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1 Einleitung

Jedes physikalische System, das aus mehr als einer Phase besteht hat eine Grenz-
flache. Beispiele hierfiir gibt es viele: Beim Kochen trennt die Wasseroberfliche die
Fliissigkeit vom Dampf und im Ferromagneten unterteilen Bloch-Wéande Bereiche
unterschiedlicher Magnetisierung.

In dieser Arbeit werden wir Grenzflichen untersuchen, die bei einem Phasentiber-
gang 2. Art (siehe Kapitel 2) entstehen. Bei Annédherung an die kritische Temperatur
divergiert die Korrelationslange und mit ihr die Grenzschichtdicke. Am kritischen
Punkt findet ein Phaseniibergang statt und das System ist homogen. Es treten
Fluktuationen auf allen Gréfsenskalen auf: das System wird selbstdhnlich und zeigt
innerhalb einer bestimmten Klasse Universalitét.

Zur Beschreibung der Fluktuationen werden wir in Kapitel 2.3 die ¢*-Theorie mo-
tivieren. Diese ist allerdings nicht analytisch 16sbar, liefert aber in nullter Ordnung
die Landau-Theorie. Aus diesem Grund werden wir die intrinsische Landau- und
die makroskopische Kapillarwellen-Theorie, die jeweils einen Teil der Fluktuationen
der Grenzflache beschreiben kénnen, in ein Modell zusammenfassen. Dieser Aufbau
der Theorie unterteilt die Fluktuationen in zwei Grofenordnungen. Unser Ziel ist
es, anhand der Grenzflachendicke, welche in den beiden Bereichen ein qualitativ un-
terschiedliches Verhalten zeigt, den Ubergang zwischen den verschiedenen Regimen
zu untersuchen.

Bei einer Monte-Carlo-Simulation mit dem Ising-Modell konnte bisher das int-
rinsische Grenzprofil nicht gezeigt werden. Wir werden deshalb im zweiten Teil der
Arbeit die ¢*-Theorie auf dem Gitter in einer Monte-Carlo-Rechnung simulieren
und untersuchen, welche Effekte fiir die Abweichungen der numerischen Ergebnisse
von den theoretischen Vorhersagen verantwortlich sind (Kapitel 8).

Das primére Ziel der Statistischen Mechanik ist es, die physikalischen Eigenschaf-
ten von Systemen zu berechnen, die aus sehr vielen Teilchen bestehen. Obwohl
haufig nur wenige unterschiedliche Teilchen vorkommen, verhindert ihre schiere An-
zahl die Bewegungsgleichungen exakt mathematisch zu l6sen. Trotzdem wissen wir,
dass das System bestimmte (thermodynamische) makroskopische Eigenschaften be-
sitzt, wie zum Beispiel beim idealen Gas den Druck oder die Temperatur, welche
sich gut vorhersehbar verhalten. Die Idee der Statistischen Mechanik ist, die Be-
wegungsgleichungen nicht zu 16sen, sondern das Problem zu umgehen, indem die
makroskopischen Gréfien direkt durch eine probabilistische Behandlung berechnet
werden.

Die Monte-Carlo-Rechnung geht noch einen Schritt weiter: Anstatt explizit die



1 Einleitung

Wahrscheinlichkeit aller Zusténde zu betrachten und die Zustandssumme zu bilden,
simulieren wir mithilfe eines Computers ein Modellsystem, das die gleiche Wahr-
scheinlichkeitsverteilung hervorbringt wie das reale System. Auf die Arbeitsweise
der Monte-Carlo-Simulation werden wir in Kapitel 7 eingehen.
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2 Phaseniibergange

In diesem Kapitel werden wir die Verwendung der ¢*-Theorie motivieren. Mogli-
cherweise ist das beste Argument fiir den Landau-Ginzburg-Hamiltonian, dass jeder
Term absolut notwendig ist und wir keinen Term weglassen kénnen, ohne die Physik
essenziell zu &ndern.

Nach einigen Vorbemerkungen zu Phaseniibergéingen (fiir eine ausfiihrliche Dar-
stellung siehe z.B. [LL66|) werden wir zunéchst die phdnomenologische Landau-
Theorie betrachten, welche das Verhalten von Grenzflichen nahe des kritischen
Punkts bis zu einigen Korrelationslangen beschreiben kann. Indem wir die Theo-
rie wieder um die unberiicksichtigten Fluktuationen ergénzen, werden wir auf die
¢*-Theorie gefiihrt, deren nullte Ordnung mit der Landau-Theorie iibereinstimmt.

2.1 Einleitung

Im Gleichgewicht lasst sich der Zustand eines homogenen Korpers (z.B. der Druck
oder die Temperatur) durch zwei beliebige thermodynamische Grofsen beschreiben.
Umgekehrt kénnen wir aber nicht fordern, dass er fiir ein beliebiges Wertepaar
homogen ist, sondern es ist moglich, dass der Korper in zwei verschiedene, aber
homogene Teile zerfallt. Diese Zustédnde, die im Gleichgewicht koexistieren und sich
an einer Grenzfliche berithren, werden Phasen genannt, ein Beispiel hierfiir ist die
Blasenbildung beim Sieden.

Voraussetzung fiir ein Gleichgewicht zwischen den Phasen ist, dass die Temperatur
T, der Druck p und das chemische Potential u identisch sind:

Tn=T,=T,
p1=p2 =D,
M1 = 2. (21)

Wenn wir die Potentiale als Funktionen von p und T ausdriicken, so verkniipft die
Gleichung

pa(p, T) = pa(p,T) (2.2)

den Druck und die Temperatur der Phasen: durch die Wahl einer Grofe wird die
andere vollstdndig bestimmt. Indem wir in ein Koordinatensystem die Koexistenz-
kurve auftragen, erhalten wir das Phasendiagramm (siche Abbildung 2.1). Andern
wir den Zustand eines Systems entlang einer Linie, die diese Grenzkurve schneidet,

11



2 Phaseniibergange

tritt im Schnittpunkt eine Trennung der Phasen auf und anschliefsend geht der Kor-
per in die andere Phase iiber. Bei einer langsamen Zustandsdnderung ist es moglich,
dass der Korper sich auch noch jenseits der Kurve im homogenen Zustand befindet,
obwohl es im Gleichgewicht schon zur Trennung der Phasen hétte kommen miissen.
Diese Zusténde sind aber metastabil und man spricht von unterkiihltem Dampf und
iiberhitzter Fliissigkeit.

|
|
|
|
|
|
|
|
|
|
|
|
.
T, T

Abbildung 2.1: Phasendiagramm in der p-T-Ebene: Die Koexistenzkurve endet im
kritischen Punkt.

Phaseniibergénge dieses Typs sind immer mit der Erzeugung oder Vernichtung
von latenter Warme begleitet und zeigen sich in einer Unstetigkeit in der ersten
Ableitung eines thermodynamischen Potentials. Man bezeichnet diese Klasse von
Zustandsénderungen als Phasentiberginge 1. Art.

Eine Koexistenzkurve kann in einem sogenannten kritischen Punkt enden, in dem
der Unterschied zwischen den Phasen verschwindet: Fiir Temperaturen und Driicke
jenseits dieses Punktes ist der Kérper immer homogen. Streng genommen l&sst sich
nur auf der Grenzkurve von zwei Phasen sprechen, da es moglich ist, den Zustand
entlang einer Kurve, die den kritischen Punkt umlduft und nie die Grenzkurve
schneidet, zu dndern. Fiir bestimmte Phasen, die sich durch ihre innere Symme-
trie qualitativ unterscheiden (z.B. Fliissigkeit und Festkorper) kann der Phasen-
iibergang nicht in einem kritischen Punkt enden. Die Symmetrieeigenschaften eines
Festkorpers konnen nur existieren oder nicht; ein kontinuierlicher Ubergang zu ei-
ner fliissigen Phase ist also nicht moglich. Deshalb miissen solche Koexistenzkurven
entweder andere Grenzkurven schneiden oder ins Unendliche laufen.

Abbildung 2.2 zeigt einen Phaseniibergang 1. Art von fliissig nach gasférmig,
der im kritischen Punkt K endet. Die gestrichelte Linie begrenzt das Gebiet, in
dem der Korper nicht in einer homogenen Phase existieren kann, also ein weiteres
Unterkiihlen des Dampfes oder Uberhitzen der Fliissigkeit nicht mehr méglich ist.
Das heiftt die Isotherme einer Fliissigkeit abc und eines Gases def kénnen nur im
kritischen Punkt K kontinuierlich ineinander iibergehen.

Man bezeichnet den kontinuierlichen Ubergang zwischen zwei Phasen als Phasen-
iibergang 2. Art. Beispiele fiir kontinuierliche Phaseniiberginge sind der Ubergang
von fliissigem Helium in seinen superfluiden Zustand, der Ubergang von Metall in
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2.1 Einleitung

Abbildung 2.2: Phaseniibergang 1. Art mit dem kritischen Punkt K

seiner supraleitenden Zustand oder der Ubergang vom Ferromagnetismus zum Para-
magnetismus. Das einfachste Modell, das einen Phaseniibergang 2. Art durchlaufen
kann, ist das Ising-Modell.

Da die Zustandsénderung kontinuierlich stattfindet, muss der Korper im kriti-
schen Punkt die Symmetrieelemente beider Phasen enthalten. Héufig ist die Sym-
metriegruppe der Phase niedriger Temperatur eine Untergruppe von der der héheren
Temperatur. Die paramagnetische Phase ist invariant unter allen rdumlichen Dre-
hungen, wihrend in der ferromagnetischen nur die Invarianz unter Drehung um die
Magnetisierungsrichtung erhalten ist. Dieses Phédnomen wird Symmetriebrechung
genannt: Der Ordungsparameter, der in der Phase hoherer Symmetrie null ist und
einen von null verschiedenen Wert in der Phase mit geringerer Symmetrie annimmt,
verschwindet kontinuierlich fir T" — T¢.

Nahe der kritischen Temperatur zeigen makroskopische Systeme ein charakte-
ristisches kollektives Verhalten auf groflen Skalen. Die Korrelationslange &, welche
die Léngenskala, auf der kollektives Verhalten beobachtet werden kann, beschreibt,
divergiert beim Phaseniibergang ebenso wie die Grofse der (kritischen) Fluktuatio-
nen. Nahe der kritischen Temperatur kénnen fiir die meisten Systeme viele Grofen
durch einfache Potenzgesetze beschrieben werden. Zum Beispiel divergieren &, die
Suszeptibilitdt y und die Oberflichenspannung ¢ in einem dreidimensionalen Sys-
tem gemék:

T-T.|" 7

Tc

T-T.
1.

£ o 1 (23)

]

mit den kritischen Ezponenten v und .

Das System héngt also nicht ldnger nur von der mikroskopischen Léngenskala ab,
die durch die Reichweite der Wechselwirkung oder dem Gitterabstand gegeben ist,
sondern es existiert in der Ndhe von T, eine weitere, dynamisch erzeugte Langens-
kala, die durch die Korrelationsldnge beschrieben wird. Diese ist es auch, die fiir die
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2 Phaseniibergange

nicht-trivialen langreichweitigen oder makroskopischen Phénomene verantwortlich
ist.

2.2 Landau-Theorie

Die grundlegende Idee der Landau-Theorie ist, dass in der Umgebung des kritischen
Punktes die Physik des Systems durch die makroskopische Léngenskala dominiert
wird und in der Umgebung des kritischen Punktes die mikroskopische zugunsten der
makroskopischen Léngenskala zu vernachlassigt werden kann. Landau postulierte
|LL66], dass man ein Funktional S, das nur von Potenzen des Ordnungsparameters
¢ und im Fall eines inhomogenen Systems von endlich vielen Ableitungen nach
¢ abhéngt, finden kann, und der Zustand des Systems durch das globale Minimum
von der Landau-Freien Energie S bestimmt ist. Indem wir fordern, dass S konsistent
mit den Symmetrien des Systems und der Ordnungsparameter in der ungeordneten
Phase null ist und in der geordneten nahe der kritischen Temperatur einen kleinen
endlichen Wert annimmt, erhalten wir fiir die Landau-Freie Energiedichte

£(6(a)) = 3 (6()) +V (6(2)) (24)

mit dem ¢* Potenzial
g 4, M 5
Vi(g) = qu + 7@5 +C. (2.5)

Die vierte Ordnung ist die niedrigste Ordnung, die einen Phaseniibergang 2. Art
ermoglicht. Da ¢ sich im Vergleich zur mikroskopischen Langenskala nur sehr lang-
sam &andert, konnen wir zu abrupte Spriinge im Ordnungsparameter durch den
Ableitungsterm benachteiligen. Die Kopplungskonstante g, die Masse m und die
Normierungskonstante C sind temperaturabhéngige Grofen. Damit das Potenzial
nach unten beschrénkt ist, muss ¢ > 0 sein. Der Parameter m? ist fiir den Phasen-
iibergang verantwortlich und muss deshalb bei der kritischen Temperatur T, einen
Nulldurchgang haben:

m? o< (T —T,). (2.6)

Die Konstante C dient dazu, das Potenzial am Minimum vg auf null zu normieren:

V(vg) = 0. (2.7)

Wir konnen also zwischen zwei Phasen unterscheiden:

e Fiir m? > 0 ist das Potenzial konvex und hat ein eindeutiges Minimum bei ¢ =
0. Das System befindet sich in der symmetrischen Phase und die Energiedichte

14



2.2 Landau-Theorie

Abbildung 2.3: Das ¢*-Potenzial in Abhiingigkeit von m?.

ist invariant unter der Symmetrie-Transformation ¢ — —¢. Das normierte
Potenzial lautet:

2
V(9) = 50" + 59’ (2.8)

Fiir m? < 0 hat das Potenzial zwei Minima bei 4-1/—6m?2/g. Damit das Qua-
drat der Masse positiv ist, wird —2m? durch m? ersetzt. Das normierte Po-
tenzial lautet dann:

2 4
_ 9 294 T o 3T
Vo) =4 (0 - of) = ot - o4 22 (2.9
mit
2
vo = 42 (2.10)
g

Die Symmetrie ¢ — —¢ wird nur noch von der Gesamtheit der Minima aber
nicht linger von jedem einzelnen Minimum erfiillt. Diese spontane Symme-
triebrechung ermdoglicht es dem System zwei Phasen auszubilden.

