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1 Einfithrung

Bekanntermafsen existieren in der schrodingerschen Quantenmechanik einige wenige exakt
l16sbare Systeme. Diese sind in der Regel sehr einfachen Charakters, ihre Potenziale wei-
sen grofe Symmetrien auf und schaffen einfache Randbedingungen. Dem steht eine grofe
Zahl mitunter nur wenig komplexerer Systeme gegeniiber, deren Losung nicht auf analy-
tischem Wege gefunden werden kann. Der Kanon der exakt l6sbaren Systeme wird noch
erweitert durch diejenigen, die als sog. supersymmetrischer Partner eines exakt 16sba-
ren Systems ebenfalls ein solches darstellen. Schlielich erlaubt die supersymmetrische
Quantentheorie die Bestimmung einer dritten Klasse, ndmlich die der quasiexakt l6sba-
ren Systeme (,QES-Systeme”). Eine mégliche Methode dazu wird in [I] vorgestellt und
soll hier kurz skizziert werden. Am selben Ort sind auch Beispiele sog. QES-Potenziale
aufgefiihrt, fiir die sich Grundzustand und erster angeregter Zustand mit ihrem energeti-
schen Abstand exakt berechnen lassen und deren nihere Analyse ein Teil dieser Arbeit ist.
Hierbei wurde der Fokus auf Potenziale mit Doppelmuldencharakter gerichtet. Im Falle
einer solchen Potenzialform kann man die Energiedifferenz zwischen den beiden untersten
Zustidnden alternativ in der semiklassischen Approximation berechnen (vgl. [2]). Der Ver-
gleich der Resultate beider Methoden ist ebenfalls Gegenstand dieser Arbeit. Im Rahmen
der semiklassischen Naherung spielt die Losung der klassischen Bewegungsgleichung eines
Massenpunktes im umgekehrten Potenzial, die sog. Kinkldsung, eine zentrale Rolle und
wird deshalb am Schluss der Arbeit fiir die ausfiihrlicher analysierten Potenzialbeispiele
bestimmt.



1 Einfiihrung

1.1 Einheitensystem

In dieser Arbeit werden durchgehend die Konventionen
h=1 und m=1 (1.1)

beriicksichtigt, wobei m die Masse repréisentiert. Damit gilt fiir die Einheiten von Léinge,
Zeit und Energie:

[2]=1[L"] und [E]=[Z2""]=[L""]. (1.2)

Weitgehend werden aber in der Analyse zweckméfigere, dimensionslose Gréfen verwendet
werden.

1.2 Supersymmetrische Quantentheorie

Bei der Losung des harmonischen Oszillators in der Quantenmechanik wird gern das
praktische Konzept der Leiteroperatoren a' und a eingefiihrt. Mit ihrer Hilfe kann man
bekanntlich aus einem gegebenen Zustand den Zustand néchsthoherer und -tieferer Ener-
gie erhalten. Insbesondere gehen durch mehrfaches Anwenden von a! alle Zustéinde aus
dem Grundzustand hervor, der wiederum Eigenzustand von a ist:

al0) =0. (1.3)
Auch lisst sich der entsprechende Hamiltonoperator durch die Leiteroperatoren

1
H=a'a+ 5 (1.4)

sehr iibersichtlich ausdriicken. Dieses Prinzip kann man verallgemeinern. Sei mit

Ho— 1t v (1.5)
T 2dx? —\r '

ein beliebiges System gegeben, dessen Grundzustandsenergie Null ist. Dann ist

H_+y = 1—d2 V. o =0 1.6
Jbo - [_§d$2 + (x)l ’[p(] - Y% ( : )
und es gilt
B 1 d2 ¢0—u ) B 1¢0—//
H, = 5 {—@ + ¢—0_:| mit V,(ﬁ) = 5% (17)

In dieser Form kann man H_ analog zum harmonischen Oszillator als Produkt der Ope-
ratoren

P - Wia)] (18)



1.2 Supersymmetrische Quantentheorie

schreiben. Hier wurde das Superpotenzial

Wi(x) = 1.9
(z) b (1.9)
gleich mitdefiniert. Die soeben definierten Operatoren sind iiber
Bt = (B)! (1.10)
miteinander verkniipft; man bildet mit ihnen
H —B+B_——1d—2+V( ) nd (1.11)
= =5 _(x u .
.. 1 d?
Darin ist
d
Vi(z) =V_(z) — EW(x) =V (z) = W(z) (1.13)

das sog. supersymmetrische Partnerpotenzial zu V_(x). Es ist leicht nachzupriifen, dass
1
Vi(z) = E[WQ(m) + W'(2)] (1.14)

gilt. Man hat also zwei Hamiltonoperatoren H_ und H, mit den iiber ((1.13]) verbundenen
Potenzialen V_(x) und V. (x). Die beiden Operatoren haben das gleiche Energiespektrum,
allerdings fehlt dem Operator H, der unterste Zustand bei E = 0. Es gilt daher fiir die
Spektren:

E,  ,=Ef und Ey; =0. (1.15)

Mit den Operatoren B¥ ist es nun mdoglich, zwischen den Zustinden der supersymmetri-
schen Partner auf gleichem Energieniveau zu wechseln. Dies geschieht nach den Regeln

1
U (2) = \/—E—:Bﬂﬁ(?ﬂ) und (1.16)
V() = ——B vy (x). (117)
Bt

Anschauung dazu findet sich in Abbildung

Den Ubergang von einem System zum anderen mittels der Operatoren B~ bzw. BT kann
man sich zunutze machen, wenn beispielsweise das Spektrum von H_ bekannt ist. H, ist
moglicherweise komplizierterer Natur und seine Eigenzustinde sind ohne weiteres nicht
zu berechnen. Diese werden jedoch einfach durch Anwendung von B~ aus den Eigenzu-
stdnden von H_ erhalten.



1 Einfiihrung
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Abbildung 1: Schematische Darstellung der Energieniveaus der Partnerpotenziale und der
Wirkungsweise der B-Operatoren.

Andererseits ldsst sich auch die Grundzustandswellenfunktion zu H_ aus einem vorgege-
benen Superpotenzial W (x) bestimmen. Aus (1.9) folgt

Yy () = Cye W (1.18)
mit der Normalisationskonstanten C; . Abschliefend sei erwéhnt, dass fiir eine Normier-
barkeit von 1,

sign[W(x — o0)] = 1 = —sign[W(zx — —o0)] (1.19)

gefordert werden muss, denn nur so ist die Exponentialfunktion in ((1.18)) beschrankt.
Das Konzept der supersymmetrischen Quantenmechanik wird in [I] noch erweitert, was
im folgenden Abschnitt kurz erldutert werden soll.

1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren
Zustanden

Die Idee, aus einem zunéchst beliebig gewahlten Superpotenzial W (x) neue quantenme-
chanische Potenziale zu erhalten, deren Eigenzustinde und Spektren sich exakt berechnen
lassen, erscheint interessant. Aus W (x) kann aber nur der Grundzustand 1, (z) direkt er-
mittelt werden, die angeregten Zustédnde sind nicht bekannt. Geschickte Konstruktion
neuer supersymmetrischer Hamiltonpartneroperatoren erlaubt es, zumindest den ersten
angeregten Zustand ebenfalls zu berechnen. Der Hamiltonoperator

HY = H, —¢ (1.20)

hat die Grundzustandsenergie 0, wenn ¢ der ersten Anregungsenergie von H_, F|, ent-
spricht. Es lassen sich dann analog

VO () = Vi) - By = 5Wia) — Wi(w)] (1.21)



1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren Zustinden

und

Bf = % (:F% + Wl(x)) (1.22)

bilden. Das Spektrum von HY ist also das von H,, um E; verschoben, wihrend die
Wellenfunktionen beider Systeme die gleiche Gestalt haben. Eine graphische Darstellung
der energetischen Situation ist in Abbildung [2| zu finden.

Abbildung 2: Schematische Darstellung des erweiterten Systems supersymmetrischer
Partnerpotenziale.

