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Anmerkung

Die Korrekturen in den Kapiteln 6, 7 und 8 beruhen auf der Umdefinition von ug,
(6.14) und ug_. Dadurch wurden in nahezu allen folgenden Reihen die Koeffizienten
verdndert und demzufolge auch die numerischen Ergebnisse.
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Kapitel 5

Berechnung der Vertex- und
Green-Funktionen

5.1 Spezielle Integrale und Konstanten

Hierin ist Lis der Integrallogarithmus und durch
zIn(l—t
Lis(z) = —/ ¥ it , z<l (5.2)
0

definiert.
Das folgende Integral 148t sich nur numerisch auswerten:

CcTet = 7r‘6/d3k1d3k2d3k3A(k1)A(kz)A(kg,)A(kl — k) A(ks — k3)A(ks — ki)
= 0.1739006 (5.3)



Kapitel 6

Renormierung

6.1 Renormierungsschema

Da die Wirkung dimensionslos ist, wird iiber

9o .. 9o
Ug := —— , bzw. hier im Fall D =3 —e:  ug:= —— 6.2
0 méfD 0 m(l)+e ( )

eine dimensionslose, nackte Kopplung eingefiihrt.

Symmetrische Phase

Bei den renormierten Parametern wird ebenso wie bei den nackten Gréflen eine
dimensionslose Kopplung eingefiihrt.

(4) (4)

9dr° D=3-¢ 9Rr
URs = = 6.14
R+ 411%—D }:ike ( )

6.3 Berechnung der renormierten Groéfien

6.3.1 Symmetrische Phase

Durch Quotientenbildung erhalten wir
(4)

_9r_ _ _ Moy« mg 2
wne = e = o [1- g2 (15 (1 +2) - 0()
329 1 . ug \ 2
— —Bd“’) (—) 6.35
+ <216 + 6 8T ( )
13 74 4 Tet L i) ((%0)? 4
+<§—§ln§—48a—0 - 3B )(5) +0(u)].
Up+ = UR [1+87(1—§(7+1n70+2)+0(6 )) + <2—16_6BR > <8_7r>

4



6.3. BERECHNUNG DER RENORMIERTEN GROSSEN 5

661 74 4 1 3
N 1 ] +(9(u§)] (6.37)

Indem ich (6.37) in (6.33) und (6.34) einsetze und nach mg bzw. g, auflose,
U 245
m2, = m§l1+8—:(1—;(v+ln ~2) +0(e)) + (—

1
3
529 71 4 32 ) uR
= T p =2 dev) (_

0 = o[ yer (5 () o) + §§i<87>

311 373, 4 128 Tet) (UR)® 4
#(Camtmaer) (5) ro ()] 0

Hier ist zu beachten, dafl die nackte Kopplung keine divergenten Anteile mehr
enthilt.

Renormierungskonstanten

Die Renormierungskonstante Z;, bestimmt sich aus (6.13) zu

3 7
Zi(ug) = 142281 (“R)

28T 4 \87
133 15 rer\ (UR\? 4
<_ﬁ + — 111 g + 48 + C ) (g) + (9 (U’R) . (641)
Fiir Z,, ergibt sich mit (6.7):
1 UR 5 UR
A = 14+ -=—=
2+ () Tosr 12 (87r>
25 7 4 Ur 3
- In-+4a) [ = O (ut). 6.42
+< 216+6n3+a><87r>+ (uk) (6.42)

Die dimensionslose Kopplung u; der symmetrischen Phase wird nach (6.15) mit
(6.41) und (6.40) berechnet.

9 _ Zy(ug)
T T R )

3’LLR 575 UR>2
— 14 28R 209 [UR
“R[ 38 T 32 (87r

311 373 4 128 7o) (UR\® 4



6 KAPITEL 6. RENORMIERUNG

Renormierungsgruppenfunktionen

Die im Kapitel 6.2 definierten Funktionen lassen sich wie die Renormierungskon-
stanten als Reihen in ugp, entwickeln.

Mit (6.24) ergibt sich

Bi(ur) = —(—

3’U,R 7 ’U,R>2
= _ 122k O(2R
“R[ 28r 81 <87r
< 1021 373 4 )(uR

3
4+ " " 1n— +128a + 30T —) O (u)]| .(6.44
108 " 18 Mg reeat sr) T (vk)| (6.44)

Die Renormierungsgruppenfunktionen 73, und 1, berechnen sich aus (6.25a, b).

