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EinleitungDie als Standardmodell bekannte Zusammenfassung der Glashow-Salam-Wein-berg-Theorie der elektroschwachen Wechselwirkung mit der Quantenchromodyna-mik gilt heute als Grundlage f�ur die Physik der Elementarteilchen bis zu den ex-perimentell erreichbaren Energien. Zu ihren attraktivsten Eigenschaften z�ahlen Re-normierbarkeit, asymptotische Freiheit und die Vorhersage neutraler Str�ome undmassiver Vektorbosonen.Eine wichtige Methode zur Behandlung derartiger relativistischer Quantenfeldtheo-rien insbesondere im nichtperturbativen Bereich stellt die Einf�uhrung einer diskre-tisierten euklidischen Raum-Zeit dar. Sie erm�oglicht neben der Verwendung stati-stischer Methoden auch die numerische Untersuchung geeigneter Observabler durchMonte-Carlo-Simulationen.Kern der Theorie der elektroschwachen Kraft ist das f�ur die Massenerzeugung durchspontane Symmetriebrechung ben�otigte Higgs-Feld. Da das zugeh�orige elementareTeilchen bislang nicht nachgewiesen werden konnte, ist die Untersuchung dieses Teilsder Theorie wichtig. Besonders sind hier die Arbeiten von L�uscher und Weisz[LW88] zu nennen, welche starke Argumente f�ur die Trivialit�at der �4-Theorie invier Dimensionen liefern. Daraus lassen sich obere Schranken f�ur die Masse desHiggs-Bosons ableiten.Aufgrund der Komplexit�at der Glashow-Salam-Weinberg-Theorie werden viel-fach vereinfachteModelle untersucht. Dazu z�ahlen insbesondere rechts-links-symme-trischeHiggs-Yukawa-Modelle, in denen die Eichgruppe SU(2)L
U(1)Y zun�achstauf SU(2)L 
 SU(2)R erweitert wird [Mon87]. Neben reinen Higgs-Modellen, indenen eine n-komponentige skalare Feldtheorie geeicht wird, kommt den reinenYukawa-Modellen, also den ungeeichten Theorien mit Skalar-Fermion-Kopplung,eine besondere Bedeutung zu.Bekannterma�en [NN81] f�uhrt die naive Gitterregularisierung der dort mit demHiggs-Feld wechselwirkenden Fermionfelder auf das sog. Doubling-Problem (sie-he z.B. [MM94, S. 177f] oder [Rot89, S. 81]). Dieses kann zwar durch einen imKontinuumslimes verschwindenden Zusatzterm gel�ost werden [Wil75], allerdingswird dabei die chirale Symmetrie gebrochen. Zusammen mit der Einf�uhrung expli-ziter Spiegelfermionen liefert die Wilson-Wirkung jedoch die in chiralen Theorien3



4 Einleitungminimal m�ogliche Anzahl an zus�atzlichen Freiheitsgraden. Die in diesem Kontextinteressante Frage nach der Beseitigung der Spiegelfermionen im Kontinuumslimesf�uhrt auf zwei m�ogliche Entkopplungsszenarien, deren Untersuchung nichtperturba-tive Hilfsmittel erfordern: Entweder die Spiegelfermionen erhalten wie die Doubling-Fermionen in der einfachen Wilson-Formulierung eine Masse in der Gr�o�e desCuto�, oder ihre Masse und ihre Kopplungen verschwinden. W�ahrend den zu denYukawa-Kopplungen proportionalen Massen der Fermionen durch die vermuteteTrivialit�at der Theorie Grenzen gesetzt sind, konnte die zweite M�oglichkeit nume-risch gewinnbringend eingesetzt werden [LMP93a, LMP93b]. Sie wird durch dieGolterman-Petcher-Relationen [GP89, LW92] gest�utzt, welche sich aber nichtauf Theorien mit Eichfeldern anwenden lassen. Deren Untersuchung gewinnt damitan Bedeutung.Die Eichung des Modells erh�oht zwar aufgrund weiterer Freiheitsgrade und Wech-selwirkungen seine Komplexit�at, beseitigt aber in der Phase spontan gebroche-ner Symmetrie die vom masselosen Goldstone-Boson hervorgerufenen Infrarot-Singularit�aten, welche die De�nition und Berechnung renormierter Gr�o�en behin-dern. Au�erdem erm�oglicht sie bei Betrachtung des e�ektiven Potentials die Angabeder sogenannten Weinberg-Linde-Schranke, unterhalb derer die spontan gebro-chene Symmetrie dynamisch wiederhergestellt wird.Diese Arbeit baut auf ausf�uhrlichen Untersuchungen eines U(1)L
U(1)R-symmetri-schen Yukawa-Modells mit expliziten Spiegelfermionen auf [FKL91, LMWG91].Einerseits erlaubt diese Symmetriegruppe bei gegebener Rechenzeit genauere Si-mulationen, andererseits besitzt sie im Gegensatz zur SU(2)L 
 SU(2)R wie dieelektroschwache Eichgruppe chirale Anomalien.Monte-Carlo-Simulationen { das wichtigste Hilfsmittel in gitterregularisierten Feld-theorien { sind nur auf Gittern mit endlichem Volumen m�oglich. Die Frage nachAbweichungen der berechneten Gr�o�en von ihrem Wert im unendlichen Volumenstellt sich sofort und ist ausgiebig behandelt worden. F�ur gro�e Volumina sind ana-lytische Untersuchungen m�oglich [L�us86a, M�un85], Absch�atzungen lassen sich mitHilfe der renormierten St�orungstheorie gewinnen (so geschehen z.B. in [LMWM91]).In dieser Arbeit wird eine perturbative Behandlung des U(1)L 
 U(1)R-symmetri-schen Higgs-Yukawa-Modells in Ein-Schleifen-Approximation vorgenommen. Imersten Kapitel wird das Modell vorgestellt, im zweiten seine Quantisierung bespro-chen, gefolgt von der Herleitung der Feynman-Regeln. Anschlie�end werden dieEin-Schleifen-Ausdr�ucke f�ur renormierte Massen und Kopplungen abgeleitet undN�aherungen f�ur die kritischen Parameter der Theorie extrahiert. Das vierte Kapi-tel enth�alt die Behandlung der Theorie in einem endlichen Volumen. Nach einigeneinleitenden �Uberlegungen und Beispielen werden numerisch gewonnene Volumen-e�ekte f�ur einige Gr�o�en vorgestellt. Schranken f�ur die Masse des Higgs-Bosonsbzw. die Selbstkopplung werden im f�unften Kapitel hergeleitet, w�ahrend das sechsteKapitel noch einmal kurz auf die Verh�altnisse in der symmetrischen Phase eingeht.



Kapitel 1Das Higgs-Yukawa-Modell1.1 Globale InvarianzEin global U(1)L 
 U(1)R-invariantes Yukawa-Modell wird nach [FKL91] durchfolgende Wirkung de�niert:S = S� + S	 + S	�S� = Px (���yx�x + �(�yx�x)2 � �P� �yx+��x)S	 = Px (� � h�x x +  x�xi�P� hK  x+�
� x +K��x+�
��xi+KrP� h�x x � �x+� x +  x�x �  x+��xi)S	� = Px nG  x [�1x � i
5�2x] x +G��x [�1x + i
5�2x]�xo (1.1)Hier bezeichnet �� die skalare Masse, � � die Fermion-Mischung und �, K ,K� undKr die Hopping-Parameter. G und G� hei�en Yukawa-Kopplungen. Die Summe�uber x l�auft �uber alle Gitterpunkte, jene �uber � �uber alle 2d positiven und negativenRaumrichtungen. �x = �1x + i�2x ist das komplexe Higgs-Feld,  x ein Fermionfeldund �x sein Spiegelpartner, der explizit in die Theorie eingef�uhrt wurde, um einen diechirale Invarianz nicht brechendenWilson-Term einf�uhren zu k�onnen. Damit lassensich alle bei der Gitter-Regularisierung von Dirac-Feldern auftretenden Doublerentfernen, und es verbleibt das explizit vorhandene Fermion-/Mirror-Fermion-Paar.Die Einf�uhrung eines zusammengesetzten Fermion-/Mirror-Fermion-Feldes	x = 0B@  x�x 1CA (1.2)5



6 KAPITEL 1. DAS HIGGS-YUKAWA-MODELLerlaubt eine kompaktere Schreibweise:S	 = Pxy 	y (�xy(� � + 2dKr)R�P� �yx+� ~K�)	xS	� = Px 	xG	����x	x; (1.3)wobei folgende 2� 2-Matrizen de�niert wurden:R := 0B@ 0 11 0 1CA ~K� := 0B@ K 
� KrKr K�
� 1CAG	 := 0B@ G 00 G� 1CA �� := 0B@ �� 00 �y� 1CA (1.4)mit �1 = 1 �2 = �i
5: (1.5)H�au�g fa�t man die Fermionen enthaltenden Teile der Wirkung mit Hilfe der Fer-mion-Matrix zusammen:S �� := S	 + S	� = Pxy 	yQ(�)yx	xQ(�)yx = �yx ((� � + 2dKr)R+G	����x)�P� �yx+� ~K� (1.6)Die Ergebnisse sollen mit Monte-Carlo-Daten verglichen werden. Um den sogenann-ten hybriden Monte-Carlo-Algorithmus anwenden zu k�onnen, mu� jedoch eine tech-nische Fermionverdopplung eingef�uhrt werden (siehe z.B. [Ken88]). Das Modell wirddaher auch hier entsprechend erweitert:Man f�uhrtNf Fermionfelder	(f),Nf gerade,ein und betrachtet je zwei davon als durch die technische Verdopplung auseinanderhervorgegangen. Dazu werden Fermionmatrizen Q(f) folgenderma�en de�niert:Q(1)(�)yx := Q(�)yx ; Q(f+1)(�)yx := Q(f)(�)yxy (1.7)und die Wirkung entsprechend erweitert:S �� =Xxy 	(f)y Q(f)(�)yx	(f)x (1.8)�Uber f soll dabei immer summiert werden. In den Fermionmatrizen tauchen dannMatrizen �(f) auf, die sich f�ur ungerade f durch Adjugation aus (1.4) ergeben.Die Wirkung S ist invariant unter einer U(1)L 
 U(1)R - Transformation (VL; VR) ,falls die Felder sich wie folgt transformieren:	(f)Lx 7! VL	(f)Lx 	(f)Lx 7! 	(f)LxV �1L	(f)Rx 7! VR	(f)Rx 	(f)Rx 7! 	(f)RxV �1R�x 7! VL�xV �1R ; (1.9)



1.2. LOKALE INVARIANZ 7Dabei wurde de�niert: 	(f)Lx := P(f)L 	(f)x 	(f)Rx := P(f)R 	(f)x ; (1.10)vgl. (A.17). Die ungeraden 	(f) unterscheiden sich also von den urspr�unglichen ge-raden nur durch eine Vertauschung von Fermion- und Mirror-Fermion-Feld.1.2 Lokale InvarianzThema dieser Arbeit ist die Untersuchung der geeichten Version des gerade vorge-stellten Modells. Wie �ublich implementiert man die Eichung durch die Forderungnach lokaler Invarianz, d.h. der Symmetrie der Wirkung unter einer lokalen Trans-formation von der Art (1.9):	(f)Lx 7! VLx	(f)Lx 	(f)Lx 7! 	(f)LxV �1Lx	(f)Rx 7! VRx	(f)Rx 	(f)Rx 7! 	(f)RxV �1Rx�x 7! VLx�xV �1Rx ; (1.11)mit einer i.a. an jedem Punkt des Gitters verschiedenen U(1)L 
 U(1)R - Trans-formation (VLx; VRx). Unter einer solchen Transformation sind nur die lokalen Teileder Wirkung (1.1) invariant. Zu einer lokal invarianten Wirkung gelangt man, in-dem man wie z.B. in [Mon87] neue, unter einer Eichtransformation nicht invarianteVariablen U einf�uhrt.Als Beispiel betrachte man den nicht lokalen Teil von S ��:Sn:l: �� = �Xx� 	(f)x+� ~K�	(f)x (1.12)Unter einer Eichtransformation variiert dieser Term folgenderma�en:�Px�	(f)x+� ~K�	(f)x7! �Px�	(f)x+� ~K� �P(f)L V �1Lx+�VLx +P(f)R V �1Rx+�VRx�	(f)x (1.13)Invarianz stellt sich also nur f�ur den Fall konstanter Transformationen ein. Um denauftretenden Defekt zu beheben, m�ussen die neuen Variablen o�enbar die Trans-formationen an zwei benachbarten Gitterpunkten kompensieren. Sie werden daherden Links (x�) zugeordnet. Der entsprechend modi�zierte Term verh�alt sich dannfolgenderma�en:�Px�	(f)x+� ~K� �P(f)L ULx� +P(f)R URx��	(f)x7! �Px�	(f)x+� ~K� �P(f)L V �1Lx+�ULx�VLx +P(f)R V �1Rx+�URx�VRx�	(f)x (1.14)



8 KAPITEL 1. DAS HIGGS-YUKAWA-MODELLW�ahlt man hierin die UL, UR als Elemente der Eichgruppe (hier jeweils U(1)) selbstund pr�agt ihnen das TransformationsverhaltenUL�x 7! VLx+�UL�xV �1Lx ; UR�x 7! VRx+�UR�xV �1Rx (1.15)auf, so wird der betrachtete Term invariant! Folglich sind die Felder UL�x und UR�xals Analoga der Eichfelder im Kontinuum zu verstehen, die vorgef�uhrte Ankopplungals die Gitter-Version der kovarianten Ableitung.Der zweite nicht lokal invariante Term in S kommt aus dem kinetischen Term desHiggs-Feldes: �Xx� �yx+��x 7! �Xx� VRx+��yx+�V �1Lx+�VLx�xV �1Rx (1.16)Die Forderung nach Invarianz dieses Ausdrucks legt das Auftreten der neuen Frei-heitsgrade eindeutig fest:�Px� UL�xUyR�x�yx+��x 7! �Px�UL�xUyR�x�yx+��x (1.17)Die Felder UL und UR koppeln bislang an Fermionen und das Higgs-Feld, tretenjedoch noch nicht als dynamischer Freiheitsgrad auf. Auf einem Gitter f�ugt mandaher nach einem Vorschlag von Wilson [Wil74, Kog79] (vgl. wieder [Mon87])folgende freie Wirkung f�ur die Eichfelder ein:SG = SGL + SGRSGL = �L2 Px�+�+ n1 � 12 �UL��x + UyL��x�oSGR = �R2 Px�+�+ n1 � 12 �UR��x + UyR��x�o (1.18)UL��x und UR��x sind die Plaquettevariablen, bei deren Bildung die f�ur nichtabelscheEichtheorien ben�otigte Pfadordnung nicht beachtet werden mu�:UL��x = UL�xUL�(x+�)UyL�(x+�)UyL�xUR��x = UR�xUR�(x+�)UyR�(x+�)UyR�x (1.19)



1.3. ST �ORUNGSTHEORETISCHE NOTATION 9Damit lautet die Wirkung des lokal invarianten Higgs-Yukawa-Modells:S = S� + S	 + S	� + SGL + SGRS� = Px (���yx�x + �(�yx�x)2 � �P� UL�xUyR�x�yx+��x)S	 = Pxy 	(f)y (�yx(� � + 2dKr)R�P� �yx+� ~K� �P(f)L ULx� +P(f)R URx��)	(f)xS	� = Px 	(f)x G	�(f)��x	(f)xSGL = �L2 Px�+�+ n1 � 12 �UL��x + UyL��x�oSGR = �R2 Px�+�+ n1 � 12 �UR��x + UyR��x�o (1.20)1.3 St�orungstheoretische NotationDie Formulierung des Modells (1.20) eignet sich f�ur numerische Simulationen oderauch f�ur eine Entwicklung nach kleinen �L, �R (also starke Eichkopplungen, s.(1.34)).F�ur die perturbative Behandlung verwendet man im allgemeinen eine andere Nor-mierung der Felder, vgl. z.B. [FKL91, LMWG91]. Durch diese Umnormierung wirdeine �Ahnlichkeit der Theorie zu Kontinuumsformulierungen erreicht, welche die Auf-�ndung von Feynman-Regeln erleichtert.�Ublicherweise schr�ankt man besonders den Sektor der Hopping-Parameter durchgewisse Konventionen ein. W�ahlt manK = K� = K Kr = rK; (1.21)so lautet die Fermion-Wirkung:S	 = KPxy 	(f)y (�yx �� �K + 2dr�R�P� �yx+�K� �P(f)L ULx� +P(f)R URx��)	(f)x(1.22)mit K� := 0B@ 
� rr 
� 1CA (1.23)Der verbliebene Hopping-Parameter K l�a�t sich durch eine mit der Einf�uhrung desnackten Fermionfeldes verbundene Umnormierung eliminieren:	(f)0x := p2K	(f)x (1.24)



10 KAPITEL 1. DAS HIGGS-YUKAWA-MODELLSepariert man noch die freie Fermion-Wirkung von der Eich-Wechselwirkung, soerh�alt man mit �0 := � �2K :S	 = S0	 + SG	S0	 = Pxy 	(f)0y (�yx(�0 + dr)R� 12 P� �yx+�K�)	(f)0xSG	 = �12Px�	(f)0x+�K� �P(f)L (ULx� � 1) +P(f)R (URx� � 1)�	(f)0x : (1.25)Ebenso de�niert man das nackte skalare Feld und seine Komponenten durch�0x = 1p2 (�01x + i�02x) := p��x (1.26)und erh�alt f�ur die skalare Wirkung:S� = S0� + SG�S0� = Px nr��y0xr��0x +m20+�y0x�0x + g06 (�y0x�0x)2oSG� = �Px�(UL�xUyR�x � 1)�y0x+��0x: (1.27)Die nackte Masse und Kopplung wurde de�niert durch:m20+ := ��� � 2d g0 := 6��2 (1.28)Die Yukawa-Wechselwirkung schreibt sich mit diesen Konventionen:S	� =Xx 	(f)0xG0	�(f)� �0�x	(f)0x (1.29)mit G0	 := 0B@ G0 00 G0� 1CA G0 = G 2Kp2� G0� = G�2Kp2�: (1.30)Schlie�lich werden die Linkvariablen UL�x und UR�x so parametrisiert, da� sich eineperturbative Entwicklung anbietet:UL�x = eigLWL�x UR�x = eigRWR�x (1.31)Die Plaquettevariablen aus (1.19) lauten dannUL��x = eigLWL��x UR��x = eigRWR��x (1.32)



1.4. SPONTANE SYMMETRIEBRECHUNG 11mit den Feldst�arketensorenWL��x = r�WL�x �r�WL�xWR��x = r�WR�x �r�WR�x: (1.33)Wie sich durch einen Vergleich mit der Yang-Mills-Theorie, welche im Kontinu-umlimes dargestellt werden soll, herausstellt, lassen sich die Konstanten � durch dieEichkopplungskonstanten ausdr�ucken:�L = 1g2L ; �R = 1g2R : (1.34)Daher nimmt die Wilson-Wirkung folgende Gestalt an:SGL = 12g2L Px�+�+ f1 � cos gLWL��xg = 1g2L Px�+�+ sin2 gLWL��x2SGR = 12g2L Px�+�+ f1 � cos gRWR��xg = 1g2R Px�+�+ sin2 gRWR��x2 (1.35)Damit lautet die gesamte Wirkung in st�orungstheoretischen Konventionen:S = S0� + S0	 + SGL + SGR + S	� + SG� + SG	S0� = Px (P�+r��y0xr��0x +m20+�y0x�0x + g06 (�y0x�0x)2)S0	 = Pxy 	(f)0y (�yx(�0 + dr)R� 12 P� �yx+�K�)	(f)0xSGL = 1g2L Px�+�+ sin2 gLWL��x2SGR = 1g2R Px�+�+ sin2 gRWR��x2S	� = Px 	(f)0xG0	�(f)�0�x	(f)0xSG� = �Px�(UL�xUyR�x � 1)�y0x+��0xSG	 = �12Px�	(f)0x+�K� �P(f)L (ULx� � 1) +P(f)R (URx� � 1)�	(f)0x (1.36)
1.4 Spontane SymmetriebrechungExplizite Massenterme f�ur die Fermionen sind aufgrund der chiralen Invarianz ver-boten. Wie im Standardmodell bedient man sich daher zur Massenerzeugung desHiggs-Mechanismus [AL73, S. 20]. Dazu werden in einem ersten Schritt die Para-meter des skalaren Sektors des Modells so gew�ahlt, da� das Potential ein von Nullverschiedenes Minimum und das Higgs-Feld damit einen nicht verschwindendenklassischen Vakuumerwartungswert entwickelt. Alle an das Higgs-Feld koppelndenFelder erhalten dadurch Massen.



12 KAPITEL 1. DAS HIGGS-YUKAWA-MODELLDerartige, auf dem �4-Modell aufbauende, Higgs-Modelle k�onnen also durch Wahlder Parameter in der Wirkung sowohl mit als auch ohne von Null verschiedenemVa-kuumerwartungswert betrachtet werden. Man spricht von der symmetrischen Phasemit h�i = 0 und von der Phase gebrochener Symmetrie mit h�i 6= 0. Generell istder letzte Fall zwar infolge fehlender Symmetrien aufwendiger zu behandeln, aberwegen der nicht verschwindenden Fermionmassen realistischer.1.4.1 Symmetrische und gebrochene PhaseAus Gr�unden der �Ubersichtlichkeit verzichte ich auf eine getrennte Behandlung bei-der Phasen, sondern stelle hier die Vorgehensweise in der gebrochenen Phase vor.Durch Elimination des Vakuumerwartungswertes erh�alt man stets die Gleichungender symmetrischen Phase.Zun�achst berechnet man den klassischen Higgs-Vakuumerwartungswert wie folgt:Man betrachte eine konstante Feldkon�guration �0x = �0 und suche das Minimumvon S0�: S0�(j�0j) = 
�m20+j�0j2 + g06 j�0j4� (1.37)
 ist das Gittervolumen. S0� wird extremal beij�0j = 0 _ j�0j2 = v202 := �3m20+g0 (1.38)F�ur m20+ > 0 wird S0� bei j�0j = 0 minimal (symmetrische Phase), f�ur m20+ < 0bei j�0j2 = v202 . Die lokale chirale Symmetrie des Modells wird spontan gebrochen,indem aus den m�oglichen Grundzust�anden�0x =  v0p2! ei� ; 0 � � < 2� (1.39)genau einer gew�ahlt wird, welcher dann im Gegensatz zur Wirkung des Modellsnicht mehr invariant unter der Eichsymmetrie ist. Konventionellerweise w�ahlt man� = 0. Man erh�alt eine einheitliche Beschreibung beiden Phasen, indem man in dersymmetrischen Phase v0 = 0 setzt.Die St�orungstheorie ist als N�aherungsmethode auf kleine Feldamplituden angewie-sen, daher wird das Higgs-Feld folgenderma�en parametrisiert (siehe hierzu auchAbschnitt 5.2): �0x = 1p2 f�x + v0 + i�xg (1.40)Die neuen Felder �x und �x seien reell. Ihr Vakuumerwartungswert verschwindet inder klassischen Approximation.Im Anschlu� an diese Betrachtung kann auch die nackte Masse des Higgs-Feldesangegeben werden. Sie ist de�niert durch die zweite Ableitung des Potentials in



1.4. SPONTANE SYMMETRIEBRECHUNG 13seinem Minimum: m20 = 12
 @2@�20S0�(j�0j)������0= v0p2 (1.41)Man �ndet in der symmetrischen Phase:m20 = m20+ > 0 (1.42)und in der gebrochenen Phase: m20 = �2m20+ > 0: (1.43)Hier gilt der wichtige Zusammenhangv20 = 3m20g0 : (1.44)Die Higgs-Wirkungen in den beiden Phasen unterscheiden sich also voneinander.In der gebrochenen Phase gilt:S0� =Xx 8<:X�+ r��y0xr��0x � m202 �y0x�0x + g06 (�y0x�0x)29=; ; (1.45)die Wirkung der symmetrischen Phase erh�alt man durch m20 7! �2m20. Einsetzenvon (1.40) liefert:S� = Px n12r��xr��x + 12r��xr��x + 12m20�2x + 12m20��2x+g06 v0(�3x + �x�2x) + g04! (�4x + 2�2x�2x + �4x)o ; (1.46)mit m20� = m20 in der symmetrischen und m20� = 0 in der gebrochenen Phase.O�enbar handelt es sich bei � um jenen unphysikalischen Freiheitsgrad, der in einerungeeichten Theorie dem Goldstone-Boson entspricht.Die spontane Brechung der Eichsymmetrie hat verschiedene Konsequenzen. Vor al-lem erzeugt sie Massen f�ur alle mit dem Higgs-Feld wechselwirkenden Felder. Diesist insofern bemerkenswert, als derartige Massenterme in der symmetrischen Phasedie Eichsymmetrie brechen. Des weiteren erlaubt sie die Unterscheidung zwischenphysikalischen und unphysikalischen Feldfreiheitsgraden. Mit letzteren sind Frei-heitsgrade gemeint, deren freier Propagator Mischungen mit anderen Feldern auf-weist. So wird sich das Feld � durch seine Kopplung an die Eichfelder als unphysi-kalisch erweisen. Auch die EichfelderWL und WR selbst sind jedoch keine sinnvollenParametrisierungen. Diese Probleme werden im n�achsten Abschnitt besprochen.