15



2 Phaseniibergange

2.2.1 Klassische L6sung und Randbedingungen

Im thermodynamischen Gleichgewicht befindet sich das System im Grundzustand
fiir den die Landau-Energie

Slol = [ Low) = [ @ (3007 +v(0) (2.11)

minimal ist. Im Grundzustand ist der Ordnungsparameter in der symmetrischen
Phase definitionsgeméft ¢g = 0 und es kann keine Grenzfldche im System auftreten.
Fiir die Phase gebrochener Symmetrie betrachten wir die Funktionalableitung von
(2.11) mit dem Potenzial (2.9) und setzen sie gleich null:

[

— = 0%+ V'(9)] ,_

56 b p=¢c

p=o , . |
. dp=dc

Wir erhalten die beiden mégliche Minima

3 2
b = +vg = 4/ 22, (2.13)
\ 9

die den zwei unterschiedlichen Phasen entsprechen (siehe auch [Kiis01]). Wie diese
Phasen in einem System mit der quadratischen Grundfliche L x L und der Lénge
7 realisiert werden, héangt entscheidend von der Wahl der Anfangs- und Randbe-
dingungen ab. Mit dem Ansatz, dass der Ordnungsparameter ausschlieftlich von z
abhéngt

gbG(xayaZ) = gbG(Z) (214)

legen wir die Grenzfliache senkrecht zur z-Richtung und kénnen die klassische Losung
der Differentialgleichung (2.12) bestimmen. Im thermodynamischen Limes Z — oo
und L endlich erhalten wir mit den periodischen Randbedingungen

fole (Z=+%—>OO) = ¢q (z:—%—>oo) (2.15)

eine gerade Anzahl an Grenzflichen. Da die Losungen mit zwei oder mehr Grenz-
flichen aufgrund ihrer hoheren Energie im thermodynamischen Gleichgewicht ex-
ponentiell unterdriickt sind, bildet das System keine Grenzflache aus und befindet
sich gerade im homogenen Zustand

pa(z) = vo (2.16)

16



2.3 Motivation der ¢*-Theorie

und aufgrund der Normierung des Potenzials ist die Energie
Sloc] = 0. (2.17)
Pragen wir dem System hingegen antiperiodische Randbedingungen
¢c(z=+% - 0) =¢a (2 =-% = —) (2.18)

auf, oder 16sen die Differentialgleichung unter der Nebenbedingung, dass ¢g(a) = 0
fiir ein beliebiges aber festes a ist, dann muss eine ungerade Anzahl an Grenzflichen
vorliegen. In diesem Fall ist die Situation mit genau einer Grenzfliache die energetisch
glinstigste und wir erhalten die Kink-Ldsung

oK (2) = vo tanh (%(z - a)) . (2.19)

Da fiir die Ausbildung einer Grenzfliche Energie benotigt wird, nimmt S[¢xk| einen
von null verschiedenen Wert an:

Sléw] = QTT?’LQ. (2.20)

2.3 Motivation der ¢*-Theorie

Leider zeigte sich, dass die Landau-Theorie z.B. im Vergleich mit dem spéter von
Onsager exakt gelosten 2D-Ising-Modell falsche Vorhersagen trifft. Uberraschender-
weise war das in der Physik verbreitete und im Rahmen von Mean-Field-Theorien
so héufig erfolgreich angewandte Prinzip der Entkopplung von stark unterschiedli-
chen Langenskalen nicht fiir die Beschreibung der kritischen Phdnomene geeignet:
ganz im Gegenteil sind am kritischen Punkt alle Fluktuationen relevant. Berech-
net man Korrekturen zur Landau-Theorie, so treten bei T, Divergenzen auf, welche
durch Beitrége erzeugt werden, die vom Verhéltnis der Korrelationslange zur mi-
kroskopischen Skala abhéingen. Diese Situation erinnert an die Probleme der frithen
Interpretation der Quantenfeldtheorie, mit dem Unterschied dass dort die mikrosko-
pische Skala gegen null geht und hier die makroskopische divergiert. Aber beide Di-
vergenzen lassen sich auf das Nicht-Entkoppeln sehr unterschiedlicher Langenskalen
zuriickfiihren. Umso iiberraschender war, dass trotzdem eine gewisse Universalitét
iiberlebt, welche die Renormierungsgruppentheorie erklirt. An der Ubergangstem-
peratur treten Fluktuationen in allen Groéfenordnungen auf und das System zeigt
Selbstdhnlichkeit oder geometrisch ausgedriickt eine fraktale Struktur. Durch das
Verschwinden einer typischen Léngenskala am kritischen Punkt wird die Physik
invariant unter Skalentransformationen.

17



2 Phaseniibergange

2.3.1 Mikroskopische Landau-Theorie

Aber was ist die Landau-Freie Energie? Trotz ihrer formalen Ahnlichkeit ist sie
nicht mit der Gibbs-Freien Energie I' zu verwechseln, da weder S (¢(z)) konvex ist
noch I' als thermodynamisches Potential mikroskopische Informationen hat. Um die
Landau-Freie Energie besser zu verstehen, wollen wir am Beispiel eines Spinmodells
mit der Zustandssumme

Z = PP = 3 emPHUSH (2.21)
{s}

einen genaueren Blick darauf werfen, dass die Landau-Theorie das Verhalten des
Ordnungsparameters erst nach einer Grobkornung iiber einen Block B(z) beschreibt
(siehe auch [Gol92]). Die Lénge B des Blocks liegt zwischen der mikroskopischen
Lénge a und der Korrelationslédnge &:

a < B<E(T). (2.22)

Der grobgekornte lokale Ordnungsparameter ¢p(x) ist dann gleich der mittleren
Magnetisierung innerhalb des um x zentrierten Blocks. Durch die Grobkérnung ge-
hen die mikroskopischen Details innerhalb der korrelierten Gebiete, die nahe der
kritischen Temperatur entstehen, verloren und es werden nur noch die langwelligen
Fluktuationen beriicksichtigt.

S[¢p(z)] ist also gleich der Gibbs-Freien Energie unter der Nebenbedingung, dass
das System in einem Zustand ist, der mit dem grobgekoérnten Profil des Ordnungspa-
rameters ¢p(x) vertraglich ist. Formal konnen wir die Landau-Freie Energie schrei-

e ASlon@) = §° "o PHUSY), (2.23)
{5}
wobei der Strich der Nebenbedingung Rechnung trégt.

Wie héngt also S[¢p(x)] mit der Zustandssumme zusammen? Um L zu erhalten,
haben wir die Spur iiber den Teil {S} der mikroskopischen Freiheitsgrade gebildet,
der mit einem bestimmten Profil ¢p(z) konsistent ist. Seien {S*} die Konfiguratio-
nen, die mit demselben Profil nicht konsistent sind, dann kénnen wir die Summe
iiber alle Mikrozusténde in zwei Summen unterteilen

do=>"3 (2.24)

{sy {5} {s}

ben als

und mit (2.21) folgt

7 — Ze—ﬁH — Z o BL{¢B(2)} (2.25)
{5} {S} {s*}

18



2.3 Motivation der ¢*-Theorie

Da ¢p(x) eine glatte und auf der mikroskopischen Lingenskale langsam veréinderli-
che Funktion ist, konnen wir die Summe durch ein Pfadintegral approximieren:

Z = / Dpe 519), (2.26)

Dieses Pfadintegral kommt uns zu Recht sehr bekannt vor, denn indem wir die
Grofsen

Ordnungsparameter ¢ <« Feld ¢
Temperatur 3 < Planck-Konstante h
Energiedichte £ < Lagrange-Dichte L

identifizieren, erkennen wir, dass die Hamiltonfunktion

4

m2
St = [ oo = [ (@00 + G0t - T+ 22) )

formal identisch zur euklidischen Wirkung der ¢*-Theorie eines reellen Skalarfeldes
mit Selbstwechselwirkung aus der QFT ist.

2.3.2 Erzeugendes Funktional

Aus der Statistischen Physik kennen wir die Zustandssumme, die in einem diskre-
ten System alle moglichen Zusténde mit ihrer Boltzmann-Wahrscheinlichkeit wich-
tet, und aus der wir alle weiteren thermodynamischen Groéfsen berechnen konnen.
Indem wir einen Quellterm j einfiigen, kénnen wir etwas Vergleichbares fiir Felder

definieren:
2= 5 [ Poexo {4 (801~ [ Pritrot) )|
_ %/qu exp {—%S[qﬁ,]‘]} . (2.28)

(2.28) ist das Erzeugende Funktional der Green-Funktionen, welche durch Funktio-
nalableitungen aus Z[j] folgen:

G (z1, 29, ..y xn) = (d(21)d(x2) . .. p(2n))
. 5n .
e eIy e R FUS

Neben diesem lassen sich noch zwei weitere erzeugende Funktionale konstruieren.
Aus der Freien Energie

Wj] = —hln Z[j) (2.30)
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2 Phaseniibergange

folgen analog die verbundenen Green-Funktionen oder Korrelationsfunktionen

ng) (xly T2y weny xn) = <¢(‘T1)¢(‘T2) o ¢('In)>c
571
= = ‘ . Wi . 2.31
53 83Ge) 55 (231)
Mittels einer Legendre-Transformation erhalten wir das erzeugende Funktional der
echten Vertex-Funktionen bzw. die Effektive Wirkung

Pl = Wi + / & 2j(2)e () (2.32)

mit dem klassischen Feld

(2.33)

das in der statistischen Physik den Verlauf des gemittelten Ordnungsparameters
angibt. Die einfache Funktionalableitung von (2.32) nach dem klassischen Feld ergibt
wieder das duflere Feld

_ OT[¢]

j(z) = = o (2.34)

Fiir den quellfreien Fall j = 0 ist analog zu (2.12) der Erwartungswert des Feldes
der stationdre Punkt der Effektiven Wirkung:

SL[¢c]
d¢e(x) =0

=0 (2.35)

2.4 Intrinsisches Profil der ¢*-Theorie bis zur ersten
Ordnung nach Kiister

Da die erzeugenden Funktionale nicht analytisch berechenbar sind, fiihren wir eine
Schleifen- Entwicklung um das Minimum der Wirkung S[¢] durch. Die Bedingung

55[9]

5 L% =0 (2.36)

ist identisch zu (2.12): Wir entwickeln also gerade um den Ordnungsparameter der
Landau-Theorie. Nach [KiisO1] erhalten wir fiir die effektive Wirkung bis zur ersten
Ordnung

rod = [ (5000 + V(60) ) + 5 ndet (~0° 4 V/(60) + 002, (231)
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2.4 Intrinsisches Profil der ¢*-Theorie bis zur ersten Ordnung nach Kiister

Der Ordnungsparameter der ¢*-Theorie ist der Felderwartungswert ¢, der nach
(2.35) durch die Bewegungsgleichung

oTlod | _
0e(2) |0

gegeben ist, wobei durch antiperiodische Randbedinungen die Grenzflache senkrecht
zur z-Richtung gelegt wird.

(2.38)

2.4.1 Nullte Ordnung: Landau-Theorie

Die effektive Wirkung in nullter Ordnung

rlod = [ o (000 + V(60)) = Sl (2:39

liefert mit (2.38) dieselben Ergebnisse wie die Landau-Theorie. Bei antiperiodischen
Randbedingungen erhalten wir wieder das Kink-Profil

¢k = (¢(2)) = vo tanh <%(z - h)> . (2.40)

2.4.2 Erste Ordnung

Beriicksichtigt man die Korrekturen erster Ordnung und fiihrt eine Gradientenent-
wicklung der Effektiven Wirkung (2.37)durch, erhélt man mit der Bewegungsglei-
chung (2.38) in dieser lokalen Potenzialapproximation das renormierte Grenzfla-

chenprofil
3m
Pgr(2) = —RXgR(Z)
V ur

_ 3R @, UR (1) (2)
=\ {xltr+ x(itr + 0w | (2.41)

mit der dimensionslosen Kopplung

g
-2 2.42
o m ( )

(siehe [KiisO1] oder in verkiirzter Darstellung [Miil04]). Der Parameter h im renor-
mierten Argument
tg = % (z - h) (2.43)

gibt den Nulldurchgang des Grenzprofils, d.h. den Ort der Grenzfliche an. Das
(0)

Treelevel-Profil XgR reproduziert wieder den tanh-Kink aus der Landau-Theorie

X3 (tr) = tanh(tg) (2.44)

21



2 Phaseniibergange

und das 1-Loop-Profil hat folgende Form:

1 . .
(1) Xéfg<(tR) fir |tg| < arsmh%
Xer (tR) =9 (1) i * rsin ] (2.45)
Xgrs(tr) filr [tr[ > arsin NG
mit
1 2 92
XSFL (tr) ZEtRSGCthR + 9 sinh tg coshtg — 3 tanh tg
1 2 92
XS;L (tr) :EtRSGCthR + 9 sinh tg coshtg — 3 tanh tg
. 4+ sinh® i
— —sech h
2 sech“trartan Snhin
1 2 1
— sinh tR\/TinhztR = — Zsech’ty (2.46)
2 9 2
1 T T T
08 | Xr i
0.6 |- Xgr | |
A _
02t / i i
) A o
-0.2 L L 1 1 1 02 1 I I | |
0 05 1 15 2 25 3 0 05 1 15 2 25 3
tr .

Abbildung 2.4: Das Treelevel-Profil Xéo}g und der Einfluss der 1. Ordnung fiir die
Kopplungen ugr =5 (links) und ug = 15 (rechts).

Abbildung 2.4 zeigt den Einfluss der 1. Ordnung auf die Profilform. Der 1-Loop-
Beitrag xgr — Xgl]jz nimmt fiir grofsere Kopplungen ur zwar zu, der qualitative Ver-
lauf der Funktion éndert sich aber kaum. Das Profil wird durch das Beriicksichtigen
weiterer Fluktuationen breiter und die Grenzflichendicke, die wir noch genau be-
trachten werden, wird im Vergleich zur klassischen Losung vergrofsert.

In der Sattelpunktsentwicklung werden die Fluktuationen so nach Ordnungen von
h geordnet, dass das Treelevel auf den tanh-Kink der Landau-Theorie fiithrt. In der
Quantenfeldtheorie entspricht dies einer Entwicklung nach Quantenfluktuationen
um die klassische Theorie. Die folgende Tabelle zeigt, wie eng die Statistische Physik

mit der QFT verkniipft ist (sieche auch [LB91,LBMBO04]):
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2.5 Grenzflichenfluktuationen

Statistische Physik QFT

Ordnungsparameter o(x) Feld

Mittel des Ordnungsparameters Pc() klassisches Feld,
Vakuumerwartungswert

Korrelationslédnge £ =m~' inverse Masse

Kanonische Zustandssumme Z7] Erzeugendes  Funktional  der
Green-Funktionen

Freie Energie Wi Erzeugendes Funktional der ver-
bundenen Green-Funktionen

Gibbs-Freie Energie IN[oN Effektive Wirkung

Landau-Theorie Klassischer Grenzfall

thermische Fluktuationen Quantenfluktuationen

2.5 Grenzflachenfluktuationen

Wir haben gesehen, dass die Landau-Theorie den Ordnungsparameter erst nach ei-
ner Grobkornung beschreibt, bei der die mikroskopischen Fluktuationen A < a verlo-
ren gehen. Auflerdem beriicksichtigt sie als Mean-Field-Theorie nur Konfigurationen
mit einem einheitlichen Ordnungsparameter und vernachlissigt Fluktuationen mit
Wellenldngen A > Biyyr, innerhalb dessen die Wechselwirkungen durch ein mittleres
Feld beschrieben werden kénnen.

