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Kapitel 1

Einleitung

Die Grundlagen der Quantenphysik wurden Anfang des 20. Jahrhunderts
durch die Untersuchung der Schwarzkörperstrahlung gelegt. Max Planck er-
klärte die Strahlung durch diskrete Emissions- und Absorptionsstrahlung der
Atome. Insbesondere ist dadurch die Energie diskret. Zur Beschreibung die-
ser diskreten Strahlung wurde das Plancksche Wirkungsquantum h = 2πh̄
eingeführt. Die kleinste dieser Strahlungeinheiten wird als Quant bezeichnet.
1887 entdeckte Heinrich Hertz den photoelektrischen Effekt. Albert Einstein
behandelte diesen Effekt unter Berücksichtigung der von Planck entdeckten
Quantelung. 1905 veröffentlichte Einstein seine Arbeiten zu diesem Effekt.
Er folgerte, dass nicht nur die Emissions- und Absorptionsstrahlung der Ato-
me, sondern auch die elektromagnetische Strahlung selbst gequantelt ist. Das
Lichtquant, auch Photon genannt, besitzt damit eine gequantelte Energie:

E = hν.

Die Energie des Photons ist proportional zu seiner Frequenz ν und dem
Planckschen Wirkungsquantum. Der Compton-Effekt bestätigte Einsteins In-
terpretation des photoelektrischen Effekts. Die Interpretation des Lichts als
Photon entspricht einer Deutung als Teilchen. Interferenz- und Beugungs-
erscheinungen fordern die Deutung des Lichts als Welle. Es liegt ein Welle-
Teilchen-Dualismus vor.
Ein deutlicher Unterschied zwischen Quantenmechanik und klassischer Me-
chanik ist die Wahrscheinlichkeitsinterpretation der Quantenmechanik. 1927
stellte Werner Heisenberg die Heisenbergsche Unbestimmtheitsrelation

∆x∆p ≥ h̄

2

auf. Ort und Impuls eines Teilchens sind somit nicht mehr exakt bestimmbar.
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Die Quantenmechanik ist Grundlage der Quantenfeldtheorie, in der die Fel-
der quantisiert sind. Liegt zudem Invarianz unter einer Eichtransformation
vor, wird von einer Eichfeldtheorie gesprochen. Die Quantenelektrodynamik
(QED) wurde in den 50er Jahren des letzten Jahrhunderts formuliert. Ihr
liegt die elektromagnetische Wechselwirkung zugrunde. Die Symmetriegrup-
pe der QED ist die U(1)-Symmetriegruppe, welche abelsch ist. Die Theorie
der starken Wechselwirkung wird durch die Quantenchromodynamik (QCD)
beschrieben mit der nicht-abelschen Symmetriegruppe SU(3). Überlegungen,
die QED und die QCD durch eine vereinheitlichende Theorie, GUT (Grand
Unified Theory), zu beschreiben, haben bisher keine Ergebnisse hervorge-
bracht.
Die Untersuchung der QCD bei niedrigen Energien ist schwierig, da die Kopp-
lungskonstante der QCD dann von der Größenordnung 1 ist. Eine störungs-
theoretische Behandlung ist so nicht mehr möglich. Die chirale Störungstheo-
rie, χPT (chiral perturbation theory), wurde in den 80er Jahren des letzten
Jahrhunderts von Heinrich Leutwyler und Jürg Gasser entwickelt und stellt
eine Möglichkeit der Betrachtung der QCD bei niedrigen Energien bereit. Die
χPT beinhaltet mehrere physikalische Parameter, die entweder experimentell
oder durch Gittersimulationen bestimmt werden. Um diese Gittersimulatio-
nen durchführen zu können, wird die Lagrangedichte auf einem diskreten Git-
ter formuliert. Eine Formulierung mit Hilfe der twisted mass QCD (tmQCD)
hat sich dabei als sinnvoll erwiesen.

In der tmQCD wird die Wilson-Wirkung durch eine Drehung des Massen-
terms modifiziert. Dadurch werden Nullmoden, sogenannte quark zero modes
verhindert. Diese quark zero modes verhindern eine statistische Auswertung.
Die tmQCD im Rahmen der χPT ist bereits in mehreren Arbeiten behan-
delt worden, z.B. [8], [22], [24]. Häufig wurden dabei gewisse Näherungen
gemacht.
In dieser Diplomarbeit sollen diese Näherungen zur Berechnung des Poten-
tialminimums nicht benutzt werden. Diese Vorgehensweise erlaubt einen Ver-
gleich der Minima und eine Einschätzung, in welchen Bereichen die Näherun-
gen sinnvoll sind.
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In Kapitel 2 dieser Diplomarbeit werden die Grundlagen der χPT betrach-
tet. Insbesondere wird die spontane Symmetriebrechung erläutert und die
Lagrangedichte diskutiert.
Diese Lagrangedichte wird im Kapitel 3 auf dem Gitter betrachtet und die
nötigen Modifikationen werden eingeführt. Dazu werden die Wilson- und die
Symanzik-Wirkung vorgestellt.
Schwierigkeiten, die aufgrund der Wilson-Wirkung auftreten, lassen sich durch
die Einführung der tmQCD vermeiden. Dazu wird in Kapitel 4 die Lagrange-
dichte für Nf = 2 bis next to leading order (NLO) betrachtet. Die Feldkon-
figurationsmatrix dieser Lagrangedichte wird in der physical basis und der
twisted basis vorgestellt. Das Potential wird in der twisted basis auf Minima
untersucht. Um diese zu berechnen, muss eine quartische Gleichung gelöst
werden.
Die Lösung dieser Gleichung wird im nächsten Kapitel hergeleitet. Dazu wird
der Algorithmus nach Ferrari benutzt. Da die Lagrangedichte auf dem Gitter
betrachtet wird, müssen, neben den physikalischen Parametern, auch gewisse
Gitterparameter angegeben werden. Einige wurden bereits in anderen Arbei-
ten bestimmt, z.B. [19], andere werden hier abgeschätzt. Aus der Entwicklung
der Lagrangedichte bis NLO wird ein Gültigkeitsbereich der Variablen gefor-
dert. Das Potential enthält Terme, deren Einfluss auf das Minimum nicht
groß sein sollte. Dies wird in dieser Arbeit überprüft. Bei gewissen Werten
der Varibalen springt der Wert des Minimums. Dieser Sprung des Minimums
wird hier näher untersucht.
In Kapitel 6 werden die η̂- und die χ̂-Näherung vorgestellt [13], [22], [23],
[24]. In beiden Näherungen wird die Annahme kleiner Massen gemacht, diese
dürfen allerdings auch nicht zu klein werden. Die η̂-Näherung ist eine Erwei-
terung der χ̂-Näherung. Hier wird zusätzlich die Annahme gemacht, dass die
Gitterkonstante im Verhältnis zur Masse nicht zu groß wird. Zu jeder Nä-
herung wird das entsprechende Minimum angegeben. Diese werden mit dem
Minimum verglichen, welches mit dem Algorithmus nach Ferrari berechnet
wird. Die Vergleiche werden in leading order (LO) und in NLO durchgeführt.
Im 7. Kapitel wird die Masse der Pionen berechnet. Die Treelevelmasse in
LO, die Treelevelmasse in NLO und die Schleifenbeiträge in NLO werden
berechnet und renormiert. Zudem wird die Veränderung der Masse durch
die Berücksichtigung der Schleifenbeiträge untersucht. Anschließend werden
diese Massen mit den Massen verglichen, welche nach der η̂-Näherung berech-
net werden. Das in NLO auftretende Massensplitting wird betrachtet und mit
einem theoretischen Wert verglichen. Zum Schluß dieses Kapitels wird das
Verhalten der Massen bei einem bestimmten Wert betrachtet und mit dem
theoretisch zu erwartenden Verhalten verglichen.
Das letzte Kapitel behandelt das Potential der Lagrangedichte für Nf = 3. Es
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wird eine mögliche Parametrisierung der Feldkonfigurationsmatrix und der
Drehmatrix vorgestellt. Das Potential wird in dieser Parametrisierung auf die
Existenz von Minima und deren Verhalten bei Veränderung der Koeffizienten
untersucht.



Kapitel 2

Chirale Störungstheorie

2.1 Standardmodell

Das Standardmodell beschreibt die materiebildenden Teilchen und deren
Wechselwirkungen [1]. Bekannt sind vier Wechselwirkungen: die Gravitation,
die elektromagnetische, die schwache und die starke Wechselwirkung. Die
Elementarteilchen des Standardmodells sind Fermionen, das sind die sechs
Quarks, die Leptonen und jeweils deren Antiteilchen. Es gibt sechs Lepto-
nen: das Elektron, das Myon, das Tauon und die dazugehörigen Neutrinos.
Die sechs Quarks haben den Spin 1/2. Ihnen wird der Freiheitsgrad flavour
zugeordnet: Up, Down, Strange, Charm, Bottom und Top. Die Flavours wer-
den in drei Generationen eingeteilt:

(
u
d

)
,

(
s
c

)
,

(
b
t

)
.

Nflavour = Nf bezeichnet die Anzahl der Quarks.
Zwischen den Quarks wirkt die starke Wechselwirkung, deren Austauschteil-
chen, auch Eichboson genannt, das Gluon ist. Die Reichweite dieser Wechsel-
wirkung liegt im Femtometer-Bereich. Aufgrund der starken Wechselwirkung
liegen Quarks nur in gebundenen Zuständen vor. Dieses Phänomen wird als
Confinement bezeichnet. Die gebundenen Zustände der Quarks sind die Ha-
dronen. Bekannt ist die Verbindung eines Quarks mit einem Antiquark zu
einem Meson oder die Verbindung dreier Quarks zu einem Baryon. Neben
der starken Wechselwirkung ist für die Interaktionen zwischen den Hadronen
auch die schwache Wechselwirkung, mit einer Reichweite von ca. 10−18m, ver-
antwortlich. Die Eichbosonen der schwachen Wechselwirkung sind das W+-,
das W−- und das Z-Boson. Interaktionen zwischen den Hadronen können
durch die Streumatrix berechnet werden. Diese kann mit Hilfe von Feynman-
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Diagrammen graphisch dargestellt werden.
Jedes Quark hat eine ihm eigene Masse:

flavour Up Down Strange Charm Bottom Top
Masse(GeV) 0, 005 0, 009 0, 175 1, 35 5, 3 176

Dabei war die Masse des Top-Quarks experimentell lange Zeit unbekannt
und wurde erst in den letzten Jahren gefunden.
Aufgrund ihrer Masse werden die Quarks Up, Down und Strange als leichte
Quarks bezeichnet [2]. Die Quarks Charm, Bottom und Top werden schwe-
re Quarks genannt. Leichte Quarks besitzen eine viel kleinere Masse als
ΛQCD = 1GeV. ΛQCD ist eine typische Größenordnung der Quantenchro-
modynamik∗ (QCD). Sie wird als hadronische Skala bezeichnet. Die Masse
der schweren Quarks ist größer als ΛQCD. Der Wert 1GeV der hadronischen
Skala ergibt sich aus der typischen Masse der Hadronen.

Das Proton besteht aus zwei Up-Quarks und einem Down-Quark. Allerdings
gilt:

mp = 0, 938GeV≫ 2mu +md.

Die Hadronenmasse entsteht offensichtlich nicht durch reines Zusammenset-
zen der Quarkmassen, sondern auf komplexerem Weg.
Da die Masse der leichten Quarks sehr viel kleiner ist als die hadronische
Skala, stellt

mu = md = ms = 0

eine sinnvolle Näherung dar.

2.2 Lagrangedichten in der QCD

In der QCD wird jedem Quark ein weiterer Freiheitsgrad, die Farbe, auch
colour genannt, zugeordnet. Dieser kann die Werte rot, grün oder blau an-
nehmen. Das Quark-Feld lässt sich aus einem Vektor der drei Dirac-Spinoren
darstellen:

qf =




qf,rot

qf,grün

qf,blau



 .

Die Verbindung eines Quarks mit einem Antiquark wird als Meson bezeich-
net. Sind drei Quarks gebunden wird dies Baryon genannt. Das Antiquark
besitzt eine Antifarbe. Diese Antifarbe ist zusammen mit einer Farbe

”
farb-

los“. Ebenso sind drei Farben zusammen
”
farblos“. Der Freiheitsgrad colour

∗Aus dem Griechischen: chromos = Farbe
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ist somit nicht direkt beobachtbar und dient nur der mathematischen Be-
schreibung.
Die QCD ist unter der SU(3) Symmetriegruppe invariant. Eine Symmetrie-
gruppe spezieller unitärer Matrizen† mit der Dimension N wird mit SU(N)
bezeichnet. Sie hat N2 − 1 Generatoren, welche nicht vertauschen. Somit ist
die QCD eine nichtabelsche Eichtheorie. Die Generatoren der SU(3) sind pro-
portional zu den acht Gell-Mann-Matrizen† Ta = λa/2, mit a = 1, . . . , 8 und
erfüllen die Vertauschungsrelation:

[
λa

2
,
λb

2

]
= ifabc

λc

2
.

Die Lagrangedichte der QCD lautet:

LQCD =
∑

f

q̄f (iγµDµ −mf ) qf −
1

4
Fµν,aF

µν
a . (2.1)

Dabei sind γµ die Dirac-Matrizen‡ und

Dµ = ∂µ − ig
8∑

a=1

λa

2
Aµ,a, (2.2)

ist die kovariante Ableitung, welche die acht Eichfelder Aµ,a, die Eichbosonen
oder Gluonen, enthält. Der Feldstärketensor besteht aus den Eichfeldern und
ihren Ableitungen

Fµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c, (2.3)

ist aber unabhängig von den Quarkflavours.
Wie schon in Abschnitt 2.1 beschrieben ist es sinnvoll den Grenzfall mu =
md = ms = 0 einzuführen. Die Lagrangedichte der leichten Quarks lautet
dann:

LQCD =
∑

f=u,d,s

q̄f iγ
µDµqf −

1

4
Fµν,aF

µν
a . (2.4)

Es können nun die Projektionsoperatoren eingeführt werden, welche die La-
grangedichte (2.4) in einen linkshändigen und einen rechtshändigen Anteil
aufteilen. Die Händigkeit der Lagrangedichte wird auch als Chiralität be-
zeichnet, bzw. die Lagrangedichte als eine chirale Lagrangedichte. Diese Pro-
jektionsoperatoren sind definiert als

PR =
1

2
(1 + γ5) PL =

1

2
(1− γ5)

†Siehe Anhang A
‡Siehe Anhang B



12 Chirale Störungstheorie

und haben die Eigenschaften

PR + PL = 1, P 2
R/L = PR/L und PRPL = PLPR = 0.

Damit folgt die chirale Lagrangedichte:

LQCD =
∑

f=u,d,s

(q̄R,f iγ
µDµqR,f + q̄L,f iγ

µDµqL,f )−
1

4
Fµν,aF

µν
a . (2.5)

Diese Lagrangedichte besitzt eine globale U(3)L × U(3)R Symmetrie. Nach
dem von Emmy Noether aufgestellten Theorem gibt es für jede globale, konti-
nuierliche Symmetrietransformation, welche die Lagrangedichte und die Be-
wegungsgleichung invariant lässt, einen klassisch erhaltenen Strom. Damit
lassen sich 2× (8 + 1) = 18 erhaltene Ströme finden:

V µ,a = Rµ,a + Lµ,a = q̄γµ λa

2
q

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q

V µ = Rµ + Lµ = q̄γµq
Aµ = Rµ − Lµ = q̄γµγ5q.

Klassisch sind diese Ströme immer erhalten, quantenmechanisch ist dies nicht
immer zwingend. Der axiale Singulettstrom Aµ besitzt aufgrund von Quan-
teneffekten eine Anomalie. Bei der Betrachtung des Quarkmassenterms als
Störung, können Aussagen über die Erhaltung der Ströme gemacht werden.
Der vektorielle Oktettstrom V µ,a ist nur erhalten für mu = md = ms, der
axiale Oktettstrom Aµ,a dagegen nicht. Für den Fall von endlichen Quark-
massen besitzt der axiale Singulettstrom Aµ eine Divergenz. Der vektorielle
Singulettstrom V µ ist immer erhalten, hieraus folgt die Baryonenerhaltung.

2.3 Spontane Symmetriebrechung

Spontane Symmetriebrechung kann beobachtet werden, wenn der Grundzu-
stand eines Systems entartet ist. Es muss ein Grundzustand ausgewählt wer-
den, der nicht mehr alle Symmetrien der dazuhörigen Lagrangedichte besitzt
[2], [3]. Für die genaue Untersuchung dieses Phänomens wird als Beispiel die
φ4 Lagrangedichte betrachtet

L (φ, ∂µφ) =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4
φ4 =

1

2
∂µφ∂

µφ− V (φ) , (2.6)

mit einem hermiteschen, skalaren Feld φ (x). Diese Lagrangedichte ist inva-
riant unter der Transformation R : φ→ −φ. Es wird λ > 0 gewählt. Für die
Größe m werden zwei Fälle unterschieden:
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-
φ (x)

6V (φ)

Abbildung 2.1: Potential V (φ) für m2 > 0 im Wigner-Weyl-Modus

-
φ (x)

6V (φ)

Abbildung 2.2: Potential V (φ) für m2 < 0 im Nambu-Goldstone-Modus

• m2 > 0: Das Potential V (φ) besitzt ein Minimum für φ0 = 0, siehe Abb.
2.1. Der Grundzustand, 〈0|φ(x)|0〉 = φ0, ist nicht entartet und invariant
unter der Transformation R. Diese Situation wird auch Wigner-Weyl-
Modus genannt.

• m2 < 0: Das Potential V (φ) besitzt nun zwei Minima bei φ = ±φ0, wo-
bei φ0 =

√
−m2/λ ist, siehe Abb. 2.2. Das System besitzt zwei entartete

Grundzustände, 〈0|φ(x)|0〉 = ±φ0. Diese sind nicht mehr invariant un-
ter der Transformation R. Die Symmetrie des Systems wird durch die
Wahl eines Grundzustandes spontan gebrochen. Diese Situation wird
Nambu-Goldstone-Modus genannt.

2.3.1 Goldstone-Theorem

Das Goldstone-Theorem besagt, dass beim Auftreten der spontanen Sym-
metriebrechung kontinuierlicher Symmetrien masselose Teilchen, sogenannte
Goldstone-Bosonen beobachtet werden.
Um diese Goldstone-Bosonen zu finden, muss nach Auswahl eines Grundzu-
standes das Potential um das zugehörige Minimum entwickelt werden. Aus
Gleichung (2.6) ist erkennbar, dass die Masse eines Teilchens in dem zum
zugehörigen Feld quadratischen Term enthalten ist.
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2.3.2 Spontane Symmetriebrechung unter einer nicht-
abelschen Symmetrie

Als Beispiel wird die Lagrangedichte

L
(
~φ
)

= L (φ1, φ2, φ3) =
1

2
∂µφi∂

µφi −
m2

2
φiφi −

λ

4
(φiφi)

2 (2.7)

betrachtet, welche invariant unter der nichtabelschen Symmetriegruppe SO(3)
ist. Es sei λ > 0 und m2 < 0. Die Minima des Potentials liegen auf einem
Kreis mit dem Radius:

|~φmin| =
√
−m2

λ
=: v.

Nun muss ein Grundzustand ausgewählt werden, z.B.:

~φmin = vê3.

Die Entwicklung nach dem Minimum lautet dann

φ3 = v + η,

damit ergibt sich für das Potential:

V =
1

2

(
−2m2

)
η2 + λvη

(
φ2

1 + φ2
2 + η2

)
+
λ

4

(
φ2

1 + φ2
2 + η2

)2 − λ

4
v4.

Aus dieser Gleichung lassen sich die Massen der drei Felder φ1, φ2 und η
ablesen:

mφ1 = mφ2 = 0

mη =
√
−2m2.

Daher existieren zwei masselose Goldstone-Bosonen, φ1 und φ2.

Die Anzahl der Goldstone-Bosonen kann gruppentheoretisch hergeleitet wer-
den. Es gilt:

Anzahl der Goldstone-Bosonen = n = nG − nH .

Dabei ist nG die Anzahl der Generatoren der Symmetriegruppe der Lagran-
gedichte. nH ist die Anzahl der Generatoren der Untergruppe, welche den
Grundzustand invariant lassen.
In dem obigen Beispiel ist die Symmetriegruppe die SO(3)-Gruppe, welche
3 Generatoren Ti mit [Ti, Tj] = iǫijkTk besitzt. Das Minimum ist invariant
bezüglich einer Drehung in ê3-Richtung. Diese Symmetrie hat den Genera-
tor T3. Somit ist die Anzahl der Goldstone-Bosonen: 3 − 1 = 2, wie oben
gefunden.
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2.4 Spontane Symmetriebrechung in der QCD

In diesem Abschnitt werden die Auswirkungen der spontanen Symmetrie-
brechung in der QCD untersucht. Dazu wird die Lagrangedichte im Grenzfall
verschwindender Massen, siehe Gleichung (2.5), für Nf = 2 betrachtet. Dieser
Grenzfall wird auch als chiraler Grenzfall bezeichnet:

LQCD =
∑

f=u,d

(q̄R,f iγµD
µqR,f + q̄L,f iγµD

µqL,f )−
1

4
Fµν,iF

µν
i .

Diese Lagrangedichte besitzt eine SU(2)L × SU(2)R ×U(1)V-Symmetrie. Die
U(1)V-Symmetrie ist exakt. Sowohl Lagrangedichte als auch Grundzustand
sind invariant unter dieser Symmetrie, aus der die Baryonenzahlerhaltung re-
sultiert. Die Transformationsgruppe G = SU(2)L × SU(2)R lässt den Grund-
zustand nicht invariant. Dieser ist invariant unter der Untergruppe H =
SU(2)V. Die Generatoren Ti für Nf = 2 sind proportional zu den drei Pauli-
matrizen§ τi mit Ti = τi/2. Es existieren demnach n = 6− 3 = 3 Goldstone-
Bosonen. Die 3 Goldstone-Bosonen sind die Pionen.

2.5 Effektive Lagrangedichte für Goldstone-

Bosonen

Ziel der weiteren Betrachtungen ist es, eine effektive Lagrangedichte der
Goldstone-Bosonen aufzustellen. Diese Lagrangedichte soll im chiralen Grenz-
fall invariant unter der chiralen Transformation SU(2)L×SU(2)R sein. Deswei-
teren soll der Grundzustand die Symmetrie SU(2)V haben, damit die spon-
tane Symmetriebrechung eintritt. Die Betrachtung der Goldstone-Bosonen
erfolgt damit im Sinne einer Störungstheorie. Da die Symmetrie der Lagran-
gedichte die chirale Symmetrie ist, wird diese Störungstheorie auch als chirale
Störungstheorie oder chiral perturbation theory (χPT) bezeichnet. Um jetzt
die Lagrangedichte der Goldstone-Bosonen herzuleiten, wird zunächst das
Transformationsverhalten von Goldstone-Bosonen untersucht.

2.5.1 Transformationsverhalten von Goldstone-Bosonen

Zur Beschreibung des Transformationsverhaltens wird der Begriff der Links-
nebenklasse eingeführt.

§Siehe Anhang A
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Definition: Sei H eine Untergruppe von G. Man bezeichnet die
Menge

gH = {gh|h ∈ H}
als eine Linksnebenklasse von H.

Als Raum der Goldstone-Bosonen wird M =
{
~Π|~Π : M4 → Rn

}
definiert.

M4 ist der Minkowski-Raum, n ist die in Abschnitt 2.3.2 definierte Anzahl
der Goldstone-Bosonen. Die Felder der Goldstone-Bosonen, oder Goldstone-
Bosonen-Variablen, werden durch

~Π =




Π1
...

