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1 Einleitung
Es geht in dieser Arbeit darum, das Manning-Potenzial mit Hilfe des Ritzschen Variati-
onsverfahrens zu untersuchen, indem Näherungen für die Energieeigenwerte des Grund-
zustands und des ersten angeregten Zustands mit Hilfe eines für die Arbeit geschriebenen
Computerprogramms berechnet werden. Das Manning Potenzial gehört zur Familie der
Doppelmuldenpotenziale. Diese zeichnen sich durch zwei Minima aus, die durch eine
Potenzialbarriere getrennt werden. Das Manning-Potenzial sowie alle anderen Doppel-
muldenpotenziale, die in dieser Arbeit Erwähnung finden, sind zudem um den Ursprung
symmetrisch. Doppelmuldenpotenziale finden in der Molekülphysik vielfache Anwendun-
gen. Für diese Arbeit spielt insbesondere die Anwendung auf das Ammoniakmolekül eine
Rolle.
Im Folgenden werden Energien fast ausschließlich in eV angegeben. In der Molekül-

physik ist es aber teilweise üblich, die der Energie entsprechende Wellenzahl 1/λ in der
Einheit cm−1 anzugeben. Im Anhang befindet sich eine Tabelle mit den Umrechnungs-
faktoren der verschiedenen Einheiten, sowie der für diese Arbeit notwendigen Naturkon-
stanten.

1.1 Allgemeine physikalische Eigenschaften von symmetrischen
Doppelmuldenpotenzialen

Da die in dieser Arbeit erwähnten Doppelmuldenpotenziale symmetrisch sind, ist klar,
dass auch das Betragsquadrat jedes Eigenzustands |Ψn|2 symmetrisch ist, was bedeutet,
dass die Eigenzustände entweder symmetrisch oder antisymmetrisch sein müssen. Nach
dem Knotensatz [1] hat der n-te stationäre Zustand eines stetigen Potenzials n Schnitt-
stellen mit der x-Achse (Knoten). Hieraus folgt also, dass der Grundzustand keinen, der
erste angeregte Zustand einen, usw., Knoten hat. Für ein symmetrisches Potenzial ergibt
sich somit, dass der Grundzustand Ψ0 symmetrisch und der erste angeregte Zustand Ψ1
antisymmetrisch sein muss.
Für ein Doppelmuldenpotenzial ist weiter zu erwarten, dass das Betragsquadrat der

unteren beiden Wellenfunktionen je ein Maximum in den Mulden besitzt. Diese Eigen-
schaften werden bei der Wahl der Testfunktionen zu berücksichtigen sein.
Von besonderem Interesse ist bei Doppelmuldenpotenzialen die Energieaufspaltung

der unteren beiden Energieniveaus ∆E = E1 − E0. Diese hängt eng mit der Tunnel-
wahrscheinlichkeit durch die Barriere zusammen. Für die Frequenz, mit der ein Teilchen
zwischen den Mulden hin- und hertunnelt gilt:

ω = ∆E
~

[2] (1.1)

Beim Ammoniak-Maser wird zB. genau diese Schwingung, bei der ein Stickstoffatom
durch eine aus Wasserstoffatomen aufgespannte Ebene tunnelt, zur Anregung genutzt.
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1.2 Das Ammoniakmolekül
Ein Ammoniakmolekül besteht aus drei Wasserstoffatomen und einem Stickstoffatom.
Die Atome bilden eine Pyramide mit dreieckiger Grundfläche, welche aus den drei Was-
serstoffatomen gebildet wird. Dies ist schematisch in Abbildung 1 (links) dargestellt.
Die entscheidende Größe ist hier die Entfernung x des Stickstoffatoms zur Grundfläche
der Pyramide. Um das Problem im Rahmen der eindimensionalen Quantenmechanik zu
behandeln, wird dem System ein effektives Potenzial V (x) zugeordnet.

Abbildung 1: Links: Darstellung des Ammoniakmoleküls[3], rechts: beispielhaftes
Manning-Potenzial.

Da es für das Stickstoffatom offenbar am günstigsten ist, sich auf der einen oder der
anderen Seite der Grundfläche aufzuhalten, hat das Potenzial hier Minima bei x = ±a
und somit eine Doppelmuldengestalt. Das Stickstoffatom aus dem Molekül zu entfer-
nen, erfordert natürlich auch Energie, da es durch die Van-der-Waals-Kräfte an die
Wasserstoffatome gebunden ist. Mit größerer Entfernung nimmt der Einfluss der Van-
der-Waals-Kräfte ab, bis das Molekül dissoziiert. Für zunehmende Werte von x besitzt
das Potenzial somit zuerst einen steilen Anstieg und flacht mit größerer Entfernung ab.
Das Manning-Potenzial [4] erfüllt diese Eigenschaften und ist ebenfalls in Abbildung 1
(rechts) dargestellt.
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2 Das Manning-Potenzial
Das Manning-Potenzial ist gegeben durch

V (x) = −C sech2
(
x

2ρ

)
+D sech4

(
x

2ρ

)
. (2.1)

Der Skalierungsparameter der Dimension Länge ρ streckt bzw. staucht das Potenzial
entlang der x-Achse. Die beiden Parameter C und D besitzen die Dimension Energie und
können bei gegebener Potenzialtiefe, Barrierenhöhe und Position der Minima bestimmt
werden.

2.1 Charakteristika
Sind C und D positiv und gilt die Bedingung C

2 < D < C, so nimmt das Potenzial die
Doppelmuldengestalt in Abbildung 1 an. Das Potenzial wird somit durch die Position
der Minima bei x = ±a, die Potenzialtiefe Va := V (±a), sowie den Wert des Potenzials
bei der Barriere V0 := V (0) charakterisiert:

V0 = −C +D (2.2)

a = 2 ρ arcosh

√2D
C

 (2.3)

Va = −C
2

4D (2.4)

Andersherum lassen sich bei bekannten V0, a und Va die freien Parameter C,D und ρ
bestimmen:

D = −2Va + V0 + 2
√
V 2
a − VaV0 (2.5)

C = −2Va + 2
√
V 2
a − VaV0 (2.6)

Das ist das Ergebnis einer quadratischen Gleichung, wobei die Lösung mit negativer
Wurzel nicht gilt, weil dann die Bedingung 2D

C > 1 nicht erfüllt wäre und es somit bei
Va keine Extremstelle gäbe.