1 0

Z3(UR) % Z3(UR)

go
9 rup\? (14 8. 4 wp ® )

= (3 (5o —sa) (A2 4
81 <8w> +(27 0 ™"3 8a> (87r> +0 (u) (6.45a)

1 0
—— | z
ZQ(UR) 8’U,R 90 2(UR)

lup 1 uR>2 (101 7 4 )(uR>3 s
— Utk (YR T2 12 ()Y s o
587 6 (87r s 23 ) s T (uk)

(6.45b)

Ms+(ur) = —PB(ur)

Mt (ur) = —pB(ur)

Mit (6.26) erhalten wir aus diesen Reihen
vi(ur) = (2—ms(ur) +me(ur)”

_ ! Hl@_ic_ﬁc)?
48m 1296 \ 87

1991 47 4 ur® \
I M 2 o) (MB . 4
+( 5184 36 '3 a) (87r> +O(UR)] (6.46)

In den Gleichungen (6.40) bis (6.46) sehen wir, daf} alle Renormierungskonstan-
ten und -gruppenfunktionen in Abhingigkeit von ug, frei von Divergenzen sind.

6.3.2 Phase gebrochener Symmetrie

Daraus ergibt sich

= it = w1 e (15 (e - )+ o)

R
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<284719 21247, 4 819 8051 §3d¢v> <u0>3
3

J— _|_ n 1 .
73728 1728 32 2048 24 8
+0 (ug)] . (6.53)
_ 1 31 Ur 1 € 1 m§ 44 O 2
Ug— = UR +1—68—( _5(7+n7_ﬁ)+ (6))

62831 1 _ .\ [up\?2
) (3
+ (13824 + 3R 8

189289 21247 4 819 8051 31 . up\?
_ In = Y CTet dev) ( R) 4
( 13824 1728 " 3 + 32 2048 1618 +0 (UO)

st
(6.55)
Aus (6.51) und (6.52) wird nun:
3u
2 _9Q8R ( € 2
my. = [1 2 8 (1 (7 +In 28 ) + O(e ))
14021 2.\ /ug
_Bdw> (_) )
(10368 + 37k 8 (6.56)
96685 21535 . 4 1723 3345 7 N\ (up\3
In - CTet dev) <_R> O 4
+ < 110592 2592 "3 48 T 1024 37k J\gr) T (uk)
_ . m2 N 8177 (ugr\?
go — gRl1+—— 1—5(’)’4‘11’170—7)4-0(6))4‘@ 8_7T (657)
1322279 21319 4 1045 2849 wup\3
1 = _CTet> (_) 0 4 .
+ ( 165888 1296 3 24 ° T 312 sr) T (uk)

Auch hier ist, ebenso wie in der symmetrischen Phase, die letzte Gleichung frei von
Divergenzen.

Renormierungskonstanten

Die Renormierungskonstanten Z; (i = 2, 3,4) aus Kapitel 6.1 werden nun in Abhing-
igkeit von ur_ bestimmt. Der Grenziibergang ¢ — 0 ist durchgefiihrt.

Aus (6.55) und (6.49) erhalten wir

lurp 1693 uR>2
88r 10368 <87r (6.58)

464285 19375, 4 703 2481 ur\?
— In=- — — CTet) (_) O 4 )
( 331776 + 2592 o 3 48 1024 8 + (UR)

Z5_ berechnet sich mit (6.7):

1UR 47 ’LLR>2
7, _ 1 -Ur, % (Ur
> (ur) 137 192 <87r

40705 5 4 8 o7 up\?
- —ln=- — =g - = Tet) (_R> 4 ) )
+ (55296 tplny 305 o) T© (uf) - (6.59)

Zg_(UR) = 1-




8 KAPITEL 6. RENORMIERUNG

Aus dem Vakuumerwartungswert bestimmt sich die Renormierungskonstante Z,_
nach (6.19).

13up 43805 uR>2
Zu _ 42U 29000 (UR 6.60
1 (un) T 168r T 41472 (87r (6.60)

86573 23263, 4 1387 3217 3
( a5 0 (32) 4 0 (uh)

1272 5184 237 06 ¢ 20as 8

Die dimensionslose Kopplung u_ der gebrochenen Phase wird nach (6.20) be-
rechnet,.

~—

g Z3(u
- TOH(,U’R):UR 4( R

mp Z3(’U,R)

7’U,R 8177 UR 2
— I S (e
“R[ 18 T 25: (87r>

1322279 21319 4 1045 2849 up)\?
o 1 = Y _CTet> (_) O 4
+<165888 1296 "3 24 ¢ 510 sr) T (v2)

Renormierungsgruppenfunktionen

Zum Abschlufl dieses Kapitels werden noch die Renormierungsgruppenfunktionen
der Phase gebrochener Symmetrie als Reihen in ur_ entwickeln.

Diese Rechnungen sind analog zu den Rechnungen auf Seite 6 mit den Renor-
mierungskonstanten der gebrochenen Phase durchzufiihren.