Πn





dargestellt. Zwischen den Goldstone-Bosonen-Variablen ~Π und den Elemen-
ten der Linksnebenklasse existiert eine isomorphe Abbildung. Dadurch lässt
sich das Transformationsverhalten der Goldstone-Bosonen ermitteln.
Zu jedem ~Π existiert genau ein g̃H mit geeignetem g̃. Das transformierte ~Π′

lässt sich dann durch Multiplikation von g̃H mit g finden.
Die Gruppe G ist jetzt die SU(Nf )L × SU(Nf )R-Gruppe, welche den Grund-
zustand nicht invariant lässt. H ist demnach die SU(Nf )V-Gruppe. Dann ist
g = (L,R). Damit ergibt sich das Transformationsverhalten der Felder der
Goldstone-Bosonen:

U (x)→ RU (x)L†. (2.8)

U ist die Feldkonfigurationsmatrix, in der die Felder der Goldstone-Bosonen
enthalten sind. Diese Matrix kann in Exponentialform dargestellt werden:

U (x) = e
i
Φ(x)
F0 . (2.9)

Die Konstante F0 hat die Dimension einer Energie, die Konfigurationsmatrix
ist folglich dimensionslos. Φ ist das Feld der Goldstone-Bosonen, welches
bisher mit ~Π bezeichnet wurde.
Für Nf = 3 gilt:

Φ(x) =
8∑

a=1

λaφa(x) =




π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K− √

2K̄0 − 2√
3
η



 . (2.10)

λa sind die acht Gell-Mann-Matrizen. φa sind hermitesche Felder. Für Nf = 3
gibt es n = 16 − 8 = 8 Goldstone-Bosonen: drei Pionen π+,−,0, das Eta-
Teilchen η und die vier Kaonen K+,−,0 und K̄0.
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Im Fall Nf = 2 werden die Gell-Mann-Matrizen durch die drei Paulimatrizen
τi ersetzt. Die Goldstone-Bosonen sind die drei Pionen:

Φ(x) =
3∑

i=1

τiφi(x) =

(
π0

√
2π+

√
2π− −π0

)
. (2.11)

2.5.2 Die effektive Lagrangedichte in O(p2) der Impul-
sentwicklung

Es wird nun eine Lagrangedichte bis zur Ordnung O(p2) aufgestellt, wel-
che das Transformationsverhalten aus Gleichung (2.8) besitzt. Damit die
spontane Symmetriebrechung eintritt, soll der Grundzustand die Symme-
trie SU(2)V × U(1)V besitzen. Die allgemeinste Lagrangedichte, die diesen
Bedingungen genügt und chiral invariant ist, lautet:

L2,kin =
F 2

0

4
Tr

(
∂µU∂

µU †) . (2.12)

Wird in diese Lagrangedichte die Feldkonfigurationsmatrix aus Gleichung
(2.9) eingesetzt, ergibt sich die übliche Form

1

2
∂µΦ∂µΦ†

des kinetischen Terms.
Der chirale Grenzfall mu = md = 0 ist nur eine Näherung, die Massen des
Up- und des Down-Quarks sind endlich. Dadurch kommt es zu einer explizi-
ten Symmetriebrechung durch den Masseterm. Daraus folgt, dass die Pionen
ebenfalls nicht masselos sind, sie werden daher Pseudo-Goldstone-Bosonen
genannt. Die Lagrangedichte aus Gleichung (2.12) berücksichtigt nicht diese
explizite Symmetriebrechung durch die endlichen Massen der Quarks. Um
dies zu berücksichtigen wird die Massenmatrix

M =

(
mu 0
0 md

)

eingeführt. Mit Hilfe der Spurionanalyse findet sich der Term der Lagrange-
dichte, in dem die Massenmatrix vorkommt:

L2,M =
F 2

0B0

2
Tr

(
MU † + UM †) . (2.13)

B0 ist eine Konstante mit der Dimension einer Energie. Die vollständige
Lagrangedichte bis zur Ordnung O(p2) ist die Summe der Terme L2,kin und
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L2,M :
L2 = L2,kin + L2,M

=
F 2

0

4
Tr

(
∂µU∂

µU †) +
F 2

0 B0

2
Tr

(
MU † + UM †) .

Die Feldkonfigurationsmatrix mit Gleichung (2.11) wird jetzt in den Feldern
bis zur zweiten Ordnung entwickelt, um die Masse der Pionen zu erhalten. Es
wird mu = md = m 6= 0 gesetzt. Wie schon in Abschnitt 2.3.1 gefunden, ist
die Masse eines Teilchens in dem zum zugehörigen Feld quadratischen Term
enthalten. Damit gilt für die Masse der Pionen:

M2
π = 2B0m. (2.14)

Wird der Fall Nf = 3 betrachtet, so muss zusätzlich das Strange-Quark mit
der Masse ms berücksichtigt werden. Die Massenmatrix M behält ihre Dia-
gonalform, wird aber zu einer 3×3-Matrix. Für die Feldkonfigurationsmatrix
wird Gleichung (2.10) verwendet. Zusätzlich zu der Pionenmasse aus Glei-
chung (2.14) werden die Massen der Kaonen und des η-Teilchens berechnet
zu

M2
K = B0(m+ms) (2.15)

und

M2
η =

2

3
B0(m+ 2ms). (2.16)

Diese Massen entsprechen der Gell-Mann-Okubo-Formel:

4M2
K = 3M2

η +M2
π . (2.17)

Als nächstes wird ein von Steven Weinberg aufgestelltes Sortierschema vor-
gestellt. Damit lassen sich Terme in der Lagrangedichte einführen, die eine
höhere Ordnungen in M haben.

2.5.3 Das Weinberg’sche Powercounting

Dem Weinberg’schen Powercounting liegt ein Theorem zugrunde [2], das be-
sagt, dass die allgemeinste S-Matrix, welche der Konsistenzbedingungen der
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Analytizität, der Unitarität, der Kausalität und gewissen Symmetriebedin-
gungen genügen soll, perturbativ durch eine effektive, allgemeine Lagrange-
dichte berechnet werden kann. Die Terme dieser Lagrangedichte sollen unab-
hängig sein und ebenfalls der Symmetrie genügen. Jeder mögliche Term wird
dabei berücksichtigt.
Aufgrund der Beziehung M2

π ∝ m, siehe Gleichung (2.14), wird der Quark-
masse die gleiche Ordnung wie zwei Ableitungen zugeordnet. Die Ableitungen
treten immer in gerader Anzahl auf, so dass sie zu Lorentzskalaren kontra-
hieren. Daher lässt sich die Lagrangedichte nach Ordnungen der Masse und
der Impulse ordnen und in der Form

L =
∞∑

i=1

L2i =
∑

D

LD = L2 + L4 + L6 + · · ·

schreiben. Es treten somit nur gerade Ordnungen der Lagrangedichte auf.

Das Weinberg’sche Zählschema liefert eine Möglichkeit Feynman-Diagrammen
eine Ordnung der Lagrangedichte zuzuordnen, diese wird mit D bezeichnet.
Aus der Reskalierung der Impulse und Massen der externen Mesonen ergibt
sich das Verhalten der Amplitude:

M
(
tp, t2M2

)
= tDM

(
p,M2

)
.

Für jeden Vertex L2n des Diagramms ergibt sich ein Reskalierungsverhalten
von t2n für den Vertexfaktor und t−4 für die impulserhaltende Deltafunktion.
Jeder Vertex ergibt damit einen Beitrag zur Ordnung D von:

∞∑

n=1

N2n (2n− 4) .

Dabei ist N2n die Anzahl der Vertizes im Diagramm. Die inneren Mesonen-
linien werden durch das Integral

∫
d4k

(2π)4

i

k2 −M2 + iǫ

berechnet und reskalieren wie:
∫

d4k

(2π)4

i

k2 −M2 + iǫ
M2→t2M2

=
k→tk

t2
∫

d4k

(2π)4

i

k2 −M2 + iǫ
.
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Dies ergibt den Beitrag
2NI ,

mit NI Anzahl der innere Mesonenlinien, zur Ordnung D. Die Erhaltung des
Viererimpulses ergibt den zusätzlichen Term +4. Damit lautet die Gleichung
für die Ordnung D:

D = 4 + 2NI +
∞∑

n=1

N2n (2n− 4) . (2.18)

Mit Hilfe der Relation NL = NI−(
∑

nN2n − 1) lässt sich D durch die Anzahl
der Vertizes und der unabhängigen Schleifen NL ausdrücken:

D = 2 +
∞∑

n=1

2 (n− 1)N2n + 2NL. (2.19)

Aus dieser Gleichung lässt sich ablesen, dass die Schleifendiagramme minde-
stens die Ordnung D = 4 haben.
Terme in der Lagrangedichte, welche die Ordnung D = 2 haben, werden als
Terme führender Ordnung oder als leading order (LO) Terme bezeichnet.
Terme mit der Ordnung D = 4 werden als nächstführende Ordnungsterme
oder als next to leading order (NLO) Terme bezeichnet.

Gesucht wird die Lagrangedichte bis NLO, d.h. bis D = 4. Die allgemeinste,
effektive, chirale Lagrangedichte bis zur Ordnung D = 2 wurde bereits in
Abschnitt 2.5.2 hergeleitet. Es wird die Abkürzung

χ = 2B0M

eingeführt. Damit ergibt sich für die Lagrangedichte bis LO:

L2 =
F 2

0

4

〈
∂µU (∂µU)†

〉
+
F 2

0

4

〈
χU † + Uχ†〉 . (2.20)

Hierbei wird die Schreibweise Tr → 〈〉 verwendet. Die Lagrangedichte bis
NLO ergibt sich aus denselben Überlegungen, wie die Lagrangedichte bis LO.
Zuvor wird ermittelt, wie sich die Lagrangedichte auf dem Gitter verändert.



Kapitel 3

Gitter-QCD

In diesem Kapitel wird die Lagrangedichte zur Betrachtung auf dem Gitter
modifiziert. Durch Gittersimulationen, z.B. Monte-Carlo-Rechnungen, lassen
sich viele Daten zur Verifizierung der Theorie berechnen. Dabei müssen auch
Effekte berücksichtigt und eingeschätzt werden, welche durch die Gittersi-
mulationen entstehen.

3.1 Euklidische Formulierung der Lagrange-

dichte

Für die Formulierung der Lagrangedichte auf dem Gitter wird vom Minkowski-
Raum in den Euklidischen Raum gewechselt. Die euklidische Wirkung SE,
und insbesondere e−SE , ist reell und verhindert damit Oszillationen [4].
Der metrische Tensor des Minkowski-Raums

gµν = diag(1,−1,−1,−1)

geht über in den metrischen Tensor des Euklidischen Raums

gE
µν = diag(1, 1, 1, 1).

Dies wird durch den Übergang t → it von reellen zu imaginären Zeiten er-
reicht. Dadurch kommt es zu einer Drehung um π/2 in der komplexen Zeit-
Ebene, einer Wick-Rotation. Die Indizies werden von µ = 0, 1, 2, 3 umbenannt
in µ = 1, 2, 3, 4. Dabei geht die Zeitkoordinate des Minkowski-Raums x0 im
Euklidischen Raum über in x4.
Zur Modifizierung der Lagrangedichte wird die Bedingung

[
γE

µ , γ
E
ν

]
+

= 2δµν



22 Gitter-QCD

an den Anti-Kommutator der Dirac-Matrixen∗ gestellt. Dies wird z.B. reali-
siert durch:

γE
i = iγi γE

4 = −γ0 iγµ∂µ = −γE
µ∂

E
µ .

Damit lautet die Lagrangedichte bis LO (2.20) im euklidischen Raum:

L2 =
F 2

0

4

〈
∂µU (∂µU)†

〉
− F 2

0

4

〈
χU † + Uχ†〉 . (3.1)

3.2 Wilson-Wirkung

In der Gittertheorie wird der Abstand der Gitterpunkte mit a und die Rich-
tung mit µ = 0, 1, 2, 3 bezeichnet. Eine Möglichkeit die Wirkung auf dem
Gitter zu formulieren, ist die Ableitungen durch endliche Differenzen und die
Integrale durch Summen über die Gitterplätze auszutauschen. Dieser Weg
hat allerdings einige Nachteile, da die Wirkung für a 6= 0 nicht mehr eichin-
variant ist. Aufgrund des Renormierungsverhaltens ist dies auch für a → 0
der Fall. Eine Alternative zu dieser einfachen Umformulierung hat Kenneth
G.Wilson vorgeschlagen [5]. Dabei hat er zuerst eine Eichinvarianz für das
Gitter formuliert und danach die Wirkung angepasst. Das Ergebnis ist die
eichinvariante Wilson-Wirkung.

Auf dem Gitter ist das Produkt der Fermionfelder ψ̄ (x) ·ψ (y) nicht eichinva-
riant. Deswegen wird eine Matrix U(x, y) ∈ SU(N) eingeführt, welche trans-
formiert wie

U(x, y)→ Λ(x)U(x, y)Λ−1(y),

mit Λ ∈ SU(N)[4]. Durch das Transformationsverhalten der Matrix U(x, y)
ist das Produkt ψ̄ (x) · U(x, y) · ψ (y) eichinvariant. Die Matrix U(x, y) wird
Paralleltransporter genannt und ist im Kontinuum definiert als:

U(x, y, C) =: P exp

[
ig0

∫ y

x

Aa
µ(z)Tadz

µ

]
.

Das Integral von x nach y wird entlang eines Pfades C berechnet. Der Paral-
leltransporter ist somit pfadabhängig. P bezeichnet das pfadgeordnete Pro-
dukt, analog zu dem zeitgeordnetem Produkt. Aa

µ sind die Eichfelder und Ta

die Generatoren der Symmetriegruppe.

∗Siehe Anhang B
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Um die Eichinvarianz auf dem Gitter zu erreichen, wird der kleinste Parallel-
transporter U(x, y, C) benutzt. Dieser wird als Link-Variable bezeichnet und
der dazugehörige Pfad als Link :

U (x+ aµ̂, x) =: Uxµ =: exp
[
ig0aA

b
µ(x)Tb

]
∈ SU(N).

Hierbei ist µ̂ der Einheitsvektor in µ-Richtung. Damit wird eine eichinvariante
Wirkung erhalten: ∑

x,y

ψ̄ (x+ aµ̂, x) · Uxµψ (x) .

Die Plaquette-Variable, welche ein Produkt aus mehreren Link-Variablen ist,
lässt sich definieren als:

U(p) = Uxµν =: U(x+aν̂)(−ν)U(x+aµ̂+aν̂)(−µ)U(x+aµ̂)νUxµ.

Der Pfad der Link-Variablen ist die Plaquette p.

Die Wilson-Wirkung hat die Form

S
[
U, ψ̄, ψ

]
= SG [U ] + SF

[
U, ψ̄, ψ

]
, (3.2)

wobei SG die Wilson-Plaquette-Wirkung und SF die Wilson-Quark-Wirkung
ist [6],[7]. Die Wilson-Plaquette-Wirkung wird durch die Gleichung

SG [U ] =
1

g2
0

∑

p

Tr (1− U(p)) (3.3)

beschrieben. Hierbei ist g0 die nackte Kopplungskonstante und U(p) der Par-
alleltransporter um die Plaquette p. Die Summe läuft über alle orientierten
Plaquetten.
Die Wilson-Quark-Wirkung genügt der Gleichung:

SF

[
U, ψ̄, ψ

]
= a4

∑

x

ψ̄ (x) (DW +m0)ψ (x) . (3.4)

m0 ist die nackte Quarkmasse und DW der Wilson-Dirac-Operator mit:

DW =
1

2

[
γµ

(
∇∗

µ +∇µ

)
− ar∇∗

µ∇µ

]
. (3.5)
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r bezeichnet den Wilson-Parameter. Die Ableitungen ∇∗
µ und ∇µ sind wie

folgt definiert:

∇µψ (x) = 1
a
[U (x, µ)ψ (x+ aµ̂)− ψ (x)]

∇∗
µψ (x) = 1

a

[
ψ (x)− U † (x− aµ̂, µ)ψ (x− aµ̂)

]
.

Die sehr leichten Quarkmassen lassen sich in Simulationen nur durch sehr
hohen Rechenaufwand realisieren. Da die Rechenleistung der heutigen Com-
puter noch zu gering ist um mit der physikalischen Masse der leichten Quarks
zu rechnen, wird mit einer schwereren als der physikalischen Quarkmasse ge-
rechnet. Durch chirale Extrapolation werden die physikalischen Quarkmassen
erreicht. Hierbei wird zuerst der Kontinuum-Limes a → 0 genommen. Da-
nach wird der chirale Limes gebildet, d.h. die Massen gehen gegen Null , bzw.
werden sehr klein.

3.3 Symanzik-Wirkung

In der Symanzik-verbesserten Wirkung werden zusätzliche Terme der Ord-
nung O(a) eingeführt. Diese Terme wirken als Gegenterme zu den Termen,
welche Gittereffekte der Ordnung O(a) verursachen und lassen sie somit ver-
schwinden. Die Symanzik-verbesserte Wirkung hat damit keine O(a)-Terme
und erreicht schneller den Kontinuums-Limes [6],[7].

Zuerst wird die Symanzik’sche effektive Wirkung betrachtet:

Seff = S0 + aS1 + a2S2 + . . . (3.6)

S0 ist die Wirkung im Kontinuum. Zu dieser Wirkung werden die Gitterterme

aiSi

addiert. Die Symanzik’sche effektive Wirkung ist somit eine Gitterwirkung
im Kontinuum. Um die Symanzik-verbesserte Wirkung zu erreichen werden
Korrekturterme mit Hilfe der Gleichung

Sk =

∫
d4Lk (x) (3.7)
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berechnet. Die Terme Lk (x) haben die Dimension 4 + k, ihre Anzahl wird
darüberhinaus durch die Integration über x eingeschränkt. An die restli-
chen Terme wird die Forderung der Eichinvarianz und der Invarianz unter
U(1)× SU(Nf )-Transformationen gestellt. Für die Lagrangedichte L1 ergibt
sich damit, dass sie eine Linearkombination folgender Felder sein muss:

O1 = ψ̄σµνFµνψ

O2 = ψ̄DµDµψ + ψ̄
←−
Dµ
←−
Dµψ

O3 = mTr {FµνFµν}
O4 = m{ψ̄γµDµψ − ψ̄

←−
Dµγµψ}

O5 = m2ψ̄ψ. (3.8)

Wie für die Wirkung lässt sich auch eine effektive Theorie für die Felder
aufstellen:

φeff (x) = φ0 (x) + aφ1 (x) + a2φ2 (x) + . . . (3.9)

Für diese Felder lassen sich Bewegungsgleichungen aufstellen, welche mit den
Korrelationsfunktionen verknüpft sind und zu Redefinitionen der Felder füh-
ren. Mit Hilfe dieser Redefinitionen lassen sich die Felder O2 und O4 aus der
Gleichung (3.8) eliminieren.
Mit den restlichen Feldern lässt sich eine verbesserte Gitter-Wirkung aufstel-
len. Die Lagrangedichte L1 wird durch die Einführung eines Gegenterms

a5
∑

x

{c1Ô1 + c3Ô3 + c5Ô5}

verbessert. Die Felder Ôk sind Darstellungen der Felder Ok auf dem Gitter.
Die Konstanten ck haben die Ordnung O(a2).
Die Symanzik-verbesserte Wirkung lautet schließlich

Simpr[U, ψ̄, ψ] = S[U, ψ̄, ψ] + δS[U, ψ̄, ψ], (3.10)

wobei S[U, ψ̄, ψ] die Wilson-Wirkung ist und

δS[U, ψ̄, ψ] = a5
∑

x

cSWψ̄ (x)
i

4
σµνF̂µν (x)ψ (x) (3.11)

gilt. F̂µν ist eine Gitterdarstellung des Feldstärketensors Fµν . cSW ist der
Sheikholeslami-Wohlert-Koeffizient.
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3.4 Lagrangedichte bis O(p2)

Für die zusätzlichen Gitterterme gilt das gleiche Transformationsverhalten
wie für die Massenterme aus Abschnitt 2.5.2. Zur Einführung der Gitterkon-
stanten a wird die Matrix

ρ = ρ01 = 2W0a1

definiert, welche die Konstante W0 enthält. Damit ergibt sich bis O(p2) für
den Gitterterm:

−F
2
0

4

〈
ρU † + Uρ†

〉
. (3.12)

Dieser Term korrespondiert mit Gleichung (3.11). Der Sheikholeslami-Wohlert-
Koeffizient cSW geht ein in die Konstante W0. a

4
∑

x geht über in ein Integral
und nur a bleibt übrig. Dieses a ist in der Matrix ρ enthalten. Folglich lautet
die euklidische Lagrangedichte bis O(p2) auf dem Gitter:

L2 =
F 2

0

4

〈
∂µU (∂µU)†

〉
− F 2

0

4

〈
χU † + Uχ†〉− F 2

0

4

〈
ρU † + Uρ†

〉
. (3.13)

Auf demselben Weg wird die Lagrangedichte bis O(p4) gefunden. Diese wird
im nächsten Kapitel betrachtet.



Kapitel 4

Twisted Mass QCD

In der twisted mass QCD (tmQCD) im Kontinuum wird die Massenmatrix
axial gedreht [8], [9]:

M (ω) = M ′eiωγ5τ3 .

Die Form der Lagrangedichte ist unter dieser Transformation invariant, falls
die Quarkfelder wie

ψ (ω) = e−
i
2
ωγ5τ3ψ′

transformieren. Der Masseterm in der Lagrangedichte behält mit diesen Trans-
formationen seine Form:

ψ̄Mψ = ψ̄′M ′ψ′.

Die Physik wird durch die tmQCD nicht verändert. Lediglich der Vakuum-
zustand bei der spontanen Symmetriebrechung erhält eine andere Richtung.

Auf dem Gitter dagegen wird die Physik durch die tmQCD verändert. Durch
die explizite Brechung der chiralen Symmetrie auf dem Gitter kommt es zur
ω-Abhängigkeit. Ein Vorteil der tmQCD auf dem Gitter besteht in der auto-
matischenO(a)-Verbesserung [10]. Bei vollständig getwisteter Massenmatrix,
ω = π/2, verschwinden die Terme, welche proportional zu a sind. Zudem wird
in der tmQCD schneller der Kontinuumslimes erreicht.
In der Wilson-Wirkung treten sogenannte quark zero modes auf[11]. Im Wilson-
Dirac-Operator existieren bei endlichen Quarkmassen verschwindend kleine
Eigenwerte, die entsprechenden Eigenvektoren werden quark zero modes ge-
nannt. In der QCD nehmen die Eigenwerte des Wilson-Dirac-Operator al-
lerdings nur dann den Wert Null an, wenn die Quarkmassen ebenfalls ver-
schwinden. Aufgrund der quark zero modes kommt es zu Fluktuationen der
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Fermionen Observablen. Dadurch verändert sich deren Standardabweichung
und eine statistische Auswertung ist nicht mehr möglich. Die tmQCD bietet
eine Möglichkeit dieses Problem zu umgehen [12]. Eine gedrehte Wirkung
führt dazu, dass es nur dann verschwindende Eigenwerte gibt, wenn auch
die Quarkmassen verschwinden. Die Drehung wirkt auf den Wilson-Dirac-
Operator, dieser Fall wird physical basis genannt. Durch eine geeignete Trans-
formation ist es möglich die Drehung auf den Masseterm wirken zu lassen,
dieser Fall wird twisted basis genannt.
Die Masse mq ist die Differenz von nackter und kritischer Quarkmasse:

mq = m0 −mcr.