Die ¢*-Theorie beschreibt alle Fluktuationen des Ordnungsparameters, lisst sich
aber nicht exakt analytisch 16sen. In der Sattelpunktsentwicklung werden die ther-
mischen Fluktuationen bis zur Ordnung O(h) betrachtet. Die lokale Potenzial-
Approximation bewirkt, dass das berechnete Profil sich wie ein Mean-Field-Profil
verhélt. Insgesamt beriicksichtigen wir also wieder nur Fluktuation der Grenzflache
zwischen

a < A< By ~€&. (2.47)

Wir wissen, dass die Mean-Field-Néherung am kritischen Punkt nicht giiltig ist, da
dort Fluktuationen auf allen Grofsenskalen auftreten. Aber es treten auch schon lan-
ge bevor der kritischen Punkt erreicht wird langwellige Fluktuationen der Grenzflé-
che auf, die wir bisher nicht erfasst haben. Im folgenden Kapitel werden wir deshalb
ein Modell zur Behandlung dieser Fluktuationen entwickeln und mit den bisherigen
Ergebnissen zu einer vollstandigen Theorie verkniipfen.
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3 Kapillarwellen-Theorie und
Faltungsnaherung

3.1 Kapillarwellen-Theorie

Die auf Buff, Lovett und Stillinger [BLS65| zuriickgehende Kapillarwellen-Theorie
beschreibt die langwelligen Fluktuationen der Grenzflache, die viel grofer als die
Korrelationslinge sind. In diesem Bild gibt es keinen kontinuierlichen Ubergang des
Ordnungsparameters zwischen den Phasen sondern eine scharfe Grenzflache, die
man sich als schwingende Membran vorstellen kann. Es werden also keine Uberhiin-
ge, Bldschen oder dhnliches berticksichtigt. Durch thermische Fluktuationen wird
die Grenzfliche deformiert und es entsteht im Mittel trotzdem ein kontinuierliches
Profil mit endlicher Dicke.

Abbildung 3.1: Schwingende Grenzflaichenmembran.

Betrachten wir die Fluktuationen der Grenzfliche in der Monge-Darstellung z =
h(z,y). Die Freie Energie Hxw der Kapillarwelle ldsst sich berechnen, indem wir die
Arbeit betrachten, die gegen die Oberflichenspannung 7 = % verrichtet wird. Aus

der Differenz des Systems mit Fluktuationen und dem ungestorten System erhalten
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3 Kapillarwellen-Theorie und Faltungsndherung

wir
BHxw = BT (Ah(:v y) Ap= konst

—a/dxdy\/l—i- (Vh(z,y)) —a/dxdy (3.1)

Fiir eine formale Herleitung aus der ¢*-Theorie siehe auch [Saf94]. Da wir langwellige
Fluktuationen mit kleinen Amplituden betrachten, kénnen wir (3.1) entwickeln und
erhalten

BHxw ~ %/dmdy (Vh(x,y))Z. (3.2)

Durch Ubergang in den Fourier-Raum lisst sich die Wahrscheinlichkeit P(h), dass
die Grenzfliche im Punkt (z,y) die z-Koordinate h hat, bestimmen. P(h) geniigt
der Gauf-Verteilung

1 _ a2
P(h) = \/ﬁse 252 (3.3)
mit der Varianz . .
2 2
=(h*) = — [ dg- 3.4
s < > 27.[0, qq’ ( )

die die durch Fluktuationen entstandene endliche Grenzflichendicke beschreibt.
Aufgrund der logarithmischen Divergenz des Integrals in (3.4) fiir ¢ — 0 und ¢ — oo
missen wir zwei Cutoffs einfiihren. Der untere folgt auf natiirliche Weise aus der
Endlichkeit des Systems und beschrinkt die Moden auf ¢ > 2%, Im thermodynami-
schen Limes L — oo tritt die Divergenz wieder auf. Diese Infrarot Divergenz ist aber
physikalisch: Da wir die Gravitation nicht berticksichtigt haben, kostet die Nullmode
— das Verschieben der Grenzfliche ohne Deformation — aufgrund der Translations-
invarianz keine Energie. Der obere Cutoff ¢ < 2” ist weniger eindeutig und muss
aus der Kapillarwellen-Néherung motiviert Werden Wir sind davon ausgegangen,
dass die Grenzfliche ein scharfer Ubergang zwischen den Phasen ist und alle Ef-
fekte sich in einem einzigen makroskopischen Parameter, der Oberflichenspannung,
zusammenfassen lassen. Diese Annahmen sind natiirlich nur bis zu einer gewissen
Grofsenskala Biyy vertretbar, die etwa der Korrelationsldnge entsprechen sollte. In-
nerhalb der Kapillarwellen-Theorie werden also Fluktuationen der Wellenldngen

E~Bgw < A<L (3.5)

berticksichtigt und es folgt fiir die Grenzflachendicke

27‘[/BKW
1 1 1 L
2 2
~s? = dg—=—1In——. 3.6
v s 210 / qq 2o Bgw (3.6)
2n/L
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3.2 Faltungsnidherung

Das Profil der Kapillarwellen-Theorie in einer Momentaufnahme trennt scharf
zwischen den Phasen vy und —uvy:

0, wenn z > h

¢g(z —h) =vo(=1420(z — h)) = { (3.7)

—vp, wenn z < h.

Durch Mittelung tiber die fluktuierende Membran erhalten wir das kontinuierliche
Profil

o0 o0 1 h2
z) = dh ¢ P(h) = dh vo (=1 +20(z - h e 252
orw(z) = [ anogP) = [ dhw (<1420 = 1) ——
h = h 2 o0 2 \/%s
=0+ %vo/dh/ O(z — \/ishl)e*h/2 = _ / dn’ e=h"”
0 0

— vp erf (é) , (3.8)

welches sich nicht qualitativ vom tanh-Profil der Landau-Theorie unterscheidet.

3.2 Faltungsndherung

Wir haben bisher zwei Theorien zur Beschreibung von Grenzflachen entwickelt, die
jeweils Fluktuationen nur innerhalb eines gewissen Bereichs beschreiben kénnen.
Zusammen koénnen sie sich aber so ergénzen, dass sie alle Fluktuationen beriicksich-
tigen. Unter der Annahme, dass die Fluktuationen der Theorien nicht miteinander
wechselwirken, kénnen wir sie {iber eine Faltung verkniipfen. Der kontinuierliche
Phaseniibergang ¢, findet mit der Wahrscheinlichkeit P(h) aus der Kapillarwellen-
theorie am Punkt (z,y) in der Hohe h(z,y) statt und es folgt fiir das Gesamtprofil

() = (dg(z — ) = / dhoy(z — h)P(h) = dg * P(2) (3.9)

Die Standardabweichung der Kapillarwellen verbreitert das intrinsische tanh-Profil
und {iberlagert die Effekte der Schleifen-Korrekturen 1. Ordnung. Im Grenzfall
grofser Standardabweichungen s — oo erscheint das Grenzflichenprofil wieder als
Stufe und das Ergebnis der Kapillarwellen-Theorie wird reproduziert. Fiir s — 0 ist
P(h) die Delta-Funktion und ¢(z) geht in das intrinsische Grenzflachenprofil iiber.
Wir kénnen also aufgrund der Ahnlichkeit der Profilformen nicht erwarten zwischen
den Giiltigkeitsbereichen der Landau- und Kapillarwellentheorie unterscheiden zu
koénnen.
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3 Kapillarwellen-Theorie und Faltungsndherung

Die Faltungsndherung mag zunéchst etwas zu einfach erscheinen, aber Michael
Kopf hat in seiner Diplomarbeit [K6p08] in einer Storungsrechnung mittels der effek-
tiven Wirkung das Profil der Grenzfliche in 1-Schleifen-Ordnung aus der ¢*-Theorie
bestimmt und konnte die aus der Kapillarwellen-Theorie vorhergesagte logarithmi-
sche Abhéangigkeit der Grenzflachendicke von der Systemgrofse zeigen.

28



4 Grenzflachendicke

Wie wir im letzten Kapitel gesehen haben, konnen wir aufgrund der qualitativen
Ahnlichkeit des Tangens-Hyperbolikus zur Fehlerfunktion nicht anhand des Grenz-
flachenprofils zwischen dem intrinsischen und dem makroskopischen Regime unter-
scheiden und den Ubergang von der Landau- zur Kapillarwellentheorie beobachten.
Stattdessen betrachten wir die Dicke der Grenzfliache, die sich in beiden Theorien
wesentlich unterscheidet: Die Dicke des intrinsischen Profils ist konstant, hingegen
skaliert sie nach Gleichung (3.6) im Giiltigkeitsbereich des Kapillarwellen-Modells
linear mit dem Logarithmus der Systemlange.

Es existiert keine eindeutige Definition der Grenzflachendicke, aber in [Miil04] fin-
det sich ein ausfiihrlicher Vergleich moglicher Definitionen. In Ubereinstimmung mit
der dort getroffenen Wahl definieren wir die Grenzflachendicke als zweites Moment
einer Verteilung p, die entweder proportional zu dem Gradienten oder dem Quadrat
des Gradienten des Profils ist, und nehmen eine Umskalierung der Parameter vor.
Mit vg = 1 gehorcht das Grenzflachenprofil den Randbedingungen

c(z — £o0) = +1 (4.1)

und wir gehen zu den dimensionslosen Variablen

n, - z, L (4.2)
2 2

iiber, sodass das Profil
(2) = 64(2) * P(2.9) (43

nur noch von dem Parameter s abhéngig ist.

4.1 Definitionen

Es bietet sich an, die Grenzflichendicke als zweites Moment einer Wahrscheinlich-
keitsverteilung p zu definieren, die moglichst gut die Profilform wiedergibt:

w? = (2*) = /dz 22p(2). (4.4)

Wir werden im folgenden sowohl den Gradient als auch das Quadrat des Gradients
des Profils fiir p betrachten. Beide Definitionen zeigen eine intrinsische Grenzflachen-
dicke und den linearen Anstieg im Kapillarwellenregime, haben aber unterschiedliche
Vorteile.
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4 Grenzflachendicke

4.1.1 Gradient

Diese Definition wird héufig verwendet, da der Gradient die Form des Profils gut
beriicksichtigt und bei numerischen Simulationen stabiler als das Gradientenquadrat
ist. Allerdings muss das Profil monoton steigen, da ein negatives p innerhalb der
Wahrscheinlichkeitsinterpretation keinen Sinn macht. Fiir die normierte Verteilung
folgt

1, 1 1 _=
z) = =c(z) = = |tanh(z) * e 2s
p(z) = 5c(2) = 3 (2) o
1 1 _ 22
e 27 (4.5)

= *
2cosh?(z)  2ms

und mittels Fourier-Transformation lasst sich die Grenzflachendicke zu

2—<2>—7r2+2 (4.6)
w=(z") =5 +s .
berechnen. Die Gesamtdicke des Grenzflichenprofils ergibt sich also einfach aus
Summation der intrinsischen und der Kapillarwellen-Dicke

w2 = w?ntr + wIQ(W (47)

Dieses Ergebnis ldsst sich auch direkt aus der Feldtheorie herleiten [Kép08| und
zeigt die Giiltigkeit der Faltungsndherung.

4.1.2 Gradientenquadrat

Das Quadrat des Gradienten ist proportional zur Energiedichte des intrinsischen
Profils und liefert eine immer positive Wahrscheinlichkeitsverteilung. Fiir die nor-
mierten Dicken erhalten wir:

1 2 /42 S
2 2 —h?/s* __
Aufgrund der Nichtlinearitét der Definition gilt die Summation
w% ~ wiQntr + w%(W (49)

nur niherungsweise. Der Fehler ist maximal fiir s ~ 1, aber stets unter 3% und sehr
klein fiir grofse bzw. kleine s [Miil04].
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Teil 11

Monte-Carlo-Simulation
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5 Ziel der Simulation

5.1 Theoretische Vorhersagen

Im ersten Teil der Arbeit haben wir aus der Landau- und Kapillarwellen-Theorie
ein Modell zur Beschreibung kritischer Grenzflachen entwickelt. Wir wollen kurz die
Vorhersagen, die in diesem Modell getroffen werden konnten, zusammenfassen.

e Die Landau-Theorie beschreibt als Mean-Field-Theorie Fluktuationen zwi-
schen der Gitterkonstanten ¢ und der Korrelationslidnge &

a < A< Bipy ~ 5 (51)

und liefert fiir die Grenzschicht das Kink-Profil

66 = vo tanh <%(z _ h)) (5.2)

mit der konstanten intrinsischen Dicke
wiQntr = Cintr£2- (5.3)

Der Faktor c¢in, héngt ausschliefslich von der Definition der Grenzflache tiber
die Gewichtsfunktion p ab und betrigt nach (4.6) und (4.8) unter Beriicksich-
tung der Umskalierung (4.2)

=6 fiir p ox ¢l
Cintr = 7.[23 . b ¢IG (54)
=3 fiir p oc ¢

Erweitert man die Theorie um die erste Ordnung der Schleifen-Entwicklung,
vergrofsern die Fluktuationen héherer Ordnung die intrinsische Dicke.

e Die Kapillarwellen-Theorie behandelt Fluktuationen
E~Bgw < A<L (5.5)

der schwingenden Membran zwischen der Korrelations- und der Systemlinge.
Diese erzeugen das Profil

orw = voerf ( (5.6)

%)
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5 Ziel der Simulation

mit der Dicke

w%(W = Akw log, (5.7)

Bgw'
welche linear mit dem Logarithmus der Systemgrofie anwéchst. Der Faktor
Axw ist von der Definition der Grenzflichendicke abhéngig

In2 . ;2
e fiir p o< ¢

Axw =179 ) (5.8)
5 fiir p o< ¢

e Innerhalb der Faltungsnéherung erhalten wir die Gesamtdicke aus der Summe
von Winty und wgw

2 _ .2 2
W = Wipgy + WKw

L
= Cintr&? + Axw log, Brow” (5.9)

Dies gilt fiir p o< ¢, exakt und fiir p o QS’G2 in guter Naherung.

Die Grenzflichendicke ist {iber die Korrelationslange mit der Temperatur verkniipft.
Um die Ergebnisse fiir verschiedene Simulationsparameter besser vergleichen zu kon-
nen, bringen wir (5.9) auf eine temperaturunabhéngige Form, indem wir die Grofen
in Einheiten der Korrelationslinge ausdriicken. Fiir die universelle Dicke w? folgt
dann:

.9 ( w ) 2 e cxw In 2 L
we = = I

26 4 8?2 ©82 Bxw
. L
= UA)iQHtr + AKW 10g2 B . (510)
KW

5.2 Ziel und Methode

Im folgenden Teil der Arbeit wollen wir die in der Theorie getroffenen Vorhersagen
zur Grenzflichendicke anhand einer Gittersimulation iiberpriifen. Die Landau- und
Kapillarwellen-Theorie berticksichtigen ausschliefslich bestimmte Fluktuationen und
unterscheiden zwischen einem intrinsischen und makroskopischen Regime. Bei der
Simulation der Grenzfliche werden aber natiirlich alle Fluktuationen auftreten. Um
also die Giiltigkeit der Theorien iiberpriifen zu konnen, miissen wir die verschiedenen
Fluktuationen trennen.

Wir erreichen eine Hochpass-Filterung, indem wir das System L x L x Z in Blocke
der Grofe B x B x Z unterteilen und jeden Block als eigenes System auffassen. Bei der
Berechnung der Grenzflichendicke w% beriicksichtigen wir dann nur Wellenlingen
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5.2 Ziel und Methode

A < B. Umgekehrt ist es auch moglich zunéchst iiber die Blocke zu mitteln und
dann das System der Grofe % X % X Z zu betrachten. Bei der Mittelung gehen die
Fluktuationen A < B verloren und wir kénnen die Vorhersage der Kapillarwellen-
Theorie zur Verteilung der Grenzflichenpositionen PB(h) bei variablem unteren
Cutoftf B iiberpriifen.