Es gilt demnach
Yr (z) = Oy BY (1) = Cy By V(w) = Oy BYe 140, (1.23)

d. h. bei Kenntnis von W (z) (— B*) und W;(z) ist ohne weiteres der erste angeregte Zu-
stand analytisch zuginglich. Die beiden Superpotenziale sind allerdings nicht voneinander

unabhéngig. Vielmehr ergibt sich aus (1.21)) und (1.13]) der Zusammenhang
W?2(x) + W'(x) = Wi(x) — W(z) + 2E; . (1.24)

Gibt man darin ein Potenzial vor, so erhélt man fiir das jeweils andere eine Riccatische
Differentialgleichung, die sich nicht mit gewShnlichen Methoden integrieren lasst. Es ist
aber moglich, mit den Hilfspotenzialen

Wi (x) = Wi(x) + W(x) und (1.25

W_(z) = Wi(x) — W(x) (1.26)
die nichtlinearen Terme W3(x) und W?(z) aus (1.24) zu eliminieren:

W (z) = W_(z)W,4(z) + 2E7 . (1.27)
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Mithilfe letzterer Gleichung findet man schlieklich

W(x) = % W, () — W (2)] = % [Wm) - %] sowie  (1.28)
W) = 5 IV o)+ W-(0)] = 5 [ Wito) + T = (1.29

W, (x) ist nun einigermaken frei wiahlbar, Probleme konnen aber in Form von Singulari-
titen an den Nullstellen von W, (z) auftreten. Wegen existiert derer nach
mindestens eine. Um Singularitdten zu vermeiden, beschrankt man sich auf solche W (x),
die nur eine Nullstelle xy besitzen und in deren Umgebung stetig differenzierbar sind. For-
dert man zuséatzlich

W (zg) = 2E7, (1.30)
so bestimmen sich die singularititsfreien Superpotenziale zu

1

1 o Wile) = W (20) .
W) = {m( ) ) } d (1.31)
Wi (z) = % [W;(x) + W+(x%/: (?;*(mo)} . (1.32)

Das ,,gewohnliche® Potenzial V_(x) berechnet sich dann gemif aus W (x), der ers-
te angeregte Eigenzustand )] nach . Die Energie dieses Zustands, die auch dem
energetischen Abstand zum auf Null liegenden Grundzustand ), entspricht, wird wegen
bis auf eventuell auftretende Parameter durch die Wahl von W, (z) festgelegt.

Im vorliegenden Artikel [I] werden noch vier Beispiele fiir W, (z) angegeben, die auch
zentraler Inhalt dieser Arbeit sind und deshalb hier kurz mitsamt ihrem Ausdruck fiir den
Energieabstand E; aufgelistet werden.

Beispiel 1
Das Superpotenzial
W, (z) = Alsinh(ax) — sinh(axy)] (1.33)
mit A, @ > 0 hat seine einzige Nullstelle bei zy. Seine Ableitung ist
W (z) = aAcosh(ax), (1.34)
der erste angeregte Zustand liegt also bei
ET = %er(xo) = %aA cosh(axg). (1.35)
Damit lassen sich nach und die Superpotenziale W (z) und W;(z) finden:
W(z) = % {A [sinh(a) — sinh(axp)] — atanh [%a(x + 930)] } , (1.36)
Wi(z) = % {A [sinh(ar) — sinh(axy)] + a tanh Ba(z + xo)] } . (1.37)



1.3 Konstruktion von Potenzialen mit zwei exakt bestimmbaren Zustinden

Aus W (x) wiederum erhélt man schlieflich das zugehorige Potenzial

2

V. (z) = 1 {A—2[sinh(ax) — sinh(awg)]* — Aa |cosh(ax) — %cosh(ozxg)} + %} . (1.38)

2 4
Beispiel 2
Eine weitere Moglichkeit ist
Asinh(ax)
%% = 1.39
+(@) b+ ccosh(ax)’ (1.39)
das entsprechende Potenzial lautet
Vo(2) = 1 (0 =) (A+ac)(A+3ac)  2b(A + ac)?
T8¢ [b+ ccosh(ax)]? b + ccosh(ax)
2p 3 2 2
e be 21 (ac* + A(b+¢)) ) | (1.40)
(b+ ¢)? cosh®(ax/2) (b+ c)?

wobei A, a,c¢ > 0 und fiir die Endlichkeit beider Ausdriicke b 4+ ¢ > 0 gefordert wird.
Energie des ersten angeregten Zustands ist

aA
E; = ) 1.41
L 2(b+¢) (141)
Beispiel 3
Aus
W (x) = ax + ba®, (1.42)
a,b > 0, ergibt sich das Potenzial
1 1 1 3ab 3b 1
V_(z) = =(a* — 12b)2* + —abx* + b*2" - = 1.43
(z) = gla R Ly s AT ) R R G
mit
_ 1
E; = -a. (1.44)
2
Beispiel 4
Zuletzt gehoren zu
Az
Wi(r) = —— 1.45
=T (1:45)
mit A > 0 das Potenzial
1 — A2%b? Ab? 5b> (1+ Ab)?
V_(x) = — - — 1.46
(«T) 8(b2 + I'Q) 2(b2 + ZUQ)% 8<b2 +x2)2 + 862 ( )
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und die Energie

A
By =g (1.47)

Von besonderem Interesse ist die erste Anregungsenergie, die in diesem Verfahren ,mitkon-
struiert” wird und demzufolge durch einen exakten Ausdruck gegeben ist. Alternativ lisst
sich {iber einen semiklassischen Zugang ein gendherter Ausdruck finden, dessen Herleitung
im folgenden Abschnitt skizziert wird.

1.4 Die Energieaufspaltung in der semiklassischen
WKB-Approximation

Im speziellen Fall eines Doppelmuldenpotenzials kann ndherungsweise eine Aussage iiber
die Energieaufspaltung zwischen Grundzustand und erstem angeregten Zustand mittels
der Tunnelwahrscheinlichkeit zwischen den beiden Mulden, die auch mafgeblich fiir diese
relativ kleine Aufspaltung verantwortlich ist, erhalten werden. Die beiden unteren Zu-

stdnde sind symmetrisch (¢, ) und antisymmetrisch (¢, ) und sehen etwa so aus, wie in
Abbildung [3| dargestellt.

, \
Yo ! \ Vi
, \

\ I
\ '
\ /
\ )
\ ' \ I
\ i \ '
\ - / \ - '
\ -7 RN ' \ - N '
\ . N / \ . N /
\ . N / \ . N /
N p N , N , N ,
g N p N
N 7z N ’ \\ 4 N ’
N . < , X N .7 < . X
) . ; )
} } } t

R Xy Xy Xum

Abbildung 3: Skizzierte Wellenfunktionen der unteren beiden Eigenzusténde v, und 7
in einem Doppelmuldenpotenzial V' (x).

Aus ihnen lassen sich zwei Mischzusténde bilden, die jeweils hauptséchlich in einer Mulde
lokalisiert sind:

v = %(% —¢7)  und g = %wo 7). (1.48)

Die eigentliche Energieaufspaltung ergibt sich nun aus dem Ubergangsmatrixelement die-
ser Mischzustande,

AE = —2 {67 | H ) (1.49)



1.4 Die Energieaufspaltung in der semiklassischen WKB-Approximation

In dem diesem Abschnitt zugrundeliegenden Text [2] wird dieses Matrixelement mithilfe
eines euklidischen Pfadintegrals berechnet. Ausgangspunkt ist dort die Gleichung

AFE ~ 2/D:c e~ Sl (1.50)

integriert wird iiber alle Pfade x(7), die die Randbedingungen

T T
T (—§> =~ sowie x <§> =xm (1.51)

erfiillen, wobei spiter der Limes 7' — oo gebildet wird. Im Exponenten steht in (1.50]) die
sogenannte euklidische Wirkung

Spla] = / dr [34°(r) + V(a(r)] (1.52)

Sie wird erhalten durch die Transformation t = —i7 und hangt iiber
Sglz(T)] = —iS[x(—iT)] (1.53)

mit der gew6hnlichen Wirkung S[z(t)] zusammen.

Fiir die uns interessierenden Potenziale ist nicht ohne weiteres berechenbar. Man
behilft sich deshalb mit einer quadratischen Ndherung von Sg[z], das man dazu um den
klassischen Pfad z. entwickelt. Fiir einen beliebigen Pfad gelte

z(1) = z.(7) + y(7). (1.54)

Dann findet sich fiir Sg, wenn man bis zur zweiten Ordnung in y(7) geht:

1 .
Sglz] = Splx.] + 5 /dT y(1T)Ay(r) + O(y?). (1.55)
Darin ist A ein Operator und durch
d2
= _ _ " 1.
mo g+ Vi(xe(T)) (1.56)

definiert. Das Zwischenergebnis fiir die Energieaufspaltung ist damit
AFE =~ 2 / Dy e~ Srlel=3 [dry(MAY(T) — 9. N . =Smleel (det(A)) 2. (1.57)

det(A) ist durch das Produkt der Eigenwerte von A gegeben, N ist ein Normierungsfaktor.
Im letzten Schritt wurde y(7) — S - ¢(7) so transformiert, dass A durch S diagonalisiert
und so der gesamte Ausdruck ein Produkt von (in diesem Falle unendlich vielen) Gauk-
funktionen wird.

