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1 Einführung

Bekanntermaÿen existieren in der schrödingerschen Quantenmechanik einige wenige exakt
lösbare Systeme. Diese sind in der Regel sehr einfachen Charakters, ihre Potenziale wei-
sen groÿe Symmetrien auf und scha�en einfache Randbedingungen. Dem steht eine groÿe
Zahl mitunter nur wenig komplexerer Systeme gegenüber, deren Lösung nicht auf analy-
tischem Wege gefunden werden kann. Der Kanon der exakt lösbaren Systeme wird noch
erweitert durch diejenigen, die als sog. supersymmetrischer Partner eines exakt lösba-
ren Systems ebenfalls ein solches darstellen. Schlieÿlich erlaubt die supersymmetrische
Quantentheorie die Bestimmung einer dritten Klasse, nämlich die der quasiexakt lösba-
ren Systeme (�QES-Systeme�). Eine mögliche Methode dazu wird in [1] vorgestellt und
soll hier kurz skizziert werden. Am selben Ort sind auch Beispiele sog. QES-Potenziale
aufgeführt, für die sich Grundzustand und erster angeregter Zustand mit ihrem energeti-
schen Abstand exakt berechnen lassen und deren nähere Analyse ein Teil dieser Arbeit ist.
Hierbei wurde der Fokus auf Potenziale mit Doppelmuldencharakter gerichtet. Im Falle
einer solchen Potenzialform kann man die Energiedi�erenz zwischen den beiden untersten
Zuständen alternativ in der semiklassischen Approximation berechnen (vgl. [2]). Der Ver-
gleich der Resultate beider Methoden ist ebenfalls Gegenstand dieser Arbeit. Im Rahmen
der semiklassischen Näherung spielt die Lösung der klassischen Bewegungsgleichung eines
Massenpunktes im umgekehrten Potenzial, die sog. Kinklösung, eine zentrale Rolle und
wird deshalb am Schluss der Arbeit für die ausführlicher analysierten Potenzialbeispiele
bestimmt.
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1 Einführung

1.1 Einheitensystem

In dieser Arbeit werden durchgehend die Konventionen

~ ≡ 1 und m ≡ 1 (1.1)

berücksichtigt, wobei m die Masse repräsentiert. Damit gilt für die Einheiten von Länge,
Zeit und Energie:

[Z] = [L2] und [E] = [Z−1] = [L−2]. (1.2)

Weitgehend werden aber in der Analyse zweckmäÿigere, dimensionslose Gröÿen verwendet
werden.

1.2 Supersymmetrische Quantentheorie

Bei der Lösung des harmonischen Oszillators in der Quantenmechanik wird gern das
praktische Konzept der Leiteroperatoren a† und a eingeführt. Mit ihrer Hilfe kann man
bekanntlich aus einem gegebenen Zustand den Zustand nächsthöherer und -tieferer Ener-
gie erhalten. Insbesondere gehen durch mehrfaches Anwenden von a† alle Zustände aus
dem Grundzustand hervor, der wiederum Eigenzustand von a ist:

a |0〉 = 0. (1.3)

Auch lässt sich der entsprechende Hamiltonoperator durch die Leiteroperatoren

H = a†a+
1

2
(1.4)

sehr übersichtlich ausdrücken. Dieses Prinzip kann man verallgemeinern. Sei mit

H− = −1

2

d2

dx2
+ V−(x) (1.5)

ein beliebiges System gegeben, dessen Grundzustandsenergie Null ist. Dann ist

H−ψ
−
0 =

[
−1

2

d2

dx2
+ V−(x)

]
ψ−0 = 0, (1.6)

und es gilt

H− =
1

2

[
− d2

dx2
+
ψ−0
′′

ψ−0

]
mit V−(x) =

1

2

ψ−0
′′

ψ−0
. (1.7)

In dieser Form kann man H− analog zum harmonischen Oszillator als Produkt der Ope-
ratoren

B± ≡ 1√
2

[
∓ d

dx
− ψ−0

′

ψ−0

]
≡ 1√

2

[
∓ d

dx
−W (x)

]
(1.8)
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1.2 Supersymmetrische Quantentheorie

schreiben. Hier wurde das Superpotenzial

W (x) ≡ ψ−0
′

ψ−0
(1.9)

gleich mitde�niert. Die soeben de�nierten Operatoren sind über

B+ = (B−)† (1.10)

miteinander verknüpft; man bildet mit ihnen

H− = B+B− = −1

2

d2

dx2
+ V−(x) und (1.11)

H+ = B−B+ = −1

2

d2

dx2
+ V+(x). (1.12)

Darin ist

V+(x) = V−(x)− d

dx
W (x) = V−(x)−W ′(x) (1.13)

das sog. supersymmetrische Partnerpotenzial zu V−(x). Es ist leicht nachzuprüfen, dass

V±(x) =
1

2
[W 2(x)±W ′(x)] (1.14)

gilt. Man hat also zwei Hamiltonoperatoren H− und H+ mit den über (1.13) verbundenen
Potenzialen V−(x) und V+(x). Die beiden Operatoren haben das gleiche Energiespektrum,
allerdings fehlt dem Operator H+ der unterste Zustand bei E = 0. Es gilt daher für die
Spektren:

E−n+1 = E+
n und E−0 = 0. (1.15)

Mit den Operatoren B± ist es nun möglich, zwischen den Zuständen der supersymmetri-
schen Partner auf gleichem Energieniveau zu wechseln. Dies geschieht nach den Regeln

ψ−n+1(x) =
1√
E+
n

B+ψ+
n (x) und (1.16)

ψ+
n (x) =

1√
E−n+1

B−ψ−n+1(x). (1.17)

Anschauung dazu �ndet sich in Abbildung 1.
Den Übergang von einem System zum anderen mittels der Operatoren B− bzw. B+ kann
man sich zunutze machen, wenn beispielsweise das Spektrum von H− bekannt ist. H+ ist
möglicherweise komplizierterer Natur und seine Eigenzustände sind ohne weiteres nicht
zu berechnen. Diese werden jedoch einfach durch Anwendung von B− aus den Eigenzu-
ständen von H− erhalten.
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1 Einführung

Abbildung 1: Schematische Darstellung der Energieniveaus der Partnerpotenziale und der
Wirkungsweise der B-Operatoren.

Andererseits lässt sich auch die Grundzustandswellenfunktion zu H− aus einem vorgege-
benen Superpotenzial W (x) bestimmen. Aus (1.9) folgt

ψ−0 (x) = C−0 e
−
´
dxW (x) (1.18)

mit der Normalisationskonstanten C−0 . Abschlieÿend sei erwähnt, dass für eine Normier-
barkeit von ψ−0

sign[W (x→∞)] = 1 = −sign[W (x→ −∞)] (1.19)

gefordert werden muss, denn nur so ist die Exponentialfunktion in (1.18) beschränkt.
Das Konzept der supersymmetrischen Quantenmechanik wird in [1] noch erweitert, was
im folgenden Abschnitt kurz erläutert werden soll.

1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren

Zuständen

Die Idee, aus einem zunächst beliebig gewählten Superpotenzial W (x) neue quantenme-
chanische Potenziale zu erhalten, deren Eigenzustände und Spektren sich exakt berechnen
lassen, erscheint interessant. Aus W (x) kann aber nur der Grundzustand ψ−0 (x) direkt er-
mittelt werden, die angeregten Zustände sind nicht bekannt. Geschickte Konstruktion
neuer supersymmetrischer Hamiltonpartneroperatoren erlaubt es, zumindest den ersten
angeregten Zustand ebenfalls zu berechnen. Der Hamiltonoperator

H
(1)
− = H+ − ε (1.20)

hat die Grundzustandsenergie 0, wenn ε der ersten Anregungsenergie von H−, E
−
1 , ent-

spricht. Es lassen sich dann analog

V
(1)
− (x) = V+(x)− E−1 =

1

2
[W 2

1 (x)−W ′
1(x)] (1.21)
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1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren Zuständen

und

B±1 =
1√
2

(
∓ d

dx
+W1(x)

)
(1.22)

bilden. Das Spektrum von H
(1)
− ist also das von H+, um E−1 verschoben, während die

Wellenfunktionen beider Systeme die gleiche Gestalt haben. Eine graphische Darstellung
der energetischen Situation ist in Abbildung 2 zu �nden.

Abbildung 2: Schematische Darstellung des erweiterten Systems supersymmetrischer
Partnerpotenziale.

