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1 Einleitung

Es geht in dieser Arbeit darum, das Manning-Potenzial mit Hilfe des Ritzschen Variati-
onsverfahrens zu untersuchen, indem N&herungen fiir die Energieeigenwerte des Grund-
zustands und des ersten angeregten Zustands mit Hilfe eines fiir die Arbeit geschriebenen
Computerprogramms berechnet werden. Das Manning Potenzial gehért zur Familie der
Doppelmuldenpotenziale. Diese zeichnen sich durch zwei Minima aus, die durch eine
Potenzialbarriere getrennt werden. Das Manning-Potenzial sowie alle anderen Doppel-
muldenpotenziale, die in dieser Arbeit Erwédhnung finden, sind zudem um den Ursprung
symmetrisch. Doppelmuldenpotenziale finden in der Molekiilphysik vielfache Anwendun-
gen. Fiir diese Arbeit spielt insbesondere die Anwendung auf das Ammoniakmolekiil eine
Rolle.

Im Folgenden werden Energien fast ausschliellich in eV angegeben. In der Molekiil-
physik ist es aber teilweise iiblich, die der Energie entsprechende Wellenzahl 1/ in der
Einheit cm ™! anzugeben. Im Anhang befindet sich eine Tabelle mit den Umrechnungs-
faktoren der verschiedenen Einheiten, sowie der fiir diese Arbeit notwendigen Naturkon-
stanten.

1.1 Allgemeine physikalische Eigenschaften von symmetrischen
Doppelmuldenpotenzialen

Da die in dieser Arbeit erwdhnten Doppelmuldenpotenziale symmetrisch sind, ist klar,
dass auch das Betragsquadrat jedes Eigenzustands |W,,|? symmetrisch ist, was bedeutet,
dass die Eigenzustdnde entweder symmetrisch oder antisymmetrisch sein miissen. Nach
dem Knotensatz [I] hat der n-te stationdre Zustand eines stetigen Potenzials n Schnitt-
stellen mit der x-Achse (Knoten). Hieraus folgt also, dass der Grundzustand keinen, der
erste angeregte Zustand einen, usw., Knoten hat. Fiir ein symmetrisches Potenzial ergibt
sich somit, dass der Grundzustand Wy symmetrisch und der erste angeregte Zustand ¥y
antisymmetrisch sein muss.

Fiir ein Doppelmuldenpotenzial ist weiter zu erwarten, dass das Betragsquadrat der
unteren beiden Wellenfunktionen je ein Maximum in den Mulden besitzt. Diese Eigen-
schaften werden bei der Wahl der Testfunktionen zu beriicksichtigen sein.

Von besonderem Interesse ist bei Doppelmuldenpotenzialen die Energieaufspaltung
der unteren beiden Energieniveaus AE = F; — Ej. Diese hdngt eng mit der Tunnel-
wahrscheinlichkeit durch die Barriere zusammen. Fiir die Frequenz, mit der ein Teilchen
zwischen den Mulden hin- und hertunnelt gilt:

AFE
== @ (1)

Beim Ammoniak-Maser wird zB. genau diese Schwingung, bei der ein Stickstoffatom
durch eine aus Wasserstoffatomen aufgespannte Ebene tunnelt, zur Anregung genutzt.
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1.2 Das Ammoniakmolekiil

Ein Ammoniakmolekiil besteht aus drei Wasserstoffatomen und einem Stickstoffatom.
Die Atome bilden eine Pyramide mit dreieckiger Grundflache, welche aus den drei Was-
serstoffatomen gebildet wird. Dies ist schematisch in Abbildung (1] (links) dargestellt.
Die entscheidende Grofle ist hier die Entfernung x des Stickstoffatoms zur Grundflache
der Pyramide. Um das Problem im Rahmen der eindimensionalen Quantenmechanik zu
behandeln, wird dem System ein effektives Potenzial V' (z) zugeordnet.

T T
Manning-Potenzial

Vi(x)

Abbildung 1: Links: Darstellung des Ammoniakmolekiils[3], rechts: beispielhaftes
Manning-Potenzial.

Da es fiir das Stickstoffatom offenbar am giinstigsten ist, sich auf der einen oder der
anderen Seite der Grundfliche aufzuhalten, hat das Potenzial hier Minima bei z = +a
und somit eine Doppelmuldengestalt. Das Stickstoffatom aus dem Molekiil zu entfer-
nen, erfordert natiirlich auch Energie, da es durch die Van-der-Waals-Kréfte an die
Wasserstoffatome gebunden ist. Mit groflerer Entfernung nimmt der Einfluss der Van-
der-Waals-Krifte ab, bis das Molekiil dissoziiert. Fiir zunehmende Werte von x besitzt
das Potenzial somit zuerst einen steilen Anstieg und flacht mit gréfSerer Entfernung ab.
Das Manning-Potenzial [4] erfillt diese Eigenschaften und ist ebenfalls in Abbildung
(rechts) dargestellt.



2 Das Manning-Potenzial

Das Manning-Potenzial ist gegeben durch

V(z) = —C sech? <23;> D sech? <2:);> . (2.1)
Der Skalierungsparameter der Dimension Lénge p streckt bzw. staucht das Potenzial
entlang der z-Achse. Die beiden Parameter C' und D besitzen die Dimension Energie und
kénnen bei gegebener Potenzialtiefe, Barrierenhohe und Position der Minima bestimmt
werden.

2.1 Charakteristika

Sind C und D positiv und gilt die Bedingung % < D < C, so nimmt das Potenzial die
Doppelmuldengestalt in Abbildung [I] an. Das Potenzial wird somit durch die Position
der Minima bei = +a, die Potenzialtiefe V, := V(+a), sowie den Wert des Potenzials
bei der Barriere Vp := V(0) charakterisiert:

Vo=—-C+D (2.2)
2D
=2 h — 2.
a p arcos ( c ) (2.3)
02
Vo= ~1D (2.4)

Andersherum lassen sich bei bekannten Vj, a und V, die freien Parameter C, D und p

bestimmen:
D=2V, +Vy+24/V2 -V, 1} (2.5)
C==2V,+2,/VZ2-V,V (2.6)

Das ist das Ergebnis einer quadratischen Gleichung, wobei die Loésung mit negativer
Waurzel nicht gilt, weil dann die Bedingung % > 1 nicht erfiillt wire und es somit bei
V, keine Extremstelle gibe.

