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Einleitung
Das Standardmodell (SM) als Grundlage der Elementarteil
henphysik umfa�t dieTheorie der starken und der elektros
hwa
hen We
hselwirkung. Die starke We
h-selwirkung als Wirkung der Quarks untereinander wird dur
h die Quanten
hro-modynamik (QCD) bes
hrieben. Die entspre
hende Ei
hsymmetriegruppe ist dieni
ht-abels
he Gruppe SU(3)C (der Index C ist eine Abk�urzung f�ur 
olor; [CL84,FGL73℄). Die elektros
hwa
he Wirkung hingegen wirkt zwis
hen allen Teil
hen. Diesie bes
hreibende Theorie ist das Glashow-Salam-Weinberg-Modell (GSW-Modell,[GSW℄). Renormierbar wird dieses dur
h die Einf�uhrung einer Austaus
hwe
hsel-wirkung mit ei
hinvariant erzeugten Vektorbosonen bei der e�ektiven 4-Fermionen-kopplung. Diese Bosonen werden mit W� und Z0 bezei
hnet.Da aber der Masse
harakter der Vektorbosonen die f�ur die Renormierbarkeit ent-s
heidende Ei
hinvarianz bei der Erzeugung dieser Bosonen verletzt, wird ein zus�atz-li
hes skalares Feld (au
h Higgs-Feld genannt) mit quartis
her Selbstkopplung ��4hinzugef�ugt, bei dem eine massenerzeugende spontane Symmetriebre
hung (SSB)auftritt [Hig66℄. Diesen Vorgang nennt man Higgs-Me
hanismus. Das entspre-
hende Feldquant hei�t Higgs-Boson, dessen Masse vom Wert der renormiertenquartis
hen Selbstkopplung �R abh�angt. Es konnte bisher no
h ni
ht experimentellbest�atigt werden.Die Gr�o�e der Fermionenmassen h�angt ebenfalls �uber die Yukawa-We
hselwirkungmit der SSB zusammen. Die dieser 
hiralen Theorie zugeordnete Ei
hsymmetrie-gruppe ist die SU(2)L
U(1)Y-Gruppe. Der Index L dabei bedeutet, da� die SU(2)L-Ei
hfelder nur an die linksh�andigen Fermionen-Anteile koppeln, Y symbolisiert dies
hwa
he Hyperladung.Wi
htige N�aherungsmodelle f�ur die GSW-Theorie sind die Higgs-Yukawa-Modelle,in denen das Higgs-Boson dem �-Teil
hen mit Masse m� entspri
ht. Die Ei
h-gruppe SU(2)L 
 U(1)Y wird auf eine mathematis
h relativ einfa
h handhabbareSU(2)L 
 SU(2)R-Gruppe erweitert [Mon87℄. Dabei unters
heidet man zwis
henHiggs-Modellen, bei denen man die Yukawa-Kopplungen, also die Kopplungen derFermionen an das skalare Feld, verna
hl�assigt (was ni
ht die Bes
hreibung des Top-Quarks mit eins
hlie�t) und wo die Fermionen nur �uber die 
hiralen Ei
hfelder mitden skalaren Komponenten we
hselwirken, und den Yukawa-Modellen, bei denen dieYukawa-Kopplungen als stark angenommen werden (was beim Top-Quark der Fallist); diese k�onnen auf die Massens
hranken des Higgs-Bosons Ein
u� aus�uben. DieEi
hfelder werden dabei in der Regel verna
hl�assigt [MM94℄.3



Aus der Diskretisierung der Modelle mittels der Gitterregularisierung resultiert dasProblem der Fermionen-Verdopplung [NN81℄. Dieses wird dur
h Hinzuf�ugung ei-nes Spiegelfermionenfeldes � und eines 
hiral invarianten Wilson-Terms [Wil75,Mon87℄ beseitigt, der imKontinuums-Limes vers
hwindet. Dieser Term sorgt daf�ur,da� den Doppelfermionen Massen in der Gr�o�e des Cuto�s verliehen wird. Dabeireduziert si
h die Mindestanzahl der bes
hriebenen Fermionen-Paare auf zwei.Um die Spiegelfermionen im Kontinuums-Limes wieder zum Vers
hwinden zu brin-gen, kann man sie auskoppeln, indem man ihre Massen und Kopplungen glei
h Nullsetzt, was im ungeei
hten Fall |wie im hier behandelten Modell{ mit dem Theo-rem von Golterman und Pet
her gezeigt wird [GP89℄. Diese Vorgehensweise hat vorallem den numeris
hen Aufwand bei den entspre
henden Bere
hnungen verringert.Thema dieser Arbeit ist die Untersu
hung von numeris
hen Datenmaterial [LMMP93℄eines global SU(2)L
SU(2)R-invarianten Yukawa-Modells in der gebro
henen Phasemit st�orungstheoretis
hen Methoden. Hauptgegenstand dabei sind die Propagato-ren der skalaren Goldstone-Felder, die einer derartigen Untersu
hung am lei
htestenzug�angli
h sind.Die Arbeit gliedert si
h in vier Teile:Im ersten Kapitel wird die Zusammensetzung der Wirkung des Modells vorgestellt,woraus si
h dann die entspre
henden Feynman-Regeln ergeben.In Kapitel 2 werden die Selbstenergien der Bosonen und Fermionen mit den Regelnin 1-Loop-Ordnung entwi
kelt.Kapitel 3 stellt die Renormierung des Modells und die 1-Loop-Ausdr�u
ke der re-normierten Parameter in der Entkopplung G� = 0 dar. Dur
h die \Umkehrung"dieser Terme gelangt man zur renormierten St�orungstheorie. Das Vers
hwinden derSpiegelfermionen-Parameter wird dur
h das Golterman-Pet
her-Theorem gezeigt.Die renormierte St�orungstheorie dient in Kapitel 4 dazu, N�aherungsfunktionen f�urden inversen Goldstone-Propagator aufzustellen, mit denen si
h wi
htige Kenn-gr�o�en des Modells dur
h Anpassung der Parameter in diesen Ausdr�u
ken |demsog. \Fitting", d.h. der Na
hbildung der numeris
hen Werte dur
h die N�aherungs-ausdr�u
ke| ermitteln lassen. Dabei wird untersu
ht, wel
he von mehreren inbe-tra
ht zu ziehenden Parameterkon�gurationen die g�unstigsten sind.
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Kapitel 1Yukawa-Wirkung
1.1 Standardmodell der elektros
hwa
hen We
h-selwirkungIm SM ist die elektros
hwa
he We
hselwirkung in ei
hinvarianter Darstellung dur
hdie Summe S = S' + S	 + SE (1.1)in Minkowski-Metrik gegeben. S' ist der Higgs-Anteil,S' � Z d4xf(D�')y(D�')�m2'y'� �('y')2g (1.2)mit der kovarianten AbleitungD� � �� � ig22 � jAj� � ig12 B�: (1.3)Der Index � bezei
hnet die 4 Raumri
htungen , also die Ri
htungen 1 bis 4. Aj�und B� sind die Ei
hfelder der SU(2)L 
 U(1)Y-Ei
hsymmetriegruppe, g1 und g2bezei
hnen die Ei
hkopplungen, die �j die Pauli-Matrizen und'(x) =  '1(x)'2(x)! (1.4)mit '1; '2 2 C ist das Higgs-Dublett. Im allgemeinen bezei
hnet gem�a� den �ubli-
hen Konventionen ein grie
his
her Bu
hstabe die Indizes 1 bis 4, ein lateinis
herdie von 1 bis 3. Doppelt vorkommende Indizes in einer Multiplikation bedeutenEinstein-Konvention, d.h. au
h ohne explizites Summenzei
hen wird addiert.Der Fermionen-Term S	 besteht aus den KomponentenS	 = SF + SY ; (1.5)wobei man die Wirkung eines freien Fermions,SF � Z d4x	 i
�D�	 (1.6)5



1.2. YUKAWA-WIRKUNG AUF DEM GITTERmit f
�; 
�g = 2 g�� (1.7)(in Minkowski-Metrik) und die Yukawa-We
hselwirkungSY �Xjk Gjk Z d4xf	Lj' Rk +  Rj'y	Lkg (1.8)mit der Kopplungsmatrix Gjk hat. Der Ei
h-Anteil lautetSE � �14 Z d4xfF j��F j �� +B��B��g (1.9)mit F j�� � ��Aj� � ��Aj� + g2�jklAk�Al� und B�� � ��B� � ��B�. Die 	L sind dieSpinoren des linksh�andigen SU(2)L-Dubletts, die  R diejenigen des re
htsh�andigenU(1)Y-Singuletts. Beispiele sind die leptonis
hen Materiefelder	L =  �ee !L ;  R = eR (1.10)in der 1. Generation, oder 	L =  ���!L ;  R = �R (1.11)in der 2. Generation. �e bezei
hnet das Elektronneutrino, e nat�urli
h das Elektron,�� das Myonneutrino und � das Myon, wobei �R ni
ht mit der glei
hlautenden Be-zei
hnung f�ur die sp�ater auftau
hende renormierte Fermionenmis
hmasse verwe
h-selt werden sollte! Bei den Quarks w�are beispielhaft	L =  t�b�!L ;  R = t�R; b�R (1.12)in der 3. Generation zu nennen. t und b sind Symbole f�ur top- und bottom-Quark,� ist der Farbindex.1.2 Yukawa-Wirkung auf dem GitterGegenstand dieser Arbeit ist die Untersu
hung der skalaren Propagatoren im Higgs-Yukawa-Sektor des Standardmodells. Dabei werden mehrere erhebli
he Eins
hr�an-kungen und Vereinfa
hungen vorgenommen.Zum einen werden die Ei
hkopplungen g1, g2 aufgrund ihrer mit Niederenergie-Experimenten gemessenen geringen Gr�o�e verna
hl�assigt. Das bedeutet SE = 0und damit eine globale SU(2)L 
 U(1)Y-Ei
hinvarianz.Zum anderen werden nur wenige s
hwere Fermionen-Dubletts ber�u
ksi
htigt, da dasmassivste Fermion die ni
ht-perturbativen Eigens
haften des Higgs-Yukawa-Sektorsbestimmt [Fri93℄. Es wird zudem angenommen, da� die Isospin-Partner des links-h�andigen Dubletts die glei
he Masse haben und damit die Massenaufspaltung der6



KAPITEL 1. YUKAWA-WIRKUNGDublett-Partner ignorierbar ist. Das re
htsh�andige Singulett wird auf ein Dubletterweitert, f�ur das dieselben Annahmen wie f�ur das linksh�andige Dublett gelten.Dies bedeutet eine Vergr�o�erung der U(1)Y-Symmetrie auf eine SU(2)R-Symmetrie,womit man insgesamt eine globale SU(2)L 
 SU(2)R-Ei
hsymmetrie vorliegen hat.Au�erdem wird die Generationenstruktur der Materiefelder ignoriert.Da dem Theorem von Nielsen und Ninomiya zufolge auf dem Gitter zu jedemFermionen-Dublett ein Fermionen-Dublett mit spiegelbildli
her Chiralit�at, also einSpiegelfermionen-Paar existieren mu� [NN81℄, resultieren aus den Vereinfa
hungennur no
h zwei Yukawa-Kopplungsparameter G und G� statt einer kompliziertenMatrix Gjk wie in (1.8). G ist dabei die Yukawa-Kopplung der Fermionen, G� dieder Spiegelfermionen [Mon87℄.Dieses Modell bezei
hnet man als Yukawa-Modell. Die letzten S
hritte sind der�Ubergang zur Euklidis
hen Formulierung und die Gitterregularisierung [Jer89℄,Z d4x!Xx ; ��f(x) � �f�x� (x)! ��fx � fx+�̂ � fx: (1.13)Die �̂ symbolisieren die Einheitsvektoren in die 4 Raumri
htungen. Das Summen-zei
hen Px steht f�ur Xx � Xx2�; (1.14)wobei das Gitter � der De�nition� � fx = (x1; : : : ; x4) 2 ZZ4; 0 � x� < L�; � = 1; : : : ; 4g (1.15)entspri
ht und speziell L1 = L2 = L3 � L und L4 � T gilt. Dabei ist L dieGitterausdehnung in Raumri
htung und T die Ausdehnung in Zeitri
htung.Die (Higgs-)Yukawa-Wirkung auf dem Gitter in der  �-Notation ist die SummeS � S' + S	: (1.16)S' ist die skalare Wirkung, sie besitzt die FormS' �Xx 8<:��X�� 12 Tr('yx+�̂'x) + �2�2 Tr('yx'x) + �4 Tr2('yx'x)9=; ; (1.17)wobei � den skalaren Hopping-Parameter, �� die na
kte skalare Masse und � diequartis
he Kopplung bezei
hnen. �� unter dem Summenzei
hen bedeutet, da� �s�amtli
he 8 Raumri
htungen dur
hl�auft, also �1, ..., �4. Das skalare Feld entspri
ht'x =  '4x + i'3x '2x + i'1x�'2x + i'1x '4x � i'3x ! (1.18)bzw. in kompakter Darstellung'x = '4x1 + i'jx�j: (1.19)7



1.2. YUKAWA-WIRKUNG AUF DEM GITTERDie �j sind die Paulimatrizen. F�ur sie gilt � yj = �j und �i�j = Æij + i �ijk�k, und es istTr('yx'x) = 2'�x'�x: (1.20)S	 setzt si
h aus drei Termen zusammen gem�a�S	 � SF + SW + SY ; (1.21)dabei istSF �Xx n� �(�x x +  x�x)�KX��( x+�̂
� x + �x+�̂
��x)o (1.22)die Wirkung f�ur Fermionen und Spiegelfermionen,SW � �rKXx nX��(�x+�̂ x � �x x +  x+�̂�x �  x�x)o (1.23)der 
hiral invariante Wilson-Term [Mon87, Wil75℄, der die Entkopplung der un-erw�uns
hten Doppel-Fermionen [NN81, KS81℄ dur
h Erzeugung sehr gro�er Doppel-Fermionenmassen im Kontinuum-Limes gew�ahrleistet, undSY �Xx nG ( Rx'yx Lx +  Lx'x Rx) +G�(�Rx'x�Lx + �Lx'yx�Rx)o (1.24)ist der Yukawa-We
hselwirkungsterm, der die Fermionen an das skalare Feld kop-pelt. Die Indizes L und R korrespondieren zu den entspre
hend indizierten SU(2)-Ei
hgruppen.Der Parameter K ist der fermionis
he Hopping-Parameter, der f�ur Fermionen so-wie Spiegelfermionen aufgrund der Freiheit bei der Normierung glei
h gew�ahlt wird,� � ist die na
kte Fermionen-Mis
hmasse und r bezei
hnet den Wilson-Parameter.Ohne den Wilson-Term (1.23) w�urde der Ausdru
k (1.21) die Bes
hreibung von 32Fermionen-Zust�anden umfassen, mit ihm, d.h. wenn 0 < r � 1 ist, reduziert si
hder Formalismus auf zwei Zust�ande. F�ur � � w�ahlt man die Normierung� � + 8 rK = 1: (1.25)Zusammengefa�t ergibt si
hS	 =Px n� �(�x x +  x�x)�K P��( x+�̂
� x + �x+�̂
��x)�rK P��(�x+�̂ x � �x x +  x+�̂�x �  x�x)+G ( Rx'yx Lx +  Lx'x Rx) +G�(�Rx'x�Lx + �Lx'yx�Rx)o: (1.26)Hierbei ist  x das Fermionen- und �x das Spiegelfermionen-Feld; beide sind 
harak-terisiert dur
h ihr Verhalten bei 
hiralen Transformationen der bereits oben erw�ahn-ten SU(2)L 
 SU(2)R-Gruppe. 8



KAPITEL 1. YUKAWA-WIRKUNGDie 
-Matrizen gehor
hen im Euklidis
hen der Vertaus
hungsrelationf
�; 
�g = 2Æ�� (1.27)(vgl. mit (1.7)). Aus ihnen de�niert man si
h zus�atzli
h
5 � 
1
2
3
4; (1.28)f�ur dieses ist 
y5 = 
5:Im �ubrigen ist 
�� � �
�:Eine m�ogli
he Darstellung f�ur die 
-Matrizen ist die folgende:
j = i 0 �j��j 0 ! ; 
4 =  1 00 �1 ! : (1.29)Setzt man PL � 12(1 + 
5) (1.30)und PR � 12(1 � 
5); (1.31)so ergeben si
h links- und re
htsh�andige Komponenten dur
h L = PL ;  R = PR ; �L = PL�; �R = PR�: (1.32)Bei den adjungierten Spinoren gilt: L =  PR;  R =  PL; �L = �PR; �R = �PL: (1.33)Die Felder transformieren si
h nun gem�a� L ! UL L; �L ! UR�L;  R ! UR R; �R ! UL�R (1.34)und  L !  LU yL; �L ! �LU yR;  R !  RU yR; �R ! �RU yL; (1.35)wobei UL 2 SU(2)L; UR 2 SU(2)R.Den Yukawa-AnteilSY =Xx nG ( Rx'yx Lx +  Lx'x Rx) +G�(�Rx'x�Lx + �Lx'yx�Rx)o (1.36)9



1.2. YUKAWA-WIRKUNG AUF DEM GITTERkann man infolgedessen au
h umformen inSY = Px fG ( xPL'yxPL x +  xPR'xPR x) +G�(�xPR'yxPR�x + �xPL'xPL�x)g= Px fG  x(PL'yxPL + PR'xPR) x +G��x(PR'yxPR + PL'xPL)�xg:Nun ist4(PL'yxPL + PR'xPR)= (1 + 
5)('4x1 � i'jx�j)(1 + 
5) + (1 � 
5)('4x1 + i'jx�j)(1 � 
5)= '4x1 � i'jx�j + '4x
5 � i'jx�j
5 + '4x
5 � i'jx�j
5 + '4x1 � i'jx
5�j
5+ '4x1 + i'jx�j � '4x
5 � i'jx�j
5 � '4x
5 � i'jx�j
5 + '4x1 + i'jx
5�j
5= 4('4x1 � i'jx
5�j):Analog gilt PR'yxPR + PL'xPL = '4x1 + i'jx
5�j:De�niert man �j � �i
5�j ; �4 � 1 ; (1.37)erh�alt man s
hlie�li
h f�ur die Yukawa-Kopplung den Ausdru
kSY =Xx (G  x��'�x x +G��x�y�'�x�x): (1.38)Mit den De�nitionen 	x �   x�x!; 	x �   x�x!; (1.39)der \Umnormierung" (wodur
h man zur formalen �Ahnli
hkeit zur Kontinuumstheo-rie gelangt, was die Aufstellung der Feynman-Regeln erlei
htert)	0x � p2K 	x; 	0x � p2K 	x; '0�x � p2�'�x (1.40)und G0 � G 2Kp2�; G0� � G�2Kp2� (1.41)lautet der Ausdru
k dannS	 =Xxy 	0x�Pxy + Vxy('0)�	0y (1.42)mit der FermionenmatrixPxy � 0B� 12 P�� 
�Æx+�̂ y ( �2K Æxy � r2 P�� Æx+�̂ y)1( �2K Æxy � r2 P�� Æx+�̂ y)1 12 P�� 
�Æx+�̂ y 1CA ; (1.43)10



