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Einleitung

Das Standardmodell (SM) als Grundlage der Elementarteilchenphysik umfafit die
Theorie der starken und der elektroschwachen Wechselwirkung. Die starke Wech-
selwirkung als Wirkung der Quarks untereinander wird durch die Quantenchro-
modynamik (QCD) beschrieben. Die entsprechende Eichsymmetriegruppe ist die
nicht-abelsche Gruppe SU(3)¢ (der Index C ist eine Abkiirzung fiir color; [CL84,
FGL73]). Die elektroschwache Wirkung hingegen wirkt zwischen allen Teilchen. Die
sie beschreibende Theorie ist das Glashow-Salam-Weinberg-Modell (GSW-Modell,
[GSW]). Renormierbar wird dieses durch die Einfiihrung einer Austauschwechsel-
wirkung mit eichinvariant erzeugten Vektorbosonen bei der effektiven 4-Fermionen-
kopplung. Diese Bosonen werden mit W* und Z° bezeichnet.

Da aber der Massecharakter der Vektorbosonen die fiir die Renormierbarkeit ent-
scheidende Eichinvarianz bei der Erzeugung dieser Bosonen verletzt, wird ein zusétz-
liches skalares Feld (auch Higgs-Feld genannt) mit quartischer Selbstkopplung A¢?
hinzugefiigt, bei dem eine massenerzeugende spontane Symmetriebrechung (SSB)
auftritt [H1c66]. Diesen Vorgang nennt man Higgs-Mechanismus. Das entspre-
chende Feldquant heifit Higgs-Boson, dessen Masse vom Wert der renormierten
quartischen Selbstkopplung A\r abhingt. Es konnte bisher noch nicht experimentell
bestétigt werden.

Die Grofle der Fermionenmassen héngt ebenfalls iiber die Yukawa-Wechselwirkung
mit der SSB zusammen. Die dieser chiralen Theorie zugeordnete Eichsymmetrie-
gruppe ist die SU(2), ® U(1)y-Gruppe. Der Index L dabei bedeutet, dafl die SU(2)q -
Eichfelder nur an die linkshdndigen Fermionen-Anteile koppeln, Y symbolisiert die
schwache Hyperladung.

Wichtige Ndherungsmodelle fiir die GSW-Theorie sind die Higgs-Yukawa-Modelle,
in denen das Higgs-Boson dem o-Teilchen mit Masse m, entspricht. Die Eich-
gruppe SU(2);, ® U(1)y wird auf eine mathematisch relativ einfach handhabbare
SU(2)1, ® SU(2)r-Gruppe erweitert [MON87]. Dabei unterscheidet man zwischen
Higgs-Modellen, bei denen man die Yukawa-Kopplungen, also die Kopplungen der
Fermionen an das skalare Feld, vernachlissigt (was nicht die Beschreibung des Top-
Quarks mit einschlieft) und wo die Fermionen nur iiber die chiralen Eichfelder mit
den skalaren Komponenten wechselwirken, und den Yukawa-Modellen, bei denen die
Yukawa-Kopplungen als stark angenommen werden (was beim Top-Quark der Fall
ist); diese konnen auf die Massenschranken des Higgs-Bosons Einflul ausiiben. Die
Eichfelder werden dabei in der Regel vernachlissigt [MM94].
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Aus der Diskretisierung der Modelle mittels der Gitterregularisierung resultiert das
Problem der Fermionen-Verdopplung [NN81]. Dieses wird durch Hinzufiigung ei-
nes Spiegelfermionenfeldes x und eines chiral invarianten Wilson-Terms [WIL75,
MONST7]| beseitigt, der im Kontinuums-Limes verschwindet. Dieser Term sorgt dafiir,
dafl den Doppelfermionen Massen in der Grofle des Cutoffs verliehen wird. Dabei
reduziert sich die Mindestanzahl der beschriebenen Fermionen-Paare auf zwei.

Um die Spiegelfermionen im Kontinuums-Limes wieder zum Verschwinden zu brin-
gen, kann man sie auskoppeln, indem man ihre Massen und Kopplungen gleich Null
setzt, was im ungeeichten Fall —wie im hier behandelten Modell- mit dem Theo-
rem von Golterman und Petcher gezeigt wird [GP89]. Diese Vorgehensweise hat vor
allem den numerischen Aufwand bei den entsprechenden Berechnungen verringert.

Thema dieser Arbeit ist die Untersuchung von numerischen Datenmaterial [LMMP93]
eines global SU(2);, ® SU(2)g-invarianten Yukawa-Modells in der gebrochenen Phase
mit storungstheoretischen Methoden. Hauptgegenstand dabei sind die Propagato-
ren der skalaren Goldstone-Felder, die einer derartigen Untersuchung am leichtesten
zugénglich sind.

Die Arbeit gliedert sich in vier Teile:

Im ersten Kapitel wird die Zusammensetzung der Wirkung des Modells vorgestellt,
woraus sich dann die entsprechenden Feynman-Regeln ergeben.

In Kapitel 2 werden die Selbstenergien der Bosonen und Fermionen mit den Regeln
in 1-Loop-Ordnung entwickelt.

Kapitel 3 stellt die Renormierung des Modells und die 1-Loop-Ausdriicke der re-
normierten Parameter in der Entkopplung G, = 0 dar. Durch die “Umkehrung”
dieser Terme gelangt man zur renormierten Storungstheorie. Das Verschwinden der
Spiegelfermionen-Parameter wird durch das Golterman-Petcher-Theorem gezeigt.

Die renormierte Storungstheorie dient in Kapitel 4 dazu, Ndherungsfunktionen fiir
den inversen Goldstone-Propagator aufzustellen, mit denen sich wichtige Kenn-
groflen des Modells durch Anpassung der Parameter in diesen Ausdriicken —dem
sog. “Fitting”, d.h. der Nachbildung der numerischen Werte durch die Ndherungs-
ausdriicke— ermitteln lassen. Dabei wird untersucht, welche von mehreren inbe-
tracht zu ziehenden Parameterkonfigurationen die giinstigsten sind.



Kapitel 1

Yukawa-Wirkung

1.1 Standardmodell der elektroschwachen Wech-
selwirkung

Im SM ist die elektroschwache Wechselwirkung in eichinvarianter Darstellung durch
die Summe

S =5,+S5¢+ Sk (1.1)
in Minkowski-Metrik gegeben. S, ist der Higgs-Anteil,
Sp = [ (D) (Dug) — m*elo = (')} (12
mit der kovarianten Ableitung
— g2 . 41
D,=0,— ng]Ai - ZEBM. (1.3)

Der Index p bezeichnet die 4 Raumrichtungen , also die Richtungen 1 bis 4. A{L
und B, sind die Eichfelder der SU(2);, ® U(1)y-Eichsymmetriegruppe, ¢g; und g,
bezeichnen die Eichkopplungen, die 7; die Pauli-Matrizen und

901@))

plx) = 1.4
w=(2 (1.9
mit ¢y, @y € C ist das Higgs-Dublett. Im allgemeinen bezeichnet geméafl den iibli-
chen Konventionen ein griechischer Buchstabe die Indizes 1 bis 4, ein lateinischer
die von 1 bis 3. Doppelt vorkommende Indizes in einer Multiplikation bedeuten

Einstein-Konvention, d.h. auch ohne explizites Summenzeichen wird addiert.
Der Fermionen-Term Sy besteht aus den Komponenten

Sy = Sp + Sy, (1.5)

wobei man die Wirkung eines freien Fermions,
Sp = /d‘*;ﬁmﬂpﬂ (1.6)
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1.2. YUKAWA-WIRKUNG AUF DEM GITTER
mit

{" " =2g" (1.7)
(in Minkowski-Metrik) und die Yukawa-Wechselwirkung

Sy = Z Gk / d4x{WLj50¢Rk + ER]‘SOT\I]LIC} (1.8)
ik

mit der Kopplungsmatrix Gj; hat. Der Eich-Anteil lautet
Sp=—1 / d'x{Fi,FI" + B,,B"} (1.9)

mit FJ, = 0,4} — 9,Al + g,/ AF Al und B,, = 9,B, — 0,B,. Die ¥ sind die
Spinoren des linkshidndigen SU(2)p-Dubletts, die 1g diejenigen des rechtshindigen
U(1)y-Singuletts. Beispiele sind die leptonischen Materiefelder

l/e
‘IIL == ( > s wR = CRr (110)
¢/L
in der 1. Generation, oder
Yp
W, =  yn=pm (1.11)
KL

in der 2. Generation. v, bezeichnet das Elektronneutrino, e natiirlich das Elektron,
v, das Myonneutrino und p das Myon, wobei g nicht mit der gleichlautenden Be-
zeichnung fiir die spéter auftauchende renormierte Fermionenmischmasse verwech-
selt werden sollte! Bei den Quarks wire beispielhaft

ba

in der 3. Generation zu nennen. t und b sind Symbole fiir top- und bottom-Quark,
« ist der Farbindex.

toé
w:() gt (1.12)
L

1.2 Yukawa-Wirkung auf dem Gitter

Gegenstand dieser Arbeit ist die Untersuchung der skalaren Propagatoren im Higgs-
Yukawa-Sektor des Standardmodells. Dabei werden mehrere erhebliche Einschréin-
kungen und Vereinfachungen vorgenommen.

Zum einen werden die Eichkopplungen ¢, ¢» aufgrund ihrer mit Niederenergie-
Experimenten gemessenen geringen Grofle vernachlissigt. Das bedeutet Sgp = 0
und damit eine globale SU(2);, ® U(1)y-Eichinvarianz.

Zum anderen werden nur wenige schwere Fermionen-Dubletts beriicksichtigt, da das
massivste Fermion die nicht-perturbativen Eigenschaften des Higgs-Yukawa-Sektors
bestimmt [FRI93]. Es wird zudem angenommen, daf die Isospin-Partner des links-
hidndigen Dubletts die gleiche Masse haben und damit die Massenaufspaltung der
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KAPITEL 1. YUKAWA-WIRKUNG

Dublett-Partner ignorierbar ist. Das rechtshiindige Singulett wird auf ein Dublett
erweitert, fiir das dieselben Annahmen wie fiir das linkshdndige Dublett gelten.
Dies bedeutet eine Vergrofierung der U(1)y-Symmetrie auf eine SU(2)g-Symmetrie,
womit man insgesamt eine globale SU(2);, ® SU(2)g-Eichsymmetrie vorliegen hat.
Auflerdem wird die Generationenstruktur der Materiefelder ignoriert.

Da dem Theorem von Nielsen und Ninomiya zufolge auf dem Gitter zu jedem
Fermionen-Dublett ein Fermionen-Dublett mit spiegelbildlicher Chiralitéit, also ein
Spiegelfermionen-Paar existieren mufl [NN81], resultieren aus den Vereinfachungen
nur noch zwei Yukawa-Kopplungsparameter G, und G, statt einer komplizierten
Matrix Gj; wie in (1.8). Gy, ist dabei die Yukawa-Kopplung der Fermionen, G, die
der Spiegelfermionen [MONS&7].

Dieses Modell bezeichnet man als Yukawa-Modell. Die letzten Schritte sind der
Ubergang zur Euklidischen Formulierung und die Gitterregularisierung [JER89)],

3,
/d4x =y, ouf(x) = a—ji(x) — Oufe = forp — fo- (1.13)

Die ji symbolisieren die Einheitsvektoren in die 4 Raumrichtungen. Das Summen-
zeichen > steht fiir
xT

=5, (1.14)

TEA
wobei das Gitter A der Definition

A={z=(21,...,20) €Z* 0< 00 < Ly, a=1,...,4} (1.15)

entspricht und speziell L; = Ly, = Ly = L und Ly = T gilt. Dabei ist L die
Gitterausdehnung in Raumrichtung und 7" die Ausdehnung in Zeitrichtung.

Die (Higgs-)Yukawa-Wirkung auf dem Gitter in der ¢)y-Notation ist die Summe

S=S,+ Se. (1.16)

S, ist die skalare Wirkung, sie besitzt die Form

xT

Sp=3 {—fﬁ; LTr(pl, a00) + %2 Tr(phos) + %T‘rQ(wl%)} : (1.17)
7

wobei x den skalaren Hopping-Parameter, s, die nackte skalare Masse und A die
quartische Kopplung bezeichnen. +p unter dem Summenzeichen bedeutet, dafl p
simtliche 8 Raumrichtungen durchlauft, also 1, ..., 4. Das skalare Feld entspricht

Qig T 103z P2z + 101z
= . . 1.18
e < — P2 + 1P1x Pz — 1P3x ) ( )

bzw. in kompakter Darstellung
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1.2. YUKAWA-WIRKUNG AUF DEM GITTER

Die 7; sind die Paulimatrizen. Fiir sie gilt T]T = 7 und 7;7; = 6;; + 1 €5 T, und es ist

Tr((lpl(lpx) = 2900@900@- (120)

Sy setzt sich aus drei Termen zusammen geméf

Sq; ESF+Sw+Sy, (1.21)
dabei ist
Sp = Z {wa(%% + Esz) - KZ(EI+[L’YN”7/}$ + YerﬂquXx)} (1-22)
T +u

die Wirkung fiir Fermionen und Spiegelfermionen,

T )
der chiral invariante Wilson-Term [MoN87, WIL75], der die Entkopplung der un-
erwiinschten Doppel-Fermionen [NN81, KS81] durch Erzeugung sehr grofier Doppel-
Fermionenmassen im Kontinuum-Limes gewéhrleistet, und

Sy =Y {Gw (¥ pePitbre + V1 0ere) + Gy (XpePeXie + YLIQOI;XRx)} (1.24)

x

ist der Yukawa-Wechselwirkungsterm, der die Fermionen an das skalare Feld kop-
pelt. Die Indizes L und R korrespondieren zu den entsprechend indizierten SU(2)-
Eichgruppen.

Der Parameter K ist der fermionische Hopping-Parameter, der fiir Fermionen so-
wie Spiegelfermionen aufgrund der Freiheit bei der Normierung gleich gewihlt wird,
Uy st die nackte Fermionen-Mischmasse und r bezeichnet den Wilson-Parameter.
Ohne den Wilson-Term (1.23) wiirde der Ausdruck (1.21) die Beschreibung von 32
Fermionen-Zustidnden umfassen, mit ihm, d.h. wenn 0 < r < 1 ist, reduziert sich
der Formalismus auf zwei Zusténde. Fiir s, wahlt man die Normierung

figy + 87 K = 1. (1.25)

Zusammengefaflt ergibt sich

Sy = %: {“d)X(mez + ExX:r) - K E(Ex-m’)’uwz + XH—;}'YMXI)
+Gy (Vreltre + U aetre) + Gy (XpoaXra + YLzQOLXRx)}-

Hierbei ist 1, das Fermionen- und yx, das Spiegelfermionen-Feld; beide sind charak-
terisiert durch ihr Verhalten bei chiralen Transformationen der bereits oben erwiahn-

ten SU(2)p, ® SU(2)r-Gruppe.



KAPITEL 1. YUKAWA-WIRKUNG

Die y-Matrizen gehorchen im Euklidischen der Vertauschungsrelation

{V W} = 20 (1.27)

(vgl. mit (1.7)). Aus ihnen definiert man sich zusétzlich

Vs = NY2Y3 745 (1.28)
fiir dieses ist
’Yg = V5.
Im iibrigen ist
V== Vo

Eine mogliche Darstellung fiir die y-Matrizen ist die folgende:

iy 0 7 (1 0
%‘—Z(_Tj 0>,74—(0 —]l)' (1.29)
Setzt man
und

so ergeben sich links- und rechtshéindige Komponenten durch

Y1, = Ppy, Yr = Pr, x1 = Prx, xr = Prx. (1.32)

Bei den adjungierten Spinoren gilt:

Y, =9Pr, ¥p =9¢Pr, X1 =XPr, Xp = XP5. (1.33)

Die Felder transformieren sich nun gem#fl

Y — Urr, x1 = Urxr, Yr — UrYr, xr — UrXr (1.34)

und

EL — ELUza YL — YLUIT% ER — ERUIT'{J YR — YRU}LJ (135)

wobei U;, € SU(Q)L, Ugp € SU(Q)R
Den Yukawa-Anteil

SY = Z {G1/1 (ERxwlwl@ + ELprwaz) + GX (YRx(pxXLx + YLx(pLXRI)} (136)

x



1.2. YUKAWA-WIRKUNG AUF DEM GITTER

kann man infolgedessen auch umformen in

Sy = ;{Gw@xPLGOLPL% + Y, Proe Pribz) + Gy (Yo PRl PrX: + Xo PraPrXz) }
= %;{Gw%(PLGDLPL + Proo Pr)tby + G X0 (PreLPr + Pros Pr) Xa }-

Nun ist

A(PLplPr, + PreyPr)
= (L + %) (el — i) (L +75) + (1 — 75) (Pae L + i0s0m;) (L — 75)
Pazl — 102 Tj + PazVs — 10j2TjVs + PaaYs — 10TV + Pael — 102Y5Tj V5
Pael + iQjaTj — PazYs — 10jaTjVs — Pac¥s — 1PjaTiVs T Pazl + 105 V5775
4(papll — wjx%Tj)-

_|_

Analog gilt
PRSOLPR + PLngPL = 8041'1'- + ingx’75Tj.

