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Kapitel 1

Einleitung

Die Grundlagen der Quantenphysik wurden Anfang des 20. Jahrhunderts
durch die Untersuchung der Schwarzkorperstrahlung gelegt. Max Planck er-
klarte die Strahlung durch diskrete Emissions- und Absorptionsstrahlung der
Atome. Insbesondere ist dadurch die Energie diskret. Zur Beschreibung die-
ser diskreten Strahlung wurde das Plancksche Wirkungsquantum h = 27h
eingefiihrt. Die kleinste dieser Strahlungeinheiten wird als Quant bezeichnet.
1887 entdeckte Heinrich Hertz den photoelektrischen Effekt. Albert Einstein
behandelte diesen Effekt unter Beriicksichtigung der von Planck entdeckten
Quantelung. 1905 veroffentlichte Einstein seine Arbeiten zu diesem Effekt.
Er folgerte, dass nicht nur die Emissions- und Absorptionsstrahlung der Ato-
me, sondern auch die elektromagnetische Strahlung selbst gequantelt ist. Das
Lichtquant, auch Photon genannt, besitzt damit eine gequantelte Energie:

E = hv.

Die Energie des Photons ist proportional zu seiner Frequenz v und dem
Planckschen Wirkungsquantum. Der Compton-Effekt bestétigte Einsteins In-
terpretation des photoelektrischen Effekts. Die Interpretation des Lichts als
Photon entspricht einer Deutung als Teilchen. Interferenz- und Beugungs-
erscheinungen fordern die Deutung des Lichts als Welle. Es liegt ein Welle-
Teilchen-Dualismus vor.

Ein deutlicher Unterschied zwischen Quantenmechanik und klassischer Me-
chanik ist die Wahrscheinlichkeitsinterpretation der Quantenmechanik. 1927
stellte Werner Heisenberg die Heisenbergsche Unbestimmtheitsrelation

AxAp > g

auf. Ort und Impuls eines Teilchens sind somit nicht mehr exakt bestimmbar.
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Die Quantenmechanik ist Grundlage der Quantenfeldtheorie, in der die Fel-
der quantisiert sind. Liegt zudem Invarianz unter einer Eichtransformation
vor, wird von einer Eichfeldtheorie gesprochen. Die Quantenelektrodynamik
(QED) wurde in den 50er Jahren des letzten Jahrhunderts formuliert. Ihr
liegt die elektromagnetische Wechselwirkung zugrunde. Die Symmetriegrup-
pe der QED ist die U(1)-Symmetriegruppe, welche abelsch ist. Die Theorie
der starken Wechselwirkung wird durch die Quantenchromodynamik (QCD)
beschrieben mit der nicht-abelschen Symmetriegruppe SU(3). Uberlegungen,
die QED und die QCD durch eine vereinheitlichende Theorie, GUT (Grand
Unified Theory), zu beschreiben, haben bisher keine Ergebnisse hervorge-
bracht.

Die Untersuchung der QCD bei niedrigen Energien ist schwierig, da die Kopp-
lungskonstante der QCD dann von der Groflenordnung 1 ist. Eine storungs-
theoretische Behandlung ist so nicht mehr moglich. Die chirale Storungstheo-
rie, YPT (chiral perturbation theory), wurde in den 80er Jahren des letzten
Jahrhunderts von Heinrich Leutwyler und Jiirg Gasser entwickelt und stellt
eine Moglichkeit der Betrachtung der QCD bei niedrigen Energien bereit. Die
xPT beinhaltet mehrere physikalische Parameter, die entweder experimentell
oder durch Gittersimulationen bestimmt werden. Um diese Gittersimulatio-
nen durchfiihren zu kénnen, wird die Lagrangedichte auf einem diskreten Git-
ter formuliert. Eine Formulierung mit Hilfe der twisted mass QCD (tmQCD)
hat sich dabei als sinnvoll erwiesen.

In der tmQCD wird die Wilson-Wirkung durch eine Drehung des Massen-
terms modifiziert. Dadurch werden Nullmoden, sogenannte quark zero modes
verhindert. Diese quark zero modes verhindern eine statistische Auswertung.
Die tmQCD im Rahmen der yPT ist bereits in mehreren Arbeiten behan-
delt worden, z.B. [8], [22], [24]. Héufig wurden dabei gewisse Ndherungen
gemacht.

In dieser Diplomarbeit sollen diese Naherungen zur Berechnung des Poten-
tialminimums nicht benutzt werden. Diese Vorgehensweise erlaubt einen Ver-
gleich der Minima und eine Einschéitzung, in welchen Bereichen die Ndherun-
gen sinnvoll sind.



In Kapitel 2 dieser Diplomarbeit werden die Grundlagen der yPT betrach-
tet. Insbesondere wird die spontane Symmetriebrechung erldutert und die
Lagrangedichte diskutiert.

Diese Lagrangedichte wird im Kapitel 3 auf dem Gitter betrachtet und die
notigen Modifikationen werden eingefiihrt. Dazu werden die Wilson- und die
Symanzik-Wirkung vorgestellt.

Schwierigkeiten, die aufgrund der Wilson-Wirkung auftreten, lassen sich durch
die Einfiihrung der tmQCD vermeiden. Dazu wird in Kapitel 4 die Lagrange-
dichte fiir Ny = 2 bis next to leading order (NLO) betrachtet. Die Feldkon-
figurationsmatrix dieser Lagrangedichte wird in der physical basis und der
twisted basis vorgestellt. Das Potential wird in der twisted basis auf Minima
untersucht. Um diese zu berechnen, muss eine quartische Gleichung gelost
werden.

Die Losung dieser Gleichung wird im néchsten Kapitel hergeleitet. Dazu wird
der Algorithmus nach Ferrari benutzt. Da die Lagrangedichte auf dem Gitter
betrachtet wird, miissen, neben den physikalischen Parametern, auch gewisse
Gitterparameter angegeben werden. Einige wurden bereits in anderen Arbei-
ten bestimmt, z.B. [19], andere werden hier abgeschétzt. Aus der Entwicklung
der Lagrangedichte bis NLO wird ein Giiltigkeitsbereich der Variablen gefor-
dert. Das Potential enthélt Terme, deren Einfluss auf das Minimum nicht
grof} sein sollte. Dies wird in dieser Arbeit iiberpriift. Bei gewissen Werten
der Varibalen springt der Wert des Minimums. Dieser Sprung des Minimums
wird hier ndher untersucht.

In Kapitel 6 werden die 77- und die x-Néherung vorgestellt [13], [22], [23],
[24]. In beiden Ndherungen wird die Annahme kleiner Massen gemacht, diese
diirfen allerdings auch nicht zu klein werden. Die 7-Naherung ist eine Erwei-
terung der y-Naherung. Hier wird zusétzlich die Annahme gemacht, dass die
Gitterkonstante im Verhéltnis zur Masse nicht zu gro8 wird. Zu jeder Né&-
herung wird das entsprechende Minimum angegeben. Diese werden mit dem
Minimum verglichen, welches mit dem Algorithmus nach Ferrari berechnet
wird. Die Vergleiche werden in leading order (LO) und in NLO durchgefiihrt.
Im 7. Kapitel wird die Masse der Pionen berechnet. Die Treelevelmasse in
LO, die Treelevelmasse in NLO und die Schleifenbeitrige in NLO werden
berechnet und renormiert. Zudem wird die Verédnderung der Masse durch
die Beriicksichtigung der Schleifenbeitréige untersucht. Anschlielend werden
diese Massen mit den Massen verglichen, welche nach der 7-Néherung berech-
net werden. Das in NLO auftretende Massensplitting wird betrachtet und mit
einem theoretischen Wert verglichen. Zum Schlufl dieses Kapitels wird das
Verhalten der Massen bei einem bestimmten Wert betrachtet und mit dem
theoretisch zu erwartenden Verhalten verglichen.

Das letzte Kapitel behandelt das Potential der Lagrangedichte fiir Ny = 3. Es
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wird eine mogliche Parametrisierung der Feldkonfigurationsmatrix und der
Drehmatrix vorgestellt. Das Potential wird in dieser Parametrisierung auf die
Existenz von Minima und deren Verhalten bei Verdnderung der Koeffizienten
untersucht.



Kapitel 2

Chirale Stoérungstheorie

2.1 Standardmodell

Das Standardmodell beschreibt die materiebildenden Teilchen und deren
Wechselwirkungen [1]. Bekannt sind vier Wechselwirkungen: die Gravitation,
die elektromagnetische, die schwache und die starke Wechselwirkung. Die
Elementarteilchen des Standardmodells sind Fermionen, das sind die sechs
Quarks, die Leptonen und jeweils deren Antiteilchen. Es gibt sechs Lepto-
nen: das Elektron, das Myon, das Tauon und die dazugehorigen Neutrinos.
Die sechs Quarks haben den Spin 1/2. IThnen wird der Freiheitsgrad flavour
zugeordnet: Up, Down, Strange, Charm, Bottom und Top. Die Flavours wer-
den in drei Generationen eingeteilt:
b
)

(3) (2)

Nfgvour = Ny bezeichnet die Anzahl der Quarks.

Zwischen den Quarks wirkt die starke Wechselwirkung, deren Austauschteil-
chen, auch Eichboson genannt, das Gluon ist. Die Reichweite dieser Wechsel-
wirkung liegt im Femtometer-Bereich. Aufgrund der starken Wechselwirkung
liegen Quarks nur in gebundenen Zustédnden vor. Dieses Phéanomen wird als
Confinement bezeichnet. Die gebundenen Zusténde der Quarks sind die Ha-
dronen. Bekannt ist die Verbindung eines Quarks mit einem Antiquark zu
einem Meson oder die Verbindung dreier Quarks zu einem Baryon. Neben
der starken Wechselwirkung ist fiir die Interaktionen zwischen den Hadronen
auch die schwache Wechselwirkung, mit einer Reichweite von ca. 10~8m, ver-
antwortlich. Die Eichbosonen der schwachen Wechselwirkung sind das W -
das W~- und das Z-Boson. Interaktionen zwischen den Hadronen kénnen
durch die Streumatrix berechnet werden. Diese kann mit Hilfe von Feynman-
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Diagrammen graphisch dargestellt werden.
Jedes Quark hat eine ihm eigene Masse:

flavour Up | Down | Strange | Charm | Bottom | Top
Masse(GeV) | 0,005 | 0,009 | 0,175 1,35 5,3 176

Dabei war die Masse des Top-Quarks experimentell lange Zeit unbekannt
und wurde erst in den letzten Jahren gefunden.

Aufgrund ihrer Masse werden die Quarks Up, Down und Strange als leichte
Quarks bezeichnet [2]. Die Quarks Charm, Bottom und Top werden schwe-
re Quarks genannt. Leichte Quarks besitzen eine viel kleinere Masse als
Aqgep = 1GeV. Aqep ist eine typische Gréflenordnung der Quantenchro-
modynamik* (QCD). Sie wird als hadronische Skala bezeichnet. Die Masse
der schweren Quarks ist grofler als Aqcp. Der Wert 1GeV der hadronischen
Skala ergibt sich aus der typischen Masse der Hadronen.

Das Proton besteht aus zwei Up-Quarks und einem Down-Quark. Allerdings
gilt:
my, = 0,938GeV > 2m, + mq.

Die Hadronenmasse entsteht offensichtlich nicht durch reines Zusammenset-
zen der Quarkmassen, sondern auf komplexerem Weg.
Da die Masse der leichten Quarks sehr viel kleiner ist als die hadronische
Skala, stellt

My =Mgqg=ms =0

eine sinnvolle Naherung dar.

2.2 Lagrangedichten in der QCD

In der QCD wird jedem Quark ein weiterer Freiheitsgrad, die Farbe, auch
colour genannt, zugeordnet. Dieser kann die Werte rot, griin oder blau an-
nehmen. Das Quark-Feld l&sst sich aus einem Vektor der drei Dirac-Spinoren
darstellen:
qf,rot
qr = qf griin
qf,blau
Die Verbindung eines Quarks mit einem Antiquark wird als Meson bezeich-
net. Sind drei Quarks gebunden wird dies Baryon genannt. Das Antiquark
besitzt eine Antifarbe. Diese Antifarbe ist zusammen mit einer Farbe ,farb-
los“. Ebenso sind drei Farben zusammen ,farblos“. Der Freiheitsgrad colour

*Aus dem Griechischen: chromos = Farbe
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ist somit nicht direkt beobachtbar und dient nur der mathematischen Be-
schreibung.

Die QCD ist unter der SU(3) Symmetriegruppe invariant. Eine Symmetrie-
gruppe spezieller unitirer Matrizen! mit der Dimension N wird mit SU(N)
bezeichnet. Sie hat N2 — 1 Generatoren, welche nicht vertauschen. Somit ist
die QCD eine nichtabelsche Eichtheorie. Die Generatoren der SU(3) sind pro-
portional zu den acht Gell-Mann-Matrizen T, = \,/2, mit a = 1,...,8 und
erfiillen die Vertauschungsrelation:

>\a >\b . >\c
|:77 2‘| - 1fabc 9 .
Die Lagrangedichte der QCD lautet:
. 1 y
Loco = Y @5 (W' Dy —my) g5 — 1 Dwata” (2.1)
f
Dabei sind v# die Dirac-Matrizen* und
LI
Dy, =0,—ig) S A (2.2)
a=1

ist die kovariante Ableitung, welche die acht Eichfelder A, ,, die Eichbosonen
oder Gluonen, enthélt. Der Feldstéarketensor besteht aus den Eichfeldern und
ihren Ableitungen

F,uu,a - a,uAV,a - a1//4u,a + gfabcAu,bAu,m (23>

ist aber unabhéngig von den Quarkflavours.

Wie schon in Abschnitt 2.1 beschrieben ist es sinnvoll den Grenzfall m, =
mq = ms = 0 einzufithren. Die Lagrangedichte der leichten Quarks lautet
dann:

. 1 v
Lqcp = fzd qsiv" D,qr — ZFW,QF[? : (2.4)

Es kénnen nun die Projektionsoperatoren eingefiihrt werden, welche die La-
grangedichte (2.4) in einen linkshéndigen und einen rechtshiandigen Anteil
aufteilen. Die Héndigkeit der Lagrangedichte wird auch als Chiralitdt be-
zeichnet, bzw. die Lagrangedichte als eine chirale Lagrangedichte. Diese Pro-
jektionsoperatoren sind definiert als

(1 =)

N | —

1
PR:§<1+’75) P, =

fSiehe Anhang A
iSiehe Anhang B
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und haben die Eigenschaften
PR+PL:17 P}%/L:PR/L und PRPLIPLPR:O.

Damit folgt die chirale Lagrangedichte:

. . 1 )
Loco = Y (@rv" Dugr.s + Qv Duguy) — g hwala” (2.5)
f=ud,s

Diese Lagrangedichte besitzt eine globale U(3)r, x U(3)gr Symmetrie. Nach
dem von Emmy Noether aufgestellten Theorem gibt es fiir jede globale, konti-
nuierliche Symmetrietransformation, welche die Lagrangedichte und die Be-
wegungsgleichung invariant lasst, einen klassisch erhaltenen Strom. Damit
lassen sich 2 x (8 + 1) = 18 erhaltene Stréme finden:

Ve = R M = q‘v“%‘lq
Awe = Rua_ [pe = gorqdag
VE = RM4 LM = gy'q

A= RE-LF = gy

Klassisch sind diese Strome immer erhalten, quantenmechanisch ist dies nicht
immer zwingend. Der axiale Singulettstrom A* besitzt aufgrund von Quan-
teneffekten eine Anomalie. Bei der Betrachtung des Quarkmassenterms als
Storung, kénnen Aussagen iiber die Erhaltung der Strome gemacht werden.
Der vektorielle Oktettstrom V#“ ist nur erhalten fiir m, = mq = ms, der
axiale Oktettstrom A** dagegen nicht. Fiir den Fall von endlichen Quark-
massen besitzt der axiale Singulettstrom A" eine Divergenz. Der vektorielle
Singulettstrom V*# ist immer erhalten, hieraus folgt die Baryonenerhaltung.

2.3 Spontane Symmetriebrechung

Spontane Symmetriebrechung kann beobachtet werden, wenn der Grundzu-
stand eines Systems entartet ist. Es muss ein Grundzustand ausgewéahlt wer-
den, der nicht mehr alle Symmetrien der dazuhorigen Lagrangedichte besitzt
[2], [3]. Fiir die genaue Untersuchung dieses Phédnomens wird als Beispiel die
¢* Lagrangedichte betrachtet

2

A
£(6,0,0) = 50,006 — "o 6 — 26" = 20,006 - V(9),  (20)

mit einem hermiteschen, skalaren Feld ¢ (z). Diese Lagrangedichte ist inva-
riant unter der Transformation R : ¢ — —¢. Es wird A > 0 gewéhlt. Fiir die
GroBle m werden zwei Fille unterschieden:



2.3 Spontane Symmetriebrechung 13

HV(9)
¢(x)
Abbildung 2.1: Potential V (¢) fiir m? > 0 im Wigner-Weyl-Modus
V(o)
¢ (x)

Abbildung 2.2: Potential V (¢) fiir m? < 0 im Nambu-Goldstone-Modus

e m? > (0: Das Potential V (¢) besitzt ein Minimum fiir ¢y = 0, sieche Abb.
2.1. Der Grundzustand, (0]|¢(x)|0) = ¢y, ist nicht entartet und invariant
unter der Transformation R. Diese Situation wird auch Wigner-Weyl-
Modus genannt.

e m? < 0: Das Potential V (¢) besitzt nun zwei Minima bei ¢ = +¢q, wo-
bei ¢y = \/—m?/\ist, siche Abb. 2.2. Das System besitzt zwei entartete
Grundzusténde, (0|¢(x)|0) = £¢o. Diese sind nicht mehr invariant un-
ter der Transformation R. Die Symmetrie des Systems wird durch die
Wahl eines Grundzustandes spontan gebrochen. Diese Situation wird
Nambu-Goldstone-Modus genannt.

2.3.1 Goldstone-Theorem

Das Goldstone-Theorem besagt, dass beim Auftreten der spontanen Sym-
metriebrechung kontinuierlicher Symmetrien masselose Teilchen, sogenannte
Goldstone-Bosonen beobachtet werden.

Um diese Goldstone-Bosonen zu finden, muss nach Auswahl eines Grundzu-
standes das Potential um das zugehorige Minimum entwickelt werden. Aus
Gleichung (2.6) ist erkennbar, dass die Masse eines Teilchens in dem zum
zugehorigen Feld quadratischen Term enthalten ist.
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2.3.2 Spontane Symmetriebrechung unter einer nicht-
abelschen Symmetrie

Als Beispiel wird die Lagrangedichte

= 1 2 A
L <¢> = L (¢1, P2, ¢3) = 5 L,9i0" P — m?@@ ~1 (i) (2.7)

betrachtet, welche invariant unter der nichtabelschen Symmetriegruppe SO(3)
ist. Es sei A > 0 und m? < 0. Die Minima des Potentials liegen auf einem
Kreis mit dem Radius:

—m2

|¢min| - )\

Nun muss ein Grundzustand ausgewéhlt werden, z.B.:

= 0.

¢min = Ué\S-
Die Entwicklung nach dem Minimum lautet dann

¢3 =V + 1,
damit ergibt sich fiir das Potential:
1 A 2 A
V=5 (=2m) " + don (61 + 65 + ') + 7 (61 + 65 +07) " — ot

Aus dieser Gleichung lassen sich die Massen der drei Felder ¢, ¢ und n

ablesen:
Mg, = Mg, = 0

m, = —2m2.

Daher existieren zwei masselose Goldstone-Bosonen, ¢; und ¢,.

Die Anzahl der Goldstone-Bosonen kann gruppentheoretisch hergeleitet wer-
den. Es gilt:

Anzahl der Goldstone-Bosonen = n = ng — ng.

Dabei ist ng die Anzahl der Generatoren der Symmetriegruppe der Lagran-
gedichte. ny ist die Anzahl der Generatoren der Untergruppe, welche den
Grundzustand invariant lassen.

In dem obigen Beispiel ist die Symmetriegruppe die SO(3)-Gruppe, welche
3 Generatoren T; mit [T}, T;] = ie; T} besitzt. Das Minimum ist invariant
beziiglich einer Drehung in es-Richtung. Diese Symmetrie hat den Genera-
tor T3. Somit ist die Anzahl der Goldstone-Bosonen: 3 — 1 = 2, wie oben
gefunden.
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2.4 Spontane Symmetriebrechung in der QCD

In diesem Abschnitt werden die Auswirkungen der spontanen Symmetrie-
brechung in der QCD untersucht. Dazu wird die Lagrangedichte im Grenzfall
verschwindender Massen, siche Gleichung (2.5), fiir Ny = 2 betrachtet. Dieser
Grenzfall wird auch als chiraler Grenzfall bezeichnet:

. . 1 v
Loco = Y (@rpvuD"qr s + Qusive D" qu.s) — gLt
f=ud

Diese Lagrangedichte besitzt eine SU(2)y, x SU(2)g x U(1)y-Symmetrie. Die
U(1)y-Symmetrie ist exakt. Sowohl Lagrangedichte als auch Grundzustand
sind invariant unter dieser Symmetrie, aus der die Baryonenzahlerhaltung re-
sultiert. Die Transformationsgruppe G = SU(2)p, x SU(2)g ldsst den Grund-
zustand nicht invariant. Dieser ist invariant unter der Untergruppe H =
SU(2)y. Die Generatoren T; fiir Ny = 2 sind proportional zu den drei Pauli-
matrizen® 7, mit T, = 7; /2. Es existieren demnach n = 6 — 3 = 3 Goldstone-
Bosonen. Die 3 Goldstone-Bosonen sind die Pionen.

2.5 Effektive Lagrangedichte fiir Goldstone-
Bosonen

Ziel der weiteren Betrachtungen ist es, eine effektive Lagrangedichte der
Goldstone-Bosonen aufzustellen. Diese Lagrangedichte soll im chiralen Grenz-
fall invariant unter der chiralen Transformation SU(2);, x SU(2)g sein. Deswei-
teren soll der Grundzustand die Symmetrie SU(2)y haben, damit die spon-
tane Symmetriebrechung eintritt. Die Betrachtung der Goldstone-Bosonen
erfolgt damit im Sinne einer Stérungstheorie. Da die Symmetrie der Lagran-
gedichte die chirale Symmetrie ist, wird diese Storungstheorie auch als chirale
Storungstheorie oder chiral perturbation theory (xPT) bezeichnet. Um jetzt
die Lagrangedichte der Goldstone-Bosonen herzuleiten, wird zunéchst das
Transformationsverhalten von Goldstone-Bosonen untersucht.

2.5.1 Transformationsverhalten von Goldstone-Bosonen

Zur Beschreibung des Transformationsverhaltens wird der Begriff der Links-
nebenklasse eingefiihrt.