Für ρ gilt

ρ = a

2 arcosh
(√

2D
C

) . (2.7)
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2.2 Umformung
Für die Schrödingergleichung ergibt sich[

− ~2

2µ
d2

dx2 − C sech2
(
x

2ρ

)
+D sech4

(
x

2ρ

)]
ϕ(x) = E ϕ(x). (2.8)

Durch eine neue Skalierung x̃ = x
2ρ lässt sich das schreiben als:[

− ~2

8µρ2
d2

dx̃2 − C sech2 (x̃) +D sech4 (x̃)
]
ϕ̃(x̃) = E ϕ̃(x̃). (2.9)

Dies wiederum lässt sich zu− d2

dx̃2

=:Ṽ (x̃)︷ ︸︸ ︷
−C ′sech2(x̃) +D′sech4(x̃)


︸ ︷︷ ︸

=:H̃

ϕ̃(x̃) = ε ϕ̃(x̃) (2.10)

umformen, wobei C ′ = 8µρ2

~2 C, D′ = 8µρ2

~2 D und ε = 8µρ2

~2 E dimensionslos sind. Das
schon erwähnte Computerprogamm ist darauf ausgerichtet, das Ritzsche Variationsver-
fahren für ein Manning-Potenzial der Form

Ṽ (x̃) = −C ′sech2(x̃) +D′sech4(x̃) (2.11)

durchzuführen. Für alle in dieser Arbeit folgenden Untersuchungen muss das Problem
also zunächst auf ein solches von zwei Parametern abhängiges Potenzial umgestellt wer-
den.
Auch das umgeformte Potenzial Ṽ (x̃) besitzt unter der Bedingung C′

2 < D′ < C ′ eine
Doppelmuldenform. Es ist in Abbildung 2 dargestellt.

In der Abbildung ist zu sehen, dass es nun nicht mehr möglich ist das Verhältnis von
der Barriere zur Potenzialtiefe zu verändern, ohne dass sich der Abstand zwischen den
Minima ebenfalls verändert. Es ist also beispielsweise unmöglich, die Potenzialtiefe zu
verändern und gleichzeitig die Höhe der Barriere und den Abstand der Minima beizube-
halten. Außerdem ist die Position ã an der die Minima liegen können sehr eingeschränkt.
Es gilt

ã = arcosh

√2D′
C ′

 , (2.12)

woraus auf Grund der Bedingung C′

2 < D′ < C ′ folgt, dass ã nur zwischen 0 und etwa
0,88 liegen kann.
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Abbildung 2: Veränderung der Form des Potenzials für ein gleichbleibendes C ′ und un-
terschiedliche D′.

Um aber ein einheitenloses Manning-Potenzial ohne solche Einschränkungen untersu-
chen zu können, wird nun eine erneute Umskalierung x̃r = 2r x̃ mit dem einheitenlosen
Skalierungsparameter r vorgenommen. Man erhält[

−4r2 d2

dx̃2
r

− C ′ sech2
(
x̃r
2r

)
+D′sech4

(
x̃r
2r

)]
ϕ̃r(x̃r) = ε ϕ̃r(x̃r) , (2.13)

beziehungsweise− d2

dx̃2
r

=:Ṽr︷ ︸︸ ︷
−C ′r sech2

(
x̃r
2r

)
+D′rsech4

(
x̃r
2r

)
︸ ︷︷ ︸

=:H̃r

ϕ̃r(x̃r) = εr ϕ̃r(x̃r) (2.14)

mit C ′r = C′

4r2 , D′r = D′

4r2 und εr = ε
4r2 . Für bestimmte Vergleiche ist es notwendig, das

Potenzial auf Nullniveau anzuheben. Man erhält dann
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− d2

dx̃2
r

=:V̂r︷ ︸︸ ︷
−C ′r sech2

(
x̃r
2r

)
+D′rsech4

(
x̃r
2r

)
+ C ′2r

4D′r


︸ ︷︷ ︸

=:Ĥr

ϕ̃r(x̃r) = ε̂r ϕ̃r(x̃r), (2.15)

wobei ε̂r = εr + C′2r
4D′r

gilt. Bei einem solchen angehobenen Manning-Potenzial liegen die
Minima auf Nullniveau (V̂r(ãr) = 0), die Barriere ist durch V̂0 := V̂r(0) gegeben und für
die Potenzialtiefe gilt V̂T := lim

x̃r→∞
V̂r(x̃r) = C′2r

4D′r
.

Aus diesen Charakteristika lassen sich die Paramter zu

C ′r = 2V̂T + 2
√
V̂T V̂0, D′r = C ′r + V̂0 − V̂T , r = ãr

2arcosh
(√

2D′r
C′r

) (2.16)

bestimmen.

3 Anwendung des Ritzschen Variationsverfahrens
3.1 Erläuterung des Verfahrens:
Mit dem Ritzschen Variationsverfahren lässt sich die obere Grenze für den Energieei-
genwert des Grundzustands abschätzen, indem eine Testfunktion Ψ0 genutzt wird, von
der man annehmen kann, dass sie der realen Wellenfunktion des Grundzustands äh-
nelt. Die Testfunktion kann von verschiedenen Parametern (hier α und b) abhängen.
Man berechnet nun den Erwartungswert der Energie der Testfunktion bei vorliegendem
Hamilton-Operator H:

E(α, b) = 〈Ψ0|H |Ψ0〉
〈Ψ0|Ψ0〉

(3.1)

Die Minimierung von E(α, b) bildet eine obere Schranke für den realen Energieeigenwert
des Grundzustands:

Min(E(α, b)) ≥ E0 (3.2)

Auch für den ersten angeregten Zustand kann eine obere Grenze gefunden werden. Hierzu
muss nur eine neue Testfunktion Ψ1 verwendet werden, bei der man davon ausgehen
kann, dass sie der realen Wellenfunktion des ersten angeregten Zustands ähnelt. Eine
Bedingung dafür ist natürlich, dass sie orthogonal zu Ψ0 ist.
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Bei geschickter Wahl der Testfunktionen, können über das Ritzsche Variationsver-
fahren sehr gute Näherungen für die Energiezustände gemacht werden. Es gilt, dass je
ähnlicher die Testfunktionen den realen Wellenfunktionen sind, desto besser ist auch die
Näherung der Energien. Man kann also auch aus der Exaktheit der berechneten Energien
auf die Güte der Testwellenfunktionen schließen.
In dieser Arbeit wird das Verfahren mit einem dimensionslosen Hamilton-Operator

wie in Gleichung 2.10 durchgeführt:

ε(α, b) = 〈Ψ(x̃)| H̃ |Ψ(x̃)〉
〈Ψ(x̃)|Ψ(x̃)〉 (3.3)

3.2 Auswahl der Testfunktionen und Einteilung in Normierungs-, Impuls-
und Potenzialterm

Wie in Abschnitt 1.1 dargelegt, ist bekannt, dass die Wellenfunktion zum untersten
Energieniveau eine symmetrische Funktion mit Maxima in den Mulden ist, während der
erste angeregte Zustand eine asymmetrische Wellenfunktion besitzt. Als Testfunktion für
den Grundzustand (+) und den ersten angeregten Zustand (−) wird die Kombination
aus zwei verschobenen Gauß-Funktionen angesetzt:

Ψ±(x̃) = e−
(x̃−α)2

2b2 ± e−
(x̃+α)2

2b2 (3.4)

Die beiden Testfunktionen erfüllen die an sie gestellten Bedingungen: Ψ+ ist symme-
trisch und Ψ− antisymmetrisch. Außerdem gilt für beide, dass sie im Betragsquadrat je
ein Maximum bei ±α haben und orthogonal (〈Ψ+|Ψ−〉 = 0) zueinander sind.

