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EinleitungIn den letzten Jahrzehnten sind gro�e Fortschritte bei der perturbativen Behand-lung von Feldtheorien und insbesondere Eichtheorien wie der QCD gemacht worden.Jedoch f�uhrt dieses Vorgehen nicht immer zu zufriedenstellenden Ergebnissen, da ei-nige Ph�anomene nicht st�orungstheoretisch erfa�t werden k�onnen.In den siebziger Jahren brachte die Entdeckung spezieller L�osungen der Euklidi-schen Feldgleichungen neue Impulse zur Beschreibung nicht-perturbativer E�ekte inquantisierten Eichtheorien. Da diese L�osungen endliche Wirkung besitzen, also inRaum und Zeit lokalisiert sind, werden sie auch als Instantonen bezeichnet. Dar�uberhinaus verf�ugen sie �uber eine toplogische Ladung oder auch Windungszahl, die ihreStabilit�at gew�ahrleistet.Wenig sp�ater wurde klar, da� Instantonen die entarteten Vakua der klassischenTheorie verbinden und so in der quantisierten Theorie Tunnelvorg�ange beschrei-ben. Dies f�uhrte zum Konzept des �-Vakuums. W�ahrend noch einige unbefriedigendgel�oste bzw. o�ene Probleme in diesem Zusammenhang existieren, wie z.B. die star-ke CP-Verletzung, erschlie�en sich auch vielversprechende Ans�atze. So kann dasU(1)-Problem, das Fehlen eines erwarteten Goldstone-Bosons in der QCD, in die-sem Zusammenhang verstanden werden. Da Instantone�ekte auch das Quarkpoteni-al beein
ussen, bestand gro�e Ho�nung, durch diesen Mechanismus eine Erkl�arungf�ur Con�nement-E�ekte im Rahmen der QCD geben zu k�onnen. W�ahrend dies inverschiedenen Theorien m�oglich ist, stellt sich die Situation hier jedoch o�enbarschwieriger dar [1], [2], [3].Da die Instantonphysik trotz mancher Probleme interessante Perspektiven er�o�net,gibt es zahlreiche Bem�uhungen auf diesem Gebiet. Die Eigenschaft lokalisierter Wir-kung verleiht den Instantonen teilchenartige Charakteristika. Daraus ergibt sich derph�anomenologische Ansatz eines Instantongases als Ausgangspunkt f�ur weitere Un-tersuchungen. Die Wechselwirkung zwischen diesen sogenannten Quasiteilchen invier Raum-Zeit-Dimensionen wird durch dipolartige Terme dominiert [1].Eichtheorien gestatten das Auftreten von Instantonen beliebiger Ausdehnung. Setztdie Wechselwirkung dem keinen Widerstand entgegen, so f�uhrt dies zu Divergen-zen in den �Ubergangsmatrixelementen der Theorie. Dabei ist die Einf�uhrung einerwillk�urlichen Beschr�ankung in der Gr�o�e der Instantonen unbefriedigend und insbe-sondere nicht konsistent mit den Vorgaben der Renormierungsgruppe. Entsprechend



2 Einleitungwird der repulsive Charakter der Instantonwechselwirkung bei kleinen Abst�andenuntersucht bzw. postuliert, um einen dynamischen Cuto� einzuf�uhren. Durch dieAbsto�ung bei kleinen Distanzen werden gro�e Instantonen unterdr�uckt, was zu ei-ner selbstkonsistenten Beschr�ankung der Instantonausdehnung f�uhrt.Es ist interessant, dieses qualitative Ergebnis an einem einfachen Modell genauerzu studieren. Hier bietet sich als einfachste N�aherung an, den Instantonen einenharten Kern zu verleihen. In der vorliegenden Arbeit werden die oben besprochenenEigenschaften an einem solchen Hard-Core-Gas quantitativ untersucht und erfa�t.



Kapitel 1InstantonenUm die Instantonen als zu behandelnde Objekte zu verstehen, wird ein �Uberblick�uber dieses Gebiet und die damit verbundenen Ph�anomene gegeben. Wesentliche Ei-genschaften dieser sogenannten "Quasiteilchen\ treten schon in Systemen der Quan-tenmechanik hervor, jedoch werden sie dort nicht von modellspezi�schen Komplika-tionen verdeckt, so da� ein Abri� dieses Gebietes sinnvoll ist. Dabei wird deutlich,da� es sich bei Instantonen nicht um (Quasi-)Teilchen im �ublichen Sinne handelt,sondern um Entwicklungspunkte des Pfadintegrals mit gewissen teilchenartigen Cha-rakteristika.In einem n�achsten Schritt wird es um Instantonen in Eichtheorien gehen. W�ahrendsie imYang-Mills-System in den siebziger Jahren von Polyakov et al. [4] erstma-lig entdeckt und untersucht wurden, erkannte man bald darauf ihre Bedeutung imZusammenhang mit Tunnelprozessen zwischen den klassischen Vakua der Theorie[5]. In der quantisierten Theorie treten jedoch Divergenzen in den �Ubergangsam-plituden hervor, die aus einer Invarianz der Feldgleichungen resultieren. Ziel dieserArbeit ist es, diese Ph�anomene besser zu verstehen und an einem vereinfachten Mo-dell das Verhalten nach Vorgabe eines dynamischen Cuto� zu studieren.Neben der folgenden Einf�uhrung in dieses Gebiet bietet sich die Lekt�ure von [1], [2],[3] und [6] an; ein theoretischerer Zugang wird in [7] verfolgt. Ein kurzer aktueller�Uberblick wird in [8] vermittelt.1.1 Instantonen in der Quantenmechanik1.1.1 Das PfadintegralIn Rahmen der Quantenmechanik besteht Interesse an �Ubergangsmatrixelementender Form hqf ; tf jqi; tii = hq0jÛ(iT )jqi; (1.1)



4 Instantonenwobei jqi; tii und jqf ; tfi den jeweiligen Anfangs- bzw. Endzustand des Systemsbeschreiben [9]. jqi und jq0i sind Eigenzust�ande des Ortsoperators q̂ und der Zeit-entwicklungsoperator Û ist gegeben durchÛ(iT ) = exp�� iT~ Ĥ(p̂; q̂)� ; (1.2)wobei wie auch im folgenden ohne Einschr�ankung angenommen werden kann, da�ti = �T2qi��T2� = q tf = +T2qf �+T2� = q0: (1.3)Die obige �Ubergangsamplitude l�a�t sich durch das von Feynman eingef�uhrte Pfad-integral darstellen hq0jÛ(iT )jqi = Z q0q [dDq] exp� i~S[q]� (1.4)[dDq] = const. Yti<t<tf dDq(t): (1.5)Dabei ist S[q] das klassische WirkungsfunktionalS[q] = Z T2�T2 dtL(q(t); _q(t)) (1.6)mit der Lagrange-FunktionL (q; _q) = 12Xj mj _q2j � V (q) : (1.7)Es werden also anders als im klassischen Fall nicht nur die L�osungen der Bewegungs-gleichungen @L@qj � ddt � @L@ _qj � = 0 (1.8)als station�are Punkte von S betrachtet, sondern alle stetigen Wege zwischen q und q0mit entsprechender Gewichtung. Nun wird eine analytische Fortsetzung der obigenAusdr�ucke gewonnen, indem beliebige komplexe Zeiten ei�t zugelassen werden:hq0jU(iei�T )jqi = Z q0q [dDq] exp� i~S�[q]� (1.9)S�[q] = e�i� Z +T2�T2 dt 12Xj mj _q2j � e2i(�)V (q)! : (1.10)Von Bedeutung sind die folgenden Spezialf�alle der Formel (1.9):



1.1 Instantonen in der Quantenmechanik 5� � = 0 Feynmann- /Minkowski-PfadintegralDie oben angef�uhrten Formeln werden reproduziert.� � = �2 Euklidisches Pfadintegralhq0jU(TE)jqi = Z q0q [dDq] exp��1~SE[q]� (1.11)SE[q] = Z +TE2�TE2 dtE  12Xj mj _q2j + V (q)! (1.12)Im Euklidischen Fall ist also TE reell, was bei Vergleich mit (1.4) gerade reinimagin�aren Zeiten entspricht.Auf der einen Seite �ndet die sogenannte Wick-Rotation Anwendung, um das Pfad-integral mathematisch und numerisch besser behandeln zu k�onnen, andererseits be-steht eine enge Verkn�upfung des Euklidischen Pfadintegrals mit Tunnelprozessen.1.1.2 Instantonen und TunnelprozesseVor einer weiteren Behandlung des Themas erscheint es sinnvoll, eine erste "Arbeits-de�nition\ des Begri�es Instanton anzugeben:Instantonen sind nicht-singul�are L�osungen der Euklidischen Bewe-gungsgleichungen mit einer lokalisierten Lagrange-Funktion, d.h.sie besitzen eine endliche Euklidische Wirkung.Ein-Instantonl�osungenUntersucht werden sollen die Instantonl�osungen in einem eindimensionalen System(q = x, m = 1) mit dem PotentialV (x) = �2 (x2 � a2)2 (1.13)und mit der Euklidischen Bewegungsgleichungd2xd� 2 = dVdx : (1.14)O�enbar beschreibt (1.14) ein Teilchen mit Einheitsmasse in einem System mit demPotential �V , wobei die EnergieE = 12 �dxdt�2 � V (x) (1.15)



6 Instantoneneine konstante Gr�o�e darstellt. Da nun L�osungen der Gleichung (1.14) von Interessesind, die die beiden Mulden des Potentials V bei �a verbinden, entspricht diesesim Bild eines Teilchens im Potential �V Kon�gurationen mit der RandbedingungE = 0. So kann (1.14) mit den obigen Randbedingungen auf die Di�erentialgleichungdxd� = �p2V (x) (1.16)mit den Forderungen lim�!�1x = �a lim�!1x = �a (1.17)zur�uckgef�uhrt werden. Bei dem vorgegebenen Doppelmuldenpotential wird (1.16)von der Funktionenklassex(�) = �a tanh(�(� � �0)) � = ap� (1.18)gel�ost. Dabei ist die Lagrange-FunktionL(x) = 12 �dxd� �2 + V (x) = 2V (x) (1.19)lokalisiert um �0, und es ergibt sich entsprechend f�ur die Euklidische WirkungSE[x] = 4�33� <1 (1.20)in �Ubereinstimmung mit der obigen Arbeitsde�nition, so da� es sich hier um Instan-tonl�osungen handelt.Schlie�lich soll das Konzept der topologischen Ladung nicht unerw�ahnt bleiben,das in diesem Zusammenhang zwar nicht von zentraler Bedeutung zu sein scheint,jedoch in verallgemeinerter Form eine wichtige Rolle spielen wird. Zun�achst kannbeobachtet werden, da� die obigen L�osungen von (1.16) zusammen mit den trivialenL�osungen x = �a in vier (Homotopie-) Klassen zerfallen, indiziert durch ihre Wertef�ur � ! �1: (�a; a) x(�) = a tanh(��)(a;�a) x(�) = �a tanh(��)(a; a) x = +a(�a;�a) x = �a:In den durch diese Repr�asentanten gegebenen Klassen be�nden sich jeweils noch dieum �0 verschobenen Instantonen. Die toplogische Ladung oder auch WindungszahlQ ist de�niert durchQ = 12a(x(� =1)� x(� = �1)) = Z d� 12a @x@� 2 Z; (1.21)wobei L�osungen mit Q = 1(�1) als Instantonen (Antiinstantonen) bezeichnet wer-den.



1.1 Instantonen in der Quantenmechanik 71.1.3 Multi-Instantonl�osungen und TunnelprozesseIm Rahmen einer quantisierten Theorie besteht Interesse an dem �Ubergangha j e� ĤTE~ j �ai = N Z a=x(TE2 )�a=x(�TE2 )[dx]e�SE~ ; (1.22)der gerade den Tunnelproze� zwischen den beiden Potentialmulden beschreibt. �Ubli-cherweise wird eine Entwicklung der Wirkung um ihre station�aren Punkte, in diesemFall die Instantonl�osungen, vorgenommen. In nullter Ordnung ergibt dies gerade diebekannte WKB-Formelha j e� ĤTE~ j �ai � e�SE0~ (1.23)SE0(E = 0) = Z d� 12 �dxd� �2 + V (x(�))= Z a�a dxp2V :UmKorrekturen h�oherer Ordnung zu ber�ucksichtigen, wird bis zur Gau�schen N�ahe-rung im Rahmen der Sattelpunktsentwicklung fortgeschritten. Von nun an soll derIndex E aus Gr�unden der �Ubersichtlichkeit unterdr�uckt werden, jedoch wird weiter-hin Euklidisch gerechnet. Insbesondere ist T eher eine Hilfsgr�o�e, denn es wird nochder Grenzfall T ! 1 zu untersuchen sein. Dort wird auch festzustellen sein, da�Multi-Instantonl�osungen als Superposition der bekannten Instantonl�osungen eben-falls beachtet werden m�ussen [2], [3], [10].Sei �x nun eine L�osung der Bewegungsgleichungen, d.h. ein station�arer Punkt derWirkung S und x(�) = �x(�) + y(�), dann istS[�x + y] = S[�x] + 12 Z T2�T2 d� Z T2�T2 d� 0y(�)� �2S[x]�x(�)�x(� 0)��x y(� 0) +O(y3): (1.24)Die zweiten funktionalen Ableitungen ergeben� �2S[x]�x(�)�x(� 0)�x=�x = �� @2@� 2 + @2V (x(�))@x2 �x=�x �(� � � 0); (1.25)so da� es sinnvoll ist, die Abweichungen von �x(�) durch ein VONS von Eigenfunk-tionen fxng des OperatorsÔ�x = �� @2@� 2 + @2V (x(�))@x2 �x=�x = � @2@� 2 + @2V (�x(�))@x2 (1.26)auszudr�ucken in der Form x(�) = �x(�) +Xn cnxn(�): (1.27)



8 InstantonenDamit stellt sich die Wirkung mit y(�) = xn(�) dar alsS[�x + xn] = S[�x] + 12 Z T2�T2 d�xn(�)Ô�xxn(�) +O(x3n) (1.28)und mit der Ersetzung des Ma�es durch[dx] = NYn (2�~)� 12dcn (1.29)wird die Sattelpunktsentwicklung durchgef�uhrt (f�ng seien die Eigenwerte zu denfxng): ha j e� ĤT~ j �ai � Ne�S[�x]~ Z Yn dcn(2�~) 12 e� 12~�nc2n(1 +O(~))= Ne�S[�x]~ �det Ô�x�� 12 (1 +O(~))= Ne�S[�x]~ Yn � 1�n� 12 (1 +O(~)): (1.30)Im Zusammenhang mit Tunnelpozessen zwischen den Potentialmulden sind L�osun-gen mit den Randbedingungenlim�!�1 �x� = �a lim�!1 �x� = agefragt. Aus dem vorangehenden Abschnitt ist bekannt, da� diese Instantonl�osungen�x� f�ur T ! 1 jedoch in weiten Bereichen aussehen wie die trivialen L�osungen�x = �a, so da� es sinnvoll ist, zun�achst �uber letztere etwas zu lernen. Hier stelltsich der Operator Ô�x dar alsÔ�a = � @2@� 2 + @2V@x2 j�a= � @2@� 2 + V 00(�a)= � @2@� 2 + !2; (1.31)so da� die Eigenfunktionen durchx�an = sin�n��T � (1.32)



1.1 Instantonen in der Quantenmechanik 9gegeben sind. Weitere Rechnungen liefernN(det Ô�a)� 12 = N 1Yn=1�n2�2T 2 + !2�� 12= NF (T ) 1Yn=1�1 + !2T 2n2�2 �� 12= � 12�~ !sinh!T � 12T!1�! � !�~� 12 e�!T2 ; (1.33)wobei das Integrationsma� so gew�ahlt wird, da� NF (T ) = (2�~T )� 12 , um eine insich konsistente Theorie zu de�nieren [3]. Schlie�lich besitzt Ô�a keine Nullmoden.Zur�uckkehrend zum eigentlichen Problem, der Untersuchung der (Anti-) Instanto-nen als asymptotisch station�are Punkte der Wirkung sowie die Entwicklung desWirkungsfunktionals an diesen Punkten, sind verschiedene Dinge zu beachten:1. F�ur T !1 wird S translationsinvariant, so da� neben �x�(�) auch �x�(� � �0)f�ur beliebige �0 station�arer Punkt von S ist. Dies f�uhrt zu einer Divergenzim Gau�-Integral oder �aquivalent zu einer Nullmode in der sogenannten Fluk-tuationsdeterminante. Dies soll zun�achst durch einen Faktor P ber�ucksichtigtwerden, wobei det0 die Determinante unter "Ausnahme\ der Nullmode be-zeichnen soll:ha j e� ĤT~ j �ai � NPe�S[�x�]~ �det0Ô�x��� 12 (1 +O(~)): (1.34)Schlie�lich kann die normierte Eigenfunktion zum Eigenwert 0 auch direktangegeben werden: x�x�0 (�) = x0(�) = 1pS[�x�] d�x�(� � �0)d� : (1.35)Bei der Integration �uber den Entwicklungskoe�zienten c1 (O.E. �1 = 0) in(1.30) ergibt sich daraus o�enbar eine Divergenz. Nun ist eine Variation in c1um �x� gegeben durchdx = x0(�)dc1 = 1pS[�x�] d�x�(� � �0)d� dc1; (1.36)



10 Instantonenund andererseits ergibt sich entsprechend f�ur �dx = @�x�(� � �0)@� d� = d�x�(� � �0)d� d�=) 1pS[�x�]dc1 = d� (1.37)=) P =  pS[�x�]2�~ ! 12 T: (1.38)Die Integration �uber c1 wird also durch die Integration �uber die Zeitachse,d.h. die Zentren der Instantonen und Antiinstantonen ersetzt. Hierbei ist J =pS[�x�] die Jacobi-Determinante, die sich aus der Variablentransformationergibt. Dies f�uhrt zu der �Ubergangsamplitudeha j e� ĤT~ j �ai � N  pS[�x�]2�~ ! 12 Te�S[�x�]~ �det0Ô�x��� 12 (1 +O(~)): (1.39)Allgemein f�uhren auch in anderen Theorien Invarianzen der Bewegungsglei-chungen zu Nullmoden in der Fluktuationsdeterminante, die analog durch In-tegrationen �uber sogenannte kollektive Koordinaten ersetzt werden.Zur besseren �Ubersicht wird S[�x�] im folgenden einfach als S0 bezeichnet.2. Da lim�!�1 �x� = �a, ist f�ur hinreichend gro�e � Ô�x�(�) � Ô�a. So unter-scheidet sich der Operator Ô�x�(�) in weiten Bereichen kaum von dem OperatorÔ�a, der das Vakuum beschreibt. Die Abweichungen in einem Bereich um dasZentrum �0 des Instantons bzw. Antiinstantons sollen durch einen Faktor Kber�ucksichtigt werden, der sp�ater noch genauer bestimmt wird:ha j e� ĤT~ j �ai � Ne�S0~ �det Ô�x�(�)�� 12 (1 +O(~))= NKe�S0~ �det Ô�a�� 12 (1 +O(~))T!1= e�S0~ K � !�~� 12 e�!T2 (1 +O(~)): (1.40)3. Da f�ur gro�e � gilt dxdt = !(a� x) (1.41)(a� x) � e�!� (1.42)! =pV 00(�a); (1.43)l�osen auch Kon�gurationen �xK aus K weit entfernten Instantonen und Anti-instantonen, wie in Abbildung 1.1 dargestellt, n�aherungsweise die Bewegungs-gleichungen, d.h. sind station�are Punkte von S mit Wirkung KS0.



