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1 Einleitung

Diese Arbeit befasst sich mit Beugungsphdnomenen, wie sie beispielsweise auftreten, wenn
man Licht auf ein Gitter einfallen lisst und das wieder austretende Licht beobachtet. Die
Beobachtungen konnten von Kirchhoff, Fraunhofer und Fresnel erklart werden, indem der
Wellencharakter des Lichts sowie das Huygenssche Prinzip ausgenutzt wurden. Erst spater
wurden auch Beugungsexperimente mit Teilchen, insbesondere mit Elektronen, durchge-
fiihrt. Die Ergebnisse, namlich die aus der Optik bekannten Beugungsmuster, bestéitigten
den Welle-Teilchen-Dualismus. Unter den Beugungsexperimenten spielt die Doppelspal-
tanordnung eine grofse Rolle, da anhand dieses Experiments haufig auch grundlegende
Quanteneigenschaften diskutiert werden.

Statt jedoch aus den Welleneigenschaften ausfiihrlich die Ergebnisse herzuleiten, wird
in dieser Arbeit ein anderer Ansatz gewéhlt: Mithilfe der Feynmanschen Pfadintegrale
soll das Interferenzmuster, welches von einer Blende erzeugt wird, berechnet werden. An-
schliefend wird versucht, die erhaltenen Ergebnisse zu verifizieren, das heiflt, mit den
experimentell bestdtigten Ergebnissen der klassischen, wellenoptischen Beugungstheorie
zu vergleichen.

Die quantenmechanischen Pfadintegrale stellen neben der Schrédingergleichung einen al-
ternativen Zugang zur Quantenmechanik dar. Anschaulich gesprochen, summiert ein Pfa-
dintegral alle fiir ein Teilchen méglichen Pfade von einem Ort zu einem anderen mit einem
bestimmten Gewicht. Die Summation lésst sich formal durch ein Integral kennzeichnen.
Das Ergebnis der Berechnung ist die Ubergangsamplitude, welche die Wahrscheinlichkeit
angibt, dass ein Teilchen in einer bestimmten Zeit von einem Start- zu einem Zielort ge-
langen kann.

Es sei an dieser Stelle noch bemerkt, dass der Pfadintegralformalismus zwar Grundlage
dieser Arbeit ist, allerdings nicht explizit benétigt wird. Das Gedankenexperiment ldsst
sich mithilfe der Pfadintegrale aber erheblich besser verstehen und die Idee zu dieser Art
von Anwendung wurde von Feynman selbst gegeben (siehe [4]). In dieser Arbeit wird
statt in einer jedoch in drei Dimensionen gearbeitet und versucht, die Ergebnisse der
Quantenmechanik mit denen der Wellenoptik in Einklang zu bringen.

2 Berechnung des Pfadintegrals fiir das freie Teilchen

Der Pfadintegralformalismus wird im wesentlich nur fiir den Fall des freien Teilchens
explizit benotigt. Deshalb soll dieser Ausdruck hier kurz hergeleitet sowie die Notation
der Ubergangsamplitude K festgelegt werden.

Zunéchst einmal gilt per Definition:

K (7 ,ty;mi,t) = (Fp|U (tg,1:)|75) (1)

wobei U der Zeitentwicklungsoperator fiir einen zeitunabhéngigen Hamiltonoperator ist:

Ultyt;) = e b=t 2)



Die obigen Zustinde |7;) respektive (7| sind die Eigenzusténde des Ortsoperators Q fiir
die jeweiligen Orte. Der Index ¢ steht immer fiir den Anfangs-, f immer fiir den Endort.

Um die Ubergangsamplitude des freien Teilchen zu erhalten, gibt es verschiedene Moglich-
keiten. Man kann diese direkt berechnen oder aber die Methode der Pfadintegrale nutzen.
Hier wird das Problem auf die erste Methode gelést werden[']

Die direkte Berechnung fufst auf der Kenntnis des Skalarproduktes aus Impuls- und
Ortsoperatoreigenfunktionen. Ein bestimmter Zustand |f) ist in Ortsdarstellung gegeben
durch f(7) = (7] f). Sei f(p) die Impulsdarstellung (also (p]f)). Der Wechsel von der Orts-
in die Impulsdarstellung wird durch das Einschieben einer 1, also durch [d®p |p) (p] =1
vermittelt.

17 = (71f) = / & (715 (1) (3)

~(57) [Eveis@ (@)

In der letzten Zeile wurde der bekannte Ausdruck fiir diese Operation, ndmlich die Fou-
riertransformation, eingesetzt. Aus der Vergleich ergibt sich:

N ERT ®)

Der Hamiltonoperator des freien Teilchens besitzt kein Potential, er lautet daher:

H = ﬁ}ﬂ. Dabei ist m die Masse des Teilchens und P der Impulsoperator. Im Impuls-
raum ist die Anwendung des Hamiltonoperators demnach trivial. Dies wird nun ausge-
nutzt:

ldie andere Methode findet sich fiir den ersten Fall bspw. in [1], S. 36 ff
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Dabei ist t = t; — t;. Diese Ubergangsamplitude bildet nun den Ausgangspunkt der

weiteren Uberlegungen.

3 Notation

Im weiteren Verlauf sollen mithilfe des Pfadintegralformalismus einige Beugungsexperi-
mente quantenmechanisch analysiert werden. Dies geschieht zunéchst fiir eine allgemeine
Blende, bevor bekannte Anordnungen betrachtet werden. Der grundlegende Aufbau ist in

Abb. 1 zu sehen:



Schirm

Blende

-
Quelle

Abbildung 1: Grundlegender Aufbau der Experimente. Der gestrichelte Weg des Teilchens
sowie die Form der Blende sind in der Zeichnung beliebig gewihlt.

In den Rechnungen ist es von Vorteil, das Koordinatensystem so zu wihlen, wie oben
dargestellt: Die Blende sei am Ort z = 0, die Quelle bei 7 = (0,0, 2g) und die Flichen-
normale des Schirms liege bei s = (0,0, zg). Der Schirm und die Blende seien unendlich
ausgedehnt, die Quelle sei annéherend punktformig.

Die Blende kann in dieser Anordnung durch ihre Blendenfunktion B(z,y) beschrieben
werden. Dabei ist - je nach Durchlissigkeit - B(x,y) € [0,1], ist der Wert 1, so heifst dies,
dass das Teilchen immer passieren kann. An Stellen mit B(x,y) = 0 ist die Blende un-
durchléssig. Dazwischen gibt der Wert die Durchtrittswahrscheinlichkeit an.

Das Experiment wird zweiteilig beschrieben:

Am Anfang ist das Teilchen zur Zeit tg am Ort 7. Von dort fliegt es in der Zeit ¢ zur
Blende, also zum Ort ¢ = (z,y,0). Abhingig vom Auftrittsort auf der Blende kann das
Teilchen passieren oder nicht passieren. Im letzten Fall wird das Experiment abgebro-
chen, da nur Teilchen untersucht werden, die die Blende auch passieren. Nach der Blende
fliegt das Teilchen in der Zeit tg zum Schirm, genauer gesagt von ¢ zu 7s + gs. Dabei ist
0s = (zg,ys,0). Es ist zweckmifig, tg = 0 zu setzen. Der Gesamtweg des Teilchens ist
dann von 7y zu s + 0 in der Zeit T' = tp +tg. Die Zeit T" wird konstant gehalten. Genau
fiir diesen Weg soll im folgenden die Ubergangsamplitude bestimmt werden, damit aus
dieser das Interferenzmuster auf dem Schirm hergeleitet werden kann.