KAPITEL 1. YUKAWA-WIRKUNGder Kopplungsmatrix Vxy('0) � V �xy'0�x; (1.44)wobei V �xy � Æxy  G0 �� 00 G0��y� ! ; (1.45)und � � � � + 8rK: (1.46)Die P -Matrix ist translationsinvariant, d.h. Pxy = Px+z y+z:Die 8� 8-Matrizen �� gehor
hen den Beziehungen
��� = �y�
� ; ��
� = 
��y� ; 
5�� = ��
5 ; 
5�y� = �y�
5 (1.47)und �i�j = �yi�yj = �Æij � i �ijk�k ; �yi�j = �i�yj = Æij + i �ijk�k: (1.48)Au�erdem ist Tr(���y�) = 8Æ��: (1.49)1.3 Phase mit gebro
hener Symmetrie1.3.1 Wirkung f�ur das skalare FeldIn der gebro
henen oder FM-Phase dient die De�nitionS' � Xx (14 P� Tr(��'y0x��'0x)� m208 Tr('y0x'0x) + g096 Tr2('y0x'0x)) (1.50)= Xx (12 P� (��'0�x��'0�x)� m204 '0�x'0�x + g04! ('0�x'0�x)2) ; (1.51)als Ausgangspunkt f�ur die skalare Wirkung. Die Abk�urzung FM steht f�ur ferro-magnetis
h, in Anlehnung an die Festk�orperphysik, aus der aufgrund der formalenAnalogie die Phasen-Unters
heidung stammt.Die gebro
hene Phase ist dur
h das Minuszei
hen vor dem quadratis
hen Term ge-kennzei
hnet. Mit De�nition (1.40) wird daraus na
h wenigen Umformungss
hrittenS' = 12Xx ((8�� m202 �)'�x'�x + g0�26 ('�x'�x)2 � 2�X� '�x+�̂'�x) :Dur
h die Ersetzungen 11



1.3. PHASE MIT GEBROCHENER SYMMETRIE1� 2� = 8�� m202 � (1.52)und � = g0�26 (1.53)bekommt man s
hlie�li
hS' =Xx (12'�x'�x + 12�('�x'�x � 1)2 � �X� '�x+�̂'�x) : (1.54)Mit �� = 8�� m202 � (1.55)erh�alt man (1.17).Aus (1.36) und (1.34) kann man das Transformationsverhalten ablesen:'x ! UL'xU yR: (1.56)Der Grundzustand des freien skalaren '-Feldes aus S' ergibt si
h dur
h Bestimmungdes Minimums des e�ektiven Potentials der zugeh�origen Lagrange-Di
hte.Das e�ektive Potential istVeff(') = �m204 '0�'0� + g04! ('0�'0�)2= �('�'�)2 � (8�� 1 + 2�)'�'�: (1.57)Mit der Ersetzung '�x'�x ! �2 bekommt manVeff = ��2 � (8�� 1 + 2�)�4;was an der Stelle �2 = s2 � 12�(8�� 1 + 2�) = 3m202�g0 (1.58)ein Minimum annimmt. Mit diesem Minimum hat man den Grundzustand gefunden,wel
her das Vakuum de�niert. Setzt man�x � '4x � s; �jx � 'jx (1.59)und �0x � p2� �x; �0jx � p2� �jx; (1.60)erh�alt man die Glei
hung 12



KAPITEL 1. YUKAWA-WIRKUNGS' =Xx n12 X� [(���0x)2 + ���0jx���0jx℄ + m202 �20x+p3g0m03! �0x[�20x + �0jx�0jx℄ + g04! [�20x + �0jx�0jx℄2o: (1.61)Da in diesem Ausdru
k keine �2j -Terme vorkommen, erh�alt man f�ur die �j Masselo-sigkeit, die Konstituenten der Felder �j sind damit als Goldstone-Bosonen de�niert.Dagegen ist f�ur das �-Teil
hen Masse erzeugt worden, da ein entspre
hender qua-dratis
her Term vorkommt. Das skalare Feld'0x = �x1 + i�jx�j (1.62)transformiert si
h ni
ht mehr na
h (1.56), die Symmetrie ist spontan gebro
henworden.Anders ausgedr�u
kt lautet (1.61)S' =Xx n4�(�2x + �jx�jx)� �X� (�x+�̂�x + �jx+�̂�jx) + 12�[(�2x + �jx�jx) + 2s �x℄2o(1.63)bzw.S' = 12�Xxy n�xA�xy�y + �jxA�xy�jyo + 12�Xx n(�2x + �jx�jx)2 + 4s �x(�2x + �jx�jx)o(1.64)mit den Matrizen A�xy = 4(2 + �s2� )Æxy �X�� Æx+�̂ y (1.65)und A�xy = 8Æxy �X�� Æx+�̂ y: (1.66)Die inversen Fouriertransformierten sind der freie Propagator vom �-Feld,��(q) = (q̂2 +m20)�1; (1.67)und derjenige der �-Felder, ��(q) = (q̂2)�1 (1.68)mit dem Gitterimpuls q̂� � 2 sin q�2 : (1.69)13



1.3. PHASE MIT GEBROCHENER SYMMETRIE1.3.2 Fermionen-Propagator in der gebro
henen PhaseIn der gebro
henen Phase istVxy(') = V �xy'0�x = V 4xy �p2�(�x + s)�+ V jxyp2��jx = Vxy('00) + V 4xys0 (1.70)mit dem umnormierten skalaren Feld'00 = p2�'0 (1.71)und dem analog umnormierten Minimums0 � p2� s: (1.72)De�niere die \Impulsmatrix" Pxy � Pxy + s0 V 4xy: (1.73)Die Fouriertransformierte davon lautet~P(q) = 0B� iP� sin q�
� +G0 s01 ( �2K � rP� 
os q�)1( �2K � rP� 
os q�)1 iP� sin q�
� +G0�s01 1CA : (1.74)Einf�uhrung der (Massen-)Parameter�0 � � �2K ; �0 � G0 s0; �0� � G0�s0 (1.75)sowie des Gitterimpulses q� � sin q� (1.76)und �q � ( �2K � rX� 
os q�) = �0 + r2 q̂2 (1.77)liefert den kompakteren Ausdru
k~P(q) = 0B� �0 1 + iP� q�
� �q1�q1 �0�1 + iP� q�
� 1CA (1.78)bzw. ~P(q) =  �0 �q�q �0� !+ iq � 
  1 00 1 ! ; (1.79)wobei 
 � (
1; 
2; 
3; 
4): (1.80)14



KAPITEL 1. YUKAWA-WIRKUNGDie Einheitsmatrix 1 hinter Matrixelementen unglei
h 1 wurde zwe
ks Vereinfa-
hung der S
hreibweise weggelassen.Die inverse Matrix stellt den freien Fermionen-Propagator in der gebro
henen Phasedar; mit ~D(q) � (q2 + �2q � �0 �0�)2 + (�0 + �0�)2q2 (1.81)gilt f�ur ihn:�	(q) �  �  � ��� ��� ! (q) � ~P�1(q) =~D�1(q)� �0 q2 � �0�(�2q � �0 �0�) (q2 + �2q � �0 �0�)�q(q2 + �2q � �0 �0�)�q �0�q2 � �0 (�2q � �0 �0�) !�iq � 
  q2 + �2q + �20� �(�0 + �0�)�q�(�0 + �0�)�q q2 + �2q + �20 ! �: (1.82)
1.3.3 Feynman-RegelnDie Feynman-Regeln sind die folgenden (in Abwandlung von [CL84,Hua82, MM94℄):1. Jeder ni
ht-orientierten Linie wird der entspre
hende skalare Propagator, jederorientierten Linie (mit Pfeil) der entspre
hende Fermionen-Propagator zuge-ordnet.2. Jedem Vertex wird der entspre
hende Ausdru
k als Faktor zugeordnet.3. Bei inneren Vertizes gilt Impulserhaltung modulo 2�.4. Zusammenh�angende Vertizes werden kontrahiert; daraus resultiert eine Spurf�ur Fermionens
hleifen.5. Loop-Impulse werden im unendli
hen Volumen �uber die erste Brillouin-Zoneintegriert, d.h. Rq � 1(2�)4 �R�� d4q, im endli
hen Volumen wird dementspre
hendsummiert, d.h. Zq � 1L3T X�L=2<nj�L=2�T=2<n4�T=2 � 1L1L2L3L4 X�L�<n��L� (1.83)mit qj = 2�L nj und q4 = 2�T n4.6. Ber�u
ksi
htigt werden mu� au
h no
h jeweils ein Symmetriefaktor, der si
hgem�a� der Glei
hung SG = NG PGmGQi=1mi! MGQj=1Mj! (1.84)15



1.3. PHASE MIT GEBROCHENER SYMMETRIEzusammensetzt. Dabei ist NG das Produkt aus der Gesamtzahl der Verbin-dungsm�ogli
hkeiten der an einem Graphen G beteiligten Vertizes na
h au�enund der verbleibenden Zahl der m�ogli
hen Verkn�upfungen der Vertizes un-tereinander, PG die Anzahl der M�ogli
hkeiten, die �au�eren Beine spiegelungs-und rotationsfrei zu vertaus
hen (tritt in dieser Arbeit ni
ht auf), MG ist dieAnzahl der an dem jeweiligen Graphen beteiligten Vertizes, dieMj bezei
hnendie Zahl der Verbindungsm�ogli
hkeiten eines Vertex j bei gegebener Anord-nung na
h au�en, mG � MG bezi�ert die Vertexarten und die mi z�ahlen dieinnerhalb eines Graphen auftretenden Vertizes einer Art i. Zudem mu� no
hf�ur Fermionens
hleifen ein Faktor �1 ber�u
ksi
htigt werden, der von der Ver-wendung der Grassmann-Variablen herr�uhrt.1.3.3.1 Skalarer AnteilAus (1.61) lassen si
h direkt die Diagramme ablesen:� � =��(q); (1.85)�i �j= Æij��(q) (1.86)f�ur die freien Propagatoren. F�ur die Dreipunkt-Vertizes ergibt si
h� �� = �p3g0 m0; (1.87)� �j�i = �qg0=3 m0Æij (1.88)und f�ur die quartis
he Kopplung
�� �� = �g0; (1.89)
�� �j�i = �13g0Æij; (1.90)16



KAPITEL 1. YUKAWA-WIRKUNG
�l�i �k�j = �13g0(ÆijÆkl + ÆikÆjl + ÆilÆjk): (1.91)1.3.3.2 Fermionis
her AnteilDer freie Fermionen-Propagator in der gebro
henen Phase ist wegen seines Matrix-
harakters geri
htet und lautet� � � = ���(q), (1.92)wobei �; � =  ; �. Die Yukawa-Kopplung wird mit den Vertizes�

� � = � G0 1 00 G0�1 ! (1.93)und �i
� � = � G0 �i 00 G0��yi ! (1.94)ausgedr�u
kt.1.4 Symmetris
he PhaseAuf die physikalis
h ni
ht relevante symmetris
he Phase, die au
h PM-Phase ge-nannt wird, gehe i
h nur kurz ein, um sie zumindest verglei
hend zur gebro
henenPhase vorzustellen (PM ist die Abk�urzung f�ur paramagnetis
h). Mit geringeremmathematis
hem Aufwand k�onnen einige Ph�anomene untersu
ht werden, die au
hin der gebro
henen Phase auftau
hen.Die skalare symmetris
he Wirkung wird alsS' � Xx (14 P� Tr(��'y0x��'0x) + m204 Tr('y0x'0x) + g096 Tr2('y0x'0x)) (1.95)17



1.4. SYMMETRISCHE PHASE= Xx (12P� (��'0�x��'0�x) + m202 '0�x'0�x + g04! ('0�x'0�x)2) (1.96)angesetzt. Der positive quadratis
he Term kennzei
hnet den symmetris
hen Cha-rakter. Dur
h die Ersetzungen 1� 2� = 8�+m20� (1.97)und (1.53) erh�alt man (1.54) und mit�� = 8�+m20� (1.98)gelangt man zur Wirkung (1.17).�Ahnli
h wie in Abs
hnitt 1.3.1 bere
hnet man die freien Propagatoren, dabei erh�altman als massebehaftete skalare Propagatoren�ij(q) = Æij(q̂2 +m20)�1 (1.99)und den Fermionen-Propagator�	(q) = (q2 + �2q)�1  �iq � 
 �q�q �iq � 
 ! : (1.100)Da� der skalare Propagatorausdru
k (1.99) (bis auf das Krone
ker-Æ) dem Propa-gator (1.67) glei
ht, verdankt er der 4 im Nenner des Faktors m204 von De�nition(1.95), was den Unters
hied zum analogen Faktor im Wirkungsausdru
k (1.50) dergebro
henen Phase erkl�art.

18



Kapitel 2Propagatoren in der gebro
henenPhaseIn diesem Kapitel werden die St�orungsentwi
klungen f�ur die na
kten Selbstenergienin 1-Loop-Ordnung angegeben, die der S
hl�ussel f�ur die entspre
henden Entwi
k-lungen der renormierten Parameter im n�a
hsten Kapitel sind. Zu diesem Zwe
kwerden zun�a
hst einmal die Propagatoren und die 2-Punkt-Vertex-Funktionen (al-so die inversen Propagatoren) de�niert, ans
hlie�end mit den Feynman-Regeln ausAbs
hnitt 1.3.3 die 1-Loop-Graphen aufgestellt und s
hlie�li
h deren Summen alsSelbstenergien gebildet.2.1 De�nitionen der Propagatoren2.1.1 Skalare Propagatoren und VakuumerwartungswertDie De�nitionen f�ur die skalaren Propagatoren im Ortsraum lautenG�;xy �<�x�y>
 �<�x�y>�<�x><�y> (2.1)und G�;ij;xy �<�ix�jy>: (2.2)Im Impulsraum erh�alt man den skalaren �-Propator einfa
h mittels Fouriertransfor-mation, G�(p) = 1V Xxy <�x�y>
 eip (x�y); (2.3)analog zum skalaren �-Propagator,G�;ij(p) = 1V Xxy <�ix�jy> eip(x�y); (2.4)19



2.1. DEFINITIONEN DER PROPAGATORENwobei V = L3 T = Px 1 das Gittervolumen ist, L3 steht symbolis
h f�ur L1L2L3,das Produkt der Gitterl�angen in Raumri
htung, T stellt die L�angenausdehnung inZeitri
htung dar. Der ni
ht mit ij indizierte �-Propagator ist einfa
h der MittelwertG�(p) � 13V Xij G�;ij(p) = 13V Xi G�;ii(p): (2.5)Die Inversion liefert die 2-Punkt-Funktionen�(2;0)� (p) � �G�1� (p);�(2;0)�;ij (p) � ( G�1�;ij(p) ; i = j0 ; i 6= j : (2.6)Die umnormierten inversen Propagatoren gehor
hen der Proportionalbeziehung�(2;0)0 (p) = 12��(2;0)(p): (2.7)Der Vakuumerwartungswert (VEV = Va
uum Expe
tation Value) des Feldes '0� istv0 � s0 +<�0>; (2.8)wobei <�0> der oberhalb des Baumgraphen-Niveaus (engl. tree level) ni
ht ver-s
hwindende VEV des Feldes �0 ist.2.1.2 Fermionen-PropagatorAnalog zu den skalaren Propagatoren de�niert man den fermionis
hen Propagator,der im Unters
hied zu den Erstgenannten Matrix
harakter hat:G��(p) �<��> (2.9)mit �; � =  ; �. Der inverse Propagator wird dur
h Matrixinversion gewonnen,�(0;2)�� (p) = �G�1��(p); (2.10)der volle Propagator hat die Gestalt�(0;2)	 (p) = 0� �(0;2)  �(0;2) ��(0;2)� �(0;2)�� 1A (p): (2.11)Den 0-indizierten vollen Propagator erh�alt man aus�(0;2)0	 (p) = 12K�(0;2)	 (p): (2.12)20



KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE2.2 Propagatoren in 1-Loop-Ordnung2.2.1 Skalare PropagatorenDie 2-Punkt-Vertex-Funktionen in 1-Loop-Ordnung haben folgende Form:�(2;0)(p) = ���1(p) + �(p); (2.13)wobei �(p) die Selbstenergie darstellt. Daher kann man wegen (2.6) bzw. (B.26)nun die skalaren Propagatoren folgenderma�en entwi
keln:G(p) = �(p)1��(p)�(p) � �(p)[1 + �(p) �(p)℄: (2.14)Aus den Feynman-Regeln (1.85) bis (1.91) und (1.92) bis (1.94) ergeben si
h f�ur den�-Propagator in 1-Loop-Ordnung folgende Graphen (die �au�eren Beine dienen nurder Unters
heidbarkeit, werden aber ni
ht mitber�u
ksi
htigt):= 362! 3!2 3 g0m20 Rq��(p+ q)��(q); (2.15)= 42! 2!2 g0m20 Rq��(p+ q)��(q); (2.16)= � 22! Nf Rq Tr�V 40 �	(p+ q)V 40 �	(q)�; (2.17)wobei V 40 gem�a� V �0 �  G0 �� 00 G0��y� ! (2.18)de�niert ist, = 124! g0 Rq��(q); (2.19)
= 362! 3!2 g0 Rq��(q); (2.20)21



2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG
= � 22!2 g0 Rq��(q); (2.21)
= 62! 3! 3g0 Rq��(q); (2.22)
= 63! p3g0m0 Rq Tr�V 40 �	(q)�: (2.23)F�ur die Spurausdr�u
ke gelten folgende Relationen:Tr�V 40 �	(q)� = 8 ~D�1(q) h(G20 +G20�)q2 � 2G0 G0�(�2q � �0 �0�)i s0 (2.24)undTr�V 40 �	(p+ q)V 40 �	(q)� =8 ~D�1(p+ q) ~D�1(q)��(G20 �20 +G20��20�) p+ q2 q2�(G20 +G20�)�0 �0�h p+ q2(�2q � �0 �0�) + q2(�2p+q � �0 �0�)i+2G0 G0�h�0 �0�(�2p+q � �0 �0�)(�2q � �0 �0�)+�p+q�q(p+ q2 + �2p+q � �0 �0�)(q2 + �2q � �0 �0�)i�p+ q q n(G20 +G20�)(p+ q2 + �2p+q)(q2 + �2q)+2G0 G0��0 �0�h(p+ q2 + �2p+q) + (q2 + �2q)i+2 (G0 +G0�)2 �0 �0��p+q�q + (G20 +G20�)(�0 �0�)2o�;