Es gilt demnach

ψ−1 (x) = C−1 B
+ψ+

0 (x) = C−1 B
+ψ
−(1)
0 (x) = C−1 B

+e−
´
dxW1(x), (1.23)

d. h. bei Kenntnis vonW (x) (→ B+) undW1(x) ist ohne weiteres der erste angeregte Zu-
stand analytisch zugänglich. Die beiden Superpotenziale sind allerdings nicht voneinander
unabhängig. Vielmehr ergibt sich aus (1.21) und (1.13) der Zusammenhang

W 2(x) +W ′(x) = W 2
1 (x)−W ′

1(x) + 2E−1 . (1.24)

Gibt man darin ein Potenzial vor, so erhält man für das jeweils andere eine Riccatische
Di�erentialgleichung, die sich nicht mit gewöhnlichen Methoden integrieren lässt. Es ist
aber möglich, mit den Hilfspotenzialen

W+(x) = W1(x) +W (x) und (1.25)

W−(x) = W1(x)−W (x) (1.26)

die nichtlinearen Terme W 2
1 (x) und W 2(x) aus (1.24) zu eliminieren:

W ′
+(x) = W−(x)W+(x) + 2E−1 . (1.27)
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1 Einführung

Mithilfe letzterer Gleichung �ndet man schlieÿlich

W (x) =
1

2
[W+(x)−W−(x)] =

1

2

[
W+(x)−

W ′
+(x)− 2E−1
W+(x)

]
sowie (1.28)

W1(x) =
1

2
[W+(x) +W−(x)] =

1

2

[
W+(x) +

W ′
+(x)− 2E−1
W+(x)

]
. (1.29)

W+(x) ist nun einigermaÿen frei wählbar, Probleme können aber in Form von Singulari-
täten an den Nullstellen von W+(x) auftreten. Wegen (1.19) existiert derer nach (1.25)
mindestens eine. Um Singularitäten zu vermeiden, beschränkt man sich auf solcheW+(x),
die nur eine Nullstelle x0 besitzen und in deren Umgebung stetig di�erenzierbar sind. For-
dert man zusätzlich

W ′
+(x0) = 2E−1 , (1.30)

so bestimmen sich die singularitätsfreien Superpotenziale zu

W (x) =
1

2

[
W+(x)−

W ′
+(x)−W ′

+(x0)

W+(x)

]
und (1.31)

W1(x) =
1

2

[
W+(x) +

W ′
+(x)−W ′

+(x0)

W+(x)

]
. (1.32)

Das �gewöhnliche� Potenzial V−(x) berechnet sich dann gemäÿ (1.13) aus W (x), der ers-
te angeregte Eigenzustand ψ−1 nach (1.23). Die Energie dieses Zustands, die auch dem
energetischen Abstand zum auf Null liegenden Grundzustand ψ−0 entspricht, wird wegen
(1.30) bis auf eventuell auftretende Parameter durch die Wahl von W+(x) festgelegt.
Im vorliegenden Artikel [1] werden noch vier Beispiele für W+(x) angegeben, die auch
zentraler Inhalt dieser Arbeit sind und deshalb hier kurz mitsamt ihrem Ausdruck für den
Energieabstand E−1 aufgelistet werden.

Beispiel 1

Das Superpotenzial

W+(x) = A[sinh(αx)− sinh(αx0)] (1.33)

mit A,α > 0 hat seine einzige Nullstelle bei x0. Seine Ableitung ist

W ′
+(x) = αA cosh(αx), (1.34)

der erste angeregte Zustand liegt also bei

E−1 =
1

2
W ′

+(x0) =
1

2
αA cosh(αx0). (1.35)

Damit lassen sich nach (1.31) und (1.32) die Superpotenziale W (x) und W1(x) �nden:

W (x) =
1

2

{
A [sinh(αx)− sinh(αx0)]− α tanh

[
1

2
α(x+ x0)

]}
, (1.36)

W1(x) =
1

2

{
A [sinh(αx)− sinh(αx0)] + α tanh

[
1

2
α(x+ x0)

]}
. (1.37)
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1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren Zuständen

Aus W (x) wiederum erhält man schlieÿlich das zugehörige Potenzial

V−(x) =
1

2

{
A2

4
[sinh(αx)− sinh(αx0)]

2 − Aα
[
cosh(αx)− 1

2
cosh(αx0)

]
+
α2

4

}
. (1.38)

Beispiel 2

Eine weitere Möglichkeit ist

W+(x) =
A sinh(αx)

b+ c cosh(αx)
, (1.39)

das entsprechende Potenzial lautet

V−(x) =
1

8c2

(
(b2 − c2)(A+ αc)(A+ 3αc)

[b+ c cosh(αx)]2
− 2b(A+ αc)2

b+ c cosh(αx)

+
α2bc3

(b+ c)2

1

cosh2(αx/2)
+

(αc2 + A(b+ c))2

(b+ c)2

)
, (1.40)

wobei A,α, c > 0 und für die Endlichkeit beider Ausdrücke b + c > 0 gefordert wird.
Energie des ersten angeregten Zustands ist

E−1 =
αA

2(b+ c)
. (1.41)

Beispiel 3

Aus

W+(x) = ax+ bx3, (1.42)

a, b > 0, ergibt sich das Potenzial

V−(x) =
1

8
(a2 − 12b)x2 +

1

4
abx4 +

1

8
b2x6 +

3ab

8(a+ bx2)2
+

3b

8(a+ bx2)
− 1

4
a (1.43)

mit

E−1 =
1

2
a. (1.44)

Beispiel 4

Zuletzt gehören zu

W+(x) =
Ax√
b2 + x2

(1.45)

mit A > 0 das Potenzial

V−(x) =
1− A2b2

8(b2 + x2)
− Ab2

2(b2 + x2)
3
2

− 5b2

8(b2 + x2)2
+

(1 + Ab)2

8b2
(1.46)
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1 Einführung

und die Energie

E−1 =
A

2b
. (1.47)

Von besonderem Interesse ist die erste Anregungsenergie, die in diesem Verfahren �mitkon-
struiert� wird und demzufolge durch einen exakten Ausdruck gegeben ist. Alternativ lässt
sich über einen semiklassischen Zugang ein genäherter Ausdruck �nden, dessen Herleitung
im folgenden Abschnitt skizziert wird.

1.4 Die Energieaufspaltung in der semiklassischen

WKB-Approximation

Im speziellen Fall eines Doppelmuldenpotenzials kann näherungsweise eine Aussage über
die Energieaufspaltung zwischen Grundzustand und erstem angeregten Zustand mittels
der Tunnelwahrscheinlichkeit zwischen den beiden Mulden, die auch maÿgeblich für diese
relativ kleine Aufspaltung verantwortlich ist, erhalten werden. Die beiden unteren Zu-
stände sind symmetrisch (ψ−0 ) und antisymmetrisch (ψ−1 ) und sehen etwa so aus, wie in
Abbildung 3 dargestellt.

Abbildung 3: Skizzierte Wellenfunktionen der unteren beiden Eigenzustände ψ−0 und ψ−1
in einem Doppelmuldenpotenzial V (x).

Aus ihnen lassen sich zwei Mischzustände bilden, die jeweils hauptsächlich in einer Mulde
lokalisiert sind:

ψ−l =
1√
2

(ψ−0 − ψ−1 ) und ψ−r =
1√
2

(ψ−0 + ψ−1 ). (1.48)

Die eigentliche Energieaufspaltung ergibt sich nun aus dem Übergangsmatrixelement die-
ser Mischzustände,

∆E = −2 〈ψ−r |H |ψ−l 〉 . (1.49)
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1.4 Die Energieaufspaltung in der semiklassischen WKB-Approximation

In dem diesem Abschnitt zugrundeliegenden Text [2] wird dieses Matrixelement mithilfe
eines euklidischen Pfadintegrals berechnet. Ausgangspunkt ist dort die Gleichung

∆E ≈ 2

ˆ
Dx e−SE [x], (1.50)

integriert wird über alle Pfade x(τ), die die Randbedingungen

x

(
−T

2

)
= −xM sowie x

(
T

2

)
= xM (1.51)

erfüllen, wobei später der Limes T →∞ gebildet wird. Im Exponenten steht in (1.50) die
sogenannte euklidische Wirkung

SE[x] =

ˆ
dτ
[m

2
ẋ2(τ) + V (x(τ))

]
. (1.52)

Sie wird erhalten durch die Transformation t = −iτ und hängt über

SE[x(τ)] = −iS[x(−iτ)] (1.53)

mit der gewöhnlichen Wirkung S[x(t)] zusammen.
Für die uns interessierenden Potenziale ist (1.50) nicht ohne weiteres berechenbar. Man
behilft sich deshalb mit einer quadratischen Näherung von SE[x], das man dazu um den
klassischen Pfad xc entwickelt. Für einen beliebigen Pfad gelte

x(τ) = xc(τ) + y(τ). (1.54)

Dann �ndet sich für SE, wenn man bis zur zweiten Ordnung in y(τ) geht:

SE[x] = SE[xc] +
1

2

ˆ
dτ y(τ)Ay(τ) +O(y3). (1.55)

Darin ist A ein Operator und durch

A ≡ −m d2

dτ 2
+ V ′′(xc(τ)) (1.56)

de�niert. Das Zwischenergebnis für die Energieaufspaltung ist damit

∆E ≈ 2

ˆ
Dy e−SE [xc]− 1

2

´
dτ y(τ)Ay(τ) = 2 ·N · e−SE [xc] (det(A))−

1
2 . (1.57)

det(A) ist durch das Produkt der Eigenwerte von A gegeben, N ist ein Normierungsfaktor.
Im letzten Schritt wurde y(τ)→ S · q(τ) so transformiert, dass A durch S diagonalisiert
und so der gesamte Ausdruck ein Produkt von (in diesem Falle unendlich vielen) Gauÿ-
funktionen wird.
Zuletzt lässt sich noch Genaueres über SE[xc] sagen. Die klassische Lösung xc ergibt sich
aus der Extremalbedingung für SE, die wiederum die euklidische Bewegungsgleichung

m
d2x

dτ 2
=
dV

dx
(1.58)
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1 Einführung

liefert. Dies ist die Bewegungsgleichung eines Massepunktes, der sich im umgekehrten
Potenzial, in −V (x), bewegt. Die Lösung heiÿt auch �Kinklösung� und wird im Rahmen
dieser Arbeit für zwei Potenziale bestimmt. Weiter gilt der Energiesatz in euklidischer
Form,

m

2

(
dx

dτ

)2

= V (x). (1.59)

