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1 Einleitung

Jedes physikalische System, das aus mehr als einer Phase besteht hat eine Grenz-
fläche. Beispiele hierfür gibt es viele: Beim Kochen trennt die Wasseroberfläche die
Flüssigkeit vom Dampf und im Ferromagneten unterteilen Bloch-Wände Bereiche
unterschiedlicher Magnetisierung.

In dieser Arbeit werden wir Grenzflächen untersuchen, die bei einem Phasenüber-
gang 2. Art (siehe Kapitel 2) entstehen. Bei Annäherung an die kritische Temperatur
divergiert die Korrelationslänge und mit ihr die Grenzschichtdicke. Am kritischen
Punkt findet ein Phasenübergang statt und das System ist homogen. Es treten
Fluktuationen auf allen Größenskalen auf: das System wird selbstähnlich und zeigt
innerhalb einer bestimmten Klasse Universalität.

Zur Beschreibung der Fluktuationen werden wir in Kapitel 2.3 die φ4-Theorie mo-
tivieren. Diese ist allerdings nicht analytisch lösbar, liefert aber in nullter Ordnung
die Landau-Theorie. Aus diesem Grund werden wir die intrinsische Landau- und
die makroskopische Kapillarwellen-Theorie, die jeweils einen Teil der Fluktuationen
der Grenzfläche beschreiben können, in ein Modell zusammenfassen. Dieser Aufbau
der Theorie unterteilt die Fluktuationen in zwei Größenordnungen. Unser Ziel ist
es, anhand der Grenzflächendicke, welche in den beiden Bereichen ein qualitativ un-
terschiedliches Verhalten zeigt, den Übergang zwischen den verschiedenen Regimen
zu untersuchen.

Bei einer Monte-Carlo-Simulation mit dem Ising-Modell konnte bisher das int-
rinsische Grenzprofil nicht gezeigt werden. Wir werden deshalb im zweiten Teil der
Arbeit die φ4-Theorie auf dem Gitter in einer Monte-Carlo-Rechnung simulieren
und untersuchen, welche Effekte für die Abweichungen der numerischen Ergebnisse
von den theoretischen Vorhersagen verantwortlich sind (Kapitel 8).

Das primäre Ziel der Statistischen Mechanik ist es, die physikalischen Eigenschaf-
ten von Systemen zu berechnen, die aus sehr vielen Teilchen bestehen. Obwohl
häufig nur wenige unterschiedliche Teilchen vorkommen, verhindert ihre schiere An-
zahl die Bewegungsgleichungen exakt mathematisch zu lösen. Trotzdem wissen wir,
dass das System bestimmte (thermodynamische) makroskopische Eigenschaften be-
sitzt, wie zum Beispiel beim idealen Gas den Druck oder die Temperatur, welche
sich gut vorhersehbar verhalten. Die Idee der Statistischen Mechanik ist, die Be-
wegungsgleichungen nicht zu lösen, sondern das Problem zu umgehen, indem die
makroskopischen Größen direkt durch eine probabilistische Behandlung berechnet
werden.

Die Monte-Carlo-Rechnung geht noch einen Schritt weiter: Anstatt explizit die
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1 Einleitung

Wahrscheinlichkeit aller Zustände zu betrachten und die Zustandssumme zu bilden,
simulieren wir mithilfe eines Computers ein Modellsystem, das die gleiche Wahr-
scheinlichkeitsverteilung hervorbringt wie das reale System. Auf die Arbeitsweise
der Monte-Carlo-Simulation werden wir in Kapitel 7 eingehen.
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Teil I

Theorie
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2 Phasenübergänge

In diesem Kapitel werden wir die Verwendung der φ4-Theorie motivieren. Mögli-
cherweise ist das beste Argument für den Landau-Ginzburg-Hamiltonian, dass jeder
Term absolut notwendig ist und wir keinen Term weglassen können, ohne die Physik
essenziell zu ändern.

Nach einigen Vorbemerkungen zu Phasenübergängen (für eine ausführliche Dar-
stellung siehe z.B. [LL66]) werden wir zunächst die phänomenologische Landau-
Theorie betrachten, welche das Verhalten von Grenzflächen nahe des kritischen
Punkts bis zu einigen Korrelationslängen beschreiben kann. Indem wir die Theo-
rie wieder um die unberücksichtigten Fluktuationen ergänzen, werden wir auf die
φ4-Theorie geführt, deren nullte Ordnung mit der Landau-Theorie übereinstimmt.

2.1 Einleitung

Im Gleichgewicht lässt sich der Zustand eines homogenen Körpers (z.B. der Druck
oder die Temperatur) durch zwei beliebige thermodynamische Größen beschreiben.
Umgekehrt können wir aber nicht fordern, dass er für ein beliebiges Wertepaar
homogen ist, sondern es ist möglich, dass der Körper in zwei verschiedene, aber
homogene Teile zerfällt. Diese Zustände, die im Gleichgewicht koexistieren und sich
an einer Grenzfläche berühren, werden Phasen genannt, ein Beispiel hierfür ist die
Blasenbildung beim Sieden.

Voraussetzung für ein Gleichgewicht zwischen den Phasen ist, dass die Temperatur
T , der Druck p und das chemische Potential µ identisch sind:

T1 = T2 = T,

p1 = p2 = p,

µ1 = µ2. (2.1)

Wenn wir die Potentiale als Funktionen von p und T ausdrücken, so verknüpft die
Gleichung

µ1(p, T ) = µ2(p, T ) (2.2)

den Druck und die Temperatur der Phasen: durch die Wahl einer Größe wird die
andere vollständig bestimmt. Indem wir in ein Koordinatensystem die Koexistenz-
kurve auftragen, erhalten wir das Phasendiagramm (siehe Abbildung 2.1). Ändern
wir den Zustand eines Systems entlang einer Linie, die diese Grenzkurve schneidet,
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2 Phasenübergänge

tritt im Schnittpunkt eine Trennung der Phasen auf und anschließend geht der Kör-
per in die andere Phase über. Bei einer langsamen Zustandsänderung ist es möglich,
dass der Körper sich auch noch jenseits der Kurve im homogenen Zustand befindet,
obwohl es im Gleichgewicht schon zur Trennung der Phasen hätte kommen müssen.
Diese Zustände sind aber metastabil und man spricht von unterkühltem Dampf und
überhitzter Flüssigkeit.

Abbildung 2.1: Phasendiagramm in der p-T -Ebene: Die Koexistenzkurve endet im
kritischen Punkt.

Phasenübergänge dieses Typs sind immer mit der Erzeugung oder Vernichtung
von latenter Wärme begleitet und zeigen sich in einer Unstetigkeit in der ersten
Ableitung eines thermodynamischen Potentials. Man bezeichnet diese Klasse von
Zustandsänderungen als Phasenübergänge 1. Art.

Eine Koexistenzkurve kann in einem sogenannten kritischen Punkt enden, in dem
der Unterschied zwischen den Phasen verschwindet: Für Temperaturen und Drücke
jenseits dieses Punktes ist der Körper immer homogen. Streng genommen lässt sich
nur auf der Grenzkurve von zwei Phasen sprechen, da es möglich ist, den Zustand
entlang einer Kurve, die den kritischen Punkt umläuft und nie die Grenzkurve
schneidet, zu ändern. Für bestimmte Phasen, die sich durch ihre innere Symme-
trie qualitativ unterscheiden (z.B. Flüssigkeit und Festkörper) kann der Phasen-
übergang nicht in einem kritischen Punkt enden. Die Symmetrieeigenschaften eines
Festkörpers können nur existieren oder nicht; ein kontinuierlicher Übergang zu ei-
ner flüssigen Phase ist also nicht möglich. Deshalb müssen solche Koexistenzkurven
entweder andere Grenzkurven schneiden oder ins Unendliche laufen.

Abbildung 2.2 zeigt einen Phasenübergang 1. Art von flüssig nach gasförmig,
der im kritischen Punkt K endet. Die gestrichelte Linie begrenzt das Gebiet, in
dem der Körper nicht in einer homogenen Phase existieren kann, also ein weiteres
Unterkühlen des Dampfes oder Überhitzen der Flüssigkeit nicht mehr möglich ist.
Das heißt die Isotherme einer Flüssigkeit abc und eines Gases def können nur im
kritischen Punkt K kontinuierlich ineinander übergehen.

Man bezeichnet den kontinuierlichen Übergang zwischen zwei Phasen als Phasen-
übergang 2. Art. Beispiele für kontinuierliche Phasenübergänge sind der Übergang
von flüssigem Helium in seinen superfluiden Zustand, der Übergang von Metall in
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2.1 Einleitung

Abbildung 2.2: Phasenübergang 1. Art mit dem kritischen Punkt K

seiner supraleitenden Zustand oder der Übergang vom Ferromagnetismus zum Para-
magnetismus. Das einfachste Modell, das einen Phasenübergang 2. Art durchlaufen
kann, ist das Ising-Modell.

Da die Zustandsänderung kontinuierlich stattfindet, muss der Körper im kriti-
schen Punkt die Symmetrieelemente beider Phasen enthalten. Häufig ist die Sym-
metriegruppe der Phase niedriger Temperatur eine Untergruppe von der der höheren
Temperatur. Die paramagnetische Phase ist invariant unter allen räumlichen Dre-
hungen, während in der ferromagnetischen nur die Invarianz unter Drehung um die
Magnetisierungsrichtung erhalten ist. Dieses Phänomen wird Symmetriebrechung
genannt: Der Ordungsparameter, der in der Phase höherer Symmetrie null ist und
einen von null verschiedenen Wert in der Phase mit geringerer Symmetrie annimmt,
verschwindet kontinuierlich für T → Tc.

Nahe der kritischen Temperatur zeigen makroskopische Systeme ein charakte-
ristisches kollektives Verhalten auf großen Skalen. Die Korrelationslänge ξ, welche
die Längenskala, auf der kollektives Verhalten beobachtet werden kann, beschreibt,
divergiert beim Phasenübergang ebenso wie die Größe der (kritischen) Fluktuatio-
nen. Nahe der kritischen Temperatur können für die meisten Systeme viele Größen
durch einfache Potenzgesetze beschrieben werden. Zum Beispiel divergieren ξ, die
Suszeptibilität χ und die Oberflächenspannung σ in einem dreidimensionalen Sys-
tem gemäß:

ξ ∝
∣
∣
∣
∣

T − Tc

Tc

∣
∣
∣
∣

−ν

, χ ∝
∣
∣
∣
∣

T − Tc

Tc

∣
∣
∣
∣

−γ

, σ ∝
∣
∣
∣
∣

T − Tc

Tc

∣
∣
∣
∣

2ν

(2.3)

mit den kritischen Exponenten ν und γ.
Das System hängt also nicht länger nur von der mikroskopischen Längenskala ab,

die durch die Reichweite der Wechselwirkung oder dem Gitterabstand gegeben ist,
sondern es existiert in der Nähe von Tc eine weitere, dynamisch erzeugte Längens-
kala, die durch die Korrelationslänge beschrieben wird. Diese ist es auch, die für die

13



2 Phasenübergänge

nicht-trivialen langreichweitigen oder makroskopischen Phänomene verantwortlich
ist.

2.2 Landau-Theorie

Die grundlegende Idee der Landau-Theorie ist, dass in der Umgebung des kritischen
Punktes die Physik des Systems durch die makroskopische Längenskala dominiert
wird und in der Umgebung des kritischen Punktes die mikroskopische zugunsten der
makroskopischen Längenskala zu vernachlässigt werden kann. Landau postulierte
[LL66], dass man ein Funktional S, das nur von Potenzen des Ordnungsparameters
φ und im Fall eines inhomogenen Systems von endlich vielen Ableitungen nach
φ abhängt, finden kann, und der Zustand des Systems durch das globale Minimum
von der Landau-Freien Energie S bestimmt ist. Indem wir fordern, dass S konsistent
mit den Symmetrien des Systems und der Ordnungsparameter in der ungeordneten
Phase null ist und in der geordneten nahe der kritischen Temperatur einen kleinen
endlichen Wert annimmt, erhalten wir für die Landau-Freie Energiedichte

L(φ(x)) =
1

2
(∂φ(x))2 + V (φ(x)) (2.4)

mit dem φ4 Potenzial

V (φ) =
g

4!
φ4 +

m2

2
φ2 + C. (2.5)

Die vierte Ordnung ist die niedrigste Ordnung, die einen Phasenübergang 2. Art
ermöglicht. Da φ sich im Vergleich zur mikroskopischen Längenskala nur sehr lang-
sam ändert, können wir zu abrupte Sprünge im Ordnungsparameter durch den
Ableitungsterm benachteiligen. Die Kopplungskonstante g, die Masse m und die
Normierungskonstante C sind temperaturabhängige Größen. Damit das Potenzial
nach unten beschränkt ist, muss g > 0 sein. Der Parameter m2 ist für den Phasen-
übergang verantwortlich und muss deshalb bei der kritischen Temperatur Tc einen
Nulldurchgang haben:

m2 ∝ (T − Tc). (2.6)

Die Konstante C dient dazu, das Potenzial am Minimum v0 auf null zu normieren:

V (v0) = 0. (2.7)

Wir können also zwischen zwei Phasen unterscheiden:

• Für m2 > 0 ist das Potenzial konvex und hat ein eindeutiges Minimum bei φ =
0. Das System befindet sich in der symmetrischen Phase und die Energiedichte

14



2.2 Landau-Theorie
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Abbildung 2.3: Das φ4-Potenzial in Abhängigkeit von m2.

ist invariant unter der Symmetrie-Transformation φ → −φ. Das normierte
Potenzial lautet:

V (φ) =
g

4!
φ4 +

m2

2
φ2 (2.8)

• Für m2 < 0 hat das Potenzial zwei Minima bei ±
√

−6m2/g. Damit das Qua-
drat der Masse positiv ist, wird −2m2 durch m2 ersetzt. Das normierte Po-
tenzial lautet dann:

V (φ) =
g

4!

