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Einleitung

In dieser Arbeit wird das Ising-Modell mit Methoden der statistischen Feldtheorie
behandelt. Mit dem Ising-Modell 183t sich das Verhalten eines Ferromagneten in der
Niahe der Curie-Temperatur beschreiben. An der Curie-Temperatur selbst tritt ein
Phaseniibergang zweiter Ordnung ein, der auch als kritisches Ph&nomen bezeichnet
wird.

Kritische Phénomene sind besonders bedeutsam, da die beschreibenden Gréflen
universellen Charakter haben. Dieses heifit, ein System, das einen Phaseniibergang
zweiter Ordnung durchfiithrt, 148t sich unabhéngig von der speziellen Form und
Wechselwirkung durch universelle Groflen beschreiben. Von besonderem Interesse
sind dabel in der vorliegenden Arbeit die Amplitudenverhéltnisse der Korrelati-
onsldange und Suszeptibilitat.

Die Berechnung beruht auf Methoden der Quantenfeldtheorie, die Eingang in
die Statistische Physik gefunden haben. Dieser Zugang wird méoglich infolge der
Analogie zwischen dem erzeugenden Funktional der Feldtheorie und der Zustands-
summe in der Statistischen Physik. Da das Verhalten am kritischen Punkt durch
langreichweitige! Fluktuationen dominiert wird, lassen sich die mikroskopischen De-
tails vernachldssigen und eine kontinuierliche Feldvariable im gesamten Raum an
Stelle der Spins an den Gitterpldtzen einfithren. Der Erwartungswert dieser Feldva-
riablen entspricht der spontanen Magnetisierung des Ferromagneten. Am kritischen
Punkt haben wir eine spontane Symmetriebrechung, wenn die Temperatur gesenkt
wird. Oberhalb der kritischen Temperatur ist die Magnetisierung Null, wiahrend sie
unterhalb einen Wert ungleich Null annimmt.

Mit dem feldtheoretischen Ansatz lassen sich die gesuchten kritischen Gréfien
iiber die renormierte Storungstheorie und die Renormierungsgruppengleichung be-
rechnen. Diese Rechnungen werden in einer massiven ¢*-Theorie in drei Dimensio-
nen durchgefiithrt. Zur Bestimmung ist in héheren Ordnungen eine grofie Anzahl von
Feynman-Graphen zu berechnen. Ein Schwerpunkt dieser Arbeit ist die Entwicklung
eines Verfahrens zur Reduzierung der Anzahl der Graphen, die berechnet werden
miissen. Dies geschieht durch Elimination bestimmter Klassen von Graphen, ndmlich
solchen, die Tadpole-Teilgraphen enthalten. Nach der Renormierung lassen sich die
kritischen Groéfien als Potenzreihen in einer dimensionslosen Kopplung bestimmen.
Diese Rechnung ist hier bis zur dritten Ordnung durchgefiithrt. Durch Einsetzen von
(vorgegebenen) Fixpunktwerten erhalten wir letztendlich numerische Werte fiir die

'Das heifit, die typischen Lingen sind wesentlich gréfier als die Gitterkonstante a.



2 Einleitung

Amplitudenverhiltnisse der Korrelationslange und Suszeptibilitdt. Anschlieflend las-
sen sich die so gewonnenen Ergebnisse mit Literaturwerten, die auf experimentellen
oder anderen theoretischen Verfahren beruhen, vergleichen.

Die Arbeit gliedert sich wie folgt: Im 1.Kapitel fiihre ich die grundlegende
Theorie iiber kritische Phanomene, Ising-Modell und die Stérungsrechnung ein. Das
2.Kapitel beschiftigt sich mit der Erstellung der Feynman-Graphen. Kapitel 3
und 4 stellen ein Verfahren vor, wie mit der Dyson-Schwinger-Gleichung eine ganze
Klasse von Graphen aus der Berechnung der Vertex-Funktionen eliminiert werden
kann. In Kapitel 5 werden die Reihen berechnet, die im weiteren Verlauf bendtigt
werden. Das Renormierungsschema wird im Kapitel 6 eingefiihrt und die renormier-
ten Groflen in Abhéngigkeit der dimensionslosen Kopplung bestimmt. In Kapitel 7
berechnet sich das Amplitudenverhilinis der Korrelationslange, und in Kapitel 8
das Amplitudenverhéltnis der Suszeptibilitit.



Kapitel 1

Kritische Phinomene,
Ising-Modell und ¢*Theorie

In diesem Kapitel fiihre ich die theoretischen Grundlagen der Arbeit ein. Als grund-
legende Literatur verweise ich auf [GJ87, PAr88, RyD85, YE092] und die im Text
zitierte Literatur.

1.1 Kritische Phinomene

Unter kritischen Phénomenen verstehen wir Erscheinungen an Systemen, die einen
Phaseniibergang zweiter Ordnung durchfithren. Phaseniibergénge zweiter Ordnung
werden nach Ehrenfest dadurch charakterisiert, dafy die thermodynamischen Poten-
tiale und ihre ersten partiellen Ableitungen stetig sind, die zweiten Ableitungen
jedoch Sprungstellen oder Singularitdten am kritischen Punkt aufweisen (oder all-
gemeiner: ein Phaseniibergang n-ter Ordnung hat eine Unstetigkeit in der n-ten
partiellen Ableitung, wobei die ersten n — 1 Ableitungen stetig sind).

Der Begriff des “kritischen Phinomens” stammt vom Verhalten vieler Stoffe, wie
z.B. HyO. Im Phasendiagramm verschwindet am kritischen Punkt der Unterschied
zwischen Fliissigkeit und Gasphase. Wahrend die Dichtefluktuationen weitreichender
werden, verschwindet die Differenz der Dichte von Gas und Fliissigkeit.

Das Standardbeispiel eines Phaseniibergangs zweiter Ordnung ist ein Ferroma-
gnet, der bei Erhitzen {iber die Curie-Temperatur 7, hinaus nur noch paramagnetisch
ist. Hierbei ist T, die “kritische Temperatur”. Wir werden in dieser Arbeit in Anleh-
nung an die Literatur die Nomenklatur dieses Phaseniibergangs benutzen, obwohl
in der Natur auch bei anderen Phaseniibergéngen kritische Phinomene beobachtet
werden.

Ein Ferromagnet hat bei einer Temperatur T < T, eine nichtverschwindende
spontane Magnetisierung M, die sich unabhingig von einem Auferen Feld einstellt’.
Bei Anndherung an die kritische Temperatur wird M immer kleiner, um dann ober-

!Tatsichlich stellt sich diese Magnetisierung nicht in einem “grofien” Ferromagneten ein, son-
dern nur in Dom#nen der Lingenausdehnung ~ 10~ 2mm.
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halb von T, zu verschwinden. Dabei verhilt sich M wie ein typischer Ordnungspa-
rameter eines Phaseniibergangs zweiter Ordnung. Wir nehmen nun ein Gitter mit
der Gitterkonstanten a an, auf dessen Gitterpunkten die Spinvariable ¢ = o(z)
existiert, wie es im Heisenberg- oder Ising-Modell der Fall ist. Dabei vernachlissigen
wir die speziellen Eigenschaften in atomaren Dimensionen. Diese Nadherung wird
sich spater als gerechtfertigt herausstellen, da die Korrelationsldnge als Léngenskala
des Systems in der Nahe des kritischen Punktes wesentlich gréfier als a wird. Damit
konnen wir das Gitter unabhingig von der speziellen Form als isotrop auffassen. Auf
diesem Gitter ist die spontane Magnetisierung M als statistisches Mittel iiber alle
moglichen Zustdnde gegeben:

M(z) = p{o(z)) | (1.1)

B(z)=0

1.1.1 Thermodynamische Potentiale des Ferromagneten

Hier werden kurz die thermodynamischen Potentiale und die daraus durch Dif-
ferentiation erhaltenen Zustandsgréfien und Responsefunktionen dargestellt (siehe
[NoL91] und andere Lehrbiicher der Thermodynamik).

Da wir uns auf einem Gitter bewegen, wird aus der Raumintegration eine Summe
iiber die Gitterpunkte ;.

Wir gehen von der Zustandssumme Z als gewichteter Summe iiber alle moglichen
Konfigurationen des Systems aus.

Z=Z(B,T)= }_ exp{—0(Ho—p) B(z;)o(z;))} (1.2)
[0 ()] J
Hierin ist 3 = k%T die inverse Temperatur (k; ist die Boltzmann-Konstante). Die

Summe iiber [o(z;)] beschreibt die Summe iiber alle Zustdnde des Spinkonfigurati-
onsraums. Hy ist der Hamiltonian der Spin-Spin-Wechselwirkung.

Die Helmholtzsche freie Energie
1
F=FBT)= —E]n Z(B,T) (1.3)
ist das erste relevante Potential. Durch Legendre-Transformation erhalten wir daraus
die Gibbssche freie Energie
=M, T)=F+M:B. (1.4)

Die Magnetisierung bzw. das duflere Magnetfeld als Zustandsgrofien erhalten wir
nun durch partielle Ableitungen erster Ordnung.

oF orT
M= (_) B = (_) (15)
oB ), oM J .
Durch weitere partielle Differentiation erhalten wir Responsefunktionen wie die
magnetische Suszeptibilitat

R O N
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und die spezifische Wiarmekapazitit

C=-T (%)B. (1.7)

Da der Phaseniibergang nur bei verschwindendem &ufleren Feld beobachtet wer-
den kann, folgt aus (1.5) bei steigender Temperatur fiir den Beginn des Phaseniiber-

(g—g) ™ 0. (1.8)

Um die zweite in dieser Arbeit behandelte Gréfie einzufiihren, betrachten wir
die Spin-Spin-Korrelationsfunktionen

(a(2)a(y)), (o(z)o(y)). = (o(z)a(y)) — (o(2))(a(y)).  (1.9)

Diese werden auch als 2-Punkt-Green-Funktionen bezeichnet. Da wir idealerweise
ein translationsinvariantes System betrachten, lassen sie sich auch als Funktionen

gangs die Extremaleigenschaft

von nur einer Ortsvariablen schreiben.

GW(z) := (a(2)a(0)), G (z) := (o (2)a(0)) (1.10)

c

Der Index ¢ steht fiir zusammenhingende (engl. connected) Green-Funktionen.

Die Korrelationsldnge wird nun als das zweite Moment der verbundenen Green-
Funktion definiert.

g, 1A% ') 5O00) (L.11)
2D [ dPr G (x) GP(p)

p?=0

D bezeichnet hier, wie in der gesamten Arbeit, die Dimension des Orts- bzw. Im-
pulsraumes.

1.1.2 Kritische Exponenten

Nahe des kritischen Punkts wird das Verhalten der verschiedenen Zustandsgréfien
und Responsefunktionen unabhéngig vom speziellen Phaseniibergang. Unterschied-
lichste Systeme zeigen ein einheitliches Potenzgesetz-Verhalten.

Wir fithren die reduzierte Temperatur

T-T.

1:
T,

(1.12)

ein, die am kritischen Punkt gerade das Vorzeichen wechselt. Physikalische Gréfien
lassen sich nun als Potenzreihe in ¢ entwickeln.

F() = Axlt][?* (1 + By|t]** +--1) Py >0 (1.13)
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Hierbei bezeichnet der Index + jeweils die Hochtemperaturphase (¢ > 0) und — die
Tieftemperaturphase (¢ < 0). Fiir [¢| < 1, also nahe beim Phaseniibergang wird
dies zu

f() = ALlt|?*, (1.14)
und wir kénnen den “kritischen Exponenten” sowie die Amplituden bestimmen.
In | £(2)| s
7050 1ol Ax = ﬁ}{n»o [H= £ (2) (1.15)

Ohne dufleres Feld 148t sich die Korrelationslénge fiir kleine ¢ demnach als
¢ fet7mr >0
f—(_t)_y_a t<0

schreiben, wodurch der kritische Exponent v definiert ist. Die magnetische Suszep-

(1.16a)

tibilitdt definiert den Exponenten =

Cot™" 1> 0
x~< " (1.16b)

C_(—t)y™"-, t<0

und die spezifische Warmekapazitit o:

A=+ >0
c~{ 7 . (1.16¢)

A_(=t)™*-, t<0

Fir T < T, gilt

M~ (—t)?. (1.16d)

Oberhalb T, verschwindet M. Das Verhalten der Magnetisierung fiir 7' = T, bei
angelegtem &ufleren Feld wird durch § beschrieben.

M ~ BY¢ (1.17a)
Durch die Impulsabhéngigkeit der verbundenen 2-Punkt-Funktion bei T = T,
GP(p) ~ p~ " (1.17b)
ist ein weiterer Exponent n definiert.

Durch die Skalenhypothese wird postuliert, dafi sich die Exponentenin der Hoch-
und Tieftemperaturphase nicht unterscheiden.

V=V, SV Y=Y, TD Y. a= oy = a_ (1.18)

Desweiteren gelten die Skalengesetze

a = 2—vD (1.19a)

g = g(p—zm) (1.19b)

v = v(2—1n) (1.19c¢)
_ D+2-—n

T (1.19d)

aus denen folgt, das lediglich zwei der sechs hier definierten kritischen Exponenten
unabh#ngig sind.
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1.2 Ising-Modell

Das Ising-Modell ist ein Modell zur Beschreibung eines Ferromagneten [DomT74,
BEL91, Kapitel 1.2]. Ausgegangen wird von einem D-dimensionalen kubischen Gitter
der Gitterkonstanten a. Da die spezielle Gitterform keinen grundlegenden Einflufl
hat, ist diese Wahl der Einfachheit halber gerechtfertigt. An den Gitterpunkten, die
von 1-N durchnummeriert sind, sind die Spins o; angeordnet. Allgemein bezeichnet
der Index i eine Grofie am Ort z;. Eine weitere Ndherung wird mit der Annahme
gemacht, dafl nur ndchste Nachbarn wechselwirken. Der einfachste Hamiltonian, der
dies beschreibt ist

HOZ—J Z oo, (120)

<i,5>

wobei die Summe iiber < 7,7 > nur die nichsten Nachbarn einbezieht. Dies ist als
das Quanten-Heisenberg-Modell bekannt.

Das klassische Heisenberg-Modell erhalten wir nach Ersetzung der Pauli-Spin-
Matrizen durch Vektoren. Im Ising-Modell werden diese Vektoren dann durch Ska-
lare ersetzt, die nur noch zwei mogliche Werte o; = £1 annchmen kénnen. Der
Hamiltonian des Ising-Modells mit externem Magnetfeld ist also

H(o)=-J Z 0,0 — ,LLZ:BiUi. (1.21)

<t,j>

Wie in (1.2) erhalten wir durch Summation iiber alle Spinkonfigurationen des
Systems die Zustandssumme

Z[B,T]= 3 ¢ P10 = 3 PV Lcip 3ot 2 i) (1.22)
(o] [e3]

Statistische Mittelwerte von spinabhingigen Funktionen F (o) ohne dufleres Feld
werden durch

S F Eantn -
(F(o)) = : - —— = — » Flo)e s (1.23)
Bpoy ¢ o> 747 218 =01 ;] B=0
bestimmt.
Die Magnetisierung am Ort z; berechnet sich nach (1.5):
oF 1 1 e}
M{B=0] = — (—) = —ore—— +—7[B]
9B ),_, BZ[B=10] 0B Beo
_ Zeaoie
o E[o“] e—BH(s) _
= p{o;) (1.24)
Die Suszeptibilitdten y,; aus (1.6) lassen sich nach
Xij B 1 8MZ[B] B B
8y’ B 0B, |~ (o:0;) — (0:) (o) = (0:0;), (1.25)
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durch die verbundene 2-Punkt-Korrelationsfunktion ausdriicken. Wenn wir (1.6) ex-
plizit ausrechnen erhalten wir

(1.26)

()0 (a;)). = — (1 9Z[B] 1 0Z[B] az[B])

~ @242 \ Z[B] 0B;dB; Z’[B] 8B; 0B;

B=0
In translationsinvarianten Systemen mit ortsunabhingigem Magnetfeld wird die Sus-
zeptibilitdt zu

X 1 9M[B]

Au?  Bu? OB

=3 (o(2:)a(0)), = 30 G (). (1.27)

B=0
Die Korrelationslinge bestimmt sich nach (1.11) aus

52_ 1 Z'L:E'?G(cz)($1)

1.3 ¢*Theorie

In diesem Kapitel wird die ¢*-Theorie als feldtheoretisches Modell zur Beschrei-
bung von kritischen Phinomenen vorgestellt [IZ80, Kapitel 6]. Wir gehen von ei-
nem kontinuierlichen, skalaren Feld ¢ aus, das im D-dimensionalen Raum definiert
ist (¢ : IRY — TR). Dieses Feld tritt an die Stelle des Isingspins aus dem vorherigen
Abschnitt.

Eine lokale Lagrangedichte

Lod] = S(06())" + ;mie(x) (1.29)

wird eingefiihrt. Zu (1.29) wird ein selbstwechselwirkender Anteil, dessen Kopp-
lungskonstante go > 0 ist, zuaddiert.

Lintld] = %90454(:0) (1.30)
Lg] = Lo[g] + Lini[9] (1.31)

(1.31) ist die komplette Lagrangedichte. Die Wirkung ist das Integral iiber den
gesamten D-dimensionalen Ortsraum.

Sl] = [ d°x Ll (1.32)

Zur Lagrangedichte definieren wir noch einen Quellterm, der eine duflere Quelle

j(z) an das Feld ¢(x) koppelt.

Lirc[d] = —j(z)¢(z) (1.33)
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Physikalische Gréfien lassen sich wie in (1.23) als Erwartungswerte der Feldva-

| Dé(z) Flgle¥
| Do(e) e~
Hierbei ist das Funktionalintegral [ D¢(z) als Integral iiber den Zustandsraum ge-

riablen bestimmen.

(Fl4]) := (1.34)

geben, das heifit, ¢ nimmt alle méglichen Feldkonfigurationen an.

Zur Berechnung fithren wir in Analogie zur Zustandssumme (1.22) das erzeu-
gende Funktional der Green-Funktionen ein.

_ fp¢( eS¢ +[ dPz j()é(x) (1_35)
Als Normierungsfaktor berechnen wir
f Do(z) e, (1.36)

Hiermit lassen sich die Erwartungswerte nach (1.34) leicht bestimmen:
1 -
(Flal) = 5 [ Do) Fgle ¥ (1.37)

Der Erwartungswert der Vakuumfluktuation (bzw. die 1-Punkt-Green-Funktion)
berechnet sich mit der Identitét

53'((5,11) exp{demj(m)¢(:c)} = ¢(y) exp{de:cj(x)gb(m)} (1.38)
als
) = Zio ﬁzm‘-_ = 5;%’53] R (1.39)

Die hoheren Green-Funktionen lassen sich ebenso durch Funktionaldifferentiationen
bestimmen.

G(n)(ifl, Toy ..., l'n) = <¢($1)¢($2) U ¢(‘rﬂ)>
1 o™

Zo 3(21)85(z2) -0 (2) (1.40)

Umgekehrt ist das erzeugende Funktional als Summe iiber die Green-Funktionen
gegeben.

2l _
Zy

1fd%1 Pz, j(z1) - §(2)C P (ar, ... 2) (1.41)
i=0 "
Als weiteres erzeugendes Funktional wird

(1.42)
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definiert. Die verbundenen Green-Funktionen lassen sich daraus auf vergleichbare
Art wie in (1.40) bestimmen.

G(cn)(mhm%"':mn) = <¢($1)¢($2)¢($n)>c
571
= ; - - Wiy 1.43
e Err e L B )
Es zeigt sich, dafi die 1-Punkt-Funktionen aus (1.39) und (1.43) gleich sind, wihrend
sich die hoheren Korrelationsfunktionen unterscheiden:

(¢(z)), = (¢(x))
(@(e1)d(e2)), = (d(21)o(22)) — (d(21)) (b(22)) (1.44)
(P(z1)¢(22)9(z3)), = (d(z1)d(wa)d(wa)) — (¢(z1)d(22)) (¢ (z3))
— ($(22)@(23)) (9(21)) — (p(23)d(21)) ($(22))
+2{$(z1)) (¢(z2)) (¢(23))

Da wir bei der Berechnung der Amplitudenverhéiltnisse von Suszeptibilitdt und
Korrelationslange an “Einteilchen-irreduziblen Graphen” interessiert sind, definie-
ren wir uns ein weiteres erzeugendes Funktional als Legendre-Transformierte von
(1.42). Einteilchen-Irreduzibilitat bedeutet, dafi sich die Feynman-Graphen (s.u.)

nicht durch Auftrennen eines inneren Propagators in zwel Teilgraphen zerlegen las-

Tlg] = W] - [ ¢ j(2)¢(z) (1.45)

Hieraus erhalten wir durch Differentiation nach der Feldvariablen ¢(z) die n-Punkt-
Vertex-Funktionen, die Einteilchen-irreduzibel sind.

SelIl.

6n
¢ (21)0d(w2)- - dd(n)

Durch eine Fourier-Transformation konnen wir diese Funktion auch im Impulsraum

T (2, 29,...,2,) = (1.46)

$=0

darstellen.
dP
F(n)($17$27"'7 fH ( 5 zpj.mj) F(n)(pl7p2""’pn) (147)

Die Berechnung dieser letzten Grofle fiir m = 2,4 nimmt in dieser Arbeit breiten
Raum ein.

1.4 Storungstheorie

Zur praktischen Berechnung der Korrelations- bzw. Vertex-Funktionen miissen wir
leider, da sie sich nicht geschlossen bestimmen lassen, auf die Storungstheorie zuriick-
greifen. Eine umfangreichere Darstellung findet sich zum Beispiel in [BDFN92, Ka-
pitel 8] und der zu Beginn dieses Kapitels aufgefiithrten Literatur.
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Um die Entwicklung in der Kopplungskonstanten g, darzustellen, schreiben wir
zunichst das erzeugende Funktional (1.35) um.

= [Do(z) exp{= [ @ Louldl} -exp{= [ (Lolo]+ Lucld) | (198)

Mit der Identitdt (1.38) wird dies zu

2[j] = exp {—%go Ja ( 6j§$))4} - 2], (1.49)

wobel Zg[j] ein Gaufisches Funktionalintegral ist.

Zelil = [Do(e) ep{— [ (G(00()7 + (o) - i(2)o(2)) }
= Zol0]-exp {5 | d%dyj(m(w—y)j(y)} (1.50)

A(z—y)ist der Feynman-Propagator; in einem Gaufi-Modell ist dies der vollstindige

Propagator. Im Impulsraum gilt A(p) = also ist

1
P2 +md’

1

1 ip(x—
Az —y) = 2P Seire=y), (1.51)

Den Wechselwirkungsterm kénnen wir nun in eine Potenzreihe in der Kopplung gq
entwickeln.

2[5 = n,( e (5 )4)nexp{§ [ 2y ) A i)} - 2ol
(1.52)

In &hnlicher Weise lassen sich auch die beiden anderen erzeugenden Funktionale
W][j] und I'[¢] sowie deren Ableitungen, die Korrelations- und Vertex-Funktionen
als unendliche Reihen in g schreiben.