Definiert man

Fj = —i’Y5Tj y F4 = ].|_, (137)
erhéilt man schliefllich fiir die Yukawa-Kopplung den Ausdruck

Sy = Y (Gyh,Tatasthe + Gy XLl ParXa)- (1.38)

x

¥, = (Zﬁ) T, = @) (1.39)

der “Umnormierung” (wodurch man zur formalen Ahnlichkeit zur Kontinuumstheo-
rie gelangt, was die Aufstellung der Feynman-Regeln erleichtert)

Mit den Definitionen

\Il[]x =V2K \Ijx; TOI =V QKEI, Poazx = V 2K Laz (140)

und
Gy G
Gop = ———, Gy, = X 1.41
YT oOKVIR X T 2Kk (L41)
lautet der Ausdruck dann
Sw =3 Tou(Pay + Viy(0)) Ty (1.42)
Ty
mit der Fermionenmatrix
2 ; Vulz+y (%5@ -5 ; Ortpy) L
Pry = L " 1 ! ; (1.43)
(ﬁd’ry — 52 0z4p y)1 3 2 VuOztjiy
+pu +u



KAPITEL 1. YUKAWA-WIRKUNG

der Kopplungsmatrix

V;cy (‘PO) = V;;C;/QOOaxa

wobei
— G[]wroz 0
Ve = 0oy ( 0 Go I}, ) ’
und
L= flypy + 8TK.
Die P-Matrix ist translationsinvariant, d.h. P, = P, .

Die 8 x 8-Matrizen I', gehorchen den Beziehungen

’Y;LFV = F,t'}/u; F;f}/u = ’YVFL; ,}/5111/ - FV’Y'S) 751_‘1)[/ = Fl75

und

Fil“j = FIF; = _61']' — ieijka s FIFJ = Fll—‘; = 61']' + iEijka.

Auflerdem ist

Tr(C, ) = 83,

1.3 Phase mit gebrochener Symmetrie

1.3.1 Wirkung fiir das skalare Feld
In der gebrochenen oder FM-Phase dient die Definition

Se

xT

xT

> {i > Tr(0,u 052 0uP00) — 222 Tr(platp0s) + 2 Tr?(sof)zmx)}

2
= Z {% %:(8u(p0axau(p0ax) - %QQOOQIQOUOAE + %(WOQIQOOQI)Z} )

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

als Ausgangspunkt fiir die skalare Wirkung. Die Abkiirzung FM steht fiir ferro-
magnetisch, in Anlehnung an die Festkorperphysik, aus der aufgrund der formalen

Analogie die Phasen-Unterscheidung stammt.

Die gebrochene Phase ist durch das Minuszeichen vor dem quadratischen Term ge-
kennzeichnet. Mit Definition (1.40) wird daraus nach wenigen Umformungsschritten

2 6

m% 90/432 2
SQO =5 Z (8’% - _K)Qoax(;pax + —(Qoax(;pax) - 2“2900@—1—;180&9: .
W

x

Durch die Ersetzungen
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1.3. PHASE MIT GEBROCHENER SYMMETRIE

1 — 2\ =8k — %n (1.52)
und
2
A= D0 (1.53)
6
bekommt man schliefllich
1 1 9
Snp - Z 59004190(11 + 5)\(900@90(11 - 1) - KZ Paz+pPax ( - (154)
T I
Mit
m2
Ly = 8K — 7()% (1.55)

erhédlt man (1.17).

Aus (1.36) und (1.34) kann man das Transformationsverhalten ablesen:

s — Urp, Ul (1.56)

Der Grundzustand des freien skalaren ¢-Feldes aus S,, ergibt sich durch Bestimmung
des Minimums des effektiven Potentials der zugehorigen Lagrange-Dichte.

Das effektive Potential ist

2

m go
V;a = - aP0a - aP0a 2
= M@ava)? — (85 — 14+ 2))Qaa-
Mit der Ersetzung ©a.0n: — ¢ bekommt man
Vorr = A0” — (85 — 14 2\)¢",
was an der Stelle
2ot = L(gs_ 1421 = 20 (1.58)
2) 2Kqo '

ein Minimum annimmt. Mit diesem Minimum hat man den Grundzustand gefunden,
welcher das Vakuum definiert. Setzt man

Oy = P4z — S, Tjx = Pjx (159)

und

Oz = V2K 0y, Toje = V2K Tjg, (1.60)

erhilt man die Gleichung

12



KAPITEL 1. YUKAWA-WIRKUNG

2

m
S =2 {% > _1(04002)? + DumojeOyumoje] + 70‘7390

o
\ 3gom0 9o
a0 00205, + MojaTojel + 7[00, + TojaTojal” -
Da in diesem Ausdruck keine W]?—Terme vorkommen, erhélt man fiir die 7; Masselo-
sigkeit, die Konstituenten der Felder 7; sind damit als Goldstone-Bosonen definiert.
Dagegen ist fiir das o-Teilchen Masse erzeugt worden, da ein entsprechender qua-
dratischer Term vorkommt. Das skalare Feld

(1.61)

x
+

¢y = oxl + i, (1.62)

transformiert sich nicht mehr nach (1.56), die Symmetrie ist spontan gebrochen
worden.

Anders ausgedriickt lautet (1.61)

Sp=3_ {4/{(0,23 + MjaTjz) — K& D (OutiOs + TjoraTin) + 3A(00 + TjaTjz) + 25 01]2}

T 7
(1.63)
bzw.

Sp =3k {axAgyay + ﬂ'jzAgyﬂ'jy} + A {(ai + TjaTje)’ + 450, (02 + ijﬂjx)}

zy
(1.64)
mit den Matrizen
” As?
A7, =42+ —)0sy — Zéﬁﬂy (1.65)
und
Al =800y — > Oaiiy (1.66)
+u
Die inversen Fouriertransformierten sind der freie Propagator vom o-Feld,
A, (q) = (¢° +mg) ™, (1.67)
und derjenige der 7m-Felder,
Ar(q) = (¢*)7" (1.68)
mit dem Gitterimpuls
N o Gu
4, = 2sin o (1.69)



1.3. PHASE MIT GEBROCHENER SYMMETRIE

1.3.2 Fermionen-Propagator in der gebrochenen Phase

In der gebrochenen Phase ist

V;cy(@) = ong:gOOa:c = ‘/;434 (" QH(O-CL‘ + S)) + ijy vV 2'%71-]':6 = Vry(@pi)) + Vx4y80 (170)

mit dem umnormierten skalaren Feld

0o = V2K¢ (1.71)
und dem analog umnormierten Minimum
S0 = V2K s. (1.72)
Definiere die “Impulsmatrix”
ny = ny + So ‘/;543/- (173)

Die Fouriertransformierte davon lautet

. i%:sinq,ﬁu + Gopsol (& — r%jcosqu)ll
Plg) = _ . . 1.74
(9) (3% — r%:cosqu)]l z%jsmquvu + Goysoll (1.74)
Einfiihrung der (Massen-)Parameter
Mo = m, Moy = G0¢SO, Hox = GOXSO (175)
2K
sowie des Gitterimpulses
g, = sing, (1.76)
und
_ (M r.
g = (ﬁ —r gcos Qu) = o + §q2 (1.77)
liefert den kompakteren Ausdruck
N fopll + %%w gl
Plq) = e 1.78
(Q) gl Mox]l + %: TV ( )
bzw.
D _ [ Hoyp  Hq — L0 )
Plq) = +1q - , 1.79
() (uq uo}() q”(on (1.79)
wobei
Y= (71772773774)' (180)

14



KAPITEL 1. YUKAWA-WIRKUNG

Die Einheitsmatrix 1 hinter Matrixelementen ungleich 1 wurde zwecks Vereinfa-
chung der Schreibweise weggelassen.

Die inverse Matrix stellt den freien Fermionen-Propagator in der gebrochenen Phase
dar; mit

D(q) = (@ + pe — pophox)” + (Hoy + boy) T (1.81)

gilt fiir ihn:

M= (37 3 )@ =P -

D) [ ( HouT” — pox (g = Howtiox) (@ + g — lowHox) g ) (1.82)

(@ + M?] — oy oy ) g Loy T — Moy (u§ — oy oy
—iq-7< T+ g+ 15y igﬂow-guoxl,uq )]
—(poy + tox ) g T+ g t+ Hoy

1.3.3 Feynman-Regeln

Die Feynman-Regeln sind die folgenden (in Abwandlung von [CL84, HUA82, MM94)):

1.

Jeder nicht-orientierten Linie wird der entsprechende skalare Propagator, jeder
orientierten Linie (mit Pfeil) der entsprechende Fermionen-Propagator zuge-
ordnet.

Jedem Vertex wird der entsprechende Ausdruck als Faktor zugeordnet.

Bei inneren Vertizes gilt Impulserhaltung modulo 27.

. Zusammenhingende Vertizes werden kontrahiert; daraus resultiert eine Spur

fiir Fermionenschleifen.

Loop-Impulse werden im unendlichen Volumen iiber die erste Brillouin-Zone

integriert, d.h. [, = ﬁ [ d'q, im endlichen Volumen wird dementsprechend

summiert, d.h.

1 1
/q DT 2.~ T, > 5

~L/2<nj<L/2 Ly —Lu<n, <L,
—T/2<ny <T/2

mit ¢; = Q%nj und ¢4 = 2%714.

Beriicksichtigt werden mufl auch noch jeweils ein Symmetriefaktor, der sich
geméf der Gleichung

Sg=——elo (1.84)

mg Mg
i=1 j=1

15



1.3. PHASE MIT GEBROCHENER SYMMETRIE

zusammensetzt. Dabei ist Ng das Produkt aus der Gesamtzahl der Verbin-
dungsmoglichkeiten der an einem Graphen G beteiligten Vertizes nach auflen
und der verbleibenden Zahl der md&glichen Verkniipfungen der Vertizes un-
tereinander, Py die Anzahl der M6glichkeiten, die dufleren Beine spiegelungs-
und rotationsfrei zu vertauschen (tritt in dieser Arbeit nicht auf), Mg ist die
Anzahl der an dem jeweiligen Graphen beteiligten Vertizes, die M; bezeichnen
die Zahl der Verbindungsmoglichkeiten eines Vertex j bei gegebener Anord-
nung nach auflen, mg < Mg beziffert die Vertexarten und die m; zéhlen die
innerhalb eines Graphen auftretenden Vertizes einer Art ¢. Zudem muf} noch
fiir Fermionenschleifen ein Faktor —1 beriicksichtigt werden, der von der Ver-
wendung der Grassmann-Variablen herriihrt.

1.3.3.1 Skalarer Anteil

Aus (1.61) lassen sich direkt die Diagramme ablesen:

o =A,(q), (1.85)

Tjmmmmmmm--- = 6l]A7r(Q) (186)

fiir die freien Propagatoren. Fiir die Dreipunkt-Vertizes ergibt sich

g
g < :_\/390 my,
g

(1.87)
- T
o— = —1/90/3 myd;;
T (1.88)
und fiir die quartische Kopplung
o o
>< = — Yo,
’ ’ (1.89)
o T
> = — 3900,
o (1.90)

16



KAPITEL 1. YUKAWA-WIRKUNG

7Tz Ty
= —%90(5@'51«1 + 001 + 6itdjk).-

77'[”/// -

(1.91)

1.3.3.2 Fermionischer Anteil

Der freie Fermionen-Propagator in der gebrochenen Phase ist wegen seines Matrix-
charakters gerichtet und lautet

B = Aus(a), (1.92)
wobei a, f = 1, x. Die Yukawa-Kopplung wird mit den Vertizes

«

o
_ [ Gl 0
N 0  Gpl
& g (1.93)
und
e
__( Gopli 0
/\ B 0 GoyTl
& B (1.94)
ausgedriickt.

1.4 Symmetrische Phase

Auf die physikalisch nicht relevante symmetrische Phase, die auch PM-Phase ge-
nannt wird, gehe ich nur kurz ein, um sie zumindest vergleichend zur gebrochenen
Phase vorzustellen (PM ist die Abkiirzung fiir paramagnetisch). Mit geringerem
mathematischem Aufwand konnen einige Phdnomene untersucht werden, die auch
in der gebrochenen Phase auftauchen.

Die skalare symmetrische Wirkung wird als

Se = Y. {i > Tr (0, 0ha0up0s) + 52 Tr(phatp0s) + L2 TY?(@SMOI)} (1.95)

x

17



1.4. SYMMETRISCHE PHASE

m2
Z {% Xu:(au(POaxauSOOax) + TO(POax(POax + %(@Oax@Oax)Q} (196)

x
angesetzt. Der positive quadratische Term kennzeichnet den symmetrischen Cha-
rakter. Durch die Ersetzungen
1—2)\ =8k +mjk (1.97)
und (1.53) erhélt man (1.54) und mit

fip = 8K +mok (1.98)
gelangt man zur Wirkung (1.17).

Ahnlich wie in Abschnitt 1.3.1 berechnet man die freien Propagatoren, dabei erhélt
man als massebehaftete skalare Propagatoren

Nij(q) = 6 (¢* +mg) (1.99)

und den Fermionen-Propagator

Hq —1q -y
Daf} der skalare Propagatorausdruck (1.99) (bis auf das Kronecker-§) dem Propa-

Aw(q):(62+u§)‘1(_iq'7 Fa ) (1.100)

gator (1.67) gleicht, verdankt er der 4 im Nenner des Faktors mTé von Definition
(1.95), was den Unterschied zum analogen Faktor im Wirkungsausdruck (1.50) der

gebrochenen Phase erklért.
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Kapitel 2

Propagatoren in der gebrochenen
Phase

In diesem Kapitel werden die Storungsentwicklungen fiir die nackten Selbstenergien
in 1-Loop-Ordnung angegeben, die der Schliissel fiir die entsprechenden Entwick-
lungen der renormierten Parameter im néchsten Kapitel sind. Zu diesem Zweck
werden zunéchst einmal die Propagatoren und die 2-Punkt-Vertex-Funktionen (al-
so die inversen Propagatoren) definiert, anschlieend mit den Feynman-Regeln aus
Abschnitt 1.3.3 die 1-Loop-Graphen aufgestellt und schliefflich deren Summen als
Selbstenergien gebildet.

2.1 Definitionen der Propagatoren

2.1.1 Skalare Propagatoren und Vakuumerwartungswert

Die Definitionen fiir die skalaren Propagatoren im Ortsraum lauten

Goay = 0,0, = <0,0,> — <0, ><0,> (2.1)

und

Grijay = <TigTjy>>. (2.2)

Im Impulsraum erhéilt man den skalaren o-Propator einfach mittels Fouriertransfor-
mation,

1 .
G,(p) = v > <ouoy, > et (7=, (2.3)
zy
analog zum skalaren m-Propagator,
1 .
Grij(p) = 77 D <My > oY), (2.4)
y
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2.1. DEFINITIONEN DER PROPAGATOREN

wobei V' = L3T = 1 das Gittervolumen ist, L? steht symbolisch fiir L;L,Ls,

x
das Produkt der Gitterlingen in Raumrichtung, 7" stellt die Léngenausdehnung in
Zeitrichtung dar. Der nicht mit 75 indizierte m-Propagator ist einfach der Mittelwert

Colp) = 55 X Gris0) = 213 Cralp). (25)

Die Inversion liefert die 2-Punkt-Funktionen

rP9p) = —G;'(p), 26)
-~ . 2.6

1—‘(210-)(;0) — Gw,%j(p) L=

W)= 0 it

Die umnormierten inversen Propagatoren gehorchen der Proportionalbeziehung

1
I () = 5 T*0 ). (2.7)

Der Vakuumerwartungswert (VEV = Vacuum Ezpectation Value) des Feldes g, ist

Vo = So + <0'0>, (28)

wobei <oy> der oberhalb des Baumgraphen-Niveaus (engl. tree level) nicht ver-
schwindende VEV des Feldes oy ist.

