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Einleitung

Die als Standardmodell bekannte Zusammenfassung der GLASHOW-SALAM-WEIN-
BERG-Theorie der elektroschwachen Wechselwirkung mit der Quantenchromodyna-
mik gilt heute als Grundlage fiir die Physik der Elementarteilchen bis zu den ex-
perimentell erreichbaren Energien. Zu ihren attraktivsten Eigenschaften zéhlen Re-
normierbarkeit, asymptotische Freiheit und die Vorhersage neutraler Stréme und
massiver Vektorbosonen.

Eine wichtige Methode zur Behandlung derartiger relativistischer Quantenfeldtheo-
rien insbhesondere im nichtperturbativen Bereich stellt die Einfiihrung einer diskre-
tisierten euklidischen Raum-Zeit dar. Sie ermdglicht neben der Verwendung stati-
stischer Methoden auch die numerische Untersuchung geeigneter Observabler durch
Monte-Carlo-Simulationen.

Kern der Theorie der elektroschwachen Kraft ist das fiir die Massenerzeugung durch
spontane Symmetriebrechung benétigte HIGGS-Feld. Da das zugehodrige elementare
Teilchen bislang nicht nachgewiesen werden konnte, ist die Untersuchung dieses Teils
der Theorie wichtig. Besonders sind hier die Arbeiten von LUSCHER und WEISZ
[LW88] zu nennen, welche starke Argumente fiir die Trivialitit der ¢*-Theorie in
vier Dimensionen liefern. Daraus lassen sich obere Schranken fiir die Masse des
HiGcaGs-Bosons ableiten.

Aufgrund der Komplexitdt der GLASHOW-SALAM-WEINBERG-Theorie werden viel-
fach vereinfachte Modelle untersucht. Dazu z&dhlen insbesondere rechts-links-symme-
trische HIGGS-YUKAWA-Modelle, in denen die Eichgruppe SU(2), @U(1)y zunéichst
auf SU(2);, @ SU(2)p erweitert wird [MON8T]. Neben reinen HicGs-Modellen, in
denen eine n-komponentige skalare Feldtheorie geeicht wird, kommt den reinen
YUKAWA-Modellen, also den ungeeichten Theorien mit Skalar-Fermion-Kopplung,
eine besondere Bedeutung zu.

Bekanntermaflen [NN81] fithrt die naive Gitterregularisierung der dort mit dem
HiGGs-Feld wechselwirkenden Fermionfelder auf das sog. Doubling-Problem (sie-
he z.B. [MM94, S. 177f] oder [ROT89, S. 81]). Dieses kann zwar durch einen im
Kontinuumslimes verschwindenden Zusatzterm gelost werden [WIL75], allerdings
wird dabei die chirale Symmetrie gebrochen. Zusammen mit der Einfithrung expli-
ziter Spiegelfermionen liefert die WILSON-Wirkung jedoch die in chiralen Theorien
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minimal moégliche Anzahl an zusétzlichen Freiheitsgraden. Die in diesem Kontext
interessante Frage nach der Beseitigung der Spiegelfermionen im Kontinuumslimes
fiihrt auf zwei mogliche Entkopplungsszenarien, deren Untersuchung nichtperturba-
tive Hilfsmittel erfordern: Entweder die Spiegelfermionen erhalten wie die Doubling-
Fermionen in der einfachen WILSON-Formulierung eine Masse in der Grofle des
Cutoff, oder ihre Masse und ihre Kopplungen verschwinden. Wahrend den zu den
YUKAWA-Kopplungen proportionalen Massen der Fermionen durch die vermutete
Trivialitat der Theorie Grenzen gesetzt sind, konnte die zweite Moglichkeit nume-
risch gewinnbringend eingesetzt werden [LMP93a, LMP93b]. Sie wird durch die
GOLTERMAN-PETCHER-Relationen [GP89, LW92] gestiitzt, welche sich aber nicht
auf Theorien mit Eichfeldern anwenden lassen. Deren Untersuchung gewinnt damit
an Bedeutung.

Die Eichung des Modells erhéht zwar aufgrund weiterer Freiheitsgrade und Wech-
selwirkungen seine Komplexitat, beseitigt aber in der Phase spontan gebroche-
ner Symmetrie die vom masselosen GOLDSTONE-Boson hervorgerufenen Infrarot-
Singularitéten, welche die Definition und Berechnung renormierter Gréflen behin-
dern. Auflerdem erméglicht sie bei Betrachtung des effektiven Potentials die Angabe
der sogenannten WEINBERG-LINDE-Schranke, unterhalb derer die spontan gebro-
chene Symmetrie dynamisch wiederhergestellt wird.

Diese Arbeit baut auf ausfithrlichen Untersuchungen eines U(1);, @ U(1)g-symmetri-
schen YUKAWA-Modells mit expliziten Spiegelfermionen auf [FKL91, LMWG91].
Einerseits erlaubt diese Symmetriegruppe bei gegebener Rechenzeit genauere Si-
mulationen, andererseits besitzt sie im Gegensatz zur SU(2), @ SU(2)r wie die
elektroschwache Eichgruppe chirale Anomalien.

Monte-Carlo-Simulationen — das wichtigste Hilfsmittel in gitterregularisierten Feld-
theorien — sind nur auf Gittern mit endlichem Volumen méglich. Die Frage nach
Abweichungen der berechneten Gréfien von ihrem Wert im unendlichen Volumen
stellt sich sofort und ist ausgiebig behandelt worden. Fiir grofle Volumina sind ana-
lytische Untersuchungen moglich [LUs86a, MUN85|, Abschdtzungen lassen sich mit
Hilfe der renormierten Stérungstheorie gewinnen (so geschehen z.B. in [LMWMO91]).

In dieser Arbeit wird eine perturbative Behandlung des U(1), @ U(1)g-symmetri-
schen H1GGS-YUKAWA-Modells in Ein-Schleifen-Approximation vorgenommen. Im
ersten Kapitel wird das Modell vorgestellt, im zweiten seine QQuantisierung bespro-
chen, gefolgt von der Herleitung der FEYNMAN-Regeln. Anschlieflend werden die
Ein-Schleifen- Ausdriicke fiir renormierte Massen und Kopplungen abgeleitet und
Néherungen fiir die kritischen Parameter der Theorie extrahiert. Das vierte Kapi-
tel enthélt die Behandlung der Theorie in einem endlichen Volumen. Nach einigen
einleitenden Uberlegungen und Beispielen werden numerisch gewonnene Volumen-
effekte fiir einige Gréflen vorgestellt. Schranken fiir die Masse des HiGGs-Bosons
bzw. die Selbstkopplung werden im fiinften Kapitel hergeleitet, wihrend das sechste
Kapitel noch einmal kurz aut die Verhéltnisse in der symmetrischen Phase eingeht.



Kapitel 1

Das Higgs-Yukawa-Modell

1.1 Globale Invarianz

Ein global U(1);, ® U(1)g-invariantes YUKAWA-Modell wird nach [FKLI1]| durch
folgende Wirkung definiert:

S = Se+ Su+ Suy
So = T{uedt #3618 - T ol

Se = X {N¢x [Yx¢1’ + ExXx] - %: [Kdzaxq-u’yﬂbx + [(XYQU+M7MX90] (1.1)

xr

5 [Xotho = Rt + PaXe = opta] }

Svs = T{Gu. 10— 1562 Yo+ GaXe [B1 + 95622] X}

Hier bezeichnet p4 die skalare Masse, iy, die Fermion-Mischung und &, K, K, und
K, die Hopping-Parameter. G und G, heifen YUKAWA-Kopplungen. Die Summe
iiber = lauft iiber alle Gitterpunkte, jene iiber p tiber alle 2d positiven und negativen
Raumrichtungen. ¢, = ¢1, + 102, ist das komplexe HiGGs-Feld, ¥, ein Fermionfeld
und y, sein Spiegelpartner, der explizit in die Theorie eingefithrt wurde, um einen die
chirale Invarianz nicht brechenden WILSON-Term einfiithren zu kénnen. Damit lassen
sich alle bei der Gitter-Regularisierung von DIRAC-Feldern auftretenden Doubler
entfernen, und es verbleibt das explizit vorhandene Fermion-/Mirror-Fermion-Paar.

Die Einfithrung eines zusammengesetzten Fermion-/Mirror-Fermion-Feldes

U, = ( & ) (1.2)
Xz
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erlaubt eine kompaktere Schreibweise:

Sy = Zﬁy {5wy(ﬂ¢x +2dK, )R =3 5yx-l—uf<u} v,
Ty 1

S‘lkb — ZﬁquJFa¢aw\I}x7

(1.3)

wobei folgende 2 x 2-Matrizen definiert wurden:

0 1 - K K,
1 0 K, K
xTu (1‘4)
Gy 0 I', 0
G’\l} = Foz =
0 Gy 0 FL

Héaufig faft man die Fermionen enthaltenden Teile der Wirkung mit Hilfe der Fer-
mion-Matrix zusammen:

mit

Syxe = Su+ Sup = %WyQ((/ﬁ)qu}x o
v . 1.6
Q(qﬁ)yl’ = Oy ((/W/x + QdKT)R + GﬁlI‘a@vl’) - %: oyrt Ky

Die Ergebnisse sollen mit Monte-Carlo-Daten verglichen werden. Um den sogenann-
ten hybriden Monte-Carlo-Algorithmus anwenden zu kénnen, muf} jedoch eine tech-
nische Fermionverdopplung eingefiithrt werden (siehe z.B. [KEN88]). Das Modell wird
daher auch hier entsprechend erweitert: Man fithrt N; Fermionfelder W), N; gerade,
ein und betrachtet je zwei davon als durch die technische Verdopplung auseinander
hervorgegangen. Dazu werden Fermionmatrizen Q) folgendermaBen definiert:

QY = Q) QUII()y = QU(9), (1.7)

und die Wirkung entsprechend erweitert:

—(f
Syxs = Z‘I’L 'QU)(¢),, B (1.8)

ry

Uber f soll dabei immer summiert werden. In den Fermionmatrizen tauchen dann
Matrizen T'/) auf, die sich fiir ungerade f durch Adjugation aus (1.4) ergeben.

Die Wirkung S ist invariant unter einer U(1) @ U(1)g - Transformation (Vz, Vg) ,
falls die Felder sich wie folgt transformieren:

v v ul) o ey
o v wd) o) gy (1.9)

o = Vi Vi
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Dabei wurde definiert:

ol P ufl i Bl (110
vgl. (A.17). Die ungeraden W) unterscheiden sich also von den urspriinglichen ge-

raden nur durch eine Vertauschung von Fermion- und Mirror-Fermion-Feld.

1.2 Lokale Invarianz

Thema dieser Arbeit ist die Untersuchung der geeichten Version des gerade vorge-
stellten Modells. Wie iiblich implementiert man die Fichung durch die Forderung
nach lokaler Invarianz, d.h. der Symmetrie der Wirkung unter einer lokalen Trans-
formation von der Art (1.9):

wil) e v wl) T - WV
W) o Vi W Wi = UiV (1-11)

Go = Vet Vi

mit einer i.a. an jedem Punkt des Gitters verschiedenen U(1)y @ U(1)g - Trans-
formation (Viz, Vay). Unter einer solchen Transformation sind nur die lokalen Teile
der Wirkung (1.1) invariant. Zu einer lokal invarianten Wirkung gelangt man, in-
dem man wie z.B. in [MON87| neue, unter einer Eichtransformation nicht invariante

Variablen U einfiihrt.

Als Beispiel betrachte man den nicht lokalen Teil von Sy, 4:

xr

Ty
Unter einer Eichtransformation variiert dieser Term folgendermaflen:

T es & (o) (1) (1.13)
T ;M \I}x-I-MKM (PL VL_xl-l—uVLl’ +P3 VR_l’lﬁ'Mva) \I/;f)

Invarianz stellt sich also nur fiir den Fall konstanter Transformationen ein. Um den
auftretenden Defekt zu beheben, miissen die neuen Variablen offenbar die Trans-
formationen an zwei benachbarten Gitterpunkten kompensieren. Sie werden daher
den Links (apu) zugeordnet. Der entsprechend modifizierte Term verhélt sich dann
folgendermaflen:

- Z@Quf{u (P(Lf)ULw + Pg)URW) v
T es & (o) (1) (114)
T ;M \I}x-I-MKM (PL VL_xl—l—uULl’MVLl’ + Pr VR—xl-I-MURQWVRx) \I/;f)
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Wahlt man hierin die Uy, Ug als Elemente der Eichgruppe (hier jeweils U(1)) selbst
und pragt thnen das Transformationsverhalten

ULux = VLx+MULMxVL_xl; URMU = VRx-I—p,URp,xVR_xI (1.15)

auf, so wird der betrachtete Term invariant! Folglich sind die Felder U, und Ug,,
als Analoga der Eichfelder im Kontinuum zu verstehen, die vorgefithrte Ankopplung
als die Gitter-Version der kovarianten Ableitung.

Der zweite nicht lokal invariante Term in S kommt aus dem kinetischen Term des
Hicas-Feldes:

= bt =D Viernd Vi Vi 0 Vi) (1.16)
T T

Die Forderung nach Invarianz dieses Ausdrucks legt das Auftreten der neuen Frei-
heitsgrade eindeutig fest:

B ; ULWUlT%uxqﬁl-l-uqbgg T ;ﬂ ULWU;?MN%-I-M@U (1.17)

Die Felder Uy, und Ugr koppeln bislang an Fermionen und das HiGGs-Feld, treten
jedoch noch nicht als dynamischer Freiheitsgrad auf. Auf einem Gitter fiigt man

daher nach einem Vorschlag von WILsoN [WIL74, KoGT79] (vgl. wieder [MONS8T])
folgende freie Wirkung fiir die Eichfelder ein:

Se¢ = Sar + Scr

Ser, = %LZEW {1 —3 (ULM + in)} (1.18)
Ser = & w?w {1 —3 (URM/x + U]T%;wx)}

Uryve und Upy,,, sind die Plaquettevariablen, bei deren Bildung die fiir nichtabelsche
Eichtheorien benétigte Pfadordnung nicht beachtet werden muf:

ULMWL’ = ULuxULu(x—I—u)Uzu(x{-y)Uzux (1 19)

URWl’ = URux URu(x-I—u) U]T%M(l’—]—y) U]T%ux
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Damit lautet die Wirkung des lokal invarianten HIGGS-YUKAWA-Modells:

S = Sg+Su+ Ses + Sar + Sar
Se = Zx: {Mqﬂﬁl% + A\016.)" - KJZM: ULuxU]T%quSIH—Mbe}

Sy = zﬁ;f ) {@MW + 2K, )R~ 3 6yoru B (P UL, + PE{)URW)} N8
Ses = ;ﬁ;f)gqu(f)%xq;;f)

Ser = 2 w?u {1 -3 (Uwa + in)}

Sern = & w?wr {1 -3 (URWE + U]T%Ml/x)}

(1.20)

1.3 Storungstheoretische Notation

Die Formulierung des Modells (1.20) eignet sich fiir numerische Simulationen oder
auch fiir eine Entwicklung nach kleinen 1, Sr (also starke Eichkopplungen, s.
(1.34)).

Fiir die perturbative Behandlung verwendet man im allgemeinen eine andere Nor-
mierung der Felder, vgl. z.B. [FKLI1, LMWG91]. Durch diese Umnormierung wird
eine Ahnlichkeit der Theorie zu Kontinuumsformulierungen erreicht, welche die Auf-
findung von FEYNMAN-Regeln erleichtert.

Ublicherweise schrankt man besonders den Sektor der Hopping-Parameter durch
gewisse Konventionen ein. Wahlt man

K,=K. =K K, =rK, (1.21)

so lautet die Fermion-Wirkung:

Sy = K0 {5y (L2 4 2dr) R — 5 804, K, (PY Usay + Pgmm)} W)
xy I
(1.22)

K, := (7“ ' ) (1.23)
T T

Der verbliebene Hopping-Parameter K 148t sich durch eine mit der Einfithrung des

mit

nackten Fermionfeldes verbundene Umnormierung eliminieren:

v = VoK o) (1.24)
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Separiert man noch die freie Fermion-Wirkung von der Eich-Wechselwirkung, so

erhalt man mit o := 5%
Seg = Sow + Scu
Sow = zﬁéﬁ{éywwﬁdrm— ém,wm}wg? (1.25)
Ty T
Sow = —AS UL K, (P Uy — 1) + PY Uy, — 1) W)
T

Ebenso definiert man das nackte skalare Feld und seine Komponenten durch

1 T
Por = 7 (do12 + 1022) := VK (1.26)

und erhélt fir die skalare Wirkung:

Se = Sop+ Say
SO(b = Zx: {VM¢$1’VM¢01’ —I' mg+¢$w¢0x —I' %(¢$x¢01’)2} (127)
SG¢ = - ;M(ULMZ’U]T%;M’ - 1)¢$1’—|—u¢01"

Die nackte Masse und Kopplung wurde definiert durch:

6A
mgy = % —2d o= (1.28)

Die YUKAWA-Wechselwirkung schreibt sich mit diesen Konventionen:

Sug = 3Tyl GoaT ) 00, W) (1.29)
mit
Gow 0 G¢ G
" ( 0 Gox) STV T OK 2k (1.30)

Schlielich werden die Linkvariablen Uy, und Ug,, so parametrisiert, daf sich eine
perturbative Entwicklung anbietet:

igL WLM.T

UL = € Uy = € 97VRns (1.31)

Die Plaquettevariablen aus (1.19) lauten dann

igL WLMDI

ULMWE =¢e URM/QL’ — eigRWRMDE (132)
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mit den Feldstarketensoren

WLM/QL’ — VMWLUI’ - VUWLMZ’
WRM/QL’ — VMWRUI’ - VUWRMI"

(1.33)

Wie sich durch einen Vergleich mit der YANG-MILLS-Theorie, welche im Kontinu-
umlimes dargestellt werden soll, herausstellt, lassen sich die Konstanten  durch die
Eichkopplungskonstanten ausdriicken:

1 1
BL=— ; Br=—. 1.34
9 9h 3
Daher nimmt die WILSON-Wirkung folgende Gestalt an:
Sar = 77 ¥ {l—cosgiWrwe} = & 3 sin’ ”W%
IL wpyvt IL wpyvy (1.35)
Son = gz ¥ Al cosgpWiue) = T sin? e
IL wpyvy IR wpyvy
Damit lautet die gesamte Wirkung in stérungstheoretischen Konventionen:
S = Sop + Sow + Sar + Sar + Sws + Sas + Saw
SO(b = Z {MZ: vﬂ¢$xvu¢01’ —I' mg+¢$w¢0x —I' %(¢$1’¢01’)2}
e |t
Sow = YULs dr)R — 15 6,,4,K, b W)
o = % Oy ye (1o + dr) 2 %: yrtptu (¥ oz
S, = L1 sin? 2LV Luvs
Wk, 2 (1.36)
SGR — % Z Sin2 gRVI;RMDJ:
IR ruyvy
Sus = XU Goa TV, ()
Sas = — %(ULWUJTW — 1)bde s Bon
Sqw = -3 ZWEJ;)JFMKM (P(Lf)(ULw -1+ Pg)(URW - 1)) wg)
e

1.4 Spontane Symmetriebrechung

Explizite Massenterme fiir die Fermionen sind aufgrund der chiralen Invarianz ver-
boten. Wie im Standardmodell bedient man sich daher zur Massenerzeugung des
HiGGs-Mechanismus [ALT3, S. 20]. Dazu werden in einem ersten Schritt die Para-
meter des skalaren Sektors des Modells so gewdhlt, dal das Potential ein von Null
verschiedenes Minimum und das HIGGS-Feld damit einen nicht verschwindenden
klassischen Vakuumerwartungswert entwickelt. Alle an das HiGcGs-Feld koppelnden
Felder erhalten dadurch Massen.
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Derartige, auf dem ¢*-Modell aufbauende, HiGGs-Modelle kénnen also durch Wahl
der Parameter in der Wirkung sowohl mit als auch ohne von Null verschiedenem Va-
kuumerwartungswert betrachtet werden. Man spricht von der symmetrischen Phase
mit (¢) = 0 und von der Phase gebrochener Symmetrie mit (¢) # 0. Generell ist
der letzte Fall zwar infolge fehlender Symmetrien aufwendiger zu behandeln, aber
wegen der nicht verschwindenden Fermionmassen realistischer.

1.4.1 Symmetrische und gebrochene Phase

Aus Griinden der Ubersichtlichkeit verzichte ich auf eine getrennte Behandlung bei-
der Phasen, sondern stelle hier die Vorgehensweise in der gebrochenen Phase vor.
Durch Elimination des Vakuumerwartungswertes erhdlt man stets die Gleichungen
der symmetrischen Phase.

Zunichst berechnet man den klassischen HiGGs-Vakuumerwartungswert wie folgt:
Man betrachte eine konstante Feldkonfiguration ¢g, = ¢¢ und suche das Minimum
von Sy

Soallol) = @ {mi, 6ol + Lol | (1.37)

1 ist das Gittervolumen. Sy, wird extremal bei

6ol =0 Vg2 == T (1.38)

go

Fiir mg, > 0 wird Sy bei |¢g| = 0 minimal (symmetrische Phase), fiir mg, < 0

bei |¢go|* = g Die lokale chirale Symmetrie des Modells wird spontan gebrochen,
indem aus den méglichen Grundzustanden

Yo Tor
bos = (75) € ; 0<a<?2r (1.39)
genau einer gewahlt wird, welcher dann im Gegensatz zur Wirkung des Modells
nicht mehr invariant unter der Eichsymmetrie ist. Konventionellerweise wahlt man
« = 0. Man erhélt eine einheitliche Beschreibung beiden Phasen, indem man in der
symmetrischen Phase vy = 0 setzt.

Die Stérungstheorie ist als Naherungsmethode auf kleine Feldamplituden angewie-
sen, daher wird das H1GGs-Feld folgendermafien parametrisiert (siehe hierzu auch

Abschnitt 5.2):
1 .
Pos = 7 {ow + vo + 17, } (1.40)

Die neuen Felder o, und 7, seien reell. IThr Vakuumerwartungswert verschwindet in
der klassischen Approximation.

Im Anschlufl an diese Betrachtung kann auch die nackte Masse des HiGGS-Feldes
angegeben werden. Sie ist definiert durch die zweite Ableitung des Potentials in



1.4. SPONTANE SYMMETRIEBRECHUNG 13

seinem Minimum:

2
i = 55 o1l (141)
0720 993 —y
0=%
Man findet in der symmetrischen Phase:
mg=mg, >0 (1.42)
und in der gebrochenen Phase:
mg = —2mg, > 0. (1.43)

Hier gilt der wichtige Zusammenhang

2
2_3m0
vy = —.

m (1.44)

Die Hicgs-Wirkungen in den beiden Phasen unterscheiden sich also voneinander.
In der gebrochenen Phase gilt:

Sos =2 {Z Ve Vudor = S26hdos + %—Wémw} L (14p)

xr

die Wirkung der symmetrischen Phase erhilt man durch m3 — —2m. Einsetzen
von (1.40) liefert:

xr

S, = Zx: {%VM%VM% + %vumvum + %m%afg + %mgﬂﬂ'z (1.46)
+800(0) + 0umd) + B0l + 200m + 7))

mit m2_ = mj in der symmetrischen und m2_ = 0 in der gebrochenen Phase.

Offenbar handelt es sich bei # um jenen unphysikalischen Freiheitsgrad, der in einer

ungeeichten Theorie dem GOLDSTONE-Boson entspricht.

