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EinleitungIn dieser Arbeit wird das Ising-Modell mit Methoden der statistischen Feldtheoriebehandelt. Mit dem Ising-Modell l�a�t sich das Verhalten eines Ferromagneten in derN�ahe der Curie-Temperatur beschreiben. An der Curie-Temperatur selbst tritt einPhasen�ubergang zweiter Ordnung ein, der auch als kritisches Ph�anomen bezeichnetwird.Kritische Ph�anomene sind besonders bedeutsam, da die beschreibenden Gr�o�enuniversellen Charakter haben. Dieses hei�t, ein System, das einen Phasen�ubergangzweiter Ordnung durchf�uhrt, l�a�t sich unabh�angig von der speziellen Form undWechselwirkung durch universelle Gr�o�en beschreiben. Von besonderem Interessesind dabei in der vorliegenden Arbeit die Amplitudenverh�altnisse der Korrelati-onsl�ange und Suszeptibilit�at.Die Berechnung beruht auf Methoden der Quantenfeldtheorie, die Eingang indie Statistische Physik gefunden haben. Dieser Zugang wird m�oglich infolge derAnalogie zwischen dem erzeugenden Funktional der Feldtheorie und der Zustands-summe in der Statistischen Physik. Da das Verhalten am kritischen Punkt durchlangreichweitige1 Fluktuationen dominiert wird, lassen sich die mikroskopischen De-tails vernachl�assigen und eine kontinuierliche Feldvariable im gesamten Raum anStelle der Spins an den Gitterpl�atzen einf�uhren. Der Erwartungswert dieser Feldva-riablen entspricht der spontanen Magnetisierung des Ferromagneten. Am kritischenPunkt haben wir eine spontane Symmetriebrechung, wenn die Temperatur gesenktwird. Oberhalb der kritischen Temperatur ist die Magnetisierung Null, w�ahrend sieunterhalb einen Wert ungleich Null annimmt.Mit dem feldtheoretischen Ansatz lassen sich die gesuchten kritischen Gr�o�en�uber die renormierte St�orungstheorie und die Renormierungsgruppengleichung be-rechnen. Diese Rechnungen werden in einer massiven �4-Theorie in drei Dimensio-nen durchgef�uhrt. Zur Bestimmung ist in h�oheren Ordnungen eine gro�e Anzahl vonFeynman-Graphen zu berechnen. Ein Schwerpunkt dieser Arbeit ist die Entwicklungeines Verfahrens zur Reduzierung der Anzahl der Graphen, die berechnet werdenm�ussen. Dies geschieht durch Elimination bestimmter Klassen von Graphen, n�amlichsolchen, die Tadpole-Teilgraphen enthalten. Nach der Renormierung lassen sich diekritischen Gr�o�en als Potenzreihen in einer dimensionslosen Kopplung bestimmen.Diese Rechnung ist hier bis zur dritten Ordnung durchgef�uhrt. Durch Einsetzen von(vorgegebenen) Fixpunktwerten erhalten wir letztendlich numerische Werte f�ur die1Das hei�t, die typischen L�angen sind wesentlich gr�o�er als die Gitterkonstante a.1



2 EinleitungAmplitudenverh�altnisse der Korrelationsl�ange und Suszeptibilit�at. Anschlie�end las-sen sich die so gewonnenen Ergebnisse mit Literaturwerten, die auf experimentellenoder anderen theoretischen Verfahren beruhen, vergleichen.Die Arbeit gliedert sich wie folgt: Im 1.Kapitel f�uhre ich die grundlegendeTheorie �uber kritische Ph�anomene, Ising-Modell und die St�orungsrechnung ein. Das2.Kapitel besch�aftigt sich mit der Erstellung der Feynman-Graphen. Kapitel 3und 4 stellen ein Verfahren vor, wie mit der Dyson-Schwinger-Gleichung eine ganzeKlasse von Graphen aus der Berechnung der Vertex-Funktionen eliminiert werdenkann. In Kapitel 5 werden die Reihen berechnet, die im weiteren Verlauf ben�otigtwerden. Das Renormierungsschemawird imKapitel 6 eingef�uhrt und die renormier-ten Gr�o�en in Abh�angigkeit der dimensionslosen Kopplung bestimmt. InKapitel 7berechnet sich das Amplitudenverh�altnis der Korrelationsl�ange, und in Kapitel 8das Amplitudenverh�altnis der Suszeptibilit�at.



Kapitel 1Kritische Ph�anomene,Ising-Modell und �4-TheorieIn diesem Kapitel f�uhre ich die theoretischen Grundlagen der Arbeit ein. Als grund-legende Literatur verweise ich auf [GJ87, Par88, Ryd85, Yeo92] und die im Textzitierte Literatur.1.1 Kritische Ph�anomeneUnter kritischen Ph�anomenen verstehen wir Erscheinungen an Systemen, die einenPhasen�ubergang zweiter Ordnung durchf�uhren. Phasen�uberg�ange zweiter Ordnungwerden nach Ehrenfest dadurch charakterisiert, da� die thermodynamischen Poten-tiale und ihre ersten partiellen Ableitungen stetig sind, die zweiten Ableitungenjedoch Sprungstellen oder Singularit�aten am kritischen Punkt aufweisen (oder all-gemeiner: ein Phasen�ubergang n-ter Ordnung hat eine Unstetigkeit in der n-tenpartiellen Ableitung, wobei die ersten n� 1 Ableitungen stetig sind).Der Begri� des \kritischen Ph�anomens" stammt vomVerhalten vieler Sto�e, wiez.B. H2O. Im Phasendiagramm verschwindet am kritischen Punkt der Unterschiedzwischen Fl�ussigkeit und Gasphase.W�ahrend die Dichte
uktuationen weitreichenderwerden, verschwindet die Di�erenz der Dichte von Gas und Fl�ussigkeit.Das Standardbeispiel eines Phasen�ubergangs zweiter Ordnung ist ein Ferroma-gnet, der bei Erhitzen �uber die Curie-Temperatur Tc hinaus nur noch paramagnetischist. Hierbei ist Tc die \kritische Temperatur". Wir werden in dieser Arbeit in Anleh-nung an die Literatur die Nomenklatur dieses Phasen�ubergangs benutzen, obwohlin der Natur auch bei anderen Phasen�uberg�angen kritische Ph�anomene beobachtetwerden.Ein Ferromagnet hat bei einer Temperatur T < Tc eine nichtverschwindendespontane Magnetisierung M , die sich unabh�angig von einem �au�eren Feld einstellt1.Bei Ann�aherung an die kritische Temperatur wird M immer kleiner, um dann ober-1Tats�achlich stellt sich diese Magnetisierung nicht in einem \gro�en" Ferromagneten ein, son-dern nur in Dom�anen der L�angenausdehnung � 10�2mm.3



4 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIEhalb von Tc zu verschwinden. Dabei verh�alt sich M wie ein typischer Ordnungspa-rameter eines Phasen�ubergangs zweiter Ordnung. Wir nehmen nun ein Gitter mitder Gitterkonstanten a an, auf dessen Gitterpunkten die Spinvariable � = �(x)existiert, wie es im Heisenberg- oder Ising-Modell der Fall ist. Dabei vernachl�assigenwir die speziellen Eigenschaften in atomaren Dimensionen. Diese N�aherung wirdsich sp�ater als gerechtfertigt herausstellen, da die Korrelationsl�ange als L�angenskalades Systems in der N�ahe des kritischen Punktes wesentlich gr�o�er als a wird. Damitk�onnen wir das Gitter unabh�angig von der speziellen Form als isotrop au�assen. Aufdiesem Gitter ist die spontane Magnetisierung M als statistisches Mittel �uber allem�oglichen Zust�ande gegeben:M(x) = � h�(x)i ���B(x)=0 (1.1)1.1.1 Thermodynamische Potentiale des FerromagnetenHier werden kurz die thermodynamischen Potentiale und die daraus durch Dif-ferentiation erhaltenen Zustandsgr�o�en und Responsefunktionen dargestellt (siehe[Nol91] und andere Lehrb�ucher der Thermodynamik).Da wir uns auf einem Gitter bewegen, wird aus der Raumintegration eine Summe�uber die Gitterpunkte xi.Wir gehen von der ZustandssummeZ als gewichteter Summe �uber alle m�oglichenKon�gurationen des Systems aus.Z = Z(B; T ) = X[�(xi)] expf��(H0 � �Xi B(xi)�(xi))g (1.2)Hierin ist � = 1kbT die inverse Temperatur (kb ist die Boltzmann-Konstante). DieSumme �uber [�(xi)] beschreibt die Summe �uber alle Zust�ande des Spinkon�gurati-onsraums. H0 ist der Hamiltonian der Spin-Spin-Wechselwirkung.Die Helmholtzsche freie EnergieF = F (B; T ) = � 1� lnZ(B; T ) (1.3)ist das erste relevante Potential. Durch Legendre-Transformation erhalten wir darausdie Gibbssche freie Energie � = �(M;T ) = F +M �B: (1.4)Die Magnetisierung bzw. das �au�ere Magnetfeld als Zustandsgr�o�en erhalten wirnun durch partielle Ableitungen erster Ordnung.M = � @F@B!T B =  @�@M !T (1.5)Durch weitere partielle Di�erentiation erhalten wir Responsefunktionen wie diemagnetische Suszeptibilit�at� =  @M@B !T = � @2F@B2!T =  @2�@M2!�1T (1.6)



1.1. KRITISCHE PH�ANOMENE 5und die spezi�sche W�armekapazit�atC = �T  @2F@T 2!B : (1.7)Da der Phasen�ubergang nur bei verschwindendem �au�eren Feld beobachtet wer-den kann, folgt aus (1.5) bei steigender Temperatur f�ur den Beginn des Phasen�uber-gangs die Extremaleigenschaft  @F@B!T;B=0 = 0: (1.8)Um die zweite in dieser Arbeit behandelte Gr�o�e einzuf�uhren, betrachten wirdie Spin-Spin-Korrelationsfunktionenh�(x)�(y)i ; h�(x)�(y)ic := h�(x)�(y)i � h�(x)i h�(y)i : (1.9)Diese werden auch als 2-Punkt-Green-Funktionen bezeichnet. Da wir idealerweiseein translationsinvariantes System betrachten, lassen sie sich auch als Funktionenvon nur einer Ortsvariablen schreiben.G(2)(x) := h�(x)�(0)i ; G(2)c (x) := h�(x)�(0)ic (1.10)Der Index c steht f�ur zusammenh�angende (engl. connected) Green-Funktionen.Die Korrelationsl�ange wird nun als das zweite Moment der verbundenen Green-Funktion de�niert.�2 := 12D R dDx x2G(2)c (x)R dDx G(2)c (x) = � @@p2G(2)c (p)G(2)c (p) ������p2=0 (1.11)D bezeichnet hier, wie in der gesamten Arbeit, die Dimension des Orts- bzw. Im-pulsraumes.1.1.2 Kritische ExponentenNahe des kritischen Punkts wird das Verhalten der verschiedenen Zustandsgr�o�enund Responsefunktionen unabh�angig vom speziellen Phasen�ubergang. Unterschied-lichste Systeme zeigen ein einheitliches Potenzgesetz-Verhalten.Wir f�uhren die reduzierte Temperaturt := T � TcTc (1.12)ein, die am kritischen Punkt gerade das Vorzeichen wechselt. Physikalische Gr�o�enlassen sich nun als Potenzreihe in t entwickeln.f(t) = A�jtj'�(1 +B�jtj � + � � �)  � > 0 (1.13)



6 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIEHierbei bezeichnet der Index + jeweils die Hochtemperaturphase (t > 0) und � dieTieftemperaturphase (t < 0). F�ur jtj � 1, also nahe beim Phasen�ubergang wirddies zu f(t) � A�jtj'� ; (1.14)und wir k�onnen den \kritischen Exponenten" sowie die Amplituden bestimmen.'� = limjtj!0 ln jf(t)jln jtj A� = limjtj!0 jtj�'�f(t) (1.15)Ohne �au�eres Feld l�a�t sich die Korrelationsl�ange f�ur kleine t demnach als� � 8<: f+t��+ ; t > 0f�(�t)��� ; t < 0 (1.16a)schreiben, wodurch der kritische Exponent � de�niert ist. Die magnetische Suszep-tibilit�at de�niert den Exponenten 
� � 8<: C+t�
+ ; t > 0C�(�t)�
�; t < 0 (1.16b)und die spezi�sche W�armekapazit�at �:C � 8<: A+t��+ ; t > 0A�(�t)��� ; t < 0 : (1.16c)F�ur T < Tc gilt M � (�t)�: (1.16d)Oberhalb Tc verschwindet M. Das Verhalten der Magnetisierung f�ur T = Tc beiangelegtem �au�eren Feld wird durch � beschrieben.M � B1=� (1.17a)Durch die Impulsabh�angigkeit der verbundenen 2-Punkt-Funktion bei T = TcG(2)c (p) � p�2+� (1.17b)ist ein weiterer Exponent � de�niert.Durch die Skalenhypothese wird postuliert, da� sich die Exponenten in der Hoch-und Tieftemperaturphase nicht unterscheiden.� = �+ = �� 
 = 
+ = 
� � = �+ = �� (1.18)Desweiteren gelten die Skalengesetze� = 2� �D (1.19a)� = �2 (D � 2 + �) (1.19b)
 = �(2� �) (1.19c)� = D + 2� �D � 2 + � ; (1.19d)aus denen folgt, das lediglich zwei der sechs hier de�nierten kritischen Exponentenunabh�angig sind.



1.2. ISING-MODELL 71.2 Ising-ModellDas Ising-Modell ist ein Modell zur Beschreibung eines Ferromagneten [Dom74,Bel91, Kapitel 1.2]. Ausgegangenwird von einemD-dimensionalen kubischen Gitterder Gitterkonstanten a. Da die spezielle Gitterform keinen grundlegenden Ein
u�hat, ist diese Wahl der Einfachheit halber gerechtfertigt. An den Gitterpunkten, dievon 1{N durchnummeriert sind, sind die Spins �i angeordnet. Allgemein bezeichnetder Index i eine Gr�o�e am Ort xi. Eine weitere N�aherung wird mit der Annahmegemacht, da� nur n�achste Nachbarn wechselwirken. Der einfachste Hamiltonian, derdies beschreibt ist H0 = �J X<i;j>�i�j ; (1.20)wobei die Summe �uber < i; j > nur die n�achsten Nachbarn einbezieht. Dies ist alsdas Quanten-Heisenberg-Modell bekannt.Das klassische Heisenberg-Modell erhalten wir nach Ersetzung der Pauli-Spin-Matrizen durch Vektoren. Im Ising-Modell werden diese Vektoren dann durch Ska-lare ersetzt, die nur noch zwei m�ogliche Werte �i = �1 annehmen k�onnen. DerHamiltonian des Ising-Modells mit externem Magnetfeld ist alsoH(�) = �J X<i;j>�i�j � �Xi Bi�i: (1.21)Wie in (1.2) erhalten wir durch Summation �uber alle Spinkon�gurationen desSystems die ZustandssummeZ[B; T ] =X[�i] e��H(�) =X[�i] e�(JP<i;j> �i�j+�PiBi�i): (1.22)Statistische Mittelwerte von spinabh�angigen Funktionen F(�) ohne �au�eres Feldwerden durchhF(�)i := P[�i]F(�)e�JP<i;j> �i�jP[�i] e�JP<i;j> �i�j = 1Z[B = 0] X[�i] F(�)e��H ������B=0 (1.23)bestimmt.Die Magnetisierung am Ort xi berechnet sich nach (1.5):Mi[B = 0] = � @F@B !B=0 = 1� 1Z[B = 0] @@BiZ[B]�����B=0= �P[�i] �ie��H(�)P[�i] e��H(�) �����B=0= � h�ii (1.24)Die Suszeptibilit�aten �ij aus (1.6) lassen sich nach�ij��2 = 1��2 @Mi[B]@Bj �����B=0 = h�i�ji � h�ii h�ji = h�i�jic (1.25)



8 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIEdurch die verbundene 2-Punkt-Korrelationsfunktion ausdr�ucken. Wenn wir (1.6) ex-plizit ausrechnen erhalten wirh�(xi)�(xj)ic = 1�2�2  1Z[B] @2Z[B]@Bi@Bj � 1Z2[B] @Z[B]@Bi @Z[B]@Bj ! �����B=0: (1.26)In translationsinvarianten Systemenmit ortsunabh�angigemMagnetfeld wird die Sus-zeptibilit�at zu���2 = 1��2 @M [B]@B �����B=0 =Xi h�(xi)�(0)ic =Xi G(2)c (xi): (1.27)Die Korrelationsl�ange bestimmt sich nach (1.11) aus�2 = 12D Pi x2iG(2)c (xi)PiG(2)c (xi) : (1.28)1.3 �4-TheorieIn diesem Kapitel wird die �4-Theorie als feldtheoretisches Modell zur Beschrei-bung von kritischen Ph�anomenen vorgestellt [IZ80, Kapitel 6]. Wir gehen von ei-nem kontinuierlichen, skalaren Feld � aus, das im D-dimensionalen Raum de�niertist (� : IRD ! IR). Dieses Feld tritt an die Stelle des Isingspins aus dem vorherigenAbschnitt.Eine lokale LagrangedichteL0[�] = 12(@�(x))2 + 12m20�2(x) (1.29)wird eingef�uhrt. Zu (1.29) wird ein selbstwechselwirkender Anteil, dessen Kopp-lungskonstante g0 > 0 ist, zuaddiert.Lint[�] = 14!g0�4(x) (1.30)L[�] = L0[�] + Lint[�] (1.31)(1.31) ist die komplette Lagrangedichte. Die Wirkung ist das Integral �uber dengesamten D-dimensionalen Ortsraum.S[�] = Z dDxL[�] (1.32)Zur Lagrangedichte de�nieren wir noch einen Quellterm, der eine �au�ere Quellej(x) an das Feld �(x) koppelt. Lsrc[�] = �j(x)�(x) (1.33)



1.3. �4-THEORIE 9Physikalische Gr�o�en lassen sich wie in (1.23) als Erwartungswerte der Feldva-riablen bestimmen. hF [�]i := R D�(x) F [�]e�S[�]R D�(x) e�S[�] (1.34)Hierbei ist das Funktionalintegral R D�(x) als Integral �uber den Zustandsraum ge-geben, das hei�t, � nimmt alle m�oglichen Feldkon�gurationen an.Zur Berechnung f�uhren wir in Analogie zur Zustandssumme (1.22) das erzeu-gende Funktional der Green-Funktionen ein.Z[j] = Z D�(x) e�S[�]+R dDxj(x)�(x) (1.35)Als Normierungsfaktor berechnen wirZ0 = Z[0] = Z D�(x) e�S[�]: (1.36)Hiermit lassen sich die Erwartungswerte nach (1.34) leicht bestimmen:hF [�]i = 1Z0 Z D�(x) F [�]e�S[�] (1.37)Der Erwartungswert der Vakuum
uktuation (bzw. die 1-Punkt-Green-Funktion)berechnet sich mit der Identit�at��j(y) exp�Z dDx j(x)�(x)� = �(y) exp�Z dDx j(x)�(x)� (1.38)als h�(x)i = 1Z0 ��j(x)Z[j]�����j=0 = � lnZ[j]�j(x) �����j=0 : (1.39)Die h�oheren Green-Funktionen lassen sich ebenso durch Funktionaldi�erentiationenbestimmen.G(n)(x1; x2; : : : ; xn) = h�(x1)�(x2) � � ��(xn)i= 1Z0 �n�j(x1)�j(x2) � � � �j(xn)Z[j]�����j=0 (1.40)Umgekehrt ist das erzeugende Funktional als Summe �uber die Green-Funktionengegeben.Z[j]Z0 = 1Xi=0 1n! Z dDx1 � � �dDxn j(x1) � � � j(xn)G(n)(x1; : : : ; xn) (1.41)Als weiteres erzeugendes Funktional wirdW[j] := ln Z[j]Z0 (1.42)



10 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIEde�niert. Die verbundenen Green-Funktionen lassen sich daraus auf vergleichbareArt wie in (1.40) bestimmen.G(n)c (x1; x2; : : : ; xn) = h�(x1)�(x2) � � ��(xn)ic= �n�j(x1)�j(x2) � � � �j(xn)W[j]�����j=0 (1.43)Es zeigt sich, da� die 1-Punkt-Funktionen aus (1.39) und (1.43) gleich sind, w�ahrendsich die h�oheren Korrelationsfunktionen unterscheiden:h�(x)ic = h�(x)ih�(x1)�(x2)ic = h�(x1)�(x2)i � h�(x1)i h�(x2)i (1.44)h�(x1)�(x2)�(x3)ic = h�(x1)�(x2)�(x3)i � h�(x1)�(x2)i h�(x3)i� h�(x2)�(x3)i h�(x1)i � h�(x3)�(x1)i h�(x2)i+2 h�(x1)i h�(x2)i h�(x3)iDa wir bei der Berechnung der Amplitudenverh�altnisse von Suszeptibilit�at undKorrelationsl�ange an \Einteilchen-irreduziblen Graphen" interessiert sind, de�nie-ren wir uns ein weiteres erzeugendes Funktional als Legendre-Transformierte von(1.42). Einteilchen-Irreduzibilit�at bedeutet, da� sich die Feynman-Graphen (s.u.)nicht durch Auftrennen eines inneren Propagators in zwei Teilgraphen zerlegen las-sen. �[�] :=W[j] � Z dDx j(x)�(x) (1.45)Hieraus erhalten wir durch Di�erentiation nach der Feldvariablen �(x) die n-Punkt-Vertex-Funktionen, die Einteilchen-irreduzibel sind.�(n)(x1; x2; : : : ; xn) = �n��(x1)��(x2) � � � ��(xn)�[�]������=0 (1.46)Durch eine Fourier-Transformation k�onnen wir diese Funktion auch im Impulsraumdarstellen.�(n)(x1; x2; : : : ; xn) = Z nYj=0 dDpj(2�)D eipj�xj! �(n)(p1; p2; : : : ; pn) (1.47)Die Berechnung dieser letzten Gr�o�e f�ur n = 2; 4 nimmt in dieser Arbeit breitenRaum ein.1.4 St�orungstheorieZur praktischen Berechnung der Korrelations- bzw. Vertex-Funktionen m�ussen wirleider, da sie sich nicht geschlossen bestimmen lassen, auf die St�orungstheorie zur�uck-greifen. Eine umfangreichere Darstellung �ndet sich zum Beispiel in [BDFN92, Ka-pitel 8] und der zu Beginn dieses Kapitels aufgef�uhrten Literatur.