Damit ist dann

SE[xc] =

ˆ
dτ
[m

2
ẋ2 + V (x)

]
=

ˆ
dτ mẋ2 =

ˆ xM

−xM
dxmẋ =

ˆ xM

−xM
dx
√

2mV (x), (1.60)

so dass der �nale Ausdruck für die Energieaufspaltung lautet:

∆E ≈ 2K · exp

(
−
ˆ xM

−xM
dx
√

2mV (x)

)
. (1.61)

Es wurde noch K ≡ (det(A))−
1
2N gesetzt. Somit ist eine zweite Gleichung für den energe-

tischen Abstand von Grundzustand und erstem angeregten Zustand gefunden. Es manifes-
tiert sich wieder der Zusammenhang der Aufspaltung mit der Tunnelwahrscheinlichkeit,
hat doch der soeben erhaltene Ausdruck die Form eines Gamowfaktors. Zu überprüfen
bleibt, für welche der im vorangegangenen Abschnitt vorgestellten Potenziale sich das
Integral im Exponenten lösen lässt. Die Berechnung des Spektrums von A, das wiederum
für die Bestimmung des Faktors K benötigt wird, stellt eine erheblich kompliziertere
Rechnung dar, die in dieser Arbeit nicht vorgenommen wird.
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2 Analyse der QES-Potenziale Tkachuks

Im Folgenden sollen die soeben vorgestellten QES-Potenziale aus [1] auf Symmetrie und
auf Doppelmuldencharakter untersucht werden; teilweise lässt sich eine Verwandtschaft
mit dem ebenfalls quasiexakt lösbaren Razavy-Potenzial [4] aufzeigen.

2.1 Beispiel 1

Zunächst wird das Potenzial

V−(x) =
1

2

{
A2

4
[sinh(αx)− sinh(αx0)]

2 − αA
[
cosh(αx)− 1

2
cosh(αx0)

]
+
α2

4

}
(2.1)

betrachtet.
Zugunsten einer besseren Übersicht schreibt man (2.1) direkt in einer dimensionslosen
Form. In dem eingangs festgelegten Einheitensystem kommt der potenziellen Energie die
Einheit �Länge−2� zu, also ist die Dimension der Parameter α und A o�enbar jeweils
das Inverse einer Länge. Es bietet sich der Übergang zu den folgenden, dimensionsfreien
Variablen an:

z = αx und η =
A

2α
(2.2)

Nach [1] ist A,α > 0 und somit auch η > 0. In der dimensionsfreien Schrödingergleichung

1

2

d2

dz2
ψ + [ε− v−(z)]ψ = 0 (2.3)

nimmt das Potenzial dann folgende Gestalt an:

v−(z) =
1

2

{
η2[sinh(z)− sinh(z0)]

2 − 2η cosh(z) + η cosh(z0) +
1

4

}
(2.4)

mit der Konstanten z0 = αx0.
Für die Symmetrie ergibt sich

v−(−z) =
1

2

{
η2[sinh(z) + sinh(z0)]

2 − 2η cosh(z) + η cosh(z0) +
1

4

}
. (2.5)

Es ist also nur im Fall z0 = 0 die Bedingung v−(−x) = v−(x) für Achsensymmetrie
bezüglich der Hochachse erfüllt.
Ausmultiplizieren und Anwenden der Additionstheoreme liefert

v−(z) =
η2

4
[cosh(2z) + cosh(2z0)]−

η2

2
[cosh(z + z0)− cosh(z − z0)]

− η cosh(z) +
η

2
cosh(z0)−

η2

2
+

1

8
. (2.6)

Zunächst soll nur die symmetrische Form des Potenzials betrachtet werden. Es wird un-
tersucht, in welchen Fällen wirklich ein sog. Doppelmuldenpotenzial vorliegt.
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2 Analyse der QES-Potenziale Tkachuks

2.1.1 Der symmetrische Fall z0 = 0

Im Fall einer Achsensymmetrie zur Hochachse gilt stets v′−(0) = 0. Für die Existenz einer
Doppelmulde wird gefordert, dass bei z = 0 ein Maximum vorliegt, d. h. es muss v′′−(0) < 0
erfüllt sein. Dies ist ebenfalls notwendige Voraussetzung dafür, dass v′−(x) auÿer z = 0
noch weitere reelle Nullstellen besitzt. Mit

v−(z) =
1

4
η2 cosh(2z)− η cosh(z)− 1

4
η2 +

1

2
η +

1

8
(2.7)

v′−(z) =
1

2
η2 sinh(2z)− η sinh(z)

v′′−(z) = η2 cosh(2z)− η cosh(z)

nimmt obige Forderung die konkrete Form

v′′−(0) = η2 − η
!
< 0 ⇐⇒ η < 1 (2.8)

an. Der Doppelmuldencharakter des Potenzials ist also abhängig von η bzw. vom Ver-
hältnis der beiden Parameter α und A. Abbildung 4 zeigt Beispiele für die drei wichtigen
Fälle η < 1, η = 1 und η > 1.

Abbildung 4: v−(z) für verschiedene Werte von η bei z0 = 0. Der Grenzfall η = 1 liefert
eine besonders �ache Mulde.

Als nächstes ist die Lage der Mulden zu bestimmen. Es ergibt sich (nach erneuter An-

12



2.1 Beispiel 1

wendung der Additionstheoreme)

v′−(zM) = η2 sinh(zM) cosh(zM)− η sinh(zM) = 0

⇐⇒ cosh(zM) =
1

η

⇐⇒ zM = ±arcosh

(
1

η

)
. (2.9)

Nun wird die Verwandtschaft des Tkachuk-Potenzials (2.6) mit dem bekannten Razavy-
Potenzial untersucht. Letzteres schreibt sich in den eingangs gewählten Einheiten

VR(x) =
β2

2

[
1

8
ξ2 cosh(4βx)− (n+ 1)ξ cosh(2βx)− 1

8
ξ2

]
. (2.10)

O�ensichtlich ist es achsensymmetrisch und kann daher nur einem Tkachuk-Potenzial für
z0 = 0 entsprechen. Mit y = 2βx lautet es in dimensionsloser Form:

vR(y) =
1

8

[
1

8
ξ2 cosh(2y)− (n+ 1)ξ cosh(y)− 1

8
ξ2

]
. (2.11)

Zunächst werden beide Potenziale so verschoben, dass ihre Mulden auf Nullniveau liegen.
Der Ort der Mulden des Tkachuk-Potenzials, zM , ist in (2.9) angegeben, ihre Energie
beläuft sich auf

v−(zM) =
η2

4
cosh(2zM)− η cosh(zM) +

1

8
+
η

2
− η2

4
(2.9)
=

η2

4

{
cosh2

[
arcosh

(
1

η

)]
+ sinh2

[
arcosh

(
1

η

)]}
− 1 +

1

8
+
η

2
− η2

4

=
η2

4

{
1

η2
+ sinh2

[
arsinh

(√
1

η2
− 1

)]}
− 7

8
+
η

2
− η2

4

= −3

8
+
η

2
− η2

2
. (2.12)

Das verschobene Potenzial ergibt sich dann zu

v0(z) = v−(z)− v−(zM) =
η2

4
cosh(2z)− η cosh(z) +

1

2
+
η2

4

=
η2

4
cosh2(z)− η cosh(z) +

1

2
+
η2

4
[sinh2(z) + 1]

=
1

2

[
η2 cosh2(z)− 2η cosh(z) + 1

]
=

1

2
[η cosh(z)− 1]2 . (2.13)

Im Falle des Razavy-Potenzials erhält man durch analoges Vorgehen die Mulden

yMR
= ±arcosh

(
2(n+ 1)

ξ

)
(2.14)
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2 Analyse der QES-Potenziale Tkachuks

mit der Energie

vR(yMR
) = −1

8

(
ξ2

4
+ (n+ 1)2

)
. (2.15)

Damit ist das verschobene Razavy-Potenzial gegeben durch

v0R(y) = vR(y)− vR(yMR
) =

(n+ 1)2

8

[
ξ

2(n+ 1)
cosh(y)− 1

]2

. (2.16)

O�ensichtlich entspricht also das Tkachuk-Potenzial dem Razavy-Potenzial für n = 1,
wenn man gleichzeitig

η =
ξ

4
(2.17)

fordert. In dem Fall entsprechen sich auch die in [1] und [4] angeführten Werte für die
Energiedi�erenz der beiden untersten Eigenzustände. Beim Vergleich ist zu beachten,
dass die Autoren der Artikel unterschiedliche Skalierungen und Einheitenkonventionen
verwenden. Im System dieser Arbeit ist der Abstand jeweils mit

∆εT = η =
ξ

4
(2.18)

anzugeben.

2.1.2 Der asymmetrische Fall z0 6= 0

Sei nun z0 > 0 und gleichzeitig η < 1. Aufgrund einer guten Anschaulichkeit soll nun das
Potenzial aus (2.6) in eine Reihe entwickelt werden.

v−(z) =
∞∑
k=0

1

(2k)!

