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Nie erfassen wir das wahre Wesen der Dinge,

stets nur irgendeinen Anschein von der Mitte der Dinge,
in einer ewigen Verzweiflung dariber,

weder thren Ursprung noch ihr Ziel zu kennen.

(B. Pascal)

Einleitung

Eine der groflen Motivationen, sich mit naturwissenschaftlichen Studien zu
beschéiftigen, ist seit jeher das Geheimnis der Dynamik bewegter Korper. Be-
reits in frithgeschichtlicher Zeit faszinierte die Menschheit das Phinomen der
Bewegung der Gestirne, was die Vielzahl der iiberlieferten astronomischen Be-
obachtungen beweist. In der Renaissance trug die Astronomie wesentlich zur
Revolutionierung der Wissenschaften bei und leitete dadurch die Verdnderung
des gesamten Bildungswesens ein. Entfacht wurde die Diskussion der damali-
gen Zeit durch das Werk ,,de revolutionibus“ von Nikolaus Kopernikus'. Einen
vorldufigen Hohepunkt erlebte die Astronomie mit Johannes Kepler?, der Ge-
setze fiir die Planetenbewegung aufstellte. Mit irdischeren Problemen der Be-
wegung von Kérpern beschiftigten sich unter anderen Leonardo da Vinci® und
Galileo Galilei*. Letzterer faBte die Vorginge des freien Falls und die Pendel-
bewegung in die Form einer Gesetzméifigkeit. Ziel war es fortan, die Dynamik
bewegter Korper als Gesetze zu formulieren und ihr so eine dem menschlichen
Geist zugingliche Struktur aufzuprigen.

Ein grofiler Erfolg bei der Realisierung dieses Programms wurde durch Isaac
Newton® erzielt, als er Mitte des 16. Jahrhunderts die Bewegung einer Masse
unter dem Einfluf} einer gréfleren Masse in Formeln fafite und damit sowohl die
Bewegung eines Planeten um eine Sonne, als auch die Fallgesetze fiir Korper
auf der Erdoberfldche vereinheitlichen konnte.

Bei der Ausweitung dieses Zentralkraftgesetzes auf ein System mit drei Massen
traten jedoch bereits gravierende Probleme auf, die darin bestehen, dafl weder

'"Deutscher Mathematiker und Astronom (1473-1543) im Jahre 1543. Griff in dem erwihn-
ten Werk die Idee Aristarchos’ von einem heliozentrischen Weltbild auf.

*Deutscher Astronon (1571-1630). Stellte Gesetze fiir die Planetenbewegung auf und ent-
wickelte die Theorie der Bildentstehung in einem Fernrohr.

3Ttalienisches Universalgenie (1442-1519). Empiriker, der die entdeckten Phinomene prak-
tisch umzusetzen suchte. Versuchte aber auch, eine umfassende Naturbeschreibung der me-
chanischen Phinomene zu entwickeln.

*Ttalienischer Mathematiker, Physiker und Philosoph (1564-1642). Fiihrte die Methode sy-
stematischer Versuchsreihen ein und gewann dadurch Gesetzméfigkeiten der Pendelbewegung
und des freien Falls. Weitere wichtige Beitrage zur Astronomie.

*Englischer Mathematiker, Physiker und Astronom (1643-1727). Entwickelte eine Gravi-
tationstheorie sowie eine axiomatische Theorie der Mechanik.



2 Einleitung

eine Losung in Form einer Funktion der Zeit, noch eine Charakterisierung dieser
Bewegung angegeben werden kann.

Mit diesem Problem setzten sich Naturwissenschaftler lange Zeit auseinander,
was wesentlich dazu beitrug, die Prinzipien der klassischen Mechanik in eine
mathematisch sehr kompakte und klare Form zu bringen. Eine Losung jedoch
ist bis heute nur fiir spezielle Anordnungen von drei Kérpern bekannt, die eine
Ausnutzung der Symmetrie der Anordnung zulassen. Joseph Louis Lagrange®
16ste das Drei-Korper—Problem sowohl fiir auf den Ecken eines gleichseitigen
Dreiecks, als auch fiir auf einer rotierenden Geraden angeordnete Kérper. Weite-
re wichtige Beitrige zum Drei-Kérper-Problem stammen von Henri Poincaré?,
der sich mit den Erhaltungsgréflen dieses Problems beschiftigte und zeigen
konnte, daf} fiir den allgemeinen Fall die Zahl der erhaltenen Groéflen kleiner als
die der Freiheitsgrade ist (siehe hierzu auch Kapitel 2). In einem Brief, den er
kurz vor seinem Tode an Lagrange schrieb, spricht er auch von einer allgemei-
nen Loésung, die allerdings in seinen Aufzeichnungen nicht gefunden wurde. Bis
heute ist eine solche nicht bekannt.

Im Laufe der Zeit wurden fiir Systeme mit einer groflen Zahl von Teilchen
Methoden entwickelt, die nicht die Bewegung des einzelnen Teilchens, sondern
lediglich einige makroskopische, das System charakterisierende Gréflen, berech-
nen. Diese Methoden wurden unter der Bezeichnung ,,statistische Physik“ zu
einem wichtigen Gebiet der Physik zusammengefafit. In diesem Bereich spricht
man von ,, Vielteilchensystemen® im Gegensatz zu den ,, Wenigteilchensystemen*
wie zum Beispiel Atomen mit mehr als einem Elektron. Um fiir diesen Be-
reich neue Techniken entwickeln zu kénnen, ist es hilfreich, eine Zahl 16sbarer
Systeme, also die Bewegung wechselwirkender Teilchen, zu kennen. Fiir die
Quantenmechanik, in der stérungstheoretische Methoden eine wichtige Rolle
spielen, birgt jede Losung eines neuen Systems als Basis eines Hilbertraumes
die Moglichkeit, die Losung anderer Systeme nach dieser Basis zu entwickeln.

Im klassischen Fall ist die Stérungsrechnung weitaus komplexer. Es sind ledig-
lich Aussagen iiber das Verhalten in der Nidhe einer bekannten Losung méglich,
und diese sind auch nicht einfach zu handhaben. Fiir nichtlineare klassische
Systeme existieren Methoden, diese als Storung eines linearen Systems zu be-
trachten. Dies war ein Ansatz fiir die Entwicklung der Chaos-Theorie.

Gegenstand der vorliegenden Arbeit ist das Calogero—Modell, bei dem es sich
um ein eindimensionales, exakt l6sbares N—Teilchen—System handelt. Anhand
dieses Beispiels sollen einige wichtige Methoden zur Untersuchung von Integra-
bilitdt besprochen werden. Desweiteren behandele ich auch ausschlielich fiir

5Franzdsischer Mathematiker und Astronom (1736-1813), bekannt durch Arbeiten in den
Gebieten Mechanik, Schwingungen und Variationsrechnung.

"Jules Henri Poincaré, franzésischer Mathematiker, Physiker und Philosoph (1854-1912),
lieferte wichtige Beitriige zur Astronomie, der Theorie des elektromagnetischen Feldes sowie
der Analysis.
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das Calogero-Modell anwendbare Methoden, die eine mathematische Einord-
nung desselben erméglichen.






Bemerkungen zur Notation

Vorab mochte ich einige vielleicht nicht allen Lesern geldufige Notationen be-
sprechen.

Da es sich bei dem im folgenden behandelten Problem um ein rein mechanisches
handelt, bietet sich an, die entsprechenden SI-Einheiten Meter (m), Kilogramm
(kg) und Sekunde (s) durch eine dieser Einheiten auszudriicken, was durch
Setzen von i = 1 = m geschieht. Damit wird das Kilogramm einheitsfrei und
die Linge erhilt die Dimension der Wurzel aus einer Sekunde. Die Energie wird
in diesen Einheiten als Frequenz gemessen.

Die Tatsache, da dem behandelten N-Koérper—Problem eine paarweise Wech-
selwirkung der Teilchen zugrunde liegt, bedingt, dal des 6fteren Mehrfachsum-
men und -produkte auftreten. Da diese meist nicht iiber alle natiirlichen Zahlen
von 1 bis N laufen, bietet sich die Verwendung der Summenkonvention nicht
an. Um das Ganze dennoch einigermaflen iibersichtlich zu gestalten, verwende
ich in der Regel nur ein Summenzeichen, aus dessen Indizierung hervorgeht,
woriiber summiert werden soll. So gelten in der Regel beispielsweise folgende
Ersetzungen:

Il
7

2
>

<
A
N
S
Il
)

<
Il
-

M
'MZ
M) =

Dabei ist darauf zu achten, daf iiber Indizes, die auf der linken Seite einer
Gleichung frei sind, auf der rechten Seite selbstverstdndlich nicht summiert
wird. An diese Notation sollte man sich innerhalb kiirzester Zeit gew6hnt haben,
weshalb ich sie von Beginn an verwenden werde.

Eine weitere, oft anzutreffende Schreibweise ist das Ersetzen partieller Ablei-
tungen nach der Standard—Variable z; durch

o _

Auch wenn dies in meinen Augen die Lesbarkeit nicht immer verbessert, werde
ich mich im folgenden dieser Konvention bedienen.



6 Bemerkungen zur Notation

Aus der Tatsache, dal der von mir behandelte Themenkomplex hiufig auf
Mehrfachsummen fiihrt, resultierte im Verlauf meiner Arbeit die Frage nach
einem geeigneten Symbol fiir die imagindre Einheit. In der mathematischen
sowie physikalischen Literatur wird hierfiir im allgemeinen der Buchstabe ,,i*
verwendet; in der Elektrotechnik benutzt man, um Verwechslungen mit dem
elektrischen Strom vorzubeugen, den Buchstaben ,,j“. Fiir mich stellte sich die
auch in einigen Computerprogrammen zur symbolischen Algebra verwendete
Symbolik ,, 1 “ als sehr vorteilhafte und auch nicht mit extrem gesteigerten
Schreibaufwand verbundene Lésung heraus. Diese habe ich auch in den vorlie-
gende Drucksatz iibernommen.



Vor dem Vielen ist das Eine,
von dem her auch das Viele ist.

(Plotin)

Kapitel 1

Das Calogero—Modell

Den Anlaf zu dieser Arbeit bot unter anderem eine Arbeit von Francesco Ca-
logero aus dem Jahre 1971 mit dem Titel ,,Solution of the One-Dimensional V-
Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials“.
Diese verfafite er wihrend eines Aufenthaltes an der Universitdt in Moskau.
Heute lehrt er als Professor fiir Theoretische Physik an der Universitit ,La
Sapienza“ in Rom. Sein Hauptinteresse richtet sich auf die Untersuchung nicht-
linearer Differentialgleichungen unter Verwendung der Methode der ,inversen
Streuung® (siehe hierzu Kapitel 2) und der Verallgemeinerung dieser Methode
auf die Analyse und Klassifizierung physikalischer Systeme.

1.1 Der Hamiltonian

Die Untersuchungen von F. Calogero aus dem Jahre 1971 beschéftigen sich mit
einem System, das der klassischen Schrédinger—Gleichung

-z 0 i
1h 5 W (21,25, 2n) = Hoa ¥(21,25,...,2x)

geniigt. Das Potential setzt sich dabei aus einem attraktiven, paarweise wirken-
den Oszillator—Potential und einem ,,Zentrifugalpotential“, das je nach Kopp-
lung attraktiv oder repulsiv geschaltet werden kann, zusammen. Der Energie—
Operator hat damit die folgende Form:

~ N N 2
o = ZA+ Y (% -+ gE5) . )

i<i (z:—1;)

Da dieses Potential keine Zeitabhingigkeit besitzt, reduziert sich das Problem
auf die Losung der stationidren Schrédinger—Gleichung. Weil das Vorgehen bei
der Berechnung der Lésung dieses Problems nirgends ausfiihrlich dokumentiert
ist, und man iiber einen geschickten Ansatzes auf einige interessante Funktionen
der mathematischen Physik sto68t, soll die Vorgehensweise im folgenden etwas
ausfiihlicher besprochen werden.
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1.2 Ein symmetrieangepafiter Losungsansatz

Eine unmittelbar auffallende Symmetrie des Hamiltonians ist die Translations-
invarianz z; — z; + a. Auflerdem ist der Hamiltonian invariant unter Teilchen-
vertauschung, was bedeutet, dafl es ein Eigenfunktionensystem bestehend aus
geraden und ungeraden Funktionen gibt.

Zur Vereinfachung fithrt man folgende Definitionen ein:

(z: — ;)

I
mz

7

ZIL‘—IL‘

j<i

<.
A

\3
|
ZI'—‘

Fiir die Wellenfunktion beziiglich der Schwerpuntkoordinaten wihlt man nun
folgenden Ansatz:

U(zy,Zyy...,2x) = 27 @(r) Po(xy, Tay. .., TN) (1.2)

wobei die Funktion P, folgende Bedingungen erfiillen soll:

1. Translationsinvarianz
2. Homogenitéit vom Grade o, also ein Polynom

3. Sie geniige der folgenden Differentialgleichung:

<Zaz+2uza 8>Pa:0 (1.3)

J<2£El T

Calogero zeigt in seiner Arbeit, daf} aus der Differentialgleichung (1.3) unmittel-
bar die Symmetrie der Losungen dieser Gleichung folgt. Inwieweit diese letzte
Bedingung eine Einschrinkung der Lésungsmenge bedeutet, wird im folgenden
noch diskutiert.

Der Operator der kinetischen Energie wirkt in Einheiten 7 = m = 1 wie folgt
auf den obigen Ansatz (1.2) fiir die Wellenfunktion:

%Z 02V (z,,2s,...,28) = %Z {(8?2") @ P + 27(0%0) Py + 2" (02 Py) +

+2(9:2") (9:p) P + 2(0:2") ¢ (0:Pa) + 227(8:p) (0:Pa)} -

Dabei gelten folgende, in Anhang A gezeigte Identititen:
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(1.4a)

Y (8:2") (0iPa) = — 52" ) 07P, (1.4b)

D (02 (0:9) = 52" 4~ (1.4c)
2
S orp = N2 dp | d'v (1.4d)
B T r
d
> (0:0) (0:Pa) = %—fPa (1.4e)

1.2.1 Die Gebundenen Zustinde

Die Schrédingergleichung des Calogero-Modells schreibt sich mit dem Ansatz
(1.2) sowie den Identititen (1.4) als folgende Differentialgleichung fiir die Funk-
tion ¢(r):

—3¢" - {N2;2+N(N2_rl)y }90 — b=l —g}Z )280+

{4;2 E} =0.

Wihlt man den Parameter v nun so, dafl die Gleichung v(v — 1) = g erfiillt ist,
v also die Werte

v = %:I: it+sg
annimmt, verschwindet der dritte Summand in dieser Gleichung. Es fillt auf,
daf fiir g < % (in den SI-Einheiten) der Wert fiir v eine komplexe Zahl wird.
Dies fiihrt dazu, daf3 die Lésungen nicht mehr normierbar sind, was hier jedoch
noch nicht zu sehen ist. Bei Thirring [Thi79] findet sich jedoch eine Diskussion
des quantenmechanischen 1/r2-Potentials, die zum Ergebnis hat, da gerade

fiir den obigen Fall der Kopplung der resultiernde Hamiltonian nicht mehr
beschrankt ist.

Mit den Abkiirzungen

p = N—-2+NN-1)r + 2«

schreibt sich die, nunmehr gew6hnliche, Differentialgleichung fiir die Funktion
o(r) wie folgt:

2
o' + B — (NTwr2—2E>g0:0.

Der Ansatz
p(r) = r~7u(r)
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fithrt auf die Differentialgleichung

p— 1)— 2
u’ + T20U'+{U(U+T2) ;w_N;; +2E}u=0.

Geht man hierin zu der Variable z := {1/ Nw? . iiber, was die Transformationen

u(r) — v(x)
= u'(r) = ZJ'(z)

induziert, und wahlt o = %u, erhilt man folgende Form:

9.2
v"+{w—x2—2 NT“E}U:O. (1.5)

x

In Werken iiber spezielle Funktionen der mathematischen Physik, wie zum Bei-
spiel dem von Magnus, Oberhettinger und Soni [MOS66], findet sich die Diffe-
rentialgleichung

f”+(14§§4 —x2+25+2>f=0 (1.6)
mit der Lésung
1
f(z) = exp(—32%) 2’3 LP)(a?) |
wobei die Lx(fa) die verallgemeinerten Laguerre-Polynome sind.

Ein Vergleich der Gleichungen (1.5) und (1.6) zeigt, daf} sie fiir

B ot
n = [E w—1

identisch sind. Durch Riickeinsetzen erhilt man schlielich

U (21, Tay-..,Tn) X 27 exp(—%\/gwﬂ)Lgﬂ)(\/gwﬁ)

-Py(zy,20,...,2Tx) (1.7)

mit 8 = N— 3 + N(N — 1)v + 20

Dies sind die (nicht normierten) Loésungen sowie die dazugehérigen Energieei-
genwerte des Calogero—Modells, wobei sowohl n als auch « ganzzahlige, nicht
negative Werte annehmen kénnen. Die Energie hingt jedoch nur von der Sum-
me 2n + « ab, was dazu Anlaf gibt, als Hauptquantenzahl s := 2n 4+ « ein-
zufithren. Eine Nebenquantenzahl dient dann zur eindeutigen Charakterisie-
rung der Eigenfunktionen, die aufgrund der Tatsache, dafl verschiedene Tupel
(n,a) auf ein und dasselbe s fithren und zu einem « auch mehrere Polynome
P, existieren, nicht alleine durch die Quantenzahl s gegeben ist. Die Zahl der
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erlaubten Werte der Nebenquantenzahl liefert den Entartungsgrad des Ener-
gieeigenwertes Eg.

Eine sehr ausfiihrliche und gut nachvollziehbare Diskussion des Entartungsgra-
des findet sich bei Calogero [Ca71]. Aus diesem Grund mochte ich hier nur kurz
die wesentlichen Resultate wiedergeben.

Der Entartungsgrad bei gegebener Teilchenzahl N ist durch die Zahl der erlaub-
ten Tupel (n, «), die auf das gleiche s fithren, gegeben. Da das n als Index der
verallgemeinerten Legendre-Polynome keiner anderen Einschrinkung als der
Positivitdtsbedingung unterliegt, spielt das « die entscheidende Rolle. Dabei
ist die nackte Bezeichnung « irrefithrend, da dieses selbst indiziert sein miifite,
weil zu gegebenem Homogenitédtsgrad durchaus mehrere, IR-linear unabhéngige
Polynome existieren kénnen. In die Entartung geht also die Zahl der Polynome
Pis.an); die den obigen Anforderungen geniigen, wesentlich ein. Die allgemeine
Form solcher Polynome ist durch folgende Formel ausgedriickt:

N AN
1
RIS I | £) SRS 8 |
> D l . N =

{m,; } =2 3 7

m; >0
Dabei sind die ap, frei wihlbare Koeffizienten. Die maximale Zahl g(N, k) sol-
cher voneinander unabhingiger Polynome ergibt sich also als Anzahl paarweise
verschiedener Tupel (m,,ms,...my), so daB$ die Summe Y, Im, gerade den
Homogenititsgrad « ergibt. Fiir dieses kombinatorische Problem existiert keine
Darstellung in geschlossener Form. Sie lassen sich jedoch iiber mehrere Groflen-
ordnungen hinweg leicht unter Zuhilfenahme moderner Rechner bestimmen.
Fiir die Félle N=3 bis N=10 ergeben sich fiir « kleiner 11 die in Tabelle 1.1
aufgelisteten Werte.

