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1 Einleitung

Diese Arbeit befasst sich mit Beugungsphänomenen, wie sie beispielsweise auftreten, wenn
man Licht auf ein Gitter einfallen lässt und das wieder austretende Licht beobachtet. Die
Beobachtungen konnten von Kirchho�, Fraunhofer und Fresnel erklärt werden, indem der
Wellencharakter des Lichts sowie das Huygenssche Prinzip ausgenutzt wurden. Erst später
wurden auch Beugungsexperimente mit Teilchen, insbesondere mit Elektronen, durchge-
führt. Die Ergebnisse, nämlich die aus der Optik bekannten Beugungsmuster, bestätigten
den Welle-Teilchen-Dualismus. Unter den Beugungsexperimenten spielt die Doppelspal-
tanordnung eine groÿe Rolle, da anhand dieses Experiments häu�g auch grundlegende
Quanteneigenschaften diskutiert werden.

Statt jedoch aus den Welleneigenschaften ausführlich die Ergebnisse herzuleiten, wird
in dieser Arbeit ein anderer Ansatz gewählt: Mithilfe der Feynmanschen Pfadintegrale
soll das Interferenzmuster, welches von einer Blende erzeugt wird, berechnet werden. An-
schlieÿend wird versucht, die erhaltenen Ergebnisse zu veri�zieren, das heiÿt, mit den
experimentell bestätigten Ergebnissen der klassischen, wellenoptischen Beugungstheorie
zu vergleichen.

Die quantenmechanischen Pfadintegrale stellen neben der Schrödingergleichung einen al-
ternativen Zugang zur Quantenmechanik dar. Anschaulich gesprochen, summiert ein Pfa-
dintegral alle für ein Teilchen möglichen Pfade von einem Ort zu einem anderen mit einem
bestimmten Gewicht. Die Summation lässt sich formal durch ein Integral kennzeichnen.
Das Ergebnis der Berechnung ist die Übergangsamplitude, welche die Wahrscheinlichkeit
angibt, dass ein Teilchen in einer bestimmten Zeit von einem Start- zu einem Zielort ge-
langen kann.

Es sei an dieser Stelle noch bemerkt, dass der Pfadintegralformalismus zwar Grundlage
dieser Arbeit ist, allerdings nicht explizit benötigt wird. Das Gedankenexperiment lässt
sich mithilfe der Pfadintegrale aber erheblich besser verstehen und die Idee zu dieser Art
von Anwendung wurde von Feynman selbst gegeben (siehe [4]). In dieser Arbeit wird
statt in einer jedoch in drei Dimensionen gearbeitet und versucht, die Ergebnisse der
Quantenmechanik mit denen der Wellenoptik in Einklang zu bringen.

2 Berechnung des Pfadintegrals für das freie Teilchen

Der Pfadintegralformalismus wird im wesentlich nur für den Fall des freien Teilchens
explizit benötigt. Deshalb soll dieser Ausdruck hier kurz hergeleitet sowie die Notation
der Übergangsamplitude K festgelegt werden.
Zunächst einmal gilt per De�nition:

K(~rf ,tf ;~ri,ti) = 〈~rf |U(tf ,ti)|~ri〉 , (1)

wobei U der Zeitentwicklungsoperator für einen zeitunabhängigen Hamiltonoperator ist:

U(tf ,ti) = e−
i
~H·(tf−ti) (2)

1



Die obigen Zustände |~ri〉 respektive 〈~rf | sind die Eigenzustände des Ortsoperators ~Q für
die jeweiligen Orte. Der Index i steht immer für den Anfangs-, f immer für den Endort.

Um die Übergangsamplitude des freien Teilchen zu erhalten, gibt es verschiedene Möglich-
keiten. Man kann diese direkt berechnen oder aber die Methode der Pfadintegrale nutzen.
Hier wird das Problem auf die erste Methode gelöst werden1.
Die direkte Berechnung fuÿt auf der Kenntnis des Skalarproduktes aus Impuls- und
Ortsoperatoreigenfunktionen. Ein bestimmter Zustand |f〉 ist in Ortsdarstellung gegeben
durch f(~r) = 〈~r|f〉. Sei f(~p) die Impulsdarstellung (also 〈~p|f〉). Der Wechsel von der Orts-
in die Impulsdarstellung wird durch das Einschieben einer 1, also durch

´
d3p |~p〉 〈~p| = 1

vermittelt.

f(~r) = 〈~r|f〉 =
ˆ

d3p 〈~r|~p〉 〈~p|f〉 (3)

=

(
1

2π~

) 3
2
ˆ

d3p e
i
~ ~p·~rf(~p) (4)

In der letzten Zeile wurde der bekannte Ausdruck für diese Operation, nämlich die Fou-
riertransformation, eingesetzt. Aus der Vergleich ergibt sich:

〈~r|~p〉 =
(

1

2π~

) 3
2

e
i
~ ~p·~r (5)

Der Hamiltonoperator des freien Teilchens besitzt kein Potential, er lautet daher:
H = 1

2m
~P 2. Dabei ist m die Masse des Teilchens und ~P der Impulsoperator. Im Impuls-

raum ist die Anwendung des Hamiltonoperators demnach trivial. Dies wird nun ausge-
nutzt:

1die andere Methode �ndet sich für den ersten Fall bspw. in [1], S. 36 �
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K(~rf ,tf ;~ri,ti) ≡
〈
~rf

∣∣∣ e− i
~H·t

∣∣∣~ri〉 (6)

=

ˆ
d3p 〈~rf |~p〉 e−

i
~
~p2

2m
t 〈~p|~ri〉 (7)

=

ˆ
d3p

(2π~)3
e−

it
2m~(~p2−

2m
t
~p·(~rf−~ri)) (8)

=
1

(2π~)3
3∏

k=1

∞̂

−∞

dpk e−
it

2m~(p2k−pk
2m
t
(rk,f−rk,i)) (9)

=
1

(2π~)3
3∏

k=1

e−
im
2~t (rk,f−rk,i)

2

∞̂

−∞

dpk e−
it

2m~ (pk−
m
t
(rk,f−rk,i))2 (10)

=
1

(2π~)3
3∏

k=1

e−
im
2~t (rk,f−rk,i)

2

∞̂

−∞

da e−
it

2m~a
2

(11)

=
1

(2π~)3
3∏

k=1

e−
im
2~t (rk,f−rk,i)

2

√
2mπ~
it

(12)

=
1

(2π~)3

(
2mπ~
it

) 3
2

e−
im
2~t (~rf−~ri)

2

(13)

=
( m

2πi~t

) 3
2
e−

im
2~t (~rf−~ri)

2

(14)

Dabei ist t = tf − ti. Diese Übergangsamplitude bildet nun den Ausgangspunkt der
weiteren Überlegungen.

3 Notation

Im weiteren Verlauf sollen mithilfe des Pfadintegralformalismus einige Beugungsexperi-
mente quantenmechanisch analysiert werden. Dies geschieht zunächst für eine allgemeine
Blende, bevor bekannte Anordnungen betrachtet werden. Der grundlegende Aufbau ist in
Abb. 1 zu sehen:
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Abbildung 1: Grundlegender Aufbau der Experimente. Der gestrichelte Weg des Teilchens
sowie die Form der Blende sind in der Zeichnung beliebig gewählt.

In den Rechnungen ist es von Vorteil, das Koordinatensystem so zu wählen, wie oben
dargestellt: Die Blende sei am Ort z = 0, die Quelle bei ~rQ = (0 , 0 , zQ) und die Flächen-
normale des Schirms liege bei ~rS = (0 , 0 , zS). Der Schirm und die Blende seien unendlich
ausgedehnt, die Quelle sei annäherend punktförmig.
Die Blende kann in dieser Anordnung durch ihre Blendenfunktion B(x,y) beschrieben
werden. Dabei ist - je nach Durchlässigkeit - B(x,y) ∈ [0,1], ist der Wert 1, so heiÿt dies,
dass das Teilchen immer passieren kann. An Stellen mit B(x,y) = 0 ist die Blende un-
durchlässig. Dazwischen gibt der Wert die Durchtrittswahrscheinlichkeit an.