1.1 Instantonen in der Quantenmechanik 11
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Abbildung 1.1: Kon�guration aus drei (Anti-) Instantonen �x3

Hierbei ist zu beachten, da� die Instantonen und Antiinstantonen sich auf derZeitachse abwechseln m�ussen. Da als weitere Randbedingunglim�!�1 �xK = �a lim�!1 �xK = a (1.44)vorgegeben ist, mu� die Instantonzahl K ungerade sein. Schlie�lich liefert jedesInstanton bzw. Antiinstanton in (1.40) einen Faktor K in der �Ubergangsampli-tude. Die Summation �uber die Positionen der Instantonen und Antiinstantonenliefert [2], [10] Z T2�T2 d�1 Z �1�T2 d�2::: Z �K�1�T2 d�K = TKK! : (1.45)Es folgt bis auf Korrekturen O(~)h+a j e� ĤT~ j �ai� N �det Ô�a�� 12 XK ungerade (TKe�S0~ )KK!= N �det Ô�a�� 12 12 �exp(TKe�S0~ )� exp(�TKe�S0~ )�T!1= � !�~� 12 e�!T2 12 �exp(TKe�S0~ )� exp(�TKe�S0~ )� : (1.46)4. Die N�aherungen basieren auf der Annahme, da� die Instantonen bzw. Anti-instantonen weit voneinander getrennt sind. Um zu pr�ufen, ob die bisherigenRechnungen unter diesem Gesichtspunkt konsistent sind, wird die folgende�Uberlegung angestellt. F�ur beliebiges aber festes x w�achst die Exponentialrei-he P xKK! mit K bis K die Gr�o�enordnung von x erreicht, danach fallen ihre



12 InstantonenWerte mit K schnell ab. Die wesentlichen Beitrage in (1.46) liegen also in demBereich, f�ur den gilt:K < KTe�S0~ , d.h. f�ur die Instanton-Antiinstanton-Dichtegilt dort KT < Ke�S0~ : (1.47)Ist ~ also klein gegen S0, d.h. in der semiklassischen N�aherung, so sind die-se Anforderungen gut erf�ullt. Hier spricht man auch von der N�aherung desverd�unnten Gases.5. Ein Vergleich von Gleichung (1.39), in der die Nullmode in det Ô�x� durcheine Integration �uber � , d.h. einen Faktor T , ber�ucksichtigt wird, mit demEin-Instantonbeitrag in (1.46) liefertK = � S02�~� 12  det Ô�adet0Ô�x�! 12 (1 +O(~)): (1.48)Insgesamt wurde ausgerechnet, wie die klassischen Instantonl�osungen in die �Uber-gangsamplitude ha j e� ĤT~ j �ai bei Entwicklung bis O(~) eingehen. Die dabei auf-tretenden Rechnungen bzw. Strukturen sind auch in komplexeren Theorien anzutref-fen, so da� hier noch einmal die wesentlichen Komponenten desK-Instantonbeitragesaufgeschl�usselt werden:N �det Ô�a�� 12 (TKe�S0~ )KK!� 1K! 1(p2�~)K e�KS0~ Z d�1::: Z d�KJ(�i)�det0�Kdet�0 �� 12 :In diesem Zusammenhang werden die K-Instanton- und Vakuum
uktuationsdeter-minaten, die oben als Produkte dargestellt werden, durch det0�K und det�0 zu-sammengefa�t. Dar�uber hinaus wird die Rolle der Zeitkoordinaten als kollektiveKoordinaten, entspringend aus der Zeittranslationsinvarianz, deutlich. Die Substitu-tion zu den kollektiven Koordinaten liefert schlie�lich die Jacobi-Determinate J(�i).Vor dem Integral dr�uckt der kombinatorische Faktor 1K! die Ununterscheidbarkeitder Instantonen aus, w�ahrend der Exponentialfaktor die N�aherung nullter Ordnungbeinhaltet.1.2 Instantonen in EichtheorienAuch in Eichtheorien existieren Instantonl�osungen, die nun exemplarisch f�ur SU(2)-Yang-Mills-Theorien vorgestellt werden [1], [3], [4], [5], [6], [7], [11], [12], [13]. Die



1.2 Instantonen in Eichtheorien 13Eichgruppe ist die SU(2), deren Generatoren f�ag mit der NormierungTr(�a�b) = 2�ab (1.49)die folgenden Kommutatorrelationenen erf�ullenh�a2 ; �b2 i = i�abc�c2 : (1.50)Damit haben Eichtransformationen die GestaltU(�(x)) = exp� i�a�a(x)2 � ; (1.51)wobei f�ag die Pauli-Matrizen sind. Die zentralen Gr�o�en dieser Theorie sowie derenVerhalten unter Eichtransformationen seien hier kurz zusammengestellt:� Eichfelder A� = g0i �a2 Aa� (1.52)A� �! UA�U�1 + U(@�U�1) (1.53)� Feldst�arketensor F�� = g0i �a2 F a�� (1.54)= @�A� � @�A� + [A�; A�] (1.55)F�� �! UF��U�1 (1.56)� Wirkung SE = � 12g20 Z d4xTr(F��F��) (1.57)� Feldgleichung (ohne Quellen)D�F�� = @�F�� + [A�; F��] = 0 (1.58)� Dualer Tensor und Bianchi-Identit�at~F�� = 12�����F�� (1.59)~~F �� = F�� (1.60)D� ~F�� = 0: (1.61)An dieser Stelle sei die erweiterte De�nition eines Instantons im Rahmen einer Feld-theorie gegeben.



14 InstantonenInstantonen sind nicht-singul�are L�osungen der Euklidischen Feld-gleichungen mit einer lokalisierten Lagrange-Dichte, d.h. sie sind inRaum und Zeit lokalisierte Objekte und besitzen damit eine endli-che Euklidische Wirkung.Daraus ergibt sich die Aufgabe, f�ur die Bewegungsgleichung (1.58) L�osungen end-licher Wirkung zu �nden. Die letztere Bedingung stellt folgende Anforderungen anden Feldst�arketensor und damit an die Eichfelder:F�� r!1�! 0 (1.62)A� r!1�! U(@�U�1) = �(@�U)U�1: (1.63)Hierbei ist U eine Eichtransformation, die auf der S31-Sph�are de�niert ist (r seider Betrag eines Vektors im Euklidischen Raum E4), d.h. sie mu� nicht notwendi-gerweise analytisch auf E4 fortsetzbar sein. In jedem Fall wird A� jedoch auf S31zu einer reinen Eichung. Im folgenden werde S31 im E4 als S3phys bezeichnet. Be-trachtet werden hier also Abbildungen von S3phys in die Menge der Nullstellen desFeldst�arketensors bez�uglich A�. Letztere sind aber gerade durch die Elemente derForm U(@�U�1) aus der Eichgruppe SU(2) gegeben, d.h. durch den Gruppenraumder Eichgruppe. Da dort jedes Element die DarstellungU = u0 + i 3Xj=1 uj�j 3Xj=0 u2j = 1 (1.64)hat, ist der Gruppenraum eine S3-Sph�are, parametrisiert durch den Einheitsvektoru. Sie soll k�unftig mit S3int bezeichnet werden.
1.2.1 Homotopie und WindungszahlGrundbegri�eInstantonl�osungen in Eichtheorien k�onnen wie im eindimensionalen Fall in Funk-tionenklassen eingeteilt werden. Die Elemente einer solchen (Homotopie-) Klassezeichnet dabei aus, da� sie durch stetige Deformationen auseinander hervorgehen.Dies wird im folgenden genauer festgelegt.



1.2 Instantonen in Eichtheorien 15De�nition:X, Y seien topologische R�aumef0, f1:X �! Y stetige Funktionenf0 und f1 hei�en homotop,:, 9 F : X � [0; 1] �! Y stetigF (x; 0) = f0(x)F (x; 1) = f1(x)8 x 2 X.Dies de�niert eine �Aquivalenzrelation, die �Aquivalenzklassen hei�enHomotopieklassen.Beispiel:F�ur X = Y = S1 sind die folgenden Abbildungen Repr�asentanten der Homotopie-klassen der Abbildungen von S1 nach S1:[0; 2� [ �! fei#g#2R� �! eiQ� = (ei�)QDie Homotopieklassen werden durch eine Windungszahl Q 2 Z indiziert.Satz:Alle Abbildungen von SD nach SD (D 2 N) zerfallen in Homotopie-klassen, die durch eine Windungszahl Q 2 Z charakterisiert werdenk�onnen [3].Der Pontryagin-IndexWie oben festgestellt wurde, liefert die Randbedingung endlicher Euklidischer Wir-kung bei Instantonl�osungen der Feldgleichungen AbbildungenS3phys �! S3int(#1; #2; #3) �! U(@�U�1)(#1; #2; #3);die in Homotopieklassen mit Windungszahl oder auch Pontryagin-Index Q zerfal-len (#1, #2, #3 sind ohne Einschr�ankung Polarwinkel in E4). Hier kann nur einekurze Einf�uhrung der Begri�e geboten werden, ausf�uhrlichere Behandlung erf�ahrtdieses Thema z.B. in [2], [3] und [7]. Der Pontryagin-Index von A� = U(@�U�1) =�(@�U)U�1 ist durch das Ober
�achenintegralQ = 124�2 IS3physd�������Tr(U(@�U�1)U(@�U�1)U(@�U�1)) (1.65)= 124�2 IS3phys d�������Tr(A�A�A� ) (1.66)= 124�2 ZG=S3int d3g (1.67)



16 Instantonengegeben. Hierbei stellt d3g ein invariantes Volumenelement im Gruppenraum G derSU(2) dar, so da� das Bild einer Windungszahl erhalten bleibt.Dies wird an einem Beispiel klar:U (1)(x) = x0 + ixj�jjxj : (1.68)Der Anschauung entsprechend sollte U (1) die Windungszahl 1 tragen, was wie folgtnachgerechnet wird: Q = 124�2 I d�� 12x�jxj4= 12�2 I d
x�jxj2 x�jxj4= 12�2 I d
= 1:Dort wird ber�ucksichtigt, da� das Volumen der S3-Einheitssph�are 2�2 ist.Es l�a�t sich dar�uber hinaus zeigen, da� Q eine Invariante der Homotopieklasse istund da� jede L�osung der Windungszahl Q homotop ist zu U (Q) = �U (1)�Q.Schlie�lich ist der 3-dimensionale Raum E3, in dem alle Punkte bei Unendlich miteinem Punkt identi�ziert werden, topologisch �aquivalent zur S3-Sph�are. So unterlie-gen die Abbildungen dieses Raumes in den Gruppenraum der SU(2) einer analogenKlassi�kation. Als Beispiele f�ur Abbildungen mit Windungszahl 1 seien hierU(~x) = exp i�~x~�(~x2 + �2) 12 ! ; (1.69)U(~x) = (�~� + i~x)2~x2 + �2 (1.70)angegeben, wobei die mit einem Pfeil gekennzeichneten G�o�en dreidimensionale Vek-toren sind. Zur Berechnung der Windungszahl wird in dieser Darstellung die Ober-
�achenintegration durch eine Volumenintegration ersetzt:Q = 124�2 Z d3x����Tr(A�A�A�) (1.71)A� = U(~x)(@�U�1(~x)): (1.72)Abbildungen mit h�oherer Windungszahl Q sind auch hier wieder homotop zu Pro-dukten der obigen Abbildungen. Diese Darstellung wird bei der Betrachtung vonTunnelprozessen hilfreich sein.Zur�uckkehrend zu dem urspr�unglichen Problem soll die folgende alternative Schreib-weise f�ur Q erarbeitet werden:Q = � 116�2 Z d4xTr �F�� ~F��� : (1.73)Dies wird in zwei Schritten erfolgen:



1.2 Instantonen in Eichtheorien 171. Umwandlung des obigen Integrals in ein Ober
�achenintegral2. Identi�kation der dabei auftretenden Stromdivergenz @�j� als Windungszahl-dichte q(x) := � 116�2Tr �F�� ~F��� : (1.74)Unter Ausnutzung der Bianchi-Identi�at stellt sich der obige Ausdruck dar als�16�2q(x) = Tr������ (2@�(A�@�A� + 23A�A�A� )� (1.75)und j� := � 18�2 �����Tr�A�(@�A� + 23A�A� )� (1.76)q(x) = @�j� (1.77)Q = Z d4x@�j� (1.78)= IS3phys d��j�: (1.79)Unter Beachtung der Randbedingung F��(r =1) = 0 ergibt sich:jS3phys� = 124�2 �����Tr(A�A�A� ) (1.80)Q = 124�2 IS3phys d�������Tr(A�A�A�): (1.81)Mit dem asymtotischen Verhalten der A�A� r!1�! U(@�U�1) (1.82)folgt Q = 124�2 IS3physd�������Tr(U(@�U�1)U(@�U�1)U(@�U�1)); (1.83)so da� die urspr�ungliche Formel f�ur die Windungszahl reproduziert wird.1.2.2 L�osung der FeldgleichungenZun�achst einmal gilt unter Beachtung der Tatsache, da� F�� antihermitesch de�niertwurde, � Z d4xTr((F�� � ~F��)2) � 0; (1.84)



18 Instantonenund mit Tr(F��F��) = Tr( ~F�� ~F��) folgt� Z d4xTr((F��)2) � � Z d4xTr(F�� ~F��); (1.85)womit sich die Absch�atzung SE � 8�2g20 jQj (1.86)ergibt. SE wird also minimal f�ur den Fall~F�� = �F�� : (1.87)Die selbst-dualen bzw. anti-selbst-dualen Kon�gurationen extremalisieren SE undl�osen damit die Bewegungsgleichung. Dies wird auch direkt mit Hilfe der Bianchi-Identit�at D�F�� = �D� ~F�� = 0 ersichtlich. Jedoch m�ussen nicht alle L�osungenselbst-dual bzw. anti-selbst-dual sein. In jedem Fall stellen die selbst-dualen bzw.anti-selbst-dualen L�osungen aber das absolute Minimum der Wirkung im jeweiligenQ-Sektor dar. Als L�osung dieses Problems mit Windungszahl Q=1 sei nun folgendesEichfeld als Instanton angegeben:A�(x) = � r2r2 + �2�U(@�U�1) (1.88)U(x) = xo + i~x~�r (1.89)r2 = x20 + ~x2: (1.90)Hierbei ist � ein beliebiger Parameter, der i.a. als Instantongr�o�e oder -radius inter-pretiert wird. Er resultiert aus einer Skaleninvarianz der Feldgleichungen, die sichdadurch auszeichnet, da� mit A�(x) auch �A�(�x) f�ur � 6= 0 die Gleichungen l�ost.F�ur r � � geht A� o�enbar in eine reine Eichung �uber, wie es die Randbedingungenerfordern. Es existieren auch exakte Instantonl�osungen mit beliebiger WindungszahlQ. Werden Instantonen und Antiinstantonen nicht unterschieden, so gibt jQj gera-de die Instantonzahl K an. Zus�atzlich werden auch wie im quantenmechanischenFall Superpositionen der Ein-Instantonl�osungen als n�aherungsweise L�osungen derBewegungsgleichungen betrachtet.1.2.3 Vakuum-Tunnelprozesse und �-VakuumAnalog zum quantenmechanischen Fall soll nun festgestellt werden, zwischen welchenklassischen Vakuumzust�anden eine zeitliche Entwicklung der Instantonl�osungen er-folgt [3], [12], [13]. Hierbei ist das Vakuum durch die Bedingung F�� = 0 de�niert.Bisher wurde als Randbedingung gefordert, da� das Vakuum au�erhalb einer hin-reichend gro�en Sph�are vorliegt. �Aquivalent kann auch die Annahme des Vakuums



1.2 Instantonen in Eichtheorien 19au�erhalb eines gen�ugend gro�en Zylinders gefordert werden, d.h. f�ur die Region, inder t < �T2 _ t > T2 ; j~xj > R (1.91)gilt. Nun soll die Eich�xierungsbedingungA0(x) = 0 8x (1.92)erf�ullt sein. Damit bleibt jedoch weiterhin die Freiheit erhalten, zeitunabh�angigeEichtransformationen durchzuf�uhren@0U(~x) = 0 (1.93)A0 �! U(~x)A0U�1(~x) + U(~x)(@0U�1(~x)); (1.94)so da� das Vakuum durch ein zeitunabh�angiges reines Eichfeld beschrieben wird:Ai(x) = Ai(~x) = U(~x)(@iU�1(~x)) = �(@iU(~x))U�1(~x): (1.95)Zur Zeit t = �T2 kann die verbleibende Eichfreiheit genutzt werden, um z.B. Ai(~x) =0 zu w�ahlen (durch U(~x) = 1). Mit der Vakuumbedingung F�� = 0 folgt F0i =@0Ai = 0. Damit verschwindet das Eichfeld f�ur den gesamten Bereich au�erhalb desZylinders, d.h. im Vakuum. Der Schnitt durch den Zylinder bei t = �T2 entsprichtso einer dreidimensionalen Scheibe deren Begrenzung mit einem Punkt identi�ziertwerden kann. Die Eichtransformationen auf einer solchen Scheibe k�onnen wie obendiskutiert durch folgende Formel (bis auf Homotopie) angegeben werden:U(~x) = exp n i�~x~�(~x2 + �2) 12 ! : (1.96)Die Vakuumzust�ande zerfallen damit ebenfalls in verschiedene Homotopieklassen,die durch eine Windungszahl n indiziert werden. Sei also fjnig die Menge der Va-kuumzust�ande. Die Behauptung ist nunAinsti (~x; x0 = �1) = Ai(~x) von jni (1.97)Ainsti (~x; x0 =1) = Ai(~x) von jn+Qi; (1.98)wobei eine genauere Begr�undung in [13] gegeben wird.Eine Instantonl�osung der Windungszahl Q verbindet o�enbar klassische Vakua,die sich in ihrer Windungszahl um Q unterscheiden. Das klassische Yang-Mills-Vakuum ist also unendlich entartet, in der quantisierten Theorie treten jedoch Tun-nelprozesse auf, so da� der tats�achliche Vakuumzustand eine geeignete �Uberlage-rung der klassichen Vakuumzust�ande ist. Die Vakuum-Vakuum-�Ubergangsamplitu-den sind durch (~ = 1)hnje�ĤT jmi = Z [dA]Q=n�m exp (�SE) (1.99)



20 Instantonengegeben. Die Vakuumzust�ande fjnig verhalten sich unter Eichtransformationen U (1)mit Windungszahl 1 folgenderma�enU (1)jni = jn+ 1i; (1.100)w�ahrend Eichinvarianz [U (1); Ĥ] = 0 (1.101)bedeutet. Der neue Vakuumzustand mu� eine geeignete �Uberlagerung der klassischenVakuumzust�ande sein und insbesondere Eigenzustand von Ĥ. Aufgrund der obigenKommutatorrelation mu� er aber auch Eigenzustand von U (1) mit Eigenwert derForm e�i� sein ( U (1) ist unit�ar). Damit mu� der neue Vakuumzustand j�i die Gestaltj�i =Xn ein�jni (1.102)haben. Schlie�lich soll die Vakuum-Vakuum-�Ubergangsamplitude im Pfadintegral-formalismus bestimmt werden:h�0je�ĤT j�i = �(� � �0)Z(�): (1.103)Die Rechnung h�0je�ĤT j�i = Xn;m e�im�0ein�hmje�ĤT jni= Xn;m e�i(m�n)�eim(���0) Z [dA]m�ne�SE= �(� � �0) XQ=m�n e�iQ� Z [dA]Qe�SEliefert Z(�) =XQ Z [dA]Q exp�� Z Leffd4x� (1.104)LEeff = LE � i�16�2Tr �F�� ~F��� : (1.105)Im Minkowskischen Fall f�uhrt dies auf die e�ektive Lagrange-DichteLeff = L+ �16�2Tr �F�� ~F ��� : (1.106)F�ur � 6= 0 ist die e�ektive Lagrange-Dichte nicht invariant unter P- und T- Transfor-mationen, so da� die entsprechenden Symmetrien in dieser Theorie gebrochen sind.