Die spontane Brechung der Eichsymmetrie hat verschiedene Konsequenzen. Vor al-
lem erzeugt sie Massen fiir alle mit dem HiGGS-Feld wechselwirkenden Felder. Dies
ist insofern bemerkenswert, als derartige Massenterme in der symmetrischen Phase
die Eichsymmetrie brechen. Des weiteren erlaubt sie die Unterscheidung zwischen
physikalischen und unphysikalischen Feldfreiheitsgraden. Mit letzteren sind Frei-
heitsgrade gemeint, deren freier Propagator Mischungen mit anderen Feldern auf-
weist. So wird sich das Feld = durch seine Kopplung an die Eichfelder als unphysi-
kalisch erweisen. Auch die Eichfelder W;, und Wg selbst sind jedoch keine sinnvollen
Parametrisierungen. Diese Probleme werden im né&chsten Abschnitt besprochen.
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1.4.2 Weinberg-Rotation

Die Brechung der Eichsymmetrie erzeugt vor allem in der HIGGS-Eichfeld-Wechsel-
wirkung Sgg4 einige problematische Terme. Diese lautet nach (1.36):

SG(;S = - Z(ei(gLWLlw_gRWle) - 1)¢$1’—|—u¢0x
T
= = 3 {2eoslgrWrw — W) = 2)Re 6.4, 60, (1.47)

—2 Siﬂ(gLWLMx — gRWRMc)Im ¢$x+u¢01’}

Mit der Parametrisierung (1.40) erhdlt man :

Sae = — 2 {(cos(9rtWrw — 9-Wrpw) — 1) ((Gutp + v0)(0s + v0) + ToyuTs)
Tht
—sin(grWrue — 9-RWRye ) (7o (00 + v0) = Tagu(0z + v0)) }
(1.48)
Dies lautet bis zur zweiten Ordnung in den Eichkopplungskonstanten:
Sas = 52 (9Wruw — I-WEw)? (02 + 00)(Capp + Vo) + ToToin)
Tht
+ 2 (92Wrpe — 9-WRpa) (0o p + v0) T2 — (02 + 00) Toyp) (1.49)
Tut

+0(91- )

Hierin sind zwei problematische Ausdriicke zu sehen:

o Zwei Terme proportional zu vy aus dem zweiten Summanden:

(9.Wipe — 9-WRue (7o — Toyp) = —(92Wrpe — 9-WRu )V u 70 (1.50)

Dies ist die aus Kontinuumstheorien bekannte Mischung von Eichfeldern mit
einer Komponente des HiGGS-Feldes. Sie kann durch die Wahl einer bestimm-
ten Eichung verhindert werden, was spater besprochen werden soll.

e Ein Term proportional zu v aus dem ersten Summanden mit der Feldkombi-

nation:

(9LWie — 98Wha)® = GiWE e + 95Whie — 20098WEeWre  (1.51)

Der letzte Term deutet eine Mischung zwischen den beiden Eichfeldern an, die
also einzeln keine physikalischen Felder sind.

Beide Terme bereiten nur in der gebrochenen Phase Probleme. Die Mischung zwi-
schen den Eichfeldern W = (W, Wg)T erzwingt die Einfiihrung neuer Eichfelder
Z = (Z,A)" als Linearkombination Z = DW der alten Eichfelder (siche hierzu
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[AL73, S. 43], [RYD89, S. 311f] oder [IZ85, S. 622]. Diese Transformation wird wei-

terhin durch den in den Feldern quadratischen Propagator-Term

0

1
Sg) = ZWZwaxy
wy 0 1

1
)Wyy = 7 Ay ( )
Ty

0 T
D’DZ,, (1.52)
1

eingeschrankt, in dem n&mlich keine Mischung erzeugt werden soll. Daher wé&hlt
man D als Drehmatrix mit dem WEINBERG-Winkel 0y und erhalt umgehend:

Zyw = Wiy cosby — Wgy, sin Oy Wipe = Zpcosbyw + Ay sin Oy
Ay = Wiesinbw + Whgy, cos Oy Whys = —Zupsinby + Ay, cos Oy
(1.53)

Ersetzt man also den obigen Mischterm durch
I Wrwe — 9-Wrye =1 €2y, (1.54)
mit der axialen Kopplung ¢’, so gilt sofort
g1, = €' cos Oy gr = ¢ sin Oyy. (1.55)
Héufig treten folgende Kombinationen auf:
ItWrpe = erZys + €Ay 9r-WRue = —€rZuz + €A, (1.56)
wobei zwecks Ubersichtlichkeit folgende GroBen eingefiithrt wurden:
e = ¢ cos® Oy er = € sin? Oy e = %e’ sin(260w ). (1.57)
Obwohl diese Drehung Probleme vermeidet, die in der symmetrischen Phase nicht

auftreten, darf sie dort durchgefithrt werden. Damit ist eine einheitliche Behandlung
beider Phasen auch mit den neuen Eichfeldern méglich.



Kapitel 2

Quantisierung und
Feynman-Regeln

2.1 Quantisierung

Die klassische Feldtheorie mit der Wirkung S wird nun durch Betrachtung des er-
zeugenden Funktionals der n-Punkt-Funktionen quantisiert:

—S[P J. P,
73] :/D(I)e e (2.1)

Hierbei stehen @ und J kollektiv fiir alle auftretenden Felder bzw. Quellen. Es wird
ein eichinvariantes Maf} folgendermaflen gewéhlt:

D& := [[ [[ dog, [T dv d®S) T] dZ,d A, (22)
r o f 2

Aufgrund der Wechselwirkungen in S ist eine geschlossene Auswertung unméglich,
daher wird die Wirkung in einen freien Teil und in die Wechselwirkungen unter-
teilt: S = So 4+ S7. In S tauchen alle Terme auf, in denen die Felder quadratisch
vorkommen.

Das tibliche perturbative Vorgehen besteht nun darin, im Exponential exp(—S7)
die Felder durch Ableitungen nach den Quellen zu ersetzen und das verbleibende
Integral zu faktorisieren:

23] = [D®exp {—So[cp] _ 5 [®) + ;chpx}
= exp {14} 1 DBesp | ~Sol@] + 3., ) (2.3)

exp {—SI[%]} exp {% Jl,Anyy}

16
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Der letzte Schritt deutet die explizite Ausintegration der nach Vorziehen der Wech-
selwirkungen verbleibenden GAUSS-Integrale an. Das Ergebnis wird mit Hilfe von
Propagatoren dargestellt (im bosonischen Fall tritt noch ein Faktor % auf). Diese
Ausintegration ist im Fall der Eichfelder nicht ohne weiteres moglich.

2.1.1 Kompakte vs. nichtkompakte Eichtheorie

In diesemuAbschnitt wird stellvertretend die freie Theorie fiir das Eichfeld Z behan-
delt, alle Uberlegungen treffen jedoch analog fiir das Feld A zu und sind problemlos
auf den wechselwirkenden Fall zu erweitern.

Im erzeugenden Funktional des freien Z-Feldes wird — wie bei der Gitterregularisie-
rung von Eichtheorien iiblich — das HAAR’sche Ma8 iiber der Eichgruppe verwendet
([CrE83, S. 39ff], [MM94, S. 102]). Dessen explizite Darstellung mit Hilfe einer
Parametrisierung wie (1.31) fithrt im allgemeinen auf einen Zusatzterm in der Wir-
kung. Dies ist in der hier behandelten ABEL’schen Theorie jedoch nicht der Fall,
man findet

A7, f (e %), (2.4)

\ BAE]

e/
27

/dUZuxf(UZw’) =

Skl

e

Der Normierungfaktor kann im erzeugenden Funktional wie {iblich unterdriickt wer-
den, welches damit folgende Form annimmt:

"3

Z[J9)] = / 1 dZ,. exp {—SZ +> Jg)ZM} : (2.5)
B ik x

Dies kann — obwohl es sich um eine freie Theorie handelt — im Gegensatz zum erzeu-
genden Funktional anderer Felder nicht ausintegriert werden, da der Wertebereich
des Feldes — der Einheitskreis in der komplexen Ebene — kompakt ist. Man spricht
daher von einer kompakten Eichtheorie. Ein Vorteil dieser Formulierung ist zwar,
dafl das Eichgruppenvolumen endlich und daher eine Eichfixierung nicht nétig ist,
andererseits ist aber eine perturbative Behandlung analog der Theorie im Kontinu-
um kaum moglich, selbst die Definition eines Propagators scheint problematisch.

Eine Moglichkeit besteht nun darin, die Felder mit kompaktem Wertebereich nicht-
linear auf solche mit nicht-kompaktem Wertebereich abzubilden [SHATS]. Die nied-
rigsten Feldpotenzen werden dabei nicht verdndert, es treten aber neue Selbstwech-
selwirkungen hinzu. Es ist jedoch auch legitim, einfach durch Ausdehnung des Inte-
grationsintervalls von der kompakten zur nichtkompakten Theorie iiberzugehen.

Die Aquivalenz dieser beiden Formulierungen kann, zumindest im perturbativen
Rahmen, auf folgenden Wegen gezeigt werden:

o Man iiberlegt sich, daf} die volle Wirkung sicher in Z periodisch ist. Benutzt
man auch einen periodischen Quellenterm, so kann das Integrationsintervall
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auf [—%, %] ausgedehnt werden, wenn anschliefend durch N dividiert wird.

Die Konstante N~! dndert jedoch nur die Normierung, welche bei der Be-
rechnung von Erwartungswerten keine Rolle spielt. Folglich kann auch der
Grenzwert N — oo ausgetithrt werden.

e Man geht zur nichtkompakten Theorie tiber durch:

¥y ™
Zz[JD) = / M4 11 O(5 — [ Zual) exp {—SZ +3 Jg)zw} (2.6)
B nx nx T

Die zusétzliche ©-Funktion kann fiir die Zwecke der Stérungstheorie aber fort-
gelassen werden, wie man folgendermaflen sieht. Es gilt:

s

. B %/ZME 2w
O(5 —1Zul]) = lim ¢ (#7) (2.7)
Also lautet das erzeugende Funktional:

Zz[JPD] = lim 79HdZuxHeXp{_SZ_S”&(w)‘|‘ZJL(L§)ZW}
w

W—=00 oy T

’ 2w (28)

Snc(w) — 12’;% (%Zux)
In der perturbativen Behandlung taucht die Selbstwechselwirkung 5, .. (w) als
ein Vertex mit 2w einlaufenden Eichbosonen auf, der zur Ordnung eines Gra-
phen mit e** beitrigt. Im Grenzfall w — oo ist dieser Vertex fiir jede endliche
Stérungsordnung zu vernachlédssigen.

Im folgenden werden also fiir beide Eichfelder auch in der vollen Theorie nicht-
kompakte Integrationsbereiche verwendet. Damit ist das Volumen der Eichgruppe
unendlich und erzeugt bei der Integration innerhalb einer Eich- Aquivalenzklasse eine
Divergenz. Daher muf} in dieser Formulierung eine Eichung ausgewahlt werden.

2.1.2 Faddeev-Popov-Ansatz

Die Fixierung der Eichung erfolgt wie {iblich durch den Ansatz von FADDEEV und
Porov, welcher besonders im Kontext nichtabelscher Eichtheorien in Lehrbiichern
vorgestellt (siehe z.B. [F'S80, S. 87ff], [RyD89, S. 245ff] oder [ALT3, S. 82ff]), auch in
gitterregularisierten Theorien angewandt wird [MM94, S. 122ff] und hier nur kurz
referiert werden soll. Im erzeugenden Funktional (2.5) soll nicht tiber Eichfeldkon-
figurationen integriert werden, welche durch eine Eichtransformation auseinander
hervorgehen. Zu diesem Zweck wéhlt man eine Eichung

F[Zux] = Cg, (29)
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welche von allen aus einer Konfiguration durch Eichtransformationen entstandenen
Eichfeldern genau eines — Z — erfiillt. Dann lautet das erzeugende Funktional:

ZZ[J(Z)] = /Hd?w exp{—SZ+ZJ£f)7ux} (2.10)
w T

Der FADDEEV-POPOV-Ansatz besteht nunmehr darin, hier eine Integration iiber alle
moglichen Werte der Fichfixierung einzufiigen:

Zy[J D) = /H A7 wdF exp {—SZ +3 Jg)zx} §(F —¢), (2.11)
jiks x

wobei eine funktionale Delta-Distribution dafiir sorgt, dal der Wert des Integrals
nicht verdndert wird. Da die Eichfixierung eindeutig sein muf}, ist der Zusammen-
hang zwischen dem Wert von F[Z, + V,A] und A eindeutig. Daher kann man eine
Variablensubstitution vornehmen, deren JACOBI-Matrix hier M genannt wird:

 OF [ Zyuw + VA
May = A,

M heiflit auch FADDEEV-POPOV-Operator. Formal erhdlt man:

(2.12)

Zz[J9)) = / [1dZ,..dA, det M exp {—SZ +> Jg)ZM} S(F[Z e + VuA] — )
jiks x
(2.13)

Um wieder die Form eines Wirkungsexponentials zu gewinnen (aus dem spater die
Storungstheorie leicht abzuleiten ist), stellt man die Determinante durch eine funk-
tionale GRASSMANN-Integration dar und integriert mit einem GAUSS-Gewicht iiber
die freie Funktion ¢,. Man erhéalt:

Zz[J(Z)] = /H dZMUdﬁl,dnw exp {_SZ — SGF — SFP + Z Jﬁf)Zuw} (214)
jiks x

mit dem eichfixierenden Term

1
und der FADDEEV-PopPov-Wirkung
Srp = TuMayily- (2.16)

Die Fixierung der Eichung des Feldes A verlauft vollig analog.

2.1.3 ’'T Hooft- und unitire Eichung

Die von 'T HOOFT vorgeschlagene Eichfixierung ([THT71], siehe auch [RYDS89, S.
385ff], [1Z85, S. 619f] oder [ALT73, S. 122ff]) behebt das Problem des in (1.50) er-

scheinenden Mischungsterms

— voe'ZZWVMﬂ'x. (2.17)
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Danach wahlt man:

FlZu) = Vi Zuw + Evoe'ns, (2.18)

also: ,
B2 AVt ) (2.19)
i ;(VZZW)Q + vge’ Zx: Zys Yy + %mgr Zx: T2

SGF -

In S + Sgr tritt folglich keine Mischung zwischen HIGGS- und Eichfeld mehr auf.
AuBerdem erhilt das 7-Boson die Masse mo, = v/E€'vg. Diese Eigenschaft ist attrak-
tiv, da sie Infrarot-Divergenzen von Schleifen-Integralen, wie sie bei der ungeeichten
Theorie auftreten, verhindert. Gleichzeitig sieht man, daff die 'T HOOFT-LANDAU-
Eichung ¢ = 0 in dieser Hinsicht Probleme bereitet, sie wird daher im folgenden
vermieden.

Die Fixierung der 'T HOOFT-Eichung transformiert sich unter einer Eichtransfor-
mation folgendermaflen:

FlZua] = FlZya] + BAs + Evoe*(0 + v0) As, (2.20)
daher lautet die JACOBI-Matrix
M =0+ Evige” + vge®o (2.21)
und damit die FADDEEV-PorPov-Wirkung:

Spp =T, {0+ Evde?}n, + Evoc® > T, 00m, (2.22)

Obwohl also die Fichgruppe ABEL’sch ist, kénnen die FADDEEV-POPOV-Geister
nicht ausintegriert werden, sondern koppeln an das Hicas-Feld [ACGQT73]!

Die Rechnungen zur Renormierung der Theorie z.B. in Ein-Schleifen-Ordnung lassen
sich durch die Wahl £ — oo erheblich vereinfachen. Die Masse des w-Bosons wird
dann unendlich und die Beitrage von Graphen mit m-Bosonen verschwinden. In dieser
Eichung gilt 7, = 0, wie einfach verstanden werden kann, wenn man den letzten
Summanden des eichfixierenden Terms in (2.19) betrachtet. Im Funktionalintegral

liefert er einen Faktor
— . 3&vgen

e “Ht ) (2.23)
Andererseits ist
lim /e~ (2.24)
n—0o0 7T

eine Darstellung der 6-Distribution. Da sich der Vorfaktor vor der Bildung von Er-
wartungswerten bei der Normierung des erzeugenden Funktionals kiirzt, kann fiir
¢ — oo die Integration iiber 7, ausgefithrt werden. In der Wirkung mufl dann
7. = 0 gesetzt werden. Da in dieser Eichung keine unphysikalischen Freiheitsgrade
mehr auftreten, 1a8t sich die Unitaritat der S-Matrix zeigen. Die gewéhlte Eichung
heifit daher unitér.
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Das Erreichen der unitaren Eichung ist méglich, da der unphysikalische Freiheitsgrad
7 ein inhomogenes Transformationsverhalten aufweist. Betrachtet man namlich eine
infinitesimale Eichtransformation €’A,, so erhalt man:

0r — 0y — €A, 7s
(2.25)

e = Tp+e'Aso, +e’ALvg

Die "1 HooOFT-Eichungen und die unitére Eichung fixieren das Eichfeld Z. Bei
der Entwicklung nach schwachen Kopplungen wird in der nichtkompakten Theo-
rie jedoch auch eine Fixierung des Eichfeldes A nétig. Hier wihle ich die iibliche

LORENTZ-FEichung

1 * 2
bzw. meistens weiter die FEYNMAN-Eichung ¢’ = 1. Nach der bisherigen Diskussion
ist klar, dafl die bei der Fixierung des Feldes A auftretenden FADDEEV-POPOV-

Geister ausintegriert werden kénnen. Sie werden im folgenden daher nicht betrachtet.

2.2 Storungstheorie

Nach diesem Ubergang zur nichtkompakten Eichfeldtheorie auf dem Gitter lautet
das erzeugende Funktional nun nach (2.3):

SR N 1| PO PP S

mit Faktoren £ vor bosonischen Propagatoren. Sy enthilt sdmtliche Wechselwirkun-

gen, auch die aus der “freien” Gitterwirkung der Fichfelder stammenden Selbst-
kopplungen von Z und A. Entwickelt man diese Gréfie in allen Kopplungen bis zu
einer gewissen Ordnung, so erhalt man ein Polynom in den Feldern. Die negativen
Koeffizienten eines Produktes von Feldern heifien Vertices und werden hier mit V()
bezeichnet. Wird in einen Vertex zu n Feldern ein Faktor % hineindefiniert, so dndert
dies lediglich die Regel iiber Symmetriefaktoren (s.u.).

Die n-Punkt-Funktionen werden aus ihrem erzeugenden Funktional durch Ableitung
nach den Quellen gebildet:
o\" 73]
) =|—=| —=
(@) (6.] ) Z|[0]

Die FEYNMAN-Regeln kénnen nun folgendermaflen aus der Wirkung abgelesen wer-

(2.28)

J=0

den: Ein Vertex entspricht einem Punkt mit auslaufenden Linien. Die Enden dieser
Linien tragen — ebenso wie jene der externen Linien, die den Ableitungen aus der
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Bildung der n-Punkt-Funktion zugeordnet sind — Ableitungen nach Quellen. Den
Propagatoren sind Linien mit Quellen an den Enden zugeordnet. Alle Exponen-
tialfunktionen werden entwickelt. Es tragen nur jene Terme bei, bei denen jede
Ableitung mit einer entsprechenden Quelle kombiniert und dabei jede Quelle “ab-
geséattigt” wird. Dies sind genau jene Graphen, welche mit den bei der Entwicklung
der Exponentialfunktionen entstehenden Bausteinen (also Vertices und Propaga-
toren) erzeugt werden konnen. Es ergeben sich daher die folgenden allgemeinen
FEYNMAN-Regeln:

1. Eine n-Punkt-Funktion ist die Summe aller Graphen mit der richtigen Anzahl
und Art duBerer Beine, gewohnlich mit einer maximalen Anzahl von Vertices

oder Schleifen.

2. Jeder orientierten inneren Linie (Fermionen) wird der Propagator, jeder nicht
orientierten (Bosonen) 1/2 mal der Propagator zugeordnet.

3. Jedem Vertex werden der entsprechende Ausdruck und eine Summe iiber den
Ort zugeordnet.

4. Zusammenhdngende Indices werden kontrahiert. Dies ergibt auch eine Spur
fiir Fermionschleifen.

5. Ein Faktor —1 fiir Fermionschleifen. Dieser stammt aus dem GRASSMANN-
Charakter der Fermionfelder [HuA82, S. 141ff].

6. Jedem Graph wird ein Symmetriefaktor zugeordnet:

N

S(9)=

(2.29)

Hier ist N die Anzahl der Moglichkeiten, den Graph aus seinen Bausteinen zu
erzeugen; der Index ¢ zahlt die Typen der verwendeten Bausteine und n; ist
die Anzahl der Bausteine vom Typ ¢, die verwendet wurden.

Die Berechnung der Symmetriefaktoren weicht von der tiblichen Konvention ab,
denn die Fakultat der Anzahl der einlaufenden Felder ist nicht in der Definition
der Vertices enthalten. Da in dieser Theorie vier verschiedene Typen von Feldern
auftreten, ist diese Art der Berechnung von Symmetriefaktoren {ibersichtlicher. Thre
Form soll an dem Beispiel einer Theorie mit Vertices V,,, und einem Feld schematisch
veranschaulicht werden. Die n-Punkt-Funktion lautet dann:

) = () e {200 () feret7an)

2.30
= () nE v (35) " S aAsy o

J=0



2.3. FEYNMAN-REGELN 23

Bezeichnet man mit N(vy, ..., vz p) die Zahl der sich durch Anwendung der Pro-
duktregel ergebenden Terme, so lautet ein Summand dieses Ausdrucks:

N(vi,...,v5p) £ 1
(V1,- -, V23 ) 11 — VAP mit n+ Y muv, =2p, (2.31)

p! ot Um

worin neben der erwarteten Kombination von Vertices und Propagatoren auch der
Symmetriefaktor erscheint.

Die FEYNMAN-Regeln im Impulsraum ergeben sich wie gewohnt durch FOURIER-
Transformation. Definiert man einen Faktor (27)¢ sowie die Gesamtimpulserhaltung
aus der n-Punktfunktion heraus, so gelten obige Regeln auch hier (mit in den Im-
pulsraum transformierten Vertices und Propagatoren) und tiber Schleifen wird wie
iiblich integriert.

2.3 Feynman-Regeln

Nun werden die FEYNMAN-Regeln in der 'T HOOFT-Eichung abgeleitet. Dazu wer-
den aus jedem Teil der Wirkung (1.36) Propagatoren (Inverse der Koeffizienten
quadratischer Terme) und Vertices (negative Koeffizienten hoherer Potenzen) ab-
gelesen. Die Reihenfolge der Behandlung wird dabei dadurch diktiert, dafl gewisse
Terme innerhalb der Wirkung umsortiert werden.

2.3.1 Reine Higgs-Wirkung

Fir die Wirkung des HiGcGs-Feldes in der ¢ — 7—Parametrisierung wurde in 1.4.1
bereits ein vorlaufiger Ausdruck hergeleitet:
S, = Zx: {%VM%VM% + IV Ve + smol + tmi w? (2.32)

+%0o(02 + 0,72) + S (0d + 20272 + 71 }

Zu diesem wird noch der durch den eichfixierenden Term (2.19) erzeugte Massenterm
fiir das m-Boson hinzugeschlagen. Dabei bleibt die Form der Wirkung erhalten, und
man findet folgende nackte Massen:

Symmetrische Phase:  mg, = mg

Gebrochene Phase: mor = V/E€'vg
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Die Vertices kénnen aus (2.32) sofort abgelesen werden. Aufgrund ihrer Lokalitat
dndern sie ihre Form auch beim Ubergang in den Impulsraum nicht:

V(?’U) = —%vo

V(O’,Q?T) — _%UO

1/ (40) " (2.33)
V(47T) — _i_(;

V(2cr,27r) — 290

.

