapitel 5 erinnert:
Die Energieaufspaltung ergab sich dort als Energieliicke iiber die Differenz

L-1 -
AE = FEo_ — FEypp = %{Z (2t1) Z BES) }

k=0

Hierzu korrespondierte eine Grenzfliche senkrecht zur ¢-Richtung, wie sie in
Abb. 5.2 bzw. in Abb. 6.5 auf der linken Seite gezeigt ist. Durch deren Betrach-
tung erzielte man den Zusammenhang (5.8):

Z4_
Zi= o L ap.

Diese Uberlegungen fanden in Darstellung I statt.
Nun kénnte man dieselben Uberlegungen analog in Darstellung IT durchfithren
und dort die Energieliicke

- R R = -1
AE = Ey — Eq, —5{2 (2L Za% }
r=0

berechnen; man erhielte damit dasselbe Ergebnis wie fiir AE (Darstellung I),
wenn man aus Symmetriegriinden (siehe (3.29)) L durch T ersetzte.
Aus eben diesen Symmetriegriinden (3.29) folgt hier die Zugehorigkeit zu einer
Grenzfliche senkrecht zur z-Richtung (siche Abb. 6.2); in Abb. 6.5 ist diese zum
Vergleich auf der rechten Seite dargestellt. Uber deren Einbeziehung liee sich
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/ t

Darstellung I @ Darstellung IT
AE  L-abh. — AE  T-abh.

Abbildung 6.5: Zu AFE und AE korrespondierende Grenflichen

folgender zu (5.8) analoger Zusammenhang finden:

Z . L% (6.9)
Zyy 2
Soweit fithrte man das bekannte Verfahren in der solang nichts Neues hervor-
bringenden Darstellung II aus.
Das neuartige Verfahren kommt nun iiber den Aquivalenzbeweis zwischen Dar-
stellung I und II ins Spiel: Wegen Z_, = Z_, und Z,4 = Z,, gilt neben (6.9)
ebenfalls:

Z_
Lyt

~ g AE. (6.10)
Auf der linken Seite stehen somit die im vorigen Abschnitt angesprochenen
Zustandssummen aus Darstellung 1. Ziel ist es nun, deren bereits andiskutier-
tes Verhiltnis auf der linken Seite entsprechend umzuformen, um daraus einen
Ausdruck fiir AE zu gewinnen.

Die Energieaufspaltung AE wird dabei (obwohl Darstellung I-Groflen unter-
sucht werden) weiterhin mit einem Dach versehen sein, um deren T-Abhéngigkeit
deutlich herauszustellen. Da die hier erfolgende Rechnung der Bestétigung des
in Kapitel 5 erhaltenen Ergebnisses dient, sollte das Resultat fiir AEF unter Be-
achtung der L < T-Vertauschung mit demjenigen fiir AE (5.32)-(5.34) identisch
sein.
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das Verhdltnis von Z_1 und Z+

6.3.3 Energieaufspaltung: Integral {iber Fermion-Energien

Der Unterschied zwischen den am Verhiltnis (6.8) beteiligten Zustandssummen
liegt in den 1-fachen Anregungen, die der Zahler gegeniiber dem Nenner auf-
weist.

Mittels

_ ungerade
Eirp = FEox + |eg| fur k gerade

wird dieser durch Abtrennung der Grundzustandsanteile direkt sichtbar:

7, e Po-T N exp[—lex| - T] + e P+ T Y exp[—eg-T]

gerade ungerade

~

Z++ e*EO—'T + e*EOJr'T

Um die Sprachweise eindeutig zu gestalten, sollten die g eigentlich als normierte
Ein-Fermion-Energien bezeichnet werden; fiir ein angeregtes Fermion repréasen-
tieren sie ja den Abstand zur jeweiligen Grundzustandsenergie. Soweit keine
Verwechslungsgefahr besteht, kann aber zum fritheren, schlichteren Begriff der
(einzelnen) Fermion-Energien zuriickgekehrt werden. Wie iiblich darf bei unge-
raden k ein Betragsstrich ganz nach Bedarf gesetzt werden.

Zur weiteren Auswertung ist hilfreich zu bedenken, daf letztlich ein Ausdruck
der Energieaufspaltung bei grofien L, T' gesucht ist. Daher (L, T > 1) empfiehlt
sich fiir die im Z&hler auftretenden Summen iiber normierte Ein-Fermion-Ener-
gien der Ubergang von der Summation zur Integration. Da fiir diesen Schritt
eine (quasi-) kontinuierliche Variable formal geeigneter ist, wird auf z = % sowie
le(z)| (siehe Gl. (5.13)) zuriickgegriffen.

2L—2 L

S ewl-lal ] — g [dh) e [l T).
— Alz) Y

gerade

Das Rastervolumen A(£) = LAE betriigt offenkundig A(£) = 2, da der Index
k Zweierspriinge macht (Ak = 2). Zudem kann fiir grofie L die obere Grenze zu

% ~ 2 abgeschétzt werden:
202 I 2
> epl-lal 7] — 5 [do ewl-le@)] 7).
ger:de 0

Die beim Ubergang von der Summation zur Integration auftretenden Korrektur-
terme lassen sich mithilfe der Euler-MacLaurin-Summationsformel [60] (Kap.
23.1.30, sieche auch 23.1.32) abschétzen: Durch geeignete Verschiebung des In-
tegrationsbereichs ergeben sich als Korrektur lediglich Randterme der Ordnung

O(exp [~ [e(£1)]-T]) = O(exp[-2(B+p5)-T]). (6.11)

Diese exponentiell abfallende Ordnung trat bereits im vorigen Kapitel auf und
ist gegeniiber den im Endergebnis vorkommenden Ordnungen vernachlissigbar.
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Auf #hnliche Weise wird von diversen Autoren [9, 61] der Ubergang zur Integra-
tion beim grofiten Eigenwert diskutiert. Onsager selbst begriindete die rasche
Konvergenz mit lediglich exponentiellen Korrekturen iiber die Trapezformel, in
anderen Beziigen wird ebenfalls die Euler-MacLaurin-Summationsformel ange-
fithrt (siehe [17]).

Fiir ungerade Impulse bleibt das Rastervolumen A(%) = % gleich, womit sich
Wegen +~ 0 und M ~ 2 dasselbe Integral ergibt:

2L—1 I 2
Z exp[—¢ex-T] — Q/daz exp [— |e(z)] - T'].
ungerade

Man erkennt also insbesondere, dafl sich die Summen iiber gerade und ungerade
Impulse fiir grofle L gleichen. Dies ist nicht weiter iiberraschend, da nach frithe-
ren Uberlegungen limy, .o |€9x| = limy oo 2541 gilt. Andererseits tritt hieriiber
ein deutlicher Unterschied der Berechnungsmethoden zutage: Bei der bisheri-
gen Berechnung der Energieliicke AFE = Fy_— Fyy als eben solche mufite diese
Differenz zunéchst in eine Summe umgeschrieben werden, da der Ausdruck fiir
grole L sonst direkt Null ergeben hitte. Hier tritt jedoch keine derartige Dif-
ferenz auf, und die Teilausdriicke konnen daher getrennt fiir L > 1 untersucht
bzw. bereits in Integrale umgewandelt werden.

Die im Nenner befindlichen Grundzustandsbeitrdge kénnen somit gekiirzt wer-
den (fiir grofie L werden auch diese einander gleichen, man denke nur an limy,_, o,
AE = 0), so daf sich fiir das Verhéltnis der Zustandssummen

2

Z_ L

+ L /dx exp [ |e(z)] - T] (6.12)
0

ergibt. Es verbleiben also die Energie-Konfigurationen normierter 1-Fermion-

Zusténde.

Mittels (6.10) gewinnt man damit folgenden Ausdruck fiir die Energieaufspal-
tung:

2
/dx exp [— |e(x)] - T']. (6.13)
0

Zur spiateren ZweckméfBigkeit wurde hier ob der vernachléssigbaren Korrekturen
wieder ein Gleichheitszeichen gesetzt; man sollte jedoch in Erinnerung behalten,
dafl in diese Gleichung gewisse Ndherungen einflossen.

Diese Formel, auf die die bisherigen Uberlegungen abzielten, ist auch der Aus-
gangspunkt der weiteren Rechnungen in diesem Kapitel. Offensichtlich unter-
scheidet sich dieser Ausdruck von der fritheren Formulierung der Energieaufspal-
tung. Dessen Berechnung sollte daher neue Aufschliisse bieten und, bei Erfolg,
die bisherigen Ergebnisse auf nicht-triviale Weise bestétigen.

Im Anschlufl wird dieses Integral (6.13) im Zuge einer Sattelpunktsapproxima-
tion ausgewertet.
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6.4 Berechnung des Integrals AE

Gegenstand ist die Berechnung der Energieaufspaltung AE als Integral iiber
die normierten Ein-Fermion-Energie-Konfigurationen
2

AE - /dx exp [ |e(z)] - T]
0

mit |e(x)| = +Arcosh [cosh(mg) + 1 — cos(mx)] .

Die hierbei eine zentrale Rolle spielende Funktion |e(z)|, die die verschiedenen
Fermionenergien représentiert, wird hierzu in der angegebenen Form verwendet.
Man erkennt bereits die reine T-Abhéngigkeit des fiir AE resultierenden Aus-
drucks. Wie zuvor interessiert auch hier ein Ausdruck bei einer grofien Zahl an
Freiheitsgraden, sprich grofien T'.

6.4.1 Vorbereitungen

Bei Betrachtung des Integranden exp|[—|e(z)| - T'] ist auffillig, dafl dieser
Schwankungen durch |e(z)| ausgesetzt ist, die fiir T > 1 erhebliche Ausmafe
annehmen. Insofern bietet sich fiir 7' > 1 eine Sattelpunktsapproximation an,
die um das Maximum des Integranden und dementsprechend um das Minimum
mg der Funktion |e(x)| stattfindet. Da |e(z)| ein periodisches Verhalten aufweist,
verlangt dies allerdings zunéchst die Verschiebung bzw. Einschrankung auf ein
geeignetes Integrationsintervall, in welchem ein einzelnes und eindeutiges Mini-
mum mit passendem Flankenanstieg vorliegt. Diese gelingt unter Ausnutzung
eben der Periodizitét (2 £ x)| = |e(z)]:

2 1
[z ewl-le@]- 7] = [do el @) 1)
0 —1
1
= 2~/dm exp [— |e(x)] - T']. (6.14)
0

Zur schematischen Veranschaulichung dieser Zusammenhénge und des verfolg-
ten Vorgehens diene die Abbildung 6.6 (in Anlehnung an Abb. 2.6). Um bei
spéteren Substitutionen die Bijektivitdt der Integrationsintervalle zueinander
zu gewéhrleisten, wird von vornherein die zuletzt aufgefithrte Grenzenvariante
gewihlt.

