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Einleitung

In den letzten Jahrzehnten sind grofle Fortschritte bei der perturbativen Behand-
lung von Feldtheorien und insbesondere Eichtheorien wie der QCD gemacht worden.
Jedoch fiihrt dieses Vorgehen nicht immer zu zufriedenstellenden Ergebnissen, da ei-
nige Phinomene nicht stérungstheoretisch erfaflit werden konnen.

In den siebziger Jahren brachte die Entdeckung spezieller Losungen der Euklidi-
schen Feldgleichungen neue Impulse zur Beschreibung nicht-perturbativer Effekte in
quantisierten Eichtheorien. Da diese Losungen endliche Wirkung besitzen, also in
Raum und Zeit lokalisiert sind, werden sie auch als Instantonen bezeichnet. Dariiber
hinaus verfiigen sie iiber eine toplogische Ladung oder auch Windungszahl, die ihre
Stabilitdt gewédhrleistet.

Wenig spiter wurde klar, dafl Instantonen die entarteten Vakua der klassischen
Theorie verbinden und so in der quantisierten Theorie Tunnelvorgénge beschrei-
ben. Dies fiihrte zum Konzept des #-Vakuums. Wahrend noch einige unbefriedigend
geloste bzw. offene Probleme in diesem Zusammenhang existieren, wie z.B. die star-
ke CP-Verletzung, erschliefSen sich auch vielversprechende Ansitze. So kann das
U(1)-Problem, das Fehlen eines erwarteten Goldstone-Bosons in der QCD, in die-
sem Zusammenhang verstanden werden. Da Instantoneffekte auch das Quarkpoteni-
al beeinflussen, bestand grofie Hoffnung, durch diesen Mechanismus eine Erklarung
fiir Confinement-Effekte im Rahmen der QCD geben zu kénnen. Wihrend dies in
verschiedenen Theorien moglich ist, stellt sich die Situation hier jedoch offenbar
schwieriger dar [1], [2], [3].

Da die Instantonphysik trotz mancher Probleme interessante Perspektiven erdffnet,
gibt es zahlreiche Bemiihungen auf diesem Gebiet. Die Eigenschaft lokalisierter Wir-
kung verleiht den Instantonen teilchenartige Charakteristika. Daraus ergibt sich der
phdnomenologische Ansatz eines Instantongases als Ausgangspunkt fiir weitere Un-
tersuchungen. Die Wechselwirkung zwischen diesen sogenannten Quasiteilchen in
vier Raum-Zeit-Dimensionen wird durch dipolartige Terme dominiert [1].
Eichtheorien gestatten das Auftreten von Instantonen beliebiger Ausdehnung. Setzt
die Wechselwirkung dem keinen Widerstand entgegen, so fiihrt dies zu Divergen-
zen in den Ubergangsmatrixelementen der Theorie. Dabei ist die Einfiihrung einer
willkiirlichen Beschriankung in der Grofle der Instantonen unbefriedigend und insbe-
sondere nicht konsistent mit den Vorgaben der Renormierungsgruppe. Entsprechend
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wird der repulsive Charakter der Instantonwechselwirkung bei kleinen Abstdnden
untersucht bzw. postuliert, um einen dynamischen Cutoff einzufiihren. Durch die
Abstoflung bei kleinen Distanzen werden grofle Instantonen unterdriickt, was zu ei-
ner selbstkonsistenten Beschriankung der Instantonausdehnung fiihrt.

Es ist interessant, dieses qualitative Ergebnis an einem einfachen Modell genauer
zu studieren. Hier bietet sich als einfachste Ndherung an, den Instantonen einen
harten Kern zu verleihen. In der vorliegenden Arbeit werden die oben besprochenen
Eigenschaften an einem solchen Hard-Core-Gas quantitativ untersucht und erfafit.



Kapitel 1
Instantonen

Um die Instantonen als zu behandelnde Objekte zu verstehen, wird ein Uberblick
iiber dieses Gebiet und die damit verbundenen Ph&nomene gegeben. Wesentliche Ei-
genschaften dieser sogenannten ,,Quasiteilchen® treten schon in Systemen der Quan-
tenmechanik hervor, jedoch werden sie dort nicht von modellspezifischen Komplika-
tionen verdeckt, so daf} ein Abrif} dieses Gebietes sinnvoll ist. Dabei wird deutlich,
daf es sich bei Instantonen nicht um (Quasi-)Teilchen im iiblichen Sinne handelt,
sondern um Entwicklungspunkte des Pfadintegrals mit gewissen teilchenartigen Cha-
rakteristika.

In einem nédchsten Schritt wird es um Instantonen in Eichtheorien gehen. Wihrend
sie im YANG-MILLS-System in den siebziger Jahren von POLYAKOV et al. [4] erstma-
lig entdeckt und untersucht wurden, erkannte man bald darauf ihre Bedeutung im
Zusammenhang mit Tunnelprozessen zwischen den klassischen Vakua der Theorie
[5]. In der quantisierten Theorie treten jedoch Divergenzen in den Ubergangsam-
plituden hervor, die aus einer Invarianz der Feldgleichungen resultieren. Ziel dieser
Arbeit ist es, diese Phidnomene besser zu verstehen und an einem vereinfachten Mo-
dell das Verhalten nach Vorgabe eines dynamischen Cutoff zu studieren.

Neben der folgenden Einfiithrung in dieses Gebiet bietet sich die Lektiire von [1], [2],
(3] und [6] an; ein theoretischerer Zugang wird in [7] verfolgt. Ein kurzer aktueller
Uberblick wird in [8] vermittelt.

1.1 Instantonen in der Quantenmechanik

1.1.1 Das Pfadintegral

In Rahmen der Quantenmechanik besteht Interesse an Ubergangsmatrixelementen
der Form

(ar,tslai ts) = (d1U(T)]a), (1.1)
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wobei |g;,t;) und |gs,ts) den jeweiligen Anfangs- bzw. Endzustand des Systems
beschreiben [9]. |¢) und |¢') sind Eigenzustinde des Ortsoperators ¢ und der Zeit-
entwicklungsoperator U ist gegeben durch

o il
U(iT) = exp <—EH(p, q)) , (1.2)
wobei wie auch im folgenden ohne Einschridnkung angenommen werden kann, dafl
T T
i = —— ty = +=

2

% <—§> =4 ar <+§> = 4. (1-3)

Die obige Ubergangsamplitude L:i8t sich durch das von FEYNMAN eingefiihrte Pfad-
integral darstellen

!

W6l = [ e (5500) (1.49)

[dPq] = const. H dPq(t). (1.5)

t;<t<ty

Dabei ist S[q] das klassische Wirkungsfunktional

Slg) = / " dL(q(t), d(t)) (1.6)

r
2

mit der Lagrange-Funktion

. 1 .
L(g,d) =5 > mid - V(g). (1.7)
J
Es werden also anders als im klassischen Fall nicht nur die Lésungen der Bewegungs-
gleichungen
OL d |[0L
on_djon) 0
8q]' dt 6qj

als stationdre Punkte von S betrachtet, sondern alle stetigen Wege zwischen ¢ und ¢'
mit entsprechender Gewichtung. Nun wird eine analytische Fortsetzung der obigen
Ausdriicke gewonnen, indem beliebige komplexe Zeiten et zugelassen werden:

!

WG D)) = [ @Pdlesn (5500 (19)

[t 1 .
Sela] = 6_‘9/ dt (5 > mid; - 62’“’)V(q)> : (1.10)
- j

Von Bedeutung sind die folgenden Spezialfille der Formel (1.9):

!
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e 6 =0 Feynmann- /Minkowski-Pfadintegral
Die oben angefiihrten Formeln werden reproduziert.

e 0 = 7 Euklidisches Pfadintegral

!

W0Ts)a) = [ (@l exp (3 5la (111

e
2 1 .
Selql = /TE dig (5 Zmﬂﬁ + V(Q)) (1.12)
2 j
Im Euklidischen Fall ist also Tg reell, was bei Vergleich mit (1.4) gerade rein

imaginédren Zeiten entspricht.

Auf der einen Seite findet die sogenannte Wick-Rotation Anwendung, um das Pfad-
integral mathematisch und numerisch besser behandeln zu kénnen, andererseits be-
steht eine enge Verkniipfung des Euklidischen Pfadintegrals mit Tunnelprozessen.

1.1.2 Instantonen und Tunnelprozesse

Vor einer weiteren Behandlung des Themas erscheint es sinnvoll, eine erste ,, Arbeits-
definition“ des Begriffes Instanton anzugeben:

Instantonen sind nicht-singuldre Losungen der Euklidischen Bewe-
gungsgleichungen mit einer lokalisierten Lagrange-Funktion, d.h.
sie besitzen eine endliche Euklidische Wirkung.

Ein-Instantonlosungen

Untersucht werden sollen die Instantonlosungen in einem eindimensionalen System
(¢ =, m = 1) mit dem Potential

A

V(z) = 5(3;2 —a?)? (1.13)
und mit der Euklidischen Bewegungsgleichung
>z dV

—_— = —. 1.14

dr?  dz ( )

Offenbar beschreibt (1.14) ein Teilchen mit Einheitsmasse in einem System mit dem
Potential —V', wobei die Energie

E- % (‘(%)2 V(@) (1.15)
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eine konstante Grofle darstellt. Da nun Losungen der Gleichung (1.14) von Interesse
sind, die die beiden Mulden des Potentials V' bei +a verbinden, entspricht dieses
im Bild eines Teilchens im Potential —V Konfigurationen mit der Randbedingung
E = 0. So kann (1.14) mit den obigen Randbedingungen auf die Differentialgleichung

dz
— =+4/2V 1.16
dT @) (1.16)
mit den Forderungen
lim z = Fa lim z = +a (1.17)
T——00 T—00

zuriickgefiihrt werden. Bei dem vorgegebenen Doppelmuldenpotential wird (1.16)
von der Funktionenklasse

z(7) = tatanh(u(r — 7))  p=aVvA (1.18)
gelost. Dabei ist die Lagrange-Funktion
1 (dz\>
L(z) = 5 (E) +V(z) =2V (x) (1.19)
lokalisiert um 7y, und es ergibt sich entsprechend fiir die Euklidische Wirkung
4 3
Splz] = 3% < (1.20)

in Ubereinstimmung mit der obigen Arbeitsdefinition, so daf es sich hier um Instan-
tonlésungen handelt.

Schliellich soll das Konzept der topologischen Ladung nicht unerw#dhnt bleiben,
das in diesem Zusammenhang zwar nicht von zentraler Bedeutung zu sein scheint,
jedoch in verallgemeinerter Form eine wichtige Rolle spielen wird. Zunéichst kann
beobachtet werden, daf die obigen Ldsungen von (1.16) zusammen mit den trivialen
Losungen z = +a in vier (Homotopie-) Klassen zerfallen, indiziert durch ihre Werte
fiir 7 — +o0:

( a’

—a,a) (1) = atanh(ur)
(a,—a

=

) z(r) = —atanh(ur)
(a,a) r=+a
(—a,—a) T = —a.

In den durch diese Reprisentanten gegebenen Klassen befinden sich jeweils noch die
um 7y verschobenen Instantonen. Die toplogische Ladung oder auch Windungszahl
Q ist definiert durch

Q= %(m(T — 00) — a(r = —00)) = /dr%g—i cz, (1.21)

wobei Losungen mit () = 1(—1) als Instantonen (Antiinstantonen) bezeichnet wer-
den.
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1.1.3 Multi-Instantonlésungen und Tunnelprozesse
Im Rahmen einer quantisierten Theorie besteht Interesse an dem Ubergang

HTg Sg
(ale " | —a)=N [dx]e *, (1.22)
—a=a(~"F)
der gerade den TunnelprozeB zwischen den beiden Potentialmulden beschreibt. Ubli-
cherweise wird eine Entwicklung der Wirkung um ihre stationdren Punkte, in diesem
Fall die Instantonlésungen, vorgenommen. In nullter Ordnung ergibt dies gerade die
bekannte WKB-Formel

3 S
(a | e | —a) ~ e R (1.23)

Sp(E=0) = /dr% (%)2 + V(z(7))
- / dzV/2V.

Um Korrekturen héherer Ordnung zu berticksichtigen, wird bis zur Gaufischen Nihe-
rung im Rahmen der Sattelpunktsentwicklung fortgeschritten. Von nun an soll der
Index E aus Griinden der Ubersichtlichkeit unterdriickt werden, jedoch wird weiter-
hin Euklidisch gerechnet. Insbesondere ist 7" eher eine Hilfsgrofle, denn es wird noch
der Grenzfall T — oo zu untersuchen sein. Dort wird auch festzustellen sein, dafl
Multi-Instantonlosungen als Superposition der bekannten Instantonlésungen eben-
falls beachtet werden miissen [2], [3], [10].

Sei Z nun eine Losung der Bewegungsgleichungen, d.h. ein stationdrer Punkt der
Wirkung S und z(7) = Z(7) + y(7), dann ist

7

Ste+ul=s+ [ ar [ e (Setoiag ) W)+ 06, (.28

T
2
Die zweiten funktionalen Ableitungen ergeben

<%>z_w = <— (;9:2 + 62‘/(9(52(7-))):”__ 5(t—1'), (1.25)

T

so daf es sinnvoll ist, die Abweichungen von Z(7) durch ein VONS von Eigenfunk-
tionen {z,} des Operators

0, = <— ;:2 + 82‘/8(;2(7))>w_ AR ACI) (1.26)

auszudriicken in der Form

z(t) = Z(1) + Z Cnn (7). (1.27)
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Damit stellt sich die Wirkung mit y(7) = z,(7) dar als

Sl

S|z + z,] = S[z] + %/_ A1, (1) Oz, (1) + O(23) (1.28)

!

und mit der Ersetzung des Mafles durch

[dz] = N [ [ (2rh) 2 de, (1.29)

wird die Sattelpunktsentwicklung durchgefiihrt ({\,} seien die Eigenwerte zu den

{zn}):

Q

(a|e % | —a)

_slz] dcn JR Y

[m]

— Ne (deto) ;(1+(’)(h))

= N (%ﬂ) (14 o)), (1.30)

n

Im Zusammenhang mit Tunnelpozessen zwischen den Potentialmulden sind Losun-
gen mit den Randbedingungen

lim Zy = —a lim . =a
T——00 T—00
gefragt. Aus dem vorangehenden Abschnitt ist bekannt, dafl diese Instantonlésungen
Z4 fiir T — oo jedoch in weiten Bereichen aussehen wie die trivialen Lésungen
Z = =+a, so daB es sinnvoll ist, zunéchst iiber letztere etwas zu lernen. Hier stellt
sich der Operator O; dar als

N 0?2 02V
O = 32T 507 10
62 "
= etV
2
= —%wLw (1.31)

so daf} die Eigenfunktionen durch

n

T = sin (%) (1.32)
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gegeben sind. Weitere Rechnungen liefern

A 22 -3
N(detO.,)t = N <”T7; +w2>
n=1
1
o0 w2T2 -3
= NF(T)B1 (1 + n2ﬁ2>
B 1 w :
B 2wh sinh wT
= (2) e, (1.33)

wobei das IntegrationsmaB so gewahlt wird, daB NF(T) = (2rhT) 2, um eine in
sich konsistente Theorie zu definieren [3]. SchlieBlich besitzt @, keine Nullmoden.
Zuriickkehrend zum eigentlichen Problem, der Untersuchung der (Anti-) Instanto-
nen als asymptotisch stationdre Punkte der Wirkung sowie die Entwicklung des
Wirkungsfunktionals an diesen Punkten, sind verschiedene Dinge zu beachten:

1. Fiir T — oo wird S translationsinvariant, so dafl neben Z.(7) auch Z. (7 — 1)
fiir beliebige 7y stationdrer Punkt von S ist. Dies fiihrt zu einer Divergenz
im GauB-Integral oder dquivalent zu einer Nullmode in der sogenannten Fluk-
tuationsdeterminante. Dies soll zundchst durch einen Faktor P beriicksichtigt
werden, wobei det’ die Determinante unter ,Ausnahme“ der Nullmode be-
zeichnen soll:

D=

z4]

(@] e | —a) ~ NPe 7 (det'0s.) 7 (1+0(n)). (1.34)

Schlielich kann die normierte Eigenfunktion zum Eigenwert 0 auch direkt
angegeben werden:

Bal ) o () = 1 dii(r— 1)
g () = 2o(7) S @ (1.35)

Bei der Integration iiber den Entwicklungskoeffizienten ¢; (O.E. Ay = 0) in
(1.30) ergibt sich daraus offenbar eine Divergenz. Nun ist eine Variation in ¢;
um Z4 gegeben durch

1 dii(r—m)
dr = dey = d 1.36
z = xo(7)dcy e c1, (1.36)
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und andererseits ergibt sich entsprechend fiir 7

ir - 0T, (1 — Tg)dT _ dZo (T — Tg)dT
or dr
! dey = dr (1.37)
S[z]
Sz’
P = T. 1.
— ( 5rF ) (1.38)

Die Integration iiber ¢; wird also durch die Integration iiber die Zeitachse,
d.h. die Zentren der Instantonen und Antiinstantonen ersetzt. Hierbei ist J =
\/S[z4] die Jacobi-Determinante, die sich aus der Variablentransformation
ergibt. Dies fiihrt zu der Ubergangsamplitude

8=

: S|z 2 Slaq] R -

(a|e ™ | —a)~ N (#) Te = (det'@zi) (14 O(h)). (1.39)
T

Allgemein fiithren auch in anderen Theorien Invarianzen der Bewegungsglei-

chungen zu Nullmoden in der Fluktuationsdeterminante, die analog durch In-

tegrationen iiber sogenannte kollektive Koordinaten ersetzt werden.

