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Symbolverzeichnis

Das PLANCKsche Wirkungsquantum geteilt durch 27, wird auf 1 gesetzt
Wert der Wellenfunktion an der Stelle x;

Energie

n-ter Energieeigenwert

Schrittweite bei Losung der Differentialgleichung, Abstand benachbarter
Stiitzpunkte

Masse des betrachteten Teilchens, wird auf 1 gesetzt
Hauptquantenzahl (beginnend bei 0)
_ A-Tip1 )i

Renormalisierte Wellenfunktion an der Stelle z;, R; = =Ty

Kehrwert der renormalisierten Wellenfunktion zur Integration in Gegen-
richtung, S; = Ri__ll

Abkiirzung fiir das Potential mit Vorfaktoren: T; = —]f—;zh—’;‘(E — V(zi))

Potential

i-ter Stiitzpunkt bei Berechnung der Wellenfunktion, ; = xmin + ¢ h



1 Einleitung

Die 1926 von ERWIN SCHRODINGER aufgestellte Schrodingergleichung beschreibt
das Verhalten von quantenmechanischen Teilchen unter Einfluss von Kréaften, die
durch ein Potential V' modelliert werden. Sie ist somit die entscheidende Grund-
lage zur Berechnung der Eigenschaften von Materie im Bereich der Groflenord-
nung von Atomen. Allerdings ist ihre mathematische Losung in den meisten
Féllen sehr schwer, bis heute wurden nur wenige Potentiale gefunden, zu denen
iiberhaupt eine Losung der Schrodingergleichung auf rein analytischem Wege
moglich ist. Daher ist man in praktischen Anwendungen meist auf numerische
Verfahren angewiesen, die Zahlenwerte fir die wichtigsten Kenngroéfien des Pro-
blems liefern.

Das sogenannte NUMEROV-Verfahren wurde in der Bachelorarbeit von LubwIG
JENS PAPENFORT ([1]) zur Losung der Schrodingergleichung fir spiegelsymme-
trische Potentiale benutzt. Ziel dieser Arbeit ist es, die dort erzielten Ergebnisse
weiterzuentwickeln und das Verfahren auf beliebige Potentialformen zu verallge-
meinern. Dazu werden unterschiedliche Ansétze besprochen und verglichen, die
schlieBllich in die Entwicklung eines neuen robusten Programms mit benutzer-
freundlicher Oberfliche zur Behandlung beliebiger eindimensionaler Potentiale
einfliefen. Speziell werden diese Verfahren auch auf radialsymmetrische Poten-
tiale angewandt, im Fall der symmetrischen Potentiale wird ein weiterer Ansatz
fiir die Anfangswerte getestet. Grundlegende Literatur fiir die allgemeinen Ver-
fahren sind Arbeiten von J. M. BLATT und B. R. JOHNSON ([2], [3]).



2 Grundlagen

2.1 Die stationadre Schrodingergleichung

Ein zentrales Postulat der Quantenmechanik lautet, dass die zeitliche Entwick-
lung eines Zustandes |¥) eines quantenmechanischen Systems beschrieben wird
durch die Schrodingergleichung

0 -
ih 2| W) = H|¥) (2.1)

mit dem Hamiltonoperator H. Héngt der Hamiltonoperator nun nicht explizit
von der Zeit t ab, gibt es Zustdnde mit konstanter Energie E, die definiert
wird durch Giiltigkeit der Gleichung E|¥) = H|¥). Wendet man hierauf die
Schrodingergleichung an, stellt man fest, dass sich diese stationdren Zusténde
schreiben lassen als _

W) = e #FJy), (2.2)

wobei [¢)) nun nicht mehr von der Zeit abhéngt. Diese Zustédnde erhélt man als
Losung der stationdren Schrodingergleichung

Elp) = H[p) . (2.3)

Im Fall eines spinlosen Teilchens mit Masse m, dass sich in einem Potential V'
bewegt, lautet die Gleichung in der Ortsdarstellung;:

2
() = {—;na + vm} v (2.4
0? 0? 0?

mit dem Laplaceoperator A = Insbesondere treten hier auch

922 o2 T oo
keine komplexen Faktoren mehr auf, sodass sich die Losung rein reellwertig
wéhlen lasst.

Beschrénkt man sich auf eine Raumdimension, erhilt man mit wenigen Umfor-
mungen die stationdre Schrodingergleichung in ihrer einfachsten und zuging-
lichsten Form:

d? 2m

ﬁw(x) =72 (E—V(z)y(x) . (2.5)



KAPITEL 2. GRUNDLAGEN

Die Einschrénkung auf eine Dimension sorgt nicht nur fiir die bessere mathe-
matische und numerische Handhabbarkeit der Gleichung, sondern findet auch
Anwendung in effektiv eindimensionalen Problemen oder allgemein, wenn sich
das Potential in den drei Raumrichtungen separieren lésst, also als V(7)) =
Ve(z) + Vy(y) + V2 (2) geschrieben werden kann. Dann erhédlt man die Gesamt-
wellenfunktion als Produkt dreier Losungen eindimensionaler Gleichungen.

2.1.1 Die Radialgleichung

FEin weiterer auf die eindimensionale Schrédingergleichung zuriickfiihrbarer Fall
ist der eines rotationssymmetrischen, also nur vom Betrag r des Ortsvektors
abhangigen Potentials. Driickt man den Laplaceoperator in Kugelkoordinaten
aus, erhdlt man aus (2.4) fiir den von r abhéngigen Teil der Wellenfunktion

() = R(r)Y (6, ¢):

ER(r) = {-hﬂ(pw R+ 1) —i—V(r)}R(r). (2.6)

2m r dr? 2mr?

Dabei bezeichnet | die Bahndrehimpulsquantenzahl und kann nichtnegative ganz
zahlige Werte annehmen. Diese Gleichung vereinfacht sich mit der Substitution
u(r) := rR(r) zur radialen Schrédingergleichung

2 2 2
Fu(r) = {—ﬁd Gt V(r)} u(r) . (2.7)

2m dr2 2mr2

Dies entspricht einfach der eindimensionalen Schrédingergleichung (2.5) mit ei-

nem effektiven Potential Veg = V(r)+%, sodass sich alle dafiir entwickelten

Losungsverfahren durch Ersetzung des Potentials direkt iibertragen lassen.

2.2 Merkmale der Eigenzustinde und
Energieeigenwerte

Wir interessieren uns hier nur fiir die gebundenen Zustinde zu einem gegebe-
nen Potential, d. h. fiir quadratintegrable Wellenfunktionen ([ |(x)|? dz < o0).
Man stellt fest, dass sich hier ein diskretes Spektrum ergibt, also nur diskrete
Figenenergien auftreten. Diese seien hier der Grofle nach stets mit der Quan-
tenzahl n = 0,1,2,... durchnummeriert (was zu Gunsten einer einheitlichen
Benennung der Praxis widerspricht, bei manchen Potentialen die Zéhlung bei
1 zu beginnen), die zugehorigen Eigenenergien werden mit E,, bezeichnet, die
entsprechenden Wellenfunktionen mit ,,. Im Folgenden einige Figenschaften
der Wellenfunktionen, die hier ben6tigt werden:



2.3. Die WKB-N&herung

— Die Wellenfunktion 1, zu einer gegebenen Energie F, ist bis auf einen
konstanten Faktor eindeutig bestimmt.

— Die Wellenfunktion v, besitzt genau n Nullstellen (Knotensatz)

— Die Position der Nullstellen der Wellenfunktion héngt stetig von der Ener-
gie ab — auch, wenn es sich nicht um Eigenenergien handelt. Der Fall einer
normierbaren Wellenfunktion entspricht dabei einer » Nullstelle im Unend-
licheng, in allen anderen Féllen divergiert die Wellenfunktion.

Beweise hierzu findet man in [1] und Lehrbiichern zur Quantenmechanik.

2.3 Die WKB-Naherung

Die Losung ¢ der stationdren Schrodingergleichung (2.5) lasst sich nach [4]

ansetzen als .
P(x) = A-exp (71“2 /y(m') dx') . (2.8)

o

Eingesetzt in (2.5) erhilt man daraus die Differentialgleichung

2(x iy (x m
—yhg)+ yé )+2hQ(E—V(x)):0 (2.9)
& ihy'(z) + 2m(E — V(x)) = y*(z) . (2.10)

Die sogenannte WKB-Néherung! erhilt man nun im semiklassischen Grenzfall
h — 0 dieser Gleichung, aus y?(z) ~ 2m(E — V(x)) ergibt sich dann

P(z) =~ A-exp (i;/\&m(E - V(m))dx’) =A-exp (ii/\/@(l") dm’) .

(2.11)
Diese Formel wird spéter benutzt werden, um die Werte der Wellenfunktion in
grofler Entfernung vom klassisch erlaubten Bereich ndherungsweise zu berech-
nen.

"benannt nach G. WeENTZEL, H. A. KRAMERS und L. BRILLOUIN



3 Die numerische Losung der

Schrodingergleichung

Ziel von numerischen Lésungen der Schrédingergleichung ist zunéchst die Be-
rechnung der Energieeigenwerte. Dazu rdt man zunichst einen Wert, erzeugt
die zugehorige Wellenfunktion und tiberprift dann, ob ihre Eigenschaften mit
denen der gewiinschten Eigenfunktion iibereinstimmen. Auf diese Art und Weise
erhélt man dann immer bessere Schéitzungen fiir die Eigenwerte.

3.1 Allgemeines Vorgehen bei der numerischen

Losung

Die betrachteten Verfahren folgen derselben grundlegenden Vorgehensweise:

1.
2.
3.

Rate einen Wert fiir die Energie E.
Bestimme einen Startwert fir die Wellenfunktion.

Bestimme zum Startwert eine Losung der Schrodingergleichung, zéhle da-
bei die Knoten.

Korrigiere den Energiewert anhand der Knotenzahl und dem Grad der
Ubereinstimmung der erhaltenen mit der gewiinschten Wellenfunktion.

Wurde der Energiewert noch nicht mit ausreichender Genauigkeit be-
stimmt, starte mit dem neuen Energiewert wieder bei 2.

Jeder dieser Punkte ldsst allerdings noch Fragen offen, etwa die folgenden:

1.

Welches Verfahren benutzt man zur numerischen Losung der Differential-
gleichung?

Welche Randwerte sind durch die Problemstellung vorgegeben? Wie lassen
sich diese numerisch umsetzen?

Wie lasst sich die Qualitét einer Schétzung des Eigenwerts beurteilen? Wie
erhdlt man daraus einen besseren Schétzwert?