Der Ausdruck

ε(α, b) = 〈Ψ±| H̃ |Ψ±〉
〈Ψ±|Ψ±〉

=
〈Ψ±| − d2

dx̃2 |Ψ±〉+ 〈Ψ±| Ṽ |Ψ±〉
〈Ψ±|Ψ±〉

(3.5)

lässt sich in Normierungs-, Impuls-, und Potenzialterm aufteilen:

Der Normierungsterm ergibt sich zu

〈Ψ±|Ψ±〉 = 2
√
πb

(
1± e−

α2
b2

)
[5] (3.6)

und der Impulsterm zu

〈Ψ±| −
d2

dx̃2 |Ψ±〉 =
√
π

b

[
1± e−

α2
b2

(
1− 2α

2

b2

)]
.[6] (3.7)
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Für den Potenzialterm gilt

〈Ψ±| Ṽ |Ψ±〉 =
∫ +∞

−∞

(
e−

(x̃−α)2

2b2 ± e−
(x̃+α)2

2b2

)2
·
(
−C ′sech2(x̃) +D′sech4(x̃)

)
dx̃. (3.8)

Da sich dieser analytisch nicht lösen ließ, wird das Variationsverfahren durch ein Com-
puterprogramm numerisch durchgeführt.

3.3 Beschreibung des Programms zur Berechnung der Energien
Das mit Fortran angefertigte Computerprogramm ist der Arbeit auf einer CD beigelegt.
Im Folgenden wird kurz die Funktionsweise beschrieben. Es besteht aus einem Haupt-
programm Tiefpunkt(α, b) und den drei Funktionen Energie(α, b), Potenzialterm(α, b)
und f(α, b, x̃).

Die Funktion f ist der Integrand aus Gleichung 3.8. Die Parameter C ′ und D′ müssen vor
dem Starten im Quelltext eingegeben werden. Die Parameter α und b werden vom Pro-
gramm durchlaufen um am Ende den Tiefpunkt zu finden. Die Funktion Potenzialterm
berechnet das Integral von f nach dem Simpson-Verfahren. Hierbei wird erstens aus-
genutzt, dass der Integrand symmetrisch ist, dass es also ausreicht nur positive x̃ zu
integrieren und das Ergebnis zu verdoppeln und dass der Integrand sehr schnell gegen
null geht, weshalb als obere Integralgrenze schon 50 als gute Näherung für ∞ ausreicht.
Dies wurde u.a. dadurch getestet, dass mit dem Integral

∫
exp(−x̃2/2)dx̃ auf 14 Nach-

kommastellen genau
√

2π berechnet werden konnte, was bei Verwendung des Datentyps
double precision der Maschinengenauigkeit entspricht. Die Funktion Energie bildet aus
Potenzialterm und den Formeln 3.6 und 3.7 den Ausdruck für ε(α, b).

Das Hauptprogramm Tiefpunkt hat die Aufgabe, den Tiefpunkt der zweidimensionalen
Funktion Energie(α, b) zu finden. Die Idee ist hierbei folgende:
Der Nutzer kann sich in der α,b-Ebene ein Rechteck aussuchen, welches vom Pro-

gramm abgetastet wird. Hierzu kann er die 4 Werte αunten, αoben, bunten und boben
angeben. αunten ist dann der niedrigste Wert auf der α-Achse, der abgetastet wird, αoben
der höchste, usw. Das Programm bestimmt nun die Energie von 100 gleichmäßig von
einander entfernten Punkten in dem so definierten Viereck. Werden beispielsweise als
niedrigster Wert je 0 eingegeben und als höchster Wert je 10 (also ein Rechteck mit
den Eckpunkten (0,0),(0,10),(10,0) und (10,10) ), so berechnet das Programm nach und
nach die Energiewerte ε(1, 1), ε(1, 2) ... ε(1, 10), ε(2, 1)... ε(10, 10). Der niedrigste der 100
Energiewerte, sowie die ihm zuzuordnenden Parameter α und b werden gespeichert. Die-
ser niedrigste abgetaste Punkt bildet den Mittelpunkt eines neuen Vierecks, welches sich
bis zu den 8 Nachbarpunkten dieses vorläufigen Tiefpunktes erstreckt. Dieses Viereck
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wird nach dem gleichen Prinzip abgetastet und der Vorgang wird insgesamt 20 Mal wie-
derholt, sodass am Ende der Tiefpunkt α0/b0 auf ein Viereck eingegrenzt werden kann,
dessen Seitenlängen (1

5)20 der Seitenlängen des ersten vom Nutzer bestimmten Vierecks
betragen.
Es fällt hier auf, dass im Beispielviereck die Punkte (0,1),(0,2) etc. in der ersten

Abtastung nicht abgetestet werden, obwohl sie im vom Nutzer vorgegebenen Bereich
liegen. Das macht allerdings nichts: Liegt der Tiefpunkt der Funktion beispielsweise
sehr nahe am Ursprung, so wird (vorausgesetzt, die Funktion ist einigermaßen gleich-
mäßig) der niedrigste in der ersten Abtastung berechnete Wert auf dem Punkt (1,1)
liegen. Dieser bildet dann den Mittelpunkt des nächsten Vierecks mit den Eckpunkten
(0,0),(2,0),(0,2),(2,2). Eine ähnliche Situation ist in Abbildung 3 zu sehen. Das Vorge-
hen, sich so an die Null heranzutasten hat den Vorteil, dass nicht die Gefahr besteht
durch eine Null zu teilen.
Am Ende gibt das Programm die Tiefpunktsparameter α0 und b0, sowie die passende

Tiefpunktsenergie ε aus, welche das Ergebnis des Variationsverfahrens ist. Was die Wahl
der Grenzen der ersten Abtastung angeht, so hat es sich für die allermeisten Fälle als
sinnvoll erwiesen, sowohl für α, als auch für b, von 0 bis 2 abzutasten. Es gibt aber Son-
derfälle (wenn das Potenzial besonders schmal oder hoch bzw. tief ist) in denen andere
Startwerte sinnvoll sind. In dem Fall kann es auch nötig sein, die Integrationsgrenze an-
zupassen. In einem Potenzial, wo die Minima beispielsweise bei ±a = 0, 01 liegen, macht
es keinen Sinn bis 50 zu integrieren und α bis 2 abzutasten. Bei der Wahl der Grenzen
kann es hilfreich sein, das zu untersuchende Potenzial und Testfunktionen verschiedener
Parameter α und b zu plotten, um eine Entscheidung zu treffen. Spätestens, wenn einem
die Ergebnisse des Programms dubios erscheinen, sollte dies der erste Schritt sein.