§Siehe Anhang A
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Definition: Sei H eine Untergruppe von G. Man bezeichnet die
Menge
gH = {ghlh € H}

als eine Linksnebenklasse von H.

Als Raum der Goldstone-Bosonen wird M = {ﬁ\ﬁ : M — R”} definiert.

M* ist der Minkowski-Raum, n ist die in Abschnitt 2.3.2 definierte Anzahl
der Goldstone-Bosonen. Die Felder der Goldstone-Bosonen, oder Goldstone-
Bosonen-Variablen, werden durch

I

m=| :

I,
dargestellt. Zwischen den Goldstone-Bosonen-Variablen 11 und den Elemen-
ten der Linksnebenklasse existiert eine isomorphe Abbildung. Dadurch lésst
sich das Transformationsverhalten der Goldstone-Bosonen ermitteln.
Za jedem 11 existiert genau ein gH mit geeignetem §. Das transformierte I
ldsst sich dann durch Multiplikation von gH mit g finden.
Die Gruppe G ist jetzt die SU(Nf)1, x SU(Nf)r-Gruppe, welche den Grund-
zustand nicht invariant ldsst. H ist demnach die SU(N)y-Gruppe. Dann ist

g = (L, R). Damit ergibt sich das Transformationsverhalten der Felder der
Goldstone-Bosonen:

U(z) — RU (z) L. (2.8)

U ist die Feldkonfigurationsmatrix, in der die Felder der Goldstone-Bosonen
enthalten sind. Diese Matrix kann in Exponentialform dargestellt werden:

L P(x)

U(x)=¢e T .

(2.9)

Die Konstante Fy hat die Dimension einer Energie, die Konfigurationsmatrix
ist folglich dimensionslos. ® ist das Feld der Goldstone-Bosonen, welches
bisher mit II bezeichnet wurde.

Fiir Ny = 3 gilt:

7T0+\/%§77 \/§7r+ \/§K+

8
O(r) = Matalz) = | V20~ —x"+don V2KO | (210)
a=1 V2K~ V2K° —\%n

A sind die acht Gell-Mann-Matrizen. ¢, sind hermitesche Felder. Fiir Ny = 3
gibt es n = 16 — 8 = 8 Goldstone-Bosonen: drei Pionen 7770 das Eta-
Teilchen n und die vier Kaonen K™= und K°.



2.5 Effektive Lagrangedichte fiir Goldstone-Bosonen 17

Im Fall Ny = 2 werden die Gell-Mann-Matrizen durch die drei Paulimatrizen
7; ersetzt. Die Goldstone-Bosonen sind die drei Pionen:

P(z) = in@(x) = ( \/—gi_ \/_577: > : (2.11)

i=1

2.5.2 Die effektive Lagrangedichte in O(p?) der Impul-
sentwicklung

Es wird nun eine Lagrangedichte bis zur Ordnung O(p?) aufgestellt, wel-
che das Transformationsverhalten aus Gleichung (2.8) besitzt. Damit die
spontane Symmetriebrechung eintritt, soll der Grundzustand die Symme-
trie SU(2)y x U(1)y besitzen. Die allgemeinste Lagrangedichte, die diesen
Bedingungen geniigt und chiral invariant ist, lautet:

2

F
Lo kin = IOTr (0,U0"UT) . (2.12)

Wird in diese Lagrangedichte die Feldkonfigurationsmatrix aus Gleichung
(2.9) eingesetzt, ergibt sich die iibliche Form

1
50u 0" 01

des kinetischen Terms.

Der chirale Grenzfall m, = mq = 0 ist nur eine Ndherung, die Massen des
Up- und des Down-Quarks sind endlich. Dadurch kommt es zu einer explizi-
ten Symmetriebrechung durch den Masseterm. Daraus folgt, dass die Pionen
ebenfalls nicht masselos sind, sie werden daher Pseudo-Goldstone-Bosonen
genannt. Die Lagrangedichte aus Gleichung (2.12) beriicksichtigt nicht diese
explizite Symmetriebrechung durch die endlichen Massen der Quarks. Um
dies zu beriicksichtigen wird die Massenmatrix

my 0
M_<0 md)

eingefithrt. Mit Hilfe der Spurionanalyse findet sich der Term der Lagrange-
dichte, in dem die Massenmatrix vorkommt:

F2B,

Tr (MUT+UMY). (2.13)

Loy =

By ist eine Konstante mit der Dimension einer Energie. Die vollstéandige
Lagrangedichte bis zur Ordnung O(p?) ist die Summe der Terme Ls i, und
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Ly = £22J<in + Lo m .
= HTy (9,U0"UT) + T (MUT + UMT).

Die Feldkonfigurationsmatrix mit Gleichung (2.11) wird jetzt in den Feldern
bis zur zweiten Ordnung entwickelt, um die Masse der Pionen zu erhalten. Es
wird my, = mgq = m # 0 gesetzt. Wie schon in Abschnitt 2.3.1 gefunden, ist
die Masse eines Teilchens in dem zum zugehorigen Feld quadratischen Term
enthalten. Damit gilt fiir die Masse der Pionen:

M? = 2Bym. (2.14)

Wird der Fall Ny = 3 betrachtet, so muss zusétzlich das Strange-Quark mit
der Masse myg beriicksichtigt werden. Die Massenmatrix M behélt ihre Dia-
gonalform, wird aber zu einer 3 x 3-Matrix. Fiir die Feldkonfigurationsmatrix
wird Gleichung (2.10) verwendet. Zusétzlich zu der Pionenmasse aus Glei-
chung (2.14) werden die Massen der Kaonen und des n-Teilchens berechnet
zu

M3 = By(m + my) (2.15)
und
9 2

Diese Massen entsprechen der Gell-Mann-Okubo-Formel:

AMj = 3M} + M. (2.17)

Als néchstes wird ein von Steven Weinberg aufgestelltes Sortierschema vor-
gestellt. Damit lassen sich Terme in der Lagrangedichte einfiihren, die eine
héhere Ordnungen in M haben.

2.5.3 Das Weinberg’sche Powercounting

Dem Weinberg’schen Powercounting liegt ein Theorem zugrunde [2], das be-
sagt, dass die allgemeinste S-Matrix, welche der Konsistenzbedingungen der
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Analytizitat, der Unitaritit, der Kausalitdt und gewissen Symmetriebedin-
gungen geniigen soll, perturbativ durch eine effektive, allgemeine Lagrange-
dichte berechnet werden kann. Die Terme dieser Lagrangedichte sollen unab-
héngig sein und ebenfalls der Symmetrie geniigen. Jeder mogliche Term wird
dabei beriicksichtigt.

Aufgrund der Beziehung M? o< m, siche Gleichung (2.14), wird der Quark-
masse die gleiche Ordnung wie zwei Ableitungen zugeordnet. Die Ableitungen
treten immer in gerader Anzahl auf, so dass sie zu Lorentzskalaren kontra-
hieren. Daher léasst sich die Lagrangedichte nach Ordnungen der Masse und
der Impulse ordnen und in der Form

£:Z£2¢=ZCD=£2—I—E4+£6+---
i=1 D

schreiben. Es treten somit nur gerade Ordnungen der Lagrangedichte auf.

Das Weinberg’sche Zahlschema liefert eine Moglichkeit Feynman-Diagrammen
eine Ordnung der Lagrangedichte zuzuordnen, diese wird mit D bezeichnet.

Aus der Reskalierung der Impulse und Massen der externen Mesonen ergibt

sich das Verhalten der Amplitude:

M (tp,*M?) = t° M (p, M?) .

Fiir jeden Vertex Lo, des Diagramms ergibt sich ein Reskalierungsverhalten
von 2" fiir den Vertexfaktor und ¢~ fiir die impulserhaltende Deltafunktion.
Jeder Vertex ergibt damit einen Beitrag zur Ordnung D von:

i NQn (2n - 4) .
n=1

Dabei ist Ns, die Anzahl der Vertizes im Diagramm. Die inneren Mesonen-
linien werden durch das Integral

/ d'k i
(2m)4 k2 — M? + ie

berechnet und reskalieren wie:

/ d*k i MM / d*k i
(2m)4 k2 — M2 +ie  k—tk (2m)4 k2 — M2 +ie’
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Dies ergibt den Beitrag
2NI7

mit N; Anzahl der innere Mesonenlinien, zur Ordnung D. Die Erhaltung des
Viererimpulses ergibt den zusétzlichen Term +4. Damit lautet die Gleichung
fiir die Ordnung D:

D=4+42N;+ Y Na(2n—4). (2.18)

n=1

Mit Hilfe der Relation N = N;— (3", Na,, — 1) lésst sich D durch die Anzahl
der Vertizes und der unabhéngigen Schleifen N ausdriicken:

D=2+ 2(n—1) Ny, +2Ny. (2.19)

n=1

Aus dieser Gleichung lésst sich ablesen, dass die Schleifendiagramme minde-
stens die Ordnung D = 4 haben.

Terme in der Lagrangedichte, welche die Ordnung D = 2 haben, werden als
Terme fithrender Ordnung oder als leading order (LO) Terme bezeichnet.
Terme mit der Ordnung D = 4 werden als néchstfithrende Ordnungsterme
oder als next to leading order (NLO) Terme bezeichnet.

Gesucht wird die Lagrangedichte bis NLO, d.h. bis D = 4. Die allgemeinste,
effektive, chirale Lagrangedichte bis zur Ordnung D = 2 wurde bereits in
Abschnitt 2.5.2 hergeleitet. Es wird die Abkiirzung

X = QB()M
eingefiithrt. Damit ergibt sich fiir die Lagrangedichte bis LO:

F? F?
£y=L <8MU (a“U)T> + = (U + UX. (2.20)
Hierbei wird die Schreibweise Tr — () verwendet. Die Lagrangedichte bis
NLO ergibt sich aus denselben Uberlegungen, wie die Lagrangedichte bis LO.

Zuvor wird ermittelt, wie sich die Lagrangedichte auf dem Gitter veréndert.



Kapitel 3

Gitter-QCD

In diesem Kapitel wird die Lagrangedichte zur Betrachtung auf dem Gitter
modifiziert. Durch Gittersimulationen, z.B. Monte-Carlo-Rechnungen, lassen
sich viele Daten zur Verifizierung der Theorie berechnen. Dabei miissen auch
Effekte beriicksichtigt und eingeschétzt werden, welche durch die Gittersi-
mulationen entstehen.

3.1 Euklidische Formulierung der Lagrange-
dichte

Fiir die Formulierung der Lagrangedichte auf dem Gitter wird vom Minkowski-
Raum in den Euklidischen Raum gewechselt. Die euklidische Wirkung Sg,
und insbesondere e™% | ist reell und verhindert damit Oszillationen [4].

Der metrische Tensor des Minkowski-Raums

g = diag(l,—1,—1,—1)
geht iiber in den metrischen Tensor des Fuklidischen Raums
g, = diag(1,1,1,1).

Dies wird durch den Ubergang t — it von reellen zu imaginiren Zeiten er-
reicht. Dadurch kommt es zu einer Drehung um 7/2 in der komplexen Zeit-
Ebene, einer Wick-Rotation. Die Indizies werden von 1 = 0, 1,2, 3 umbenannt
in = 1,2,3,4. Dabei geht die Zeitkoordinate des Minkowski-Raums xq im
Euklidischen Raum tiber in x4.

Zur Modifizierung der Lagrangedichte wird die Bedingung

s w], =20



22 Gitter-QCD

an den Anti-Kommutator der Dirac-Matrixen* gestellt. Dies wird z.B. reali-

siert durch: .

W= W =—n 09, = —,0,

Damit lautet die Lagrangedichte bis LO (2.20) im euklidischen Raum:
g

Ly=L <8HU (aMU)T> . FZOQ (XUt + UxTY . (3.1)

3.2 Wilson-Wirkung

In der Gittertheorie wird der Abstand der Gitterpunkte mit a und die Rich-
tung mit p = 0,1, 2,3 bezeichnet. Eine Moglichkeit die Wirkung auf dem
Gitter zu formulieren, ist die Ableitungen durch endliche Differenzen und die
Integrale durch Summen iiber die Gitterplédtze auszutauschen. Dieser Weg
hat allerdings einige Nachteile, da die Wirkung fiir @ # 0 nicht mehr eichin-
variant ist. Aufgrund des Renormierungsverhaltens ist dies auch fiir a — 0
der Fall. Eine Alternative zu dieser einfachen Umformulierung hat Kenneth
G.Wilson vorgeschlagen [5]. Dabei hat er zuerst eine Eichinvarianz fiir das
Gitter formuliert und danach die Wirkung angepasst. Das Ergebnis ist die
eichinvariante Wilson-Wirkung.

Auf dem Gitter ist das Produkt der Fermionfelder 1 () -1 (y) nicht eichinva-
riant. Deswegen wird eine Matrix U(z,y) € SU(N) eingefiihrt, welche trans-
formiert wie

Uw,y) = AM2)U (2, y)A (y),
mit A € SU(V)[4]. Durch das Transformationsverhalten der Matrix U(x,y)

ist das Produkt + (z) - U(z,y) - ¢ (y) eichinvariant. Die Matrix U(x,y) wird
Paralleltransporter genannt und ist im Kontinuum definiert als:

Yy
U(z,y,C) =: Pexp {ig()/ AZ(z)Tadz“] )

Das Integral von x nach y wird entlang eines Pfades C berechnet. Der Paral-
leltransporter ist somit pfadabhéngig. P bezeichnet das pfadgeordnete Pro-
dukt, analog zu dem zeitgeordnetem Produkt. A7, sind die Eichfelder und 75,
die Generatoren der Symmetriegruppe.

*Siehe Anhang B
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Um die Eichinvarianz auf dem Gitter zu erreichen, wird der kleinste Parallel-
transporter U(zx,y,C) benutzt. Dieser wird als Link-Variable bezeichnet und
der dazugehorige Pfad als Link:

U(z+aft,x) =: Uy, =: exp [igoaAZ(x)Tb] € SU(N).

Hierbei ist i der Einheitsvektor in p-Richtung. Damit wird eine eichinvariante
Wirkung erhalten:

Die Plaquette-Variable, welche ein Produkt aus mehreren Link- Variablen ist,
lésst sich definieren als:

U(p) = Uz =t Uwtap)(—0)Utwrap+av) (- Utwrapyy Usp-

Der Pfad der Link-Variablen ist die Plaquette p.

Die Wilson-Wirkung hat die Form

S U ¢, ¢ = Sa[Ul+ Sr [U, 9, ], (3.2)

wobei Sg die Wilson-Plaquette-Wirkung und Sy die Wilson-Quark-Wirkung
ist [6],[7]. Die Wilson-Plaquette-Wirkung wird durch die Gleichung

S U] = gig ST (- Up) (3.3)

beschrieben. Hierbei ist gy die nackte Kopplungskonstante und U(p) der Par-
alleltransporter um die Plaquette p. Die Summe lauft {iber alle orientierten
Plaquetten.

Die Wilson-Quark-Wirkung geniigt der Gleichung:

my ist die nackte Quarkmasse und Dw der Wilson-Dirac-Operator mit:

1
Dy =3 (Y (V5 +V,) —arViV,]. (3.5)
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r bezeichnet den Wilson-Parameter. Die Ableitungen V;, und V, sind wie
folgt definiert:

Vi (x)

U (2, 1) ¢ (z + aft) — ¢ ()]
Vi (x) (

[V (z) = UM (& — ay, 1) ¥ (x — af)] .

Q|- =

Die sehr leichten Quarkmassen lassen sich in Simulationen nur durch sehr
hohen Rechenaufwand realisieren. Da die Rechenleistung der heutigen Com-
puter noch zu gering ist um mit der physikalischen Masse der leichten Quarks
zu rechnen, wird mit einer schwereren als der physikalischen Quarkmasse ge-
rechnet. Durch chirale Extrapolation werden die physikalischen Quarkmassen
erreicht. Hierbei wird zuerst der Kontinuum-Limes a — 0 genommen. Da-
nach wird der chirale Limes gebildet, d.h. die Massen gehen gegen Null , bzw.
werden sehr klein.

3.3 Symanzik-Wirkung

In der Symanzik-verbesserten Wirkung werden zusétzliche Terme der Ord-
nung O(a) eingefithrt. Diese Terme wirken als Gegenterme zu den Termen,
welche Gittereffekte der Ordnung O(a) verursachen und lassen sie somit ver-
schwinden. Die Symanzik-verbesserte Wirkung hat damit keine O(a)-Terme
und erreicht schneller den Kontinuums-Limes [6],[7].

Zuerst wird die Symanzik’sche effektive Wirkung betrachtet:
Se = So 4+ aS; + a%Sy + . .. (3.6)
Sp ist die Wirkung im Kontinuum. Zu dieser Wirkung werden die Gitterterme
a'S;

addiert. Die Symanzik’sche effektive Wirkung ist somit eine Gitterwirkung
im Kontinuum. Um die Symanzik-verbesserte Wirkung zu erreichen werden
Korrekturterme mit Hilfe der Gleichung
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berechnet. Die Terme Ly () haben die Dimension 4 + k, ihre Anzahl wird
dariiberhinaus durch die Integration iiber z eingeschrinkt. An die restli-
chen Terme wird die Forderung der Eichinvarianz und der Invarianz unter
U(1) x SU(Ny)-Transformationen gestellt. Fiir die Lagrangedichte £, ergibt
sich damit, dass sie eine Linearkombination folgender Felder sein muss:

01 = Q,EO'IWF/“,@b

- e —
Oy =vD, D, +vD,D
Os =mTr {F, F,.}

Oy = m{lﬁ%D;ﬂb - 1?1_)/1’7#2/}}
Os = mzl/;@b- (3-8)

Wie fiir die Wirkung lasst sich auch eine effektive Theorie fiir die Felder
aufstellen:

Get () = @0 () + a1 (x) + a¢o () + . .. (3.9)

Fiir diese Felder lassen sich Bewegungsgleichungen aufstellen, welche mit den
Korrelationsfunktionen verkniipft sind und zu Redefinitionen der Felder fiih-
ren. Mit Hilfe dieser Redefinitionen lassen sich die Felder @y und O, aus der
Gleichung (3.8) eliminieren.

Mit den restlichen Feldern ldsst sich eine verbesserte Gitter-Wirkung aufstel-
len. Die Lagrangedichte £; wird durch die Einfithrung eines Gegenterms

CZ5 2{01@1 + 6363 + 0565}

verbessert. Die Felder 6k sind Darstellungen der Felder O, auf dem Gitter.
Die Konstanten ¢, haben die Ordnung O(a?).
Die Symanzik-verbesserte Wirkung lautet schliellich

Simpr[anjjf@b] = S[Ua,&vw] + 5S[U77vsz]7 (310)
wobei S[U, 1, ] die Wilson-Wirkung ist und

o~

5SIU 0] = a° 3 eswib () ;la,“,F,w (2) ¥ () (3.11)

gilt. ﬁw, ist eine Gitterdarstellung des Feldstédrketensors F),,. csw ist der
Sheikholeslami-Wohlert-Koeffizient.
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3.4 Lagrangedichte bis O(p?)

Fiir die zusétzlichen Gitterterme gilt das gleiche Transformationsverhalten
wie fiir die Massenterme aus Abschnitt 2.5.2. Zur Einfithrung der Gitterkon-
stanten a wird die Matrix

P = po]_ = 2W0a1

definiert, welche die Konstante 1, enthilt. Damit ergibt sich bis O(p?) fiir
den Gitterterm:

F2
_TO (pUT+ Up'). (3.12)

Dieser Term korrespondiert mit Gleichung (3.11). Der Sheikholeslami-Wohlert-
Koeffizient cgw geht ein in die Konstante Wy. a* >, geht iiber in ein Integral
und nur a bleibt iibrig. Dieses a ist in der Matrix p enthalten. Folglich lautet
die euklidische Lagrangedichte bis O(p?) auf dem Gitter:
g N _ n_E ot

L2 == (0,U0 (0"0)') = = (Ut + UXT) = L (Ut + UpT) . (313)
Auf demselben Weg wird die Lagrangedichte bis O(p?) gefunden. Diese wird
im néchsten Kapitel betrachtet.



Kapitel 4

Twisted Mass QCD

In der twisted mass QCD (tmQCD) im Kontinuum wird die Massenmatrix
axial gedreht [8], [9]: .
M (w) = M'e"75™,

Die Form der Lagrangedichte ist unter dieser Transformation invariant, falls
die Quarkfelder wie

V(W) = T3y
transformieren. Der Masseterm in der Lagrangedichte behélt mit diesen Trans-
formationen seine Form: ~ ~
YMrp = ' M"Y
Die Physik wird durch die tmQCD nicht verédndert. Lediglich der Vakuum-
zustand bei der spontanen Symmetriebrechung erhilt eine andere Richtung.

Auf dem Gitter dagegen wird die Physik durch die tmQCD verédndert. Durch
die explizite Brechung der chiralen Symmetrie auf dem Gitter kommt es zur
w-Abhéngigkeit. Ein Vorteil der tmQCD auf dem Gitter besteht in der auto-
matischen O(a)-Verbesserung [10]. Bei vollstindig getwisteter Massenmatrix,
w = m/2, verschwinden die Terme, welche proportional zu a sind. Zudem wird
in der tmQCD schneller der Kontinuumslimes erreicht.

In der Wilson-Wirkung treten sogenannte quark zero modes auf[11]. Im Wilson-
Dirac-Operator existieren bei endlichen Quarkmassen verschwindend kleine
Eigenwerte, die entsprechenden Eigenvektoren werden quark zero modes ge-
nannt. In der QCD nehmen die Eigenwerte des Wilson-Dirac-Operator al-
lerdings nur dann den Wert Null an, wenn die Quarkmassen ebenfalls ver-
schwinden. Aufgrund der quark zero modes kommt es zu Fluktuationen der
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Fermionen Observablen. Dadurch verdndert sich deren Standardabweichung
und eine statistische Auswertung ist nicht mehr moglich. Die tmQCD bietet
eine Moglichkeit dieses Problem zu umgehen [12]. Eine gedrehte Wirkung
fithrt dazu, dass es nur dann verschwindende Eigenwerte gibt, wenn auch
die Quarkmassen verschwinden. Die Drehung wirkt auf den Wilson-Dirac-
Operator, dieser Fall wird physical basis genannt. Durch eine geeignete Trans-
formation ist es moglich die Drehung auf den Masseterm wirken zu lassen,
dieser Fall wird twisted basis genannt.