1.4. ST�ORUNGSTHEORIE 11Um die Entwicklung in der Kopplungskonstanten g0 darzustellen, schreiben wirzun�achst das erzeugende Funktional (1.35) um.Z[j] = Z D�(x) exp�� Z dDxLint[�]� � exp�� Z dDx (L0[�] + Lsrc[�])� (1.48)Mit der Identit�at (1.38) wird dies zuZ[j] = exp8<:� 14!g0 Z dDx  ��j(x)!49=; � ZG[j]; (1.49)wobei ZG[j] ein Gau�sches Funktionalintegral ist.ZG[j] = Z D�(x) exp�� Z dDx�12(@�(x))2 + 12m20�2(x)� j(x)�(x)��= ZG[0] � exp�12 Z dDxdDy j(x)�(x � y)j(y)� (1.50)�(x�y) ist der Feynman-Propagator; in einem Gau�-Modell ist dies der vollst�andigePropagator. Im Impulsraum gilt �(p) = 1p2+m20 , also ist�(x� y) = 1(2�)D Z dDp 1p2 +m20 eip(x�y): (1.51)Den Wechselwirkungsterm k�onnen wir nun in eine Potenzreihe in der Kopplung g0entwickeln.Z[j] = 1Xn=0 1n! 0@�g04! Z dDx  ��j(x)!41An exp�12 Z dDxdDy j(x)�(x � y)j(y)� � ZG[0](1.52)In �ahnlicher Weise lassen sich auch die beiden anderen erzeugenden FunktionaleW[j] und �[�] sowie deren Ableitungen, die Korrelations- und Vertex-Funktionenals unendliche Reihen in g0 schreiben.In den folgenden Abschnitten werden nun die Feynman-Regeln der �4-Theoriein beiden Phasen vorgestellt, w�ahrend sich Kapitel 2 mit der Erstellung der Graphenbesch�aftigt.1.4.1 Symmetrische PhaseIn der symmetrischen Phase verwenden wir eine �4-Theorie mit der Feldvariablen�+(x) := �(x) und einer nackten Massem20+ := m20 > 0: (1.53)Das Potential (vgl. Abb. 1.1)V(�+) = 12m20+�2+ + 14!g0�4+ (1.54)



12 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIE
�

V(�)
Abbildung 1.1: Potential der symmetrischen Phasehat damit ein absolutes Minimum bei �+(x) � 0. Daraus folgt eine ungebrocheneZ2-Symmetrie, das hei�t V(�+) = V(��+). Die Lagrangedichte ist wie in (1.31)durch L[�+] = 12(@�+(x))2 + 12m20�2+(x) + 14!g0�4+(x) (1.55)gegeben. Zum Abschlu� dieses Abschnitts stellen wir noch die Feynman-Regeln f�urdie Vertex-Funktionen im Impulsraum auf, nach denen die Graphen berechnet wer-den.1. Jedem Vierpunkt-Vertex ����@@@@�R I	k1k2 k3k4wird ein Faktor �g0 zugeordnet.2. An jedem Vertex gilt Impulserhaltung, das hei�t f�ur jeden Vertex mu� einFaktor � (Pi ki) ber�ucksichtigt werden.3. Jeder inneren Linie -ki mit Impuls ki wird ein Propagator �(ki) =1k2i+m20 zugeordnet.4. �Uber alle inneren Impulse wird integriert (2�)�D R dDki.5. Ordne jedem Diagramm einen Symmetriefaktor zu:



1.4. ST�ORUNGSTHEORIE 13� F�ur jede innere Linie, die einen Vertex mit sich selbst verbindet, einenFaktor 2�1.� F�ur l Linien, die zwei Vertices miteinander verbinden, einen Faktor (l!)�1.� Wenn sich die inneren Punkte auf r verschiedene Arten anordnen lassen,ohne da� das Diagramm seine Gestalt �andert, einen Faktor r�1.1.4.2 Gebrochene PhaseUm in die Phase gebrochener Symmetrie zu kommen, setzen wir m20 / t an2. Alsogilt f�ur T < Tc: m20 < 0: (1.56)Das Potential V(�) = 12m20�2 + 14!g0�4 (1.57)hat nun drei Extremwerte, ein lokales Maximum bei �(x) � 0 und zwei absoluteMinima bei �(x) � �vmin.
�

V(�)
�vmin vminAbbildung 1.2: Potential der gebrochenen Phase2Es stellt sich heraus, da� wir eigentlich eine Massenverschiebung m20�m20c / t ansetzen m�ussen(vgl. Kapitel 6.1).



14 KAPITEL 1. KRITISCHE PH�ANOMENE, ISING-MODELL, �4-THEORIEAus (1.57) ergibt sich vmin zu:vmin = vuut�3!m20g0 = vuut3m20�g0 > 0 (1.58)Hier haben wir eine Masse m20� := �2m20 > 0 (1.59)de�niert. Da das Funktionalintegral (1.36) durch die Minima im Potential dominiertwird, entwickeln wir (1.57) um +vmin und f�uhren eine neue Feldvariable��(x) := �(x)� vmin (1.60)ein. Durch Einsetzen dieser Feldvariablen in das Potential (1.57) bekommen wirV(��) = 12m20��2� + 13!q3g0m0��3� + 14!g0�4� � 38m40�g0 : (1.61)Da der konstante Term im Potential keinen Ein
u� auf die St�orungstheorie hat,setzen wir ihn gleich Null. Die Lagrangedichte wird zuL�[��] = 12(@��(x))2 + 12m20��2�(x) + 13!q3g0m0��3�(x) + 14!g0�4�(x): (1.62)Die St�orungsrechnung in der gebrochenen Phase k�onnen wir in der Feldvariablen�� durchf�uhren. Im Vergleich zur symmetrischen Phase kommt nur ein Wechselwir-kungsterm �3� hinzu. Durch die spezielle Wahl von m0� k�onnen wir die Feynman-Regeln der symmetrischen Phase direkt �ubernehmen und m�ussen nur f�ur die Drei-ervertices zus�atzliche Regeln scha�en.1'. JedemDreipunkt-Vertex ��� ZZZ> }?k1 k2k3 wird ein Faktor�p3g0m0� zugeordnet.Die Impulserhaltung gilt nat�urlich ebenfalls an den Dreiervertices.



Kapitel 2Generation der Feynman-GraphenNachdem im letzten Kapitel die Feynman-Regeln zur Bestimmung der Integraleaufgestellt wurden, geht es nun um das Erstellen der zu berechnenden Feynman-Graphen und die Kontrolle der Vollst�andigkeit.2.1 Erstellen der GraphenUm eine bestimmte n-Punkt-Korrelations- bzw. Vertex-Funktion in einer gegebenenSchleifen-(Loop-)Ordnung zu bestimmen, m�ussen wir alle Feynman-Diagramme, diezu dieser Ordnung geh�oren, berechnen.In der symmetrischen Phase, wo wir nur eine �4-Kopplung haben, l�a�t sich dieAnzahl der Vertices V4 direkt berechnen [ID89].V4 = L+ 12n � 1 (2.1)Hier bezeichnet L die Loop-Ordnung und n die Anzahl der externen Beine. Da jedemVertex ein Faktor �g0 zugeordnet wird, ist V4 auch die St�orungsordnung. F�ur die2-Punkt-Funktion (n = 2) wird V4 = L, und damit ist die St�orungsordnung gleichder Loop-Ordnung.In der Phase gebrochener Symmetrie haben wir neben der �4-Kopplung noch die�3-Kopplung vorliegen, das hei�t es gibt zus�atzlich noch Dreiervertices V3. Damitwird (2.1) zu 2V4 + V3 = 2L+ n� 2 (2.2)und zu gegebenen n und L mu� �uber alle m�oglichen Kombinationen von V3 und V4mit V3;4 � 0 summiert werden.Als Beispiel betrachten wir einen 2-Loop-Graphen, der zu �(2), der echten 2-Punkt-Vertex-Funktion, in der gebrochenen Phase beitr�agt. Nach (2.2) gilt 2V4 +V3 = 4. Wir w�ahlen V4 = 1, woraus V3 = 2 folgt. Der Graph setzt sich also auseinem Vierervertex und zwei Dreiervertices zusammen. MitI = 2V4 + 32V3 � 12n (2.3)15



16 KAPITEL 2. GENERATION DER FEYNMAN-GRAPHENbestimmen wir die Anzahl der internen Propagatoren I mit 4. Nun haben wir denkompletten Bausatz, um den Graph zu erzeugen. Um alle Graphen zu bekommen,m�ussen prinzipiell die beiden externen Beine auf alle m�oglichen Arten mit den Ver-tices und internen Linien verbunden werden. Eine gro�e Anzahl von Kombinationenbraucht nicht ber�ucksichtigt zu werden, da alle Teile miteinander verbunden seinm�ussen. Au�erdem fallen alle Graphen weg, die Einteilchen-reduzibel sind, wie zumBeispiel ��������, da wir die Vertex-Funktion betrachten. Dieser Graphtr�agt zu G(2)c (1.43), den verbundenen Green-Funktionen bei, aber nicht zu �(2) nach(1.46).Ein m�oglicher Graph neben neun anderen Kombinationen ist ����� .Exemplarisch stelle ich hier ein ausf�uhrliches Verfahren zur Bestimmung desSymmetriefaktors des letzten Graphen vor, wie es sich aus Wicks Theorem ergibt.� F�ur jeden Vierervertex kommt ein Faktor 4! in den Nenner, f�ur jeden Dreier-vertex ein Faktor 3!.� F�ur mehrere Dreier- oder Vierervertices kommt ein zus�atzlicher Permutations-faktor V3;4! in den Nenner.Diese Regeln gelten f�ur alle Graphen mit einem gegebenen Satz von Vertices undinneren Linien. Insgesamt ergibt sich damit zun�achst1(4!)V4 � (3!)V3 � V4! � V3! , im speziellen Fall 14! � (3!)2 � 1 � 2! = 11728: (2.4)Nun kommen einige weitere Faktoren hinzu, die vom speziellen Graph abh�angen.� Verbindung eines �au�eren Beines mit dem Vierervertex: 4.� Verbindung des anderen �au�eren Beines mit einem von zwei Dreiervertices:2 � 3.� Verbindung des restlichen Dreiervertex mit einem der zwei freien Beine desanderen Dreiervertex: 3 � 2.� Verbindung der beiden Vertices, die mit den externen Beinen verbunden sind:3.� Zwei Verbindungen des Vierervertex mit dem zweiten Dreiervertex: 2.Die genannten Faktoren kommen alle in den Z�ahler und es ergibt sich4 � 6 � 6 � 3 � 21728 = 12 : (2.5)Mit den Regeln aus Kapitel 1.4 ergibt sich notwendigerweise derselbe Wert: Es gibtbei diesem Graphen nur zwei Linien, die dieselben Vertices verbinden, welches einenFaktor 12 ergibt. Die inneren Vertices (hier nur einer) lassen sich nicht untereinanderpermutieren und es gibt auch keine Linie, die einen Vertex mit sich selbst verbindet.



2.2. PROGRAMME 172.2 ProgrammeDie Programme, mit denen die Feynman-Graphen generiert wurden, werden im fol-genden kurz vorgestellt. Diese Programme haben jeweils unterschiedliche St�arken.FeynArtsAls erstes Programmwurde FeynArts [EK91, KBD90] verwendet. Die Vorteile die-ses Macropakets f�ur Mathematica [Wol91] liegen in der graphischen Darstellungund der M�oglichkeit, die Berechnung direkt durch FeynCalc, ein Programm dersel-ben Autoren, ausf�uhren zu lassen. Da das Paket f�ur die Generation von 3-Loop-Graphen aber noch erweitert werden mu�, und die Rechenzeit wegen des rekursivenAlgorithmus stark steigt, stellte es sich jedoch als unpraktisch heraus.QgrafLetztendlich wurde Qgraf [Nog93, Nog] verwendet. Dieses Fortran77 Programmlie� sich problemlos auf unseren Workstations installieren.Durch eine Steuerdatei l�a�t sich das Modell einstellen. Neben der Anzahl derexternen Teilchen und der Loopordnung lassen sich alle Wechselwirkungen vorgeben.Bei unserem Modell einer skalaren Feldtheorie haben wir nur einen Vierervertex undin der gebrochenen Phase zus�atzlich den Dreiervertex vorliegen.Die Ausgabe des Programms ist eine Liste der Vertices, die durch numeriertePropagatoren verbunden werden.Da bei der Berechnung der 2- und 4-Punkt-Funktion nur Einteilchen-irreduzibleGraphen berechnet werden, ist in der Steuerdatei die Option \onshell" zu setzen.Desweiteren haben wir die Option \topol" gesetzt, da damit die externen Beineidentisch gemacht werden, und Graphen, die durch Permutation der �au�eren Beineauseinander hervorgehen, nur einfach aufgef�uhrt werden. Die Permutationsfaktorensind dann durch Listenvergleiche von einem Programm bestimmt worden [Gut95].F�ur die Bestimmung der 1-Punkt-Funktion, die ja eine Green-Funktion ist, darfkeine Option gesetzt werden.2.3 Anzahl der GraphenAbschlie�end wird in diesem Kapitel noch ein Verfahren vorgestellt, um die Vollst�an-digkeit der Graphen zu kontrollieren [ZJ89, IZ80, CLP78].Die Summe aller Symmetriefaktoren einer gegebenen Ordnung l�a�t sich durchdie \Null-dimensionale" Feldtheorie berechnen. Das Argument der Feldvariablenund die Ortsintegration werden unterdr�uckt. Dadurch verschwindet auch der Ablei-tungsterm und die Wirkung wird zuS(') = 12'2 � g4!'4: (2.6)



18 KAPITEL 2. GENERATION DER FEYNMAN-GRAPHENDas negative Vorzeichen der '4-Kopplungskonstanten g hat an dieser Stelle den Ef-fekt, da� die Koe�zienten der zu entwickelnden Reihe durchweg positive Vorzeichenhaben. �Uber die daraus folgende Divergenz des erzeugenden Funktionals k�onnen wirhinwegsehen, da nur die Vorfaktoren der jeweiligen St�orungsordnung von Interessesind.Um die Reihe f�ur die verbundenen Green-Funktionen zu erhalten, bilden wirden Logarithmus von Z(j) = Z 1�1 d'p2�e�S(')+j' (2.7)und leiten n mal nach j ab. Gc('n) = @n ln Z(j)Z(0)@jn ������j=0 (2.8)F�ur die verbundene Green-Funktion in der symmetrischen Phase folgt:Gc('2) = 1 + 12g + 23g2 + 118 g3 +O �g4� (2.9)Durch Invertieren erhalten wir die Reihe f�ur die Vertex-Funktionen:�(2)0D = �1 + 12g + 512g2 + 56g3 +O �g4� (2.10)Darin steht der Index \0D" f�ur die \Null-dimensionale" Theorie. Durch weiteresAbleiten bekommen wir f�ur die 4-Punkt Funktion�(4)0D = g + 32g2 + 214 g3 + 452 g4 +O �g5� : (2.11)Durch Summation der Symmetriefaktoren aller Graphen erhalten wir die Werte aus(2.10) und (2.11). Eine vollst�andige Liste aller Graphen be�ndet sich in [Gut95].In der Phase gebrochener Symmetrie ist die Wirkung um einen '3-Term erwei-tert. S(') = 12'2 � pg3! '3 � g4!'4 (2.12)Die Dreipunkt-Kopplung hat hier eine Kopplungskonstante pg, da nur die Sym-metriefaktoren interessieren. Daraus lassen sich die Reihen f�ur die 1- und 2-Punkt-Green-Funktionen bestimmen.Gc(') = 12g 12 + 3124g 32 + 34148 g 52 + O �g 72� (2.13)Gc('2) = 1 + 32g + 253 g2 + 174124 g3 +O �g4� (2.14)Durch Invertieren der letzten Gleichung bekommen wir die Reihe f�ur die Vertex-Funktionen �(2)0D = �1 + 32g + 7312g2 + 61112 g3 + O �g4� : (2.15)



2.3. ANZAHL DER GRAPHEN 19An dieser Stelle seien noch die Reihen f�ur die Anzahl der Graphen aus [Nog93]zitiert: N(') = g 12 + 6g 32 + 46g 52 +O �g 72� (2.16)N('2) = 1 + 3g+ 29g2 + 351g3 + O �g4� : (2.17)Die letzte Gleichung wird wiederum invertiert, und f�ur die Anzahl der Einteilchen-irreduziblen Graphen der 2-Punkt-Funktion erhalten wir:N� = �1 + 3g+ 20g2 + 204g3 +O �g4� : (2.18)Alle in diesem Kapitel aufgef�uhrten Summen von Symmetriefaktoren und An-zahlen von Graphen sind in �Ubereinstimmung mit den berechneten Listen. Damitist die Menge der Graphen als vollst�andig bis zur 3-Loop-Ordnung anzusehen.



Kapitel 3Dyson-Schwinger-Gleichung in dergebrochenen PhaseIn diesem Kapitel wird ein Verfahren vorgestellt, die Anzahl der zu berechnendenFeynman-Graphen �uber die Dyson-Schwinger-Gleichung zu reduzieren. Diese Glei-chungen gehen zur�uck auf [Dys49]. Als Literatur seien hier [Cvi83, ZJ89, Riv87,Tay76] angegeben.3.1 AllgemeinesZur Vereinfachung sei in diesem und dem folgenden Kapitel die Integration �ubereine Ortsvariable immer D-dimensional gemeint.Z dx � Z dDx (3.1)Die wichtigsten Formeln dieses Kapitels sind hier zu Beginn nochmals kurzerw�ahnt (vgl. (1.35), (1.42) und (1.45)).Z[j] = Z0 � eW[j] (3.2)W[j] = �[�] + Z dx �(x)j(x) (3.3)In (3.3) gilt f�ur die Feldvariable � = �W[j]�j .Da wir in diesem Kapitel in der gebrochenen Phase rechnen, ist die Lagrange-dichte im Gegensatz zu (1.31) wie folgt gegeben:L[�] = 12(@�(x))2 + 12m20�2(x) + 13!f0�3(x) + 14!g0�4(x) (3.4)S[�] = Z dDxL[�]= Z dDx �12(@�(x))2 + 12m20�2(x) + 13!f0�3(x) + 14!g0�4(x)� (3.5)�S[�]��(x) = (�@2 +m20)�(x) + 12f0�2(x) + 13!g0�3(x): (3.6)20



3.2. NOTATIONEN 21Hierin habe ich eine Dreipunkt-Kopplungskonstante f0 eingef�uhrt, f�ur die nach denRegeln aus Abschnitt 1.4.2 f0 = p3g0m0 gilt.3.2 NotationenZur Darstellung der Dyson-Schwinger-Gleichung f�uhre ich eine graphische Schreib-weise ein. Dabei ist der freie Propagator�(x; y) =� (3.7)und der inverse Propagator��1(x; y) = (�@2 +m20)�(x � y) =��� : (3.8)F�ur die Vertices und Quellen gilt:�g0 Z dx = ��f0 Z dx = � = �q3g0m0 Z dxZ j(x)dx = ���@@Die erzeugenden Funktionale aus 3.1 stellen sich graphisch wie folgt dar:Z[j] =̂ �W[j] =̂ � (3.9)�[�] =̂ �Die Green- bzw. Vertex-Funktionen im Ortsraum stellen sich wie die jeweiligenerzeugenden Funktionale mit externen Beinen dar.G(x1; x2; : : : ; xn) =̂ 	xnx1x2Gc(x1; x2; : : : ; xn) =̂ 
xnx1x2 (3.10)



22 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASE�(x1; x2; : : : ; xn) =̂ �xnx1x2Hier ist zu bemerken, da� die Darstellung (3.10) nur f�ur j � 0 gilt. F�ur beliebiges jstellt die obige graphische Schreibweise nur Ableitungen der erzeugenden Funktio-nale dar.3.3 Die Dyson-Schwinger-Gleichung f�urGreen-FunktionenDie Aussage, da� das Integral �uber eine totale Ableitung verschwindet, nutzen wirf�ur das erzeugende Funktional Z[j] (3.2) aus.Z D�(x) ���(x) exp(�S[�] + j � �) = 0 (3.11)Hier haben wir die symbolische Kurzschreibweisej � � := Z dx j(x)�(x) (3.12)eingef�uhrt. Damit folgt aus (3.11) bei Ausf�uhrung der Di�erentiationZ D�(x)  j(x)� �S��(x) [�]! exp(�S[�] + j � �) = 0: (3.13)Unter Ausnutzung der Identit�at (1.38)��j(x) exp(j � �) = �(x) exp(j � �) (3.14)k�onnen wir die Funktionalintegration nach hinten ziehen und erhalten:0 =  �S��(x) " ��j(x) #� j(x)!Z[j]=  (�@2 +m20) ��j(x) + 12f0 �2�j(x)2 + 13!g0 �3�j(x)3 � j(x)!Z[j]: (3.15)Damit haben wir die Dyson-Schwinger-Gleichung der Bewegung, oder in KurzformDS-Gleichung, gewonnen.Nach Faltung mit �(x; y) wird aus (3.15) in graphischer Notation� =
��@@ + 12� + 13!� : (3.16)



3.4. DIE DS-GLEICHUNG F�UR VERBUNDENE GREEN-FUNKTIONEN 233.4 Die Dyson-Schwinger-Gleichung f�ur verbun-dene Green-FunktionenDie zusammenh�angenden Green-Funktionen haben W[j] = ln Z[j]Z0 als erzeugendesFunktional.Durch Funktionaldi�erentiation von (3.2) nach j(x) erhalten wir��j(x)Z[j] = �W[j]�j(x) Z[j] (3.17)� =� : (3.18)Die Green-Funktion zerf�allt also in einen Anteil, der mit dem �au�eren Bein verbun-den ist, und in einen Teil, der unverbunden ist.Wir nutzen die Identit�at1Z[j] ��j(x)Z[j] = �W[j]�j(x) + ��j(x) ; (3.19)um (3.15) umzuschreiben. So erhalten wir die DS-Gleichung f�ur die zusammenh�an-genden Green-Funktionen:0 = �S��(x) " �W�j(x) + ��j(x) #� j(x)= (�@2 +m20)�W[j]�j(x) + 12f0 24 �W[j]�j(x) !2 + �2W[j]�j(x)2 35+ 13!g0 24 �W[j]�j(x) !3 + 3�W[j]�j(x) �2W[j]�j(x)2 + �3W[j]�j(x)3 35� j(x): (3.20)Ebenso wie bei (3.16) multiplizieren wir Gleichung (3.20) von links mit einen Pro-pagator und erhalten graphisch:� = ���@@ + 12� + 12�+ 13!� + 12� + 13!�(3.21)Gleichung (3.20) gilt f�ur ein beliebiges Quellfeld j, wird aber erst f�ur j � 0 als Dyson-Schwinger-Gleichung von G(1)c zur konkreten Berechnung interessant (vgl. Kapitel3.6).