(2.25)
wobeiNf die Zahl der Fermion-Spiegelfermion-Paare darstellt. F�ur den �-Propagator�ndet man f�unf Diagramme: 22



KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE
i j = 82! 2!2 13Æijg0m20 Rq��(p+ q)��(q); (2.26)i j = � 22! 13ÆijNf Rq Tr�V k0 �	(p+ q)V k0 �	(q)�; (2.27)
i j = � 22!2 13Æijg0 Rq��(q); (2.28)
i j = 62! 3! Æijg0 Rq��(q): (2.29)Bei den n�a
hsten beiden Graphen ist der Aufbau des Vorfaktors zu aufwendig, des-wegen sei er nur einfa
h angegeben:i j = �56 Æijg0 Rq��(q); (2.30)
i j = 12 Æijg0 Rq��(q); (2.31)
i j = 22!ÆijNfq g03m20 Rq Tr�V 40 �	(q)�; (2.32)wobei f�ur die Spur von (2.27) unter Ausnutzung der Relationen (1.47) und (1.48)gilt: 23



2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG
Tr�V k0 �	(p+ q)V k0 �	(q)� =�3 ~D�1(p+ q) ~D�1(q)��(G20 �20 +G20��20�) p+ q2 q2�(G20 +G20�)�0 �0�h p+ q2(�2q � �0 �0�) + q2(�2p+q � �0 �0�)i+2G0 G0�h�0 �0�(�2p+q � �0 �0�)(�2q � �0 �0�)��p+q�q(p+ q2 + �2p+q � �0 �0�)(q2 + �2q � �0 �0�)i+p+ q q n(G20 +G20�)(p+ q2 + �2p+q)(q2 + �2q)+2G0 G0��0 �0�h(p+ q2 + �2p+q) + (q2 + �2q)i�2 (G0 +G0�)2 �0 �0��p+q�q + (G20 +G20�)(�0 �0�)2o�:

(2.33)
Mit G0� = 0 st�o�t man dann auf die Ausdr�u
ke��(2;0)0� (p) = p̂2 +m20 � ��(p) (2.34)und ��(2;0)0�;ij(p) = Æijnp̂2 � ��(p)o (2.35)mit den Selbstenergien��(p) = 12 g0m20Z qh3( dp+ q2 +m20)�1(q̂2 +m20)�1 + ( dp+ q2)�1(q̂2)�1i+g0Z qh(q̂2 +m20)�1 + (q̂2)�1i�8Nf G20 Zq q2(q2 + �2q)2 + �20 q2�8Nf G20 Zq �20 p+ q2 q2 � p+ q � q (p+ q2 + �2p+q) (q2 + �2q)[(p+ q2 + �2p+q)2 + �20 p+ q2℄[(q2 + �2q)2 + �20 q2℄ (2.36)
und��(p) = 13 g0m20Z qh( dp+ q2 +m20)�1(q̂2)�1i+13g0Z qh(q̂2 +m20)�1 � (q̂2)�1i�8Nf G20 Zq q2(q2 + �2q)2 + �20 q2+8Nf G20 Z q �20 p+ q2 q2 + p+ q � q (p+ q2 + �2p+q) (q2 + �2q)[(p+ q2 + �2p+q)2 + �20 p+ q2℄[(q2 + �2q)2 + �20 q2℄ : (2.37)

24



KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASEDie vollen Ausdr�u
ke mit beliebigen G0 und G0� stehen im Anhang (Glei
hungen(B.29) und (B.30)).2.2.2 Vakuumerwartungswert des �-FeldesDrei Graphen �ndet man in 1-Loop-Ordnung f�ur den �-VEV:= � 33! p3g0m0 Rq��(q); (2.38)
= � 12! p3g0m0 Rq��(q); (2.39)
= Nfm20 Rq Tr(V 40 �	(q)): (2.40)Somit hat man dann den VEV<�0> = �p3g02m0 Zq h(q̂2 +m20)�1 + (q̂2)�1i+8Nfs0m20 Zq ~D�1(q) h(G20 +G20�)q2 � 2G0 G0�(�2q � �0 �0�)i (2.41)und somit im Entkopplungsfall G0� = 0<�0> = �g0 s02m20 Zq h(q̂2+m20)�1+(q̂2)�1i+8Nfs0m20 G20 Zq q2(q2 + �2q)2 + �20 q2 : (2.42)2.2.3 Fermionen-PropagatorIn der Struktur entspri
ht der Fermionen-Propagator den skalaren Propagatoren,��(2;0)0	 (p) = ��1	 (p)� �	(p) = ~P(p)� �	(p); (2.43)wobei �	(p) die Fermionen-Selbstenergie ist. In 1-Loop-Ordnung ergeben si
h dieGraphen 25



2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG
= 33!V 40 p3g0m0 Rq��(q); (2.44)
= 12!V 40 p3g0m0 Rq��(q); (2.45)
= � 22!V 40 Nfm20 Rq Tr�V 40 �	(q)�: (2.46)Man erh�alt also dur
h diese drei Graphen eine Proportionalit�at zum VEV des �-Feldes gem�a� �V 40 <�0>. Ebenso gilt in 1-Loop-Level die Proportionalbeziehung= �V j0 <�0j>, (2.47)dieser Anteil wird ni
ht ber�u
ksi
htigt, da <�0j> = 0. Die �ubrigen Graphen sind= 22! Rq��(p+ q)V 40 �	(q)V 40 ; (2.48)
= 22! Rq��(p+ q)V j0 �	(q)V j0 : (2.49)Mit (1.47) und (1.48) ergibt si
h f�ur die Matrixprodukte mit G0� = 026



KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASEV 40 �	(q)V 40 = G20 �0 q2 � i q � 
(q2 + �2q)(q2 + �2q)2 + �20 q2  1 00 0 ! (2.50)sowie V j0 �	(q)V j0 = �3G20 �0 q2 + i q � 
(q2 + �2q)(q2 + �2q)2 + �20 q2  1 00 0 ! (2.51)und somit insgesamt f�ur die Selbstenergie die Beziehung�	(p) =� G0 1 00 0 !�<�0>�G0 Zq �0 q2 � i q � 
 (q2 + �2q)( dp+ q2 +m20) [(q2 + �2q)2 + �20 q2℄+3G0 Zq �0 q2 + i q � 
 (q2 + �2q)dp+ q2[(q2 + �2q)2 + �20 q2℄�: (2.52)
Ohne auf ihre Bere
hnung n�aher einzugehen, sei hier au
h no
h die 3-Punkt-Funktionerw�ahnt. Sie hat die Form [Wit92℄�(1;2)0�;j;  (p) = � G0 �j 00 0 !��1 +G20 Zq [( dp+ q2 +m20)�1 + ( dp+ q2)�1℄q2(q2 + �2q)2 + �20 q2+2m0qg03 G0 Zq �0 p+ q2[(p+ q2 + �2p+q)2 + �20 p+ q2℄(q̂2 +m20) q̂2�;(2.53)wobei j der Index des Goldstone-Feldes und p der �au�ere Fermionenimpuls ist.
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Kapitel 3Renormierung in der gebro
henenPhaseInhalt dieses Kapitels ist die 1-Loop-St�orungsentwi
klung der in dieser Arbeit re-levanten renormierten Parameter na
h den na
kten Gr�o�en im EntkopplungsfallG0� = 0. Eine Umkehrung der Reihen liefert die renormierte St�orungstheorie, beider na
h renormierten Parametern entwi
kelt wird. Da die renormierten Parameterimmer auf kleine Werte begrenzt sind, was bei den na
kten ni
ht der Fall ist, zeigendie renormierten St�orreihen ein gutes Konvergenzverhalten.3.1 De�nition der renormierten Parameter3.1.1 Skalare ParameterDas Auftau
hen von Goldstone-Bosonen in der gebro
henen Phase verursa
ht star-ke Infrarot-Divergenzen beim inversen Propagator des Feldes �0, worauf i
h in Ab-s
hnitt 3.2.1 etwas eingehen werde. Anzumerken bleibt, da� diese Divergenzen inder geei
hten Theorie ni
ht auftau
hen [Vio94℄.Zun�a
hst wende i
h mi
h den �-Propagatoren zu. Mit Hilfe der Zweipunktfunktion�(2;0)0�;ij(p) f�uhrt man eine Renormierungskonstante Z� ein:�(2;0)0�;ij(p) = �Z�1� Æij p̂2 = �Z�1� Æijfp2 +O(p4)g bei p2 ! 0: (3.1)Damit bestimmt si
h Z�1� zuZ�1� Æij = � ��p̂2�(2;0)0�;ij(p)����p=0 = �18X� �2�p2��(2;0)0�;ij(p)����p=0: (3.2)Die renormierte Zweipunktfunktion lautet dann einfa
h�(2;0)R�;ij(p) � Z� �(2;0)0�;ij(p): (3.3)Mit dem VEV (2.8) h�angt der renormierte VEV �ubervR = Z�1=2� v0 (3.4)28



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASEzusammen.Die renormierte �-MassemR� ist dur
h das Verhalten des renormierten �-Propagators�(2;0)R� (p) � Z� �(2;0)0� (p) (3.5)bei kleinen Impulsen de�niert:��(2;0)R� (p) = p2 +m2R� +O(p4) bei p2 ! 0: (3.6)Hingegen ist die physikalis
he �-Masse mphys � m� zusammen mit der Zerfallsbreite�� als Pol des zugeh�origen Propagators in der komplexen Energie-Ebene, d.h. dur
hdie Glei
hung �(2;0)0� (~p) � 0 mit ~p = (0; im� + 12��) (3.7)festgelegt [LW88, LMWM91b℄.In Analogie zu Glei
hung (1.58), s20 = 3m20g0 ;ist die renormierte skalare Kopplung gR (vR entspri
ht dabei s0) gem�a�gR � 3m2R�v2R (3.8)de�niert (eine hier notwendige Alternativde�nition folgt in Abs
hnitt 3.2.1).3.1.2 Fermionis
he ParameterDer inverse Fermionen-Propagator hat die Form��(0;2)0�� (p) = ��1��(p)� ���(p);Ausdru
k (1.79) legt f�ur p2 ! 0 die allgemeine Struktur��(0;2)0	 (p) =M0 + ip � 
N0 +O(p2) bei p2 ! 0 (3.9)nahe (�; � =  ; �). M0 und N0 haben die FormM0 =  m  m �m� m�� ! ; N0 =  n  n �n� n�� ! : (3.10)Symmetrie�uberlegungen ergeben m � = m� � m und n � = n� � n.Wenn man �(0;2)0�� mit der Wellenfunktionsrenormierungsmatrix Z1=2	 multipliziert,erh�alt man die renormierte Fermionen-2-Punkt-Funktion:�(0;2)R	 � Z1=2T	 �(0;2)0	 Z1=2	 : (3.11)29



3.1. DEFINITION DER RENORMIERTEN PARAMETERDie Renormierungsbedingung lautet� ��p��(0;2)R	 ���p=0 = i
�1 ; (3.12)daher fordert man, da� die Multiplikation von Z1=2	 die Matrix N0 in die Einheits-matrix �uberf�uhrt, d.h. da� Z1=2T	 N0Z1=2	 = 1 (3.13)gelten mu�. Dann ergeben si
h mit dem AnsatzZ1=2	 =  
os � � sin �sin � 
os � !0� qZ 00 qZ� 1A (3.14)f�ur die Komponenten Z , Z� und � von Z1=2	 folgende Glei
hungen:Z�1 = 12�n  + n�� + sgn(n  � n��)q(n  � n��)2 + 4n2�; (3.15)Z�1� = 12�n  + n�� � sgn(n  � n��)q(n  � n��)2 + 4n2� (3.16)und 
os(2�) = sgn(n  � n��) n  � n��q(n  � n��)2 + 4n2 ; (3.17)sin(2�) = sgn(n  � n��) 2nq(n  � n��)2 + 4n2 : (3.18)Die renormierte Massen-MatrixMR �  �R �R�R �R� ! � Z1=2T	 M0 Z1=2	 (3.19)ist dur
h die Relationen�R = Z �m  +m��2 + m  �m��2 
os(2�) +m sin(2�)�; (3.20)�R� = Z��m  +m��2 � m  �m��2 
os(2�) +m sin(2�)�; (3.21)�R = qZ Z��m 
os(2�)� m  �m��2 sin(2�)� (3.22)gegeben.Mit Hilfe dieser Gr�o�en, der renormierten Masse des Fermions, �R , und derjenigendes Spiegelfermions, �R�, sowie des renormierten VEV vR kann man entspre
hend(1.75) die renormierten Yukawa-Kopplungen dur
h30



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE�R � GR vR ; �R� � GR�vR (3.23)de�nieren bzw. alternativ au
h gem�a� dem Vertex (1.94) mit der Dreipunktfunktion�(1;2)R�;j;��(p) = Z1=2� Z1=2T	 �(1;2)0�;j;�� Z1=2	 (3.24)die De�nitionsglei
hung0� G(3)R �j 00 G(3)R��yj 1A � ��(1;2)R�;j;��(p)jp=p0 (3.25)formulieren, wobei p0 einen festen �au�eren Impuls darstellt.Die Diagonalisierung der Massen-Matrix kann mittels einer Rotation um den renor-mierten Winkel �R, d.h. dur
h 
os�R sin�R� sin�R 
os�R !MR  
os�R � sin�Rsin�R 
os�R ! =  �1R 00 �2R ! (3.26)vollzogen werden. F�ur �1R, �2R und �R gelten dann die Beziehungen�1R = 12��R + �R� + sgn(�R � �R�)q(�R � �R�)2 + 4�2R�; (3.27)�2R = 12��R + �R� � sgn(�R � �R�)q(�R � �R�)2 + 4�2R� (3.28)und sin�R = p2�Rr(�R � �R�)2 + 4�2R + j�R � �R�jq(�R � �R�)2 + 4�2R : (3.29)3.2 Entwi
klung der renormierten Parameter imFall G0� = 03.2.1 Entwi
klung skalarer Gr�o�enAus De�nition (3.7) und der 1-Loop-Form des inversen �-Propagators, (2.34), folgt,aufgegliedert na
h Real- und Imagin�arteil,4 sinh2 m�2 � 4 sin2 ��4 
oshm� = m20 � Re��(~p);2 sin ��2 sinhm� = Im��(~p): (3.30)In 1-Loop-Ordnung mu� die Zerfallsbreite �� ni
ht weiter bea
htet werden, da siein tree level vers
hwindet [LW88, MW88, LMWM91b℄. Damit gilt dann f�ur den zurphysikalis
hen �-Masse m� korrespondierenden Gitterimpuls:31



3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL G0� = 0~̂p = �0; 2i sinh m�2 �: (3.31)F�ur die �-Masse auf Baumgraphen-Niveau, m(0)� , resultiert daraus die Beziehung� ~̂p2 = 4 sinh2 m(0)�2 = m20 (3.32)und damit m(0)� = 2 arsinhm02 = 2 log�m02 +sm204 + 1�: (3.33)Folgli
h erh�alt man mit (3.30) f�ur die physikalis
he �-Masse in 1-Loop-Ordnungm� = m(0)� � 12 sinhm(0)� Re��(~p(0)) (3.34)mit ~p(0) = (0; im(0)� ) und der Selbstenergie ��(p) aus Glei
hung (2.36). Die renor-mierte Masse entspri
ht in tree levelm(0)R� = m0 (3.35)und damit gilt wiederum f�ur die physikalis
he Massem(0)� tree=level 2 arsinhmR�2 = 2 log�mR�2 +sm2R�4 + 1�: (3.36)Aus (3.6) folgt die RenormierungsbedingungZ� ��p̂2�(2;0)0� (p)����p=0 = �1: (3.37)Damit hat man f�ur Z� die Glei
hungZ�1� = 1� ��p̂2��(p)����p=0 = 1� 18X� �2�p2���(p)����p=0 (3.38)gefunden. Die 1-Loop-Entwi
klung der renormierten Masse erh�alt man dann ausm2R� = Z�fm20 � ��(0)g: (3.39)Wie aber bereits zu Anfang von Abs
hnitt 3.1 gesagt wurde, divergiert aufgrund derGoldstone-Bosonen der Term ����p̂2 (0) in (3.38). Man k�onnte diesen Ausdru
k dur
heinen Di�erenzenquotienten mit Hilfe des betragsm�a�ig kleinsten ni
ht vers
hwin-denden Impulses pmin � �0; 2�T � (3.40)(wobei T > L gefordert wird) n�ahern: 32



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE����p̂2 (0) � ��(0; 2�T )� ��(0)4 sin2 �T : (3.41)Mit Hilfe der De�nition q� � 12 sin(2q�) (3.42)ergibt si
h f�ur die Renormierungskonstante Z� laut (3.2) in 1-Loop-Ordnung imEntkopplungsfall G0� = 0 folgende Beziehung:Z�1� =1� 13g0m20Z qh(q̂2 +m20)�1q2 + 18 q̂2 � 1i(q̂2 +m20)�2(q̂2)�1�NfG20 Z q�8 ~D�4(q)n4(q2 + �2q)2(q2 + 2r�qq q + r2�2qq2)+4�20 (q2 + �2q)(q2 + r�qq q) + �40 q2o�4 ~D�3(q)�n2(q2 + 2r�qq q + r2�2qq2)�(q2 + �2q)h(4� 2r2)q2 + r�qq̂2 � 8r�q � 8io�nq2(q2 + �2q)2 + �20 (q2)2o+n2(q2 + �2q)2h(q2 + �2q)(q2 + r�qq q)+2 q2(q2 + 2r�qq q + r2�2qq2)i+4�20 q2(q2 + �2q)(q2 + r�qq q)+�20 (q2 + �2q)h(q2 + �2q) q2 + 2 q2(q2 + r�qq q)i+2�40 q2 q2o�+ ~D�2(q)�n4(q2 + r�qq q)� q2(q2 + �2q)�q2h(4� 2r2)q2 + r�qq̂2 � 8r�q � 8io(q2 + �2q)��20 (8� 4q2)q2��

(3.43)

mit ~D(q) = (q2 + �2q)2 + �20 q2: (3.44)Mit (2.41), (2.8), (3.4) und der Entwi
klungZ�1=2� = 1q1 + (Z� � 1) � 1� 12(Z� � 1) (3.45)ist der renormierte Vakuumerwartungswert33