Somit ist fiir den weiteren Verlauf eine um das bei x = 0 befindliche Minimum
geplante Entwicklung

1
AE = 2-/dm exp [~ [e(@)|um - T'] (6.15)
0

festzuhalten. Die Indizierung ,, 20" soll darauf hinweisen, daB |e(z)|um = eine um
diese Stelle genédherte Groe darstellt, die insbesondere nicht mehr die Periodizi-
tat der urspriinglichen Funktion aufweist, sondern einen steten Flankenanstieg.
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()]

Abbildung 6.6: Entwicklung um ein ausgewihltes Minimum (schematisch)

Anhand des Minimums |£(0)| = my 148t sich bereits der zu erwartende Trend
AE ~ exp (— T mo)

absehen. Die restliche Entwicklung sollte demnach die potenzartig von 71" ab-

hingenden Vorfaktoren enthalten, welche nun explizit durchgefiihrt wird.

6.4.2 Sattelpunktsapproximation

Zu deren Ausfithrung wird die Taylorentwicklung von |e(z)| um z = 0 benétigt,
welche hier bis zur Ordnung O(z°) angegeben wird. Wie sich sogleich zeigen
wird, reicht diese aus, um die bisherigen Ergebnisse bis zu derselben Ordnungs-

tiefe zu reproduzieren. Da die Funktion |e(x)| = |e(—z)| achsensymmetrisch ist,
treten nur gerade Potenzen auf:
2 4
B s 5y T 1 3 cosh(myg) 4
e@)lym, = mo + 2 sinh(my) v 24 <sinh(mo) * sinh®(my) v
6 15(cosh(mg) — 1 45 cosh?(m
+2 (3 o) =1) Bl ) 45+ o)
6! \ sinh(mg) sinh”(my) sinh”(my)

bzw. in Kurzform
2

le(@)um, = mo + 2% + Rest(z).

o= 2sinh(my)

Letztere soll das weitere, fiir eine Sattelpunktsintegration typische Entwick-
lungsschema von (6.15) aufzeigen, welches um die aus der quadratischen Ord-
nung stammende Gaufifunktion stattfindet:

1
— T
AE = exp Tmo 2/dm exp{ 2s1nh7zm0) -xz} exp[—T-Rest(:v) .
0
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Um die in Rest(x) enthaltenen, wegen x <1 schwicheren Ordnungen in einem
analytischen Rahmen zu behandeln, wird exp[— T- Rest(m)] nach Taylor um
Eins entwickelt:

1
exp[— T-Rest(z)| = 1 — T-Rest(z) + 5 T?- Rest®(z) + T° O[Rest’(z)].

Auf diese Weise verbleiben letztlich Integrale iiber Gaufifunktionen mit Poly-
nomen, welche nach Verschiebung der Integrationsgrenze ins Unendliche den
gingigen Standardwerken zu entnehmen sind. Hierzu ist folgende Abschitzung
hilfreich:

1 0o
/daz exp [— om;2] {1+0@z"} = /daz exp [— ozx2] {1+ 0@z}
0 0

o0

- /dx exp [— az®] {1+ O(z")}

1

. T 72
mit o= ——————, d.h. von der Ordnung T;
2 sinh(my)
/da: exp [~ az? ] {1+ O(= 1/dy exp aly+1) ]{1+O((y+1)4)}
1 0
< expl— /dy exp [— ay?] - const. {1+ O(y)}.
0

Der Korrekturterm ist somit um Faktor O(exp [~a]) = O(exp[ — ﬁ’{;o)])
geringer. Anschaulich wird in diesem auch nur noch iiber den flachen Ausldufer
einer um x =0 zentrierten Gauflglocke integriert, die bei £ =1 bereits um eben
dieses O(exp [—a]) abgefallen ist. Ergénzend sei an die Abschéitzung iiber das
Fehlerintegral erf(z) [59] erinnert.

Fiir T > 1 ist daher diese exponentiell abfallende Ordnung vernachlédssigbar
(mg sei hierzu hinreichend klein, bzw. da mg als endlich vorausgesetzt wur-
de, kann T > 1 entsprechend grofler gewihlt werden) gegeniiber den aus der

restlichen Approximation

AE = 2-/dz exp [— \5(93)]-T]%u3’ [1+O(exp[—2si£h77zfno)])}
z=0
0

kommenden potenzartigen Termen in 7.

Explizit erhélt man durch Einsetzen der Taylorentwicklungen in das obige Aus-
wertungsschema:
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2 sinh(

{1 LT 7r4< 1 +3cosh(mo)> L

— i T 2
AE = exp(—Tmo)‘QO/d:v exp[—iwmo)-a:ﬂ'

24 \sinh(mg) = sinh®(mg)
T 6 < 1 15(cosh(mg) — 1) 45 coshz(m0)> 6
_T. ‘X
6! \ sinh(mg) sinh?(mo) sinh®(myg)

B e e e

e [O(x4)]3} {1+O(exp - #(m)})} |

Die Mitnahme hoherer Ordnungen des Rests liegt darin begriindet, daf3 die aus
den Integralen resultierenden Ordnungen in 7" interessieren. Da der Exponent
ebenfalls ein T' enthiilt, sind diese jedoch nicht direkt ablesbar; so fiihrt 7'-O(z°)
ebenso wie T2-O(2®) aus dem quadratischen Restterm auf die Ordnung O( 75 /2)
Um die resultierenden Ordnungen in T deutlicher zu gestalten, empfiehlt sich
daher die Substitution
B T 72 9

vo= 2 sinh(my) T
die das T" aus dem Exponenten entfernt.
Unter Mitnahme der oben angegebenen Ordnungen erhélt man

[e.e]

— /2 sinh(

AE = sin mo /dy exp(—
0

= exp(— T mo) .
1 1/ . 3 cosh(myg) 9 1
{ \/T + 6 (Slnh(mo) + sinh(mo) ) "y T3/2

1
90

h? 1
<smh2(m0) + 15( cosh(mg) — 1) + 45 w) s —=
sinh*(my)

1 h? 1
+ == (sinhQ(mo) + 6 cosh(mg) + 9 w> A p—
2 sinh*(my)

+ O<T7/2>} {1+O(exp - #(m)])} |

Die verschiedenen Ordnungen in 7' sind nun deutlich sichtbar. Man erkennt,
dafl O(ﬁ) und O( 73 /2) jeweils aus einer Quelle stammen, wahrend O( 75 /2)
wie oben aufgezeigt aus zwei Quellen zusammengesetzt werden mufl. Letzte-
res bedingte die Hinzunahme des quadratischen Restterms zumindest in seiner
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niedrigsten Ordnungsstufe. Man mag nun einsehen, daf§ die Ausrechnung hohe-
rer Terme O (ﬁ) durchaus verwickelt wird. Die Beschrinkung auf die explizite
Angabe bis einschliellich zur Ordnung O(ﬁ) entspricht derjenigen in Kapitel
5.3 und ist damit auch ausreichend zum gegenseitigen Ergebnisvergleich.

Die verbleibenden Integrale sind vom Typ der Gammafunktionen [59]

(0.9]

/d:v 2" exp(—z) = T'(n+1) mit n>—1; (6.16)

0

2%+1
)

in Anhang E sind die hier bendtigten F( mit k € N angegeben.

6.4.3 Ergebnis fiir die Energieaufspaltung AE

Nach dem Ordnen und Zusammg_rgassen der verschiedenen Terme erhilt man
somit folgendes Endresultat fiir AE:

N> 2 sinh(mg) 1 1 1
AE = eXp(_TmO) Tﬁ —l—a1T3/2 —l—a2T5/2 +
—1 _ T 72
+0O (T7/2) 1+ O<GXP - m]) (6.17)
i 1 . 3 cosh(myg)
mit a; = sinh®2(mg) + 7> 6.18
' 427 ( (mo) sinh(my) ( )
1 9 15
und a2 = = sinh®2(mg) + — cosh(mg)+/sinh(mg) +
> 7 8van <8 (mo) + = cosh(mo)+/sinh(mo)
15 h?
+5\/sinh(mo) — _cosg_gmo)> (6.19)

Erneut 148t sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit
wachsender Systemgréfie abnimmt. Im Limes unendlich vieler Freiheitsgrade
verschwindet sie: limyp_ o AE = 0.

Vergleicht man dieses Ergebnis unter Beachtung der L-T-Vertauschung mit
demjenigen fiir AE (5.32)-(5.34) aus Kapitel 5, so stellt man eine hervorragen-
de Ubereinstimmung der erzielten Resultate fest: Bis einschlieBlich zur Ordnung
O(ﬁ) bzw. O(#) gleichen sich die berechneten Koeffizienten.

Hierbei sollte noch einmal betont werden, dafl sich die in Kapitel 5 und 6 be-
schriebenen Verfahren grundlegend und nicht-trivial unterscheiden: Die Uber-
einstimmung der erzielten Ergebnisse ist daher als wertvolle Bestdtigung zu wer-
ten.

Eine tiefergehende Untersuchung dieser Korrespondenz ist in Abschnitt 6.5 zu
finden, die u.a. zeigt, dafl der Unterschied in den angegebenen exponentiellen
Korrekturtermen als nebenséchlich und unbedeutend anzusehen ist.
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Mithilfe der Wurzelndherung fiir |e(x)|, die sich als niitzliche Approximation
um den kritischen Punkt bewédhrt hat, soll diese Ubereinstimmung auch fiir
O(#) tiberpriift werden.

6.4.4 Uberpriifung mit Wurzelniherung

Bei der Berechnung der Energieaufspaltung

AE = 2-/drc exp [— le(@)] - T caus - [1+O(K0rrektur)},
z20
0

fiir welche die Entwicklung der Funktion |e(x)| um die Stelle z = 0 benétigt
wird, kann erneut auf die Wurzeln&dherung (5.42)

e(@)am = \/mf + 7222 fir §~ B¢

zuriickgegriffen werden; diese gilt ja gerade fiir kleines Argument x sowie um
den kritischen Punkt. Die Sattelpunktsapproximation kann dann mit dieser ein-
facheren Funktion durchgefiihrt werden, wofiir man die Einschrankung 8 ~ B¢
bzw. mp < 1 in Kauf nimmt. Die Erleichterung aufgrund ihres unkomplizierte-
ren Verhaltens ist hierbei nicht so grof wie bei der Methode der Schlitzintegra-
tion; allerdings ist die Taylorentwicklung mit geringerem Aufwand verbunden,
so daf} sie hier bis einschlieBlich O(z®) gefiihrt wird:

2 4 6
2 2,92 __ ﬂ- 2 7[‘ 4 m 6
— - . - . + .
\/mgy + mex mo + 9o x Smg x 16m8 x
578 8
0O 10
osmy & T O

Letztendlich soll das Endergebnis die explizite Angabe der Ordnung O( 77 /2)
beinhalten. Im Entwicklungsschema werden hierzu folgende Terme benétigt:

oo
— T
AE = exp Tmo 2/d:z: exp w ‘:c2>'
2myg
0

4 6 58
1—|—T-7r—-x4—T- T 28 T il 228 4+ T-0(z19)
8m3 md m
0

3 16mg 128
c il Ty 6+ 0 2
- - — =X T €T
2 8m3 16m3

Auf die Angabe der exponentiellen Korrektur { 1+ O(exp [ Qmo})} wurde
hier verzichtet.
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Wie zuvor fithren 7O (z%) sowie T O( ®) auf dieselbe Ordnung O( =5 /2) Fiir die

neu hinzukommende Ordnung O( ) kommen gar drei Quellen in Betracht:

T7/2
T-O(2®) aus dem linearen Term, T2 O(x!") aus dem gemischt-quadratischen

und T3- O(x'?) aus dem kubischen Term. Die Substitution

verschaflt hieriiber Klarheit:

. 7 T 1
AE = exp(—Tmo) Y0 -/dy exp(—y) —= -
0

S SRR P NN BTN
VT 2myg y T3/2 Qm% y T5/2 Sm% Y T5/2
5, 1 1.1 1, 1 1
"V TE T w VTR TR VTR O(T9/2)

Die verbleibenden Gammafunktionen (6.16) sind in Anhang E aufgefiihrt.