(
φ2 − v2

0

)2
=

g

4!
φ4 − m2

4
φ2 +

3

8

m4

g
(2.9)

mit

v0 =

√

3m2

g
. (2.10)

Die Symmetrie φ → −φ wird nur noch von der Gesamtheit der Minima aber
nicht länger von jedem einzelnen Minimum erfüllt. Diese spontane Symme-
triebrechung ermöglicht es dem System zwei Phasen auszubilden.
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2 Phasenübergänge

2.2.1 Klassische Lösung und Randbedingungen

Im thermodynamischen Gleichgewicht befindet sich das System im Grundzustand
für den die Landau-Energie

S [φ] =

∫

d3x L (φ(x)) =

∫

d3x

(
1

2
(∂φ)2 + V (φ)

)

(2.11)

minimal ist. Im Grundzustand ist der Ordnungsparameter in der symmetrischen
Phase definitionsgemäß φG = 0 und es kann keine Grenzfläche im System auftreten.
Für die Phase gebrochener Symmetrie betrachten wir die Funktionalableitung von
(2.11) mit dem Potenzial (2.9) und setzen sie gleich null:

[
δS[φ]

δφ

]

φ=φG

=
[
∂2φ + V ′(φ)

]

φ=φG

=

[

−∂2φ +
g

3!
φ3 − m2

2
φ

]

φ=φG

!
= 0. (2.12)

Wir erhalten die beiden mögliche Minima

φG = ±v0 = ±
√

3m2

g
, (2.13)

die den zwei unterschiedlichen Phasen entsprechen (siehe auch [Küs01]). Wie diese
Phasen in einem System mit der quadratischen Grundfläche L × L und der Länge
Z realisiert werden, hängt entscheidend von der Wahl der Anfangs- und Randbe-
dingungen ab. Mit dem Ansatz, dass der Ordnungsparameter ausschließlich von z
abhängt

φG(x, y, z) = φG(z) (2.14)

legen wir die Grenzfläche senkrecht zur z-Richtung und können die klassische Lösung
der Differentialgleichung (2.12) bestimmen. Im thermodynamischen Limes Z → ∞
und L endlich erhalten wir mit den periodischen Randbedingungen

φG

(
z = +Z

2 → ∞
)

= φG

(
z = −Z

2 → ∞
)

(2.15)

eine gerade Anzahl an Grenzflächen. Da die Lösungen mit zwei oder mehr Grenz-
flächen aufgrund ihrer höheren Energie im thermodynamischen Gleichgewicht ex-
ponentiell unterdrückt sind, bildet das System keine Grenzfläche aus und befindet
sich gerade im homogenen Zustand

φG(z) = v0 (2.16)
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2.3 Motivation der φ4-Theorie

und aufgrund der Normierung des Potenzials ist die Energie

S[φG] = 0. (2.17)

Prägen wir dem System hingegen antiperiodische Randbedingungen

φG

(
z = +Z

2 → ∞
)

= φG

(
z = −Z

2 → −∞
)

(2.18)

auf, oder lösen die Differentialgleichung unter der Nebenbedingung, dass φG(a) = 0
für ein beliebiges aber festes a ist, dann muss eine ungerade Anzahl an Grenzflächen
vorliegen. In diesem Fall ist die Situation mit genau einer Grenzfläche die energetisch
günstigste und wir erhalten die Kink-Lösung

φK(z) = v0 tanh
(m

2
(z − a)

)

. (2.19)

Da für die Ausbildung einer Grenzfläche Energie benötigt wird, nimmt S[φK] einen
von null verschiedenen Wert an:

S[φK] =
2m3

g
L2. (2.20)

2.3 Motivation der φ4-Theorie

Leider zeigte sich, dass die Landau-Theorie z.B. im Vergleich mit dem später von
Onsager exakt gelösten 2D-Ising-Modell falsche Vorhersagen trifft. Überraschender-
weise war das in der Physik verbreitete und im Rahmen von Mean-Field-Theorien
so häufig erfolgreich angewandte Prinzip der Entkopplung von stark unterschiedli-
chen Längenskalen nicht für die Beschreibung der kritischen Phänomene geeignet:
ganz im Gegenteil sind am kritischen Punkt alle Fluktuationen relevant. Berech-
net man Korrekturen zur Landau-Theorie, so treten bei Tc Divergenzen auf, welche
durch Beiträge erzeugt werden, die vom Verhältnis der Korrelationslänge zur mi-
kroskopischen Skala abhängen. Diese Situation erinnert an die Probleme der frühen
Interpretation der Quantenfeldtheorie, mit dem Unterschied dass dort die mikrosko-
pische Skala gegen null geht und hier die makroskopische divergiert. Aber beide Di-
vergenzen lassen sich auf das Nicht-Entkoppeln sehr unterschiedlicher Längenskalen
zurückführen. Umso überraschender war, dass trotzdem eine gewisse Universalität
überlebt, welche die Renormierungsgruppentheorie erklärt. An der Übergangstem-
peratur treten Fluktuationen in allen Größenordnungen auf und das System zeigt
Selbstähnlichkeit oder geometrisch ausgedrückt eine fraktale Struktur. Durch das
Verschwinden einer typischen Längenskala am kritischen Punkt wird die Physik
invariant unter Skalentransformationen.
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2 Phasenübergänge

2.3.1 Mikroskopische Landau-Theorie

Aber was ist die Landau-Freie Energie? Trotz ihrer formalen Ähnlichkeit ist sie
nicht mit der Gibbs-Freien Energie Γ zu verwechseln, da weder S (φ(x)) konvex ist
noch Γ als thermodynamisches Potential mikroskopische Informationen hat. Um die
Landau-Freie Energie besser zu verstehen, wollen wir am Beispiel eines Spinmodells
mit der Zustandssumme

Z = e−βF =
∑

{S}
e−βH({S}) (2.21)

einen genaueren Blick darauf werfen, dass die Landau-Theorie das Verhalten des
Ordnungsparameters erst nach einer Grobkörnung über einen Block B(x) beschreibt
(siehe auch [Gol92]). Die Länge B des Blocks liegt zwischen der mikroskopischen
Länge a und der Korrelationslänge ξ:

a ≪ B ≤ ξ(T ). (2.22)

Der grobgekörnte lokale Ordnungsparameter φB(x) ist dann gleich der mittleren
Magnetisierung innerhalb des um x zentrierten Blocks. Durch die Grobkörnung ge-
hen die mikroskopischen Details innerhalb der korrelierten Gebiete, die nahe der
kritischen Temperatur entstehen, verloren und es werden nur noch die langwelligen
Fluktuationen berücksichtigt.

S[φB(x)] ist also gleich der Gibbs-Freien Energie unter der Nebenbedingung, dass
das System in einem Zustand ist, der mit dem grobgekörnten Profil des Ordnungspa-
rameters φB(x) verträglich ist. Formal können wir die Landau-Freie Energie schrei-
ben als

e−βS[φB(x)] =
∑

{S}

′
e−βH({S}), (2.23)

wobei der Strich der Nebenbedingung Rechnung trägt.
Wie hängt also S[φB(x)] mit der Zustandssumme zusammen? Um L zu erhalten,

haben wir die Spur über den Teil {S̄} der mikroskopischen Freiheitsgrade gebildet,
der mit einem bestimmten Profil φ̄B(x) konsistent ist. Seien {S∗} die Konfiguratio-
nen, die mit demselben Profil nicht konsistent sind, dann können wir die Summe
über alle Mikrozustände in zwei Summen unterteilen

∑

{S}
=

∑

{S∗}

∑

{S̄}
(2.24)

und mit (2.21) folgt

Z =
∑

{S∗}

∑

{S̄}
e−βH =

∑

{S∗}
e−βL{φ̄B(x)}. (2.25)
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2.3 Motivation der φ4-Theorie

Da φ̄B(x) eine glatte und auf der mikroskopischen Längenskale langsam veränderli-
che Funktion ist, können wir die Summe durch ein Pfadintegral approximieren:

Z =

∫

Dφ e−βS[φ]. (2.26)

Dieses Pfadintegral kommt uns zu Recht sehr bekannt vor, denn indem wir die
Größen

Ordnungsparameter φ ↔ Feld φ
Temperatur β−1 ↔ Planck-Konstante ~

Energiedichte L ↔ Lagrange-Dichte L

identifizieren, erkennen wir, dass die Hamiltonfunktion

S [φ] =

∫

d3xL(φ(x)) =

∫

d3x

(
1

2
(∂φ(x))2 +

g

4!
φ4 − m2

4
φ2 +

3

8

m4

g

)

(2.27)

formal identisch zur euklidischen Wirkung der φ4-Theorie eines reellen Skalarfeldes
mit Selbstwechselwirkung aus der QFT ist.

2.3.2 Erzeugendes Funktional

Aus der Statistischen Physik kennen wir die Zustandssumme, die in einem diskre-
ten System alle möglichen Zustände mit ihrer Boltzmann-Wahrscheinlichkeit wich-
tet, und aus der wir alle weiteren thermodynamischen Größen berechnen können.
Indem wir einen Quellterm j einfügen, können wir etwas Vergleichbares für Felder
definieren:

Z[j] =
1

Z

∫

Dφ exp

{

−1

~

(

S[φ] −
∫

d3xj(x)φ(x)

)}

=
1

Z

∫

Dφ exp

{

−1

~
S[φ,j]

}

. (2.28)

(2.28) ist das Erzeugende Funktional der Green-Funktionen, welche durch Funktio-
nalableitungen aus Z[j] folgen:

G(n)(x1, x2, ..., xn) = 〈φ(x1)φ(x2) . . . φ(xn)〉

= ~
n δn

δj(x1) δj(x2) . . . δj(xn)
Z[j]

∣
∣
∣
∣
j=0

. (2.29)

Neben diesem lassen sich noch zwei weitere erzeugende Funktionale konstruieren.
Aus der Freien Energie

W [j] = −~ ln Z[j] (2.30)
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2 Phasenübergänge

folgen analog die verbundenen Green-Funktionen oder Korrelationsfunktionen

G(n)
c (x1, x2, ..., xn) = 〈φ(x1)φ(x2) · · · φ(xn)〉c

=
δn

δj(x1) δj(x2) · · · δj(xn)
W [j]

∣
∣
∣
∣
j=0

. (2.31)

Mittels einer Legendre-Transformation erhalten wir das erzeugende Funktional der
echten Vertex-Funktionen bzw. die Effektive Wirkung

Γ[φc] = W [j] +

∫

d3xj(x)φc(x) (2.32)

mit dem klassischen Feld

φc(x) = 〈φ(x)〉J = −δW [j]

δj(x)
, (2.33)

das in der statistischen Physik den Verlauf des gemittelten Ordnungsparameters
angibt. Die einfache Funktionalableitung von (2.32) nach dem klassischen Feld ergibt
wieder das äußere Feld

j(x) =
δΓ[φc]

δφc
. (2.34)

Für den quellfreien Fall j = 0 ist analog zu (2.12) der Erwartungswert des Feldes
der stationäre Punkt der Effektiven Wirkung:

δΓ[φc]

δφc(x)

∣
∣
∣
∣
j=0

= 0 (2.35)

2.4 Intrinsisches Profil der φ4-Theorie bis zur ersten
Ordnung nach Küster

Da die erzeugenden Funktionale nicht analytisch berechenbar sind, führen wir eine
Schleifen-Entwicklung um das Minimum der Wirkung S[φ] durch. Die Bedingung

δS[φ]

δφ

∣
∣
∣
∣
φ=φ0

= 0 (2.36)

ist identisch zu (2.12): Wir entwickeln also gerade um den Ordnungsparameter der
Landau-Theorie. Nach [Küs01] erhalten wir für die effektive Wirkung bis zur ersten
Ordnung

Γ[φc] =

∫

d3x

(
1

2
(∂φc)

2 + V (φc)

)

+
~

2
ln det

(
−∂2 + V ′′(φc)

)
+ O(~2). (2.37)
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2.4 Intrinsisches Profil der φ4-Theorie bis zur ersten Ordnung nach Küster

Der Ordnungsparameter der φ4-Theorie ist der Felderwartungswert φc, der nach
(2.35) durch die Bewegungsgleichung

δΓ[φc]

δφc(z)

∣
∣
∣
∣
j=0

= 0 (2.38)

gegeben ist, wobei durch antiperiodische Randbedinungen die Grenzfläche senkrecht
zur z-Richtung gelegt wird.

2.4.1 Nullte Ordnung: Landau-Theorie

Die effektive Wirkung in nullter Ordnung

Γ[φc] =

∫

d3x

(
1

2
(∂φc)

2 + V (φc)

)

= S[φc] (2.39)

liefert mit (2.38) dieselben Ergebnisse wie die Landau-Theorie. Bei antiperiodischen
Randbedingungen erhalten wir wieder das Kink-Profil

φK = 〈φ(z)〉 = v0 tanh
(m

2
(z − h)

)

. (2.40)

2.4.2 Erste Ordnung

Berücksichtigt man die Korrekturen erster Ordnung und führt eine Gradientenent-
wicklung der Effektiven Wirkung (2.37)durch, erhält man mit der Bewegungsglei-
chung (2.38) in dieser lokalen Potenzialapproximation das renormierte Grenzflä-
chenprofil

φgR(z) =

√
3mR

uR
χgR(z)

=

√
3mR

uR

{

χ
(0)
gRtR +

uR

8π
χ

(1)
gRtR + O(u

(2)
R )

}

(2.41)

mit der dimensionslosen Kopplung

u0 =
g

m
(2.42)

(siehe [Küs01] oder in verkürzter Darstellung [Mül04]). Der Parameter h im renor-
mierten Argument

tR =
mR

2
(z − h) (2.43)

gibt den Nulldurchgang des Grenzprofils, d.h. den Ort der Grenzfläche an. Das
Treelevel-Profil χ

(0)
gR reproduziert wieder den tanh-Kink aus der Landau-Theorie

χ
(0)
gR(tR) = tanh(tR) (2.44)
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2 Phasenübergänge

und das 1-Loop-Profil hat folgende Form:

χ
(1)
gR(tR) =

{

χ
(1)
gR<(tR) für |tR| ≤ arsinh 1√

2

χ
(1)
gR>(tR) für |tR| ≥ arsinh 1√

2

(2.45)

mit

χ
(1)
gR<(tR) =

1

12
tRsech2tR +

2

9
sinh tR cosh tR − 2

3
tanh tR

χ
(1)
gR>(tR) =

1

12
tRsech2tR +

2

9
sinh tR cosh tR − 2

3
tanh tR

− 1

12
sech2tRartanh





√

−1
2 + sinh2 tR

sinh tR





− sinh tR

√

−1

2
+ sinh2 tR

[
2

9
− 1

2
sech2tR

]

(2.46)
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Abbildung 2.4: Das Treelevel-Profil χ
(0)
gR und der Einfluss der 1. Ordnung für die

Kopplungen uR = 5 (links) und uR = 15 (rechts).

Abbildung 2.4 zeigt den Einfluss der 1. Ordnung auf die Profilform. Der 1-Loop-
Beitrag χgR − χ

(0)
gR nimmt für größere Kopplungen uR zwar zu, der qualitative Ver-

lauf der Funktion ändert sich aber kaum. Das Profil wird durch das Berücksichtigen
weiterer Fluktuationen breiter und die Grenzflächendicke, die wir noch genau be-
trachten werden, wird im Vergleich zur klassischen Lösung vergrößert.

In der Sattelpunktsentwicklung werden die Fluktuationen so nach Ordnungen von
~ geordnet, dass das Treelevel auf den tanh-Kink der Landau-Theorie führt. In der
Quantenfeldtheorie entspricht dies einer Entwicklung nach Quantenfluktuationen
um die klassische Theorie. Die folgende Tabelle zeigt, wie eng die Statistische Physik
mit der QFT verknüpft ist (siehe auch [LB91,LBMB04]):
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2.5 Grenzflächenfluktuationen

Statistische Physik QFT

Ordnungsparameter φ(x) Feld
Mittel des Ordnungsparameters φc(x) klassisches Feld,

Vakuumerwartungswert
Korrelationslänge ξ = m−1 inverse Masse
Kanonische Zustandssumme Z[j] Erzeugendes Funktional der

Green-Funktionen
Freie Energie W [j] Erzeugendes Funktional der ver-

bundenen Green-Funktionen
Gibbs-Freie Energie Γ[φc] Effektive Wirkung
Landau-Theorie Klassischer Grenzfall
thermische Fluktuationen Quantenfluktuationen

2.5 Grenzflächenfluktuationen

Wir haben gesehen, dass die Landau-Theorie den Ordnungsparameter erst nach ei-
ner Grobkörnung beschreibt, bei der die mikroskopischen Fluktuationen λ < a verlo-
ren gehen. Außerdem berücksichtigt sie als Mean-Field-Theorie nur Konfigurationen
mit einem einheitlichen Ordnungsparameter und vernachlässigt Fluktuationen mit
Wellenlängen λ > Bintr, innerhalb dessen die Wechselwirkungen durch ein mittleres
Feld beschrieben werden können.