Fiir p gilt

a
P= oD\
2 arcosh ( C)




2.2 Umformung
Fiir die Schrodingergleichung ergibt sich

h? a2 9 e
l_QMdeQ — C'sech (QP) + D sech (Qp) o(z) = Ep(z). (2.8)
Durch eine neue Skalierung & = 2% lasst sich das schreiben als:
R d?
[— S A C'sech? (£) + D sech? (:E)] o(z) = Ep(a). (2.9)
Dies wiederum ldsst sich zu
=V (&)
d2
o —(C"sech?(#) 4+ D'sech?(Z)| $(Z) = € p(Z) (2.10)
z
=H

2 2 2
umformen, wobei C' = S’gé’ C, D = S’LTQD und € = S“h—é’E dimensionslos sind. Das
schon erwdhnte Computerprogamm ist darauf ausgerichtet, das Ritzsche Variationsver-
fahren fiir ein Manning-Potenzial der Form

V(%) = —C'sech?(Z) + D'sech’(z) (2.11)

durchzufiihren. Fiir alle in dieser Arbeit folgenden Untersuchungen muss das Problem
also zunéchst auf ein solches von zwei Parametern abhéngiges Potenzial umgestellt wer-
den.

Auch das umgeformte Potenzial V(&) besitzt unter der Bedingung % < D' < (' eine
Doppelmuldenform. Es ist in Abbildung [2| dargestellt.

In der Abbildung ist zu sehen, dass es nun nicht mehr moglich ist das Verhéltnis von
der Barriere zur Potenzialtiefe zu verdndern, ohne dass sich der Abstand zwischen den
Minima ebenfalls verédndert. Es ist also beispielsweise unmoglich, die Potenzialtiefe zu
verdndern und gleichzeitig die Hohe der Barriere und den Abstand der Minima beizube-
halten. Auflerdem ist die Position @ an der die Minima liegen kénnen sehr eingeschrénkt.

Es gilt
2D’
a = arcosh ( ol ) , (2.12)

woraus auf Grund der Bedingung % < D' < (' folgt, dass a nur zwischen 0 und etwa
0,88 liegen kann.
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Abbildung 2: Veranderung der Form des Potenzials fiir ein gleichbleibendes C’ und un-
terschiedliche D’.

Um aber ein einheitenloses Manning-Potenzial ohne solche Einschrénkungen untersu-
chen zu konnen, wird nun eine erneute Umskalierung &, = 2r £ mit dem einheitenlosen
Skalierungsparameter r vorgenommen. Man erhélt

d? G 7
_47~20_L722 — (" sech? (;”;) + D'sech* (;)] Gr(E) = € r(y), (2.13)
T
beziehungsweise

? / 2 '{ET / 4 i’r . o

— 1 —C}. sech <27“) + D).sech <27“) &r(Tr) = € Pr(Tr) (2.14)
s
=:H,

. ’ / .. . . . .
mit C. = 46; 5, DI = % und €, = ﬁ. Fiir bestimmte Vergleiche ist es notwendig, das

Potenzial auf Nullniveau anzuheben. Man erhalt dann



& C! sech? <53T> + D!sech? <jr) + Cr | 5 (%) = & & (Tr) (2.15)
—— o - or(Zr) = & §r(Z), .
dzz 7 2r 4 2r) 4ADL| T nrre

wobei €, = €, + % gilt. Bei einem solchen angehobenen Manning-Potenzial liegen die

Minima auf Nullniveau (V;(d,) = 0), die Barriere ist durch Vy := V;.(0) gegeben und fiir
cr2

Aus diesen Charakteristika lassen sich die Paramter zu

die Potenzialtiefe gilt Vp := lim VT(@)
Tpr—r00

CT/’:2VT+2 VT%v D;“:C;+%_VT7 r= (216)

bestimmen.

3 Anwendung des Ritzschen Variationsverfahrens

3.1 Erlauterung des Verfahrens:

Mit dem Ritzschen Variationsverfahren lasst sich die obere Grenze fiir den Energieei-
genwert des Grundzustands abschétzen, indem eine Testfunktion ¥, genutzt wird, von
der man annehmen kann, dass sie der realen Wellenfunktion des Grundzustands &h-
nelt. Die Testfunktion kann von verschiedenen Parametern (hier o und b) abhéngen.
Man berechnet nun den Erwartungswert der Energie der Testfunktion bei vorliegendem
Hamilton-Operator H:

_ (Wo| H [¥y)
E(a,b) = (ol Wo)

Die Minimierung von F(«, b) bildet eine obere Schranke fiir den realen Energieeigenwert
des Grundzustands:

(3.1)

Min(E(a, b)) > Eq (3.2)

Auch fiir den ersten angeregten Zustand kann eine obere Grenze gefunden werden. Hierzu
muss nur eine neue Testfunktion ¥, verwendet werden, bei der man davon ausgehen
kann, dass sie der realen Wellenfunktion des ersten angeregten Zustands &hnelt. Eine
Bedingung dafir ist natiirlich, dass sie orthogonal zu ¥ ist.



Bei geschickter Wahl der Testfunktionen, kénnen iiber das Ritzsche Variationsver-
fahren sehr gute Naherungen fiir die Energiezustinde gemacht werden. Es gilt, dass je
dhnlicher die Testfunktionen den realen Wellenfunktionen sind, desto besser ist auch die
Naherung der Energien. Man kann also auch aus der Exaktheit der berechneten Energien
auf die Giite der Testwellenfunktionen schlieflen.

In dieser Arbeit wird das Verfahren mit einem dimensionslosen Hamilton-Operator

wie in Gleichung durchgefiihrt:

(V(2)| H [ ¥(1))

b = @)

(3.3)

~

3.2 Auswahl der Testfunktionen und Einteilung in Normierungs-, Impuls-
und Potenzialterm

Wie in Abschnitt dargelegt, ist bekannt, dass die Wellenfunktion zum untersten
Energieniveau eine symmetrische Funktion mit Maxima in den Mulden ist, wahrend der
erste angeregte Zustand eine asymmetrische Wellenfunktion besitzt. Als Testfunktion fiir
den Grundzustand (4) und den ersten angeregten Zustand (—) wird die Kombination
aus zwei verschobenen Gaufl-Funktionen angesetzt:

F—a)? _ (#+a)?

Uy(z)=e 22 Le 22 (3.4)

Die beiden Testfunktionen erfiillen die an sie gestellten Bedingungen: W, ist symme-
trisch und ¥_ antisymmetrisch. Auflerdem gilt fir beide, dass sie im Betragsquadrat je
ein Maximum bei £« haben und orthogonal ((¥,|¥_) = 0) zueinander sind.

Der Ausdruck

(U HWs) (] — S [0r) + (U |V [Ty

€(a,b) = = 3.5
(@:8) (U|Wy) (U|Py) (35)
l&sst sich in Normierungs-, Impuls-, und Potenzialterm aufteilen:
Der Normierungsterm ergibt sich zu
o2
(W4 |0s) = 24/ (1 4 ezfz) 5 (3.6)

und der Impulsterm zu

d? T
(Uy] — 2 W) =

uE

e im (1 _ 22‘5)] 6] (3.7)




Fiir den Potenzialterm gilt

~ +oo /1 (5—a)? _ (@+a)? 2 , 9 , 4
(W |V |0y = / (e el > - (~Clsech?(3) + D'sech(z)) di. (3.8)
—o0
Da sich dieser analytisch nicht 16sen liefl, wird das Variationsverfahren durch ein Com-
puterprogramm numerisch durchgefiihrt.