24 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASE3.4.1 Die DS-Gleichung f�ur den vollst�andigen PropagatorZur Berechnung der Dyson-Schwinger-Gleichung f�ur den vollst�andigen Propagatorde�nieren wir uns die Gr�o�en Âi; i = 1; 2; 3:Â1(m0) :=� = �f0 �W[j]�j(x)Â2(m0) := 12� = �12g0  �W[j]�j(x) !2 (3.22)Â3(m0) := 12� = �12g0 �2W[j]�j(x)2 :Graphen dieser Art werden als Tadpole-Graphen bezeichnet. De�niert sind sie da-durch, da� der Integralausdruck unabh�angig von den externen Impulsen ist.Mit den De�nitionen (3.22) wird durch nochmaliges Ableiten nach der Quelle jaus (3.20):(�@2 +m20) �2W[j]�j(x)�j(y)= �(x � y) + Â1(m0) �2W[j]�j(x)�j(y) + Â2(m0) �2W[j]�j(x)�j(y)+Â3(m0) �2W[j]�j(x)�j(y) � 12f0 �3W[j]�j(x)�j(x)�j(y) (3.23)�12g0�W[j]�j(x) �3W[j]�j(x)�j(x)�j(y) � 13!g0 �4W[j]�j(x)�j(x)�j(x)�j(y) :Durch Faltung mit �(x; y) wird daraus:� = � +� + 12�+12 + 12!+12" + 13!# : (3.24)



3.4. DIE DS-GLEICHUNG F�UR VERBUNDENE GREEN-FUNKTIONEN 25Mit j � 0 stellt (3.24) eine Entwicklung der verbundenen 2-Punkt-Green-Funktiondar, die auch als \vollst�andiger Propagator" bezeichnet wird. Im folgenden soll dieseGleichung vereinfacht werden.3.4.2 Elimination der Tadpole-Graphen von G(2)cIm Impulsraum lassen sich einige Terme aus (3.23) eliminieren und damit kann dieRechnung vereinfacht werden.In diesem Abschnitt sei j � 0. Dadurch werden aus den n-ten Ableitungen vonW die verbundenen Green-Funktionen G(n)c .A(m0) := Â1(m0) + Â2(m0) + Â3(m0) (3.25)�(p) = 1p2 +m20 =$ (3.26)Mit der Summe (3.25) �uber die Âi und dem massiven Propagator im Impulsraumerhalten wir aus (3.24):G(2)c (p) = �(p) + A(m0)p2 +m20G(2)c (p)��(p)12f0G(3)c (p1; p2)��(p)12g0G(3)c (p1; p2)G(1)c (0)��(p) 13!g0G(4)c (p1; p2; p3) (3.27)% = & + A(m0)p2 +m20' + 12(+12) + 13!* : (3.28)Dabei gilt jeweils f�ur die einzelnen Green-Funktionen G(n)c (p1; : : :pn) mit n gr�o�eroder gleich zwei: Pni=1 pi = p.Um die folgende Rechnung �ubersichtlich zu halten, wird die Summe B(p;m0)eingef�uhrt, die die Terme der zweiten und dritten Zeile von (3.27) jeweils ohne denPropagator zusammenfa�t.B(p;m0) = �12f0G(3)c (p1; p2)� 12g0G(3)c (p1; p2)G(1)c (0)� 13!g0G(4)c (p1; p2; p3) (3.29) 1� A(m0)p2 +m20!G(2)c (p) = �(p) + �(p)B(p;m0) (3.30)



26 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASEG(2)c (p) = 1p2 +m20 � A(m0) + 1p2 +m20 � A(m0)B(p;m0)(3.31)Durch die De�nition einer reduzierten Masse und eines neuen Propagators erhaltenwir schlie�lich eine Entwicklung von G(2)c mit nur noch vier Termen auf der rechtenSeite, im Gegensatz zu sieben in (3.24).~m20 := m20 � A(m0) (3.32)~�(p) := 1p2 +m20 � A(m0) = 1p2 + ~m20 =+ (3.33), = - + 12. (3.34)+12/ + 13!0Auf dieselbe Art, wie hier f�ur G(2)c vorgef�uhrt, lassen sich alle verbundenen n-Punkt-Funktionen G(n)c mit n gr�o�er als zwei vereinfachen. Durch Verwendung derreduzierten Masse ~m0 werden die Âi am einlaufenden Propagator eliminiert.3.5 Die Dyson-Schwinger-Gleichung f�ur echte Ver-tex-FunktionenDie echten Vertex-Funktionen (proper Vertices) werden vom Legendre-transformier-ten Funktional �[�] =W[j] � Z dx �(x)j(x) (3.35)erzeugt. F�ur die Ableitungen nach den Quellen bzw. Feldern folgt daraus�(x) = �W[j]�j(x) ; j(x) = � ��[�]��(x) : (3.36)Da das erzeugende Funktional nun nicht mehr von der Quelle j, sondern nurvom Feld � abh�angt, wird die Di�erentiation nach der �au�eren Quelle zu��j(x) = Z dy ��(y)�j(x) ���(y)= Z dy �2W[j]�j(x)�j(y) ���(y) : (3.37)



3.5. DIE DS-GLEICHUNG F�UR ECHTE VERTEX-FUNKTIONEN 27Hiermit wird aus (3.20):� ��[�]��(x) = �S��(x) "�(x) + Z dz �2W[j]�j(z)�j(x) ���(z) #� ��[�]��(x) = (�@2 +m20)�(x) + 12f0 "�2(x) + �2W[j]�j(x)�j(x) #+ 13!g0 "�3(x) + 3�(x) �2W[j]�j(x)�j(x)+ Z dz1 dz2 dz3 �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z3)�3�[�]��(z1)��(z2)��(z3)# : (3.38)Auch f�ur (3.38) existiert eine graphische Schreibweise, wobei zu beachten ist, da�die externen Linien an �[�] keine Propagatoren sind, sondern nur Ansatzpunkte f�urPropagatoren. Entsprechendes gilt f�ur die gestrichelten Linien auf der rechten Seite.1 = �2�� + 123 + 124+ 13!5 + 126 + 13!7(3.39)F�ur j � 0 verschwindet der Term auf der linken Seite und wir erhalten (bis auf einenPropagator) die Gleichung (3.20).3.5.1 Die DS-Gleichung f�ur die Einteilchen-irreduzible 2-Punkt-FunktionZwischen der zusammenh�angenden Green-Funktion G(2)c und der echten Vertex-Funktion �(2) gilt die BeziehungZ dz �2W[j]�j(x)�j(z) �2�[�]��(z)��(y) = ��(x � y) (3.40)8 = � 9 !�1 : (3.41)Diese Gleichung wird auch wie folgt geschrieben�(x; y) = �G�1c (x; y) = ���1(x; y) + �(x; y): (3.42)



28 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASEHierin ist � die Selbstenergie des Propagators.: = �;�� +<� (3.43)Durch Invertieren von (3.42) l�a�t sich auch der vollst�andige Propagator als Reihe in� schreiben.= => +?� +@� � + � � � (3.44)Die echten Vertex-Funktionen �(n) werden auch als Einteilchen-irreduzibel bzw.in Kurzform 1-PI (one-particle irreducible) bezeichnet. Dieser Name ist verst�and-lich, da sich der Graph nicht durch Auftrennen einer inneren Impulslinie in zweiTeile trennen l�a�t, die externe Beine haben (siehe Kapitel 2.1). Dabei ist geradedie letzte Bedingung wichtig, insbesondere kann ein 1-PI Graph durchaus Tadpole-Teilgraphen haben. Echte Vertex-Funktionen sind immer amputierte Graphen, dasie keine �au�eren Beine besitzen.Um die 1-PI 2-Punkt-Funktion zu erhalten, brauchen wir die Ableitungen���(x) �2W[j]�j(y1)�j(y2) = Z dz1dz2 �2W[j]�j(z1)�j(y1) �2W[j]�j(z2)�j(y2) �3�[�]��(z1)��(z2)��(x)���(x)A =Bx (3.45)und ���(x) �(y) = �(x � y)���(x)C = D x : (3.46)Durch Ableiten von (3.38) nach � erhalten wir die DS-Gleichung f�ur �(2). Dabeihabe ich der �Ubersichtlichkeit halber die Raumintegration �uber die zi weggelassen.� �2�[�]��(y)��(x) =(�@2 +m20)�(x � y)+ 12f0  2�(x)�(x � y) + �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �3�[�]��(z1)��(z2)��(y)!+ 13!g0  3�(x)�(x)�(x � y) + 3 �2W[j]�j(x)�j(x) �(x � y)+3�(x) �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �3�[�]��(z1)��(z2)��(y)



3.5. DIE DS-GLEICHUNG F�UR ECHTE VERTEX-FUNKTIONEN 29+3 �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z4) �2W[j]�j(z3)�j(z5)�3�[�]��(z1)��(z2)��(z3) �3�[�]��(z4)��(z5)��(y)+ �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z3) �4�[�]��(z1)��(z2)��(z3)��(y)! (3.47)Sp�atestens hier werden die Vorteile der graphischen Notation deutlich sichtbar; dieun�ubersichtliche Gleichung (3.47) wird zu:E = �F�� +G + 12H + 12I+12J + 12K+12L + 13!M (3.48)Da wir zur Bestimmung des Amplitudenverh�altnisses der Korrelationsl�ange (3.48)ben�otigen, werden wir auch hier Terme zusammenfassen und damit die Berechnungvereinfachen.3.5.2 Elimination der Tadpole-Graphen von �(2)Mit den Âi aus (3.22) wird aus (3.47):� �2�[�]��(y)��(x) =(�@2 +m20)�(x � y) � A(m0)�(x � y)+ 12f0  �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �3�[�]��(z1)��(z2)��(y)!+ 13!g0  3�(x) �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �3�[�]��(z1)��(z2)��(y)+3 �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z4) �2W[j]�j(z3)�j(z5)�3�[�]��(z1)��(z2)��(z3) �3�[�]��(z4)��(z5)��(y)+ �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z3) �4�[�]��(z1)��(z2)��(z3)��(y)! : (3.49)



30 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASEF�ur j � 0 wird dies zur Entwicklung von �(2).Die Terme mit Kopplung f0 bzw. g0 fassen wir zu einer modi�zierten Selbst-energie ~�(p) := �(p)�A(m0) zusammen. Damit gilt im Impulsraum nach (3.42)��(p) = G�1c (p) = ��1(p)� �(p)= (p2 +m20)� A(m0)� ~�(p)= (p2 + ~m20)� ~�(p)= ~��1(p)� ~�(p): (3.50)Die vier Terme der ersten Zeile von (3.48) sind im inversen Propagator der reduzier-ten Masse zusammengefa�t.Die Relation (3.42) l�a�t sich auch �uber die Funktionen ohne Tadpole zeigen.Nach (3.34) gilt: Gc(p) = ~�(p) + ~�(p)~�(p)Gc(p)�1� ~�(p)~�(p)�Gc(p) = ~�(p)Gc(p) = �1� ~�(p)~�(p)��1 ~�(p): (3.51)Durch Invertieren folgt hieraus:G�1c (p) = ~��1(p) �1� ~�(p)~�(p)�= ~��1(p)� ~�(p)= ��(p): (3.52)Im folgenden ist noch zu zeigen, da� �(n); n � 2 keine Tadpole-Teilgraphen anPropagatoren besitzt. Dies wird in mehreren Schritten gezeigt.� F�ur die �(m) gilt ���(x) �(m) = �(m+1) (3.53)und graphisch ���(x) m8>>><>>>:N = m8>>><>>>:O x : (3.54)Durch Ableitungen an �(m) entstehen also keine Tadpole-Teilgraphen an Pro-pagatoren.� G(2)c hat keine Tadpole an Propagatoren, wie (3.34) zeigt.� In (3.45) ist gezeigt, da� bei Di�erentiation von G(2)c keine Tadpole an Propa-gatoren entstehen.



3.5. DIE DS-GLEICHUNG F�UR ECHTE VERTEX-FUNKTIONEN 31� �(2) hat keine Tadpole an Propagatoren, wie die Entwicklung in (3.49) inVerbindung mit den ersten Punkten zeigt.� �(n) haben keine Tadpole an Propagatoren, da sie durch weiteres Ableiten von�(2) nach � entstehen.Im n�achsten Abschnitt kommen wir zu Tadpole-Teilen an Vertices.3.5.3 Feynman-Regeln f�ur die VerticesDen Dreier- bzw. Vierervertices werden im Impulsraum folgende Faktoren zugeord-net: P = �g0 ; Q = �f0 = �q3g0m0 : (3.55)Zur Elimination der Tadpole an Vierervertices wird eine neue Kopplung ~f0 ein-gef�uhrt. � ~f0 =R := S +T = �f0 � g0G(1;0)c (3.56)= �f0 + f03m20 Â1(m0)= �f0  1� Â1(m0)3m20 !Durch Verwendung dieser neuen Kopplung ~f0 f�ur Dreiervertices fassen wir die beidenTerme der zweiten Zeile von (3.48) zu einem zusammen. Damit kann �(2) ohneTadpole-Graphen an Propagatoren oder Vertices dargestellt werden. Dies �ubertr�agtsich auch auf die n-Punkt-Vertex-Funtionen mit n > 2, wie oben gezeigt wurde.3.5.4 Entwicklung der DS-Gleichung f�ur 1-PI GraphenDurch Iteration von (3.48) unter Verwendung von ~f0 aus (3.56) erhalten wir:U = �(V )�1 + 12W + 12X+2 � 12Y + 14Z (3.57)+12[ + 13!\ +O(g30):Diese Entwicklung verwenden wir in Kapitel 5.3 zur Bestimmung von �(2).



32 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASE3.6 Elimination der Tadpole-Graphen von G(1)cDas in den vorherigen Abschnitten vorgestellte Verfahren l�a�t sich mit etwas zus�atz-lichem Aufwand auch auf die sogenannten Vakuum
uktuationenG(1)c anwenden. ZurVereinfachung der DS-Gleichung (3.20) de�nieren wir die Gr�o�en:A1(m0) = �W[j]�j(x) =]A3(m0) = � f02m20 �2W[j]�j(x)2 = 12^ (3.58)A4(m0) = � g03!m20 �3W[j]�j(x)3 = 13!_Diese sind mit dem einlaufenden Propagator bei Impuls p = 0, im Gegensatz zu denÂi aus (3.22) aber ohne Vertex am Fu�punkt de�niert.Mit den De�nitionen (3.58) und j � 0 wird (3.20) zuA1 = �12 f0m20A21 + A3 � 16 g0m20A31 + g0f0A1A3 + A4: (3.59)Gleichung (3.59) wird in eine Form x = z + ax2 + bx3 gebracht. Dabei gilt f�urdie Faktoren x = A1z = A3 + A41� g0f0A3a = � 11� g0f0A3 f02m20 (3.60)b = � 11� g0f0A3 g06m20 :Durch iteratives Einsetzen von x erhalten wirx = z + az2 + (2a2 + b)z3 + 5a(a2 + b)z4 +O(z5): (3.61)Unter Verwendung von (3.60) folgt weiter:A1 = A3 + A4 � p3g06m0 A23 � 2p3g03m0 A3A4 + g06m20A33 +O(A24; A23A4; A43): (3.62)



3.6. ELIMINATION DER TADPOLE-GRAPHEN VON G(1)C 33Nun ist G(1)c als Reihe in A3 und A4 entwickelt. Die beiden letzteren Gr�o�en lassensich nun wieder mit der reduzierten Masse ~m0 aus (3.32) und der modi�ziertenKopplung ~f0 aus (3.56) berechnen. Jene Berechnung ist m�oglich, da sich G(2)c undG(3)c mit ~m0 darstellen lassen (3.34). Wesentlich ist an dieser Stelle zu bemerken, da�der einlaufende Propagator nach wie vor mit der Masse m0 berechnet wird und nurdie inneren Propagatoren, bei denen �uber einen Impuls integriert wird, die Masse~m0 tragen. Ebenso darf der Vertex von A3, der am einlaufenden Propagator sitzt,nur den Faktor f0 beitragen.Die Âi aus (3.22) lassen sich auf einfache Art durch die Ai aus(3.58) ausdr�ucken.Â1(m0) = �f0A1(m0)Â2(m0) = �12g0A21(m0) (3.63)Â3(m0) = f03 A3(m0)Hierauf werden wir in Kapitel 5 zur�uckkommen.Zum Schlu� dieses Kapitels stelle ich noch eine alternative Berechnungsm�oglich-keit f�ur G(1)c vor, um dann im folgenden Kapitel das hier in der gebrochenen Phaseeingef�uhrte Verfahren in der symmetrischen Phase darzustellen.Ansatz �uber St�orungsreiheDie Ai lassen sich als Potenzreihen in der Kopplung g0 bzw. g08�m0 entwickeln.A1(m0) = f08�m0 1Xi=0 a1i � g08�m0�iA3(m0) = f08�m0 1Xi=0 a3i � g08�m0�i (3.64)A4(m0) = f08�m0 1Xi=0 a4i � g08�m0�iHierbei ist der Koe�zient a40 = 0.Mit f0 = p3g0m0 ergibt sich aus (3.59):p3g08� 1Xi=0 a1i � g08�m0�i =�p3g02m0 "p3g08� 1Xi=0 a1i � g08�m0�i#2 + p3g08� 1Xi=0 a3i � g08�m0�i� g06m20 "p3g08� 1Xi=0 a1i � g08�m0�i#3 (3.65)+rg03 1m0 "p3g08� 1Xi=0 a1i � g08�m0�i# "p3g08� 1Xi=0 a3i � g08�m0�i#+p3g08� 1Xi=0 a4i � g08�m0�i



34 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASE1Xi=0 a1i � g08�m0�i = �32 g08�m0 " 1Xi=0 a1i � g08�m0�i#2+ 1Xi=0 a3i � g08�m0�i � 12 � g08�m0�2 " 1Xi=0 a1i � g08�m0�i#3 (3.66)+ g08�m0 " 1Xi=0 a1i � g08�m0�i# " 1Xi=0 a3i � g08�m0�i#+ 1Xi=0 a4i � g08�m0�i :F�ur n � 0 gilta1n = �32 Xi+j=n�1a1ia1j + a3n � 12 Xi+j+k=n�2a1ia1ja1k + Xi+j=n�1a1ia3j + a4n (3.67)mit aij = 0 f�ur j < 0; i = 1; 3; 4.Aus dieser Gleichung ergibt sich mit a40 = 0, da� a10 = a30 = 1 ist. F�ur dieweiteren Koe�zienten gilt:a11 = a31 + a41 � 12a230a12 = a32 + a42 � (a31 + 2a41)a30 + 12a330a13 = a33 + a43 � (a32 + 2a42)a30 � 12a231 � 2a31a41�32a241 + (32a31 + 4a41)a230 � 58a430... ... (3.68)Dieses Ergebnis folgt auch mit einen Reihenansatz aus (3.62).A1 l�a�t sich also als Funktion von A3 und A4 darstellen.A1 = F(A3; A4) (3.69)



Kapitel 4Dyson-Schwinger-Gleichung in dersymmetrischen PhaseIn diesem Kapitel greife ich das in Kapitel 3 vorgestellte Verfahren auf und stelledie entsprechenden Gleichungen f�ur die symmetrische Phase vor. In Kapitel 4.3 sinddann die Anzahlen der Graphen aufgef�uhrt, die insgesamt zu berechnen sind.Wir verwenden wieder die graphischen Notationen aus Kapitel 3.2. Desweite-ren wird in diesem Kapitel die Quelle j � 0 festgelegt. Damit haben wir in dengraphischen Gleichungen immer Green- bzw. Vertex-Funktionen.4.1 Die DS-Gleichung f�ur den vollst�andigen Pro-pagatorDie Gleichungen aus Abschnitt 3.4.1 vereinfachen sich in der symmetrischen Phase,da alle n-Punkt-Funktionen mit n ungerade identisch Null werden. So wird aus(3.23) bzw. (3.24):(�@2 +m20) �2W[j]�j(x)�j(y) = �(x � y)� 12g0 �2W[j]�j(x)2 �2W[j]�j(x)�j(y)� 13!g0 �4W[j]�j(x)�j(x)�j(x)�j(y) (4.1)� = � + 12� + 13!� (4.2)Wir de�nieren uns analog zu (3.22) eine Gr�o�eA+(m0) := 12� = �12g0 �2W[j]�j(x)2 : (4.3)35



36 KAPITEL 4. DS-GLEICHUNG IN DER SYMMETRISCHEN PHASEDiese l�a�t sich in nur einem Term schreiben, da insbesondere die Vakuum
uktuationG(1)c � 0 ist.Mit der De�nition (4.3) erhalten wir im Impulsraum aus (4.2):�(p) = 1p2 +m20 =� (4.4)G(2)c (p) = �(p) + A+(m0)p2 +m20G(2)c (p)��(p) 13!g0G(4)c (p1; p2; p3) (4.5)� = � + A+(m0)p2 +m20	 + 13!
 (4.6)Hier de�nieren wir wie in (3.32) eine reduzierte Masse und den zugeh�origenPropagator. 1� A+(m0)p2 +m20!G(2)c (p) = �(p)��(p) 13!g0G(4)c (p1; p2; p3) (4.7)G(2)c (p) = 1p2 +m20 � A+(m0) (4.8)� 1p2 +m20 � A+(m0) 13!g0G(4)c (p1; p2; p3)~m20+ := m20 � A+(m0) (4.9)~�(p) := 1p2 +m20 � A+(m0) = 1p2 + ~m20+ =� (4.10)� = 
 + 13!� (4.11)Im Vergleich zu (3.34) zeigt Gleichung (4.11), da� der Ansatz zur Elimination vonTadpole-Teilgraphen in der symmetrischen Phase keine gro�e Vereinfachung derRechnung erm�oglicht.4.2 Die DS-Gleichung f�ur echte Vertex-FunktionenIn der symmetrischen Phase sind die 1-PI Graphen f�ur unsere Rechnung besondersinteressant, da neben �(2) auch �(4) berechnet werden mu�.4.2.1 Die DS-Gleichung f�ur die Einteilchen-irreduzible 2-Punkt-FunktionAus (3.47) erhalten wir durch Wegfall der Terme mit �3-Kopplung und n-Punkt-Vertex-Funktionen mit ungeradem n die DS-Gleichung in der symmetrischen Phase.



4.2. DIE DS-GLEICHUNG F�UR ECHTE VERTEX-FUNKTIONEN 37Auch hier habe ich die Raumintegration �uber die zi weggelassen.� �2�[�]��(y)��(x) = (�@2 +m20)�(x � y) + 13!g0  3 �2W[j]�j(x)�j(x) �(x � y)+ �2W[j]�j(x)�j(z1) �2W[j]�j(x)�j(z2) �2W[j]�j(x)�j(z3) �4�[�]��(z1)��(z2)��(z3)��(y)! (4.12)� = ���� + 12� + 13!� (4.13)Durch Einf�uhren der reduzierten Masse lassen sich hier der inverse Propagator undder Tadpole-Graph auf der rechten Seite zusammenfassen.4.2.2 Entwicklung der DS-Gleichung f�ur 1-PI GraphenDurch Iteration von (4.13) erhalten wir die Entwicklung bis zur 2-Loop-Ordnung� = �(� )�1 + 13!� +O(g30): (4.14)Diese Entwicklung wird in Abschnitt 5.2.2, Gleichung (5.18) berechnet.4.2.3 Die DS-Gleichung f�ur die Einteilchen-irreduzible 4-Punkt-FunktionDurch zwei weitere Ableitungen nach � erhalten wir die DS-Gleichung f�ur �(4).Bei Verwendung der Entwicklung (4.11) f�ur G(2)c erhalten wir hier auch Feynman-Graphen ohne Tadpole-Teilgraphen.� =� + 3 � 12�+3 � 12� + 13!� (4.15)



38 KAPITEL 4. DS-GLEICHUNG IN DER SYMMETRISCHEN PHASE4.3 Zu berechnende DiagrammeAm Ende dieses Kapitels f�uhre ich die Anzahl der Graphen auf, die nach Anwendungdes in diesem und in dem vorangegangenem Kapitel vorgeschlagenen Verfahrensberechnet werden m�ussen.In Tabelle 4.1 sind die Zahlen f�ur die symmetrische Phase aufgef�uhrt. In derSpalte \ohne Permutationen" ist die Anzahl der unterschiedlichen Integrale auf-gelistet, was bedeutet, da� die Graphen, die durch Vertauschen der �au�eren Beineineinander �ubergehen, nur einmal gez�ahlt sind. In der letzten Zeile ist die Anzahl dernach obigen Verfahren zu berechnenden Graphen eingetragen. Tabelle 4.2 f�uhrt dieentsprechenden Werte f�ur die gebrochene Phase an. Bei der 1-Punkt-Funktion sindkeine Permutationen der �au�eren Beine m�oglich. Hier ist die Anzahl der Graphenaufgef�uhrt, die zu A3 und A4 aus Kapitel 3.6 beitragen.Anzahl der GraphenFunktion Loop-Ordnung Gesamt ohnePermutationen ohne Tadpole-Teilgraphen1 1 1 02 2 2 1�(2) 3 5 5 14 18 17 40 1 1 11 3 1 1�(4) 2 12 3 23 73 14 84 477 64 26Tabelle 4.1: Anzahl der Graphen in der symmetrischen PhaseBeim Vergleichen wird o�ensichtlich, da� in der symmetrischen Phase, wie obenschon bemerkt, der Rechenaufwand l�angst nicht so stark verringert wird, wie in dergebrochenen Phase. Dies liegt daran, da� durch den Dreiervertex viel mehr Graphenmit Tadpole-Teilen m�oglich sind. Einen Wert konnte ich nur nach oben absch�atzen,doch es f�allt deutlich auf, da� die Anzahl der Graphen gerade in h�oheren Ordnungenmerklich reduziert wird.