1.2 Instantonen in Eichtheorien 21Bemerkenswert ist, da� jedes �-Vakuum eine "eigene Welt\ darstellt, die nicht etwaeine Anregung eines einzigen Vakuums ist. Die unterschiedlichen �-Vakua sind phy-sikalisch nicht verbunden.Dies wird durch folgende �Uberlegung klar, wobei U (1) eine Eichtransformation undB einen beliebigen physikalischen Operator repr�asentiert.[U (1); B] = 0) 0 = h�0j[U (1); B]j�i= h�0jBj�i(ei�0 � e�i�)�0 6=�) h�0jBj�i = 0:1.2.4 Die Bedeutung der Radiuskoordinate � unter den kol-lektiven Koordinaten f�igIn diesem Abschnitt ist zu �uberlegen, welche Form die Zustandssumme Z in Sat-telpunktsn�aherung haben mu�. Dabei wird nicht zwischen Instantonen und Antiin-stantonen unterschieden, so da� die Windungszahl Q einer Instantonl�osung gleichihrer Instantonzahl K ist. Betrachtet wird ein K-Instantonbeitrag in Anlehnung andie N�aherung des verd�unnten Gases [14]:ZK = 1K! (p2�g0)�mKe�K S0g20 Z d�iJ(�i)�det0�Kdet�0 �� 12 : (1.107)Hierbei sinddet0�K nullmodenfreie K-Instanton-Fluktuationsdeterminantedet�0 Vakuum
uktuationenS0 Ein-Instanton-Wirkungm Anzahl der kollektiven Koordinaten �iJ Jacobi-Determinante.Jede der kollektiven Koordinaten f�ig repr�asentiert eine Invarianz der Feldgleichun-gen. So sind u.a. Integrationen �uber die Raum-Zeit sowie das Gruppenvolumen ent-halten. Dabei m�oglicherweise auftretende Divergenzen bereiten keine Probleme, daohnehin eine Normierung auf das betrachtete Volumen bzw. die verstrichene Zeit vor-zunehmen ist, um die entsprechenden Wahrscheinlichkeitsdichten bzw. �Ubergangsra-ten zu erhalten. Die Koordinaten unter den f�ig, die die Raum-Zeit parametrisieren,werden mit fajg bezeichnet, wobei j 2 f1; :::; Kg die Instantonkoordinaten nume-riert.Im Rahmen einer Eichtheorie sind unter den kollektiven Koordinaten f�ig auch dieGr�o�en- oder Radiusparameter f�jg. Liegen Instantonen mit beliebigem Radius vor,



22 Instantonenso divergiert das Integral �uber diese Koordinaten. Im allgemeinen wird dieses Pro-blem durch die Einf�uhrung eines willk�urlichen Cuto� im Integral umgangen. Dieshat allerdings nur dann eine Rechtfertigung, wenn die Verteilung der Radien beigro�en Werten hinreichend schnell abf�allt. Abgesehen von den Inkonsistenzen imZusammenhang mit der Renormierungsgruppe stellt sich die Frage, an welcher Stel-le ein Cuto� zu guten Ergebnissen f�uhrt.Bevor weiter auf diese Probleme eingegangen wird, ist noch zu beachten, da� sich dieKopplung bei der Renormierung der Determinanten in Einschleifenordnung verh�altwie 1g20 �! 1g2(�) � 2�0 ln(�); (1.108)was mit den Ersetzungen � = 2�0S0� = � exp�� 12�0g2(�)�zu ZK = 1K! (p2�g)�mK�K� Z d�ie� ~U(�i) (1.109)f�uhrt mit einem zun�achst nicht n�aher bestimmten Potential ~U [1], [14]. Hierbei wirddie Abh�angigkeit der Kopplungskonstante g von den kollektiven Koordinaten f�igvernachl�assigt und entsprechend nicht bei den Integrationen ber�ucksichtigt.1.3 Das Instanton-Hard-Core-GasUm an dieser Stelle weiterzukommen, sind einige Vereinfachungen n�otig. Zun�achstwird ZK(V ) unter Hinzunahme von Dimensionsargumenten folgenderma�en geschrie-ben: ZK(V ) = 1(p2�g)mK ~CKK! Z KYj=1 da0jd�0j�0j�+1 KYj1 (��0j)�e� ~U(fa0jg;f�0jg)= CKK! ��K Z KYj=1 da0jd�0j KYj=1 �0j����1e� ~U(fa0jg;f�0jg) (1.110)~C Integral �uber die verbleibenden kollektiven Koordinateneines InstantonsC = ~C(p2�g)m� Raum-Zeit-Dimension.



1.3 Das Instanton-Hard-Core-Gas 23Die Raum-Zeit- und Radiuskoordinaten unter den f�ig werden nun explizit betrach-tet, w�ahrend der Beitrag der verbleibenden kollektiven Koordinaten durch ~C re-pr�asentiert wird.Da �� � � 1 � 0 [14], liegen die wesentlichen Beitr�age zu ZK(V ) in einem Bereich,in dem die Instantonradien f�0jg gro� sind. Dies entspricht der Vorstellung einesdichten Gases aus Instantonen an den Positionen fa0jg und f�uhrt zu Divergenzenin den �0-Integrationen. Dies soll hier nicht durch einen willk�urlichen Cuto� in denRadiuskoordinaten behandelt werden, der insbesondere nicht konsistent ist mit denVorgaben der Renormierungsgruppe [15]. Eine dynamische und selbstkonsistente Be-schr�ankung der Instantongr�o�en kann auch durch die Einf�uhrung einer repulsivenWechselwirkung bei kleinen Abst�anden erzwungen werden. Die einfachste Realisie-rung ist durch die Ersetzung von ~U durch ein Hard-Core-Potential U gegeben. DieInstantonen k�onnen sich so nicht durchdringen und sind entsprechend nicht in derLage, sich beliebig auszudehnen. Mit der Anschauung eines Gases harter Kugeln mitRadien f�0jg an den Raum-Zeit-Punkten fa0jg ergibt sich der folgende Ausdruck f�urZK(V ): ZK(V ) = CKK! ��K Z KYj=1 da0jd�0j KYj=1 �0j����1e�U(fa0jg;f�0jg) (1.111)= CKK! ��K Z KYj=1 da0jd�0j KYj=1 �0j����1�(fa0jg; f�0jg) (1.112)
�(fa0jg; f�0jg) = 8>>>>><>>>>>: 1 1: ka0j � a0ik > � �v1� 1� (�0j + �0i) 8i; j2: ja0�j j < 12V 0 1� � = 1; :::; � 8j3: 0 < �0j < 12 �v1� V 0� 1� 8j0 sonstv1 = � �2�( �2+1) Volumen der Einheitskugel in � Dimensionen��0�j e�ektives Volumen eines InstantonsV 0 Beobachtungsvolumen.Die Integrationen bzgl. der Koordinaten fa0jg erfolgen �uber das Volumen V 0, dieje-nigen bzgl. der Parameter f�0jg erfolgen �uber R+ .Nun ist es zweckm�a�ig mit dimensionslosen Gr�o�en zu arbeiten. Dazu werden alleL�angen in Einheiten von ��1 gemessen, was der Umskalierung�0 = ��1�a0 = ��1aV 0 = ���V



24 Instantonenentspricht. Damit stellt sich ZK(V ) dar als:ZK(V ) = CKK! Z KYj=1 dajd�j KYj=1 �����1j �(fajg; f�jg) (1.113)
�(fajg; f�jg) = 8>>>><>>>>: 1 1: kaj � aik > � �v1� 1� (�j + �i) 8i; j2: ja�j j < 12V 1� � = 1; :::; � 8j3: 0 < �j < 12 �v1� V � 1� 8j0 sonst:
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����qa14VAbbildung 1.2: Instantongas mit K = 14, � = 2 im Volumen VAbbildung 1.2 stellt eine m�ogliche Gaskon�guration aus harten Kugeln dar. Hierist zu beachten, da� sich neben den Positionen auch die Radien der Teilchen imRahmen der einschr�ankenden Randbedingungen, die durch �(fajg; f�jg) festgelegtwerden, beliebig einstellen k�onnen. Da aber auch die Instantonzahl K variabel seinsoll, ist ein gro�kanonisches Ensemble von Instantonen mit der ZustandssummeZ(V ) = 1XK=0ZK(V ) Z0(V ) = 1 (1.114)zu untersuchen, wobei PK(V ) die Wahrscheinlichkeit bezeichnet, da� das o�ene Sy-stem K Instantonen enth�alt: PK(V ) = ZK(V )Z(V ) : (1.115)Von Interesse ist nun die Wahrscheinlichkeit, mit der ein Instanton mit Radius � ineinem solchen Ensemble auftritt. Dazu werden zun�achst allgemeinere �Uberlegungenangestellt.



1.4 Die Verteilung der Instantonradien 251.4 Die Verteilung der InstantonradienUm die Beschreibung im folgenden m�oglichst transparent zu gestalten, werden dieKoordinaten eines Instantons zusammengefa�t zu~Aj = (aj; �j) (1.116)f ~AjgK = ( ~A1; :::; ~AK); (1.117)wobei der Frage nachgegangen wird, mit welcher Wahrscheinlichkeit ein Instantonan der Position ~A anzutre�en ist. In Systemen der klassischen Statistischen Physikwird dies in [16] und [17] behandelt.1.4.1 Die Verteilung im kanonischen EnsembleF�ur die folgenden �Uberlegungen wird zun�achst angenommen, da� die Instantonen imvorliegenden Gas unterscheidbar sind. Dann wird die Wahrscheinlichkeit, Instanton1 im Volumenelement dA1 bei ~A1, Instanton 2 in dA2 bei ~A2 ... und Instanton n mitn � K in dAn an der Stelle ~An anzutre�en, beschrieben durch die RandverteilungCK R dAn+1:::dAKQKj=1 �����1j �(fajg; f�jg)ZdK(V ) (1.118)mit ZdK(V ) = CK Z dA1:::dAK KYj=1 �����1j �(fajg; f�jg) = K!ZK(V ): (1.119)In einem n�achsten Schritt stellt sich die Frage nach der Wahrscheinlichkeit, einbeliebiges Instanton in dA1 an Position ~A1 ... sowie in dAn an der Stelle ~An vor-zu�nden, da sie tats�achlich nicht unterscheidbar sind. Mit Hilfe leichter kombinato-rischer Argumente wird deutlich, da� die entsprechende Wahrscheinlichkeitsdichte��nK( ~A1; :::; ~An) gegeben ist durch��nK(V; ~A1; ::: ~An) = K!(K � n)!CK R dAn+1:::dAKQKj=1 �����1j �(fajg; f�jg)ZdK(V ) : (1.120)Da nun speziell von Interesse ist, mit welcher Wahrscheinlichkeit ein Instanton mitRadius � anzutre�en ist, wird der folgende Ausdruck ausgewertet:��K(V; �) = Z da1��1(V; ~A1) (1.121)= KCK R QKj=1 dajQKj=2 d�jQKj=1 �����1j �(fajg; f�jg)ZdK(V )= KCK R QKj=1 dajQK�1j=1 d�jQKj=1 �����1j �(fajg; f�jg)ZdK(V )= KZredK (V; �)ZK(V ) (1.122)



26 Instantonenmit ZredK (V; �) = CKK! Z KYj=1 daj K�1Yj=1 d�j KYj=1 �����1j �(fajg; f�jg); (1.123)wobei der �Ubersichtlichkeit wegen �K = � gesetzt wurde. Insgesamt ist ��K aufdie Teilchenzahl K normiert. ��K ist keine normierte Wahrscheinlichkeitsdichte im�ublichen Sinn, denn es wird nicht nach der Wahrscheinlichkeit gefragt bei einerStichprobe ein Instanton mit Radius � auszuw�ahlen. Vielmehr wird die gesamteKon�guration betrachtet und nach der Summe der K Wahrscheinlichkeiten gefragt,da� in diesem System das K-te Instanton den Radius � besitzt.Dies entspricht experimentell der Aufnahme eines Histogramms. Der Bereich derm�oglichen Radien wird entsprechend einer vorgegebenen Au
�osung diskretisiert. F�ureine gegebene Kon�guration von K Instantonen mit Radien �1; :::; �K liefert jederdieser Werte einen Beitrag zum Histogramm. Somit tr�agt eine Kon�guration aus KInstantonen mit einem relativen GewichtK zum Histogrammbei. Dieser Faktor wirdwichtig, wenn das gro�kanonische Ensemble betrachtet wird, bei dem K variabel ist.1.4.2 Die Verteilung im gro�kanonischen EnsembleWird nun ausgehend vom kanonischen Fall eine Variation der Teilchenzahl zugelas-sen, so werden Kon�gurationen mit Teilchenzahl K entsprechend der Wahrschein-lichkeit ihres Auftretens bei der Aufnahme eines Histogramms ber�ucksichtigt. Da dieWahrscheinlichkeit, in einem o�enen System K Instantonen anzutre�en, gegeben istdurch PK(V ) = ZK(V )Z(V ) ; (1.124)folgt ��n( ~A1; ::: ~An) = XK�nPK(V )��nK( ~A1; :::; ~An)= 1Z(V ) XK�nZK(V )��nK( ~A1; :::; ~An): (1.125)Entsprechend wird o�enbar die Wahrscheinlichkeit, ein Instanton mit Radius � beider Erfassung eines gro�kanonischen Ensembles zu �nden, durch folgenden Erwar-tungswert beschrieben ��(V; �) = 1XK=1PK(V )��K(V; �) (1.126)= 1Z(V ) 1XK=1KZredK (V; �); (1.127)



1.4 Die Verteilung der Instantonradien 27wobei �� aufgrund der gew�ahlten Betrachtungsweise auf den Erwartungswert derInstantonzahl normiert ist Z 10 ��(V; �)d� = hKiV ; (1.128)welcher linear mit V w�achst. Die Wahrscheinlichkeitsdichte �� ist also durch dasbetrachtete Volumen V zu dividieren, womit sich der gew�unschte Ausdruck f�ur dieVerteilung der Instantonradien in einem gro�kanonischen Ensemble ergibt:�(V; �) = ��(V; �)V= 1Z(V )V 1XK=1KZredK (V; �) (1.129)In den folgenden Kapiteln wird die Wahrscheinlichkeitsverteilung � sowohl mit Hil-fe von analytischen als auch numerischen Ans�atzen untersucht werden. In einemersten Schritt wird nun der eindimensionale Fall betrachtet, der sich im thermody-namischen Limes noch analytisch exakt behandeln l�a�t.Um Abh�angigkeiten klar zu machen, soll dabei im folgenden der Ausdruck f�ur dieFunktionswerte �(V; �) weiter gefa�t werden und ggf. die Funktion � selbst bezeich-nen.



Kapitel 2Das eindimensionaleInstanton-GasZiel dieses Kapitels ist es, Aussagen �uber die Verteilung der Instantonradien in einemeindimensionalen Gas zu machen, wie es allgemein in Abschnitt 1.3 eingef�uhrt wurde.Die K-Instantonbeitr�age zur Zustandssumme nehmen in diesem Fall die FormZK(L) = CKK! Z KYj=1 dajd�j KYj=1 ���2j �(fajg; f�jg) (2.1)
�(fajg; f�jg) = 8>>><>>>: 1 1: jaj � aij > � �2� (�j + �i) 8i; j2: jajj < 12L 8j3: 0 < �j < L� 8j0 sonstan, wobei die Beobachtungsl�ange hier mit L bezeichnet wird, w�ahrend das Volumender Einheitskugel in einer Dimension gerade 2 ist.In einem ersten Schritt werden nun die Integrationen im kanonischen K-Instanton-Ensemble durchgef�uhrt und deren Resultate im gro�kanonischen Formalismus ent-sprechend Kapitel 1.4 zur Verteilung �(L; �) aufsummiert. Danach wird ein im ther-modynamischen Limes exakter Ausdruck �(�) f�ur die so gewonnene Verteilung er-arbeitet.2.1 Die Verteilung der InstantonradienBei der Auswertung der Integrale in Formel (2.1) zur Bestimmung der Verteilung�(L; �) hilft die Anschauung einer gewichteten Integration �uber die Kon�gurationenvon K St�aben an den Orten fajg mit L�angen f��jg. Die Randbedingungen gebenvor, da� sich diese St�abe weder gegenseitig �uberlappen d�urfen, noch ein Austretenaus dem Bereich der L�ange L m�oglich ist.