Die Propagatoren im Ortsraum lassen sich sofort ablesen. Thre Transformation in den
Impulsraum bereitet ebenfalls keine Schwierigkeiten. Dazu setzt man die FOURIER-
Transformierten Felder ein und erhalt mit (A.19):

1
Z{ﬁvuaxvuax—l— mo } 2/ q —I—mo) (2.34)

xr

analog fiir das Feld = und damit:

_ 1
Acr(p) — &?+mg (235)
A?T(p) = q§—|—lmoﬂ

2.3.2 Yukawa-Kopplung

Nach (1.36) lautet die Kopplung zwischen Fermion- und HiGas-Feld in der neuen
Parametrisierung:

Sus = 30 Goy (T (0, + vo) + T7,) 0l (2.36)
Wegen (1.5) gilt
riu) = wi) TP, = i) T, =g (2.37)
und daher _
Spo = S U Goy (00 + vo + (=P + PY))r, ) wll) (2.38)

Der von den skalaren Freiheitsgraden o und 7 unabhéngige Teil ist in den Fermion-
feldern quadratisch und wird der freien Fermion-Wirkung hinzugefiigt, siehe 2.3.3.
Am Rest liest man ohne weitere Schwierigkeiten die YUKAWA-Vertices ab:

VELIo) = Gy

2.39
V(?‘l%fﬂT) = ZGqu(P(Lf)_Pg)) ( )
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2.3.3 Freie Fermion-Wirkung

Die freie Fermion-Wirkung lautet nach (1.36):

zy
Dem wird nach 2.3.2 folgender Term hinzugefugt:
Z WEJJ;)GO\DUO\I’E)J;) (2-41)

Damit werden in der gebrochenen Phase genau jene Mischterme 11 und Yy er-
zeugt, die in der symmetrischen Phase aufgrund der chiralen Invarianz verboten
sind. Durch den nichtverschwindenden Vakuumerwartungswert des HIGGS-Feldes
werden also Massenterme fiir Fermionen und Mirror-Fermionen generiert. Definiert
man die Massen

toy 1= Goyvo ; toy = Goyvo (2.42)

so lautet die volle freie Fermion-Wirkung ausgeschrieben:

—(f fioy  pio +dr 1 Vu T
Sow = ST L6, =52 | ) (2.43)
vy Ho + dr Hox M T Yy

Der inverse Propagator im Impulsraum ergibt sich durch Einsetzen der FOURIER-

Transformierten Felder und Anwendung von (A.25) und (A.26) (mit k& = 0):

oy + 1. q. Hq

Sov = ﬁéf (q) v (q) (2.44)

Hq tox + 1.

mit der Abkiirzung i, := po + 5¢°. Inversion liefert:

Av(p) = D) {AY(p) - 5,47 (0)}
D(p) = (poy + 1o )*P* + (P* + 11 — proyttoy)*
(1) pop(P® + 113,) — toxts (PP 4 1y — How fox)

A = [T T e
fp(P” 1y = popfion) o (P” + (16,) = prowity

A(z)(p) _ P+ ”22? + IM(ZJX —tp(froy + fox)
—tp(poy + pox) PP g+ gy

Hier sind D, AEI,I) und AEI,Z) gerade skalare Funktionen. Diese Ausdriicke vereinfachen

sich erheblich im Sonderfall 1oy = —poy. Dort kann man ndmlich durch einen Faktor
P° + p + pg, dividieren und folgende Definitionen verwenden:

_ floy L0
D(p) = PP+p+ud,  AP(p) = ! AP (p) = (2.46)
Hp  —Hoy 0 1
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2.3.4 Higgs-Eichfeld-Wechselwirkung

Die Wechselwirkung zwischen H1GGS-Feld und Eichfeld ist bereits in 1.4.2 untersucht
worden und lautet:

Sea = = 5 (€05 € — 1) (0 + 10)(Tutn + o) + Taar)
THE (2.47)
+ 3 sin €' Zue ((Ootpy + 00)Te — (02 + Vo) Topy)
Ty

Entwickelt man die Winkelfunktionen und beachtet den Beitrag der 'T HOOFT-
Fichung (2.19), so erhalt man:

See = ki; st

Sfcf) = —g(_z—;lg)L!kel% x%i (000 04p + v0(Ougy + 02) + 05 + ToTaty) ) s
S =
S (@k+1) - _ (g;—}r)lk)!e’zk“ Y L (OpgpuTo — OoTagy — vV uTa) ik >0

Tu4

Hier tritt ein vom HIGGS-Feld unabhéngiger Term auf, der zur reinen Eichfeld-
Wirkung hinzuaddiert wird. Auerdem findet man Terme der Art (hier steht k stets
fiir alle auftretenden Impulse):

S 20,0000k =
T4 (

Z

1;[Zu(ki)U(Q)U(_q/)e_%(%"'qu) (2.49)

pht

Wegen der Vorzeichen der Feldimpulse fiihrt dies auf einen gerichteten Vertex, der
je zweimal mit unterschiedlichen Vorzeichen gezdhlt werden muf. Dies ist wegen
der ungerichteten skalaren Propagatoren unbequem. Man kommt auf eine symme-
trischere Form, indem man in einer Hélfte des obigen Ausdrucks ¢ — —¢',¢' — —¢
ausfiihrt:

!
Z 20Oy = / Z H Zu( —q') cos w (2.50)

T4 » Bt 1

Weiter treten auf:

S 2 (CoiuTe — Outiogy) = — [ S Zu(ki)w(0)o(—')i g}, + g,

U4

=
+
-

-
Z—

> Zp(owsut0u) = [ ZI1Zu(ki)o(q)2cos (2.51)
T4 (;;‘) H4 1

> Zﬁx(ﬂx-l—u —m) = [ I1 Zu(ki)m(q)iq,.

T4 (E) H4 1
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Beachtet man diese Regeln, so gelangt man zu folgenden Vertices:

Vf”’zkz)(q,q’) = %)Lfe’?kcosqi‘%

VERED () = e cos Lt
VemeHDD (g, ¢) = — e ig 1,

V(o262 (¢) = 2050 ey cos &

VD) = Lt gig s k>0

27

(2.52)

Der letzte Vertex taucht fiir £ = 0 nicht auf, da dieser genau die Mischung zwischen
Eichfeld und GOLDSTONE-Feld beschreibt, welche durch die 'T HOOFT-Eichung
aufgehoben wird. Beim gemischten o — 7 — Z-Vertex wéhle ich gemaf (2.51) das

o-Feld als Trager des auslaufenden Impulses.

2.3.5 Reine Eichfeld-Wirkung

Nach (1.36) lautet die reine Eichfeld-Wirkung

1
SGL — eer Z sin _(eA;wac—l'eLZ;ww)
Thy V4
Son = o 21 (e Ayue — enZ
GR — 7 Z sin 2(6 % €R p,l/x)
TR wuy vy

Entwickelt man dies in den Eichkopplungen, so erhélt man:

Se = ¥ 5%
k=0 22
(k) _ _(=D* 2642 J2k+2-] () g2k+2-
S¢ = 20642)! 0, S ( i )e —J wa Jwax

mit .
el) = = (e]L s (—1)]6‘%_1) )

Insgesamt lautet also die Eichfeld-Wirkung:

Se = 3 SW
F=0 k+2
(k) _  (=D* 1 PP ok 2ka2— () g2042-
Se’ = (2k+2)! 2 b0, j:o( j )e —J wa Jwax

Dem wird noch der Term aus 2.3.4 hinzugefiigt:
f: (—1)F o/2kF2,2 :y Z2k-|—2
< (2k +2)! o

sowie ein Teil des eichfixierenden Terms aus 2 1.3:

LS (Vi 2+ = (Vi)

2% 5 2% 45

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

Die zum Ubergang in den Impulsraum benétigten Beziehungen sind in (A.21) zu-

sammengefafit.
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k = 0: Der Propagator

Die nullte Ordnung der reinen Fichfeld-Wirkung ist in den Feldern quadratisch. Mit
den Beitrdgen der eichfixierenden Terme sowie der HIGGS-Wechselwirkung lautet
sie:

SO 1 12 {42, + 72, } + b {AM2Z2, + L(ViZu0)? + 5 (ViAuw)?}

(2.59)

Hier ist der dritte Summand unschwer als Massenterm fiir das Z-Feld zu erkennen.

Der HiGGgs-Mechanismus liefert also ein masseloses Photon und ein Z-Boson der
Masse

Mz = ¢'vo. (2.60)
Der erste Anteil fiir das Z-Boson lautet:
P Y 2 = 5 Ze(k) 2o (— k) (6510k? — kokor), (2.61)
TUL UL &
der zweite:

Tht
Der inverse Propagator des Z-Bosons lautet also:

-1

AV = 6, (R 4+ M) — (1 -

und dessen Inversion liefert:
1 ke k
(2) - - _ 7”
ADK) = ( (€= 1) ) (2.64)

Der Photonpropagator ergibt sich daraus einfach durch die Ersetzungen Mz — 0
und ¢ — &

AW (k) = %”r(f'—l)%- (2.65)

©y

k = 1: Selbstwechselwirkungen

Auf einem Gitter tritt auch in einer ABEL’schen Eichtheorie eine Selbstwechselwir-
kung auf Die in der ersten Schleifen-Ordnung noch benétigten Vertices erhélt man
aus SG und dem Beitrag der HiGGS-Eichfeld-Wechselwirkung. Dies lautet ndmlich
zusammen:

S = ( 3 Z ( ) DAL i Z0 4 M2 me) (2.66)

Tpt vt §=0 T
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Die FOURIER-Transformation vierter Feldpotenzen ist Gegenstand von (A.22), man
erhélt

Z/vw;}g] 43D (ky, kg, ki ba) Ak . Zo () (2.67)
Tk
mit den Vertices:
VO ey, ko, ki, k) = S5Cupe (Fr, ko, ks, o)

)
) = %pra(klvk%k&h)

ki ks ks, ka) = qgeler — er)Cupo (kr, ko, ks k)
)

= 48( /2 - 36 )Cuupa(klv k?v k37 k4) —I_ 21_46/2M%5;w5up5u0
(2.68)

VBAZ) verschwindet: Ein massives Eichboson wechselwirkt nicht mit drei masselo-

V(A,SZ)

wypo

Senl.

2.3.6 Fermion-Eichfeld-Wechselwirkung

Nach (1.36) lautet die Wechselwirkung zwischen Fermion- und Eichfeld:

— f o0
Swa = 5 S K (P (U = 1)+ P (U — 1) W) = 5 540
k ik ko —s
s~ P Tl K (5) (PP eieh 4 PYed (—ep)i )Aimzjquﬂ )
xT J=
(2.69)

Die hierin auftauchenden Wechselwirkungen von Fermionfeldern und Eichfeldern
werden in (A.26) in den Impulsraum transformiert. Danach lautet die Wechselwir-
kung insgesamt:

k - k f
She = —H I T VEW +p)(4)
(F) #+ =0 (2.70)
< (PYelel + PRel(—en) ) Aulhn). . Zu(ha) W3 (),
wo zur Abkiirzung die Matrizen
Y cos B —grsin %
VLk)(q) = k ungerade

—irsin & 4, cos & (2.71)

r cos & —17, sin e

2 2

e ”
—ty,sin e rcos
k _ 2 2
\/L Nq) = ( ) k gerade
eingefithrt wurden. An diesem Ergebnis sind die Vertices abzulesen:
e

i * (k 4 -
VERLIAG=)Z) () ) = y(j)vgf)(p/ +p) (P eef™ + Pl (—en)' ) (2.72)
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Fiir £ = j erkennt man hier die reine vektorielle Kopplung mit der Kopplungskon-
stante e. Fiir die Ein-Schleifen-Approximation benétigt man:

VERIA(p,p) = ieVID(p' +p)

VERD(pp) = iV + p)(erP) — erP))
Ve (p, ) = —S VO +p) (2.73)
Ve ) = VPR + (P + PR
VEREAD(p o) = VO +ple(e P — exPY))

2.3.7 Faddeev-Popov-Wirkung

Nach 2.1.3 lautet die Wirkung der FADDEEV-POPOV-Geister:
Spp =Y, {0+ o3 b + Evoe® Y To0une (2.74)

Hier liest man sofort den Propagator ab:
1

S B g

der wie tiblich bosonischen Typs ist, obwohl die Felder selbst GRASSMANN-Algebra-
wertig sind. Die Wechselwirkung mit dem HiGaGs-Feld lautet:

ylo2n) —Evpe? (2.76)

(2.75)

2.3.8 Unitare Eichung

Wie in 2.1.3 bereits ausgefithrt, vereinfachen sich viele Rechnungen der gebroche-
nen Phase in der unitédren Fichung ¢ — oo. Dort wird der Freiheitsgrad 7 auf Null
fixiert (seine Masse divergiert), und alle diesbeziiglichen FEYNMAN-Regeln kénnen
gestrichen werden. Allerdings ist ad hoc nicht klar, wie sich die FADDEEV-POPOV-
Determinante respektive die Geist-Felder bei dieser Eichfixierung verhalten. Diese
Frage ist erst nach der Behandlung der allgemeinen 'T HOOFT-Eichung in den letz-
ten Abschnitten durch Ausfiihren des Grenzprozesses ¢ — oo zu klaren.

Da die Masse der Geister wie jene der w-Felder mit ¢ divergiert, vermutet man
naiv ein Verschwinden aller Geist-Beitrdge. Dann fithrt die unitare Eichung z.B.
bei der numerischen Auswertung in Kapitel 4 jedoch auf von 'T HOOFT-Eichungen
abweichende Resultate. Der Grund dafiir ist in dem zu & proportionalen Vertex (2.76)
zu sehen, welcher den Effekt der divergenten Masse aufheben kann. Als Beispiel
betrachte man den Geist-Beitrag zur o-Selbstenergie (vgl. (3.24)):

1 1 1 1
- 526’41)3/ — —6/41)3/ — =—— 70 (2.77)
.y (€'vo) Vo

’ q* + £(e'vo)? q/—l-\p2 + £(e'vg)?
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Am einfachsten baut man diese Figenschaft in die FEYNMAN-Regeln der unitéren
Eichung ein, indem man sich iiberlegt, dafl externe Geist-Linien nicht vorkommen
und nur ein Vertex mit Geist-Feldern existiert. Daher endet nidmlich jede Geist-
Linie in einem solchen Vertex, und man kann ein Element Propagator+ Vertex als
FEYNMAN-Regel benutzen:
”
R Y o9
* + &(e'vo) vo

V@2 st ein Dreier-Vertex mit einem o-Bein und zwei zu unterscheidenden -
Beinen. Die Unterscheidung resultiert aus der Orientierung der Geist-Linien und
dem an einem Bein angehingten Propagator. Da V(%?" nicht vom Geist-Impuls
abhdngt und die Schleifen-Integrale auf Eins normiert sind, braucht iiber Geist-
Schleifen nicht integriert zu werden, sie tragen aber als Fermion-Schleifen einen
Faktor —1 bei. Die FEYNMAN-Regeln lauten folglich in der unitdren Eichung (und
in der FEYNMAN-Eichung ¢’ = 1 fiir das Photon-Feld):

A, (p) = 7

Aq(p) = D) {AaY(p) - inp.AY (0}
AD),, (k) = o (o + )

NG - i

V(o) = —Ly,

1/ (40) = —&

V(29.f0) = —Gy

Vf”’zkz)(q,q’) = %)Lfe’?kcosqi‘%

V(#:2k7) (g) = 25 ey cos &

VO (ke ky kb)) = SCuvpo (ki ko, ks, By
VA2 (e kg, ks, ka) = S Cuvpo (b, ko, ks, eg)
VD (ky ko, ks, ka) = deler — €r)Cupo (1, ko, ks, k)
VO (b kgykaka) = (€ = 36)Cunpo (k1 Koy sy bg) + L€ M36,00,0080
VERSA (p, p) = V(' +p)

VERA (p, p) = VO +p)(erPY) — enP))
VER2 (p, p) = SVO@ +p)

VERI2) (p, p) = VO +p)(e P + 2P
VERAD (p,p') = VO +p)e(erP) — erPy))
V(o2 = —

(2.79)



Kapitel 3

Renormierung

In diesem Abschnitt wird die Renormierung der Theorie in der gebrochenen Phase
in der Ein-Schleifen-Approximation durchgefiihrt. Dazu werden die iiblichen Renor-
mierungsbedingungen im unendlichen Volumen aufgeprégt.

3.1 Vakuumerwartungswert

3.1.1 Unrenormierter Vakuumerwartungswert

Der Vakuumerwartungswert des unrenormierten HiGGS-Feldes (o) taucht zum einen
in der Selbstenergie des HIGGS-Feldes auf, zum anderen liefert die renormierte Ver-
sion eine Moglichkeit zur Definition der renormierten HIGGS-Selbstkopplung. Daher
wird diese Hilfsgrofle zundchst berechnet.

(o) 1aBt sich als Wert der Einpunktfunktion des o-Feldes auffassen und daher als
Summe von fiinf (nicht amputierten) Graphen mit verschwindendem externem Im-
puls darstellen:

(o) =61V + 68 + 6" + 6 + gV (3.1)

Die einzelnen Graphen werden nun behandelt:

m_ 24 1, <30>/1A _ 1w / ! >
G ' = 0V 50:(4) = =5 540 q (3.2)

32
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m_, L <a,2w>/l _ 1w /;
Gy’ =450 (0)V qQAW(q)— sz | = (3.3)

GV = —2N;IAL(0) [, Tr Vo) Ay(g) ",
= 25dN; [, D7 (q) {(G3, + G3 )P + 2G3, 3, v — 2Gio, Gloyi? }
g = — g
Gi' = 4300V (0)380) 5
3.5
Vo 92
= i {d+ (€ 1)2%}
Dies kann noch vereinfacht werden, denn es gilt:

1 1 1 1
-1 ¢ =— + , 3.6
SV T o - 7 T Eran 0

wie man leicht durch Multiplikation beider Seiten mit beiden Nennern zeigt; das
Vorgehen entspricht einer Partialbruchzerlegung. Das FErgebnis ist:

L Lo } 3.7
G = b q{( )i e (3.7

gé” N _ Aq

1
q* + &M
Offenbar kompensiert dieser Graph genau den eichabhéngigen Teil von gfﬂ). Insge-

1
G = ~2- SA OV [ A (q) = e [ (3.8)
q Mo q

samt lautet der unrenormierte Erwartungswert also in Ein-Schleifen-N&herung:

=3

o) = % [—%90 Js {qnlmg T %qnlmgﬂ}
+dNy fq D~'(q) {(G(an + G(Z)X)}_?Z + 2G3¢G(2JX03 - QGOXGOWZ} (3.9)

—(d—1)e” [, m]

oN)
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In der gebrochenen Phase kann mZ_ durch é M7 ersetzt werden. Damit ist der Va-
kuumerwartungswert eichabhingig! Dies ist bereits von Kontinuumstheorien her
bekannt [ACGQT73]. In der symmetrischen Phase verschwindet der Vakuumerwar-
tungswert (o).

Die Vakuumerwartungswerte aller anderen Felder verschwinden in beiden Phasen.
Die Ursache dafiir liegt beim Fermionfeld einfach im Fehlen entsprechender Graphen.
Bei den iibrigen Feldern tritt in der Ein-Schleifen-Approximation jeweils nur der
Graph mit der Fermionschleife auf. Dieser verschwindet beim w-Feld aufgrund der
chiralen Kopplung (2.39), bei den Eichfeldern kann FURRY’s Theorem angewendet
werden.

3.1.2 Renormierter Vakuumerwartungswert

Der renormierte Vakuumerwartungswert vgp = \/§<¢R> ergibt sich nach (1.40) aus
der unrenormierten Gréfle durch Multiplikation mit der Wellenfunktionsrenormie-
rung des HiGGs-Feldes. Diese wird durch die Selbstenergien der Komponenten des
HiGcas-Feldes bestimmt, siehe 3.2. In der Theorie ohne Eichfelder erzeugt das GOLD-
STONE-Boson 7 eine Infrarot-Divergenz in Z,, daher definiert man dort [LMWGI1,
WrT92]:

1

vR = Zr *(vo + (o)) (3.10)

Diese Definition wird hier auch fiir den geeichten Fall ibernommen.

3.2 Higgs-Feld

3.2.1 Selbstenergie

Die Selbstenergie ¥, also die Summe aller amputierten Ein-Teilchen-irreduziblen
Graphen, spielt bei der perturbativen Renormierung einer Feldtheorie eine zentrale
Rolle, denn der volle Propagator 143t sich schreiben als:

G~ (p) = A7 (p) — B(p) (3.11)

Diese Beziehung gilt fiir alle Felder und im endlichen wie im unendlichen Volumen.
Sie wird damit zur Grundlage der Definition renormierter Massen und der Wellen-
funktionsrenormierung.

Fiir die Selbstenergie des o-Feldes findet man in der Fin-Schleifen-Ndherung zehn
Graphen, schreibt also:

i) = 3 600) 312
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Q{Q) enthélt die fiinf zum Vakuumerwartungswert beitragenden Graphen:

P
2)() = 316 (o) — — 3.13
G (p) = 3! (o) govo(0) (3.13)
q
gPp) = ﬁ@*
q+p
288 1 1 1 1 1
G(p) = _/V<30>_AU OVEILA (04 = _9%2/ —
(3.14)
) g 261
Q:(az)(}?) = p
g:())2)(p) _ 4!/V(4U)1AU(Q) = _g_o/ 1 (3.15)
; 2 2 ; g%+ m3
q
o = L
q+p

6P (p) = 22 JVEILIA (VLA (g +p)
q

) ) ) (3.16)
_ 2,2

- ﬁgovo{ P, p ma

Falls ¢/ = 0, also mg, = 0 ist, erzeugt dieser Graph eine Infrarot-Singularitat

(namlich bei p = 0) sowohl in der renormierten Masse iiber ¥,(0) als auch in der
Wellenfunktionsrenormierung 7, tiber die Ableitung nach p.