14 KAPITEL 1. DAS HIGGS-YUKAWA-MODELL1.4.2 Weinberg-RotationDie Brechung der Eichsymmetrie erzeugt vor allem in der Higgs-Eichfeld-Wechsel-wirkung SG� einige problematische Terme. Diese lautet nach (1.36):SG� = �Px�(ei(gLWL�x�gRWR�x) � 1)�y0x+��0x= � Px�+ n(2 cos(gLWL�x � gRWR�x)� 2)Re �y0x+��0x�2 sin(gLWL�x � gRWR�x)Im�y0x+��0xo (1.47)Mit der Parametrisierung (1.40) erh�alt man :SG� = � Px�+ f(cos(gLWL�x � gRWR�x)� 1) ((�x+� + v0)(�x + v0) + �x+��x)� sin(gLWL�x � gRWR�x) (�x(�x+� + v0) � �x+�(�x + v0))g (1.48)Dies lautet bis zur zweiten Ordnung in den Eichkopplungskonstanten:SG� = 12 Px�+ (gLWL�x � gRWR�x)2 ((�x + v0)(�x+� + v0) + �x�x+�)+ Px�+(gLWL�x � gRWR�x) ((�x+� + v0)�x � (�x + v0)�x+�)+O(g3L; g3R) (1.49)Hierin sind zwei problematische Ausdr�ucke zu sehen:� Zwei Terme proportional zu v0 aus dem zweiten Summanden:(gLWL�x � gRWR�x)(�x � �x+�) = �(gLWL�x � gRWR�x)r��x (1.50)Dies ist die aus Kontinuumstheorien bekannte Mischung von Eichfeldern miteiner Komponente des Higgs-Feldes. Sie kann durch die Wahl einer bestimm-ten Eichung verhindert werden, was sp�ater besprochen werden soll.� Ein Term proportional zu v20 aus dem ersten Summanden mit der Feldkombi-nation:(gLWL�x � gRWR�x)2 = g2LW 2L�x + g2RW 2R�x � 2gLgRWL�xWR�x (1.51)Der letzte Term deutet eine Mischung zwischen den beiden Eichfeldern an, diealso einzeln keine physikalischen Felder sind.Beide Terme bereiten nur in der gebrochenen Phase Probleme. Die Mischung zwi-schen den Eichfeldern W = (WL;WR)T erzwingt die Einf�uhrung neuer EichfelderZ = (Z;A)T als Linearkombination Z = DW der alten Eichfelder (siehe hierzu



1.4. SPONTANE SYMMETRIEBRECHUNG 15[AL73, S. 43], [Ryd89, S. 311f] oder [IZ85, S. 622]. Diese Transformation wird wei-terhin durch den in den Feldern quadratischen Propagator-TermS(2)G =Xxy WT�x���xy0B@ 1 00 1 1CAW�y =Xxy ZT�x���xy0B@ 1 00 1 1CADTDZ�y (1.52)eingeschr�ankt, in dem n�amlich keine Mischung erzeugt werden soll. Daher w�ahltman D als Drehmatrix mit demWeinberg-Winkel �W und erh�alt umgehend:Z�x = WL�x cos �W �WR�x sin �W WL�x = Z�x cos �W +A�x sin �WA�x = WL�x sin �W +WR�x cos �W WR�x = �Z�x sin �W +A�x cos �W(1.53)Ersetzt man also den obigen Mischterm durchgLWL�x � gRWR�x =: e0Z�x (1.54)mit der axialen Kopplung e0, so gilt sofortgL = e0 cos �W gR = e0 sin �W : (1.55)H�au�g treten folgende Kombinationen auf:gLWL�x = eLZ�x + eA�x gRWR�x = �eRZ�x + eA�x; (1.56)wobei zwecks �Ubersichtlichkeit folgende Gr�o�en eingef�uhrt wurden:eL = e0 cos2 �W eR = e0 sin2 �W e = 12e0 sin(2�W ): (1.57)Obwohl diese Drehung Probleme vermeidet, die in der symmetrischen Phase nichtauftreten, darf sie dort durchgef�uhrt werden. Damit ist eine einheitliche Behandlungbeider Phasen auch mit den neuen Eichfeldern m�oglich.



Kapitel 2Quantisierung undFeynman-Regeln2.1 QuantisierungDie klassische Feldtheorie mit der Wirkung S wird nun durch Betrachtung des er-zeugenden Funktionals der n-Punkt-Funktionen quantisiert:Z[J] = Z D�e�S[�]+Px Jx�x (2.1)Hierbei stehen � und J kollektiv f�ur alle auftretenden Felder bzw. Quellen. Es wirdein eichinvariantes Ma� folgenderma�en gew�ahlt:D� :=Yx Y� d��0xYf d	(f)0x d	(f)0x Y� dZ�xdA�x (2.2)Aufgrund der Wechselwirkungen in S ist eine geschlossene Auswertung unm�oglich,daher wird die Wirkung in einen freien Teil und in die Wechselwirkungen unter-teilt: S = S0 + SI . In S0 tauchen alle Terme auf, in denen die Felder quadratischvorkommen.Das �ubliche perturbative Vorgehen besteht nun darin, im Exponential exp(�SI)die Felder durch Ableitungen nach den Quellen zu ersetzen und das verbleibendeIntegral zu faktorisieren:Z[J] = R D� exp��S0[�]� SI [�] +Px Jx�x�= expn�SI[ @@J]o R D� exp��S0[�] +Px Jx�x�= expn�SI[ @@J]o exp(Pxy Jx�xyJy) (2.3)16



2.1. QUANTISIERUNG 17Der letzte Schritt deutet die explizite Ausintegration der nach Vorziehen der Wech-selwirkungen verbleibenden Gauss-Integrale an. Das Ergebnis wird mit Hilfe vonPropagatoren dargestellt (im bosonischen Fall tritt noch ein Faktor 12 auf). DieseAusintegration ist im Fall der Eichfelder nicht ohne weiteres m�oglich.2.1.1 Kompakte vs. nichtkompakte EichtheorieIn diesem Abschnitt wird stellvertretend die freie Theorie f�ur das Eichfeld Z behan-delt, alle �Uberlegungen tre�en jedoch analog f�ur das Feld A zu und sind problemlosauf den wechselwirkenden Fall zu erweitern.Im erzeugenden Funktional des freien Z-Feldes wird { wie bei der Gitterregularisie-rung von Eichtheorien �ublich { das Haar'sche Ma� �uber der Eichgruppe verwendet([Cre83, S. 39�], [MM94, S. 102]). Dessen explizite Darstellung mit Hilfe einerParametrisierung wie (1.31) f�uhrt im allgemeinen auf einen Zusatzterm in der Wir-kung. Dies ist in der hier behandelten Abel'schen Theorie jedoch nicht der Fall,man �ndet Z dUZ�xf(UZ�x) = e02� �e0Z� �e0 dZ�xf(eie0Z�x): (2.4)Der Normierungfaktor kann im erzeugenden Funktional wie �ublich unterdr�uckt wer-den, welches damit folgende Form annimmt:ZZ [J (Z)] = �e0Z� �e0 Y�x dZ�x exp(�SZ +Xx J (Z)�x Z�x) ; (2.5)Dies kann { obwohl es sich um eine freie Theorie handelt { im Gegensatz zum erzeu-genden Funktional anderer Felder nicht ausintegriert werden, da der Wertebereichdes Feldes { der Einheitskreis in der komplexen Ebene { kompakt ist. Man sprichtdaher von einer kompakten Eichtheorie. Ein Vorteil dieser Formulierung ist zwar,da� das Eichgruppenvolumen endlich und daher eine Eich�xierung nicht n�otig ist,andererseits ist aber eine perturbative Behandlung analog der Theorie im Kontinu-um kaum m�oglich, selbst die De�nition eines Propagators scheint problematisch.Eine M�oglichkeit besteht nun darin, die Felder mit kompaktem Wertebereich nicht-linear auf solche mit nicht-kompaktemWertebereich abzubilden [Sha78]. Die nied-rigsten Feldpotenzen werden dabei nicht ver�andert, es treten aber neue Selbstwech-selwirkungen hinzu. Es ist jedoch auch legitim, einfach durch Ausdehnung des Inte-grationsintervalls von der kompakten zur nichtkompakten Theorie �uberzugehen.Die �Aquivalenz dieser beiden Formulierungen kann, zumindest im perturbativenRahmen, auf folgenden Wegen gezeigt werden:� Man �uberlegt sich, da� die volle Wirkung sicher in Z periodisch ist. Benutztman auch einen periodischen Quellenterm, so kann das Integrationsintervall



18 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNauf [�N�e0 ; N�e0 ] ausgedehnt werden, wenn anschlie�end durch N dividiert wird.Die Konstante N�1 �andert jedoch nur die Normierung, welche bei der Be-rechnung von Erwartungswerten keine Rolle spielt. Folglich kann auch derGrenzwert N !1 ausgef�uhrt werden.� Man geht zur nichtkompakten Theorie �uber durch:ZZ[J (Z)] = 1Z�1 Y�x dZ�xY�x �(�e0 � jZ�xj) exp(�SZ +Xx J (Z)�x Z�x) (2.6)Die zus�atzliche �-Funktion kann f�ur die Zwecke der St�orungstheorie aber fort-gelassen werden, wie man folgenderma�en sieht. Es gilt:�(�e0 � jZ�xj) = limw!1 e�� e0� Z�x�2w (2.7)Also lautet das erzeugende Funktional:ZZ[J (Z)] = limw!1 1R�1 Q�x dZ�x Q�x exp��SZ � Sn:c:(w) +Px J (Z)�x Z�x�Sn:c:(w) = Px� � e0�Z�x�2w (2.8)In der perturbativen Behandlung taucht die Selbstwechselwirkung Sn:c:(w) alsein Vertex mit 2w einlaufenden Eichbosonen auf, der zur Ordnung eines Gra-phen mit e02w beitr�agt. Im Grenzfall w!1 ist dieser Vertex f�ur jede endlicheSt�orungsordnung zu vernachl�assigen.Im folgenden werden also f�ur beide Eichfelder auch in der vollen Theorie nicht-kompakte Integrationsbereiche verwendet. Damit ist das Volumen der Eichgruppeunendlich und erzeugt bei der Integration innerhalb einer Eich-�Aquivalenzklasse eineDivergenz. Daher mu� in dieser Formulierung eine Eichung ausgew�ahlt werden.2.1.2 Faddeev-Popov-AnsatzDie Fixierung der Eichung erfolgt wie �ublich durch den Ansatz von Faddeev undPopov, welcher besonders im Kontext nichtabelscher Eichtheorien in Lehrb�uchernvorgestellt (siehe z.B. [FS80, S. 87�], [Ryd89, S. 245�] oder [AL73, S. 82�]), auch ingitterregularisierten Theorien angewandt wird [MM94, S. 122�] und hier nur kurzreferiert werden soll. Im erzeugenden Funktional (2.5) soll nicht �uber Eichfeldkon-�gurationen integriert werden, welche durch eine Eichtransformation auseinanderhervorgehen. Zu diesem Zweck w�ahlt man eine EichungF [Z�x] = cx; (2.9)



2.1. QUANTISIERUNG 19welche von allen aus einer Kon�guration durch Eichtransformationen entstandenenEichfeldern genau eines { Z { erf�ullt. Dann lautet das erzeugende Funktional:ZZ [J (Z)] = Z Y�x dZ�x exp(�SZ +Xx J (Z)�x Z�x) (2.10)Der Faddeev-Popov-Ansatz besteht nunmehr darin, hier eine Integration �uber allem�oglichen Werte der Eich�xierung einzuf�ugen:ZZ[J (Z)] = Z Y�x dZ�xdF exp(�SZ +Xx J (Z)�x Z�x) �(F � c); (2.11)wobei eine funktionale Delta-Distribution daf�ur sorgt, da� der Wert des Integralsnicht ver�andert wird. Da die Eich�xierung eindeutig sein mu�, ist der Zusammen-hang zwischen dem Wert von F [Z� +r��] und � eindeutig. Daher kann man eineVariablensubstitution vornehmen, deren Jacobi-Matrix hierM genannt wird:Mxy := @F [Z�x +r��x]@�y (2.12)M hei�t auch Faddeev-Popov-Operator. Formal erh�alt man:ZZ [J (Z)] = Z Y�x dZ�xd�x detM exp(�SZ +Xx J (Z)�x Z�x) �(F [Z�x +r��x]� cx)(2.13)Um wieder die Form eines Wirkungsexponentials zu gewinnen (aus dem sp�ater dieSt�orungstheorie leicht abzuleiten ist), stellt man die Determinante durch eine funk-tionale Grassmann-Integration dar und integriert mit einemGau�-Gewicht �uberdie freie Funktion cx. Man erh�alt:ZZ[J (Z)] = Z Y�x dZ�xd�xd�x exp(�SZ � SGF � SFP +Xx J (Z)�x Z�x) (2.14)mit dem eich�xierenden TermSGF = 12� Xx (F [Z�x])2 (2.15)und der Faddeev-Popov-WirkungSFP =Xx �xMxy�y: (2.16)Die Fixierung der Eichung des Feldes A verl�auft v�ollig analog.2.1.3 'T Hooft- und unit�are EichungDie von 't Hooft vorgeschlagene Eich�xierung ([tH71], siehe auch [Ryd89, S.385�], [IZ85, S. 619f] oder [AL73, S. 122�]) behebt das Problem des in (1.50) er-scheinenden Mischungsterms � v0e0Xx Z�xr��x: (2.17)



20 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNDanach w�ahlt man: F [Z�x] = r��Z�x + �v0e0�x; (2.18)also: SGF = 12� Px nr��Z�x + �v0e0�xo2= 12� Px (r��Z�x)2 + v0e0Px Z�xr��x + 12m20�Px �2x (2.19)In S + SGF tritt folglich keine Mischung zwischen Higgs- und Eichfeld mehr auf.Au�erdem erh�alt das �-Boson die Masse m0� = p�e0v0. Diese Eigenschaft ist attrak-tiv, da sie Infrarot-Divergenzen von Schleifen-Integralen, wie sie bei der ungeeichtenTheorie auftreten, verhindert. Gleichzeitig sieht man, da� die 't Hooft-Landau-Eichung � = 0 in dieser Hinsicht Probleme bereitet, sie wird daher im folgendenvermieden.Die Fixierung der 't Hooft-Eichung transformiert sich unter einer Eichtransfor-mation folgenderma�en:F [Z�x] 7! F [Z�x] +2�x + �v0e02(�x + v0)�x; (2.20)daher lautet die Jacobi-MatrixM = 2+ �v20e02 + �v0e02� (2.21)und damit die Faddeev-Popov-Wirkung:SFP =Xx �x n2+ �v20e02o �x + �v0e02Xx �x�x�x (2.22)Obwohl also die Eichgruppe Abel'sch ist, k�onnen die Faddeev-Popov-Geisternicht ausintegriert werden, sondern koppeln an das Higgs-Feld [ACGQ73]!Die Rechnungen zur Renormierung der Theorie z.B. in Ein-Schleifen-Ordnung lassensich durch die Wahl � ! 1 erheblich vereinfachen. Die Masse des �-Bosons wirddann unendlich und die Beitr�age von Graphen mit �-Bosonen verschwinden. In dieserEichung gilt �x = 0, wie einfach verstanden werden kann, wenn man den letztenSummanden des eich�xierenden Terms in (2.19) betrachtet. Im Funktionalintegralliefert er einen Faktor e� Px�+ 12 �v20e02�2x: (2.23)Andererseits ist limn!1rn�e�nx2 (2.24)eine Darstellung der �-Distribution. Da sich der Vorfaktor vor der Bildung von Er-wartungswerten bei der Normierung des erzeugenden Funktionals k�urzt, kann f�ur� ! 1 die Integration �uber �x ausgef�uhrt werden. In der Wirkung mu� dann�x = 0 gesetzt werden. Da in dieser Eichung keine unphysikalischen Freiheitsgrademehr auftreten, l�a�t sich die Unitarit�at der S-Matrix zeigen. Die gew�ahlte Eichunghei�t daher unit�ar.



2.2. ST �ORUNGSTHEORIE 21Das Erreichen der unit�aren Eichung ist m�oglich, da der unphysikalische Freiheitsgrad� ein inhomogenes Transformationsverhalten aufweist. Betrachtet man n�amlich einein�nitesimale Eichtransformation e0�x, so erh�alt man:�x 7! �x � e0�x�x�x 7! �x + e0�x�x + e0�xv0 (2.25)Die 't Hooft-Eichungen und die unit�are Eichung �xieren das Eichfeld Z. Beider Entwicklung nach schwachen Kopplungen wird in der nichtkompakten Theo-rie jedoch auch eine Fixierung des Eichfeldes A n�otig. Hier w�ahle ich die �ublicheLorentz-Eichung S0GF = 12�0 Xx�+(r��A�x)2; (2.26)bzw. meistens weiter die Feynman-Eichung �0 = 1. Nach der bisherigen Diskussionist klar, da� die bei der Fixierung des Feldes A auftretenden Faddeev-Popov-Geister ausintegriert werden k�onnen. Sie werden im folgenden daher nicht betrachtet.2.2 St�orungstheorieNach diesem �Ubergang zur nichtkompakten Eichfeldtheorie auf dem Gitter lautetdas erzeugende Funktional nun nach (2.3):Z[J] = exp(�SI " @@J#) exp(Xxy Jx�xyJy) ; (2.27)mit Faktoren 12 vor bosonischen Propagatoren. SI enth�alt s�amtliche Wechselwirkun-gen, auch die aus der \freien" Gitterwirkung der Eichfelder stammenden Selbst-kopplungen von Z und A. Entwickelt man diese Gr�o�e in allen Kopplungen bis zueiner gewissen Ordnung, so erh�alt man ein Polynom in den Feldern. Die negativenKoe�zienten eines Produktes von Feldern hei�en Vertices und werden hier mit V (:::)bezeichnet.Wird in einen Vertex zu n Feldern ein Faktor 1n! hineinde�niert, so �andertdies lediglich die Regel �uber Symmetriefaktoren (s.u.).Die n-Punkt-Funktionen werden aus ihrem erzeugenden Funktional durch Ableitungnach den Quellen gebildet: h�ni =  @@J!n Z[J]Z[0] �����J=0 (2.28)Die Feynman-Regeln k�onnen nun folgenderma�en aus der Wirkung abgelesen wer-den: Ein Vertex entspricht einem Punkt mit auslaufenden Linien. Die Enden dieserLinien tragen { ebenso wie jene der externen Linien, die den Ableitungen aus der



22 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNBildung der n-Punkt-Funktion zugeordnet sind { Ableitungen nach Quellen. DenPropagatoren sind Linien mit Quellen an den Enden zugeordnet. Alle Exponen-tialfunktionen werden entwickelt. Es tragen nur jene Terme bei, bei denen jedeAbleitung mit einer entsprechenden Quelle kombiniert und dabei jede Quelle \ab-ges�attigt" wird. Dies sind genau jene Graphen, welche mit den bei der Entwicklungder Exponentialfunktionen entstehenden Bausteinen (also Vertices und Propaga-toren) erzeugt werden k�onnen. Es ergeben sich daher die folgenden allgemeinenFeynman-Regeln:1. Eine n-Punkt-Funktion ist die Summe aller Graphen mit der richtigen Anzahlund Art �au�erer Beine, gew�ohnlich mit einer maximalen Anzahl von Verticesoder Schleifen.2. Jeder orientierten inneren Linie (Fermionen) wird der Propagator, jeder nichtorientierten (Bosonen) 1=2 mal der Propagator zugeordnet.3. Jedem Vertex werden der entsprechende Ausdruck und eine Summe �uber denOrt zugeordnet.4. Zusammenh�angende Indices werden kontrahiert. Dies ergibt auch eine Spurf�ur Fermionschleifen.5. Ein Faktor �1 f�ur Fermionschleifen. Dieser stammt aus dem Grassmann-Charakter der Fermionfelder [Hua82, S. 141�].6. Jedem Graph wird ein Symmetriefaktor zugeordnet:S(G) = NQi ni! (2.29)Hier ist N die Anzahl der M�oglichkeiten, den Graph aus seinen Bausteinen zuerzeugen; der Index i z�ahlt die Typen der verwendeten Bausteine und ni istdie Anzahl der Bausteine vom Typ i, die verwendet wurden.Die Berechnung der Symmetriefaktoren weicht von der �ublichen Konvention ab,denn die Fakult�at der Anzahl der einlaufenden Felder ist nicht in der De�nitionder Vertices enthalten. Da in dieser Theorie vier verschiedene Typen von Feldernauftreten, ist diese Art der Berechnung von Symmetriefaktoren �ubersichtlicher. IhreForm soll an dem Beispiel einer Theorie mit Vertices Vm und einem Feld schematischveranschaulicht werden. Die n-Punkt-Funktion lautet dann:h�ni = � @@J �n exp�Pm Vm � @@J �m� exp fJ�Jg����J=0= � @@J �nQm Pvm 1vm!V vmm � @@J �mvmPp 1p!(J�J)p�����J=0 (2.30)



2.3. FEYNMAN-REGELN 23Bezeichnet man mit N(v1; : : : ; v2p; p) die Zahl der sich durch Anwendung der Pro-duktregel ergebenden Terme, so lautet ein Summand dieses Ausdrucks:N(v1; : : : ; v2p; p)p! 2pYm=1 1vm!V vmm �p mit n+Xm mvm = 2p; (2.31)worin neben der erwarteten Kombination von Vertices und Propagatoren auch derSymmetriefaktor erscheint.Die Feynman-Regeln im Impulsraum ergeben sich wie gewohnt durch Fourier-Transformation. De�niert man einen Faktor (2�)d sowie die Gesamtimpulserhaltungaus der n-Punktfunktion heraus, so gelten obige Regeln auch hier (mit in den Im-pulsraum transformierten Vertices und Propagatoren) und �uber Schleifen wird wie�ublich integriert.2.3 Feynman-RegelnNun werden die Feynman-Regeln in der 't Hooft-Eichung abgeleitet. Dazu wer-den aus jedem Teil der Wirkung (1.36) Propagatoren (Inverse der Koe�zientenquadratischer Terme) und Vertices (negative Koe�zienten h�oherer Potenzen) ab-gelesen. Die Reihenfolge der Behandlung wird dabei dadurch diktiert, da� gewisseTerme innerhalb der Wirkung umsortiert werden.2.3.1 Reine Higgs-WirkungF�ur die Wirkung des Higgs-Feldes in der � � ��Parametrisierung wurde in 1.4.1bereits ein vorl�au�ger Ausdruck hergeleitet:S� = Px n12r��xr��x + 12r��xr��x + 12m20�2x + 12m20��2x+g06 v0(�3x + �x�2x) + g04! (�4x + 2�2x�2x + �4x)o (2.32)Zu diesem wird noch der durch den eich�xierendenTerm (2.19) erzeugte Massentermf�ur das �-Boson hinzugeschlagen. Dabei bleibt die Form der Wirkung erhalten, undman �ndet folgende nackte Massen:Symmetrische Phase: m0� = m0Gebrochene Phase: m0� = p�e0v0



24 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNDie Vertices k�onnen aus (2.32) sofort abgelesen werden. Aufgrund ihrer Lokalit�at�andern sie ihre Form auch beim �Ubergang in den Impulsraum nicht:V (3�) = �g06 v0V (�;2�) = �g06 v0V (4�) = �g04!V (4�) = �g04!V (2�;2�) = �2g04! (2.33)Die Propagatoren imOrtsraum lassen sich sofort ablesen. Ihre Transformation in denImpulsraum bereitet ebenfalls keine Schwierigkeiten. Dazu setzt man die Fourier-Transformierten Felder ein und erh�alt mit (A.19):Xx �12r��xr��x + 12m20�2x� = 12 Zq �(q)�(�q) �bq2 +m20� ; (2.34)analog f�ur das Feld � und damit:��(p) = 1bq2+m20��(p) = 1bq2+m20� (2.35)2.3.2 Yukawa-KopplungNach (1.36) lautet die Kopplung zwischen Fermion- und Higgs-Feld in der neuenParametrisierung:S	� =Xx 	(f)0xG0	 ��(f)1 (�x + v0) + �(f)2 �x�	(f)0x (2.36)Wegen (1.5) gilt�(f)1 	(f)0x = 	(f)0x �(f)2 	(f)0Lx = �i	(f)0Lx �(f)2 	(f)0Rx = i	(f)0Rx; (2.37)und daher S	� =Xx 	(f)0xG0	(�x + v0 + (�iP(f)L + iP(f)R )�x)	(f)0x (2.38)Der von den skalaren Freiheitsgraden � und � unabh�angige Teil ist in den Fermion-feldern quadratisch und wird der freien Fermion-Wirkung hinzugef�ugt, siehe 2.3.3.Am Rest liest man ohne weitere Schwierigkeiten die Yukawa-Vertices ab:V(2	;f;�) = �G0	V(2	;f;�) = iG0	(P(f)L �P(f)R ): (2.39)



