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Symbolverzeichnis

~ Das Plancksche Wirkungsquantum geteilt durch 2π, wird auf 1 gesetzt

ψi Wert der Wellenfunktion an der Stelle xi

E Energie

En n-ter Energieeigenwert

h Schrittweite bei Lösung der Differentialgleichung, Abstand benachbarter
Stützpunkte

m Masse des betrachteten Teilchens, wird auf 1 gesetzt

n Hauptquantenzahl (beginnend bei 0)

Ri Renormalisierte Wellenfunktion an der Stelle xi, Ri = (1−Ti+1)ψi+1
(1−Ti)ψi

Si Kehrwert der renormalisierten Wellenfunktion zur Integration in Gegen-
richtung, Si = R−1

i−1

Ti Abkürzung für das Potential mit Vorfaktoren: Ti = −h2

12
2m
~2 (E − V (xi))

V (x) Potential

xi i-ter Stützpunkt bei Berechnung der Wellenfunktion, xi = xmin + i · h
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1 Einleitung

Die 1926 von Erwin Schrödinger aufgestellte Schrödingergleichung beschreibt
das Verhalten von quantenmechanischen Teilchen unter Einfluss von Kräften, die
durch ein Potential V modelliert werden. Sie ist somit die entscheidende Grund-
lage zur Berechnung der Eigenschaften von Materie im Bereich der Größenord-
nung von Atomen. Allerdings ist ihre mathematische Lösung in den meisten
Fällen sehr schwer, bis heute wurden nur wenige Potentiale gefunden, zu denen
überhaupt eine Lösung der Schrödingergleichung auf rein analytischem Wege
möglich ist. Daher ist man in praktischen Anwendungen meist auf numerische
Verfahren angewiesen, die Zahlenwerte für die wichtigsten Kenngrößen des Pro-
blems liefern.

Das sogenannte Numerov-Verfahren wurde in der Bachelorarbeit von Ludwig
Jens Papenfort ([1]) zur Lösung der Schrödingergleichung für spiegelsymme-
trische Potentiale benutzt. Ziel dieser Arbeit ist es, die dort erzielten Ergebnisse
weiterzuentwickeln und das Verfahren auf beliebige Potentialformen zu verallge-
meinern. Dazu werden unterschiedliche Ansätze besprochen und verglichen, die
schließlich in die Entwicklung eines neuen robusten Programms mit benutzer-
freundlicher Oberfläche zur Behandlung beliebiger eindimensionaler Potentiale
einfließen. Speziell werden diese Verfahren auch auf radialsymmetrische Poten-
tiale angewandt, im Fall der symmetrischen Potentiale wird ein weiterer Ansatz
für die Anfangswerte getestet. Grundlegende Literatur für die allgemeinen Ver-
fahren sind Arbeiten von J. M. Blatt und B. R. Johnson ([2], [3]).
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2 Grundlagen

2.1 Die stationäre Schrödingergleichung

Ein zentrales Postulat der Quantenmechanik lautet, dass die zeitliche Entwick-
lung eines Zustandes |Ψ〉 eines quantenmechanischen Systems beschrieben wird
durch die Schrödingergleichung

i~ ∂
∂t
|Ψ〉 = Ĥ|Ψ〉 (2.1)

mit dem Hamiltonoperator Ĥ. Hängt der Hamiltonoperator nun nicht explizit
von der Zeit t ab, gibt es Zustände mit konstanter Energie E, die definiert
wird durch Gültigkeit der Gleichung E|Ψ〉 = Ĥ|Ψ〉. Wendet man hierauf die
Schrödingergleichung an, stellt man fest, dass sich diese stationären Zustände
schreiben lassen als

|Ψ〉 = e−
i
~E |ψ〉, (2.2)

wobei |ψ〉 nun nicht mehr von der Zeit abhängt. Diese Zustände erhält man als
Lösung der stationären Schrödingergleichung

E|ψ〉 = Ĥ|ψ〉 . (2.3)

Im Fall eines spinlosen Teilchens mit Masse m, dass sich in einem Potential V
bewegt, lautet die Gleichung in der Ortsdarstellung:

Eψ(~r) =
{
− ~2

2m∆ + V (~r)
}
ψ(~r) (2.4)

mit dem Laplaceoperator ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Insbesondere treten hier auch
keine komplexen Faktoren mehr auf, sodass sich die Lösung rein reellwertig
wählen lässt.

Beschränkt man sich auf eine Raumdimension, erhält man mit wenigen Umfor-
mungen die stationäre Schrödingergleichung in ihrer einfachsten und zugäng-
lichsten Form:

d2

dx2ψ(x) = −2m
~2 (E − V (x))ψ(x) . (2.5)
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KAPITEL 2. GRUNDLAGEN

Die Einschränkung auf eine Dimension sorgt nicht nur für die bessere mathe-
matische und numerische Handhabbarkeit der Gleichung, sondern findet auch
Anwendung in effektiv eindimensionalen Problemen oder allgemein, wenn sich
das Potential in den drei Raumrichtungen separieren lässt, also als V (~r) =
Vx(x) + Vy(y) + Vz(z) geschrieben werden kann. Dann erhält man die Gesamt-
wellenfunktion als Produkt dreier Lösungen eindimensionaler Gleichungen.

2.1.1 Die Radialgleichung

Ein weiterer auf die eindimensionale Schrödingergleichung zurückführbarer Fall
ist der eines rotationssymmetrischen, also nur vom Betrag r des Ortsvektors
abhängigen Potentials. Drückt man den Laplaceoperator in Kugelkoordinaten
aus, erhält man aus (2.4) für den von r abhängigen Teil der Wellenfunktion
ψ(~r) = R(r)Y (θ, ϕ):

ER(r) =
{
− ~2

2m
1
r

d2

dr2 r + ~2l(l + 1)
2mr2 + V (r)

}
R(r) . (2.6)

Dabei bezeichnet l die Bahndrehimpulsquantenzahl und kann nichtnegative ganz-
zahlige Werte annehmen. Diese Gleichung vereinfacht sich mit der Substitution
u(r) := rR(r) zur radialen Schrödingergleichung

Eu(r) =
{
− ~2

2m
d2

dr2 + ~2l(l + 1)
2mr2 + V (r)

}
u(r) . (2.7)

Dies entspricht einfach der eindimensionalen Schrödingergleichung (2.5) mit ei-
nem effektiven Potential Veff = V (r)+ ~2l(l+1)

2mr2 , sodass sich alle dafür entwickelten
Lösungsverfahren durch Ersetzung des Potentials direkt übertragen lassen.

2.2 Merkmale der Eigenzustände und
Energieeigenwerte

Wir interessieren uns hier nur für die gebundenen Zustände zu einem gegebe-
nen Potential, d. h. für quadratintegrable Wellenfunktionen (

∫
|ψ(x)|2 dx <∞).

Man stellt fest, dass sich hier ein diskretes Spektrum ergibt, also nur diskrete
Eigenenergien auftreten. Diese seien hier der Größe nach stets mit der Quan-
tenzahl n = 0, 1, 2, . . . durchnummeriert (was zu Gunsten einer einheitlichen
Benennung der Praxis widerspricht, bei manchen Potentialen die Zählung bei
1 zu beginnen), die zugehörigen Eigenenergien werden mit En bezeichnet, die
entsprechenden Wellenfunktionen mit ψn. Im Folgenden einige Eigenschaften
der Wellenfunktionen, die hier benötigt werden:
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2.3. Die WKB-Näherung

– Die Wellenfunktion ψn zu einer gegebenen Energie En ist bis auf einen
konstanten Faktor eindeutig bestimmt.

– Die Wellenfunktion ψn besitzt genau n Nullstellen (Knotensatz)

– Die Position der Nullstellen der Wellenfunktion hängt stetig von der Ener-
gie ab – auch, wenn es sich nicht um Eigenenergien handelt. Der Fall einer
normierbaren Wellenfunktion entspricht dabei einer »Nullstelle im Unend-
lichen«, in allen anderen Fällen divergiert die Wellenfunktion.

Beweise hierzu findet man in [1] und Lehrbüchern zur Quantenmechanik.

2.3 Die WKB-Näherung

Die Lösung ψ der stationären Schrödingergleichung (2.5) lässt sich nach [4]
ansetzen als

ψ(x) = A · exp

 i
~

x∫
x0

y(x′) dx′
 . (2.8)

Eingesetzt in (2.5) erhält man daraus die Differentialgleichung

−y
2(x)
~2 + iy′(x)

~
+ 2m

~2 (E − V (x)) = 0 (2.9)

⇔ i~y′(x) + 2m(E − V (x)) = y2(x) . (2.10)

Die sogenannte WKB-Näherung1 erhält man nun im semiklassischen Grenzfall
~→ 0 dieser Gleichung, aus y2(x) ≈ 2m(E − V (x)) ergibt sich dann

ψ(x) ≈ A · exp

± i
~

x∫
x0

√
2m(E − V (x)) dx′

 = A · exp

±i
x∫

x0

√
Q(x′) dx′

 .

(2.11)
Diese Formel wird später benutzt werden, um die Werte der Wellenfunktion in
großer Entfernung vom klassisch erlaubten Bereich näherungsweise zu berech-
nen.

1benannt nach G. Wentzel, H. A. Kramers und L. Brillouin
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3 Die numerische Lösung der
Schrödingergleichung

Ziel von numerischen Lösungen der Schrödingergleichung ist zunächst die Be-
rechnung der Energieeigenwerte. Dazu rät man zunächst einen Wert, erzeugt
die zugehörige Wellenfunktion und überprüft dann, ob ihre Eigenschaften mit
denen der gewünschten Eigenfunktion übereinstimmen. Auf diese Art und Weise
erhält man dann immer bessere Schätzungen für die Eigenwerte.

3.1 Allgemeines Vorgehen bei der numerischen
Lösung

Die betrachteten Verfahren folgen derselben grundlegenden Vorgehensweise:

1. Rate einen Wert für die Energie E.

2. Bestimme einen Startwert für die Wellenfunktion.

3. Bestimme zum Startwert eine Lösung der Schrödingergleichung, zähle da-
bei die Knoten.

4. Korrigiere den Energiewert anhand der Knotenzahl und dem Grad der
Übereinstimmung der erhaltenen mit der gewünschten Wellenfunktion.

5. Wurde der Energiewert noch nicht mit ausreichender Genauigkeit be-
stimmt, starte mit dem neuen Energiewert wieder bei 2.