2.1 Die Verteilung der Instantonradien 29
a1��1 a2��2 a3��3 a4��4Abbildung 2.1: Eindimensionales Instantongas, K = 4

In Abbildung 2.1 ist dies exemplarisch f�ur den Fall K = 4 dargestellt. Insbesondereliegt dort bereits ein geordnetes Tupel vor, wie es bei der Auswertung der Integraleherangezogen werden wird. Im weiteren werden folgende Schreibweisen verwendet:� = �� 2 (2.2)IK(L) = 1K! Z KYj=1 dajd�j KYj=1 ��j�(fajg; f�jg) (2.3)�IK(L) = 1K! Z KYj=1 daj�(fajg; f�jg): (2.4)Integration �uber die InstantonpositionenDie Berechnung von �IK(L) liefert die Integration �uber die Positionen der Instanto-nen: �IK(L) = Z L� �2 �Ku(K�1) daK Z aK� �2�K� �2 �K�1u(K�2) daK�1 ::: Z a2� �2 �2� �2�1�2 �1 da1 (2.5)u(i) = � iXj=1 �j + �2�i+1:Auf der rechten Seite der obigen Gleichung wird bereits ein angeordnetes Ensemblevon Instantonen betrachtet, so da� der kombinatorische Faktor 1K! , der ihre Ununter-scheidbarkeit ausdr�uckt, entf�allt. Induktiv wird der Wert dieses Integrales ermitteltzu (vgl. Anhang A) �IK(L) = 1K! (L� � KXj=1 �j)K : (2.6)Dies liefert also anschaulich das freie Volumen f�ur K ununterscheidbare St�abe aufeiner Strecke der L�ange L. Auszuf�uhren bleibt die



30 Das eindimensionale Instanton-GasIntegration �uber die Instantonradien:IK(L) = 1K! Z 10 KYj=1 d�j KYj=1 ��j ��(f�jg)(L� � KXj=1 �j)K (2.7)��(f�jg) = ( 1 �PKj=1 �j � L0 sonst: (2.8)Dies kann einfacher geschrieben werden:IK(L) = 1K! Z L�0 d�K::: Z L� �PKj=2 �j0 d�1 KYj=1 ��j (L� � KXj=1 �j)K: (2.9)O�ensichtlich kann dieser Ausdruck nur f�ur � > �1 konvergieren. F�ur � 2 N0 kanndies sukzessive durch partielle Integration mit dem ErgebnisIK(L) = (�!)K((� + 2)K)! 1� (�+1)K L(�+2)K � 2 N0 (2.10)ausgewertet werden. Um das Integral f�ur beliebige reelle Exponenten � > �1 zubestimmen, ist die Formel [18]Z 10 xa(1� x)bdx = �(a+ 1)�(b+ 1)�(a+ b + 2) (2.11)von Nutzen und liefert die Erweiterung der obigen Beziehung (� 2 R, � > �1, vgl.Anhang A) IK(L) = �(�+ 1)K�((� + 2)K + 1) 1� (�+1)K L(�+2)K : (2.12)W�ahrend nun ZK(L) = CKIK(L); (2.13)ist auch ZredK (L; �) mit ZredK (L; �) = CKIredK (L; �) (2.14)von Interesse, was gegen�uber den Gr�o�en ZK und IK dem Auslassen einer �-Integrationentspricht. Die Rechnung ergibt hier (� 2 R, � > �1, vgl. Anhang A)IredK (L; �) = (�(�+ 1))(K�1)�((�+ 2)(K � 1) + 2) 1� (�+1)(K�1)��(L� ��)(�+2)(K�1)+1: (2.15)



2.2 Der thermodynamische Limes 31Die Verteilung �(L; �)Zu betrachten ist nun �(L; �) = 1Z(L)L 1XK=1KZredK (L; �) (2.16)Z(L) = 1XK=0ZK(L); (2.17)wobei Z0(L) = 1 in �Ubereinstimmung mit (2.12), so da� �(L; �) die Form�(L; �) = 1LP1K=1KCKIredK (L; �)P1K=0CKIK(L) (2.18)annimmt und sich mit der Ersetzung
 = C�(� + 1)��+1 (2.19)darstellt als�(L; �) = P1K=1KC
K�1 1�((�+2)(K�1)+2)��(L� ��)(�+2)(K�1)+1P1K=0 
K 1�((�+2)K+1)L(�+2)K+1 (2.20)(� 2 R, � > �1).2.2 Der thermodynamische LimesDie im vorangegangenen Abschnitt hergeleitete Formel (2.20) ist in dieser Formexakt, jedoch k�onnen ihr nicht ohne weiteres Informationen �uber die Verteilung derInstantonradien entnommen werden. Nur Aussagen �uber das Verhalten von �(L; �)f�ur kleine Werte von � sind direkt zu gewinnen. Hier verschwindet die Verteilungnach einem Potenzgesetz, d.h.�(L; �) �!0� const:�� (2.21)� = lim�!0 ln(�(L; �))ln(�) : (2.22)Um dies zu sehen, wird der Ausdruck (L� ��)(�+2)(K�1)+1 im Z�ahler von �(L; �) ineine Taylorreihe um � = 0 entwickelt. Dies bringt das Ergebnis�(L; �) = c0(L)�� � c1(L)��+1 + c2(L)��+2 � ::: ci 2 R+ ; (2.23)



32 Das eindimensionale Instanton-Gasund schlie�lichlim�!0 ln(�(L; �))ln(�) = lim�!0 ln(��(c0 � c1�+ c2�2 � :::))ln(�)= lim�!0 � ln(�) + ln(c0 � c1�+ c2�2 � :::)ln(�)= �:� verschwindet also f�ur kleine � gerade mit der Potenz, mit der die �-Faktoren in(2.1) auftreten. Dies ist unabh�angig von der Gr�o�e L.Interessanter f�ur die Anwendung ist jedoch das Verhalten der Wahrscheinlichkeits-dichte f�ur gro�e Instantonradien. Aufgrund der Normierung sollte sie nach Errei-chen eines bzw. mehrerer Maxima wieder abfallen. Zu fragen ist, in welcher Formdie Verteilung dort verschwindet. Bei numerischer Auswertung des Ausdrucks f�ur�(L; �) wird deutlich, da� die Orte der Maxima der Verteilung schnell, nach gewis-sen Einschwingprozessen f�ur gr�o�ere Exponenten �, mit wachsendem L gegen einenendlichen Wert streben. In Abbildung 2.2 wird deutlich, da� sich der Ort des Ma-ximums f�ur den Fall, � = 1; � = 2; C = 1, im thermodynamischen Limes, d.h. f�urgro�e L, gegen einen Wert von etwa 0.79 bewegt.
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0 50 100 150 200 250 300LAbbildung 2.2: Ort des globalen Maximums der Verteilung �(L; �) f�ur � = 1,� = 2, C = 1 in Abh�angigkeit von LEs besteht Anla� zu der Vermutung, da� die Verteilung selbst im thermodynami-schen Limes gegen eine Grenzverteilung konvergiert, d.h.�(L; �) L!1�! �(�); (2.24)



2.2 Der thermodynamische Limes 33so da� zu untersuchen ist, wie sich der Ausdruck (2.20) f�ur gro�e L verh�alt. Hierzuwird die folgende N�aherungsformel f�ur die �-Funktion herangezogen�(x + 1) � p2�(x+ 12 + �)x+ 12 e�(x+ 12+�); (2.25)wobei � von der Gr�o�enordnung eins ist. Die Wahl von � ist im Falle gro�er Wertevon x bzw. im thermodynamischen Limes der zu betrachtenden Gr�o�en irrelevant.So wird hier � = 0 gesetzt, um die Rechnungen m�oglichst einfach zu gestalten.Durch Einsetzen von (2.25) und Ann�aherung der Summen durch Integrale folgt(� = � + 2 = �)�(L; �) � C R10 dk(k + 1)
k(�k + 32)�(�k+ 32 )e�k+1��(L� ��)�k+1R10 
k(�k + 12)�(�k+ 12 )e�kL�k+1 : (2.26)Bei der Betrachtung des Verhaltens der Integranden im Z�ahler und Nenner desobigen Ausdrucks wird deutlich, da� beide f�ur hinreichend gro�e Werte von L einsehr ausgepr�agtes Maximum besitzen. So erscheint eine Sattelpunktsentwicklung indiesen Punkten sinnvoll.1. Sattelpunktsentwicklung des NennersD(L) = L Z 10 dke�(�k+ 12 ) ln(�k+ 12 )+�k(1+ln(
 1� L)) (2.27)Mit den Methoden der Analysis wird der Ort des Maximums bestimmt zukmax = 1� (
 1�L� 12); (2.28)so da� nun die Entwicklung des Exponenten um diesen Punkt liefert:D(L) � Le(
 1� L� 12 ) �
 1�L�� 12 Z 10 dke� �22
 1� L (k�kmax)2 : (2.29)Mit der Substitution � = k � kmax und unter Ber�ucksichtigung von�22
 1�L > 0kmax � 0ergibt sich das Gau�-IntegralD(L) � Le(
 1� L� 12 ) �
 1�L�� 12 Z 1�1 d�e� �22
 1� L �2 (2.30)= Le(
 1� L� 12 ) �
 1�L�� 12 p2� 
 1�L�2 ! 12 : (2.31)



34 Das eindimensionale Instanton-GasAlso: D(L) � p2�� Le(
 1� L� 12 ): (2.32)2. Sattelpunktsentwicklung des Z�ahlersMit der abk�urzenden Schreibweise ~L = L� �� nimmt der Z�ahler die GestaltN(~L; �) = e~LC�� Z 10 dke�(�k+ 32 ) ln(�k+ 32 )+�k(1+ln(
 1� ~L))+ln(k+1) (2.33)an. Die Bestimmungsgleichung f�ur den Ort des Maximums ist gegeben durch� ln(�kmax + 32)� 1kmax + 1 = � ln(
 1� ~L); (2.34)und mit der Absch�atzung f�ur gro�e ~L� ln(�kmax + 32)� 1kmax + 1wird sie n�aherungsweise gel�ost durchkmax � 1� �
 1� ~L� 32� : (2.35)Analog zur Behandlung des Nenners wird auch hier der Exponent im Inte-granden entwickelt (� = k � kmax):N(~L; �) � e~LC� ��e�
 1� ~L� 32� �
 1� ~L�� 32 �
 1� ~L� 32 + ��Z 1�kmaxd�e��22 �2�2 :(2.36)Da nun kmax � 0�2 = 1
 1� ~L + 1(
 1� ~L� 32 + �)2 > 0;l�a�t sich der obige Ausdruck als Gau�-Integral auswerten.N(~L; �)� ~LCp2��2 ��e(
 1� ~L� 12 )(
 1� ~L)� 32 (
 1� ~L� 32 + �) 1
 1� ~L + 1(
 1� ~L� 32 + �)2!� 12= ~LCp2��2 ��e(
 1� ~L� 12 )(
 1� ~L)�1(
 1� ~L� 32 + �) 1 + 
 1� ~L(
 1� ~L� 32 + �)2!� 12= Cp2��2 ��e(
 1� ~L� 12 )
� 1� (
 1� ~L� 32 + �) 1 + 
 1� ~L(
 1� ~L� 32 + �)2!� 12 :



2.2 Der thermodynamische Limes 353. Die Verteilung �(�)Zusammengetragen ergeben die Resultate der obigen Rechnungen�(L; �) � C� ��e(
 1� ~L� 12 )
� 1� (
 1� ~L� 32 + �)�1 + 
 1� ~L(
 1� ~L� 32+�)2�� 12Le(
 1� L� 12 )= C� ��e�
 1� ��
 1� ~L� 32 + �
 1�L  1 + 
 1� ~L(
 1� ~L� 32 + �)2!� 12 : (2.37)Mit ~L = L� �� folgt im thermodynamischen LimeslimL;~L!1 
 1� ~L� 32 + �
 1�L = 1 (2.38)lim~L!1 1 + 
 1� ~L(
 1� ~L� 32 + �)2!� 12 = 1; (2.39)womit ein Ausdruck gewonnen ist, gegen den die Verteilung (2.20) f�ur gro�eL konvergiert: �(�) = C� ��e�
 1� ��: (2.40)Mit den Ersetzungen � = �+ 2
 = C�(�+ 1)��+1l�a�t sich die Grenzverteilung auch in folgender einfacher Weise darstellen:�(�) = C� + 2��e�(C�(�+1)�) 1�+2 � (2.41)Um eine Aussage �uber die Qualit�at der Formel (2.41) machen zu k�onnen, wird siein den Abbildungen 2.3 und 2.4 mit den numerisch aus (2.20) gewonnenen Datenf�ur �(2500; �) mit � = 1 und � = 10 verglichen (� = 2; C = 1). Dabei wird deutlich,da� �(�; 2500) in dieser Darstellung bereits nicht mehr von der jeweiligen Verteilung�(�) zu unterscheiden ist.
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�Abbildung 2.3: �(2500; �) aus numerischer Aufsummation sowie Grenzverteilung�(�) f�ur � = 1, � = 2, C = 1
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�Abbildung 2.4: �(2500; �) aus numerischer Aufsummation sowie Grenzverteilung�(�) f�ur � = 10, � = 2, C = 1Es ist in diesem Zusammenhang weiterhin interessant, das Konvergenzverhalten, d.h.die Abweichungen der Verteilungen bei unterschiedlichen Werten von L untereinan-der und zur Grenzverteilung, zu untersuchen. Entsprechend sind die Di�erenzen derVerteilungen �(L; �) f�ur L=500, 1000, 1500, 2000, 2500 und � = 1; 10 zur jeweiligenVerteilung im thermodynamischen Limes in den Abbildungen 2.5 und 2.6 aufgetra-gen. Dort wird deutlich, in welcher Form die Ann�aherung an die Grenzverteilungtats�achlich erfolgt.
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�Abbildung 2.5: �(L; �)� �(�), L=500, 1000, 1500, 2000, 2500, �(L; �) aus nume-rischer Aufsummation, �(�) aus Formel (2.41), � = 1; � = 2; C = 1
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�Abbildung 2.6: �(L; �)� �(�), L=500, 1000, 1500, 2000, 2500, �(L; �) aus nume-rischer Aufsummation, �(�) aus Formel (2.41), � = 10; � = 2; C = 1Da die Verteilung der Instantonradien in einem beliebig gro�en Volumen von In-teresse ist, kann im folgenden auf die einfache Formel (2.41) f�ur � zur�uckgegri�enwerden. Wichtig ist in diesem Zusammenhang zu wissen, da� die Grenzverteilungnach potenzartigem Wachstum bei kleinen Argumenten schlie�lich f�ur gro�e � ex-ponentiell verschwindet.Abschlie�end soll �(�) noch einmal in einer Form dargestellt werden, die auf die



38 Das eindimensionale Instanton-Gasurspr�ungliche Variable � sowie die Raum-Zeit-Dimension � zur�uckgeht, um die For-mel (2.41) sp�ater besser in den allgemeinen Fall beliebiger Dimension einbetten zuk�onnen. Mit der Beobachtung � = �� � � 1� + 2 �=1= � = �� = �ergibt sich �(�) = C� ���2e�(C�(��1)�) 1� ��=1= C�� �����1e�(C�(���1)�) �� �� : (2.42)



Kapitel 3Monte-Carlo-SimulationenNachdem bereits ein Eindruck von dem Verhalten eines Instanton-Gases in einerDimension gewonnen werden konnte, soll dieses nun in beliebiger Dimension mitHilfe von Monte-Carlo-Simulationen ausgeweitet werden. Nach einigen allgemeinenAusf�uhrungen zu dieser Methode wird ein geeigneter Algorithmus zur Behandlungeines gro�kanonischen Systems abgeleitet. Schlie�lich geben die ersten Ergebnisse derSimulation den Rahmen vor, in dem sich darauf folgende analytische N�aherungenbewegen k�onnen.3.1 Der Metropolis-AlgorithmusDer Metropolis-Algorithmus stellt einen speziellen Ansatz unter verschiedenenMonte-Carlo-Methoden dar und wurde zuerst von Metropolis et.al. [19] in denf�unfziger Jahren zur Untersuchung des statistischen Verhaltens von Gasen und Fl�ussig-keiten entwickelt.Ein zentrales Problem, mit dem man in der statistischen Physik konfrontiert wird, istdie Bestimmung von Mittelwerten in einem hochdimensionalen Kon�gurationsraum.Die entscheidende Idee hierbei ist, bei der Erfassung dieses Raumes bevorzugt solcheBereiche zu ber�ucksichtigen, die ein gro�es statistisches Gewicht tragen, so da� dasProblem �uberhaupt erst behandelbar wird. Durch dieses sogenannte "ImportanceSampling\ k�onnen erhebliche Fehler durch mangelhafte Beachtung gro�er Beitr�ageim Mittelungsprozess vermieden werden, die nur durch unrealisierbar lange Rechen-zeiten behoben werden k�onnten. Die interessierenden Kon�gurationen k�onnen nunstatisch entsprechend ihrem statistischen Gewicht generiert werden. Da die zugrun-deliegende Verteilung jedoch i.a. nicht bekannt ist, wird sie dynamisch als Gleichge-wichtsverteilung eines stochastischen Prozesses generiert.Hier sollen nun die wesentlichen Begri�e eingef�uhrt werden, sowie zentrale Ideenskizziert werden. Umfassendere Literatur zu diesem Thema �ndet sich unter [20],[21], [22], [23], [24].