In den folgenden Abschnitten sollen mogliche Antworten auf diese Fragen gege-
ben werden.

10



3.2. Das Numerov-Verfahren

3.2 Das Numerov-Verfahren

Die eindimensionale stationire Schrodingergleichung (2.5) kann geschrieben wer-
den als

V(@) = —Qx)y(x) mit Qz)=—5(E-V(z)) . (3.1)

Zunéchst suchen wir ein Iterationsverfahren, mit dem bei gegebenen Q(x) aus
geeigneten Anfangsbedingungen die Werte 1; = ¥ (x;) der Wellenfunktion an
diskreten Punkten x; bestimmt werden konnen. Anstatt auf allgemeine Metho-
den zur Losung gewohnlicher Differentialgleichungen wie das RUNGE-KUTTA-
Verfahren zuriickzugreifen, ldsst sich die spezielle Form der Differentialgleichung
ausnutzen, um eine genauere Rekursionsformel zu erhalten, auf der das NUME-
ROV-Verfahren basiert.

Dazu schreibt man die Taylorentwicklung der Wellenfunktion um einen Punkt
x; als

h5
120

mit der Schrittweite h = x;41 — x; Vi € Z. Durch Addition der Gleichungen
fiir ¢;41 und ;1 heben sich die ungeraden Terme weg:

Vis1 = Ui £ )l h72/’:|:h73”/ h;l(w)j: ®) o o(p6 9
it1 = U ¢i+2¢i 6%’ +24¢Z‘ v +O(h) (3.2)

h4 w
Viv1 +im1 = 2 + W2 + ﬁ%( )+ O(h) . (3.3)

Unter Vernachlissigung des Terms in O(h?) erhélt man daraus einen Ausdruck
fir die zweite Ableitung:

h2f = i1 — 20 + higpa + O(R?) . (3.4)

Nun macht man sich die Form der Differentialgleichung
{ = —Qit (3.5)

zunutze. Zweifaches Ableiten von (3.4) und anschlieBendes Einsetzen von (3.5)
liefert

W2 = —Qi—1thi1 + 2Qitbi — Qipatbii + O(h?) . (3.6)

Setzt man nun (3.5) und (3.6) in (3.3) ein, erhdlt man die Rekursionsformel

h2
Vit1 + Yim1 = 20 — W2Qinb; + E(*Qifld)ifl +2Qi%; — Qit1viy1) + O(h®)

& (1= Tip)bip = 2+ 10T — (1 = T-1)vi1 + O(R°) (3.7)
mit 2
Ti=-15Qi -

11



KAPITEL 3. DIE NUMERISCHE LOSUNG DER
SCHRODINGERGLEICHUNG

3.3 Das renormalisierte Numerov-Verfahren

Als Rekursionsformel zweiter Ordnung setzt das NUMEROV-Verfahren die Kennt-
nis von zwei Anfangsbedingungen voraus. Bei beliebigen Potentialformen wéhlt
man dazu ndherungsweise 1y = 0 an einer Stelle x¢ weit aulerhalb des klassisch
erlaubten Bereichs. Als zweite Vorgabe kdnnte man nun 1 auf einen beliebigen
Wert > 0 setzen, da die Normierung der Wellenfunktion frei wahlbar ist. Damit
besteht allerdings die Gefahr, dass es im Laufe der Iteration zu Werten von ;
kommt, die zu groB sind, um im Computer dargestellt zu werden — gerade, wenn
man weit im klassisch verbotenen Bereich (V' > E) beginnt, da die Amplitude
der Wellenfunktion hier exponentiell abféllt.

Um dieses Problem zu umgehen, werden in [3] folgende Transformationen der
Wellenfunktion vorgeschlagen: Zunéchst substituiert man

Damit vereinfacht sich die Rekursionsformel (3.7) zu

24+ 107;
Fi1=UF;— F;_1 mit U;:= ; . (3.9)
1-1;
Wiéhrend diese Transformation nur zur Vereinfachung der Formeln dient und
letztlich eine Multiplikation weniger erforderlich macht, ist die wesentliche Idee,
das Verhaltnis zweier aufeinanderfolgender Werte der Wellenfunktion zu be-
trachten. Dazu betrachtet man die Grofle
Fi

i = . 1
R 7 (3.10)

Dafiir ergibt sich nun aus (3.9) die einschrittige Rekursionsformel

2+ 10T;

Ri=U;— R, mit U= T

(3.11)

Will man nun die Wellenfunktion von rechts nach links integrieren, erweist es
sich mit Riicksicht auf die Implementierung als einfacher, die Gréflen
Fi 4

5=t (3.12)

zu betrachten. Dafiir lautet die Rekursionsformel
Si=U;— S, (3.13)

man erhélt also den néchsten Wert von S aus ¢ und dem vorhergehenden Wert
mittels der gleichen Vorschrift, die in (3.11) fiir R angegeben ist.

12



3.4. Anfangsbedingungen

3.4 Anfangsbedingungen

Um mit der Iteration irgendwo beginnen zu kénnen, muss der Wert der Wellen-
funktion an zumindest einer Stelle bekannt sein. Handelt es sich dabei nicht um
eine Nullstelle, so muss noch die Steigung oder ein benachbarter Wert angege-
ben werden, um Ry zu erhalten. Im Falle einer Nullstelle ist ein benachbarter,
von Null verschiedener Wert aufgrund der beliebigen Normierung der Wellen-
funktion frei wahlbar, dies entspricht einem Wert von Ry = oo.

Fiir allgemeine Potentiale sind lediglich die fiir die Normierbarkeit erforderlichen
Bedingungen 1)(—o0) = 1(+00) = 0 bekannt, doch die Iteration kann natiirlich
nicht im Unendlichen begonnen werden. Im Folgenden werden einige Methoden
zur Behandlung dieses Problems vorgeschlagen.

Angegeben werden die Anfangsbedingungen fiir das Verhéltnis Ry = 1 /1o der
Werte der Wellenfunktion an aufeinanderfolgenden Stiitzpunkten. Den Startwert
fiir das renormalisierte NUMEROV-Verfahren erhéilt man daraus als Ry = (1 —
T1)/(1 — Tp) - Ro. Auch der Startwert bei Beginn der Iteration auf der anderen
Seite folgt daraus mit entsprechenden Anpassungen als Sy = (1 —Ty-1)/(1 —
Tn) - Ry* .

3.4.1 Spezialfall symmetrisches Potential

In der Vorgéngerarbeit [1] wurde der Spezialfall eines symmetrischen Potentials
und der dort zu wiahlenden Anfangsbedingungen ausfiihrlich behandelt. Wesent-
liche Erkenntnis ist, dass die Wellenfunktionen zu geraden Quantenzahlen n ge-
rade Funktionen (spiegelsymmetrisch zur y-Achse) sind, diejenigen zu ungeraden
n sind ungerade Funktionen (punktsymmetrisch zum Ursprung). Da die unge-
raden Wellenfunktionen im Ursprung verschwinden, aber unmittelbar daneben
von 0 verschiedene Werte annehmen, betragt der Startwert Eoﬁu = 1 /1hg = 00
an der Stelle 9 = 0. Ein Startwert fiir die geraden Wellenfunktionen lasst sich
nicht so leicht finden, aber durch eine Naherung mit Fehler in der Gréflenord-
nung O(h%) wird in [1] die Bezichung Ry = (1 + 5Tp)/(1 — T}) hergeleitet.

Da die Ergebnisse fiir gerade Wellenfunktionen schlechter ausfallen, scheint sich
diese Ndherung negativ auszuwirken und man fragt sich, ob sich nicht ein ex-
akter Startwert finden lasst. Das erreicht man, indem man den Startpunkt auf
xo = —h/2 verschiebt. Damit ist x; = +h/2 und fiir gerade Wellenfunktio-
nen gilt vo = ¢¥(—h/2) = Y(+h/2) = 1, also Rog = 1/ = 1. Mochte
man fir ungerade Wellenfunktionen den gleichen Startpunkt xy verwenden, er-
hélt man ebenfalls ein einfaches Kriterium fiir den Startwert: ¢g = ¢(—h/2) =

—p(+h/2) = =1, also Ry = 1 /1o = —1.

13
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3.4.2 Anfang im klassisch verbotenen Bereich

Im klassisch verbotenen Bereich (V' > E) nimmt die Amplitude der Wellen-
funktion exponentiell ab. Dieses Wissen ldsst sich ausnutzen, um eine erste Ab-
schitzung fir die Wellenfunktion in ausreichender Entfernung vom klassisch
erlaubten Bereich zu gewinnen.

Dazu betrachte man einen Potentialabschnitt Vj = const. > E bei gegebener
Energie E. Soll auf der linken Seite die Randbedingung v (z) “=="° 0 erfiillt
werden, lautet die Losung der stat. Schrodingergleichung (2.5)

Y(r) = 9(0) e mit q=1/ 75 (1o~ B)., (314

wie man leicht durch Einsetzen verifiziert.

An der Stelle x( ergibt sich somit fiir den Wert von Ro:

7o Yl e gei—wo) _ gan (3.15)

Y(xo) €90

WKB-Niherung

Einen besseren Schétzwert erhélt man durch Anwenden der WKB-N&herung
(2.11):

zo+h zo+h
Ry ~ exp (j:i / Q(z") dx’) = exp (i / \/ —Q(z") dar’)

o
1 xo+h
= exp (:th / 127 (") da:’) (3.16)

o

im klassisch verbotenen Bereich (Q < 0). Da der Wert des Integrals positiv ist,
muss das positive Vorzeichen gewéhlt werden, um das asymptotisch korrekte
Verhalten zu gewéhrleisten.

Nun gibt es verschiedene Moglichkeiten, das Integral numerisch auszuwerten.
Die einfachste ist die Trapezregel, die man aus der Approximation der Funktion
durch eine Konstante erhélt:

IR =T ORIO) .17

Damit lautet der Startwert

Ry = exp (\/ﬁ+ \/ﬁ) . (3.18)

14



3.4. Anfangsbedingungen

Eine bessere Nédherung erhilt man durch die Approximation der Funktion mit
einer Parabel (Simpsonregel), dazu braucht man allerdings eine weitere Stiitz-
stelle:

/ab f(z)dz ~ b_Ta (f(a) +4f (T) + f(b)> : (3.19)

Das liefert den Startwert

Ry = exp (; (\/ﬁ +4,/3T (x4 h/2) + Jﬁ)) . (3.20)

3.4.3 Koordinatentransformation

Um die Nullstellen im Unendlichen auf einen endlichen Wert zu holen, kann
man den Definitionsbereich der Wellenfunktion einer Koordinatentransformati-
on unterwerfen. Statt der urspriinglichen Wellenfunktion

YR - R,z ¢(x) (3.21)
mochten wir eine Funktion

X =voc:I—R,y—9(c(y)) (3.22)

betrachten, wobei ¢ eine streng monoton steigende glatte Funktion ist, die ein
kompaktes Intervall I bijektiv auf R U {00} abbildet. Damit lasst sich die
Randbedingung ¢ (+o00) = 0 durch x(0I) = 0 auf dem Rand von [ ersetzen.