2.3. FEYNMAN-REGELN 252.3.3 Freie Fermion-WirkungDie freie Fermion-Wirkung lautet nach (1.36):S0	 =Xxy 	(f)0y (�yx(�0 + dr)R� 12X� �yx+�K�)	(f)0x (2.40)Dem wird nach 2.3.2 folgender Term hinzugef�ugt:Xx 	(f)0xG0	v0	(f)0x (2.41)Damit werden in der gebrochenen Phase genau jene Mischterme   und �� er-zeugt, die in der symmetrischen Phase aufgrund der chiralen Invarianz verbotensind. Durch den nichtverschwindenden Vakuumerwartungswert des Higgs-Feldeswerden also Massenterme f�ur Fermionen und Mirror-Fermionen generiert. De�niertman die Massen �0 := G0 v0 ; �0� := G0�v0 (2.42)so lautet die volle freie Fermion-Wirkung ausgeschrieben:S0	 =Xxy 	(f)0y 8><>:�yx0B@ �0 �0 + dr�0 + dr �0� 1CA � 12X� �yx+�0B@ 
� rr 
� 1CA9>=>;	(f)0x (2.43)Der inverse Propagator im Impulsraum ergibt sich durch Einsetzen der Fourier-Transformierten Felder und Anwendung von (A.25) und (A.26) (mit k = 0):S0	 = Rq 	(f)0 (q)0B@ �0 + i
�q� �q�q �0� + i
�q� 1CA	(f)0 (q) (2.44)mit der Abk�urzung �q := �0 + r2 bq2. Inversion liefert:�	(p) = D�1(p)n�(1)	 (p)� i
�p��(2)	 (p)oD(p) = (�0 + �0�)2p2 + (p2 + �2p � �0 �0�)2�(1)	 (p) = 0B@ �0 (p2 + �20�)� �0��2p �p(p2 + �2p � �0 �0�)�p(p2 + �2p � �0 �0�) �0�(p2 + �20 )� �0 �2p 1CA�(2)	 (p) = 0B@ p2 + �2p + �20� ��p(�0 + �0�)��p(�0 + �0�) p2 + �2p + �20 1CA (2.45)Hier sind D,�(1)	 und�(2)	 gerade skalare Funktionen. Diese Ausdr�ucke vereinfachensich erheblich im Sonderfall �0 = ��0�. Dort kann man n�amlich durch einen Faktorp2 + �2p + �20 dividieren und folgende De�nitionen verwenden:D(p) = p2+�2p+�20 �(1)	 (p) = 0B@ �0 �p�p ��0 1CA �(2)	 (p) = 0B@ 1 00 1 1CA (2.46)



26 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELN2.3.4 Higgs-Eichfeld-WechselwirkungDieWechselwirkung zwischenHiggs-Feld und Eichfeld ist bereits in 1.4.2 untersuchtworden und lautet:S�G = � Px�+ (cos e0Z�x � 1) ((�x + v0)(�x+� + v0) + �x�x+�)+ Px�+ sin e0Z�x ((�x+� + v0)�x � (�x + v0)�x+�) (2.47)Entwickelt man die Winkelfunktionen und beachtet den Beitrag der 't Hooft-Eichung (2.19), so erh�alt man:S�G = 1Pk=1S(k)�GS(2k)�G = � (�1)k(2k)! e02k Px�+ Z2k�x(�x�x+� + v0(�x+� + �x) + v20 + �x�x+�)S(1)�G = �e0 Px�+ Z�x (�x+��x � �x�x+�)S(2k+1)�G = (�1)k(2k+1)!e02k+1 Px�+ Z2k+1�x (�x+��x � �x�x+� � v0r��x) ; k > 0 (2.48)Hier tritt ein vom Higgs-Feld unabh�angiger Term auf, der zur reinen Eichfeld-Wirkung hinzuaddiert wird. Au�erdem �ndet man Terme der Art (hier steht ~k stetsf�ur alle auftretenden Impulse):Px�+ Zn�x�x�x+� = R(~k) P�+Qi Z�(ki)�(q)�(�q0)e� i2 (q0�+q�) (2.49)Wegen der Vorzeichen der Feldimpulse f�uhrt dies auf einen gerichteten Vertex, derje zweimal mit unterschiedlichen Vorzeichen gez�ahlt werden mu�. Dies ist wegender ungerichteten skalaren Propagatoren unbequem. Man kommt auf eine symme-trischere Form, indem man in einer H�alfte des obigen Ausdrucks q 7! �q0; q0 7! �qausf�uhrt: Xx�+ Zn�x�x�x+� = Z(~k) X�+ Yi Z�(ki)�(q)�(�q0) cos q0� + q�2 (2.50)Weiter treten auf:Px�+ Zn�x (�x+��x � �x�x+�) = � R(~k) P�+Qi Z�(ki)�(q)�(�q0) i dq0� + q�Px�+ Zn�x(�x+� + �x) = R(~k) P�+Qi Z�(ki)�(q)2 cos q�2Px�+ Zn�x(�x+� � �x) = R(~k) P�+Qi Z�(ki)�(q)ibq� (2.51)



2.3. FEYNMAN-REGELN 27Beachtet man diese Regeln, so gelangt man zu folgenden Vertices:V (2�;2kZ)� (q; q0) = (�1)k(2k)! e02k cos q0�+q�2V (2�;2kZ)� (q; q0) = (�1)k(2k)! e02k cos q0�+q�2V (�;�;(2k+1)Z)� (q; q0) = � (�1)k(2k+1)!e02k+1i dq0� + q�V (�;2kZ)� (q) = 2 (�1)k(2k)! e02kv0 cos q�2V (�;(2k+1)Z)� (q) = � (�1)k(2k+1)!e02k+1v0ibq� ; k > 0 (2.52)Der letzte Vertex taucht f�ur k = 0 nicht auf, da dieser genau die Mischung zwischenEichfeld und Goldstone-Feld beschreibt, welche durch die 't Hooft-Eichungaufgehoben wird. Beim gemischten � � � � Z-Vertex w�ahle ich gem�a� (2.51) das�-Feld als Tr�ager des auslaufenden Impulses.2.3.5 Reine Eichfeld-WirkungNach (1.36) lautet die reine Eichfeld-WirkungSGL = 1e0eL Px�+�+ sin2 12 (eA��x + eLZ��x)SGR = 1e0eR Px�+�+ sin2 12 (eA��x � eRZ��x) (2.53)Entwickelt man dies in den Eichkopplungen, so erh�alt man:SG = 1Pk=0S(k)GS(k)G = (�1)k2(2k+2)! Px�+�+ 2k+2Pj=0 �2k+2j �e2k+2�je(j)A2k+2�j��x Zj��x (2.54)mit e(j) = 1e0 �ej�1L + (�1)jej�1R � : (2.55)Insgesamt lautet also die Eichfeld-Wirkung:SG = 1Pk=0S(k)GS(k)G = (�1)k(2k+2)! 12 Px�+�+ 2k+2Pj=0 �2k+2j �e2k+2�je(j)A2k+2�j��x Zj��x (2.56)Dem wird noch der Term aus 2.3.4 hinzugef�ugt:1Xk=0 (�1)k(2k + 2)!e02k+2v20 Xx�+ Z2k+2�x ; (2.57)sowie ein Teil des eich�xierenden Terms aus 2.1.3:12�Xx (r��Z�x)2 + 12�0 Xx (r��A�x)2 (2.58)Die zum �Ubergang in den Impulsraum ben�otigten Beziehungen sind in (A.21) zu-sammengefa�t.



28 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNk = 0: Der PropagatorDie nullte Ordnung der reinen Eichfeld-Wirkung ist in den Feldern quadratisch. Mitden Beitr�agen der eich�xierenden Terme sowie der Higgs-Wechselwirkung lautetsie:S(0)G = 14 Px�+�+ nA2��x + Z2��xo+ Px�+ n12M2ZZ2�x + 12�(r��Z�x)2 + 12�0 (r��A�x)2o(2.59)Hier ist der dritte Summand unschwer als Massenterm f�ur das Z-Feld zu erkennen.Der Higgs-Mechanismus liefert also ein masseloses Photon und ein Z-Boson derMasse MZ = e0v0: (2.60)Der erste Anteil f�ur das Z-Boson lautet:14 Px�+�+ Z2��x = 12 Rk Z�(k)Z�0(�k)(��0�bk2 � bk�bk�0); (2.61)der zweite:Px�+ �M2Z2 Z2�x + 12� (r��Z�x)2� = P�+ Rk Z�(k)Z�(�k)�M2Z2 ��� + 12�ck�ck�� (2.62)Der inverse Propagator des Z-Bosons lautet also:�(Z)�1�� = ���(bk2 +M2Z)� (1 � 1� )bk�bk� (2.63)und dessen Inversion liefert:�(Z)��(k) = 1bk2 +M2Z  ��� + (� � 1) bk�bk�bk2 + �M2Z ! (2.64)Der Photonpropagator ergibt sich daraus einfach durch die Ersetzungen MZ ! 0und � ! �0: �(A)�� (k) = ���bk2 + (�0 � 1) bk� bk�bk4 : (2.65)k = 1: SelbstwechselwirkungenAuf einem Gitter tritt auch in einer Abel'schen Eichtheorie eine Selbstwechselwir-kung auf. Die in der ersten Schleifen-Ordnung noch ben�otigten Vertices erh�alt manaus S(1)G und dem Beitrag der Higgs-Eichfeld-Wechselwirkung. Dies lautet n�amlichzusammen:S(1)G = � 14! 0@12 Xx�+�+ 4Xj=0 4j!e4�je(j)A4�j��xZj��x + e02M2Z Xx�+ Z4�x1A (2.66)



2.3. FEYNMAN-REGELN 29Die Fourier-Transformation vierter Feldpotenzen ist Gegenstand von (A.22), manerh�alt S(1)G = �Xj Z(~k) V ((4�j)A;jZ)���� (k1; k2; k3; k4)A�(k1) : : : Z�(k4) (2.67)mit den Vertices:V (4A)���� (k1; k2; k3; k4) = e248�����(k1; k2; k3; k4)V (2A;2Z)���� (k1; k2; k3; k4) = e28 �����(k1; k2; k3; k4)V (A;3Z)���� (k1; k2; k3; k4) = 112e(eL � eR)�����(k1; k2; k3; k4)V (4Z)���� (k1; k2; k3; k4) = 148(e02 � 3e2)�����(k1; k2; k3; k4) + 124e02M2Z���������(2.68)V (3A;Z) verschwindet: Ein massives Eichboson wechselwirkt nicht mit drei masselo-sen.2.3.6 Fermion-Eichfeld-WechselwirkungNach (1.36) lautet die Wechselwirkung zwischen Fermion- und Eichfeld:S	G = �12 Px�	(f)0x+�K� �P(f)L (UL�x � 1) +P(f)R (UR�x � 1)�	(f)0x =: 1Pk=1S(k)	GS(k)	G = � ik2k! Px� kPj=0	(f)0x+�K��kj� �P(f)L ejek�jL +P(f)R ej(�eR)k�j�Aj�xZk�j�x 	(f)0x(2.69)Die hierin auftauchenden Wechselwirkungen von Fermionfeldern und Eichfeldernwerden in (A.26) in den Impulsraum transformiert. Danach lautet die Wechselwir-kung insgesamt:S(k)	G = � ikk! R(~k) P�+ kPj=0	(f)0 (p0)V(k)� (p0 + p)�kj�� �P(f)L ejek�jL +P(f)R ej(�eR)k�j�A�(k1) : : : Z�(kk)	(f)0 (p); (2.70)wo zur Abk�urzung die MatrizenV(k)� (q) = 0B@ 
� cos q�2 �ir sin q�2�ir sin q�2 
� cos q�2 1CA k ungeradeV(k)� (q) = 0B@ �i
� sin q�2 r cos q�2r cos q�2 �i
� sin q�2 1CA k gerade (2.71)eingef�uhrt wurden. An diesem Ergebnis sind die Vertices abzulesen:V(2	;f;jA;(k�j)Z)� (p; p0) = ikk! kj!V(k)� (p0 + p) �P(f)L ejek�jL +P(f)R ej(�eR)k�j� (2.72)



30 KAPITEL 2. QUANTISIERUNG UND FEYNMAN-REGELNF�ur k = j erkennt man hier die reine vektorielle Kopplung mit der Kopplungskon-stante e. F�ur die Ein-Schleifen-Approximation ben�otigt man:V(2	;f;A)� (p; p0) = ieV(1)� (p0 + p)V(2	;f;Z)� (p; p0) = iV(1)� (p0 + p)(eLP(f)L � eRP(f)R )V(2	;f;2A)� (p; p0) = � e22 V(2)� (p0 + p)V(2	;f;2Z)� (p; p0) = �12V(2)� (p0 + p)(e2LP(f)L + e2RP(f)R )V(2	;f;A;Z)� (p; p0) = �V(2)� (p0 + p)e(eLP(f)L � eRP(f)R ) (2.73)2.3.7 Faddeev-Popov-WirkungNach 2.1.3 lautet die Wirkung der Faddeev-Popov-Geister:SFP =Xx �x n2+ �v20e02o �x + �v0e02Xx �x�x�x (2.74)Hier liest man sofort den Propagator ab:��(q) = 1bq2 + �(e0v0)2 ; (2.75)der wie �ublich bosonischen Typs ist, obwohl die Felder selbst Grassmann-Algebra-wertig sind. Die Wechselwirkung mit dem Higgs-Feld lautet:V (�;2�) = ��v0e02 (2.76)2.3.8 Unit�are EichungWie in 2.1.3 bereits ausgef�uhrt, vereinfachen sich viele Rechnungen der gebroche-nen Phase in der unit�aren Eichung � !1. Dort wird der Freiheitsgrad � auf Null�xiert (seine Masse divergiert), und alle diesbez�uglichen Feynman-Regeln k�onnengestrichen werden. Allerdings ist ad hoc nicht klar, wie sich die Faddeev-Popov-Determinante respektive die Geist-Felder bei dieser Eich�xierung verhalten. DieseFrage ist erst nach der Behandlung der allgemeinen 't Hooft-Eichung in den letz-ten Abschnitten durch Ausf�uhren des Grenzprozesses � !1 zu kl�aren.Da die Masse der Geister wie jene der �-Felder mit � divergiert, vermutet mannaiv ein Verschwinden aller Geist-Beitr�age. Dann f�uhrt die unit�are Eichung z.B.bei der numerischen Auswertung in Kapitel 4 jedoch auf von 't Hooft-Eichungenabweichende Resultate. Der Grund daf�ur ist in dem zu � proportionalen Vertex (2.76)zu sehen, welcher den E�ekt der divergenten Masse aufheben kann. Als Beispielbetrachte man den Geist-Beitrag zur �-Selbstenergie (vgl. (3.24)):� �2e04v20 Zq 1bq2 + �(e0v0)2 1dq + p2 + �(e0v0)2 ! �e04v20 Zq 1(e0v0)4 = � 1v20 6= 0 (2.77)



2.3. FEYNMAN-REGELN 31Am einfachsten baut man diese Eigenschaft in die Feynman-Regeln der unit�arenEichung ein, indem man sich �uberlegt, da� externe Geist-Linien nicht vorkommenund nur ein Vertex mit Geist-Feldern existiert. Daher endet n�amlich jede Geist-Linie in einem solchen Vertex, und man kann ein Element Propagator+Vertex alsFeynman-Regel benutzen:� �v0e02bq2 + �(e0v0)2 ! � 1v0 =: V (�;2�)u (2.78)V (�;2�)u ist ein Dreier-Vertex mit einem �-Bein und zwei zu unterscheidenden �-Beinen. Die Unterscheidung resultiert aus der Orientierung der Geist-Linien unddem an einem Bein angeh�angten Propagator. Da V (�;2�)u nicht vom Geist-Impulsabh�angt und die Schleifen-Integrale auf Eins normiert sind, braucht �uber Geist-Schleifen nicht integriert zu werden, sie tragen aber als Fermion-Schleifen einenFaktor �1 bei. Die Feynman-Regeln lauten folglich in der unit�aren Eichung (undin der Feynman-Eichung �0 = 1 f�ur das Photon-Feld):��(p) = 1bq2+m20�	(p) = D�1(p)n�(1)	 (p) � i
�p��(2)	 (p)o�(Z)��(k) = 1bk2+M2Z ���� + bk�bk�M2Z ��(A)�� (k) = ���bk2V (3�) = �g06 v0V (4�) = �g04!V (2	;f;�) = �G	V (2�;2kZ)� (q; q0) = (�1)k(2k)! e02k cos q0�+q�2V (�;2kZ)� (q) = 2 (�1)k(2k)! e02kv0 cos q�2V (4A)���� (k1; k2; k3; k4) = e248�����(k1; k2; k3; k4)V (2A;2Z)���� (k1; k2; k3; k4) = e28 �����(k1; k2; k3; k4)V (A;3Z)���� (k1; k2; k3; k4) = 112e(eL � eR)�����(k1; k2; k3; k4)V (4Z)���� (k1; k2; k3; k4) = 148(e02 � 3e2)�����(k1; k2; k3; k4) + 124e02M2Z���������V(2	;f;A)� (p; p0) = ieV(1)� (p0 + p)V(2	;f;Z)� (p; p0) = iV(1)� (p0 + p)(eLP(f)L � eRP(f)R )V(2	;f;2A)� (p; p0) = e22 V(2)� (p0 + p)V(2	;f;2Z)� (p; p0) = V(2)� (p0 + p)(e2LP(f)L + e2RP(f)R )V(2	;f;A;Z)� (p; p0) = V(2)� (p0 + p)e(eLP(f)L � eRP(f)R )V (�;2�)u = � 1v0 (2.79)



Kapitel 3RenormierungIn diesem Abschnitt wird die Renormierung der Theorie in der gebrochenen Phasein der Ein-Schleifen-Approximation durchgef�uhrt. Dazu werden die �ublichen Renor-mierungsbedingungen im unendlichen Volumen aufgepr�agt.3.1 Vakuumerwartungswert3.1.1 Unrenormierter VakuumerwartungswertDer Vakuumerwartungswert des unrenormiertenHiggs-Feldes h�i taucht zum einenin der Selbstenergie des Higgs-Feldes auf, zum anderen liefert die renormierte Ver-sion eine M�oglichkeit zur De�nition der renormiertenHiggs-Selbstkopplung. Daherwird diese Hilfsgr�o�e zun�achst berechnet.h�i l�a�t sich als Wert der Einpunktfunktion des �-Feldes au�assen und daher alsSumme von f�unf (nicht amputierten) Graphen mit verschwindendem externem Im-puls darstellen: h�i = G(1)1 + G(1)2 + G(1)3 + G(1)4 + G(1)5 (3.1)Die einzelnen Graphen werden nun behandelt:G(1)1 =̂ ........................................................................................................................................................................................................................................................................................................ qG(1)1 = 242! � 12��(0)V (3�) Zq 12��(q) = �12 v0m20 g0 Zq 1bq2 +m20 (3.2)32



3.1. VAKUUMERWARTUNGSWERT 33G(1)2 =̂ ........................................................................................................................................................................................................................................................................................................ qG(1)2 = 4 � 12��(0)V (�;2�) Zq 12��(q) = �16 v0m20 g0 Zq 1bq2 +m20� (3.3)G(1)3 =̂ .................................................................................................. ............. .............................................................................. ................qG(1)3 = �2Nf 12��(0) Rq TrV(2 ;�)�	(q)= v0m20 dNf RqD�1(q)n(G20 +G20�)p2 + 2G20 G20�v20 � 2G0�G0 �2po (3.4)G(1)4 =̂ ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ qG(1)4 = 4 � 12��(0) Rq V�(�;2Z)(0)12�(Z)�� (q)= � v0m20 e02 Rq 1bq2+M2Z �d+ (� � 1) bq2bq2+�M2Z� (3.5)Dies kann noch vereinfacht werden, denn es gilt:(� � 1) bq2 1bq2 +M2Z 1bq2 + �M2Z = � 1bq2 +M2Z + � 1bq2 + �M2Z ; (3.6)wie man leicht durch Multiplikation beider Seiten mit beiden Nennern zeigt; dasVorgehen entspricht einer Partialbruchzerlegung. Das Ergebnis ist:G(1)4 = � v0m20e02 Zq ((d � 1) 1bq2 +M2Z + � 1bq2 + �M2Z ) (3.7)G(1)5 =̂ .............................................................................. . . . . .................... ................qG(1)5 = �2 � 12��(0)V (�;2�) Zq��(q) = v0m20�e02 Zq 1bq2 + �M2Z (3.8)O�enbar kompensiert dieser Graph genau den eichabh�angigen Teil von G(1)4 . Insge-samt lautet der unrenormierte Erwartungswert also in Ein-Schleifen-N�aherung:h�i = v0m20 ��12g0 Rq � 1bq2+m20 + 13 1bq2+m20��+dNf RqD�1(q)n(G20 +G20�)p2 + 2G20 G20�v20 � 2G0�G0 �2po�(d� 1)e02 Rq 1bq2+M2Z � (3.9)



34 KAPITEL 3. RENORMIERUNGIn der gebrochenen Phase kann m20� durch �M2Z ersetzt werden. Damit ist der Va-kuumerwartungswert eichabh�angig! Dies ist bereits von Kontinuumstheorien herbekannt [ACGQ73]. In der symmetrischen Phase verschwindet der Vakuumerwar-tungswert h�i.Die Vakuumerwartungswerte aller anderen Felder verschwinden in beiden Phasen.Die Ursache daf�ur liegt beim Fermionfeld einfach imFehlen entsprechender Graphen.Bei den �ubrigen Feldern tritt in der Ein-Schleifen-Approximation jeweils nur derGraph mit der Fermionschleife auf. Dieser verschwindet beim �-Feld aufgrund derchiralen Kopplung (2.39), bei den Eichfeldern kann Furry's Theorem angewendetwerden.3.1.2 Renormierter VakuumerwartungswertDer renormierte Vakuumerwartungswert vR = p2h�Ri ergibt sich nach (1.40) ausder unrenormierten Gr�o�e durch Multiplikation mit der Wellenfunktionsrenormie-rung des Higgs-Feldes. Diese wird durch die Selbstenergien der Komponenten desHiggs-Feldes bestimmt, siehe 3.2. In der Theorie ohne Eichfelder erzeugt das Gold-stone-Boson � eine Infrarot-Divergenz in Z�, daher de�niert man dort [LMWG91,Wit92]: vR := Z� 12� (v0 + h�i) (3.10)Diese De�nition wird hier auch f�ur den geeichten Fall �ubernommen.3.2 Higgs-Feld3.2.1 SelbstenergieDie Selbstenergie �, also die Summe aller amputierten Ein-Teilchen-irreduziblenGraphen, spielt bei der perturbativen Renormierung einer Feldtheorie eine zentraleRolle, denn der volle Propagator l�a�t sich schreiben als:G�1(p) = ��1(p)� �(p) (3.11)Diese Beziehung gilt f�ur alle Felder und im endlichen wie im unendlichen Volumen.Sie wird damit zur Grundlage der De�nition renormierter Massen und der Wellen-funktionsrenormierung.F�ur die Selbstenergie des �-Feldes �ndet man in der Ein-Schleifen-N�aherung zehnGraphen, schreibt also: ��(p) = 10Xn=1 G(2)n (p) (3.12)



3.2. HIGGS-FELD 35G(2)1 enth�alt die f�unf zum Vakuumerwartungswert beitragenden Graphen:G(2)1 (p) =̂ ....................................................................................................................................................................................................................................................................................................................................................................................................................qp h�iG(2)1 (p) = 3!V (3�)h�i = �g0v0h�i (3.13)G(2)2 (p) =̂ .................................................................................................................................................................................................................................................................... ....................................p qq + pG(2)2 (p) = 2882! 2! Zq V (3�)12��(q)V (3�)12��(q + p) = 12g20v20 Z 1bq2 +m20 1dq + p2 +m20(3.14)G(2)3 (p) =̂ ................................................................................................................................................................................................................................................................................................................................................................................p qG(2)3 (p) = 4! Zq V (4�)12��(q) = �g02 Zq 1bq2 +m20 (3.15)G(2)4 (p) =̂ .................................................................................................................................................................................................................................................................... ....................................p qq + pG(2)4 (p) = 322! 2! Rq V (2�;�) 12��(q)V (2�;�) 12��(q + p)= 118g20v20 Rq 1bq2+m20� 1dq+p2+m20� (3.16)Falls e0 = 0, also m0� = 0 ist, erzeugt dieser Graph eine Infrarot-Singularit�at(n�amlich bei p = 0) sowohl in der renormierten Masse �uber ��(0) als auch in derWellenfunktionsrenormierung Z� �uber die Ableitung nach p.G(2)5 (p) =̂ ................................................................................................................................................................................................................................................................................................................................................................................p qG(2)5 (p) = 4 Zq V (2�;2�)12��(q) = �g06 Zq 1bq2 +m20� (3.17)



36 KAPITEL 3. RENORMIERUNGG(2)6 (p) =̂ .............................................................. ............. ................................. ........ ................................................................ ................ ....................................p qq + pG(2)6 (p) = �4Nf2! 2! Rq TrV(2 ;�)�	(q)V(2 ;�)�	(q + p)= �dNf Rq D�1(q)D�1(q + p)�nG20 v20(G0 (q2 + �20�)�G0��2q)(G0 (q + p2 + �20�)�G0��2q+p)+G0 G0��q�q+p(q2 + �2q � �0 �0�)(q + p2 + �2q+p � �0 �0�)�G20 qq + p(q2 + �2q + �20�)(q + p2 + �2q+p + �20�)�G0 G0�qq + p�q�q+p(�0 + �0�)2 + ( 7! �)g (3.18)G(2)7 (p) =̂ .................................................................................................................................................................................................................................................................................................................................................................................................................................................... ....................................p qq + pG(2)7 (p) = 322! 2! Rq V (2Z;�)� (p)12�(Z)�� (q + p)V (2Z;�)� (p)12�(Z)�� (q)= 2v20e04 cos p�2 cos p�2 Rq 1bq2+M2Z 1dq+p2+M2Z ���� + ���(� � 1) bq2�bq2+�M2Z+���(� � 1) dq�+p�2dq+p2+�M2Z + (� � 1)2 bq�bq�bq2+�M2Z dq�+p� dq�+p�dq+p2+�M2Z � (3.19)F�ur p = 0 lautet dies unter Benutzung der Identit�at (3.6):G(2)7 (0) = 2v20e04 Rq "(d� 1)� 1bq2+M2Z�2 + �2 � 1bq2+�M2Z�2# ; (3.20)G(2)8 (p) =̂p qG(2)8 (p) = 4V (2Z;2�)� (p; p) Rq 12�(Z)�� (q)= �e02P�+ cos p� Rq ��1 � 1d� 1bq2+M2Z + �d bq2bq2+�M2Z� (3.21)