40 Monte-Carlo-SimulationenIm folgenden werden Markov-Ketten mit einer �Ubergangsmatrix W (X; Y ) betrach-tet, die die �Ubergangswahrscheinlichkeiten pro Zeiteinheit angibt, mit der ein Sy-stem, das sich im Zustand X be�ndet, in den Zustand Y wechselt. Dabei gibt P (X)die Wahrscheinlichkeit an, das System im Zustand X anzutre�en. Die VerteilungPt+1(X) im Iterationschritt t+1 wird aus der Verteilung Pt(X) durch die OperationPt+1(X) =XY W (Y;X)Pt(Y ) (3.1)gewonnen. Es sollen nun verschiedene Anforderungen an die �Ubergangsmatrix ge-stellt werden:1. Normierung: Es existiert genau eine Nachfolgekon�guration,XY W (X; Y ) = 1: (3.2)2. Ergodizit�at: Jede Kon�guration kann erreicht werden,8X; Y 9n � 1 W n(X; Y ) > 0: (3.3)(W n(X; Y ) bezeichne die Matrixelemente der Matrix W n.)3. Stationarit�at: Es gibt eine station�are Verteilung (Gleichgewichtsverteilung)P f�ur die durch W (X; Y ) bestimmte Markov-Kette,XX W (X; Y )P (X) = P (Y ): (3.4)Die Bedingung f�ur Stationarit�at leitet sich direkt aus der Master-Gleichung ab, diein di�erentieller Form die GestaltdP (X; t)dt =XY �W (X; Y )P (X; t) +W (Y;X)P (Y; t) (3.5)hat. Eine hinreichende Bedingung ist durch die "detailed balance\ gegeben:W (Y;X)W (X; Y ) = P (X)P (Y ) : (3.6)Es l�a�t sich zeigen, da� unter diesen Voraussetzungen bei einer beliebigen Start-verteilung, d.h. einer Startkon�guration die nach dieser Verteilung generiert wurde,Konvergenz gegen eine station�are Grenzverteilung vorliegt. Diese ist dann eindeutigdurch P gegeben, d.h.limt!1 jjPt � P jj = limt!1XX jPt(X)� P (X)j = 0: (3.7)



3.2 Der Metropolis-Algorithmus im klassischengro�kanonischen Ensemble 41In der Praxis wird die �Ubergangsmatrix i.a. in zwei Teile zerlegt:!(X; Y ) Vorschlagswahrscheinlichkeit f�ur den �Ubergang von X nach YPY !(X; Y ) = 1aXY Annahmewahrscheinlichkeit f�ur den entsprechenden Vorschlag1� aXY Wahrscheinlichkeit f�ur Ablehnung,und es ergibt sich die DarstellungW (X; Y ) = !(X; Y )aXY X 6= Y (3.8)W (X;X) = !(X;X)aXX +XY !(X; Y )(1� aXY ) (3.9)= !(X;X) + XY 6=X !(X; Y )(1� aXY ): (3.10)Nun ist die Bedingung der Normierung damit direkt erf�ullt. Die Frage der Ergo-dizit�at ist im Kontext des konkreten Problems zu er�ortern. Um der Forderung der"detailed balance\ gerecht zu werden, wird aXY im allgemeinen nach einem Vorschlagvon Metropolis folgenderma�en bestimmt:aXY = min�1; !(Y;X)P (Y )!(X; Y )P (X)� : (3.11)Dies liefert auch einen praktikablen Startpunkt f�ur Monte-Carlo-Verfahren in derPhysik, da dort oft das Verh�altnis solcher Wahrscheinlichkeiten bekannt ist, w�ahrendaber die Normierungskonstante, also die Zustandssumme, unbekannt ist. Ob ein vor-geschlagener Schritt im Kon�gurationsraum zur Ausf�uhrung kommt, wird schlie�lichkonkret durch den Vergleich einer Zufallszahl aus dem Intervall von 0 bis 1 mit demQuotienten in der obigen Formel (3.11) entschieden.3.2 Der Metropolis-Algorithmus im klassischengro�kanonischen EnsembleBisher wurde bereits ein gro�kanonisches Ensemble von Instantonen untersucht, das(mit den �ublichen Bezeichnungen) folgender Verteilung gehorcht:PK(V ; a1; :::; aK; �1; :::; �K) = 1Z(V )CKK! KYj=1 ��j�(fajg; f�jg) (3.12)� = �� � � 1�(fajg; f�jg) = � 1 ?0 sonst



42 Monte-Carlo-Simulationen
? = 8>><>>: 1: kaj � aik > � �v1� 1� (�j + �i) 8i; j2: ja�j j < 12V 1� � = 1; :::; � 8j3: 0 < �j < 12 �v1� V � 1� 8j:PK(V ; fag; f�g) ist Wahrscheinlichkeitsdichte auf1XK=0�V � 12 �v1� V � 1��K :�Uberg�ange zwischen Kon�gurationen werden zum einen durch Bewegung in denKoordinaten fajg; f�jg induziert, wie es aus dem kanonischen Ensemble bekanntist, zum anderen durch die Erzeugung und Vernichtung von Instantonen bzw. In-stantonkoordinaten. Entsprechend den obigen Vorgaben sollen nun zun�achst dieVorschlagswahrscheinlichkeiten f�ur den �Ubergang in eine andere Kon�guration an-gegeben werden. Besondere Aufmerksamkeit gilt den Prozessen, bei denen die In-stantonzahl nicht erhalten ist, da diese aus kanonischen Algorithmen nicht bekanntsind (vgl. [25], [26], [27], [28], [29]).3.2.1 VorschlagswahrscheinlichkeitenDie Bezeichnung der Koordinatenerzeugung bzw. -vernichtung wird hier bewu�tgew�ahlt, da Instantonen als ununterscheidbare Objekte aufgefa�t werden, die sichin beliebiger Gr�o�e darstellen k�onnen. Die Angabe von Koordinaten entspricht einerPlatzreservierung f�ur ein Instanton, jedoch kann keine Aussage dar�uber gemachtwerden, welches Instanton sich dort be�ndet. Den bisherigen Konventionen folgendwerden also �Uberg�ange zwischen geordneten Koordinatentupeln zu untersuchen sein,wobei die in Kapitel 1.4 eingef�uhrte Kurzschreibweisef ~AjgK = ( ~A1; :::; ~AK) = ((a1; �1); :::; (aK; �K))benutzt werden soll. Au�erdem mu� festgelegt werden, welcher Verteilung die neugenerierten Koordinaten unterliegen sollen.pcr(a) Erzeugungswahrscheinlichkeit f�ur die Raum-Zeit-Koordinatenpcr(�) Erzeugungswahrscheinlichkeit f�ur die RadiuskoordinateI.a. wurde hierbei einfach eine Gleichverteilung im entsprechenden Volumen gew�ahlt:pcr(a) = 1V (3.13)pcr(�) = 2�v1� V � 1� : (3.14)Nun sollen die Vorschl�age zur Instantonbewegung und zur Koordinatenerzeugungund -vernichtung mit gleicher Wahrscheinlichkeit erfolgen, so da� die entsprechendenVerteilungen jeweils einen Faktor 13 enthalten.



3.2 Der Metropolis-Algorithmus im klassischengro�kanonischen Ensemble 43Koordinatenerzeugung K ! K + 1Ausgehend von einem geordneten K-Tupel f ~AjgK sollen Vorschlagswahrscheinlich-keiten f�ur den �Ubergang in ein geordnetes (K + 1)-Tupel f ~A0jgK+1, das die altenKoordinaten f ~AjgK enth�alt, angegeben werden. Das einfachste Vorgehen ist durchdas Vorschlagen aller m�oglichen Zielkon�gurationen mit gleicher Wahrscheinlichkeitgegeben. Unter Ber�ucksichtigung, da� es (K + 1) M�oglickkeiten gibt, die Positi-on der neuen Koordinaten im Tupel anzugeben (nicht die Koordinaten selbst!), undnoch einmalK! unterschiedliche Anordnungen der bisherigen Koordinaten auftretenk�onnen, ergibt sich der folgende Ausdruck f�ur die Vorschlagswahrscheinlichkeit:!(K; f ~AjgK; K + 1; f ~A0jgK+1) = 13pcr(a0j)pcr(�0j) 1(K + 1)! �K+1Xj=1 X�2SK�( ~A�(1)� ~A01):::�( ~A�(j�1)� ~A0j�1)�( ~A�(j)� ~A0j+1):::�( ~A�(K)� ~A0K+1):(3.15)Also mit den kanonischen Verteilungen pcr f�ur die Koordinatengenerierung:!(K; f ~AjgK; K + 1; f ~A0jgK+1) = 13 1(K + 1)! 2V �v1� V � 1� �K+1Xj=1 X�2SK�( ~A�(1)� ~A01):::�( ~A�(j�1)� ~A0j�1)�( ~A�(j)� ~A0j+1):::�( ~A�(K)� ~A0K+1):(3.16)In diesem Zusammenhang ist die Beobachtung wichtig, da� neben den kombinatori-schen Faktoren auch Volumenfaktoren in der Vorschlagswahrscheinlichkeit enthaltensind, deren konkrete Form von der jeweiligen Wahl von pcr abh�angt. Diese Faktorenwerden bei der Koordinatenvernichtung nicht auftreten.Koordinatenvernichtung K ! K � 1Analog werden schlie�lich die Vorschlagswahrscheinlichkeiten f�ur Prozesse, die dieInstantonzahl reduzieren, formuliert. Zu betrachten ist ein �Ubergang aus einem ge-ordeneten K-Tupel f ~AjgK in ein entsprechendes (K�1)-Tupel f ~A0jgK�1, wobei wieoben alle aus einer Ausgangskon�guration erreichbaren Zust�ande mit gleicher Wahr-scheinlichkeit vorgeschlagen werden sollen. Wird ber�ucksichtigt, da� K M�oglichkei-ten existieren, eine Position zur Vernichtung auszuw�ahlen und da� weiterhin (K�1)!Anordnungen f�ur die verbleibenden Positionen zur Auswahl stehen, so ergibt sichfolgende Verteilung:!(K; f ~AjgK; K � 1; f ~A0jgK�1) = 13 1K! �KXj=1 X�2SK�( ~A1� ~A0�(1)):::�( ~Aj�1� ~A0�(j�1))�( ~Aj+1� ~A0�(j)):::�( ~AK� ~A0�(K�1)): (3.17)



44 Monte-Carlo-SimulationenO�enbar enth�alt diese Vorschlagsdichte keine Volumenfaktoren. Sofern Annahme-wahrscheinlichkeiten aus kanonischen Algorithmen bekannt sind, werden im folgen-den Modi�kationen an dieser Stelle au��allig sein. Von Bedeutung f�ur die konkreteRealisierung des Algorithmus ist, da� die Instantonwechselwirkung im Gegensatzzum Fall der Koordinatengenerierung unterscheiden kann, an welcher Position dieVernichtung stattgefunden hat.KoordinatenbewegungDie Teilchenbewegung soll mit gleicher Wahrscheinlichkeit an beliebiger Positionim K-Tupel vorgeschlagen werden. Hierbei mu� darauf geachtet werden, da� der�Ubergang von den aktuellen zu den neuen Koordinaten mit gleicher Wahrschein-lichkeit angeregt wird wie der umgekehrte Vorgang, um diesen Schritt nicht mehrzur Erf�ullung der "detailed balance\ heranziehen zu m�ussen. So w�ahlt man i.a.als die einfachste Variante gleichverteilte Koordinatenvorschl�age in einem Volumen[��a; �a]� � [���; ��] symmetrisch um die Ausgangskoordinaten.3.2.2 AnnahmewahrscheinlichkeitenAn dieser Stelle wird die vonMetropolis vorgeschlagene Formel f�ur die Annahme-wahrscheinlichkeiten hinzugezogen, die die Bedingung der "detailed balance\ unterden bisherigen Voraussetzungen in jedem Fall erf�ullt:aXY = min�1; !(Y;X)P (Y )!(X; Y )P (X)� : (3.18)Mit den �Uberlegungen des obigen Abschnitts k�onnen die Annahmewahrscheinlich-keiten aXY f�ur die einzelnen F�alle direkt angegeben werden, wobei X und Y alsKurzschreibweisen f�ur Kon�gurationen der Form f ~AjgKaufzufassen sind. Der IndexK an der Verteilung P wird nur aus Gr�unden der �Ubersichtlichkeit im folgendenunterdr�uckt. Ins Ged�achtnis seien auch noch einmal die Bedingungen gerufen, diei.a. mit "?\ zusammengefa�t werden:
? = 8>><>>: 1: kaj � aik > � �v1� 1� (�j + �i) 8i; j2: ja�j j < 12V 1� � = 1; :::; � 8j3: 0 < �j < 12 �v1� V � 1� 8j:



3.2 Der Metropolis-Algorithmus im klassischengro�kanonischen Ensemble 45Koordinatenerzeugung K ! K + 1aXY = min�1; 1pcr(a)pcr(�) P (Y )P (X)�= min 1; V (v1� V ) 1�2 P (Y )P (X)! (3.19)Im Algorithmus wird dies durch den Vergleich mit einer Zufallszahl x aus ]0,1[ rea-lisiert, und mit der Konvention, die neuen Koordinaten als gestrichen darzustellen,folgt X ! 8<: Y; CV ( v1� V ) 1�2(K+1) �0� � x und ? erf�ulltX; CV ( v1� V ) 1�2(K+1) �0� < x oder ? nicht erf�ullt:Insbesondere wird deutlich, wie mit zunehmender Teilchenzahldichte die Koordina-tengenerierung unwahrscheinlicher wird.Koordinatenvernichtung K ! K � 1aXY = min�1; pcr(a)pcr(�)P (Y )P (X)�= min 1; 2V (v1� V ) 1� P (Y )P (X)! (3.20)F�ur Teilchenvernichtung an Position j ergibt sich analogX ! 8<: Y; 2KCV ( v1� V ) 1� 1��j � xX; 2KCV ( v1� V ) 1� 1��j < x:Insbesondere ist "?\ in jedem Fall erf�ullt.KoordinatenbewegungDa die Vorschlagswahrscheinlichkeiten f�ur die Koordinatenbewegung symmetrischgew�ahlt wurden, d.h. !(X; Y ) = !(Y;X); (3.21)vereinfacht sich der Ausdruck f�ur die Annahmeverteilung zuaXY = min�1; P (Y )P (X)� (3.22)und die Bewegung an der Stelle j unterliegt den BedingungenX ! 8<: Y; ��0j�j �� � x und ? erf�ulltX; ��0j�j�� < x oder ? nicht erf�ullt:



46 Monte-Carlo-Simulationen3.3 Umsetzung des AlgorithmusBei der konkreten Umsetzung des Algorithmus wird ausgenutzt, da� die Ordnungim Tupel nicht von der Instantonwechselwirkung erkannt wird; d.h. es m�ussen nicht�Uberg�ange in alle m�oglichen geordneten Tupel generiert werden. Vielmehr gen�ugtes, beim �Ubergang aus einer Kon�guration einen Repr�asentanten aus jeder der vonder Wechselwirkung unterschiedenen Klassen von Zielkon�gurationen zu w�ahlen, derbzgl. der Ausgangskon�guration eindeutig ist. Wichtig ist dabei, da� mit der Vor-schrift, nach der solch ein Repr�asentant ausgew�ahlt wird, jede Klasse erreicht wer-den kann, die auch durch direkten �Ubergang zwischen den Kon�gurationen m�oglichw�are. In der Simulation wird dieses Konzept durch die Klasse con�g umgesetzt,die die aktuelle Kon�guration enth�alt und dar�uber hinaus die Methoden create,destroy und move bereitstellt, die in jedem Simulationsschritt jeweils mit gleicherWahrscheinlichkeit aufgerufen werden.� createDie Methode create schl�agt die Erzeugung eines Instantons mit zuf�allig im vor-liegenden Volumen generierten Koordinaten an fester Stelle im entsprechendenK-Tupel von Instantonen vor. Die Position, an der die Instantonkoordinatenerzeugt werden, ist von der Wechselwirkung nicht erkennbar. Also ist die Ziel-klasse eindeutig, so da� diese Repr�asentantenwahl gerechtfertigt ist. In einemn�achsten Schritt wird dann die Annahme des Vorschlags nach den bisher er-arbeiteten Kriterien �uberpr�uft und entsprechend verfahren.� destroyW�ahrend die Koordinatenerzeugung an fester Stelle im Tupel erfolgt, schl�agtdie Methode destroy die Vernichtung von Instantonkoordinaten an zuf�alligerPosition im Tupel vor. Dies ist von Bedeutung, da die Wechselwirkung un-terscheiden kann, an welcher Position die Methode destroy angreift, d.h. indiesem Fall gibt es gerade so viele von der Wechselwirkung unterschiedeneEndklassen wie Instantonen in der Ausgangskon�guration vorliegen. Als Re-pr�asentanten in den jeweiligen Klassen wurden schlie�lich die geordneten Tu-pel gew�ahlt, die die alte Durchnumerierung unter Auslassung der entstandenenL�ucke �ubernehmen. Abschlie�end wird die Annahme der Koordinatenvernich-tung entsprechend den obigen Vorgaben von der Methode destroy gepr�uft undggf. ausgef�uhrt.� moveAnalog schl�agt die Methode move eine Koordinatenbewegung an zuf�alligerStelle im Tupel vor und entscheidet ebenfalls �uber die Ausf�uhrung der Bewe-gung im aktuellen Simulationsschritt. Hierbei werden periodische Randbedin-gungen vorgegeben.



3.4 Erste Ergebnisse der Simulationen 47Die Verteilung der Instantonradien wird durch die Aufnahme eines Histogramms�uber die einzelnen Simulationsschritte ermittelt. Hierbei wurde als Startkon�gu-ration der Simulation ein leeres Volumen gew�ahlt, wobei die Messung an einemZeitpunkt beginnt, an dem die Instantonzahl in eine S�attigung �ubergeht.3.4 Erste Ergebnisse der SimulationenIn den Monte-Carlo-Simulationen wurden, sofern nicht anders angegeben, C und �folgenderma�en gew�ahlt:� = v1 = � �2�(�2 + 1) ; C = 1:Die Volumina wurden jeweils so eingestellt, da� der thermodynamische Limes zu-friedenstellend erreicht ist.3.4.1 Der eindimensionale FallZun�achst ist es sinnvoll, den analytischen Ausdruck f�ur die Verteilung der Instan-tonradien, der f�ur den eindimensionalen Fall im thermodynamischen Limes bekanntist, mit den Ergebnissen der Simulation zu vergleichen.
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�Abbildung 3.1: �(�) f�ur � = 1, � = 1 aus der theoretischen Betrachtung des Kapi-tels 2 im Vergleich mit den Ergebnissen der entsprechenden Monte-Carlo-Simulationmit V = L = 2000



48 Monte-Carlo-SimulationenIn Abbildung 3.1 sind nun sowohl die theoretische Kurve, entsprechend�(�) = C� + 2��e�(C�(�+1)�) 1�+2 �; (3.23)als auch das aus der Simulation erzeugte Histogramm dargestellt. Sie weisen einesehr gute �Ubereinstimmung auf.3.4.2 Der mehrdimensionale FallZu erwarten ist auch im Fall eines mehrdimensionalen Instanton-Gases aufgrundzum eindimensionalen Fall analoger �Uberlegungen, da� die Verteilung der Radienf�ur kleine Werte potenzartig verschwindet derart, da�:�(�) �!0� const. �� (3.24)� = �� � � 1 = lim�!0 ln(�(�))ln(�) : (3.25)Hierbei bleibt eine tiefere Rechtfertigung dieser Aussage dem folgenden Kapitel �uber-lassen, denn zun�achst soll der Blick auf die Ergebnisse der Monte-Carlo-Simulationengerichtet werden. In Abbildung 3.2 sind die Verteilungen der Instanonradien im ther-modynamischen Limes in zwei, drei und vier Raum-Zeit-Dimensionen aufgetragen.F�ur kleine Werte von � wird entsprechend der Parameterwahl � = 1 ein linearesAnwachsen der Kurven deutlich.
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�Abbildung 3.2: �(V; �) f�ur � = 1, � = 2; 3; 4, V = 1002; 203; 104 aus Monte-Carlo-SimulationenEbenso interessant ist die Frage nach dem Verschwinden der Dichtefunktion � f�urgro�e Instantonradien. Hierzu bietet sich eine logarithmische Auftragung an.
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�Abbildung 3.3: �(V; �) f�ur � = 1, � = 2; 3; 4, V = 1002; 203; 104 aus Monte-Carlo-Simulationen, logarithmische Auftragung
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�Abbildung 3.4: �(V;�)�� f�ur � = 1, � = 2; 3; 4, V = 1002; 203; 104 aus Monte-Carlo-Simulationen, logarithmische AuftragungIn Abbildung 3.3 ist zu erkennen, da� das Verhalten der Verteilung bei gro�en Ar-gumenten vertr�aglich ist mit einem Ansatz der Form�(�) �!1� exp(�fPol(�)); (3.26)wobei fPol(�) ein Polynom in � bezeichne. Es wird o�ensichtlich, da� dieWahrschein-lichkeit f�ur gro�e Instantonradien mit zunehmender Dimension deutlich abnimmt.