Ausgehend von der Schrodingergleichung in der Form (3.1) ist nun das Ziel,
eine Differentialgleichung der gleichen Form fiir x aufzustellen. Man erhélt unter
mehrfacher Anwendung der Kettenregel:

) = 4 ) )

= ¢"(c(y)) - *(y) + ¢/ (c(y))
= ~QUe(y) () x) + 7

=: A(y)x(y) + B(y)X'(y) - (3.23)

"(y)

”(y)) X' (v)

Leider lésst sich das NUMEROV-Verfahren auf diesen Ausdruck nicht unmittel-
bar anwenden, da explizit die erste Ableitung von x auftaucht. Um diese zu
beseitigen, fithren wir eine weitere Transformation

oy) =Cy) - x(y) (3.24)

15
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durch. Fiir ¢ ergibt sich:!

SOH — C//X + QC/X/ + CXI/
= C"x + 20X + C(Ax + BX)
1
= <C + A) v+ (20" + BC) X' . (3.25)
C —

1

=0

Aus der Bedingung zum Verschwinden des Terms mit der ersten Ableitung lésst
sich nun eine Wahl fiir C' bestimmen, dazu setzen wir B wieder ein:

, cll
C

C’ 1"
< c T 2d
& (InC) = —%(ln )
& C= Lo (3.26)

7

Wegen der strengen Monotonie von c ist ¢ > 0 auf ganz I, sodass keine Fallun-
terscheidung erforderlich wird.

Mit der Wahl Cy = 1 erhélt man also fiir ¢ die Differentialgleichung

" /112 _
¢’ = ( S 3¢ Q- c'2> ® (3.27)

2 402

mit @ = @ o c in der gewiinschten Form. Hat man ¢ berechnet, erhilt man
daraus die Werte von v mittels

¥(z) = x(c7(2) = /(e (@) p(c (@) - (3.28)

Beispiele fiir Transformationen

Da durch die Transformationen die effektive Schrittweite (und damit Ortsauflo-
sung) mit groferer Entfernung vom Ursprung rapide abnimmt, sollte man durch
einen Parameter in der Transformation dafiir sorgen, dass der interessante, nam-
lich klassisch erlaubte Bereich des Potentials mit ausreichender Genauigkeit er-
fasst wird. Dazu wird hier ein Parameter a benutzt, der die Breite des klassisch
erlaubten Bereichs (mit dem Ursprung im Zentrum) angibt. Da die im Folgenden
verwendeten Transformationen im Intervall [—1/2,1/2] noch ndherungsweise li-
near sind, ist es ausreichend, sie mit dem Faktor a zu strecken.

'Die Abhingigkeiten von y werden der Ubersichtlichkeit halber nicht mehr explizit notiert.
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3.5. Fehlerma# fiir Schitzung des Eigenwerts

Eine mogliche Wahl fiir die Transformation ist ¢ = a - tan : (=7 /2,7/2) — R.
Eingesetzt in (3.27) ergibt sich die Dgl.

Clz 0)
o' (y) = — (1 + Q(y)> ©(y) (3.29)

costy

und fir die Wellenfunktion erhélt man nach (3.28) mit

P(z) = Ja (1 + (z>2> - p(arctan(z/a)) . (3.30)

Eine andere mogliche Wahl ist ¢ = a - artanh : (—1,1) — R. Damit lautet die
Dgl.
1+ a*Q(y)
"
=T x\ 31
¢ (y) 1= 72 ©(y) (3.31)

und die Wellenfunktion erhalt man durch

¥(x) = Vacosh(z/a) - p(tanh(z/a)) . (3.32)
Ebenfalls verwendbar ist die auf (—1, 1) definierte Funktion c(y) = \/?’72 mit
-y
Umkehrfunktion ¢~1(x) = \/anW Man erhélt die Dgl.
6-3y° | a’Q)
" _ )

und die Wellenfunktion lautet

wie) = va- 1+t p (o= ) - (3.34)

3.5 Fehlermaf fiir Schiatzung des Eigenwerts

Integriert man die Schrédingergleichung zu einem vorgegebenen, geratenen Ener-
giewert, gibt es verschiedene Anhaltspunkte dafiir, wie gut diese Schétzung fiir
den n-ten Eigenwert war. Das einfachste Kriterium liefert die Zahl der Nullstel-
len der Wellenfunktion (vgl. Abschnitt 2.2). Wurden mehr als n gefunden, war
der Energiewert zu hoch, falls weniger gefunden wurden, war er zu niedrig.
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E>E,

Abbildung 3.1: Verhalten der Wellenfunktion beim Schiefiverfahren fiir Energien
grofler bzw. kleiner als die Eigenenergie.

E>E, E<E,

e

Xm X Xm X

Abbildung 3.2: Vergleich der Steigungen der Wellenfunktionen im Treffpunkt
bei Energien hoher (links) und niedriger (rechts) als die
Eigenenergie.

3.5.1 Schief3verfahren

Ein genaueres qualitatives Kriterium fiir die Giite einer Schitzung des Energie-
eigenwerts erhilt man mit dem Schieflverfahren. Hier wird die Wellenfunktion,
links beginnend, so lange erzeugt, bis entweder zu viele Knoten auftreten (dann
war die Energie zu hoch) oder sie mit der passenden Knotenanzahl divergiert
(dann war die Energie zu niedrig; vgl. Abb. 3.1). Nachteil dieses Verfahrens ist,
dass zunédchst nicht absehbar ist, wann die Wellenfunktion divergiert. Zudem
kann es in grofler Entfernung vom Startpunkt zu immer stirkeren Abweichun-
gen der berechneten Wellenfunktion von der wahren kommen.

3.5.2 Matching-Verfahren

Um diesen Nachteilen zu begegnen, gibt es die Moglichkeit, die Iteration zur
Erzeugung der Wellenfunktion von zwei Seiten zu beginnen. Als Treffpunkt zy;
wahlt man nun die erste Extremstelle der Wellenfunktion auf einer Seite, um
irreguldre Werte zu vermeiden.

Wenn man die Wellenfunktion an dieser Stelle auf denselben Wert normiert,
sollten im Fall eines gefundenen Eigenwerts auch die Steigungen (Ableitungen)
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3.6. Anndherung an den Eigenwert

iibereinstimmen. H&lt man nun die von links erzeugte Wellenfunktion fest und
variiert die Energie (vgl. Abb. 3.2), folgt aus dem Satz iiber das Wandern von
Knoten, dass die rechte Wellenfunktion bei héheren Energien weiter nach rechts
»wandert«, was zu einer positiven Steigung im Treffpunkt fiithrt. Bei niedrigeren
Energien wird die Steigung entsprechend negativ. Somit lésst sich die Differenz
der Steigungen im Treffpunkt als Ma$ fiir die Abweichung von der Eigenenergie
verwenden.

Ubertragen auf die GréBen des renormalisierten NUMEROV-Verfahrens entspricht
Ry etwa der Steigung der linken Wellenfunktion, 5’1\_41 der Steigung der rechten.
Somit kann

D := Sy — Ru (3.35)

als Fehlermafl benutzt werden. Bei positivem Vorzeichen war die gewéhlte Ener-
gie zu grof3, bei negativem zu klein.

3.6 Annidherung an den Eigenwert

Bei der Bestimmung des Eigenwertes benutzt man eine obere und eine untere
Schranke, die am Anfang z.B. auf Potentialminimum und -maximum gesetzt
werden kénnen. Anhand einer Testenergie in der Mitte dieses Intervalls léasst
sich nun mit den im vorherigen Abschnitt erwdhnten Kriterien herausfinden,
in welcher Hélfte des Intervalls der Eigenwert liegt. Dadurch kann eine der
Schranken verbessert werden. Setzt man diese Bisektion fort, kann der Eigenwert
immer besser eingeschachtelt werden.

Sobald der Bereich, in dem der Eigenwert liegt, etwa bekannt ist, méchte man
ein schneller als die Bisektion konvergierendes Verfahren haben. Auf den ersten
Blick erscheint diese schon ziemlich gut, da sich der Bereich, in dem der Ei-
genwert vermutet wird, in jedem Schritt halbiert — die Genauigkeit nimmt also
exponentiell zu. Betrachtet man allerdings die Zahl der korrekten Ziffern in der
Dezimaldarstellung, wéchst diese nur linear mit der Zahl der Schritte (genau-
er: fiir jede Stelle werden log, 10 &~ 3,32 Schritte bendtigt). Da bereits einfache
Methoden zur Nullstellensuche wie das NEWTON-Verfahren ein quadratisches
Konvergenzverhalten aufweisen, sollte sich dies noch verbessern lassen.

3.6.1 Sekantenverfahren

Auf hoher Abstraktionsebene lédsst sich das Problem als Suche nach den Null-
stellen einer Fehlerfunktion wie dem D aus Abschnitt 3.5.2 beschreiben. Der
ungefédhre Verlauf so einer Fehlerfunktion ist in Abb. 3.3 dargestellt. Durch die
Zahl der Nullstellen der Wellenfunktion ldsst sich die Suche auf einen Abschnitt
einschréanken, in dem die Fehlerfunktion monoton verlauft.
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A

En—l En+1

v

Abbildung 3.3: Schematischer Verlauf einer Fehlerfunktion fiir die Energiewer-
te. Die Nullstellen entsprechen den Energieeigenwerten, in den
durch gestrichelte Linien begrenzten Bereichen ist die Zahl der
Nullstellen konstant.

Nun dauert die Berechnung eines einzelnen Wertes der Fehlerfunktion recht
lange (immerhin muss dazu die gesamte Wellenfunktion zu einem Energiewert
bestimmt werden), sodass eine numerische Bestimmung der Ableitung aufwén-
dig wéare. Auch liegt kein analytischer Ausdruck zu deren Berechnung vor, sodass
das NEWTON-Verfahren wenig erfolgsversprechend ist. Doch bietet sich eine viel
einfachere Variante der zugrundeliegenden Idee an, das Sekantenverfahren. Da-
bei legt man durch zwei gegebene Punkte eine Gerade, deren Nullstelle dann
ein Schétzer fiir die neue Testenergie liefert.

