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Einleitung
Nie erfassen wir das wahre Wesen der Dinge,stets nur irgendeinen Anschein von der Mitte der Dinge,in einer ewigen Verzwei
ung dar�uber,weder ihren Ursprung noch ihr Ziel zu kennen. (B. Pascal)

Eine der gro�en Motivationen, sich mit naturwissenschaftlichen Studien zubesch�aftigen, ist seit jeher das Geheimnis der Dynamik bewegter K�orper. Be-reits in fr�uhgeschichtlicher Zeit faszinierte die Menschheit das Ph�anomen derBewegung der Gestirne, was die Vielzahl der �uberlieferten astronomischen Be-obachtungen beweist. In der Renaissance trug die Astronomie wesentlich zurRevolutionierung der Wissenschaften bei und leitete dadurch die Ver�anderungdes gesamten Bildungswesens ein. Entfacht wurde die Diskussion der damali-gen Zeit durch das Werk "de revolutionibus\ von Nikolaus Kopernikus1. Einenvorl�au�gen H�ohepunkt erlebte die Astronomie mit Johannes Kepler2, der Ge-setze f�ur die Planetenbewegung aufstellte. Mit irdischeren Problemen der Be-wegung von K�orpern besch�aftigten sich unter anderen Leonardo da Vinci3 undGalileo Galilei4. Letzterer fa�te die Vorg�ange des freien Falls und die Pendel-bewegung in die Form einer Gesetzm�a�igkeit. Ziel war es fortan, die Dynamikbewegter K�orper als Gesetze zu formulieren und ihr so eine dem menschlichenGeist zug�angliche Struktur aufzupr�agen.Ein gro�er Erfolg bei der Realisierung dieses Programms wurde durch IsaacNewton5 erzielt, als er Mitte des 16. Jahrhunderts die Bewegung einer Masseunter dem Ein
u� einer gr�o�eren Masse in Formeln fa�te und damit sowohl dieBewegung eines Planeten um eine Sonne, als auch die Fallgesetze f�ur K�orperauf der Erdober
�ache vereinheitlichen konnte.Bei der Ausweitung dieses Zentralkraftgesetzes auf ein System mit drei Massentraten jedoch bereits gravierende Probleme auf, die darin bestehen, da� weder1Deutscher Mathematiker und Astronom (1473{1543) im Jahre 1543. Gri� in dem erw�ahn-ten Werk die Idee Aristarchos' von einem heliozentrischen Weltbild auf.2Deutscher Astronon (1571{1630). Stellte Gesetze f�ur die Planetenbewegung auf und ent-wickelte die Theorie der Bildentstehung in einem Fernrohr.3Italienisches Universalgenie (1442{1519). Empiriker, der die entdeckten Ph�anomene prak-tisch umzusetzen suchte. Versuchte aber auch, eine umfassende Naturbeschreibung der me-chanischen Ph�anomene zu entwickeln.4Italienischer Mathematiker, Physiker und Philosoph (1564{1642). F�uhrte die Methode sy-stematischer Versuchsreihen ein und gewann dadurch Gesetzm�a�igkeiten der Pendelbewegungund des freien Falls. Weitere wichtige Beitr�age zur Astronomie.5Englischer Mathematiker, Physiker und Astronom (1643{1727). Entwickelte eine Gravi-tationstheorie sowie eine axiomatische Theorie der Mechanik.1



2 Einleitungeine L�osung in Form einer Funktion der Zeit, noch eine Charakterisierung dieserBewegung angegeben werden kann.Mit diesem Problem setzten sich Naturwissenschaftler lange Zeit auseinander,was wesentlich dazu beitrug, die Prinzipien der klassischen Mechanik in einemathematisch sehr kompakte und klare Form zu bringen. Eine L�osung jedochist bis heute nur f�ur spezielle Anordnungen von drei K�orpern bekannt, die eineAusnutzung der Symmetrie der Anordnung zulassen. Joseph Louis Lagrange6l�oste das Drei{K�orper{Problem sowohl f�ur auf den Ecken eines gleichseitigenDreiecks, als auch f�ur auf einer rotierenden Geraden angeordnete K�orper. Weite-re wichtige Beitr�age zum Drei{K�orper{Problem stammen von Henri Poincar�e7,der sich mit den Erhaltungsgr�o�en dieses Problems besch�aftigte und zeigenkonnte, da� f�ur den allgemeinen Fall die Zahl der erhaltenen Gr�o�en kleiner alsdie der Freiheitsgrade ist (siehe hierzu auch Kapitel 2). In einem Brief, den erkurz vor seinem Tode an Lagrange schrieb, spricht er auch von einer allgemei-nen L�osung, die allerdings in seinen Aufzeichnungen nicht gefunden wurde. Bisheute ist eine solche nicht bekannt.Im Laufe der Zeit wurden f�ur Systeme mit einer gro�en Zahl von TeilchenMethoden entwickelt, die nicht die Bewegung des einzelnen Teilchens, sondernlediglich einige makroskopische, das System charakterisierende Gr�o�en, berech-nen. Diese Methoden wurden unter der Bezeichnung "statistische Physik\ zueinem wichtigen Gebiet der Physik zusammengefa�t. In diesem Bereich sprichtman von "Vielteilchensystemen\ im Gegensatz zu den "Wenigteilchensystemen\wie zum Beispiel Atomen mit mehr als einem Elektron. Um f�ur diesen Be-reich neue Techniken entwickeln zu k�onnen, ist es hilfreich, eine Zahl l�osbarerSysteme, also die Bewegung wechselwirkender Teilchen, zu kennen. F�ur dieQuantenmechanik, in der st�orungstheoretische Methoden eine wichtige Rollespielen, birgt jede L�osung eines neuen Systems als Basis eines Hilbertraumesdie M�oglichkeit, die L�osung anderer Systeme nach dieser Basis zu entwickeln.Im klassischen Fall ist die St�orungsrechnung weitaus komplexer. Es sind ledig-lich Aussagen �uber das Verhalten in der N�ahe einer bekannten L�osung m�oglich,und diese sind auch nicht einfach zu handhaben. F�ur nichtlineare klassischeSysteme existieren Methoden, diese als St�orung eines linearen Systems zu be-trachten. Dies war ein Ansatz f�ur die Entwicklung der Chaos{Theorie.Gegenstand der vorliegenden Arbeit ist das Calogero{Modell, bei dem es sichum ein eindimensionales, exakt l�osbares N{Teilchen{System handelt. Anhanddieses Beispiels sollen einige wichtige Methoden zur Untersuchung von Integra-bilit�at besprochen werden. Desweiteren behandele ich auch ausschlie�lich f�ur6Franz�osischer Mathematiker und Astronom (1736{1813), bekannt durch Arbeiten in denGebieten Mechanik, Schwingungen und Variationsrechnung.7Jules Henri Poincar�e, franz�osischer Mathematiker, Physiker und Philosoph (1854{1912),lieferte wichtige Beitr�age zur Astronomie, der Theorie des elektromagnetischen Feldes sowieder Analysis.



Einleitung 3das Calogero{Modell anwendbare Methoden, die eine mathematische Einord-nung desselben erm�oglichen.





Bemerkungen zur Notation
Vorab m�ochte ich einige vielleicht nicht allen Lesern gel�au�ge Notationen be-sprechen.Da es sich bei dem im folgenden behandelten Problem um ein rein mechanischeshandelt, bietet sich an, die entsprechenden SI{EinheitenMeter (m), Kilogramm(kg) und Sekunde (s) durch eine dieser Einheiten auszudr�ucken, was durchSetzen von �h = 1 = m geschieht. Damit wird das Kilogramm einheitsfrei unddie L�ange erh�alt die Dimension der Wurzel aus einer Sekunde. Die Energie wirdin diesen Einheiten als Frequenz gemessen.Die Tatsache, da� dem behandelten N{K�orper{Problem eine paarweise Wech-selwirkung der Teilchen zugrunde liegt, bedingt, da� des �ofteren Mehrfachsum-men und -produkte auftreten. Da diese meist nicht �uber alle nat�urlichen Zahlenvon 1 bis N laufen, bietet sich die Verwendung der Summenkonvention nichtan. Um das Ganze dennoch einigerma�en �ubersichtlich zu gestalten, verwendeich in der Regel nur ein Summenzeichen, aus dessen Indizierung hervorgeht,wor�uber summiert werden soll. So gelten in der Regel beispielsweise folgendeErsetzungen: Xj < i � NXi = 2 i� 1Xj = 1Xi 6= j � NXi = 1 NXj = 1j 6= iDabei ist darauf zu achten, da� �uber Indizes, die auf der linken Seite einerGleichung frei sind, auf der rechten Seite selbstverst�andlich nicht summiertwird. An diese Notation sollte man sich innerhalb k�urzester Zeit gew�ohnt haben,weshalb ich sie von Beginn an verwenden werde.Eine weitere, oft anzutre�ende Schreibweise ist das Ersetzen partieller Ablei-tungen nach der Standard{Variable xi durch@@xi � @iAuch wenn dies in meinen Augen die Lesbarkeit nicht immer verbessert, werdeich mich im folgenden dieser Konvention bedienen.5



6 Bemerkungen zur NotationAus der Tatsache, da� der von mir behandelte Themenkomplex h�au�g aufMehrfachsummen f�uhrt, resultierte im Verlauf meiner Arbeit die Frage nacheinem geeigneten Symbol f�ur die imagin�are Einheit. In der mathematischensowie physikalischen Literatur wird hierf�ur im allgemeinen der Buchstabe "i\verwendet; in der Elektrotechnik benutzt man, um Verwechslungen mit demelektrischen Strom vorzubeugen, den Buchstaben "j\. F�ur mich stellte sich dieauch in einigen Computerprogrammen zur symbolischen Algebra verwendeteSymbolik " �̂ \ als sehr vorteilhafte und auch nicht mit extrem gesteigertenSchreibaufwand verbundene L�osung heraus. Diese habe ich auch in den vorlie-gende Drucksatz �ubernommen.



Kapitel 1Das Calogero{Modell

Vor dem Vielen ist das Eine,von dem her auch das Viele ist.(Plotin)

Den Anla� zu dieser Arbeit bot unter anderem eine Arbeit von Francesco Ca-logero aus dem Jahre 1971 mit dem Titel "Solution of the One-Dimensional N -Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials\.Diese verfa�te er w�ahrend eines Aufenthaltes an der Universit�at in Moskau.Heute lehrt er als Professor f�ur Theoretische Physik an der Universit�at "LaSapienza\ in Rom. Sein Hauptinteresse richtet sich auf die Untersuchung nicht-linearer Di�erentialgleichungen unter Verwendung der Methode der "inversenStreuung\ (siehe hierzu Kapitel 2) und der Verallgemeinerung dieser Methodeauf die Analyse und Klassi�zierung physikalischer Systeme.1.1 Der HamiltonianDie Untersuchungen von F. Calogero aus dem Jahre 1971 besch�aftigen sich miteinem System, das der klassischen Schr�odinger{Gleichung�̂ �h @@t 	 (x1; x2; : : : ; xN) = bHCal 	(x1; x2; : : : ; xN)gen�ugt. Das Potential setzt sich dabei aus einem attraktiven, paarweise wirken-den Oszillator{Potential und einem "Zentrifugalpotential\, das je nach Kopp-lung attraktiv oder repulsiv geschaltet werden kann, zusammen. Der Energie{Operator hat damit die folgende Form:bHCal = � �h22m � + NXj < i�m!24 (xi � xj)2 + g(xi�xj)2� : (1.1)Da dieses Potential keine Zeitabh�angigkeit besitzt, reduziert sich das Problemauf die L�osung der station�aren Schr�odinger{Gleichung. Weil das Vorgehen beider Berechnung der L�osung dieses Problems nirgends ausf�uhrlich dokumentiertist, und man �uber einen geschickten Ansatzes auf einige interessante Funktionender mathematischen Physik st�o�t, soll die Vorgehensweise im folgenden etwasausf�uhlicher besprochen werden. 7



8 Kapitel 1. Das Calogero{Modell1.2 Ein symmetrieangepa�ter L�osungsansatzEine unmittelbar au�allende Symmetrie des Hamiltonians ist die Translations-invarianz xi ! xi + a. Au�erdem ist der Hamiltonian invariant unter Teilchen-vertauschung, was bedeutet, da� es ein Eigenfunktionensystem bestehend ausgeraden und ungeraden Funktionen gibt.Zur Vereinfachung f�uhrt man folgende De�nitionen ein:z = NYj < i (xi � xj)r2 = 1N Xj < i (xi � xj)2 :F�ur die Wellenfunktion bez�uglich der Schwerpuntkoordinaten w�ahlt man nunfolgenden Ansatz:	(x1; x2; : : : ; xN) = z� '(r)P�(x1; x2; : : : ; xN) ; (1.2)wobei die Funktion P� folgende Bedingungen erf�ullen soll:1. Translationsinvarianz2. Homogenit�at vom Grade �, also ein Polynom3. Sie gen�uge der folgenden Di�erentialgleichung: Xi @2i + 2 �Xj < i @i � @jxi � xj!P� = 0 (1.3)Calogero zeigt in seiner Arbeit, da� aus der Di�erentialgleichung (1.3) unmittel-bar die Symmetrie der L�osungen dieser Gleichung folgt. Inwieweit diese letzteBedingung eine Einschr�ankung der L�osungsmenge bedeutet, wird im folgendennoch diskutiert.Der Operator der kinetischen Energie wirkt in Einheiten �h = m = 1 wie folgtauf den obigen Ansatz (1.2) f�ur die Wellenfunktion:12Xi @2i 	(x1; x2; : : : ; xN) = 12Xi n(@2i z�)'P� + z�(@2i ')P� + z�' (@2i P�)++2(@iz�) (@i')P� + 2(@iz�)' (@iP�) + 2z�(@i') (@iP�)g :Dabei gelten folgende, in Anhang A gezeigte Identit�aten:



1.2. Ein symmetrieangepa�ter L�osungsansatz 9Xi @2i z� = 2 �(� � 1) z� Xj < i 1(xi � xj)2 (1.4a)Xi (@iz�) (@iP�) = � 12 z� Xi @2i P� (1.4b)Xi (@iz�) (@i ') = 12 z� �N(N�1)r d'dr (1.4c)Xi @2i ' = N�2r d'dr + d2'dr (1.4d)Xi (@i') (@iP�) = �r d'dr P� (1.4e)1.2.1 Die Gebundenen Zust�andeDie Schr�odingergleichung des Calogero{Modells schreibt sich mit dem Ansatz(1.2) sowie den Identit�aten (1.4) als folgende Di�erentialgleichung f�ur die Funk-tion '(r):�12'00 � �N�22r + N(N�1) �2r + �r �'0 � f�(� � 1) � ggXj < i 1(xi � xj)2'++ (!24 Xj < i(xi � xj)2 � E)' = 0 :W�ahlt man den Parameter � nun so, da� die Gleichung �(�� 1) = g erf�ullt ist,� also die Werte � = 12 �q 14 + gannimmt, verschwindet der dritte Summand in dieser Gleichung. Es f�allt auf,da� f�ur g < �h24m (in den SI{Einheiten) der Wert f�ur � eine komplexe Zahl wird.Dies f�uhrt dazu, da� die L�osungen nicht mehr normierbar sind, was hier jedochnoch nicht zu sehen ist. Bei Thirring [Thi79] �ndet sich jedoch eine Diskussiondes quantenmechanischen 1=r2{Potentials, die zum Ergebnis hat, da� geradef�ur den obigen Fall der Kopplung der resultiernde Hamiltonian nicht mehrbeschr�ankt ist.Mit den Abk�urzungen� = N � 2 + N(N� 1)� + 2�schreibt sich die, nunmehr gew�ohnliche, Di�erentialgleichung f�ur die Funktion'(r) wie folgt: '00 + �r '0 � �N!22 r2 � 2E�' = 0 :Der Ansatz '(r) = r�� u(r)



10 Kapitel 1. Das Calogero{Modellf�uhrt auf die Di�erentialgleichungu00 + ��2�r u0 + ��(�+1)���r2 � N!22 + 2E� u = 0 :Geht man hierin zu der Variable x := 4qN!22 r �uber, was die Transformationenu(r) ! v(x)) u0(r) ! xr v0(x)induziert, und w�ahlt � = 12�, erh�alt man folgende Form:v00 + ��(�+1)�2�2x2 � x2 � 2qN!22 E� v = 0 : (1.5)In Werken �uber spezielle Funktionen der mathematischen Physik, wie zum Bei-spiel dem von Magnus, Oberhettinger und Soni [MOS66], �ndet sich die Di�e-rentialgleichung f 00 + �1�4�24x2 4n � x2 + 2� + 2� f = 0 (1.6)mit der L�osung f(x) = exp(�12x2)x�+ 12 L(�)n (x2) ;wobei die L(�)n die verallgemeinerten Laguerre{Polynome sind.Ein Vergleich der Gleichungen (1.5) und (1.6) zeigt, da� sie f�ur� = � � 12 = 12(�� 1)n = 12!q 2N E � � � 1identisch sind. Durch R�uckeinsetzen erh�alt man schlie�lich	(x1; x2; : : : ; xN) / z� exp(� 12qN2 !r2)L(�)n (qN2!r2) ��P�(x1; x2; : : : ; xN) (1.7)En,� = !qN2 (2n + � + 1) (1.8)mit � = N� 32 +N(N� 1)� + 2�.Dies sind die (nicht normierten) L�osungen sowie die dazugeh�origen Energieei-genwerte des Calogero{Modells, wobei sowohl n als auch � ganzzahlige, nichtnegative Werte annehmen k�onnen. Die Energie h�angt jedoch nur von der Sum-me 2n + � ab, was dazu Anla� gibt, als Hauptquantenzahl s := 2n + � ein-zuf�uhren. Eine Nebenquantenzahl dient dann zur eindeutigen Charakterisie-rung der Eigenfunktionen, die aufgrund der Tatsache, da� verschiedene Tupel(n; �) auf ein und dasselbe s f�uhren und zu einem � auch mehrere PolynomeP� existieren, nicht alleine durch die Quantenzahl s gegeben ist. Die Zahl der



1.2. Ein symmetrieangepa�ter L�osungsansatz 11erlaubten Werte der Nebenquantenzahl liefert den Entartungsgrad des Ener-gieeigenwertes Es.Eine sehr ausf�uhrliche und gut nachvollziehbare Diskussion des Entartungsgra-des �ndet sich bei Calogero [Ca71]. Aus diesem Grund m�ochte ich hier nur kurzdie wesentlichen Resultate wiedergeben.Der Entartungsgrad bei gegebener Teilchenzahl N ist durch die Zahl der erlaub-ten Tupel (n; �), die auf das gleiche s f�uhren, gegeben. Da das n als Index derverallgemeinerten Legendre{Polynome keiner anderen Einschr�ankung als derPositivit�atsbedingung unterliegt, spielt das � die entscheidende Rolle. Dabeiist die nackte Bezeichnung � irref�uhrend, da dieses selbst indiziert sein m�u�te,weil zu gegebenem Homogenit�atsgrad durchaus mehrere, IR{linear unabh�angigePolynome existieren k�onnen. In die Entartung geht also die Zahl der PolynomeP(s-2n), die den obigen Anforderungen gen�ugen, wesentlich ein. Die allgemeineForm solcher Polynome ist durch folgende Formel ausgedr�uckt:P� = Xfml gml > 0 aml��, PNl=2 l �ml NYl = 28<:Xi "xi � 1NXj xj#l9=;ml :Dabei sind die anl frei w�ahlbare Koe�zienten. Die maximale Zahl g(N; k) sol-cher voneinander unabh�angiger Polynome ergibt sich also als Anzahl paarweiseverschiedener Tupel (m2;m3; : : : mN), so da� die Summe PNl=2 l ml gerade denHomogenit�atsgrad � ergibt. F�ur dieses kombinatorische Problem existiert keineDarstellung in geschlossener Form. Sie lassen sich jedoch �uber mehrere Gr�o�en-ordnungen hinweg leicht unter Zuhilfenahme moderner Rechner bestimmen.F�ur die F�alle N=3 bis N=10 ergeben sich f�ur � kleiner 11 die in Tabelle 1.1aufgelisteten Werte.Den hieraus resultierenden Entartungsgradgs = [s/2]Xn=1 g(N; s� 2n)zeigt Tabelle 1.2:Bei dieser Aufstellung wurde jedoch nicht ber�ucksichtigt, da� zu einer Kopplung"g\ zwei Werte von � geh�oren, die unter Umst�anden f�ur eine Vergr�o�erung desEntartungsgrades verantwortlich sein k�onnen. Dies tritt genau dann ein, wenngilt N(N� 1) �q14 + g 2 IN : (1.9)Diese M�oglichkeit wurde von Calogero nicht diskutiert, da die Eigenzust�andezu den beiden verschiedenen Werten von � unterschiedliche Symmetrien aufwei-sen und somit verschiedenen "Klassen\ von Teilchen angeh�oren. Verzichtet manauf diese statistische Klassi�zierung, so kann der dadurch resultierende erh�ohte