Dazu wird eine Approximation genutzt, die in den nachfolgenden Kapiteln erlautert, hier
aber nicht niher diskutiert wird. Fiir jeden der zwei Teilwege setzt man die Ubergangsam-
plituden eines freien Teilchens an. Dabei gilt fiir den Weg Quelle-Blende K (g, tp;79,0) =
K, sowie fiir den Weg Blende-Schirm K (7s + g5, T; 0its) = K». Die Ubergangsamplitude
des gesamten Weges sei K3 = K(7s + gs,1;7g,0).
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Um den folgenden Schritt nachvollziehen zu konnen, ist es wichtig, sich iiber die Faltungs-
eigenschaft der Pfadintegrale Gedanken zu machen. Bewege sich ein (eindimensionales)
Teilchen von einem Ort z, iiber den Ort x, zum Ort z., es starte zur Zeit ¢, und kom-
me bei z;, zur Zeit t, an, analog fiir 2. und t.. Dann gilt fiir die Ubergangsamplituden
(Bezeichnung analog zu oben):

K. = <x0|e_%H(tc_tE)|xa> - /dxb <xc|e_%H(tc_tb)|$b> <$b’e_%H(tb_ta)|xa> (15)
= /d.%b Kb . Ka (16)

Ubertragen auf das Experiment kann also K3 als Faltung von K, und K, verstanden
werden. Es wird mit der Blendenfunktion gewichtet, sodass ausschlieklich iiber das fiir die
Teilchen passierbare Gebiet integriert wird. Es ergibt sich also mit den oben eingefiihrten
Bezeichnungen:

K3 = /dx/dy B(z,y) Ks - K, (17)

—00

Diese Gleichung bildet das Grundproblem, abhiingig von der Blendenfunktion ergeben sich
daraus die Interferenzmuster. Bevor diese Gleichung aber weiter umgeformt wird, soll die
Tatsache, dass es sich bei diesem intuitivem Zugang um eine Approximation handelt,
naher erlautert werden.

4 Approximation

In diesem Abschnitt wird darauf eingegangen, dass das angestrebte Verfahren nur eine
Approximation der tatsidchlichen Losung darstellt. Diese Approximation wird diskutiert
und auch gerechtfertigt werden, bevor spezielle Blendenformen explizit bestimmt werden.

4.1 Mehrfaches Durchtreten der Blende

Im Gedankenexperiment fliegt das Teilchen zuerst von der Quelle zur Blende. Dafiir be-
notigt es die Zeit tp, welche fiir jeden Pfad festgehalten wird und dessen Wahl spiter zu
diskutieren ist. Diese Vorstellung beinhaltet aber zwei Arten von Wegen nicht: Zum einen
solche, die in der Zeit tp einen bestimmten Punkt auf der Blende erreichen, aber schon
zuvor ein- oder mehrfach durch die Blende getreten sind. Zum anderen auch die Pfade,
welche die verbotenen Zonen der Blende durchqueren. Abb. 2 zeigt beispielhaft solche
Wege. Teilchen, die diese Wege durchfliegen, sind in der Ubergangsamplitude eines freien
Teilchens K enthalten, fiir die Losung des Problems aber unerwiinscht.



Blende

Quelle 2

Abbildung 2: Weg 1: Ein Weg, der die Blende an einer unpassierbaren Stelle durchtritt.
Weg 2 (gestrichelt): Ein Weg, der die Blendené6ffnung mehrfach durchtritt.

Das Problem der Wege vom Typ 1 ist klar: Teilchen diirfen nicht an den Stellen der Blende
durchtreten, wo B(z,y) = 0 ist. Die Ubergangsamplitude K enthilt aber auch alle Wege,
die entweder unpassierbare Bereiche durchtreten oder vor dem Durchtreten des erlaubten
Bereichs schon an unpassierbaren Stellen die Blende durchtreten haben.

Bei den Mehrfachwegen ergeben sich andere Probleme: Jeder dieser Wege hitte im Ge-
dankenexperiment eine eindeutige Zuordnung. Die Ubergangsamplitude ordnet diese Wege
jedoch nicht eindeutig zu. Jeder Mehrfachweg lasst sich verschiedenen Zeiten ¢ zuordnen.
Auflerdem ist ohne vorliegendes Potential eine Bewegungsumkehr, wie sie bei Mehrfach-
wegen auftreten miisste, unwahrscheinlich.

Wie also kann es sein, dass der gewéhlte Ansatz dennoch zu einer guten Losung des Pro-
blems fiihren sollte?

Alle Wege, die an unpassierbaren Stellen die Blende durchtreten wiirden (aber nur einmal
die Blende durchtreten), werden durch die Gewichtung mit B(x,y) im Integral herausge-
filtert.

Alle Mehrfachwege, auch solche, die unpassierbare Stellen durchtreten, werden aufgrund
ihrer grofen Abweichung von der klassischen Losung fiir den Pfad stark unterdriickt.
Klassisch wiirde ein Pfad, der wie oben beschrieben verlauft, eine Bewegungsumkehr be-
deuten. Dies ist allerdings kaum moglich, da keine Kraft auf das Teilchen wirkt und auch
kein Potential vorhanden ist. Etwas genauer ldsst sich das Argument untersuchen, wenn
man die Wirkung S fiir die klassische Losung 7, betrachtet. Die Wirkung ist allgemein
gegeben durch:

S[7] :/dt L(F,7t) (18)

mit der Lagrange-Funktion L.

Fiir die klassische Losung des freien Teilchens ist die Geschwindigkeit konstant, es ergibt



sich dann:

5, 2 5 2

tp
S m - m -,
S{Td] = /dt 5 Tel — 5 Tl tB (19)
0

Ruft man sich die eigentliche Form des Pfadintegrals in Erinnerung, ndmlich:

(FrlU(ty,t0)|75) = /Dr enst (20)

so kann diese Form um den klassischen Pfad r,; entwickelt werden. Dafiir werden einige
Begriffe der Funktionalanalysis ben('jtig Es ergibt sich als Entwicklung (da % iz, =0
ist):

S = S[iul — —/dtl/dtg 1(t1)77(t2)0" (t1 — t2) (21)

— st + g [ i’ 22
= Sl + Sl 23

n bezeichnet hier die Abweichungen vom klassischen Pfad, am Anfangs- und Endpunkt
jedes Pfades verschwinden diese Abweichungen. Dies nutzt man in der obigen Rechnung
aus, um durch partielle Integration die Wirkung S[7] zu identifizieren.

Setzt man diese Entwicklung ein, so erhdlt man:

K = A ersltal /Dn e S0l (24)

In dieser Form wird sichtbar, warum grofte Abweichungen vom klassischen Weg stark un-
terdriickt werden. In der Summe respektive dem Integral werden die Wege, welche weit
von 7 entfernt sind, sich durch eine grofse Phasenénderung auszeichnen. Dies fiihrt dazu,
dass diese Wege mit anderen, ebenfalls weit entfernten Wegen interferieren und sich da-
durch ausloschen. Wege nah am klassischen Pfad gelegen tragen jedoch sehr viel stiarker
in der Summe bei.