Die φ4-Theorie beschreibt alle Fluktuationen des Ordnungsparameters, lässt sich
aber nicht exakt analytisch lösen. In der Sattelpunktsentwicklung werden die ther-
mischen Fluktuationen bis zur Ordnung O(~) betrachtet. Die lokale Potenzial-
Approximation bewirkt, dass das berechnete Profil sich wie ein Mean-Field-Profil
verhält. Insgesamt berücksichtigen wir also wieder nur Fluktuation der Grenzfläche
zwischen

a < λ < Bintr ∼ ξ. (2.47)

Wir wissen, dass die Mean-Field-Näherung am kritischen Punkt nicht gültig ist, da
dort Fluktuationen auf allen Größenskalen auftreten. Aber es treten auch schon lan-
ge bevor der kritischen Punkt erreicht wird langwellige Fluktuationen der Grenzflä-
che auf, die wir bisher nicht erfasst haben. Im folgenden Kapitel werden wir deshalb
ein Modell zur Behandlung dieser Fluktuationen entwickeln und mit den bisherigen
Ergebnissen zu einer vollständigen Theorie verknüpfen.
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2 Phasenübergänge
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3 Kapillarwellen-Theorie und

Faltungsnäherung

3.1 Kapillarwellen-Theorie

Die auf Buff, Lovett und Stillinger [BLS65] zurückgehende Kapillarwellen-Theorie
beschreibt die langwelligen Fluktuationen der Grenzfläche, die viel größer als die
Korrelationslänge sind. In diesem Bild gibt es keinen kontinuierlichen Übergang des
Ordnungsparameters zwischen den Phasen sondern eine scharfe Grenzfläche, die
man sich als schwingende Membran vorstellen kann. Es werden also keine Überhän-
ge, Bläschen oder ähnliches berücksichtigt. Durch thermische Fluktuationen wird
die Grenzfläche deformiert und es entsteht im Mittel trotzdem ein kontinuierliches
Profil mit endlicher Dicke.

x

y

h(x,y)

Abbildung 3.1: Schwingende Grenzflächenmembran.

Betrachten wir die Fluktuationen der Grenzfläche in der Monge-Darstellung z =
h(x, y). Die Freie Energie HKW der Kapillarwelle lässt sich berechnen, indem wir die
Arbeit betrachten, die gegen die Oberflächenspannung τ = σ

β verrichtet wird. Aus
der Differenz des Systems mit Fluktuationen und dem ungestörten System erhalten
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3 Kapillarwellen-Theorie und Faltungsnäherung

wir

βHKW = βτ
(
Ah(x,y) − Ah=konst

)

= σ

∫

dxdy

√

1 + (∇h(x,y))2 − σ

∫

dxdy. (3.1)

Für eine formale Herleitung aus der φ4-Theorie siehe auch [Saf94]. Da wir langwellige
Fluktuationen mit kleinen Amplituden betrachten, können wir (3.1) entwickeln und
erhalten

βHKW ≈ σ

2

∫

dxdy (∇h(x,y))2 . (3.2)

Durch Übergang in den Fourier-Raum lässt sich die Wahrscheinlichkeit P (h), dass
die Grenzfläche im Punkt (x,y) die z-Koordinate h hat, bestimmen. P (h) genügt
der Gauß-Verteilung

P (h) =
1√
2πs

e−
h2

2s2 (3.3)

mit der Varianz

s2 =
〈
h2

〉
=

1

2πσ

∫

dq
1

q
, (3.4)

die die durch Fluktuationen entstandene endliche Grenzflächendicke beschreibt.
Aufgrund der logarithmischen Divergenz des Integrals in (3.4) für q → 0 und q → ∞
müssen wir zwei Cutoffs einführen. Der untere folgt auf natürliche Weise aus der
Endlichkeit des Systems und beschränkt die Moden auf q > 2π

L . Im thermodynami-
schen Limes L → ∞ tritt die Divergenz wieder auf. Diese Infrarot-Divergenz ist aber
physikalisch: Da wir die Gravitation nicht berücksichtigt haben, kostet die Nullmode
– das Verschieben der Grenzfläche ohne Deformation – aufgrund der Translations-
invarianz keine Energie. Der obere Cutoff q < 2π

BKW
ist weniger eindeutig und muss

aus der Kapillarwellen-Näherung motiviert werden. Wir sind davon ausgegangen,
dass die Grenzfläche ein scharfer Übergang zwischen den Phasen ist und alle Ef-
fekte sich in einem einzigen makroskopischen Parameter, der Oberflächenspannung,
zusammenfassen lassen. Diese Annahmen sind natürlich nur bis zu einer gewissen
Größenskala BKW vertretbar, die etwa der Korrelationslänge entsprechen sollte. In-
nerhalb der Kapillarwellen-Theorie werden also Fluktuationen der Wellenlängen

ξ ∼ BKW < λ < L (3.5)

berücksichtigt und es folgt für die Grenzflächendicke

w2 ∼ s2 =
1

2πσ

2π/BKW∫

2π/L

dq
1

q
=

1

2πσ
ln

L

BKW
. (3.6)
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3.2 Faltungsnäherung

Das Profil der Kapillarwellen-Theorie in einer Momentaufnahme trennt scharf
zwischen den Phasen v0 und −v0:

φg(z − h) = v0(−1 + 2Θ(z − h)) =

{

v0, wenn z > h

−v0, wenn z < h.
(3.7)

Durch Mittelung über die fluktuierende Membran erhalten wir das kontinuierliche
Profil

φKW(z) =

∞∫

−∞

dh φgP (h) =

∞∫

−∞

dh v0 (−1 + 2Θ(z − h))
1√
2πs

e−
h2

2s2

h′= h√
2s

= 0 +
2

π
v0

∞∫

0

dh′
Θ(z −

√
2sh′)e−h′2

=
2

π
v0

z√
2s∫

0

dh′ e−h′2

= v0 erf

(
z√
2s

)

, (3.8)

welches sich nicht qualitativ vom tanh-Profil der Landau-Theorie unterscheidet.

3.2 Faltungsnäherung

Wir haben bisher zwei Theorien zur Beschreibung von Grenzflächen entwickelt, die
jeweils Fluktuationen nur innerhalb eines gewissen Bereichs beschreiben können.
Zusammen können sie sich aber so ergänzen, dass sie alle Fluktuationen berücksich-
tigen. Unter der Annahme, dass die Fluktuationen der Theorien nicht miteinander
wechselwirken, können wir sie über eine Faltung verknüpfen. Der kontinuierliche
Phasenübergang φg findet mit der Wahrscheinlichkeit P (h) aus der Kapillarwellen-
theorie am Punkt (x,y) in der Höhe h(x,y) statt und es folgt für das Gesamtprofil

c(z) = 〈φg(z − h)〉 =

∫

dhφg(z − h)P (h) = φg ∗ P (z) (3.9)

Die Standardabweichung der Kapillarwellen verbreitert das intrinsische tanh-Profil
und überlagert die Effekte der Schleifen-Korrekturen 1. Ordnung. Im Grenzfall
großer Standardabweichungen s → ∞ erscheint das Grenzflächenprofil wieder als
Stufe und das Ergebnis der Kapillarwellen-Theorie wird reproduziert. Für s → 0 ist
P (h) die Delta-Funktion und c(z) geht in das intrinsische Grenzflächenprofil über.
Wir können also aufgrund der Ähnlichkeit der Profilformen nicht erwarten zwischen
den Gültigkeitsbereichen der Landau- und Kapillarwellentheorie unterscheiden zu
können.
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3 Kapillarwellen-Theorie und Faltungsnäherung

Die Faltungsnäherung mag zunächst etwas zu einfach erscheinen, aber Michael
Köpf hat in seiner Diplomarbeit [Köp08] in einer Störungsrechnung mittels der effek-
tiven Wirkung das Profil der Grenzfläche in 1-Schleifen-Ordnung aus der φ4-Theorie
bestimmt und konnte die aus der Kapillarwellen-Theorie vorhergesagte logarithmi-
sche Abhängigkeit der Grenzflächendicke von der Systemgröße zeigen.
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4 Grenzflächendicke

Wie wir im letzten Kapitel gesehen haben, können wir aufgrund der qualitativen
Ähnlichkeit des Tangens-Hyperbolikus zur Fehlerfunktion nicht anhand des Grenz-
flächenprofils zwischen dem intrinsischen und dem makroskopischen Regime unter-
scheiden und den Übergang von der Landau- zur Kapillarwellentheorie beobachten.
Stattdessen betrachten wir die Dicke der Grenzfläche, die sich in beiden Theorien
wesentlich unterscheidet: Die Dicke des intrinsischen Profils ist konstant, hingegen
skaliert sie nach Gleichung (3.6) im Gültigkeitsbereich des Kapillarwellen-Modells
linear mit dem Logarithmus der Systemlänge.

Es existiert keine eindeutige Definition der Grenzflächendicke, aber in [Mül04] fin-
det sich ein ausführlicher Vergleich möglicher Definitionen. In Übereinstimmung mit
der dort getroffenen Wahl definieren wir die Grenzflächendicke als zweites Moment
einer Verteilung p, die entweder proportional zu dem Gradienten oder dem Quadrat
des Gradienten des Profils ist, und nehmen eine Umskalierung der Parameter vor.
Mit v0 = 1 gehorcht das Grenzflächenprofil den Randbedingungen

c(z → ±∞) = ±1 (4.1)

und wir gehen zu den dimensionslosen Variablen

m

2
z → z,

m

2
s → s (4.2)

über, sodass das Profil
c(z) = φg(z) ∗ P (z,s) (4.3)

nur noch von dem Parameter s abhängig ist.

4.1 Definitionen

Es bietet sich an, die Grenzflächendicke als zweites Moment einer Wahrscheinlich-
keitsverteilung p zu definieren, die möglichst gut die Profilform wiedergibt:

w2 =
〈
z2

〉
=

∫

dz z2p(z). (4.4)

Wir werden im folgenden sowohl den Gradient als auch das Quadrat des Gradients
des Profils für p betrachten. Beide Definitionen zeigen eine intrinsische Grenzflächen-
dicke und den linearen Anstieg im Kapillarwellenregime, haben aber unterschiedliche
Vorteile.
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4 Grenzflächendicke

4.1.1 Gradient

Diese Definition wird häufig verwendet, da der Gradient die Form des Profils gut
berücksichtigt und bei numerischen Simulationen stabiler als das Gradientenquadrat
ist. Allerdings muss das Profil monoton steigen, da ein negatives p innerhalb der
Wahrscheinlichkeitsinterpretation keinen Sinn macht. Für die normierte Verteilung
folgt

p(z) =
1

2
c′(z) =

1

2

[

tanh(z) ∗ 1√
2πs

e−
z2

2s2

]′

=
1

2 cosh2(z)
∗ 1√

2πs
e−

z2

2s2 (4.5)

und mittels Fourier-Transformation lässt sich die Grenzflächendicke zu

w2 =
〈
z2

〉
=

π
2

12
+ s2 (4.6)

berechnen. Die Gesamtdicke des Grenzflächenprofils ergibt sich also einfach aus
Summation der intrinsischen und der Kapillarwellen-Dicke

w2 = w2
intr + w2

KW. (4.7)

Dieses Ergebnis lässt sich auch direkt aus der Feldtheorie herleiten [Köp08] und
zeigt die Gültigkeit der Faltungsnäherung.

4.1.2 Gradientenquadrat

Das Quadrat des Gradienten ist proportional zur Energiedichte des intrinsischen
Profils und liefert eine immer positive Wahrscheinlichkeitsverteilung. Für die nor-
mierten Dicken erhalten wir:

w2
intr =

∫

dz z2 3

4

1

cosh4 z
=

π
2 − 6

12

w2
KW =

∫

dh h2 1√
πs

e−h2/s2
=

s2

2
(4.8)

Aufgrund der Nichtlinearität der Definition gilt die Summation

w2
2 ≈ w2

intr + w2
KW (4.9)

nur näherungsweise. Der Fehler ist maximal für s ∼ 1, aber stets unter 3% und sehr
klein für große bzw. kleine s [Mül04].
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Teil II

Monte-Carlo-Simulation
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5 Ziel der Simulation

5.1 Theoretische Vorhersagen

Im ersten Teil der Arbeit haben wir aus der Landau- und Kapillarwellen-Theorie
ein Modell zur Beschreibung kritischer Grenzflächen entwickelt. Wir wollen kurz die
Vorhersagen, die in diesem Modell getroffen werden konnten, zusammenfassen.

• Die Landau-Theorie beschreibt als Mean-Field-Theorie Fluktuationen zwi-
schen der Gitterkonstanten a und der Korrelationslänge ξ

a < λ < Bintr ∼ ξ (5.1)

und liefert für die Grenzschicht das Kink-Profil

φG = v0 tanh

(
1

2ξ
(z − h)

)

(5.2)

mit der konstanten intrinsischen Dicke

w2
intr = cintrξ

2. (5.3)

Der Faktor cintr hängt ausschließlich von der Definition der Grenzfläche über
die Gewichtsfunktion p ab und beträgt nach (4.6) und (4.8) unter Berücksich-
tung der Umskalierung (4.2)

cintr =

{
π
2−6
3 für p ∝ φ′

G
2

π2

3 für p ∝ φ′
G.

(5.4)

Erweitert man die Theorie um die erste Ordnung der Schleifen-Entwicklung,
vergrößern die Fluktuationen höherer Ordnung die intrinsische Dicke.

• Die Kapillarwellen-Theorie behandelt Fluktuationen

ξ ∼ BKW < λ < L (5.5)

der schwingenden Membran zwischen der Korrelations- und der Systemlänge.
Diese erzeugen das Profil

φKW = v0erf

(
z√
2s

)

(5.6)
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mit der Dicke

w2
KW = AKW log2

L

BKW
, (5.7)

welche linear mit dem Logarithmus der Systemgröße anwächst. Der Faktor
AKW ist von der Definition der Grenzflächendicke abhängig

AKW =

{
ln 2
4πσ für p ∝ φ′

G
2

ln 2
2πσ für p ∝ φ′

G.
(5.8)

• Innerhalb der Faltungsnäherung erhalten wir die Gesamtdicke aus der Summe
von wintr und wKW

w2 = w2
intr + w2

KW

= cintrξ
2 + AKW log2

L

BKW
. (5.9)

Dies gilt für p ∝ φ′
G exakt und für p ∝ φ′

G
2 in guter Näherung.

Die Grenzflächendicke ist über die Korrelationslänge mit der Temperatur verknüpft.
Um die Ergebnisse für verschiedene Simulationsparameter besser vergleichen zu kön-
nen, bringen wir (5.9) auf eine temperaturunabhängige Form, indem wir die Größen
in Einheiten der Korrelationslänge ausdrücken. Für die universelle Dicke ŵ2 folgt
dann:

ŵ2 =

(
w

2ξ

)2

=
cintr

4
+

cKW ln 2

8πσξ2
log2

L̂

B̂KW

= ŵ2
intr + ÂKW log2

L̂

B̂KW

. (5.10)

5.2 Ziel und Methode

Im folgenden Teil der Arbeit wollen wir die in der Theorie getroffenen Vorhersagen
zur Grenzflächendicke anhand einer Gittersimulation überprüfen. Die Landau- und
Kapillarwellen-Theorie berücksichtigen ausschließlich bestimmte Fluktuationen und
unterscheiden zwischen einem intrinsischen und makroskopischen Regime. Bei der
Simulation der Grenzfläche werden aber natürlich alle Fluktuationen auftreten. Um
also die Gültigkeit der Theorien überprüfen zu können, müssen wir die verschiedenen
Fluktuationen trennen.