Nach dem Sortieren der Terme ergibt sich somit folgendes Endergebnis fiir AE
[2mg 1 n 3 1
T T 4\/2mmg  T3/?
15 1 105 1

1
— . + . + O(_)
64v2r m3? T2 5122 mi/? T/ 79/

—

AFE = exp (— Tmo)

, (6.20)

welches sich unter Beachtung der L-T-Vertauschung als identisch zum friiheren
Resultat (5.45) aus Abschnitt 5.3.9 herausstellt.

Somit wird ebenfalls die im Rahmen der Wurzelndherung explizit berechnete
Ordnung O(T7/2) bzw. O(L7/2) mittels beider Methoden gegenseitig bestétigt.
Des Weiteren diente dies der Kontrolle der Berechnungen innerhalb dieses Ka-
pitels. Denn erneut liefert die fiir mo < 1 giiltige Wurzelnédherung innerhalb
einer jeden Ordnung O( T /2) lediglich den Term fithrender mo-Ordnung aus
dem allgemeinen Ergebnisausdruck (6.17)-(6.19). Dies trifft iibrigens auch fiir
die einzelnen Quellterme zu, wenn eine Ordnung aus mehreren dieser zusam-
mengesetzt wurde.

Die Grenzflichenspannung o, um die Auflistung der Ergebnisse zu vervollstin-
digen, bleibt iibrigens identisch, da diese weder von L noch von T abhéingt.
Explizit erhélt man die Grenzflichenspannung hier iiber die Differenz der redu-
zierten Freien Energien

F\G’renz = F\——l- _ﬁ++ +InL,
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6. Alternativer Zugang zur Energieaufspaltung

welche um den Entropieterm In L aufgrund der L Anordnungsmoglichkeiten
einer Grenzfliche senkrecht zur x-Richtung ergénzt und auf die an der Grenz-
schicht beteiligten T' Gitterpunkte bezogen wird:

. . FGrenz
c = lim lim ——
L—ooT—o0

= lim (—%IHZ\E).

T—o0

Hieriiber ergibt sich das aus 5.3.7 bekannte Resultat

o = mo = 287, (6.21)

welches lediglich von der Temperatur abhéngt.

6.5 Analytische Beziehungen zu AE = —L ¢y,

Es ist bereits mehrfach darauf hingewiesen worden, dafl sich die angewandten
Verfahren zur Berechnung der Energieaufspaltung auf nicht-triviale Weise un-
terscheiden und dennoch im Ergebnis bestens bestétigen.

Es wire daher interessant, eine Korrespondenz zwischen den Formelansédtzen
auf hoherer Ebene als dem Endresultat zu finden.

Bei dem in Kapitel 5 angewandten Verfahren ergab sich die Energieaufspaltung
urspriinglich aus einer Fourierreihenentwicklung AE = —L Z;io C(2j+1)-1, Wel-
che nach dem ersten Koeffizienten ¢y, abgebrochen werden konnte, da bereits der
néchste c3y, deutlich schwécher war und lediglich eine exponentiell abfallende
Korrektur hervorbrachte:

AE = —Lep |14 0(exp(-2Lmo))].

Dieser Korrekturterm wird im Folgenden nicht weiter beachtet; der Vergleich
wird sich also auf das Integral AF = —L ¢;, beschrinken.

Durch Konturverschiebung am Schlitz entlang fand sich hierfiir folgender Inte-
gralausdruck iiber die Diskontinuitét disy(s)

|23

21| =
AE = /dish(s)-exp(—Lﬂs) ds mit

mo
-
2(8+5)

T 9

23] =
|21

wobei bereits benutzt wurde, daf§ die Diskontinuitét reell ist. Mit disp(s) =
2 - lim, o h(is 4+ n) folgte weiter:
|23
AE = 2 / lin%) h(is +mn) - exp(—Lms) ds .
’r]—>
|21

In Kapitel 5 wurde nun zunichst das untere Schlitzende durch Substitution
auf Null gesetzt, und anschlieSfend die Diskontinuitit ausgerechnet. Hier bie-
tet sich zum besseren Vergleich der beiden Integralausdriicke die umgekehrte
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6.5. Analytische Beziehungen zu AE = —Lcy,

Vorgehensweise an: Nach der in 5.3.4 vorgestellten Methode berechnet sich der
Limes am rechten Schlitzufer zu

sinh(7s)
\/’ [ cosh(mg) +1 — COSh(T{'s)]2 — 1‘

_ sinh(7s) ; (6.22)

\/1 cosh(mg) + 1 — cosh(7rs)]2

lim h(is +1n) =
n—0

fiir die letzte Umformung wird verwendet, dafl aufgrund des Exponentialfaktors
exp(—Lms) im Integranden nur kleine s — |21 = s — % merklich zum Integral
beitragen, was auch den Anlafl zur Sattelpunktsentwicklung in Abschnitt 5.3.5
gab und in deren Rahmen daher eine vertriigliche Annahme darstellt (mg sei
hierzu nicht {iberméBig groff bzw. s — =% < 1 sei entsprechend klein gewihlt
gegeniiber dem als endlich vorausgesetzten my).

Als fiir den nachfolgenden Vergleich wichtiges Zwischenresultat ergibt sich da-
mit
|23]

AE — 92 sinh(7s)

| \/1 — [cosh(mg) +1 — cosh(7rs)]2

-exp(—Lms) ds. (6.23)

Via Substitution s = r + |z1| = r + ™2 die das untere Schlitzende auf Null
setzt, erhdlt man den Ausdruck

|z3]—|21|=a

AE = exp(—Lmyg) - /dis(}lf(r)-exp(—Lwr) dr (6.24)

sinh(7r 4+ myg)

mit  dis) (r) = 2-
\/1 — [cosh(mg) + 1 — cosh(mr + mo)]2

., (6.25)

welcher nach hyperbolischer Umformung die aus 5.3.4 gewohnte Form aufweist:

inh
dis?(r) = sinh(rr + mo) . (6.26)

\/smh( + mo) sinh(%r)[l — sinh(% +myo) smh(%)]

Soweit zum Integral AE = —Lecy,.

Der andere Ausgangspunkt zur Berechnung der Energieaufspaltung, welcher
in Kapitel 6 Anwendung fand, basierte auf dem Verhéltnis der Zustandssum-
men é:—* mit und ohne einer Grenzfliche senkrecht zur z-Richtung. Hohe-
re Multikink-Konfigurationen, zu mehrfachen Grenzflichen gehérend, wurden
hierbei in den Zustandssummen vernachlassigt. Dies bedeutete eine Einschrin-
kung auf die niedrigsten 0- und 1-Fermion-Anregungen unter der Kenntnis, dafl
die hoheren 2-,4-.6-,... bzw. 3-,5-7-,... -Anregungsbeitrige nur exponentielle

Korrekturen darstellen. Fiir eine groﬁe Anzahl an Freiheitsgraden wurde unter
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6. Alternativer Zugang zur Energieaufspaltung

diesen Annahmen das folgende Integral iiber die Konfigurationen normierter
Ein-Fermion-Energien gefunden:

1

/dx exp [~ |e(x)| - T] .

0

Durch L-T-Vertauschung erhélt man:

1
AE = Q/dz: exp [ |e(x)| - L] .
0
Es soll nun eine analytische Beziehung zu dem Ausdruck AE = —L ¢y, herge-
stellt werden. Dies geschieht iiber die Substitution
_ Je@)
—
Mit |E(T?)| =10 — |z | und ‘6(73” ([”ﬂ = |z3| folgt zunéchst
|23]
AE = Z/dy J(y) exp(—Lmy) mit J(y) = dL
()]

|21]

Mit etwas Geschick gelingt es, die Jacobiante durch y auszudriicken; unter Ver-
wendung von cos(mx) = cosh(mg) + 1 — cosh(|e(x)|) folgt ndmlich

d 7 sin(mz)

—le(@)| =
dx \/[cosh(mo) +1-— cos(Tra:)]2 -1

\/1 — cosh(mo) +1-— cosh(7ry)]2
sinh(7y)

und man erhélt nach erfolgter Substitution den Integralausdruck

| 23]

sinh(7y)

AE -
7| \/1 [ cosh(mg) + 1 — cosh(my)]

-exp(—Lmy) dy . (6.27)

Letzterer erweist sich nun als identisch zum Diskontinuitétsausdruck (6.23).
Nach Umsetzung der Integrationsgrenzen und hyperbolischer Umformung er-
hilt man selbstversténdlich auch die anderen Formulierungen (6.24)-(6.26).

Es ist also in der Tat gelungen, auf analytischem Wege eine Briicke zwischen
den verwendeten Verfahren zu schlagen:

+1
AE = —Lep = /dx exp [~ |e(z)| - L] . (6.28)

-1
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6.5. Analytische Beziehungen zu AE = —Lcy,

Dieser interessante Zusammenhang bezieht sich hier wohlgemerkt auf die nied-
rigsten und damit dominierenden Beitrige in beiden Ansétzen. Speziell scheint
der niedrigste Fourierkoeffizient ¢, gerade der Mitnahme der niedrigsten Fermion-
Anregungen zu entsprechen.

Diese Korrespondenz hilft, ein tieferes Verstédndnis fiir die Energieaufspaltung
ZU gewinnen:

Auf der einen Seite steht aus Kapitel 5 mit AE = —L ¢y, die Energieliicke, wo-
mit die Energieaufspaltung Privman und Fisher folgend grundlegend behandelt
wird. Die Onsager-Kaufman-Losung bietet hierfiir einen ausreichenden Rah-
men.

Auf der anderen Seite wird in Kapitel 6 der Zusammenhang der Energieauf-
spaltung mit Grenzflichen aufgegriffen. Dieser kann durch Hinzunahme der von
Schultz, Mattis und Lieb erdachten fermionischen Losungsmethode tiefgreifend
aufgedeckt werden, wobei sich die Grenzflichen in dieser Beschreibung als an-
geregte Fermionen wiederfinden. In diesem Bild ergibt die Energieaufspaltung
den rechts aufgefithrten Integralausdruck iiber einzelne Fermionbeitrage.