Das Experiment wird zweiteilig beschrieben:
Am Anfang ist das Teilchen zur Zeit tQ am Ort ~rQ. Von dort �iegt es in der Zeit tB zur
Blende, also zum Ort ~% = (x , y , 0). Abhängig vom Auftrittsort auf der Blende kann das
Teilchen passieren oder nicht passieren. Im letzten Fall wird das Experiment abgebro-
chen, da nur Teilchen untersucht werden, die die Blende auch passieren. Nach der Blende
�iegt das Teilchen in der Zeit tS zum Schirm, genauer gesagt von ~% zu ~rS + ~%S. Dabei ist
~%S = (xS , yS , 0). Es ist zweckmäÿig, tQ = 0 zu setzen. Der Gesamtweg des Teilchens ist
dann von ~rQ zu ~rS+~%S in der Zeit T = tB+ tS. Die Zeit T wird konstant gehalten. Genau
für diesen Weg soll im folgenden die Übergangsamplitude bestimmt werden, damit aus
dieser das Interferenzmuster auf dem Schirm hergeleitet werden kann.

Dazu wird eine Approximation genutzt, die in den nachfolgenden Kapiteln erläutert, hier
aber nicht näher diskutiert wird. Für jeden der zwei Teilwege setzt man die Übergangsam-
plituden eines freien Teilchens an. Dabei gilt für den Weg Quelle-Blende K(~%, tB;~rQ, 0) ≡
K1 sowie für den Weg Blende-Schirm K(~rS + ~%S, T ; ~%,tB) ≡ K2. Die Übergangsamplitude
des gesamten Weges sei K3 ≡ K(~rS + ~%S, T ;~rQ, 0).
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Um den folgenden Schritt nachvollziehen zu können, ist es wichtig, sich über die Faltungs-
eigenschaft der Pfadintegrale Gedanken zu machen. Bewege sich ein (eindimensionales)
Teilchen von einem Ort xa über den Ort xb zum Ort xc, es starte zur Zeit ta und kom-
me bei xb zur Zeit tb an, analog für xc und tc. Dann gilt für die Übergangsamplituden
(Bezeichnung analog zu oben):

Kc = 〈xc|e−
i
~H(tc−ta)|xa〉 =

ˆ
dxb 〈xc|e−

i
~H(tc−tb)|xb〉 〈xb|e−

i
~H(tb−ta)|xa〉 (15)

=

ˆ
dxb Kb ·Ka (16)

Übertragen auf das Experiment kann also K3 als Faltung von K2 und K1 verstanden
werden. Es wird mit der Blendenfunktion gewichtet, sodass ausschlieÿlich über das für die
Teilchen passierbare Gebiet integriert wird. Es ergibt sich also mit den oben eingeführten
Bezeichnungen:

K3 =

∞̂

−∞

dx

∞̂

−∞

dy B(x,y) K2 ·K1 (17)

Diese Gleichung bildet das Grundproblem, abhängig von der Blendenfunktion ergeben sich
daraus die Interferenzmuster. Bevor diese Gleichung aber weiter umgeformt wird, soll die
Tatsache, dass es sich bei diesem intuitivem Zugang um eine Approximation handelt,
näher erläutert werden.

4 Approximation

In diesem Abschnitt wird darauf eingegangen, dass das angestrebte Verfahren nur eine
Approximation der tatsächlichen Lösung darstellt. Diese Approximation wird diskutiert
und auch gerechtfertigt werden, bevor spezielle Blendenformen explizit bestimmt werden.

4.1 Mehrfaches Durchtreten der Blende

Im Gedankenexperiment �iegt das Teilchen zuerst von der Quelle zur Blende. Dafür be-
nötigt es die Zeit tB, welche für jeden Pfad festgehalten wird und dessen Wahl später zu
diskutieren ist. Diese Vorstellung beinhaltet aber zwei Arten von Wegen nicht: Zum einen
solche, die in der Zeit tB einen bestimmten Punkt auf der Blende erreichen, aber schon
zuvor ein- oder mehrfach durch die Blende getreten sind. Zum anderen auch die Pfade,
welche die verbotenen Zonen der Blende durchqueren. Abb. 2 zeigt beispielhaft solche
Wege. Teilchen, die diese Wege durch�iegen, sind in der Übergangsamplitude eines freien
Teilchens K1 enthalten, für die Lösung des Problems aber unerwünscht.
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Abbildung 2: Weg 1: Ein Weg, der die Blende an einer unpassierbaren Stelle durchtritt.
Weg 2 (gestrichelt): Ein Weg, der die Blendenö�nung mehrfach durchtritt.

Das Problem der Wege vom Typ 1 ist klar: Teilchen dürfen nicht an den Stellen der Blende
durchtreten, wo B(x,y) = 0 ist. Die Übergangsamplitude K1 enthält aber auch alle Wege,
die entweder unpassierbare Bereiche durchtreten oder vor dem Durchtreten des erlaubten
Bereichs schon an unpassierbaren Stellen die Blende durchtreten haben.
Bei den Mehrfachwegen ergeben sich andere Probleme: Jeder dieser Wege hätte im Ge-
dankenexperiment eine eindeutige Zuordnung. Die Übergangsamplitude ordnet diese Wege
jedoch nicht eindeutig zu. Jeder Mehrfachweg lässt sich verschiedenen Zeiten tB zuordnen.
Auÿerdem ist ohne vorliegendes Potential eine Bewegungsumkehr, wie sie bei Mehrfach-
wegen auftreten müsste, unwahrscheinlich.
Wie also kann es sein, dass der gewählte Ansatz dennoch zu einer guten Lösung des Pro-
blems führen sollte?
Alle Wege, die an unpassierbaren Stellen die Blende durchtreten würden (aber nur einmal
die Blende durchtreten), werden durch die Gewichtung mit B(x,y) im Integral herausge-
�ltert.
Alle Mehrfachwege, auch solche, die unpassierbare Stellen durchtreten, werden aufgrund
ihrer groÿen Abweichung von der klassischen Lösung für den Pfad stark unterdrückt.
Klassisch würde ein Pfad, der wie oben beschrieben verläuft, eine Bewegungsumkehr be-
deuten. Dies ist allerdings kaum möglich, da keine Kraft auf das Teilchen wirkt und auch
kein Potential vorhanden ist. Etwas genauer lässt sich das Argument untersuchen, wenn
man die Wirkung S für die klassische Lösung ~rcl betrachtet. Die Wirkung ist allgemein
gegeben durch:

S[~r] =

tfˆ

ti

dt L(~̇r, ~r,t) , (18)

mit der Lagrange-Funktion L.

Für die klassische Lösung des freien Teilchens ist die Geschwindigkeit konstant, es ergibt
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sich dann:

S[~rcl] =

tBˆ

0

dt
m

2
~̇rcl

2
=
m

2
~̇rcl

2
tB (19)

Ruft man sich die eigentliche Form des Pfadintegrals in Erinnerung, nämlich:

〈~rf |U(tf ,ti)|~ri〉 = A

ˆ
Dr e

i
~S[~r] , (20)

so kann diese Form um den klassischen Pfad ~rcl entwickelt werden. Dafür werden einige
Begri�e der Funktionalanalysis benötigt2. Es ergibt sich als Entwicklung (da δS

δ~r(t)
|~r=~rcl = 0

ist):

S[~r] = S[~rcl]−
m

2

ˆ
dt1

ˆ
dt2 ~η(t1)~η(t2)δ

′′(t1 − t2) (21)

= S[~rcl] +
m

2

ˆ
dt ~̇η

2
(t) (22)

= S[~rcl] + S[~η] (23)

η bezeichnet hier die Abweichungen vom klassischen Pfad, am Anfangs- und Endpunkt
jedes Pfades verschwinden diese Abweichungen. Dies nutzt man in der obigen Rechnung
aus, um durch partielle Integration die Wirkung S[~η] zu identi�zieren.