Durch dieses Blocking-Verfahren unterteilen wir die Grenzflachendicke (5.9) ef-
fektiv in zwei Teile

w? = w?ntr + Axw logs Br
2 L
= Wine + Akw logy + Agwlogy — . (5.11)
Byw B
Dicke wQB Varianz von PB(3.6)

Da das Verhalten am kritischen Punkt universell ist, hat Melanie Miiller genau
diese Untersuchungen der Grenzfliche mit einem Ising-Modell gemacht, das in der-
selben Universalititsklasse wie die ¢*-Theorie liegt [Miil04, MMO5]. Sie konnte die
Vorhersagen der Kapillarwellen-Theorie bestétigen, doch {iberraschenderweise zeig-
te sich keine intrinsische Grenzflachendicke, die mit der Landau-Theorie in Einklang
zu bringen war.

Die Vermutung liegt nahe, dass die Abweichungen auf Ising-Artefakte zuriick-
zufithren sind, welche insbesondere bei kleinen Blockgrofsen einen groften Einfluss
haben. Aus diesem Grund werden wir die ¢*-Theorie direkt auf dem Gitter simu-
lieren und koénnen zudem durch die Variation der Parameter den Ubergang vom
Ising-Modell zur ¢*-Theorie beleuchten.
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6 Messverfahren

Die Definitionen und Bezeichnungen sind weitgehend identisch zu den von Melanie
Miiller gewéhlten, damit sich die Ergebnisse gut vergleichen lassen. Aufgrund der
unterschiedlichen Zahlweisen von C++ und Fortran gibt es kleinere Abweichungen
bei der Numerierung der Gréfen: Um die Konsistenz mit dem Programm zu wah-
ren, wird das erste Element immer mit 0 bezeichnet und die fiir Ising-Programm
eingefiihrten Zwischengitterebenen werden nur indirekt verwendet.

6.1 Blocking und lokale Magnetisierungsprofile

Unser Ziel ist es, die Grenzfliche auf verschiedenen Grofsenskalen zu untersuchen
und die Fluktuationen nach ihrer Wellenlénge zu trennen. Aus diesem Grund unter-
teilen wir das Gitter der Grofse L x L x Z in gleich grofée Blocke mit der quadratischen
Grundfliche B x B und der vollen Lange Z. Damit sich das Blocking effektiv in die
numerische Simulation implementieren ldsst, werden Potenzen von zwei als Block-
und Systemgrofen verwendet. Anschlieftend kénnen wir fiir jeden Block i ein loka-
les Magnetisierungsprofil mZB (z) als den tiber die z-Scheiben gemittelten Wert des
Feldes definieren:

1 B-1

z,y=0

Die Position der Grenzflache im Gitter ist nicht fest, sondern gehorcht einer Nor-
malverteilung. Bevor wir deshalb die lokalen Magnetisierungsprofile m? einer Block-
grofe innerhalb einer Konfiguration als auch tiber alle Konfigurationen mitteln kon-
nen, miissen wir die Grenzflache an die gleiche Stelle schieben, da ansonsten die
Mittelung null ergébe. Aus Symmetriegriinden bietet sich die Mitte z = % des Sys-
tems an. Aufserdem orientieren wir das Profil so, dass es von negativen zu positiven
Werten lauft.

6.1.1 Grenzflachenposition

Notwendigerweise brauchen wir zunéchst eine geeignete Methode zur Bestimmung
der Grenzflachenposition. Hierzu verwenden wir das von Prof. G. Miinster vor-
geschlagene und in [Miil04] beschriebene translationsinvariante Rand-Schiebe-Ver-
fahren. Dabei wird sukzessive die Stelle der antiperiodischen Randbedingung z,,
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durch das System gefahren und das Integral {iber das Magnetisierungsprofil myo
betrachtet:

Z—1
Mot = Y mP(2). (6.2)
z=0

Aufgrund der antiperiodischen Randbedingung éndern die Ebenen, die passiert wer-
den, ihr Vorzeichen und tragen wie folgt zu myq bei:

Zap

Mot (Zap) Z mP(z) — Z 2mP (). (6.3)
z=0

Das bedeutet aber auch, dass der Betrag des Integrals genau dann maximal wird,
wenn z,p, auf der Grenzflache liegt, und wir kénnen dies als Definition verwenden:

{mtot )| = max {|myot (zap)| , 2ap = —1}. (6.4)

Fiir den Fall, dass entartete Maxima auftreten und die Grenzflachenposition nicht
eindeutig bestimmt werden kann, wird zufillig eine der Grenzflachenpositionen aus-
gewihlt.

6.1.2 Gemittelte Profile und Gradientenanalyse

Um die im System auftretenden Fluktuationen zu kontrollieren fassen wir die ver-
schobenen Profile innerhalb einer MC-Konfiguration nun fiir jede Blockgrofe zu
einem gemittelten Profil zusammen

1
mCB(Z) = Z mf(z)‘verschoben : (65)

Diese sind die fiir die Fehlerabschitzung relevanten priméren Observablen der Si-
mulation, wobei ng = (%)2 die Anzahl der Blocks der Grofe B innerhalb einer
Konfiguration sind. Fiir die Gradientenanalyse interessant sind jedoch die iiber die
Konfigurationen aller Simulationen und Replica gemittelten Profile

mB(z) = <mf(z)> . (6.6)

Zur Berechnung der Grenzflichendicke definieren wir das normierte Gradienten-

Quadrat fiir das Profil mB(z), 2 =10,2,...,Z — 1
1 2
pP(2) = I [mP(z+ 1) —mP(2)] (6.7)
mit der Normierung
Z-2 ,
N =Y [mP(z+1)-mP(2)] (6.8)
z=0
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6.2 ¢*-Theorie auf dem Gitter

und den normierten Gradienten

pB(z) = % ‘mB(z +1)— mB(z)‘ (6.9)
mit
Z-2
N = Z |mP (2 + 1) —mP(2)]. (6.10)
z2=0

Bei kleinen Blockgrofen ist das Profil nicht monoton steigend. Um zu verhindern,
dass die Gewichtsfunktion im Fall der Definition tiber den Gradienten negativ wird,
wurde in (6.9) der Betrag gesetzt.

Bevor wir die Grenzflichendicke tiber das zweite Moment des (quadrierten) Gra-
dienten berechnen kénnen, miissen wir das Koordinatensystem so verschieben, dass
die Grenzflachenposition bei 0 liegt. Damit geht auch das erste Moment der Ge-
wichtsfunktion p®

“Z414z),=> (F+1+2) p(-5+1+2) (6.11)

gegen null und das zweite Moment liefert das Quadrat der Grenzflachendicke

w} <(—§ +1 +z)2>p — (-4 +1+32)

Z—2
> [(—§+1+z)2 pB(—§+1+z)] —<—§+1+z>f, (6.12)
z=0

6.2 ¢*-Theorie auf dem Gitter

Um das System numerisch simulieren zu kénnen, miissen wir eine diskrete Formu-
lierung der kontinuierlichen ¢*-Theorie auf dem Gitter entwickeln. Ausgehend von
der Wirkung

m2
Slg] = /d% {% (0)? + %& + 7&} (6.13)

ersetzen wir das kontinuierliche Feld ¢ durch eines, das nur auf den Punkten = des
kubischen Gitters mit den Absténden a definiert ist. Dann wird aus dem dreidimen-
sionalen Integral [ d3z die Summe Yow a® und wir definieren die Ableitung auf dem
Gitter als den Differenzoperator

A¢x = 1 (¢x+ﬂ - ¢:v) ) (6'14)

a
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6 Messverfahren

wobei fi/a der Einheitsvektor in die mit p bezeichnete Richtung ist. Dann kénnen
wir fiir die Gitter-Wirkung schreiben:

1 3 2,2 g 3.4
S[(b] = 5;61 {Au¢xAu¢$+m ¢$}+E;a (ﬁgg (6.15)
Fiir numerische Untersuchungen ist es sinnvoll S[¢] umzuschreiben. Mit den Grofen
Vao = V2ko,, a’m? = =27 6, g= % (6.16)
K K%a
vereinfacht sich (6.15) zu
Sl¢] = / a2 {2 00,7 + St + g
PRI TRS ST
3 2 4 2
_ 3 ) K 1 )\be ¢m
= ;a E; (a (Gatin — ¢x)> +—5 + (1 =22 6k)3
= {3k62 + 3r¢%,; — 6r] }
3
+ Q26> barpts + ADS + 05 — 2)02
x pn=1
3
=Y 026 Guipde + ADE — 202 +1) — A+ @2
T pn=1
’ 2
= Z —2kK Z ¢x+ﬂ¢af + (bi + A (¢3: - 1) —A (6'17)
T p=1

Da das letzte A losgelost vom Feld ¢ auftaucht, wird es bei der Normierung ver-
schwinden und kann bereits jetzt aus der Wirkung entfernt werden. Somit erhalten
wir:

3
S[e) =3 8 26 Gurpde + 62+ A (02 —1)° (6.18)
p=1

xT
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7 Prinzipien der
Gleichgewichts-MC-Simulation

Im Folgenden soll ein kurzer Uberblick iiber die Theorie der Monte-Carlo-Simula-
tionen gegeben werden, auf Grundlage dessen anschliefsend der Algorithmus fiir die
numerische Simulation hergeleitet wird. Ausfiihrlichere Darstellungen finden sich
zum Beispiel in [NB99|, [BDFN92| und [Ber04].

7.1 Ubergangswahrscheinlichkeiten

Wir betrachten unser System, das durch den Hamiltonian H beschrieben wird,
im kanonischen Ensemble. Das Wérmebad ermoglicht einen Energieaustausch und
wirkt wie eine schwache Stérung des Hamiltonians, die das System regelméfig von
einen in den anderen Zustand stoft. Dieser Effekt ldsst sich in den numerischen
Rechnungen beriicksichtigen, indem man eine Regel fiir die Dynamik des Systems
aufstellt. Wir definieren die Ubergangsrate R(p — v) so, dass R(p — v)dt die Wahr-
scheinlichkeit ist, dass das System aus dem Ursprungszustand g nach der Zeit dt in
den Zustand v iibergegangen ist und fordern weiterhin, dass R(y — v) zeitunab-
hiingig ist. Ublicherweise beschrinkt sich unser Wissen auf diese Ubergangsraten,
weshalb wir, auch wenn wir den Anfangszustand unseres Systems exakt kennen,
schon nach kurzer Zeit nicht mehr sagen kdnnen, in welchem der sehr vielen mog-
lichen Zustédnde sich das System befindet. An dieser Stelle beginnt die statistische
Behandlung unseres Problems. Wir definieren einen Satz von Gewichten wy,(t), die
die Wahrscheinlichkeit angeben, dass sich das System zur Zeit ¢ im Zustand p befin-
det. Die Statistische Mechanik befasst sich mit eben diesen Gewichten, und sie sind
alles, was wir iiber den Zustand unseres Systems sagen koénnen. Die Anderung der
Wahrscheinlichkeit das System in einem bestimmten Zustand p zu finden, ergibt
sich aus der Wahrscheinlichkeit aus einem anderen Zustand v in diesen zu wechseln
minus der Wahrscheinlichkeit den Zustand p wieder zu verlassen. Dies fiihrt auf die
Mastergleichung

% - Z [wy () R(v — ) — wu(t)R(p — v)], (7.1)

welche uns mit der Nebenbedingung

> wu(t) =1, (7.2)
17

41



7 Prinzipien der Gleichgewichts-MC-Simulation

dass sich das System in einem dieser Zustdnde befinden muss, ergibt, wie sich die
Gewichte iiber die Zeit verdndern. Wenn wir uns fiir eine Messgrofe (Q interessie-
ren, welche den Wert @, im Zustand p annimmt, erlauben uns die Gewichte einen
Erwartungswert fiir Q zur Zeit ¢ zu definieren:

(@) = Quuyl(t). (7.3)
17

Die Beziehung des Erwartungwerts (@) zu @ lasst sich auf zwei unterschiedliche
Weisen verstehen. In der Ensemble-Interpretation nach Gibbs betrachtet man ein
Ensemble von unabhéngigen Kopien unseres Systems, die alle unabhéngig vonein-
ander mit ihrem eigenen Warmebad wechselwirken. Dann ist (Q)) ein guter Schétzer
fiir das Ergebnis, das wir bekdmen, wenn wir zum Zeitpunkt ¢ in jedem System eine
instantane Messung von () durchfithrten und den Mittelwert tiber die Ergebnisse
bildeten.

Die alternative Sichtweise ist weniger streng, aber dafiir ndher an der experimen-
tellen Situation. Wir betrachten nur ein einzelnes System, an dem wir eine nicht-
instantane Messung durchfiithren. Dann ldsst sich (@) als der zeitlichen Mittelwert
von () verstehen, vorausgesetzt, dass das System wéhrend der Messung eine repréi-
sentative Auswahl der Zusténde in der Wahrscheinlichkeitsverteilung w,, durchlauft.
Dies sicherzustellen ist das grofte Problem, denn hiufig sind die Ubergangsraten
R(p — v) nur fiir sehr dhnliche Zusténde nicht verschwindend klein: dies fiithrt uns
auf das importance sampling. Ein weiteres Problem dieser Interpretation ist, dass
sich die Gewichte wy,(t) wihrend der Messung deutlich &ndern konnen. Da dies aber
in der Gleichgewichts-MC-Rechnung nicht auftritt, werden wir hierauf nicht néher
eingehen.

7.1.1 Gleichgewichtszustand

Kehren wir noch einmal zur Mastergleichung (7.1) zuriick. Angenommen, dass das
System einen Gleichgewichtszustand erreicht, in dem sich die beiden Terme auf der
rechten Seite gerade zu null ergénzen, dann ist

dw,,

4 =0 (7.4)

und die Gewichte bleiben konstant. Da es sich bei der Mastergleichung um eine
Differentialgleichung erster Ordnung handelt und w,, auf Werte zwischen null und
eins beschriankt sind, miissen alle Systeme, die durch diese Gleichung beschrieben
werden konnen, frither oder spéter ihr Gleichgewicht erreichen.
Der entscheidende Punkt ist, dass wir die Besetzungswahrscheinlichkeiten
by = lim w,(t) (7.5)

t—o00
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7.2 Prinzipien der MC-Simulation

unseres Systems bereits kennen. Denn nach Gibbs entsprechen diese einer Boltz-
mann- Verteilung

1
b, = Ee*ﬁE# (7.6a)
mit der Zustandssumme

Z =Y e Pu (7.6b)
0

Die zentrale Idee der MC-Rechnung ist, die physikalischen Prozesse, die der Mas-
tergleichung (7.1) zugrunde liegen, zu simulieren, indem wir die Ubergangsraten
nutzen, um die Zustdnde auszuwéhlen, die unser Modellsystem durchlauft. Aus die-
sen Zustédnden lassen sich dann direkt Erwartungswerte fiir die uns interessierenden
Messgroken bestimmen. Wir miissen die Ubergangsraten also derart wihlen, dass sie
die zufélligen thermischen Fluktuationen durch die Wechselwirkung des Systems mit
dem Warmebad widerspiegeln, d. h. dass das Modellsystem unserer MC-Simulation
die gleiche Wahrscheinlichkeitsverteilung w,(t) hervorbringt wie das reale System.
Dies erreichen wir, indem wir die Ubergangsraten R(y — v) so wihlen, dass die
Gleichgewichtslosung der zugehorigen Mastergleichung genau gleich der Boltzmann-
verteilung ist.