Sind also zwei Punkte E7, Fo sowie die zugehdrigen Werte der Fehlerfunktion
Py, Py gegeben, erhdlt man als Gleichung der zugehdrigen Gerade

E-E _E—E

PP Db (3.36)

also fiir die Nullstelle 5 5
E=E-2""'p . 3.37
Yhp—p (3:37)

3.6.2 Variationsrechnung

Als Grundlage fiir quantenmechanische Variationsverfahren benutzt man die
bekannte Tatsache, dass fiir beliebige Wellenfunktionen v der Ausdruck

+o0 B2 2 +00 -1
B~ /¢(x) <—2mde+V(x)> w(x)dw] [/ w(aﬁ)de] (3.38)
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3.6. Anndherung an den Eigenwert

eine Naherung fiir die Eigenenergie liefert (fiir den Grundzustand z. B. in [5] be-
wiesen). Will man diese Beziehung — wie in [2] vorgeschlagen — nutzen, um eine
bessere Schitzung fiir den Eigenwert zu erhalten, ist es allerdings nicht notwen-
dig, diesen Ausdruck jedes Mal vollstdndig numerisch auszuwerten. Schliefilich
wurde ¥ doch gerade so konstruiert, dass die Testenergie Ey ein Eigenwert der
Schrodingergleichung ist.

Dies gilt allerdings bei der Iteration von zwei Seiten nur im linken und rechten
Bereich getrennt, die Zusammenfiigestelle x, muss gesondert betrachtet werden.
Die Stetigkeit von 1 an dieser Stelle kann durch Normierung der Wellenfunktio-
nen mit der Wahl 1 = ¥y, = 1 erreichen, die Ableitung der Wellenfunktion
bleibt an dieser Stelle jedoch unstetig. Nimmt man sie links und rechts von zp,
als konstant an, kann man schreiben

V(@) = (Y — V) O (@ — Tm) + Y (3.39)
mit der HEAVISIDEschen Sprungfunktion O(z). Daraus erhélt man
V(@) = (Ve — Ym)0 (T — Tm) (3.40)
mit der DIRACschen Delta-Distribution 6(x).

Unter Ausnutzung dieser Beziehungen lésst sich das Integral nun auswerten:

+o0 ﬁ2 d2
[ v@ (—deg - vm) V() do
- Tm—€ Tm+e€E hZ
—tiy [Bo [ Wa@Pde+ [ @) (—mw'%m) + v<m>¢<x>) da
+00 ;
B [ o)l dx}
Tme (3.41)
hQ Tm+e
= Bo(w?) ~ lim [ (W = ¥)d(@ — o) do
2 hz T —€
= Eo(y”) — %(w;nr Y1)
Damit erhélt man fiir die neue Testenergie:
~ h2 ¢;nr B ;nl
E~FEy— %W (3.42)
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3.7 Bestimmung der Wellenfunktionen

Nicht nur zur Anwendung des Variationsverfahrens, sondern auch zur Darstel-
lung der Wellenfunktion muss man die eigentlich Wellenfunktion aus den Gréfien
des renormalisierten NUMEROV-Verfahrens rekonstruieren. Dazu beginnt man
am besten bei dem ersten Punkt, am dem R < 1 wird, da das auf ein Maximum
oder Minimum der Wellenfunktion (und damit keine Nullstelle) hindeutet. Also
kann man aufgrund der beliebigen Normierbarkeit an dieser Stelle den Wert
der Wellenfunktion auf 1 setzen. Von dort ausgehend muss man nur noch die
Gleichungen aus Abschnitt 3.3 umstellen, um die Rekursionsformel

1 =T it

= — 3.43
V=T T, R (343)
zu erhalten, analog ergibt sich fiir den Bereich rechts der Mitte
1—Ti1¢i1
J— 3.44
Vi 1-T; S, (3:44)
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4 Implementierung

Die oben erlduterten Verfahren wurden in einem umfangreichen Softwaresystem
umgesetzt. Die eigentliche Funktionalitdt findet sich in einer C+-+-Bibliothek
mit Namen tises!. Getrennt davon stehen zwei verschiedenen Benutzeroberfli-
chen zur Verfiigung, ein kompaktes Shell-Programm mit Bezeichnung tisesSh
und eine auf Qt basierende graphische Benutzeroberfliche namens tisesQt. In
diesem Kapitel soll vor allem der Aufbau der Bibliothekskomponente erldutert
werden.

4.1 Schnittstelle

tises::Environment

+ Environment()

+ addConst(name : string, formula : string) : bool

+ clearConsts()

+ getConsts()

+ setParams(params : map<string, double>)

+ setPotential(formula : string)

+ getPotential(left : double, right : double, count : int) : double*
+ setStep(step : double)

+ getStep() : double

+ setPrecision(prec : double)

«enum» «enum» «enum»

tises::Init tises::RootFinder tises::PotType
exponential match general
wkb_trapez shoot symmetricl
wkb_simpson variation symmetric2
trafo_tan radial
trafo_artanh
trafo_frac

tises::Solver

+ solve()

+ energy_count() : int

+ energy(n : int) : double

+ wave(n : int, left : double, right : double, count : int, norm : double, baseline : double) : double*

+ createSolver(init : Init, root finder : RootFinder, pot type : PotType, env : Environment, Emax : double) : Solver*

Abbildung 4.1: Ubersicht iiber die Schnittstelle des tises-Pakets.

Die gesamte nach auflen sichtbare Schnittstelle des tises-Pakets ist in Abb. 4.1
dargestellt. Beim Aufruf geht ein Benutzer wie folgt vor:

Miir » Time Independent Schrédinger Equation Solver«
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1. Zuné&chst wird ein Objekt vom Typ Environment erzeugt und mit Infor-

mationen gefiillt. Dazu gehdéren

— Konstanten, also Abkiirzungen fiir feste Gréflen, die in der Poten-
tialformel benutzt werden. Vordefiniert sind die Kreiszahl _pi und
die EULERsche Zahl _e. In den Formelausdriicken fir die Konstanten
diirfen auch bereits vorhandene Konstanten benutzt werden.

— Die aktuelle Belegung der im Potentialausdruck vorkommenden Pa-
rameter in Form eines assoziativen Datenfeldes (map), das der Para-
meterbezeichnung den Wert zuordnet. Die Idee hierbei ist, dass die
im aufrufenden Programm verwalteten Parameter verschiedene Wer-
te durchlaufen und die momentanen Belegungen iiber diese Schnitt-
stelle vermittelt werden.

— Der Potentialausdruck selbst. In der als Zeichenkette angegebenen
Formel diirfen sémtliche vorher definierten Parameter und Konstan-
ten benutzt werden, die Ortskoordinate wird iiber die Bezeichnung x
angesprochen. Hat man beispielsweise den Parameter omega definiert,
lasst sich ein Oszillatorpotential mit dem Ausdruck 0.5%omega™2*x"2
erzeugen.

— Die Schrittweite step = h.

— Die gewtinschte relative Genauigkeit (precision) der Energieeigen-
werte. Die Schétzung eines Energieeigenwerts wird solange verbes-
sert, bis abziiglich numerischer Fehler garantiert werden kann, dass
die angegebene relative Abweichung nicht tiberschritten wird.

Die meisten dieser Werte kénnen auch wieder abgefragt werden.

. Nun muss eine Kombination der zu benutzenden Verfahren ausgewéhlt

werden. Zur Wahl der Anfangsbedingungen stehen zur Verfiigung;:

exponential Anfang der Integration im klassisch verbotenen Bereich des
Potentials unter Verwendung der exponentiellen Naherung, vgl. Ab-
schnitt 3.4.2.

wkb__trapez, wkb_simpson Anfang im klassisch verbotenen Bereich un-
ter Verwendung der WKB-Néaherung mit verschiedenen Integrations-
verfahren, s. Abschnitt 3.4.2.

trafo__tan, trafo_artanh, trafo_frac Transformation des Potentials auf
einen endlichen Bereich mit den in Abschnitt 3.4.3 behandelten Funk-
tionen.

Die moglichen Verfahren zur Beurteilung der Schitzungen des Energieei-
genwerts sind:



4.2. Interner Aufbau

match Die Wellenfunktion wird von rechts und links erzeugt, der Unter-
schied der Steigungen in der Mitte ist ein Maf fiir die Abweichung
vom Eigenwert, wie in Abschnitt 3.5.2 erldutert. Der neue Energie-
schiatzwert wird mit dem Sekantenverfahren (Abschnitt 3.6.1) be-
stimmt.

shoot SchieBverfahren: Iteration nur von einer Seite, vgl. Abschnitt 3.5.1.

variation Benutzt ebenfalls das Matching-Verfahren, nur wird der néchste
Energiewert mit Variationsrechnung bestimmt (Abschnitt 3.6.2).

Zudem hat man die Wahl zwischen vier Ansatzen fur verschiedene Arten
von Potentialen:

general Allgemeiner Potentialausdruck ohne weitere Einschrankungen.

symmetricl Nur fiir zur y-Achse spiegelsymmetrische Potentiale, ignoriert
die anderen Parameter und benutzt das Schiefiverfahren mit den in
Abschnitt 3.4.1 genannten »alten« Startwerten.

symmetric2 Ebenfalls Schielverfahren fiir symmetrische Potentiale, be-
nutzt aber die »neuen« Startwerte 1 bzw. —1 aus Abschnitt 3.4.1.

radial Der Potentialausdruck muss nur fiir £ > 0 definiert sein, es wer-
den die Randbedingungen der radialen Schrédingergleichung benutzt
(vgl. Abschnitt 2.1.1). Ausgegeben wird die Funktion u(r) = rR(r).
Die Potentialtransformationen kénnen nicht in Kombination mit die-
ser Option verwendet werden.

Mit diesen Angaben, einem Environment-Objekt und einer oberen Schran-
ke Emax fiir die Energiewerte (0, wenn nicht angegeben) wird nun die stati-
sche Klassenmethode Solver::createSolver(...) aufgerufen. Riickga-
bewert ist eine Instanz einer Unterklasse von Solver, den Aufrufer inter-
essiert allerdings nur das Solver-Interface.