Zur besseren Ubersicht wird S[Z.] im folgenden einfach als Sy bezeichnet.

. Da lim, ,, T+ = *a, ist fiir hinreichend grofle 7 @,—ci(ﬂ ~ O.,. So unter-
scheidet sich der Operator Oz . (r) in weiten Bereichen kaum von dem Operator
@ia, der das Vakuum beschreibt. Die Abweichungen in einem Bereich um das
Zentrum 7y des Instantons bzw. Antiinstantons sollen durch einen Faktor /C
beriicksichtigt werden, der spédter noch genauer bestimmt wird:

So

ale ™ |—a) ~ Ne *® (det @M))_E (1+ O(h))

— NKe # (det c’)ia)_5 (1+ O(h))
Toe B (L)
2% —FK (Fh) e (1+ O(h)). (1.40)
. Da fiir grofle 7 gilt
‘;—3; — wla—2) (1.41)
(a—z)~e ™" (1.42)
w = +/V"(+a), (1.43)

16sen auch Konfigurationen Zx aus K weit entfernten Instantonen und Anti-
instantonen, wie in Abbildung 1.1 dargestellt, ndherungsweise die Bewegungs-
gleichungen, d.h. sind stationdre Punkte von S mit Wirkung K Sj.
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To, T0, Tog T

Abbildung 1.1: Konfiguration aus drei (Anti-) Instantonen Z3

Hierbei ist zu beachten, dafy die Instantonen und Antiinstantonen sich auf der
Zeitachse abwechseln miissen. Da als weitere Randbedingung

lim Zx = —a lim Zx = a (1.44)
T——00 T—00

vorgegeben ist, muf} die Instantonzahl K ungerade sein. Schliellich liefert jedes
Instanton bzw. Antiinstanton in (1.40) einen Faktor K in der Ubergangsampli-
tude. Die Summation iiber die Positionen der Instantonen und Antiinstantonen

liefert [2], [10]

Es folgt bis auf Korrekturen O(h)

dTl/ dT2 dTK = ' . (145)
% T

NH

2

(+a | e~ | —a)

V(o) 'y TR T

K!
K ungerade

Q

- N (det @ia)_% (exp (TKe~ T) — exp(—TlCe’sT’?))

T2 (i) ’ 6_%1 (exp(TlCe_S_F?) - exp(—TICe_S_f?)) . (1.46)
wh 2

4. Die Naherungen basieren auf der Annahme, dafl die Instantonen bzw. Anti-

instantonen weit voneinander getrennt sind. Um zu priifen, ob die bisherigen

Rechnungen unter diesem Gesichtspunkt konsistent sind, wird die folgende

Uberlegung angestellt. Fiir beliebiges aber festes z wichst die Exponentialrei-

he FK, mit K bis K die Groflenordnung von z erreicht, danach fallen ihre
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Werte mit K schnell ab. Die wesentlichen Beitrage in (1.46) liegen also in dem
S

Bereich, fiir den gilt: K < KTe™#, d.h. fiir die Instanton-Antiinstanton-Dichte

gilt dort

K
= < Ke™ 7. (1.47)

Ist i also klein gegen Sp, d.h. in der semiklassischen N&herung, so sind die-
se Anforderungen gut erfiillt. Hier spricht man auch von der Nidherung des
verdiinnten Gases.

5. Bin Vergleich von Gleichung (1.39), in der die Nullmode in det Oz, durch
eine Integration iiber 7, d.h. einen Faktor T, beriicksichtigt wird, mit dem
Ein-Instantonbeitrag in (1.46) liefert

SO >% det @:I:a 2
K=\|— ~ 14+ O(h)). 1.48
<27rh (det'(’)ii> -+ 0w (145

Insgesamt wurde ausgerechnet, wie die klassischen Instantonlésungen in die Uber-
gangsamplitude (a | e~ % | —a) bei Entwicklung bis O(h) eingehen. Die dabei auf-
tretenden Rechnungen bzw. Strukturen sind auch in komplexeren Theorien anzutref-
fen, so dafl hier noch einmal die wesentlichen Komponenten des K-Instantonbeitrages
aufgeschliisselt werden:

K!
1 1 ks det' Ay \ 72
ﬁi( —271'71)1{6 3 /dTl.../dTKJ(Ti) < detA0> .

In diesem Zusammenhang werden die K-Instanton- und Vakuumfluktuationsdeter-
minaten, die oben als Produkte dargestellt werden, durch det' Ax und detl, zu-

sammengefaft. Dariiber hinaus wird die Rolle der Zeitkoordinaten als kollektive
Koordinaten, entspringend aus der Zeittranslationsinvarianz, deutlich. Die Substitu-
tion zu den kollektiven Koordinaten liefert schlieBlich die Jacobi-Determinate J(7;).
Vor dem Integral driickt der kombinatorische Faktor % die Ununterscheidbarkeit
der Instantonen aus, wihrend der Exponentialfaktor die Ndherung nullter Ordnung
beinhaltet.

1.2 Instantonen in Eichtheorien

Auch in Eichtheorien existieren Instantonlésungen, die nun exemplarisch fiir SU(2)-
YANG-MiLLs-Theorien vorgestellt werden [1], [3], [4], [5], [6], [7], [11], [12], [13]. Die



1.2 Instantonen in Eichtheorien 13
Eichgruppe ist die SU(2), deren Generatoren {o,} mit der Normierung
Tr(c,0p) = 204 (1.49)
die folgenden Kommutatorrelationenen erfiillen
Utl Ub . Uc
) —<. 1.
{2’2] teabe g (1.50)
Damit haben Eichtransformationen die Gestalt
y aea
U(6(z)) = exp (M) : (1.51)

2

wobei {0, } die Pauli-Matrizen sind. Die zentralen Gréfen dieser Theorie sowie deren

Verhalten unter Eichtransformationen seien hier kurz zusammengestellt:

e FEichfelder

9% 1a

1 2 H

A, — UAU'+UBUY

A =

n

o Feldstdrketensor
9o 0 4
ij - 77}?’“/
= 0,4, —0,A,+[A, A
F, — UF,U"
e Wirkung
S S (FuwF,)
E— 5 5 rLrr vl py
293 py=p
e Feldgleichung (ohne Quellen)

D,F,, =0,F,, +[A,, F,]=0

e Dualer Tensor und Bianchi-Identitat
- 1
o = §E;W>\pF Ap
F, F,,
D,F,, = 0

(1.52)
(1.53)

(1.54)

(1.55)
(1.56)

(1.57)

An dieser Stelle sei die erweiterte Definition eines Instantons im Rahmen einer Feld-

theorie gegeben.
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Instantonen sind nicht-singuldre Losungen der Euklidischen Feld-
gleichungen mit einer lokalisierten Lagrange-Dichte, d.h. sie sind in
Raum und Zeit lokalisierte Objekte und besitzen damit eine endli-
che Euklidische Wirkung.

Daraus ergibt sich die Aufgabe, fiir die Bewegungsgleichung (1.58) Losungen end-
licher Wirkung zu finden. Die letztere Bedingung stellt folgende Anforderungen an
den Feldstdrketensor und damit an die Eichfelder:

F, =% 0 (1.62)
A, =% UB U =—-(0,0)U . (1.63)

Hierbei ist U eine Eichtransformation, die auf der S?-Sphére definiert ist (r sei
der Betrag eines Vektors im Euklidischen Raum E*), d.h. sie muf} nicht notwendi-
gerweise analytisch auf E* fortsetzbar sein. In jedem Fall wird A, jedoch auf S3,
zu einer reinen Eichung. Im folgenden werde S3, im E* als S3, = bezeichnet. Be-
Snys in die Menge der Nullstellen des
Feldstédrketensors beziiglich A,. Letztere sind aber gerade durch die Elemente der
Form U(8,U™") aus der Eichgruppe SU(2) gegeben, d.h. durch den Gruppenraum
der Eichgruppe. Da dort jedes Element die Darstellung

trachtet werden hier also Abbildungen von S

3

3
UZUO+iZUjUj ZUJ? = (164)
j=1

i=0

hat, ist der Gruppenraum eine S*-Sphére, parametrisiert durch den Einheitsvektor

3

¢ bezeichnet werden.

u. Sie soll kiinftig mit S

1.2.1 Homotopie und Windungszahl
Grundbegriffe

Instantonlésungen in Eichtheorien kénnen wie im eindimensionalen Fall in Funk-
tionenklassen eingeteilt werden. Die Elemente einer solchen (Homotopie-) Klasse
zeichnet dabei aus, dafl sie durch stetige Deformationen auseinander hervorgehen.
Dies wird im folgenden genauer festgelegt.
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Definition:

X, Y seien topologische Rdume
fo, f1:X — Y stetige Funktionen
fo und f; heiflen homotop,

=3 F: X x[0,1] — Y stetig
F('T,O):fO(m)
F(m’l):fl(x)
VzelX.

Dies definiert eine Aquivalenzrelation, die Aquivalenzklassen heifien
Homotopieklassen.
Beispiel:
Fiir X = Y = S! sind die folgenden Abbildungen Repriisentanten der Homotopie-
klassen der Abbildungen von S! nach S!:

0,2r] — {ew}ﬂeR
6 —s 99— (eio)Q
Die Homotopieklassen werden durch eine Windungszahl Q € 7Z indiziert.

Satz:

Alle Abbildungen von S” nach S? (D € N) zerfallen in Homotopie-
klassen, die durch eine Windungszahl () € Z charakterisiert werden
konnen [3].

Der Pontryagin-Index

Wie oben festgestellt wurde, liefert die Randbedingung endlicher Euklidischer Wir-
kung bei Instantonlésungen der Feldgleichungen Abbildungen

S3

phys

(191, 192, 193) — U(auUil)('ﬁl, 192, 193),

int

die in Homotopieklassen mit Windungszahl oder auch Pontryagin-Index () zerfal-
len (91, Y5, 93 sind ohne Einschrinkung Polarwinkel in E4). Hier kann nur eine
kurze Einfiihrung der Begriffe geboten werden, ausfiihrlichere Behandlung erfihrt
dieses Thema z.B. in [2], [3] und [7]. Der Pontryagin-Index von A, = U(9,U™") =
—(8,U)U ! ist durch das Oberflichenintegral

1
Q = Y ]{3 do €, Tr(U(8,U YU (O\U U (8,U1)) (1.65)
phys
1
= Tr(A,AyA L
24r? ézhysda"e””” r(dAsd;) (1.66)
1 3
- @9 (1.67)

2



16 Instantonen

gegeben. Hierbei stellt d®g ein invariantes Volumenelement im Gruppenraum G der
SU(2) dar, so daf das Bild einer Windungszahl erhalten bleibt.
Dies wird an einem Beispiel klar:

Ty + iilij'j

UM (z) = (1.68)

||

Der Anschauung entsprechend sollte U(!) die Windungszahl 1 tragen, was wie folgt
nachgerechnet wird:
1 12z
= d L
© 2472 f u |z |4

1 9 Ty

1
- — ¢ dQ

272
= 1.

Dort wird beriicksichtigt, dafl das Volumen der S3-Einheitssphire 272 ist.

Es 148t sich dariiber hinaus zeigen, dal QQ eine Invariante der Homotopieklasse ist
und daB jede Losung der Windungszahl Q homotop ist zu U(@) = (U(l))Q.
SchlieBlich ist der 3-dimensionale Raum E?3, in dem alle Punkte bei Unendlich mit
einem Punkt identifiziert werden, topologisch dquivalent zur S3-Sphére. So unterlie-
gen die Abbildungen dieses Raumes in den Gruppenraum der SU(2) einer analogen
Klassifikation. Als Beispiele fiir Abbildungen mit Windungszahl 1 seien hier

U@@) = exp|—00 ), (1.69)
(22 + \?)2
, (AG + iZ)?
= 1.
U@ = o (1.70)
angegeben, wobei die mit einem Pfeil gekennzeichneten G68en dreidimensionale Vek-
toren sind. Zur Berechnung der Windungszahl wird in dieser Darstellung die Ober-

flachenintegration durch eine Volumenintegration ersetzt:

Q = 2417r2/d3meﬂ,,)\Tr(AuAuA>\) (1.71)
A, = U@)(0,U(&)). (1.72)

Abbildungen mit hoherer Windungszahl Q sind auch hier wieder homotop zu Pro-
dukten der obigen Abbildungen. Diese Darstellung wird bei der Betrachtung von
Tunnelprozessen hilfreich sein.
Zuriickkehrend zu dem urspriinglichen Problem soll die folgende alternative Schreib-
weise fiir Q erarbeitet werden:

1 .
Q=-— / d*zTr (F,WF,“,) . (1.73)

Dies wird in zwei Schritten erfolgen:
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1. Umwandlung des obigen Integrals in ein Oberflichenintegral

2. Identifikation der dabei auftretenden Stromdivergenz 8,7, als Windungszahl-
dichte

q(2) = —p 5T (FWF,W) : (1.74)

Unter Ausnutzung der Bianchi-Identi&t stellt sich der obige Ausdruck dar als

2
—167’1’2(](1‘) =Tr (6“1,)‘7-(28“(141,8)\147- + gAl,A)\AT)> (175)
und
. 1 2
j“ = —@E”V)\TTT A,,(@AAT + gA)\AT) (176)
q(r) = Ouju (1.77)
Q = / d*zd,j, (1.78)
- ]( do,j,. (1.79)
Sphys
Unter Beachtung der Randbedingung F,,(r = co) = 0 ergibt sich:
83 1
Ju = meuVATTT(AVA)\AT) (180)
1
Q= 5 ﬁ | doycunr Tr(A, AyAr). (1.81)

phys

Mit dem asymtotischen Verhalten der A,

A, =T UOBUT) (1.82)
folgt
1
Q=34 ]g doueuns Tr(UB,U U HU(9,U ), (1.83)

phys

so daf} die urspriingliche Formel fiir die Windungszahl reproduziert wird.

1.2.2 Losung der Feldgleichungen

Zunéchst einmal gilt unter Beachtung der Tatsache, daf F),, antihermitesch definiert

wurde,

— /d‘*xTr((FW + F,,)?) >0, (1.84)
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und mit Tr(F,,F,,) = Tr(F,F,,) folgt

_ / d2Tr((F)) > T / A 2Tr(FoF), (1.85)

womit sich die Abschitzung
Sg > —|Q| (1.86)

ergibt. Sg wird also minimal fiir den Fall

F,, =+F,, (1.87)

Die selbst-dualen bzw. anti-selbst-dualen Konfigurationen extremalisieren Sy und
16sen damit die Bewegungsgleichung. Dies wird auch direkt mit Hilfe der Bianchi-
Identitdt D,F),, = :FDMFW = 0 ersichtlich. Jedoch miissen nicht alle Lésungen
selbst-dual bzw. anti-selbst-dual sein. In jedem Fall stellen die selbst-dualen bzw.
anti-selbst-dualen Losungen aber das absolute Minimum der Wirkung im jeweiligen
Q-Sektor dar. Als Losung dieses Problems mit Windungszahl Q=1 sei nun folgendes
Eichfeld als Instanton angegeben:

Au(z) = (L> U@,U™") (1.88)

r2 + A2
U(z) = Zot10 (1.89)
T
r? = xi+ 7% (1.90)

Hierbei ist A ein beliebiger Parameter, der i.a. als Instantongrdfie oder -radius inter-
pretiert wird. Er resultiert aus einer Skaleninvarianz der Feldgleichungen, die sich
dadurch auszeichnet, dafl mit A,(z) auch AA,(Az) fiir A # 0 die Gleichungen 16st.
Fiir 7 > X geht A, offenbar in eine reine Eichung iiber, wie es die Randbedingungen
erfordern. Es existieren auch exakte Instantonlésungen mit beliebiger Windungszahl
Q. Werden Instantonen und Antiinstantonen nicht unterschieden, so gibt |Q| gera-
de die Instantonzahl K an. Zusétzlich werden auch wie im quantenmechanischen
Fall Superpositionen der Ein-Instantonlésungen als ndherungsweise Losungen der
Bewegungsgleichungen betrachtet.