Jeder dieser Punkte lässt allerdings noch Fragen offen, etwa die folgenden:

1. Welches Verfahren benutzt man zur numerischen Lösung der Differential-
gleichung?

2. Welche Randwerte sind durch die Problemstellung vorgegeben? Wie lassen
sich diese numerisch umsetzen?

3. Wie lässt sich die Qualität einer Schätzung des Eigenwerts beurteilen? Wie
erhält man daraus einen besseren Schätzwert?

In den folgenden Abschnitten sollen mögliche Antworten auf diese Fragen gege-
ben werden.

10



3.2. Das Numerov-Verfahren

3.2 Das Numerov-Verfahren

Die eindimensionale stationäre Schrödingergleichung (2.5) kann geschrieben wer-
den als

ψ′′(x) = −Q(x)ψ(x) mit Q(x) = 2m
~2 (E − V (x)) . (3.1)

Zunächst suchen wir ein Iterationsverfahren, mit dem bei gegebenen Q(x) aus
geeigneten Anfangsbedingungen die Werte ψi = ψ(xi) der Wellenfunktion an
diskreten Punkten xi bestimmt werden können. Anstatt auf allgemeine Metho-
den zur Lösung gewöhnlicher Differentialgleichungen wie das Runge-Kutta-
Verfahren zurückzugreifen, lässt sich die spezielle Form der Differentialgleichung
ausnutzen, um eine genauere Rekursionsformel zu erhalten, auf der das Nume-
rov-Verfahren basiert.

Dazu schreibt man die Taylorentwicklung der Wellenfunktion um einen Punkt
xi als

ψi±1 = ψi ± hψ′i + h2

2 ψ
′′
i ±

h3

6 ψ
′′′
i + h4

24ψ
(iv)
i ± h5

120ψ
(v)
i +O(h6) (3.2)

mit der Schrittweite h = xi+1 − xi ∀i ∈ Z. Durch Addition der Gleichungen
für ψi+1 und ψi−1 heben sich die ungeraden Terme weg:

ψi+1 + ψi−1 = 2ψi + h2ψ′′i + h4

12ψ
(iv)
i +O(h6) . (3.3)

Unter Vernachlässigung des Terms in O(h4) erhält man daraus einen Ausdruck
für die zweite Ableitung:

h2ψ′′i = ψi−1 − 2ψi + ψi+1 +O(h4) . (3.4)

Nun macht man sich die Form der Differentialgleichung

ψ′′i = −Qiψi (3.5)

zunutze. Zweifaches Ableiten von (3.4) und anschließendes Einsetzen von (3.5)
liefert

h2ψ
(iv)
i = −Qi−1ψi−1 + 2Qiψi −Qi+1ψi+1 +O(h4) . (3.6)

Setzt man nun (3.5) und (3.6) in (3.3) ein, erhält man die Rekursionsformel

ψi+1 + ψi−1 = 2ψi − h2Qiψi + h2

12(−Qi−1ψi−1 + 2Qiψi −Qi+1ψi+1) +O(h6)

⇔ (1− Ti+1)ψi+1 = (2 + 10Ti)ψi − (1− Ti−1)ψi−1 +O(h6) (3.7)

mit
Ti = −h

2

12Qi .
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KAPITEL 3. DIE NUMERISCHE LÖSUNG DER
SCHRÖDINGERGLEICHUNG

3.3 Das renormalisierte Numerov-Verfahren

Als Rekursionsformel zweiter Ordnung setzt das Numerov-Verfahren die Kennt-
nis von zwei Anfangsbedingungen voraus. Bei beliebigen Potentialformen wählt
man dazu näherungsweise ψ0 = 0 an einer Stelle x0 weit außerhalb des klassisch
erlaubten Bereichs. Als zweite Vorgabe könnte man nun ψ1 auf einen beliebigen
Wert > 0 setzen, da die Normierung der Wellenfunktion frei wählbar ist. Damit
besteht allerdings die Gefahr, dass es im Laufe der Iteration zu Werten von ψi
kommt, die zu groß sind, um im Computer dargestellt zu werden – gerade, wenn
man weit im klassisch verbotenen Bereich (V > E) beginnt, da die Amplitude
der Wellenfunktion hier exponentiell abfällt.

Um dieses Problem zu umgehen, werden in [3] folgende Transformationen der
Wellenfunktion vorgeschlagen: Zunächst substituiert man

Fi := (1− Ti)ψi . (3.8)

Damit vereinfacht sich die Rekursionsformel (3.7) zu

Fi+1 = UiFi − Fi−1 mit Ui := 2 + 10Ti
1− Ti

. (3.9)

Während diese Transformation nur zur Vereinfachung der Formeln dient und
letztlich eine Multiplikation weniger erforderlich macht, ist die wesentliche Idee,
das Verhältnis zweier aufeinanderfolgender Werte der Wellenfunktion zu be-
trachten. Dazu betrachtet man die Größe

Ri := Fi+1
Fi

. (3.10)

Dafür ergibt sich nun aus (3.9) die einschrittige Rekursionsformel

Ri = Ui −R−1
i−1 mit Ui = 2 + 10Ti

1− Ti
. (3.11)

Will man nun die Wellenfunktion von rechts nach links integrieren, erweist es
sich mit Rücksicht auf die Implementierung als einfacher, die Größen

Si := Fi−1
Fi

(3.12)

zu betrachten. Dafür lautet die Rekursionsformel

Si = Ui − S−1
i+1 , (3.13)

man erhält also den nächsten Wert von S aus i und dem vorhergehenden Wert
mittels der gleichen Vorschrift, die in (3.11) für R angegeben ist.
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3.4. Anfangsbedingungen

3.4 Anfangsbedingungen

Um mit der Iteration irgendwo beginnen zu können, muss der Wert der Wellen-
funktion an zumindest einer Stelle bekannt sein. Handelt es sich dabei nicht um
eine Nullstelle, so muss noch die Steigung oder ein benachbarter Wert angege-
ben werden, um R0 zu erhalten. Im Falle einer Nullstelle ist ein benachbarter,
von Null verschiedener Wert aufgrund der beliebigen Normierung der Wellen-
funktion frei wählbar, dies entspricht einem Wert von R0 =∞.

Für allgemeine Potentiale sind lediglich die für die Normierbarkeit erforderlichen
Bedingungen ψ(−∞) = ψ(+∞) = 0 bekannt, doch die Iteration kann natürlich
nicht im Unendlichen begonnen werden. Im Folgenden werden einige Methoden
zur Behandlung dieses Problems vorgeschlagen.

Angegeben werden die Anfangsbedingungen für das Verhältnis R̃0 = ψ1/ψ0 der
Werte der Wellenfunktion an aufeinanderfolgenden Stützpunkten. Den Startwert
für das renormalisierte Numerov-Verfahren erhält man daraus als R0 = (1 −
T1)/(1− T0) · R̃0. Auch der Startwert bei Beginn der Iteration auf der anderen
Seite folgt daraus mit entsprechenden Anpassungen als SN = (1 − TN−1)/(1 −
TN ) · R̃−1

N−1.

3.4.1 Spezialfall symmetrisches Potential

In der Vorgängerarbeit [1] wurde der Spezialfall eines symmetrischen Potentials
und der dort zu wählenden Anfangsbedingungen ausführlich behandelt. Wesent-
liche Erkenntnis ist, dass die Wellenfunktionen zu geraden Quantenzahlen n ge-
rade Funktionen (spiegelsymmetrisch zur y-Achse) sind, diejenigen zu ungeraden
n sind ungerade Funktionen (punktsymmetrisch zum Ursprung). Da die unge-
raden Wellenfunktionen im Ursprung verschwinden, aber unmittelbar daneben
von 0 verschiedene Werte annehmen, beträgt der Startwert R̃0,u = ψ1/ψ0 =∞
an der Stelle x0 = 0. Ein Startwert für die geraden Wellenfunktionen lässt sich
nicht so leicht finden, aber durch eine Näherung mit Fehler in der Größenord-
nung O(h6) wird in [1] die Beziehung R̃0,g = (1 + 5T0)/(1− T1) hergeleitet.

Da die Ergebnisse für gerade Wellenfunktionen schlechter ausfallen, scheint sich
diese Näherung negativ auszuwirken und man fragt sich, ob sich nicht ein ex-
akter Startwert finden lässt. Das erreicht man, indem man den Startpunkt auf
x0 = −h/2 verschiebt. Damit ist x1 = +h/2 und für gerade Wellenfunktio-
nen gilt ψ0 = ψ(−h/2) = ψ(+h/2) = ψ1, also R̃0,g = ψ1/ψ0 = 1. Möchte
man für ungerade Wellenfunktionen den gleichen Startpunkt x0 verwenden, er-
hält man ebenfalls ein einfaches Kriterium für den Startwert: ψ0 = ψ(−h/2) =
−ψ(+h/2) = −ψ1, also R̃0,u = ψ1/ψ0 = −1.
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KAPITEL 3. DIE NUMERISCHE LÖSUNG DER
SCHRÖDINGERGLEICHUNG

3.4.2 Anfang im klassisch verbotenen Bereich

Im klassisch verbotenen Bereich (V > E) nimmt die Amplitude der Wellen-
funktion exponentiell ab. Dieses Wissen lässt sich ausnutzen, um eine erste Ab-
schätzung für die Wellenfunktion in ausreichender Entfernung vom klassisch
erlaubten Bereich zu gewinnen.

Dazu betrachte man einen Potentialabschnitt V0 = const. > E bei gegebener
Energie E. Soll auf der linken Seite die Randbedingung ψ(x) x→−∞−→ 0 erfüllt
werden, lautet die Lösung der stat. Schrödingergleichung (2.5)

ψ(x) = ψ(0) · eqx mit q =
√

2m
~2 (V0 − E) , (3.14)

wie man leicht durch Einsetzen verifiziert.

An der Stelle x0 ergibt sich somit für den Wert von R̃0:

R̃0 = ψ(x1)
ψ(x0) = eqx1

eqx0
= eq(x1−x0) = eqh . (3.15)

WKB-Näherung

Einen besseren Schätzwert erhält man durch Anwenden der WKB-Näherung
(2.11):

R̃0 ≈ exp

±i
x0+h∫
x0

√
Q(x′) dx′

 = exp

± x0+h∫
x0

√
−Q(x′) dx′


= exp

±1
h

x0+h∫
x0

√
12T (x′) dx′

 (3.16)

im klassisch verbotenen Bereich (Q < 0). Da der Wert des Integrals positiv ist,
muss das positive Vorzeichen gewählt werden, um das asymptotisch korrekte
Verhalten zu gewährleisten.