12 Kapitel 1. Das Calogero{Modell
N !# � 2 3 4 5 6 7 8 9 100 1 1 1 1 1 1 1 1 11 0 0 0 0 0 0 0 0 02 1 1 1 1 1 1 1 1 13 0 1 1 1 1 1 1 1 14 1 1 2 2 2 2 2 2 25 0 1 1 2 2 2 2 2 26 1 2 3 3 4 4 4 4 47 0 1 2 3 3 4 4 4 48 1 2 4 5 6 6 7 7 79 0 2 3 5 6 7 7 8 810 1 2 5 7 9 19 11 11 12Tabelle 1.1: Anzahl symmetrischer translationsinvarianter Polynome zu gege-benem Homogenit�atsgrad �

N !# s 2 3 4 5 6 7 8 9 100 1 1 1 1 1 1 1 1 11 0 0 0 0 0 0 0 0 02 2 1 1 1 1 1 1 1 13 0 1 1 1 1 1 1 1 14 3 2 3 3 3 3 3 3 35 0 2 2 3 3 3 3 3 36 4 4 6 6 7 7 7 7 77 0 3 4 6 6 7 7 7 78 5 6 10 13 13 13 14 14 149 0 5 7 11 12 14 14 15 1510 6 8 15 18 22 23 25 25 26Tabelle 1.2: Entartungsgrad der ersten Zust�ande f�ur kleine Teilchenzahlen



1.2. Ein symmetrieangepa�ter L�osungsansatz 13Entartungsgrad nur f�ur bekanntes g Tabellarisiert werden, was lediglich einegro�e Menge von Zahlenkolonnen ohne wesentlichen Informationsgehalt her-vorbringen w�urde.Eine interessante Eigenschaft der Energieeigenwerte ist, da� sie bei Zuschalteneiner invers quadratischen Paarwechselwirkung lediglich eine von der Teilchen-zahl sowie der St�arke der Kopplung abh�angige Anhebung erfahren, die vondem Zustand v�ollig unabh�angig ist. Man spricht hier auch von dem "Calogero{Teilchen\ im Oszillator{Potential, wobei das Calogero{Teilchen durch die Ei-genzust�ande zu bHCal mit ! = 0 gegeben ist.Das System mit g= 0, also ohne invers quadratische Wechselwirkung, wurde be-reits fr�uher durch Einf�uhren der sogenannten Jacobi{Koordinaten gel�ost (sieheAnhang B). Man erh�alt dort gerade die L�osungen mit � = 0. Das Spektrumzu dem Wert � = 1 erh�alt man durch den �Ubergang von der Quantenzahl s zuder Quantenzahl s0 := s+ 12N(N� 1), die wieder eine nat�urliche Zahl darstellt,da f�ur N > 1 der Term N(N� 1) ein ganzzahliges Vielfaches von zwei wird. Esist also in dem Spektrum f�ur den Wert � = 0 enthalten und beginnt lediglichmit einer h�oheren, von der Teilchenzahl streng monoton steigend abh�angigenGrundzustandsenergie.1.2.2 Die Streuzust�andeDer Fall ! = 0 ist mit obiger Rechnung nicht abgedeckt, da der �Ubergang vonder Variable r zu der Variablen x := 4qN!22 r keine Isomorphie mehr darstellt.Die L�osung dieses Sonderfalles erh�alt man jedoch auf ganz �ahnlichem Wege.Unter Ausnutzung der Identit�aten (1.4) verbleibt nach Anwenden der Hamilto-nians (1.1) mit ! = 0 auf den Ansatz (1.2) die gew�ohnliche Di�erentialgleichung�12 ( d2dr2 + (1 + 2b) ddr + p2)'(r) = 0mit b = N� 2 + N (N� 1) � + � undp2 = 2E :Der Ansatz '(r) = r�b�(r) liefert( d2dr2 + 1r ddr + (p2 � b2r2 ))�(r) = 0und durch die Substitution x = p � r f�ur die Funktion v(x) folgende Di�erenti-algleichung: ( d2dx2 + 1x ddx + (1� b2x2 )) v(x) = 0 :



14 Kapitel 1. Das Calogero{ModellDies ist die modi�zierte Besselsche Di�erentialgleichung, die aus der Bessel{Di�erentialgleichung durch die Substitution z ! �̂z hervorgeht. Die L�osungenhierzu �ndet man wiederum zum Beispiel bei [MOS63]. Sie lauten:v(x) = Ib(x) ;wobei die Ib(x) die modi�zierten Bessel{Funktionen sind. Diese h�angen wiefolgt mit den Bessel{Funktionen zusammen:Ib(z) = exp (� 12��̂b)Jb(12��̂z) :Dabei sind f�ur den Index b beliebige komplexe Zahlen zugelassen.Die Wellenfunktionen und die Energien des Calogero{Modells mit invers qua-dratischem Potential sind also von der folgenden Gestalt:	(x1; x2; : : : ; xN) / z�r�bIb(p � r)P�(x1; x2; : : : ; xN) (1.10)Ep = 12p2 : (1.11)Das Energiespektrum dieses Systems ist damit kontinuierlich und rein positiv.Der Entartungsgrad ist durch die Unabh�angigkeit der Energie von der Wahldes Homogenit�atsgrades � der Polynome P� unendlich. Wegen der Positivit�atder Energie spricht man hier von einem Streuproblem. Calogero zeigte, da� alsResultat dieses Streuprozesses lediglich die Impulse der Teilchen untereinandervertauscht werden. Es entstehen also keine neuen Impulse.1.3 Diskussion der Vollst�andigkeitDie Vollst�andigkeit der L�osungen eines quantenmechanischen Problems ist einBegri�, der sich aus der Theorie der Struktur des Raumes, den die Wellenfunk-tionen als normierte, komplexwertige L�osungen einer linearen Di�erentialglei-chung aufspannen. Als solche liefern sie eine Orthonormalbasis dieses Raumesder quadratintegrablen Funktionen mit dem �ublichen Skalarprodukt< f(x); g(x) > := Z 1�1 �f(x) � g(x) dx :Die Vollst�andigkeit dieses Raumes geht auf die Cauchysche De�nition derVollst�andigkeit von Folgen zur�uck, die verlangt, da� der Grenzwert einer jedenkonvergenten Folge in diesem Raum Element desselben ist. Da man �uber einpositiv de�nites, reellwertiges Skalarprodukt sofort eine Norm in einem Raumgegeben hat, l�a�t sich in diesem dann auch von Konvergenz und somit vonVollst�andigkeit reden.In dem Hilbertraum L2 der quadratintegrablen Funktionen sehen die Bedin-gungen f�ur Orthonormalit�at und Vollst�andigkeit f�ur abz�ahlbare L�osungen wie



1.3. Diskussion der Vollst�andigkeit 15folgt aus: < 	i;	j >= �i; j Orthonormalit�at,1Xi = 1 j 	i >< 	i j= 1 Vollst�andigkeit.Die Orthogonalit�at bez�uglich der Hauptquantenzahl Klein s ergibt sich aus derTatsache, da� es sich um Eigenfunktionen zu einem selbstadjungierten Di�e-rentialoperator handelt, analog zu der Orthogonalit�at von Eigenr�aumen Her-mitischer Matrizen. Die Orthogonalit�at in der Nebenquantenzahl ist nicht vonvornherein klar, begr�undet sich allerdings damit, da� die durch sie indizier-ten symmetrischen Polynome ein orthogonales Funktionensystem bilden ( siehehierzu auch [Dun88]).Verbleibt die Frage nach der Vollst�andigkeit der L�osungen, die durch den Spek-tralsatz f�ur selbstadjungierte Operatoren beantwortet w�are, wenn es sich beiden von Calogero gerfundenen L�osungen bereits um s�amtliche L�osungen zudiesem Eigenwertproblem handelte. Da jedoch der Ansatz (1.2) durch die An-forderungern an die Funktion P� wie Homogenit�at und Erf�ullung der Di�eren-tialgleichung (1.3) sehr speziell ist, kann nicht erwartet werden, da� man damitbereits s�amtliche L�osungen erh�alt. Die �Uberpr�ufung durch direktes Nachrech-nen der Orthogonalit�atsrelation erweist sich jedoch als nicht problemlos undwurde bisher nicht ausgef�uhrt.Eine M�oglichkeit, dennoch Aussagen �uber dieses Problem tre�en zu k�onnen,bietet hier die Betrachtung von Grenzf�allen der Kopplung. F�ur die GebundenenZust�ande ist die vollst�andige L�osung des Problems f�ur Kopplung g= 0 bekannt.Hier tritt der oben erw�ahnte Fall ein, da� durch die Wahl von g eine zus�atzlicheEntartung hervorgerufen wird, da f�ur N gr�o�er als zwei einer der Faktoren Nund (N � 1) aus (1.9) in jedem Fall die 2 als Primfaktor enth�alt. Den gesamtenEntartungsgrad erh�alt man f�ur dieses System aus Tabelle (1.2) durch Additionder um N(N�1) nach unten verschobenen Spalte zu der Teilchenzahl N zu sichselbst. Es zeigt sich jedoch sofort, da� die entstehenden Werte unter denen ausTabelle (B.1) liegen, was bedeutet, da� die von Calogero gefundenen L�osungennicht die vollst�andige L�osungsmenge sind.Einen alternativen L�osungsansatz, der eventuell f�ur das Au�nden der fehlendenL�osungen hilfreich sein k�onnte, kann man aus einer n�aheren Betrachtung derEnergieeigenwerte ableiten. Diese ergeben sich im Fall eines Calogero{Teilchensim Oszillator{Potential aus den Energien des N{Oszillator{Problems um einenkonstanten Betrag in positive Richtung verschoben. Das legt die Vermutungnahe, da� sich die vollst�andige L�osung des Calogero{Problems aus den Eigen-funktionen des Oszillator{Problems (siehe Anhang B) multipliziert mit vondem Parameter � abh�angigen Funktionen in den xi zusammensetzen. Genauersollten die Wellenfunktionen sogar von der folgenden Form sein:	Cal(x1; : : : ; xN) = 	Osz(x1; : : : ; xN) � exp �g � �(x1; : : : ; xN)� :



16 Kapitel 1. Das Calogero{ModellDie Energie des Calogero{Modells ergibt sich dann alsECal = EOsz + EShift :Dabei sind die Energien EShift durch folgende Di�erentialgleichung f�ur die Funk-tion � gegeben:12gXi @2i � + g2Xi (@i�)2 � gqN2 ! 1N Xj 6= i(xi � xj)@i� ++ g 4qN2 !2 Xi > 1 H0ni�1 ( 4pN2 !2yi� 1)Hni�1 ( 4pN2 !2yi� 1) � (i� 1) @i � +� g 4qN2 !2 Xj � i H0nj ( 4pN2 !2yj)Hnj ( 4pN2 !2yj) @i � ++ gXj < i 1(xi�xj)2 = EShiftDie yi als Funktionen der fxkg sind in Anhang B de�niert.Diese Di�erentialgleichung bereitet jedoch betr�achtliche Schwierigkeiten, diezur folge haben, da� ich keine L�osung angeben kann.



Kapitel 2
Theorie Klassisch IntegrablerSysteme

Unsichtbare Harmonie ist st�arkerals sichtbare. (Heraklit)

2.1 Hamiltonsche MechanikDie f�ur das strukturelle Verst�andnis der mathematischen Theorie mechanischerSysteme fruchtbarsten Zug�ange sind die von Joseph Louis Lagrange und die,mittels Legendre1{Transformation daraus hervorgehende, von Sir William Ro-wan Hamilton2 formulierte Hamiltonsche Mechanik.2.1.1 Der PhasenraumSowohl in der Lagrangeschen als auch in der Hamiltonschen Formulierung derMechanik wird der Kon�gurationsraum, der durch die direkte Summe der Teil-chenkoordinaten aufgespannte Raum, als Riemannsche MannigfaltigkeitM be-handelt. Im Falle eines N{Teilchensystems im dreidimensionalen Raum ist derKon�gurationsraum nicht durch Zwangsbedingungen an eine Hyper
�ache ge-bundener Teilchen somit eine 3N{dimensionale Mannigfaltigkeit. Auf der Kon-�gurationsmannigfaltigkeit lassen sich nun Koordinaten einf�uhren, die als ver-allgemeinerte Koordinaten bezeichnet werden. Die vertrauteste, aber nicht not-wendigerweise geschickteste Wahl f�ur diese Koordinaten sind die Ortskoordina-ten.1Adrien Marie Legendre, franz�osischer Mathematiker (1752{1833), bekannt durch Arbei-ten �uber elliptische Funktionen und in der Zahlentheorie, sowie die Methode der kleinstenQuadrate.2Irischer Mathematiker (1805{1865), bekannt durch die Formulierung der HamiltonschenMechanik sowie der Theorie der Quaternionen.17



18 Kapitel 2. Theorie Klassisch Integrabler SystemeDie Tangentialvektoren an diese Mannigfaltigkeit werden verallgemeinerte Ge-schwindigkeiten genannt. Im Falle der Wahl von Ortskoordinaten auf dem Kon-�gurationsraum handelt es sich bei den Tangentialvektoren um aus den Teil-chengeschwindigkeiten zusammengesetzte Vektoren.Der Unterschied zwischen Lagrangescher und Hamiltonscher Formulierung be-steht aus heutiger Sicht darin, da� Lagrange mit dem Tangentialb�undel TMarbeitete, w�ahrend Hamiltion die Mechanik unter Verwendung des Kotangen-tialb�undels T�M formulierte. Dabei bezeichnet der Begri� des B�undels die Ba-sismannigfaltigkeit erweitert durch in jedem Punkt mit ihr verklebte R�aume,in diesem Fall den Fasern. Das B�undel � := T�M mit einer zus�atzlichenStruktur wird als Phasenraum bezeichnet. Diese zus�atzliche Struktur bewirkt,da� eine Identi�kation von Tangential- und Kotangentialb�undel der Mannig-faltigkeit M durch eine Abbildung � : T�M ! TM m�oglich wird. Alterna-tiv geschieht das durch Einf�uhren einer schiefsymmetrischen, bilinearen Ab-bildung f � ; � g : C1(�) � C1(�) ! C1(�), der Poisson3{Klammer, oderaber �uber einen schiefsymmetrischen 2{Tensor w 2 TM 
 TM , den Poisson{Bivektor. Mit dem Poisson{Bivektor l�a�t sich eine schiefsymmetrische 2{Form! := ( � 
 � )�1(w) de�nieren. Ist diese nicht entartet, so spricht man vonT�M mit der zus�atzlichen Struktur als einer symplektischen Mannigfaltigkeit.Die Form ! ist genau dann geschlossen, wenn die Poisson{Klammer die Jacobi4{Identit�at erf�ullt. In lokalen Koordinaten hat ! die Form ! = dp ^ dq.F�ur Systeme, in denen das Potential keine explizite Zeitabh�angigkeit aufweist,wird die Bewegung der Teilchen in der Lagrange{Mechanik durch die Lagrange{Funktion L :TM ! IR und im Hamiltonschen Falle durch die FunktionH :T�M! IR bestimmt. Bei Langrange ergeben sich nun die Phasenbahnen 
(t) :IR !TM als Extrema des FunktionalsS(
(t)) := Z t1t0 L(
(t)) dt ; (2.1)dem sogenannten Wirkungsfunktional. Hieraus lassen sich mit Hilfe des Ha-miltonschen Variationsprinzips die Lagrangeschen beziehungsweise Hamilton-schen Bewegungsgleichungen herleiten. Die Hamiltonschen Di�erentialgleichun-gen haben die Form ��1( _
(t)) := !j
(t)( _
(t); � ) = dHj
(t), _
(t) = �j
(t) dHj
(t) ; (2.2)wobei die Kurven auf T�M �uber die Abbildung � mit den Kurven auf TMidenti�ziert werden k�onnen, weshalb hier nicht zwischen ihnen unterschiedenwird.3Denis Poisson, franz�osischer Mathematiker und Physiker (1781{1840). Lieferte wichtigeBeitr�age f�ur die Analysis, die Wahrscheinlichkeitstheorie sowie die Thermodynamik.4Carl Gustav Jacob Jacobi, deutscher Mathematiker (1804{1851). Verfa�te wichtige Ar-beiten auf den Gebieten elliptischer Funktionen, partieller Di�erentialgleichungen sowie derVariationsrechnung, Mechanik und Algebra.



2.1. Hamiltonsche Mechanik 19In den lokalen Orts{Impuls{Koordinaten (p; q) hat � die Gestalt� =  0 �1?1? 0 ! :Damit ergibt sich die aus der Koordinatenschreibweise bekannte Form der Be-wegungsgleichungen. Die L�osungen 
(t) zeichnen sich im Fall nat�urlicher Sy-steme, das hei�t f�ur nicht dissipative Systeme, dadurch aus, da� entlang ihnendie Hamilton{Funktion H(
(t)) konstant ist.Die Abbildung �j( � ) dHj( � ) : � ! T� ist ein Vektorfeld auf dem Phasenraum.Es wird auch Hamiltonsches Vektorfeld genannt. Mit ihm verkn�upft ist derHamiltonsche Flu� gtH , eine 1{parametrige Di�eomorphismengruppe, f�ur diedas Vektorfeld �dH das zugeh�orige Geschwindigkeitsfeld darstellt.Diese Formulierungen der klassischen Mechanik haben sich auch im Zusam-menhang mit der Erweiterung dieser als fruchtbar erwiesen, da sich Quanten-mechanik und Quantenfeldtheorien auf �ahnliche Weise formulieren lassen. Hierinteressiert jedoch nur die aus dieser Art der Darstellung resultierende Formder Erhaltungsgr�o�en eines mechanischen Systems.2.1.2 Erhaltungsgr�o�en: Das Noether{TheoremErhaltungsgr�o�en eines mechanischen Systems sind Funktionen auf dem Pha-senraum �, die entlang den Phasenbahnen konstant bleiben. Das hei�t, ist
(t) : IR ! � ein Extremum des Wirkungsfunktionals S(
(t)) und I eineFunktion auf � mit I(
(t)) = const 8 t 2 IR, so nennt man diese Funktioneine Erhaltungsgr�o�e. Im Falle nicht dissipativer Systeme ist mit der Hamilton{Funktion bereits eine Erhaltungsgr�o�e bekannt. Diese wird auch als Energie{Funktion bezeichnet. Eine M�oglichkeit, Erhaltungsgr�o�en aus den Symmetriender Lagrange{Funktion herzuleiten, bietet der nach Emmy Noether5 benannteSatz. In lokalen Koordinaten ergibt sich folgendes Bild:Satz: (Noethersches Theorem)Sei M eine glatte Mannigfaltigkeit, L eine Lagrange{Funktion auf M,L : TM ! IR und hs eine 1{parametrige Di�eomorphismengruppe,unter der L invariant bleibt, das hei�tL(v) = L(hs�(v)) 8 s 2 IR ; v 2 M :Dann besitzt das zu der Funktion L geh�orige Lagrange{System die Er-haltungsgr�o�e I : TM ! IR mitI(q; _q) = @L@ _q dhs(q)ds js=0 : (2.3)5Deutsche Mathematikerin (1882{1935), bekannt durch Arbeiten auf den Gebieten derAlgebra und Invariantheorie.