Der grofe Vorteil der MC-Rechnung liegt darin, dass wir nicht ldnger jeden mog-
lichen Zustand beriicksichtigen miissen, um eine physikalische Grofse zu bestimmen,
wie es bei einer direkten Berechnung aus (7.6b) notig wére. Diesen Vorteil bezahlt
man natiirlich mit dem Auftreten von statistischen Fehlern und Rauschen in den
Messwerten. Da der analytische oder exakte Weg in den Anwendungsgebieten der
MC-Simulationen iiblicherweise nicht gangbar ist und sich die Fehler, wie wir se-
hen werden, kontrollieren lassen, ist man gerne bereit diesen Nachteil in Kauf zu
nehmen.

7.2 Prinzipien der MC-Simulation

Wir haben gesehen, dass wir den Erwartungswert (Q) einer Messgrofe () berechnen
kénnen, indem wir den mit der Boltzmannwahrscheinlichkeit gewichtetet Mittel-
wert iiber die Messwerte (), in allen moglichen Zustédnden p des Systems bilden.
Da das Modellsystem im allgemeinen zu viele mogliche Zusténde besitzt, konnen
wir nur iiber eine Untermenge summieren. Der MC-Algorithmus wéhlt deshalb M
Zustande puq...up mit einer Wahrscheinlichkeitsverteilung p, aus. Dann ist unser
bestmdoglicher Schétzer fiir @

M —1,—BE,,
Zizl Q#z’pui e PP M—o0

M 1 _—BEp..
Zj:1puje /

Qum = (Q)- (7.7)
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7 Prinzipien der Gleichgewichts-MC-Simulation

Die Wahl der p, hat einen entscheidenden Einfluss auf die Qualitdt unseres Schét-
zers. Nehmen wir an, wir wihlen jeden Zustand mit derselben Wahrscheinlichkeit
aus und betrachten ein System bei niedriger Temperatur. Da nicht geniigend ther-
mische Energie vorhanden ist, um das System in hohere Zustédnde anzuregen, wer-
den die Summen in (7.7) durch sehr wenige Zustédnde dominiert. Dann ist aber
die Wahrscheinlichkeit wihrend einer MC-Simulation einen dieser Zusténde zuféllig
auszuwahlen verschwindend gering und Qs liefert einen sehr unprézisen Schatzwert
fir (Q). Wir konnen aber aus der Not eine Tugend machen, indem wir gerade die
wichtigen Zustédnde mit einer groflen Wahrscheinlichkeit auswéhlen. Die fiithrt uns
auf das Prinzip des

7.2.1 importance sampling

Im System selbst treten die Zustdnde geméfs der Boltzmannverteilung auf. Wir
imitieren diesen Effekt in unserer Simulation, indem wir versuchen unsere Stichprobe
so zu wahlen, dass die einzelnen Zusténde mit einer Wahrscheinlichkeit proportional
zu ihrem Boltzmanngewicht p, = Z ~le=PEu auftreten. Dann vereinfacht sich der
Schétzer (7.7) zu

1 M
Qu = Vi ; Qui- (7.8)

Aber wie erzeugen wir diese Zustédnde? Es ist nicht sinnvoll zufillig Zustédnde zu
erzeugen und diese mit p, zu akzeptieren, da dies auf dieselben Problemen fiihren
wiirde. Die meisten MC-Algorithmen verwenden einen Markov-Prozess, um geeig-
nete Zustédnde zu generieren.

7.2.2 Markov-Prozesse

Ein Markov-Prozess ist ein Mechanismus, der aus dem Zustand p des Systems zu-
fallig mit einer Ubergangswahrscheinlichkeit P(u — v) einen neuen Zustand v ge-
neriert. Auferdem muss er zwei weitere Bedingungen erfiillen:

e P(u — v) ist konstant in der Zeit
e P(u — v) héngt nur von den Zusténden p und v ab.

Der Markov-Prozess hat kein Gedéchtnis, sondern erzeugt unabhéngig von allen
vorherigen Zustanden immer mit der gleichen Wahrscheinlichkeit aus p den neuen
Zustand v. Es ist jedoch nicht nétig, dass P(u — p) gleich null ist; es existiert also
eine endliche Wahrscheinlichkeit, dass das System im Zustand p verweilt. Allerdings
muss der Markov-Prozess einen Zustand erzeugen:

Y Pu—v)=1 (7.9)
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In MC-Simulationen wird der Markov-Prozess wiederholt angewendet, um eine Mar-
kov-Kette von Zustanden zu generieren. Dieser wird dabei so gewahlt, dass unabhén-
gig vom Ausgangszustand schlieflich immer eine Folge an Zustdnden entsprechend
ihrer Boltzmannverteilung produziert wird (Equilibrierung). Dies konnen wir errei-
chen, indem wir zuséatzlich die Bedingungen der FErgodizitdt und des detaillierten
Gleichgewichts erfiillen.

7.2.3 Ergodizitit

In einer Boltzmannverteilung treten alle Zustdnde mit einer von null verschiede-
nen Wahrscheinlichkeit auf. Das heifit, dass es dem Markov-Prozess moglich sein
muss, von jedem Zustand alle Zustédnde zu erreichen. Wir kénnen trotzdem ein-
zelne Ubergangswahrscheinlichkeiten auf null setzen; es muss aber gewihrleistet
sein, dass mindestens ein Pfad nicht-verschwindender Ubergangswahrscheinlichkei-
ten zwischen zwei beliebigen Zustéinden existiert.

7.2.4 Detailliertes Gleichgewicht

Die Bedingung des detaillierten Gleichgewichts stellt sicher, dass nach einer endli-
chen Anzahl MC-Schritte eine Boltzmannverteilung erzeugt wird. Im Gleichgewicht
muss die Rate, mit der das System aus und in einen beliebigen Zustand p tibergeht,
gleich sein:

> puP(p—v) =Y p,Pv— p). (7.10)

Dies entspricht einer zeitdiskreten Version der Mastergleichung (7.1) mit verschwin-
dender Ableitung. Man kann jedoch leicht zeigen, dass diese Bedingung auch durch
Grenzzyklen erfiillt wird. Dies wird jedoch durch die strengere Bedingung des de-
taillierten Gleichgewichts verhindert:

puP(p — v) =p,P(v — p). (7.11)

Mit Gleichung (7.11) ist es also moglich mit unserem Markov-Prozess Zustidnde
einer bestimmten Verteilung p, zu erzeugen. Wir kénnen also einfach fiir p, die
Boltzmannwahrscheinlichkeiten wahlen:

Plu—v) p BB —E,) (7.12)
P(v—p) P

Diese Gleichung, (7.9) und die Ergodizitit sind die Bedingungen, die der Markov-
Prozess erfiillen muss, damit die erzeugte Gleichgewichts- eine Boltzmannverteilung
ist.
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7.2.5 Akzeptanzwahrscheinlichkeit

Es erscheint zunéchst schwierig einen geeigneten Markov-Prozess zu finden, der ex-
akt die richtigen Ubergangswahrscheinlichkeiten liefert. Wir kénnen dieses Problem
jedoch umgehen und jeden Algorithmus zur Erzeugung neuer Zusténde verwenden,
indem wir die Ubergangswahrscheinlichkeit P(; — v) in eine Auswahlwahrschein-
lichkeit g(p — v) fiir den neuen Zustand v und eine Akzeptanzwahrscheinlichkeit
A(p — v), mit der der neue Zustand angenommen wird, unterteilen:

Plp—v)=gp—v)Alp—v) (7.13)

Dies gibt uns komplette Freiheit bei der Wahl von g(p — v), da (7.12) nur das
Verhaltnis
Plp—v) gp—v)Ap—v)
= (7.14)
Pv—p) g —pAy — p)
festlegt. Dadurch dass nicht mehr jeder neue Zustand akzeptiert wird, verringert
sich nattrlich die Effizienz des MC-Algorithmus. Da (7.14) aber auch nur A(y —

v)/A(v — p) fixiert, konnen wir beide Werte mit einem Faktor multiplizieren, und

dies ausnutzen, um den groferen der beiden auf seinen Maximalwert von eins anzu-
heben. Trotzdem muss es immer unser priméres Ziel sein, moglichst viel der Abhén-
gigkeit von P(y — v) von den Zustédnden p und v in der Auswahlwahrscheinlichkeit
g(pr — v) auszudriicken und moglichst wenig in die Akzeptanzwahrscheinlichkeit
einzubringen.

7.3 Algorithmus

Im Prinzip haben wir nun das notwendige Wissen, um einen MC-Algorithmus zu
entwickeln. Bevor wir jedoch damit beginnen, ist es sinnvoll auf die Besonderheiten
des simulierten Systems einzugehen. Um die Grenzflachendicke mit der Korrelati-
onsldnge vergleichen zu kénnen, darf diese nicht zu klein sein. Die Korrelationslange
¢ zeigt ein universelles Skalenverhalten:

bt 4

T-T,
<l (7.15)

Tc

socrt\—”oc'

wobei t die reduzierten Temperatur, T;. die kritischen Temperatur und v der kritische
Exponent ist. Das heifst, um unser System mit ausreichend grofser Korrelationslénge
in der Phase gebrochener Symmetrie untersuchen zu kénnen, sind wir gezwungen,
nahe unterhalb der kritischen Temperatur zu arbeiten. In dieser Region bilden sich
jedoch grofse Cluster aus, die zu kritischen Fluktuationen in den Beobachtungsgro-
fen und zu groften statistischen Fehlern fiihren. Da es sich hierbei um eine inhérente
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7.3 Algorithmus

physikalische Eigenschaft des Systems handelt, ist es umso wichtiger, dass der Algo-
rithmus hiervon weitgehend unbeeinflusst bleibt, das heifst, dass der Markov-Prozess
moglichst unabhéngige Zustinde produziert.

7.3.1 Autokorrelationszeit

Die Autokorrelationszeit 7 ist ein Maf dafiir, wie lange es dauert, um das System
von einem Zustand in einen anderen zu iiberfithren, der sich signifikant vom ur-
spriinglichen unterscheidet. Betrachten wir zum Beispiel die Magnetisierung m des
Systems. Dann ist die Autokorrelation x(¢) durch

() = / At [m(#) — (m)] [m(f + £) — (m)]
:/mﬂmwmmw4y4mﬂ (7.16)

gegeben. Die typische Zeitskala, mit der die Autokorrelation exponentiell abféllt,
definiert die Autokorrelationszeit :

x(t) o< e 7. (7.17)

Man betrachtet Zusténde in der Markov-Kette, die mindestens um 27 auseinander-
liegen, als statistisch unabhéngig. Problematisch ist, dass die Autokorrelation fiir
grofe Zeiten stark verrauscht ist und somit ein Exponentialfit zur Bestimmung der
Autokorrelationszeit abhingig von der Obergrenze des Fits ist. Eine numerisch sta-
bilere Alternative zur Bestimmung von 7 ist, die integrierte Autokorrelationszeit zu
berechnen:

[XO [
!MmN! dt = r. (7.18)

Die Bedeutung der Autokorrelationszeit und ihr Einfluss auf die Fehlerrechnung
wird in Kapitel 7.4 diskutiert.

Leider ist die Korrelationslange nicht die einzige Grofse, die am kritischen Punkt
divergiert, sondern auch die Autokorrelationszeit gehorcht einem Potenzgesetz:

T o [t (7.19a)

Der dynamische Ezponent z ist keine universelle Grofie, sondern wird allein durch
den gewdhlten Algorithmus bestimmt. Zusammen mit Gleichung (7.15) folgt

T o €7, (7.19D)
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7 Prinzipien der Gleichgewichts-MC-Simulation

bzw. da die Korrelationslange am kritischen Punkt durch die endliche Ausdehnung
des Gitters beschréinkt ist:

T o LP. (7.19c¢)

Insbesondere fiir grofse Gitterdimensionen L ist also die Wahl eines passenden Algo-
rithmus von entscheidender Bedeutung. Da wir spéter den logarithmischen Zusam-
menhang zwischen der Blockgrofe und der Grenzflache untersuchen wollen, sind wir
gezwungen auch grofse Gitter zu simulieren.

7.3.2 Metropolis-Algorithmus

Der nach Nicolas Metropolis [MRR'53] benannte Algorithmus folgt genau dem
im Kapitel 7.2 beschriebenen Weg. Wir wihlen die Auswahlwahrscheinlichkeiten
g(u — v) zur Erzeugung eines neuen Zustandes fiir alle moglichen Zusténde v gleich,
indem wir zufillig das Feld an einer Gitterposition um einen Wert zwischen —1,5
und +1,5 variieren. Die Akzeptanzwahrscheinlichkeiten A(u — v) legen wir so fest,
dass (7.14) die Bedingung fiir das detaillierte Gleichgewicht (7.12) erfiillt. Damit
wird das Verhéltnis der Akzeptanzraten ausschlieflich durch die Energiedifferenz
zwischen dem alten Zustand g und dem neuen v bestimmt.

Plu—v) gu—vAlp—v) Alu—v) _ _s5,-5 (7.20)

Plv—p) gv—pwAv—p) A —p)
Um die Effizienz zu maximieren, legen wir die grofsere der beiden Akzeptanzraten
auf eins fest und passen die andere an. Betrachten wir den Fall, dass das System
aus £ in einen Zustand v héherer Energie iibergeht: £, > E,. Dann ist A(v — pu)
die grofere Akzeptanzrate und wir setzten sie auf 1. Damit Gleichung (7.20) auch
weiterhin erfiillt ist, muss A(u — v) dann den Wert e #(F»=Fk) annehmen. Somit
folgt fiir den Algorithmus:

e_ﬁ(El’_EH) falls E]/ - Ep > 05

1 sonst.

Alp —v) = { (7.21)

Mit der Wirkung

S = Z {—2/@2 Guburf + 02+ A (02 — 1)2} , (7.22)
z 1

wobei p die Summe iiber die mit dem Einheitsvektor fi gekennzeichneten néchsten
Nachbarn ist, ergibt sich fiir die Energiedifferenz bei Anderung des Feldes am Ort
x von ¢, auf ¢ :

AE = =25 (6, = 6) buri+ 0,7 — 0.2 =22 (6,7 = 62) + 2 (9" — 62) (7.23)
;
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Es ist leicht ersichtlich, dass man durch wiederholtes Anwenden des Algorithmus
theoretisch alle Zustdnde erreichen kann, die Ergodizitat ist also gewéahrleistet.

Aber wie verhélt sich der Metropolis-Algorithmus in der Ndhe der kritischen Tem-
peratur? Dort bilden sich groffe Doménen gleich orientierter Spins aus. Da aber mit
jedem Monte Carlo Schritt nur ein einzelner Gitterplatz geéindert werden kann, ist
zu erwarten, dass der Algorithmus die kritischen Fluktuation nicht gut imitieren
kann. Denn dadurch, dass innerhalb einer Doméne die benachbarten Spins einen
dhnlichen Wert haben, ist die Akzeptanzwahrscheinlichkeit fiir die neue Konfigu-
ration klein und die Monte-Carlo-Zeit fiir jede Fluktuation wéchst stark mit der
Grofse der Doménen an. In der Tat ist der dynamische Exponent zum Beispiel im
3D Ising-Modell mit z = 2,02 + 0,02 [NB99| sehr grof.