Zuletzt lisst sich noch Genaueres iiber Sg|x.] sagen. Die klassische Losung z. ergibt sich
aus der Extremalbedingung fiir Sg, die wiederum die euklidische Bewegungsgleichung

Lx AV
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liefert. Dies ist die Bewegungsgleichung eines Massepunktes, der sich im umgekehrten
Potenzial, in —V(x), bewegt. Die Losung heifit auch ,Kinklosung” und wird im Rahmen
dieser Arbeit fiir zwei Potenziale bestimmt. Weiter gilt der Energiesatz in euklidischer
Form,

> (Z_f)Z = V(). (1.59)

Damit ist dann

Sglz.] = /dT [%x'Q—l—V(:c)] = /ah'm:'c2 = /dexmj:: /IMda: 2mV (z), (1.60)

—TM —TM

so dass der finale Ausdruck fiir die Energieaufspaltung lautet:

AE ~ 2K -exp (— /W daz\/m) : (1.61)

—TM

Es wurde noch K = (det(A))"2 N gesetzt. Somit ist eine zweite Gleichung fiir den energe-
tischen Abstand von Grundzustand und erstem angeregten Zustand gefunden. Es manifes-
tiert sich wieder der Zusammenhang der Aufspaltung mit der Tunnelwahrscheinlichkeit,
hat doch der soeben erhaltene Ausdruck die Form eines Gamowfaktors. Zu iiberpriifen
bleibt, fiir welche der im vorangegangenen Abschnitt vorgestellten Potenziale sich das
Integral im Exponenten l6sen ldsst. Die Berechnung des Spektrums von A, das wiederum
fiir die Bestimmung des Faktors K bendtigt wird, stellt eine erheblich kompliziertere
Rechnung dar, die in dieser Arbeit nicht vorgenommen wird.
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2 Analyse der QES-Potenziale Tkachuks

Im Folgenden sollen die soeben vorgestellten QES-Potenziale aus [I] auf Symmetrie und
auf Doppelmuldencharakter untersucht werden; teilweise lasst sich eine Verwandtschaft
mit dem ebenfalls quasiexakt losbaren Razavy-Potenzial [4] aufzeigen.

2.1 Beispiel 1

Zunichst wird das Potenzial
1 (A% , ) 1 o?

V_(z) = 5 I[smh(ozx) — sinh(axg)]” — @A |cosh(ax) — 5 cosh(axg) | + Y (2.1)
betrachtet.
Zugunsten einer besseren Ubersicht schreibt man 1) direkt in einer dimensionslosen
Form. In dem eingangs festgelegten Einheitensystem kommt der potenziellen Energie die
Einheit ,Linge=2“ zu, also ist die Dimension der Parameter a und A offenbar jeweils
das Inverse einer Liange. Es bietet sich der Ubergang zu den folgenden, dimensionsfreien
Variablen an:

A

" 2a

Nach [1] ist A, @ > 0 und somit auch > 0. In der dimensionsfreien Schrédingergleichung

z = und n (2.2)

- (o =0 23)
5 72 e—v_(2) = .
nimmt das Potenzial dann folgende Gestalt an:
1 1
v_(z2) = 5 {T]Q[Sinh(z) — sinh(z)]? — 2n cosh(z) + 1 cosh(z) + é_l} (2.4)

mit der Konstanten zy = axyg.
Fiir die Symmetrie ergibt sich

v_(—2) = % {nQ[sinh(Z) + sinh(zg)]* — 2 cosh(z) + 1 cosh(z) + All} : (2.5)

Es ist also nur im Fall zp = 0 die Bedingung v_(—xz) = v_(z) fiir Achsensymmetrie
beziiglich der Hochachse erfiillt.
Ausmultiplizieren und Anwenden der Additionstheoreme liefert

2 2
v_(z) :%[cosh(zz) + cosh(2zg)] — %[COSh(Z + 29) — cosh(z — z)]
2
1
—ncosh(z) + gcosh(zo) — % + 3 (2.6)

Zunichst soll nur die symmetrische Form des Potenzials betrachtet werden. Es wird un-
tersucht, in welchen Fillen wirklich ein sog. Doppelmuldenpotenzial vorliegt.

11



2 Analyse der QES-Potenziale Tkachuks

2.1.1 Der symmetrische Fall zo =0

Im Fall einer Achsensymmetrie zur Hochachse gilt stets ' (0) = 0. Fiir die Existenz einer
Doppelmulde wird gefordert, dass bei z = 0 ein Maximum vorliegt, d. h. es muss v” (0) < 0
erfiillt sein. Dies ist ebenfalls notwendige Voraussetzung dafiir, dass v" (x) auker z = 0

noch weitere reelle Nullstellen besitzt. Mit

1 1 1 1
v_(z) = ZTF cosh(2z) — ncosh(z) — 1772 + 37 + 3

1
v (2) = 5772 sinh(2z) — nsinh(z)
v” (2) = n? cosh(2z) — n cosh(z)

nimmt obige Forderung die konkrete Form

V" (0)=n*—n<0 <<= n<l

(2.7)

(2.8)

an. Der Doppelmuldencharakter des Potenzials ist also abhéngig von n bzw. vom Ver-
héiltnis der beiden Parameter o und A. Abbildung [4| zeigt Beispiele fiir die drei wichtigen

Fillen <1,n=1und n > 1.

v-(z)

-0.5 -

Abbildung 4: v_(z) fiir verschiedene Werte von 1 bei zy = 0. Der Grenzfall n = 1 liefert

eine besonders flache Mulde.

Als n#chstes ist die Lage der Mulden zu bestimmen. Es ergibt sich (nach erneuter An-

12



2.1 Beispiel 1

wendung der Additionstheoreme)

v’ (2ar) = 1 sinh(zy7) cosh(zps) — nsinh(zy) = 0

1
<= cosh(zy) = -
n
1
<= zp = Farcosh <—) . (2.9)
n

Nun wird die Verwandtschaft des Tkachuk-Potenzials (2.6) mit dem bekannten Razavy-
Potenzial untersucht. Letzteres schreibt sich in den eingangs gewéhlten Einheiten
g2I1 Lo
Vr(z) = 5 §£ cosh(45z) — (n + 1)§ cosh(26z) — gf : (2.10)
Offensichtlich ist es achsensymmetrisch und kann daher nur einem Tkachuk-Potenzial fiir
2o = 0 entsprechen. Mit y = 20x lautet es in dimensionsloser Form:

111 1
vr(y) = 3 [552 cosh(2y) — (n + 1)¢ cosh(y) — §£2} : (2.11)
Zunichst werden beide Potenziale so verschoben, dass ihre Mulden auf Nullniveau liegen.
Der Ort der Mulden des Tkachuk-Potenzials, zy,, ist in (2.9) angegeben, ihre Energie
belduft sich auf

2

v_(zp) = nz cosh(2zyr) — ncosh(zy) +

) n? 1 1 1 2
- cosh? |arcosh [ = | | + sinh? |arcosh | — -1+ =4+ n_n
4 n Ui 8§ 2 4

n

2

2
non
+2 4

ool

2
/B W= 1)Lty 01
A {772 + sin {arsm ( P )}} 3 + A
3. n_
__3.n_n 2.12
8 * 2 2 ( )
Das verschobene Potenzial ergibt sich dann zu
772 1 7]2
vo(2) =v_(2) —v_(zy) = y cosh(2z) — ncosh(z) + Ry
7’ Lo
= cosh?(2) — ncosh(z) + 5t Z[sinh2(z) + 1]
1
=3 [n? cosh?(z) — 2ncosh(z) + 1]
1
=3 [ncosh(z) —1]%. (2.13)

Im Falle des Razavy-Potenzials erhdlt man durch analoges Vorgehen die Mulden

2 )

; (2.14)

Ymy, = Larcosh (
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2 Analyse der QES-Potenziale Tkachuks

mit der FEnergie

2
onlynig) = 5 (5 + (1) (2.15)
s\ 4
Damit ist das verschobene Razavy-Potenzial gegeben durch
n+ 1 2 2
vor(y) = vr(Y) — vr(Yryz) = ( 3 ) [Q(ni 0 cosh(y) — 1] : (2.16)

Offensichtlich entspricht also das Tkachuk-Potenzial dem Razavy-Potenzial fiir n = 1,
wenn man gleichzeitig

(2.17)

_ £
=7

fordert. In dem Fall entsprechen sich auch die in [I] und [4] angefiihrten Werte fiir die
Energiedifferenz der beiden untersten Eigenzustédnde. Beim Vergleich ist zu beachten,
dass die Autoren der Artikel unterschiedliche Skalierungen und Einheitenkonventionen
verwenden. Im System dieser Arbeit ist der Abstand jeweils mit

Aep=n==> (2.18)

anzugeben.