Nun gibt es verschiedene Möglichkeiten, das Integral numerisch auszuwerten.
Die einfachste ist die Trapezregel, die man aus der Approximation der Funktion
durch eine Konstante erhält:∫ b

a
f(x) dx ≈ b− a

2 (f(a) + f(b)) . (3.17)

Damit lautet der Startwert

R̃0 = exp
(√

3T0 +
√

3T1
)
. (3.18)
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3.4. Anfangsbedingungen

Eine bessere Näherung erhält man durch die Approximation der Funktion mit
einer Parabel (Simpsonregel), dazu braucht man allerdings eine weitere Stütz-
stelle: ∫ b

a
f(x) dx ≈ b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
. (3.19)

Das liefert den Startwert

R̃0 = exp
(1

3

(√
3T0 + 4

√
3T (x0 + h/2) +

√
3T1

))
. (3.20)

3.4.3 Koordinatentransformation

Um die Nullstellen im Unendlichen auf einen endlichen Wert zu holen, kann
man den Definitionsbereich der Wellenfunktion einer Koordinatentransformati-
on unterwerfen. Statt der ursprünglichen Wellenfunktion

ψ : R→ R, x 7→ ψ(x) (3.21)

möchten wir eine Funktion

χ := ψ ◦ c : I → R, y 7→ ψ(c(y)) (3.22)

betrachten, wobei c eine streng monoton steigende glatte Funktion ist, die ein
kompaktes Intervall I bijektiv auf R ∪ {±∞} abbildet. Damit lässt sich die
Randbedingung ψ(±∞) = 0 durch χ(∂I) = 0 auf dem Rand von I ersetzen.

Ausgehend von der Schrödingergleichung in der Form (3.1) ist nun das Ziel,
eine Differentialgleichung der gleichen Form für χ aufzustellen. Man erhält unter
mehrfacher Anwendung der Kettenregel:

χ′′(y) = d
dy
[
ψ′(c(y)) · c′(y)

]
= ψ′′(c(y)) · c′2(y) + ψ′(c(y)) · c′′(y)

= −Q(c(y)) · c′2(y) · χ(y) + c′′(y)
c′(y) · χ

′(y)

=: A(y)χ(y) +B(y)χ′(y) . (3.23)

Leider lässt sich das Numerov-Verfahren auf diesen Ausdruck nicht unmittel-
bar anwenden, da explizit die erste Ableitung von χ auftaucht. Um diese zu
beseitigen, führen wir eine weitere Transformation

ϕ(y) = C(y) · χ(y) (3.24)
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durch. Für ϕ ergibt sich:1

ϕ′′ = C ′′χ+ 2C ′χ′ + Cχ′′

= C ′′χ+ 2C ′χ′ + C(Aχ+Bχ′)

=
(
C ′′

C
+A

)
ϕ+ (2C ′ +BC)︸ ︷︷ ︸

!= 0

χ′ . (3.25)

Aus der Bedingung zum Verschwinden des Terms mit der ersten Ableitung lässt
sich nun eine Wahl für C bestimmen, dazu setzen wir B wieder ein:

2C ′ + c′′

c′
C = 0

⇔ C ′

C
= −1

2
c′′

c′

⇔ (lnC)′ = −1
2(ln c′)′

⇔ C = C0√
c′
. (3.26)

Wegen der strengen Monotonie von c ist c′ > 0 auf ganz I, sodass keine Fallun-
terscheidung erforderlich wird.

Mit der Wahl C0 = 1 erhält man also für ϕ die Differentialgleichung

ϕ′′ =
(
− c
′′′

2c′ + 3c′′2

4c′2 − Q̃ · c
′2
)
ϕ (3.27)

mit Q̃ = Q ◦ c in der gewünschten Form. Hat man ϕ berechnet, erhält man
daraus die Werte von ψ mittels

ψ(x) = χ(c−1(x)) =
√
c′(c−1(x))ϕ(c−1(x)) . (3.28)

Beispiele für Transformationen

Da durch die Transformationen die effektive Schrittweite (und damit Ortsauflö-
sung) mit größerer Entfernung vom Ursprung rapide abnimmt, sollte man durch
einen Parameter in der Transformation dafür sorgen, dass der interessante, näm-
lich klassisch erlaubte Bereich des Potentials mit ausreichender Genauigkeit er-
fasst wird. Dazu wird hier ein Parameter a benutzt, der die Breite des klassisch
erlaubten Bereichs (mit dem Ursprung im Zentrum) angibt. Da die im Folgenden
verwendeten Transformationen im Intervall [−1/2, 1/2] noch näherungsweise li-
near sind, ist es ausreichend, sie mit dem Faktor a zu strecken.

1Die Abhängigkeiten von y werden der Übersichtlichkeit halber nicht mehr explizit notiert.
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3.5. Fehlermaß für Schätzung des Eigenwerts

Eine mögliche Wahl für die Transformation ist c = a · tan : (−π/2, π/2) → R.
Eingesetzt in (3.27) ergibt sich die Dgl.

ϕ′′(y) = −
(

1 + a2Q̃(y)
cos4 y

)
ϕ(y) (3.29)

und für die Wellenfunktion erhält man nach (3.28) mit

ψ(x) =

√√√√a(1 +
(
x

a

)2
)
· ϕ(arctan(x/a)) . (3.30)

Eine andere mögliche Wahl ist c = a · artanh : (−1, 1) → R. Damit lautet die
Dgl.

ϕ′′(y) = −1 + a2Q̃(y)
(1− y2)2 · ϕ(y) (3.31)

und die Wellenfunktion erhält man durch

ψ(x) =
√
a cosh(x/a) · ϕ(tanh(x/a)) . (3.32)

Ebenfalls verwendbar ist die auf (−1, 1) definierte Funktion c(y) = ay√
1−y2

mit

Umkehrfunktion c−1(x) = x√
a2+x2 . Man erhält die Dgl.

ϕ′′(y) = −
[

6− 3y2

4(1− y2)2 + a2Q̃(y)
(1− y2)3

]
· ϕ(y) (3.33)

und die Wellenfunktion lautet

ψ(x) =
√
a · (1 + x2)3/4 · ϕ

(
x√

a2 + x2

)
. (3.34)

3.5 Fehlermaß für Schätzung des Eigenwerts

Integriert man die Schrödingergleichung zu einem vorgegebenen, geratenen Ener-
giewert, gibt es verschiedene Anhaltspunkte dafür, wie gut diese Schätzung für
den n-ten Eigenwert war. Das einfachste Kriterium liefert die Zahl der Nullstel-
len der Wellenfunktion (vgl. Abschnitt 2.2). Wurden mehr als n gefunden, war
der Energiewert zu hoch, falls weniger gefunden wurden, war er zu niedrig.
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x

E>En

E<En

E=En

Abbildung 3.1: Verhalten der Wellenfunktion beim Schießverfahren für Energien
größer bzw. kleiner als die Eigenenergie.

xxM xxM

E>En E<En

Abbildung 3.2: Vergleich der Steigungen der Wellenfunktionen im Treffpunkt
bei Energien höher (links) und niedriger (rechts) als die
Eigenenergie.

3.5.1 Schießverfahren

Ein genaueres qualitatives Kriterium für die Güte einer Schätzung des Energie-
eigenwerts erhält man mit dem Schießverfahren. Hier wird die Wellenfunktion,
links beginnend, so lange erzeugt, bis entweder zu viele Knoten auftreten (dann
war die Energie zu hoch) oder sie mit der passenden Knotenanzahl divergiert
(dann war die Energie zu niedrig; vgl. Abb. 3.1). Nachteil dieses Verfahrens ist,
dass zunächst nicht absehbar ist, wann die Wellenfunktion divergiert. Zudem
kann es in großer Entfernung vom Startpunkt zu immer stärkeren Abweichun-
gen der berechneten Wellenfunktion von der wahren kommen.

3.5.2 Matching-Verfahren

Um diesen Nachteilen zu begegnen, gibt es die Möglichkeit, die Iteration zur
Erzeugung der Wellenfunktion von zwei Seiten zu beginnen. Als Treffpunkt xM
wählt man nun die erste Extremstelle der Wellenfunktion auf einer Seite, um
irreguläre Werte zu vermeiden.

Wenn man die Wellenfunktion an dieser Stelle auf denselben Wert normiert,
sollten im Fall eines gefundenen Eigenwerts auch die Steigungen (Ableitungen)

18



3.6. Annäherung an den Eigenwert

übereinstimmen. Hält man nun die von links erzeugte Wellenfunktion fest und
variiert die Energie (vgl. Abb. 3.2), folgt aus dem Satz über das Wandern von
Knoten, dass die rechte Wellenfunktion bei höheren Energien weiter nach rechts
»wandert«, was zu einer positiven Steigung im Treffpunkt führt. Bei niedrigeren
Energien wird die Steigung entsprechend negativ. Somit lässt sich die Differenz
der Steigungen im Treffpunkt als Maß für die Abweichung von der Eigenenergie
verwenden.

Übertragen auf die Größen des renormalisierten Numerov-Verfahrens entspricht
RM etwa der Steigung der linken Wellenfunktion, S−1

M der Steigung der rechten.
Somit kann

D := S−1
M −RM (3.35)

als Fehlermaß benutzt werden. Bei positivem Vorzeichen war die gewählte Ener-
gie zu groß, bei negativem zu klein.

3.6 Annäherung an den Eigenwert

Bei der Bestimmung des Eigenwertes benutzt man eine obere und eine untere
Schranke, die am Anfang z. B. auf Potentialminimum und -maximum gesetzt
werden können. Anhand einer Testenergie in der Mitte dieses Intervalls lässt
sich nun mit den im vorherigen Abschnitt erwähnten Kriterien herausfinden,
in welcher Hälfte des Intervalls der Eigenwert liegt. Dadurch kann eine der
Schranken verbessert werden. Setzt man diese Bisektion fort, kann der Eigenwert
immer besser eingeschachtelt werden.

Sobald der Bereich, in dem der Eigenwert liegt, etwa bekannt ist, möchte man
ein schneller als die Bisektion konvergierendes Verfahren haben. Auf den ersten
Blick erscheint diese schon ziemlich gut, da sich der Bereich, in dem der Ei-
genwert vermutet wird, in jedem Schritt halbiert – die Genauigkeit nimmt also
exponentiell zu. Betrachtet man allerdings die Zahl der korrekten Ziffern in der
Dezimaldarstellung, wächst diese nur linear mit der Zahl der Schritte (genau-
er: für jede Stelle werden log2 10 ≈ 3,32 Schritte benötigt). Da bereits einfache
Methoden zur Nullstellensuche wie das Newton-Verfahren ein quadratisches
Konvergenzverhalten aufweisen, sollte sich dies noch verbessern lassen.