1 1
o 0 B Ou(ug)
ﬁi(UR) o (% mg " (U(UR))> __U(UR)( 8uR mR)
7’U,R 239 Ur 2
= —up |l———— = — .62
“Rl 487 1296 (87r> (6.62)
(1112203 21319 4 1045 8547 Tet) (u_R>3 ,
(165888 32 Pyt g et - +0 (uf)
1 0
_ = - 2| z
N3 (ur) B(ur) Zy(un) Dunl,, 3(ur)

- 1’U,R 10 UR 2
ssr 81 (87r> (6.63a)

1207483 19375 4 703 7443 up\?
— In = CTet) ( R) O 4
( 331776 864 "3 16 %7 1004 +0 (up)

&1
() = —Plur)o— | Zy(ur)
_(u = — u —_— u
T2 R R Zz(uR) dun . 2(UR
lug 83<UR>2 (277873 5.4 255 81 Tt) (uR>3
— ZUr_ 20 (Ur _ _ 20 sy 2R 4 S pTer) (LR
437 o6\sr) T\ 1l6ssss 173" 5% T 8

+0 (ug) (6.63b)
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(2 — n3(ur) + m(ug) ™"
L[, lue 1032 <’LLR>2
2 &

v_(ug) =

—— 6.64
16 8w - 20736 ( )

1722091 182 4 1 14 3
(7 09 8205 4 193 6 7CT6t> (uR> +0(u;)]

663552 1728 "3 T 32 %" 2048

8

Alle Renormierungskonstanten und -gruppenfunktionen sind in Abhangigkeit
von ug_ frei von Divergenzen.

Mit den Reihen in den Abschnitten 6.3.1 und 6.3.2 sind nun alle benétigten
Grofen in Abhéngigkeit der renormierten Kopplungskonstanten ug4 bestimmt, und

wir konnen in den beiden nédchsten Kapiteln die Amplitudenverhéltnisse der Korre-
lationsldnge und Suszeptibilitat berechnen.



Kapitel 7

Amplitudenverhiltnis der
Korrelationslinge

7.2 Berechnung der Reihen

Um das gerade vorgestellte Verfahren anzuwenden, bestimme ich zuerst die in (7.5)
definierten Reihen in ihren eigenen Kopplungen.

lu 1 /u 2
Fulund) = 1-5% ¢ m)
13 71
+<2—7—a1n )( ) +0 (ufy) (7.23)
2

3 up- 233

Flup) = 1+—
(ur-) T 168 768(87r>

207265 21535 4 1723 3345 up \?
_ _ In = CTet) <L) O 4
( 663552 5184 "3 96 * T 2048 sr ) T (uk-)

(7.24)
Mit diesen Reihen 148t sich die Entwicklung in den beiden Kopplungen berechnen.

7.2.1 Reihen der Hochtemperaturkopplung

Zur Auswertung des Amplitudenverhéltnisses ;:—f bzw. ®, am Hochtemperaturfix-
punkt muf zuerst nach (7.19) die Abhingigkeit von ug_(ug;) bestimmt werden.

]_’U,R+ 1309 UR+ 2
UR—(UR+) = ugpy |1 —— - ( )

4°8r 2592 \ 8r
3
(_ 207853 | 30271, 4 7 2337 CTet> (uﬁ )
55206 = 1296 3 8 512 8
+0 (ug, )] (7.25)

Mit der Reihe (7.25) wird (7.24) zu

3 UR+ 269 <UR+>
F — 142 URe 2DY
(u+) T 168 768 \sn

10



7.2. BERECHNUNG DER REIHEN 11

3 8

959441 21535 4 1723 3345 Upa\ 3
_ . 1 el CTCt> < R+> O 4 )
( 663552 5184 "3 06 “ 7 2048 +0 (up.)

(7.26)

Nun kann &, entwickelt werden:

F (u
P (upt) = 7F+Eu23
B 1lug, 41 (uR+>2
N 16 8t 256 \ &7

449761 14719 4 745 3345 wpi\ 3
_ _ In = - CTet) (_) O 4 )
( 663552 5184 "3 " 32”7 2048 sr) T (k)

(7.27)

Diese Reihe wird im folgenden Kapitel mit Padé-Borel-Approximanten numerisch
ausgewertet. Das Amplitudenverhéltnis ist nun direkt durch Vorgabe des kritischen
Exponenten v gegeben.

f v
f_+(UR+,’/) = (2% (ur+))
o |14 11lv ugy N —39v + 12112 <uR+>2
16 8w 512 8
n (-450949V — 34749v% + 3593713 _ 14719v . 4

In -
663552 5184 3

745V 3345V o\ [ UR+
T30t S0 © )(SW

)3 +0 (u;+)] (7.28)

7.2.2 Reihen der Tieftemperaturkopplung

Um ;—* bzw. &  am Tieftemperaturfixpunkt auszuwerten, bestimmen wir zuerst

ugr+(ur—) nach (7.21).

lup. 1633 <uR>2

) = up 142
urt(ur-) = U l+4 8w 2502 \ 8r

1011239 30271 4 7 2337 \?
+ ( —~ In- +-a+ —CT“> (ui> +0 (u%_)]

165888 1296 3 ' 8 = 512 8
(7.29)

Durch Einsetzen in (7.23) bekommen wir:

1’LLR_ 7 UR_>2
F.(up) = 1——tB= L (Ur-
+(ur-) 281 24 ( 8

431 71 4 16 \ fup \? )
+ (5184 503 ?“) (Q) +0 (uh). (7:30)



12 KAPITEL 7. AMPLITUDENVERHALTNIS DER KORRELATIONSLANGE

Mit dieser Reihe kann ®_ entwickelt werden.