Offensichtlich enthilt die mathematische Form des Pfadintegrals also schon die Begriin-
dung dafiir, dass Mehrfachwege, wie im (Gedankenexperiment, vernachlissigt werden kon-
nen.

4.2 Aufteilung des Zeitintervalls

Im Gedankenexperiment fliegt das Teilchen in der Zeit T von der Quelle zum Schirm.
Dieses Zeitintervall wird aufgeteilt in die Zeit, die das Teilchen von der Quelle zur Blende
benotigt und die Zeit, die das Teilchen von der Blende zur Quelle benétigt. Dies wurde

2Siehe dazu bspw. [1], S.3 ff



im vorigen Kapitel durch T' = tg + tg bezeichnet. Diese Zerlegung ist aber keinesfalls ein-
deutig, es muss also eine bestimmte Wahl der Zeit tp getroffen werden. Diese ist abhéngig
von den genauen Entfernungen der Anordnung.

Um eine geeignete Wahl der Zeit ¢ treffen zu kénnen, sollte, gemif der Uberlegungen im
vorigen Unterkapitel, die Wirkung des Pfades mdoglichst nah an der klassischen Wirkung
liegen, da diese am meisten beitragt. Man versucht also, die Wirkung eines klassischen
Pfades zu minimieren und nimmt die von dort erhaltene Zeit im folgenden an, da die quan-
tenmechanischen Wege dicht an der klassischen Losung des Pfades liegen. Die klassische
Wirkung ergibt sich aus Addition der zwei Teilwege, in Analogie zu den Ubergangsam-
plituden K; und K, werden diese Teilwirkungen S; und Sy genannt. Die Wirkung des
klassischen Pfades ist nach Gleichung [19| gegeben. Die Situation ist noch einmal in Abb.
3 gegeben.

Schirm

Quelle

Abbildung 3: Versuchsanordnung mit zwei Pfaden, wie sie als Losung des klassischen
Problems auftreten wiirden (geradlinig und gestrichelt). Die Wirkungen S; und Sy sind
eingetragen.

Es gilt jetzt S = 51 + S, fiir die klassischen Losungen der Wege von 7 liber ¢ zu 7s + gs.
Die Geschwindigkeit auf den Teilwegen bleibt jeweils konstant, es gilt 7 = (¥y—73)/(t;—1).



Mit den gegebenen Abstdnden und Zeiten ergibt sich fiir S:

mtp (0—17q)* | m(d—7s— 0s)*

S=581+4+85=— T—1 25
_m x2+y2+2’é+(xg—x)2+(ys—y)2+z§ (26)
2 tp T—tp
m [1% 12
_m|ly 27
2 LBJFT—tB (27)

t soll nun so gew#hlt sein, dass die Wirkung S stationér wird, wie es fiir einen klassischen
Pfad notwenig ist. t5 wird also fiir jeden Pfad unterschiedlich und in Abhéngigkeit der
Orte gewihlt.

—S5=0 28
T (28)
& b _, (29)
t2 (T —tp)?
. oo B 0
ty  (T'—tp)?
I lg
o B s 31
lp (T —tp) (31)
lp
tp = T 32
< B lB—l-lS ( )

(33)
2
\/ T2+ Y+ 2 . ”
By +2h +(ws — @)+ (ys — y)® + 22

Mit dieser Wahl von tp kann, da die Abweichungen vom klassischen Pfad sehr klein sind,
die Zeit T approximativ zerlegt werden. Es ist leicht zu sehen, dass es sich dabei um
eine nach der Linge der Strecken gewichtete Zerlegung handelt und diese letztlich auch
von den Orten, an denen das Teilchen auftrifft (also x und y), abhéingt. Dies wird in der
nachfolgenden Rechnung allerdings nicht berticksichtigt, da ansonsten die Integrale nur
numerisch l6sbar wiren.

=4 tg =

Fiir gegen x und y grofe |zg| kann allerdings I =~ |zg| gesetzt werden. Fiir gegen zg,
ys, x und y groke zg hingegen kann, unter Vernachldssigung von z, y und yg, ls durch
V&% + 2% gendhert werden. Dabei ist mit Blick auf spétere Ergebnisse absichtlich die
Abhéngigkeit von xg beibehalten worden. Falls zg sehr grofs gegen xg wird (Fraunhofer-
Néherung), kann allerdings auch lg ~ zg gesetzt werden.

Mit den Naherungen ergibt sich fiir die Zeit tg damit:

tp(rs) ~ 12| T (35)

|2q] + V2% + 2§

Falls zg sehr grof gegen xg ist, so kann noch weiter gendhert werden. Es ergibt sich dann:

9



E
tp ~ ——— T 36
B |ZQ‘ + zg ( )

zS

tg 78—
o ‘ZQ‘—I-ZS

(37)

Sollten beide z-Absténde gleich grof sein, so kann tg = tg = T//2 gesetzt werden.

5 Wahl der Parameter

Grundsétzlich gilt bei Beugungsexperimenten, dass das Hindernis nicht zu grofs, aber auch
nicht zu klein gegeniiber der Wellenldnge des einfallenden Lichts oder der einfallenden
Teilchen sein darf. Dies entspricht der Forderung, dass die Abmessungen auf der Blende
und auf dem Schirm kleiner als die beiden Absténde |zg| und zg sind. Dies wird bei
der Wahl der Abmessungen der Spalte beriicksichtigt werden, wenn deren Parameter
eingefiihrt werden.

Damit die Formeln, die sich in der weiteren Rechnung ergeben werden, mit denen aus
der klassischen Optik vergleichbar werden, muss |zg| sehr grof sein. Dies entspricht der
Forderung nach dem Auftreffen (nahezu) ebener Wellen auf der Blende.

Aus der Schrodingergleichung fiir freie Teilchen ergibt sich die einfache Energie-Impuls-
Beziehung h%k? = 2mE, wobei hk = pist. Mit k = 27 /) ergibt sich daraus die Wellenléinge
. . . o hr B
in Abhéngigkeit von E als A = \/ﬁ

Die Wahl des Teilchens féllt auf ein Elektron, welches aus der Quelle austritt, nachdem
es durch eine Spannung von 1000 V beschleunigt wurde. Die Energie betragt dann £ =1
keV. Damit ergeben sich folgende Werte: A ~ 39 pm.