In den folgenden Abschnitten werden nun die Feynman-Regeln der ¢*-Theorie
in beiden Phasen vorgestellt, wahrend sich Kapitel 2 mit der Erstellung der Graphen
beschéaftigt.

1.4.1 Symmetrische Phase

In der symmetrischen Phase verwenden wir eine ¢*-Theorie mit der Feldvariablen
¢4+ (2) := ¢#(x) und einer nackten Masse

2

mgy = md > 0. (1.53)

Das Potential (vgl. Abb. 1.1)

V(i) = mo+¢2 !goqﬁi (1.54)
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Abbildung 1.1: Potential der symmetrischen Phase

hat damit ein absolutes Minimum bei ¢, (z) = 0. Daraus folgt eine ungebrochene

Zy-Symmetrie, das heifit V(¢.) = V(—¢,). Die Lagrangedichte ist wie in (1.31)
durch

Lp4] = 5064 (2)) + 5midh(e) + 06l (2) (1.55)

gegeben. Zum Abschlufy dieses Abschnitts stellen wir noch die Feynman-Regeln fiir

die Vertex-Funktionen im Impulsraum auf, nach denen die Graphen berechnet wer-

den.

ky ky
. Jedem Vierpunkt-Vertex >< wird ein Faktor —g, zugeordnet.
ko ks

. An jedem Vertex gilt Impulserhaltung, das heifit fiir jeden Vertex muf ein

Faktor 4 (3°; k;) beriicksichtigt werden.

. Jeder inneren Linie ———— mit Impuls k; wird ein Propagator A(k;) =

1

——— Zugeordnet.
Rlamg 718

. Uber alle inneren Impulse wird integriert (27)~" [ dk;.

. Ordne jedem Diagramm einen Symmetriefaktor zu:
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e Fiir jede innere Linie, die einen Vertex mit sich selbst verbindet, einen
Faktor 271

e Fiir [ Linien, die zwei Vertices miteinander verbinden, einen Faktor ()7,

e Wenn sich die inneren Punkte auf r verschiedene Arten anordnen lassen,

ohne dafl das Diagramm seine Gestalt indert, einen Faktor r~*.

1.4.2 Gebrochene Phase

Um in die Phase gebrochener Symmetrie zu kommen, setzen wir m2 o t an?. Also
gilt fiir T < T,

mg < 0. (1.56)

Das Potential
V() = SmEd? + oo’ (1.57)
hat nun drei Extremwerte, ein lokales Maximum bei ¢(z) = 0 und zwei absolute

Minima bei ¢(2) = L0,

Abbildung 1.2: Potential der gebrochenen Phase

2[s stellt sich heraus, dafl wir eigentlich eine Massenverschiebung m2 —m2, « ¢ ansetzen miissen
(vgl. Kapitel 6.1).
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Aus (1.57) ergibt sich v,,;, zu:

_3lm? | 3m2
Urmin = d ™ = \J o= 5 0 (1.58)

do

Hier haben wir eine Masse
mi_:=—2mi >0 (1.59)

definiert. Da das Funktionalintegral (1.36) durch die Minima im Potential dominiert
wird, entwickeln wir (1.57) um +v,,;, und fiihren eine neue Feldvariable

¢—(2) == ¢(2) — vmin (1.60)
ein. Durch Einsetzen dieser Feldvariablen in das Potential (1.57) bekommen wir

1 3mj_

1 1
V(g-) = §m§_¢2_ + g\/ 3gomo—¢° + 590&_ ~3 .

(1.61)

Da der konstante Term im Potential keinen Einfluff auf die Stérungstheorie hat,
setzen wir ihn gleich Null. Die Lagrangedichte wird zu

L1861 = S(06- () + ymi_62(2) + o\ Baomo ¢2(2) + ondt(e).  (1.62)
Die Stérungsrechnung in der gebrochenen Phase kénnen wir in der Feldvariablen
¢_ durchfithren. Im Vergleich zur symmetrischen Phase kommt nur ein Wechselwir-
kungsterm ¢2 hinzu. Durch die spezielle Wahl von my_ kénnen wir die Feynman-
Regeln der symmetrischen Phase direkt ibernehmen und miissen nur fiir die Drei-
ervertices zusétzliche Regeln schaffen.

ks
1’. Jedem Dreipunkt-Vertex wird ein Faktor —/3gomo— zugeordnet.
L 2

Die Impulserhaltung gilt natiirlich ebenfalls an den Dreiervertices.



Kapitel 2

Generation der Feynman-Graphen

Nachdem im letzten Kapitel die Feynman-Regeln zur Bestimmung der Integrale
aufgestellt wurden, geht es nun um das Erstellen der zu berechnenden Feynman-
Graphen und die Kontrolle der Vollstdndigkeit.

2.1 Erstellen der Graphen

Um eine bestimmte n-Punkt-Korrelations- bzw. Vertex-Funktion in einer gegebenen
Schleifen-(Loop-)Ordnung zu bestimmen, miissen wir alle Feynman-Diagramme, die
zu dieser Ordnung gehoren, berechnen.

In der symmetrischen Phase, wo wir nur eine ¢*-Kopplung haben, li8}t sich die

Anzahl der Vertices V; direkt berechnen [ID89].
1
V4:L—|-§n—l (2.1)

Hier bezeichnet L die Loop-Ordnung und n die Anzahl der externen Beine. Da jedem
Vertex ein Faktor —g, zugeordnet wird, ist V; auch die Stérungsordnung. Fiir die
2-Punkt-Funktion (n = 2) wird V}; = L, und damit ist die Storungsordnung gleich
der Loop-Ordnung.

In der Phase gebrochener Symmetrie haben wir neben der ¢*-Kopplung noch die
#*-Kopplung vorliegen, das heifit es gibt zusiitzlich noch Dreiervertices V3. Damit
wird (2.1) zu

W, 4V, = 2L +n—2 (2.2)
und zu gegebenen n und L muf {iber alle moglichen Kombinationen von V3 und V,
mit V54 > 0 summiert werden.

Als Beispiel betrachten wir einen 2-Loop-Graphen, der zu I'®), der echten 2-
Punkt-Vertex-Funktion, in der gebrochenen Phase beitrigt. Nach (2.2) gilt 2V, +

Vs = 4. Wir wahlen V, = 1, woraus V3 = 2 folgt. Der Graph setzt sich also aus
elnem Vierervertex und zwel Dreiervertices zusammen. Mit
1

3

15
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bestimmen wir die Anzahl der internen Propagatoren I mit 4. Nun haben wir den
kompletten Bausatz, um den Graph zu erzeugen. Um alle Graphen zu bekommen,
miissen prinzipiell die beiden externen Beine auf alle méglichen Arten mit den Ver-
tices und internen Linien verbunden werden. Eine grofie Anzahl von Kombinationen
braucht nicht beriicksichtigt zu werden, da alle Teile miteinander verbunden sein
miissen. Auflerdem fallen alle Graphen weg, die Einteilchen-reduzibel sind, wie zum

Beispiel , da wir die Vertex-Funktion betrachten. Dieser Graph

triagt zu G'2(1.43), den verbundenen Green-Funktionen bei, aber nicht zu T® nach
(1.46).

Ein moglicher Graph neben neun anderen Kombinationen ist —@—

Exemplarisch stelle ich hier ein ausfiihrliches Verfahren zur Bestimmung des
Symmetriefaktors des letzten Graphen vor, wie es sich aus Wicks Theorem ergibt.

e Fiir jeden Vierervertex kommt ein Faktor 4! in den Nenner, fiir jeden Dreier-
vertex ein Faktor 3!.

e Fiir mehrere Dreler- oder Vierervertices kommt ein zusitzlicher Permutations-
faktor V34! in den Nenner.

Diese Regeln gelten fiir alle Graphen mit einem gegebenen Satz von Vertices und

inneren Linien. Insgesamt ergibt sich damit zunéchst
1 : : 1 1
@y e vy o mspedellen Fall o = s (24

Nun kommen einige weitere Faktoren hinzu, die vom speziellen Graph abhéngen.

e Verbindung eines dufleren Beines mit dem Vierervertex: 4.

e Verbindung des anderen &ufleren Beines mit einem von zwel Drelervertices:
2-3.

e Verbindung des restlichen Drelervertex mit einem der zwei freien Beine des
anderen Drelervertex: 3 - 2.

e Verbindung der beiden Vertices, die mit den externen Beinen verbunden sind:

3.
e Zwei Verbindungen des Vierervertex mit dem zweiten Dreiervertex: 2.

Die genannten Faktoren kommen alle in den Z&hler und es ergibt sich

4:6-6-3-2 1 (2.5)
1728 2 '

Mit den Regeln aus Kapitel 1.4 ergibt sich notwendigerweise derselbe Wert: Es gibt
bei diesem Graphen nur zwei Linien, die dieselben Vertices verbinden, welches einen
Faktor £ ergibt. Die inneren Vertices (hier nur einer) lassen sich nicht untereinander
permutieren und es gibt auch keine Linie, die einen Vertex mit sich selbst verbindet.
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2.2 Programme

Die Programme, mit denen die Feynman-Graphen generiert wurden, werden im fol-
genden kurz vorgestellt. Diese Programme haben jeweils unterschiedliche Starken.

FeynArts

Als erstes Programm wurde FeynArts [EK91, KBD90] verwendet. Die Vorteile die-
ses Macropakets fiir Mathematica [Wor91] liegen in der graphischen Darstellung
und der Moglichkeit, die Berechnung direkt durch FeynCalc, ein Programm dersel-
ben Autoren, ausfithren zu lassen. Da das Paket fiir die Generation von 3-Loop-
Graphen aber noch erweitert werden muf, und die Rechenzeit wegen des rekursiven
Algorithmus stark steigt, stellte es sich jedoch als unpraktisch heraus.

Qgraf

Letztendlich wurde Qgraf [NoG93, NoG] verwendet. Dieses Fortran77 Programm
lief} sich problemlos auf unseren Workstations installieren.

Durch eine Steuerdatei 1afit sich das Modell einstellen. Neben der Anzahl der
externen Teilchen und der Loopordnung lassen sich alle Wechselwirkungen vorgeben.
Bei unserem Modell einer skalaren Feldtheorie haben wir nur einen Vierervertex und
in der gebrochenen Phase zusétzlich den Dreiervertex vorliegen.

Die Ausgabe des Programms ist eine Liste der Vertices, die durch numerierte
Propagatoren verbunden werden.

Da bei der Berechnung der 2- und 4-Punkt-Funktion nur Einteilchen-irreduzible
Graphen berechnet werden, ist in der Steuerdatei die Option “onshell” zu setzen.
Desweiteren haben wir die Option “topol” gesetzt, da damit die externen Beine
identisch gemacht werden, und Graphen, die durch Permutation der dufleren Beine
auseinander hervorgehen, nur einfach aufgefiihrt werden. Die Permutationsfaktoren
sind dann durch Listenvergleiche von einem Programm bestimmt worden [GUT95].
Fiir die Bestimmung der 1-Punkt-Funktion, die ja eine Green-Funktion ist, darf
keine Option gesetzt werden.

2.3 Anzahl der Graphen

Abschlieflend wird in diesem Kapitel noch ein Verfahren vorgestellt, um die Vollstan-
digkeit der Graphen zu kontrollieren [ZJ89, IZ80, CLP78|.

Die Summe aller Symmetriefaktoren einer gegebenen Ordnung a8t sich durch
die “Null-dimensionale” Feldtheorie berechnen. Das Argument der Feldvariablen
und die Ortsintegration werden unterdriickt. Dadurch verschwindet auch der Ablei-
tungsterm und die Wirkung wird zu

1 g
S(p) = z¢° — Fp“-

: (2.6)
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Das negative Vorzeichen der ¢*-Kopplungskonstanten g hat an dieser Stelle den Ef-
fekt, daf} die Koeffizienten der zu entwickelnden Reihe durchweg positive Vorzeichen
haben. Uber die daraus folgende Divergenz des erzeugenden Funktionals kénnen wir
hinwegsehen, da nur die Vorfaktoren der jeweiligen Stérungsordnung von Interesse
sind.

Um die Reihe fiir die verbundenen Green-Funktionen zu erhalten, bilden wir

den Logarithmus von

Z(7) = o~ Sle)tie 9.7
0= = ()
und leiten n mal nach j ab.
" 1n 24
Golp") = —7 22 (2.8)
a1
2=0
Fiir die verbundene Green-Funktion in der symmetrischen Phase folgt:
1 2 11
G =1+ = —¢+ =g+ 0 (g 2.9
(P)=1+59+39°+ g9+ (s*) (2.9)
Durch Invertieren erhalten wir die Reihe fiir die Vertex-Funktionen:
@ _ 4, L 0 a0, 4
Top=—1+c0+ 50" + +0(g") (2.10)

Darin steht der Index “0D” fiir die “Null-dimensionale” Theorie. Durch weiteres
Ableiten bekommen wir fiir die 4-Punkt Funktion

(4) _ 39,21 5 45, 5
Top =g+ 50"+ 0"+ 59 +0(g°). (2.11)
Durch Summation der Symmetriefaktoren aller Graphen erhalten wir die Werte aus
(2.10) und (2.11). Eine vollstindige Liste aller Graphen befindet sich in [GUT95].

In der Phase gebrochener Symmetrie ist die Wirkung um einen ¢®-Term erwei-
tert.

1
5(90) = 5902 - ?C‘O - Z‘P

Die Dreipunkt-Kopplung hat hier eine Kopplungskonstante ,/g, da nur die Sym-
metriefaktoren interessieren. Daraus lassen sich die Reihen fiir die 1- und 2-Punkt-
Green-Funktionen bestimmen.

1. 315 341 s :
Golp) = 07 +559° + 07 +0(g7) (2.13)
325, 1741
2 _ 2 49 g 3 4
Gol®) = 1450+ 50+ 5,9 +0 (g*) (2.14)

Durch Invertieren der letzten Gleichung bekommen wir die Reihe fiir die Vertex-
Funktionen

373 611
T = 142, 4+ 22402341 0(q%). 2.15
0D togt ettt (s*) (2.15)
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An dieser Stelle seien noch die Reihen fiir die Anzahl der Graphen aus [NoG93]
zitiert:

N(p) = g% +6g% + 4697 + O (g7) (2.16)
N(p®) = 1+43g+29g°+3515°+ O (g*). (2.17)

Die letzte Gleichung wird wiederum invertiert, und fiir die Anzahl der Einteilchen-
irreduziblen Graphen der 2-Punkt-Funktion erhalten wir:

Np = =1+ 3g+20g° + 2046° + O (") . (2.18)

Alle in diesem Kapitel aufgefithrten Summen von Symmetriefaktoren und An-
zahlen von Graphen sind in Ubereinstimmung mit den berechneten Listen. Damit
ist die Menge der Graphen als vollstindig bis zur 3-Loop-Ordnung anzusehen.



Kapitel 3

Dyson-Schwinger-Gleichung in der
gebrochenen Phase

In diesem Kapitel wird ein Verfahren vorgestellt, die Anzahl der zu berechnenden
Feynman-Graphen iiber die Dyson-Schwinger-Gleichung zu reduzieren. Diese Glei-
chungen gehen zuriick auf [Dys49]. Als Literatur seien hier [Cvi83, ZJ89, Riv8T,
TAY76] angegeben.

3.1 Allgemeines

Zur Vereinfachung sei in diesem und dem folgenden Kapitel die Integration iiber
eine Ortsvariable immer D-dimensional gemeint.

fdm = deac (3.1)

Die wichtigsten Formeln dieses Kapitels sind hier zu Beginn nochmals kurz
erwidhnt (vgl. (1.35), (1.42) und (1.45)).

Z[j] = Z;-eM (3.2)
Wi = T+ [ doo(2)i(z) (3.9)
In (3.3) gilt fiir die Feldvariable ¢ = 5_‘;‘;&1_

Da wir in diesem Kapitel in der gebrochenen Phase rechnen, ist die Lagrange-
dichte im Gegensatz zu (1.31) wie folgt gegeben:

Llg] = S00()) + 5mid(z) + 3 fod(x) + 06 (2) (3.4)
Slo] = [d"aLlg

= [ (G087 + ymid @) + 3 hit @)+ paod'(e)) (35)

= (0 m)B(e) + S Fo(e) + 0 (2) (3.6)

20
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Hierin habe ich eine Dreipunkt-Kopplungskonstante fy eingefiihrt, fiir die nach den
Regeln aus Abschnitt 1.4.2 fy = +/3gomo gilt.

3.2 Notationen

Zur Darstellung der Dyson-Schwinger-Gleichung fiithre ich eine graphische Schreib-
weise ein. Dabei ist der freie Propagator

Az, y) = o—e (3.7)

und der inverse Propagator

A7z, y) = (=02 + m2)d(z — y) = + . (3.8)

Fiir die Vertices und Quellen gilt:
—gofd:v = \:o:’
—fofdr _ --.:' _ 3gom0/d:c
[ite)dz = X

Die erzeugenden Funktionale aus 3.1 stellen sich graphisch wie folgt dar:

zil = O
wil = @) (3.9)
¢ = &

Die Green- bzw. Vertex-Funktionen im Ortsraum stellen sich wie die jeweiligen
erzeugenden Funktionale mit externen Beinen dar.

L1 Ty
Gz, x9,...,2,) = T2 %/
L ] "
L1 Ty

Gu(21, 29, 20) = wz%/ (3.10)
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L1 Lo

[(zy,29,...,2,) = 172%./.

Hier ist zu bemerken, dafi die Darstellung (3.10) nur fiir j = 0 gilt. Fiir beliebiges j
stellt die obige graphische Schreibweise nur Ableitungen der erzeugenden Funktio-
nale dar.

3.3 Die Dyson-Schwinger-Gleichung fiir
Green-Funktionen

Die Aussage, dafl das Integral {iber eine totale Ableitung verschwindet, nutzen wir
fiir das erzeugende Funktional Z[j] (3.2) aus.

) .
JELOF Ty S+ 6) = 0 (3.11)
Hier haben wir die symbolische Kurzschreibweise
jdi= [ dej@)p(e) (3.12)
eingefiihrt. Damit folgt aus (3.11) bei Ausfiihrung der Differentiation
4SS .
[ 26 (ite) - 5o516)) exl-sel+3-) = (313)
Unter Ausnutzung der Identitét (1.38)
)
- expl(j - = o(xz)expl(y - 3.14
57 (2) p(j - ¢) = o(z) exp(j - §) (3.14)

konnen wir die Funktionalintegration nach hinten ziehen und erhalten:

o = (5 str] ~9) 20

= (o m s b e s () 20 (19

Damit haben wir die Dyson-Schwinger-Gleichung der Bewegung, oder in Kurzform

DS-Gleichung, gewonnen.
Nach Faltung mit A(z,y) wird aus (3.15) in graphischer Notation

—( ) =X O+% +% . (3.18)
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3.4 Die Dyson-Schwinger-Gleichung fiir verbun-
dene Green-Funktionen
2]

0

Die zusammenhingenden Green-Funktionen haben W[j] = In als erzeugendes

Funktional.

Durch Funktionaldifferentiation von (3.2) nach j(z) erhalten wir

) ) 47 F 1
0= o 2l (317)

._O _ ._@ O . (3.18)

Die Green-Funktion zerféllt also in einen Anteil, der mit dem dufleren Bein verbun-

den ist, und in einen Teil, der unverbunden ist.
Wir nutzen die Identitat

1 4 4 OW[j] )
R Z Vi ; ; ,
206 0 G 5
um (3.15) umzuschreiben. So erhalten wir die DS-Gleichung fiir die zusammenhin-
genden Green-Funktionen:

S [EW n ]
36() [33()  552)
g oy IWEL L[ OV W
= O mIGG) +2f°[(aj(x)) Sy |
WY | L SWL 8P | 8]
(6 ( )) T390t 6ROy

Ebenso wie bei (3.16) multiplizieren wir Gleichung (3.20) von links mit einen Pro-

(3.19)

0 =

1
+§go

] —j(e).  (3.20)

pagator und erhalten graphisch:

il 1 42 (3.21)
3! 2 3! '

Gleichung (3.20) gilt fiir ein beliebiges Quellfeld j, wird aber erst fiir j = 0 als Dyson-
Schwinger-Gleichung von G{") zur konkreten Berechnung interessant (vgl. Kapitel

3.6).
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3.4.1 Die DS-Gleichung fiir den vollstédndigen Propagator

Zur Berechnung der Dyson-Schwinger-Gleichung fiir den vollstindigen Propagator
definieren wir uns die Groflen A;;¢=1, 2, 3:

Al(mo) = e=--e---- :—fo?;‘(;g]

Aglmo) = % "" ¥---- ==—%m(2xgg (3.22)
i — 1 @ 182w

lme) = g e = Gy

Graphen dieser Art werden als Tadpole-Graphen bezeichnet. Definiert sind sie da-
durch, daf der Integralausdruck unabhéngig von den externen Impulsen ist.

Mit den Definitionen (3.22) wird durch nochmaliges Ableiten nach der Quelle j
aus (3.20):
) 2 W]

85 (z)dj(y)
_ i W[4 i
DR TO T
; SWE 1 W]

+As(mo) <~ — = ; : -
d 0)53(@5](.@) 2°°6j(2)5i(2)85(y)
L OWEl PWE 1 W]

27" 6j(2) 8j(2)8i(x)dj(y) 31" 8j()dj(2)6()dj(y)

Durch Faltung mit A(z,y) wird daraus:

—)— - e+ +;W@ .

(=& + m;

2 W[j]
dj(z)dj(y)

(3.23)

1 T (3.24)
2 3! ' '
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Mit j = 0 stellt (3.24) eine Entwicklung der verbundenen 2-Punkt-Green-Funktion
dar, die auch als “vollstandiger Propagator” bezeichnet wird. Im folgenden soll diese
Gleichung vereinfacht werden.

3.4.2 Elimination der Tadpole-Graphen von ng)

Im Impulsraum lassen sich einige Terme aus (3.23) eliminieren und damit kann die
Rechnung vereinfacht werden.

In diesem Abschnitt sei j = 0. Dadurch werden aus den n-ten Ableitungen von
W die verbundenen Green-Funktionen G{*.

A ~ ~

A(mo) = Al(mg) + Ag(mo) + Ag(mo) (325)
1
Ap) = - = e—s (3.26)

Mit der Summe (3.25) iiber die A; und dem massiven Propagator im Impulsraum
erhalten wir aus (3.24):

A(mo)
G2(p) = A AM0) ~(2)
¢ (p) (P)+p2 e (p)
1 1
—A(P)gfoG(CE)(Pl;Pz) - A(P)ggoG(cs)(PhPz)G(cl)(O)
1
—A(p)ggoGE‘”(pl,pz,ps) (3.27)

A(mg 1
o—@—o = @ -+p2(—|—n3(2). @_.—1_5._(@_.
+% +%~—@—- (3.28)

Dabei gilt jeweils fiir die einzelnen Green-Funktionen G{*)(py,...p,) mit n grofer
oder gleich zwei: >, p; = p.

Um die folgende Rechnung iibersichtlich zu halten, wird die Summe B(p, mo)
eingefiihrt, die die Terme der zweiten und dritten Zeile von (3.27) jeweils ohne den
Propagator zusammenfafit.