2.1.2 Der asymmetrische Fall zq £ 0

Sei nun 2y > 0 und gleichzeitig n < 1. Aufgrund einer guten Anschaulichkeit soll nun das
Potenzial aus (2.6) in eine Reihe entwickelt werden.

oo (oo} 1
2% 2 2 — smh (z —z%H. 2.19
kz:; 77) n 0 ,; 2k+1) ( )

Man sieht deutlich, dass fiir zy # 0 zu einem geraden Teil des Potenzials eine ungerade
Storung” addiert wird. Die Koeffizienten

2

K'(k) = —m sinh(zo) (2.20)

sind fiir jede Wahl von 7 negativ, d. h. der antisymmetrische Potenzialteil ist streng mono-
ton fallend. Die Folge fiir das gesamte Potenzial ist, ausgehend vom symmetrischen Teil,
eine Verschiebung der Potenziallinie nach oben im Bereich negativer z und eine Verschie-
bung nach unten fiir positive z, wihrend v_(0) unveréndert bleibt. Das bedeutet einerseits
den schon erwidhnten Verlust der Achsensymmetrie, andererseits lasst sich demnach aufier
29 = 0 kein weiteres Potenzial finden, bei dem die Mulden auf gleichem Niveau liegen.
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2.1 Beispiel 1

0.4 5 v_(z)
ZO—O
z,= 0,15
0.2 20%0,44
z,= 0,6
\\ /Z
T T i
2 1 2

0.4

Abbildung 5: V_(z) fiir n = 1 und verschiedene Werte von zp; bei 2o > 0 verschwindet die
Achsensymmetrie, ab 2y =~ 0,44 auch die linke Mulde. Im Grenzfall liegt ein
Sattelpunkt vor.

Jetzt ist zu untersuchen, fiir welche zy v_(2) seinen Doppelmuldencharakter beibehilt.
Sei

v_(2) = g(z) + sinh(zg) - u(2) (2.21)

die Darstellung von v_(z) als Summe des geraden und ungeraden Anteils und z,, die
Stelle der Mulden im symmetrischen Fall (zo = 0, v_(z) = ¢(z)). Dann gilt wegen der
Symmetrieeigenschaften und der Monotonie des ungeraden Teils von v_(z) fiir gentigend
kleine zg:

v' (zp) = sinh(zg) - u'(2p) <0 und v (0) = sinh(2) - v'(0) < 0. (2.22)

Fiir wachsendes zy verschieben sich also die Mulden zu hoheren z-Werten, das lokale Ma-
ximum in der Mitte hingegen zu niedrigeren, bis bei einem bestimmten zy linke Mulde und
lokales Maximum zusammenfallen und somit eine der beiden Mulden verschwindet. Dieses
zo lésst sich analytisch nicht bestimmen, fiir n = % findet sich ein Wert von 2y ~ 0,436.
Zur Veranschaulichung diene Abbildung

Wegen sinh(—z)) = —sinh(zy) entnimmt man (2.19)), dass fiir negative z, die gleichen
Uberlegungen gelten, wenn man das Potenzial an der Hochachse spiegelt.
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2 Analyse der QES-Potenziale Tkachuks

2.2 Beispiel 2

Als zweites soll das Potenzial

L (=) (A+ac)(A+3ac)  2b(A+ac)?
V-() = 8¢? ( [b+ ccosh(ax)]? b+ ccosh(ax)
a?bc? 1 (ac® + A(b+¢))?
0T 02 cosi(az/2) CEE ) (2.23)

behandelt werden. Fiir die Parameter wird A,a,c > 0 und b + ¢ > 0 gefordert. Die
Achsensymmetrie ist leicht ersichtlich, da x nur in Form von geraden hyperbolischen
Kosinusfunktionen eingeht. Unter Verwendung von

cosh?(ax/2) = %[cosh(cw) + 1] (2.24)

kommt man auf den Ausdruck

_ 1 (b* — ) (A + ac)(A + 3ac) B 2b(A + ac)?
Vo(z) = 8c2 ( b+ ccosh(ax))? b+ coosh(az)
202bc3 1 (0402 + A(b 4 c))2

+ (b+ ¢)? [1 + cosh(ax)] (b + c)? ) (2.25)

Auch hier kann durch entsprechende Substitutionen ein Parameter eliminiert werden.

b und c sind bereits dimensionslos, & und A sind verwandt mit den gleichnamigen Para-
metern aus Abschnitt 2.1} Es ist naheliegend, analog zum vorangegangenen Beispiel die
neuen Variablen gemif zu wiahlen. Es ergibt sich

1L (P =) 20+ )2 +3c)  2b(2n + )
v-(2) = 82 ( [b+ ccosh(z)]? b+ ccosh(z)
2bc3 1 (2 +2n(b+ c))Q)
b+ ¢)? [1 + cosh(z)] (b+c)?

Weiter ist zu bemerken, dass dieses Potenzial eine Verallgemeinerung des bereits bespro-
chenen Potenzials Tkachuks darstellt. Vergleicht man die urspriinglichen Superpotenziale
beider Beispiele, (|1.33)) und , so stellt man fest, dass im Limes ¢ — 0 und fiir b= 1
wieder das Potenzial aus dem ersten Beispiel erhalten werden muss. Tatsdchlich geht im
angesprochenen Grenzfall in (fiir 2o = 0) iiber. Die Auswertung dieses Grenz-
falles ist durchaus nicht trivial, es bleiben Teile mehrerer der Summanden aus iibrig,
deren Grenzverhalten nur mithilfe des Satzes von de ’Hospital untersucht werden kann.
An dieser Stelle kann man durch zwei weitere Ersetzungen zusétzlich einen Parameter
einsparen. Dazu setzt man

T (2.26)

c=ny  und b %, (2.27)

so dass das Potenzial die folgende Gestalt annimmt:
o_(z) = - ((1 -2 +1)(2+3y)  22+9)?

- 872 [1+ 3 cosh(z)]? 1 + [ cosh(z)
28+° 1 (By +2(1+ )2
i (1+ )% [1 + cosh(z)] (1+3)? ) : (2.28)
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2.2 Beispiel 2

Wegen ¢, n > 0 gilt auch v > 0. Anstelle von ¢ — 0 und b = 1 kann man analog den Limes
8,7 — 0 bilden. Da aber der Parameter n eliminiert wurde, haben die entsprechenden
Ausdriicke nur bedingt die Gestalt aus Abschnitt [2.1]

Im Gegensatz zum vorher Besprochenen geht dieses Potenzial fiir grofe z asymptotisch
gegen einen festen Wert:

200 1 (B4 2(1+ B) ’
v (2) B (W) . (2.29)

Zur Bestimmung der Bedingungen an die Parameter fiir das Vorliegen eines Doppelmul-
dentyps wird wieder die zweite Ableitung des Potenzials benotigt. Es ist

b= B LR E)2 +3y) | sinh(2)(2 +7)°
v(z) =1 ( b 1 Feosh(a)F [+ B cosh(z)]2
_72 sinh(z) 1
1+ 07 1 +cosh(z)]2) (2:30)

und

(1-8)2+7)(2+3)
[1+ Bcosh(z)]*
2+7)°

[1+ Bcosh(z)]?