Der Wilson-Dirac-Operator DW aus Gleichung (3.5) geht damit über in

DW,m = DW +mcr

=
1

2
γµ

(
∇∗

µ +∇µ

)
+

[
−1

2
ar∇∗

µ∇µ +mcr

]

=: D + Dm, (4.1)

womit die Wirkung der physical basis lautet:

Spb
F

[
U, ψ̄pb, ψpb

]
= a4

∑

x

ψ̄pb (x) (DW,t +mq)ψpb (x) . (4.2)

Der gedrehte Wilson-Dirac-Operator DW,t ist durch

DW,t = D + Dme−iωγ5τ3

definiert. In der twisted basis ist der Wilson-Dirac-Operator ungedreht und
die Masse ist gedreht:

Stb
F

[
U, ψ̄tb, ψtb

]
= a4

∑

x

ψ̄tb (x) (DW,m +mq,t)ψtb (x) . (4.3)

Die gedrehte Masse mq,t ist definiert durch:

mq,t = mqe
iωγ5τ3 .
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Die tmQCD wird jetzt auf die effektive Lagrangedichte der Goldstone-Bosonen
auf dem Gitter, siehe Gleichung (3.13), angewendet. Dazu wird die Gasser-
Leutwyler-Lagrangedichte bis NLO, L = L2 +L4, auf dem Gitter betrachtet
[7]:

L = L2 + L4

=
F 2

0

4

〈
∂µU∂µU

†〉− F 2
0

4

〈
χU † + Uχ†〉− F 2

0

4

〈
ρU † + Uρ†

〉

− L1

〈
∂µU∂µU

†〉2 − L2

〈
∂µU∂νU

†〉2 − L3

〈(
∂µU∂µU

†)2
〉

+ L4

〈
∂µU∂µU

†〉 〈
χ†U + U †χ

〉
+W4

〈
∂µU∂µU

†〉 〈
ρ†U + U †ρ

〉

+ L5

〈
∂µU∂µU

† (
χ†U + U †χ

)〉
+W5

〈
∂µU∂µU

† (
ρ†U + U †ρ

)〉

− L6

〈
χ†U + U †χ

〉2 −W6

〈
χ†U + U †χ

〉 〈
ρ†U + U †ρ

〉

−W ′
6

〈
ρ†U + U †ρ

〉2 − L7

〈
χ†U − U †χ

〉2

−W7

〈
χ†U − U †χ

〉 〈
ρ†U − U †ρ

〉
−W ′

7

〈
ρ†U − U †ρ

〉2

− L8

〈
χ†Uχ†U + U †χU †χ

〉
−W8

〈
ρ†Uχ†U + U †ρU †χ

〉

−W ′
8

〈
ρ†Uρ†U + U †ρU †ρ

〉
, (4.4)

wobei Li, mit i = 1, . . . , 8, die Gasser-Leutwyler-Koeffizenten sind und Wi,
mit i = 1, . . . , 8, die Gitterdynamik-Parameter. χ ist proportional zur Mas-
se und ρ ist proportional zur Gitterkonstanten a. U ist die Feldkonfigu-
rationsmatrix. Die Gasser-Leutwyler-Koeffizenten und die Gitterdynamik-
Parameter werden auch als Niederenergiekonstanten, bzw. low energy con-
stants (LEC), bezeichnet.
Das betrachtete Potential V muss im Minimum nach den Feldern entwickelt
werden, um die Pionenmasse zu berechnen. Deswegen wird in diesem Kapi-
tel das Minimum des Potentials gesucht. V lässt sich aus der Lagrangedichte
ablesen: L = T + V , woraus folgt:

V (U) = −F
2
0

4

〈
χU † + Uχ†〉− F 2

0

4

〈
ρU † + Uρ†

〉

− L6

〈
χ†U + U †χ

〉2 −W6

〈
χ†U + U †χ

〉 〈
ρ†U + U †ρ

〉

−W ′
6

〈
ρ†U + U †ρ

〉2 − L7

〈
χ†U − U †χ

〉2

−W7

〈
χ†U − U †χ

〉 〈
ρ†U − U †ρ

〉
−W ′

7

〈
ρ†U − U †ρ

〉2

− L8

〈
χ†Uχ†U + U †χU †χ

〉

−W8

〈
ρ†Uχ†U + U †ρU †χ

〉

−W ′
8

〈
ρ†Uρ†U + U †ρU †ρ

〉
. (4.5)
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Um das Minimum zu bestimmen wird nun die Parametrisierung

U = u01 + i
3∑

i=1

uiτi (4.6)

der Feldkonfigurationmatrix verwendet. Hierbei sind τi mit i = 1, · · · , 3 die
Paulimatrizen. Zusätzlich gilt die Nebenbedingung

u2
0 + ~u2 = 1, (4.7)

welche aus der Unitarität der Feldkonfigurationsmatrix und der Bedingung
det U = 1 folgt.
Diese Parametrisierung wird nun in das Potential eingesetzt, welches dann
eine Funktion der Variablen u0, . . . , u3 ist. In [13] wurde die Vakuumorientier-
ung in NLO untersucht für den Fall, dass nicht a/m ≪ 1 gelten muss. Die
Vakuumorientierung beschränkt sich auf die 1- und τ3-Richtung. Deswegen
gilt hier der Spezialfall:

U = u01 + iu3τ3

u2
0 + u2

3 = 1. (4.8)

Neben der Parametrisierung der Feldkonfigurationsmatrix werden zur expli-
ziten Berechnung des Potentials noch Parametrisierungen der Massenmatrix
χ und der Gittermatrix ρ benötigt. Hierfür gibt es zwei Möglichkeiten, die
twisted basis oder die physical basis.

4.1 Physical basis

In der physical basis wird die Gittermatrix ρ gedreht. Dies hat den Vorteil,
dass der Masseterm unverändert in seiner Form bleibt. Es wird im Folgenden
der Isospin-Limit (mu = md = mq0) und die Notation nach [14] benutzt. Der
Gitterterm wird durch die Transformation

U = e−iω
2

τ3U ′e−iω
2

τ3

gedreht. Der gedrehte Gitterterm lautet dann

ρ (ω) = 2W0ae
iωτ3 = ρ01 + iρ3τ3,

welcher sich in zwei Teile, einen Real- und einen Imaginärteil, aufteilen lässt

ρ0 = 2W0a cos (ω) und ρ3 = 2W0a sin (ω) .
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Für den Masseterm gilt weiterhin die Bedingung:

χ = χ01 = 2B0mq01.

Mit Hilfe der Transformationsvorschrift der Feldkonfigurationsmatrix ist er-
kennbar, dass der gedrehte Gitterterm und der ungedrehte Gitterterm die-
selbe Form haben:

〈
ρU † + Uρ†

〉
=

〈
ρeiω

2
τ3U ′†eiω

2
τ3 + e−iω

2
τ3U ′e−iω

2
τ3ρ†

〉

=
〈
ρ (ω)U ′† + U ′ρ† (ω)

〉
.

U ′ ist die Feldkonfigurationsmatrix in der physical basis. Zudem wurde

ρ (ω) = ρeiωτ3 = eiω
2

τ3ρeiω
2

τ3

benutzt.
Die physical basis wird hier nicht zur Berechnung des Minimums verwendet.
Im Folgenden Abschnitt wird die twisted basis vorgestellt. Diese Parametri-
sierung eignet sich besser zur Untersuchung der Phasenstruktur der Minima.

4.2 Twisted basis

Nun werden die Auswirkungen der getwisteten Massenmatrix in der chiralen
Störungstheorie betrachtet. Die Massen des Up- und des Down-Quarks wer-
den gleichgesetzt mu = md = mq0 und die Notation nach [14] benutzt. Der
Masseterm wird mit Hilfe der Transformationsvorschrift

U = eiω
2

τ3U ′eiω
2

τ3

gedreht. Der gedrehte Masseterm lautet dann

χ (ω) = χe−iωτ3 = 2B0 (m̃1− iµτ3) = χ̃01 + iχ′
3τ3,

dieser lässt sich ebenfalls in Real- und Imaginärteil aufteilen. Für die gedreh-
ten Massen gelten die Gleichungen

m̃ = mq0 cos (ω) und µ = mq0 sin (ω) .

Hier bleibt der Gitterterm ungedreht:

ρ = ρ01 = 2W0a1.

Die Drehung des Masseterms lässt seine Form invariant:
〈
χU † + Uχ†〉 =

〈
χe−iω

2
τ3U ′†e−iω

2
τ3 + eiω

2
τ3U ′eiω

2
τ3χ†〉

=
〈
χ (ω)U ′† + U ′χ† (ω)

〉
.
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U ′ ist die Feldkonfigurationsmatrix in der twisted basis. Zudem wurde

χ (ω) = χe−iωτ3 = e−iω
2

τ3χe−iω
2

τ3

benutzt.
Zur Vereinfachung des Potentials werden die Abkürzungen

χ′
0 = χ̃0 + ρ0 = 2B0m

′
0 und χ′

3 = −2B0µ

eingeführt. Hierbei ist m′
0 der Abstand zur kritischen, nackten Quarkmasse.

Als Nächstes wird die Berechnung der Spurterme durchgeführt. Es ist sinn-
voll, für die LEC X die Abkürzung∗

Xij = 2Xj +Xi (4.9)

einzuführen. Damit werden die Terme im Potential vereinfacht zu:

V (u0, u3) = −c1u0 + c2u
2
0 + c3u3 + c4u

2
3 + c5u0u3 + Lconst. (4.10)

Hierbei werden die Koeffizienten

c1 = F 2
0χ

′
0

c2 = −8
[
L86χ

′
0
2 − (2L86 −W86)χ

′
0ρ0 + (L86 −W86 +W ′

86)ρ
2
0

]

c3 = −F 2
0χ

′
3

c4 = −8L86χ
′
3
2

c5 = −16L86χ
′
0χ

′
3 + 8 (2L86 −W86)χ

′
3ρ0 (4.11)

und

Lconst = −L8

(
−4χ′

0
2
+ 8χ′

0ρ0 − 4ρ2
0 − 3χ′

3
2
)

+W8

(
4χ′

0ρ0 + 4ρ2
0

)
+ 4W ′

8ρ
2
0

benutzt. Mit Hilfe der Nebenbedingung aus Gleichung (4.8) hängt das Po-
tential nur noch von der Größe u0 ab:

V± (u0) = −c1u0 + c2u
2
0 ± c3

√
1− u2

0 + c4

− c4u2
0 ± c5u0

√
1− u2

0 + Lconst. (4.12)

Dieses Potential wird nach u0 abgeleitet, um das Minimum zu bestimmen:

∂V± (u0)

∂u0

= −c1 + 2c2u0 ∓ c3
u0√

1− u2
0

− 2c4u0 ± c5
√

1− u2
0 ∓ c5

u2
0√

1− u2
0

!
= 0. (4.13)

∗Siehe Anhang C
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Umgeformt wird aus dieser Gleichung die quartische Gleichung

(
−4c22 − 4c24 − 4c25 + 8c2c4

)
u4

0

+ (4c1c2 − 4c1c4 − 4c3c5)u
3
0

+
(
4c22 + 4c24 + 4c25 − c21 − c23 − 8c2c4

)
u2

0

+ (4c1c4 − 4c1c2 + 2c3c5)u0

+
(
c21 − c25

)
= 0, (4.14)

bzw.

Au4
0 +Bu3

0 + Cu2
0 +Du0 + E = 0. (4.15)

Diese quartische Gleichung kann mit dem Algorithmus nach Ferrari [15] gelöst
werden.
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Kapitel 5

Algorithmus nach Ferrari

In diesem Kapitel wird die quartische Gleichung

Au4
0 +Bu3

0 + Cu2
0 +Du0 + E = 0 (5.1)

aus Abschnitt 4.2 mit Hilfe des Algorithmus nach Lodovico Ferrari (1522-
1565) [15] gelöst. Dieser Algorithmus wurde 1545 von seinem Lehrer Gerolamo
Cardano in dem Buch

”
Ars magna de Regulis Algebraicis“ veröffentlicht. Bei

diesem Algorithmus wird die quartische Gleichung durch drei Substitutions-
schritte auf eine quadratische Gleichung gebracht. Diese kann mit Hilfe der
bekannten Verfahren gelöst werden. Zuerst wird die Gleichung (5.1) umge-
formt

u4
0 + a3u

3
0 + a2u

2
0 + a1u0 + a0 = 0, (5.2)

mit

a3 =
B

A
, a2 =

C

A
, a1 =

D

A
und a0 =

E

A
.

Nun wird die quartische Gleichung durch Substitution auf eine kubische Glei-
chung gebracht

y3 + αy2 + βy + γ = 0,

mit
α = −a2

β = a1a3 − 4a0

γ = 4a0a2 − a2
1 − a2

3a0.

Diese Gleichung hat drei Lösungen. Um diese Lösungen zu finden, werden
die Größen

k =
3β − α2

9
und l =

9αβ − 27γ − 2α3

54
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eingeführt. Damit ergibt sich

R = k3 + l2

und

S =
3

√
l +
√
R T =

3

√
l −
√
R.

Die Lösungen der kubischen Gleichung lauten mit diesen Größen

y1 = −1
3
α+ (S + T )

= 1
3
a2 + S + T,

y2 = −1

3
α+

1

2
(S + T ) + i

√
3

2
(S − T )

und

y3 = −1

3
α+

1

2
(S + T )− i

√
3

2
(S − T ).

Die Lösungen y2 und y3 sind nur reell, wenn S = T , bzw. R = 0 gilt. Mit
den hier zu verwendenen Werten ist R 6= 0, so dass als Lösung für die kubi-
sche Gleichung y1 verwendet werden muss. Diese Größe wird für den dritten
Substitutionsschritt verwendet:

K =

√
1

4
a2

3 − a2 + y1

Lm =






√
3
4
a2

3 −K2 − 2a2 +m
4a3a2−8a1−a3

3

4K
für K 6= 0

√
3
4
a2

3 − 2a2 + 2m
√
y2

1 − 4a0 für K = 0.

Damit lautet die Lösungsgleichung zur Bestimmung des Minimums:

u0;1,2,3,4 = −1

4
a3 +m

1

2
K + n

1

2
Lm. (5.3)

Zum Erhalt aller vier Lösungen müssen m,n ∈ {−1; 1} gewählt werden. Um
die physikalische Lösung zu bekommen, wird χ′

3 festgesetzt und χ′
0 läuft ge-

gen ±∞. Dabei wird die physikalische Lösung, das gesuchte Minimum, für
χ′

0 > 0 gegen +1 laufen, reell sein und nicht größer als 1 werden. Für χ′
0 < 0

läuft das Minimum gegen −1, ist ebenfalls reell und der Betrag der Lösung
wird nicht größer als 1. Die Größe c1 ist proportional zu χ′

0 und wird des-
wegen als Variable benutzt. Zur Bestimmung des Minimums wird c1 größer
und kleiner Null gewählt, was χ′

0 > 0 bzw. χ′
0 < 0 entspricht. Die Größe c3

ist proportional zu −χ′
3 und damit proportional zu µ. c3 wird im Folgenden
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-
mq0

6
µ

u u

Aoki-Szenario, c2 > 0

-
mq0

6
µ

u
u

normales Szenario, c2 < 0

Abbildung 5.1: Phasendiagramm im Aoki - und im normalen Szenario

immer positiv gewählt.
Um das Minimum zu bestimmen, werden zunächst die Konstanten c4 und
c5 vernachlässigt, welche das Verhalten des Minimums für große |χ′

0| nicht
wesentlich beeinflussen. Die Größe c2 wird noch zur Minimumsbestimmung
benötigt. Das Vorzeichen von c2 bestimmt, ob eine Aoki-Phase [16] auftritt
oder nicht. Bei positivem Vorzeichen kann das Aoki-Szenario beobachtet wer-
den und bei negativem Vorzeichen das normale Szenario [17], siehe Abb. 5.1.
Im Aoki-Szenario tritt ein Phasenübergang zweiter Ordnung in der mq0−µ-
Ebene auf, sobald |mq0| gleich einem kritischen Wertmq0,c ist. Hier verschwin-
den die Massen des neutralen und der geladenen Pionen. Für |mq0| < mq0,c,
der Aoki-Phase, ist die Masse der geladenen Pionen endlich, die des neutralen
Pions nicht. Die Flavour-Symmetrie ist somit gebrochen. Im normalen Szena-
rio ist ein Phasenübergang erster Ordnung erkennbar, siehe Abb. 5.2. Dieser
Phasenübergang äußert sich in einem Sprung des Minimums bei mq0 = 0,
bzw. c1 = 0, für |µ| kleiner einem kritischen Wert µc. Bei starker Kopplung,
d.h. β = 6/g2

0 < 4, 6 , herrscht das Aoki-Szenario vor, bei schwacher Kopp-
lung das normale Szenario [18]. Im Folgenden wird das normale Szenario
betrachtet, und damit

c2 < 0

gewählt.
Da in einem ersten Schritt die Größen c4 und c5 Null gesetzt werden, werden
die Koeffizienten

A = −4c22,
B = 4c1c2,
C = 4c22 − c21 − c23,
D = −4c1c2,

und
E = c21
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Abbildung 5.2: Verlauf des Minimums u0 bei c3 = 0 im normalen Szenario

zur Minimumsbestimmung benutzt. Das Minimum ist dann nur von den Ko-
effizienten c1 bis c3 abhängig. Aufgrund der Länge der Gleichungen wird
davon abgesehen, diese explizit anzugeben.
Nun werden die dimensionslosen Größen ǫ1, ǫ2 und ǫ3 eingeführt. Zur Nor-
mierung wird die Konstante

ĉ2 := −8(L86 −W86 +W ′
86)ρ

2
0 < 0 (5.4)

benutzt. Werden die Größen W ′ und η mit∗

W ′ :=
1

2
(L86 −W86 +W ′

86)

bzw.

η := W ′ ·W 2
0 ,

eingeführt, lässt sich ĉ2 schreiben als

ĉ2 = −64 · η · a2.

Im Folgenden wird das Minimum in Abhängigkeit der Variablen ǫ1, bei ei-
nem festen Wert für ǫ3 betrachtet. Die Größe ǫ2 wird durch diese Variablen

∗Siehe Anhang C
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ausgedrückt:

ǫ1 =
c1

2|ĉ2|

ǫ2 =
c2
ĉ2

= 1 + 64
w · a
F 2

0

· ǫ1 + 2048
L86 · a2

F 4
0

· η · ǫ21

ǫ3 =
c3

2|ĉ2|
. (5.5)

In der Gleichung der Größe ǫ2 werden die Abkürzungen†

W :=
1

2
(W86 − 2L86)

und
W ·W0 =: w

verwendet.
Die Normierungskonstante ĉ2 ist so gewählt, dass sie unabhängig von der
Masse ist. Eine Normierung mit einer massenabhängigen Größe hat eine
falsche Massenabhängigkeit der Variablen zur Folge. Dadurch resultieren
Peaks im Graphen des Minimums im Bereich kleiner Werte für ǫ1.
Mit den dimensionslosen Variablen ergibt sich die quartische Gleichung:

(−ǫ22)u4
0 + (−2ǫ1ǫ2)u

3
0 + (ǫ22 − ǫ21 − ǫ23)u2

0 + (2ǫ1ǫ2)u0 + ǫ21 = 0. (5.6)

Diese lässt sich plotten und das Verhalten betrachten.
Im normalen Szenario gibt es bis zu einem kritischen Wert µc einen Sprung
des Minimums. Dieser befindet sich für den Fall c4 = 0 und c5 = 0 bei c1 = 0.
Ist c4 6= 0 und c5 6= 0 kann nicht ausgeschlossen werden, dass dieser Sprung
bei c1 6= 0 zu beobachten ist. Es ist aber anzunehmen, dass der c1-Wert, bei
dem das Minimum springt, nicht stark von 0 abweicht. Diese Annahme wird
in Abschnitt 5.3.3 überprüft.
Zunächst wird angenommen, dass der Sprung des Minimums bei c1 = 0 zu
beobachten ist, und die Abweichung von diesem Wert zu vernachlässigen
ist. Das Minimum setzt sich dann aus zwei der vier möglichen Lösungen
zusammen. Für ǫ1 ≥ 0 muss die Lösung mit m = n = +1 gewählt werden,
für ǫ1 ≤ 0 dagegen die Lösung mit m = n = −1.
Im nächsten Schritt werden die Koeffizienten c4 und c5 wieder eingeführt.
Dazu werden die dimensionslosen Größen

ǫ4 =
c4

2|ĉ2|
= −1024

L86 · η · a2

F 4
0

ǫ23

ǫ5 =
c5

2|ĉ2|
= 32

w · a
F 2

0

ǫ3 + 2048
L86 · η · a2

F 4
0

ǫ1ǫ3 (5.7)

†Siehe Anhang C
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verwendet. Diese werden durch die Variablen ǫ1 und ǫ3 ausgedrückt. Mit
diesen Größen ergibt sich die quartische Gleichung:

(−ǫ22 − 4ǫ2ǫ4 − 4ǫ24 − 4ǫ25)u
4
0

+(−2ǫ1ǫ2 − 4ǫ1ǫ4 − 4ǫ3ǫ5)u
3
0

+(ǫ22 − ǫ21 − ǫ23 + 4ǫ2ǫ4 + 4ǫ24 + 4ǫ25)u
2
0

+(2ǫ1ǫ2 + 4ǫ1ǫ4 + 2ǫ3ǫ5)u0

+(ǫ21 − ǫ25) = 0. (5.8)

ǫ1 und ǫ3 werden als Variablen benutzt. Für alle anderen Größen, die in den
Größen ǫ2, ǫ4 und ǫ5 enthalten sind müssen Zahlenwerte eingegeben werden.
Die Größen L86 und F0 haben eine physikalische Bedeutung im Kontinuum.
Sie lassen sich phänomenologisch oder durch Gitter-Rechnungen abschät-
zen. F0 ist die Pion-Zerfallskonstante. Im Folgenden wird L86 = 0, 8 · 10−3

und F0 = 86MeV benutzt‡. Die Größen a, w und η sind Gittergrößen.
Sie müssen für die betrachtete Wirkung, hier die Wilson-Wirkung, durch
Gittersimulationen‡ ermittelt werden. Für a wird als typischer Wert a =
0, 1fm gewählt. w ist in [19] mit ungefähr w = 104MeV3 angegeben. Im Fol-
genden werden die Werte

F0 L86 a w
86MeV 0, 8 · 10−3 0, 1fm 104MeV3

benutzt, solange kein anderer Wert angegeben ist.
Für η ist kein Zahlenwert bekannt. Der Wert wird deshalb abgeschätzt.

5.1 Vergleich der η-Werte

Um das Minimum des Potentials berechnen zu können, ist ein Zahlenwert für
η notwendig. Dieser wird jetzt abgeschätzt. Dabei werden zwei Relationen
benutzt, mit deren Hilfe anhand numerischer Ergebnisse die jeweiligen η-
Werte berechnet werden können. Bei der Betrachtung dieser Werte muss
beachtet werden, dass teilweise eine andere als die Wilson-Wirkung, z.B. die
DBW2-Wirkung, benutzt wurde und die η-Werte wirkungsabhängig sind.

5.1.1 Kritischer Wert der gedrehten Masse µc

Der Sprung des Minimums bei ǫ1 = 0 ist nur bis zu einem bestimmten ǫ3-
Wert zu beobachten. Sobald ǫ3 > 1 ist, ist das Minimum stetig in ǫ1 = 0.

‡Siehe Anhang C
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Anhand der Definition von ǫ3 in Gleichung (5.5), lässt sich für ǫ3 = 1 ein
kritischer Wert der gedrehten Masse µ finden:

µc =
|ĉ2|

F 2
0 ·B0

= 64
η · a2

F 2
0 ·B0

. (5.9)

η wird für die DBW2-Wirkung [19] und für die Wilson-Wirkung [20] berech-
net. Die Werte für µc und a wurden dabei aus den jeweiligen Quellen ent-
nommen, für B0 wurde der Wert B0 = 3, 1GeV verwendet§. Für die DBW2-
Wirkung wurde kein kritischer Wert für die gedrehte Masse µc angegeben,
sondern ein Wert der gedrehten Masse µ mit µ > µc. Die Ergebnisse für die
DBW2-Wirkung sind damit nur als obere Grenze zu verstehen.

µc (MeV) a (fm) η
(
MeV6

)

Wilson-Wirkung 100 0, 16 5, 447 · 1013

DBW2-Wirkung
β = 0, 67 11, 2 0, 176 5, 042 · 1012

β = 0, 74 11, 4 0, 13 9, 407 · 1012

5.1.2 Pionmasse im Mininmum m2
π,min

Für die Pionmasse im Minimum gilt die Gleichung [17]:

m2
π,min =

2|ĉ2|
F 2

0

= 128
ηa2

F 2
0

. (5.10)

Mit dieser Gleichung lässt sich η in der DBW2-Wirkung [19], in der Wilson-
Wirkung [20] und in der Symanzik-Wirkung [21] berechnen. Dafür wurden
die Werte für m2

π,min und a aus den jeweiligen Quellen genommen.

β m2
π,min a (fm) η

(
MeV6

)

Wilson-Wirkung 3, 65 450 0, 13 2, 701 · 1013

3, 75 400 0, 12 2, 504 · 1013

3, 90 280 0, 10 1, 767 · 1013

DBW2-Wirkung 0, 74 280 0, 13 1, 046 · 1013

Symanzik-Wirkung 3, 75 370 0, 12 2, 138 · 1013

3, 90 279 0, 12 1, 216 · 1013

Die meisten η-Werte sind im Bereich η = 1013MeV6. Lediglich für die DBW2-
Wirkung gibt es auch kleinere Werte mit η = 1012MeV6. Ein η-Wert von
η = 1013MeV6 kann als typischer Wert für die Wilson-Wirkung angenommen
werden. Dieser Wert wird in den folgenden numerischen Betrachtungen des
Minimums benutzt.