50 Monte-Carlo-SimulationenSchlie�lich ist zu vermuten, da� � wie im eindimensionalen Fall die Gestalt�(�) = const: �� exp(�fPol(�)) (3.27)hat. Betrachtet wird so auch die FunktionF (�) = �(�)�� ; (3.28)die in Abbildung 3.4 in logarithmischer Skala aufgetragen ist. Es ist zu erwarten,da� der Grad des Polynoms, das den Abfall der Verteilung bestimmt, mit der Raum-Zeit-Dimension zunimmt.



Kapitel 4Das allgemeine Instanton-GasIm vorangegangenen Kapitel wurde mit Hilfe von Monte-Carlo-Simulationen unter-sucht, welcher Verteilung die Radien von Instantonen in einem Gas von harten Ku-geln unterliegen. Wie im eindimensionalen Fall soll nun noch einmal das Augenmerkauf einen analytischen Zugang gerichtet werden, um den Interpretationsspielraumeinzuschr�anken, den die numerischen Ergebnisse lassen. Zur Absch�atzung der Qua-lit�at der anstehenden N�aherungen sollen aber auch die Resultate der Monte-Carlo-Simulationen hinzugezogen werden. Abschlie�end werden diese auf dem Hintergrundder analytischen N�aherungen diskutiert.Zun�achst wird es darum gehen, die Randverteilung �(V; �) der Wahrscheinlichkeits-dichte PK(V ; fag; f�g) auf 1XK=0�V � 12 �v1� V � 1��Kmit PK(V ; a1; :::; aK; �1; :::; �K) = 1Z CKK! KYj=1 ��j�(fajg; f�jg) (4.1)0 � � = �� � � 1�(fajg; f�jg) = � 1 ?0 sonst
? = 8>><>>: 1: kaj � aik > � �v1� 1� (�j + �i) 8i; j2: ja�j j < 12V 1� � = 1; :::; � 8j3: 0 < �j < 12 �v1� V � 1� 8j



52 Das allgemeine Instanton-Gaszu bestimmen. Die Verteilung der Radien ist damit gegeben durch (vgl. Abschnitt1.4, � = �K): �(V; �) = 1Z(V )V 1XK=1KZredK (V; �) (4.2)Z(V ) = 1XK=0ZK(V ) Z0(V ) = 1ZK(V ) = CKK! Z KYj=1 daj KYj=1 d�j KYj=1 ��j�(fajg; f�jg)ZredK (V; �) = CKK! Z KYj=1 daj K�1Yj=1 d�j KYj=1 ��j�(fajg; f�jg):Wie im eindimensionalen Fall besteht zun�achst die Aufgabe darin, die Raum-Zeit-sowie Radius-Integrationen im kanonischen Sytem, d.h. bei fester Instanonzahl K,auszuf�uhren.4.1 Integrationen im kanonischen EnsembleUm die interessierenden Integrale handhaben zu k�onnen, wird zun�achst eine Ent-kopplung der beiden Auswertungsschritte angestrebt, die durch die Radius- undPositionsintegration gegeben sind [14]. Dazu kann die kanonische ZustandssummeZK(V ) in der FormZK(V ) = CKK! Z �V0 dv Z KYj=1 daj KYj=1 d�j KYj=1 ��j�(fajg; f�jg)�(v � �Xj ��j ) (4.3)v = �Pj ��j � �V gesamtes e�ektives Volumen der Instantonen�V f�ur die Instantonen erreichbares Volumen, �V � Vgeschrieben werden. Im eindimensionalen Fall ist nat�urlich �V = V , d.h. die Instan-tonen k�onnen den Raum vollst�andig ausf�ullen, wohingegen dies bei Kugelpackungenin h�oheren Dimensionen nicht mehr der Fall ist. Die gew�unschte Entkopplung derIntegrationen wird schlie�lich erlangt mit der Beobachtung, da��(v � �Xj ��j ) KYj=1 ��jf�ur gro�e K, d.h. im thermodynamischen Limes, ein ausgepr�agtes Maximum bei�j = � vK� � 1� = �0 j 2 f1; :::; Kg (4.4)



4.1 Integrationen im kanonischen Ensemble 53besitzt, so da� eine Sattelpunktsn�aherung zu guten Ergebnissen f�uhren sollte. Nunwird das Produkt in den obigen Zustandssummen als Exponentialfunktion darge-stellt, deren Exponent um f�0gK bis zur Ordnung �2 entwickelt wird. Auf dieseWeise werden Gau�sche Integrale gewonnenZK(V ) � CKK! Z �V0 dv��K0 Z KYj=1 daj KYj=1 d�je� �2�20 PKj=1 �2j ��(fajg; f�jg)�(v � � KXj=1 ��j ) (4.5)�j = �j � �0:Bei der Auswertung von ZredK (V; �) wird analog vorgegangen. Da ein Probeinstantonmit beliebigem Radius � auftreten darf, steht den �ubrigen Instantonen nur noch einreduziertes Volumen vred = v � ��� (4.6)zur Verf�ugung, so da� die Gau�sche Entwicklung nun um den Punkt�j = � vred(K � 1)�� 1� = � v � ���(K � 1)�� 1� = �red0 j 2 f1; :::; K � 1g (4.7)erfolgt und mit �(v � � KXj=1 ��j ) = �(vred � � K�1Xj=1 ��j ); � = �Kergibt sichZredK (V; �) � CKK! �� Z �V0 dv�red0 �(K�1) Z KYj=1 daj K�1Yj=1 d�je� �2�red0 2 PK�1j=1 �2j ��(fajg; f�jg)�(vred � � K�1Xj=1 ��j ) (4.8)�j = �j � �red0 :W�ahrend also das Instanton, dessen Radius bestimmt werden soll, diesen beliebigim vorgegebenen Volumen v annehmen kann, stellen die �ubrigen Instantonen ihrenRadius derart ein, da� sie das verbleibende Volumen v � ��� durch ann�aherndgleichgro�e Kugeln au��ullen. Die Radiusverteilung im gro�kanonischen Ensembleentsteht nun in diesem Bild dadurch, da� die Kon�gurationen mit "unpassendem\Radius des Testinstantons dort unterdr�uckt sind.Ausgehend von (4.5) und (4.8) werden die folgenden Rechenschritte durchzuf�uhrensein:



54 Das allgemeine Instanton-Gas1. �-IntegrationDie Integration �uber die Instantonradien wird, wie oben skizziert, auf dieL�osung von Gau�schen Integralen zur�uckgef�uhrt.2. a-IntegrationBei der Integration �uber die Instanton-Positionen kann nur auf grobe Absch�atzun-gen zur�uckgegri�en werden. Hierbei wird insbesondere von einem Gas aus har-ten Kuglen mit Radius �0 ausgegangen. Die Varianz �0 in der obigen Gau�-schen N�aherung mu� dabei klein ist.3. v-IntegrationIn einem letzten Schritt wird die Integration �uber das gesamte e�ektive Volu-men v der Instantonen ausgef�uhrt. An dieser Stelle ist noch einmal zu bemer-ken, da� die obere Integrationsgrenze durch das f�ur die Instantonen erreichbareVolumen �V und nicht durch das Systemvolumen V gegeben ist.Um die Parallelen zu den Rechnungen im eindimesonalen Fall deutlicher zu machen,wird nun zun�achst das Integral �uber die Instantonpositionen behandelt.4.1.1 Die Integration �uber die InstantonpositionenEin exakter analytischer Ausdruck f�ur�IK(V ) = 1K! Z KYj=1 daj�(fajg; f�jg)� 1K! Z KYj=1 daj�(fajg; f�0g) (4.9)ist im Vergleich zum eindimensionalen Fall nicht allgemein zug�anglich. Jedoch istdas dort erhaltene Ergebnis f�ur verd�unnte Gase eine gute N�aherung [14], [30]:�IK(V ) � 1K! (V � v)K (4.10)v = K���0 :Diese Absch�atzung geht von der M�oglichkeit vollst�andiger Raumausf�ullung aus ( �V =V ), die bei Kugelpackungen f�ur � > 1 nat�urlich nicht gegeben ist, so da� Korrek-turen w�unschenswert sind. In systematischer Weise wird dies z.B. im Rahmen derVirialentwicklung bei der Herleitung der Zustandsgleichung des van-der-Waals-Gasesbetrieben. Zu demselben Ergebnis f�uhrt auch das folgende geometrische Argument[31]:1. veff sei das Volumen, das f�ur ein Instanton unzug�anglich ist.



4.1 Integrationen im kanonischen Ensemble 552. Beim Zusammentre�en zweier Instantonen gibt es ein Volumen, das dem einenInstanton wegen der Anwesenheit des anderen unzug�anglich ist. Dies ist eineKugel vom Radius 2�0. Schlie�lich gibt es12K(K � 1) � 12K2solcher Paare, d.h. f�ur das gesamte unzug�angliche Volumen folgt12K2�(2�0)� = 2��1K2���0 :3. Aus Gr�unden der Selbstkonsistenz ergibt sich aus den Punkten eins und zweiKveff = 2��1K2���0 :Also: veff = 2��1K���0 : (4.11)Dies liefert eine weitere Absch�atzung f�ur �IK(V )�IK(V ) � 1K! (V � veff )K� 1K! (V � 2��1K���0)K (4.12)= 1K! (V � 2��1v)K (4.13)und damit f�ur das erreichbare Volumen�V � 21��V: (4.14)Da in dieser N�aherung nur die Paarwechselwirkungen ber�ucksichtigt werden, f�uhrtdies zu einer Untersch�atzung des f�ur die Instantonen erreichbaren Volumens. F�ur� = 3 folgt hier z.B. eine maximale Raumausf�ullung von nur 25%. Mit dichtestenKugelpackungen k�onnen in diesem Fall jedoch Raumausf�ullungen von bis zu 74%erreicht werden [32]. Es w�are also naheliegend, die Ergebnisse durch die Ber�uck-sichtigung h�oherer n-Instanton-Wechselwirkungen zu verbessern. Dies f�uhrt jedochsowohl bei der Wahl eines Ansatzes �uber geometrische �Uberlegungen, wie oben hin-zugezogen, als auch bei der Fortf�uhrung der Virialentwicklung zu Ausdr�ucken, diein den folgenden Rechnungen nicht weiterf�uhren bzw. gar nicht erst anschaulich in-terpretiert werden k�onnen [16], [33].Immerhin bleibt festzuhalten, da� das Integral �uber die Instantonpositionen in derfolgenden Form gen�ahert werden kann�IK(V ) � 1K! (V � veff)K (4.15)veff = b(�)v (4.16)�V = b(�)�1V; (4.17)



56 Das allgemeine Instanton-Gaswobei b(�) ein Ma� daf�ur ist, inwieweit die Kugeln das vorgegebene Volumen V aus-zuf�ullen verm�ogen. Betrachtet man die konkreten Ans�atze, so wird im ersten Fallb(�) = 1 gew�ahlt, wohingegen im zweiten Fall b(�) = 2��1 ist. Dies f�uhrt sowohl zueiner �Ubersch�atzung als auch zu einer Untersch�atzung des erreichbaren Volumens�V . Eine einfache Verbesserung sollte schon durch die Betrachtung geeigneter Mit-telwerte f�ur b(�) erzielt werden. Eine m�ogliche Wahl stellt das geometrische Mitteldar: bg(�) = 2 ��12 : (4.18)Im weiteren soll jedoch b(�) als Parameter mitgef�uhrt werden, um sp�ater ausf�uhr-licher diskutiert bzw. an die Daten aus den Monte-Carlo-Simulationen angepa�t zuwerden.4.1.2 Die Integration �uber die InstantonradienBei der Auswertung des ersten der beiden IntegraleI 0K(V ) = Z KYj=1 d�je� �2�20 PKj=1 �2j �(v � � KXj=1 ��j ) (4.19)I 0redK (V ) = Z K�1Yj=1 d�je� �2�red0 2 PK�1j=1 �2j �(vred � � K�1Xj=1 ��j ) (4.20)wird unter Ausnutzung von�(v � � KXj=1 ��j ) � �(�� KXj=1 ����10 �j)= �1��0�� �( KXj=1 �j)= �1��02��� Z dq eiqPKj=1 �j (4.21)berechnet I 0K(V ) = �1��02��� Z dq Z KYj=1 d�jePKj=1� �2�20 �2j+iq�j= �K+1��02��� �2�� �K2 Z dqe�K�202� q2= 1�� 1pK �2�� �K�12 �K��0= 1�� 1pK �2�� �K�12 � vK� �K� �1 : (4.22)



4.1 Integrationen im kanonischen Ensemble 57Analog wird auch der Beitrag zur Randverteilung bestimmtI 0redK (V ) = 1�� 1pK � 1 �2�� �K�22 � vred(K � 1)��K�1� �1 (4.23)= 1�� 1pK � 1 �2�� �K�22 � v � ���(K � 1)��K�1� �1 : (4.24)4.1.3 Integration �uber das Gesamtvolumen vMit den Ergebnissen der vorangehenden Abschnitte und mit� = �� > 1 (4.25)stellt sich ZK(V ) dar alsZK(V )� 1�� CKK! 1pK �2�� �K�12 Z b(�)�1V0 dv(V � b(�)v)K � vK� �(��1)K�1 : (4.26)Weitere Ersetzungen v0 = b(�)V v (4.27)) dv = Vb(�)dv0f�uhren zu dem AusdruckZK(V ) � 1�� CKK! 1pK �2�� �K�12 Vb(�)V K � VK�b(�)�(��1)K�1Z 10 dv0(1� v0)Kv0(��1)K�1= 1� CKK!pK �2�� �K�12 � V �(K�b(�))��1�K �(K + 1)�((� � 1)K)�(�K + 1)= r �2�pK�  r2�� C(K�b(�))��1!K �((� � 1)K)�(�K + 1) V �K; (4.28)der durch partielle Integration oder mit Hilfe von (2.11) ausgewertet wird. Zur Be-stimmung der Radiusverteilung ist auch das IntegralZredK (V; �)� ����CKK! 1pK � 1 �2�� �K�22Z b(�)�1V��� dv(V �b(�)v)K � v � ���(K � 1)��(��1)(K�1)�1(4.29)zu betrachten, wobei in der im vorangegangenen Abschnitt beschriebenen N�aherungzu beachten ist, da� die untere Integrationsgrenze durch v � ��� festgesetzt ist.



58 Das allgemeine Instanton-GasMit den Substitutionen~V = V � b(�)��� (4.30)v0 = b(�)~V vred = b(�)V � b(�)��� (v � ���) (4.31)) dv = ~Vb(�)dv0 (4.32)wird nachgerechnetZredK (V; �) � ���� CKK! 1pK � 1 �2�� �K�22 ~Vb(�) ~V K  ~V(K � 1)�b(�)!(��1)(K�1)�1�Z 10 dv0(1� v0)Kv0(��1)(K�1)�1= ~V ��� CKK!pK � 1�2�� �K�22  ~V �((K � 1)�b(�))��1!K�1 ��(K + 1)�((� � 1)(K � 1))�(�(K � 1) + 2)= r �2�pK � 1C���  r2�� C((K � 1)�b(�))��1!K�1 ��((� � 1)(K � 1))�(�(K � 1) + 2) ~V �(K�1)+1: (4.33)~V entspricht gerade der Gr�o�e ~L in der eindimensionalen Behandlung. Da f�ur � = 1� = � + 2 ist, sind gewisse Parallelen zu den exakten Ergebnissen des eindimensio-nalen Falles erkennbar.4.2 Aufsummation der K-Instantonbeitr�age4.2.1 Numerische SummationBevor in einem n�achsten Schritt die gro�kanonischen Summen ausgewertet werden,werden die oben gewonnenen Beitr�age numerisch aufsummiert, um einen Eindruckvon der Qualit�at der bisherigen N�aherungen zu bekommen. Wie auch in den Monte-Carlo-Simulationen, wird hierbei das Volumen V jeweils so gro� gew�ahlt, da� derthermodynamische Limes erreicht ist. Eine Beschr�ankung nach oben bei der Wahldes Volumens ist bei der numerischen Summation jedoch weniger durch die Rechen-zeit als durch die Gr�o�e der in Z�ahler und Nenner auftretenden Terme auferlegt.
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�Abbildung 4.1: Ergebnis der Monte-Carlo-Simulation f�ur �(2000; �), � = 1, � = 1,�(500; �) aus den analytischen N�aherungen des Abschnitts 4.1 numerisch aufsum-miert; in beiden F�allen ist der thermodynamische Limes in dieser Darstellung zu-friedenstellend erreicht.
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�Abbildung 4.2: Ergebnis der Monte-Carlo-Simulation f�ur �(2000; �), � = 1, � = 1,�(500; �) aus den analytischen N�aherungen des Abschnitts 4.1 numerisch aufsum-miert, logarithmische Auftragung; in beiden F�allen ist der thermodynamische Limesin dieser Darstellung zufriedenstellend erreicht.Zun�achst soll das Augenmerk auf den eindimensionalen Fall gerichtet werden, f�urden bereits eine exakte Beschreibung vorliegt. Insbesondere ist b(�) = 1, da vol-



60 Das allgemeine Instanton-Gasle Raumausf�ullung erreicht werden kann. In Abbildung 4.1 ist ersichtlich, da� dieVerteilung der Radien qualitativ gut wiedergegeben wird. Das Ergebnis liegt jedochinsgesamt unter dem der Monte-Carlo-Simulation, das mit dem f�ur den eindimen-sionalen Fall bekannten exakten Resultat �ubereinstimmt.In der logarithmischen Auftragung des Diagramms 4.2 tritt hervor, da� auch in derhier zugrundeliegenden N�aherung der exponentielle Abfall der Verteilung reprodu-ziert wird.Von gr�o�erer Bedeutung ist nat�urlich, wie sich die Absch�atzungen f�ur h�ohere Di-mensionen verhalten. Dabei stellt sich auch das Problem der Wahl von b(�). Denvorangegangenen �Uberlegungen folgend werden die Wahlenb1(�) = 1b2(�) = 2��1bg(�) = 2 ��12getro�en. Bei der Wahl von b1(�) = 1 tritt im Bereich des Maximums zun�achstgute �Ubereinstimmung mit den Monte-Carlo-Ergebnissen auf, jedoch wird mit zu-nehmender Dimension hier das Maximum �ubersch�atzt. Andererseits f�uhrt die Wahlvon b2(�) zu einer Untersch�atzung in diesem Bereich, so da� der Wert bg(�) hierinsgesamt die besten Resultate liefert.
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�Abbildung 4.3: Ergebnis der Monte-Carlo-Simulation f�ur �(104; �), � = 4, � = 1,�(54; �) aus den analytischen N�aherungen des Abschnitts 4.1 mit unterschiedlicherWahl des Parameters b(�) numerisch aufsummiert, von oben nach unten: b1(4),bg(4), b2(4); in allen F�allen ist der thermodynamische Limes in dieser Darstellungzufriedenstellend erreicht.