Bei der Wahl der Zeit T lassen sich zum Kapitel 4.2 analoge Uberlegungen anstellen,
siehe dazu auch Abb. 3. Das Teilchen bewegt sich mit einer mittleren Geschwindigkeit
von vg = lg/tg von der Quelle zur Blende und mit einer mittleren Geschwindigkeit von
vs = lg/ts von der Blende zum Schirm, wobei die Strecken (g und lg schon im Kapitel 4.2
ndher angegeben wurden. Die mittleren Impulse wihlen sich dann wegen p = muv analog.
Wegen der Beziehungen p = hk und k& = 27/X ergibt sich p = h/\. Es lisst sich also
ein Zusammenhang zwischen den Zeiten und der Wellenlange herstellen. Setzt man die in
Kapitel 4.2 berechneten Unterteilungen ein, so ergibt sich:

1
pB =M lp — (38)
lp
Iy — (39)
= Me B 1
lelsT
ls + g
= m, 40
m, 5 (10)

Fiir pg ergibt sich das gleiche Ergebnis. Problematisch ist an dieser Stelle, wie schon im
Kapitel 4.2 angesprochen, die Abhéngigkeit von lg und Iz von x,y und ys. Die verschie-

3Siehe fiir diese Uberlegungen [2], S.2
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denen Naherungen fiir die Langen sind am Ende von Kapitel 4.2 zu finden. Es ergibt sich
damit fiir die Zeiten:

MeA
T:T(|ZQ|+\/ZU%+Z§) (41)

Me
tp = — |2q| (42)

oA
ts = 0 fad + 2 (43)

An dieser Stelle fehlt noch die Wahl von zg und zg. Wie schon erwdhnt, muss zg sehr
viel grofer sein als die Ausdehnung der Blende. Die Wahl féllt auf |zg| = 5 m, was,
falls die Blendenmafe im Nano- bis Mikrometerbereich liegen, dem 10%- bis 10®-fachen
der Blendenmafse entspricht. Die Grofe zg soll spéter diskutiert werden. Ist zg jedoch
sehr viel grofer als zg, so kann zg vernachlissigt werden. Es ergibt sich in diesem Fall
(Fraunhofer-N#herung):

MeA
T = |2 + 25) (14
MeA
s = T2zl (15)
MeA
tSZ A Zs (46)

6 Spezielle Blendenfunktionen

6.1 Allgemeine Blendenfunktionen

Aus den vorigen Kapiteln ist bekannt, dass zur Losung des Problems ein Integral {iber die
Blendenfunktion B gelost werden muss. Genauer:

K(7s + 85, T: 70.0) = / da / dy Blay)K (Fs + 8o, T 66) K (G5 700)  (47)

—00 —00

Mit der Ubergangsamplitude des freien Teilchens nach Gleichung und den eingefiihrten
Abkiirzungen ergibt sich dieses ldngliche Integral zu:

oo oo 3 3

m 2 m 2

Ky = B .
’ / d“r/ W (x’y)(%rihtg) <2mht3)

im ((Fs+§s —9" (E—FQ)Q)}

2h tg tp

(48)

exp |-

Da die Rechnung andernfalls uniibersichtlich wird, erfolgt das Umformen des Exponenten
der Expontialfunktion separat - der Vorfaktor wird dabei ausgelassen.
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(Fs+0s — 0 (6—7g)* (zs—2)*+ (ys —y)* + 23 $2+92+Zé

_ 49
) T . + - (49)
_sbrdrd o 20 o (L) @) )

tg tg tg ts tg

(s + 8P A tstts (o, o 5
0 = — Y (ts + tB)( s ysy) | (51)

Die ersten beiden Summanden sind von z und y unabhéngig, konnen also aus dem Integral
herausgezogen werden. Mit der Einfiihrung der Konstanten A,

o m N3] 2 im ((Fs+ 3s)* 2o
_(27rih> (tStB) eXp[ 271( ts +tB ’ 52)

ergibt sich das Integral zu

/ dz / dy B(z,y) exp { im(ts + ) ($2 ty? - (Zt—B)(xsx + ysy))l .

2ht5t3 ts+1ip

Dieses Integral ist abhédngig von der Blendenfunktion zu l6sen.

6.2 Blendenfunktionen unabhangig von y

Es gelte nun B(z,y) = B(x). In diesem Fall lasst sich die Integration iiber y ausfiihren,
da es sich prinzipiell um ein Gaufintegral handelt. Um die Rechnung kurz zu halten, wird
hier ausschlieflich der Teil des Integrals berechnet, der y-Abhéngigkeit aufweist. Es ist zu
16sen:

T im(ts +tg) ( o 2tp
I=[d ST B (2B . 4
/ y exp[ Shiel (y (tSHB)ysy)} (54)

—0o0

Durch quadratische Ergianzung im Exponenten erhilt man daraus

imtpg 9 r im(ts +tg) tp 2
F—exp | ol [ gy e |-s tte) ([ ts 5
exp {thg(tg +tB)y5] / yep [ 2htsty \'  (is+ip) " )

was sich durch Substitution leicht 16sen ldsst. Es ergibt sich als Losung des y-Anteils

2mhtgt 1mt
Po [ | ] (56)

—Y—— exXp |
im(ts +tn) Y| 2hts(ts + tn
Das Ergebnis fliekst in die Konstante A ein, sie wird zu A’
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2 1 im im ((Fs + ds)®  2d tp
A’:].A:<m> _m frsvos)” o B 2|
onh) totsV 2rhT OV | 2R ts  in  isls+im)

(57)
Damit ergibt sich das verbleibende, zu l6sende Integral zu
! im(ts +tp) 2tp
K:A'/dexex —L<x2——xx)]. 58
’ () exp [ 2Mhtstp (ts +tg) (58)

6.3 Kante

Die Kante ist eine sehr einfache Form der Blende. Bis zum Punkt x = a ist diese undurch-
lassig, danach durchldssig. Der Punkt a kann beliebig gelegt werden, allerdings sollte er
nicht zu weit vom Quellort entfernt sein, da ansonsten die im Kapitel 5 angesprochenen
Néherungen nicht mehr giiltig sind (die Blendenabmessungen wéren nicht mehr klein ge-
gen die Abstinde auf der z-Achse). Zweckméfkig ist eine Wahl von a = 0, dies wird jedoch
erst spater vorgenommen. Die Definition der Blendenfunktion erfolgt zunéchst allgemein.

0 firzx<a

B(x) = { (59)

1 firz>a

Das Einfiihren der Blendenfunktion sorgt dafiir, dass die untere Integralgrenze sich ver-
andert:

r im(ts +tp) 2tp
Ks=A [ d —— (- = : 60
3 / ‘ eXp{ 2htsty (z (ts+tB)xsx)} (60)

Zuerst wird das Integral durch quadratische Ergdnzung des Exponenten umgeformt. Dies
geschieht analog zum y-Integral. Man erweitert die Konstante A’ erneut zu

imt
A" = A" exp B;;S?:U%} . (61)
Damit ist das Integral
o0 T ty 2
Ky=A" [ 4 -z _ 5 . 62
3 / x exp[ Shicis T = s (62)

a

Uber die Substitution




gelangt man nach Einfiithren von

mT tB
o = - — 64
v Thtsts <a sz> (64)
zu der vereinfachten Form des Integrals:
Ky = A" / dw e '5%° (65)

Die Konstante hat nun den Wert

21 im ((Fs+0s)® 25 ts -
wr o ()L [ e [ (Es4 89 % R
2h T 2t5tB 2h ts + tB tSTQ ( )

Im weiteren wird lediglich das Integral bestimmt. Es gilt geméfs allgemeiner Integralre-
chenregeln:

= /dw e /dw —igw? —/dw e iz’ (67)
Wq 0
= /dw Co8 1w —i/dw sin —? —/dw cos zw2—|-i/dw sin ~w? (68)
2 2 2 2
0 0 0
(00) —1S(00) +1S(w,) — C(w,) (69)

I
MI}—‘ Qe

1
- 0w~ (5 - () (70)
Im letzten Schritt wurde die Fresnel-Integrale gefunden. Fiir diese gilt Iz_f]:

T

S(x) = /dt sin <gt2> (71)