§Siehe Anhang C
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5.2 Numerische Betrachtung

Zur numerischen Betrachtung der Lösungsgleichung (5.3) für das gesuchte
Minimum und später auch zur Betrachtung der Masse wurde das Programm
MAPLE benutzt. Die einzelnen Werten wurden dabei mit einer selbst ver-
fassten Routine berechnet.
Die betrachtete Lagrangedichte entspricht einer Entwicklung bis NLO. Die
Lagrangedichte wird nach dem Weinberg’schen Powercounting nach Termen
der Gitterkonstanten entwickelt. Es wird angenommen, dass die Gitterkon-
stante und entsprechende Terme klein sind, so dass die Entwicklung abge-
brochen werden kann. Daraus resultieren drei Forderungen:

1. Der ǫ2-Term darf nicht stark von 1 abweichen.

2. Insbesondere muss der Einfluss des zu a2 proportionalen Terms in ǫ2
gering sein.

3. Der Einfluss der ǫ4- und ǫ5-Terme auf das Verhalten des Minimums
darf nicht groß sein. Das Minimum, für das ǫ4 6= 0 und ǫ5 6= 0 gilt darf
daher nicht stark von dem Minimum, für das ǫ4 = 0 und ǫ5 = 0 gilt
abweichen.

In diesem Abschnitt wird untersucht, ob diese Forderungen für η = 1013MeV6

erfüllt werden.
Aus der ersten Forderung lässt sich ein Gültigkeitsbereich der Variablen ǫ1
bestimmen.

5.2.1 Gültigkeitsbereich von ǫ1

Bei einem festen η-Wert von η = 1013MeV6 wird der Gültigkeitsbereich von
ǫ1 untersucht. Hierzu wird die Gleichung

ǫ2 = 1 + 64
w · a
F 2

0

· ǫ1 + 2048
L86 · a2

F 4
0

· η · ǫ21
≈ 1 + 0, 0438 · ǫ1 + 0, 0768 · ǫ21 (5.11)

betrachtet. Die Werte für ǫ2 dürfen nicht stark von 1 abweichen. Es wird
untersucht, für welche Werte von ǫ1 dieses der Fall ist. Dabei wird eine Ab-
weichung von 0,5 als akzeptabel erachtet. Hierbei ergibt sich, dass gelten
muss −2, 85 ≤ ǫ1 ≤ 2, 28. Wird

−2 ≤ ǫ1 ≤ 2
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Abbildung 5.3: Vergleich des Minimums u0 bei ǫ3 = 3, ǫ4 = 0 und ǫ5 = 0 im Fall a)
und im Fall b), hier wurde η = 1013MeV6 und η = 1014MeV6 gesetzt

gewählt, beträgt die maximale Abweichung der Größe ǫ2 vom Wert 1 nur
0,39.
Mit ǫ1 = 2, η = 1013MeV6 und a, F0 und B0 aus Anhang C kann ein Wert
für m′

0 berechnet werden:

m′
0 =

64ηa2ǫ1
F 2

0B0

∼= 14MeV.

5.2.2 Überprüfung der zweiten Forderung

Grundlage der Entwicklung bis NLO ist die Annahme, dass die Gitterkon-
stante a und entsprechende Terme klein sind und eine Entwicklung damit
abgebrochen werden kann. Die Größe ǫ2 besteht aus einem konstanten Term,
einem zu a proportionalen Term und einem zu a2 proportionalen Term. Dieser
Term darf das Verhalten des Minimums nicht stark beeinflussen. In diesem
Teil ist die Größe η enthalten. Wird diese zu groß gewählt, ist der Einfluss
dieses Terms ebenfalls groß.

ǫ2 =
c2
ĉ2

= 1 + 64
w · ǫ1
F 2

0

· a+ 2048
L86 · η · ǫ21

F 4
0

· a2

Es wird jetzt untersucht, ob die Wahl η = 1013MeV6 günstig ist. Um dieses zu
überprüfen, wird zuerst das Minimum betrachtet, für das ǫ4 = 0 und ǫ5 = 0
gilt. Im Folgenden wird:
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Abbildung 5.4: Vergleich des Minimums u0 bei ǫ3 = 3, mit ǫ4 6= 0 und ǫ5 6= 0 im Fall
a) und im Fall b), es wurde η = 1013MeV6 gesetzt

a) im Minimum der Term in ǫ2 vernachlässigt, welcher proportional zu a2

ist.

b) der Term in ǫ2 einbezogen, welcher proportional zu a2 ist.

Das Minimum wird für mehrere η-Werte und mehrere ǫ3-Werte geplottet und
das Verhalten der Graphen im Fall a) und b) verglichen. Die Graphen dürfen
dabei nicht wesentlich voneinander abweichen.

Für η = 1014MeV6 ist im Fall b) bei ǫ3 = 3, siehe Abb. 5.3, im Vergleich zu
Fall a) ein viel steilerer Anstieg des Minimums erkennbar. Für η ≤ 1013MeV6

ist das Verhalten der Graphen in beiden Fällen etwa gleich. Das Verhalten
des Minimums wird nur gering durch den Term, der proportional zu a2 ist
beeinflusst. Ein Wert von η ≤ 1013MeV6 ist damit nicht zu groß.

Als nächstes werden ǫ4 und ǫ5 miteinbezogen. Diese Variablen werden als
Funktionen von ǫ1 und ǫ3 ausgedrückt:

ǫ2 = 1 + 64 w
F 2

0
· a · ǫ1 + 2048L86·η

F 4
0
· a2 · ǫ21

ǫ4 = −1024L86·η
F 4

0
· a2 · ǫ23

ǫ5 = 32 w
F 2

0
· a · ǫ3 + 2048L86·η

F 4
0
· a2 · ǫ1 · ǫ3.
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Aus dem Verlauf der Graphen in Abb. 5.4 ist erkennbar, dass der Einfluss
des zu a2 proportionalen Terms in ǫ2 nicht groß ist. Die Graphen für den
Fall a) und den Fall b) weichen nur gering voneinander ab. Für den Fall a)
muss jetzt ebenfalls ein η-Wert angegeben werden, da diese Größe in ǫ4 und
ǫ5 enthalten ist und diese nicht mehr Null gesetzt werden.
Bei einem η-Wert von η = 1013MeV6 ist der Einfluss des zu a2 proportionalen
Terms in ǫ2 auf das Minimum nur gering. Das bedeutet, dass die Entwicklung
der Lagrangedichte bis NLO abgebrochen werden kann.

5.2.3 Einfluss der ǫ4- und ǫ5-Terme

In diesem Abschnitt wird der Einfluss der ǫ4- und ǫ5-Terme auf das Minimum
untersucht. Diese Terme sind proportional zu a oder a2 und müssen deshalb
klein sein, damit eine Entwicklung bis NLO berechtigt ist. Dazu wird zuerst
das Minimum, für das ǫ4 = 0 und ǫ5 = 0 gilt berechnet. Dieses wird mit dem
Minimum, für das ǫ4 6= 0 und ǫ5 6= 0 gilt verglichen:

ǫ4 = −1024L86·η
F 4

0
· a2 · ǫ23

ǫ5 = 32 w
F 2

0
· a · ǫ3 + 2048L86·η

F 4
0
· a2 · ǫ1 · ǫ3.

Es wird erwartet, dass der Einfluss der ǫ4- und ǫ5-Terme bei größeren Werten
von ǫ3 zunimmt, da diese Terme proportional zu ǫ3 bzw. ǫ23 sind. Bei ǫ1 = 0
liefern diese Terme einen Beitrag, so dass sich an dieser Stelle der Wert des
Minimum verändern müsste.
Diese Erwartungen werden mit den drei angeführten Abbildungen bestätigt.
Bei kleinen ǫ3-Werten ist kaum ein Unterschied zwischen den Graphen er-
kennbar, siehe Abb. 5.5. Bei großen ǫ3-Werten ist der Unterschied deutlicher,
siehe Abb. 5.7. Zudem ist aus dieser Abbildung ablesbar, dass für ǫ4 6= 0 und
ǫ5 6= 0 das Minimum bei ǫ1 = 0 nicht durch den Ursprung geht. Die Länge
des Sprungs des Minimums bei ǫ1 = 0 wird kürzer, siehe Abb. 5.6.
Insgesamt ist der Einfluss der ǫ4- und ǫ5-Terme sehr gering, wird η = 1013MeV6

gewählt. Die Graphen weichen kaum voneinander ab. Insbesondere verändert
die Berücksichtigung der ǫ4- und ǫ5-Terme das Verhalten des Minimums nicht.
Der Sprung des Minimums bei ǫ1 = 0 wird weiterhin beobachtet, lediglich
die Länge dieses Sprungs ändert sich geringfügig. Weitere Diskussionen hierzu
folgen im nächsten Abschnitt.
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Abbildung 5.5: Vergleich des Minimums u0 mit ǫ4 6= 0, ǫ5 6= 0 zu dem Minimum u0 mit
ǫ4 = 0, ǫ5 = 0 bei ǫ3 = 0, 4, es wurde η = 1013MeV6 gesetzt
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Abbildung 5.6: Vergleich des Minimums u0 mit ǫ4 6= 0, ǫ5 6= 0 zu dem Minimum u0 mit
ǫ4 = 0, ǫ5 = 0 bei ǫ3 = 0, 8, es wurde η = 1013MeV6 gesetzt
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Abbildung 5.7: Vergleich des Minimums u0 mit ǫ4 6= 0, ǫ5 6= 0 zu dem Minimum u0 mit
ǫ4 = 0, ǫ5 = 0 bei ǫ3 = 2, es wurde η = 1013MeV6 gesetzt

5.3 Stetigkeit des Minimums

Bei der Betrachtung des Graphen mit ǫ3 < 1 fällt auf, dass es einen Sprung
der Graphen gibt, siehe Abb. 5.8. Dieser Phasensprung wird im Folgenden
näher untersucht. Dazu wird zuerst die Annahme gemacht, dass der Phasen-
sprung bei einem ǫ1-Wert von ǫ1 = 0 liegt.

5.3.1 ohne ǫ4 und ǫ5

Es werden zunächst ǫ4 und ǫ5 gleich Null gesetzt. Die quartische Gleichung
lautet nun:

−ǫ22u4
0 − 2ǫ1ǫ2u

3
0 +

(
ǫ22 − ǫ21 − ǫ23

)
u2

0 + 2ǫ1ǫ2u0 + ǫ21 = 0. (5.12)

Wird ǫ1 = 0 gewählt, so gilt ǫ2 = 1. Die Gleichung (5.12) vereinfacht sich
dann zu

−u4
0 +

(
1− ǫ23

)
u2

0 = 0,

mit der Lösung u0,± = ±
√

1− ǫ23. Somit gibt es für ǫ3 < 1 zwei Lösungen
der quartischen Gleichung bei ǫ1 = 0. Dieses Ergebnis ist in den Graphen als
Sprung von u0 zu erkennen, u0 wechselt hier das Vorzeichen. Die Länge des
Phasensprungs lässt sich theoretisch durch |u0,+ − u0,−| berechnen.
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Abbildung 5.8: Verlauf von u0 bei ǫ3 = 0, 6 mit ǫ4 6= 0 und ǫ5 6= 0, es wurde η =
1013MeV6 gesetzt

5.3.2 mit ǫ4 und ǫ5

Werden ǫ4 und ǫ5 in der Gleichung (5.8) nicht vernachlässigt, so lässt sich die
Lösung der quartischen Gleichung für den Fall ǫ1 = 0 und somit die Länge
des Phasensprungs nicht mehr in einer einfachen Formel angeben. Es werden
jetzt für einzelne η-Werte die Punkte dieser Phasensprünge ohne ǫ4 und ǫ5
mit den Punkten der Phasensprüngen mit ǫ4 und ǫ5 verglichen.

η = 1013MeV6

ǫ3 theoretisch numerisch numerisch
(ǫ4 = 0 und ǫ5 = 0) (ǫ4 = 0 und ǫ5 = 0) (ǫ4 6= 0 und ǫ5 6= 0)

0 +1 +1 +1
−1 −1 −1

0, 2 +0, 980 +0, 980 +0, 979
−0, 980 −0, 980 −0, 981

0, 4 +0, 917 +0, 917 +0, 912
−0, 917 −0, 917 −0, 917

0, 6 +0, 8 +0, 801 +0, 784
−0, 8 −0, 801 −0, 790

0, 8 +0, 6 +0, 601 +0, 560
−0, 6 −0, 601 −0, 584

1 +0 +0, 084 +0, 209
−0 −0, 084 −0, 012
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η = 1012MeV6

ǫ3 theoretisch numerisch numerisch
(ǫ4 = 0 und ǫ5 = 0) (ǫ4 = 0 und ǫ5 = 0) (ǫ4 6= 0 und ǫ5 6= 0)

0 +1 +1 +1
−1 −1 −1

0, 2 +0, 980 +0, 980 +0, 980
−0, 980 −0, 980 −0, 980

0, 4 +0, 917 +0, 917 +0, 914
−0, 917 −0, 917 −0, 919

0, 6 +0, 8 +0, 801 +0, 796
−0, 8 −0, 801 −0, 802

0, 8 +0, 6 +0, 601 +0, 601
−0, 6 −0, 601 −0, 581

1 +0 +0, 084 +0, 312
−0 −0, 084 −0, 011

η = 1011MeV6

ǫ3 theoretisch numerisch numerisch
(ǫ4 = 0 und ǫ5 = 0) (ǫ4 = 0 und ǫ5 = 0) (ǫ4 6= 0 und ǫ5 6= 0)

0 +1 +1 +1
−1 −1 −1

0, 2 +0, 980 +0, 980 +0, 980
−0, 980 −0, 980 −0, 980

0, 4 +0, 917 +0, 917 +0, 914
−0, 917 −0, 917 −0, 919

0, 6 +0, 8 +0, 801 +0, 797
−0, 8 −0, 801 −0, 804

0, 8 +0, 6 +0, 601 +0, 610
−0, 6 −0, 601 −0, 587

1 +0 +0, 084 +0, 323
−0 −0, 084 −0, 011

η = 1010MeV6

ǫ3 theoretisch numerisch numerisch
(ǫ4 = 0 und ǫ5 = 0) (ǫ4 = 0 und ǫ5 = 0) (ǫ4 6= 0 und ǫ5 6= 0)

0 +1 +1 +1
−1 −1 −1

0, 2 +0, 980 +0, 980 +0, 979
−0, 980 −0, 980 −0, 981

0, 4 +0, 917 +0, 917 +0, 914
−0, 917 −0, 917 −0, 919

0, 6 +0, 8 +0, 801 +0, 797
−0, 8 −0, 801 −0, 804

0, 8 +0, 6 +0, 601 +0, 610
−0, 6 −0, 601 −0, 588

1 +0 +0, 084 +0, 324
−0 −0, 084 −0, 011
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Bei den Werten aus den numerischen Rechnungen muss beachtet werden,
dass für diese nicht ǫ1 = 0 gilt, sondern ǫ1 = ±2, 5 · 10−4 ≃ 0. Dieses ist
der kleinste Wert, für den keine numerischen Fehler auftreten. Das erklärt
die Tatsache, dass die numerischen Werte ohne ǫ4 und ǫ5 teilweise von den
theoretisch berechneten Werten abweichen, insbesondere bei ǫ3 = 1. Die Stei-
gung von u0 im Bereich kleiner ǫ1-Werte ist hier sehr groß, die Werte ändern
sich stark. Für ǫ3 < 1 ist die Abweichung sehr gering und meist im Bereich
10−3 bis 10−2. Die Vernachlässigung der Größen ǫ4 und ǫ5 führt demnach
im Bereich des Phasensprungs nicht zu einer bedeutenden Veränderung des
Minimums. Trotzdem stellt die Vernachlässigung der Größen ǫ4 und ǫ5 nur
eine Näherung dar und das Minimum ist nur unter Berücksichtigung dieser
Größen bis NLO exakt.
Die Werte des Phasensprungs unterscheiden sich für die verschiedenen η-
Werte kaum. Der Einfluss der Terme, in denen die Größe η vorkommt, ist
somit gering. η kommt nur in Verbindung mit der Größe a2 vor. Somit sind
Terme die proportional zu a2 sind klein. Dies bestätigt die Ergebnisse aus
Abschnitt 5.2.2 und Abschnitt 5.2.3. Im Rahmen des Weinberg’schen Power-
countings wurde die Lagrangedichte nach der Gitterkonstanten a entwickelt
und diese Entwicklung bei a2 abgebrochen. Daraus resultiert die Lagran-
gedichte bis NLO. Die Gültigkeit dieser Entwicklung ist in diesem Kapitel
bestätigt worden.

5.3.3 Lage des Phasensprungs

Bisher wurde die Annahme gemacht, dass der Sprung des Minimums bei
ǫ1 = 0, bzw. c1 = 0 zu beobachten ist. Dieser Wert ergibt sich aus Betrach-
tungen des Minimums ohne die ǫ4- und ǫ5-Terme [17]. Durch die Berücksichti-
gung dieser Terme verschiebt sich die Lage des Phasensprungs. Im vorherigen
Kapitel wurde gezeigt, dass der Einfluss der ǫ4- und ǫ5-Terme sehr gering ist.
Die Lage des Phasensprungs kann sich daher durch diese Terme nicht stark
ändern.
Der Algorithmus nach Ferrari liefert vier mögliche Lösungen. Die physikali-
sche Lösung wird durch das absolute Minimum bestimmt, d.h. das Minimum
mit dem das Potential den niedrigsten Wert annimmt. Damit lässt sich die
Lage des Sprungs des Minimums durch Vergleich bestimmen. Wichtig ist
zudem, dass das Minimum reelle Werte annimmt. Gibt es einen nicht ver-
schwindenden Imaginärteil handelt es sich nicht um die physikalische Lösung.
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Die Potentialwerte werden für−0, 02 ≤ ǫ1 ≤ 0, 02 in Schritten von ǫ1 = 0, 001
bestimmt. Für ǫ3 = 0, ǫ3 = 0, 2 und ǫ3 = 0, 4 ist mit diesen Werten keine
Abweichung der Lage des Phasensprungs zu erkennen. Bei ǫ3 = 0, 6 ist der
Sprung des Minimums bei ǫ1 = 0, 007 beobachtbar und bei ǫ3 = 0, 8 bei
einem ǫ1-Wert von 0, 006.

Wie erwartet ist der Einfluss der ǫ4- und ǫ5-Terme auf die Lage des Pha-
sensprungs nicht groß. Nur für ǫ3 = 0, 6 und ǫ3 = 0, 8 gibt es minimale
Abweichungen, die zu vernachlässigen sind. Der Sprung des Minimums kann
damit bei einem ǫ1-Wert von ǫ1 ≈ 0 beobachtet werden.
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Kapitel 6

Vergleich der
Minimumsbestimmungen

Im letzten Kapitel wurde das Minimum des Potentials der Gasser-Leutwyler-
Lagrangedichte auf dem Gitter bis NLO bestimmt. Der Algorithmus nach
Ferrari erlaubte dabei eine Bestimmung ohne weitere Annahmen. In anderen
Arbeiten von Tobias Sudmann [22], [23], Peter Hofmann [24] und Luigi Scor-
zato [13] wurde ebenfalls das Minimum des Potentials der Gasser-Leutwyler-
Lagrangedichte bis NLO unter Zuhilfenahme bestimmter Annahmen berech-
net. In diesem Kapitel werden diese Ergebnisse mit dem nach Ferrari berech-
neten Minimum verglichen. In den genannten Arbeiten wurde das Minimum
in der physical basis bestimmt. Um die Ergebnisse vergleichen zu können,
wird der Winkel ω und die Masse mq0 in Abhängigkeit der in der twisted
basis benutzten Variablen ǫ1 und ǫ3 berechnet. Hierbei werden die Beziehun-
gen für die twisted basis aus Abschnitt 4.2 benutzt. Der Winkel ω ist der
Drehwinkel aus Abb. 6.1 und mq0 ist proportional zum Betrag der gedrehten
Masse: 2B0mq0 = |~m|. Damit ergibt sich:

ω = arctan



 ǫ3

ǫ1 − W0F 2
0

64ηa



 (6.1)

mq0 = 64
ηa2

B0F 2
0

√(
ǫ1 −

W0F 2
0

64ηa

)2

+ ǫ23. (6.2)

Zur Berechnung der Werte für mq0 und ω wird ein Zahlenwert für die Größe
W0 benötigt.
In Gleichung (6.1) wird der Drehwinkel angegeben als Steigungswinkel des
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Abbildung 6.2: Die gedrehte Masse in Abhängigkeit der Größen χ′
0 und χ′

3 für ω > π/2.

Vektors ~m. Dies ist richtig, solange ω ≤ π/2 ist, siehe Abb. 6.1. Für ω > π/2
entspricht der Drehwinkel ω nicht mehr dem Steigungswinkel α, siehe Abb.
6.2, α ist nun negativ. Der Drehwinkel wird für ω > π/2 berechnet durch:

ω = arctan



 ǫ3

ǫ1 − W0F 2
0

64ηa



 + π. (6.3)

ω nimmt dann den Wert π/2 an, wenn das Argument des Arkustangens in
Gleichung (6.1) oder in Gleichung (6.3) den Wert

”
∞“ hat, also wenn der

Zähler gleich Null wird. Damit findet sich anhand der Gleichung (6.1) ein
kritischer Wert für ǫ1:

ǫ1,c =
W0F

2
0

64ηa
. (6.4)

Für ǫ1 = ǫ1,c ist ω = π/2 gegeben. Bei ǫ1 < ǫ1,c wird für den Drehwinkel
die Gleichung (6.3) verwendet und bei ǫ1 ≥ ǫ1,c die Gleichung (6.1). Der
Wert von ǫ1,c ist positiv. Bei großen positiven Werten von ǫ1 gilt damit die
Gleichung (6.1), der Zähler des Arguments muss positiv sein. Bei großen
negativen Werten von ǫ1 ist die Gleichung (6.3) zu benutzten, hier ist der
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Zähler des Arguments negativ. Damit lässt sich, unter Beachtung des in Ab-
schnitt 5.2.1 berechneten Gültigkeitsbereich von ǫ1, für die Größe W0 eine
erste Abschätzung finden:

−107MeV3 ≤ W0 ≤ 107MeV3.

Um das Ergebnis von der physical basis in die twisted basis zu transformieren
muss zudem noch folgende Transformationsvorschrift beachtet werden:

U ′ = e−iω
τ3
2 Ue−iω

τ3
2 . (6.5)

U ′ ist die Feldkonfigurationsmatrix in der twisted basis. U ist die Feldkonfi-
gurationsmatrix in der physical basis. ω ist der oben angeführte Drehwinkel.
Mit Hilfe dieser Transformation wird die Drehung der Gittermatrix in der
physical basis auf die Massenmatrix übertragen, so dass in der twisted basis
gerechnet wird.
Das Minimum wird nicht nur in NLO, sondern auch in LO verglichen. Bisher
wurde das Minimum immer in NLO betrachtet.

6.1 Minimum bis Leading Order

Das Potential aus Gleichung (4.10) vereinfacht sich in LO zu:

V = −c1u0 + c3u3

= −c1u0 ± c3
√

1− u2
0. (6.6)

Somit lautet das Minimum:

u0,LO = ±
√

ǫ21
ǫ21 + ǫ23

. (6.7)

Für ǫ1 = 0 gibt es nur die Lösung u0,LO = 0 für alle ǫ3 > 0. Somit gibt es
hier keinen Sprung der Lösung, siehe Abb. 6.3. Bei ǫ3 = 0 gibt es die Lösung
u0,LO = ±1. Hier existiert auch weiterhin der Sprung des Minimums, siehe
Abb. 5.2.

6.2 χ̂-Näherung

In der Arbeit von L.Scorzato wurde das Minimum des Potentials unter der
Annahme, dass die Größe

χ̂ =
2B0mq0

F 2
0
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Abbildung 6.3: Verlauf von u0 bei ǫ3 = 0, 6 in LO

klein ist, bestimmt. Allerdings darf χ̂ nicht zu klein werden. Es wurde die
Parametrisierung

U = cos(θ)1 + iτ3 sin(θ) cos(φ) + iτ1 sin(θ) sin(φ)

verwendet. Im Minimum gilt φ = 0 und somit:

U = cos(θ)1 + i sin(θ)τ3.