Für die Genauigkeit ergibt sich mit 1
2 ·
(

1
5

)20
= 5, 24288 · 10−15

α = α0 ± 5, 24288 · 10−15(αoben − αunten) (3.9)

Gleiches gilt für den Parameter b. Die Genauigkeit, mit der ε ausgegeben wird, ist nicht
so leicht zu bestimmen, weil dafür die Kenntnis vorausgesetzt ist, wie sich ε(α, b) im
oben angegebenen Intervall verändert. Ausprobieren hat aber ergeben, dass sich ε(α, b)
in den ersten 14 signifikanten Stellen nicht verändert, wenn es im oben angegeben Inter-
vall getestet wird. Es ist also davon auszugehen, dass ε im Rahmen von 14 Stellen genau
angegeben wird. Das entspricht der Maschinengenauigkeit von 14 Stellen beim Datentyp
double precision.

Im Folgenden ist das Verfahren der Abtastung zur Erläuterung graphisch in Abbildung
3 dargestellt:
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Abbildung 3: Beispiel der ersten beiden Abtastungen mit den Startwerten
αunten = 0, αoben = 2, bunten = 0 und boben = 2. Die Graphen wurden
mit dem Programm Sigma-Plot erstellt und mit dem Programm Paint
zusammengefügt und bearbeitet.

10



4 Ergebnisse und Vergleiche
4.1 Vergleich mit den Ergebnissen von Stephan Bröker
In seiner Bachelor-Arbeit Vergleich von Variationsverfahren und exakten Ergebnissen
für das Razavy-Potenzial hat Stephan Bröker ebenfalls ein Doppelmulden-Potenzial mit
Hilfe des Ritzschen Variationsverfahrens untersucht.
Zur ersten Einschätzung der Güte des Programms wird ein Vergleich zwischen einigen

Ergebnissen Brökers und Ergebnissen für ein Manning-Potenzial mit gleicher Position der
Minima und gleicher Barrierenhöhe durchgeführt. Das von Bröker untersuchte Razavy-
Potenzial wurde in einer einheitenlosen auf Nullniveau angehobenen Form untersucht.
Folglich bietet sich für den Vergleich das Manning-Potenzial in der Form von Gleichung
2.15 an.
Das von Bröker untersuchte Razavy-Potenzial wird für eine Schrödingergleichung der

Form − d2

dx̃2
r

+

:=V̂B︷ ︸︸ ︷
(n+ 1)2 (s cosh(2x̃r)− 1)2

 ϕ̂B(x̃r) = εB ϕ̂B(x̃r)[7] (4.1)

behandelt, wobei s, n, x̃r und εB einheitenlos sind. Der wesentliche Unterschied zum
Manning-Potenzial besteht darin, dass dieses irgendwann abflacht, während V̂B(x̃r) für
große x̃r immer weiter zunimmmt. Die zu untersuchenden Manningpotenziale V̂r sollen
in Barrierenhöhe V̂0 und Position der Minima ãr mit V̂B(x̃r) übereinstimmen. Es gilt

V̂0 = V̂B(0) = (n+ 1)2(s− 1)2 (4.2)

und

ãr =
arcosh

(
1
s

)
2 . (4.3)

Die Parameter des Manning-Potenzials können nach (2.16) berechnet werden, wobei die
Position der Minima und die Barrierenhöhe durch die oben stehenden Formeln vom
Razavy-Potenzial vorgegeben sind, während die Potenzialtiefe der einzig frei wählbare
Parameter bei einem Vergleich mit dem unendlich hohen Razavy-Potenzial ist.
Im Folgenden sind in Abbildung 4 ein Razavy-Potenzial mit den Parametern n = 1

und s = 0, 2 im Vergleich mit drei ihm zugeordneten Manning-Potenzialen mit gleichem
V̂0 und ãr aber unterschiedlicher Tiefe V̂T dargestellt:
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Abbildung 4: Vergleich zwischen dem Razavy-Potenzial in der von Bröker genutzten
Form und Manning-Potenzialen unterschiedlicher Tiefe.

Es ist in Abbildung 4 zu sehen, dass das Razavy-Potenzial schon im Bereich der Mi-
nima deutlich steiler ist, als das Manning-Potenzial. Je größer V̂T desto ähnlicher wird
das Manning-Potenzial dem Razavy-Potenzial, allerdings ist auch zu sehen, dass der
Unterschied zwischen V̂T = 1000 und V̂T = 1000000 nur noch minimal ist.

Um das Potenzial mit Hilfe des Programms untersuchen zu können, muss es auf eine
Form wie in Gleichung 2.11 gebracht werden. Mit C ′ = 4r2C ′r und D′ = 4r2D′r gibt das
Programm den Wert

ε = 4r2
(
ε̂r −

C ′2r
4D′r

)
(4.4)

aus. Aus der Ausgabe des Programms ergibt sich also der gesuchte Energiewert zu

ε̂r = ε

4r2 + C ′2r
4D′r

= ε

4r2 + V̂T . (4.5)

Der Vergleich wird zweimal durchgeführt: Einmal für n = 1 und s = 0, 2 und einmal für
n = 1, und s = 0, 4. Die Ergebnisse sind in Tabelle 1 angegeben:

12



Tabelle 1: Vergleich zwischen den von Bröker berechneten Energien εB [8] des Razavy-
Potenzials und den Energien ε̂r für das Manning Potenzial. Für eine Übersicht
der Parameter C ′, D′, etc. befinden sich zwei ausführlichere Tabellen im An-
hang (Tabellen 9 und 10).
n s ε+B ε−B V̂T r ε̂+r ε̂−r
1 0,2 2,4747 4,0944 100 1,4694 1,7365 2,6813

1000 2,5691 1,8525 2,8997
1000000 14,3315 1,9094 3,0073

1 0,4 2,0905 5,3188 100 1,1526 1,5849 3,8044
1000 2,0234 1,6887 4,1230

1000000 11,3097 1,7396 4,2765

Um der Gefahr zu entgehen, bei der Minimierung der Energie lokale Minima statt des
gesuchten globalen Minimums zu finden, ist es hilfreich sich ein Bild von der Varia-
tion der Energie mit α und b zu machen. Hierzu sind nun in Abbildung 5 und 6 die
Energielandschaft für die Energie ε̂+r der ersten Zeile in Tabelle 1 dargestellt.1

In den Abbildungen ist zu erkennen, dass die Energiefunktion ε̂r(α, b) sehr gleichmä-
ßig auf den Tiefpunkt zusteuert, weshalb die Abtastung mit 100 Punkten pro Viereck
gerechtfertigt scheint.

1Das Programm wurde für die Erzeugung der Daten für die Bilder in der Form verändert, dass die
Abtastung nicht mehr aus 100, sondern aus 10000 Punkten pro Viereck besteht. Bei der Berechnung
der Energiewerte in der Arbeit wurde allerdings immer mit 100 Punkten pro Viereck gearbeitet.
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Abbildung 5: Die Energielandschaft in den Grenzen der ersten Abtastung (je von 0 bis
2).

Abbildung 6: Die Energielandschaft um das Minimum herum.
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Einordnung und Diskussion der Ergebnisse:

Die Ergebnisse in Tabelle 1 entsprechen den groben Erwartungen an einen Vergleich
dieser Art. Zunächst bestätigt sich die Wahl der Testfunktionen in der Hinsicht, dass
die asymmetrische Testfunktion höhere Energiewerte liefert, als die symmetrische. Die
Ergebnisse für das Manning-Potenzial (ε̂r) befinden sich in der gleichen Größenordnung,
wie die Ergebnisse für das Razavy-Potenzial (εB).