3. Nach Aufrufe der solve ()-Methode kénnen die Energieeigenwerte abge-
fragt werden, die Wellenfunktionen erhélt man unter Angabe von Quan-
tenzahl n, linker und rechter Grenze, Zahl der gewiinschten Punkte, Nor-
mierungsfaktor (Vorgabewert 1) und wenn gewiinscht einer zu addierenden
Konstante, um beispielsweise die Wellenfunktion in der Héhe des zugehd-
rigen Energieeigenwerts darzustellen.

4.2 Interner Aufbau

Die verschiedenen Kombinationen von Verfahren und Startbedingungen wer-
den durch die Verwendung von Typparametern (Templates) und mehrstufiger
Vererbung weitgehend redundanzfrei ermdéglicht. Die Effizienz des Programms
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Explnitializer
Explnitializer()

Radiallnitializer Approxlnitializer <]
getx0() getRO0) 4 WkbTrapezinitializer
getRO() getso() WkbTrapezinitializer()
 Initialize| IN()
Matchintegrator|— ge < ﬂ‘ WkbSimpsoninitializer |
iterate() [WkbSimpsoninitializer() |
Trafolnitializer _

—_ Solver | Initializer &-—--——--——] Initializer getRO() K TanTrafolnitializer
solve) | TwoSidelntegrator; gebx0() getso) |
energy_count() wave() getxn() getEmin .
energy() getEmin() getEmin() K geEE(r)rz)ax() H ArtanhTrafoImtuahzer%
wave() getEmax() - getEmax() getx T0
createSolver() : getxn()

Shootlintegrator geth() FracTrafolnitializer
getN() <1

T0

Symmetriclnitializerl | | Symmetriclnitializer2

. Integrat Integrator getx0() getx0()
GenericSolver fterate() getRO() : ge}tRO()
solve() wave() RS /AN 4
wave() getEmin() | Symmetricinitializer |

getEmax() | [Symmetricintegrator |~

iterate()

Abbildung 4.2: Klassen- und Templatehierarchien im tises-Paket.

hat unter diesen verzweigten Hierarchien allerdings nicht zu leiden, da fir je-
den Templateparameter eigener Maschinencode erzeugt wird und zeitkritische
Methodenaufrufe durch Inlining abgekiirzt werden kénnen.

Die weit verzweigten Vererbungs- und Templatehierarchien sind in Abb. 4.2
vollstandig dargestellt, die Funktionen sind dort ebenfalls angedeutet. Die we-
sentlichen Beziehungen und Inhalte sollen hier erlautert werden.

Hinter dem fir den Benutzer sichtbaren Solver-Interface verbirgt sich ein Ob-
jekt vom Typ GenericSolver, dem iiber ein Templateparameter ein Integrator
zugeteilt wird. Der GenericSolver fiihrt nur Schritte auf hohem Abstraktions-
niveau durch, die unabhéngig von der Wahl des Verfahrens sind. So fiihrt er bei-
spielsweise Buch iiber die bereits gefundenen Eigenwerte und Eigenfunktionen.
Die Energieeigenwerte ermittelt er, indem er vom Integrator die Integration
der Schrodingergleichung fiir einen Energiewert anfordert und dann entscheidet,
ob die zuriickgelieferte bessere Schitzung fiir den Eigenwert plausibel ist und
mit der Zahl der Nullstellen in Einklang steht. Andernfalls wird der néchste
Schatzwert mit einem Bisektionsverfahren bestimmt.

Die von Integrator abgeleiteten Klassen fiihren die eigentlichen Iterations-
schritte nach dem renormalisierten NUMEROV-Algorithmus durch und erzeugen
die Wellenfunktionen, fiir jedes auswahlbare Verfahren gibt es hier eine Un-
terklasse. TwoSideIntegrator fasst die Erzeugung der Wellenfunktion fiir die
Integration von zwei Seiten zusammen. Im Fall eines symmetrischen Potentials
werden die speziellen, von SymmetricInitializerl und 2 vorgegebenen An-
fangsbedingungen beriicksichtigt.

In den anderen Féllen benutzen die Integrator-Objekte eine beliebige von

26



4.3. Bedienung der graphischen Oberfliche

Initializer abgeleitete Klasse als Template-Parameter, die die Anfangsbe-
dingungen vorgibt. ApproxInitializer und TrafoInitializer fassen einige
Funktionen zusammen, die in den jeweiligen abgeleiteten Klassen identisch wa-
ren. Ein Spezialfall ist der RadialInitializer, der eine andere Initialisierungs-
klasse als Templateparameter benotigt (fiir die Initialisierung auf der rechten
Seite beim Matchingverfahren).

4.3 Bedienung der graphischen Oberflache

Die Gestaltung der graphischen Benutzeroberfliche der Komponente tisesQt
ist in Abb. 4.3 zu sehen. Auf der rechten Seite kann man die zu benutzenden
Verfahren wihlen und die Parameter einstellen. Die Groflen x min und x  max
geben dabei nur die Grofle des zu zeichnenden Bereichs an und haben keinen
Einfluss auf die Berechnungen.

Unterhalb dieser Einstellung kénnen die Konstanten angegeben oder entfernt
werden, links unten kann man Parameter hinzufligen oder ihre aktuelle Belegung
einstellen.

Rechts unten kann schliellich der Ausdruck fiir das Potential in Abhangigkeit
von den Parametern, Konstanten und der Ortsvariablen x eingegeben werden.
Dabei stehen die iiblichen Rechenoperationen +, —, *, / und ~, aber auch Ver-
gleichsoperatoren, eingebaute Funktionen wie sin und der Absolutbetrag abs
und alle weiteren in arithmetischen Ausdriicken in C+4-Syntax verwendbaren
Operatoren zur Verfiigung. Dazu gehort auch der terniare Operator 7 :, der bei-
spielsweise im Ausdruck »abs(x)<L/2 7 0 : VO« zur Erzeugung eines Poten-
tialtopfes der Hohe VO genutzt werden kann. Zur Auswertung dieses Ausdrucks
wird die freie Bibliothek muParser benutzt.

Die im Evaluationskapitel verwendeten Beispielpotentiale konnen auch direkt
ausgewahlt werden. Zudem kann ein analytischer Ausdruck fiir die Energie in
Abhéngigkeit von der Quantenzahl n angegeben werden, um die Ergebnisse hier-
mit zu vergleichen.

Klickt man nun auf ,,Berechnen“, werden das Potential sowie die Wellenfunk-
tionen auf Hohe der zugehorigen Eigenenergie im Feld links oben dargestellt.
Mit dem benachbarten Regler ldsst sich die Normierung der Wellenfunktionen
variieren. Die erhaltenen Eigenwerte und Wellenfunktionen lassen sich mit dem
Knopf rechts unten auch in Dateien schreiben, dabei enthélt die Datei mit dem
angegebenen Namen, z. B. »Morse«, die Quantenzahlen, Eigenwerte und ggf.
die relativen Abweichungen von den analytischen ermittelten Werten. Fiir je-
den Eigenwert wird zudem eine Datei angelegt, deren Name aus der gewahlten
Bezeichnung und der angehéngten Quantenzahl besteht, z. B. »Morse_ 5«. Hier
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Eigenwertberechnung

2.71828182846

3.14159265359

0.5%omega™2%x"™ 2

omega*{n+0.5)
)
|

Abbildung 4.3: Bildschirmfoto der graphischen Oberfliche von tisesQt.
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sind die Werte der Wellenfunktion an den Stiitzpunkten aufgelistet, um sie mit
einem anderen Programm plotten oder weiterverarbeiten zu kénnen.
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5 Evaluation

In diesem Kapitel soll die Implementierung der verschiedenen Verfahren zur Lo-
sung der stationdren Schrédingergleichung getestet werden. Um die berechneten
Energieeigenwerte einordnen zu kénnen, werden einige der wenigen Potentiale
benutzt, zu denen die analytische Losung der Schrodingergleichung bekannt ist.
Dadurch koénnen die numerisch ermittelten Werte mit den exakten verglichen
werden.

5.1 Beispielpotentiale

An den folgenden Potentialen wird das Programm getestet. Sie unterscheiden
sich im Wesentlichen durch ihr Konvergenzverhalten fiir betragsméflig grofe x.

Die Herleitung der Eigenwerte und Eigenfunktionen der Potentiale ist nicht
Gegenstand dieser Arbeit, sofern nicht anders angegeben, finden sich die Herlei-
tungen in den Lehrbiichern zur Quantenmechanik, benutzt wurde vor allem [5].
Zu beachten ist, dass in dieser Darstellung die Einheiten A = m = 1 verwendet
werden.

5.1.1 Der Potentialtopf

Das wohl einfachste Beispiel fiir ein quantenmechanisches System ist der Poten-
tialtopf:

0, fallsO<x< L

Viz) = { amisrst (5.1)
Vb, sonst

Dabei ist V) > 0 die Tiefe und L > 0 die Breite des Topfes. Einen analytischen

Ausdruck fiir die Eigenwerte erhélt man jedoch nur im Grenzwert Vy — oo eines

unendlich hohen Potentials. Sie lauten dann:
_ m? 2

Auch die Wellenfunktionen lassen sich hier sehr einfach angeben, handelt es sich
doch um Sinus-Funktionen, die gerade die Randbedingung des Verschwindens
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am Rand des Topfes erfiillen:

U (x) = @Sin (Wﬂ?) , n=0,1,2,.... (5.3)

Um unendlichen Werten des Potentials begegnen zu konnen, ist eine Modifikati-
on am Programm erforderlich, die sich auch sonst bei hohen Potentialwerten als
hilfreich erweist. Im klassisch verbotenen Bereich (V' (z) > E) wird die Grofle
T; aus Abschnitt 3.2 positiv, doch wegen des sehr kleinen Faktors h? bleibt sie
in der Regel deutlich kleiner als 1. Erst bei sehr groflen Differenzen V(z) — E,
wie sie natiirlich im Fall V(x) = oo vorliegen, erreicht 7; den Wert 1. Doch in
diesem Punkt hat die NUMEROV-Rekursionsformel einen Pol, fiir T; > 1 &ndert
sich das Vorzeichen von U; in Gleichung (3.11). Dieses Verhalten liefert keine
korrekten Werte, es lasst sich allerdings beheben, indem U; im Fall T; > 1 auf oo
gesetzt wird. Erzeugt man nun die Wellenfunktion aus dem klassisch erlaubten
Bereich heraus, fiihrt dies an der kritischen Stelle zu einem Verschwinden der
Wellenfunktion, wie man es physikalisch erwarten wiirde (da die unendlich hohe
Potentialbarriere nicht bewéltigt werden kann).