Die Masse m, ist die Differenz von nackter und kritischer Quarkmasse:

Mg = Mo — My
Der Wilson-Dirac-Operator Dy aus Gleichung (3.5) geht damit iiber in

DW,m = Dw + me,
1 * 1 *
=3 (Vﬂ +V,.) + —Earvuvu + Mgy

=D+ Dy, (4.1)

womit die Wirkung der physical basis lautet:

SE (U o Upn] = a* > o, () (Dt + 1) gy () - (4.2)

Der gedrehte Wilson-Dirac-Operator Dyy ¢ ist durch
Dy, =D+ D,,e "™

definiert. In der twisted basis ist der Wilson-Dirac-Operator ungedreht und
die Masse ist gedreht:

Sf?b [U7 Vb, %Utb] =a* Z U, () (Dw,m + mgt) Y () - (4.3)

Die gedrehte Masse m, ist definiert durch:

_ iwysT3
Mgt = Mgye :
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Die tmQCD wird jetzt auf die effektive Lagrangedichte der Goldstone-Bosonen
auf dem Gitter, siehe Gleichung (3.13), angewendet. Dazu wird die Gasser-
Leutwyler-Lagrangedichte bis NLO, £ = £y + L4, auf dem Gitter betrachtet
[7]:
L=Ly+ Ly
2 2 2

= 10 Qua,U") — 10 (Xt — T2 (Ut 1 U
~ Li(,U8,U")" - Ly (,00,U")" Ly ((9,00,U")")
+ Ly (0, U0,U") (XU + UTx) + Wy (0,U8,U") (p'U + U'p)
+ Ls (0,U0,U" (X'U + U')) + W5 (9,U8,U" (p'U + U'p))
— Le (XU + U’ = W (XU + UTy) (p'U + UTp)
— W {ptU + UTp)* = Ly (XU — UT)?
— Wy AU = U (pTU = UTp) = Wi (pTU — UTp)?
— Ls (X'UX'U + U\UX) = W5 {p'UX'U + UTpUTx)
— W {p'Up'U + UtpUTp) (4.4)

wobei L;, mit ¢ = 1,...,8, die Gasser-Leutwyler-Koeffizenten sind und W;,
mit ¢ = 1,...,8, die Gitterdynamik-Parameter. y ist proportional zur Mas-
se und p ist proportional zur Gitterkonstanten a. U ist die Feldkonfigu-
rationsmatrix. Die Gasser-Leutwyler-Koeffizenten und die Gitterdynamik-
Parameter werden auch als Niederenergiekonstanten, bzw. low energy con-
stants (LEC), bezeichnet.

Das betrachtete Potential V' muss im Minimum nach den Feldern entwickelt
werden, um die Pionenmasse zu berechnen. Deswegen wird in diesem Kapi-
tel das Minimum des Potentials gesucht. V' lasst sich aus der Lagrangedichte
ablesen: £L =T + V', woraus folgt:

V(U)= —%02 (XUT+Ux") - FZOQ (pUt + Up")
— Lo AU + UTY)? = W (XU + UTX) (p'U + UTp)
— W {p'U + UTp>2 — L (X'U — fo>2
— W7 (XU = U) (pU = Utp) = Wy (plU — U'p)’
— Lg <XTUXTU + UTxUTx>
— Wy <pTUXiU + UTpUTx>
— W {(p'Up'U + UTpUp) . (4.5)
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Um das Minimum zu bestimmen wird nun die Parametrisierung

3
i=1
der Feldkonfigurationmatrix verwendet. Hierbei sind 7; mit ¢« = 1,--- |3 die

Paulimatrizen. Zusétzlich gilt die Nebenbedingung
ug + it =1, (4.7)

welche aus der Unitaritdt der Feldkonfigurationsmatrix und der Bedingung
det U =1 folgt.

Diese Parametrisierung wird nun in das Potential eingesetzt, welches dann
eine Funktion der Variablen vy, . .., us ist. In [13] wurde die Vakuumorientier-
ung in NLO untersucht fiir den Fall, dass nicht a/m < 1 gelten muss. Die
Vakuumorientierung beschriankt sich auf die 1- und 73-Richtung. Deswegen
gilt hier der Spezialfall:

U= UO]. + iU3T3

uy +uz = 1. (4.8)

Neben der Parametrisierung der Feldkonfigurationsmatrix werden zur expli-
ziten Berechnung des Potentials noch Parametrisierungen der Massenmatrix
x und der Gittermatrix p bendtigt. Hierfiir gibt es zwei Moglichkeiten, die
twisted basis oder die physical basis.

4.1 Physical basis

In der physical basis wird die Gittermatrix p gedreht. Dies hat den Vorteil,
dass der Masseterm unverédndert in seiner Form bleibt. Es wird im Folgenden
der Isospin-Limit (m, = mq = my) und die Notation nach [14] benutzt. Der
Gitterterm wird durch die Transformation

U = e*i%ﬂ'g U/efi%‘l‘g
gedreht. Der gedrehte Gitterterm lautet dann
p(w) = 2Whae“™ = pyl + ipsTs,

welcher sich in zwei Teile, einen Real- und einen Imaginéarteil, aufteilen lésst

po = 2Wha cos (w) und p3 = 2Whasin (w) .
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Fiir den Masseterm gilt weiterhin die Bedingung:
X = Xo]_ = 2B0mq01.

Mit Hilfe der Transformationsvorschrift der Feldkonfigurationsmatrix ist er-
kennbar, dass der gedrehte Gitterterm und der ungedrehte Gitterterm die-
selbe Form haben:

(pUT+Up'y = (pe'2™UTels™ 4 e 127 e 1273 pT)
= (PWUT+ U ().
U’ ist die Feldkonfigurationsmatrix in der physical basis. Zudem wurde
iwTs

W W
iYry YT
—e'2 3pe 273

p(w) = pe

benutzt.

Die physical basis wird hier nicht zur Berechnung des Minimums verwendet.
Im Folgenden Abschnitt wird die twisted basis vorgestellt. Diese Parametri-
sierung eignet sich besser zur Untersuchung der Phasenstruktur der Minima.

4.2 Twisted basis

Nun werden die Auswirkungen der getwisteten Massenmatrix in der chiralen
Storungstheorie betrachtet. Die Massen des Up- und des Down-Quarks wer-
den gleichgesetzt m, = mq = my und die Notation nach [14] benutzt. Der
Masseterm wird mit Hilfe der Transformationsvorschrift

U — ei%’r‘g Ulei%Tg
gedreht. Der gedrehte Masseterm lautet dann
X (W) = xe ™™ = 2By (1 — ipT3) = Xol + ix37s,

dieser lésst sich ebenfalls in Real- und Imaginérteil aufteilen. Fiir die gedreh-
ten Massen gelten die Gleichungen

M = My cos (w) und g = mgsin (w).
Hier bleibt der Gitterterm ungedreht:
p = pol = 2Wyal.
Die Drehung des Masseterms lésst seine Form invariant:

w w

<XUT + UXT> = (xe '2mUMTe 127 + ei%TsU/eigTSXT>
= K@U+ U @)
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U’ ist die Feldkonfigurationsmatrix in der twisted basis. Zudem wurde

X (w> — Xefiwﬂ'g — efi%’rg}xefi%ﬁo,

benutzt.
Zur Vereinfachung des Potentials werden die Abkiirzungen

Xo=Xo+po=2Bymy und x4 =—2Bou

eingefiihrt. Hierbei ist my, der Abstand zur kritischen, nackten Quarkmasse.
Als Néchstes wird die Berechnung der Spurterme durchgefiihrt. Es ist sinn-

voll, fiir die LEC X die Abkiirzung*
Xij=2X;+ X, (4.9)
einzufithren. Damit werden die Terme im Potential vereinfacht zu:
V (ug, u3) = —ciug + caug + czus + cqu3 + cstotiz + Leonst- (4.10)

Hierbei werden die Koeflizienten

€1 = F()2X6

Co = _8[L86X62 — (2Lss — Wss)X0p0 + (Lss — Wse + Wig) 5]
2./

3 = —Fyx;

¢ = —8Lgs Xy’
cs = —16LgsXox5 + 8 (2Lss — Was) X300 (4.11)
und
Leonor = =L (=457 + 8xoo0 — 497 — 3x% ) + Wi (xhpo + 4p3) + 4Wigf

benutzt. Mit Hilfe der Nebenbedingung aus Gleichung (4.8) héngt das Po-
tential nur noch von der Grofie ug ab:

Vi (up) = —crug + coud £ c34/1 —ud + ¢4
— cqud £ csugy /1 — ug 4 Leonst- (4.12)

Dieses Potential wird nach ug abgeleitet, um das Minimum zu bestimmen:

8Vi (Uo) Uo
gr=\to) _ _ 9 __d0
g c1 + 2coup F c3 T2 2
2
— 2cqug £ e54/1 —ud F C5L
V1i-4}
= 0. (4.13)

*Siehe Anhang C
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Umgeformt wird aus dieser Gleichung die quartische Gleichung

(—4c3 — 4c} — 4¢3 + 8eaca) g

+ (4cieq — 40104 4eses )ul

+ (403 +4c; +4ci -3 - - 80204)u
)

(4C1€4 — 40102 + 20305 Uo

0
2
0

+(f—c2) =0, (4.14)
bzw.
Aug + Buj + Cuf + Dug + E = 0. (4.15)

Diese quartische Gleichung kann mit dem Algorithmus nach Ferrari [15] gelost
werden.
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Kapitel 5

Algorithmus nach Ferrari

In diesem Kapitel wird die quartische Gleichung
Aug 4+ Bud + Cu 4+ Dug+ E =0 (5.1)

aus Abschnitt 4.2 mit Hilfe des Algorithmus nach Lodovico Ferrari (1522-
1565) [15] gelost. Dieser Algorithmus wurde 1545 von seinem Lehrer Gerolamo
Cardano in dem Buch ,,Ars magna de Regulis Algebraicis” veroffentlicht. Bei
diesem Algorithmus wird die quartische Gleichung durch drei Substitutions-
schritte auf eine quadratische Gleichung gebracht. Diese kann mit Hilfe der
bekannten Verfahren gelost werden. Zuerst wird die Gleichung (5.1) umge-
formt

ué + Clgug + agug + ajug +ag = 0, (52)
mit
B C D d E
as = — ag9 = — ap = — un apgp = —.

Nun wird die quartische Gleichung durch Substitution auf eine kubische Glei-
chung gebracht
v’ +ay’ + By +v =0,

mit
a = —Q2
ﬁ = aijaz — 4&0
v = 4dagas — a% — a%ao.

Diese Gleichung hat drei Losungen. Um diese Losungen zu finden, werden
die Groen

36 — o? J l 9a3 — 27y — 223
= un =

k
9 o4
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eingefithrt. Damit ergibt sich

R=k +1

S=4/l+VR T =4/l-VR.

Die Losungen der kubischen Gleichung lauten mit diesen Gréflen

und

yi =30+ (S+T)
:§a2+S+T,

V3

1 1 .
y2=—§a+§(S+T)+1 5 (S—T)

und

11 V3
Ys = —§a+§(S+T) —17(S—T).
Die Losungen y, und y3 sind nur reell, wenn S = T, bzw. R = 0 gilt. Mit
den hier zu verwendenen Werten ist R # 0, so dass als Losung fiir die kubi-
sche Gleichung y; verwendet werden muss. Diese Grofle wird fiir den dritten

Substitutionsschritt verwendet:

1
K = Za%—a2+y1

4K

\/%ag — 2a + 2my\/y? — 4ag fir K =0.

Damit lautet die Losungsgleichung zur Bestimmung des Minimums:

1 1 1
UQ;1,2,34 = —Zag + m§K + nﬁLm. (5.3)

\/%ag—Kz—mg—l—mw fir K #0
L, =

Zum Erhalt aller vier Losungen miissen m,n € {—1;1} gew#hlt werden. Um
die physikalische Losung zu bekommen, wird xj festgesetzt und yx; lauft ge-
gen +oo. Dabei wird die physikalische Losung, das gesuchte Minimum, fiir
X6 > 0 gegen +1 laufen, reell sein und nicht grofer als 1 werden. Fiir x < 0
lauft das Minimum gegen —1, ist ebenfalls reell und der Betrag der Losung
wird nicht grofer als 1. Die Grofe ¢; ist proportional zu x{ und wird des-
wegen als Variable benutzt. Zur Bestimmung des Minimums wird ¢; grofer
und kleiner Null gewihlt, was x; > 0 bzw. x{ < 0 entspricht. Die Grofe c;
ist proportional zu —xj4 und damit proportional zu p. ¢3 wird im Folgenden
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mqo mqo

Aoki-Szenario, ¢y > 0 normales Szenario, ca < 0

Abbildung 5.1: Phasendiagramm im Aoki- und im normalen Szenario

immer positiv gewéhlt.

Um das Minimum zu bestimmen, werden zunéchst die Konstanten ¢, und
5 vernachléssigt, welche das Verhalten des Minimums fiir groie || nicht
wesentlich beeinflussen. Die Grofie co wird noch zur Minimumsbestimmung
bendtigt. Das Vorzeichen von ¢y bestimmt, ob eine Aoki-Phase [16] auftritt
oder nicht. Bei positivem Vorzeichen kann das Aoki-Szenario beobachtet wer-
den und bei negativem Vorzeichen das normale Szenario [17], siehe Abb. 5.1.
Im Aoki-Szenario tritt ein Phaseniibergang zweiter Ordnung in der mgy — -
Ebene auf, sobald |m| gleich einem kritischen Wert my . ist. Hier verschwin-
den die Massen des neutralen und der geladenen Pionen. Fiir [my| < myoc,
der Aoki-Phase, ist die Masse der geladenen Pionen endlich, die des neutralen
Pions nicht. Die Flavour-Symmetrie ist somit gebrochen. Im normalen Szena-
rio ist ein Phaseniibergang erster Ordnung erkennbar, siche Abb. 5.2. Dieser
Phaseniibergang duflert sich in einem Sprung des Minimums bei mq = 0,
bzw. ¢; = 0, fiir || kleiner einem kritischen Wert p.. Bei starker Kopplung,
dh. 3 =6/g5 < 4,6 , herrscht das Aoki-Szenario vor, bei schwacher Kopp-
lung das normale Szenario [18]. Im Folgenden wird das normale Szenario
betrachtet, und damit

cy <0

gewahlt.
Da in einem ersten Schritt die Gréflen ¢4 und c5 Null gesetzt werden, werden
die Koeffizienten

A = —4c,
B 4cqca,
C 4k — 2 — 2,
D = —4dcico,
und
E = ¢
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C3 = 0
15 \

05

Upg 1

-05 |

-1.5

&

Abbildung 5.2: Verlauf des Minimums ug bei ¢z = 0 im normalen Szenario

zur Minimumsbestimmung benutzt. Das Minimum ist dann nur von den Ko-
effizienten ¢; bis c¢3 abhéingig. Aufgrund der Lénge der Gleichungen wird
davon abgesehen, diese explizit anzugeben.

Nun werden die dimensionslosen Groflen €1, €5 und €3 eingefiihrt. Zur Nor-
mierung wird die Konstante

¢y = —8(Lgs — Wy + Wig)pa <0 (5.4)
benutzt. Werden die Groflen W’ und 1 mit*

1
W= 5@86 — W + W)

bzw.

n = W’~W02,

eingefiihrt, lasst sich ¢ schreiben als
Gy = —64-1-a*

Im Folgenden wird das Minimum in Abhéngigkeit der Variablen €, bei ei-
nem festen Wert fiir €5 betrachtet. Die Grofie eo wird durch diese Variablen

*Siehe Anhang C
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ausgedriickt:
&1
€1 = —
L 208
Ca w-a Lgs - > 9
=—==14+64— - 2048 .-
€2 o + F02 €1+ Fél n-€
C3
= . 5.5
€3 2|62| ( )

In der Gleichung der GroBe €5 werden die Abkiirzungen®
1
W = 5 (W86 — 2L86)

und

w- W(] =l w
verwendet.
Die Normierungskonstante ¢y ist so gewdhlt, dass sie unabhéngig von der
Masse ist. Eine Normierung mit einer massenabhéngigen Grofle hat eine
falsche Massenabhéngigkeit der Variablen zur Folge. Dadurch resultieren
Peaks im Graphen des Minimums im Bereich kleiner Werte fiir €.
Mit den dimensionslosen Variablen ergibt sich die quartische Gleichung:

(—eg)ué + (—26162)u(3) + (eg — e% — eg)ug + (2€1€2)up + e% =0. (5.6)

Diese ldsst sich plotten und das Verhalten betrachten.

Im normalen Szenario gibt es bis zu einem kritischen Wert p. einen Sprung
des Minimums. Dieser befindet sich fiir den Fall ¢4 = 0 und ¢5 = 0 bei ¢; = 0.
Ist ¢4 # 0 und ¢35 # 0 kann nicht ausgeschlossen werden, dass dieser Sprung
bei ¢; # 0 zu beobachten ist. Es ist aber anzunehmen, dass der ¢;-Wert, bei
dem das Minimum springt, nicht stark von 0 abweicht. Diese Annahme wird
in Abschnitt 5.3.3 iiberpriift.

Zunéchst wird angenommen, dass der Sprung des Minimums bei ¢; = 0 zu
beobachten ist, und die Abweichung von diesem Wert zu vernachléssigen
ist. Das Minimum setzt sich dann aus zwei der vier moglichen Losungen
zusammen. Fiir ¢, > 0 muss die Losung mit m = n = +1 gewihlt werden,
fiir e; < 0 dagegen die Losung mit m =n = —1.

Im né#chsten Schritt werden die Koeffizienten ¢, und ¢5 wieder eingefiihrt.
Dazu werden die dimensionslosen Grofien

Cy Lgs-n-a? ,
B 11 bl R
RROTEN Fo
o O 39" opggleenat (5.7)
2|és] g Fy

fSiehe Anhang C
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verwendet. Diese werden durch die Variablen e; und e3 ausgedriickt. Mit
diesen Groflen ergibt sich die quartische Gleichung:

+( 2€1€9 — de1€4 — deses)u
+(€3 — €5 — €5 + degey + 4de; + ded
+(2€1€9 + deq€eq + 2e3€

5
He -6

(—€5 — degeq — 4€5 — dez)u
Ju

4
0
3
0
2
0

)
Juo
) =0. (5.8)
€1 und e3 werden als Variablen benutzt. Fiir alle anderen Grofien, die in den
Groflen €y, €4 und €5 enthalten sind miissen Zahlenwerte eingegeben werden.
Die Groflien Lgg und Fj haben eine physikalische Bedeutung im Kontinuum.
Sie lassen sich phdnomenologisch oder durch Gitter-Rechnungen abschét-
zen. Fy ist die Pion-Zerfallskonstante. Im Folgenden wird Lgg = 0,8 - 1073
und Fy = 86MeV benutzt’. Die GroSen a, w und 7 sind Gittergrofen.
Sie miissen fiir die betrachtete Wirkung, hier die Wilson-Wirkung, durch
Gittersimulationen® ermittelt werden. Fiir a wird als typischer Wert a =
0, 1fm gewshlt. w ist in [19] mit ungefihr w = 10*MeV?® angegeben. Im Fol-
genden werden die Werte

FO ‘ L86 ‘ a ‘ w
86MeV | 0,8-107% | 0,1fm | 10*MeV®

benutzt, solange kein anderer Wert angegeben ist.
Fiir n ist kein Zahlenwert bekannt. Der Wert wird deshalb abgeschétzt.

5.1 Vergleich der n-Werte

Um das Minimum des Potentials berechnen zu kénnen, ist ein Zahlenwert fiir
1 notwendig. Dieser wird jetzt abgeschétzt. Dabei werden zwei Relationen
benutzt, mit deren Hilfe anhand numerischer Ergebnisse die jeweiligen n-
Werte berechnet werden kénnen. Bei der Betrachtung dieser Werte muss
beachtet werden, dass teilweise eine andere als die Wilson-Wirkung, z.B. die
DBW2-Wirkung, benutzt wurde und die n-Werte wirkungsabhéngig sind.

5.1.1 Kiritischer Wert der gedrehten Masse ji.

Der Sprung des Minimums bei ¢; = 0 ist nur bis zu einem bestimmten e3-
Wert zu beobachten. Sobald €3 > 1 ist, ist das Minimum stetig in ¢; = 0.

iSiehe Anhang C
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Anhand der Definition von €3 in Gleichung (5.5), lidsst sich fiir e3 = 1 ein
kritischer Wert der gedrehten Masse p finden:

|G n-a?

He =gz g, - MEEpy
n wird fiir die DBW2-Wirkung [19] und fir die Wilson-Wirkung [20] berech-
net. Die Werte fiir p. und a wurden dabei aus den jeweiligen Quellen ent-
nommen, fiir By wurde der Wert By = 3,1GeV verwendet®. Fiir die DBW2-
Wirkung wurde kein kritischer Wert fiir die gedrehte Masse u. angegeben,
sondern ein Wert der gedrehten Masse p mit p > .. Die Ergebnisse fiir die
DBW2-Wirkung sind damit nur als obere Grenze zu verstehen.

pte (MeV) | a(fm) | n (MeV®)

Wilson-Wirkung 100 0,16 | 5,447 -10'3

DBW2-Wirkung
8 =0,67 11,2 0,176 | 5,042 - 10'2
g =0,74 11,4 0,13 | 9,407 -10%

(5.9)

2

5.1.2 Pionmasse im Mininmum m; ..

Fiir die Pionmasse im Minimum gilt die Gleichung [17]:

2|6 na*

2= = 128—. 5.10
70,In1n FO2 F02 ( )
Mit dieser Gleichung lésst sich 1 in der DBW2-Wirkung [19], in der Wilson-
Wirkung [20] und in der Symanzik-Wirkung [21] berechnen. Dafiir wurden

die Werte fiir m? und a aus den jeweiligen Quellen genommen.

6 mgnmin a (fm) n (MGVG)
Wilson-Wirkung | 3,65 | 450 0,13 | 2,701-10%
3,75 | 400 0,12 | 2,504-10%
3,90 | 280 0,10 | 1,767 -10%

DBW2-Wirkung | 0,74 | 280 0,13 | 1,046 -10%
Symanzik-Wirkung | 3,75 | 370 0,12 | 2,138-10%
3,90 | 279 0,12 | 1,216-10%

Die meisten 7-Werte sind im Bereich 7 = 10"*MeV®. Lediglich fiir die DBW2-
Wirkung gibt es auch kleinere Werte mit n = 10">MeV®. Ein 7-Wert von
n = 10MeV® kann als typischer Wert fiir die Wilson-Wirkung angenommen
werden. Dieser Wert wird in den folgenden numerischen Betrachtungen des
Minimums benutzt.

§Siehe Anhang C
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5.2 Numerische Betrachtung

Zur numerischen Betrachtung der Losungsgleichung (5.3) fiir das gesuchte
Minimum und spéter auch zur Betrachtung der Masse wurde das Programm
MAPLE benutzt. Die einzelnen Werten wurden dabei mit einer selbst ver-
fassten Routine berechnet.