(
22k−2η2 − η

)
z2k − η2 sinh(z0)

∞∑
k=0

1

(2k + 1)!
z2k+1. (2.19)

Man sieht deutlich, dass für z0 6= 0 zu einem geraden Teil des Potenzials eine ungerade
�Störung� addiert wird. Die Koe�zienten

K ′(k) = − η2

(2k + 1)!
sinh(z0) (2.20)

sind für jede Wahl von η negativ, d. h. der antisymmetrische Potenzialteil ist streng mono-
ton fallend. Die Folge für das gesamte Potenzial ist, ausgehend vom symmetrischen Teil,
eine Verschiebung der Potenziallinie nach oben im Bereich negativer z und eine Verschie-
bung nach unten für positive z, während v−(0) unverändert bleibt. Das bedeutet einerseits
den schon erwähnten Verlust der Achsensymmetrie, andererseits lässt sich demnach auÿer
z0 = 0 kein weiteres Potenzial �nden, bei dem die Mulden auf gleichem Niveau liegen.
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2.1 Beispiel 1

Abbildung 5: V−(x) für η = 1
2
und verschiedene Werte von z0; bei z0 > 0 verschwindet die

Achsensymmetrie, ab z0 ≈ 0,44 auch die linke Mulde. Im Grenzfall liegt ein
Sattelpunkt vor.

Jetzt ist zu untersuchen, für welche z0 v−(z) seinen Doppelmuldencharakter beibehält.
Sei

v−(z) = g(z) + sinh(z0) · u(z) (2.21)

die Darstellung von v−(z) als Summe des geraden und ungeraden Anteils und zM die
Stelle der Mulden im symmetrischen Fall (z0 = 0, v−(z) = g(z)). Dann gilt wegen der
Symmetrieeigenschaften und der Monotonie des ungeraden Teils von v−(z) für genügend
kleine z0:

v′−(zM) = sinh(z0) · u′(zM) < 0 und v′−(0) = sinh(z0) · u′(0) < 0. (2.22)

Für wachsendes z0 verschieben sich also die Mulden zu höheren z-Werten, das lokale Ma-
ximum in der Mitte hingegen zu niedrigeren, bis bei einem bestimmten z0 linke Mulde und
lokales Maximum zusammenfallen und somit eine der beiden Mulden verschwindet. Dieses
z0 lässt sich analytisch nicht bestimmen, für η = 1

2
�ndet sich ein Wert von z0 ≈ 0,436.

Zur Veranschaulichung diene Abbildung 5.
Wegen sinh(−z0) = − sinh(z0) entnimmt man (2.19), dass für negative z0 die gleichen
Überlegungen gelten, wenn man das Potenzial an der Hochachse spiegelt.
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2 Analyse der QES-Potenziale Tkachuks

2.2 Beispiel 2

Als zweites soll das Potenzial

V−(x) =
1

8c2

(
(b2 − c2)(A+ αc)(A+ 3αc)

[b+ c cosh(αx)]2
− 2b(A+ αc)2

b+ c cosh(αx)

+
α2bc3

(b+ c)2

1

cosh2(αx/2)
+

(αc2 + A(b+ c))2

(b+ c)2

)
(2.23)

behandelt werden. Für die Parameter wird A,α, c > 0 und b + c > 0 gefordert. Die
Achsensymmetrie ist leicht ersichtlich, da x nur in Form von geraden hyperbolischen
Kosinusfunktionen eingeht. Unter Verwendung von

cosh2(αx/2) =
1

2
[cosh(αx) + 1] (2.24)

kommt man auf den Ausdruck

V−(x) =
1

8c2

(
(b2 − c2)(A+ αc)(A+ 3αc)

[b+ c cosh(αx)]2
− 2b(A+ αc)2

b+ c cosh(αx)

+
2α2bc3

(b+ c)2

1

[1 + cosh(αx)]
+

(αc2 + A(b+ c))2

(b+ c)2

)
. (2.25)

Auch hier kann durch entsprechende Substitutionen ein Parameter eliminiert werden.
b und c sind bereits dimensionslos, α und A sind verwandt mit den gleichnamigen Para-
metern aus Abschnitt 2.1. Es ist naheliegend, analog zum vorangegangenen Beispiel die
neuen Variablen gemäÿ (2.2) zu wählen. Es ergibt sich

v−(z) =
1

8c2

(
(b2 − c2)(2η + c)(2η + 3c)

[b+ c cosh(z)]2
− 2b(2η + c)2

b+ c cosh(z)

+
2bc3

(b+ c)2

1

[1 + cosh(z)]
+

(c2 + 2η(b+ c))2

(b+ c)2

)
. (2.26)

Weiter ist zu bemerken, dass dieses Potenzial eine Verallgemeinerung des bereits bespro-
chenen Potenzials Tkachuks darstellt. Vergleicht man die ursprünglichen Superpotenziale
beider Beispiele, (1.33) und (1.39), so stellt man fest, dass im Limes c→ 0 und für b = 1
wieder das Potenzial aus dem ersten Beispiel erhalten werden muss. Tatsächlich geht im
angesprochenen Grenzfall (2.26) in (2.4) (für z0 = 0) über. Die Auswertung dieses Grenz-
falles ist durchaus nicht trivial, es bleiben Teile mehrerer der Summanden aus (2.26) übrig,
deren Grenzverhalten nur mithilfe des Satzes von de l'Hospital untersucht werden kann.
An dieser Stelle kann man durch zwei weitere Ersetzungen zusätzlich einen Parameter
einsparen. Dazu setzt man

c ≡ ηγ und b ≡ ηγ

β
, (2.27)

so dass das Potenzial die folgende Gestalt annimmt:

v−(z) =
1

8γ2

(
(1− β2)(2 + γ)(2 + 3γ)

[1 + β cosh(z)]2
− 2(2 + γ)2

1 + β cosh(z)

+
2βγ2

(1 + β)2

1

[1 + cosh(z)]
+

(βγ + 2(1 + β))2

(1 + β)2

)
. (2.28)
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2.2 Beispiel 2

Wegen c, η > 0 gilt auch γ > 0. Anstelle von c→ 0 und b = 1 kann man analog den Limes
β, γ → 0 bilden. Da aber der Parameter η eliminiert wurde, haben die entsprechenden
Ausdrücke nur bedingt die Gestalt aus Abschnitt 2.1.
Im Gegensatz zum vorher Besprochenen geht dieses Potenzial für groÿe z asymptotisch
gegen einen festen Wert:

v−(z)
z→∞−→ 1

8

(
γβ + 2(1 + β)

γ(1 + β)

)2

. (2.29)

Zur Bestimmung der Bedingungen an die Parameter für das Vorliegen eines Doppelmul-
dentyps wird wieder die zweite Ableitung des Potenzials benötigt. Es ist

v′−(z) =
β

4γ2

(
− sinh(z)

(1− β2)(2 + γ)(2 + 3γ)

[1 + β cosh(z)]3
+

sinh(z)(2 + γ)2

[1 + β cosh(z)]2

−γ
2 sinh(z)

(1 + β)2

1

[1 + cosh(z)]2

)
(2.30)

und

v′′−(z) =
β

4γ2

(
[2β cosh2(z)− cosh(z)− 3β]

(1− β2)(2 + γ)(2 + 3γ)

[1 + β cosh(z)]4

− [β cosh2(z)− cosh(z)− 2β]
(2 + γ)2

[1 + β cosh(z)]3

+
γ2

(1 + β)2

cosh2(z)− cosh(z)− 2

[1 + cosh(z)]3

)
. (2.31)

Es muss gelten:

v′′−(0) < 0 ⇐⇒ β

4γ2

(
−(1− β2)(2 + γ)(2 + 3γ)

(1 + β)3
+

(2 + γ)2

(1 + β)2
− γ2

4(1 + β)2

)
< 0

⇐⇒ −4(1− β)(2 + γ)(2 + 3γ) + 4(2 + γ)2 − γ2 < 0

⇐⇒ 4β(3γ2 + 8γ + 4) < γ(16 + 9γ)

⇐⇒ β <
γ(16 + 9γ)

4(2 + γ)(2 + 3γ)
. (2.32)

Wegen γ > 0 gilt (wie bereits in der vorangegangenen Rechnung angenommen) auch
β > 0, denn für ein β < 0 ergäbe sich entsprechend

0 > β >
γ(16 + 9γ)

4(2 + γ)(2 + 3γ)
, (2.33)

was eben aufgrund von γ > 0 nicht möglich ist. Weiterhin liest man leicht aus (2.32) ab,
dass β < 1 für jedes erlaubte γ gilt.
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2 Analyse der QES-Potenziale Tkachuks

Nun soll versucht werden, die Lage der Mulden des Potenzials zu bestimmen. Es �n-
det sich mit (2.30) nach Herauskürzen von Vorfaktoren und der sinh(z), die die �triviale�
Nullstelle bei z = 0 verursachen:

−(1− β2)(2 + γ)(2 + 3γ)

[1 + β cosh(z)]3
+

(2 + γ)2

[1 + β cosh(z)]2
− γ2

(1 + β)2

1

[1 + cosh(z)]2
!