5.1.2 Der harmonische Oszillator

Ein noch analytisch l6sbares aber zugleich in vielen Anwendungen als Ndherung
benutztes Potential ist der harmonische Oszillator

1
V(z) = §w2x2 . (5.4)
Wie beispielsweise in [5] hergeleitet, erhélt man als Eigenwerte
1
E,=w (n + 2) . (5.5)

5.1.3 Das Poschl-Teller-Potential

Von G. POscHL und E. TELLER wurden in [6] eine Reihe von Potentialen vor-
geschlagen, zu denen eine analytische Losung der Schréodingergleichung existiert.
Hier wollen wir uns auf den bekanntesten Spezialfall beschranken, der auch in
[7] vorgestellt wird. Das Potential lautet hier:

V(x) = —Vo/ cosh® ax . (5.6)

Der Verlauf ist auch in Abb. 5.1 zu sehen. Bemerkenswert ist, dass dieses Poten-
tial im Gegensatz zu den zuvor betrachteten beschrénkt ist und so nur endlich
viele Energieeigenwerte besitzt. Diese berechnen sich nach [7] zu

9 2
a
En:—g

—(1+42n) +/1+ =2 (5.7)
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0 —— -10/cosh(x)? " o

~10] \/ L _10

_12 T T T | T T T | T T T | T T T _12

Abbildung 5.1: POSCHL-TELLER-Potential mit V5 = 10 und a = 1.

5.1.4 Das Morse-Potential

Zur Beschreibung der Schwingung zweiatomiger Molekiile schlug PHiLip M.
MORSE in [8] ein Potential vor, das sich spéter als ein Grenzfall der von POSCHL
und TELLER behandelten Potentiale erwies. Es hat die Form

Viz) = =Vp(2 —e *)e % . (5.8)

An der Stelle x = 0 liegt ein Minimum der Tiefe —V} vor, in negative Richtung
wéachst das Potential exponentiell und fiir grofle positive x konvergiert es gegen
0 (vgl. Abb. 5.2). Als echt asymmetrisches Potential mit zwei grundverschiede-
nen asymptotischen Grenzwerten stellt das MORSE-Potential einen geeigneten
Testfall dar.

Auch das MORSE-Potential ist analytisch losbar. Fir die Eigenwerte erhélt

marn:
2

En:—V0+a\/mm+1/2)—%(n+1/2)2. (5.9)

5.1.5 Das Coulomb-Potential

Als das typische Beispiel fiir ein Radialpotential betrachten wir das COULOMB-
Potential, das bei der quantenmechanischen Beschreibung des Wasserstoffatoms
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Abbildung 5.2: MORSE-Potential V(z) = —Vp(2 — e™*)e™ %" mit V) = 18 und
a=1.

vorkommt. Mit dem in 2.7 auftretenden zusédtzlichen Term der Radialgleichung
erhélt man als effektives Potential

a l(l+1)
%ﬂ(r):_?+ o2

(5.10)

In den benutzten Einheiten wiirde o im Fall des Wasserstoffatoms der Fein-
strukturkonstante entsprechen, doch auch andere Wahlen sind moglich.

Die Energiceigenwerte hangen im Fall des 1/r-Potentials nicht von der Quan-
tenzahl [ ab, sie lauten:

042

E, = IR (5.11)

Der Ausdruck fiir die Wellenfunktionen hangt auch von [ ab. Er ist kompliziert,
aber lasst sich analytisch angeben als

Ut (r) = rRu(r) = rNo (2ar/(n + 1)) e/ D LEL 2ar/(n + 1)) (5.12)

mit dem Normierungsfaktor

N, \/ (n—0!(2a/(n + 1)?3 (5.13)

2(n+ 1) ((n+1+1)!)3
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und den zugeordneten Laguerrepolynomen, die gegeben sind durch
d\?* d\"
Lit)=(—-=) e (=) e ™. 5.14
o= (-5) ¢ (5) (5:1)

Das CouLromB-Potential zeigt drei bisher noch nicht aufgetretene Besonderhei-
ten, die bei der numerischen Behandlung besonderer Aufmerksamkeit bediir-
fen:

— Die Energien der gebundenen Zustidnde sind zwar durch 0 nach oben be-
schrankt, aber es gibt unendlich viele Eigenzustéinde. Gibt man als maxi-
male Energie einen Wert > 0 an, benutzt das Programm zur Vermeidung
von Endlosschleifen zwar eine minimal unter 0 liegende obere Schranke,
doch kann es sehr lange dauern, bis alle Eigenwerte unterhalb von dieser
gefunden werden. Da der Benutzer solche langen Laufzeiten durchaus in
Kauf nehmen wollen kénnte, wurde entschieden, die Verantwortung zur
Wahl einer angemessenen Obergrenze bei ihm zu lassen.

— Im Fall [ = 0 divergiert das Potential an der Stelle z = 0 gegen —oo. Dies
wiirde dem Programm keinen Anhaltspunkt fiir die untere Schranke der
Energie liefern, sodass kein Startwert gewdhlt werden kann. Um dies zu
umgehen, werden einfach alle unendlichen Werte bei der Suche nach dem
Potentialminimum ignoriert. Die Werte an den Polen benachbarten Stellen
sind zwar immer noch betragsméflig sehr grof}, aber endlich, sodass das
Bisektionsverfahren in endlicher Zeit terminiert.

— Im Fall [ > 0 divergiert das effektive Potential an der Stelle x = 0 gegen
+00. Diese Tatsache wird vom Parser jedoch nicht erkannt, denn er fiihrt
keine komplizierte Grenzwertbetrachtung durch, sondern rechnet einfach
-1/0+1/072=-inf+inf=NaN. Mit dem Ergebnis NaN (»Not a Number«)
kann aber nicht mehr weitergerechnet werden, da NaN verkniipft mit einer
anderen Zahl wieder NaN ergibt. Da dies jedoch ein Problem des Parsers ist
und es eine sehr komplexe Aufgabe wire, sdmtliche Félle dieser Art kor-
rekt zu behandeln, liegt hier wiederum die Verantwortung beim Benutzer.
Er kann hier entweder die Werte an kritischen Stellen mittels Fallunter-
scheidung manuell angeben oder das Potential direkt so schreiben, dass
der Grenzwert korrekt berechnet werden kann. In diesem Fall wére bspw.
die Schreibweise

—a+Il(+1)/(2r)

T

Ver() = (5.15)
moglich, da die Berechnung dann (im Fall a« = 1,1 =1)
(-1+1/0)/0=(-1+inf) /0=inf/0=inf

liefert.
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5.2 Vergleich der verschiedenen Verfahren

Bei zahlreichen Kombinationen von Iterationsverfahren, Bestimmung der An-
fangswerte und Wahl der Parameter ist es weder besonders lehrreich noch in
beschrankter Seitenzahl machbar, sémtliche Energieeigenwerte und Wellenfunk-
tionen zu den fiinf Testpotentialen numerisch zu ermitteln und mit den analy-
tischen Werten zu vergleichen. Drum wéhlen wir zunéchst zu jedem Potential
moglichst angemessene Werte fiir die Parameter und benutzen dann die jeweils
einsetzbaren Losungsverfahren zur Ermittlung der Energieeigenwerte. Zur Beur-
teilung der Qualitidt dieser Ergebnisse reicht zunéchst eine Kenngréfie, ndmlich
die Maximumsnorm {iber die betragsméfligen relativen Abweichungen von den
analytisch ermittelten Eigenwerten. Dadurch wird jeweils der schlechteste Wert
betrachtet, sodass evtl. ungeeignete Verfahren direkt auffallen.

Die Vorgabe fiir die relative Genauigkeit der Eigenwerte wird auf die Maschi-
nengenauigkeit des verwendeten Datentyps (double, ca. 107!6) gesetzt, sodass
jedes Verfahren die unter den gegebenen Umstdnden »optimalen« Energiewerte
findet.

Als weitere Kenngrofie wird auch die Gesamtrechenzeit angegeben, um die Ver-
fahren hinsichtlich ihrer Effizienz einordnen zu kénnen. Die Rechenzeit kann
beispielsweise beim Einsatz in der Simulation von Vielteichensystemen relevant
werden, wenn Eigenwerte oder Wellenfunktionen zu leicht gednderten Potentia-
len immer wieder neu bestimmt werden miissen.

Die Messwerte sind in den Tabellen 5.1 bis 5.5 dargestellt.
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Tabelle 5.1: Potentialtopf mit L = 27/v/2, Epax = 50, h = 1074

Verfahren Fehler | Zeit in s
Match exp 5,27e-05 0,85
wkb_ trapez 5,27e-05 0,86
wkb_ simpson | 5,27e-05 0,86
trafo_ tan 4,31e-05 2,77
trafo_artanh | 1,06e-04 1,53
trafo_ frac 2,35e-06 1,94
Shoot exp 5,27e-05 3,27
wkb__trapez 5,27e-05 3,16
wkb_ simpson | 5,27e-05 3,18
trafo_tan 4,31e-05 6,94
trafo_artanh | 1,06e-04 4,59
trafo_ frac 2,35e-06 5,64
Variation exp 5,27e-05 6,20
wkb_ trapez 5,27e-05 6,17
wkb_ simpson | 5,27e-05 6,19
trafo_tan 4,31e-05 21,45
trafo_artanh | 1,06e-04 12,37
trafo_ frac 2,35e-06 15,67
Symm alt 5,27e-05 1,27
neu 7,69e-06 1,23

Tabelle 5.2: harmonischer Oszillator mit w = 1, Fmax = 20, h = 1073

Fehler | Zeit in s

Match exp 3,43e-12 0,47
wkb__trapez 3,43e-12 0,49

wkb_ simpson | 3,43e-12 0,49

trafo_ tan 7,83e-11 1,01
trafo_artanh | 1,30e-11 0,54

trafo_ frac 1,38e-11 0,76

Shoot exp 2,05e-12 1,65
wkb__trapez 2,05e-12 1,65
wkb__simpson | 2,05e-12 1,62

trafo_tan 7,83¢e-11 2,94
trafo_artanh | 1,30e-11 2,09

trafo_ frac 1,38e-11 2,53

Variation exp 3,24e-12 1,38
wkb__trapez 3,24e-12 1,38
wkb__simpson | 3,24e-12 1,38

trafo_ tan 7,83e-11 8,10
trafo_artanh | 1,30e-11 5,10

trafo_ frac 1,38e-11 6,39

Symm alt 2,01e-12 0,53
neu 3,39%-12 0,53
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Tabelle 5.3: POSCHL-TELLER-Potential mit Vj = 36, a = 1, Epnax = —0,01,
h=3-10"*
Verfahren Fehler | Zeit in s
Match exp 6,97e-09 0,58
wkb__trapez 2,90e-11 0,58
wkb__simpson | 2,90e-11 0,58
trafo_ tan 4,94e-11 0,79
trafo_artanh | 7,42e-12 0,45
trafo frac 3,98e-12 0,58
Shoot exp 3,45e-09 2,29
wkb_ trapez 3,17e-11 2,30
wkb__simpson | 3,17e-11 2,28
trafo_ tan 4,89%e-11 2,79
trafo_artanh | 7,73e-12 1,84
trafo_ frac 3,83e-12 2,20
Variation  exp 6,97e-09 2,13
wkb__trapez 2,90e-11 2,18
wkb_ simpson | 2,90e-11 2,17
trafo_ tan 1,25e-01 7,05
trafo_artanh | 5,47e-01 3,97
trafo_ frac 5,50e-02 4,93
Symm alt 2,30e-11 0,81
neu 8,95e-12 0,83