(3.17)
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q
R p /‘(‘\
¢?p) = H =
G+ p
¢Pp) = —Tu f Tr V) Ay (q)VE»2) Ay (g + p)

= —dNy { D= (q)D~" (¢ + p)

X {G(Q)wg(Gw@Q + 11y ) — Gop)(Gop(qF p° + pd,) — Goypily,)
+CloyClox ptattarn(@ + 12 — topto)(FP° + 1124, — Hoplioy)
—Goqa + (@ + i+ 1)@ F "+ ply, + g
—GopGoxGq F Phgttaro(foy + tox)” + (¥ = X))}

(3.18)
q
¢A(p) = —ép ?—
q+p
G0 = [V 3AD+ PV )3AD ()
~
= 2vge" cos Bt cos B2 f Tﬂ—\2+M2 <5w + 6 (€ — )’fﬁM% (3.19)
q-l-p2 2 Gy gutpuartp
—1)=5""— -1 AT 7
(¢ )q+p +EM2 H(E=1) PHEME 5 1eM2 )
Fiir p = 0 lautet dies unter Benutzung der Identitat (3.6):
2
N ) e et €= B PR )
q
p
G (p) = AVE22) (p,p) [ JAD(q)
’ (3.21)
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P (p) = STV (g, —p)VEm D (=g, p) AL (q)IAD (g + p)
q

o 1 1 2 (ﬁ-\p~q/—\p)2)
= € — — + — 1) ===
Z[ P2+m2, q+p2+M§ (q P (¢ ) q+p2+£M§

Dies vereinfacht sich fiir p = 0 zu:

g
. P
W) = = =
q+p
2

Gid'(n) = =t (VE) J A9 Anlg + )

1 1

37

(3.22)

(3.23)

(3.24)

Wegen ihrer besonderen Bedeutung soll die Selbstenergie hier der Ubersichtlichkeit
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halber noch einmal vollstdandig aufgefithrt werden:

Solp) = —UF [—%gofq{q g T }
+dN; f, D71 (q) {(G3, + G2 )P + 2G3,GE w2 — 2Go, Goypi? }
_(d — 1)6/2 f §+1M%:|
_%) { —:mg —I_ 5 -I—lTrLO }
1 1 1
290% {‘? +mg otp +m0 + 992 +m3, @2+mgﬁ}

—defD Yq)D™ (g +p)

X {G(Q)wo Gop(@ + 16y) = Goxpi2)(Gou(@F P° + 15,) — Goxpily,)
+GloyGoptaftars(T + 117 = poupto) (G F P + 174, — Hopftoy)
~Goyqq T P(T + 4 + g )@ TP+ piy, + H5,)
—GoyGox@q + Phattarp(toy + foy)? + (¥ = X)}

+2vge’ cos B co f @_l_MQ —_— <5w + 6, (€ — 1)?55]\4%

4D +M2
+ /\AV /‘l'\ l//-l—\l/
+é,, (€ — 1)%2\42 F (€ = 1) plele dutpuanty )

PHEMG 1 eM3
2 1) _1 E_
¢ ZCOSP“{{(l d) pEERVE d?+£M§}
)2 (a4p-1—p)?
‘|‘€/2 — ! ( - + — 1) ==
f%rmmr g \17P (¢ )q+p2+£M§

_£2eMy Qf@ 1
+EMy g4p +eM?

(3.25)

L)
O

G
W%@

Abbildung 3.1: Selbstenergie-Graphen des m-Feldes

Véllig analog erhélt man durch Aufsummation der sieben Ein-Schleifen-Graphen
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aus Abb. 3.1 die Selbstenergie des 7-Feldes:

So(p) = —hgoolo) — oo (b + )
+4AN; D™ qg)D™ (g +p)
X {G(Q)wg(Gw@Q + p2) — Goy ) (Goyp(q+ p* + 112,) — GoypZy,)
—CloyGlox fiatarn(@ + 12 — toppo ) (@ F° + p24, — tovfioy)
+GEqq T (T + g + 1§ )@ T P+ 1y, + 1)
—GoyGoyGq T+ Plattgrp(fop + tiox)® + (¥ = x)}
—e” ZCOSp“ f{(l - 5) 7o T %@ESM%}

— 2
+ i =ton (p—l—q +(§—1)7@i€q532)

‘|‘990 of @+m2 @_|_lmo
(3.26)
Setzt man in diese Ausdriicke die in der Phase gebrochener Symmetrie geltenden
Beziehungen ein, so werden fiir ¢/ = 0 die Ergebnisse aus [LMWG91] reproduziert.

3.2.2 Renormierte Masse

Der inverse volle Propagator des unrenormierten o-Feldes 148t sich mit Hilfe der
Selbstenergie ¥, folgendermaflen schreiben:

G5 (p) = 1" +mg = Sa(p) (3.27)
Die Renormierungsbedingung lautet im unendlichen Volumen:

0

a—szﬁclr(P) =1 (3.28)

p=0

Dort wird die TAYLOR-Entwicklung der Selbstenergie um p = 0 durch die Forderung
nach Kovarianz eingeschrankt (vgl. Abschnitt 4.2.1):

1 g 0
Yo (p) = 3s(0) + = p* X7(0) + O(p* ; YX(p)= —=—X,(p 3.29
(8) = 50(0) + 1 32(0) + O(p*) D)= g Se) (329)
Mit der Wellenfunktionsrenormierung
-1 1 "
Zoo=1-— gZU(O) (3.30)

ergibt sich:
G H(p) = mg — 36 (0) + Z,'p* + O(p') (3.31)
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Damit erfiillt
Cro(p) := Z,G. (p) = mp, + 5"+ O(p") (3.32)

mit der renormierten Masse
my, = Z,(mi — %,(0)) (3.33)

die Renormierungsbedingung. Da der renormierte Propagator mit dem Erwartungs-
wert eines Produktes aus zwei renormierten Feldern identisch ist, gilt der Zusam-
menhang

Opr = Zo 20,. (3.34)
Mit den Gleichungen (3.33) und (3.30) kann die renormierte Masse des HIGGS-Feldes

aus der Selbstenergie bestimmt werden.

Die Behandlung des m-Feldes verlauft analog, das renormierte Feld lautet:

1 1 9 0
TRy = Lr Ty Z;lzl————zrp 3.35
S o> (3.35)
Explizit lautet die renormierte Masse im unendlichen Volumen:
wh = s
1 11 2 1 :
—9o Jy {?+mg + 5?+5M§} ~ 5905/ (q po ) +5 (m)
+3dN; [, D~ (q) {(G3,, + G307 + 2G3,G3, v — 2Go, Goyp?}

—I_de{D {GOdeO God, q + IMOX) GOXluq)

+GoypGo pi2(T + 17 — pogtioy)® — Gy @ (@ + w2 + 1gy,)*?
—GoyGo@ 12 (ftoy + 10x)* + (& = 1) }
2
—2(d — 1)e /2f W — 2ue(d — 1){ (W) +mi(Z, — 1)
(3.36)

Im endlichen Volumen mufl diese Renormierungsprozedur etwas gedndert werden
(siehe 4.2.1), jedoch geniigt auch dort die Kenntnis der Selbstenergien — welche sich
aufgrund der identischen FEYNMAN-Regeln im endlichen Volumen formal nicht von
jenen im unendlichen Volumen unterscheiden — zur Berechnung der renormierten

Grofien.

3.2.3 Pol-Masse

In der ungeeichten Theorie fithrt die verschwindende Masse des GOLDSTONE-Bosons
7 zu einer Infrarot-Divergenz der renormierten Masse [LMWGI1]. In diesem Fall
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verwendet man daher die Pol-Masse des HiGaGs-Feldes, welche durch den komplexen
Pol :m,;, des HIGGS-Propagators gegeben ist. Im Kontinuum sind in der Baum-
Approximation renormierte und Pol-Masse identisch, denn dort gilt:

Gl (p) = mg + p* (3.37)

Bei endlicher Gitterkonstante gibt es bereits in der Baum-Approximation einen Un-
terschied: o
0= GZH0,im®)) = m2 4 4 sin? T2

’ ? (3.38)
= mz(jo) = 2arcsinh %>
In héheren Stérungsordnungen ergibt sich:
m, = 2arcsinh %\/mg — %, (0,im,) (3.39)

Y, ist proportional zu Potenzen der Kopplungen, eine Entwicklung liefert daher in
der Ein-Schleifen- Approximation:
m, =m” — ;zg(ﬁ, im,) (3.40)
? 2 sinh m]()O)
Nun kann m, rekursiv eingesetzt werden. In der niedrigsten Ordnung bricht man
sofort ab und erhélt
5, (0, imY). (3.41)

N ) I
m, =my’ —
8 2 sinh m]()O)
Die Auswertung der Selbstenergie bei komplexem Argument erweist sich als aufwen-

dig. Sie wurde daher ausschlieflich numerisch durchgefiihrt.

3.2.4 Physikalische Masse

Die bisher besprochenen Grofien werden rein perturbativ aus Eigenschaften des Pro-
pagators bestimmt. Die Masse des durch eine Feldtheorie beschriebenen Teilchens ist
aber definiert durch den niedrigsten Figenwert der Transfermatrix. Dieser dominiert
das exponentielle Abfallverhalten der Zeitscheiben-Korrelation [MM94, S. 60]:

_ dp4

Cpt) = | 5~ G(P.pa) e'h! (3.42)

bei verschwindendem rdumlichem Impuls:
C(0,8) = cpe M (3.43)
3
mit den Eigenwerten Ej des Gitter-Hamilton-Operators. Im unendlichen Volumen

kann man ¢ — oo betrachten und my,, := FEj als inverse Korrelationsldnge oder
physikalische Masse der Ein-Teilchen-Zustinde identifizieren.
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Die Bedeutung der Pol-Masse riithrt nun daher, dal man im unendlichen Volumen
(genauer fir T = oo) ihre Ubereinstimmung mit der physikalischen Masse exakt
zeigen kann. Dazu ersetzt man den Integrationsweg in (3.42) durch einen geeignet
gewéhlten Weg in der komplexen ps-Ebene um den Pol bei py = m, und benutzt
den Residuensatz, um zu zeigen:

C(0,t) — const - e~ "7! fiir t — oo (3.44)

In einem endlichen Volumen sind beide Gréflen nicht identisch, siehe dazu Abschnitt

4.3.2.

3.2.5 Quartische Kopplung

Renormierte Kopplungen werden im allgemeinen durch Werte von Vertex-Funktio-

nen bei gewissen Impulsen definiert. In der Phase gebrochener Symmetrie gibt es

jedoch die Moglichkeit, die Beziehung (1.44) auszunutzen und die Selbstkopplung

des HiGGs-Feldes mit Hilfe des Vakuumerwartungswertes zu definieren ([MM94, S.
71], [LW8S]) :

2

P Imp

(3.45)

5
YR
Verwendet man (3.33) und (3.10), so gelangt man zu der Stérungsentwicklung
3 2
g5 = 90— 55(0) = “o) b ol Zr — D) Fl(Ze— 1) (3.46)
0 0
In der ungeeichten Theorie divergiert die renormierte Masse. Dort verwendet man

daher die Pol-Kopplung:
3m,?
Ip =

(3.47)

5
YR
Wie in [W1T92] genau ausgefithrt wird, ist dann aber — insbesondere beim Ubergang
zur renormierten Stérungstheorie — zu beachten:

3mz(90)2 2 2
9 = — 3~ +Olg) # 90+ Olgo), (3.48)
0
mit ¢{ := 3m§)0)2/v3 gilt vielmehr:
3m (0 L 2¢(0)
9 = 98 = S (0, im) — =I—{0) + ¢} (Z; — 1). (3.49)
vg sinh my Yo

3.3 Fermion-Feld

Die Definition und Berechnung renormierter Gréflen gestaltet sich fiir die Fermio-
nen aufgrund der Struktur des Fermionfeldes aufwendiger als im skalaren Sektor.
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Am Prinzip der Vorgehensweise dndert sich jedoch nichts: Zunachst wird die Selbst-
energie berechnet, mit deren Hilfe der volle Propagator dargestellt werden kann.
An diesen werden Renormierungsbedingungen gestellt und damit die renormierten
Groflen definiert. Dies geschieht hier fiir die erste Fermion-Generation f = 1.

3.3.1 Fermion-Selbstenergie

In Ein-Schleifen-Approximation findet man fiintf Graphen:

S go) (3.50)

Der erste Graph enthélt wieder die “Tadpole”-Beitréage:

G (p) = V*7)o) = —Goufo) (3.51)
Es wéren hier im Prinzip Graphen mit Insertionen der A-; 7Z- und m-Einpunktfunk-
tionen denkbar. Diese sind aber proportional zu den entsprechenden Vakuumerwar-
tungswerten und verschwinden daher.

T (3.52)

q—7p
G = 2N
q
Gp) = 5[ 5Ag =PIV A () VOO (3.53)
Bei Benutzung von (A.16) wird hieraus:
gig?b)w(p) = ou /\2 {An )+ Z%QMA( )(Q)}
q g—p +monr
gi(%?b)x(p) = GoypGoy | —— {Am )+ Z%qﬂAgz)(Q)} (3.54)

q 9—P +monr

adp) = G5

Phex
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q—0p
¢ = T
q

Dieser Graph ist mit den Eichfeldern Z und A getrennt zu berechnen:
Gy = 3 [0 =PIV (b g) Au(@) Vg, p)
= [ DDA =PIV + a)erPr — crPr) (3.55)

(AP (q) = 7.3, AP(0)VID(p + ) (erPr — erPr),

Benutzt man die Definitionen aus (A.15) und (A.16), so fiithrt dies in der 'T HOOFT-
FEYNMAN-Eichung mit £ = 1 auf:

gf’z)(p) — —fD_l(q)/\21 - (e%X”d — €2an)PL
q q—p +M7
— (DY) —s 2X7d — 2X 4P
:[ (q)q—p -I—M%( d) . (3.56)
X = VOp+a) (A8 () - g, a0 (@) VI + 0)
d o n
X = VU(p+q) (A&l) () — 7.7, Ay (61)) Vil(p+q)

Hier wird deutlich, daf} die Selbstenergie fiir e;, # er in links- und rechtshéndi-
ge Beitrage aufgespalten werden muf}. Dies fithrt auf unterschiedliche renormierte
Grofen fiir die entsprechenden Feldanteile. Im folgenden wird immer der linkshandi-
ge Fermion-Anteil betrachtet, den Beitrag zur Selbstenergie des rechtshéandigen Fer-
mions erhdlt man durch Ersetzen von e; mit ep. Einsetzen der bekannten Ausdriicke

liefert schlieBlich:
X5t = —2i7,q, cos? 2422 A) (q) —iv,7, (d— g Fp") A (q)
+i%§gq F 0 A0() — irg. T 2 AL ()
Xpto= (4= 2205 AN g) = 5 (AR 9) + 79w AR)) 7,00 F P
Xt = x|

hex
— 2 p2 2 —
Xin = (d=1q%p") A0 - 2 F P’ AQ() — rgg T pARg)
. g2 2
Xino= =5t o (AR + AQ(9) + 77, (4 - 520 F ") AR)
—2i7,7, cos? =522 AT (g)
xi = xm|
(3.57)
Fiir den Graph mit Photonfeld gilt in FEYNMAN-Eichung ¢ = 1:
G p) = JAD (G- PV (p ) Au(g) VY (q.p)
L (3.58)

— —eQZJI"D_l(q)/l\2 (Xd” + X”d)

q=p
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Auch dieser Graph liefert fiir die beiden Fichfelder getrennte Beitrage:
G\ p) = 2VED(p,p) 3800 @)

= —%VLQ)(}?)(G%PL +exPr) [ A%)(Q)

q

und analog:

G5 (p) = —%V ) /A
q

45

(3.59)

(3.60)

Zusammenfassend gilt also fiir die Selbstenergie des linkshdndigen Anteils der ersten

Fermiongeneration in FEYNMAN-"T HOOFT-Eichung ¢ = ¢ = 1:

Su(p) = Yur(p)Pr+ Xur(p)Pr

Bour(p) = ~Goulo) + Ghu | D7 (@)= (A000) — .3,800(0))
=G [ D7 (@) == (A00) + 73,80 (0)
o+ )

f (q) q—p +M?2 +q P

2 gotpo A(Q)

. —— 2
x {=2i7,7, cos® =52 AL (q) — iv,7, (d— L¢Fp") Al(9)

+ 20,0 + p AQ(g) — iry. e F paAL (g)}
+e? [ D7(q) {A; — A%}
q 9=

p+MZ  q-p

— 2 P2 2 [
< {(d - iq+p)A(1)(q) —5q+p Alg) - rgg T pA

+3 emeq i T e wqu%

Sin(p) = GouGioc [ Do) =+ (A0(0) = 1.3,817(0)
+GouGon [ D7 (@)=t (AL20) + 3, AR (0)
07 =+ (- ) Al

—2 (31 ATN @) + 770 AD(9)) T, G0 F Pa )

)}

10— 2 5T (A0 +ARW)

q—p +M?Z 9=p 2
. _p2 2
+iv07, (d — =2 F ") AL ()}

1.2 1 1,2 1
_§echospubf3TM%— 3¢ TCOSPMJ?

Yor(p) = Tuwr(ple,, —co,

(3.61)
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Hierin ist iiber alle auftretenden Indices zu summieren. Aus Griinden der Uber-
sicht wurden die Matrixelemente des Fermionpropagators nicht ausgeschrieben, sie-
he hierzu (2.45). Die entsprechenden Groflen fiir den rechtshandigen Anteil findet
man durch e;, — ¢ep.

3.3.2 Fermion-Masse

Da sich Selbstenergien und damit volle Propagatoren fiir rechts- und linkshéndige
Felder im allgemeinen unterscheiden, miissen renormierte Gréflen fiir beide Félle
separat definiert werden. Im folgenden werden nur linkshé&ndige Teile betrachtet.
Der volle Propagator schreibt sich mit der Fermion-Selbstenergie folgendermafien:

Gy'(p) = Av7'(p) — Zu(p) (3.62)

In niedrigster Ordnung in p lautet dies (vgl. (2.44)):

Gg'(p) = Mo —24(0) + iv.p,N + O(p?), (3.63)
mit
Poy  Ho i 0
Ho  Hox Pu p=0
Die Renormierungsbedingung lautet:
J 4 ,
——Gre(p)| =11 (3.65)
dp, 0

Definiert man das renormierte Fermionfeld durch Wgy, 1= ZE,I/ZKIIOL und beachtet

— — _ir
Vrr =VYorZy’ (3.66)
so erhalt man:
_ ir . _ L .
Gru(p) = Z§ G3'(p)Z§ = Mg +iv.p.1 + O(p?) (3.67)

Folglich ist die Wellenfunktionsrenormierung definiert als diejenige 2 x 2-Matrix,
welche N in die Einheitsmatrix transformiert

7:'NZ3 =1, (3.68)
und die Matrix der renormierten Massen als:

1

HRy KR it i
=Mp =272} (My— Xy4(0))Z2 (3.69)

KR HRx
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Zuletzt wird noch die Wellenfunktionsrenormierung aus der Matrix N bestimmt.

(3.68) fithrt auf folgende Bedingung:

0= (wa - NX¢)(Z5¢ZXX Z2¢Z¢X) (wa - Nxd/) det Z\% (3-70)

Die Determinante der Wellenfunktionsrenormierung ist aber ungleich Null, denn
sonst wére diese Matrix nicht invertierbar und das renormierte Feld kénnte nicht
definiert werden. Folglich mufl N symmetrisch sein. An den expliziten Ausdriicken
liest man ab, dafl dies nur dann der Fall ist, wenn — wie bereits besprochen — die Re-
normierungsbedingungen getrennt an rechts- und linkshédndige Fermionfelder gestellt
werden. Dann kann N zunéchst durch eine Drehung diagonalisiert und anschlieflend

normiert werden. Man wéahlt also den Ansatz (vgl. [LMWGIL1]):

Z%}, _ cos( —sin( \/Zy 0 (3.71)

sin(  cos( 0  /Z

Dies 148t sich explizit aus N errechnen:

. N, _NXX
sin( = \/— sgn Ny, sgn (Nyy — Nyy ¢1 — NzlwﬁVxx)r‘)l‘lNiX
- 1/ [Ny —Nyx|

cos ¢ \/§¢ + Ny —Noy P HANZ (3.72)
-1

Zy = 2{N¢w+Nx><+ sgn(NW,—NXX)\/(N¢¢—NXX)2—|-4N£X}
-1

7y = 2{N¢¢+Nx><_ sgn(NW,—NXX)\/(N¢¢—NXX)2+4N£X}

Falls N bereits proportional zur Einheitsmatrix ist, so wird ¢ durch (3.68) nicht
fixiert. Dies ist in der Baum-Approximation, aber auch z.B. fiir ¢ = 0 und Gy =
—Gpy der Fall. ¢ 1aBt sich auch durch Grenziibergénge nicht eindeutig bestimmen:

e Wahlt man Ny, =0 und Ny, — N, so folgt aus (3.72): ( = 0,

e wird hingegen zunédchst Ny, = N, fixiert und dann Ny, — 0 gewdhlt, so
findet man: ( = 7 /4.

Der zweite Fall tritt tatsédchlich auf, wenn man zum Beispiel bei Gry = —GR, den
Grenziibergang e — 0 ausfiithrt (siehe Abschnitt 4.3.8). Jeder andere Winkel ist
durch geeignete Ausfithrung des Grenziiberganges erreichbar. Damit ist in diesem
Fall die renormierte Massenmatrix nur bis auf eine Transformation mit einer Dreh-
matrix definiert. Dies ist jedoch nur eine spezielle Auspragung der Tatsache, daf die
Wellenfunktionsrenormierung (und damit die Massenmatrix) durch (3.68) nur bis
auf eine Drehung definiert ist: Mit Zy erfillt auch Zj, = ZgD mit einer Drehma-
trix D diese Gleichung. Dies zeigt, dafl die Fintrage in Mg im allgemeinen von der
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Wahl des Mischungswinkels der Felder abhdngen. Unabhangig von dieser Wahl sind
ausschlieBlich die Figenwerte 1z und pop von Mg [LMWGY1]:

1
fazr = 5 (MRw + 1ipy \/(MRw — BRy)? + N%) ) (3.73)

hingegen wiederum nicht der benétigte Diagonalisierungswinkel

Z,UR

_—. (3.74)
KRy — KRy

tan 2ap =

Diese Frage wird in Abschnitt 4.3.8 noch einmal diskutiert.

Auch bei den Fermionen muf} im endlichen Volumen etwas anders vorgegangen wer-
den (siehe 4.2.2). Dort wird jedoch wieder nur die Fermionen-Selbstenergie zur De-
finition der renormierten Gréflen bendtigt, welche sich formal von jener im unendli-
chen Volumen nicht unterscheidet.

3.3.3 Yukawa-Kopplungen

Wie bei der quartischen, so gibt es auch bei den beiden renormierten YUKAWA-
Kopplungen die Méglichkeit einer Definition mit Hilfe des Vakuumerwartungswertes

[LMWGO1]:

GRw = Iuvﬁ GRX = IM& (375)
R VR

3.4 Kritische Parameter

Als erste Anwendung der Ein-Schleifen-Stérungsrechnung kann man die kritischen
Parameter der Theorie in dieser Naherung ausrechnen. Damit bezeichnet man die-
jenigen Punkte im Raum der nackten Parameter, an denen die Korrelationsldnge
divergiert, also ein Phaseniibergang stattfindet. Dort verschwindet die inverse Kor-
relationslange, mithin die physikalische und die Pol-Masse. Der Propagator besitzt
also einen Pol am Ursprung der BRILLOUIN-Zone, daher gilt auch fiir die renor-
mierte Masse: mp. = 0. Da die dimensionsbehaftete Masse mp/a vorgegeben, also
insbesondere in der Ndhe der kritischen Punkte konstant gehalten wird, mufl dort
die Gitterkonstante a verschwinden. An den kritischen Punkten ist folglich der Kon-
tinuumslimes der Gittertheorie zu vollziehen.