3.6.1 Sekantenverfahren

Auf hoher Abstraktionsebene lässt sich das Problem als Suche nach den Null-
stellen einer Fehlerfunktion wie dem D aus Abschnitt 3.5.2 beschreiben. Der
ungefähre Verlauf so einer Fehlerfunktion ist in Abb. 3.3 dargestellt. Durch die
Zahl der Nullstellen der Wellenfunktion lässt sich die Suche auf einen Abschnitt
einschränken, in dem die Fehlerfunktion monoton verläuft.
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EEn En+1En-1

Abbildung 3.3: Schematischer Verlauf einer Fehlerfunktion für die Energiewer-
te. Die Nullstellen entsprechen den Energieeigenwerten, in den
durch gestrichelte Linien begrenzten Bereichen ist die Zahl der
Nullstellen konstant.

Nun dauert die Berechnung eines einzelnen Wertes der Fehlerfunktion recht
lange (immerhin muss dazu die gesamte Wellenfunktion zu einem Energiewert
bestimmt werden), sodass eine numerische Bestimmung der Ableitung aufwän-
dig wäre. Auch liegt kein analytischer Ausdruck zu deren Berechnung vor, sodass
das Newton-Verfahren wenig erfolgsversprechend ist. Doch bietet sich eine viel
einfachere Variante der zugrundeliegenden Idee an, das Sekantenverfahren. Da-
bei legt man durch zwei gegebene Punkte eine Gerade, deren Nullstelle dann
ein Schätzer für die neue Testenergie liefert.

Sind also zwei Punkte E1, E2 sowie die zugehörigen Werte der Fehlerfunktion
P1, P2 gegeben, erhält man als Gleichung der zugehörigen Gerade

E − E1
P − P1

= E2 − E1
P2 − P1

, (3.36)

also für die Nullstelle
E = E1 −

E2 − E1
P2 − P1

P1 . (3.37)

3.6.2 Variationsrechnung

Als Grundlage für quantenmechanische Variationsverfahren benutzt man die
bekannte Tatsache, dass für beliebige Wellenfunktionen ψ der Ausdruck

E ≈

 +∞∫
−∞

ψ(x)
(
− ~2

2m
d2

dx2 + V (x)
)
ψ(x) dx

 +∞∫
−∞

|ψ(x)|2 dx

−1

(3.38)
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3.6. Annäherung an den Eigenwert

eine Näherung für die Eigenenergie liefert (für den Grundzustand z. B. in [5] be-
wiesen). Will man diese Beziehung – wie in [2] vorgeschlagen – nutzen, um eine
bessere Schätzung für den Eigenwert zu erhalten, ist es allerdings nicht notwen-
dig, diesen Ausdruck jedes Mal vollständig numerisch auszuwerten. Schließlich
wurde ψ doch gerade so konstruiert, dass die Testenergie E0 ein Eigenwert der
Schrödingergleichung ist.

Dies gilt allerdings bei der Iteration von zwei Seiten nur im linken und rechten
Bereich getrennt, die Zusammenfügestelle xm muss gesondert betrachtet werden.
Die Stetigkeit von ψ an dieser Stelle kann durch Normierung der Wellenfunktio-
nen mit der Wahl ψml = ψmr = 1 erreichen, die Ableitung der Wellenfunktion
bleibt an dieser Stelle jedoch unstetig. Nimmt man sie links und rechts von xm
als konstant an, kann man schreiben

ψ′(x) = (ψ′mr − ψ′ml)Θ(x− xm) + ψ′ml (3.39)

mit der Heavisideschen Sprungfunktion Θ(x). Daraus erhält man

ψ′′(x) = (ψ′mr − ψ′ml)δ(x− xm) (3.40)

mit der Diracschen Delta-Distribution δ(x).

Unter Ausnutzung dieser Beziehungen lässt sich das Integral nun auswerten:

+∞∫
−∞

ψ(x)
(
− ~2

2m
d2

dx2 + V (x)
)
ψ(x) dx

= lim
ε→0

E0

xm−ε∫
−∞

|ψl(x)|2 dx +
xm+ε∫
xm−ε

ψ(x)
(
− ~2

2mψ′′(x) + V (x)ψ(x)
)

dx

+E0

+∞∫
xm+ε

|ψr(x)|2 dx


= E0〈ψ2〉 − lim

ε→0

~2

2m

xm+ε∫
xm−ε

(ψ′mr − ψ′ml)δ(x− xm) dx

= E0〈ψ2〉 − ~2

2m(ψ′mr − ψ′ml)

(3.41)

Damit erhält man für die neue Testenergie:

E ≈ E0 −
~2

2m
ψ′mr − ψ′ml
〈ψ2〉

(3.42)
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3.7 Bestimmung der Wellenfunktionen

Nicht nur zur Anwendung des Variationsverfahrens, sondern auch zur Darstel-
lung der Wellenfunktion muss man die eigentlich Wellenfunktion aus den Größen
des renormalisierten Numerov-Verfahrens rekonstruieren. Dazu beginnt man
am besten bei dem ersten Punkt, am dem R ≤ 1 wird, da das auf ein Maximum
oder Minimum der Wellenfunktion (und damit keine Nullstelle) hindeutet. Also
kann man aufgrund der beliebigen Normierbarkeit an dieser Stelle den Wert
der Wellenfunktion auf 1 setzen. Von dort ausgehend muss man nur noch die
Gleichungen aus Abschnitt 3.3 umstellen, um die Rekursionsformel

ψi = 1− Ti+1
1− Ti

ψi+1
Ri

(3.43)

zu erhalten, analog ergibt sich für den Bereich rechts der Mitte

ψi = 1− Ti−1
1− Ti

ψi−1
Si

. (3.44)
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4 Implementierung

Die oben erläuterten Verfahren wurden in einem umfangreichen Softwaresystem
umgesetzt. Die eigentliche Funktionalität findet sich in einer C++-Bibliothek
mit Namen tises1. Getrennt davon stehen zwei verschiedenen Benutzeroberflä-
chen zur Verfügung, ein kompaktes Shell-Programm mit Bezeichnung tisesSh
und eine auf Qt basierende graphische Benutzeroberfläche namens tisesQt. In
diesem Kapitel soll vor allem der Aufbau der Bibliothekskomponente erläutert
werden.

4.1 Schnittstelle

«enum»
tises::RootFinder
match
shoot
variation

«enum»
tises::Init

exponential
wkb_trapez
wkb_simpson
trafo_tan
trafo_artanh
trafo_frac

«enum»
tises::PotType
general
symmetric1
symmetric2
radial

tises::Solver

+ solve()
+ energy_count() : int
+ energy(n : int) : double
+ wave(n : int, left : double, right : double, count : int, norm : double, baseline : double) : double*
+ createSolver(init : Init, root_finder : RootFinder, pot_type : PotType, env : Environment, Emax : double) : Solver*

tises::Environment

+ Environment()
+ addConst(name : string, formula : string) : bool
+ clearConsts()
+ getConsts()
+ setParams(params : map<string, double>)
+ setPotential(formula : string)
+ getPotential(left : double, right : double, count : int) : double*
+ setStep(step : double)
+ getStep() : double
+ setPrecision(prec : double)

Abbildung 4.1: Übersicht über die Schnittstelle des tises-Pakets.

Die gesamte nach außen sichtbare Schnittstelle des tises-Pakets ist in Abb. 4.1
dargestellt. Beim Aufruf geht ein Benutzer wie folgt vor:

1für »Time Independent Schrödinger Equation Solver«
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1. Zunächst wird ein Objekt vom Typ Environment erzeugt und mit Infor-
mationen gefüllt. Dazu gehören

– Konstanten, also Abkürzungen für feste Größen, die in der Poten-
tialformel benutzt werden. Vordefiniert sind die Kreiszahl _pi und
die Eulersche Zahl _e. In den Formelausdrücken für die Konstanten
dürfen auch bereits vorhandene Konstanten benutzt werden.

– Die aktuelle Belegung der im Potentialausdruck vorkommenden Pa-
rameter in Form eines assoziativen Datenfeldes (map), das der Para-
meterbezeichnung den Wert zuordnet. Die Idee hierbei ist, dass die
im aufrufenden Programm verwalteten Parameter verschiedene Wer-
te durchlaufen und die momentanen Belegungen über diese Schnitt-
stelle vermittelt werden.

– Der Potentialausdruck selbst. In der als Zeichenkette angegebenen
Formel dürfen sämtliche vorher definierten Parameter und Konstan-
ten benutzt werden, die Ortskoordinate wird über die Bezeichnung x
angesprochen. Hat man beispielsweise den Parameter omega definiert,
lässt sich ein Oszillatorpotential mit dem Ausdruck 0.5*omega^2*x^2
erzeugen.

– Die Schrittweite step ≡ h.

– Die gewünschte relative Genauigkeit (precision) der Energieeigen-
werte. Die Schätzung eines Energieeigenwerts wird solange verbes-
sert, bis abzüglich numerischer Fehler garantiert werden kann, dass
die angegebene relative Abweichung nicht überschritten wird.

Die meisten dieser Werte können auch wieder abgefragt werden.

2. Nun muss eine Kombination der zu benutzenden Verfahren ausgewählt
werden. Zur Wahl der Anfangsbedingungen stehen zur Verfügung:

exponential Anfang der Integration im klassisch verbotenen Bereich des
Potentials unter Verwendung der exponentiellen Näherung, vgl. Ab-
schnitt 3.4.2.

wkb_trapez, wkb_simpson Anfang im klassisch verbotenen Bereich un-
ter Verwendung der WKB-Näherung mit verschiedenen Integrations-
verfahren, s. Abschnitt 3.4.2.

trafo_tan, trafo_artanh, trafo_frac Transformation des Potentials auf
einen endlichen Bereich mit den in Abschnitt 3.4.3 behandelten Funk-
tionen.

Die möglichen Verfahren zur Beurteilung der Schätzungen des Energieei-
genwerts sind:
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match Die Wellenfunktion wird von rechts und links erzeugt, der Unter-
schied der Steigungen in der Mitte ist ein Maß für die Abweichung
vom Eigenwert, wie in Abschnitt 3.5.2 erläutert. Der neue Energie-
schätzwert wird mit dem Sekantenverfahren (Abschnitt 3.6.1) be-
stimmt.

shoot Schießverfahren: Iteration nur von einer Seite, vgl. Abschnitt 3.5.1.

variation Benutzt ebenfalls das Matching-Verfahren, nur wird der nächste
Energiewert mit Variationsrechnung bestimmt (Abschnitt 3.6.2).