Wir erreichen eine Hochpass-Filterung, indem wir das System L×L×Z in Blöcke
der Größe B×B×Z unterteilen und jeden Block als eigenes System auffassen. Bei der
Berechnung der Grenzflächendicke w2

B berücksichtigen wir dann nur Wellenlängen
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λ < B. Umgekehrt ist es auch möglich zunächst über die Blöcke zu mitteln und
dann das System der Größe L

B × L
B ×Z zu betrachten. Bei der Mittelung gehen die

Fluktuationen λ < B verloren und wir können die Vorhersage der Kapillarwellen-
Theorie zur Verteilung der Grenzflächenpositionen PB(h) bei variablem unteren
Cutoff B überprüfen.

Durch dieses Blocking-Verfahren unterteilen wir die Grenzflächendicke (5.9) ef-
fektiv in zwei Teile

w2 = w2
intr + AKW log2

L

BKW

= w2
intr + AKW log2

B

BKW
︸ ︷︷ ︸

Dicke w2
B

+ AKW log2
L

B
︸ ︷︷ ︸

Varianz von PB(3.6)

. (5.11)

Da das Verhalten am kritischen Punkt universell ist, hat Melanie Müller genau
diese Untersuchungen der Grenzfläche mit einem Ising-Modell gemacht, das in der-
selben Universalitätsklasse wie die φ4-Theorie liegt [Mül04,MM05]. Sie konnte die
Vorhersagen der Kapillarwellen-Theorie bestätigen, doch überraschenderweise zeig-
te sich keine intrinsische Grenzflächendicke, die mit der Landau-Theorie in Einklang
zu bringen war.

Die Vermutung liegt nahe, dass die Abweichungen auf Ising-Artefakte zurück-
zuführen sind, welche insbesondere bei kleinen Blockgrößen einen großen Einfluss
haben. Aus diesem Grund werden wir die φ4-Theorie direkt auf dem Gitter simu-
lieren und können zudem durch die Variation der Parameter den Übergang vom
Ising-Modell zur φ4-Theorie beleuchten.
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6 Messverfahren

Die Definitionen und Bezeichnungen sind weitgehend identisch zu den von Melanie
Müller gewählten, damit sich die Ergebnisse gut vergleichen lassen. Aufgrund der
unterschiedlichen Zählweisen von C++ und Fortran gibt es kleinere Abweichungen
bei der Numerierung der Größen: Um die Konsistenz mit dem Programm zu wah-
ren, wird das erste Element immer mit 0 bezeichnet und die für Ising-Programm
eingeführten Zwischengitterebenen werden nur indirekt verwendet.

6.1 Blocking und lokale Magnetisierungsprofile

Unser Ziel ist es, die Grenzfläche auf verschiedenen Größenskalen zu untersuchen
und die Fluktuationen nach ihrer Wellenlänge zu trennen. Aus diesem Grund unter-
teilen wir das Gitter der Größe L×L×Z in gleich große Blöcke mit der quadratischen
Grundfläche B ×B und der vollen Länge Z. Damit sich das Blocking effektiv in die
numerische Simulation implementieren lässt, werden Potenzen von zwei als Block-
und Systemgrößen verwendet. Anschließend können wir für jeden Block i ein loka-
les Magnetisierungsprofil mB

i (z) als den über die z-Scheiben gemittelten Wert des
Feldes definieren:

mB
i (z) =

1

B2

B−1∑

x,y=0

φ(x, y, z). (6.1)

Die Position der Grenzfläche im Gitter ist nicht fest, sondern gehorcht einer Nor-
malverteilung. Bevor wir deshalb die lokalen Magnetisierungsprofile mB einer Block-
größe innerhalb einer Konfiguration als auch über alle Konfigurationen mitteln kön-
nen, müssen wir die Grenzfläche an die gleiche Stelle schieben, da ansonsten die
Mittelung null ergäbe. Aus Symmetriegründen bietet sich die Mitte z = Z

2 des Sys-
tems an. Außerdem orientieren wir das Profil so, dass es von negativen zu positiven
Werten läuft.

6.1.1 Grenzflächenposition

Notwendigerweise brauchen wir zunächst eine geeignete Methode zur Bestimmung
der Grenzflächenposition. Hierzu verwenden wir das von Prof. G. Münster vor-
geschlagene und in [Mül04] beschriebene translationsinvariante Rand-Schiebe-Ver-
fahren. Dabei wird sukzessive die Stelle der antiperiodischen Randbedingung zap
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6 Messverfahren

durch das System gefahren und das Integral über das Magnetisierungsprofil mtot

betrachtet:

mtot =

Z−1∑

z=0

mB
i (z). (6.2)

Aufgrund der antiperiodischen Randbedingung ändern die Ebenen, die passiert wer-
den, ihr Vorzeichen und tragen wie folgt zu mtot bei:

mtot(zap) =

Z−1∑

z=0

mB
i (z) −

zap∑

z=0

2mB
i (z). (6.3)

Das bedeutet aber auch, dass der Betrag des Integrals genau dann maximal wird,
wenn zap auf der Grenzfläche liegt, und wir können dies als Definition verwenden:

∣
∣mtot(z

B
i )

∣
∣ = max {|mtot(zap)| , zap = 0, ..., Z − 1} . (6.4)

Für den Fall, dass entartete Maxima auftreten und die Grenzflächenposition nicht
eindeutig bestimmt werden kann, wird zufällig eine der Grenzflächenpositionen aus-
gewählt.

6.1.2 Gemittelte Profile und Gradientenanalyse

Um die im System auftretenden Fluktuationen zu kontrollieren fassen wir die ver-
schobenen Profile innerhalb einer MC-Konfiguration nun für jede Blockgröße zu
einem gemittelten Profil zusammen

mB
c (z) =

1

nB

nB−1∑

i=0

mB
i (z)

∣
∣
verschoben

. (6.5)

Diese sind die für die Fehlerabschätzung relevanten primären Observablen der Si-
mulation, wobei nB =

(
L
B

)2
die Anzahl der Blocks der Größe B innerhalb einer

Konfiguration sind. Für die Gradientenanalyse interessant sind jedoch die über die
Konfigurationen aller Simulationen und Replica gemittelten Profile

mB(z) =
〈
mB

c (z)
〉
. (6.6)

Zur Berechnung der Grenzflächendicke definieren wir das normierte Gradienten-
Quadrat für das Profil mB(z), z = 0, 2, ..., Z − 1

pB(z) =
1

N

[
mB(z + 1) − mB(z)

]2
(6.7)

mit der Normierung

N =
Z−2∑

z=0

[
mB(z + 1) − mB(z)

]2
(6.8)
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und den normierten Gradienten

pB(z) =
1

N

∣
∣mB(z + 1) − mB(z)

∣
∣ (6.9)

mit

N =

Z−2∑

z=0

∣
∣mB(z + 1) − mB(z)

∣
∣ . (6.10)

Bei kleinen Blockgrößen ist das Profil nicht monoton steigend. Um zu verhindern,
dass die Gewichtsfunktion im Fall der Definition über den Gradienten negativ wird,
wurde in (6.9) der Betrag gesetzt.

Bevor wir die Grenzflächendicke über das zweite Moment des (quadrierten) Gra-
dienten berechnen können, müssen wir das Koordinatensystem so verschieben, dass
die Grenzflächenposition bei 0 liegt. Damit geht auch das erste Moment der Ge-
wichtsfunktion pB

〈
−Z

2 + 1 + z
〉

p
=

Z−2∑

z=0

(
−Z

2 + 1 + z
)

pB
(
−Z

2 + 1 + z
)

(6.11)

gegen null und das zweite Moment liefert das Quadrat der Grenzflächendicke

w2
B =

〈(
−Z

2 + 1 + z
)2

〉

p
−

〈
−Z

2 + 1 + z
〉2

p

=
Z−2∑

z=0

[(
−Z

2 + 1 + z
)2

pB
(
−Z

2 + 1 + z
)]

−
〈
−Z

2 + 1 + z
〉2

p
(6.12)

6.2 φ4-Theorie auf dem Gitter

Um das System numerisch simulieren zu können, müssen wir eine diskrete Formu-
lierung der kontinuierlichen φ4-Theorie auf dem Gitter entwickeln. Ausgehend von
der Wirkung

S[φ] =

∫

d3x

{
1

2
(∂φ)2 +

g

4!
φ4 +

m2

2
φ2

}

(6.13)

ersetzen wir das kontinuierliche Feld φ durch eines, das nur auf den Punkten x des
kubischen Gitters mit den Abständen a definiert ist. Dann wird aus dem dreidimen-
sionalen Integral

∫
d3x die Summe

∑

x a3 und wir definieren die Ableitung auf dem
Gitter als den Differenzoperator

∆φx =
1

a
(φx+µ̂ − φx) , (6.14)
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wobei µ̂/a der Einheitsvektor in die mit µ bezeichnete Richtung ist. Dann können
wir für die Gitter-Wirkung schreiben:

S[φ] =
1

2

∑

x

a3
{
∆µφx∆µφx + m2φ2

x

}
+

g

4!

∑

x

a3φ4
x. (6.15)

Für numerische Untersuchungen ist es sinnvoll S[φ] umzuschreiben. Mit den Größen

√
aφ =

√
2κφx, a2m2 =

1 − 2λ

κ
− 6, g =

6λ

κ2a
(6.16)

vereinfacht sich (6.15) zu

S[φ] =

∫

d3x

{
1

2
(∂φx)2 +

g

4!
φ4

x +
m2

2
φ2

x

}

=
∑

x

a3







κ

a

3∑

µ=1

(
1

a
(φx+µ̂ − φx)

)2

+
λφ4

x

a3
+ (1 − 2λ − 6κ)

φ2
x

a3







=
∑

x

{
3κφ2

x + 3κφ2
x+µ̂ − 6κφ2

x

}

+
∑

x






−2κ

3∑

µ=1

φx+µ̂φx + λφ4
x + φ2

x − 2λφ2
x







=
∑

x






−2κ

3∑

µ=1

φx+µ̂φx + λ(φ4
x − 2φ2

x + 1) − λ + φ2
x







=
∑

x






−2κ

3∑

µ=1

φx+µ̂φx + φ2
x + λ

(
φ2

x − 1
)2 − λ






(6.17)

Da das letzte λ losgelöst vom Feld φ auftaucht, wird es bei der Normierung ver-
schwinden und kann bereits jetzt aus der Wirkung entfernt werden. Somit erhalten
wir:

S[φ] =
∑

x






−2κ

3∑

µ=1

φx+µ̂φx + φ2
x + λ

(
φ2

x − 1
)2






(6.18)
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7 Prinzipien der

Gleichgewichts-MC-Simulation

Im Folgenden soll ein kurzer Überblick über die Theorie der Monte-Carlo-Simula-
tionen gegeben werden, auf Grundlage dessen anschließend der Algorithmus für die
numerische Simulation hergeleitet wird. Ausführlichere Darstellungen finden sich
zum Beispiel in [NB99], [BDFN92] und [Ber04].

7.1 Übergangswahrscheinlichkeiten

Wir betrachten unser System, das durch den Hamiltonian H beschrieben wird,
im kanonischen Ensemble. Das Wärmebad ermöglicht einen Energieaustausch und
wirkt wie eine schwache Störung des Hamiltonians, die das System regelmäßig von
einen in den anderen Zustand stößt. Dieser Effekt lässt sich in den numerischen
Rechnungen berücksichtigen, indem man eine Regel für die Dynamik des Systems
aufstellt. Wir definieren die Übergangsrate R(µ → ν) so, dass R(µ → ν)dt die Wahr-
scheinlichkeit ist, dass das System aus dem Ursprungszustand µ nach der Zeit dt in
den Zustand ν übergegangen ist und fordern weiterhin, dass R(µ → ν) zeitunab-
hängig ist. Üblicherweise beschränkt sich unser Wissen auf diese Übergangsraten,
weshalb wir, auch wenn wir den Anfangszustand unseres Systems exakt kennen,
schon nach kurzer Zeit nicht mehr sagen können, in welchem der sehr vielen mög-
lichen Zustände sich das System befindet. An dieser Stelle beginnt die statistische
Behandlung unseres Problems. Wir definieren einen Satz von Gewichten wµ(t), die
die Wahrscheinlichkeit angeben, dass sich das System zur Zeit t im Zustand µ befin-
det. Die Statistische Mechanik befasst sich mit eben diesen Gewichten, und sie sind
alles, was wir über den Zustand unseres Systems sagen können. Die Änderung der
Wahrscheinlichkeit das System in einem bestimmten Zustand µ zu finden, ergibt
sich aus der Wahrscheinlichkeit aus einem anderen Zustand ν in diesen zu wechseln
minus der Wahrscheinlichkeit den Zustand µ wieder zu verlassen. Dies führt auf die
Mastergleichung

dwµ

dt
=

∑

ν

[wν(t)R(ν → µ) − wµ(t)R(µ → ν)] , (7.1)

welche uns mit der Nebenbedingung
∑

µ

wµ(t) = 1, (7.2)
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dass sich das System in einem dieser Zustände befinden muss, ergibt, wie sich die
Gewichte über die Zeit verändern. Wenn wir uns für eine Messgröße Q interessie-
ren, welche den Wert Qµ im Zustand µ annimmt, erlauben uns die Gewichte einen
Erwartungswert für Q zur Zeit t zu definieren:

〈Q〉 =
∑

µ

Qµwµ(t). (7.3)

Die Beziehung des Erwartungwerts 〈Q〉 zu Q lässt sich auf zwei unterschiedliche
Weisen verstehen. In der Ensemble-Interpretation nach Gibbs betrachtet man ein
Ensemble von unabhängigen Kopien unseres Systems, die alle unabhängig vonein-
ander mit ihrem eigenen Wärmebad wechselwirken. Dann ist 〈Q〉 ein guter Schätzer
für das Ergebnis, das wir bekämen, wenn wir zum Zeitpunkt t in jedem System eine
instantane Messung von Q durchführten und den Mittelwert über die Ergebnisse
bildeten.
Die alternative Sichtweise ist weniger streng, aber dafür näher an der experimen-
tellen Situation. Wir betrachten nur ein einzelnes System, an dem wir eine nicht-
instantane Messung durchführen. Dann lässt sich 〈Q〉 als der zeitlichen Mittelwert
von Q verstehen, vorausgesetzt, dass das System während der Messung eine reprä-
sentative Auswahl der Zustände in der Wahrscheinlichkeitsverteilung wµ durchläuft.
Dies sicherzustellen ist das größte Problem, denn häufig sind die Übergangsraten
R(µ → ν) nur für sehr ähnliche Zustände nicht verschwindend klein: dies führt uns
auf das importance sampling. Ein weiteres Problem dieser Interpretation ist, dass
sich die Gewichte wµ(t) während der Messung deutlich ändern können. Da dies aber
in der Gleichgewichts-MC-Rechnung nicht auftritt, werden wir hierauf nicht näher
eingehen.

7.1.1 Gleichgewichtszustand

Kehren wir noch einmal zur Mastergleichung (7.1) zurück. Angenommen, dass das
System einen Gleichgewichtszustand erreicht, in dem sich die beiden Terme auf der
rechten Seite gerade zu null ergänzen, dann ist

dwµ

dt
= 0 (7.4)

und die Gewichte bleiben konstant. Da es sich bei der Mastergleichung um eine
Differentialgleichung erster Ordnung handelt und wµ auf Werte zwischen null und
eins beschränkt sind, müssen alle Systeme, die durch diese Gleichung beschrieben
werden können, früher oder später ihr Gleichgewicht erreichen.