1 1
B(p,my) = —§f0GE;3)(P1aP2)— 590G£3)(P1aP2)G£1)(0)
1
—590G£4)(P1,P2,P3) (3.29)

(1 - pf(ﬂiz)g) GP(p) = Alp)+ Alp)B(p, mo) (3.30)
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1 1
GP(p) = + B(p,m
c (p) p2 + m% _ A(mo) p2 + m% . A(mo) (p 0)

(3.31)

Durch die Definition einer reduzierten Masse und eines neuen Propagators erhalten
wir schlieflich eine Entwicklung von G mit nur noch vier Termen auf der rechten
Seite, im Gegensatz zu sieben in (3.24).

g = mi— A(mg) (3.32)

Alp) := = = e (3.33)

.—@—o = M-F%O\M@—O (3.34)

Auf dieselbe Art, wie hier fiir G(cg) vorgefiihrt, lassen sich alle verbundenen n-
Punkt-Funktionen G{ mit n gréBer als zwei vereinfachen. Durch Verwendung der
reduzierten Masse g werden die A; am einlaufenden Propagator eliminiert.

3.5 Die Dyson-Schwinger-Gleichung fiir echte Ver-
tex-Funktionen

Die echten Vertex-Funktionen (proper Vertices) werden vom Legendre-transformier-

- [ 4z 6(=)i(x) (3.35)
erzeugt. Fiir die Ableitungen nach den Quellen bzw. Feldern folgt daraus

W] iy
S Te N 6}

ten Funktional

(3.36)

Da das erzeugende Funktional nun nicht mehr von der Quelle j, sondern nur
vom Feld ¢ abhéngt, wird die Differentiation nach der dufleren Quelle zu

5 e 4
el Kb
_ j‘d FWE 8
87 (2)dj(y) dd(y)

(3.37)
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Hiermit wird aus (3.20):

oTl¢) _ o5 [, WL b
o)~ 5a(a) [¢( )+ [ s z)]
0

~_—

gt miyote) s L, [y + 22U
i = O e+ a6+
Lo, S
+3790 [¢ (2) + 3@5(@)%

SW[ W[ 8W[
+ f dz, dzg dzs 85(2)87(21) 65(2)8j(22) 85(x)05(23)
*T[4]
645(21)5(;5(22)645(23)] ' (3.38)

Auch fiir (3.38) existiert eine graphische Schreibweise, wobei zu beachten ist, daf}
die externen Linien an I'[¢] keine Propagatoren sind, sondern nur Ansatzpunkte fiir
Propagatoren. Entsprechendes gilt fiir die gestrichelten Linien auf der rechten Seite.

Fiir j = 0 verschwindet der Term auf der linken Seite und wir erhalten (bis auf einen
Propagator) die Gleichung (3.20).

3.5.1 Die DS-Gleichung fiir die Einteilchen-irreduzible 2-
Punkt-Funktion

Zwischen der zusammenhingenden Green-Funktion G und der echten Vertex-
Funktion T?) gilt die Bezichung

PN eTlel
| % s — ¢ Y (2:40)
—8— = - (.—@—.)_ : (3.41)

Diese Gleichung wird auch wie folgt geschrieben

F(:E, y) = _Gc_l(ma y) = _A_l(ma y) + E(:C, y) (342)
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Hierin ist ¥ die Selbstenergie des Propagators.

—— =-—"—+ —O (3.43)

Durch Invertieren von (3.42) lafit sich auch der vollstindige Propagator als Reihe in
3. schreiben.

—)—o=—0e—ste—o(Seo—eteo(Sre—eo(Sre—e+ - (3.44)

Die echten Vertex-Funktionen I'™ werden auch als Einteilchen-irreduzibel bzw.
in Kurzform 1-PI (one-particle irreducible) bezeichnet. Dieser Name ist verstind-
lich, da sich der Graph nicht durch Auftrennen einer inneren Impulslinie in zwei
Teile trennen lifit, die externe Beine haben (siche Kapitel 2.1). Dabei ist gerade
die letzte Bedingung wichtig, insbesondere kann ein 1-PI Graph durchaus Tadpole-

Teilgraphen haben. Echte Vertex-Funktionen sind immer amputierte Graphen, da
sie keine dufleren Beine besitzen.

Um die 1-PI 2-Punkt-Funktion zu erhalten, brauchen wir die Ableitungen

5wl /dz 4y SWI] 2 Wl 8°I'[g]
8¢ (z) 8 (y1)d4(y2) o 87(21)05(y1) 85(22)07 (y2) 6(21)d¢(22)0¢ ()
)
w0 - 080 49
und ’
)
St = ey

)

5(/5(9:)._@: —— (3.46)

Durch Ableiten von (3.38) nach ¢ erhalten wir die DS-Gleichung fiir I'®). Dabei
habe ich der Ubersichtlichkeit halber die Raumintegration {iber die z; weggelassen.

_ T[]
04(y)dd(z)
(—0" + mg)é(z — y)

; WG W #T[g)
*’5ﬁ@“)( )+®(ﬁﬂaﬁﬂﬂﬁwﬂw&ﬂM&ﬂMwJ
1 FW]
+—§@(wwwwmw—w+agaﬁﬁgﬂw—w
caga) EWEL_ V] $T[)

85(2)8(21) 85 (2)d5(22) 86(21)86(2)86(y)
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Wil W] 8 W] 82 Wil
0 ()85 (21) 05 (2)dj(22) 85 (2)8j(24) 65(23)85(25)
8°I'g] §°I'[¢]
8¢ (21)06(22)06(23) 06(24)06(25)d (y)
L P PWL W] RICHN R
0 (2)d5(z1) 65(2)dj(22) 65 (2)dj(23) 3¢ (21)0¢(22)d¢(23)d¢ (y) '
Spitestens hier werden die Vorteile der graphischen Notation deutlich sichtbar; die
uniibersichtliche Gleichung (3.47) wird zu:

+3

(3.48)

Da wir zur Bestimmung des Amplitudenverhéltnisses der Korrelationslinge (3.48)
bendtigen, werden wir auch hier Terme zusammenfassen und damit die Berechnung
vereinfachen.

3.5.2 Elimination der Tadpole-Graphen von T'(?)

Mit den 4; aus (3.22) wird aus (3.47):

_&Tlgl
( ) (ﬂf)
*+ mo 5(93 - y) A(mo)ﬁ(ﬁ — )

W] 0°T (4]
* f°(63 ag 2 53 18j(22) 39 (22)00(22)09 (y ))
52Wj] 5T[g)
" 3'g° (?’QB(m 5] 21) 83 (2)3§(22) 66 (21)06(22)06 (3)
SW[] W[l W[ 8W[]
G )53(21)51( 183 (22) 8 (2)83 (z1) 83 (23)93 ()
°I[g] 51[4]
¢(21)5¢(22)5¢(23) 0 (24)00(25)6(y)

Wl BW PW[] *T[¢]
i 35 (2)85(21) 05 (2)85(2) 87 (2)05(z3) 6¢(zl)6¢(z2)6¢(zS)é¢(y)) (3:49)




30 KAPITEL 3. DS-GLEICHUNG IN DER GEBROCHENEN PHASE

Fiir j = 0 wird dies zur Entwicklung von I'(2),

Die Terme mit Kopplung fo bzw. go fassen wir zu einer modifizierten Selbst-
energie ¥(p) := X(p) — A(my) zusammen. Damit gilt im Impulsraum nach (3.42)

—T(p) = G.'(p)=A7"(p)— Z(p)
= (p" +mj) — A(mo) — 5(p)
= (p* +mj) — S(p)
= A™(p) - 3(p). (3.50)

Die vier Terme der ersten Zeile von (3.48) sind im inversen Propagator der reduzier-
ten Masse zusammengefafit.

Die Relation (3.42) lafit sich auch iiber die Funktionen ohne Tadpole zeigen.
Nach (3.34) gilt:

G.(p) = A(p)+ A(p)S(p)G.(p)
(1-A@)S0)Glp) = A®)
G.p) = (1-A@EE) " Aw). (3.51)

Durch Invertieren folgt hieraus:

G;'(p) =

A (p) (1 - A(p)S(p))
= A (p) - E(p)
= —T(p). (3.52)

Im folgenden ist noch zu zeigen, daB I'™, n > 2 keine Tadpole-Teilgraphen an
Propagatoren besitzt. Dies wird in mehreren Schritten gezeigt.

e Fiir die T(™) gilt

)
——T(™) = pim+t) 3.53
() 539
und graphisch
J : : z (3.54)
m P = m " .
S¢(x) . .

Durch Ableitungen an '™ entstehen also keine Tadpole-Teilgraphen an Pro-
pagatoren.

o G hat keine Tadpole an Propagatoren, wie (3.34) zeigt.

o In (3.45) ist gezeigt, daf bei Differentiation von G{*) keine Tadpole an Propa-
gatoren entstehen.
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e T? hat keine Tadpole an Propagatoren, wie die Entwicklung in (3.49) in
Verbindung mit den ersten Punkten zeigt.

e T haben keine Tadpole an Propagatoren, da sie durch weiteres Ableiten von
T'® nach ¢ entstehen.

Im néchsten Abschnitt kommen wir zu Tadpole-Teilen an Vertices.

3.5.3 Feynman-Regeln fiir die Vertices

Den Dreier- bzw. Vierervertices werden im Impulsraum folgende Faktoren zugeord-
net:

N ’ /

e T G T E e
’ N \

Zur Elimination der Tadpole an Vierervertices wird eine neue Kopplung fo ein-
gefithrt.

. / I4 /
—fo= -0 = - +@.( = —fo — goGL-®) (3.56)

= —fot 3{231211(7’”0)
. Al(mo)
= a0

Durch Verwendung dieser neuen Kopplung f, fiir Dreiervertices fassen wir die beiden
Terme der zweiten Zeile von (3.48) zu einem zusammen. Damit kann T'® ohne
Tadpole-Graphen an Propagatoren oder Vertices dargestellt werden. Dies iibertragt
sich auch auf die n-Punkt-Vertex-Funtionen mit n > 2, wie oben gezeigt wurde.

3.5.4 Entwicklung der DS-Gleichung fiir 1-PI Graphen

Durch Iteration von (3.48) unter Verwendung von fy aus (3.56) erhalten wir:

1 1
+2-§--—@—-- +5-- -- (3.57)

Diese Entwicklung verwenden wir in Kapitel 5.3 zur Bestimmung von I'?),
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3.6 Elimination der Tadpole-Graphen von G

Das in den vorherigen Abschnitten vorgestellte Verfahren a8}t sich mit etwas zusétz-
lichem Aufwand auch auf die sogenannten Vakuumfluktuationen G{" anwenden. Zur
Vereinfachung der DS-Gleichung (3.20) definieren wir die Grofien:

SWIJ]
aulm) = Gy = — @

o) = _zf_r%f;jlz\;[)é] :%w (3.58)
g0 FW[] 1
Aulmo) = —g1 55 :5%

Diese sind mit dem einlaufenden Propagator bei Impuls p = 0, im Gegensatz zu den
A; aus (3.22) aber ohne Vertex am Fufipunkt definiert.

Mit den Definitionen (3.58) und j = 0 wird (3.20) zu

1 1
Al = ——LOQAf + Ag — —g—OQA:;‘ + g_OAlAB + A4- (359)
2 m§ 6 mg 0

Gleichung (3.59) wird in eine Form z = z + az? + ba® gebracht. Dabei gilt fiir
die Faktoren

r = A]_
Ayt 4
z 7_9_014
fo '8
1
a = —Tﬂz (3.60)
1_ f0A3 2m0
1
b = o

1 — %Ag 6mg '
Durch iteratives Einsetzen von z erhalten wir
2 =z+az’ + (2a® +b)2* + 5a(a® + b)2* + O(2°). (3.61)

Unter Verwendung von (3.60) folgt weiter:

V390 2 24340 Jo 3 ) 4
A =As+ A, — 6. Az — 3m, Az A, + G—mgAB + O(A4, AAy, Aa)- (3.62)
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Nun ist Gg) als Reihe in A3 und A, entwickelt. Die beiden letzteren Gréfien lassen
sich nun wieder mit der reduzierten Masse m, aus (3.32) und der modifizierten
Kopplung fo aus (3.56) berechnen. Jene Berechnung ist méglich, da sich G'# und
G®) mit s, darstellen lassen (3.34). Wesentlich ist an dieser Stelle zu bemerken, daf
der einlaufende Propagator nach wie vor mit der Masse mg berechnet wird und nur
die inneren Propagatoren, bel denen iiber einen Impuls integriert wird, die Masse
mo tragen. Ebenso darf der Vertex von Aj, der am einlaufenden Propagator sitzt,
nur den Faktor f, beitragen.

Die A; aus (3.22) lassen sich auf einfache Art durch die 4; aus(3.58) ausdriicken.

x‘il(mo) = _fOAl(mO)
Ay(mg) = —%goAf(mo) (3.63)
Ag(mg) = ?As(mo)

Hierauf werden wir in Kapitel 5 zurickkommen.

Zum Schlufl dieses Kapitels stelle ich noch eine alternative Berechnungsméglich-
keit fiir G{") vor, um dann im folgenden Kapitel das hier in der gebrochenen Phase
eingefiihrte Verfahren in der symmetrischen Phase darzustellen.

Ansatz iiber Storungsreihe

Die A; lassen sich als Potenzreihen in der Kopplung g bzw. —% entwickeln.

Ay (me) fo iau( go )i

8rmy (=5 8mmyg
fo & ( go )i
A = ‘ 3.64
3(mo) 8Tmg ; a3 8Tmg ( )
fo & ( go )i
A = ;
s(mo) Bmrmyg ; a4 Bmrmyg

Hierbel ist der Koeffizient asq = 0.
Mit fy = 4/3gomy ergibt sich aus (3.59):

\/3_£Iozai( 9o )":

87 8mmy
42 }
V390 [V3g0 & )Z V390 ( go )1
Zmo [ ZO 1 mg + 8 ;am Bmrmyg
13
3 7
v goz “( ) (3.65)
6m0 o 8mimyg

o o S () | [ 52 S (52 |
‘/3_902 ( '

87rm0)
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12

S P03 g - ( Jo )z
Z;) (87rm0) N 2 8mmy LZ::G“ 8mmyg

0

B S B e
81rm0 Z (87rm0)l] Z‘“( )] ZO (8 mo)z'

i=0

Fiir n > 0 gilt

3 1
A, = ~3 Z agay; + g, — = Z a;01;01, + Z a1;a3; + @y, (3.67)
i+j=n—1 i+j+k=n—2 iti=n—1
mit a;; = 0fﬁ1‘j< 0,7:: 1,3,4.
Aus dieser Gleichung ergibt sich mit a4y = 0, dafl a;g = a3, = 1 ist. Fiir die
weiteren Koeflizienten gilt:

_ 19
a1 = as + a4 — 503

= + asp — (@31 + 2a4)as + saj
a1z = Q3o T Q42 a3 @41 )Q30 530

_ 12
a1s = dazz+ agy — (azy + 2a49)az0 — 3031 — 2a3104 (3.68)

3. 9 3 2 5 4
—2aj, + (Sas1 + 4aq )ag, — ay,

Dieses Ergebnis folgt auch mit einen Reihenansatz aus (3.62).
A; 183t sich also als Funktion von Az und A, darstellen.

Ay = F(Ay, A) (3.69)



Kapitel 4

Dyson-Schwinger-Gleichung in der
symmetrischen Phase

In diesem Kapitel greife ich das in Kapitel 3 vorgestellte Verfahren auf und stelle
die entsprechenden Gleichungen fiir die symmetrische Phase vor. In Kapitel 4.3 sind
dann die Anzahlen der Graphen aufgefiihrt, die insgesamt zu berechnen sind.

Wir verwenden wieder die graphischen Notationen aus Kapitel 3.2. Desweite-
ren wird in diesem Kapitel die Quelle j = 0 festgelegt. Damit haben wir in den
graphischen Gleichungen immer Green- bzw. Vertex-Funktionen.

4.1 Die DS-Gleichung fiir den vollstindigen Pro-
pagator
Die Gleichungen aus Abschnitt 3.4.1 vereinfachen sich in der symmetrischen Phase,

da alle n-Punkt-Funktionen mit n ungerade identisch Null werden. So wird aus
(3.23) bzw. (3.24):

. R 52W[j] _ 2 — 1 52W[]] 52WH
GO m)SG@eit) ~ " Y T 55 5ei(y)
1 8*W
T agf(]m (@.1)

—O— - -—-+—~@@~ %42

Wir definieren uns analog zu (3.22) eine Grofle

| 1 PW]
+ 2 e —
AT(mo) =5 2905 (2)2

(4.3)

35
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Diese 1483t sich in nur einem Term schreiben, da insbesondere die Vakuumfluktuation
G = 0 ist.

Mit der Definition (4.3) erhalten wir im Impulsraum aus (4.2):

1
Alp) = _ 14
W) = o= (4.4)
At (m 1
GP(p) = A(p)+—2( Ong)(p)—A(p)—,goG(f)(pl,pz,ps) (4.5)
p?+ mg 3!

At (my 1
.—@—o = e .+p2-|(—m(2))._@_. +i._@_.(4'6)

Hier definieren wir wie in (3.32) eine reduzierte Masse und den zugehérigen
Propagator.

A+(m0) (2) 1 (4)
(1 PP+ ml G (p) = Alp) - A(P)ﬁgch (p1, P2, ) (4.7)
1
GP(p) = 48
0w = A (+3)
1 1
_ e G
p2 + mg _ A+(m0) 3190 c (p17p27p3)

Mgy = my — A (mg) (4.9)

~ ]_ 1
Alp) = = — on~ne (4.10)

p? 4+ mi — A*(mg)  p?+mi,

o—@—o = M—F%N@—. (4.11)

Im Vergleich zu (3.34) zeigt Gleichung (4.11), daff der Ansatz zur Elimination von
Tadpole-Teilgraphen in der symmetrischen Phase keine grofie Vereinfachung der
Rechnung ermoglicht.

4.2 Die DS-Gleichung fiir echte Vertex-Funktionen

In der symmetrischen Phase sind die 1-PI Graphen fiir unsere Rechnung besonders
interessant, da neben I'® auch T'®) berechnet werden musf.

4.2.1 Die DS-Gleichung fiir die Einteilchen-irreduzible 2-
Punkt-Funktion

Aus (3.47) erhalten wir durch Wegfall der Terme mit ¢*-Kopplung und n-Punkt-
Vertex-Funktionen mit ungeradem n die DS-Gleichung in der symmetrischen Phase.
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Auch hier habe ich die Raumintegration iiber die z; weggelassen.

Wl W #W 8" Ig]

) (4.12)

85 (2)85(21) 81 (2)8j(22) 65(2)8j(23) 66(21)86(22)86(23)d¢(y)

Durch Einfiithren der reduzierten Masse lassen sich hier der inverse Propagator und
der Tadpole-Graph auf der rechten Seite zusammenfassen.

4.2.2 Entwicklung der DS-Gleichung fiir 1-PI Graphen

Durch Iteration von (4.13) erhalten wir die Entwicklung bis zur 2-Loop-Ordnung

—®— - (m)l+;---@--- o). (a1

Diese Entwicklung wird in Abschnitt 5.2.2, Gleichung (5.18) berechnet.

4.2.3 Die DS-Gleichung fiir die Einteilchen-irreduzible 4-
Punkt-Funktion

Durch zwei weitere Ableitungen nach ¢ erhalten wir die DS-Gleichung fiir T4,
Bei Verwendung der Entwicklung (4.11) fiir G{?) erhalten wir hier auch Feynman-
Graphen ohne Tadpole-Teilgraphen.

1
+35 == + = -- (4.15)
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4.3 Zu berechnende Diagramme

Am Ende dieses Kapitels fiihre ich die Anzahl der Graphen auf, die nach Anwendung
des in diesem und in dem vorangegangenem Kapitel vorgeschlagenen Verfahrens
berechnet werden miissen.

In Tabelle 4.1 sind die Zahlen fiir die symmetrische Phase aufgefiihrt. In der
Spalte “ohne Permutationen” ist die Anzahl der unterschiedlichen Integrale auf-
gelistet, was bedeutet, dafl die Graphen, die durch Vertauschen der dufleren Beine
ineinander tibergehen, nur einmal gezahlt sind. In der letzten Zeile ist die Anzahl der
nach obigen Verfahren zu berechnenden Graphen eingetragen. Tabelle 4.2 fiihrt die
entsprechenden Werte fiir die gebrochene Phase an. Bei der 1-Punkt-Funktion sind
keine Permutationen der dufleren Beine moglich. Hier ist die Anzahl der Graphen
aufgefiihrt, die zu A3 und A, aus Kapitel 3.6 beitragen.

Anzahl der Graphen
Funktion | Loop-Ordnung || Gesamt Permi};;lfionen O}'}‘I;ielg’Ir‘ZiEzie_
1 1 1 0
() 2 2 2 1
3 5 5 1
4 18 17 4
0 1 1 1
1 3 1 1
(4) 2 T 3 5
3 73 14 3
4 477 64 26

Tabelle 4.1: Anzahl der Graphen in der symmetrischen Phase

Beim Vergleichen wird offensichtlich, dafi in der symmetrischen Phase, wie oben
schon bemerkt, der Rechenaufwand langst nicht so stark verringert wird, wie in der
gebrochenen Phase. Dies liegt daran, dafl durch den Dreiervertex viel mehr Graphen
mit Tadpole-Teilen moglich sind. Einen Wert konnte ich nur nach oben abschétzen,
doch es fillt deutlich auf, dafl die Anzahl der Graphen gerade in htheren Ordnungen
merklich reduziert wird.
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Anzahl der Graphen
Funkt; L Ord G ; ohne ohne Tadpole-
unxtion | Loop-Lranung €SAMY | permutationen Teilgraphen
1 3 3 1
F(z) 2 20 18 8
3 204 162 34
4 2831 1979 < 358
Gesamt bei Verwendung von (3.62)
1 1 1
2 6 2
G (1)
€ 3 46 9
4 471 63

Tabelle 4.2: Anzahl der Graphen in der gebrochenen Phase
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Kapitel 5

Berechnung der Vertex- und
Green-Funktionen

In diesem Kapitel werden die benétigten Reihen in gy berechnet. Im ersten Abschnitt
stelle ich einige wesentliche Integrale und Konstanten vor; die beiden néchsten Ab-
schnitte sind dann der symmetrischen bzw. gebrochenen Phase gewidmet. Die Nu-
merierung der Graphen gl(’;;z wurde von Qgraf {ibernommen. n ist die Anzahl der
dufleren Beine. [ gibt die Zahl der Loops an, und m ist schliefilich die laufende Num-
mer der Programmausgabe mit den Optionen “onshell” und “topol” (s. Kapitel 2.2).

Viele der hier verwendeten Integrale finden sich in [AS84, GRS81].

5.1 Spezielle Integrale und Konstanten

In einigen 3-Loop-Integralen taucht die Konstante

S | 4 1.4 1_.1
a=_" —-In?= — Zln= — ~Li,~ = 0.0324645 (5.1)
48 8 3 3 3 4 "4
auf [BS92]. Hierin ist Li; der Integrallogarithmus und durch
z df
Lis(2) = j A < (5.2)
o Int
definiert.