= 0. (2.34)

Erweitern der Brüche und Umstellen liefert schlieÿlich folgende Gleichung:

[γ2(2β2 + β) + 4β(γ + 1)(1 + β)2] · y3

+[γ2(3β4 + 8β3 + 2β2 − 2β − 2) + 4γ(β2(2 + β)2 − 1) + 4β(1 + β)2(2 + β)] · y2

+[γ2(6β4 + 13β3 + 4β2 − 10β − 4) + 4γ(1 + β)2(4β2 + β − 2) + 4β(1 + β)2(2β + 1)] · y
+γ2(6β4 + 13β3 + 4β2 − 10β − 4) + 4γ(1 + β)2(4β2 + β − 2) + 4β(1 + β)2(2β + 1) = 0.

(2.35)

Darin ist y = cosh(z). Die Gleichung ist dritten Grades in y und damit analytisch lösbar,
jedoch sind die Ausdrücke für die Nullstellen derart lang, dass sie sich kaum zur weiteren
Analyse anbieten. Es gibt im Falle eines Doppelmuldenpotenzials (also bei entsprechenden
Bedingungen, die die Parameter erfüllen) eine reelle und zwei komplexe Nullstellen. Die
reelle gibt die Lage der Mulden an und sei mit y0 bezeichnet. Es ist

zM = ±arcosh(y0). (2.36)

Bei diesem Potenzial kann der Fall vorliegen, dass die mittige Barriere den endlichen
Rand überragt. Die dafür an die Parameter zu stellenden Bedingungen sind Gegenstand
der folgenden Untersuchung.
Erfüllen muss sich logischerweise

v−(0)− v−(z →∞) > 0, (2.37)

was auf

1− β
1 + β

(2 + γ)(2 + 3γ)− 2(2 + γ)2

1 + β
+

βγ2

(1 + β)2
> 0

⇐⇒ (1− β2)(2 + γ)(2 + 3γ)− 2(1 + β)(2 + γ)2 + βγ2 > 0 (2.38)

führt. Letztere Gleichung hat die Lösung

−γ
√

13γ2 + 48γ + 48 + γ2 + 8γ + 8

2(γ + 2)(3γ + 2)
< β <

γ
√

13γ2 + 48γ + 48− γ2 − 8γ − 8

2(γ + 2)(3γ + 2)
. (2.39)

Wie in Abbildung 6 illustriert, muss β für ein entsprechendes γ im Bereich zwischen den
beiden rot eingezeichneten Kurven liegen.
Da für die Doppelmuldenform, wie gesagt, β > 0 gefordert ist, beschränkt sich der Wer-
tebereich von β in Abhängigkeit von γ auf die schra�erte Fläche. Die gestrichelte Kurve
stellt nach (2.32) die Obergrenze für β dar. Für γ ≤ 2 kann die Barriere nicht höher als
der Rand liegen. Je kleiner β für gegebenes γ ist, desto weiter überragt die Barriere den
Potenzialrand, desto breiter wird sie und desto stärker abge�acht.
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2.3 Beispiel 3

Abbildung 6: Zur Bedingung für eine den Potenzialrand überragende Barriere.

Abbildung 7 zeigt das Potenzial für zwei verschiedene Werte von β.

Abbildung 7: v−(z) für γ = 10 und verschiedene Werte von β; β = 0,2 liegt innerhalb des
schra�erten Bereiches in Abbildung 6, die Barriere überragt den Rand.

2.3 Beispiel 3

Als drittes Beispiel für ein QES-Potenzial gibt Tkachuk

V−(x) =
1

8
(a2 − 12b)x2 +

1

4
abx4 +

1

8
b2x6 +

3ab

8(a+ bx2)2
+

3b

8(a+ bx2)
− 1

4
a (2.40)
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2 Analyse der QES-Potenziale Tkachuks

mit a, b > 0 an. Die Achsensymmetrie festzustellen, ist trivial. Wiederum eliminiert eine
Reskalierung einen Parameter und scha�t bessere Übersicht:

y =

√
b

a
x und ζ =

a2

b
. (2.41)

Das Potenzial in der dimensionslosen Schrödingergleichung (vgl. (2.3)) liest sich dann:

v−(y) =
1

8
(ζ2 − 12ζ)y2 +

1

4
ζ2y4 +

1

8
ζ2y6 +

3

8(1 + y2)2
+

3

8(1 + y2)
− 1

4
ζ. (2.42)

Für spätere Zwecke sei auch noch die Reihenentwicklung angegeben:

v−(y) =− 1

4
ζ +

3

4
+

[
1

8
(ζ2 − 12ζ)− 9

8

]
y2 +

[
1

4
ζ2 +

3

2

]
y4 +

[
1

8
ζ2 − 15

8

]
y6

+
3

8

∞∑
k=4

(k + 2)(−1)ky2k. (2.43)

Soll ein Doppelmuldentyp vorliegen, so muss wieder v′′−(0) < 0 gelten. An dieser Stelle
nutzen wir die Reihenentwicklung aus. Die entsprechende Forderung lautet dann, dass der
Koe�zient der Ordnung y2 negativ sein muss. Dies führt auf die Ungleichung

1

8
(ζ2 − 12ζ)− 9

8
< 0

ζ2 − 12ζ − 9 < 0

ζ <
√

45 + 6 ≈ 12,7 , (2.44)

die demnach das Kriterium für das Vorliegen einer Doppelmulde ist. Anschauung dazu
bietet Abbildung 8.

Abbildung 8: v−(z) für ζ = 12,6 (links) und ζ = 12,8 (rechts); da der Quotient dicht am
Schwellenwert liegt, sind die Mulden äuÿerst �ach.

Die zweite Lösung für ζ ist negativ und somit nicht zulässig.
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2.3 Beispiel 3

Die Minima des Potenzials werden wieder mithilfe der ersten Ableitung bestimmt:

v′−(y) =
1

4
(ζ2 − 12ζ)y + ζ2y3 +

3

4
ζ2y5 − 3y

2(1 + y2)3
− 3y

4(1 + y2)2
. (2.45)

Nach Erweitern der Brüche und Herauskürzen der trivialen Nullstelle y = 0 bleibt folgende
Gleichung zu lösen:

3ζ2y10 + 13ζ2y8 + 2ζ(11ζ − 6)y6 + 18ζ(ζ − 2)y4 + (7ζ2 − 36ζ − 3)y2

= −ζ2 + 12ζ + 9. (2.46)

Diese Gleichung lässt sich durch Substitution t = y2 + 1 auf eine einfachere Gleichung
fünften Grades bringen:

3ζ2t5 − 2ζ2t4 − 12ζt3 − 3t− 6 = 0. (2.47)

Die Nullstellen entziehen sich dennoch dem analytischen Zugri�, auch mit �Mathematica�
konnte kein Ergebnis erzielt werden. Wohl lässt sich (2.47) nach ζ au�ösen:

ζ =

√
45t2 + 12t− 12± 6t

t(2− 3t)
. (2.48)

Für t = 1, also y = 0, ist ζ = 6 +
√

45. Es handelt sich um die Grenze zum Doppelmul-
dencharakter und die Potenzialableitung hat nur reelle Nullstellen bei y = 0. Aber man
erhält auch im Fall t = 2 bzw. y = ±1 mit ζ =

√
3

2
+ 3

4
ein �übersichtliches� Resultat. D. h.

für solche Wahl des Parameters liegen die Potenzialmulden auf y = 1 und y = −1. Das so
gescha�ene parameterlose Potenzial lässt sich problemlos auf Nullniveau verschieben und
hat dort die Form

v1
0(y) =

3(y + 1)2(y − 1)2[(4
√

3 + 7)y6 + (24
√

3 + 42)y4 + (36
√

3 + 71)y2 + 16
√

3 + 40]

128(y2 + 1)2
.

(2.49)

Dieser Ausdruck eignet sich allerdings nicht, um ihn später im Rahmen der Berechnung
der Energieaufspaltung zu verwenden, da die Quadratwurzel sich nur teilweise explizit
ziehen lässt.
Eine andere Möglichkeit ist, das Potenzial nur bis zur 4. Ordnung seiner Potenzreihen-
entwicklung zu verwenden:

ṽ(y) = −1

4
ζ +

3

4
+

[
1

8
(ζ2 − 12ζ)− 9

8

]
y2 +

[
1

4
ζ2 +

3

2

]
y4. (2.50)

Eine Aussage darüber, für welche ζ diese Approximation gut ist, lässt sich mit folgender
Abschätzung machen:
Die Di�erenzenfunktion von exaktem und genähertem Potenzial ist gegeben durch

f(y) =
9

8
y2 − 3

2
y4 +

1

8
ζy6 +

3

8(1 + y2)2
+

3

8(1 + y2)
− 3

4
. (2.51)
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2 Analyse der QES-Potenziale Tkachuks

Sie sollte auf einem gewissen Intervall um y = 0 möglichst wenig von 0 abweichen. Als
Maÿ dafür kann man das Integral über diesem Intervall nehmen und untersuchen, für
welches ζ sich der Betrag dieses Integrals minimiert:

A(ζ,ε) =

∣∣∣∣ˆ ε

0

dy f(y)

∣∣∣∣ =

∣∣∣∣ 9

16
arctan(ε) +

ζ2

56
ε2 − 3

10
ε5 +

3

8
ε3 − 3

4
ε+

3ε

16(ε2 + 1)

∣∣∣∣ . (2.52)

Eine sinnvolle Intervallgrenze scheint ε = 1 zu sein, da etwa dort die Potenzialmulden
liegen, wenn ζ sich seinem Idealwert annähert und die beiden Potenziale nach optischer
Abschätzung gut übereinstimmen. Dann nimmt auch der obige Ausdruck eine einfache
Form an:

A(ζ,1) =

∣∣∣∣ ζ2

56
+

9π

64
− 93

160

∣∣∣∣ . (2.53)

A(ζ,1) verschwindet für

ζ∗ =

√
210(62− 15π)

20
≈ 2,79 (2.54)

und ist dort minimal. Der Wert entspricht relativ gut dem zuvor graphisch grob gesuch-
ten. (s. Abb. 9) Bis etwas über die Mulden hinaus stimmen die beiden Potenziale v−(y)
und ṽ(y) gut überein, danach machen sich in ṽ(y) die fehlenden höheren Potenzen von y
bemerkbar.