Den hieraus resultierenden Entartungsgrad
[s/2]
gs = Zg(st — 2n)
n=1
zeigt Tabelle 1.2:

Bei dieser Aufstellung wurde jedoch nicht beriicksichtigt, dafl zu einer Kopplung
»8“ zwei Werte von v gehoren, die unter Umsténden fiir eine Vergroferung des
Entartungsgrades verantwortlich sein kénnen. Dies tritt genau dann ein, wenn

N(N—1)-y/++g e N. (1.9)

Diese Moglichkeit wurde von Calogero nicht diskutiert, da die Eigenzustédnde

gilt

zu den beiden verschiedenen Werten von v unterschiedliche Symmetrien aufwei-
sen und somit verschiedenen ,,Klassen“ von Teilchen angehéren. Verzichtet man
auf diese statistische Klassifizierung, so kann der dadurch resultierende erhéhte
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Tabelle 1.1: Anzahl symmetrischer translationsinvarianter Polynome zu gege-

benem Homogenititsgrad «

10

14
15

14
15

14
14

13
14

13
12

13
11

18 122 |23 | 25|25 | 26

10
7
15

0

N —
Is

8156

1016 |8

Tabelle 1.2: Entartungsgrad der ersten Zusténde fiir kleine Teilchenzahlen
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Entartungsgrad nur fiir bekanntes g Tabellarisiert werden, was lediglich eine
grole Menge von Zahlenkolonnen ohne wesentlichen Informationsgehalt her-
vorbringen wiirde.

Eine interessante Eigenschaft der Energieeigenwerte ist, daf} sie bei Zuschalten
einer invers quadratischen Paarwechselwirkung lediglich eine von der Teilchen-
zahl sowie der Stdrke der Kopplung abhidngige Anhebung erfahren, die von
dem Zustand véllig unabhéngig ist. Man spricht hier auch von dem ,,Calogero—
Teilchen“ im Oszillator-Potential, wobei das Calogero—Teilchen durch die Ei-
genzustinde zu Heo mit w =0 gegeben ist.

Das System mit g= 0, also ohne invers quadratische Wechselwirkung, wurde be-
reits frither durch Einfiihren der sogenannten Jacobi-Koordinaten geldst (siehe
Anhang B). Man erhilt dort gerade die Losungen mit v = 0. Das Spektrum
zu dem Wert v = 1 erhilt man durch den Ubergang von der Quantenzahl s zu
der Quantenzahl s’ := s+ IN(N — 1), die wieder eine natiirliche Zahl darstellt,
da fiir N > 1 der Term N(N — 1) ein ganzzahliges Vielfaches von zwei wird. Es
ist also in dem Spektrum fiir den Wert » = 0 enthalten und beginnt lediglich
mit einer héheren, von der Teilchenzahl streng monoton steigend abhéingigen
Grundzustandsenergie.

1.2.2 Die Streuzustiande

Der Fall w = 0 ist mit obiger Rechnung nicht abgedeckt, da der Ubergang von

der Variable r zu der Variablen z := 4/ NT‘"zr keine Isomorphie mehr darstellt.

Die Losung dieses Sonderfalles erhilt man jedoch auf ganz dhnlichem Wege.
Unter Ausnutzung der Identitdten (1.4) verbleibt nach Anwenden der Hamilto-
nians (1.1) mit w = 0 auf den Ansatz (1.2) die gewohnliche Differentialgleichung

b=N-24+NN-1)v+a und
p? = 2E .

Der Ansatz o(r) = r~0x(r) liefert
d_2+li+(2_£) r) =0
az T rar P ) (X =

und durch die Substitution z = p-r fiir die Funktion v(z) folgende Differenti-

{dd—;+1i+( —g—i)}v(m) =0.

algleichung:
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Dies ist die modifizierte Besselsche Differentialgleichung, die aus der Bessel-
Differentialgleichung durch die Substitution z — iz hervorgeht. Die Lésungen
hierzu findet man wiederum zum Beispiel bei [MOS63]. Sie lauten:

v(z) = L(z) ,

wobei die I,(z) die modifizierten Bessel-Funktionen sind. Diese hingen wie
folgt mit den Bessel-Funktionen zusammen:

I(2) = exp(— 3mib)J,(37i2) .

Dabei sind fiir den Index b beliebige komplexe Zahlen zugelassen.

Die Wellenfunktionen und die Energien des Calogero-Modells mit invers qua-
dratischem Potential sind also von der folgenden Gestalt:

U(zy,2s,...,0x) X 227 PL(p-7)Po(21, Tsy ..., Zx) (1.10)
E, = :p° . (1.11)

Das Energiespektrum dieses Systems ist damit kontinuierlich und rein positiv.
Der Entartungsgrad ist durch die Unabhingigkeit der Energie von der Wahl
des Homogenitédtsgrades a der Polynome P, unendlich. Wegen der Positivitat
der Energie spricht man hier von einem Streuproblem. Calogero zeigte, daf} als
Resultat dieses Streuprozesses lediglich die Impulse der Teilchen untereinander
vertauscht werden. Es entstehen also keine neuen Impulse.

1.3 Diskussion der Vollstindigkeit

Die Vollstdndigkeit der Losungen eines quantenmechanischen Problems ist ein
Begriff, der sich aus der Theorie der Struktur des Raumes, den die Wellenfunk-
tionen als normierte, komplexwertige Losungen einer linearen Differentialglei-
chung aufspannen. Als solche liefern sie eine Orthonormalbasis dieses Raumes
der quadratintegrablen Funktionen mit dem iiblichen Skalarprodukt

< f(@)9(@) >= [ fla) gla)da

Die Vollstandigkeit dieses Raumes geht auf die Cauchysche Definition der
Vollsténdigkeit von Folgen zuriick, die verlangt, dafl der Grenzwert einer jeden
konvergenten Folge in diesem Raum Element desselben ist. Da man iiber ein
positiv definites, reellwertiges Skalarprodukt sofort eine Norm in einem Raum
gegeben hat, 148t sich in diesem dann auch von Konvergenz und somit von
Vollsténdigkeit reden.

In dem Hilbertraum £y der quadratintegrablen Funktionen sehen die Bedin-
gungen fiir Orthonormalitdt und Vollstdndigkeit fiir abz&hlbare Lésungen wie
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folgt aus:

< ¥;,¥; >= §; ; Orthonormalitét,

oo

YT >< T,

i =1

= 1 Vollstdndigkeit.

Die Orthogonalitéit beziiglich der Hauptquantenzahl Klein s ergibt sich aus der
Tatsache, dafl es sich um Eigenfunktionen zu einem selbstadjungierten Diffe-
rentialoperator handelt, analog zu der Orthogonalitdt von Eigenrdumen Her-
mitischer Matrizen. Die Orthogonalitdt in der Nebenquantenzahl ist nicht von
vornherein klar, begriindet sich allerdings damit, dal die durch sie indizier-
ten symmetrischen Polynome ein orthogonales Funktionensystem bilden ( siehe
hierzu auch [Dun88]).

Verbleibt die Frage nach der Vollstindigkeit der Losungen, die durch den Spek-
tralsatz fiir selbstadjungierte Operatoren beantwortet wire, wenn es sich bei
den von Calogero gerfundenen Lésungen bereits um sdmtliche Losungen zu
diesem Eigenwertproblem handelte. Da jedoch der Ansatz (1.2) durch die An-
forderungern an die Funktion P, wie Homogenitidt und Erfiillung der Differen-
tialgleichung (1.3) sehr speziell ist, kann nicht erwartet werden, da§ man damit
bereits samtliche Losungen erhilt. Die Uberpriifung durch direktes Nachrech-
nen der Orthogonalititsrelation erweist sich jedoch als nicht problemlos und
wurde bisher nicht ausgefiihrt.

Eine Moglichkeit, dennoch Aussagen iiber dieses Problem treffen zu koénnen,
bietet hier die Betrachtung von Grenzfillen der Kopplung. Fiir die Gebundenen
Zustdnde ist die vollstdndige Losung des Problems fiir Kopplung g= 0 bekannt.
Hier tritt der oben erwé&hnte Fall ein, dal durch die Wahl von g eine zusétzliche
Entartung hervorgerufen wird, da fiir N grofler als zwei einer der Faktoren N
und (N —1) aus (1.9) in jedem Fall die 2 als Primfaktor enthélt. Den gesamten
Entartungsgrad erhilt man fiir dieses System aus Tabelle (1.2) durch Addition
der um N (N —1) nach unten verschobenen Spalte zu der Teilchenzahl N zu sich
selbst. Es zeigt sich jedoch sofort, daf die entstehenden Werte unter denen aus
Tabelle (B.1) liegen, was bedeutet, daf3 die von Calogero gefundenen Lésungen
nicht die vollstdndige Losungsmenge sind.

Einen alternativen Losungsansatz, der eventuell fiir das Auffinden der fehlenden
Losungen hilfreich sein kénnte, kann man aus einer ndheren Betrachtung der
Energieeigenwerte ableiten. Diese ergeben sich im Fall eines Calogero—Teilchens
im Oszillator-Potential aus den Energien des N-Oszillator-Problems um einen
konstanten Betrag in positive Richtung verschoben. Das legt die Vermutung
nahe, daf} sich die vollstindige Losung des Calogero—Problems aus den Eigen-
funktionen des Oszillator—Problems (siche Anhang B) multipliziert mit von
dem Parameter v abhingigen Funktionen in den x; zusammensetzen. Genauer
sollten die Wellenfunktionen sogar von der folgenden Form sein:

Uea(Ziy o yzny) = Voul(zy,...,2n) - €xp (g-x(ml,...,xN)> )
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Die Energie des Calogero-Modells ergibt sich dann als
Eca = FEou+ Espg -

Dabei sind die Energien Eg;, durch folgende Differentialgleichung fiir die Funk-
tion y gegeben:

2g232x + g Zax _g\/7WN r;)0;x +

#z

eiffer "fl \/j =10+

i>1 e

N
—g{/Nw? L VESL) o b
g 2&) ng % ) zX
+8 Z (z _lxj)z Espiee
i<i

Die y; als Funktionen der {z,} sind in Anhang B definiert.

Diese Differentialgleichung bereitet jedoch betrichtliche Schwierigkeiten, die
zur folge haben, daf} ich keine Losung angeben kann.



Unsichtbare Harmonie ist starker
als sichtbare.

(Heraklit)

Kapitel 2

Theorie Klassisch Integrabler
Systeme

2.1 Hamiltonsche Mechanik

Die fiir das strukturelle Verstindnis der mathematischen Theorie mechanischer
Systeme fruchtbarsten Zuginge sind die von Joseph Louis Lagrange und die,
mittels Legendre!-Transformation daraus hervorgehende, von Sir William Ro-
wan Hamilton? formulierte Hamiltonsche Mechanik.

2.1.1 Der Phasenraum

Sowohl in der Lagrangeschen als auch in der Hamiltonschen Formulierung der
Mechanik wird der Konfigurationsraum, der durch die direkte Summe der Teil-
chenkoordinaten aufgespannte Raum, als Riemannsche Mannigfaltigkeit M be-
handelt. Im Falle eines N-Teilchensystems im dreidimensionalen Raum ist der
Konfigurationsraum nicht durch Zwangsbedingungen an eine Hyperfliche ge-
bundener Teilchen somit eine 3N-dimensionale Mannigfaltigkeit. Auf der Kon-
figurationsmannigfaltigkeit lassen sich nun Koordinaten einfiihren, die als ver-
allgemeinerte Koordinaten bezeichnet werden. Die vertrauteste, aber nicht not-
wendigerweise geschickteste Wahl fiir diese Koordinaten sind die Ortskoordina-
ten.

! Adrien Marie Legendre, franzosischer Mathematiker (1752-1833), bekannt durch Arbei-
ten iiber elliptische Funktionen und in der Zahlentheorie, sowie die Methode der kleinsten
Quadrate.

*Irischer Mathematiker (1805-1865), bekannt durch die Formulierung der Hamiltonschen
Mechanik sowie der Theorie der Quaternionen.

17
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Die Tangentialvektoren an diese Mannigfaltigkeit werden verallgemeinerte Ge-
schwindigkeiten genannt. Im Falle der Wahl von Ortskoordinaten auf dem Kon-
figurationsraum handelt es sich bei den Tangentialvektoren um aus den Teil-
chengeschwindigkeiten zusammengesetzte Vektoren.

Der Unterschied zwischen Lagrangescher und Hamiltonscher Formulierung be-
steht aus heutiger Sicht darin, daf§ Lagrange mit dem Tangentialbiindel TM
arbeitete, wihrend Hamiltion die Mechanik unter Verwendung des Kotangen-
tialbiindels T* M formulierte. Dabei bezeichnet der Begriff des Biindels die Ba-
sismannigfaltigkeit erweitert durch in jedem Punkt mit ihr verklebte Riume,
in diesem Fall den Fasern. Das Biindel I' := T*M mit einer zusitzlichen
Struktur wird als Phasenraum bezeichnet. Diese zusitzliche Struktur bewirkt,
daf eine Identifikation von Tangential- und Kotangentialbiindel der Mannig-
faltigkeit M durch eine Abbildung ¢+ : T*M — TM moglich wird. Alterna-
tiv geschieht das durch Einfiihren einer schiefsymmetrischen, bilinearen Ab-
bildung {-, -} : C®() x C®(T) — C*(T), der Poisson®-Klammer, oder
aber iiber einen schiefsymmetrischen 2-Tensor w € TM ® TM, den Poisson—
Bivektor. Mit dem Poisson—Bivektor 148t sich eine schiefsymmetrische 2—Form
w = (¢ ® 1) (w) definieren. Ist diese nicht entartet, so spricht man von
T*M mit der zusédtzlichen Struktur als einer symplektischen Mannigfaltigkeit.
Die Form w ist genau dann geschlossen, wenn die Poisson—Klammer die Jacobi?-
Identitét erfiillt. In lokalen Koordinaten hat w die Form w = dp A dg.

Fiir Systeme, in denen das Potential keine explizite Zeitabhingigkeit aufweist,
wird die Bewegung der Teilchen in der Lagrange-Mechanik durch die Lagrange—
Funktion L :TM — R und im Hamiltonschen Falle durch die Funktion H :T*M
— IR bestimmt. Bei Langrange ergeben sich nun die Phasenbahnen (t) :
R —TM als Extrema des Funktionals

t1

S(y(#) = [ L(y(#)dt , (2.1)

to

dem sogenannten Wirkungsfunktional. Hieraus lassen sich mit Hilfe des Ha-
miltonschen Variationsprinzips die Lagrangeschen beziehungsweise Hamilton-
schen Bewegungsgleichungen herleiten. Die Hamiltonschen Differentialgleichun-
gen haben die Form

@) = (D), ) = dH
& A(t) = vy dHpg (2.2)
wobei die Kurven auf T*M iiber die Abbildung ¢ mit den Kurven auf TM

identifiziert werden konnen, weshalb hier nicht zwischen ihnen unterschieden
wird.

3Denis Poisson, franzdsischer Mathematiker und Physiker (1781-1840). Lieferte wichtige
Beitréige fiir die Analysis, die Wahrscheinlichkeitstheorie sowie die Thermodynamik.

*Carl Gustav Jacob Jacobi, deutscher Mathematiker (1804-1851). Verfafite wichtige Ar-
beiten auf den Gebieten elliptischer Funktionen, partieller Differentialgleichungen sowie der
Variationsrechnung, Mechanik und Algebra.
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In den lokalen Orts—Impuls—Koordinaten (p, q) hat ¢ die Gestalt

(1)

Damit ergibt sich die aus der Koordinatenschreibweise bekannte Form der Be-
wegungsgleichungen. Die Losungen () zeichnen sich im Fall natiirlicher Sy-
steme, das heifit fiir nicht dissipative Systeme, dadurch aus, daf} entlang ihnen
die Hamilton—Funktion H(vy(¢)) konstant ist.

Die Abbildung ¢ (.ydH .y : ' — TT ist ein Vektorfeld auf dem Phasenraum.
Es wird auch Hamiltonsches Vektorfeld genannt. Mit ihm verkniipft ist der
Hamiltonsche Fluf3 gfq, eine 1-parametrige Diffeomorphismengruppe, fiir die
das Vektorfeld « dH das zugehorige Geschwindigkeitsfeld darstellt.

Diese Formulierungen der klassischen Mechanik haben sich auch im Zusam-
menhang mit der Erweiterung dieser als fruchtbar erwiesen, da sich Quanten-
mechanik und Quantenfeldtheorien auf &hnliche Weise formulieren lassen. Hier
interessiert jedoch nur die aus dieser Art der Darstellung resultierende Form
der Erhaltungsgréfien eines mechanischen Systems.

2.1.2 Erhaltungsgrofien: Das Noether—Theorem

Erhaltungsgrofien eines mechanischen Systems sind Funktionen auf dem Pha-
senraum I', die entlang den Phasenbahnen konstant bleiben. Das heift, ist
v(t) : R — T ein Extremum des Wirkungsfunktionals S(vy(¢)) und I eine
Funktion auf I' mit I(y(¢)) = const VYt € R, so nennt man diese Funktion
eine Erhaltungsgrofie. Im Falle nicht dissipativer Systeme ist mit der Hamilton—
Funktion bereits eine Erhaltungsgréfie bekannt. Diese wird auch als Energie—
Funktion bezeichnet. Eine Moglichkeit, Erhaltungsgréfien aus den Symmetrien
der Lagrange Funktion herzuleiten, bietet der nach Emmy Noether® benannte
Satz. In lokalen Koordinaten ergibt sich folgendes Bild:

Satz: (Noethersches Theorem)
Sei M eine glatte Mannigfaltigkeit, L eine Lagrange-Funktion auf M,
L : TM — R und h® eine l-parametrige Diffeomorphismengruppe,
unter der L invariant bleibt, das heif}t

L(v) = L(hi(v)) Vs e R,v e M .
Dann besitzt das zu der Funktion L gehorige Lagrange—System die Er-
haltungsgréfie I : TM — R mit

. _ OL dr’(q)
I(q’q) - 8q dS |s:0 .

*Deutsche Mathematikerin (1882-1935), bekannt durch Arbeiten auf den Gebieten der
Algebra und Invariantheorie.

(2.3)
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Dabei ist fir TM > v = (p,q) die Form h, v das Differential von h*
im Punkte ¢ € M . Es vermittelt eine lineare Abbildung zwischen den
Tangentialriumen in den Punkten ¢ und h(g).

Fiir die Erhaltungsgréfien eines mechanischen Systems existiert ein notwendi-
ges und hinreichendes Kriterium, das es erméglicht, fiir Phasenraumfunktionen
auch ohne Kenntnis der Losung des Systems oder der Symmetrie der Lagrange—
Funktion, fiir deren Riickgewinnung aus den Erhaltungsgréfien im iibrigen keine
Vorschrift existiert, die Eigenschaft, eine Konstante der Bewegung zu sein, zu
verifizieren. Diese Moglichkeit bietet die Poisson—-Klammer. Fiir zwei Phasen-
raumfunktionen F, G ist sie iiber die symplektische Form w wie folgt gegeben:

Def.: (Poisson—Klammer)
Seien F,G € C°°(I') Phasenraumfunktionen. Dann ist

{F,G} = w(tdF, +dG) (2.4)

die Poisson-Klammer von F und G. Dabei vermittelt + den Isomorphis-
mus zwischen Tangential- und Kotangentialraum.