Kiirzt man (3.36) ab durch:
mp = mg + Amg, (3.76)

so findet man fiir den kritischen Parameter umgehend:

mgc = —Amg (3.77)
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Alle auftretenden nackten Massen konnen durch die Ausdriicke der renormierten
Storungstheorie ersetzt werden. Da Am? bereits von erster Ordnung ist, sind alle

daraus entstehenden Korrekturen von héherer als Ein-Schleifen-Ordnung und man

erhalt:
2

me, = —Ambp, (3.78)

wo Am% aus Am? einfach durch Ersetzung aller nackten durch renormierte Massen
entsteht. Dabei wird auch ersetzt: vo — vg x mr = 0, daher verschwinden die #-
und Z-Masse und man erhéalt:

4 1 (G, + GE G — 2Go, Goy(L4?)*
mQC = (—g +2(d — 1 6/2) / — —2dN / 0% 0x/4 x 29 3.79
0 3 0 ( ) .G f . (q ‘|‘(§ ) )2 ( )
Fiir d = 4 und Ny = 2 gilt also:

4
m2, = (ggo +6€?)Iy — 16(G,, + Go )Tz + 32Goy GoyTs (3.80)

mit den folgenden Werten der Gitterintegrale fiir = 1 im unendlichen Volumen

[W1T92]:

7, = J& ~ 0.159933

q
T, = {q+q4/4 ~ 0.025703 (3.81)
7 [ b Y~ 0.059686

(7 -I—q4/4

Mit (1.28), (1.29), (1.43) und der Konvention ps = 1 —2A gilt fiir die Parameter der
Gitternotation:

40 -2 A 2
+16 = ( + 66’2)1'1
K%k

c c e

1G, Gy
[’2

——(G3 + G2)T, + 15 (3.82)

Re

und damit eine quadratische Gleichung fiir den kritischen skalaren Hopping-Para-
meter:

G2 G*)I, — 2G, Gy T.
0= (36’21'1 — 8)/4;3 + ((1 —2X) — (G + ) v 3)

K?

C

Ke+4XT;  (3.83)

Verschwinden alle Kopplungen, so erhédlt man den Wert fiir den GAUSS’schen Fix-

punkt: k. = é.

Ausgangspunkt der analogen Betrachtung fiir die Fermion-Parameter ist Gleichung

(3.69). Mit pg. = 0 folgt sofort:

0 _1
My, =Z4° Z,* 4+ Xy(0) (3.84)
0 pry

Hier setzt man wieder die renormierte Stérungstheorie ein, insbesondere also pg +—
pr = 0 und vy — vp = 0 und erhélt:

M. = Zpru(0), (3.85)
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also insbesondere fiir die Fermionmasse (r =1, d = 4 und e = 0):

Hoc = Zl/’X(O) == GOwGOXI4 + 6/2(1'5 — 21'1) (386)
mit
- —_ 1 [
I, = {§2+34/4 ~ 0.085390
T = f 8+ 0.9312 (387)
ST @+t T :
Mit o = 5% und der Konvention piy, = 1 — 8K lautet dies:
Gyl 2 -
0= Tt (2¢%(Z5 = 211) + 8) K. — 1 (3.88)

Bei verschwindenden Kopplungen findet man fiir den GAUSS’schen Fixpunkt hier
ebenfalls K. = é. Fir G, = 0 gilt:

K. = (2¢*(T; —21,) +8) (3.89)
Damit lautet das Resultat fiir den skalaren Hopping-Parameter bei G, = 0:

0= (3T, — 8)r2 + [(1 = 2)) — G2 T(2¢X(Ts — 2Ty) + 8)°| e + 4ATy (3.90)

Fiir diesen Punkt sind die kritischen Hopping-Parameter in den Abbildungen 3.2,

0.20

« 0.10

0.05

0.00

Abbildung 3.2: Kritischer skalarer Hopping-Parameter fir verschiedene
Selbst- und Fichkopplungen im unendlichen Volumen.

3.3 und 3.4 aufgetragen. Dort sind auch Volumeneffekte berticksichtigt, welche von
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Abbildung 3.3: Kritischer skalarer Hopping-Parameter bei A = 0.1 fiir
verschiedene Eichkopplungen und Glittergrofien.
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Abbildung 3.4: Kritischer fermionischer Hopping-Parameter als Funk-
tion der Eichkopplung fiir verschiedene Gittergrifien.
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der Auswertung der Impulsintegrale auf endlichen Gittern herrithren. Anstatt die
Integrale fiir ein unendliches Volumen zu berechnen, wurde ein grofies Gitter (50 -
100) verwendet, auf dem die Ergebnisse offenbar nur noch wenig vom unendlich
groflen abweichen. Die skalaren kritischen Hopping-Parameter werden danach auf
einem endlichen Gitter zu grof, die fermionischen zu klein geschatzt. Die Effekte
sind jedoch fiir kleine Kopplungen gering.

3.5 Eichfelder

Die Untersuchung der Eichfelder und ihrer Parameter ist nicht das zentrale Anlie-
gen der Behandlung von HIGGS-YUKAWA-Modellen. Sie gestaltet sich auflerdem —
besonders in der gebrochenen Phase — bereits in der Ein-Schleifen-Ordnung aufleror-
dentlich aufwendig und wurde daher bislang nicht besprochen. Allerdings lassen sich
einige allgemeine Ergebnisse analog zu Kontinuumstheorien mit einfachen Mitteln
ableiten.

Wie in einer Theorie mit fixierter Eichung tblich, manifestiert sich namlich die
Forderung nach Eichinvarianz in einer funktionalen Differentialgleichung fiir das er-
zeugende Funktional (siehe z.B. [RYD89, S. 270ff, 277ff], [IZ85, S. 594ff]). Zu ihrer
Herleitung fordert man die Invarianz des erzeugenden Funktionals unter einer infi-
nitesimalen Transformation ® — ® + 6® der Felder. Ist die Wirkung S invariant,
so gilt:

Z[J] = /Di)exp {—S — SGF — SFP — 5SGF — 5SFP + Zin)x + ZJl,&i)x}
(3.91)

Da alle Variationen zum Parameter A der Transformation proportional sind, kann
man in A entwickeln und erhélt:

{—5§GF — 6Spp + Zfoséx} Z[3 =0, (3.92)
wobei in den markierten Gréflen Felder durch Ableitungen nach den Quellen zu erset-

zen sind. Die Variation des eichfixierenden Terms erhalt man durch eine funktionale
TAYLOR-Entwicklung (hier ist stellvertretend nur das Feld Z beriicksichtigt):

Ser = 21—5 Zx: (FZua))” 21—5; (f[ZW] + Zy)/\y 787[7*‘5:;““]

2
A=o) (3.93)
Ser + %%AxMxy}—[Zuy]v

jene der FADDEEV-PopPOV-Wirkung kann unmittelbar abgelesen werden, und man

erhalt:

1 — a = 7  ~ = x4 ~ =
{Z (—gAxMxyF[W] — 617, Myl — %Mxy&?y) + ZJx5‘I’x} Z[3]=0

xy By
(3.94)



3.5. EICHFELDER 33

Die explizite Form der resultierenden Identitdten hingt von der gewihlten Transfor-
mation ab. Da S invariant sein soll, wird man fiir die darin auftauchenden Felder eine
Eichtranstformation verwenden. In der Wahl der Transformation der Geist-Felder ist
man jedoch frei.

Becchi-Rouet-Stora-Transformationen

Die einfachsten Gleichungen erhdlt man, falls nicht nur 5, sondern auch S 4+ Sgr +
Spp invariant ist. Dann verbleiben in den resultierenden Differentialgleichungen nur
noch die von den Quellen stammenden Terme. W&hlt man zunachst 67 = 0 und

A, = —7,A mit einer GRASSMANN-Variable A, so erhdlt man
1= — 0 -~ ~
{5 (ftnr it i, ) + 308 b2 =0, (395)
zy ny @

und dies vereinfacht sich offenbar erheblich fir 67, = %.7:[#])\, also die BECccHI-

ROUET-STORA-Transformationen, welche fiir die "T HOOFT-Eichungen explizit lau-
ten:

bo, = —e'mA,

oy = €(0op+v9)As

SO = i(efPY) — exPY)UWIA,
s0 = i (e, P — P, (3.96)
04, = VA,
T % (VZZW + fvoe’ﬂ'x) A
on, = 0,
mit A, = —7,A. Dann erhalt man:
N 1.69,. 23] =0 (3.97)
Fiithrt man noch das erzeugende Funktional der Vertexfunktionen mittels
Z[J] 1 07[J] ol'[®]
rNel=h—=-> J, &, ; ¢, = — J,=——F— (3.98
@] =170 ; Z[3] 03, 5o, 39
ein, so gelangt man zu den SLAVNOV-TAYLOR-Identitéten:
ol'[®]
0P, =0 3.99
Zx: 0%, (3.99)

Schreibt man diese explizit aus, leitet nach Feldern ab und setzt sie anschlielend
gleich Null, so erhdlt man nichtperturbative Aussagen tiber volle Vertexfunktionen,

z.B.:

t Vi

1
0 =TT (p) = ip, T30 (p) + igﬁur(2N)(p)v (3.100)
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also eine Verkniipfung voller Propagatoren von Geistern und Z-Bosonen mit der =-
Z-Mischung, welche ja nur in der klassischen Approximation durch die 'T HOOFT-
Eichung verhindert wird. Von der Giiltigkeit solcher Relationen auf dem klassischen
Niveau kann man sich leicht tiberzeugen.

Reine Eichtransformation

Beschrankt man sich auf eine Transformation der in der Wirkung auftauchenden
Felder (677 = én = 0), so erhalt man sofort die WARD-TAKAHASHI-Identitaten

9
=N M, F
{ Z ! aJ

MZ/

— ) + 309 } Z[3] =0 Vo, (3.101)

mit (5&)90 = 5513251\1,. Fiir die "1 HOOFT-Eichungen lautet dies explizit:

0= { (D + Evge”? + Evge” &Z‘”) (VZ%E? + fvoe’%;ﬁ))
—e' S 556, + €I (55, + vo) + VD
<! ‘ljmf . 5
—I-lJi, )(GLP(Lf) - GRPg))aj(;,J) ? T f)(eLP( ) _ eRP( ))J(‘I’ f)} Z[J]

(3.102)
Daraus kénnen die WARD-TAKAHASHI-Identitdten der unitaren Fichung abgeleitet
werden, indem man ¢ — oo betrachtet und alle das w-Feld betreffenden Beitrige

unterdriickt:
0 = {—1)06/2 (Uo —|— %&‘)) Vz 8J(Z) —|— VMJ£$)
(T, , _
i7" D (e PV — erP)) o — i i (e, P eRP(L”)J;W)} Z[3]
(3.103)
Da das A-Feld nicht an das HiGGs-Feld koppelt, lautet die entsprechende Gleichung:

1 d 5, 0 T
_)_ * 7(4) wisd _ (T.5)
0= { f’D “ D + Vi J e, P zeaJ 57 J} } Z[J] (3.104)

Auch diese Identitéten kénnen fiir die Vertexfunktionen aufgeschrieben werden. Da-
zu dividiert man sie durch Z[0] und setzt (3.98) ein. Man erhélt:

0 = —¢ (D + Evge? + Evpeay) (V*ZW + fvoelﬂx)

) o0 ) o0 « a0
e g T — € W(Ux + vg) — vuazw

—izan(erP) — Py Ul + T (e, PP — eppl¥ >)

0 = —10ViA, — Vi 4 a{f)q;g,)—@exp”ﬁ)

(3.105)

bOA
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Diese Identitéten erlauben nichtperturbative Aussagen tiber Vertexfunktionen. Bei-
spielsweise kann man die WARD-TAKAHASHI-Identitat fiir den (inversen) Z-Boson-
Propagator

g 0
—1) = —— T[® 3.106
I (3106
ableiten, indem man nach Z,, differenziert und alle Felder auf Null setzt:
1 2 2 * *1(27)
(n:—g(m+5%e)<@@w—sgrww (3.107)
Im Impulsraum lautet dies:
1 - P
0=—= (K +¢de?) by — kDD (k) (3.108)

£

Setzt man hier die Definition der Selbstenergie und den inversen nackten Propagator

(2.63) ein

~

— P02 (k) = 6, (F* + (¢'v0)*) — (1 = 2)kuky — Sz (k), (3.109)

117

S| =

so erhalt man:

0=k, Sz (k) (3.110)

Die Selbstenergie ist transversal! Dieselbe Argumentation 148t sich analog fiir die

Selbstenergie des Feldes A fiithren.



Kapitel 4

Endliches Volumen

4.1 Voriiberlegungen

Dieses Kapitel ist der Betrachtung des HIGGS-YUKAWA-Modells auf einem Raum-
Zeit-Gitter mit der Ausdehnung T in zeitlicher Richtung und L in alle rdumli-
chen Richtungen gewidmet. Das Gittervolumen Q = LT ist endlich. Wie sieht
der Impulsraum dieses Systems aus 7 — ZweckméifBigerweise beschrénkt man sich
zunachst auf eine Dimension der Ausdehnung [ und definiert dort die FOURIER-
Transformation eines Feldes ¢ gemaf

1 L—-1 ) L-1 R
Poi= 7 D p(pa)e™™, ppn) =D poe™ 7, (4.1)
n=0 =0

mit p, = 2% n + po. Fiir die Festlegung von py betrachtet man:

1 L-1 o ) 1 L-1 ) )
oL =T 2 p(pa)e TRl = = 37 o(py)e = et (4.2)
L n=0 L n=0
Offenbar legt py die Randbedingungen fest. Dabei betrachte ich stets nur zwei Félle:
Periodische Randbedingungen (¢o = ¢r.) : pn=3n

Antiperiodische Randbedingungen (po = —¢r) : pp=*¥n+F

Diese Uberlegungen lassen sich sofort auf die eingangs erwihnte Situation erweitern.
Den in vorangegangen Arbeiten verwendeten Konventionen folgend, werden immer
periodische Randbedingungen in alle Richtungen fiir bosonische Felder und periodi-
sche Randbedingungen in den rdumlichen Richtungen und antiperiodische in der
zeitlichen Richtung fiir fermionische Felder verwendet (siehe hierzu auch [MM94,
S. 187f], [ROT92, S. 319ff] oder [KAP89, S. 26ff]). Die entsprechenden Impulsraume

56
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sehen folgendermaflen aus:

B, = {p:%(nl,nz,ng,n4):nl,ng,n3:0,...,L—1,n4:0,...,T—1}
B, = {p=32(ni,ng,n3,ns+3) :n1,n2,n3=0,...,L—1,n4=0,...,7—1}

(4.3)

Die Propagatoren nehmen ihre Werte stets iiber derselben BRILLOUIN-Zone an wie
die zugehorigen Felder. Ist namlich B € {B,, B,} die zu einem Feld ¢ gehorige
BRILLOUIN-Zone, so soll fiir die freie Wirkung gelten:

qu
Dies ist nur dann konsmtent, wenn der (inverse) Propagator seine Werte auf B
annimmt.

Die Wirkung des Modells dndert sich beim Ubergang zum endlichen Volumen formal
nicht. Summen {iber Gitterpunkte besitzen allerdings nur endlich viele Summan-
den. Funktionalintegrale wie z.B. das erzeugende Funktional degenerieren zu einer
Integration eines zwar hoch- aber endlichdimensionalen Raums (nur daher lassen
sich Monte-Carlo-Simulationen durchfithren). Die Ausdriicke fiir Propagatoren und
Vertices in den FEYNMAN-Regeln &ndern sich nicht. Allerdings sind die Schleifen-
Integrationen durch Summen tiber die oben aufgefithrten Impulse zu ersetzen. Dabei
ist Vorsicht geboten: Die Summen sind stets so zu schreiben, dafl Propagatoren ei-
nes Feldes nur Impulse aus der zu diesem Feld gehérenden BRILLOUIN-Zone als
Argumente erhalten. Dies soll an einem Beispiel erlautert werden:

q

__—>——_Q_—>——_

/

Z P T P1 Y P2 Z

Im Ortsraum entspricht dieser Graph dem Ausdruck

> A GA Yy GA e Ny (4.5)

zy
Hierin soll ¢ ein Fermion-, ¢ ein Bosonenfeld darstellen, (& ist ein (lokaler) Vertex.
Einsetzen von FOURIER-Darstellungen iiber den entsprechenden BRILLOUIN-Zonen
liefert den Graphen im Impulsraum:

> AuP)GA(P)GAL(P)A(pr —p) 5 PE B, (4.6)
P eBa

und tatsichlich erhdlt der bosonische Propagator, obwohl externer und Schleifen-
Impuls in der BRILLOUIN-Zone zu antiperiodischen Randbedingungen liegen, einen
Impuls aus der BRILLOUIN-Zone der Bosonenfelder. Allerdings darf in diesem Bei-
spiel der externe Impuls nicht verschwinden! Er wére dann nicht aus B,, und das
Argument von A, kime aus B,, was nicht erlaubt ist. Derartige Zusatzbedingungen
erfordern eine angepafite Definition der renormierten Groflen.
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4.2 Renormierte Grofien

Wie in den Abschnitten 3.2.2 und 3.3.2 ausgefiihrt, berechnet man zunéchst die
Selbstenergie eines Feldes und damit den vollen Propagator (in einer Stérungsord-
nung). Dann renormiert man das Feld derart, daff der Koeffizient des zweiten Terms
der Impulsentwicklung des Propagators Eins wird. Am renormierten Propagator
liest man die renormierte Masse ab.

Die Wellenfunktionsrenormierung wird daher wesentlich durch eine Ableitung der
Selbstenergie nach dem externen Impuls bestimmt. Die renormierte Masse enthalt
die Selbstenergie am externen Impuls Null. Im letzten Abschnitt wurde jedoch ge-
zeigt, daBl im endlichen Volumen eine diskrete Impulsdarstellung vorliegt, Differen-
tiationen nach Impulsen also nicht moéglich sind, und daf§ der Impuls Null nicht
immer im Impulsraum enthalten ist. Daher miissen die Definitionen renormierter
GroBen in einem endlichen Volumen abgedndert werden, siehe [LMWGY1].

4.2.1 Bosonen

Wie im unendlichen Volumen gilt fiir den inversen vollen Propagator (vgl. (3.27)):
Glp)=p"+mi—Y.(p) : PpEB (4.7)

Fiir L # T wird die TAYLOR-Entwicklung der Selbstenergie durch Symmetriebedin-
gungen weniger stark eingeschrankt als im unendlichen Volumen. Daher betrachtet
man Impulse p = (0, ps) und approximiert den Propagator durch

Gl (p) = m* +np;y + O(p"). (4.8)

Die Renormierungsbedingung fordert fiir das entsprechende Verhalten des renor-
mierten Propagators

Gha(p) = mb+Pi+ O(P"). (4.9)
Folglich lautet die Wellenfunktionsrenormierung

Zy =n"" (4.10)

und die renormierte Masse

my = Z,m* =n"'m? (4.11)

Das eigentliche Problem liegt in der Bestimmung der Entwicklungskoeffizienten m
und n. Aus (4.7) liest man ab:

m? =m; —3,(0) (4.12)
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n wird bei der Auswertung numerischer Simulationen — der sich hier so weit wie
moglich angepalit werden muf, um einen Vergleich zu erméglichen — durch die klein-
sten nicht verschwindenden Impulse py := (6,:&2%) (fir 7" > L) bestimmt. Man
fordert ndmlich:

m® +npy = G (px) = pi +mfy — Bo(p+) (4.13)
und findet sofort:
n= e (5,(0) ~ So(p)) (1.11)
sin® £

wobei die Wahl zwischen p; und p_ das FErgebnis nicht verdndert. Da X, von erster
Stérungsordnung ist, erhélt man damit fiir die renormierte Masse die Entwicklung:

mp = my — QL (20(0) + m%Z”(OAjSi_n?”(pi)) (4.15)

s
mo i3

4.2.2 Fermionen

Die (4.13) entsprechende Gleichung lautet fiir die Fermionen:
M +iNv,p, + O(F*) = G3'(p) = Mo + i7,p,1 — Zu(p) p€ B, (4.16)

vergleiche (3.63). Hier 148t sich auch M nicht mehr direkt bestimmen, da 0 ¢ B,.
Stattdessen fordert man die exakte Giiltigkeit von (4.16) bei den beiden kleinsten
Impulsen py := (0,0,0,%+%) und addiert beide Gleichungen. Es folgt:

M =M, 3 (Su(ps) + Sulp)) (4.17)

Subtraktion hingegen liefert:

N=1+ 0 (Sy(pt) - Sulpo) (4.15)

s
2sin T

Weiter wird verfahren wie im unendlichen Volumen, siehe 3.3.2. Die Wellenfunkti-
onsrenormierung wird durch

73'NZ3 =1, (4.19)
die renormierte Massenmatrix durch
Mp = Z3' MZ3 (4.20)

definiert. (3.72) ist unverandert giiltig.
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4.3 Volumen-Effekte

Die in den letzten Abschnitten definierten renormierten Gréflen lassen sich nun in
Abhéangigkeit von der Gittergréfle untersuchen. Der Einflul der endlichen Ausdeh-
nung des Gitters ist vor allem fiir numerische Simulationen interessant, wo er sich
bei gegebener Rechenzeit nicht ohne weiteres aus der Durchfithrung der Simulati-
on auf verschieden groflen Gittern bestimmen 1afit [LMWMO91]. In dieser Situation
liefert die (renormierte) Storungstheorie auf folgende Weise eine Abschétzung der

Volumeneffekte [LMWMO91].
Eine renormierte Gréfle Xg lautet in der nackten Stérungstheorie
Xr(L,T)= X0+ AXo(L,T) (4.21)

Hierin sei AXo(L,T) die von allen nackten Parametern abhingige Fin-Schleifen-
Korrektur zu X im Volumen L*-T' (hohere Korrekturen sind nicht mitgeschrieben).
Im unendlichen Volumen gilt, da dort die Renormierungsbedingungen aufgeprégt
wurden:

Xr = Xp(oo,0) = Xo + AXp(o0,00) (4.22)
Der (absolute) Volumeneffekt ist die Differenz beider Grofien:

SXR(L,T) = Xp(L,T) — Xp = AXo(L,T) — AXo(o0, 00) (4.23)

Die renormierte Storungstheorie ergibt sich durch Auflésen von (4.21) nach den
nackten Groéflen und rekursives Einsetzen bis zur gegebenen Ordnung. In der Ein-
Schleifen- Approximation erhilt man:

Xo = Xp(L,T) — AXp(L,T), (4.24)

wobei AXgp(L,T) aus AXo(L,T) einfach durch die Ersetzung aller nackten durch
renormierte Parameter entsteht. Folglich lautet der Volumeneffekt in Fin-Schleifen-

Ordnung:
OXr(L,T)=AXgp(L,T)— AXp(co,o0) (4.25)

Da die Berechnung der Ein-Schleifen-Integrale im unendlichen Volumen analytisch
nicht méglich und numerisch aufwendig ist, geht man folgendermafien vor: Die in
dem Ausdruck AXg(L,T) auftretenden Schleifen-Summen werden numerisch fiir
einen gegebenen Satz renormierter Parameter {Xg,...} und verschiedene Gitter-
groflen L, T' berechnet. Dabei wird eine Ausdehnung L., T, bestimmt, ab der
sich die Stérungskorrektur nur noch unwesentlich &ndert. Dann definiert man als
approximativen Volumeneffekt:

SXp(L,T) = AXR(L,T) — AXp(Leo, Teo) (4.26)
und als renormierten Parameter im endlichen Volumen:

Xr(L,T) = Xp+ 6Xgr(L,T) (4.27)
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Der entstehende Fehler wird kontrolliert, indem die betrachtete Grofle aufler auf
L3 - T, noch auf einem etwas kleineren Gitter berechnet wird. Die Differenz der
Ergebnisse sollte ein Maf fiir die Abweichung vom unendlichen Volumen darstellen.
Liegt der so berechnete Fehler in der GréBenordnung des Volumeneffektes, so miissen
die Werte L, T, vergroflert werden.