Abbildung 9: v−(y) (rot) und ṽ(y) (blau) für ζ = ζ∗ = 2,79.
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2.4 Beispiel 4

Es wird also das Potenzial (2.50) behandelt. Es ist

ṽ′(y) =

[
1

4
(ζ2 − 12ζ)− 9

4

]
x+

[
ζ2 + 6

]
x3, (2.55)

und neben y = 0 �nden sich die Nullstellen

yM = ±1

2

√
−ζ2 + 12ζ + 9

ζ2 + 6
. (2.56)

(2.44) garantiert, dass yM reell ist und somit eine Doppelmulde existiert. Die energetische
Lage der Mulden ergibt sich zu

ṽ(yM) = −ζ
4 − 8ζ3 + 78ζ2 + 312ζ − 207

64(ζ2 + 6)
. (2.57)

Für spätere Zwecke wird auch der Ausdruck für das auf Nullniveau verschobene Potenzial
angegeben. Man erhält

ṽ0(y) = ṽ(y)− ṽ(yM) =
1

4
(ζ2 + 6)y4 − 1

8
(−ζ2 + 12ζ + 9)y2 +

(−ζ2 + 12ζ + 9)2

64(ζ2 + 6)

=

(
1

2

√
ζ2 + 6 y2 − −ζ

2 + 12ζ + 9

8
√
ζ2 + 6

)2

=
(−ζ2 + 12ζ + 9)2

64(ζ2 + 6)

(
4(ζ2 + 6)

−ζ2 + 12ζ + 9
y2 − 1

)2

. (2.58)

Es sei auf die formale Ähnlichkeit zum verschobenen Potenzial aus Beispiel 1 hingewiesen,
in dem anstelle von y2 der ebenfalls gerade Kosinus hyperbolicus auftritt.

2.4 Beispiel 4

Viertes und letztes Beispiel der zitierten Verö�entlichung ist das augenfällig achsensym-
metrische Potenzial

V−(x) =
1− A2b2

8(b2 + x2)
− Ab2

2(b2 + x2)
3
2

− 5b2

8(b2 + x2)2
+

(1 + Ab)2

8b2
(2.59)

mit der entsprechenden Potenzreihenform

V−(x) =
(1 + Ab)2

8b2

+
1

2b

∞∑
k=0

[
(1− A2b2)

4b
− A(2k + 1)(2k − 1) · . . . · 1

2k(2k − 2) · . . . · 2
− 5(k + 1)

4b

]
(−1)k

(x
b

)2k

.

(2.60)
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2 Analyse der QES-Potenziale Tkachuks

Das bekannte Prozedere für den Koe�zienten der zweiten Ordnung liefert

(Ab+ 3)2

8b4
< 0, (2.61)

was für kein Paar reeller Parameter A und b erfüllt ist. Somit ist das vorliegende Potenzial
nicht vom Doppelmuldentyp, vielmehr liegt eine einzelne Mulde vor, und für x → ∞
nimmt das Potenzial den endlichen Wert (1+Ab)2

8b2
an.

24



3 Die Energien des ersten angeregten Zustands

Der energetische Abstand zwischen Grundzustand und erstem angeregten Zustand ist von
besonderem Interesse. In den eingangs ausgeführten Grundlagen tauchen zwei verschiede-
ne Ausdrücke für diese Energiedi�erenz auf. Zum einen enthält Tkachuks Konstruktions-
methode für quasiexakt lösbare Potenziale einen direkten, wenn auch noch parameterab-
hängigen Ausdruck für die Energie des ersten angeregten Zustands, der wegen der auf Null
gelegten Energie des Grundzustands auch der Energiedi�erenz entspricht. Andererseits ist
näherungsweise ein Zugang gegeben durch den Ansatz mit der Tunnelwahrscheinlichkeit.
Für die beiden Potenziale aus den Abschnitten 2.1.1 und 2.3, deren Muldenenergie be-
stimmt wurde und die infolge dessen genau auf Nullniveau verschoben werden konnten,
lässt sich nun die genäherte Energiedi�erenz bis auf einen Vorfaktor ermitteln. Diese gilt
es schlieÿlich, mit dem exakten Wert, den Tkachuk liefert, zu vergleichen.

3.1 Zu Beispiel 1

Im ersten Fall wurde das folgende verschobene Potenzial gefunden:

v0(z) =
1

2
[η cosh(z)− 1]2 . (3.1)

Die Gleichung für die Energiedi�erenz der beiden untersten Zustände war gegeben durch

∆E ≈ 2K · exp

(
−
ˆ xM

−xM
dx
√

2mV (x)

)
, (3.2)

−xM und xM waren darin die Ortskoordinaten der Mulden. Zunächst wird das Wirkungs-
integral im Exponenten für das obige Potenzial ausgewertet. Beim Ziehen der Wurzel ist
das Vorzeichen so zu wählen, dass der Integrand auf dem betrachteten Intervall positiv
ist. Es gilt wieder die Konvention m = 1, so dass sich mit den dimensionslosen Variablen
nachfolgende Rechnung ergibt:

SE(η) =

ˆ zM

−zM
dz [1− η cosh(z)] = [z − η sinh(z)]zM−zM

(2.9)
= 2 arcosh

(
1

η

)
− 2η sinh

[
arcosh

(
1

η

)]
= 2 arcosh

(
1

η

)
− 2η

√
1

η2
− 1

= 2 ln

(
1

η
+

√
1

η2
− 1

)
− 2
√

1− η2. (3.3)

Der vollständige Ausdruck für den Energieabstand wird dann zu

∆ε = 2k · exp

[
2
√

1− η2 − 2 ln

(
1

η
+

√
1

η2
− 1

)]
= 2k

(
1

η
+

√
1

η2
− 1

)−2

· e2
√

1−η2
. (3.4)
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3 Die Energien des ersten angeregten Zustands

Hierin ist k der in (1.61) auftretende Vorfaktor K in der angepassten, dimensionsfreien
Gestalt. Der bei Tkachuk angegebene exakte Wert ist

∆ET =
1

2
αA (3.5)

(vgl. mit (1.35) bei x0 = 0). Dem entspricht, wie bereits in Abschnitt 2.1.1 erwähnt, im
hier verwendeten, einheitenfreien System

∆εT = η. (3.6)

Für einen tiefergehenden Vergleich beider Ausdrücke ist die Kenntnis der genauen Gestalt
von k nötig. Deren Bestimmung übersteigt jedoch den Umfang dieser Arbeit. Trotzdem
sollen an dieser Stelle die beiden Resultate, bis auf den Vorfaktor, graphisch veranschau-
licht werden (s. Abb. 10). Die aus den Wurzeltermen entstehenden Anforderungen an η
für den reellen Charakter des gesamten Ausdrucks decken sich mit (2.8). Man beobach-
tet einen durchaus vergleichbaren Verlauf beider Kurven. Dennoch ist ihr Abstand nicht
konstant, d. h. für eine genauere Übereinstimmung der beiden Kurven kann k keine Kon-
stante sein, sondern muss ebenfalls von η abhängen.

Abbildung 10: Verlauf der dimensionslosen Energiedi�erenzen, das exakte Verhalten ist
die blaue Linie.

Nach [2] ist die semiklassische Approximation umso besser, je gröÿer der Betrag des
Wirkungsterms in der Exponentialfunktion in (1.61) ist. Der Wirkungsterm ist in je-
dem Falle positiv und geht mit negativem Vorzeichen ein, so dass bei kleinstem Ein�uss
der Exponentialfunktion die Güte der Näherung am gröÿten wird. Demnach müsste sich
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3.2 Zu Beispiel 3

in Abbildung 10 die Übereinstimmung der beiden Kurven für kleines η verbessern. Dies
ist nicht zu beobachten, allerdings ist aufgrund des unbekannten Faktors k ein aussage-
kräftiger Vergleich nur beschränkt möglich. Für η → 0 ist

∆ε(η)

2k
∝ e2

4
η2, (3.7)

es ist also dementsprechend ein k zu erwarten, das im besagten Grenzfall mit 1
η
geht, so

dass der vollständige approximierte Ausdruck wie die exakte Lösung ein lineares Verhal-
ten aufweist.