Zudem hat man die Wahl zwischen vier Ansätzen für verschiedene Arten
von Potentialen:

general Allgemeiner Potentialausdruck ohne weitere Einschränkungen.

symmetric1 Nur für zur y-Achse spiegelsymmetrische Potentiale, ignoriert
die anderen Parameter und benutzt das Schießverfahren mit den in
Abschnitt 3.4.1 genannten »alten« Startwerten.

symmetric2 Ebenfalls Schießverfahren für symmetrische Potentiale, be-
nutzt aber die »neuen« Startwerte 1 bzw. −1 aus Abschnitt 3.4.1.

radial Der Potentialausdruck muss nur für x > 0 definiert sein, es wer-
den die Randbedingungen der radialen Schrödingergleichung benutzt
(vgl. Abschnitt 2.1.1). Ausgegeben wird die Funktion u(r) = rR(r).
Die Potentialtransformationen können nicht in Kombination mit die-
ser Option verwendet werden.

Mit diesen Angaben, einem Environment-Objekt und einer oberen Schran-
ke Emax für die Energiewerte (0, wenn nicht angegeben) wird nun die stati-
sche Klassenmethode Solver::createSolver(...) aufgerufen. Rückga-
bewert ist eine Instanz einer Unterklasse von Solver, den Aufrufer inter-
essiert allerdings nur das Solver-Interface.

3. Nach Aufrufe der solve()-Methode können die Energieeigenwerte abge-
fragt werden, die Wellenfunktionen erhält man unter Angabe von Quan-
tenzahl n, linker und rechter Grenze, Zahl der gewünschten Punkte, Nor-
mierungsfaktor (Vorgabewert 1) und wenn gewünscht einer zu addierenden
Konstante, um beispielsweise die Wellenfunktion in der Höhe des zugehö-
rigen Energieeigenwerts darzustellen.

4.2 Interner Aufbau

Die verschiedenen Kombinationen von Verfahren und Startbedingungen wer-
den durch die Verwendung von Typparametern (Templates) und mehrstufiger
Vererbung weitgehend redundanzfrei ermöglicht. Die Effizienz des Programms
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Solver

solve()
energy_count()
energy()
wave()
createSolver()

Integrator
GenericSolver

solve()
wave()

Integrator

iterate()
wave()
getEmin()
getEmax()

Initializer
VariationalIntegrator

iterate()

WkbSimpsonInitializer

WkbSimpsonInitializer()

Initializer
TwoSideIntegrator

wave()
getEmin()
getEmax()

Initializer

getx0()
getxn()
getEmin()
getEmax()
geth()
T()

WkbTrapezInitializer

WkbTrapezInitializer()
Initializer

MatchIntegrator

iterate()

Initializer
ShootIntegrator

iterate()

SymmetricInitializer
SymmetricIntegrator

iterate()

ApproxInitializer

getR0()
getS0()
getN()

BaseInitializer
RadialInitializer

getx0()
getR0()

TrafoInitializer

getR0()
getS0()
getEmin()
getEmax()
getx0()
getxn()
geth()
getN()

SymmetricInitializer2

getx0()
getR0()

SymmetricInitializer1

getx0()
getR0()

ArtanhTrafoInitializer

T()

ExpInitializer

ExpInitializer()

FracTrafoInitializer

T()

TanTrafoInitializer

T()

Abbildung 4.2: Klassen- und Templatehierarchien im tises-Paket.

hat unter diesen verzweigten Hierarchien allerdings nicht zu leiden, da für je-
den Templateparameter eigener Maschinencode erzeugt wird und zeitkritische
Methodenaufrufe durch Inlining abgekürzt werden können.

Die weit verzweigten Vererbungs- und Templatehierarchien sind in Abb. 4.2
vollständig dargestellt, die Funktionen sind dort ebenfalls angedeutet. Die we-
sentlichen Beziehungen und Inhalte sollen hier erläutert werden.

Hinter dem für den Benutzer sichtbaren Solver-Interface verbirgt sich ein Ob-
jekt vom Typ GenericSolver, dem über ein Templateparameter ein Integrator
zugeteilt wird. Der GenericSolver führt nur Schritte auf hohem Abstraktions-
niveau durch, die unabhängig von der Wahl des Verfahrens sind. So führt er bei-
spielsweise Buch über die bereits gefundenen Eigenwerte und Eigenfunktionen.
Die Energieeigenwerte ermittelt er, indem er vom Integrator die Integration
der Schrödingergleichung für einen Energiewert anfordert und dann entscheidet,
ob die zurückgelieferte bessere Schätzung für den Eigenwert plausibel ist und
mit der Zahl der Nullstellen in Einklang steht. Andernfalls wird der nächste
Schätzwert mit einem Bisektionsverfahren bestimmt.

Die von Integrator abgeleiteten Klassen führen die eigentlichen Iterations-
schritte nach dem renormalisierten Numerov-Algorithmus durch und erzeugen
die Wellenfunktionen, für jedes auswählbare Verfahren gibt es hier eine Un-
terklasse. TwoSideIntegrator fasst die Erzeugung der Wellenfunktion für die
Integration von zwei Seiten zusammen. Im Fall eines symmetrischen Potentials
werden die speziellen, von SymmetricInitializer1 und 2 vorgegebenen An-
fangsbedingungen berücksichtigt.

In den anderen Fällen benutzen die Integrator-Objekte eine beliebige von
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Initializer abgeleitete Klasse als Template-Parameter, die die Anfangsbe-
dingungen vorgibt. ApproxInitializer und TrafoInitializer fassen einige
Funktionen zusammen, die in den jeweiligen abgeleiteten Klassen identisch wä-
ren. Ein Spezialfall ist der RadialInitializer, der eine andere Initialisierungs-
klasse als Templateparameter benötigt (für die Initialisierung auf der rechten
Seite beim Matchingverfahren).

4.3 Bedienung der graphischen Oberfläche

Die Gestaltung der graphischen Benutzeroberfläche der Komponente tisesQt
ist in Abb. 4.3 zu sehen. Auf der rechten Seite kann man die zu benutzenden
Verfahren wählen und die Parameter einstellen. Die Größen x_min und x_max
geben dabei nur die Größe des zu zeichnenden Bereichs an und haben keinen
Einfluss auf die Berechnungen.

Unterhalb dieser Einstellung können die Konstanten angegeben oder entfernt
werden, links unten kann man Parameter hinzufügen oder ihre aktuelle Belegung
einstellen.

Rechts unten kann schließlich der Ausdruck für das Potential in Abhängigkeit
von den Parametern, Konstanten und der Ortsvariablen x eingegeben werden.
Dabei stehen die üblichen Rechenoperationen +, -, *, / und ^, aber auch Ver-
gleichsoperatoren, eingebaute Funktionen wie sin und der Absolutbetrag abs
und alle weiteren in arithmetischen Ausdrücken in C++-Syntax verwendbaren
Operatoren zur Verfügung. Dazu gehört auch der ternäre Operator ? :, der bei-
spielsweise im Ausdruck »abs(x)<L/2 ? 0 : V0« zur Erzeugung eines Poten-
tialtopfes der Höhe V0 genutzt werden kann. Zur Auswertung dieses Ausdrucks
wird die freie Bibliothek muParser benutzt.

Die im Evaluationskapitel verwendeten Beispielpotentiale können auch direkt
ausgewählt werden. Zudem kann ein analytischer Ausdruck für die Energie in
Abhängigkeit von der Quantenzahl n angegeben werden, um die Ergebnisse hier-
mit zu vergleichen.

Klickt man nun auf „Berechnen“, werden das Potential sowie die Wellenfunk-
tionen auf Höhe der zugehörigen Eigenenergie im Feld links oben dargestellt.
Mit dem benachbarten Regler lässt sich die Normierung der Wellenfunktionen
variieren. Die erhaltenen Eigenwerte und Wellenfunktionen lassen sich mit dem
Knopf rechts unten auch in Dateien schreiben, dabei enthält die Datei mit dem
angegebenen Namen, z. B. »Morse«, die Quantenzahlen, Eigenwerte und ggf.
die relativen Abweichungen von den analytischen ermittelten Werten. Für je-
den Eigenwert wird zudem eine Datei angelegt, deren Name aus der gewählten
Bezeichnung und der angehängten Quantenzahl besteht, z. B. »Morse_5«. Hier

27



KAPITEL 4. IMPLEMENTIERUNG

Abbildung 4.3: Bildschirmfoto der graphischen Oberfläche von tisesQt.
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sind die Werte der Wellenfunktion an den Stützpunkten aufgelistet, um sie mit
einem anderen Programm plotten oder weiterverarbeiten zu können.
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5 Evaluation

In diesem Kapitel soll die Implementierung der verschiedenen Verfahren zur Lö-
sung der stationären Schrödingergleichung getestet werden. Um die berechneten
Energieeigenwerte einordnen zu können, werden einige der wenigen Potentiale
benutzt, zu denen die analytische Lösung der Schrödingergleichung bekannt ist.
Dadurch können die numerisch ermittelten Werte mit den exakten verglichen
werden.

5.1 Beispielpotentiale

An den folgenden Potentialen wird das Programm getestet. Sie unterscheiden
sich imWesentlichen durch ihr Konvergenzverhalten für betragsmäßig große x.

Die Herleitung der Eigenwerte und Eigenfunktionen der Potentiale ist nicht
Gegenstand dieser Arbeit, sofern nicht anders angegeben, finden sich die Herlei-
tungen in den Lehrbüchern zur Quantenmechanik, benutzt wurde vor allem [5].
Zu beachten ist, dass in dieser Darstellung die Einheiten ~ = m = 1 verwendet
werden.