Setzt man diese Entwicklung ein, so erhält man:

K = A e
i
~S[~rcl]

ˆ
Dη e

i
~S[~η] (24)

In dieser Form wird sichtbar, warum groÿe Abweichungen vom klassischen Weg stark un-
terdrückt werden. In der Summe respektive dem Integral werden die Wege, welche weit
von ~rcl entfernt sind, sich durch eine groÿe Phasenänderung auszeichnen. Dies führt dazu,
dass diese Wege mit anderen, ebenfalls weit entfernten Wegen interferieren und sich da-
durch auslöschen. Wege nah am klassischen Pfad gelegen tragen jedoch sehr viel stärker
in der Summe bei.

O�ensichtlich enthält die mathematische Form des Pfadintegrals also schon die Begrün-
dung dafür, dass Mehrfachwege, wie im Gedankenexperiment, vernachlässigt werden kön-
nen.

4.2 Aufteilung des Zeitintervalls

Im Gedankenexperiment �iegt das Teilchen in der Zeit T von der Quelle zum Schirm.
Dieses Zeitintervall wird aufgeteilt in die Zeit, die das Teilchen von der Quelle zur Blende
benötigt und die Zeit, die das Teilchen von der Blende zur Quelle benötigt. Dies wurde

2Siehe dazu bspw. [1], S.3 �
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im vorigen Kapitel durch T = tB + tS bezeichnet. Diese Zerlegung ist aber keinesfalls ein-
deutig, es muss also eine bestimmte Wahl der Zeit tB getro�en werden. Diese ist abhängig
von den genauen Entfernungen der Anordnung.

Um eine geeignete Wahl der Zeit tB tre�en zu können, sollte, gemäÿ der Überlegungen im
vorigen Unterkapitel, die Wirkung des Pfades möglichst nah an der klassischen Wirkung
liegen, da diese am meisten beiträgt. Man versucht also, die Wirkung eines klassischen

Pfades zu minimieren und nimmt die von dort erhaltene Zeit im folgenden an, da die quan-
tenmechanischen Wege dicht an der klassischen Lösung des Pfades liegen. Die klassische
Wirkung ergibt sich aus Addition der zwei Teilwege, in Analogie zu den Übergangsam-
plituden K1 und K2 werden diese Teilwirkungen S1 und S2 genannt. Die Wirkung des
klassischen Pfades ist nach Gleichung 19 gegeben. Die Situation ist noch einmal in Abb.
3 gegeben.

Abbildung 3: Versuchsanordnung mit zwei Pfaden, wie sie als Lösung des klassischen
Problems auftreten würden (geradlinig und gestrichelt). Die Wirkungen S1 und S2 sind
eingetragen.

Es gilt jetzt S = S1+S2 für die klassischen Lösungen der Wege von ~rQ über ~% zu ~rS + ~%S.
Die Geschwindigkeit auf den Teilwegen bleibt jeweils konstant, es gilt ~̇r = (~rf−~ri)/(tf−ti).

8



Mit den gegebenen Abständen und Zeiten ergibt sich für S:

S = S1 + S2 =
mtB
2

(~%− ~rQ)2

t2B
+
m

2

(~%− ~rS − ~%S)2

t2S
(T − tB) (25)

=
m

2

[
x2 + y2 + z2Q

tB
+

(xS − x)2 + (yS − y)2 + z2S
T − tB

]
(26)

≡ m

2

[
l2B
tB

+
l2S

T − tB

]
(27)

tB soll nun so gewählt sein, dass die Wirkung S stationär wird, wie es für einen klassischen
Pfad notwenig ist. tB wird also für jeden Pfad unterschiedlich und in Abhängigkeit der
Orte gewählt.

d

dtB
S

!
= 0 (28)

⇔ l2B
t2B
− l2S

(T − tB)2
= 0 (29)

⇔ l2B
t2B

=
l2S

(T − tB)2
(30)

⇔ lB
tB

=
lS

(T − tB)
(31)

⇔ tB =
lB

lB + lS
T (32)

(33)

⇔ tB =

√
x2 + y2 + z2Q√

x2 + y2 + z2Q +
√

(xS − x)2 + (yS − y)2 + z2S

T (34)

Mit dieser Wahl von tB kann, da die Abweichungen vom klassischen Pfad sehr klein sind,
die Zeit T approximativ zerlegt werden. Es ist leicht zu sehen, dass es sich dabei um
eine nach der Länge der Strecken gewichtete Zerlegung handelt und diese letztlich auch
von den Orten, an denen das Teilchen auftri�t (also x und y), abhängt. Dies wird in der
nachfolgenden Rechnung allerdings nicht berücksichtigt, da ansonsten die Integrale nur
numerisch lösbar wären.

Für gegen x und y groÿe |zQ| kann allerdings lB ≈ |zQ| gesetzt werden. Für gegen xS,
yS, x und y groÿe zS hingegen kann, unter Vernachlässigung von x, y und yS, lS durch√
x2S + z2S genähert werden. Dabei ist mit Blick auf spätere Ergebnisse absichtlich die

Abhängigkeit von xS beibehalten worden. Falls zS sehr groÿ gegen xS wird (Fraunhofer-
Näherung), kann allerdings auch lS ≈ zS gesetzt werden.

Mit den Näherungen ergibt sich für die Zeit tB damit:

tB(xS) ≈
|zQ|

|zQ|+
√
x2S + z2S

T (35)

Falls zS sehr groÿ gegen xS ist, so kann noch weiter genähert werden. Es ergibt sich dann:
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tB ≈
|zQ|

|zQ|+ zS
T (36)

tS ≈
zS

|zQ|+ zS
T (37)

Sollten beide z-Abstände gleich groÿ sein, so kann tS = tB = T/2 gesetzt werden.

5 Wahl der Parameter

Grundsätzlich gilt bei Beugungsexperimenten, dass das Hindernis nicht zu groÿ, aber auch
nicht zu klein gegenüber der Wellenlänge des einfallenden Lichts oder der einfallenden
Teilchen sein darf. Dies entspricht der Forderung, dass die Abmessungen auf der Blende
und auf dem Schirm kleiner als die beiden Abstände |zQ| und zS sind. Dies wird bei
der Wahl der Abmessungen der Spalte berücksichtigt werden, wenn deren Parameter
eingeführt werden.
Damit die Formeln, die sich in der weiteren Rechnung ergeben werden, mit denen aus
der klassischen Optik vergleichbar werden, muss |zQ| sehr groÿ sein. Dies entspricht der
Forderung nach dem Auftre�en (nahezu) ebener Wellen auf der Blende.

Aus der Schrödingergleichung für freie Teilchen ergibt sich die einfache Energie-Impuls-
Beziehung ~2k2 = 2mE, wobei ~k = p ist. Mit k = 2π/λ ergibt sich daraus die Wellenlänge
in Abhängigkeit von E als λ = h√

2mE
3.

Die Wahl des Teilchens fällt auf ein Elektron, welches aus der Quelle austritt, nachdem
es durch eine Spannung von 1000 V beschleunigt wurde. Die Energie beträgt dann E = 1
keV. Damit ergeben sich folgende Werte: λ ≈ 39 pm.