3.3 Beschreibung des Programms zur Berechnung der Energien

Das mit Fortran angefertigte Computerprogramm ist der Arbeit auf einer CD beigelegt.
Im Folgenden wird kurz die Funktionsweise beschrieben. Es besteht aus einem Haupt-
programm T'ie fpunkt(c, b) und den drei Funktionen Energie(a,b), Potenzialterm(a,b)
und f(a,b, ).

Die Funktion f ist der Integrand aus Gleichung[3.8] Die Parameter €’ und D’ miissen vor
dem Starten im Quelltext eingegeben werden. Die Parameter o und b werden vom Pro-
gramm durchlaufen um am Ende den Tiefpunkt zu finden. Die Funktion Potenzialterm
berechnet das Integral von f nach dem Simpson-Verfahren. Hierbei wird erstens aus-
genutzt, dass der Integrand symmetrisch ist, dass es also ausreicht nur positive & zu
integrieren und das Ergebnis zu verdoppeln und dass der Integrand sehr schnell gegen
null geht, weshalb als obere Integralgrenze schon 50 als gute Naherung fiir oo ausreicht.
Dies wurde u.a. dadurch getestet, dass mit dem Integral [ exp(—#2/2)d# auf 14 Nach-
kommastellen genau /27 berechnet werden konnte, was bei Verwendung des Datentyps
double precision der Maschinengenauigkeit entspricht. Die Funktion Energie bildet aus
Potenzialterm und den Formeln und den Ausdruck fiir €(a, b).

Das Hauptprogramm Tie fpunkt hat die Aufgabe, den Tiefpunkt der zweidimensionalen
Funktion Energie(a,b) zu finden. Die Idee ist hierbei folgende:

Der Nutzer kann sich in der «,b-Ebene ein Rechteck aussuchen, welches vom Pro-
gramm abgetastet wird. Hierzu kann er die 4 Werte aunten, Qoben, Ounten Und bopen
angeben. qypten ist dann der niedrigste Wert auf der a-Achse, der abgetastet wird, agpen
der hochste, usw. Das Programm bestimmt nun die Energie von 100 gleichméflig von
einander entfernten Punkten in dem so definierten Viereck. Werden beispielsweise als
niedrigster Wert je 0 eingegeben und als hochster Wert je 10 (also ein Rechteck mit
den Eckpunkten (0,0),(0,10),(10,0) und (10,10) ), so berechnet das Programm nach und
nach die Energiewerte €(1, 1), €(1,2) ... €(1,10), €(2, 1)... €(10, 10). Der niedrigste der 100
Energiewerte, sowie die ihm zuzuordnenden Parameter o und b werden gespeichert. Die-
ser niedrigste abgetaste Punkt bildet den Mittelpunkt eines neuen Vierecks, welches sich
bis zu den 8 Nachbarpunkten dieses vorldufigen Tiefpunktes erstreckt. Dieses Viereck



wird nach dem gleichen Prinzip abgetastet und der Vorgang wird insgesamt 20 Mal wie-
derholt, sodass am Ende der Tiefpunkt /by auf ein Viereck eingegrenzt werden kann,
dessen Seitenléngen (%)20 der Seitenldngen des ersten vom Nutzer bestimmten Vierecks
betragen.

Es féllt hier auf, dass im Beispielviereck die Punkte (0,1),(0,2) etc. in der ersten
Abtastung nicht abgetestet werden, obwohl sie im vom Nutzer vorgegebenen Bereich
liegen. Das macht allerdings nichts: Liegt der Tiefpunkt der Funktion beispielsweise
sehr nahe am Ursprung, so wird (vorausgesetzt, die Funktion ist einigermafien gleich-
méBig) der niedrigste in der ersten Abtastung berechnete Wert auf dem Punkt (1,1)
liegen. Dieser bildet dann den Mittelpunkt des néchsten Vierecks mit den Eckpunkten
(0,0),(2,0),(0,2),(2,2). Eine ahnliche Situation ist in Abbildung (3| zu sehen. Das Vorge-
hen, sich so an die Null heranzutasten hat den Vorteil, dass nicht die Gefahr besteht
durch eine Null zu teilen.

Am Ende gibt das Programm die Tiefpunktsparameter «g und by, sowie die passende
Tiefpunktsenergie € aus, welche das Ergebnis des Variationsverfahrens ist. Was die Wahl
der Grenzen der ersten Abtastung angeht, so hat es sich fiir die allermeisten Félle als
sinnvoll erwiesen, sowohl fiir «, als auch fiir b, von 0 bis 2 abzutasten. Es gibt aber Son-
derfélle (wenn das Potenzial besonders schmal oder hoch bzw. tief ist) in denen andere
Startwerte sinnvoll sind. In dem Fall kann es auch nétig sein, die Integrationsgrenze an-
zupassen. In einem Potenzial, wo die Minima beispielsweise bei +a = 0, 01 liegen, macht
es keinen Sinn bis 50 zu integrieren und « bis 2 abzutasten. Bei der Wahl der Grenzen
kann es hilfreich sein, das zu untersuchende Potenzial und Testfunktionen verschiedener
Parameter a und b zu plotten, um eine Entscheidung zu treffen. Spatestens, wenn einem
die Ergebnisse des Programms dubios erscheinen, sollte dies der erste Schritt sein.

20
Fiir die Genauigkeit ergibt sich mit % . (%) =5,24288 - 1071

a = + 5, 24288 - 10715(aoben - aunten) (39)

Gleiches gilt fiir den Parameter b. Die Genauigkeit, mit der € ausgegeben wird, ist nicht
so leicht zu bestimmen, weil dafiir die Kenntnis vorausgesetzt ist, wie sich €(a,b) im
oben angegebenen Intervall verdndert. Ausprobieren hat aber ergeben, dass sich €(a, b)
in den ersten 14 signifikanten Stellen nicht veréndert, wenn es im oben angegeben Inter-
vall getestet wird. Es ist also davon auszugehen, dass € im Rahmen von 14 Stellen genau
angegeben wird. Das entspricht der Maschinengenauigkeit von 14 Stellen beim Datentyp
double precision.