20 Kapitel 2. Theorie Klassisch Integrabler SystemeDabei ist f�ur TM 3 v = (p; q) die Form h� v das Di�erential von hsim Punkte q 2M . Es vermittelt eine lineare Abbildung zwischen denTangentialr�aumen in den Punkten q und h(q).F�ur die Erhaltungsgr�o�en eines mechanischen Systems existiert ein notwendi-ges und hinreichendes Kriterium, das es erm�oglicht, f�ur Phasenraumfunktionenauch ohne Kenntnis der L�osung des Systems oder der Symmetrie der Lagrange{Funktion, f�ur deren R�uckgewinnung aus den Erhaltungsgr�o�en im �ubrigen keineVorschrift existiert, die Eigenschaft, eine Konstante der Bewegung zu sein, zuveri�zieren. Diese M�oglichkeit bietet die Poisson{Klammer. F�ur zwei Phasen-raumfunktionen F;G ist sie �uber die symplektische Form ! wie folgt gegeben:Def.: (Poisson{Klammer)Seien F;G 2 C1(�) Phasenraumfunktionen. Dann istfF;Gg := !(�dF ; �dG) (2.4)die Poisson{Klammer von F und G. Dabei vermittelt � den Isomorphis-mus zwischen Tangential- und Kotangentialraum.In der mathematischen Literatur spricht man auch von der Lie{Klammer zweierVektorfelder, was anhand der Formulierung in (2.4) unmittelbar einsichtig ist.Hier schlie�t sich unmittelbar die Theorie der Lie{Gruppen und Lie{Algebrenan. Als Literatur hierzu verweise ich auf das Buch von Robert Gilmore [Gil74].Ich m�ochte jedoch nur auf die Relevanz der Poisson{Klammer f�ur die Inte-grabilit�at klassischer mechanischer Systeme eingehen. Hier st�o�t man auf einegeeignete Wahl von lokalen Koordinaten auf dem Phasenraum, die Wirkungs{Winkel{Variablen.2.1.3 Wirkungs{Winkel{VariableSatz: (Liouvillescher6 Satz �uber integrable Systeme)Seien I1; I2; : : : ; In Funktionen auf einer 2n{dimensionalen symplekti-schen Mannigfaltigkeit �, f�ur dief Ii ; Ij g = 0 8 i; j :Die Menge Mf1;f2;:::;fn der Phasenraumpunkte zu gegebenen konstantenWerten der Erhaltungsgr�o�en sei wie folgt de�niert:Mf := fx 2 � j Ii(x) = fi 8i = 1 : : : ng :Die Funktionen Ii seien auf dieser Mannigfaltigkeit unabh�angig, das hei�t,in jedem Punkte x 2 Mf giltTMf jx = Spanf�jx dIi jx ; i = 1 : : : ng :



2.1. Hamiltonsche Mechanik 21Dann besitzt Mf folgende Eigenschaften:� Mf ist eine n{dimensionale Untermannigfaltigkeit von �.� Mf ist eine glatte Mannigfaltigkeit, invariant unter dem Phasen
u�mit Hamiltonscher Funktion H = I1.� Ist Mf kompakt und zusammenh�angend, so ist sie di�eomorphzu dem n{dimensionalen Torus T n.Die letzte Eigenschaft gibt nun Anla� zur Einf�uhrung lokaler Koordina-ten auf �, indem man zun�achst auf Mf die Koordinaten ('1; '2; : : : ; 'n)einf�uhrt und diese zu Koordinaten auf � erg�anzt. Die einfachste Wahl ist,sich der Erhaltungsgr�o�en Ii zu bedienen, und als Basis auf � die 2n{Tupel(I1; I2; : : : ; In; '1; : : : ; 'n) zu w�ahlen. Diese sind allerdings in der Regel nichtmehr symplektisch, das hei�t, die 2{Form dI ^d' stellt keine symplektischeForm mehr da. Es lassen sich jedoch immer n Funktionen J1; J2; : : : ; Jn der Er-haltungsgr�o�en �nden, so da� die Tupel (J1; : : : ; Jn; '1; : : : ; 'n) symplektischeKoordinaten auf � mit der Poincar�eschen Integral{Invarianten ! = dJ ^ d'bilden.Mit folgender De�nition eines integrablen klassischen Systems:Def.: (Integrables System)Ein klassisches System mit Hamiltonscher Funktion H mit n Freiheits-graden hei�t integrabel im Liouvilleschen Sinne, wenn es neben H weitere(n � 1), voneinander unabh�angige Funktionen Ii : � ! IR gibt, so da�deren Fl�usse paarweise untereinander vertauschen und jede mit dem Ha-miltonschen Flu� vertauscht.kann man also sagen, da� integrable Systeme die Einf�uhrung von Wirkungs{Winkel{Variablen als lokale Koordinaten des Phasenraumes zulassen. In diesenKoordinaten nehmen die Hamiltonschen Bewegungsgleichungen folgende einfa-che Gestalt an: annehmen: dJdt = 0d'dt = !(J) :Eine f�ur die st�orungstheoretische Behandlung klassischer Systeme interessanteEigenschaft dieser Koordinaten ist, da� sich der Phasenraum in einer Umgebungder Untermannigfaltigkeit Mf als direktes Produkt des Torus mit einer n{dimensionalen Kreisscheibe darstellen l�a�t:� ' T n � Dn in U"(Mf ) :



22 Kapitel 2. Theorie Klassisch Integrabler SystemeDie Einf�uhrung solcher Koordinaten setzt in jedem Falle die Existenz einerder Zahl der Freiheitsgrade des Systems entsprechenden Anzahl unabh�angigerErhaltungsgr�o�en in jeden Punkt des Phasenraumes voraus. Im Falle der Exi-stenz von Kollisionsbahnen, wie sie zum Beispiel beim 3{K�orper{Problem auf-treten, existieren solche unabh�angigen Erhaltungsgr�o�en nicht mehr in jedemPunkt. Es liegt somit ein nicht integrables System vor. Die Nichtintegrabilit�atvon Systemen sagt also nichts �uber die Nichtexistenz einer L�osung oder gardes Systems als physikalisch realisierbares System aus, sondern lediglich, da�die Bewegungsgleichungen nicht auf die obige, einfache Form gebracht werdenk�onnen.Zum Beweis der Integrabilit�at ist es also nicht ausreichend, die L�osung anzu-geben. Man mu� vielmehr s�amtliche Erhaltungsgr�o�en �nden und deren Un-abh�angigkeit in jedem Punkt des Phasenraumes zeigen. Das Au�nden dieserErhaltungsgr�o�en ist nun nicht immer ganz einfach und, wie zum Beispiel imFalle des Runge{Lenz{Vektors f�ur das Zwei{K�orper{Problem, oftmals mit vielIntuition verbunden. Allerdings existieren durchaus auch systematische Vorge-hensweisen, Erhaltungsgr�o�en zu konstruieren. Eine sehr einfache Methode istder sogenannte Lax{Trick.2.2 Lax{Darstellung eines klassischen SystemsDie Idee zu dieser Darstellung, aus der Erhaltungsgr�o�en unmittelbar konstru-iert werden k�onnen, geht auf Peter D. Lax zur�uck [Lax68]. Lax selbst ent-wickelte diese Methode zur Konstruktion von Erhaltungsgr�o�en der sogenann-ten Kortweg{de Vries{Gleichung, einer Di�erentialgleichung, deren L�osungenf�ur Zeiten t ! �1 �Uberlagerungen von Solitonen sind. Die Kortweg{de Vries{Gleichung, kurz auch KdV{Gleichung genannt, hat die Formut = 6uux � uxxx :Die Adaption der Laxschen Vorgehensweise auf klassische Systeme mit endlichvielen Freiheitsgraden geht wohl auf Calogero zur�uck [Cal75]. Der wesentlicheSchritt hierbei ist die Konstruktion zweier Hermitescher Matrizen L und M ,gelegentlich auch als Lax{Paar bezeichnet, so da� die n2 Gleichungen_L = [L ; M ] (2.5)den Hamiltonschen Bewegungsgleichungen des betrachteten Systems �aquiva-lent sind. Dabei ist die Lie{Klammer [ � ; � ] die auf Matrixalgebren verwendeteantisymmetrische Abbildung[X ; Y ] := X Y � Y X : (2.6)Die Lax{Gleichung ist von der Form der Heisenberg{Gleichung der Quantenme-chanik. Ersetzt man die Matrix M durch den Hamilton{Operator eines quan-tenmechanischen Systems, so ist durch die Gleichung (2.5) die Zeitentwicklung



2.2. Lax{Darstellung eines klassischen Systems 23des Operators L bestimmt. Diese Parallele wirft die Frage auf, inwieweit sichaus der Lax{Darstellung eine alternative M�oglichkeit zur Quantisierung einesmechanischen Systems ergibt. Zu dieser Frage habe ich in der Literatur keineAns�atze entdecken k�onnen. Bei der Diskussion der quantenmechanischen Erhal-tungsgr�o�en des Calogero{Modells wird jedoch die M�oglichkeit des korrespon-denzm�a�igen Ersetzens der Eintr�age der Lax{Matrix durch die entsprechendenOperatoren noch besprochen.Die Matrizen L und M sind, damit Gleichung (2.5) den Hamiltonschen Bewe-gungsgleichungen �aquivalent sein kann, Phasenraumfunktionen.Aus der Gleichung (2.5) folgt sofort, da� die Spur tr( _L) verschwindet, also dieSpur tr(L) selbst zeitunabh�angig und somit erhalten ist. Es gilt sogar die vielst�arkere Aussage, da� die Eigenwerte von L jeder f�ur sich zeitunabh�angig sind.Das hei�t, da� die Hermitesche Matrix L die FormL(t) = S(t) �S�1(t) (2.7)mit unit�arem S und der Diagonalmatrix � = diag(�1; �2; : : : ; �n) mit �i 6=�i(t) 8 i = 1 : : : n, also nicht von der Zeit abh�angigen Eintr�agen. Damit folgtdann sofort, da� jede unter �Ahnlichkeitstransformation des Arguments invari-anten Funktion, wie zum Beispiel die Spur, angewendet auf Potenzen von LErhaltene Gr�o�en liefert.Einen Beweis beziehungsweise Verweise auf einen Beweis f�ur die nicht unmit-telbar einsichtige Gleichung (2.7) fand sich in keiner der Referenzen. Daherm�ochte ich diesen kurz f�uhren.Beh.:Sei L eine Hermitesche Matrix mit von einer Variablen t abh�angigenEintr�agen. Weiterhin gelte f�ur die Ableitung nach diesem Parameter dieIdentit�at _L = [L ; M ]. Dann sind die Eigenwerte der Matrix L nicht vonder Zeit abh�angig und die Gleichung (2.7) ist erf�ullt.Bew.:Aufgrund der Hermitezit�at von L existiert eine unit�are TransformationS(t), so da� L(t) = S(t)�(t)S�1(t) mit diagonalem �(t). Di�erentiationnach t liefert dann_L = (S �S�1)_ = S _�S�1 � [L ; _S S�1] : (2.8)Ausnutzen der Identit�at f�ur _L f�uhrt dann auf_� = [� ; S�1 _S � S�1M S] :



24 Kapitel 2. Theorie Klassisch Integrabler SystemeDer Kommutator einer Matrix X mit einer Diagonalmatrix � ergibt sichzu der Matrix [� ; X]ij = Xij (�i � �j), besitzt also verschwindendeDiagonalelemente. Somit ist die Matrix � also nicht von dem Parametert abh�angig. 2In der Laxschen Darstellung eines Systems reduziert sich das Au�nden von Er-haltungsgr�o�en also auf die Bestimmung von Eigenwerten der Lax{Matrix L,die das Hamiltonsche System repr�asentiert. Aus Gleichung (2.8) folgt n�amlich,da� die Matrix M des Lax{Paares bis auf die Eichfreiheit, mit der Matrix Lkommutierende Matrizen zu M zu addieren, von der Gestalt M ' � _SS�1ist. Desweiteren mu� die Matrix L nicht notwendigerweise Hermitesch sein. Esgen�ugt zu fordern, da� sie �uber eine �Ahnlichkeitstransformation auf Diagonal-gestalt gebracht werden kann, also Gleichung (2.7) erf�ullbar ist. Aus diesemGrunde schlage ich folgende abge�anderte Formulierung des Lax{Tricks vor:Satz: (Lax{Trick)Sei � der 2n{dimensionale Phasenraum eines Hamiltonschen Systems,L eine Abbildung von � in die diagonalisierbaren Homomorphismen einerAlgebra. Der L diagonalisierende Homomorphismus sei mit S bezeich-net. Stellt dann die Zeitentwicklung _L = [L ; � _S S�1] von L ein denHamiltonschen Bewegungsgleichungen des Systems �aquivalentes Di�eren-tialgleichungssystem dar, so sind die Eigenwerte von L Erhaltungsgr�o�endes Hamiltonschen Systems.Die Laxsche Darstellung Hamiltonscher Systeme wird in der Literatur bis-weilen auch inverse spektrale Transformation, isospektrale Deformation oder,was sich durchzusetzen scheint, Methode der inversen Streuung (inverse scat-tering method) genannt. Ihr kommt eine gro�e Bedeutung bei der Behand-lung weiterer nichtlinearer Di�erentialgleichungen der mathematischen Phy-sik neben der KdV{Gleichung, wie der nichtlinearen Schr�odingergleichung, derSine{Gordon{Gleichung, dem Heisenbergschen Ferromagneten und der Toda{Gitter{Gleichung zu. Hier sei auf das Buch von Ludwig D. Fadeev [FT87] unddie darin aufgef�uhrte Literatur verwiesen. Fadeev gibt in diesem Buch eine et-was abgewandelte Form der Laxschen Darstellung an, die eine geometrischeInterpretation zul�a�t. Statt mit der Lax{Gleichung (2.5) arbeitet er mit derGleichungUt � Vx + [U; V ] = 0 ; U; V : IR � IR ! Mat(2; jC) ;die als Vertr�aglichkeitsbedingung f�ur das Di�erentialgleichungssystemFx = U FFt = V F



2.2. Lax{Darstellung eines klassischen Systems 25mit F : IR � IR ! jC2 fungiert. Interpretiert man F als Abbildung der BasisIR2 in die Faser jC2 des Vektorb�undels IR2 � jC2, so stellt das Paar (U; V ) einen
achen Zusammenhang und die Abbildung F einen kovariant konstanten Vektordar.Wir wollen jedoch weiter die Laxsche Darstellung verwenden und die von Ba-belon und Viallet [BV90] erkannte Bedeutung einiger Ergebnisse von Fadeevf�ur diese Darstellung diskutieren. Diese geh�oren dem Komplex der r{Matrizenund der mit ihnen verbundenen Yang{Baxter{Gleichungen an.2.2.1 r{Matrizen und die klassische Yang{Baxter{GleichungZu Beginn m�ussen hier einige neue Strukturen eingef�uhrt werden, auf die diesesKalk�ul zur�uckgreift.Wie bereits im vorigen Abschnitt erw�ahnt, ist die Lax{Matrix eine g{wertigePhasenraumfunktion, wobei g die diagonalisierbare Untergruppe einer Alge-bra von Homomorphismen ist. Auf dem Raum dieser Funktionen ist die Lie{Klammer (2.6) de�niert. Weiterhin ist f�ur die Komponenten als Phasenraum-funktionen mit (2.4) eine Poisson{Klammer gegeben. Neu eingef�uhrt wird nundie Tensoralgebra g 
 g, die die folgende kanonische, dennoch m�oglicherweisenicht allen Lesern gel�au�ge Matrixdarstellung besitzt:Def.: (Tensorprodukt)Seien A;B 2 g zwei Matrizen. De�niere dann das Tensorprodukt A
Bwie folgt:0B@ a11 a12 � � �a21 a22... . . . 1CA N 0B@ b11 b12 � � �b21 b22... . . . 1CA = 0B@ a11B a12B � � �a21B a22B... . . . 1CA (2.9)Mit dieser Darstellung des Tensorprodukts folgt sofort, da� der so erzeugteRaum eine Vektorraumstruktur hat. F�ur die Addition gilt folgende Identit�at:(A
B) + (A
 C) = A
 (B + C) :Der Vektorraum bildet mit dem Produkt(U 
 V ) � (X 
 Y ) = UX 
 V Yeine nicht kommutative Algebra.Damit l�a�t sich sofort eine Lie{Klammer der Gestalt (2.6) einf�uhren. Au�erdeml�a�t sich ein Zusammenhang zwischen den Elementen A
B und B
A angeben,der auf der Eigenschaft beruht, da� die Algebra g 
 g eine Untergruppe derEndomorphismen auf jCn 
 jCn ist. Es gilt:(B 
A) = P (A
B)P ;



26 Kapitel 2. Theorie Klassisch Integrabler Systemewobei die Abbildung P gerade die Komponenten des Tensorprodukts jCn 
 jCnvertauscht. Dabei ist P selbst im allgemeinen kein Element von g 
 g, dasich zwei Elemente von jCn nicht notwendigerweise durch eine diagonalisier-bare Transformation ineinander �uberf�uhren lassen. Fadeev hat nun eine weitereStruktur auf g
 g eingef�uhrt, die im folgenden Fadeev{Klammer genannt wer-den soll.Def.: (Fadeev{Klammer)Sei � der Phasenraum eines Hamiltonschen Systems mit Poisson{Klammer f � ; � g. Die Matrixalgebra g sei die Menge der Funktionen auf� mit Werten in den Hermiteschen n � n Matrizen. Dann l�a�t sich aufdem Tensorprodukt g 
 g die folgende Abbildung einf�uhren:f�
, �g : g 
 g ! g 
 g ;X; Y 7! fX 
, Y g := 0B@ fa11; b11g fa11; b12g � � �fa11; b21g fa11; b22g... . . . 1CA :Eine alternative, von Babelon und Viallet [BV90] verwendete Schreibweise f�urdie Fadeev{Klammer fX 
, Y g ist fX 
 1; 1
Y g, wobei die (i; j){Komponentegerade der Kommutator der (i; j){Komponenten von X 
 1 und 1
 Y ist.F�ur die Fadeev{Klammer gelten folgende, leicht zu veri�zierende Identit�aten:� fA
, Bg = �PfB 
, AgP (2.10a)� fA
, BCg = fA
, Bg(1
 C) + (1
B)fA
, Cg (2.10b)fAB 
, Cg = (A
 1)fB 
, Cg + fA
, Cg(B 
 1)� fA�1 
, Bg = �(A�1 
 1)fA
, Bg(A�1 
 1) (2.10c)fB 
, A�1g = �(1
A�1)fB 
, Ag(1 
A�1)Die letzten beiden Identit�aten (2.10c) lassen sich aus der Gleichung0 = f1
, Xg = fA�1A
, Xgmit (2.10b) zeigen.Unter Zuhilfenahme dieser Struktur (g; [ � ; � ]; f�
, �g) l�a�t sich der folgende Satzbeweisen.Satz: (Erhaltungsgr�o�en und die r{Matrix)Sei g 3 L = S�S�1 die Lax{Matrix eines Hamiltonschen Systems. Dannsind die folgenden beiden Aussagen �aquivalent:(i) Die Eigenwerte von L besitzen paarweise verschwindende Pois-son{Klammern f�i; �jg = 0 8 i; j (2.11)(ii) 9 r 2 g 
 g j fL
, Lg = [ r ; L
 1] � [PrP ; 1
 L ] : (2.12)



2.2. Lax{Darstellung eines klassischen Systems 27Der Beweis dieses Satzes bei Babelon und Viallet [BV90] ist konstruktiv undsoll aus diesem Grund hier vorgef�uhrt werden.Bew.:(ii) ) (i):fLn 
, Lmg (2:10b)= n � 1Xp = 0(Ln�p�1 
 1)fL
, Lmg(Lp 
 1)(2:10b)= n � 1Xp = 0 m � 1Xq = 0(Ln�p�1 
 Lm�q�1)fL
, Lg(Lp 
 Lq)Vor:= n � 1Xp = 0 m � 1Xq = 0 �[(Ln�p�1 
 Lm�q�1) r (Lp 
 Lq) ; L
 1] +� [(Ln�p�1 
 Lm�q�1)PrP (Lp 
 Lq) ; 1
 P ]�Mit der unmittelbar aus der De�nition der Fadeev{Klammer folgendenIdentit�at tr(fA
, Bg) = ftr(A); tr(B)gergibt sich, da� die Poisson{Klammern der Spuren von Potenzen der Ma-trix L verschwinden.ftr(Ln); tr(Lm)g = 0 = ftr(�n); tr(�m)g 8n;mHier bleibt nun noch zu zeigen, da� aus dieser Gleichung die Kommuta-tivit�at der Eigenwerte �i selbst folgt. Um dieses bei Babelon und Vialletnicht diskutierte Problem zu l�osen, mu� ich auf Formel (6.2) aus Kapitel6 verweisen. Diese gibt eine Darstellung der Koe�zienten des charakteri-stischen Polynoms in Termen der Spuren von Potenzen der Matrix an. Dasich die Eigenwerte einer Matrix als in Potenzreihen entwickelbare Funk-tion der Koe�zienten des charakteristischen Polynoms schreiben lassen,sind diese somit Potenzreihen von Spuren von Potenzen dieser Matrix.Aufgrund der oben gezeigten Kommutatoreigenschaft f�ur diese Spurenist damit auch die Kommutativit�at der Eigenwerte bewiesen.Zum Beweis der verbleibenden Richtung (i) ) (ii):De�niere zun�achst folgende Gr�o�en:q := (S�1 
 S�1)fS 
, �g(1
 S) (2.13)k := (S�1 
 S�1)fS 
, Sga := �q + 12 [k; 1 
 L]b := PqP + 12 [k; L
 1] (2.14)