Diese unterschiedlichen Ansichten wurden nun iiberzeugend ineinander iiber-
fiihrt.

Weiterhin offen und interessant bleibt in diesem Zusammenhang noch, ob sich
diese Korrespondenz auch zwischen héheren Fourierkoeffizienten (csr, csz, - - )
und hoheren Fermion-Anregungen (n =3, n=>5,...) wiederfinden l&t. Diese
Fragestellung ist durchaus nicht-trivial, l48t sich allerdings im Rahmen der hier
gemachten Approximationsansétze noch nicht beantworten. Insbesondere wére
hierzu eine Einbeziehung mehrfacher Grenzflachen-Konfigurationen notwendig.
Ein moglicher Ansatzpunkt kénnte dann auch in der Beriicksichtigung héherer
Beitrége als in (5.8) bzw. (6.9) liegen.

125



Kapitel 7

Resiimee

Innerhalb dieser Arbeit wurde das zweidimensionale Ising-Modell aus den grund-
legenden Modellannahmen heraus griindlich durchleuchtet. Ausgangspunkt der
analytischen Betrachtungen waren die exakten Losungsverfahren nach Onsager
und Kaufman [15] sowie nach Schultz, Mattis und Lieb [17], die in Kapitel 2 und
4 jeweils ausfiihrlich vorgestellt wurden. Ersteres basierte auf Spindarstellungen
von Drehungen, wodurch das Problem auf die Diagonalisierung dieser zugeord-
neten Drehungen reduziert wurde. Letzteres verlagerte die Problemstellung auf
Fermionoperatoren, die in eine Besetzungszahldarstellung diagonalisiert wur-
den. Zwischen diesen Losungsverfahren wurden deutliche Parallelen herausge-
arbeitet, die zur Ergédnzung in inhaltlichen Zusammenhéngen beitrugen.
Besonderes Augenmerk galt hierbei der Energieaufspaltung AE = Ey_ — Eo4,
welche die im endlichen Volumen (L < oo) vorhandene Energieliicke zwischen
dem Grundzustand |0+) und dem ersten angeregten Zustand |0—) angibt. Die-
se Energieaufspaltung verschwindet im unendlichen Volumen lim; ., AE =0
aufgrund einer eintretenden Entartung und ist somit ein wichtiger Indikator fiir
das Auftreten einer spontanen Symmetriebrechung im Limes L. — oco. Diese
Arbeit befafite sich im Speziellen damit, eine Formel fiir die Energieaufspaltung
bei groflen L zu finden, um diesen Limes niaher zu begriinden.

Erste Anhaltspunkte im Falle L > 1 ergaben sich aus einer geeigneten Defini-
tion der Grenzflichenspannung o:

AE ~ exp(—Lo). (7.1)

Fin verfolgter Ansatz zur genaueren Untersuchung betraf die Energieliicke AE =
Ey_ — Eyg+ an sich. Um eine Aufhebung dieser Differenz im Falle groler L
(limp o0 Eg— = limy_,o Fo+) zu verhindern, wurde Privman und Fisher [25]
folgend der Gesamtausdruck AE nach Fourierkoeffizienten entwickelt. Unter
diesen dominiert bereits der niedrigste Koeffizient ¢y :

AE = —Ley [1+o(exp(—2Lm0))} (7.2)
+1

mit ¢, = /|€(a:)| cos(Lmx) dx , (7.3)
-1

wobei |e(z)] = 4 Arcosh{cosh(mg) + 1 — cos(mx)} . (7.4)
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Hierbei stellt

my = 2|8- 0| (7.5)

die zweifache Differenz zwischen der Temperaturvariablen 3 = —~ und ihrem

- kgT
dualen Pendant (8 dar.

Die Berechnung des Integralausdrucks (7.3), welche von Privman und Fisher
einst knapp skizziert worden war [25], wurde hier ausfiihrlich vorgefiihrt, wo-
bei zuweilen Alternativen aufgezeigt wurden. Dieses Kalkiil erforderte einige
Mafinahmen wie die Verschiebung des Integrationsweges in die komplexe Ebene
entlang eines Schlitzes (Abb. 5.4) sowie eine anschliefende Sattelpunktsentwick-
lung.

Als Resultat dieser Berechnungen ist der folgende Ausdruck fiir die Energieauf-
spaltung festzuhalten:

2 sinh(mp) 1 1 1
AE = exp(—Lmo) [ fﬁ + a1 L3/2 + a2L5/2 +
O ! 0O i
+ (m> 1+ (exponentlelle Korrekturen) (7.6)
. 1 . 3 cosh(my)
mit a; = sinh®/2(mg) + 7> 7.7
! 4271 < (mo) sinh(my) -7
1 9 15
und a9 = = sinh®?(mg) + — cosh(m sinh(mg) +
s = o= (§ s®20m0) + 27 coshoma) S

2
+5\/smh(mg) — = M) (7.8)

8  sinh®?(myg)

Hieran 148t sich nun ablesen, wie die Energieaufspaltung kontinuierlich mit
wachsender Anzahl an Freiheitsgraden gegen Null geht.

Das FErgebnis in der Ordnung O(\%) stimmt mit demjenigen seitens Priv-
man und Fisher [25] tiberein; dariiber hinaus konnten hier noch die Ordnungen

O(#) und O(L51/2) explizit angegeben werden.

Eine interessante Niaherung betraf die Funktion |¢(x)|, deren analytisches Ver-
halten fiir kleine Impulse in der Nihe des kritischen Punktes bedeutend simpli-
fiziert werden konnte:

le(z)] =~ \/m3+ m2a? fir <1, B=fc. (7.9)

Innerhalb dieser Ndherung liefl sich das obige Ergebnis mit der Beschriankung
8 =~ Bc = my < 1 korrekt reproduzieren, wobei hier sogar noch die Ordnung
O(#) in expliziter Form angegeben werden konnte (Gl. (5.45)).
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7. Restimee

Fiir die Grenzflichenspannung o ergab sich aus (7.6) das recht einfache Er-
gebnis, dafl diese mit obigem myq {ibereinstimmt:

o= my = 2|-0]. (7.10)
Dieses Ergebnis ist seit Onsager [9] bekannt.

Um die weitreichend berechneten héheren Ordnungen einer Bestétigung zu un-
terziehen, wurde in Kapitel 6 ein alternativer Formelausdruck fiir die Ener-
gieaufspaltung gesucht und gefunden. Dieser basierte auf dem Zusammenhang
der Energieaufspaltung mit Grenzflichen und konnte mithilfe des zunéchst ent-
wickelten Konzepts der Fermion-Anregungen deutlich herausgestellt werden.
Unter Einbeziehung der niedrigsten 0- und 1-Fermion-Anregungen gelang es,
diesen in folgende alternative Formel umzumiinzen:

+1
AE = /da: exp[—|e(x)] - L] . (7.11)

(Die formale L-T-Vertauschung wurde hier bereits riickgingig gemacht.)

Auch dieses Integral wurde im Rahmen einer Sattelpunktsentwicklung berech-
net und ergab eine glinzende Ubereinstimmung der erzielten Resultate. Da sich
die verwendeten Verfahren grundlegend unterscheiden, ist dies als wertvolle Be-
statigung des Ergebnisses (7.6)-(7.8) anzusehen.

Abschlielend wurde noch eine Korrespondenz zwischen den angewandten Ver-
fahren aufgefunden; durch geschicktes Substituieren lieBen sich die beiden An-
sitze direkt ineinander iiberfiihren:

+1
AE = —Lc, = /de’ exp [—le(z)|- L] . (7.12)

-1
Die Mitnahme der Ein-Fermion-Anregungen entspricht also gerade der Einbe-
ziehung des niedrigsten Fourierkoeffizienten cy. Offen bleibt in diesem Zusam-

menhang noch, ob sich diese Korrespondenz in htheren Fermion-Anregungen
und Fourierkoeffizienten wiederfindet.

Ich mochte daher mit den folgenden Worten von Itzykson und Drouffe [19]
schlieflen:

LAs suggested by the previous examples, numerous quantities can
be analytically evaluated for the two-dimensional Ising-model, at the
price of an ever increasing amount of mathematical sophistication.“
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Anhang A

Grenzflichen im
eindimensionalen Ising-Modell

Das eindimensionale Ising-Modell 148t sich im Gegensatz zu seinem zweidimen-
sionalen Pendant sehr einfach abhandeln. Dennoch lassen sich bereits die al-
gebraischen Grundziige erkennen, was in dieser einfacheren Formulierung dem
Versténdnis hilft.

A.1 Beschreibung des eindimensionalen Ising-Modells

Das 1-D-Ising-Modell besteht aus einer linearen Kette von N lokalisierten Spins
(Abb. A.1), fiir die die Grundannahmen aus Kapitel 2.1 gelten: Jeder Spin
werde durch die klassische Spinvariable s; = £1 (i = 1,...,N) beschrieben,
und zwischen néchsten Nachbarn bestehe eine homogene Wechselwirkung (der
Zusatz isotrop“ eriibrigt sich in einer Dimension), die deren Parallelstellung
energetisch bevorzuge. Letztere werde iiber eine positive Kopplungskonstante
J > 0 vermittelt, die wie gewohnt in der inversen Temperaturvariablen

J
s = 2 (A1)

enthalten ist (siehe (2.6)). Die zusétzliche Kopplung mit einem &ufleren Ma-
gnetfeld liefle sich in einer Dimension problemlos einbauen [45], wird hier aber
nicht miteinbezogen, da diese in zwei Dimensionen ja bekanntlich nicht behan-
delt werden kann.

Fiir die Spins gelten zunéchst periodische RB

SN+1 = 813 (AQ)

die lineare Kette wird dadurch topologisch zu einem Ring geschlossen, wie in
Abb. A.1 dargestellt wird.
Unter diesen Annahmen lauten die klassische Hamiltonfunktion

N
H = —Zsi Si+1 (A.3)
i=1
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A.1. Beschreibung des eindimensionalen Ising-Modells

SN
52
S1
period. RB
; SN
SN+1 = 81
SN—1
52
S1

Abbildung A.1: 1-D-Ising-Modell

sowie die kanonische Zustandssumme:

Zy = Z Z exp(—FH)

s1==%1 sy==x1

N
S s ()

s1==%1 sy==%1 \i=1

Durch die Einfithrung der Transfermatrix 7 {iber deren Elemente

(8¢ | T |si41) = exp(Bsisiy1) (A.5)

gelingt es, die Zustandssumme Z, (A.4) als Spur iiber deren N-fache Potenz
darzustellen:

Zy o= ) 0> (s1|T|s2) (2] Tss)... (sn|T|sna)

s1==+1 sy==%1
= > (s1|TV|s1)

s1==*1
= Sp(7V). (A.6)
Dabei fanden die periodischen Randbedingungen (A.2) sowie die Vollstandig-
keit der Spinzusténde Anwendung.
Die durch (A.6) beschriebene Propagation entlang der Kettenpunkte wird in

Abb. A.1 durch einen , Transferpfeil* angedeutet, wodurch sich auch die Na-
mensgebung der Transfermatrix erklart.