4.3. ZU BERECHNENDE DIAGRAMME 39
Anzahl der GraphenFunktion Loop-Ordnung Gesamt ohnePermutationen ohne Tadpole-Teilgraphen1 3 3 12 20 18 8�(2) 3 204 162 344 2831 1979 � 358Gesamt bei Verwendung von (3.62)1 1 12 6 2G(1)c 3 46 94 471 63Tabelle 4.2: Anzahl der Graphen in der gebrochenen Phase



Kapitel 5Berechnung der Vertex- undGreen-FunktionenIn diesem Kapitel werden die ben�otigten Reihen in g0 berechnet. Im ersten Abschnittstelle ich einige wesentliche Integrale und Konstanten vor; die beiden n�achsten Ab-schnitte sind dann der symmetrischen bzw. gebrochenen Phase gewidmet. Die Nu-merierung der Graphen G(n)l;m wurde von Qgraf �ubernommen. n ist die Anzahl der�au�eren Beine. l gibt die Zahl der Loops an, undm ist schlie�lich die laufende Num-mer der Programmausgabe mit den Optionen \onshell" und \topol" (s. Kapitel 2.2).Viele der hier verwendeten Integrale �nden sich in [AS84, GR81].5.1 Spezielle Integrale und KonstantenIn einigen 3-Loop-Integralen taucht die Konstantea = �248 � 18 ln2 43 � 13 ln 43 � 14Li214 = 0:0324645 (5.1)auf [BS92]. Hierin ist Li2 der Integrallogarithmus und durchLi2(x) = Z x0 dtln t ; x < 1 (5.2)de�niert.Das folgende Integral l�a�t sich nur numerisch auswerten:CTet = Z d3k1d3k2d3k3�(k1)�(k2)�(k3)�(k1 � k2)�(k2 � k3)�(k3 � k1)= 0:1739006 (5.3)Der numerische Wert stammt von [BNM77, Graph 12U4] und konnte durch eigeneRechnungen best�atigt werden.Die Divergenzen in der 2-Loop-Ordnung lassen sich als lim�!0 vonBdiv = 1� � ln m204� !+ C4� � 
 + O(�) (5.4)40



5.2. SYMMETRISCHE PHASE 41ausdr�ucken [Hei93, Seiten 33/47]. In (5.4) ist C eine nicht n�aher bestimmte Kon-stante, die nicht in das Endergebnis ein
ie�t und 
 die Eulerkonstante. Da Bdiv inOrdnung g20 auftritt, m�ussen in O (g0) alle Terme, die mit � gehen, ber�ucksichtigtwerden.In 3-Loop-Ordnung haben wir zus�atzlich noch die divergente Gr�o�eBdiv1 = 1� � ln m204� !+ C4� � 32
 � 12 ln  m20� !+O(�): (5.5)Mit (5.4) gilt die RelationBdiv �1� �2 �
 + ln m20� �+O(�2)� = Bdiv1 : (5.6)Die 1-Loop-Integrale Jn(3� �) sind im Anhang A.1 bis zur ben�otigten O (�) her-geleitet. In [Hei93] wurde die Rechnung bis zur 2-Loop-Ordnung mit allen notwen-digen Integrationen durchgef�uhrt. Integrale mit der Bezeichnung jn sind Zitate aus[BS92], woraus auch ein gro�er Teil der notwendigen 3-Loop-Rechnungen stammt.5.2 Symmetrische Phase5.2.1 A+(m0) und die reduzierte Masse ~m0Als erste Gr�o�e bestimmen wir nun A+(m0) aus (4.3). Wie aus (4.11) folgt, brauchenwir bei Verwendung der Masse ~m0 nur zwei Graphen bis zur 3-Loop-Ordnung zuberechnen. G(2)1;1(p) = p pk= �g0J1(3� �)= 2~m0 g08� �1� �2 �
 + ln m20� � 2�+O(�2)� (5.7)Im O(�)-Term ist die Masse m0 nicht durch ~m0 ersetzt, da dieser Faktor erst indritter Ordnung beitr�agt und die beiden Massen in nullter Ordnung identisch sind.G(2)3;1(p) = p p k1k1 k1 + k3k2k2 + k3



42 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN= �2 ~m20(Bdiv1 � 2 ln 43)� g08� ~m0�3 (5.8)Dieser Graph, beziehungsweise das dazugeh�orige Integral, ist in [Gut95] ausf�uhrlichbehandelt. Die Integrationen �uber k2 und k3 bilden eine Subdivergenz wie G(2)2;2 (5.13).Berechnen l�a�t sich die Di�erenz von G(2)3;1 und dem Produkt aus G(2)2;2 mit dem 1-Loop-Integral J2. Dies liefert den endlichen Anteil im Ergebnis, w�ahrend der TermBdiv1 aus dem abgezogenen Produkt stammt.Aus diesen beiden Graphen berechnen wir A+(m0).A+(m0) = 12G(2)1;1 + 112G(2)3;1= ~m20 � g08� ~m0 �1� �2 �
 + ln m20� � 2�+O(�2)��16(Bdiv1 � 2 ln 43)� g08� ~m0�3# (5.9)Als n�achstes wird ~m0(m0) bestimmt. Durch Entwicklung von (4.9) in der Kopplungerhalten wir~m0 = m0  1� A+(m0)2m20 � A+2(m0)8m40 � A+3(m0)16m60 +O(A+4(m0))! : (5.10)Durch iteratives Einsetzen dieser Gleichung in (5.9) lassen sich sowohl A+ als auch~m0 bis zur gew�unschten Ordnung in g0 als Funktionen von m0 bestimmen. Wirerhalten schlie�lich in der 3-Loop-Ordnung (entspricht O (g30)):A+(m0) = m20 " g08�m0 �1� �2 �
 + ln m20� � 2�+ O(�2)�� 12 � g08�m0�2 (1 +O(�))+�18(1 +O(�))� 16Bdiv1 + 13 ln 43�� g08�m0�3 +O(g40)# (5.11)~m0(m0) = m0 �1� 12 g08�m0 �1� �2 �
 + ln m20� � 2�+O(�2)�+18 � g08�m0�2 (1 + O(�)) + � 112Bdiv1 � 16 ln 43� � g08�m0�3 +O(g40)# :(5.12)5.2.2 2-Punkt-FunktionZur Bestimmung von �(2) brauchen nun nur noch die Graphen berechnet werden,die keine Integration enthalten, die vom �au�eren Impuls unabh�angig ist.1- und 2-Loop-OrdnungIn 1-Loop-Ordnung existiert in der symmetrischen Phase nur der schon f�ur A+berechnete Graph G(2)1;1 .



5.2. SYMMETRISCHE PHASE 43G(2)2;2 (Symmetriefaktor 1=6)G(2)2;2(p = 0) = p pp+ k1 + k2k2k1= ~Bdiv32�2 g20 (5.13)Der divergente Anteil ist massenabh�angig und mu� daher auch in g0 entwickeltwerden. ~Bdiv := Bdiv � ln  ~m20m20! = Bdiv + g08�m0 (1 +O(�)) + O �g20� (5.14)Terme h�oherer Ordnung in g0 k�onnen vernachl�assigt werden, da nur bis zur 3-Loop-Ordnung, entsprechend O (g30) gerechnet wird.@@p2G(2)2;2(p)�����p2=0 = � 227 � g08� ~m0�2 (5.15)3-Loop-OrdnungIm folgenden werde ich meistens die 3-Loop-Graphen nicht mehr mit vollst�andigerBeschriftung der Impulse darstellen.G(2)3;4 (Symmetriefaktor 1=4)G(2)3;4(p = 0) == �32~m20�a+ 13 ln 43�� g08� ~m0�3 (5.16)@@p2G(2)3;4(p)�����p2=0 = �323 a� 1627 + 3227 ln 43�� g08� ~m0�3 (5.17)Ergebnisse f�ur �(2)Aus den oben angef�uhrten Graphen berechnet sich nun nach (3.50)��(2)(p = 0) = ~m20 � 16G(2)2;2 � 14G(2)3;4= ~m20 � ~Bdiv3 � g08��2 + 8�a+ 13 ln 43� 1m0 � g08��3 +O �g40�



44 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN= m20 �1� g08�m0 �1� �2 �
 + ln m20� � 2�+O(�2)�+ 12(1 +O(�))� Bdiv3 !� g08�m0�2+��1124(1 +O(�)) + 73 ln 43 + 8a+ 16Bdiv1 �� g08�m0�3 +O �g40�) ;(5.18)wobei f�ur ~m0 die Reihe (5.12) eingesetzt wurde. Die divergenten Terme in (5.18)machen eine Renormierung notwendig, die im Kapitel 6 durchgef�uhrt wird. DieAbleitung nach dem Impulsquadrat berechnet sich analog:� @@p2�(2)(p)�����p2=0 = 1� 16 @@p2G(2)2;2(p)�����p2=0 � 14 @@p2G(2)3;4(p)�����p2=0= 1 + 181 � g08� ~m0�2 � �83a� 427 + 827 ln 43�� g08� ~m0�3= 1 + 181 � g08�m0�2 (5.19)+� 427 + 181(1 + O(�))� 827 ln 43 � 83a�� g08�m0�3 +O �g40� :5.2.3 4-Punkt-FunktionBei �(4) haben einige Graphen neben dem Symmetriefaktor mehrere Permutationender einlaufenden Beine. Da die Integrale f�ur alle Permutationen gleich bleiben, mu�der Wert eines Integrals nur mit ihrer Anzahl multipliziert werden.0- und 1-Loop-OrdnungG(4)0;1 (Symmetriefaktor 1)G(4)0;1(ki = 0) = k1k2 k3k4= �g0 (5.20)G(4)1;1 (Symmetriefaktor 1=2, 3 Permutationen)G(4)1;1(ki = 0) = k1k2 k3k4qq + k1 + k2



5.2. SYMMETRISCHE PHASE 45= g20J2(3� �)= g0 g08� ~m0 �1� �2 �
 + ln m20� �+O(�2)� (5.21)2-Loop-OrdnungG(4)2;1 (Symmetriefaktor 1=4, 3 Permutationen)G(4)2;1(ki = 0) = k1k2 k3k4q1q1 + k1 + k2 q2q2 + k1 + k2= �g0 � g08� ~m0�2 (1 +O(�)) (5.22)G(4)2;3 (Symmetriefaktor 1=2, 6 Permutationen)G(4)2;3(ki = 0) = k1k2 k3k4q1q1 + k1 + k2q2 q1 + q2 + k3= �g023 � g08� ~m0�2 (1 +O(�)) (5.23)3-Loop-OrdnungIm folgenden sind die Beitr�age O (�) weggelassen, da sie in der anschlie�enden Rech-nung keinen Beitrag liefern.G(4)3;1 (Symmetriefaktor 1=4, 3 Permutationen)G(4)3;1(ki = 0) == g0j10 � g08� ~m0�3= g012 � g08� ~m0�3 (5.24)



46 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONENG(4)3;2 (Symmetriefaktor 1=8, 3 Permutationen)G(4)3;2(ki = 0) == g40J32 (3)= g0 � g08� ~m0�3 (5.25)G(4)3;3 (Symmetriefaktor 1=6, 3 Permutationen)G(4)3;3(ki = 0) == g014 �3 + 2Bdiv1 � 4 ln 43�� g08� ~m0�3 (5.26)G(4)3;8 (Symmetriefaktor 1=4, 6 Permutationen)G(4)3;8(ki = 0) == �g0J2(3)G(4)2;3(ki = 0)� g08� ~m0�3= g023 � g08� ~m0�3 (5.27)G(4)3;9 (Symmetriefaktor 1=2, 12 Permutationen)G(4)3;9(ki = 0) == g043 ln 43 � g08� ~m0�3 (5.28)G(4)3;10 (Symmetriefaktor 1=4, 6 Permutationen)G(4)3;10(ki = 0) == g016a� g08� ~m0�3 (5.29)



5.2. SYMMETRISCHE PHASE 47G(4)3;13 (Symmetriefaktor 1)G(4)3;13(ki = 0) == g0CTet � g08� ~m0�3 (5.30)G(4)3;14 (Symmetriefaktor 1=4, 6 Permutationen)G(4)3;14(ki = 0) == g016a� g08� ~m0�3 (5.31)Ergebnisse f�ur �(4)�(4)(ki = 0) = G(4)0;1(ki = 0) + 312G(4)1;1(ki = 0) + 314G(4)2;1(ki = 0)+612G(4)2;3(ki = 0) + 314G(4)3;1(ki = 0) + 318G(4)3;2(ki = 0)+316G(4)3;3(ki = 0) + 614G(4)3;8(ki = 0) + 1212G(4)3;9(ki = 0)+614G(4)3;10(ki = 0) + G(4)3;13(ki = 0) + 614G(4)3;14(ki = 0) +O �g50�= �g0 "1� 32 g08� ~m0 �1� �2 �
 + ln m20� �+ O(�2)�+ 114 � g08� ~m0�2��178 + 152 ln 43 + 48a+ CTet + 14Bdiv1 �� g08� ~m0�3 +O �g40�#(5.32)Durch Einsetzen von (5.12) erhalten wir als Ergebnis�(4)(ki = 0) = �g0 "1� 32 g08�m0 �1� �2 �
 + ln m20� �+ O(�2)�+ 2� g08�m0�2��� 716 + 152 ln 43 + 48a+ CTet + 14Bdiv1 � � g08�m0�3 +O �g40�# :(5.33)Damit haben wir alle drei ben�otigten Reihen der symmetrischen Phase, n�amlich(5.18), (5.19) und (5.33).



48 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN5.3 Gebrochene PhaseIn der gebrochenen Phase wird zuerst die 1-Punkt-Funktion berechnet, um mit die-sem Ergebnis die reduzierte Masse aus (3.32) zu bestimmen. Ich f�uhre in den fol-genden Abschnitten nur die Graphen auf, die durch den Dreiervertex zus�atzlichhinzukommen. Die Graphen der symmetrischen Phase m�ussen bei der Summationder 2-Punkt-Funktion nat�urlich mitgerechnet werden.5.3.1 1-Punkt-Green-Funktion G(1)cDas Verfahren der Berechnung wurde bereits in Abschnitt 3.6 vorgestellt. Es geltenfolgende konkrete Rechenregeln:� Die Massen m0 werden durch ~m0 ersetzt.� Da der einlaufende Propagator die Masse m0 tr�agt, mu� ein Faktor � ~m0m0�2 =�m0~m0��2 anmultipliziert werden.� F�ur jeden Dreiervertex ein Faktor m0~m0 .� F�ur jeden Dreiervertex, au�er dem am einlaufenden Propagator bei den Ter-men, die zu A3 beitragen, ein Faktor �1� Â1(m0)3m20 �.� Die Divergenzen Bdiv sind massenabh�angig und werden durch ~Bdiv ersetzt.Der letzte Punkt gilt prinzipiell auch f�ur die Divergenz Bdiv1 , mu�hier aber noch nichtber�ucksichtigt werden, da die Korrekturen erst in der 4-Loop-Ordnung beitragen.1-Loop-OrdnungG(1)1;1 (Symmetriefaktor 1=2)G(1)1;1 = k= �f0 1m20J1(3� �)= p34� ~m0m0 g 120 �1� �2 �
 + ln m20� � 2�+O(�2)� (5.34)



5.3. GEBROCHENE PHASE 492-Loop-OrdnungG(1)2;1 (Symmetriefaktor 1=6)G(1)2;1 = k1k2k1 + k2= p332�2 ~m0 ~Bdiv ~m0m0 g 320  1� Â1(m0)3m20 ! (5.35)Wegen der Massenabh�angigkeit des divergenten Anteils mu� ~Bdiv in g0 entwickeltwerden (Vergleiche (5.14)).~Bdiv = Bdiv � 2 g08�m0 (1 +O(�)) + O �g20� (5.36)G(1)2;4 (Symmetriefaktor 1=4)G(1)2;4 = k1k1 k1 � k2k2= � p332�2 ~m0m0~m0 g 320  1� Â1(m0)3m20 !2 (5.37)3-Loop-OrdnungG(1)3;1 (Symmetriefaktor 1=4)G(1)3;1 = k1 + k2k2k1 k1 + k3k3= � 32p3(8�)3 ~m20 �a + 13 ln 43� ~m0m0 g 520  1� Â1(m0)3m20 ! (5.38)



50 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONENG(1)3;8 (Symmetriefaktor 1=12)G(1)3;8 = k1k1 k1 + k3k2k2 + k3= � 2p3(8�)3 ~m20 �Bdiv1 � 2 ln 43� ~m0m0 g 520 (5.39)G(1)3;11 (Symmetriefaktor 1=6)G(1)3;11 = k1k2 k3k1�k2k2�k3k3�k1= 3p3(8�)3 ~m20CTetm0~m0 g 520  1� Â1(m0)3m20 !3 (5.40)G(1)3;12 (Symmetriefaktor 1=4)G(1)3;12 = k1k1 + k2 k2k1 k1 + k3k3= 48p3(8�)3 ~m20 a m0~m0 g 520  1� Â1(m0)3m20 !3 (5.41)



5.3. GEBROCHENE PHASE 51G(1)3;21 (Symmetriefaktor 1=2)G(1)3;21 = k1k1 + k2k1 + k2 k2 k1 + k3k3= 4p3(8�)3 ~m20 ln 43m0~m0 g 520  1� Â1(m0)3m20 !2 (5.42)G(1)3;22 (Symmetriefaktor 1=8)G(1)3;22 = k1 + k2k1k1 k1 + k3k2k3= 48p3(8�)3 ~m20 a m0~m0 g 520  1� Â1(m0)3m20 !2 (5.43)G(1)3;35 (Symmetriefaktor 1=4)G(1)3;35 = k1k1 k2k3k1�k2k2�k3k3�k1= � 9p34(8�)3 ~m20CTet �m0~m0�3 g 520  1� Â1(m0)3m20 !4 (5.44)



52 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONENG(1)3;36 (Symmetriefaktor 1=8)G(1)3;36 = k1k1k1 k1 + k2k2k1 + k3k3= � 9p3(8�)3 ~m20 �12a� 49 + 89 ln 43��m0~m0�3 g 520  1� Â1(m0)3m20 !4 (5.45)G(1)3;37 (Symmetriefaktor 1=4)G(1)3;37 = k1 + k3k1 + k2k1 + k2 k1k2k1 k3= � 2p3(8�)3 ~m20 �1� 2 ln 43��m0~m0�3 g 520  1� Â1(m0)3m20 !4 (5.46)Ergebnisse f�ur G(1), A(m0) und ~m0Die oben aufgelisteten Graphen stellen alle relevanten Beitr�age zu A3(m0) undA4(m0) dar, da alle Graphen mit Tadpole-Teilgraphen, wie im Kapitel 3.6 gezeigt,nicht explizit berechnet werden brauchen.A3(m0) = 12G(1)1;1 + 14G(1)2;4 + 112G(1)3;8 + 12G(1)3;21+18G(1)3;22 + 14G(1)3;35 + 18G(1)3;36 + 14G(1)3;37 (5.47)= ~m0m0 �1� �2 �
 + ln m20� � 2�+O(�2)� p38� g 120�12m0~m0 p3(8�)2 ~m0 g 320  1� Â1(m0)3m20 !2+ 24��16Bdiv1 � 13 ln 43� ~m0m0 + 2 ln 43m0~m0  1� Â1(m0)3m20 !2+6am0~m0  1� Â1(m0)3m20 !2 � 916CTet �m0~m0�3  1� Â1(m0)3m20 !4



5.3. GEBROCHENE PHASE 53��272 a � 12 + ln 43��m0~m0�3  1� Â1(m0)3m20 !4��12 � ln 43��m0~m0�3  1� Â1(m0)3m20 !435 p3(8�)3 ~m20 g 520 (5.48)A4(m0) = 16G(1)2;1 + 14G(1)3;1 + 16G(1)3;11 + 14G(1)3;12 (5.49)= 13 �Bdiv � 2 g08�m0 (1 +O(�)) +O �g20�� ~m0m0 p3(8�)2 ~m0 g 320  1� Â1(m0)3m20 !+ 24�8�a+ 13 ln 43� ~m0m0  1� Â1(m0)3m20 !+ 12CTetm0~m0  1� Â1(m0)3m20 !3+12am0~m0  1� Â1(m0)3m20 !335 p3(8�)3 ~m20 g 520 (5.50)Aus den beiden Reihen (5.48) und (5.50) l�a�t sich nun nach (3.62)A1 bestimmen.Da A1 und A als f�uhrenden Term O (g0) haben, brauchen in dritter Ordnung alleFaktoren �1� Â1(m0)3m20 � nicht ber�ucksichtigt werden und kann ~m0 gleich m0 gesetztwerden.A1(m0) = ~m0m0 �1� �2 �
 + ln m20� � 2�+O(�2)� p38� g 120+ 24�12 �m0~m0�2  1� Â1(m0)3m20 !2 + Bdiv3  1� Â1(m0)3m20 !�12 � ~m0m0�2 (1 + O(�))# p3(8�)2m0 g 320 (5.51)+ ��13 � 13 ln 43 � 72a� 116CTet � 56Bdiv1 � p3(8�)3m20 g 520 + O�g 720 �Â1(m0) wird bis O (g0) ben�otigt. Aus (3.63) folgtÂ1(m0) = �q3g0m0A1(m0)= �3m20 �1� �2 �
 + ln m20� � 2�+O(�2)� g08�m0 + O �g20� : (5.52)Um A bzw. ~m0 zu bestimmen, setzen wir (3.63) in (3.25) ein und entwickeln A1gem�a� (3.62). F�ur Â1 setzen wir obiges Ergebnis ein.A(m0) = �23q3g0m0A3 �q3g0m0A4 + g0A3A4 +O �A24; A23A4; A43�= �2 ~m0 g08� �1� �2 �
 + ln m20� � 2�+ O(�2)�+ "�m0~m0�2 �Bdiv# � g08��2+ �4 + 103 ln 43 + 3a� 38CTet + 13Bdiv1 � 1m0 � g08��3 +O �g40� (5.53)