1.2.3 Vakuum-Tunnelprozesse und #-Vakuum

Analog zum quantenmechanischen Fall soll nun festgestellt werden, zwischen welchen
klassischen Vakuumzustinden eine zeitliche Entwicklung der Instantonlésungen er-
folgt [3], [12], [13]. Hierbei ist das Vakuum durch die Bedingung F),, = 0 definiert.
Bisher wurde als Randbedingung gefordert, dafl das Vakuum auflerhalb einer hin-
reichend grofien Sphiire vorliegt. Aquivalent kann auch die Annahme des Vakuums
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auferhalb eines geniigend groflen Zylinders gefordert werden, d.h. fiir die Region, in
der

T T

gilt. Nun soll die Eichfixierungsbedingung
Ag(z) =0  Vz (1.92)

erfiillt sein. Damit bleibt jedoch weiterhin die Freiheit erhalten, zeitunabhingige
Eichtransformationen durchzufiihren

WU([E) = 0 (1.93)
Ay — U@ AU @)+ U(@) (60U (%)), (1.94)

so dafl das Vakuum durch ein zeitunabhéngiges reines Eichfeld beschrieben wird:

Ailw) = 4(F) = U@)@OU (@) = —(QU @)U (). (1.95)

Zur Zeit t = — T kann die verbleibende Eichfreiheit genutzt werden, um z.B. A;(Z) =
0 zu wihlen (durch U(Z) = 1). Mit der Vakuumbedingung F,, = 0 folgt Fy;, =
0o A; = 0. Damit verschwindet das Eichfeld fiir den gesamten Bereich auflerhalb des
Zylinders, d.h. im Vakuum. Der Schnitt durch den Zylinder bei ¢ = —% entspricht
so einer dreidimensionalen Scheibe deren Begrenzung mit einem Punkt identifiziert
werden kann. Die Eichtransformationen auf einer solchen Scheibe kénnen wie oben

diskutiert durch folgende Formel (bis auf Homotopie) angegeben werden:

ITEG
UlZX)=exp|n—--]. 1.96
@) ((52“2)2) (1.96)
Die Vakuumzustdnde zerfallen damit ebenfalls in verschiedene Homotopieklassen,
die durch eine Windungszahl n indiziert werden. Sei also {|n)} die Menge der Va-
kuumzustdnde. Die Behauptung ist nun

APHE gy = —o0) = Ai(#)  von  |n) (1.97)
Ainst(Z 2y = 00) = A7) von In+ @), (1.98)

wobei eine genauere Begriindung in [13] gegeben wird.

Eine Instantonlésung der Windungszahl Q verbindet offenbar klassische Vakua,
die sich in ihrer Windungszahl um Q unterscheiden. Das klassische YANG-MILLS-
Vakuum ist also unendlich entartet, in der quantisierten Theorie treten jedoch Tun-
nelprozesse auf, so daf der tatsichliche Vakuumzustand eine geeignete Uberlage-
rung der klassichen Vakuumzustinde ist. Die Vakuum-Vakuum-Ubergangsamplitu-
den sind durch (h=1)

(nle~ T |y = / (dAlg-n mexp (—S) (1.99)
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gegeben. Die Vakuumzustinde {|n)} verhalten sich unter Eichtransformationen U()
mit Windungszahl 1 folgendermaflen

UMD |n) = |n + 1), (1.100)
wahrend Eichinvarianz
W H =0 (1.101)

bedeutet. Der neue Vakuumzustand muB eine geeignete Uberlagerung der klassischen
Vakuumzustidnde sein und insbesondere Eigenzustand von H. Aufgrund der obigen
Kommutatorrelation mufl er aber auch Eigenzustand von U™ mit Eigenwert der
Form =% sein ( U™ ist unitér). Damit muf der neue Vakuumzustand |§) die Gestalt

6) =) e™’|n) (1.102)

n

haben. SchlieBlich soll die Vakuum-Vakuum-Ubergangsamplitude im Pfadintegral-
formalismus bestimmt werden:

(©'|e 7T |6) = 5(6 — 6')Z(6). (1.103)
Die Rechnung

<91|67FIT|9> — Zefime’ein0<m|efﬁT|n>

— Ze—i(m—n)Beim(B—o’) /[dA]m—ne_SE
= 50-0) ) e / [dA]ge™5E

Q=m—-n

liefert

Z(#) = ZQ:/[dA]Q exp (—/Eeffd4m> (1.104)

0
1672

P (FWFW) . (1.105)

Im Minkowskischen Fall fiihrt dies auf die effektive Lagrange-Dichte

Legs =L+ ——Tr (FuF™). (1.106)

1672

Fiir  # 0 ist die effektive Lagrange-Dichte nicht invariant unter P- und T- Transfor-
mationen, so daf} die entsprechenden Symmetrien in dieser Theorie gebrochen sind.
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Bemerkenswert ist, dafl jedes #-Vakuum eine ,eigene Welt“ darstellt, die nicht etwa
eine Anregung eines einzigen Vakuums ist. Die unterschiedlichen #-Vakua sind phy-
sikalisch nicht verbunden.

Dies wird durch folgende Uberlegung klar, wobei U(!) eine Eichtransformation und
B einen beliebigen physikalischen Operator représentiert.

[UW Bl =0

= 0 = (#|uY,B])
= (#|BIO)(” —e )
“Z° (9|BJo) = 0.

1.2.4 Die Bedeutung der Radiuskoordinate A\ unter den kol-
lektiven Koordinaten {¢;}

In diesem Abschnitt ist zu iiberlegen, welche Form die Zustandssumme Z in Sat-
telpunktsniherung haben mufl. Dabei wird nicht zwischen Instantonen und Antiin-
stantonen unterschieden, so dafl die Windungszahl ) einer Instantonlésung gleich
ihrer Instantonzahl K ist. Betrachtet wird ein K-Instantonbeitrag in Anlehnung an
die Ndherung des verdiinnten Gases [14]:

det AK) " (1.107)

1 k5
Zx = 77(Vamgo) e tat /d@J(&) < detA,

Hierbei sind

det' A nullmodenfreie K-Instanton-Fluktuationsdeterminante
detAy  Vakuumfluktuationen

So Ein-Instanton-Wirkung
m Anzahl der kollektiven Koordinaten &;
J Jacobi-Determinante.

Jede der kollektiven Koordinaten {¢;} reprisentiert eine Invarianz der Feldgleichun-
gen. So sind u.a. Integrationen iiber die Raum-Zeit sowie das Gruppenvolumen ent-
halten. Dabei moglicherweise auftretende Divergenzen bereiten keine Probleme, da
ohnehin eine Normierung auf das betrachtete Volumen bzw. die verstrichene Zeit vor-
zunehmen ist, um die entsprechenden Wahrscheinlichkeitsdichten bzw. Ubergangsra-
ten zu erhalten. Die Koordinaten unter den {¢;}, die die Raum-Zeit parametrisieren,
werden mit {a;} bezeichnet, wobei j € {1,..., K} die Instantonkoordinaten nume-
riert.

Im Rahmen einer Eichtheorie sind unter den kollektiven Koordinaten {¢;} auch die
Groflen- oder Radiusparameter {A;}. Liegen Instantonen mit beliebigem Radius vor,
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so divergiert das Integral iiber diese Koordinaten. Im allgemeinen wird dieses Pro-
blem durch die Einfithrung eines willkiirlichen Cutoff im Integral umgangen. Dies
hat allerdings nur dann eine Rechtfertigung, wenn die Verteilung der Radien bei
groflen Werten hinreichend schnell abfillt. Abgesehen von den Inkonsistenzen im
Zusammenhang mit der Renormierungsgruppe stellt sich die Frage, an welcher Stel-
le ein Cutoff zu guten Ergebnissen fiihrt.

Bevor weiter auf diese Probleme eingegangen wird, ist noch zu beachten, daf sich die
Kopplung bei der Renormierung der Determinanten in Einschleifenordnung verhilt

wie
! — ! 200 In(1) (1.108)
3 3 “Poin{p), .
% 9°(w
was mit den Ersetzungen
Kk = 206050

1
b= e (g )

zu
1 .
ﬁ(\/%g)—mKAK“ / dg;e~VE) (1.109)

fiihrt mit einem zunéchst nicht niiher bestimmten Potential U [1], [14]. Hierbei wird
die Abhéngigkeit der Kopplungskonstante g von den kollektiven Koordinaten {&;}
vernachléssigt und entsprechend nicht bei den Integrationen beriicksichtigt.

1.3 Das Instanton-Hard-Core-Gas

Um an dieser Stelle weiterzukommen, sind einige Vereinfachungen nétig. Zunéchst
wird Zx (V') unter Hinzunahme von Dimensionsargumenten folgendermafien geschrie-

ben:
1 dalid); & ,
70V = A)\Inf ({23 h{N})
)= g KT /H e 110
= A”K/Hda X! HA”’” vl Uas ] (1.110)
j=1

C Integral iiber die verbleibenden kollektiven Koordinaten
eines Instantons
__2¢C

¢ T (V2mg)m

v Raum-Zeit-Dimension.
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Die Raum-Zeit- und Radiuskoordinaten unter den {¢;} werden nun explizit betrach-
tet, wihrend der Beitrag der verbleibenden kollektiven Koordinaten durch C re-
prasentiert wird.

Da k —v —1 > 0 [14], liegen die wesentlichen Beitrdge zu Zx (V') in einem Bereich,
in dem die Instantonradien {)’} groff sind. Dies entspricht der Vorstellung eines
dichten Gases aus Instantonen an den Positionen {aj} und fiihrt zu Divergenzen
in den \'-Integrationen. Dies soll hier nicht durch einen willkiirlichen Cutoff in den
Radiuskoordinaten behandelt werden, der insbesondere nicht konsistent ist mit den
Vorgaben der Renormierungsgruppe [15]. Eine dynamische und selbstkonsistente Be-
schrankung der Instantongréfien kann auch durch die Einfiihrung einer repulsiven
Wechselwirkung bei kleinen Abstdnden erzwungen werden. Die einfachste Realisie-
rung ist durch die Ersetzung von U durch ein Hard-Core-Potential U gegeben. Die
Instantonen kénnen sich so nicht durchdringen und sind entsprechend nicht in der
Lage, sich beliebig auszudehnen. Mit der Anschauung eines Gases harter Kugeln mit
Radien {\;} an den Raum-Zeit-Punkten {a}} ergibt sich der folgende Ausdruck fiir
Zg(V):

Zg(V) = A”K/Hda X! HX” vlemUash X (1.111)

— _AKK/Hda d)\. HX“ e o({aj},{\;}) (1.112)

j=1

\
N

Loy —alll > (2)7 (5 +X) Vg
1 Lyy12 _ .
o({a}}, {\}) = 2. %< 3V'Y p=1,.,v Vj

1
v

1 .
3. 0< N <3 (BV) V)
[ 0 sonst
v = (’;il) Volumen der Einheitskugel in v Dimensionen
3
7')\’]'7 effektives Volumen eines Instantons
V! Beobachtungsvolumen.

Die Integrationen bzgl. der Koordinaten {a} erfolgen iiber das Volumen V', dieje-
nigen bzgl. der Parameter {\}} erfolgen iiber R".

Nun ist es zweckméfig mit dimensionslosen Gréflen zu arbeiten. Dazu werden alle
Lingen in Einheiten von A~! gemessen, was der Umskalierung

o= A7)\
a = Ala
Vi = AV
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entspricht. Damit stellt sich Zx (V') dar als:

2cv) = 5 [ Tldasdn T~ 0CGag) 1) (1113)

1 b 1771
o({a;}, {\}) = 2. lajl <3V ;
3. 0< ) <1(BV)y Vj

0 sonst.

Abbildung 1.2: Instantongas mit K = 14, v = 2 im Volumen V'

Abbildung 1.2 stellt eine mogliche Gaskonfiguration aus harten Kugeln dar. Hier
ist zu beachten, dafl sich neben den Positionen auch die Radien der Teilchen im
Rahmen der einschrinkenden Randbedingungen, die durch ©({a;}, {};}) festgelegt
werden, beliebig einstellen kénnen. Da aber auch die Instantonzahl K variabel sein
soll, ist ein groflkanonisches Ensemble von Instantonen mit der Zustandssumme

Z(V) = f: Ze(V)  Zo(V) =1 (1.114)

zu untersuchen, wobei Pk (V') die Wahrscheinlichkeit bezeichnet, daf§ das offene Sy-
stem K Instantonen enthéilt:

(1.115)

Von Interesse ist nun die Wahrscheinlichkeit, mit der ein Instanton mit Radius A in
einem solchen Ensemble auftritt. Dazu werden zunichst allgemeinere Uberlegungen
angestellt.
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1.4 Die Verteilung der Instantonradien

Um die Beschreibung im folgenden méglichst transparent zu gestalten, werden die
Koordinaten eines Instantons zusammengefafit zu

—

Aj = (aj,)\j) (1116)
{435 = (4., 4g), (1.117)

wobei der Frage nachgegangen wird, mit welcher Wahrscheinlichkeit ein Instanton
an der Position A anzutreffen ist. In Systemen der klassischen Statistischen Physik
wird dies in [16] und [17] behandelt.

1.4.1 Die Verteilung im kanonischen Ensemble

Fiir die folgenden Uberlegungen wird zunéchst angenommen, daf die Instantonen im
vorliegenden Gas unterscheidbar sind. Dann wird die Wahrscheinlichkeit, Instanton
1 im Volumenelement dA; bei ffl, Instanton 2 in dA, bei ffz ... und Instanton n mit
n < K in dA,, an der Stelle /f anzutreffen, beschrieben durch die Randverteilung

CK [dAni1dAk TT=; A5 7 '0({a},{\})

Z2507) (1.118)

mit

K
ZE(WV) = CK/dAl...dAK 12X 'o(a} i} = K1Zx (V). (1.119)
j=1
In einem né&chsten Schritt stellt sich die Frage nach der Wahrscheinlichkeit, ein
beliebiges Instanton in dA; an Position A1 ... sowie in dA,, an der Stelle A vor-
zufinden, da sie tatsdchlich nicht unterscheidbar sind. Mit Hilfe leichter kombinato-
rischer Argumente wird deutlich, dafl die entsprechende Wahrscheinlichkeitsdichte
P (A, ..., A,) gegeben ist durch
K K—v—1
L A P S JdAn-dAx H; A5 7 OUash (1.120)
(K= n) 24(V)
Da nun speziell von Interesse ist, mit welcher Wahrscheinlichkeit ein Instanton mit
Radius A anzutreffen ist, wird der folgende Ausdruck ausgewertet:

Fe(VA) = /dalﬁl(v,ffl) (1.121)
_ R OF ST day T AN T X0y )
N ZL(V)
_ RO T day T AN TTE AT 'Oag) {A)
N ZL(V)
_ gZE A (1.122)

Zx(V)
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mit
ZEV,\) = /Hda, H ), HA” »-19({a,}, {\}), (1.123)

wobei der Ubersichtlichkeit wegen Ax = A gesetzt wurde. Insgesamt ist px auf
die Teilchenzahl K normiert. px ist keine normierte Wahrscheinlichkeitsdichte im
iiblichen Sinn, denn es wird nicht nach der Wahrscheinlichkeit gefragt bei einer
Stichprobe ein Instanton mit Radius A auszuwé&hlen. Vielmehr wird die gesamte
Konfiguration betrachtet und nach der Summe der K Wahrscheinlichkeiten gefragt,
daf} in diesem System das K-te Instanton den Radius A besitzt.

Dies entspricht experimentell der Aufnahme eines Histogramms. Der Bereich der
moglichen Radien wird entsprechend einer vorgegebenen Auflésung diskretisiert. Fiir
eine gegebene Konfiguration von K Instantonen mit Radien Ay, ..., Ag liefert jeder
dieser Werte einen Beitrag zum Histogramm. Somit tragt eine Konfiguration aus K
Instantonen mit einem relativen Gewicht K zum Histogramm bei. Dieser Faktor wird
wichtig, wenn das groflkanonische Ensemble betrachtet wird, bei dem K variabel ist.