0

und

T

C(x) = /dt cos (gﬂ) : (72)
0
Ferner gilt C(00) = S(00) = 5 (vgl. Bsp.17.10 mit geeigneter Substitution in [3]).
Interessant fiir die Beantwortung der Frage nach dem Interferenzmuster ist an dieser Stelle
nicht K3, sondern |K3|> = ¢. Fiir die Konstante A" gilt

4 1
A/// 2 — ( m > ) 73
‘ ’ 21h 2tstBT2 ( )

4siche [5]
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Dabei wurden die bekannten Relationen |/i| = 1 sowie |exp[iz]| = 1 genutzt. Zusam-
mengefasst ergibt sich

4 1
= (55)
? ’ 3’ 21h 2t5tBT2

1 2

5~ Clun) —i (5 - S(w))

(% - c(wa>)2 + (g - s<wa>)2] ()

Dieses sowie alle folgenden Ergebnisse werden in spateren Kapiteln aufgegriffen und mit
den Ergebnissen aus der Optik verglichen. Interessant ist dabei das Argument der Fres-
nelfunktionen w,, welches fiir grofe |z¢| genéhert werden kann. Fiir die Zeiten ergibt sich

nach Kapitel 5: T = 22 (|zq| +1s), tp = 22 |zq], ts = 2lg, mit lg = /2% + x%. Eingesetat
in w, erhélt man

W, = ml a— t—B:U _ J2md a— t—Bx (76)
“ =\ Thtstp T7°) N htst T
2m2h2)\(\zQ] + ls) ’ZQ‘
= _— 77
\/ h2m2)\2l5|zQ| “ ls + |ZQ|$S ( )

2(|zq| +1s) ( |20 )
V™ Nsleal PR (78)

Im Grenzfall von sehr grofen |zg| ldsst sich lg gegeniiber |z¢| vernachlissigen, woraus sich
Gleichung [79| ergibt, die in spéiteren Kapiteln wieder aufgegriffen und mit dem sich aus
der Wellenoptik ergebenden Argument verglichen wird.

(74)

- () 5
N 21h 2tStBT2

2
Wq < A_ls(a —xs) (79)

6.4 Einfachspalt

Der Einfachspalt mit der Breite B = 2b um die Stelle a beschrieben durch die nachfolgende
Blendenfunktion.

B(x) =

{1 fir € [a — b,a + 0] (30)

0 sonst

Die Breite des Spaltes B sollte geeignet gewéhlt sein. Aus Griinden der besseren Vergleich-
barkeit soll die Breite des Einzelspalts der Breite der beiden Einzelspalte des Doppelspaltes
entsprechen. Diese wird zu B = 334 nm gewahlt. Grundlage fiir die Wahl ist das unter
[7] aufrufbare Programm, welches ein Doppelspaltexperiment simuliert. Nach Probieren
verschiedener Parameter wurden die in dieser Arbeit verwendeten gefunden. a wird spéter
gleich 0 gesetzt.
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Um den Einfachspalt zu losen, muss nicht wie bei der Kante von Anfang an gerechnet
werden, abgesehen von den genauen Grenzen des Integrals ist die Vorgehensweise komplett
analog zum vorigen Kapitel. Nach Nutzen der gleichen Substitution erhdlt man

w3
Y/ —iZw
Ky=A dr e '2

w1

2

(81)

Die Grenzen sind in Gleichung (82) und (83) angegeben.

Es wird wieder versucht, die Fresnelintegrale zu identifizieren:

w2

g = A" [z i &)
y /dm i / A o150 (85)

0 0
= A" [C(ws) — Clwn) +i(Swn) — S(wn)] (86)

Auch an dieser Stelle interessiert nur das Betragsquadrat, welches fiir die Konstante A"
aus dem vorigen Kapitel zu entnehmen ist. Es gilt

v (27:71)4 2tstlBT2 Clws) = Clwn) +i(S(wn) = S(wa))l (87)

Bevor der Doppelspalt behandelt wird, sollen die Argumente w; fiir den Fall grofser zg be-
trachtet werden. Offensichtlich ist die Form der Argumente sehr dhnlich zu dem Argument
w, der Kante. Es ergibt sich also die gleiche Approximation fiir grofe z(:

2
wy & )\—ls(a—b—xg) : (89)

Fiir wy ist die Naherung komplett analog durchzufiihren. Fiir gegen xg grofe zg, also im
Fraunhofer-Limes gilt g ~ zg.

6.5 Doppelspalt
Die Abmessungen des Doppelspalts sind nach Abb. 4 gegeben.
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D

Abbildung 4: Doppelspalt um den Punkt a mit Spaltabstand (Mitte zu Mitte) D = 2d
und Spaltbreite B = 2b.

Aus der Skizze kann die Blendenfunktion hergeleitet werden, siehe Gleichung (90).

1 firzefa—d—ba—d+0]
B(x)=<1 firze€la+d—ba+d+10 (90)

0 sonst

Fiir die spétere Darstellung der Ergebnisse werden a und B wie beim Einzelspalt gewihlt.
Fiir den Abstand wird D = 1000 nm, beziehungsweise D ~ 3B angesetzt.

Mit den Bezeichnungen sy =a—d—0,s9 =a—d+bss=a+d—bund sy =a+d+b
kann man das zu l6sende Integral praktikabel umgeschrieben werden zu

Ky =A" /dxexp __imT x—t—Bx :
3 htstp T

S

4 . 2
imT tp
d — - =
+/ T exp [ Shitsln (:r: sz) ]

S1 83

(91)
= A" /dw emizw? 4 /dw e izw? (92)
— A" [O(’LU4) + O(wz) _ O(UJg) — C’(wl) +1 (S(wl) + S(ws) - S(UJ2) - 5(w4))] (93)

Dabei gilt Vi = 1,2,3,4

mT tn
=/ = Lag) 94
v ﬂhtstB <8 TIS) ( )

In volliger Analogie zur Kante und zum Einzelspalt wird wieder das Betragsquadrat be-
stimmt:
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m \4 1
v= (27rh) 2tgtgT? . (95)
({C(w2) + Cws) — Clwr) — C(ws)}* + {S(wy) + S(ws) — S(wz) — S(wy)}?) .

Die Argumente w; kdonnen gendhert werden. Die Diskussion dieser Ndherung ist in den
zwei vorigen Kapiteln zu finden, es ergibt sich

w; & 1/)%3(31- —rg) . (96)

6.6 Diinner Doppelspalt

Der diinne Doppelspalt besteht aus zwei Spalten mit verschwindend geringer Breite. Fiir
b = 0 muss bei Gleichung |91] angesetzt und die Integrationsgrenzen angepasst werden, an
der Wahl von D é&ndert sich aber nichts, es gilt weiterhin D = 1000 nm. Es ergibt sich

7 1mT tB 2
K :A/I _ _ _ _ R —
3 / dz [0(a+d—z)+d(a—d—x)] exp [ Shisin (:v TSUS) ] (97)
imT B 2 imT tp 2
Y _ d)y— B _ _d) - B
b [ Dhtstn ((a ) T‘xs> A T (<a ) Tms> ”
(98)
imT'd tB imT'd tB
— A N _ B _ 2
o [y (o= 7)) o [y (o= F5) | )
" mT'd t
= 24" cos {htStB (a - TB“)] . (100)