Allerdings liefert das Manning-Potenzial kleinere Energien; ε̂r beträgt zwischen 65%
und 85% von εB. Auch das ist zu erwarten, weil die schmaleren Mulden des Razavy-
Potenzials zu höheren Energieeigenwerten führen. Das ist von einem naiven Standpunkt
aus leicht nachvollziehbar: Eine schmale Mulde mit steilen Wänden führt dazu, dass ein
größerer Teil des Raumes mit mehr Potenzial angefüllt ist. Auch beim harmonischen
Oszillator (ein Doppelmuldenpotenzial kann sich in erster Näherung als zwei verschobe-
ne harmonische Oszillatoren vorgestellt werden; die in dieser Arbeit gebrauchten Test-
funktionen entsprechen ja auch zwei verschobenen Grundzustandswellenfunktionen des
harmonische Oszillators) steigt die Energie jedes Zustands linear mit ω, ebenso wie die
Mulde des Potenzials mit ω enger und steiler wird.
Es hat sich außerdem gezeigt, dass die Ergebnisse der Manning-Potenziale mit ho-

hen V̂T näher an denen des Razavy-Potenzials liegen als jene mit kleinen V̂T . Auch das
ist leicht nachzuvollziehen. Das Razavy-Potenzial wird für größere x̃r unendlich groß,
während das Manning-Potenzial irgendwann abflacht. Je größer V̂T , desto ähnlicher wer-
den sich die Potenziale offensichtlich für große x̃r. Auch schon für kleine x̃r steigt die
Ähnlichkeit mit größer werdendem V̂T , was in Abbildung 4 zu sehen ist. Dies ist wahr-
scheinlich der entscheidende Grund für die entsprechenden Ergebnisse für die Energie.
Die Wellenfunktion geht für große x̃r so stark gegen 0, dass hier die Potenzialhöhe kaum
einen Einfluss auf die untersuchten Energieniveaus nimmt.
Bei den Energien fällt auf, dass der Unterschied zwischen ε̂r und εB zwar für große

V̂T geringer wird, dass aber die Vertausendfachung von V̂T von 1000 zu 1.000.000 einen
deutlich geringeren Unterschied macht, als die Verzehnfachung von 100 auf 1000. Ab
einer gewissen Potenzialtiefe V̂T hilft eine Erhöhung offenbar nicht mehr dabei, eine be-
merkenswert bessere Näherung für das Razavy-Potenzial zu liefern. Auch das ist anhand
von Abbildung 4 nachzuvollziehen. Die Erhöhung von V̂T von 100 auf 1000 führt dazu,
dass die Außenwände des Potenzials deutlich an das Razavy-Potenzial heranrücken. Der
Unterschied ist hier viel größer, als bei der Erhöhung V̂T s von 1000 auf 1.000.000.
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4.2 Vergleich mit Christiansen und Cunha
In ihrer Arbeit Energy eigenfunctions for position-dependent mass particles in a new
class of molecular hamiltonians haben H. R. Christiansen und M. S. Cunha exakte
Werte für die Energien eines Manning-Potenzials der Form 2.11 mit den Parametern
C ′ = D′ = 500 berechnet. Vergleich der Energien von Christiansen und Cunha εc [9] mit
den Ergebnissen des Programms ε liefert folgende Tabelle:

Tabelle 2:
ε+c ε−c ε+ ε−

-109,94122 -109,99405 -109,88711 -109,88627

Es fällt auf, dass der von Christiansen und Cunha angegebene Energiewert der symme-
trischen Wellenfunktion ε+c größer ist, als der Wert der asymmetrischen ε−c . Das kann
offensichtlich nicht stimmen, womit ein Fehler vorliegt.

Einordnung und Diskussion der Ergebnisse:

Vergleich der Werte in Tabelle 2 zeigt zweierlei. Zunächst ist es erfreulich, dass die
Ergebnisse der Variationsrechnung auf 3 signifikante Stellen den exakten Werten ent-
sprechen. Was das angeht, scheint das Verfahren für den untersuchten Fall gut zu funk-
tionieren. Dem steht ein sehr deutlicher Unterschied bei ∆ε = |ε− − ε+| gegenüber.
Die Differenz zwischen den beiden Energieniveaus ist bei Christiansen und Cunha mit
∆εc = 0, 05283 um deutlich mehr als das Fünfzigfache größer als bei dem Variationsver-
fahren mit ∆ε = 0, 00084. Dieser Unterschied ist auffällig. Ein Grund könnte sein, dass
der Ansatz für die asymmetrisch Testfunktion besser ist, als derjenige für die symmetri-
sche. Dadurch liegt ε− nur geringer über dem exakten Wert, als ε+, was sich durch ein
kleineres ∆ε bemerkbar macht. Da, wie oben erwähnt, in der Arbeit von Christiansen
und Cunha ein Druckfehler vorliegt, lassen sich die Werte allerdings leider nicht direkt
vergleichen.
Die Annahme, dass beim Eintragen der Werte von Christiansen und Cunha einfach

ε+c und ε−c vertauscht wurden, liefert folgenden Vergleich:

Tabelle 3:
Christiansen/Cunha Variationsrechnung Abweichung Abweichung/ε

Ψ+ -109,99405 -109,88711 0,10694 0,097%
Ψ− -109,94122 -109,88627 0,05495 0,050%

Das hieße, dass die prozentuale Abweichung der Variationsrechnung beim symmetrischen
Zustand doppelt so groß ist wie beim asymmetrischen.
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Es gibt allerdings noch andere mögliche Fehler, die beim Eintragen unterlaufen sein
können. Es fällt auf, dass bei den Werten von Christiansen und Cunha beim einen Wert
eine Stelle hinterm Komma und beim anderen zwei Stellen hinterm Komma eine Neun auf
eine Vier folgt. Es ist zum Beispiel möglich, dass beim Eintragen entweder aus Versehen
eine Neun zu viel oder zu wenig eingetippt wurde. Das hieße

Tabelle 4:
Christiansen/Cunha Variationsrechnung Abweichung Abweichung/ε

Ψ+ -109,9412 -109,88711 0,05409 0,049%
Ψ− -109,9405 -109,88627 0,05423 0,049%

bzw.

Tabelle 5:
Christiansen/Cunha Variationsrechnung Abweichung Abweichung/ε

Ψ+ -109,99412 -109,88711 0,10701 0,097%
Ψ− -109,99405 -109,88627 0,10778 0,098%

In beiden Fällen ist zu sehen, dass die prozentuale Abweichung bei symmetrischer und
asymmetrischer Wellenfunktion gleich ist, was hieße, dass die Ansätze gleich gut geeignet
sind. Dies drückt sich auch darin aus, dass die Differenzen zwischen ε+c und ε−c mit
∆εc = 7 · 10−4 im ersten Fall und ∆εc = 7 · 10−5 im zweiten Fall deutlich näher an der
Differenz der Variationsrechnung ∆ε = 8 · 10−4 sind als unter der Annahme, dass die
beiden Werte einfach vertauscht wurden.
Welcher Fehler gemacht wurde, ist aber nicht zu sagen, was den Vergleich an dieser

Stelle spekulativ macht.