7.3.3 Wolff-Algorithmus im Ising-Modell

Dieses Problem umgeht der Wolff-Algorithmus. Betrachten wir zunéchst das Ising-
Modell:

H=-7]) sis;, (7.24)
(i)

wobei die Summe nur iiber die néchsten Nachbarn lduft und J die Kopplungsstérke
ist. Je weiter wir uns 7 ndhern, desto grofer werden die Doménen gleich ausgerich-
teter Spins, die kollektiv ihre Richtung &ndern. Wenn wir dieses Verhalten effektiv
in einen Monte Carlo Algorithmus iibernehmen wollen, konnen wir nicht lénger auf
einen Single-spin-flip-Markov-Prozess wie den Metropolis-Algorithmus zuriickgrei-
fen, sondern miissen einen Weg finden, grofe Gebiete in einem Schritt zu dndern.
Dies fiithrt uns auf den Wolff-Algorithmus [Wol89].

Die zugrundeliegende Idee ist sehr einsichtig: Wir konstruieren einen Cluster aus
gleich orientierten Spins, indem wir zuféillig einen Spin des Gitters als Startpunkt
wihlen. Dann iiberpriifen wir sukzessive ob die benachbarten Spins das gleiche Vor-
zeichen haben und nehmen sie gegebenenfalls mit einer gewissen, von der Tempera-
tur abhéngigen Wahrscheinlichkeit P,qq in den Cluster auf. Je ndher wir der kriti-
schen Temperatur sind, desto grofser muss die Wahrscheinlichkeit fiir die Aufnahme
in den Cluster sein, den wir anschlieffend mit der passenden Akzeptanzwahrschein-
lichkeit umdrehen.

Abbildung 7.1 zeigt zwei Zustdnde p und v, die sich darin unterscheiden, dass in v
der durch die Linie gekennzeichnete Cluster gedreht wurde. Wir sehen, dass es auch
aukerhalb des gewéhlten Clusters m Spins gibt, die in die dieselbe Richtung zei-
gen, und deren Verbindung zum Cluster beim Umdrehen unterbrochen werden. Es
gibt natiirlich viele Wege, auf denen der Cluster konstruiert worden sein kann, aber
wir wollen uns auf einen beliebigen festlegen, der ausgehend von einem bestimmten
Spin die anderen in festgelegter Reihenfolge hinzugefiigt hat. Dann unterscheidet
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Abbildung 7.1: Wolff-Algorithmus am Beispiel eines 2D-Ising-Modells

sich der umgekehrte Weg, um von v nach p zuriickzugelangen, nur durch die n un-
terbrochenen Verbindungen am Rand des Clusters. Somit ist die Wahrscheinlichkeit
auf dem Vorwirtsweg keinen dieser Spins aufzunehmen (1 — P,gq)™ und auf dem
Riickwértsweg (1 — Pogq)". Die Bedingung des detaillierten Gleichgewichts (7.12)
liefert zusammen mit Gleichung (7.14):

gp = v)A(p — v)
g(v — p)Av — p)

_ man(:u — V) _ —B(E,—E,)
- (1 - Padd) A(V N ,Uz) =¢ " (725)

Jede der m Verbindung, die von p nach v unterbrochen wird, dndert die Energie
um +2J und jede der n neue Verbindung um —2.J, sodass insgesamt

B, — E, =2J(m — n) (7.26)
ist. Eingesetzt in Gleichung (7.25) erhalten wir

Alp —v)

e ] o

Nun koénnen wir folgende erfreuliche Tatsache erkennen: Wenn wir
Pua =1—¢2%/ (7.28)

wihlen, dann ist die rechte Seite von (7.27) eins und wir kénnen beide Akzeptanz-
wahrscheinlichkeiten maximal wéihlen und alle erzeugten Konfigurationen akzeptie-
ren! Mit dieser Wahl arbeitet der Wolff-Algorithmus wie folgt:

1. Wahle zuféllig einen Spin des Gitters aus.

2. Nehme nacheinander die benachbarten Spins, die in dieselbe Richtung zeigen,
mit der Wahrscheinlichkeit P,qq auf.
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3. Wiederhole den zweiten Schritt fiir jeden neu hinzugefiigten Spin. Benachbarte
Spins, die bereits im Cluster sind, miissen nicht erneut betrachtet werden, wohl
aber die, die beim vorherigen Mal abgewiesen wurden.

4. Wenn keine weiteren Spins hinzugefiigt werden kénnen, drehe den Cluster.

Der dynamische Exponent im 3D-Ising-Modell 14sst sich durch den Wolff-Algorith-
mus auf z = 0,33 £ 0,01 [NB99] reduzieren.

7.3.4 Cluster-Algorithmus fiir ¢*

Leider lisst sich der Wolff-Algorithmus in dieser Form nicht ohne weiteres in der ¢*-
Theorie verwenden, da eine einfache Unterscheidung in up- und down-Spins nicht
moglich ist. Brower und Tamayo haben aber gezeigt, dass sich eine eingebettete
Ising-Dynamik identifizieren und durch die Verwendung einer Kombination aus dem
Swendsen-Wang-Cluster- und dem lokalen Heat-Bath-Algorithmus ein dynamischer
Exponent kleiner als eins erreichen ldsst [BT89]. Eine ausfiihrliche Beschreibung
und Herleitung des hier verwendeten Wolff- und Metropolis-Algorithmus findet sich
auch in [Sch06].

Das ¢*-Potenzial geht am kritischen Punkt von einem konvexen in ein Doppel-
mulden-Potenzial iiber, dessen beiden Minima durch die Kink-Losung miteinander
verbunden sind. Wir fiihren die diskreten Ising-Variablen s, ein,

die die beiden Vakua verbinden und aktualisieren sie durch einen angepassten Wolff-
Algorithmus. Das heifst, indem wir fiir feste Werte von |¢,| ein Ising-Modell in
die ¢*-Theorie einbetten, kénnen wir mit einem nicht-lokalen Markov-Prozess die
Dynamik wesentlich beschleunigen.

Da wir nur die Vorzeichen von ¢ betrachten, miissen wir den Wolff-Algorithmus
nur leicht modifizieren. Wir kénnen jedoch nicht mehr annehmen, dass die Wahr-
scheinlichkeit P,qq zur Aufnahme in den Cluster fiir alle Gitterpldtze gleich sind.
Anstelle von Gleichung (7.25) erhalten wir:

5
_ (1 Pa§d> _ o (BB (7.30)
(1~ P)

Fiir die Energiedifferenz sind die quadratischen Terme der Wirkung (7.22) nicht
von Bedeutung. Alle m gebrochenen Verbindungen erhdhen die Energie jeweils um

=N

=

S
o~

=

S
[f=E

=8
N
!
=
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N
!
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7 Prinzipien der Gleichgewichts-MC-Simulation

4kpyPryp und jede der n erzeugten Verbindungen reduziert sie um denselben Be-
trag. ¢4, bezeichnet hierbei den benachbarten Spin auferhalb des Clusters.

I (1-P%)

m n
= S5 = oxp(—AE) —exp | - S 4rpol L+ > areld) oY)
I1 (1 - Pafid> i=1 j=1
j=1
o4t el)
i=1
_ _ (7.31)
n (4) 4 (9)
H 674.‘{(;5% ¢z+ﬂ

1

J

zeigt uns, dass wir erneut durch die Wahl von
L (7.32)

beide Akzeptanzwahrscheinlichkeit fest auf ihren Maximalwert von eins setzen diir-
fen. In den Simulationen wurden pro MC-Schritt 20 Wolff- mit 4 kompletten Me-
tropolis-Updates kombiniert.

7.4 Fehlerrechnung: I'-Methode

Die I'-Methode von Ulli Wolff [Wol04] ist eine Moglichkeit, die Autokorrelationszei-
ten von Messgrofsen, die nicht einfach als arithmetisches Mittel aus den MC-Daten
berechnet werden, abzuschéitzen. Die explizite Betrachtung der Autokorrelations-
funktionen erlaubt eine bessere Abschitzung des Fehlers gegeniiber des haufig ver-
wendeten Binning bzw. Jackknife-Binning, welche die Autokorrelationen nur impli-
zit behandeln. Das folgende Kapitel gibt eine kurze Ubersicht iiber die Arbeitsweise
der I'-Methode.

Unser Ziel ist einen Schéatzwert zu finden fiir die Funktion F', eine abgeleitete
Messgrofe, die im allgemeinen nichtlinear von den priméren Observablen A, ab-
héngt,

F= f(Al,AQ, ) = f(Aa) (733)

zu finden und ihre Autokorrelationszeit zu bestimmen. Wir gehen davon aus, dass
sich das System im Gleichgewicht befindet, und verwenden zur Abschétzung die
MC-Werte der primiiren Observablen a’,. Fiir jede Observable gebe es i = 1,2,..., N
Werte, die durch die Ausfithrung eines MC-Schrittes getrennt sind. In der Praxis ist
es sinnvoll, nicht nur ein einzelnes System zu simulieren, sondern mehrere gleichzei-
tig. Diese triviale Parallelisierung liefert Replica, die im Folgenden mit dem Index
r=1,2,..., R bezeichnet werden. Die Korrelationsfunktion I,z

({0 = A)(@® = Ag)) = 8r.Tas(j — 1) (7.34)

52



7.4 Fehlerrechnung: I'-Methode

korreliert die Abweichung des i-ten Schéatzwertes von A, mit der Abweichung der
Variablen 8 nach (j — i) MC-Schritten.

Da uns die exakten statistischen Mittelwerte A, nicht zuginglich sind, definieren
wir zundchst die Mittelwerte eines Replikums

1 &
-ro__ = i,
a, = N izlaa (7.35)
und iiber diese den natiirlichen Schétzer der priméren Observablen A,

R
_ 1 _
o =+ g N,ay,, (7.36)

R

wobei N = > N, die Gesamtzahl der Messwerte ist. Wir fordern, dass die Schéatz-
r=1

werte erwartungstreu sind und die Abweichungen vom exakten Wert

§ =al — Ay, On =i — Ag (7.37)

verschwinden

(@) = (3a) =0. (7.38)

Nach dem zentralen Grenzwertsatz entsprechen die aly" fiir geniigend grofte NN, einer
Normalverteilung, die durch die Kovarianz-Matrix

N,
< ssy (7:34),(7.35),(7.37) 1 o 1
C = 72 2 Dapli = 0rs = 5= Capbrs x (1+O(r/N)) (7.39)
T ’l,jil T

gegeben ist, wobei
Cag= Y Tag(t) (7.40)
t=—00

nicht von der Lange der Simulation abhangt. Wir nehmen an, dass I',3 exponentiell
mit der Autokorrelationszeit 7 abfillt und die Simulationslinge N, > 7 ist, da
ansonsten eine Fehlerabschéitzung kaum moglich ist. Fiir die Kovarianzmatrix von
a folgt

(Fabs) = 3:Cas X (1 + O(R/N) (7.41)

Unser Schitzwert a,, weicht also vom exakten Wert A, um einen Fehler der Grofien-
ordnung 1/v' N ab und das Ziel unserer Fehleranalyse ist es, C3 moglichst genau
abzuschétzen.
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7 Prinzipien der Gleichgewichts-MC-Simulation

Als néachstes betrachten wir die Schatzer

F = f(ay) (7.42)
und
1 & .
F= ZI N, f(ay) (7.43)

um die abgeleitete Messgrofe F' zu bestimmen. Wir nehmen an, dass die Schatzwerte
der priméren Observablen exakt genug sind, um eine Taylor-Entwicklung nach den
Fluktuationen zu rechtfertigen:

= - 1 -
F=F+ E fala + 3 E fapdads + ... (7.44)
« aﬁ

mit den Ableitungen
of 0% f
o Yy
0Aq 0AL0Ag

die an den exakten Werten A, Ao, ... gebildet werden. Sofern f nichtlinear ist, ist

fa (7.45)

der Schétzer von F' nicht erwartungstreu. Betrachten wir die Abweichung <F — ),

so verschwindet nach (7.38) die erste Summe und wir erhalten mit (7.41)

= 1
<F - F> ~oN Z fapCag (7.46)
op
Der Fehler o ist dann in der fiihrenden Ordnung
= 1
o = <(F - F)2> ~ ~Cr (7.47)
mit
Cr = fafsCag. (7.48)
of

Dies lésst sich noch durch die integrierte Autokorrelationszeit (7.18) ausdriicken

2T
2 int, F’
— i 7.49
mit der naiven Varianz ohne Autokorrelationen
VEp = g fafﬁl“ag(O) (7.50)

ap
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7.4 Fehlerrechnung: I'-Methode

und

Tint, F — i Z Zfafﬁraﬁ(t) (7'51)

t=—00 af

N
2Tint, F

statistischen Sinne unabhéngig sind und den Fehler reduzieren. Trotzdem ist es wich-
tig, mehr als nur diese Zustidnde zu messen, da ansonsten die Autokorrelationszeit
selbst nur schlecht zu bestimmen ist.

Im Rahmen einer numerischen Simulation sind natiirlich die exakten Werte A,
und f, nicht zugénglich und wir definieren einen Schétzer fiir die Autokorrelations-
funktion:

Gleichung (7.49) lésst sich so verstehen, dass nur Messwerte tatsachlich im

R N,—t

- 1 ‘ _ . _

Fop = g7 2 2 (067 = a)(a™" = ap), (7.52)
r=1 i=1

wobei natiirlich zu beachten ist, dass 0 < t < N, fir alle r erfiillt ist. Um die
Autokorrelation der gesuchten Grofe F' zu bestimmen, muss (7.52) projiziert werden

Tp(t) = fafsTap(t)- (7.53)
ap

fa ist derselbe Gradient wie in (7.45), den wir jedoch nicht an den exakten Werten
A, bilden konnen, sondern aus den Daten abschitzen miissen. Hierzu fithren wir
zunéchst eine natiirliche Skala

ho = (7.54)

ein, mit der wir dann den Gradienten der Funktion wie folgt definieren:

= 1 S _ - - _
fa = T [f(aq, o, ..., + hg,...) — f(an, 2, ;@ — hg, .20 (7.55)

Bei der Berechnung der Grenzflachendicke werden aus vielen priméren Observablen
mB(z) (6.5) nur wenige abgeleitete Gréfen w? (6.12) berechnet. Es ist deshalb

C
sinnvoll, nicht die gesamte Autokorrelationsmatrix I'n5(t) zu berechnen, sondern
die gemessenen Daten direkt zu projizieren

ah” — a?r = Zfaagr (7.56)
(63

und diese zur weiteren Berechnung nutzen. Desweiteren schétzen wir die Varianz
und die Kovarianz-Matrix wie folgt ab:

op = Lp(0) (7.57)
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7 Prinzipien der Gleichgewichts-MC-Simulation

und

Crp(W)=Tp(0)+2) Tr(t). (7.58)

Die Summe iiber T r wird bei einem endlichen Wert W abgeschnitten, da die Funkti-
on nach dem exponentiellen Abfall numerische Fluktuationen zeigt und nicht exakt
auf null abféllt (siehe Abbildung 7.2).