In der mathematischen Literatur spricht man auch von der Lie-Klammer zweier
Vektorfelder, was anhand der Formulierung in (2.4) unmittelbar einsichtig ist.
Hier schlieit sich unmittelbar die Theorie der Lie-Gruppen und Lie-Algebren
an. Als Literatur hierzu verweise ich auf das Buch von Robert Gilmore [Gil74].

Ich moéchte jedoch nur auf die Relevanz der Poisson-Klammer fiir die Inte-
grabilitit klassischer mechanischer Systeme eingehen. Hier st6f8t man auf eine
geeignete Wahl von lokalen Koordinaten auf dem Phasenraum, die Wirkungs—
Winkel-Variablen.

2.1.3 Wirkungs—Winkel-Variable

Satz: (Liouvillescher® Satz iiber integrable Systeme)
Seien I1,1s,...,1I, Funktionen auf einer 2n-dimensionalen symplekti-
schen Mannigfaltigkeit I, fiir die

{L,L;} =0 Vij .

Die Menge My, ¢, .. 7. der Phasenraumpunkte zu gegebenen konstanten
Werten der Erhaltungsgrofien sei wie folgt definiert:

My ={z el |Lz)=fi Vi=1...n}.

Die Funktionen I; seien auf dieser Mannigfaltigkeit unabhéngig, das heifit,
in jedem Punkte z € My gilt

TMyp = Span{uyzdl;z, i = 1...n}
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Dann besitzt M; folgende Eigenschaften:

e M; ist eine n—dimensionale Untermannigfaltigkeit von I'.

e M;y ist eine glatte Mannigfaltigkeit, invariant unter dem Phasenfluf3
mit Hamiltonscher Funktion H = I;.

e Ist My kompakt und zusammenhéngend, so ist sie diffeomorph

zu dem n—dimensionalen Torus T™.

Die letzte Eigenschaft gibt nun Anlafl zur Einfiihrung lokaler Koordina-
ten auf T', indem man zunichst auf M; die Koordinaten (¢1,p2,...,¢n)
einfiihrt und diese zu Koordinaten auf T' erginzt. Die einfachste Wahl ist,
sich der Erhaltungsgréfien I; zu bedienen, und als Basis auf I' die 2n—Tupel
(I1,I,..., I, p1,...,p,) zu wihlen. Diese sind allerdings in der Regel nicht
mehr symplektisch, das heifit, die 2-Form dI A dy stellt keine symplektische

Form mehr da. Es lassen sich jedoch immer n Funktionen Ji, Js, ..., J, der Er-
haltungsgréBen finden, so dafl die Tupel (J1,...,Jn,¢1,-..,¢n) symplektische
Koordinaten auf T' mit der Poincaréschen Integral-Invarianten w = dJ A dy
bilden.

Mit folgender Definition eines integrablen klassischen Systems:

Def.: (Integrables System)
Ein klassisches System mit Hamiltonscher Funktion H mit n Freiheits-
graden heifit integrabel im Liouvilleschen Sinne, wenn es neben H weitere
(n — 1), voneinander unabhingige Funktionen I; : ' — R gibt, so daf
deren Fliisse paarweise untereinander vertauschen und jede mit dem Ha-
miltonschen Fluf} vertauscht.

kann man also sagen, dafl integrable Systeme die Einfiihrung von Wirkungs—
Winkel-Variablen als lokale Koordinaten des Phasenraumes zulassen. In diesen
Koordinaten nehmen die Hamiltonschen Bewegungsgleichungen folgende einfa-
che Gestalt an: annehmen:

dJ

= =0
dt

dy

= = w(J) .
” w(J)

Eine fiir die storungstheoretische Behandlung klassischer Systeme interessante
Eigenschaft dieser Koordinaten ist, daf} sich der Phasenraum in einer Umgebung
der Untermannigfaltigkeit M als direktes Produkt des Torus mit einer n—
dimensionalen Kreisscheibe darstellen 148t:

' ~T" x D" in U, (My) .
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Die Einfithrung solcher Koordinaten setzt in jedem Falle die Existenz einer
der Zahl der Freiheitsgrade des Systems entsprechenden Anzahl unabhingiger
Erhaltungsgréfien in jeden Punkt des Phasenraumes voraus. Im Falle der Exi-
stenz von Kollisionsbahnen, wie sie zum Beispiel beim 3-K6rper—Problem auf-
treten, existieren solche unabhingigen Erhaltungsgréfen nicht mehr in jedem
Punkt. Es liegt somit ein nicht integrables System vor. Die Nichtintegrabilitit
von Systemen sagt also nichts iiber die Nichtexistenz einer Lésung oder gar
des Systems als physikalisch realisierbares System aus, sondern lediglich, daf}
die Bewegungsgleichungen nicht auf die obige, einfache Form gebracht werden
konnen.

Zum Beweis der Integrabilitit ist es also nicht ausreichend, die Losung anzu-
geben. Man muf} vielmehr sdmtliche Erhaltungsgréfien finden und deren Un-
abhingigkeit in jedem Punkt des Phasenraumes zeigen. Das Auffinden dieser
Erhaltungsgréfien ist nun nicht immer ganz einfach und, wie zum Beispiel im
Falle des Runge-Lenz—Vektors fiir das Zwei-Ko6rper-Problem, oftmals mit viel
Intuition verbunden. Allerdings existieren durchaus auch systematische Vorge-
hensweisen, Erhaltungsgréfien zu konstruieren. Eine sehr einfache Methode ist
der sogenannte Laz—Trick.

2.2 Lax—Darstellung eines klassischen Systems

Die Idee zu dieser Darstellung, aus der Erhaltungsgréfien unmittelbar konstru-
iert werden koénnen, geht auf Peter D. Lax zuriick [Lax68]. Lax selbst ent-
wickelte diese Methode zur Konstruktion von Erhaltungsgréfien der sogenann-
ten Kortweg—de Vries—Gleichung, einer Differentialgleichung, deren L&sungen
fiir Zeiten t — 4oo Uberlagerungen von Solitonen sind. Die Kortweg-de Vries—
Gleichung, kurz auch KdV-Gleichung genannt, hat die Form

U = 6UuUp, — Upypy -

Die Adaption der Laxschen Vorgehensweise auf klassische Systeme mit endlich
vielen Freiheitsgraden geht wohl auf Calogero zuriick [Cal75]. Der wesentliche
Schritt hierbei ist die Konstruktion zweier Hermitescher Matrizen L und M,
gelegentlich auch als Laz-Paar bezeichnet, so daB die n? Gleichungen

L =[L,M] (2.5)

den Hamiltonschen Bewegungsgleichungen des betrachteten Systems &quiva-
lent sind. Dabei ist die Lie-Klammer |-, -] die auf Matrixalgebren verwendete
antisymmetrische Abbildung

[X,Y]:=XY -YX . (2.6)

Die Lax—Gleichung ist von der Form der Heisenberg—Gleichung der Quantenme-
chanik. Ersetzt man die Matrix M durch den Hamilton—Operator eines quan-
tenmechanischen Systems, so ist durch die Gleichung (2.5) die Zeitentwicklung
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des Operators L bestimmt. Diese Parallele wirft die Frage auf, inwieweit sich
aus der Lax—Darstellung eine alternative M6glichkeit zur Quantisierung eines
mechanischen Systems ergibt. Zu dieser Frage habe ich in der Literatur keine
Ansitze entdecken konnen. Bei der Diskussion der quantenmechanischen Erhal-
tungsgroBen des Calogero—Modells wird jedoch die Mdglichkeit des korrespon-
denzméBigen Ersetzens der Eintrige der Lax—Matrix durch die entsprechenden
Operatoren noch besprochen.

Die Matrizen L und M sind, damit Gleichung (2.5) den Hamiltonschen Bewe-
gungsgleichungen dquivalent sein kann, Phasenraumfunktionen.

Aus der Gleichung (2.5) folgt sofort, da§ die Spur tr(L) verschwindet, also die
Spur tr(L) selbst zeitunabhingig und somit erhalten ist. Es gilt sogar die viel

stirkere Aussage, dafl die Eigenwerte von L jeder fiir sich zeitunabhingig sind.
Das heif3t, dafl die Hermitesche Matrix L die Form

L(t) = SH)AS L(t) (2.7)

mit unitdrem S und der Diagonalmatrix A = diag(A1,A2,...,A\,) mit A; #
Ai(t) Vi =1...n, also nicht von der Zeit abhiingigen Eintrdgen. Damit folgt
dann sofort, da jede unter Ahnlichkeitstransformation des Arguments invari-
anten Funktion, wie zum Beispiel die Spur, angewendet auf Potenzen von L
Erhaltene Groflen liefert.

Einen Beweis beziehungsweise Verweise auf einen Beweis fiir die nicht unmit-
telbar einsichtige Gleichung (2.7) fand sich in keiner der Referenzen. Daher
mochte ich diesen kurz fithren.

Beh.:
Sei L eine Hermitesche Matrix mit von einer Variablen ¢ abhingigen
Eintragen. Weiterhin gelte fiir die Ableitung nach diesem Parameter die
Identitit L, = [L, M]. Dann sind die Eigenwerte der Matrix L nicht von
der Zeit abhingig und die Gleichung (2.7) ist erfiillt.

Bew.:

Aufgrund der Hermitezitdt von L existiert eine unitdre Transformation
S(t), so daB L(t) = S(t)A(t)S '(t) mit diagonalem A(t). Differentiation
nach t liefert dann

L= (SASYy=8ASt - [L,§57Y . (2.8)

Ausnutzen der Identitét fiir L fithrt dann auf

A=A, STS—STMS].
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Der Kommutator einer Matrix X mit einer Diagonalmatrix A ergibt sich
zu der Matrix [A, X];; = X;; (A — Aj), besitzt also verschwindende
Diagonalelemente. Somit ist die Matrix A also nicht von dem Parameter

t abhingig.
abhéngig -

In der Laxschen Darstellung eines Systems reduziert sich das Auffinden von Er-
haltungsgréfien also auf die Bestimmung von Eigenwerten der Lax—Matrix L,
die das Hamiltonsche System reprisentiert. Aus Gleichung (2.8) folgt ndmlich,
dafl die Matrix M des Lax—Paares bis auf die Eichfreiheit, mit der Matrix L
kommutierende Matrizen zu M zu addieren, von der Gestalt M ~ —S§1
ist. Desweiteren mufl die Matrix L nicht notwendigerweise Hermitesch sein. Es
geniigt zu fordern, daB sie iiber eine Ahnlichkeitstransformation auf Diagonal-
gestalt gebracht werden kann, also Gleichung (2.7) erfiillbar ist. Aus diesem
Grunde schlage ich folgende abgeinderte Formulierung des Lax—Tricks vor:

Satz: (Lax—Trick)

Sei I' der 2n—dimensionale Phasenraum eines Hamiltonschen Systems,
L eine Abbildung von T" in die diagonalisierbaren Homomorphismen einer
Algebra. Der L diagonalisierende Homomorphismus sei mit S bezeich-
net. Stellt dann die Zeitentwicklung L = [L, —§S~!] von L ein den
Hamiltonschen Bewegungsgleichungen des Systems dquivalentes Differen-
tialgleichungssystem dar, so sind die Eigenwerte von L Erhaltungsgréfien
des Hamiltonschen Systems.

Die Laxsche Darstellung Hamiltonscher Systeme wird in der Literatur bis-
weilen auch inverse spektrale Transformation, isospektrale Deformation oder,
was sich durchzusetzen scheint, Methode der inversen Strewung (inverse scat-
tering method) genannt. Thr kommt eine grofie Bedeutung bei der Behand-
lung weiterer nichtlinearer Differentialgleichungen der mathematischen Phy-
sik neben der KdV-Gleichung, wie der nichtlinearen Schréodingergleichung, der
Sine-Gordon—Gleichung, dem Heisenbergschen Ferromagneten und der Toda-
Gitter—Gleichung zu. Hier sei auf das Buch von Ludwig D. Fadeev [FT87] und
die darin aufgefiihrte Literatur verwiesen. Fadeev gibt in diesem Buch eine et-
was abgewandelte Form der Laxschen Darstellung an, die eine geometrische
Interpretation zuldft. Statt mit der Lax-Gleichung (2.5) arbeitet er mit der
Gleichung

U -V, +[U,V] =0 ,UV:RxR — Mat(2,C) ,

die als Vertraglichkeitsbedingung fiir das Differentialgleichungssystem
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mit 7 : R x R — C? fungiert. Interpretiert man F als Abbildung der Basis
R? in die Faser C? des Vektorbiindels R? x C2, so stellt das Paar (U, V) einen
flachen Zusammenhang und die Abbildung F' einen kovariant konstanten Vektor
dar.

Wir wollen jedoch weiter die Laxsche Darstellung verwenden und die von Ba-
belon und Viallet [BV90] erkannte Bedeutung einiger Ergebnisse von Fadeev
fiir diese Darstellung diskutieren. Diese geh6éren dem Komplex der r—Matrizen
und der mit ihnen verbundenen Yang-Baxter—Gleichungen an.

2.2.1 r—Matrizen und die klassische Yang—Baxter—Gleichung

Zu Beginn miissen hier einige neue Strukturen eingefiithrt werden, auf die dieses
Kalkiil zuriickgreift.

Wie bereits im vorigen Abschnitt erwéhnt, ist die Lax-Matrix eine g-wertige
Phasenraumfunktion, wobei g die diagonalisierbare Untergruppe einer Alge-
bra von Homomorphismen ist. Auf dem Raum dieser Funktionen ist die Lie—
Klammer (2.6) definiert. Weiterhin ist fiir die Komponenten als Phasenraum-
funktionen mit (2.4) eine Poisson—Klammer gegeben. Neu eingefiihrt wird nun
die Tensoralgebra g ® g, die die folgende kanonische, dennoch méglicherweise
nicht allen Lesern geldufige Matrixdarstellung besitzt:

Def.: (Tensorprodukt)
Seien A, B € g zwei Matrizen. Definiere dann das Tensorprodukt 4 ® B

wie folgt:
a1 aiz ¢ bir bz - an1B a12B
as1 Q22 Q ba1 b2z — a21B  a2x2B (2.9)

Mit dieser Darstellung des Tensorprodukts folgt sofort, dal der so erzeugte
Raum eine Vektorraumstruktur hat. Fiir die Addition gilt folgende Identitét:

(A B) + (A®C) = A®(B+C) .
Der Vektorraum bildet mit dem Produkt
UV) - (XQY)=UXVY

eine nicht kommutative Algebra.

Damit 148t sich sofort eine Lie-Klammer der Gestalt (2.6) einfithren. Aufierdem
148t sich ein Zusammenhang zwischen den Elementen A® B und B® A angeben,
der auf der Eigenschaft beruht, daff die Algebra g ® g eine Untergruppe der
Endomorphismen auf C" @ C" ist. Es gilt:

(BoA) = P(A®B)P ,
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wobei die Abbildung P gerade die Komponenten des Tensorprodukts C* ® C"
vertauscht. Dabei ist P selbst im allgemeinen kein Element von g ® g, da
sich zwei Elemente von C” nicht notwendigerweise durch eine diagonalisier-
bare Transformation ineinander iiberfiithren lassen. Fadeev hat nun eine weitere
Struktur auf g ® g eingefiihrt, die im folgenden Fadeev-Klammer genannt wer-
den soll.

Def.: (Fadeev—Klammer)
Sei I' der Phasenraum eines Hamiltonschen Systems mit Poisson-
Klammer {-, - }. Die Matrixalgebra g sei die Menge der Funktionen auf
I’ mit Werten in den Hermiteschen n X n Matrizen. Dann 148t sich auf
dem Tensorprodukt g ® g die folgende Abbildung einfiihren:

{®}:9®9g 2909,
{a11,b11} {a11,b12}
XY — {X @Y} e {a11,b21}  {a11,b22}

Eine alternative, von Babelon und Viallet [BV90] verwendete Schreibweise fiir
die Fadeev—Klammer {X @Y} ist {X ®1,1®Y}, wobei die (i, j)-Komponente
gerade der Kommutator der (7, j)-Komponenten von X ® 1 und 1 ® Y ist.

Fiir die Fadeev—Klammer gelten folgende, leicht zu verifizierende Identititen:
e {A®B} = —P{BQA}P (2.10a)
e {A9BC} = {49B}(10C) + (1®B){AC} (2.10b)
{ABgC} = (A8 1){BgC} + {490} (B 1)
e {A'@B} = —(A7'@1){4gB}A'®1) (2.10c)
{BeA '} = (1A ){BgA}(1®4 ")
Die letzten beiden Identititen (2.10c) lassen sich aus der Gleichung
0={1gX} = {4 49X}
mit (2.10b) zeigen.

Unter Zuhilfenahme dieser Struktur (g, [, -], {- ®-}) 1a8t sich der folgende Satz
beweisen.

Satz: (Erhaltungsgréfien und die r—-Matrix)
Seig > L = SAS~! die Lax-Matrix eines Hamiltonschen Systems. Dann
sind die folgenden beiden Aussagen dquivalent:

(/)  Die Eigenwerte von L besitzen paarweise verschwindende Pois-
son—-Klammern {)\;,\;} = 0 Vi,j (2.11)
(i) 3Iregeg|{LeLl}=[r,L®1] - [PrP,10L]. (212
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Der Beweis dieses Satzes bei Babelon und Viallet [BV90] ist konstruktiv und
soll aus diesem Grund hier vorgefiihrt werden.

Bew.:

(ii) = (i):

n—1
{Ln @Lm} (2.217) Z(Ln—p—l ® 1){L@Lm}(Lp ® 1)
p=20
(2.108) " e

= Z_j Z_j (L P e L™ Lo L}’ ® LY

n—1m—1
=SS (e Lt (P 9 1Y), Lo +

p=0qg=0

—[(r Pt e LM PrP(IP 9 1Y), 1@ P))

Mit der unmittelbar aus der Definition der Fadeev—Klammer folgenden
Identitat

tr({A@B}) = {tr(4),tr(B)}

ergibt sich, daf} die Poisson—-Klammern der Spuren von Potenzen der Ma-

trix L verschwinden.
{tr(L"),tr(L™)} = 0 = {tr(A"),tr(A™)} Vn,m

Hier bleibt nun noch zu zeigen, dafl aus dieser Gleichung die Kommuta-
tivitdt der Eigenwerte A; selbst folgt. Um dieses bei Babelon und Viallet
nicht diskutierte Problem zu 16sen, muf} ich auf Formel (6.2) aus Kapitel
6 verweisen. Diese gibt eine Darstellung der Koeffizienten des charakteri-
stischen Polynoms in Termen der Spuren von Potenzen der Matrix an. Da
sich die Eigenwerte einer Matrix als in Potenzreihen entwickelbare Funk-
tion der Koeflizienten des charakteristischen Polynoms schreiben lassen,
sind diese somit Potenzreihen von Spuren von Potenzen dieser Matrix.
Aufgrund der oben gezeigten Kommutatoreigenschaft fiir diese Spuren
ist damit auch die Kommutativitidt der Eigenwerte bewiesen.