F_(UR_)
b B L
“r) = T um)
. 11 UR— i 85 <UR—>2
B 16 87 ' 256 \ 8r
109217 14719 4 745 3345 up \3
_ _ 1 - - CTet)( ) O 4
( 663552 5184 "3 " 32 %" 2048 sr ) * (vk-)

(7.31)

Ebenso wie (7.27) wird diese Reihe im folgenden Kapitel mit Padé-Borel-Approxi-
manten numerisch ausgewertet. Fiir das Amplitudenverhé&ltnis ergibt sich:

f+

fj(uR—, v) = (2&_(ugr-))"”

11y ug_ N 49v + 12112 (uR_>2
16 8w 512 &
n (—188813V + 436592 + 359370 14719 . 4

= 2”[1—1—

663552 5184 3

745V 3345y ) (ui

+ CTet
4 8m

32 2048 )3 +0 (u;‘z_)] . (7.32)

7.3 Numerische Ergebnisse

7.3.1 Hochtemperaturfixpunkt

In der Hochtemperaturphase haben wir die Fixpunktwerte

up, = 23.73(8) [GZJ80, ZJ82] Renormierungsgruppe in 3-D (7.33)

Uk, = 24.56(10) [S1E93] Hochtemperatur-Entwicklung ’ .
an denen (7.27) berechnet wird.

Zuerst wird die Reihe direkt durch Padé-Approximanten ausgewertet (Tabelle
7.1). Wie insbesondere an den Werten der [1,2]-Padé zu erkennen ist, haben wir hier
ein sehr schlechtes Konvergenzverhalten.

Durch Anwendung des Padé-Borel-Verfahrens lassen sich bessere Werte erzielen.
Die inverse Borel-Transformation wird als numerische Integration durchgefiihrt. Die
Werte der [0,3]-Padé aus Tabelle 7.2 sind durch Partialbruchzerlegung und Berech-
nen des Hauptwertintegrals {iber die Polstelle bestimmt.

Nun wird noch aus den oben bestimmten Werten das Amplitudenverhéaltnis nach
(7.14) berechnet. Dabei beziehen sich die Tabellen 7.3 und 7.4 auf die & -Werte aus



NUMERISCHE ERGEBNISSE

Fixpunkt ) (up,)
Uk 13,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 1.4091 1.6879 -0.2230 1.0821
24.56 1.4004 1.7123 -0.3539 1.0491

Tabelle 7.1: @ in Abhangigkeit vom Fixpunktwert u}, .

Fixpunkt Borel-Transformierte von ®_ (u}, )
Uh, [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 1.4091 1.6949 1.4328 1.3776
24.56 1.4004 1.7198 1.4372 1.3673

Tabelle 7.2: Padé-Borel-Approximante von &, am Fixpunktwert u},

Tabelle 7.1. Fiir den kritischen Exponenten setze ich folgende Werte ein.

v = 0.624(2)
v = 0.627(9)
v = 0.6300(15)

[BGHP92] Monte-Carlo Renormierungsgruppe

[DEC85] Tieftemperaturentwicklung (7.34)

[GZJ80, ZJ82] Renormierungsgruppe in 3-D

Amplitudenverhiltnis f—+( Ry = 23.73,v)

v | 3,01-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
0.624 1.9089 2.1365 / 1.6189
0.627 1.9148 2.1443 / 1.6227
0.630 1.9208 2.1522 / 1.6265

Tabelle 7.3: Amplitudenverhaltnis der Korrelationslange unter Vorgabe von v
am Fixpunktwert u%, = 23.73

Die [1,2]-Padé lassen sich fiir den Fixpunkt u}, = 24.56 nicht berechnen, da
o, (24.56) < 0 ist.

Aus den Daten der Padé-Borel-Transformierten & -Funktion (Tabelle 7.2) be-
komme ich die Werte der Tabelle 7.5. Die [3,0]-Padé stimmen mit den ersten Spalten
der Tabellen 7.3 und 7.4 iiberein, da die Padé-Approximante mit dem urspriingli-
chem Polynom iibereinstimmt, und somit die Borel-Transformation keinen Einfluf3
hat.
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Amplitudenverhéltnis ;:—Jr(u}‘pr = 24.56,v)

v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
0.624 1.9015 2.1558 / 1.5879
0.627 1.9074 2.1638 / 1.5914
0.630 1.9133 2.1718 / 1.5950

am Fixpunktwert up, = 24.56

Tabelle 7.4: Amplitudenverhaltnis der Korrelationslange unter Vorgabe von v

Amplitudenverhiltnis [+, .
Padé-Borel-Verfahren f_ (vre,v)
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
wh, = 23.73
0.624 1.9089 2.1420 1.9289 1.8822
0.627 1.9148 2.1499 1.9350 1.8879
0.630 1.9208 2.1578 1.9411 1.8937
ulh, = 24.56
0.624 1.9015 2.1616 1.9326 1.8734
0.627 1.9074 2.1696 1.9387 1.9387
0.630 1.9133 2.1777 1.9448 1.8847