Womit die Identifizierung

u0 = cos (θ − ω)

u3 = sin (θ − ω) , (6.8)

unter Zuhilfenahme der Transformation (6.5) folgt. Zur Bestimmung des Mi-
nimums wird der Vakuum-Orientierungswinkel θ in LO und in NLO ange-
geben. Da nur kleine χ̂ betrachtet werden, kann in dieser Größe entwickelt
werden. Die Größe χ̂ taucht allerdings erst in NLO auf, in LO wurde dem-
nach nicht entwickelt.
Der Vakuum-Orientierungswinkel θ lautet in LO:

θLO = τ +






0 für η̂ cos(ω) + 1 > 0
π für η̂ cos(ω) + 1 < 0 und sin(ω) > 0
−π für η̂ cos(ω) + 1 < 0 und sin(ω) < 0.

(6.9)
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Dafür werden die Abkürzung

η̂ =
W0a

B0mq0

und

τ = tan−1

(
η̂ sin(ω)

η̂ cos(ω) + 1

)

benutzt.
Mit Hilfe des Ansatzes θNLO = θLO + χ̂ · Θ und einer Entwicklung nach χ̂
wird der Vakuum-Orientierungswinkel θ in NLO berechnet:

θNLO = θLO + 8
χ̂√

η̂2 + 2 cos (ω)η̂ + 1
·

[
− sin (2τ)L86 + sin (2ω − 2τ)W ′

86η̂
2 + sin (ω − 2τ)W86η̂

]

= θLO + 8χ
(
η̂2 + 2 cos(ω)η̂ + 1

)− 1
2 ·

[L86

(
η̂2 sin(2ω − 2τ) + 2η̂ sin(ω − 2τ)− sin(2τ)

)

+
2 · w · η̂2

W0

sin(2ω − 2τ) +
2 · η · η̂2

W 2
0

sin(2ω − 2τ)

+
2 · w · η̂
W0

sin(ω − 2τ)]. (6.10)

6.3 η̂-Näherung

In den Arbeiten von T.Sudmann und P.Hofmann wurde das Minimum des
Potentials unter den Annahmen kleiner χ̂ und η̂ = (W0a)/(B0mq0) ≪ 1
bestimmt. Die Ergebnisse die in diesem Abschnitt angeführt werden, können
durch Benutzung der Annahme η̂ ≪ 1 aus den Ergebnissen des Abschnittes
6.2 hergeleitet werden. Die η̂-Näherung führt bei numerischen Betrachtungen
zu der Schwierigkeit, dass die Quarkmasse nicht zu klein gewählt werden darf.
Dies hätte zur Folge, dass die Gitterkonstante a ebenfalls sehr klein gewählt
werden müsste, was einen hohen Rechenaufwand bedeuten würde.
Für die Feldkonfigurationsmatrix wird die Parametrisierung

U = e
i

F0
τiπ̃i ,

mit i = 1, . . . , 3, verwendet. π̃i sind die Pionenfelder im Minimum, hier gilt
π̃1 = π̃2 = 0. Die Orientierung des Minimums liegt in π̃3-Richtung. Folglich
kann die Feldkonfigurationsmatrix im Minimum auch geschrieben werden als:

U = e
i

F0
τ3π̃3 = cos

(
π̃3

F0

)
1 + i · sin

(
π̃3

F0

)
τ3.
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Beim Vergleich dieser Parametrisierung mit der Parametrisierung aus Glei-
chung (4.8) und mit Hilfe der Transformation aus Gleichung (6.5) findet sich:

u0 = cos

(
π̃3

F0

− ω
)

u3 = sin

(
π̃3

F0

− ω
)
. (6.11)

In LO gilt für das Minimum die Gleichung [22]:

π̃3,LO =
ρ3F0

χ0

=
F0W0a sin(ω)

B0mq0

. (6.12)

In NLO wird diese Gleichung erweitert zu:

π̃3,NLO =
ρ3

F0

[
F 2

0

χ0

− 16L86 + 8W86 +
ρ0

χ0

(
−F

2
0

χ0

+ 32L86 − 24W86 + 16W ′
86

)]

=

(
1− W0a

B0mq0

cos(ω)

)
·
(
F0W0

B0mq0

+ 32
w

F0

)
· a · sin(ω)

+ 64
ηa2

F0B0mq0

· cos(ω) · sin(ω). (6.13)

6.4 Vergleich in Leading Order

Im Folgenden wird das Minimum, welches mit dem Algorithmus nach Ferrari
berechnet wurde mit u0,F bezeichnet. u0,SU wird für das Minimum verwendet,
welches mit Hilfe der η̂-Näherung gefunden wurde. u0,SC kennzeichnet das
Minimum der χ̂-Näherung.

W0 = 105MeV3

Mit Gleichung (6.4) ergibt sich, dass ǫ1,c = 0, 002 ist. u0,F, u0,SU und u0,SC

sind für alle ǫ1 und für alle ǫ3 identisch. Aus den Werten für W0, η und w∗

folgt:
W ′ = 103 W = 10−1

W86 = 2 · 10−1 W ′
86 = 2 · 103.

∗Siehe Anhang C
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W0 = 106MeV3

Als kritischer Wert für ǫ1 ergibt sich ǫ1,c = 0, 02. u0,F, u0,SU und u0,SC sind für
alle |ǫ1| > ǫ1,c und für alle ǫ3 identisch. Bei |ǫ1| ≤ ǫ1,c zeigen sich minimalste
Abweichungen von u0,SU zu u0,F. Mit den Werten für W0, η und w werden
die Größen

W ′ = 101 W = 10−2

W86 = 1, 84 · 10−2 W ′
86 = 2 · 101

berechnet.

W0 = 107MeV3

Aus der Gleichung (6.4) ergibt sich ǫ1,c = 0, 23. u0,F und u0,SC sind für alle
|ǫ1| ≥ ǫ1,c und für alle ǫ3 identisch. u0,SU zeigt im Bereich kleiner Werte für
ǫ1 oder ǫ3 sehr geringe Abweichungen zu u0,F oder u0,SC von ca. 1%. Aus den
Werten für W0, η und w folgt:

W ′ = 10−1 W = 10−3

W86 = 3, 6 · 10−3 W ′
86 = 2 · 10−1.

u0,F und u0,SC sind unabhängig vom W0-Wert für alle ǫ1 und für alle ǫ3 iden-
tisch, da, wie schon in Abschnitt 6.2 dargestellt wurde, die χ-Näherung erst
bei NLO benutzt wurde.
u0,SU zeigt im Bereich kleiner ǫ1-Werte nur minimale Abweichungen zu u0,F.
Für Bereiche großer ǫ1-Werte ist u0,SU identisch mit u0,F.
Kleinere Werte für W0 als W0 = 105MeV3 wurden nicht betrachtet, da be-
reits bei W0 = 105MeV3 die Werte für W86 und W ′

86 im Verhältnis zu L86

sehr groß sind. Es ist anzunehmen, dass die Werte für W86 und W ′
86 nicht

viel größer sind als L86.

6.5 Vergleich in Next To Leading Order

Für die Minima u0,SU und u0,SC wurde die χ̂-Näherung verwendet. Dabei
werden kleine Werte der Größe χ̂ und damit der Masse mq0 angenommen.
Allerdings dürfen diese Werte auch nicht zu klein werden. In NLO wird der
Gültigkeitsbereich der Näherungen untersucht. Dazu werden tabellarisch für
jeden W0-Wert die χ̂- und η̂-Werte angegeben. Wird der η̂-Wert zu groß,
weicht das Minimum u0,SU vom Minimum u0,SC ab.
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Abbildung 6.4: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 0, 2 und W0 =
105MeV3
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Abbildung 6.5: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 0, 6 und W0 =
105MeV3
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Abbildung 6.6: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 3 und W0 =
105MeV3

W0 = 105MeV3

ǫ3 ǫ1 = 0 ǫ1 = 0, 5 ǫ1 = 1 ǫ1 = 2

0
0, 2
0, 4
0, 6
0, 8
1
2
3

χ̂ η̂
0, 01 1
1, 2 0, 01
2, 4 0, 006
3, 6 0, 004
4, 8 0, 003
6, 0 0, 002
12, 0 0, 001
18, 0 0, 0008

χ̂ η̂
3, 0 0, 005
3, 2 0, 004
3, 8 0, 004
4, 7 0, 003
5, 7 0, 002
6, 7 0, 002
12, 4 0, 001
18, 2 0, 0008

χ̂ η̂
6, 0 0, 002
6, 1 0, 002
6, 4 0, 002
7, 0 0, 002
7, 7 0, 002
8, 5 0, 002
13, 4 0, 001
19, 0 0, 0007

χ̂ η̂
12, 0 0, 001
12, 0 0, 001
12, 2 0, 001
12, 5 0, 001
12, 9 0, 001
13, 4 0, 001
17, 0 0, 0008
21, 6 0, 0006

u0,SU und u0,SC stimmen für alle ǫ1 und ǫ3 überein, weichen aber von u0,F ab.
Es fällt besonders auf, dass u0,SU und u0,SC für ǫ3 ≤ 1 keinen Phasensprung
aufweisen, sondern durch den Ursprung gehen und sich anschließend u0,F

annähern, siehe Abb. 6.5. Bei ǫ3 = 0, 2 tritt noch die Besonderheit auf, dass
u0,SU und u0,SC im Bereich kleiner ǫ1-Werte zuerst steigen, danach fallen und
sich schließlich u0,F annähern. Je größer ǫ3 wird, desto besser stimmt auch
das qualitative Verhalten der Minima bei kleinen Werten für ǫ1 überein. Für
Werte ǫ3 ≥ 1 weisen die Minima im Bereich ǫ1 ≈ 1 einen Schnittpunkt auf,
im weiteren Verlauf wird die Differenz der Minima wieder größer, siehe Abb.
6.6.
Bei ǫ3 = 0 sind alle Minima identisch.
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Die maximale Differenz der Minima ist bei ǫ1 = ǫ1,c und ǫ3 = 0, 2 mit 90%
feststellbar. Minimal gibt es eine Abweichung von 2 · 10−2% bei ǫ1 = 2 und
ǫ3 = 0, 2. Für ǫ1 ≥ 0, 5 liegen die Abweichungen im Bereich von 6% bis
2 · 10−2%.
Die Werte von χ̂ wachsen für steigendes ǫ1 und ǫ3. Der minimale Wert von
χ̂ = 0, 01 liegt bei ǫ1 = 0 und ǫ3 = 0, der maximale Wert von χ̂ = 21, 6 bei
ǫ1 = 2 und ǫ3 = 3. Die η̂-Werte dagegen werden für steigende ǫ1 und ǫ3-Werte
kleiner. Maximal wird ein η̂-Wert von 1 bei ǫ1 = 0 und ǫ3 = 0 beobachtet und
minimal ein Wert von 6 ·10−4 bei ǫ1 = 2 und ǫ3 = 3. uSU und uSC weichen für
ǫ3 ≤ 1 ab einem Wert von ǫ1 = 1 höchstens um 5% von uF ab. Die Differenz
der Minima ist hier sehr gering. Für ǫ3 > 1 ist die Differenz dieser Minima
im gesamten Gültigkeitsbereich von ǫ1 sehr gering.
Für χ̂ bietet sich damit ein Gültigkeitsbereich von 6, 0 ≤ χ̂ ≤ 21, 6 an. Da
die Minima u0,SU und u0,SC nicht voneinander abweichen, liegen Werte von
η̂ ≤ 0, 01 im Gültigkeitsbereich der η̂-Näherung.

W0 = 106MeV3

Für u0,SU und u0,SC ist nur ein minimaler Unterschied zwischen dem Verhalten
bei W0 = 106MeV3 und bei W0 = 105MeV3 auszumachen, siehe Abb. 6.7. Bei
großen Werten für ǫ1 unterscheiden sich die beiden Minima nur um ca. 0, 2%
oder weniger. Im Bereich kleiner ǫ1-Werte ist die Abweichung der Minima
teilweise größer, aber trotzdem so klein, dass sie vernachlässigt werden kann.
Die Differenz von u0,SU und u0,SC zu u0,F hat sich für W0 = 106MeV3 im
Vergleich zu W0 = 105MeV3 kaum verändert. Für große ǫ1 und ǫ3-Werte
ist das Verhalten gleich geblieben. Für kleine ǫ1 und ǫ3-Werte hat sich die
Abweichung von u0,SC zu u0,F verringert, während sie für u0,SU etwa gleich
geblieben ist.
Das Verhalten bei ǫ3 = 0 ist bei allen drei Minima identisch.
Die χ̂-Werte weisen nur minimale Unterschiede zu den χ̂-Werten bei W0 =
105MeV3 auf. Der Gültigkeitsbereich dieser Näherung bleibt damit bei 6, 0 ≤
χ̂ ≤ 21, 6.
Die η̂-Werte sind um den Faktor 10 größer geworden. Die Abweichungen der
Minima u0,SU und u0,SC sind so gering, dass sie vernachlässigt werden können.
Der Gültigkeitsbereich der η̂-Näherung kann deshalb auf η̂ ≤ 0, 1 erweitert
werden.
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Abbildung 6.7: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 0, 6 und W0 =
106MeV3

ǫ3 ǫ1 = 0 ǫ1 = 0, 5 ǫ1 = 1 ǫ1 = 2

0
0, 2
0, 4
0, 6
0, 8
1
2
3

χ̂ η̂

0, 17 1
1, 2 0, 1
2, 4 0, 06
3, 6 0, 04
4, 8 0, 03
6, 0 0, 02
12, 0 0, 01
18, 0 0, 008

χ̂ η̂

2, 9 0, 05
3, 1 0, 04
3, 7 0, 04
4, 6 0, 03
5, 6 0, 02
6, 6 0, 02
12, 3 0, 01
18, 2 0, 008

χ̂ η̂

5, 9 0, 02
6, 0 0, 02
6, 3 0, 02
6, 9 0, 02
7, 6 0, 02
8, 4 0, 02
13, 4 0, 01
18, 9 0, 007

χ̂ η̂

11, 9 0, 01
11, 9 0, 01
12, 1 0, 01
12, 4 0, 01
12, 8 0, 01
13, 3 0, 01
16, 9 0, 008
21, 6 0, 006

W0 = 107MeV3

ǫ3 ǫ1 = 0 ǫ1 = 0, 5 ǫ1 = 1 ǫ1 = 2

0
0, 2
0, 4
0, 6
0, 8
1
2
3

χ̂ η̂

1, 4 1
1, 8 0, 6
2, 8 0, 5
3, 9 0, 4
5, 0 0, 3
6, 2 0, 2
12, 1 0, 1
18, 0 0, 08

χ̂ η̂

1, 6 0, 8
2, 0 0, 7
2, 9 0, 5
4, 0 0, 3
5, 1 0, 3
6, 2 0, 2
12, 0 0, 1
18, 1 0, 08

χ̂ η̂

4, 6 0, 3
4, 8 0, 3
5, 2 0, 3
5, 9 0, 2
6, 7 0, 2
7, 6 0, 2
12, 9 0, 1
18, 6 0, 07

χ̂ η̂

10, 6 0, 1
10, 7 0, 1
10, 9 0, 1
11, 2 0, 1
11, 7 0, 1
12, 2 0, 1
16, 0 0, 09
20, 9 0, 07

Im Fall W0 = 107MeV3 vergrößert sich die Abweichung von u0,SU zu u0,SC,
siehe Abb. 6.8, 6.9, 6.10. Besonders auffällig ist dies im Bereich kleiner ǫ1-
Werte für ǫ3 ≤ 1. Für große ǫ1-Werte und ǫ3 > 1 ist die Abweichung ebenfalls
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Abbildung 6.8: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 0, 6 und W0 =
107MeV3
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Abbildung 6.9: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 1 und W0 =
107MeV3
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Abbildung 6.10: Vergleich der Minima u0,F, u0,SU und u0,SC bei ǫ3 = 3 und W0 =
107MeV3

größer, liegt aber im Bereich von 0, 06% bis 1% und kann deshalb vernach-
lässigt werden.
Beim Vergleich von u0,SU und u0,SC mit u0,F sind die Abweichungen im Be-
reich großer ǫ1-Werte etwa gleich geblieben. Sie liegen dort im Bereich von
0, 1% bis 4%. Für ǫ1 ≈ ǫ1,c ist die Abweichung kleiner als bei den vorherigen
Fällen.
Das Verhalten bei ǫ3 = 0 ist bei allen drei Minima identisch.
Die χ̂-Werte sind kleiner als zuvor. Der maximale Wert ist nun χ̂ = 20, 9.
Allerdings kann erst bei größeren χ̂-Werten als χ̂ = 6 die Abweichung der
Minima vernachlässigt werden. Der Gültigkeitsbereich der χ̂-Näherung wird
damit erweitert zu 7, 0 ≤ χ̂ ≤ 20, 9.
Die η̂-Werte sind um den Faktor 10 gegenüber den η̂-Werte beiW0 = 106MeV3

angewachsen. Im Bereich kleiner ǫ1- und ǫ3-Werte ist die Gültigkeit der η̂-
Näherung nicht mehr gegeben. Der Gültigkeitsbereich verändert sich nicht
deutlich: η̂ ≤ 0, 2.

In LO ist nur u0,SU genähert, u0,SC und u0,F sind ohne Näherungen berechnet
worden. Die Abweichung von u0,SU zu u0,SC und u0,F aufgrund der Näherung
ist sehr gering.
In NLO sind die Abweichungen von u0,SU und u0,SC zu u0,F größer geworden.
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Abbildung 6.11: Der Gültigkeitsbereich der χ̂-Näherung für W0 = 107MeV3 liegt au-
ßerhalb des Kreises, für den χ̂ = 7 gilt.

u0,SC ist in NLO nicht mehr exakt, sondern genähert. Besonders das Verhalten
der Minima für ǫ3 ≤ 1 und kleinen ǫ1-Werten kann nicht mit u0,SU und u0,SC

beschrieben werden. Beide Lösungen weisen keinen Phasensprung auf. Für
große ǫ1- und ǫ3-Werte stellen u0,SU und u0,SC eine gute Näherung dar.
Das Verhalten bei ǫ3 = 0 ist bei allen drei Minima für alle Werte von W0

identisch. Für ǫ3 = 0 ist ω = 0 für alle ǫ1. Dies ist der nicht gedrehte Fall mit
χ′

3 = ρ3 = 0.
Die Minima der χ̂- und der η̂-Näherung basieren beide auf der Annahme,
dass die Größe χ̂ zwar klein ist, aber dennoch nicht zu klein. Es gibt also eine
untere Grenze für χ̂, bis zu der die χ̂- und die η̂-Näherungen das Verhalten
des Minimums beschreiben. Der Gültigkeitsbereich der Größe χ̂ ist für die
verschiedenen W0-Werte etwa gleich und kann zu

7, 0 ≤ χ̂ ≤ 21, 6

gewählt werden, siehe Abb. 6.11. In diesem Bereich stellen u0,SU und u0,SC

eine sinnvolle Näherung dar. Mit diesem Gültigkeitsbereich der Größe χ̂ kann
der Phasensprung des Minimums nicht beschrieben werden.
Der Gültigkeitsbereich der η̂-Näherung wird durch die Abweichung der Mini-
ma u0,SU und u0,SC festgelegt. Die beiden Minima können als gleich angesehen
werden, solange

η̂ ≤ 0, 2

ist.



Kapitel 7

Massenbestimmung

Zur Bestimmung der Masse der Pionen wird die Lagrangedichte (4.4) bis
NLO betrachtet. Dabei sind sowohl Terme aus dem Potential als auch Terme
aus dem kinetischen Teil der Lagrangedichte relevant. Im Potential sind die
Treelevel -Terme enthalten. Zudem müssen noch Schleifenterme berücksich-
tigt werden. Die Schleifenterme, oder loop-Terme, berücksichtigen die Selbst-
wechselwirkung der Felder. Diese Selbstwechselwirkung beeinflusst die Masse
des Pions. Zur Berechnung der Schleifenbeiträge sind sowohl Terme im Po-
tential, als auch im kinetischen Teil der Lagrangedichte zu benutzten. Nach
Gleichung (2.19) haben Einschleifenterme bereits D = 4, d.h. sie sind NLO.
Terme mit mehr als einer Schleife müssen demnach nicht mitberücksichtigt
werden, da sie bereits NNLO (next to next to leading order) oder höherer
Ordnung sind.

7.1 Treelevelmassen

Wie in Abschnitt 2.3.1 dargestellt, ist die Masse in dem Term enthalten,
welcher quadratisch im Feld ist. Folglich muss das Potential zwei mal nach
dem Pionfeld abgeleitet werden:

m2
π ∝

∑

i

m2
πi
∝

∑

i

∂2V

∂π2
i


πMin

. (7.1)

Um die Masse der Pionen π1, π2 oder π3 zu finden wird nach dem entspre-
chendem Feld abgeleitet. Mit Hilfe der Ableitungs-Kettenregel ergibt sich
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eine Schreibweise, welche von den Größen u0, . . . , u3 abhängt:

∂2V

∂π2
i


πMin

=
∂2V

∂πi∂u0

∂u0

∂πi

+
∂V

∂u0

∂2u0

∂π2
i

+
∂2V

∂πi∂u1

∂u1

∂πi

+
∂V

∂u1

∂2u1

∂π2
i

+
∂2V

∂πi∂u2

∂u2

∂πi

+
∂V

∂u2

∂2u2

∂π2
i

+
∂2V

∂πi∂u3

∂u3

∂πi

+
∂V

∂u3

∂2u3

∂π2
i

. (7.2)

In Abschnitt 6.3 ist eine Parametrisierung angeführt, welche die Pionfelder
direkt enthält. Beim Vergleich dieser Parametrisierungen, ergeben sich fol-
gende Relationen:

u0 = cos
(

|π|
F0

)
,

ui = πi

|π| sin
(

|π|
F0

)
,

πi = ±F0 arcsin
“√

1−u2
0

”

√
u2
1+u2

2+u2
3

ui.

(7.3)

Hierbei wird die Abkürzung |π| =
√
π2

1 + π2
2 + π2

3 =: P verwendet. Der Zähl-
index i läuft von 1 bis 3. Damit lassen sich die Ableitungen aus Gleichung
(7.2) berechnen.

7.1.1 Treelevel in Leading Order

Zur Massenbestimmung muss für die Größen u0, . . . , u3 der Wert im Minimum
angegeben werden. Die Größen u1 und u2 verschwinden im Minimum, siehe
Kapitel 4. Das Potential in LO ist linear abhängig von den Variablen u0 und
u3. Die Variablen u1 und u2 treten aufgrund der Spureigenschaften der Pauli-
Matrizen∗ nicht auf.
Damit vereinfacht sich Gleichung (7.2) für die Masse der drei Pionen zu:

∂2V

∂π2
i


πMin

=
∂V

∂u0

∂2u0

∂π2
i

+
∂V

∂u3

∂2u3

∂π2
i

. (7.4)

Für u0 und u3 ergibt sich aus Gleichung (6.7) die Bedingung im Minimum.
Die Ableitungen zur Berechnung der Massen der drei Pionen lauten

V ′′
1,2 =

c1u3

F0π3

− c3u3

π2
3

+
c3u0

F0π3

(7.5)

∗Siehe Anhang A
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und

V ′′
3 =

c1u0

F 2
0

− c3u3

F 2
0

. (7.6)

Die Konstanten c1 bis c5 sind in Abschnitt 4.2 aufgelistet.
Der inverse Propagator hat die Gestalt:

G−1
i (p) = ki

(
p2 +m2

πi

)
.

Zur Renormierung der Massen müssen die einzelnen Konstanten ki bestimmt
werden, so dass gilt:

m2
πi

=
V ′′

i

ki

.

Zur Bestimmung der Renormierungskonstanten der Massen wird der kineti-
schen Teil der Lagrangedichte T betrachtet:

LLO =
1

2
ki

[
(∂µπi)

2 +m2
πi
π2

i

]
+ WW-Terme = T + V + WW-Terme. (7.7)

Die Konstanten werden mit Hilfe der Relation

ki =
∂2T

∂ (∂µπi)
2 (7.8)

berechnet. Der kinetische Teil in LO der betrachteten Lagrangedichte lautet:

T =
F 2

0

4

〈
∂µU∂µU

†〉 .