Die betrachtete Lagrangedichte entspricht einer Entwicklung bis NLO. Die
Lagrangedichte wird nach dem Weinberg’schen Powercounting nach Termen
der Gitterkonstanten entwickelt. Es wird angenommen, dass die Gitterkon-
stante und entsprechende Terme klein sind, so dass die Entwicklung abge-
brochen werden kann. Daraus resultieren drei Forderungen:

1. Der es-Term darf nicht stark von 1 abweichen.

2. Insbesondere muss der Einfluss des zu a? proportionalen Terms in e,
gering sein.

3. Der Einfluss der ¢4~ und es-Terme auf das Verhalten des Minimums
darf nicht grof sein. Das Minimum, fiir das ¢4 # 0 und €5 # 0 gilt darf
daher nicht stark von dem Minimum, fiir das ¢4 = 0 und €5 = 0 gilt
abweichen.

In diesem Abschnitt wird untersucht, ob diese Forderungen fiir n = 10MeV®
erfiillt werden.

Aus der ersten Forderung lésst sich ein Giiltigkeitsbereich der Variablen ¢;
bestimmen.

5.2.1 Giiltigkeitsbereich von ¢;

Bei einem festen 7-Wert von 7 = 10¥MeV® wird der Giiltigkeitsbereich von
€1 untersucht. Hierzu wird die Gleichung

w-a Lgg - a® )

g =14+064 - €1 + 2048 -n-€

F¢ F !
~1+0,0438 - ¢, +0,0768 - €] (5.11)

betrachtet. Die Werte fiir ¢, diirfen nicht stark von 1 abweichen. Es wird
untersucht, fiir welche Werte von €; dieses der Fall ist. Dabei wird eine Ab-
weichung von 0,5 als akzeptabel erachtet. Hierbei ergibt sich, dass gelten
muss —2,85 < ¢; < 2,28, Wird

—2§€1§2
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1 : : ‘
Fall a)
Fall b), eta=13 -----—-

08 Fall b), eta=14 --------

08l

0
€1

Abbildung 5.3: Vergleich des Minimums uo bei €3 = 3, ¢4 = 0 und e5 = 0 im Fall a)
und im Fall b), hier wurde n = 1013MeV® und 1 = 10MeV® gesetzt

gewahlt, betridgt die maximale Abweichung der Groéfle e vom Wert 1 nur
0,39.

Mit €, = 2, n = 10"®*MeV® und a, Fy und By aus Anhang C kann ein Wert
fiir my, berechnet werden:

, 64na*e

= = 14MeV.

5.2.2 Uberpriifung der zweiten Forderung

Grundlage der Entwicklung bis NLO ist die Annahme, dass die Gitterkon-
stante a und entsprechende Terme klein sind und eine Entwicklung damit
abgebrochen werden kann. Die Grofle €5 besteht aus einem konstanten Term,
einem zu a proportionalen Term und einem zu a? proportionalen Term. Dieser
Term darf das Verhalten des Minimums nicht stark beeinflussen. In diesem
Teil ist die GroBle n enthalten. Wird diese zu grofi gewahlt, ist der Einfluss
dieses Terms ebenfalls gro8.

w - € Lgﬁ-n-e%. 9

Ca
===14+64 . 2048
€9 62 + F02 a—+ Fsl

Es wird jetzt untersucht, ob die Wahl np = 10'*MeV® giinstig ist. Um dieses zu
iiberpriifen, wird zuerst das Minimum betrachtet, fiir das ¢4 = 0 und ¢5 = 0
gilt. Im Folgenden wird:



44 Algorithmus nach Ferrari

€3 = 3
0.8 \

Fall a), eta=13 ——
Fall b), eta=13 -----—-

-0.8

0
€1

Abbildung 5.4: Vergleich des Minimums uo bei €3 = 3, mit ¢4 # 0 und €5 # 0 im Fall
a) und im Fall b), es wurde 7 = 10"*MeV® gesetat

a) im Minimum der Term in €, vernachliissigt, welcher proportional zu a?
ist.

b) der Term in €, einbezogen, welcher proportional zu a? ist.

Das Minimum wird fiir mehrere n-Werte und mehrere e3-Werte geplottet und
das Verhalten der Graphen im Fall a) und b) verglichen. Die Graphen diirfen
dabei nicht wesentlich voneinander abweichen.

Fiir n = 10MeV® ist im Fall b) bei e3 = 3, siche Abb. 5.3, im Vergleich zu
Fall a) ein viel steilerer Anstieg des Minimums erkennbar. Fiir < 10*MeV®
ist das Verhalten der Graphen in beiden Féllen etwa gleich. Das Verhalten
des Minimums wird nur gering durch den Term, der proportional zu a? ist
beeinflusst. Ein Wert von n < 10 MeV® ist damit nicht zu gro8.

Als néchstes werden €, und €; miteinbezogen. Diese Variablen werden als
Funktionen von ¢; und €3 ausgedriickt:

€2 = 146477 a-e +2048550 - a? -
- _ Lsen , .2, 2
€2 = —1024=27 -a” - e
0

Lse-
€y — 32%'&'634—2048%47]'@2'61'63.
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Aus dem Verlauf der Graphen in Abb. 5.4 ist erkennbar, dass der Einfluss
des zu a? proportionalen Terms in e, nicht grof ist. Die Graphen fiir den
Fall a) und den Fall b) weichen nur gering voneinander ab. Fiir den Fall a)
muss jetzt ebenfalls ein n-Wert angegeben werden, da diese Gréfle in €4 und
€5 enthalten ist und diese nicht mehr Null gesetzt werden.

Bei einem n-Wert von 7 = 10"*MeV?® ist der Einfluss des zu a? proportionalen
Terms in €, auf das Minimum nur gering. Das bedeutet, dass die Entwicklung
der Lagrangedichte bis NLO abgebrochen werden kann.

5.2.3 Einfluss der ¢4- und e5-Terme

In diesem Abschnitt wird der Einfluss der €4- und e5-Terme auf das Minimum
untersucht. Diese Terme sind proportional zu a oder a? und miissen deshalb
klein sein, damit eine Entwicklung bis NLO berechtigt ist. Dazu wird zuerst
das Minimum, fiir das ¢, = 0 und €5 = 0 gilt berechnet. Dieses wird mit dem
Minimum, fiir das €4 # 0 und €5 # 0 gilt verglichen:

e = —102458570 . g% . €3
0
€5 = 32%@-6;;—#2048%-@2-61-63.
0 0

Es wird erwartet, dass der Einfluss der €4- und e5-Terme bei grofleren Werten
von €3 zunimmt, da diese Terme proportional zu €3 bzw. €2 sind. Bei ¢; = 0
liefern diese Terme einen Beitrag, so dass sich an dieser Stelle der Wert des
Minimum verdndern miisste.

Diese Erwartungen werden mit den drei angefiihrten Abbildungen bestétigt.
Bei kleinen e3-Werten ist kaum ein Unterschied zwischen den Graphen er-
kennbar, sieche Abb. 5.5. Bei groflen e3-Werten ist der Unterschied deutlicher,
siehe Abb. 5.7. Zudem ist aus dieser Abbildung ablesbar, dass fiir ¢4, # 0 und
e5 # 0 das Minimum bei ¢; = 0 nicht durch den Ursprung geht. Die Linge
des Sprungs des Minimums bei ¢; = 0 wird kiirzer, sieche Abb. 5.6.
Insgesamt ist der Einfluss der e,- und es-Terme sehr gering, wird n = 10'*MeV®
gewahlt. Die Graphen weichen kaum voneinander ab. Insbesondere veréndert
die Beriicksichtigung der ¢4- und e5-Terme das Verhalten des Minimums nicht.
Der Sprung des Minimums bei ¢; = 0 wird weiterhin beobachtet, lediglich
die Lénge dieses Sprungs dndert sich geringfiigig. Weitere Diskussionen hierzu
folgen im néchsten Abschnitt.
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Abbildung 5.5:

64:0,65:0bei

Ohne e4 und e5 ‘ - - -
Mite4 und e5 -------

Vergleich des Minimums wug mit €4 # 0, €5 # 0 zu dem Minimum wug mit
€5 = 0,4, es wurde 1 = 10"®MeV® gesetzt

63:0,8

Ohne e4‘und e5 L I — —]
Mite4 und €5 ------- =

Abbildung 5.6: Vergleich des Minimums uo mit €4 # 0, €5 # 0 zu dem Minimum uo mit

€4 =0, e5 =0 bei

€5 = 0,8, es wurde 1 = 10"®MeV® gesetzt
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63:2

Ohne e4‘und e5
Mite4 und €5 -------

0
€1

Abbildung 5.7: Vergleich des Minimums uo mit €4 # 0, €5 # 0 zu dem Minimum uo mit
€4 =0, €5 =0 bel €3 = 2, es wurde 1 = 103 MeV* gesetzt

5.3 Stetigkeit des Minimums

Bei der Betrachtung des Graphen mit e3 < 1 féllt auf, dass es einen Sprung
der Graphen gibt, siehe Abb. 5.8. Dieser Phasensprung wird im Folgenden
néher untersucht. Dazu wird zuerst die Annahme gemacht, dass der Phasen-
sprung bei einem e;-Wert von €; = 0 liegt.

5.3.1 ohne ¢; und ¢;

Es werden zunéchst €4 und €5 gleich Null gesetzt. Die quartische Gleichung
lautet nun:

—esuy — 2e1eauy + (€5 — € — €3) uf + 2€e1€aup + € = 0. (5.12)

Wird €; = 0 gewéhlt, so gilt e = 1. Die Gleichung (5.12) vereinfacht sich
dann zu

—ug + (1 —eg) ui =0,

mit der Losung up+ = £4/1 — €2. Somit gibt es fiir 3 < 1 zwei Losungen
der quartischen Gleichung bei ¢; = 0. Dieses Ergebnis ist in den Graphen als
Sprung von ug zu erkennen, ug wechselt hier das Vorzeichen. Die Lénge des
Phasensprungs lasst sich theoretisch durch |ug 4+ — ug | berechnen.
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Abbildung 5.8: Verlauf von ug bei e3 = 0,6 mit ¢4 # 0 und €5 # 0, es wurde 1 =
103MeV® gesetzt

5.3.2 mit ¢, und e;

Werden ¢, und €5 in der Gleichung (5.8) nicht vernachléssigt, so lasst sich die
Losung der quartischen Gleichung fiir den Fall ¢; = 0 und somit die Lénge
des Phasensprungs nicht mehr in einer einfachen Formel angeben. Es werden
jetzt fiir einzelne n-Werte die Punkte dieser Phasenspriinge ohne ¢; und €5
mit den Punkten der Phasenspriingen mit ¢4 und €5 verglichen.

n = 10"MeV®
€3 theoretisch numerisch numerisch
(e4=0und e =0) | (4 =0und €5 =0) | (4 # 0 und €5 # 0)

0 +1 +1 +1

-1 -1 -1
0,2 +0, 980 +0,980 +0,979
—0,980 —0,980 —0,981
0,4 +0,917 +0,917 +0,912
—0,917 —0,917 —0,917
0,6 40,8 +0, 801 40, 784
-0,8 —0,801 —0,790
0,8 40,6 +0, 601 +0, 560
-0,6 —0,601 —0,584
1 +0 +0, 084 +0,209
-0 —0,084 —0,012
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n = 102MeV®
€3 theoretisch numerisch numerisch
(e4=0und e =0) | (e4=0und e5 =0) | (€4 # 0 und €5 # 0)
0 +1 +1 +1
-1 -1 -1
0,2 +0,980 +0,980 +0, 980
—0,980 —0,980 —0,980
0,4 +0,917 +0,917 40,914
—0,917 —0,917 —0,919
0,6 40,8 40, 801 40, 796
-0,8 —0,801 -0, 802
0,8 40,6 +0, 601 +0, 601
-0,6 —0,601 —0,581
1 +0 +0,084 +0,312
-0 —0,084 —0,011
n = 10"MeV*
€3 theoretisch numerisch numerisch
(e4=0und e5s =0) | (e4=0und e5 =0) | (e4 # 0 und €5 # 0)
0 +1 +1 +1
-1 -1 -1
0,2 +0, 980 40, 980 +0, 980
—0,980 —0,980 —0,980
0,4 +0,917 +0,917 40,914
—0,917 —0,917 —0,919
0,6 +0,8 +0, 801 +0,797
-0,8 —0,801 —0,804
0,8 40,6 +0, 601 40,610
—0,6 —0,601 —0,587
1 +0 40,084 40, 323
-0 —0,084 —0,011
n = 10""MeV®
€3 theoretisch numerisch numerisch
(e4=0und e5 =0) | (e4=0und e5 =0) | (e4 # 0 und €5 # 0)
0 +1 +1 +1
-1 -1 -1
0,2 +0,980 +0,980 +0,979
—0,980 —0,980 —0,981
0,4 +0,917 +0,917 +0,914
-0,917 —0,917 —0,919
0,6 +0,8 +0, 801 +0, 797
-0,8 —0,801 —0,804
0,8 40,6 +0, 601 40,610
-0,6 —0,601 —0,588
1 +0 +0,084 +0, 324
-0 —0,084 —0,011
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Bei den Werten aus den numerischen Rechnungen muss beachtet werden,
dass fiir diese nicht ¢; = 0 gilt, sondern ¢; = £2,5-107* ~ 0. Dieses ist
der kleinste Wert, fiir den keine numerischen Fehler auftreten. Das erklért
die Tatsache, dass die numerischen Werte ohne ¢4 und €5 teilweise von den
theoretisch berechneten Werten abweichen, insbesondere bei €3 = 1. Die Stei-
gung von ug im Bereich kleiner ¢;-Werte ist hier sehr grof}, die Werte &ndern
sich stark. Fiir e3 < 1 ist die Abweichung sehr gering und meist im Bereich
1073 bis 1072. Die Vernachlissigung der Grofien e, und €5 fithrt demnach
im Bereich des Phasensprungs nicht zu einer bedeutenden Verédnderung des
Minimums. Trotzdem stellt die Vernachlissigung der Gréflen €4 und €5 nur
eine Naherung dar und das Minimum ist nur unter Beriicksichtigung dieser
GroBlen bis NLO exakt.

Die Werte des Phasensprungs unterscheiden sich fiir die verschiedenen -
Werte kaum. Der Einfluss der Terme, in denen die Gréfle n vorkommt, ist
somit gering. 7 kommt nur in Verbindung mit der Grée a? vor. Somit sind
Terme die proportional zu a? sind klein. Dies bestétigt die Ergebnisse aus
Abschnitt 5.2.2 und Abschnitt 5.2.3. Im Rahmen des Weinberg’schen Power-
countings wurde die Lagrangedichte nach der Gitterkonstanten a entwickelt
und diese Entwicklung bei a? abgebrochen. Daraus resultiert die Lagran-
gedichte bis NLO. Die Giiltigkeit dieser Entwicklung ist in diesem Kapitel
bestétigt worden.

5.3.3 Lage des Phasensprungs

Bisher wurde die Annahme gemacht, dass der Sprung des Minimums bei
€1 = 0, bzw. ¢; = 0 zu beobachten ist. Dieser Wert ergibt sich aus Betrach-
tungen des Minimums ohne die €;- und e5-Terme [17]. Durch die Berticksichti-
gung dieser Terme verschiebt sich die Lage des Phasensprungs. Im vorherigen
Kapitel wurde gezeigt, dass der Einfluss der e4- und es-Terme sehr gering ist.
Die Lage des Phasensprungs kann sich daher durch diese Terme nicht stark
andern.

Der Algorithmus nach Ferrari liefert vier mogliche Losungen. Die physikali-
sche Losung wird durch das absolute Minimum bestimmt, d.h. das Minimum
mit dem das Potential den niedrigsten Wert annimmt. Damit lasst sich die
Lage des Sprungs des Minimums durch Vergleich bestimmen. Wichtig ist
zudem, dass das Minimum reelle Werte annimmt. Gibt es einen nicht ver-
schwindenden Imaginérteil handelt es sich nicht um die physikalische Losung.
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Die Potentialwerte werden fiir —0, 02 < ¢; < 0,02 in Schritten von ¢; = 0,001
bestimmt. Fiir e3 = 0, e3 = 0,2 und €3 = 0,4 ist mit diesen Werten keine
Abweichung der Lage des Phasensprungs zu erkennen. Bei €3 = 0,6 ist der
Sprung des Minimums bei ¢; = 0,007 beobachtbar und bei e3 = 0,8 bei
einem ¢e;-Wert von 0, 006.

Wie erwartet ist der Einfluss der e4- und es-Terme auf die Lage des Pha-
sensprungs nicht grofl. Nur fiir e5 = 0,6 und e3 = 0,8 gibt es minimale
Abweichungen, die zu vernachldssigen sind. Der Sprung des Minimums kann
damit bei einem €;-Wert von €¢; =~ 0 beobachtet werden.
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Kapitel 6

Vergleich der
Minimumsbestimmungen

Im letzten Kapitel wurde das Minimum des Potentials der Gasser-Leutwyler-
Lagrangedichte auf dem Gitter bis NLO bestimmt. Der Algorithmus nach
Ferrari erlaubte dabei eine Bestimmung ohne weitere Annahmen. In anderen
Arbeiten von Tobias Sudmann [22], [23], Peter Hofmann [24] und Luigi Scor-
zato [13] wurde ebenfalls das Minimum des Potentials der Gasser-Leutwyler-
Lagrangedichte bis NLO unter Zuhilfenahme bestimmter Annahmen berech-
net. In diesem Kapitel werden diese Ergebnisse mit dem nach Ferrari berech-
neten Minimum verglichen. In den genannten Arbeiten wurde das Minimum
in der physical basis bestimmt. Um die Ergebnisse vergleichen zu kénnen,
wird der Winkel w und die Masse my in Abhéingigkeit der in der twisted
basis benutzten Variablen ¢; und e3 berechnet. Hierbei werden die Beziehun-
gen fiir die twisted basis aus Abschnitt 4.2 benutzt. Der Winkel w ist der
Drehwinkel aus Abb. 6.1 und m,g ist proportional zum Betrag der gedrehten
Masse: 2Bymgo = |ni|. Damit ergibt sich:

w = arctan E—?/VOF2 (6.1)
€1~ Ghya
2 2\ 2
na WL 5
=64—— — . 6.2
RN \/(61 647a ) T (6.2)

Zur Berechnung der Werte fiir my und w wird ein Zahlenwert fiir die Groéfe
Wy benotigt.
In Gleichung (6.1) wird der Drehwinkel angegeben als Steigungswinkel des
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_XS A

=1

2Wha X0

Abbildung 6.1: Die gedrehte Masse in Abhiingigkeit der Gréfien xj und x4 fiir w < 7/2.

_Xg X
m
~
w
_a _
2Wha Xo

Abbildung 6.2: Die gedrehte Masse in Abhiingigkeit der GréBen xj und x4 fiir w > 7/2.

Vektors m. Dies ist richtig, solange w < 7/2 ist, sieche Abb. 6.1. Fiir w > 7/2
entspricht der Drehwinkel w nicht mehr dem Steigungswinkel «, siehe Abb.
6.2, « ist nun negativ. Der Drehwinkel wird fiir w > /2 berechnet durch:

€3
w = arctan W + . (63)
€1 64na

w nimmt dann den Wert 7/2 an, wenn das Argument des Arkustangens in
Gleichung (6.1) oder in Gleichung (6.3) den Wert ,00“ hat, also wenn der
Zahler gleich Null wird. Damit findet sich anhand der Gleichung (6.1) ein
kritischer Wert fir ¢;:

WoF2
€lc — .
’ 64na

(6.4)

Fir €, = € ist w = m/2 gegeben. Bei €; < € wird fiir den Drehwinkel
die Gleichung (6.3) verwendet und bei €; > €. die Gleichung (6.1). Der
Wert von € . ist positiv. Bei groflen positiven Werten von €; gilt damit die
Gleichung (6.1), der Zdhler des Arguments muss positiv sein. Bei groflen
negativen Werten von €, ist die Gleichung (6.3) zu benutzten, hier ist der
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Zéhler des Arguments negativ. Damit ldsst sich, unter Beachtung des in Ab-
schnitt 5.2.1 berechneten Giiltigkeitsbereich von €;, fiir die Grofle Wy eine
erste Abschétzung finden:

—10"MeV?3 < W, < 10"MeV?.

Um das Ergebnis von der physical basis in die twisted basis zu transformieren
muss zudem noch folgende Transformationsvorschrift beachtet werden:

U =c @3 Ue 3 (6.5)

U’ ist die Feldkonfigurationsmatrix in der twisted basis. U ist die Feldkonfi-
gurationsmatrix in der physical basis. w ist der oben angefiihrte Drehwinkel.
Mit Hilfe dieser Transformation wird die Drehung der Gittermatrix in der
physical basis auf die Massenmatrix iibertragen, so dass in der twisted basis
gerechnet wird.

Das Minimum wird nicht nur in NLO, sondern auch in LO verglichen. Bisher
wurde das Minimum immer in NLO betrachtet.

6.1 Minimum bis Leading Order

Das Potential aus Gleichung (4.10) vereinfacht sich in LO zu:

V= —C1Ug + C3U3

= —cug £ 34/ 1 — ud. (6.6)

Somit lautet das Minimum:

/ 2
€
Uog,LO = + m (67)

Fiir ¢ = 0 gibt es nur die Losung w0 = 0 fiir alle e3 > 0. Somit gibt es
hier keinen Sprung der Losung, siehe Abb. 6.3. Bei €5 = 0 gibt es die Losung
upo = £1. Hier existiert auch weiterhin der Sprung des Minimums, siehe
Abb. 5.2.

6.2 y-Niherung

In der Arbeit von L.Scorzato wurde das Minimum des Potentials unter der
Annahme, dass die Grofle
QBquO

Fg

X =
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63:0,6

0
€1

Abbildung 6.3: Verlauf von ug bei e3 = 0,6 in LO

klein ist, bestimmt. Allerdings darf x nicht zu klein werden. Es wurde die
Parametrisierung

U = cos(0)1 + itz sin(f) cos(¢) + ity sin(f) sin(¢)
verwendet. Im Minimum gilt ¢ = 0 und somit:
U = cos(6)1 + isin(6)7s.
Womit die Identifizierung

ug = cos (0 — w)

uz = sin (0 —w), (6.8)

unter Zuhilfenahme der Transformation (6.5) folgt. Zur Bestimmung des Mi-
nimums wird der Vakuum-Orientierungswinkel # in LO und in NLO ange-
geben. Da nur kleine y betrachtet werden, kann in dieser Grofle entwickelt
werden. Die Grofle x taucht allerdings erst in NLO auf, in LO wurde dem-
nach nicht entwickelt.

Der Vakuum-Orientierungswinkel 6 lautet in LO:

0 fir Hcos(w)+1>0
Oro =1+ 7w fiir fcos(w)+1<0 undsin(w) >0 (6.9)
—m fir fcos(w)+1<0 undsin(w) < 0.
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Dafiir werden die Abkiirzung

N W[)a
1 BquO
und .
Y AL O
necos(w) + 1
benutzt.