4.2 Aufsummation der K-Instantonbeitr�age 61Exemplarisch ist dies f�ur � = 4 in Abbildung 4.3 dargestellt. Die durch Kreuze mar-kierten Daten entstammen einer Monte-Carlo-Simulation, wohingegen die anderendrei Kurven von oben nach unten gerade wie beschrieben durch die Wahl von b1(4),bg(4) und b2(4) im theoretischen Ansatz entstehen. Auch hier soll das Verschwindender Verteilung bei gro�en Werten von � mit Hilfe einer logarithmischen Auftragungstudiert werden.
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b_2 �Abbildung 4.4: Ergebnis der Monte-Carlo-Simulation f�ur �(104; �), � = 4, � = 1,�(54; �) aus den analytischen N�aherungen des Abschnitts 4.1 mit unterschiedlicherWahl des Parameters b(�) numerisch aufsummiert, von oben nach unten: b1(4), bg(4),b2(4), logarithmische Auftragung; in allen F�allen ist der thermodynamische Limesin dieser Darstellung zufriedenstellend erreicht.In Abbildung 4.4 tritt das Ergebnis der Monte-Carlo-Simulation ganz oben auf, ge-folgt von den N�aherungen mit der Wahl von b1(4), bg(4) und b2(4). Alle vier F�allesind vertr�aglich mit der Annahme eines exponentiellen Abfalles, allerdings wird die-ser in den analytischen N�aherungen im Vergleich zu dem Ergebnis der Monte-Carlo-Simulation gr�o�er gesch�atzt.Dies ist im Rahmen der bisherigen N�aherungen durchaus verst�andlich:Hat das Testinstanton einen Radius im Bereich des Maximums der Verteilung, soliegt ein bzgl. der Radien recht homogenes Gas vor, und bg(�) sollte mit den �Uber-legungen aus dem Abschnitt 4.1.1 zu zufriedenstellenden Ergebnissen f�uhren.Vorausgesetzt, das Testinstanton hat einen sehr gro�en Radius, sind Kon�gurationenmit wenigen Instantonen im vorgegebenen Volumen v bevorzugt, da das Auftretenvon sehr kleinen Radien unwahrscheinlich ist. Also erzwingt ein sehr gro�es Instan-ton eine geringere Teilchenzahldichte, was der N�aherung durch b1(�) entspricht.Nun liegt die Idee nahe, b(�) dynamisch zu w�ahlen; dies ist aber in den Rechnun-



62 Das allgemeine Instanton-Gasgen nicht mehr angemessen zu behandeln. Dar�uber hinaus wird deutlich, da� selbstdie minimale Wahl b1(�) f�ur b(�) bei sehr gro�en Instantonradien nicht wirklichzufriedenstellend mit den Monte-Carlo-Daten �ubereinstimmt. O�enbar werden diegroben Fehler bei der Positionsintegration gemacht, aber auch in der Ausintegrationder Radiuskoordinaten steckt ein gewisses Fehlerpotential.4.2.2 Analytische N�aherung und thermodynamischer LimesEs steht schlie�lich noch aus, eine analytische N�aherung f�ur die Aufsummation�(V; �) = P1K=1KZredK (V; �)P1K=0 V ZK(V ) (4.34)= P1K=0(K + 1)ZredK+1(V; �)P1K=0 V ZK(V ) (4.35)der K-Instantonbeitr�age zu erarbeiten. Hierzu sollen die zentralen Ideen aus derBehandlung des eindimesionalen Gases in Erinnerung gerufen werden. F�ur gro�eVolumina V , d.h. im thermodynamischen Limes, tragen nur wenige Summandenwesentlich zur Summe bei, wobei das K, bei dem die Summanden maximal werden,nat�urlich selbst von V abh�angt. Da aber gerade das Interesse am Verhalten imthermodynamischen Limes besteht, werden die Summen noch einmal durch Integralegen�ahert, um eine Sattelpunktsentwicklung durchf�uhren zu k�onnen.�(V; �) � R10 dk(k + 1)Zredk+1(V; �)R10 dkV Zk(V ) (4.36)Insbesondere werden die auftretenden �-Funktionen f�ur gro�e Werte von k durchdie allgemeine Stirlingsche Formel (2.25)�(x+ 1) � p2�(x + 1)x+ 12 e�(x+1) (4.37)sehr gut approximiert. Im Gegensatz zum bisherigen Vorgehen sollen nun aber Ter-me, die zu Ausdr�ucken ohne Relevanz im thermodynamischen Limes Anla� geben,direkt vernachl�assigt werden, um die Rechnungen m�oglichst �ubersichtlich zu gestal-ten.Behandlung des NennersBetrachtet wird zun�achstV Zk(V ) = r �2�pk�  r2�� C(k�b(�))��1!k �((� � 1)k)�(�k + 1) V �k+1= r �2� 1�  r2�� C �� � 1�b(�)���1!kpk((� � 1)k)�(��1)k�((� � 1)k)�(�k + 1) V �k+1;



4.2 Aufsummation der K-Instantonbeitr�age 63wobei (4.37) genutzt wirdpk((� � 1)k)�(��1)k�((� � 1)k)�(�k + 1)� 1p� � 1((� � 1)k)�(��1)k+ 12 ((� � 1)k)(��1)k� 12(�k + 1)�k+ 12 ek+1= 1p� � 1(�k + 1)�(�k+ 12 )ek+1;so da�V Zk(V )=r �2� 1�p� � 1  r2�� C�� � 1�b(�)���1!k(�k + 1)�(�k+ 12 )ek+1V �k+1: (4.38)Mit der Ersetzung 
 =r2�� C �(� � 1)�b(�) ���1 (4.39)stellen sich die Beitr�age des Nenners dar durchV Zk(V ) = r �2� 1�p� � 1
k(�k + 1)�(�k+ 12 )ek+1V �k+1= r �2� eV�p� � 1(�k + 1)�(�k+ 12 )ek(
 1�V )�k= r �2� eV�p� � 1e�(�k+ 12 ) ln(�k+1)+k(1+� ln(
 1� V )):Das Maximum des Exponenten wird aus der Gleichung0 != �� ln(�kmax + 1)� ��kmax + 12�kmax + 1 + 1 + � ln(
 1�V )kmax�0� �� ln(�kmax + 1)� (� � 1) + � ln(
 1�V )errechnet zu kmax � 1� �e���1� 
 1�V � 1� ; (4.40)und der Integrand verh�alt sich bei Entwicklung um diesen Punkt folgenderma�en:V Zk(V )� r �2� eV�p� � 1 �e���1� 
 1�V �� 12 e�e���1� 
 1� V�1�e��22 �e���1� 
 1� V ��1�2= r �2� V�p� � 1 �e���1� 
 1�V �� 12 ee���1� 
 1� V e��22 �e���1� 
 1� V ��1�2� = k � kmax:



64 Das allgemeine Instanton-GasAlso wird der Nenner in (4.36) abgesch�atzt durchZ 10 dkV Zk(V ) � r �2� V�p� � 1 �e���1� 
 1�V �� 12 ee���1� 
 1� V �Z 1�kmax d�e��22 �e���1� 
 1� V��1�2 ; (4.41)und unter Ber�ucksichtigung von�22 �e���1� 
 1�V ��1 > 0kmax � 0wird das Gau�-Integral gel�ost zuZ 1�kmax d�e��22 �e���1� 
 1� V ��1�2 � p2�� �e���1� 
 1�V � 12 ;so da� schlie�lich Z 10 dkV Zk(V ) �r ��2(� � 1) V� ee���1� 
 1� V : (4.42)Behandlung des Z�ahlersGanz analog werden nun noch einmal die Auswertungsschritte, die bereits bei derBestimmung der Normierungsgr�o�e durchgef�uhrt wurden, durchlaufen.(k + 1)Zredk+1(V; �) � r �2� C��pk(k + 1)�  r2�� C(k�b(�))��1!k�((� � 1)k)�(�k + 2) ~V �k+1= r �2� C���  r2�� C �(� � 1)�b(�) ���1!k �pk(k + 1)((� � 1)k)�(��1)k�((� � 1)k)�(�k + 2) ~V �k+1Die Gamma-Funktionen k�onnen mit (4.37) ausgedr�uckt werden durchpk(k + 1)((� � 1)k)�(��1)k�((� � 1)k)�(�k + 2)� 1p� � 1(k + 1)((� � 1)k)�(��1)k+ 12 ((� � 1)k)(��1)k� 12(�k + 2)�k+ 32 ek+2= (k + 1)p� � 1(�k + 2) 1(�k + 2)�k+ 12 ek+2k�0� 1p�2(� � 1)(�k + 2)�(�k+ 12 )ek+2



4.2 Aufsummation der K-Instantonbeitr�age 65und mit der Abk�urzung 
 =r2�� C �(� � 1)�b(�) ���1 (4.43)ergibt sich(k + 1)Zredk+1(V; �) � r �2� C���p�2(� � 1)
k(�k + 2)�(�k+ 12 )ek+2 ~V �k+1= r �2� e2 ~V C���p�2(� � 1)(�k + 2)�(�k+ 12 )ek(
 1� ~V )�k= r �2� e2 ~V C���p�2(� � 1)e�(�k+ 12 ) ln(�k+2)+k(1+� ln(
 1� ~V )):Nun ist die Bestimmungsgleichung f�ur den Ort des Maximums des Integranden ge-geben durch0 != �� ln(�kmax + 2)� �(�kmax + 12)�kmax + 2 + 1 + � ln(
 1� ~V )kmax�0� �� ln(�kmax + 2)� (� � 1) + � ln(
 1� ~V );so da� kmax � 1� �e���1� 
 1� ~V � 2� (4.44)den Entwicklungspunkt f�ur die Gau�sche N�aherung angibt:(k+1)Zredk+1(V; �)�r�2� e2 ~V C���p�2(� � 1)�e���1� 
 1� ~V�� 12e�e���1� 
 1� ~V�2�e��22 �e���1� 
 1� ~V��1�2=r�2� ~V C���p�2(� � 1)�e���1� 
 1� ~V �� 12ee���1� 
 1� ~V e��22 �e���1� 
 1� ~V��1�2� = k � kmax:Eine Zusammenf�uhrung der bisherigen Ergebnisse liefertZ 10 dk(k + 1)Zredk+1(V; �) � r�2� ~V C���p�2(� � 1)�e���1� 
 1� ~V �� 12ee���1� 
 1� ~V �Z 1�kmax d�e��22 �e���1� 
 1� ~V ��1�2 : (4.45)Unter Beachtung von �22 �e���1� 
 1� ~V ��1 > 0kmax � 0;



66 Das allgemeine Instanton-Gaswird das Gau�-Integral ausgewertetZ 1�kmax d�e��22 �e���1� 
 1� ~V ��1�2 � p2�� �e���1� 
 1� ~V � 12 ;so da� Z 10 dk(k + 1)Zredk+1(V; �) �r ��2(� � 1) ~V C���� ee���1� 
 1� ~V : (4.46)Die Verteilung �(�)Eine Zusammenstellung der Resultate der vorangehenden beiden Abschnitte liefertfolgende Formel f�ur die Verteilung der Instantonradien:�(V; �) � C� ~VV ��ee���1� 
 1� ( ~V �V ): (4.47)Mit ~V = V � b(�)���ergibt sich limV!1 ~VV = 1~V � V = �b(�)��� :Und durch die R�ucksubstitution von
 =r2�� C �(� � 1)�b(�) ���1wird im thermodynamischen Limes die folgende Verteilung erreicht:�(�) = C�� ��� � � 1e�(C#(�; �)b(�)�) ����#(�; �) = r 2��� � � 1 ��� � 1����1 e�(���1) (4.48)Dieses Ergebnis erkl�art das potenzartige Anwachsen der Verteilung der Radien.Ebenfalls in �Ubereinstimmung mit den Monte-Carlo-Ergebnissen wird ein exponen-tielles Verschwinden bei gro�en Argumenten vorgegeben.In diesem Zusammenhang ist nat�urlich die Frage von Bedeutung, in welcher Be-ziehung dieser Ausdruck zu der Verteilung steht, die in einer Dimension � exakt



4.2 Aufsummation der K-Instantonbeitr�age 67angegeben werden kann. Dazu wird noch einmal auf die Formeln (2.41) und (2.42)zur�uckgegri�en: �(�) = C� + 2��e�(C�(�+1)�) 1�+2 ��=1= C�� �����1e�(C�(���1)�) �� �� :Die �Ubereinstimmungen treten in dieser Darstellung deutlich hervor, insbesondereist b(1) = 1, da die Instantonen in einer Dimension den Raum vollst�andig ausf�ullenk�onnen.Vielleicht wird nicht direkt klar, in welcher Relation #(�; �) und �(�� �1) zueinanderstehen. Grunds�atzlich kann nat�urlich nicht erwartet werden, mit den im allgemeinenFall viel gr�ober angesetzten N�aherungen das Ergebnis f�ur den eindimensionalen Fallexakt zu reproduzieren, aber f�ur �� � sieht man#(�; �) = r 2��� � � 1 ��� � 1����1 e�(���1)= 1p� p2�q�� � 1� 1� ��� � 1����1 e�(���1)���� p2�p� ��� � 1���� 32 e�(���1)� 1p��(�� � 1);wobei die Formel (4.37) ausgenutzt wird. Damit kann f�ur diesen Fall (4.48) entspre-chend einfacher dargestellt werden:�� � ) �(�) = C�� ��� � � 1e�(C�(�� � 1)�� 12 b(�)�) ���� (4.49)Fehlerabsch�atzungIn Abschnitt 4.2.1 wurde eine qualitative Absch�atzung der Fehler, die bei der Aus-wertung der Integrale im kanonischen Ensemble auftreten, vorgenommen. Nun stelltsich die Frage, ob durch die obigen Rechenschritte weitere Informationen im thermo-dynamischen Limes verloren gehen. Zu vergleichen sind also die Vorgaben der Formel(4.48) mit den Ergebnissen der numerischen Aufsummation. Wie in Abbildung 4.5deutlich wird, liegt hier hervorragende �Ubereinstimmung vor, so da� Verbesserungenallenfalls bei der Absch�atzung der Integrale im Kapitel 4.1 w�unschenswert sind.
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�Abbildung 4.5: Vergleich von Formel (4.48) mit dem entsprechenden Ergebnisder numerischen Aufsummation der N�aherungen aus Abschnitt 4.1 f�ur � = 1; :::; 4,� = 1, V = 500, 202, 103, 54 (von unten nach oben)4.3 Theorie und Simulationen f�ur � = 4Da sich die Ergebnisse f�ur die Radiusverteilung �(�) qualitativ in unterschiedlichenRaum-Zeit-Dimensionen kaum unterscheiden, soll hier exemplarisch nur der interes-sante Fall von vier Raum-Zeit-Dimensionen etwas ausf�uhrlicher diskutiert werden.Insbesondere stellt sich die Frage, inwieweit in den Monte-Carlo-Simulationen derthermodynamische Limes bei den vorgegebenen Systemvolumina bereits erreicht ist.W�ahrend in dem System, das durch die analytischen N�aherungen beschrieben wird,wie in Abbildung 4.5 ersichtlich, schon f�ur V = 54 ein sehr gutes Grenzverhaltenvorliegt, sind bei dem numerischen Zugang o�enbar gr�o�ere Volumina erforderlich.Ein erster Eindruck hierzu wird in Abbildung 4.6 vermittelt.Dargestellt ist die Entwicklung der Instantonzahl w�ahrend der Simulation nach Er-reichen der Gleichgewichtsverteilung P , wobei die Teilchenzahlen der kleineren Vo-lumina geeignet hochskaliert wurden. Es wird deutlich, wie die relative Schwankungder vorliegenden Instantonen mit zunehmendem Volumen ausstirbt, also der thermo-dynamische Limes angen�ahert wird. Andererseits w�achst nat�urlich, wie in Abbildung4.7 ersichtlich, die exponentielle Autokorrelationszeit mit dem Systemvolumen. Sieist ein Ma� ist f�ur die Geschwindigkeit, mit der die Konvergenz des stochastischenProzesses der Monte-Carlo-Simulation gegen die Grenzverteilunung erfolgt [21] undbestimmt so auch die Rechenzeit mit. Das Volumen V = 54 = 625 wurde in Ab-bildung 4.7 nicht ber�ucksichtigt, da die Daten die anderen Ergebnisse aufgrund dergro�en Schwankungen �uberdecken w�urden.
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70 Das allgemeine Instanton-GasAuch das Grenzverhalten der Radiusverteilung im thermodynamischen Limes wirduntersucht. In der Abbildung 4.8 wird dargestellt, wie sich die Verteilung �(V; �)bei der Wahl der obigen Volumina V = 54, 104, 154, 204 gegen eine Grenzverteilung�(�) entwickelt.
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�Abbildung 4.8: Verteilung der Instantonradien bei Simulationen mit V = 54,104, 154, 204 (von oben nach unten); um bessere Au
�osung zu erzielen, wurden dieMe�punkte durch Linien verbunden.
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4.3 Theorie und Simulationen f�ur � = 4 71Dabei kann zun�achst vermutet werden, da� sich die Ergebnisse der Monte-Carlo-Simulationen f�ur den Abfall der Verteilung bei gro�en Radien im thermodynami-schen Limes an die Vorgaben der Theorie anlehnen. Die Betrachtung von Abbildung4.9 schlie�t dies allerdings weitgehend aus. Dargestellt sind die gleichen Daten inlogarithmischer Auftragung. Es ist zu erkennen, wie sich die Histogramme mit wach-sendem Volumen zwar untereinander aber o�enbar nicht beliebig den theoretischenVorgaben ann�ahern. Da schon im Falle eines Volumens von V = 104 eine zufrieden-stellende Konvergenz zu beobachten ist, wurde dieses Volumen bei den Simulationenaufgrund der vertretbaren Rechenzeit gew�ahlt.Interessant ist auch die Untersuchung der Verteilung bei verschiedenen Werten von� = �� � � 1 = �� 5, wobei sich � in SU(N)-Yang-Mills-Theorien verh�alt wie[14] � = 113 N: (4.50)F�ur die SU(2) und SU(3) ergeben sich damit Werte von � = 713 und � = 11, bzw.� = 213 und � = 6. Die Ergebnisse der Monte-Carlo-Simulationen sind in Abbildung4.10 f�ur � = 1; 213 ; 6; 10 dargestellt.
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�Abbildung 4.10: Verteilung der Instantonradien bei Simulationen mit V = 104,� = 1; 213 ; 6; 10O�ensichtlich weitet sich die Verteilung unter Zunahme von � bzw. � auf, wobei ihrMaximum zu gr�o�eren Werten von � verschoben wird.Zum Vergleich sind in Abbildung 4.11 die entsprchenden Resultate aus Formel (4.48)mit b(4) = bg(4) = 2p2 aufgetragen. Diese stimmen in ihrem qualitativen Verhaltenunter Variation von � sehr gut mit den Vorgaben der Monte-Carlo-Daten �uberein.
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�Abbildung 4.11: �(�) aus Formel (4.48), � = 1; 213 ; 6; 10, bg(4) = 2p2W�ahrend das Maximum der Verteilung mit wachsendem � ab
acht, werden gr�o�ereRadien wahrscheinlicher, was in der logarithmischen Auftragung der Monte-Carlo-Ergebnisse f�ur den Bereich jenseits der Maxima deutlich wird.
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alpha=10.0 �Abbildung 4.12: Abfall der Verteilungen jenseits der Maxima bei Simulationenmit V = 104, � = 1; 213 ; 6; 10, logarithmische AuftragungAbbildung 4.12 enth�alt jedoch noch wenig Information �uber den asymptotischenAbfall dieser Verteilungen, da im Bild der theoretischen Betrachtungen mit wach-sendem � der Vorfaktor �� den Exponentialanteil l�anger dominiert.
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alpha=10.0 �Abbildung 4.13: Abfall von �(�)�� bei Simulationen mit V = 104, � = 1; 213 ; 6; 10,logarithmische AuftragungZu untersuchen sind entsprechend auch die durch diese �-Faktoren dividierten Da-ten. Hier liegen die Kurven f�ur die verschiedenen Werte von � in Abbildung 4.13wieder eng beieinander. Dabei wird der Abfall der Verteilung mit wachsendem �zun�achst geringer, nimmt dann aber wieder zu. Dies kann bei Studium der theo-retischen Resultate (vgl. Formel (4.48)) reproduziert werden. Allerdings treten beigenauerer Auswertung der Daten in Abbildung 4.13 Abweichungen zum erwartetenVorfaktor C�� aus Formel (4.48) hervor. Diese Unterschiede in dem Normierungs-faktor spiegeln ebenfalls die Di�erenzen der beiden Ans�atze in den Vorgaben f�urdas Verschwinden der Verteilung bei gro�en Argumenten wider. So bleibt auch hierfestzuhalten, da� die theoretischen Vorgaben zwar den exponentiellen Abfall wie-dergeben, ihn aber �ubersch�atzen.Um quantitative Aussagen �uber das Verschwinden der Verteilungen, wie sie dieMonte-Carlo-Simulationen liefern, machen zu k�onnen, wird f�ur F (�) = �(�)�� zun�achstein Ansatz der Form Ffit(�) = ae�b�p (4.51)gemacht. Da a nicht mit den Vorgaben aus Formel (4.48) �ubereinstimmt, wird adurch Extrapolation von F (�) f�ur kleine Argumente gewonnen (a = Ffit(0)). DieParameter b und p werden mit Hilfe eines Fitprogrammes auf Basis des Marquardt-Levenberg-Algorithmus abgesch�atzt.