7v?  cosh®(z) — cosh(z) — 2)

(1+ )2 [1+ cosh(z)]? '

V" (2) = 4L;y2 ([2[3 cosh?(z) — cosh(z) — 30

— [Bcosh?(2) — cosh(z) — 2]

+ (2.31)

Es muss gelten:

ﬂ(_(1—62)(2+7)(2+3v) 2+7* 7 )<O

S e 0P T(+pE A1Lpp
= A1 -2+ N2+3)+42+7)2 =42 <0
= 4B(37* + 8y +4) < (16 + 9v)
(16 + 97)
= 6<4@+7X?+%W (2.32)

Wegen v > 0 gilt (wie bereits in der vorangegangenen Rechnung angenommen) auch
£ > 0, denn fiir ein # < 0 ergébe sich entsprechend

v(16 + 97)
42+7)(2+3y)’

0>p0> (2.33)

was eben aufgrund von v > 0 nicht moglich ist. Weiterhin liest man leicht aus (2.32)) ab,
dass < 1 fiir jedes erlaubte ~ gilt.
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2 Analyse der QES-Potenziale Tkachuks

Nun soll versucht werden, die Lage der Mulden des Potenzials zu bestimmen. Es fin-
det sich mit (2.30)) nach Herauskiirzen von Vorfaktoren und der sinh(z), die die ,triviale*
Nullstelle bei z = 0 verursachen:

(1-092+7)(2+37) (2+7)° 7’ 1 i
B (R T (R Tt (e (T

Erweitern der Briiche und Umstellen liefert schlieflich folgende Gleichung:

[V (28° + B8) +4B(y + 1)(1 + 8)*]

+2(38" 4+ 86° + 207 — 26 — 2) + 4y(B*(2 + B)? — 1) + 458(1 + 5)*(2 + 3)]
+[72(68* +135% +-468% — 108 — 4) + 4y(1 + B)*(46% + B — 2) + 43(1 + B)*(28 + 1)]
+72(68* + 133 +45% — 108 — 4) +4v(1 + B)?(43* + 3 —2) +48(1 + B)*(2B8 + 1) = 0.
(2.35)

. y3
. y2
Y

Darin ist y = cosh(z). Die Gleichung ist dritten Grades in y und damit analytisch l6sbar,
jedoch sind die Ausdriicke fiir die Nullstellen derart lang, dass sie sich kaum zur weiteren
Analyse anbieten. Es gibt im Falle eines Doppelmuldenpotenzials (also bei entsprechenden
Bedingungen, die die Parameter erfiillen) eine reelle und zwei komplexe Nullstellen. Die
reelle gibt die Lage der Mulden an und sei mit yo bezeichnet. Es ist

2y = tarcosh(yg). (2.36)

Bei diesem Potenzial kann der Fall vorliegen, dass die mittige Barriere den endlichen
Rand iiberragt. Die dafiir an die Parameter zu stellenden Bedingungen sind Gegenstand
der folgenden Untersuchung.

Erfiillen muss sich logischerweise

v_(0) —v_(z — 00) > 0, (2.37)
was auf
1-3 2(2 4 7)? By?
TIB@+7XZ+%0— 1515 +(1+@2>0
— (1=8H)2+7)2+37)=20+8) 2+ + >0 (2.38)

fiihrt. Letztere Gleichung hat die Losung

V1392 +48y + 48 +19° + 87 + 8 Y/ 1372 + 48y + 48 — 4% — 8y — 8
2(v+2)(3v+2) 2(y+2)(3v+2)

Wie in Abbildung [6] illustriert, muss (3 fiir ein entsprechendes v im Bereich zwischen den
beiden rot eingezeichneten Kurven liegen.

Da fiir die Doppelmuldenform, wie gesagt, 5 > 0 gefordert ist, beschrankt sich der Wer-
tebereich von ( in Abhéngigkeit von « auf die schraffierte Fldche. Die gestrichelte Kurve
stellt nach die Obergrenze fiir 3 dar. Fiir v < 2 kann die Barriere nicht hoher als
der Rand liegen. Je kleiner (3 fiir gegebenes v ist, desto weiter iiberragt die Barriere den
Potenzialrand, desto breiter wird sie und desto stérker abgeflacht.

<f< (2.39)
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2.3 Beispiel 3

0.4

-0.6 A

-0.8 A

Abbildung 6: Zur Bedingung fiir eine den Potenzialrand iiberragende Barriere.

Abbildung [7] zeigt das Potenzial fiir zwei verschiedene Werte von (.

v_(z)

10

— =02
— B=04

Abbildung 7: v_(z) fiir v = 10 und verschiedene Werte von 3; 5 = 0,2 liegt innerhalb des
schraffierten Bereiches in Abbildung |§|7 die Barriere iiberragt den Rand.

2.3 Beispiel 3

Als drittes Beispiel fiir ein QES-Potenzial gibt Tkachuk

1, , 1, 1, 3ab 30 1
V_(z) = g(a — 12b)z” + Zaba: + gb x’ + S(a+ b2y + St bd) 7° (2.40)
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2 Analyse der QES-Potenziale Tkachuks

mit a,b > 0 an. Die Achsensymmetrie festzustellen, ist trivial. Wiederum eliminiert eine
Reskalierung einen Parameter und schafft bessere Ubersicht:

b a?
—4/2 d =2 2.41
y \/; round (= (2.41)

Das Potenzial in der dimensionslosen Schrodingergleichung (vgl. (2.3)) liest sich dann:

3 3 1
811997  8(lty?) 1° (242)

1 1 1
v_(y) = g(é’2 —12¢)y* + ZCQyA‘ + gCQyG +

Fiir spatere Zwecke sei auch noch die Reihenentwicklung angegeben:

v-(y) = —ipﬁH[¥8—mo—§Lﬂ+E8+z] vlge -5y

+

ool w

SOk + 2)(— 1)y (2.43)
k=4

Soll ein Doppelmuldentyp vorliegen, so muss wieder v” (0) < 0 gelten. An dieser Stelle
nutzen wir die Reihenentwicklung aus. Die entsprechende Forderung lautet dann, dass der
Koeffizient der Ordnung y* negativ sein muss. Dies fiihrt auf die Ungleichung

1 ., 9
g(C —12C)—§<0
?—-12(-9<0

(< V4 +6~ 127, (2.44)
die demnach das Kriterium fiir das Vorliegen einer Doppelmulde ist. Anschauung dazu

bietet Abbildung [§]

|y \ V) ) Y

0.05 0.10 0.15

Abbildung 8: v_(z) fiir ¢ = 12,6 (links) und ¢ = 12,8 (rechts); da der Quotient dicht am
Schwellenwert liegt, sind die Mulden dufserst flach.

Die zweite Losung fiir  ist negativ und somit nicht zulissig.
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2.3 Beispiel 3

Die Minima des Potenzials werden wieder mithilfe der ersten Ableitung bestimmt:

/ L 23 S5 3y _ 3y
vl(y) = (¢ =120y + ' + 1y T 7~ T (2.45)

Nach Erweitern der Briiche und Herauskiirzen der trivialen Nullstelle y = 0 bleibt folgende
Gleichung zu 16sen:

3Cy" + 13¢%y° + 2¢(11¢ — 6)y° + 18¢(¢ — 2)y* + (7¢* — 36¢ — 3)y
=+ 12¢ +9. (2.46)

Diese Gleichung lésst sich durch Substitution ¢ = y? + 1 auf eine einfachere Gleichung
fiinften Grades bringen:

3C3° — 2% — 12¢t* — 3t — 6 = 0. (2.47)

Die Nullstellen entziehen sich dennoch dem analytischen Zugriff, auch mit ,Mathematica‘“
konnte kein Ergebnis erzielt werden. Wohl l&sst sich (2.47) nach ¢ auflésen:

VAR + 12t — 12 £ 6t
B (2 — 3t)

¢ (2.48)

Fiir t = 1, also y = 0, ist { = 6 + v/45. Es handelt sich um die Grenze zum Doppelmul-
dencharakter und die Potenzialableitung hat nur reelle Nullstellen bei y = 0. Aber man
erhélt auch im Fall t = 2 bzw. y = +1 mit { = ‘/75 —|—% ein ,iibersichtliches Resultat. D. h.
fiir solche Wahl des Parameters liegen die Potenzialmulden auf y = 1 und y = —1. Das so
geschaffene parameterlose Potenzial lésst sich problemlos auf Nullniveau verschieben und
hat dort die Form

Lo 3y D2y — 1243 TS+ (243 4+ 42)y* + (36v/3 + T1)y? + 163/3 + 40]
vp(y) = 128(y% + 1)2 )
(2.49)

Dieser Ausdruck eignet sich allerdings nicht, um ihn spéter im Rahmen der Berechnung
der Energieaufspaltung zu verwenden, da die Quadratwurzel sich nur teilweise explizit
ziehen lasst.

Eine andere Moglichkeit ist, das Potenzial nur bis zur 4. Ordnung seiner Potenzreihen-
entwicklung zu verwenden:

. 1 3 1, 5 91 5 15 3] 4
=—- - —(¢*—12¢) — = - -y 2.
o(y) 4C+4+{8(C <) 813/ +{4C+2}y (2:50)
Eine Aussage dariiber, fiir welche ( diese Approximation gut ist, ldsst sich mit folgender
Abschétzung machen:
Die Differenzenfunktion von exaktem und gendhertem Potenzial ist gegeben durch

9, 3, 1, 3 3 3
de_ 341 n _ 2 2.51
fy) =gy = 3y' + 5 TS Tsaa ) 4 (2.51)
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2 Analyse der QES-Potenziale Tkachuks

Sie sollte auf einem gewissen Intervall um y = 0 moglichst wenig von 0 abweichen. Als
Mafs dafiir kann man das Integral iiber diesem Intervall nehmen und untersuchen, fiir
welches ( sich der Betrag dieses Integrals minimiert:

¢? 3 3., 3 3¢

) 9 2 5 3
/0 dyf(y)‘ = ‘Earctan(a)—ir—a — —&’ + —¢€° — +m .