Im Folgenden ist das Verfahren der Abtastung zur Erlduterung graphisch in Abbildung
dargestellt:
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Abbildung 3: Beispiel der ersten beiden Abtastungen mit den Startwerten

Qunten = 0, Qopen = 2, bunten = 0 und bype, = 2. Die Graphen wurden
mit dem Programm Sigma-Plot erstellt und mit dem Programm Paint
zusammengefiigt und bearbeitet.
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4 Ergebnisse und Vergleiche

4.1 Vergleich mit den Ergebnissen von Stephan Broker

In seiner Bachelor-Arbeit Vergleich von Variationsverfahren und exakten Ergebnissen
fiir das Razavy-Potenzial hat Stephan Broker ebenfalls ein Doppelmulden-Potenzial mit
Hilfe des Ritzschen Variationsverfahrens untersucht.

Zur ersten Einschétzung der Giite des Programms wird ein Vergleich zwischen einigen
Ergebnissen Brokers und Ergebnissen fiir ein Manning-Potenzial mit gleicher Position der
Minima und gleicher Barrierenhéhe durchgefithrt. Das von Broker untersuchte Razavy-
Potenzial wurde in einer einheitenlosen auf Nullniveau angehobenen Form untersucht.
Folglich bietet sich fiir den Vergleich das Manning-Potenzial in der Form von Gleichung
2.15] an.

Das von Broker untersuchte Razavy-Potenzial wird fiir eine Schrodingergleichung der
Form

=Vp
2

—% + (n+ 1) (scosh(2%,) — 1)*| ¢p(E,) = ep ¢p(E)[T] (4.1)

behandelt, wobei s,n,Z, und eg einheitenlos sind. Der wesentliche Unterschied zum
Manning-Potenzial besteht darin, dass dieses irgendwann abflacht, wihrend Vp(Z,) fiir

grofle &, immer weiter zunimmmt. Die zu untersuchenden Manningpotenziale V,. sollen
in Barrierenhthe Vj und Position der Minima a, mit Vp(&,) tibereinstimmen. Es gilt

To = Vp(0) = (n+ 1)%(s — 1)? (4.2)

und

Ay =

arcosh (%)
2

Die Parameter des Manning-Potenzials kénnen nach berechnet werden, wobei die
Position der Minima und die Barrierenhohe durch die oben stehenden Formeln vom
Razavy-Potenzial vorgegeben sind, wahrend die Potenzialtiefe der einzig frei wahlbare
Parameter bei einem Vergleich mit dem unendlich hohen Razavy-Potenzial ist.

Im Folgenden sind in Abbildung (] ein Razavy-Potenzial mit den Parametern n = 1
und s = 0,2 im Vergleich mit drei ihm zugeordneten Manning-Potenzialen mit gleichem
VO und a, aber unterschiedlicher Tiefe VT dargestellt:

(4.3)
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Abbildung 4: Vergleich zwischen dem Razavy-Potenzial in der von Broker genutzten
Form und Manning-Potenzialen unterschiedlicher Tiefe.

Es ist in Abbildung [4] zu sehen, dass das Razavy-Potenzial schon im Bereich der Mi-
nima deutlich steiler ist, als das Manning-Potenzial. Je grofier Vi desto dhnlicher wird
das Manning-Potenzial dem Razavy-Potenzial, allerdings ist auch zu sehen, dass der
Unterschied zwischen Vi = 1000 und V7 = 1000000 nur noch minimal ist.

Um das Potenzial mit Hilfe des Programms untersuchen zu kénnen, muss es auf eine
Form wie in Gleichung gebracht werden. Mit C’ = 472C". und D’ = 472D/, gibt das

Programm den Wert
0/2 >
e=4r? (e — - (4.4)
( " 4D

aus. Aus der Ausgabe des Programms ergibt sich also der gesuchte Energiewert zu

€ C'? € N
=—+ " =—+Vr. (4.5)
4r2 © ADL  4r?

A

€

Der Vergleich wird zweimal durchgefiihrt: Einmal fiir n = 1 und s = 0,2 und einmal fiir
n =1, und s = 0,4. Die Ergebnisse sind in Tabelle [ angegeben:
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Tabelle 1: Vergleich zwischen den von Broker berechneten Energien ep [8] des Razavy-
Potenzials und den Energien é, fiir das Manning Potenzial. Fiir eine Ubersicht
der Parameter C’, D', etc. befinden sich zwei ausfiihrlichere Tabellen im An-

hang (Tabellen @ und .
+

n| s €5 €5 Vr r ér €
10,2 | 24747 | 4,0944 100 1,4694 | 1,7365 | 2,6813
1000 2,5691 | 1,8525 | 2,8997
1000000 | 14,3315 | 1,9094 | 3,0073
104 | 20005 | 53188 || 100 | 1,1526 | 1,5849 | 3.8044
1000 2,0234 | 1,6887 | 4,1230
1000000 | 11,3097 | 1,7396 | 4,2765

Um der Gefahr zu entgehen, bei der Minimierung der Energie lokale Minima statt des
gesuchten globalen Minimums zu finden, ist es hilfreich sich ein Bild von der Varia-
tion der Energie mit o und b zu machen. Hierzu sind nun in Abbildung [5] und [6] die
Energielandschaft fiir die Energie € der ersten Zeile in Tabelle dargestelltE]

In den Abbildungen ist zu erkennen, dass die Energiefunktion é,(c,b) sehr gleichmé-
Big auf den Tiefpunkt zusteuert, weshalb die Abtastung mit 100 Punkten pro Viereck
gerechtfertigt scheint.

'Das Programm wurde fiir die Erzeugung der Daten fiir die Bilder in der Form verindert, dass die
Abtastung nicht mehr aus 100, sondern aus 10000 Punkten pro Viereck besteht. Bei der Berechnung
der Energiewerte in der Arbeit wurde allerdings immer mit 100 Punkten pro Viereck gearbeitet.
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Abbildung 6: Die Energielandschaft um das Minimum herum.
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Einordnung und Diskussion der Ergebnisse:

Die Ergebnisse in Tabelle [T] entsprechen den groben Erwartungen an einen Vergleich
dieser Art. Zunédchst bestétigt sich die Wahl der Testfunktionen in der Hinsicht, dass
die asymmetrische Testfunktion héhere Energiewerte liefert, als die symmetrische. Die
Ergebnisse fiir das Manning-Potenzial (€,) befinden sich in der gleichen Gréflenordnung,
wie die Ergebnisse fiir das Razavy-Potenzial (ep).

Allerdings liefert das Manning-Potenzial kleinere Energien; €, betriagt zwischen 65%
und 85% von eg. Auch das ist zu erwarten, weil die schmaleren Mulden des Razavy-
Potenzials zu hoheren Energieeigenwerten fithren. Das ist von einem naiven Standpunkt
aus leicht nachvollziehbar: Eine schmale Mulde mit steilen Wénden fiithrt dazu, dass ein
groflerer Teil des Raumes mit mehr Potenzial angefiillt ist. Auch beim harmonischen
Oszillator (ein Doppelmuldenpotenzial kann sich in erster Naherung als zwei verschobe-
ne harmonische Oszillatoren vorgestellt werden; die in dieser Arbeit gebrauchten Test-
funktionen entsprechen ja auch zwei verschobenen Grundzustandswellenfunktionen des
harmonische Oszillators) steigt die Energie jedes Zustands linear mit w, ebenso wie die
Mulde des Potenzials mit w enger und steiler wird.