2.1.2 Fermionen-Propagator

Analog zu den skalaren Propagatoren definiert man den fermionischen Propagator,
der im Unterschied zu den Erstgenannten Matrixcharakter hat:

Gas(p) = <af> (2.9)

mit «, = 1, x. Der inverse Propagator wird durch Matrixinversion gewonnen,
0% () = ~Gaj(), (2.10)
der volle Propagator hat die Gestalt
(0,2)  1(0,2)
0,2 r r
() = ( o) ity ) (v). (2.11)
P XX
Den 0O-indizierten vollen Propagator erhélt man aus

1
6’ () = 5727w (0). (212)
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KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE

2.2 Propagatoren in 1-Loop-Ordnung

2.2.1 Skalare Propagatoren
Die 2-Punkt-Vertex-Funktionen in 1-Loop-Ordnung haben folgende Form:

I (p) = —A"(p) + 2(p), (2.13)

wobei X(p) die Selbstenergie darstellt. Daher kann man wegen (2.6) bzw. (B.26)
nun die skalaren Propagatoren folgendermafien entwickeln:

Alp)

G =1z Alp)%(p)
Aus den Feynman-Regeln (1.85) bis (1.91) und (1.92) bis (1.94) ergeben sich fiir den
o-Propagator in 1-Loop-Ordnung folgende Graphen (die dufleren Beine dienen nur
der Unterscheidbarkeit, werden aber nicht mitberiicksichtigt):

—( = mar 300m5 J; AP + 9) A (),

~ A(p)[1+ A(p) E(p)]. (2.14)

(2.15)
= g iy [, An(p + ) An(g),
(2.16)
O =N (A ) Vi A (),
(2.17)
wobei V' gemif
o — Gﬂwra 0
Vi = ( 0" Gy It ) (2.18)
definiert ist,
() = HekAd),
(2.19)
i = 5132 90 Jy Do (0),
(2.20)
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2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG

= _2% gO fq ATF(Q))

(2.21)
= 213| 390f A ( )
(2.22)
E = 3 5m f, Te(V Au (o).
(2.23)
Fiir die Spurausdriicke gelten folgende Relationen:
4 _eP-1 2 2\~
TY(VO A\I/(Q)) =8D (q) [(Gm/; + GO)T — 2 GoyGoy (115 Mowﬂox)] (2.24)
und
Tr(V' Aw(p+q) Vi Aulq)) =
8D ' (p+4q)D'(q)
<GBy, + Gt ) 77
—(G3¢ + G%X) Hoy oy [p + q2(u3 — Hoploy) + QZ(MZH - Mowﬂox)]
+2 GoyGoy {Mowuox(ﬂfprq — Moy oy ) (1 — Howhox) (2.25)

Htpsalta PF G+ 1244 — Howkoy) @ + 12 — Hophoy)]
—p+qq {(G% +G)DFC +12,) @+ pd)

+2 GoyGoy frop Hox [(p ¥+ 2, + @+ uﬁ)]

+2(Goy + Gox)? Hohoxtptatte + (Goy + Gﬁx)(umpmx)?}),

wobei Ny die Zahl der Fermion-Spiegelfermion-Paare darstellt. Fiir den 7-Propagator
findet man fiinf Diagramme:
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KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE

i m rrrrrrrrr j = 55 30904 S, Aq(p +9)Ar(q),

(2.26)
T Q """"" § =5 30N J, Te(ViF Au(p+0) Vi Aulg))
(2.27)
Q ':—2% %62'7'90qu0( ),
b S J (2.28)
? = %5@'90 J; A, (q)-
A R j (2.29)

Bei den n#chsten beiden Graphen ist der Aufbau des Vorfaktors zu aufwendig, des-
wegen sei er nur einfach angegeben:

it (2.30)

(2.31)

Q = %%‘Nf\/%fq Tr(VO4 A\I/(Q)),
b J

(2.32)

wobei fiir die Spur von (2.27) unter Ausnutzung der Relationen (1.47) und (1.48)
gilt:
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2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG

Te(VE Au(p+q) VI Aulg)) =
—3D"'(p+q) D~'(q)
<GBy, + Gt ) 77
—(G3¢ + G%X) How oy [MZ(Mg — Loy toy) + 62(uﬁ+q - Mowﬂox)]
+2 Goy Goy [ How oy (24 — towto) (1 — Hopioy) (2.33)
i ata PF @+ 1244 — Howho) @ + 12 — pophioy)]
+pFaa{(Ghy + GR)PF T + 12, )@ + 112)
+2 GoyGoy Hoy Hoy [(ZTQZ + 1) + (@ + uﬁ)]

—2(Goy + GUX)2 Hoy Hox Hp+qhtq + (G%w + ng)(ﬁmquX)Z}) :

Mit G, = 0 stoBt man dann auf die Ausdriicke

6" (p) = 5* +m3 — Se(p) (2.34)

und

~T59(p) = 0 {ﬁQ —Xn (p)} (2.35)

mit den Selbstenergien

— 2 1/ 4 _ —— 2\ _ 1722\ —
So(p) = 5 gomi [ [3pF "+ md) (@ +md) " + (0 F a7 @) ]
q

oo [ (@ +md) "+ (@)
q
Ny [ 230)
PRy @ 2+ T
2 T 22 — 2 2 =2 2
SN, G2 / HgyP+ 0 T —p+q- T+ q +ipyy) (@ + )
_ 2 foyP - IWT 4 - 4
Ve (P T + 1242 + 12,0+ @ + 12)? + 12,7

und

Se(p) = 3 gomg/q[(p¢q2 +m) ™ (@)
oo @+ md) " = @)

—9
q (2.37)
—§N; G2, /q (

T+ p2)? + 15
q

WP ¥CTC+pTq- DT + 1) (@ + 12)
(PTG + i2eg)? + 120+ @)@ + 112)? + 12,7
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KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE

Die vollen Ausdriicke mit beliebigen Gy, und Gy, stehen im Anhang (Gleichungen
(B.29) und (B.30)).

2.2.2 Vakuumerwartungswert des o-Feldes

Drei Graphen findet man in 1-Loop-Ordnung fiir den o-VEV:

(2.38)
= [ Ax(g),
(2.39)
=kl T8 Awlg)-
(2.40)
Somit hat man dann den VEV
V3 R _ A2\ —
o> = -0 (@ +md) "+ (@)
8an§0 q (2.41)
/D Gﬁd, + G5 )T — 2GoypGoy (1 MOWOX)]
und somit im Entkopplungsfall Gy, = 0
9o So .9 oot av—1] , SNSo o 7
<op> = — / + + +——G / . (2.42
(o) Zm% . {(q mo) (q) ] m% 0 ‘ (624‘#3)2"‘#%1/,62 ( )

2.2.3 Fermionen-Propagator

In der Struktur entspricht der Fermionen-Propagator den skalaren Propagatoren,

T3 (p) = A7 (p) — Su(p) = P(p) — Su(p), (2.43)

wobei Yy (p) die Fermionen-Selbstenergie ist. In 1-Loop-Ordnung ergeben sich die
Graphen
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2.2. PROPAGATOREN IN 1-LOOP-ORDNUNG

E = SV [ A, (q),

(2.44)
J+ = Vi o Ae(),

(2.45)
i = =3 5t b (% 2e(0).

(2.46)

Man erhélt also durch diese drei Graphen eine Proportionalitit zum VEV des o-
Feldes gemifl —V;' <o¢>>. Ebenso gilt in 1-Loop-Level die Proportionalbeziehung

Q = Vi <mp;>,

(2.47)

dieser Anteil wird nicht beriicksichtigt, da <mp; > = 0. Die iibrigen Graphen sind

+©+ =2 [ A:(p+q) Vit Au(q) V5,

(2.48)

o =i h AV A1
(2.49)

Mit (1.47) und (1.48) ergibt sich fiir die Matrixprodukte mit G, =0
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KAPITEL 2. PROPAGATOREN IN DER GEBROCHENEN PHASE

9 a9 2
poyq” —iq-Y(@ +pg) (L0
Vit Ag(q) Vi = G2 a 2.50
o 2l @)+ \ 00 (2:30)
sowie
9 | (=2 2
: : qu+zm7@-+u)<ﬂ 0)
Vi Ag(q) V) = —=3G3,—= 4 2.51
0 ‘I’( ) 0 01 (q2+M3)2+M%¢q2 0 0 ( )
und somit insgesamt fiir die Selbstenergie die Beziehung
Yu(p) =
Gopl 0 popT — 4G - (@ + 1)
< (Sp >{<UO> GW’/ 2 2\ [(#2 2)2 } 2 =2 (2.52)
(p+4q" +mj) (g +Mq) +N0¢Q]

topT” +1q -7 (T + 112) }

+3G01/} =2 2\2 2 =2
1 p+q (@ + 12)? + 15,77

Ohne auf ihre Berechnung néher einzugehen, sei hier auch noch die 3-Punkt-Funktion
erwihnt. Sie hat die Form [W1T92]

1,2 Goyl'; 0
Lo () = = ( ' )

/\2_ _

(p+q +mo) Y+ (p+q) g
1+G3, Sl
(@ + 112)? + 115,

2

p+q
+2moy/ G0¢/ - 2~ (2 2 2 }’
p+q + f1p1q)? + HoypP + 4 (G2 +m3) q
(2.53)
wobei j der Index des Goldstone-Feldes und p der duflere Fermionenimpuls ist.
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Kapitel 3

Renormierung in der gebrochenen
Phase

Inhalt dieses Kapitels ist die 1-Loop-Storungsentwicklung der in dieser Arbeit re-
levanten renormierten Parameter nach den nackten Groéflen im Entkopplungsfall
Goy = 0. Eine Umkehrung der Reihen liefert die renormierte Storungstheorie, bei
der nach renormierten Parametern entwickelt wird. Da die renormierten Parameter
immer auf kleine Werte begrenzt sind, was bei den nackten nicht der Fall ist, zeigen
die renormierten Storreihen ein gutes Konvergenzverhalten.

3.1 Definition der renormierten Parameter

3.1.1 Skalare Parameter

Das Auftauchen von Goldstone-Bosonen in der gebrochenen Phase verursacht star-
ke Infrarot-Divergenzen beim inversen Propagator des Feldes oy, worauf ich in Ab-
schnitt 3.2.1 etwas eingehen werde. Anzumerken bleibt, daf} diese Divergenzen in
der geeichten Theorie nicht auftauchen [V1094].

Zunichst wende ich mich den m-Propagatoren zu. Mit Hilfe der Zweipunktfunktion
Fg?;% (p) fiithrt man eine Renormierungskonstante Z, ein:
D0 (p) = = 27000 = — 2705 {0 + 0"} bei p*>—0.  (3.1)

O ,ij
Damit bestimmt sich Z ! zu

- 0 2,0 1 9 (20
Z 16 = —— an’i'(p) =—=> =T - (3.2)
8p2 " 8 I 8pi " D

p:[] =0

Die renormierte Zweipunktfunktion lautet dann einfach

P20 (p) = Z, T (p). (3.3)

Rmyzg 0m,ij
Mit dem VEV (2.8) héngt der renormierte VEV iiber
vp = Z- 2, (3.4)

™
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

ZusSammen.

Die renormierte o-Masse m g, ist durch das Verhalten des renormierten o-Propagators

Ly (0) = Z, 06" () (3.5)
bei kleinen Impulsen definiert:
T80 (p) = p* +m%, +O@*)  bei p? 0. (3.6)

Hingegen ist die physikalische o-Masse mppys = m, zusammen mit der Zerfallsbreite
[', als Pol des zugehdrigen Propagators in der komplexen Energie-Ebene, d.h. durch
die Gleichung

re2@) =0 mit = (0,im, + iT,) (3.7)
festgelegt [LW88, LMWMO1b].
In Analogie zu Gleichung (1.58),

3m?2
2 _ 0
SO — 3
9o

ist die renormierte skalare Kopplung gr (vg entspricht dabei sy) geméf

3m%,
gr = —5 (3.8)
VR

definiert (eine hier notwendige Alternativdefinition folgt in Abschnitt 3.2.1).

3.1.2 Fermionische Parameter

Der inverse Fermionen-Propagator hat die Form

T2 (p) = AZ4(D) — Sas(p),

Ausdruck (1.79) legt fiir p> — 0 die allgemeine Struktur

_F(()?ﬁm (p) = My +ip - yNo + O(p?) bei p?—0 (3.9)
nahe (a, 8 =1, x). My und Ny haben die Form
My = ( My My ) Ny = ( Ty Ty ) . (3.10)
My Myx ’ Nxy Thxx

Symmetrieiiberlegungen ergeben my, = m,, = m und ny, = n,, =n.

Wenn man Fg%;? mit der Wellenfunktionsrenormierungsmatrix Z&,/ ? multipliziert,

erhalt man die renormierte Fermionen-2-Punkt-Funktion:
0,2) _ 51/2T 1(0,2) ~1/2
T2 = ZLU2T p(02) 71/2. (3.11)
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3.1. DEFINITION DER RENORMIERTEN PARAMETER

Die Renormierungsbedingung lautet

0
F(O’Z)

TR |y = (312

daher fordert man, dafl die Multiplikation von Z&,/ % die Matrix Ny in die Einheits-

matrix iiberfiihrt, d.h. daf}
ZYV TNy ZY? = 1 (3.13)
gelten mufl. Dann ergeben sich mit dem Ansatz

Z$/2:<COSC —sin()(\/ZTp \/(L) (3.14)
sin¢  cos( 0 7, ’

fiir die Komponenten Z,, Z, und ¢ von Z&/2 folgende Gleichungen:

_ 1
Zwl — 5 |:’n¢¢ + Nyy + Sgn(nd,w — nxx)\/(nw, — nxx)2 + 4n2}, (315)
_ 1
Z, = 9 { wp + Ty — SNy — ”xx)\/(”ww — Nyx)? + 4”2] (3.16)
und
Ny — N
cos(2¢) = sgn(nyy — nyy) \/(n W}n )X2X+ 2 (3.17)
Y T Texx
. 2n
sin(2¢) = sgn(nyy — Nyy) \/(n PRNER e (3.18)
P T Toxx
Die renormierte Massen-Matrix
Mp = ( Bry LR ) = 73T M, 71/ (3.19)
MR HRy
ist durch die Relationen
pr = Z [mW ; x| Tow 5 T eos(2¢) + msin(zg)}, (3.20)
— {m““" ; oo T > T eos(2¢) + msin(Qg)}, (3.21)
pr =\ Zy 7, [m cos(2¢) — w sin(ZC)] (3.22)

gegeben.

Mit Hilfe dieser Grofien, der renormierten Masse des Fermions, jig,, und derjenigen
des Spiegelfermions, pg,, sowie des renormierten VEV vp kann man entsprechend
(1.75) die renormierten Yukawa-Kopplungen durch
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

URry = GvaR y MRy = GRXUR (323)

definieren bzw. alternativ auch gem#f dem Vertex (1.94) mit der Dreipunktfunktion
1,2 1/2T (1,2 1/2

F&Zﬂ,;,aﬂ (p) = Z71r/2 Z\Il/ F(()ﬂ,j),aﬁ Z\Il/ (324)

die Definitionsgleichung

Gy 0 (1,2)
=TI, _ 3.25
( 0 GSLF}L Rﬁ,],aﬁ(p”:ﬂ PO ( )

formulieren, wobei pg einen festen dufleren Impuls darstellt.

Die Diagonalisierung der Massen-Matrix kann mittels einer Rotation um den renor-
mierten Winkel ag, d.h. durch

cosap sSinap u cosar —sinap \ [ g O (3.26)
—sinagp cosag R\ sinap cosagp N 0 g '

vollzogen werden. Fiir g, pog und ag gelten dann die Beziehungen

1
H1rR = B {thp + fry + sgn(pry — MRx)\/(MRw — liry)® + 4#%?,]7 (3.27)
1 2 2
Hor = 5 [M}w + 1Ry — sgn(pry — MRx)\/(MRw — pry)® + 4NR] (3.28)
und
2
sin o = V2 (3.29)

\/(Mmp — [iry)? + ApF + Ry — MRX|\/(MR¢ — [ry)? + 4G

3.2 Entwicklung der renormierten Parameter im
Fall GOX =0

3.2.1 Entwicklung skalarer Groéfien

Aus Definition (3.7) und der 1-Loop-Form des inversen o-Propagators, (2.34), folgt,
aufgegliedert nach Real- und Imaginirteil,

4sinh® 2= — 4sin® Lz cosh m, = m? — Re =, (), (3.30)
2sin Lz sinhm, = Im 5, (p). '

In 1-Loop-Ordnung muf} die Zerfallsbreite I', nicht weiter beachtet werden, da sie
in tree level verschwindet [LW88, MW88, LMWMO91b]. Damit gilt dann fiir den zur
physikalischen o-Masse m, korrespondierenden Gitterimpuls:
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3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL Gy, = 0

b = (0,2isinh %) (3.31)

Fiir die o0-Masse auf Baumgraphen-Niveau, mf,o), resultiert daraus die Beziehung

0

. (0)
—p = 4sinh? ng = m? (3.32)
und damit
2
m0 = 2arsinh% = 2log <? + % + 1>. (3.33)

Folglich erhélt man mit (3.30) fiir die physikalische o-Masse in 1-Loop-Ordnung

1
@ Re = (57) (3.34)

My = mgo) —
2 sinh mg

mit 5 = (0,7m?) und der Selbstenergie ¥, (p) aus Gleichung (2.36). Die renor-
mierte Masse entspricht in tree level

m% = my (3.35)

und damit gilt wiederum fiir die physikalische Masse

tree 2
m{®) = 2 arsinh% = 2log (m;” + % + 1>. (3.36)

ev

Aus (3.6) folgt die Renormierungsbedingung

0 (20
ZO——AF 0" — —1 337
apQ 0 (p) =0 ( )
Damit hat man fiir Z, die Gleichung
0 1 0?
Zl=1- =%, =1-=-Y =3, 3.38

gefunden. Die 1-Loop-Entwicklung der renormierten Masse erhilt man dann aus

mQRO' = Za{mg - 20(0)} (339)

Wie aber bereits zu Anfang von Abschnitt 3.1 gesagt wurde, divergiert aufgrund der
Goldstone-Bosonen der Term %ﬁ; (0) in (3.38). Man konnte diesen Ausdruck durch
einen Differenzenquotienten mit Hilfe des betragsméfig kleinsten nicht verschwin-

denden Impulses

Pmin = (07 2_7r)

= (3.40)

(wobei T' > L gefordert wird) nihern:
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

(5)y EO’(O Q_W) B 20(0)
7(0) ~ * T ) 3.41
op? (0) 4 sin? T ( )
Mit Hilfe der Definition
= ]- .
.= sin(2g,,) (3.42)

ergibt sich fiir die Renormierungskonstante 7, laut (3.2) in 1-Loop-Ordnung im
Entkopplungsfall G, = 0 folgende Beziehung:

Z-1 =
L= gomd [ (@ +md) 7+ g — 1)@ m) ()
NiG, [ (8D @{4@ + P @ + 2+ i)
A 12, (@ + 1D @ + Tpgd D) + 1y T )
—4D73(g) ({2(62 + 2rp1gq G + r?g?)
—(@ + 12)[(4 = 20))3* + rpgd® — 8y — 8] }

@@ + 1) + by (@)

2@ + 12)?[(@ + 12 @ + g7 ) (3.43)
+20%(@ + 2rpgq G + 22|
+4 2, P @ + 12) (@ + 147 7)
3, (@ + )@ + 1) T + 27T + r1gd9)]
+2 M%w T }>
+D2(q) ({4(62 +rpgdq) — (@ + p2)
~7*[(4 = 208 + v — 8ryg — 8} @ + 1)
—Mgw(S - 462)62”
mit
D(q) = (T + p2)” + o (3.44)
Mit (2.41), (2.8), (3.4) und der Entwicklung
712 = L ~1-3(Z: - 1) (3.45)
1+ (Zy — 1)

ist der renormierte Vakuumerwartungswert
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3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL Gy, = 0

_ _ 9 -2 -1 (s2\—1
Vp = 80{1 Qm%/‘;{(q +m02 +(q> ]

8Nf 2 q 1
i [ )
mi "o (@ + (12)? + 1oy @ 2( )
Aufgrund der Divergenz bei der 1-Loop-Entwicklung von mpg,, Gleichung (3.39) wird
die renormierte quartische Kopplung abweichend von (3.8) mit der physikalischen

Masse definiert:

(3.46)

2
3m;

gr =

(3.47)

vy

(In der geeichten Theorie kann Definition (3.8) beibehalten werden [V1094].) Die
renormierte quartische Kopplung ist dann mit (3.47) und (3.34) durch

)2
9o 2 2\ —1 A2\ —1
_ 1 _/
IR { s q[(q +mg) ™+ (§°)7"]

(3.48)

~(0
© w Re T (0 ))}

me’ sinh meg

gegeben.