° 9.5
56° 100 8 a1 (2:52)

A(Ce) =

Eine sinnvolle Intervallgrenze scheint ¢ = 1 zu sein, da etwa dort die Potenzialmulden
liegen, wenn ( sich seinem Idealwert anndhert und die beiden Potenziale nach optischer
Abschétzung gut iibereinstimmen. Dann nimmt auch der obige Ausdruck eine einfache
Form an:

¢ 9 93

G (2.53)

ACD =156+ 61~ Too|

A((,1) verschwindet fiir

= \/210(62 — 157)

~ 2,79 2.54
= , (254

und ist dort minimal. Der Wert entspricht relativ gut dem zuvor graphisch grob gesuch-
ten. (s. Abb.[9) Bis etwas iiber die Mulden hinaus stimmen die beiden Potenziale v_(y)
und ¥(y) gut iiberein, danach machen sich in 9(y) die fehlenden héheren Potenzen von y
bemerkbar.

1vo. 90

v.(y)
v()

Abbildung 9: v_(y) (rot) und o(y) (blau) fiir ( = ¢* = 2,79.
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2.4 Beispiel 4

Es wird also das Potenzial (2.50) behandelt. Es ist

v (y) = E(@ —12¢) — ﬂ x + [¢*+ 6] 27, (2.55)

und neben y = 0 finden sich die Nullstellen

1 [—C2+12 9
yMzig\/ §;+g+ | (2.56)

(2.44) garantiert, dass yys reell ist und somit eine Doppelmulde existiert. Die energetische

Lage der Mulden ergibt sich zu

¢t — 8¢ + T8¢ + 312¢ — 207
64(¢% +6)

O(ynmr) = — (2.57)

Fiir spétere Zwecke wird auch der Ausdruck fiir das auf Nullniveau verschobene Potenzial
angegeben. Man erhilt

(=¢*+12¢ +9)?

ioly) = 5(0)  Dloar) = (2 + )y — (=4 120+ 9)y? +

64(¢% +6)
2
(1 s —CP4120+9
_<2\/§ +6y W )
(= H12¢0+92 [ 4 +6) ?
T 64(C2+6) (—c2+12(+9y2_1>' (2:38)

Es sei auf die formale Ahnlichkeit zum verschobenen Potenzial aus Beispiel 1 hingewiesen,
in dem anstelle von y? der ebenfalls gerade Kosinus hyperbolicus auftritt.

2.4 Beispiel 4

Viertes und letztes Beispiel der zitierten Verdffentlichung ist das augenfillig achsensym-
metrische Potenzial

1 — A2%b? Ab? 5b? (1+ Ab)?
V_(x) = — — 2.59
(z) 8(b? + 22) 2(b? + xQ)% 8(b% + 22)? + 8b? ( )
mit der entsprechenden Potenzreihenform
(14 Ab)?
V. (z) = e
— A%?) 2k+1)2k—1)-...-1 5(k+1) T\ 2k
— A — ~DF (=) .
QbZ{ 2k(2k —2)-...-2 4b }( ) (b)

(2.60)
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2 Analyse der QES-Potenziale Tkachuks

Das bekannte Prozedere fiir den Koeffizienten der zweiten Ordnung liefert

(Ab + 3)?

o <0 (2.61)

was fiir kein Paar reeller Parameter A und b erfiillt ist. Somit ist das vorliegende Potenzial

nicht vom Doppelmuldentyp, vielmehr liegt eine einzelne Mulde vor, und fiir x+ — oo

1+Ab)?

nimmt das Potenzial den endlichen Wert Gz al.
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3 Die Energien des ersten angeregten Zustands

Der energetische Abstand zwischen Grundzustand und erstem angeregten Zustand ist von
besonderem Interesse. In den eingangs ausgefiihrten Grundlagen tauchen zwei verschiede-
ne Ausdriicke fiir diese Energiedifferenz auf. Zum einen enthilt Tkachuks Konstruktions-
methode fiir quasiexakt losbare Potenziale einen direkten, wenn auch noch parameterab-
hangigen Ausdruck fiir die Energie des ersten angeregten Zustands, der wegen der auf Null
gelegten Energie des Grundzustands auch der Energiedifferenz entspricht. Andererseits ist
ndherungsweise ein Zugang gegeben durch den Ansatz mit der Tunnelwahrscheinlichkeit.
Fiir die beiden Potenziale aus den Abschnitten und deren Muldenenergie be-
stimmt wurde und die infolge dessen genau auf Nullniveau verschoben werden konnten,
lasst sich nun die gendherte Energiedifferenz bis auf einen Vorfaktor ermitteln. Diese gilt
es schliefslich, mit dem exakten Wert, den Tkachuk liefert, zu vergleichen.

3.1 Zu Beispiel 1

Im ersten Fall wurde das folgende verschobene Potenzial gefunden:
1
vo(z) = 5 [ncosh(z) —1]*. (3.1)
Die Gleichung fiir die Energiedifferenz der beiden untersten Zustdnde war gegeben durch

AE ~ 2K -exp (— /IM dx\/m) , (3.2)

—Tn

—xp und x; waren darin die Ortskoordinaten der Mulden. Zunéchst wird das Wirkungs-
integral im Exponenten fiir das obige Potenzial ausgewertet. Beim Ziehen der Wurzel ist
das Vorzeichen so zu wihlen, dass der Integrand auf dem betrachteten Intervall positiv
ist. Es gilt wieder die Konvention m = 1, so dass sich mit den dimensionslosen Variablen
nachfolgende Rechnung ergibt:

S0 = [ dzl = neoh(=)] = [z - psinb(2) %,

—ZM

: 1 1
ED 5 arcosh (—) — 2nsinh {arcosh (—)]
n

n
1 1
= 2arcosh | — ) —2ny/— — 1
n n

1 1
:2111(—+,/—2—1>—2 1— 2. (3.3)
n Vn

Der vollstindige Ausdruck fiir den Energieabstand wird dann zu
1 1
A5—2k-exp[2\/l— 2—21n<—+ —2—1)}
n n

-2
1 1 >
=2k (5 + i 1) AV (3.4)
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3 Die Energien des ersten angeregten Zustands

Hierin ist & der in (1.61)) auftretende Vorfaktor K in der angepassten, dimensionsfreien
Gestalt. Der bei Tkachuk angegebene exakte Wert ist

1
AEr = gaA (3.5)

(vgl. mit ([1.35) bei xy = 0). Dem entspricht, wie bereits in Abschnitt erwihnt, im

hier verwendeten, einheitenfreien System
AéT =T1. (36)

Fiir einen tiefergehenden Vergleich beider Ausdriicke ist die Kenntnis der genauen Gestalt
von k notig. Deren Bestimmung {ibersteigt jedoch den Umfang dieser Arbeit. Trotzdem
sollen an dieser Stelle die beiden Resultate, bis auf den Vorfaktor, graphisch veranschau-
licht werden (s. Abb. [L0). Die aus den Wurzeltermen entstehenden Anforderungen an 7
fiir den reellen Charakter des gesamten Ausdrucks decken sich mit . Man beobach-
tet einen durchaus vergleichbaren Verlauf beider Kurven. Dennoch ist ihr Abstand nicht
konstant, d. h. fiir eine genauere Ubereinstimmung der beiden Kurven kann & keine Kon-
stante sein, sondern muss ebenfalls von 7 abhéngen.

em)

1.0 —
0.8 —
0.6

0.4 —

— Ag(n)/ 2k

0.2 - — Agr(ﬂ)

I I I | T
0.2 0.4 0.6 0.8 1.0 7

Abbildung 10: Verlauf der dimensionslosen Energiedifferenzen, das exakte Verhalten ist
die blaue Linie.

Nach [2] ist die semiklassische Approximation umso besser, je grofer der Betrag des
Wirkungsterms in der Exponentialfunktion in ist. Der Wirkungsterm ist in je-
dem Falle positiv und geht mit negativem Vorzeichen ein, so dass bei kleinstem Einfluss
der Exponentialfunktion die Giite der Niherung am gréftten wird. Demnach miisste sich
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3.2 Zu Beispiel 3
in Abbildung [I0] die Ubereinstimmung der beiden Kurven fiir kleines 1 verbessern. Dies

ist nicht zu beobachten, allerdings ist aufgrund des unbekannten Faktors k ein aussage-
kraftiger Vergleich nur beschrinkt moglich. Fiir n — 0 ist

Ae(n) e

Ac(n) ¢,
2%k i

(3.7)

es ist also dementsprechend ein k zu erwarten, das im besagten Grenzfall mit 1 geht, so
dass der vollstdndige approximierte Ausdruck wie die exakte Losung ein lineares Verhal-
ten aufweist.