Es hat sich auflerdem gezeigt, dass die Ergebnisse der Manning-Potenziale mit ho-
hen Vi néher an denen des Razavy-Potenzials liegen als jene mit kleinen V. Auch das
ist leicht nachzuvollziehen. Das Razavy-Potenzial wird fiir groflere Z, unendlich grof,
wahrend das Manning-Potenzial irgendwann abflacht. Je grofler Vi, desto dhnlicher wer-
den sich die Potenziale offensichtlich fiir grofie Z,. Auch schon fiir kleine Z, steigt die
Ahnlichkeit mit groBer werdendem Vr, was in Abbildung {4| zu sehen ist. Dies ist wahr-
scheinlich der entscheidende Grund fiir die entsprechenden Ergebnisse fiir die Energie.
Die Wellenfunktion geht fiir grofle Z, so stark gegen 0, dass hier die Potenzialh6he kaum
einen Einfluss auf die untersuchten Energieniveaus nimmt.

Bei den Energien féllt auf, dass der Unterschied zwischen €, und eg zwar fiir grofie
Vi geringer wird, dass aber die Vertausendfachung von Vi von 1000 zu 1.000.000 einen
deutlich geringeren Unterschied macht, als die Verzehnfachung von 100 auf 1000. Ab
einer gewissen Potenzialtiefe Vo hilft eine Erhéhung offenbar nicht mehr dabei, eine be-
merkenswert bessere Naherung fiir das Razavy-Potenzial zu liefern. Auch das ist anhand
von Abbildung |4 nachzuvollziehen. Die Erh6hung von Vi von 100 auf 1000 fithrt dazu,
dass die AuBenwinde des Potenzials deutlich an das Razavy-Potenzial heranriicken. Der
Unterschied ist hier viel grofler, als bei der Erhéhung Vs von 1000 auf 1.000.000.
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4.2 Vergleich mit Christiansen und Cunha

In ihrer Arbeit Energy eigenfunctions for position-dependent mass particles in a new
class of molecular hamiltonians haben H. R. Christiansen und M. S. Cunha exakte
Werte fiir die Energien eines Manning-Potenzials der Form mit den Parametern
C’ = D' = 500 berechnet. Vergleich der Energien von Christiansen und Cunha €. [9] mit
den Ergebnissen des Programms e liefert folgende Tabelle:

Tabelle 2:

ej ‘ €. ‘ et ‘ €

C
-109,94122 | -109,99405 | -109,88711 | -109,88627

Es féllt auf, dass der von Christiansen und Cunha angegebene Energiewert der symme-
trischen Wellenfunktion €} grofier ist, als der Wert der asymmetrischen €, . Das kann
offensichtlich nicht stimmen, womit ein Fehler vorliegt.

Einordnung und Diskussion der Ergebnisse:

Vergleich der Werte in Tabelle [2] zeigt zweierlei. Zunéchst ist es erfreulich, dass die
Ergebnisse der Variationsrechnung auf 3 signifikante Stellen den exakten Werten ent-
sprechen. Was das angeht, scheint das Verfahren fiir den untersuchten Fall gut zu funk-
tionieren. Dem steht ein sehr deutlicher Unterschied bei Ae = |e~ — et| gegeniiber.
Die Differenz zwischen den beiden Energieniveaus ist bei Christiansen und Cunha mit
Ae. = 0,05283 um deutlich mehr als das Fiinfzigfache gréfler als bei dem Variationsver-
fahren mit Ae = 0,00084. Dieser Unterschied ist auffillig. Ein Grund kénnte sein, dass
der Ansatz fiir die asymmetrisch Testfunktion besser ist, als derjenige fiir die symmetri-
sche. Dadurch liegt ¢~ nur geringer iiber dem exakten Wert, als €', was sich durch ein
kleineres Ae bemerkbar macht. Da, wie oben erwdhnt, in der Arbeit von Christiansen
und Cunha ein Druckfehler vorliegt, lassen sich die Werte allerdings leider nicht direkt
vergleichen.

Die Annahme, dass beim Eintragen der Werte von Christiansen und Cunha einfach

F und €. vertauscht wurden, liefert folgenden Vergleich:

€

Tabelle 3:
Christiansen/Cunha | Variationsrechnung | Abweichung | Abweichung/e
v -109,99405 -109,88711 0,10694 0,097%
U_ -109,94122 -109,88627 0,05495 0,050%

Das hiefle, dass die prozentuale Abweichung der Variationsrechnung beim symmetrischen
Zustand doppelt so grof3 ist wie beim asymmetrischen.
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Es gibt allerdings noch andere mogliche Fehler, die beim Eintragen unterlaufen sein
kénnen. Es fillt auf, dass bei den Werten von Christiansen und Cunha beim einen Wert
eine Stelle hinterm Komma und beim anderen zwei Stellen hinterm Komma eine Neun auf
eine Vier folgt. Es ist zum Beispiel moglich, dass beim Eintragen entweder aus Versehen
eine Neun zu viel oder zu wenig eingetippt wurde. Das hiefle

Tabelle 4:
Christiansen/Cunha | Variationsrechnung | Abweichung | Abweichung/e
L -109,9412 -109,88711 0,05409 0,049%
v -109,9405 -109,88627 0,05423 0,049%
bzw
Tabelle 5:
Christiansen/Cunha | Variationsrechnung | Abweichung | Abweichung/e
v, -109,99412 -109,88711 0,10701 0,097%
v_ -109,99405 -109,88627 0,10778 0,098%

In beiden Féllen ist zu sehen, dass die prozentuale Abweichung bei symmetrischer und
asymmetrischer Wellenfunktion gleich ist, was hiefle, dass die Ansétze gleich gut geeignet
sind. Dies driickt sich auch darin aus, dass die Differenzen zwischen € und e, mit
A€, = T7-107* im ersten Fall und Ae. = 7-107° im zweiten Fall deutlich niher an der
Differenz der Variationsrechnung Ae = 8 - 1074 sind als unter der Annahme, dass die
beiden Werte einfach vertauscht wurden.

Welcher Fehler gemacht wurde, ist aber nicht zu sagen, was den Vergleich an dieser
Stelle spekulativ macht.