74 Das allgemeine Instanton-Gas� 1 213 6 10b 3.6 3.0 3.2 3.7p 1.9 2.0 1.8 1.8Tabelle 4.1: Ergebnis der Fits an die Monte-Carlo-Daten mit Ffit f�ur � = 4, � = 1,213 , 6, 10, Fehler ca. �0:1In Tabelle 4.1 wird deutlich, da� die auftretende Potenz p etwa zwei ist. Damitist p nur halb so gro� wie die theoretische Vorgabe p = � = 4. Allerdings istdies konsistent mit den Ergebnis p = 2 in [15]. O�enbar hat eine Variation von �nur auf den Faktor b wesentlichen Ein
u�, nicht jedoch auf p. Eine entsprechendeAbh�angigkeit �ndet sich auch in Formel (4.48). Exemplarisch ist ist das Ergebniseines Fits mit � = 213 , a = 0:85, b = 3:0 und p = 2:0 in Abbildung 4.14 dargestellt.
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�Abbildung 4.14: Ergebnis des Fits an F (�) = �(�)�� mit � = 213 aus einer Monte-Carlo-Simulationmit V = 104: a = 0:85, b = 3:0, p = 2:0, logarithmische AuftragungUm dies in einen etwas weiteren Kontext stellen zu k�onnen, wird das Verhalten derPotenz p in den Monte-Carlo-Simulationen verschiedener Raum-Zeit-Dimensionenuntersucht. In Tabelle 4.2 wird deutlich, wie die Potenz p, die den Abfall der Ver-teilung bestimmt, mit zunehmender Dimension w�achst. Dabei stimmt das Ergebnisin einer Dimension mit hoher Genauigkeit mit dem exakten Resultat des Kapitels 2�uberein.



4.3 Theorie und Simulationen f�ur � = 4 75� 1 2 3 4p 1.0 1.5 1.8 1.9Tabelle 4.2: Ergebnis der Fits an die Monte-Carlo-Daten mit Ffit f�ur � = 1; 2; 3; 4,� = 1, Fehler ca. �0:1Nach diesen Diskussionen zum Verhalten der Verteilung �(�) bei gro�en Argumen-ten wird abschlie�end eine Variation in C vorgenommen. Dieser Parameter enth�altdie Integrale �uber die verbleibenden kollektiven Koordinaten sowie die Kopplungs-konstante. In Abbildung 4.15 sind die Monte-Carlo-Ergebnisse mit den theoreti-schen Vorgaben f�ur C = 10 dargestellt. Auch hier werden alle bisherigen Ergebnissebest�atigt.
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�Abbildung 4.15: Ergebnisse der Monte-Carlo-Simulation f�ur V = 104, � = 1,C = 10, sowie theoretische Vorgaben aus Formel (4.48), b(4) = b1(4), bg(4), b2(4)



Zusammenfassung und Ausblick
ErgebnisseIn dieser Arbeit wurde die Radiusverteilung in einem Instantongas aus harten Ku-geln untersucht. In der vorliegenden N�aherung l�a�t sich die Verteilung im eindi-mensionalen Fall bei Erreichen des thermodynamischen Limes exakt analytisch be-stimmen. Es bildet sich dabei ein potenzartiges Anwachsen sowie ein exponentiellerAbfall der Wahrscheinlichkeitsdichte aus.F�ur den allgemeineren Fall beliebiger Raum-Zeit-Dimension wurden sowohl analy-tische als auch numerische Methoden zur Betrachtung herangezogen.Hierbei wurden im analytischen Zugang zun�achst die interessierenden Integrale mitHilfe von Sattelpunktsentwicklungen und geometrischen Absch�atzungen ausgewer-tet. Schlie�lich wurden die Summen im gro�kanonischen Ensemble durch Integraleersetzt, die ebenfalls im Rahmen einer Sattelpunktsn�aherung abgesch�atzt wurden.Hierbei erfahren die Sattelpunktsentwicklungen gerade im thermodynamischen Li-mes ihre Rechtfertigung. Die Ergebnisse f�ur die Verteilung � sind in �Ubereinstim-mung mit dem exakten Resultat des eindimensionalen Falles von der Form�(�) � �����1e�const:�� :Parallel dazu wurde das allgemeine System durch Anwendung gro�kanonischer Monte-Carlo-Simulationen untersucht. Hier wird qualitativ eine sehr gute �Ubereinstimmungmit den analytischen Ergebnissen erreicht; gerade f�ur kleine Radien wird der Expo-nent des obigen potenzartigen Anwachsens sehr gut reproduziert. Auch der Ort desMaximums der Verteilung ist konsistent mit den theoretischen Resultaten. Schlie�-lich wird ebenfalls in den Monte-Carlo-Daten ein exponentielles Abfallen der Vertei-lung bei gro�en Radien deutlich, jedoch wird dieses o�enbar durch die analytischenVorgaben �ubersch�atzt.Zur�uckkehrend zu der zentralen Fragestellung dieser Arbeit bleibt also festzuhalten,da� im vorliegenden Modell das Integral �uber die Radiuskoordinaten der Instan-tonen in �Ubergangsmatrixelementen nicht divergiert, da gro�e Radien exponentiellunterdr�uckt sind.



Ausblick 77AusblickWeitergehend soll die Frage diskutiert werden, in welcher Form diese Arbeit fort-gef�uhrt werden kann, um zu Ergebnissen zu gelangen, die das Instantongas einerEichtheorie besser beschreiben. Es ist sicherlich von Bedeutung, die Wechselwirkungzwischen den Instantonen realistischer zu beschreiben. Vor allem die dipolartigenBeitr�age sollten ber�ucksichtigt werden. Aber auch die Abh�angigkeit der Wechsel-wirkung von der relativen Orientierung der Instantonen im Gruppenraum der Eich-gruppe mu� beachtet werden. Dar�uber hinaus ist zwischen Instantonen und Antiin-stantonen zu unterscheiden [1]. Eine Arbeit mit diesen Ans�atzen, aber einem etwasanderem Hard-Core-Anteil als dem hier gew�ahlten, �ndet sich unter [15].Im Bereich der Monte-Carlo-Simulationen besteht wesentliches Interesse an der Re-duktion der Rechenzeit, die die Wahl des Systemvolumens einschr�ankt. Im Rahmendes einfachen Metropolis-Algorithmus, der den Simulationen dieser Arbeit zu-grundeliegt, bestehen noch M�oglichkeiten der Optimierung, die vor allem bei derVerbesserung der Vorschlagsakzeptanz zu suchen sind. Konkret kann das Annahme-verhalten durch die Wahl der maximalen Koordinatenbewegung pro Iterationsschrittbeein
u�t werden. Jedoch fordert eine geringe Koordinatenbewegung bei hoher Ak-zeptanz viele Iterationsschritte, so da� i.a. eine Annahmewahrscheinlichkeit von 30%bis 50% gefordert wird. Weiterhin kann die Verteilung pcr(�), nach der die Radiusko-ordinaten generiert werden, der erwarteten Verteilung �(�) besser angepa�t werden,was zu einer Reduktion der Ablehnungen nach Koordinatenerzeugung f�uhrt.Wesentliche Verbesserungen sind bei der Annahme der erzeugten Koordinaten anzu-streben, die bei wachsender Teilchenzahldichte durch Kollisionen stark unterdr�ucktwird.Hier m�ussen neue Konzepte eingebracht werden, die ggf. noch einer detaillierterenPr�ufung bed�urfen, da gro�kanonische Monte-Carlo-Algorithmen nicht zu den erprob-ten Standardverfahren geh�oren. Ein m�oglicher Ansatz folgt der Idee, das gro�kanoni-sche Ensemble durch reale und virtuelle Teilchen zu beschreiben, wobei alle Teilchenbewegt werden, aber nur erstere an der Wechselwirkung teilhaben. Die Teilchenzahlwird durch den �Ubergang von realen zu virtuellen Teilchen und umgekehrt variiert[34], [35]. Die Annahme neu vorgeschlagener Koordinaten ist wahrscheinlicher, davirtuelle Teilchen zun�achst in der Nachbarschaft der L�ucke bleiben, die ihre Ver-nichtung erzeugte. Allerdings f�uhrt dieses Verfahren m�oglicherweise noch zu einigenUnstimmigkeiten [25].Angeregt durch die Methode des "Parallel Tempering\ [36], [37] ist zu �uberlegen,ob es einen Fortschritt bringt, parallel kanonische Monte-Carlo-Simulationen mitverschiedener Teilchenzahl durchzuf�uhren, zwischen denen geeignete �Uberg�ange beider Messung vorgenommen werden. Hierzu mu� im vorliegenden Modell zuvor er-mittelt werden, welche Teilchenzahl sich mit welcher Schwankung bei vorgegebenem



78 Zusammenfassung und AusblickVolumen im Gleichgewicht einstellt (vgl. Abbildung 4.6). Entsprechend wird dieTeilchenzahl und die Anzahl der kanonischen Simulationen gew�ahlt. In jedem Fallsind genauere Untersuchungen zum Konvergenzverhalten eines solchen Algorithmusunerl�a�lich.



Anhang ABerechnung der Integrale
A.1 Integral �uber die InstantonpositionenZun�achst wird durch vollst�andige Induktion gezeigt, da� sich der Wert des Integrales�IK(L) = Z L� �2 �Ku(K�1) daK Z aK� �2 �K� �2 �K�1u(K�2) daK�1 ::: Z a2� �2 �2� �2 �1�2 �1 da1 (A.1)u(i) = � iXj=1 �j + �2�i+1f�ur K 2 N ergibt zu �IK(L) = 1K! (L� � KXj=1 �j)K : (A.2)Hierzu wird die o�ensichtliche Relation�IK(L) = Z L� �2 �Ku(K�1) daK �IK�1(aK � �2�K) (A.3)herangezogen.1. Induktionsanfang: K = 1�I1(L) = Z L� �2 �1�2 �1 da1 = L� ��1 = 11!(L� ��1)1 (A.4)2. Induktionsschritt: K � 1! KMit der Induktionsvoraussetzung�IK�1(aK � �2�K) = 1(K � 1)!(aK � �2�K � � K�1Xj=1 �j)K�1 (A.5)



80 Berechnung der Integraleergibt sich�IK(L) = Z L� �2 �Ku(K�1) daK 1(K � 1)!(aK � �2�K � � K�1Xj=1 �j)K�1= 1(K � 1)! 1K (aK � �2�K � � K�1Xj=1 �j)KjL� �2�K�PK�1j=1 �j+ �2 �K= 1K! (L� � KXj=1 �j)K :A.2 Integral �uber die InstantonradienWeitergehend soll nun das Integral IKIK(L) = 1K! Z L�0 d�K::: Z L� �PKj=2 �j0 d�1 KYj=1 ��j (L� � KXj=1 �j)K (A.6)vollst�andig ausgewertet werden. Vorgegeben sei hierzu die Integralformel [18]Z 10 xa(1� x)bdx = �(a + 1)�(b+ 1)�(a+ b + 2) : (A.7)Zun�achst wird zur Vereinfachung eine Substitution vorgenommen�j = ��j 8j 2 f1; :::; Kg; (A.8)die zu dem AusdruckIK(L) = 1� (�+1)K 1K! Z L0 d�K::: Z L�PKj=2 �j0 d�1 KYj=1 ��j (L� KXj=1 �j)K (A.9)f�uhrt. Mit den BezeichnungenIK(L) = 1� (�+1)K ~IK(L)�(i) = KXj=i �jfolgt ~IK(L) = 1K! Z L0 d�K ::: Z L��(2)0 d�1 KYj=1 ��j (L� �(1))K: (A.10)



A.2 Integral �uber die Instantonradien 81Nun ist das Ergebnis der k-ten (k � K) Integration gegeben durch~IK(L) = (�(� + 1))k�(K + (� + 1)k + 1)Z L0 d�K::: KYj=k+2�j Z L��(k+2)0 d�k+1��k+1(L� �(k + 1))K+(�+1)k; (A.11)was durch vollst�andige Induktion bewiesen wird:1. Induktionsanfang: k = 0~IK(L) = 1�(K + 1) Z L0 d�K::: Z L��(2)0 d�1Yj ��j (L� �(1))K (A.12)2. Induktionsschritt: k ! k + 1Seien also bereits k Integrationen ausgef�uhrt, so da� nun unter Ber�ucksichti-gung der Induktionsvorraussetzung der Ausdruck~IK(L) = (�(� + 1))k�(K + (� + 1)k + 1)Z L0 d�K::: KYj=k+2�j Z L��(k+2)0 d�k+1��k+1(L� �(k + 1))K+(�+1)k| {z }Iinzu integrieren ist. Betrachtet wird nur das innere Integral Iin:Iin = Z L��(k+2)0 d�k+1��k+1(L� �(k + 1))K+(�+1)k= Z L��(k+2)0 d�k+1��k+1((L� �(k + 2))� �k+1)K+(�+1)k= (L� �(k + 2))K+(�+1)k Z L��(k+2)0 d�k+1��k+1(1� �k+1L��(k + 2))K+(�+1)k= (L� �(k + 2))K+(�+1)k+�+1 Z 10 d��k+1���k+1(1� ��k+1)K+(�+1)k:Hierbei ist ��k+1 = �k+1L� �(k + 2)und es ergibt sich mit der Integralformel (A.7)Iin = (L� �(k + 2))K+(�+1)(k+1)�(� + 1)�(K + (� + 1)k + 1)�(K + (� + 1)(k + 1) + 1) : (A.13)



82 Berechnung der IntegraleDurch Einsetzen in (A.11) f�uhrt dies zu dem Ausdruck f�ur ~IK(L) nach k + 1ausgef�uhrten Integrationen:~IK(L) = (�(� + 1))k+1�(K + (�+ 1)(k + 1) + 1)Z L0 d�K::: KYj=k+3�j Z L��(k+3)0 d�k+2��k+2(L� �(k + 2))K+(�+1)(k+1):Hiermit ist die Integralformel bewiesen und soll f�ur die F�alle k = K � 1 und k = Kangewendet werden.~IK(L) = (�(� + 1))K�1�(K + (�+ 1)(K � 1) + 1) Z L0 d�K��K(L� �K)K+(�+1)(K�1) (A.14)R�ucksubstitution liefert~IK(L) = (�(�+ 1))K�1��+1�(K + (� + 1)(K � 1) + 1) Z L�0 d�K��K(L� ��K)K+(�+1)(K�1)= (�(� + 1))K�1��+1�((�+ 2)(K � 1) + 2) Z L�0 d�K��K(L� ��K)(�+2)(K�1)+1;und damitIK(L) = (�(� + 1))K�1�((�+ 2)(K � 1) + 2) 1� (�+1)(K�1) Z L�0 d�K��K(L� ��K)(�+2)(K�1)+1:(A.15)So l�a�t sich IredK direkt ablesen und IK ist bestimmt durchIK(L) = (�(�+ 1))K�((� + 2)K + 1) 1� (�+1)K L(�+2)K : (A.16)
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