Dabei ist die Konstante A" durch

imT t2x%  2atpx
A — A - 2, 42 B”S B*S 101
exp{ Shtets (a +a” + T2 T (101)
gegeben.
Das Betragsquadrat ergibt sich folglich zu
m \> 4 o | mT'd tp
_ i i P ) 102
7 (27rh> 227 [htStB (a sz)] (102)

Das Argument des Kosinus kann fiir grofe zo gendhert werden:

mTd tn kd
UL P P L . 1
hiein <a Tx5> s (a — xg) (103)

Dabei wurde k = 27/) genutzt.
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7 Behandlung mit Wellenoptik

7.1 Beugungsintegrale

Aus der skalaren Wellengleichung lésst sich - auf recht komplizierte Art und Weise - die
Kirchhoft’sche Beugungstheorie herleiten (vgl. [6], S. 823ff (und Anhang)). Diese Theo-
rie ldsst sich allerdings nur schwer berechnen, man muss bei den meisten Problemen
auf analytische Losbarkeit verzichten. Fresnel und Fraunhofer entwickelten jeweils andere
Lésungsmoglichkeiten, die sich letztlich als Ndherungen aus der Kirchhoff’schen Formel
herleiten lassen. Alle drei Ansétze fulen auf der Annahme, dass eine ebene Welle auf ein
Hindernis unterschiedlicher Durchléssigkeit trifft und dann von jedem Punkt, an dem die
Wellenfront die Blende passieren kann, eine Kugelwelle emittiert wird. Die Aufgabe ist
es, die Kugelwellen phasenrichtig aufzuaddieren. Durch die unendlich vielen Kugelwellen
stellt sich dies als Integral iiber die Koordinaten der Blende dar.

Eine nihere Herleitung der Kirchhoff’schen Formel findet sich in [6], S. 823ff7] , hier sei
nur das Ergebnis in Gleichung (104) wiedergegeben.

explik|g — 7| + |0 — T's — 0]
|0 —7g|-|0—Ts — 05|

E(ass) = 5y [ 4o [ dy Baw)

e ke (104)

{(5—77@)'@ _(@—Ts—0s) - &
|0 — g |0 — 75 — 05

Der letzte Faktor wird Neigungsfaktor genannt. Diese Formel ist kaum analytisch berech-
nbar. Fiir grofse Absténde z und zg im Vergleich zu allen anderen Gréfen, konnen jedoch
Néaherungen vorgenommen werden: Zum einen werden die Skalarprodukte im Neigungs-
faktor durch 1 und —1 approximiert, da die Vektoren fast parallel bzw. antiparallel zur
z-Achse verlaufen. Der Neigungsfaktor entfdllt dadurch. Des Weiteren lassen sich die Be-
trage durch ihre Taylorentwicklungen ndhern, wobei im Exponenten aufgrund der héheren
Phasenempfindlichkeit eine Ordnung mehr genommen werden muss als im Nenner, wo die
grobe Abschétzung |0 — 7g| =~ 2o und |g — 7s — gs| &~ zs geniigt. Es ergibt sich dann die
Fresnel’sche Beugungsformel:

E A o oo
E(zs,ys) = i)\z;]zs elk(zq+2s) /da: / dy B(z,y)

— 00

oo | 6 $2+yz+($—$s)2+(y—ys)2
P 2 ZQ zs .

(105)

Eine weitere Niherung ergibt sich durch noch gréfere Abstéinde, namlich fiir (22 + %) <
2o und (22 4+ y?) < zg. Dadurch fallen viele der Exponentialfunktionen weg und es ergibt
sich die Fraunhofer-Beugungsformel fiir das Fernfeld:

®Wobei der Neigungsfaktor in [6] von dem in dieser Arbeit verwendeten abweicht. Ich habe diesen aus
[8] ibernommen.
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Ey

E(l“s,ys) = i)\zst

oib(za+2s) o3e5 @8HVE) /dx/dy B(z,y) o 25 (@estuys) (106)

—00 — 00

Man erkennt schon anhand der Formeln, dass die Fresnel-Niherung die grofite Ahnlichkeit
mit den aus der Quantenmechanik hergeleiteten Formeln hat. Tatséchlich wird es nétig
sein, auch auf die Fresnel-Ndherung zuzugreifen, obwohl insbesondere der Fraunhofer-
Limes von Interesse ist. Es sei noch erwihnt, dass die Fraunhofer-Beugung eine Fourier-
transformation der Blende darstellt. [

7.2 Kante

Da das Integral der Fraunhofer-Beugung nicht konvergiert, muss auf die Fresnel-Beugung
zuriickgegriffen werden. Es ergibt sich nach recht elementarer Rechnung die Feldstirke E

E—C [(% _ C(w,) +i (% _ S(U;a))ﬂ | (107)

mit den Konstanten

Wy = k(zs + 7o) (a _ :1:5> (108)
TZ52Q Zs + 2Q
und
Ey . . 37% + y?s
C=———(1- k|l ——2— . 109
2(25 + ZQ)( 1) €Xp |:Z (2(2’5 + ZQ) + (ZQ + ZS) ( )

Quadriert ergibt sich damit die Intensitt[l]

I o 2(2%32@2 [(% - C<wa>)2 + (% - S(wa)>2] (110)

- [(% - C(wa)>2 + (% - S(wa)>2] | (111)

Fiir gegen zg grofe zo und mit k = 27/ ergibt sich fiir das Argument w,

2
W~y — (a — . 112
wa~ 5 (=) (12)
Dies stimmt beinahe mit Gleichung[79]iiberein. Fiir gegen x5 grofe zg, also im Fraunhofer-
Limes, gehen beide Formeln ineinander iiber, da dann lg ~ zg gilt. Die Ergebnisse aus

Quantenmechanik und Optik stimmen dann iiberein.

6Alle Niherungen und Entwicklungen finden sich auch in den jeweiligen Kapiteln in [6]. In dieser
Arbeit wurde jedoch im Unterschied zum Buch von E. Hecht ein anderer Ansatz gew&hlt: Statt aus
allgemeinen Uberlegungen die Fresnel- und Fraunhofer-Beugungsformeln herzuleiten, wurden diese als
Niherung der Kirchhoff-Formel verstanden.

"Vgl. auch [6], S. 817, dort aber mit anderen Konstanten
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7.3 Einfachspalt

Der Einzelspalt ist leicht mithilfe der Fresnel-Beugungsformel berechenbar. Die Rechnung
dhnelt der quantenmechanischen sehr. Es ergibt sich nach Fresnel-Beugung

I(zs) = Iy [{Cwz) — Clw)}* + {S(wa) = S(w1)}] (113)

mit den Argumenten:

2
wy, = M (CL _ b _ ZQ xg) (114)
)\ZQZS ZQ + zg
2
A\2gzs Zg + zs

Hier stimmen im Fraunhofer-Limes die Argumente ebenfalls mit den Argumenten, die sich
aus der Quantenmechanik ergeben, iiberein, in Fresnelndherung sollte sich aber dennoch
keine allzu grofte Abweichung ergeben, da auch hier g und zg lediglich gering voneinander
abweichen.