Tabelle 7.5: Amplitudenverhiltnis berechnet nach dem Padé-Borel-Verfahren

Das Amplitudenverhiltnis 148t sich ohne Vorgabe von v durch Einsetzen von
(6.46) in (7.14) bestimmen. Diese Werte sind in Tabelle 7.6 aufgefiihrt.

e | s £
Uh, [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 1.9379 2.0645 2.4322 1.7092
24.56 1.9459 2.0884 2.4944 1.6896

Tabelle 7.6: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert u}_ .
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7.3.2 Tieftemperaturfixpunkt

In der Phase gebrochener Symmetrie wird (7.31) an den Fixpunkten

wh_ = 14.73(14)
wh = 15.1(1.3)

[SIE93| Tieftemperaturentwicklung

[HEI93] (7.35)

ausgewertet.

In Tabelle 7.7 sind die Ergebnisse der Padé-Approximanten aufgelistet. Tabelle
7.8 fiihrt die mit dem Padé-Borel-Verfahren bestimmten Werte auf. Aus den Werten
der Tabelle 7.7 berechnet sich das Amplitudenverhiltnis wie in 7.9 aufgelistet. Die
Werte in Tabelle 7.10 sind mit Padé-Borel-Verfahren bestimmt. Tabelle 7.11 listet
die Werte der direkten Bestimmung des Amplitudenverhéltnisses auf.

Fixpunkt S (uf)
U 13,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.5288 1.5301 1.5002 1.5149
15.1 1.5456 1.5471 1.5133 1.5301

Tabelle 7.7: ®_ in Abhangigkeit vom Fixpunktwert u},_.

Fixpunkt Borel-Transformierte von ®_(u} )
(7 [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.5288 1.5307 1.4868 1.4688
15.1 1.5456 1.5478 1.4994 1.4729

Tabelle 7.8: Padé-Borel-Approximante von ®_ am Fixpunktwert uj_

7.4 Diskussion

Um die Ergebnisse der Rechnungen auszuwerten, wurde jeweils {iber die vier Padé-
Approximanten gemittelt und der Maximalfehler bestimmt. Dabei kommen die Wer-
te der folgenden Tabelle 7.12 heraus. Bei der Mittelung iiber die Padé-Approximan-
ten der Hochtemperaturkopplung wurde der Wert der [1,2]-Padé weggelassen, da er
weit aulerhalb der moglichen Losung liegt.

Am Tieftemperaturfixpunkt ist der Spielraum der Werte ungefahr um einen Fak-
tor zehn geringer als am Hochtemperaturfixpunkt. Beim Hochtemperaturfixpunkt
bringt die Verwendung von Borel-Transformierten eine deutliche Verringerung des
relativen Fehlers auf ca. 16%.
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Amplitudenverhiltnis ;i(u;z_, V)
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
uh = 14.73
0.624 2.0085 2.0096 1.9850 1.9971
0.627 2.0152 2.0163 1.9916 2.0038
0.630 2.0220 2.0231 1.9981 2.0105
uh = 15.1
0.624 2.0222 2.0235 1.9958 2.0096
0.627 2.0291 2.0303 2.0025 2.0163
0.630 2.0360 2.0372 2.0091 2.0231

am Fixpunktwert u},_

Tabelle 7.9: Amplitudenverhaltnis der Korrelationslange unter Vorgabe von v

Amplitudenverhé&ltnis f—+(u*R7, V)
Padé-Borel-Verfahren f_
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
up = 14.73
0.624 2.0085 2.0101 1.9739 1.9590
0.627 2.0152 2.0169 1.9804 1.9653
0.630 2.0220 2.0236 1.9869 1.9717
up_ =15.1
0.624 2.0223 2.0240 1.9844 1.9624
0.627 2.0291 2.0309 1.9909 1.9687
0.630 2.0360 2.0378 1.9975 1.9751

Tabelle 7.10: Amplitudenverhaltnis berechnet nach Padé-Borel-Verfahren

| e L
(S [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.8883 2.0877 2.1704 1.9475
15.1 1.9078 2.1417 2.2479 1.9746

Tabelle 7.11: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert uj,_.




7.4. DISKUSSION

P, Hochtemperaturfixpunkt | Tieftemperaturfixpunkt
Padé-Approximanten 1.39(34) 1.526(26)
Padé-Borel Verfahren 1.48(24) 1.510(41)

Tabelle 7.12: Gemittelte Werte von .

17

Dagegen bringt das Padé-Borel-Verfahren in der Tieftemperaturphase keine bes-
sere Konvergenz. Insgesamt ist der Fehler zwar deutlich kleiner als in der Hochtem-
peraturphase, aber ohne Borel-Transfomation ist die Varianz noch geringer.