1.4.2 Die Verteilung im groflkanonischen Ensemble

Wird nun ausgehend vom kanonischen Fall eine Variation der Teilchenzahl zugelas-
sen, so werden Konfigurationen mit Teilchenzahl K entsprechend der Wahrschein-
lichkeit ihres Auftretens bei der Aufnahme eines Histogramms beriicksichtigt. Da die
Wahrscheinlichkeit, in einem offenen System K Instantonen anzutreffen, gegeben ist
durch

Zx(V
Pr(V) = ZK((V)), (1.124)
folgt
/_)n(ffl, A)n) = Z PK Ala ffn)
K>n
1 R -
= Z—V)KMZK(V)pK(Al,...,An). (1.125)

Entsprechend wird offenbar die Wahrscheinlichkeit, ein Instanton mit Radius A bei
der Erfassung eines groflkanonischen Ensembles zu finden, durch folgenden Erwar-
tungswert beschrieben

pV,A) = D Pr(V)px(V,A) (1.126)

= —— Z KZE4V, \), (1.127)
K:
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wobei p aufgrund der gewidhlten Betrachtungsweise auf den Erwartungswert der
Instantonzahl normiert ist

/oo (V. A)dA = (K)y, (1.128)

welcher linear mit V' wéchst. Die Wahrscheinlichkeitsdichte p ist also durch das
betrachtete Volumen V' zu dividieren, womit sich der gewiinschte Ausdruck fiir die
Verteilung der Instantonradien in einem groflkanonischen Ensemble ergibt:

p(V, )

p(V,A) = V

eV, \) (1.129)

K

In den folgenden Kapiteln wird die Wahrscheinlichkeitsverteilung p sowohl mit Hil-
fe von analytischen als auch numerischen Ansitzen untersucht werden. In einem
ersten Schritt wird nun der eindimensionale Fall betrachtet, der sich im thermody-
namischen Limes noch analytisch exakt behandeln 1a8t.

Um Abhéngigkeiten klar zu machen, soll dabei im folgenden der Ausdruck fiir die
Funktionswerte p(V, \) weiter gefait werden und ggf. die Funktion p selbst bezeich-
nen.



Kapitel 2

Das eindimensionale
Instanton-Gas

Ziel dieses Kapitels ist es, Aussagen iiber die Verteilung der Instantonradien in einem
eindimensionalen Gas zu machen, wie es allgemein in Abschnitt 1.3 eingefiihrt wurde.
Die K-Instantonbeitrdge zur Zustandssumme nehmen in diesem Fall die Form

2e() = 7 [ TTdasin, T %0 as ) 0D 2.1)

L a;—ail > (3) N+ X)) Viyj
1 2. la;|<iL Vj
NS SN
: j< L
0 sonst

an, wobei die Beobachtungslédnge hier mit L bezeichnet wird, wihrend das Volumen
der Einheitskugel in einer Dimension gerade 2 ist.

In einem ersten Schritt werden nun die Integrationen im kanonischen K-Instanton-
Ensemble durchgefiihrt und deren Resultate im groflkanonischen Formalismus ent-
sprechend Kapitel 1.4 zur Verteilung p(L, ) aufsummiert. Danach wird ein im ther-
modynamischen Limes exakter Ausdruck p()) fiir die so gewonnene Verteilung er-
arbeitet.

2.1 Die Verteilung der Instantonradien

Bei der Auswertung der Integrale in Formel (2.1) zur Bestimmung der Verteilung
p(L, \) hilft die Anschauung einer gewichteten Integration iiber die Konfigurationen
von K Stdben an den Orten {a;} mit Lingen {7);}. Die Randbedingungen geben
vor, daf} sich diese Stibe weder gegenseitig {iberlappen diirfen, noch ein Austreten
aus dem Bereich der Lange L moglich ist.
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a as as Ay
T\ Ty T3 T

Abbildung 2.1: Eindimensionales Instantongas, K = 4

In Abbildung 2.1 ist dies exemplarisch fiir den Fall K = 4 dargestellt. Insbesondere
liegt dort bereits ein geordnetes Tupel vor, wie es bei der Auswertung der Integrale
herangezogen werden wird. Im weiteren werden folgende Schreibweisen verwendet:

a = K—2 (2.2)

) = g [ [Tdadn T x0da) () 23)

) = 5 [ [Tdweliah b, (2.4

Integration iiber die Instantonpositionen
Die Berechnung von Ik (L) liefert die Integration iiber die Positionen der Instanto-

_ L—%)\K aK—%)\K—%)\K,1 az—%)\z—%)q
IK(L) = / dCLK/ dCLK_l / da1 (25)
u(K—1) u(K—2) FA1

nen:

. : T
u(i) = TZ)\]' + 5/\i+1.
j=1

Auf der rechten Seite der obigen Gleichung wird bereits ein angeordnetes Ensemble

von Instantonen betrachtet, so da§ der kombinatorische Faktor -, der ihre Ununter-

KD
scheidbarkeit ausdriickt, entfallt. Induktiv wird der Wert dieses Integrales ermittelt

zu (vgl. Anhang A)

Te(L) = %(L O (2.6)

Dies liefert also anschaulich das freie Volumen fiir K ununterscheidbare Stibe auf
einer Strecke der Lange L. Auszufiihren bleibt die
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Integration iiber die Instantonradien:

K

— a K
W = [ HdA A SN =724 2.7
_ 1 7 Z._ X < L
0({N\}) = J=179 = 2.8
({25h) { 0 sonst. (28)
Dies kann einfacher geschrieben werden:

e LvEs K x
Ie(L) = ﬁ/0 d)\K.../O @ -5 (29)

j=1 j=1

Offensichtlich kann dieser Ausdruck nur fiir &« > —1 konvergieren. Fiir « € Ny kann
dies sukzessive durch partielle Integration mit dem Ergebnis

(e 1

(a+2)K
(o + 2)K)i rlasK © @ €No (2.10)

IK(L) =

ausgewertet werden. Um das Integral fiir beliebige reelle Exponenten o > —1 zu
bestimmen, ist die Formel [18]

/0 21 — z)bdz = F(lcf(z i)l;(f;r)l) (2.11)

von Nutzen und liefert die Erweiterung der obigen Beziehung (o € R, a@ > —1, vgl.
Anhang A)

TelD) = ey e 212
Waihrend nun
Zx(L) = C¥Ik(L), (2.13)
ist auch Z5¢9(L, \) mit
ZYL,\) = CRIEY(L, \) (2.14)

von Interesse, was gegeniiber den Gréflen Zx und Ix dem Auslassen einer A-Integration
entspricht. Die Rechnung ergibt hier (o € R, @ > —1, vgl. Anhang A)

(o +1))&E1 1 _
Ired L.)\) = ( (L — 7\ (a+2)(K 1)—|—1. 21
EN = N+ 2)(K - 1) 1 2) s (=Y (2.15)
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Die Verteilung p(L, \)
Zu betrachten ist nun

p(L,\) = . i KZ%Y(L, \) (2.16)
Z(L) = iZK(L), (2.17)

wobei Zy(L) = 1 in Ubereinstimmung mit (2.12), so daB p(L, ) die Form

annimmt und sich mit der Ersetzung

CT'(a+1)
== T (219)
darstellt als
p(L,X) = 21 KOV ™ ey A (L — )l (2.20)
’ > %=V T LT

(¢ €R, a> —1).

2.2 Der thermodynamische Limes

Die im vorangegangenen Abschnitt hergeleitete Formel (2.20) ist in dieser Form
exakt, jedoch konnen ihr nicht ohne weiteres Informationen iiber die Verteilung der
Instantonradien entnommen werden. Nur Aussagen iiber das Verhalten von p(L, \)
fiir kleine Werte von A sind direkt zu gewinnen. Hier verschwindet die Verteilung
nach einem Potenzgesetz, d.h.

p(L,\) 20 const. A (2.21)
_ In(p(L, X))

Um dies zu sehen, wird der Ausdruck (L — 7)@+2(E=D+1 im Zzhler von p(L, ) in
eine Taylorreihe um A = 0 entwickelt. Dies bringt das Ergebnis

p(L,A) = co(D)A* — cr (DA™ + co(D)A*? — .. ¢ €RT, (2.23)
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und schliefilich

a _ 2 _
lim In(p(L, \)) ~ im In(A%(cg — s A+ 2 A? — ..))
A—=0 ln()\) A—=0 ln()\)
— lm aln(A) +1In(cog — 1A + caA? — ...)
A—=0 ln()\)

= «.

p verschwindet also fiir kleine A gerade mit der Potenz, mit der die A-Faktoren in
(2.1) auftreten. Dies ist unabhingig von der Grofle L.

Interessanter fiir die Anwendung ist jedoch das Verhalten der Wahrscheinlichkeits-
dichte fiir grofle Instantonradien. Aufgrund der Normierung sollte sie nach Errei-
chen eines bzw. mehrerer Maxima wieder abfallen. Zu fragen ist, in welcher Form
die Verteilung dort verschwindet. Bei numerischer Auswertung des Ausdrucks fiir
p(L, ) wird deutlich, da8 die Orte der Maxima der Verteilung schnell, nach gewis-
sen Einschwingprozessen fiir grofiere Exponenten «, mit wachsendem L gegen einen
endlichen Wert streben. In Abbildung 2.2 wird deutlich, daf sich der Ort des Ma-
ximums fiir den Fall, = 1,7 = 2,C = 1, im thermodynamischen Limes, d.h. fiir
grofle L, gegen einen Wert von etwa 0.79 bewegt.

0.8
e b b o4 o+ o+ o+ o+
078 | P 4
Lt
.
n
076 | 4
.
0.74 + e
Amaz (L)
von 0.72 | 4
p(L, )
0.7 F 4+ i
0.68 |- 4
0.66 |- 4
1 1 1 1 1
0 50 100 150 200 250 300

L

Abbildung 2.2: Ort des globalen Maximums der Verteilung p(L, A) fiir a = 1,
7 =2, C =1 in Abhingigkeit von L

Es besteht Anlafl zu der Vermutung, dafl die Verteilung selbst im thermodynami-
schen Limes gegen eine Grenzverteilung konvergiert, d.h.

p(L, ) =5 p(), (2.24)
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so daB zu untersuchen ist, wie sich der Ausdruck (2.20) fiir grofie L verhilt. Hierzu
wird die folgende Niherungsformel fiir die I'-Funktion herangezogen

M(r+1) ~ Var(s + ; I ) (2.25)

wobei § von der Groflenordnung eins ist. Die Wahl von § ist im Falle groflier Werte
von z bzw. im thermodynamischen Limes der zu betrachtenden Groflen irrelevant.
So wird hier § = 0 gesetzt, um die Rechnungen moéglichst einfach zu gestalten.
Durch Einsetzen von (2.25) und Anndherung der Summen durch Integrale folgt
B=a+2=k)

C [ dk(k -+ 1)y*(Bk + 3)Bk+3)efhtiya ([ — )0k

L))~
P( ) ) fo ﬂk+ —(Bk+1 3) Bk [ Bk+1

(2.26)

Bei der Betrachtung des Verhaltens der Integranden im Zihler und Nenner des
obigen Ausdrucks wird deutlich, daf beide fiir hinreichend grofle Werte von L ein
sehr ausgeprigtes Maximum besitzen. So erscheint eine Sattelpunktsentwicklung in
diesen Punkten sinnvoll.

1. Sattelpunktsentwicklung des Nenners

D(L) — L/ dke (Bk+5 )ln(ﬁk+%)+,3k(1+ln(fyﬁl3L)) (227)
0
Mit den Methoden der Analysis wird der Ort des Maximums bestimmt zu
1, 1 1
kmaaf: =—(y8L - y 2.28
S0FL=3) (228)

so daf} nun die Entwicklung des Exponenten um diesen Punkt liefert:

1 b o Pk Emae)?
D(L) ~ Le0"2-3) <7EL) / dke = . (2.29)
0
Mit der Substitution § = k — k4, und unter Beriicksichtigung von
2
[31 > 0
2v8 L
kmaw > 0

Q
b{
@
)
Q=
T
l\\’JL—l
—
=2

1 —% o0 1 82
D(L) /?L) / dde =Pt (2.30)

} Do\ A%
= LelPIm3) (fyﬁL) Vo (7 ) : (2.31)
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Also:

ARSI
B

2. Sattelpunktsentwicklung des Zihlers

8=

D(L) ~ (2.32)

Mit der abkiirzenden Schreibweise L = L — 7\ nimmt der Zihler die Gestalt
N(f/, A) — BECAQ /OO dke*(,@k#»%)1n(,3k+%)+,3k(1+ln(fy%f/))+1n(k+1) (233)
0

an. Die Bestimmungsgleichung fiir den Ort des Maximums ist gegeben durch

3 1

BIn(Bkas +3) = 7 = B(yA D) (2:34)
und mit der Abschitzung fiir grofie L
3 1
1 kmaz Py )
BIn(Bhmaz +3) > g
wird sie ndherungsweise gelost durch
1 1.3
kmaz =~ = | v L — =} . 2.35
5 (#E-3) (239

Analog zur Behandlung des Nenners wird auch hier der Exponent im Inte-
granden entwickelt (§ = k — Koz ):

N(L,\) ~ ei%xxe(”éi‘%) (véi)g (»,éi - g + ﬂ) /OO dse—5 7

_kmam

(2.36)
Da nun
kmaz >> 0
5 1 1
0" =—71z T T~ 0,
voL  (y?L—35+B)?
148t sich der obige Ausdruck als Gauf3-Integral auswerten.
= - Cv/2 5i 1. 1.3 1 1 2
N(L,\)~ L - WAae(vﬁLf%)(yﬁL)*%(»yﬁL —3 —1—[3)( =+ 1= " 2)
v°L (y?L—35+0)
~ C'v/2 5i 1 1~ 3 oL -’
= EETIAO D (B E) T (3 E - S 4 ) 14—
s (v2L—35+5)
CV2 Yin 1, 1= 3 5L .
27T)‘a (’yﬁL_%)’Y 5(’)’;[/—54'[3) 1+ 1~7 3
B (VL — 5+ B)?
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3. Die Verteilung p(\)
Zusammengetragen ergeben die Resultate der obigen Rechnungen
| ! —3
AP L35 (45 [, — 3 4 <1+ eLds >
C Y (/7 2 ﬂ) (’Y%E*g‘h@ﬁ
p(L, /\) ~ 1
/B Le('YBL_%)
Coo_br?L-3+ L -
— )@ —»yﬁr)\7 . 2 ﬁ (1 + . ~'7 . ) (2_37)
s v L (v2L — 5 + B)?
Mit L = L — 7 folgt im thermodynamischen Limes
sh—3 4
m LT t8 (2.38)
L,L—oco 7BL
o\
AL
lim (14— = 1, (2.39)
Lo (VAL - § + B)*

womit ein Ausdruck gewonnen ist, gegen den die Verteilung (2.20) fiir grofie

L konvergiert:

p(A)
Mit den Ersetzungen

B
gl

C

g

1
)\aeffyﬁ A

o+ 2
CT(a+1)

7-Ot+1

(2.40)

148t sich die Grenzverteilung auch in folgender einfacher Weise darstellen:

C
o+ 2

p(A)

Aaef(CF(Ct‘F].)T) a2 A

(2.41)

Um eine Aussage iiber die Qualitdt der Formel (2.41) machen zu konnen, wird sie
in den Abbildungen 2.3 und 2.4 mit den numerisch aus (2.20) gewonnenen Daten
fiir p(2500, A\) mit & = 1 und a = 10 verglichen (7 = 2,C = 1). Dabei wird deutlich,
daB p(A,2500) in dieser Darstellung bereits nicht mehr von der jeweiligen Verteilung

p(A) zu unterscheiden ist.
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|
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Abbildung 2.3: p(2500, A) aus numerischer Aufsummation sowie Grenzverteilung

p(A) fira=1,7=2,C=1

T
L=2500 +
Grenzverteilung -------

0.08 T T

0.07 -

0.06

0.05 -
PN ;f

0.03 - -

0.02 -

0.01 -

0

Abbildung 2.4: p(2500, ) aus numerischer Aufsummation sowie Grenzverteilung

p(A) fira=10,7=2,C =1

Es ist in diesem Zusammenhang weiterhin interessant, das Konvergenzverhalten, d.h.
die Abweichungen der Verteilungen bei unterschiedlichen Werten von L untereinan-
der und zur Grenzverteilung, zu untersuchen. Entsprechend sind die Differenzen der
Verteilungen p(L, A) fiir L=500, 1000, 1500, 2000, 2500 und « = 1, 10 zur jeweiligen
Verteilung im thermodynamischen Limes in den Abbildungen 2.5 und 2.6 aufgetra-
gen. Dort wird deutlich, in welcher Form die Ann&herung an die Grenzverteilung

tatsdchlich erfolgt.
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0.0004 T T T T T T T

0.0003 |-

0.0002 -

p(L, A) 0.0001 .’/»‘
—p(A)

-0.0001

-0.0002 1 1 1 1 1 1 1 1 1
0

Abbildung 2.5: p(L, \) — p()), L=500, 1000, 1500, 2000, 2500, p(L, \) aus nume-
rischer Aufsummation, p(A) aus Formel (2.41), a =1,7=2,C =1

0.0002

0.00015

le-04 |-

-5e-05

-0.0001 |

-0.00015 L L L . .
0

Abbildung 2.6: p(L, \) — p(\), L=500, 1000, 1500, 2000, 2500, p(L, A) aus nume-
rischer Aufsummation, p(A) aus Formel (2.41), o = 10,7 =2,C' =1

Da die Verteilung der Instantonradien in einem beliebig groflen Volumen von In-
teresse ist, kann im folgenden auf die einfache Formel (2.41) fiir p zuriickgegriffen
werden. Wichtig ist in diesem Zusammenhang zu wissen, dafl die Grenzverteilung
nach potenzartigem Wachstum bei kleinen Argumenten schliellich fiir grofle A ex-
ponentiell verschwindet.