5.1.1 Der Potentialtopf

Das wohl einfachste Beispiel für ein quantenmechanisches System ist der Poten-
tialtopf:

V (x) =
{

0, falls 0 < x < L

V0, sonst
. (5.1)

Dabei ist V0 > 0 die Tiefe und L > 0 die Breite des Topfes. Einen analytischen
Ausdruck für die Eigenwerte erhält man jedoch nur im Grenzwert V0 →∞ eines
unendlich hohen Potentials. Sie lauten dann:

En = π2

2L2 (n+ 1)2 . (5.2)

Auch die Wellenfunktionen lassen sich hier sehr einfach angeben, handelt es sich
doch um Sinus-Funktionen, die gerade die Randbedingung des Verschwindens
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am Rand des Topfes erfüllen:

ψn(x) =
√

2
L

sin
((n+ 1)π

L
x

)
, n = 0, 1, 2, . . . . (5.3)

Um unendlichen Werten des Potentials begegnen zu können, ist eine Modifikati-
on am Programm erforderlich, die sich auch sonst bei hohen Potentialwerten als
hilfreich erweist. Im klassisch verbotenen Bereich (V (x) > E) wird die Größe
Ti aus Abschnitt 3.2 positiv, doch wegen des sehr kleinen Faktors h2 bleibt sie
in der Regel deutlich kleiner als 1. Erst bei sehr großen Differenzen V (x) − E,
wie sie natürlich im Fall V (x) = ∞ vorliegen, erreicht Ti den Wert 1. Doch in
diesem Punkt hat die Numerov-Rekursionsformel einen Pol, für Ti > 1 ändert
sich das Vorzeichen von Ui in Gleichung (3.11). Dieses Verhalten liefert keine
korrekten Werte, es lässt sich allerdings beheben, indem Ui im Fall Ti ≥ 1 auf∞
gesetzt wird. Erzeugt man nun die Wellenfunktion aus dem klassisch erlaubten
Bereich heraus, führt dies an der kritischen Stelle zu einem Verschwinden der
Wellenfunktion, wie man es physikalisch erwarten würde (da die unendlich hohe
Potentialbarriere nicht bewältigt werden kann).

5.1.2 Der harmonische Oszillator

Ein noch analytisch lösbares aber zugleich in vielen Anwendungen als Näherung
benutztes Potential ist der harmonische Oszillator

V (x) = 1
2ω

2x2 . (5.4)

Wie beispielsweise in [5] hergeleitet, erhält man als Eigenwerte

En = ω

(
n+ 1

2

)
. (5.5)

5.1.3 Das Pöschl-Teller-Potential

Von G. Pöschl und E. Teller wurden in [6] eine Reihe von Potentialen vor-
geschlagen, zu denen eine analytische Lösung der Schrödingergleichung existiert.
Hier wollen wir uns auf den bekanntesten Spezialfall beschränken, der auch in
[7] vorgestellt wird. Das Potential lautet hier:

V (x) = −V0/ cosh2 ax . (5.6)

Der Verlauf ist auch in Abb. 5.1 zu sehen. Bemerkenswert ist, dass dieses Poten-
tial im Gegensatz zu den zuvor betrachteten beschränkt ist und so nur endlich
viele Energieeigenwerte besitzt. Diese berechnen sich nach [7] zu

En = −a
2

8

−(1 + 2n) +

√
1 + 8V0

a2

2

. (5.7)
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Abbildung 5.1: Pöschl-Teller-Potential mit V0 = 10 und a = 1.

5.1.4 Das Morse-Potential

Zur Beschreibung der Schwingung zweiatomiger Moleküle schlug Philip M.
Morse in [8] ein Potential vor, das sich später als ein Grenzfall der von Pöschl
und Teller behandelten Potentiale erwies. Es hat die Form

V (x) = −V0(2− e−ax)e−ax . (5.8)

An der Stelle x = 0 liegt ein Minimum der Tiefe −V0 vor, in negative Richtung
wächst das Potential exponentiell und für große positive x konvergiert es gegen
0 (vgl. Abb. 5.2). Als echt asymmetrisches Potential mit zwei grundverschiede-
nen asymptotischen Grenzwerten stellt das Morse-Potential einen geeigneten
Testfall dar.

Auch das Morse-Potential ist analytisch lösbar. Für die Eigenwerte erhält
man:

En = −V0 + a
√

2V0(n+ 1/2)− a2

2 (n+ 1/2)2 . (5.9)

5.1.5 Das Coulomb-Potential

Als das typische Beispiel für ein Radialpotential betrachten wir das Coulomb-
Potential, das bei der quantenmechanischen Beschreibung des Wasserstoffatoms
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Abbildung 5.2: Morse-Potential V (x) = −V0(2 − e−ax)e−ax mit V0 = 18 und
a = 1.

vorkommt. Mit dem in 2.7 auftretenden zusätzlichen Term der Radialgleichung
erhält man als effektives Potential

Veff(r) = −α
r

+ l(l + 1)
2r2 . (5.10)

In den benutzten Einheiten würde α im Fall des Wasserstoffatoms der Fein-
strukturkonstante entsprechen, doch auch andere Wahlen sind möglich.

Die Energieeigenwerte hängen im Fall des 1/r-Potentials nicht von der Quan-
tenzahl l ab, sie lauten:

En = − α2

2(n+ 1)2 . (5.11)

Der Ausdruck für die Wellenfunktionen hängt auch von l ab. Er ist kompliziert,
aber lässt sich analytisch angeben als

unl(r) = rRnl(r) = rNnl (2αr/(n+ 1))l e−αr/(n+1)L2l+1
n+l+1(2αr/(n+ 1)) (5.12)

mit dem Normierungsfaktor

Nnl =
√

(n− l)!(2α/(n+ 1))3

2(n+ 1)((n+ l + 1)!)3 (5.13)
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und den zugeordneten Laguerrepolynomen, die gegeben sind durch

Lsr(t) =
(
− d

dt

)s
et
( d

dt

)r
e−ttr . (5.14)

Das Coulomb-Potential zeigt drei bisher noch nicht aufgetretene Besonderhei-
ten, die bei der numerischen Behandlung besonderer Aufmerksamkeit bedür-
fen:

– Die Energien der gebundenen Zustände sind zwar durch 0 nach oben be-
schränkt, aber es gibt unendlich viele Eigenzustände. Gibt man als maxi-
male Energie einen Wert > 0 an, benutzt das Programm zur Vermeidung
von Endlosschleifen zwar eine minimal unter 0 liegende obere Schranke,
doch kann es sehr lange dauern, bis alle Eigenwerte unterhalb von dieser
gefunden werden. Da der Benutzer solche langen Laufzeiten durchaus in
Kauf nehmen wollen könnte, wurde entschieden, die Verantwortung zur
Wahl einer angemessenen Obergrenze bei ihm zu lassen.

– Im Fall l = 0 divergiert das Potential an der Stelle x = 0 gegen −∞. Dies
würde dem Programm keinen Anhaltspunkt für die untere Schranke der
Energie liefern, sodass kein Startwert gewählt werden kann. Um dies zu
umgehen, werden einfach alle unendlichen Werte bei der Suche nach dem
Potentialminimum ignoriert. Die Werte an den Polen benachbarten Stellen
sind zwar immer noch betragsmäßig sehr groß, aber endlich, sodass das
Bisektionsverfahren in endlicher Zeit terminiert.

– Im Fall l > 0 divergiert das effektive Potential an der Stelle x = 0 gegen
+∞. Diese Tatsache wird vom Parser jedoch nicht erkannt, denn er führt
keine komplizierte Grenzwertbetrachtung durch, sondern rechnet einfach
-1/0+1/0^2=-inf+inf=NaN. Mit dem Ergebnis NaN (»Not a Number«)
kann aber nicht mehr weitergerechnet werden, da NaN verknüpft mit einer
anderen Zahl wieder NaN ergibt. Da dies jedoch ein Problem des Parsers ist
und es eine sehr komplexe Aufgabe wäre, sämtliche Fälle dieser Art kor-
rekt zu behandeln, liegt hier wiederum die Verantwortung beim Benutzer.
Er kann hier entweder die Werte an kritischen Stellen mittels Fallunter-
scheidung manuell angeben oder das Potential direkt so schreiben, dass
der Grenzwert korrekt berechnet werden kann. In diesem Fall wäre bspw.
die Schreibweise

Veff(x) = −α+ l(l + 1)/(2r)
r

(5.15)

möglich, da die Berechnung dann (im Fall α = 1, l = 1)

(-1+1/0)/0=(-1+inf)/0=inf/0=inf

liefert.
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5.2 Vergleich der verschiedenen Verfahren

Bei zahlreichen Kombinationen von Iterationsverfahren, Bestimmung der An-
fangswerte und Wahl der Parameter ist es weder besonders lehrreich noch in
beschränkter Seitenzahl machbar, sämtliche Energieeigenwerte und Wellenfunk-
tionen zu den fünf Testpotentialen numerisch zu ermitteln und mit den analy-
tischen Werten zu vergleichen. Drum wählen wir zunächst zu jedem Potential
möglichst angemessene Werte für die Parameter und benutzen dann die jeweils
einsetzbaren Lösungsverfahren zur Ermittlung der Energieeigenwerte. Zur Beur-
teilung der Qualität dieser Ergebnisse reicht zunächst eine Kenngröße, nämlich
die Maximumsnorm über die betragsmäßigen relativen Abweichungen von den
analytisch ermittelten Eigenwerten. Dadurch wird jeweils der schlechteste Wert
betrachtet, sodass evtl. ungeeignete Verfahren direkt auffallen.

Die Vorgabe für die relative Genauigkeit der Eigenwerte wird auf die Maschi-
nengenauigkeit des verwendeten Datentyps (double, ca. 10−16) gesetzt, sodass
jedes Verfahren die unter den gegebenen Umständen »optimalen« Energiewerte
findet.

Als weitere Kenngröße wird auch die Gesamtrechenzeit angegeben, um die Ver-
fahren hinsichtlich ihrer Effizienz einordnen zu können. Die Rechenzeit kann
beispielsweise beim Einsatz in der Simulation von Vielteichensystemen relevant
werden, wenn Eigenwerte oder Wellenfunktionen zu leicht geänderten Potentia-
len immer wieder neu bestimmt werden müssen.