Der entscheidende Punkt ist, dass wir die Besetzungswahrscheinlichkeiten

bµ = lim
t→∞

wµ(t) (7.5)
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unseres Systems bereits kennen. Denn nach Gibbs entsprechen diese einer Boltz-
mann-Verteilung

bµ =
1

Z
e−βEµ (7.6a)

mit der Zustandssumme

Z =
∑

µ

e−βEµ . (7.6b)

Die zentrale Idee der MC-Rechnung ist, die physikalischen Prozesse, die der Mas-
tergleichung (7.1) zugrunde liegen, zu simulieren, indem wir die Übergangsraten
nutzen, um die Zustände auszuwählen, die unser Modellsystem durchläuft. Aus die-
sen Zuständen lassen sich dann direkt Erwartungswerte für die uns interessierenden
Messgrößen bestimmen. Wir müssen die Übergangsraten also derart wählen, dass sie
die zufälligen thermischen Fluktuationen durch die Wechselwirkung des Systems mit
dem Wärmebad widerspiegeln, d. h. dass das Modellsystem unserer MC-Simulation
die gleiche Wahrscheinlichkeitsverteilung wµ(t) hervorbringt wie das reale System.
Dies erreichen wir, indem wir die Übergangsraten R(µ → ν) so wählen, dass die
Gleichgewichtslösung der zugehörigen Mastergleichung genau gleich der Boltzmann-
verteilung ist.

Der große Vorteil der MC-Rechnung liegt darin, dass wir nicht länger jeden mög-
lichen Zustand berücksichtigen müssen, um eine physikalische Größe zu bestimmen,
wie es bei einer direkten Berechnung aus (7.6b) nötig wäre. Diesen Vorteil bezahlt
man natürlich mit dem Auftreten von statistischen Fehlern und Rauschen in den
Messwerten. Da der analytische oder exakte Weg in den Anwendungsgebieten der
MC-Simulationen üblicherweise nicht gangbar ist und sich die Fehler, wie wir se-
hen werden, kontrollieren lassen, ist man gerne bereit diesen Nachteil in Kauf zu
nehmen.

7.2 Prinzipien der MC-Simulation

Wir haben gesehen, dass wir den Erwartungswert 〈Q〉 einer Messgröße Q berechnen
können, indem wir den mit der Boltzmannwahrscheinlichkeit gewichtetet Mittel-
wert über die Messwerte Qµ in allen möglichen Zuständen µ des Systems bilden.
Da das Modellsystem im allgemeinen zu viele mögliche Zustände besitzt, können
wir nur über eine Untermenge summieren. Der MC-Algorithmus wählt deshalb M
Zustände µ1...µM mit einer Wahrscheinlichkeitsverteilung pµ aus. Dann ist unser
bestmöglicher Schätzer für Q

QM =

∑M
i=1 Qµi

p−1
µi

e−βEµi

∑M
j=1 p−1

µj e−βEµj

M→∞−−−−→ 〈Q〉 . (7.7)
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Die Wahl der pµ hat einen entscheidenden Einfluss auf die Qualität unseres Schät-
zers. Nehmen wir an, wir wählen jeden Zustand mit derselben Wahrscheinlichkeit
aus und betrachten ein System bei niedriger Temperatur. Da nicht genügend ther-
mische Energie vorhanden ist, um das System in höhere Zustände anzuregen, wer-
den die Summen in (7.7) durch sehr wenige Zustände dominiert. Dann ist aber
die Wahrscheinlichkeit während einer MC-Simulation einen dieser Zustände zufällig
auszuwählen verschwindend gering und QM liefert einen sehr unpräzisen Schätzwert
für 〈Q〉. Wir können aber aus der Not eine Tugend machen, indem wir gerade die
wichtigen Zustände mit einer großen Wahrscheinlichkeit auswählen. Die führt uns
auf das Prinzip des

7.2.1 importance sampling

Im System selbst treten die Zustände gemäß der Boltzmannverteilung auf. Wir
imitieren diesen Effekt in unserer Simulation, indem wir versuchen unsere Stichprobe
so zu wählen, dass die einzelnen Zustände mit einer Wahrscheinlichkeit proportional
zu ihrem Boltzmanngewicht pµ = Z−1e−βEµ auftreten. Dann vereinfacht sich der
Schätzer (7.7) zu

QM =
1

M

M∑

i=1

Qµi
. (7.8)

Aber wie erzeugen wir diese Zustände? Es ist nicht sinnvoll zufällig Zustände zu
erzeugen und diese mit pµ zu akzeptieren, da dies auf dieselben Problemen führen
würde. Die meisten MC-Algorithmen verwenden einen Markov-Prozess, um geeig-
nete Zustände zu generieren.

7.2.2 Markov-Prozesse

Ein Markov-Prozess ist ein Mechanismus, der aus dem Zustand µ des Systems zu-
fällig mit einer Übergangswahrscheinlichkeit P (µ → ν) einen neuen Zustand ν ge-
neriert. Außerdem muss er zwei weitere Bedingungen erfüllen:

• P (µ → ν) ist konstant in der Zeit

• P (µ → ν) hängt nur von den Zuständen µ und ν ab.

Der Markov-Prozess hat kein Gedächtnis, sondern erzeugt unabhängig von allen
vorherigen Zuständen immer mit der gleichen Wahrscheinlichkeit aus µ den neuen
Zustand ν. Es ist jedoch nicht nötig, dass P (µ → µ) gleich null ist; es existiert also
eine endliche Wahrscheinlichkeit, dass das System im Zustand µ verweilt. Allerdings
muss der Markov-Prozess einen Zustand erzeugen:

∑

ν

P (µ → ν) = 1 (7.9)
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In MC-Simulationen wird der Markov-Prozess wiederholt angewendet, um eine Mar-
kov-Kette von Zuständen zu generieren. Dieser wird dabei so gewählt, dass unabhän-
gig vom Ausgangszustand schließlich immer eine Folge an Zuständen entsprechend
ihrer Boltzmannverteilung produziert wird (Equilibrierung). Dies können wir errei-
chen, indem wir zusätzlich die Bedingungen der Ergodizität und des detaillierten
Gleichgewichts erfüllen.

7.2.3 Ergodizität

In einer Boltzmannverteilung treten alle Zustände mit einer von null verschiede-
nen Wahrscheinlichkeit auf. Das heißt, dass es dem Markov-Prozess möglich sein
muss, von jedem Zustand alle Zustände zu erreichen. Wir können trotzdem ein-
zelne Übergangswahrscheinlichkeiten auf null setzen; es muss aber gewährleistet
sein, dass mindestens ein Pfad nicht-verschwindender Übergangswahrscheinlichkei-
ten zwischen zwei beliebigen Zuständen existiert.

7.2.4 Detailliertes Gleichgewicht

Die Bedingung des detaillierten Gleichgewichts stellt sicher, dass nach einer endli-
chen Anzahl MC-Schritte eine Boltzmannverteilung erzeugt wird. Im Gleichgewicht
muss die Rate, mit der das System aus und in einen beliebigen Zustand µ übergeht,
gleich sein:

∑

ν

pµP (µ → ν) =
∑

ν

pνP (ν → µ). (7.10)

Dies entspricht einer zeitdiskreten Version der Mastergleichung (7.1) mit verschwin-
dender Ableitung. Man kann jedoch leicht zeigen, dass diese Bedingung auch durch
Grenzzyklen erfüllt wird. Dies wird jedoch durch die strengere Bedingung des de-
taillierten Gleichgewichts verhindert:

pµP (µ → ν) = pνP (ν → µ). (7.11)

Mit Gleichung (7.11) ist es also möglich mit unserem Markov-Prozess Zustände
einer bestimmten Verteilung pµ zu erzeugen. Wir können also einfach für pµ die
Boltzmannwahrscheinlichkeiten wählen:

P (µ → ν)

P (ν → µ)
=

pν

pµ
= e−β(Eν−Eµ). (7.12)

Diese Gleichung, (7.9) und die Ergodizität sind die Bedingungen, die der Markov-
Prozess erfüllen muss, damit die erzeugte Gleichgewichts- eine Boltzmannverteilung
ist.
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7 Prinzipien der Gleichgewichts-MC-Simulation

7.2.5 Akzeptanzwahrscheinlichkeit

Es erscheint zunächst schwierig einen geeigneten Markov-Prozess zu finden, der ex-
akt die richtigen Übergangswahrscheinlichkeiten liefert. Wir können dieses Problem
jedoch umgehen und jeden Algorithmus zur Erzeugung neuer Zustände verwenden,
indem wir die Übergangswahrscheinlichkeit P (µ → ν) in eine Auswahlwahrschein-
lichkeit g(µ → ν) für den neuen Zustand ν und eine Akzeptanzwahrscheinlichkeit
A(µ → ν), mit der der neue Zustand angenommen wird, unterteilen:

P (µ → ν) = g(µ → ν) A(µ → ν) (7.13)

Dies gibt uns komplette Freiheit bei der Wahl von g(µ → ν), da (7.12) nur das
Verhältnis

P (µ → ν)

P (ν → µ)
=

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
(7.14)

festlegt. Dadurch dass nicht mehr jeder neue Zustand akzeptiert wird, verringert
sich natürlich die Effizienz des MC-Algorithmus. Da (7.14) aber auch nur A(µ →
ν)/A(ν → µ) fixiert, können wir beide Werte mit einem Faktor multiplizieren, und
dies ausnutzen, um den größeren der beiden auf seinen Maximalwert von eins anzu-
heben. Trotzdem muss es immer unser primäres Ziel sein, möglichst viel der Abhän-
gigkeit von P (µ → ν) von den Zuständen µ und ν in der Auswahlwahrscheinlichkeit
g(µ → ν) auszudrücken und möglichst wenig in die Akzeptanzwahrscheinlichkeit
einzubringen.

7.3 Algorithmus

Im Prinzip haben wir nun das notwendige Wissen, um einen MC-Algorithmus zu
entwickeln. Bevor wir jedoch damit beginnen, ist es sinnvoll auf die Besonderheiten
des simulierten Systems einzugehen. Um die Grenzflächendicke mit der Korrelati-
onslänge vergleichen zu können, darf diese nicht zu klein sein. Die Korrelationslänge
ξ zeigt ein universelles Skalenverhalten:

ξ ∝ |t|−ν ∝
∣
∣
∣
∣

T − Tc

Tc

∣
∣
∣
∣

−ν

, (7.15)

wobei t die reduzierten Temperatur, Tc die kritischen Temperatur und ν der kritische
Exponent ist. Das heißt, um unser System mit ausreichend großer Korrelationslänge
in der Phase gebrochener Symmetrie untersuchen zu können, sind wir gezwungen,
nahe unterhalb der kritischen Temperatur zu arbeiten. In dieser Region bilden sich
jedoch große Cluster aus, die zu kritischen Fluktuationen in den Beobachtungsgrö-
ßen und zu großen statistischen Fehlern führen. Da es sich hierbei um eine inhärente
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7.3 Algorithmus

physikalische Eigenschaft des Systems handelt, ist es umso wichtiger, dass der Algo-
rithmus hiervon weitgehend unbeeinflusst bleibt, das heißt, dass der Markov-Prozess
möglichst unabhängige Zustände produziert.

7.3.1 Autokorrelationszeit

Die Autokorrelationszeit τ ist ein Maß dafür, wie lange es dauert, um das System
von einem Zustand in einen anderen zu überführen, der sich signifikant vom ur-
sprünglichen unterscheidet. Betrachten wir zum Beispiel die Magnetisierung m des
Systems. Dann ist die Autokorrelation χ(t) durch

χ(t) =

∫

dt′
[
m(t′) − 〈m〉

] [
m(t′ + t) − 〈m〉

]

=

∫

dt′
[

m(t′)m(t′ + t) − 〈m〉2
]

(7.16)

gegeben. Die typische Zeitskala, mit der die Autokorrelation exponentiell abfällt,
definiert die Autokorrelationszeit τ :

χ(t) ∝ e−t/τ . (7.17)

Man betrachtet Zustände in der Markov-Kette, die mindestens um 2τ auseinander-
liegen, als statistisch unabhängig. Problematisch ist, dass die Autokorrelation für
große Zeiten stark verrauscht ist und somit ein Exponentialfit zur Bestimmung der
Autokorrelationszeit abhängig von der Obergrenze des Fits ist. Eine numerisch sta-
bilere Alternative zur Bestimmung von τ ist, die integrierte Autokorrelationszeit zu
berechnen:

∞∫

0

χ(t)

χ(0)
≈

∞∫

0

e−t/τ dt = τ. (7.18)

Die Bedeutung der Autokorrelationszeit und ihr Einfluss auf die Fehlerrechnung
wird in Kapitel 7.4 diskutiert.

Leider ist die Korrelationslänge nicht die einzige Größe, die am kritischen Punkt
divergiert, sondern auch die Autokorrelationszeit gehorcht einem Potenzgesetz:

τ ∝ |t|−zν . (7.19a)

Der dynamische Exponent z ist keine universelle Größe, sondern wird allein durch
den gewählten Algorithmus bestimmt. Zusammen mit Gleichung (7.15) folgt

τ ∝ ξz, (7.19b)
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7 Prinzipien der Gleichgewichts-MC-Simulation

bzw. da die Korrelationslänge am kritischen Punkt durch die endliche Ausdehnung
des Gitters beschränkt ist:

τ ∝ Lz. (7.19c)

Insbesondere für große Gitterdimensionen L ist also die Wahl eines passenden Algo-
rithmus von entscheidender Bedeutung. Da wir später den logarithmischen Zusam-
menhang zwischen der Blockgröße und der Grenzfläche untersuchen wollen, sind wir
gezwungen auch große Gitter zu simulieren.

7.3.2 Metropolis-Algorithmus

Der nach Nicolas Metropolis [MRR+53] benannte Algorithmus folgt genau dem
im Kapitel 7.2 beschriebenen Weg. Wir wählen die Auswahlwahrscheinlichkeiten
g(µ → ν) zur Erzeugung eines neuen Zustandes für alle möglichen Zustände ν gleich,
indem wir zufällig das Feld an einer Gitterposition um einen Wert zwischen −1,5
und +1,5 variieren. Die Akzeptanzwahrscheinlichkeiten A(µ → ν) legen wir so fest,
dass (7.14) die Bedingung für das detaillierte Gleichgewicht (7.12) erfüllt. Damit
wird das Verhältnis der Akzeptanzraten ausschließlich durch die Energiedifferenz
zwischen dem alten Zustand µ und dem neuen ν bestimmt.

P (µ → ν)

P (ν → µ)
=

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
=

A(µ → ν)

A(ν → µ)
= e−β(Eν−Eµ) (7.20)

Um die Effizienz zu maximieren, legen wir die größere der beiden Akzeptanzraten
auf eins fest und passen die andere an. Betrachten wir den Fall, dass das System
aus µ in einen Zustand ν höherer Energie übergeht: Eν > Eµ. Dann ist A(ν → µ)
die größere Akzeptanzrate und wir setzten sie auf 1. Damit Gleichung (7.20) auch
weiterhin erfüllt ist, muss A(µ → ν) dann den Wert e−β(Eν−Eµ) annehmen. Somit
folgt für den Algorithmus:

A(µ → ν) =

{

e−β(Eν−Eµ) falls Eν − Eµ > 0,

1 sonst.
(7.21)

Mit der Wirkung

S =
∑

x

{

−2κ
∑

µ

φxφx+µ̂ + φ2
x + λ

(
φ2

x − 1
)2

}

, (7.22)

wobei µ die Summe über die mit dem Einheitsvektor µ̂ gekennzeichneten nächsten
Nachbarn ist, ergibt sich für die Energiedifferenz bei Änderung des Feldes am Ort
x von φx auf φ′

x:

∆E = −2κ
∑

µ

(
φ′

x − φx

)
φx+µ̂ +φ′

x
2−φx

2−2λ
(

φ′
x
2 − φ2

x

)

+λ
(

φ′
x
4 − φ4

x

)

(7.23)
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Es ist leicht ersichtlich, dass man durch wiederholtes Anwenden des Algorithmus
theoretisch alle Zustände erreichen kann, die Ergodizität ist also gewährleistet.