Mit Hilfe des Ansatzes Onpo = 0o + X - © und einer Entwicklung nach x
wird der Vakuum-Orientierungswinkel # in NLO berechnet:

~

X
V124 2cos (w)n + 1
[— sin (27) Lgg + sin (2w — 27)Wigh)” + sin (w — 27) We]]

Onto = 0o + 8

= 0o + 8x (772 + 2 cos(w)n + 1)_§ .
[Lss (7 sin(2w — 27) 4 2 sin(w — 27) — sin(27))

2w - n? 2.m .12
+ # sin(2w — 27) 4+ 1117/0277 sin(2w — 27)
2. w-h
v sin(w — 27)]. (6.10)

0

6.3 7n-Naherung

In den Arbeiten von T.Sudmann und P.Hofmann wurde das Minimum des
Potentials unter den Annahmen kleiner xy und 7 = (Wya)/(Bomy) < 1
bestimmt. Die Ergebnisse die in diesem Abschnitt angefiihrt werden, kénnen
durch Benutzung der Annahme 77 < 1 aus den Ergebnissen des Abschnittes
6.2 hergeleitet werden. Die 7-Néherung fiithrt bei numerischen Betrachtungen
zu der Schwierigkeit, dass die Quarkmasse nicht zu klein gewihlt werden darf.
Dies hétte zur Folge, dass die Gitterkonstante a ebenfalls sehr klein gewéhlt
werden miisste, was einen hohen Rechenaufwand bedeuten wiirde.

Fiir die Feldkonfigurationsmatrix wird die Parametrisierung

i ~

- TiT

b 1%
U=eF ,

mit ¢ = 1,...,3, verwendet. 7; sind die Pionenfelder im Minimum, hier gilt
7 = mo = 0. Die Orientierung des Minimums liegt in 73-Richtung. Folglich
kann die Feldkonfigurationsmatrix im Minimum auch geschrieben werden als:

U=eR™ = cos (;—2) 1-+i-sin <;—Z) Ts.
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Beim Vergleich dieser Parametrisierung mit der Parametrisierung aus Glei-
chung (4.8) und mit Hilfe der Transformation aus Gleichung (6.5) findet sich:

3
up = cos [ — — w
Fy

uz = sin (;—z - w) . (6.11)

In LO gilt fiir das Minimum die Gleichung [22]:

F FoWasi
Fapo = £2f0 _ FolWoasinw) (6.12)
X0 Bomyo

In NLO wird diese Gleichung erweitert zu:

F? F2
T3NLO = % {—0 — 16Lgg + 8Wss + fo (——0 +32Lgs — 24Wsg + 16W§6)}

0 LXo Xo X0
W()CL ) ( F()WO w ) .
=(1- cos(w) | - +32— ) -a-sin(w
< BquO ( ) BquO Fy ( )
na’
+ 64——— - cos(w) - sin(w). 6.13
P €O5() sin(o) (6.13)

6.4 Vergleich in Leading Order

Im Folgenden wird das Minimum, welches mit dem Algorithmus nach Ferrari
berechnet wurde mit ugp bezeichnet. ug sy wird fiir das Minimum verwendet,
welches mit Hilfe der 7-Naherung gefunden wurde. upgc kennzeichnet das
Minimum der y-N&herung.

Wy = 10°MeV?

Mit Gleichung (6.4) ergibt sich, dass €. = 0,002 ist. ugr, upsuy und uggc
sind fiir alle €; und fiir alle €3 identisch. Aus den Werten fiir Wy, n und w*
folgt:

W' =103 W =10""!

Wgﬁ =2 10_1 Wé() =2 103

*Siehe Anhang C
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Wy = 105MeV?

Als kritischer Wert fiir €; ergibt sich €; . = 0, 02. ug r, uosu und ug gc sind fiir
alle |€1] > €1 und fiir alle e3 identisch. Bei |e;| < €. zeigen sich minimalste
Abweichungen von uggsy zu ugp. Mit den Werten fiir Wy, n und w werden
die Groflen

W' = 10! W =102
Wese = 1,84 -1072 Wi =2+ 10!
berechnet.
W, = 10"MeV?

Aus der Gleichung (6.4) ergibt sich ;. = 0,23. uop und uggc sind fiir alle
le1] > €1 und fiir alle €5 identisch. ug gy zeigt im Bereich kleiner Werte fiir
€1 oder €3 sehr geringe Abweichungen zu ug r oder uggc von ca. 1%. Aus den
Werten fiir Wy, n und w folgt:

W' =10"! W =103
Wse = 3,6 - 1073 W8/6 =2-10"".

uor und ug gc sind unabhéngig vom Wy-Wert fiir alle €; und fiir alle €3 iden-
tisch, da, wie schon in Abschnitt 6.2 dargestellt wurde, die x-N&herung erst
bei NLO benutzt wurde.

up,su zeigt im Bereich kleiner €;-Werte nur minimale Abweichungen zu wug .
Fiir Bereiche grofier e;-Werte ist ug sy identisch mit ug p.

Kleinere Werte fiir W, als Wy = 10°MeV? wurden nicht betrachtet, da be-
reits bei Wy = 10°MeV? die Werte fiir Wy und Wi im Verhéltnis zu Lgg
sehr grof§ sind. Es ist anzunehmen, dass die Werte fiir Wgg und WY nicht
viel grofler sind als Lgg.

6.5 Vergleich in Next To Leading Order

Fiir die Minima wuo gy und upgc wurde die x-Ndherung verwendet. Dabei
werden kleine Werte der Grofle x und damit der Masse my angenommen.
Allerdings diirfen diese Werte auch nicht zu klein werden. In NLO wird der
Giiltigkeitsbereich der Ndherungen untersucht. Dazu werden tabellarisch fiir
jeden Wy-Wert die x- und 7-Werte angegeben. Wird der 7-Wert zu grof3,
weicht das Minimum u gy vom Minimum wug gc ab.
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Abbildung 6.4: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 0,2 und Wy =
10°MeV?
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Abbildung 6.5: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 0,6 und Wy =
10°MeV?
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63:3

Abbildung 6.6: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 3 und Wy =

10°MeV?
W, = 10°MeV?
€3 61:0 61:0,5 61:1 6122
0 0,01 1 3,0 0,005 6,0 0,002 12,0 0,001
0,2 1,2 0,01 3,2 0,004 6,1 0,002 12,0 0,001
0,4 2,4 0,006 3,8 0,004 6,4 0,002 12,2 0,001
0,6 3,6 0,004 4,7 0,003 7,0 0,002 12,5 0,001
0,8 4,8 0,003 5,7 0,002 7,7 0,002 12,9 0,001
1 6,0 0,002 6,7 0,002 85 0,002 13,4 0,001
2 12,0 0,001 12,4 0,001 13,4 0,001 17,0 0,0008
3 18,0 0,0008 18,2 0,0008 19,0 0,0007 21,6 0,0006

up,su und up gc stimmen fiir alle €; und e iiberein, weichen aber von ugr ab.
Es fallt besonders auf, dass up sy und uggc fiir €3 < 1 keinen Phasensprung
aufweisen, sondern durch den Ursprung gehen und sich anschliefend ug
annédhern, siehe Abb. 6.5. Bei €3 = 0, 2 tritt noch die Besonderheit auf, dass
up,su und upgc im Bereich kleiner €;-Werte zuerst steigen, danach fallen und
sich schliefflich uyr anndhern. Je gréfler e3 wird, desto besser stimmt auch
das qualitative Verhalten der Minima bei kleinen Werten fiir €; {iberein. Fiir
Werte €3 > 1 weisen die Minima im Bereich €; ~ 1 einen Schnittpunkt auf,
im weiteren Verlauf wird die Differenz der Minima wieder grofler, siche Abb.

6.6.

Bei €3 = 0 sind alle Minima identisch.
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Die maximale Differenz der Minima ist bei ¢; = €. und €3 = 0,2 mit 90%
feststellbar. Minimal gibt es eine Abweichung von 2 - 1072% bei ¢; = 2 und
ez = 0,2. Fiir ¢ > 0,5 liegen die Abweichungen im Bereich von 6% bis
2-1072%.

Die Werte von x wachsen fiir steigendes ¢; und e3. Der minimale Wert von
x = 0,01 liegt bei ¢, = 0 und €3 = 0, der maximale Wert von x = 21,6 bei
€1 = 2 und e3 = 3. Die 7-Werte dagegen werden fiir steigende €; und e3-Werte
kleiner. Maximal wird ein 7-Wert von 1 bei ¢; = 0 und €3 = 0 beobachtet und
minimal ein Wert von 6-107* bei ¢; = 2 und €3 = 3. ugy und ugc weichen fiir
€3 < 1 ab einem Wert von €; = 1 hochstens um 5% von up ab. Die Differenz
der Minima ist hier sehr gering. Fiir €3 > 1 ist die Differenz dieser Minima
im gesamten Giiltigkeitsbereich von €; sehr gering.

Fiir x bietet sich damit ein Giiltigkeitsbereich von 6,0 < y < 21,6 an. Da
die Minima up sy und uggc nicht voneinander abweichen, liegen Werte von
7 < 0,01 im Giiltigkeitsbereich der 7-Ndherung.

Wy = 105MeV?

Fiir wp sy und ug gc ist nur ein minimaler Unterschied zwischen dem Verhalten
bei Wy = 10°MeV? und bei Wy, = 10°MeV? auszumachen, siche Abb. 6.7. Bei
groBen Werten fiir ¢; unterscheiden sich die beiden Minima nur um ca. 0, 2%
oder weniger. Im Bereich kleiner e;-Werte ist die Abweichung der Minima
teilweise grofler, aber trotzdem so klein, dass sie vernachléssigt werden kann.
Die Differenz von uggy und wpsc zu upr hat sich fir Wy = 10°MeV? im
Vergleich zu W, = 10°MeV?® kaum verdndert. Fiir groBe ¢; und es-Werte
ist das Verhalten gleich geblieben. Fiir kleine €; und e3-Werte hat sich die
Abweichung von wupgc zu ugp verringert, wihrend sie fiir uy gy etwa gleich
geblieben ist.

Das Verhalten bei €5 = 0 ist bei allen drei Minima identisch.

Die x-Werte weisen nur minimale Unterschiede zu den y-Werten bei W, =
10°MeV? auf. Der Giiltigkeitsbereich dieser Niherung bleibt damit bei 6,0 <
x < 21,6.

Die 7-Werte sind um den Faktor 10 grofler geworden. Die Abweichungen der
Minima ug gu und ug gc sind so gering, dass sie vernachléssigt werden kénnen.
Der Giiltigkeitsbereich der n-Ndherung kann deshalb auf n < 0,1 erweitert
werden.
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Abbildung 6.7: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 0,6 und Wy =
10°MeV?

€3 61—0 61:075 6121 61:2
X 7 X 7 X i X 7
0 0,17 1 2,9 0,05 5,9 0,02 11,9 0,01
0,2 L2 01 3,1 0,04 6,0 0,02 11,9 0,01
0,4 2,4 0,06 3,7 0,04 6,3 0,02 12,1 0,01
0,6 3,6 0,04 4,6 0,03 6,9 0,02 12,4 0,01
0,8 4,8 0,03 56 0,02 7,6 0,02 12,8 0,01
1 6,0 0,02 6,6 0,02 8,4 0,02 13,3 0,01
2 12,0 0,01 12,3 0,01 13,4 0,01 16,9 0,008
3 18,0 0,008 18,2 0,008 18,9 0,007 21,6 0,006
Wy = 10"MeV?
€3 61—0 6120,5 61—1 61—2
X 7] X 7 X 7 X 7
0 1,4 1 1,6 0,8 4,6 0,3 10,6 0,1
0,2 1,8 0,6 2,0 0,7 4,8 0,3 10,7 0,1
0,4 2,8 0,5 2,9 0,5 52 0,3 10,9 0,1
0,6 3,9 0,4 4,0 0,3 59 0,2 11,2 0,1
0,8 50 0,3 51 0,3 6,7 0,2 11,7 0,1
1 6,2 0,2 6,2 0,2 7.6 0,2 12,2 0,1
2 12,1 0,1 12,0 0,1 12,9 0,1 16,0 0,09
3 18,0 0,08 18,1 0,08 18,6 0,07 20,9 0,07

Im Fall Wy, = 10"MeV? vergroBert sich die Abweichung von Uo,sU ZU Up.SC,
sieche Abb. 6.8, 6.9, 6.10. Besonders auffillig ist dies im Bereich kleiner ¢;-
Werte fiir e5 < 1. Fiir grofle ¢;-Werte und €3 > 1 ist die Abweichung ebenfalls
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Abbildung 6.8: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 0,6 und Wy =
10"MeV?

Abbildung 6.9: Vergleich der Minima wug r, ug sy und ugsc bei e3 = 1 und Wy =
10"MeV?
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€3 = 3
08 \

0
€1

Abbildung 6.10: Vergleich der Minima uo r, upsu und ugsc bei €3 = 3 und Wy =
10"MeV?

grofler, liegt aber im Bereich von 0,06% bis 1% und kann deshalb vernach-
ldssigt werden.

Beim Vergleich von ug sy und uggc mit uop sind die Abweichungen im Be-
reich grofler ¢;-Werte etwa gleich geblieben. Sie liegen dort im Bereich von
0,1% bis 4%. Fiir 1 = €; . ist die Abweichung kleiner als bei den vorherigen
Féllen.

Das Verhalten bei €3 = 0 ist bei allen drei Minima identisch.

Die y-Werte sind kleiner als zuvor. Der maximale Wert ist nun y = 20,9.
Allerdings kann erst bei groBleren y-Werten als x = 6 die Abweichung der
Minima vernachléssigt werden. Der Giiltigkeitsbereich der x-Naherung wird
damit erweitert zu 7,0 < x < 20,9.

Die /-Werte sind um den Faktor 10 gegeniiber den 7-Werte bei W, = 105MeV?®
angewachsen. Im Bereich kleiner €;- und e3-Werte ist die Giiltigkeit der 7-
Néherung nicht mehr gegeben. Der Giiltigkeitsbereich verdndert sich nicht
deutlich: n <0, 2.

In LO ist nur up gy gendhert, uysc und ug p sind ohne Néherungen berechnet
worden. Die Abweichung von ug gy zu upsc und ugp aufgrund der Néherung
ist sehr gering.

In NLO sind die Abweichungen von v gy und uggc zu ugp grofer geworden.
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€3 4

Abbildung 6.11: Der Giiltigkeitsbereich der y-Niherung fiir Wy = 10"MeV?® liegt au-
Berhalb des Kreises, fiir den y = 7 gilt.

up,sc ist in NLO nicht mehr exakt, sondern genéhert. Besonders das Verhalten
der Minima fiir €5 < 1 und kleinen €;-Werten kann nicht mit uo gy und uosc
beschrieben werden. Beide Losungen weisen keinen Phasensprung auf. Fiir
grofle €;- und e3-Werte stellen ug gy und wpgc eine gute Naherung dar.

Das Verhalten bei €3 = 0 ist bei allen drei Minima fiir alle Werte von W
identisch. Fiir e3 = 0 ist w = 0 fiir alle ¢;. Dies ist der nicht gedrehte Fall mit
X3 = p3 = 0.

Die Minima der x- und der 7-Ndherung basieren beide auf der Annahme,
dass die Grofe y zwar klein ist, aber dennoch nicht zu klein. Es gibt also eine
untere Grenze fiir y, bis zu der die y- und die 7-Ndherungen das Verhalten
des Minimums beschreiben. Der Giiltigkeitsbereich der Gréfle x ist fiir die
verschiedenen Wy-Werte etwa gleich und kann zu

7,0 <x <216

gewéhlt werden, siehe Abb. 6.11. In diesem Bereich stellen ug sy und uogc
eine sinnvolle Ndherung dar. Mit diesem Giiltigkeitsbereich der Grofie y kann
der Phasensprung des Minimums nicht beschrieben werden.
Der Giiltigkeitsbereich der n-Nédherung wird durch die Abweichung der Mini-
ma up sy und ug sc festgelegt. Die beiden Minima kénnen als gleich angesehen
werden, solange

7 <0,2

1st.



Kapitel 7

Massenbestimmung

Zur Bestimmung der Masse der Pionen wird die Lagrangedichte (4.4) bis
NLO betrachtet. Dabei sind sowohl Terme aus dem Potential als auch Terme
aus dem kinetischen Teil der Lagrangedichte relevant. Im Potential sind die
Treelevel-Terme enthalten. Zudem miissen noch Schleifenterme beriicksich-
tigt werden. Die Schleifenterme, oder loop-Terme, beriicksichtigen die Selbst-
wechselwirkung der Felder. Diese Selbstwechselwirkung beeinflusst die Masse
des Pions. Zur Berechnung der Schleifenbeitrége sind sowohl Terme im Po-
tential, als auch im kinetischen Teil der Lagrangedichte zu benutzten. Nach
Gleichung (2.19) haben Einschleifenterme bereits D = 4, d.h. sie sind NLO.
Terme mit mehr als einer Schleife miissen demnach nicht mitberiicksichtigt
werden, da sie bereits NNLO (next to next to leading order) oder hoherer
Ordnung sind.

7.1 Treelevelmassen

Wie in Abschnitt 2.3.1 dargestellt, ist die Masse in dem Term enthalten,
welcher quadratisch im Feld ist. Folglich muss das Potential zwei mal nach
dem Pionfeld abgeleitet werden:

(7.1)

: Z : Z :
m._ X m_ X
™ Uy 2
p p 8’7 i

TTMin

Um die Masse der Pionen 7y, my oder 73 zu finden wird nach dem entspre-
chendem Feld abgeleitet. Mit Hilfe der Ableitungs-Kettenregel ergibt sich
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eine Schreibweise, welche von den Grofien ug, . . ., us abhéingt:

82‘/ 82‘/ (9u0 oV (92u0 (92V 8’&1 oV 82U1

07 | Omidug Oms | Dug 02 | Omdus Oms | 0wy 02
82V 8u2 oV (92’&2 62‘/ 8U3 ov 82'&3
+ + 2 + 5

Om;0ug Om;  Oug OT; Om;Oug Om; ~ Oug OT;

(7.2)

In Abschnitt 6.3 ist eine Parametrisierung angefiihrt, welche die Pionfelder
direkt enthélt. Beim Vergleich dieser Parametrisierungen, ergeben sich fol-
gende Relationen:

u; = T gin

7
™

Fy arcsin( 1—u

oN
N—"

T, = i
' \/u%+u§+u§ !

Hierbei wird die Abkiirzung |7| = \/7? + 73 + 75 =: P verwendet. Der Zihl-
index 7 lauft von 1 bis 3. Damit lassen sich die Ableitungen aus Gleichung
(7.2) berechnen.

7.1.1 Treelevel in Leading Order

Zur Massenbestimmung muss fiir die Groéflen uyg, . . . , ug der Wert im Minimum
angegeben werden. Die Gréflen u; und us verschwinden im Minimum, siehe
Kapitel 4. Das Potential in LO ist linear abhéngig von den Variablen ug und
us. Die Variablen u; und us treten aufgrund der Spureigenschaften der Pauli-
Matrizen* nicht auf.

Damit vereinfacht sich Gleichung (7.2) fiir die Masse der drei Pionen zu:

2 2 2

87@-2 TMin 6u0 aﬂ'? Gug 871'12 ’

Fiir uy und ug ergibt sich aus Gleichung (6.7) die Bedingung im Minimum.
Die Ableitungen zur Berechnung der Massen der drei Pionen lauten
Cius C3Uus C3Ug

V"o = — + (7.5)

F07T3 7'('% F07T3

*Siehe Anhang A
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und

C1Ug C3U3
V= —r — ==, (7.6)
L

Die Konstanten ¢; bis ¢5 sind in Abschnitt 4.2 aufgelistet.

Der inverse Propagator hat die Gestalt:
G (p) = ki (P*+m2).

Zur Renormierung der Massen miissen die einzelnen Konstanten k; bestimmt
werden, so dass gilt:

\VP
2 _ Vi
urs kz :
Zur Bestimmung der Renormierungskonstanten der Massen wird der kineti-
schen Teil der Lagrangedichte T betrachtet:

m

1
Lio= 51@- [(0,m:)% + m2 7] + WW-Terme = T + V + WW-Terme. (7.7)

Die Konstanten werden mit Hilfe der Relation
0*T
ki=——s (7.8)
0 (0,m;)
berechnet. Der kinetische Teil in LO der betrachteten Lagrangedichte lautet:

2
T = % (0,U8,U").

Nach Einsetzen der Parametrisierung ergibt sich eine Gleichung zur Berech-
nung der einzelnen Konstanten k;:

9 o [ Wi ™ T 2 o (Wi o ToT; 2
biso =i + B (10 = pea+ o)+ B (0 = Pt o)
o (Wi T3 T3 \?

Fiir alle Felder wird jeweils der Wert im Minimum benutzt. Damit ergibt sich

. U; us .
73 = P = Fyarcsin (u3) und = == V.
T T3

Fiir die Masse m,, , wird die Konstante
2
us

ki =

arcsin?(us)
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und fiir die Masse m,, die Konstante
ks =1
verwendet. Damit lautet die renormierte Masse:

128na?
mfrl = mfm = m,2r3 = FZ (€1up — €3uz) . (7.10)
0

Die Masse my, , ist identisch mit der Masse m,,. Die Renormierung hebt
das Massensplitting auf. ug bzw. ugz ist das Minimum des Potentials bis LO.
Werden fiir diese Grolen die Ergebnisse aus Abschnitt 6.1 eingesetzt, ergibt
sich fiir die Massen:

) _ 128na?
v F()2

= 2Boy/my? + p2. (7.11)

Die Treelevelmasse in LO ist damit proportional zu \/mf]Q + 2.

m

€2+ €3

7.1.2 Vergleich der Massen in Leading Order

In Kapitel 6 wurde das Minimum nach Ferrari mit Minima verglichen, welche
auf andere Weise berechnet wurden. Zur Berechnung der Masse wird das Mi-
nimum benoétigt. Somit ergeben verschiedene Minima verschiedene Massen.
Die Auswirkung einer Nédherung des Minimums auf die Masse bis LO wird
in diesem Abschnitt betrachtet. In den Arbeiten von T.Sudmann [22] und
P.Hofmann [24] wurde die 7-Naherung zur Bestimmung des Minimums und
auch zur Bestimmung der Masse benutzt. In diesen Arbeiten wird ebenfalls in
LO kein Massensplitting beobachtet. Die Gleichung fiir die exakt bestimmte

Masse [22]
m2 = (xo + po) cos (;—z) + p3 sin (%) :

mit 73 = 73 min, hat dieselbe Struktur wie die in Abschnitt 7.1.1 dargestellte
Gleichung fiir die Masse (7.10). Die 7-Ndherung fiir diese Gleichung lautet:

2
P
my, = (X0 + po) + 5> (7.12)
X0
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Wy = 10°MeV?

Der Index ,,g“ verdeutlicht, dass es sich um die gendherte Masse aus Glei-
chung (7.12) handelt. Fiir die Masse my und den Winkel w werden die
Gleichungen (6.1), (6.3) und (6.2) benutzt. Aus diesen Formeln folgt eine
Wo-Abhiéingigkeit der Massen m2 . Die Massen m2 _ sind nicht direkt

71,2,3,g T1,2,3 N

abhéngig von Wy. Diese Grofle kommt nur als Produkt mit W, W’ oder W
f.
vor':

W'WO = w
wewg =
W'WO = U~J

Der Wert von w, n und w ist konstant, lediglich die Faktoren kénnen vari-
ieren. Daher sind die Massen mfrl ,, bei festen Werten fiir ¢; und €3 fiir alle
Wo-Werte gleich.