Die Erstellung der Programme zur Auswertung der Schleifen-Summen erfolgte mit
Hilfe von symbolischer Computer-Algebra: Zunachst wurde jeder zur Selbstener-
gie beitragende Graph bei vorgegebenen FEYNMAN-Regeln und Symmetriefaktoren
symbolisch berechnet. Dies ergab einen Test der durchgetithrten analytischen Rech-
nungen. Lediglich bei den Fermion-Graphen mufiten symmetrische und antisym-
metrische Anteile von Hand zur Verfiigung gestellt werden. Aus den symbolischen
Ausdriicken wurden dann automatisch Quelltexte generiert, welche den Wert der
Storungskorrektur bei einem gegebenen Schleifenimpuls (und bei gegebenen renor-
mierten Parametern und externen Impulsen) errechneten. Mit Hilfe einer fiir gera-
de rdumliche Ausdehnung L méglichen optimierten Aufsummation bei gegebener
GittergroBe [MUN] wurde schlielich der approximative renormierte Parameter im
endlichen Volumen bestimmt.

Die nachfolgenden Abschnitte stellen die Volumeneffekte einiger renormierter Gro-
Ben im einzelnen vor. Von speziellen Untersuchungen abgesehen, wurden dabei alle
Parameter um einen im folgenden “Referenzpunkt” genannten Parametersatz her-
um variiert. Tabelle 4.1 zeigt den untersuchten Bereich, die mittlere Spalte gibt den
Wert an, auf den nicht variierte Parameter gesetzt wurden. Alle Rechnungen wurden

Parameter | fixiert bei | Bereich
my, 0.5 0.2—-1.0
UR 0.22 0.05—0.5
9y 2.0 0.5—4.5
Gry 0.45 0—-0.5
Gry —0.45 —0.5—-0.1
¢ 0.5 0-1
€ 0 0—0.25

Tabelle 4.1: Untersuchte Parameterbereiche

fiir ein 67 - 12- und ein 8 - 16-Gitter durchgefiihrt. Das kleinere Gitter wird immer
mit Rauten O, das groflere mit Dreiecken A markiert. Die kleinste Masse im Para-
meterbereich ist 0.05, einer Korrelationslange von & 20 entsprechend. Daher wurde

L., =26 und T, = 52 gewidhlt. Um einen Uberblick iiber die dadurch entstehenden



62 KAPITEL 4. ENDLICHES VOLUMEN

Fehler zu gewinnen, wurde auch ein 24° - 48-Gitter betrachtet. Die Abweichungen
wurden als Fehlerbalken eingetragen (falls sie grofler als die verwendeten Symbole
sind), sollten aber wie bereits betont mehr als ein Anhaltspunkt tiber die relative
Grofle der Fehler betrachtet werden.

Der Referenzpunkt wurde so gewéhlt, dafl die Korrelationslangen etwa den rdaumli-
chen Gitterausdehnungen entsprechen. Er sollte also grob die Grenze zu auftretenden
Volumeneffekten markieren.

Alle Ergebnisse wurden in der 'T HOOFT-FEYNMAN-Eichung (¢ = ¢’ = 1) gewonnen.

4.3.1 Verschwindende Eichkopplung

Als erstes betrachte ich den Fall verschwindender Eichkopplungen: ¢/ = ¢ = 0. Man
erhdlt das ungeeichte HIGGS-YUKAWA-Modell zuriick und sollte daher bisherige Re-
sultate reproduzieren. Daraus ergibt sich ein Test von Rechnungen und Programm
des reinen HIGGS- und Fermion-Sektors. Volumeneffekte wurden in [LMWM91]
fiir einen Parametersatz mit G := Gry = —Gpg, verdffentlicht. Damit iiberein-
stimmend konnten fiir die Fermionmasse yr = 0.22 keine nennenswerten Effekte
gefunden werden, Tabelle 4.2 fafit die Ergebnisse zusammen. Die erste Zeile zu jeder
Mefgréfe enthélt den Literaturwert, die nachfolgenden Zeilen unterscheiden sich
in den Randbedingungen fiir die Fermionen in Zeitrichtung und der verwendeten
Konvention fiir die Berechnung der renormierten Grofien:

Nr. Randbedingungen Wellenfunktionsrenormierung

1.  periodisch Definition im unendlichen Volumen (3.30)
2. antiperiodisch Definition im unendlichen Volumen (3.30)
3. periodisch Definition im endlichen Volumen (4.14)
4.  antiperiodisch Definition im endlichen Volumen (4.14)

Eine Auswertung auf dem unendlichen Gitter wurde nicht vorgenommen, sondern
stattdessen die Werte auf dem 16® - 32 Gitter durch Addition eines konstanten Off-
sets hergestellt. Die Ergebnisse stimmen also bei Anwendung der Methode 1 bis auf
die jeweils letzte signifikante Stelle mit den Literaturwerten tiberein, eine Ausnahme
bildet lediglich der Vakuumerwartungswert vg. Der Unterschied zwischen den Defi-
nitionen der renormierten Groflen, insbesondere der Wellenfunktionsrenormierung,
im unendlichen Volumen (3.30) und im endlichen Volumen (4.14) ist bei moderat
groflen Gittern nicht zu vernachléssigen, wie einerseits der Tabelle 4.2 zu entnehmen
ist, und andererseits in Abbildung 4.1 am Beispiel desselben Parametersatzes gezeigt
wird. Der Volumeneffekt der im endlichen Volumen definierten Gréfle ist signifikant
kleiner als jener der im unendlichen Volumen definierten Grofe.
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L3 T o | 16%-32|8%-16 | 6316 | 63-6

m, | [LMWMO1] | 0.532 | 0.534 | 0.555 | 0.580 | 0.620
1.,3. 0.534 | 0.555 | 0.580 | 0.621

2. 4. 0.534 | 0.552 | 0.572 | 0.558

g | [LMWMO1] | 620 | 6.20 | 6.07 | 5.66 | 4.17
1. 6.20 | 6.08 | 5.64 | 4.20

2. 620 | 6.26 | 6.08 | 6.63

3. 620 | 6.45 | 6.60 | 7.01

1. 6.20 | 6.42 | 6.52 | 6.68

LR 3. 0.220 | 0.220 | 0.220 | 0.218
1. 0.220 | 0.220 | 0.220 | 0.218

Gr | [LMWMO91] | 045 | 045 | 043 | 041 | 0.34
3. 045 | 043 | 040 | 0.33

1. 045 | 0.44 | 042 | 0.45

vr | [LMWMO1] | 0.370 | 0.372 | 0.379 | 0.386 | 0.424
1. 0.372 | 0.390 | 0.421 | 0.492

2. 0.372 | 0.383 | 0.402 | 0.376

3. 0.372 | 0.379 | 0.392 | 0.408

1. 0.372 | 0.378 | 0.389 | 0.374

Z. | [LMWMO1] | 0.973 | 0.969 | 0.898 | 0.783 | 0.502
1. 0.969 | 0.900 | 0.781 | 0.508

2. 0.969 | 0.936 | 0.866 | 0.970

3. 0.969 | 0.960 | 0.934 | 0.962

1. 0.969 | 0.962 | 0.938 | 0.977

Tabelle 4.2: Volumeneffekte bei verschwindender Eichkopplung
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Abbildung 4.1: Volumeneffekte der im endlichen (+) und im unend-
lichen (&) Volumen definierten Wellenfunktionsrenor-
MIETUN.

Auch die Randbedingungen haben einen Einflufl auf die Ergebnisse: Im allgemeinen
sind die Volumeneffekte bei antiperiodischen Randbedingungen in Zeitrichtung fiir
die Fermionen kleiner als bei periodischen.

4.3.2 Higgs-Masse

Der Ubergang zu endlichen Eichkopplungen beseitigt einige technische Probleme in
der Phase gebrochener Symmetrie, vor allem die Infrarot-Divergenzen der renormier-
ten Masse und der Wellenfunktionsrenormierung 7,, da der relevante Freiheitsgrad
7 entweder verschwindet (unitdre Eichung) oder massiv wird ('T HOOFT-Eichung).
Daher stehen hier alle in 3.2 aufgefiihrten Definitionen der Massen zur Verfiigung
und kénnen hinsichtlich ihrer Volumeneffekte verglichen werden.

Singularitidten der Pol-Masse

Bei der systematischen Untersuchung der Abhéangigkeit der Pol-Masse vom (im Ge-
gensatz z.B. zu [LUs86a]) auch in Zeitrichtung endlichen Volumen findet man ein
unregelméafiges Verhalten. Abbildung 4.2 zeigt zum Beispiel die Pol-Masse am Re-
ferenzpunkt der weiteren Untersuchungen. Um dieses Verhalten zu verstehen, be-



4.3. VOLUMEN-EFFEKTE 65

0.60[ " " 77

0.55

- L
2 0.50
E L

0.45

O 40 Lo o

Abbildung 4.2: Volumeneffekte der Pol-Masse

trachte man noch einmal den Graphen gf)(p) aus 3.2.1:

1 1 1
G (p) = gzvz/A _ 1.28
o) 1B @t mi g+ mi, 2%

und seinen Beitrag zur Pol-Masse in (3.41), also bei p = (6, imz(jo)). Mit

q/—l—\p2 = §* — mg cos ¢4 + 2ig, sinh mz(jo) (4.29)

findet man:

. 1 1 ~ 9 2
G (0, im®) = —gévé/ 4= Mo cosdu F Moy (4.30)

’ q* + mg, (g2 — mi cos g4 +mi,)? + 472 sinh® mz(jo)

Der Integrand besitzt verschiedene quadratische Pole, beispielsweise fiir ¢ = (,0) an
den Stellen ¢* = m§ — m§,. Da sich ¢ = 2% durch einen Vektor @ mit ganzzahligen

Komponenten darstellen 1a8t, divergieren die Summanden an den Stellen

9 TNy

L

3
mg —mg,. =4 sin (4.31)
i=1
Wahlt man also bei gegebenem L alle Parameter so, daf ein i die obige Gleichung
erfiillt, so nimmt gf)(ﬁ, imz(jo)) beliebig groBe Werte an. All diese Uberlegungen blei-
ben richtig, wenn der Beitrag in der renormierten Stérungstheorie verwendet wird.
Die in Abbildung 4.2 verwendeten Parameter ergeben m,* — m%,_ = 0.1615 und die
rechte Seite von (4.31) liefert fiir 7 = (1,1,0) und L = 22 etwa 0.1620, mit anderen
Worten: Fiir L & 22.04 wiirde bei analytischer Fortsetzung in L der Pol erreicht, was
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das Verhalten bei L = 22 in Abbildung 4.2 erklart. Weitere Singularitdten entstehen
bei ¢4 # 0 und in anderen Beitrdgen zur Selbstenergie.

Die im n&chsten Abschnitt besprochene physikalische Masse zeigt diese Singula-
ritdten nicht, daher ist der physikalische Gehalt des Phénomens anzuzweifeln, wahr-
scheinlicherist, dafl es sich um einen Artefakt der perturbativen Behandlung handelt.
Allerdings zeigen sich bei der Untersuchung instabiler Teilchen (o ist hier instabil)
in endlichen Volumina in der Ndhe von Resonanzen &hnliche Effekte bei hoheren
Energie-Eigenwerten [LUS86b].

Physikalische Masse

Die in Abschnitt 3.2.4 als exponentielle Zertallskonstante der Zeitscheiben-Korre-
lation eingefiihrte physikalische Masse stimmt, wie bereits betont, nur im unendli-
chen Volumen exakt mit der Pol-Masse tiberein. Um die Abweichungen tiberblicken
zu koénnen, wurde diese Grofie fiir einige Parameterwerte numerisch ermittelt. Da-
zu wurde die Selbstenergie X,(p) fiir alle Werte p € B, bestimmt, daraus die
Zeitscheiben-Korrelation

T-1 27 t
ReC(0,1) = ¥ — cos(Fnt) _ (4.32)
w=0 (2sin Tn)% + m§ — ¥, (0, Fn)
berechnet und mit der Funktion
Colt) = A+ B (e 4 e7mmT9) (4.33)

gefittet. Die Zeitscheiben-Korrelation ist fiir zwei Beispiele in Abbildung 4.3 aufge-
tragen. Hieran ist zu erkennen, dafl bei grofen Kopplungen selbst bei Beschrankun-
gen z.B. auf das Intervall ¢ € [T'/4,3T/4] keine zuverldssige Bestimmung der phy-
sikalischen Masse mehr moglich ist. Diese Methode der Massenbestimmung bleibt
also auf gewisse Parameterbereiche beschrankt, auflerhalb verliert die perturbative
Ein-Schleifen-Approximation ihre Giiltigkeit.

Vergleich verschiedener Definitionen

Abbildung 4.4 zeigt beispielhaft die Volumeneffekte von renormierter Masse, Pol-
Masse und physikalischer Masse. Die Volumeneffekte sinken bei der Gittergrofie
10% - 20 unter 1 %. Die Massen von Z- und w-Bosonen betragen bei den gewéhlten
Parametern 0.326, also ist ur = 0.22 die kleinste Masse, einer Korrelationslange von
etwa 5 entsprechend. Die Volumeneffekte werden hier also dann unerheblich, wenn
die rdumliche Ausdehnung die doppelte Korrelationsldange erreicht.

Deutlich zeigt sich in der Abbildung der Unterschied der renormierten Masse von
den anderen Definitionen, deren Volumeneffekte absolut etwa gleich grofl sind, aber
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Re C(0,t)

Abbildung 4.3: Zeitscheiben-Korrelation des o-Feldes auf einem 8 - 16-
Gitter am Referenzpunkt, aber mit verschiedenen FEich-
kopplungen.
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ein anderes Vorzeichen tragen. Pol- und physikalische Masse hingegen unterscheiden
sich erwartungsgemafl nur bei kleinen Gittern, allerdings zeigt letztere auch bei
anders gewihlten Parametern keine Anzeichen der bei der Pol-Masse auftretenden
Singularititen. Insgesamt liegt die GroBe der Effekte z.B. fiir das 6% - 12-Gitter bei
maximal 3 %, also deutlich geringer als im ungeeichten Fall (ca. 10 % bei 6° - 16).

Das abgebildete Verhalten sollte durch die Ergebnisse aus [LU$86a] beschrieben wer-
den kénnen. Dort wurde das asymptotische Verhalten des Volumeneffektes ém,, im
Kontinuum fiir . — oo und T' = oo untersucht, indem dieser durch eine Streu-
amplitude ausgedriickt und darin die dominaten Graphen aufgesucht wurden. Das
Ergebnis ist in [MUN85] auf gitterregularisierte Theorien erweitert worden:

Sm,, = —%e—%ﬁw + O(e™™, (4.34)

mit m > %\/gmp. Nun sind bei T" = oo Pol- und physikalische Masse identisch,
hier ist dies aber nicht der Fall, und die Pol-Masse zeigt Singularitdten, welche das
asymptotische Verhalten verschleiern. Es wurde daher versucht, obige Funktion an
die physikalische Masse zu fitten. Die betrachteten Gittergréfien ermoglichten jedoch
keine zuverldssige Bestimmung z.B. der Konstanten C'.

Abhingigkeiten von renormierten Parametern

In diesem Abschnitt wird das Verhalten der Volumeneffekte der HiGGs-Massen bei
Variation der renormierten Massen und Kopplungen untersucht.

Bei grofleren Massen erwartet man wegen der kleineren Korrelationsldnge im allge-
meinen kleinere Volumeneffekte. Dieser Trend ist bei Pol- und renormierter Masse
in den Abbildungen 4.7(1) und 4.6(1) deutlich zu erkennen. Bei Massen < 0.3 sind
die Effekte beider Massen negativ und wachsen aufgrund der gegeniiber der Git-
terausdehnung grofl werdenden Korrelationslange schnell bis auf iiber -50 % an.
Auffallend ist die Ahnlichkeit des Verhaltens bei Variation der HIGGS-Masse mit
jenem bei Variation der Eichkopplung €¢’. Da allerdings ¢’ an der Erzeugung von
Massen ¢'vg fiir 7- und Eichbosonen beteiligt ist, sollte dieser Befund nicht iiberra-
schen. Im Diagramm 4.7(5) ist in der N&he von ¢ = 0.8 die Auswirkung einer der
oben diskutierten Singularitdten der Pol-Masse auf ihren Volumeneffekt zu sehen. Im
Grenzwert verschwindender Massen wachsen die Volumeneffekte der renormierten
Grofe schneller als jene der Pol-Masse. Hier zeigen sich bereits die aus der Definition
bei verschwindendem Impuls herrithrenden Infrarot-Divergenzen.

In 4.7(5) sind auch noch die fiir den ungeeichten Fall erhaltenen Resultate eingetra-
gen: ca. +5 % fiir das kleinere Gitter. Der Ubergang ¢’ — 0 erfolgt offenbar unstetig.
Dies erklart sich aus der Behandlung der Nullmoden bosonischer Propagatoren: Im
masselosen Fall (also im Fall der 7-Bosonen fiir ¢/ = 0) werden sie ausintegriert und
tragen zu Schleifen-Summen nicht bei. Fiir endliche ¢’ hingegen lautet der Volumen-
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effekt z.B. einer #—Boson-Schleife:

_ 1
LST Z /? euo) - 5L3T (6 Uo) LST Z /?

Fw (4.35)
= ﬁ(— . )+O<<>>

Damit divergiert der Volumeneffekt fiir ¢/ — 0 und fixierte L, T' quadratisch. Fiir
e’ = 0 hingegen wird der Term o (e’)~? nicht mit aufsummiert.

Bei der Variation der quartischen Kopplungskonstante zeigen sich in den Abbildun-
gen 4.7(2) und 4.6(2) erhebliche Unterschiede zwischen renormierter und Pol-Masse.
Wéhrend sich der Volumeneffekt der Pol-Masse als im wesentlichen konstant er-
weist bei ca. 3 % fiir ein 6° - 12-Gitter, nimmt er bei der renormierten Masse etwa
quadratisch mit der Kopplung bis auf tiber -20 % bei gr = 4.5 zu. Dies ist mit
dem Verschwinden des Vakuumerwartungswertes fiir grofle gr zu erklaren: Wieder
verschwinden dann die durch den HiGGS-Mechanismus erzeugten Massen, und die
Korrelationslange wachst schnell an. Auch in 4.7(2) macht sich eine Singularitit der
Pol-Massen bemerkbar: Auf dem zur Kontrolle verwendeten 24? - 48-Gitter liegt sie
etwa bei g,;, = 1. Dies 1t den durch das endlich groBe Vergleichsgitter eingebrach-
ten Fehler sehr grof erscheinen.

Die Abhéangigkeiten von den fermionischen Gréflen erweisen sich als viel geringer
(Abb. 4.7(3),(4) und 4.6(3)-(5)). Der Volumeneffekt der Pol-Masse bleibt im gesam-
ten Bereich unterhalb von 5 % (6° - 12). Er sinkt mit steigendem pp und steigt
mit steigendem G'ry. Der Effekt der renormierten Masse liegt absolut immer unter
6 % und wechselt bei gewissen Parametern das Vorzeichen. Fiir renormierte Grofien
wurde noch ein Parametersatz mit fixiertem G, berechnet. Der Volumeneffekt der
renormierten Masse hdngt dann kaum von Gpy ab.

Interessant sind noch die Volumeneffekte der physikalischen HiGGs-Masse. Sie sind
fiir die wichtigen Félle der Variation der HiGGS-Masse und der Eichkopplung in
Abbildung 4.7 dargestellt und miissen mit den Abbildungen 4.5(1) und (5) verglichen
werden. Zunéchst fallt der jeweils geringe Parameterbereich auf, in welchem die
Bestimmung der physikalischen Masse (auf allen betrachteten Gittern) moglich war.
Innerhalb dieses Bereiches zeigt sich jedoch jeweils eine gute Ubereinstimmung, die
allerdings in der Ndhe der grofl werdenden Effekte bei ¢’ < 0.2 schlechter wird.

4.3.3 Higgs-Selbstkopplung

Das Verhalten der quartischen Selbstkopplung des HiGGS-Feldes zeigen die Abbil-
dungen 4.8 und 4.9. Das grobe Verhalten der Volumeneffekte ist hier unabhéngig
von der Definition der Kopplung. Feinere Unterschiede zeigen sich aber durchaus,
z.B. bei der Variation von HiGGS-Masse oder Eichkopplung, wo der Betrag des Vo-
lumeneffektes fiir m, > 0.3 bzw. ¢/ > 0.2 unter 5 % liegt und darunter plotzlich
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Abbildung 4.7: Volumeneffekte der physikalischen Masse

stark anwéchst, wahrend er fiir die renormierte Kopplung bereits etwa bei mp = 0.6
und €’ = 0.6 den Wert von 5 % erreicht.

Der Volumeneffekt steigt (bei beiden Grofien) mit wachsenden Kopplungen an, und
zwar bis etwa -5 % bei der Pol-Kopplung und unter -20 % bei der renormierten
Kopplung fiir gr = 4.5.

Wie bei den Massen ist die Abhangigkeit der Volumeneffekte von den fermionischen
Parametern pr, Gry und Gg, klein. Sie bleiben absolut immer kleiner als ca. 4 %
(fiir die Pol-Kopplung, 10 % fiir die renormierte Kopplung) fiir das kleine Gitter
und fallen mit wachsenden YUKAWA-Kopplungen.

4.3.4 Wellenfunktionsrenormierung

Abbildung 4.10(1) illustriert die Abhidngigkeit des Volumeneffektes der Wellenfunk-
tionsrenormierung des m-Feldes von der HiGGs-Masse. Fiir m, < 0.3 steigt er dra-
stisch an, wiederum eine Folge der in diesem Bereich vom H1GGS-Boson dominierten
Korrelationslange.

Die Variation der HiGGS-Kopplung wirkt sich im gegebenen Bereich weniger dra-
stisch aus, allerdings macht sich auch hier bei grofen Kopplungen der kleine Va-
kuumerwartungswert durch monotones Steigen auf knapp 5% fiir 6% - 12 bemerkbar

(Abbildung 4.10(2)).

Auch bei der Variation aller fermionischen Gréfien steigt der Volumeneffekt nicht
tiber 4% an, mit wachsenden Parametern fallt er evtl. nach Annahme eines Maxi-
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mums (Gpry ~ 0.6) ab.

Wie gewohnt ergibt die Variation der Eichkopplung dasselbe Bild wie die Variation
der HicGs-Masse. Wieder erfolgt ein unstetiger Ubergang zum ungeeichten Fall mit
positivem Volumeneffekt.

4.3.5 Vakuumerwartungswert

DaBl m, ~ 0.4 fiir die beiden gewéhlten Gitter etwa die Grenze zu groflen Volu-
meneffekten darstellt, wird in Abbildung 4.11(1) besonders deutlich. Bei grofleren
Massen liegt der Volumeneffekt des Vakuumerwartungswertes unter 2 %, wihrend
er bei kleineren Massen das Vorzeichen wechselt und schnell auf weit iiber 10 %
ansteigt.

Die Abhéngigkeit von der Selbstkopplung ist nicht so ausgepragt: Der Volumeneffekt
bleibt im gesamten untersuchten Bereich unter 2 %. Offenbar wechselt er bei grofien
Kopplungen (wo wegen der grofien Korrelationslange sehr grofie Gitter als Referenz
benétigt werden) noch einmal das Vorzeichen.

Wie bei allen anderen bosonischen Groflen wirken sich Veranderungen der Fermion-
Masse und YUKAWA-Kopplungen nur schwach auf die Volumeneffekte des Vaku-
umerwartungswertes aus (s. Abb. 4.11(3)-(5)), im gesamten Bereich werden sie nie
grofler als 4 %. Setzt man G, fest auf 0.1, so bleiben sie sogar unter 1%.

Bei der Variation der Eichkopplung in Abb. 4.11(6) zeigt sich das fiir renormierte
(im Gegensatz zu durch Pole definierten) Grofien mittlerweile gewohnte Bild: Un-
terhalb von etwa ¢ = 0.3 werden die Volumeneffekte schnell sehr groff. Oberhalb
dieser Grenze liegen sie auf dem kleineren Gitter bei nur 3%. Bei verschwindender
Eichkopplung betragen sie etwa 1 %.