3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL G0� = 0vR = s0�1� g02m20 Zq h(q̂2 +m20)�1 + (q̂2)�1i+8Nfm20 G20 Zq q2(q2 + �2q)2 + �20 q2 � 12(Z� � 1)�: (3.46)Aufgrund der Divergenz bei der 1-Loop-Entwi
klung vonmR�, Glei
hung (3.39) wirddie renormierte quartis
he Kopplung abwei
hend von (3.8) mit der physikalis
henMasse de�niert: gR � 3m2�v2R : (3.47)(In der geei
hten Theorie kann De�nition (3.8) beibehalten werden [Vio94℄.) Dierenormierte quartis
he Kopplung ist dann mit (3.47) und (3.34) dur
hgR = 3m(0)� 2s20 �1 + g0m20 Zq h(q̂2 +m20)�1 + (q̂2)�1i�16Nfm20 G20 Zq q2(q2 + �2q)2 + �20 q2+(Z� � 1)� 1m(0)� sinhm(0)� Re��(~p(0))� (3.48)gegeben.3.2.2 Entwi
klung fermionis
her Gr�o�enDie Matrix M0 aus (3.9) wird im Entkopplungsfall entspre
hendM0 =  �0 �0�0 0 !� �	(0) (3.49)gem�a� der Glei
hungen (1.79) und (2.43) entwi
kelt. Da Integrale der Form Rq q�f(q�)mit f(�q�) = f(q�) vers
hwinden, bekommt man f�ur die Matrixelemente die Aus-dr�u
ke m  = �0 �1� g02m20 Z qh(q̂2 +m20)�1 + (q̂2)�1i+8Nfm20 G20 Z q q2(q2 + �2q)2 + �20 q2�G20 Z q q2(q2 + �2q)2 + �20 q2 h(q̂2 +m20)�1 � 3(q̂2)�1i�; (3.50)m = �0; (3.51)m�� = 0: (3.52)�Aquivalent dazu verl�auft die Entwi
klung von N0:34



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASEN0 =  1 00 1 !+ i4
� ��p��	(p)����p=0 (3.53)mit den Matrixelementenn  = 1� 12G20 Z q (q2 + �2q) q2(q2 + �2q)2 + �20 q2 h(q̂2 +m20)�2 + 3(q̂2)�2i; (3.54)n = 0; (3.55)n�� = 1: (3.56)Mit (3.15) und (3.16) erh�alt man die RelationenZ = 1 + 12G20 Zq q2(q2 + �2q)(q2 + �2q)2 + �20 q2 h(q̂2 +m20)�2 + 3(q̂2)�2i (3.57)und Z� = 1: (3.58)Die renormierte Fermionenmasse ist�R = �0 �1� g02m20 Z qh(q̂2 +m20)�1 + (q̂2)�1i+8Nfm20 G20 Z q q2(q2+�2q)2+�20 q2�G20 Z q q2(q2+�2q)2+�20 q2 h(q̂2 +m20)�1 � 3(q̂2)�1i+12G20 Z q (q2+�2q) q2(q2+�2q)2+�20 q2 h(q̂2 +m20)�2 + 3(q̂2)�2i� (3.59)
Die renormierte �-Masse hat im Entkopplungsfall den Wert�R� = 0: (3.60)Die Mis
hmasse gehor
ht in 1-Loop-Ordnung der Glei
hung�R = �0�1 + 14 G20 Z q q2(q2 + �2q)(q2 + �2q)2 + �20 q2 h(q̂2 +m20)�2 + 3(q̂2)�2i�: (3.61)F�ur die Yukawa-Kopplung bekommt man s
hlie�li
h dur
h (3.23)GR = G0 �1�G20 Z q q2(q2+�2q)2+�20 q2 h(q̂2 +m20)�1 � 3(q̂2)�1i+12 G20 Z q q2(q2+�2q)(q2+�2q)2+�20 q2 h(q̂2 +m20)�2 + 3(q̂2)�2i+12(Z� � 1)�: (3.62)
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3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL G0� = 03.2.3 Golterman-Pet
her-TheoremUm das Vers
hwinden der spiegelfermionis
hen Parameter |insbesondere das der\Dreipunktkopplung" G(3)R�| im Entkopplungsfall G0� = 0 zu zeigen, benutzt manim ungeei
hten Modell die Golterman-Pet
her-Identit�aten [GP89, LW92℄. Sie geltenglei
herma�en f�ur die symmetris
he und f�ur die gebro
hene Phase und erweisen si
hbei numeris
hen Simulationen als �au�erst n�utzli
h.Dazu sei an dieser Stelle no
h mal die umnormierte Wirkung (1.26) angef�uhrt:S	 =Xx �12 P� ( 0x
��� 0x + �0x
����0x) + (�0 + 4r) (�0x 0x +  0x�0x)�r2X� h(�0x+�̂ + �0x��̂) 0x + ( 0x+�̂ +  0x��̂)�0xi+G0  0x��'0�x 0x�; (3.63)
wobei ��fx � fx+�̂� fx��̂ ist. Die Ableitungen von (1.16) na
h den Feldern �0 und�0 ergeben�S��0x = 12X� 
����0x + (�0 + 4r) 0x � r2 X� ( 0x+�̂ +  0x��̂);�S��0x = 12X� ���0x
� � (�0 + 4r) 0x + r2X� ( 0x+�̂ +  0x��̂): (3.64)Das S	 in (3.63) und damit die Gesamtwirkung S ist invariant unter globalenTransformationen �0x ! �0x + �; �0x ! �0x + �; (3.65)falls �0 = 0 ist, denn dann gilt f�ur beliebige � und �S ! S +Xx (� �S��0x � �S��0x �) = S: (3.66)Das erzeugende Funktional (B.5) in umnormierter Form,Z(J0; �0; �0; �0; �0) =Z D'0D	0D	0 exp n� S �Xx (J0�x'0�x + �0x 0x +  0x�0x + �0x�0x + �0x�0x)o;(3.67)ist |was au
h allgemein g�ultig ist| invariant unter den lokalen Transformationen�0x ! �0x + �x; �0x ! �0x + �x; (3.68)womit man zu 36



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE���xZ(J0; �0; �0; �0; �0)�����=�=0 =� Z D'0D	0D	0 exp n� S �Xx (J0�x'0�x + �0x 0x +  0x�0x + �0x�0x + �0x�0x)o� �S��0x + �0x! = 0 (3.69)und���xZ(J0; �0; �0; �0; �0)�����=�=0 =� Z D'0D	0D	0 exp n� S �Xx (J0�x'0�x + �0x 0x +  0x�0x + �0x�0x + �0x�0x)o� �S��0x � �0x! = 0 (3.70)gelangt. Dies entspri
ht Variationen von Z um �0x und �0x. Mit der Legendre-Transformation (B.13)�('0;  0;  0; �0; �0) =W (J0; �0; �0; �0; �0)�Px hJ0�x'0�x + �0x 0x +  0x�0x + �0x�0x + �0x�0xierh�alt man die Beziehungen�0x = �W��0x ; �0x = � �W��0x ; �0x = � ����0x ; �0x = ����0x (3.71)und aus (3.69) sowie (3.70) s
hlie�li
h die Golterman-Pet
her-Identit�aten����0x = �S��0x und ����0x = �S��0x : (3.72)Ein kurzer Bli
k auf (3.64) gen�ugt, um zu erkennen, da� die Dreipunktfunktionen�(1;2)0��� und �(1;2)0�;j;�� (unabh�angig von �0) vers
hwinden, z.B.�(1;2)0��� = �3���0��0��0 = 0: (3.73)Da die Renormierung (3.24) multiplikativ ist, folgt, da� die dur
h (3.25) de�nierteYukawa-Kopplung f�ur beliebige Mis
hmassen �0 vers
hwindet,G(3)R� = 0 (3.74)und damit au
h GR� = 0: (3.75)37



3.3. RENORMIERTE ST�ORUNGSTHEORIE IM FALL G0� = 0Die Forderung na
h der Vers
hiebungssymmetrie (3.65) f�uhrt selbstverst�andli
h zu�0 = 0 und mit der Normierung (1.25) bei r = 1 zuK = 1=8; �R = 0: (3.76)Bei numeris
hen Simulationen w�ahlt man g�unstigerweise den in der N�ahe liegendenWert K = 18� 4 sin2 �2T (3.77)[FLMM93, LMPM93, Wit92℄.3.3 Renormierte St�orungstheorie im Fall G0� = 0Die renormierte St�orungstheorie zei
hnet si
h dadur
h aus, da� die einzusetzendenrenormierten Kopplungskonstanten einen wesentli
h kleineren Werteberei
h einneh-men als die na
kten, und infolgedessen besitzt sie eine bessere Konvergenz als diena
kte St�orungstheorie. Zu ihr gelangt man, indem man die Ausdr�u
ke f�ur dierenormierten Parameter na
h den na
kten au
�ost.3.3.1 Renormierte St�orungsentwi
klung skalarer Gr�o�enDa si
h die na
kte Masse von der (physikalis
hen) �-Masse auf Baumgraphenniveau,m(0)� wegen Glei
hung (3.33) unters
heidet, ist ihre Bere
hnung ni
ht so einfa
h wiein der symmetris
hen Phase [Wit92℄. Auf Baumgraphenniveau gilt:m(0)0 = 2 sinh m�2 : (3.78)Mit (3.34) folgtm� = 2 arsinhm02 � 12m0q1 + m204 Re��(0; 2i arsinhm02 ): (3.79)Setzt man fm� � 2 sinh m�2 ; (3.80)so gelangt man mit ~p(0) = (0; 2i arsinhm02 ) zufm�2 = m02 
osh Re��(~p(0))4m0q1 + m204 �s1 + m204 sinh Re��(~p(0))4m0q1 + m204 : (3.81)Die Reihenentwi
klungen der hyperbolis
hen Funktionen liefernm0 = fm� + 12m0 Re��(~p(0)): (3.82)38



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASEDie Parameter auf der re
hten Seite im Ausdru
k Re��(p) werden in nullter Ord-nung folgenderma�en ersetzt: m0 ! fm�;g0 ! gR em2�m2� ;G0 ! GR ;�0 ! �R;�0 ! �R (3.83)
(die Ersetzung von g0 r�uhrt von der abge�anderten gR-De�nition (3.47) her, wasweiter unten no
h genauer erkl�art wird), womit si
h s
hlie�li
h als 1-loop-Resultatm0 = fm� +fm(1)� (3.84)mit fm(1)� = 12fm� Re�R�(0; ifm�) (3.85)ergibt. Die Ersetzungen (3.83) im Ausdru
k ��(p) werden dur
h das R im Indexvon �R�(p) gekennzei
hnet, dieses lautet�R�(p) = 12 gRfm4�m2� Zq h3( dp+ q2 +fm2�)�1(q̂2 +fm2�)�1 + ( dp+ q2)�1(q̂2)�1i+gRfm2�m2� Zq h(q̂2 +fm2�)�1 + (q̂2)�1i�8Nf G2R Z q q2(q2 + �2Rq)2 + �2R q2�8Nf G2R Z q �2R p+ q2 q2 � p+ q � q (p+ q2 + �2Rp+q) (q2 + �2Rq)[(p+ q2 + �2Rp+q)2 + �2R p+ q2℄[(q2 + �2Rq)2 + �2R q2℄ ;(3.86)wobei �Rq = �R + r2 q̂2 = 12 q̂2. Das Massenquadrat m20 wird damit in 1. Ordnungersetzt dur
h m20 = fm2� + Re�R�(0; ifm�): (3.87)Nun zur Bere
hnung von g0: es mu� bea
htet werden, da�g0 = 3m20s20 6= 3m(0)� 2s20 (3.88)ist [Wit92℄. Zun�a
hst betra
htet man den QuotientenC � m(0)�m0 = 2 log �m02 +q1 + m204 �m0 : (3.89)39



3.3. RENORMIERTE ST�ORUNGSTHEORIE IM FALL G0� = 0In diesen setzt man nun die 1-Loop-Entwi
klung von m0, (3.84) ein und entwi
keltden Ausdru
k na
h fm(1)� : C = C(0) + C(1); (3.90)wobei C(0) = 2 log( em�2 +q1 + em2�4 )fm� = m�fm� (3.91)und C(1) = fm(1)�fm� (1 + em�2 .q1 + em2�4em�2 +q1 + em2�4 � C(0)): (3.92)Damit folgt aus (3.48):g0 = gRC2 � 3g0s20 Zq h(q̂2 +m20)�1 + (q̂2)�1i+ 48Nfs20 G20 Zq q2(q2 + �2q)2 + �20 q2�3m(0)� 2s20 1C2 (Z� � 1) + 3C s20q1 + m204 Re��(~p(0)): (3.93)Wiederum ersetzt man die Parameter gem�a� (3.83) zuz�ugli
h s0 ! vR und benutztdie Reihenans�atze Z� � 1 � �2(Z� 12� � 1);1C � 1C(0) ;1C2 � 1C(0)2 � 2C(1)C(0)3 ;gR � 3m(0)� 2s20 ; (3.94)
womit man zug0 = gRC(0)2 � 2gR C(1)C(0)3 � 3gRC(0)2v2R Zq h(q̂2 +m20)�1 + (q̂2)�1i+48Nfv2R G2R Zq q2(q2 + �2Rq)2 + �2R q2 + 2 gRC(0)2 (Z� 12� � 1)+ 3C(0)v2Rq1 + em2�4 Re�R�(0; ifm�) (3.95)
gelangt. F�ur den VEV bekommt man die Relation40



KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASEs0 = vR�1 + gR2C(0)2fm2� Z qh(q̂2 +m20)�1 + (q̂2)�1i�8Nffm2� G2R Z q q2(q2 + �2Rq)2 + �2R q2+(Z� 12� � 1)�: (3.96)
3.3.2 Renormierte St�orungsentwi
klung fermionis
her Gr�o�enAus (3.59) erh�alt man die Umkehrrelation f�ur die na
kte Fermionenmasse�0 = �R �1 + gR2C(0)2fm2� Zq h(q̂2 +fm2�)�1 + (q̂2)�1i�8Nffm2� G2R Zq q2(q2 + �2Rq)2 + �2R q2+G2R Zq q2(q2 + �2Rq)2 + �2R q2 h(q̂2 +fm2�)�1 � 3(q̂2)�1i�12G20 Zq (q2 + �2Rq) q2(q2 + �2Rq)2 + �2R q2 h(q̂2 +fm2�)�2 + 3(q̂2)�2i�: (3.97)
F�ur die Spiegelfermionen- und die Mis
hmasse ergeben si
h�0� = �0 = 0 (3.98)sowieG0 = GR �1 +G2R Zq q2(q2 + �2Rq)2 + �2R q2 h(q̂2 +m20)�1 � 3(q̂2)�1i�12G2R Zq q2(q2 + �2Rq)(q2 + �2Rq)2 + �2R q2 h(q̂2 +m20)�2 + 3(q̂2)�2i+(Z� 12� � 1)�: (3.99)
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Kapitel 4Numeris
he ErgebnisseIm vierten Kapitel wird die renormierte St�orungstheorie, wie sie in Kapitel 3 vorge-stellt wurde, auf die Analyse von Datenmaterial zu Artikel [LMMP93℄ angewandt.4.1 Aufbereitung der Monte-Carlo-Daten4.1.1 Bere
hnung der Zeits
heiben-KorrelationsfunktionenIn der gebro
henen Phase werden dur
h das Auftau
hen der drei masselosen Gold-stone-Bosonen die numeris
hen Untersu
hungen des hier zugrundeliegenden Modells,deren Ziel die Bere
hnung der Massen und Kopplungsst�arken ist, au�erordentli
h er-s
hwert.Wie bei [Wit92℄ erw�ahnt wird, m�ussen skalare und fermionis
he Massen zusam-men bestimmt werden. Der Quotient m�=�R kann dabei nur s
hwierig kontrolliertwerden, da man �nite size-E�ekte m�ogli
hst vermeiden und si
h glei
hzeitig nahean der kritis
hen Linie in der �-K-Parameterebene halten mu�, die gebro
hene undsymmetris
he Phase voneinander trennt [LMMP93℄.Wird die Mis
hmasse �R na
h Null hin \gedr�u
kt", beispielsweise dur
h entspre-
hendes Einstellen von K nahe des kritis
hen Wertes 1=8 (siehe (3.77) in Abs
hnitt3.2.3; [FLMM93, LMPM93℄), kann � dazu benutzt werden, m� auf einen gew�uns
h-ten Wert zu bringen. Die Fermionenmasse �R wird dabei nur dur
h GR �xiert, esgibt keinen weiteren Massenparameter, der dies bei gegebenen na
kten Kopplungenleistet.Da si
h auf einem endli
hen Gitter keine Symmetriebre
hung herauskristallisiert,sondern deren Ri
htung si
h permanent �andert, mu� man no
h beim Messen derObservablen diese Drift ber�u
ksi
htigen, d.h. man mu� die Ri
htung stabilisieren.Dies ges
hieht dur
h Anlegen eines �au�eren Feldes, wel
hes unter Ausnutzung derSU(2)L
SU(2)R-Symmetrie das skalare Feld in Ri
htung der (reellen) Komponente'4 ausri
htet bzw. rotiert [HJLN87, HJJL89℄, was im folgenden erl�autert wird.Die Magnetisierung des Feldes als ein Ma� f�ur das gew�ahlte Vakuum ist de�niert als42



KAPITEL 4. NUMERISCHE ERGEBNISSEj'j � sX� �2� (4.1)mit �� � 1L3T Xx ��x: (4.2)Eine Rotation des Feldes wird dur
h'0x = UL'xU yR (4.3)ausgedr�u
kt. UR setzt man auf UR = 1 , UL mu� dann so bes
ha�en sein, da�'0 � 1L3T Xx '0x = j'j1 (4.4)bzw. �04 � j'j (4.5)gilt. Eine geeignete Wahl f�ur UL ist nunUL =  e�i! 
os � � ei� sin �e�i� sin � ei! 
os � ! (4.6)mit 
os � = q�23 + �24j'j ; sin � = q�21 + �22j'j (4.7)und ei! = �4 + i�3q�23 + �24 ; ei� = �2 + i�1q�21 + �22 : (4.8)Na
h der Rotation kann das skalare Feld in einen longitudinalen (Index L) und dreitransversale Komponenten (Index Tj) gem�a�'0 = �Lx1 + i�j�Tjx (4.9)zerlegt werden, wobei gilt: v �<�L> =<j'j> (4.10)und <�Tj> = 0: (4.11)Der VEV v = <�L> korrespondiert also zur �-Komponente des skalaren Feldesund die �Tj korrespondieren zu den �-Komponenten. Folgli
h sind damit die Mit-telwerte der Zeits
heiben der skalaren Korrelationsfunktionen dur
h43