54 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONENAus (3.32) folgt nun~m0 = m0  1� A(m0)2m20 � A2(m0)8m40 � A3(m0)16m60 +O �A4(m0)�! : (5.54)Durch iteratives Einsetzen erhalten wir (vgl.(5.9{5.11)):A(m0) = m20 ��2 g08�m0 �1� �2 �
 + ln m20� � 2�+O(�2)�� �(1 +O(�)) +Bdiv� � g08�m0�2+�(1 +O(�)) + 103 ln 43 + 3a� 38CTet � 23Bdiv1 �� g08�m0�3 +O �g40�#(5.55)~m0(m0) = m0 "1 + g08�m0 �1� �2 �
 + ln m20� � 2�+O(�2)�+ Bdiv2 � g08�m0�2 +��(1 +O(�))� 53 ln 43 � 32a + 316CTet � 16Bdiv1 �� g08�m0�3 +O(g40)# :(5.56)Die 1-Punkt-Green-Funktion ist durch (5.51) gegeben.G(1)c = A1(m0)= �1� �2 �
 + ln m20� � 2�+O(�2)� p38� g 120 + Bdiv3 p3(8�)2m0g 320+ ��1� 13 ln 43 � 72a� 116CTet� p3(8�)3m20 g 520 +O �g 720 � (5.57)5.3.2 2-Punkt-FunktionBei der Berechnung von �(2) gelten dieselben Regeln wie im Abschnitt 5.3.1, nur derzweite Punkt f�allt ersatzlos weg, da wir Graphen mit amputierten �au�eren Beinenbetrachten. Im folgenden f�uhre ich nur die Graphen auf, die noch nicht im Abschnitt5.2.2 berechnet wurden.1-Loop-OrdnungG(2)1;3 (Symmetriefaktor 1=2)G(2)1;3(p = 0) = p pp+ kk= 3m20 g08� ~m0 �1� �2 �
 + ln m20� �+O(�2)�  1� Â1(m0)3m20 !2 (5.58)



5.3. GEBROCHENE PHASE 55In der gebrochenen Phase liefert die Rechnung schon in der 1-Loop-Ordnung einenBeitrag zur Impulsableitung. Zur Berechnung verweise ich auf den Anhang (A.12).@@p2G(2)1;3(p)�����p2=0 = �14 g08� ~m0 �1� �2 �
 + ln m20� � 2�+O(�2)��m0~m0�2  1� Â1(m0)3m20 !2 (5.59)2-Loop-OrdnungIch lasse hier die O(�)-Terme weg, da sie keinen Beitrag liefern.G(2)2;6 (Symmetriefaktor 1=2, 2 Permutationen)G(2)2;6(p = 0) = p pp+ k1k1 k1 + k2k2= �2m20 � g08� ~m0�2  1� Â1(m0)3m20 !2 (5.60)@@p2G(2)2;6(p)�����p2=0 = 2081 � g08� ~m0�2 �m0~m0�2  1� Â1(m0)3m20 !2 (5.61)G(2)2;11 (Symmetriefaktor 1=4)G(2)2;11(p = 0) = p pp+ k1k1 p+ k2k2= �3m20 � g08� ~m0�2  1� Â1(m0)3m20 !2 (5.62)@@p2G(2)2;11(p)�����p2=0 = 12 � g08� ~m0�2 �m0~m0�2  1� Â1(m0)3m20 !2 (5.63)G(2)2;16 (Symmetriefaktor 1=2)G(2)2;16(p = 0) = p pk2k1p+ k1 p+ k2k1+k2



56 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN= m20 � g08� ~m0�2 �m0~m0�2  1� Â1(m0)3m20 !4 (5.64)@@p2G(2)2;16(p)�����p2=0 = � 827 � g08� ~m0�2 �m0~m0�4  1� Â1(m0)3m20 !4 (5.65)G(2)2;17 (Symmetriefaktor 1=2)G(2)2;17(p = 0) = p pp+ k1k1 + k2k2 k1k1= 2m20 � g08� ~m0�2 �m0~m0�2  1� Â1(m0)3m20 !4 (5.66)@@p2G(2)2;17(p)�����p2=0 = � 59108 � g08� ~m0�2 �m0~m0�4  1� Â1(m0)3m20 !4 (5.67)3-Loop-OrdnungG(2)3;21 (Symmetriefaktor 1=4)G(2)3;21(p = 0) == 48am20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.68)@@p2G(2)3;21(p)�����p2=0 = �� 727 � 4a+ 4081 ln 43� � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2(5.69)G(2)3;22 (Symmetriefaktor 1=2)G(2)3;22(p = 0) == 3CTetm20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.70)



5.3. GEBROCHENE PHASE 57@@p2G(2)3;22(p)�����p2=0 = ��29 � 98CTet + 43 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2(5.71)G(2)3;23 (Symmetriefaktor 1=4)G(2)3;23(p = 0) == 48am20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.72)@@p2G(2)3;23(p)�����p2=0 = �2827 � 28a� 10481 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2(5.73)G(2)3;24 (Symmetriefaktor 1=4)G(2)3;24(p = 0) == 48am20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.74)@@p2G(2)3;24(p)�����p2=0 = ��1127 + 3227 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.75)G(2)3;28 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;28(p = 0) == 2m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.76)@@p2G(2)3;28(p)�����p2=0 = � 67162 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.77)G(2)3;29 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;29(p = 0) =



58 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN= 4 ln 43m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.78)@@p2G(2)3;29(p)�����p2=0 = � 53216 � 11581 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.79)G(2)3;31 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;31(p = 0) == 4 ln 43m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.80)@@p2G(2)3;31(p)�����p2=0 = � 772 � 7981 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.81)G(2)3;32 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;32(p = 0) == 48am20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.82)@@p2G(2)3;32(p)�����p2=0 = �2827 � 28a� 10481 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2(5.83)G(2)3;51 (Symmetriefaktor 1=4)G(2)3;51(p = 0) == 32m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.84)@@p2G(2)3;51(p)�����p2=0 = � 61192 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.85)



5.3. GEBROCHENE PHASE 59G(2)3;52 (Symmetriefaktor 1=8)G(2)3;52(p = 0) == 3m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.86)@@p2G(2)3;52(p)�����p2=0 = �34 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2 (5.87)G(2)3;53 (Symmetriefaktor 1=6)G(2)3;53(p = 0) == 34 �3 + 2Bdiv1 � 4 ln 43�m20 � g08� ~m0�3  1� Â1(m0)3m20 !2 (5.88)@@p2G(2)3;53(p)�����p2=0 = ��107128 � 38Bdiv1 + 34 ln 43�� g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !2(5.89)G(2)3;71 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;71(p = 0) == �2�1� 2 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.90)@@p2G(2)3;71(p)�����p2=0 = �715648 � 8927 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.91)G(2)3;72 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;72(p = 0) == �94CTetm20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.92)



60 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN@@p2G(2)3;72(p)�����p2=0 = ��1736 + 2716CTet + 89 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.93)G(2)3;73 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;73(p = 0) == ��108a� 4 + 8 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4(5.94)@@p2G(2)3;73(p)�����p2=0 = ��26081 + 75a+ 143 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.95)G(2)3;74 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;74(p = 0) == �94CTetm20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.96)@@p2G(2)3;74(p)�����p2=0 = �4736 + 14764 CTet � 10118 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.97)G(2)3;75 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;75(p = 0) == ��108a� 4 + 8 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4(5.98)@@p2G(2)3;75(p)�����p2=0 = ��3181 + 15a+ 2 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.99)



5.3. GEBROCHENE PHASE 61G(2)3;76 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;76(p = 0) == �2�1� 2 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4(5.100)@@p2G(2)3;76(p)�����p2=0 = �491648 � 53 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.101)G(2)3;109 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;109(p = 0) == �2m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.102)@@p2G(2)3;109(p)�����p2=0 = 77108 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.103)G(2)3;110 (Symmetriefaktor 1)G(2)3;110(p = 0) == �12m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.104)@@p2G(2)3;110(p)�����p2=0 = 7935184 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.105)G(2)3;111 (Symmetriefaktor 1=2)G(2)3;111(p = 0) == �32 � 8 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.106)



62 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN@@p2G(2)3;111(p)�����p2=0 = ��799576 + 15427 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.107)G(2)3;112 (Symmetriefaktor 1=4, 2 Permutationen)G(2)3;112(p = 0) == �m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.108)@@p2G(2)3;112(p)�����p2=0 = 41108 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.109)G(2)3;113 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;113(p = 0) == �2�1� 2 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4(5.110)@@p2G(2)3;113(p)�����p2=0 = �491648 � 53 ln 43� � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4 (5.111)G(2)3;115 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;115(p = 0) == �34 � 7 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4 (5.112)@@p2G(2)3;115(p)�����p2=0 = �� 7311152 + 373108 ln 43� � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.113)G(2)3;116 (Symmetriefaktor 1=4)G(2)3;116(p = 0) =



5.3. GEBROCHENE PHASE 63= ��108a� 4 + 8 ln 43�m20 � g08� ~m0�3 �m0~m0�2  1� Â1(m0)3m20 !4(5.114)@@p2G(2)3;116(p)�����p2=0 = ��26081 + 75a+ 143 ln 43�� g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !4(5.115)G(2)3;144 (Symmetriefaktor 1=4)G(2)3;144(p = 0) == �15 + 8116CTet � 54 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.116)@@p2G(2)3;144(p)�����p2=0 = ��20021864 � 29732 CTet + 2573 ln 43�� g08� ~m0�3�m0~m0�6  1� Â1(m0)3m20 !6 (5.117)G(2)3;145 (Symmetriefaktor 1=8)G(2)3;145(p = 0) == ��10 + 270a+ 443 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.118)@@p2G(2)3;145(p)�����p2=0 = �139135 � 63a� 10645 ln 43�� g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6(5.119)G(2)3;146 (Symmetriefaktor 1=2)G(2)3;146(p = 0) == 12m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6 (5.120)



64 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN@@p2G(2)3;146(p)�����p2=0 = �12955184 � g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6 (5.121)G(2)3;147 (Symmetriefaktor 1)G(2)3;147(p = 0) == ��92 � 2716CTet + 18 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.122)@@p2G(2)3;147(p)�����p2=0 = �923192 � 225512CTet � 81548 ln 43�� g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6(5.123)G(2)3;148 (Symmetriefaktor 1=2, 2 Permutationen)G(2)3;148(p = 0) == 4 ln 43m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6 (5.124)@@p2G(2)3;148(p)�����p2=0 = �229648 � 8527 ln 43�� g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6 (5.125)G(2)3;149 (Symmetriefaktor 1=4)G(2)3;149(p = 0) == �112 � 16 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.126)@@p2G(2)3;149(p)�����p2=0 = ��99411728 + 50827 ln 43� � g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6(5.127)



5.3. GEBROCHENE PHASE 65G(2)3;150 (Symmetriefaktor 1=2)G(2)3;150(p = 0) == �32 + 29732 CTet � 9 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.128)@@p2G(2)3;150(p)�����p2=0 = �� 9131728 � 3159512 CTet + 23948 ln 43�� g08� ~m0�3�m0~m0�6  1� Â1(m0)3m20 !6 (5.129)G(2)3;151 (Symmetriefaktor 1=4)G(2)3;151(p = 0) == ��10 + 270a+ 443 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.130)@@p2G(2)3;151(p)�����p2=0 = �7103810 � 8194 a� 3187270 ln 43�� g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6(5.131)G(2)3;152 (Symmetriefaktor 1=2)G(2)3;152(p = 0) == �174 � 11 ln 43�m20 � g08� ~m0�3 �m0~m0�4  1� Â1(m0)3m20 !6(5.132)@@p2G(2)3;152(p)�����p2=0 = ��103933456 + 1001108 ln 43�� g08� ~m0�3 �m0~m0�6  1� Â1(m0)3m20 !6(5.133)



66 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONENErgebnisse f�ur �(2)Mit den Graphen der letzten Seiten (Gleichung (5.58) bis (5.132)) berechne ich nun�(2). In der 3-Loop-Ordnung vernachl�assige ich Terme mit Â1(m0) und setze ~m0direkt auf m0, da die Korrekturen in h�oherer Ordnung sind.��(2)(p = 0)= ~m20 � 12G(2)1;3 � 16G(2)2;2 � 212G(2)2;6 � 14G(2)2;11 � 12G(2)2;16 � 12G(2)2;17�14G(2)3;4 � 14G(2)3;21 � 12G(2)3;22 � 14G(2)3;23 � 14G(2)3;24 � 214G(2)3;28 � 212G(2)3;29�212G(2)3;31 � 214G(2)3;32 � 14G(2)3;51 � 18G(2)3;52 � 16G(2)3;53 � 212G(2)3;71 � 212G(2)3;72�214G(2)3;73 � 212G(2)3;74 � 214G(2)3;75 � 212G(2)3;76 � 214G(2)3;109 � G(2)3;110 � 12G(2)3;111�214G(2)3;112 � 212G(2)3;113 � 212G(2)3;115 � 14G(2)3;116 � 14G(2)3;144 � 18G(2)3;145 � 12G(2)3;146�G(2)3;147 � 212G(2)3;148 � 14G(2)3;149 � 12G(2)3;150 � 14G(2)3;151 � 12G(2)3;152= ~m20 �m2032 g08� ~m0 �1� �2 �
 + ln m20� �+O(�2)�  1� Â1(m0)3m20 !2� 24 ~Bdiv3 � 114 �m0~m0�2  1� Â1(m0)3m20 !2 + 32 �m0~m0�4  1� Â1(m0)3m20 !435� g08��2� �58 + 734 a� 256 ln 43 + 3932CTet + 14Bdiv1 � 1~m0 � g08��3 +O �g40� (5.134)Hier wird (5.52) bis zur zweiten Ordnung ben�otigt.Â1(m0) = (5.135)�3m20  �1� �2 �
 + ln m20� � 2�+O(�2)� g08�m0 + B(div)3 � g08�m0�2 +O �g30�!Nach Einsetzen von (5.135) und (5.56) in (5.134) erhalten wir��(2)(p = 0) = m20 �1 + 12 g08�m0 �1� �2 �
 + ln m20� � 8�+O(�2)�+ �34(1 +O(�)) + 23Bdiv�� g08�m0�2+ ��2924(1 +O(�)) + 56 ln 43 � 854 a� 2732CTet + 16Bdiv1 �� g08�m0�3 +O �g40�) : (5.136)Der �Ubersichtlichkeit halber f�uhre ich bei der Impulsableitung die Summe �uberdie oben aufgez�ahlten Graphen direkt aus. Nach Einsetzen von (5.56) und (5.135)



5.3. GEBROCHENE PHASE 67erhalten wir als Ergebnis� @@p2�(2)(p)�����p2=0 = 1+ 18 g08�m0 �1� �2 �
 + ln m20� � 2�+O(�2)�� 41648 � g08�m0�2 (1 + O(�))+ �931864(1 +O(�))� 193752592 ln 43 + 70348 a (5.137)+24811024CTet � 124Bdiv1 �� g08�m0�3 +O �g40�Mit den Reihen (5.57), (5.136) und (5.137) haben wir alle ben�otigten Gr�o�en gefun-den, um in den folgenden Kapiteln die Renormierungskonstanten und -gruppenfunk-tionen sowie die universellen Amplitudenverh�altnisse zu berechnen. Die Renormie-rung ist notwendig, da alle Reihen zumindest in 3-Loop-Ordnung Divergenzen auf-weisen.



Kapitel 6RenormierungEine Renormierung mu� durchgef�uhrt werden, da die zu Beginn der Rechnungeneingef�uhrten nackten Parameter m0 und g0 keine physikalische Bedeutung habenund die St�orungsentwicklung der �4-Theorie, wie im vorigen Kapitel erw�ahnt, Di-vergenzen aufweist [Wil71]. Dabei werden neue, renormierte Gr�o�en mR und gReingef�uhrt, die eine physikalische Bedeutung haben. Neben der Masse und der Kopp-lungskonstanten wird das Feld � rede�niert.F�ur eine ausf�uhrliche Darstellung des Verfahrens verweise ich insbesondere auf[Hei93], wo diese Rechnungen schon bis zur 2-Loop-Ordnung durchgef�uhrt wurdenund auf [Col84, Cal76, tV72, CL84].An der Massendimension der Kopplung l�a�t sich ablesen, ob eine bestimmteTheorie renormierbar ist oder nicht. F�ur [g0] < 0 haben wir eine nicht renormierba-re Theorie, da der Grad der Divergenz mit der St�orungsordnung w�achst und somitbeliebig viele divergente Graphen auftreten. F�ur [g0] = 0 ist die Theorie renormier-bar und bei [g0] > 0, wie in unserem Fall [g0] = 1, sogar superrenormierbar. Dashei�t, da� wir nur eine endliche Anzahl von divergenten Graphen haben. Weil wireine massive Theorie betrachten, sind dies alles Ultraviolettdivergenzen, die durchIntegrationen �uber gro�e Impulse auftreten (k� a�1). In masselosen Theorien gibtes noch Infrarotdivergenzen, die f�ur Integrationsimpulse k ! 0 auftreten.Aufgrund der Gitterstruktur des Festk�orpers besitzt die Theorie prinzipiell einenintrinsischen Impuls-Cuto�, der durch das Inverse der Gitterkonstanten gegeben ist.Da das kritische Verhalten jedoch durch langreichweitige Fluktuationen dominiertwird, mu� die Theorie unabh�angig von mikroskopischen Parametern sein. So mu�die Theorie insbesondere vom Impuls-Cuto� unabh�angig sein, der gegen Unendlichgeht, bzw. in der hier benutzten dimensionellen Regularisierung unabh�angig von �f�ur �! 0.6.1 RenormierungsschemaZu Beginn dieses Kapitels f�uhre ich einige Gr�o�en ein, die zur Bestimmung derRenormierungskonstanten notwendig sind. Zuerst sei hier die kritische Masse m0c68



6.1. RENORMIERUNGSSCHEMA 69de�niert, �uber deren Erreichen der Phasen�ubergang gesteuert wird.t = m20 �m20c (6.1)Perturbativ ist die Masse m0c nicht berechenbar [BB85], was aber im folgendennicht notwendig ist.Die Vertex-Funktionen mit �2(x)-Insertionen �(n;l)0 (p1; : : : pn; q1; : : : ql; g0; m0) wer-den durch Legendre-Transformationen bez�uglich des Quellfeldes j und Fourier-Trans-formation aus D�0(x1) � � ��0(xn)12�20(y1) � � � 12�20(yl)Ec bestimmt. F�ur l = 0 sind diesdie schon berechneten Vertex-Funktionen. Der Index 0 bezeichnet bei den Vertex-Funktionen wie bei der Kopplung oder der Masse die nackte, unrenormierte Gr�o�e.Da die Wirkung dimensionslos ist, wird �uberu0 := g0m4�D0 , bzw. hier im Fall D = 3: u0 := g0m0 (6.2)eine dimensionslose, nackte Kopplung eingef�uhrt.Die Renormierungsbedingungen k�onnen bei verschwindenden �au�eren Impulsenformuliert werden, weil wir eine massive Theorie haben. Es handelt sich um eineweitgehend willk�urliche Festlegung, die jedoch die Rechnung einfach h�alt, ohne dieErgebnisse zu beein
ussen.Durch Entwicklung der 2-Punkt-Vertex-Funktion um p2 = 0 de�nieren wir dierenormierte Masse mR und die Feldrenormierungskonstante Z3.��(2;0)0 (p;m0; g0) = 1Z3 �m2R + p2 +O �p4�� (6.3)daraus folgt f�ur p2 = 0:m2R := �Z3(u0)�(2;0)0 (0;m0; g0) = �(2;0)0 (0;m0; g0)@�(2;0)0 (p;m0;g0)@p2 ����p2=0 (6.4)Z�13 (u0) := � @�(2;0)0 (p;m0; g0)@p2 ������p2=0 : (6.5)Die Korrelationsl�ange ist mit (1.11) als das Inverse der renormierten Masse gegeben:� = 1mR : (6.6)Die Renormierungskonstante Z2 wird durchZ�12 (u0) := ��(2;1)0 (0; 0; 0;m0; g0) (6.7)de�niert. Die Vertex-Funktionen mit �2-Insertionen lassen sich durch Ableiten ausden gew�ohnlichen Vertex-Funktionen bestimmen.�(n;l+1)0 (fp; 0; qg; g0; m0) = @@t�(n;l)0 (fp; qg; g0; m0) (6.8)



70 KAPITEL 6. RENORMIERUNGHierbei steht fp; qg f�ur den gesamten Variablensatz fp1; : : : ; pn; q1; : : : ; qlg.Mit @@t���g0 = @@m20 ���g0 erhalten wir f�ur (n; l) = (2; 0)Z�12 (u0) = � @@m20�(2;0)0 (0;m0; g0): (6.9)Nun k�onnen die renormierten Vertex-Funktionen und Felder bestimmt werden.�(n;l)R (fp; qg; g0; m0) = Z n23 (u0) Z2(u0)Z3(u0)!l �(n;l)0 (fp; qg; g0; m0) (6.10)qZ3(u0)�R(x) = �0(x) (6.11)Die renormierte Kopplung gR ist in beiden Phasen unterschiedlich de�niert.Symmetrische PhaseIn der symmetrischen Phase wird die renormierte Kopplung �uber den Wert der4-Punkt-Vertex-Funktion ohne �au�ere Impulse de�niert.g(4)R+ := ��(4;0)R (f0g;mR; gR) = �Z23(u0)�(4;0)0 (f0g;m0; g0) = g0Z23 (u0)Z1(u0) (6.12)Die Renormierungskonstante Z1+ ist �uberZ�11+(u0) := � 1g0�(4;0)0 (f0g;m0; g0) (6.13)de�niert. Bei den renormierten Parametern wird ebenso wie bei den nackten Gr�o�eneine dimensionslose Kopplung eingef�uhrt.uR+ := g(4)Rm4�DR D=3= g(4)RmR (6.14)Durch Invertieren der Gleichungen (6.4, 6.12) und (6.14) k�onnen die nacktenGr�o�en durch die renormierten Parameter ausgedr�uckt werden. Somit lassen sichdie Renormierungskonstanten Zi+(i = 1; 2; 3) als Funktionen von uR+ ausdr�ucken.Nun sei noch die dimensionslose Kopplung u+ de�niert, die sich aus (6.12, 6.14)bestimmen l�a�t. u+ := g0m4�DR = uRZ1(uR)Z23(uR) (6.15)Diese wird im folgenden Kapitel ben�otigt.Zum Schlu� fasse ich die Renormierungsbedingungen der symmetrischen Phasenochmal zusammen. �(2;0)R (0;mR; uR) = �m2R (6.16a)@@p2�(2;0)R (p;mR; uR)�����p2=0 = �1 (6.16b)�(4;0)R (f0g;mR; uR) = �g(4)R (6.16c)�(2;1)R (0; 0;mR; uR) = �1 (6.16d)