4.3.6 Fermion-Masse

Der Volumeneffekt der Fermion-Masse pp ist iiber den gesamten Bereich der HIGGS-
Masse nahezu konstant und steigt erst unterhalb von mp = 0.2 aufgrund der zum
(dort sehr kleinen) Vakuumerwartungswert proportionalen Massen an. Im Vergleich
zur ungeeichten Theorie ist der Effekt mit knapp 20 % auf dem 8% - 16- und etwa 35
% auf dem 6° - 12-Gitter iiberraschend grof.

Auch die Abhéngigkeit von der Selbstkopplung ist gering, wie Abbildung 4.12(2)
zeigt. Die GroBe liegt iber fast den gesamten Bereich nahezu konstant bei knapp 20
% bzw. 35 %.

Bei der Variation von upg selbst steigt der absolute Effekt von etwa 0.06 auf 0.10.
Der relative Volumeneffekt sinkt folglich von tiber 100% auf etwa 20 % auf dem
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6> - 12-Gitter ab.

Generell wird der Volumeneffekt mit grofleren YUKAWA-Kopplungen kleiner. Bei
Gry = —Gry (Abb. 4.12(4)) sinkt er von 45% bei Gry = 0 auf 15 % bei Gry = 1.
Ahnlich verhilt er sich im Fall Gr, = 0.1 (Abb. 4.12(5)), wo er aber nur bis auf
ca. 25% abfallt. Hier findet sich noch ein interessanter Punkt: Fiir Gr, = Gpy
verschwindet der Volumeneffekt fast vollstandig! Wie in Abbildung 4.13 zu sehen,

0.50 ¢t

0.45¢ 00

0.40 |

Mr

0.35}

Opg / Mg In %

7 50
0.30 | ]

0.25¢ |
L o .. . o

0.0998 0.1000 0.1002
G

Ry

Abbildung 4.13: Volumeneffekte von up bei Gr, = Gry. Die gestrichelte
Linie ist eine lineare Interpolation der Werte bet Gy =

0 und GR¢ = 0.2.

handelt es sich hierbei um ein sehr scharfes Minimum, in dessen unmittelbarer Nach-
barschaft der Volumeneffekt auf iiber 120% anwachst.

Bei ¢/ = 0 ist der Volumeneffekt kleiner als 1 %, die Abhangigkeit von der Eichkopp-
lung 148t sich gut in drei Zonen einteilen (Abb. 4.12(6)): Unterhalb von €’ ~ 0.05
fiihren die Nullmoden wie in 4.3.2 beschrieben zu divergierenden Volumeneffekten
(hier ist die obige Argumentation auf den Graphen g53) anzuwenden). Zwischen
¢/ = 0.05 und ¢’ ~ 0.3 wechseln sie ihr Vorzeichen und liegen unter 5%, dariiber
steigen sie schnell auf {iber 100% bei ¢ = 0.7 an.

4.3.7 Yukawa-Kopplungen

Werden die YUKAWA-Kopplungen bei Gry, = —Gpg, festgehalten, so sind die Vo-
lumeneffekte nicht unabhéngig, und man kann sich auf die Untersuchung von Gpy
beschranken (Abb. 4.14). Oberhalb von etwa mpr = 0.3 liegen die Volumeneffekte

unter 5%, darunter wachsen sie schnell an.
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Abbildung 4.15: Volumeneffekte der Spiegel-Y UKAWA-Kopplung

Mit der quartischen Kopplung wachsen die Volumeneffekte langsam von -2% auf
ca. +1%, variieren also nur wenig. Fiir Kopplungen oberhalb von 3.5 sind die Ab-
weichungen vom unendlichen Volumen fiir das groflere Gitter grofer als fiir das
kleinere, ein Effekt, welcher mit der Volumenabhéngigkeit von Schleifensummen bei
antiperiodischen Randbedingungen zu erkliren ist: Typischerweise besitzen diese
bei moderaten Volumina ein Extremum, darunter wird der Volumeneffekt in einem
gewissen Bereich kleiner als bei gréfleren Volumina.

Bei Veranderung der Fermion-Masse up steigen die Volumeneffekte langsam von
-3% auf +1%. Bei Variation der YUKAWA-Kopplungen selbst sind hier die absolu-
ten Effekte nicht konstant, so dafl die relativen Effekte betragsméaBig hochstens 5%
erreichen. Selbst im asymptotischen Verhalten fiir grofle Kopplungen scheinen sie
nicht iiber 10% zu steigen. Fixiert man G, auf 0.1, so werden die Volumeneffekte
beider YUKAWA-Kopplungen vollstandig vernachlassigbar, wie Abb.4.14(6) und 4.15
zeigen.

Mit der Eichkopplung variieren die Kopplungen wie die Fermion-Masse: Im unge-
eichten Fall sind die Effekte sehr klein, fiir ¢’ < 0.2 grofl und negativ aufgrund der
verschwindenden Fichboson-Massen, fiir 0.2 < €' < 0.7 bleiben sie betragsméafig
unter 10% und oberhalb von ¢’ = 0.7 wachsen sie schnell auf grofie positive Werte.

4.3.8 Variation der vektoriellen Eichkopplung

Eine Anderung der zum Feld A gehorenden Eichkopplung e beeinflufit nur fermio-
nische Gréflen. Die entprechenden Volumeneffekte sind in Abbildung 4.16 zu sehen.
Bei fixiertem ¢’ = 0.5 betrégt der erlaubte Bereich e = 0 — 0.25 (siehe (1.57)). Die
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Fermion-Masse zeigt eine nur moderate Abhéngigkeit: Sie sinkt von etwa -4% auf
-3% fiir das kleine Gitter. Bei der Kopplung gibt es deutlichere Verdnderungen, sie
sinkt von {iber 20% auf nahezu Null ab.

Der interessanteste Teil dieser Untersuchung liegt jedoch am Punkt e = 0. Bei der
Wahl Gry, = —Gp, wird die Matrix N in (3.68) namlich proportional zur Einheits-
matrix. Wie dort ausgefiihrt, ist der Rotationsanteil der Wellenfunktionsrenormie-
rung dann nicht festgelegt, und man kann verschiedene renormierte Fermionfelder
betrachten. Die bisherigen Untersuchungen fanden bei ¢ = 0 statt, diese Ergebnisse
sind in 4.16 noch einmal eingetragen, sie setzen sich durch einen offenbar unstetigen
Ubergang von den Werten bei e > 0 ab. Wahlt man hingegen ¢ = 7/4, so erreicht
man einen glatten Ubergang zu ¢ = 0.

Vergleicht man die Volumeneffekte bei e = 0 zwischen 4.16(1) und 4.16(2), so fallt
auf, dafl die absoluten Effekte mit verschiedenen ( vertauscht zu sein scheinen. Die
Ursache fiir diesen Effekt ist darin zu suchen, dafl fiir ( = #/4 der Dreh-Anteil
der Wellenfunktionsrenormierung nebendiagonal und die Position von renormierter
Kopplung und Masse in der Massenmatrix vertauscht wird.

Unabhéngig von der (-Freiheit sind hingegen die Eigenwerte der Massenmatrix. Sie
besitzen bei den gewéhlten Parametern entgegengesetztes Vorzeichen, pip ist in
Abbildung 4.17 gezeigt. Der Volumeneffekt sinkt beim kleineren Gitter von etwa
-15% auf -3% ab. Auch bei ¢ = 0 sind die Volumeneffekte vom gewéhlten Drehanteil
in der Wellenfunktionsrenormierung unabhéngig.



Kapitel 5

Massenschranken

Das hier behandelte Modell besitzt einen siebendimensionalen Raum nackter Pa-
rameter (mo, go, fo, Goy, Goy, €, €). Physikalische Forderungen, vor allem nach der
Stabilitat der Theorie, schrinken den giiltigen Parameterbereich ein. Dies fithrt auf
Schranken der renormierten Parameter. An prominenter Stelle sind hier obere und
untere Schranken fiir die HiGGS-Selbstkopplung zu nennen, welche auf Schranken
fiir die Masse des HiGGS-Bosons fiithren.

5.1 Effektives Potential

Die Niitzlichkeit des effektiven Potentials (welches in Lehrbiichern vorgestellt wird
([1Z85, S. 448ff], [RYD&9, S. 387ff],|HUA82, S. 200ff]) bei der Behandlung von Theo-
rien mit spontaner Symmetriebrechung ist bekannt. Es 1a8t sich mit der Wirkung
bzw. den FEYNMAN-Regeln der symmetrischen Phase relativ leicht berechnen, ge-
stattet aber Riickschliisse auf renormierte Gréfien wie beispielsweise den Vakuu-
merwartungswert. Ich werde hier der Kiirze halber nur die bosonischen Beitrige
fiir die niedrigste Ordnung in der Gitterkonstanten, also die Kontinuumsausdriicke,
berechnen und die Fermion-Beitrage aus [LMWGY1] entnehmen.

Als effektives Potential bezeichnet man im allgemeinen den negativen lokalen Anteil
des erzeugenden Funktionals I'[¢]. Dieses hangt iiber eine Legendre-Transformation
mit dem erzeugenden Funktional Z zusammen:

F[‘P]:lnz[‘]]_zjx‘f% @x:ﬁ 0 (¢) (5.1)
Exponentiation liefert

ellel — /D¢e Zm: ’ 7 (5.2)

84
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was durch eine Sattelpunkt-Entwicklung um das Minimum ¢ von S[¢] — Y J, ¢,

ausgewertet wird:

er(@) = exp

~S(p) = = Jupa p [ Doex {—%g«smyézsxy(@)}
—S(9) = 5 up | (det 825))

—S(p) =3 Trné*S(e) =% Jx%}

625 (9) = F=7=Sld]]

= exp

= exp

—

d=¢

Setzt man nun J = 0, so wird ¢ = (¢) zu einer konstanten Feldkonfiguration. Ist
V(¢) der lokale Anteil von S(ip), so lautet das effektive Potential in dieser Naherung
(der man bei i # 1 ihren Ein-Schleifen-Charakter angesehen hitte):

Ulp) =V(e)+ %Tr In 8%S(¢p) (5.4)

Diese Rechnung ist direkt auf den Fall mehrerer Felder erweiterbar.

Da die o-w-Parametrisierung hier nicht benutzt wird, verwendet man die Wirkung
mit den Konventionen der symmetrischen Phase und erhélt als Beitrag der HiGGs-

Felder [LMWGOI1]:

_ m2 30T+ ¢35 2012
LT ng2Sy(¢) = 1Trin|(-O—%2) 42 17T %2 e
20102 33+ ¢1

-0 — 5 4 goy? 0 (5.5)
0 -0 - ng + 390"
= 3/ [In(@ = 5+ g0?) + (@ = 5+ 590°)]

= %Tr In

Wird die 'T HOOFT-Eichung in der symmetrischen Phase als F[Z,.] = V; Z,, +
£€' 1y formuliert, so erhédlt man als Beitrag von Eichfeldern (genauer des Eichfeldes
7)) und Geistertermen in der 'T HOOFT-FEYNMAN-Eichung:

LTr n63(Sa + Sar + Sas) = 3T In ((AZL,)7" + €266, (22 + ¢3))

JIn(g* + 2¢%?)

1 2 q1 (5:6)
s Tr Iné*Spp = —3

1

2

Hier wurde die Tatsache, dafl ¢ fiir J — 0 konstant wird, benutzt sowie der inverse
Eichboson-Propagator in dieser Eichung. Bis auf die Fermion-Beitrage lautet das
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effektive Potential folglich:

Ulp) = =50+ 20" + 1] [In(@ — 5 + gov?) + In(@® — 5 + Lg09?)]
q

+45H [ In(q* + 2¢%07)
g
(5.7)
Diese Rechnung kann getestet werden, indem man den Vakuumerwartungswert in
dieser Naherung als Extremum des effektiven Potentials sucht:

0 = LU

(5.8)

1 ]
2 1/1?—74-%90@2

Wahlt man das nicht verschwindende Minimum und beachtet dort ¢ = %(vo + (o)),
so findet man:

3(d — 1)6’2/ 1
govo G2 4 2e2
(5.9)

3 1 1 1
(o) = "9 / 2wl T 3 mZ | g
oyl -FHT e -+

2
0%,
q

Dies stimmt mit (3.9) {iberein, wenn man govg = 3m3 einsetzt.

5.2 Weinberg-Linde-Schranke

Mit Hilfe des effektiven Potentials 148t sich die Forderung nach dem Vorhandensein
von spontaner Symmetriebrechung — formuliert durch U(0) > U (”—\/%) —1in eine untere
Grenze fir die HiIGGS-Masse oder die Selbstkopplung umsetzen. Die Vorgehensweise
wird hier nur skizziert, eine genaue Beschreibung findet sich z.B. in [CWT73].

Durch Einsetzen der renormierten Stérungstheorie in Ein-Schleifen-Ordnung gelangt
man von (5.7) zu einem von Divergenzen befreiten renormierten effektiven Poten-
tial. Fiir die Herleitung der gesuchten Massenschranke kann jedoch eine weniger
aufwendige Methode verwendet werden [WEIT6] (siehe auch [LINT6], diese und wei-
tere Artikel zu diesem Thema sind gesammelt in [EIN9O] erschienen). Dazu schreibt
man das effektive Potential (genauer seine bosonischen Beitrége) als
mg 5 go 4 1 mg 2 1 mg 1, d—1 2 2
Ulp) = =59  + 59" + 5= +9097) + 51(= =7 + 50097) + —5—1(2¢7¢7).
(5.10)
Unterdriickt man skalenverletzende Terme von der Ordnung der Gitterkonstante und
regularisiert das auftretende Integral mit einem Cutoff A, so erhilt man [HUAS2, S.
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107]:
I(z?) = {hﬁ(qA2 + 2?)
353 [2/\2:1;2 + (ln— — —) + (’)( )]

Hier wurden von ¢ unabhingige Terme unterdriickt. Fiir grofle ¢ erhdlt man daraus
als fithrenden Beitrag

(5.11)

—

B! In 2 (5.12)

(2
mit einer Konstante C und B = 6417T2(10 54 4(d — 1)), was fiir ¢ = 0 mit dem
Resultat aus [LMWGI1] {ibereinstimmt. An dieser Stelle erweitere ich die Diskus-
sion auf das volle Modell (mit Fermionen) einfach durch Ubernahme des dortigen

Resultats:

1 1
- o jogg — 3G, + GL )+ 4(d — 1) (5.13)
Das Ergebnis (5.12) dient nachtréglich als Rechtfertigung der Parametrisierung
(1.40) des HiaaGs-Feldes. Der Koeffizient des quartischen Terms der effektiven Wir-
kung, welcher der renormierten quartischen Kopplung entspricht, enthalt ndmlich
einen Logarithmus des Feldes, liegt also fiir grofle Felder auflerhalb des perturbativen
Regimes. Selbst die — im allgemeinen besser konvergierende — renormierte Stérungs-

theorie 148t sich also nur fur kleine Werte des Feldes anwenden.

Im folgenden soll eine untere Schranke fir die HiGGs-Masse bzw. -Selbstkopplung
abgeleitet werden. Zu Potenzen dieser Gréflen proportionale Terme kénnen also
vernachlassigt werden. Damit verschwindet der erste Summand aus B sowie ein
Term proportional zu ¢?In »? im effektiven Potential, welches dann folgendermafen
geschrieben werden kann:

2 2

A
U(p) = —799 + By'ln 2 o (5.14)

mit einer bei Entfernung des Cutoff divergierenden Konstanten A und der den quar-
tischen Term absorbierenden Skala C'. A wird durch die Forderung fixiert, daf} das
effektive Potential am Vakuumerwartungswert ein Extremum besitzt:

2

! 8 UR
0=—U = A%+ 2Bvfl Bv?, 5.15
agp (99) s \/5 [ + vR L ar] 202 + ( )
vz
es folgt sofort:
v
A? = 2BvjIn == + Buj. (5.16)

C
Die Masse des H1GGS-Bosons (und damit die Selbstkopplung) ist definiert durch die

zweite Ableitung des effektiven Potentials in seinem Minimum:

m2 = %8—22[](4,9)‘ = 2Bv}, <ln UR + ) (5.17)

"R
=2
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Die grundlegende Forderung ist nun, dafl spontane Symmetriebrechung tatsachlich
vorliegt, in vp also das globale Minimum liegt:

v A%02 Buvt 02
0=U(0)>U(%) = —2rhy Bhyy 2% s,
_Bvy v '

1 (1—|—1Hm)

Solange B eine positive Konstante ist, mufl der Logarithmus gréfler als —1 sein. Dies
lautet fiir die Masse:

my > Bug, (5.19)
oder fiir die Selbstkopplung (d = 4)

g>3B= [9¢™ — 24(Ghy, + Ghy)| - (5.20)

1672

Abbildung 5.1 zeigt die WEINBERG-LINDE-Schranke zusammen mit der Vakuum-
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Abbildung 5.1: WEINBERG-LINDE-Schranke bei up = 0.5 und vg = 0.5.

Stabilitatsschranke (den nahezu senkrechten Linien, s.u.) fiir verschiedene Eichkopp-
lungen. Beide Schranken zusammen ergeben fast immer eine positive untere Gren-
ze tir die Selbstkopplung, allerdings ist die WEINBERG-LINDE-Schranke erheblich
schwécher als jene der Vakuum-Stabilitat.

5.3 Vakuum-Stabilitat

Die Bedeutung der Vakuum-Stabilitats-Schranke in einer gitterregularisierten Theo-

rie wird in [LMWGI1] ausfithrlich erklart: Thre Herleitung beruht auf der Verbin-
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dung zwischen der laufenden Kopplung bei der Cutoff-Skala und der nackten Kopp-
lung. Verfolgt man von diesem Punkt aus durch eine Integration der g-Funktion die
Renormierungsgruppen-Trajektorie zu einer niedrigeren, insbesondere zur physika-
lischen Skala, so erhdlt man die korrespondierende renormierte Kopplung. Da die
nackte Kopplung positiv ist (ansonsten ware die Theorie instabil!), liefert die Inte-
gration vom Startpunkt go = 0 aus eine untere Grenze fiir die renormierte Kopplung,
falls die Trajektorie monoton fallend ist (sonst konnte sie bei einer Erhohung des
Cutoff wieder in den positiven Bereich fithren). Dies ist dann der Fall, wenn nur der
triviale Fixpunkt des Flusses existiert, wie von der Fin-Schleifen- Approximation der
fB-Funktion vorhergesagt.

v

Abbildung 5.2: Renormierungsgruppenfluff im Ein-Schleifen-Szenario

Die kleinste mégliche renormierte Kopplung erhilt man aus den Ergebnissen der Ein-
Schleifen- Approximation, indem man bei fixiertem vy die nackte Kopplung gy = 0
setzt. Dann gilt sofort m2 = gov3/3 = 0, und fiir die Schranke erhélt man aus (3.36)
Gv = 3m? /v} mit:

m? = mf— N, (0) + md(Zx — 1) = —,(0)
= +3dN; [, DY () {(G3, + G2 )P* + 2G2, G2 v} — 2Go,Gloypi? }
ANy [ D7) { Gy od(Gou(@ + i) = Gounr})?
+GoyGoy ti3(T° + 113 — pogpoy)? — G (T + pg + 16,)?
—GoyGox P (ou + ox)* + (¥ )}
~2d = )e? |, ki — 2 (d - 1) (ﬁf

Setzt man hier die Ausdriicke der renormierten Stérungstheorie ein und entwickelt

(5.21)

dies noch bei fixiertem vy bis zur zweiten Ordnung, so erhalt man:

G%, + G2 )qQ — 2GR GR¢/L2 1
2:2dN/(R¢ Rx TR 9g ’2/— 5.22
my, f : (62 n M%q)g ( )eR . Q\Q ( )
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mit pp, = pr + %qA2 Setzt man weiter d = 4, Ny = 2 und G = Gry = —GRy, 0
lautet das Ergebnis:

| | |
= — 19662 /7—1852/—}, 5.23
g 1)123{ R qqz‘FN%q R ¢ G ( )

was fiir ef = 0 das Ergebnis aus [LMWGI1] reproduziert. Die Abbildung 5.3 zeigt
die Stabilitatsschranke an der auch in der Literatur gezeigten Stelle up = 0.5, vg =
0.5. Die Eichkopplung wichst von oben nach unten um je 0.1 an. Mit der Eichung der
Modells wird die Forderung an die HiGGs-Kopplung (und damit an die Masse des
HiGGs-Bosons) schwécher. Abbildung 5.4 zeigt die Volumeneffekte der Schranke bei

9r

0.00 0.10 0.20 0.30 0.40 0.50

Abbildung 5.3: Vakuum-Stabilitits-Schranke als Funktion der Eichkopp-
lung bei pr = 0.5 und vgp = 0.5.

der Eichkopplung ¢ = 0.2 (vergleiche [LMWMO91]). Diese Effekte entstehen durch
die Auswertung der in (5.23) auftretenden Integrale auf endlichen Gittern. Wieder
wird auf eine Auswertung der Ausdriicke im unendlichen Volumen verzichtet und
stattdessen das Ergebnis auf einem 50° - 100-Gitter gezeigt.
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9r
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Abbildung 5.4: Volumeneffekte der Vakuum-Stabilitits-Schranke an der
Stelle pp = 0.5, vg = 0.5 und ¢’ =0.2.
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Kapitel 6

Die symmetrische Phase

Bislang stand die Betrachtung der Phase spontan gebrochener Eichsymmetrie im
Vordergrund. Aus den erhaltenen FErgebnissen lassen sich jedoch auch die entspre-
chenden Groéflen in der symmetrischen Phase ableiten. Im wesentlichen sind hierzu
nur die Ersetzungen

vg +— 0 Mor — Mo (6.1)

vorzunehmen. Alle Ausdriicke vereinfachen sich dadurch erheblich und einige wei-
tergehende Untersuchungen werden moglich.

6.1 Renormierte Groflen

6.1.1 Higgs-Feld

Aus (3.25) leitet man sofort die Selbstenergie einer der (hier gleichberechtigten)
Komponenten des HiGGs-Feldes ab:

Yor(p) = —%gofﬁ

—dN IQGOQpGOXMqu+p ( 0¢+G0X)5m
(@+12) (aFp +12, ) (6.2)

L5 Seosp [

bt e (7 (6 ) )
q

q+p
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Der Vorgehensweise aus Abschnitt 3.2.2 folgend, findet man fiir die renormierte
Masse in der symmetrischen Phase:

M = o+ 500 [ s

q -I-m
+dNy |
q

ZGWGOXM(Z (Ggw+GgX)§2
(P*+u3)?

(6.3)

e [ | — s mi(Z, — 1)
p q q°+my

Fir ¢’ = 0 wird das Ergebnis aus [FKL91] reproduziert. Hieran kann der kritische

Parameter mo.4+ bestimmt werden, fiir den die renormierte Masse (in Gittereinhei-

ten) verschwindet:

2
mOc-I— <390 ‘|‘ _1 /2)/ de

Ein Vergleich mit (3.79) zeigt: m§, = —2mj_,, daher findet man mit (1.42) und
(1.43) fiir den kritischen skalaren Hopping-Parameter in beiden Phasen wie aus
Konsistenzgriinden erwartet den gleichen Wert.