3.2.2 Entwicklung fermionischer Groéfien

Die Matrix M, aus (3.9) wird im Entkopplungsfall entsprechend

My = ( ‘Z’;ﬁ ‘60 ) — ¥4(0) (3.49)

gemif der Gleichungen (1.79) und (2.43) entwickelt. Da Integrale der Form [, g, f(q,)
mit f(—q,) = f(q,) verschwinden, bekommt man fiir die Matrixelemente die Aus-
driicke

9o o - 9N\ —
S T M U
—9

8Ny o q
e [ :
mg V) o (@ + 1) + 13,7

=2

_G2 / q qA2 + m2 —1 o 3 qA2 —1 }, 350
My = 0. (3.52)

Aquivalent dazu verliuft die Entwicklung von Np:
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

1 0 7 0
Ny = < 0 1 > + Z%La—puzxp(p) (3.53)

mit den Matrixelementen

(@ + )7 ) )
e 1—1G2/ ¢ @ +m2)~2 + 3(¢ 3.54
o b e ) 30 (@)

n = 0, (3.55)
Ny = L. (3.56)

Mit (3.15) und (3.16) erhélt man die Relationen

(7 + 17)
(7 +uq) + Uoy T

Zy=1+ 1G§¢/ (@ +m2) ™ + 3] (3.57)

und
Zy = 1. (3.58)
Die renormierte Fermionenmasse ist
s = oo {1 = g [ @+ i)+ ()]

8 Nf G2 _2
0y | (@ +u2)>+u3, T

(3.59)
—Gaw / W[w )™ = 3(0)]
+2) . ~ o
13 A [y 1) )
Die renormierte x-Masse hat im Entkopplungsfall den Wert
Lry = 0. (3.60)
Die Mischmasse gehorcht in 1-Loop-Ordnung der Gleichung
(@ +uq) N NS
1 {l—i- G2 / — (¢ +m +3(q } 3.61
R = q +/11q +lfl%¢q2 [( 0) ( ) ] ( )
Fiir die Yukawa-Kopplung bekommt man schlielich durch (3.23)
Gro = Goo{1 =G [ ol (@ +md) ™ = 3(7) ]
24 q O
@[ @ +; [<q +m3) ™2+ 3(¢)] (3.62)
(2 - 1)}
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3.2. ENTWICKLUNG DER RENORMIERTEN PARAMETER IM FALL Gy, = 0

3.2.3 Golterman-Petcher-Theorem

Um das Verschwinden der spiegelfermionischen Parameter —insbesondere das der
“Dreipunktkopplung” G — im Entkopplungsfall Gy, = 0 zu zeigen, benutzt man
im ungeeichten Modell d1e Golterman-Petcher-Identitéten [GP89, LW92]. Sie gelten
gleichermaflen fiir die symmetrische und fiir die gebrochene Phase und erweisen sich
bei numerischen Simulationen als duflerst niitzlich.

Dazu sei an dieser Stelle noch mal die umnormierte Wirkung (1.26) angefiihrt:

Sy=7Y_ {% %:(EOCC’Y#A#’LPUI + XozVupXox) + (o + 47) (XoaWox + PorXoz)

Z [(Yo eti T Xoz—p) Yo + (1o e+i T ¥o x—ﬂ)XOx] (3.63)
I

+G0wE0xFa Poax %:p } )

r

(\]

wobei A, fo = forn — fo—p ist. Die Ableitungen von (1.16) nach den Feldern X, und
Xo ergeben

0S
8% = %Z’YMAMXOI' MO + 4’/“ "l}Ox ; Z ¢Ox+u + 77”030 u)
25 o (3.64)
8XU = 2 Z AMYOz’YM (/‘LU + 47‘ ¢Ox 2 Z ,[7["0 T+ + 77[}01 u)
@ p

Das Sy in (3.63) und damit die Gesamtwirkung S ist invariant unter globalen
Transformationen

Xoz — Xoz + €, YOz — YUI + Ea (365)

falls pp = 0 ist, denn dann gilt fiir beliebige € und e

05 _ 05 } =S, (3.66)

S — S+ € — €
;{ 8%030 aXOI

Das erzeugende Funktional (B.5) in umnormierter Form,

Z(JO; CO; ZO) X0, YO) =
/DSOO D\Ifo DWO exp { - S - Z(']Oax@ﬂax + <Oz¢0$ + ,IJJUICM' + %IXO:I: + Yoznox)},

(3.67)
ist —was auch allgemein giiltig ist— invariant unter den lokalen Transformationen

X0z — Xoz + €z, Yox — Yox + Exa (368)

womit man zu
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

0

%Z(Jm COJZU) XUJYU) S

- / D(PO D\IJO DEO exp { -5 - Z(']Oax@Oax + ZOx¢0$ + ongﬂx + ﬁOxXOx + YOxHOx)}

X 05 + =0
8%01‘ nOI B

(3.69)

und

a _
—Z(J07 CO? CO) XO?YO) _

6655 €=e=0

- / D()OO D‘IIU IDEO exXp { -5 - Z(Jﬂazspﬂaz + ZOIwOSE + EUICUI + Moz Xoa + YOzUOfE)}

0os  _
X (8)(0 - 7701) = 0
(3.70)

gelangt. Dies entspricht Variationen von Z um %, und Xxo,. Mit der Legendre-
Transformation (B.13)

F(@OalbOaEO)XOaYO) :W(']Oagﬂazﬂvnﬂa_ﬁﬂ) .
- Z I:JOaxSO(]az + COprOz + waCOI + ﬁOxXOI + YO,’BT]UI]

xT

erhdlt man die Beziehungen

oW _aw o _ _or
aﬁo:r X0 anﬂx » e 8%01 Mo aXOSE
und aus (3.69) sowie (3.70) schliellich die Golterman-Petcher-Identitéiten

or 0S or oS
= und = . 3.72
aYOx 8%01‘ 8XOac aXOx ( )

Ein kurzer Blick auf (3.64) geniigt, um zu erkennen, daf§ die Dreipunktfunktionen

X0z (371)

ng,;’x und F((Jir’?j),ix (unabhingig von p) verschwinden, z.B.

poy _ 0T
0 xx 950X 9X0

Da die Renormierung (3.24) multiplikativ ist, folgt, daf die durch (3.25) definierte
Yukawa-Kopplung fiir beliebige Mischmassen iy verschwindet,

0. (3.73)

G% =0 (3.74)

und damit auch
Gry = 0. (3.75)
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3.3. RENORMIERTE STORUNGSTHEORIE IM FALL Goy =0

Die Forderung nach der Verschiebungssymmetrie (3.65) fiihrt selbstverstindlich zu
po = 0 und mit der Normierung (1.25) bei r = 1 zu

K=1/8, pur=0. (3.76)
Bei numerischen Simulationen wihlt man giinstigerweise den in der Nihe liegenden

Wert

[FLMMO93, LMPM93, W1T92].

3.3 Renormierte Storungstheorie im Fall Gy, =0

Die renormierte Storungstheorie zeichnet sich dadurch aus, dafl die einzusetzenden
renormierten Kopplungskonstanten einen wesentlich kleineren Wertebereich einneh-
men als die nackten, und infolgedessen besitzt sie eine bessere Konvergenz als die
nackte Storungstheorie. Zu ihr gelangt man, indem man die Ausdriicke fiir die
renormierten Parameter nach den nackten auflost.

3.3.1 Renormierte Storungsentwicklung skalarer Groéflen

Da sich die nackte Masse von der (physikalischen) o-Masse auf Baumgraphenniveau,

m) wegen Gleichung (3.33) unterscheidet, ist ihre Berechnung nicht so einfach wie

in der symmetrischen Phase [W1T92]. Auf Baumgraphenniveau gilt:
m® = 2sinh % (3.78)

Mit (3.34) folgt

1
my = 2 arsinh% ~ —————ReX,(0,2 arsinh%). (3.79)

2m \/1+

Setzt man
7, = 2sinh % (3.80)

so gelangt man mit p{® = (0, 2i arsinh™2) zu

m Yo ( m2 =, (p©)
Mo Mo, ReZe (0T ™ —Re )2 . (381)
2 \/1+’"° moy/1 + %

Die Reihenentwicklungen der hyperbolischen Funktionen liefern

1
= T, + —— Re 2, (59). 3.82
mo = m +2m0 eX, (p") ( )
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KAPITEL 3. RENORMIERUNG IN DER GEBROCHENEN PHASE

Die Parameter auf der rechten Seite im Ausdruck Re X, (p) werden in nullter Ord-
nung folgendermaflen ersetzt:

Mg,

g m2

R,2
m3’

Gry, (3.83)
MR,

L4

Ho

3

Howp KRy

(die Ersetzung von gy riihrt von der abgeinderten gg-Definition (3.47) her, was
weiter unten noch genauer erklért wird), womit sich schliefflich als 1-loop-Resultat

mo = My + me) (3.84)
mit

am = L
v 2M,

Re Xz, (0, ifii,) (3.85)

ergibt. Die Ersetzungen (3.83) im Ausdruck 3,(p) werden durch das R im Index
von Yg,(p) gekennzeichnet, dieses lautet

mt — 2 9\ 1/42  ~2\_ — 2\ o\
ERg(p)zégR—mQ/q[?)(erq +m2) @+ m2) T+ (o) @)

m; | 22\ 1
+9Rm—g/q[(q +ig) "+ ()]
7
a(

T+ Why)? + 15y T

Wy _ 9 _

WD T @ T —DF - TOTFT + 1y (@ + 13,

— —r = 77

(PFq + 1k )+ 1hyD F NG + 1%y)? + 15y 7]
(3.86)

wobel pgry = pr + 5¢> = 3¢°. Das Massenquadrat m§ wird damit in 1. Ordnung

ersetzt durch

my = m- + Re X g, (0,im,). (3.87)

Nun zur Berechnung von ¢y: es mufy beachtet werden, dafl

3m2  3m’
go = —830 + 2 (3.88)

ist [W1T92]. Zunichst betrachtet man den Quotienten

m® _ 2log (% + 1+ 7)

mo mo

C

(3.89)
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In diesen setzt man nun die 1-Loop-Entwicklung von myg, (3.84) ein und entwickelt
den Ausdruck nach m(!

C=Cc" 400, (3.90)
wobei
cO = 2los(* a L) Do (3.91)
Mg My
und

oW = =2 _ (3.92)
Mo\ Me /14 72
Damit folgt aus (3.48):
gr 390 / ~2 2\ —1 JOTNR | 48Nf 9 / 72
= == +m2) !+ +—1G
= G @ @7 T | e
3m()21(z 1) + ; RE( ©),
—————= 1€

SO 02 C’SO1 / —0

(3.93)
Wiederum ersetzt man die Parameter geméfl (3.83) zuziiglich sy — vg und benutzt
die Reihenansétze

1 N 1
¢ oo (3.94)
1 1 20
?)mt(fo)2
gr ~ s% ,
womit man zu
9gr c™ 39r / 9 o1 o1
= - 92 _
9o S ORSTOE 0(0)2?)%{ . [(q +mg) "+ () ]
48N o [ -
2 9 (z:t 1 |
i O +uRq T e ) (3.95)

_|_

Re X g, (0,im,)
ol >UR\/1 +me

gelangt. Fiir den VEV bekommt man die Relation
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_ 9gr 9 2\ —1 9\ —1
S0 = UR{1+2072,\,2/ [(q +mg)” +(q7) }
—2

8N
_2t R¢/ q (3.96)
mg (@ + NRq) + NRzpq

(77 —1)}.

3.3.2 Renormierte Storungsentwicklung fermionischer Groéflen

Aus (3.59) erhélt man die Umkehrrelation fiir die nackte Fermionenmasse

_ gr A2 ~2y\—1 2\ —1
Hoy = um{l t o0 C0 /q (@ +m2) "+ ()7

8Ny o q
T 52 GRw/ —2 2

2

2 2 2
mg (7 —gQMRq) + Hryd (3.97)
G +m2) Tt =3@H !
w/Q+M)+NR¢q[( ) ()]
q +MRq 2| ~—2\—2 2\ —2
(@ + )7+ 3] .
Ow/ (@ + ukg)? + 1y @ [ ]
Fiir die Spiegelfermionen- und die Mischmasse ergeben sich
foy = 1o = 0 (3.98)
sowie
Ggw ] GRd,{].‘i‘G%{w/ — 62 [(q +m0) ! _3(42)_1]
(@ +NRq) +NR¢Q
(7 +u ) ) N .
Gho [ 2 @+ my) 8@ (399

(@ + :U’Rq + Wpyd

+(Z7?5 —1)}.
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Kapitel 4

Numerische Ergebnisse

Im vierten Kapitel wird die renormierte Stérungstheorie, wie sie in Kapitel 3 vorge-
stellt wurde, auf die Analyse von Datenmaterial zu Artikel [LMMP93] angewandst.

4.1 Aufbereitung der Monte-Carlo-Daten

4.1.1 Berechnung der Zeitscheiben-Korrelationsfunktionen

In der gebrochenen Phase werden durch das Auftauchen der drei masselosen Gold-
stone-Bosonen die numerischen Untersuchungen des hier zugrundeliegenden Modells,
deren Ziel die Berechnung der Massen und Kopplungsstérken ist, auflerordentlich er-
schwert.

Wie bei [W1T92] erwéhnt wird, miissen skalare und fermionische Massen zusam-
men bestimmt werden. Der Quotient m, /g, kann dabei nur schwierig kontrolliert
werden, da man finite size-Effekte moglichst vermeiden und sich gleichzeitig nahe
an der kritischen Linie in der k- K-Parameterebene halten muf}, die gebrochene und
symmetrische Phase voneinander trennt [LMMP93].

Wird die Mischmasse pr nach Null hin “gedriickt”, beispielsweise durch entspre-
chendes Einstellen von K nahe des kritischen Wertes 1/8 (siehe (3.77) in Abschnitt
3.2.3; [FLMM93, LMPMO93]), kann x dazu benutzt werden, m, auf einen gewiinsch-
ten Wert zu bringen. Die Fermionenmasse pig,, wird dabei nur durch Gy, fixiert, es
gibt keinen weiteren Massenparameter, der dies bei gegebenen nackten Kopplungen
leistet.

Da sich auf einem endlichen Gitter keine Symmetriebrechung herauskristallisiert,
sondern deren Richtung sich permanent dndert, mufl man noch beim Messen der
Observablen diese Drift beriicksichtigen, d.h. man muf} die Richtung stabilisieren.
Dies geschieht durch Anlegen eines dufleren Feldes, welches unter Ausnutzung der
SU(2)r, ® SU(2)g-Symmetrie das skalare Feld in Richtung der (reellen) Komponente
4 ausrichtet bzw. rotiert [HJLN87, HJJL89], was im folgenden erldutert wird.

Die Magnetisierung des Feldes als ein Maf} fiir das gewéhlte Vakuum ist definiert als
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KAPITEL 4. NUMERISCHE ERGEBNISSE

ol =, />0 &2 (4.1)

1
¢o¢ == m ; ¢o¢:r- (42)

Eine Rotation des Feldes wird durch

mit

ausgedriickt. Ug setzt man auf Ur = 1, Uy, mufl dann so beschaffen sein, dafl
0 ==Y = ol (4.4
L3r <"
bzw.
¢y = |l (4.5)
gilt. Eine geeignete Wahl fiir Uy, ist nun
[ e®cos¢ —e?sin¢
Ur = ( e ¥sin¢  e“cos( ) (4.6)
mit
2 + 2 / 2 + 2
cos( = M, sin( = M (4.7)
] ||
und

Qi — Gy + i3 ol — P2 + iy

IRV A oy

Nach der Rotation kann das skalare Feld in einen longitudinalen (Index L) und drei
transversale Komponenten (Index 7'j) gemif}

(4.8)

' = ¢rall + 177y (4.9)
zerlegt werden, wobei gilt:
v=<opp> = <|p|> (4.10)
und
<> =0, (4.11)

Der VEV v = <¢;, > korrespondiert also zur o-Komponente des skalaren Feldes
und die ¢7; korrespondieren zu den m-Komponenten. Folglich sind damit die Mit-
telwerte der Zeitscheiben der skalaren Korrelationsfunktionen durch

43



4.1. AUFBEREITUNG DER MONTE-CARLO-DATEN

C(t)

1 1
E Z <¢Lyt¢Lx0>c = ﬁ Izy(<d)Lyt¢on> - UQ), (4.12)

CT( Z <¢Tgyt¢T]x0> (413)

00

definiert. Kurz heiflen sie auch einfach Zeitscheiben-Korrelationsfunktionen und
verkorpern die Propagatoren der Feldteilchen in Zeitrichtung. Sie werden mit der
Hybrid-Monte-Carlo-Methode (HMC-Algorithmus) berechnet [DKPR87, WI1T92].
Aus diesem Grund betrug auch die minimale Anzahl der damit numerisch simulier-
ten Fermionen-Dubletts Ny = 2.