Tabelle 5.4: MORSE-Potential mit Vy = 32, a = 1, Epay = —2, h = 3 - 104

Verfahren Fehler | Zeit in s
Match exp 1,78e-06 0,35
wkb_ trapez 2,90e-08 0,34
wkb_ simpson | 2,90e-08 0,32
trafo_ tan 4,92e-11 0,38
trafo_artanh | 9,14e-12 0,29
trafo_ frac 1,00e-11 0,36
Shoot exp 4,29e-12 1,35
wkb__trapez 4,29e-12 1,37
wkb__simpson | 4,29e-12 1,31
trafo_ tan 4,93e-11 1,34
trafo_artanh | 8,80e-12 1,03
trafo_ frac 9,92e-12 1,21
Variation  exp 1,78e-06 1,06
wkb__trapez 2,90e-08 1,04
wkb_ simpson | 2,90e-08 1,06
trafo_tan 4,91e-11 3,41
trafo_artanh | 9,18e-12 2,31
trafo_ frac 1,00e-11 2,88
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Tabelle 5.5: CouLomB-Potential mit a = 8, Epmax = 0.5, h =5 - 107*

=0 =1
Verfahren Fehler | Zeit in s Fehler | Zeit in s
Match exp 1,06e-05 0,28 | 2,34e-09 0,47
wkb__trapez 1,06e-05 0,28 | 1,56e-09 0,45
wkb__simpson 1,06e-05 0,29 | 1,56e-09 0,45
Shoot 1,06e-05 0,73 | 1,56e-09 1,07
Variation  exp 2,49e+02 0,83 | 2,34e-09 1,30
wkb__trapez 2,49e+02 0,84 | 1,56e-09 1,36
wkb__simpson | 2,49e+02 0,82 | 1,56e-09 1,39
=2 =3 l=4
Fehler | Zeit in s Fehler | Zeit in s Fehler | Zeit in s
2,67e-09 0,41 | 4,73e-09 0,29 | 1,08e-08 0,23
2,65e-10 0,43 | 4,96e-10 0,31 | 1,18e-09 0,24
2,65e-10 0,43 | 4,96e-10 0,31 | 1,18e-09 0,24
7,68e-12 0,73 | 1,61e-11 0,61 | 1,05e-11 0,47
2,67e-09 1,02 | 4,73e-09 0,93 | 1,08e-08 0,74
2,65e-10 1,10 | 4,96e-10 0,91 | 1,18e-09 0,67
2,65e-10 1,10 | 4,96e-10 0,91 | 1,18e-09 0,67

5.2.1 Diskussion

Vergleicht man die Messwerte untereinander, lassen sich unabhingig vom Test-
potential folgende Aussagen machen:

— Die drei Naherungsverfahren fiir das Potential im klassisch verbotenen Be-
reich (exp, wkb__trapez, wkb_ simpson) unterscheiden sich nicht hinsicht-
lich Genauigkeit und Laufzeit. Nur wenn das Potential fiir betragsméfig
grofle x gegen einen endlichen Wert konvergiert, liefert die WKB-N&herung
bessere Ergebnisse als die exponentielle Abschétzung. Der zuséitzliche Re-
chenaufwand fiir die WKB-N&herung schlégt sich nicht in der Gesamt-
laufzeit nieder, da diese Rechnung nur zu Beginn jeder Iteration ein oder
zwei Mal durchgefiithrt wird und gegeniiber den vielen Iterationsschritten
vernachlassigbar ist.

Bei der WKB-Naherung spielt es keine Rolle, welches Integrationsverfah-
ren benutzt wird. Daher sollte man auf die einfachere Trapezregel zuriick-
greifen.

Fazit: Zur Anndherung der Wellenfunktion im klassisch verbotenen Be-

reich ist die WKB-Néaherung in Kombination mit der Trapezregel am bes-
ten geeignet.
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— Vergleicht man die drei Transformationsverfahren untereinander, gibt es
hinsichtlich der Genauigkeit keine grolen Unterschiede, doch schneidet die
Tangens-Transformation in den meisten Féllen etwas schlechter als die bei-
den anderen Transformationen ab. Es ist nicht vollstdndig auszuschlielen,
dass dies auf eine ungiinstige Wahl der Parameter zuriickzufiihren ist. Ver-
glichen mit den anderen Methoden liefern die Transformationsansétze mal
bessere, mal schlechtere Ergebnisse. Auf eine Ursache hierfiir werden wir
weiter unten noch genauer eingehen.

Deutlicher sind die Unterschiede in der Laufzeit, hier ist in allen Féllen
die Tangens-Transformation mit deutlichem Abstand am langsamsten und
die artanh-Transformation am schnellsten. Das liegt an dem unterschied-
lichen Berechnungsaufwand fiir die Transformationsvorschriften, der sich
sehr stark auf die Gesamtlaufzeit auswirkt, da die Transformation des
Potentials in jedem einzelnen Schritt der Iteration durchgefithrt werden
muss. Aus diesem Grund weisen die Transformationen auch meist héhere
Laufzeiten als die Approximationsansitze auf. Durch geschickte Umfor-
mulierung der Ausdriicke oder Tabellierung bestimmter Werte liefle sich
der Aufwand vielleicht noch weiter reduzieren.

Fazit: Von den verschiedenen Transformationsansétzen lasst sich keiner
klar als »der beste« bezeichnen, doch in der vorliegenden Implementierung
bietet die artanh-Transformation die besten Eigenschaften. Die Transfor-
mation des Potentials stellt eine brauchbare Alternative zu den Nédherun-
gen im klassisch verbotenen Bereich dar.

— Im Vergleich von Matching- und Schieflverfahren gibt es nicht immer si-
gnifikante Unterschiede, doch besonders im Fall von MORSE-Potential und
CouLoMB-Potential ab [ = 2 liefert das Schieverfahren um mehrere Gro-
Benordnungen bessere Ergebnisse. Dies geschieht allerdings auf Kosten der
Laufzeit, die in allen Féllen grofler als unter Verwendung des Matching-
verfahrens ist.

Die besseren Ergebnisse des Schiefflverfahrens lassen sich damit erkléren,
dass dem Schiefiverfahren ein nach rechts offener Bereich zur Verfiigung
steht, wihrend das Matchingverfahren auf einen bestimmten Bereich der
x-Achse beschrankt bleibt. Dadurch hat es Raum fiir mehr Iterationen und
kann so genauere Ergebnisse liefern. Der Mehraufwand fiir den gréfieren
Iterationsbereich wird allerdings grofitenteils wieder dadurch kompensiert,
dass das Schiefverfahren in grofien Entfernungen vom Eigenwert auch di-
rekt abbrechen kann, sobald die Wellenfunktion divergiert oder zu viele
Knoten auftreten, wihrend das Matchingverfahren in solchen Féllen im-
mer entlang des gesamten Bereiches iteriert. Die hohe Laufzeit kommt
hingegen dadurch zu Stande, dass das Schieverfahren insgesamt deutlich
mehr Iterationen braucht, in Ermangelung einer guten Methode zur Feh-
lerabschatzung muss auf das langsame Bisektionsverfahren zuriickgegriffen
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werden. Fazit: Das Schielverfahren kann unter Umstédnden genauere Er-
gebnisse liefern, braucht dafiir aber auch langer.

Das Variationsverfahren als eine Variante des Matchingverfahrens mit ei-
ner ausgefeilteren Methode zur Suche eines neuen Schétzwertes fiir die
Energie sollte eigentlich dhnliche Ergebnisse wie das Matchingverfahren
liefern, wihrend man sich eine bessere Laufzeit erhofft. Allerdings scheitert
das Verfahren mit deutlich abweichenden Ergebnissen unter Verwendung
der Transformationen mit Anwendung auf das POSCHL- TELLER-Potential
und im Fall [ = 0 des CouLoMB-Potentials. Hinzu kommt eine um ein
Vielfaches schlechtere Laufzeit, sodass man ohne Weiteres sagen kann,
dass die Erwartungen nicht erfillt wurden.

Ursache fiir die hohe Laufzeit ist die zusétzlich notwendige Integration
der gesamten Wellenfunktion nach der Iteration zu einem Energiewert. Im
Rahmen des renormalisierten NUMEROV-Verfahrens wird die Wellenfunk-
tion nicht explizit erzeugt, sodass hierfiir zusitzlicher Aufwand notwen-
dig ist, der jeweils in der GroBlenordnung der Zahl der Stiitzstellen liegt.
Das in »Match« benutzte Sekantenverfahren hat hingegen nur konstanten
Aufwand zur Schétzung eines neuen Energiewertes. Dadurch kénnen zwar
nicht ganz so viele Iterationen eingespart werden wie mit dem Variations-
verfahren, doch ist der dazu notwendige Mehraufwand unverhéltnisméfig.

Womdglich ldsst sich das Variationsverfahren noch effizienter implemen-
tieren, indem man wieder auf den »normalen« NUMEROV-Algorithmus zu-
riickgreift und auf die Vorteile des renormalisierten verzichtet, doch in der
vorliegenden Version ist es auch nicht geeignet, die Bisektion im Shoot-
Verfahren zu ersetzen, da selbst dessen Laufzeit in den meisten Testfdllen
geringer ist.

Fazit: In der hier implementierten Version bietet das Variationsverfahren
keine Vorteile gegeniiber den anderen Verfahren.