Die Transfermatrix 7 lautet nach (A.5) ausgeschrieben:
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A. Grenzflidchen im eindimensionalen Ising-Modell

si= +1 -1 Sit1 =
~_ [ewen) enn] o "
exp(=f) exp(+f) | —1

Entsprechend den vier verschiedenen Anordnungsmoéglichkeiten zweier benach-
barter lokalisierter Spins handelt es sich um eine 2 x 2-Matrix. An (A.7) lassen
sich folgende Basiszusténde fiir die Ising-Spins s; = +1 (,up® und ,down‘)
ablesen [45]:

si=+1) = (o) s=-1) = (7)) (A.8)

Diese werden an einigen Stellen dieser Arbeit verwendet.

Da die Transfermatrix nach (A.7) und (A.5) symmetrisch ist, wird diese zur
Spurberechnung in (A.6) mittels einer orthogonalen Transformation D in Dia-
gonalgestalt gebracht; hierzu wird diese zunéchst mit der Paulimatrix o (2.20)
umgeschrieben:

T = exp(+8) 1L + exp(—3) o*;

Do*D™! = o
2 cosh(f) 0

DTD' = i —-B)o* =
= exp(+0) L + exp(—p) o 0 2 sinh(8)

(Man vergleiche iibrigens mit dem Darstellungswechsel (4.4) in Kapitel 4, der
Vi in Diagonalgestalt brachte; zum Zusammenhang zwischen Vi und 7 siehe
A5.)

Es ergeben sich also die beiden Eigenwerte der Transfermatrix
A+ = 2 cosh(f), A_ = 2sinh(f), (A.9)

mit denen die Zustandssumme bei periodischen RB (A.6) lautet:
7z, = AN AV (A.10)
Fiir < oo (J <00, T>0) gilt

Ay > A,

so daf} im thermodynamischen Limes N — oo nur der grofiere der beiden Ei-

genwerte eine Rolle spielt:
N
1+ (A—‘> ] oo A
Ay
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A.2. Antiperiodische RB durch Spinumkehr

Aus den nun leicht berechenbaren thermodynamischen Grofien folgt, dafl das
Ising-Modell in einer Dimension keinen Phaseniibergang aufweist [32, 45]; ins-
besondere gibt es keine spontane Magnetisierung. In zwei Dimensionen findet
bekanntlich ein Phaseniibergang statt [9, 33].

A.2 Antiperiodische RB durch Spinumkehr
Es werden nun antiperiodische RB
SN+1 = — 81 (A.11)

und deren Auswirkungen auf die Zustandssumme untersucht.
In deren Formulierung im Transfermatrixformalismus

Z = > ... (s1]T|s2)(s2|TIss)... (sw|T|sn1)

s1==+1 sy==%1

werden die antiperiodischen RB (A.11) durch einen Spinumkehroperator Ag,
im letzten Matrixelement beriicksichtigt:

(snv|T[sny1) = (sn|TAapls1);
hierzu klappt A, einen Spin um gemés
Agp |51) = |—51). (A.12)
Die Zustandssumme Z_ bei antiperiodischen RB ergibt sich somit zu
Z_ = Sp(TVAy) . (A.13)

Die explizite Form des Spinumkehroperators A,, (A.12) lafit sich folgenderma-
Ben ermitteln: Gesucht ist eine Matrix, die die Spinzusténde (A.8) ineinander
tiberfithrt; nach kurzer Suche findet sich die Paulimatrix o (2.20) mit dieser

Eigenschaft:
e = () () - () oo
o= = (2 ) (2) = () = 1o=s
= Ay = 0" (A.14)

(Man vergleiche mit dem zweidimensionalen Fall: Dort tritt entsprechend den
L Ising-Spins pro Zeile, die es umzuklappen gilt, ein L-faches direktes Produkt
der Paulimatrix o mit sich selber auf.)

Damit lautet Z_ (A.13):
Z_. = Sp(7Vo"). (A.15)
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A. Grenzflidchen im eindimensionalen Ising-Modell

Da 7 und % kommutieren, kann deren Diagonalisierung simultan erfolgen.

Z. = Sp[DT"D'De"D'] = Sp[DT D 'o*]
N
N
0o A2 J\o -1
= 7o = AN =\ (A.16)

Der Unterschied zu Z, liegt also in dem Vorzeichen zwischen dem kleineren
und groBeren Eigenwert:

Z_ AV AN
Zy A+ AL

Bei Betrachtung der Eigenvektoren in der Diagonaldarstellung fillt auf, dafl der
zum groferen Eigenwert Ay gehorige Eigenvektor (}) symmetrisch beziiglich der
(diagonalisierten) Spinumkehr D o? D~ = o7 ist

0 -0

wihrend sich der zum kleineren Eigenwert A_ gehorende Eigenvektor () als
antisymmetrisch herausstellt:

0 -0

Dadurch erklirt sich obiger Vorzeichenwechsel bei Einbau des Umkehroperators
in die Spur.

Man vergleiche hierzu die Zustandssummen (3.21), (3.23) und deren Verhéltnis
im zweidimensionalen Fall.

A.3 Grenzflache bei antiferromagnetischer Kopplung

Der soeben gefundene Zusammenhang kann noch auf andere Weise hergeleitet
werden. Die Idee hierzu stammt von Onsager [9].

Grundlage ist eine antiferromagnetische Kopplung, die eine antiparallele Spin-
ausrichtung (,staggered magnetization®) bewirkt (Abb. A.2).

N SR R R

S1 SN

Abbildung A.2: Antiparallele Spinausrichtung fiir J < 0

134



A.3. Grenzfliche bei antiferromagnetischer Kopplung

Diese wird im Gegensatz zu vorher (A.1, ferromagnetischer Fall) durch eine

negative Kopplungskonstante J < 0 beschrieben. Durch den Wechsel J — —J

erhiilt man ein zusitzliches Minuszeichen in der Temperaturvariablen § = —

kT
ﬁ - _ﬂa

wobei dann weiterhin 8 > 0 gilt.

Da die im ferro- und antiferromagnetischen Fall bevorzugten Spinausrichtun-
gen (komplett parallel bzw. antiparallel) dieselbe klassische Energiekonfigurati-
on (fH mit respektive J 2 0) aufweisen, und dies auch fiir Abweichungen von
der jeweiligen Idealordnung gilt, lassen sich die Ergebnisse des vorangehenden
Abschnitts auf dieser Grundlage reproduzieren.

Bei gleichbleibender Hamiltonfunktion H (A.3) lautet dann die Zustandssumme
Zaf:

Zay = Z Z exp(+0H)

s1==+1 sy==%1
N
- Y 5 (Mo
s1==+1 sy==%1 =1
Mithilfe der Transfermatrixelemente
(silZag|siy1) = exp(—Bsisiy1) (A.18)

erhélt man bei periodischer Fortsetzung der Kette durch Ringschlieung

SN+1 = S1

die Zustandssumme der antiferromagnetischen Kette:
N N
Zog = So|(@)Y] = () + (X)) (A.19)

Die weiterhin symmetrische Transfermatrix 7,¢ unterscheidet sich nach (A.18)
in den Vorzeichen von 7 (A.7):
si= 1 -1 Sit+1 =

exp(—f)  exp(+8) | +1
T = = ep(-f) L + exp(+f) 0"

exp(+8)  exp(—f) | -1
Durch Diagonalisierung mittels der Orthogonaltransformation D o?D~! = o#
erhilt man die Figenwerte

A% = 2 cosh(g), AY = —2sinh(B). (A.20)

Offensichtlich ist der Eigenwert Acif negativ.
Diese Eigenwerte lassen sich (8 — —( entsprechend) auf diejenigen im ferro-
magnetischen Fall (A.9) zuriickfithren:

A=A PN (A.21)
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A. Grenzflidchen im eindimensionalen Ising-Modell

Die Frage, ob bei der periodischen Fortsetzung der Kette in Abb. A.2 eine
Grenzfliche auftritt, die die antiparallele Spinausrichtung unterbricht (Onsager:
,one misfit seam*), hingt davon ab, ob die Anzahl an Kettenpunkten gerade
oder ungerade ist:

e N=2m (meN)
Die Aneinanderreihung erfolgt ohne Stérung der antiparallelen Ausrich-

tung, wie man sich an Abb. A.2 (dort N = 8) klarmachen kann.
Fiir die Zustandssumme ergibt sich nach (A.19) und (A.20):

Zg]y:%l) = [2 cosh(ﬂ)]2m + [2 sinh(ﬁ)]Qm
LD\ LN,

Dieses Ergebnis ist offensichtlich mit (A.10) identisch:

ZH= =z

e N=2m+1 (meN)
Bei der Aneinanderreihung tritt eine Grenzfliche auf, die die antiparallele
Spinausrichtung unterbricht (,one misfit seam®). Man verdeutliche sich
dies anhand von Abb. A.2, indem man die dort dargestellte Kette (N = 8)
um einen Spin erweitere.

ZCS]}[:2M+1) _ [2 COSh(IB) ] 2m+-1 [2 smh(ﬂ) ] 2m+1
Y Y

In diesem Fall erh&lt man dasselbe Ergebnis wie aus der antiperiodischen
Zustandssumme (A.16):

Z(N:2m+1)

Iy - 7.

Hier war allerdings kein Spinumkehroperator vonnéten.

Fiir das Verhiltnis der Zustandssummen mit und ohne Grenzflache erhilt man
also sowohl im ferro- als auch im antiferromagnetischen Fall

Z(J}f:2m+1) 7 )\N _ )\N
a _ — _ + —

(N=2m) - - N N
Zos Z+ AL+ AL

Im Zuge solcher Uberlegungen im zweidimensionalen Ising-Modell gelingt es
Onsager, die Grenzflichenspannung in diesem zu bestimmen [9].
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A.4 Fermionische Beschreibung des 1-D-Modells

Die fermionische Formulierung bot im zweidimensionalen Fall neue Aspekte auf,
die das Verstidndnis fiir die Losung forderten. Daher wird diese nun ebenfalls
fiir das eindimensionale Modell vorgestellt, die sich mit vergleichbar geringem
Aufwand realisieren l483t. Dabei werden sich einige bekannte Facetten wieder-
finden. Wie zu erwarten, werden sich die beiden Eigenwerte direkt an einer
Besetzungszahldarstellung ablesen lassen.