3.2 Zu Beispiel 3

Ein zweiter Vergleich soll nun mit dem verschobenen Näherungspotenzial aus (2.58),

ṽ0(y) =
(−ζ2 + 12ζ + 9)2

64(ζ2 + 6)

(
4(ζ2 + 6)

−ζ2 + 12ζ + 9)
y2 − 1

)2

, (3.8)

angestellt werden. Zunächst wird, wie gehabt, das in (1.61) auftretende Wirkungsintegral
berechnet, wobei die in (2.56) ermittelten Minima des Potenzials als Integrationsgrenzen
verwendet werden:

SE(ζ) =
√

2
ζ2 − 12ζ − 9

8
√
ζ2 + 6

ˆ yM

−yM
dy

(
4(ζ2 + 6)

−ζ2 + 12ζ + 9
y2 − 1

)
(2.56)
=
√

2
ζ2 − 12ζ − 9

8
√
ζ2 + 6

· 2 ·

(
−

√
−ζ2 + 12ζ + 9

36(ζ2 + 6)
+

√
(−ζ2 + 12ζ + 9)

b(ζ2 + 6)

)

=

√
2

12

(−ζ2 + 12ζ + 9)
3
2

(ζ2 + 6)
. (3.9)

Bei der Bestimmung des Vorfaktors K kann man auf [2] zurückgreifen. Dort wird bei-
spielhaft das Potenzial

VM(x) = λ(x2 − α2)2 (3.10)

behandelt und der entsprechende Vorfaktor mit

KM =

√
(8λα2)

5
2

2πλ
(3.11)

angegeben. (Es wurde wiederum die Konvention m = 1 verwendet). Da das hier behan-
delte Potenzial die gleiche Form hat, lässt sich in diesem Fall ohne gröÿeren Aufwand ein
Ausdruck für K bzw. ein dimensionsfreies k �nden. Mit

ṽ0(y) =
ζ2 + 6

4

(
y2 − −ζ

2 + 12ζ + 9

4(ζ2 + 6)

)2

(3.12)
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3 Die Energien des ersten angeregten Zustands

sowie den Identi�zierungen

λ =
ζ2 + 6

4
und α2 =

−ζ2 + 12ζ + 9

4(ζ2 + 6)
(3.13)

ergibt sich schlieÿlich

k =
8

5
4

√
2π

(
ζ2 + 6

4

) 3
4
(
−ζ2 + 12ζ + 9)

4(ζ2 + 6)

) 5
4

=
2−

3
4

√
π

(−ζ2 + 12ζ + 9)
5
4√

ζ2 + 6
. (3.14)

Insgesamt ist dann der energetische Abstand gegeben durch

∆ε =
2

1
4

√
π

(−ζ2 + 12ζ + 9)
5
4√

ζ2 + 6
· exp

(
−
√

2

12

(−ζ2 + 12ζ + 9)
3
2

ζ2 + 6

)
. (3.15)

Trägt man die Energiedi�erenz gegen den Parameter ζ auf, so erhält man Abbildung 11.

Abbildung 11: ∆ε(ζ); in Rot der exakte Zusammenhang

Der exakte Wert für den Energieabstand ist in [1] aufgeführt als

∆ET =
a

2
, (3.16)

28



3.2 Zu Beispiel 3

(vgl. mit (1.44)) bzw. einheitenlos in der hier verwendeten Skalierung als

∆εT (ζ) =
1

2
ζ. (3.17)

Der graphische Vergleich beider Ergebnisse in Abbildung 11 zeigt, dass sich zumindest
in einem gewissen Bereich von ζ (etwa für 2 ≤ ζ ≤ 6) der Verlauf von roter und blauer
Kurve halbwegs ähnlich ist.
Die durchgehend gestrichelte Kurve repräsentiert die euklidische Wirkung

SE(ζ) =

√
2

12

(−ζ2 + 12ζ + 9)
3
2

ζ2 + 6
, (3.18)

die mit umgekehrten Vorzeichen im Exponenten von ∆ε (3.15) steht. Je gröÿer sie ist, de-
sto besser sollte, wie bereits beschrieben, die Approximation sein. Das Wirkungsmaximum
liegt bei

ζmax = (6
√

201 + 82)
1
3 − (6

√
201− 82)

1
3 − 2 ≈ 2,055 , (3.19)

in der Abbildung entspricht das der linken gestrichelten Hilfslinie. O�ensichtlich stimmt
die Entwicklung der Kurven an dieser Stelle relativ gut überein. Die Näherungskurve ∆ε
hat dort eine Steigung von etwa 0,3, dem steht eine ähnliche Steigung von 0,5 der exakten
Geraden gegenüber. Vergleicht man die beiden Energieaufspaltungen

∆ε(ζmax) ≈ 2,282 (3.20)

und

∆εT (ζmax) ≈ 1,028 , (3.21)

so ergibt sich

∆ε(ζmax) ≈ 2,221 ·∆εT (ζmax), (3.22)

d. h. die Näherung liefert gut den doppelten Wert.
Die rechte gestrichelte Hilfslinie in Abbildung 11 markiert einen weiteren interessanten
Punkt, dort ist nämlich ζ∗ ≈ 2,795, für das das verwendete Näherungspotenzial dem
�Original� besonders ähnlich ist. Hier ho�t man also, einen sehr authentischen Wert dieser
semiklassischen Näherung zu bekommen, den man dann entsprechend gut dem exakten
Resultat für das exakte Potenzial gegenüberstellen kann. Die Steigung der semiklassischen
Kurve ist hier etwa 0,66 und damit leicht gröÿer als die Steigung 0,5 der exakten Kurve
∆εT . Die numerische Auswertung ergibt

∆ε(ζ∗) ≈ 2,655 (3.23)

und

∆εT (ζ∗) ≈ 1,397 , (3.24)
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3 Die Energien des ersten angeregten Zustands

was schlieÿlich

∆ε(ζ∗) ≈ 1,900 ·∆εT (ζ∗) (3.25)

bedeutet.
Man beobachtet, dass bei ζmax und ζ∗ die Kurven fast den gleichen Abstand haben, auch
ist ihr Verlauf zwischen den Punkten vergleichbar. Tatsächlich handelt es sich um den
Bereich von ζ, in dem sich die beiden Funktionen mit am ähnlichsten verhalten.

30



4 Auf dem Weg zum Vorfaktor K: Die Kinklösung

Wie bereits in der Einleitung dargelegt, spielt die sog. Kinklösung als klassische Pfad-
lösung, die die euklidische Wirkung minimiert, eine zentrale Rolle für die Bestimmung
des Vorfaktors K, der bei der Berechnung des energetischen Abstands zwischen Grund-
und erstem Anregungszustand auftritt. Aus der Kinklösung bildet man den Operator A,
dessen Eigenwerte schlieÿlich auf den gesuchten Faktor führen. Zwar wird dieser selbst
in dieser Arbeit nicht ermittelt, doch soll jene Lösung der klassischen euklidischen Bewe-
gungsgleichung noch berechnet werden.
Aus dem euklidischen Energieerhaltungssatz in (1.59) erhält man durch Trennung der
Variablen die Lösung

τ − τ0 =

ˆ xc

0

dx√
2
m
V (x)

(4.1)

für die euklidische Zeit τ , deren Umkehrung dann die gesuchte Kinklösung ist. Diese wird
nun für die beiden in Abschnitt 3 näher behandelten Potenziale bestimmt.

4.1 Kinklösung für Beispiel 1

Mit dem Potenzial aus (2.13) und m = 1 folgt die Rechnung im einheitenlosen System:

τ̃ − τ̃0 =

ˆ zc

0

dz

1− η cosh(z)
=

ˆ zc

0

dz

1− η
2
ez − η

2
e−z

y=ez

=
−2

η

ˆ ezc

1

dy

y2 − 2
η
y + 1

=
−2

η

ˆ ezc

1

dy(
y − 1

η

)2

− 1−η2

η2

s=y− 1
η

=
2

η

ˆ ezc− 1
η

1− 1
η

ds
1−η2

η2 − s2

=
1√

1− η2

[
ln

(√
1− η2 + ηs√
1− η2 − ηs

)]ezc− 1
η

1− 1
η

=
1√

1− η2
ln

(
(ηezc +

√
1− η2 − 1)(η −

√
1− η2 − 1)

(ηezc −
√

1− η2 − 1)(η +
√

1− η2 − 1)

)
. (4.2)

Der Übersicht halber de�niert man

γ ≡ η +
√

1− η2 − 1

η −
√

1− η2 − 1
und δ ≡

√
1− η2. (4.3)

Bilden der Umkehrfunktion liefert

γeδ(τ̃−τ̃0) =
ηezc + δ − 1

ηezc − δ − 1

⇐⇒ ηezc
(
γeδ(τ̃−τ̃0) − 1

)
= (1 + δ)γeδ(τ̃−τ̃0) − (1− δ)

⇐⇒ zc(τ̃) = ln

(
(1 + δ)γeδ(τ̃−τ̃0) − (1− δ)

η(γeδ(τ̃−τ̃0) − 1)

)
. (4.4)
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4 Auf dem Weg zum Vorfaktor K: Die Kinklösung

Durch Resubstitution von γ und δ erhält man

zc(τ̃) = ln

(
e
√

1−η2(τ̃−τ̃0)(
√

1− η2 − η + 1) +
√

1− η2 + η − 1

e
√

1−η2(τ̃−τ̃0)(
√

1− η2 + η − 1) +
√

1− η2 − η + 1

)
. (4.5)

Es sei bemerkt, dass es sich bei τ̃ und τ̃0 ebenfalls um einheitenlose Gröÿen handelt. Für
eine Rücktransformation zu regulären Zeiteinheiten müssen wieder die Skalierungsfaktoren
aus (2.41) verwendet werden.
Als nächstes soll das Verhalten dieser Lösung für τ̃ → ±∞ untersucht werden:

lim
τ̃→∞

zc(τ̃) = − lim
τ̃→−∞

zc(τ̃) = ln

(√
1− η2 − η + 1√
1− η2 + η − 1

)

= ln

(
(
√

1− η2 − η + 1)(
√

1− η2 + η − 1)

(
√

1− η2 + η − 1)2

)

= ln

(
1

η
+

√
1

η2
− 1

)
= arcosh

(
1

η

)
= zM . (4.6)

(4.5) genügt also den in Abschnitt 1.4 geforderten Randbedingungen. In Abbildung 12 ist
die Kinklösung zc für bestimmte Wahlen von η dargestellt. Der Nulldurchgang im tiefsten
Punkt der Potenzialmulde ist bei τ̃0, was an der Wahl der unteren Integrationsgrenze zu
Beginn von (4.2) liegt.