Nach Einsetzen der Parametrisierung ergibt sich eine Gleichung zur Berech-
nung der einzelnen Konstanten ki:

ki,LO =u2
i + F 2

0

(ui

πi

δi1 −
π1

P 2
ui +

π1πi

P 2F0

u0

)2

+ F 2
0

(ui

πi

δi2 −
π2

P 2
ui +

π2πi

P 2F0

u0

)2

+ F 2
0

(ui

πi

δi3 −
π3

P 2
ui +

π3πi

P 2F0

u0

)2

. (7.9)

Für alle Felder wird jeweils der Wert im Minimum benutzt. Damit ergibt sich

π3 = P = F0 arcsin (u3) und
ui

πi

=
u3

π3

∀i.

Für die Masse mπ1,2 wird die Konstante

k1,2 =
u2

3

arcsin2(u3)
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und für die Masse mπ3 die Konstante

k3 = 1

verwendet. Damit lautet die renormierte Masse:

m2
π1

= m2
π2

= m2
π3

=
128ηa2

F 2
0

(ǫ1u0 − ǫ3u3) . (7.10)

Die Masse mπ1,2 ist identisch mit der Masse mπ3 . Die Renormierung hebt
das Massensplitting auf. u0 bzw. u3 ist das Minimum des Potentials bis LO.
Werden für diese Größen die Ergebnisse aus Abschnitt 6.1 eingesetzt, ergibt
sich für die Massen:

m2
πi

=
128ηa2

F 2
0

√
ǫ21 + ǫ23

= 2B0

√
m′

0
2 + µ2. (7.11)

Die Treelevelmasse in LO ist damit proportional zu
√
m′

0
2 + µ2.

7.1.2 Vergleich der Massen in Leading Order

In Kapitel 6 wurde das Minimum nach Ferrari mit Minima verglichen, welche
auf andere Weise berechnet wurden. Zur Berechnung der Masse wird das Mi-
nimum benötigt. Somit ergeben verschiedene Minima verschiedene Massen.
Die Auswirkung einer Näherung des Minimums auf die Masse bis LO wird
in diesem Abschnitt betrachtet. In den Arbeiten von T.Sudmann [22] und
P.Hofmann [24] wurde die η̂-Näherung zur Bestimmung des Minimums und
auch zur Bestimmung der Masse benutzt. In diesen Arbeiten wird ebenfalls in
LO kein Massensplitting beobachtet. Die Gleichung für die exakt bestimmte
Masse [22]

m2
πi

= (χ0 + ρ0) cos

(
π3

F0

)
+ ρ3 sin

(
π3

F0

)
,

mit π3 = π3,min, hat dieselbe Struktur wie die in Abschnitt 7.1.1 dargestellte
Gleichung für die Masse (7.10). Die η̂-Näherung für diese Gleichung lautet:

m2
πi

= (χ0 + ρ0) +
ρ2

3

2χ0

. (7.12)
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W0 = 105MeV3

Der Index
”
g“ verdeutlicht, dass es sich um die genäherte Masse aus Glei-

chung (7.12) handelt. Für die Masse mq0 und den Winkel ω werden die
Gleichungen (6.1), (6.3) und (6.2) benutzt. Aus diesen Formeln folgt eine
W0-Abhängigkeit der Massen m2

π1,2,3,g
. Die Massen m2

π1,2,3
sind nicht direkt

abhängig von W0. Diese Größe kommt nur als Produkt mit W , W ′ oder W̃
vor†:

W ·W0 = w
W ′ ·W 2

0 = η

W̃ ·W0 = w̃.

Der Wert von w, η und w̃ ist konstant, lediglich die Faktoren können vari-
ieren. Daher sind die Massen m2

π1,2,3
bei festen Werten für ǫ1 und ǫ3 für alle

W0-Werte gleich.
Die Massen m2

π1,2,3
unterscheiden sich im Rahmen der Rechengenauigkeit

nicht von m2
π1,2,3,g

für alle ǫ1.

W0 = 106MeV3

Im Bereich |ǫ1| < 0, 4 werden für ǫ3 = 0, 2 minimale Abweichungen von ca.
0, 1% beobachtet. Die genäherte Masse ist dabei größer als die exakte Masse.

W0 = 107MeV3

Im Bereich |ǫ1| < 1 für ǫ3-Werte von ǫ3 = 0, 2 bis ǫ3 = 0, 8 gibt es nur kleine
Abweichungen. Für ǫ3 = 0, 2 sind diese Abweichungen mit maximal ca. 11%
recht groß, werden für ǫ3 = 0, 8 mit maximal ca. 0, 2% aber sehr klein. Ebenso
wie für den Fall W0 = 106MeV3, ist auch hier die genäherte Masse größer als
die exakte Masse.

7.1.3 Treelevel in Next To Leading Order

Das Potential in NLO besitzt auch Terme, welche nichtlinear in den Va-
riablen sind. Daher müssen zusätzliche Terme zur Berechnung der Massen
berücksichtigt werden:

∂2V

∂π2
i


πMin

=
∂2V

∂πi∂u0

∂u0

∂πi

+
∂V

∂u0

∂2u0

∂π2
i

+
∂2V

∂πi∂u3

∂u3

∂πi

+
∂V

∂u3

∂2u3

∂π2
i

. (7.13)

†Siehe Anhang C
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Für die einzelnen Massen ergibt sich damit

V ′′
1,2 =

c1u3

F0π3

− 2
c2u0u3

F0π3

+
c3u0

F0π3

− c3u3

π2
3

+ 2
c4u3u0

F0π3

− 2
c4u

2
3

π2
3

− c5u0u3

π2
3

+
c5u

2
0

F0π3

− c5u
2
3

F0π3

(7.14)

und

V ′′
3 =

1

F 2
0

(
c1u0 + 2c2u

2
3 − 2c2u

2
0 − c3u3 + 2c4u

2
0 − 2c4u

2
3 − 4c5u0u3

)
. (7.15)

Die Konstanten c1 bis c5 sind in Abschnitt 4.2 aufgelistet. Für u0, bzw. u3 =
±

√
1− u2

0, muss der Minimumswert bis NLO eingesetzt werden. Die Größe u0

im Minimum wurde in Kapitel 5 mit dem Algorithmus nach Ferrari berechnet.
Um die Massen bis NLO zu renormieren, wird das gleiche Verfahren wie im
Abschnitt 7.1.1 verwendet. Der kinetische Teil bis NLO lautet:

T =
F 2

0

4
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∂µU∂µU

†〉− L1

〈
∂µU∂µU

†〉2 − L2
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+W4

〈
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ρ†U + U †ρ
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+ L5
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† (
χ†U + U †χ

)〉
+W5

〈
∂µU∂µU

† (
ρ†U + U †ρ

)〉
. (7.16)

Dabei muss beachtet werden, dass nun nach zweimaligem Ableiten auch Ter-
me auftauchen, welche noch von ∂µπi abhängig sind:

∂2T

∂ (∂µπi)
2 = ki + a∂µπi + b (∂µπi)

2 + . . .

Diese stammen von Wechselwirkungstermen und werden somit zur Bestim-
mung der Konstanten ki nicht benutzt. Die Gleichung zur Bestimmung der
ki lautet nun:

ki,NLO = ki,LO

(
1 +

8

F 2
0

(
L54 (χ′

0u0 + χ3u3) + 2W̃ρ0u0

))
. (7.17)

Hierbei werden die Gleichung (4.9) und die Relation‡

W̃ =
1

2
(W54 − L54)

verwendet.
Für sämtliche Felder ist der Wert im Minimum zu nehmen. Damit ergibt sich
für die Massen mπ1,2 die Renormierungskonstante

k1,2 =
u2

3

arcsin2(u3)

(
1 +

8

F 2
0

(
L54 (χ′

0u0 + χ3u3) + 2W̃ρ0u0

))
,

‡Siehe Anhang C
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und für die Masse mπ3 die Renormierungskonstante

k3 = 1 +
8

F 2
0

(
L54 (χ′

0u0 + χ3u3) + 2W̃ρ0u0

)
.

Die renormierten NLO Treelevelmassen lauten dann
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und
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0 + 1024
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. (7.19)

In LO wird für die renormierten Massen kein Massensplitting beobachtet.
In NLO ist ein Massensplitting für die renormierten Massen vorhanden. Für
ǫ3 = 0 sind die Massen aller drei Pionen gleich und für ǫ3 > 0 gilt:

m2
π1,2

> m2
π3
.

Für das Feld u3 muss die Relation u3 = ±
√

1− u2
0 eingesetzt werden. Die

Masse ist abhängig vom Vorzeichen dieser Wurzel, anders als das Minimum.
Um das richtige Vorzeichen zu erhalten, wird das Potential betrachtet und
die Lage des Minimums mit den Ergebnissen aus Kapitel 5 verglichen. Die
Minima des Potentials für u3 = +

√
1− u2

0 liegen immer bei u0 = ±1. Wird

u3 = −
√

1− u2
0 gesetzt haben die Minima die gleiche Lage wie die in Kapitel

5 ermittelten Minima. Es muss demnach

u3 = −
√

1− u2
0

eingesetzt werden.
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Selbstenergie-Diagramm
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Tadpole-Diagramm

Abbildung 7.1: 3-Vertices

u&%
'$

Abbildung 7.2: 4-Vertex

Für die Renormierungskonstante ki = (1 + x), wobei x eine Funktion der
LEC ist, kann auch die Näherung k−1

i = 1− x eingesetzt werden. Terme der
Ordnung x2 haben die Ordnung NNLO und müssen somit nicht berücksich-
tigt werden. Die Massen m2

π1,2,3
werden dadurch kleiner, was den Abstand

zu den Massen m2
π1,2,3,g

verändert. Die Abstände werden für alle W0-Werte

größer, außer für die Masse m2
π3

bei ǫ3 = 2 und ǫ3 = 3.

7.2 Schleifenrechnung

Um die genaue Masse der Pionen bis NLO zu bekommen, müssen noch die
Schleifenterme berücksichtigt werden. Mögliche Schleifenterme können einen
3-Vertex oder 4-Vertex beinhalten.
Zu den Schleifendiagrammen mit 3-Vertex zählen das Tadpole- und das Selbst-
energie-Diagramm, siehe Abb. 7.1. Beide tragen zur Selbstenergie bei. In NLO
gibt es nur ein Schleifendiagramm mit 4-Vertex, Abb. 7.2.
In [22] wurde bereits gezeigt, dass eine symmetrisierte Parametrisierung der
Feldkonfigurationsmatrix in der Schleifenrechnung vorteilhaft ist. Aufgrund



7.2 Schleifenrechnung 75

r��
��

i l

j k

k

p p
- -

- i=l
j=k

p = pi = −pl
k = pj = −pk

Abbildung 7.3: 4-Vertex mit Indices

dessen wird hier sofort diese Parametrisierung verwendet, in der die Diagram-
me mit 3-Vertex verschwinden und nur noch das Diagramm mit 4-Vertex
übrig bleibt.
In der symmetrisierten Parametrisierung hat die Feldkonfigurationsmatrix
folgende Gestalt:

U = exp

[
i

2F0

π̃iτi

]
exp

[
i

F0

π̂iτi

]
exp

[
i

2F0

π̃iτi

]
.

Die Größe π̂i ist eine Funktion der Pionfelder im Minimum, π̃i, und der
Pionfelder πi.
In dieser Parametrisierung lautet die Wechselwirkungs-Lagrangedichte:

LWW =
1

6F 2
0

((
~̂π∂µ

~̂π
)2

− |~̂π|2
(
∂µ
~̂π
)2

)
− m4

0

24F 2
0

|~̂π|4. (7.20)

Diese Lagrangedichte wird nun vollständig symmetrisiert [22]

LWW = − 1

4!

∑

n

v(n)V
(n)
ijklπiπjπkπl (7.21)

mit
V

(1)
ijkl = − 1

12
[ δijδkl (pi + pj) (pk + pl)

+δikδjl (pi + pk) (pj + pl)
+δilδjk (pi + pl) (pj + pk)],

V
(2)
ijkl = −1

6
[ δijδkl (pipj + pkpl)

+δikδjl (pipk + pjpl)
+δilδjk (pipl + pjpk)]

und

V
(3)
ijkl = 1

3
[δijδkl + δikδjl + δilδjk] .

Die Indizes werden nun dem Diagramm aus Abb. 7.3 zugeordnet. Aufgrund
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der vollständigen Parametrisierung lässt sich nun der 4-Vertex einfach berech-
nen. Da die Selbstwechselwirkung keinen Einfluss auf die Art des Teilchens
hat, muss δil gelten. Zudem muss das Teilchen in der Schleife immer dasselbe
Teilchen sein, woraus δjk folgt. Der 4-Vertex ist damit durch

V4 =
∑

n

v(n)V
(n)
ijklδilδjk =

1

3F 2
0

(
5m2

0 + 4p2 + 4k2
)

gegeben. Dieser wird zur Berechnung der Selbstenergie benutzt:

∑
4

=
1

2

∫
d4k

(2π)4

V4

k2 +m2
0

.

Die Masse m2
0 entspricht der renormierten Treelevelmasse bis LO. Durch den

Symmetriefaktor 1/2 werden Vertauschungen der inneren Linien berücksich-
tigt. Zur Berechnung des Integrals wird dieses in zwei Integrale aufgeteilt,
welche mit Hilfe der dimensionellen Regularisierung [25] renormiert werden:

∑
4

(
p2

)
=

1

6F 2
0

∫
d4k

(2π)4

m2
0 + 4p2

k2 +m2
0

+
4

6F 2
0

∫
d4k

(2π)4

m2
0 + k2

m2
0 + k2

.

Nach der dimensionellen Regularisierung verschwindet das zweite Integral,
so dass nur noch das erste Integral betrachtet werden muss:

1

6F 2
0

∫
d4k

(2π)4

m2
0 + 4p2

k2 +m2
0

=
m2

0 + 4p2

6F 2
0

I
(
m2

0

)
.

Das Integral I (m2
0) wird nun von 4 Dimensionen zu d Dimensionen fortge-

setzt:

I
(
m2

0

)
−→ I

(
m2

0,Λ
2, d

)
= Λ4−d

∫
ddk

(2π)d

1

k2 +m2
0

.

Die Renormierungsskala Λ hat die Dimension einer Masse und wurde einge-
führt, damit sich die Dimension des Propagators nicht verändert. Das Integral
I (m2

0,Λ
2, d) ist in [25] berechnet worden:

I
(
m2

0,Λ
2, d

)
=

m2
0

(4π)2

(
4πΛ2

m2
0

)2− d
2

Γ

(
1− d

2

)
.

Die Gammafunktion Γ hat bei d = 4 einen Pol, deshalb wird nun die Größe
ǫ = 4− d eingeführt und die Gammafunktion nach kleinen ǫ entwickelt:

Γ
( ǫ

2
− 1

)
= −2

ǫ
− 1 + γ +O (ǫ) .
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Hierbei ist γ die Euler-Mascheroni-Konstante, welche den Wert γ = 0, 577
hat. Mit Hilfe der Entwicklung aǫ = 1+ǫ ln a und der divergenten Konstanten
R = −2

ǫ
− 1 + γ − ln (4π) ergibt sich schließlich für die Selbstenergie der

Ausdruck:

∑
4

(
p2

)
=
m2

0 + 4p2

6F 2
0

m2
0

(4π)2

[
R + ln

(
m2

0

Λ2

)]
. (7.22)

Die renormierte Treelevelmassem0 in LO wird jetzt umbenannt inmπ. Damit
ergeben sich für die Schleifenanteile

∑πi

m2
=

1

24π2F 2
0

m4
π

4

[
R + ln

(
m2

π

Λ2

)]

und ∑πi

p2
=

1

24π2F 2
0

m2
π

[
R + ln

(
m2

π

Λ2

)]
.

Die Masse der Pionen bis NLO einschließlich der Schleifenterme lautet dem-
nach: [22]

M2
π = M̂2

π +
∑πi

m2
−m2

π

∑πi

p2
. (7.23)

Hierbei ist M̂2
π die renormierte Treelevelmasse bis NLO und m2

π die renor-
mierte Treelevelmasse bis LO.

7.2.1 Renormierung

Die Masse M2
π enthält die divergente Konstante R und muss daher noch re-

normiert werden. Die Divergenzen aus den Schleifenbeiträgen werden gerade
durch die Divergenzen der Treelevelbeiträge aufgehoben.
Dazu werden die LEC durch deren renormierte Größe plus ein Vielfaches der
Konstanten R ersetzt. Dadurch verschwindet die Divergenz R und die Masse
ist renormiert. Die Hintergrundfeld-Methode [26], [27] bietet eine Möglichkeit
die LEC X zu renormieren:

Xi = Xr
i +

γi

32π2
R. (7.24)

Die einzelnen Werte der γi für die verschiedenen LEC X sind im Anhang C
angegeben.
Um die renormierte Masse zu erhalten, werden nun sämtliche LEC in den
Schleifenbeiträgen, in den Treelevelbeiträgen bis NLO und bis LO durch
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deren renormierte Größe Xr ersetzt und die divergente Konstante R weg-
gelassen. Damit lautet die renormierte Masse M2

π :

M2
π = M̂2

π −
mπ

4

32π2F 2
0

ln

(
m2

π

Λ

)
. (7.25)

Für die Treelevelmassen bis NLO, bzw. LO werden jeweils die renormierten
Massen eingesetzt. Für die renormierte Treelevelmasse bis LO mπ wird das
Minimum bis LO aus Abschnitt 6.1 und für die renormierte Treelevelmasse
M̂π bis NLO das Minimum bis NLO aus Kapitel 5 benutzt.
Werden nur die Treelevelbeiträge betrachtet und die Schleifenbeiträge ver-
nachlässigt, sind die LEC unrenormiert. Da aber bekannt ist, dass die Schlei-
fenbeiträge diese Divergenzen aufheben, werden in diesem Fall die LEC als
renormiert angesehen.

7.2.2 Größe der Schleifenbeiträge

In diesem Abschnitt wird untersucht, welchen Einfluss die Schleifenbeiträge
auf die Massen haben. Dabei sollten die Massen nur gering größer werden.
Für ǫ3 ≤ 1 weichen die Massen mit den Schleifenbeiträgen mS und die reinen
Treelevelmassen mT kaum voneinander ab, siehe Abb. 7.4. Bei kleinen ǫ1-
und ǫ3-Werten ist der Abstand ∆m = mS − mT = 0. Bei größeren Werten
nimmt ∆m zu und beträgt bei ǫ1 = 2 etwa 8%.
Bei ǫ3 > 1 nimmt der Einfluss der Schleifenbeiträge zu und ∆m vergrößert
sich. Für wachsendes ǫ1 ändert sich der Betrag von ∆m nicht , siehe Abb.
7.5. ∆m wird bei ǫ3 = 3 für die Masse M2

π3
mit etwa 15% maximal.

7.2.3 Vergleich der Massen

Im letzten Abschnitt wurde die Größe der Schleifenbeiträge im Vergleich zur
Treelevelmasse bis NLO untersucht. Die Schleifenbeiträge tragen demnach
nicht wesentlich zur Masse bei. Der Vergleich der Treelevelmassen bis NLO
aus Abschnitt 7.1.3 mit den Treelevelmassen bis NLO der η̂-Näherung wird
hier deswegen nicht angeführt. Anstatt dessen werden sofort die Massen bis
NLO inklusive der Schleifenbeiträge betrachtet. Es können nun die Ergebnis-
se aus Abschnitt 7.1.1 und Abschnitt 7.1.3 in die Gleichung (7.25) eingesetzt
werden. Die Renormierungsskala Λ wird zu Λ = 4πF0 gewählt. In [22] wurde
ebenfalls die Masse bis NLO einschließlich der Schleifenbeiträge mit Hilfe der
η̂-Näherung bestimmt. Zur Unterscheidung wird diese Masse mit dem Index

”
g“ versehen.

Zur Renormierung wird die ungenäherte Renormierungskonstante verwendet.
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Bei Benutzung der genäherten Renormierungskonstanten werden die Abstän-
de von M2

π zu M2
πg

größer, außer bei ǫ3 = 3 und M2
π3

.

Da sich die Massen für W0 = 105MeV3, W0 = 106MeV3 und W0 = 107MeV3

nur minimal unterscheiden, wird davon abgesehen, die Vergleiche für die je-
weiligen W0-Werte auch einzeln anzuführen.
Für ǫ3 = 0 ist M2

π1,2,3
< M2

π1,2,3,g
für alle ǫ1.

Bei 0, 2 ≤ ǫ3 ≤ 1 und kleine Werte für |ǫ1| ist die Abweichung von M2
π zu

M2
πg

relativ groß, mit teilweise bis zu 50% oder mehr, siehe Abb. 7.6, 7.7.

Zudem ist das Massenquadrat M2
π3,g

für kleine |ǫ1| negativ. Dieses Verhalten
ist unphysikalisch. Wie schon bei der Betrachtung des Minimums, Abschnitt
6.5, zeigt sich auch hier, dass die η̂-Näherung für kleine ǫ1 und ǫ3 keine Gül-
tigkeit hat.
Für ǫ1 > 1 nähern sich die Massen an, und die Abweichung wird mit etwa
9% kleiner.
Für ǫ3 = 2 und ǫ3 = 3 wird die Abweichung von M2

π zu M2
πg

hin zu größeren
ǫ1 größer und ist maximal bei ǫ1 = 2, siehe Abb. 7.8, 7.9.
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7.2.4 Massensplitting

Für die Masse aus Gleichung (7.25) wird nun das Massensplitting untersucht.
Dieses ist durch

△M2
π,N =

M2
π1,2
−M2

π3

M2
π1,2

(7.26)

definiert. M2
π1,2

und M2
π3

werden mit Gleichung (7.25) berechnet. Die Größe

△M2
π wird zur besseren Darstellung durch M2

π1,2
normiert. Die Schleifenbei-

träge sind nur von der renormierten Treelevelmassen in LO, m2
π, abhängig,

für welche kein Massensplitting existiert. Damit ist das Massensplitting un-
abhängig von den Schleifenbeiträgen. Zusätzlich ist das Massensplitting nicht
abhängig vom W0-Wert, da die in diesem Kapitel berechneten Massen selber
unabhängig vom W0-Wert sind§.
Mit der Näherung η̂ ≪ 1 findet sich folgende Gleichung zur theoretischen
Berechnung des Massensplittings [22]:

△M2
π = 128η

sin2(ω)a2

F 2
0

= −2ĉ2
sin2(ω)

F 2
0

. (7.27)

Das Vorzeichen von △M2
π ist abhängig von ĉ2, Gleichung (7.27), und somit

abhängig von der Wahl des Szenarios. In dieser Arbeit wurde c2 < 0 und

§siehe Abschnitt 7.1.2
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somit ĉ2 < 0 gewählt, woraus das normale Szenario und M2
π1,2

> M2
π3

folgt.
Zudem folgt durch das Einsetzen des Winkels ω eine Abhängigkeit vom W0-
Wert und damit für ǫ1 die Existenz eines kritischen Wertes ǫ1,c.
Das theoretisch berechnete Massensplitting nach Gleichung (7.27) wird eben-
falls mit der Masse M2

π1,2
normiert. Dazu wird die Masse M2

π1,2
aus Gleichung

(7.25) benutzt:

△M2
π,T = 128η

sin2(ω)a2

F 2
0 ·M2

π1,2

. (7.28)

Es wird nun das theoretisch berechnete Massensplitting △M2
π,T nach Glei-

chung (7.28) mit dem numerisch berechneten Massensplitting △M2
π,N nach

Gleichung (7.26) verglichen. Zusätzlich wird das dimensionlose Verhältnis
V = (△M2

π,N)/(△M2
π,T) betrachtet.