Hierzu wird die Transfermatrix 7 (A.7) zunéchst einer Umformung unterzogen,
nach der sie eine deutliche Ahnlichkeit zu ihrem zweidimensionalen Pendant
aufweist: Uber die duale Temperaturvariable tanhﬁ = exp(—20) ausgedriickt
lautet diese

T = exp(+8) L + exp(—8) 0¥ = exp(+3) (lJ_ + tanhﬁN-ax) :

wegen (0%)? = 1 gilt exp [ﬁax] = coshB(lL + tanh 3 - o), so daB sie
umgeschrieben werden kann zu

T = /2sinh(2B) - exp [Bo7]. (A.22)

Um (A.22) noch in eine geeignete Form fiir die fermionische Darstellung zu
bringen, wird iiber die Ahnlichkeitstransformation (4.4)

0¥ — So¥S! = —o*
ein Darstellungswechsel herbeigefiihrt, nach dem 7 lautet:
T = /2sinh(28) - exp [~ o7]. (A.23)

In dieser Darstellung ist 7 diagonal (vgl. [15]); man konnte bereits hier direkt
die Eigenwerte

2 sinh(23) - exp(+8) = 2cosh(f) = Ay
und 2 sinh(23) - exp(—3) = 2 sinh(8) = A_

ablesen. Der néchste Schritt, der auf die fermionische Darstellung fiihrt, er-
scheint daher in einer Dimension eher aufgesetzt, zeigt aber interessante Paral-
lelen auf.

Fiihrt man die neuen Operatoren 0 und 0~ geméB 0F = J (6% £io¥) ein,
gilt

o = 2(cto—1),
und man erhélt

T = /2smh(28) - exp [— 25(0t0 — %)} . (A.24)

Wie bereits in Kapitel 4.1 festgestellt wurde, handelt es sich bei ¢+ und o~ um
Fermion-Erzeuger und -Vernichter. Da hier keine indizierten Gréflen auftreten,
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A. Grenzflidchen im eindimensionalen Ising-Modell

gehorchen o und o~ rein fermionischen Antikommutatorrelationen
fotooy =1, (092 = (o) =0, (A.25)

und eine Jordan-Wigner-Transformation (siehe 4.1.2) ist nicht vonnéten.
Dann ist offensichtlich

np = oo~

der Fermionzihler; angewandt auf einen Eigenzustand gibt er an, ob ein Fermion
anwesend ist oder nicht,

ngp € {0,1},
und die Transfermatrix liegt in fermionischer Besetzungszahldarstellung vor:
T = V25inh(2) - exp |- 28(nr—1})]. (A.26)
Hieran lassen sich mit np € {0,1} die beiden Eigenwerte ablesen (vgl. oben):

np =0 = Ay = 2 cosh(f) ;
np = 1 = A— = 2sinh(f) .

Als Resultat fiir die Zustandssumme bei periodischen RB ergibt sich damit
7o = sp(TV) = AV + Y,

was mit dem bisherigen Ergebnis (A.10) iibereinstimmt. Die Spur wurde hierzu
iiber die Eigenzustdnde mit np = 0 und nr = 1 ausgefiihrt.

Neben dieser Grundlésung tritt nun eine weitere Facette zutage: In der fermio-
nischen Beschreibung kann der Einbau antiperiodischer RB um eine Variante
erweitert werden. Hierzu beachte man, daf§ der Spinumkehroperator (A.14),
der aufgrund des Darstellungswechsels 0¥ — — % nun das Aussehen — o~
aufweist, in die Form (—1)"¥ gebracht werden kann:

(-1 = exp(imnp) = exp (z'7T0+0_) = exp (zg (1L + UZ))

= iexp (i o?) (o7) =1 —0”.

Die Zustandssumme bei antiperiodischen RB (A.13) 148t sich dementsprechend
folgendermaflen aufstellen:

Z_ = Sp[TN(-1)""]. (A.27)

Uber den Paritiitsoperator (—1)™" kann wie zuvor (vgl. A.2) nach symmetri-
schen und antisymmetrischen Eigenvektoren unterschieden werden:

np =0 = (=1)"F =41 = Eigenvektor zu Ay ist symmetrisch;

np=1 = (-1)"" = -1 = Eigenvektor zu A\_ ist antisymmetrisch.
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Fiihrt man nun die Spur iiber die Eigenzustéinde mit np = 0 und np = 1
aus, erhélt man fiir die Zustandssumme bei antiperiodischen RB

Z. = sp[TN(=1)"r] = AV (=)0 4 ATyt
N N
=AY =\

in Ubereinstimmung mit dem fritheren Ergebnis (A.16).

Wollte man die Zustandssummen Z und Z_ wie in Kapitel 6 {iber ihre Fermion-
Anregungen charakterisieren, ist dies nach der schon erfolgten Vorarbeit schnell
getan. Hierzu miissen lediglich ein geeigneter Vakuumzustand und zugehoriger
Anregungszustand definiert werden, was aber keinerlei Schwierigkeiten bereitet,
da das Vakuum hier als naiver, kein Teilchen beherbergender Zustand aufgefafit
werden kann:

|0) = Vakuum-Zustand, kein Fermion ;

|1) = Anregungszustand, 1 Fermion;

oder kurz |ng).
Damit gelingt folgende Charakterisierung:

Z. = (0|TV0) + (1T 1), (A.28)
Z_ = (0|TV0) — 1|7V ). (A.29)

Fiir N > 1 liefert der Vakuumbeitrag in Form von )\f deutlich stiarkere An-
teile, so dafl er im thermodynamischen Limes N — oo den einzigen Beitrag zu
beiden Zustandssummen darstellt.

Man erkennt hieran ebenfalls, dafl stets ein einzelner und eindeutiger Grund-
zustand existiert; so mufite nicht wie in der zweidimensionalen Notation zwi-
schen dem Grundzustand beziiglich H* und demjenigen zu H~ unterschieden
werden, deren Entartung im Limes unendlich vieler Freiheitsgrade aufgehoben
wurde. Insofern tritt die behandelte Energieaufspaltung im eindimensionalen
Ising-Modell nicht auf, aber eine spontane Symmetriebrechung war bei einem
fehlenden Phaseniibergang und dementsprechend nicht stattfindender Domé-
nenbildung ja auch nicht zu erwarten.

Die fermionischen Zustandssummen Z¥, die auf der Beriicksichtigung der Rand-
bedingungen fiir Fermionen beruhen, lassen sich hier schnell abhandeln, da die
eine Dimension folglich mit der Propagationsrichtung der Transfermatrix iden-
tisch ist. In dieser ist aber bereits als Folge der Grassmann-Algebra [21] auf die
scheinbare Vertauschung periodischer und antiperiodischer RB gegeniiber dem
Spin-Fall hingewiesen worden. Somit wird in Z% zusitzlich (—1)"" in die Spur
eingebaut, in Z¥ hingegen nicht (siehe auch direkt in [21], Anhang C, S. 251),
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A. Grenzflidchen im eindimensionalen Ising-Modell

und man erhélt den recht einfachen Zusammenhang

Zy = Sp[TN(-1)""] = Z_, (A.30)

Z' = Sp[TV] = 7. (A.31)

In zwei Dimensionen stellt sich der Zusammenhang zwischen den Fermion-
und Spin-Zustandssummen etwas komplizierter dar: Dort wird eine Sektor-
Spinzustandssumme jeweils aus der Summe bzw. Differenz aller vier fermioni-
schen Sektorzustandssummen zusammengesetzt [19]. Dies liegt darin begriindet,
dafl die (in einer Dimension nicht vorhandene) Randbedingung senkrecht zur
Wanderungsrichtung der Transfermatrix recht unterschiedliche Auswirkungen
auf Fermionen und Spins ausiibt.

A.5 Ubergang zu zwei Dimensionen

Dieser Abschnitt soll ein Gespiir dafiir vermitteln, welche Anderungen sich bei
einer Erweiterung auf zwei Dimensionen ergeben.

Besonders augenfillig ist das Auftreten eines zweidimensionalen rechteckigen
Gitters anstelle einer eindimensionalen Kette (Abb. A.3), so als hétte man pro
Kettenpunkt eine ganze Zeile der Léange L in horizontaler Richtung ercffnet.
Im Transfermatrixformalismus Z = Sp [(Transfermatriz)’] duBert sich dies
in der Transfermatrix selber. Anstelle einer Transfermatrix 7" (A.7), die ketten-
gliedweise die eindimensionale Kette entlang wandert, erhdlt man eine Trans-
fermatrix P = V5 V/, die nach unterschiedlichen Mechanismen in V{ und V3
unterteilt werden kann: Vi ist fiir die vertikale Kopplung zwischen benachbar-
ten Zeilen in Propagationsrichtung zustdndig, und V5 beschreibt die horizontale
Kopplung innerhalb einer Zeile (siehe hierzu Abb. 2.2 und Abb. 2.3).
Wihrend somit fiir V5 kein Analogon in einer Dimension vorliegt, lassen sich
V{ und 7, mit vergleichbaren Aufgaben vertraut, algebraisch ineinander iiber-
fiihren: Untersucht man némlich die Matrixelemente (2.15) von V{

L
<81,...,8L‘V1/|s/1,...,s'L> = Hexp[ﬁsksﬁc],
k=1

so fallt auf, dal V{ ein L-faches direktes Produkt (siehe (2.16)) von 7 (A.5)
mit sich selber ist [32]:

Vi = TxTx...xT. (A.32)
Verwendet man fiir 7 die Darstellung (A.22)
T = 2 sinh(20) - exp [Bax] ,
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A.5. Ubergang zu zwei Dimensionen

ergibt sich V] nach den Rechenregeln des direkten Matrizenprodukts wie in
(2.17) zu

L

v/ = [2sinh(20)]7 - [[ exp [Bo?] (A.33)
a=1

mit 0% = LxLx...xo%x...x1.

1
a-te Stelle

Dies 148t sich insofern anschaulich verstehen, als dafl anstelle eines einzelnen
Punkt-zu-Punkt-Transfers dieser nun L mal stattfindet, ndmlich fiir jede der L
Spalten, und zwar unabhéingig voneinander (Abb. A.3).

Fiir die Beschreibung solcher Vorginge ist das direkte Produkt entsprechend
seiner Definition (2.16) geradezu prédestiniert. Man vergleiche hierzu die Be-
schreibung von Mehrteilchensystemen in der Quantenmechanik.

Als Basiszusténde fiir 7 und damit fiir einen einzelnen Spin dienten in der oben
gewéhlten Darstellung (siehe (A.8))

i = +1) = <é) md s 1) = <(1)>

Diese lassen sich im zweidimensionalen Modell weiter verwenden unter Beach-
tung der Definition des direkten Matrizenproduktes: Hiernach werden die Ele-
mente der L beteiligten 2 x 2-Matrizen in (A.32) iiber diese zweikomponentige
Basis berechnet. Etwas eleganter ist die Einfithrung eines entsprechend definier-
ten tensoriellen Produkts der Vektoren [62]

|s1) X |s2) X ... X |sp) = |s1,82,...,SL),

die zudem versténdlicher macht, wie der Zustand auf der rechten Seite zu lesen
ist.