Zum Beweis der verbleibenden Richtung (i) = (#):

Definiere zunéchst folgende Grofien:

g = (5'eS H{SeA(1®S) (2.13)
k= (ST'®@S {598}

a = —q+ ik 1®L]

b := PqP + i[k,L ®1] (2.14)
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Unter Ausnutzung der Identitdten (2.10a) - (2.10c) folgt dann nach einer

nicht verschwindenden Zahl von Umformungen
{LoL} — ([a, Lo1] +[b,10L]) = (S'@S5 H{AgA}S®S)

Aus der Voraussetzung (i) resultiert das Verschwinden von {A @ A}. Die
Symmetrie von {L® L} gestattet die folgende Schreibweise:

{LoL} = } ({LoL} - P{LQL}P)

Fithrt man nun die Variable r := %(a — PbP) ein, so erhilt man die
Aussage (i1). 0

Mit der Lax—Matrix L hat man aufgrund ihrer Diagonalisierbarkeit sofort einen
Satz kommutierender Erhaltungsgréfien, da die Matrix r aus den die Lax—
Matrix diagonalisierenden Homomorphismen § und S~! und der Diagonal-
matrix A direkt konstruiert werden kann. Die Frage, die sich nun unmittelbar
stellt, ist die nach einem Kriterium fiir die Existenz einer Lax—Matrix. Hier gilt
folgendes:

Satz: (Existenz von Lax—Matrizen)
Zu jedem im Liouvilleschen Sinne integrablen klassischen Modell existiert
eine Lax—Matrix L, so dafl die Bewegungsgleichungen dem Differential-
gleichungssystem (2.2) dquivalent sind.

Bew.:

Seien die Tupel (J, ) die Wirkungs-Winkel-Variablen des Hamiltonschen
Systems, die nach Voraussetzung der Liouvilleschen Integrabilitét existie-
ren. Wihle dann Vektoren Hy,...,Hy, E1,..., E, aus einer Lie—Algebra
g, so daf} sie den Bedingungen

[H;, Hj] = 0
[Hi, Ej] = 26i;E;

geniigen. Dann erfiillen die Matrizen

i=1

“. 0H
M = —E;

257

i =1

die Bedingungen fiir die Aquivalenz der Gleichung (2.5) mit den Bewe-
gungsgleichungen. .
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Dieser Satz geht ebenfalls auf Babelon und Viallet [BV90] zurtick.

Fiir spezielle r—Matrizen aus g ® g existieren interessante Beziehungen zu neue-
ren Entwicklungen in der Algebra. Ist r eine schiefsymmetrische Matrix, so daf}
Gleichung (2.12) die Form

{L@L} = [r, L® L]
annimmt, so gelten fiir ein einfaches r = r; ® r, die Identititen

(@) [Mm®r, +1m0r, LOL] =0 (2.15)
(¢) [[[r,r]], LL®L] =0,

wobei die Abbildung [[-, -]] wie folgt definiert ist:
[r,r]] = [Ty ris] + [Tz, Tos] + [T1a, 23] -

Die auftretenden Lie-Klammern fiir ein allgemeines 7 = -, . 7;;e; ® e; haben
hierin die Form

[T12, T3] = Z riTw e, e ] ®e Qe

ikl

[7“12,7'23] = Z rijrklei®[ejaek]®el
ikl

[7“13,7'23] = Z Tijrkt€i®ek®[ejaet] .
ikl

Fiir ein schiefsymmetrisches, konstantes r = r, ® r, in ¢ ® g, das die klassische
Yang-Bazter-Gleichung [[r, r]] = 0 erfiillt, 148t sich auf der Lie-Algebra g
eine Cokommutator § : ¢ — g ® g wie folgt definieren:

(X)) = [X,r ]+ [X,r].

Mit dieser zusdtzlichen Struktur wird die Lie-Algebra g zu einer quasitrian-
guldren Lie-Bialgebra. Dabei ist die quasitriangularitit genau dann gegeben,
wenn r die klassische Yang-Baxter—Gleichung erfiillt.

Fiir spezielle r—Matrizen ist somit ein direkter Zusammenhang zwischen klassi-
schen integrablen Modellen und Lie-Bialgebren gegeben. Weitere Aspekte hier-
zu finden sich bei Fuchs [Fu92] sowie Chari und Presley [CP94].






Kapitel 3

Quantenmechanische
Integrabilitit

Einige Prinzipien der Quantenmechanik wurden bereits im ersten Kapitel im
Rahmen der Diskussion, inwieweit der zur Losung des quantenmechanischen
Calogero—Modells fithrende Ansatz auf simtliche Losungen fiithrt, erwdhnt. In
diesem Kapitel soll die mathematische Struktur der Quantenmechanik nun in
kompakter Form systematisch dargestellt werden, um damit den Begriff der
Erhaltungsgrofle einfiihren zu kénnen und iiber diesen eine, dem im letzten
Kapitel behandelten klassischen Fall analoge Definition von Integrabilitit zu

liefern.

3.1 Formulierung der Quantenmechanik

Ein quantenmechanisches System ist durch eine Hamilton-Funktion H gegeben,
die auf einem Hilbert—-Raum H operiert und die Zeitentwicklung des quanten-
mechanischen Systems bestimmt.

Die Mefigréflen, auch Observable O genannt, sind Hermitesche Elemente einer
C*-Algebra. Thr Spektrum liefert die moglichen Meflergebnisse. In der Dar-
stellung O auf einem Hilbert-Raum als stetig lineare Abbildung ergibt sich
das Spektrum eines Operators als Eigenwertschar desselben. Aufgrund der
Unendlichdimensionalitit des Hilbert—Raumes ergeben sich hier zusétzliche,
im Endlichdimensionalen nicht auftretende Eigenschaften des Spektrums. So
enthilt das Spektrum eines Hilbert—-Raum—Operators diskrete, kontinuierliche
und auch singulédre Anteile, wobei letztere nicht von Bedeutung fiir die Beschrei-
bung physikalischer Systeme sind. Beispiele fiir Operatoren mit rein diskretem
Spektrum sind endlichdimensionale Matrix—Darstellungen. Reine Multiplikati-
onsoperatoren hingegen liefern ein rein kontinuierliches Spektrum.

Als reiner Zustand zu einem Operator @ wird ein normiertes Element des
Hilbert-Raumes bezeichnet, auf das a als Multiplikationsoperator wirkt. Der

31
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Faktor ist dann ein Element des Spektrums von a. Wie im endlichdimensiona-
len Fall tritt auch hier das Phinomen der Entartung auf, was bedeutet, daf zu
einem Wert des Spektrums der Observable mehrere reine Zustinde existieren.
Zur Charakterisierung eines reinen Zustandes von Hermiteschen Operatoren
geniigt also nicht die Angabe des Eigenwertes, sondern es bedarf einer zusétz-
lichen Klassifizierung durch Angabe einer Basis des Eigenraumes.

In der Sprache der Quantenmechanik nennt man den Eigenwert beziehungs-
weise eine bijektive Funktion dieses Werts auch Hauptquantenzahl; bei der Nu-
merierung der Basis der Eigenrdume spricht man von Nebenquantenzahlen. Die
Eigenrdume zu Hermiteschen Operatoren definieren eine Zerlegung des Hilbert—
Raumes # in eine direkte Summe # = @, H;. Man spricht dann auch von der
a-Darstellung.

Die Hamilton-Funktion H des physikalischen Systems ist ebenfalls ein formal
Hermitescher Operator auf H. Im Gegensatz zu den Observablen handelt es sich
hierbei jedoch manchmal um nicht beschrinkte Operatoren. Fiir diese folgt aus
der Hermitezitdt nicht unmittelbar die Selbstadjungiertheit, so dafl man Be-
griffe wie wesentliche Selbstadjungiertheit einfiihren mufl. Die von solchen Ope-
ratoren beschriebenen Systeme sind jedoch nur dann als physikalische Systeme
zu bezeichnen, wenn durch Beschrinkung des Systems erreicht wird, dafl die
Hamilton—-Funktion auf diesem eingeschrinkten Definitionsbereich einen selbst-
adjungierten Operator darstellt. Ein Fall, in dem dies notwendig ist, ist das
Calogero—Modell, wie bereits in Kapitel 1 erwahnt.

Das Spektrum eines selbstadjungierten Hamilton—Operators wird auch als
Energie-Spektrum bezeichnet, die zugehorige Darstellung des Hilbertraumes
in Eigenfunktionen zu H als Energiedarstellung.

Im folgenden Abschnitt soll nun das Phinomen der Entartung genauer unter-
sucht werden.

3.2 Symmetrien und Erhaltungsgréfien

Die auf einen Hilbertraum wirkenden Operatoren bilden eine Algebra. Auf die-
ser 148t sich eine Lie-Klammer der Form (2.6) einfithren. Man kann nun leicht
zeigen, dafl zwei Hermitesche Operatoren genau dann eine verschwindende Lie—
Klammer besitzen, wenn sie ein gemeinsames Eigenfunktionensystem besitzen.
Die Tatsache, dal aus der Existenz eines gemeinsamen Eigenfunktionensystems
zu zwei Operatoren das Verschwinden ihres Kommutators folgt, 148t sich durch
Anwenden des Kommutators auf die Eigenfunktionen zeigen. Da Hermitesche
Operatoren ein vollstdndiges Eigenfunktionensystem, das eine Basis des Hilber-
traumes darstellt, besitzen, 148t sich nun jede Funktion als Linearkombination
von Basisfunktionen darstellen. Definiert man die Identitdt zweier Operatoren
dadurch, daf} sie auf sdmtliche Funktionen des Hilbertraumes in gleicher Weise
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wirken, so hat man den Kommutator als ,Null-Operator® identifiziert.

Gilt die Identitdt [A, B] = 0 mit Hermiteschen Operatoren A und B, so be-
trachtet man die Wirkung des Operators B auf auf die Eigenrdume H, =
{¢na | Avna = anpna Vo € I,}. Es zeigt sich, dal B diese Eigenrdume
invariant 148t. Der Hermitesche Operator B 148t sich also auf #,, diagonalisie-
ren. Die Vereinigung der Eigenfunktionen von B auf den H,, stellt somit ein
Eigenfunktionensystem von A und B dar.

Induktiv kann man nun unter Verwendung dieses Satzes zeigen, dafl simultan
kommutierende Operatoren ein gemeinsames Eigenfunktionensystem besitzen.
Ein System von Operatoren, das das Eigenfunktionensystem eindeutig fest-
legt, so daBl keine zwei Basiselemente existieren, die fiir alle Operatoren dieses
Systems jeweils dieselben Eigenwerte besitzen, wird als vollstdndiger Satz kom-
mutierender Operatoren bezeichnet:

T1,Ty,...T, Operatoren mit [T;,T;] = 0 Vi,j, {¢x} gemeinsames Eigen-
funktionensystem zu diesen. Gilt dann

vklak2 kl;’ék23Ts | Ts(@kl—SDkz) 7& 07

so handelt es sich bei den T; um einen vollstdndigen Satz kommutierender
Operatoren.

Hat man einen solches System von Operatoren gefunden, so spricht man auch
von einer Aufhebung der Entartung, da mit ihnen ein Satz von Quantenzahlen
zur Verfiigung steht, der die Eigenfunktionen eindeutig charakterisiert.

In der Quantenmechanik spricht man nun von einem wvollstindig integrablem
System genau dann, wenn ein die Eigenfunktionen eindeutig charakterisierender
Satz von Quantenzahlen bekannt ist.

Der vollstdndige Satz kommutierender Operatoren ist eng verkniipft mit der
Symmetrie des Hamilton—-Operators.

3.2.1 Symmetriegruppe des Hamiltonians

Die Symmetriegruppe eines Operators wird erzeugt von eine Menge parameter-
abhéngiger Operatoren {U;(w)}, die simtlich mit diesem Operator kommutie-
ren. Besitzt diese Menge eine Lie—-Gruppenstruktur, also sind die Transforma-
tionen von der Form

U(w) = exp (iZwkT’“> ,

so schreibt die Invarianz des Hamilton—Operators wie folgt:

A

U(HU Hw) = H.
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Dies stellt eine globale Eichtransformation dar, die Symmetrie des Hamilto-
nians. Die Lie-Algebra dieser Lie-Gruppe wird von den T* erzeugt. Handelt
es sich bei dieser Lie-Algebra um eine halbeinfache Lie-Algebra (siehe hierzu
Kapitel 4) mit Rang [, so existieren nach dem Racah!-Theorem 2! Erhaltungs-
groflen des Systems. Diese sind durch den folgenden Satz gegeben:

Satz: (Racah—Theorem)
Sei g eine halbeinfache Lie-Gruppe mit Rang r. Dann existieren
| unabhingige Operatoren Cj,(T%,...,T"'), die sogenannten Casimir-
Operatorem dergestalt, daf§ [T, C)\j] = 0 V14,7 und der Kommutator
[Ch; s Cx;] = 0 Vi,j. Die Eigenwerte heben die Entartung vollstindig
auf.

Damit bilden die ! Elemente der Cartan—Unteralgebra sowie die [ Casimir—
Operatoren einen vollstidndigen Satz von Erhaltungsgrofien eines Hamilton—
Operators mit halbeinfacher Lie-Gruppe als Symmetriegruppe. Bei den Ei-
genfunktionen zu einem Casimir—Operator spricht man von einem Multiplett;
die Zustidnde dieses Multipletts werden durch die Generatoren der Cartan—
Unteralgebra charakterisiert.

!Giulio Racah, italienischer Physiker (1909-1965).M Arbeitete in den Bereichen Atom-
und Kernphysik.



Kapitel 4

Dunkl-Operatoren

Die Dunkl-Operatoren wurden 1989 von Charles F. Dunkl im Zusammenhang
mit der Untersuchung symmetrischer Polynome eingefiithrt. Da diese auch in
den Losungen des Calogero-Modells eine Rolle spielen, ist es nicht sehr ver-
wunderlich, dafl die Dunkl-Operatoren in einer gewissen Beziehung zu diesem
Problem stehen. In diesem Kapitel sollen diese Operatoren sowie einige, zu ih-
rem Verstindnis notwendige, Konstruktionen besprochen werden. Von grofier
Bedeutung ist dabei eine endliche, durch Spiegelungen erzeugte Gruppe, die
Coxeter—Gruppe.

4.1 Die Coxeter—Gruppe

Bevor eine Definition dieser Gruppe gegeben wird, seien hier noch einige grund-
legende Konstruktionen besprochen.

4.1.1 Wurzelsysteme

Wurzelsysteme sind diskrete Teilmengen endlichdimensionaler Vektorrdume,
die unter bestimmten Spiegelungen auf sich selbst abgebildet werden. Sie be-
sitzen einige interessante Eigenschaften, die sich aus der folgenden Definition
ergeben:

Def.: (Wurzelsystem)
Sei E ein euklidischer Vektorraum, also ein endlichdimensionaler Vek-
torraum mit einer nicht entarteten, positiv definiten Bilinearform (-,).

Eine Spiegelung in diesem Vektorraum wird dann durch die Abbildung
2(a,z)
(o)

auf dem Vektor o stehenden Hyperebene. Eine Teilmenge R C E mit der

Sa(z) = 22— a vermittelt. Sie spiegelt den Vektor = an der senkrecht

Eigenschaft
s4(cd') € R Va,o' € R

heifit Wurzelsystem.

35
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Def.: (Positive Wurzeln)
Da ein Vektor durch Spiegelung an der Hyperebene, fiir die er selbst Nor-
malenvektor ist, in sein Negatives iiberfithrt wird, ist ein Wurzelsystem
schon durch die Hilfte seiner Vektoren eindeutig bestimmt. Aus diesem
Grunde fiihrt man den Begriff des einfachen Wurzelsystems ein, das le-
diglich die auf einer Seite einer keine Wurzel enthaltenden Hyperebene
liegenden Wurzeln umfaflt.

R, := {a¢€R|(e,8) >0,8¢& R beliebig, fest}

Def.: (Einfache Wurzeln)
Die einfachen Wurzeln sind eine linear unabhéngige Teilmenge eines po-
sitiven Wurzelsystems, also eine Basis des Wurzelraumes.

Def.: (Kristallographisches Wurzelsystem)
Dies ist ein Spezialfall eines Wurzelsystems, fiir den folgende Bedingung
erfiillt ist:

MEZ Va,o' €R .

()

Da die Elemente eines Wurzelsystems durch Spiegelung auseinander hervorge-
hen, lassen sich durch Drehung des gesamten Systems aus einem Wurzelsystem
sofort unendlich viele weitere erzeugen. Betrachtet man die méglichen Kristallo-
graphischen Wurzelsysteme eines n-dimensionalen Vektorraumes modulo dieser
Isomorphien, so ergibt sich eine endliche Zahl paarweise verschiedener Wurzel-
systeme, aus denen sich simtliche Wurzelsysteme zusammensetzen lassen. Diese
Whurzelsysteme heiflen irreduzibel und dienen als Prototypen fiir eine Klassifi-
zierung. Sie sind in Tebelle (4.1) aufgefiihrt.

Typ Anzahl Wurzelsystem
Wurzeln
A, in(n-1) {e;—e;5i#3}
B. n? {xe;,te; +e;;i#j}
C. n? {+2e;,+e; te;; 1 # 5}
D, n(n-1) {xe; te;;i#j}
Eq 120 {xe;te;;i#7, 1>, e may € {0,1}}
E, 63 Teil von Eg, der L (e, + e5)
Es 36 Teil von Eg, der L (es + €, — €5)
F, 24 {*e;,te;, te;};i#7, 2(te, Lestes ey}
G, 6 {e;—ej;i#7, £(2e; —e; —e,) ;i #j #k}

Tabelle 4.1: Einfache Wurzelsysteme

Die letzten fiinf Typen, die nicht fiir beliebige Dimensionen existieren bezeich-
net man auch mit dem Terminus Ezzeptionelle Wurzelsysteme. Die ersten vier
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Typen werden als die Klassischen Wurzelsysteme bezeichnet. Bei diesen kri-
stallographischen Wurzelsysteme fallen zwei Eigenschaften ins Auge:

e Es treten maximal zwei verschiedene Lingen der Wurzeln auf.

e Als Winkel zwischen den Wurzeln tauchen lediglich die Werte
/2, m, 37/4und 57 /6 auf.

Da diese Informationen iiber Wurzelsysteme fiir das Verstdndnis der weiteren
Konstruktionen vollkommen ausreichen, soll hier nicht tiefer in die Materie der
Wurzelsysteme eingedrungen werden, wo dann Begriffe wie Weyl-Kammern,
maximale Wurzeln und Dynkin-Diagramme ihren Ursprung haben. Es soll je-
doch kurz die Verbindung dieser Theorie zu einem weiteren, fiir die Physik sehr
bedeutsamen Gebiet der Mathematik angedeutet werden, ndmlich der Theorie
der halbeinfachen Lie—Algebren.

4.1.2 Halbeinfache Lie—Algebren

Die Bezeichnung Lie—Algebra geht auf den norwegischen Mathematiker Marius
Sophus Lie zuriick, der um die Wende vom 19. zum 20. Jahrhundert wirkte. Sein
Hauptinteresse galt der Gruppentheorie, insbesondere den kontinuierlichen, pa-
rameterabhingigen Gruppen, die nach ihm Lie-Gruppen benannt wurden. Die
Theorie der Lie-Algebren beschiftigt sich mit den Generatoren solcher Grup-
pen, durch welche die Gruppe eindeutig bestimmt ist. Diese besitzen die fol-
genden, eine Lie—Algebra definierenden Eigenschaften:

Def.: (Lie—Algebra)
Sei g ein K-Vektorraum zusammen mit einer bilinearen Abbildung [-,-] :
g X g— g, so dafl

(i) [z,z] = 0 Vz € g Antisymmetrie
(ii) [[z,y],2] + [ly,2],z] + [[2,2],y] = 0 Vz,y,z € g Jacobi-Identitét

Die Abbildung [-, -] heiflt Lie-Klammer.