Abschlielend soll p(A) noch einmal in einer Form dargestellt werden, die auf die
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urspriingliche Variable x sowie die Raum-Zeit-Dimension v zuriickgeht, um die For-
mel (2.41) spéter besser in den allgemeinen Fall beliebiger Dimension einbetten zu

konnen. Mit der Beobachtung

a = kK—v-—1
at+2 "= k= b 08
v
ergibt sich
p(\) = g)\n—ze—(cr(n—nr)%,\

(2.42)



Kapitel 3
Monte-Carlo-Simulationen

Nachdem bereits ein Eindruck von dem Verhalten eines Instanton-Gases in einer
Dimension gewonnen werden konnte, soll dieses nun in beliebiger Dimension mit
Hilfe von Monte-Carlo-Simulationen ausgeweitet werden. Nach einigen allgemeinen
Ausfiihrungen zu dieser Methode wird ein geeigneter Algorithmus zur Behandlung
eines groflkanonischen Systems abgeleitet. Schliellich geben die ersten Ergebnisse der
Simulation den Rahmen vor, in dem sich darauf folgende analytische Ndherungen
bewegen konnen.

3.1 Der METROPOLIS-Algorithmus

Der METROPOLIS-Algorithmus stellt einen speziellen Ansatz unter verschiedenen
Monte-Carlo-Methoden dar und wurde zuerst von METROPOLIS et.al. [19] in den
fiinfziger Jahren zur Untersuchung des statistischen Verhaltens von Gasen und Fliissig-
keiten entwickelt.

Ein zentrales Problem, mit dem man in der statistischen Physik konfrontiert wird, ist
die Bestimmung von Mittelwerten in einem hochdimensionalen Konfigurationsraum.
Die entscheidende Idee hierbei ist, bei der Erfassung dieses Raumes bevorzugt solche
Bereiche zu beriicksichtigen, die ein grofles statistisches Gewicht tragen, so dafl das
Problem iiberhaupt erst behandelbar wird. Durch dieses sogenannte ,Importance
Sampling®“ kénnen erhebliche Fehler durch mangelhafte Beachtung grofler Beitrége
im Mittelungsprozess vermieden werden, die nur durch unrealisierbar lange Rechen-
zeiten behoben werden konnten. Die interessierenden Konfigurationen konnen nun
statisch entsprechend ihrem statistischen Gewicht generiert werden. Da die zugrun-
deliegende Verteilung jedoch i.a. nicht bekannt ist, wird sie dynamisch als Gleichge-
wichtsverteilung eines stochastischen Prozesses generiert.

Hier sollen nun die wesentlichen Begriffe eingefiihrt werden, sowie zentrale Ideen

skizziert werden. Umfassendere Literatur zu diesem Thema findet sich unter [20],
211, [22], [23], [24].
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Im folgenden werden Markov-Ketten mit einer Ubergangsmatrix W (X,Y) betrach-
tet, die die Ubergangswahrscheinlichkeiten pro Zeiteinheit angibt, mit der ein Sy-
stem, das sich im Zustand X befindet, in den Zustand Y wechselt. Dabei gibt P(X)
die Wahrscheinlichkeit an, das System im Zustand X anzutreffen. Die Verteilung
P, ;1(X) im Iterationschritt ¢ +1 wird aus der Verteilung P;(X) durch die Operation

Pua(X) =) W(Y,X)P(Y) (3.1)

gewonnen. Es sollen nun verschiedene Anforderungen an die Ubergangsmatrix ge-
stellt werden:

1. Normierung: Es existiert genau eine Nachfolgekonfiguration,

Y WX, Y)=1. (3.2)

2. Ergodizitit: Jede Konfiguration kann erreicht werden,
VX, Y dn>1 wr(X,Y) > 0. (3.3)
(W™(X,Y) bezeichne die Matrixelemente der Matrix W".)

3. Stationaritét: Es gibt eine stationire Verteilung (Gleichgewichtsverteilung)
P fiir die durch W(X,Y") bestimmte Markov-Kette,

Y W(X,Y)P(X)=P(Y). (3.4)

Die Bedingung fiir Stationaritit leitet sich direkt aus der Master-Gleichung ab, die
in differentieller Form die Gestalt

dP(X,t)
Tat zy: ~W(X,Y)P(X,t) + W(Y, X)P(Y, 1) (3.5)

hat. Eine hinreichende Bedingung ist durch die ,,detailed balance” gegeben:

W(Y,X) P(X)
W(X,Y) PY)’ (36)

Es 148t sich zeigen, dafl unter diesen Voraussetzungen bei einer beliebigen Start-
verteilung, d.h. einer Startkonfiguration die nach dieser Verteilung generiert wurde,

Konvergenz gegen eine stationdre Grenzverteilung vorliegt. Diese ist dann eindeutig
durch P gegeben, d.h.

tligloHPt_PH:tliglo;|Pt(X)_P(X)|:0' (3.7)
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In der Praxis wird die Ubergangsmatrix i.a. in zwei Teile zerlegt:

w(X,Y) Vorschlagswahrscheinlichkeit fiir den Ubergang von X nach Y
Sy w(X,Y) =1

axy Annahmewahrscheinlichkeit fiir den entsprechenden Vorschlag

1—axy Wahrscheinlichkeit fiir Ablehnung,

und es ergibt sich die Darstellung

W(X,Y) = w(X,Y)axy X#Y
W(X,X) = w(X,X)axx+ Y w(X,Y)(1-axy)

= WX, X)+ ) w(X,Y)(1-axy). (3.10)
Y#X

Nun ist die Bedingung der Normierung damit direkt erfiillt. Die Frage der Ergo-
dizitdt ist im Kontext des konkreten Problems zu erértern. Um der Forderung der
,detailed balance” gerecht zu werden, wird axy im allgemeinen nach einem Vorschlag
von METROPOLIS folgendermaflen bestimmt:

w(Y, X)P(Y) >

WX Y)P(X) 1)

axy = min <1
Dies liefert auch einen praktikablen Startpunkt fiir Monte-Carlo-Verfahren in der
Physik, da dort oft das Verhéltnis solcher Wahrscheinlichkeiten bekannt ist, wéhrend
aber die Normierungskonstante, also die Zustandssumme, unbekannt ist. Ob ein vor-
geschlagener Schritt im Konfigurationsraum zur Ausfithrung kommt, wird schlief8lich
konkret durch den Vergleich einer Zufallszahl aus dem Intervall von 0 bis 1 mit dem
Quotienten in der obigen Formel (3.11) entschieden.

3.2 Der METROPOLIS-Algorithmus im klassischen
grof3kanonischen Ensemble

Bisher wurde bereits ein grofkanonisches Ensemble von Instantonen untersucht, das
(mit den {iblichen Bezeichnungen) folgender Verteilung gehorcht:

1 K&
Pr(Viay, ..,arx, A1, -y Ax) = ZV) K A70({as} {A}) (3.12)
o

a=kK—-—v—1

1 %

olfa (i) = { |

sonst
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1
1. |la; — a > (i)"()\fm\i) Vi, j
=94 2. |a;-‘| < %V% 1 :11,...,V Vg
3. 0< ) <i(zv)r Vi
Py (V;{a},{)}) ist Wahrscheinlichkeitsdichte auf
> 1 V1 % K
Z V x = (—V)
— 2\
Ubergiinge zwischen Konfigurationen werden zum einen durch Bewegung in den
Koordinaten {a;},{);} induziert, wie es aus dem kanonischen Ensemble bekannt
ist, zum anderen durch die Erzeugung und Vernichtung von Instantonen bzw. In-
stantonkoordinaten. Entsprechend den obigen Vorgaben sollen nun zun&chst die
Vorschlagswahrscheinlichkeiten fiir den Ubergang in eine andere Konfiguration an-
gegeben werden. Besondere Aufmerksamkeit gilt den Prozessen, bei denen die In-

stantonzahl nicht erhalten ist, da diese aus kanonischen Algorithmen nicht bekannt
sind (vgl. [25], [26], [27], [28], [29]).

3.2.1 Vorschlagswahrscheinlichkeiten

Die Bezeichnung der Koordinatenerzeugung bzw. -vernichtung wird hier bewuflt
gewahlt, da Instantonen als ununterscheidbare Objekte aufgefaflt werden, die sich
in beliebiger Grofle darstellen konnen. Die Angabe von Koordinaten entspricht einer
Platzreservierung fiir ein Instanton, jedoch kann keine Aussage dariiber gemacht
werden, welches Instanton sich dort befindet. Den bisherigen Konventionen folgend
werden also Ubergiinge zwischen geordneten Koordinatentupeln zu untersuchen sein,
wobei die in Kapitel 1.4 eingefiihrte Kurzschreibweise

{ANKE = (4, ..., Ak) = (a1, \1), ..., (A, Ak))

benutzt werden soll. Auflerdem muf} festgelegt werden, welcher Verteilung die neu
generierten Koordinaten unterliegen sollen.

Per (@) Erzeugungswahrscheinlichkeit fiir die Raum-Zeit-Koordinaten
Per(A) Erzeugungswahrscheinlichkeit fiir die Radiuskoordinate

I.a. wurde hierbei einfach eine Gleichverteilung im entsprechenden Volumen gewéhlt:

pcr(a) — % (313)
2
pcr(/\) = T (314)
(2v)-

Nun sollen die Vorschldge zur Instantonbewegung und zur Koordinatenerzeugung
und -vernichtung mit gleicher Wahrscheinlichkeit erfolgen, so dafl die entsprechenden

Verteilungen jeweils einen Faktor % enthalten.
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Koordinatenerzeugung K — K + 1

Ausgehend von einem geordneten K-Tupel {fT]}K sollen Vorschlagswahrscheinlich-
keiten fiir den Ubergang in ein geordnetes (K + 1)-Tupel {A";}5+!, das die alten
Koordinaten {/TJ}K enthilt, angegeben werden. Das einfachste Vorgehen ist durch
das Vorschlagen aller moglichen Zielkonfigurationen mit gleicher Wahrscheinlichkeit
gegeben. Unter Beriicksichtigung, daf8 es (K + 1) Moglickkeiten gibt, die Positi-
on der neuen Koordinaten im Tupel anzugeben (nicht die Koordinaten selbst!), und
noch einmal K'! unterschiedliche Anordnungen der bisherigen Koordinaten auftreten
konnen, ergibt sich der folgende Ausdruck fiir die Vorschlagswahrscheinlichkeit:

1 1
K {4} K +1; {A; 1 a'; D
( { } + { } ) 3pc1'( ])pCT()\j)(K+1)| X
K+1
SN 6(Any— A) . 8(An(or) — A 1)5(Ary— Ay 1) 6 (An(iey— Ak 1) (3.15)
j=1 meSk

Also mit den kanonischen Verteilungen p,, fiir die Koordinatengenerierung:

B B 11 2
w(K; {A;} K + 1; {4} = 3(K+1)y (v V); X

K+1

SN 6(Any— AN 0(Anor) — A5 1)5 (A — Ay 1) 0 (Anie) — A1) (3.16)

j=1 meSK

In diesem Zusammenhang ist die Beobachtung wichtig, dal neben den kombinatori-
schen Faktoren auch Volumenfaktoren in der Vorschlagswahrscheinlichkeit enthalten
sind, deren konkrete Form von der jeweiligen Wahl von p., abhdngt. Diese Faktoren
werden bei der Koordinatenvernichtung nicht auftreten.

Koordinatenvernichtung K — K — 1

Analog werden schliellich die Vorschlagswahrscheinlichkeiten fiir Prozesse, die die
Instantonzahl reduzieren, formuliert. Zu betrachten ist ein Ubergang aus einem ge-
ordeneten K-Tupel {4;}X in ein entsprechendes (K — 1)-Tupel {A’;}¥ 1, wobei wie
oben alle aus einer Ausgangskonfiguration erreichbaren Zustédnde mit gleicher Wahr-
scheinlichkeit vorgeschlagen werden sollen. Wird beriicksichtigt, dafl K Moglichkei-
ten existieren, eine Position zur Vernichtung auszuwihlen und daf§ weiterhin (K —1)!
Anordnungen fiir die verbleibenden Positionen zur Auswahl stehen, so ergibt sich
folgende Verteilung:

11

WK (A YK = LA ) = 2

K
Z Z )er0 (A g = Alrii 1))0(Aj 11— Alniy) o 8(Ag — Alriie 1y)- (3.17)
j=1 w€Sk
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Offenbar enthilt diese Vorschlagsdichte keine Volumenfaktoren. Sofern Annahme-
wahrscheinlichkeiten aus kanonischen Algorithmen bekannt sind, werden im folgen-
den Modifikationen an dieser Stelle auffillig sein. Von Bedeutung fiir die konkrete
Realisierung des Algorithmus ist, dal die Instantonwechselwirkung im Gegensatz
zum Fall der Koordinatengenerierung unterscheiden kann, an welcher Position die
Vernichtung stattgefunden hat.

Koordinatenbewegung

Die Teilchenbewegung soll mit gleicher Wahrscheinlichkeit an beliebiger Position
im K-Tupel vorgeschlagen werden. Hierbei mufl darauf geachtet werden, dafl der
Ubergang von den aktuellen zu den neuen Koordinaten mit gleicher Wahrschein-
lichkeit angeregt wird wie der umgekehrte Vorgang, um diesen Schritt nicht mehr
zur Erfiillung der ,detailed balance“ heranziehen zu miissen. So w&hlt man i.a.
als die einfachste Variante gleichverteilte Koordinatenvorschlidge in einem Volumen
[—8a,04)” X [—0a, 0x] symmetrisch um die Ausgangskoordinaten.

3.2.2 Annahmewahrscheinlichkeiten

An dieser Stelle wird die von METROPOLIS vorgeschlagene Formel fiir die Annahme-
wahrscheinlichkeiten hinzugezogen, die die Bedingung der ,,detailed balance“ unter
den bisherigen Voraussetzungen in jedem Fall erfiillt:

(3.18)

axy = min <1,

w(Y, X)P(Y) >
W(X,Y)P(X))"

Mit den Uberlegungen des obigen Abschnitts kénnen die Annahmewahrscheinlich-
keiten axy fiir die einzelnen Félle direkt angegeben werden, wobei X und Y als
Kurzschreibweisen fiir Konfigurationen der Form {A}}K aufzufassen sind. Der Index
K an der Verteilung P wird nur aus Griinden der Ubersichtlichkeit im folgenden
unterdriickt. Ins Gedéchtnis seien auch noch einmal die Bedingungen gerufen, die
i.a. mit ,x“ zusammengefaflt werden:

1
1. |la; — a > (—) N+ A) Vi,

*=9 2 |a§-‘|<%V% ,uzll,...,y Vj

YV

3. 0< )\ <i(2v)
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Koordinatenerzeugung K — K + 1

,pcr(a)pcr()‘) P(X)
. ( V(%V)%P(Y)>
min | 1,
5 P(X)

Im Algorithmus wird dies durch den Vergleich mit einer Zufallszahl = aus ]0,1[ rea-

(3.19)

lisiert, und mit der Konvention, die neuen Koordinaten als gestrichen darzustellen,
folgt

1
X Y, %/\’a > r und * erfiillt
X, CV((KiJrl)VXa < = oder x nicht erfiillt.

Insbesondere wird deutlich, wie mit zunehmender Teilchenzahldichte die Koordina-
tengenerierung unwahrscheinlicher wird.