In zwei Dimensionen kommt noch die durch V5 beschriebene horizontale Kopp-
lung hinzu. In der oben gewihlten Darstellung erhélt man fiir diese [15, 32, 17]

L
Vo = HeXp[ﬁaé ol - (A.34)
a=1

Obigen Uberlegungen entsprechend treten auch hier L-fache direkte Produkte
auf, hier mit der Paulimatrix ¢*. Diese horizontale Kopplung 148t sich anschau-
lich an Abb. A.3 nachvollziehen, wenn man bedenkt, daf} sich der Index « in
0% auf den Spaltenplatz innerhalb einer Zeile bezieht. Im letzten Term ist die
horizontale RB 07,, = +07 (periodisch/antiperiodisch) zu beriicksichtigen,
die in zwei Dimensionen neu hinzukommt und anders behandelt werden mufl
als diejenige in Propagationsrichtung.

Die folgende Abbildung und Aufstellung sollen noch einmal die Anderungen
verdeutlichen, die beim Ubergang von einer zu zwei Dimensionen auftreten.
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Abbildung A.3: Ubergang zu zwei Dimensionen

D=1
1 Spin auf Kettenpunkt
2 Einstellmoglichkeiten pro Spin
2 x 2-Transfermatrix 7°
T: Kopplung in vertikaler

Kettenrichtung

einfache Paulimatrix o®

T = /2 sinh(203) - exp [BJT/]

—
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D=2
L Spins pro Zeile
2L Einstellmoglichkeiten pro Zeile
2L x 2L Transfermatrix P

P=VV/

V=T xTx...xT:

Kopplung in vertikaler Richtung

V5 : Kopplung in horizontaler Richtung

L-fache direkte Produkte

von Paulimatrizen 0¥, a=1,...,L:

of = LxlLx...xo¥x...x1L

1
a-te Stelle

L
V{ = [2sinh (26)]F - [ exp[Bo%]

a=1
L

Vo = [[exp[80Z0%1]

a=1
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Auswirkungen periodischer RB auf Topologie:

Kette — Ring == flaches, rechteckiges Gitter — Torus.

Als prominentes Beispiel einer Gréfle beim Ubergang von einer zu zwei Dimen-
sionen sei noch einmal an den Spinumkehroperator erinnert:

o’ = o' xo¥x...xo" = of-0¥-...-07.
Anstelle eines einzelnen Kettenpunktes miissen alle Spaltenpléitze o = 1,..., L
einer Zeile iiber 0 angesprochen werden, ihren Spin umzuklappen. Hierzu dient
das angegebene L-fache direkte Produkt.

In Zusammenhang mit den fermionischen Darstellungen im ein- (A.4) sowie
zweidimensionalen Fall (Abschnitt 4.1) kann noch genauer auf die Frage nach
der Anzahl an Dimensionen der zugehorigen Quantensysteme eingegangen wer-
den. Wie in 2.2.10 erldutert wurde, ergibt sich aus dem Vergleich mit dem eu-
klidischen Zeitentwicklungsoperator auf dem Gitter folgender Zusammenhang
zwischen der Transfermatrix V' und dem Hamiltonoperator H der Quantentheo-
rie:

V = exp[—H].

Im zweidimensionalen Ising-Modell wurde die Transfermatrix V' aus Griinden
der Zweckmifigkeit ohne den Vorfaktor in P (2.22) bzw. (A.33) definiert:

Nl

P = [2sinh (26)]2 - V. (A.35)

Der zugehorige Hamiltonoperator wurde damit in 4.1.6, Gl. (4.60) gefunden zu

H = Z€k<§;£§k—%>-

k

Man erhélt somit ein quantenmechanisches System in einer rdumlichen Dimen-
sion. Bei Beschrinkung auf gerade (4.47) bzw. ungerade (4.48) k-Werte erhilt
man genau L Fermionen, die angesichts der Form des Hamiltonoperators als
frei bezeichnet werden kénnen.

Im eindimensionalen Ising-Modell bietet es sich an, analog zu (A.35) (P =

[2sinh (28)]7 - V(P=2)

T = /2sinh(28) - VIP=Y
zu definieren (vgl. (A.32)). Damit ergibt sich nach (A.24) und V' = exp[—H]

folgender Hamiltonoperator:

H = 27 (a*a* - %) . (A.36)

Dieser beschreibt ein einzelnes Fermion. Das zugehorige quantenmechanische
System besitzt also keine Raumdimension. Dies entspricht der Aussage in [63].
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In beiden beschriebenen Modelldimensionen kommt noch eine Zeitentwicklung
hinzu, die obigen Uberlegungen entsprechend iiber exp[—Ht] = V* bzw. mit
t = T iiber exp[—HT] = VT vermittelt wird. In der Formulierung einer eu-
klidischen Feldtheorie taucht diese als explizite Dimension auf. Das eindimen-
sionale Ising-Modell weist also in einer quantentheoretischen Formulierung eine
euklidische Raum-Zeit-Dimension auf, und das zweidimensionale Ising-Modell
entsprechend zwei Raum-Zeit-Dimensionen.

Da in der klassischen statistischen Beschreibung die Zeitdimension als rdumli-
che Propagationsrichtung der Transfermatrix erscheint (Darstellung I), wurde
diese Raumrichtung in Abb. A.3 und allen anderen Abbildungen stets mit ¢
gekennzeichnet, um den Bezug zur Zeitentwicklung herauszustellen.

1-D-Ising-Modell 2-D-Ising-Modell
H =23 (070” —3) H = e (gle-3)

k
1 Fermion L Fermionen
quantenmechanisches System quantenmechanisches System
mit 0 Raum-Dimensionen mit 1 Raum-Dimension

jeweils plus eine
Zeit-Dimension
1 euklidische 2 euklidische

Raum-Zeit-Dimension Raum-Zeit-Dimensionen

Diese Aufschliisselung soll die in Abschnitt 2.2.10 angedeuteten Zusammen-
hénge verdeutlichen.
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Anhang B

Identititen am Einheitskreis

B.1 Beweis der Identitiat (5.15)

Bewiesen wird die Relation

L—1
. 2k L fir n=sL,
];)exp{imnf} = {O fir n £ sL. (B.1)
mit n,s€Z, L>2¢&N.

Der Fall L = 1 fiithrt auf die triviale Identitdt 1 = 1 und wére durch die obere
Zeile abgedeckt. Er wird aus dem Beweis herausgenommen, um unnétigen Fall-
unterscheidungen vorzubeugen.

Fiir n = 1 enthélt (B.1) die Aussage, da8 die Summe iiber die verschiedenen
L-ten Einheitswurzeln verschwindet [64], was sich geometrisch in der Polardar-
stellung veranschaulichen 1&8t [57]. Eine derartige Veranschaulichung von (B.1)
bei Potenzierung der Einheitswurzeln mit n # 1 ist ebenfalls moéglich, soll aber
durch den folgenden algebraischen Beweis untermauert werden.

Nach der Moivreschen Formel gilt:

= 2k = 2 2
Zexp {imnf} = Z [cos (fnk:) + ¢ sin <fnk:>} .
k=0 k=0
Da (B.1) fiir Real- und Imaginérteil gelten mufl, verbleibt zu zeigen:
L—1
2
sin (—Wnk) =0, (B.2)
L
k=0
L—1
2T L fir n=sL,
— o8 (—nk) { 0 fiir mn#sL; (B3)

fir n,s€Z, L>2¢eN.
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e Beweis der Sinusrelation (B.2)
Dem Gradstein/Ryshik [58] (Teil I, 1.341 Nr. 1, S. 57) ist folgende Identi-
tét zu entnehmen:

T
)

sin(z+ky) =

B
Il
o

Firz=0und y = Qfﬂn folgt

L—1 : .

/2 sin (£-tnr) sin (n)
g sin (—nk| = - .
prd ( L )

1. Fir n = sL ergibt jeder Sinusterm auf der linken Seite bereits Null
und damit die Summe die gewiinschte Null; fiir die rechte Seite er-
hélt man im Limes n — sL nach der Regel von I'Hospital durch
Differenzieren nach n ebenfalls Null.

2. Fir n # sL ist bei endlichem L stets sin(%) # 0, so daf} die rechte
Seite Null ergibt.
Im Falle L — oo erhélt man nach I’Hospital ebenso Null.

e Beweis der Kosinusrelation (B.3)
Ebenfalls aus [58] (Teil I, 1.341 Nr. 3, S. 58) stammt die Identitét

L-1 L—-1 L
Zcos(x—i—ky) _ cos(x+ 5 1y sm(2y)’
P sin (3v)

die fiir x =0 und y = Q%n lautet:
L-1 L—1 .
Z cos (2—7Tnk) _ cos (&7 . mT?)msm (nm) .
— L sin (T)

1. Fiir n = sL ist jeder Kosinusterm auf der linken Seite 1 und die
Summe iiber L dieser Kosinusterme ergibt L; fiir die rechte Seite
erhéilt man ebenfalls L, indem man fiir n — sL gemif der Regel von
I’Hospital nach n differenziert.

2. Fiir n # sL gilt bei endlichem L stets sin(”—L”) # 0, so daf} die rechte
Seite Null wird.
Der Fall L — oo ergibt nach ’Hospital ebenfalls Null.
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B.2 Weitere Relationen

Bewiesen wird die Identitat

T-1

271 271 271
Z exp (— W}“)-exp (— 7T;f2>-...-(a><;p (— W;Tm) =0 (B4)

T1,72,0."m=0
jeweils paarweise
verschieden

fir T>m+1.

Der Fall m = 1 entspricht der Tatsache, da3 die Summe der Einheitswurzeln
verschwindet [64] und wurde bereits in Abschnitt B.1 bewiesen (Gl. (B.1) fiir
n=1):

= 2mir
Zexp(f T ) =0 fir T>2. (B.5)
r=0

(Fiir T' =1 ist diese Aussage nicht giiltig.)

Aus (B.5) folgt:

= 2mir "
( eXp(_ T )) =0

211 211 211
b5 () () e () <o

71,725, Tm=0
T-1

271 271 211
b5 () () (-2

T1,72,..,Tm =0
jeweils paarweise
verschieden

! omir omir omir
+ Z exp(— T1>-exp<— T2)-...-exp<— Tm) = 0.

71,7250, Tm =0
mind. 2 Indizes
gleich

Der Beweis von (B.4) reduziert sich damit auf den Beweis der Relation

=1 omir i omir
) eXp<_ T1>'eXp<_ T2>""'eXp<_ Tm> = 0. (B6)

1,725, "m=
mind. 2 Indizes
gleich

Diese wird bewiesen fiir genau [ gleiche Indizes (2 < [ < m), die 0BdA mit
1,2,...,1 durchnumeriert werden:

T-1

E : ( 2miry ) ( 2miTe ) 270 Ty
exXp | — cexp {\— c...eXp | — =
T T T
T1,72,...,Pm=0
mit T1=r2=...=T],
{T’l,...,T’m} paarweise verschieden
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B. Identitdten am FEinheitskreis

T—1 . I T-1 . .
_ Z exp (_ 27mr) Z exp (_ 211 7“l+1> ‘ exp (_ 271 rm> _
T T o T ’

r=0 TI41,T 1425 Tm =0

jeweils paarweise
verschieden

aufgrund der Voraussetzungen m >0 >2und T >m+1gilt T >1+1 >0
und somit stets [ # sT (s € Z), weswegen nach (B.1)

= 2miry ' = 2r
TZ:(:) <exp< T >> = Tz:(:]exp{mlT} =0

folgt. Damit gelten auch (B.6) und (B.4).