Durch Einfiihren einer Basis {T},T,,...,T,} des Vektorraumes g 148t sich die
Lie-Klammer auch durch die sogenannten Strukturkonstanten, die sich als Kom-
ponenten der Kommutatoren der Basisvektoren ergeben, eindeutig festlegen.
Die Schreibweise ist dann die folgende:

[Ta’ Tb] — falc)Tc,
wobei iiber den Index ¢ summiert wird.

Eine von ihrer Struktur her besonders gut zu fassende, in ihren Resultaten
jodoch sehr fruchtbare Klasse von Lie—Algebren ist die der halbeinfachen Lie—
Algebren. Um den Begriff der Halbeinfachheit einfithren zu kénnen, bedarf es
einiger vorbereitender Definitionen.
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Def.: (Ideal)
Das Ideal eine Lie-Algebra ist ein Untervektorraum, der unter Kommu-
tation mit Elementen der Lie—Algebra in sich selbst abbildet:

u+v € h VYu,v € hCyg
av € h Yv € h,a € K
[u,z] € h Yu € h,z € g

Der Vektorraum h mit der Lie-Klammer [, ] heifit Ideal von g.
Der Begriff des Ideals lehnt sich an den der Ringtheorie an, in welcher eine unter

Addition abgeschlossene Teilmenge, fiir die die Multiplikation mit beliebigen
Elementes des Ringes wieder in sich selbst fiihrt, als Ideal bezeichnet wird.

Eine weitere wichtige Definition ist die der Ableitung.
Def.: (Abgeleitete Lie—Algebra)

Die abgeleitete Lie—Algebra ist die Lie—Algebra, die von sdmtlichen Kom-
mutatoren einer Lie—Algebra aufgespannt wird. Man schreibt dafiir auch:

!

g = [g,9],

wobei mit [g, g] die Menge [z,y] | z,y € g gemeint ist.

Der Begriff Ableitung begriindet sich mit der Tatsache, dafl die Lie-Klammer
die Derivationseigenschaft besitzt.
Mit diesen Definitionen kann man nun die Einfachheit einer Lie—Algebra fassen:

Def.: (Einfache Lie—Algebra)
Sei g eine Lie-Algebra. Gilt dann

(i) ¢ #0
(1) g besitzt auler sich selbst und der leeren Menge keine weiteren
Ideale ,

so heiflt g einfach.
Def.: (Halbeinfachheit)
LaBt sich eine Lie—Algebra g darstellen als

g = @ 9i; g; Einfache Lie-Algebren

iel

mit der Lie-Klammer

so spricht man von einer halbeinfachen Lie—Algebra
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Fiir halbeinfache Lie—-Algebren besteht nun die Moglichkeit der Einfithrung
einer der Lie-Klammer-Struktur auf dem Vektorraum besonders gut ange-
paften Basis, der Chewvalley-Basis. Diese besteht aus einer Basis der Cartan—
Unteralgebra, also der maximalen Abelschen! Unteralgebra in g, und aus einer
Basis des Komplementirraumes. Eine gegebene Basis {H; | ¢ = 1...r} der
Cartan—Unteralgebra 148t sich zu einer Basis der Lie—Algebra erginzen, die der
Eigenschaft
[H;, E°Y) = oW B i=1.. .r

geniigt.

Die so definierte, nicht eindeutige Basis trigt den Namen Cartan—Weyl Basis. In
der Sprache der Darstellungstheorie sind die die Basis vervollstdndigenden Vek-
toren Eigenvektoren der adjungierten Darstellung der Cartan—Unteralgebra.
Die sich aus den Eigenwerten konstituierenden, die Basis indizierenden Vekto-
ren «a besitzen nun die Eigenschaften eines Wurzelsystems. Daraus folgt zum
Beispiel sofort, dafl neben dem Vektor E“ auch der Vektor E~% ein Element
der Basis ist. Diese Paare werden auch Auf- beziehungsweise Absteigeoperato-
ren genannt, was seine Begriindung in der Darstellungstheorie findet. Von eine
Behandlung derselben wird hier aus Platzgriinden abgesehen, zumal sie fiir das
Verstédndnis der weiteren Darstellung nicht notwendig ist.

Aus der Cartan—Weyl Basis 148t sich nun die fiir die mathematische Behandlung
von Lie-Algebren geeignetste Basis, die Chevalley-Basis, konstruieren.

Def.: (Chevalley—Basis)
Fiir eine halbeinfache Lie-Algebra existiert eine Basis {H; | i =1...7}U
{E* | a € ¢} mit folgenden Eigenschaften:

[EQ)E*&] — Ha

[H*, H] = 0

[H*, E*®] = +2E* .
Die Chevalley Basis geht aus der Cartan—Weyl Basis durch Wechsel der Basis
der Cartan—Unteralgebra via H* := ), %Hz hervor.

Da die Eigenschaften der Lie—Algebren durch die Kommutatoren festgelegt
sind, lassen sich halbeinfache Lie—Algebren somit durch Wurzelsysteme klas-
sifizieren.

4.1.3 Die Weyl-Gruppe

Eng verbunden mit Wurzelsystemen ist die Weyl-Gruppe. Sie ist die bei Kom-
position aus den Spiegelungen beziiglich Wurzeln erzeugte Gruppe:

!Niels Henrik Abel, norwegischer Mathematiker (1802-1829). Arbeiten im Bereich der
Algebra, iiber elliptische Funktionen und Potenzreihen.
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Def.: (Weyl-Gruppe)
Sei R C E ein Wurzelsystem in einem euklidischen Vektorraum. Dann
nennt man die von den Spiegelungen erzeugt Gruppe

W := comp{ss | o € R}

mit Komposition durch Hintereinanderschaltung von Spiegelungen die
Weyl-Gruppe des Wurzelsystemes R. Oft schreibt man auch W (R).

Die Weyl-Gruppe zu endlichen Wurzelsystemen ist eine endliche Gruppe.

Als Beispiel fiir ein Wurzelsystem sei hier das im folgenden noch Verwendung
findende System A,, ndher untersucht.

Das Wurzelsystem A,, ist wurde im vorigen Abschnitt angegeben. Es lautet
R ={e.—¢;i#j} .

Die Abgeschlossenheit unter der Wirkung von W (A,,) 148t sich leicht explizit
nachrechnen. Eine Teilmenge positiver Wurzeln erhilt man zum Beispiel mit
dem System

Ry = {e.—e;;j5<i} .

Als Normalenvektor der das Wurzelsystem teilenden Hyperebene dient hier der
Vektor a = Y, ke,. Das Skalarprodukt mit den Wurzeln (a, ;) ergibt sich
so zu i — j, ist also aufgrund der Bedingung ¢ # j fiir die Wurzel o;; immer
ungleich 0. Die Positivitdtsbedingung (a,;;) > 0 verlangt, dal i > j gelten
muf}.

Die Weyl-Gruppe der A, hat eine iiberraschend einfache Form. Die zur Wur-

zel a;; = e; — e; gehorige Spiegelung wirkt ndmlich auf einen Vektor z =
(zy,y,...,2,) wie folgt:
Saii(2) = z — (e; —ej,2) (0’0,'“’0’\.1"’,0’.“’0’\_}”0"“’0)

= (zy,29,...,2,) — (0,...,0,2;, — 2;,0,...,0,2; — z,,0,...,0)
———
i 3-
= (L1yTay.vvy Tjyeuny TiyeunyTp)
~—~ AV
i J-
= P,(zy,25,...,2n) -

Die Weyl-Gruppe der A, ist also gerade die Permutationsgruppe S, der Kom-
ponenten von Vektoren eines n—-dimensionalen Raums. In dieser Tatsache liegt
auch die Moglichkeit begriindet, die Darstellungen der A, Lie-Algebren mit
Hilfe von Young-Tableaus, die der Darstellungsheorie der Permutationsgruppe
S, entstammmen, zu behandeln.

Zum Abschlufl dieses Abschnittes sei nun noch die Definition der als Namens-
geber fungierenden Coxeter—Gruppe gegeben.
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Def.: (Coxeter—Gruppe)
Sei E ein euklidischer Vektorraum mit Skalarprodukt (-,-), E' C E. Die
Gruppe G entstehe als Komposition der durch E’ gegebenen Spiegelungen
in E:
G = comp{s, |a € E'} .

Ist diese Gruppe endlich, so heifit sie Cozeter—Gruppe.

Die Weyl-Gruppen sind also durch die zusétzliche Bedingung fiir die Teilmen-
ge E’' ein Spezialfall der Coxeter—Gruppen. Die Vermutung, dafl aufgrund der
Forderung nach Endlichkeit der Gruppe jede Coxeter—-Gruppe schon eine Weyl—
Gruppe sei, trifft nicht zu.

4.2 Differential-Difference—Operatoren

Diese Abbildungen operieren auf der Algebra der Polynome mit komplexen
Koeffizienten in N < oo Variablen, fiir die man auch kurz C[E] schreibt, wo-
bei E ein N-dimensionaler euklidischer Vektorraum ist. Exakter wére hier
die Schreibweise C[E*], da die Elemente p dieser Algebra ja eine Abbildung
p : E — C darstellen. Aufgrund der Euklidizitdt von E ist jedoch die Identifi-
zierung mit dem Dualraum kanonisch und bedarf somit keiner Ausweitung der
Notation. Bei Einfiihren einer Orthonormalbasis {e;}von E hat ein Polynom
p € C[E] die Form

Sei R nun ein Wurzelsystem in E mit dazugehériger Weyl-Gruppe W (R). Dann
kann man folgende, auf Polynomen p € C[E] operierende Endomorphismen
einfithren:

o w: p(z) = wp(z) =plwr) w e W(R)

o p(x) — Oep(x) := %p(m +t€)jt—0 V€ € E  (Richtungsableitung)

o Aup(z) := @) pbale)) o e R

(a,z)

Hiermit konstruierte Dunkl nun den folgenden Operator

D¢ = 0+ Y ka(o,§)A (4.1)

ac R+

wobei R, eine positive Teilmenge der Wurzelsystems R darstellt und die Ko-
effizienten k, der Bedingung ko = ky@) Yw € W(R) geniigen.
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Eine wichtige, von Dunkl bewiesene Eigenschaft dieser Operatoren ist, daf} sie
die Gleichung

D¢D, = Dy,D; (4.2)
erfiillen, also eine kommutative Algebra erzeugen.

Dunkl untersuchte in seiner Arbeit nun Polynome im Kern des Operators
Ap = Y DI (4.3)

mit einer Orthonormalbasis {e;}, der einen Endomorphismus auf dem Raum
der unter der Wirkung von W (R) invarianten Polynome darstellt. Aufgegriffen
wurden die Dunkl-Operatoren von Gerrit J. Heckman im Jahre 1989 [Hec89].
Von ihm wurde eine Restriktionsabbildung eingefiihrt, die einen Operator D :
C[E] — C[E] auf den Operator Res(D) : CW[E] — CV[E] auf W-invarianten
Polynomen abbildet. Fiir diese restringierten Operatoren gilt dann

wRes(D)w! = D
fiir alle w aus W(R).
Auf die Dunkl-Operatoren (4.1) wirkt diese Transformation wie folgt:

wDgw' = Dy - (4.4)

Nach Heckman kommutieren nun die Restriktionen von Operatoren D, =
D
€152 6

m €CY[E] paarweise.

= Dgll : ng e -Dg: mit unter der Wirkung von W invarianten

Ein weiteres wichtiges Resultat Heckmans Arbeit ist die Konstruktion von Auf-
und Absteigeoperatoren, die zwischen Operatoren mit Parametern k, und k, +
1 vermitteln. Da die allgemeine Form dieser Operatoren eine Reihe weiterer
Definitionen erfordert und hier nicht benétigt wird, sei auf die Originalarbeit
von Heckman verwiesen.

Samtliche Aussagen dieses Abschnittes gelten auch fiir leicht verdnderte Dunkl—
Operatoren

Sa

Ve =0+ Y. kalo,§)

a€ Ry

R (4.5)

die iiber die Transformation

Ve = H(a,a})fk"‘ D¢ H(a,m)k"‘ (4.6)

mit den urspriinglichen Operatoren zusammenhéngen.
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Fiir die Beweise der obigen Aussagen sind Identitdten fiir aus Spiegelungen
und Multiplikationen gebildete Operatoren entscheidend, welche in den beiden
Arbeiten von Dunkl und Heckman in grofler Zahl gefunden werden kénnen.

In einer Arbeit von 1994 untersuchen Buchstaber, Felder und Veselov Erweite-
rungen der Dunkl-Operatoren, in denen der Anteil (C’iﬁ) in (4.5) durch Funktio-
nen f(a,§) ersetzt wird, so dafl die Kommutatoreigenschaft (4.2) sowie die Inva-
rianzeigenschaft (4.4) erhalten bleiben. Dies fiihrt auf eine Funktionalgleichung,
deren Losungen von den Wurzelsystemen R abhingen. Fiir einfache Wurzel-
systeme mit Ausnahme von A; und Bs zeigt sich, dafl sdmtliche Losungen
auf den Dunkl-Operator (4.5) fithren. Der Spezialfall By fiihrt auf die Jacobi-
elliptischen Funktionen sn, der uninteressante Fall A, liefert selbstverstindlich
keine einschrinkende Bedingung fiir die Funktion f(a,£).

Gibt man die Invarianzforderung (4.4) auf, so fiihrt dies auf komplizierte, pa-
rameterabhingige Funktionen, die im Grenziibergang des Parameters gegen 0
auf die Weierstrafsche elliptische Funktion fiihren.

Diese Funktion sowie eine erste Anwendung der Dunkl-Operatoren auf das
Calogero—Problem werden in der zweiten Hilfte des folgenden Kapitels bespro-
chen.






Kapitel 5

Verallgemeinerte
Calogero—Modelle

In diesem Kapitel soll das Calogero-Modell systematisch in eine allgemeinere
Klasse von Modellen eingeordnet werden. Diese umfafit das Sutherland-Modell
[Sut71], in welchem die Teilchen iiber ein Potential der Form sin ?(z; — ;)
interagieren sowie die von Olshanetsky und Perelomov [OP81] untersuchten
Modelle, bei denen nicht sdmtliche Teilchen miteinander in Wechselwirkung
stehen.

Bie diesen Verallgemeinerungen spielen die Methode der Lax-Matrix sowie die
Dunkl-Operatoren eine wichtige Rolle.

5.1 Eine spezielle Klasse von Lax—Matrizen

5.1.1 Die Lax—Matrix des Calogero—Modells

Hier taucht zum ersten Mal das klassische Calogero-Modell auf. Nachdem in
den Jahren 1969 bis 1975 verschiedene Modifiakationen des urspriinglichen
quantenmechanischen Calogero—Modelles intensiv untersucht wurden, sind er-
ste Erkenntnisse iiber das klassische Analogon erst im Jahre 1975 von F. Ca-
logero und J. Moser veroffentlicht worden. Dies liegt nicht zuletzt daran, daf
die Lésungen im quantenmechanischen Falle iiber einen geschickten Ansatz ge-
wonnen wurden, also mehr oder weniger auf ein systematisches Raten zuriick-
gehen. Aus den quantenmechanischen Losungsfunktionen lassen sich nun nicht
unmittelbar Aussagen iiber das klassische System respektive dessen Lisungen
ableiten. Entscheidend fiir die Fortschritte bei der Behandlung des klassischen
Falles war das Auffinden der zugehorigen Lax—Matrix.

Fiir das klassische Calogero-Modell mit invers quadratischem Potential, also

45
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der Hamiltonschen Funktion
1
H=3>0"+8 Gap (5.1)
i i<
besitzt die Lax—Matrix die Form

. 1

i
Die zugehorige Matrix M des Lax—Paares ergibt sich zu
- 1 - 1
k#i

Fiir den Kommutator [L,M] der beiden Matrizen erhélt man
[L,M];; = LgMygj — Ly Mg

1 . 1
= —5ij2g]§‘m — (1=04) Ve =5y (P — p5) -

Aus der zeitlichen Ableitung der Lax—Matrix L resultiert folgende Matrix:
: . A 1 . .

Die Lax-Gleichung L = [, M] liefert in Komponentenschreibweise somit das
folgende System von Gleichungen:

Boo= 28 gy (= —0H) (5.3)
k£

i o= p . (5.4)

Dies sind gerade die Hamiltonschen Bewegungsgleichungen (2.2) in den kano-
nischen Variablen z; und p;. Das Calogero—Modell ist somit dquivalent durch
die Lax-Matrix (5.2) gegeben. Von der Struktur her der Form (5.2) &hnliche
Matrizen ergeben mit dem Calogero—Modell verwandte Systeme. Der allgemein-
ste Ansatz fiir solche Lax—Matrizen fiihrt auf eine Funktionalgleichung, die im
nichsten Abschnitt behandelt werden soll.

5.1.2 Funktionalgleichung fiir Lax—Matrizen
Die Lax-Matrix (5.2) ist von der Form

L = ép: + (1= 36;5)1gu(z: —z;) ; (5.5)
die Matrix M hat die Gestalt

Mij = 6i51/8 Z v(z; —x) — (1 —d45)1/gw(z; — ;)

k#i
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mit symmetrischen Funktionen v und w, sowie antisymmetrischer Funktion v.
Fiir den Kommutator von L und M ergeben sich die folgenden Komponenten:

[L,M]i]- = 5ij 2g Z U(l'i - $k)w($k - 1‘i)

k£
- (-6 ivew(z: —z;) (p: —p;) +
+(1—6;;)gu(z; — =, {va—xk - v(mi—mk)}—i-
k£ ki

—(1-6,)g Y ulm —zx)w(z: —z) — (@ — z)w(z, — ;) .
ki, ]

Auf der linken Seite der Lax—Gleichung verbleibt

i = 0ups + (L—05)1VEu (2 — x;) (& — ;) .

Aus der Diagonale der Lax—Gleichung resultieren damit die N Gleichungen

L

p; = —2gz u(z; — zp)w(z; —xy)
k#£1i

Die Nichtdiagonalelemente liefern unter der Voraussetzung, dafl die Funktion
u(r) reellwertig sein soll und der Identifikation p; = &; die folgenden N(N-1)
Gleichungen:

u(z; —z;) = —v(z; — ;) (5.6)
u(z; — z;) Z {o(z; —aw) —v(@: —2)} = Z {w(z: —z)u(z, —z;) +

k#i,7 k #4,35

—w(z, —z;)u(z; —x)}  (5.7)

Das Potential des zugeh6rigen Hamiltonschen Systems ergibt sich dann aus

= ZgZ u(z; — z ) (2 — ) -
k#i

Eine Losung dieser N Differentialgleichungen ist von der Form
= g Zuz(ml - xj) )
j<i
wobei die Antisymmetrieeigenschaft von u(£) wesentlich ist.

Die Gleichungen (5.6,5.7) werden sicherlich durch Funktionen u und v erfiillt,
die der Funktionalgleichung

u(+n){o(n) —v(@)} = u(@u'(n) —uln)u'(§) (5.8)

geniigen. Die nichttrivialen, im Nullpunkt differenzierbaren Ldsungen dieser
Funktionalgleichung ergeben eine Konstante fiir die Funktion v sowie eine Expo-
nentialfunktion fiir die Funktion u. Dies fiihrt auf die sogenannte ,, Toda Gitter—
Gleichung“, die auch gelegentlich im Zusammenhang mit dem Calogero-Modell
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genannt wird, was hiermit eine Rechtfertigung findet. Sie geniigt allerdings nicht
der Symmetrieforderung fiir die Funktion u. Interessante Lésungen sind somit
in der Klasse der im Nullpunkt nicht reguldren Funktionen zu suchen.