Abbildung 12: Graphische Darstellung der Kinklösung für verschiedene η; je kleiner η
wird, desto tiefer und weiter wird die Mulde des umgekehrten Potenzials,
entsprechend wird die Dynamik bei τ̃0 steiler.

32



4.2 Kinklösung für Beispiel 3

4.2 Kinklösung für Beispiel 3

Auch für (2.58) wird die Kinklösung ermittelt, dazu soll das Potenzial in der Form

ṽ(y) = λ(α2 − y2)2 (4.7)

verwendet werden. Es ergibt sich in dimensionslosen Gröÿen wegen |α| > |y| auf dem
betrachteten Intervall zwischen den Mulden:

τ̃ − τ̃0 =
1√
2λ

ˆ yc

0

dy

α2 − y2
=

1√
8λα

[
ln

(
α + y

α− y

)]yc
0

=
1√
8λα

ln

(
α + yc
α− yc

)
. (4.8)

Im Folgenden wird wieder die entsprechende Umkehrfunktion gesucht:

e
√

8λα(τ̃−τ̃0) =
α + yc
α− yc

⇐⇒ yc(e
√

8λα(τ̃−τ̃0) + 1) = α(e
√

8λα(τ̃−τ̃0) − 1)

⇐⇒ yc(τ̃) = α
e
√

8λα(τ̃−τ̃0) − 1

e
√

8λα(τ̃−τ̃0) + 1
= α tanh[

√
2λα(τ̃ − τ̃0)]. (4.9)

Durch Resubstitution von α und λ erhält die Lösung dann ihre endgültige Form

yc(τ̃) =

√
−ζ2 + 12ζ + 9

4(ζ2 + 6)
tanh

[√
−ζ2 + 12ζ + 9

2
√

2
(τ̃ − τ̃0)

]
. (4.10)

Im Limes τ̃ → ±∞ nimmt sie, wie gewünscht, die Werte ±yM an:

lim
τ̃→∞

α · e
2αβ(τ̃−τ̃0) − 1

e2αβ(τ̃−τ̃0) + 1
= − lim

τ̃→−∞
α · e

2αβ(τ̃−τ̃0) − 1

e2αβ(τ̃−τ̃0) + 1
= α = yM . (4.11)

In Abbildung 13 ist wieder für verschiedene ζ die Kinklösung dargestellt. Sie hat die
gleiche Form wie in Beispiel 1, auch liegt der Nulldurchlauf bei τ̃0 = 0. Für gröÿere
0 ≤ ζ ≤ 6 +

√
45 rücken die Potenzialmulden enger zusammen, die Barriere ver�acht. Ent-

sprechend ver�acht auch die Dynamik im umgekehrten Potenzial bei τ̃0.
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4 Auf dem Weg zum Vorfaktor K: Die Kinklösung

Abbildung 13: Graphische Darstellung der Kinklösung für verschiedene ζ.
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5 Zusammenfassung

Nur für das erste, in Abschnitt 2.1.1 vorgestellte Potenzial konnten die Muldenorte des
exakten Potenzials und gleichzeitg ein brauchbarer Ausdruck für das auf Nullenergie ver-
schobene Potenzial gefunden werden. Eine gewisse Ähnlickeit zum schon länger bekannten
Razavy-Potenzial motivierte einen Vergleich beider Potenziale und lieferte das Ergebnis,
dass Tkachuks Beispiel ein Spezialfall des Razavy-Potenzials (für n = 1) ist. Überein-
stimmung zeigte sich dabei erwartungsgemäÿ auch in der Energieaufspaltung der beiden
untersten Eigenzustände. Das verschobene Potenzial seinerseits wurde dann gemäÿ der
Gleichung für die semiklassische Approximation der Energieaufspaltung, (1.61), integriert,
wodurch der besagte Näherungsausdruck mit (3.4) bis auf einen Vorfaktor K angegeben
werden konnte. Der Vergleich mit dem exakten Aufspaltungswert in Abhängigkeit des
einzigen Parameters η zeigte ein in Gröÿenordnung und durchschnittlicher Steigung ver-
gleichbares Verhalten (s. Abb. 10). Tatsächlich wird aber k selbst noch einmal von η
abhängen, so dass der angestellte Vergleich nur begrenzt aussagekräftig ist. Für η → 0,
wenn der Wert der Näherungsformel besonders genau sein sollte, ist k ∝ 1

η
zu erwar-

ten, eine exakte Bestimmung des Faktors könnte das Ziel weiterführender Berechnungen
auÿerhalb dieser oder das Thema einer anderen Arbeit sein und würde sicherlich zu weite-
ren interessanten Ergebnissen führen. Die am Ende ermittelte Kinklösung (4.5) in diesem
Potenzial hat, obwohl von der Gleichung her verschieden, Ähnlichkeit mit einem Tangens
hyperbolicus und damit die angesichts der Potenzialformung erwartete Gestalt.

Eine Verallgemeinerung des vorangegangen Beispiels wurde mit Beispiel 2 behandelt. Die
entsprechend kompliziertere Form des Potenzials war letztlich Hinderungsgrund für den
Gebrauch zum Test der Energieapproximation, insbesondere die Integration des verscho-
benen Potenzials schien nicht ohne weiteres möglich zu sein. Besonderheit dieses Beispiels
war die endlich hohe äuÿere Begrenzung des Potenzials, die höher und tiefer als die mittige
Barriere liegen kann. Die entsprechende Bedingung wurde zu (2.39) ermittelt.

Das dritte Beispiel wurde nur näherungsweise behandelt, da die genaue Position der Mul-
den nicht analytisch bestimmt und damit das Potenzial nicht, wie erforderlich, mit den
Mulden auf Nullniveau gelegt werden konnte. Nach der Reduktion der Parameter auf ζ
und einer Umskalierung war dies zwar für festgelegte ζ möglich, jedoch der resultierende
Ausdruck zur Integration im Sinne von (1.61) nicht geeignet. Hilfsweise wurde mit der
Reihenentwicklung des Potenzials bis vierter Ordnung die Analyse fortgesetzt. Ein Pa-
rameterwert ζ∗, bei dem diese Näherung recht genau ist, konnte mithilfe der Di�eren-
zenfunktion von exaktem und genähertem Potenzial gefunden werden. Das genäherte
und verschobene Potenzial lieÿ sich dann problemlos im Rahmen der Berechnung von
(1.61) integrieren. Ein weiterer Vorteil der Potenzialnäherung war, dass in Analogie zu
einem Beispiel in [2] der im ersten Fall unbestimmt gebliebene Vorfaktor K identi�ziert
werden konnte. So ergab sich mit (3.15) ein vollständig bestimmter und zum Vergleich
(s. Abb. 11) tauglicher Ausdruck, der allerdings nur näherungsweise das richtige Potenzial
repräsentiert. Gesondert wurden zwei Werte von ζ betrachtet, zum einen ζmax, für das die
semiklassische Approximation am genauesten sein soll, zum anderen ζ∗, für das ja das ver-
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5 Zusammenfassung

wendete Näherungspotenzial dem eigentlichen sehr nahe kommt. An diesen Punkten sind
die approximierten Werte jeweils etwa das Doppelte der exakten; der Verlauf der Kurven
zwischen den Punkten ist ähnlich, ihr Abstand etwa konstant. Für andere Werte von ζ
stimmen genähertes und vollständiges Potenzial nicht unbedingt gut überein. Das zum
Teil sehr unterschiedliche Verhalten der Graphen in Abbildung 11 lässt daher nicht zwin-
gend auf mangelnde Genauigkeit der halbklassischen Energieaufspaltungsformel schlieÿen.
Zuletzt wurde auch hier die Kinklösung bestimmt, die in Analogie zu dem Beispiel in [2]
durch einen Tangens hyperbolicus gegeben ist.

Ein viertes Beispiel wurde zwar untersucht, da es aber unter keinen Umständen ein Dop-
pelmuldenpotenzial darstellt, fand es für die weitere Analyse keine Berücksichtigung mehr.
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