Aber wie verhält sich der Metropolis-Algorithmus in der Nähe der kritischen Tem-
peratur? Dort bilden sich große Domänen gleich orientierter Spins aus. Da aber mit
jedem Monte Carlo Schritt nur ein einzelner Gitterplatz geändert werden kann, ist
zu erwarten, dass der Algorithmus die kritischen Fluktuation nicht gut imitieren
kann. Denn dadurch, dass innerhalb einer Domäne die benachbarten Spins einen
ähnlichen Wert haben, ist die Akzeptanzwahrscheinlichkeit für die neue Konfigu-
ration klein und die Monte-Carlo-Zeit für jede Fluktuation wächst stark mit der
Größe der Domänen an. In der Tat ist der dynamische Exponent zum Beispiel im
3D Ising-Modell mit z = 2,02 ± 0,02 [NB99] sehr groß.

7.3.3 Wolff-Algorithmus im Ising-Modell

Dieses Problem umgeht der Wolff-Algorithmus. Betrachten wir zunächst das Ising-
Modell:

H = −J
∑

〈ij〉
sisj, (7.24)

wobei die Summe nur über die nächsten Nachbarn läuft und J die Kopplungsstärke
ist. Je weiter wir uns Tc nähern, desto größer werden die Domänen gleich ausgerich-
teter Spins, die kollektiv ihre Richtung ändern. Wenn wir dieses Verhalten effektiv
in einen Monte Carlo Algorithmus übernehmen wollen, können wir nicht länger auf
einen Single-spin-flip-Markov-Prozess wie den Metropolis-Algorithmus zurückgrei-
fen, sondern müssen einen Weg finden, große Gebiete in einem Schritt zu ändern.
Dies führt uns auf den Wolff-Algorithmus [Wol89].

Die zugrundeliegende Idee ist sehr einsichtig: Wir konstruieren einen Cluster aus
gleich orientierten Spins, indem wir zufällig einen Spin des Gitters als Startpunkt
wählen. Dann überprüfen wir sukzessive ob die benachbarten Spins das gleiche Vor-
zeichen haben und nehmen sie gegebenenfalls mit einer gewissen, von der Tempera-
tur abhängigen Wahrscheinlichkeit Padd in den Cluster auf. Je näher wir der kriti-
schen Temperatur sind, desto größer muss die Wahrscheinlichkeit für die Aufnahme
in den Cluster sein, den wir anschließend mit der passenden Akzeptanzwahrschein-
lichkeit umdrehen.

Abbildung 7.1 zeigt zwei Zustände µ und ν, die sich darin unterscheiden, dass in ν
der durch die Linie gekennzeichnete Cluster gedreht wurde. Wir sehen, dass es auch
außerhalb des gewählten Clusters m Spins gibt, die in die dieselbe Richtung zei-
gen, und deren Verbindung zum Cluster beim Umdrehen unterbrochen werden. Es
gibt natürlich viele Wege, auf denen der Cluster konstruiert worden sein kann, aber
wir wollen uns auf einen beliebigen festlegen, der ausgehend von einem bestimmten
Spin die anderen in festgelegter Reihenfolge hinzugefügt hat. Dann unterscheidet
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7 Prinzipien der Gleichgewichts-MC-Simulation

Abbildung 7.1: Wolff-Algorithmus am Beispiel eines 2D-Ising-Modells

sich der umgekehrte Weg, um von ν nach µ zurückzugelangen, nur durch die n un-
terbrochenen Verbindungen am Rand des Clusters. Somit ist die Wahrscheinlichkeit
auf dem Vorwärtsweg keinen dieser Spins aufzunehmen (1 − Padd)m und auf dem
Rückwärtsweg (1 − Padd)n. Die Bedingung des detaillierten Gleichgewichts (7.12)
liefert zusammen mit Gleichung (7.14):

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
= (1 − Padd)m−n A(µ → ν)

A(ν → µ)
= e−β(Eν−Eµ) (7.25)

Jede der m Verbindung, die von µ nach ν unterbrochen wird, ändert die Energie
um +2J und jede der n neue Verbindung um −2J , sodass insgesamt

Eν − Eµ = 2J(m − n) (7.26)

ist. Eingesetzt in Gleichung (7.25) erhalten wir

A(µ → ν)

A(ν → µ)
=

[

e2βJ (1 − Padd)
]n−m

. (7.27)

Nun können wir folgende erfreuliche Tatsache erkennen: Wenn wir

Padd = 1 − e−2βJ (7.28)

wählen, dann ist die rechte Seite von (7.27) eins und wir können beide Akzeptanz-
wahrscheinlichkeiten maximal wählen und alle erzeugten Konfigurationen akzeptie-
ren! Mit dieser Wahl arbeitet der Wolff-Algorithmus wie folgt:

1. Wähle zufällig einen Spin des Gitters aus.

2. Nehme nacheinander die benachbarten Spins, die in dieselbe Richtung zeigen,
mit der Wahrscheinlichkeit Padd auf.
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3. Wiederhole den zweiten Schritt für jeden neu hinzugefügten Spin. Benachbarte
Spins, die bereits im Cluster sind, müssen nicht erneut betrachtet werden, wohl
aber die, die beim vorherigen Mal abgewiesen wurden.

4. Wenn keine weiteren Spins hinzugefügt werden können, drehe den Cluster.

Der dynamische Exponent im 3D-Ising-Modell lässt sich durch den Wolff-Algorith-
mus auf z = 0,33 ± 0,01 [NB99] reduzieren.

7.3.4 Cluster-Algorithmus für φ4

Leider lässt sich der Wolff-Algorithmus in dieser Form nicht ohne weiteres in der φ4-
Theorie verwenden, da eine einfache Unterscheidung in up- und down-Spins nicht
möglich ist. Brower und Tamayo haben aber gezeigt, dass sich eine eingebettete
Ising-Dynamik identifizieren und durch die Verwendung einer Kombination aus dem
Swendsen-Wang-Cluster- und dem lokalen Heat-Bath-Algorithmus ein dynamischer
Exponent kleiner als eins erreichen lässt [BT89]. Eine ausführliche Beschreibung
und Herleitung des hier verwendeten Wolff- und Metropolis-Algorithmus findet sich
auch in [Sch06].

Das φ4-Potenzial geht am kritischen Punkt von einem konvexen in ein Doppel-
mulden-Potenzial über, dessen beiden Minima durch die Kink-Lösung miteinander
verbunden sind. Wir führen die diskreten Ising-Variablen sx ein,

φx = sx |φx| , (7.29)

die die beiden Vakua verbinden und aktualisieren sie durch einen angepassten Wolff-
Algorithmus. Das heißt, indem wir für feste Werte von |φx| ein Ising-Modell in
die φ4-Theorie einbetten, können wir mit einem nicht-lokalen Markov-Prozess die
Dynamik wesentlich beschleunigen.

Da wir nur die Vorzeichen von φ betrachten, müssen wir den Wolff-Algorithmus
nur leicht modifizieren. Wir können jedoch nicht mehr annehmen, dass die Wahr-
scheinlichkeit Padd zur Aufnahme in den Cluster für alle Gitterplätze gleich sind.
Anstelle von Gleichung (7.25) erhalten wir:

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
=

m∏

i=1

(

1 − P
(i)
add

)

n∏

j=1

(

1 − P
(j)
add

) = e−(Eν−Eµ) (7.30)

Für die Energiedifferenz sind die quadratischen Terme der Wirkung (7.22) nicht
von Bedeutung. Alle m gebrochenen Verbindungen erhöhen die Energie jeweils um
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4κφxφx+µ̂ und jede der n erzeugten Verbindungen reduziert sie um denselben Be-
trag. φx+µ̂ bezeichnet hierbei den benachbarten Spin außerhalb des Clusters.

m∏

i=1

(

1 − P
(i)
add

)

n∏

j=1

(

1 − P
(j)
add

) = exp(−∆E) = exp



−
m∑

i=1

4κφ(i)
x φ

(i)
x+µ̂ +

n∑

j=1

4κφ(j)
x φ

(j)
x+µ̂





=

m∏

i=1
e−4κφ

(i)
x φ

(j)
x+µ̂

n∏

j=1
e−4κφ

(j)
x φ

(j)
x+µ̂

(7.31)

zeigt uns, dass wir erneut durch die Wahl von

Padd = 1 − e−4κφxφx+µ̂ (7.32)

beide Akzeptanzwahrscheinlichkeit fest auf ihren Maximalwert von eins setzen dür-
fen. In den Simulationen wurden pro MC-Schritt 20 Wolff- mit 4 kompletten Me-
tropolis-Updates kombiniert.

7.4 Fehlerrechnung: Γ-Methode

Die Γ-Methode von Ulli Wolff [Wol04] ist eine Möglichkeit, die Autokorrelationszei-
ten von Messgrößen, die nicht einfach als arithmetisches Mittel aus den MC-Daten
berechnet werden, abzuschätzen. Die explizite Betrachtung der Autokorrelations-
funktionen erlaubt eine bessere Abschätzung des Fehlers gegenüber des häufig ver-
wendeten Binning bzw. Jackknife-Binning, welche die Autokorrelationen nur impli-
zit behandeln. Das folgende Kapitel gibt eine kurze Übersicht über die Arbeitsweise
der Γ-Methode.

Unser Ziel ist einen Schätzwert zu finden für die Funktion F , eine abgeleitete
Messgröße, die im allgemeinen nichtlinear von den primären Observablen Aα ab-
hängt,

F ≡ f(A1, A2, ...) ≡ f(Aα). (7.33)

zu finden und ihre Autokorrelationszeit zu bestimmen. Wir gehen davon aus, dass
sich das System im Gleichgewicht befindet, und verwenden zur Abschätzung die
MC-Werte der primären Observablen ai

α. Für jede Observable gebe es i = 1, 2, ..., N
Werte, die durch die Ausführung eines MC-Schrittes getrennt sind. In der Praxis ist
es sinnvoll, nicht nur ein einzelnes System zu simulieren, sondern mehrere gleichzei-
tig. Diese triviale Parallelisierung liefert Replica, die im Folgenden mit dem Index
r = 1, 2, ..., R bezeichnet werden. Die Korrelationsfunktion Γαβ

〈

(ai,r
α − Aα)(aj,s

β − Aβ)
〉

= δrsΓαβ(j − i) (7.34)
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korreliert die Abweichung des i-ten Schätzwertes von Aα mit der Abweichung der
Variablen β nach (j − i) MC-Schritten.

Da uns die exakten statistischen Mittelwerte Aα nicht zugänglich sind, definieren
wir zunächst die Mittelwerte eines Replikums

ār
α =

1

Nr

Nr∑

i=1

ai,r
α (7.35)

und über diese den natürlichen Schätzer der primären Observablen Aα

¯̄aα =
1

N

R∑

r=1

Nrā
r
α, (7.36)

wobei N =
R∑

r=1
Nr die Gesamtzahl der Messwerte ist. Wir fordern, dass die Schätz-

werte erwartungstreu sind und die Abweichungen vom exakten Wert

δ̄r
α = ār

α − Aα, ¯̄δα = ¯̄aα − Aα (7.37)

verschwinden
〈
δ̄r
α

〉
=

〈
¯̄δα

〉

= 0. (7.38)

Nach dem zentralen Grenzwertsatz entsprechen die āi,r
α für genügend große Nr einer

Normalverteilung, die durch die Kovarianz-Matrix

〈
δ̄r
αδ̄s

β

〉 (7.34),(7.35),(7.37)
=

1

N2
r

Nr∑

i,j=1

Γαβ(j − i)δrs =
1

Nr
Cαβδrs × (1 + O(τ/Nr)) (7.39)

gegeben ist, wobei

Cαβ =

∞∑

t=−∞
Γαβ(t) (7.40)

nicht von der Länge der Simulation abhängt. Wir nehmen an, dass Γαβ exponentiell
mit der Autokorrelationszeit τ abfällt und die Simulationslänge Nr ≫ τ ist, da
ansonsten eine Fehlerabschätzung kaum möglich ist. Für die Kovarianzmatrix von
¯̄aα folgt

〈
¯̄δα

¯̄δβ

〉

=
1

N
Cαβ × (1 + O(Rτ/N)) (7.41)

Unser Schätzwert ¯̄aα weicht also vom exakten Wert Aα um einen Fehler der Größen-
ordnung 1/

√
N ab und das Ziel unserer Fehleranalyse ist es, Cαβ möglichst genau

abzuschätzen.
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Als nächstes betrachten wir die Schätzer

¯̄F = f(¯̄aα) (7.42)

und

F̄ =
1

N

R∑

r=1

Nrf(ār
α) (7.43)

um die abgeleitete Messgröße F zu bestimmen. Wir nehmen an, dass die Schätzwerte
der primären Observablen exakt genug sind, um eine Taylor-Entwicklung nach den
Fluktuationen zu rechtfertigen:

¯̄F = F +
∑

α

fα
¯̄δα +

1

2

∑

αβ

fαβ
¯̄δα

¯̄δβ + ... (7.44)

mit den Ableitungen

fα =
∂f

∂Aα
, fαβ =

∂2f

∂Aα∂Aβ
, (7.45)

die an den exakten Werten A1, A2, ... gebildet werden. Sofern f nichtlinear ist, ist

der Schätzer von F nicht erwartungstreu. Betrachten wir die Abweichung
〈

¯̄F − F
〉

,

so verschwindet nach (7.38) die erste Summe und wir erhalten mit (7.41)

〈
¯̄F − F

〉

≃ 1

2N

∑

αβ

fαβCαβ (7.46)

Der Fehler σF ist dann in der führenden Ordnung

σ2
F =

〈

( ¯̄F − F )2
〉

≃ 1

N
CF (7.47)

mit

CF =
∑

αβ

fαfβCαβ. (7.48)

Dies lässt sich noch durch die integrierte Autokorrelationszeit (7.18) ausdrücken

σ2
F =

2τint, F

N
vF (7.49)

mit der naiven Varianz ohne Autokorrelationen

vF =
∑

αβ

fαfβΓαβ(0) (7.50)
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und

τint, F =
1

2vF

∞∑

t=−∞

∑

αβ

fαfβΓαβ(t) (7.51)

Gleichung (7.49) lässt sich so verstehen, dass nur N
2τint, F

Messwerte tatsächlich im
statistischen Sinne unabhängig sind und den Fehler reduzieren. Trotzdem ist es wich-
tig, mehr als nur diese Zustände zu messen, da ansonsten die Autokorrelationszeit
selbst nur schlecht zu bestimmen ist.