Die Messwerte sind in den Tabellen 5.1 bis 5.5 dargestellt.
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Tabelle 5.1: Potentialtopf mit L = 2π/
√

2, Emax = 50, h = 10−4

Verfahren Fehler Zeit in s
Match exp 5,27e-05 0,85

wkb_trapez 5,27e-05 0,86
wkb_simpson 5,27e-05 0,86
trafo_tan 4,31e-05 2,77
trafo_artanh 1,06e-04 1,53
trafo_frac 2,35e-06 1,94

Shoot exp 5,27e-05 3,27
wkb_trapez 5,27e-05 3,16
wkb_simpson 5,27e-05 3,18
trafo_tan 4,31e-05 6,94
trafo_artanh 1,06e-04 4,59
trafo_frac 2,35e-06 5,64

Variation exp 5,27e-05 6,20
wkb_trapez 5,27e-05 6,17
wkb_simpson 5,27e-05 6,19
trafo_tan 4,31e-05 21,45
trafo_artanh 1,06e-04 12,37
trafo_frac 2,35e-06 15,67

Symm alt 5,27e-05 1,27
neu 7,69e-06 1,23

Tabelle 5.2: harmonischer Oszillator mit ω = 1, Emax = 20, h = 10−3

Fehler Zeit in s
Match exp 3,43e-12 0,47

wkb_trapez 3,43e-12 0,49
wkb_simpson 3,43e-12 0,49
trafo_tan 7,83e-11 1,01
trafo_artanh 1,30e-11 0,54
trafo_frac 1,38e-11 0,76

Shoot exp 2,05e-12 1,65
wkb_trapez 2,05e-12 1,65
wkb_simpson 2,05e-12 1,62
trafo_tan 7,83e-11 2,94
trafo_artanh 1,30e-11 2,09
trafo_frac 1,38e-11 2,53

Variation exp 3,24e-12 1,38
wkb_trapez 3,24e-12 1,38
wkb_simpson 3,24e-12 1,38
trafo_tan 7,83e-11 8,10
trafo_artanh 1,30e-11 5,10
trafo_frac 1,38e-11 6,39

Symm alt 2,01e-12 0,53
neu 3,39e-12 0,53
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Tabelle 5.3: Pöschl-Teller-Potential mit V0 = 36, a = 1, Emax = −0,01,
h = 3 · 10−4

Verfahren Fehler Zeit in s
Match exp 6,97e-09 0,58

wkb_trapez 2,90e-11 0,58
wkb_simpson 2,90e-11 0,58
trafo_tan 4,94e-11 0,79
trafo_artanh 7,42e-12 0,45
trafo_frac 3,98e-12 0,58

Shoot exp 3,45e-09 2,29
wkb_trapez 3,17e-11 2,30
wkb_simpson 3,17e-11 2,28
trafo_tan 4,89e-11 2,79
trafo_artanh 7,73e-12 1,84
trafo_frac 3,83e-12 2,20

Variation exp 6,97e-09 2,13
wkb_trapez 2,90e-11 2,18
wkb_simpson 2,90e-11 2,17
trafo_tan 1,25e-01 7,05
trafo_artanh 5,47e-01 3,97
trafo_frac 5,50e-02 4,93

Symm alt 2,30e-11 0,81
neu 8,95e-12 0,83

Tabelle 5.4: Morse-Potential mit V0 = 32, a = 1, Emax = −2, h = 3 · 10−4

Verfahren Fehler Zeit in s
Match exp 1,78e-06 0,35

wkb_trapez 2,90e-08 0,34
wkb_simpson 2,90e-08 0,32
trafo_tan 4,92e-11 0,38
trafo_artanh 9,14e-12 0,29
trafo_frac 1,00e-11 0,36

Shoot exp 4,29e-12 1,35
wkb_trapez 4,29e-12 1,37
wkb_simpson 4,29e-12 1,31
trafo_tan 4,93e-11 1,34
trafo_artanh 8,80e-12 1,03
trafo_frac 9,92e-12 1,21

Variation exp 1,78e-06 1,06
wkb_trapez 2,90e-08 1,04
wkb_simpson 2,90e-08 1,06
trafo_tan 4,91e-11 3,41
trafo_artanh 9,18e-12 2,31
trafo_frac 1,00e-11 2,88
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Tabelle 5.5: Coulomb-Potential mit a = 8, Emax = 0.5, h = 5 · 10−4

l = 0 l = 1
Verfahren Fehler Zeit in s Fehler Zeit in s
Match exp 1,06e-05 0,28 2,34e-09 0,47

wkb_trapez 1,06e-05 0,28 1,56e-09 0,45
wkb_simpson 1,06e-05 0,29 1,56e-09 0,45

Shoot 1,06e-05 0,73 1,56e-09 1,07
Variation exp 2,49e+02 0,83 2,34e-09 1,30

wkb_trapez 2,49e+02 0,84 1,56e-09 1,36
wkb_simpson 2,49e+02 0,82 1,56e-09 1,39

l = 2 l = 3 l = 4
Fehler Zeit in s Fehler Zeit in s Fehler Zeit in s

2,67e-09 0,41 4,73e-09 0,29 1,08e-08 0,23
2,65e-10 0,43 4,96e-10 0,31 1,18e-09 0,24
2,65e-10 0,43 4,96e-10 0,31 1,18e-09 0,24
7,68e-12 0,73 1,61e-11 0,61 1,05e-11 0,47
2,67e-09 1,02 4,73e-09 0,93 1,08e-08 0,74
2,65e-10 1,10 4,96e-10 0,91 1,18e-09 0,67
2,65e-10 1,10 4,96e-10 0,91 1,18e-09 0,67

5.2.1 Diskussion

Vergleicht man die Messwerte untereinander, lassen sich unabhängig vom Test-
potential folgende Aussagen machen:

– Die drei Näherungsverfahren für das Potential im klassisch verbotenen Be-
reich (exp, wkb_trapez, wkb_simpson) unterscheiden sich nicht hinsicht-
lich Genauigkeit und Laufzeit. Nur wenn das Potential für betragsmäßig
große x gegen einen endlichen Wert konvergiert, liefert die WKB-Näherung
bessere Ergebnisse als die exponentielle Abschätzung. Der zusätzliche Re-
chenaufwand für die WKB-Näherung schlägt sich nicht in der Gesamt-
laufzeit nieder, da diese Rechnung nur zu Beginn jeder Iteration ein oder
zwei Mal durchgeführt wird und gegenüber den vielen Iterationsschritten
vernachlässigbar ist.

Bei der WKB-Näherung spielt es keine Rolle, welches Integrationsverfah-
ren benutzt wird. Daher sollte man auf die einfachere Trapezregel zurück-
greifen.

Fazit: Zur Annäherung der Wellenfunktion im klassisch verbotenen Be-
reich ist die WKB-Näherung in Kombination mit der Trapezregel am bes-
ten geeignet.
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– Vergleicht man die drei Transformationsverfahren untereinander, gibt es
hinsichtlich der Genauigkeit keine großen Unterschiede, doch schneidet die
Tangens-Transformation in den meisten Fällen etwas schlechter als die bei-
den anderen Transformationen ab. Es ist nicht vollständig auszuschließen,
dass dies auf eine ungünstige Wahl der Parameter zurückzuführen ist. Ver-
glichen mit den anderen Methoden liefern die Transformationsansätze mal
bessere, mal schlechtere Ergebnisse. Auf eine Ursache hierfür werden wir
weiter unten noch genauer eingehen.

Deutlicher sind die Unterschiede in der Laufzeit, hier ist in allen Fällen
die Tangens-Transformation mit deutlichem Abstand am langsamsten und
die artanh-Transformation am schnellsten. Das liegt an dem unterschied-
lichen Berechnungsaufwand für die Transformationsvorschriften, der sich
sehr stark auf die Gesamtlaufzeit auswirkt, da die Transformation des
Potentials in jedem einzelnen Schritt der Iteration durchgeführt werden
muss. Aus diesem Grund weisen die Transformationen auch meist höhere
Laufzeiten als die Approximationsansätze auf. Durch geschickte Umfor-
mulierung der Ausdrücke oder Tabellierung bestimmter Werte ließe sich
der Aufwand vielleicht noch weiter reduzieren.

Fazit: Von den verschiedenen Transformationsansätzen lässt sich keiner
klar als »der beste« bezeichnen, doch in der vorliegenden Implementierung
bietet die artanh-Transformation die besten Eigenschaften. Die Transfor-
mation des Potentials stellt eine brauchbare Alternative zu den Näherun-
gen im klassisch verbotenen Bereich dar.

– Im Vergleich von Matching- und Schießverfahren gibt es nicht immer si-
gnifikante Unterschiede, doch besonders im Fall von Morse-Potential und
Coulomb-Potential ab l = 2 liefert das Schießverfahren um mehrere Grö-
ßenordnungen bessere Ergebnisse. Dies geschieht allerdings auf Kosten der
Laufzeit, die in allen Fällen größer als unter Verwendung des Matching-
verfahrens ist.

Die besseren Ergebnisse des Schießverfahrens lassen sich damit erklären,
dass dem Schießverfahren ein nach rechts offener Bereich zur Verfügung
steht, während das Matchingverfahren auf einen bestimmten Bereich der
x-Achse beschränkt bleibt. Dadurch hat es Raum für mehr Iterationen und
kann so genauere Ergebnisse liefern. Der Mehraufwand für den größeren
Iterationsbereich wird allerdings größtenteils wieder dadurch kompensiert,
dass das Schießverfahren in großen Entfernungen vom Eigenwert auch di-
rekt abbrechen kann, sobald die Wellenfunktion divergiert oder zu viele
Knoten auftreten, während das Matchingverfahren in solchen Fällen im-
mer entlang des gesamten Bereiches iteriert. Die hohe Laufzeit kommt
hingegen dadurch zu Stande, dass das Schießverfahren insgesamt deutlich
mehr Iterationen braucht, in Ermangelung einer guten Methode zur Feh-
lerabschätzung muss auf das langsame Bisektionsverfahren zurückgegriffen
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werden. Fazit: Das Schießverfahren kann unter Umständen genauere Er-
gebnisse liefern, braucht dafür aber auch länger.

– Das Variationsverfahren als eine Variante des Matchingverfahrens mit ei-
ner ausgefeilteren Methode zur Suche eines neuen Schätzwertes für die
Energie sollte eigentlich ähnliche Ergebnisse wie das Matchingverfahren
liefern, während man sich eine bessere Laufzeit erhofft. Allerdings scheitert
das Verfahren mit deutlich abweichenden Ergebnissen unter Verwendung
der Transformationen mit Anwendung auf das Pöschl-Teller-Potential
und im Fall l = 0 des Coulomb-Potentials. Hinzu kommt eine um ein
Vielfaches schlechtere Laufzeit, sodass man ohne Weiteres sagen kann,
dass die Erwartungen nicht erfüllt wurden.

Ursache für die hohe Laufzeit ist die zusätzlich notwendige Integration
der gesamten Wellenfunktion nach der Iteration zu einem Energiewert. Im
Rahmen des renormalisierten Numerov-Verfahrens wird die Wellenfunk-
tion nicht explizit erzeugt, sodass hierfür zusätzlicher Aufwand notwen-
dig ist, der jeweils in der Größenordnung der Zahl der Stützstellen liegt.
Das in »Match« benutzte Sekantenverfahren hat hingegen nur konstanten
Aufwand zur Schätzung eines neuen Energiewertes. Dadurch können zwar
nicht ganz so viele Iterationen eingespart werden wie mit dem Variations-
verfahren, doch ist der dazu notwendige Mehraufwand unverhältnismäßig.

Womöglich lässt sich das Variationsverfahren noch effizienter implemen-
tieren, indem man wieder auf den »normalen« Numerov-Algorithmus zu-
rückgreift und auf die Vorteile des renormalisierten verzichtet, doch in der
vorliegenden Version ist es auch nicht geeignet, die Bisektion im Shoot-
Verfahren zu ersetzen, da selbst dessen Laufzeit in den meisten Testfällen
geringer ist.