4.3 Untersuchung des Einflusses der Potenzialtiefe
Nach dem recht erfolgreichen Vergleich im vorangegangenen Abschnitt, soll nun unter-
sucht werden, wie sich Veränderungen der Potenzialtiefe2 auf die Höhe der Energienive-
aus und auf die Differenz zwischen dem Grundniveau und dem erstem angeregten Niveau
auswirken. Ausgangspunkt ist das Manning-Potenzial in Form von Gleichung 2.14.
Im Folgenden sollen 7 Potenziale mit der Barrierenhöhe Ṽr,0 − Ṽr,ã = 200 und der Po-
sition der Minima ãr = 1 bei verschiedenen Potenzialtiefen Ṽr,ã untersucht werden.
Äquivalent zu den Formeln 2.5,2.6 und 2.7 können C ′r, D′r und r bestimmt werden. Die
untersuchten Potenziale sind in Abbildung 7 dargestellt:

2Gemeint ist die Differenz zwischen dem höchsten und dem tiefsten Punkt des Potenzials
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Abbildung 7: Darstellung der untersuchten Potenziale.

Zur Untersuchung des Potenzials mit dem Programm wird es auf die Form von 2.11
gebracht. Das Programm wird nun mit C ′ und D′ gespeist und gibt ε aus. Von Interesse
ist natürlich εr bzw. der Abstand von εr zum Potenzialboden:

εr,0 = εr − Ṽr,ã (4.6)

Dieser ist in Tabelle 6 angegeben.
Die Veränderung von εr,0 (es wird der Mittelwert aus ε+r,0 und ε−r,0 genommen), sowie

die Veränderung des Abstandes ∆εr zwischen Grundzustandsenergie und Energie des
ersten Zustandes sind in den Grafiken 8 und 9 dargestellt.
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Tabelle 6: Berechnete Energien für das Manningpotenzial verschiedener Potenzialtiefen.
In der Tabelle sind der Übersichtlichkeit wegen C ′r,D′r und r gerundet ange-
geben. Für ungerundete Werte, sowie weitere Parameter sind im Anhang die
Tabellen 11 und 12 einzusehen.

Vr,ã C ′r D′r r ε+r,0 ε−r,0
-200 800 800 0,567 17,08761455 17,08762073
-500 1632 1332 0,686 19,82743945 19,82744070
-800 2400 1800 0,759 21,06615245 21,06615302
-1100 3138 2238 0,815 21,83136425 21,83136459
-1400 3858 2658 0,860 22,36962010 22,36962034
-1700 4566 3066 0,898 22,77697841 22,77697860
-2000 5265 3465 0,932 23,10023539 23,10023553

Abbildung 8: Darstellung der Veränderung der Energie (Mittelwerte von Grund- und
erstem Zustand) mit steigender Potenzialtiefe. Die Rechenergebnisse sind
durch einen logarithmischen Fit f(x) = 2, 124 ln(x− 89, 904) + 7, 094 ver-
bunden, welcher von GnuPlot berechnet wurde.
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Abbildung 9: Die Veränderung von ∆ε mit steigender Potenzialtiefe. Die Rechenergeb-
niss sind durch einen Fit f(x) = 0, 000226/x + 0, 2028/x2 + 2, 05 · 10−8

verbunden, welcher von GnuPlot berechnet wurde.

Aus den Abbildungen 8 und 9 ist zu entnehmen, dass der Energieunterschied ∆εr mit
größerer Potenzialtiefe abnimmt, wobei die Steigung irgendwann sehr klein wird. Für die
Energieniveaus gilt das Gegenteil: Mit immer tieferen Potenzialen nehmen ε+r,0 und ε−r,0
zu. Es ist aber zu erkennen, dass auch hier die Steigung irgendwann abflacht.

Einordnung und Diskussion der Ergebnisse:

Die Untersuchung des Einflusses, den die Potenzialtiefe auf die Energieniveaus und ihren
Abstand hat, zeigt, was sich schon in Abschnitt 4.1 angedeutet hat: Je größer die Po-
tenzialtiefe, desto höher ist εr,0, aber mit abflachender Tendenz, weil sich die Potenziale
im Bereich der Minima (hier befindet sich die Wellenfunktion) ab einer gewissen Tiefe
nicht mehr übermäßig verändern, wenn die Tiefe noch weiter vergrößert wird. Auch die
Verkleinerung von ∆εr mit größerer Tiefe ist in Abschnitt 4.1 zu beobachten.
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4.4 Untersuchung zum Ammoniak-Molekül
Zuletzt wird untersucht, ob mit dem Variationsverfahren zufriedenstellende Werte für
das Ammoniak-Molekül gefunden werden.

Die reduzierte Masse des Ammoniakmoleküls berechnet sich für ein effektives Potenzial,
wie es in dieser Arbeit vorliegt näherungsweise zu

µ = µ0

(
1 + 3mHsin2βe

mN

)
[10], mit µ0 = 3mH mN

3mH +mN
.

Es sind hierbei mH die Masse des Wasserstoffatoms, mN die Masse des Stickstoffatoms
und βe der zwischen Wasserstoffatom, Pyramidengrundfläche und Stickstoffatom aufge-
spannte Winkel (vgl. Abb. 1) im Gleichgewicht.

Mit den Werten [11]

mH 1,007825035 u
mN 14,003074 u
βe 22◦13′

ergibt sich

µ = 4, 25652928924809 · 10−27 kg.

Um die passenden Parameter C, D und ρ (für das einheitenbehaftete Potenzial nach
Gleichung 2.1) zu finden, müssen passende Annahmen über a,Va und V0 getroffen werden.
Der Abstand zwischen Stickstoffatom und Grundfläche beträgt 0, 383 Å [12], die Höhe
der Potenzialbarriere beträgt (0, 2506±0, 0025) eV[13] und die Dissoziationsenergie kann
auf etwa 5 eV [14] abgeschätzt werden.
Durch die Potenzialbarriere steht fest, dass

V0 = Va + (0, 2506 ± 0, 0025) eV (4.7)

gilt. Die auf den realen Ortsraum (x = 2ρx̃) übertragene Wellenfunktion des Grundzu-
stands hat die Form

Ψ̂(x) = exp
(
−(x− 2 ρα)2

2 (2ρ b)2

)
+ exp

(
−(x+ 2 ρα)2

2 (2ρ b)2

)
. (4.8)

Durch Ausprobieren werden Werte für Va und a gefunden, für die die Dissoziationsenergie
(−E+ = 5 eV) und der Abstand des Stickstoffatoms (2ρα = 0, 383 Å) passen.
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Zufriedenstellende Resultate erzielen die Werte

Va = −5, 0608 eV V0 = −4, 8102 eV a = 0, 39685 Å

Hieraus folgt für die Paramter des Potenzials nach den Formeln 2.2,2.3 und 2.4:

C = 12, 37379457 eV D = 7, 563566634 eV ρ = 0, 435362 Å

und
C ′ = 11505, 58059 D′ = 7032, 864897

Dies führt zu folgenden Ergebnissen3:

Tabelle 7: Ergebnisse für das Ammoniakmolekül
α+ b+ ε+ E+ [eV]

0,439861179 0,135560176 -4649,147132 -4,999972933
α− b− ε− E− [eV]

0,440062494 0,135327411 -4649,126583 -4,999950833

Von besonderem Interesse ist die Differenz ∆E = E− − E+. Die Rechnungen ergeben

∆E = 2, 21 · 10−5 eV.