0.3 T T T T T

Fe(0)/ T0)

0.25 b
0.2 b

0.15 b

0.05 b

_0.05 1 1 1 1 1 1 1

Abbildung 7.2: Exponentieller Abfall von % bei der Berechnung der Grenzfla-

chendicke iiber das Gradientenquadrat mit L, B = 64, A = 1.1. Die
senkrechte Linie zeigt das automatisch gewéhlte Fenster W.

In [Wol04]| wird zudem ein Algorithmus vorgestellt, der es erlaubt das Fenster W
in (7.58) automatisch zu bestimmen. Unter der Annahme, dass die Autokorrelati-
onszeit T &~ STyt mit einem gewissen Faktor S ist, konnen wir den optimalen Wert
fiir das Fenster bestimmen, indem wir zunéchst die Funktion

9(W) = exp [ W/7(W)] = #(W)/VITN (7.59)
mit

2Tint, F (W) + 1>} - (7.60)

"w)=5 [m (W

sukzessive fiir W = 1,2... berechnen und das W, bei dem ¢(WW) sein Vorzeichen
wechselt und negativ wird, als die obere Grenze der Summe festlegen. Falls Tiy, p <
% wird, setzen wir 7(W) auf einen kleinen positiven Wert.
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7.4 Fehlerrechnung: I'-Methode

Trotzdem ist anschliefend noch von Hand zu sicherzustellen, dass die geschétz-
te integrierte Autokorrelationszeit Ty, (W) als Funktion von W innerhalb ihres
statistischen Fehlers

_ 4 1
<(7_'int,F(W) — Tint,F)2> R N (W + 5" Tint,F) Ti%mp (7.61)

um den gewéhlten Wert fiir W ein Plateau zeigt (siehe Abbildung 7.3), welches sich
durch eine geeignete Wahl des Parameters S beeinflussen lésst. [Wol04] empfiehlt
S =1...2, in der Auswertung der MC-Daten wurde mit S = 1,7 gearbeitet.

2.2 T T T T T T T

o AL

pHIHE |
fﬁ

1.8 I —

1.7 F i E
16 | I i
15 | E
1.4 | :

13 -

1.2 I L L L L L Uitk

Abbildung 7.3: Integrierte Autokorrelationszeit Ty, als Funktion des Fenster-
Parameters W bei der Berechnung von w? iiber das Gradienten-
quadrat fiir L, B =64, A = 1.1.
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8 Ergebnisse

In diesem Kapitel werden die Ergebnisse aus den Rechnungen zur Bestimmung der
Grenzflachendicke und der Einfluss des Parameters A diskutiert. Bei allen verwende-
ten Werten fiir A\ wird s so gewéhlt, dass sich das System knapp unter der kritischen
Temperatur befindet und die Korrelationsldnge zwischen 3 und 5 Gitterabstdnden
betrégt (siehe Tabelle 8.1).

Der grofite Teil der Rechnungen wurde mit Condor |[LLMS88| auf dem Morfeus-
GRID der Westfilischen Wilhelms-Universitdt Miinster ausgefiihrt.

8.1 Korrelationslange

Die ¢*-Theorie gehort zur Universalititsklasse des Ising-Modells und dariiber hinaus
vereinfacht sie sich im Grenzfall des Parameters A\ — oo bei festem x zum Ising-
Modell. Im anderen Grenzfall A = 0 erhélt man eine freie Feldtheorie. Bekannterma-
fen existiert die ¢*-Theorie in zwei Phasen, in der einen ist die Reflexionssymmetrie
¢ — —¢ spontan gebrochen und in der anderen nicht. Die entsprechenden Berei-
che in der k- A-Ebene werden durch die kritische Kurve x.(\) getrennt und werden
qualitativ in Abbildung 8.1 gezeigt.

kritische Linie £¢(\)

Freies-Feld-Limes

[sing-Limes

A

Abbildung 8.1: Qualitative Darstellung des Phasendiagramms der ¢*-Theorie. Die
Phase gebrochener Symmetrie (k > k) wird von der symmetrischen
Phase (k < k.) durch die kritische Linie getrennt, bei der die Kor-
relationslange divergiert.

Leider wurden in der Literatur fiir die einkomponentige ¢*-Theorie in drei Dimen-
sionen nur fiir einige wenige Werte von A die zugehorigen kritischen k. bestimmt (sie-
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8 Ergebnisse

he z.B. [Has99]), sodass ein Vergleich der ¢*-Theorie mit dem Ising-Modell anhand
der kritischen Temperatur iiber weite Bereiche der Kopplungsstédrke nicht méoglich
ist. Auch wenn wir die kritische Amplitude nicht kennen, wissen wir, dass in der
Néhe des kritischen Punktes die kritische Temperatur dem Skalengesetz

€ o |t (8.1)

gehorcht. Da die in der Theorie getroffenen Aussagen auch nur die Grenzflichendicke
mit der Korrelationslénge in Zusammenhang setzten, werden wir direkt auf diese
zuriickgreifen, um die ¢*-Theorie mit dem Ising-Modell zu vergleichen.

Betrachten wir hierzu die verbundene 2-Punkt-Korrelationsfunktion ng) (4,5) (sie-
he z.B. [MM94, CHP99|):

GP(i.5) = (wiwj) — (i) ()
(@i = (@) - (25 = (7)) - (8.2)

In Gittersimulationen ist es iiblich, nicht die gesamte Korrelationsmatrix zu betrach-
ten, sondern die Korrelationsfunktion iiber die sogenannten Zeitscheiben

S =5y 3 Hew) (53

0<e<X
0<y<Y
des Gitters mit den Dimensionen 0 < z,y,z2 < X,Y,Z zu bilden. Die Bezeichnung
Zeitscheibe ist Konvention aber in unserem Fall etwas irrefithrend, da wir ein drei-
dimensionales Gitter betrachten, dessen z-Achse nicht die Zeit ist.
Die Korrelationsfunktion der Zeitscheiben lautet

G(r) = 5 S HS()S(= + 7)) — (S(2) (S + )} (84)

wobei zugunsten einer besseren Statistik iiber z gemittelt wurde. Die exponentielle
Korrelationsldnge £ ist dann die typische Langenskala, mit der die Korrelationsfunk-
tion abfallt:

G(T) =c1 + ¢y e /8, (8.5)

¢y ist eine Konstante und ¢; ein Gitterartefakt, das im Limes z — oo verschwindet.

Leider sind diese Definitionen nicht geeignet, um die Korrelationsldnge der ver-
wendeten Gitter mit antiperiodischen Randbedingungen zu bestimmen. Bei genauer
Betrachtung zeigt sich, dass aufgrund der zufélligen Position der Grenzflache (S(z))
und (S(z + 7)) um null fluktuieren und somit die verbundene Korrelationsfunkti-
on im antiperiodischen Gitter mathematisch identisch mit der unverbundenen bei
periodischen Randbedingungen ist. Eine Moglichkeit ware, die Grenzflachenpositi-
on zu fixieren, dann entsprache die Zeitscheibe der ohnehin bestimmten maximalen
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Blockgrofse bei der Untersuchung der Grenzflachendicke. Allerdings wird die Korre-
lationsfunktion von Gitter- und Randeffekten stark beeintrichtigt, sodass die Kor-
relationslange deutlich {iberschétzt wird. Aus diesem Grund habe ich die Korrelati-
onsfunktion in einer unabhéngigen Simulation mit periodischen Randbedingungen
berechnet. Mithilfe von Gnuplot ldsst sich anschliefend durch einen Fit der Art

G(t)=ca+c <efT/g — ef(ZfT)/g) (8.6)

die Korrelationsldnge préazise abschétzen, wobei der zweite Term der Periodizitét
des Gitters Rechnung trigt (siche Abbildung 8.2).

0.1253 . . : : . ; : . .
01252 | g
0.1251
0.125
0.1249

0.1248

G(1)

0.1247

0.1246

0.1245

0.1244

0.1243 1 1 1 1 1 1 1 1 1

Abbildung 8.2: Korrelationsfunktion G(7) fir £ = 0,1899 und A = 1,1.
Der Fit mit Gnuplot liefert
G(1) = 0,12439 + 0.000831(2) (e~7/326(1) 4 ¢~ (100-7)/3.26(1))

Gnuplot neigt beim Fit der Exponentialfunktion zu einer etwas optimistischen
Einschétzung des Fehlers. Wir sind aber nicht darauf angewiesen, die Korrelations-
linge sehr prézise zu bestimmen. Um die Ergebnisse mit der Gitterrechnung mit
der Kontinuumstheorie vergleichen zu kénnen, miissen wir nur sicher stellen, dass
die Korrelationslange mehrere Gitterabstinde betrdgt. Der Einfluss des Fehlers der
Korrelationslidnge auf den Gesamtfehler der Grenzflachendicke ist gering; aus die-
sem Grund beriicksichtigen wir den doppelten von Gnuplot bestimmten Fehler. Die
Tabelle 8.1 zeigt die Korrelationsldngen der in den Simulationen verwendeten Pa-
rametern. Im folgenden beziehen wir uns mit A = 1,1 immer auf Simulationen mit
k= 0,189900.
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0,0001 | 0,168000 | 3,23(2)
0,01 | 0,171000 | 4,47(1)
0,1 |0,188130 | 3,50(1)
0,4 |0,200278 | 4,01(2)
1,1 | 0,189900 | 3,26(2)
1,1 | 0,189000 | 4,41(2)
10 | 0,120509 | 4,70(4)
30 | 0,114498 | 4,68(4)
50 | 0,113412 | 4,71(4)
125 | 0,188130 | 4,34(2)
oo | 0,111947 | 4,44(2)

Tabelle 8.1: Korrelationsldngen fiir verschiedene Simulationsparameter A und x der
¢*-Theorie und dem Ising-Modell A = oo

8.2 Vom lIsing-Modell zur ¢*-Theorie

Die einkomponentige ¢*-Theorie in der Gitterformulierung (6.17) hat zwei inter-
essante Grenzwerte: Fiir A = 0 erhalten wir das Gaul-Modell auf dem Gitter und
im Limes A = oo finden wir das Ising-Modell wieder. Unser Ziel ist es, die Grenzfla-
che in einem Parameterbereich zu untersuchen, in dem das System noch weit genug
von der freien Theorie entfernt ist, um eine Grenzflache auszubilden, und A trotzdem
klein genug ist, um ein zum Ising-Modell verschiedenes Verhalten zu ermoglichen.

Abbildung 8.3 zeigt die relative Haufigkeit Ny mit der der Betrag der Feldvaria-
blen ¢ fiir verschiedene Werte von A auftritt. Die Kurven sind so normiert, dass sie
ihr Maximum bei eins haben. Da das Ising-Modell nur die Zustdnde £1 kennt, wiir-
de es in dieser Darstellung als Delta-Funktion bei |¢| = 1 auftauchen. Wir kénnen
sehen, dass sich fiir A = 125 eine scharf lokalisierte Verteilung um den Ising-Wert
ausbildet. Auch fir A = 10 treten die Werte um 1 am hé&ufigsten auf, es ldsst
sich aber bereits eine Verschiebung zugunsten kleinerer Werte und eine deutliche
Verbreiterung der Kurve erkennen. Die Abweichungen zum Ising-Fall sind ziemlich
gering und wir werden diese Parameter deshalb nutzen, um die Simulation mit den
Ising-Ergebnissen zu testen.

Fir A = 1,1, A = 0,4 und A = 0,1 hat sich das Verhalten gedndert und wir befinden
uns in einem qualitativ neuen Bereich. Das Maximum der Verteilung hat sich zu
kleinen Werten verschoben und ist deutlich weniger stark ausgeprigt. Artefakte, wie
sie durch die Diskretheit des Ising-Modells entstehen, sind auszuschlieffen und wir
erwarten, dass die Simulation eine intrinsische Grenzflichendicke zeigt.

Fiir noch kleinere A deutet der Gaufs-artige Verlauf der Verteilung an, dass wir
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8.3 Grenzflachendicke

uns dem freien Feld zu weit genéhert haben. Die Auswertung der Grenzflichendicke
wird in diesem Bereich kaum zu sinnvollen Ergebnissen fithren.

Abbildung 8.3: Normierte relative Haufigkeit der Spinvariablen

8.3 Grenzflachendicke

Die Theorie sagt fiir die in der MC-Simulation berechneten Grenzflachendicken (5.9)
einen konstanten Wert fiir kleine Blockgrofien und einen linearen Anstieg mit logy, B

voraus:
w? = cinn€? + Axw logy Iz (8.7)
K
bzw. in der universellen Formulierung (5.10)
W? = iy, + Axw logy ——. (8:8)
Bxw
Die intrinsischen Dicke betragt
-6 n ;2
~ 0,322 f
wi2ntr - ﬂ212 7 ljr pe (bf} (89)
T ~ 0,822 fiir p oc ¢
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Da wir die Simulationen nicht bei exakt denselben Korrelationslangen ausfithren
kénnen, werden wir im Folgenden immer die temperaturunabhéngige Formulierung
verwenden und das Dach weglassen.

Die Blockgrofe B iibernimmt die Rolle der Systemgrofe L (siehe (5.11)), da alle
Fluktuationen A > B abgeschnitten werden. Allerdings miissen wir beachten, dass
die Randbedingungen fiir B < L und B = L unterschiedlich sind. Im ersten Fall sind
diese unbekannt und werden durch die aktuelle Systemkonfiguration vorgegeben, im
zweiten Fall liegen immer periodische Randbedingungen vor.

8.3.1 Vergleich mit dem Ising-Modell

Bei der Simulation des Ising-Modells kann keine intrinsische Grenzflichendicke be-
obachtet werden. Die Dicke bleibt fiir kleine Blockgrofen konstant, sie ist aber
erheblich kleiner als der theoretische Mean-Field-Wert (Abbildung 8.4). Betrach-
tet man den Profilverlauf fiir diese Blockgrofen (Abbildung 8.5) erkennt man den
Grund: Das Randschiebeverfahren bestimmt die Grenzflache so, dass sie immer zwi-
schen zwei Spins mit entgegengesetzen Vorzeichen liegt. Fiir B = 1 bedeutet dies,
dass die Grenzflache auch im MC-gemitteltem Profil immer von —1 nach +1 springt.
Mit steigender Blockgrofe sind die Spins nicht mehr diskret und der Effekt nimmt
ab.

16 0.7

A=125 —+—

| A=125 —+—
0.6 | Ising #--x--

14 Ising +--%--+

12
05

04

2
% 08 1 Winiz 2
03 [ B w intr
06 -
0.4 02
02} ><// | 01t
0 Il Il Il Il Il Il Il 0 e el ¥3 1 Il Il Il Il
3 2 4 0o 1 2 3 4 3 2 4 0 1 2 3 4
log, B log, B

Abbildung 8.4: Dicken w? nach der Definition iiber p o ¢ (links) und p o ?

(rechts) fiir das Ising-Modell und A = 125.