4.1. AUFBEREITUNG DER MONTE-CARLO-DATEN
CL(t) � 1L3 Xxy <�Lyt�Lx0>
 � 1L3 Xxy (<�Lyt�Lx0>� v2); (4.12)CT (t) � 13L3 Xxy <�Tjyt�Tjx0> (4.13)de�niert. Kurz hei�en sie au
h einfa
h Zeits
heiben-Korrelationsfunktionen undverk�orpern die Propagatoren der Feldteil
hen in Zeitri
htung. Sie werden mit derHybrid-Monte-Carlo-Methode (HMC-Algorithmus) bere
hnet [DKPR87, Wit92℄.Aus diesem Grund betrug au
h die minimale Anzahl der damit numeris
h simulier-ten Fermionen-Dubletts Nf = 2.Wegen der periodis
hen Randbedingungen wurden die Zeits
heiben-Korrelations-funktionen als T -periodis
h angenommen. Den Propagator im Impulsraum erh�altman mittels Fouriertransformation,G�;�(0; p4) � GL;T (p4) = T�1Xt=0 CL;T (t) e�ip4 t = T�1Xt=0 CL;T (t) 
os(p4 t); (4.14)mit p4 2 2�T ZZ. (Eigentli
h liegen die CL;T (t) s
hon 2�-normiert vor, was hier ausGr�unden der Vereinfa
hung \vers
hwiegen" wird.) Die Umformung re
hts beruhtdarauf, da� aus den Monte-Carlo-Datens�atzen nur die Werte C(0) bis C(T2 ) extra-hiert werden k�onnen, die restli
hen Werte C(T2 + 1); : : : ; C(T � 1) bekommt mandur
h Spiegelung; dies geht wegen C(t) = C(�t) und C(T + t) = C(t) (beide Glei-
hungen beruhen auf der Gitterperiodizit�at).Diesem und den na
hfolgenden Abs
hnitten liegen drei Datens�atze zugrunde, diein Artikel [LMMP93℄ benutzt wurden, und die im folgenden |in �Ubereinstimmungmit Tabelle 1 aus diesem Artikel| mit den Bezei
hnungen BB,C und DD versehensind. Die Zahlenwerte wurden typis
herweise aus 10000 Trajektorien gewonnen, beiC aus 5000. Die Datens�atze unters
heiden si
h au
h in den na
kten Kopplungenund den verwendeten Gittergr�o�en (siehe Tabelle 4.1). Bei allen drei wurde G� = 0(Entkopplungsfall) und die na
kte quartis
he Kopplung auf � =1 gesetzt.Tabelle 4.1: Gittergr�o�en, Inputparameter, VEV und physikalis
he Massen aus demZeits
heiben-Korrelations�tBezei
hnung Gitter G � K v0 m�BB 83 � 16 0.3 0.27 0.126 0.2703(18) 0.74(18)C 63 � 12 0.6 0.18 0.126 0.3524(20) 1.18(16)DD 83 � 16 0.6 0.18 0.126 0.3389(13) 1.20(21)
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KAPITEL 4. NUMERISCHE ERGEBNISSE
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Abbildung 4.1: Transversale und longitudinale Zeits
heiben-Korrelationsfunktionen(re
hts) sowie longitudinale 
osh-Fits (gestri
helt)4.1.2 Zeits
heiben-Korrelations�tAus der Zeits
heiben-Korrelationsfunktion CL(t) l�a�t si
h mittels Fitting die phy-sikalis
he Masse m� � mphys bestimmen [MW87, Wit92℄, die in den skalaren Teil45



4.1. AUFBEREITUNG DER MONTE-CARLO-DATENder 1-Loop-Fit-Funktion (siehe Abs
hnitt 4.2.2) eingeht.F�ur gro�e t und T hat man ein asymptotis
hes Zeitverhalten mit einem 
osh-Verlauf,das in Anhang C hergeleitet wird:CL(t) ' a (e�m� t + e�m� (T�t)) + b: (4.15)Eigentli
h m�u�te man eine Fitfunktion mit exponentiellem Abfall benutzen, der
osh-Verlauf erkl�art si
h jedo
h aus der Tatsa
he heraus, da� die Korrelationsfunk-tion in negativer Zeitri
htung wegen der Periodizit�at das glei
he Verhalten wie inpositiver Ri
htung aufweist. Der asymptotis
he Charakter des Fits kommt darinzum Ausdru
k, da� zum Fitten nur die letzten f�unf (beim 83� 16-Gitter) bzw. vier(beim 63 � 12-Gitter) benutzt werden; das Ergebnis ist in Abb. 4.1 zu sehen, dieVakuumerwartungswerte v0 � <�0L> und die Massen aus meinen Fits stehen inTabelle 4.1.Die si
h in der Mitte der longitudinalen Korrelationsfunktionen in Abb. 4.1 an-deutende Erhebung kann dur
haus bei anderen Gittergr�o�en oder Einf�uhrung vonEi
hfeldern anwa
hsen und das Fitverhalten negativ beein
ussen, z.B. in [Vio94℄.Die Summe der transversalen Korrelationsfunktionen vers
hwindet aufgrund von(4.4), T�1Xt=0 CT (t) = 0:Daran erkennt man, da�G�(0; p4 = 0) = 0 ist und der inverse Propagator �(2;0)� (0; p4)an der Stelle p4 = 0 divergiert. Deshalb sollte �(2;0)� (0) beim Fitten ni
ht bea
htetwerden.4.1.3 Bere
hnung der RenormierungskonstantenMan kann zwei vers
hiedene Wege bes
hreiten, um aus den Zeits
heiben-Korrelations-funktionen die Wellenfunktions-Renormierungskonstante zu bestimmen:1. Mit dem kleinsten Impuls p4;min = 2�T und der physikalis
hen Masse m� erh�altman aus (4.14) die Glei
hungZ� = 12�(p̂24;min +m2�)G�(0; p4;min): (4.16)Analog gilt [LMWM91b℄Z� = 12� p̂24;minG�(0; p4;min): (4.17)2. Man bere
hnet sie aus dem inversen Propagator mit Hilfe der Glei
hung��(2;0)0� (p) = 12� G�1� (p) = Z�1� fp̂2 +m2� � ��(p)g: (4.18)46



KAPITEL 4. NUMERISCHE ERGEBNISSEMit �(2;0)0� (0; p4;min)� �(2;0)0� (0) = �Z�1� p̂24;min (4.19)gewinnt man s
hlie�li
hZ�1� = ��(2;0)0� (0; p4;min)� �(2;0)0� (0)p̂24;min : (4.20)F�ur Z� bekommt man unter Ber�u
ksi
htigung der Renormierungsbedingung(3.1) Z�1� = ��(2;0)0� (0; p4;min)p̂24;min ; (4.21)womit man (4.17) veri�ziert hat.Das mit (4.21) bestimmte Z� dient in Abs
hnitt 4.2.5 als Verglei
hswert mit demaus der 1-Loop-Analyse gewonnenen Z�.4.2 1-Loop-Analyse des �-Propagators4.2.1 Eigens
haften der skalaren PropagatorenS
hwerpunkt dieser Arbeit ist die Bestimmung der Renormierungskonstante Z� undder renormierten Yukawa-Kopplung GR dur
h die 1-Loop-Analyse des inversen �-Propagators, um mit diesen und mit Hilfe bekannter Beziehungen zwis
hen deneinzelnen renormierten Parametern (siehe Anfang von Unterkapitel 4.2.3), wi
htigeGr�o�en des Yukawa-Modells wie die Werte von vR und gR mit besserer Genauigkeitals bisher aus den numeris
hen Bere
hnungen zu extrahieren.Zu diesem Zwe
k mu� man die Eigens
haften der skalaren Impulsraum-Propagatorenauf dem Gitter kennen, bei denen einige Ph�anomene auftau
hen, deren Ursa
he inder R�u
kwirkung der Yukawa-We
hselwirkung begr�undet liegt. Bei einem Modellmit naiven Fermionen, d.h. ohne Wilson-Term in der Wirkung, gelang laut [Fri93℄die Untersu
hung dieser Ph�anomene dur
h eine 1-Fermionen-S
hleifen-Analyse. Mitdieser konnten systematis
he Fehler minimiert und die grundlegenden physikalis
henGr�o�en ausrei
hend genau bestimmt werden.Im Grenzfall GR = 0 der Yukawa-Modelle, also bei der reinen '4-Theorie, zeigendie inversen skalaren Propagatoren no
h relativ exakt ein lineares Verhalten in p̂2und sind problemlos mit einem 1-Pol-Ansatz wie etwa (bei � < 0) der Form��(2;0)(p)jp2!0 = Z�1(p̂2 +m2R) (4.22)47



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSzu bes
hreiben, aus dem man die Wellenfunktions-Renormierungskonstante Z unddie skalare Masse m ohne weiteres bestimmen kann [KLS88℄. Man kann die An-wendung dieses linearen Ansatzes au
h in den Berei
h kleiner Yukawa-Kopplungenhinein fortsetzen. Mit wa
hsender Yukawa-Kopplung ergeben si
h jedo
h immerst�arkere Abwei
hungen, vor allem bei denjenigen GR , bei denen die Yukawa-Kopp-lung die Struktur des Phasendiagramms dominiert. Dabei konnte man drei Artenvon Abwei
hungen vom 1-Pol-Verhalten feststellen [Fri93℄:1. �Uberlagerung eines zweiten Poles in der p = (�; �; �; �)-E
ke der Brillouin-Zone nahe der beiden multikritis
hen Punkte (�;G ) im Yukawa-Phasen-diagramm ([Fri93℄, S. 50), wo si
h je zwei Phasen�ubergangslinien kreuzen.2. Auftreten gewisser 
harakteristis
her, unstetiger Strukturen um p̂2 = 4; 8; 12(dies h�angt mit der R�u
kwirkung der Fermionen auf das skalare Feld zusam-men).3. Ausbildung einer signi�kanten Kr�ummung bei kleinen Impulsen in den s
hwa-
hen Kopplungsregionen (was ebenfalls mit der R�u
kwirkung der Fermionenzusammenh�angt).Bei den ersten beiden Ph�anomenen handelt es si
h um Gitterartefakte, das letztetritt au
h im Kontinuum auf.Die Frage lautet nun, ob si
h derartige E�ekte au
h bei dem hier betra
hteten Modellzeigen. Da in [Fri93℄ wesentli
h mehr Datenpunkte pro Datensatz zur Verf�ugungstanden, insbesondere Propagatorwerte au�erhalb der Impulsa
hse p = (0; p4) mitp4 2 2�T ZZ, konnte i
h die Punkte 1. und 2. ni
ht best�atigen (siehe Abs
hnitt 4.2.7).4.2.2 Fit-Ansatz f�ur den �-PropagatorUm die im letzten Unterkapitel erw�ahnten Fehler zu umgehen, wurde f�ur das Fittenin [BDFJ92℄ und [Fri93℄ folgender Ansatz, der die 1-Loop-Korrektur miteinbezieht,vorges
hlagen: ��(2;0)0� (p) = Z�1�;Lfp̂2 +m2R�;L � �R�;L(p)g; (4.23)wobei die renormierte �-Masse (h�o
hstens) Gitterartefakt-Charakter besitzt, d.h.sie vers
hwindet im unendli
hen Volumen, mu� aber bei endli
hem Volumen formalkorrekt eingebaut werden.�R�;L(p) = �R�;L(p;m�;L; gR;L; G(3)R ;L; vR;L; �R ;L) ist dabei der Gittervolumen-ab-h�angige Selbstenergie-Beitrag in renormierter St�orungsre
hnung. Der Ansatz resul-tiert aus der Form des Propagators (2.35). �R�;L(p) mu� den Renormierungsbedin-gungen �R�;1(0;m�;1; gR;1; G(3)R ;1; vR;1; �R ;1) = 0; (4.24)��p̂2�R�;1(p;m�;1; gR;1; G(3)R ;1; vR;1; �R ;1)j p=0 = 0 (4.25)48



KAPITEL 4. NUMERISCHE ERGEBNISSEgen�ugen. Die erste Bedingung h�angt mit der Massen-Renormierung und die zweitemit der Wellenfunktions-Renormierung (3.1) zusammen.Die in Unterkapitel 4.2.1 erw�ahnten Anomalien beziehen si
h auf den 1-Fermionen-S
hleifen-Beitrag, hier wird jedo
h der Selbstenergie-Beitrag beider p-abh�angigerFeynman-Diagramme (2.26) und (2.27) bei dem Ansatz ber�u
ksi
htigt (die p-unab-h�angigen Terme vers
hwinden bei der Normierung; vgl. mit (2.37)) und die na
ktenParameter werden der Vors
hrift (3.83) entspre
hend ersetzt:�0R�;L(p;m�;L; gR;L; G(3)R ;L; vR;L; �R ;L) =13 ngR;Lfm4�;Lm2�;L Zq��(p+ q)��(q)�Nf Zq Tr(V k0 �	(p+ q)V k0 �	(q))o: (4.26)Konkret ergibt si
h damit als Ansatz f�ur die Selbstenergie�0R�;L(p;m�;L; gR;L; G(3)R ;L; vR;L; �R ;L) =13 gR;Lfm4�;Lm2�;L Zq h( dp+ q2 +fm2�;L)�1(q̂2)�1i+8Nf G(3)R ;L2 Zq �2R ;L p+ q2 q2 + p+ q � q (p+ q2 + �2Rp+q) (q2 + �2Rq)[(p+ q2 + �2Rp+q)2 + �2R ;L p+ q2℄[(q2 + �2Rq)2 + �2R ;L q2℄(4.27)mit �Rq = 12 q̂2.Den Parameter gR;L kann man gem�a� der 1-Loop-De�nition (3.47) na
h m�;L undvR;L au
�osen, und dur
h Ausnutzung von (3.23) kann eventuell die Anzahl der Fit-parameter no
hmals vermindert werden, obwohl das G(3)R ;L hier aus der De�nition(3.25) stammt, wie es der ho
hgestellte Index (3) kennzei
hnet (siehe [Fri93℄, S.79)).So verliert man zwar Freiheitsgrade beim Fitten und die ge�ttete Kurve kann dur
h-aus ni
ht mehr so gut an der gemessenen liegen, andererseits w�urde es aber bei dengegebenen Gittergr�o�en merkw�urdig ers
heinen, mit z.B. f�unf Fitparametern neunMe�gr�o�en anzu�tten (wie es beim 83�16-Gitter der Fall ist). Denn trotz gr�o�e-rer Ann�aherung der Fitkurve an die Me�punkte sind die Unsi
herheiten bei deneinzelnen Parametern zu gro�, da der Spielraum jedes einzelnen Fitparameters zu-genommen hat.Also benutzt man s
hlie�li
h unter Annahme von G(3)R ;L � GR ;L den Selbstenergie-ansatz �0R�;L(p;m�;L; GR ;L; vR;L; �R ;L) = 3fm4�;Lv2R;L I�B(p) +G2R ;LI�F (p) (4.28)mit I�B(p) = 13 Zq h( dp+ q2 +fm2�;L)�1(q̂2)�1i (4.29)49



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSundI�F (p) = 8Nf Zq �2R ;L p+ q2 q2 + p+ q � q (p+ q2 + �2Rp+q) (q2 + �2Rq)[(p+ q2 + �2Rp+q)2 + �2R ;L p+ q2℄[(q2 + �2Rq)2 + �2R ;L q2℄ : (4.30)Das Integral Rq wird im Fall L < 1 mit einer in Anhang D erl�auterten, sehreÆzienten Gittersummierungsmethode bere
hnet, die L = 1-Terme wurden miteiner NAG-Integrationsroutine (D01FCF: Multi-dimensional adaptive quadratureover hyper-re
tangle, [NAG91℄) ausgewertet.Die N�aherung G(3)R ;L � GR ;L l�a�t si
h mit der Feststellung re
htfertigen, da� in derrenormierten St�orungstheorie in 1-Loop-Ordnung f�ur den �au�eren Impuls p0 = 0aus De�nitionsglei
hung (3.25) G(3)R und GR exakt �ubereinstimmen, was au
h dieentspre
henden Werte in Tabelle 1 aus Artikel [LMMP93℄ hervorragend best�atigen.Eigentli
h aber mi�t G(3)R die St�arke des Yukawa-Vertex, w�ahrend GR mit (3.23)direkt zur Fermionen-Masse proportional ist [Wit92℄.Um die Normierungsbedingungen (4.24) zu erf�ullen, konstruiert man aus dem An-satz (4.28) nun �R�;L:�R�;L(p;m�;L; GR ;L; �R ;L) =�0R�;L(p;mR�;L; GR ;L; �R ;L)� �0R�;1(0;mR�;1; GR ;1; �R ;1)�p̂2 ��0R�;1�p̂2 (0;mR�;1; GR ;1; �R ;1): (4.31)Da die Gr�o�en von m�;1; GR ;1; �R ;1 wegen des endli
hen Charakters des Gittersunbekannt sind, werden sie |was si
h allerdings aufgrund von m�ogli
hen Volu-mene�ekten als weitere Fehlerquelle herausstellen k�onnte| mit den L-indiziertenParametern glei
hgesetzt, der Index L bzw. 1 wird also in Zukunft weggelassen,m� � m�;L � m�;1; GR � GR ;L � GR ;1; �R � �R ;L � �R ;1: (4.32)Ein (4.23) �ahnli
her Ansatz f�ur den �-Propagator,��(2;0)0� (p) = Z�1�;Lfp̂2 +m2R�;L � �R�;L(p)g;s
heitert zun�a
hst einmal an der dur
h die Goldstone-Bosonen verursa
hten Infra-rotdivergenz, die si
h bei den Renormierungsbedingungen�R�;1(0) = 0;��p̂2�R�;1(p)j p=0 = 0herauskristallisiert. �R�;L kann ebenfalls wie (4.31) konstruiert werden, es tau
htaber |wie bereits in Abs
hnitt 3.1 erw�ahnt| aufgrund der Goldstone-Bosonen imTerm ��0R�;1�p̂2 (0) eine Divergenz auf: z.B. geht der Beitrag50