Koordinatenvernichtung K — K — 1

a = min - er(A) ==

XY y Per\@)D P( X

P(Y
= min (1, ( ) (3.20)
v1 V
Fiir Teilchenvernichtung an Position j erg1bt sich analog
2K 1

X Y) CV(UT]'V)% )‘? 2 T
- X K1 g

Insbesondere ist ,,x“ in jedem Fall erfiillt.

Koordinatenbewegung

Da die Vorschlagswahrscheinlichkeiten fiir die Koordinatenbewegung symmetrisch
gewdhlt wurden, d.h.
w(X,Y) =w(Y, X), (3.21)
vereinfacht sich der Ausdruck fiir die Annahmeverteilung zu
axy = min <1, %) (3.22)
und die Bewegung an der Stelle j unterliegt den Bedingungen

I' «
3
Y, 5

X, (i—)a < z oder  nicht erfiillt.

>z und « erfiillt
X —
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3.3 Umsetzung des Algorithmus

Bei der konkreten Umsetzung des Algorithmus wird ausgenutzt, dafl die Ordnung
im Tupel nicht von der Instantonwechselwirkung erkannt wird; d.h. es miissen nicht
Uberginge in alle moglichen geordneten Tupel generiert werden. Vielmehr geniigt
es, beim Ubergang aus einer Konfiguration einen Reprisentanten aus jeder der von
der Wechselwirkung unterschiedenen Klassen von Zielkonfigurationen zu wahlen, der
bzgl. der Ausgangskonfiguration eindeutig ist. Wichtig ist dabei, dafl mit der Vor-
schrift, nach der solch ein Repridsentant ausgew#hlt wird, jede Klasse erreicht wer-
den kann, die auch durch direkten Ubergang zwischen den Konfigurationen méglich
wire. In der Simulation wird dieses Konzept durch die Klasse config umgesetzt,
die die aktuelle Konfiguration enth&lt und dariiber hinaus die Methoden create,
destroy und move bereitstellt, die in jedem Simulationsschritt jeweils mit gleicher
Wahrscheinlichkeit aufgerufen werden.

e create

Die Methode create schlagt die Erzeugung eines Instantons mit zuféllig im vor-
liegenden Volumen generierten Koordinaten an fester Stelle im entsprechenden
K-Tupel von Instantonen vor. Die Position, an der die Instantonkoordinaten
erzeugt werden, ist von der Wechselwirkung nicht erkennbar. Also ist die Ziel-
klasse eindeutig, so dafl diese Reprisentantenwahl gerechtfertigt ist. In einem
nichsten Schritt wird dann die Annahme des Vorschlags nach den bisher er-
arbeiteten Kriterien iiberpriift und entsprechend verfahren.

e destroy

Wihrend die Koordinatenerzeugung an fester Stelle im Tupel erfolgt, schlagt
die Methode destroy die Vernichtung von Instantonkoordinaten an zufilliger
Position im Tupel vor. Dies ist von Bedeutung, da die Wechselwirkung un-
terscheiden kann, an welcher Position die Methode destroy angreift, d.h. in
diesem Fall gibt es gerade so viele von der Wechselwirkung unterschiedene
Endklassen wie Instantonen in der Ausgangskonfiguration vorliegen. Als Re-
priasentanten in den jeweiligen Klassen wurden schliefllich die geordneten Tu-
pel gewahlt, die die alte Durchnumerierung unter Auslassung der entstandenen
Liicke iibernehmen. Abschliefflend wird die Annahme der Koordinatenvernich-
tung entsprechend den obigen Vorgaben von der Methode destroy gepriift und
ggf. ausgefiihrt.

& move
Analog schlidgt die Methode move eine Koordinatenbewegung an zufilliger
Stelle im Tupel vor und entscheidet ebenfalls iiber die Ausfiihrung der Bewe-
gung im aktuellen Simulationsschritt. Hierbei werden periodische Randbedin-
gungen vorgegeben.
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Die Verteilung der Instantonradien wird durch die Aufnahme eines Histogramms
iiber die einzelnen Simulationsschritte ermittelt. Hierbei wurde als Startkonfigu-
ration der Simulation ein leeres Volumen gewé&hlt, wobei die Messung an einem
Zeitpunkt beginnt, an dem die Instantonzahl in eine Séttigung {ibergeht.

3.4 Erste Ergebnisse der Simulationen

In den Monte-Carlo-Simulationen wurden, sofern nicht anders angegeben, C' und 7
folgendermaflen gewé&hlt:

SN

C=1

T=V1 =

NI )

L% +1)

Die Volumina wurden jeweils so eingestellt, da} der thermodynamische Limes zu-
friedenstellend erreicht ist.

3.4.1 Der eindimensionale Fall

Zunichst ist es sinnvoll, den analytischen Ausdruck fiir die Verteilung der Instan-
tonradien, der fiir den eindimensionalen Fall im thermodynamischen Limes bekannt
ist, mit den Ergebnissen der Simulation zu vergleichen.

MC-Simulation
Theorie

Abbildung 3.1: p(A) fiir « = 1, v = 1 aus der theoretischen Betrachtung des Kapi-
tels 2 im Vergleich mit den Ergebnissen der entsprechenden Monte-Carlo-Simulation
mit V = L = 2000
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In Abbildung 3.1 sind nun sowohl die theoretische Kurve, entsprechend

C a¥e
P(/\) — — 2A067(CF(O¢+1)T) +2 )\, (323)

als auch das aus der Simulation erzeugte Histogramm dargestellt. Sie weisen eine

sehr gute Ubereinstimmung auf.

3.4.2 Der mehrdimensionale Fall

Zu erwarten ist auch im Fall eines mehrdimensionalen Instanton-Gases aufgrund
zum eindimensionalen Fall analoger Uberlegungen, daf§ die Verteilung der Radien
fiir kleine Werte potenzartig verschwindet derart, daf:

p(A) 2% const. A* (3.24)
N _ o In(p(Y)

Hierbei bleibt eine tiefere Rechtfertigung dieser Aussage dem folgenden Kapitel iiber-
lassen, denn zunéchst soll der Blick auf die Ergebnisse der Monte-Carlo-Simulationen
gerichtet werden. In Abbildung 3.2 sind die Verteilungen der Instanonradien im ther-
modynamischen Limes in zwei, drei und vier Raum-Zeit-Dimensionen aufgetragen.
Fiir kleine Werte von A wird entsprechend der Parameterwahl o = 1 ein lineares
Anwachsen der Kurven deutlich.

0.25 T T T T T

T
2 Dimensionen  +
3 Dimensionen X
4 Dimensionen *

Abbildung 3.2: p(V, ) fir a =1, v = 2,3,4, V = 1002, 20, 10* aus Monte-Carlo-
Simulationen

Ebenso interessant ist die Frage nach dem Verschwinden der Dichtefunktion p fiir
grofle Instantonradien. Hierzu bietet sich eine logarithmische Auftragung an.
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Abbildung 3.3: p(V, ) fiir a =1, v = 2,3,4, V = 1002, 20, 10* aus Monte-Carlo-
Simulationen, logarithmische Auftragung
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Abbildung 3.4: 2% fiir o = 1, v = 2,3,4, V = 1007,20?,10* aus Monte-Carlo-
Simulationen, logarithmische Auftragung

In Abbildung 3.3 ist zu erkennen, dafl das Verhalten der Verteilung bei grofien Ar-
gumenten vertriglich ist mit einem Ansatz der Form

p(X) A2 exp(— fra(N), (3.26)

wobei fpy(A) ein Polynom in A bezeichne. Es wird offensichtlich, dafl die Wahrschein-
lichkeit fiir grofle Instantonradien mit zunehmender Dimension deutlich abnimmt.
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SchlieBlich ist zu vermuten, dafl p wie im eindimensionalen Fall die Gestalt
p(A) = const. A\* exp(—froi(A)) (3.27)
hat. Betrachtet wird so auch die Funktion

F(x) ="~ ii‘) (3.28)

die in Abbildung 3.4 in logarithmischer Skala aufgetragen ist. Es ist zu erwarten,
daf der Grad des Polynoms, das den Abfall der Verteilung bestimmt, mit der Raum-
Zeit-Dimension zunimmt.



Kapitel 4
Das allgemeine Instanton-Gas

Im vorangegangenen Kapitel wurde mit Hilfe von Monte-Carlo-Simulationen unter-
sucht, welcher Verteilung die Radien von Instantonen in einem Gas von harten Ku-
geln unterliegen. Wie im eindimensionalen Fall soll nun noch einmal das Augenmerk
auf einen analytischen Zugang gerichtet werden, um den Interpretationsspielraum
einzuschranken, den die numerischen Ergebnisse lassen. Zur Abschiatzung der Qua-
litdt der anstehenden Niherungen sollen aber auch die Resultate der Monte-Carlo-
Simulationen hinzugezogen werden. Abschlielend werden diese auf dem Hintergrund
der analytischen Naherungen diskutiert.

Zunichst wird es darum gehen, die Randverteilung p(V, A) der Wahrscheinlichkeits-
dichte Px(V;{a},{A}) auf

> (ves(ev))

K=0
mit
10K 5
PK(V;al, ...,aK,)\l, very AK) = Eﬁ )\;-"G)({aj}, {)\]}) (41)

e

0<a=xk—-v-—1

1 %

o, =1 o ©
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zu bestimmen. Die Verteilung der Radien ist damit gegeben durch (vgl. Abschnitt
1.4, A= AK)
1 o

p(V,\) = 0V > KZ3E4(V, ) (4.2)

2V) = 3 Zk(V)  Z(V)=1
2xv) = G [ TLaa [Tan T 0tan o)
Zred(V,\) = %/Hdajf[dAjHA;*@({aj},{Aj}).

Wie im eindimensionalen Fall besteht zunéchst die Aufgabe darin, die Raum-Zeit-
sowie Radius-Integrationen im kanonischen Sytem, d.h. bei fester Instanonzahl K,
auszufiihren.

4.1 Integrationen im kanonischen Ensemble

Um die interessierenden Integrale handhaben zu kénnen, wird zunéchst eine Ent-
kopplung der beiden Auswertungsschritte angestrebt, die durch die Radius- und
Positionsintegration gegeben sind [14]. Dazu kann die kanonische Zustandssumme
Zk(V) in der Form

Zee(V) = %/0 dv/HdajHdAjHA;@({aj},{Aj})a(v—TZA;) (4.3)

v="TY, A< 1% gesamtes effektives Volumen der Instantonen
Vv fiir die Instantonen erreichbares Volumen, V < V

geschrieben werden. Im eindimensionalen Fall ist natiirlich V = V, d.h. die Instan-
tonen konnen den Raum vollstdndig ausfiillen, wohingegen dies bei Kugelpackungen
in hoheren Dimensionen nicht mehr der Fall ist. Die gewiinschte Entkopplung der
Integrationen wird schliellich erlangt mit der Beobachtung, dafl

K
CEES IR | BY
i i=1

fiir grofle K, d.h. im thermodynamischen Limes, ein ausgeprigtes Maximum bei

A = (KLT) =X je{l,..K} (4.4)
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besitzt, so dafl eine Sattelpunktsndherung zu guten Ergebnissen fiihren sollte. Nun
wird das Produkt in den obigen Zustandssummen als Exponentialfunktion darge-
stellt, deren Exponent um {\}¥ bis zur Ordnung &% entwickelt wird. Auf diese
Weise werden Gauflsche Integrale gewonnen

cK [V K K _ e K 5
Zx(V) ~ F/0 dv)\g‘K/Hdade(Sje B ==

j=1 =t

O({a;}, {A}o(v -7 Z A7) (4.5)

(Sj - )\j_AO-

Bei der Auswertung von Z5¢4(V, \) wird analog vorgegangen. Da ein Probeinstanton
mit beliebigem Radius A auftreten darf, steht den iibrigen Instantonen nur noch ein
reduziertes Volumen

red

v =y — 1\ (4.6)

zur Verfiigung, so dal die Gaufische Entwicklung nun um den Punkt

A = <ﬁ>_ = <%> —ared el K1} (47)

erfolgt und mit

K K-1
So—TY X)) =0 =TI _X), A=A
j=1 j=1

ergibt sich

,162

o
a ZZJ 1 %5

ZiE(V, A & %A‘* /0 dyped®F Y / Hda] Hd5 e Pt x

O({a;}, {3 })d (v TZA” (4.8)

6 = Aj— A

Wihrend also das Instanton, dessen Radius bestimmt werden soll, diesen beliebig
im vorgegebenen Volumen v annehmen kann, stellen die {ibrigen Instantonen ihren
Radius derart ein, daf} sie das verbleibende Volumen v — 7A” durch anndhernd
gleichgrofle Kugeln auffiillen. Die Radiusverteilung im groflkanonischen Ensemble
entsteht nun in diesem Bild dadurch, dafl die Konfigurationen mit ,,unpassendem®
Radius des Testinstantons dort unterdriickt sind.

Ausgehend von (4.5) und (4.8) werden die folgenden Rechenschritte durchzufiihren
sein:
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1. A-Integration
Die Integration iiber die Instantonradien wird, wie oben skizziert, auf die
Losung von Gauflschen Integralen zuriickgefiihrt.

2. a-Integration
Bei der Integration iiber die Instanton-Positionen kann nur auf grobe Abschitzun-
gen zuriickgegriffen werden. Hierbei wird insbesondere von einem Gas aus har-
ten Kuglen mit Radius Ay ausgegangen. Die Varianz )\q in der obigen Gauf}-
schen Niherung muf} dabei klein ist.

3. v-Integration
In einem letzten Schritt wird die Integration iiber das gesamte effektive Volu-
men v der Instantonen ausgefiihrt. An dieser Stelle ist noch einmal zu bemer-
ken, daf} die obere Integrationsgrenze durch das fiir die Instantonen erreichbare
Volumen V und nicht durch das Systemvolumen V gegeben ist.

Um die Parallelen zu den Rechnungen im eindimesonalen Fall deutlicher zu machen,
wird nun zunéchst das Integral {iber die Instantonpositionen behandelt.

4.1.1 Die Integration iiber die Instantonpositionen

Ein exakter analytischer Ausdruck fiir

V) = 5 [ T daea) )

Q

[ Tl aaedta, ) (49

ist im Vergleich zum eindimensionalen Fall nicht allgemein zugénglich. Jedoch ist
das dort erhaltene Ergebnis fiir verdiinnte Gase eine gute Niherung [14], [30]:

Ix(V) = —(V-u)X (4.10)
v = Krj.

Diese Abschiitzung geht von der Moglichkeit vollstindiger Raumausfiillung aus (V =
V), die bei Kugelpackungen fiir v > 1 natiirlich nicht gegeben ist, so da§ Korrek-
turen wiinschenswert sind. In systematischer Weise wird dies z.B. im Rahmen der
Virialentwicklung bei der Herleitung der Zustandsgleichung des van-der-Waals-Gases
betrieben. Zu demselben Ergebnis fiihrt auch das folgende geometrische Argument
[31]):

1. vess sei das Volumen, das fiir ein Instanton unzugénglich ist.
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2. Beim Zusammentreffen zweier Instantonen gibt es ein Volumen, das dem einen
Instanton wegen der Anwesenheit des anderen unzuginglich ist. Dies ist eine
Kugel vom Radius 2. Schliefflich gibt es

1 1
“K(K —-1)~ -K?
2 2

solcher Paare, d.h. fiir das gesamte unzugéngliche Volumen folgt
1
§K2T(2>\0)V = 2" KT ).
3. Aus Griinden der Selbstkonsistenz ergibt sich aus den Punkten eins und zwei
K’Ueff = 2V_1K2T)\g.
Also:

Veps = 2" KT, (4.11)

Dies liefert eine weitere Abschitzung fiir I (V)

_ 1
Ig(V) =~ 25V —veg)®
1
~ F(V A SOV (4.12)
I
= V- 2V ly)K (4.13)

und damit fiir das erreichbare Volumen
Va2V (4.14)

Da in dieser Ndherung nur die Paarwechselwirkungen beriicksichtigt werden, fiihrt
dies zu einer Unterschitzung des fiir die Instantonen erreichbaren Volumens. Fiir
v = 3 folgt hier z.B. eine maximale Raumausfiillung von nur 25%. Mit dichtesten
Kugelpackungen koénnen in diesem Fall jedoch Raumausfiillungen von bis zu 74%
erreicht werden [32]. Es wire also naheliegend, die Ergebnisse durch die Beriick-
sichtigung hoherer n-Instanton-Wechselwirkungen zu verbessern. Dies fiihrt jedoch
sowohl bei der Wahl eines Ansatzes iiber geometrische Uberlegungen, wie oben hin-
zugezogen, als auch bei der Fortfiihrung der Virialentwicklung zu Ausdriicken, die
in den folgenden Rechnungen nicht weiterfiihren bzw. gar nicht erst anschaulich in-
terpretiert werden konnen [16], [33].