4.3 Untersuchung des Einflusses der Potenzialtiefe

Nach dem recht erfolgreichen Vergleich im vorangegangenen Abschnitt, soll nun unter-
sucht werden, wie sich Veranderungen der Potenzialtief&ﬂ auf die Hohe der Energienive-
aus und auf die Differenz zwischen dem Grundniveau und dem erstem angeregten Niveau
auswirken. Ausgangspunkt ist das Manning-Potenzial in Form von Gleichung

Im Folgenden sollen 7 Potenziale mit der Barrierenhche ‘7r,0 — VT,& = 200 und der Po-

sition der Minima @, = 1 bei verschiedenen Potenzialtiefen V,; untersucht werden.
Aquivalent zu den Formeln und konnen C, D). und r bestimmt werden. Die
untersuchten Potenziale sind in Abbildung [7] dargestellt:

2Gemeint ist die Differenz zwischen dem héchsten und dem tiefsten Punkt des Potenzials
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Abbildung 7: Darstellung der untersuchten Potenziale.

Zur Untersuchung des Potenzials mit dem Programm wird es auf die Form von [2.1]]
gebracht. Das Programm wird nun mit C’ und D’ gespeist und gibt € aus. Von Interesse
ist natiirlich €, bzw. der Abstand von €, zum Potenzialboden:

€r,0 = € — Vr,& (4-6)

Dieser ist in Tabelle [6] angegeben.

Die Veranderung von €, (es wird der Mittelwert aus e;f, o und €, genommen), sowie
die Verdnderung des Abstandes Ae, zwischen Grundzustandsenergie und Energie des
ersten Zustandes sind in den Grafiken [§ und [0] dargestellt.
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Tabelle 6: Berechnete Energien fiir das Manningpotenzial verschiedener Potenzialtiefen.
In der Tabelle sind der Ubersichtlichkeit wegen C. D, und r gerundet ange-
geben. Fiir ungerundete Werte, sowie weitere Parameter sind im Anhang die

Tabellen @ und (12| einzusehen.

Via Cl D) r E:CO €0
-200 800 800 | 0,567 | 17,08761455 | 17,08762073
-500 | 1632 | 1332 | 0,686 | 19,82743945 | 19,82744070
-800 | 2400 | 1800 | 0,759 | 21,06615245 | 21,06615302
-1100 | 3138 | 2238 | 0,815 | 21,83136425 | 21,83136459
-1400 | 3858 | 2658 | 0,860 | 22,36962010 | 22,36962034
-1700 | 4566 | 3066 | 0,898 | 22,77697841 | 22,77697860
-2000 | 5265 | 3465 | 0,932 | 23,10023539 | 23,10023553
25 T T T
] ——
. e "
+—
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+
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.\',Fa

Abbildung 8: Darstellung der Verinderung der Energie (Mittelwerte von Grund- und
erstem Zustand) mit steigender Potenzialtiefe. Die Rechenergebnisse sind
durch einen logarithmischen Fit f(z) = 2,124 In(x — 89,904) + 7,094 ver-
bunden, welcher von GnuPlot berechnet wurde.
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Abbildung 9: Die Verdnderung von Ae mit steigender Potenzialtiefe. Die Rechenergeb-
niss sind durch einen Fit f(z) = 0,000226/z + 0,2028/22 + 2,05 - 1078
verbunden, welcher von GnuPlot berechnet wurde.

Aus den Abbildungen [§ und [9] ist zu entnehmen, dass der Energieunterschied Ae, mit
groBerer Potenzialtiefe abnimmt, wobei die Steigung irgendwann sehr klein wird. Fiir die
Energieniveaus gilt das Gegenteil: Mit immer tieferen Potenzialen nehmen e;f: o und €,
zu. Es ist aber zu erkennen, dass auch hier die Steigung irgendwann abflacht.

Einordnung und Diskussion der Ergebnisse:

Die Untersuchung des Einflusses, den die Potenzialtiefe auf die Energieniveaus und ihren
Abstand hat, zeigt, was sich schon in Abschnitt angedeutet hat: Je grofler die Po-
tenzialtiefe, desto hoher ist €., aber mit abflachender Tendenz, weil sich die Potenziale
im Bereich der Minima (hier befindet sich die Wellenfunktion) ab einer gewissen Tiefe
nicht mehr iiberméflig verdndern, wenn die Tiefe noch weiter vergrofiert wird. Auch die
Verkleinerung von Ae, mit groflerer Tiefe ist in Abschnitt zu beobachten.
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4.4 Untersuchung zum Ammoniak-Molekiil

Zuletzt wird untersucht, ob mit dem Variationsverfahren zufriedenstellende Werte fiir
das Ammoniak-Molekiil gefunden werden.

Die reduzierte Masse des Ammoniakmolekiils berechnet sich fiir ein effektives Potenzial,
wie es in dieser Arbeit vorliegt ndherungsweise zu

3m sin? 3mgm
= o <1 N H/J’e> M, mit = STETY
my 3mH+mN

Es sind hierbei my die Masse des Wasserstoffatoms, my die Masse des Stickstoffatoms
und B der zwischen Wasserstoffatom, Pyramidengrundfliche und Stickstoffatom aufge-
spannte Winkel (vgl. Abb. [1]) im Gleichgewicht.

Mit den Werten [11]

my | 1,007825035u
my | 14,003074u
B. 22°13

ergibt sich

p = 4,25652928924809 - 10~%" kg.

Um die passenden Parameter C, D und p (fir das einheitenbehaftete Potenzial nach
Gleichung zu finden, miissen passende Annahmen iiber a,V, und Vj getroffen werden.
Der Abstand zwischen Stickstoffatom und Grundfliche betrigt 0,383 A [12], die Hohe
der Potenzialbarriere betrégt (0,2506 £0,0025) eV [13] und die Dissoziationsenergie kann
auf etwa 5eV [14] abgeschatzt werden.

Durch die Potenzialbarriere steht fest, dass

Vo =V, + (0,2506 + 0,0025) eV (4.7)

gilt. Die auf den realen Ortsraum (z = 2p) iibertragene Wellenfunktion des Grundzu-
stands hat die Form

r—2pa)? x a)?
U(z) = exp (_(2p)> + exp (—W) . (4.8)

Durch Ausprobieren werden Werte fiir V, und a gefunden, fir die die Dissoziationsenergie
(—E* =56V) und der Abstand des Stickstoffatoms (2pa = 0,383 A) passen.
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Zufriedenstellende Resultate erzielen die Werte

Vo= —5,0608e¢V  Vp = —4,8102eV  a =0,39685 A
Hieraus folgt fiir die Paramter des Potenzials nach den Formeln und

C =12,37379457e¢V D = 7,563566634¢V  p = 0,435362 A

und
C' = 11505, 58059 D’ = 17032, 864897

Dies fiihrt zu folgenden Ergebnisser[}

Tabelle 7: Ergebnisse fiir das Ammoniakmolekiil

at bt et E* [eV]
0,439861179 | 0,135560176 | -4649,147132 | -4,999972933

a” b~ € E~ [eV]
0,440062494 | 0,135327411 | -4649,126583 | -4,999950833

Von besonderem Interesse ist die Differenz AE = E~ — E*. Die Rechnungen ergeben

AE =2,21-10"%¢V.