ǫ3 = 0, 6

ǫ1 △M2
π,T △M2

π,N

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

1, 11 1, 11 0, 97
0, 43 0, 44 0, 60
0, 14 0, 15 0, 20
0, 06 0, 06 0, 08
0, 03 0, 03 0, 04

0, 39
0, 10
0, 04
0, 02
0, 01

ǫ1 V

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

0, 35 0, 35 0, 40
0, 24 0, 23 0, 17
0, 30 0, 29 0, 21
0, 37 0, 36 0, 28
0, 42 0, 41 0, 34

ǫ3 = 1

ǫ1 △M2
π,T △M2

π,N

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

0, 97 0, 97 0, 93
0, 53 0, 54 0, 62
0, 26 0, 26 0, 32
0, 13 0, 13 0, 16
0, 07 0, 07 0, 08

0, 86
0, 23
0, 10
0, 05
0, 03



84 Massenbestimmung

ǫ1 V

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

0, 89 0, 87 0, 93
0, 44 0, 43 0, 38
0, 40 0, 39 0, 32
0, 43 0, 42 0, 34
0, 46 0, 45 0, 38

ǫ3 = 3

ǫ1 △M2
π,T △M2

π,N

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

0, 31 0, 31 0, 31
0, 30 0, 30 0, 31
0, 26 0, 26 0, 27
0, 22 0, 22 0, 23
0, 17 0, 17 0, 18

0, 27
0, 24
0, 20
0, 15
0, 11

ǫ1 V

0
0, 5
1, 0
1, 5
2, 0

W0 = 105 W0 = 106 W0 = 107

0, 87 0, 87 0, 87
0, 82 0, 81 0, 80
0, 75 0, 75 0, 72
0, 70 0, 70 0, 66
0, 66 0, 66 0, 62

Die Tabelle für ǫ3 = 0 ist hier nicht aufgeführt. Es ist kein Massensplitting
zu beobachten, die Massen M2

π1,2
und M2

π3
sind hier gleich.

Das Massensplitting wird in allen Fällen für wachsendes ǫ1 kleiner.
V nimmt ab, für steigendes W0. Allerdings gibt es hierzu bei ǫ1 = 0 Ausnah-
men. Zwischen den Verhältnissen bei W0 = 105MeV3 und W0 = 106MeV3

liegt höchstens eine Differenz von 0, 02, die Werte bei W0 = 107MeV3 wei-
chen mit einer Differenz von bis zu 0, 09 stärker ab.
Wird ǫ3 größer, nimmt das Verhältnis V zu. Bei ǫ3 = 0, 6 liegen die Werte im
Bereich von V = 0, 17 und V = 0, 42. Für ǫ3 = 1 ist bei einem ǫ1-Wert von
ǫ1 = 0 ein maximaler Wert von V = 0, 93 zu beobachten. Sobald ǫ1 > 0 ist,
sind die V-Werte mit maximal V = 0, 46 deutlich kleiner. Ist ǫ3 = 3 liegen
die V-Werte zwischen V = 0, 62 und V = 0, 87.
Die Größe △M2

π,T wurde unter der Annahme η̂ ≪ 1 hergeleitet. Diese An-
nahme ist gerade für große Werte von ǫ1 und ǫ3 und bei kleinen Werten der
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Abbildung 7.10: Verlauf der Masse M2
π

bei ǫ1 = 2, 5 · 10−4

Größe W0 erfüllt. Für ǫ3 ≤ 1, ǫ1 > 1 und W0 = 105MeV3 nimmt V Werte von
0, 30 bis 0, 46 an. Die auf unterschiedliche Art ermittelten Massensplittings
sind hier somit nicht gleich. Ist ǫ3 > 1 und W0 = 105MeV3 liegt V zwi-
schen 0, 66 und 0, 87. Die Werte der verschiedenen Massensplittings sind hier
ebenfalls nicht gleich. Die Gleichung (7.27) kann nur als Näherungsgleichung
verstanden werden, sie gibt nicht den exakten Wert des Massensplittings
an, sondern nur die Tendenz. Nimmt das Massensplitting △M2

π,N stark oder
leicht ab, so nimmt auch △M2

π,T stark, bzw. leicht ab. Die Proportionalität
des Massensplittings zu sin2 (ω) kann damit bestätigt werden.

7.2.5 Verhalten der Massen bei ǫ1 = 0

Bei ǫ1 = 0 wird ein bestimmtes Verhalten der MassenM2
π1,2

undM2
π3

erwartet.
Für ǫ3 = 0 sollten die Werte der Massen sehr nah beieinander liegen. Für
ǫ3 > 0 wächst M2

π1,2
stetig an, während M2

π3
zuerst fällt, bei ǫ3 = ǫ3,c den

Wert Null annimmt und danach wächst. ǫ3,c ist durch

ǫ3,c = ǫ3 (µ = µc)

definiert, d.h. für ǫ3 < ǫ3,c ist ein Phasensprung zu beobachten, für ǫ3 ≥ ǫ3,c

nicht mehr. In Abschnitt 5.3 wurde ǫ3,c = 1 für ein Potential ohne die ǫ4-
und ǫ5-Terme gefunden. Unter Beachtung dieser Terme lässt sich der ǫ3,c-
Wert nicht mehr berechnen. Aus dem Verhalten des Minimums lässt sich
aber schließen, dass der Wert nicht stark von 1 abweichen sollte. Der genaue



86 Massenbestimmung

Wert für ǫ3,c wird im Folgenden durch das Verhalten der Massen bestimmt.
Für ǫ1 = 2, 5 · 10−4 ≈ 0 werden die Massen M2

π1,2
und M2

π3
für 0 ≤ ǫ3 ≤ 2

untersucht. ǫ1 = 2, 5 ·10−4 ist der kleinste ǫ1-Wert, für den keine numerischen
Fehler auftreten.
Bei ǫ3 = 0 sind die Massen M2

π1,2
und M2

π3
fast identisch, Abb. 7.10. Der

Graph von M2
π1,2

wächst stetig. Bei ǫ3 ≈ 1 wird ein Zuwachs der Steigung

beobachtet. Der Graph von M2
π3

besitzt keine Nullstelle, aber ein Minimum
bei ǫ3 = 0, 984 ≈ 1. In diesem Minimum nimmt M2

π3
den Wert 6229MeV2,

bzw. Mπ3 den Wert 79MeV an. Dieser Wert ist klein, aber nicht gleich Null,
da ǫ1 ebenfalls nicht identisch Null ist. Nach Gleichung (2.14) gilt für die
Masse der Pionen bis LO im Kontinuum:

m2
π = 2B0m

′
0.

Die Größe m′
0 ist bereits in Abschnitt 5.2.1 berechnet worden. m2

π kann somit
durch die Variable ǫ1 ausgedrückt werden:

m2
π =

128ηa2

F 2
0

ǫ1.

Mit dem Wert ǫ1 = 2, 5 · 10−4 ergibt sich damit m2
π = 11MeV2, bzw. mπ =

3, 3MeV. Dieser Wert unterscheidet sich zwar deutlich von dem Wert Mπ3 =
79MeV, allerdings ist m2

π nur die Masse bis LO. Sämtliche NLO-Terme sind
nicht in m2

π enthalten. Da aber nicht gilt ǫ1 ≡ 0, tragen diese Terme zur
Masse M2

π3
bei.

Für ǫ3 > 1 verlaufen die beiden Graphen etwa parallel. Die Schleifenbeiträge
verändern die Masse kaum, siehe Abschnitt 7.2.2. Eine Betrachtung der Tree-
levelmassen, Gleichung (7.14) und (7.15), reicht somit aus, das Verhalten der
Massen für große ǫ3 abzuschätzen. Die Treelevelmassen sind linear in c3 und
damit auch in ǫ3. Die c4- und c5-Terme bewirken nur eine minimale Korrek-
tur. Aus der Proportionalität von c3 zu µ folgt daher, dass auch die Massen
M2

π1,2
für große ǫ3 proportional zu µ, bzw. 2B0µ sein sollten. Das Verhältnis

V1,2 =
M2

π1,2

2B0µ

und auch das Verhältnis

V3 =
M2

π3

2B0µ

muss dann für große ǫ3-Werte etwa konstant sein.

ǫ3 1, 0 1, 2 1, 4 1, 6 1, 8 2, 0
V1,2 1, 03 1, 03 1, 03 1, 04 1, 04 1, 05
V3 0, 14 0, 26 0, 37 0, 46 0, 54 0, 60
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Das Verhältnis V1,2 = 1 ist für 1 ≤ ǫ3 ≤ 2 konstant. Die Werte für das
Verhältnis V3 wachsen dagegen. Hier kann das Verhältnis für ǫ3 ≥ 1, 6 mit
V3 ≈ 0, 5 als etwa konstant angesehen werden.

Das hier ermittelte kritische ǫ3,c = 0, 984 weicht nur minimal von dem Er-
gebnis aus Abschnitt 5.3 mit ǫ3,c = 1 ab. Aus dem dort untersuchten Phasen-
sprung lies sich folgern, dass die ǫ4- und ǫ5-Terme im Potential nicht wesent-
lich zum Verhalten beitragen. Dies wird hier bestätigt. Die Beachtung dieser
Terme verschiebt ǫ3,c nur minimal.

7.3 Ergebnisse der Massenbestimmung

In LO sind die genäherten und ungenäherten Treelevelmassen fast identisch.
Lediglich für großes W0 und kleine ǫ1 und ǫ3 sind minimale Abweichungen
zu erkennen. Dieses Ergebnis gibt das Verhalten von uSU zu uF wieder. Die
Abweichungen der Minima sind ebenfalls sehr gering.
In NLO kommen zu den Treelevelmassen noch Schleifenbeiträge durch die
Selbstwechselwirkung. Dabei verändert sich die Masse durch Beachtung der
Schleifenbeiträge nur gering.
Die Unterschiede der genäherten und der ungenäherten Massen sind in NLO
größer als in LO. Dieses Verhalten entspricht ebenfalls dem Verhalten der
Minima zueinander. Für ǫ3 ≤ 1 ist die Differenz der beiden Massen im Bereich
kleiner ǫ1 groß. Besonders auffällig ist, dass das genäherte Massenquadrat im
Bereich kleiner |ǫ1| teilweise negativ ist. Dieses Verhalten ist unphysikalisch.
Für ǫ3 > 1 ist die Differenz für alle ǫ1 etwa gleich, wobei der Betrag der
Differenz größer ist als für die Fälle ǫ3 ≤ 1.
Bei Verwendung der η̂-Näherung kann eine Gleichung zur Berechnung des
Massensplittings theoretisch hergeleitet werden. Ohne diese Näherung ist dies
nicht möglich, da die Gleichung zur Berechnung der Masse zu kompliziert
wird. Das Massensplitting muss numerisch ermitelt werden. Beim Vergleich
der auf diese beiden Arten ermittelten Massensplittings ist für ǫ3 ≤ 1 ein
deutlicher Unterschied erkennbar, für ǫ3 > 1 nicht mehr.
In NLO sind die Abweichungen der genäherten und der ungenäherten Massen
deutlich erkennbar. Das qualitative Verhalten der genäherten Masse weicht
für kleine ǫ1 und ǫ3 vom Verhalten der ungenäherten Masse ab. Für große ǫ1
und ǫ3 gibt die genäherte Masse das qualitative Verhalten der ungenäherten
Masse wieder, allerdings gibt es quantitative Unterschiede.
Ist ǫ3 < ǫ3,c springt bei ǫ1 = 0 das Minimum vom negativen Bereich für
ǫ1 < 0 in den positiven Bereich für ǫ1 > 0. Das ǫ3,c lässt sich theoretisch zu
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ǫ3,c = 1 berechnen, falls die Größen ǫ4 und ǫ5 zu Null gewählt werden. Unter
Beachtung dieser beiden Größen ist ǫ3,c nicht mehr theoretisch berechenbar.
Die Masse des Pions π3 verschwindet für ǫ1 = 0 und ǫ3 = ǫ3,c. Damit lässt
sich die Größe ǫ3,c numerisch ermitteln. Das Ergebnis ǫ3,c = 0, 984 weicht
nicht stark vom theoretisch berechneten Wert ab. Bereits in Kapitel 5 wurde
gezeigt, dass die Größen ǫ4 und ǫ5 keinen großen Einfluss auf die Lage des
Minimums haben, dies wird hier bestätigt.



Kapitel 8

Nf = 3

In diesem Kapitel wird der Fall Nf = 3 betrachtet. Die Symmetriegruppe
ist die SU(3)-Gruppe, deren Generatoren die Gell-Mann-Matrizen∗ sind. Es
wird weiterhin die Gasser-Leutwyler-Lagrangedichte auf dem Gitter, siehe
Gleichung (4.4), betrachtet. Für die Feldkonfigurationsmatrix U ist eine ent-
sprechende Parametrisierung zu wählen. Für Nf = 2 kann ein bestimmtes
Verhalten des Minimums beobachtet werden. Die folgenden Betrachtungen
dienen der ersten Abschätzung des Verhaltens des Minimums, bzw. der Mi-
nima für Nf = 3. Eine Möglichkeit für die Feldkonfigurationsmatrix im Mini-
mum besteht in der Parametrisierung durch die Gell-Mann-Matrizen λ3 und
λ8, welche vertauschen,

U = ei(φ3λ3+φ8

√
3λ8) = ei(φ3λ3) · ei(φ8

√
3λ8). (8.1)

Dabei sind φ3 und φ8 ∈ [−π, π]. Die Feldkonfigurationsmatrix hat Diagonal-
gestalt. Das Potential ist in dieser Parametrisierung sehr kompliziert, so dass
Abschätzungen nicht möglich sind. Eine andere Möglichkeit ist die Parame-
trisierung:

U =




a 0 0
0 b 0
0 0 c



 =




a1 + ia2 0 0

0 b1 + ib2 0
0 0 c1 + ic2



 . (8.2)

Aus der Unitarität und der Bedingung detU = +1 folgen die Nebenbedin-
gungen

a2
2 = 1− a2

1 a2 = r
√

1− a2
1

b22 = 1− b21 b2 = s
√

1− b21
c22 = 1− c21 c2 = t

√
1− c21

(8.3)

∗Siehe Anhang A
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und

c1 = −rs
√

1− a2
1

√
1− b21 + a1b1. (8.4)

Dabei sind r, s, t ∈ {−1, 1}. Damit wird die Anzahl der Variablen auf zwei
reduziert: a1 und b1.

In die Massenmatrix muss jetzt auch das Strange-Quark miteinbezogen wer-
den:

χ = 2B0




mu 0 0
0 md 0
0 0 ms



 .

Diese Massenmatrix wird analog zu Abschnitt 4.2 mit einer MatrixD gedreht:

χ(ω) = χ · D.

Die diagonale Drehmatrix D kann dabei einen Drehwinkel, oder mehrere
Drehwinkeln beinhalten. Dabei muss für

D =




eiα 0 0
0 eiβ 0
0 0 eiγ



 (8.5)

die Relation α+ β + γ = 0 erfüllt sein.

8.1 Twist mit einem Drehwinkel

Für Nf = 2 wird die Drehmatrix mit nur einem Winkel und der Matrix
τ3 benutzt. Analog kann für Nf = 3 eine Drehmatrix mit einem Winkel
bestimmt werden. Die Matrix τ3 wird durch den entsprechenden Generator
λ3 in Nf = 3 ersetzt. Damit lautet die Drehmatrix

D = e−iωλ3 , (8.6)

welche zu der gedrehten Massenmatrix

χ (ω) =




χ0 + iχ3 0 0

0 χ0 − iχ3 0
0 0 χs




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führt. Dabei sind χ0 und χ3 die in Abschnitt 4.2 definierten Größen. Es wird
der Spezialfall mu = md = mq0 6= ms betrachet. χs ist definiert durch:

χs = 2B0ms.

Die Drehung der Massenmatrix hat auf die Masse des Strange-Quarks keine
Auswirkung. Lediglich die Massen des Up- und des Down-Quarks werden
gedreht.
Das Potential hat mit diesen Parametrisierungen die Form:

V (a1, b1, c1) =− A(a1 + b1) + Acc1 +B(a2
1 + b21) +Bcc

2
1

+ Ca1b1 + Cc(a1 + b1)c1

+D(r
√

1− a2
1 − s

√
1− b21) + Ea1r

√
1− a2

1

+ Fb1r
√

1− a2
1 + Fcc1(r

√
1− a2

1 − s
√

1− b21)

+Ga1s
√

1− b21 +Gc(a1 − b1)t
√

1− c21

+Hb1s
√

1− b21 + Jr
√

1− a2
1s

√
1− b21

+ Jc(
√

1− a2
1 + s

√
1− b21)t

√
1− c21. (8.7)

Das Potential ist in Abhängigkeit der drei Variablen a1, b1 und c1 angegeben.
Mit diesen drei Variablen hat das Potential eine einfache Form. Für spätere
Betrachtungen wird die Varibale c1 wieder über die Variablen a1 und b1 aus-
gedrückt.
Es werden die Koeffizienten

A =
1

2
F 2

0χ
′
0, (8.8)

Ac = −1

2
F 2

0 (χs + ρ0) , (8.9)

B =2
[
ρ2

0(W8 − 2W7 − 2L8 − 2L7 − 2W ′ − 2W ′
7 −W ′

8)

+ ρ0χ
′
0(2W7 + 4L7 − 2W −W8 + 4L8)

+ (χ2
3 − χ′

0
2
)(2L7 + L86 + 2L8)

]
, (8.10)

Bc =2
[
− ρ2

0(W
′
86 + 2W ′

7 +W ′
8)− χ2

s (2L7 + 2L8 + L86)

+ χsρ0(2W7 −W8 −W86)
]
, (8.11)
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C =4
[
ρ0χ

′
0(W8 − 2L8 − 2W )− 2L7χ

2
3 + χ′

0
2
(L8 − L86)

+ ρ2
0(L8 +W ′

8 − 2W ′ −W8)
]
, (8.12)

Cc =2
[
2χs(χ

′
0 − ρ0)(L8 − L86) + ρ0(χs + χ′

0)(W8 −W86)

+ ρ2
0(W86 + 2W ′

8 − 2W ′
86 −W8)

]
, (8.13)

D =− 1

2
F 2

0χ3, (8.14)

E = 2
[
2χ3(ρ0 − χ′

0)(2L7 + L8 + L86) + χ3ρ0(2W7 −W8 −W86)
]
, (8.15)

F = 2
[
2χ3(χ

′
0 − ρ0)(2L7 + L8 − L86)− χ3ρ0(2W7 −W8 +W86)

]
, (8.16)

Fc = 2
[
2χ3χs(2L8 − L86) + χ3ρ0(W8 −W86)

]
, (8.17)

G = 2
[
2χ3(ρ0 − χ′

0)(2L7 + 2L8 − L86) + χ3ρ0(2W7 −W8 +W86), (8.18)

Gc = 4
[
− 2L7χ3χs +W7χ3ρ0

]
, (8.19)

H = 2
[
2χ3(χ

′
0 − ρ0)(2L7 + 2L8 + L86)− χ3ρ0(2W7 −W8 −W86)

]
, (8.20)

J =4
[
2L7χ

′
0
2 − 2ρ0χ

′
0(2L7 +W7) + χ2

3(L86 − 2L8)

+ 2ρ2
0(L7 +W ′

7 +W7)
]

(8.21)

und

Jc =4
[
χ′

0(2L7χs −W7ρ0)− χsρ0(2L7 +W7) + ρ2
0(2W

′
7 +W7)

]
(8.22)

benutzt. Für die Gittermatrix wurde die bereits in Kapitel 4.2 gewählte Para-
metrisierung ρ = ρ01 = 2W0a1 verwendet. Diese Koeffizienten sind teilweise
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ähnlich zu den Koeffizienten ci aus Abschnitt 4.2. A entspricht exakt c1 und
ist damit für positive Massen mq0 positiv. Die Masse des Strange-Quark wird
festgesetzt, wobei die Strange-Quarkmasse positiv gewählt wird, ms > 0. Da-
her ist Ac negativ. Der Koeffizient B ist ähnlich zu c2. Das Vorzeichen von
c2 entscheidet, ob das Aoki-Szenario eintritt oder das normale-Szenario. Der
Koeffizient D muss positiv sein, da χ3 = −2B0µ negativ ist. Damit gilt für
die Koeffizienten:

A ∼ mq0

Ac < 0
D ∼ µ.

Zur ersten Abschätzung des Potentials werden die Koeffizienten D bis Jc Null
gesetzt. Die Größe D wird in einem zweiten Schritt miteinbezogen und die
Veränderung des Potentials untersucht.

Das Potential wird auf die Existenz von Minima untersucht. Dafür werden
die Koeffizienten größer oder kleiner Null gewählt. Wenn kein Betrag der Ko-
effizienten angegeben ist, wird dieser immer gleich 1 gewählt. Die einzelnen
Terme sind somit noch nicht gewichtet.
Die Berücksichtigung des D-Terms bewirkt entweder eine Veränderung des
Randes des Potentials, oder die Wölbung des Potentials dreht sich um. Da-
durch bilden sich neue Minima oder sie verschwinden. Der D-Term ist entwe-
der proportional zu r oder zu s. Es ist daher von Bedeutung, ob r = −1 und
s = +1 gewählt wird, oder umgekehrt. Ohne Berücksichtigung dieses Terms
ist es egal, welche der beiden Größen positiv gewählt wird, da r und s im-
mer als Produkt auftauchen. Es muss dann nur unterschieden werden, ob die
beiden Größen dasselbe Vorzeichen haben oder unterschiedliche. Wird der D-
Term berücksichtigt und wird r = +1 und s = −1 gewählt, dann gibt es nur
in zwei Fällen Minima des Potentials. In diesen Fällen existiert das Minimum
auch für r = −1 und s = +1. Werden die Koeffizienten A,B,C,Cc > 0 und
Bc < 0 gewählt, gibt es für beide Realisierungen, d.h. r = ∓1 und s = ±1,
ein Minimum des Potentials, ebenso für B,C > 0 und A,Bc, Cc < 0.
Wie im Fall Nf = 2 wird auch für Nf = 3 die Masse mq0 größer oder kleiner
als Null gewählt. Für Nf = 2 kann ein Phasensprung beobachtet werden. Die
Existenz eines Minimums für mq0 > 0 und mq0 < 0 ist Voraussetzung für
einen Phasensprung. Deswegen sind besonders die Fälle interessant, in denen
sowohl für A < 0 als auch für A > 0 Minima existieren.
Es werden im Folgenden die Fälle aufgelistet, in denen auch nach Berücksich-
tigung des D-Terms mindestens ein Minimum existiert. Angegeben wird die
Anzahl der Minima. Dabei werden globale Minima, die am Rand liegen und
für die die Ableitung von V nicht den Wert Null annimmt nicht betrachtet.
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Zur Vereinfachung der anschließenden Diskussion wird jedem in der Tabelle
aufgelisteten Fall eine Nummer zugeordnet.

B Bc C Cc r s A > 0 A < 0 A > 0 A < 0
D = 0 D = 0 D > 0 D > 0

1 < 0 > 0 > 0 > 0 −1 +1 2 0 2 1
2 < 0 < 0 −1 +1 0 0 1 1
3 > 0 < 0 −1 +1 0 2 1 2
4 < 0 > 0 > 0 −1 +1 1 1 1 1
5 < 0 < 0 −1 +1 0 1 1 2
6 > 0 < 0 −1 +1 1 2 1 1
7 < 0 > 0 −1 +1 1 1 2 1

8 > 0 > 0 > 0 > 0 −1 +1 2 1 2 1
9 < 0 < 0 −1 +1 0 1 1 1
10 > 0 < 0 −1 +1 1 2 1 1
11 < 0 > 0 −1 +1 1 0 1 1
12 < 0 > 0 > 0 ∓1 ±1 1 1 1 1
13 < 0 < 0 ±1 ±1 1 1 1 0
14 −1 +1 1 1 1 1
15 +1 −1 1 1 0 1
16 > 0 < 0 −1 +1 1 1 1 1
17 +1 −1 1 1 0 1
18 < 0 > 0 −1 +1 1 1 1 1

Es werden jetzt die Fälle untersucht, für die in allen Varianten von A und D
mindestens ein Minimum vorhanden ist. Zur Veranschaulichung werden zwei-
dimensionale Skizzen des Potentials angeführt. Um die Lage des Minimums
zu bestimmen, werden allerdings dreidimensionale Graphiken betrachtet, in
denen das Potential V (a1, b1) über der a1- und der b1-Achse aufgetragen wird.
Es reicht aus, das Potential in einer zweidimensionalen Ebene E zu betrach-
ten, um das Verhalten der Minima zu untersuchen. Die Ebene E ist bestimmt
durch a1 = b1, d.h. durch die Diagonale der a1-b1-Ebene.
Existiert nur ein Minimum, können zwei Fälle beobachtet werden:

• Das Minimum liegt sowohl für A > 0, als auch für A < 0 bei negativen
Werten der Variablen a1 und b1. Dieser Fall tritt bei

”
4“ und

”
7“ für

D = 0 ein. Das Potential hat bei A = 1 eine in der Mitte nach oben
gewölbte Form. An dem Rand, an dem die Variablen negative Wer-
te annehmen, ist das Potential leicht geknickt, so dass ein Minimum
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Abbildung 8.1: Das Potential in der Ebene E , für den Fall, dass nur ein Minimum bei
negativen Werten von a1 und b1 existiert

existiert. Die Krümmung des Potentials an dem Rand, an dem die Va-
riablen positive Werte annehmen, wird für größer werdenes A immer
kleiner, siehe Abbildung 8.1.