KAPITEL 4. NUMERISCHE ERGEBNISSE��p̂2 Zq( dp+ q2)�1(q̂2)�1����p!(0;im�)�uber alle S
hranken. Hier k�onnte man si
h mit einer gr�oberen N�aherung als beim �-Propagator (siehe au
h [LMWM91a℄) behelfen: Man bere
hnet einfa
h den Di�eren-zenquotienten mit dem betragsm�a�ig kleinsten zur Verf�ugung stehenden Gitterim-puls, n�amli
h p4 = �2�T (siehe Glei
hungen (3.38) bis (3.41)). Dies geht f�ur T > L,denn die Reihenentwi
klung der Selbstenergie wird dann weniger stark dur
h Sym-metriebedingungen einges
hr�ankt als im unendli
hen Volumen. Leider kann diesergrobe Di�erenzenquotient hier eine zus�atzli
he Fehlerquelle sein, diese Ma�nahmelohnt si
h wahrs
heinli
h erst bei gr�o�eren Gittern als den hier betra
hteten.4.2.3 Parameterkon�gurationen in der FitfunktionUm die 1-Loop-Fitfunktion auszutesten, wurden mit Hilfe der Relationen zwis
henden einzelnen renormierten Gr�o�en,vR = Z�1=2� v0 (3:4); gR = 3m2�v2R (3:47); GR = �R vR (3:23)sowie daraus folgend gR = 3GR m2��2R (4.33)drei vers
hiedene Ausdr�u
ke als Fitfunktion untersu
ht:f(p4; a) � ��(2;0)0� (0; p4) =Z�1� (p̂24 +m2R� � h�0R�;L(0; p4)� �0R�;1(0)� p̂24��0R�;1�p̂24 (0)i) (4.34)mit den Selbstenergie-VariantenZ�1� �0R�;L(0; p4) = Z�1� G2R (3fm4��2R I�B(p4) + I�F (p4)) (4.35)= 3fm4�v20 I�B(p4) + Z�1� G2R I�F (p4) (4.36)= 1v20 n3fm4�I�B(p4) + �2R I�F (p4)o ; (4.37)wobei a den Parametervektor darstellt, z.B. a = (Z�; mR�; GR ).Einige Parameter mu�ten als Input aus den mir vorliegenden Daten extrahiert wer-den: die physikalis
he Masse m� mit dem Zeits
heiben-Korrelations�t (4.15) sowie|direkt aus den Datens�atzen| die Fermionenmasse �R und der Vakuumerwar-tungswert v. Die Inputparameter und die zu �ttenden Variablen sind in Tabelle 4.2aufgelistet. 51



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSTabelle 4.2: Fitarten mit 1-Loop-KorrekturBezei
hnung Input Fitfunktion Ge�ttete Parameter1a m�; �R (4.35) Z�; mR�; GR 1b m�; v0 (4.36) Z�; mR�; GR 2 m�; �R ; v0 (4.37) Z�; mR�3a m� (4.35) Z�; �R ; GR 3b m�; v0 (4.36) Z�; �R ; GR Der VEV v0 als Inputparameter hatte den gro�en Vorteil, nur geringf�ugig fehlerbe-haftet zu sein, er war also ein relativ \si
herer" und damit genauer Wert.Um den Ein
u� des bosonis
hen Anteils I�B der Selbstenergie zu untersu
hen, wurdebei den Fits no
h zus�atzli
h dieser Anteil einfa
h weggelassen:Z�1� �0�;L(0; p4) = Z�1� G2R I�F (p4) (4.38)= �2R v20 I�F (p4): (4.39)Die entspre
henden Fitarten stehen in Tabelle 4.3.Tabelle 4.3: Fitarten mit rein fermionis
her 1-Loop-KorrekturBezei
hnung Input Fitfunktion Ge�ttete Parameter1a' �R (4.38) Z�; mR�; GR 1b' v0 (4.38) Z�; mR�; GR 2' �R ; v0 (4.39) Z�; mR�3a' { (4.38) Z�; �R ; GR 3b' v0 (4.38) Z�; �R ; GR Bei den Fits 3a, 3b, 3a' und 3b' wurde mR� = 0 angenommen. 1a', 1b' und 3a', 3b'unters
heiden si
h nur in den Inputparametern, was zu den selben Fitergebnissenf�uhrt und deshalb zu 1' zusammengefa�t wurde (siehe Abs
hnitt 4.2.5).
52



KAPITEL 4. NUMERISCHE ERGEBNISSEZur Verans
hauli
hung der Selbstenergieanteile der letztgenannten Fits sind in Abb.4.2 die dreidimensionalen Plots der Funktionen I�F (p4;�R ) und �2R I�F (p4;�R )dargestellt.

�2R p̂24 �2R p̂24Abbildung 4.2: Plots der Funktionen I�F (p4;�R ) und �2R I�F (p4;�R ) beim 83�16-Gitter im Berei
h von �2R = 0:04 : : : 1:0Um eine Vorstellung vom Gr�o�enverh�altnis zwis
hen dem bosonis
hen und demfermionis
hen Anteil der Selbstenergie zu geben, sind beide in Abb. 4.3 beispielhaftaufgetragen. (Die dur
hgezogenen Linien stellen S
hnitte dur
h den re
hten Plotder Abb. 4.2 an den Stellen �R = 0:72 und �R = 0:86 dar.)DD-Datensatz (ungewi
hteter 1b-Fit)�R = 0:72(45)m� = 1:20(21)
p̂24

C-Datensatz (ungewi
hteter 2-Fit)�R = 0:86(8)m� = 1:18(16)
p̂24Abbildung 4.3: Plots der Funktionen �2R I�F (p4;�R ) (dur
hgezogene Linie) und3fm4�I�B(p4) (Punkt-Stri
h-Linie)4.2.4 Realisierung des FitalgorithmusZum Fitten der Daten wurde ein teilweise selbstentwi
kelter Algorithmus benutzt,der na
h einem Zufallsprinzip arbeitet: Dur
h die �Ubergabe der Parametergrenzen(siehe Tabelle 4.4) wird ein Parameterhyperkubus mit einer dur
h die Anzahl derFitparameter bestimmten Dimension festgelegt.53



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSTabelle 4.4: Beispiel f�ur die Parametergrenzen des FitalgorithmusFitparameter Z� G2R m2� m2R� �2R Minimum 0.1 0.1 0 0 0Maximum 2 8 2 1 4Aus diesem werden mittels eines NAG-Zufallszahlengenerators (G05CAF: Pseudo-random real numbers, uniform distribution over (0,1), [NAG91℄) willk�urli
h Parame-terkon�gurationen (wie z.B. Pionen-Masse m�, renormierte Yukawa-Kopplung GR und Renormierungskonstante Z�; siehe Abs
hnitt 4.2.3) f�ur die Fitfunktion erzeugt.Dann wird der Abstand der Fitfunktion zu den Me�punkten mittels�2(a) �Xp4 w(p4) �f(p4; a)� y(p4)�2 (4.40)bere
hnet und mit dem bisher kleinsten vergli
hen (Methode der kleinsten quadra-tis
hen Abwei
hung). Dabei ist Pp4 die Summe �uber die Gitterimpulse, w(p4) eineGewi
htung, f(p4; a) die Fitfunktion mit den Fitparametern a = (a1; : : : ; an) undy(p4) der Datenwert [PFTV86℄. (Wegen der Symmetrie des Propagators wurden nurdie Impulse p4 = 2�T n4 mit n4 = 0; : : : ; T2 ben�otigt.) Wurde ein bestes �2 gefunden,so wird no
h ein Gradientenverfahren zur Optimierung gestartet,ak+1 � ak � � 5a �2(a)ja=ak ; (4.41)wobei � > 0 eine konstante S
hrittweite ist (in der Gr�o�enordnung um 0.001). a0ist der Zufallspunkt aus dem Parameterraum, und ak die im S
hritt k des Gradien-tenverfahrens gefundenen Parameter.Der Gradient 5a�2(a) wird rein numeris
h ermittelt, er mu� dem Fitalgorithmusalso ni
ht explizit angegeben werden. (4.41) ist eine Abwandlung eines in [BS89℄erw�ahnten Algorithmus; eine variable, bei jedem S
hritt neu festzulegende S
hritt-weite erbra
hte gegen�uber der konstanten, weniger programmieraufwendigen, keineerkennbaren Vorteile.Zufallspunkte wurden deshalb ben�otigt, um eventuelle Subminima, in die ein reinerGradienten�t hineingleiten kann, und die keinen physikalis
h sinnvollen Werten ent-spre
hen k�onnen, quasi zu \bre
hen", sie also einer Art Evolutionsprinzip zu unter-werfen. Bei jedem Dur
hlauf wurden so 
a. 4�106 Parameterkon�gurationen gepr�uft,d.h. bei 3 Fitparametern pro Parametera
hse um die 150 Punkte. Bei den Parame-tergrenzen habe i
h mi
h an Literaturgr�o�enordnungen orientiert, siehe [LMMP93℄.Die De�nition von Parametergrenzen hatte no
h den Vorteil, parameterabh�angigeIntegrale mit in die Fitfunktion aufnehmen zu k�onnen: diese mu�ten aus re
hen�oko-nomis
hen Gr�unden s
hon vor dem eigentli
hen Fitting in Felder abgelegt werden,und aufgrund der Festlegung der Parametergrenzen konnte der Fitalgorithmus au
hni
ht die Feldgrenzen �ubers
hreiten. 54



KAPITEL 4. NUMERISCHE ERGEBNISSE4.2.4.1 Fehlerabs
h�atzungUm die Fehler der 2-Punkt-Funktion �(2;0)� (p) zu bere
hnen, die man zur Fehler-abs
h�atzung der Fitparameter und f�ur die gewi
hteten Fits ben�otigt, wurde folgen-derma�en vorgegangen [Wit94℄: den vorliegenden Monte-Carlo-Datens�atzen wa-ren neben den eigentli
hen Zeits
heiben-Korrelationsfunktionen C(t) au
h die sog.Binnings angegeben, die |abh�angig von der Anzahl der Bins, also der Zahl derUnterteilungen einer Trajektorie| die Fehler dieser Mittelwerte als Standardab-wei
hungen �(t) angeben. Hier wurden sie bei Bin-Zahlen von 2 bis 8210 in 13S
hritten (beim 83 � 16-Gitter) bzw. von 2 bis 5800 in 12 S
hritten (beim 63 � 12-Gitter) gemessen. Dies entspri
ht Bin-L�angen von 2 bis 8192 bzw. von 2 bis 4096in Verdopplungss
hritten.

Bin-L�ange
Fehler

Abbildung 4.4: Abh�angigkeit der Fehlergr�o�e von der Bin-L�ange bei der transversa-len Zeits
heiben-Korrelationsfunktion CT (t)Je kleiner die Bin-Zahl bzw. je gr�o�er die Bin-L�ange ist, desto gr�o�er wird derFehler, bis er theoretis
h bei der viertletzten Bin-L�ange (in der obigen Abbildungglei
h 1024, markiert dur
h eine gestri
helte Linie) einen S�attigungswert errei
hensollte [Wit94℄. In Abb. 4.4 ist der mit dem Fehler bei der gr�o�ten Bin-L�angenormierte und �uber die Zeiten 0 bis T=2 gemittelte Verlauf der Fehlergr�o�e bei dertransversalen Zeits
heiben-Korrelationsfunktion von Datensatz BB in Abh�angigkeitvon der Bin-L�ange aufgetragen. Ein S�attigungsplateau, wie es in Artikel [FP89℄ an-hand eines einfa
hen Ising-Modells bes
hrieben wird, ist (bei der gestri
helten Linie)nur s
hwa
h zu erkennen. Dies liegt sehr wahrs
heinli
h daran, da� man aufgrundder auftretenden numeris
hen Komplexit�at des Modells eine h�o
hst unzurei
hendeStatistik hat. Der genannte viertletzte Wert �(t) geht in einen normalverteiltenZufallszahlenalgorithmus um den Mittelwert C(t) ein (0 � t � T=2), d.h. es werdenum die C(t) herum mit der NAG Zufallszahlen Ck(t) erzeugt (G05DDF: Pseudo-random real numbers, Normal distribution, [NAG91℄), die der Normalverteilung55



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSp�Ck(t);C(t)); �(t)� = 1p2� �(t) e� (Ck(t)�C(t))22�2(t) (4.42)gehor
hen [Wit94℄. Ans
hlie�end werden diese Fouriertransformiert:Gk(0; p4) = Ck(0) + Ck(T=2) 
os(� p4) + 2 T=2�1Xt=1 Ck(t) 
os(p4 t): (4.43)Diese Prozedur wird n mal wiederholt. Die daraus gewonnenen Standardabwei
hun-gen der inversen Fouriertransformierten,~�(p4) � vuut<�G�1k (0; p4)�2>� �G�1(0; p4)�2n� 1 ; (4.44)wobei G(0; p4) = ���(2;0)(0; p4)��1 aus der Glei
hungG(0; p4) = C(0) + C(T=2) 
os(� p4) + 2 T=2�1Xt=1 C(t) 
os(p4 t); (4.45)stammt und<�G�1k (0; p4)�2> � 1n nPk=1 �G�1k (0; p4)�2 gilt, werden quadratis
h rezi-prok als Gewi
hte eingesetzt [PFTV86℄:w(p4) � 1~�2(p4) : (4.46)F�ur die Bere
hnung der Gewi
hte war n = 1000, aber um die Fehler der Fitparame-ter zu ermitteln, wurden (aus Zeitgr�unden nur) n = 100 dieser Verteilungen erzeugt,dur
h diese wurde dann ge�ttet, und mit den damit bere
hneten gestreuten Fitpa-rametern wurden die Standardabwei
hungen der Mittelwert-Fitparameter generiert(analog (4.44)).Allerdings mu� eins
hr�ankend gesagt werden, da� eben wegen der genannten man-gelhaften Statistik die Fehler eher �uberbewertet worden sind. Die einzelnen Ge-wi
hte unters
heiden si
h um mehrere 10er-Potenzen (wie in Tabelle 4.5 beispielhaftaufgef�uhrt), so da� Propagatorwerte bei h�oheren Impulsen beim Fitten praktis
hkeinen Ein
u� mehr haben, was man in Abs
hnitt 4.2.7 au
h gut erkennen kann.Tabelle 4.5: Maximums-normierte Gewi
hte des BB-PropagatorsT2�p4 0 1 2 3 4w(p4) 1:00 0:00772 7:88 � 10�5 3:25 � 10�6 4:77 � 10�7T2�p4 5 6 7 8w(p4) 4:34 � 10�8 3:52 � 10�9 1:91�10�10 6:55�10�11
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KAPITEL 4. NUMERISCHE ERGEBNISSE4.2.5 Ergebnisse des 1-Loop-FittingsDie in den folgenden Tabellen 4.6 bis 4.11 aufgef�uhrten Werte ergeben si
h bei denjeweiligen Fitarten wie folgt:Name Z� GR �R mR� vR gRLiteratur Z�;Lit GR ;Lit �R ;Lit � vR;Lit gR;Lit1a, 1a' Z� GR Z�1=2� GR v0 mR�1b, 1b' Z� GR Z�1=2� GR v0 mR�2, 2' Z� Z1=2� =v0 � mR� 9>>>>>=>>>>>;Z�1=2� v0 3Z�m2�=v203a, 3a' Z� GR �R 03b, 3b' Z� GR �R 0gR entspri
ht hier der De�nition (3.47). Die Lit-indizierten Werte stammen ebensowie v0 aus [LMMP93℄. Die Au
istung der vR- und gR-Werte dient als G�utekriteriumf�ur die einzelnen Fits.Ebenfalls als eine Art Kontrollinstanz f�ur die De�nitionsglei
hung (3.23) (au�er beiden Fits 2, 2') dient der �R -Wert. Bei den Fits 2 und 2' spielt er als Fitparameterkeine Rolle und bei 3a, 3a', 3b, 3b' wird er direkt mitge�ttet.4.2.5.1 Ungewi
htete FitsDie ungewi
hteten Fitfunktionen zei
hnen si
h dadur
h aus, da� sie die Propaga-torfunktionen sehr gut na
hvollziehen (siehe au
h Abs
hnitt 4.2.7). Besonders dieKr�ummung des Propagators bei kleinen Impulsen wird gut wiedergegeben. IhreAussagekraft wird aber dur
h die fehlende Gewi
htung ges
hm�alert, die Werte beigro�en Impulsen m�u�ten eigentli
h einen wesentli
h geringeren Ein
u� auf den Ver-lauf der Kurve haben als diejenigen bei kleinen Impulsen. Andererseits haben dieGewi
hte |wie bereits in Abs
hnitt 4.2.4.1 gesagt wurde| selbst einen qualita-tiv minderwertigen Informationsgehalt, so da� die ungewi
htete Methode insgesamtwieder zuverl�assiger ers
heint: Belegt wird diese Aussage au
h dur
h die relativ gute�Ubereinstimmung der �R -, vR- und gR-Werte mit den Literaturwerten.Die bemerkenswert hohen Fehler erkl�aren si
h ni
ht nur aus den bereits in Abs
hnitt4.2.4.1 genannten Gr�unden, sondern au
h aus der geringen Anzahl der Dur
hl�aufedes Fitprogramms zur Ermittlung der Fitparameter-Fehler (n = 100, siehe eben-falls 4.2.4.1); um zuverl�assigere Abs
h�atzungen zu erzielen, m�u�te man wahrs
hein-li
h um die 300 bis 500 mal die gestreuten Propagatorwerte an�tten (da si
h un-gef�ahr bei diesen Zahlen au
h der Propagatorfehler ~�(p4) stabilisierte), was in einemvern�unftigen Zeitrahmen ni
ht zu s
ha�en war (auf den mir zur Verf�ugung stehen-den s
hnellsten Re
hnern, IBM RS/6000-390 bzw. 590 s
h�atzungsweise 3 bis 4 Tage;das Queue-Re
henzeit-Limit auf diesen Mas
hinen betrug aber nur 1 Tag und eineAufteilung der Jobs h�atte einen erhebli
hen Mehraufwand beim Programmieren be-deutet, vor allem au
h wegen der l�angeren Debugging-Zeiten auf der Queue). Bei57