Um diese Ergebnisse mit Literaturwerten zu vergleichen, betrachte ich direkt

das Amplitudenverhaltnis. Dieses wird durch Potenzierung mit dem kritischen Ex-
ponenten v aus ¢, gewonnen. Dabei ist v einmal durch die Literaturwerte aus
(7.34) gegeben. Die zweite Moglichkeit ist die Bestimmung iiber (6.46, 6.64), wie sie

in [GUT95] ausfiihrlich dargestellt wird.

;—+ Hochtemperaturfixpunkt | Tieftemperaturfixpunkt
Padé-Approximanten 1.89(30) 2.013(28)
Padé-Borel-Verfahren 1.98(20) 2.000(41)
Direkte Bestimmung 2.05(45) 2.05(20)

Tabelle 7.13: Gemittelte Werte des Amplitudenverhaltnisses der Korrelationslange

Die Werte der direkten Bestimmung des Amplitudenverhéaltnisses haben an bei-
den Fixpunkten die grofiten Fehler. Dies 148t sich auf die ungenauen Werte des kri-
tischen Exponeneten v zuriickfithren (siehe [GUT95]). Abgesehen von diesem Wert
hat, wie schon bei der Funktion ®., das Ergebnis am Tieftemperaturfixpunkt einen
ungefihr zehnmal geringeren Fehler. Bei beiden Bestimmungsverfahren (ohne bzw.
mit Borel-Transformation) ist der relative Fehler sehr klein, ndmlich bei einem bzw.
knapp iiber zwei Prozent.

Zum Vergleich mit den hier erzielten Ergebnissen seien hier die folgenden Lite-
raturwerte angegeben.

4

1.91
1.96(3),1.96(1),1.94(3)

[BGZJ74] e-Entwicklung
[LF89, S1E93]
Hoch-/Tieftemperatur-Entwicklung

[RZW94] Monte-Carlo
[KKG83] Experimentell: Bindre Fluide
[HE193, MH94| 2-Loop-Berechnung

fi

a (7.36)

= 2.06(1)
2.05(22), 2.22(5), 1.9(2)
2.03(4),2.18(12)

Die gemittelten Werte aus Tabelle 7.13 liegen in beiden Phasen mit ihren Fehlern
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im Spektrum der Literaturwerte.

Im Vergleich mit den Ergebnissen aus [MH94] fillt auf, daf sich die numerischen
Werte in der Tieftemperaturkopplung kaum unterscheiden, wihrend am Hochtem-
peraturfixpunkt zwei sehr unterschiedliche Werte bestimmt werden.

Zur Abschitzung der Korrekturen, die die einzelnen Ordnungen beitragen, sind
in der folgenden Gleichung die numerischen Werte der Koeffizienten aufgefiihrt.

B, = 1+274-10%up, + 25410 uf, — 2.86-10°uf,, + O (uf,)
® = 1+274-10 up +526-10 *uj, +3.68-10 °u} + O (up )
(7.37)

Wenn typische Fixpunktwerte eingesetzt werden (uy, ~ 24,uy =~ 15), tragen die
einzelnen Koeflizienten wie folgt bei:

&, =1 +0.657 +0.146 —0.396

(7.38)
®_ =1 +0.410 +0.118 +0.012

Das heifit, dafl die dritte Ordnung in der Hochtemperaturkopplung eine Korrektur
von 21% der niedrigeren Terme liefert, wihrend der Beitrag in der Tieftempera-
turkopplung nur knapp iiber einem Prozent liegt. Mit der kleinen Korrektur in der
Tieftemperaturkopplung scheint diese Reihe eine deutlich bessere Konvergenz auf-
zuweisen, als die Reihe der Hochtemperaturkopplung, wo der Betrag des Termes
dritter Ordnung mehr als doppelt so grof3 ist wie der Term zweiter Ordnung.

Wegen des geringen Fehlers und der nur kleinen Korrektur in dritter Ordnung
gebe ich als sicherstes Ergebnis fiir das Amplitudenverhiltnis der Korrelationslédnge
die Mittelung iiber die Padé-Approximanten am Tieftemperaturfixpunkt an:

;—Jr = 2.013(28) (7.39)




Kapitel 8

Amplitudenverhiltnis der
Suszeptibilitit

8.2 Berechnung der Reihen

Mit den entsprechenden Reihen aus Kapitel 6.3 lautet diese Gleichung;:

- 14 Bt~
V4 (upy) + 18y 48

8
117 7 4 wpe\? .
Bt A M YR+ .
+< 1728+4n3+6a><87r> +0 (uke) (8.7)

lup. 169 uR_>2
(up) = 1-— YRz 209 (VR
7-(ur-) s 8t 384 \sr

82753 5 4 255 81 up \?
_— “ln= -4 — _CTet> (_) O 4
+ <110592 Te™3 T 16% 138 sr ) T (uk-)

8.2.1 Reihen der Hochtemperaturkopplung

In (8.5) brauchen wir neben ®, das wir schon in (7.27) bzw. (7.31) als Reihe in einer
Kopplung bestimmt haben, noch Z3_ als Funktion von ug. . Dies erhalten wir durch
Einsetzen von (7.25) in (6.58).