Das folgende Integral 1df3t sich nur numerisch auswerten:
cre = /dskldskgdskgA(kl)A(kg)A(kg)A(kl — ka)A(ks — k3)A(ks — ky)
= 0.1739008 (5.3)

Der numerische Wert stammt von [BNM77, Graph 12U4] und konnte durch eigene
Rechnungen bestétigt werden.

Die Divergenzen in der 2-Loop-Ordnung lassen sich als lim_,q von

. 1 m?2 C
BY =~ _p|2 o (@) 5.4
() + -0 (5.4)

40
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ausdriicken [HET193, Seiten 33/47]. In (5.4) ist C eine nicht niher bestimmte Kon-
stante, die nicht in das Endergebnis einflieft und 4 die Eulerkonstante. Da B in
Ordnung g2 auftritt, miissen in O (go) alle Terme, die mit ¢ gehen, beriicksichtigt
werden.

In 3-Loop-Ordnung haben wir zusétzlich noch die divergente Grofle

1 m2 c 3 1. (ml
Bdw:__l ) _ — —~y = =1 ) @) B 5.5
LT n(47r)+47r 27 2n(7r)+ (€ (53)
Mit (5.4) gilt die Relation
B (1— £ (y+ ™) + O() = B (5.6)

Die 1-Loop-Integrale J,,(3 —¢) sind im Anhang A.1 bis zur bendtigten O (€) her-
geleitet. In [HEI93] wurde die Rechnung bis zur 2-Loop-Ordnung mit allen notwen-
digen Integrationen durchgefiihrt. Integrale mit der Bezeichnung j, sind Zitate aus
[BS92], woraus auch ein grofier Teil der notwendigen 3-Loop-Rechnungen stammt.

5.2 Symmetrische Phase

5.2.1 A*(my) und die reduzierte Masse m,

Als erste Grofie bestimmen wir nun A* (mg) aus (4.3). Wie aus (4.11) folgt, brauchen
wir bei Verwendung der Masse g nur zwei Graphen bis zur 3-Loop-Ordnung zu

berechnen.
k
) =
b p
= —godi(3—¢)
- zmog—;’r (1-5(y+I 2 —2) + O(H) (5.7)

Im O(e)-Term ist die Masse mg nicht durch my ersetzt, da dieser Faktor erst in
dritter Ordnung beitrdgt und die beiden Massen in nullter Ordnung identisch sind.

ki + k3

kl k2 + ks kl
Gl(p) =
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— _2md(BY — 2In ) ( J0 )3 (5.8)
oL 37 \ 8wy '
Dieser Graph, bezichungsweise das dazugehorige Integral, ist in [GUT95] ausfithrlich
behandelt. Die Integrationen iiber &, und k3 bilden eine Subdivergenz wie gé@ (5.13).

Berechnen 143t sich die Differenz von gng und dem Produkt aus Q%) mit dem 1-
Loop-Integral Js. Dies liefert den endlichen Anteil im Ergebnis, wihrend der Term
B&v aus dem abgezogenen Produkt stammt.

Aus diesen beiden Graphen berechnen wir At (my).

1 1
At(mg) = 595,21)'1'59&,21)
~o| fo p mi 2
— 1-—¢ In™ —92) 40O
T |y (15 (7105 = 2) 4 0())
1 ; 4 g0 \*
——(B* —921n = ( ) 5.9
(Bt —2md) (L] (59)

Als niichstes wird rg(mg) bestimmt. Durch Entwicklung von (4.9) in der Kopplung
erhalten wir

At At? At?
o = m (1 _ A m) _ Amg) _ A
m§ 8my; 16mg

+ 0(A+4(m0))) : (5.10)

Durch iteratives Einsetzen dieser Gleichung in (5.9) lassen sich sowohl A% als auch
o bis zur gewiinschten Ordnung in g, als Funktionen von my bestimmen. Wir
erhalten schlieilich in der 3-Loop-Ordnung (entspricht O (g2)):

At (mg) = mg[ (1t (y+mm— )+0(e2))—3( go )2(1+0(e))

8mmy 2 \87m,
+ (%(1 +O(e) - %Bf"” + %111 %) (ngno)g + O(gg‘;)] (5.11)
i) = 13m0
62 o= (o= ) () 0]
(5.12)

5.2.2 2-Punkt-Funktion

Zur Bestimmung von I'?) brauchen nun nur noch die Graphen berechnet werden,
die keine Integration enthalten, die vom &ufleren Impuls unabhingig ist.

1- und 2-Loop-Ordnung

In 1-Loop-Ordnung existiert in der symmetrischen Phase nur der schon fiir A"
berechnete Graph gﬁ)
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522) (Symmetriefaktor 1/6)

(2)
—0) =
2’2(p ) ! W !

. pthkitk

B Bdw ) (5 13)

~ 3 '
Der divergente Anteil ist massenabhingig und mufi daher auch in gy entwickelt

werden.
2

B* .= p* (o) =p* 4+ L (140 0 (g2 5.14
2 (M) - m s Boaro@rold) G

Terme hoherer Ordnung in g, kdnnen vernachléssigt werden, da nur bis zur 3-Loop-
Ordnung, entsprechend O (g3) gerechnet wird.

=—3( J0 )2 (5.15)

27 \8mmy

3]

p?=0

3-Loop-Ordnung

Im folgenden werde ich meistens die 3-Loop-Graphen nicht mehr mit vollstindiger
Beschriftung der Impulse darstellen.

Qgi) (Symmetriefaktor 1/4)

Sp=0) =
- —32m2(a+31n§)( g0 )3 (5.16)
N 0 37 3/ \ 8wy, '
0 = (32 16 32 4)( 90 )3
= = (Za- 2+ Zm= 5.17
3p2g3’4(p)p2=0 34727 727 " 3) \Bwmmg (5:17)

Ergebnisse fiir T(?

Aus den oben angefiihrten Graphen berechnet sich nun nach (3.50)
1 1
~TP(p=0) = m)- ggg,gz) - Zgg,i)

Bdiv ,9'02 1 4 1 903
() e () el
o 3 (811') + (a—|—3n3 mg \ 87 + (go)
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= mdf1- 8 (15 (y+ 7~ 2) + O(e)

8mrmy

n (%(1 +0(e)) — B:U) (85;0)2

11 7 4 1 g \3
o+ Tt sas 105 () 40 s
+( g LT O() + 5In g+ 8at LBy stma) | (98) [

(5.18)

wobel fiir Mg die Reihe (5.12) eingesetzt wurde. Die divergenten Terme in (5.18)
machen eine Renormierung notwendig, die im Kapitel 6 durchgefithrt wird. Die
Ableitung nach dem Impulsquadrat berechnet sich analog:

8 18 19
— 5 )| = 1= sl - 5 50)
ap2 p2=0 6 8p2 22 p2=0 4 6102 S p2=0
1 (o) ~Gearrarms) (2)
= 14 — B e I
BT (87”510 3% 27 T 27" 3) \ B
= 1+i( Jo )2 (5.19)
81 \8mmy '

4 1 8 4 8 g \?
Lo - St o) () o ()
+(27+81( +O(e) - zing - 30 Srmg) T (s2)

5.2.3 4-Punkt-Funktion

Bei I'™) haben einige Graphen neben dem Symmetriefaktor mehrere Permutationen
der einlaufenden Beine. Da die Integrale fiir alle Permutationen gleich bleiben, muf}
der Wert eines Integrals nur mit ihrer Anzahl multipliziert werden.

0- und 1-Loop-Ordnung

g(()i) (Symmetriefaktor 1)

kq ks
Gii(k: =0) = ><
ky by
= —g (5.20)

ﬁ) (Symmetriefaktor 1/2, 3 Permutationen)
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= gﬁJz(B —¢€)
9081?;?@0 (1-5(+m=)+0() (5.21)

2-Loop-Ordnung

541) (Symmetriefaktor 1/4, 3 Permutationen)

k k
! d1 q2 ’

Q1+k1+k2 QQ+k1+k2
kg k4

_ _go( Jo )2(1+0(6)) (5.22)

87Tﬁl0

ggg (Symmetriefaktor 1/2, 6 Permutationen)

by t ks
Hki=0) = k
gz,s(z—O) = @1+ g2+ k3
k ¢+ k4 ks k,
2 2
= —9o3 (8 gON ) (1+ O(e)) (5.23)
LN

3-Loop-Ordnung

Im folgenden sind die Beitrige O (¢) weggelassen, da sie in der anschliefenden Rech-
nung keinen Beitrag liefern.
;(,41) (Symmetriefaktor 1/4, 3 Permutationen)

Z(541)(kz =0) =

= Yoo =
8mmyg

1 go )3
= g 5.24
905 (SWhO (5.24)
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:(542) (Symmetriefaktor 1/8, 3 Permutationen)

= g,75(3)

_ go( g0 )3 (5.25)

871'7’7?40

;(,433 (Symmetriefaktor 1/6, 3 Permutationen)

Sk =0) =

1 . 4 3
= g, (3 +2B%v _ 41n 5) ( 70 ) (5.26)

Sﬂmo

:gjls) (Symmetriefaktor 1/4, 6 Permutationen)
4
sa(ki = 0) =

= —90J2(3)gg?3)(ki =0) (g—o)3

871'7720

_ 90%( 9o )3 (5.27)

87T1’h0

ggj‘g) (Symmetriefaktor 1/2, 12 Permutationen)

4 3

ggf‘fo (Symmetriefaktor 1/4, 6 Permutationen)

(ki =0) =

= golﬁa( 70 )3 (5.29)
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;(;?1)3 (Symmetriefaktor 1)

:(+41)3(k :0) =

Tet do 3
— 5C ( ) (5.30)

8wy

5?1)4 (Symmetriefaktor 1/4, 6 Permutationen)

g?x;("ﬂ :0) =

_ gol6a( g )3 (5.31)

8wy

Ergebnisse fiir ¥

IOk =0) = G{(k =0)+ 3= g“‘)( 0)+37 ‘3(4)( =0)
el g<4)( —0)+ 3_g Yk =0)+ 3§g§,j“§(ki = 0)
43t g(4)( 0) + 6= g(4)( =0)+ 12%9;(5?9)(161' = 0)

1
+67 gé‘?o( = 0) + G52k = 0) + 6568, (k; = 0) + 0 (42)

3 o m?2 ( )2
= g, |1 =2 1—¢ In =)+ 0O
go[ 287rm0( 2(7+n”)+ (€ ) 8wy
17 1 3
_1 - 48a CTet Bd'w) ( )
(8 Tt + tety 87 O (95)
(5.32)
Durch Einsetzen von (5.12) erhalten wir als Ergebnis
Ik =0) = —go 1—E g0 (1—5(7+]nm—3)+0(62))+2( 90 )2
2 8mmy 2 T 8mTmyg
7 4 1 4 g0 \°
N _1 = 48 CTet _de'u) ( ) O 4 )
( 16 " g Mg tEtet 27 ) \8amy) T (40)
(5.33)

Damit haben wir alle drei bendtigten Reithen der symmetrischen Phase, ndmlich

(5.18), (5.19) und (5.33).
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5.3 Gebrochene Phase

In der gebrochenen Phase wird zuerst die 1-Punkt-Funktion berechnet, um mit die-
sem Ergebnis die reduzierte Masse aus (3.32) zu bestimmen. Ich fiihre in den fol-
genden Abschnitten nur die Graphen auf, die durch den Dreiervertex zusitzlich
hinzukommen. Die Graphen der symmetrischen Phase miissen bei der Summation
der 2-Punkt-Funktion natiirlich mitgerechnet werden.

5.3.1 1-Punkt-Green-Funktion G{!

Das Verfahren der Berechnung wurde bereits in Abschnitt 3.6 vorgestellt. Es gelten
folgende konkrete Rechenregeln:

e Die Massen mgy werden durch my ersetzt.

N2
Da der einlaufende Propagator die Masse mg trigt, muf} ein Faktor (%&) =

°
(%) - anmultipliziert werden.

e Fiir jeden Dreiervertex ein Faktor E

e Fiir jeden Dreiervertex, aufler dem am einlaufenden Propagator bei den Ter-
men, die zu Ay beitragen, ein Faktor (1 — %néo))

e Dic Divergenzen B% sind massenabhingig und werden durch B4 ersetzt.

Der letzte Punkt gilt prinzipiell auch fiir die Divergenz B#*, muf hier aber noch nicht

beriicksichtigt werden, da die Korrekturen erst in der 4-Loop-Ordnung beitragen.

1-Loop-Ordnung

511) (Symmetriefaktor 1/2)

1
W _ —Qk

— —fomigjl(?x —€)
_ ﬁ@gé (1-5(v+mn ™ 2) + O(¢")) (5.34)

4T myg
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2-Loop-Ordnung

élf (Symmetriefaktor 1/6)

(1)
2,1

V3 gt b (1 - Al(mo)) (5.35)

Wegen der Massenabhingigkeit des divergenten Anteils mufi B in g, entwickelt
werden (Vergleiche (5.14)).

Biiv — pdiv _ 2 N1+ 03)+ 0 (97) (5.36)

Ty

514) (Symmetriefaktor 1/4)

ki
= b ks
ki
. 2
3 3 A
L P (5.37)
3272, o 3mi
3-Loop-Ordnung
Qélf (Symmetriefaktor 1/4)
ki + ko
()
Gyl = d
ks
kl kl + k3
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:(sls) (Symmetriefaktor 1/12)

ky
ki

2\/§ ;. 4: 'ﬁ'lO 5
= ~mge (B2l —)— ; 5.39
(87")37513( : n3 mogo ( )
;(;11)1 (Symmetriefaktor 1/6)
ky
ka—ky
1 ki—ks
:(*.,1)1 = ks
ks —ks
ko
- 3
— 3\/5 CTetmO % Al(mO)
- 520 =90 \1- : (5.40)
(8m)3m3 mg Img

;(;11)2 (Symmetriefaktor 1/4)

(1)

3,12 —

(5.41)
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;(512)1 (Symmetriefaktor 1/2)

ki + ko k,
:(5112)1 = k? kg
ki + ko ki + ks
. 2
44/3 4 5 A
= M—{mg n g%gé (1 — ;(W;O)) (5.42)
0 0 mg
6522 (Symmetriefaktor 1/8)
ki + ko
(1) _
322 —
ki + ks
. 2
484/3 my s Ay (mg)
= Gz m—ogé (1 T (5.43)
Q&QS (Symmetriefaktor 1/4)
ks
(1 _
3,35 —
ky
ko
. 1
_ 9v/3 clet (@)Bg% 1 Ay (my) (5.44)
4(87)3m3 g/ 70 3m?2 '
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;(51336 (Symmetriefaktor 1/8)

ki + ky

(n _

336 =

ki + ks
- 4
93 4 8. 4\ /my\3® s Ay (mg)
= 12 — =+ =1n = — 11— 5.45
~(8n)nd ( ¢ 9+9n3)(m0) 90( 32 (5:45)
g;(;,l337 (Symmetriefaktor 1/4)
k,
ki + ks,
L(’.,13)7 = k1+k3
ki + ky
ky
- 4
2v/3 4\ [mo\3 s A, (my)
= 1—-21 —) (—) 2l - —— 5.46
(8w)3~2( "3/ g 90( 3 (5:46)

Ergebnisse fiir G, A(m;) und m,

Die oben aufgelisteten Graphen stellen alle relevanten Beitrige zu As(mg) und
A4(my) dar, da alle Graphen mit Tadpole-Teilgraphen, wie im Kapitel 3.6 gezeigt,
nicht explizit berechnet werden brauchen.

Asz(mg) = g + g(l)-l- gg + gglf}l
+§%%+Z%%+§%%+ZQ% (5.47)
ﬁlo € m? 9 \/5 1
= —1-s{v+lh2-2)+0 —g¢
(15 (% - 2) +O()

1m, /3 §(1_Agmgy

RO 3m2

~ 2
+ [ (lBi”“ - %ln %) M0 g 2 (1 - Al("éo))

[_ 6 mg 3y Img

~ 2 N 4
+6a@ 1-— Al(W;o) _ icTet (@)3 1— Al(nZO)
Mg 3Img 16 Mg 3m?
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G G (-5 [t o

My 3mj
1 1 1 1
Aumo) = 591+ 3951 + g + 39 (5.49)
1 . 4o o \/§ 3 Al(mo)
e _ Bdw _ 2 1 O 0 2 ) g Ve e 1 .
5 ( wmy L+ O+ 0 (dh) o@ﬂ%mﬂ°( 32
. X s
+ |-—8 (a + —1In —) o [y _ 1(”;0) L oTe 7110 1_ 1(7720)
i 37 3/ my 3mZ 2" i 3m?2
A 3
Mo Ay (my) 3 5
Baz \1~ ) 5.50
+“M& %ﬁ)]@ﬂ%fo (5.50)

Aus den beiden Reihen (5.48) und (5.50) 1a8¢ sich nun nach (3.62) 4; bestimmen.
Da A; und A als fiihrenden Term O (go) haben, brauchen in dritter Ordnung alle

Faktoren (1 — %) nicht beriicksichtigt werden und kann rmy gleich m, gesetzt
0

werden.
m 2 V3 L
Ai(my) = m—z (1 - £ ('y—l—ln = 2) + 0(62)) 3. 70
~ 2 . ~
1 myo 2 Al(mo) Bdw Al(mo)
* {_5 (m_) (1 "3z ) T3 T Tme
0 0 0
~ 2
my V3 2
- (_0) (1+ O(e))] Tl (5.51)
1 1. 4 7 1 5_ . V3o T
____1 - __CTet__Bdw:| ) O( 2)
T3 T3 ™3 T2 T 16 671 | (Brpmz?0 T (90

~

Ai(mg) wird bis O (go) bendtigt. Aus (3.63) folgt

~

Al(mo) = - 3gom0A1(m0)

= —mi (15 (y+ I - 2) +O() o

Mg

+0(g2). (5.52)

Um A bzw. iy zu bestimmen, setzen wir (3.63) in (3.25) ein und entwickeln A4,
gemif (3.62). Fiir A, setzen wir obiges Ergebnis ein.

2
A(mo) = ~3 3gomoAs — /3gomoAs + goAs AL + O (Ai: A3y, Ag)
_ . Yo € mg 2 my 2 div Jo 2

10, 4 3 1 .11 /g0)\°
44 —1ln—+3aq— -’ —B‘“”]—(—) O (g 5.53
+[+3n3+a s¢ T3 s T (a5)  (5:53)
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Aus (3.32) folgt nun

g = mg (1 B A(mo) . Az(mo) . A3(m2) + O (A4(m0))) . (554)

2mi 8m} 16mg

Durch iteratives Einsetzen erhalten wir (vgl.(5.9-5.11)):

Alme) = md [-255 (1= (v + 10 2 —2) + O())

_((1+O(6))+Bdiu)( 9o )2

8mrmyg

10, 4 3 2 3
—|—((1+O(e))—|—§1n§+3a——CT“——Bf“’)( g0 ) +o(gg‘;)]

8 3 8mmg
(5.55)
~ _ Jo € m2 2 Bdiu go ’
mo(mg) = my [1 + r— (1 -5 ('Y +1n =t — 2) + O(e )) + 9 (Sﬂ'mo) +

5. 4 3 3 1 go \?
_ 1 O _ _] - v _CTet _ _Bdw) (—) O 4 )
( (1+0() =g g —ge+ 5 621" ) \&rmy) 00

(5.56)
Die 1-Punkt-Green-Funktion ist durch (5.51) gegeben.
G = A (mo)
V3 1 B 3 s
0

= _ £ Eﬁ._ 2 o 42
(1 5 (’y+1n - 2) + O(e )) e 90 T 5~ (Sﬂ_)zmog
1. 4 7 1 V3 1
S P __cTet]— o( ) 5.57
+[ 37372 16 Erpma o T\ (5.57)

5.3.2 2-Punkt-Funktion

Bei der Berechnung von I'? gelten dieselben Regeln wie im Abschnitt 5.3.1, nur der
zweite Punkt fillt ersatzlos weg, da wir Graphen mit amputierten dufieren Beinen
betrachten. Im folgenden fithre ich nur die Graphen auf, die noch nicht im Abschnitt
5.2.2 berechnet wurden.

1-Loop-Ordnung

g%) (Symmetriefaktor 1/2)

Ap=0) =
p+k

= 32 2 (1-£(y+ 1) +O(e)) (1 - Al(”?)) (5.58)

0
8wy 3Img
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In der gebrochenen Phase liefert die Rechnung schon in der 1-Loop-Ordnung einen
Beitrag zur Impulsableitung. Zur Berechnung verweise ich auf den Anhang (A.12).