7

3.2 Zu Beispiel 3

(G149 (O HEH6) )
Ooly) = 64(C% + 6) (—§2 v12c+9)7 1) ’
verwendet werden:

Ein zweiter Vergleich soll nun mit dem verschobenen Ndherungspotenzial aus ([2.58)),
(3.8)
angestellt werden. Zunéchst wird, wie gehabt, das in ((1.61) auftretende Wirkungsintegral
berechnet, wobei die in (2.56) ermittelten Minima des Potenzials als Integrationsgrenzen

s 12¢ -9 [ 4(¢2+6)
S50 =V yk,dy<—c2+12c+9y _1)
(250) \/§C2 —12¢ -9 .

¢ +12¢+9 N (—C2+12¢+9)
8/C2+6 36(¢% +6) b(¢? +6)
_V2(=(2+120+9):
spielhaft das Potenzial

3.9
15 (3.9)
Bei der Bestimmung des Vorfaktors K kann man auf |2] zuriickgreifen. Dort wird bei-

(¢?+6)

Vir(z) = Az? — o?)?
behandelt und der entsprechende Vorfaktor mit

(3.10)

_[(8ha?)3
Ko = 27

(3.11)
angegeben. (Es wurde wiederum die Konvention m = 1 verwendet). Da das hier behan-
delte Potenzial die gleiche Form hat, ldsst sich in diesem Fall ohne groferen Aufwand ein
Ausdruck fiir K bzw. ein dimensionsfreies £k finden. Mit

N CC+6 [, —C+120+9\°
Uo(y): 1 (y— )

6 (3.12)
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3 Die Energien des ersten angeregten Zustands

sowie den Identifizierungen

2 _ 2 12
S und 2 Z¢ F126+9 (3.13)

A= C T e 16

ergibt sich schlieflich

8 <g2+6>3<—§2+12§+9))i
B 4(¢2 +6)

_ 21 (- 4120+ 9 (3.14)

IR CES:

Insgesamt ist dann der energetische Abstand gegeben durch

21 (—(2 412 i 2 (—C2+12 2
Ae = i s Cng)Al-exp —i( ¢ +120+9) . (3.15)
NZ3 V6 12 ¢2+6
Triagt man die Energiedifferenz gegen den Parameter ¢ auf, so erhilt man Abbildung [11]
(¢)
° — Ag(Q)
— Ag.(¢)
1 SE (9,
4 —
3 —
24
14 B
"',,"" Cmaxé C* .................................... é,
T T T T | |
2 4 6 8 10 12

Abbildung 11: Ae(¢); in Rot der exakte Zusammenhang

Der exakte Wert fiir den Energieabstand ist in [I] aufgefiihrt als

ABEp = % (3.16)
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3.2 Zu Beispiel 3

(vgl. mit (1.44))) bzw. einheitenlos in der hier verwendeten Skalierung als

Aer() = 3¢ (3.17)

Der graphische Vergleich beider Ergebnisse in Abbildung [11] zeigt, dass sich zumindest
in einem gewissen Bereich von ¢ (etwa fiir 2 < ¢ < 6) der Verlauf von roter und blauer
Kurve halbwegs dhnlich ist.

Die durchgehend gestrichelte Kurve reprisentiert die euklidische Wirkung

V2 (- +12¢+ 9)3
12 C2+6 ’

Sp(() = (3.18)

die mit umgekehrten Vorzeichen im Exponenten von Ae (3.15)) steht. Je grofer sie ist, de-

sto besser sollte, wie bereits beschrieben, die Approximation sein. Das Wirkungsmaximum
liegt bei

Cmax = (6v/201 + 82)3 — (6v/201 — 82)3 — 2 & 2,055, (3.19)

in der Abbildung entspricht das der linken gestrichelten Hilfslinie. Offensichtlich stimmt
die Entwicklung der Kurven an dieser Stelle relativ gut {iberein. Die Naherungskurve Ae
hat dort eine Steigung von etwa 0,3, dem steht eine dhnliche Steigung von 0,5 der exakten
Geraden gegeniiber. Vergleicht man die beiden Energieaufspaltungen

Ae(Cmax) ~ 2,282 (3.20)
und
Aep(Cmax) =~ 1,028, (3.21)
so ergibt sich
Ae(Cax) =~ 2,221 - Aer(Cnax) s (3.22)

d. h. die Naherung liefert gut den doppelten Wert.

Die rechte gestrichelte Hilfslinie in Abbildung [11] markiert einen weiteren interessanten
Punkt, dort ist ndmlich (* ~ 2,795, fiir das das verwendete Naherungspotenzial dem
,Original“ besonders dhnlich ist. Hier hofft man also, einen sehr authentischen Wert dieser
semiklassischen Néherung zu bekommen, den man dann entsprechend gut dem exakten
Resultat fiir das exakte Potenzial gegeniiberstellen kann. Die Steigung der semiklassischen
Kurve ist hier etwa 0,66 und damit leicht grofer als die Steigung 0,5 der exakten Kurve
Aer. Die numerische Auswertung ergibt

Ae(C*) ~ 2,655 (3.23)
und

Aer(C*) ~ 1,397, (3.24)
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3 Die Energien des ersten angeregten Zustands

was schliellich
Ae(¢*) ~ 1,900 - Aer(CY) (3.25)

bedeutet.

Man beobachtet, dass bei (. und ¢* die Kurven fast den gleichen Abstand haben, auch
ist ihr Verlauf zwischen den Punkten vergleichbar. Tatsdchlich handelt es sich um den
Bereich von (, in dem sich die beiden Funktionen mit am &hnlichsten verhalten.
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4 Auf dem Weg zum Vorfaktor K: Die Kinklosung

Wie bereits in der Einleitung dargelegt, spielt die sog. Kinklosung als klassische Pfad-
16sung, die die euklidische Wirkung minimiert, eine zentrale Rolle fiir die Bestimmung
des Vorfaktors K, der bei der Berechnung des energetischen Abstands zwischen Grund-
und erstem Anregungszustand auftritt. Aus der Kinklésung bildet man den Operator A,
dessen Eigenwerte schlieflich auf den gesuchten Faktor fithren. Zwar wird dieser selbst
in dieser Arbeit nicht ermittelt, doch soll jene Losung der klassischen euklidischen Bewe-
gungsgleichung noch berechnet werden.

Aus dem euklidischen Energieerhaltungssatz in erhilt man durch Trennung der
Variablen die Losung

T—Toz/oxc\/;%() (4.1)

fiir die euklidische Zeit 7, deren Umkehrung dann die gesuchte Kinklosung ist. Diese wird
nun fiir die beiden in Abschnitt Bl ndher behandelten Potenziale bestimmt.

4.1 Kinklosung fiir Beispiel 1
Mit dem Potenzial aus (2.13)) und m = 1 folgt die Rechnung im einheitenlosen System:

. /ZC dz /ZC dz e —2 dy
T — Tn = —_— —_—
7 J, 1—rncosh(z) o 1—1de*— ge*Z nJi y*-— %y +1

1

=2 [ dy =Yy 2 /— ds
n Ji (y _ 1)2 12 nJi-L 1;22 — 52

n n?
ezc_l
1 1 V1—n*+mns !
= n _—
1—n? L—n*=mns)| _

_ 1 In (me* +/1—n>=1)(n—+/1—n>-1) (12)
Vi=n* \(e*—1-n>=1)n+/1-n*-1)
Der Ubersicht halber definiert man
72774—\/1—772—1
=1 -n2-1

Bilden der Umkehrfunktion liefert

und 0 =4/1 (4.3)

7770 — e +0—1

ner —§ — 1
= ne* (’765(%_%0) -1)=(1+ 8)yed T — (1 — )
L (LA 0T — (1 - 6)
= 2.(T) =In ( (e 1) . (4.4)
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4 Auf dem Weg zum Vorfaktor K: Die Kinkl6sung

Durch Resubstitution von v und § erhilt man

eV1i= 2 (7— 7’0)‘/ _ _77+1 ++/1—n _|_77_1
z(T) = (4.5)
eVITPE-) (T 24 n—1)+/1—-n2—n+1

Es sei bemerkt, dass es sich bei 7 und 7y ebenfalls um einheitenlose Gréfen handelt. Fiir
eine Riicktransformation zu reguldren Zeiteinheiten miissen wieder die Skalierungsfaktoren

aus (2.41)) verwendet werden.