Wegen der periodischen Randbedingungen wurden die Zeitscheiben-Korrelations-
funktionen als T-periodisch angenommen. Den Propagator im Impulsraum erhlt
man mittels Fouriertransformation,

Gox(0,p4) = Grr(pa) Z Cror(t)ye ™' = Z Cr,r(t) cos(pat), (4.14)

mit py € 27Z. (Eigentlich liegen die Cpr(t) schon 2x-normiert vor, was hier aus
Griinden der Vereinfachung “verschwiegen” wird.) Die Umformung rechts beruht
darauf, daB aus den Monte-Carlo-Datenséitzen nur die Werte C'(0) bis C(%) extra-
hiert werden kdnnen, die restlichen Werte C(% +1),... ,C(T — 1) bekommt man
durch Spiegelung; dies geht wegen C(t) = C’(— ) und C’(T +1t) = C(t) (beide Glei-
chungen beruhen auf der Gitterperiodizitét).

Diesem und den nachfolgenden Abschnitten liegen drei Datensétze zugrunde, die
in Artikel [LMMP93] benutzt wurden, und die im folgenden —in Ubereinstimmung
mit Tabelle 1 aus diesem Artikel— mit den Bezeichnungen BB, C und DD versehen
sind. Die Zahlenwerte wurden typischerweise aus 10000 Trajektorien gewonnen, bei
C aus 5000. Die Datensétze unterscheiden sich auch in den nackten Kopplungen
und den verwendeten Gittergrofien (siehe Tabelle 4.1). Bei allen drei wurde G, =0
(Entkopplungsfall) und die nackte quartische Kopplung auf A = oo gesetzt.

Tabelle 4.1: Gittergrofien, Inputparameter, VEV und physikalische Massen aus dem
Zeitscheiben-Korrelationsfit

Bezeichnung | Gitter | Gy, K K Vg My
BB 8 x 16 | 0.3 0.27 0.126 | 0.2703(18) | 0.74(18)
C 63x 12| 0.6 0.18 0.126 | 0.3524(20) | 1.18(16)
DD 83 x 16 | 0.6 0.18 0.126 | 0.3389(13) | 1.20(21)
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Abbildung 4.1: Transversale und longitudinale Zeitscheiben-Korrelationsfunktionen
(rechts) sowie longitudinale cosh-Fits (gestrichelt)

4.1.2 Zeitscheiben-Korrelationsfit

Aus der Zeitscheiben-Korrelationsfunktion Cp,(t) 148t sich mittels Fitting die phy-
sikalische Masse m, = mpnys bestimmen4E\/IW87, Wi1T92], die in den skalaren Teil
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der 1-Loop-Fit-Funktion (sieche Abschnitt 4.2.2) eingeht.

Fiir grofle ¢ und 7" hat man ein asymptotisches Zeitverhalten mit einem cosh-Verlauf,
das in Anhang C hergeleitet wird:

CL(t) ~a(e™™t 4 e m T8y p, (4.15)

Eigentlich miiite man eine Fitfunktion mit exponentiellem Abfall benutzen, der
cosh-Verlauf erklirt sich jedoch aus der Tatsache heraus, dafl die Korrelationsfunk-
tion in negativer Zeitrichtung wegen der Periodizitéit das gleiche Verhalten wie in
positiver Richtung aufweist. Der asymptotische Charakter des Fits kommt darin
zum Ausdruck, daf§ zum Fitten nur die letzten fiinf (beim 8* x 16-Gitter) bzw. vier
(beim 6% x 12-Gitter) benutzt werden; das Ergebnis ist in Abb. 4.1 zu sehen, die
Vakuumerwartungswerte vy = <¢or, > und die Massen aus meinen Fits stehen in
Tabelle 4.1.

Die sich in der Mitte der longitudinalen Korrelationsfunktionen in Abb. 4.1 an-
deutende Erhebung kann durchaus bei anderen Gittergréfien oder Einfiihrung von
Eichfeldern anwachsen und das Fitverhalten negativ beeinflussen, z.B. in [V1094].
Die Summe der transversalen Korrelationsfunktionen verschwindet aufgrund von

Tf Cr(t) = 0.

Daran erkennt man, daf8 G(0, p, = 0) = 0 ist und der inverse Propagator T2%)(0, p,)
an der Stelle p; = 0 divergiert. Deshalb sollte I'*»?(0) beim Fitten nicht beachtet
werden.

4.1.3 Berechnung der Renormierungskonstanten

Man kann zwei verschiedene Wege beschreiten, um aus den Zeitscheiben-Korrelations-
funktionen die Wellenfunktions-Renormierungskonstante zu bestimmen:

1. Mit dem kleinsten Impuls p4 min = 2?” und der physikalischen Masse m, erhélt
man aus (4.14) die Gleichung

L
Zy = %(pi,min + m?,) G (0, Pamin)- (4.16)
Analog gilt [LMWMO91b)]
Zo = L G (0 ) (4.17)
T — 2 p4,mm w\Y, D4,min )- .

2. Man berechnet sie aus dem inversen Propagator mit Hilfe der Gleichung

1 X
TG () = 5, G (0) = 240" + m — Sa(p)}- (4.18)
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Mit
15" (0, pamin) = T65” (0) = =2, i (4.19)
gewinnt man schliefllich

T5"(0, pamin) — T8 (0)

-1 _
Z - A2
p4,min

g

(4.20)

Fiir Z, bekommt man unter Beriicksichtigung der Renormierungsbedingung
(3.1)

Z—l — _F(()zr’O) (07p4,min)

A2
p4,min

(4.21)

)

womit man (4.17) verifiziert hat.

Das mit (4.21) bestimmte Z, dient in Abschnitt 4.2.5 als Vergleichswert mit dem
aus der 1-Loop-Analyse gewonnenen 7.

4.2 1-Loop-Analyse des m-Propagators

4.2.1 Eigenschaften der skalaren Propagatoren

Schwerpunkt dieser Arbeit ist die Bestimmung der Renormierungskonstante 7, und
der renormierten Yukawa-Kopplung Gg, durch die 1-Loop-Analyse des inversen 7-
Propagators, um mit diesen und mit Hilfe bekannter Beziehungen zwischen den
einzelnen renormierten Parametern (siehe Anfang von Unterkapitel 4.2.3), wichtige
Groflen des Yukawa-Modells wie die Werte von vg und ggr mit besserer Genauigkeit
als bisher aus den numerischen Berechnungen zu extrahieren.

Zu diesem Zweck mufi man die Eigenschaften der skalaren Impulsraum-Propagatoren
auf dem Gitter kennen, bei denen einige Phinomene auftauchen, deren Ursache in
der Riickwirkung der Yukawa-Wechselwirkung begriindet liegt. Bei einem Modell
mit naiven Fermionen, d.h. ohne Wilson-Term in der Wirkung, gelang laut [FRI93]
die Untersuchung dieser Phinomene durch eine 1-Fermionen-Schleifen-Analyse. Mit
dieser konnten systematische Fehler minimiert und die grundlegenden physikalischen
Groflen ausreichend genau bestimmt werden.

Im Grenzfall Gry = 0 der Yukawa-Modelle, also bei der reinen (*-Theorie, zeigen
die inversen skalaren Propagatoren noch relativ exakt ein lineares Verhalten in p?
und sind problemlos mit einem 1-Pol-Ansatz wie etwa (bei k < 0) der Form

~TC0(p)lyso = Z7H (5 + m3) (4.22)
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zu beschreiben, aus dem man die Wellenfunktions-Renormierungskonstante Z und
die skalare Masse m ohne weiteres bestimmen kann [KLS88]. Man kann die An-
wendung dieses linearen Ansatzes auch in den Bereich kleiner Yukawa-Kopplungen
hinein fortsetzen. Mit wachsender Yukawa-Kopplung ergeben sich jedoch immer
stidrkere Abweichungen, vor allem bei denjenigen G gy, bei denen die Yukawa-Kopp-
lung die Struktur des Phasendiagramms dominiert. Dabei konnte man drei Arten
von Abweichungen vom 1-Pol-Verhalten feststellen [FRI193]:

1. Uberlagerung eines zweiten Poles in der p = (m, 7,7, )-Ecke der Brillouin-
Zone nahe der beiden multikritischen Punkte (x,Gy) im Yukawa-Phasen-
diagramm ([FRr193], S. 50), wo sich je zwei Phaseniibergangslinien kreuzen.

2. Auftreten gewisser charakteristischer, unstetiger Strukturen um p? = 4,8, 12
(dies héingt mit der Riickwirkung der Fermionen auf das skalare Feld zusam-
men).

3. Ausbildung einer signifikanten Kriimmung bei kleinen Impulsen in den schwa-
chen Kopplungsregionen (was ebenfalls mit der Riickwirkung der Fermionen
zusammenhéngt).

Bei den ersten beiden Phdnomenen handelt es sich um Gitterartefakte, das letzte
tritt auch im Kontinuum auf.

Die Frage lautet nun, ob sich derartige Effekte auch bei dem hier betrachteten Modell
zeigen. Da in [FRI93| wesentlich mehr Datenpunkte pro Datensatz zur Verfiigung

standen, insbesondere Propagatorwerte auerhalb der Impulsachse p = (0, p4) mit
P4 € Q%Z, konnte ich die Punkte 1. und 2. nicht bestétigen (sieche Abschnitt 4.2.7).

4.2.2 Fit-Ansatz fiir den m-Propagator

Um die im letzten Unterkapitel erwédhnten Fehler zu umgehen, wurde fiir das Fitten
in [BDFJ92] und [FRr193] folgender Ansatz, der die 1-Loop-Korrektur miteinbezieht,
vorgeschlagen:

16" (9) = Zo 1 {9 + M, — S (0)}, (4.23)

wobei die renormierte m-Masse (hochstens) Gitterartefakt-Charakter besitzt, d.h.
sie verschwindet im unendlichen Volumen, mufl aber bei endlichem Volumen formal
korrekt eingebaut werden.

Yrern(P) = Zran(p; m(,,L,gR,L,GS;)D’L,UR,L,MR%L) ist dabei der Gittervolumen-ab-
héingige Selbstenergie-Beitrag in renormierter Storungsrechnung. Der Ansatz resul-
tiert aus der Form des Propagators (2.35). X g, 1(p) mufl den Renormierungsbedin-
gungen

ER’TI’,OO(O; Mg o5 IR, 009 ng)p,oo; UR,00) /JJRw,oo) - 07 (424)
0
a—ﬁ?sz,oo(p; Me,00y IR,005 Gng;,ooa VUR,00) llwa,oo) | p=0 = 0 (425)
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geniigen. Die erste Bedingung hiingt mit der Massen-Renormierung und die zweite
mit der Wellenfunktions-Renormierung (3.1) zusammen.

Die in Unterkapitel 4.2.1 erwdhnten Anomalien beziehen sich auf den 1-Fermionen-
Schleifen-Beitrag, hier wird jedoch der Selbstenergie-Beitrag beider p-abhéngiger
Feynman-Diagramme (2.26) und (2.27) bei dem Ansatz beriicksichtigt (die p-unab-
héngigen Terme verschwinden bei der Normierung; vgl. mit (2.37)) und die nackten
Parameter werden der Vorschrift (3.83) entsprechend ersetzt:

3
Sprr(Dy Mo L, IR, GSQ'()[;,La UR,Ly HRy,1) =

m i/qu(p—l-q)Aﬁ(q) —Nf/q Te(Vy Aw(p + q) Vg A\II(Q))}

1 = (4.26)
3 {gR’L m2

Konkret ergibt sich damit als Ansatz fiir die Selbstenergie

3
Z'Rw,L (»; Mg, 1., QR L ngz)p > VR,L, NRw,L) =

3gRL 2 / (r+q +maL)71(qA2)71}
mg 1, Jq
—2 _o _ 2 -
18N, GY) 2/ RwLp+q C+pFq-q0Fq + 1k, @+ 1k,)
(Exs + Wrpig)? +NR¢LP+QH(Q + Whe)? + 1y T

(4.27)
mit jirg = 34°.

Den Parameter gr kann man gemif der 1-Loop-Definition (3.47) nach m,  und
vg,, auflésen, und durch Ausnutzung von (3.23) kann eventuell die Anzahl der Fit-

parameter nochmals vermindert werden, obwohl das G Ry, hier aus der Definition
(3.25) stammt, wie es der hochgestellte Index (3) kennzeichnet (siehe [FRI93], S.79)).
So verliert man zwar Freiheitsgrade beim Fitten und die gefittete Kurve kann durch-
aus nicht mehr so gut an der gemessenen liegen, andererseits wiirde es aber bei den
gegebenen Gittergroflen merkwiirdig erscheinen, mit z.B. fiinf Fitparametern neun
MeBgrofen anzufitten (wie es beim 8% x 16-Gitter der Fall ist). Denn trotz grifie-
rer Anndherung der Fitkurve an die Mefipunkte sind die Unsicherheiten bei den
einzelnen Parametern zu grof, da der Spielraum jedes einzelnen Fitparameters zu-
genommen hat.

Also benutzt man schliefllich unter Annahme von GS;)&’ 1. = Gy, den Selbstenergie-
ansatz

3m§
Y prn (P Mo 1y G Ry, Ly VR,L, hRy,L) = 2 L s (p) + Gy Ler (D) (4.28)
R,L
mit
— 2 — 1/ A9\ —
o) =4 [ [0F ¢ +72,)7 @) (4.29)

q
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und

L) =8 | Hipr PT 4 CHPT 0 TO TG+ lhpag) @ + i) (430)
q [(p + q2 + /'L%%erq)Q + /'L%Z'([),Lp + q2][(52 + M%{q)Q + /‘L%Z'([),L 52]
Das Integral [, wird im Fall L < oo mit einer in Anhang D erlduterten, sehr
effizienten Gittersummierungsmethode berechnet, die L = oo-Terme wurden mit
einer NAG-Integrationsroutine (DO1FCF: Multi-dimensional adaptive quadrature
over hyper-rectangle, [NAG91]) ausgewertet.

Die Ndherung GS@’LL ~ G'ry,r, 148t sich mit der Feststellung rechtfertigen, daf in der
renormierten Storungstheorie in 1-Loop-Ordnung fiir den &ufleren Impuls py = 0
aus Definitionsgleichung (3.25) Gg’?p und Ggy exakt iibereinstimmen, was auch die
entsprechenden Werte in Tabelle 1 aus Artikel [LMMP93] hervorragend bestitigen.
Eigentlich aber mifit G% die Stérke des Yukawa-Vertex, wihrend Gg, mit (3.23)
direkt zur Fermionen-Masse proportional ist [WI1T92].

Um die Normierungsbedingungen (4.24) zu erfiillen, konstruiert man aus dem An-
satz (4.28) nun g, 1

2R7r,L(p; Mg, L, GRw,L, MRw,L) =

Yo n (P MR, 1, G Ry, Ly BRY,L) — LR 00 (05 M Re 005 GRS 005 IR 00) (4.31)
oY,
)

Rm,00

e (05 M Ro,00, G Rip 005 HR,00)-

Da die Groflen von myg oo, G ry,oos Ri,00 Wegen des endlichen Charakters des Gitters
unbekannt sind, werden sie —was sich allerdings aufgrund von moglichen Volu-
meneffekten als weitere Fehlerquelle herausstellen konnte— mit den L-indizierten
Parametern gleichgesetzt, der Index L bzw. oo wird also in Zukunft weggelassen,

My = Mo, = Moo,  Gry = Gryr = GRyoos  WRy = HRy,L = HRpoo-  (4.32)

Ein (4.23) dhnlicher Ansatz fiir den o-Propagator,

T8V (p) = Z, 1 {(p* +m3,, — Srer (D)},

scheitert zunéchst einmal an der durch die Goldstone-Bosonen verursachten Infra-
rotdivergenz, die sich bei den Renormierungsbedingungen

ERo’,oo(o) = 07
a7 2 Ro00 (D) p=0 = 0

herauskristallisiert. Xg,; kann ebenfalls wie (4.31) konstruiert werden, es taucht
aber —wie bereits in Abschnitt 3.1 erwdhnt— aufgrund der Goldstone-Bosonen im

’
Ro,00

op?

Term (0) eine Divergenz auf: z.B. geht der Beitrag
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0 — 2 1,
aﬁQ/(erqZ) Y

q p*}(o,ima)

iiber alle Schranken. Hier kénnte man sich mit einer gréberen Nidherung als beim -
Propagator (siehe auch [LMWMO91a]) behelfen: Man berechnet einfach den Differen-
zenquotienten mit dem betragsmiflig kleinsten zur Verfiigung stehenden Gitterim-
puls, ndmlich p; = £%¢ (siehe Gleichungen (3.38) bis (3.41)). Dies geht fiir T > L,
denn die Reihenentwicklung der Selbstenergie wird dann weniger stark durch Sym-
metriebedingungen eingeschrinkt als im unendlichen Volumen. Leider kann dieser
grobe Differenzenquotient hier eine zusétzliche Fehlerquelle sein, diese Mafinahme
lohnt sich wahrscheinlich erst bei grofleren Gittern als den hier betrachteten.