6.1.2 Fermion-Feld

In der symmetrischen Phase darf fiir den Fermionpropagator die weiter vereinfachte
Form (2.46) verwendet werden:

Dip) =7 + 1} Ay (p) = A (p) = (6.5)
pp 0 0 1
Damit lautet die Selbstenergie (3.61):
Yppt(p) = —QZG(Q)q;f A2 - ;Wﬁfz s(e? + 6%)%}%{(1%
PYuPutau(e)—vud, (G +rPsi)
+i(e” —I_e){q/\pz) T +u

Tyt (p) = 2G0¢G0Xf /\2 A — Le?+e)r COSPM{Z% (6.6)

p +m2 4 S tu

-I-(e te )f L (2 =252 Yug+rgp+q

7 a-p q +u
Yt () = Z¢¢(p)|G0w<—>GOX

Die simultane Substitution p — —p, ¢ — —q lait erkennen: ¥, (p) ist ungerade,
Yyv+(p) gerade im externen Impuls. Folglich ist die Wellenfunktionsrenormierung
diagonal, die renormierte Massenmatrix also wie die nackte rein nebendiagonal.
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6.1.3 Eichfeld

Wie in Abschnitt 3.5 bemerkt, ist die stérungstheoretische Behandlung der Eichbo-
son-Selbstenergie in der gebrochenen Phase aufwendig, und die resultierenden Aus-
driicke sind uniibersichtlich. In der symmetrischen Phase kann man sie jedoch noch
behandeln und explizit ihre von den WARD-TAKAHASHI-Identitdten vorhergesagte
Transversalitit (vgl. Abschnitt 3.5) nachweisen. Ahnliche Rechnungen sind (sogar
in nichtabelschen Eichtheorien) bereits in [HH80, KNS81] durchgefiithrt worden.

In der Ein-Schleifen-Naherung ist die Z-Boson-Selbstenergie eine Summe von fiinf

Beitragen:
5

Sz (p) = 3. G{"(p) (6.7)
q
Gl = @
q+p

Glp) = [V g q+p) D)V (g + p, ) Ar(q + p)
q
46/2

_ f sin(qM—I—Z—“)sin(qy—I—%’) (68)
1 (@+md)aFp +m3)
Entwickelt man dies in p, so ergibt sich:
Ginlp) = Gl0) = 5 {Bupikis — pnKi} + O
= g{i)u(o) - % {6,00* = pupy} Koz + O(p*)

mit COS ¢, COS ¢
K = [ S0 6.10
v =) ) (10

g
Dabei wurde benutzt, daB fiir jeden Tensor K,,, welcher fiir ¢ = v den Wert K=,
und fiir g # v den Wert K, annimmt, gilt:

5ullp§lcp,p - pﬂzpl/ICp,y — {5Myp2 - pﬂpl’} ICM;&U' (611)

o - q
i = ()

Dieser Graph zusammen mit dem entsprechenden mit einer #-Boson-Schleife wird
hier nicht explizit berechnet. Man kann sich nd&mlich iiberlegen, daf} sie unter recht
allgemeinen Bedingungen den Beitrag von g{f}u mit verschwindendem externem Im-
puls aufheben (siehe hierzu Anhang E):

G\ + g\t = —g (0) (6.12)
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Ghp = A~
T+ p

G\ (p) = — / TrVEhI (g, g+ p)Ag() VIV D g+ p,g)As(g+p)  (6.13)

Der explizite Ausdruck ist umfangreich, die Entwicklung fiir kleine Impulse lautet:

Gl (p) = GiM(0) — AN;e” {%p2 pupu}/Czp;ﬁp + O( )
IC?pp’ = f
q

1
—50pwpd /wp/—l— r? wpqpcosqp/——r qpq ,—I— apQ

res

@+u)” (6.14)
Wp = ?p + T, Dpw, = c08(2q,) + 7414 OS¢ + rquz)

_ 2 2—-2
a, = cos“q, + 1 q,

Der Beltrag verschwindenden Impulses wird wieder durch den zweiten Fermion-

Graphen Gy aufgehoben.

i p) = @i

Dieser Graph besitzt Beitrage von je einer Z- und einer A-Boson-Schleife:

4py

gl (p) = 24/%350 (P, 1 ¢, DA +2/VM3§3A (.7, ¢, 0)A P (g)  (6.15)
Mit
D oo (PP a:q) = 60 Y oG + 8,00° G — Pub (@ + G2 (6.16)
findet man ionEYNMAN—EiChung: N
G40, 0) = (e = 262) (B = Bu) = £ =23 (Buui — ) + O(") (6.17)

Im Lauf der Rechnungen tauchen nicht rotationsinvariante Terme proportional zu
(5Wpi auf. Sie heben sich jedoch getrennt im skalaren und fermionischen Sektor weg.
Damit ist die Selbstenergie transversal

ZZuu(p) = (5uup2 - pupu)ZZ + O(p4)

Y (6.18)
Yz = GhKippy — AN Kapzp + %(6/2 — 2¢%),
und man kann mittels der Renormierungsbedingung
27,tr)\ — 1 Pubv
— (TR (p) = o (%y — ;2 (6.19)

(der transversale Anteil des renormierten Propagators soll mit jenem des nackten
Propagators identisch sein, vgl. [MM94, S. 125]) die Wellenfunktionsrenormierung
des Z-Feldes bestimmen:

Zy=14%y (6.20)
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6.2 Eichinvarianz

Alle meBbaren GréBen miissen unter einer Anderung der fixierten Eichung, mithin
des Eichparameters ¢, invariant sein. In den in Kapitel 3 berechneten Selbstenergien
fallt aber die Abhangigkeit vom Eichparameter auf. Zwar heben sich z.B. in der
renormierten Masse (3.36) alle naherungsweise zu Potenzen von ¢ proportionalen
Terme gegenseitig auf, schwichere Eich-Abhéngigkeiten bleiben aber bestehen. Auch
der Vakuumerwartungswert (3.9) ist iiber die 7-Masse eichabhéngig.

Diese Tatsachen sind von Theorien im Kontinuum bereits lange bekannt (siehe z.B.
[LZJ72]), in [ACGQT73] wird die Eich-Abhangigkeit der skalaren Selbstenergie fiir
ein ABEL’sches reines HiGGS-Modell explizit berechnet. Sie verschwindet, falls der
externe Impuls auf der Massenschale liegt. Folglich ist die Pol-Masse eichunabhéngig.

In der symmetrischen Phase hat man mit Gleichung (6.2) einen hinreichend einfa-
chen Ausdruck an der Hand, mit dem der Frage nach der Eichinvarianz in der gitter-
regularisierten Theorie nachgegangen werden kann. Dazu betrachtet man zunéchst
nur die nicht eichinvarianten Terme des letzten Summanden:

L (@ -p)
6/25/ 62 —I_ m2 /—I_\ 7 (621)
. 0 q+p

an der Stelle p = (O zm( )). Zunichst setzt man ¢ — ¢ — p, wobei man mit der 27 -
Periodizitéat des Integranden einen Vorteil der Gitterregularisierung gegeniiber dem
einfachen Impuls-Cutoff ausniitzt. Allerdings ist dies fiir beliebige p nur auf einem

unendlich groien Gitter legitim. Mit den Beziehungen (4.29), mq =
p* = —mg findet man fiir (6.21):

——2

o S

)
P +mg

»Q

= % (1+ %){q% (6.22)

Der eichabhangige Teil des dritten Summanden in (6.2) lautet:

/25‘
/ — = — -1+ Coshm /? (6.23)
q

und damit findet man folgende Eichabhangigkeit der Selbstenergie auf der (euklidi-
schen) Massenschale:

Zg(ﬁ,iméo)) = 6/25 (mo +1-— Coshm ){q% + GIT
= (2 sinh? "2 —|— 1— coshm ) [ =+ GIT (6.24)
= GIT,

wo G T alle eichinvarianten Terme andeutet. Die Selbstenergie ist also auf der Mas-
senschale eichinvariant, folglich ist auch die Pol-Masse eichinvariant.
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6.3 Volumen-Effekte

Die Volumeneffekte werden in der symmetrischen Phase auf die gleiche Weise defi-
niert und berechnet wie in der gebrochenen, wobei sich zum Teil erhebliche Unter-
schiede zeigen.

Die Effekte der Pol-Masse findet man in Abbildung 6.1. Sie bleiben bei Variation aller
Parameter betragsméfig unter 1 %, eine Ausnahme bildet lediglich die Variation der
renormierten Masse selbst (6.1(1)). Ab m, < 0.4 steigen die Volumeneffekte schnell
auf weit iiber -20 % bei m, = 0.2.

Die Volumeneffekte der renormierten Masse in Abb. 6.2 sind generell erheblich gréfer
und zeigen auch stirkere Abhdngigkeiten von den renormierten Parametern. Bei der
Variation der Masse ergibt sich ein &hnliches Bild wie bei der Pol-Masse. Von der
Selbstkopplung hédngen die Volumeneffekte nur schwach ab und liegen bei ca. -4
bis -5 % fiir das Volumen 6 - 12. Verkleinert man die Mischung der Fermionen, so
wachsen die Volumeneffekte, und zwar auf knapp -10 % bei ur = 0.1. Darunter
scheinen sie (betragsméfig) ein Maximum anzunehmen und wieder zu fallen. Mit
wachsenden YUKAWA-Kopplungen steigen die Effekte bis auf -20 %, wahrend sie
von den Eichkopplungen nur schwach abhéngig sind.

Uberraschenderweise sind die Volumeneffekte der skalaren Wellenfunktionsrenor-
mierung von den Parametern m,, ¢,, und €' unabhéngig, namlich etwa -2 % fiir
das 8% - 16- und -3.5 % fiir das 6° - 12-Gitter. Lediglich die Variation der Fermion-
Parameter bringt eine Anderung, diese ist derjenigen der renormierten Masse ganz

ahnlich.

Wie bereits in der gebrochenen Phase festgestellt, wachsen die Volumeneffekte der
Fermionmischung mit Einschalten der Eichkopplung stark an, dies ist in Abbildung
6.4(5) zu sehen. Dementsprechend liegen sie bei Variation der anderen Parameter
immer in der Gréflenordnung von 30-40 %, abhéngig natiirlich auch vom absoluten
Wert der Fermionmischung (6.4(2)). Lediglich fiir grofe YUKAWA-Kopplungen und
vektorielle Eichkopplungen sinken die Volumeneffekte auf ca. 10 % ab. Von der
Hicas-Selbstkopplung hdngen sie in der symmetrischen Phase nicht ab.
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Zusammenfassung

Inhalt dieser Arbeit ist die stérungstheoretische Untersuchung eines U(1)r @ U(1)g-
symmetrischen HIGGS-YUKAWA-Modells in der Ein-Schleifen-Ordnung. Dazu wur-
den zunédchst die FEYNMAN-Regeln in den 'T HOOFT-Eichungen hergeleitet, wo-
bei trotz der ABEL’schen Eichgruppe FADDEEV-POPOV-Geist-Felder berticksichtigt
werden mufiten. Erst nach Durchfithrung dieser allgemeinen Betrachtungen kann
man die FEYNMAN-Regeln (wie auch die WARD-TAKAHASHI-Identitdten) in den
einfacheren unitaren oder 'T HOOFT-FEYNMAN-Fichungen angeben.

Anschlielend wurden in der gebrochenen Phase die Selbstenergien und renormierten
Massen von HIGGS- und Fermionfeld sowie der Vakuumerwartungswert analytisch
berechnet. Daraus konnten die kritischen Parameter der Gitter-Theorie und deren
Volumeneffekte extrahiert werden, die sich als gering herausstellten.

Die durch den Pol des HiGGS-Propagators gegebene Pol-Masse, die Wellenfunkti-
onsrenormierungen und iiber Fin-Punkt-Funktionen definierte Kopplungen wurden
lediglich numerisch zwecks Berechnung von Volumen-Effekten ausgewertet. Deren
Verhalten bei Verdnderung der renormierten Parameter im perturbativ zuganglichen
Bereich war der zentrale Untersuchungsgegenstand. Generell ergaben sich dabei fiir
renormierte, d.h. bei verschwindendem Impuls definierte Gréflen gréfiere Volumen-
effekte als fiir auf der Massenschale definierte Groflen. Letztere zeigten jedoch bei
gewissen Parameterkombinationen Pole, deren Ursprung unerklart blieb. Erhebli-
che Abweichungen stellten sich zwischen den verschiedenen méglichen Definitionen
der Wellenfunktionsrenormierungen heraus. Weitergehende Schliisse, wie in [LUS91]
vorgeschlagen, wurden aus diesen Auswertungen nicht gezogen.

Ein weiterer Schwerpunkt war die Herleitung von unteren Schranken fiir die Masse
des HiGcGs-Bosons. Neben der Berechnung der Abweichung der Vakuum-Stabilitéts-
Schranke von ihrem aus ungeeichten YUKAWA-Modellen bekannten Wert wurde auch
die nur in Eichtheorien vorhandene WEINBERG-LINDE-Schranke angegeben. Sie er-
weist sich jedoch als sehr schwach im Vergleich zu der Schranke aus der Vakuum-
Stabilitét.

Der Untersuchung der symmetrischen Phase war das abschliefende Kapitel gewid-
met. Hier wurden die Selbstenergien und renormierten Massen sowie deren Volu-
meneffekte angegeben.
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Die Behandlung der Fichfelder beschréankte sich auf die Herleitung der WARD-
TAKAHASHI-Identitdten und den expliziten Nachweis der von ihnen geforderten
Transversalitat der Eichboson-Selbstenergie sowie der Eichinvarianz der Pol-Masse
in der symmetrischen Phase.

Generell ist festzuhalten, dafl die Eichung eines YUKAWA-Modells seine physikali-
schen Eigenschaften (z.B. das Phasendiagramm) im perturbativen Regime nur un-
wesentlich dndert. Im Gegensatz dazu unterscheiden sich die fiir numerische Simu-
lationen wichtigen Volumeneffekte in beiden Modellen durchaus.

Eine Behandlung dieser Theorie iiber das Ein-Schleifen-Niveau hinaus erscheint we-
gen der durch die kleine Fichkopplung bedingten geringen Korrekturen gegeniiber
der ungeeichten Fassung in der Ein-Schleifen-Approximation nicht interessant. Sie
wiirde auflerdem mit groflen Schwierigkeiten hinsichtlich sowohl der Anzahl der
Graphen als auch der Handhabung der einzelnen Selbstenergie-Beitriage und de-
ren numerischer Auswertung zu kdmpfen haben. Hingegen diirfte die Erweiterung
auf eine nichtabelsche Eichgruppe im Hinblick auf numerische Simulationen des
SU2), @ SU(2)p-symmetrischen HIGGS-YUKAWA-Modells, als auch — auf lange
Sicht — der elektroschwachen Eichgruppe selbst durchaus interessant sein. Die per-
turbative Behandlung einer solchen Theorie unterscheidet sich von der hier vorge-
stellten durch aufwendigere FEYNMAN-Regeln, welche aus der Tensorstruktur der
Eichgruppe sowie der das HAAR’sche Maf} implementierenden Mafiwirkung resultie-
ren.



Anhang

A Bezeichnungen

Mit a, = (ai,...,aq) werden euklidische Vektoren, mit @ Vektoren in d — 1 Di-
mensionen bezeichnet. Die Summenkonvention wird benutzt: Doppelt auftretende

Indices werden iiber die positiven Raumrichtungen summiert. Die Summe >~ 1duft
n
iiber 2d positive und negative Raumrichtungen, >~ nur iiber die positiven. Die iibli-
T
che Algebra der DIRAC-Matrizen wird um solche mit negativen Indices erweitert:

You = —Yu- Mit dem Symbol I sind stets Vertexfunktionen, mit G volle und mit A
nackte Propagatoren bezeichnet. Impulsintegrale werden als

/ %f (¢) im unendlichen Volumen

=<¢ 7 A.l
q/f(Q) T q%:B f(q) im Volumen L4=1.T (A1)

geschrieben, die Brillouin-Zone hdngt im endlichen Volumen von den verwendeten
Randbedingungen ab, vgl. Abschnitt 4.1. Impulserhaltung wird durch eingeklam-
merte Integrationsvariable symbolisiert:

/ g1, qn) = / o+ aq)fa, s qn) (A.2)

Wie tiblich werden folgende Abkiirzungen benutzt:

— 1
q := 2sin % G :=sing q:= 5 sin(2¢q) (A.3)

Eine hiufig auftretende Funktion ist:

cos L k gerade
fulw) = S {eF 4 (~1)he %) = : 78 (A4)

.
¢sing  k ungerade
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B Gitter-Regularisierung

Die Gitterkonstante lautet stets: ¢ = 1. Vorwérts- und Riickwértsableitung sind
dann definiert durch:
vufx = fx-l-u_fx ) vfo = fx—u_fx (A5)

Der D’ALEMBERT-Operator lautet:
Of, = % vzvufx = 2df, — %:fx-l-u (A.6)

Vorwérts- und Riickwéartsableitung sind zueinander adjungiert.

xr

Insbesondere sind sie also nicht antihermitesch. Damit ist der durch Multiplikation
der Ableitung mit ¢ gebildete Impulsoperator nicht hermitesch. Dieses Problem tritt
bei linearem Auftreten einer Ableitung, also insbesondere beim Umgang mit Dirac-
Feldern auf. Dort wird die antihermitesche Ableitung

0ute = 5 Uorn— Foa) (A3)

verwendet, und zwar in der Form:

Z’Vuaufx = %Z’Vufx-l-u (A.Q)

C Chirale Transformationen

Die Chiralitidt eines Spinors ist definiert, falls er ein Eigenvektor der Matrix s ist.
Wegen vz = 1 gibt es nur die Eigenwerte +1 (linkshindig) und —1 (rechtshindig).
Jeder Spinor 1a8t sich in chirale Anteile zerlegen:

Y =9+ YR Y = Pry Yr = Ppi. (A.10)
Die Projektionsoperatoren sind definiert als:
1 1
PL:§{1+75} PR:§{1—75} (A.11)
und besitzen die Eigenschaften:

PL2:P]2%:1 PrPr=0 PrL+Pr=1 PL’)/M:’)/MPR PRVM:’}%PL
(A.12)
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Daraus folgt fiir adjungierte Spinoren:
b1, = ¢ Pr =Py (A.13)

Fiir Fermion-/Mirror-Fermion-Paare ist ebenfalls ein chiraler Projektor definiert:

P, 0 Pr O
PL = PR = (A14)
0 PR 0 PL

p, [ @ A I PR P,
¢ ¢ (A.15)
p,| b _ [ amw 0 P,
¢ dy ¢ dy
Von Nutzen sind noch folgende Figenschaften von 2 x 2-Matrizen A:
PrAPr = A‘Pr , P AP, = A‘P;, (A.16)

P,APr, = A"Pp , PRrAP, = A"P;,

wo A? (A") die Matrix A mit Null gesetzten Nebendiagonal-(Diagonal-)Elementen
bezeichnet. Fiir eine Fermiongeneration f sind chirale Projektoren folgendermaflen
definiert:

pu _

P = 5 (A.17)

P; fiir f gerade

Pr fiir f ungerade
Pr fiir f gerade

{ P; fiir f ungerade

D Fouriertransformation

Die FOURIER-Transformation von site-Variablen (also solchen, die genau einem Git-
terplatz zugeordnet sind), ist definiert als:

s = /@(q)emv (A.18)

auf eine besondere Bezeichnung der Transformierten wird also verzichtet. Fiir die
Gitterableitungen folgt sofort:

vu‘rox = f‘P(Q)e%q“iuneiqx

q
Vies = —{@(q)e‘%q“i%eiq“f (A.19)
Do, = [o(q) @ e

q
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Fir link-Variablen (z.B. Eichfelder) lautet die Transformation:

e = / Au(g)etlt (A.20)

hier wird wie auch sonst mit g sowohl der euklidische Index als auch der Finheits-
vektor in die entsprechende Richtung bezeichnet. Damit lauten Ableitungen und der
Feldstarketensor:

VA = [Alg) %q“"'q”)zq el
q
Vi, = —[Alq)e ;—'(qwqy)i%eiqx
q
Ape = VA = VA = (65,60 — 6506) [ As(q) e 3007H90) 4 G c19®

g
(A.21)
Benétigt wird auch noch die FOURIER-Transformation vierter Feldpotenzen:

R Sl
\ Glyeees q4 4 (A22)
Y Ape = Coonoaod(q1,92:03, 1) T Aoi(q0)
TH+V+ (q1 ..... q4) =1

601020304((]17(]27(]37(]4) = Z H( qu — 0 m5 )q101q202q303q404

BtVy 4
- 50’10’250'10'350'10'4 ZA: alA QQA a3A a4A - 50’10’250'10'3610'4 620'4 630'4 640'1
(A.23)

_5010250104Q103 9205 4301 403 — 5010350104Q102 9201 9305 G40,
_50'20'350'20'4q10'2 q20'1 q30'1 q40'1 —I_ 50’10’250'30'4q10'3 q20'3 q30'1 q40'1
—|_50'10'350'20'4q10'2 q20'1 q30'2 q40'1 —I_ 50’10’450203q102 q20'1 q30'1 Q402-

Die FOURIER-Transformation lautet fiir die Fermion-Felder:

:/%(Q)eiqw = /%(Q)e‘iq“’ (A.24)

Wichtig sind hier folgende Kombinationen:

S0 bwate = [ Polg)arolq)
Z Ey&/x-l-uAﬁxGM@bx = f/ %:E(q) ﬁ AM( )QM@ZJ( )6 5 qwl-q“)

YW =1

(A.25)

Transformiert a, beim Ubergang p — —pu wie (—1)" (also etwa n = 0 fiir eine Zahl
und n = 1 fiir eine y-Matrix), so wird daraus:

Z%(Sww/‘ﬁx%% = J Z¢( ) (ki)aul/)(Q)Qfm-k(qu‘FqL) (A.26)

Y qq’ M+
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E  Eichfeld-Vertices

In diesem Abschnitt soll gezeigt werden, dafl in einer Gitter-Eichtheorie die vom
externen Impuls unabhéngigen Ein-Schleifen-Beitrdge zur Fichboson-Selbstenergie
die Beitrage der anderen Fin-Schleifen-Graphen bei verschwindendem Impuls gerade
auftheben. Seien genauer

q L
glp,l/(p) = /p\,Qf\, g?;w = P

q+p

so wird behauptet:
gluu(o) — _g2p,1/ (A27)

Die Argumentation (welche im skalaren und fermionischen Fall durch eine explizi-
te Rechnung gepriift wurde) verlauft folgendermaflen: Die geeichte Wirkung eines
skalaren oder fermionischen Feldes 148t sich schreiben als:

S = Y AUl pantpe + 0lbie, } (A.28)

Die perturbative Parametrisierung U, = exp(ieA ;) fithrt auf Vertices der Form

V(. q) = UL st (A29)
mit der Eigenschaft
Der inverse nackte Propagator schreibt sich dann:
AN (q) = —;VJO)(q,Q) +b (A.31)
und es gilt:
Sl = A5V (A.32)

Die beiden in Frage kommenden Graph-Typen lauten in dieser Notation:

Gruw(p) = {Vj”(q,qirp)ﬁ(qm(”(q+p,q)A(q+p)

(A.33)
g2;w = 25uu{V;2)(q7Q)A(Q)
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Anwendung der obigen Eigenschaften liefert:

G (0) = {Vj”(q,Q)A(Q)Vy(”(q,Q)A(Q)

Vg, 9)A(9) 5V (9, 9)Alq)

(A.34)

Auf diese Weise heben also die zusdtzlich von der Gitterregularisierung erzeugten
Graphen die Beitrage zur Selbstenergie bei verschwindendem Impuls auf, und zwar
getrennt im skalaren und fermionischen Sektor.
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