Als néchstes soll das Verhalten dieser Losung fiir 7 — 400 untersucht werden:

VTT_—n+1
(ﬂ—iﬂ—l)
(ﬁ—?j +\/771—7+n—1)>

1 1 1
=In (— +1/ = — 1) = arcosh (—> = 2u. (4.6)
n n n

(4.5) geniigt also den in Abschnitt geforderten Randbedingungen. In Abbildung [12]ist
die Kinkl6sung z. fiir bestimmte Wahlen von 7 dargestellt. Der Nulldurchgang im tiefsten
Punkt der Potenzialmulde ist bei 7y, was an der Wahl der unteren Integrationsgrenze zu

Beginn von (4.2)) liegt.

lim z.(7) = — lim z.(7) =

T—00 T——00

1.5 ZC(TJ]) -----------------------------------
— =035 Y R
-------- n= 0}4 10
------ n=2006

0.5 -

Abbildung 12: Graphische Darstellung der Kinklosung fiir verschiedene n; je kleiner n
wird, desto tiefer und weiter wird die Mulde des umgekehrten Potenzials,
entsprechend wird die Dynamik bei 7, steiler.
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4.2 Kinkl6sung fiir Beispiel 3

4.2 Kinklosung fiir Beispiel 3

Auch fiir (2.58]) wird die Kinklésung ermittelt, dazu soll das Potenzial in der Form
0(y) = AMa® = y*)? (4.7)

verwendet werden. Es ergibt sich in dimensionslosen Grofsen wegen |a| > |y| auf dem
betrachteten Intervall zwischen den Mulden:

P = /yc @ _ 1 {m(o‘ﬂ/)r: = 1n<o‘+yc>. (4.8)
V2aJo 2=y V8l a—=vy)ly V8l a—Ye

Im Folgenden wird wieder die entsprechende Umkehrfunktion gesucht:

VEa(i—7) _ & + Ye
a—Ye
— yc<e\/§a(i——i—o) + 1) _ a(e\/ﬁa(%—%g) B 1)

B e\/ﬁa(%—ﬁ)) -1
yc(T) o ae\/ﬁa(;—,ﬁ)) +1

— = atanh[V2\a (7 — 7). (4.9)

Durch Resubstitution von o und X erhélt die Losung dann ihre endgiiltige Form

- —(2+12¢+9 V-G 12049,
A(T) = tanh T—"T0)| . 4.10
Im Limes 7 — oo nimmt sie, wie gewiinscht, die Werte £y, an:
‘ e208(7=70) _ q ‘ e2aB(F=70) _
R NN L B IS bk U

In Abbildung ist wieder fiir verschiedene ( die Kinklosung dargestellt. Sie hat die
gleiche Form wie in Beispiel 1, auch liegt der Nulldurchlauf bei 7y = 0. Fiir grokere
0 < ¢ < 6 + /45 riicken die Potenzialmulden enger zusammen, die Barriere verflacht. Ent-
sprechend verflacht auch die Dynamik im umgekehrten Potenzial bei 7.
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4 Auf dem Weg zum Vorfaktor K: Die Kinkl6sung

Y (1.8

10—

—4=7 0.5
T
| T T T T |
3 2 1 1 2 3

205

1.0+

Abbildung 13: Graphische Darstellung der Kinklosung fiir verschiedene (.
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5 Zusammenfassung

Nur fiir das erste, in Abschnitt vorgestellte Potenzial konnten die Muldenorte des
exakten Potenzials und gleichzeitg ein brauchbarer Ausdruck fiir das auf Nullenergie ver-
schobene Potenzial gefunden werden. Eine gewisse Ahnlickeit zum schon linger bekannten
Razavy-Potenzial motivierte einen Vergleich beider Potenziale und lieferte das Ergebnis,
dass Tkachuks Beispiel ein Spezialfall des Razavy-Potenzials (fiir n = 1) ist. Uberein-
stimmung zeigte sich dabei erwartungsgemélfs auch in der Energieaufspaltung der beiden
untersten Eigenzustinde. Das verschobene Potenzial seinerseits wurde dann geméf der
Gleichung fiir die semiklassische Approximation der Energieaufspaltung, , integriert,
wodurch der besagte Naherungsausdruck mit bis auf einen Vorfaktor K angegeben
werden konnte. Der Vergleich mit dem exakten Aufspaltungswert in Abhéngigkeit des
einzigen Parameters 7 zeigte ein in Groéfenordnung und durchschnittlicher Steigung ver-
gleichbares Verhalten (s. Abb. . Tatséchlich wird aber k selbst noch einmal von 7
abhéngen, so dass der angestellte Vergleich nur begrenzt aussagekraftig ist. Fiir n — 0,
wenn der Wert der Naherungsformel besonders genau sein sollte, ist k& o }] 7Zu erwar-
ten, eine exakte Bestimmung des Faktors kdnnte das Ziel weiterfiihrender Berechnungen
aufserhalb dieser oder das Thema einer anderen Arbeit sein und wiirde sicherlich zu weite-
ren interessanten Ergebnissen fiihren. Die am Ende ermittelte Kinklosung in diesem
Potenzial hat, obwohl von der Gleichung her verschieden, Ahnlichkeit mit einem Tangens
hyperbolicus und damit die angesichts der Potenzialformung erwartete Gestalt.

Eine Verallgemeinerung des vorangegangen Beispiels wurde mit Beispiel 2 behandelt. Die
entsprechend kompliziertere Form des Potenzials war letztlich Hinderungsgrund fiir den
Gebrauch zum Test der Energieapproximation, insbesondere die Integration des verscho-
benen Potenzials schien nicht ohne weiteres méglich zu sein. Besonderheit dieses Beispiels
war die endlich hohe dufsere Begrenzung des Potenzials, die hoher und tiefer als die mittige
Barriere liegen kann. Die entsprechende Bedingung wurde zu ermittelt.

Das dritte Beispiel wurde nur ndherungsweise behandelt, da die genaue Position der Mul-
den nicht analytisch bestimmt und damit das Potenzial nicht, wie erforderlich, mit den
Mulden auf Nullniveau gelegt werden konnte. Nach der Reduktion der Parameter auf ¢
und einer Umskalierung war dies zwar fiir festgelegte ¢ moglich, jedoch der resultierende
Ausdruck zur Integration im Sinne von ([1.61)) nicht geeignet. Hilfsweise wurde mit der
Reihenentwicklung des Potenzials bis vierter Ordnung die Analyse fortgesetzt. Ein Pa-
rameterwert (*, bei dem diese Ndherung recht genau ist, konnte mithilfe der Differen-
zenfunktion von exaktem und gendhertem Potenzial gefunden werden. Das gendherte
und verschobene Potenzial lief sich dann problemlos im Rahmen der Berechnung von
integrieren. Ein weiterer Vorteil der Potenzialniherung war, dass in Analogie zu
einem Beispiel in [2] der im ersten Fall unbestimmt gebliebene Vorfaktor K identifiziert
werden konnte. So ergab sich mit ein vollstindig bestimmter und zum Vergleich
(s. Abb. tauglicher Ausdruck, der allerdings nur ndherungsweise das richtige Potenzial
reprasentiert. Gesondert wurden zwei Werte von ¢ betrachtet, zum einen (.4, fiir das die
semiklassische Approximation am genauesten sein soll, zum anderen (*, fiir das ja das ver-
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5 Zusammenfassung

wendete Naherungspotenzial dem eigentlichen sehr nahe kommt. An diesen Punkten sind
die approximierten Werte jeweils etwa das Doppelte der exakten; der Verlauf der Kurven
zwischen den Punkten ist dhnlich, ihr Abstand etwa konstant. Fiir andere Werte von (
stimmen gendhertes und vollstindiges Potenzial nicht unbedingt gut iiberein. Das zum
Teil sehr unterschiedliche Verhalten der Graphen in Abbildung [I1]14sst daher nicht zwin-
gend auf mangelnde Genauigkeit der halbklassischen Energieaufspaltungsformel schliefen.
Zuletzt wurde auch hier die Kinklosung bestimmt, die in Analogie zu dem Beispiel in [2]
durch einen Tangens hyperbolicus gegeben ist.

Ein viertes Beispiel wurde zwar untersucht, da es aber unter keinen Umsténden ein Dop-
pelmuldenpotenzial darstellt, fand es fiir die weitere Analyse keine Beriicksichtigung mehr.
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