Die Massen m?2 unterscheiden sich im Rahmen der Rechengenauigkeit

T1,2,3

nicht von m2 . , fur alle €.

Wy = 105MeV?3

Im Bereich |e;| < 0,4 werden fiir €3 = 0,2 minimale Abweichungen von ca.
0, 1% beobachtet. Die gendherte Masse ist dabei grofier als die exakte Masse.

Wy = 10"MeV?

Im Bereich |e;| < 1 fiir e3-Werte von €3 = 0,2 bis €3 = 0,8 gibt es nur kleine
Abweichungen. Fiir e3 = 0, 2 sind diese Abweichungen mit maximal ca. 11%
recht grof3, werden fiir 3 = 0, 8 mit maximal ca. 0, 2% aber sehr klein. Ebenso
wie fiir den Fall W, = 10°MeV?, ist auch hier die geniiherte Masse groBer als
die exakte Masse.

7.1.3 Treelevel in Next To Leading Order

Das Potential in NLO besitzt auch Terme, welche nichtlinear in den Va-
riablen sind. Daher miissen zusétzliche Terme zur Berechnung der Massen
beriicksichtigt werden:

82V 82‘/ 8u0 oV (92160 82‘/ 8u3 oV 82’&3

Or? | mun  OmOug Om; | Oug O Omdus Om; | Oug On?

)

(7.13)

fSiehe Anhang C
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Fiir die einzelnen Massen ergibt sich damit

Ci1us3 CollpUs3 C3Ug C3Us C4U3UQ
1
V 1,2 — - 2 —|— - 2 —|— 2
F07T3 F07T3 F07T3 3 F(]’YTg
2 2 2
CqU CrUoU3 CsU CsU
e (7.14)
3 3 F07T3 F()7T3
und
V' =— (cluo + 2cou3 — 2couf — c3uz + 2cqun — 2c4u3 — 4c5u0u3) . (7.15)

g
Die Konstanten c¢; bis ¢5 sind in Abschnitt 4.2 aufgelistet. Fiir ug, bzw. ug =
+4/1 — w3, muss der Minimumswert bis NLO eingesetzt werden. Die GroBe ug
im Minimum wurde in Kapitel 5 mit dem Algorithmus nach Ferrari berechnet.

Um die Massen bis NLO zu renormieren, wird das gleiche Verfahren wie im
Abschnitt 7.1.1 verwendet. Der kinetische Teil bis NLO lautet:

F02 ¥ 1 2 f 2 + 2
T ==L (0,U0,U%) = Li (9,U0,U")" = Ly (9,U0,U)" = Ly ((9,U0,U")°)

+ Ly (8, U0,UN) (x'U + UTx) + Wy (0,U8,U") (p'U + U'p)

+ Ls (8,U0,U" (x'U + U'x)) + W5 (9,U9,U" (p'U + U'p)).  (7.16)

Dabei muss beachtet werden, dass nun nach zweimaligem Ableiten auch Ter-
me auftauchen, welche noch von 9,m; abhéngig sind:

o*T
e e k‘z + CLa/ﬂTZ' + b(@umf + ...
3 (@ﬂri)
Diese stammen von Wechselwirkungstermen und werden somit zur Bestim-
mung der Konstanten k; nicht benutzt. Die Gleichung zur Bestimmung der
k; lautet nun:

8 .
kz’,NLO = ki,LO (1 -+ ﬁ (L54 (X6U0 -+ X3U3) —+ 2Wp0u0>> . (717)
0
Hierbei werden die Gleichung (4.9) und die Relation?
~ 1
W = 3 (Wss — Lsa)

verwendet.
Fiir samtliche Felder ist der Wert im Minimum zu nehmen. Damit ergibt sich
fir die Massen m,, , die Renormierungskonstante

u3

8 ~
k’l’g = —F—— <1 + ﬁ <L54 (XB’U/O + X3U3) + 2Wp0U(])> ,
0

arcsin®(us)

iSiehe Anhang C
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und fiir die Masse m,, die Renormierungskonstante

8 .
ks =1+ 72 <L54 (Xouo + x3us3) + 2WP0uo> :

Die renormierten NLO Treelevelmassen lauten dann

I -1
m2 = (Fo2 + 1024 5;;?7 (equp — €3uz) + 16Wp0u0>

T2
0
3217@2 [4 <€1U3 + e3ug — e3u3 )
arcsin (u3)
L 2¢2 w

+ <8192 h 18— L )uouS

0
L gats 128L8LGQQ+W 2 oz

F? F? po O™ arcsin (us)
L 2.2 :

48192 8677;463U3 ( '163 B Uo) ] ar081r12(u3) (7.18)

h arcsin (us) u3

und

I i ~1
m2 (F2 + 1024 5;77 (equg — €3ug) + 16Wp0u0)

0
Lgena’eres — Wpoes
b2 + 2
0 0

32na’ [4 (€1ug — €gug) — 256ugus <128

L e W
— (u2 —ud) <8192 el ]gil %) |08 - +4) ] (7.19)
0 0

In LO wird fiir die renormierten Massen kein Massensplitting beobachtet.
In NLO ist ein Massensplitting fiir die renormierten Massen vorhanden. Fiir
€3 = 0 sind die Massen aller drei Pionen gleich und fiir e5 > 0 gilt:

mmz>m

Fiir das Feld uz muss die Relation uz = +1/1 — u eingesetzt werden. Die
Masse ist abhéngig vom Vorzeichen dieser Wurzel, anders als das Minimum.
Um das richtige Vorzeichen zu erhalten, wird das Potential betrachtet und
die Lage des Minimums mit den Ergebnissen aus Kapitel 5 verglichen. Die
Minima des Potentials fiir uz3 = ++/1 — u? liegen immer bei vy = +1. Wird

—/1 — u? gesetzt haben die Minima die gleiche Lage wie die in Kapitel
5 ermittelten Minima. Es muss demnach

uz = —y/1—ud

eingesetzt werden.
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R

Selbstenergie-Diagramm Tadpole-Diagramm

Abbildung 7.1: 3-Vertices

Abbildung 7.2: 4-Vertex

Fiir die Renormierungskonstante k; = (1 + ), wobei z eine Funktion der
LEC ist, kann auch die Ndherung k; ! = 1 — 2 eingesetzt werden. Terme der
Ordnung 2 haben die Ordnung NNLO und miissen somit nicht beriicksich-
tigt werden. Die Massen mfmm werden dadurch kleiner, was den Abstand

zu den Massen m2, ,s, Verdndert. Die Abstdnde werden fiir alle Wo-Werte

groBer, aufler fiir die Masse m,2,3 bei €5 = 2 und €3 = 3.

7.2 Schleifenrechnung

Um die genaue Masse der Pionen bis NLO zu bekommen, miissen noch die
Schleifenterme beriicksichtigt werden. Mogliche Schleifenterme kénnen einen
3-Vertex oder 4-Vertex beinhalten.

Zu den Schleifendiagrammen mit 3-Vertex zéhlen das Tadpole- und das Selbst-
energie-Diagramm, siche Abb. 7.1. Beide tragen zur Selbstenergie bei. In NLO
gibt es nur ein Schleifendiagramm mit 4-Vertex, Abb. 7.2.

In [22] wurde bereits gezeigt, dass eine symmetrisierte Parametrisierung der
Feldkonfigurationsmatrix in der Schleifenrechnung vorteilhaft ist. Aufgrund
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75

=l p=p;=-p
=k k=p;=-pg
p il p

Abbildung 7.3: 4-Vertex mit Indices

dessen wird hier sofort diese Parametrisierung verwendet, in der die Diagram-
me mit 3-Vertex verschwinden und nur noch das Diagramm mit 4-Vertex

iibrig bleibt.

In der symmetrisierten Parametrisierung hat die Feldkonfigurationsmatrix

folgende Gestalt:

U =exp [2F0 mn} exp {Fo mn} exp [2F071T1:| )

Die Grofle 7; ist eine Funktion der Pionfelder im Minimum, 7;, und der

Pionfelder ;.

In dieser Parametrisierung lautet die Wechselwirkungs-Lagrangedichte:

1 2o 2\ 2 2 (4 2\2 my 2
Lww =52 (7”9“”) ald ( “”) - 24F02‘7T’ '

Diese Lagrangedichte wird nun vollsténdig symmetrisiert [22]

1 n
Lww = ] U(H)Vig‘k%ﬂjﬂm
mit .
Vé;ﬁl = —5 0i0m (pi + ;) (pr + 1)
+0ixbj1 (pi + i) (05 + 1)
+0adjk (pi + 1) (0 + Pr)],
2
V;gk)z = —2 0i0u (pipj + pa21)
+0i051 (Pivk + 1)
+040,1 (Pip1 + DjPk)]
und
V;ﬁ)l = 3 [040m + Oiwdj + 6udjn] -

(7.20)

(7.21)

Die Indizes werden nun dem Diagramm aus Abb. 7.3 zugeordnet. Aufgrund
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der vollstéandigen Parametrisierung lasst sich nun der 4-Vertex einfach berech-
nen. Da die Selbstwechselwirkung keinen Einfluss auf die Art des Teilchens
hat, muss ¢§;; gelten. Zudem muss das Teilchen in der Schleife immer dasselbe
Teilchen sein, woraus d;; folgt. Der 4-Vertex ist damit durch

5mg + 4p® + 4k?)

n n ]'
Vi oV it = o

n

gegeben. Dieser wird zur Berechnung der Selbstenergie benutzt:

Z / k2—|—m

Die Masse m3 entspricht der renormierten Treelevelmasse bis LO. Durch den
Symmetriefaktor 1/2 werden Vertauschungen der inneren Linien beriicksich-
tigt. Zur Berechnung des Integrals wird dieses in zwei Integrale aufgeteilt,
welche mit Hilfe der dimensionellen Regularisierung [25] renormiert werden:

) 1 d*k m2 + 4p? 4 d*k m2 + k?
5,07 - ! |
4 6F5 J (2m)" k% +mj 6F5 J (2m)" m§ + k2
Nach der dimensionellen Regularisierung verschwindet das zweite Integral,
so dass nur noch das erste Integral betrachtet werden muss:

1 d*k m2 + 4p? 2 1 Ap?
2/ 4m0+p2:m0+2p](m(2))'

Das Integral I (m?2) wird nun von 4 Dimensionen zu d Dimensionen fortge-
setzt:

d’% 1

(2m)* k2 +mg

T(m2) — z(mg,A2,d):A4d/

Die Renormierungsskala A hat die Dimension einer Masse und wurde einge-
fithrt, damit sich die Dimension des Propagators nicht verandert. Das Integral
I (m2,A? d) ist in [25] berechnet worden:

m2 [ 4mA2\ 272 d
g =i () T(-3)

Die Gammafunktion I" hat bei d = 4 einen Pol, deshalb wird nun die Grofle
€ = 4 — d eingefithrt und die Gammafunktion nach kleinen e entwickelt:

r(§—1)=—§—1+7+0(6>.



7.2 Schleifenrechnung 77

Hierbei ist v die Euler-Mascheroni-Konstante, welche den Wert v = 0,577
hat. Mit Hilfe der Entwicklung a® = 1+4¢ln a und der divergenten Konstanten
R = —2 -1+~ —1In(4n) ergibt sich schlieBlich fiir die Selbstenergie der
Ausdruck:

>, ) = mi;ofp : (ZT%)Q [R +n (T—;%)} | (7.22)

Die renormierte Treelevelmasse mg in LO wird jetzt umbenannt in m,. Damit
ergeben sich fiir die Schleifenanteile

m; 1 m m?2
——— TrlRpim(iz
2 e 24r2F7 4 { * n(A?)]

U 1 2 mfr
2= 2um2 2" {RJF h (F)] '
Die Masse der Pionen bis NLO einschlielich der Schleifenterme lautet dem-
nach: [22]

3

und

MZ=NZ4+Y - mfrz: (7.23)

Hierbei ist M2 die renormierte Treelevelmasse bis NLO und m? die renor-
mierte Treelevelmasse bis LO.

7.2.1 Renormierung

Die Masse M? enthilt die divergente Konstante R und muss daher noch re-
normiert werden. Die Divergenzen aus den Schleifenbeitrdgen werden gerade
durch die Divergenzen der Treelevelbeitrage aufgehoben.

Dazu werden die LEC durch deren renormierte Gréfle plus ein Vielfaches der
Konstanten R ersetzt. Dadurch verschwindet die Divergenz R und die Masse
ist renormiert. Die Hintergrundfeld-Methode [26], [27] bietet eine Moglichkeit
die LEC X zu renormieren:

Vi
X, =X} ) .24
‘ it 327?2R (7.24)

Die einzelnen Werte der ~; fiir die verschiedenen LEC X sind im Anhang C
angegeben.

Um die renormierte Masse zu erhalten, werden nun sédmtliche LEC in den
Schleifenbeitrigen, in den Treelevelbeitrdgen bis NLO und bis LO durch
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deren renormierte Grofle X' ersetzt und die divergente Konstante R weg-
gelassen. Damit lautet die renormierte Masse M2:

4 2
2 _ g2 M (M=
M2 = M? 327T2F021n(/\)' (7.25)

Fiir die Treelevelmassen bis NLO, bzw. LO werden jeweils die renormierten
Massen eingesetzt. Fiir die renormierte Treelevelmasse bis LO m, wird das
Minimum bis LO aus Abschnitt 6.1 und fiir die renormierte Treelevelmasse
M, bis NLO das Minimum bis NLO aus Kapitel 5 benutzt.

Werden nur die Treelevelbeitrige betrachtet und die Schleifenbeitrige ver-
nachléssigt, sind die LEC unrenormiert. Da aber bekannt ist, dass die Schlei-
fenbeitrage diese Divergenzen aufheben, werden in diesem Fall die LEC als
renormiert angesehen.

7.2.2 Grofle der Schleifenbeitrige

In diesem Abschnitt wird untersucht, welchen Einfluss die Schleifenbeitrige
auf die Massen haben. Dabei sollten die Massen nur gering grofler werden.
Fiir e3 < 1 weichen die Massen mit den Schleifenbeitragen mg und die reinen
Treelevelmassen mt kaum voneinander ab, sieche Abb. 7.4. Bei kleinen ¢;-
und e3-Werten ist der Abstand A,, = mg — mr = 0. Bei gréfleren Werten
nimmt A, zu und betrigt bei ¢; = 2 etwa 8%.

Bei €3 > 1 nimmt der Einfluss der Schleifenbeitrage zu und A,, vergroflert
sich. Fiir wachsendes €; dndert sich der Betrag von A,, nicht , siehe Abb.
7.5. Ay, wird bei e3 = 3 fiir die Masse M2, mit etwa 15% maximal.

7.2.3 Vergleich der Massen

Im letzten Abschnitt wurde die GroBe der Schleifenbeitréage im Vergleich zur
Treelevelmasse bis NLO untersucht. Die Schleifenbeitrige tragen demnach
nicht wesentlich zur Masse bei. Der Vergleich der Treelevelmassen bis NLO
aus Abschnitt 7.1.3 mit den Treelevelmassen bis NLO der 7-Néherung wird
hier deswegen nicht angefiithrt. Anstatt dessen werden sofort die Massen bis
NLO inklusive der Schleifenbeitrége betrachtet. Es kénnen nun die Ergebnis-
se aus Abschnitt 7.1.1 und Abschnitt 7.1.3 in die Gleichung (7.25) eingesetzt
werden. Die Renormierungsskala A wird zu A = 47 Fj gewahlt. In [22] wurde
ebenfalls die Masse bis NLO einschliellich der Schleifenbeitrage mit Hilfe der
7-Naherung bestimmt. Zur Unterscheidung wird diese Masse mit dem Index
, g versehen.

Zur Renormierung wird die ungenéherte Renormierungskonstante verwendet.



7.2 Schleifenrechnung

79

63:0,6

200000

150000 |

2 2
M2 (MeV
100000
50000
N«\ -
N 2
¥ M, Loop
,Mg” Loop -------
My Treelevel --------
Mj3” Treelevel
0 I I I I I I f
-2 15 1 -0.5 0 0.5 1 15
€1

Abbildung 7.4: Vergleich der Masse M2 g mit Schleifenbeitréigen zu der Masse M2 1

ohne Schleifenbeitréige bei €3 = 0,6
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Abbildung 7.5: Vergleich der Masse M2 g

ohne Schleifenbeitrige bei e3 = 3

mit Schleifenbeitréigen zu der Masse M7 1
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Abbildung 7.6: Vergleich der Massen M2, | mit den Massen M7, , der 7)-Niiherung bei
€5 = 0,6 und Wy = 10°MeV?

Bei Benutzung der gendherten Renormierungskonstanten werden die Abstén-
de von M2 zu M? grofer, aufler bei ez = 3 und M.

Da sich die Massen fiir Wy, = 10°MeV?, W, = 10°MeV? und W, = 10"MeV?
nur minimal unterscheiden, wird davon abgesehen, die Vergleiche fiir die je-
weiligen Wy-Werte auch einzeln anzufiihren.

Fiir e3 = 0 ist M7, < M2, fiir alle e;.

Bei 0,2 < e3 < 1 und kleine Werte fiir 1] ist die Abweichung von M2 zu
Mz, 2 relativ grofl, mit teilweise bis zu 50% oder mehr, siche Abb. 7.6, 7.7.
Zudem ist das Massenquadrat M2, fiir kleine |¢;| negativ. Dieses Verhalten
ist unphysikalisch. Wie schon bei der Betrachtung des Minimums, Abschnitt
6.5, zeigt sich auch hier, dass die 7-Naherung fiir kleine ¢; und €3 keine Giil-
tigkeit hat.

Fiir e; > 1 ndhern sich die Massen an, und die Abweichung wird mit etwa
9% kleiner.

Fiir e3 = 2 und 3 = 3 wird die Abweichung von M2 zu M2 hin zu gréfleren
€1 grofer und ist maximal bei ¢; = 2, sieche Abb. 7.8, 7.9.



7.2 Schleifenrechnung 81

€3 = (), 6
T T
200000 e
150000 [ 1
2 2)
M2, (MeV - )
100000 . # E
50000 L Ve i
o 2
. NVZ 7777777
L L L s L L B
2 15 1 0.5 0 0.5 1 15 2
€1

Abbildung 7.7: Vergleich der Masse MTQr3 mit der Masse Mfr&g der 7)-N&herung bei
€5 = 0,6 und Wy = 10°MeV?3
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€3 =3 und Wy = 10°MeV?
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Abbildung 7.9: Vergleich der Masse M2, mit der Masse M2, der 7)-Néherung bei ez = 3
und Wy = 10°MeV?

7.2.4 Massensplitting

Fiir die Masse aus Gleichung (7.25) wird nun das Massensplitting untersucht.
Dieses ist durch
M2 — M?
2 1,2 T3
AM; = iz, (7.26)
definiert. M2 , und M? werden mit Gleichung (7.25) berechnet. Die Grofie
AM? wird zur besseren Darstellung durch M? | normiert. Die Schleifenbei-
trige sind nur von der renormierten Treelevelmassen in LO, m2, abhingig,
fiir welche kein Massensplitting existiert. Damit ist das Massensplitting un-
abhéngig von den Schleifenbeitragen. Zusétzlich ist das Massensplitting nicht
abhéngig vom Wy-Wert, da die in diesem Kapitel berechneten Massen selber
unabhiingig vom Wy-Wert sind®.
Mit der Naherung 7 < 1 findet sich folgende Gleichung zur theoretischen
Berechnung des Massensplittings [22]:

sin?(w)
Eg

sin?(w)a?

AM? =128
g

= —2¢

(7.27)

Das Vorzeichen von AM? ist abhingig von éy, Gleichung (7.27), und somit
abhédngig von der Wahl des Szenarios. In dieser Arbeit wurde ¢, < 0 und

§siche Abschnitt 7.1.2



7.2 Schleifenrechnung 83

somit ¢, < 0 gewdhlt, woraus das normale Szenario und Mﬁm > M2, folgt.
Zudem folgt durch das Einsetzen des Winkels w eine Abhéngigkeit vom W-
Wert und damit fiir €; die Existenz eines kritischen Wertes € .

Das theoretisch berechnete Massensplitting nach Gleichung (7.27) wird eben-
falls mit der Masse M2, _ normiert. Dazu wird die Masse M2 _ aus Gleichung

1,2 1,2
(7.25) benutzt:

sin?(w)a?

F2 M2

1,2

AMZ . =1287 (7.28)

Es wird nun das theoretisch berechnete Massensplitting AM? 1 nach Glei-
chung (7.28) mit dem numerisch berechneten Massensplitting AM? y nach

Gleichung (7.26) verglichen. Zuséitzlich wird das dimensionlose Verhéltnis
V = (AM?y)/(AM? 1) betrachtet.

€3 = O, 6
€1 AM?T AM?N
Wo=10° | We=10°| Wp=10
0 1,11 1,11 0,97 0,39
0,5 0,43 0,44 0,60 0,10
1,0 0,14 0,15 0,20 0,04
1,5 0,06 0,06 0,08 0,02
2,0 0,03 0,03 0,04 0,01
€1 V
Wo=10° | Wo=10°| Wy=10
0 0,35 0,35 0,40
0,5 0,24 0,23 0,17
1,0 0,30 0,29 0,21
1,5 0,37 0,36 0,28
2,0 0,42 0,41 0,34
€3 = 1
€1 AMzT AMT%N
Wo = 10° ‘ Wo = 106 ‘ Wo = 107
0 0,97 0,97 0,93 0,86
0,5 0,53 0,54 0,62 0,23
1,0 0,26 0,26 0,32 0,10
1,5 0,13 0,13 0,16 0,05
2,0 0,07 0,07 0,08 0,03
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€1 %
Wo = 10° \ Wo = 108 \ Wo = 107

0 0,89 0,87 0,93

0,5 0,44 0,43 0,38

1,0 0,40 0,39 0,32

1,5 0,43 0,42 0,34

2,0 0,46 0,45 0,38

€3 = 3
€1 AM?T AMT%N
Wo = 10° \ Wo = 106 \ Wo = 107

0 0,31 0,31 0,31 0,27
0,5 0,30 0,30 0,31 0,24
1,0 0,26 0,26 0,27 0,20
1,5 0,22 0,22 0,23 0,15
2,0 0,17 0,17 0,18 0,11

€1 %

Wp = 10° ‘ Wo = 108 ‘ Wy = 107

0 0,87 0,87 0,87

0,5 0,82 0,81 0, 80

1,0 0,75 0,75 0,72

1,5 0,70 0,70 0,66

2,0 0,66 0,66 0,62

Die Tabelle fiir e3 = 0 ist hier nicht aufgefiihrt. Es ist kein Massensplitting
zu beobachten, die Massen M? | und MZ, sind hier gleich.