28 Kapitel 2. Theorie Klassisch Integrabler SystemeUnter Ausnutzung der Identit�aten (2.10a) - (2.10c) folgt dann nach einernicht verschwindenden Zahl von UmformungenfL
, Lg � ([ a ; L
 1 ] + [ b ; 1
 L ]) = (S�1 
 S�1)f�
, �g(S 
 S) :Aus der Voraussetzung (i) resultiert das Verschwinden von f�
, �g. DieSymmetrie von fL
, Lg gestattet die folgende Schreibweise:fL
, Lg = 12 �fL
, Lg � PfL
, LgP�F�uhrt man nun die Variable r := 12 (a � PbP ) ein, so erh�alt man dieAussage (ii). 2Mit der Lax{Matrix L hat man aufgrund ihrer Diagonalisierbarkeit sofort einenSatz kommutierender Erhaltungsgr�o�en, da die Matrix r aus den die Lax{Matrix diagonalisierenden Homomorphismen S und S�1 und der Diagonal-matrix � direkt konstruiert werden kann. Die Frage, die sich nun unmittelbarstellt, ist die nach einem Kriterium f�ur die Existenz einer Lax{Matrix. Hier giltfolgendes:Satz: (Existenz von Lax{Matrizen)Zu jedem im Liouvilleschen Sinne integrablen klassischen Modell existierteine Lax{Matrix L, so da� die Bewegungsgleichungen dem Di�erential-gleichungssystem (2.2) �aquivalent sind.Bew.:Seien die Tupel (J; ') die Wirkungs{Winkel{Variablen des HamiltonschenSystems, die nach Voraussetzung der Liouvilleschen Integrabilit�at existie-ren. W�ahle dann Vektoren H1; : : : ;Hn; E1; : : : ; En aus einer Lie{Algebrag, so da� sie den Bedingungen[Hi ; Hj ] = 0[Ei ; Ej ] = 0[Hi ; Ej ] = 2�ijEjgen�ugen. Dann erf�ullen die MatrizenL := nXi = 1 JiHi + 2Ji'iEiM := nXi = 1 @H@JiEidie Bedingungen f�ur die �Aquivalenz der Gleichung (2.5) mit den Bewe-gungsgleichungen. 2



2.2. Lax{Darstellung eines klassischen Systems 29Dieser Satz geht ebenfalls auf Babelon und Viallet [BV90] zur�uck.F�ur spezielle r{Matrizen aus g
g existieren interessante Beziehungen zu neue-ren Entwicklungen in der Algebra. Ist r eine schiefsymmetrische Matrix, so da�Gleichung (2.12) die FormfL
, Lg = [ r ; L
 L ]annimmt, so gelten f�ur ein einfaches r = r1 
 r2 die Identit�aten(i) [ r1 
 r2 + r2 
 r1 ; L
 L ] = 0 (2.15)(ii) [ [[ r ; r]] ; L
 L
 L ] = 0 ; (2.16)wobei die Abbildung [[ � ; � ]] wie folgt de�niert ist:[[ r ; r ]] = [ r12 ; r13 ] + [ r12 ; r23 ] + [ r13 ; r23 ] :Die auftretenden Lie{Klammern f�ur ein allgemeines r = Pi; j rijei 
 ej habenhierin die Form [ r12 ; r13 ] = Xi; j; k; l rijrkl [ ei ; ek ]
 ej 
 el[ r12 ; r23 ] = Xi; j; k; l rijrkl ei 
 [ ej ; ek ]
 el[ r13 ; r23 ] = Xi; j; k; l rijrkl ei 
 ek 
 [ ej ; el ] :F�ur ein schiefsymmetrisches, konstantes r = r1
 r2 in g
 g, das die klassischeYang{Baxter{Gleichung [[ r ; r ]] = 0 erf�ullt, l�a�t sich auf der Lie{Algebra geine Cokommutator � : g ! g 
 g wie folgt de�nieren:�(X) := [X ; r1 ] + [X ; r2 ] :Mit dieser zus�atzlichen Struktur wird die Lie{Algebra g zu einer quasitrian-gul�aren Lie{Bialgebra. Dabei ist die quasitriangularit�at genau dann gegeben,wenn r die klassische Yang{Baxter{Gleichung erf�ullt.F�ur spezielle r{Matrizen ist somit ein direkter Zusammenhang zwischen klassi-schen integrablen Modellen und Lie{Bialgebren gegeben. Weitere Aspekte hier-zu �nden sich bei Fuchs [Fu92] sowie Chari und Presley [CP94].





Kapitel 3QuantenmechanischeIntegrabilit�atEinige Prinzipien der Quantenmechanik wurden bereits im ersten Kapitel imRahmen der Diskussion, inwieweit der zur L�osung des quantenmechanischenCalogero{Modells f�uhrende Ansatz auf s�amtliche L�osungen f�uhrt, erw�ahnt. Indiesem Kapitel soll die mathematische Struktur der Quantenmechanik nun inkompakter Form systematisch dargestellt werden, um damit den Begri� derErhaltungsgr�o�e einf�uhren zu k�onnen und �uber diesen eine, dem im letztenKapitel behandelten klassischen Fall analoge De�nition von Integrabilit�at zuliefern.3.1 Formulierung der QuantenmechanikEin quantenmechanisches System ist durch eine Hamilton{Funktion Ĥ gegeben,die auf einem Hilbert{Raum H operiert und die Zeitentwicklung des quanten-mechanischen Systems bestimmt.Die Me�gr�o�en, auch Observable Ô genannt, sind Hermitesche Elemente einerC�{Algebra. Ihr Spektrum liefert die m�oglichen Me�ergebnisse. In der Dar-stellung Ô auf einem Hilbert{Raum als stetig lineare Abbildung ergibt sichdas Spektrum eines Operators als Eigenwertschar desselben. Aufgrund derUnendlichdimensionalit�at des Hilbert{Raumes ergeben sich hier zus�atzliche,im Endlichdimensionalen nicht auftretende Eigenschaften des Spektrums. Soenth�alt das Spektrum eines Hilbert{Raum{Operators diskrete, kontinuierlicheund auch singul�are Anteile, wobei letztere nicht von Bedeutung f�ur die Beschrei-bung physikalischer Systeme sind. Beispiele f�ur Operatoren mit rein diskretemSpektrum sind endlichdimensionale Matrix{Darstellungen. Reine Multiplikati-onsoperatoren hingegen liefern ein rein kontinuierliches Spektrum.Als reiner Zustand zu einem Operator â wird ein normiertes Element desHilbert{Raumes bezeichnet, auf das â als Multiplikationsoperator wirkt. Der31



32 Kapitel 3. Quantenmechanische Integrabilit�atFaktor ist dann ein Element des Spektrums von â. Wie im endlichdimensiona-len Fall tritt auch hier das Ph�anomen der Entartung auf, was bedeutet, da� zueinem Wert des Spektrums der Observable mehrere reine Zust�ande existieren.Zur Charakterisierung eines reinen Zustandes von Hermiteschen Operatorengen�ugt also nicht die Angabe des Eigenwertes, sondern es bedarf einer zus�atz-lichen Klassi�zierung durch Angabe einer Basis des Eigenraumes.In der Sprache der Quantenmechanik nennt man den Eigenwert beziehungs-weise eine bijektive Funktion dieses Werts auch Hauptquantenzahl; bei der Nu-merierung der Basis der Eigenr�aume spricht man von Nebenquantenzahlen. DieEigenr�aume zu Hermiteschen Operatoren de�nieren eine Zerlegung des Hilbert{Raumes H in eine direkte Summe H = LiHi. Man spricht dann auch von derâ{Darstellung.Die Hamilton{Funktion bH des physikalischen Systems ist ebenfalls ein formalHermitescher Operator aufH. Im Gegensatz zu den Observablen handelt es sichhierbei jedoch manchmal um nicht beschr�ankte Operatoren. F�ur diese folgt ausder Hermitezit�at nicht unmittelbar die Selbstadjungiertheit, so da� man Be-gri�e wie wesentliche Selbstadjungiertheit einf�uhren mu�. Die von solchen Ope-ratoren beschriebenen Systeme sind jedoch nur dann als physikalische Systemezu bezeichnen, wenn durch Beschr�ankung des Systems erreicht wird, da� dieHamilton{Funktion auf diesem eingeschr�ankten De�nitionsbereich einen selbst-adjungierten Operator darstellt. Ein Fall, in dem dies notwendig ist, ist dasCalogero{Modell, wie bereits in Kapitel 1 erw�ahnt.Das Spektrum eines selbstadjungierten Hamilton{Operators wird auch alsEnergie{Spektrum bezeichnet, die zugeh�orige Darstellung des Hilbertraumesin Eigenfunktionen zu Ĥ als Energiedarstellung.Im folgenden Abschnitt soll nun das Ph�anomen der Entartung genauer unter-sucht werden.3.2 Symmetrien und Erhaltungsgr�o�enDie auf einen Hilbertraum wirkenden Operatoren bilden eine Algebra. Auf die-ser l�a�t sich eine Lie{Klammer der Form (2.6) einf�uhren. Man kann nun leichtzeigen, da� zwei Hermitesche Operatoren genau dann eine verschwindende Lie{Klammer besitzen, wenn sie ein gemeinsames Eigenfunktionensystem besitzen.Die Tatsache, da� aus der Existenz eines gemeinsamen Eigenfunktionensystemszu zwei Operatoren das Verschwinden ihres Kommutators folgt, l�a�t sich durchAnwenden des Kommutators auf die Eigenfunktionen zeigen. Da HermitescheOperatoren ein vollst�andiges Eigenfunktionensystem, das eine Basis des Hilber-traumes darstellt, besitzen, l�a�t sich nun jede Funktion als Linearkombinationvon Basisfunktionen darstellen. De�niert man die Identit�at zweier Operatorendadurch, da� sie auf s�amtliche Funktionen des Hilbertraumes in gleicher Weise



3.2. Symmetrien und Erhaltungsgr�o�en 33wirken, so hat man den Kommutator als "Null{Operator\ identi�ziert.Gilt die Identit�at [A;B] = 0 mit Hermiteschen Operatoren A und B, so be-trachtet man die Wirkung des Operators B auf auf die Eigenr�aume Hn =f'n;� j A'n;� = an'n;� 8� 2 Ing. Es zeigt sich, da� B diese Eigenr�aumeinvariant l�a�t. Der Hermitesche Operator B l�a�t sich also auf Hn diagonalisie-ren. Die Vereinigung der Eigenfunktionen von B auf den Hn stellt somit einEigenfunktionensystem von A und B dar.Induktiv kann man nun unter Verwendung dieses Satzes zeigen, da� simultankommutierende Operatoren ein gemeinsames Eigenfunktionensystem besitzen.Ein System von Operatoren, das das Eigenfunktionensystem eindeutig fest-legt, so da� keine zwei Basiselemente existieren, die f�ur alle Operatoren diesesSystems jeweils dieselben Eigenwerte besitzen, wird als vollst�andiger Satz kom-mutierender Operatoren bezeichnet:T1; T2; : : : Tn Operatoren mit [Ti; Tj ] = 0 8 i; j; f'kg gemeinsames Eigen-funktionensystem zu diesen. Gilt dann8 k1; k2 k1 6= k2 9 Ts j Ts ('k1 � 'k2) 6= 0 ;so handelt es sich bei den Ti um einen vollst�andigen Satz kommutierenderOperatoren.Hat man einen solches System von Operatoren gefunden, so spricht man auchvon einer Aufhebung der Entartung, da mit ihnen ein Satz von Quantenzahlenzur Verf�ugung steht, der die Eigenfunktionen eindeutig charakterisiert.In der Quantenmechanik spricht man nun von einem vollst�andig integrablemSystem genau dann, wenn ein die Eigenfunktionen eindeutig charakterisierenderSatz von Quantenzahlen bekannt ist.Der vollst�andige Satz kommutierender Operatoren ist eng verkn�upft mit derSymmetrie des Hamilton{Operators.3.2.1 Symmetriegruppe des HamiltoniansDie Symmetriegruppe eines Operators wird erzeugt von eine Menge parameter-abh�angiger Operatoren fUi(!)g, die s�amtlich mit diesem Operator kommutie-ren. Besitzt diese Menge eine Lie{Gruppenstruktur, also sind die Transforma-tionen von der Form U(!) = exp  ̂�Xk !kT k! ;so schreibt die Invarianz des Hamilton{Operators wie folgt:Ui(!) ĤU�1i (!) = Ĥ :



34 Kapitel 3. Quantenmechanische Integrabilit�atDies stellt eine globale Eichtransformation dar, die Symmetrie des Hamilto-nians. Die Lie{Algebra dieser Lie{Gruppe wird von den T k erzeugt. Handeltes sich bei dieser Lie{Algebra um eine halbeinfache Lie{Algebra (siehe hierzuKapitel 4) mit Rang l, so existieren nach dem Racah1{Theorem 2l Erhaltungs-gr�o�en des Systems. Diese sind durch den folgenden Satz gegeben:Satz: (Racah{Theorem)Sei g eine halbeinfache Lie{Gruppe mit Rang r. Dann existierenl unabh�angige Operatoren C�i(T 1; : : : ; T l), die sogenannten Casimir{Operatorem dergestalt, da� [T i ; C�j ] = 0 8 i; j und der Kommutator[C�i ; C�j ] = 0 8 i; j. Die Eigenwerte heben die Entartung vollst�andigauf.Damit bilden die l Elemente der Cartan{Unteralgebra sowie die l Casimir{Operatoren einen vollst�andigen Satz von Erhaltungsgr�o�en eines Hamilton{Operators mit halbeinfacher Lie{Gruppe als Symmetriegruppe. Bei den Ei-genfunktionen zu einem Casimir{Operator spricht man von einem Multiplett;die Zust�ande dieses Multipletts werden durch die Generatoren der Cartan{Unteralgebra charakterisiert.

1Giulio Racah, italienischer Physiker (1909{1965).M Arbeitete in den Bereichen Atom-und Kernphysik.



Kapitel 4Dunkl{OperatorenDie Dunkl{Operatoren wurden 1989 von Charles F. Dunkl im Zusammenhangmit der Untersuchung symmetrischer Polynome eingef�uhrt. Da diese auch inden L�osungen des Calogero{Modells eine Rolle spielen, ist es nicht sehr ver-wunderlich, da� die Dunkl{Operatoren in einer gewissen Beziehung zu diesemProblem stehen. In diesem Kapitel sollen diese Operatoren sowie einige, zu ih-rem Verst�andnis notwendige, Konstruktionen besprochen werden. Von gro�erBedeutung ist dabei eine endliche, durch Spiegelungen erzeugte Gruppe, dieCoxeter{Gruppe.4.1 Die Coxeter{GruppeBevor eine De�nition dieser Gruppe gegeben wird, seien hier noch einige grund-legende Konstruktionen besprochen.4.1.1 WurzelsystemeWurzelsysteme sind diskrete Teilmengen endlichdimensionaler Vektorr�aume,die unter bestimmten Spiegelungen auf sich selbst abgebildet werden. Sie be-sitzen einige interessante Eigenschaften, die sich aus der folgenden De�nitionergeben:Def.: (Wurzelsystem)Sei E ein euklidischer Vektorraum, also ein endlichdimensionaler Vek-torraum mit einer nicht entarteten, positiv de�niten Bilinearform (�; �).Eine Spiegelung in diesem Vektorraum wird dann durch die Abbildungs�(x) = x� 2(�;x)(�;�) � vermittelt. Sie spiegelt den Vektor x an der senkrechtauf dem Vektor � stehenden Hyperebene. Eine Teilmenge R � E mit derEigenschaft s�(�0) 2 R 8�; �0 2 Rhei�t Wurzelsystem. 35



36 Kapitel 4. Dunkl{OperatorenDef.: (Positive Wurzeln)Da ein Vektor durch Spiegelung an der Hyperebene, f�ur die er selbst Nor-malenvektor ist, in sein Negatives �uberf�uhrt wird, ist ein Wurzelsystemschon durch die H�alfte seiner Vektoren eindeutig bestimmt. Aus diesemGrunde f�uhrt man den Begri� des einfachen Wurzelsystems ein, das le-diglich die auf einer Seite einer keine Wurzel enthaltenden Hyperebeneliegenden Wurzeln umfa�t.R+ := f� 2 R j (�; �) > 0; � 62 R beliebig, festgDef.: (Einfache Wurzeln)Die einfachen Wurzeln sind eine linear unabh�angige Teilmenge eines po-sitiven Wurzelsystems, also eine Basis des Wurzelraumes.Def.: (Kristallographisches Wurzelsystem)Dies ist ein Spezialfall eines Wurzelsystems, f�ur den folgende Bedingungerf�ullt ist: 2(�;�0)(�;�) 2 ZZ 8�; �0 2 R :Da die Elemente eines Wurzelsystems durch Spiegelung auseinander hervorge-hen, lassen sich durch Drehung des gesamten Systems aus einem Wurzelsystemsofort unendlich viele weitere erzeugen. Betrachtet man die m�oglichen Kristallo-graphischen Wurzelsysteme eines n{dimensionalen Vektorraumes modulo dieserIsomorphien, so ergibt sich eine endliche Zahl paarweise verschiedener Wurzel-systeme, aus denen sich s�amtliche Wurzelsysteme zusammensetzen lassen. DieseWurzelsysteme hei�en irreduzibel und dienen als Prototypen f�ur eine Klassi�-zierung. Sie sind in Tebelle (4.1) aufgef�uhrt.Typ AnzahlWurzeln WurzelsystemAn 12n(n-1) fei � ej ; i 6= jgBn n2 f�ei;�ei � ej ; i 6= jgCn n2 f�2ei;�ei � ej ; i 6= jgDn n(n-1) f�ei � ej ; i 6= jgE8 120 f�ei � ej ; i 6= j ; 12 Pi em(i)i ; m(i) 2 f0; 1ggE7 63 Teil von E8, der ? (e7 + e8)E6 36 Teil von E8, der ? (e6 + e7 � e8)F4 24 f�ei;�ei � ejg ; i 6= j ; 12(�e1 � e2 � e3 � e4)gG2 6 fei � ej ; i 6= j ; �(2ei � ej � ek) ; i 6= j 6= kgTabelle 4.1: Einfache WurzelsystemeDie letzten f�unf Typen, die nicht f�ur beliebige Dimensionen existieren bezeich-net man auch mit dem Terminus Exzeptionelle Wurzelsysteme. Die ersten vier



4.1. Die Coxeter{Gruppe 37Typen werden als die Klassischen Wurzelsysteme bezeichnet. Bei diesen kri-stallographischen Wurzelsysteme fallen zwei Eigenschaften ins Auge:� Es treten maximal zwei verschiedene L�angen der Wurzeln auf.� Als Winkel zwischen den Wurzeln tauchen lediglich die Werte�=2 ; � ; 3�=4 und 5�=6 auf.Da diese Informationen �uber Wurzelsysteme f�ur das Verst�andnis der weiterenKonstruktionen vollkommen ausreichen, soll hier nicht tiefer in die Materie derWurzelsysteme eingedrungen werden, wo dann Begri�e wie Weyl{Kammern,maximale Wurzeln und Dynkin{Diagramme ihren Ursprung haben. Es soll je-doch kurz die Verbindung dieser Theorie zu einem weiteren, f�ur die Physik sehrbedeutsamen Gebiet der Mathematik angedeutet werden, n�amlich der Theorieder halbeinfachen Lie{Algebren.4.1.2 Halbeinfache Lie{AlgebrenDie Bezeichnung Lie{Algebra geht auf den norwegischen Mathematiker MariusSophus Lie zur�uck, der um die Wende vom 19. zum 20. Jahrhundert wirkte. SeinHauptinteresse galt der Gruppentheorie, insbesondere den kontinuierlichen, pa-rameterabh�angigen Gruppen, die nach ihm Lie{Gruppen benannt wurden. DieTheorie der Lie{Algebren besch�aftigt sich mit den Generatoren solcher Grup-pen, durch welche die Gruppe eindeutig bestimmt ist. Diese besitzen die fol-genden, eine Lie{Algebra de�nierenden Eigenschaften:Def.: (Lie{Algebra)Sei g ein K{Vektorraum zusammen mit einer bilinearen Abbildung [�; �] :g � g ! g, so da�(i) [x; x] = 0 8x 2 g Antisymmetrie(ii) [[x; y]; z] + [[y; z]; x] + [[z; x]; y] = 0 8x; y; z 2 g Jacobi{Identit�atDie Abbildung [�; �] hei�t Lie{Klammer.Durch Einf�uhren einer Basis fT1; T2; : : : ; Tng des Vektorraumes g l�a�t sich dieLie{Klammer auch durch die sogenannten Strukturkonstanten, die sich als Kom-ponenten der Kommutatoren der Basisvektoren ergeben, eindeutig festlegen.Die Schreibweise ist dann die folgende:[T a; T b] = fabcT c ;wobei �uber den Index c summiert wird.Eine von ihrer Struktur her besonders gut zu fassende, in ihren Resultatenjodoch sehr fruchtbare Klasse von Lie{Algebren ist die der halbeinfachen Lie{Algebren. Um den Begri� der Halbeinfachheit einf�uhren zu k�onnen, bedarf eseiniger vorbereitender De�nitionen.