4.2.3 Parameterkonfigurationen in der Fitfunktion

Um die 1-Loop-Fitfunktion auszutesten, wurden mit Hilfe der Relationen zwischen
den einzelnen renormierten Groflen,

3 2
vr=2"2v (34), grn="2% (347), Gpy="" (3.23)
sowie daraus folgend
m2
gr — 3GR¢ 20 (433)
KRy

drei verschiedene Ausdriicke als Fitfunktion untersucht:

f(ps;a) = —T5:7(0,py) =

N . (1.3
Z7r ! {pi + m%%ﬂ' - |:EIR71',L (07p4) - EIR7r,oo(0) - pi aﬁi’ (0)] }
mit den Selbstenergie-Varianten
1 —1 2 Smi
7 Y (0,p4) = Z_ Gry {5 Lp(ps) + Irr(pa) (4.35)
KRy
31, 142
= T2 ~(ps) + 7 GR¢IWF(p4) (4.36)
0
L ojn—y 2
= 2 {3 Mo Lrp(pa) + MijwF(m)} ; (4.37)
0

wobei a den Parametervektor darstellt, z.B. a = (Z;, mpy, Gry)-

Einige Parameter mufiten als Input aus den mir vorliegenden Daten extrahiert wer-
den: die physikalische Masse m, mit dem Zeitscheiben-Korrelationsfit (4.15) sowie
—direkt aus den Datensédtzen— die Fermionenmasse pp, und der Vakuumerwar-
tungswert v. Die Inputparameter und die zu fittenden Variablen sind in Tabelle 4.2
aufgelistet.
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Tabelle 4.2: Fitarten mit 1-Loop-Korrektur

Bezeichnung Input Fitfunktion | Gefittete Parameter
la M, SR (4.35) Zr,Mpr, Gry
1b M, Vo (4.36) Zr,Mpr, Gry
2 M, LRy, Vo (4.37) Z o, MRr
3a Mo (4.35) Zry Ibry, G Ry
3b Mgy, Vo (4.36) Zr, brys Gry

Der VEV wvq als Inputparameter hatte den grofien Vorteil, nur geringfiigig fehlerbe-
haftet zu sein, er war also ein relativ “sicherer” und damit genauer Wert.

Um den Einfluf} des bosonischen Anteils I, g der Selbstenergie zu untersuchen, wurde
bei den Fits noch zusétzlich dieser Anteil einfach weggelassen:

Z7'SL L (0,p0) = Z7'Ghylar(ps) (4.38)
2
KRy

Die entsprechenden Fitarten stehen in Tabelle 4.3.

Tabelle 4.3: Fitarten mit rein fermionischer 1-Loop-Korrektur

Bezeichnung | Input | Fitfunktion | Gefittete Parameter
1a’ LRy (4.38) Zr, Mpr, Gry
b’ o (4.38) Z,Mpr Gry
2’ LRy Vo (4.39) Z s Mpr
3a’ - (4.38) Zry brys GRry
3b’ Vo (4.38) Zry brys GRry

Bei den Fits 3a, 3b, 3a’ und 3b’ wurde mg, = 0 angenommen. 1a’, 1b’ und 3a’, 3b’
unterscheiden sich nur in den Inputparametern, was zu den selben Fitergebnissen
fiihrt und deshalb zu 1’ zusammengefaf$t wurde (siehe Abschnitt 4.2.5).
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Zur Veranschaulichung der Selbstenergieanteile der letztgenannten Fits sind in Abb.
4.2 die dreidimensionalen Plots der Funktionen Irp(ps; piry) und phyIrr (pa; piry)
dargestellt.

0.69
0.50
0.40
0.30
0.20
0.10
0.00 1<

Abbildung 4.2: Plots der Funktionen Ip(ps; firy) und pihy Ler(Da; firy) beim 8% x 16-
Gitter im Bereich von pip, = 0.04...1.0

Um eine Vorstellung vom Groéflenverhéltnis zwischen dem bosonischen und dem
fermionischen Anteil der Selbstenergie zu geben, sind beide in Abb. 4.3 beispielhaft
aufgetragen. (Die durchgezogenen Linien stellen Schnitte durch den rechten Plot
der Abb. 4.2 an den Stellen pigy, = 0.72 und pgy = 0.86 dar.)

T T T T T i
DD-Datensatz (ungewichteter 1b-Fit) 1 I C-Datensatz (ungewichteter 2-Fit)

b iRe = 0.72(45) - 0.10} nry = 0.86(8 4
MY 1.30(21) 7] R 1.18(163 &

0.05 0.05

0.00 0.00

0 1 2 3 4 0 1 2 3 4
Pt P

Abbildung 4.3: Plots der Funktionen p,Irr(pa; piry) (durchgezogene Linie) und
3milp(ps) (Punkt-Strich-Linie)

4.2.4 Realisierung des Fitalgorithmus

Zum Fitten der Daten wurde ein teilweise selbstentwickelter Algorithmus benutzt,
der nach einem Zufallsprinzip arbeitet: Durch die Ubergabe der Parametergrenzen
(siehe Tabelle 4.4) wird ein Parameterhyperkubus mit einer durch die Anzahl der
Fitparameter bestimmten Dimension festgelegt.
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Tabelle 4.4: Beiuspiel fir die Parametergrenzen des Fitalgorithmus

Fitparameter | Z. | G%,, | ma | my, | phy,
Minimum | 0.1 | 0.1

Maximum 2 8

]
[l =
]

Aus diesem werden mittels eines NA G-Zufallszahlengenerators (GO5CAF: Pseudo-
random real numbers, uniform distribution over (0,1), INAGI1]) willkiirlich Parame-
terkonfigurationen (wie z.B. Pionen-Masse m,, renormierte Yukawa-Kopplung Gry,
und Renormierungskonstante Z,; siehe Abschnitt 4.2.3) fiir die Fitfunktion erzeugt.
Dann wird der Abstand der Fitfunktion zu den Me3punkten mittels

@) = Y w(ps) (f(paa) — y(ps)’ (4.40)

pa

berechnet und mit dem bisher kleinsten verglichen (Methode der kleinsten quadra-
tischen Abweichung). Dabei ist ). die Summe iiber die Gitterimpulse, w(p4) eine

Pa
Gewichtung, f(p4;a) die Fitfunktion mit den Fitparametern a = (aq,...,a,) und
y(p4) der Datenwert [PETV86]. (Wegen der Symmetrie des Propagators wurden nur
die Impulse ps = 2%714 mit ny =0, ..., % bendtigt.) Wurde ein bestes x? gefunden,

so wird noch ein Gradientenverfahren zur Optimierung gestartet,

At =df -0 v, X2(a)|a:ak, (4.41)

wobei o > 0 eine konstante Schrittweite ist (in der GréBenordnung um 0.001). a°

ist der Zufallspunkt aus dem Parameterraum, und a* die im Schritt & des Gradien-
tenverfahrens gefundenen Parameter.

Der Gradient v7,x?(a) wird rein numerisch ermittelt, er muff dem Fitalgorithmus
also nicht explizit angegeben werden. (4.41) ist eine Abwandlung eines in [BS89]
erwahnten Algorithmus; eine variable, bei jedem Schritt neu festzulegende Schritt-
weite erbrachte gegeniiber der konstanten, weniger programmieraufwendigen, keine
erkennbaren Vorteile.

Zufallspunkte wurden deshalb benétigt, um eventuelle Subminima, in die ein reiner
Gradientenfit hineingleiten kann, und die keinen physikalisch sinnvollen Werten ent-
sprechen konnen, quasi zu “brechen”, sie also einer Art Evolutionsprinzip zu unter-
werfen. Bei jedem Durchlauf wurden so ca. 4-10° Parameterkonfigurationen gepriift,
d.h. bei 3 Fitparametern pro Parameterachse um die 150 Punkte. Bei den Parame-
tergrenzen habe ich mich an Literaturgréfienordnungen orientiert, siehe [LMMP93].
Die Definition von Parametergrenzen hatte noch den Vorteil, parameterabhéngige
Integrale mit in die Fitfunktion aufnehmen zu kénnen: diese mufiten aus rechendko-
nomischen Griinden schon vor dem eigentlichen Fitting in Felder abgelegt werden,
und aufgrund der Festlegung der Parametergrenzen konnte der Fitalgorithmus auch
nicht die Feldgrenzen iiberschreiten.
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4.2.4.1 Fehlerabschitzung

Um die Fehler der 2-Punkt-Funktion T>?(p) zu berechnen, die man zur Fehler-
abschéitzung der Fitparameter und fiir die gewichteten Fits benotigt, wurde folgen-
dermaflen vorgegangen [W1T94]: den vorliegenden Monte-Carlo-Datensitzen wa-
ren neben den eigentlichen Zeitscheiben-Korrelationsfunktionen C(t) auch die sog.
Binnings angegeben, die —abhéingig von der Anzahl der Bins, also der Zahl der
Unterteilungen einer Trajektorie— die Fehler dieser Mittelwerte als Standardab-
weichungen o(t) angeben. Hier wurden sie bei Bin-Zahlen von 2 bis 8210 in 13
Schritten (beim 8 x 16-Gitter) bzw. von 2 bis 5800 in 12 Schritten (beim 6* x 12-
Gitter) gemessen. Dies entspricht Bin-Léngen von 2 bis 8192 bzw. von 2 bis 4096
in Verdopplungsschritten.
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Abbildung 4.4: Abhdngigkeit der FehlergrofSe von der Bin-Ldnge bei der transversa-
len Zeitscheiben-Korrelationsfunktion Cr(t)

Je kleiner die Bin-Zahl bzw. je gréfler die Bin-Linge ist, desto gréfler wird der
Fehler, bis er theoretisch bei der viertletzten Bin-Léinge (in der obigen Abbildung
gleich 1024, markiert durch eine gestrichelte Linie) einen Sdttigungswert erreichen
sollte [W1T94]. In Abb. 4.4 ist der mit dem Fehler bei der groiten Bin-Lénge
normierte und iiber die Zeiten 0 bis 7'/2 gemittelte Verlauf der Fehlergrofie bei der
transversalen Zeitscheiben-Korrelationsfunktion von Datensatz BB in Abhéngigkeit
von der Bin-Linge aufgetragen. Ein Sittigungsplateau, wie es in Artikel [FP89] an-
hand eines einfachen Ising-Modells beschrieben wird, ist (bei der gestrichelten Linie)
nur schwach zu erkennen. Dies liegt sehr wahrscheinlich daran, dafl man aufgrund
der auftretenden numerischen Komplexitit des Modells eine héchst unzureichende
Statistik hat. Der genannte viertletzte Wert o(¢) geht in einen normalverteilten
Zufallszahlenalgorithmus um den Mittelwert C(t) ein (0 < ¢ < T'/2), d.h. es werden
um die C'(¢) herum mit der NAG Zufallszahlen Cy(t) erzeugt (GOSDDF: Pseudo-
random real numbers, Normal distribution, [NAGOI1]), die der Normalverteilung
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(O €. o) = e 0 (1.42)

gehorchen [W1T94]. Anschlieflend werden diese Fouriertransformiert:

T/2—1

Gr(0,p1) = C(0) + Cy(T/2) cos(mpa) +2 Y Cy(t) cos(pat). (4.43)

t=1
Diese Prozedur wird n mal wiederholt. Die daraus gewonnenen Standardabweichun-
gen der inversen Fouriertransformierten,

2

<G];1,42>—G71,4
WEJ (G ©0.00)"> = (G~ (0.01)

4.44
- , (444
wobei G(0,p,) = —(I‘(2’0)(0,,'494))_1 aus der Gleichung
T/2—1
G(0,ps) = C(0) + C(T/2) cos(mps) +2 Y C(t)cos(pat), (4.45)
t=1
1 2 1 & 1 2 . .
stammt und <(G,€ (0,p4)) >=1% (Gk (0,p4)) gilt, werden quadratisch rezi-
k=1
prok als Gewichte eingesetzt [PFTV86]:
() = =57 (4.46)
w = = . .
" 5

Fiir die Berechnung der Gewichte war n = 1000, aber um die Fehler der Fitparame-
ter zu ermitteln, wurden (aus Zeitgriinden nur) n = 100 dieser Verteilungen erzeugt,
durch diese wurde dann gefittet, und mit den damit berechneten gestreuten Fitpa-

rametern wurden die Standardabweichungen der Mittelwert-Fitparameter generiert
(analog (4.44)).

Allerdings muf} einschrinkend gesagt werden, dafl eben wegen der genannten man-
gelhaften Statistik die Fehler eher iiberbewertet worden sind. Die einzelnen Ge-
wichte unterscheiden sich um mehrere 10er-Potenzen (wie in Tabelle 4.5 beispielhaft
aufgefiihrt), so dal Propagatorwerte bei hoheren Impulsen beim Fitten praktisch
keinen Einflufl mehr haben, was man in Abschnitt 4.2.7 auch gut erkennen kann.

Tabelle 4.5: Mazimums-normierte Gewichte des BB-Propagators

4 0 1 2 3 4
w(ps) 1.00 0.00772 | 7.88-107° | 3.25-10° | 4.77-10°7
L py 5 6 7 8

w(py) 4.34-107% | 3.52-1072 | 1.91-107'° | 6.55-10~""
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4.2.5 FErgebnisse des 1-Loop-Fittings

Die in den folgenden Tabellen 4.6 bis 4.11 aufgefiihrten Werte ergeben sich bei den
jeweiligen Fitarten wie folgt:

Name Zr Gry LRy MRr UR Jr
Literatur | Z; rit | Gry,Lit IR, Lit — UR, Lit 9R,Lit
la, 1a’ /. GRw Z;1/2GR¢ Vo | Mprxr
lb, 1b’ /. GRw Z;1/2GR¢ Vo | Mprxr
2,2 Ze | ZM? [y, — MRr Z 24 | 3 Zym? Jv?
3a, 3a’ L G Ry LRy 0
3b, 3b’ Zﬂ- GR¢ MRy 0

gr entspricht hier der Definition (3.47). Die Lit-indizierten Werte stammen ebenso
wie vg aus [LMMP93]. Die Auflistung der vp- und gr-Werte dient als Giitekriterium
fiir die einzelnen Fits.

Ebenfalls als eine Art Kontrollinstanz fiir die Definitionsgleichung (3.23) (aufler bei
den Fits 2, 2’) dient der pp,-Wert. Bei den Fits 2 und 2’ spielt er als Fitparameter
keine Rolle und bei 3a, 3a’, 3b, 3b’ wird er direkt mitgefittet.

4.2.5.1 Ungewichtete Fits

Die ungewichteten Fitfunktionen zeichnen sich dadurch aus, daf} sie die Propaga-
torfunktionen sehr gut nachvollzichen (siche auch Abschnitt 4.2.7). Besonders die
Kriimmung des Propagators bei kleinen Impulsen wird gut wiedergegeben. Ihre
Aussagekraft wird aber durch die fehlende Gewichtung geschmilert, die Werte bei
groflen Impulsen miiflten eigentlich einen wesentlich geringeren Einfluf} auf den Ver-
lauf der Kurve haben als diejenigen bei kleinen Impulsen. Andererseits haben die
Gewichte —wie bereits in Abschnitt 4.2.4.1 gesagt wurde— selbst einen qualita-
tiv minderwertigen Informationsgehalt, so dafl die ungewichtete Methode insgesamt
wieder zuverlissiger erscheint: Belegt wird diese Aussage auch durch die relativ gute
Ubereinstimmung der [Ry-, Vg- und gr-Werte mit den Literaturwerten.