_g(z)( | = _isg:ho (1-5(v+ 2 = 2) + ()
mo\ 2 Ay (mg) ’
(7) (1 T ) (5.59)

2-Loop-Ordnung

Ich lasse hier die O(¢)-Terme weg, da sie keinen Beitrag liefern.

gg?ﬁ) (Symmetriefaktor 1/2, 2 Permutationen)

kl kl + kz
(2)
g — 0 =
2,6(P ) » >
P + kl
= —im 2 (1 ) (5.60)
8wy 3m0
2
20 2 2
_g(z)( ) =3 (sifn ) ( ) ( 5 )) (5.61)
p?=0 0 mO
521)1 (Symmetriefaktor 1/4)
kl kg
(2)
=0 —
2,11(P ) . >
p + kl P + kz
- 2
2 A
= —3mj ( 0 ) (1 - 1(”20)) (5.62)
87Tm0 3m0

Y (@) (A ey

5721)6 (Symmetriefaktor 1/2)

g
6—192 521)1 (P)

p?=0

g?l)e(P = 0) =

p+k1 p+k2



06 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN

(o) G (-5 e

3mg
. 1
0 4 8 ( go )2(7710)4( A1(m0))
) = - ~ ~ 1— 5.65
ap2 2,16(p) p2=0 27 87i'm0 mo Bm% ( )
521)7 (Symmetriefaktor 1/2)
ki + ko
gi)'r(P = 0)
p+ ki . .
2 2 A
- 2m§( g0 ) (@) 1- 1(m2°) (5.66)
8rmy my Imi
. 4
o Lo 29 ( Jo )2 (m0)4 Ay (mo)
= —— — 1-— 5.67
5,2 J2.11(P) . 108 \87rmg/ \ring 3m2 (5.67)
p4=0 0
3-Loop-Ordnung
g:(;?g)l (Symmetriefaktor 1/4)
5.,22)1(11 = 0) =
3 A
- 48am§( Jo ) 1 - 1(";0) (5.68)
87y 3mg
. 2
0 o 7 40 4 Jo )3 (m0)2 Ay (mo)
g — (-l 44+ Tl o)™ (1 - 21Tl
ap293,21(p) e ( a7 e 3) (smo o 3m?

g;(g,zg)g (Symmetriefaktor 1/2)

gg?gz (P

= 3Ty

S b
N

ol

87'3—00)3 (1 - A;E;?))Q (5.70)
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. 2
d 2 ( 2 9 4o 4 4)( 90 )3(m0)2 A;(myg)
— =|-—==—=C""+ -ln - — 1—
ap2g3’22(p ) o 5 87 T37"3) \Srmg/ \ing 3m3
(5.71)
:(,22)3 (Symmetriefaktor 1/4)
5.,22)3(13:0) =
go 3 f‘il(mo) ?
= 48am§(8 — ) 1— - (5.72)
Mg 3m§
. 2
2 G| = (2o D d) (20 )" (may* (A
op?” BB s 27 81 3/ \ 8wy, g 3m2
(5.73)
:(,’22)4 (Symmetriefaktor 1/4)
5,22)4(1”:0) = U
o 3 fil(mo) ’
= 48am§(8ﬂ_m) l-— (5.74)
0 my

3]
6—}92 :(522)4 (P)

p?=0

- 2
11 32 4 go \? [mo\? Ay (mg)
= (— 25 —) (—) (—) - 5.75
( 27 T 27" 3) \srmy ) g 3m2 (5.75)
(2)

398 (Symmetriefaktor 1/4, 2 Permutationen)

ae=0 = —()

- 2
3 A
2m§(87f;) (1— ;(";0)) (5.76)
0 my
- 2

0 o 67 ( go )3 (m0)2 Ay (myg)
<z - 2L Mo (11— 5.77
ap? 2.28(P) ey 162 \8mmg/ \7g 3m2 (5.77)

:(522)9 (Symmetriefaktor 1/2, 2 Permutationen)

5,22)9(17 = 0) =
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. 2
4 3 A
_ 41n—m§( g0 )  — Ailmo) (5.78)
3 8wy 3m?
. 2
0 53 115 4 g 3 rmo\? Ai(m
Do = (2 -Pnl) (L) () (1_—;( ;)) (5.79)
D p2=0 o mo my

gg?gl (Symmetriefaktor 1/2, 2 Permutationen)

:(5,2331(17 = 0) =

~ 2
4 s( A
= 41n—m§(9—‘1) (1— 1(”20)) (5.80)
3 8mmy 3mj§
. 2

9 2 779 4\ (g )3(m0)2 Ay (mo)
~— == ——In- I 5.81
ap? 3’31(”)102:0 (72 81 ns) (smo o 3m? (5.81)

;(,2332 (Symmetriefaktor 1/4, 2 Permutationen)

5.,23?2(? =0) =
gO 3 Al(mo) 2
= 48am} (—~) 1— ——+ (5.82)
8mimyg 3m?
. 2
s (2)(10) :(§—28a—%lné)( g0 )3(@)2 1_M
Op? 3,32 270 27 81 3 8w Mo 3m2
(5.83)
gg?ﬁl (Symmetriefaktor 1/4)
5,25)1(19 =0) =
3 o 3 Al(mo) 2
= 3™ ( ; ) 1—— (5.84)
2 8y 3mg
A 2
30| =i (5 )3 (@)2 R (5.85)
Ap? 3,51 o 192 \ 87y ™Mo 3m2
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g;(;,zgz (Symmetriefaktor 1/8)
- - —O00—
o 3 Al(mo) ’
= 3m] (—~) (1— . ) (5.86)
8mimyg 3mg
- 2
9 ) 3( g0 )3(m0)2( Al(mo))
) =—= = - 1-— 5.87
6p2 3,52(p) p2=0 4 871'm0 mo 3m(2) ( )
(2)

353 (Symmetriefaktor 1/6)

Gss(p = 0)

- 2
3 : 4 3 A(mo)
= Z(3+2B%v_ —) 2( ) yR—— 5.88
4( 25 3/ "0\ 8rrmg 3m2 (5.88)
107

~ 2
(- e d) () G (- 4%
22=0 128 4 3/ \8mmy

Q3 53( )

;(,27)1 (Symmetriefaktor 1/2, 2 Permutationen)

GSh(p=0) = )\/‘ ‘

- oi-am )i () () (- ) oo

my

- 4
715 89, 4 3 4 A
(G- mm ) () () (- Ay ey
2220 648 27 3 8mwrng Mo

3mg

(5.89)

375 (Symmetriefaktor 1/2, 2 Permutationen)

G§h(p=0) = m




60 KAPITEL 5. BERECHNUNG DER VERTEX- UND GREEN-FUNKTIONEN

. 4
— (_E + ECTet + §1]fl é) ( g(i )3 (@)4 1— Al(mO)
36 16 9 3/ \8minyg Mo 3m?

(5.93)

d
a—ngg?z (P)

p?=0

;(,27)3 (Symmetriefaktor 1/4, 2 Permutationen)

5.,27)3(17 = 0) =

4 g0 3 mo 2 Al('mo) 4
_ —(108a—4+81n—)m§( 0 ) (~_) 1
3 87ng Mg 3m}

(5.94)

260 14 4\ 7 g0 \* /mo\* A(mo)\
81 3 3 8mimg My dmy

(5.95)

0
8_3)29:(5’27)3 (P)

p?=0

g;(;,z7)4 (Symmetriefaktor 1/2, 2 Permutationen)

Shp=0) = @

_ —ZCTefmg( Jo )3(@)2(1_‘41(”’0))4 (5.96)

5 5 2
8wy mg 3mg

~ 4
0 47 147 101, 4 3 A i
6 2 Z(5,27)4(p) = (_ + _CTEt — —]_]_’1 —) ( g(i ) (@) (1 _ ]-(TT;O))
p P2=0 36 64 18 3 87rm0 mo 3m0
(5.97)

95?5 (Symmetriefaktor 1/4, 2 Permutationen)

g:(s,%r)s.(P = 0) =

I 4
4 3 2 A
= —(108a—4+81n—) mg( Jo ) (@) 1_ 1(1?20)
3 8wy L 3mg

(5.98)

. 1
31 4 3 4 A
- (——+15a—|—21n —)( 70 ) (—TO)  — Aulmo)
81 3/ \ 8w Mo 3md

(5.99)

0
a_p2 :(*,27)5 (P)

p?=0
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Q;(,,?G (Symmetriefaktor 1/2, 2 Permutationen)

3, 76

4
= 1—21n3)m§

~—0)2 (1 - @)4(5.100)

87rm0 m mé

- 1
491 5. 4 3 4 A
= (103 (o) Go) (-50) oo
648 3 3 81y Mg 3Img

g3 0o (Symmetriefaktor 1/4, 2 Permutationen)

:(*.,21)09(17:0) = 4@*

4
3 2 A
= —2m§( % ) (—nj’o) - Aulmo) (5.102)
8rmyg Mo Smg

A 1
77 3 4 A
AV (A e
_, 108 \ 8wy Mg 3Im3

g3 {10 (Symmetriefaktor 1)

2
:(*.,1)10(17:0) = 4@*

9.5?26( )

p?=0

A 4

1 go \* (mo\? Ay (mg)
= ——mﬁ(swmo) (—0) 1-=— (5.104)

0

A 4

0 o 793 ( go )3(m0)4 Ay (mo)
= - 1-—- 5.105
op? 3,110(P) . 5184 \ 871ing o 3mg ( )
p°=0

g?fn (Symmetriefaktor 1/2)

g.'(i,zl)ll(p:()) = 4@
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. 4
799 154 4 go 3 my 4 Al(mo)
(T sy Yy ()
( 576 27 " 3) \8rimg/ \ing 3m2 (5.107)
ggfflz (Symmetriefaktor 1/4, 2 Permutationen)
:(3,21)12(p:0) = 4@
2 go \?* (mo\? z‘il(mo) '
() (B) (-2 (5.108)
8mimy Mg 3myg

n 4
41 3 4 A
:_( il ) (@) p — Ailmo) (5.109)
108 \ 87my mg 3Img
(2)

a113 (Symmetriefaktor 1/2, 2 Permutationen)

d
a—pggg,zl)ll(P)

p?=0

I
|
3

0
a—pz :(*.,21)12(17)

p?=0

g.'(i,zl)lii(p =0) =

. 4
4 3 2 (A
" (1—21n§) mg(si‘%) (@) (1— ;(”20))(5.110)
0 my mg

- 4
491 5 4 3 1 A
_ (_ 2 —) ( 70 ) (@) p _ Aulmo) (5.111)
648 3 3 8mrmyg mg 3m?
(2)

3115 (Symmetriefaktor 1/2, 2 Permutationen)

0
8_192 :(*,,21)13(19)

p*=0

:(*.,21)15(17 = 0) =

A 1
3 4 3 2 A
= (3-03) % (o) (5o (1‘ %WQO)) (5.112)
LN mg mg

A 4
( 731 +3731 4)( do )3(m0)4 ) A (mg)
=|—-———4+ —In - - -
2 1152 108 3/ \ 8wy, Mo 3m3

- (5.113)

é]
6_172 .£>,21)15(P)
;(;,21)16 (Symmetriefaktor 1/4)

:(3,21)16(19 = 0) =
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o 4
4 3 2 A
= —(108a—4—|—81n—) mg( 90 ) (@) L Ailmo)
3 87 Mo 3mk

(5.114)
Ps 4
9 ( 260 14 4 go \* (mo\* Ay (mo)
— = ——+75a+—1n—)( = ) (~_) 1 -
op? 3,116(1’) o 81 3 3 8mmyg my Bmg
(5.115)

95,21)44 (Symmetriefaktor 1/4)

Pulp=0) = @

- 6
81 4 3 1 A
= (15 +—CT% —541n —) m? ( g0 ) (@) , Almo)
16 3 8y my 3m

(5.118)
9 L) ( 20021 297 ., 257 4)( 7 )3
<z _ (20021 297 ., 257, 4
dp? 3,144(?)102:0 64 39 + 3 113 ry—
» 6
6 A
(@) (1— 1(”;0)) (5.117)
L 3mg

5?1)45 (Symmetriefaktor 1/8)

:(3,21)45(17 = 0) =

A 8
4:4: 4: 3 4 A
= (—10+270a—|——1n—) mg( 0 ) (TO) 1 _ 1(720)
3 3 8wy mg 3mg

(5.118)
~ 6
0 139 106 . 4 3 6 i
3.2 :(521)45(17) = (— —63a— —1n —) (g_(i) (@) 1 — 1(”;0)
ap2” % 220 135 45 3 8mmg Mo 3m?2
(5.119)

;(,,21)46 (Symmetriefaktor 1/2)

g:(s,z1)46(P = 0) =

- 6
1 3 4 A
(2] (2) (-4 o
2 8wy my 3mg
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: 6
1295 3 6 A
st (o) () (-5 (5.121)
5184 \8mmy my 3m?
(2)

3,147 (Symmetriefaktor 1)

95?346( )

p?=0

:(5,21)47(19 = 0) =

N 6
= (_2 _ Zoret 4151 ﬁ) m ( % )3 (@)4  — Aulmo)
2 16 3 8wy i 3m?

(5.122)
. 6
0 923 225 81 4 3 6 A
= 0p)| = (5~ ™ - o) (52) (22) (1— 1(”20))
Op =0 192 512 48 3 8mrmyg mo Im;
(5.123)

g;(:.,zl)z_ts (Symmetriefaktor 1/2, 2 Permutationen)

:(5,21)48(19 = 0) =

- 4ln§m§( Jo )3(@)4(1—‘41(7”20))6 (5.124)

3mg
- 6
229 85, 4 3 6 A
() () () (A e
648 27 3 8w Mo 3m?

;(,,21)49 (Symmetriefaktor 1/4)

95?348( )

p?=0

:(5,21)49(19:0) =
11 of 9o \*/mo\?! .lel(mo) °
= (G omg)m (o) (50 (15 5129
0 L) ™mg

_( 9941_|_5()81 4)( 9o )3 (m0)6 . Al(mo) 6
“\T1728 T 27 3/ \Bxmo/ \1ig 32

(5.127)

0
3p2 :(*,21)49 (P)

p?=0
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;(,,21)50 (Symmetriefaktor 1/2)

:(3,21)50(p = 0) =

Qe ) () (-4
2 32 3 8wy L) 3mg

6

(5.128)
& ( 913 3159 ., 239 4)( 9o )3
— - (== _ et 4 T 2
gz s.10(P) om0 1728 512 48 ™ 3) 8rimg
- 6
6 A
(@) (1— 1("20)) (5.129)
Mg 3m§

;(,,21)51 (Symmetriefaktor 1/4)

:(3,21)51(13 = 0) =

A 6
44 4 3 4 A
= (—10+270a+—1n—) mg( g0 ) ({no) 1 _ 1(720)
3 3 8wy Mg 3mg

(5.130)
9 o) 7103 819 3187 4\ [ g0 \*/ma\® [, Ai(mo)\
5 | (T8, 3T 0y (v oyt ()l
Op?™ ™ 270 810 4 270 3 811 Mo Img

(5.131)

5?1)52 (Symmetriefaktor 1/2)
:E,,21)52(P =0) =
. 6
17 4 3 4 A
= (— —1lln —) mg ( %0 ) (@) 1- 1("20) (5.132)
4 3 8y Mg 3mg

_( 10393 1001, 4)( 7o )3(m0)6 . Ai(mo)\"
~\7 3456 T 108 3/ \8mn/ \7ig 3m2

(5.133)

J
a_p2 :(*,,21)52 (P)

p?=0
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Ergebnisse fiir T(?

Mit den Graphen der letzten Seiten (Gleichung (5.58) bis (5.132)) berechne ich nun
I'®. In der 3-Loop-Ordnung vernachlissige ich Terme mit Al(mo) und setze 17
direkt auf mg, da die Korrekturen in héherer Ordnung sind.

—T®(p=0)
1 1 1 1
= mp— 5613 — —G(” 25 G(” — 305 — 59515 — 5951n
2 4 2
1 (2) 1 2 2 1 2 1 2
—105i — (951 59&,32 - 108 - 0, - 2 G 2 8,
1 2 2 1 2 1 2 1 2 2 1 2
22 :(33?1 Zzg:(s,:gz ~ 1 :(5531 ~3 :(5532 ~3 :(5533 - 259’;7)1 - 2§g§,7)2
2 1 2 1 2 1 2 1 2 2 1 2
—229.5,,33 ~ 25057 ~ 2—G§ % — 2—G§ 6 — Z—Qé tos — .5,310 — 59

1 2 1 2 2
_zzgl(i,l)m - 2§Gg,l)13 25 g3 115 — g.’i 116 — g3 144 — g.’i 145 g{g,l)llfi

g _olgw lo@ lo Lo 1o
3,147 973,148 T T3040 T 9¥5,150 T 4 ¥5151 T 55,162

= ﬁ%ﬁ—m23 2 (1_‘(7+1n )+O( 3) (1—‘41(’”0))

287 3mg
[y A () (A
73 25, 4 39

3 e 1 v 1 go
[+ R Tmpe e (L) vo ) Gas

Hier wird (5.52) bis zur zweiten Ordnung benétigt.

~

Ai(mo) = (5.135)

s ({15 (o0 - 2) ror@) o+ B () o (o)

8mTmg 8mmy

Nach Einsetzen von (5.135) und (5.56) in (5.134) erhalten wir

1 g0
T (p=0) = {1+§8m (1- £ (v+ =~ 8) + O(e))
3 2 i g0 \?
“1+0 —Bd“‘] (—)
+[4( +0(e) + 3 8mme
29 5.4 8 27 .., 1 dw]
+[ 24(1+(9())+61n3 7 C + B
do 3 4
O . 5.136
(STrmO) + 90)} ( )

Der Ubersichtlichkeit halber fithre ich bei der Impulsableitung die Summe iiber
die oben aufgezihlten Graphen direkt aus. Nach Einsetzen von (5.56) und (5.135)
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erhalten wir als Ergebnis

0
— 1@
o7 (p)

141 f0 (1-5(y+In™ —2) + O(e))

8 8rmyg

4 ( go )2(1+O(e))

p?=0

648 8mmyg
931 19375 4 703
2221+ 0) — In = 4+ =2 5.137
+ [864( OO - a3t 7o (5.137)
2481 1 g \3
CTet _ _Bdw] ( ) O 4
* 1024 2270 | \Samg) T (42)

Mit den Reihen (5.57), (5.136) und (5.137) haben wir alle bendtigten Gréfien gefun-
den, um in den folgenden Kapiteln die Renormierungskonstanten und -gruppenfunk-
tionen sowie die universellen Amplitudenverhéltnisse zu berechnen. Die Renormie-
rung ist notwendig, da alle Reihen zumindest in 3-Loop-Ordnung Divergenzen auf-
weisen.



Kapitel 6

Renormierung

Eine Renormierung mufl durchgefithrt werden, da die zu Beginn der Rechnungen
eingefithrten nackten Parameter my und gy keine physikalische Bedeutung haben
und die Stérungsentwicklung der ¢*-Theorie, wie im vorigen Kapitel erwiihnt, Di-
vergenzen aufweist [WIL71]. Dabel werden neue, renormierte Groflen mg und gg
eingefiihrt, die eine physikalische Bedeutung haben. Neben der Masse und der Kopp-
lungskonstanten wird das Feld ¢ redefiniert.

Fiir eine ausfiihrliche Darstellung des Verfahrens verweise ich insbesondere auf
[HE193], wo diese Rechnungen schon bis zur 2-Loop-Ordnung durchgefiihrt wurden
und auf [CoL84, CAL76, TVT72, CL84].

An der Massendimension der Kopplung 1d8t sich ablesen, ob eine bestimmte
Theorie renormierbar ist oder nicht. Fiir [go] < 0 haben wir eine nicht renormierba-
re Theorie, da der Grad der Divergenz mit der Stérungsordnung wichst und somit
beliebig viele divergente Graphen auftreten. Fiir [go] = 0 ist die Theorie renormier-
bar und bei [go] > 0, wie in unserem Fall [go] = 1, sogar superrenormierbar. Das
heiflt, dafl wir nur eine endliche Anzahl von divergenten Graphen haben. Weil wir
eine massive Theorie betrachten, sind dies alles Ultraviolettdivergenzen, die durch
Integrationen iiber grofie Impulse auftreten (k 3> a™'). In masselosen Theorien gibt
es noch Infrarotdivergenzen, die fiir Integrationsimpulse & — 0 auftreten.

Aufgrund der Gitterstruktur des Festkorpers besitzt die Theorie prinzipiell einen
intrinsischen Impuls-Cutoff, der durch das Inverse der Gitterkonstanten gegeben ist.
Da das kritische Verhalten jedoch durch langreichweitige Fluktuationen dominiert
wird, muf} die Theorie unabhingig von mikroskopischen Parametern sein. So mufl
die Theorie insbesondere vom Impuls-Cutoff unabhéngig sein, der gegen Unendlich
geht, bzw. in der hier benutzten dimensionellen Regularisierung unabhingig von e
fiir e — 0.

6.1 Renormierungsschema

Zu Beginn dieses Kapitels fiihre ich einige Groflen ein, die zur Bestimmung der
Renormierungskonstanten notwendig sind. Zuerst sei hier die kritische Masse my,

68
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definiert, iiber deren Erreichen der Phaseniibergang gesteuert wird.
t=mi—m?, (6.1)

Perturbativ ist die Masse myg. nicht berechenbar [BB85], was aber im folgenden
nicht notwendig ist.

Die Vertex-Funktionen mit ¢*(z)-Insertionen FE”’”(pl, e Dn G, - - Q1 G0, M) WeI-
den durch Legendre-Transformationen beziiglich des Quellfeldes j und Fourier-Trans-
formation aus <¢0(m1) oo do(@a) B2 (yn) %gbg(yl))c bestimmt. Fiir I = 0 sind dies
die schon berechneten Vertex-Funktionen. Der Index 0 bezeichnet beil den Vertex-
Funktionen wie bei der Kopplung oder der Masse die nackte, unrenormierte Grofle.
Da die Wirkung dimensionslos ist, wird iiber

'ZO_D , bzw. hier im Fall D = 3: g := g0 (6.2)

myg L

Uy =

eine dimensionslose, nackte Kopplung eingefiihrt.

Die Renormierungsbedingungen kénnen bei verschwindenden &dufleren Impulsen
formuliert werden, weil wir eine massive Theorie haben. Es handelt sich um eine
weitgehend willkiirliche Festlegung, die jedoch die Rechnung einfach halt, ohne die
Ergebnisse zu beeinflussen.

Durch Entwicklung der 2-Punkt-Vertex-Funktion um p? = 0 definieren wir die
renormierte Masse mp und die Feldrenormierungskonstante Zj.

~T§ (p; my, go) = Zis (m% + 1"+ 0 (p")) (6.3)

daraus folgt fiir p? = 0:

F(2,0)(0.m )

2,0 ; Mo, Jo

myy 1= = Za(w)T5 (03 mo, 40) = <o 2 (6.4)
3 K
ap? 2220

_ oTs” (p; mo, go)

Zi (ug) = — = 5.7 (6.5)

P o

Die Korrelationslinge ist mit (1.11) als das Inverse der renormierten Masse gegeben:
E=—. (6.6)

Die Renormierungskonstante Z, wird durch
Zy (o) = _Fg2’l)(0: 0; 0; mo, go) (6.7)

definiert. Die Vertex-Funktionen mit ¢?-Insertionen lassen sich durch Ableiten aus
den gewdhnlichen Vertex-Funktionen bestimmen.

0

T6 ({23 0, 0} g0, mo) = .0 ({w5 33 9o, m0) (6.8)
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Hierbei steht {p; ¢} fiir den gesamten Variablensatz {p1,...,pn;q1,--., @}

Mit | 2| erhalten wir fiir (n,l) = (2,0)
Ty
iy — 9 e
Z2 (UO) - _8 2F0 (07 mo,go)- (69)
my

Nun kdnnen die renormierten Vertex-Funktionen und Felder bestimmt werden.

0 s = 200 (Z8) e gy gmo) (010

V Zs(uo)or(z) = ¢olz) (6.11)

Die renormierte Kopplung gg ist in beiden Phasen unterschiedlich definiert.

Symmetrische Phase

In der symmetrischen Phase wird die renormierte Kopplung iiber den Wert der
4-Punkt-Vertex-Funktion ohne duflere Impulse definiert.

Z2(u
422 = L0 mn, ga) = —Z2u0 )TV 10} o, 90) = go 2 (6.1)
Zl(’u.o)
Die Renormierungskonstante Z; . ist iiber
_ 1
253 (o) = =I5 ({0} o, g0) (6.13)
0

definiert. Bel den renormierten Parametern wird ebenso wie bei den nackten Gréflen
eine dimensionslose Kopplung eingefiihrt.

9%) D=3 gg)
=y = = 6.14
YR+ mi D ma (6.14)
Durch Invertieren der Gleichungen (6.4, 6.12) und (6.14) kénnen die nackten
Groflen durch die renormierten Parameter ausgedriickt werden. Somit lassen sich

die Renormierungskonstanten Z;, (¢ = 1,2, 3) als Funktionen von ug, ausdriicken.

Nun sei noch die dimensionslose Kopplung u, definiert, die sich aus (6.12, 6.14)
bestimmen l&f}t.

go Zl(“R)
Uy 1= =u 6.15
T omiE? T 23 (un) (6:43)

Diese wird im folgenden Kapitel bendtigt.

Zum Schluf fasse ich die Renormierungsbedingungen der symmetrischen Phase
nochmal zusammen.