38 Kapitel 4. Dunkl{OperatorenDef.: (Ideal)Das Ideal eine Lie{Algebra ist ein Untervektorraum, der unter Kommu-tation mit Elementen der Lie{Algebra in sich selbst abbildet:u + v 2 h 8 u; v 2 h � g� v 2 h 8 v 2 h ; � 2 K[u; x] 2 h 8 u 2 h ; x 2 gDer Vektorraum h mit der Lie{Klammer [�; �] hei�t Ideal von g.Der Begri� des Ideals lehnt sich an den der Ringtheorie an, in welcher eine unterAddition abgeschlossene Teilmenge, f�ur die die Multiplikation mit beliebigenElementes des Ringes wieder in sich selbst f�uhrt, als Ideal bezeichnet wird.Eine weitere wichtige De�nition ist die der Ableitung.Def.: (Abgeleitete Lie{Algebra)Die abgeleitete Lie{Algebra ist die Lie{Algebra, die von s�amtlichen Kom-mutatoren einer Lie{Algebra aufgespannt wird. Man schreibt daf�ur auch:g0 := [g; g] ;wobei mit [g; g] die Menge [x; y] j x; y 2 g gemeint ist.Der Begri� Ableitung begr�undet sich mit der Tatsache, da� die Lie{Klammerdie Derivationseigenschaft besitzt.Mit diesen De�nitionen kann man nun die Einfachheit einer Lie{Algebra fassen:Def.: (Einfache Lie{Algebra)Sei g eine Lie{Algebra. Gilt dann(i) g0 6= ;(ii) g besitzt au�er sich selbst und der leeren Menge keine weiterenIdeale ,so hei�t g einfach.Def.: (Halbeinfachheit)L�a�t sich eine Lie{Algebra g darstellen alsg = Mi2I gi gi Einfache Lie{Algebrenmit der Lie{Klammer [ � ; � ] := Xi 2 I[ � ; � ]i;so spricht man von einer halbeinfachen Lie{Algebra



4.1. Die Coxeter{Gruppe 39F�ur halbeinfache Lie{Algebren besteht nun die M�oglichkeit der Einf�uhrungeiner der Lie{Klammer{Struktur auf dem Vektorraum besonders gut ange-pa�ten Basis, der Chevalley{Basis. Diese besteht aus einer Basis der Cartan{Unteralgebra, also der maximalen Abelschen1 Unteralgebra in g, und aus einerBasis des Komplement�arraumes. Eine gegebene Basis fHi j i = 1 : : : rg derCartan{Unteralgebra l�a�t sich zu einer Basis der Lie{Algebra erg�anzen, die derEigenschaft [Hi; E�(k) ] = �(k)i E�(k) i = 1 : : : rgen�ugt.Die so de�nierte, nicht eindeutige Basis tr�agt den Namen Cartan{Weyl Basis. Inder Sprache der Darstellungstheorie sind die die Basis vervollst�andigenden Vek-toren Eigenvektoren der adjungierten Darstellung der Cartan{Unteralgebra.Die sich aus den Eigenwerten konstituierenden, die Basis indizierenden Vekto-ren � besitzen nun die Eigenschaften eines Wurzelsystems. Daraus folgt zumBeispiel sofort, da� neben dem Vektor E� auch der Vektor E�� ein Elementder Basis ist. Diese Paare werden auch Auf- beziehungsweise Absteigeoperato-ren genannt, was seine Begr�undung in der Darstellungstheorie �ndet. Von eineBehandlung derselben wird hier aus Platzgr�unden abgesehen, zumal sie f�ur dasVerst�andnis der weiteren Darstellung nicht notwendig ist.Aus der Cartan{Weyl Basis l�a�t sich nun die f�ur die mathematische Behandlungvon Lie{Algebren geeignetste Basis, die Chevalley{Basis, konstruieren.Def.: (Chevalley{Basis)F�ur eine halbeinfache Lie{Algebra existiert eine Basis fHi j i = 1 : : : rg[fE� j � 2 �g mit folgenden Eigenschaften:[E�; E��] = H�[H�;H� ] = 0[H�; E��] = �2E�� :Die Chevalley Basis geht aus der Cartan{Weyl Basis durch Wechsel der Basisder Cartan{Unteralgebra via H� := Pi 2�i(�;�)Hi hervor.Da die Eigenschaften der Lie{Algebren durch die Kommutatoren festgelegtsind, lassen sich halbeinfache Lie{Algebren somit durch Wurzelsysteme klas-si�zieren.4.1.3 Die Weyl{GruppeEng verbunden mit Wurzelsystemen ist die Weyl{Gruppe. Sie ist die bei Kom-position aus den Spiegelungen bez�uglich Wurzeln erzeugte Gruppe:1Niels Henrik Abel, norwegischer Mathematiker (1802{1829). Arbeiten im Bereich derAlgebra, �uber elliptische Funktionen und Potenzreihen.



40 Kapitel 4. Dunkl{OperatorenDef.: (Weyl{Gruppe)Sei R � E ein Wurzelsystem in einem euklidischen Vektorraum. Dannnennt man die von den Spiegelungen erzeugt GruppeW := comp fs� j � 2 Rgmit Komposition durch Hintereinanderschaltung von Spiegelungen dieWeyl{Gruppe des Wurzelsystemes R. Oft schreibt man auch W (R).Die Weyl{Gruppe zu endlichen Wurzelsystemen ist eine endliche Gruppe.Als Beispiel f�ur ein Wurzelsystem sei hier das im folgenden noch Verwendung�ndende System An n�aher untersucht.Das Wurzelsystem An ist wurde im vorigen Abschnitt angegeben. Es lautetR = fei � ej ; i 6= jg :Die Abgeschlossenheit unter der Wirkung von W (An) l�a�t sich leicht explizitnachrechnen. Eine Teilmenge positiver Wurzeln erh�alt man zum Beispiel mitdem System R+ := fei � ej ; j < ig :Als Normalenvektor der das Wurzelsystem teilenden Hyperebene dient hier derVektor a = Pk kek. Das Skalarprodukt mit den Wurzeln (a; �ij) ergibt sichso zu i � j, ist also aufgrund der Bedingung i 6= j f�ur die Wurzel �i,j immerungleich 0. Die Positivit�atsbedingung (a; �ij) > 0 verlangt, da� i > j geltenmu�.Die Weyl{Gruppe der An hat eine �uberraschend einfache Form. Die zur Wur-zel �ij = ei � ej geh�orige Spiegelung wirkt n�amlich auf einen Vektor x =(x1; x2; : : : ; xn) wie folgt:s�ij (x) = x � (ei � ej ; x) (0; 0; : : : ; 0; 1|{z}i: ; 0; : : : ; 0; �1|{z}j: ; 0; : : : ; 0)= (x1; x2; : : : ; xn) � (0; : : : ; 0; xi � xj| {z }i: ; 0; : : : ; 0; xj � xi| {z }j: ; 0; : : : ; 0)= (x1; x2; : : : ; xj|{z}i: ; : : : ; xi|{z}j: ; : : : ; xn)= Pij (x1; x2; : : : ; xn) :Die Weyl{Gruppe der An ist also gerade die Permutationsgruppe Sn der Kom-ponenten von Vektoren eines n{dimensionalen Raums. In dieser Tatsache liegtauch die M�oglichkeit begr�undet, die Darstellungen der An Lie{Algebren mitHilfe von Young{Tableaus, die der Darstellungsheorie der PermutationsgruppeSn entstammmen, zu behandeln.Zum Abschlu� dieses Abschnittes sei nun noch die De�nition der als Namens-geber fungierenden Coxeter{Gruppe gegeben.



4.2. Di�erential{Di�erence{Operatoren 41Def.: (Coxeter{Gruppe)Sei E ein euklidischer Vektorraum mit Skalarprodukt (�; �), E0 � E. DieGruppeG entstehe als Komposition der durch E0 gegebenen Spiegelungenin E: G := comp �s� j � 2 E0	 :Ist diese Gruppe endlich, so hei�t sie Coxeter{Gruppe.Die Weyl{Gruppen sind also durch die zus�atzliche Bedingung f�ur die Teilmen-ge E0 ein Spezialfall der Coxeter{Gruppen. Die Vermutung, da� aufgrund derForderung nach Endlichkeit der Gruppe jede Coxeter{Gruppe schon eine Weyl{Gruppe sei, tri�t nicht zu.4.2 Di�erential{Di�erence{OperatorenDiese Abbildungen operieren auf der Algebra der Polynome mit komplexenKoe�zienten in N < 1 Variablen, f�ur die man auch kurz jC[E] schreibt, wo-bei E ein N{dimensionaler euklidischer Vektorraum ist. Exakter w�are hierdie Schreibweise jC[E�], da die Elemente p dieser Algebra ja eine Abbildungp : E ! jC darstellen. Aufgrund der Euklidizit�at von E ist jedoch die Identi�-zierung mit dem Dualraum kanonisch und bedarf somit keiner Ausweitung derNotation. Bei Einf�uhren einer Orthonormalbasis feigvon E hat ein Polynomp 2 jC[E] die Formp(�) = Xi1; i2; : : : ; iN �i1; i2; : : : ; iN (e1; �)i1 ; : : : ; (eN ; �)iN :Sei R nun ein Wurzelsystem in E mit dazugeh�origer Weyl{GruppeW (R). Dannkann man folgende, auf Polynomen p 2 jC[E] operierende Endomorphismeneinf�uhren:� ! : p(x) 7! !p(x) := p(!x) ! 2 W (R)� p(x) 7! @�p(x) := ddtp(x+ t�)jt=0 8� 2 E (Richtungsableitung)� ��p(x) := p(x)�p(s�(x))(�;x) 8 � 2 RHiermit konstruierte Dunkl nun den folgenden OperatorD� := @� + X�2 R+ k�(�; �)�� ; (4.1)wobei R+ eine positive Teilmenge der Wurzelsystems R darstellt und die Ko-e�zienten k� der Bedingung k� = k!(�) 8! 2 W (R) gen�ugen.



42 Kapitel 4. Dunkl{OperatorenEine wichtige, von Dunkl bewiesene Eigenschaft dieser Operatoren ist, da� siedie Gleichung D�D� = D�D� (4.2)erf�ullen, also eine kommutative Algebra erzeugen.Dunkl untersuchte in seiner Arbeit nun Polynome im Kern des Operators�h := Xi D2ei (4.3)mit einer Orthonormalbasis feig, der einen Endomorphismus auf dem Raumder unter der Wirkung von W (R) invarianten Polynome darstellt. Aufgegri�enwurden die Dunkl{Operatoren von Gerrit J. Heckman im Jahre 1989 [Hec89].Von ihm wurde eine Restriktionsabbildung eingef�uhrt, die einen Operator D :jC[E] ! jC[E] auf den Operator Res(D) : jCW [E] ! jCW [E] auf W{invariantenPolynomen abbildet. F�ur diese restringierten Operatoren gilt dann!Res(D)!-1 = Df�ur alle ! aus W (R).Auf die Dunkl{Operatoren (4.1) wirkt diese Transformation wie folgt:!D� !-1 = D!(�) : (4.4)Nach Heckman kommutieren nun die Restriktionen von Operatoren D� =D�d11 �d22 :::�dnn := Dd1�1 �Dd2�2 � : : : �Ddn�n mit unter der Wirkung von W invarianten� 2 jCW [E] paarweise.Ein weiteres wichtiges Resultat Heckmans Arbeit ist die Konstruktion von Auf-und Absteigeoperatoren, die zwischen Operatoren mit Parametern k� und k��1 vermitteln. Da die allgemeine Form dieser Operatoren eine Reihe weitererDe�nitionen erfordert und hier nicht ben�otigt wird, sei auf die Originalarbeitvon Heckman verwiesen.S�amtliche Aussagen dieses Abschnittes gelten auch f�ur leicht ver�anderte Dunkl{Operatoren r� := @� + X� 2 R+ k�(�; �) s�(�; x) ; (4.5)die �uber die Transformationr� = Y(�; x)�k� D�Y(�; x)k� (4.6)mit den urspr�unglichen Operatoren zusammenh�angen.



4.2. Di�erential{Di�erence{Operatoren 43F�ur die Beweise der obigen Aussagen sind Identit�aten f�ur aus Spiegelungenund Multiplikationen gebildete Operatoren entscheidend, welche in den beidenArbeiten von Dunkl und Heckman in gro�er Zahl gefunden werden k�onnen.In einer Arbeit von 1994 untersuchen Buchstaber, Felder und Veselov Erweite-rungen der Dunkl{Operatoren, in denen der Anteil k�(�;�) in (4.5) durch Funktio-nen f(�; �) ersetzt wird, so da� die Kommutatoreigenschaft (4.2) sowie die Inva-rianzeigenschaft (4.4) erhalten bleiben. Dies f�uhrt auf eine Funktionalgleichung,deren L�osungen von den Wurzelsystemen R abh�angen. F�ur einfache Wurzel-systeme mit Ausnahme von A1 und B2 zeigt sich, da� s�amtliche L�osungenauf den Dunkl{Operator (4.5) f�uhren. Der Spezialfall B2 f�uhrt auf die Jacobi{elliptischen Funktionen sn, der uninteressante Fall A1 liefert selbstverst�andlichkeine einschr�ankende Bedingung f�ur die Funktion f(�; �).Gibt man die Invarianzforderung (4.4) auf, so f�uhrt dies auf komplizierte, pa-rameterabh�angige Funktionen, die im Grenz�ubergang des Parameters gegen 0auf die Weierstra�sche elliptische Funktion f�uhren.Diese Funktion sowie eine erste Anwendung der Dunkl{Operatoren auf dasCalogero{Problem werden in der zweiten H�alfte des folgenden Kapitels bespro-chen.





Kapitel 5
VerallgemeinerteCalogero{Modelle
In diesem Kapitel soll das Calogero{Modell systematisch in eine allgemeinereKlasse von Modellen eingeordnet werden. Diese umfa�t das Sutherland{Modell[Sut71], in welchem die Teilchen �uber ein Potential der Form sin�2(xi � xj)interagieren sowie die von Olshanetsky und Perelomov [OP81] untersuchtenModelle, bei denen nicht s�amtliche Teilchen miteinander in Wechselwirkungstehen.Bie diesen Verallgemeinerungen spielen die Methode der Lax{Matrix sowie dieDunkl{Operatoren eine wichtige Rolle.5.1 Eine spezielle Klasse von Lax{Matrizen5.1.1 Die Lax{Matrix des Calogero{ModellsHier taucht zum ersten Mal das klassische Calogero{Modell auf. Nachdem inden Jahren 1969 bis 1975 verschiedene Modi�akationen des urspr�unglichenquantenmechanischen Calogero{Modelles intensiv untersucht wurden, sind er-ste Erkenntnisse �uber das klassische Analogon erst im Jahre 1975 von F. Ca-logero und J. Moser ver�o�entlicht worden. Dies liegt nicht zuletzt daran, da�die L�osungen im quantenmechanischen Falle �uber einen geschickten Ansatz ge-wonnen wurden, also mehr oder weniger auf ein systematisches Raten zur�uck-gehen. Aus den quantenmechanischen L�osungsfunktionen lassen sich nun nichtunmittelbar Aussagen �uber das klassische System respektive dessen L�osungenableiten. Entscheidend f�ur die Fortschritte bei der Behandlung des klassischenFalles war das Au�nden der zugeh�origen Lax{Matrix.F�ur das klassische Calogero{Modell mit invers quadratischem Potential, also45



46 Kapitel 5. Verallgemeinerte Calogero{Modelleder Hamiltonschen FunktionH = 12 Xi p2i + gXj < i 1(xi�xj)2 (5.1)besitzt die Lax{Matrix die FormLij = �ijpi + (1� �ij) �̂pg 1xi�xj : (5.2)Die zugeh�orige Matrix M des Lax{Paares ergibt sich zuMij = �ij �̂pg Xk 6= i 1(xi�xk)2 � (1� �ij) �̂pg 1(xi�xj)2 :F�ur den Kommutator [L,M] der beiden Matrizen erh�alt man[L;M]ij = LikMkj � LkjMik= ��ij 2gXk 6= i 1(xk�xi)3 � (1� �ij) �̂pg 1(xi�xj)2 (pi � pj) :Aus der zeitlichen Ableitung der Lax{Matrix L resultiert folgende Matrix:_L = �ij _pi � (1� �ij) �̂pg 1(xi�xj)2 ( _xi � _xj) :Die Lax{Gleichung _L = [L;M] liefert in Komponentenschreibweise somit dasfolgende System von Gleichungen:_pi = 2gXk 6= i 1(xk�xi)3 ( = �@iH ) (5.3)_xi = pi : (5.4)Dies sind gerade die Hamiltonschen Bewegungsgleichungen (2.2) in den kano-nischen Variablen xi und pi. Das Calogero{Modell ist somit �aquivalent durchdie Lax{Matrix (5.2) gegeben. Von der Struktur her der Form (5.2) �ahnlicheMatrizen ergeben mit dem Calogero{Modell verwandte Systeme. Der allgemein-ste Ansatz f�ur solche Lax{Matrizen f�uhrt auf eine Funktionalgleichung, die imn�achsten Abschnitt behandelt werden soll.5.1.2 Funktionalgleichung f�ur Lax{MatrizenDie Lax{Matrix (5.2) ist von der FormLij = �ijpi + (1� �ij) �̂pg u(xi � xj) ; (5.5)die Matrix M hat die GestaltMij = �ij �̂pg Xk 6= i v(xi � xk) � (1� �ij) �̂pgw(xi � xj)



5.1. Eine spezielle Klasse von Lax{Matrizen 47mit symmetrischen Funktionen u und w, sowie antisymmetrischer Funktion v.F�ur den Kommutator von L und M ergeben sich die folgenden Komponenten:[L;M]ij = �ij 2g Xk 6= iu(xi � xk)w(xk � xi)� (1� �ij) �̂pgw(xi � xj) (pi � pj) ++(1� �ij) g u(xi � xj)(Xk 6= j v(xj � xk) � Xk 6= i v(xi � xk)) +�(1� �ij) g Xk 6= i; j u(xk � xj)w(xi � xk) � u(xi � xk)w(xk � xj) :Auf der linken Seite der Lax{Gleichung verbleibt_Lij = �ij _pi + (1� �ij) �̂pg u0(xi � xj) ( _xi � _xj) :Aus der Diagonale der Lax{Gleichung resultieren damit die N Gleichungen_pi = �2gXk 6= iu(xi � xk)w(xi � xk) :Die Nichtdiagonalelemente liefern unter der Voraussetzung, da� die Funktionu(r) reellwertig sein soll und der Identi�kation pi = _xi die folgenden N(N-1)Gleichungen:u0(xi � xj) = �v(xi � xj) (5.6)u(xi � xj) Xk 6= i; jfv(xj � xk)� v(xi � xk)g = Xk 6= i; jfw(xi � xk)u(xk � xj) +�w(xk � xj)u(xi � xk)g (5.7)Das Potential des zugeh�origen Hamiltonschen Systems ergibt sich dann aus@iV = 2gXk 6= i u(xi � xk)u0(xi � xk) :Eine L�osung dieser N Di�erentialgleichungen ist von der FormV = gXj < iu2(xi � xj) ;wobei die Antisymmetrieeigenschaft von u(�) wesentlich ist.Die Gleichungen (5.6,5.7) werden sicherlich durch Funktionen u und v erf�ullt,die der Funktionalgleichungu(� + �)fv(�) � v(�)g = u(�)u0(�)� u(�)u0(�) (5.8)gen�ugen. Die nichttrivialen, im Nullpunkt di�erenzierbaren L�osungen dieserFunktionalgleichung ergeben eine Konstante f�ur die Funktion v sowie eine Expo-nentialfunktion f�ur die Funktion u. Dies f�uhrt auf die sogenannte "Toda Gitter{Gleichung\, die auch gelegentlich im Zusammenhang mit dem Calogero{Modell