Der experimentelle Wert beträgt hingegen

∆EExp = 9, 83 · 10−5 eV [15].

Das ist ein in etwa viereinhalb mal so hoher Wert wie das Ergebnis der Variationsrech-
nung. Um eine bessere Vorstellung von der physikalischen Situation zu geben, sind in den
Abbildungen 10 und 11 nun die Testwellenfunktionen minimaler Energie im Potenzial
dargestellt.

3Für die Berechnung der Ergebnisse sind auf Grund von E = ~2

8µρ2 ε die Naturkonstanten ~ und c nötig.
Sie sind im Anhang in Tabelle 8 zu finden. Der Faktor ρ hängt von den genauen Charakteristika des
Potenzials ab. Für das angenommene Potenzial gilt ~2

8µρ2 = 0, 00107546 eV.
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Abbildung 10: Darstellung der Testwellenfunktion Ψ+ im Potenzial

Abbildung 11: Darstellung der Testwellenfunktion Ψ− im Potenzial
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Einordnung und Diskussion der Ergebnisse:

Zuerst zeigt sich hier, dass die Position der Maxima der Testwellenfunktion bei x = 2ρα
etwas näher am Ursprung liegt, als die Minima des Potenzials bei x = a. Das ist
nachvollziehbar, wenn man eine einzelne Mulde des Manning-Potenzials betrachtet. Die
Wellenfunktion wird hier näherungsweise nur durch eine einzelne verschobene Gauss-
Funktion repräsentiert. Diese liegt symmetrisch um ihr Maximum. Die einzelne Mulde
des Manning-Potenzials ist allerdings nicht symmetrisch um a. Das Potenzial steigt an
den Außenwänden steiler an, als an der Potenzialbarriere. Es ist also energetisch günsti-
ger, wenn das Maximum der Wellenfunktion leicht vomMinimum des Potenzials abweicht
und zum Ursprung rückt.
Die Berechnung von ∆E weist ein Ergebnis in der Größenordnung des experimentelles

Wertes vor. Allerdings ist das Ergebnis etwa 4,5 Mal kleiner als der experimentelle Wert.
Das ist unter anderem darauf zurückzuführen, dass ∆E ungefähr fünf Größenordnungen
kleiner als der Wert der Energieviveaus selber ist. Hierfür reicht die Genauigkeit des
Variationsverfahrens offenbar nicht aus.
Was den absoluten Wert der Energieniveaus E+ und E− angeht, so erweist sich ein

Vergleich als schwierig. Da die Dissoziationsenergie mit 5 eV vorgegeben ist, ist der einzige
Wert, der die absolute Höhe der Energieniveaus festlegen kann, der Abstand zwischen
ihnen und dem Potenzialminimum: E±0 = E±−Va. Das Potenzial als solches ist aber keine
quantenmechanische Observable. Ein Vergleich mit Messwerten ist also nicht möglich.
Auch bei theoretischen Arbeiten konnte kein Vergleichswert für E0 gefunden werden,
weil die Autoren (vermutlich aus den oben genannten Gründen) E+ = 0 setzen. Somit
ist E− der erste vergleichbare Messwert (und entspricht bei E+ = 0 natürlich ∆E).
Die einzige Möglichkeit, die für einen Vergleich gefunden wurde, ist folgende Abbil-

dung:
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Abbildung 12: Darstellung der Energieniveaus im Potenzial, aus dem Lehrbuch Atome,
Moleküle und optische Physik 2 [16]

Der Abstand beider Energieniveaus zum Boden des Potenzials beträgt nach Tabelle 7 in
etwa

E0 ≈ 0, 0608 eV = 490 cm−1.

Dies deckt sich mit Abbildung 12, wo die Linie für die unteren beiden Energieniveaus
direkt unter der 500 cm−1 Grenze liegt. Es ist hier allerdings auch zu beachten, dass
die Potenzialbarriere in der Abbildung bei etwa 2400 cm−1 = 0, 298 eV liegt, was etwas
größer ist, als der in dieser Arbeit genutzte Wert von 0, 2506 eV.

Insgesamt zeigt sich ein ähnliches Ergebnis, wie in Abschnitt 4.2: Die absoluten Energi-
en konnten mit einiger Genauigkeit bestimmt werden. Die Energieaufspaltung ist aber
so gering, dass die Genauigkeit des Verfahrens nicht ausreicht um zufriedenstellende
Ergebnisse zu liefern.
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5 Allgemeine Schlussfolgerungen und Ausblick
Es hat sich bei dem Vergleich mit den Ergebnissen von Christiansen und Cunha in Ab-
schnitt 4.2 und bei der Untersuchung des Ammoniak-Moleküls in Abschnitt 4.4 gezeigt,
dass das Variationsverfahren eine recht gute Näherung für die Energieeigenwerte liefert.
Für die Untersuchung kleiner Energieaufspaltungen ist das Verfahren aber offenbar nicht
genau genug.

Zur Bewertung der Methode muss zuerst eines deutlich werden: Die Rechnungen zum
Ammoniak-Molekül mit Hilfe des Manning-Potenzials weisen einen wichtigen Unter-
schied zu bekannten quantenmechanischen Untersuchungen zB. des Wasserstoffatoms
auf. Beim Wasserstoff ist das Potenzial vollständig aus der klassischen Physik bekannt.
Angewendet auf die Quantenmechanik können so Observablen wie die Energieniveaus
hergeleitet werden. Der Erfolg lässt sich dann unter anderem daran erkennen, dass die
Bindungsenergie des Elektrons sehr genau mit den experimentellen Werten überein-
stimmt.
Beim Ammoniak-Molekül verfolgen wir eine vollkommen andere Strategie. Das Manning-

Potenzial wird nicht aus der elektrostatischen Wechselwirkung der einzelnen beteilig-
ten Teilchen hergeleitet, sondern es wird gewählt, weil es von der Form her die Beob-
achtungen (Pyramidenform) erklären kann. Das heißt aber, dass -im Gegensatz zum
Wasserstoffproblem- Charakteristika wie die Potenzialtiefe so gewählt werden müssen,
dass die Bindungsenergie des Grundzustands der gemessenen Dissoziationsenergie ent-
spricht. Die Grundzustandsenergie wird also nicht gefunden, weil das Potenzial bekannt
ist, sondern die Parameter des Potenzials werden u.a. aus der bekannten Grundzustand-
senergie heraus bestimmt. Das heißt aber, dass es zwar schön ist, wenn die Lage des
Grundzustands zum Potenzialboden so bestimmt werden kann, dass sie den Ergebnissen
anderer Rechnungen recht gut entspricht (wie der Vergleich von E0 mit Abbildung 12
in Abschnitt 4.4 gezeigt hat), messbar ist dies allerdings nicht. Die erste tatsächlich neu
erreichbare Erkenntnis ist der Abstand ∆E des ersten angeregten Niveaus zum Grund-
niveau. Genau hierfür reicht die Genauigkeit des Variationsverfahrens mit den in dieser
Arbeit gebrauchten Testfunktionen allerdings nicht aus.