Bei der Wahl der Zeit T lassen sich zum Kapitel 4.2 analoge Überlegungen anstellen,
siehe dazu auch Abb. 3. Das Teilchen bewegt sich mit einer mittleren Geschwindigkeit
von vB = lB/tB von der Quelle zur Blende und mit einer mittleren Geschwindigkeit von
vS = lS/tS von der Blende zum Schirm, wobei die Strecken lB und lS schon im Kapitel 4.2
näher angegeben wurden. Die mittleren Impulse wählen sich dann wegen p = mv analog.
Wegen der Beziehungen p = ~k und k = 2π/λ ergibt sich p = h/λ. Es lässt sich also
ein Zusammenhang zwischen den Zeiten und der Wellenlänge herstellen. Setzt man die in
Kapitel 4.2 berechneten Unterteilungen ein, so ergibt sich:

pB = me lB
1

tB
(38)

= me lB
1

lB
lB+lS

T
(39)

= me
lS + lB
T

(40)

Für pS ergibt sich das gleiche Ergebnis. Problematisch ist an dieser Stelle, wie schon im
Kapitel 4.2 angesprochen, die Abhängigkeit von lS und lB von x,y und yS. Die verschie-

3Siehe für diese Überlegungen [2], S.2
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denen Näherungen für die Längen sind am Ende von Kapitel 4.2 zu �nden. Es ergibt sich
damit für die Zeiten:

T =
meλ

h
(|zQ|+

√
x2S + z2S) (41)

tB =
meλ

h
|zQ| (42)

tS =
meλ

h

√
x2S + z2S (43)

An dieser Stelle fehlt noch die Wahl von zS und zQ. Wie schon erwähnt, muss zQ sehr
viel gröÿer sein als die Ausdehnung der Blende. Die Wahl fällt auf |zQ| = 5 m, was,
falls die Blendenmaÿe im Nano- bis Mikrometerbereich liegen, dem 106- bis 108-fachen
der Blendenmaÿe entspricht. Die Gröÿe zS soll später diskutiert werden. Ist zS jedoch
sehr viel gröÿer als xS, so kann xS vernachlässigt werden. Es ergibt sich in diesem Fall
(Fraunhofer-Näherung):

T =
meλ

h
(|zQ|+ zS) (44)

tB =
meλ

h
|zQ| (45)

tS =
meλ

h
zS (46)

6 Spezielle Blendenfunktionen

6.1 Allgemeine Blendenfunktionen

Aus den vorigen Kapiteln ist bekannt, dass zur Lösung des Problems ein Integral über die
Blendenfunktion B gelöst werden muss. Genauer:

K(~rS + ~%S, T ;~rQ,0) =

∞̂

−∞

dx

∞̂

−∞

dy B(x,y)K(~rS + ~%S, T ; ~%,tB)K(~%,tB;~rQ,0) (47)

Mit der Übergangsamplitude des freien Teilchens nach Gleichung 14 und den eingeführten
Abkürzungen ergibt sich dieses längliche Integral zu:

K3 =

∞̂

−∞

dx

∞̂

−∞

dy B(x,y)

(
m

2πi~tS

) 3
2
(

m

2πi~tB

) 3
2

·

exp

[
− im

2~

(
(~rS + ~%S − ~%)2

tS
+

(~%− ~rQ)2

tB

)] (48)

Da die Rechnung andernfalls unübersichtlich wird, erfolgt das Umformen des Exponenten
der Expontialfunktion separat - der Vorfaktor wird dabei ausgelassen.
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(~rS + ~%S − ~%)2

tS
+
(~%− ~rQ)2

tB
=

(xS − x)2 + (yS − y)2 + z2S
tS

+
x2 + y2 + z2Q

tB
(49)

=
x2S + y2S + z2S

tS
+
z2Q
tB
− 2

tS
(xSx+ ySy) +

(
1

tS
+

1

tB

)
(x2 + y2) (50)

=
(~rS + ~%S)

2

tS
+
z2Q
tB

+
tS + tB
tStB

(
x2 + y2 − 2tB

(tS + tB)
(xSx+ ySy)

)
(51)

Die ersten beiden Summanden sind von x und y unabhängig, können also aus dem Integral
herausgezogen werden. Mit der Einführung der Konstanten A,

A =
( m

2πi~

)3( 1

tStB

) 3
2

exp

[
− im

2~

(
(~rS + ~%S)

2

tS
+
z2Q
tB

)]
, (52)

ergibt sich das Integral zu

K3 = A

∞̂

−∞

dx

∞̂

−∞

dy B(x,y) exp

[
− im(tS + tB)

2~tStB

(
x2 + y2 − 2tB

(tS + tB)
(xSx+ ySy)

)]
.

(53)

Dieses Integral ist abhängig von der Blendenfunktion zu lösen.

6.2 Blendenfunktionen unabhängig von y

Es gelte nun B(x,y) = B(x). In diesem Fall lässt sich die Integration über y ausführen,
da es sich prinzipiell um ein Gauÿintegral handelt. Um die Rechnung kurz zu halten, wird
hier ausschlieÿlich der Teil des Integrals berechnet, der y-Abhängigkeit aufweist. Es ist zu
lösen:

I =

∞̂

−∞

dy exp

[
− im(tS + tB)

2~tStB

(
y2 − 2tB

(tS + tB)
ySy

)]
. (54)

Durch quadratische Ergänzung im Exponenten erhält man daraus

I = exp

[
imtB

2~tS(tS + tB)
y2S

] ∞̂

−∞

dy exp

[
− im(tS + tB)

2~tStB

(
y − tB

(tS + tB)
yS

)2
]

, (55)

was sich durch Substitution leicht lösen lässt. Es ergibt sich als Lösung des y-Anteils

I =

√
2π~tStB

im(tS + tB)
exp

[
imtB

2~tS(tS + tB)
y2S

]
. (56)

Das Ergebnis �ieÿt in die Konstante A ein, sie wird zu A′:
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A′ = I · A =
( m

2π~

)2 1

tBtS

√
im

2π~T
exp

[
− im

2~

(
(~rS + ~%S)

2

tS
+
z2Q
tB
− tB
tS(tS + tB)

y2S

)]
.

(57)

Damit ergibt sich das verbleibende, zu lösende Integral zu

K3 = A′
∞̂

−∞

dx B(x) exp

[
− im(tS + tB)

2~tStB

(
x2 − 2tB

(tS + tB)
xSx

)]
. (58)

6.3 Kante

Die Kante ist eine sehr einfache Form der Blende. Bis zum Punkt x = a ist diese undurch-
lässig, danach durchlässig. Der Punkt a kann beliebig gelegt werden, allerdings sollte er
nicht zu weit vom Quellort entfernt sein, da ansonsten die im Kapitel 5 angesprochenen
Näherungen nicht mehr gültig sind (die Blendenabmessungen wären nicht mehr klein ge-
gen die Abstände auf der z-Achse). Zweckmäÿig ist eine Wahl von a = 0, dies wird jedoch
erst später vorgenommen. Die De�nition der Blendenfunktion erfolgt zunächst allgemein.

B(x) =

{
0 für x < a

1 für x ≥ a
(59)

Das Einführen der Blendenfunktion sorgt dafür, dass die untere Integralgrenze sich ver-
ändert:

K3 = A′
∞̂

a

dx exp

[
− im(tS + tB)

2~tStB

(
x2 − 2tB

(tS + tB)
xSx

)]
. (60)

Zuerst wird das Integral durch quadratische Ergänzung des Exponenten umgeformt. Dies
geschieht analog zum y-Integral. Man erweitert die Konstante A′ erneut zu

A′′ ≡ A′ · exp
[
imtB
2~tST

x2S

]
. (61)

Damit ist das Integral

K3 = A′′
∞̂

a

dx exp

[
− imT

2~tStB

(
x− tB

T
xS

)2
]
. (62)

Über die Substitution

w ≡
√

mT

π~tStB

(
x− tB

T
xS

)
(63)
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gelangt man nach Einführen von

wa ≡
√

mT

π~tStB

(
a− tB

T
xS

)
(64)

zu der vereinfachten Form des Integrals:

K3 = A′′′
∞̂

wa

dw e−i
π
2
w2

. (65)

Die Konstante hat nun den Wert

A′′′ =
( m

2π~

)2 1

T

√
i

2tStB
exp

[
im

2~

(
(~rS + ~%S)

2

tS
+
z2Q
tB
− tB
tST

~%S
2

)]
. (66)

Im weiteren wird lediglich das Integral bestimmt. Es gilt gemäÿ allgemeiner Integralre-
chenregeln:

I =

∞̂

wa

dw e−i
π
2
w2

=

∞̂

0

dw e−i
π
2
w2 −

waˆ

0

dw e−i
π
2
w2

(67)

=

∞̂

0

dw cos
π

2
w2 − i

∞̂

0

dw sin
π

2
w2 −

waˆ

0

dw cos
π

2
w2 + i

waˆ

0

dw sin
π

2
w2 (68)

= C(∞)− iS(∞) + iS(wa)− C(wa) (69)

=
1

2
− C(wa)− i

(
1

2
− S(wa)

)
(70)

Im letzten Schritt wurde die Fresnel-Integrale gefunden. Für diese gilt 4:

S(x) =

xˆ

0

dt sin
(π
2
t2
)

(71)

und

C(x) =

xˆ

0

dt cos
(π
2
t2
)

. (72)

Ferner gilt C(∞) = S(∞) = 1
2
(vgl. Bsp.17.10 mit geeigneter Substitution in [3]).