48 Kapitel 5. Verallgemeinerte Calogero{Modellegenannt wird, was hiermit eine Rechtfertigung �ndet. Sie gen�ugt allerdings nichtder Symmetrieforderung f�ur die Funktion u. Interessante L�osungen sind somitin der Klasse der im Nullpunkt nicht regul�aren Funktionen zu suchen.Der einfachste Ansatz f�ur die Funktion u hat dann die Formu(�) = c�1��1 + c1�1 + O(�3) : (5.9)Zur Behandlung der Funktion u(� + �) ist die folgende Formel sehr n�utzlich:Satz: (Verschiebung von Laurentreihen)Sei T(x) eine Laurentreihe der Form T(x) = P1i = �1 aixi und bezeich-ne T(n)(x) die n-te Ableitung dieser. Dann gilt:T(x+ y) = 1Xk = 0 1k!ykT(k)(x) :Bew.: 1Xk = �1 ak(x+ y)k = 1Xk = 0 ak(x+ y)k + a�1(x+ y)�1= 1Xk = 0 (akxk)(k)k! yk + a�1x�1 1Xk = 0�yx�k= 1Xk = 0� (akxk)(k)k! + (a�1x�1)(k)k! �yk= 1Xk = 0 T (x)(k)k! yk 2Dies ist lediglich die Taylorreihenentwicklung der Laurentreihe um einen nichtsingul�aren Punkt. Vorteil dieser elementaren Vorgehensweise ist, da� man durchVerwenden der geometrischen Reihe unmittelbar den Konvergenzradius ablesenkann.Um die Funktion v einzuschr�anken erweist es sich als geschickt, die Funktio-nalgleichung (5.8) mit 1��� zu multiplizieren und den Grenz�ubergang � ! �durchzuf�uhren. Es verbleibt dann folgende Funktionalgleichung:u(2�) v0(�) = u(�)u00(�)� u0(�)u0(�) : (5.10)Geht man mit dem Ansatz (5.9) f�ur die Funktion u in diese Gleichung, so zeigtsich, da� die Funktion v von der Formv(�) = c�1��2 + a0 + O(�2)



5.1. Eine spezielle Klasse von Lax{Matrizen 49sein mu�, um in niedrigster Ordnung der Gleichung (5.10) sowie den Symmetrie-bedingungen zu gen�ugen. Alternativ kann man einen Laurentreihenansatz f�urv in die Gleichung (5.8) einsetzen und die niedrigste Ordnung in � betrachten.Dies wurde von Olshanetsky und Perelomov [OP81] mit demselben Resultatausgef�uhrt, verlangt jedoch etwas mehr Aufwand.Mit dem obigen Satz sowie unter Ausnutzung der Formen der Funktionen u(�)und v(�) erh�alt man durch Vergleich in der Ordnung �0 f�ur j � j�j � j diefolgende Identit�at: v(�) = �c�1 u00(�)2u(�) + 1 :Da die Funktion v aus der Funktionalgleichung lediglich bis auf ein konstantesGlied bestimmt ist, l�a�t sich die additive Konstante zum Verschwinden bringen,was schlie�lich auf die Form v(�) := �c�1 u00(�)2u(�) (5.11)f�uhrt. Damit schreibt sich die Funktionalgleichung (5.8) folgenderma�en:u0(�)u(�) � u(�)u0(�) = �c�12 �u00(�)u(�) � u00(�)u(�) � u(� + �) : (5.12)Die allgemeinste bekannte L�osung dieser Funktionalgleichung ist nach Calogero[Ca75a] die Weierstra�sche elliptische Funktion }(�).5.1.3 Elliptische FunktionenDie elliptischen Funktionen sind meromorphe Abbildungen von jC nach jC mitzwei Perioden !1 und !2, die �uber IR linear unabh�angig sind. Es handelt sichalso um doppelt periodischer Funktionen.Die Perioden der elliptischen Funktionen bilden in der komplexen Ebene einParallelogramm. Die Integration �uber ein solches Parallelogramm verschwindetaufgrund der Periodizit�at identisch, so da� im Inneren dieser Gebiete die Summeder Residuen verschwinden mu�. Dies bedingt durch die �Uberdeckung von jCmit solchen Parallelogrammen, da� elliptische Funktionen keine ungepaartenPole erster Ordnung besitzen k�onnen. Dabei ist mit "gepaart\gemeint, da� einweiterer Pol existiert, so da� sich die Summe der Residunen zu Null addiert.Die einfachste elliptische Funktion ist somit von der Gestaltf(z) = 1z2 + h(z)mit einer holomorphen Funktion h(z).Fordert man nun Pole an den Stellen ! := m1 !1 + m2 !2 mit m1;m2 2 ZZ , soist die Funktion aufgrund des Satzes von Mittalg{Le�er bis auf eine Konstante



50 Kapitel 5. Verallgemeinerte Calogero{Modelleeindeutig bestimmt. Das Resultat ist die sogenannte Weierstra�sche elliptischeFunktion, }(z) mit der Laurent Entwicklung}(z) = 1z2 + Xi 6= j � 1(z�!)2 � 1!2� :Es stellt sich heraus, da� die Weiertsta�sche Funktion die negative Ableitungder Weierstra�schen Zeta{Funktion ist: }(z) = �� 0(z). Die Funktion }(z)h�angt wie folgt mit den Jacobi{elliptischen Funktionen zusammen:1a}( 1pa � z) + C = cn2(z)sn2(z) :Dabei h�angen die Konstanten a und C von den beiden Perioden der Weier-stra�schen Funktion zusammen (siehe zum Beispiel [MOS66], S. 389).Mit den Funktionalgleichungen f�ur die Jacobi{elliptischen Funktionen l�a�t sichnun zeigen, da� dies eine L�osung der Gleichung (5.12) darstellt.Damit erweist sich die FunktionV = g2 a2 Xi 6= j }(a (xi � xj))als Potential f�ur ein "Calogero{�Ahnliches\ System. Hier stellt sich die Frage,inwieweit das urspr�ungliche Calogero{Modell einen Grenzfall dieses Systemsdarstellt. Diese Fragestellung f�uhrt auf Spezialf�alle der Weierstra�schen ellip-tischen Funktion f�ur bestimmte Werte der beiden Perioden !1 und !2. In derLiteratur [Abr65] �ndet sich hierzu folgendes:� lim!1 !1!2 ! �̂1 a2}(a z) = a2 z�2 (5.13)� lim!1 = �=2!2 ! �̂1 a2}(a z)� 13 = a2 sin�2(a z) (5.14)� lim!1 !1!2 = �̂�=2 a2}(a z) = a2 sinh�2(a z) (5.15)Hier �nden sich also die von Calogero (5.13) und Sutherland (5.14) untersuchtenModelle wieder, sowie auch die h�au�g untersuchte Verallgemeinerung (5.15)dieser beiden, wobei (5.13) aus (5.15) als Limes a ! 0 und (5.14) durch denGrenz�ubergang a! �̂ hervorgehen.Mit der allgemeinsten L�osung, der Funktion }(z), hat man aufgrund der doppel-ten Periodizit�at dieser Funktion ein "Calogero{Modell\ auf dem Torus gegeben,was die einfachste Erweiterung weg von der euklidischen Ebene darstellt undin der mathematischen Physik eine beliebtes Objekt darstellt.Mit der Vorgehensweise dieses Abschnittes wurde ausgehend von der Lax{Matrix f�ur das klassische Calogero{Modell dieses systematisch in eine gr�o�e-re Klasse von Modellen eingeordnet, deren Teilchen �uber ein Potential von



5.2. Wurzelsysteme als Wechselwirkungsdiagramme 51der Form einer Weierstra�schen Funktion wechselwirken. Diese Wechselwirkungwurde auch f�ur den quantenmechanischen Fall untersucht und �ndet noch heuteunter dem Namen elliptisches Calogero{Moser{Modell Interesse.Die nun folgende Erweiterung geht vom quantenmechanischen Fall aus undf�uhrt auf die M�oglichkeit, da� nur einige Teilchen des Systems miteinanderwechselwirken.5.2 Wurzelsysteme als Wechselwirkungsdiagram-meIn Abschnitt 4.2 wurden die sogenannten Dunkl{Operatoren eingef�uhrt. In die-sem Zusammenhang tauchte auch der Operator (4.3) auf, ein Endomorphismusauf den unter der Wirkung der Weyl{Gruppe eines Wurzelsystems invarian-ten Polynomen. Konstruiert man diesen Operator analog mit den modi�ziertenDunkl{Operatoren, so erh�alt man die FormXi r2i = �+ X� 2 R+ (�;�)(�;x)2 k�(k� + s�) :W�ahlt man nun als Spezialfall das Wurzelsystem An sowie einen konstantenWert � f�ur die k�, die der Forderung der Invarianz unter der Wirkung der Weyl{GruppeW (An) gen�ugen, so ergibt sich f�ur die Wirkung auf W (An){invariante,also nach Kapitel 4 symmetrische beziehungsweise antisymmetrische Polynomeder Operator Xi r2i = �+ �(� � 1)Xj < i 1(xi�xj)2 ;also gerade der Hamilton{Operator (1.1) des quantenmechanischen Calogero{Modells aus Kapitel 1.Die weiteren Wurzelsysteme (siehe Tabelle (4.1) in Kapitel 4) liefern nun Ha-miltonians f�ur dem Calogero{Modell verwandte Systeme. Diese wurden auchim klassischen Fall untersucht.F�ur eine explizite Au
istung der untersuchten, Calogero{�Ahnlichen Modellesei auf die beiden Review{Artikel von M.A. Olshanetsky und A.M. Perelomovaus den Jahren 1981 und 1983 verwiesen [OP81,OP83]. In diesen �nden dieDunkl{Operatoren selbstverst�andlich noch keine Verwendung, da sie erst imJahre 1989 zum ersten Mal auftraten.





Kapitel 6Erhaltungsgr�o�en desCalogero{Modells
Wie in den Kapiteln zwei und drei gesehen, ist die Integrabilit�at sowohl vonklassischen als auch quantenmechanischen Systemen nicht durch die Angabeeiner L�osungsfunktion beziehungsweise eines vollst�andigen Eigenfunktionensy-stem de�niert. Dies w�urde denn auch unweigerlich auf die Frage f�uhren, obdiese L�osungen in Termen "elementarer\ Funktionen (ein Begri�, der zuvorexakt de�niert werden m�u�te) angegeben werden sollen oder ob man sich mitdem Beweis der Existenz einer L�osung zufrieden geben will, was die Physik alseine rein mathematische Wissenschaft identi�zieren w�urde. Vielmehr sprichtman erst dann von einem integrablen Modell, wenn ein Satz von Erhaltungs-gr�o�en f�ur dieses bekannt ist, deren Zahl im klassischen Fall von der Zahl derFreiheitsgrade und in der Quantenmechanik von der Entartung der L�osungenabh�angt.6.1 Klassische Erhaltungsgr�o�enNach dem Liouvilleschen Satz spricht man in der klassischen Mechanik dannvon einem integrablen Modell, wenn ein Satz von n, im Sinne von Kapitel2 unabh�angigen, Phasenraumfunktionen zur Verf�ugung steht, die entlang derPhasenbahnen konstant bleiben. Dabei ist n die Zahl der Freiheitsgrade desSystems.Bei dem Calogero{Modell handelt es sich um ein 1{Dimensionales N{K�orperProblem, bei dem die Teilchen keiner weiteren Einschr�ankung unterliegen.Die Zahl der Freiheitsgrade ist somit mit der Teilchenzahl identisch. Da dieHamilton{Funktion selbst nicht explizit von der Zeit abh�angt bleibt die Ener-gie in diesem System konstant, so da� man lediglich (N � 1) weitere Erhal-tungsg�o�en au�nden mu�, um die Integrabilit�at nachzuweisen. Mit der Lax{Matrix (5.2) und den Erkenntnissen aus Kapitel 2 steht nun eine einfache53



54 Kapitel 6. Erhaltungsgr�o�en des Calogero{ModellsM�oglichkeit zur Verf�ugung, weitere erhaltene Gr�o�en zu gewinnen.6.1.1 Spur der Lax{MatrixDa die Lax{Matrix (5.2) des Calogero{Modells eine Hermitesche Matrix ist, l�a�tsie sich mit einer unit�aren Transformation diagonalisieren. Damit gilt nicht nur,da� die Gr�o�en In := tr(Ln)zeitlich konstant sind, sonder auch paarweise kommutieren. F�ur Systeme mitHermitescher Lax{Matrix hat man nach Kapitel 2 immer paarweise kommutie-rende Gr�o�en In. Diese Folgerung aus der Existenz einer Lax{Matrix ist nochrelativ neu. Zuvor mu�te der Kommutator f In ; Im g explizit berechnet werden,um das Verschwinden nachzuweisen. Eine Variante eines solchen Beweises f�urdas Calogero{Modell sowie Verweise auf alternative M�oglichkeiten �nden sichin dem Review{Artikel von Olshanetsky und Perelomov [OP81]. Auf eine Va-riante soll im folgenden Abschnit aufgrund der dort auftretenden interessantenIdentit�aten noch n�aher eingegangen werden. Allen diesen Beweisen ist gemein,da� man auf gro�e rechentechnische Schwierigkeiten st�o�t.Desweiteren sind die Gr�o�en In noch darauf zu untersuchen, inwieweit gegen-seitige Abh�angigkeiten auftreten oder einzelne In verschwinden. Die Trivia-lit�aten sind sofort ausgeschlossen, wenn es sich bei den In um im Sinne desLiouvilleschen Satzes (siehe 2.1.3) unabh�angige Phasenraumfunktionen han-delt. Dies nachzupr�ufen ist jedoch nicht praktikabel, da die aus den Spuren derLax{Matrix gewonnenen Erhaltungsgr�o�en durch das Potenzieren der MatrixL sehr schnell eine sehr komplexe Form annehmen und so die MannigfaltigkeitMf nicht angegeben werden kann.Es sei hier auf die Aussage bei Olshanetsky und Perelomov verwiesen, wo-nach sich die In nicht als Polynome der Erhaltungsgr�o�en niedrigerer Ordnungdarstellen lassen. Dies liegt daran, da� die Spuren der Potenzen von L sym-metrische Polynome in den Impulsen pi von der Ordnung des Exponenten vonL sind. Dadurch ist allerdings nicht sichergestellt, da� keine trivialen IntegraleIn = 0 erzeugt werden. Ebenfalls nicht ausgeschlossen ist der Fall, in einemPunkt von Mf lineare Abh�angigkeit zu erhalten.Die Integrabilit�at im Liouvilleschen Sinne ist daher bis heute nicht streng be-wiesen.Von der Folge bekannter Erhaltungsgr�o�en m�ochte ich hier zumindest die erstenGlieder angeben.Die Gr�o�e I1 ergibt sich als Spur der Lax{Matrix L zum Gesamtimpuls desSystems. Die Erhaltung dieses Impulses l�a�t sich auch unmittelbar aus derHamilton{Funktion ablesen, da diese translationsinvariant ist.



6.1. Klassische Erhaltungsgr�o�en 55Die zweite Erhaltungsgr�o�e I2 berechnet sich zu folgendem Wert:tr(L2) = Xi; j (�ij pi + (1� �ij) �̂pg 1xi�xj )(�ijpi � (1� �ij) �̂pg 1xi�xj )= Xi p2i + g Xi; ji 6= j 1(xi�xj)2= 2 � (12 Xi p2i + gXj < i 1(xi�xj)2 )= 2HCal = 2E :Dies ist gerade die, wie oben erw�ahnt, erhaltene Energie des Systems.Die folgenden Erhaltungsgr�o�en gestatten keine derart einfache Interpretation.Die Gr�o�e I3 sei hier der Vollst�andigkeit halber noch angegeben:I3 = Xi pi3 + 3gXi 6= j pi 1(xi�xj)2 +� �̂ g3/2 Xi 6= j 6= ki 6= k 1(xi�xj)(xj�xk)(xk�xi)F�ur das Calogero{Modell taucht in dieser Folge kein verschwindendes Gliedauf. F�ur Calogero{�Ahnliche Modelle wurde jedoch gezeigt, da� Nullfunktio-nen als Erhaltungsgr�o�en auftreten k�onnen. Sollte also ein strenger Beweisder vollst�andigen Integrabilit�at f�ur das Calogero{Modell gelingen, so ist zu er-warten, da� sich dieser nicht sofort auf s�amtliche Calogero{�Ahnlichen Modelle�ubertragen l�a�t.Im folgenden Abschnitt wird eine Linearkombination der Erhaltungsgr�o�en Inuntersucht, die beim Beweis der simultanen Kommutativit�at eine Rolle spielten.6.1.2 Charakteristisches Polynom der Lax{MatrixIm Jahre 1975 untersuchten Sawada und Kotera [SK75] die Koe�zienten descharakteristischen Polynoms �L(x) = Pi xN�iJi der Lax{Matrix (5.2). Siegingen dabei von der DarstellungJk = exp({12gXi 6= j 1(xi�xj)2 @@pi @@pj) kYi = 1 pi (6.1)nach Newton aus. Dabei ist die Exponentialfunktion aus der Sicht der Quanten-feldtheorie ein Normalordnungsoperator. In diesem Fall ist die Normalordnungbez�uglich der Matrix M des Lax{Paares mit herausgenommener Diagonale ge-bildet.



56 Kapitel 6. Erhaltungsgr�o�en des Calogero{ModellsIch m�ochte hier eine alternative Darstellung einf�uhren, die den Zusammenhangder Gr�o�en Jk mit den Integralen In unmittelbar deutlich macht. Hierzu ent-wickeln wir das charakteristische Polynom in folgender Weise:�L (x) = det(xE � L) = xN det(E � x�1L)= xN expntr[ ln(E � x�1L)]o(�)= xN expftr[� 1Xi = 1 xii Li]g= xN 1Yi = 1 exp[�xii tr(Li)]= xN 1Yi = 1 1Xj = 0(�1)i x�i�jij �j! [tr(Li)]j= Nbzw.1Xk = 0 Xm1; : : : ;mkPi imi = kxN�k kYi = 1(�1)mi 1imi �mi! [tr(Li)]mi=: NXk = 0 JkxN�k : (6.2)Diese Entwicklung hat aufgrund des Schrittes (�) zun�achst nur G�ultigkeit, wenndie Bedingung k x�1L k< 1 erf�ullt ist. Mit der Supremumsnorm ist diese Be-dingung gleichbedeutend mitj x j !> maxfLij j i; j = 1 : : :Ng :F�ur x, die dieser Forderung gen�ugen, bricht nun die Summe �uber k in (6.2) beik =N ab. Alle weiteren Summanden verschwinden identisch. Da diese Identit�atsomit f�ur eine o�ene Teilmenge in jC gilt, ist sie nach dem Identit�atssatz f�urPolynome schon auf ganz jC erf�ullt.Die Formel (6.2) stellt demnach das charakteristische Polynom einer beliebigenMatrix L mit komplexwertigen Eintr�agen, also auch komplexwertigen Funktio-nen dar. F�ur jede solche Matrix bricht die Summe �uber k ab.Eine direkte Herleitung ausgehend von der Leibniz{Formeldet(A) = X� 2 SN sgn(�)Yi ai�(i) (6.3)f�ur die Determinante ist mir bisher nicht gelungen. Dennoch m�ochte ich hierkurz die Ans�atze darstellen, nicht zuletzt, da diese auf eine Darstellung der Spurvon Potenzen Matrizen f�uhrt, die eventuell f�ur andere Bereiche der Physik wiedie statistische Physik interessant sein k�onnte. Ausgangspunkt der Rechnungensind die folgenden drei Formeln:� (1�An) = � nYi = 1 (A� exp(2��̂ in))



6.1. Klassische Erhaltungsgr�o�en 57� NYi = 1(ai + bi) = X� 2 SN NXi = 0 1i!�(N�i)! iYk = 1 a�(k) NYk = i+ 1 b�(k)� tr(A) = lim"! 0 1" f 1� det(E � "A) gAus diesen l�a�t sich die folgende Darstellung gewinnen:tr(Ln) = (�1)N+1 Xm1; : : : ;mnPmi = nmi < N8 i NYi = 1 exp(2��̂N�min i)mi! � (N�mi)! X�; �0 sgn(�) �� miYj = 1L�(j);�(�0(j)) NYj = mi + 1 ��(j);�(�0(j))Das Einsetzten dieser Formel in die Darstellung (6.2) erbrachte bisher jedochkeine wesentliche Ann�aherung an die aus der Leibniz{Darstellung gewonneneForm.F�ur die Determinante ergibt sich aus der Darstellung (6.2) folgende Darstellung:det(A) = Xm1; : : : ;mkPi imi = N NYi = 1(�1)mi 1imi �mi! [tr(Li)]mi : (6.4)Mit der Darstellung (6.2) kann man nun folgenden interessanten Zusammen-hang f�ur die Koe�zienten des charakteristischen Polynoms einer Matrix A zei-gen: NXi = 1 @Jk@Aii = �N(N� k + 1)Jk � 1 : (6.5)Der Beweis hierzu �ndet sich in Anhang C.Dies bedeutet f�ur die Lax{Matrix des Calogero{Modells, da� folgende Relationerf�ullt ist: n Xi xi ; Jk o = N(N� k + 1)Jk � 1 : (6.6)Da die Matrix L ausschlie�lich translationsinvariante Eintr�age besitzt, folgt,da� auch die Jk translationsinvariante Gr�o�en sind. Es gilt somit:f Jk ;Xi pi g = 0 :Die Summe �uber die pi l�a�t sich alternativ als die Poisson{KlammerfHCal ;Xi xi g = Xi pi