B.3 Beweis von (4.102) und (4.103)

Dieser Abschnitt hat seinen Ursprung in [50].
Zum Beweis der in Abschnitt 4.5.1 benotigten Identitdt (4.102) wird zunéchst

folgende Relation bewiesen:

27—-1

[] sinb (g i%) = 9=(T=D (£)7 (F) sinh (T%) (B.7)
l

gerade

l
mit q,:% 1=0,1,2,...,2T — 1.

)

Hierzu werden die in

I 5 q 1 e .mr e __.7mr
: QN . .
I sb(52i3) = 5 g<exp(+§ﬂ?) - oo (-53i7) )

gerade

auftretenden Terme nach Potenzen von exp(%) geordnet.
In hochster (exp (T%)) und niedrigster (exp(— T %)) Ordnung treten auf:

271
1

T—1
- AN £ : T
H sinh <§:|:z§> = o7 [exp (TE) - exp <:|:z7rr§:0T>

l

gerade
- . -1
gerade .
T uni:l:cradc eXp (_Tﬁ) . eXp <:F Zﬂ- Z T)
r=0
+ andere Ordnungen ] . (B.8)
T-1
T—-1
Mit z =
T 2
r=0
T — 1 T gerade T — 1 T gerade
und exp (¢ iT ) = F7 exp (i iT ) = 5 (+0)T (F4)
2 T ungerade 2 T ungerade
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B.3. Beweis von (4.102) und (4.103)

folgt:
271 - .
H sinh (5 j:i%) — 21 (14T (F4) sinh (T§> +
gerade + andere Ordnungen . (B.9)

Um (B.7) zu beweisen, verbleibt somit zu zeigen, dafl alle anderen Ordnungen
n (B.9) bzw. (B.8) verschwinden.

Fiir T' =1 treten diese weiteren Ordnungen nicht auf. Ab T > 2 gibt es aufler
den in (B.8) angegebenen Ausdriicken Terme O(exp (& (T —2)5)) der Form

exp(:l:(T—2)§)- eXp<iiW(—0+%+-"+%)>

+ o (2T -23) - [ (£im (10— h ot T )|
s o (£ -2)5) - [ow (£im (04 h - 7)) (5.10)
_ exp(i(T—2)§).exp<:|:i7rjz:::%>
oo (£ 200) + e (£ 201) 4ot e (7 20 - 1))
— exp (=T -2)3) exp(:l:mii: ) Zexp( )
dies:e ei)g;eben Null, da nach (B.5) bzw. (B.1)
;exp(q:%.r) = 0

fir T > 2 gilt.

Im Allgemeinen treten ab T" > m + 1 neue Terme auf, die aufgrund mehre-
rer Minuszeichen im Exponenten von (B.10) den Faktor

2miry 2miry 2T,
Z exp(— T >.exp(— T )-...-exp(— T ):0

T1,72,,Tm=0
jeweils paarweise
verschieden

enthalten, der nach (B.4) fiir T > m + 1 Null ergibt; die Indizes miissen paar-
weise verschieden sein, da die Minuszeichen vor verschiedenen Summanden im
Exponenten (vgl. (B.10)) auftreten.

Die in (B.9) genannten anderen Ordnungen verschwinden somit allesamt, und
(B.7) ist bewiesen.
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B. Identitdten am FEinheitskreis

Mithilfe der Umformung

cosh () —cos(¢) = 2sinh <% +i %) -sinh (% —1 %) (B.11)

folgt unter Verwendung von (B.7) die zu beweisende Identitét (4.102):

2T—-1

H {cosh (€) — cos (ql)} = 27(T=2) gipp? (T%) .

!
gerade

Zum Beweis der Relation (4.103) wird analog zu (B.7) bewiesen:

2T—1

] sinh (g iz’%) — 27T (£)T cosh (T%) . (B.12)
!

ungerade

Daraus folgt mit (B.11) die Identitét (4.103)

27T-1

H {cosh (€) — cos (ql)} = 272 ¢ogh? (T%) .

l

ungerade

Die in Abschnitt 4.5.2 bendtigten Identitéiten (4.109) und (4.110) finden sich
vollig analog.
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Anhang C

Verzweigungspunkte und
Schlitze

h(z) aus (5.21) mit z € C enthélt einen Wurzelausdruck der Form
w(z)? -1
mit w(z) = cosh(mg)+1— cos(mz). (C.1)

Fiir \/w(z)? —1 (ein beliebtes Standardbeispiel) liegen die Verzweigungspunk-
te bei w = £1; der Schlitz in der w-Ebene kann (wahlweise) wie in Abb. C.1
gelegt werden [57].

Abbildung C.1: Schlitze und Verzweigungspunkte von h(z) in der w-Ebene
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C. Verzweigungspunkte und Schlitze

Aus w(z) = £1 lassen sich mit (C.1) die Verzweigungspunkte in der z-Ebene
berechnen:

S
O
I
_|_
—_
i3

cosh(mg) + 1 — cos(mz) = +1

& cosh(mp) = cosh(inz)
~ 21:+z’@, z2:_i@;
™ ™
w(z) =—1 < cosh(mg) +1— cos(mz) = —1

cosh [2(3 + B)] —1—cos(mz) = —1

& cosh [2(8+ B)] = cosh(irz)
25+ 0) 2(8 + )

& wpB=ti—", Hy=—i—;
™

3

dabei ist ’21/2| S |23/4’.

Die Lage des Schlitzes in der z-Ebene erschliefit sich aus dem Verhalten der
Funktion w(z) in der Nihe der Verzweigungspunkte zi-z4; zu diesem Zweck
wird w(z) um diese mit kleinem 7 > 0 nach Taylor entwickelt:

w(z; £i1) = +1 F 7 sinh(mg) -7 + O(7?), (C.2)
w(zy £i1) = +1 £ 7 sinh(mg) -7 + O(7?), (C.3)
w(z +ir) = —1 F wsinh [2(8+ B)] -7 + O(r?), (C.4)
w(za£i7) = —1 £ wsinh [2(8+3)] -7 + O(7?). (C.5)

Dartiiber hinaus ist

w(iy) = cosh(mp)+ 1 — cosh(my). (C.6)

Verfolgt man nun die in Abb. C.2 gezeigten Wege 1)— (® und (G)— (®) entlang
der imagindren Achse in der z-Ebene, so entsprechen sie in der w-Ebene nach
(C.2)-(C.6) den in Abb. C.3 eingezeichneten auf der reellen Achse.

Aus der bekannten Lage der Schlitze in der w-Ebene kann auf diese Weise auf
deren Lage in der z-Ebene geschlossen werden; sie sind in Abb. C.2 bzw. im
Haupttext in Abb. 5.3 eingezeichnet.

Fiir die Funktion In[w(z) 4+ /w?(z) — 1| kommt noch aufgrund des Loga-
rithmus ein Verzweigungspunkt im Unendlichen der w-Ebene hinzu [57] (Null
ist hier kein Verzweigungspunkt, da das Argument nie Null werden kann). Da-
her reicht bei entsprechender Wahl der Schlitz in der w-Ebene zusétzlich bis
nach — oo und gemif obigen Uberlegungen dementsprechend in der z-Ebene
bis nach 4 ico in der oberen Halbebene und nach —¢oo in der unteren.
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Abbildung C.2: Bewegung auf imaginirer Achse in der z-Ebene

Abbildung C.3: Bewegung auf reeller Achse in der w-Ebene
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Anhang D

Parametrisierungsschema

Die komplexen Kurvenintegrale

Ji = /h(z) exp(iLmz) dz
L
aus Abb. 5.4, die hier zur Verdeutlichung noch einmal als Abb. D.1 aufgefiihrt
ist, lauten in geeigneter Parametrisierung:

+1

J=1 = /h(sl) exp(iLmsy) dsy,
-1
d

Jy = /h(iSQ — 1) exp(—Lwsa) exp(—iLm) i dsa,
0
-n

Js = /h(id+ s3) exp(iLmss) exp(—Lnd) dss,
“1

mo/m
Jy = /h(i34 —n) exp(—Lmsy) exp(—ilmn) i dsy,
d

d
Js = /h(i35 + 1) exp(—Lmwss) exp(+iLmn) i dss,

mo/7T

+1
Jg = /h(id+ s¢) exp(iLmsg) exp(—Lwd) dsg,

+n
0

Jr = /h(i37 + 1) exp(—Lms7) exp(+iLlm) i dsy.
d

Der Hilfsweg T’ verschwindet im Limes 7 — 0.
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f “ f

tid,
I'y ‘ d>0 ‘ I

=

*—
*—

Abbildung D.1: Integrationsweg in der komplexen Ebene (1 > 0)

7
Es gilt somit: I = 717111[1) z; Ji .
i

Aufgrund der Periodizitdt von h (5.21) ist
h(is—1) = h(is+1),

so daf} sich wegen der entgegengesetzten Laufrichtung die Integrale iiber die
Wege I'y und I'; gegenseitig aufheben:

Jo+J; = 0.
Da h(id + s) in J3 und Jg lediglich von der Ordnung O(d) ist, und folglich der

Betrag des Integranden vom exp(—Lmd)-Term dominiert wird, verschwinden
diese Integrale fiir d — oo nach Standardabschétzung:

lim J3 = lim Jg = 0.
PR e
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D. Parametrisierungsschema

Im Limes n — 0, d — oo verbleibt somit die Integration entlang des linken und
rechten Schlitz-Ufers:

I = lim lim (Jys+ J5)

n—0 d—oo
(o]

= 1 / 71713(1) {h(is +n) — h(is —n)} exp(—Lmws) ds. (D.1)

mo/m
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Anhang E

Gammafunktionen

Im Kapitelabschnitt 5.3 werden folgende Integrale benétigt [59]:

T r(d) 1
/— exp(—Lnr) dr 2 = —
r L L
G VIz VI
r . ré 11
Vr exp(—Lnr) dr Tnp? = o Ta
0
O03/2 r') 3 1
r°/% exp(—Lnr) dr Tn)? = 17 o :
0
y r(%) 15 1
5/2 _ 2 - 2 ..
/r exp(—Lmr) dr e 53 T
0
T r(2) 105 1
7/2 2 _ .
/r /2 exp(—Lwr) dr T = Toxt D97
0
by INES! 945 1
9/2 _ 2 - .
/r exp(—Lmr) dr Lm)2 ~ 325 LU -
0

Dabei wurde benutzt:

I3 =vrm und MNzx+1) =z -T'(x).
Da diese in Kapitel 6.4 benotigt werden, seien sie einzeln aufgefiihrt:
43 3 15
105 945 10395
(3) =gV (5) =35 vV7 (5) == V7

Eine Substitution auf Gauf-Integrale liefert iibrigens dieselben Ergebnisse.
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