Interessant für die Beantwortung der Frage nach dem Interferenzmuster ist an dieser Stelle
nicht K3, sondern |K3|2 ≡ ϕ. Für die Konstante A′′′ gilt

|A′′′|2 =
( m

2π~

)4 1

2tStBT 2
. (73)

4siehe [5]
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Dabei wurden die bekannten Relationen |
√
i| = 1 sowie | exp[ix]| = 1 genutzt. Zusam-

mengefasst ergibt sich

ϕ = |K3|2 =
( m

2π~

)4 1

2tStBT 2

∣∣∣∣12 − C(wa)− i

(
1

2
− S(wa)

)∣∣∣∣2 (74)

=
( m

2π~

)4 1

2tStBT 2

[(
1

2
− C(wa)

)2

+

(
1

2
− S(wa)

)2
]
. (75)

Dieses sowie alle folgenden Ergebnisse werden in späteren Kapiteln aufgegri�en und mit
den Ergebnissen aus der Optik verglichen. Interessant ist dabei das Argument der Fres-
nelfunktionen wa, welches für groÿe |zQ| genähert werden kann. Für die Zeiten ergibt sich
nach Kapitel 5: T = mλ

h
(|zQ|+lS), tB = mλ

h
|zQ|, tS = mλ

h
lS, mit lS =

√
z2S + x2S. Eingesetzt

in wa erhält man

wa =

√
mT

π~tStB

(
a− tB

T
xS

)
=

√
2mT

htStB

(
a− tB

T
xS

)
(76)

=

√
2m2h2λ(|zQ|+ lS)

h2m2λ2lS|zQ|

(
a− |zQ|

lS + |zQ|
xS

)
(77)

=

√
2(|zQ|+ lS)

λlS|zQ|

(
a− |zQ|

lS + |zQ|
xS

)
. (78)

Im Grenzfall von sehr groÿen |zQ| lässt sich lS gegenüber |zQ| vernachlässigen, woraus sich
Gleichung 79 ergibt, die in späteren Kapiteln wieder aufgegri�en und mit dem sich aus
der Wellenoptik ergebenden Argument verglichen wird.

wa ≈
√

2

λlS
(a− xS) (79)

6.4 Einfachspalt

Der Einfachspalt mit der Breite B = 2b um die Stelle a beschrieben durch die nachfolgende
Blendenfunktion.

B(x) =

{
1 für x ∈ [a− b,a+ b]

0 sonst
(80)

Die Breite des Spaltes B sollte geeignet gewählt sein. Aus Gründen der besseren Vergleich-
barkeit soll die Breite des Einzelspalts der Breite der beiden Einzelspalte des Doppelspaltes
entsprechen. Diese wird zu B = 334 nm gewählt. Grundlage für die Wahl ist das unter
[7] aufrufbare Programm, welches ein Doppelspaltexperiment simuliert. Nach Probieren
verschiedener Parameter wurden die in dieser Arbeit verwendeten gefunden. a wird später
gleich 0 gesetzt.
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Um den Einfachspalt zu lösen, muss nicht wie bei der Kante von Anfang an gerechnet
werden, abgesehen von den genauen Grenzen des Integrals ist die Vorgehensweise komplett
analog zum vorigen Kapitel. Nach Nutzen der gleichen Substitution erhält man

K3 = A′′′
w2ˆ

w1

dx e−i
π
2
w2

. (81)

Die Grenzen sind in Gleichung (82) und (83) angegeben.

w1 ≡
√

mT

π~tStB

(
a− b− tB

T
xS

)
(82)

w2 ≡
√

mT

π~tStB

(
a+ b− tB

T
xS

)
(83)

Es wird wieder versucht, die Fresnelintegrale zu identi�zieren:

K3 = A′′′
w2ˆ

w1

dx e−i
π
2
w2

(84)

= A′′′

 w2ˆ

0

dx e−i
π
2
w2 −

w1ˆ

0

dx e−i
π
2
w2

 (85)

= A′′′ [C(w2)− C(w1) + i(S(w1)− S(w2))] . (86)

Auch an dieser Stelle interessiert nur das Betragsquadrat, welches für die Konstante A′′′

aus dem vorigen Kapitel zu entnehmen ist. Es gilt

ϕ =
( m

2π~

)4 1

2tStBT 2
|C(w2)− C(w1) + i(S(w1)− S(w2))|2 (87)

=
( m

2π~

)4 1

2tStBT 2

[
{C(w2)− C(w1)}2 + {S(w1)− S(w2)}2

]
. (88)

Bevor der Doppelspalt behandelt wird, sollen die Argumente wi für den Fall groÿer zQ be-
trachtet werden. O�ensichtlich ist die Form der Argumente sehr ähnlich zu dem Argument
wa der Kante. Es ergibt sich also die gleiche Approximation für groÿe zQ:

w1 ≈
√

2

λlS
(a− b− xS) . (89)

Für w2 ist die Näherung komplett analog durchzuführen. Für gegen xS groÿe zS, also im
Fraunhofer-Limes gilt lS ≈ zS.

6.5 Doppelspalt

Die Abmessungen des Doppelspalts sind nach Abb. 4 gegeben.
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Abbildung 4: Doppelspalt um den Punkt a mit Spaltabstand (Mitte zu Mitte) D = 2d
und Spaltbreite B = 2b.

Aus der Skizze kann die Blendenfunktion hergeleitet werden, siehe Gleichung (90).

B(x) =


1 für x ∈ [a− d− b,a− d+ b]

1 für x ∈ [a+ d− b,a+ d+ b]

0 sonst

(90)

Für die spätere Darstellung der Ergebnisse werden a und B wie beim Einzelspalt gewählt.
Für den Abstand wird D = 1000 nm, beziehungsweise D ≈ 3B angesetzt.
Mit den Bezeichnungen s1 = a − d − b,s2 = a − d + b,s3 = a + d − b und s4 = a + d + b
kann man das zu lösende Integral praktikabel umgeschrieben werden zu

K3 = A′′

 s2ˆ

s1

dx exp

[
− imT

2~tStB

(
x− tB

T
xS

)2
]
+

s4ˆ

s3

dx exp

[
− imT

2~tStB

(
x− tB

T
xS

)2
]
(91)

= A′′′

 w2ˆ

w1

dw e−i
π
2
w2

+

w4ˆ

w3

dw e−i
π
2
w2

 (92)

= A′′′ [C(w4) + C(w2)− C(w3)− C(w1) + i (S(w1) + S(w3)− S(w2)− S(w4))] .
(93)

Dabei gilt ∀i = 1,2,3,4

wi =

√
mT

π~tStB

(
si −

tB
T
xS

)
. (94)

In völliger Analogie zur Kante und zum Einzelspalt wird wieder das Betragsquadrat be-
stimmt:
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ϕ =
( m

2π~

)4 1

2tStBT 2
·(

{C(w2) + C(w4)− C(w1)− C(w3)}2 + {S(w1) + S(w3)− S(w2)− S(w4)}2
)
.