58 Kapitel 6. Erhaltungsgr�o�en des Calogero{Modellsschreiben. Mit der Jacobi{Identit�at folgt nun bei Verschwinden der Poisson{Klammer von HCal mit einem Jn sofort, da� auch s�amtliche Jk mit k < n erhal-tene Gr�o�en sind. In diesen fr�uhen Ver�o�entlicheungen war nun also zu zeigen,da� die Determinante von L erhalten ist. Hierzu wurde mit Symmetrieargumen-ten unter Verwendung der Leibniz{Formel f�ur die Determinante argumentiert.Nicht klar war dann jedoch das Kommutieren der Jk untereinander.Mit der Darstellung (6.2) sowie der Kenntnis, da� die Spuren der Potenzen vonL kommutieren, sind diese beiden Probleme bereits gel�ost.6.1.3 Die r{Matrix des Calogero{ModellsIn Kapitel 2 wurde eine Konstruktionsvorschrift f�ur die Matrix r angegeben(2.14). Diese setzt sich aus der Diagonalatrix � der Eigenwerte von L sowie demL diagonalisierenden Isomorphismus S sowie den Fadeev{Klammern zwischenS und � und S und S zusammen. Die De�nitionen seien hier zur Erinnerungnochmals angegeben: q := (S�1 
 S�1)fS 
, �g(1
 S)k := (S�1 
 S�1)fS 
, Sga := �q + 12 [k; 1 
 L]b := PqP + 12 [k; L
 1]r := 12 (a� PbP ) :Diese Konstruktion liefert nun im allgemeinen keine antisymmetrische Matrixr, wie sie in der Theorie der klassischen r{Matrizen auftritt. Aus diesem Grundist es sinnvoll, die r{Matrix des Calogero{Modells n�aher zu untersuchen und sozu �uberpr�ufen, inwieweit es sich bei diesem Modell um ein integrables Modellhandelt, das nicht durch die Theorie der klassischen r{Matrizen erfa�t wird.Die Berechnung der r{Matix f�ur das Calogero{Modell wird durch die Tatsache,da� die Lax{Matrix (5.2) eine Hermitesche Matrix ist, stark vereinfacht. F�urdiese Art von Matrizen sind gangbare Wege zur Berechnung der diagonalisie-renden Abbildung S aus der linearen Algebra bekannt.F�ur den Fall zweier Teilchen, also einer 2 � 2{Lax{Matrix l�a�t sich dies mitEDV{Unterst�utzung leicht durchf�uhren. F�ur die Matrix a aus (2.14) ergibt sichfolgende Gestalt: a =  0 11 0 ! 
  � ��� � !mit reellwertigen rationalen Phasenraumfunktionen � und �, die in Anhang Dangegeben sind.



6.1. Klassische Erhaltungsgr�o�en 59Au��allig bei der Berechnung ist zum einen, da� die Matrix a ein einfachesElement des Tensorproduktes ist, was aufgrund der Verwendung der Fadeev{Klammer bei der Konstruktion dieser nicht selbstverst�andlich ist. Entscheidendhierf�ur ist das Verschwinden der Klammer fS 
, Sg f�ur die unit�are Transforma-tion S. Interessant ist hier die Frage, f�ur welche Klasse von Lax{Matrizen diesgilt. Unmittelbare Folge des Verschwindens der Fadeev{Klammer von S und Sist aufgrund des Verschwindens von k, da� die Matrix a bereits die gesuchteMatrix r aus (2.12) ist.Im Fall des 3{Teilchen Calogero{Modells ist die Berechnung der Matrix r mitProgrammen zur Computer{Algebra nicht mehr durchf�uhrbar, da dieses Pro-blem auf das Diagonalisieren einer beliebigen Hermiteschen Matrix f�uhrt. Hierm�ussen von Hand einige Vorbereitungen getro�en werden. Die Lax{Matrix hatin diesem Fall die GestaltL = 0B@ p1 �̂pgx1�x2 �̂pgx1�x3�̂pgx2�x1 p2 �̂pgx2�x3�̂pgx3�x1 �̂pgx3�x2 p3 1CA :Das charakteristische Polynom dieser Matrix hat die Form�L = x3 + c2x2 + c1x+ c0mit den Koe�zientenc2 = �p1 � p2 � p3c1 = p1p2 + p1p3 + p2p3 + g(x1�x2)2 + g(x1�x3)2 + g(x2�x3)2c0 = �g� p3(x1�x2)2 + p2(x1�x3)2 + p1(x2�x3)2� :Unter der Annahme paarweise verschiedener Eigenwerte, was aufgrund der ste-tigen Abh�angigkeit der Eigenwerte von den Variablen fpi; xig bis auf Mengenvom Ma� 0 im Lebesgueschen Sinne zutri�t, sind die Eigenvektoren als Funk-tionen der Eigenwerte �i von der Gestalte(�i) = 0@ �g(p1 � �i)(x1 � x2)(x1 � x3) � �̂pg(p1 � �i)(p2 � �i)(x1 � x2)2�g(p1 � �i)(x1 � x2)(x2 � x3) � �̂pg(p1 � �i)2(x1 � x2)2(x1 � x3)(p1 � �i)2(p2 � �i)(x1 � x2)2(x1 � x3)(x2 � x3) + g(p1 � �i)(x1 � x3)(x2 � x3) 1ASetzt man hier die Eigenwerte �i ein, so konnte ich die auftretenden Objek-te mit den zur Zeit der Entstehung dieser Arbeit auf dem Markt be�ndlichenPaketen zur symbolischen Manipulation algebraischer Ausdr�ucke nicht mehrhandhaben. Es war mir daher nicht m�oglich, die Eigenvektoren zu normieren,daraus die Matrix S zu konstruieren und die Fadeev{Klammern rechnergest�utztzu erhalten. Eine M�oglichkeit, mit diesem Ausdruck f�ur die Eigenvektoren wei-terzuarbeiten besteht nun darin, das charakteristische Polynom auszunutzen.Aus der Ableitung von �L nach einer Variablen � erh�alt man@��i = ��2i @�c2+�i@�c1+ @�c03�2i +2c2�i+ c1 : (6.7)



60 Kapitel 6. Erhaltungsgr�o�en des Calogero{ModellsSetzt man nun f�ur die L�ange der Eigenvektoren e(�i die Funktion l(�i) ein undnutzt die Derivationseigenschaft der Poisson{Klammer aus, so schreibt sich dieKlammer fSij ; Sklg wie folgt:fSij ; Skl g = 1l(�j)l(�l) �f ei(�j) ; ek(�l) g + ei(�j)ek(�l)l2(�j)l2(�l) ��X�; � e�(�j)e�(�l)f e�(�j) ; e�(�l) g +�ei(�j)l2(�j) �X� e�(�j)f e�(�j) ; ek(�l) g +�ek(�l)l2(�l) �X� e�(�l)f ei(�j) ; e�(�l) g# :F�ur den Kommutator fSij ; �ll g leitet man analog folgenden Ausdruck her:fSij ; �ll g = 1l(�j)� f ei(�j) ; �l g +� ei(�j)l2(�j) �X� e�(�j) f e�(�j) ; �l g# :Unter Verwendung der Ableitungen der Eigenwerte (6.7) ergeben sich f�ur dieEintr�age der Matrix fS 
, Sg Funktionen, die f�ur eine Vereinfachung durch dasProgramm Maple noch zu komplex sind.Aus diesem Grund ist mir die Berechnung der r{Matrix des 3{TeilchenCalogero{Modells bisher nicht gelungen.6.2 Quantenmechanische Erhaltungsgr�o�en6.2.1 Zu klassischen Erhaltungsgr�o�en korrespondierende Ope-ratorenDie einfachste M�oglichkeit, quantenmechanische Erhaltungsgr�o�en zu gewin-nen, besteht darin, in den klassischen Erhaltungsgr�o�en die Variablen durchdie korrespondierenden Operatoren zu erstzen und zu �uberpr�ufen, inwieweitsich daraus ein Satz kommutierender Operatoren ergibt.Ersetzt man in der Lax{Matrix (5.2) den Impuls durch die partielle Ableitung,so f�allt auf, da� die Matrixelemente aus verschiedenen Zeilen und Spalten, alsodie Lij und Lkl mit i 6= k und j 6= l miteinander kommutieren. Eine wichtige Fol-gerung daraus ist die Wohlde�niertheit der Determinante von L, da es Aufgrunddieser Vertauschungseigenschaft bei Verwendung der Leibniz{Formel (6.3) zukeinen Anordnungsproblemen innerhalb der einzelnen Produkte kommt.



6.2. Quantenmechanische Erhaltungsgr�o�en 61Die Identit�at (6.6) f�ur die Koe�zienten des charakteristischen Polynoms l�a�tsich vollkommen analog dem klassischen Fall zeigen. Hier tritt jedoch das Pro-blem auf, da� man die Anordnung der Faktoren beachten mu�, da das Kommu-tieren der Spuren tr(L̂n) und tr(L̂m) nicht trivialerweise gegeben ist. Da jedochdie Determinante auch im quantenmechanischen Fall nach obiger Bemerkungwohlde�niert ist, sind auch die operatorwertigen Koe�zienten des charakteri-stischen Polynoms in eindeutiger Weise als Summen von Produkten kommutie-render Operatoren festgelegt. Dies zeigt, da� die Potenzen von Spuren auch alsOperatoren kommutieren und desweiteren, aufgrund des Kommutierens der inden Summanden auftretenden Faktoren, wohlde�niert sind.Der aus der Lax{Matrix erhaltene Satz unter der Poisson{Klammer kommutie-render Erhaltungsgr�o�en l�a�t sich somit unmittelbar in einen System paarweisekommutierender Erhaltungsgr�o�en des quantenmechanischen Calogero{Modellsdurch korrespondenzm�a�iges Ersetzen der Variablen �uberf�uhren.Dabei erh�alt man als Erhaltungsgr�o�e I1 den Gesamtimpuls des Systems undals I2 den Hamilton{Operator (1.1).6.2.2 Erhaltungsgr�o�en aus den Dunkl{OperatorenNach der Bemerkung bei Heckman ergibt sich aus den Restriktionen gewisserProdukte von Dunkl{Operatoren ein Satz kommutierender Operatoren, zu de-nen auch der Hamilton{Operator (1.1) geh�ort. Die entstehenden Operatorensind von der Ordnung der Summe der Exponenten in den Impulsoperatoren, soda� sich hier die Frage nach einem Zusammenhang mit den aus Spuren von Po-tenzen der Lax{Matrix gebildeten Erhaltungsgr�o�en stellt. Da wir jedoch keineexplizite Form der Restriktionsabbildung zur Verf�ugung hatten und auch beiVernachl�assigen dieser keinen einfachen Zusammenhang zwischen den Operato-ren tr(Ln) und Pirni �nden konnten, kann hier kein Isomorphismus zwischendiesen Gr�o�en angegeben werden.





Kapitel 7
Beziehungen zu anderenModellen

Jedes St�uck Materie kann gleichsam als ein Gartenvoller P
anzen oder als ein Teich voller Fischeaufgefa�t werden. Aber jeder Zweig der P
anze,jedes Glied des Tieres, jeder Tropfen seiner S�afteist wieder ein solcher Garten und ein solcher Teich.(Leibniz)

7.1 Die Knizhnik{Zamolodchikov{Gleichung derkonformen FeldtheorieDie Knizhnik{Zamolodchikov{Gleichung, im folgenden kurz KZ{Gleichung ge-nannt, spielt eine Rolle in der Darstellungstheorie a�ner Lie{Algebren, einerunendlichdimensionalen Erweiterung der Theorie der Lie{Algebren. Dies ist derHauptgrund f�ur das Auftauchen der KZ{Gleichung in der konformen Feldtheo-rie, die sich mit Feldern befa�t, die neben der Poincar�e{Invarianz auch einekonforme Invarianz aufweisen. L�osungen der KZ{Gleichungen sind in diesenTheorien gerade die N{Punkt Funktionen.In der Theorie der Quantengruppen gewinnt man �uber die Monodromienvon mit universellen R{Matrizen verkn�upfte KZ{Gleichungen Darstellungen.N�aheres hierzu �ndet man bei [Fu92] und [CP94].Die KZ{Gleichung zu einer klassischen r{Matrix ist von der Form@f@zi = NXj = 1j 6= i rij(zi � zj)(f); i = 1 : : : N : (7.1)Dabei ist r(z) eine holomorphe Abbildung von jC in die universelle Einh�ullendeU(g) einer Lie{Algebra g. Sind �1; : : : ; �N Darstellungen von g auf Vektorr�aum-en V1; : : : ; VN , dann operiert rij(zi � zj) auf dem Tensorprodukt V1 
 : : : 
 Vm�uber die Darstellungen �i(r(zi � zj)) und �j(r(zi � zj)) auf den KomponentenVi und Vj , sowie als Identit�at auf den restlichen Komponenten. Die Funktionf ist eine Abbildung von DN(jC) := jCN n fv 2 jCN j 9 (i; j) mit vi = vjg nach63



64 Kapitel 7. Beziehungen zu anderen ModellenV1
V2
 : : :
VN . Gen�ugt die Matrix r der klassischen Yang{Baxter Gleichung,so wird durch die 1{Form �r auf DN mit�r = Xj < i rij(zi � zj)(dzi � dzj)ein 
acher Zusammenhang gegeben. W�ahlt man als r{Matrix die Abbildungr(zi � zj) = tzi�zjmit einer g{invarianten, symmetrischen Funktion t aus g� g, so ergibt sich f�urdie KZ{Gleichung folgende Form:@if = k Xj 6= i (�i
�j)(t)zi�zj (f) :Von A. Matsuo und I.V. Cherednik wurde die folgende, der Knizhnik{Zamolodchikov �ahnliche Di�erentialgleichung untersucht:@if =  k Xj 6= i P (ij)zi�zj + �(i)! f : (7.2)Dabei sind die Darstellungen so gew�ahlt, da� Vi = Vj = V 8i; j gilt. Die Opera-toren P (ij) wirken durch Vertauschung der iten und der jten Komponente desTensorproduktes. Die Abbildung �(i) operiert auf der iten Komponente als Mul-tiplikation mit der Diagonalmatrix � mit paarweise verschiedenen Eintr�agen,ansonsten als Identit�at.Auf L�osungen dieser Gleichungen, die von der Formf = X� 2 SN f� e�(1) 
 : : :
 e�(N) (7.3)sind, wirken die Abbildungen in der KZ{Gleichungen wie folgt:P (ij) f� = f� �Pij (7.4a)�(i)f = X� 2 SN ��(i) �(i)f� e�(1) 
 : : :
 e�(N) : (7.4b)Zur Bestimmung der f� ergeben sich daraus die Di�erentialgleichungen@if� = kXj 6= i 1zi�zj f��Pij +��(i) �(i)f� : (7.5)F�ur die L�osungen (7.3 de�niert man die Matsuo{Abbildung m(f) sowie dieCherednik{Abbildung ch(f) wie folgt:' = m(f) := X� 2 SN f� = ch(f) := X� 2 SN sgn(�)f� :



7.1. Die Knizhnik{Zamolodchikov{Gleichung der konformen Feldtheorie 65Setz man nun E := �tr(�2), so erf�ullen die Funktionen ' und  die Di�eren-tialgleichungen  ��+ k(k � 1)Xi 6= j 1(zi�zj)2!' = E ' ��+ k(k + 1)Xi 6= j 1(zi�zj)2! = E  :Die Funktionen ' und  sind also aus L�osungen der KZ{Gleichung gewonneneL�osungen des Calogero{Modells (1.1) mit Werten ! = 0 und g=n k(k � 1)(k + 1)k , also� = n k(k + 1) :Zum Beweis, da� die Funktionen ' und  L�osungen darstellen, summiert mandie Gleichung (7.5) �uber s�amtliche Permutationen � 2 Sn, wobei man f�ur denFall g=(k+1)k zuvor mit der Signatur sgn(�) multipliziert. Di�erenzieren undAusnutzen der Gleichung (7.5) als Identit�at f�ur @if� f�uhrt dann mit einigen,bereits bei der L�osung der Schr�odinger{Gleichung des Calogero{Modells in An-hang A aufgef�uhrten Vorgehensweisen bei der Behandlung von Summen auf dieSchr�odinger{Gleichungen f�ur ' und  .Die Abbildungen m(f) und ch(f) machen jedoch nur Sinn, wenn L�osungender KZ{Gleichung existieren, die von der Form (7.3) sind. Dies wird durchTatsache sichergestellt, da� die beiden Abbildungen f�ur den Fall paarweise ver-schiedener Eintr�age der Matrix � Isomorphien vermitteln, was von Matsuo undCherednik gezeigt werden konnte. Da in Kapitel 1 L�osungen der Schr�odinger{Gleichung angegeben wurden, lassen sich daraus durch Anwenden der inversenMatsuo{ beziehungsweise Cherednik{Abbildung L�osungen der Form (7.3) derKZ{Gleichung gewinnen. Die zur L�osung der ge�ohnlichen KZ{Gleichung ver-wendeten Verfahren liefern direkt L�osungen der genannten Form. F�ur die mo-di�zierte KZ{Gleichung, wie sie von Cherednik und Matsou verwendet wird istmir aus der Literatur kein entsprechendes Verfahren bekannt.Desweiteren lassen sich mit diesen Abbildungen Beziehungen zwischenCalogero{Modellen mit unterschiedlichen Kopplungen auf folgende Weise kon-struieren:
Cal((k-1)(k-2)) Cal(k(k-1)) Cal((k+1)k) Cal((k+2)(k+1))

KZ(k+1)KZ(k)KZ(k-1)�����/ SSSSSw �����/ SSSSSw �����/ SSSSSwm ch m ch m ch
Die Abbildungen m�1 � ch vermitteln also zwischen dem Calogero{Modell mitKopplung �(� � 1) und (� + 1)�, die Abbildung ch � m�1 zwischen KZ{Gleichungen mit Kopplungen k und k + 1. F�uhrt man die Bezeichnungen



66 Kapitel 7. Beziehungen zu anderen ModellenD̂ := m�1 � ch und D̂KZ := ch � m�1 ein, so l�a�t sich obiges Diagramm zueinem kommutativen Diagramm erg�anzen.Von Felder und Vesolov wurde nun der Zusammenhang zwischen den hier kon-struierten "Shift{Operatoren\ f�ur das Calogero{Modell und den von Heckmangefundenen Operatoren [Hec89] untersucht.F�ur das Wurzelsystem AN haben Heckmans Operatoren die FormD̂Hec = X�2SN sgn(�)Res(rd�(�)) (7.6)mit d = N(N�1)2� 2 IRN ; so da� �(�) := Yj < i(�i � �j) 6= 0 :Der Dunkl{Operator (4.5) hat im AN{Fall die Formrxi = @� � ~kXj 6= i �i��jxi�xj Pij ;wobei f�ur die Konstruktion des Operatore D̂Hec der Wert ~k = 12k eingesetztwerden mu�.In ihrer Arbeit zeigen Felder und Vesolov die folgende Identit�at:D̂Hec = CN�(�) �(�) D̂ (7.7)mit CN = d!1!�2!�:::�(N�1)! .Der Beweis ist in [FV93] recht ausf�uhrlich dargestellt, so da� ich hier nur einigewesentliche Schritte wiedergeben m�ochte. Aus der Gleichung (7.5) folgt@�f� = �i@if�= f 12kXj 6= i �i��jxi�xjPij + (�(�); �)gf� :Unter Verwendung dieses Zusammenhanges l�a�t sich mittels Induktion zeigen,da� Res(rm� )m(f) = X�2 SN(�(�); �)m f� :Dabei �ndet Verwendung, da� die Abbildung Res(�) linear ist, alsoRes(rm+1� ) =Res(rm� )�Res(r�) gilt.Mit dieser Formel folgt nun unmittelbar der ZusammenhangD̂Hecm(f) = ch(f) X� sgn(�)(�(�); �)d :