Der Einfachspalt lisst sich auch mittels der Fraunhofer-Beugungsformel behandeln. Typi-
scherweise weist man dabei dem Spalt auch eine Ausdehnung in y-Richtung zu. Dies wird
hier, um die Analogie zur quantenmechanischen Berechnung zu halten, nicht getan. Dabei
ergibt sich jedoch das Problem, dass das Integral iiber y nicht konvergiert. Aus der Be-
rechnung der Kante ist aber klar, dass der Beitrag der y-Richtung lediglich ein konstanter
Faktor ist, sodass hier lediglich wieder eine Proportionalititskonstante eingefiihrt werden
muss. Mit den gleichen Bezeichnungn wie in den vorigen Kapiteln ergibt sich dann fiir die
Intensitat

2
: kb
S1n (gl’s)

kb ’

zs

I(zg) = 1y (116)
wobei 2b die Breite des Spaltes ist, der Ort des Spaltes a tragt nicht bei.

7.4 Doppelspalt

Der Doppelspalt lisst sich analog zum Einfachspalt behandeln. Es ergibt sich in Fres-
nelndherung Gleichung sowie in Fraunhofer-Naherung Gleichung [118]

I(zs) = Iy ({C(ws) + C(ws) — C(wr) — Cws)}* + {S(w2) + S(ws) — S(wy) — S(ws)}?)

(117)
(kb 2
kd S111 (Z—CL’5>
I(xg) = Iy |cos (—x5> kb—s (118)
Z8 2 Ls



Die Argumente sind - dhnlich denen der Quantenmechanik - mithilfe von sy =a — d — b,
ss=a—d+b, s3=a+d—>bund s, = a+ d+ b definiert als:

2
)\ZQZS Z2Q + zg

Auch hier sind die Argumente der Quantenmechanik und Optik nur im Fall der Fraunhofer-
Néherung identisch.

7.5 Diinner Doppelspalt

Der diinne Doppelspalt wird aufgrund der einfachen Grenzwertbildung (b — 0) nur in
Fraunhofer-Ndherung betrachtet. In Gleichung geht fiir diese Blende der sin(x)/x-
Ausdruck gegen 1. Es ergibt sich damit sofort

I(xg) = Iy cos® (k—dajs) : (120)
zs

Vergleicht man das Argument des Kosinus mit dem aus der Quantenmechanik (Gleichung

, so sieht man sofort, dass auch diese im Fraunhofer-Limes {ibereinstimmen, da dann

ls ~ zg ist. Da die Formel aus der Optik ohnehin nur fiir diese Naherung giiltig ist,

stimmen die Ergebnisse aus Quantenmechanik und Optik iiberein.

8 Vergleich und Darstellung der Ergebnisse

8.1 Wahl des Abstandes zg

In Kapitel 4.2 und 5 wurde die Wahl der Parameter weitgehend diskutiert. Der letzte Pa-
rameter, der noch frei gewédhlt werden kann, ist zg. Die Wahl dieses Abstandes entscheidet
dariiber, ob Fresnel- oder Fraunhofer-Ndherung genutzt werden kann. Fiir grofe zg wird
Fraunhofer-Néherung, fiir ,mittlere* Abstinde wird Fresnel-Ndherung benutzt. Tabelle
fasst die Wahl der Parameter zusammen. Dabei wurde fiir zg in Fresnel-Ndherung ein
Abstand von ca. dem 1000-fachen der Wellenldnge, in Fraunhofer-Naherung der gleiche
Abstand wie fiir z¢ eingesetzt.

Parameter Fresnel-Naherung | Fraunhofer-Niaherung
A 39 pm 39 pm
a (alle Anordnungen) 0m 0m
b (beide Spalte) 167 nm 167 nm
d (Doppelspalt) 500 nm 500 nm
2Q o m o m
Zs 50 nm 5m

Tabelle 1: Werte aller Parameter, die beim Plotten genutzt werden.
Die Grofse Iy bei den Formeln aus der Wellenoptik wird nicht betrachtet, es wird immer
1/1y, also die auf Ip-normierte Intensitét betrachtet. Fiir die Zeit 7' und auch die Auftei-

lungen ¢p und tg werden in beiden Néherungen die diskutierten Formeln (siehe Kapitel
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4.2 und 5) benutzt, wobei im Fraunhofer-Limes die xg-Abhéngigkeit verschwindet. Alle
Formeln aus der Quantenmechanik werden auf ihren Wert an der Stelle 0 normiert, da
dort zumindest bei den Spalten erwartungsgemaf das Maximum liegt. Die Graphen zeigen
also den qualitativen Verlauf, nicht aber den quantitativen.

Alle Graphen wurden mit Mathematica erstellt, die Plotbereiche wurden durch Probieren
gefunden. W&hlt man die Bereiche anders, so werden die Interferenzerscheinungen nicht
sichtbar, man sieht lediglich den geometrischen Schatten der Blenden.

8.2 Kante
8.2.1 Vergleich der Ergebnisse

Die Ergebnisse sind nach Gleichung |75 und gegeben. Zur Ubersicht sind beide hier
noch einmal angegeben.

Y= (2?;1)4 2t5t13T2 (% B C(w“’QM>>2 i (% N S(w“’QM))2] 12y

=1, [(% - C(wa,0>>2 + (% _ 5<wa,0))2] (122)

Im direkten Vergleich sind die Formeln offenbar fast identisch. Wie in den vorigen Ka-
piteln erwihnt, geht w, oa fiir sehr grofe zg in w, o iiber. In diesem Fall wiirde auch
der Vorfaktor, respektive die Zeiten im Vorfaktor, nicht mehr von xg abhéngen und die
Formeln hétten eine identische Abhéngigkeit von zg.

8.2.2 Darstellung der Ergebnisse

Die Kante muss in Fresnel-Ndherung betrachtet werden, d.h. z¢ = 50 nm. Die xg-
Abhéngigkeit von T und tg kann nicht gendhert werden, da zg nicht grof genug ist.
Die Ergebnisse sind in Abb. [5] und Abb. [6] gezeigt.
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rel. Intensitst

~1.x107% -5 %1079 5 %1079 11078~

Abbildung 5: Kante nach der quantenmechanischen Formel.

rel. Intensitat

-1.x107% —5.x107¢ 5. %1072 1.x107% ~

Abbildung 6: Kante nach Wellenoptik.

Beide Ergebnisse passen sehr gut zueinander, auch die Gréfenordnung des Beugungsmus-
ters (107®) ist bei beiden Abbildungen gleich. Einziger Unterschied ist das Verhalten fiir
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grofsere xg, was im gewéhlten Plotbereich aber nicht sichtbar ist. In der Optik pendelt sich
die Intensitat fiir grofe xg auf einen festen Wert ein, Ergebnis ist der Schatten der Kante.
Laut Quantenmechanik fallt die Intensitéat rechts von der Kante ab, es ergibt sich ,,aus der
Ferne “ eine §(xz)-formige Anordnung. Realistisch ist am ehesten der Mittelweg, da das
Licht in einer bestimmten Distanz nicht mehr hell genug ist, um die Bereiche rechts der
Kante auszuleuchten (zumindest nicht sichtbar). Der sehr schnelle Abfall der Intensitét
laut Quantenmechanik kann jedoch nicht beobachtet werden.

Beim Ubergang zu groken zg sind beide Formeln nach Normierung identisch. Im Fall
zg = 5 m sind die Beugungsmuster, die oben dargestellt sind, weiterhin sichtbar. Statt in
der Grokenordnung 1078 liegt es dann im Bereich 107*. Ist 25 aber sehr viel grofer als
107, so erhiilt man das Bild, welches man von einer Kante erwartet (siehe Abb. .

rel. Intensitdt

Abbildung 7: Kante in Fraunhofer-Ndherung mit grofsen xg. Die Interferenzstreifen um
xg = 0 sind noch leicht erkennbar.