3.2. HIGGS-FELD 37G(2)9 (p) =̂ ............................................................................................................................................................................................................................................................................................................................................................ ....................................p q q + pG(2)9 (p) = 82! Rq V (�;�;Z)� (q;�p)V (�;�;Z)� (�q; p)12��(q)12�(Z)�� (q + p)= e02 Rq 1bq2+m20� 1dq+p2+M2Z � dq � p2 + (� � 1) (dq+p �dq�p)2dq+p2+�M2Z � (3.22)Dies vereinfacht sich f�ur p = 0 zu:G(2)9 (0) = �e02 Zq 1bq2 + �M2Z bq2bq2 +m20� (3.23)G(2)10 (p) =̂ .......................................... . . . . ............. ........ ............... ................ ....................................p qq + pG(2)10 (p) = � 42! 2! �V (2�;�)�2 Rq ��(q)��(q + p)= ��2e04v20 Rq 1bq2+�M2Z 1dq+p2+�M2Z (3.24)Wegen ihrer besonderen Bedeutung soll die Selbstenergie hier der �Ubersichtlichkeit



38 KAPITEL 3. RENORMIERUNGhalber noch einmal vollst�andig aufgef�uhrt werden:��(p) = �g0v20m20 ��12g0 Rq � 1bq2+m20 + 13 1bq2+m20��+dNf RqD�1(q)n(G20 +G20�)p2 + 2G20 G20�v20 � 2G0�G0 �2po�(d� 1)e02 Rq 1bq2+M2Z ��g02 Rq � 1bq2+m20 + 13 1bq2+m20��+12g20v20 R � 1bq2+m20 1dq+p2+m20 + 19 1bq2+m20� 1dq+p2+m20���dNf Rq D�1(q)D�1(q + p)�nG20 v20(G0 (q2 + �20�)�G0��2q)(G0 (q + p2 + �20�)�G0��2q+p)+G0 G0��q�q+p(q2 + �2q � �0 �0�)(q + p2 + �2q+p � �0 �0�)�G20 qq + p(q2 + �2q + �20�)(q + p2 + �2q+p + �20�)�G0 G0�qq + p�q�q+p(�0 + �0�)2 + ( 7! �)g+2v20e04 cos p�2 cos p�2 Rq 1bq2+M2Z 1dq+p2+M2Z ���� + ���(� � 1) bq2�bq2+�M2Z+���(� � 1) dq�+p�2dq+p2+�M2Z + (� � 1)2 bq�bq�bq2+�M2Z dq�+p� dq�+p�dq+p2+�M2Z ��e02P�+ cos p� Rq ��1� 1d� 1bq2+M2Z + �d bq2bq2+�M2Z�+e02 Rq 1bq2+m20� 1dq+p2+M2Z � dq � p2 + (� � 1) (dq+p�dq�p)2dq+p2+�M2Z���2e04v20 Rq 1bq2+�M2Z 1dq+p2+�bbildung 3.1: Selbstenergie-Graphen des �-FeldesV�ollig analog erh�alt man durch Aufsummation der sieben Ein-Schleifen-Graphen



3.2. HIGGS-FELD 39aus Abb. 3.1 die Selbstenergie des �-Feldes:��(p) = �13g0v0h�i � 12g0 Rq � 1bq2+m20� + 13 1bq2+m20�+4Nf Rq D�1(q)D�1(q + p)�nG20 v20(G0 (q2 + �20�)�G0��2q)(G0 (q + p2 + �20�)�G0��2q+p)�G0 G0��q�q+p(q2 + �2q � �0 �0�)(q + p2 + �2q+p � �0 �0�)+G20 qq + p(q2 + �2q + �20�)(q + p2 + �2q+p + �20�)�G0 G0�qq + p�q�q+p(�0 + �0�)2 + ( 7! �)g�e02P�+ cos p� Rq ��1� 1d� 1bq2+M2Z + �d bq2bq2+�M2Z�+e02 Rq 1bq2+m20 1dq�p2+M2Z � dp + q2 + (� � 1) (dq+p�dq�p)2dq�p2+�M2Z�+19g20v20 R 1bq2+m20 1bq2+m20� (3.26)Setzt man in diese Ausdr�ucke die in der Phase gebrochener Symmetrie geltendenBeziehungen ein, so werden f�ur e0 = 0 die Ergebnisse aus [LMWG91] reproduziert.3.2.2 Renormierte MasseDer inverse volle Propagator des unrenormierten �-Feldes l�a�t sich mit Hilfe derSelbstenergie �� folgenderma�en schreiben:G�1� (p) = bp2 +m20 � ��(p) (3.27)Die Renormierungsbedingung lautet im unendlichen Volumen:@@p2G�1R�(p)�����p=0 = 1 (3.28)Dort wird die Taylor-Entwicklung der Selbstenergie um p = 0 durch die Forderungnach Kovarianz eingeschr�ankt (vgl. Abschnitt 4.2.1):��(p) = ��(0) + 18 p2 �00�(0) +O(p4) ; �00�(p) = @@p� @@p���(p) (3.29)Mit der WellenfunktionsrenormierungZ�1� = 1 � 18�00�(0) (3.30)ergibt sich: G�1� (p) = m20 � ��(0) + Z�1� bp2 +O(p4) (3.31)



40 KAPITEL 3. RENORMIERUNGDamit erf�ullt G�1R�(p) := Z�G�1� (p) = m2R� + bp2 +O(p4) (3.32)mit der renormierten Masse m2R := Z�(m20 � ��(0)) (3.33)die Renormierungsbedingung. Da der renormierte Propagator mit dem Erwartungs-wert eines Produktes aus zwei renormierten Feldern identisch ist, gilt der Zusam-menhang �Rx = Z� 12� �x: (3.34)Mit den Gleichungen (3.33) und (3.30) kann die renormierte Masse desHiggs-Feldesaus der Selbstenergie bestimmt werden.Die Behandlung des �-Feldes verl�auft analog, das renormierte Feld lautet:�Rx = Z� 12� �x Z�1� = 1� 18 @@p� @@p���(p)�����p=0 (3.35)Explizit lautet die renormierte Masse im unendlichen Volumen:m2R = m20�g0 Rq � 1bq2+m20 + 13 1bq2+�M2Z�� 32g0m20 Rq (� 1bq2+m20�2 + 19 � 1bq2+�M2Z�2)+3dNf RqD�1(q)n(G20 +G20�)q2 + 2G20 G20�v20 � 2G0�G0 �2qo+dNf Rq D�2(q)nG20 v20(G0 (q2 + �20�)�G0��2q)2+G0 G0��2q(q2 + �2q � �0 �0�)2 �G20 q2(q2 + �2q + �20�)2�G0 G0�q2�2q(�0 + �0�)2 + ( 7! �)o�2(d� 1)e02 Rq 1bq2+M2Z � 2v20e04(d� 1) Rq � 1bq2+M2Z�2 +m20(Z� � 1) (3.36)Im endlichen Volumen mu� diese Renormierungsprozedur etwas ge�andert werden(siehe 4.2.1), jedoch gen�ugt auch dort die Kenntnis der Selbstenergien | welche sichaufgrund der identischen Feynman-Regeln im endlichen Volumen formal nicht vonjenen im unendlichen Volumen unterscheiden | zur Berechnung der renormiertenGr�o�en.3.2.3 Pol-MasseIn der ungeeichten Theorie f�uhrt die verschwindendeMasse desGoldstone-Bosons� zu einer Infrarot-Divergenz der renormierten Masse [LMWG91]. In diesem Fall



3.2. HIGGS-FELD 41verwendet man daher die Pol-Masse des Higgs-Feldes, welche durch den komplexenPol imph des Higgs-Propagators gegeben ist. Im Kontinuum sind in der Baum-Approximation renormierte und Pol-Masse identisch, denn dort gilt:G�1� (p) = m20 + p2 (3.37)Bei endlicher Gitterkonstante gibt es bereits in der Baum-Approximation einen Un-terschied: 0 != G�1� (~0; im(0)p ) = m20 + 4 sin2 im(0)p2) m(0)p = 2arcsinh m02 (3.38)In h�oheren St�orungsordnungen ergibt sich:mp = 2arcsinh 12qm20 � ��(~0; imp) (3.39)�� ist proportional zu Potenzen der Kopplungen, eine Entwicklung liefert daher inder Ein-Schleifen-Approximation:mp = m(0)p � 12 sinhm(0)p ��(~0; imp) (3.40)Nun kann mp rekursiv eingesetzt werden. In der niedrigsten Ordnung bricht mansofort ab und erh�alt mp = m(0)p � 12 sinhm(0)p ��(~0; im(0)p ): (3.41)Die Auswertung der Selbstenergie bei komplexemArgument erweist sich als aufwen-dig. Sie wurde daher ausschlie�lich numerisch durchgef�uhrt.3.2.4 Physikalische MasseDie bisher besprochenen Gr�o�en werden rein perturbativ aus Eigenschaften des Pro-pagators bestimmt. Die Masse des durch eine Feldtheorie beschriebenen Teilchens istaber de�niert durch den niedrigsten Eigenwert der Transfermatrix. Dieser dominiertdas exponentielle Abfallverhalten der Zeitscheiben-Korrelation [MM94, S. 60]:C(~p; t) := Z dp42� G(~p; p4) eip4t (3.42)bei verschwindendem r�aumlichem Impuls:C(0; t) =Xk cke�Ekt (3.43)mit den Eigenwerten Ek des Gitter-Hamilton-Operators. Im unendlichen Volumenkann man t ! 1 betrachten und mph := E0 als inverse Korrelationsl�ange oderphysikalische Masse der Ein-Teilchen-Zust�ande identi�zieren.



42 KAPITEL 3. RENORMIERUNGDie Bedeutung der Pol-Masse r�uhrt nun daher, da� man im unendlichen Volumen(genauer f�ur T = 1) ihre �Ubereinstimmung mit der physikalischen Masse exaktzeigen kann. Dazu ersetzt man den Integrationsweg in (3.42) durch einen geeignetgew�ahlten Weg in der komplexen p4-Ebene um den Pol bei p4 = imp und benutztden Residuensatz, um zu zeigen:C(0; t)! const � e�mpt f�ur t!1 (3.44)In einem endlichen Volumen sind beide Gr�o�en nicht identisch, siehe dazu Abschnitt4.3.2.3.2.5 Quartische KopplungRenormierte Kopplungen werden im allgemeinen durch Werte von Vertex-Funktio-nen bei gewissen Impulsen de�niert. In der Phase gebrochener Symmetrie gibt esjedoch die M�oglichkeit, die Beziehung (1.44) auszunutzen und die Selbstkopplungdes Higgs-Feldes mit Hilfe des Vakuumerwartungswertes zu de�nieren ([MM94, S.71], [LW88]) : gR := 3m2Rv2R : (3.45)Verwendet man (3.33) und (3.10), so gelangt man zu der St�orungsentwicklunggR = g0 � 3v20��(0) � 2g0v0 h�i+ g0(Z� � 1) + g0(Z� � 1) (3.46)In der ungeeichten Theorie divergiert die renormierte Masse. Dort verwendet mandaher die Pol-Kopplung: gp := 3mp2v2R : (3.47)Wie in [Wit92] genau ausgef�uhrt wird, ist dann aber { insbesondere beim �Ubergangzur renormierten St�orungstheorie { zu beachten:gp = 3m(0)p 2v20 +O(g20) 6= g0 +O(g20); (3.48)mit g(0)p := 3m(0)p 2=v20 gilt vielmehr:gp = g(0)p � 3m(0)pv20 sinhm(0)p ��(~0; im(0)p )� 2g(0)pv0 h�i+ g(0)p (Z� � 1): (3.49)3.3 Fermion-FeldDie De�nition und Berechnung renormierter Gr�o�en gestaltet sich f�ur die Fermio-nen aufgrund der Struktur des Fermionfeldes aufwendiger als im skalaren Sektor.



3.3. FERMION-FELD 43Am Prinzip der Vorgehensweise �andert sich jedoch nichts: Zun�achst wird die Selbst-energie berechnet, mit deren Hilfe der volle Propagator dargestellt werden kann.An diesen werden Renormierungsbedingungen gestellt und damit die renormiertenGr�o�en de�niert. Dies geschieht hier f�ur die erste Fermion-Generation f = 1.3.3.1 Fermion-SelbstenergieIn Ein-Schleifen-Approximation �ndet man f�unf Graphen:�	(p) = 5Xn=1 G(3)n (p) (3.50)Der erste Graph enth�alt wieder die \Tadpole"-Beitr�age:G(3)1 (p) =̂ ............. ............. ..................... ........ ................................................................................................................................................................................................................................................................................. ............. ..................... ........ qp h�iG(3)1 (p) = V(2 ;�)h�i = �G0	h�i (3.51)Es w�aren hier im Prinzip Graphen mit Insertionen der A-, Z- und �-Einpunktfunk-tionen denkbar. Diese sind aber proportional zu den entsprechenden Vakuumerwar-tungswerten und verschwinden daher.G(3)2 (p) =̂ ............. ................... ........ ............. ............. ..................... ........ ................................................................................................................ ............. ................... ........p q � pqG(3)2 (p) = 42! Rq 12 1dq�p2+m20V(2 ;�)�	(q)V(2 ;�)= Rq 1dq�p2+m20G0	�	(q)G0	 (3.52)G(3)3 (p) =̂ ............. ................... ........ ............. ............. ..................... ........ ................................................................................................................ ............. ................... ........p q � pqG(3)3 (p) = 42! Rq 12��(q � p)V(2 ;�)�	(q)V(2 ;�) (3.53)Bei Benutzung von (A.16) wird hieraus:G(3)3  (p) = �G20 Rq 1dq�p2+m0� n�(1)11 (q) + i
�q��(2)11 (q)oG(3)3 �(p) = G0 G0� Rq 1dq�p2+m0� n�(1)12 (q) + i
�q��(2)12 (q)oG(3)3��(p) = G(3)3  (p)��� $� (3.54)



44 KAPITEL 3. RENORMIERUNGG(3)4 (p) =̂ ............. ................... ........ ............. ............. ..................... ........ ........................................................................................................................................................................................................ ............. ................... ........p q � pqDieser Graph ist mit den Eichfeldern Z und A getrennt zu berechnen:G(3Z)4 (p) = 42! Rq 12�(Z)�� (q � p)V(2 ;Z)� (p; q)�	(q)V(2 ;Z)� (q; p)= � Rq D�1(q)�(Z)�� (q � p)V(1)� (p+ q)(eLPL � eRPR)�(�(1)	 (q)� i
�q��(2)	 (q))V(1)� (p+ q)(eLPL � eRPR); (3.55)Benutzt man die De�nitionen aus (A.15) und (A.16), so f�uhrt dies in der 't Hooft-Feynman-Eichung mit � = 1 auf:G(3Z)4 (p) = � Rq D�1(q) 1dq�p2+M2Z (e2LXnd � e2Xdn)PL� Rq D�1(q) 1dq�p2+M2Z (e2RXnd � e2Xdn)PRXnd = V(1)� (p + q)��(1)	 n(q)� i
�q��(2)	 d(q)�V(1)� (p+ q)Xdn = V(1)� (p + q)��(1)	 d(q)� i
�q��(2)	 n(q)�V(1)� (p+ q) (3.56)Hier wird deutlich, da� die Selbstenergie f�ur eL 6= eR in links- und rechtsh�andi-ge Beitr�age aufgespalten werden mu�. Dies f�uhrt auf unterschiedliche renormierteGr�o�en f�ur die entsprechenden Feldanteile. Im folgenden wird immer der linksh�andi-ge Fermion-Anteil betrachtet, den Beitrag zur Selbstenergie des rechtsh�andigen Fer-mions erh�alt man durch Ersetzen von eL mit eR. Einsetzen der bekannten Ausdr�uckeliefert schlie�lich:Xnd  = �2i
�q� cos2 q�+p�2 �(2)  (q)� i
�q� �d� 14 dq + p2��(2)  (q)+ ir24 
�q� dq + p2�(1)��(q)� ir
�q� + p��(1) �(q)Xnd � = �d � 1+r24 dq + p2��(1) �(q)� r2 �
�
��(2)  (q) + 
�
��(2)��(q)� q�q� + p�Xnd�� = Xnd  ��� $�Xdn  = �d � 14 dq + p2��(1)  (q)� r24 dq + p2�(1)��(q)� rqq + p�(2) �(q)Xdn � = � ir2 
�q� + p� ��(1)  (q) + �(1)��(q)�+ i
�q� �d � 1�r24 dq + p2��(2) �(q)�2i
�q� cos2 q�+p�2 �(2) �(q)Xdn�� = Xdn  ��� $� (3.57)F�ur den Graph mit Photonfeld gilt in Feynman-Eichung �0 = 1:G(3A)4 (p) = Rq �(A)�� (q � p)V (2 ;A)� (p; q)�	(q)V (2 ;A)� (q; p)= �e2 Rq D�1(q) 1dq�p2 �Xdn +Xnd� (3.58)



3.3. FERMION-FELD 45G(3)5 (p) =̂p qAuch dieser Graph liefert f�ur die beiden Eichfelder getrennte Beitr�age:G(3Z)5 (p) = 2V(2 ;2Z)� (p; p) Rq 12�(Z)�� (q)= �12V(2)� (p)(e2LPL + e2RPR) Rq �(Z)�� (q) (3.59)und analog: G(3A)5 (p) = �e22 V(2)� (p) Zq �(A)�� (q) (3.60)Zusammenfassend gilt also f�ur die Selbstenergie des linksh�andigen Anteils der erstenFermiongeneration in Feynman-'t Hooft-Eichung � = �0 = 1:�	(p) = �	L(p)PL +�	R(p)PR�  L(p) = �G0 h�i+G20	 Rq D�1(q) 1dq�p2+m20 ��(1)  (q)� i
�q��(2)  (q)��G20	 Rq D�1(q) 1dq�p2+m20� ��(1)  (q) + i
�q��(2)  (q)�� Rq D�1(q)� e2Ldq�p2+M2Z + e2dq�p2��n�2i
�q� cos2 q�+p�2 �(2)  (q)� i
�q� �d� 14 dq + p2��(2)  (q)+ ir24 
�q� dq + p2�(1)��(q)� ir
�q� + p��(1) �(q)o+e2 Rq D�1(q)� 1dq�p2+M2Z � 1dq�p2��n�d � 14 dq + p2��(1)  (q)� r24 dq + p2�(1)��(q)� rqq + p�(2) �(q)o+ i2e2L
�p� Rq 1bq2+M2Z + i2e2
�p� Rq 1bq2� �L(p) = G0 G0� Rq D�1(q) 1dq�p2+m20 ��(1) �(q)� i
�q��(2) �(q)�+G0 G0� Rq D�1(q) 1dq�p2+m20� ��(1) �(q) + i
�q��(2) �(q)�� Rq D�1(q)� e2Ldq�p2+M2Z + e2dq�p 2�n�d� 1+r24 dq + p2��(1) �(q)� r2 �
�
��(2)  (q) + 
�
��(2)��(q)� q�q� + p�o+e2 Rq D�1(q)� 1dq�p2+M2Z � 1dq�p 2�n� ir2 
�q� + p� ��(1)  (q) + �(1)��(q)�+i
�q� �d � 1�r24 dq + p2��(2) �(q)o�12e2Lr cos p� Rq 1bq2+M2Z � 12e2r cos p� Rq 1bq2���L(p) = �  L(p)jG0 $G0� (3.61)



46 KAPITEL 3. RENORMIERUNGHierin ist �uber alle auftretenden Indices zu summieren. Aus Gr�unden der �Uber-sicht wurden die Matrixelemente des Fermionpropagators nicht ausgeschrieben, sie-he hierzu (2.45). Die entsprechenden Gr�o�en f�ur den rechtsh�andigen Anteil �ndetman durch eL ! eR.3.3.2 Fermion-MasseDa sich Selbstenergien und damit volle Propagatoren f�ur rechts- und linksh�andigeFelder im allgemeinen unterscheiden, m�ussen renormierte Gr�o�en f�ur beide F�alleseparat de�niert werden. Im folgenden werden nur linksh�andige Teile betrachtet.Der volle Propagator schreibt sich mit der Fermion-Selbstenergie folgenderma�en:G�1	 (p) =�	�1(p)��	(p) (3.62)In niedrigster Ordnung in p lautet dies (vgl. (2.44)):G�1	 (p) = M0 ��	(0) + i
�p�N+O(p2); (3.63)mit M0 = 0B@ �0 �0�0 �0� 1CA N := 1+ i4
� @@p��	(p)�����p=0 : (3.64)Die Renormierungsbedingung lautet:@@p�G�1R	(p)�����p=0 = i
�1 (3.65)De�niert man das renormierte Fermionfeld durch 	RL := Z�1=2	 	0L und beachtet	RL = 	0LZ� 12T	 ; (3.66)so erh�alt man: G�1R	(p) = Z 12T	 G�1	 (p)Z 12	 !=MR + i
�p�1+O(p2) (3.67)Folglich ist die Wellenfunktionsrenormierung de�niert als diejenige 2 � 2-Matrix,welche N in die Einheitsmatrix transformiertZ 12T	 NZ 12	 = 1; (3.68)und die Matrix der renormierten Massen als:0B@ �R �R�R �R� 1CA :=MR = Z 12T	 (M0 ��	(0))Z 12	 (3.69)



3.3. FERMION-FELD 47Zuletzt wird noch die Wellenfunktionsrenormierung aus der Matrix N bestimmt.(3.68) f�uhrt auf folgende Bedingung:0 != (N � �N� )(Z 12  Z 12�� � Z 12� Z 12 �) = (N � �N� ) detZ 12	 (3.70)Die Determinante der Wellenfunktionsrenormierung ist aber ungleich Null, dennsonst w�are diese Matrix nicht invertierbar und das renormierte Feld k�onnte nichtde�niert werden. Folglich mu� N symmetrisch sein. An den expliziten Ausdr�uckenliest man ab, da� dies nur dann der Fall ist, wenn { wie bereits besprochen { die Re-normierungsbedingungen getrennt an rechts- und linksh�andige Fermionfelder gestelltwerden. Dann kann N zun�achst durch eine Drehung diagonalisiert und anschlie�endnormiert werden. Man w�ahlt also den Ansatz (vgl. [LMWG91]):Z 12	 = 0B@ cos � � sin �sin � cos � 1CA0B@ qZ 00 qZ� 1CA (3.71)Dies l�a�t sich explizit aus N errechnen:sin � = 1p2 sgnN � sgn (N  �N��)r1� jN  �N��jp(N  �N��)2+4N2 �cos � = 1p2r1 + jN  �N��jp(N  �N��)2+4N2 �Z = 2nN  +N�� + sgn (N  �N��)q(N  �N��)2 + 4N2 �o�1Z� = 2nN  +N�� � sgn (N  �N��)q(N  �N��)2 + 4N2 �o�1 (3.72)Falls N bereits proportional zur Einheitsmatrix ist, so wird � durch (3.68) nicht�xiert. Dies ist in der Baum-Approximation, aber auch z.B. f�ur e = 0 und GR =�GR� der Fall. � l�a�t sich auch durch Grenz�uberg�ange nicht eindeutig bestimmen:� W�ahlt man N � = 0 und N  ! N��, so folgt aus (3.72): � = 0,� wird hingegen zun�achst N  = N�� �xiert und dann N � ! 0 gew�ahlt, so�ndet man: � = �=4.Der zweite Fall tritt tats�achlich auf, wenn man zum Beispiel bei GR = �GR� denGrenz�ubergang e ! 0 ausf�uhrt (siehe Abschnitt 4.3.8). Jeder andere Winkel istdurch geeignete Ausf�uhrung des Grenz�uberganges erreichbar. Damit ist in diesemFall die renormierte Massenmatrix nur bis auf eine Transformation mit einer Dreh-matrix de�niert. Dies ist jedoch nur eine spezielle Auspr�agung der Tatsache, da� dieWellenfunktionsrenormierung (und damit die Massenmatrix) durch (3.68) nur bisauf eine Drehung de�niert ist: Mit Z	 erf�ullt auch Z0	 = Z	D mit einer Drehma-trix D diese Gleichung. Dies zeigt, da� die Eintr�age in MR im allgemeinen von der