2000 mp, ug) = —mi (6.16a)

0 120
— Iy (p;mpg, u = -1 6.16b
o5 (p; Mg, ug) s (6.16b)
ISV ({0} ma, ug) = —g (6.16¢)
T(0;0;mp, ug) = —1 (6.16d)
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Phase gebrochener Symmetrie

In der gebrochenen Phase bestimmen wir die renormierte Kopplung nicht iiber den
Wert der 4-Punkt-Vertex-Funktion, da durch die zusétzliche ¢*-Kopplung unprak-
tisch viele Diagramme beitragen wiirden. Stattdessen verwenden wir nach [LW87,
MM93] eine alternative Definition der Kopplung.

Die spontane Magnetisierung v des Feldes ¢ ist die Summe des Minimums v,,;,
und des Erwartungswertes von ¢_, der mit vy := G{% bezeichnet wird.

2
3mg

Jo

(6.17)

V= Upin + U Upin =

_1
Mit dem renormierten Vakuumerwartungswert vy := Z;_° v definiert sich die renor-

mierte Kopplung in der gebrochenen Phase

3m2 3Z3 Ug m2 Z3 U
gr— = 2R = (o) R2 = go 2( ) (6.18)
VR (Vmin + v0) Z§(uo)
Hierin ist die Renormierungskonstante Z,_ wie folgt definiert:
m
Zy_(uo) 1= —2 (1 +vg 22 (6.19)
mp 3mg

Eine dimensionslose renormierte Kopplungist wie in (6.14) definiert. Im weiteren
Verlauf ist mit ggg_ bzw. up+ immer die durch (6.12) definierte Kopplung gemeint,
wihrend gr_ und ug_ sich auf (6.18) beziehen. Soweit es eindeutig ist, werde ich
auf die Indizierung mit + bzw. — verzichten.

In Analogie zur symmetrischen Phase lassen sich die Renormierungskonstanten

Z;_(i = 2,3,4) durch Invertieren von (6.4, 6.18) als Funktion von ug_ bestimmen.
Die Kopplung u_ ist nach (6.18) durch

go Z;(ug)
_ = = —_— 6.20
u m}L{—D Up ZS(UR) ( )

gegeben.

Auch hier seien nochmals die Renormierungsbedingungen der gebrochenen Pha-
se zusammengefaflt.

2000 mp, ug) = —mi (6.21a)
0
WF%O)(P;mR,uR) = -1 (6.21b)
p ,'P2=0
3
U—2I‘S§’O)(0;mg,u3) = —gr (6.21c)
3

T2D(0;0;mp, ug) = —1 (6.21d)
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6.2 Renormierungsgruppe

In diesem Kapitel fiihre ich die Renormierungsgruppenfunktionen ein, die spéter zur
Bestimmung des Amplitudenverhéltnisses benétigt werden. Fiir eine ausfiihrlichere
Darstellung verweise ich auf [Ami84, BGZJ76, IIMT75].

Fiir die massiven, renormierten Vertex-Funktionen gilt

mp —2—
R(’)mR

n

+ (’ - 5) ns(ur) — 1772(“3)} T%({p; 4}; m, ur)

= (2 — n(ugp)) mETST ({p; 0, ¢} mg, ug),  (6.22)

wobel die Renormierungsgruppenfunktionen durch

+ B(ur) 9

6’&3

g0 G0

Blur) = mR% U (6.23a)
WS(UR) = ﬂ(UR)Zg(luR) % Z:}(UR) (6.23b)
mlun) = ﬂ(uﬂ)ﬁ% Z(un) (6.23¢)

g0
gegeben sind. Durch Umformung der partiellen Ableitung in (6.23a) erhalten wir

-1

B(ug) = —(4 — D) (a‘%ﬂ ]n(u)) = (;TR ln(u)) (6.24)

und
ms(ur) = PBlug) % In(Z3(ug)) = mg % In(Z3(ug)) (6.25a)
no(ur) = PBlug) % In (Zy(ug)) = mg % In(Z3(ug)). (6.25b)

g0 g0

Uber (6.25a) und (6.25b) ist eine weitere Renormierungsgruppenfunktion definiert.
v~ (ur) = 2 — n3(ug) + my(ur) (6.26)

Bei Losung der Renormierungsgruppengleichung (6.22) mit der Charakteristi-
kenmethode (siehe z.B. [BDFN92, Kapitel 11]) lassen sich die Fixpunkte der Kopp-
lung bestimmen, die durch die Nullstellen der A-Funktion gegeben sind. Da im Be-
reich eines Phaseniiberganges langreichweitiges Verhalten, entsprechend kleinen Im-
pulsen, dominiert, ist die nichttriviale Nullstelle u3 der S-Funktion relevant. Fiir
diese gilt:

Blugp) =0 B'(ug) > 0. (6.27)
Durch den Fixpunkt u}, sind auch die kritischen Exponenten n und v (1.16a, 1.17b)
festgelegt.

n=ns(ug) v = v(ug) (6.28)
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6.3 Berechnung der renormierten Gréfien

Nun werden mit den Ergebnissen des Kapitels 5 die oben hergeleiteten renormierten
Gréflen, Renormierungskonstanten und Renormierungsgruppenfunktionen als Rei-
hen in der renormierten, dimensionslosen Kopplung ugs entwickelt.

6.3.1 Symmetrische Phase

Alle hier betrachteten Grofien gelten nur fiir die symmetrische Phase, daher ist der
Index + auf den rechten Seiten der Gleichungen ausgelassen.

Zunichst sind hier die Ergebnisse des Kapitels 5.2 nochmals zitiert, allerdings
als Reihe in ugy := Ti—‘;: (6.2). Fiir die 2-Punkt-Funktion werden (5.18) und (5.19)
zu

—T890) = m? [1 - g—; 1-s(v+h o 2) +O(e)

+(30+00)- 57) (&) (6.29)

11 7.4 1N [uo)\® \
—I-(—ﬂ(l—I-O(e))—l-glng—l-Sa—l-—Bl )(—) —I—O(uo)

6 87
]_ U02
= 14— (=2
. +81(87r)
13 8. 4 8\ fup\®
———1———)(—) O (uf). (6.30
+(81 7373 \er) T () (6:30)

Aus dem Kehrwert der letzten Gleichung erhalten wir direkt die Feldrenormierungs-
konstante Z3, aus (6.5):

Zyy(ug) = 1—i(ﬂ)2

81 \8x
13 8 8 4\ fuo\? 4
Die 4-Punkt-Funktion aus (5.33) ist
KO =0) = —go |1— 22 (1— ¢ (y+ =) + O() +2 (u—°)2 (6.32)
0 287 2 ™ 8 '
7 15 4 Tet 1 div Uy ¥ 4

Mit diesen Reihen lassen sich die renormierte Masse und Kopplung als Reihen
bis zur dritten Ordnung in %, bestimmen.

mh, = —Za(uo)T(0)
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u mZ 79 1 v U 2
_ [1—§(1—§(7+1n?0—2)+(9(62))+(@—gBd )(é)

131 71 4 32 1.\ [uo\®
BT R L (1Y o "
+( 216 Tar "3 T3t sl T (u5) (6.33)
gt = —Z3(u)I5"" (ki = 0)
3'1150 2 Ug 2
- %P—igﬁf—@+m—J+O(D+Q§?Mu+omﬂ(§)
199 373, 4 128 1N\ fup\®
2y 18 _cTet__Bdw) (_) O (v 6.34
+(1296 54 '3 3 ° 70 ) \se) T (w)| (639
Durch Quotientenbildung erhalten wir
95%4) z 2
uﬂpzza = uoh—u—(1—5(7+m7§+1)+0&))
293 1 _ ..\ [up\?
— —B‘“”) (—) 6.35
+(216+6 87 (6.35)
13 74 Tet 1 div Ug 3 4

Da die nackten Gréflen als Reihen in ug, gesucht sind, invertiere ich die Glei-
chung (6.35) und erhalte die nackte (dimensionslose) Kopplung in Abhangigkeit der
renormierten. Hierbei ist zu beachten, dafl der divergente Anteil B#* im Logarith-
mus massenabhingig ist und durch

Bl .= (% —In (Zﬁ{) + % — A+ O (e )) 8i(1+0(e)) +0(u})  (6.36)

zu ersetzen ist.

Up c m2 9 185 1 div Ugr 2
ug 1+8—(1—5(7+1n—7}+1)+0(e))+( %—EBR)(g)

571, T4 1 .\ fu
) -t 1 = 4:8 CTet Bdw) (_R) O 4
+( 216 9 "3 5+ 480+ 5Pk ) \gr) T (v5)

Uy =

(6.37)

Biw ist wie B definiert, nur die nackte Masse ist gegen die renormierte Masse
ersetzt. Da dieser Term erst in 3-Loop-Ordnung auftritt, brauchen keine Korrekturen
hinzuaddiert werden. Diese tragen erst zur 4-Loop-Ordnung bei.

Indem ich (6.37) in (6.33) und (6.34) einsetze und nach mg bzw. g, aufldse,
bekomme ich:

2 245 1 _ .. ur\?
2 _ 2 div R’
Moy = |:1+8—(1——(7+11170_2)+0(6))+(@+§BR)(—8 )

691 71 4 32 ug)®
T2 e (0 o) e
+(324 273 30" gr) T (1) (6.38)
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mo= o |1+ et (1= 5 () + o) + 3 (5)

287 648 \ 87

257 373 4 128 3
( n-+-—a+t CT“) (U—R) +0 (u;)] . (6.39)

o6 T 52 "3 3 81

Hier ist zu beachten, dafl die nackte Kopplung keine divergenten Anteile mehr
enthalt.

Renormierungskonstanten

Nun bestimme ich die im Kapitel 6.1 definierten Renormierungskonstanten fiir die
symmetrische Phase in Abhéngigkeit von ug,. Der Grenziibergang e — 0 ist durch-
gefiihrt, womit alle Anteile O (e) wegfallen.

Durch Einsetzen von (6.37) in (6.31) erhalten wir

Zy(up) = 1— — (:—i)z (6.40)

5 8. 4 8\ [fug\® .

Die Renormierungskonstante Z;, bestimmt sich aus (6.13) zu

m - 1—%5—;(1—5(7+1nm73)+0(62))+2(§—;)2
- (—% + %ln % +48a 4+ CTet 4 %Bfi”) (:—;)3 +0 (u})
Ju 1 fup\?

= 155+ 3 (5r)
+ (% - 12—5111%—48@—0“'5) (:—i)ero(u;)
+ (—% + %111 % 4 48a+ CT“) (:—i)g +0(uf).  (6.41)

Fiir Z5, ergibt sich mit (6.7):
m - 1—%;‘—;(1—3(7+1nm73)+0(e2))+%(:—;)2

1 7 4 1N\ g\
____1 __4 __Bdw) (_) O 4
+( T R AT ()

— 1 1’U.R 1(11.}{)2
- 28T 6 \87

35 7. 4 ug\ 3
A N PAN S O N A
+(108 63 a) (811') +0 (uk)

1UR 9 Ur 2
Zav(u) = 1+§§+ﬁ(§)
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7 T 4 Up 3 4
+ (—ﬁ—F 1n§+4a) (g) +0 (uf) . (6.42)

Die dimensionslose Kopplung u der symmetrischen Phase wird nach (6.15) mit
(6.41) und (6.40) berechnet.

u — g_O(u ) =1 Zl(uR)
3’U.R 575 URp 2
= 14+ 4 [ =
i [ 28 | 324 (811')

957 373 4 128 wp?
_t 2 CT“) (—) O (u 6.43
+( 516 T 52 M3t T sr) (k)| (6.43)

Renormierungsgruppenfunktionen

Die im Kapitel 6.2 definierten Funktionen lassen sich wie die Renormierungskon-
stanten als Reihen in ug. entwickeln.

Mit (6.24) ergibt sich

-1 —1
15 Sulu
Be(ur) = —(3— 1H(U(UR))) —_“(UR)( 6( 2) )
UR mE Ur mpg
3UR 77 Upr 2
= —up1-E4 (22
YR 58r | 81 (871')
235 373 PANETTAS s
(gt e Iy 12800907 (1) 0 (uk) | (040

Die Renormierungsgruppenfunktionen 5, und 7y, berechnen sich aus (6.25a, 6.25b).

M+(ur) = —B(ur)

O o I A Y O Y (6.452)

Mo+ (ur) = —5(UR)m% Zy(ug)

. ].UR 1 UR) (323 T ) (UR)3 4
- 287r+6(87r *\3: 21113 12a){ g1 +0 (u)

(6.45b)

Mit (6.26) erhalten wir aus diesen Reihen

vi(ur) = (2—ns(ug) + ne(ug)) ™

N VI O
2 487 1296 \ 87

1343 47 up\? )
+(—5184 %lng-i-?a) (g) +0(uR)]. (6.46)
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In den Gleichungen (6.40) bis (6.46) sehen wir, daff alle Renormierungskonstan-
ten und -gruppenfunktionen in Abhéngigkeit von ug, frei von Divergenzen sind.

6.3.2 Phase gebrochener Symmetrie

Hier werden die Rechnungen des obigen Abschnittes fiir die Phase gebrochener Sym-
metrie durchgefithrt. Dementsprechend ist {iberall auf den rechten Seiten der Glei-
chungen der Index — weggelassen.

Als erstes sind hier die Ergebnisse des Kapitels 5.3 als Reihe in ug_ := 2= (6.2)
aufgefithrt. Fiir die 2-Punkt-Funktion werden (5.136) und (5.137) zu

—T90) = [1—1—%:—0(1——(7—1—111——8)4-@( 8)

+ (3(1+0( ) + B‘“”) (g—:rf

29 5, 4 8 27 1. 3
+(__+€1 - = —CT“+—B§W) (”—;) +0(u§)]

24 31" 32 6 8

(6.47)

0 (2,0) 1 Ug m? 9 41 Ug 2
~ —T§ = 14— (1—¢(y+mh™—2)40 ——(—)
R mo sar (173 (4= 2) 3 0() - e (6

931 19375 4 703 2481 1, 3

(_ T T4+, CTet .Bfw) (ﬂ)

864 2592 3 ' 48 | 1024 24 87

+0 (ug) - (6.48)

Der Kehrwert der letzten Gleichung ist die Feldrenormierungskonstante (6.5):

1 g 409 7 ug\2
o = 1--—2(1-¢ m™ —2)+ 0 —(—)
3-(un) 881 ( (v+1n 52 = 2) + O(e ))+5184 87
45425 19375, 4 703 2481 3
(_ _|_ ].Il g = _CTet Bdw) (E)
41472 7 2592 T3 48" 1024 24 87
+0 (ug) . (6.49)

Der Erwartungswert der 1-Punkt-Funktion (5.57) ist
3 m2 1
Gl — V2o [(1 s (’Y+1ﬂ_wa B 2) n 0(62)) n Bdwsﬂ-

+ (—1 — %ln % — ;a — 11—601"“) (;‘—;) +0 (ug)] . (6.50)

Mit diesen Reihen lassen sich die renormierte Masse und Kopplung als Reihen
bis zur dritten Ordnung in u;_ bestimmen.

mh_ = —Zs(uo)T5V(0)
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= m [HEﬂ(l—g(v+1n’"73—1o)+0(e2))

88w
3973 2 .. up \
_de'u) (_)

+ (5184 + 3 8

101245 21535, 4 1723 3345 1_ .. 3

(101285 210, 417, S0, 1) ()

41472 2592 3 48 1024 8 8
+0 (ug)] (6.51)
3Im% 3Z3(ug)m%

Jr- = 2

[T g ) o) ¢ (2’

48 5184 \8&7
4051 21319, 4 1045 2849 T 3
(_ _|_ n-— — a— CTet _Bfw) (’U._O)
576 ' 1296 3 24 512 12 87
+0 (u})] (6.52)

Daraus ergibt sich

_ 9r 31 ug ¢ m 38 2
wne= 2 = 1T (-5 (v - 3+ 0()
N (45565 B leiu) (u_0)2
13824 3 8
341551 21247 4 819 8051 31, 3
(LB 22T 4 B9, S5 B gy (1)
73728 ' 1728 3 32 2048 24 8
+0 (u)] . (6.53)

Um die nackten Gréflen als Reihen in ug_ zu bekommen, invertiere ich die
Gleichung (6.53). Der divergente Anteil B4® im Logarithmus ist in der gebrochenen
Phase durch

: 1 m? C Jug
B¥#v.— [Z_In|—Lf]+4+ = — O - 2140 O (u? 6.54
i (P (TE) + - vh000) - fama o) 1o (i) (659
ZU ersetzen.
_ 3lug ¢ mi 38 2
Up— = uR[l—FEg(l—g(v-l-lnTo—ﬁ)-i-(’)(e))

58223 1 _ ..\ (up)?
_Bdw) (_)
+(13824+3 B 87
150985 21247, 4 819 8051 31 . 3
( ! e+ 22 pii) (52) +o(4)]

U
0
87

13824 1728 3 3277 2048 16

(6.55)
Aus (6.51) und (6.52) wird nun:

3UR

mg— = m?i [1_§§ (1—§(Y+1nm73—10)—|—0(62))
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14021 —Bd“’) (u_R)2
8w

55213 21535, 4 1723 (. 3
+ ( In -+ a— —ij{”) (U—R) + O (u}%)

(6.56)

110592 2592 ~ 3 48 3 87

TUR c m2 2 9 177 Up 2
Lt pem (s (remE =2 1 0() + 555 (52) (637
1225511 21319 4 1045 2849 3
( + 55e) () +o (u)].

— n - a
165888 1296 3 24 212 8w

9r

Auch hier ist, ebenso wie in der symmetrischen Phase, die letzte Gleichung frei von
Divergenzen.

Renormierungskonstanten

Die Renormierungskonstanten Z;_(i = 2, 3, 4) aus Kapitel 6.1 werden nunin Abhing-
igkeit von ug_ bestimmt. Der Grenziibergang ¢ —+ 0 ist durchgefiihrt.

Aus (6.55) und (6.49) erhalten wir
1UR 1693 (UR)2

Z_ o z¥m 2DY90 (UR
3-(un) 887 10368 \ 87

450461 19375 4 703 2481 up\®
_ 1 I CTet) (_) O 4 )
( 331776 2502 "3 48 % 10:a + O (u)

Zg_ berechnet sich mit (6.7):

1 1 Ug 2 Ug 2
N e (e In ™ —6) +0(?)) - = (=2
Zy_(ug) + 487 ( (FY—I_ T ) +O(e )) 3 (871')

17 5. 4 85 27 1\ fug\?
- _1 - e _CTet _ _Bdw) (_0) O 4
+ (48 3T gt 5 2ot J\er) T ()

2
R
= 14+-_E_ 20 (R
+4:87T 192(8
51217 5. 4 85 27 3
+(————1 —+—a+—CT6‘*) ("—R) +0 (u)

55206 1203 8" 54 Py
]_UR R 2
Zo(un) = 1= g+ 100 (52)
45313 5 4 85 27 up\?
5,4 8 __cTet) (_) O (ut). (659
(55296+12 3 87 64 sr) (uh) (6:59)

Aus dem Vakuumerwartungswert bestimmt sich die Renormierungskonstante Z,_
nach (6.19).

13w, 21481 /ug

e - 1)

1-(un) T l68r 41472 \3
952757 21535 4 1387 3217 13 3
( _ In = 4 ol 4 22 Loer Bf“’) (@)
663552 5184 3 ' 96 2048 48 8

+0 (ug)
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13up 43805 fug\?
= 1+ —=—+—= | 6.60
+ 16 87 41472 (811') ( )
75341 23263, 4 1387 3217 4o uR)3 s
(41472_ 5184 "3 96 “ T 2018¢ )(811' +0 (i)
Die dimensionslose Kopplung u_ der gebrochenen Phase wird nach (6.20) be-
rechnet.
90 Z}(ug)
u- = —/(ug)=
mR( R) Z;;(UR)
7’U.R 8177 UR)2
= 14 ——4 — | — 6.61
UR[+4SW+2592(8 (6.61)

24 512

m
1225511 21319 4 1045 2849 wp
Bt 2 B (5o
(165888 1296 3 at s.) (uk)

Renormierungsgruppenfunktionen

Zum Abschlufl dieses Kapitels werden noch die Renormierungsgruppenfunktionen
der Phase gebrochener Symmetrie als Reihen in ugi_ entwickeln.

Diese Rechnungen sind analog zu den Rechnungen auf Seite 76 mit den Renor-
mierungskonstanten der gebrochenen Phase durchzufiihren.

_1 —
15 Sulu
f(un) = — 2| m(ua)| = —u(ug) | 242
Oug dug
mRpg mR
7UR 239 R
e Ly 7 6.62
YR 187 1296(8 ) (6.62)
821989 21319 4 1045 8547 up\?
_ _ In = _CTet) (_) O 4
(165888 32 M3t g 0T sr) T (vk)
1 9
_ = — —_ Z
3 (UR) ﬂ(uR)Zg(uR) g . 3(“&)
].UR 10 URr 2
_ lur 10 /up 6.63
8 87 + 81 (871') ( a)
1166011 19375. 4 703 7443 up\ 3
_ 1 - it _CTet) (_R) O 4
(331776 561 "3 16° 7 1024 sn) T (k)
10
_ - - Y| z
T2 (UR) ﬂ(UR)Zg(UR) Bup . 2(“1{)
1 83 2 319345 5. 4 255 81 3
Lo S (5t 5 o) )
187 96 \8x 165888 4 37 g 64 8
+0 (ug) (6.63D)

v_(ur) = (2—m(ugr)+ mlug))™"
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1 1 10325 2
- 2 [1 el (“R) (6.64)

1687 | 20736 \87

1687 ' 20736
1763563 18295 4 193 6147 s
( 1 2o C) (35) w0 (u;)]

663552 1728 3 T 3% 9048 Py

Alle Renormierungskonstanten und -gruppenfunktionen sind in Abh#ngigkeit
von ug— frei von Divergenzen.

Mit den Reihen in den Abschnitten 6.3.1 und 6.3.2 sind nun alle bendtigten
Groflen in Abhéngigkeit der renormierten Kopplungskonstanten wpy bestimmt, und
wir kénnen in den beiden nachsten Kapiteln die Amplitudenverhéltnisse der Korre-
lationsldnge und Suszeptibilitdt berechnen.



Kapitel 7

Amplitudenverhiltnis der
Korrelationslange

Die Korrelationsliange (1.11) ist ein Maf fiir die Grdfie der Bereiche, in denen eine
einheitliche Spinrichtung auftritt. In diesem Kapitel berechne ich das Amplituden-
verhéltnis der Korrelationslange am kritischen Punkt.

Zunichst wird eine Bestimmungsgleichung hergeleitet, die von den in den beiden
letzten Kapiteln bestimmten Grofien abhéngt. Danach wird eine einheitliche Kopp-
lungskonstante fiir beide Phasen etabliert. Diese 1a83t sich dann am Hochtemperatur-
oder Tieftemperaturfixpunkt auswerten.

Hier wird die Unterscheidung der beiden Phasen ganz wesentlich, daher werden
alle Gréfien und Funktionen im folgenden mit einem Index versehen. “4” bezieht
sich auf die Reihen aus Abschnitt 6.3.1, wihrend sich “—” auf die aus Abschnitt
6.3.2 bezieht.