7.2. Matrix{Modelle 67F�ur die Identit�at (7.7) verbleibt nun noch zu zeigen, da�X� sgn(�)(�(�); �)d = CN�(�) �(�)g�ultig ist. Dabei gehen Umformungen dieser Art ein:f NXi = 1 xi gm = Xk1; : : : ; kNPi ki = m m!k1!�:::�kN! xk11 � : : : � xkNN= X�2SN m!1!�:::�(N�1)! x�(1)1 � : : : � x�(N)Ndet((xj�1i )ij) = Yj < i(xi � xj)det((�j�i)kiij ) = Yi �kii det((�kij )ij)det((��(ki)j )ij) = sgn(�)det((�kij )ij)Der Vollst�andigkeit halber sei hier noch eine weitere Abbildung erw�ahnt, dievon Felder und Veselov in diesem Artikel neben der expliziten Konstruktion derinversen Matsuo{Abbildung m�1 untersucht wurde. Diese wirkt auf L�osungender KZ{Gleichung (7.3) in der Weise�X f� e� = P sgn(�) f� e�und vermittelt zwischen L�osungen KZ(k) und KZ(�k) der KZ{Gleichung.Eine Idee zu dieser Arbeit war, aufgrund dieser Isomorphie die volle Symmetriedes Calogero{Modells abzuleiten. Die Symmetrie der KZ{Gleichung ist jedochnur f�ur den Fall � = 0 zug�anglich, und dieser ist durch Verletzen der Bedingungpaarweise verschiedener Eintr�age f�ur � uninteressant, da dann mit m und chkeine Isomorphismen mehr vorliegen. Desweiteren ist nicht absehbar, wie sichdie Symmetrieen der L�osungen der KZ{Gleichung unter den Abbildungen mund ch verhalten.7.2 Matrix{ModelleBei der Konstruktion des Calogero{Hamiltonians aus den Dunkl{Operatorentauchte in diesem der Permutationsoperator auf, der im Falle der Wirkungauf Funktionen vorgegebener Symmetrie durch seinen Eigenwert ersetzt wurdeund so auf den urspr�unglichen Calogero{Hamiltonian f�uhrte. Ersetzt man denPermutationsoperator nun durch eine M{Darstellung der SN, so wirkt der ent-stehende Operator aufM{komponentige Wellenfunktionen. Dies f�uhrt dann aufsogenannte Matrix{Modelle. Von Dodolov, Konstein und Vasiliev [DKV93] wur-de gezeigt, da� man genau dann nichtsingul�are L�osungen der Matrix{Modelle



68 Kapitel 7. Beziehungen zu anderen Modellenerh�alt, wenn die Darstellung der SN auf die Komponenten der Wellenfunktionals Permutationsoperator wirkt, man also komponentenweise wieder das ur-spr�ungliche Calogero{Modell erh�alt.7.3 Hall{E�ekt, Anyonen und Fractional StatisticsDer Quanten{Hall{E�ekt beschreibt das Verhalten zweidimensionaler Elektro-nen unter dem Ein
u� von Magnetfeldern senkrecht zu dieser Fl�ache. Der Ha-miltonian f�ur ein solches Elektron hat in den Einheiten e = �h = c = 1 dieForm bH = 12m((px �Ax)2 + (py +Ay)2) =: 12m (�2x +�2y) :Durch Einf�uhren des Vernichtungsoperators a := 1p2B (�x� �̂�y) mit dem Kom-mutator [ a ; a+ ] = 1 schreibt sich der Energieoperator wie folgt:bH = Bm( a a+ + 12 ) :In sehr starken Magnetfeldern kondensieren nun s�amtliche Elektronen im nied-rigsten Landau{Niveau, so da� lediglich ein Freiheitsgrad verbleibt. Dieser wirdam elegantesten durch die Variable X := x� 1B�x mit kanonisch konjugiertemImpuls Y := y + 1B�x beschrieben. Der niedrigste Eigenzustand zu X ist danndurch die Bedingung a�0 = 0 eindeutig charakterisiert.In symmetrischer Eichung ergibt sich die folgende Grundzustands{Wellenfunktion als eindimensionale Darstellung des N{Teilchen Laughlin{Zustandes auf der Kreisscheibe in der X{Darstellung:	(s1; : : : ; sN = exp(�BXI 12s2i ) � exp(� 14B Xi @2i )Yj < i(si � sj)m ;was f�ur gro�e Magnetfelder B die Form	(s1; : : : ; sN = exp(�BXI 12s2i ) � Yj < i(si � sj)mannimmt.Dies ist gerade die Grundzustands{Wellenfunktion des Calogero{Hamiltonians(1.1) mit ! = B2 und � = m.Verwendet man die 1{dimensionale Darstellung der Laughlin{Zust�ande aufdem Zylinder, so erh�alt man in der X{Darstellung den Grundzustand desSutherland{Problems mit V (s1; : : : ; sN) = Qj < i sin�2( �Lx (si � sj)). Dabeif�allt auf, da� hier kein weiteres Potential wie im Falle der Kreisscheibedas Oszillator{Potential wirkt. Dies ist auf die Periodizit�at der Sutherland{Zust�ande zur�uckzuf�uhren. In der Impuls{Darstellung transformiert sich die



7.3. Hall{E�ekt, Anyonen und Fractional Statistics 69Wellenfunktion in Eigenzust�ande zu dem verallgemeinerten Potential mit demSinushyperbolikus anstelle des Sinus im Nenner.Da die Symmetrie der Wellenfunktionen (1.7) und (1.10) durch den FaktorQj < i(xi� xj)� bestimmt ist, liegt bei � 62 IN eine gebrochene Statistik vor, dieauch bei der Behandlung des Hall{E�ektes eine wichtige Rolle spielt.





R�esum�e
Immanuel Kant konstatiert in seiner "Logik\ [Kan23]:"Ja, der Verstand ist als der Quell und das Verm�ogen anzusehen, Regeln�uberhaupt zu denken. Denn so wie die Sinnlichkeit das Verm�ogen derAnschauungen ist, so ist der Verstand das Verm�ogen zu denken, d.h. dieVorstellungen der Sinne unter Regeln zu bringen. Er ist daher begierig,Regeln zu suchen, und befriedigt, wenn er sie gefunden hat.\Der Themenkomplex, in den diese Arbeit eingef�uhrt hat, geh�ort nun sicherlichzu den Gebieten, die der Geist noch nicht in einer ihn befriedigenden Formgedacht hat. Hierauf weist nicht zuletzt die gro�e Zahl der innerhalb der letztenJahre erschienenen Arbeiten aus dem Bereich der Quantengruppen hin. Zieldieser Forschungen ist letztendlich, die von den Physikern behandelten Modelleals unterschiedliche Darstellungen eines algebraischen Objekts zu entlarven.Das Calogero{Modell ist mit seiner r{Matrix ein Beispiel daf�ur, da� dies mitder Theorie der Lie{Bialgebren und deren Quantisierungen noch nicht gelungenist.Klar wurde in dieser Arbeit jedoch auch, da� mit dem Begri� der Integrabilit�atnicht immer ganz sorgf�altig umgegangen wird. So sind f�ur das Calogero{Modellweder s�amtliche L�osungen des quantenmechanischen Falls bekannt, noch exi-stiert ein strenger Beweis f�ur die Integrabilit�at des klassischen Modells im Liou-villeschen Sinne.Das siebte Kapitel deutet an, da� das von Calogero 1971 gel�oste System trotzseines Modellcharakters in vielen Bereichen der Physik wieder auftaucht. Auchwenn es nicht mit dem harmonischen Oszillator konkurrieren kann, der wohl alsdas fundamentalste und zugleich wichtigste l�osbare Problem bezeichnet werdenmu�, so ist das Calogero{Modell doch ein grundlegendes System von gro�erBedeutung f�ur die Theoretische Physik.
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Anhang AHerleitung der Identit�atenaus Kapitel 1
In diesem Anhang werden die Indetit�aten 1.4a{1.4e aus Kapitel 1 bewiesen.Zu 1.4a:@z@xk = @k Yj < i(xi � xj) = Yj < ii 6= k 6= j (xi � xj) @k  Yj < k(xk � xj) Yi > k(xi � xk)!= z Xi 6= k 1xk�xiDamit ergibt sich:@2kz� = z���(� � 1) Xi 6= k 1xk �xi!2 + �Xi 6= k Xji 6= j 6= k 1(xk �xi)(xk �xj)�Ausmultiplizieren des quadratischen Terms liefert Xi 6= k 1xk �xi!2 = Xi 6= k 1(xk�xi)2 + Xi 6= k Xji 6= j 6= k 1(xk �xi)(xk �xj) :Beh.: Xi; j; ki 6= j 6= k 6= i 1(xk�xi) (xk �xj)| {z }=: �i;j;k = 0
Bew.: 73



74 Anhang A. Herleitung der Identit�aten aus Kapitel 1Die Summe l�a�t sich umschreiben in eine Summe �uber i; j und k miti < j < k, die �uber alle Permutationen ��(i; j; k) mit � 2 Sn l�auft. Mansieht, da� die Summe �uber die geraden Permutationen sowie die �uber dieungeraden Permutationen einzeln verschwinden und eine Dreifachsumme�uber die Null verbleibt. 2Damit ergibt sich der angegebene Ausdruck:Xi @2i z� = 2 �(� � 1) z� Xj < i 1(xi�xj)2Zu 1.4b:Unter Verwendung dieser Ergebnisse schreibt sichXi @iz@iP� = � z� Xj 6= i @ixi�xjP� :Aufgrund der Antisymmetrie in i und j ergibt sich f�ur den Di�erentialoperatorXj 6= i @ixi�xj = Xj < i @i� @jxi�xj :Ausnutzen der Di�erentialgleichung f�ur P� liefert damit die Identit�atXi @iz� @iP� = � 12 z� Xi @i2P� :Zu 1.4c:Die in einigen Termen auftauchende Ableitung nach der Variable r berechnetsich via @i = Xi (@ir) ddr = 12 r Xi (@ir2) ddr= 1N r Xi; j (xi � xj) ddr :Damit schreibt sichXi @iz�@i' = �N 1r z� Xi; j; kj 6= i 6= k xi�xjxi�xk| {z }=:�i;j;k d'dr :Dabei steht unter dem Summenzeichen nicht j 6= i 6= k 6= j !Die Summe �uber die �i; j; k l�a�t sich wie folgt berechnen:Die Terme �i; j; j liefern den Summanden N(N � 1). F�ur die verbleibendenN(N � 1)(N � 2) Beitr�age ergibt jeweils die Summe von �i; j; k und �k; j; i eine1. Insgesamt verbleibt von dieser Summe also lediglich der Faktor 12 N2(N� 1).



75Zu 1.4d:Zum Beweis der Identit�at f�urPi @2i '(r) ben�otigt man einige zus�atzliche Terme:@ir = 2N Xi 6= j (xi � xj)) @2i r2 = 2N (N � 1)Xi (Xj 6= i(xi � xj))2 = Xi; j (xi � xj)2 + 2Xi Xk < j(xi � xj)(xi � xk)Xi; j (xi � xj)2 + N(N� 1)Xi x2i � (N� 2)Xi; j xixjN2r2 = NXj < i(xi � xj)2 = Xi; j (xi � xj)2 + N�22 Xi; j (xi � xj)2= Xi; j (xi � xj)2 + N(N� 2)Xi x2i � (N� 2)Xi; j xixj= Xi (Xj 6= i(xi � xj))2Damit ergibt sichXi @2i ' = d'dr Xi @2i r + d2'dr2 Xi (@ir)2= d'dr Xi �� 14r3 (@ir2)2 + 12r@2i r2� + d2'dr2 Xi 14r2 (@ir2)2= d'dr �� 14r3 4 r2 + N(N� 1)Nr � + d2'dr2= N�2r d'dr + d2'dr2Zu 1.4e:F�ur die letzte Identit�at ben�otigt man die Translationsinvarianz und die Homo-genit�at der Polynome P�.Aus der Homogenit�at folgt aus dem Satz von Euler, der sich leicht vermittelsKettenregel beweisen l�a�t: Xi xi@iP� = �P�Die Translationsinvarianz f�ur Polynome in mehreren Ver�anderlichen bedeutet,da� f(~x) = f(~x + ~a) f�ur ein in allen Komponenten identisches ~a. F�ur gen�ugendkleine � gilt dann: f(~x) = f(~x + �~a) = f(~x) + �~arfj~x



76 Anhang A. Herleitung der Identit�aten aus Kapitel 1Daraus folgt, da � klein, aber beliebig ist die Identit�at~arf = 0und somit f�ur ~a = (xi; xi; : : : ; xi)Xj xi@jP� = 0 :Diese Eigenschaften liefern dannXi (@i') (@iP�) = 1Nr d'dr Xi; j (xi � xj)@iP�= �r d'dr P� :



Anhang BDas N{Oszillator Problem
In diesem Anhang wird die L�osung des Problems von N quantenmechanischer,�uber ein Oszillatorpotential paarweise aneinandergekoppelter Teilchen vermit-tels Entkopplung durch die Einf�uhrung neuer Koordinaten, der sogenanntenJacobi{Koordinaten, besprochen.Der Hamiltonoperator dieses Problems hat die FormbH = �12Xi @2i + !24 Xj < i(xi � xj)2 :Als Koordinaten f�uhrt man nun folgende Variable ein:y0 := 1NXi x2iyi := 1pi(i�1) (i xi + 1 �Xj � ixj)Diese Transformation vermittelt folgende Identit�aten:Xj < i(xi � xj)2 �! N N�1Xi = 1 y2iXi @2i �! 1N@20 + N�1Xi = 1 @2iDamit entkoppelt sich das Problem in den Jacobi{Variablen bei Vernachl�assi-gung der Schwerpunktbewegung zu N-1 harmonischen Oszillatoren.Die Wellenfunktion ergibt sich als Produkt von (N�1) Oszillator{Eigenfunktionenmit den Frequenzen !0 := !pN2 mit EnergienEn = �h!(n� 12 ).Als Gesamtenergie ergibt sich damit:En1; n2; : : : ; nN-1 = �h!(n1 + n2 + : : :+ nN-1 � N�12 )77



78 Anhang B. Das N{Oszillator ProblemDie Eigenfunktionen dieses Systems haben in den Jacobi{Koordinaten die Ge-stalt  n1;:::;nN-1 / exp �� 12qN2 !Xi yi� � Yi Hni� 4qN2 !2 yi� :Dabei sind die Funktionen Hn die von der L�osung des harmonischen Oszilla-tors her bekannten Hermite{Polynome. Kehrt man zu den Ortskoordinaten xizur�uck, so schreibt sich die Exponentialfunktion wie folgt:exp�� 12qN2 ! 1N Xj < i(xi � xj)2� :Additionstheoreme f�ur die Hermite{Polynome sind mir in der Literatur nichtbegegnet, so da� ein Einsetzen der yi keine neue Gestalt der Eigenfunktionenerbringt.Au��allig an den Eigenfunktionen ist, da� es sich nicht ausschlie�lich um symme-trische und antisymmetrische Funktionen handelt. Da der Hamilton{Operatorjedoch mit dem Permutationsoperator vertauscht, l�a�t sich eine Basis der Ei-genr�aume als Linearkombination der obigen Eigenfunktionen �nden, so da�diese ein Eigenfunktionensystem zum Permutationsoperator darstellen.Der Entartungsgrad des N{Oszillator Problems stellt sich wie folgt dar:N !# s 2 3 4 5 6 7 8 90 1 1 1 1 1 1 1 11 1 2 3 4 5 6 7 82 1 3 6 10 15 21 28 363 1 4 10 20 35 56 84 1204 1 5 15 35 70 126 210 3305 1 6 21 56 126 252 462 1287Tabelle B.1: Entartungsgrad der ersten Zust�ande f�ur kleine Teilchenzahlen



Anhang C
Koe�zienten descharakteristischen Polynoms
Ausgangspunkt ist die DarstellungJk = Xm1; : : : ;mkPi imi = k kYi = 1(�1)mi 1imi �mi! [tr(Li)]mider Koe�zienten des charakteristischen Polynoms einer Matrix L. Der Einfach-heit halber seien die Diagonalelemente Lii mit pi bezeichnet. F�ur die Ableitungder Terme [tr(Li)]j ergibt sich@@pl [tr(Li)]j = i � j � [tr(Li)]j�1tr(Li�1) :Dies l�a�t sich leicht an der ausgeschriebenen Form von tr(Li) sehen. Damitergibt sich folgendes:@Jk@pl (1)= Xm1; : : : ;mkPi imi = k kXs = 1ms 6= 0 (�1)mssms�1(ms�1)! [tr(Ls)]ms�1tr(Ls�1) �� kYi = 1i 6= s (�1)miimi (mi)! [tr(Li)]mi(2)= �tr(Lk�1) +Xm1; : : : ;mk�1Pi imi = k k � 1Xs = 1ms 6= 0 (�1)mssms�1(ms�1)! ��[tr(Ls)]ms�1tr(Ls�1) k � 1Yi = 1i 6= s (�1)miimi (mi)! [tr(Li)]mi79



80 Anhang C. Koe�zienten des charakteristischen Polynoms(3)= �tr(Lk�1) + NXm1; : : : ;mk�1Pi imi = km1 6= 0 (�1)m1(m1�1)! [tr(L)]ms�1 k � 1Yi = 2 (�1)miimi (mi)! [tr(Li)]mi +
+ k � 1Xs = 2 Xm1; : : : ;mk�1Pi imi = k � 1ms 6= 0 (s� 1)ms � 1 k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi(4)= �tr(Lk�1) + N Xm1; : : : ;mk�1Pi imi = k � 1 k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi ++ k � 1Xs = 2 Xm1; : : : ;mk�1Pi imi = k � 1(s� 1)ms � 1 k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi(5)= �tr(Lk�1) + N Xm1; : : : ;mk�1Pi imi = k � 1 k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi ++ Xm1; : : : ;mk�1Pi imi = k � 1(k � 1)(1�mk � 1) k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi(6)= �(N� k + 1) Xm1; : : : ;mk�1Pi imi = k � 1 k � 1Yi = 1 (�1)miimi (mi)! [tr(Li)]mi :Da aus Platzgr�unden hier nicht jeder kleinste Schritt aufgef�uhrt werden soll,bedarf es in meinen Augen einiger Kommentare zu den erfolgten Umformungen:(1) Hier wurde lediglich die Ableitung nach pl unter Verwendung obiger For-mel f�ur die Ableitung der Spuren ausgef�uhrt. Die Zus�atze ms 6= 0 resultie-ren daraus, da� diese Terme in der Entwicklung von Jk nicht auftauchenund daher auch nicht abgeleitet werden.(2) Der Fall mk = 1 wird herausgezogen, da durch die Nebenbedingung f�urdie Summe der mi hier s�amtliche mi mit i 6= k verschwinden.(3) Auch der Fall s = 1 wird herausgezogen, da im folgenden die Terme zus und s � 1 zusammengef�uhrt werden und ein Term zu (1 = s) � 1 = 0nicht existiert. Der Faktor N resultiert aus der Spur tr(L0) = tr(E) = N .F�ur die Terme mit s > 1 geht man von mi zu ~mi �uber, wobei folgenderZusammenhang gilt:~ms� 1 = ms� 1 + 1~ms = ms � 1~mi = mi f�ur i 62 fs; s� 1g :



81Damit lassen sich die durch das Ableiten entstandenen Terme wieder indas Produkt schreiben.(4) Auch f�ur den Fall m1 l�a�t sich dies durchf�uhren, da 1m1 = 1 f�ur alle m1.(5) In dem dritten Summanden wird die Summation �uber s ausgef�uhrt unddabei die Nebenbedingung f�ur die Summe der mi verwendet.(6) Das "1 � mk� 1\ im letzten Summanden ist gleichbedeutend mit einem�mk � 1;0. Dies wird durch den ersten Term tr(Lk�1) wettgemacht. Zusam-menfassen ergibt dann das geforderte Resultat.Summiert man nun �uber s�amtliche l, so bringt dies einen weiteren Faktor Nund damit die Gleichung (6.6).



Anhang DZweiteilchen r{Matrix
Die r{Matrix des Calogero{Modells f�ur zwei Teilchen wurde in Kapitel 6 ange-geben. Sie hat die Formr =  0 11 0 ! 
  � ��� � !Dabei sind die Funktionen � und � von der folgenden Gestalt:� = 2 �̂ g (p1 � p2) � 
3 (p1�p2)+p
1
32 �p
1� = 4g2(x1 � x2)�1 � 
3 � (p1�p2)�p
1
32 �p
1 :Die Gamma ergeben sich zu den Funktionen:
1 = 4g2(x1 � x2)�2 + (p1 � p2)2
2 = 4g2 + (p1 � p2)2(x1 � x2)2 � 
1 � (p1 � p2)
3 = 8g4 + 6g2(p1 � p2)2(x1 � x2)2 + 4g2(p1 � p2) (x1 � x2)2p
1 ++(p1 � p2)4(x1 � x2)4 + (p1 � p2)3(x1 � x2)4 :
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