6.1. RENORMIERUNGSSCHEMA 71Phase gebrochener SymmetrieIn der gebrochenen Phase bestimmen wir die renormierte Kopplung nicht �uber denWert der 4-Punkt-Vertex-Funktion, da durch die zus�atzliche �3-Kopplung unprak-tisch viele Diagramme beitragen w�urden. Stattdessen verwenden wir nach [LW87,MM93] eine alternative De�nition der Kopplung.Die spontane Magnetisierung v des Feldes � ist die Summe des Minimums vminund des Erwartungswertes von ��, der mit v0 := G(1;0)c bezeichnet wird.v = vmin + v0 vmin = vuut3m20g0 (6.17)Mit dem renormierten Vakuumerwartungswert vR := Z� 123� v de�niert sich die renor-mierte Kopplung in der gebrochenen PhasegR� := 3m2Rv2R = 3Z3(u0)m2R(vmin + v0)2 = g0Z3(u0)Z24(u0) : (6.18)Hierin ist die Renormierungskonstante Z4� wie folgt de�niert:Z4�(u0) := m0mR  1 + v0s g03m20! : (6.19)Eine dimensionslose renormierte Kopplung ist wie in (6.14) de�niert. ImweiterenVerlauf ist mit g(4)R+ bzw. uR+ immer die durch (6.12) de�nierte Kopplung gemeint,w�ahrend gR� und uR� sich auf (6.18) beziehen. Soweit es eindeutig ist, werde ichauf die Indizierung mit + bzw. � verzichten.In Analogie zur symmetrischen Phase lassen sich die RenormierungskonstantenZi�(i = 2; 3; 4) durch Invertieren von (6.4, 6.18) als Funktion von uR� bestimmen.Die Kopplung u� ist nach (6.18) durchu� := g0m4�DR = uRZ24(uR)Z3(uR) (6.20)gegeben.Auch hier seien nochmals die Renormierungsbedingungen der gebrochenen Pha-se zusammengefa�t. �(2;0)R (0;mR; uR) = �m2R (6.21a)@@p2�(2;0)R (p;mR; uR)�����p2=0 = �1 (6.21b)3v2R�(2;0)R (0;mR; uR) = �gR (6.21c)�(2;1)R (0; 0;mR; uR) = �1 (6.21d)



72 KAPITEL 6. RENORMIERUNG6.2 RenormierungsgruppeIn diesem Kapitel f�uhre ich die Renormierungsgruppenfunktionen ein, die sp�ater zurBestimmung des Amplitudenverh�altnisses ben�otigt werden. F�ur eine ausf�uhrlichereDarstellung verweise ich auf [Ami84, BGZJ76, IIM75].F�ur die massiven, renormierten Vertex-Funktionen gilt8<:mR @@mR �����g0 + �(uR) @@uR �����g0 + �l � n2� �3(uR)� l�2(uR)9=;�(n;l)R (fp; qg;mR; uR)= (2� �3(uR))m2R�(n;l+1)R (fp; 0; qg;mR; uR); (6.22)wobei die Renormierungsgruppenfunktionen durch�(uR) := mR @@mR �����g0 uR (6.23a)�3(uR) := �(uR) 1Z3(uR) @@uR �����g0 Z3(uR) (6.23b)�2(uR) := �(uR) 1Z2(uR) @@uR �����g0 Z2(uR) (6.23c)gegeben sind. Durch Umformung der partiellen Ableitung in (6.23a) erhalten wir�(uR) = �(4�D)0@ @@uR �����mR ln(u)1A�1 D=3= �0@ @@uR �����mR ln(u)1A�1 (6.24)und �3(uR) = �(uR) @@uR �����g0 ln (Z3(uR)) = mR @@mR �����g0 ln (Z3(uR)) (6.25a)�2(uR) = �(uR) @@uR �����g0 ln (Z2(uR)) = mR @@mR �����g0 ln (Z2(uR)) : (6.25b)�Uber (6.25a) und (6.25b) ist eine weitere Renormierungsgruppenfunktion de�niert.��1(uR) = 2� �3(uR) + �2(uR) (6.26)Bei L�osung der Renormierungsgruppengleichung (6.22) mit der Charakteristi-kenmethode (siehe z.B. [BDFN92, Kapitel 11]) lassen sich die Fixpunkte der Kopp-lung bestimmen, die durch die Nullstellen der �-Funktion gegeben sind. Da im Be-reich eines Phasen�uberganges langreichweitiges Verhalten, entsprechend kleinen Im-pulsen, dominiert, ist die nichttriviale Nullstelle u�R der �-Funktion relevant. F�urdiese gilt: �(u�R) = 0 ; �0(u�R) > 0: (6.27)Durch den Fixpunkt u�R sind auch die kritischen Exponenten � und � (1.16a, 1.17b)festgelegt. � = �3(u�R) ; � = �(u�R) (6.28)



6.3. BERECHNUNG DER RENORMIERTEN GR�OSSEN 736.3 Berechnung der renormierten Gr�o�enNun werden mit den Ergebnissen des Kapitels 5 die oben hergeleiteten renormiertenGr�o�en, Renormierungskonstanten und Renormierungsgruppenfunktionen als Rei-hen in der renormierten, dimensionslosen Kopplung uR� entwickelt.6.3.1 Symmetrische PhaseAlle hier betrachteten Gr�o�en gelten nur f�ur die symmetrische Phase, daher ist derIndex + auf den rechten Seiten der Gleichungen ausgelassen.Zun�achst sind hier die Ergebnisse des Kapitels 5.2 nochmals zitiert, allerdingsals Reihe in u0+ := g0+m0+ (6.2). F�ur die 2-Punkt-Funktion werden (5.18) und (5.19)zu ��(2;0)0 (0) = m20 �1� u08� �1� �2 �
 + ln m20� � 2�+ O(�2)�+ 12(1 +O(�))� Bdiv3 !� u08��2 (6.29)+��1124(1 +O(�)) + 73 ln 43 + 8a+ 16Bdiv1 �� u08��3 +O �u40�#� @@p2�(2;0)0 (p)�����p2=0 = 1+ 181 � u08��2+�1381 � 827 ln 43 � 83a� � u08��3 +O �u40� : (6.30)Aus dem Kehrwert der letzten Gleichung erhalten wir direkt die Feldrenormierungs-konstante Z3+ aus (6.5):Z3+(u0) = 1� 181 � u08��2+��1381 + 83a+ 827 ln 43� �u08��3 +O �u40� : (6.31)Die 4-Punkt-Funktion aus (5.33) ist�(4;0)0 (ki = 0) = �g0 "1� 32 u08� �1� �2 �
 + ln m20� �+ O(�2)�+ 2�u08��2 (6.32)��� 716 + 152 ln 43 + 48a+ CTet + 14Bdiv1 �� u08��3 +O �u40�# :Mit diesen Reihen lassen sich die renormierte Masse und Kopplung als Reihenbis zur dritten Ordnung in u0 bestimmen.m2R+ = �Z3(u0)�(2;0)0 (0)



74 KAPITEL 6. RENORMIERUNG= m20 "1� u08� �1� �2 �
 + ln m20� � 2�+O(�2)�+ � 79162 � 13Bdiv�� u08��2+��131216 + 7127 ln 43 + 323 a+ 16Bdiv1 �� u08��3 +O �u40�# (6.33)g(4)R+ = �Z23(u0)�(4;0)0 (ki = 0)= g0 "1� 32 u08� �1� �2 �
 + ln m20� �+ O(�2)�+ �� 281 + 2(1 +O(�))�� u08��2+� 1991296 � 37354 ln 43 � 1283 a� CTet � 14Bdiv1 �� u08��3 +O �u40�# (6.34)Durch Quotientenbildung erhalten wiruR+ = g(4)RmR = u0 �1� u08� �1� �2 �
 + ln m20� + 1�+O(�2)�+�293216 + 16Bdiv�� u08��2 (6.35)+�139 � 749 ln 43 � 48a� CTet � 13Bdiv1 �� u08��3 +O �u40�# :Da die nackten Gr�o�en als Reihen in uR+ gesucht sind, invertiere ich die Glei-chung (6.35) und erhalte die nackte (dimensionslose) Kopplung in Abh�angigkeit derrenormierten. Hierbei ist zu beachten, da� der divergente Anteil Bdiv im Logarith-mus massenabh�angig ist und durchBdivR+ :=  1� � ln m2R4� !+ C4� � 
 +O (�)!+ uR8� (1 +O(�)) +O �u2R� (6.36)zu ersetzen ist.u0+ = uR "1 + uR8� �1� �2 �
 + ln m20� + 1�+O(�2)�+ ��185216 � 16BdivR ��uR8��2+��571216 + 749 ln 43 + 48a+ CTet � 12Bdiv1R��uR8��3 +O �u40�# (6.37)Bdiv1R ist wie Bdiv1 de�niert, nur die nackte Masse ist gegen die renormierte Masseersetzt. Da dieser Term erst in 3-Loop-Ordnungauftritt, brauchen keine Korrekturenhinzuaddiert werden. Diese tragen erst zur 4-Loop-Ordnung bei.Indem ich (6.37) in (6.33) und (6.34) einsetze und nach m0 bzw. g0 au
�ose,bekomme ich:m20+ = m2R "1 + uR8� �1� �2 �
 + ln m20� � 2�+O(�2)�+ �245162 + 13BdivR ��uR8��2+�691324 � 7127 ln 43 � 323 a +Bdiv1R��uR8��3 +O �u4R�# (6.38)



6.3. BERECHNUNG DER RENORMIERTEN GR�OSSEN 75g0 = gR "1 + 32 uR8� �1� �2 �
 + ln m20� �+O(�2)�+ 421648 �uR8��2+��257216 + 37354 ln 43 + 1283 a+ CTet��uR8��3 +O �u4R�# : (6.39)Hier ist zu beachten, da� die nackte Kopplung keine divergenten Anteile mehrenth�alt.RenormierungskonstantenNun bestimme ich die im Kapitel 6.1 de�nierten Renormierungskonstanten f�ur diesymmetrische Phase in Abh�angigkeit von uR+. Der Grenz�ubergang �! 0 ist durch-gef�uhrt, womit alle Anteile O (�) wegfallen.Durch Einsetzen von (6.37) in (6.31) erhalten wirZ3+(uR) = 1� 181 �uR8��2 (6.40)+�� 527 + 827 ln 43 + 83a��uR8��3 +O �u4R� :Die Renormierungskonstante Z1+ bestimmt sich aus (6.13) zu1Z1+(uR) = 1� 32 u08� �1� �2 �
 + ln m20� �+O(�2)�+ 2�u08��2��� 716 + 152 ln 43 + 48a+ CTet + 14Bdiv1 � � u08��3 +O �u40�= 1� 32 uR8� + 12 �uR8��2+�12536 � 152 ln 43 � 48a� CTet��uR8��3 + O �u4R�Z1+(uR) = 1 + 32 uR8� + 74 �uR8��2+��11572 + 152 ln 43 + 48a+ CTet��uR8��3 +O �u4R� : (6.41)F�ur Z2+ ergibt sich mit (6.7):1Z2+(uR) = 1� 12 u08� �1� �2 �
 + ln m20� �+O(�2)�+ 13 � u08��2+�� 148 � 76 ln 43 � 4a� 112Bdiv1 �� u08��3 +O �u40�= 1� 12 uR8� � 16 �uR8��2+� 35108 � 76 ln 43 � 4a��uR8��3 +O �u4R�Z2+(uR) = 1 + 12 uR8� + 512 �uR8��2



76 KAPITEL 6. RENORMIERUNG+�� 7216 + 76 ln 43 + 4a��uR8��3 +O �u4R� : (6.42)Die dimensionslose Kopplung u+ der symmetrischen Phase wird nach (6.15) mit(6.41) und (6.40) berechnet.u+ = g0mR (uR) = uRZ1(uR)Z23 (uR)= uR "1 + 32 uR8� + 575324 �uR8��2+��257216 + 37354 ln 43 + 1283 a+ CTet��uR8��3 +O �u4R�# (6.43)RenormierungsgruppenfunktionenDie im Kapitel 6.2 de�nierten Funktionen lassen sich wie die Renormierungskon-stanten als Reihen in uR+ entwickeln.Mit (6.24) ergibt sich�+(uR) = �0@ @@uR �����mR ln (u(uR))1A�1 = �u(uR)0@ @u(uR)@uR �����mR1A�1= �uR "1� 32 uR8� + 7781 �uR8��2���23527 + 37318 ln 43 + 128a+ 3CTet��uR8��3 +O �u4R�# : (6.44)Die Renormierungsgruppenfunktionen �3+ und �2+ berechnen sich aus (6.25a, 6.25b).�3+(uR) = ��(uR) 1Z3(uR) @@uR �����g0 Z3(uR)= 281 �uR8��2 + �1427 � 89 ln 43 � 8a��uR8��3 +O �u4R� (6.45a)�2+(uR) = ��(uR) 1Z2(uR) @@uR �����g0 Z2(uR)= �12 uR8� + 16 �uR8��2 + �323324 � 72 ln 43 � 12a��uR8��3 +O �u4R�(6.45b)Mit (6.26) erhalten wir aus diesen Reihen�+(uR) = (2� �3(uR) + �2(uR))�1= 12 "1 + 14 uR8� � 111296 �uR8��2+��13435184 + 4736 ln 43 + 2a��uR8��3 +O �u4R�# : (6.46)



6.3. BERECHNUNG DER RENORMIERTEN GR�OSSEN 77In den Gleichungen (6.40) bis (6.46) sehen wir, da� alle Renormierungskonstan-ten und -gruppenfunktionen in Abh�angigkeit von uR+ frei von Divergenzen sind.6.3.2 Phase gebrochener SymmetrieHier werden die Rechnungen des obigen Abschnittes f�ur die Phase gebrochener Sym-metrie durchgef�uhrt. Dementsprechend ist �uberall auf den rechten Seiten der Glei-chungen der Index � weggelassen.Als erstes sind hier die Ergebnisse des Kapitels 5.3 als Reihe in u0� := g0�m0� (6.2)aufgef�uhrt. F�ur die 2-Punkt-Funktion werden (5.136) und (5.137) zu��(2;0)0 (0) = m20 �1 + 12 u08� �1� �2 �
 + ln m20� � 8�+ O(�2)�+�34(1 +O(�)) + 23Bdiv�� u08��2+��2924 + 56 ln 43 � 854 a � 2732CTet + 16Bdiv1 �� u08��3 +O �u40�#(6.47)� @@p2�(2;0)0 (p)�����p2=0 = 1 + 18 u08� �1� �2 �
 + ln m20� � 2�+O(�2)�� 41648 � u08��2+�931864 � 193752592 ln 43 + 70348 a+ 24811024CTet � 124Bdiv1 � � u08��3+O �u40� : (6.48)Der Kehrwert der letzten Gleichung ist die Feldrenormierungskonstante (6.5):Z3�(u0) = 1� 18 u08� �1� �2 �
 + ln m20� � 2�+O(�2)�+ 4095184 � u08��2+��4542541472 + 193752592 ln 43 � 70348 a � 24811024CTet + 124Bdiv1 �� u08��3+O �u40� : (6.49)Der Erwartungswert der 1-Punkt-Funktion (5.57) istG(1;0)c = p3g08� ��1� �2 �
 + ln m20� � 2�+ O(�2)�+ 13Bdiv u08�+��1� 13 ln 43 � 72a � 116CTet�� u08��2 +O �u30�# : (6.50)Mit diesen Reihen lassen sich die renormierte Masse und Kopplung als Reihenbis zur dritten Ordnung in u0� bestimmen.m2R� = �Z3(u0)�(2;0)0 (0)



78 KAPITEL 6. RENORMIERUNG= m20 �1 + 38 u08� �1� �2 �
 + ln m20� � 10�+ O(�2)�+�39735184 + 23Bdiv�� u08��2+��10124541472 + 215352592 ln 43 � 172348 a� 33451024CTet + 18Bdiv1 �� u08��3+O �u40�i (6.51)gR� = 3m2Rv2R = 3Z3(u0)m2R v0 +r3m20g0 !2= g0 "1� 74 u08� �1� �2 �
 + ln m20� � 2556�+O(�2)�+ 170995184 �u08��2+��4051576 + 213191296 ln 43 � 104524 a� 2849512 CTet + 712Bdiv1 �� u08��3+O �u40�i (6.52)Daraus ergibt sichuR� = gRmR = u0 �1� 3116 u08� �1� �2 �
 + ln m20� � 3831�+O(�2)�+�4556513824 � 13Bdiv�� u08��2+��34155173728 + 212471728 ln 43 � 81932 a� 80512048CTet + 3124Bdiv1 �� u08��3+O �u40�i : (6.53)Um die nackten Gr�o�en als Reihen in uR� zu bekommen, invertiere ich dieGleichung (6.53). Der divergente Anteil Bdiv im Logarithmus ist in der gebrochenenPhase durchBdivR� :=  1� � ln m2R4� !+ C4� � 
 +O (�)!� 38 uR8� (1 +O(�)) + O �u2R� (6.54)zu ersetzen.u0� = uR �1 + 3116 uR8� �1� �2 �
 + ln m20� � 3831�+O(�2)�+�5822313824 + 13BdivR ��uR8��2+�15098513824 � 212471728 ln 43 + 81932 a+ 80512048CTet + 3116Bdiv1R��uR8��3 +O �u40�#(6.55)Aus (6.51) und (6.52) wird nun:m20� = m2R �1� 38 uR8� �1� �2 �
 + ln m20� � 10�+O(�2)�



6.3. BERECHNUNG DER RENORMIERTEN GR�OSSEN 79��1402110368 + 23BdivR ��uR8��2+�� 55213110592 � 215352592 ln 43 + 172348 a� 73Bdiv1R��uR8��3 +O �u4R�# (6.56)g0 = gR "1 + 74 uR8� �1� �2 �
 + ln m20� � 27�+O(�2)�+ 81772592 �uR8��2 (6.57)+�1225511165888 � 213191296 ln 43 + 104524 a+ 2849512 CTet��uR8��3 +O �u4R�# :Auch hier ist, ebenso wie in der symmetrischen Phase, die letzte Gleichung frei vonDivergenzen.RenormierungskonstantenDie RenormierungskonstantenZi�(i = 2; 3; 4) aus Kapitel 6.1 werden nun in Abh�ang-igkeit von uR� bestimmt. Der Grenz�ubergang �! 0 ist durchgef�uhrt.Aus (6.55) und (6.49) erhalten wirZ3�(uR) = 1� 18 uR8� � 169310368 �uR8��2 (6.58)+��450461331776 + 193752592 ln 43 � 70348 a� 24811024CTet��uR8��3 +O �u4R� :Z2� berechnet sich mit (6.7):1Z2�(uR) = 1 + 14 u08� �1� �2 �
 + ln m20� � 6�+O(�2)�� 23 � u08��2+�1748 � 512 ln 43 + 858 a+ 2764CTet � 112Bdiv1 �� u08��3 +O �u40�= 1+ 14 uR8� � 35192 �uR8��2+��5121755296 � 512 ln 43 + 858 a+ 2764CTet��uR8��3 +O �u4R�Z2�(uR) = 1� 14 uR8� + 47192 �uR8��2+�4531355296 + 512 ln 43 � 858 a� 2764CTet��uR8��3 +O �u4R� : (6.59)Aus dem Vakuumerwartungswert bestimmt sich die Renormierungskonstante Z4�nach (6.19).Z4�(uR) = 1 + 1316 u08� � 2148141472 � u08��2+�252757663552 � 215355184 ln 43 + 138796 a+ 32172048CTet � 1348Bdiv1 � � u08��3+O �u40�



80 KAPITEL 6. RENORMIERUNG= 1 + 1316 uR8� + 4380541472 �uR8��2 (6.60)+�7534141472 � 232635184 ln 43 + 138796 a + 32172048CTet��uR8��3 +O �u4R�Die dimensionslose Kopplung u� der gebrochenen Phase wird nach (6.20) be-rechnet.u� = g0mR (uR) = uRZ24 (uR)Z3(uR)= uR "1 + 74 uR8� + 81772592 �uR8��2 (6.61)+�1225511165888 � 213191296 ln 43 + 104524 a+ 2849512 CTet� �uR8��3 + O �u4R�#RenormierungsgruppenfunktionenZum Abschlu� dieses Kapitels werden noch die Renormierungsgruppenfunktionender Phase gebrochener Symmetrie als Reihen in uR� entwickeln.Diese Rechnungen sind analog zu den Rechnungen auf Seite 76 mit den Renor-mierungskonstanten der gebrochenen Phase durchzuf�uhren.��(uR) = �0@ @@uR �����mR ln (u(uR))1A�1 = �u(uR)0@ @u(uR)@uR �����mR1A�1= �uR "1� 74 uR8� � 2391296 �uR8��2 (6.62)��821989165888 � 21319432 ln 43 + 10458 a+ 8547512 CTet��uR8��3 +O �u4R�#�3�(uR) = ��(uR) 1Z3(uR) @@uR �����g0 Z3(uR)= 18 uR8� + 1081 �uR8��2 (6.63a)+�1166011331776 � 19375864 ln 43 + 70316 a+ 74431024CTet� �uR8��3 + O �u4R��2�(uR) = ��(uR) 1Z2(uR) @@uR �����g0 Z2(uR)= 14 uR8� � 8396 �uR8��2 + ��319345165888 � 54 ln 43 + 2558 a + 8164CTet��uR8��3+O �u4R� (6.63b)��(uR) = (2� �3(uR) + �2(uR))�1



6.3. BERECHNUNG DER RENORMIERTEN GR�OSSEN 81= 12 "1� 116 uR8� + 1032520736 �uR8��2 (6.64)+�1763563663552 � 182951728 ln 43 + 19332 a + 61472048CTet��uR8��3 +O �u4R�#Alle Renormierungskonstanten und -gruppenfunktionen sind in Abh�angigkeitvon uR� frei von Divergenzen.Mit den Reihen in den Abschnitten 6.3.1 und 6.3.2 sind nun alle ben�otigtenGr�o�en in Abh�angigkeit der renormierten Kopplungskonstanten uR� bestimmt, undwir k�onnen in den beiden n�achsten Kapiteln die Amplitudenverh�altnisse der Korre-lationsl�ange und Suszeptibilit�at berechnen.