Der einfachste Ansatz fiir die Funktion v hat dann die Form

u(€) = c.&1+ o + 0(53) . (5.9)
Zur Behandlung der Funktion u(§ + n) ist die folgende Formel sehr niitzlich:

Satz: (Verschiebung von Laurentreihen)
Sei T(z) eine Laurentreihe der Form T(z) = 32> _, a;z* und bezeich-
ne T("(z) die n-te Ableitung dieser. Dann gilt:

Tz+y) = Y my"T®(2)
k=0

Bew.:

Z ak(m+y)k = i ak(x+y)k + a_l(x+y)_1

I
(]
—
Q
=
ol
=
N
_|_
Q
’
IS
L
[]e
Ve
ISEN
N———
ol

k=0 ) k=0
N A (% 0 L (T 2 LA
= ) k! k! Yy

k=0

— T(x)® 4
= Z kY

k=0

Dies ist lediglich die Taylorreihenentwicklung der Laurentreihe um einen nicht
singuldren Punkt. Vorteil dieser elementaren Vorgehensweise ist, dafl man durch
Verwenden der geometrischen Reihe unmittelbar den Konvergenzradius ablesen
kann.

Um die Funktion v einzuschrénken erweist es sich als geschickt, die Funktio-

nalgleichung (5.8) mit ﬁ zu multiplizieren und den Grenziibergang n — ¢
durchzufiihren. Es verbleibt dann folgende Funktionalgleichung:
u(26)v'(§) = u(@)u"(§) —u'(§)W(€) - (5.10)

Geht man mit dem Ansatz (5.9) fiir die Funktion u in diese Gleichung, so zeigt
sich, dafl die Funktion v von der Form

v(€) = 0715_2 + ap + 0(52)
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sein muf, um in niedrigster Ordnung der Gleichung (5.10) sowie den Symmetrie-
bedingungen zu geniigen. Alternativ kann man einen Laurentreihenansatz fiir
v in die Gleichung (5.8) einsetzen und die niedrigste Ordnung in 7 betrachten.
Dies wurde von Olshanetsky und Perelomov [OP81] mit demselben Resultat
ausgefiihrt, verlangt jedoch etwas mehr Aufwand.

Mit dem obigen Satz sowie unter Ausnutzung der Formen der Funktionen u(n)
und v(n) erhilt man durch Vergleich in der Ordnung 7° fiir | n |<| £ | die
folgende Identitét:

u”(£)

v() = _0_12u(§) +1

Da die Funktion v aus der Funktionalgleichung lediglich bis auf ein konstantes

Glied bestimmt ist, 148t sich die additive Konstante zum Verschwinden bringen,
was schliefilich auf die Form

u"(£)
" 2u(€)

fithrt. Damit schreibt sich die Funktionalgleichung (5.8) folgendermafen:
u'(§)  u'(n)

u()  u(n)

v(€) = —c_ (5.11)

w(©uln) - u(@)u'tn) = -5 ( ) ule+n) . (512)

Die allgemeinste bekannte Losung dieser Funktionalgleichung ist nach Calogero
[Ca7ba] die Weierstrafsche elliptische Funktion g(£).

5.1.3 Elliptische Funktionen

Die elliptischen Funktionen sind meromorphe Abbildungen von € nach C mit
zwei Perioden w, und w,, die iiber IR linear unabhingig sind. Es handelt sich
also um doppelt periodischer Funktionen.

Die Perioden der elliptischen Funktionen bilden in der komplexen Ebene ein
Parallelogramm. Die Integration iiber ein solches Parallelogramm verschwindet
aufgrund der Periodizitét identisch, so dafl im Inneren dieser Gebiete die Summe
der Residuen verschwinden muf. Dies bedingt durch die Uberdeckung von C
mit solchen Parallelogrammen, daf§ elliptische Funktionen keine ungepaarten
Pole erster Ordnung besitzen kénnen. Dabei ist mit ,,gepaart“gemeint, dafl ein
weiterer Pol existiert, so daf} sich die Summe der Residunen zu Null addiert.
Die einfachste elliptische Funktion ist somit von der Gestalt

f2) = 2%+ k()

mit einer holomorphen Funktion A(z).

Fordert man nun Pole an den Stellen w := m, w; + m, w, mit m;,m, € Z, so
ist die Funktion aufgrund des Satzes von Mittalg-Leffler bis auf eine Konstante
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eindeutig bestimmt. Das Resultat ist die sogenannte Wezierstrafische elliptische
Funktion, p(z) mit der Laurent Entwicklung

o) = % +§(ﬁ_5>

Es stellt sich heraus, dafl die Weiertstalsche Funktion die negative Ableitung
der Weierstrafischen Zeta—Funktion ist: p(z) = —('(z). Die Funktion gp(z)
héngt wie folgt mit den Jacobi-elliptischen Funktionen zusammen:

cn?(z)
sn?(z) -

p(z2) + C

Dabei hingen die Konstanten ¢ und C von den beiden Perioden der Weier-
straffschen Funktion zusammen (siehe zum Beispiel [MOS66], S. 389).

1
a

Mit den Funktionalgleichungen fiir die Jacobi—elliptischen Funktionen 148t sich
nun zeigen, daf} dies eine Losung der Gleichung (5.12) darstellt.

Damit erweist sich die Funktion

V=g aQZp z; — ;)
i#Ej

als Potential fiir ein , Calogero-Ahnliches“ System. Hier stellt sich die Frage,
inwieweit das urspriingliche Calogero-Modell einen Grenzfall dieses Systems
darstellt. Diese Fragestellung fiihrt auf Spezialfille der Weierstraflschen ellip-
tischen Funktion fiir bestimmte Werte der beiden Perioden w, und w,. In der
Literatur [Abr65] findet sich hierzu folgendes:

e lim a?p(az) = d’z (5.13)

w1 — OO
wo — 100
o lim a’plaz)— = a?sin"%(a 2) (5.14)
w1 =7/2
wo — 100

e lim a?p(az) = a®sinh~2(az) (5.15)

w1 — OO

wy =1im/2
Hier finden sich also die von Calogero (5.13) und Sutherland (5.14) untersuchten
Modelle wieder, sowie auch die hiufig untersuchte Verallgemeinerung (5.15)
dieser beiden, wobei (5.13) aus (5.15) als Limes a — 0 und (5.14) durch den
Grenziibergang a — 1 hervorgehen.

Mit der allgemeinsten Lésung, der Funktion g(z), hat man aufgrund der doppel-
ten Periodizitét dieser Funktion ein ,,Calogero-Modell“ auf dem Torus gegeben,
was die einfachste Erweiterung weg von der euklidischen Ebene darstellt und
in der mathematischen Physik eine beliebtes Objekt darstellt.

Mit der Vorgehensweise dieses Abschnittes wurde ausgehend von der Lax-
Matrix fiir das klassische Calogero-Modell dieses systematisch in eine grife-
re Klasse von Modellen eingeordnet, deren Teilchen iiber ein Potential von
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der Form einer Weierstra3schen Funktion wechselwirken. Diese Wechselwirkung
wurde auch fiir den quantenmechanischen Fall untersucht und findet noch heute
unter dem Namen elliptisches Calogero—Moser—Modell Interesse.

Die nun folgende Erweiterung geht vom quantenmechanischen Fall aus und
fiihrt auf die Moglichkeit, dal nur einige Teilchen des Systems miteinander
wechselwirken.

5.2 Waurzelsysteme als Wechselwirkungsdiagram-
me

In Abschnitt 4.2 wurden die sogenannten Dunkl-Operatoren eingefiihrt. In die-
sem Zusammenhang tauchte auch der Operator (4.3) auf, ein Endomorphismus
auf den unter der Wirkung der Weyl-Gruppe eines Wurzelsystems invarian-
ten Polynomen. Konstruiert man diesen Operator analog mit den modifizierten
Dunkl-Operatoren, so erhilt man die Form

(o,
a€ Ry

YV - A+ Y (a’;)zka(ka—i—sa).

Wihlt man nun als Spezialfall das Wurzelsystem A,, sowie einen konstanten
Wert v fiir die k., die der Forderung der Invarianz unter der Wirkung der Weyl-
Gruppe W (A,,) geniigen, so ergibt sich fiir die Wirkung auf W (A, )—invariante,
also nach Kapitel 4 symmetrische beziehungsweise antisymmetrische Polynome
der Operator

Zv? = A+ u(uil)zi(mi_lmjp :

j<i

also gerade der Hamilton-Operator (1.1) des quantenmechanischen Calogero—
Modells aus Kapitel 1.

Die weiteren Wurzelsysteme (siehe Tabelle (4.1) in Kapitel 4) liefern nun Ha-
miltonians fiir dem Calogero-Modell verwandte Systeme. Diese wurden auch
im klassischen Fall untersucht.

Fiir eine explizite Auflistung der untersuchten, Calogero—Ahnlichen Modelle
sei auf die beiden Review—Artikel von M.A. Olshanetsky und A.M. Perelomov
aus den Jahren 1981 und 1983 verwiesen [OP81,0P83]. In diesen finden die
Dunkl-Operatoren selbstverstindlich noch keine Verwendung, da sie erst im
Jahre 1989 zum ersten Mal auftraten.






Kapitel 6

Erhaltungsgrofien des
Calogero—Modells

Wie in den Kapiteln zwei und drei gesehen, ist die Integrabilitiat sowohl von
klassischen als auch quantenmechanischen Systemen nicht durch die Angabe
einer Losungsfunktion beziehungsweise eines vollstdndigen Eigenfunktionensy-
stem definiert. Dies wiirde denn auch unweigerlich auf die Frage fiithren, ob
diese Losungen in Termen ,elementarer Funktionen (ein Begriff, der zuvor
exakt definiert werden miifite) angegeben werden sollen oder ob man sich mit
dem Beweis der Existenz einer Losung zufrieden geben will, was die Physik als
eine rein mathematische Wissenschaft identifizieren wiirde. Vielmehr spricht
man erst dann von einem integrablen Modell, wenn ein Satz von Erhaltungs-
grofen fiir dieses bekannt ist, deren Zahl im klassischen Fall von der Zahl der
Freiheitsgrade und in der Quantenmechanik von der Entartung der Lésungen
abhingt.

6.1 Klassische Erhaltungsgréfien

Nach dem Liouvilleschen Satz spricht man in der klassischen Mechanik dann
von einem integrablen Modell, wenn ein Satz von n, im Sinne von Kapitel
2 unabhingigen, Phasenraumfunktionen zur Verfiigung steht, die entlang der
Phasenbahnen konstant bleiben. Dabei ist n die Zahl der Freiheitsgrade des
Systems.

Bei dem Calogero—Modell handelt es sich um ein 1-Dimensionales N-Ko6rper
Problem, bei dem die Teilchen keiner weiteren Einschridnkung unterliegen.
Die Zahl der Freiheitsgrade ist somit mit der Teilchenzahl identisch. Da die
Hamilton-Funktion selbst nicht explizit von der Zeit abhingt bleibt die Ener-
gie in diesem System konstant, so dafl man lediglich (N — 1) weitere Erhal-
tungsgbéfen auffinden mufl; um die Integrabilitdt nachzuweisen. Mit der Lax—
Matrix (5.2) und den Erkenntnissen aus Kapitel 2 steht nun eine einfache

53
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Moglichkeit zur Verfiigung, weitere erhaltene Groflen zu gewinnen.

6.1.1 Spur der Lax—Matrix

Da die Lax-Matrix (5.2) des Calogero-Modells eine Hermitesche Matrix ist, 1afit
sie sich mit einer unitiren Transformation diagonalisieren. Damit gilt nicht nur,

dafl die Grofien
I, = tr(L")

zeitlich konstant sind, sonder auch paarweise kommutieren. Fiir Systeme mit
Hermitescher Lax—Matrix hat man nach Kapitel 2 immer paarweise kommutie-
rende Grofen I,. Diese Folgerung aus der Existenz einer Lax—Matrix ist noch
relativ neu. Zuvor mufite der Kommutator { I, , I, } explizit berechnet werden,
um das Verschwinden nachzuweisen. Eine Variante eines solchen Beweises fiir
das Calogero-Modell sowie Verweise auf alternative Moglichkeiten finden sich
in dem Review-Artikel von Olshanetsky und Perelomov [OP81]. Auf eine Va-
riante soll im folgenden Abschnit aufgrund der dort auftretenden interessanten
Identitdten noch niher eingegangen werden. Allen diesen Beweisen ist gemein,
dafl man auf grofie rechentechnische Schwierigkeiten st68t.

Desweiteren sind die Groflen I, noch darauf zu untersuchen, inwieweit gegen-
seitige Abhingigkeiten auftreten oder einzelne I,, verschwinden. Die Trivia-
litdten sind sofort ausgeschlossen, wenn es sich bei den I, um im Sinne des
Liouvilleschen Satzes (siehe 2.1.3) unabhingige Phasenraumfunktionen han-
delt. Dies nachzupriifen ist jedoch nicht praktikabel, da die aus den Spuren der
Lax—Matrix gewonnenen Erhaltungsgréfien durch das Potenzieren der Matrix
L sehr schnell eine sehr komplexe Form annehmen und so die Mannigfaltigkeit
M; nicht angegeben werden kann.

Es sei hier auf die Aussage bei Olshanetsky und Perelomov verwiesen, wo-
nach sich die I,, nicht als Polynome der Erhaltungsgréfien niedrigerer Ordnung
darstellen lassen. Dies liegt daran, dafl die Spuren der Potenzen von L sym-
metrische Polynome in den Impulsen p; von der Ordnung des Exponenten von
L sind. Dadurch ist allerdings nicht sichergestellt, daf} keine trivialen Integrale
I, = 0 erzeugt werden. Ebenfalls nicht ausgeschlossen ist der Fall, in einem
Punkt von M; lineare Abhéngigkeit zu erhalten.

Die Integrabilitdt im Liouvilleschen Sinne ist daher bis heute nicht streng be-
wiesen.

Von der Folge bekannter Erhaltungsgréfien mochte ich hier zumindest die ersten
Glieder angeben.

Die GroBe I ergibt sich als Spur der Lax—Matrix L zum Gesamtimpuls des
Systems. Die Erhaltung dieses Impulses 148t sich auch unmittelbar aus der
Hamilton—Funktion ablesen, da diese translationsinvariant ist.
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Die zweite Erhaltungsgrofie I berechnet sich zu folgendem Wert:

N 1 - 1
tr(L%) = Z(%‘Pi + (1-46;) 1\/§xi—mj )(0:5ps — (1= 0;5) 1\/§xi—mj )
irj
1
- Zpg T Z (z;—=;)?

il;é]j
= Zp + gZ s

j<i

= 2%Cal - 2E .

Dies ist gerade die, wie oben erwihnt, erhaltene Energie des Systems.

Die folgenden Erhaltungsgréfien gestatten keine derart einfache Interpretation.
Die Grofe I3 sei hier der Vollstdndigkeit halber noch angegeben:

Zpl + 38> Pipa)e

iFj

—ig? Y 1
'8 (@:—=;) (@;—on) (Tr—7:)
iFtjFk
itk

Fiir das Calogero-Modell taucht in dieser Folge kein verschwindendes Glied
auf. Fiir Calogero-Ahnliche Modelle wurde jedoch gezeigt, daf Nullfunktio-
nen als Erhaltungsgréfien auftreten koénnen. Sollte also ein strenger Beweis
der vollstdndigen Integrabilitdt fiir das Calogero—Modell gelingen, so ist zu er-
warten, da sich dieser nicht sofort auf simtliche Calogero—Ahnlichen Modelle
iibertragen 148t.

Im folgenden Abschnitt wird eine Linearkombination der Erhaltungsgrofien I,
untersucht, die beim Beweis der simultanen Kommutativitit eine Rolle spielten.

6.1.2 Charakteristisches Polynom der Lax—Matrix

Im Jahre 1975 untersuchten Sawada und Kotera [SK75] die Koeffizienten des
charakteristischen Polynoms xr(z) = 3,2V *J; der Lax-Matrix (5.2). Sie
gingen dabei von der Darstellung

1 1
J, = exp {—agz (@i—z,)? 5p, ap; } Hp, (6.1)

it

nach Newton aus. Dabei ist die Exponentialfunktion aus der Sicht der Quanten-
feldtheorie ein Normalordnungsoperator. In diesem Fall ist die Normalordnung
beziiglich der Matrix M des Lax—Paares mit herausgenommener Diagonale ge-
bildet.
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Ich mochte hier eine alternative Darstellung einfithren, die den Zusammenhang
der Groflen Ji mit den Integralen I,, unmittelbar deutlich macht. Hierzu ent-
wickeln wir das charakteristische Polynom in folgender Weise:

det(¢E — L) = 2" det(E -« 'L)
= zNexp {tr[ln(E - 1'_1L)]}

xz (z)

= > X @ I g™
k=0 mi,..., Mg i=1
Ziimi:
N
=: Z JozN Tk (6.2)
k=0

Diese Entwicklung hat aufgrund des Schrittes () zunédchst nur Giiltigkeit, wenn
die Bedingung || z7'L ||< 1 erfiillt ist. Mit der Supremumsnorm ist diese Be-
dingung gleichbedeutend mit

!
| z |[> max{L,;

i,j=1...N} .

Fiir z, die dieser Forderung geniigen, bricht nun die Summe iiber & in (6.2) bei
k =N ab. Alle weiteren Summanden verschwinden identisch. Da diese Identitit
somit fiir eine offene Teilmenge in C gilt, ist sie nach dem Identitétssatz fiir
Polynome schon auf ganz C erfiillt.

Die Formel (6.2) stellt demnach das charakteristische Polynom einer beliebigen
Matrix L mit komplexwertigen Eintridgen, also auch komplexwertigen Funktio-
nen dar. Fiir jede solche Matrix bricht die Summe iiber & ab.

Eine direkte Herleitung ausgehend von der Leibniz—Formel

det(4) = Z sgn(o) H ;o (i) (6.3)
o € SN i

fiir die Determinante ist mir bisher nicht gelungen. Dennoch mdéchte ich hier

kurz die Anséitze darstellen, nicht zuletzt, da diese auf eine Darstellung der Spur

von Potenzen Matrizen fithrt, die eventuell fiir andere Bereiche der Physik wie

die statistische Physik interessant sein kénnte. Ausgangspunkt der Rechnungen

sind die folgenden drei Formeln:

n

e (1-4") = — H (A— exp(27ﬁ%))

i =1
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N i N
o Jlla+b)= > Z i H e | e

i=1 gESNi=0 k=1 k=i+1

o tr(d) = lim 1{1—det(E —eA)}

Aus diesen 148t sich die folgende Darstellung gewinnen:

o(L") = (~pN % H%,ngn

mi,...,Mn

Z m; =n
m; < NVi
m; N
: H La(j),a(a’(j)) H 5a(j),a(a’(j))
i=1 j=m;+1

Das Einsetzten dieser Formel in die Darstellung (6.2) erbrachte bisher jedoch
keine wesentliche Anndherung an die aus der Leibniz—Darstellung gewonnene
Form.

Fiir die Determinante ergibt sich aus der Darstellung (6.2) folgende Darstellung:

det(4) = Z H(—l)m" 1mlm,[tr(L’)]m . (6.4)

Mit der Darstellung (6.2) kann man nun folgenden interessanten Zusammen-
hang fiir die Koeffizienten des charakteristischen Polynoms einer Matrix A zei-
gen:

“N(N—k+1)Jo_; . (6.5)

XN: 07,

0A
i =1

Der Beweis hierzu findet sich in Anhang C.