(95)

Die Argumente wi können genähert werden. Die Diskussion dieser Näherung ist in den
zwei vorigen Kapiteln zu �nden, es ergibt sich

wi ≈
√

2

λlS
(si − xS) . (96)

6.6 Dünner Doppelspalt

Der dünne Doppelspalt besteht aus zwei Spalten mit verschwindend geringer Breite. Für
b = 0 muss bei Gleichung 91 angesetzt und die Integrationsgrenzen angepasst werden, an
der Wahl von D ändert sich aber nichts, es gilt weiterhin D = 1000 nm. Es ergibt sich

K3 = A′′


∞̂

−∞

dx [δ(a+ d− x) + δ(a− d− x)] exp

[
− imT

2~tStB

(
x− tB

T
xS

)2
] (97)

= A′′

[
exp

[
− imT

2~tStB

(
(a+ d)− tB

T
xS

)2
]
+ exp

[
− imT

2~tStB

(
(a− d)− tB

T
xS

)2
]]
(98)

= A′′′′
[
exp

[
− imTd

~tStB

(
a− tB

T
xS

)]
+ exp

[
imTd

~tStB

(
a− tB

T
xS

)]]
(99)

= 2A′′′′ cos

[
mTd

~tStB

(
a− tB

T
xS

)]
. (100)

Dabei ist die Konstante A′′′′ durch

A′′′′ = A′′ exp

[
− imT

2~tStB

(
a2 + d2 +

t2Bx
2
S

T 2
− 2atBxS

T

)]
(101)

gegeben.
Das Betragsquadrat ergibt sich folglich zu

ϕ =
( m

2π~

)5 4

t2St
2
BT

cos2
[
mTd

~tStB

(
a− tB

T
xS

)]
. (102)

Das Argument des Kosinus kann für groÿe zQ genähert werden:

mTd

~tStB

(
a− tB

T
xS

)
≈ kd

lS
(a− xS) . (103)

Dabei wurde k = 2π/λ genutzt.
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7 Behandlung mit Wellenoptik

7.1 Beugungsintegrale

Aus der skalaren Wellengleichung lässt sich - auf recht komplizierte Art und Weise - die
Kirchho�'sche Beugungstheorie herleiten (vgl. [6], S. 823� (und Anhang)). Diese Theo-
rie lässt sich allerdings nur schwer berechnen, man muss bei den meisten Problemen
auf analytische Lösbarkeit verzichten. Fresnel und Fraunhofer entwickelten jeweils andere
Lösungsmöglichkeiten, die sich letztlich als Näherungen aus der Kirchho�'schen Formel
herleiten lassen. Alle drei Ansätze fuÿen auf der Annahme, dass eine ebene Welle auf ein
Hindernis unterschiedlicher Durchlässigkeit tri�t und dann von jedem Punkt, an dem die
Wellenfront die Blende passieren kann, eine Kugelwelle emittiert wird. Die Aufgabe ist
es, die Kugelwellen phasenrichtig aufzuaddieren. Durch die unendlich vielen Kugelwellen
stellt sich dies als Integral über die Koordinaten der Blende dar.

Eine nähere Herleitung der Kirchho�'schen Formel �ndet sich in [6], S. 823�5 , hier sei
nur das Ergebnis in Gleichung (104) wiedergegeben.

E(xS,yS) =
E0

2iλ

∞̂

−∞

dx

∞̂

−∞

dy B(x,y)
exp[ik|~%− ~rQ|+ |~%− ~rS − ~%S|]
|~%− ~rQ| · |~%− ~rS − ~%S|

·

[
(~%− ~rQ) · ~ez
|~%− ~rQ|

− (~%− ~rS − ~%S) · ~ez
|~%− ~rS − ~%S|

] (104)

Der letzte Faktor wird Neigungsfaktor genannt. Diese Formel ist kaum analytisch berech-
nbar. Für groÿe Abstände zQ und zS im Vergleich zu allen anderen Gröÿen, können jedoch
Näherungen vorgenommen werden: Zum einen werden die Skalarprodukte im Neigungs-
faktor durch 1 und −1 approximiert, da die Vektoren fast parallel bzw. antiparallel zur
z-Achse verlaufen. Der Neigungsfaktor entfällt dadurch. Des Weiteren lassen sich die Be-
träge durch ihre Taylorentwicklungen nähern, wobei im Exponenten aufgrund der höheren
Phasenemp�ndlichkeit eine Ordnung mehr genommen werden muss als im Nenner, wo die
grobe Abschätzung |~%− ~rQ| ≈ zQ und |~%− ~rS − ~%S| ≈ zS genügt. Es ergibt sich dann die
Fresnel'sche Beugungsformel:

E(xS,yS) =
E0

iλzQzS
eik(zQ+zS)

∞̂

−∞

dx

∞̂

−∞

dy B(x,y)

exp

[
ik

2

(
x2 + y2

zQ
+

(x− xS)2 + (y − yS)2

zS

)]
.

(105)

Eine weitere Näherung ergibt sich durch noch gröÿere Abstände, nämlich für (x2 + y2)�
zQ und (x2+ y2)� zS. Dadurch fallen viele der Exponentialfunktionen weg und es ergibt
sich die Fraunhofer-Beugungsformel für das Fernfeld:

5Wobei der Neigungsfaktor in [6] von dem in dieser Arbeit verwendeten abweicht. Ich habe diesen aus
[8] übernommen.
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E(xS,yS) =
E0

iλzQzS
eik(zQ+zS) e

ik
2zS

(x2S+y
2
S)

∞̂

−∞

dx

∞̂

−∞

dy B(x,y) e
− ik

2zS
(xxS+yyS) . (106)

Man erkennt schon anhand der Formeln, dass die Fresnel-Näherung die gröÿte Ähnlichkeit
mit den aus der Quantenmechanik hergeleiteten Formeln hat. Tatsächlich wird es nötig
sein, auch auf die Fresnel-Näherung zuzugreifen, obwohl insbesondere der Fraunhofer-
Limes von Interesse ist. Es sei noch erwähnt, dass die Fraunhofer-Beugung eine Fourier-
transformation der Blende darstellt. 6

7.2 Kante

Da das Integral der Fraunhofer-Beugung nicht konvergiert, muss auf die Fresnel-Beugung
zurückgegri�en werden. Es ergibt sich nach recht elementarer Rechnung die Feldstärke E
zu

E = C

[(
1

2
− C(wa) + i

(
1

2
− S(wa)

))]
, (107)

mit den Konstanten

wa =

√
k(zS + zQ)

πzSzQ

(
a− zQ

zS + zQ
xS

)
(108)

und

C =
E0

2(zS + zQ)
(1− i) exp

[
ik

(
x2S + y2S

2(zS + zQ)
+ (zQ + zS)

)]
. (109)

Quadriert ergibt sich damit die Intensität7

I ∝ E2
0

2(zS + zQ)2

[(
1

2
− C(wa)

)2

+

(
1

2
− S(wa)

)2
]

(110)

≡ I0

[(
1

2
− C(wa)

)2

+

(
1

2
− S(wa)

)2
]

. (111)

Für gegen zS groÿe zQ und mit k = 2π/λ ergibt sich für das Argument wa

wa ≈
√

2

λzS
(a− xS) . (112)

Dies stimmt beinahe mit Gleichung 79 überein. Für gegen xS groÿe zS, also im Fraunhofer-
Limes, gehen beide Formeln ineinander über, da dann lS ≈ zS gilt. Die Ergebnisse aus
Quantenmechanik und Optik stimmen dann überein.

6Alle Näherungen und Entwicklungen �nden sich auch in den jeweiligen Kapiteln in [6]. In dieser
Arbeit wurde jedoch im Unterschied zum Buch von E. Hecht ein anderer Ansatz gewählt: Statt aus
allgemeinen Überlegungen die Fresnel- und Fraunhofer-Beugungsformeln herzuleiten, wurden diese als
Näherung der Kirchho�-Formel verstanden.