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSTabelle 4.6: BB-Datensatz, ungewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 1.14(9) 1.36(12) 0.341(2) | 0.25(1) 31(4)1a 1.16(48) 1.61(1.07) 0.40(45) 0.00(23) 0.25(5) 26(24)1b 1.16(47) 1.64(1.09) 0.41(43) 0.00(28) 0.25(5) 26(23)2 1.26(47) 1.41(27) - 0.20(65) 0.24(5) 28(24)3a 1.16(50) 1.64(50) 0.35(3.54) 0 0.25(6) 26(24)3b 1.13(49) 1.54(1.37) 0.26(4.86) 0 0.25(6) 25(23)1' 1.15(47) 1.72(1.03) 0.43(40) 0.00(29) 0.25(5) 26(23)2' 1.28(48) 1.43(27) - 0.22(57) 0.24(5) 29(25)3a' 1.06(44) 1.44(36) 0.15(8.49) 0 0.26(6) 24(22)3b' 1.06(44) 1.44(1.52) 0.15(8.49) 0 0.26(6) 24(22)Tabelle 4.7: C-Datensatz, ungewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 0.98(8) 2.4(3) 0.86(8) | 0.36(2) 36(6)1a 1.14(37) 2.41(90) 0.79(29) 0.00(48) 0.33(6) 38(23)1b 1.15(38) 2.37(88) 0.78(29) 0.00(48) 0.33(6) 39(23)2 1.12(34) 2.58(4.23) - 0.00(41) 0.33(5) 38(22)3a 1.16(33) 2.79(1.16) 1.08(92) 0 0.33(5) 39(22)3b 1.16(34) 2.82(1.05) 1.13(87) 0 0.33(5) 39(22)1' 1.13(38) 2.57(92) 0.85(30) 0.00(49) 0.33(6) 38(23)2' 1.13(35) 2.60(4.26) - 0.00(42) 0.33(5) 38(22)3a' 1.15(34) 2.80(1.17) 1.02(1.00) 0 0.33(5) 39(22)3b' 1.15(34) 2.80(1.01) 1.02(1.00) 0 0.33(5) 39(22)Tabelle 4.8: DD-Datensatz, ungewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 1.00(10) 2.5(3) 0.86(11) | 0.339(16) 38(4)1a 1.18(59) 2.36(80) 0.74(38) 0.23(63) 0.31(8) 44(38)1b 1.18(59) 2.31(81) 0.72(45) 0.23(64) 0.31(8) 44(38)2 1.10(58) 2.67(1.49) - 0.09(2.13) 0.32(9) 41(36)3a 1.05(50) 1.40(42) 0.26(4.35) 0 0.33(8) 39(33)3b 0.81(39) 1.32(1.78) 0.05(23.34) 0 0.38(9) 30(25)1' 1.17(60) 2.49(78) 0.78(42) 0.23(65) 0.31(8) 44(38)2' 1.12(58) 2.69(1.50) - 0.16(1.20) 0.32(8) 42(37)3a' 0.85(41) 1.39(40) 0.09(12.69) 0 0.37(9) 32(27)3b' 0.85(41) 1.39(1.65) 0.09(12.69) 0 0.37(9) 32(27)der Re
henzeit s
hlug dabei ni
ht nur das eigentli
he Fitting sondern au
h die Be-re
hnung der (L =1)-Kontinuums-Ausdr�u
ke mit der NAG zu Bu
he. Man solltedaher viellei
ht besser auf den NAG-Einsatz ganz verzi
hten und stattdessen einfa
hdie entspre
henden Ausdr�u
ke mit dem Gittersummenalgorithmus bei gr�o�eren Vo-58



KAPITEL 4. NUMERISCHE ERGEBNISSElumina bere
hnen, der die vollen Symmetrien ausnutzt. Ents
heidender Vorteil derNAG-Integrationsroutinen war aber, da� si
h deren Genauigkeit exakt steuern lie�,was si
h gerade bei den Ableitungen na
h p̂2 als sehr n�utzli
h erwiesen hat.W�ahrend f�ur alle drei Datens�atze die Fits 1a und 1b gut miteinander �ubereinstim-mende Werte in allen Parametern lieferten, was in erster Linie auf den glei
henFitparametern beruhte, tri�t dies bei 3a und 3b nur f�ur BB- und C zu, beim DD-Datensatz wei
hen vor allen Dingen die Fermionenmassen sehr stark voneinanderab. Letzerer war aber au
h der einzige, bei dem 1a und 1b f�ur mR� von 0 abwei-
hende Werte produzierten.3a und 3b lieferten ebenfalls bis auf den DD-Datensatz f�ur Fermionenmasse undRenormierungskonstante relativ zuverl�assig ers
heinende Werte, bei DD wi
hen dieFermionenmassen leider zu stark na
h unten ab (�R = 0:26; 0:05 gegen�uber demLiteraturwert von 0.86), was darin begr�undet liegen mag, da� bei den Fitfunktionen(4.35) und (4.36) die Parameter untereinander zuviel Spielraum haben; in beidenF�allen hat man Fitfunktionen der Formf(p;Z�; �R ; GR ) = Z�1� fp̂2 +G2R g(p;�R )g;wo GR und �R im zweiten Summanden auf der re
hten Seite zu gro�e \Bewe-gungsm�ogli
hkeiten" haben, d.h. mehrere Kombinationen dieser Werte k�onnen die-selben Fitkurven produzieren, was die Aussagekraft dieser Fits enorm mindert. Das-selbe gilt au
h f�ur 3a' und 3b'. Diese Begr�undung und die gro�en Fehler lassen denS
hlu� zu, da� die Werte aus diesen Fits bei den anderen Datens�atzen nur zuf�alligim ri
htigen Berei
h liegen k�onnten.Zu den Zwei-Parameter-Fits 2 und 2' bleibt anzumerken, da� die Renormierungs-konstanten beim BB-Datensatz gegen�uber 1a und 1b na
h oben, bei den �ubrigenna
h unten abwei
hen (au�er 2'), bei der Yukawa-Kopplung ist es genau umgekehrt.Die gestri
henen Fits unters
heiden si
h von den ungestri
henen dadur
h, da� inder Regel die Renormierungskonstanten ein wenig kleiner sind, dagegen bei GR und �R zwei unters
hiedli
he \Trends" auszuma
hen sind: Bei 1a' bis 2' wa
hsensie vergli
hen mit den ungestri
henen, bei 3a' und 3b' s
hrumpfen sie (bis auf dieC-Daten).Die denno
h geringen Abwei
hungen lassen darauf s
hlie�en, da� insgesamt der bo-sonis
he Ein
u� auf die Fitparameter gering ist, anders, als es Abb. 4.3 suggeriert.Das bedeutet im Ende�ekt, da� der Kr�ummungsverlauf des fermionis
hen Teils we-sentli
h mehr Ein
u� auf die Fitparameter aus�ubt als dessen Absolutwerte, der bo-sonis
he Teil hat bereits eine gr�o�ere p̂2-Konformit�at \eingebaut", was au
h mit derAussage �ubereinstimmt, da� bei s
hwa
hen Yukawa-Kopplungen ein 1-Pol-Ansatzder Form (4.22) gen�ugt, wo der bosonis
he Term s
hli
ht �uber
�ussig ist.4.2.5.2 Gewi
htete FitsDas gr�o�te Manko beim gewi
hteten Fitten ist |wie s
hon fr�uher in 4.2.4.1 bes
hrie-ben| der Gr�o�enunters
hied der Gewi
hte untereinander aufgrund der mangelhaf-ten Statistik, obwohl die Gewi
htung eigentli
h das korrektere Verfahren darstellt.59



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORSTabelle 4.9: BB-Datensatz, gewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 1.14(9) 1.36(12) 0.341(2) | 0.25(1) 31(4)1a 1.29(10) 0.87(34) 0.207(82) 0.113(59) 0.24(1) 29(16)1b 1.36(13) 0.53(67) 0.12(16) 0.151(63) 0.23(1) 31(18)2 1.28(6) 1.43(3) - 0.00(6) 0.24(1) 29(15)3a 1.27(8) 2.69(1.09) 1.13(55) 0 0.24(1) 29(16)3b 1.23(8) 2.72(82) 1.57(52) 0 0.24(1) 28(15)1' 1.35(13) 0.60(62) 0.14(16) 0.167(64) 0.23(1) 30(18)2' 1.25(6) 1.41(4) - 0.01(35) 0.24(1) 28(15)3a' 1.27(10) 2.69(1.09) 1.13(52) 0 0.24(1) 29(16)3b' 1.27(10) 2.69(86) 1.13(52) 0 0.24(1) 29(16)Tabelle 4.10: C-Datensatz, gewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 0.98(8) 2.4(3) 0.86(8) | 0.36(2) 36(6)1a 1.22(21) 1.79(86) 0.57(27) 0.17(18) 0.32(3) 41(18)1b 1.25(15) 1.65(86) 0.52(27) 0.17(17) 0.32(2) 42(17)2 1.28(20) 2.77(8.02) - 0.00(18) 0.31(3) 43(19)3a 1.19(8) 2.07(88) 0.80(53) 0 0.32(1) 40(14)3b 1.20(12) 2.31(60) 1.00(35) 0 0.32(2) 40(15)1' 1.25(14) 1.71(90) 0.54(28) 0.22(12) 0.32(2) 42(16)2' 1.23(17) 2.71(6.98) - 0.00(21) 0.32(2) 41(17)3a' 1.18(12) 2.29(1.01) 0.82(38) 0 0.32(2) 40(15)3b' 1.18(12) 2.29(53) 0.82(38) 0 0.32(2) 40(15)Tabelle 4.11: DD-Datensatz, gewi
hteter FitBezei
hnung Z� GR �R mR� vR gRLiteratur 1.00(10) 2.5(3) 0.86(11) | 0.339(16) 38(4)1a 1.03(8) 0.87(1.12) 0.29(33) 0.03(14) 0.33(1) 39(17)1b 1.08(9) 0.32(2.48) 0.10(71) 0.02(14) 0.33(1) 41(18)2 1.26(9) 2.85(1.25) - 0.00(4) 0.30(1) 47(20)3a 1.03(7) 2.06(49) 1.66(32) 0 0.33(1) 39(16)3b 1.02(8) 2.81(69) 1.86(45) 0 0.34(1) 38(17)1' 1.03(10) 1.19(96) 0.40(28) 0.00(10) 0.33(2) 39(17)2' 1.17(11) 2.75(1.14) - 0.00(10) 0.31(2) 44(20)3a' 1.02(11) 2.60(82) 1.66(47) 0 0.34(2) 38(18)3b' 1.02(11) 2.60(67) 1.66(47) 0 0.34(2) 38(18)Au�allend ist, da� die Z�-Werte bei allen Fits gr�o�er als die Literaturwerte sind.Ursa
he hierf�ur ist, da� wegen der sehr s
hwa
hen Gewi
htung der Propagatorwertebei hohen Impulsen die Kr�ummung dur
h die Fitfunktion ni
ht mehr na
hvollzogenwerden kann, was die Renormierungskonstante d�ampfen w�urde. Au
h die Werte f�ur60



KAPITEL 4. NUMERISCHE ERGEBNISSEdie Yukawa-Kopplung sind als s
hle
ht anzusehen, da si
h die Selbstenergie ja erstbei gr�o�eren Impulsen bemerkbar ma
ht.Insgesamt sind die bere
hneten Renormierungskonstanten |bei BB und C sogarum mehr als 10 %| gr�o�er als die Literaturwerte aus [LMMP93℄. Den �ubrigenFitparametern mu� man leider die Zuverl�assigkeit abspre
hen, die Abwei
hungenuntereinander und von den Literaturwerten sind teilweise erhebli
h. Im Gegensatzdazu sind die Parameter-Fehler geringer als bei der ungewi
hteten Methode, diesberuhte aber darauf, da� die gewi
hteten Fitfunktionen lei
hter in die Minima derAbstandsme�funktion (4.40) hineingelangen konnten.Diese Fitmethode ma
ht wahrs
heinli
h erst dann Sinn, wenn die Statistik derzugrundeliegenden Daten, die si
h in den Fehlern der Zeitkorrelationsfunktionen�au�ert, wesentli
h verbessert wird, d.h. die Zahl der HMC-Trajektorien erh�oht wird.4.2.6 Verglei
h der MethodenR�u
kbli
kend ist bei den hier vorliegenden Datens�atzen die ungewi
htete Methodeder gewi
hteten vorzuziehen, insbesondere kristallisierten si
h die Fits 1a und 1bals die Fitting-Formeln mit den plausibelsten Ergebnissen heraus, da vor allem ihreGR - und �R -Werte dur
hweg den Literaturwerten am n�a
hsten waren. Zudem l�a�tsi
h konstatieren, da� bei ihnen |au
h im Gegensatz zur gewi
hteten Methode| dierenormierte Yukawa-Kopplung mit zunehmender na
kter Yukawa-Kopplung w�a
hst,was ein zus�atzli
hes Kriterium f�ur ihre Anwendbarkeit ist.4.2.7 Graphis
he Darstellung der FitsAnhand der Plots mit den Fits (gestri
helte Kurve) und den Me�werten (dur
h-gezogene Linie) kann man gut die Qualit�at der unters
hiedli
hen Fitausdr�u
ke be-urteilen. Man erkennt, da� die gewi
hteten Fitkurven wesentli
h st�arker von dengemessenen Werten abwei
hen. Dur
h, die Fehler ~�(p4) entstehen in der Gewi
htungdie gro�en Unters
hiede, die Propagatorwerte bei gr�o�eren Impulsen kommen beimFitten praktis
h ni
ht zum Zuge.Die Abwei
hung als ein Ma� f�ur die G�ute der Fitfunktion wurde na
h der Formel�2 = 1T=2 + 1 T=2Xn4=0 �f(2�T n4; a) + �(2;0)0� (0; 2�T n4)�2 (4.47)bestimmt, wobei f(x; a) die Fitfuntion ist.Wie man anhand der BB-Plots erkennt, kann man Punkt 3 aus der Liste der Ab-wei
hungen aus Abs
hnitt 4.2.1 best�atigen: S
hon bei der relativ s
hwa
hen na
k-ten Yukawa-Kopplung G = 0:3 kann bei kleinen Impulsen eine re
ht signi�kanteKr�ummung festgestellt werden, wel
he dur
h die ni
ht-gewi
hteten Fits au
h gutna
hvollzogen werden kann.
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4.2. 1-LOOP-ANALYSE DES �-PROPAGATORS4.2.7.1 Ungewi
htete Fits mit voller 1-Loop-Korrektur
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Abbildung 4.5: 1a- und 1b-Fit, ungewi
htet62



KAPITEL 4. NUMERISCHE ERGEBNISSE
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Abbildung 4.6: 2- und 3a-Fit, ungewi
htet63



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORS
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Abbildung 4.7: 3b-Fit, ungewi
htet64



KAPITEL 4. NUMERISCHE ERGEBNISSE4.2.7.2 Ungewi
htete Fits nur mit 1-Fermionen-Loop-Korrektur
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Abbildung 4.8: 1'- und 2'-Fit, ungewi
htet65



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORS
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Abbildung 4.9: 3a'- und 3b'-Fit, ungewi
htet66



KAPITEL 4. NUMERISCHE ERGEBNISSE4.2.7.3 Gewi
htete Fits mit voller 1-Loop-Korrektur
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Abbildung 4.10: 1a- und 1b-Fit, gewi
htet67
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Abbildung 4.11: 2- und 3a-Fit, gewi
htet68
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Abbildung 4.12: 3b-Fit, gewi
htet69



4.2. 1-LOOP-ANALYSE DES �-PROPAGATORS4.2.7.4 Gewi
htete Fits nur mit 1-Fermionen-Loop-Korrektur
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Abbildung 4.13: 1'- und 2'-Fit, gewi
htet70
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Abbildung 4.14: 3a'- und 3b'-Fit, gewi
htet71



ZusammenfassungIn dieser Arbeit wurde ein Yukawa-Modell in der Phase mit gebro
hener Symmetrieunter globaler SU(2)L 
 SU(2)R-Ei
hsymmetrie st�orungstheoretis
h untersu
ht.Im ersten Kapitel wurden dazu die Feynman-Regeln aufgestellt und im zweiten Ka-pitel die Ausdr�u
ke der skalaren Propagatoren sowie die des Fermionen-Propagatorsund des Vakuumerwartungswertes im Entkopplungsfall G0� = 0 bis zur 1-Loop-Ordnung entwi
kelt.Na
h der De�nition des Renormierungss
hemas wurden im dritten Kapitel die St�o-rungsreihen der renormierten Parameter als Funktionen der na
kten Parameter auf-gestellt, z.T. unter Ausnutzung der Golterman-Pet
her-Identit�aten. Ans
hlie�endwurden diese Funktionen wieder na
h den na
kten Parametern aufgel�ost (renor-mierte St�orungstheorie)Diese Bere
hnungen dienten als Vorbereitung f�ur die numeris
he Auswertung vonDatens�atzen, die die Me�ergebnisse einer Hybrid-Monte-Carlo-Simulation enthiel-ten, insbesondere die Zeits
heiben-Korrelationsfunktionen der skalaren Teil
hen. Beidieser Auswertung wurde die in Kapitel 3 vorgestellte renormierte St�orungsre
hnungangewandt, indem die transversale Zeits
heiben-Korrelationsfunktion in den skala-ren �-Propagator Fourier-transformiert, invertiert und dann an diesen die renormier-te 1-Loop-St�orungsentwi
klung des inversen �-Propagators �(2;0)� (p) als Fitfunktiongelegt wurde.Gepr�uft wurden dabei mehrere, zueinander �aquivalente Parametrisierungen dieserFitfunktion, und gepr�uft wurde au
h, ob eine statistis
h korrekte Gewi
htung desFittings sinnvoll ist. Dabei stellte si
h heraus, da� ein gewi
htetes Fitten wegen derden Datens�atzen zugrunde liegenden unzurei
henden Statistik ni
ht m�ogli
h war, dadie ermittelten Parameter zu stark von den Literaturwerten abwi
hen. Dies konnteman au
h deutli
h an den Abwei
hungen der Fitfunktionen von den Me�punkten inden entspre
henden Plots sehen.Beim ungewi
hteten Fitting stellten si
h zwei Parametrisierungen (mit der trans-versalen Renormierungskonstante Z�, der renormierten Yukawa-Kopplung GR undder Pseudo-Pionenmasse mR�) als besonders g�unstig und mit den Literaturwertenrelativ konform heraus, wobei die entspre
henden Fitfunktionen au
h den Verlaufdes gemessenen Propagators hervorragend wiedergaben. Die anderen Fitfunktionenbesa�en entweder zu wenig Fitparameter, oder ihre einzelnen Fitparameter konntenin mehreren Werte-Kombinationen dieselbe Fitfunktion reproduzieren, waren alsoni
ht eindeutig. 72