• Das Minimum ist entweder mittig oder für eine positive Masse, bzw.
positives A, bei positiven Werten der Variablen und umgekehrt. Hierbei
müssen zwei weitere Fälle unterschieden werden:

– Das Potential hat in der Mitte keine große Krümmung, ähnlich
einem Plateau. Das in der Mitte befindliche Minimum ist nur
schwach ausgebildet. An den Rändern ist ein steiler Anstieg er-
kennbar. Für

”
4“ und D > 0 ist diese Form des Potentials bei

A = 1 zu beobachten, siehe Abbildung 8.2. Für A > 1 wandert
das Minimum zu positiven Werten der Variablen, für A < 1 zu ne-
gativen Werten. Das Potential kippt zu der entsprechenden Seite.
Diese Veränderung ist schon bei kleinen Abweichungen, z.B. ±0, 1,
von A = 1 feststellbar. Für

”
6“ undD > 0 ist die Plateau-ähnliche

Form des Potentials bei A = −1. Für A < −1 verschiebt sich das
Minimum zu negativen Werten der Variablen, und bei A > −1 zu
positiven Werten. Die Änderung des Potentials ist auch hier bei
kleinen Abweichungen vom Wert A = −1 leicht zu erkennen.

– Die zwei dimensionale Projektion des Potentials entspricht einer
Parabel. Das Minimum für A = −1 liegt mittig und wandert für
A > −1 hin zu positiven Werten der Variablen, siehe Abbildung 8.3.
Für A < −1 verschiebt sich das Minimum in den Bereich negati-
ver Werte der Variablen. Die Veränderung des Potentials ist erst
bei größeren Abweichungen, z.B. ±0, 5 deutlich zu erkennen. Die-
ser Fall ist bei

”
10“ und D > 0 oder bei

”
14“ und

”
16“ sowohl

bei D = 0, als auch bei D > 0 zu beobachten. Für die Fälle
”
12“
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A < 1 A = 1 A > 1

Abbildung 8.2: Das plateauförmige Potential in der Ebene E , für den Fall, dass nur ein
Minimum existiert

A < −1 A = −1 A > −1

Abbildung 8.3: Das parabelförmige Potential in der Ebene E , für den Fall, dass nur ein
Minimum existiert

und
”
18“ bei D = 0 und bei D > 0 ist das Minimum des para-

belförmigen Potentials bei A = 1 in der Mitte. Hierbei verschiebt
sich das Minimum für A < 1 hin zu negativen Werten der beiden
Variablen. Bei A > 1 liegt das Minimum im positiven Bereich der
Variablen.

Auch bei der Existenz von zwei Minima müssen zwei Fälle unterschieden
werden:

• Die beiden Minima sind bei a1 ≈ 1, b1 ≈ 0 und a1 ≈ 0, b1 ≈ 1 für
A > 0, bzw. bei a1 ≈ −1, b1 ≈ 0 und a1 ≈ 0, b1 ≈ −1 für A < 0.
Das Potential hat in beiden Fällen ungefähr eine Doppelmulden-Form.
Wird das andere Vorzeichen von A gewählt gehen die zwei Minima
über in ein Minimum. Für |A| < 1 wird die Wölbung in der Mitte des
Doppelmulden-Potentials steiler und höher, das Potential kippt. Die
beiden Minima laufen in die Mitte zusammen. Nach dem Vorzeichen-
wechsel von A läuft das Minimum für größer werdenes |A| zum Rand.
Dies kann bei

”
8“ sowohl für D = 0, als auch für D > 0 oder bei

”
10“

und D = 0 beobachtet werden.

• Die beiden Minima liegen am Rand, das eine bei positiven Werten der
Variablen, das andere bei negativen Werten. Der Potentialwert dieser
Minima ist gleich. Läuft die Größe A gegen große negative Werte wird
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Abbildung 8.4: Das Potential in der Ebene E , für den Fall, dass zwei Minima am Rand
des Potentials existieren

der Graph des Potentials steiler, bzw. kippt zu einer Seite, wodurch ein
Minimum verschwindet, siehe Abb. 8.4. Das Minimum liegt dann bei
neagtiven Werten der Variablen. Läuft A gegen große positive Werte
kippt das Potential zu der anderen Seite, das Minimum liegt schließlich
bei positiven Werten der Variablen. Wird nur das absolute Minimum
betrachtet kann somit ein Sprung dieses Minimums beobachtet werden.
Im Fall

”
6“ und D = 0 gibt es zwei absolute Minima für A = −1.

Für A < −1 gibt es ein absolutes Minimum bei negativen Werten
der Variablen. Sobald A > −1 ist, gibt es ein absolutes Minimum bei
positiven Werten von a1 und b1. Im Fall

”
7“ und D > 0 sind bei A = 1

zwei absolute Minima zu beobachten.

In den Fällen
”
6“, D = 0 und

”
7“, D > 0 gibt es einen Sprung des absoluten

Minimums bei A = −1, bzw. bei A = 1. In allen anderen Fällen ändert sich
die Lage der Minima stetig, hier wird kein Sprung der Minima beobachtet.
Besonders interessant ist hierbei der Fall

”
7“ und D > 0. Der Sprung des

Minimums verschwindet im Fall
”
6“, sobald D > 0 gewählt wird.

Für Nf = 2 existiert bis zu einem kritischen Wert der gedrehten Masse µ,
bzw. ǫ3, ein Sprung des Minimums. Bisher wurde µ ∼ D = 1 gewählt. Jetzt
wird der Wert von D verändert, und der Sprung des Minimums im Fall

”
7“

erneut untersucht.
In allen anderen Fällen verändert sich Wölbung des Potentials, wird D 6= 1
gewählt. Je mehr D vom Wert 1 abweicht, umso stärker ist die Wölbung des
Potentials. Dabei ist in allen Fällen

D > 1 ⇒ Wölbung nach unten
D < 1 ⇒ Wölbung nach oben
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beobachtbar. Dies hat teilweise Auswirkung auf die Anzahl der Minima.
Auch im Fall

”
7“ ändert sich die Wölbung des Potentials. Wird D < 1

gewählt hat dies keine Auswirkungen auf den Sprung der absoluten Minima.
Für D ≫ 1 ist die Wölbung des Potentials nach unten so stark, dass das
Potential ähnlich zu dem parabelförmigen Potential aus Abb. 8.3 ist. Für
D > 1 ist bis zu einem Wert von

D ≤ 2, 5

der Sprung des absoluten Minimums zu beobachten. Danach ist die Wölbung
des Potentials nach unten zu stark und die Lage des absoluten Minimums
ändert sich stetig.

Die Minima des Potentials sind in zwei Fällen sowohl für A = −1, als auch
bei A = 1 bei negativen Werten der Variablen a1 und b1. In den anderen
Fällen liegen die Minima für A ≥ 1 bei positiven Werten der Variablen oder
mittig und für A ≤ −1 bei negativen Werten oder ebenfalls mittig. Aller-
dings gilt dies nicht unbedingt für |A| < 1. Zum Beispiel gibt es teilweise
bereits bei kleinen, positiven Werten von A Minima bei negativen Werten
der Variablen.
Durch die Berücksichtigung des D-Terms wird entweder der Rand des Poten-
tials oder die Wölbung verändert. Wird D 6= 1 gewählt, wirkt sich dies auf
die Wölbung aus. Je nachdem, ob D > 1 oder D < 1 gesetzt wird hat das
Potential eine Wölbung nach unten bzw. oben. Dies ist umso stärker ausge-
bildet, je mehr D vom Wert 1 abweicht.
In zwei Fällen gibt es einen Sprung des absoluten Minimums bei A = −1,
bzw. A = 1. Im Fall

”
6“ kann dieser Sprung beobachtet werden, wenn der D-

Term nicht berücksichtigt wird. Mit Berücksichtigung des D-Terms existiert
im Fall

”
7“ ein Sprung des absoluten Minimums bei A = 1 für D-Werte bis

D ≤ 2, 5. Für größere Werte ändert sich die Lage des absoluten Minimums
stetig.



Kapitel 9

Zusammenfassung und Ausblick

In Kapitel 2 bis Kapitel 4 wurden die Grundlagen der tmQCD im Rahmen
der χPT auf dem Gitter behandelt.

Die Gleichung zur Bestimmung des Potentialminimums wurde in Kapitel 5
mit Hilfe des Algorithmus nach Ferrari hergleitet. Es wurden die dimensions-
losen Variablen ǫ1 und ǫ3 eingeführt, welche proportional zu den gedrehten
Massen der twisted basis sind. Zusätzlich ist die Variable ǫ1 proportional zu
der Gitterkonstanten. Für die Variable ǫ3 wurde ein konstanter Wert gewählt.
Zur numerischen Berechnung des Minimums musste der Gitterparameter η
angegeben werden. Dieser wurde anhand der Gleichung für die kritische, ge-
drehte Masse µc und der Gleichung der Pionenmasse im Minimum m2

π,min

bestimmt. Für die Wilson-Wirkung ergab sich dabei:

η = 1013MeV6.

Mit diesem η-Wert wurde die Gültigkeit der Entwicklung der Lagrangedichte
nach Termen der Gitterkonstante a bis zur Ordnung a2 überprüft. Der Ein-
fluss der Ordnung a2-Terme auf das Minimum erwies sich dabei als sehr ge-
ring. Eine Entwicklung der Lagrangedichte nach dem Weinberg’schen Power-
counting bis zur Ordnung a2, bzw. NLO war somit sinnvoll. Es lies sich zudem
ein Gültigkeitsbereich der Variablen ǫ1 von

−2 ≤ ǫ1 ≤ 2

berechnen.
Das Potential enthielt Terme, welche proportional zu der Gitterkonstanten
waren und aufgrund des Weinberg’schen Powercountings klein sein müssen.
Daher wurde bereits das Potential ohne diese Terme, die ǫ4- und ǫ5-Terme,
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untersucht. Es war daher von Interesse, ob diese Terme das Verhalten des Mi-
nimums, insbesondere in der Nähe des Phasensprungs, wesentlich beeinflus-
sen. Entsprechende Untersuchungen ergaben, dass das Minimum mit ǫ4 6= 0
und ǫ5 6= 0 kaum von dem Minimum mit ǫ4 = 0 und ǫ5 = 0 abwichen. Der
Einfluss der ǫ4- und ǫ5-Terme war somit sehr gering. Dies wurde durch Un-
tersuchungen der Lage des Phasensprungs bestätigt. Der Phasensprung war
ohne Berücksichtigung der ǫ4- und ǫ5-Terme im Potential bei ǫ1 = 0. Wurden
diese Terme in die Rechnung miteinbezogen, verschob sich dieser Wert. Dabei
war die Abweichung vom Wert ǫ1 = 0 so minimal, dass sie zu vernachlässigen
war.

Im Kapitel 6 wurden die Minima der χ̂- und der η̂-Näherung angeführt [13],
[22], [23], [24]. Diese Minima wurden mit dem hier ermittelten Minimum
verglichen. Dabei war vor allem das Verhalten der Minima der χ̂- und der η̂-
Näherung im Bereich des Phasensprungs von Interesse. In leading order (LO)
war kein Unterschied zwischen dem Minimum der χ̂-Näherung uSC und dem
Minimum nach dem Algorithmus nach Ferrari uF zu beobachten. Das Mini-
mum der η̂-Näherung uSU unterschied sich nur minimal im Bereich großer
W0-Werte von diesen. W0 war ein Gitterparameter, dessen Wert nicht be-
kannt war und deshalb frei gewählt wurde.
In next to leading order (NLO) war zwischen den Minima der Näherungen
und uF bei kleinen |ǫ1|-Werten und ǫ3 ≤ 1 eine große Diskrepanz zu beobach-
ten. Insbesondere beschrieben die Minima der Näherungen nicht den Pha-
sensprung. Für ǫ3 > 1 war der Unterschied der Minima gering. Zudem wurde
der Gültigkeitsbereich der Näherungen untersucht. Für die χ̂-Näherung wur-
de ein Bereich von

7, 0 ≤ χ̂ ≤ 21, 6

gefunden, in dem die Minima der Näherungen nicht wesentlich vom Minimum
nach Ferrari abwichen. Die η̂-Näherung ist eine Erweiterung der χ̂-Näherung,
in der zusätzlich die Annahme gemacht wurde, dass die Größe η̂ viel kleiner
als 1 ist. Hier erwies sich ein Gültigkeitsbereich von

η̂ ≤ 0, 2

als sinnvoll.

Das in dieser Arbeit ermittelte Minimum wurde zur Berechnung der Pio-
nenmassen benutzt. Dazu wurden in Kapitel 7 die Treelevelmassen, in LO
und in NLO, und die Schleifenbeiträge der Massen berechnet.
Die Treelevelmasse in LO wurde mit der Treelevelmasse in LO der η̂-Näherung
verglichen. Die Massen wichen nicht deutlich voneinander ab. Da die Schlei-
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fenbeiträge nicht wesentlich zu der Masse beitrugen, wurde auf einen Ver-
gleich der Treelevelmassen in NLO verzichtet. Der Vergleich der vollständigen
Massen in NLO, d.h. Treelevelmassen in LO, Treelevelmassen in NLO und
die Schleifenbeiträge, wurde angeführt. Die Massen der η̂-Näherung wichen,
ebenso wie das Minimum dieser Näherung, für ǫ3 ≤ 1 im Bereich kleiner |ǫ1|-
Werte stark von den in dieser Arbeit berechneten Massen ab. Insbesondere
nahmen die Massenquadrate der η̂-Näherung hier teilweise negative Werte
an. Für ǫ3 > 1 war das qualitative Verhalten der Massen gleich, allerdings
gab es quantitative Unterschiede.
Die Masse des Pions π3 unterschied sich von der Masse des Pions π1 oder π2.
Dieses Massensplitting nahm für größer werdende |ǫ1|-Werte ab. Es wurde
zudem der Vergleich mit dem Massensplitting der η̂-Näherung aufgestellt.
Dabei waren für ǫ3 ≤ 1 deutliche Unterschiede erkennbar. Bei ǫ3 > 1 waren
die Unterschiede geringer.
Von Interesse waren auch die Massen bei ǫ1 = 0. Es wurde erwartet, dass
die Masse Mπ3 für ǫ3,c = ǫ3 (µ = µc) den Wert Null annahm. Damit konnte
ǫ3,c = 0, 984 bestimmt werden. Dieser Wert unterschied sich nicht stark von
dem Wert, der mit ǫ4 = ǫ5 = 0 berechnet werden konnte. Der Einfluss der
ǫ4- und ǫ5-Terme auf das Minimum und damit auch auf die Masse war nur
gering. Dieses Ergebnis bestätigte die Untersuchungen aus Kapitel 5.

In Kapitel 8 wurde die Gasser-Leutwyler-Lagrangedichte für Nf = 3 betrach-
tet. Das Potential wurde auf Minima untersucht, um eventuelle Phasensprün-
ge der Minima zu finden. Dazu wurden zwei mögliche Parametrisierungen der
Feldkonfigurationsmatrix vorgestellt, wobei sich eine der Parametrisierungen
als unvorteilhaft erwies. Auf die Massenmatrix wurde eine Drehmatrix ange-
wand, welche einen Drehwinkel und die Gell-Mann-Matrix λ3 enthielt. Da-
durch blieb die Strange-Quarkmasse ungedreht. Lediglich die Up- und die
Down-Quarkmasse wurden gedreht.
Das Potential hatte mit diesen Parametrisierungen eine ähnliche Gestalt, wie
das Potential für Nf = 2. Dadurch konnten Abschätzungen der Koeffizienten
gemacht werden und gewisse Koeffizienten konnten zu Null gewählt werden.
Änderungen der Größe A, welche proportional zu der gedrehten Masse und
der Gitterkonstanten war, führten meist dazu, dass das Potential

”
gekippt“

wurde und sich dadurch die Lage der Minima verschob. Eine Veränderung
des D-Wertes, welcher proportional zu der gedrehten Masse war, wirkte sich
auf die Wölbung des Potentials aus. In einigen Fällen existierten zwei Mini-
ma. Für zwei mögliche Realisierungen der Koeffizienten A bis D gab es einen
Sprung der Lage des absoluten Minimums. Wurde D 6= 0 gewählt, konnte
bis zu einem D-Wert von D ≤ 2, 5 der Sprung der Minimumslage beobachtet
werden.
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Der Algorithmus nach Ferrari erlaubte eine exakte Berechnung des Mini-
mums. Insbesondere beschrieb dieses Minimum das Verhalten bei kleinen
Quarkmassen und somit beim Phasensprung.
Darüber hinaus kann der hier gefundene Gültigkeitsbereich der χ̂- und der
η̂-Näherung zur Einschätzung der Ergebnisse dieser Näherungen benutzt wer-
den.
Besonders interessant ist die Phasenstruktur für Nf = 3. In Kapitel 8 wur-
den bereits erste Untersuchungen durchgeführt und eine mögliche Parame-
trisierung der Feldkonfigurationsmatrix vorgestellt. Es gab einen Sprung des
Minimums für bestimmte Realisierungen der angeführten Koeffizienten.
Diese Ergebnisse können in nachfolgenden Arbeiten verwendet werden, um
die Phasenstruktur genauer zu untersuchen. Zum Beispiel könnte der Pha-
sensprung des Minimums untersucht werden, wenn alle Koeffizienten des Po-
tentials berücksichtigt werden. Eine andere interessante Frage ist, ob sich das
Verhalten der Minima für D < 0 gegenüber dem Verhalten der Minima für
D > 0 ändert.



Anhang A

SU(N)

Die Gruppe SU(N) ist die Gruppe der speziellen unitären Matrizen, d.h.
die Determinate dieser Matrizen ist +1, mit der Dimension N . Die Trans-
formationsgruppe wird durch N2 − 1 Generatoren charakterisiert. Im ersten
Teil dieser Arbeit wird der Fall Nf = 2 betrachtet, die Symmetriegruppe ist
SU(2). In Kapitel 8 wird der Fall Nf = 3 behandelt, die Symmetriegruppe
ist SU(3).

A.1 SU(2)

Die Generatoren der Gruppe SU(2) werden durch die Paulimatrizen be-
stimmt:

Ti =
τi
2

i = 1, . . . , 3.

Dabei haben die Paulimatrizen folgende Gestalt:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

Sie erfüllen die Vertauschungsrelation

[
τi
2
,
τj
2

] = iǫijk
τk
2

und bilden bezüglich dieses Kommutators eine Lie-Algebra.
Für ein Produkt zweier Paulimatrizen gilt die Beziehung

τiτj = iǫijkτk,

für i 6= j, bzw.
τiτj = 1,



104 SU(N)

für i = j.
Die Spur über die Paulimatrizen hat den Wert Null. Damit ist die Spur über
das Produkt einer geraden Anzahl von Paulimatrizen nur dann ungleich Null,
wenn jeweils zwei benachbarte Paulimatrizen identisch sind. Für die Spur
über das Produkt von drei Paulimatrizen gilt die Beziehung:

〈τiτjτk〉 = 2iǫijk.

A.2 SU(3)

Die Generatoren der SU(3)-Gruppe sind proportional zu den Gell-Mann-
Matrizen:

Ti =
λa

2
a = 1, . . . , 8.

Drei der acht Gell-Mann-Matrizen sind Erweiterungen der Paulimatrizen:

λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =




0 −i 0
i 0 0
0 0 0



 , λ3 =




1 0 0
0 −1 0
0 0 0



 ,

λ4 =




0 0 1
0 0 0
1 0 0



 , λ5 =




0 0 −i
0 0 0
i 0 0



 , λ6 =




0 0 0
0 0 1
0 1 0



 ,

λ7 =




0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3




1 0 0
0 1 0
0 0 −2



 .

Die Gell-Mann-Matrizen bilden bezüglich des Kommutators

[
λi

2
,
λj

2
] = ifijk

λk

2

eine Lie-Algebra. fijk ist die vollständig assymetrische Strukturkonstante mit
[25]

f123 f147 f156 f246 f257 f345 f367 f458 f678

1 1
2

−1
2

1
2

1
2

1
2

−1
2

√
3

2

√
3

2

.

Alle weiteren möglichen Realisierungen der Strukturkonstanten haben den
Wert Null.



Anhang B

Dirac-Matrizen

B.1 Dirac-Matrizen im Minkowski-Raum

Die Dirac-Matrizen erfüllen im Minkowski Raum die Anti-Kommutator-Relation:

[γµ, γν ] = 2gµν1.

Die vier Dirac-Matrizen haben die Gestalt:

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 τ1
τ1 0

)
,

γ2 =

(
0 τ2
τ2 0

)
, γ3 =

(
0 τ3
τ3 0

)
.

τi sind die drei Pauli-Matrizen.

Damit wird eine fünfte Dirac-Matrix berechnet:

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
.

Zudem lässt sich mit den Dirac-Matrizen die antisymmetrische Matrix finden:

σµν =
i

2
[γµ, γν ] .
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B.2 Dirac-Matrizen im Euklidischen Raum

Im Euklidischen Raum erfüllen die Dirac-Matrizen die Anti-Kommutator-
Relation: [

γE
µ , γ

E
ν

]
= 2δµν1.

Eine mögliche Realisierung der vier Dirac-Matrizen lautet:

γE
1 =

(
0 −iτ1
iτ1 0

)
, γE

2 =

(
0 −iτ2
iτ2 0

)
,

γE
3 =

(
0 −iτ3
iτ3 0

)
, γE

4 =

(
0 −1
−1 0

)
.

τi sind die drei Pauli-Matrizen.

Auch im Euklidischen Raum wird aus den vier Dirac-Martizen eine fünfte
Dirac-Matrix gebildet:

γE
5 = iγE

1 γ
E
2 γ

E
3 γ

E
4 =

(
1 0
0 −1

)
.

Ebenso wie im Minkowski-Raum wird mit Hilfe des Anti-Kommutators der
Dirac-Matrizen eine antisymmetrische Matrix gebildet:

σE
µν =

i

2

[
γE

µ , γ
E
ν

]
.



Anhang C

Relationen der
Niederenergiekonstanten

Zur Vereinfachung der LEC können folgende Relationen benutzt werden:

L54 = 2L4 + L5

L86 = 2L6 + L8

W54 = 2W4 +W5

W86 = 2W6 +W8

W ′
86 = 2W ′

6 +W ′
8.

Für beliebige LEC X ist die Gleichung

Xji = 2Xi +Xj

zu verwenden.

Diese neuen Koeffizienten bilden die Größen:

W = 1
2
(W86 − 2L86)

W ′ = 1
2
(L86 −W86 +W ′

86)

W̃ = 1
2
(W54 − L54) .

Aus Gitterrechnungen [19] ist für die Größen W und W̃ das Produkt mit W0

bekannt:
W ·W0 = w = 104MeV3

W̃ ·W0 = w̃ = 6 · 104MeV3

W ′ ·W 2
0 = η.
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In den Gitterrechnungen [19] sind die Zahlenwerte folgender Größen ermittelt
worden:

L54 = 1 · 10−3

L86 = 0, 8 · 10−3

F0 = 86MeV
B0 = 3, 1GeV
a = 1

1975
MeV−1 = 0, 1fm.

Zur Renormierung der Schleifenbeiträge der Masse werden die unrenormier-
ten LEC X durch renormierte LEC plus das Vielfache einer divergenten Kon-
stante R ersetzt:

Xi = Xr
i +

γi

32π2
R.

Für die Konstante γi gilt

γi =

{
Γi für Xi = Li und Xi = W ′

i

∆i für Xi = Wi.

Γi und ∆i werden mit Hilfe der Gleichungen [28]

i 4 5 6 7 8

Γi
1
8

Nf

8

N2
f
+2

16N2
f

0
N2

f
−4

16Nf

∆i
1
8

Nf

8

N2
f
+2

8N2
f

0
N2

f
−4

8Nf

berechnet. Für den Fall Nf = 2 ergeben sich die Renormierungskonstanten:

i 4 5 6 7 8

Γi
1
8

1
4

3
32

0 0

∆i
1
8

1
4

3
16

0 0
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