Der experimentelle Wert betrégt hingegen

AFEg,, =9,83-107eV [15].

Das ist ein in etwa viereinhalb mal so hoher Wert wie das Ergebnis der Variationsrech-
nung. Um eine bessere Vorstellung von der physikalischen Situation zu geben, sind in den
Abbildungen [I0] und [I1] nun die Testwellenfunktionen minimaler Energie im Potenzial
dargestellt.

3Fiir die Berechnung der Ergebnisse sind auf Grund von E = 82; e die Naturkonstanten h und c nétig.

Sie sind im Anhang in Tabelle [§ zu finden. Der Faktor p héingt von den genauen Charakteristika des

Potenzials ab. Fiir das angenommene Potenzial gilt SZ; = 0,00107546 €V.
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Energie [eV]
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Abbildung 10: Darstellung der Testwellenfunktion ¥ im Potenzial

Abstand [A]

Abbildung 11: Darstellung der Testwellenfunktion W_
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Einordnung und Diskussion der Ergebnisse:

Zuerst zeigt sich hier, dass die Position der Maxima der Testwellenfunktion bei z = 2p«
etwas naher am Ursprung liegt, als die Minima des Potenzials bei x = a. Das ist
nachvollziehbar, wenn man eine einzelne Mulde des Manning-Potenzials betrachtet. Die
Wellenfunktion wird hier ndherungsweise nur durch eine einzelne verschobene Gauss-
Funktion reprasentiert. Diese liegt symmetrisch um ihr Maximum. Die einzelne Mulde
des Manning-Potenzials ist allerdings nicht symmetrisch um a. Das Potenzial steigt an
den Aulenwinden steiler an, als an der Potenzialbarriere. Es ist also energetisch giinsti-
ger, wenn das Maximum der Wellenfunktion leicht vom Minimum des Potenzials abweicht
und zum Ursprung riickt.

Die Berechnung von AFE weist ein Ergebnis in der Gréflenordnung des experimentelles
Wertes vor. Allerdings ist das Ergebnis etwa 4,5 Mal kleiner als der experimentelle Wert.
Das ist unter anderem darauf zuriickzufithren, dass AF ungeféhr fiinf GréBenordnungen
kleiner als der Wert der Energieviveaus selber ist. Hierfiir reicht die Genauigkeit des
Variationsverfahrens offenbar nicht aus.

Was den absoluten Wert der Energieniveaus ET und E~ angeht, so erweist sich ein
Vergleich als schwierig. Da die Dissoziationsenergie mit 5 eV vorgegeben ist, ist der einzige
Wert, der die absolute Hohe der Energieniveaus festlegen kann, der Abstand zwischen
ihnen und dem Potenzialminimum: EX = E*—V,. Das Potenzial als solches ist aber keine
quantenmechanische Observable. Ein Vergleich mit Messwerten ist also nicht moglich.
Auch bei theoretischen Arbeiten konnte kein Vergleichswert fiir Fy gefunden werden,
weil die Autoren (vermutlich aus den oben genannten Griinden) ET = 0 setzen. Somit
ist £~ der erste vergleichbare Messwert (und entspricht bei E+ = 0 natiirlich AE).

Die einzige Moglichkeit, die fiir einen Vergleich gefunden wurde, ist folgende Abbil-
dung;:
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Abbildung 12: Darstellung der Energieniveaus im Potenzial, aus dem Lehrbuch Atome,
Molekiile und optische Physik 2 [16]

Der Abstand beider Energieniveaus zum Boden des Potenzials betrigt nach Tabelle[7]in
etwa
Ey ~ 0,0608 eV = 490 cm ™.

Dies deckt sich mit Abbildung wo die Linie fiir die unteren beiden Energieniveaus
direkt unter der 500 cm~! Grenze liegt. Es ist hier allerdings auch zu beachten, dass

die Potenzialbarriere in der Abbildung bei etwa 2400cm ™! = 0,298 eV liegt, was etwas
grofer ist, als der in dieser Arbeit genutzte Wert von 0,2506eV.

Insgesamt zeigt sich ein dhnliches Ergebnis, wie in Abschnitt [£.2} Die absoluten Energi-
en konnten mit einiger Genauigkeit bestimmt werden. Die Energieaufspaltung ist aber
so gering, dass die Genauigkeit des Verfahrens nicht ausreicht um zufriedenstellende

Ergebnisse zu liefern.
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5 Allgemeine Schlussfolgerungen und Ausblick

Es hat sich bei dem Vergleich mit den Ergebnissen von Christiansen und Cunha in Ab-
schnitt und bei der Untersuchung des Ammoniak-Molekiils in Abschnitt [4.4] gezeigt,
dass das Variationsverfahren eine recht gute Naherung fiir die Energieeigenwerte liefert.
Fiir die Untersuchung kleiner Energieaufspaltungen ist das Verfahren aber offenbar nicht
genau genug.

Zur Bewertung der Methode muss zuerst eines deutlich werden: Die Rechnungen zum
Ammoniak-Molekiil mit Hilfe des Manning-Potenzials weisen einen wichtigen Unter-
schied zu bekannten quantenmechanischen Untersuchungen zB. des Wasserstoffatoms
auf. Beim Wasserstoff ist das Potenzial vollstdndig aus der klassischen Physik bekannt.
Angewendet auf die Quantenmechanik kénnen so Observablen wie die Energieniveaus
hergeleitet werden. Der Erfolg ldsst sich dann unter anderem daran erkennen, dass die
Bindungsenergie des Elektrons sehr genau mit den experimentellen Werten {iiberein-
stimmt.

Beim Ammoniak-Molekiil verfolgen wir eine vollkommen andere Strategie. Das Manning-
Potenzial wird nicht aus der elektrostatischen Wechselwirkung der einzelnen beteilig-
ten Teilchen hergeleitet, sondern es wird gewéhlt, weil es von der Form her die Beob-
achtungen (Pyramidenform) erkliaren kann. Das heifit aber, dass -im Gegensatz zum
Wasserstoffproblem- Charakteristika wie die Potenzialtiefe so gewdhlt werden mdiissen,
dass die Bindungsenergie des Grundzustands der gemessenen Dissoziationsenergie ent-
spricht. Die Grundzustandsenergie wird also nicht gefunden, weil das Potenzial bekannt
ist, sondern die Parameter des Potenzials werden u.a. aus der bekannten Grundzustand-
senergie heraus bestimmt. Das heifit aber, dass es zwar schén ist, wenn die Lage des
Grundzustands zum Potenzialboden so bestimmt werden kann, dass sie den Ergebnissen
anderer Rechnungen recht gut entspricht (wie der Vergleich von Ey mit Abbildung
in Abschnitt gezeigt hat), messbar ist dies allerdings nicht. Die erste tatsichlich neu
erreichbare Erkenntnis ist der Abstand AFE des ersten angeregten Niveaus zum Grund-
niveau. Genau hierfiir reicht die Genauigkeit des Variationsverfahrens mit den in dieser
Arbeit gebrauchten Testfunktionen allerdings nicht aus.