Das Massensplitting wird in allen Féllen fiir wachsendes €; kleiner.

VY nimmt ab, fiir steigendes W. Allerdings gibt es hierzu bei ¢; = 0 Ausnah-
men. Zwischen den Verhiltnissen bei Wy, = 10°MeV? und Wy = 105MeV?
liegt hochstens eine Differenz von 0,02, die Werte bei W, = 10"MeV? wei-
chen mit einer Differenz von bis zu 0, 09 stéirker ab.

Wird e3 grofler, nimmt das Verhéltnis V zu. Bei €3 = 0, 6 liegen die Werte im
Bereich von V = 0,17 und V = 0,42. Fiir e3 = 1 ist bei einem ¢;-Wert von
€1 = 0 ein maximaler Wert von V = 0,93 zu beobachten. Sobald €; > 0 ist,
sind die V-Werte mit maximal V = 0,46 deutlich kleiner. Ist €3 = 3 liegen
die V-Werte zwischen V = 0,62 und V = 0, 87.

Die Grofie AM? 1 wurde unter der Annahme 77 < 1 hergeleitet. Diese An-
nahme ist gerade fiir grofe Werte von €; und e3 und bei kleinen Werten der
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Abbildung 7.10: Verlauf der Masse M2 bei e; = 2,5-10~%

GroBe Wy erfiillt. Fiir e5 < 1, ¢; > 1 und Wy = 10°MeV? nimmt V Werte von
0,30 bis 0,46 an. Die auf unterschiedliche Art ermittelten Massensplittings
sind hier somit nicht gleich. Ist €3 > 1 und Wy, = 10°MeV? liegt V zwi-
schen 0,66 und 0, 87. Die Werte der verschiedenen Massensplittings sind hier
ebenfalls nicht gleich. Die Gleichung (7.27) kann nur als Naherungsgleichung
verstanden werden, sie gibt nicht den exakten Wert des Massensplittings
an, sondern nur die Tendenz. Nimmt das Massensplitting AM? \ stark oder
leicht ab, so nimmt auch AM%T stark, bzw. leicht ab. Die Proportionalitit
des Massensplittings zu sin? (w) kann damit bestitigt werden.

7.2.5 Verhalten der Massen bei ¢; = 0

Bei €; = 0 wird ein bestimmtes Verhalten der Massen M2 |, und M2, erwartet.
Fiir e3 = 0 sollten die Werte der Massen sehr nah beieinander liegen. Fiir
€3 > 0 wachst Mﬁm stetig an, wihrend MT%B zuerst féllt, bei €3 = €3, den

Wert Null annimmt und danach wiichst. €3¢ ist durch

€3,c — €3 (,u - ,uc)

definiert, d.h. fiir €5 < €3 ist ein Phasensprung zu beobachten, fiir €3 > €3
nicht mehr. In Abschnitt 5.3 wurde e3. = 1 fiir ein Potential ohne die €4-
und es;-Terme gefunden. Unter Beachtung dieser Terme ldsst sich der e;-
Wert nicht mehr berechnen. Aus dem Verhalten des Minimums lésst sich
aber schlieflen, dass der Wert nicht stark von 1 abweichen sollte. Der genaue
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Wert fiir €3, wird im Folgenden durch das Verhalten der Massen bestimmt.
Fiir e, = 2,5- 107" = 0 werden die Massen M7 , und M? fiir 0 < 3 < 2
untersucht. e; = 2,5-107* ist der kleinste €;-Wert, fiir den keine numerischen
Fehler auftreten.

Bei €3 = 0 sind die Massen M7 , und M2, fast identisch, Abb. 7.10. Der
Graph von Mﬁm wéchst stetig. Bei €3 &~ 1 wird ein Zuwachs der Steigung

beobachtet. Der Graph von M?, besitzt keine Nullstelle, aber ein Minimum
bei €3 = 0,984 ~ 1. In diesem Minimum nimmt M2, den Wert 6229MeV?,
bzw. M, den Wert 79MeV an. Dieser Wert ist klein, aber nicht gleich Null,
da ¢; ebenfalls nicht identisch Null ist. Nach Gleichung (2.14) gilt fir die
Masse der Pionen bis LO im Kontinuum:

2 _ /
m; = 2Bymy,.

Die Grofie my ist bereits in Abschnitt 5.2.1 berechnet worden. m?2 kann somit
durch die Variable €; ausgedriickt werden:
e 128na?
™ FO2

€1.

Mit dem Wert ¢; = 2,5 - 10* ergibt sich damit m2 = 11MeV?, bzw. m, =
3,3MeV. Dieser Wert unterscheidet sich zwar deutlich von dem Wert M, =
79MeV, allerdings ist m2 nur die Masse bis LO. Samtliche NLO-Terme sind
nicht in m?2 enthalten. Da aber nicht gilt ¢, = 0, tragen diese Terme zur
Masse M2, bei.

Fiir e3 > 1 verlaufen die beiden Graphen etwa parallel. Die Schleifenbeitrige
veréindern die Masse kaum, siehe Abschnitt 7.2.2. Eine Betrachtung der Tree-
levelmassen, Gleichung (7.14) und (7.15), reicht somit aus, das Verhalten der
Massen fiir grofle €3 abzuschétzen. Die Treelevelmassen sind linear in ¢3 und
damit auch in e3. Die ¢4- und cs-Terme bewirken nur eine minimale Korrek-
tur. Aus der Proportionalitéit von c3 zu u folgt daher, dass auch die Massen

Mﬁl , fiir grofle €3 proportional zu p, bzw. 2By sein sollten. Das Verhéltnis

M
Vig = -2
© 2Bop
und auch das Verhaltnis
M2
— 3
Vi = 2Bop

muss dann fiir grofle e3-Werte etwa konstant sein.
e | 1,0 1,21 1,4 1,6 1,8] 20
Vio | 1,03 | 1,03 | 1,03 | 1,04 | 1,04 | 1,05
Vs 10,14 10,26 | 0,37 | 0,46 | 0,54 | 0,60
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Das Verhaltnis V; o = 1 ist fiir 1 < €3 < 2 konstant. Die Werte fiir das
Verhéltnis V3 wachsen dagegen. Hier kann das Verhéltnis fiir e3 > 1,6 mit
V3 = 0,5 als etwa konstant angesehen werden.

Das hier ermittelte kritische €3, = 0,984 weicht nur minimal von dem Er-
gebnis aus Abschnitt 5.3 mit €3 . = 1 ab. Aus dem dort untersuchten Phasen-
sprung lies sich folgern, dass die ¢4- und e5-Terme im Potential nicht wesent-
lich zum Verhalten beitragen. Dies wird hier bestétigt. Die Beachtung dieser
Terme verschiebt €3, nur minimal.

7.3 Ergebnisse der Massenbestimmung

In LO sind die gendherten und ungenéherten Treelevelmassen fast identisch.
Lediglich fiir grofles W, und kleine ¢; und €3 sind minimale Abweichungen
zu erkennen. Dieses Ergebnis gibt das Verhalten von ugy zu up wieder. Die
Abweichungen der Minima sind ebenfalls sehr gering.

In NLO kommen zu den Treelevelmassen noch Schleifenbeitrage durch die
Selbstwechselwirkung. Dabei verdndert sich die Masse durch Beachtung der
Schleifenbeitrage nur gering.

Die Unterschiede der gendherten und der ungenéherten Massen sind in NLO
grofler als in LO. Dieses Verhalten entspricht ebenfalls dem Verhalten der
Minima zueinander. Fiir €3 < 1 ist die Differenz der beiden Massen im Bereich
kleiner €; grof. Besonders auffillig ist, dass das gendherte Massenquadrat im
Bereich kleiner |e;| teilweise negativ ist. Dieses Verhalten ist unphysikalisch.
Fiir e3 > 1 ist die Differenz fiir alle ¢; etwa gleich, wobei der Betrag der
Differenz grofler ist als fiir die Félle e3 < 1.

Bei Verwendung der 7-Nédherung kann eine Gleichung zur Berechnung des
Massensplittings theoretisch hergeleitet werden. Ohne diese Naherung ist dies
nicht moglich, da die Gleichung zur Berechnung der Masse zu kompliziert
wird. Das Massensplitting muss numerisch ermitelt werden. Beim Vergleich
der auf diese beiden Arten ermittelten Massensplittings ist fiir e3 < 1 ein
deutlicher Unterschied erkennbar, fiir e3 > 1 nicht mehr.

In NLO sind die Abweichungen der gendherten und der ungendherten Massen
deutlich erkennbar. Das qualitative Verhalten der gendherten Masse weicht
fiir kleine €; und €3 vom Verhalten der ungenidherten Masse ab. Fiir grofie ¢,
und e3 gibt die gendherte Masse das qualitative Verhalten der ungendherten
Masse wieder, allerdings gibt es quantitative Unterschiede.

Ist €3 < €3, springt bei ¢, = 0 das Minimum vom negativen Bereich fiir
€1 < 0 in den positiven Bereich fiir €; > 0. Das €3 ldsst sich theoretisch zu
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€3.. = 1 berechnen, falls die GroBen €4 und €5 zu Null gewéhlt werden. Unter
Beachtung dieser beiden Groflen ist €3 nicht mehr theoretisch berechenbar.
Die Masse des Pions w3 verschwindet fiir e, = 0 und €3 = €3.. Damit lésst
sich die Grofle €3, numerisch ermitteln. Das Ergebnis €3, = 0,984 weicht
nicht stark vom theoretisch berechneten Wert ab. Bereits in Kapitel 5 wurde
gezeigt, dass die GroBlen €4 und €5 keinen grofien Einfluss auf die Lage des
Minimums haben, dies wird hier bestatigt.



Kapitel 8

Ny=3

In diesem Kapitel wird der Fall Ny = 3 betrachtet. Die Symmetriegruppe
ist die SU(3)-Gruppe, deren Generatoren die Gell-Mann-Matrizen* sind. Es
wird weiterhin die Gasser-Leutwyler-Lagrangedichte auf dem Gitter, siehe
Gleichung (4.4), betrachtet. Fiir die Feldkonfigurationsmatrix U ist eine ent-
sprechende Parametrisierung zu wahlen. Fiir Ny = 2 kann ein bestimmtes
Verhalten des Minimums beobachtet werden. Die folgenden Betrachtungen
dienen der ersten Abschétzung des Verhaltens des Minimums, bzw. der Mi-
nima fiir Ny = 3. Eine Moglichkeit fiir die Feldkonfigurationsmatrix im Mini-
mum besteht in der Parametrisierung durch die Gell-Mann-Matrizen A3 und
g, welche vertauschen,

7 — i3 +65V3hs) _ Lidshs) | oi(sV3As) (8.1)

=e
Dabei sind ¢3 und ¢g € [—m, w]. Die Feldkonfigurationsmatrix hat Diagonal-
gestalt. Das Potential ist in dieser Parametrisierung sehr kompliziert, so dass
Abschétzungen nicht moglich sind. Eine andere Moglichkeit ist die Parame-
trisierung:

a 0 0 ay + ias 0 0
U=101b 0 | = 0 b1 + iby 0 . (8.2)
0 0 ¢ 0 0 c1 +icy

Aus der Unitaritdt und der Bedingung detU = +1 folgen die Nebenbedin-
gungen

ai=1-—a? agzrm
b3=1-10% by =s/1—03 (8.3)
d=1-¢ ey = t\/1—¢2

*Siehe Anhang A
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und

= —7’3\/1 —a%\/l—b%—l—albl. (8.4)

Dabei sind r,s,t € {—1,1}. Damit wird die Anzahl der Variablen auf zwei
reduziert: a; und by.

In die Massenmatrix muss jetzt auch das Strange-Quark miteinbezogen wer-
den:

m, O 0
X = 2BO 0 mgq 0
0 0 myg

Diese Massenmatrix wird analog zu Abschnitt 4.2 mit einer Matrix D gedreht:

X(w) =x"D.

Die diagonale Drehmatrix D kann dabei einen Drehwinkel, oder mehrere
Drehwinkeln beinhalten. Dabei muss fiir

e 0 0
D = 0 €% 0 (8.5)
0 0 e

die Relation a + 3 + v = 0 erfiillt sein.

8.1 Twist mit einem Drehwinkel

Fir Ny = 2 wird die Drehmatrix mit nur einem Winkel und der Matrix
73 benutzt. Analog kann fiir Ny = 3 eine Drehmatrix mit einem Winkel
bestimmt werden. Die Matrix 73 wird durch den entsprechenden Generator
Az in Ny = 3 ersetzt. Damit lautet die Drehmatrix

D =e @ (8.6)
welche zu der gedrehten Massenmatrix
Xo + X3 0 0

X (w) = 0 Xo—ixs O
0 0 Xs
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fithrt. Dabei sind x und y3 die in Abschnitt 4.2 definierten Grolen. Es wird
der Spezialfall m, = mgq = my # ms betrachet. x5 ist definiert durch:

Xs = 2Bgms.

Die Drehung der Massenmatrix hat auf die Masse des Strange-Quarks keine
Auswirkung. Lediglich die Massen des Up- und des Down-Quarks werden
gedreht.

Das Potential hat mit diesen Parametrisierungen die Form:

V(al,bl,cl) = — A(a1 + bl) —f-A c1 + B(a% + b2) + B C%
+ C’a161 + C CL1 + bl)Cl

+ D1 - a2 — 5y/1-83) + Bayry/1 - 3

+ Fbﬂ’ﬁ—l— Fccl(r\/l —a? — s\/l —b?)

+ Gals\/l—ib%+ Gelay — b1)tm

T Hbysy /1= 83+ JryJ1 - azsy/1 - 83

(1t +5y/1 =By /1 ek (8.7)

Das Potential ist in Abhéngigkeit der drei Variablen aq, b; und ¢; angegeben.
Mit diesen drei Variablen hat das Potential eine einfache Form. Fiir spétere
Betrachtungen wird die Varibale ¢; wieder iiber die Variablen a; und b; aus-
gedriickt.

Es werden die Koeffizienten

1
A= S F3X, (88)

1
A= =5 (xs + po) (39)

B =2 [,Og(Wg — OWy — 2Lg — 2Ly — 2W' — 2W! — W)
+ (X3 = X0 )(2L7 + Lgs + 2L8)] : (8.10)

B =2| — p}(Wi +2W; + W{) = x3(2Lr + 2Ls + Lgs)

+ Xspo(2W7 — W — W%)} ; (8.11)
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C =4[ pox(Ws — 2Ls — 2W) = 2Lix3 + X4 (Ls — Lso)

+ pR(Ls + W, — 2w — Wg)] , (8.12)

C. =2 [2Xs(X6 — po)(Ls — Lsg) + po(xs + Xo) (Ws — Wsg)

+ (W + 205 — 2Wj — W) (8.13)
1 2

E=2 [zxg(po — XO)(2L7 + Ls + Leg) + yapo(2Ws — Wy — Wsﬁ)], (8.15)
F=2 [2X3(X’o —po)(2L7 + Lg — Lgs) — x3p0(2W7 — Wg + WBG)]v (8.16)
F, =2 [2X3XS(2L8 ~ Leg) + xap0(Ws — W86)], (8.17)

G=2 [2X3(p0 — \})(2Ly + 2Lg — Lsg) + vapo(2Wy — Wy + Weg),  (8.18)
Ge=4| —2L7xsxs + W7X3po], (8.19)

H=2 [2X3(X’0 — po) (2L + 2Lg + Lgs) — xapo(2Ws — Wy — Weg)|,  (8.20)

J =4 [2L7X62 — 2p0Xh(2L7 + W) + X2(Lss — 2Ls)
+ 205 (L7 + Wi + W) (8.21)
und
J. =4 |:X6(2L7Xs — Wapo) — Xspo(2L7 + Wr) + pi(2W2 + W) (8.22)

benutzt. Fiir die Gittermatrix wurde die bereits in Kapitel 4.2 gewéhlte Para-
metrisierung p = pol = 2Wyal verwendet. Diese Koeflizienten sind teilweise
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dghnlich zu den Koeffizienten ¢; aus Abschnitt 4.2. A entspricht exakt ¢; und
ist damit fiir positive Massen mgo positiv. Die Masse des Strange-Quark wird
festgesetzt, wobei die Strange-Quarkmasse positiv gewahlt wird, mg > 0. Da-
her ist A. negativ. Der Koeffizient B ist dhnlich zu ¢y. Das Vorzeichen von
¢y entscheidet, ob das Aoki-Szenario eintritt oder das normale-Szenario. Der
Koeffizient D muss positiv sein, da y3 = —2Byu negativ ist. Damit gilt fiir

die Koeffizienten:
A

~ qu
A, < 0
D ~ pu.

Zur ersten Abschéatzung des Potentials werden die Koeffizienten D bis J. Null

gesetzt. Die Grofle D wird in einem zweiten Schritt miteinbezogen und die
Verdnderung des Potentials untersucht.

Das Potential wird auf die Existenz von Minima untersucht. Dafiir werden
die Koeffizienten gréfler oder kleiner Null gewéhlt. Wenn kein Betrag der Ko-
effizienten angegeben ist, wird dieser immer gleich 1 gewéhlt. Die einzelnen
Terme sind somit noch nicht gewichtet.

Die Beriicksichtigung des D-Terms bewirkt entweder eine Verdnderung des
Randes des Potentials, oder die Wélbung des Potentials dreht sich um. Da-
durch bilden sich neue Minima oder sie verschwinden. Der D-Term ist entwe-
der proportional zu r oder zu s. Es ist daher von Bedeutung, ob r = —1 und
s = +1 gewdhlt wird, oder umgekehrt. Ohne Beriicksichtigung dieses Terms
ist es egal, welche der beiden Gréflen positiv gewihlt wird, da r und s im-
mer als Produkt auftauchen. Es muss dann nur unterschieden werden, ob die
beiden Gréflen dasselbe Vorzeichen haben oder unterschiedliche. Wird der D-
Term beriicksichtigt und wird » = +1 und s = —1 gewéhlt, dann gibt es nur
in zwei Féllen Minima des Potentials. In diesen Fillen existiert das Minimum
auch fiir r = —1 und s = 4+1. Werden die Koeffizienten A, B,C,C, > 0 und
B. < 0 gewdhlt, gibt es fiir beide Realisierungen, d.h. r = F1 und s = +1,
ein Minimum des Potentials, ebenso fiir B,C' > 0 und A, B, C. < 0.

Wie im Fall Ny = 2 wird auch fiir Ny = 3 die Masse myo grofier oder kleiner
als Null gewahlt. Fiir Ny = 2 kann ein Phasensprung beobachtet werden. Die
Existenz eines Minimums fiir mgy, > 0 und my < 0 ist Voraussetzung fiir
einen Phasensprung. Deswegen sind besonders die Fille interessant, in denen
sowohl fiir A < 0 als auch fiir A > 0 Minima existieren.

Es werden im Folgenden die Fille aufgelistet, in denen auch nach Beriicksich-
tigung des D-Terms mindestens ein Minimum existiert. Angegeben wird die
Anzahl der Minima. Dabei werden globale Minima, die am Rand liegen und
fiir die die Ableitung von V' nicht den Wert Null annimmt nicht betrachtet.
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Zur Vereinfachung der anschlieenden Diskussion wird jedem in der Tabelle
aufgelisteten Fall eine Nummer zugeordnet.

B | B. | C|C.|r s |A>0| A<O0]|A>0|A<0
D=0|D=0|D>0|D>0
1| <0|>0|>0[>0]—-1|+1 2 0 2 1
2 <0 <0]—-11]+1 0 0 1 1
3 >0 <0]—-1]+1 0 2 1 2
4 <0|>0]>0|-1]+1 1 1 1 1
5 <0 <0]-11]+1 0 1 1 2
6 >0 (<0]—-1]+1 1 2 1 1
7 <0|>0]—-1|+1 1 1 2 1
81>0[>0]>0|>0|—-1]+1 2 1 2 1
9 <0|<0]—-1|+1 0 1 1 1
10 >0 <0]—-1|+1 1 2 1 1
11 <0|>0]—-1|+1 1 0 1 1
12 <0|>0]>0|=F1]| %1 1 1 1 1
13 <0|<0] &1 |+£1 1 1 1 0
14 -1 ] +1 1 1 1 1
15 +1 | -1 1 1 0 1
16 >0 <0]—-11]+1 1 1 1 1
17 +1 | -1 1 1 0 1
18 <0|>0]—-1|+1 1 1 1 1

Es werden jetzt die Falle untersucht, fiir die in allen Varianten von A und D
mindestens ein Minimum vorhanden ist. Zur Veranschaulichung werden zwei-
dimensionale Skizzen des Potentials angefithrt. Um die Lage des Minimums
zu bestimmen, werden allerdings dreidimensionale Graphiken betrachtet, in
denen das Potential V' (aq, by) iiber der a;- und der b;-Achse aufgetragen wird.
Es reicht aus, das Potential in einer zweidimensionalen Ebene £ zu betrach-
ten, um das Verhalten der Minima zu untersuchen. Die Ebene £ ist bestimmt
durch a; = by, d.h. durch die Diagonale der a;-b;-Ebene.

Existiert nur ein Minimum, kénnen zwei Fille beobachtet werden:

e Das Minimum liegt sowohl fiir A > 0, als auch fiir A < 0 bei negativen
Werten der Variablen a; und b;. Dieser Fall tritt bei ,4“ und ,7“ fiir
D = 0 ein. Das Potential hat bei A = 1 eine in der Mitte nach oben
gewdlbte Form. An dem Rand, an dem die Variablen negative Wer-
te annehmen, ist das Potential leicht geknickt, so dass ein Minimum
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VRN

A=1 A=0 A=-1

Abbildung 8.1: Das Potential in der Ebene &, fiir den Fall, dass nur ein Minimum bei
negativen Werten von a; und b; existiert

existiert. Die Kriimmung des Potentials an dem Rand, an dem die Va-

riablen positive Werte annehmen, wird fiir gréfler werdenes A immer
kleiner, siche Abbildung 8.1.

e Das Minimum ist entweder mittig oder fiir eine positive Masse, bzw.
positives A, bei positiven Werten der Variablen und umgekehrt. Hierbei
miissen zwei weitere Fille unterschieden werden:

— Das Potential hat in der Mitte keine grofie Kriimmung, dhnlich
einem Plateau. Das in der Mitte befindliche Minimum ist nur
schwach ausgebildet. An den Réndern ist ein steiler Anstieg er-
kennbar. Fiir ,4“ und D > 0 ist diese Form des Potentials bei
A = 1 zu beobachten, siche Abbildung 8.2. Fiir A > 1 wandert
das Minimum zu positiven Werten der Variablen, fiir A < 1 zu ne-
gativen Werten. Das Potential kippt zu der entsprechenden Seite.
Diese Verédnderung ist schon bei kleinen Abweichungen, z.B. £0, 1,
von A = 1 feststellbar. Fiir ,,6 und D > 0 ist die Plateau-dhnliche
Form des Potentials bei A = —1. Fiir A < —1 verschiebt sich das
Minimum zu negativen Werten der Variablen, und bei A > —1 zu
positiven Werten. Die Anderung des Potentials ist auch hier bei
kleinen Abweichungen vom Wert A = —1 leicht zu erkennen.