Immerhin bleibt festzuhalten, dafl das Integral iiber die Instantonpositionen in der
folgenden Form gendhert werden kann

Le(V) ~ %(V—UGH)K (4.15)
Veff b(v)v (4.16)
V o= b))V, (4.17)
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wobei b(r) ein Maf} dafiir ist, inwieweit die Kugeln das vorgegebene Volumen V aus-
zufiillen vermogen. Betrachtet man die konkreten Ansédtze, so wird im ersten Fall
b(v) = 1 gewihlt, wohingegen im zweiten Fall b(v) = 2”~! ist. Dies fiihrt sowohl zu
einer Uberschiitzung als auch zu einer Unterschitzung des erreichbaren Volumens
V. Eine einfache Verbesserung sollte schon durch die Betrachtung geeigneter Mit-
telwerte fiir b(v) erzielt werden. Eine mogliche Wahl stellt das geometrische Mittel
dar:

by(v) =27 . (4.18)

Im weiteren soll jedoch b(v) als Parameter mitgefiihrt werden, um spéater ausfiihr-
licher diskutiert bzw. an die Daten aus den Monte-Carlo-Simulationen angepaflt zu
werden.

4.1.2 Die Integration iiber die Instantonradien

Bei der Auswertung des ersten der beiden Integrale
K feyK g K
(V) = / [ doe 8= 50— 732 (4.19)
j=1 7j=1

K—1 52

x (V)= H ddje **o (vt — 1 Z A7) (4.20)
j=1 j=1

wird unter Ausnutzung von

K K
So—TY N) &~ S(-T> vA'S))
j=1 j=1

)\171/ K
_ 2o ,
- )

/\(1)—1/ . K
= 20 [ dqeti=1% 4.21
27w7'/ 1¢ ( )
berechnet

K 52

ALY K b +igé
! _ 0 . i=1" 5329 1qo;
I(V) = Sy /clq/jlzl1 ddje 223

K

K+1—v
= AO ' 2_7-( ’ /dqe_I;_Z[z)qz
2mvT o

K—-1

11 <27r> 2k
= — | = ,\0
vT v/ K o

-1

1 1 [/27\ 2z /v \5-1
_ Rl = _ 4.22
vT VK <Oz> (KT) ( )
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Analog wird auch der Beitrag zur Randverteilung bestimmt

IlT'ed(V) _ ]- 1 27]' % ,UTCd K;l -1 (4 23)
K VK —-1\a (K —1)r '
K=2 K

4.1.3 Integration iiber das Gesamtvolumen v

Mit den Ergebnissen der vorangehenden Abschnitte und mit

K
B=->1 (4.25)

stellt sich Zx (V') dar als

1CK 1 [2r\ = [tV [ v \(B-DE-1
2V~ o <;> /0 dv(V — b(v)v) (—) . (4.26)

Weitere Ersetzungen

Vo= Mv (4.27)

fiihren zu dem Ausdruck

K—-1

1CK 1 (27\ = V voo\BDE e K-
IV~ ——— | — VE dv' (1 — o'\ E o/ B-DE-1
x(V) vt K!' VK ( o > b(v) (be(y)> /0 v(l—v)T

10K o\ T Ve 1K + )08 - 1K)
;F*/E (Z) <(Krb(l/))f’1> T(BK +1)

_ [avE( [ © “TB=-DEK) . 4
= Vo v (\/g(KTb(y))f’1> reE L (428)

der durch partielle Integration oder mit Hilfe von (2.11) ausgewertet wird. Zur Be-

L

stimmung der Radiusverteilung ist auch das Integral

K-2 -1 — —1)—

AQCK 1 o 5 rb(v) 'V v — TN (B-1)(K-1)-1

7V, N~ — dv(V —b K72
(V) vTK! \/K—1<oz> /T)\,, o (v)v) <(K—1)7’>

(4.29)

zu betrachten, wobei in der im vorangegangenen Abschnitt beschriebenen Naherung
zu beachten ist, dal die untere Integrationsgrenze durch v > 7" festgesetzt ist.
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Mit den Substitutionen

V = V-bu)r\ (4.30)
b(v) b(v)
- s red _ _ \")] — T\ 4.31
v AU e vAUREY) (4:31)
= dv = Ldv'
b(v)
(4.32)
wird nachgerechnet
Koz . B-1)(K—1)—1
o NCK 1 far\TT Vg 14 D
Zg' (V) —— — —V X
vt K!' VK -1\ « b(v) (K — 1)1b(v)

Vﬂ K-1
(K- 1>Tb<u>>ﬁ—1> ‘
L(K + DI((8 — 1)(K — 1))
TBE 1) +2)

_ [avE—iox [ [ C o
B \/; v (\/:((K - 1)Tb(y))5—1>

D((B—)(K = 1)) = px 1)1
FOE 1) 12 A=D1 (4.33)

V entspricht gerade der Grofe L in der eindimensionalen Behandlung. Da fiir v = 1
8 = a + 2 ist, sind gewisse Parallelen zu den exakten Ergebnissen des eindimensio-
nalen Falles erkennbar.

4.2 Aufsummation der K-Instantonbeitrige

4.2.1 Numerische Summation

Bevor in einem néchsten Schritt die groflkanonischen Summen ausgewertet werden,
werden die oben gewonnenen Beitrdge numerisch aufsummiert, um einen Eindruck
von der Qualitdt der bisherigen Ndherungen zu bekommen. Wie auch in den Monte-
Carlo-Simulationen, wird hierbei das Volumen V jeweils so grof3 gewéhlt, dafl der
thermodynamische Limes erreicht ist. Eine Beschridnkung nach oben bei der Wahl
des Volumens ist bei der numerischen Summation jedoch weniger durch die Rechen-
zeit als durch die Grofle der in Z&hler und Nenner auftretenden Terme auferlegt.
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MC-Simulation
Theorie

Abbildung 4.1: Ergebnis der Monte-Carlo-Simulation fiir p(2000,\), v =1, a =1,
p(500, A) aus den analytischen Nidherungen des Abschnitts 4.1 numerisch aufsum-
miert; in beiden Fé&llen ist der thermodynamische Limes in dieser Darstellung zu-
friedenstellend erreicht.
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Abbildung 4.2: Ergebnis der Monte-Carlo-Simulation fiir p(2000,\), v =1, a =1,
p(500, A) aus den analytischen Nidherungen des Abschnitts 4.1 numerisch aufsum-
miert, logarithmische Auftragung; in beiden Féllen ist der thermodynamische Limes
in dieser Darstellung zufriedenstellend erreicht.

Zunichst soll das Augenmerk auf den eindimensionalen Fall gerichtet werden, fiir
den bereits eine exakte Beschreibung vorliegt. Insbesondere ist b(r) = 1, da vol-
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le Raumausfiillung erreicht werden kann. In Abbildung 4.1 ist ersichtlich, daf die
Verteilung der Radien qualitativ gut wiedergegeben wird. Das Ergebnis liegt jedoch
insgesamt unter dem der Monte-Carlo-Simulation, das mit dem fiir den eindimen-
sionalen Fall bekannten exakten Resultat {ibereinstimmt.

In der logarithmischen Auftragung des Diagramms 4.2 tritt hervor, dafy auch in der
hier zugrundeliegenden N&herung der exponentielle Abfall der Verteilung reprodu-
ziert wird.

Von groflerer Bedeutung ist natiirlich, wie sich die Abschdtzungen fiir héhere Di-
mensionen verhalten. Dabei stellt sich auch das Problem der Wahl von b(v). Den
vorangegangenen Uberlegungen folgend werden die Wahlen

bi(v) = 1
by(v) = 2v1
bg(V) = 2%

getroffen. Bei der Wahl von b;(v) = 1 tritt im Bereich des Maximums zunéchst
gute Ubereinstimmung mit den Monte-Carlo-Ergebnissen auf, jedoch wird mit zu-
nehmender Dimension hier das Maximum iiberschéitzt. Andererseits fiihrt die Wahl
von by(v) zu einer Unterschitzung in diesem Bereich, so daff der Wert b,(v) hier
insgesamt die besten Resultate liefert.

0.3 T T T
MC-Simulation ~ +
b 1 -------
/ \ b_g oo
025 b2 H
15 2

Abbildung 4.3: Ergebnis der Monte-Carlo-Simulation fiir p(10%, ), v = 4, a = 1,
p(5%,)\) aus den analytischen Niherungen des Abschnitts 4.1 mit unterschiedlicher
Wahl des Parameters b(r) numerisch aufsummiert, von oben nach unten: b(4),
by(4), b2(4); in allen Féllen ist der thermodynamische Limes in dieser Darstellung
zufriedenstellend erreicht.
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Exemplarisch ist dies fiir v = 4 in Abbildung 4.3 dargestellt. Die durch Kreuze mar-
kierten Daten entstammen einer Monte-Carlo-Simulation, wohingegen die anderen
drei Kurven von oben nach unten gerade wie beschrieben durch die Wahl von b;(4),
by(4) und bo(4) im theoretischen Ansatz entstehen. Auch hier soll das Verschwinden
der Verteilung bei grolen Werten von A mit Hilfe einer logarithmischen Auftragung
studiert werden.

1e-10 |- o e ~,__\....:\\-\_\\\\\ ]
16-20 | ™
1e-30 |- ]
1e-40 | e
1e-50 - ]
1e-60 | RO

1e-70 | o]

MC-Simulation  + L
1e-80 b 1 ------- o

1e-90 T m— 1 1 1 1 1 1 1

Abbildung 4.4: Ergebnis der Monte-Carlo-Simulation fiir p(10*,\), v = 4, a = 1,
p(5%,)\) aus den analytischen Niherungen des Abschnitts 4.1 mit unterschiedlicher
Wahl des Parameters b() numerisch aufsummiert, von oben nach unten: b;(4), b,(4),
b2(4), logarithmische Auftragung; in allen Féllen ist der thermodynamische Limes
in dieser Darstellung zufriedenstellend erreicht.

In Abbildung 4.4 tritt das Ergebnis der Monte-Carlo-Simulation ganz oben auf, ge-
folgt von den N&herungen mit der Wahl von b,(4), b,(4) und by(4). Alle vier Fille
sind vertrdglich mit der Annahme eines exponentiellen Abfalles, allerdings wird die-
ser in den analytischen Ndherungen im Vergleich zu dem Ergebnis der Monte-Carlo-
Simulation grofler geschétzt.

Dies ist im Rahmen der bisherigen Ndherungen durchaus verstdndlich:

Hat das Testinstanton einen Radius im Bereich des Maximums der Verteilung, so
liegt ein bzgl. der Radien recht homogenes Gas vor, und b,(v) sollte mit den Uber-
legungen aus dem Abschnitt 4.1.1 zu zufriedenstellenden Ergebnissen fiihren.
Vorausgesetzt, das Testinstanton hat einen sehr groien Radius, sind Konfigurationen
mit wenigen Instantonen im vorgegebenen Volumen v bevorzugt, da das Auftreten
von sehr kleinen Radien unwahrscheinlich ist. Also erzwingt ein sehr grofles Instan-
ton eine geringere Teilchenzahldichte, was der Naherung durch b;(v) entspricht.
Nun liegt die Idee nahe, b(r) dynamisch zu wihlen; dies ist aber in den Rechnun-
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gen nicht mehr angemessen zu behandeln. Dariiber hinaus wird deutlich, daf selbst
die minimale Wahl b;(v) fiir b(v) bei sehr groflen Instantonradien nicht wirklich
zufriedenstellend mit den Monte-Carlo-Daten iibereinstimmt. Offenbar werden die
groben Fehler bei der Positionsintegration gemacht, aber auch in der Ausintegration
der Radiuskoordinaten steckt ein gewisses Fehlerpotential.

4.2.2 Analytische Nidherung und thermodynamischer Limes

Es steht schliefllich noch aus, eine analytische Ndherung fiir die Aufsummation
Dro1 KZgE4V, )
2 k-0 VZk(V)
S oK +1)Z54 (V)
Y x-0VZk(V)

der K-Instantonbeitrdge zu erarbeiten. Hierzu sollen die zentralen Ideen aus der

p(V,A) (4.34)

(4.35)

Behandlung des eindimesionalen Gases in Erinnerung gerufen werden. Fiir grofe
Volumina V, d.h. im thermodynamischen Limes, tragen nur wenige Summanden
wesentlich zur Summe bei, wobei das K, bei dem die Summanden maximal werden,
natiirlich selbst von V' abhingt. Da aber gerade das Interesse am Verhalten im
thermodynamischen Limes besteht, werden die Summen noch einmal durch Integrale
gendhert, um eine Sattelpunktsentwicklung durchfiihren zu kénnen.

Jo dk(k+1)Z;5 (V. N)
[ dkV Z, (V)

p(V,A) = (4.36)

Insbesondere werden die auftretenden I'-Funktionen fiir groe Werte von k£ durch
die allgemeine Stirlingsche Formel (2.25)

T(z+1) ~ V2r(x+ 1) ze @F) (4.37)

sehr gut approximiert. Im Gegensatz zum bisherigen Vorgehen sollen nun aber Ter-
me, die zu Ausdriicken ohne Relevanz im thermodynamischen Limes Anlafl geben,
direkt vernachlissigt werden, um die Rechnungen moglichst {ibersichtlich zu gestal-
ten.

Behandlung des Nenners

Betrachtet wird zunichst

_favk( fzr ¢ \'B=DR) s
VaV) =5~ (\/g(lm-b(l/))f’1> T(Bk + 1) v’

 Jal o (B—1\"" ¢ —ia—1 (B = 1)k) _gp41
“Vory (\/;C <7’b(y)> )ﬁ((ﬂ_ 1)k)~4Y mvﬁ ’
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wobei (4.37) genutzt wird

-k L((B=1k)
VE((B —1)k) D Tk 1)

6ok (B = k)P
(B —1)k) TS

1
=
1 1
= k4 1) (Bk+3) gk+1

Q

ek+1

—

so daf

g1\ ¥

Mit der Ersetzung
~ e (BN
v = ;C< 500) ) (4.39)

stellen sich die Beitrdge des Nenners dar durch

[ 1 _ 1
VZk(V) = %yf ,m’)’k(ﬁk'F 1) (’Bk+;)€k+lvﬁk+1

« eV 1 1
= Bk + 1) Bk+t3)k(~rF1)Bk

2T v /ﬁ __1 (/8 + ) € (’y )

@ eV _(ﬁk+%)ln(ﬂk-l-l)-l—k(l—l—ﬂln(»yﬁ%v))

%V\/ﬁ—le .