Es ist zu erwarten, dass dieses Problem auch fiir groke A-Werte in den ¢%-
Simulationen auftaucht und wir werden dies nutzen, um zu entscheiden, in welchem
Parameterbereich die ¢*-Theorie sich wie ein Ising-Modell verhilt. Der Profilverlauf
fiir A = 125 (Abbildung 8.5) unterscheidet sich kaum vom Ising-Modell und entspre-
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8.3 Grenzflachendicke

Abbildung 8.5: Grenzflachenprofile mp fiir das Ising-Modell (links) und A = 125
(rechts) mit den Blockgréken B = 20, ...,27.

chend ist auch das Verhalten der Grenzflichendicke in Abhéngigkeit der Blockgrofe
innerhalb ihrer Fehlerbalken identisch (Abbildung 8.4). Lediglich fir B = 1, wo der
Unterschied zum diskreten Modell am grofsten ist, weicht A = 125 fiir die Definition
der Grenzflachendicke iiber den Gradienten signifikant vom Ising-Wert ab.

Abbildungen 8.6 und 8.7 zeigen die Grenzflichendicke fiir A = 10, 30,50 und 125.
Der Verlauf aller Kurven ist gleich: Sie zeigen zunéchst eine konstante, aber nicht
intrinsische Dicke, die sich aus dem unphysikalischen Profilverlauf erklart, und stei-
gen bereits flir Blockgrofen in der Grofenordnung der Korrelationslénge an. Fine
intrinsische Dicke ldsst sich nicht beobachten, allerdings kénnen wir die Blockgro-
e, bei der der theoretische Wert erreicht wird, zur Abschétzung des intrinsischen
Cutoffs verwenden:

23/2¢ ~ 2 83¢  fii /
Bintr { 5 ’ 5 wpece 2 (810)

23¢ = 8¢ fir p o<

Ab Blockgroken von mehreren Korrelationslangen steigen die Grenzflachendicken li-
near mit log, B an, wie es die Kapillarwellen-Theorie vorhersagt. Das Abknicken fiir
das maximale B = L wird durch die unterschiedlichen Randbedingungen erzeugt;
dies zeigt sich besonders beim Vergleich der Simulationen mit L = 64 und L = 128.

8.3.2 VergroBerung des Parameterbereichs

Entfernen wir uns nun weiter vom Ising-Limes und untersuchen die Grenzflichen-
dicke fiir die interessanten A-Werte zwischen 0,1 und 1,1. Zusétzlich betrachten wir
noch das Verhalten fiir A = 0,0001 (L = 64), A = 0,01 und A = 10, um die Unter-
schiede zum freien Feld und Ising-Modell zu beleuchten.
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8 Ergebnisse

Die Ergebnisse in den Abbildungen 8.8, 8.9, 8.10 und 8.11 iiberraschen. Es zeigt
sich, dass das qualitative Verhalten der Grenzflichendicke mit der Blockgrofie weit-
gehend unbeeinflusst von der Wahl des Parameters A bleibt.

e Die Kurven A = 1,1 und A = 0,4 steigen iiber einen groferen Bereich linear

mit logy B an und erreichen den theoretischen Wert wZ, = bereits frither als
fiir A = 10. Der intrinsische Cutoff reduziert sich fiir p o< ¢ auf By, ~ 2€.
Insgesamt sind die Abweichungen vom Ising-Fall unerwartet gering und wir
konnen kein intrinsisches Regime beobachten: Die Grenzflichendicke sind fiir
kleine Blockgrofen immer noch deutlich kleiner als die theoretische Vorhersage
und zeigen bei der Definition iiber den Gradienten auch keinen konstanten

Bereich.

e Verringern wir A auf 0,1, beobachten wir einen sofortigen linearen Anstieg
von w? mit log, B. Dieser flacht aber bereits fiir B ~ ¢ deutlich ab und die
maximalen Dicken bleiben kleiner als die bisherigen. Der Knick deutet darauf
hin, dass die untere Grenze des geeigneten Parameterbereichs fiir A erreicht
wurde.

e Fiir A\ = 0,01 zeigt sich ein grundsitzlich verschiedener Verlauf von w?. Die
Grenzflache weist fiir kleine Blockgrofsen einen deutlich gréfseren Wert auf,
die Kurve knickt aber bereits bei der halben Korrelationslinge so stark ab,
dass ein linearer Anstieg nicht mehr beobachtet werden kann. Fiir A = 1074
sind die Grenzflachendicken weitgehend unabhéngig von der Blockgrofe. Das
System bildet keine Grenzfliche mehr aus und verhélt sich wie ein freies Feld.

Die Simulationsergebnisse widersprechen auch weiterhin den Vorhersagen der
Theorie, und die Vermutung, dass Isingartefakte das Entstehen einer intrinsischen
Grenzflachendicke verhindern, hat sich als falsch herausgestellt. Um die Effekte, die
fiir die Abweichungen verantwortlich sind, weiter zuriickzuverfolgen, betrachten wir
als néichstes die in der Simulation erzeugten Profile.

8.3.3 Magpnetisierungsprofile
Abbildung 8.12 zeigt die gemittelten Magnetisierungsprofile m?(z) = <mB(z)> (sie-

C
he (6.6)). Das Profil A = 10 verhélt sich erwartungsgeméf dhnlich zum Isingprofil
(Abbildung 8.5), allerdings zeigen auch die Profile fiir kleine A fiir kleine Blockgro-
fen den unphysikalischen Peak. Dieser ist zwar deutlich kleiner, doch es verwun-
dert, dass er auch bei der Simulation mit kontinuierlichen Spins auftritt. In m®(z)
ist er nur noch sehr schwach ausgepréigt und die Profile B > 8 zeigen den theo-
retisch vorhergesagten tanh-Kink. Dies deckt sich auch mit der Beobachtung, dass
die Grenzflachendicke erst fiir diese Blockgrofien den Wert der intrinsischen Dicke

iiberschreiten.

66



8.3 Grenzflachendicke

Abbildung 8.13 zeigt die lokalen Grenzflichenprofile mZ(z) einer einzelnen Kon-
figuration. Aufgrund der viel geringeren Statistik unterliegen die Profile stérkeren
Fluktuationen, aber trotzdem lasst sich auch hier unzweifelhaft das gleiche Problem
erkennen.

Es zeigt sich, dass die Ursache grundlegender Natur ist. Betrachten wir die lo-
kalen Profile m?(z) eines einzelnen Blocks bevor diese gemittelt werden (siehe Ab-
bildungen 8.14 und 8.15), zeigt sich wie die Abweichungen von den theoretischen
Vorhersagen entstehen.

In den kleinen Blockgrofien schwankt die Magnetisierung mit einer Amplitude,
die grofser als eins ist. Damit sind die Fluktuationen deutlich grofser als das Kink-
Profil, welches etwa zwischen —0,3 und +0,3 verlauft, und iiberlagern dieses voll-
standig. Im Mittel heben sich die Fluktuationen wieder auf, sie verhindern aber,
dass das Randschiebeverfahren die Grenzflichenposition korrekt bestimmen kann.
Stattdessen wird das Profil immer gerade so geschoben, dass in der Mitte des Sys-
tem ein grofler Sprung in der Magnetisierung auftritt. Dies verhindert, dass die
Fluktuationen sich nahe der Grenzflichenposition kompensieren und die erzeug-
ten MC-Konfigurationen fiir das Profil korrekte Ergebnisse liefern kénnen. Fiir die
Blockgrofe B = 4 sind die Fluktuationen noch so grof wie das Profil selbst und erst
die Block-gemittelten Magnetisierungsprofile mf(z) zeigen einen gentigend glatten
Verlauf, um die Grenzflachenposition sicher bestimmen zu konnen.

In diesen Graphen l&sst sich auch gut der Einfluss des A-Parameters beobachten.
Fiir A = 10 und B = 1 springt das Profil zwischen Werten, die nahe bei +1 liegen.
Fiir kleinere A sind die Fluktuationen deutlich zufélliger und die Profile zeigen besser
den tanh-Kink.

Die m}(z) werden direkt durch das Metropolis-Update des MC-Algorithmus um
Werte zwischen —1,5 und +1,5 verdndert. Um sicherzustellen, dass es sich bei den
Schwankungen der Magnetisierung tatséchlich um physikalische Fluktuationen und
nicht um Artefakte der MC-Simulation handelt, reduzieren wir die Amplitude, mit
der der Metropolis-Algorithmus einen Spin verdndern kann, auf 0,1. Abbildung 8.16
zeigt, dass die mzl(z) unabhéngig von den Einstellungen sind: Die Grofe der Fluk-
tuationen hat sich nicht geéndert.

8.3.4 Fixierung der Grenzflache

Bisher konnten wir in den Simulationen die intrinsische Grenzflichendicke nicht
nachweisen, da die genauen Grenzflaichenpositionen fiir kleine Blockgréfsen nicht
zuverlassig bestimmt werden konnten.

Wir haben die Abweichungen von den theoretischen Vorhersagen genutzt, um den
intrinsischen Bereich abzuschétzen, aber die intrinsische Dicke selbst blieb bisher
verborgen. Indem wir das Wandern der Grenzfliche mit der zusétzlichen Zwangs-
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bedingung

¢<§> =0 (8.11)

unterbinden und die Grenzflache in der Mitte des Systems fixieren, kénnen wir das
intrinsische Profil betrachten. Abbildung 8.17 zeigt die Magnetisierungsprofile fiir
A = 1.1 mit der Bedingung (8.11) in einem System der Grofe L = 64. Wir erkennen
sofort, dass auch fiir B = 1 bereits das Konfigurationsmittel den tanh-Kink zeigt. Da
es zu keiner Verbreiterung der Grenzflachendicke durch die Kapillarwellen kommen
kann, sind die Ergebnisse im MC-Mittel fiir alle Blockgrofen gleich.

Die Auswertung der Profile ergibt:

w | x=01 | AX=04 | A=11 | A=10 | theor.
pocd | 1,00+£004 | 087£0,02 | 086+0,02 | 0,722+0,01 | 0,822
pocd® | 0,271 £0,002 | 0,220 £ 0,002 | 0,199 + 0,002 | 0,149 £ 0,001 | 0,322

e Die Gradient-Grenzflachendicken fir A = 0,4 und A = 1,1 sind innerhalb
der Fehler gleich und liegen nur leicht iiber der theoretischen Vorhersage. Da
bei der Berechnung die héheren Ordnungen der Fluktuationen vernachléssigt
wurden, sind die numerischen Ergebnisse fiir die intrinsische Grenzflachendicke
konsistent mit der Theorie.

Fiir A = 10 wird die Dicke unterschiitzt, was auf die Ahnlichkeit zum Ising-
Modell zuriickzufiihren ist. Es treten also tatséchlich Abweichungen durch
Ising-Artefakte auf, diese sind aber vergleichsweise klein. Der Parameter A =
0,1 an der Grenze zum freien Feld liefert einen deutlich gréfseren Wert.

e Die Gradient-Quadrat-Dicken zeigen untereinander das gleiche Verhalten: A =
0,4 und A = 1,1 liefern dieselben Werte, A = 0,1 weicht nach oben und A = 10
nach unten ab. Insgesamt liegen aber alle Ergebnisse unter der Vorhersage.
Dies ist vermutlich darauf zuriickzufiihren, dass die Berechnung der Grenz-
flachendicke iiber die Definition des Gradientenquadrats numerisch anfalliger
ist.
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Abbildung 8.6: Gradient-Dicken der Grenzflache fiir A = 10, 30,50 und 125.
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Abbildung 8.7: Gradient-Quadrat-Dicken der Grenzfliche fiir die ¢*-Theorie mit
A =10,30,50 und 125.
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Abbildung 8.9: Gradient-Quadrat-Dicken fiir 0.01 < A < 10 und der Gittergrofe
L =128.
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Abbildung 8.10: Gradient-Dicken fiir 1074 < X\ < 10 und der Gittergrofe L = 64.
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Abbildung 8.12: Lokale Grenzflichenprofile der Simulationen L = 128.
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Abbildung 8.13: Lokale Grenzflichenprofile einer Konfiguration der Groke L = 128.
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Abbildung 8.14: Lokales Grenzflichenprofil eines einzelnen Blocks in der Simulation
74 L =128 und A = 1.1.
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Abbildung 8.15: Lokales Grenzflachenprofil eines einzelnen Blocks vor und nach dem

Randschiebeverfahren in den Simulationen L = 128.
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Abbildung 8.16: Verschobene lokale Grenzflachenprofile eines einzelnen Blocks fiir
A = 1.1 und unterschiedlichen Metropolis-Amplituden.
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Abbildung 8.17: Lokale Magnetisierungsprofile fiir A = 1.1 mit fixierter Grenzflache.
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9 Zusammenfassung und Ausblick

Nahe der kritischen Temperatur konnen Grenzflichen durch die Landau- und Ka-
pillarwellen-Theorie auf zwei verschiedenen Groéfienordnungen beschrieben werden.
Der Ubergang zwischen dem intrinsischen und makroskopischen Regime findet in
der Grokenordnung der Korrelationslédnge statt. Auferhalb dieser Modelle ist die
Unterscheidung zwischen diesen Regimen zunéchst unklar. In einer Ising-Simulation
kénnen die Fluktuationen mittels eines Blocking-Verfahrens getrennt werden und
es lassen sich die Aussagen der Kapillarwellen-Theorie bestétigen, die intrinsische
Grenzfldche bleibt aber weiterhin verborgen.

In dieser Arbeit wurde deshalb die ¢*-Theorie selbst auf einem Gitter simuliert.
Indem die Parameter der Simulation schrittweise vom Ising-Limes zum Freien Feld
gedndert wurden, konnte gezeigt werden, dass die Ising-Artefakte nur eine geringe
Verantwortung fiir die Abweichung der berechneten intrinsischen Grenzflichendicke
zur Theorie haben. Tatséchlich iberlagern kritische Fluktuationen die Grenzflachen-
profile kleiner Blockgréfsen und verhindern, dass die Grenzflichenposition bestimmt
werden kann. Die Monte-Carlo-Daten konnen nicht korrekt gemittelt werden und
fliihren auf einen unphysikalischen Profilverlauf. Es ist mit den gewé&hlten Metho-
den prinzipiell nicht méglich, durch Hoch- und Tiefpass-Filterung der Fluktuationen
gleichzeitig die beiden unterschiedlichen Regime sichtbar zu machen.

Aus diesem Grund wurde die Grenzflichenposition in einer zweiten Simulation
fixiert. Dadurch zeigt die Grenzflichendicke natiirlich keine Verbreiterung mit der
Systemgrofse durch den Einfluss der Kapillarwellen, aber es konnte nun die int-
rinsische Dicke bestimmt werden. Fiir die Definition iiber das zweite Moment des
Gradienten zeigt sich bei der Parameterwahl A = 0,4 und A = 1,1 eine gute Uber-
einstimmung mit den theoretischen Vorhersagen. Bei den iiber das Quadrat des
Gradienten berechneten Dicken kam es zu Abweichungen, die sich vermutlich drauf
zuriickfiihren lassen, dass diese Definition numerisch weniger robust ist.

Somit ist die numerische Situation nicht unédhnlich zur Theorie: Es ist gelungen,
die intrinsische und die makroskopische Grofsenordnung einzeln sichtbar zu machen
und deren Aussagen zu bestétigen, aber es war nicht moglich, innerhalb einer Si-
mulation den Ubergang zwischen diesen Regimen zu beobachten. Dies zu zeigen ist
auch weiterhin eine interessante Aufgabe. Hierzu miisste eine Methode gefunden
werden, die Grenzflachenposition auch bei sehr starken Fluktuationen zuverlissig
zu bestimmen.

7



9 Zusammenfassung und Ausblick
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