Zur Verbesserung der Ergebnisse sind verschiedene Vorgehensweisen denkbar. Der Erfolg
des Variationsverfahrens hängt in erster Linie davon ab, wie gut die Testfunktionen sind.
Mehr Freiheitsgrade führen hier dazu, die Erfolgsaussichten zu verbessern. Denkbar ist
die Multiplikation der in dieser Arbeit benutzten Testfunktionen mit einem geraden
Polynom:

Ψ±(x) = (c1x
4 + c2x

2 + 1)
(
e−

(x̃−α)2

2b2 ± e−
(x̃+α)2

2b2

)
Ein Problem hierbei ist, dass über die Parameter c1 und c2 deutlich weniger bekannt
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ist, als über die Parameter α und b. Es ist zu erwarten, dass α in der Nähe der Poten-
zialminima liegt, und dass die Testfunktion weder zu spitz, noch zu flach ist, wodurch
b abgeschätzt werden kann. Für positive c1 und c2 hat das Polynom keine Nullstellen,
womit die Testfunktionen wieder keinen bzw. einen Knotenpunkte haben und somit die
Bedingungen an den Grund- und den ersten angeregten Zustand erfüllt sind. Über das
Verhältnis von c1 zu c2 lassen sich aber kaum sichere Aussagen treffen. Bei der Bestim-
mung der Grenzen, zwischen denen c1 und c2 abgetastet werden sollen, herrscht also eine
gewisse Unsicherheit.

Es muss auch die Tatsache bedacht werden, dass es sich bei der Anwendung des Manning-
Potenzials um ein effektives Potenzial handelt. Die Reduzierung von drei auf eine Di-
mension ist an sich eine Näherung. Eine Verbesserung lässt sich erreichen, indem die
reduzierte Masse µ ortsabhängig wird. Ein solcher Ansatz wird auch in der Arbeit von
Aquino [3] verfolgt. Die Einführung einer solchen ortsabhängigen Masse könnte die Er-
gebnisse des Variationsverfahrens verbessern.

Ein nächster Schritt zur Untersuchung des Manning-Potenzials könnte außerdem die nu-
merische Lösung der Schrödingergleichung sein. Beispiele für solche Verfahren sind in
[17] zu finden.

Was das Computerprogramm angeht, so sind ebenfalls verschiedene Weiterentwicklun-
gen denkbar. Dadurch, dass der Impuls- und Normierungsterm analytisch bestimmt und
die Lösung in das Programm integriert wurden, eignet es sich nur für solche Ansätze,
die verschobene Gauß-Funktionen als Testwellenfunktionen haben. Eine Erweiterung des
Programms wäre es, wenn auch Impuls- und Normierungsterm numerisch bestimmt wür-
den. Das würde es unter sehr geringem Aufwand ermöglichen, das Variationsverfahren
an verschiedenen Potenzialen mit verschiedenen Testfunktionen durchzuführen.

Eine andere Verbesserung wäre es, wenn das Programm die Grenzen der Abtastung
von α und b selbst anhand der Charakteristika des Potenzials wie dem Abstand a und
der Krümmung der Mulden selbst bestimmt. Hierzu wären genauere Untersuchungen,
wie α und b von der Potenzialform abhängen, von Vorteil.
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6 Anhang

Tabelle 8: Liste der gebrauchten Naturkonstanten
h 4, 135667662 · 10−15 eVs [18]
~ 6, 582119514 · 10−16 eVs [19]
c 299792458m/s [20]
e 1, 6021766208 · 10−19 C [21]

für die Umrechnung zwischen den verschiedenen Energieeinheiten ergibt sich somit:

J eV cm−1

1 6, 241509126 · 1018 5, 034116652 · 1022

1, 6021766208 · 10−19 1 8, 065544006
1, 986445824 · 10−23 1, 239841974 · 10−4 1

Parameter und Ergebnisse zum Vergleich mit Stephan Bröker (4.1):

Tabelle 9:
s V̂T C ′r D′r r ε̂+r ε̂−r
0,2 100 232 134,56 1,469374409 1,736451848 2,681283785

1000 2101,192885 1103,752885 2,569050262 1,852548696 2,899738928
1000000 2003200 1003202,56 14,33151692 1,909410442 3,007252138

0,4 100 224 125,44 1,152629953 1,584922219 3,804443904
1000 2075,894664 1077,334664 2,023354682 1,688689321 4,122974424

1000000 2002400 1002401,44 11,30966023 1,739553309 4,276520227

Tabelle 10:
s V̂T C ′ D′ ε+ ε−

0,2 100 2003,60875 1162,093075 -848,6280383 -840,4682386
1000 55471,65393 29139,16114 -26351,16956 -26323,52366

1000000 1645768041 824200635 -821567940,6 -821567038,7
0,4 100 1190,386005 666,6161625 -522,999693 -511,2046593

1000 33994,5535 17642,27805 -16348,20294 -16308,33944
1000000 1024495236 512862315,3 -511632767,8 -511631469,8
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Parameter und Ergebnisse zur Untersuchung des Einflusses der Potenzialtiefe
(4.3):

Tabelle 11:
Ṽr,ã Ṽr,0 C ′r D′r r

-200 0 800 800 0,567296329
-500 -300 1632,455532 1332,455532 0,68589829
-800 -600 2400 1800 0,759325718
-1100 -900 3138,083152 2238,083152 0,814686425
-1400 -1200 3858,300524 2658,300524 0,859898164
-1700 -1500 4566,190379 3066,190379 0,898489909
-2000 -1800 5264,911064 3464,911064 0,932373332

Tabelle 12:
C ′ D′ ε+ ε− ε+r,0 ε−r,0

1029,840398 1029,840398 -235,4632048 -235,4631968 17,087614553 17,087620730
3071,997034 2507,449276 -903,6011412 -903,6011388 19,827439454 19,827440704
5535,125234 4151,343926 -1796,4568315 -1796,4568302 21,066152447 21,066153016
8331,158531 5941,788233 -2862,3823504 -2862,3823494 21,831364245 21,831364591
11411,69318 7862,453892 -4074,6165613 -4074,6165605 22,369620095 22,369620338
14744,85187 9901,147168 -5415,9820223 -5415,9820217 22,776978414 22,776978599
18307,57057 12048,46636 -6874,2342492 -6874,2342486 23,100235385 23,100235535
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