Die bemerkenswert hohen Fehler erkléren sich nicht nur aus den bereits in Abschnitt
4.2.4.1 genannten Griinden, sondern auch aus der geringen Anzahl der Durchldufe
des Fitprogramms zur Ermittlung der Fitparameter-Fehler (n = 100, siehe eben-
falls 4.2.4.1); um zuverlissigere Abschitzungen zu erzielen, miiite man wahrschein-
lich um die 300 bis 500 mal die gestreuten Propagatorwerte anfitten (da sich un-
geféhr bei diesen Zahlen auch der Propagatorfehler & (p,) stabilisierte), was in einem
verniinftigen Zeitrahmen nicht zu schaffen war (auf den mir zur Verfiigung stehen-
den schnellsten Rechnern, IBM RS/6000-390 bzw. 590 schitzungsweise 3 bis 4 Tage;
das Queue-Rechenzeit-Limit auf diesen Maschinen betrug aber nur 1 Tag und eine
Aufteilung der Jobs hétte einen erheblichen Mehraufwand beim Programmieren be-
deutet, vor allem auch wegen der lingeren Debugging-Zeiten auf der Queue). Bei
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Tabelle 4.6: BB-Datensatz, ungewichteter Fit

Bezeichnung | Z, G Ry [ Rep MRx VR Jr
Literatur 1.14(9) 1.36(12) 0.341(2) — 0.25(1) | 31(4)
la 1.16(48) | 1.61(1.07) | 0.40(45) 0.00(23) || 0.25(5) | 26(24)
1b 1.16(47) | 1.64(1.09) | 0.41(43) 0.00(28) || 0.25(5) | 26(23)
2 1.26(47) | 1.41(27) - 0.20(65) || 0.24(5) | 28(24)
3a 1.16(50) | 1.64(50) 0.35(3.54) | 0 0.25(6) | 26(24)
3b 1.13(49) | 1.54(1.37) | 0.26(4.86) | 0 0.25(6) | 25(23)
1’ 1.15(47) | 1.72(1.03) | 0.43(40) 0.00(29) || 0.25(5) | 26(23)
2’ 1.28(48) | 1.43(27) - 0.22(57) || 0.24(5) | 29(25)
3a’ 1.06(44) | 1.44(36) 0.15(8.49) | 0 0.26(6) | 24(22)
3b’ 1.06(44) | 1.44(1.52) | 0.15(8.49) | 0 0.26(6) | 24(22)
Tabelle 4.7: C-Datensatz, ungewichteter Fit
Bezeichnung Zﬂ- GR¢ MRy Mmpr VR Jgr
Literatur 0.98(8) 2.4(3) 0.86(8) — 0.36(2) | 36(6)
la 1.14(37) | 2.41(90) 0.79(29) 0.00(48) || 0.33(6) | 38(23)
1b 1.15(38) | 2.37(88) 0.78(29) 0.00(48) || 0.33(6) | 39(23)
2 1.12(34) | 2.58(4.23) | - 0.00(41) || 0.33(5) | 38(22)
3a 1.16(33) | 2.79(1.16) | 1.08(92) 0 0.33(5) | 39(22)
3b 1.16(34) | 2.82(1.05) | 1.13(87) 0 0.33(5) | 39(22)
1’ 1.13(38) | 2.57(92) 0.85(30) 0.00(49) || 0.33(6) | 38(23)
2’ 1.13(35) | 2.60(4.26) | - 0.00(42) || 0.33(5) | 38(22)
3a’ 1.15(34) | 2.80(1.17) | 1.02(1.00) | 0 0.33(5) | 39(22)
3b’ 1.15(34) | 2.80(1.01) | 1.02(1.00) | 0 0.33(5) | 39(22)
Tabelle 4.8: DD-Datensatz, ungewichteter Fit

Bezeichnung | 7, G Ry IR MRx VR Jr
Literatur 1.00(10) | 2.5(3) 0.86(11) — 0.339(16) | 38(4)
la 1.18(59) | 2.36(80) 0.74(38) 0.23(63) 0.31(8) 44(38)
1b 1.18(59) | 2.31(81) 0.72(45) 0.23(64) 0.31(8) 44(38)
2 1.10(58) | 2.67(1.49) | - 0.09(2.13) || 0.32(9) 41(36)
3a 1.05(50) | 1.40(42) 0.26(4.35) |0 0.33(8) 39(33)
3b 0.81(39) | 1.32(1.78) | 0.05(23.34) | O 0.38(9) 30(25)
1’ 1.17(60) | 2.49(78) 0.78(42) 0.23(65) 0.31(8) 44(38)
2’ 1.12(58) | 2.69(1.50) | - 0.16(1.20) || 0.32(8) 42(37)
3a’ 0.85(41) | 1.39(40) 0.09(12.69) | 0 0.37(9) 32(27)
3b’ 0.85(41) | 1.39(1.65) | 0.09(12.69) | 0 0.37(9) 32(27)

der Rechenzeit schlug dabei nicht nur das eigentliche Fitting sondern auch die Be-
rechnung der (L = oo)-Kontinuums-Ausdriicke mit der NAG zu Buche. Man sollte
daher vielleicht besser auf den NA G-Einsatz ganz verzichten und stattdessen einfach
die entsprechenden Ausdriicke mit dem Gittersummenalgorithmus bei gréfieren Vo-
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lumina berechnen, der die vollen Symmetrien ausnutzt. Entscheidender Vorteil der
NAG-Integrationsroutinen war aber, daf} sich deren Genauigkeit exakt steuern lief3,
was sich gerade bei den Ableitungen nach p? als sehr niitzlich erwiesen hat.

Wihrend fiir alle drei Datenséitze die Fits 1a und 1b gut miteinander iibereinstim-
mende Werte in allen Parametern lieferten, was in erster Linie auf den gleichen
Fitparametern beruhte, trifft dies bei 3a und 3b nur fiir BB- und C zu, beim DD-
Datensatz weichen vor allen Dingen die Fermionenmassen sehr stark voneinander
ab. Letzerer war aber auch der einzige, bei dem la und 1b fiir mg, von 0 abwei-
chende Werte produzierten.

3a und 3b lieferten ebenfalls bis auf den DD-Datensatz fiir Fermionenmasse und
Renormierungskonstante relativ zuverléssig erscheinende Werte, bei DD wichen die
Fermionenmassen leider zu stark nach unten ab (ug, = 0.26, 0.05 gegeniiber dem
Literaturwert von 0.86), was darin begriindet liegen mag, daf bei den Fitfunktionen
(4.35) und (4.36) die Parameter untereinander zuviel Spielraum haben; in beiden
Fillen hat man Fitfunktionen der Form

F(0; Zy ik Gry) = Z {D° + Gy 9(D5 11ry) }y

wo Gry und pgy, im zweiten Summanden auf der rechten Seite zu grofle “Bewe-
gungsmoglichkeiten” haben, d.h. mehrere Kombinationen dieser Werte kénnen die-
selben Fitkurven produzieren, was die Aussagekraft dieser Fits enorm mindert. Das-
selbe gilt auch fiir 3a’ und 3b’. Diese Begriindung und die groflen Fehler lassen den
Schluf} zu, daf} die Werte aus diesen Fits bei den anderen Datensétzen nur zufillig
im richtigen Bereich liegen konnten.

Zu den Zwei-Parameter-Fits 2 und 2’ bleibt anzumerken, daf} die Renormierungs-
konstanten beim BB-Datensatz gegeniiber 1a und 1b nach oben, bei den iibrigen
nach unten abweichen (aufler 2’), bei der Yukawa-Kopplung ist es genau umgekehrt.

Die gestrichenen Fits unterscheiden sich von den ungestrichenen dadurch, daf} in
der Regel die Renormierungskonstanten ein wenig kleiner sind, dagegen bei Ggy
und gy zwei unterschiedliche “Irends” auszumachen sind: Bei 1a’ bis 2’ wachsen
sie verglichen mit den ungestrichenen, bei 3a’ und 3b’ schrumpfen sie (bis auf die
C-Daten).

Die dennoch geringen Abweichungen lassen darauf schlieflen, daf} insgesamt der bo-
sonische Einflu} auf die Fitparameter gering ist, anders, als es Abb. 4.3 suggeriert.
Das bedeutet im Endeffekt, dal der Kriimmungsverlauf des fermionischen Teils we-
sentlich mehr Einflufl auf die Fitparameter ausiibt als dessen Absolutwerte, der bo-
sonische Teil hat bereits eine grofere p?-Konformitit “eingebaut”, was auch mit der
Aussage iibereinstimmt, dafl bei schwachen Yukawa-Kopplungen ein 1-Pol-Ansatz
der Form (4.22) geniigt, wo der bosonische Term schlicht iiberfliissig ist.

4.2.5.2 Gewichtete Fits

Das grofite Manko beim gewichteten Fitten ist —wie schon friiher in 4.2.4.1 beschrie-
ben— der Groflenunterschied der Gewichte untereinander aufgrund der mangelhaf-
ten Statistik, obwohl die Gewichtung eigentlich das korrektere Verfahren darstellt.
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Tabelle 4.9: BB-Datensatz, gewichteter Fit

Bezeichnung | Z, G Ry [ Rep MRx VR Jr
Literatur 1.14(9) 1.36(12) 0.341(2) — 0.25(1) | 31(4)
la 1.29(10) | 0.87(34) 0.207(82) | 0.113(59) || 0.24(1) | 29(16)
1b 1.36(13) | 0.53(67) 0.12(16) 0.151(63) || 0.23(1) | 31(18)
2 1.28(6) 1.43(3) - 0.00(6) 0.24(1) | 29(15)
3a 1.27(8) 2.69(1.09) | 1.13(55) 0 0.24(1) | 29(16)
3b 1.23(8) 2.72(82) 1.57(52) 0 0.24(1) | 28(15)
1’ 1.35(13) | 0.60(62) 0.14(16) 0.167(64) || 0.23(1) | 30(18)
2’ 1.25(6) 1.41(4) - 0.01(35) 0.24(1) | 28(15)
3a’ 1.27(10) | 2.69(1.09) | 1.13(52) 0 0.24(1) | 29(16)
3b’ 1.27(10) | 2.69(86) 1.13(52) 0 0.24(1) | 29(16)
Tabelle 4.10: C-Datensatz, gewichteter Fit
Bezeichnung Zﬂ- GRw MRy Mmpr VR Jgr
Literatur 0.98(8) 2.4(3) 0.86(8) — 0.36(2) | 36(6)
la 1.22(21) | 1.79(86) 0.57(27) | 0.17(18) 0.32(3) | 41(18)
1b 1.25(15) | 1.65(86) 0.52(27) | 0.17(17) 0.32(2) | 42(17)
2 1.28(20) | 2.77(8.02) | - 0.00(18) 0.31(3) | 43(19)
3a 1.19(8) 2.07(88) 0.80(53) | 0 0.32(1) | 40(14)
3b 1.20(12) | 2.31(60) 1.00(35) | 0 0.32(2) | 40(15)
1’ 1.25(14) | 1.71(90) 0.54(28) | 0.22(12) 0.32(2) | 42(16)
2’ 1.23(17) | 2.71(6.98) | - 0.00(21) 0.32(2) | 41(17)
3a’ 1.18(12) | 2.29(1.01) | 0.82(38) | 0 0.32(2) | 40(15)
3b’ 1.18(12) | 2.29(53) 0.82(38) | 0 0.32(2) | 40(15)
Tabelle 4.11: DD-Datensatz, gewichteter Fit

Bezeichnung | Z, G Ry [ Rep MRx UR Jr
Literatur 1.00(10) | 2.5(3) 0.86(11) | — 0.339(16) | 38(4)
la 1.03(8) 0.87(1.12) | 0.29(33) | 0.03(14) || 0.33(1) 39(17)
1b 1.08(9) 0.32(2.48) | 0.10(71) | 0.02(14) || 0.33(1) 41(18)
2 1.26(9) 2.85(1.25) | - 0.00(4) 0.30(1) 47(20)
3a 1.03(7) 2.06(49) 1.66(32) | 0 0.33(1) 39(16)
3b 1.02(8) 2.81(69) 1.86(45) | 0 0.34(1) 38(17)
1’ 1.03(10) | 1.19(96) 0.40(28) | 0.00(10) || 0.33(2) 39(17)
2’ 1.17(11) | 2.75(1.14) | - 0.00(10) || 0.31(2) 44(20)
3a’ 1.02(11) | 2.60(82) 1.66(47) | 0 0.34(2) 38(18)
3b’ 1.02(11) | 2.60(67) 1.66(47) | 0 0.34(2) 38(18)

Auffallend ist, dafl die Z,-Werte bei allen Fits grofler als die Literaturwerte sind.
Ursache hierfiir ist, dal wegen der sehr schwachen Gewichtung der Propagatorwerte
bei hohen Impulsen die Kriimmung durch die Fitfunktion nicht mehr nachvollzogen
werden kann, was die Renormierungskonstante dimpfen wiirde. Auch die Werte fiir
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die Yukawa-Kopplung sind als schlecht anzusehen, da sich die Selbstenergie ja erst
bei groferen Impulsen bemerkbar macht.

Insgesamt sind die berechneten Renormierungskonstanten —bei BB und C sogar
um mehr als 10 %— groBer als die Literaturwerte aus [LMMP93]. Den iibrigen
Fitparametern mufl man leider die Zuverldssigkeit absprechen, die Abweichungen
untereinander und von den Literaturwerten sind teilweise erheblich. Im Gegensatz
dazu sind die Parameter-Fehler geringer als bei der ungewichteten Methode, dies
beruhte aber darauf, daf die gewichteten Fitfunktionen leichter in die Minima der
Abstandsmeffunktion (4.40) hineingelangen konnten.

Diese Fitmethode macht wahrscheinlich erst dann Sinn, wenn die Statistik der
zugrundeliegenden Daten, die sich in den Fehlern der Zeitkorrelationsfunktionen
auBert, wesentlich verbessert wird, d.h. die Zahl der HMC-Trajektorien erhéht wird.

4.2.6 Vergleich der Methoden

Riickblickend ist bei den hier vorliegenden Datensétzen die ungewichtete Methode
der gewichteten vorzuziehen, insbesondere kristallisierten sich die Fits 1a und 1b
als die Fitting-Formeln mit den plausibelsten Ergebnissen heraus, da vor allem ihre
G ry- und pgy-Werte durchweg den Literaturwerten am néchsten waren. Zudem l43t
sich konstatieren, dafl bei ihnen —auch im Gegensatz zur gewichteten Methode— die
renormierte Yukawa-Kopplung mit zunehmender nackter Yukawa-Kopplung wéchst,
was ein zusétzliches Kriterium fiir ihre Anwendbarkeit ist.

4.2.7 Graphische Darstellung der Fits

Anhand der Plots mit den Fits (gestrichelte Kurve) und den MeBwerten (durch-
gezogene Linie) kann man gut die Qualitit der unterschiedlichen Fitausdriicke be-
urteilen. Man erkennt, dafl die gewichteten Fitkurven wesentlich stirker von den
gemessenen Werten abweichen. Durch, die Fehler (p,) entstehen in der Gewichtung
die groflen Unterschiede, die Propagatorwerte bei gréfleren Impulsen kommen beim
Fitten praktisch nicht zum Zuge.

Die Abweichung als ein Maf fiir die Giite der Fitfunktion wurde nach der Formel

1 T/2 ,
2 - 27 . (2a0) 2m
X = T/2 +1 n42:0 (f( T T4, a) + 1—‘071' (07 T n4)) (447)

bestimmt, wobei f(x;a) die Fitfuntion ist.

Wie man anhand der BB-Plots erkennt, kann man Punkt 3 aus der Liste der Ab-
weichungen aus Abschnitt 4.2.1 bestétigen: Schon bei der relativ schwachen nack-
ten Yukawa-Kopplung G, = 0.3 kann bei kleinen Impulsen eine recht signifikante
Kriimmung festgestellt werden, welche durch die nicht-gewichteten Fits auch gut
nachvollzogen werden kann.
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4.2.7.1 Ungewichtete Fits mit voller 1-Loop-Korrektur
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Abbildung 4.6: 2- und 3a-Fit, ungewichtet
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4.2. 1-LOOP-ANALYSE DES n-PROPAGATORS
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4.2.7.2 Ungewichtete Fits nur mit 1-Fermionen-Loop-Korrektur
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4.2.7.3 Gewichtete Fits mit voller 1-Loop-Korrektur
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4.2.7.4 Gewichtete Fits nur mit 1-Fermionen-Loop-Korrektur
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Zusammenfassung

In dieser Arbeit wurde ein Yukawa-Modell in der Phase mit gebrochener Symmetrie
unter globaler SU(2);, ® SU(2)gr-Eichsymmetrie stérungstheoretisch untersucht.

Im ersten Kapitel wurden dazu die Feynman-Regeln aufgestellt und im zweiten Ka-
pitel die Ausdriicke der skalaren Propagatoren sowie die des Fermionen-Propagators
und des Vakuumerwartungswertes im Entkopplungsfall Gy, = 0 bis zur 1-Loop-
Ordnung entwickelt.

Nach der Definition des Renormierungsschemas wurden im dritten Kapitel die Sto-
rungsreihen der renormierten Parameter als Funktionen der nackten Parameter auf-
gestellt, z.T. unter Ausnutzung der Golterman-Petcher-Identitdten. Anschlielend
wurden diese Funktionen wieder nach den nackten Parametern aufgelést (renor-
mierte Storungstheorie)

Diese Berechnungen dienten als Vorbereitung fiir die numerische Auswertung von
Datenséitzen, die die Meflergebnisse einer Hybrid-Monte-Carlo-Simulation enthiel-
ten, insbesondere die Zeitscheiben-Korrelationsfunktionen der skalaren Teilchen. Bei
dieser Auswertung wurde die in Kapitel 3 vorgestellte renormierte Stérungsrechnung
angewandt, indem die transversale Zeitscheiben-Korrelationsfunktion in den skala-
ren m-Propagator Fourier-transformiert, invertiert und dann an diesen die renormier-
te 1-Loop-Stérungsentwicklung des inversen m-Propagators T>?(p) als Fitfunktion
gelegt wurde.

Gepriift wurden dabei mehrere, zueinander dquivalente Parametrisierungen dieser
Fitfunktion, und gepriift wurde auch, ob eine statistisch korrekte Gewichtung des
Fittings sinnvoll ist. Dabei stellte sich heraus, dafl ein gewichtetes Fitten wegen der
den Datenséitzen zugrunde liegenden unzureichenden Statistik nicht moglich war, da
die ermittelten Parameter zu stark von den Literaturwerten abwichen. Dies konnte
man auch deutlich an den Abweichungen der Fitfunktionen von den Mefipunkten in
den entsprechenden Plots sehen.

Beim ungewichteten Fitting stellten sich zwei Parametrisierungen (mit der trans-
versalen Renormierungskonstante 7., der renormierten Yukawa-Kopplung G'ry und
der Pseudo-Pionenmasse mg,) als besonders giinstig und mit den Literaturwerten
relativ konform heraus, wobei die entsprechenden Fitfunktionen auch den Verlauf
des gemessenen Propagators hervorragend wiedergaben. Die anderen Fitfunktionen
besaflen entweder zu wenig Fitparameter, oder ihre einzelnen Fitparameter konnten
in mehreren Werte-Kombinationen dieselbe Fitfunktion reproduzieren, waren also
nicht eindeutig.
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Zentrales Thema dieser Arbeit war es nun, dieses sich von den fiir gewdhnlich ange-
wandten Methoden unterscheidende Berechnungsverfahren auf seine Verwendbarkeit
zu testen, und zu priifen, ob es eventuell eine den herkémmlichen Verfahren {iberle-
gene, prizisere Auswertung von numerischen Daten im Yukawa-Modell ermoglicht.
Die Frage nach der Verwendbarkeit der hier vorgestellten Fitmethode mit 1-Loop-
Korrektur 148t sich mit ja beantworten. Die Uberlegenheit dieser Methode konnte al-
lerdings noch nicht bewiesen werden, da einerseits die Fehlertoleranzen im Datensatz
zu grofl waren (obwohl die einzelnen Mefwerte einen relativ zuverldssigen Eindruck
machten), und andererseits in das Fitverfahren als Input auch herkémmlich berech-
nete Parameter, wie z.B. die Fermionenmasse pp oder die mit dem Zeitscheiben-
Korrelationsfit ermittelte physikalische Masse m, eingingen.