48 KAPITEL 3. RENORMIERUNGWahl des Mischungswinkels der Felder abh�angen. Unabh�angig von dieser Wahl sindausschlie�lich die Eigenwerte �1R und �2R von MR [LMWG91]:�12R = 12 ��R + �R� �q(�R � �R�)2 + �2R� ; (3.73)hingegen wiederum nicht der ben�otigte Diagonalisierungswinkeltan 2�R = 2�R�R� � �R : (3.74)Diese Frage wird in Abschnitt 4.3.8 noch einmal diskutiert.Auch bei den Fermionen mu� im endlichen Volumen etwas anders vorgegangen wer-den (siehe 4.2.2). Dort wird jedoch wieder nur die Fermionen-Selbstenergie zur De-�nition der renormierten Gr�o�en ben�otigt, welche sich formal von jener im unendli-chen Volumen nicht unterscheidet.3.3.3 Yukawa-KopplungenWie bei der quartischen, so gibt es auch bei den beiden renormierten Yukawa-Kopplungen die M�oglichkeit einer De�nition mit Hilfe des Vakuumerwartungswertes[LMWG91]: GR := �R vR GR� := �R�vR (3.75)3.4 Kritische ParameterAls erste Anwendung der Ein-Schleifen-St�orungsrechnung kann man die kritischenParameter der Theorie in dieser N�aherung ausrechnen. Damit bezeichnet man die-jenigen Punkte im Raum der nackten Parameter, an denen die Korrelationsl�angedivergiert, also ein Phasen�ubergang statt�ndet. Dort verschwindet die inverse Kor-relationsl�ange, mithin die physikalische und die Pol-Masse. Der Propagator besitztalso einen Pol am Ursprung der Brillouin-Zone, daher gilt auch f�ur die renor-mierte Masse: mRc = 0. Da die dimensionsbehaftete Masse mR=a vorgegeben, alsoinsbesondere in der N�ahe der kritischen Punkte konstant gehalten wird, mu� dortdie Gitterkonstante a verschwinden. An den kritischen Punkten ist folglich der Kon-tinuumslimes der Gittertheorie zu vollziehen.K�urzt man (3.36) ab durch: m2R = m20 +�m20; (3.76)so �ndet man f�ur den kritischen Parameter umgehend:m20c = ��m20 (3.77)



3.4. KRITISCHE PARAMETER 49Alle auftretenden nackten Massen k�onnen durch die Ausdr�ucke der renormiertenSt�orungstheorie ersetzt werden. Da �m20 bereits von erster Ordnung ist, sind alledaraus entstehenden Korrekturen von h�oherer als Ein-Schleifen-Ordnung und manerh�alt: m20c = ��m2R; (3.78)wo �m2R aus �m20 einfach durch Ersetzung aller nackten durch renormierte Massenentsteht. Dabei wird auch ersetzt: v0 7! vR / mR = 0, daher verschwinden die �-und Z-Masse und man erh�alt:m20c = �43g0 + 2(d � 1)e02�Zq 1bq � 2dNf Zq (G20 +G20�)q2 � 2G0�G0 ( r2 bq2)2(q2 + ( r2 bq2)2)2 (3.79)F�ur d = 4 und Nf = 2 gilt also:m20c = (43g0 + 6e02)I1 � 16(G20 +G20�)I2 + 32G0�G0 I3 (3.80)mit den folgenden Werten der Gitterintegrale f�ur r = 1 im unendlichen Volumen[Wit92]: I1 := Rq 1bq � 0:159933I2 := Rq q2(q2+bq4=4)2 � 0:025703I3 := Rq ( 12bq2)2(q2+bq4=4)2 � 0:059686 (3.81)Mit (1.28), (1.29), (1.43) und der Konvention �� = 1�2� gilt f�ur die Parameter derGitternotation:4� � 2�c + 16 = (8��2c + 6e02)I1 � 2K2c �c (G2 +G2�)I2 + 4G�G K2c�c I3 (3.82)und damit eine quadratische Gleichung f�ur den kritischen skalaren Hopping-Para-meter:0 = (3e02I1 � 8)�2c +  (1 � 2�)� (G2 +G2�)I2 � 2G�G I3K2c !�c + 4�I1 (3.83)Verschwinden alle Kopplungen, so erh�alt man den Wert f�ur den Gauss'schen Fix-punkt: �c = 18.Ausgangspunkt der analogen Betrachtung f�ur die Fermion-Parameter ist Gleichung(3.69). Mit �Rc = 0 folgt sofort:M0c = Z� 12T	 0B@ �R 00 �R� 1CAZ� 12	 +�	(0) (3.84)Hier setzt man wieder die renormierte St�orungstheorie ein, insbesondere also �0 7!�R = 0 und v0 7! vR = 0 und erh�alt:M0c = �R	(0); (3.85)



50 KAPITEL 3. RENORMIERUNGalso insbesondere f�ur die Fermionmasse (r = 1, d = 4 und e = 0):�0c = � �(0) = G0 G0�I4 + e02(I5 � 2I1) (3.86)mit I4 := Rq 1q2+bq4=4 � 0:085390I5 := Rq bq4+bq6=8+q2(q2+bq4=4)bq2 � 0:9312: (3.87)Mit �0 = � �2K und der Konvention � � = 1� 8K lautet dies:0 = G G�4Kc�cI4 + �2e02(I5 � 2I1) + 8�Kc � 1 (3.88)Bei verschwindenden Kopplungen �ndet man f�ur den Gauss'schen Fixpunkt hierebenfalls Kc = 18. F�ur G� = 0 gilt:Kc = �2e02(I5 � 2I1) + 8��1 (3.89)Damit lautet das Resultat f�ur den skalaren Hopping-Parameter bei G� = 0:0 = (3e02I1 � 8)�2c + h(1� 2�) �G2 I2(2e02(I5 � 2I1) + 8)2i�c + 4�I1 (3.90)F�ur diesen Punkt sind die kritischen Hopping-Parameter in den Abbildungen 3.2,
Abbildung 3.2: Kritischer skalarer Hopping-Parameter f�ur verschiedeneSelbst- und Eichkopplungen im unendlichen Volumen.3.3 und 3.4 aufgetragen. Dort sind auch Volumene�ekte ber�ucksichtigt, welche von



3.4. KRITISCHE PARAMETER 51

Abbildung 3.3: Kritischer skalarer Hopping-Parameter bei � = 0:1 f�urverschiedene Eichkopplungen und Gittergr�o�en.

Abbildung 3.4: Kritischer fermionischer Hopping-Parameter als Funk-tion der Eichkopplung f�ur verschiedene Gittergr�o�en.



52 KAPITEL 3. RENORMIERUNGder Auswertung der Impulsintegrale auf endlichen Gittern herr�uhren. Anstatt dieIntegrale f�ur ein unendliches Volumen zu berechnen, wurde ein gro�es Gitter (503 �100) verwendet, auf dem die Ergebnisse o�enbar nur noch wenig vom unendlichgro�en abweichen. Die skalaren kritischen Hopping-Parameter werden danach aufeinem endlichen Gitter zu gro�, die fermionischen zu klein gesch�atzt. Die E�ektesind jedoch f�ur kleine Kopplungen gering.3.5 EichfelderDie Untersuchung der Eichfelder und ihrer Parameter ist nicht das zentrale Anlie-gen der Behandlung von Higgs-Yukawa-Modellen. Sie gestaltet sich au�erdem {besonders in der gebrochenen Phase { bereits in der Ein-Schleifen-Ordnung au�eror-dentlich aufwendig und wurde daher bislang nicht besprochen. Allerdings lassen sicheinige allgemeine Ergebnisse analog zu Kontinuumstheorien mit einfachen Mittelnableiten.Wie in einer Theorie mit �xierter Eichung �ublich, manifestiert sich n�amlich dieForderung nach Eichinvarianz in einer funktionalen Di�erentialgleichung f�ur das er-zeugende Funktional (siehe z.B. [Ryd89, S. 270�, 277�], [IZ85, S. 594�]). Zu ihrerHerleitung fordert man die Invarianz des erzeugenden Funktionals unter einer in�-nitesimalen Transformation � 7! � + �� der Felder. Ist die Wirkung S invariant,so gilt:Z[J] = Z D� exp(�S � SGF � SFP � �SGF � �SFP +Xx Jx�x +Xx Jx��x)(3.91)Da alle Variationen zum Parameter � der Transformation proportional sind, kannman in � entwickeln und erh�alt:(�� eSGF � � eSFP +Xx Jx� e�x)Z[J] = 0; (3.92)wobei in den markiertenGr�o�en Felder durch Ableitungen nach den Quellen zu erset-zen sind. Die Variation des eich�xierenden Terms erh�alt man durch eine funktionaleTaylor-Entwicklung (hier ist stellvertretend nur das Feld Z ber�ucksichtigt):SGF = 12� Px (F [Z�x])2 7! 12�Px  F [Z�x] +Py �y @F[Z�x+r��x]@�y �����=0!2= SGF + 1� Pxy �xMxyF [Z�y]; (3.93)jene der Faddeev-Popov-Wirkung kann unmittelbar abgelesen werden, und manerh�alt:(Xxy  �1��x fMxyF [ @@J (Z)�y ]� �e�x fMxy e�y � e�x fMxy�e�y!+Xx Jx� e�x)Z[J] = 0(3.94)



3.5. EICHFELDER 53Die explizite Form der resultierenden Identit�aten h�angt von der gew�ahlten Transfor-mation ab. Da S invariant sein soll, wird man f�ur die darin auftauchenden Felder eineEichtransformation verwenden. In der Wahl der Transformation der Geist-Felder istman jedoch frei.Becchi-Rouet-Stora-TransformationenDie einfachsten Gleichungen erh�alt man, falls nicht nur S, sondern auch S + SGF +SFP invariant ist. Dann verbleiben in den resultierenden Di�erentialgleichungen nurnoch die von den Quellen stammenden Terme. W�ahlt man zun�achst ��� = 0 und�x = ��x� mit einer Grassmann-Variable �, so erh�alt man(Xxy  1� e�x fMxyF [ @@J (Z)�y ]�� e�x fMxy�e�y!+Xx Jx� e�x)Z[J] = 0; (3.95)und dies vereinfacht sich o�enbar erheblich f�ur �e�y = 1�F [ @@J(Z)�y ]�, also die Becchi-Rouet-Stora-Transformationen, welche f�ur die 't Hooft-Eichungen explizit lau-ten: ��x = �e0�x�x��x = e0(�x + v0)�x�	(f)x = i(eLP(f)L � eRP(f)R )	(f)x �x�	(f)x = �i	(f)x (eLP(f)R � eRP(f)L )�x�Z�x = r��x��x = 1� �r��Z�x + �v0e0�x�����x = 0; (3.96)mit �x = ��x�. Dann erh�alt man:Xx Jx� e�xZ[J] = 0 (3.97)F�uhrt man noch das erzeugende Funktional der Vertexfunktionen mittels�[�] = ln Z[J]Z[0] �Xx Jx�x ; �x = 1Z[J] @Z[J]@Jx Jx = �@�[�]@�x (3.98)ein, so gelangt man zu den Slavnov-Taylor-Identit�aten:Xx @�[�]@�x ��x = 0 (3.99)Schreibt man diese explizit aus, leitet nach Feldern ab und setzt sie anschlie�endgleich Null, so erh�alt man nichtperturbative Aussagen �uber volle Vertexfunktionen,z.B.: 0 = e0�(�;Z)� (p)� ibp��(2Z)�� (p) + i1� bp��(2�)(p); (3.100)



54 KAPITEL 3. RENORMIERUNGalso eine Verkn�upfung voller Propagatoren von Geistern und Z-Bosonen mit der �-Z-Mischung, welche ja nur in der klassischen Approximation durch die 't Hooft-Eichung verhindert wird. Von der G�ultigkeit solcher Relationen auf dem klassischenNiveau kann man sich leicht �uberzeugen.Reine EichtransformationBeschr�ankt man sich auf eine Transformation der in der Wirkung auftauchendenFelder (�� = �� = 0), so erh�alt man sofort dieWard-Takahashi-Identit�aten(�1�Xy fMxyF [ @@J (Z)�y ] + Jx� e�0x)Z[J] = 0 8 x; (3.101)mit � e�x = � e�0x�x. F�ur die 't Hooft-Eichungen lautet dies explizit:0 = ��1� �2+ �v20e02 + �v0e02 @@J(�)x ��r�� @@J(Z)�x + �v0e0 @@J(�)x ��e0J (�)x @@J(�) x + e0J (�)x ( @@J(�) x + v0) +r��J (Z)�x+iJ(	;f)x (eLP(f)L � eRP(f)R ) @@J(	;f)x � i @@J(	;f)x (eLP(f)R � eRP(f)L )J (	;f)x �Z[J](3.102)Daraus k�onnen die Ward-Takahashi-Identit�aten der unit�aren Eichung abgeleitetwerden, indem man � ! 1 betrachtet und alle das �-Feld betre�enden Beitr�ageunterdr�uckt:0 = ��v0e02 �v0 + @@J(�)x �r�� @@J(Z)�x +r��J (Z)�x+iJ(	;f)x (eLP(f)L � eRP(f)R ) @@J(	;f)x � i @@J(	;f)x (eLP(f)R � eRP(f)L )J (	;f)x �Z[J](3.103)Da das A-Feld nicht an das Higgs-Feld koppelt, lautet die entsprechende Gleichung:0 = 8<:� 1�02r�� @@J (A)�x +r��J (A)�x + ieJ(	;f)x @@J(	;f)x � ie @@J (	;f)x J (	;f)x 9=;Z[J] (3.104)Auch diese Identit�aten k�onnen f�ur die Vertexfunktionen aufgeschrieben werden. Da-zu dividiert man sie durch Z[0] und setzt (3.98) ein. Man erh�alt:0 = �1� (2 + �v20e02 + �v0e02�x) �r��Z�x + �v0e0�x�+e0 @�@�x�x � e0 @�@�x (�x + v0)�r�� @�@Z�x�i @�@	(f)x (eLP(f)L � eRP(f)R )	(f)x + i	(f)x (eLP(f)R � eRP(f)L ) @�@	(f)x0 = � 1�02r��A�x �r�� @�@A�x + ie @�@	(f)x 	(f)x � ie	(f)x @�@	(f)x (3.105)



3.5. EICHFELDER 55Diese Identit�aten erlauben nichtperturbative Aussagen �uber Vertexfunktionen. Bei-spielsweise kann man dieWard-Takahashi-Identit�at f�ur den (inversen) Z-Boson-Propagator � �(2Z)��xy = � @@Z�x @@Z�y�[�]������=0 (3.106)ableiten, indem man nach Z�y di�erenziert und alle Felder auf Null setzt:0 = �1� �2+ �v20e02�r���xy �r���(2Z)��xy (3.107)Im Impulsraum lautet dies:0 = �1� �bk2 + �v20e02� bk� � bk��(2Z)�� (k) (3.108)Setzt man hier die De�nition der Selbstenergie und den inversen nackten Propagator(2.63) ein � �(2Z)�� (k) = ���(bk2 + (e0v0)2)� (1� 1� )bk�bk� � �Z��(k); (3.109)so erh�alt man: 0 = bk��Z�� (k) (3.110)Die Selbstenergie ist transversal! Dieselbe Argumentation l�a�t sich analog f�ur dieSelbstenergie des Feldes A f�uhren.



Kapitel 4Endliches Volumen4.1 Vor�uberlegungenDieses Kapitel ist der Betrachtung des Higgs-Yukawa-Modells auf einem Raum-Zeit-Gitter mit der Ausdehnung T in zeitlicher Richtung und L in alle r�aumli-chen Richtungen gewidmet. Das Gittervolumen 
 = L3T ist endlich. Wie siehtder Impulsraum dieses Systems aus ? | Zweckm�a�igerweise beschr�ankt man sichzun�achst auf eine Dimension der Ausdehnung L und de�niert dort die Fourier-Transformation eines Feldes ' gem�a�'x := 1L L�1Xn=0 '(pn)eipnx; '(pn) := L�1Xx=0 'xe�ipnx; (4.1)mit pn = 2�L n+ p0. F�ur die Festlegung von p0 betrachtet man:'L = 1L L�1Xn=0 '(pn)ei 2�L nLeip0L = 1L L�1Xn=0 '(pn)eip0L = '0eip0L (4.2)O�enbar legt p0 die Randbedingungen fest. Dabei betrachte ich stets nur zwei F�alle:Periodische Randbedingungen ('0 = 'L) : pn = 2�L nAntiperiodische Randbedingungen ('0 = �'L) : pn = 2�L n+ �LDiese �Uberlegungen lassen sich sofort auf die eingangs erw�ahnte Situation erweitern.Den in vorangegangen Arbeiten verwendeten Konventionen folgend, werden immerperiodische Randbedingungen in alle Richtungen f�ur bosonische Felder und periodi-sche Randbedingungen in den r�aumlichen Richtungen und antiperiodische in derzeitlichen Richtung f�ur fermionische Felder verwendet (siehe hierzu auch [MM94,S. 187f], [Rot92, S. 319�] oder [Kap89, S. 26�]). Die entsprechenden Impulsr�aume56



4.1. VOR�UBERLEGUNGEN 57sehen folgenderma�en aus:Bp := fp = 2�L (n1; n2; n3; n4) : n1; n2; n3 = 0; : : : ; L� 1; n4 = 0; : : : ; T � 1gBa := fp = 2�L (n1; n2; n3; n4 + 12) : n1; n2; n3 = 0; : : : ; L� 1; n4 = 0; : : : ; T � 1g(4.3)Die Propagatoren nehmen ihre Werte stets �uber derselben Brillouin-Zone an wiedie zugeh�origen Felder. Ist n�amlich B 2 fBp; Bag die zu einem Feld ' geh�origeBrillouin-Zone, so soll f�ur die freie Wirkung gelten:Xxy 'x��1xy'y != 1
 Xq2B'(q)��1(q)'(q) (4.4)Dies ist nur dann konsistent, wenn der (inverse) Propagator seine Werte auf Bannimmt.Die Wirkung des Modells �andert sich beim �Ubergang zum endlichen Volumen formalnicht. Summen �uber Gitterpunkte besitzen allerdings nur endlich viele Summan-den. Funktionalintegrale wie z.B. das erzeugende Funktional degenerieren zu einerIntegration eines zwar hoch- aber endlichdimensionalen Raums (nur daher lassensich Monte-Carlo-Simulationen durchf�uhren). Die Ausdr�ucke f�ur Propagatoren undVertices in den Feynman-Regeln �andern sich nicht. Allerdings sind die Schleifen-Integrationen durch Summen �uber die oben aufgef�uhrten Impulse zu ersetzen. Dabeiist Vorsicht geboten: Die Summen sind stets so zu schreiben, da� Propagatoren ei-nes Feldes nur Impulse aus der zu diesem Feld geh�orenden Brillouin-Zone alsArgumente erhalten. Dies soll an einem Beispiel erl�autert werdenz x y z0p p1 p2qIm Ortsraum entspricht dieser Graph dem AusdruckXxy � zxG� xyG� yz0�'yx: (4.5)Hierin soll  ein Fermion-, ' ein Bosonenfeld darstellen, G ist ein (lokaler) Vertex.Einsetzen von Fourier-Darstellungen �uber den entsprechenden Brillouin-Zonenliefert den Graphen im Impulsraum:Xp12Ba� (p)G� (p1)G� (p)�'(p1 � p) ; p 2 Ba; (4.6)und tats�achlich erh�alt der bosonische Propagator, obwohl externer und Schleifen-Impuls in der Brillouin-Zone zu antiperiodischen Randbedingungen liegen, einenImpuls aus der Brillouin-Zone der Bosonenfelder. Allerdings darf in diesem Bei-spiel der externe Impuls nicht verschwinden! Er w�are dann nicht aus Ba, und dasArgument von �' k�ame aus Ba, was nicht erlaubt ist. Derartige Zusatzbedingungenerfordern eine angepa�te De�nition der renormierten Gr�o�en.



58 KAPITEL 4. ENDLICHES VOLUMEN4.2 Renormierte Gr�o�enWie in den Abschnitten 3.2.2 und 3.3.2 ausgef�uhrt, berechnet man zun�achst dieSelbstenergie eines Feldes und damit den vollen Propagator (in einer St�orungsord-nung). Dann renormiert man das Feld derart, da� der Koe�zient des zweiten Termsder Impulsentwicklung des Propagators Eins wird. Am renormierten Propagatorliest man die renormierte Masse ab.Die Wellenfunktionsrenormierung wird daher wesentlich durch eine Ableitung derSelbstenergie nach dem externen Impuls bestimmt. Die renormierte Masse enth�altdie Selbstenergie am externen Impuls Null. Im letzten Abschnitt wurde jedoch ge-zeigt, da� im endlichen Volumen eine diskrete Impulsdarstellung vorliegt, Di�eren-tiationen nach Impulsen also nicht m�oglich sind, und da� der Impuls Null nichtimmer im Impulsraum enthalten ist. Daher m�ussen die De�nitionen renormierterGr�o�en in einem endlichen Volumen abge�andert werden, siehe [LMWG91].4.2.1 BosonenWie im unendlichen Volumen gilt f�ur den inversen vollen Propagator (vgl. (3.27)):G�1� (p) = bp2 +m20 � ��(p) ; p 2 Bp (4.7)F�ur L 6= T wird die Taylor-Entwicklung der Selbstenergie durch Symmetriebedin-gungen weniger stark eingeschr�ankt als im unendlichen Volumen. Daher betrachtetman Impulse p = (~0; p4) und approximiert den Propagator durchG�1� (p) = m2 + nbp24 +O(bp4): (4.8)Die Renormierungsbedingung fordert f�ur das entsprechende Verhalten des renor-mierten Propagators G�1R�(p) = m2R + bp24 +O(bp4): (4.9)Folglich lautet die WellenfunktionsrenormierungZ� = n�1 (4.10)und die renormierte Masse m2R = Z�m2 = n�1m2: (4.11)Das eigentliche Problem liegt in der Bestimmung der Entwicklungskoe�zienten mund n. Aus (4.7) liest man ab: m2 = m20 � ��(0) (4.12)



4.2. RENORMIERTE GR�O�EN 59n wird bei der Auswertung numerischer Simulationen { der sich hier so weit wiem�oglich angepa�t werden mu�, um einen Vergleich zu erm�oglichen { durch die klein-sten nicht verschwindenden Impulse p� := (~0;�2�T ) (f�ur T > L) bestimmt. Manfordert n�amlich: m2 + nbp2� = G�1� (p�) = bp2� +m20 � ��(p�) (4.13)und �ndet sofort: n = 1 + 14 sin2 �L (��(0)� ��(p�)); (4.14)wobei die Wahl zwischen p+ und p� das Ergebnis nicht ver�andert. Da �� von ersterSt�orungsordnung ist, erh�alt man damit f�ur die renormierte Masse die Entwicklung:mR = m0 � 12m0  ��(0) +m20��(0) � ��(p�)4 sin2 �L ! (4.15)4.2.2 FermionenDie (4.13) entsprechende Gleichung lautet f�ur die Fermionen:M+ iN
�p� +O(p2) = G�1	 (p) =M0 + i
�p�1��	(p) p 2 Ba; (4.16)vergleiche (3.63). Hier l�a�t sich auch M nicht mehr direkt bestimmen, da 0 62 Ba.Stattdessen fordert man die exakte G�ultigkeit von (4.16) bei den beiden kleinstenImpulsen p� := (0; 0; 0;� �T ) und addiert beide Gleichungen. Es folgt:M =M0 � 12 (�	(p+) +�	(p�)) (4.17)Subtraktion hingegen liefert:N = 1+ i
42 sin �T (�	(p+)��	(p�)) (4.18)Weiter wird verfahren wie im unendlichen Volumen, siehe 3.3.2. Die Wellenfunkti-onsrenormierung wird durch Z 12T	 NZ 12	 = 1; (4.19)die renormierte Massenmatrix durchMR := Z 12T	 MZ 12	 (4.20)de�niert. (3.72) ist unver�andert g�ultig.