Zur Verbesserung der Ergebnisse sind verschiedene Vorgehensweisen denkbar. Der Erfolg
des Variationsverfahrens hiangt in erster Linie davon ab, wie gut die Testfunktionen sind.
Mehr Freiheitsgrade fithren hier dazu, die Erfolgsaussichten zu verbessern. Denkbar ist
die Multiplikation der in dieser Arbeit benutzten Testfunktionen mit einem geraden
Polynom:

(—a)? (E+a)?
Uy (z) = (2t + 2?4+ 1) <e 22 t+e 27 )

Ein Problem hierbei ist, dass tiber die Parameter ¢; und co deutlich weniger bekannt
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ist, als iiber die Parameter o und b. Es ist zu erwarten, dass « in der Nidhe der Poten-
zialminima liegt, und dass die Testfunktion weder zu spitz, noch zu flach ist, wodurch
b abgeschéitzt werden kann. Fiir positive ¢; und co hat das Polynom keine Nullstellen,
womit die Testfunktionen wieder keinen bzw. einen Knotenpunkte haben und somit die
Bedingungen an den Grund- und den ersten angeregten Zustand erfiillt sind. Uber das
Verhéltnis von ¢; zu ¢o lassen sich aber kaum sichere Aussagen treffen. Bei der Bestim-
mung der Grenzen, zwischen denen ¢; und co abgetastet werden sollen, herrscht also eine
gewisse Unsicherheit.

Es muss auch die Tatsache bedacht werden, dass es sich bei der Anwendung des Manning-
Potenzials um ein effektives Potenzial handelt. Die Reduzierung von drei auf eine Di-
mension ist an sich eine Ndherung. Eine Verbesserung lasst sich erreichen, indem die
reduzierte Masse p ortsabhéngig wird. Ein solcher Ansatz wird auch in der Arbeit von
Aquino [3] verfolgt. Die Einfithrung einer solchen ortsabhéngigen Masse konnte die Er-
gebnisse des Variationsverfahrens verbessern.

Fin néchster Schritt zur Untersuchung des Manning-Potenzials kénnte auflerdem die nu-
merische Losung der Schrodingergleichung sein. Beispiele fiir solche Verfahren sind in
[17] zu finden.

Was das Computerprogramm angeht, so sind ebenfalls verschiedene Weiterentwicklun-
gen denkbar. Dadurch, dass der Impuls- und Normierungsterm analytisch bestimmt und
die Losung in das Programm integriert wurden, eignet es sich nur fiir solche Ansétze,
die verschobene Gaufl-Funktionen als Testwellenfunktionen haben. Eine Erweiterung des
Programms wére es, wenn auch Impuls- und Normierungsterm numerisch bestimmt wiir-
den. Das wiirde es unter sehr geringem Aufwand ermdéglichen, das Variationsverfahren
an verschiedenen Potenzialen mit verschiedenen Testfunktionen durchzufiihren.

Eine andere Verbesserung wére es, wenn das Programm die Grenzen der Abtastung
von « und b selbst anhand der Charakteristika des Potenzials wie dem Abstand a und
der Kriimmung der Mulden selbst bestimmt. Hierzu waren genauere Untersuchungen,
wie o und b von der Potenzialform abhingen, von Vorteil.
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6 Anhang

Tabelle 8: Liste der gebrauchten Naturkonstanten
4,135667662 - 10~ eVs [18]

6,582119514 - 10~ 16 eVs [19]

299792458 m/s

oo | St S

1,6021766208 -

[20]
10-C [21]

fir die Umrechnung zwischen den verschiedenen Energieeinheiten ergibt sich somit:

-1

J eV cm

1 6,241509126 - 10'® | 5,034116652 - 10%?
1,6021766208 - 10~ 1 8, 065544006
1,986445824 - 10~ | 1,239841974 - 10~% 1

Parameter und Ergebnisse zum Vergleich mit Stephan Broker (4.1):

Tabelle 9:
5 Vr C! D! r & &
0,2 100 232 134,56 1,469374409 | 1,736451848 | 2,681283785
1000 2101,192885 | 1103,752885 | 2,569050262 | 1,852548696 | 2,899738928
1000000 2003200 1003202,56 | 14,33151692 | 1,909410442 | 3,007252138
0,4 100 224 125,44 1,152629953 | 1,584922219 | 3,804443904
1000 2075,894664 | 1077,334664 | 2,023354682 | 1,688689321 | 4,122974424
1000000 2002400 1002401,44 | 11,30966023 | 1,739553309 | 4,276520227
Tabelle 10:
s Vi C’ D’ et €
0,2 100 2003,60875 | 1162,093075 | -848,6280383 | -840,4682386
1000 55471,65393 | 29139,16114 | -26351,16956 | -26323,52366
1000000 | 1645768041 | 824200635 | -821567940,6 | -821567038,7
0,4 100 1190,386005 | 666,6161625 | -522,999693 | -511,2046593
1000 33994,5535 | 17642,27805 | -16348,20294 | -16308,33944
1000000 | 1024495236 | 512862315,3 | -511632767,8 | -511631469,8
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Parameter und Ergebnisse zur Untersuchung des Einflusses der Potenzialtiefe

(@3):
Tabelle 11:
Vr,d Vr,o C, D, r
-200 0 800 800 0,567296329
-500 | -300 | 1632,455532 | 1332,455532 | 0,68589829
-800 | -600 2400 1800 0,759325718
-1100 | -900 | 3138,083152 | 2238,083152 | 0,814686425
-1400 | -1200 | 3858,300524 | 2658,300524 | 0,859898164
-1700 | -1500 | 4566,190379 | 3066,190379 | 0,898489909
-2000 | -1800 | 5264,911064 | 3464,911064 | 0,932373332
Tabelle 12:
c’ D' et € € €0
1029,840398 | 1029,840398 | -235,4632048 | -235,4631968 | 17,087614553 | 17,087620730
3071,997034 | 2507,449276 | -903,6011412 | -903,6011388 | 19,827439454 | 19,827440704

5535,125234
8331,158531
11411,69318
14744,85187
18307,57057

4151,343926
5941,788233
7862,453892
9901,147168

12048,46636

-1796,4568315
-2862,3823504
-4074,6165613
-5415,9820223
-6874,2342492
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-1796,4568302
-2862,3823494
-4074,6165605
-5415,9820217
-6874,2342486

21,066152447
21,831364245
22,369620095
22,776978414
23,100235385

21,066153016
21,831364591
22,369620338
22,776978599
23,100235535
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keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind und
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