Fazit: In der hier implementierten Version bietet das Variationsverfahren
keine Vorteile gegenüber den anderen Verfahren.

– Im Vergleich der beiden Verfahren zur Wahl der Startbedingungen bei
symmetrischen Potentialen lässt sich mit den beschränkten Daten kein
Sieger ermitteln. In zwei von drei Fällen ist das Ergebnis des neuen Ver-
fahrens um fast eine Größenordnung besser, im dritten Fall jedoch liegt
die alte Methode vorne.

Verglichen mit den anderen Methoden bei symmetrischen Potentialen ge-
hören Ergebnisse immer mit zu den besten, jedoch werden ähnlich gute
Ergebnisse immer auch mit anderen Methoden erzielt. Die explizite Aus-
nutzung der Symmetrie bringt also erstaunlicherweise keinen klaren Vor-
teil.
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Abbildung 5.3: Abhängigkeit des maximalen relativen Fehlers von der Schritt-
weite h beim Oszillatorpotential (ω = 1).

Fazit: Die Qualität der mit allgemeinen Methoden erzielten Ergebnisse
reicht an die Werte heran, die mit auf symmetrische Potentiale optimierten
Verfahren erlangten wurden.

Von den einzelnen Potentialen ist der unendliche Potentialtopf erwähnenswert,
da hier sämtliche Ergebnisse um mehrere Größenordnungen schlechter sind als
bei den anderen Potentialen. Die unendlich hohe Potentialwand führt hier zu
einer Unstetigkeit der ersten Ableitung der Wellenfunktion, die durch den dis-
kretisierten Definitionsbereich nicht wiedergegeben werden kann. Dies führt zu
einer empfindlichen Abhängigkeit der Ergebnisse von den Parametern, so kön-
nen bspw. kleine Änderungen der Schrittweite eine Änderung des Fehlers um
mehrere Größenordnungen zur Folge haben.

Ein ähnlicher Effekt zeigt sich beim Coulomb-Potential im Fall l = 0. Hier liegt
ein negativer Pol des Potentials im Ursprung vor, der die korrekte Berechnung
der Eigenfunktionen stört. Der positive Pol für l > 0 stört die Berechnung nicht
in diesem Maße, die Qualität der Ergebnisse nimmt bis l = 2 zu.

5.2.2 Einfluss der Schrittweite

Einer der dem Benutzer überlassenen Parameter ist die Schrittweite h. Um die
Abhängigkeit der Ergebnisse hiervon darzustellen, ist in Abb. 5.3 exemplarisch
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der maximale relative Fehler beim Oszillatorpotential in Abhängigkeit von der
Schrittweite aufgetragen. Benutzt wurden die Werte ω = 1 und Emax = 8,
eine Vorgabe für den relativen Fehler von 10−15 und das Matchingverfahren mit
wkb_trapez-Initialisierung.

Wie im doppelt-logarithmisch skalierten Graph deutlich zu erkennen ist, fällt
der Fehler zunächst mit abnehmender Schrittweite, nimmt nach Erreichen eines
Minimums allerdings wieder zu. Somit gibt es eine hinsichtlich Genauigkeit des
Ergebnisses optimale Schrittweite. Spielt die Laufzeit eine Rolle, wäre das ein
Grund, Schrittweiten oberhalb der optimalen zu wählen.

Die Zunahme des Fehlers für noch kleinere h lässt sich dadurch erklären, dass
bei immer kleineren Schritten nur kleine Veränderungen auftreten, die im »nu-
merischen Rauschen« von Rundungsfehlern untergehen.

Wie man aus dem Graphen abliest, erreicht man mit der Verbesserung der
Schrittweite um eine Größenordnung ein Absenken des Fehlers um vier Grö-
ßenordnungen, also ist dieser proportional zu h4. Dies ist kein Widerspruch zum
Numerov-Algorithmus, da hier in jedem einzelnen Schritt ein Fehler von O(h6)
auftritt, für den Fehler der gesamten Wellenfunktion gelten andere Gesetze.

Untersucht man andere Potentiale, stellt sich heraus, dass eine ähnliche Kurve
entsteht, das Minimum jedoch an einer anderen Stelle liegt. Somit ist es ohne
Vorwissen über die korrekten Lösungen nicht unmittelbar möglich, die optimale
Schrittweite maschinell zu bestimmen. Womöglich bietet die grobe Potentialform
Anhaltspunkte für die Wahl der Schrittweite, doch eine genauere Untersuchung
geht über den Rahmen dieser Arbeit hinaus.

5.2.3 Die Wahl der maximalen Energie

Betrachten wir das Pöschl-Teller-Potential, das für betragsmäßig große x
gegen 0 konvergiert. Hier hat die Wahl der Obergrenze für die Energie einen
deutlichen Einfluss auf die Qualität der Ergebnisse, auch wenn die Eigenwerte
in allen Fällen unterhalb dieser Grenze liegen. Die Obergrenze wird nämlich
benutzt, um den klassisch erlaubten Bereich des Potentials zu bestimmen. Dieser
ist definiert als das größte Intervall, in dem das Potential nicht höher als die
Energie ist. Nähert sich die Energieobergrenze also immer mehr der 0 an, wird
der klassisch erlaubte Bereich des Pöschl-Teller-Potentials immer größer.

Dies hat direkten Einfluss auf die verschiedenen Methoden zur Anfangswertbe-
stimmung. Für die Verfahren, die einen Näherungswert im klassisch verbotenen
Bereich bestimmen, wird dieser um so genauer, je weiter er vom Zentrum des
Potentials entfernt ist. Hier sind also hohe Werte von Emax günstiger (wenn
man von der Rechenzeit absieht). Anders sieht es bei den Transformationsver-
fahren aus. Hier wird der klassisch erlaubte Bereich auf das Intervall [−1/2, 1/2]
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Abbildung 5.4: Abhängigkeit des maximalen relativen Fehlers von der Ener-
gieobergrenze Emax beim Pöschl-Teller-Potential (V0 = 36,
a = 1).

abgebildet. Je größer dieser Bereich wird, desto kleiner wird also das Bild des
Bereichs, indem die Wellenfunktion die stärksten Änderungen aufweist. Bei kon-
stanter Zahl an Stützstellen im Intervall [−1, 1] würde die effektive Schrittweite
im »spannenden« Bereich der Wellenfunktion also immer mehr abnehmen.

Um diesem Effekt entgegenzuwirken, wird deshalb auch die Schrittweite mits-
kaliert, indem die Zahl der Stützstellen konstant gehalten wird. So haben beide
Verfahren die gleichen Voraussetzungen.

Am Beispiel des Pöschl-Teller-Potentials (mit V0 = 36, a = 1, h = 10−3)
sind maximalen relativen Fehler in Abhängigkeit von der Energieobergrenze in
Abb. 5.4 dargestellt. Das erwartete Verhalten ist deutlich zu erkennen. Beim mo-
difizierten artanh-Verfahren (mit Skalierung der Schrittweite) bleibt der Fehler
über den gesamten Messbereich konstant.
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6 Zusammenfassung und Ausblick

Es wurden verschiedene Kombinationen von Verfahren und Ansätzen entwickelt,
um die stationäre Schrödingergleichung zu beliebigen Potentialen zu lösen. Bei
der nachträglichen Beurteilung hat sich herausgestellt, dass die beiden grundle-
genden Vorgehensweisen, das Schießverfahren und das Matchingverfahren, ver-
gleichbar gute Ergebnisse abliefern. Während das Schießverfahren in manchen
Situationen bessere Ergebnisse liefert, erlaubt das Matchingverfahren eine kürze-
re Laufzeit des Programms. Das ist vor allem in Hinblick auf den möglichen Ein-
satz in Simulationen von komplexen Vielteilchensystemen ein wichtiges Merk-
mal. Das Variationsverfahren zur Schätzung eines besseren Energieeigenwerts
hat sich trotz schneller Konvergenz wegen des unverhältnismäßigen Mehrauf-
wands zur Integration der Wellenfunktion nicht bewährt.

Die beiden Methoden zur Umgehung des Problems der Anfangswerte im Un-
endlichen zeigen gute Ergebnisse. Mit der WKB-Näherung lassen sich gute Nä-
herungen für die Wellenfunktionen im klassisch verbotenen Bereich des Poten-
tials finden, dabei ist das einfache Trapezverfahren zur numerischen Integration
ausreichend. Auch die Transformation des Potentials auf einen endlichen Defini-
tionsbereich ergibt gute Resultate. Die verschiedenen Transformationen zeigen
dabei unterschiedliches Verhalten, doch lässt sich keine Transformation eindeu-
tig als die beste bezeichnen. Die geringste Laufzeit in Kombination mit guten
Ergebnissen wird durch Verwendung des Areatangens hyperbolicus erreicht.

Im Vergleich mit den speziellen Ansätzen für symmetrische Potentiale weisen
die allgemeinen Verfahren höchstens geringfügig größere Abweichungen von den
analytisch ermittelten Werten auf, was ein Hinweis darauf ist, dass bessere all-
gemeine Wahlen der Anfangswerte kaum möglich sind. Die neue Methode zur
Wahl der Anfangswerte bei symmetrischen Potentialen liefert im Mittel leicht
bessere Werte und besitzt den Vorteil einer deutlich einfacheren Herleitung und
Implementierung.

Eine Erweiterung der hier vorgestellten Ergebnisse und des Programms ist in
vielfältiger Hinsicht möglich. Das Programm kann um weitere Verfahren und
neue Kombinationen ergänzt werden, ebenso könnten Algorithmen zur besseren
Schätzung der jetzt noch dem Benutzer überlassenen Parameter, insbesonde-
re der Schrittweite, entwickelt werden. Auch bei der Gestaltung der Oberflä-
che kann man noch zusätzliche Funktionen einbauen, beispielsweise zur intelli-
genten Wahl des dargestellten Ausschnitts des Energiespektrums oder zur au-
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tomatischen Skalierung der dargestellten Wellenfunktion, sodass sie sich nicht
überschneiden. Denkbar wäre auch eine Anpassung des Verfahrens an die An-
forderung, die Energiewerte zu einer Reihe von Potentialen zu bestimmen, die
sich nur durch geringe Änderungen eines Parameters unterscheiden. Dann sind
die Eigenenergien zu einem Wert des Parameters gute Schätzungen für einen
anderen, nicht weit entfernten Wert des Parameters. Durch Ausnutzung dieser
Tatsache könnte man sich einige Iterationen zu Beginn ersparen.
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