60 KAPITEL 4. ENDLICHES VOLUMEN4.3 Volumen-E�ekteDie in den letzten Abschnitten de�nierten renormierten Gr�o�en lassen sich nun inAbh�angigkeit von der Gittergr�o�e untersuchen. Der Ein
u� der endlichen Ausdeh-nung des Gitters ist vor allem f�ur numerische Simulationen interessant, wo er sichbei gegebener Rechenzeit nicht ohne weiteres aus der Durchf�uhrung der Simulati-on auf verschieden gro�en Gittern bestimmen l�a�t [LMWM91]. In dieser Situationliefert die (renormierte) St�orungstheorie auf folgende Weise eine Absch�atzung derVolumene�ekte [LMWM91].Eine renormierte Gr�o�e XR lautet in der nackten St�orungstheorieXR(L; T ) = X0 +�X0(L; T ) (4.21)Hierin sei �X0(L; T ) die von allen nackten Parametern abh�angige Ein-Schleifen-Korrektur zu X im Volumen L3 �T (h�ohere Korrekturen sind nicht mitgeschrieben).Im unendlichen Volumen gilt, da dort die Renormierungsbedingungen aufgepr�agtwurden: XR = XR(1;1) = X0 +�X0(1;1) (4.22)Der (absolute) Volumene�ekt ist die Di�erenz beider Gr�o�en:�XR(L; T ) := XR(L; T )�XR = �X0(L; T )��X0(1;1) (4.23)Die renormierte St�orungstheorie ergibt sich durch Au
�osen von (4.21) nach dennackten Gr�o�en und rekursives Einsetzen bis zur gegebenen Ordnung. In der Ein-Schleifen-Approximation erh�alt man:X0 = XR(L; T )��XR(L; T ); (4.24)wobei �XR(L; T ) aus �X0(L; T ) einfach durch die Ersetzung aller nackten durchrenormierte Parameter entsteht. Folglich lautet der Volumene�ekt in Ein-Schleifen-Ordnung: �XR(L; T ) = �XR(L; T )��XR(1;1) (4.25)Da die Berechnung der Ein-Schleifen-Integrale im unendlichen Volumen analytischnicht m�oglich und numerisch aufwendig ist, geht man folgenderma�en vor: Die indem Ausdruck �XR(L; T ) auftretenden Schleifen-Summen werden numerisch f�ureinen gegebenen Satz renormierter Parameter fXR; : : :g und verschiedene Gitter-gr�o�en L, T berechnet. Dabei wird eine Ausdehnung L1, T1 bestimmt, ab dersich die St�orungskorrektur nur noch unwesentlich �andert. Dann de�niert man alsapproximativen Volumene�ekt:� ~XR(L; T ) := �XR(L; T )��XR(L1; T1) (4.26)und als renormierten Parameter im endlichen Volumen:~XR(L; T ) := XR + � ~XR(L; T ) (4.27)



4.3. VOLUMEN-EFFEKTE 61Der entstehende Fehler wird kontrolliert, indem die betrachtete Gr�o�e au�er aufL31 � T1 noch auf einem etwas kleineren Gitter berechnet wird. Die Di�erenz derErgebnisse sollte ein Ma� f�ur die Abweichung vom unendlichen Volumen darstellen.Liegt der so berechnete Fehler in der Gr�o�enordnung des Volumene�ektes, so m�ussendie Werte L1, T1 vergr�o�ert werden.Die Erstellung der Programme zur Auswertung der Schleifen-Summen erfolgte mitHilfe von symbolischer Computer-Algebra: Zun�achst wurde jeder zur Selbstener-gie beitragende Graph bei vorgegebenen Feynman-Regeln und Symmetriefaktorensymbolisch berechnet. Dies ergab einen Test der durchgef�uhrten analytischen Rech-nungen. Lediglich bei den Fermion-Graphen mu�ten symmetrische und antisym-metrische Anteile von Hand zur Verf�ugung gestellt werden. Aus den symbolischenAusdr�ucken wurden dann automatisch Quelltexte generiert, welche den Wert derSt�orungskorrektur bei einem gegebenen Schleifenimpuls (und bei gegebenen renor-mierten Parametern und externen Impulsen) errechneten. Mit Hilfe einer f�ur gera-de r�aumliche Ausdehnung L m�oglichen optimierten Aufsummation bei gegebenerGittergr�o�e [M�un] wurde schlie�lich der approximative renormierte Parameter imendlichen Volumen bestimmt.Die nachfolgenden Abschnitte stellen die Volumene�ekte einiger renormierter Gr�o-�en im einzelnen vor. Von speziellen Untersuchungen abgesehen, wurden dabei alleParameter um einen im folgenden \Referenzpunkt" genannten Parametersatz her-um variiert. Tabelle 4.1 zeigt den untersuchten Bereich, die mittlere Spalte gibt denWert an, auf den nicht variierte Parameter gesetzt wurden. Alle Rechnungen wurdenParameter �xiert bei Bereichmp 0:5 0:2 � 1:0�R 0:22 0:05 � 0:5gp 2:0 0:5 � 4:5GR 0:45 0 � 0:5GR� �0:45 �0:5� 0:1e0 0:5 0 � 1e 0 0 � 0:25Tabelle 4.1: Untersuchte Parameterbereichef�ur ein 63 � 12- und ein 83 � 16-Gitter durchgef�uhrt. Das kleinere Gitter wird immermit Rauten 3, das gr�o�ere mit Dreiecken 4 markiert. Die kleinste Masse im Para-meterbereich ist 0:05, einer Korrelationsl�ange von � 20 entsprechend. Daher wurdeL1 = 26 und T1 = 52 gew�ahlt. Um einen �Uberblick �uber die dadurch entstehenden



62 KAPITEL 4. ENDLICHES VOLUMENFehler zu gewinnen, wurde auch ein 243 � 48-Gitter betrachtet. Die Abweichungenwurden als Fehlerbalken eingetragen (falls sie gr�o�er als die verwendeten Symbolesind), sollten aber wie bereits betont mehr als ein Anhaltspunkt �uber die relativeGr�o�e der Fehler betrachtet werden.Der Referenzpunkt wurde so gew�ahlt, da� die Korrelationsl�angen etwa den r�aumli-chen Gitterausdehnungen entsprechen. Er sollte also grob die Grenze zu auftretendenVolumene�ekten markieren.Alle Ergebnisse wurden in der 't Hooft-Feynman-Eichung (� = �0 = 1) gewonnen.4.3.1 Verschwindende EichkopplungAls erstes betrachte ich den Fall verschwindender Eichkopplungen: e0 = e = 0. Manerh�alt das ungeeichteHiggs-Yukawa-Modell zur�uck und sollte daher bisherige Re-sultate reproduzieren. Daraus ergibt sich ein Test von Rechnungen und Programmdes reinen Higgs- und Fermion-Sektors. Volumene�ekte wurden in [LMWM91]f�ur einen Parametersatz mit GR := GR = �GR� ver�o�entlicht. Damit �uberein-stimmend konnten f�ur die Fermionmasse �R = 0:22 keine nennenswerten E�ektegefunden werden, Tabelle 4.2 fa�t die Ergebnisse zusammen. Die erste Zeile zu jederMe�gr�o�e enth�alt den Literaturwert, die nachfolgenden Zeilen unterscheiden sichin den Randbedingungen f�ur die Fermionen in Zeitrichtung und der verwendetenKonvention f�ur die Berechnung der renormierten Gr�o�en:Nr. Randbedingungen Wellenfunktionsrenormierung1. periodisch De�nition im unendlichen Volumen (3.30)2. antiperiodisch De�nition im unendlichen Volumen (3.30)3. periodisch De�nition im endlichen Volumen (4.14)4. antiperiodisch De�nition im endlichen Volumen (4.14)Eine Auswertung auf dem unendlichen Gitter wurde nicht vorgenommen, sondernstattdessen die Werte auf dem 163 � 32 Gitter durch Addition eines konstanten O�-sets hergestellt. Die Ergebnisse stimmen also bei Anwendung der Methode 1 bis aufdie jeweils letzte signi�kante Stelle mit den Literaturwerten �uberein, eine Ausnahmebildet lediglich der Vakuumerwartungswert vR. Der Unterschied zwischen den De�-nitionen der renormierten Gr�o�en, insbesondere der Wellenfunktionsrenormierung,im unendlichen Volumen (3.30) und im endlichen Volumen (4.14) ist bei moderatgro�en Gittern nicht zu vernachl�assigen, wie einerseits der Tabelle 4.2 zu entnehmenist, und andererseits in Abbildung 4.1 am Beispiel desselben Parametersatzes gezeigtwird. Der Volumene�ekt der im endlichen Volumen de�nierten Gr�o�e ist signi�kantkleiner als jener der im unendlichen Volumen de�nierten Gr�o�e.



4.3. VOLUMEN-EFFEKTE 63L3 � T 1 163 � 32 83 � 16 63 � 16 63 � 6mp [LMWM91] 0.532 0.534 0.555 0.580 0.6201.,3. 0.534 0.555 0.580 0.6212.,4. 0.534 0.552 0.572 0.558gp [LMWM91] 6.20 6.20 6.07 5.66 4.171. 6.20 6.08 5.64 4.202. 6.20 6.26 6.08 6.633. 6.20 6.45 6.60 7.014. 6.20 6.42 6.52 6.68�R 3. 0.220 0.220 0.220 0.2184. 0.220 0.220 0.220 0.218GR [LMWM91] 0.45 0.45 0.43 0.41 0.343. 0.45 0.43 0.40 0.334. 0.45 0.44 0.42 0.45vR [LMWM91] 0.370 0.372 0.379 0.386 0.4241. 0.372 0.390 0.421 0.4922. 0.372 0.383 0.402 0.3763. 0.372 0.379 0.392 0.4084. 0.372 0.378 0.389 0.374Z� [LMWM91] 0.973 0.969 0.898 0.783 0.5021. 0.969 0.900 0.781 0.5082. 0.969 0.936 0.866 0.9703. 0.969 0.960 0.934 0.9624. 0.969 0.962 0.938 0.977Tabelle 4.2: Volumene�ekte bei verschwindender Eichkopplung



64 KAPITEL 4. ENDLICHES VOLUMEN
Abbildung 4.1: Volumene�ekte der im endlichen (+) und im unend-lichen (3) Volumen de�nierten Wellenfunktionsrenor-mierung.Auch die Randbedingungen haben einen Ein
u� auf die Ergebnisse: Im allgemeinensind die Volumene�ekte bei antiperiodischen Randbedingungen in Zeitrichtung f�urdie Fermionen kleiner als bei periodischen.4.3.2 Higgs-MasseDer �Ubergang zu endlichen Eichkopplungen beseitigt einige technische Probleme inder Phase gebrochener Symmetrie, vor allem die Infrarot-Divergenzen der renormier-ten Masse und der Wellenfunktionsrenormierung Z�, da der relevante Freiheitsgrad� entweder verschwindet (unit�are Eichung) oder massiv wird ('t Hooft-Eichung).Daher stehen hier alle in 3.2 aufgef�uhrten De�nitionen der Massen zur Verf�ugungund k�onnen hinsichtlich ihrer Volumene�ekte verglichen werden.Singularit�aten der Pol-MasseBei der systematischen Untersuchung der Abh�angigkeit der Pol-Masse vom (im Ge-gensatz z.B. zu [L�us86a]) auch in Zeitrichtung endlichen Volumen �ndet man einunregelm�a�iges Verhalten. Abbildung 4.2 zeigt zum Beispiel die Pol-Masse am Re-ferenzpunkt der weiteren Untersuchungen. Um dieses Verhalten zu verstehen, be-



4.3. VOLUMEN-EFFEKTE 65
Abbildung 4.2: Volumene�ekte der Pol-Massetrachte man noch einmal den Graphen G(2)4 (p) aus 3.2.1:G(2)4 (p) = 118g20v20 Zq 1bq2 +m20� 1dq + p2 +m20� (4.28)und seinen Beitrag zur Pol-Masse in (3.41), also bei p = (~0; im(0)p ). Mitdq + p2 = bq2 �m20 cos q4 + 2iq4 sinhm(0)p (4.29)�ndet man:G(2)4 (~0; im(0)p ) = 118g20v20 Zq 1bq2 +m20� � bq2 �m20 cos q4 +m20�(bq2 �m20 cos q4 +m20�)2 + 4q24 sinh2m(0)p (4.30)Der Integrand besitzt verschiedene quadratische Pole, beispielsweise f�ur q = (~q; 0) anden Stellen bq2 = m20�m20�. Da sich ~q = 2�L ~n durch einen Vektor ~n mit ganzzahligenKomponenten darstellen l�a�t, divergieren die Summanden an den Stellenm20 �m20� = 4 3Xi=1 sin2 �niL (4.31)W�ahlt man also bei gegebenem L alle Parameter so, da� ein ~n die obige Gleichungerf�ullt, so nimmt G(2)4 (~0; im(0)p ) beliebig gro�e Werte an. All diese �Uberlegungen blei-ben richtig, wenn der Beitrag in der renormierten St�orungstheorie verwendet wird.Die in Abbildung 4.2 verwendeten Parameter ergeben mp2 �m2R� � 0:1615 und dierechte Seite von (4.31) liefert f�ur ~n = (1; 1; 0) und L = 22 etwa 0:1620, mit anderenWorten: F�ur L � 22:04 w�urde bei analytischer Fortsetzung in L der Pol erreicht, was



66 KAPITEL 4. ENDLICHES VOLUMENdas Verhalten bei L = 22 in Abbildung 4.2 erkl�art. Weitere Singularit�aten entstehenbei q4 6= 0 und in anderen Beitr�agen zur Selbstenergie.Die im n�achsten Abschnitt besprochene physikalische Masse zeigt diese Singula-rit�aten nicht, daher ist der physikalische Gehalt des Ph�anomens anzuzweifeln, wahr-scheinlicher ist, da� es sich um einen Artefakt der perturbativen Behandlung handelt.Allerdings zeigen sich bei der Untersuchung instabiler Teilchen (� ist hier instabil)in endlichen Volumina in der N�ahe von Resonanzen �ahnliche E�ekte bei h�oherenEnergie-Eigenwerten [L�us86b].Physikalische MasseDie in Abschnitt 3.2.4 als exponentielle Zerfallskonstante der Zeitscheiben-Korre-lation eingef�uhrte physikalische Masse stimmt, wie bereits betont, nur im unendli-chen Volumen exakt mit der Pol-Masse �uberein. Um die Abweichungen �uberblickenzu k�onnen, wurde diese Gr�o�e f�ur einige Parameterwerte numerisch ermittelt. Da-zu wurde die Selbstenergie ��(p) f�ur alle Werte p 2 Bp bestimmt, daraus dieZeitscheiben-KorrelationReC(0; t) = T�1Xn=0 cos(2�T nt)(2 sin �T n)2 +m20 ���(~0; 2�T n) (4.32)berechnet und mit der FunktionCf(t) = A+B �e�mpht + e�mph(T�t)� (4.33)ge�ttet. Die Zeitscheiben-Korrelation ist f�ur zwei Beispiele in Abbildung 4.3 aufge-tragen. Hieran ist zu erkennen, da� bei gro�en Kopplungen selbst bei Beschr�ankun-gen z.B. auf das Intervall t 2 [T=4; 3T=4] keine zuverl�assige Bestimmung der phy-sikalischen Masse mehr m�oglich ist. Diese Methode der Massenbestimmung bleibtalso auf gewisse Parameterbereiche beschr�ankt, au�erhalb verliert die perturbativeEin-Schleifen-Approximation ihre G�ultigkeit.Vergleich verschiedener De�nitionenAbbildung 4.4 zeigt beispielhaft die Volumene�ekte von renormierter Masse, Pol-Masse und physikalischer Masse. Die Volumene�ekte sinken bei der Gittergr�o�e103 � 20 unter 1 %. Die Massen von Z- und �-Bosonen betragen bei den gew�ahltenParametern 0:326, also ist �R = 0:22 die kleinste Masse, einer Korrelationsl�ange vonetwa 5 entsprechend. Die Volumene�ekte werden hier also dann unerheblich, wenndie r�aumliche Ausdehnung die doppelte Korrelationsl�ange erreicht.Deutlich zeigt sich in der Abbildung der Unterschied der renormierten Masse vonden anderen De�nitionen, deren Volumene�ekte absolut etwa gleich gro� sind, aber
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Abbildung 4.3: Zeitscheiben-Korrelation des �-Feldes auf einem 83 � 16-Gitter am Referenzpunkt, aber mit verschiedenen Eich-kopplungen.

Abbildung 4.4: Vergleich der Massende�nitionen (+ renormierte Mas-se, 3 Pol-Masse, 4 physikalische Masse) hinsichtlichihrer Volumene�ekte, Parameter wie am Referenzpunkt,aber mR = 0:532.



68 KAPITEL 4. ENDLICHES VOLUMENein anderes Vorzeichen tragen. Pol- und physikalische Masse hingegen unterscheidensich erwartungsgem�a� nur bei kleinen Gittern, allerdings zeigt letztere auch beianders gew�ahlten Parametern keine Anzeichen der bei der Pol-Masse auftretendenSingularit�aten. Insgesamt liegt die Gr�o�e der E�ekte z.B. f�ur das 63 � 12-Gitter beimaximal 3 %, also deutlich geringer als im ungeeichten Fall (ca. 10 % bei 63 � 16).Das abgebildete Verhalten sollte durch die Ergebnisse aus [L�us86a] beschrieben wer-den k�onnen. Dort wurde das asymptotische Verhalten des Volumene�ektes �mp imKontinuum f�ur L ! 1 und T = 1 untersucht, indem dieser durch eine Streu-amplitude ausgedr�uckt und darin die dominaten Graphen aufgesucht wurden. DasErgebnis ist in [M�un85] auf gitterregularisierte Theorien erweitert worden:�mp = �CLe� 12p3mpL +O(e� ~mL); (4.34)mit ~m > 12p3mp. Nun sind bei T = 1 Pol- und physikalische Masse identisch,hier ist dies aber nicht der Fall, und die Pol-Masse zeigt Singularit�aten, welche dasasymptotische Verhalten verschleiern. Es wurde daher versucht, obige Funktion andie physikalische Masse zu �tten. Die betrachteten Gittergr�o�en erm�oglichten jedochkeine zuverl�assige Bestimmung z.B. der Konstanten C.Abh�angigkeiten von renormierten ParameternIn diesem Abschnitt wird das Verhalten der Volumene�ekte der Higgs-Massen beiVariation der renormierten Massen und Kopplungen untersucht.Bei gr�o�eren Massen erwartet man wegen der kleineren Korrelationsl�ange im allge-meinen kleinere Volumene�ekte. Dieser Trend ist bei Pol- und renormierter Massein den Abbildungen 4.7(1) und 4.6(1) deutlich zu erkennen. Bei Massen < 0:3 sinddie E�ekte beider Massen negativ und wachsen aufgrund der gegen�uber der Git-terausdehnung gro� werdenden Korrelationsl�ange schnell bis auf �uber -50 % an.Au�allend ist die �Ahnlichkeit des Verhaltens bei Variation der Higgs-Masse mitjenem bei Variation der Eichkopplung e0. Da allerdings e0 an der Erzeugung vonMassen e0v0 f�ur �- und Eichbosonen beteiligt ist, sollte dieser Befund nicht �uberra-schen. Im Diagramm 4.7(5) ist in der N�ahe von e0 = 0:8 die Auswirkung einer deroben diskutierten Singularit�aten der Pol-Masse auf ihren Volumene�ekt zu sehen. ImGrenzwert verschwindender Massen wachsen die Volumene�ekte der renormiertenGr�o�e schneller als jene der Pol-Masse. Hier zeigen sich bereits die aus der De�nitionbei verschwindendem Impuls herr�uhrenden Infrarot-Divergenzen.In 4.7(5) sind auch noch die f�ur den ungeeichten Fall erhaltenen Resultate eingetra-gen: ca. +5 % f�ur das kleinere Gitter. Der �Ubergang e0 ! 0 erfolgt o�enbar unstetig.Dies erkl�art sich aus der Behandlung der Nullmoden bosonischer Propagatoren: Immasselosen Fall (also im Fall der �-Bosonen f�ur e0 = 0) werden sie ausintegriert undtragen zu Schleifen-Summen nicht bei. F�ur endliche e0 hingegen lautet der Volumen-



4.3. VOLUMEN-EFFEKTE 69
(1) (2)
(3) (4)
(5) Abbildung 4.5: Volumene�ekte der Pol-Masse
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(1) (2)
(3) (4)
(5) (6)Abbildung 4.6: Volumene�ekte der renormierten Higgs-Masse



4.3. VOLUMEN-EFFEKTE 71e�ekt z.B. einer ��Boson-Schleife:� 1L3T Pq2Bp 1bq2+(e0v0)2 = � 1L3T 1(e0v0)2 + � 1L3T Pq 6=0 1bq2+(e0v0)2= 1(e0v0)2 � 1L3T � 1L31T1�+O((e0)0) (4.35)Damit divergiert der Volumene�ekt f�ur e0 ! 0 und �xierte L, T quadratisch. F�ure0 = 0 hingegen wird der Term / (e0)�2 nicht mit aufsummiert.Bei der Variation der quartischen Kopplungskonstante zeigen sich in den Abbildun-gen 4.7(2) und 4.6(2) erhebliche Unterschiede zwischen renormierter und Pol-Masse.W�ahrend sich der Volumene�ekt der Pol-Masse als im wesentlichen konstant er-weist bei ca. 3 % f�ur ein 63 � 12-Gitter, nimmt er bei der renormierten Masse etwaquadratisch mit der Kopplung bis auf �uber -20 % bei gR = 4:5 zu. Dies ist mitdem Verschwinden des Vakuumerwartungswertes f�ur gro�e gR zu erkl�aren: Wiederverschwinden dann die durch den Higgs-Mechanismus erzeugten Massen, und dieKorrelationsl�ange w�achst schnell an. Auch in 4.7(2) macht sich eine Singularit�at derPol-Massen bemerkbar: Auf dem zur Kontrolle verwendeten 243 � 48-Gitter liegt sieetwa bei gph = 1. Dies l�a�t den durch das endlich gro�e Vergleichsgitter eingebrach-ten Fehler sehr gro� erscheinen.Die Abh�angigkeiten von den fermionischen Gr�o�en erweisen sich als viel geringer(Abb. 4.7(3),(4) und 4.6(3)-(5)). Der Volumene�ekt der Pol-Masse bleibt im gesam-ten Bereich unterhalb von 5 % (63 � 12). Er sinkt mit steigendem �R und steigtmit steigendem GR . Der E�ekt der renormierten Masse liegt absolut immer unter6 % und wechselt bei gewissen Parametern das Vorzeichen. F�ur renormierte Gr�o�enwurde noch ein Parametersatz mit �xiertem GR� berechnet. Der Volumene�ekt derrenormierten Masse h�angt dann kaum von GR ab.Interessant sind noch die Volumene�ekte der physikalischen Higgs-Masse. Sie sindf�ur die wichtigen F�alle der Variation der Higgs-Masse und der Eichkopplung inAbbildung 4.7 dargestellt und m�ussen mit den Abbildungen 4.5(1) und (5) verglichenwerden. Zun�achst f�allt der jeweils geringe Parameterbereich auf, in welchem dieBestimmung der physikalischen Masse (auf allen betrachteten Gittern) m�oglich war.Innerhalb dieses Bereiches zeigt sich jedoch jeweils eine gute �Ubereinstimmung, dieallerdings in der N�ahe der gro� werdenden E�ekte bei e0 < 0:2 schlechter wird.4.3.3 Higgs-SelbstkopplungDas Verhalten der quartischen Selbstkopplung des Higgs-Feldes zeigen die Abbil-dungen 4.8 und 4.9. Das grobe Verhalten der Volumene�ekte ist hier unabh�angigvon der De�nition der Kopplung. Feinere Unterschiede zeigen sich aber durchaus,z.B. bei der Variation von Higgs-Masse oder Eichkopplung, wo der Betrag des Vo-lumene�ektes f�ur mp > 0:3 bzw. e0 > 0:2 unter 5 % liegt und darunter pl�otzlich



72 KAPITEL 4. ENDLICHES VOLUMEN
(1) (2)Abbildung 4.7: Volumene�ekte der physikalischen Massestark anw�achst, w�ahrend er f�ur die renormierte Kopplung bereits etwa bei mR = 0:6und e0 = 0:6 den Wert von 5 % erreicht.Der Volumene�ekt steigt (bei beiden Gr�o�en) mit wachsenden Kopplungen an, undzwar bis etwa -5 % bei der Pol-Kopplung und unter -20 % bei der renormiertenKopplung f�ur gR = 4:5.Wie bei den Massen ist die Abh�angigkeit der Volumene�ekte von den fermionischenParametern �R, GR und GR� klein. Sie bleiben absolut immer kleiner als ca. 4 %(f�ur die Pol-Kopplung, 10 % f�ur die renormierte Kopplung) f�ur das kleine Gitterund fallen mit wachsenden Yukawa-Kopplungen.4.3.4 WellenfunktionsrenormierungAbbildung 4.10(1) illustriert die Abh�angigkeit des Volumene�ektes der Wellenfunk-tionsrenormierung des �-Feldes von der Higgs-Masse. F�ur mp < 0:3 steigt er dra-stisch an, wiederum eine Folge der in diesem Bereich vomHiggs-Boson dominiertenKorrelationsl�ange.Die Variation der Higgs-Kopplung wirkt sich im gegebenen Bereich weniger dra-stisch aus, allerdings macht sich auch hier bei gro�en Kopplungen der kleine Va-kuumerwartungswert durch monotones Steigen auf knapp 5% f�ur 63 � 12 bemerkbar(Abbildung 4.10(2)).Auch bei der Variation aller fermionischen Gr�o�en steigt der Volumene�ekt nicht�uber 4% an, mit wachsenden Parametern f�allt er evtl. nach Annahme eines Maxi-
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(1) (2)
(3) (4)
(5) Abbildung 4.8: Volumene�ekte der Pol-Kopplung
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(1) (2)
(3) (4)
(5) (6)Abbildung 4.9: Volumene�ekte der renormierten Higgs-Selbstkopplung
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(1) (2)
(3) (4)
(5) (6)Abbildung 4.10: Volumene�ekte der Wellenfunktionsrenormierung



76 KAPITEL 4. ENDLICHES VOLUMENmums (GR � 0:6) ab.Wie gewohnt ergibt die Variation der Eichkopplung dasselbe Bild wie die Variationder Higgs-Masse. Wieder erfolgt ein unstetiger �Ubergang zum ungeeichten Fall mitpositivem Volumene�ekt.4.3.5 VakuumerwartungswertDa� mp � 0:4 f�ur die beiden gew�ahlten Gitter etwa die Grenze zu gro�en Volu-mene�ekten darstellt, wird in Abbildung 4.11(1) besonders deutlich. Bei gr�o�erenMassen liegt der Volumene�ekt des Vakuumerwartungswertes unter 2 %, w�ahrender bei kleineren Massen das Vorzeichen wechselt und schnell auf weit �uber 10 %ansteigt.Die Abh�angigkeit von der Selbstkopplung ist nicht so ausgepr�agt: Der Volumene�ektbleibt im gesamten untersuchten Bereich unter 2 %. O�enbar wechselt er bei gro�enKopplungen (wo wegen der gro�en Korrelationsl�ange sehr gro�e Gitter als Referenzben�otigt werden) noch einmal das Vorzeichen.Wie bei allen anderen bosonischen Gr�o�en wirken sich Ver�anderungen der Fermion-Masse und Yukawa-Kopplungen nur schwach auf die Volumene�ekte des Vaku-umerwartungswertes aus (s. Abb. 4.11(3)-(5)), im gesamten Bereich werden sie niegr�o�er als 4 %. Setzt man GR� fest auf 0:1, so bleiben sie sogar unter 1%.Bei der Variation der Eichkopplung in Abb. 4.11(6) zeigt sich das f�ur renormierte(im Gegensatz zu durch Pole de�nierten) Gr�o�en mittlerweile gewohnte Bild: Un-terhalb von etwa e0 = 0:3 werden die Volumene�ekte schnell sehr gro�. Oberhalbdieser Grenze liegen sie auf dem kleineren Gitter bei nur 3%. Bei verschwindenderEichkopplung betragen sie etwa 1 %.4.3.6 Fermion-MasseDer Volumene�ekt der Fermion-Masse �R ist �uber den gesamten Bereich der Higgs-Masse nahezu konstant und steigt erst unterhalb von mR = 0:2 aufgrund der zum(dort sehr kleinen) Vakuumerwartungswert proportionalen Massen an. Im Vergleichzur ungeeichten Theorie ist der E�ekt mit knapp 20 % auf dem 83 � 16- und etwa 35% auf dem 63 � 12-Gitter �uberraschend gro�.Auch die Abh�angigkeit von der Selbstkopplung ist gering, wie Abbildung 4.12(2)zeigt. Die Gr�o�e liegt �uber fast den gesamten Bereich nahezu konstant bei knapp 20% bzw. 35 %.Bei der Variation von �R selbst steigt der absolute E�ekt von etwa 0:06 auf 0:10.Der relative Volumene�ekt sinkt folglich von �uber 100% auf etwa 20 % auf dem