_ l’U,R+ _ 1369 <UR+>2
8 8 10368 \ 8
138751 19375 4 703 2481 3
( ot T8, L) (un)e

110592 - 2592 48 ¢ 1024 8T

Z3—(ury)

(8.9)
Damit kann nun die Bestimmungsgleichung in der Hochtemperaturkopplung berech-

net werden.

%(UR+/Y) = %(2‘1)4“1%))7

19
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2+ 1lyup, N 5612 + 405 + 98012 (uR+>2
16 8 41472 8
. (243934 — 131845y — 50497 + 11979 _ 37214 + 14719y 4

- s

921184 5184 "3
554 -+ 745 4962 + 3345 3
| 554+ Td5y + vcm> (%) Lo (ua)]

32 °T T 20 87

(8.10)

8.2.2 Reihen der Tieftemperaturkopplung

In der Tieftemperaturphase mufl noch Z3, in Abhéngigkeit von ur_ berechnet wer-
den.

1 UR— 2
%W%le—ﬁﬁgﬁ

31 8. 4 8\ fup \? \
AR PR P W 0 11
+< 162+27n3+3a>( ) +0 (k) (811)

Die Bestimmungsgleichung wird damit zu

C. Z3+ (ur-)

—(up_ = T 2(2® (ug.))"
C_ (uR a7) Z3, (’U,R,) ( (uR ))
2 2
_ o[y 2 MU | 6908 + 7533y 49801y <U,R>
16 & 41472 8w
n 828954 — 104887~ + 6326172 4 35937~3 _ 37214 + 14719~ 0 é
663552 5184 3

554 + 745y 4962 + 33457 . t) <uR_>3 .
cret) (2=} 4 o .
T3 YT T s sr ) T (ur-)

(8.12)

8.3 Numerische Ergebnisse

Die numerische Auswertung erfolgt wie in Kapitel 7.3 an Fixpunktwerten der Kopp-
lung. Der kritische Exponent ist hier wiederum durch Literaturwerte gegeben.

8.3.1 Hochtemperaturfixpunkt

Die Reihe (8.10) wird an den Fixpunkten aus (7.33) und den folgenden Werten des
kritischen Exponenten bestimmt.

v =1.237(2) [BGHP92] Monte-Carlo Renormierungsgruppe
v =1.241(2) [GZJ80, ZJ82] Renormierungsgruppe in 3-D (8.13)
v = 1.250(1) [GGT74] Hochtemperaturentwicklung
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In der Tabelle 8.1 sind die numerischen Resultate aufgelistet. Die [1,2]-Padé ha-
ben mit ihren Werten um Null keine Aussagekraft. Diese Werte sind auf die ent-
sprechenden Resultate in Tabelle 7.1 zuriickzufiihren und in der Mittelwertbildung

weggelassen.
: e Oy
Amplitudenverhltnis ol (UgyrY)
v 13,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
up, = 23.73
1.237 4.8579 5.1603 0.3883 2.7996
1.241 4.8811 5.1844 0.4196 2.8063
1.250 4.9337 5.2391 0.4882 2.8214
Up, = 24.56
1.237 4.9296 5.2717 0.1844 2.6852
1.241 4.9534 5.2965 0.2158 2.6912
1.250 5.0074 5.3530 0.2847 2.7049

Tabelle 8.1: Amplitudenverhaltnis der Suszeptibilitdt unter Vorgabe von v am
Fixpunktwert up,

Aml?litudenverh'alltnis (& (s, )
Padé-Borel-Verfahren C_
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
uh, = 23.73
1.237 4.8579 5.1921 4.0628 2.8421
1.241 4.8811 5.2164 4.0797 2.8429
1.250 4.9337 5.2715 4.1177 2.8448
Wl = 24.56
1.237 || 4.9296 5.3066 4.0848 2.7909
1.241 4.9534 5.3317 4.1018 2.7914
1.250 5.0074 5.3886 4.1402 2.7927

Tabelle 8.2: Amplitudenverhaltnis berechnet nach Padé-Borel-Verfahren

Tabelle 8.2 fiihrt die Ergebnisse der Berechnung mittels Padé-Borel-Verfahren
auf. Fiir die [1,2]-Padé kommen deutlich verbesserte Werte heraus, wahrend die
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[0,3]-Padé immer noch sehr niedrig liegen. Als Vergleichswerte sind in Tabelle 8.3
noch die Resultate der Berechnung ohne Vorgabe von « durch Einsetzen von (8.7)
in (8.5) aufgefiihrt.

| A O
Uhy [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 4.9591 4.9735 -6.8973 2.7276
24.56 5.0970 5.1135 -6.2958 2.6193

Tabelle 8.3: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert u}_ .