7Vgl. auch [6], S. 817, dort aber mit anderen Konstanten
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7.3 Einfachspalt

Der Einzelspalt ist leicht mithilfe der Fresnel-Beugungsformel berechenbar. Die Rechnung
ähnelt der quantenmechanischen sehr. Es ergibt sich nach Fresnel-Beugung

I(xS) = I0
[
{C(w2)− C(w1)}2 + {S(w2)− S(w1)}2

]
, (113)

mit den Argumenten:

w1 =

√
2(zQ + zS)

λzQzS

(
a− b− zQ

zQ + zS
xS

)
(114)

w2 =

√
2(zQ + zS)

λzQzS

(
a+ b− zQ

zQ + zS
xS

)
. (115)

Hier stimmen im Fraunhofer-Limes die Argumente ebenfalls mit den Argumenten, die sich
aus der Quantenmechanik ergeben, überein, in Fresnelnäherung sollte sich aber dennoch
keine allzu groÿe Abweichung ergeben, da auch hier lS und zS lediglich gering voneinander
abweichen.

Der Einfachspalt lässt sich auch mittels der Fraunhofer-Beugungsformel behandeln. Typi-
scherweise weist man dabei dem Spalt auch eine Ausdehnung in y-Richtung zu. Dies wird
hier, um die Analogie zur quantenmechanischen Berechnung zu halten, nicht getan. Dabei
ergibt sich jedoch das Problem, dass das Integral über y nicht konvergiert. Aus der Be-
rechnung der Kante ist aber klar, dass der Beitrag der y-Richtung lediglich ein konstanter
Faktor ist, sodass hier lediglich wieder eine Proportionalitätskonstante eingeführt werden
muss. Mit den gleichen Bezeichnungn wie in den vorigen Kapiteln ergibt sich dann für die
Intensität

I(xS) = I0

sin
(
kb
zS
xS

)
kb
zS
xS

2

, (116)

wobei 2b die Breite des Spaltes ist, der Ort des Spaltes a trägt nicht bei.

7.4 Doppelspalt

Der Doppelspalt lässt sich analog zum Einfachspalt behandeln. Es ergibt sich in Fres-
nelnäherung Gleichung 117 sowie in Fraunhofer-Näherung Gleichung 118.

I(xS) = I0
(
{C(w2) + C(w4)− C(w1)− C(w3)}2 + {S(w2) + S(w4)− S(w1)− S(w3)}2

)
(117)

I(xS) = I0

cos(kd
zS
xS

) sin
(
kb
zS
xS

)
kb
zS
xS

2

(118)
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Die Argumente sind - ähnlich denen der Quantenmechanik - mithilfe von s1 = a− d− b,
s2 = a− d+ b, s3 = a+ d− b und s4 = a+ d+ b de�niert als:

wi =

√
2(zQ + zS)

λzQzS

(
si −

zQ
zQ + zS

xS

)
(119)

Auch hier sind die Argumente der Quantenmechanik und Optik nur im Fall der Fraunhofer-
Näherung identisch.

7.5 Dünner Doppelspalt

Der dünne Doppelspalt wird aufgrund der einfachen Grenzwertbildung (b → 0) nur in
Fraunhofer-Näherung betrachtet. In Gleichung 118 geht für diese Blende der sin(x)/x-
Ausdruck gegen 1. Es ergibt sich damit sofort

I(xS) = I0 cos
2

(
kd

zS
xS

)
. (120)

Vergleicht man das Argument des Kosinus mit dem aus der Quantenmechanik (Gleichung
103), so sieht man sofort, dass auch diese im Fraunhofer-Limes übereinstimmen, da dann
lS ≈ zS ist. Da die Formel aus der Optik ohnehin nur für diese Näherung gültig ist,
stimmen die Ergebnisse aus Quantenmechanik und Optik überein.

8 Vergleich und Darstellung der Ergebnisse

8.1 Wahl des Abstandes zS

In Kapitel 4.2 und 5 wurde die Wahl der Parameter weitgehend diskutiert. Der letzte Pa-
rameter, der noch frei gewählt werden kann, ist zS. Die Wahl dieses Abstandes entscheidet
darüber, ob Fresnel- oder Fraunhofer-Näherung genutzt werden kann. Für groÿe zS wird
Fraunhofer-Näherung, für �mittlere� Abstände wird Fresnel-Näherung benutzt. Tabelle 1
fasst die Wahl der Parameter zusammen. Dabei wurde für zS in Fresnel-Näherung ein
Abstand von ca. dem 1000-fachen der Wellenlänge, in Fraunhofer-Näherung der gleiche
Abstand wie für zQ eingesetzt.

Parameter Fresnel-Näherung Fraunhofer-Näherung
λ 39 pm 39 pm

a (alle Anordnungen) 0 m 0 m
b (beide Spalte) 167 nm 167 nm
d (Doppelspalt) 500 nm 500 nm

zQ 5 m 5 m
zS 50 nm 5 m

Tabelle 1: Werte aller Parameter, die beim Plotten genutzt werden.

Die Gröÿe I0 bei den Formeln aus der Wellenoptik wird nicht betrachtet, es wird immer
I/I0, also die auf I0-normierte Intensität betrachtet. Für die Zeit T und auch die Auftei-
lungen tB und tS werden in beiden Näherungen die diskutierten Formeln (siehe Kapitel
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4.2 und 5) benutzt, wobei im Fraunhofer-Limes die xS-Abhängigkeit verschwindet. Alle
Formeln aus der Quantenmechanik werden auf ihren Wert an der Stelle 0 normiert, da
dort zumindest bei den Spalten erwartungsgemäÿ das Maximum liegt. Die Graphen zeigen
also den qualitativen Verlauf, nicht aber den quantitativen.
Alle Graphen wurden mit Mathematica erstellt, die Plotbereiche wurden durch Probieren
gefunden. Wählt man die Bereiche anders, so werden die Interferenzerscheinungen nicht
sichtbar, man sieht lediglich den geometrischen Schatten der Blenden.

8.2 Kante

8.2.1 Vergleich der Ergebnisse

Die Ergebnisse sind nach Gleichung 75 und 111 gegeben. Zur Übersicht sind beide hier
noch einmal angegeben.

ϕ =
( m

2π~

)4 1

2tStBT 2

[(
1

2
− C(wa,QM)

)2

+

(
1

2
− S(wa,QM)

)2
]

(121)

I = I0

[(
1

2
− C(wa,O)

)2

+

(
1

2
− S(wa,O)

)2
]

(122)

Im direkten Vergleich sind die Formeln o�enbar fast identisch. Wie in den vorigen Ka-
piteln erwähnt, geht wa,QM für sehr groÿe zQ in wa,O über. In diesem Fall würde auch
der Vorfaktor, respektive die Zeiten im Vorfaktor, nicht mehr von xS abhängen und die
Formeln hätten eine identische Abhängigkeit von xS.

8.2.2 Darstellung der Ergebnisse

Die Kante muss in Fresnel-Näherung betrachtet werden, d.h. zS = 50 nm. Die xS-
Abhängigkeit von T und tS kann nicht genähert werden, da zS nicht groÿ genug ist.
Die Ergebnisse sind in Abb. 5 und Abb. 6 gezeigt.
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Abbildung 5: Kante nach der quantenmechanischen Formel.

Abbildung 6: Kante nach Wellenoptik.

Beide Ergebnisse passen sehr gut zueinander, auch die Gröÿenordnung des Beugungsmus-
ters (10−8) ist bei beiden Abbildungen gleich. Einziger Unterschied ist das Verhalten für
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gröÿere xS, was im gewählten Plotbereich aber nicht sichtbar ist. In der Optik pendelt sich
die Intensität für groÿe xS auf einen festen Wert ein, Ergebnis ist der Schatten der Kante.
Laut Quantenmechanik fällt die Intensität rechts von der Kante ab, es ergibt sich �aus der
Ferne � eine δ(x)-förmige Anordnung. Realistisch ist am ehesten der Mittelweg, da das
Licht in einer bestimmten Distanz nicht mehr hell genug ist, um die Bereiche rechts der
Kante auszuleuchten (zumindest nicht sichtbar). Der sehr schnelle Abfall der Intensität
laut Quantenmechanik kann jedoch nicht beobachtet werden.
Beim Übergang zu groÿen zS sind beide Formeln nach Normierung identisch. Im Fall
zS = 5 m sind die Beugungsmuster, die oben dargestellt sind, weiterhin sichtbar. Statt in
der Gröÿenordnung 10−8 liegt es dann im Bereich 10−4. Ist xS aber sehr viel gröÿer als
10−4, so erhält man das Bild, welches man von einer Kante erwartet (siehe Abb. 7).