Um die genannten Probleme zu beseitigen, sollte man zu gréfleren Gittervolumina
(ab V' = 16 x32) und mehr HMC-Trajektorien iibergehen (deutlich mehr als 10000).
Im Vergleich zu den hier gemessenen Werten lassen sich dann auch Volumeneffekte
besser untersuchen. Auflerdem wire im storungstheoretisch erfabaren Bereich ein
wesentlich aufwendigeres, selbstkonsistentes Fitverfahren interessant, welches aus-
schliefllich auf der Verwendung von 1-Loop-Stérungsentwicklungen sowohl des o-
als auch des w-Propagators beruht und nicht zur Hélfte auf “klassisch” berechne-
ten Inputparametern wie z.B der Fermionenmasse pp,. Von wesentlichem Interesse
wire dabei, ob solch ein Verfahren {iberhaupt mdoglich ist, und wenn, wie hoch der
Zeitaufwand fiir Realisation und Ausfiihrung ist.
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Anhang A

Einfache Definitionen und
Konventionen

A.1 ~-Matrizen im Euklidischen

Zwischen den ~y-Matrizen v, im Euklidischen und denen in Minkowski-Metrik, 'yff,
besteht der Zusammenhang

v =iyt fiir j=1,2,3 (A1)
sowie
Y= (A.2)
Daraus wird ~5 durch
Vs = V1727374 (1.28)

definiert. Im Euklidischen gehorchen die y-Matrizen der Vertauschungsrelation

{V W} = 26, (1.27)
Weiterhin gilt
Y= » A= (A.3)
sowie
=9l @) = —duy. (A.4)

Als letztes sei noch die Spurrelation

Try, =0 (A.5)

genannt.
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ANHANG A. EINFACHE DEFINITIONEN UND KONVENTIONEN

Die groflen Gammas werden durch
I'j=—ivy1, Tu=1
definiert. Sie kommutieren entsprechend den Gleichungen
Yl =Ty, Tuve =wlh, 2wl =Twys, wlh =T

und

Fil“j = FTFT = _6z’j — ieijka s FZFJ = Fll—‘; = 6ij +i6ijka.

L)

Die Spur des Produktes Fal“}; hat den Wert

Tr(T,Th) = 85,5

A.2 Sonstige Bezeichnungen

(1.37)

(1.47)

(1.48)

(1.49)

Entsprechend den iiblichen Konventionen werden noch folgende Parameter als Ab-

kiirzungen definiert:

q, = sin q,,,
7, = 3 sin(2q,).

“Geschléngelte” Parameter sind definiert als

m
m = 2sinh —.
m sinh 5
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Anhang B

Erzeugende Funktionale und
Greensfunktionen

B.1 Konventionen fiir die Gitternotation

Das Gitter ist die Menge
A= {2 = (21,29, 73,24) = (x,1) €EZ* 0< 24 < Lo, a=1,...,4}, (1.15)

sein Volumen ist

V = L1L2L3L4 = L3T, (Bl)

wobei L die Ausdehnung in Raumrichtung, T" = L, die in Zeitrichtung ist. Die
Gittersumme ist gleich

s (%)

T a=1 x4=0

eine Fouriertransformation entspricht der Operation

f(p) =Y f(x) e T (B.3)
riicktransformiert wird mit
1 3 ip-x
f@) = 5 X ) o, (B4
wobei p= (p17p27p37p4) und Py = i_z Nyy Ny € {07 R Lu - 1}

Das hiufig auftretende Integral {iber die erste Brillouin-Zone ist auf dem Gitter als
die Summe
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ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONEN

1
- (1.83)
/q LT L/2<Zn]-§L/2
—T/2<ny<T/2

mit ¢; = %nj und ¢4 = 2%714 definiert.

B.2 Erzeugendes Funktional fiir unverbundene
Greensfunktionen

Das erzeugende Funktional ist in Gitternotation definiert als
Z(1,€,8) =
N*l/Dgp'D\If DU exp { ~[S(e, 2, 9)

+5 T(II) + St + Tao + Tloxa + o) |

(B.5)
mit den Quellen
Jy = Jog L + 1,7 und &, = (Cx>,
und der Normierungskonstante N. Sie besitzt den Wert
N = Z(J,f,g)b:gzgzo. (B.6)
D¢’ steht fiir
Dy’ =[] d¥bas: (B.7)
DV fiir
DV = [[ d¥,, (B.8)

DV ist analog definiert.

B.3 Erzeugendes Funktional fiir die verbundenen
Greensfunktionen

Das erzeugende Funktional fiir die verbundenen Greensfunktionen ist durch

W68 = log Z(J,€,§) (B.9)
definiert. (2.1) und (2.2) lassen sich daraus einfach berechnen:
0? —
Ga,zy - _mW(Ja g: 5) J:g:Z:O, (BlO)



B.3. ERZEUGENDES FUNKTIONAL FUR DIE VERBUNDENEN GREENSFUNKTIONEN

82
Criiy = — 57z .
T 000y J=£=E=0

Das erzeugende Funktional fiir die 1-Teilchen-irreduziblen Vertizes (1 PI-Vertizes; 1
PI=one particle irreducible) ist dann mittels der Legendre-Transformation

W (J,&,€) (B.11)

D¢, 0, 0) = W (€8 = > [Tr(Jig)) + &0, + Ta&s) | (B.12)

x

bzw., noch exakter formuliert, mittels

F(@)w?@? X7Y) = W(J7 CJZ? T]Jﬁ)

_ _ (B.13)
=% [Tr(h¢h) + Catho + Do + X + X

gegeben (der Strich bei ¢' wird ab jetzt weggelassen).

Die Vertex-Funktionen T'™) fiir n Bosonen und [ Fermionen werden auf dem Gitter
einfach mittels partieller Ableitungen generiert, z.B.

o) _ O =

= (o, ¥, W B.14
07,2y aﬁixaﬁjy (907 ) ) ( )
oder
AT (B.15)
OXX,ZYZ 8Ux 8Yy 8Xz ) T : :

Die Umnormierung der Felder,

vo = V2K, =V2K¥, T,=V2KT7, (B.16)

fithrt zur Beziehung

T = (26)"2(2K)/2 T, (B.17)
Beispielsweise ist (B.14) genau das negativ Inverse zu (2.2), denn es gilt:

- Z 1—‘7r ik,xz Gr kjzy = 6ij61‘y‘ (B18)

Hierbei wurden die Gleichungen (B.11) und (B.12) ausgenutzt.

Ausgehend von der allgemeineren Gleichung

o’T  9*W
~ 0p,0¢, 0J,0J,
kann man dann mittels Ableitungen nach dem Feld ¢ noch die Beziehungen
Fgﬁixzm o Z Fl‘lyl gczyz l‘sysG;lyzys (B'20)
Y1y2y3
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ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONEN

und
Fgll)mxgm -
2) P2 T
y12y4 le)yl F(I2)y2 F5(173)y3 r‘(14):’#1
G;1y2y3y4 B z Fy5y6 (G;1y2y5Gz3y4y6 + Gzly4y5G52y3y6 + G;1y3y5 G;2y4y6)]
(B.21)
herleiten. Die G¢ sind dabei die verbundenen Greensfunktionen, deren Definition
"W
G¢ = B.22
TLeen 6Jx1...6an J=0 ( )
lautet.
Mittels Fouriertransformation bekommt man (B.14) im Impulsraum:
FUﬂ' ’L] Z F7r RYR :ry 7110 Z F7r RYR 20 © *lp-x_ (B23)

Der letzte Ausdruck resultiert aus der Translationsinvarianz der inversen Greenschen
Funktionen bzw. Vertex-Funktionen, z.B.

Ty = Tacyo (B.24)

Allgemeiner lautet die Transformationsvorschrift

F(n’l)(pla - Pns i - '7Ql)

le e i(p1-z1+... P -Tn+q1-y1+...4+aqy1)
Vn-i—l ”Zzn Y1--] (B25)

Y1---Y1

= 1 Z (b —i(p1T1+..APr—1Tn—1+q1 Y1+ —1-Yi—1)
1/ n+l—sgnn—sgnl '

T1eTp Y1---Yy;—10
Y1---Y1—1

Mit Hilfe der Gleichungen (2.4), (B.23) und (B.18) ergibt sich auch im Impulsraum,
analog zu (B.18),

TN (D) Grii(p) = 655 (B.26)

7T7Z.]

Im Impulsraum ergeben sich fiir (B.20) und (B.21) dann folgende Relationen:

T® (p1, o, p3) = T (p))TP (po) T (p3) Ge(p1, pa, p3) (B.27)

und
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B.4. VOLLE 1-LOOP-AUSDRUCKE DER SKALAREN PROPAGATOREN

T (p1, pa, p3, pa) =
T3 ()T (p) L@ (p3 )T (py)

X[Gc(plap27p3ap4) (B 28)

—T®(p; + p2) Ge(p1,p2, —p1 — p2) Ge(p3, P14, —P3 — Pa)
-r® (pl +p4) Gc(p17p4a —P1 — p4) Gc(p27p37 —P2 — p3)
~-r® (pl +p3) Gc(p17p37 —DP1— p3) Gc(p27p4; —Pp2 — p4)]-

B.4 Volle 1-Loop-Ausdriicke der skalaren Propa-
gatoren

Aus den Ausdriicken (2.15) bis (2.33) erhélt man

re" (p) = —p* — m3
+igom? [BFq" +md) (@ +md) T+ a)T (@)
+g0 [,[(¢* +mg) "+ (¢%) ]
—8 Ny [, DM (q)[(G3,, + G3)T* — 2GoyGoy (112 — fioyhtoy)]
—8 Ny [,D7' (p+q) D' (q)
x((GR,p2, + G ) pF a7
—(G3, + GB,) powhoy[ P T ¢ (12 — poptioy) + T2 (121, — Howtioy)]
+2 GoyGox[Howhox (1 — Hop o) (G — Hoy Hoy)
Fhtprattg(DF @+ 12y — Hophoy) (@ + 12— Hoplioy)]
P aa{(Giy + Gi) P+ @ + 114 (@ + 11])
+2 GoyGoxhostox (DT @ + 12,,) + (@ + 1))
+2 (Goy + Goy)? ow Hox Hp+qllq

+(G3d) + G%x) (M0¢M0x)2}>
(B.29)

und
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ANHANG B. ERZEUGENDE FUNKTIONALE UND GREENSFUNKTIONEN

T50 () = 05 [ — 02 + Sgom? [0 ¢ +m) 1 ()]
+390 J,1(@* +mg) ™" = (¢*)7]
—8 Ny [, DM (a)[(G3,, + G3 )T — 2GoyGoy (112 — popitoy)]
+8 Ny [,D ' (p+q) D (q)
< ((GRu13y + G )P F 4 T
—(G3y + G2 towtoy [P+ ¢ (12 — toyttoy)
T (Hp1q — Howkoy)]
+2 GoyGox [HowHox (Hpq — Hop o) (g — Hoy Hoy)
—tpattg(DF G+ 12y — Hophoy)
(@ + 17 — poylioy)]
+p T T{(Goy + Go )P T @ + 1) (@ + 113)
+2 GoyGoxtos oy (DT G + 12,,) + (@ + 1))
—2(Goy + Goy)? Loy oy Hp+altq

+(G3¢ + G%x)(#0¢ﬂ0x)2})]
(B.30)
als 1-Loop-Resultate der inversen skalaren Propagatoren.
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Anhang C

Zeitscheiben-
Korrelationsfunktionen

Die partiell Fouriertransformierte (d.h. nur der Raumanteil wird transformiert)

1 c —ip-(x— c —ip-X
C(t,p) = I3 Y Ghnwo e T =Gl e P (C.1)
Xy x
wobei
Gy = <ozty > (C.2)

der allgemeine Ausdruck fiir die verbundene Zweipunkt-Greenfunktion sei, hingt
mit der Korrelationsfunktion der Zeitscheiben,

1 —ip-X
S(t,0) = 7373 X ey (©3)

iiber die Gleichung

1 —ip-(x1—X
C(tl - t2ap) = ﬁ Z <¢(X1,t1)¢(xz,t2)>c e PlaTx2) = <S(t1,p) S(tQa _p)>c
122
(C.4)
zusammen [MM94]. Die Feldkonfiguration auf einer Zeitscheibe 24 = t sei durch
O, = {py; x4 =1} (C.5)
definiert. Die Wirkung ist dann

S(¢) = ZE(‘I)HD‘I%) (C.6)

t
mit

(Bearny = Bn)? + 5 1L1(2) + Li(@in)] (G

DO | —

L(Prir, D) =)

sowie
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ANHANG C. ZEITSCHEIBEN-KORRELATIONSFUNKTIONEN

1
6100 = {5 Dl0eri ~ b + 5 hn + oo} (€8)

x k
Bezeichne nun T die Transfermatrix, welche durch

T(Dy1, D) = (PP (C.9)

gegeben sei. Sie ist der Kern des gleichnamigen Operators T, der geméf der Glei-
chung

|\Ijt+1> = T|\Ijt> (C]_O)

wirkt, wobei die Wellenfunktion ¥;(®) von der Feldkonfiguration ® = {¢y; x €
Z3, 0 <z; < L;} =Py zu einer festen Zeit t, abhéngt. Mit dem Multiplikations-
operator ¢, bestimmt durch die Definitionsgleichung

ox Uy (D) = hy (D) (C.11)
ergibt sich damit fiir die Zweipunktfunktion (¢, = 0)

<z, Pay >

=77 [ D) br ey €5

= 77 D6 660 1T T(Biis, )
T—1 t1—1 ta—1
=7Z1[D¢ {tg T(Pe41, ‘I)t)}¢x1{ tg T(Pe41, ‘I)t)}¢m{ tl;lo T(Pe41, ‘I)t)}

TI‘(TT_tl &xl Ttl ~h2 $x2 th )
Tr(TT)

T (B0 T 26,)
Tr(TT)

Y

(C.12)
wobei T als Gitterausdehnung in Zeitrichtung nicht mit der Transfermatrix T zu

verwechseln ist! AuBerdem wird dabei vorausgesetzt, daBl ¢1 > 75 ist, und es gilt
Z = Tr(TT). Die Eigenvektoren |n>> des durch

A

T=ceH (C.13)

definierten Hamiltonoperators gehorchen der Eigenwertgleichung Hin> = E,[n>,
das Eigenwertspektrum sei diskret und der Zustand mit dem niedrigsten Eigenwert
Ey sei |[0>. Dann gilt mit (C.12):

<oy P> = Y |y [ > < yy [0 > @~ (= Fn)(ti—t2), (C.14)

m>0

83



Mit den Annahmen, dal beim zugehorigen Dichteoperator

p=Y pan><nl

n>0

p1 > p, fiir alle n > 1 ist, und daf die entsprechenden FE,, wesentlich grofler als Fj
und F; sind, kommt man fiir grofle t; — t5 > 0 zu der Proportionalitdtsbeziehung

Ly, gy >0 x " F1=E0t=t2) 4 congt, (C.15)

Es sei noch einmal daran erinnert, dafl

<¢x1d)xz>c = <d)x1¢xz> - <¢x1><d)xz>

ist, daher riihrt auch die Konstante auf der rechten Seite von (C.15).

Die Korrelationslange £, die ein Maf fiir den exponentiellen Abfall der Zweipunkt-
Funktion ist, bestimmt sich zu
5: (E1 - Eg)il. (016)
Aus Analogiebetrachtungen erkennt man, dal <¢,, ¢,, > der Spin-Spin-Korrela-
tionsfunktion in der Statischen Physik entspricht, die darin vorkommende Korrela-
tionslinge &, welche den (ebenfalls) exponentiellen Abfall der Korrelationsfunktion
ausdriickt, ist reziprok zur Masse des leichtesten Teilchens geméaf
E=m" (C.17)
Dieses m entspricht der physikalischen Masse m,s, die aus der Energie-Impuls-
Relation £ = E(p) durch die Definition
festgelegt wird (siehe Gleichung (3.7)). Damit gelangt man schlieflich fiir C'(¢) =
C'(t,0) zur Relation
C(t) = a( e Mrhvst 4 e Morus(T=8)) L p (C.19)

Der zweite Exponentialterm kommt durch die Gitterperiodizitit zustande.
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Anhang D

Gittersummenalgorithmus

Um die numerische Auswertung der Gittersumme
Z f(n1,n2,n3)

—L/2<n;<L/2

mit geradem L zu beschleunigen, werden folgende, bei den Integranden in den Gra-
phen hiufig vorkommenden Symmetrien ausgenutzt:

f(n1,n2,n3) = f(—nl,nmn?))a (D-l)
f(ni,n2,n3) = f(neqa), Ne(2); No(z))  fiir alle Permutationen o € S3. (D.2)

Damit erhélt man folgenden Ausdruck [MUNS8S|:

f(nla na, n3) =
—L/2<n;<L/2

F0.0,0)+57(0.0,5) + 3504 5) + (4.5, 4)

+2 Z {4f(n1,n1,n1)+6f(n1,n1,0)+6f(n1,n1,§)

0<n1<L/2

+3 £(n1,0,0) +3 f(n1, £, £) + 6 f(n1,0, %)}

+24 > {f(”l,nl,m)+f(n1,n2,n2)+f(”1,n2,0)+f(”1a”2,%)}
0<ni<na<L/2

+48 Z f(nlanlanl)-
0<n1<n2<n3<L/2

(D.3)
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