Zentrales Thema dieser Arbeit war es nun, dieses si
h von den f�ur gew�ohnli
h ange-wandten Methoden unters
heidende Bere
hnungsverfahren auf seine Verwendbarkeitzu testen, und zu pr�ufen, ob es eventuell eine den herk�ommli
hen Verfahren �uberle-gene, pr�azisere Auswertung von numeris
hen Daten im Yukawa-Modell erm�ogli
ht.Die Frage na
h der Verwendbarkeit der hier vorgestellten Fitmethode mit 1-Loop-Korrektur l�a�t si
h mit ja beantworten. Die �Uberlegenheit dieser Methode konnte al-lerdings no
h ni
ht bewiesen werden, da einerseits die Fehlertoleranzen im Datensatzzu gro� waren (obwohl die einzelnen Me�werte einen relativ zuverl�assigen Eindru
kma
hten), und andererseits in das Fitverfahren als Input au
h herk�ommli
h bere
h-nete Parameter, wie z.B. die Fermionenmasse �R oder die mit dem Zeits
heiben-Korrelations�t ermittelte physikalis
he Masse m� eingingen.Um die genannten Probleme zu beseitigen, sollte man zu gr�o�eren Gittervolumina(ab V = 163�32) und mehr HMC-Trajektorien �ubergehen (deutli
h mehr als 10000).Im Verglei
h zu den hier gemessenen Werten lassen si
h dann au
h Volumene�ektebesser untersu
hen. Au�erdem w�are im st�orungstheoretis
h erfa�baren Berei
h einwesentli
h aufwendigeres, selbstkonsistentes Fitverfahren interessant, wel
hes aus-s
hlie�li
h auf der Verwendung von 1-Loop-St�orungsentwi
klungen sowohl des �-als au
h des �-Propagators beruht und ni
ht zur H�alfte auf \klassis
h" bere
hne-ten Inputparametern wie z.B der Fermionenmasse �R . Von wesentli
hem Interessew�are dabei, ob sol
h ein Verfahren �uberhaupt m�ogli
h ist, und wenn, wie ho
h derZeitaufwand f�ur Realisation und Ausf�uhrung ist.
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Anhang AEinfa
he De�nitionen undKonventionen
A.1 
-Matrizen im Euklidis
henZwis
hen den 
-Matrizen 
� im Euklidis
hen und denen in Minkowski-Metrik, 
M� ,besteht der Zusammenhang
j = i
Mj f�ur j = 1; 2; 3 (A.1)sowie 
4 = 
M4 : (A.2)Daraus wird 
5 dur
h 
5 � 
1
2
3
4 (1.28)de�niert. Im Euklidis
hen gehor
hen die 
-Matrizen der Vertaus
hungsrelationf
�; 
�g = 2Æ��. (1.27)Weiterhin gilt 
y� = 
� ; 
y5 = 
5 (A.3)sowie  =  y
4 ; ( 
4 )y = � 
4 : (A.4)Als letztes sei no
h die Spurrelation Tr
� = 0 (A.5)genannt. 74



ANHANG A. EINFACHE DEFINITIONEN UND KONVENTIONENDie gro�en Gammas werden dur
h�j � �i
5�j; �4 � 1 (1.37)de�niert. Sie kommutieren entspre
hend den Glei
hungen
��� = �y�
� ; ��
� = 
��y� ; 
5�� = ��
5 ; 
5�y� = �y�
5 (1.47)und �i�j = �yi�yj = �Æij � i �ijk�k ; �yi�j = �i�yj = Æij + i �ijk�k: (1.48)Die Spur des Produktes ���y� hat den WertTr(���y�) = 8Æ��: (1.49)A.2 Sonstige Bezei
hnungenEntspre
hend den �ubli
hen Konventionen werden no
h folgende Parameter als Ab-k�urzungen de�niert: q̂� � 2 sin q�2 , (1.69)q� � sin q�, (1.76)q� � 12 sin(2q�). (3.42)\Ges
hl�angelte" Parameter sind de�niert alsfm � 2 sinh m2 : (A.6)
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Anhang BErzeugende Funktionale undGreensfunktionen
B.1 Konventionen f�ur die GitternotationDas Gitter ist die Menge� � fx = (x1; x2; x3; x4) = (x; t) 2 ZZ4; 0 � x� < L�; � = 1; : : : ; 4g, (1.15)sein Volumen ist V � L1L2L3L4 = L3T; (B.1)wobei L die Ausdehnung in Raumri
htung, T = L4 die in Zeitri
htung ist. DieGittersumme ist glei
h Xx � 0� 4Y�=1 L��1Xx�=01A ; (B.2)eine Fouriertransformation entspri
ht der Operation~f(p) �Xx f(x) e�ip�x; (B.3)r�u
ktransformiert wird mit f(x) � 1V Xx ~f(x) eip�x; (B.4)wobei p = (p1; p2; p3; p4) und p� = 2�L� n�, n� 2 f0; : : : ; L� � 1g.Das h�au�g auftretende Integral �uber die erste Brillouin-Zone ist auf dem Gitter alsdie Summe 76



ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONENZq � 1L3T X�L=2<nj�L=2�T=2<n4�T=2 (1.83)mit qj = 2�L nj und q4 = 2�T n4 de�niert.B.2 Erzeugendes Funktional f�ur unverbundeneGreensfunktionenDas erzeugende Funktional ist in Gitternotation de�niert alsZ(J; �; �) �N�1Z D'0D	D	 exp�� hS('0;	;	)+Px Tr(Jyx'0x) +Px (�x x +  x�x + �x�x + �x�x)i�(B.5)mit den Quellen Jx = J0x1 + iJjx�j und �x =  �x�x!;und der Normierungskonstante N . Sie besitzt den WertN � Z(J; �; �)jJ=�=�=0: (B.6)D'0 steht f�ur D'0 �Yx Y� d'00�x; (B.7)D	 f�ur D	 �Yx d	x; (B.8)D	 ist analog de�niert.B.3 Erzeugendes Funktional f�ur die verbundenenGreensfunktionenDas erzeugende Funktional f�ur die verbundenen Greensfunktionen ist dur
hW (J; �; �) � logZ(J; �; �) (B.9)de�niert. (2.1) und (2.2) lassen si
h daraus einfa
h bere
hnen:G�;xy = � �2�J0x�J0yW (J; �; �)����J=�=�=0; (B.10)77



B.3. ERZEUGENDES FUNKTIONAL F�URDIE VERBUNDENEN GREENSFUNKTIONENG�;ij;xy = � �2�Jix�JjyW (J; �; �)����J=�=�=0: (B.11)Das erzeugende Funktional f�ur die 1-Teil
hen-irreduziblen Vertizes (1 PI-Vertizes; 1PI=one parti
le irredu
ible) ist dann mittels der Legendre-Transformation�('0;	;	) � W (J; �; �)�Xx hTr(Jyx'0x) + �x	x +	x�x)i (B.12)bzw., no
h exakter formuliert, mittels�(';  ;  ; �; �) � W (J; �; �; �; �)�Px hTr(Jyx'0x) + �x x +  x�x + �x�x + �x�xi (B.13)gegeben (der Stri
h bei '0 wird ab jetzt weggelassen).Die Vertex-Funktionen �(n;l) f�ur n Bosonen und l Fermionen werden auf dem Gittereinfa
h mittels partieller Ableitungen generiert, z.B.�(2;0)�;ij;xy = �2��ix��jy�(';	;	) (B.14)oder �(1;2)���;xyz = �3��x��y��z�(';	;	): (B.15)Die Umnormierung der Felder,'0 = p2�'; 	0 = p2K 	; 	0 = p2K 	; (B.16)f�uhrt zur Beziehung �(n;l) = (2�)n=2(2K)l=2 �(n;l)0 : (B.17)Beispielsweise ist (B.14) genau das negativ Inverse zu (2.2), denn es gilt:�Xz �(2;0)�;ik;xzG�;kj;zy = ÆijÆxy: (B.18)Hierbei wurden die Glei
hungen (B.11) und (B.12) ausgenutzt.Ausgehend von der allgemeineren Glei
hungXz �2��'x�'z �2W�Jz�Jy = Æxy (B.19)kann man dann mittels Ableitungen na
h dem Feld ' no
h die Beziehungen�(3)x1x2x3 = Xy1y2y3 �(2)x1y1�(2)x2y2�(2)x3y3G
y1y2y3 (B.20)78



ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONENund�(4)x1x2x3x4 =Py1:::y4 �(2)x1y1�(2)x2y2�(2)x3y3�(2)x4y4�hG
y1y2y3y4 � Py5y6 �(2)y5y6(G
y1y2y5G
y3y4y6 +G
y1y4y5G
y2y3y6 +G
y1y3y5G
y2y4y6)i(B.21)herleiten. Die G
 sind dabei die verbundenen Greensfunktionen, deren De�nitionG
x1:::xn � � �nW�Jx1 :::�Jxn ����J=0 (B.22)lautet.Mittels Fouriertransformation bekommt man (B.14) im Impulsraum:�(2;0)0�;ij(p) = 1V Xxy �(2;0)�;ij;xy e�ip�(x�y) =Xx �(2;0)�;ij;x0 e�ip�x: (B.23)Der letzte Ausdru
k resultiert aus der Translationsinvarianz der inversen Greens
henFunktionen bzw. Vertex-Funktionen, z.B.�xy = �x�y 0: (B.24)Allgemeiner lautet die Transformationsvors
hrift�(n;l)(p1; : : : ; pn; q1; : : : ; ql)= 1V n+l Xx1:::xny1:::yl �(n;l)x1:::xny1:::yl e�i(p1�x1+:::+pn�xn+q1�y1+:::+ql�yl)= 1V n+l� sgnn� sgnl Xx1:::xn�1y1:::yl�1 �(n;l)x1:::xn�10y1:::yl�10 e�i(p1�x1+:::+pn�1�xn�1+q1�y1+:::+ql�1�yl�1): (B.25)
Mit Hilfe der Glei
hungen (2.4), (B.23) und (B.18) ergibt si
h au
h im Impulsraum,analog zu (B.18), ��(2;0)�;ij (p) G�;ij(p) = Æij: (B.26)Im Impulsraum ergeben si
h f�ur (B.20) und (B.21) dann folgende Relationen:�(3)(p1; p2; p3) = �(2)(p1)�(2)(p2)�(2)(p3) G
(p1; p2; p3) (B.27)und 79



B.4. VOLLE 1-LOOP-AUSDR�UCKE DER SKALAREN PROPAGATOREN
�(4)(p1; p2; p3; p4) =�(2)(p1)�(2)(p2)�(2)(p3)�(2)(p4)�[ G
(p1; p2; p3; p4)��(2)(p1 + p2) G
(p1; p2;�p1 � p2) G
(p3; p4;�p3 � p4)��(2)(p1 + p4) G
(p1; p4;�p1 � p4) G
(p2; p3;�p2 � p3)��(2)(p1 + p3) G
(p1; p3;�p1 � p3) G
(p2; p4;�p2 � p4)℄: (B.28)

B.4 Volle 1-Loop-Ausdr�u
ke der skalaren Propa-gatorenAus den Ausdr�u
ken (2.15) bis (2.33) erh�alt man�(2;0)0� (p) = �p̂2 �m20+12g0m20 Rq[3( dp+ q2 +m20)�1(q̂2 +m20)�1 + ( dp+ q2)�1(q̂2)�1℄+g0 Rq[(q̂2 +m20)�1 + (q̂2)�1℄�8Nf Rq ~D�1(q)[(G20 +G20�)q2 � 2G0 G0�(�2q � �0 �0�)℄�8Nf Rq ~D�1(p+ q) ~D�1(q)��(G20 �20 +G20��20�) p+ q2 q2�(G20 +G20�)�0 �0�[ p+ q2(�2q � �0 �0�) + q2(�2p+q � �0 �0�)℄+2G0 G0�[�0 �0�(�2p+q � �0 �0�)(�2q � �0 �0�)+�p+q�q(p+ q2 + �2p+q � �0 �0�)(q2 + �2q � �0 �0�)℄�p + q q f(G20 +G20�)(p+ q2 + �2p+q)(q2 + �2q)+2G0 G0��0 �0�[(p+ q2 + �2p+q) + (q2 + �2q)℄+2 (G0 +G0�)2 �0 �0��p+q�q+(G20 +G20�)(�0 �0�)2g� (B.29)und 80



ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONEN
�(2;0)0�;ij(p) = Æijh� p̂2 + 13g0m20 Rq[( dp+ q2 +m20)�1(q̂2)�1℄+13g0 Rq[(q̂2 +m20)�1 � (q̂2)�1℄�8Nf Rq ~D�1(q)[(G20 +G20�)q2 � 2G0 G0�(�2q � �0 �0�)℄+8Nf Rq ~D�1(p+ q) ~D�1(q)��(G20 �20 +G20��20�) p+ q2 q2�(G20 +G20�)�0 �0�[ p + q2(�2q � �0 �0�)+q2(�2p+q � �0 �0�)℄+2G0 G0�[�0 �0�(�2p+q � �0 �0�)(�2q � �0 �0�)��p+q�q(p+ q2 + �2p+q � �0 �0�)(q2 + �2q � �0 �0�)℄+p+ q q f(G20 +G20�)(p+ q2 + �2p+q)(q2 + �2q)+2G0 G0��0 �0�[(p+ q2 + �2p+q) + (q2 + �2q)℄�2 (G0 +G0�)2 �0 �0��p+q�q+(G20 +G20�)(�0 �0�)2g�i (B.30)als 1-Loop-Resultate der inversen skalaren Propagatoren.
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Anhang CZeits
heiben-KorrelationsfunktionenDie partiell Fouriertransformierte (d.h. nur der Raumanteil wird transformiert)C(t;p) � 1L3 Xxy G
(x;t) (y;0) e�ip�(x�y) =Xx G
(x;t) 0 e�ip�x; (C.1)wobei G
xy =<�x�y>
 (C.2)der allgemeine Ausdru
k f�ur die verbundene Zweipunkt-Greenfunktion sei, h�angtmit der Korrelationsfunktion der Zeits
heiben,S(t;p) � 1L3=2 Xx �(x;t) e�ip�x (C.3)�uber die Glei
hungC(t1 � t2;p) = 1L3 Xx1x2<�(x1;t1)�(x2;t2)>
 e�ip�(x1�x2) =<S(t1;p)S(t2;�p)>
(C.4)zusammen [MM94℄. Die Feldkon�guration auf einer Zeits
heibe x4 = t sei dur
h�t � f�x; x4 = tg (C.5)de�niert. Die Wirkung ist dannS(�) =Xt L(�t+1;�t) (C.6)mit L(�t+1;�t) =Xx 12(�(x;t+1) � �(x;t))2 + 12[L1(�t) + L1(�t+1))℄ (C.7)sowie 82



ANHANG C. ZEITSCHEIBEN-KORRELATIONSFUNKTIONENL1(�t) =Xx (12Xk (�(x+k̂;t) � �(x;t))2 + m2 �2(x;t) + g4!�4(x;t)) : (C.8)Bezei
hne nun T die Transfermatrix, wel
he dur
hT(�t+1;�t) � eL(�t+1;�t) (C.9)gegeben sei. Sie ist der Kern des glei
hnamigen Operators T̂, der gem�a� der Glei-
hung j	t+1> = T̂j	t> (C.10)wirkt, wobei die Wellenfunktion 	t(�) von der Feldkon�guration � � f�x; x 2ZZ3; 0 � xj < Ljg � �t0 zu einer festen Zeit t0 abh�angt. Mit dem Multiplikations-operator �̂x, bestimmt dur
h die De�nitionsglei
hung�̂x	t(�) � �x	t(�) (C.11)ergibt si
h damit f�ur die Zweipunktfunktion (t0 = 0)<�x1�x2>= Z�1 R D� �x1�x2 e�S(�)= Z�1 R D� �x1�x2 T�1Qt=0 T(�t+1;�t)= Z�1 R D� � T�1Qt=t1T(�t+1;�t)��x1� t1�1Qt=t2 T(�t+1;�t)��x2� t2�1Qt=0 T(�t+1;�t)�= Tr(T̂T�t1 �̂x1T̂t1�t2 �̂x2T̂t2)Tr(T̂T )= Tr(T̂T�(t1�t2)�̂x1T̂t1�t2 �̂x2)Tr(T̂T ) ; (C.12)wobei T als Gitterausdehnung in Zeitri
htung ni
ht mit der Transfermatrix T zuverwe
hseln ist! Au�erdem wird dabei vorausgesetzt, da� t1 > t2 ist, und es giltZ = Tr(T̂T ). Die Eigenvektoren jn> des dur
hT̂ � e�H (C.13)de�nierten Hamiltonoperators gehor
hen der Eigenwertglei
hung Hjn> = Enjn>,das Eigenwertspektrum sei diskret und der Zustand mit dem niedrigsten EigenwertE0 sei j0>. Dann gilt mit (C.12):<nj�x1�x2jn> = Xm�0<nj�̂x1jm><mj�̂x2jn> e�(Em�En)(t1�t2): (C.14)83



Mit den Annahmen, da� beim zugeh�origen Di
hteoperator� � Xn�0 pnjn><njp1 � pn f�ur alle n > 1 ist, und da� die entspre
henden En wesentli
h gr�o�er als E0und E1 sind, kommt man f�ur gro�e t1 � t2 > 0 zu der Proportionalit�atsbeziehung<�x1�x2>
 / e�(E1�E0)(t1�t2) + 
onst: (C.15)Es sei no
h einmal daran erinnert, da�<�x1�x2>
 =<�x1�x2>�<�x1><�x2>ist, daher r�uhrt au
h die Konstante auf der re
hten Seite von (C.15).Die Korrelationsl�ange �, die ein Ma� f�ur den exponentiellen Abfall der Zweipunkt-Funktion ist, bestimmt si
h zu � = (E1 � E0)�1: (C.16)Aus Analogiebetra
htungen erkennt man, da� <�x1�x2> der Spin-Spin-Korrela-tionsfunktion in der Statis
hen Physik entspri
ht, die darin vorkommende Korrela-tionsl�ange �, wel
he den (ebenfalls) exponentiellen Abfall der Korrelationsfunktionausdr�u
kt, ist reziprok zur Masse des lei
htesten Teil
hens gem�a�� = m�1: (C.17)Dieses m entspri
ht der physikalis
hen Masse mphys, die aus der Energie-Impuls-Relation E = E(p) dur
h die De�nitionmphys � E(0) (C.18)festgelegt wird (siehe Glei
hung (3.7)). Damit gelangt man s
hlie�li
h f�ur C(t) �C(t; 0) zur Relation C(t) = a( e�mphyst + e�mphys(T�t)) + b: (C.19)Der zweite Exponentialterm kommt dur
h die Gitterperiodizit�at zustande.
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Anhang DGittersummenalgorithmusUm die numeris
he Auswertung der GittersummeX�L=2<nj�L=2 f(n1; n2; n3)mit geradem L zu bes
hleunigen, werden folgende, bei den Integranden in den Gra-phen h�au�g vorkommenden Symmetrien ausgenutzt:f(n1; n2; n3) = f(�n1; n2; n3); (D.1)f(n1; n2; n3) = f(n�(1); n�(2); n�(3)) f�ur alle Permutationen � 2 S3. (D.2)Damit erh�alt man folgenden Ausdru
k [Mun88℄:P�L=2<nj�L=2 f(n1; n2; n3) =f(0; 0; 0) + 3 f(0; 0; L2 ) + 3 f(0; L2 ; L2 ) + f(L2 ; L2 ; L2 ))+2 P0<n1<L=2 n4 f(n1; n1; n1) + 6 f(n1; n1; 0) + 6 f(n1; n1; L2 )+3 f(n1; 0; 0) + 3 f(n1; L2 ; L2 ) + 6 f(n1; 0; L2 )o+24 P0<n1<n2<L=2 nf(n1; n1; n2) + f(n1; n2; n2) + f(n1; n2; 0) + f(n1; n2; L2 )o+48 P0<n1<n2<n3<L=2 f(n1; n1; n1): (D.3)
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