Abbildung 7: Kante in Fraunhofer-Näherung mit groÿen xS. Die Interferenzstreifen um
xS = 0 sind noch leicht erkennbar.

8.3 Einzelspalt

8.3.1 Vergleich der Ergebnisse

Die Formeln, die sich aus den jeweiligen Betrachtungsweisen ergeben, sind nach Gleichung
88 (Quantenmechanik) und Gleichung 116 beziehungsweise 113 (Optik) gegeben.

ϕ =
( m

2π~

)4 1

2tStBT 2

[
{C(w2)− C(w1)}2 + {S(w1)− S(w2)}2

]
(123)

Fresnel-Näherung:

I(xS) = I0
[
{C(w2)− C(w1)}2 + {S(w2)− S(w1)}2

]
(124)
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Fraunhofer-Näherung:

I(xS) = I0

sin
(
kb
zS
xS

)
kb
zS
xS

2

(125)

Der Vergleich zwischen der quantenmechanischen und der fresnel-genäherten Formel ist
leicht. Würde der Vorfaktor der Quantenmechanik wegen der Zeiten nicht von xS abhän-
gen, so wären die Formeln von ihrer Form her sehr ähnlich. Tatsächlich gehen die Argu-
mente für groÿe zS und groÿe zQ ineinander über (siehe Kapitel 6.4) - es gibt in diesem
Fall keinerlei qualitative Unterschiede zwischen den Formeln, da auch die xS-Abhängigkeit
des Vorfaktors verschwindet. Der Vergleich zwischen Quantenmechanik und Fraunhofer-
Näherung fällt hingegen schwer. Die Formeln haben o�enbar überhaupt keine Ähnlichkeit.
Die Erwartung ist allerdings weiterhin, dass die Formeln das gleiche beschreiben und da-
mit auch das gleiche Interferenzmuster erzeugen.

8.3.2 Darstellung der Ergebnisse

Die Ergebnisse werden nur in Fraunhofer-Näherung betrachtet werden, da die Ähnlichkeit
der Ergebnisse in diesem Fall nicht aus den Formeln ersichtlich ist. Nach Kapitel 5 sind die
Zeiten T und tS in diesem Fall von xS unabhängig. Es ergeben sich folgende Ergebnisse:

Abbildung 8: Das Ergebnis für den Einzelspalt nach der quantenmechanischen Formel.
Das aus der Optik erwartete Muster ist sehr deutlich erkennbar. Da an der Stelle xS = 0
der Wert 1 erreicht wird, war die Wahl der Normierung o�ensichtlich sinnvoll.
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Abbildung 9: Einzelspalt nach klassischer Wellenoptik.

Die Ergebnisse passen, wie man den Abbildungen entnehmen kann, perfekt überein. Der
Verlauf des Graphen und die Koordinaten der Maxima und Minima stimmen zumindest
nach Augenmaÿ, die Gröÿenordnung der Beugungsmuster sogar exakt überein. Dies ent-
spricht der Erwartung, auch wenn dieses Ergebnis nicht aus dem Vergleich der Formeln
erhalten werden kann.

8.4 Doppelspalt

8.4.1 Vergleich der Ergebnisse

Die berechneten Ergebnisse für den Doppelspalt �nden sich in den Gleichungen 95 und
118 sowie 117.

ϕ =
( m

2π~

)4 1

2tStBT 2
·(

{C(w2) + C(w4)− C(w1)− C(w3)}2 + {S(w1) + S(w3)− S(w2)− S(w4)}2
) (126)

Fresnel-Näherung:

I(xS) = I0
(
{C(w2) + C(w4)− C(w1)− C(w3)}2 + {S(w2) + S(w4)− S(w1)− S(w3)}2

)
(127)

Fraunhofer-Näherung:

I(xS) = I0

cos(kd
zS
xS

) sin
(
kb
zS
xS

)
kb
zS
xS

2

(128)
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Die Anmerkungen, die sich an dieser Stelle machen lassen, sind im Wesentlichen dieselben,
die sich auch beim Einfachspalt anbringen lassen. Zwischen Fresnel-Näherung und Quan-
tenmechanik besteht eine groÿe Ähnlichkeit, die Ergebnisse gehen im Fraunhofer-Limes
ineinander über. Die Fraunhofer-Formel unterscheidet sich deutlich von den anderen bei-
den Ergebnissen. Die Erwartung, dass die Ergebnisse dennoch gleich sind, ist auch hier
durch eine graphische Darstellung zu bestätigen.

8.4.2 Darstellung der Ergebnisse

Es wird Fraunhofer-Näherung dargestellt:

Abbildung 10: Beugungsmuster des Doppelspaltes in Fraunhofer-Näherung nach der quan-
tenmechanischen Formel. Das Beugungsmuster ist dem aus der Optik bekannten sehr
ähnlich.
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Abbildung 11: Intensitätsverteilung des Doppelspaltes in Fraunhofer-Näherung, berechnet
nach Wellenoptik.

An dieser Stelle kann lediglich die Anmerkung zu den Abbildungen des Einfachspaltes
wiederholt werden - die Ergebnisse sind in Dimension und Verlauf wie erwartet identisch.

8.5 Dünner Doppelspalt

8.5.1 Vergleich der Ergebnisse

Der dünne Doppelspalt ist die einzige der untersuchten Blenden, der bei beiden Herlei-
tungen auf das exakt gleiche Ergebnis führt. Die Formeln aus Gleichung 102 und 120 sind
hier noch einmal wiedergegeben.

ϕ =
( m

2π~

)5 4

t2St
2
BT

cos2
[
mTd

~tStB

(
a− tB

T
xS

)]
(129)

I(xS) = I0 cos
2

(
kd

zS
xS

)
(130)

Beide Formeln enthalten einen cos2(x)-Term, abgesehen von den Konstanten scheint die
Übereinstimmung gut zu sein. Wie in Kapitel 6.6 erwähnt, sind in Fraunhofer-Näherung
die Argumente identisch. Eine weitere graphische Darstellung ist demnach nicht notwen-
dig.
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9 Fazit

Obwohl die Ergebnisse aus der Fresnel-Beugungsformel nicht perfekt mit denen aus dem
Pfadintegralformalismus übereinstimmen, ist der E�ekt, der bei Beugungsexperimenten zu
beobachten ist, von beiden Theorien gleich beschrieben worden. Spätestens im Fraunhofer-
Limes sind die Ergebnisse völlig identisch, sodass die Beugungsmuster gleich vorhergesagt
werden. Im Rahmen dieser Arbeit sind die Schlussfolgerungen, die sich aus den verschiede-
nen Betrachtungsweisen ergeben, die gleichen. Es kann daher durchaus von einem Erfolg
gesprochen werden. Die Pfadintegrale lassen sich demnach auch gut auf Beugungsexperi-
mente anwenden. Der gravierende Nachteil, den die Beschreibung mit Pfadintegralen in
vielen anderen Fällen hat, nämlich die mathematisch sehr komplizierte Handhabung, fällt
bei diesem Anwendungsgebiet nicht ins Gewicht. Die Kirchho�sche Beugungsformel ist
weitaus schwieriger und meist ausschlieÿlich numerisch berechenbar. Die Komplexität ist
eher vergleichbar mit der der Fresnel-Beugung. Alles in allem stellt der Zugang mittels
Pfadintegralen eine interessante und erfolgreiche Alternative zur Wellenoptik dar.
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