Dies bedeutet fiir die Lax—Matrix des Calogero-Modells, daf} folgende Relation
erfiillt ist:

{Zl’Jk} = NN—-k+1)J . . (6.6)

Da die Matrix L ausschlieBlich translationsinvariante Eintrige besitzt, folgt,
daB auch die J, translationsinvariante Gréflen sind. Es gilt somit:

{Jkazpi} =

Die Summe iiber die p; 148t sich alternativ als die Poisson—Klammer

{Hcau Zmz} = Zpi
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schreiben. Mit der Jacobi-Identitdt folgt nun bei Verschwinden der Poisson-
Klammer von Hc, mit einem J, sofort, dafl auch sdmtliche J, mit & < n erhal-
tene Groflen sind. In diesen frithen Verdffentlicheungen war nun also zu zeigen,
daf} die Determinante von L erhalten ist. Hierzu wurde mit Symmetrieargumen-
ten unter Verwendung der Leibniz—Formel fiir die Determinante argumentiert.
Nicht klar war dann jedoch das Kommutieren der .J, untereinander.

Mit der Darstellung (6.2) sowie der Kenntnis, dafl die Spuren der Potenzen von
L kommutieren, sind diese beiden Probleme bereits gel6st.

6.1.3 Die r—Matrix des Calogero—Modells

In Kapitel 2 wurde eine Konstruktionsvorschrift fiir die Matrix r angegeben
(2.14). Diese setzt sich aus der Diagonalatrix A der Eigenwerte von L sowie dem
L diagonalisierenden Isomorphismus S sowie den Fadeev—Klammern zwischen
S und A und S und S zusammen. Die Definitionen seien hier zur Erinnerung
nochmals angegeben:

g = (5"'eSH{SeA}(1®5)
k= (S'eS {59}

a:= —q + ik, 1QL]

b := PqP + i[k,L ®1]

r = (a— PbP) .

Diese Konstruktion liefert nun im allgemeinen keine antisymmetrische Matrix
r, wie sie in der Theorie der klassischen r—Matrizen auftritt. Aus diesem Grund
ist es sinnvoll, die r—Matrix des Calogero—Modells ndher zu untersuchen und so
zu iiberpriifen, inwieweit es sich bei diesem Modell um ein integrables Modell
handelt, das nicht durch die Theorie der klassischen r—Matrizen erfafit wird.

Die Berechnung der r—Matix fiir das Calogero—Modell wird durch die Tatsache,
dafl die Lax—Matrix (5.2) eine Hermitesche Matrix ist, stark vereinfacht. Fiir
diese Art von Matrizen sind gangbare Wege zur Berechnung der diagonalisie-
renden Abbildung S aus der linearen Algebra bekannt.

Fiir den Fall zweier Teilchen, also einer 2 x 2-Lax—Matrix 148t sich dies mit
EDV-Unterstiitzung leicht durchfiithren. Fiir die Matrix a aus (2.14) ergibt sich

folgende Gestalt:
_ 01 a O
= (10)e (5 0)

mit reellwertigen rationalen Phasenraumfunktionen o und g3, die in Anhang D
angegeben sind.
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Auffillig bei der Berechnung ist zum einen, dafl die Matrix a ein einfaches
Element des Tensorproduktes ist, was aufgrund der Verwendung der Fadeev—
Klammer bei der Konstruktion dieser nicht selbstverstdndlich ist. Entscheidend
hierfiir ist das Verschwinden der Klammer {S @S} fiir die unitdre Transforma-
tion S. Interessant ist hier die Frage, fiir welche Klasse von Lax-Matrizen dies
gilt. Unmittelbare Folge des Verschwindens der Fadeev—Klammer von S und S
ist aufgrund des Verschwindens von k, dafl die Matrix a bereits die gesuchte
Matrix r aus (2.12) ist.

Im Fall des 3-Teilchen Calogero-Modells ist die Berechnung der Matrix r mit
Programmen zur Computer—Algebra nicht mehr durchfiithrbar, da dieses Pro-
blem auf das Diagonalisieren einer beliebigen Hermiteschen Matrix fiithrt. Hier
miissen von Hand einige Vorbereitungen getroffen werden. Die Lax—Matrix hat
in diesem Fall die Gestalt

WE VB

Y21 T1—To T1—T3
L = ivE P ive
To—T1 2 To—T3
ive ive
r3—T1 T3—T2 ps

Das charakteristische Polynom dieser Matrix hat die Form
_ .3 2
XL = T°+czx’+cix+c
mit den Koeffizienten

C2 = —P1—P2—DPs
— g g g
Ci = PiP> + P1Ps + Po2Ps + (z1—15)2 + (z1—123)2 + (zo—13)2

_ D3 D2 y4i
“© =78 ((1‘1—%)2 + (21 —x5) + (z2—x3)2>

Unter der Annahme paarweise verschiedener Eigenwerte, was aufgrund der ste-

tigen Abhéngigkeit der Eigenwerte von den Variablen {p;,z;} bis auf Mengen
vom Maf} 0 im Lebesgueschen Sinne zutrifft, sind die Eigenvektoren als Funk-
tionen der Eigenwerte \; von der Gestalt

—g(p1 — Xi)(z1 — 2) (w1 — @3) — 1\/B(p1 — Xi)(p2 — Ai) (21 — 22)?
e(X;) = —g(p1 — Xi)(x1 — z2) (22 — @3) — iy/B(p1 — Ai) (21 — @2)* (21 — x3)

(p1 — Xi)?(p2 — Xi)(z1 — @2)*(x1 — z3) (22 — @3) + g(p1 — i) (21 — @3) (22 — @3)

Setzt man hier die Eigenwerte \; ein, so konnte ich die auftretenden Objek-
te mit den zur Zeit der Entstehung dieser Arbeit auf dem Markt befindlichen
Paketen zur symbolischen Manipulation algebraischer Ausdriicke nicht mehr
handhaben. Es war mir daher nicht méglich, die Eigenvektoren zu normieren,
daraus die Matrix S zu konstruieren und die Fadeev—Klammern rechnergestiitzt
zu erhalten. Eine Moglichkeit, mit diesem Ausdruck fiir die Eigenvektoren wei-
terzuarbeiten besteht nun darin, das charakteristische Polynom auszunutzen.
Aus der Ableitung von 1 nach einer Variablen £ erhilt man

A?agcg + )\iagcl + agco
OX = — T3 anh e (6.7)
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Setzt man nun fiir die Linge der Eigenvektoren e(); die Funktion /(};) ein und
nutzt die Derivationseigenschaft der Poisson-Klammer aus, so schreibt sich die
Klammer {S,;, Sw.} wie folgt:

€i

1 (A)ex (M)
{83, Su} = o000 [{6i(>\j), e} + BOORMN

Z ea(N)es(AN){ea(N;), es(N) } +
B
e: (A
2(%,

; Y eaM){eaN), e(N) ) +

J

A

_% . Zea()\z){ ei(A;) 5 ea(A) }l

1

Fiir den Kommutator {S;;, A; } leitet man analog folgenden Ausdruck her:

{Si, A} = l(;\j) [{ei()\j)a A} o+

- 12‘(&:) -Zea(&){ea(/\j), A }]

o

Unter Verwendung der Ableitungen der Eigenwerte (6.7) ergeben sich fiir die
Eintréige der Matrix {S @ S} Funktionen, die fiir eine Vereinfachung durch das
Programm Maple noch zu komplex sind.

Aus diesem Grund ist mir die Berechnung der r-Matrix des 3-Teilchen
Calogero—Modells bisher nicht gelungen.

6.2 Quantenmechanische Erhaltungsgroéfien

6.2.1 Zu klassischen Erhaltungsgrofien korrespondierende Ope-
ratoren

Die einfachste Moglichkeit, quantenmechanische Erhaltungsgréfien zu gewin-
nen, besteht darin, in den klassischen Erhaltungsgréfien die Variablen durch
die korrespondierenden Operatoren zu erstzen und zu iiberpriifen, inwieweit
sich daraus ein Satz kommutierender Operatoren ergibt.

Ersetzt man in der Lax—Matrix (5.2) den Impuls durch die partielle Ableitung,
so fillt auf, dafl die Matrixelemente aus verschiedenen Zeilen und Spalten, also
die L;; und L;; mit ¢ # k und j # [ miteinander kommutieren. Eine wichtige Fol-
gerung daraus ist die Wohldefiniertheit der Determinante von L, da es Aufgrund
dieser Vertauschungseigenschaft bei Verwendung der Leibniz—Formel (6.3) zu
keinen Anordnungsproblemen innerhalb der einzelnen Produkte kommt.
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Die Identitdt (6.6) fiir die Koeffizienten des charakteristischen Polynoms lafit
sich vollkommen analog dem klassischen Fall zeigen. Hier tritt jedoch das Pro-
blem auf, dal man die Anordnung der Faktoren beachten muf}, da das Kommu-
tieren der Spuren tr(L") und tr(L™) nicht trivialerweise gegeben ist. Da jedoch
die Determinante auch im quantenmechanischen Fall nach obiger Bemerkung
wohldefiniert ist, sind auch die operatorwertigen Koeffizienten des charakteri-
stischen Polynoms in eindeutiger Weise als Summen von Produkten kommutie-
render Operatoren festgelegt. Dies zeigt, dafl die Potenzen von Spuren auch als
Operatoren kommutieren und desweiteren, aufgrund des Kommutierens der in
den Summanden auftretenden Faktoren, wohldefiniert sind.

Der aus der Lax—Matrix erhaltene Satz unter der Poisson-Klammer kommutie-
render Erhaltungsgréfien 148t sich somit unmittelbar in einen System paarweise
kommutierender Erhaltungsgréfen des quantenmechanischen Calogero—-Modells
durch korrespondenzmifliges Ersetzen der Variablen iiberfiihren.

Dabei erhilt man als Erhaltungsgréfie I; den Gesamtimpuls des Systems und
als I, den Hamilton-Operator (1.1).

6.2.2 Erhaltungsgrofien aus den Dunkl-Operatoren

Nach der Bemerkung bei Heckman ergibt sich aus den Restriktionen gewisser
Produkte von Dunkl-Operatoren ein Satz kommutierender Operatoren, zu de-
nen auch der Hamilton-Operator (1.1) gehort. Die entstehenden Operatoren
sind von der Ordnung der Summe der Exponenten in den Impulsoperatoren, so
daB sich hier die Frage nach einem Zusammenhang mit den aus Spuren von Po-
tenzen der Lax—Matrix gebildeten Erhaltungsgréfien stellt. Da wir jedoch keine
explizite Form der Restriktionsabbildung zur Verfiigung hatten und auch bei
Vernachlissigen dieser keinen einfachen Zusammenhang zwischen den Operato-
ren tr(L") und )", V? finden konnten, kann hier kein Isomorphismus zwischen
diesen Groflen angegeben werden.






Jedes Stiick Materie kann gleichsam als ein Garten
voller Pflanzen oder als ein Teich voller Fische
aufgefafit werden. Aber jeder Zweig der Pflanze,
jedes Glied des Tieres, jeder Tropfen seiner Sdfte
ist wieder ein solcher Garten und ein solcher Teich.

(Leibniz)

Kapitel 7

Beziehungen zu anderen
Modellen

7.1 Die Knizhnik—Zamolodchikov—Gleichung der
konformen Feldtheorie

Die Knizhnik-Zamolodchikov-Gleichung, im folgenden kurz KZ—-Gleichung ge-
nannt, spielt eine Rolle in der Darstellungstheorie affiner Lie—Algebren, einer
unendlichdimensionalen Erweiterung der Theorie der Lie—Algebren. Dies ist der
Hauptgrund fiir das Auftauchen der KZ—-Gleichung in der konformen Feldtheo-
rie, die sich mit Feldern befaflt, die neben der Poincaré-Invarianz auch eine
konforme Invarianz aufweisen. Losungen der KZ-Gleichungen sind in diesen
Theorien gerade die N-Punkt Funktionen.

In der Theorie der Quantengruppen gewinnt man iiber die Monodromien
von mit universellen R-Matrizen verkniipfte KZ—-Gleichungen Darstellungen.
Né&heres hierzu findet man bei [Fu92] und [CP94].

Die KZ—-Gleichung zu einer klassischen r-Matrix ist von der Form

O — Y ry(a-x)f), i=1..N. (1)

Dabei ist 7(2) eine holomorphe Abbildung von C in die universelle Einhiillende
U(g) einer Lie-Algebra g. Sind p,, ..., py Darstellungen von g auf Vektorraum-
en Vy,...,Vy, dann operiert r;;(z; — z;) auf dem Tensorprodukt V; ® ... ® V,,
iiber die Darstellungen p;(r(z; — 2;)) und p;(r(z; — 2;)) auf den Komponenten
V. und V;, sowie als Identitét auf den restlichen Komponenten. Die Funktion
f ist eine Abbildung von Dy(C) := CV \ {v €CV | 3(4,j) mit v; = v;} nach
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VioV,®...®Vy. Geniigt die Matrix r der klassischen Yang-Baxter Gleichung,
so wird durch die 1-Form I'" auf Dy mit

i<i
ein flacher Zusammenhang gegeben. W&hlt man als r—-Matrix die Abbildung

t
2;—Z;

r(zi —z) =

mit einer g—invarianten, symmetrischen Funktion ¢ aus g x g, so ergibt sich fiir
die KZ-Gleichung folgende Form:

_ (p:®p;)(t)
of = kY el
i
Von A. Matsuo und I.V. Cherednik wurde die folgende, der Knizhnik—
Zamolodchikov dhnliche Differentialgleichung untersucht:

of = (kz%—k)\m)f. (7.2)
izi 7

Dabei sind die Darstellungen so gewédhlt, dal V; = V; = V V1, j gilt. Die Opera-
toren P®) wirken durch Vertauschung der iten und der jten Komponente des
Tensorproduktes. Die Abbildung A® operiert auf der iten Komponente als Mul-
tiplikation mit der Diagonalmatrix A mit paarweise verschiedenen Eintrigen,
ansonsten als Identitét.

Auf Losungen dieser Gleichungen, die von der Form

f = Z foeon)® ... ® e (7.3)

UeSN

sind, wirken die Abbildungen in der KZ-Gleichungen wie folgt:

P fa = fcr oP;; (7.48,)
)‘(i)f = Z Aa(i) O'(i)fa o) X ... Qern) - (74b)
g € SN

Zur Bestimmung der f, ergeben sich daraus die Differentialgleichungen

1
8if0‘ = k Z fo‘oPi]- + Aa(z’) a(i)fa . (7'5)

Z._Z.
izi

Fiir die Losungen (7.3 definiert man die Matsuo-Abbildung m(f) sowie die
Cherednik-Abbildung ch(f) wie folgt:

p = m(f) = Y fo

0'€SN

¥ = ch(f) = ) sen(o)fs -

O'ESN
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Setz man nun E := —tr(A?), so erfiillen die Funktionen ¢ und 1 die Differen-
tialgleichungen

<_A+k(k_1)z_ﬁ>¢ =Fop

i#Ej

<—A+k(k+1)2ﬁ)qp - Ey .

it

Die Funktionen ¢ und 1 sind also aus Losungen der KZ—Gleichung gewonnene

k(k — 1)

PPV also

Losungen des Calogero-Modells (1.1) mit Werten w = 0 und g= {

— k
V_{ (k+1)

Zum Beweis, dafl die Funktionen ¢ und 1 Lésungen darstellen, summiert man
die Gleichung (7.5) iiber sdmtliche Permutationen o € S,, wobei man fiir den
Fall g=(k + 1)k zuvor mit der Signatur sgn(o) multipliziert. Differenzieren und
Ausnutzen der Gleichung (7.5) als Identitét fiir 9;f, fithrt dann mit einigen,
bereits bei der Losung der Schrédinger—Gleichung des Calogero—Modells in An-
hang A aufgefiihrten Vorgehensweisen bei der Behandlung von Summen auf die
Schrédinger—Gleichungen fiir ¢ und .

Die Abbildungen m(f) und ch(f) machen jedoch nur Sinn, wenn Lésungen
der KZ-Gleichung existieren, die von der Form (7.3) sind. Dies wird durch
Tatsache sichergestellt, daf} die beiden Abbildungen fiir den Fall paarweise ver-
schiedener Eintrige der Matrix A Isomorphien vermitteln, was von Matsuo und
Cherednik gezeigt werden konnte. Da in Kapitel 1 Losungen der Schrédinger—
Gleichung angegeben wurden, lassen sich daraus durch Anwenden der inversen
Matsuo— beziehungsweise Cherednik—Abbildung Lésungen der Form (7.3) der
KZ-Gleichung gewinnen. Die zur Losung der gedhnlichen KZ-Gleichung ver-
wendeten Verfahren liefern direkt Losungen der genannten Form. Fiir die mo-
difizierte KZ—Gleichung, wie sie von Cherednik und Matsou verwendet wird ist
mir aus der Literatur kein entsprechendes Verfahren bekannt.

Desweiteren lassen sich mit diesen Abbildungen Beziehungen zwischen
Calogero—Modellen mit unterschiedlichen Kopplungen auf folgende Weise kon-
struieren:

KZ(k-1) K7 (k) KZ(k+1)

Cal((k-1)(k-2))  Cal(k(k-1)) Cal((k+1)k) Cal((k+2)(k+1))
Die Abbildungen m~! o ch vermitteln also zwischen dem Calogero-Modell mit

Kopplung v(v — 1) und (v + 1)v, die Abbildung ch o m~! zwischen KZ-
Gleichungen mit Kopplungen k£ und k£ + 1. Fiihrt man die Bezeichnungen
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A

D := m™' och und Dy, := ch o m™! ein, so liBt sich obiges Diagramm zu
einem kommutativen Diagramm erginzen.

Von Felder und Vesolov wurde nun der Zusammenhang zwischen den hier kon-
struierten ,,Shift—Operatoren“ fiir das Calogero—Modell und den von Heckman
gefundenen Operatoren [Hec89] untersucht.

Fiir das Wurzelsystem Ay haben Heckmans Operatoren die Form

Dy.. = Z sgn(U)Res(Vg(g)) (7.6)
O'ESN
mit
N(N-1
4 — N
¢ € RY, sodaB 6(¢) == [[(&-¢) #0.

Der Dunkl-Operator (4.5) hat im Ay—Fall die Form

s &
Vi = 0 — kZij ;
it

wobei fiir die Konstruktion des Operatore DHQC der Wert k = %k eingesetzt
werden mu#f.

In ihrer Arbeit zeigen Felder und Vesolov die folgende Identitét:

Du. = Ox3(A)6(6)D (7.7)

mit Cy = 1'2'd7EN—1)'

Der Beweis ist in [FV93] recht ausfiihrlich dargestellt, so da§ ich hier nur einige
wesentliche Schritte wiedergeben moéchte. Aus der Gleichung (7.5) folgt

aﬁfa = Siaifa
= (Y =p 0N e

i#i

Unter Verwendung dieses Zusammenhanges 148t sich mittels Induktion zeigen,
dafl

Res(VP)m(f) = 3 (0(&, N fs -

(4] SN

Dabei findet Verwendung, dafl die Abbildung Res(:) linear ist, also
Res(V7**') =Res(V{*)-Res(V,) gilt.

Mit dieser Formel folgt nun unmittelbar der Zusammenhang

Du.m(f) = ch(f) Y sgn(o)(a(€),N)* .