7.1 Die Bestimmungsgleichung

Die Korrelationslange hat nach (1.16a) bel Annidherung an die kritische Temperatur
T. das Divergenzverhalten

e ~ falt|™, (7.1)

wobei die reduzierte Temperatur ¢ wie in (1.12) definiert ist. Gesucht ist das uni-
verselle Amplitudenverhéltnis fi_ in Abh#ngigkeit der Kopplungskonstanten. Die
Korrelationslange 148t sich nach (1.11) mit der inversen renormierten Masse iden-
tifizieren. Neben der reduzierten Temperatur ¢ aus (6.1) fithre ich noch die Tem-
peraturen f, := || der Hoch- bzw. Tieftemperaturphase ein. Damit gilt fiir die

Hochtemperaturphase

1

Mpy

=&~ f4tl”, ty = (md —md )rsy, >0 (7.2)

82
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und die Tieftemperaturphase

—— =&~ a2t =—(mf—mg )r<r, > 0. (7.3)
mp_

Da, wie im Kapitel 6.1 schon erwahnt, die kritische nackte Masse mg. nicht
perturbativ berechenbar ist, werden Funktionen verwendet, die durch Ableitungen
nach der nackten Masse m, gebildet werden. Wegen (6.1) gilt die Identitit

d e}
—| = 7.4
ot om? (74)
g0 a0
Wir definieren die Funktionen
Om?
F. = it 7.5
+(urz) o, | (7.5)
In der Hochtemperaturphase haben wir wegen ¢, = und (1.53):
Om¥,  Omy, Om3, Omj3. om3,,
_ _ _ ~ Fu(ums).  (76)
ot omi |~ omi Oml,| =~ omi | ~— T
Analog gilt in der Tieftemperaturphase mit t_ = —f und (1.59):
om3,_ om3,_ Om2_ Om?,_ om3,_
= — = — == 2F_ — ). 77
Bt_ omy | omy omi_| ~ " 9ml | (up-). (7.7)

Durch Division von (7.7) durch (7.6) und Differenzieren von (7.2) und (7.3) erhalten

WIr
2
Omy_

F_(UR_) _ e _ (f_+)2 (_t__)2u—l
RO o =) e . (7.8)

+ lgo

Durch direkte Quotientenbildung von (7.2) und (7.3) bekommen wir:

FE (1 (e 2
(7) (&) -(G) &
Also folgt aus (7.8) und (7.9), daf3

S Folun) _ (ma_)2t_+ (7.10)

mMmpy+ 1_

ist. Die gesuchte linke Seite ist abhéngig von der renormierten Masse und der Tem-
peratur in beiden Phasen, wobei in jeder Phase ein Parameter frei wahlbar ist. Wir
setzen

Mmprp+ — Mp—, (711)
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wodurch die renormierten Kopplungen ug, und ug_ in eindeutige Beziechung zuein-
ander gesetzt werden, ebenso wie ¢, und f_. Mit (7.2) und (7.3) ergibt sich

foly = AT

fe (“)y_ (7.12)

i i
Gleichung (7.10) vereinfacht sich zu
Ty F_(ug-)
— =2——-=L =29 —). 7.13
i Fy(uny) (ur+, ur-) ( )

Durch Einsetzen der letzten Gleichung in (7.12) erhalten wir das Amplitudenverhalt-
nis der Korrelationslange

v

f+ _ [2 F_(un-) (7.14)

f- B Fi(ugy)
Die Funktionen F, und F_ bzw. & lassen sich als Reihen in ugs berechnen. Da

die beiden renormierten Kopplungen unterschiedlich sind, wird im folgenden eine
zusitzliche, einheitliche Kopplung eingefiihrt. Die renormierten Kopplungen ugs
lassen sich dann als Reihen in dieser neuen Kopplung bestimmen.

Wie schon im Kapitel 6.2 geschrieben, nimmt die dimensionslose renormierte
Kopplung am kritischen Punkt ihren infrarotstabilen Fixpunktwert an. Dieser ist
durch die nichttriviale Nullstelle der g-Funktion gegeben. Eine einheitliche Kopp-
lungskonstante ug sollte in beiden Phasen denselben Fixpunktwert haben.

Mit der Bedingung, daf} die 8-Funktion in beiden Phasen dieselbe Gestalt hat,
1a8¢ sich dies erfiillen. Wir definieren eine neue #-Funktion in Abhingigkeit von ug.

B1(ig) == mps 9 aR(mRi)(Gﬁ)_(zL_D)(% ln(ui(ﬂR))) (7.15)

MR+

Aus der Definition (7.15) folgt mit (7.11) direkt, daf
B4+ (ur) = B-(ur) (7.186)

ist. Die dimensionslosen Kopplungen uwy = mg}‘;i sind als Reihen in wgi gegeben

(6.43, 6.61). Bendtigt wird noch die Reihe

ﬂR(uR:I:) = UR+ (1 + CLE&)UR:I: + CIEE)U?H: + a(f)ufﬁ + O (U}}{i)) (717)
bis zur gewiinschten Ordnung. An dieser Stelle ist zu bemerken, daf alle dimen-
sionslosen Kopplungen in erster Ordnung iibereinstimmen. Also gilt zum Beispiel

Durch Invertieren von (7.17) erhalten wir ugy(ug). Da

u(ig) = u_(@g) (7.18)

wegen der rechten Seite von (7.15) gelten muf}, haben wir nun zwel Méglichkeiten
up+ als Reihen in up zu bestimmen, die Anpassung an die Hochtemperatur- oder
die Tieftemperaturkopplung.
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Hochtemperaturkopplung

Die Kopplung #g wird mit ugy identifiziert, und wir bestimmen aus (7.18) die

Abhidngigkeit von ug_(ug). Durch Invertieren von (6.61) und Einsetzen von (6.43)
erhalte ich

_ Zy(u-)

up—(ug) = [u_—

Zi (u-)

Damit 14t sich ® (7.13) und ?_t (7.14) als Funktion von #g ausdriicken und am
Hochtemperaturfixpunkt uy, berechnen.

(7.19)

] u_=uy(uRy=uR)

@4_(&1{) = (I)('UZR+ = '&R; Up— = UR_(ZTLR)) (720)

Hier steht der Index “+” an der Gréfie &, fiir die Hochtemperaturkopplung.

Tieftemperaturkopplung

Hier wird die Kopplung @#g mit ug_ identifiziert, und wir bestimmen ug, (ig) aus
(6.43) und (6.61).

(7.21)

upy(tg) =

Ebenso wie bei der Hochtemperaturkopplung lassen sich ® und L_t als Funktion von
up bestimmen und am Tieftemperaturfixpunkt uj,_ berechnen.

(P_(TTLR) = (I)(UR+ = UR+ (ﬂR), Up_ — '&R) (722)

7.2 Berechnung der Reihen

Um das gerade vorgestellte Verfahren anzuwenden, bestimme ich zuerst die in (7.5)
definierten Reihen in ihren eigenen Kopplungen.

(s z—6><“R+> o) o
3
(B 2 e (2 o ()

(7.24)

Mit diesen Reihen lafit sich die Entwicklung in den beiden Kopplungen berechnen.
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7.2.1 Reihen der Hochtemperaturkopplung

Zur Auswertung des Amplitudenverhiltnisses %"— bzw. &, am Hochtemperaturfix-

punkt muf} zuerst nach (7.19) die Abhingigkeit von up_ (ug+) bestimmt werden.

Tu_ N 7699 (u_)2

4 8 2592 \ 87
( 1091671 213191 % 1045 _ 28490Tet) (u__)3
&

up_(ugs) = u_ [1

— + n-——_——a
165888 1296 3 24 012
O 4
+ (u_)]u_=u+(uR+)

1 UR+ 1309 (UR+)2
4 8w 2592 \ 8«

(_2517734_30271h1§__za__23370Td) (UR+)3
55296 ' 1296 3 8 512 8

+0 (up, )] (7.25)
Mit der Reihe (7.25) wird (7.24) zu:

3 Upr+ 269 (UR+)2
F. = g YRt 200 (URY
(urs) t 1687 768 \ 8r

300913 21535, 4 1723 3345 5
( 1 CT“)(Eﬂi) + 0 (uly,) -

= URp+ [1

T663552  5ist "3 o6 “ 7 2048

87
(7.26)

Nun kann &, entwickelt werden:
F_(ugr+)
$,(u —_—
+( R+) F+(U.R+)

— 1+EUR+_ ﬂ(_uR"')Q
16 87 256 \ 8«

435937 14719, 4 745 3345 wg\?
( 663552 5184 "3 1 32° 7T 2018 e (vt

(7.27)

Diese Reihe wird im folgenden Kapitel mit Padé-Borel-Approximanten numerisch
ausgewertet. Das Amplitudenverhéltnis ist nun direkt durch Vorgabe des kritischen
Exponenten v gegeben.

P ) = (0u(un)”

o [1 N llvugy —39v + 12102 (uR+)2

16 8r 512 87
| (437125 — 3474007 4 35937V 147190 4
663552 5184 3

T45p 3345y _ o\ [ Ur+\® .
52 5028 © ) (?EF) +0(uky)| (7.28)
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7.2.2 Reihen der Tieftemperaturkopplung

Um £+ bzw. &_ am Tieftemperaturfixpunkt auszuwerten, bestimmen wir zuerst

up+(ur—) nach (7.21).

3U+ + 883 (U+)2
28r 324 \ 8«

19 373 4 128 3
+ (—— ——In—-———a-— C’Tet) (u_+) + 0 (ui)]

wne(u) = us [1

8 o4 3 3 8

wy=u_(up-)

1 Up— n 1633 (UR_)2
4 87 2592 \ 87

872999 30271, 4 7 2337 N3
+ ( In=+—a+ —CT“) (ui) +0 (u;_)]

= Up-— [1+

165888 1296 3 8 512 8T
(7.29)

Durch Einsetzen in (7.23) bekommen wir:

].UR_ 1 Up_— 2
Felun-) = 1-5%; _E( )

43 TL, 4 16\ fup)\®
=Rt 2O (M) L o(ul). (1.3
+ (108 543 3 a) ( 87 ) +0 (uh) (7.30)

Mit dieser Reihe kann ®_ entwickelt werden.

F_(’U.R_)
®_(up-) = ———=
(U‘R ) F+(U.R_)
11 Up_— 85 UR_)2
= 1+———4+ —|—
+16 8w +256(87r

95393 14719 4 745 3345 wp\ 3
— —_ 1 _ - CTet)( ) O 4
+( 663552 5182 37 327 2018 s ) (i)
(7.31)

Ebenso wie (7.27) wird diese Reihe im folgenden Kapitel mit Padé-Borel-Approxi-
manten numerisch ausgewertet. Fiir das Amplitudenverhéltnis ergibt sich:

f y

f_i(uR—:V) = (2®_(ur-))

o 14 11y up— N 49y 4 121p? (uR_)2
16 8« 512 8T

n (—1749891/ + 436592 4+ 35937Tp* 14719 4

663552 T 5184 '3

7451 3345v _ ..\ (ur—\* A
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7.3 Numerische Ergebnisse

Die numerische Auswertung der Reihen fiithre ich im folgenden fiir die Hoch- und
Tieftemperaturkopplung durch. Dabei wird jeweils die Bestimmung der Grofle &4 im
Vordergrund stehen. Um die Reihen auszuwerten, verwende ich Padé- Approximanten
sowie das Padé-Borel-Verfahren, das in Anhang B beschrieben ist. Ein [k, {]-Padé be-
zeichnet dabel eine Approximation durch eine gebrochenrationale Funktion, deren
Zahlerpolynom den Grad k¥ und der Nenner den Grad [ hat.

Fiir den kritischen Exponenten v, der in (6.46) und (6.64) als Reihe gegeben ist,
werden neben diesen Werten auch Literaturwerte eingesetzt. Die Fixpunktwerte der
Hoch- und Tieftemperaturkopplung sind der Literatur entnommen. Die Nullstellen
der Gi-Funktion (6.44, 6.62) haben eine grofie Varianz und erscheinen dadurch zur
Bestimmung des Amplitudenverhiltnisses untauglich (siehe [GUT95]).

7.3.1 Hochtemperaturfixpunkt

In der Hochtemperaturphase haben wir die Fixpunktwerte

upy, = 23.73(8)
Uy, = 24.56(10)

[GZJ80, ZJ82] Renormierungsgruppe in 3-D

: (7.33)
[S1E93] Hochtemperatur-Entwicklung

an denen (7.27) berechnet wird.

Zuerst wird die Reihe direkt durch Padé-Approximanten ausgewertet (Tabelle
7.1). Wie insbesondere an den Werten der [1,2]-Padé zu erkennen ist, haben wir hier
ein sehr schlechtes Konvergenzverhalten.

Fixpunkt P, (up,)
Ugy [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 1.4266 1.6892 0.0190 1.1031
24.56 1.4198 1.7138 -0.1021 1.0709

Tabelle 7.1: &, in Abhangigkeit vom Fixpunktwert u}_ .

Fixpunkt Borel-Transformierte von ®, (uj, )
Uy [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 1.4266 1.6962 1.4424 1.3688
24.56 1.4198 1.7212 1.4472 1.3579

Tabelle 7.2: Padé-Borel-Approximante von &, am Fixpunktwert uj;
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Durch Anwendung des Padé-Borel-Verfahrens lassen sich bessere Werte erzielen.
Die inverse Borel-Transformation wird als numerische Integration durchgefiihrt. Die
Werte der [0,3]-Padé aus Tabelle 7.2 sind durch Partialbruchzerlegung und Berech-
nen des Hauptwertintegrals iiber die Polstelle bestimmt.

Nun wird noch aus den oben bestimmten Werten das Amplitudenverhéltnis nach
(7.14) berechnet. Dabei beziehen sich die Tabellen 7.3 und 7.4 auf die ®,-Werte aus
Tabelle 7.1. Fiir den kritischen Exponenten setze ich folgende Werte ein.

v = 0.624(2)

v = 0.627(9)
v = 0.6300(15)

[BGHP92] Monte-Carlo Renormierungsgruppe

[DEC85] Tieftemperaturentwicklung (7.34)

[GZJ80, ZJ82] Renormierungsgruppe in 3-D

Amplitudenverhiltnis %(UEJF = 23.73,v)

v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
0.624 1.9237 2.1376 0.1298 1.6384
0.627 1.9297 2.1454 0.1285 1.6423
0.630 1.9358 2.1533 0.1272 1.6462

Tabelle 7.3: Amplitudenverhaltnis der Korrelationslange unter Vorgabe von v
am Fixpunktwert u}, = 23.73

Amplitudenverhéiltnis ;i(”jﬂ = 24.56,v)

v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
0.624 1.9179 2.1569 / 1.6084
0.627 1.9240 2.1649 / 1.6121
0.630 1.9300 2.1729 / 1.6158

Tabelle 7.4: Amplitudenverhéltnis der Korrelationslange unter Vorgabe von v
am Fixpunktwert v}, = 24.56

Die [1,2]-Padé lassen sich fiir den Fixpunkt w}, = 24.56 nicht berechnen, da
., (24.56) < 0 ist.

Aus den Daten der Padé-Borel-Transformierten ®,-Funktion (Tabelle 7.2) be-
komme ich die Werte der Tabelle 7.5. Die [3,0]-Padé stimmen mit den ersten Spalten
der Tabellen 7.3 und 7.4 iberein, da die Padé-Approximante mit dem urspriingli-
chem Polynom iibereinstimmt, und somit die Borel-Transformation keinen Einfluf}
hat.
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Amplitudenverhéltnis f+ , .
Padé-Borel-Verfahren f__(uR'H )
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
wh, = 23.73
0.624 1.9237 2.1431 1.9369 1.8746
0.627 1.9297 2.1509 1.9430 1.8803
0.630 1.9358 2.1588 1.9492 1.8860
wh, = 24.56
0.624 1.9179 2.1627 1.9410 1.8653
0.627 1.9240 2.1708 1.9472 1.8709
0.630 1.9300 2.1788 1.9534 1.8765

Tabelle 7.5: Amplitudenverhaltnis berechnet nach dem Padé-Borel-Verfahren

Das Amplitudenverhéltnis 188t sich ohne Vorgabe von v durch Einsetzen von
(6.46) in (7.14) bestimmen. Diese Werte sind in Tabelle 7.6 aufgefiihrt.

pe | e
Up, [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 2.0018 2.0790 2.4546 1.8081
24.56 2.0168 2.1039 2.5183 1.7973

Tabelle 7.6: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert u, .

7.3.2 Tieftemperaturfixpunkt

In der Phase gebrochener Symmetrie wird (7.31) an den Fixpunkten

ul,_ = 14.73(14)
i = 15.1(1.3)

[SIE93] Tieftemperaturentwicklung

[HE193] (7.35)

ausgewertet.

In Tabelle 7.7 sind die Ergebnisse der Padé-Approximanten aufgelistet. Tabelle
7.8 fiihrt die mit dem Padé-Borel-Verfahren bestimmten Werte auf. Aus den Werten
der Tabelle 7.7 berechnet sich das Amplitudenverhaltnis wie in 7.9 aufgelistet. Die
Werte in Tabelle 7.10 sind mit Padé-Borel-Verfahren bestimmt. Tabelle 7.11 listet
die Werte der direkten Bestimmung des Amplitudenverhaltnisses auf.
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Fixpunkt D_(uf_)
U [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.5330 1.5355 1.5178 1.5246
15.1 1.5501 1.5530 1.5330 1.5407

Tabelle 7.7: ®_ in Abhangigkeit vom Fixpunktwert u},_.

Fixpunkt Borel-Transformierte von ®_(uj,_)
Up_ [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.5330 1.5369 1.4973 1.4645
15.1 1.5501 1.5545 1.5107 1.4680

Tabelle 7.8: Padé-Borel-Approximante von &_ am Fixpunktwert u},_

In Abbildung 7.1 ist ®_ als Funktion der renormierten Kopplung aufgetragen.
Dabei sind als Linien von oben nach unten der [2,1]-Padé, [3,0]-Padé, [0,3]-Padé und
[1,2]-Padé aufgetragen. Die beiden Fehlerbalken stehen an den Stellen der eingesetz-
ten Fixpunktwerte. Abbildung 7.2 zeigt dieselbe Funktion, allerdings nach Anwen-
dung des Padé-Borel-Verfahrens. Von oben nach unten sind es der [2,1], [3,0], [1,2]
und [0,3]-Padé. Die Kurven haben eine deutlich héhere Streuung. Daraus folgt, daf}
dieses Verfahren hier nicht angemessen ist, da es keine besseren Ergebnisse liefert.

Amplitudenverhiltnis f—+(u}}_, v)
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
= 14.73
0.624 2.0119 2.0140 1.9995 2.0051
0.627 2.0187 2.0208 2.0062 2.0118
0.630 2.0255 2.0277 2.0129 2.0186
wh_ = 15.1
0.624 2.0259 2.0283 2.0120 2.0183
0.627 2.0328 2.0352 2.0187 2.0251
0.630 2.0397 2.0421 2.0255 2.0319

am Fixpunktwert u},_

Tabelle 7.9: Amplitudenverhaltnis der Korrelationslange unter Vorgabe von v



92 KAPITEL 7. AMPLITUDENVERHALTNIS DER KORRELATIONSLANGE

o
1.58 T
1.56 T
1.54 +
1.52 +
1.50 I I I f f
14.5 14.7 14.9 15.1 15.3 15.5 UR-
Abbildung 7.1: ®_ gegen up_ aufgetragen
o
1.56 4 /
el /
1.52 + (/
Q
1.48 +
/"_‘
——/
146 E—— + | | | |
14.5 14.7 14.9 15.1 15.3 15.5 “A-

Abbildung 7.2: ®_(ug_) nach Padé-Borel-Verfahren
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Amplitudenverhé&ltnis f_+(uE_ v)
Padé-Borel-Verfahren f_ ’
v [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
wh = 14.73
0.624 2.0119 2.0152 1.9826 1.9554
0.627 2.0187 2.0220 1.9891 1.9617
0.630 2.0255 2.0288 1.9957 1.9680
wl = 15.1
0.624 2.0259 2.0295 1.9937 1.9583
0.627 2.0328 2.0365 2.0003 1.9647
0.630 2.0397 2.0434 2.0070 1.9710

Tabelle 7.10: Amplitudenverhaltnis berechnet nach Padé-Borel-Verfahren

Fixpunkt A.mplitudem.ferh‘ciltnis I+ ()
direkte Bestimmung f_
U [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 1.8975 2.2232 2.6024 1.9649
15.1 1.9177 2.3115 2.8804 1.9940

93

Tabelle 7.11: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert uj,_.

7.4 Diskussion

Um die Ergebnisse der Rechnungen auszuwerten, wurde jeweils iiber die vier Padé-
Approximanten gemittelt und der Maximalfehler bestimmt. Dabei kommen die Wer-
te der folgenden Tabelle 7.12 heraus. Bei der Mittelung tiber die Padé-Approximan-

D, Hochtemperaturfixpunkt | Tieftemperaturfixpunkt
Padé-Approximanten 1.40(33) 1.536(18)
Padé-Borel Verfahren 1.49(24) 1.514(50)

Tabelle 7.12: Gemittelte Werte von &4

ten der Hochtemperaturkopplung wurde der Wert der [1,2]-Padé weggelassen, da er
weit auflerhalb der méglichen Lésung liegt.

Am Tieftemperaturfixpunkt ist der Spielraum der Werte ungefahr um einen Fak-
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tor zehn geringer als am Hochtemperaturfixpunkt. Beim Hochtemperaturfixpunkt
bringt die Verwendung von Borel-Transformierten eine deutliche Verringerung des
relativen Fehlers auf ca. 16%.

Dagegen bringt das Padé-Borel-Verfahren in der Tieftemperaturphase keine bes-
sere Konvergenz. Insgesamt ist der Fehler zwar deutlich kleiner als in der Hochtem-
peraturphase, aber ohne Borel-Transfomation ist die Varianz noch geringer.

Um diese Ergebnisse mit Literaturwerten zu vergleichen, betrachte ich direkt
das Amplitudenverhéltnis. Dieses wird durch Potenzierung mit dem kritischen Ex-
ponenten v aus ®. gewonnen. Dabei ist v einmal durch die Literaturwerte aus
(7.34) gegeben. Die zweite Mglichkeit ist die Bestimmung iiber (6.46, 6.64), wie sie
in [GuT95] ausfiihrlich dargestellt wird.

T+

7 Hochtemperaturfixpunkt | Tieftemperaturfixpunkt

Padé-Approximanten 1.90(29) 2.021(22)
Padé-Borel-Verfahren 1.98(20) 2.003(48)
Direkte Bestimmung 2.10(42) 2.22(66)

Tabelle 7.13: Gemittelte Werte des Amplitudenverhaltnisses der Korrelationslange

Die Werte der direkten Bestimmung des Amplitudenverhéltnisses haben an bei-
den Fixpunkten die grofiten Fehler. Dies 1488t sich auf die ungenauen Werte des kri-
tischen Exponeneten v zuriickfiihren (siehe [GUT95]). Abgesehen von diesem Wert
hat, wie schon bei der Funktion ®., das Ergebnis am Tieftemperaturfixpunkt einen
ungefihr zehnmal geringeren Fehler. Bel beiden Bestimmungsverfahren (ohne bzw.
mit Borel-Transformation) ist der relative Fehler sehr klein, ndmlich bel einem bzw.
knapp iiber zwei Prozent.