8.3.2 Tieftemperaturfixpunkt

Am Tieftemperaturfixpunkt (Werte wie in (7.35)) berechnen wir zuerst die Padé-
Approximanten von (8.12), deren Ergebnisse in Tabelle 8.4 aufgelistet sind.

Amplitudenverhéltnis % (Wp_,7)
v | 3,0-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
uh = 14.73
1.237 4.5497 4.6979 4.6507 4.6631
1.241 4.5696 4.7190 4.6712 4.6835
1.250 4.6149 4.7669 4.7175 4.7298
uh = 15.1
1.237 4.6327 4.7990 4.7448 4.7591
1.241 4.6532 4.8208 4.7658 4.7801
1.250 4.6997 4.8703 4.8135 4.8277

Tabelle 8.4: Amplitudenverhaltnis der Suszeptibilitdt unter Vorgabe von v am
Fixpunktwert u},

In Tabelle 8.5 sind die Padé-Borel-Resultate eingetragen. Hier hat, ebenso wie
bei ®_ (s. Abschnitt 7.3.2), die Borel-Transformation keinen ergebnisverbessernden
Einfluf, im Gegenteil wird die Varianz stark erhoht. Tabelle 8.6 listet die Resultate
des Amplitudenverhéltnisses der Suszeptibilitdt nur in Abhédngigkeit der Fixpunkte
up_ auf.



Tabelle 8.5: Amplitudenverhaltnis berechnet nach Padé-Borel-Verfahren

vkt ey G )
U 13,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 3.7567 5.2513 21.3990 4.5347
15.1 3.8347 5.6564 -78.1839 4.7399

8.4. DISKUSSION 23
Amplitudenverhltnis & (b, )
Padé-Borel-Verfahren C'

y 13,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé

up. = 14.73

1.237 4.5497 4.9931 4.2761 3.4985

1.241 4.5696 5.0547 4.2933 3.5047

1.250 4.6149 5.2463 4.3322 3.5186
wh = 15.1

1.237 4.6327 4.9992 4.3293 3.4850

1.241 4.6532 5.0762 4.3467 3.4909

1.250 4.6997 5.3523 4.3862 3.5041

Tabelle 8.6: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert uj,_.

8.4 Diskussion

Aus den oben gewonnenen Resultaten bilde ich Mittelwerte iiber die Daten der ein-
zelnen Bestimmungsmethoden. Dabei habe ich bei der direkten Bestimmung nur
durch Vorgabe des Fixpunktwertes jeweils die Daten der [1,2]-Padé vernachlissigt,
da sie teilweise negativ beziehungsweise weit auflerhalb des physikalisch Sinnvollen
liegen. Ebenso habe ich bei der Mittelung iiber die Daten der Tabelle 8.1 verfahren.
Wie in Tabelle 7.13 sind die Werte der direkten Bestimmung sehr ungenau. Bei Be-
stimmung des Amplitudenverhé&ltnisses iiber das Padé-Borel-Verfahren ist der Wert
am Tieftemperaturfixpunkt mit einem etwas geringerem Maximalfehler behaftet,
jedoch ist der Unterschied langst nicht so grofl wie beim Amplitudenverhéltnis der
Korrelationsldnge (vgl. Tab. 7.13). Am Hochtemperaturfixpunkt haben alle Mit-
telwerte einen Fehler, der grofler als ein Drittel ist. Damit erscheint der Mittelwert
iiber die Padé-Approximanten am Tieftemperaturfixpunkt als der einzige zuverlassi-
ge Wert. Er hat einen relativen Maximalfehler von ungefihr 3.5%.

Im Vergleich mit den Literaturwerten aus (8.14) fillt auf, dal die Mittelwerte
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C

C—+ Hochtemperaturfixpunkt | Tieftemperaturfixpunkt
Padé-Approximanten 4.3(1.6) 4.72(17)
Padé-Borel-Verfahren 4.3(1.5) 4.39(96)
Direkte Bestimmung 4.2(1.6) 4.63(1.03)

Tabelle 8.7: Gemittelte Werte des Amplitudenverhaltnisses der Suszeptibilitat

fast durchgehend niedriger liegen. Nur der experimentelle Wert ist fast genauso grof3
oder etwas unterhalb der hier bestimmten Mittelwerte.

4

4.81 [BGZJ74] e-Entwicklung
4.77(30) [ZJ89] Renormierungsgruppe in 3-D
Cc, [LF89, SIE93]
c_ 5.03(5),4.95(15), 4.82(5) Hoch-/Tieftemperatur-Entwicklung (8:.14)
4.3(3) Experimentell: Bindre Fluide
4.66(36),6.03(1.05) [HEI93] 2-Loop-Berechnung

Mit diesen Werten, die aufler dem letzten auf anderen Bestimmungsmethoden be-
ruhen, wird das oben Festgestellte untermauert und als Ergebnis gebe ich

% = 4.72(17) (8.15)

an, den Mittelwert der Padé-Approximanten am Tieftemperaturfixpunkt.