[
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Fiir die Identitdt (7.7) verbleibt nun noch zu zeigen, daf

> _sgu(a)(@(€),\)? = Cnd(A)4(¢)

[

giiltig ist. Dabei gehen Umformungen dieser Art ein:

N
{Ye}"= ¥ ek

i=1 k1,..., kN
Zik’*m
m!
= > oy )
oeSN
det((z{ ™)) = [] (& — ;)
i<

Der Vollstédndigkeit halber sei hier noch eine weitere Abbildung erwahnt, die
von Felder und Veselov in diesem Artikel neben der expliziten Konstruktion der
inversen Matsuo—~Abbildung m ™! untersucht wurde. Diese wirkt auf Losungen
der KZ-Gleichung (7.3) in der Weise

* Zfaea = ngn(a) faea

und vermittelt zwischen Lésungen K Z(k) und K Z(—k) der KZ-Gleichung.

Eine Idee zu dieser Arbeit war, aufgrund dieser Isomorphie die volle Symmetrie
des Calogero-Modells abzuleiten. Die Symmetrie der KZ-Gleichung ist jedoch
nur fiir den Fall A = 0 zugénglich, und dieser ist durch Verletzen der Bedingung
paarweise verschiedener Eintrage fiir A uninteressant, da dann mit m und ch
keine Isomorphismen mehr vorliegen. Desweiteren ist nicht absehbar, wie sich
die Symmetrieen der Losungen der KZ-Gleichung unter den Abbildungen m
und ch verhalten.

7.2 Matrix—Modelle

Bei der Konstruktion des Calogero-Hamiltonians aus den Dunkl-Operatoren
tauchte in diesem der Permutationsoperator auf, der im Falle der Wirkung
auf Funktionen vorgegebener Symmetrie durch seinen Eigenwert ersetzt wurde
und so auf den urspriinglichen Calogero—Hamiltonian fiihrte. Ersetzt man den
Permutationsoperator nun durch eine M—Darstellung der Sy, so wirkt der ent-
stehende Operator auf M—komponentige Wellenfunktionen. Dies fithrt dann auf
sogenannte Matrix-Modelle. Von Dodolov, Konstein und Vasiliev [DKV93] wur-
de gezeigt, dal man genau dann nichtsingulire Losungen der Matrix—-Modelle
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erhilt, wenn die Darstellung der Sy auf die Komponenten der Wellenfunktion
als Permutationsoperator wirkt, man also komponentenweise wieder das ur-
spriingliche Calogero-Modell erhélt.

7.3 Hall-Effekt, Anyonen und Fractional Statistics

Der Quanten—Hall-Effekt beschreibt das Verhalten zweidimensionaler Elektro-
nen unter dem Einflufl von Magnetfeldern senkrecht zu dieser Fliche. Der Ha-
miltonian fiir ein solches Elektron hat in den Einheiten e = A = ¢ = 1 die

Form
H = ﬁ((pm - Aw)2 + (py + Ay)2) = ﬁ(ﬂz + Hi) .
Durch Einfiihren des Vernichtungsoperators a := \/%(Hm —1iIl,) mit dem Kom-
mutator [a, at ] = 1 schreibt sich der Energieoperator wie folgt:
H = Bigat + )

In sehr starken Magnetfeldern kondensieren nun simtliche Elektronen im nied-
rigsten Landau—Niveau, so daf} lediglich ein Freiheitsgrad verbleibt. Dieser wird
am elegantesten durch die Variable X :=z — %Hz mit kanonisch konjugiertem
Impuls Y :(=y + %Hm beschrieben. Der niedrigste Eigenzustand zu X ist dann
durch die Bedingung a ¢, = 0 eindeutig charakterisiert.

In symmetrischer Eichung ergibt sich die folgende Grundzustands—
Wellenfunktion als eindimensionale Darstellung des N-Teilchen Laughlin—
Zustandes auf der Kreisscheibe in der X-Darstellung:

\Il(sla' SN = exp(—BZ %312) ' exp(_ﬁ 2812) H(Sz - Sj)m ’
I i

j<i

was fiir grofle Magnetfelder B die Form

U(s1y.00y88 = exp(—BZ %32) ) H (s: —s;)™

I i<z
annimmt.

Dies ist gerade die Grundzustands—Wellenfunktion des Calogero-Hamiltonians
(1.1) mit w =2 und v = m.

Verwendet man die 1-dimensionale Darstellung der Laughlin—Zustinde auf
dem Zylinder, so erhilt man in der X-Darstellung den Grundzustand des
Sutherland-Problems mit V(s;,...,sy) = Hj<isin_2(LLm(si — s;)). Dabei
fallt auf, daBl hier kein weiteres Potential wie im Falle der Kreisscheibe
das Oszillator—Potential wirkt. Dies ist auf die Periodizitit der Sutherland—

Zustinde zuriickzufithren. In der Impuls-Darstellung transformiert sich die
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Wellenfunktion in Eigenzustéinde zu dem verallgemeinerten Potential mit dem
Sinushyperbolikus anstelle des Sinus im Nenner.

Da die Symmetrie der Wellenfunktionen (1.7) und (1.10) durch den Faktor
[, . :(z; — ;)" bestimmt ist, liegt bei v ¢ IN eine gebrochene Statistik vor, die
auch bei der Behandlung des Hall-Effektes eine wichtige Rolle spielt.






Résumé

Immanuel Kant konstatiert in seiner ,Logik* [Kan23]:

,»,Ja, der Verstand ist als der Quell und das Vermégen anzusehen, Regeln
iiberhaupt zu denken. Denn so wie die Sinnlichkeit das Vermdgen der
Anschauungen ist, so ist der Verstand das Vermogen zu denken, d.h. die
Vorstellungen der Sinne unter Regeln zu bringen. Er ist daher begierig,
Regeln zu suchen, und befriedigt, wenn er sie gefunden hat.“

Der Themenkomplex, in den diese Arbeit eingefiihrt hat, gehért nun sicherlich
zu den Gebieten, die der Geist noch nicht in einer ihn befriedigenden Form
gedacht hat. Hierauf weist nicht zuletzt die grofie Zahl der innerhalb der letzten
Jahre erschienenen Arbeiten aus dem Bereich der Quantengruppen hin. Ziel
dieser Forschungen ist letztendlich, die von den Physikern behandelten Modelle
als unterschiedliche Darstellungen eines algebraischen Objekts zu entlarven.
Das Calogero-Modell ist mit seiner r—Matrix ein Beispiel dafiir, da} dies mit
der Theorie der Lie-Bialgebren und deren Quantisierungen noch nicht gelungen
ist.

Klar wurde in dieser Arbeit jedoch auch, dal mit dem Begriff der Integrabilitit
nicht immer ganz sorgfiltig umgegangen wird. So sind fiir das Calogero—-Modell
weder sdmtliche Losungen des quantenmechanischen Falls bekannt, noch exi-
stiert ein strenger Beweis fiir die Integrabilitdt des klassischen Modells im Liou-

villeschen Sinne.

Das siebte Kapitel deutet an, dafl das von Calogero 1971 geloste System trotz
seines Modellcharakters in vielen Bereichen der Physik wieder auftaucht. Auch
wenn es nicht mit dem harmonischen Oszillator konkurrieren kann, der wohl als
das fundamentalste und zugleich wichtigste 16sbare Problem bezeichnet werden
muf}, so ist das Calogero—Modell doch ein grundlegendes System von grofier
Bedeutung fiir die Theoretische Physik.

71






Anhang A

Herleitung der Identititen
aus Kapitel 1

In diesem Anhang werden die Indetitdten 1.4a—1.4e aus Kapitel 1 bewiesen.

Zu 1.4a:

3811 = O H(ml - iL'j) = H (x; — :v])f)k <H (@), — 1'j) H (x; — mk))

i<k i >k

Z 1
=7 T —T;
£k

Damit ergibt sich:

2
v v 1 !
922" = Z{V(V_]‘)(Zxk_zi) +VZ Z (l’k—zi)(xk_zi)}
itk iFEk J
itjEk

Ausmultiplizieren des quadratischen Terms liefert

2
1 1 1
(Z —) =X el T X memE o)

itk itk itk 3
ititk
Beh.:
1
=0
(zr — ;) (z1 — ;)
gk N
iFjFRFE ::aiyjyk
Bew.:
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Die Summe 148t sich umschreiben in eine Summe fiiber 7,5 und k mit
i < j < k, die iiber alle Permutationen oy ;) mit o € S, lduft. Man
sieht, daf} die Summe iiber die geraden Permutationen sowie die tiber die
ungeraden Permutationen einzeln verschwinden und eine Dreifachsumme

iiber die Null verbleibt. O

Damit ergibt sich der angegebene Ausdruck:

282”—21/1/—1 z”Z

J<z

Zu 1.4b:
Unter Verwendung dieser Ergebnisse schreibt sich

ZaizaiPa = vz Zz—x A

iFi

Aufgrund der Antisymmetrie in ¢ und j ergibt sich fiir den Differentialoperator
0 _ 00
in—zj - Zzi—zj *
jFi i<i

Ausnutzen der Differentialgleichung fiir P, liefert damit die Identitét
02" 0:Py = — 52" ) 0Py

Zu 1.4c:
Die in einigen Termen auftauchende Ableitung nach der Variable r berechnet
sich via

o = Mg = 2—12(3”2)%

Damit schreibt sich

v _ Kl v Ti—Z; d(p
20200 = x5 X e q
i Gk S~
JFEIFER =105k

Dabei steht unter dem Summenzeichen nicht j #i # k # j !
Die Summe iiber die o ; 3 188t sich wie folgt berechnen:

Die Terme oy j ;j liefern den Summanden N(N — 1). Fiir die verbleibenden
N(N — 1)(N — 2) Beitrédge ergibt jeweils die Summe von o; j ; und oy, j ; eine
1. Insgesamt verbleibt von dieser Summe also lediglich der Faktor 3 N?(N — 1).
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Zu 1.4d:
Zum Beweis der Identitit fiir 3", 0%¢(r) benstigt man einige zusitzliche Terme:

or = % Z(a:l —z;)

= 9’ = Z(N-1)

7

2
Z{ (z: — 1‘;)} = Z(x —z;)? + 22 Z(l' —z;)(z: — 7)
jFi

2% i k<j

Dlwi—w)? + NN-1) Y a? — (N-2) Y wa

2%

i i

NZp2 = NZ(mi—a}j)Q = Z(a;i—a:j)z + %Z(wi—mj)z

i<i i,
= Z(mi—xj)2 + N(N—2)Zﬂvi2 - (N—2)Zmix]-
i i g

2%

- S{Sem)

i

Damit ergibt sich

dep d2g0
Zafgo = 3 23?7“ + 2 (0;r)?

7

N dy 1 2,2 1 22) dz‘P 212
- dr;( 3O 0 ) gm 2 e (r)

dyp 1 5, N(N- 1)) d2yp
= T (-——14 b S °¥
dr ( a3 " + Nr +

N-2dp d%
T dr dr2

Zu 1.4e:
Fiir die letzte Identitat benotigt man die Translationsinvarianz und die Homo-
genitit der Polynome P,.

Aus der Homogenitat folgt aus dem Satz von Euler, der sich leicht vermittels
Kettenregel beweisen 148t:

Z 2;0,P, = aP,

Die Translationsinvarianz fiir Polynome in mehreren Verdnderlichen bedeutet,
dafl f(#) = f(Z + a) fiir ein in allen Komponenten identisches d. Fiir geniigend
kleine € gilt dann:

f(&) = f(& + ed) = f(Z) + edVfjz
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Daraus folgt, da € klein, aber beliebig ist die Identitét
avVf =10
und somit fiir @ = (z;,z;,...,2;)
ZmiajPa =0.
j
Diese Eigenschaften liefern dann

Z(&w) (O:Py) = — 2 (@ — mj)aiPa

i



Anhang B

Das N—Oszillator Problem

In diesem Anhang wird die Lésung des Problems von N quantenmechanischer,
iiber ein Oszillatorpotential paarweise aneinandergekoppelter Teilchen vermit-
tels Entkopplung durch die Einfiihrung neuer Koordinaten, der sogenannten
Jacobi-Koordinaten, besprochen.

Der Hamiltonoperator dieses Problems hat die Form

i-= 529 + @S (@ — ;)

j<i
Als Koordinaten fithrt man nun folgende Variable ein:

W Y2
Yy, = S 1T; —Zm
b -1 | ’

i<i

Diese Transformation vermittelt folgende Identitéiten:

N-1
2
> v
1 =1
N-—-1

+ o2

1

]
B
|
B
l
Z

j<i

(=T V]

Za? — %0

1

i

Damit entkoppelt sich das Problem in den Jacobi—Variablen bei Vernachléssi-
gung der Schwerpunktbewegung zu N-1 harmonischen Oszillatoren.

Die Wellenfunktion ergibt sich als Produkt von (N—1) Oszillator-
Eigenfunktionen mit den Frequenzen w' := w,/¥ mit Energien B, = hw(n—1).
Als Gesamtenergie ergibt sich damit:

N-1
Enl,ng,...,nN_l = hw(n1+n2+---+nN—1_ T)

7
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Die Eigenfunktionen dieses Systems haben in den Jacobi-Koordinaten die Ge-
stalt

¢n1,---,nN-1 X  €exp ( - %\/ngyl) : HHm( Y goﬂ yi) .

Dabei sind die Funktionen H, die von der Losung des harmonischen Oszilla-
tors her bekannten Hermite-Polynome. Kehrt man zu den Ortskoordinaten z;
zuriick, so schreibt sich die Exponentialfunktion wie folgt:

1 /N 1 2
exp(— V3 WN Z(mi—a}j) ) )
i<i
Additionstheoreme fiir die Hermite—Polynome sind mir in der Literatur nicht
begegnet, so daf} ein Einsetzen der y; keine neue Gestalt der Eigenfunktionen
erbringt.

Auffillig an den Eigenfunktionen ist, daf es sich nicht ausschliefllich um symme-
trische und antisymmetrische Funktionen handelt. Da der Hamilton—Operator
jedoch mit dem Permutationsoperator vertauscht, 148t sich eine Basis der Ei-
genrdume als Linearkombination der obigen KEigenfunktionen finden, so daf§
diese ein Eigenfunktionensystem zum Permutationsoperator darstellen.

Der Entartungsgrad des N—Oszillator Problems stellt sich wie folgt dar:

N=dolslals| 6| 78| o
ls
ol1]1] 1] 1] 1] 1] 1] 1
112
213|610 15| 21 | 28 | 36
3|1]4]10]20| 35 | 56 | 84 | 120
411]5|15|35| 70 | 126 | 210 | 330
5162156126252 | 462 | 1287

Tabelle B.1: Entartungsgrad der ersten Zustidnde fiir kleine Teilchenzahlen



Anhang C

Koeffizienten des
charakteristischen Polynoms

Ausgangspunkt ist die Darstellung

o= Y TIU™ i @™

—,
mi,...,mg °

Zi im; = k

der Koeffizienten des charakteristischen Polynoms einer Matrix L. Der Einfach-
heit halber seien die Diagonalelemente L;; mit p; bezeichnet. Fiir die Ableitung
der Terme [tr(L)]’ ergibt sich

(L) = i (TP (T

Dies 148t sich leicht an der ausgeschriebenen Form von tr(L?) sehen. Damit
ergibt sich folgendes:

k
0J, (1) —1)ms - -
S = > s lte(L)™ (Y -
mi,...,mg s—=1
Ziimi:k ms 7Z0

k

1 s=islte(ri)m™

i =1

iF£ s
@ gkt Sy
- I'( )+Z Z sms—1(m,—1)!

mi,..., M, 1 s=1

Zi im; — k ms # 0
0 0™
[ee( @)™ (L) I mepyiler (L™
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kE—1
(3) — -ym - —1)mi i\Tm;
= (T 4Ny ()] T A lte (D)™ +
Mmi,...,Me—1 i=2
> imi=k
m1 #0
k—1 k—1 ( 1)m» .
+ 2:2 Z (s—1)ym, _, ’Hl imi(mi)![tr(Lz)]mi
= mi,...,Me_1 1=
Eiimi:k—l
ms Z0
(4) Ty :
O —a@ )N Y ] Sl +
My, Moy 1
doimi=k—1
kE—1 kE—1 1ymi .
+ Z Z (s—1)ym,_, H ig,fi(;%)![tr(y)]mi
s=2 Mmiy ..., Me_1 i=1
dimi=k—1
(5) gt (—1)mi ;
= —tr(LF ) +N Y II =g ltr(ZO)™ +
mi,...,me_qg =1
dimi=k—1
kE—1 ( 1)m‘ .
+ Z (k — ].)(]. — My — 1) H 7™ (my)! [tr(LZ)]mn
M1,y...,Mp_1 i=1
Ziimi:k_l
(6) g (—1)mi ~
= —(N—k+1) Z H imi(mi)![tr(Lz)]mi .
mi,...,me_qg ‘=1
ZiimiZk—l

Da aus Platzgriinden hier nicht jeder kleinste Schritt aufgefiihrt werden soll,
bedarf es in meinen Augen einiger Kommentare zu den erfolgten Umformungen:

(1) Hier wurde lediglich die Ableitung nach p, unter Verwendung obiger For-
mel fiir die Ableitung der Spuren ausgefiihrt. Die Zusédtze m, # 0 resultie-
ren daraus, daf§ diese Terme in der Entwicklung von J, nicht auftauchen
und daher auch nicht abgeleitet werden.

(2) Der Fall m;, = 1 wird herausgezogen, da durch die Nebenbedingung fiir
die Summe der m; hier simtliche m; mit 7 # k verschwinden.

(3) Auch der Fall s = 1 wird herausgezogen, da im folgenden die Terme zu
s und s — 1 zusammengefiihrt werden und ein Term zu (1 =s)—1=0
nicht existiert. Der Faktor N resultiert aus der Spur tr(L%) = tr(E) = N.
Fiir die Terme mit s > 1 geht man von m,; zu m; iiber, wobei folgender
Zusammenhang gilt:

mg_, = msfl_l-]-
m, = m,—1

m;, = m fir i & {s,s —1} .
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Damit lassen sich die durch das Ableiten entstandenen Terme wieder in
das Produkt schreiben.

(4) Auch fiir den Fall m, 148t sich dies durchfithren, da 1™ =1 fiir alle m,.

(5) In dem dritten Summanden wird die Summation iiber s ausgefiithrt und
dabei die Nebenbedingung fiir die Summe der m; verwendet.

(6) Das ,1 — m, _,“ im letzten Summanden ist gleichbedeutend mit einem
Omy _,,0- Dies wird durch den ersten Term tr(kal) wettgemacht. Zusam-
menfassen ergibt dann das geforderte Resultat.

Summiert man nun iiber sdmtliche [/, so bringt dies einen weiteren Faktor N

und damit die Gleichung (6.6).



Anhang D

Ziweilteilchen r—Matrix

Die r—Matrix des Calogero—Modells fiir zwei Teilchen wurde in Kapitel 6 ange-
geben. Sie hat die Form

- (1)e(52)

Dabei sind die Funktionen a und 3 von der folgenden Gestalt:
(Pl —P2) + ﬁ

a = 2ig(p,—p2) s ’ng\/’ﬂ
1 (pr—p2) — V11

B = 4g2(1'1—1'2) " Ys V37
Die Gamma ergeben sich zu den Funktionen:

N =48 (@ — )7 + (p—p)?

Yo =48> + (pr —p2)’ (@1 — 32)° — 11+ (pr — o)

va = 88" + 68 (D — o)’ (1 — @)% + 487 (pr — p.) (21 — @) V0 +
+ (ps —Pz)4(331 - 332)4 + (p —Pz)s(l’l - 332)4
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