— Die zwei dimensionale Projektion des Potentials entspricht einer
Parabel. Das Minimum fiir A = —1 liegt mittig und wandert fiir
A > —1 hin zu positiven Werten der Variablen, sieche Abbildung 8.3.
Fiir A < —1 verschiebt sich das Minimum in den Bereich negati-
ver Werte der Variablen. Die Verdnderung des Potentials ist erst
bei grofleren Abweichungen, z.B. £0, 5 deutlich zu erkennen. Die-
ser Fall ist bei ,,10 und D > 0 oder bei ,,14* und ,,16“ sowohl
bei D = 0, als auch bei D > 0 zu beobachten. Fiir die Falle ,,12
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T

A<l A=1 A>1

Abbildung 8.2: Das plateaufésrmige Potential in der Ebene &, fiir den Fall, dass nur ein
Minimum existiert

\/ /// \\/ \\\ \/

A< -1 A=-1 A>—1

Abbildung 8.3: Das parabelformige Potential in der Ebene &, fiir den Fall, dass nur ein
Minimum existiert

und ,18% bei D = 0 und bei D > 0 ist das Minimum des para-
belférmigen Potentials bei A = 1 in der Mitte. Hierbei verschiebt
sich das Minimum fiir A < 1 hin zu negativen Werten der beiden
Variablen. Bei A > 1 liegt das Minimum im positiven Bereich der
Variablen.

Auch bei der Existenz von zwel Minima miissen zwei Fille unterschieden
werden:

e Die beiden Minima sind bei a1 ~ 1, by =~ 0 und a; ~ 0, b ~ 1 fiir
A > 0, bzw. bei a; =~ —1, by ~ 0 und a; ~ 0, by =~ —1 fir A < 0.
Das Potential hat in beiden Féllen ungefahr eine Doppelmulden-Form.
Wird das andere Vorzeichen von A gewihlt gehen die zwei Minima
tiber in ein Minimum. Fiir |A| < 1 wird die Wélbung in der Mitte des
Doppelmulden-Potentials steiler und hoéher, das Potential kippt. Die
beiden Minima laufen in die Mitte zusammen. Nach dem Vorzeichen-
wechsel von A lauft das Minimum fiir grofer werdenes |A| zum Rand.
Dies kann bei ,8“ sowohl fiir D = 0, als auch fiir D > 0 oder bei ,,10¢
und D = 0 beobachtet werden.

e Die beiden Minima liegen am Rand, das eine bei positiven Werten der
Variablen, das andere bei negativen Werten. Der Potentialwert dieser
Minima ist gleich. Lauft die Grofle A gegen grofle negative Werte wird
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A=2 A=1 A=0 A=—1

Abbildung 8.4: Das Potential in der Ebene &, fiir den Fall, dass zwei Minima am Rand
des Potentials existieren

der Graph des Potentials steiler, bzw. kippt zu einer Seite, wodurch ein
Minimum verschwindet, siche Abb. 8.4. Das Minimum liegt dann bei
neagtiven Werten der Variablen. Lauft A gegen grofie positive Werte
kippt das Potential zu der anderen Seite, das Minimum liegt schliefllich
bei positiven Werten der Variablen. Wird nur das absolute Minimum
betrachtet kann somit ein Sprung dieses Minimums beobachtet werden.
Im Fall ,6“ und D = 0 gibt es zwei absolute Minima fiir A = —1.
Fiir A < —1 gibt es ein absolutes Minimum bei negativen Werten
der Variablen. Sobald A > —1 ist, gibt es ein absolutes Minimum bei
positiven Werten von a; und b;. Im Fall |7 und D > 0 sind bei A =1
zwei absolute Minima zu beobachten.

In den Fillen ,6“ D = 0 und ,, 7 D > 0 gibt es einen Sprung des absoluten
Minimums bei A = —1, bzw. bei A = 1. In allen anderen Fallen &dndert sich
die Lage der Minima stetig, hier wird kein Sprung der Minima beobachtet.
Besonders interessant ist hierbei der Fall ;7 und D > 0. Der Sprung des
Minimums verschwindet im Fall ,,6“, sobald D > 0 gewé&hlt wird.

Fiir Ny = 2 existiert bis zu einem kritischen Wert der gedrehten Masse p,
bzw. €3, ein Sprung des Minimums. Bisher wurde p ~ D = 1 gewéhlt. Jetzt
wird der Wert von D verédndert, und der Sprung des Minimums im Fall ,,7“
erneut untersucht.

In allen anderen Fillen verdndert sich Wolbung des Potentials, wird D # 1
gewdhlt. Je mehr D vom Wert 1 abweicht, umso stérker ist die Wolbung des
Potentials. Dabei ist in allen Fallen

D >1 = Wbodlbung nach unten
D <1 = Wadlbung nach oben
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beobachtbar. Dies hat teilweise Auswirkung auf die Anzahl der Minima.
Auch im Fall [7“ &ndert sich die Wélbung des Potentials. Wird D < 1
gewihlt hat dies keine Auswirkungen auf den Sprung der absoluten Minima.
Fir D > 1 ist die Wolbung des Potentials nach unten so stark, dass das
Potential dhnlich zu dem parabelférmigen Potential aus Abb. 8.3 ist. Fiir
D > 1 ist bis zu einem Wert von

D<25

der Sprung des absoluten Minimums zu beobachten. Danach ist die Wolbung
des Potentials nach unten zu stark und die Lage des absoluten Minimums
andert sich stetig.

Die Minima des Potentials sind in zwei Fillen sowohl fiir A = —1, als auch
bei A = 1 bei negativen Werten der Variablen a; und b;. In den anderen
Fillen liegen die Minima fiir A > 1 bei positiven Werten der Variablen oder
mittig und fiir A < —1 bei negativen Werten oder ebenfalls mittig. Aller-
dings gilt dies nicht unbedingt fiir |A| < 1. Zum Beispiel gibt es teilweise
bereits bei kleinen, positiven Werten von A Minima bei negativen Werten
der Variablen.

Durch die Beriicksichtigung des D-Terms wird entweder der Rand des Poten-
tials oder die Wolbung verdandert. Wird D # 1 gewahlt, wirkt sich dies auf
die Wolbung aus. Je nachdem, ob D > 1 oder D < 1 gesetzt wird hat das
Potential eine Wélbung nach unten bzw. oben. Dies ist umso stérker ausge-
bildet, je mehr D vom Wert 1 abweicht.

In zwei Fillen gibt es einen Sprung des absoluten Minimums bei A = —1,
bzw. A = 1. Im Fall ,6“ kann dieser Sprung beobachtet werden, wenn der D-
Term nicht beriicksichtigt wird. Mit Beriicksichtigung des D-Terms existiert
im Fall ,7¢ ein Sprung des absoluten Minimums bei A = 1 fiir D-Werte bis
D < 2,5, Fiir grolere Werte éndert sich die Lage des absoluten Minimums
stetig.



Kapitel 9

Zusammenfassung und Ausblick

In Kapitel 2 bis Kapitel 4 wurden die Grundlagen der tmQCD im Rahmen
der xPT auf dem Gitter behandelt.

Die Gleichung zur Bestimmung des Potentialminimums wurde in Kapitel 5
mit Hilfe des Algorithmus nach Ferrari hergleitet. Es wurden die dimensions-
losen Variablen ¢; und €3 eingefiihrt, welche proportional zu den gedrehten
Massen der twisted basis sind. Zusétzlich ist die Variable ¢; proportional zu
der Gitterkonstanten. Fiir die Variable €3 wurde ein konstanter Wert gewéhlt.
Zur numerischen Berechnung des Minimums musste der Gitterparameter n
angegeben werden. Dieser wurde anhand der Gleichung fiir die kritische, ge-
drehte Masse p. und der Gleichung der Pionenmasse im Minimum mfnmm
bestimmt. Fiir die Wilson-Wirkung ergab sich dabei:

n = 10"¥MeVS.

Mit diesem n-Wert wurde die Giiltigkeit der Entwicklung der Lagrangedichte
nach Termen der Gitterkonstante a bis zur Ordnung a? iiberpriift. Der Ein-
fluss der Ordnung a?-Terme auf das Minimum erwies sich dabei als sehr ge-
ring. Eine Entwicklung der Lagrangedichte nach dem Weinberg’schen Power-
counting bis zur Ordnung a?, bzw. NLO war somit sinnvoll. Es lies sich zudem
ein Giiltigkeitsbereich der Variablen €; von

—2§€1§2

berechnen.

Das Potential enthielt Terme, welche proportional zu der Gitterkonstanten
waren und aufgrund des Weinberg’schen Powercountings klein sein miissen.
Daher wurde bereits das Potential ohne diese Terme, die €4- und e5-Terme,
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untersucht. Es war daher von Interesse, ob diese Terme das Verhalten des Mi-
nimums, insbesondere in der Ndahe des Phasensprungs, wesentlich beeinflus-
sen. Entsprechende Untersuchungen ergaben, dass das Minimum mit ¢4 # 0
und €5 # 0 kaum von dem Minimum mit ¢4 = 0 und e¢5 = 0 abwichen. Der
Einfluss der ¢4- und e5-Terme war somit sehr gering. Dies wurde durch Un-
tersuchungen der Lage des Phasensprungs bestétigt. Der Phasensprung war
ohne Beriicksichtigung der €4~ und e5-Terme im Potential bei €; = 0. Wurden
diese Terme in die Rechnung miteinbezogen, verschob sich dieser Wert. Dabei
war die Abweichung vom Wert ¢; = 0 so minimal, dass sie zu vernachléssigen
war.

Im Kapitel 6 wurden die Minima der x- und der 7-Néherung angefiihrt [13],
[22], [23], [24]. Diese Minima wurden mit dem hier ermittelten Minimum
verglichen. Dabei war vor allem das Verhalten der Minima der x- und der 7-
Néherung im Bereich des Phasensprungs von Interesse. In leading order (LO)
war kein Unterschied zwischen dem Minimum der y-N&dherung ugc und dem
Minimum nach dem Algorithmus nach Ferrari up zu beobachten. Das Mini-
mum der 7-Ndherung ugy unterschied sich nur minimal im Bereich grofier
Wo-Werte von diesen. W, war ein Gitterparameter, dessen Wert nicht be-
kannt war und deshalb frei gewahlt wurde.

In next to leading order (NLO) war zwischen den Minima der Ndherungen
und up bei kleinen |e;|-Werten und €3 < 1 eine grofie Diskrepanz zu beobach-
ten. Insbesondere beschrieben die Minima der N&herungen nicht den Pha-
sensprung. Fiir e3 > 1 war der Unterschied der Minima gering. Zudem wurde
der Giiltigkeitsbereich der Ndherungen untersucht. Fiir die y-N&herung wur-
de ein Bereich von

7,0 <x <21,6

gefunden, in dem die Minima der Ndherungen nicht wesentlich vom Minimum
nach Ferrari abwichen. Die n-Nédherung ist eine Erweiterung der y-Néherung,
in der zusétzlich die Annahme gemacht wurde, dass die Grofle 7 viel kleiner
als 1 ist. Hier erwies sich ein Giiltigkeitsbereich von

7<0,2
als sinnvoll.

Das in dieser Arbeit ermittelte Minimum wurde zur Berechnung der Pio-
nenmassen benutzt. Dazu wurden in Kapitel 7 die Treelevelmassen, in LO
und in NLO, und die Schleifenbeitrige der Massen berechnet.

Die Treelevelmasse in LO wurde mit der Treelevelmasse in LLO der -Nédherung
verglichen. Die Massen wichen nicht deutlich voneinander ab. Da die Schlei-
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fenbeitrage nicht wesentlich zu der Masse beitrugen, wurde auf einen Ver-
gleich der Treelevelmassen in NLO verzichtet. Der Vergleich der vollstéindigen
Massen in NLO, d.h. Treelevelmassen in LO, Treelevelmassen in NLO und
die Schleifenbeitrdage, wurde angefiihrt. Die Massen der n-Nédherung wichen,
ebenso wie das Minimum dieser Niaherung, fiir €5 < 1 im Bereich kleiner |e; |-
Werte stark von den in dieser Arbeit berechneten Massen ab. Insbesondere
nahmen die Massenquadrate der 7-Ndherung hier teilweise negative Werte
an. Fiir e > 1 war das qualitative Verhalten der Massen gleich, allerdings
gab es quantitative Unterschiede.

Die Masse des Pions 73 unterschied sich von der Masse des Pions 7 oder 5.
Dieses Massensplitting nahm fiir grofler werdende |e;|-Werte ab. Es wurde
zudem der Vergleich mit dem Massensplitting der 7-Naherung aufgestellt.
Dabei waren fiir e3 < 1 deutliche Unterschiede erkennbar. Bei e3 > 1 waren
die Unterschiede geringer.

Von Interesse waren auch die Massen bei €; = 0. Es wurde erwartet, dass
die Masse My, fiir €5, = €3 (1 = p1c) den Wert Null annahm. Damit konnte
€3 = 0,984 bestimmt werden. Dieser Wert unterschied sich nicht stark von
dem Wert, der mit ¢4 = €5 = 0 berechnet werden konnte. Der Einfluss der
€4- und es-Terme auf das Minimum und damit auch auf die Masse war nur
gering. Dieses Ergebnis bestétigte die Untersuchungen aus Kapitel 5.

In Kapitel 8 wurde die Gasser-Leutwyler-Lagrangedichte fiir Ny = 3 betrach-
tet. Das Potential wurde auf Minima untersucht, um eventuelle Phasenspriin-
ge der Minima zu finden. Dazu wurden zwei mogliche Parametrisierungen der
Feldkonfigurationsmatrix vorgestellt, wobei sich eine der Parametrisierungen
als unvorteilhaft erwies. Auf die Massenmatrix wurde eine Drehmatrix ange-
wand, welche einen Drehwinkel und die Gell-Mann-Matrix A3 enthielt. Da-
durch blieb die Strange-Quarkmasse ungedreht. Lediglich die Up- und die
Down-Quarkmasse wurden gedreht.

Das Potential hatte mit diesen Parametrisierungen eine dhnliche Gestalt, wie
das Potential fiir Ny = 2. Dadurch konnten Abschétzungen der Koeffizienten
gemacht werden und gewisse Koeffizienten konnten zu Null gewéhlt werden.
Anderungen der GriéBe A, welche proportional zu der gedrehten Masse und
der Gitterkonstanten war, fithrten meist dazu, dass das Potential ,, gekippt*
wurde und sich dadurch die Lage der Minima verschob. Eine Verdnderung
des D-Wertes, welcher proportional zu der gedrehten Masse war, wirkte sich
auf die Wélbung des Potentials aus. In einigen Féllen existierten zwei Mini-
ma. Fiir zwei mogliche Realisierungen der Koeffizienten A bis D gab es einen
Sprung der Lage des absoluten Minimums. Wurde D # 0 gewéhlt, konnte
bis zu einem D-Wert von D < 2,5 der Sprung der Minimumslage beobachtet
werden.
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Der Algorithmus nach Ferrari erlaubte eine exakte Berechnung des Mini-
mums. Insbesondere beschrieb dieses Minimum das Verhalten bei kleinen
Quarkmassen und somit beim Phasensprung.

Dariiber hinaus kann der hier gefundene Giiltigkeitsbereich der x- und der
n-Nédherung zur Einschétzung der Ergebnisse dieser Naherungen benutzt wer-
den.

Besonders interessant ist die Phasenstruktur fiir Ny = 3. In Kapitel 8 wur-
den bereits erste Untersuchungen durchgefithrt und eine mogliche Parame-
trisierung der Feldkonfigurationsmatrix vorgestellt. Es gab einen Sprung des
Minimums fiir bestimmte Realisierungen der angefiihrten Koeffizienten.
Diese Ergebnisse konnen in nachfolgenden Arbeiten verwendet werden, um
die Phasenstruktur genauer zu untersuchen. Zum Beispiel kénnte der Pha-
sensprung des Minimums untersucht werden, wenn alle Koeffizienten des Po-
tentials beriicksichtigt werden. Eine andere interessante Frage ist, ob sich das
Verhalten der Minima fiir D < 0 gegeniiber dem Verhalten der Minima fiir
D > 0 andert.



Anhang A
SU(N)

Die Gruppe SU(N) ist die Gruppe der speziellen unitdren Matrizen, d.h.
die Determinate dieser Matrizen ist +1, mit der Dimension N. Die Trans-
formationsgruppe wird durch N? — 1 Generatoren charakterisiert. Im ersten
Teil dieser Arbeit wird der Fall Ny = 2 betrachtet, die Symmetriegruppe ist
SU(2). In Kapitel 8 wird der Fall Ny = 3 behandelt, die Symmetriegruppe
ist SU(3).

Al SU(2)

Die Generatoren der Gruppe SU(2) werden durch die Paulimatrizen be-

stimmt:

Ti .
T, = — =1,...,3.
5 1

Dabei haben die Paulimatrizen folgende Gestalt:

0 1 0 —i 1 0
(Vo) e (00) (0 )

Sie erfiillen die Vertauschungsrelation

[

und bilden beziiglich dieses Kommutators eine Lie-Algebra.
Fiir ein Produkt zweier Paulimatrizen gilt die Beziehung

]
27 2

. Tk
| = ey

TiTj = 1€k Tk,

fiir ¢ # j, bzw.
T;T; = 1,
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fiir ¢ = j.

Die Spur iiber die Paulimatrizen hat den Wert Null. Damit ist die Spur iiber
das Produkt einer geraden Anzahl von Paulimatrizen nur dann ungleich Null,
wenn jeweils zwei benachbarte Paulimatrizen identisch sind. Fiir die Spur
iiber das Produkt von drei Paulimatrizen gilt die Beziehung;:

<7-i7—j7—k> = 2i€ijk-

A2 SU(3)

Die Generatoren der SU(3)-Gruppe sind proportional zu den Gell-Mann-
Matrizen:

010 0 —i 0 1 0 0
M=|100], Xx=|io0o0], x=[0-10],
000 0 0 0 0 0 0
00 1 00 —i 000
M=lo0oo0oo0o], x=[000], Xx=|00T1],
100 i 0 0 010
00 0 L (10 0
=00 -i|, XN=—[01 0
0 i 0 V3\ o0 -2

Die Gell-Mann-Matrizen bilden beziiglich des Kommutators

A A

L, Ak
[ 9 75] = 1fijk7

eine Lie-Algebra. f;;; ist die vollstédndig assymetrische Strukturkonstante mit
[25]

Ji2s | Jiar | Jise | Soae | Sost | Sfaas | Sfaer
1 1 1 1 1 1

Jass | fors
V3 | V3
2

2 2 2 2 2 2

Alle weiteren moglichen Realisierungen der Strukturkonstanten haben den
Wert Null.



Anhang B

Dirac-Matrizen

B.1 Dirac-Matrizen im Minkowski-Raum

Die Dirac-Matrizen erfiillen im Minkowski Raum die Anti-Kommutator-Relation:

[v*,7"] = 2¢"1.
Die vier Dirac-Matrizen haben die Gestalt:
() ()
(45) -(25)

7; sind die drei Pauli-Matrizen.

Damit wird eine fiinfte Dirac-Matrix berechnet:

-1 0
5__:.0.1.2.3
7% = iy g2y (0 1>_

Zudem lasst sich mit den Dirac-Matrizen die antisymmetrische Matrix finden:

v 1 v
o =5[]
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B.2 Dirac-Matrizen im Euklidischen Raum

Im Euklidischen Raum erfiillen die Dirac-Matrizen die Anti-Kommutator-
Relation:

05 AF] = 28,1,

Eine mogliche Realisierung der vier Dirac-Matrizen lautet:

g ( 0 —in g_( 0 —im
= < i7'1 0 ’ T2 = iTQ 0 ’
0 —ir 0 -1
E _ 3 E _
73_(173 0 ) 74_(—1 0)‘

7; sind die drei Pauli-Matrizen.

Auch im Euklidischen Raum wird aus den vier Dirac-Martizen eine fiinfte
Dirac-Matrix gebildet:

. 10
¥ = IMN U = ( 0 —1 >

Ebenso wie im Minkowski-Raum wird mit Hilfe des Anti-Kommutators der
Dirac-Matrizen eine antisymmetrische Matrix gebildet:

ohy = % v, E] -



Anhang C

Relationen der
Niederenergiekonstanten

Zur Vereinfachung der LEC konnen folgende Relationen benutzt werden:

Lsy = 204+ Ls

Lgg = 2L¢+ Lg
Wiy = 2Wy+ Ws
Wgﬁ = 2W6 + Wg

Wi = 2W§+ Wi
Fiir beliebige LEC X ist die Gleichung

zu verwenden.

Diese neuen Koeflizienten bilden die Grofien:

W % (WSG — 2L86)
W' = % (Lgs — Wae + W)
W — % (W54 - L54) .

Aus Gitterrechnungen [19] ist fiir die GréBen W und W das Produkt mit W,
bekannt:
= 10°MeV®

6 - 10" MeV?

W.WO =
Wew, =
WWg =

= & 8
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In den Gitterrechnungen [19] sind die Zahlenwerte folgender Gréfien ermittelt
worden:

Lsy = 1-1073
Lgg = 0,8-1073
FQ = 86MeV
By = 3,1GeV
a = ﬁMeV_1 = 0, 1fm.

Zur Renormierung der Schleifenbeitrage der Masse werden die unrenormier-
ten LEC X durch renormierte LEC plus das Vielfache einer divergenten Kon-
stante R ersetzt:

Vi
X, =X/ R.
it 3272

Fiir die Konstante ; gilt

L Fl fir Xz == Ll und Xz = Wi/

[; und A; werden mit Hilfe der Gleichungen [28]

v | 4] 5 6 7 8
2 2
F A 1 & Nf +2 0 Nf —4
vl 8 16N7 16Ny
2 2
A ' 1 & Nf +2 0 Nf —4
vl 8 8 8N7 8Ny

berechnet. Fiir den Fall Ny = 2 ergeben sich die Renormierungskonstanten:

v |4]5]6 |78

1 (1] 3
Filsl20135100
1] 3
Ai%ZEOO
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