4.3. VOLUMEN-EFFEKTE 77
(1) (2)
(3) (4)
(5) (6)Abbildung 4.11: Volumene�ekte des Vakuumerwartungswertes
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(1) (2)
(3) (4)
(5) (6)Abbildung 4.12: Volumene�ekte der Fermion-Masse



4.3. VOLUMEN-EFFEKTE 7963 � 12-Gitter ab.Generell wird der Volumene�ekt mit gr�o�eren Yukawa-Kopplungen kleiner. BeiGR� = �GR (Abb. 4.12(4)) sinkt er von 45% bei GR = 0 auf 15 % bei GR = 1.�Ahnlich verh�alt er sich im Fall GR� = 0:1 (Abb. 4.12(5)), wo er aber nur bis aufca. 25% abf�allt. Hier �ndet sich noch ein interessanter Punkt: F�ur GR� = GR verschwindet der Volumene�ekt fast vollst�andig! Wie in Abbildung 4.13 zu sehen,
Abbildung 4.13: Volumene�ekte von �R bei GR� = GR . Die gestrichelteLinie ist eine lineare Interpolation der Werte bei GR =0 und GR = 0:2.handelt es sich hierbei um ein sehr scharfes Minimum, in dessen unmittelbarer Nach-barschaft der Volumene�ekt auf �uber 120% anw�achst.Bei e0 = 0 ist der Volumene�ekt kleiner als 1 %, die Abh�angigkeit von der Eichkopp-lung l�a�t sich gut in drei Zonen einteilen (Abb. 4.12(6)): Unterhalb von e0 � 0:05f�uhren die Nullmoden wie in 4.3.2 beschrieben zu divergierenden Volumene�ekten(hier ist die obige Argumentation auf den Graphen G(3)5 anzuwenden). Zwischene0 = 0:05 und e0 � 0:3 wechseln sie ihr Vorzeichen und liegen unter 5%, dar�ubersteigen sie schnell auf �uber 100% bei e0 = 0:7 an.4.3.7 Yukawa-KopplungenWerden die Yukawa-Kopplungen bei GR = �GR� festgehalten, so sind die Vo-lumene�ekte nicht unabh�angig, und man kann sich auf die Untersuchung von GR beschr�anken (Abb. 4.14). Oberhalb von etwa mR = 0:3 liegen die Volumene�ekteunter 5%, darunter wachsen sie schnell an.
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(1) (2)
(3) (4)
(5) (6)Abbildung 4.14: Volumene�ekte der Yukawa-Kopplung



4.3. VOLUMEN-EFFEKTE 81
Abbildung 4.15: Volumene�ekte der Spiegel-Yukawa-KopplungMit der quartischen Kopplung wachsen die Volumene�ekte langsam von -2% aufca. +1%, variieren also nur wenig. F�ur Kopplungen oberhalb von 3:5 sind die Ab-weichungen vom unendlichen Volumen f�ur das gr�o�ere Gitter gr�o�er als f�ur daskleinere, ein E�ekt, welcher mit der Volumenabh�angigkeit von Schleifensummen beiantiperiodischen Randbedingungen zu erkl�aren ist: Typischerweise besitzen diesebei moderaten Volumina ein Extremum, darunter wird der Volumene�ekt in einemgewissen Bereich kleiner als bei gr�o�eren Volumina.Bei Ver�anderung der Fermion-Masse �R steigen die Volumene�ekte langsam von-3% auf +1%. Bei Variation der Yukawa-Kopplungen selbst sind hier die absolu-ten E�ekte nicht konstant, so da� die relativen E�ekte betragsm�a�ig h�ochstens 5%erreichen. Selbst im asymptotischen Verhalten f�ur gro�e Kopplungen scheinen sienicht �uber 10% zu steigen. Fixiert man GR� auf 0:1, so werden die Volumene�ektebeiderYukawa-Kopplungen vollst�andig vernachl�assigbar, wie Abb.4.14(6) und 4.15zeigen.Mit der Eichkopplung variieren die Kopplungen wie die Fermion-Masse: Im unge-eichten Fall sind die E�ekte sehr klein, f�ur e0 < 0:2 gro� und negativ aufgrund derverschwindenden Eichboson-Massen, f�ur 0:2 < e0 < 0:7 bleiben sie betragsm�a�igunter 10% und oberhalb von e0 = 0:7 wachsen sie schnell auf gro�e positive Werte.4.3.8 Variation der vektoriellen EichkopplungEine �Anderung der zum Feld A geh�orenden Eichkopplung e beein
u�t nur fermio-nische Gr�o�en. Die entprechenden Volumene�ekte sind in Abbildung 4.16 zu sehen.Bei �xiertem e0 = 0:5 betr�agt der erlaubte Bereich e = 0 � 0:25 (siehe (1.57)). Die
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(1) (2)Abbildung 4.16: Volumene�ekte als Funktion der vektoriellen Eichkopp-lung

Abbildung 4.17: Volumene�ekte der Eigenwerte der Massenmatrix



4.3. VOLUMEN-EFFEKTE 83Fermion-Masse zeigt eine nur moderate Abh�angigkeit: Sie sinkt von etwa -4% auf-3% f�ur das kleine Gitter. Bei der Kopplung gibt es deutlichere Ver�anderungen, siesinkt von �uber 20% auf nahezu Null ab.Der interessanteste Teil dieser Untersuchung liegt jedoch am Punkt e = 0. Bei derWahl GR = �GR� wird die Matrix N in (3.68) n�amlich proportional zur Einheits-matrix. Wie dort ausgef�uhrt, ist der Rotationsanteil der Wellenfunktionsrenormie-rung dann nicht festgelegt, und man kann verschiedene renormierte Fermionfelderbetrachten. Die bisherigen Untersuchungen fanden bei � = 0 statt, diese Ergebnissesind in 4.16 noch einmal eingetragen, sie setzen sich durch einen o�enbar unstetigen�Ubergang von den Werten bei e > 0 ab. W�ahlt man hingegen � = �=4, so erreichtman einen glatten �Ubergang zu e = 0.Vergleicht man die Volumene�ekte bei e = 0 zwischen 4.16(1) und 4.16(2), so f�alltauf, da� die absoluten E�ekte mit verschiedenen � vertauscht zu sein scheinen. DieUrsache f�ur diesen E�ekt ist darin zu suchen, da� f�ur � = �=4 der Dreh-Anteilder Wellenfunktionsrenormierung nebendiagonal und die Position von renormierterKopplung und Masse in der Massenmatrix vertauscht wird.Unabh�angig von der �-Freiheit sind hingegen die Eigenwerte der Massenmatrix. Siebesitzen bei den gew�ahlten Parametern entgegengesetztes Vorzeichen, �1R ist inAbbildung 4.17 gezeigt. Der Volumene�ekt sinkt beim kleineren Gitter von etwa-15% auf -3% ab. Auch bei e = 0 sind die Volumene�ekte vom gew�ahlten Drehanteilin der Wellenfunktionsrenormierung unabh�angig.



Kapitel 5MassenschrankenDas hier behandelte Modell besitzt einen siebendimensionalen Raum nackter Pa-rameter (m0; g0; �0; G0 ; G0�; e0; e). Physikalische Forderungen, vor allem nach derStabilit�at der Theorie, schr�anken den g�ultigen Parameterbereich ein. Dies f�uhrt aufSchranken der renormierten Parameter. An prominenter Stelle sind hier obere unduntere Schranken f�ur die Higgs-Selbstkopplung zu nennen, welche auf Schrankenf�ur die Masse des Higgs-Bosons f�uhren.5.1 E�ektives PotentialDie N�utzlichkeit des e�ektiven Potentials (welches in Lehrb�uchern vorgestellt wird([IZ85, S. 448�], [Ryd89, S. 387�],[Hua82, S. 200�]) bei der Behandlung von Theo-rien mit spontaner Symmetriebrechung ist bekannt. Es l�a�t sich mit der Wirkungbzw. den Feynman-Regeln der symmetrischen Phase relativ leicht berechnen, ge-stattet aber R�uckschl�usse auf renormierte Gr�o�en wie beispielsweise den Vakuu-merwartungswert. Ich werde hier der K�urze halber nur die bosonischen Beitr�agef�ur die niedrigste Ordnung in der Gitterkonstanten, also die Kontinuumsausdr�ucke,berechnen und die Fermion-Beitr�age aus [LMWG91] entnehmen.Als e�ektives Potential bezeichnet man im allgemeinen den negativen lokalen Anteildes erzeugenden Funktionals �[']. Dieses h�angt �uber eine Legendre-Transformationmit dem erzeugenden Funktional Z zusammen:�['] = lnZ[J ]�Xx Jx'x 'x = 1Z[J ] @Z[J ]@Jx = h�i J (5.1)Exponentiation liefert e�['] = Z D�e�S[�]+Px Jx(�x�'x); (5.2)84



5.1. EFFEKTIVES POTENTIAL 85was durch eine Sattelpunkt-Entwicklung um das Minimum ' von S[�] � Px Jx�xausgewertet wird:e�(') = exp��S(')�Px Jx'x� R D� exp(�12Pxy �x�y�2Sxy('))= exp��S(')�Px Jx'x� (det �2S('))� 12= exp��S(')� 12 Tr ln �2S(')�Px Jx'x��2Sxy(') = @@�x @@�yS[�]����=' (5.3)Setzt man nun J = 0, so wird ' = h�i zu einer konstanten Feldkon�guration. IstV (') der lokale Anteil von S('), so lautet das e�ektive Potential in dieser N�aherung(der man bei �h 6= 1 ihren Ein-Schleifen-Charakter angesehen h�atte):U(') = V (') + 12 Tr ln �2S(') (5.4)Diese Rechnung ist direkt auf den Fall mehrerer Felder erweiterbar.Da die �-�-Parametrisierung hier nicht benutzt wird, verwendet man die Wirkungmit den Konventionen der symmetrischen Phase und erh�alt als Beitrag der Higgs-Felder [LMWG91]:12 Tr ln �2S�(') = 12 Tr ln264(�2� m202 ) + g06 0B@ 3'21 + '22 2'1'22'1'2 3'22 + '21 1CA375= 12 Tr ln0B@ �2� m202 + g0'2 00 �2� m202 + 13g0'2 1CA= 12 Rq hln(bq2 � m202 + g0'2) + ln(bq2 � m202 + 13g0'2)i (5.5)Wird die 't Hooft-Eichung in der symmetrischen Phase als F [Z�x] = r��Z�x +�e0'1'2 formuliert, so erh�alt man als Beitrag von Eichfeldern (genauer des EichfeldesZ) und Geistertermen in der 't Hooft-Feynman-Eichung:12 Tr ln �2(SG + SGF + SG�) = 12 Tr ln �(�(Z)��xy)�1 + e02����xy('21 + '22)�= d2 Rq ln(bq2 + 2e02'2)12 Tr ln �2SFP = �12 Tr ln (2+ �xye02('21 � '22))= �12 Rq ln (bq2 + 2e02'2) (5.6)Hier wurde die Tatsache, da� ' f�ur J ! 0 konstant wird, benutzt sowie der inverseEichboson-Propagator in dieser Eichung. Bis auf die Fermion-Beitr�age lautet das



86 KAPITEL 5. MASSENSCHRANKENe�ektive Potential folglich:U(') = �m202 '2 + g06 '4 + 12 Rq hln(bq2 � m202 + g0'2) + ln(bq2 � m202 + 13g0'2)i+d�12 Rq ln(bq2 + 2e02'2) (5.7)Diese Rechnung kann getestet werden, indem man den Vakuumerwartungswert indieser N�aherung als Extremum des e�ektiven Potentials sucht:0 != @@'U(')= �m20'+ 2g0'33 + g0' Rq " 1bq2�m202 +g0'2 + 13 1bq2�m202 + 13g0'2 #+2(d � 1)e02' Rq 1bq2+2e02'2 (5.8)W�ahlt man das nicht verschwindende Minimumund beachtet dort ' = 1p2(v0+h�i),so �ndet man:h�i = � 32v0 Zq 24 1bq2 � m202 + g0v202 + 13 1bq2 � m202 + g0v206 35� 3(d � 1)e02g0v0 Zq 1bq2 + 2e02 v202(5.9)Dies stimmt mit (3.9) �uberein, wenn man g0v20 = 3m20 einsetzt.5.2 Weinberg-Linde-SchrankeMit Hilfe des e�ektiven Potentials l�a�t sich die Forderung nach dem Vorhandenseinvon spontaner Symmetriebrechung { formuliert durch U(0) > U( vRp2) { in eine untereGrenze f�ur die Higgs-Masse oder die Selbstkopplung umsetzen. Die Vorgehensweisewird hier nur skizziert, eine genaue Beschreibung �ndet sich z.B. in [CW73].Durch Einsetzen der renormierten St�orungstheorie in Ein-Schleifen-Ordnung gelangtman von (5.7) zu einem von Divergenzen befreiten renormierten e�ektiven Poten-tial. F�ur die Herleitung der gesuchten Massenschranke kann jedoch eine wenigeraufwendige Methode verwendet werden [Wei76] (siehe auch [Lin76], diese und wei-tere Artikel zu diesem Thema sind gesammelt in [Ein90] erschienen). Dazu schreibtman das e�ektive Potential (genauer seine bosonischen Beitr�age) alsU(') = �m202 '2 + g06 '4 + 12I(�m202 + g0'2) + 12I(�m202 + 13g0'2) + d � 12 I(2e02'2):(5.10)Unterdr�ucktman skalenverletzendeTerme von der Ordnung der Gitterkonstante undregularisiert das auftretende Integral mit einem Cuto� �, so erh�alt man [Hua82, S.



5.2. WEINBERG-LINDE-SCHRANKE 87107]: I(x2) = Rq ln(bq2 + x2)7! 132�2 h2�2x2 + x4 �ln x2�2 � 12�+O( 1�2 )i ; (5.11)Hier wurden von ' unabh�angige Terme unterdr�uckt. F�ur gro�e ' erh�alt man darausals f�uhrenden Beitrag B'4 ln '2C2 (5.12)mit einer Konstante C und B = 164�2 (109 g20 + 4(d � 1)e04), was f�ur e0 = 0 mit demResultat aus [LMWG91] �ubereinstimmt. An dieser Stelle erweitere ich die Diskus-sion auf das volle Modell (mit Fermionen) einfach durch �Ubernahme des dortigenResultats: B = 164�2 �109 g20 � 32(G40 +G40�) + 4(d � 1)e04� (5.13)Das Ergebnis (5.12) dient nachtr�aglich als Rechtfertigung der Parametrisierung(1.40) des Higgs-Feldes. Der Koe�zient des quartischen Terms der e�ektiven Wir-kung, welcher der renormierten quartischen Kopplung entspricht, enth�alt n�amlicheinen Logarithmus des Feldes, liegt also f�ur gro�e Felder au�erhalb des perturbativenRegimes. Selbst die { im allgemeinen besser konvergierende { renormierte St�orungs-theorie l�a�t sich also nur f�ur kleine Werte des Feldes anwenden.Im folgenden soll eine untere Schranke f�ur die Higgs-Masse bzw. -Selbstkopplungabgeleitet werden. Zu Potenzen dieser Gr�o�en proportionale Terme k�onnen alsovernachl�assigt werden. Damit verschwindet der erste Summand aus B sowie einTerm proportional zu '2 ln'2 im e�ektiven Potential, welches dann folgenderma�engeschrieben werden kann: U(') = �A22 '2 + B'4 ln '2C2 (5.14)mit einer bei Entfernung des Cuto� divergierenden Konstanten A und der den quar-tischen Term absorbierenden Skala C. A wird durch die Forderung �xiert, da� dase�ektive Potential am Vakuumerwartungswert ein Extremum besitzt:0 != @@'U(')�����'= vRp2 = vRp2 "�A2 + 2Bv2R ln v2R2C2 +Bv2R# ; (5.15)es folgt sofort: A2 = 2Bv2R ln v2R2C2 +Bv2R: (5.16)Die Masse des Higgs-Bosons (und damit die Selbstkopplung) ist de�niert durch diezweite Ableitung des e�ektiven Potentials in seinem Minimum:m2� := 12 @2@'2U(')���'= vRp2 = 2Bv2R�ln v2R2C2 + 32� (5.17)



88 KAPITEL 5. MASSENSCHRANKENDie grundlegende Forderung ist nun, da� spontane Symmetriebrechung tats�achlichvorliegt, in vR also das globale Minimum liegt:0 = U(0) > U( vRp2) = �A2v2R4 + Bv4R4 ln v2R2C2= �Bv4R4 (1 + ln v2R2C2 ) (5.18)Solange B eine positive Konstante ist, mu� der Logarithmus gr�o�er als �1 sein. Dieslautet f�ur die Masse: m2� > Bv2R (5.19)oder f�ur die Selbstkopplung (d = 4)g > 3B = 116�2 h9e04 � 24(G4R +G4R�)i : (5.20)Abbildung 5.1 zeigt die Weinberg-Linde-Schranke zusammen mit der Vakuum-
Abbildung 5.1: Weinberg-Linde-Schranke bei �R = 0:5 und vR = 0:5.Stabilit�atsschranke (den nahezu senkrechten Linien, s.u.) f�ur verschiedene Eichkopp-lungen. Beide Schranken zusammen ergeben fast immer eine positive untere Gren-ze f�ur die Selbstkopplung, allerdings ist die Weinberg-Linde-Schranke erheblichschw�acher als jene der Vakuum-Stabilit�at.5.3 Vakuum-Stabilit�atDie Bedeutung der Vakuum-Stabilit�ats-Schranke in einer gitterregularisierten Theo-rie wird in [LMWG91] ausf�uhrlich erkl�art: Ihre Herleitung beruht auf der Verbin-



5.3. VAKUUM-STABILIT �AT 89dung zwischen der laufenden Kopplung bei der Cuto�-Skala und der nackten Kopp-lung. Verfolgt man von diesem Punkt aus durch eine Integration der �-Funktion dieRenormierungsgruppen-Trajektorie zu einer niedrigeren, insbesondere zur physika-lischen Skala, so erh�alt man die korrespondierende renormierte Kopplung. Da dienackte Kopplung positiv ist (ansonsten w�are die Theorie instabil!), liefert die Inte-gration vom Startpunkt g0 = 0 aus eine untere Grenze f�ur die renormierte Kopplung,falls die Trajektorie monoton fallend ist (sonst k�onnte sie bei einer Erh�ohung desCuto� wieder in den positiven Bereich f�uhren). Dies ist dann der Fall, wenn nur dertriviale Fixpunkt des Flusses existiert, wie von der Ein-Schleifen-Approximation der�-Funktion vorhergesagt.......................................
...................................................................................
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.............................................
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u� im Ein-Schleifen-SzenarioDie kleinste m�ogliche renormierteKopplung erh�alt man aus den Ergebnissen der Ein-Schleifen-Approximation, indem man bei �xiertem v0 die nackte Kopplung g0 = 0setzt. Dann gilt sofort m20 = g0v20=3 = 0, und f�ur die Schranke erh�alt man aus (3.36)gv = 3m2v=v2R mit:m2v = m20 � ��(0) +m20(Z� � 1) = ���(0)= +3dNf RqD�1(q)n(G20 +G20�)p2 + 2G20 G20�v20 � 2G0�G0 �2po+dNf Rq D�2(q)nG20 v20(G0 (q2 + �20�)�G0��2q)2+G0 G0��2q(q2 + �2q � �0 �0�)2 �G20 q2(q2 + �2q + �20�)2�G0 G0�q2�2q(�0 + �0�)2 + ( 7! �)o�2(d � 1)e02 Rq 1bq2+M2Z � 2v20e04(d � 1) Rq � 1bq2+M2Z�2 (5.21)Setzt man hier die Ausdr�ucke der renormierten St�orungstheorie ein und entwickeltdies noch bei �xiertem v0 bis zur zweiten Ordnung, so erh�alt man:m2v = 2dNf Zq (G2R +G2R�)q2 � 2GR�GR �2q(q2 + �2Rq)2 � 2(d � 1)e02R Zq 1bq2 (5.22)



90 KAPITEL 5. MASSENSCHRANKENmit �Rq = �R + r2 bq2. Setzt man weiter d = 4, Nf = 2 und GR = GR = �GR�, solautet das Ergebnis:gv = 1v2R (96G2R Zq 1q2 + �2Rq � 18e02R Zq 1bq2) ; (5.23)was f�ur e0R = 0 das Ergebnis aus [LMWG91] reproduziert. Die Abbildung 5.3 zeigtdie Stabilit�atsschranke an der auch in der Literatur gezeigten Stelle �R = 0:5, vR =0:5. Die Eichkopplung w�achst von oben nach unten um je 0:1 an. Mit der Eichung derModells wird die Forderung an die Higgs-Kopplung (und damit an die Masse desHiggs-Bosons) schw�acher. Abbildung 5.4 zeigt die Volumene�ekte der Schranke bei
Abbildung 5.3: Vakuum-Stabilit�ats-Schranke als Funktion der Eichkopp-lung bei �R = 0:5 und vR = 0:5.der Eichkopplung e0 = 0:2 (vergleiche [LMWM91]). Diese E�ekte entstehen durchdie Auswertung der in (5.23) auftretenden Integrale auf endlichen Gittern. Wiederwird auf eine Auswertung der Ausdr�ucke im unendlichen Volumen verzichtet undstattdessen das Ergebnis auf einem 503 � 100-Gitter gezeigt.
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Abbildung 5.4: Volumene�ekte der Vakuum-Stabilit�ats-Schranke an derStelle �R = 0:5, vR = 0:5 und e0 = 0:2.



Kapitel 6Die symmetrische PhaseBislang stand die Betrachtung der Phase spontan gebrochener Eichsymmetrie imVordergrund. Aus den erhaltenen Ergebnissen lassen sich jedoch auch die entspre-chenden Gr�o�en in der symmetrischen Phase ableiten. Im wesentlichen sind hierzunur die Ersetzungen v0 7! 0 m0� 7! m0 (6.1)vorzunehmen. Alle Ausdr�ucke vereinfachen sich dadurch erheblich und einige wei-tergehende Untersuchungen werden m�oglich.6.1 Renormierte Gr�o�en6.1.1 Higgs-FeldAus (3.25) leitet man sofort die Selbstenergie einer der (hier gleichberechtigten)Komponenten des Higgs-Feldes ab:��+(p) = �23g0 Rq 1bq2+m20�dNf Rq 2G0 G0��q�q+p�(G20 +G20�)qq+p(q2+�2q)(q+p2+�2q+p)�e02 �1 + ��1d �P�+ cos p� Rq 1bq2+e02 Rq 1bq2+m20 1dq+p2 � dq � p2 + (� � 1) (dq+p�dq�p)2dq+p2 � (6.2)
92



6.1. RENORMIERTE GR�O�EN 93Der Vorgehensweise aus Abschnitt 3.2.2 folgend, �ndet man f�ur die renormierteMasse in der symmetrischen Phase:m2R+ = m20 + 23g0 Rq 1bq2+m20+dNf Rq 2G0 G0��2q�(G20 +G20�)q2(p2+�2p)2+e02 Rq �d�1+�bq2 � �bq2+m20 �+m20(Z� � 1) (6.3)F�ur e0 = 0 wird das Ergebnis aus [FKL91] reproduziert. Hieran kann der kritischeParameter m0c+ bestimmt werden, f�ur den die renormierte Masse (in Gittereinhei-ten) verschwindet:m20c+ = ��23g0 + (d � 1)e02�Zq 1bq2 � dNf Zq 2G0 G0�( r2 bq2)2 � (G20 +G20�)q2(p2 + ( r2 bq2)2 (6.4)Ein Vergleich mit (3.79) zeigt: m20c = �2m20c+, daher �ndet man mit (1.42) und(1.43) f�ur den kritischen skalaren Hopping-Parameter in beiden Phasen wie ausKonsistenzgr�unden erwartet den gleichen Wert.6.1.2 Fermion-FeldIn der symmetrischen Phase darf f�ur den Fermionpropagator die weiter vereinfachteForm (2.46) verwendet werden:D(p) = p2 + �2p �(1)	 (p) = 0B@ 0 �p�p 0 1CA �(2)	 (p) = 0B@ 1 00 1 1CA (6.5)Damit lautet die Selbstenergie (3.61):�  +(p) = �2iG20	 Rq 1dq�p2+m20 i
�q�q2+�2q + i2(e2 + e2L)
�p� Rq 1bq2+i(e2 + e2L) Rq 1dq�p2 r
�p�+q��(q)�
�q�(c2�+r2s2� )q2+�2q� �+(p) = 2G0 G0� Rq 1dq�p2+m20 �qq2+�2q � 12(e2 + e2L)r cos p� Rq 1bq2+(e2 + e2L) Rq 1dq�p2 �(c2��r2s2�)�q+rqp+qq2+�2q���+(p) = �  (p)jG0 $G0� (6.6)Die simultane Substitution p 7! �p; q 7! �q l�a�t erkennen: �  +(p) ist ungerade,� �+(p) gerade im externen Impuls. Folglich ist die Wellenfunktionsrenormierungdiagonal, die renormierte Massenmatrix also wie die nackte rein nebendiagonal.