Im Vergleich der beiden Verfahren zur Wahl der Startbedingungen bei
symmetrischen Potentialen ldsst sich mit den beschriankten Daten kein
Sieger ermitteln. In zwei von drei Féllen ist das Ergebnis des neuen Ver-
fahrens um fast eine Groflenordnung besser, im dritten Fall jedoch liegt
die alte Methode vorne.

Verglichen mit den anderen Methoden bei symmetrischen Potentialen ge-
horen Ergebnisse immer mit zu den besten, jedoch werden dhnlich gute
Ergebnisse immer auch mit anderen Methoden erzielt. Die explizite Aus-
nutzung der Symmetrie bringt also erstaunlicherweise keinen klaren Vor-
teil.
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Abbildung 5.3: Abhéngigkeit des maximalen relativen Fehlers von der Schritt-
weite h beim Oszillatorpotential (w = 1).

Fazit: Die Qualitdt der mit allgemeinen Methoden erzielten Ergebnisse
reicht an die Werte heran, die mit auf symmetrische Potentiale optimierten
Verfahren erlangten wurden.

Von den einzelnen Potentialen ist der unendliche Potentialtopf erwdhnenswert,
da hier simtliche Ergebnisse um mehrere Groéflenordnungen schlechter sind als
bei den anderen Potentialen. Die unendlich hohe Potentialwand fiihrt hier zu
einer Unstetigkeit der ersten Ableitung der Wellenfunktion, die durch den dis-
kretisierten Definitionsbereich nicht wiedergegeben werden kann. Dies fithrt zu
einer empfindlichen Abhéngigkeit der Ergebnisse von den Parametern, so kon-
nen bspw. kleine Anderungen der Schrittweite eine Anderung des Fehlers um
mehrere Groflenordnungen zur Folge haben.

Ein dhnlicher Effekt zeigt sich beim CourLomB-Potential im Fall I = 0. Hier liegt
ein negativer Pol des Potentials im Ursprung vor, der die korrekte Berechnung
der Eigenfunktionen stért. Der positive Pol fiir [ > 0 stért die Berechnung nicht
in diesem Mafe, die Qualitit der Ergebnisse nimmt bis [ = 2 zu.

5.2.2 Einfluss der Schrittweite

Einer der dem Benutzer iiberlassenen Parameter ist die Schrittweite A. Um die
Abhéngigkeit der Ergebnisse hiervon darzustellen, ist in Abb. 5.3 exemplarisch
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KAPITEL 5. EVALUATION

der maximale relative Fehler beim Ostzillatorpotential in Abhéngigkeit von der
Schrittweite aufgetragen. Benutzt wurden die Werte w = 1 und Fpax = 8,
eine Vorgabe fiir den relativen Fehler von 10~!° und das Matchingverfahren mit
wkb__trapez-Initialisierung.

Wie im doppelt-logarithmisch skalierten Graph deutlich zu erkennen ist, fallt
der Fehler zunéchst mit abnehmender Schrittweite, nimmt nach Erreichen eines
Minimums allerdings wieder zu. Somit gibt es eine hinsichtlich Genauigkeit des
FErgebnisses optimale Schrittweite. Spielt die Laufzeit eine Rolle, wére das ein
Grund, Schrittweiten oberhalb der optimalen zu wéhlen.

Die Zunahme des Fehlers fiir noch kleinere h lésst sich dadurch erklaren, dass
bei immer kleineren Schritten nur kleine Verdnderungen auftreten, die im »nu-
merischen Rauschen« von Rundungsfehlern untergehen.

Wie man aus dem Graphen abliest, erreicht man mit der Verbesserung der
Schrittweite um eine Gréflenordnung ein Absenken des Fehlers um vier Gro-
Benordnungen, also ist dieser proportional zu h*. Dies ist kein Widerspruch zum
NUMEROV-Algorithmus, da hier in jedem einzelnen Schritt ein Fehler von O(h%)
auftritt, fiir den Fehler der gesamten Wellenfunktion gelten andere Gesetze.

Untersucht man andere Potentiale, stellt sich heraus, dass eine &hnliche Kurve
entsteht, das Minimum jedoch an einer anderen Stelle liegt. Somit ist es ohne
Vorwissen iiber die korrekten Losungen nicht unmittelbar moglich, die optimale
Schrittweite maschinell zu bestimmen. Womoéglich bietet die grobe Potentialform
Anhaltspunkte fir die Wahl der Schrittweite, doch eine genauere Untersuchung
geht iiber den Rahmen dieser Arbeit hinaus.

5.2.3 Die Wahl der maximalen Energie

Betrachten wir das POSCHL-TELLER-Potential, das fiir betragsméflig grofie =
gegen 0 konvergiert. Hier hat die Wahl der Obergrenze fiir die Energie einen
deutlichen Einfluss auf die Qualitit der Ergebnisse, auch wenn die Eigenwerte
in allen Féllen unterhalb dieser Grenze liegen. Die Obergrenze wird ndmlich
benutzt, um den klassisch erlaubten Bereich des Potentials zu bestimmen. Dieser
ist definiert als das grofite Intervall, in dem das Potential nicht héher als die
Energie ist. Nahert sich die Energieobergrenze also immer mehr der 0 an, wird
der klassisch erlaubte Bereich des POSCHL-TELLER-Potentials immer grofer.

Dies hat direkten Einfluss auf die verschiedenen Methoden zur Anfangswertbe-
stimmung. Fiir die Verfahren, die einen Naherungswert im klassisch verbotenen
Bereich bestimmen, wird dieser um so genauer, je weiter er vom Zentrum des
Potentials entfernt ist. Hier sind also hohe Werte von Ep.x glnstiger (wenn
man von der Rechenzeit absieht). Anders sieht es bei den Transformationsver-
fahren aus. Hier wird der klassisch erlaubte Bereich auf das Intervall [—1/2,1/2]
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5.2. Vergleich der verschiedenen Verfahren
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Abbildung 5.4: Abhéngigkeit des maximalen relativen Fehlers von der Ener-
gieobergrenze Epa.x beim POSCHL-TELLER-Potential (V = 36,
a=1).

abgebildet. Je grofer dieser Bereich wird, desto kleiner wird also das Bild des
Bereichs, indem die Wellenfunktion die stirksten Anderungen aufweist. Bei kon-
stanter Zahl an Stiitzstellen im Intervall [—1, 1] wiirde die effektive Schrittweite
im »spannenden« Bereich der Wellenfunktion also immer mehr abnehmen.

Um diesem Effekt entgegenzuwirken, wird deshalb auch die Schrittweite mits-
kaliert, indem die Zahl der Stiitzstellen konstant gehalten wird. So haben beide
Verfahren die gleichen Voraussetzungen.

Am Beispiel des POSCHL-TELLER-Potentials (mit Vo = 36, a = 1, h = 1073)
sind maximalen relativen Fehler in Abhéngigkeit von der Energieobergrenze in
Abb. 5.4 dargestellt. Das erwartete Verhalten ist deutlich zu erkennen. Beim mo-
difizierten artanh-Verfahren (mit Skalierung der Schrittweite) bleibt der Fehler
iiber den gesamten Messbereich konstant.
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6 Zusammenfassung und Ausblick

Es wurden verschiedene Kombinationen von Verfahren und Ansétzen entwickelt,
um die stationdre Schrédingergleichung zu beliebigen Potentialen zu 16sen. Bei
der nachtréglichen Beurteilung hat sich herausgestellt, dass die beiden grundle-
genden Vorgehensweisen, das SchiefSiverfahren und das Matchingverfahren, ver-
gleichbar gute Ergebnisse abliefern. Wahrend das Schieflverfahren in manchen
Situationen bessere FErgebnisse liefert, erlaubt das Matchingverfahren eine kiirze-
re Laufzeit des Programms. Das ist vor allem in Hinblick auf den méglichen Ein-
satz in Simulationen von komplexen Vielteilchensystemen ein wichtiges Merk-
mal. Das Variationsverfahren zur Schétzung eines besseren Energieeigenwerts
hat sich trotz schneller Konvergenz wegen des unverhédltnisméfiigen Mehrauf-
wands zur Integration der Wellenfunktion nicht bewéhrt.

Die beiden Methoden zur Umgehung des Problems der Anfangswerte im Un-
endlichen zeigen gute Ergebnisse. Mit der WKB-Naherung lassen sich gute Néa-
herungen fiir die Wellenfunktionen im klassisch verbotenen Bereich des Poten-
tials finden, dabei ist das einfache Trapezverfahren zur numerischen Integration
ausreichend. Auch die Transformation des Potentials auf einen endlichen Defini-
tionsbereich ergibt gute Resultate. Die verschiedenen Transformationen zeigen
dabei unterschiedliches Verhalten, doch ldsst sich keine Transformation eindeu-
tig als die beste bezeichnen. Die geringste Laufzeit in Kombination mit guten
Ergebnissen wird durch Verwendung des Areatangens hyperbolicus erreicht.

Im Vergleich mit den speziellen Ansétzen fiir symmetrische Potentiale weisen
die allgemeinen Verfahren héchstens geringfiigig groffere Abweichungen von den
analytisch ermittelten Werten auf, was ein Hinweis darauf ist, dass bessere all-
gemeine Wahlen der Anfangswerte kaum moglich sind. Die neue Methode zur
Wahl der Anfangswerte bei symmetrischen Potentialen liefert im Mittel leicht
bessere Werte und besitzt den Vorteil einer deutlich einfacheren Herleitung und
Implementierung.

FEine Erweiterung der hier vorgestellten Ergebnisse und des Programms ist in
vielfaltiger Hinsicht moglich. Das Programm kann um weitere Verfahren und
neue Kombinationen ergénzt werden, ebenso kénnten Algorithmen zur besseren
Schiatzung der jetzt noch dem Benutzer iiberlassenen Parameter, insbesonde-
re der Schrittweite, entwickelt werden. Auch bei der Gestaltung der Oberfla-
che kann man noch zusétzliche Funktionen einbauen, beispielsweise zur intelli-
genten Wahl des dargestellten Ausschnitts des Energiespektrums oder zur au-
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tomatischen Skalierung der dargestellten Wellenfunktion, sodass sie sich nicht
iiberschneiden. Denkbar wére auch eine Anpassung des Verfahrens an die An-
forderung, die Energiewerte zu einer Reihe von Potentialen zu bestimmen, die
sich nur durch geringe Anderungen eines Parameters unterscheiden. Dann sind
die Eigenenergien zu einem Wert des Parameters gute Schitzungen fiir einen
anderen, nicht weit entfernten Wert des Parameters. Durch Ausnutzung dieser
Tatsache konnte man sich einige Iterationen zu Beginn ersparen.
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