Im Rahmen einer numerischen Simulation sind natürlich die exakten Werte Aα

und fα nicht zugänglich und wir definieren einen Schätzer für die Autokorrelations-
funktion:

¯̄Γαβ =
1

N − Rt

R∑

r=1

Nr−t∑

i=1

(ai, r
α − ¯̄aα)(ai+t, r

β − ¯̄aβ), (7.52)

wobei natürlich zu beachten ist, dass 0 ≤ t ≪ Nr für alle r erfüllt ist. Um die
Autokorrelation der gesuchten Größe F zu bestimmen, muss (7.52) projiziert werden

¯̄ΓF (t) =
∑

αβ

¯̄fα
¯̄fβ

¯̄Γαβ(t). (7.53)

¯̄fα ist derselbe Gradient wie in (7.45), den wir jedoch nicht an den exakten Werten
Aα bilden können, sondern aus den Daten abschätzen müssen. Hierzu führen wir
zunächst eine natürliche Skala

hα =

√

¯̄Γαα(0)

N
(7.54)

ein, mit der wir dann den Gradienten der Funktion wie folgt definieren:

¯̄fα ≈ 1

2hα
[f(¯̄α1, ¯̄α2, ..., ¯̄α + hα, ...) − f(¯̄α1, ¯̄α2, ..., ¯̄α − hα, ...)] . (7.55)

Bei der Berechnung der Grenzflächendicke werden aus vielen primären Observablen
mB

c (z) (6.5) nur wenige abgeleitete Größen w2
B (6.12) berechnet. Es ist deshalb

sinnvoll, nicht die gesamte Autokorrelationsmatrix ¯̄Γαβ(t) zu berechnen, sondern
die gemessenen Daten direkt zu projizieren

ai, r
α → ai, r

f =
∑

α

¯̄fαai, r
α (7.56)

und diese zur weiteren Berechnung nutzen. Desweiteren schätzen wir die Varianz
und die Kovarianz-Matrix wie folgt ab:

¯̄vF = ¯̄ΓF (0) (7.57)

55



7 Prinzipien der Gleichgewichts-MC-Simulation

und

¯̄CF (W ) = ¯̄ΓF (0) + 2

W∑

t=1

¯̄ΓF (t). (7.58)

Die Summe über ¯̄ΓF wird bei einem endlichen Wert W abgeschnitten, da die Funkti-
on nach dem exponentiellen Abfall numerische Fluktuationen zeigt und nicht exakt
auf null abfällt (siehe Abbildung 7.2).
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Abbildung 7.2: Exponentieller Abfall von
¯̄Γ(t)
¯̄Γ(0)

bei der Berechnung der Grenzflä-

chendicke über das Gradientenquadrat mit L,B = 64, λ = 1.1. Die
senkrechte Linie zeigt das automatisch gewählte Fenster W .

In [Wol04] wird zudem ein Algorithmus vorgestellt, der es erlaubt das Fenster W
in (7.58) automatisch zu bestimmen. Unter der Annahme, dass die Autokorrelati-
onszeit τ ≈ Sτint mit einem gewissen Faktor S ist, können wir den optimalen Wert
für das Fenster bestimmen, indem wir zunächst die Funktion

g(W ) = exp [−W/¯̄τ(W )] − ¯̄τ(W )/
√

WN (7.59)

mit

¯̄τ(W ) = S

[

ln

(
2¯̄τint, F (W ) + 1

2¯̄τint, F (W ) − 1

)]−1

(7.60)

sukzessive für W = 1, 2 ... berechnen und das W , bei dem g(W ) sein Vorzeichen
wechselt und negativ wird, als die obere Grenze der Summe festlegen. Falls ¯̄τint, F ≤
1
2 wird, setzen wir ¯̄τ(W ) auf einen kleinen positiven Wert.
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Trotzdem ist anschließend noch von Hand zu sicherzustellen, dass die geschätz-
te integrierte Autokorrelationszeit ¯̄τint, F (W ) als Funktion von W innerhalb ihres
statistischen Fehlers

〈

(¯̄τint, F (W ) − τint, F )2
〉

≈ 4

N

(

W +
1

2
− τint, F

)

τ2
int, F (7.61)

um den gewählten Wert für W ein Plateau zeigt (siehe Abbildung 7.3), welches sich
durch eine geeignete Wahl des Parameters S beeinflussen lässt. [Wol04] empfiehlt
S = 1 ... 2, in der Auswertung der MC-Daten wurde mit S = 1,7 gearbeitet.
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Abbildung 7.3: Integrierte Autokorrelationszeit ¯̄τint,F als Funktion des Fenster-
Parameters W bei der Berechnung von w2 über das Gradienten-
quadrat für L,B = 64, λ = 1.1.
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8 Ergebnisse

In diesem Kapitel werden die Ergebnisse aus den Rechnungen zur Bestimmung der
Grenzflächendicke und der Einfluss des Parameters λ diskutiert. Bei allen verwende-
ten Werten für λ wird κ so gewählt, dass sich das System knapp unter der kritischen
Temperatur befindet und die Korrelationslänge zwischen 3 und 5 Gitterabständen
beträgt (siehe Tabelle 8.1).

Der größte Teil der Rechnungen wurde mit Condor [LLM88] auf dem Morfeus-
GRID der Westfälischen Wilhelms-Universität Münster ausgeführt.

8.1 Korrelationslänge

Die φ4-Theorie gehört zur Universalitätsklasse des Ising-Modells und darüber hinaus
vereinfacht sie sich im Grenzfall des Parameters λ → ∞ bei festem κ zum Ising-
Modell. Im anderen Grenzfall λ = 0 erhält man eine freie Feldtheorie. Bekannterma-
ßen existiert die φ4-Theorie in zwei Phasen, in der einen ist die Reflexionssymmetrie
φ → −φ spontan gebrochen und in der anderen nicht. Die entsprechenden Berei-
che in der κ- λ-Ebene werden durch die kritische Kurve κc(λ) getrennt und werden
qualitativ in Abbildung 8.1 gezeigt.

Abbildung 8.1: Qualitative Darstellung des Phasendiagramms der φ4-Theorie. Die
Phase gebrochener Symmetrie (κ > κc) wird von der symmetrischen
Phase (κ < κc) durch die kritische Linie getrennt, bei der die Kor-
relationslänge divergiert.

Leider wurden in der Literatur für die einkomponentige φ4-Theorie in drei Dimen-
sionen nur für einige wenige Werte von λ die zugehörigen kritischen κc bestimmt (sie-
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he z.B. [Has99]), sodass ein Vergleich der φ4-Theorie mit dem Ising-Modell anhand
der kritischen Temperatur über weite Bereiche der Kopplungsstärke nicht möglich
ist. Auch wenn wir die kritische Amplitude nicht kennen, wissen wir, dass in der
Nähe des kritischen Punktes die kritische Temperatur dem Skalengesetz

ξ ∝ |t|−ν (8.1)

gehorcht. Da die in der Theorie getroffenen Aussagen auch nur die Grenzflächendicke
mit der Korrelationslänge in Zusammenhang setzten, werden wir direkt auf diese
zurückgreifen, um die φ4-Theorie mit dem Ising-Modell zu vergleichen.

Betrachten wir hierzu die verbundene 2-Punkt-Korrelationsfunktion G
(2)
c (i,j) (sie-

he z.B. [MM94,CHP99]):

G(2)
c (i,j) ≡ 〈xixj〉 − 〈xi〉 〈xj〉

= 〈(xi − 〈xi〉) · (xj − 〈xj〉)〉 . (8.2)

In Gittersimulationen ist es üblich, nicht die gesamte Korrelationsmatrix zu betrach-
ten, sondern die Korrelationsfunktion über die sogenannten Zeitscheiben

S(z) =
1

XY

∑

0≤x<X
0≤y<Y

φ(x,y,z) (8.3)

des Gitters mit den Dimensionen 0 ≤ x,y,z < X,Y,Z zu bilden. Die Bezeichnung
Zeitscheibe ist Konvention aber in unserem Fall etwas irreführend, da wir ein drei-
dimensionales Gitter betrachten, dessen z-Achse nicht die Zeit ist.

Die Korrelationsfunktion der Zeitscheiben lautet

G(τ) =
1

Z

∑

z

{〈S(z)S(z + τ)〉 − 〈S(z)〉 〈S(z + τ)〉} , (8.4)

wobei zugunsten einer besseren Statistik über z gemittelt wurde. Die exponentielle
Korrelationslänge ξ ist dann die typische Längenskala, mit der die Korrelationsfunk-
tion abfällt:

G(τ) = c1 + c2 e−τ/ξ . (8.5)

c2 ist eine Konstante und c1 ein Gitterartefakt, das im Limes z → ∞ verschwindet.
Leider sind diese Definitionen nicht geeignet, um die Korrelationslänge der ver-

wendeten Gitter mit antiperiodischen Randbedingungen zu bestimmen. Bei genauer
Betrachtung zeigt sich, dass aufgrund der zufälligen Position der Grenzfläche 〈S(z)〉
und 〈S(z + τ)〉 um null fluktuieren und somit die verbundene Korrelationsfunkti-
on im antiperiodischen Gitter mathematisch identisch mit der unverbundenen bei
periodischen Randbedingungen ist. Eine Möglichkeit wäre, die Grenzflächenpositi-
on zu fixieren, dann entspräche die Zeitscheibe der ohnehin bestimmten maximalen
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8.1 Korrelationslänge

Blockgröße bei der Untersuchung der Grenzflächendicke. Allerdings wird die Korre-
lationsfunktion von Gitter- und Randeffekten stark beeinträchtigt, sodass die Kor-
relationslänge deutlich überschätzt wird. Aus diesem Grund habe ich die Korrelati-
onsfunktion in einer unabhängigen Simulation mit periodischen Randbedingungen
berechnet. Mithilfe von Gnuplot lässt sich anschließend durch einen Fit der Art

G(τ) = c1 + c2

(

e−τ/ξ − e−(Z−τ)/ξ
)

(8.6)

die Korrelationslänge präzise abschätzen, wobei der zweite Term der Periodizität
des Gitters Rechnung trägt (siehe Abbildung 8.2).

 0.1243

 0.1244

 0.1245

 0.1246

 0.1247

 0.1248

 0.1249

 0.125

 0.1251

 0.1252

 0.1253

 0  10  20  30  40  50  60  70  80  90  100

G
(τ

)

τ

Abbildung 8.2: Korrelationsfunktion G(τ) für κ = 0,1899 und λ = 1,1.
Der Fit mit Gnuplot liefert
G(τ) = 0,12439 + 0.000831(2)

(
e−τ/3,26(1) + e−(100−τ)/3.26(1)

)

Gnuplot neigt beim Fit der Exponentialfunktion zu einer etwas optimistischen
Einschätzung des Fehlers. Wir sind aber nicht darauf angewiesen, die Korrelations-
länge sehr präzise zu bestimmen. Um die Ergebnisse mit der Gitterrechnung mit
der Kontinuumstheorie vergleichen zu können, müssen wir nur sicher stellen, dass
die Korrelationslänge mehrere Gitterabstände beträgt. Der Einfluss des Fehlers der
Korrelationslänge auf den Gesamtfehler der Grenzflächendicke ist gering; aus die-
sem Grund berücksichtigen wir den doppelten von Gnuplot bestimmten Fehler. Die
Tabelle 8.1 zeigt die Korrelationslängen der in den Simulationen verwendeten Pa-
rametern. Im folgenden beziehen wir uns mit λ = 1,1 immer auf Simulationen mit
κ = 0,189900.
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λ κ ξ

0,0001 0,168000 3,23(2)
0,01 0,171000 4,47(1)
0,1 0,188130 3,50(1)
0,4 0,200278 4,01(2)
1,1 0,189900 3,26(2)
1,1 0,189000 4,41(2)
10 0,120509 4,70(4)
30 0,114498 4,68(4)
50 0,113412 4,71(4)
125 0,188130 4,34(2)
∞ 0,111947 4,44(2)

Tabelle 8.1: Korrelationslängen für verschiedene Simulationsparameter λ und κ der
φ4-Theorie und dem Ising-Modell λ = ∞

8.2 Vom Ising-Modell zur φ4-Theorie

Die einkomponentige φ4-Theorie in der Gitterformulierung (6.17) hat zwei inter-
essante Grenzwerte: Für λ = 0 erhalten wir das Gauß-Modell auf dem Gitter und
im Limes λ = ∞ finden wir das Ising-Modell wieder. Unser Ziel ist es, die Grenzflä-
che in einem Parameterbereich zu untersuchen, in dem das System noch weit genug
von der freien Theorie entfernt ist, um eine Grenzfläche auszubilden, und λ trotzdem
klein genug ist, um ein zum Ising-Modell verschiedenes Verhalten zu ermöglichen.

Abbildung 8.3 zeigt die relative Häufigkeit Nφ mit der der Betrag der Feldvaria-
blen φ für verschiedene Werte von λ auftritt. Die Kurven sind so normiert, dass sie
ihr Maximum bei eins haben. Da das Ising-Modell nur die Zustände ±1 kennt, wür-
de es in dieser Darstellung als Delta-Funktion bei |φ| = 1 auftauchen. Wir können
sehen, dass sich für λ = 125 eine scharf lokalisierte Verteilung um den Ising-Wert
ausbildet. Auch für λ = 10 treten die Werte um 1 am häufigsten auf, es lässt
sich aber bereits eine Verschiebung zugunsten kleinerer Werte und eine deutliche
Verbreiterung der Kurve erkennen. Die Abweichungen zum Ising-Fall sind ziemlich
gering und wir werden diese Parameter deshalb nutzen, um die Simulation mit den
Ising-Ergebnissen zu testen.

Für λ = 1,1, λ = 0,4 und λ = 0,1 hat sich das Verhalten geändert und wir befinden
uns in einem qualitativ neuen Bereich. Das Maximum der Verteilung hat sich zu
kleinen Werten verschoben und ist deutlich weniger stark ausgeprägt. Artefakte, wie
sie durch die Diskretheit des Ising-Modells entstehen, sind auszuschließen und wir
erwarten, dass die Simulation eine intrinsische Grenzflächendicke zeigt.

Für noch kleinere λ deutet der Gauß-artige Verlauf der Verteilung an, dass wir
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uns dem freien Feld zu weit genähert haben. Die Auswertung der Grenzflächendicke
wird in diesem Bereich kaum zu sinnvollen Ergebnissen führen.
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Abbildung 8.3: Normierte relative Häufigkeit der Spinvariablen

8.3 Grenzflächendicke

Die Theorie sagt für die in der MC-Simulation berechneten Grenzflächendicken (5.9)
einen konstanten Wert für kleine Blockgrößen und einen linearen Anstieg mit log2 B
voraus:

w2 = cintrξ
2 + AKW log2

L

BKW
(8.7)

bzw. in der universellen Formulierung (5.10)

ŵ2 = ŵ2
intr + ÂKW log2

L̂

B̂KW

. (8.8)

Die intrinsischen Dicke beträgt

ŵ2
intr =

{
π
2−6
12 ≈ 0,322 für p ∝ φ′

G
2

π2

12 ≈ 0,822 für p ∝ φ′
G.

(8.9)
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Da wir die Simulationen nicht bei exakt denselben Korrelationslängen ausführen
können, werden wir im Folgenden immer die temperaturunabhängige Formulierung
verwenden und das Dach weglassen.

Die Blockgröße B übernimmt die Rolle der Systemgröße L (siehe (5.11)), da alle
Fluktuationen λ > B abgeschnitten werden. Allerdings müssen wir beachten, dass
die Randbedingungen für B < L und B = L unterschiedlich sind. Im ersten Fall sind
diese unbekannt und werden durch die aktuelle Systemkonfiguration vorgegeben, im
zweiten Fall liegen immer periodische Randbedingungen vor.

8.3.1 Vergleich mit dem Ising-Modell

Bei der Simulation des Ising-Modells kann keine intrinsische Grenzflächendicke be-
obachtet werden. Die Dicke bleibt für kleine Blockgrößen konstant, sie ist aber
erheblich kleiner als der theoretische Mean-Field-Wert (Abbildung 8.4). Betrach-
tet man den Profilverlauf für diese Blockgrößen (Abbildung 8.5) erkennt man den
Grund: Das Randschiebeverfahren bestimmt die Grenzfläche so, dass sie immer zwi-
schen zwei Spins mit entgegengesetzen Vorzeichen liegt. Für B = 1 bedeutet dies,
dass die Grenzfläche auch im MC-gemitteltem Profil immer von −1 nach +1 springt.
Mit steigender Blockgröße sind die Spins nicht mehr diskret und der Effekt nimmt
ab.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-3 -2 -1  0  1  2  3  4

w
2

log2 B

w2
intr

ξ

λ = 125
Ising

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-3 -2 -1  0  1  2  3  4

w
2

log2 B

w2
intr

ξ

λ = 125
Ising

Abbildung 8.4: Dicken w2 nach der Definition über p ∝ c′ (links) und p ∝ c′2

(rechts) für das Ising-Modell und λ = 125.