94 KAPITEL 6. DIE SYMMETRISCHE PHASE6.1.3 EichfeldWie in Abschnitt 3.5 bemerkt, ist die st�orungstheoretische Behandlung der Eichbo-son-Selbstenergie in der gebrochenen Phase aufwendig, und die resultierenden Aus-dr�ucke sind un�ubersichtlich. In der symmetrischen Phase kann man sie jedoch nochbehandeln und explizit ihre von den Ward-Takahashi-Identit�aten vorhergesagteTransversalit�at (vgl. Abschnitt 3.5) nachweisen. �Ahnliche Rechnungen sind (sogarin nichtabelschen Eichtheorien) bereits in [HH80, KNS81] durchgef�uhrt worden.In der Ein-Schleifen-N�aherung ist die Z-Boson-Selbstenergie eine Summe von f�unfBeitr�agen: �Z��(p) = 5Xn=1 G(4)n (p) (6.7)G(4)1��(p) =̂p qq + pG(4)1��(p) = Rq V (�;�;Z)� (q; q + p)��(q)V (�;�;Z)� (q + p; q)��(q + p)= 4e02 Rq sin(q�+ p�2 ) sin(q�+ p�2 )(bq2+m20)(dq+p2+m20) (6.8)Entwickelt man dies in p, so ergibt sich:G(4)1��(p) = G(4)1��(0) � e023 n���p2�K1�� � p�p�K1��o+O(p4)= G(4)1��(0) � e023 f���p2 � p�p�gK1�6=�0 +O(p4) (6.9)mit K1�� = Zq cos q� cos q�(bq2 +m20)2 : (6.10)Dabei wurde benutzt, da� f�ur jeden Tensor K�� , welcher f�ur � = � den Wert K�=�und f�ur � 6= � den Wert K�6=� annimmt, gilt:���p2�K�� � p�p�K�� = n���p2 � p�p�oK�6=� : (6.11)G(4�)2�� =̂p qDieser Graph zusammen mit dem entsprechenden mit einer �-Boson-Schleife wirdhier nicht explizit berechnet. Man kann sich n�amlich �uberlegen, da� sie unter rechtallgemeinen Bedingungen den Beitrag von G(4)1�� mit verschwindendem externem Im-puls aufheben (siehe hierzu Anhang E):G(4�)2�� + G(4�)2�� = �G(4)1��(0) (6.12)



6.1. RENORMIERTE GR�O�EN 95G(4)3��(p) =̂p qq + pG(4)3��(p) = � Zq TrV(2	;f;Z)� (q; q + p)�	(q)V(2	;f;Z)� (q + p; q)�	(q + p) (6.13)Der explizite Ausdruck ist umfangreich, die Entwicklung f�ur kleine Impulse lautet:G(4)3��(p) = G(4)3��(0)� 4Nfe02 f���p2 � p�p�gK2�6=�0 +O(p4)K2��0 = Rq � 16@�!�@�0!�0+ 12 r2!�q� cos q�0� 13 r4q2�q2�0+ 12����0(q2+�2q)2!� = q� + r�qq� @�!� = cos(2q�) + r�q cos q� + r2q2��� = cos2 q� + r2q2� (6.14)Der Beitrag verschwindenden Impulses wird wieder durch den zweiten Fermion-Graphen G(4)4�� aufgehoben.G(4)5��(p) =̂p qDieser Graph besitzt Beitr�age von je einer Z- und einer A-Boson-Schleife:G(4)5��(p) = 24 Zq V (4Z)���� (p; p; q; q)�(Z)�� (q) + 2 Zq V (2Z;2A)���� (p; p; q; q)�(A)�� (q) (6.15)Mit X�+ �����(p; p; q; q) = ���X�+ bp2� bq2� + ��� bp2bq2� � bp� bp�(bq2� + bq2�) (6.16)�ndet man in Feynman-Eichung:G(4)5��(p) = 1d(e02 � 2e2)(��� bp2 � bp� bp�) = 1d (e02 � 2e2)(���p2 � p�p� ) +O(p4) (6.17)Im Lauf der Rechnungen tauchen nicht rotationsinvariante Terme proportional zu���p2� auf. Sie heben sich jedoch getrennt im skalaren und fermionischen Sektor weg.Damit ist die Selbstenergie transversal�Z��(p) = (���p2 � p�p�)�Z +O(p4)�Z = e023 K1�6=�0 � 4Nfe02K2�6=�0 + 1d(e02 � 2e2); (6.18)und man kann mittels der Renormierungsbedingung� (�(2Z;tr)R )�1�� (p) = 1p2  ��� � p�p�p2 ! (6.19)(der transversale Anteil des renormierten Propagators soll mit jenem des nacktenPropagators identisch sein, vgl. [MM94, S. 125]) die Wellenfunktionsrenormierungdes Z-Feldes bestimmen: ZZ = 1 + �Z (6.20)



96 KAPITEL 6. DIE SYMMETRISCHE PHASE6.2 EichinvarianzAlle me�baren Gr�o�en m�ussen unter einer �Anderung der �xierten Eichung, mithindes Eichparameters �, invariant sein. In den in Kapitel 3 berechneten Selbstenergienf�allt aber die Abh�angigkeit vom Eichparameter auf. Zwar heben sich z.B. in derrenormierten Masse (3.36) alle n�aherungsweise zu Potenzen von � proportionalenTerme gegenseitig auf, schw�achere Eich-Abh�angigkeiten bleiben aber bestehen. Auchder Vakuumerwartungswert (3.9) ist �uber die �-Masse eichabh�angig.Diese Tatsachen sind von Theorien im Kontinuum bereits lange bekannt (siehe z.B.[LZJ72]), in [ACGQ73] wird die Eich-Abh�angigkeit der skalaren Selbstenergie f�urein Abel'sches reines Higgs-Modell explizit berechnet. Sie verschwindet, falls derexterne Impuls auf der Massenschale liegt. Folglich ist die Pol-Masse eichunabh�angig.In der symmetrischen Phase hat man mit Gleichung (6.2) einen hinreichend einfa-chen Ausdruck an der Hand, mit dem der Frage nach der Eichinvarianz in der gitter-regularisierten Theorie nachgegangen werden kann. Dazu betrachtet man zun�achstnur die nicht eichinvarianten Terme des letzten Summanden:e02� Zq 1bq2 +m20 (bq2 � bp2)2dq + p4 (6.21)an der Stelle p = (~0; im(0)p ). Zun�achst setzt man q 7! q � p, wobei man mit der 2� -Periodizit�at des Integranden einen Vorteil der Gitterregularisierung gegen�uber demeinfachen Impuls-Cuto� ausn�utzt. Allerdings ist dies f�ur beliebige p nur auf einemunendlich gro�en Gitter legitim. Mit den Beziehungen (4.29), m0 = 2 sinh m(0)p2 undbp2 = �m20 �ndet man f�ur (6.21):e02� Rq 1bq4 (dq�p2�bp2)2dq�p2+m20 = e02� �1 + m202d � Rq 1bq2 (6.22)Der eichabh�angige Teil des dritten Summanden in (6.2) lautet:� e02�d X�+ cos p� Zq 1bq2 = �e02�d (d � 1 + coshm(0)p ) Zq 1bq2 ; (6.23)und damit �ndet man folgende Eichabh�angigkeit der Selbstenergie auf der (euklidi-schen) Massenschale:��(~0; im(0)p ) = e02�d �m202 + 1� coshm(0)p � Rq 1bq2 +GIT= e02�d �2 sinh2 m(0)p2 + 1 � coshm(0)p � Rq 1bq2 +GIT= GIT; (6.24)wo GIT alle eichinvarianten Terme andeutet. Die Selbstenergie ist also auf der Mas-senschale eichinvariant, folglich ist auch die Pol-Masse eichinvariant.



6.3. VOLUMEN-EFFEKTE 976.3 Volumen-E�ekteDie Volumene�ekte werden in der symmetrischen Phase auf die gleiche Weise de�-niert und berechnet wie in der gebrochenen, wobei sich zum Teil erhebliche Unter-schiede zeigen.Die E�ekte der Pol-Masse �ndet man in Abbildung 6.1. Sie bleiben bei Variation allerParameter betragsm�a�ig unter 1 %, eine Ausnahme bildet lediglich die Variation derrenormierten Masse selbst (6.1(1)). Ab mp < 0:4 steigen die Volumene�ekte schnellauf weit �uber -20 % bei mp = 0:2.Die Volumene�ekte der renormiertenMasse in Abb. 6.2 sind generell erheblich gr�o�erund zeigen auch st�arkere Abh�angigkeiten von den renormierten Parametern. Bei derVariation der Masse ergibt sich ein �ahnliches Bild wie bei der Pol-Masse. Von derSelbstkopplung h�angen die Volumene�ekte nur schwach ab und liegen bei ca. -4bis -5 % f�ur das Volumen 63 � 12. Verkleinert man die Mischung der Fermionen, sowachsen die Volumene�ekte, und zwar auf knapp -10 % bei �R = 0:1. Darunterscheinen sie (betragsm�a�ig) ein Maximum anzunehmen und wieder zu fallen. Mitwachsenden Yukawa-Kopplungen steigen die E�ekte bis auf -20 %, w�ahrend sievon den Eichkopplungen nur schwach abh�angig sind.�Uberraschenderweise sind die Volumene�ekte der skalaren Wellenfunktionsrenor-mierung von den Parametern mp, gph und e0 unabh�angig, n�amlich etwa -2 % f�urdas 83 � 16- und -3.5 % f�ur das 63 � 12-Gitter. Lediglich die Variation der Fermion-Parameter bringt eine �Anderung, diese ist derjenigen der renormierten Masse ganz�ahnlich.Wie bereits in der gebrochenen Phase festgestellt, wachsen die Volumene�ekte derFermionmischung mit Einschalten der Eichkopplung stark an, dies ist in Abbildung6.4(5) zu sehen. Dementsprechend liegen sie bei Variation der anderen Parameterimmer in der Gr�o�enordnung von 30-40 %, abh�angig nat�urlich auch vom absolutenWert der Fermionmischung (6.4(2)). Lediglich f�ur gro�e Yukawa-Kopplungen undvektorielle Eichkopplungen sinken die Volumene�ekte auf ca. 10 % ab. Von derHiggs-Selbstkopplung h�angen sie in der symmetrischen Phase nicht ab.



98 KAPITEL 6. DIE SYMMETRISCHE PHASE
(1) (2)
(3) (4)
(5) Abbildung 6.1: Volumene�ekte der Pol-Masse
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(1) (2)
(3) (4)
(5) Abbildung 6.2: Volumene�ekte der renormierten Masse
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(3) (4)Abbildung 6.3: Volumene�ekte der Wellenfunktionsrenormierung
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(1) (2)
(3) (4)
(5) (6)Abbildung 6.4: Volumene�ekte der Fermion-Mischung



ZusammenfassungInhalt dieser Arbeit ist die st�orungstheoretische Untersuchung eines U(1)L
U(1)R-symmetrischen Higgs-Yukawa-Modells in der Ein-Schleifen-Ordnung. Dazu wur-den zun�achst die Feynman-Regeln in den 't Hooft-Eichungen hergeleitet, wo-bei trotz der Abel'schen Eichgruppe Faddeev-Popov-Geist-Felder ber�ucksichtigtwerden mu�ten. Erst nach Durchf�uhrung dieser allgemeinen Betrachtungen kannman die Feynman-Regeln (wie auch die Ward-Takahashi-Identit�aten) in deneinfacheren unit�aren oder 't Hooft-Feynman-Eichungen angeben.Anschlie�end wurden in der gebrochenen Phase die Selbstenergien und renormiertenMassen von Higgs- und Fermionfeld sowie der Vakuumerwartungswert analytischberechnet. Daraus konnten die kritischen Parameter der Gitter-Theorie und derenVolumene�ekte extrahiert werden, die sich als gering herausstellten.Die durch den Pol des Higgs-Propagators gegebene Pol-Masse, die Wellenfunkti-onsrenormierungen und �uber Ein-Punkt-Funktionen de�nierte Kopplungen wurdenlediglich numerisch zwecks Berechnung von Volumen-Effekten ausgewertet. DerenVerhalten bei Ver�anderung der renormierten Parameter im perturbativ zug�anglichenBereich war der zentrale Untersuchungsgegenstand. Generell ergaben sich dabei f�urrenormierte, d.h. bei verschwindendem Impuls de�nierte Gr�o�en gr�o�ere Volumen-e�ekte als f�ur auf der Massenschale de�nierte Gr�o�en. Letztere zeigten jedoch beigewissen Parameterkombinationen Pole, deren Ursprung unerkl�art blieb. Erhebli-che Abweichungen stellten sich zwischen den verschiedenen m�oglichen De�nitionender Wellenfunktionsrenormierungen heraus. Weitergehende Schl�usse, wie in [L�us91]vorgeschlagen, wurden aus diesen Auswertungen nicht gezogen.Ein weiterer Schwerpunkt war die Herleitung von unteren Schranken f�ur die Massedes Higgs-Bosons. Neben der Berechnung der Abweichung der Vakuum-Stabilit�ats-Schranke von ihrem aus ungeeichtenYukawa-Modellen bekannten Wert wurde auchdie nur in Eichtheorien vorhandene Weinberg-Linde-Schranke angegeben. Sie er-weist sich jedoch als sehr schwach im Vergleich zu der Schranke aus der Vakuum-Stabilit�at.Der Untersuchung der symmetrischen Phase war das abschlie�ende Kapitel gewid-met. Hier wurden die Selbstenergien und renormierten Massen sowie deren Volu-mene�ekte angegeben. 102



Zusammenfassung 103Die Behandlung der Eichfelder beschr�ankte sich auf die Herleitung der Ward-Takahashi-Identit�aten und den expliziten Nachweis der von ihnen gefordertenTransversalit�at der Eichboson-Selbstenergie sowie der Eichinvarianz der Pol-Massein der symmetrischen Phase.Generell ist festzuhalten, da� die Eichung eines Yukawa-Modells seine physikali-schen Eigenschaften (z.B. das Phasendiagramm) im perturbativen Regime nur un-wesentlich �andert. Im Gegensatz dazu unterscheiden sich die f�ur numerische Simu-lationen wichtigen Volumene�ekte in beiden Modellen durchaus.Eine Behandlung dieser Theorie �uber das Ein-Schleifen-Niveau hinaus erscheint we-gen der durch die kleine Eichkopplung bedingten geringen Korrekturen gegen�uberder ungeeichten Fassung in der Ein-Schleifen-Approximation nicht interessant. Siew�urde au�erdem mit gro�en Schwierigkeiten hinsichtlich sowohl der Anzahl derGraphen als auch der Handhabung der einzelnen Selbstenergie-Beitr�age und de-ren numerischer Auswertung zu k�ampfen haben. Hingegen d�urfte die Erweiterungauf eine nichtabelsche Eichgruppe im Hinblick auf numerische Simulationen desSU(2)L 
 SU(2)R-symmetrischen Higgs-Yukawa-Modells, als auch { auf langeSicht { der elektroschwachen Eichgruppe selbst durchaus interessant sein. Die per-turbative Behandlung einer solchen Theorie unterscheidet sich von der hier vorge-stellten durch aufwendigere Feynman-Regeln, welche aus der Tensorstruktur derEichgruppe sowie der das Haar'sche Ma� implementierenden Ma�wirkung resultie-ren.



AnhangA BezeichnungenMit a� = (a1; : : : ; ad) werden euklidische Vektoren, mit ~a Vektoren in d � 1 Di-mensionen bezeichnet. Die Summenkonvention wird benutzt: Doppelt auftretendeIndices werden �uber die positiven Raumrichtungen summiert. Die Summe P� l�auft�uber 2d positive und negative Raumrichtungen, P�+ nur �uber die positiven. Die �ubli-che Algebra der Dirac-Matrizen wird um solche mit negativen Indices erweitert:
�� = �
�. Mit dem Symbol � sind stets Vertexfunktionen, mit G volle und mit �nackte Propagatoren bezeichnet. Impulsintegrale werden alsZq f(q) = 8>>><>>>: �R�� ddq(2�)df(q) im unendlichen Volumen1Ld�1T Pq2B f(q) im Volumen Ld�1 � T (A.1)geschrieben, die Brillouin-Zone h�angt im endlichen Volumen von den verwendetenRandbedingungen ab, vgl. Abschnitt 4.1. Impulserhaltung wird durch eingeklam-merte Integrationsvariable symbolisiert:Z(q1;:::;qn) f(q1; : : : ; qn) := Zq1;:::;qn �(q1+ : : :+ qn)f(q1; : : : ; qn) (A.2)Wie �ublich werden folgende Abk�urzungen benutzt:bq := 2 sin q2 q := sin q q := 12 sin(2q) (A.3)Eine h�au�g auftretende Funktion ist:fk(x) := 12 ne ix2 + (�1)ke� ix2 o = 8><>: cos x2 k geradei sin x2 k ungerade (A.4)104



Anhang 105B Gitter-RegularisierungDie Gitterkonstante lautet stets: a = 1. Vorw�arts- und R�uckw�artsableitung sinddann de�niert durch:r�fx := fx+� � fx ; r��fx := fx�� � fx (A.5)Der D'Alembert-Operator lautet:2fx := P�+r��r�fx = 2dfx �P� fx+� (A.6)Vorw�arts- und R�uckw�artsableitung sind zueinander adjungiert.Xx gx(r�fx) =Xx (r��gx)fx (A.7)Insbesondere sind sie also nicht antihermitesch. Damit ist der durch Multiplikationder Ableitung mit i gebildete Impulsoperator nicht hermitesch. Dieses Problem trittbei linearem Auftreten einer Ableitung, also insbesondere beim Umgang mit Dirac-Feldern auf. Dort wird die antihermitesche Ableitung@�fx = 12 ffx+� � fx��g (A.8)verwendet, und zwar in der Form:X�+ 
�@�fx = 12X� 
�fx+� (A.9)C Chirale TransformationenDie Chiralit�at eines Spinors ist de�niert, falls er ein Eigenvektor der Matrix 
5 ist.Wegen 
25 = 1 gibt es nur die Eigenwerte +1 (linksh�andig) und �1 (rechtsh�andig).Jeder Spinor l�a�t sich in chirale Anteile zerlegen: =  L +  R  L = PL  R = PR : (A.10)Die Projektionsoperatoren sind de�niert als:PL = 12 f1 + 
5g PR = 12 f1� 
5g (A.11)und besitzen die Eigenschaften:P 2L = P 2R = 1 PLPR = 0 PL + PR = 1 PL
� = 
�PR PR
� = 
�PL(A.12)



106 AnhangDaraus folgt f�ur adjungierte Spinoren:� L =  PR � R =  PL (A.13)F�ur Fermion-/Mirror-Fermion-Paare ist ebenfalls ein chiraler Projektor de�niert:PL := 0B@ PL 00 PR 1CA PR := 0B@ PR 00 PL 1CA (A.14)F�ur mit PL; PR vertauschende Objekte a; b; c; d gilt:PL0B@ a
� bc d
� 1CA = 0B@ a
� bc d
� 1CAPRPR0B@ a
� bc d
� 1CA = 0B@ a
� bc d
� 1CAPL (A.15)Von Nutzen sind noch folgende Eigenschaften von 2� 2-Matrizen A:PRAPR = AdPR ; PLAPL = AdPL;PLAPR = AnPR ; PRAPL = AnPL; (A.16)wo Ad (An) die Matrix A mit Null gesetzten Nebendiagonal-(Diagonal-)Elementenbezeichnet. F�ur eine Fermiongeneration f sind chirale Projektoren folgenderma�ende�niert:P(f)R = 8><>: PR f�ur f ungeradePL f�ur f gerade P(f)L = 8><>: PL f�ur f ungeradePR f�ur f gerade (A.17)D FouriertransformationDie Fourier-Transformation von site-Variablen (also solchen, die genau einemGit-terplatz zugeordnet sind), ist de�niert als:'x = Zq '(q)eiqx; (A.18)auf eine besondere Bezeichnung der Transformierten wird also verzichtet. F�ur dieGitterableitungen folgt sofort:r�'x = Rq '(q) e i2 q� i bq� eiqxr��'x = � Rq '(q) e� i2 q� i bq� eiqx2'x = Rq '(q) bq2 eiqx (A.19)



Anhang 107F�ur link -Variablen (z.B. Eichfelder) lautet die Transformation:A�x = Zq A�(q)eiq(x+�2 ); (A.20)hier wird wie auch sonst mit � sowohl der euklidische Index als auch der Einheits-vektor in die entsprechende Richtung bezeichnet. Damit lauten Ableitungen und derFeldst�arketensor:r�A�x = Rq A(q) e i2 (q�+q�) i bq� eiqxr��Ax = � Rq A(q) e� i2 (q�+q�) i bq� eiqxA��x = r�A�x �r�A�x = (������ � ������) Rq A�(q) e� i2 (q�+q�) i bq� eiqx(A.21)Ben�otigt wird auch noch die Fourier-Transformation vierter Feldpotenzen:Px�+A4�x = R(q1;:::;q4) 4Qi=1A�(qi)Px�+�+A4��x = R(q1;:::;q4) ��1;�2;�3;�4(q1; q2; q3; q4) 4Qi=1A�i(qi) (A.22)mit ��1�2�3�4(q1; q2; q3; q4) := P�+�+Qi (��i���i� � ��i���i�)bq1�1 bq2�2 bq3�3 bq4�4= ��1�2��1�3��1�4P� bq1� bq2� bq3� bq4� � ��1�2��1�3 bq1�4 bq2�4 bq3�4 bq4�1���1�2��1�4 bq1�3 bq2�3 bq3�1 bq4�3 � ��1�3��1�4 bq1�2 bq2�1 bq3�2 bq4�2���2�3��2�4 bq1�2 bq2�1 bq3�1 bq4�1 + ��1�2��3�4 bq1�3 bq2�3 bq3�1 bq4�1+��1�3��2�4 bq1�2 bq2�1 bq3�2 bq4�1 + ��1�4��2�3 bq1�2 bq2�1 bq3�1 bq4�2: (A.23)Die Fourier-Transformation lautet f�ur die Fermion-Felder: x = Zq  0(q)eiqx ;  x = Zq  0(q)e�iqx (A.24)Wichtig sind hier folgende Kombinationen:Pxy  y�yxa x = Rq  0(q)a 0(q)Pxy� y�yx+�Ak�xa� x = Rqq0 P�  (q) kQi=1A�(ki)a� (q)e� i2 (q�+q0�) (A.25)Transformiert a� beim �Ubergang � 7! �� wie (�1)n (also etwa n = 0 f�ur eine Zahlund n = 1 f�ur eine 
-Matrix), so wird daraus:Pxy� y�yx+�Ak�xa� x = Rqq0 P�+  (q) kQi=1A�(ki)a� (q)2fn+k(q� + q0�) (A.26)



108 AnhangE Eichfeld-VerticesIn diesem Abschnitt soll gezeigt werden, da� in einer Gitter-Eichtheorie die vomexternen Impuls unabh�angigen Ein-Schleifen-Beitr�age zur Eichboson-Selbstenergiedie Beitr�age der anderen Ein-Schleifen-Graphen bei verschwindendem Impuls geradeaufheben. Seien genauerG1��(p) =̂p qq + p G2�� =̂p qso wird behauptet: G1��(0) = �G2�� (A.27)Die Argumentation (welche im skalaren und fermionischen Fall durch eine explizi-te Rechnung gepr�uft wurde) verl�auft folgenderma�en: Die geeichte Wirkung einesskalaren oder fermionischen Feldes  l�a�t sich schreiben als:S =Xx nU�x yx+�a� x +  yxb xo (A.28)Die perturbative Parametrisierung U�x = exp(ieA�x) f�uhrt auf Vertices der FormV (l)� (q; q0) = �(ie)ll! e� i2 (q�+q0�)a� (A.29)mit der Eigenschaft @@q�V (l)� (q; q) = � l + 1e V (l+1)� (q; q): (A.30)Der inverse nackte Propagator schreibt sich dann:��1(q) = �X� V (0)� (q; q) + b (A.31)und es gilt: @@q��(q) = �(q) @@q�V (0)� (q; q)�(q) (A.32)Die beiden in Frage kommenden Graph-Typen lauten in dieser Notation:G1��(p) = Rq V (1)� (q; q+ p)�(q)V (1)� (q + p; q)�(q + p)G2�� = 2��� Rq V (2)� (q; q)�(q) (A.33)



Anhang 109Anwendung der obigen Eigenschaften liefert:G1��(0) = Rq V (1)� (q; q)�(q)V (1)� (q; q)�(q)= �e Rq V (1)� (q; q)�(q) @@q�V (0)� (q; q)�(q)= �e Rq V (1)� (q; q) @@q��(q)= e Rq @@q� V (1)� (q; q)�(q)= �2��� Rq V (2)� (q; q)�(q)= �G2�� (A.34)Auf diese Weise heben also die zus�atzlich von der Gitterregularisierung erzeugtenGraphen die Beitr�age zur Selbstenergie bei verschwindendem Impuls auf, und zwargetrennt im skalaren und fermionischen Sektor.
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