Kapitel 7Amplitudenverh�altnis derKorrelationsl�angeDie Korrelationsl�ange (1.11) ist ein Ma� f�ur die Gr�o�e der Bereiche, in denen eineeinheitliche Spinrichtung auftritt. In diesem Kapitel berechne ich das Amplituden-verh�altnis der Korrelationsl�ange am kritischen Punkt.Zun�achst wird eine Bestimmungsgleichung hergeleitet, die von den in den beidenletzten Kapiteln bestimmten Gr�o�en abh�angt. Danach wird eine einheitliche Kopp-lungskonstante f�ur beide Phasen etabliert. Diese l�a�t sich dann amHochtemperatur-oder Tieftemperatur�xpunkt auswerten.Hier wird die Unterscheidung der beiden Phasen ganz wesentlich, daher werdenalle Gr�o�en und Funktionen im folgenden mit einem Index versehen. \+" beziehtsich auf die Reihen aus Abschnitt 6.3.1, w�ahrend sich \�" auf die aus Abschnitt6.3.2 bezieht.7.1 Die BestimmungsgleichungDie Korrelationsl�ange hat nach (1.16a) bei Ann�aherung an die kritische TemperaturTc das Divergenzverhalten �� � f�jtj��; (7.1)wobei die reduzierte Temperatur t wie in (1.12) de�niert ist. Gesucht ist das uni-verselle Amplitudenverh�altnis f+f� in Abh�angigkeit der Kopplungskonstanten. DieKorrelationsl�ange l�a�t sich nach (1.11) mit der inversen renormierten Masse iden-ti�zieren. Neben der reduzierten Temperatur t aus (6.1) f�uhre ich noch die Tem-peraturen t� := jtj der Hoch- bzw. Tieftemperaturphase ein. Damit gilt f�ur dieHochtemperaturphase1mR+ = �+ � f+t��+ ; t+ = (m20 �m20c)T>Tc > 0 (7.2)82



7.1. DIE BESTIMMUNGSGLEICHUNG 83und die Tieftemperaturphase1mR� = �� � f�t��� ; t� = �(m20 �m20c)T<Tc > 0: (7.3)Da, wie im Kapitel 6.1 schon erw�ahnt, die kritische nackte Masse m0c nichtperturbativ berechenbar ist, werden Funktionen verwendet, die durch Ableitungennach der nackten Masse m0 gebildet werden. Wegen (6.1) gilt die Identit�at@@t �����g0 = @@m20 �����g0 : (7.4)Wir de�nieren die FunktionenF�(uR�) := @m2R�@m20� �����g0 : (7.5)In der Hochtemperaturphase haben wir wegen t+ = t und (1.53):@m2R+@t+ = @m2R+@m20 �����g0 = @m20+@m20 @m2R+@m20+ �����g0 = @m2R+@m20+ �����g0 = F+(uR+): (7.6)Analog gilt in der Tieftemperaturphase mit t� = �t und (1.59):@m2R�@t� = � @m2R�@m20 �����g0 = �@m20�@m20 @m2R�@m20� �����g0 = 2 @m2R�@m20� �����g0 = 2F�(uR�): (7.7)Durch Division von (7.7) durch (7.6) und Di�erenzieren von (7.2) und (7.3) erhaltenwir 2F�(uR�)F+(uR+) = @m2R�@t�@m2R+@t+ �������g0 =  f+f�!2  t�t+!2��1 : (7.8)Durch direkte Quotientenbildung von (7.2) und (7.3) bekommen wir: f+f�!2  t+t�!�2� =  mR�mR+!2 : (7.9)Also folgt aus (7.8) und (7.9), da�2F�(uR�)F+(uR+) =  mR�mR+!2 t+t� (7.10)ist. Die gesuchte linke Seite ist abh�angig von der renormierten Masse und der Tem-peratur in beiden Phasen, wobei in jeder Phase ein Parameter frei w�ahlbar ist. Wirsetzen mR+ = mR�; (7.11)



84 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEwodurch die renormierten Kopplungen uR+ und uR� in eindeutige Beziehung zuein-ander gesetzt werden, ebenso wie t+ und t�. Mit (7.2) und (7.3) ergibt sichf+t��+ = f�t���f+f� =  t+t�!� : (7.12)Gleichung (7.10) vereinfacht sich zut+t� = 2F�(uR�)F+(uR+) =: 2�(uR+; uR�): (7.13)Durch Einsetzen der letzten Gleichung in (7.12) erhalten wir das Amplitudenverh�alt-nis der Korrelationsl�ange f+f� = "2F�(uR�)F+(uR+)#� : (7.14)Die Funktionen F+ und F� bzw. � lassen sich als Reihen in uR� berechnen. Dadie beiden renormierten Kopplungen unterschiedlich sind, wird im folgenden einezus�atzliche, einheitliche Kopplung eingef�uhrt. Die renormierten Kopplungen uR�lassen sich dann als Reihen in dieser neuen Kopplung bestimmen.Wie schon im Kapitel 6.2 geschrieben, nimmt die dimensionslose renormierteKopplung am kritischen Punkt ihren infrarotstabilen Fixpunktwert an. Dieser istdurch die nichttriviale Nullstelle der �-Funktion gegeben. Eine einheitliche Kopp-lungskonstante �uR sollte in beiden Phasen denselben Fixpunktwert haben.Mit der Bedingung, da� die �-Funktion in beiden Phasen dieselbe Gestalt hat,l�a�t sich dies erf�ullen. Wir de�nieren eine neue �-Funktion in Abh�angigkeit von �uR.���(�uR) := mR� @@mR� �����g0 �uR(mR�) (6:24)= �(4�D)0@ @@�uR �����mR� ln(u�(�uR))1A�1 (7.15)Aus der De�nition (7.15) folgt mit (7.11) direkt, da���+(�uR) = ���(�uR) (7.16)ist. Die dimensionslosen Kopplungen u� = g0mR� sind als Reihen in uR� gegeben(6.43, 6.61). Ben�otigt wird noch die Reihe�uR(uR�) = uR� �1 + a(1)� uR� + a(2)� u2R� + a(3)� u3R� +O �u4R��� (7.17)bis zur gew�unschten Ordnung. An dieser Stelle ist zu bemerken, da� alle dimen-sionslosen Kopplungen in erster Ordnung �ubereinstimmen. Also gilt zum BeispieluR+ = �uR +O (�u2R).Durch Invertieren von (7.17) erhalten wir uR�(�uR). Dau+(�uR) = u�(�uR) (7.18)wegen der rechten Seite von (7.15) gelten mu�, haben wir nun zwei M�oglichkeitenuR� als Reihen in �uR zu bestimmen, die Anpassung an die Hochtemperatur- oderdie Tieftemperaturkopplung.



7.2. BERECHNUNG DER REIHEN 85HochtemperaturkopplungDie Kopplung �uR wird mit uR+ identi�ziert, und wir bestimmen aus (7.18) dieAbh�angigkeit von uR�(�uR). Durch Invertieren von (6.61) und Einsetzen von (6.43)erhalte ich uR�(�uR) = "u�Z3�(u�)Z24�(u�)#u�=u+(uR+=�uR) : (7.19)Damit l�a�t sich � (7.13) und f+f� (7.14) als Funktion von �uR ausdr�ucken und amHochtemperatur�xpunkt u�R+ berechnen.�+(�uR) := �(uR+ = �uR; uR� = uR�(�uR)) (7.20)Hier steht der Index \+" an der Gr�o�e �+ f�ur die Hochtemperaturkopplung.TieftemperaturkopplungHier wird die Kopplung �uR mit uR� identi�ziert, und wir bestimmen uR+(�uR) aus(6.43) und (6.61). uR+(�uR) = "u+Z23+(u+)Z1+(u+)#u+=u�(uR�=�uR) (7.21)Ebenso wie bei der Hochtemperaturkopplung lassen sich � und f+f� als Funktion von�uR bestimmen und am Tieftemperatur�xpunkt u�R� berechnen.��(�uR) := �(uR+ = uR+(�uR); uR� = �uR) (7.22)7.2 Berechnung der ReihenUm das gerade vorgestellte Verfahren anzuwenden, bestimme ich zuerst die in (7.5)de�nierten Reihen in ihren eigenen Kopplungen.F+(uR+) = 1� 12 uR+8� � 16 �uR+8� �2+� 43108 � 7154 ln 43 � 163 a��uR+8� �3 +O �u4R+� (7.23)F�(uR�) = 1 + 316 uR�8� � 233768 �uR�8� �2+��338737663552 � 215355184 ln 43 + 172396 a+ 33452048CTet��uR�8� �3 + O �u4R��(7.24)Mit diesen Reihen l�a�t sich die Entwicklung in den beiden Kopplungen berechnen.



86 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGE7.2.1 Reihen der HochtemperaturkopplungZur Auswertung des Amplitudenverh�altnisses f+f� bzw. �+ am Hochtemperatur�x-punkt mu� zuerst nach (7.19) die Abh�angigkeit von uR�(uR+) bestimmt werden.uR�(uR+) = u� "1� 74 u�8� + 76992592 �u�8��2+��1091671165888 + 213191296 ln 43 � 104524 a� 2849512 CTet��u�8��3+O �u4��iu�=u+(uR+)= uR+ "1� 14 uR+8� � 13092592 �uR+8� �2+��25177355296 + 302711296 ln 43 � 78a� 2337512 CTet��uR+8� �3+O �u4R+�i (7.25)Mit der Reihe (7.25) wird (7.24) zu:F�(uR+) = 1 + 316 uR+8� � 269768 �uR+8� �2+��300913663552 � 215355184 ln 43 + 172396 a+ 33452048CTet��uR+8� �3 + O �u4R+� :(7.26)Nun kann �+ entwickelt werden:�+(uR+) = F�(uR+)F+(uR+)= 1 + 1116 uR+8� + 41256 �uR+8� �2+��435937663552 � 147195184 ln 43 + 74532 a + 33452048CTet��uR+8� �3 +O �u4R+� :(7.27)Diese Reihe wird im folgenden Kapitel mit Pad�e-Borel-Approximanten numerischausgewertet. Das Amplitudenverh�altnis ist nun direkt durch Vorgabe des kritischenExponenten � gegeben.f+f� (uR+; �) = (2�+(uR+))�= 2� "1 + 11�16 uR+8� + �39� + 121�2512 �uR+8� �2+ �437125�� 34749�2 + 35937�3663552 � 14719�5184 ln 43+745�32 a+ 3345�2048 CTet��uR+8� �3 + O �u4R+�# (7.28)



7.2. BERECHNUNG DER REIHEN 877.2.2 Reihen der TieftemperaturkopplungUm f+f� bzw. �� am Tieftemperatur�xpunkt auszuwerten, bestimmen wir zuerstuR+(uR�) nach (7.21).uR+(uR�) = u+ "1� 32 u+8� + 883324 �u+8��2+��198 � 37354 ln 43 � 1283 a � CTet��u+8��3 +O �u4+�#u+=u�(uR�)= uR� "1 + 14 uR�8� + 16332592 �uR�8� �2+�872999165888 � 302711296 ln 43 + 78a+ 2337512 CTet� �uR�8� �3 +O �u4R��#(7.29)Durch Einsetzen in (7.23) bekommen wir:F+(uR�) = 1� 12 uR�8� � 16 �uR�8� �2+� 43108 � 7154 ln 43 � 163 a��uR�8� �3 +O �u4R�� : (7.30)Mit dieser Reihe kann �� entwickelt werden.��(uR�) = F�(uR�)F+(uR�)= 1 + 1116 uR�8� + 85256 �uR�8� �2+�� 95393663552 � 147195184 ln 43 + 74532 a+ 33452048CTet��uR�8� �3 + O �u4R��(7.31)Ebenso wie (7.27) wird diese Reihe im folgenden Kapitel mit Pad�e-Borel-Approxi-manten numerisch ausgewertet. F�ur das Amplitudenverh�altnis ergibt sich:f+f� (uR�; �) = (2��(uR�))�= 2� "1 + 11�16 uR�8� + 49� + 121�2512 �uR�8� �2+ �174989�+ 43659�2 + 35937�3663552 � 147195184 ln 43+745�32 a + 3345�2048 CTet��uR�8� �3 +O �u4R��# : (7.32)



88 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGE7.3 Numerische ErgebnisseDie numerische Auswertung der Reihen f�uhre ich im folgenden f�ur die Hoch- undTieftemperaturkopplung durch. Dabei wird jeweils die Bestimmung der Gr�o�e �� imVordergrund stehen. Um die Reihen auszuwerten, verwende ich Pad�e-Approximantensowie das Pad�e-Borel-Verfahren, das in Anhang B beschrieben ist. Ein [k; l]-Pad�e be-zeichnet dabei eine Approximation durch eine gebrochenrationale Funktion, derenZ�ahlerpolynom den Grad k und der Nenner den Grad l hat.F�ur den kritischen Exponenten �, der in (6.46) und (6.64) als Reihe gegeben ist,werden neben diesen Werten auch Literaturwerte eingesetzt. Die Fixpunktwerte derHoch- und Tieftemperaturkopplung sind der Literatur entnommen. Die Nullstellender ��-Funktion (6.44, 6.62) haben eine gro�e Varianz und erscheinen dadurch zurBestimmung des Amplitudenverh�altnisses untauglich (siehe [Gut95]).7.3.1 Hochtemperatur�xpunktIn der Hochtemperaturphase haben wir die Fixpunktwerteu�R+ = 23:73(8) [GZJ80, ZJ82] Renormierungsgruppe in 3-Du�R+ = 24:56(10) [Sie93] Hochtemperatur-Entwicklung ; (7.33)an denen (7.27) berechnet wird.Zuerst wird die Reihe direkt durch Pad�e-Approximanten ausgewertet (Tabelle7.1). Wie insbesondere an den Werten der [1,2]-Pad�e zu erkennen ist, haben wir hierein sehr schlechtes Konvergenzverhalten.Fixpunkt �+(u�R+)u�R+ [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e23.73 1.4266 1.6892 0.0190 1.103124.56 1.4198 1.7138 -0.1021 1.0709Tabelle 7.1: �+ in Abh�angigkeit vom Fixpunktwert u�R+.Fixpunkt Borel-Transformierte von �+(u�R+)u�R+ [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e23.73 1.4266 1.6962 1.4424 1.368824.56 1.4198 1.7212 1.4472 1.3579Tabelle 7.2: Pad�e-Borel-Approximante von �+ am Fixpunktwert u�R+



7.3. NUMERISCHE ERGEBNISSE 89Durch Anwendung des Pad�e-Borel-Verfahrens lassen sich bessere Werte erzielen.Die inverse Borel-Transformation wird als numerische Integration durchgef�uhrt. DieWerte der [0,3]-Pad�e aus Tabelle 7.2 sind durch Partialbruchzerlegung und Berech-nen des Hauptwertintegrals �uber die Polstelle bestimmt.Nun wird noch aus den oben bestimmtenWerten das Amplitudenverh�altnis nach(7.14) berechnet. Dabei beziehen sich die Tabellen 7.3 und 7.4 auf die �+-Werte ausTabelle 7.1. F�ur den kritischen Exponenten setze ich folgende Werte ein.� = 0:624(2) [BGHP92] Monte-Carlo Renormierungsgruppe� = 0:627(9) [Dec85] Tieftemperaturentwicklung� = 0:6300(15) [GZJ80, ZJ82] Renormierungsgruppe in 3-D (7.34)Amplitudenverh�altnis f+f� (u�R+ = 23:73; �)� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e0.624 1.9237 2.1376 0.1298 1.63840.627 1.9297 2.1454 0.1285 1.64230.630 1.9358 2.1533 0.1272 1.6462Tabelle 7.3: Amplitudenverh�altnis der Korrelationsl�ange unter Vorgabe von �am Fixpunktwert u�R+ = 23:73Amplitudenverh�altnis f+f� (u�R+ = 24:56; �)� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e0.624 1.9179 2.1569 / 1.60840.627 1.9240 2.1649 / 1.61210.630 1.9300 2.1729 / 1.6158Tabelle 7.4: Amplitudenverh�altnis der Korrelationsl�ange unter Vorgabe von �am Fixpunktwert u�R+ = 24:56Die [1,2]-Pad�e lassen sich f�ur den Fixpunkt u�R+ = 24:56 nicht berechnen, da�+(24:56) < 0 ist.Aus den Daten der Pad�e-Borel-Transformierten �+-Funktion (Tabelle 7.2) be-komme ich die Werte der Tabelle 7.5. Die [3,0]-Pad�e stimmen mit den ersten Spaltender Tabellen 7.3 und 7.4 �uberein, da die Pad�e-Approximante mit dem urspr�ungli-chem Polynom �ubereinstimmt, und somit die Borel-Transformation keinen Ein
u�hat.



90 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEAmplitudenverh�altnisPad�e-Borel-Verfahren f+f� (u�R+; �)� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R+ = 23:730.624 1.9237 2.1431 1.9369 1.87460.627 1.9297 2.1509 1.9430 1.88030.630 1.9358 2.1588 1.9492 1.8860u�R+ = 24:560.624 1.9179 2.1627 1.9410 1.86530.627 1.9240 2.1708 1.9472 1.87090.630 1.9300 2.1788 1.9534 1.8765Tabelle 7.5: Amplitudenverh�altnis berechnet nach dem Pad�e-Borel-VerfahrenDas Amplitudenverh�altnis l�a�t sich ohne Vorgabe von � durch Einsetzen von(6.46) in (7.14) bestimmen. Diese Werte sind in Tabelle 7.6 aufgef�uhrt.Fixpunkt Amplitudenverh�altnisdirekte Bestimmung f+f� (u�R+)u�R+ [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e23.73 2.0018 2.0790 2.4546 1.808124.56 2.0168 2.1039 2.5183 1.7973Tabelle 7.6: Amplitudenverh�altnis nur in Abh�angigkeit vom Fixpunktwert u�R+.7.3.2 Tieftemperatur�xpunktIn der Phase gebrochener Symmetrie wird (7.31) an den Fixpunktenu�R� = 14:73(14) [Sie93] Tieftemperaturentwicklungu�R� = 15:1(1:3) [Hei93] (7.35)ausgewertet.In Tabelle 7.7 sind die Ergebnisse der Pad�e-Approximanten aufgelistet. Tabelle7.8 f�uhrt die mit dem Pad�e-Borel-Verfahren bestimmtenWerte auf. Aus den Wertender Tabelle 7.7 berechnet sich das Amplitudenverh�altnis wie in 7.9 aufgelistet. DieWerte in Tabelle 7.10 sind mit Pad�e-Borel-Verfahren bestimmt. Tabelle 7.11 listetdie Werte der direkten Bestimmung des Amplitudenverh�altnisses auf.



7.3. NUMERISCHE ERGEBNISSE 91Fixpunkt ��(u�R�)u�R� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e14.73 1.5330 1.5355 1.5178 1.524615.1 1.5501 1.5530 1.5330 1.5407Tabelle 7.7: �� in Abh�angigkeit vom Fixpunktwert u�R�.Fixpunkt Borel-Transformierte von ��(u�R�)u�R� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e14.73 1.5330 1.5369 1.4973 1.464515.1 1.5501 1.5545 1.5107 1.4680Tabelle 7.8: Pad�e-Borel-Approximante von �� am Fixpunktwert u�R�In Abbildung 7.1 ist �� als Funktion der renormierten Kopplung aufgetragen.Dabei sind als Linien von oben nach unten der [2,1]-Pad�e, [3,0]-Pad�e, [0,3]-Pad�e und[1,2]-Pad�e aufgetragen. Die beiden Fehlerbalken stehen an den Stellen der eingesetz-ten Fixpunktwerte. Abbildung 7.2 zeigt dieselbe Funktion, allerdings nach Anwen-dung des Pad�e-Borel-Verfahrens. Von oben nach unten sind es der [2,1], [3,0], [1,2]und [0,3]-Pad�e. Die Kurven haben eine deutlich h�ohere Streuung. Daraus folgt, da�dieses Verfahren hier nicht angemessen ist, da es keine besseren Ergebnisse liefert.Amplitudenverh�altnis f+f� (u�R�; �)� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R� = 14:730.624 2.0119 2.0140 1.9995 2.00510.627 2.0187 2.0208 2.0062 2.01180.630 2.0255 2.0277 2.0129 2.0186u�R� = 15:10.624 2.0259 2.0283 2.0120 2.01830.627 2.0328 2.0352 2.0187 2.02510.630 2.0397 2.0421 2.0255 2.0319Tabelle 7.9: Amplitudenverh�altnis der Korrelationsl�ange unter Vorgabe von �am Fixpunktwert u�R�
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14:5 14:7 14:9 15:1 15:3 15:51:501:521:541:561:58

uR�
��

Abbildung 7.1: �� gegen uR� aufgetragen
14:5 14:7 14:9 15:1 15:3 15:51:461:481:501:521:541:56

uR�
��

Abbildung 7.2: ��(uR�) nach Pad�e-Borel-Verfahren



7.4. DISKUSSION 93Amplitudenverh�altnisPad�e-Borel-Verfahren f+f� (u�R�; �)� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R� = 14:730.624 2.0119 2.0152 1.9826 1.95540.627 2.0187 2.0220 1.9891 1.96170.630 2.0255 2.0288 1.9957 1.9680u�R� = 15:10.624 2.0259 2.0295 1.9937 1.95830.627 2.0328 2.0365 2.0003 1.96470.630 2.0397 2.0434 2.0070 1.9710Tabelle 7.10: Amplitudenverh�altnis berechnet nach Pad�e-Borel-VerfahrenFixpunkt Amplitudenverh�altnisdirekte Bestimmung f+f� (u�R�)u�R� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e14.73 1.8975 2.2232 2.6024 1.964915.1 1.9177 2.3115 2.8804 1.9940Tabelle 7.11: Amplitudenverh�altnis nur in Abh�angigkeit vom Fixpunktwert u�R�.7.4 DiskussionUm die Ergebnisse der Rechnungen auszuwerten, wurde jeweils �uber die vier Pad�e-Approximanten gemittelt und der Maximalfehler bestimmt. Dabei kommen die Wer-te der folgenden Tabelle 7.12 heraus. Bei der Mittelung �uber die Pad�e-Approximan-�� Hochtemperatur�xpunkt Tieftemperatur�xpunktPad�e-Approximanten 1.40(33) 1.536(18)Pad�e-Borel Verfahren 1.49(24) 1.514(50)Tabelle 7.12: Gemittelte Werte von ��ten der Hochtemperaturkopplung wurde der Wert der [1,2]-Pad�e weggelassen, da erweit au�erhalb der m�oglichen L�osung liegt.AmTieftemperatur�xpunkt ist der Spielraum der Werte ungef�ahr um einen Fak-



94 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEtor zehn geringer als am Hochtemperatur�xpunkt. Beim Hochtemperatur�xpunktbringt die Verwendung von Borel-Transformierten eine deutliche Verringerung desrelativen Fehlers auf ca. 16%.Dagegen bringt das Pad�e-Borel-Verfahren in der Tieftemperaturphase keine bes-sere Konvergenz. Insgesamt ist der Fehler zwar deutlich kleiner als in der Hochtem-peraturphase, aber ohne Borel-Transfomation ist die Varianz noch geringer.Um diese Ergebnisse mit Literaturwerten zu vergleichen, betrachte ich direktdas Amplitudenverh�altnis. Dieses wird durch Potenzierung mit dem kritischen Ex-ponenten � aus �� gewonnen. Dabei ist � einmal durch die Literaturwerte aus(7.34) gegeben. Die zweite M�oglichkeit ist die Bestimmung �uber (6.46, 6.64), wie siein [Gut95] ausf�uhrlich dargestellt wird.f+f� Hochtemperatur�xpunkt Tieftemperatur�xpunktPad�e-Approximanten 1.90(29) 2.021(22)Pad�e-Borel-Verfahren 1.98(20) 2.003(48)Direkte Bestimmung 2.10(42) 2.22(66)Tabelle 7.13: Gemittelte Werte des Amplitudenverh�altnisses der Korrelationsl�angeDie Werte der direkten Bestimmung des Amplitudenverh�altnisses haben an bei-den Fixpunkten die gr�o�ten Fehler. Dies l�a�t sich auf die ungenauen Werte des kri-tischen Exponeneten � zur�uckf�uhren (siehe [Gut95]). Abgesehen von diesem Werthat, wie schon bei der Funktion ��, das Ergebnis am Tieftemperatur�xpunkt einenungef�ahr zehnmal geringeren Fehler. Bei beiden Bestimmungsverfahren (ohne bzw.mit Borel-Transformation) ist der relative Fehler sehr klein, n�amlich bei einem bzw.knapp �uber zwei Prozent.Zum Vergleich mit den hier erzielten Ergebnissen seien hier die folgenden Lite-raturwerte angegeben.f+f� = 8>>>>>>>>>>><>>>>>>>>>>>: 1:91 [BGZJ74] �-Entwicklung1:96(3); 1:96(1);1:94(3) [LF89, Sie93]Hoch-/Tieftemperatur-Entwicklung2:06(1) [RZW94] Monte-Carlo2:05(22);2:22(5); 1:9(2) [KKG83] Experimentell: Bin�are Fluide2:03(4);2:18(12) [Hei93, MH94] 2-Loop-Berechnung (7.36)Die gemittelten Werte aus Tabelle 7.13 liegen in beiden Phasen mit ihren Fehlernim Spektrum der Literaturwerte.Im Vergleich mit den Ergebnissen aus [MH94] f�allt auf, da� sich die numerischenWerte in der Tieftemperaturkopplung kaum unterscheiden, w�ahrend am Hochtem-peratur�xpunkt zwei sehr unterschiedliche Werte bestimmt werden.