Zum Vergleich mit den hier erzielten Ergebnissen seien hier die folgenden Lite-
raturwerte angegeben.

1.91 [BGZJ74] e-Entwicklung
[LF89, S1E93]
f. 1.96(3), 1.96(1), 1.94(3) Hoch- /Tieftemperatur-Entwicklung
Al 2.06(1) [RZW94] Monte-Cazlo (7.36)
2.05(22),2.22(5),1.9(2) [KKG83] Experimentell: Bindre Fluide
2.03(4),2.18(12) [HE193, MH94] 2-Loop-Berechnung

Die gemittelten Werte aus Tabelle 7.13 liegen in beiden Phasen mit ihren Fehlern
im Spektrum der Literaturwerte.

Im Vergleich mit den Ergebnissen aus [MH94] fillt auf, daf} sich die numerischen
Werte in der Tieftemperaturkopplung kaum unterscheiden, wahrend am Hochtem-
peraturfixpunkt zwei sehr unterschiedliche Werte bestimmt werden.



7.4. DISKUSSION 95

Zur Abschitzung der Korrekturen, die die einzelnen Ordnungen beitragen, sind
in der folgenden Gleichung die numerischen Werte der Koeflizienten aufgefiihrt.

B, = 1+2.74-10%ups +2.54- 107 uf, — 2.73- 10 ufy, + O (uf, )
B = 1+2.74-10 2up +5.26- 107 ud_ +4.99-107%u},_ + O (u}_)
(7.37)

Wenn typische Fixpunktwerte eingesetzt werden (uj,, & 24, uj_ = 15), tragen die
einzelnen Koeffizienten wie folgt bei:

®, =1 +40.657 +0.146 —0.378

(7.38)
®_=1 40.410 +4+0.118 +40.017

Das heifit, daf die dritte Ordnung in der Hochtemperaturkopplung eine Korrektur
von 21% der niedrigeren Terme liefert, wihrend der Beitrag in der Tieftempera-
turkopplung nur knapp iiber einem Prozent liegt. Mit der kleinen Korrektur in der
Tieftemperaturkopplung scheint diese Reihe eine deutlich bessere Konvergenz auf-
zuweisen, als die Reihe der Hochtemperaturkopplung, wo der Betrag des Termes
dritter Ordnung mehr als doppelt so grofl ist wie der Term zweiter Ordnung.

Wegen des geringen Fehlers und der nur kleinen Korrektur in dritter Ordnung

gebe ich als sicherstes Ergebnis fiir das Amplitudenverhéltnis der Korrelationslange
die Mittelung iiber die Padé-Approximanten am Tieftemperaturfixpunkt an:

;_+ — 2.021(22) (7.39)




Kapitel 8

Amplitudenverhiltnis der
Suszeptibilitit

Das im Kapitel 7 verwendete Verfahren zur Bestimmung des Amplitudenverhéltnis-
ses der Korrelationslinge 1463t sich auch auf andere universelle Amplitudenverhalt-
nisse iibertragen, wie das der Suszeptibilitdt. Im Aufbau dieses Kapitels folge ich
dem vorangegangenen, wobei ich nur die zusétzlichen Gleichungen auffiihre.

8.1 Die Bestimmungsgleichung

Das Divergenzverhalten der Suszeptibilitiat bei Anndherung an die kritische Tempe-
ratur T ist nach (1.16b) durch

X+ ~ Cilt|™ (8.1)

gegeben. Auch hier verwenden wir die reduzierte Temperatur ¢ sowie 1 = |t|. Aus
(1.6) folgt die Beziehung von y zur 2-Punkt-Funktion.

1 (2,0) (6.10) 1 (2,0) My

— = =Ty (0; my, = ——— T (0; mpg, = ——=_ 8.2

Y4 0 ( 0 .90) Z.‘i:t(uR:I:) R ( R gR) ZS:I:(UR:t) ( )
Auf der rechten Seite der Gleichung (8.2) haben wir die Renormierungsbedingungen
verwertet. Mit Gleichung (8.1) ergibt sich

Z
Cutyr = Dline), (8.3)
Myt
und durch Bildung des Quotienten folgt

Co _ mip Zya(uns) (14 (8.4)
C_. m%, Zy (up_) \i_) ~ ’

Nun setzen wir wiederum mpy = mp— und verwenden (7.13).

Cy _ Zyi(uny)

Rt o 1 (LS (8.5)

96
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Diese Bestimmungsgleichung wird im folgenden an den beiden Fixpunkten ausge-
wertet.

8.2 Berechnung der Reihen

Zuniachst entwickele ich den kritischen Exponenten in beiden Phasen nach dem
Skalengesetz (1.19¢):

Ve (ure) = va(ups)(2 — 32 (ugs)) (8.6)
Mit den entsprechenden Reihen aus Kapitel 6.3 lautet diese Gleichung:
Yi(urs) = 1+ iusi; — 41_8 (%)2
+ (—% + Zln % + Ga) (%:)3 +0 (ug,) (8.7)
o) - 1=

96577 5. 4 255 81 up\ 3

B e () ot

+(110592+8n3 16 © 7 128 L (k)
(8.8)

8.2.1 Reihen der Hochtemperaturkopplung

In (8.5) brauchen wir neben @, das wir schon in (7.27) bzw. (7.31) als Reihe in einer
Kopplung bestimmt haben, noch Z3_ als Funktion von ug,. Dies erhalten wir durch
Einsetzen von (7.25) in (6.58).

].'U.R+ 1369 (UR+)2

Za_ SR . o
3-(un+) 8 8r 10368 \ 8x

134143 19375 4 703 2481 wps \
- + In=— 2 ——CT“)(—) 4+ O (u
( 110592 ' 2592 3 48 % 1024 Py (vhe)

(8.9)

Damit kann nun die Bestimmungsgleichung in der Hochtemperaturkopplung berech-
net werden.

C, _ Z3(ury)

E(UR+; v) Zy_(up+) (224 (un+))”
_ o [1 n 2+ 11yugy 5612+ 405y + 980142 (uR+)2
16 8« 41472 87
n (234718 — 127237y — 5049~% + 11979~° 37214+ 147197ln 4
221184 5184 3

554+ 745y 4962 4 3345+ Tet) (uR+)3 \
et o ¢ gr) T (ks

(8.10)
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8.2.2 Reihen der Tieftemperaturkopplung

In der Tieftemperaturphase mufi noch Z3, in Abhingigkeit von ug_ berechnet wer-

den.
Zuluns) = 1- o (=)
ug-) = 1——(——
e 81\ 8
5 § 4 8 up-\? s
Die Bestimmungsgleichung wird damit zu
Cy Zy(ug-)
—(up- = ———=(2®_(ug_))’
C_ (uR 77) Z:S—(UR—)( (uR ))
2+11 _ 6908 4 7533y + 9801~ -\?
R P + T+ 'Y(UR)
16 8« 41472 8w
| (801306 — 91063y + 63261+ +35937+° _ 37214+ 14719y 4
663552 5184 3

554+ 745y 4962 + 3345y _, t) (uR_)3 \
o) (ZE2) 4 o
LT R TIVF +0 (uy)

(8.12)

8.3 Numerische Ergebnisse

Die numerische Auswertung erfolgt wie in Kapitel 7.3 an Fixpunktwerten der Kopp-
lung. Der kritische Exponent ist hier wiederum durch Literaturwerte gegeben.

8.3.1 Hochtemperaturfixpunkt

Die Reihe (8.10) wird an den Fixpunkten aus (7.33) und den folgenden Werten des
kritischen Exponenten bestimmt.

v =1.237(2) [BGHP92] Monte-Carlo Renormierungsgruppe
v =1.241(2) [GZJ80, ZJ82] Renormierungsgruppe in 3-D (8.13)
v = 1.250(1) [GGT74] Hochtemperaturentwicklung

In der Tabelle 8.1 sind die numerischen Resultate aufgelistet. Die [1,2]-Padé ha-
ben mit ihren Werten um Null keine Aussagekraft. Diese Werte sind auf die ent-
sprechenden Resultate in Tabelle 7.1 zuriickzufiihren und in der Mittelwertbildung
weggelassen.

Tabelle 8.2 fithrt die Ergebnisse der Berechnung mittels Padé-Borel-Verfahren
auf. Fiir die [1,2]-Padé kommen deutlich verbesserte Werte heraus, wihrend die
[0,3]-Padé immer noch sehr niedrig liegen. Als Vergleichswerte sind in Tabelle 8.3
noch die Resultate der Berechnung ohne Vorgabe von v durch Einsetzen von (8.7)
in (8.5) aufgefiihrt.
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Amplitudenverhéltnis C—t(u}}+7 ¥)
o [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
ul, = 23.73
1.237 4.8263 5.1494 0.1895 2.7558
1.241 4.8496 5.1736 0.2242 2.7627
1.250 4.9024 5.2283 0.3002 2.7781
u, = 24.56
1.237 4.8946 5.2600 -0.0108 2.6405
1.241 4.9185 5.2849 0.02386 2.6467
1.250 4.9728 5.3413 0.09983 2.6608

Fixpunktwert uf,

Tabelle 8.1: Amplitudenverhaltnis der Suszeptibilitat unter Vorgabe von v am

Amplitudenverhéltnis C+ )
Padé-Borel-Verfahren C_
o [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
Upy = 23.73
1.237 4.8263 5.1823 4.0431 2.8523
1.241 4.8496 5.2066 4.0600 2.8530
1.250 4.9024 5.2617 4.0983 2.8546
wh, = 24.56
1.237 4.8946 5.2961 4.0642 2.8013
1.241 4.9185 5.3212 4.0812 2.8017
1.250 4.9728 5.3780 41198 2.8027

Tabelle 8.2: Amplitudenverhéltnis berechnet nach Padé-Borel-Verfahren

Fixpunkt ?mplitudemf’erhéﬂtnis Cy ()
irekte Bestimmung C_
Uy [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
23.73 5.0699 5.0706 -4.3129 2.9505
24.56 5.2199 5.2207 -4.1891 2.8484

Tabelle 8.3: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert uj, . .

99



100 KAPITEL 8. AMPLITUDENVERHALTNIS DER SUSZEPTIBILITAT

8.3.2 Tieftemperaturfixpunkt

Am Tieftemperaturfixpunkt (Werte wie in (7.35)) berechnen wir zuerst die Padé-
Approximanten von (8.12), deren Ergebnisse in Tabelle 8.4 aufgelistet sind.

C
Amplitudenverhiltnis C—+(u}}_, ¥)

0 [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
wh_ = 14.73
1.237 4.5421 4.6782 4.6099 4.6338
1.241 4.5621 4.6994 4.6305 4.6542
1.250 4.6074 4.7474 4.6772 4.7004

wy =151
1.237 | 4.6246 4.7772 4.6987 4.7262
1.241 | 4.6451 4.7991 4.7199 4.7472
1.250 | 4.6916 4.8486 4.7679 4.7947

Tabelle 8.4: Amplitudenverhaltnis der Suszeptibilitat unter Vorgabe von v am
Fixpunktwert uj,_

Amplitudenverhéiltnis g(u* )
Padé-Borel-Verfahren C_ R

o [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
W = 14.73
1.237 4.5421 4.8711 4.2476 3.5078
1.241 4.5621 4.9438 4.2649 3.5138
1.250 4.6074 9.2323 4.3040 3.5275
wh_ = 15.1
1.237 4.6246 4.9190 4.2088 3.4947
1.241 4.6451 4.1182 4.3164 3.5005
1.250 4.6916 4.7441 4.3561 3.50135

Tabelle 8.5: Amplitudenverhéltnis berechnet nach Padé-Borel-Verfahren

In Tabelle 8.5 sind die Padé-Borel-Resultate eingetragen. Hier hat, ebenso wie
bei ®_ (s. Abschnitt 7.3.2), die Borel-Transformation keinen ergebnisverbessernden



8.4. DISKUSSION 101

Einfluf}, im Gegenteil wird die Varianz stark erhéht. Tabelle 8.6 listet die Resultate
des Amplitudenverhaltnisses der Suszeptibilitdt nur in Abhangigkeit der Fixpunkte
up_ auf.

| g G
Up_ [3,0]-Padé | [2,1]-Padé | [1,2]-Padé | [0,3]-Padé
14.73 3.7832 6.0433 0.7329 4.6751
15.1 3.8632 6.7429 1.0872 4.9059

Tabelle 8.6: Amplitudenverhaltnis nur in Abhangigkeit vom Fixpunktwert uj,_.

8.4 Diskussion

Aus den oben gewonnenen Resultaten bilde ich Mittelwerte tiber die Daten der ein-
zelnen Bestimmungsmethoden. Dabel habe ich beil der direkten Bestimmung nur
durch Vorgabe des Fixpunktwertes jeweils die Daten der [1,2]-Padé vernachlissigt,
da sie teilweise negativ beziehungsweise weit auflerhalb des physikalisch Sinnvollen
liegen. Ebenso habe ich bei der Mittelung iiber die Daten der Tabelle 8.1 verfahren.
Wie in Tabelle 7.13 sind die Werte der direkten Bestimmung sehr ungenau. Bei Be-

Cc

C—+ Hochtemperaturfixpunkt | Tieftemperaturfixpunkt
Padé-Approximanten 4.3(1.6 4.69(16)
Padé-Borel-Verfahren 4.3(1.5 4.31(93)
Direkte Bestimmung 4.4(1.5) 5.0(1.7)

Tabelle 8.7: Gemittelte Werte des Amplitudenverhiltnisses der Suszeptibilitit

stimmung des Amplitudenverhéltnisses iiber das Padé-Borel-Verfahren ist der Wert
am Tieftemperaturfixpunkt mit einem etwas geringerem Maximalfehler behaftet,
jedoch ist der Unterschied lingst nicht so grofi wie beim Amplitudenverhéiltnis der
Korrelationslange (vgl. Tab. 7.13). Am Hochtemperaturfixpunkt haben alle Mit-
telwerte einen Fehler, der gréfier als ein Drittel ist. Damit erscheint der Mittelwert
iiber die Padé-Approximanten am Tieftemperaturfixpunkt als der einzige zuverldssi-
ge Wert. Er hat einen relativen Maximalfehler von ungefihr 3.4%.

Im Vergleich mit den Literaturwerten aus (8.14) fallt auf, dafi die Mittelwerte
fast durchgehend niedriger liegen. Nur der experimentelle Wert ist fast genauso grofl
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oder etwas unterhalb der hier bestimmten Mittelwerte.

4.81 [BGZJT4] e-Entwicklung
4.77(30) [ZJ89] Renormierungsgruppe in 3-D
Cy [LF89, S1E93]
c_ 5.03(5), 4.95(15), 4.82(5) Hoch- /Tieftemperatur-Entwicklung (8.14)

4.3(3) Experimentell: Bindre Fluide
4.66(36),6.03(1.05) [HET93] 2-Loop-Berechnung

Mit diesen Werten, die aufler dem letzten auf anderen Bestimmungsmethoden be-
ruhen, wird das oben Festgestellte untermauert und als Ergebnis gebe ich

% — 4.69(16) (8.15)

an, den Mittelwert der Padé-Approximanten am Tieftemperaturfixpunkt.



Zusammenfassung

Ziel dieser Arbeit war neben der Berechnung der Amplitudenverhiltnisse von Kor-
relationslinge und Suszeptibilitdt die Entwicklung eines Verfahrens zur Vereinfa-
chung der Berechnung von Feynman-Graph-Entwicklungen in einer massiven ska-
laren Theorie. Dies geschah durch die Ersetzung aller Tadpole-Graphen, die an
Propagatoren oder Vertices ansetzen, zum einen durch eine reduzierte Masse 7o,
wie sie in (3.32) bzw. (4.9) definiert ist, und zum anderen durch eine Dreipunkt-
Kopplungskonstante f (3.56). Letzteres galt natiirlich nur fiir die Phase gebrochener
Symmetrie, wo dieses Verfahren auch die gréfieren Rechenerleichterungen brachte.
Die resultierenden Graphenanzahlen sind auf Seite 38 aufgefiihrt.

Mit diesem Verfahren lieflen sich die notwendigen Vertex- und Green-Funktionen
berechnen. Die Richtigkeit der Entwicklung konnte dabei durch den direkten Ver-
gleich der Reihen fiir I‘E)ZO) & 1“52’0) und PE{‘"O) in der symmetrischen Phase

i
bzw. I‘Ef’o), %I‘Eﬁ’o)
Ergebnissen von [GuT95] bestétigt werden, wo die vollstindige Feynman-Graph-
Entwicklung bis zur 3-Loop-Ordnung aufsummiert wurde.

p?=0

und GU% in der Phase gebrochener Symmetrie mit den

p?=0

Aus den Reihen lieflen sich universelle Amplitudenverhéltnisse bestimmen. Ins-
besondere am Tieftemperaturfixpunkt sind die resultierenden Werte sehr konsistent
und weisen eine geringe Streuung auf. Fiir das Amplitudenverhéltnis der Korrelati-
onslinge ergab sich so (7.39)

f+
— = 2.021(22
7 (22)

und fiir das Amplitudenverhéltnis der Suszeptibilitat (8.15)

C
—* = 4.69(16)
C

jeweils als Mittelwert der vier Padé-Approximanten am Tieftemperaturfixpunkt.
Diese Werte haben fast den gleichen Betrag wie die entsprechenden Zwei-Loop-
Rechnung. Der Fehler liegt sogar nur bei circa der Hélfte des Fehlers in der Zwei-
Loop-Rechnung.
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Anhang A

Integrale

A.1 1-Loop-Integrale

Die Integrale J,(D) berechnen sich nach folgendem Verfahren. Fiir eine
chere Berechnung verweise ich auf [GUT95].

ausfiihrli-

d"k 1
o) = - Al
) 27 (6 + md) (A1
mﬁo—bk méj_gn D
= 5 [k
(27) (1)
_ mp" o2rd foo P
(2m)P T(2) Jo (k2 +1)"
_mb NOTm-2)
GnPIE) T
pge I (m_g)-i Din—3+2) a2)
(47)% \ 47 I'(n)
Die I'-Funktion wird um n — g entwickelt.
D 3 3
M(n— %) =I(n—>) (1 + ¥ -2)+ 0 (62)) (4.3)
Die ¥-Funktion ist durch die Definition und Funktionalgleichung
d 1
U(z):= d—ln [(2) wund $(z+1)=T(z)+ - (A.4)
r x
gegeben [GR81, 8.36].
md 2" T'(n — 2) €. m: € 3
Ju(3—¢) = — Zl1--In24+0(e (1 ~¥(n— = 02)
(3¢ 4n)t I(n) ( 2 M ar (6)) t5¥n -3+ 0 (¢)
(4m)
3-2n 3 2
my " T'(n — 3) € 3 my 2
= 1+=-|¥(n—<)—Iln— @) A5
(4m)? I(n) o\t -l ) (<) (4.5)
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A.2. ABLEITUNGEN VON 1-LOOP-INTEGRALEN

Mit den Werten

1 1
\I’(—E) =—v—2In2+4+2 und \I’(i) =—v—2In2
erhalten wir J, fiirn =1, 2:
— Mo _ £ mg 2
W3- = — (-5 (v+—2)+0()
1 € m% 2
Jo(3—¢) = r— (1-5(v+In2) +0O(H)

A.2 Ableitungen von 1-Loop-Integralen

Die Integrale I, sind wie folgt definiert.

dPk 1 1
(@m)? (k* + m3)" (k+p)?* + mg

L(p; D) = |

Die Ableitung des Propagators berechnet sich nach

d
7 Ak
o7 (k+p)

p=0

p*=o
1 i’: ((k+p)* +mi) —4(k + p)’
D ((k+p)2+md)’
= —A2(k)+i K

D (k4 mi)’
= AT(R) o+ (AM(R) - mEAC(R)).

Damit kann die Ableitung nach dem Impulsquadrat berechnet werden.

P=0

0

B /‘ dPk 1 0 1
op? B

p?=o

(A.10) 4

—Jns2(D) + D (Jn+2(D) - mgjn+3(D))

2 (s b o o(0)

mg 2" T(n + 3)
(4m)z T(n+2)

3

(2m)P (k* + m3)" 0p* (k +p)” + m}
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(A.6)

(A7)

(A.8)

(A.9)

(A.10)

p=0

4(1+§(\I/(n+g)_mT_jJr%)JrO(fz))
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108
5 D 4 2)
(4m)z T(n+3)
n 1 T'{n+ %)

T n428mml T /rl(n+2)
€ L m) 2
(1 +5 (T(n+ L) -In52) + 0 (e )) (A.11)

Fiir I; ergibt sich damit:

o 1 1 )
—I,(p: D = (1-= In 22 — 2) + O()). A.12
aPZ 1(p7 ) p2=0 12 mgsﬂ_ ( 2 ('Y +1ln T ) + (6 )) ( )



Anhang B

Padé-Borel-Verfahren

Das Padé-Borel-Verfahren ist eine Methode, um die Konvergenz von Reihen zu ver-
bessern. Dazu werden Padé-Approximanten der Borel-transformierten Reihe gebil-
det und zuriicktransformiert.

B.1 Borel-Transformation

Die Borel-Transformierte einer Potenzreihe

)= 3 0" (B.1)
ist durch -
Bf@)::nzoéﬁzn (B.2)
definiert. Mit der Integralform der I'-Funktion
mazﬁwmaﬂkl (B.3)

ist die Riicktransformation durch
ﬂﬂ:fwﬁBﬁﬂft (B.4)
0

gegeben.

B.2 Padé-Approximanten

Gebrochen rationale Approximanten einer Potenzreihe werden als Padé-Approxi-
manten bezeichnet. Gegeben sei eine Reihe bis zur Ordnung n:

gn(2) = i biz' + O (") (B.5)

=0
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pr und ¢; seien Polynome k-ten bzw. [-ten Grades in z, die

ga(2)a(2) = pe(2) + O (), k4i<n (B.6)

erfilllen. ¢; hat nach Definition den fiithrenden Term 1. Dann gilt

ga(2) = ’; :“((ZZ)) +0 () (B.7)

und der Quotient ist die [k, /]-Padé-Approximante.

B.3 Padé-Borel

In der vorliegenden Arbeit behandeln wir Reihen der Gestalt F(ug+) bis zu O (ui.’%i).

Diese werden Borel-transformiert zu Br(ugs ), wovon die Padé-Approximanten be-
stimmt werden. Da k + [ < 3 gelten muf, lassen sich vier Approximanten bilden,

wobel der [3,0]-Padé die Reihe selbst ist.

Diese Approximanten werden mit (B.4) riicktransformiert. Die Integration wird
direkt numerisch ausgewertet. Falls das Nennerpolynom ¢; eine positive reelle Null-
stelle hat, mufl das Hauptwertintegral gebildet werden.

w1
—ae_bf dt?e_t =ae ’Ei(d) , b>0 (B.8)
—b

=: —Ei(b)

Dabei ist Ei(z) das Exponentialintegral, das durch

:—hm[/ —dt+f —dt] L >0 (B.9)

e—=0

gegeben ist [GR81, 8.21].
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