8.3 Einzelspalt
8.3.1 Vergleich der Ergebnisse

Die Formeln, die sich aus den jeweiligen Betrachtungsweisen ergeben, sind nach Gleichung
(Quantenmechanik) und Gleichung beziehungsweise (Optik) gegeben.

7o <2777:h>4 QtStlBTQ [{C(wz) = Clwn)}* + {S(w) = S(ws)}”] (123)

Fresnel-Naherung:

I(zs) = Io [{C(ws) — C(w)}* + {S(ws) — S(w1)}’] (124)
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Fraunhofer-Nédherung:

2
sin <%xs)
I(xg) = Iy — (125)

25 TS

Der Vergleich zwischen der quantenmechanischen und der fresnel-gendherten Formel ist
leicht. Wiirde der Vorfaktor der Quantenmechanik wegen der Zeiten nicht von xg abhén-
gen, so wiren die Formeln von ihrer Form her sehr &hnlich. Tatséchlich gehen die Argu-
mente fiir grofe zg und groke z; ineinander iiber (siche Kapitel 6.4) - es gibt in diesem
Fall keinerlei qualitative Unterschiede zwischen den Formeln, da auch die xg-Abhéngigkeit
des Vorfaktors verschwindet. Der Vergleich zwischen Quantenmechanik und Fraunhofer-
Niherung fillt hingegen schwer. Die Formeln haben offenbar iiberhaupt keine Ahnlichkeit.
Die Erwartung ist allerdings weiterhin, dass die Formeln das gleiche beschreiben und da-

mit auch das gleiche Interferenzmuster erzeugen.

8.3.2 Darstellung der Ergebnisse

Die Ergebnisse werden nur in Fraunhofer-Niherung betrachtet werden, da die Ahnlichkeit
der Ergebnisse in diesem Fall nicht aus den Formeln ersichtlich ist. Nach Kapitel 5 sind die
Zeiten T und tg in diesem Fall von zg unabhéngig. Es ergeben sich folgende Ergebnisse:

Abbildung 8: Das Ergebnis fiir den Einzelspalt nach der quantenmechanischen Formel.
Das aus der Optik erwartete Muster ist sehr deutlich erkennbar. Da an der Stelle g = 0
der Wert 1 erreicht wird, war die Wahl der Normierung offensichtlich sinnvoll.
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Abbildung 9: Einzelspalt nach klassischer Wellenoptik.

Die Ergebnisse passen, wie man den Abbildungen entnehmen kann, perfekt {iberein. Der
Verlauf des Graphen und die Koordinaten der Maxima und Minima stimmen zumindest
nach Augenmaf, die Gréfenordnung der Beugungsmuster sogar exakt iiberein. Dies ent-
spricht der Erwartung, auch wenn dieses Ergebnis nicht aus dem Vergleich der Formeln

erhalten werden kann.

8.4 Doppelspalt

8.4.1 Vergleich der Ergebnisse
Die berechneten Ergebnisse fiir den Doppelspalt finden sich in den Gleichungen und

118 sowie 1171

m \4 1
Y= (27rh> 2tgtgT? ' (126)
({C(w2) + Cwa) = Clwr) = C(ws)}* + {S(w1) + S(ws) — S(wz) — S(wy)}?)

Fresnel-Ndherung:

I(zs) = I ({C(ws) + C(ws) — C(wr) — Clws)}* + {S(w2) + S(ws) — S(wr) — S(ws)}?)

(127)
Fraunhofer-Naherung:
2
(kb
kd S111 (z—l’s)
I(xg) = Iy |cos <—x5> kb—s (128)
zs 2 Ls



Die Anmerkungen, die sich an dieser Stelle machen lassen, sind im Wesentlichen dieselben,
die sich auch beim Einfachspalt anbringen lassen. Zwischen Fresnel-Nidherung und Quan-
tenmechanik besteht eine grofe Ahnlichkeit, die Ergebnisse gehen im Fraunhofer-Limes
ineinander iiber. Die Fraunhofer-Formel unterscheidet sich deutlich von den anderen bei-
den Ergebnissen. Die Erwartung, dass die Ergebnisse dennoch gleich sind, ist auch hier
durch eine graphische Darstellung zu bestétigen.

8.4.2 Darstellung der Ergebnisse
Es wird Fraunhofer-Ndherung dargestellt:

rel. Intensitst
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Abbildung 10: Beugungsmuster des Doppelspaltes in Fraunhofer-Ndherung nach der quan-
tenmechanischen Formel. Das Beugungsmuster ist dem aus der Optik bekannten sehr

ahnlich.
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Abbildung 11: Intensitéitsverteilung des Doppelspaltes in Fraunhofer-Naherung, berechnet
nach Wellenoptik.

An dieser Stelle kann lediglich die Anmerkung zu den Abbildungen des Einfachspaltes
wiederholt werden - die Ergebnisse sind in Dimension und Verlauf wie erwartet identisch.

8.5 Diinner Doppelspalt
8.5.1 Vergleich der Ergebnisse

Der diinne Doppelspalt ist die einzige der untersuchten Blenden, der bei beiden Herlei-
tungen auf das exakt gleiche Ergebnis fiihrt. Die Formeln aus Gleichung[102] und sind
hier noch einmal wiedergegeben.

m \5 4 o | mTd tp
_ - = 12
v (27Th> 25T cos L??tstB (a sz)] (12
kd
I(.fl’,'s) = IO COS2 (z_l’s) (130)
S

Beide Formeln enthalten einen cos?(x)-Term, abgesehen von den Konstanten scheint die
Ubereinstimmung gut zu sein. Wie in Kapitel 6.6 erwidhnt, sind in Fraunhofer-Naherung
die Argumente identisch. Eine weitere graphische Darstellung ist demnach nicht notwen-

dig.
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9 Fazit

Obwohl die Ergebnisse aus der Fresnel-Beugungsformel nicht perfekt mit denen aus dem
Pfadintegralformalismus iibereinstimmen, ist der Effekt, der bei Beugungsexperimenten zu
beobachten ist, von beiden Theorien gleich beschrieben worden. Spétestens im Fraunhofer-
Limes sind die Ergebnisse vollig identisch, sodass die Beugungsmuster gleich vorhergesagt
werden. Im Rahmen dieser Arbeit sind die Schlussfolgerungen, die sich aus den verschiede-
nen Betrachtungsweisen ergeben, die gleichen. Es kann daher durchaus von einem Erfolg
gesprochen werden. Die Pfadintegrale lassen sich demnach auch gut auf Beugungsexperi-
mente anwenden. Der gravierende Nachteil, den die Beschreibung mit Pfadintegralen in
vielen anderen Fiallen hat, ndmlich die mathematisch sehr komplizierte Handhabung, fillt
bei diesem Anwendungsgebiet nicht ins Gewicht. Die Kirchhoffsche Beugungsformel ist
weitaus schwieriger und meist ausschliefslich numerisch berechenbar. Die Komplexitét ist
eher vergleichbar mit der der Fresnel-Beugung. Alles in allem stellt der Zugang mittels
Pfadintegralen eine interessante und erfolgreiche Alternative zur Wellenoptik dar.
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