7.4. DISKUSSION 95Zur Absch�atzung der Korrekturen, die die einzelnen Ordnungen beitragen, sindin der folgenden Gleichung die numerischen Werte der Koe�zienten aufgef�uhrt.�+ = 1+ 2:74 � 10�2uR+ + 2:54 � 10�4u2R+ � 2:73 � 10�5u3R+ +O �u4R+��� = 1+ 2:74 � 10�2uR� + 5:26 � 10�4u2R� + 4:99 � 10�6u3R� +O �u4R��(7.37)Wenn typische Fixpunktwerte eingesetzt werden (u�R+ � 24; u�R� � 15), tragen dieeinzelnen Koe�zienten wie folgt bei:�+ = 1 +0:657 +0:146 �0:378�� = 1 +0:410 +0:118 +0:017 (7.38)Das hei�t, da� die dritte Ordnung in der Hochtemperaturkopplung eine Korrekturvon 21% der niedrigeren Terme liefert, w�ahrend der Beitrag in der Tieftempera-turkopplung nur knapp �uber einem Prozent liegt. Mit der kleinen Korrektur in derTieftemperaturkopplung scheint diese Reihe eine deutlich bessere Konvergenz auf-zuweisen, als die Reihe der Hochtemperaturkopplung, wo der Betrag des Termesdritter Ordnung mehr als doppelt so gro� ist wie der Term zweiter Ordnung.Wegen des geringen Fehlers und der nur kleinen Korrektur in dritter Ordnunggebe ich als sicherstes Ergebnis f�ur das Amplitudenverh�altnis der Korrelationsl�angedie Mittelung �uber die Pad�e-Approximanten am Tieftemperatur�xpunkt an:f+f� = 2:021(22) (7.39)



Kapitel 8Amplitudenverh�altnis derSuszeptibilit�atDas im Kapitel 7 verwendete Verfahren zur Bestimmung des Amplitudenverh�altnis-ses der Korrelationsl�ange l�a�t sich auch auf andere universelle Amplitudenverh�alt-nisse �ubertragen, wie das der Suszeptibilit�at. Im Aufbau dieses Kapitels folge ichdem vorangegangenen, wobei ich nur die zus�atzlichen Gleichungen au��uhre.8.1 Die BestimmungsgleichungDas Divergenzverhalten der Suszeptibilit�at bei Ann�aherung an die kritische Tempe-ratur Tc ist nach (1.16b) durch �� � C�jtj�
 (8.1)gegeben. Auch hier verwenden wir die reduzierte Temperatur t sowie t� = jtj. Aus(1.6) folgt die Beziehung von � zur 2-Punkt-Funktion.1�� = ��(2;0)0 (0;m0; g0) (6:10)= � 1Z3�(uR�)�(2;0)R (0;mR; gR) = m2R�Z3�(uR�) (8.2)Auf der rechten Seite der Gleichung (8.2) haben wir die Renormierungsbedingungenverwertet. Mit Gleichung (8.1) ergibt sichC�t�
� = Z3�(uR�)m2R� ; (8.3)und durch Bildung des Quotienten folgtC+C� = m2R�m2R+ Z3+(uR+)Z3�(uR�)  t+t�!
 : (8.4)Nun setzen wir wiederum mR+ = mR� und verwenden (7.13).C+C� = Z3+(uR+)Z3�(uR�) [2�(uR+; uR�)]
 (8.5)96



8.2. BERECHNUNG DER REIHEN 97Diese Bestimmungsgleichung wird im folgenden an den beiden Fixpunkten ausge-wertet.8.2 Berechnung der ReihenZun�achst entwickele ich den kritischen Exponenten in beiden Phasen nach demSkalengesetz (1.19c): 
�(uR�) = ��(uR�)(2� �3�(uR�)) (8.6)Mit den entsprechenden Reihen aus Kapitel 6.3 lautet diese Gleichung:
+(uR+) = 1 + 14 uR+8� � 148 �uR+8� �2+�� 9011728 + 74 ln 43 + 6a��uR+8� �3 +O �u4R+� (8.7)
�(uR�) = 1� 18 uR�8� + 169384 �uR�8� �2+� 96577110592 + 58 ln 43 � 25516 a� 81128CTet��uR�8� �3 +O �u4R��(8.8)8.2.1 Reihen der HochtemperaturkopplungIn (8.5) brauchen wir neben �, das wir schon in (7.27) bzw. (7.31) als Reihe in einerKopplung bestimmt haben, noch Z3� als Funktion von uR+. Dies erhalten wir durchEinsetzen von (7.25) in (6.58).Z3�(uR+) = 1� 18 uR+8� � 136910368 �uR+8� �2+��134143110592 + 193752592 ln 43 � 70348 a� 24811024CTet��uR+8� �3 +O �u4R+�(8.9)Damit kann nun die Bestimmungsgleichung in der Hochtemperaturkopplung berech-net werden.C+C� (uR+; 
) = Z3+(uR+)Z3�(uR+) (2�+(uR+))
= 2
 "1 + 2 + 11
16 uR+8� + 5612+ 405
 + 9801
241472 �uR+8� �2+ 234718� 127237
� 5049
2 + 11979
3221184 � 37214+ 14719
5184 ln 43+554 + 745
32 a+ 4962+ 3345
2048 CTet��uR+8� �3 +O �u4R+�#(8.10)



98 KAPITEL 8. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT�AT8.2.2 Reihen der TieftemperaturkopplungIn der Tieftemperaturphase mu� noch Z3+ in Abh�angigkeit von uR� berechnet wer-den. Z3+(uR�) = 1� 181 �uR�8� �2+�� 527 + 827 ln 43 + 83a��uR�8� �3 +O �u4R�� (8.11)Die Bestimmungsgleichung wird damit zuC+C� (uR�; 
) = Z3+(uR�)Z3�(uR�) (2��(uR�))
= 2
 "1 + 2 + 11
16 uR�8� + 6908+ 7533
+ 9801
241472 �uR�8� �2+ 801306� 91063
 + 63261
2 + 35937
3663552 � 37214+ 14719
5184 ln 43+554 + 745
32 a+ 4962+ 3345
2048 CTet��uR�8� �3 +O �u4R��# :(8.12)8.3 Numerische ErgebnisseDie numerische Auswertung erfolgt wie in Kapitel 7.3 an Fixpunktwerten der Kopp-lung. Der kritische Exponent ist hier wiederum durch Literaturwerte gegeben.8.3.1 Hochtemperatur�xpunktDie Reihe (8.10) wird an den Fixpunkten aus (7.33) und den folgenden Werten deskritischen Exponenten bestimmt.
 = 1:237(2) [BGHP92] Monte-Carlo Renormierungsgruppe
 = 1:241(2) [GZJ80, ZJ82] Renormierungsgruppe in 3-D
 = 1:250(1) [GG74] Hochtemperaturentwicklung (8.13)In der Tabelle 8.1 sind die numerischen Resultate aufgelistet. Die [1,2]-Pad�e ha-ben mit ihren Werten um Null keine Aussagekraft. Diese Werte sind auf die ent-sprechenden Resultate in Tabelle 7.1 zur�uckzuf�uhren und in der Mittelwertbildungweggelassen.Tabelle 8.2 f�uhrt die Ergebnisse der Berechnung mittels Pad�e-Borel-Verfahrenauf. F�ur die [1,2]-Pad�e kommen deutlich verbesserte Werte heraus, w�ahrend die[0,3]-Pad�e immer noch sehr niedrig liegen. Als Vergleichswerte sind in Tabelle 8.3noch die Resultate der Berechnung ohne Vorgabe von 
 durch Einsetzen von (8.7)in (8.5) aufgef�uhrt.



8.3. NUMERISCHE ERGEBNISSE 99Amplitudenverh�altnis C+C� (u�R+; 
)
 [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R+ = 23:731.237 4.8263 5.1494 0.1895 2.75581.241 4.8496 5.1736 0.2242 2.76271.250 4.9024 5.2283 0.3002 2.7781u�R+ = 24:561.237 4.8946 5.2600 -0.0108 2.64051.241 4.9185 5.2849 0.02386 2.64671.250 4.9728 5.3413 0.09983 2.6608Tabelle 8.1: Amplitudenverh�altnis der Suszeptibilit�at unter Vorgabe von 
 amFixpunktwert u�R+Amplitudenverh�altnisPad�e-Borel-Verfahren C+C� (u�R+; 
)
 [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R+ = 23:731.237 4.8263 5.1823 4.0431 2.85231.241 4.8496 5.2066 4.0600 2.85301.250 4.9024 5.2617 4.0983 2.8546u�R+ = 24:561.237 4.8946 5.2961 4.0642 2.80131.241 4.9185 5.3212 4.0812 2.80171.250 4.9728 5.3780 4.1198 2.8027Tabelle 8.2: Amplitudenverh�altnis berechnet nach Pad�e-Borel-VerfahrenFixpunkt Amplitudenverh�altnisdirekte Bestimmung C+C� (u�R+)u�R+ [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e23.73 5.0699 5.0706 -4.3129 2.950524.56 5.2199 5.2207 -4.1891 2.8484Tabelle 8.3: Amplitudenverh�altnis nur in Abh�angigkeit vom Fixpunktwert u�R+.



100 KAPITEL 8. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT�AT8.3.2 Tieftemperatur�xpunktAm Tieftemperatur�xpunkt (Werte wie in (7.35)) berechnen wir zuerst die Pad�e-Approximanten von (8.12), deren Ergebnisse in Tabelle 8.4 aufgelistet sind.Amplitudenverh�altnis C+C� (u�R�; 
)
 [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R� = 14:731.237 4.5421 4.6782 4.6099 4.63381.241 4.5621 4.6994 4.6305 4.65421.250 4.6074 4.7474 4.6772 4.7004u�R� = 15:11.237 4.6246 4.7772 4.6987 4.72621.241 4.6451 4.7991 4.7199 4.74721.250 4.6916 4.8486 4.7679 4.7947Tabelle 8.4: Amplitudenverh�altnis der Suszeptibilit�at unter Vorgabe von 
 amFixpunktwert u�R�Amplitudenverh�altnisPad�e-Borel-Verfahren C+C� (u�R�; 
)
 [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�eu�R� = 14:731.237 4.5421 4.8711 4.2476 3.50781.241 4.5621 4.9438 4.2649 3.51381.250 4.6074 5.2323 4.3040 3.5275u�R� = 15:11.237 4.6246 4.9190 4.2988 3.49471.241 4.6451 4.1182 4.3164 3.50051.250 4.6916 4.7441 4.3561 3.5135Tabelle 8.5: Amplitudenverh�altnis berechnet nach Pad�e-Borel-VerfahrenIn Tabelle 8.5 sind die Pad�e-Borel-Resultate eingetragen. Hier hat, ebenso wiebei �� (s. Abschnitt 7.3.2), die Borel-Transformation keinen ergebnisverbessernden



8.4. DISKUSSION 101Ein
u�, im Gegenteil wird die Varianz stark erh�oht. Tabelle 8.6 listet die Resultatedes Amplitudenverh�altnisses der Suszeptibilit�at nur in Abh�angigkeit der Fixpunkteu�R� auf. Fixpunkt Amplitudenverh�altnisdirekte Bestimmung C+C� (u�R�)u�R� [3,0]-Pad�e [2,1]-Pad�e [1,2]-Pad�e [0,3]-Pad�e14.73 3.7832 6.0433 0.7329 4.675115.1 3.8632 6.7429 1.0872 4.9059Tabelle 8.6: Amplitudenverh�altnis nur in Abh�angigkeit vom Fixpunktwert u�R�.8.4 DiskussionAus den oben gewonnenen Resultaten bilde ich Mittelwerte �uber die Daten der ein-zelnen Bestimmungsmethoden. Dabei habe ich bei der direkten Bestimmung nurdurch Vorgabe des Fixpunktwertes jeweils die Daten der [1,2]-Pad�e vernachl�assigt,da sie teilweise negativ beziehungsweise weit au�erhalb des physikalisch Sinnvollenliegen. Ebenso habe ich bei der Mittelung �uber die Daten der Tabelle 8.1 verfahren.Wie in Tabelle 7.13 sind die Werte der direkten Bestimmung sehr ungenau. Bei Be-C+C� Hochtemperatur�xpunkt Tieftemperatur�xpunktPad�e-Approximanten 4.3(1.6) 4.69(16)Pad�e-Borel-Verfahren 4.3(1.5) 4.31(93)Direkte Bestimmung 4.4(1.5) 5.0(1.7)Tabelle 8.7: Gemittelte Werte des Amplitudenverh�altnisses der Suszeptibilit�atstimmung des Amplitudenverh�altnisses �uber das Pad�e-Borel-Verfahren ist der Wertam Tieftemperatur�xpunkt mit einem etwas geringerem Maximalfehler behaftet,jedoch ist der Unterschied l�angst nicht so gro� wie beim Amplitudenverh�altnis derKorrelationsl�ange (vgl. Tab. 7.13). Am Hochtemperatur�xpunkt haben alle Mit-telwerte einen Fehler, der gr�o�er als ein Drittel ist. Damit erscheint der Mittelwert�uber die Pad�e-Approximanten am Tieftemperatur�xpunkt als der einzige zuverl�assi-ge Wert. Er hat einen relativen Maximalfehler von ungef�ahr 3.4%.Im Vergleich mit den Literaturwerten aus (8.14) f�allt auf, da� die Mittelwertefast durchgehend niedriger liegen. Nur der experimentelle Wert ist fast genauso gro�



102 KAPITEL 8. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT�AToder etwas unterhalb der hier bestimmten Mittelwerte.C+C� = 8>>>>>>>>>>><>>>>>>>>>>>: 4:81 [BGZJ74] �-Entwicklung4:77(30) [ZJ89] Renormierungsgruppe in 3-D5:03(5);4:95(15); 4:82(5) [LF89, Sie93]Hoch-/Tieftemperatur-Entwicklung4:3(3) Experimentell: Bin�are Fluide4:66(36);6:03(1:05) [Hei93] 2-Loop-Berechnung (8.14)Mit diesen Werten, die au�er dem letzten auf anderen Bestimmungsmethoden be-ruhen, wird das oben Festgestellte untermauert und als Ergebnis gebe ichC+C� = 4:69(16) (8.15)an, den Mittelwert der Pad�e-Approximanten am Tieftemperatur�xpunkt.



ZusammenfassungZiel dieser Arbeit war neben der Berechnung der Amplitudenverh�altnisse von Kor-relationsl�ange und Suszeptibilit�at die Entwicklung eines Verfahrens zur Vereinfa-chung der Berechnung von Feynman-Graph-Entwicklungen in einer massiven ska-laren Theorie. Dies geschah durch die Ersetzung aller Tadpole-Graphen, die anPropagatoren oder Vertices ansetzen, zum einen durch eine reduzierte Masse ~m0,wie sie in (3.32) bzw. (4.9) de�niert ist, und zum anderen durch eine Dreipunkt-Kopplungskonstante ~f0 (3.56). Letzteres galt nat�urlich nur f�ur die Phase gebrochenerSymmetrie, wo dieses Verfahren auch die gr�o�eren Rechenerleichterungen brachte.Die resultierenden Graphenanzahlen sind auf Seite 38 aufgef�uhrt.Mit diesem Verfahren lie�en sich die notwendigen Vertex- und Green-Funktionenberechnen. Die Richtigkeit der Entwicklung konnte dabei durch den direkten Ver-gleich der Reihen f�ur �(2;0)0 , @@p2�(2;0)0 ���p2=0 und �(4;0)0 in der symmetrischen Phasebzw. �(2;0)0 , @@p2�(2;0)0 ���p2=0 und G(1;0)c in der Phase gebrochener Symmetrie mit denErgebnissen von [Gut95] best�atigt werden, wo die vollst�andige Feynman-Graph-Entwicklung bis zur 3-Loop-Ordnung aufsummiert wurde.Aus den Reihen lie�en sich universelle Amplitudenverh�altnisse bestimmen. Ins-besondere am Tieftemperatur�xpunkt sind die resultierenden Werte sehr konsistentund weisen eine geringe Streuung auf. F�ur das Amplitudenverh�altnis der Korrelati-onsl�ange ergab sich so (7.39) f+f� = 2:021(22)und f�ur das Amplitudenverh�altnis der Suszeptibilit�at (8.15)C+C� = 4:69(16)jeweils als Mittelwert der vier Pad�e-Approximanten am Tieftemperatur�xpunkt.Diese Werte haben fast den gleichen Betrag wie die entsprechenden Zwei-Loop-Rechnung. Der Fehler liegt sogar nur bei circa der H�alfte des Fehlers in der Zwei-Loop-Rechnung. 103



Anhang AIntegraleA.1 1-Loop-IntegraleDie Integrale Jn(D) berechnen sich nach folgendem Verfahren. F�ur eine ausf�uhrli-chere Berechnung verweise ich auf [Gut95].Jn(D) = Z dDk(2�)D 1�k2 +m20�n (A.1)km0!k= mD�2n0(2�)D Z dDk 1�k2 + 1�n= mD�2n0(2�)D 2�D2�(D2 ) Z 10 dk kD�1(k2 + 1)n= mD�2n0(4�)D2 �(D2 ) �(D2 )�(n � D2 )�(n)D=3��= m3�2n0(4�) 32  m204� !� �2 �(n � 32 + �2)�(n) (A.2)Die �-Funktion wird um n� 32 entwickelt.�(n � D2 ) = �(n � 32)�1 + �2	(n � 32) +O ��2�� (A.3)Die 	-Funktion ist durch die De�nition und Funktionalgleichung	(x) := ddx ln �(x) und 	(x+ 1) = 	(x) + 1x (A.4)gegeben [GR81, 8.36].Jn(3� �) = m3�2n0(4�) 32 �(n� 32)�(n)  1� �2 ln m204� +O ��2�!�1 + �2	(n � 32) +O ��2��= m3�2n0(4�) 32 �(n� 32)�(n)  1 + �2  	(n � 32) � ln m204� ! +O ��2�! (A.5)104



A.2. ABLEITUNGEN VON 1-LOOP-INTEGRALEN 105Mit den Werten	��12� = �
 � 2 ln 2 + 2 und 	�12� = �
 � 2 ln 2 (A.6)erhalten wir Jn f�ur n = 1; 2:J1(3� �) = �m04� �1� �2 �
 + ln m20� � 2�+ O(�2)� (A.7)J2(3� �) = 18�m0 �1� �2 �
 + ln m20� �+O(�2)� (A.8)A.2 Ableitungen von 1-Loop-IntegralenDie Integrale In sind wie folgt de�niert.In(p;D) = Z dDk(2�)D 1�k2 +m20�n 1(k+ p)2 +m20 (A.9)Die Ableitung des Propagators berechnet sich nach@@p2�(k+ p)�����p2=0 = 12D DX�=1 @2@p2� 1(k + p)2 +m20 ������p2=0= � 12D DX�=1 @@p� 2(k+ p)�((k + p)2 +m20)2 ������p2=0= � 1D DX�=1 ((k + p)2 +m20)� 4(k + p)2�((k + p)2 +m20)3 ������p2=0= ��2(k) + 4D k2�k2 +m20�3= ��2(k) + 4D ��2(k)�m20�3(k)� : (A.10)Damit kann die Ableitung nach dem Impulsquadrat berechnet werden.@@p2 In(p;D)�����p2=0 = Z dDk(2�)D 1�k2 +m20�n @@p2 1(k+ p)2 +m20 �����p2=0(A:10)= �Jn+2(D) + 4D �Jn+2(D) �m20Jn+3(D)�D=3��= 13 �1 + �2 �	(n+ 12)� ln m204� + 83�+ O ��2��m�1�2n0(4�) 32 �(n + 12)�(n + 2)�43 �1 + �2 �	(n+ 32)� ln m204� + 23�+ O ��2��



106 ANHANG A. INTEGRALEm�1�2n0(4�) 32 �(n + 32)�(n + 3)= � nn+ 2 18�m1+2n0 p� �(n + 12)�(n + 2)�1 + �2 �	(n + 12)� ln m204� �+O ��2�� (A.11)F�ur I1 ergibt sich damit:@@p2 I1(p;D)�����p2=0 = � 112 1m308� �1� �2 �
 + ln m20� � 2�+O(�2)� : (A.12)



Anhang BPad�e-Borel-VerfahrenDas Pad�e-Borel-Verfahren ist eine Methode, um die Konvergenz von Reihen zu ver-bessern. Dazu werden Pad�e-Approximanten der Borel-transformierten Reihe gebil-det und zur�ucktransformiert.B.1 Borel-TransformationDie Borel-Transformierte einer Potenzreihef(z) = 1Xn=0 anzn (B.1)ist durch Bf(z) := 1Xn=0 ann! zn (B.2)de�niert. Mit der Integralform der �-Funktion�(z) = Z 10 dt e�ttz�1 (B.3)ist die R�ucktransformation durchf(z) = Z 10 dt Bf(tz)e�t (B.4)gegeben.B.2 Pad�e-ApproximantenGebrochen rationale Approximanten einer Potenzreihe werden als Pad�e-Approxi-manten bezeichnet. Gegeben sei eine Reihe bis zur Ordnung n:gn(z) = nXi=0 bizi + O �zn+1� (B.5)107



108 ANHANG B. PAD�E-BOREL-VERFAHRENpk und ql seien Polynome k-ten bzw. l-ten Grades in z, diegn(z)ql(z) = pk(z) +O �zk+l+1� , k + l � n (B.6)erf�ullen. ql hat nach De�nition den f�uhrenden Term 1. Dann giltgn(z) = pk(z)ql(z) +O �zk+l+1� ; (B.7)und der Quotient ist die [k; l]-Pad�e-Approximante.B.3 Pad�e-BorelIn der vorliegenden Arbeit behandeln wir Reihen der Gestalt F(uR�) bis zuO �u3R��.Diese werden Borel-transformiert zu BF(uR�), wovon die Pad�e-Approximanten be-stimmt werden. Da k + l � 3 gelten mu�, lassen sich vier Approximanten bilden,wobei der [3,0]-Pad�e die Reihe selbst ist.Diese Approximanten werden mit (B.4) r�ucktransformiert. Die Integration wirddirekt numerisch ausgewertet. Falls das Nennerpolynom ql eine positive reelle Null-stelle hat, mu� das Hauptwertintegral gebildet werden.Z 10 dt ab� te�t = �ae�b Z 1�b dt1t e�t| {z }=: �Ei(b) = ae�bEi(b) , b > 0 (B.8)Dabei ist Ei(x) das Exponentialintegral, das durchEi(x) = � lim�!0 "Z ���x e�tt dt+ Z 1� e�tt dt# , x > 0 (B.9)gegeben ist [GR81, 8.21].
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