Es ist zu erwarten, dass dieses Problem auch für große λ-Werte in den φ4-
Simulationen auftaucht und wir werden dies nutzen, um zu entscheiden, in welchem
Parameterbereich die φ4-Theorie sich wie ein Ising-Modell verhält. Der Profilverlauf
für λ = 125 (Abbildung 8.5) unterscheidet sich kaum vom Ising-Modell und entspre-
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Abbildung 8.5: Grenzflächenprofile mB für das Ising-Modell (links) und λ = 125
(rechts) mit den Blockgrößen B = 20, ..., 27.

chend ist auch das Verhalten der Grenzflächendicke in Abhängigkeit der Blockgröße
innerhalb ihrer Fehlerbalken identisch (Abbildung 8.4). Lediglich für B = 1, wo der
Unterschied zum diskreten Modell am größten ist, weicht λ = 125 für die Definition
der Grenzflächendicke über den Gradienten signifikant vom Ising-Wert ab.

Abbildungen 8.6 und 8.7 zeigen die Grenzflächendicke für λ = 10, 30, 50 und 125.
Der Verlauf aller Kurven ist gleich: Sie zeigen zunächst eine konstante, aber nicht
intrinsische Dicke, die sich aus dem unphysikalischen Profilverlauf erklärt, und stei-
gen bereits für Blockgrößen in der Größenordnung der Korrelationslänge an. Eine
intrinsische Dicke lässt sich nicht beobachten, allerdings können wir die Blockgrö-
ße, bei der der theoretische Wert erreicht wird, zur Abschätzung des intrinsischen
Cutoffs verwenden:

Bintr ∼
{

23/2ξ ≈ 2,83ξ für p ∝ c′

23ξ = 8ξ für p ∝ c′2
(8.10)

Ab Blockgrößen von mehreren Korrelationslängen steigen die Grenzflächendicken li-
near mit log2 B an, wie es die Kapillarwellen-Theorie vorhersagt. Das Abknicken für
das maximale B = L wird durch die unterschiedlichen Randbedingungen erzeugt;
dies zeigt sich besonders beim Vergleich der Simulationen mit L = 64 und L = 128.

8.3.2 Vergrößerung des Parameterbereichs

Entfernen wir uns nun weiter vom Ising-Limes und untersuchen die Grenzflächen-
dicke für die interessanten λ-Werte zwischen 0,1 und 1,1. Zusätzlich betrachten wir
noch das Verhalten für λ = 0,0001 (L = 64), λ = 0,01 und λ = 10, um die Unter-
schiede zum freien Feld und Ising-Modell zu beleuchten.
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Die Ergebnisse in den Abbildungen 8.8, 8.9, 8.10 und 8.11 überraschen. Es zeigt
sich, dass das qualitative Verhalten der Grenzflächendicke mit der Blockgröße weit-
gehend unbeeinflusst von der Wahl des Parameters λ bleibt.

• Die Kurven λ = 1,1 und λ = 0,4 steigen über einen größeren Bereich linear
mit log2 B an und erreichen den theoretischen Wert w2

intr bereits früher als
für λ = 10. Der intrinsische Cutoff reduziert sich für p ∝ c′ auf Bintr ≈ 2ξ.
Insgesamt sind die Abweichungen vom Ising-Fall unerwartet gering und wir
können kein intrinsisches Regime beobachten: Die Grenzflächendicke sind für
kleine Blockgrößen immer noch deutlich kleiner als die theoretische Vorhersage
und zeigen bei der Definition über den Gradienten auch keinen konstanten
Bereich.

• Verringern wir λ auf 0,1, beobachten wir einen sofortigen linearen Anstieg
von w2 mit log2 B. Dieser flacht aber bereits für B ≈ ξ deutlich ab und die
maximalen Dicken bleiben kleiner als die bisherigen. Der Knick deutet darauf
hin, dass die untere Grenze des geeigneten Parameterbereichs für λ erreicht
wurde.

• Für λ = 0,01 zeigt sich ein grundsätzlich verschiedener Verlauf von w2. Die
Grenzfläche weist für kleine Blockgrößen einen deutlich größeren Wert auf,
die Kurve knickt aber bereits bei der halben Korrelationslänge so stark ab,
dass ein linearer Anstieg nicht mehr beobachtet werden kann. Für λ = 10−4

sind die Grenzflächendicken weitgehend unabhängig von der Blockgröße. Das
System bildet keine Grenzfläche mehr aus und verhält sich wie ein freies Feld.

Die Simulationsergebnisse widersprechen auch weiterhin den Vorhersagen der
Theorie, und die Vermutung, dass Isingartefakte das Entstehen einer intrinsischen
Grenzflächendicke verhindern, hat sich als falsch herausgestellt. Um die Effekte, die
für die Abweichungen verantwortlich sind, weiter zurückzuverfolgen, betrachten wir
als nächstes die in der Simulation erzeugten Profile.

8.3.3 Magnetisierungsprofile

Abbildung 8.12 zeigt die gemittelten Magnetisierungsprofile mB(z) =
〈
mB

c (z)
〉

(sie-
he (6.6)). Das Profil λ = 10 verhält sich erwartungsgemäß ähnlich zum Isingprofil
(Abbildung 8.5), allerdings zeigen auch die Profile für kleine λ für kleine Blockgrö-
ßen den unphysikalischen Peak. Dieser ist zwar deutlich kleiner, doch es verwun-
dert, dass er auch bei der Simulation mit kontinuierlichen Spins auftritt. In m8(z)
ist er nur noch sehr schwach ausgeprägt und die Profile B > 8 zeigen den theo-
retisch vorhergesagten tanh-Kink. Dies deckt sich auch mit der Beobachtung, dass
die Grenzflächendicke erst für diese Blockgrößen den Wert der intrinsischen Dicke
überschreiten.
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Abbildung 8.13 zeigt die lokalen Grenzflächenprofile mB
c (z) einer einzelnen Kon-

figuration. Aufgrund der viel geringeren Statistik unterliegen die Profile stärkeren
Fluktuationen, aber trotzdem lässt sich auch hier unzweifelhaft das gleiche Problem
erkennen.

Es zeigt sich, dass die Ursache grundlegender Natur ist. Betrachten wir die lo-
kalen Profile mB

i (z) eines einzelnen Blocks bevor diese gemittelt werden (siehe Ab-
bildungen 8.14 und 8.15), zeigt sich wie die Abweichungen von den theoretischen
Vorhersagen entstehen.

In den kleinen Blockgrößen schwankt die Magnetisierung mit einer Amplitude,
die größer als eins ist. Damit sind die Fluktuationen deutlich größer als das Kink-
Profil, welches etwa zwischen −0,3 und +0,3 verläuft, und überlagern dieses voll-
ständig. Im Mittel heben sich die Fluktuationen wieder auf, sie verhindern aber,
dass das Randschiebeverfahren die Grenzflächenposition korrekt bestimmen kann.
Stattdessen wird das Profil immer gerade so geschoben, dass in der Mitte des Sys-
tem ein großer Sprung in der Magnetisierung auftritt. Dies verhindert, dass die
Fluktuationen sich nahe der Grenzflächenposition kompensieren und die erzeug-
ten MC-Konfigurationen für das Profil korrekte Ergebnisse liefern können. Für die
Blockgröße B = 4 sind die Fluktuationen noch so groß wie das Profil selbst und erst
die Block-gemittelten Magnetisierungsprofile m8

i (z) zeigen einen genügend glatten
Verlauf, um die Grenzflächenposition sicher bestimmen zu können.

In diesen Graphen lässt sich auch gut der Einfluss des λ-Parameters beobachten.
Für λ = 10 und B = 1 springt das Profil zwischen Werten, die nahe bei ±1 liegen.
Für kleinere λ sind die Fluktuationen deutlich zufälliger und die Profile zeigen besser
den tanh-Kink.

Die m1
i (z) werden direkt durch das Metropolis-Update des MC-Algorithmus um

Werte zwischen −1,5 und +1,5 verändert. Um sicherzustellen, dass es sich bei den
Schwankungen der Magnetisierung tatsächlich um physikalische Fluktuationen und
nicht um Artefakte der MC-Simulation handelt, reduzieren wir die Amplitude, mit
der der Metropolis-Algorithmus einen Spin verändern kann, auf 0,1. Abbildung 8.16
zeigt, dass die m1

i (z) unabhängig von den Einstellungen sind: Die Größe der Fluk-
tuationen hat sich nicht geändert.

8.3.4 Fixierung der Grenzfläche

Bisher konnten wir in den Simulationen die intrinsische Grenzflächendicke nicht
nachweisen, da die genauen Grenzflächenpositionen für kleine Blockgrößen nicht
zuverlässig bestimmt werden konnten.

Wir haben die Abweichungen von den theoretischen Vorhersagen genutzt, um den
intrinsischen Bereich abzuschätzen, aber die intrinsische Dicke selbst blieb bisher
verborgen. Indem wir das Wandern der Grenzfläche mit der zusätzlichen Zwangs-
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bedingung

φ

(
Z

2

)

= 0 (8.11)

unterbinden und die Grenzfläche in der Mitte des Systems fixieren, können wir das
intrinsische Profil betrachten. Abbildung 8.17 zeigt die Magnetisierungsprofile für
λ = 1.1 mit der Bedingung (8.11) in einem System der Größe L = 64. Wir erkennen
sofort, dass auch für B = 1 bereits das Konfigurationsmittel den tanh-Kink zeigt. Da
es zu keiner Verbreiterung der Grenzflächendicke durch die Kapillarwellen kommen
kann, sind die Ergebnisse im MC-Mittel für alle Blockgrößen gleich.

Die Auswertung der Profile ergibt:
w2 λ = 0,1 λ = 0,4 λ = 1,1 λ = 10 theor.

p ∝ c′ 1,01 ± 0,04 0,87 ± 0,02 0,86 ± 0,02 0,722 ± 0,01 0,822

p ∝ c′2 0,271 ± 0,002 0,220 ± 0,002 0,199 ± 0,002 0,149 ± 0,001 0,322

• Die Gradient-Grenzflächendicken für λ = 0,4 und λ = 1,1 sind innerhalb
der Fehler gleich und liegen nur leicht über der theoretischen Vorhersage. Da
bei der Berechnung die höheren Ordnungen der Fluktuationen vernachlässigt
wurden, sind die numerischen Ergebnisse für die intrinsische Grenzflächendicke
konsistent mit der Theorie.

Für λ = 10 wird die Dicke unterschätzt, was auf die Ähnlichkeit zum Ising-
Modell zurückzuführen ist. Es treten also tatsächlich Abweichungen durch
Ising-Artefakte auf, diese sind aber vergleichsweise klein. Der Parameter λ =
0,1 an der Grenze zum freien Feld liefert einen deutlich größeren Wert.

• Die Gradient-Quadrat-Dicken zeigen untereinander das gleiche Verhalten: λ =
0,4 und λ = 1,1 liefern dieselben Werte, λ = 0,1 weicht nach oben und λ = 10
nach unten ab. Insgesamt liegen aber alle Ergebnisse unter der Vorhersage.
Dies ist vermutlich darauf zurückzuführen, dass die Berechnung der Grenz-
flächendicke über die Definition des Gradientenquadrats numerisch anfälliger
ist.
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Abbildung 8.12: Lokale Grenzflächenprofile der Simulationen L = 128.
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Abbildung 8.13: Lokale Grenzflächenprofile einer Konfiguration der Größe L = 128.
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L = 128 und λ = 1.1.74



8.3 Grenzflächendicke

λ = 0.1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100

m
1

z

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100

m
4

z

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  10  20  30  40  50  60  70  80  90  100

m
8

z

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0  10  20  30  40  50  60  70  80  90  100

m
6

4

z

λ = 0.4

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100

m
1

z

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

m
4

z

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  10  20  30  40  50  60  70  80  90  100

m
8

z

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  10  20  30  40  50  60  70  80  90  100

m
6

4

z

λ = 10

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100

m
1

z

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

m
4

z

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

m
8

z

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0  10  20  30  40  50  60  70  80  90  100

m
6

4

z

Abbildung 8.15: Lokales Grenzflächenprofil eines einzelnen Blocks vor und nach dem
Randschiebeverfahren in den Simulationen L = 128.
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Abbildung 8.16: Verschobene lokale Grenzflächenprofile eines einzelnen Blocks für
λ = 1.1 und unterschiedlichen Metropolis-Amplituden.
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Abbildung 8.17: Lokale Magnetisierungsprofile für λ = 1.1 mit fixierter Grenzfläche.
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Nahe der kritischen Temperatur können Grenzflächen durch die Landau- und Ka-
pillarwellen-Theorie auf zwei verschiedenen Größenordnungen beschrieben werden.
Der Übergang zwischen dem intrinsischen und makroskopischen Regime findet in
der Größenordnung der Korrelationslänge statt. Außerhalb dieser Modelle ist die
Unterscheidung zwischen diesen Regimen zunächst unklar. In einer Ising-Simulation
können die Fluktuationen mittels eines Blocking-Verfahrens getrennt werden und
es lassen sich die Aussagen der Kapillarwellen-Theorie bestätigen, die intrinsische
Grenzfläche bleibt aber weiterhin verborgen.

In dieser Arbeit wurde deshalb die φ4-Theorie selbst auf einem Gitter simuliert.
Indem die Parameter der Simulation schrittweise vom Ising-Limes zum Freien Feld
geändert wurden, konnte gezeigt werden, dass die Ising-Artefakte nur eine geringe
Verantwortung für die Abweichung der berechneten intrinsischen Grenzflächendicke
zur Theorie haben. Tatsächlich überlagern kritische Fluktuationen die Grenzflächen-
profile kleiner Blockgrößen und verhindern, dass die Grenzflächenposition bestimmt
werden kann. Die Monte-Carlo-Daten können nicht korrekt gemittelt werden und
führen auf einen unphysikalischen Profilverlauf. Es ist mit den gewählten Metho-
den prinzipiell nicht möglich, durch Hoch- und Tiefpass-Filterung der Fluktuationen
gleichzeitig die beiden unterschiedlichen Regime sichtbar zu machen.

Aus diesem Grund wurde die Grenzflächenposition in einer zweiten Simulation
fixiert. Dadurch zeigt die Grenzflächendicke natürlich keine Verbreiterung mit der
Systemgröße durch den Einfluss der Kapillarwellen, aber es konnte nun die int-
rinsische Dicke bestimmt werden. Für die Definition über das zweite Moment des
Gradienten zeigt sich bei der Parameterwahl λ = 0,4 und λ = 1,1 eine gute Über-
einstimmung mit den theoretischen Vorhersagen. Bei den über das Quadrat des
Gradienten berechneten Dicken kam es zu Abweichungen, die sich vermutlich drauf
zurückführen lassen, dass diese Definition numerisch weniger robust ist.

Somit ist die numerische Situation nicht unähnlich zur Theorie: Es ist gelungen,
die intrinsische und die makroskopische Größenordnung einzeln sichtbar zu machen
und deren Aussagen zu bestätigen, aber es war nicht möglich, innerhalb einer Si-
mulation den Übergang zwischen diesen Regimen zu beobachten. Dies zu zeigen ist
auch weiterhin eine interessante Aufgabe. Hierzu müsste eine Methode gefunden
werden, die Grenzflächenposition auch bei sehr starken Fluktuationen zuverlässig
zu bestimmen.
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