Das Maximum des Exponenten wird aus der Gleichung

! /Bkmam + 1
O = —/8 ln(ﬁkmaz + ].) — /Bﬁ

a0 B 1n(Bkmas + 1) — (8 — 1) + Bln(yV)

+1+ ﬁln(q/%V)

errechnet zu

kmas % (e*%»ﬁav . 1) , (4.40)

und der Integrand verhélt sich bei Entwicklung um diesen Punkt folgendermafien:

_B—-1 1 9o/ _B=1 1 \!
1% - —3 (e B A4Pv-_1) —E (e B 4BV) 42
VZ (V) ~ %711 e,__1<ef%'y%V) 26< K )e 2< ! )
_ 1 -1 1 _p? -1 1 712
SV () e R ()
2r v/ 0 — 1
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Also wird der Nenner in (4.36) abgeschitzt durch

o} |4 (_71

dkV Z,(V —
/0 K(V) 21 /B — 1

2
kmam > 0
wird das Gaufl-Integral gelost zu
00 g2 e,@ 1 \! ) L 1
[t
7kmam /B
so daf} schlieflich
> o | by
dkV Z,(V) ~ —e® LA 4.42
A R BE-1 (442)

Behandlung des Zihlers

Ganz analog werden nun noch einmal die Auswertungsschritte, die bereits bei der
Bestimmung der Normierungsgréfie durchgefiihrt wurden, durchlaufen.

red el VEk+1) [ [2r C kr((ﬁ—l)k) -~
(k+1) 2V, A) » o v ( (ka v))8 1) T'(Bk + 2) v
a C)\® 2m
“Vor v @;C )
#L(8 = DE) 541
VE(k+1)((8 - 1)k)~ @ ) VP

Die Gamma-Funktionen kénnen mit (4.37) ausgedriickt werden durch

Vi(k 4+ 1)((8 — 1yy-6-or L8 = DF)

T(Bk + 2)
~ 1 _ —(B-1)k+1 (8 — 1)’“)(&1)#% ki
=k DB -1k e
_ &4y L e
VB —1(Bk +2) (Bk + 2)ﬂk+%
kzo ;(ﬁk + 2)—(Bk+%)ek+2

g (B—-1)
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und mit der Abkiirzung

v =/ <(ﬂ - ”)ﬁ_l (4.43)

ergibt sich

6% C)\a _ 1 ~
(E+DZEVY) o m gt (Bh 4+ 2) PRttt

VBB 1)

a  eVe 1 1~

= — = (Bk+2) Bk (yaT )Pk
\V2r s m(ﬁ_l)(ﬂ ) (v?V)

_[a @VOX (ki by k(s pinG A V)

2mv\/B*(B — 1)
Nun ist die Bestimmungsgleichung fiir den Ort des Maximums des Integranden ge-
geben durch

! /B(ﬁkmaz + l) 1 ~
= —031 2y — — 7% 27 41 |
0 BIn(Bkmas + 2) T + 1+ BIn(y5V)
T B I(Bhma +2) — (8- 1) + BIn(13 V),
so daf
1/ -1 1~
bonaz (e 5T — 2) (4.44)

o _CVON (52 4y _%(6_77%‘7*9 Jé(e‘TwﬁV)_alz
_—<6 B ) e

] _e-1 1.
= VoA (e_ﬁ71 %V)_%ee%yéveLf(e B 7/31/) 52

REINCICES

0 =k — kmaz-

(k1) Zpet (V, A) ~

Eine Zusammenfiihrung der bisherigen Ergebnisse liefert

x e LN
/ dk(k+1)Z% (V,A) ~ (e*%wv) ZIELAN
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Unter Beachtung von



66 Das allgemeine Instanton-Gas

wird das Gauf3-Integral ausgewertet

so dafl

/ dk(k + 1) 2% (V,\) ~ e P (4.46)
0

Die Verteilung p(\)

Eine Zusammenstellung der Resultate der vorangehenden beiden Abschnitte liefert
folgende Formel fiir die Verteilung der Instantonradien:

V,\) = —=\%"° 4.47
Mit
V = V-bu)r)\
ergibt sich
lim K =1
Voo V
V-V = —bv)r\.
Und durch die Riicksubstitution von
2 — 1)\
v =7 (6-1)
o' Tb(V)
wird im thermodynamischen Limes die folgende Verteilung erreicht:
o) = OV ki —v—1,—(CI(k,v)b(v)7) =\
K
(4.48)

2 £-1 "
i) = (o (1) et

Dieses Ergebnis erkldrt das potenzartige Anwachsen der Verteilung der Radien.

Ebenfalls in Ubereinstimmung mit den Monte-Carlo-Ergebnissen wird ein exponen-
tielles Verschwinden bei grolen Argumenten vorgegeben.

In diesem Zusammenhang ist natiirlich die Frage von Bedeutung, in welcher Be-
ziehung dieser Ausdruck zu der Verteilung steht, die in einer Dimension v exakt
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angegeben werden kann. Dazu wird noch einmal auf die Formeln (2.41) und (2.42)

zuriickgegriffen:
C _1_
by _ 2@ —(CT(a+1)r)at2 )
() a+2 ¢
v=1 9)\571/7167(01"(%71)7)%)\”.
K

Die Ubereinstimmungen treten in dieser Darstellung deutlich hervor, insbesondere
ist b(1) = 1, da die Instantonen in einer Dimension den Raum vollstindig ausfiillen
kénnen.

Vielleicht wird nicht direkt klar, in welcher Relation 9(k, ~) und I'(£ — 1) zueinander
stehen. Grundsétzlich kann natiirlich nicht erwartet werden, mit den im allgemeinen
Fall viel grober angesetzten Ndherungen das Ergebnis fiir den eindimensionalen Fall
exakt zu reproduzieren, aber fiir kK > v sieht man

dk,v) = — (_ — 1) v e (5D

1
Vv
% \/27’(’ (E _ 1);3
v

2
|
L
1
|
=

wobei die Formel (4.37) ausgenutzt wird. Damit kann fiir diesen Fall (4.48) entspre-
chend einfacher dargestellt werden:

(cr(g — 1) 2b()r) <A

K>V = p()\):@)\’i_’/_le_

. (4.49)

Fehlerabschétzung

In Abschnitt 4.2.1 wurde eine qualitative Abschitzung der Fehler, die bei der Aus-
wertung der Integrale im kanonischen Ensemble auftreten, vorgenommen. Nun stellt
sich die Frage, ob durch die obigen Rechenschritte weitere Informationen im thermo-
dynamischen Limes verloren gehen. Zu vergleichen sind also die Vorgaben der Formel
(4.48) mit den Ergebnissen der numerischen Aufsummation. Wie in Abbildung 4.5
deutlich wird, liegt hier hervorragende Ubereinstimmung vor, so da Verbesserungen
allenfalls bei der Abschitzung der Integrale im Kapitel 4.1 wiinschenswert sind.
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Abbildung 4.5: Vergleich von Formel (4.48) mit dem entsprechenden Ergebnis
der numerischen Aufsummation der Ndherungen aus Abschnitt 4.1 fiir v = 1,..., 4,
a =1,V =500, 20%, 103, 5* (von unten nach oben)

4.3 Theorie und Simulationen fiir v =4

Da sich die Ergebnisse fiir die Radiusverteilung p(\) qualitativ in unterschiedlichen
Raum-Zeit-Dimensionen kaum unterscheiden, soll hier exemplarisch nur der interes-
sante Fall von vier Raum-Zeit-Dimensionen etwas ausfiihrlicher diskutiert werden.
Insbesondere stellt sich die Frage, inwieweit in den Monte-Carlo-Simulationen der
thermodynamische Limes bei den vorgegebenen Systemvolumina bereits erreicht ist.
Wihrend in dem System, das durch die analytischen Ndherungen beschrieben wird,
wie in Abbildung 4.5 ersichtlich, schon fiir V = 5* ein sehr gutes Grenzverhalten
vorliegt, sind bei dem numerischen Zugang offenbar gréfiere Volumina erforderlich.
Ein erster Eindruck hierzu wird in Abbildung 4.6 vermittelt.

Dargestellt ist die Entwicklung der Instantonzahl wahrend der Simulation nach Er-
reichen der Gleichgewichtsverteilung P, wobei die Teilchenzahlen der kleineren Vo-
lumina geeignet hochskaliert wurden. Es wird deutlich, wie die relative Schwankung
der vorliegenden Instantonen mit zunehmendem Volumen ausstirbt, also der thermo-
dynamische Limes angendhert wird. Andererseits wachst natiirlich, wie in Abbildung
4.7 ersichtlich, die exponentielle Autokorrelationszeit mit dem Systemvolumen. Sie
ist ein Maf ist fiir die Geschwindigkeit, mit der die Konvergenz des stochastischen
Prozesses der Monte-Carlo-Simulation gegen die Grenzverteilunung erfolgt [21] und
bestimmt so auch die Rechenzeit mit. Das Volumen V = 5% = 625 wurde in Ab-
bildung 4.7 nicht beriicksichtigt, da die Daten die anderen Ergebnisse aufgrund der
groflen Schwankungen iiberdecken wiirden.
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Abbildung 4.6: Instantonzahl wihrend der Simulation fiir V = 5%, 10*, 154, 20*
nach Erreichen des Gleichgewichtes und geeigneter Umskalierung (o = 1,C = 1),
die Messungen erfolgen im Abstand von 1000 Iterationsschritten.
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Abbildung 4.7: Entwicklung der Instantonzahl nach Simulationsbeginn mit V' =
104, 15%, 20* nach geeigneter Umskalierung, die Messungen erfolgen im Abstand von
1000 Iterationsschritten.

Die Aufnahme des Histogramms iiber die Instantonradien beginnt bei Ubergang der
Instantonzahl in eine S&ttigung.
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Auch das Grenzverhalten der Radiusverteilung im thermodynamischen Limes wird
untersucht. In der Abbildung 4.8 wird dargestellt, wie sich die Verteilung p(V, \)
bei der Wahl der obigen Volumina V = 5%, 10%, 15%, 20* gegen eine Grenzverteilung
p(A) entwickelt.
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015 - / B :
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Abbildung 4.8: Verteilung der Instantonradien bei Simulationen mit V = 5%
10%, 15, 20* (von oben nach unten); um bessere Auflésung zu erzielen, wurden die
Meflpunkte durch Linien verbunden.
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Abbildung 4.9: Verteilung der Instantonradien bei Simulationen mit V' = 5%, 104,
15%, 20* (von oben nach unten) sowie theoretische Niherung (Formel (4.48)) mit
b(4) = b1(4), by(4), ba(4) (von oben nach unten), logarithmische Auftragung
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Dabei kann zun&chst vermutet werden, dafl sich die Ergebnisse der Monte-Carlo-
Simulationen fiir den Abfall der Verteilung bei grofien Radien im thermodynami-
schen Limes an die Vorgaben der Theorie anlehnen. Die Betrachtung von Abbildung
4.9 schliefit dies allerdings weitgehend aus. Dargestellt sind die gleichen Daten in
logarithmischer Auftragung. Es ist zu erkennen, wie sich die Histogramme mit wach-
sendem Volumen zwar untereinander aber offenbar nicht beliebig den theoretischen
Vorgaben annihern. Da schon im Falle eines Volumens von V = 10* eine zufrieden-
stellende Konvergenz zu beobachten ist, wurde dieses Volumen bei den Simulationen
aufgrund der vertretbaren Rechenzeit gewahlt.
Interessant ist auch die Untersuchung der Verteilung bei verschiedenen Werten von
a=#kKk—v—1=k—D5, wobei sich k in SU(N)-YANG-MILLs-Theorien verhilt wie
[14]

k=N (4.50)

3

Fiir die SU(2) und SU(3) ergeben sich damit Werte von x = 73 und x = 11, bzw.
o= 2% und a = 6. Die Ergebnisse der Monte-Carlo-Simulationen sind in Abbildung
4.10 fiir o = 1,2, 6,10 dargestellt.
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0.2 | ¥
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£
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Abbildung 4.10: Verteilung der Instantonradien bei Simulationen mit V = 10%,
a=1,23,6,10

Offensichtlich weitet sich die Verteilung unter Zunahme von « bzw. x auf, wobei ihr
Maximum zu gréf8eren Werten von A verschoben wird.

Zum Vergleich sind in Abbildung 4.11 die entsprchenden Resultate aus Formel (4.48)
mit b(4) = b,(4) = 21/2 aufgetragen. Diese stimmen in ihrem qualitativen Verhalten
unter Variation von « sehr gut mit den Vorgaben der Monte-Carlo-Daten iiberein.
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Abbildung 4.11: p()) aus Formel (4.48), o = 1,2%,6,10, by(4) = 2v/2

Wihrend das Maximum der Verteilung mit wachsendem « abflacht, werden groflere
Radien wahrscheinlicher, was in der logarithmischen Auftragung der Monte-Carlo-
Ergebnisse fiir den Bereich jenseits der Maxima deutlich wird.
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Abbildung 4.12: Abfall der Verteilungen jenseits der Maxima bei Simulationen
mit V = 104, a = 1, 2%, 6,10, logarithmische Auftragung

Abbildung 4.12 enthélt jedoch noch wenig Information iiber den asymptotischen
Abfall dieser Verteilungen, da im Bild der theoretischen Betrachtungen mit wach-
sendem « der Vorfaktor A* den Exponentialanteil ldnger dominiert.
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Abbildung 4.13: Abfall von 22} bei Simulationen mit V = 10%, o = 1,21,6,10,
logarithmische Auftragung

Zu untersuchen sind entsprechend auch die durch diese A\-Faktoren dividierten Da-
ten. Hier liegen die Kurven fiir die verschiedenen Werte von « in Abbildung 4.13
wieder eng beieinander. Dabei wird der Abfall der Verteilung mit wachsendem «
zundchst geringer, nimmt dann aber wieder zu. Dies kann bei Studium der theo-
retischen Resultate (vgl. Formel (4.48)) reproduziert werden. Allerdings treten bei
genauerer Auswertung der Daten in Abbildung 4.13 Abweichungen zum erwarteten
Vorfaktor €2 aus Formel (4.48) hervor. Diese Unterschiede in dem Normierungs-
faktor spiegeln ebenfalls die Differenzen der beiden Ansétze in den Vorgaben fiir
das Verschwinden der Verteilung bei groflen Argumenten wider. So bleibt auch hier
festzuhalten, dafi die theoretischen Vorgaben zwar den exponentiellen Abfall wie-
dergeben, ihn aber iiberschitzen.

Um quantitative Aussagen iiber das Verschwinden der Verteilungen, wie sie die
Monte-Carlo-Simulationen liefern, machen zu kénnen, wird fiir F(\) = % zunéchst
ein Ansatz der Form

Frys(\) = ae ™ (4.51)

gemacht. Da a nicht mit den Vorgaben aus Formel (4.48) iibereinstimmt, wird a
durch Extrapolation von F'(A) fiir kleine Argumente gewonnen (a = Fy;(0)). Die
Parameter b und p werden mit Hilfe eines Fitprogrammes auf Basis des Marquardt-
Levenberg-Algorithmus abgeschéitzt.
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o 1 23 6 10
b 3.6 3.0 3.2 3.7
p 1.9 2.0 1.8 1.8

Tabelle 4.1: Ergebnis der Fits an die Monte-Carlo-Daten mit Fy; fiirv =4, o = 1,
2%, 6, 10, Fehler ca. +0.1

In Tabelle 4.1 wird deutlich, dafl die auftretende Potenz p etwa zwei ist. Damit
ist p nur halb so grofl wie die theoretische Vorgabe p = v = 4. Allerdings ist
dies konsistent mit den Ergebnis p = 2 in [15]. Offenbar hat eine Variation von «
nur auf den Faktor b wesentlichen Einflu}, nicht jedoch auf p. Eine entsprechende
Abhingigkeit findet sich auch in Formel (4.48). Exemplarisch ist ist das Ergebnis
eines Fits mit a = 2%, a = 0.85, b = 3.0 und p = 2.0 in Abbildung 4.14 dargestellt.

T T T
F +
F_fit -------
F(X),
0.001 | =
Frit(N) %"%%
i,
0.0001 | A
ﬂtf?rh+++
NGB
]
1e-05 |- * 7
]
1e-06 : : :
0 05 1 15 2

A

Abbildung 4.14: Ergebnis des Fits an F()) = % mit v = 2 aus einer Monte-

Carlo-Simulation mit V' = 10%: @ = 0.85, b = 3.0, p = 2.0, logarithmische Auftragung

Um dies in einen etwas weiteren Kontext stellen zu kénnen, wird das Verhalten der
Potenz p in den Monte-Carlo-Simulationen verschiedener Raum-Zeit-Dimensionen
untersucht. In Tabelle 4.2 wird deutlich, wie die Potenz p, die den Abfall der Ver-
teilung bestimmt, mit zunehmender Dimension wéchst. Dabei stimmt das Ergebnis
in einer Dimension mit hoher Genauigkeit mit dem exakten Resultat des Kapitels 2
iiberein.
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v 1 2 3 4
D 1.0 1.5 1.8 1.9

Tabelle 4.2: Ergebnis der Fits an die Monte-Carlo-Daten mit Fy; fiir v = 1,2, 3, 4,
a = 1, Fehler ca. +0.1

Nach diesen Diskussionen zum Verhalten der Verteilung p()) bei grofien Argumen-
ten wird abschliefend eine Variation in C vorgenommen. Dieser Parameter enthélt
die Integrale iiber die verbleibenden kollektiven Koordinaten sowie die Kopplungs-
konstante. In Abbildung 4.15 sind die Monte-Carlo-Ergebnisse mit den theoreti-
schen Vorgaben fiir C = 10 dargestellt. Auch hier werden alle bisherigen Ergebnisse
bestéatigt.

T
MC-Simulation ~ +

18 i

Abbildung 4.15: Ergebnisse der Monte-Carlo-Simulation fiir V = 10%, a = 1,
C = 10, sowie theoretische Vorgaben aus Formel (4.48), b(4) = b1(4), by(4), b2(4)



Zusammenfassung und Ausblick

Ergebnisse

In dieser Arbeit wurde die Radiusverteilung in einem Instantongas aus harten Ku-
geln untersucht. In der vorliegenden N&herung 148t sich die Verteilung im eindi-
mensionalen Fall bei Erreichen des thermodynamischen Limes exakt analytisch be-
stimmen. Es bildet sich dabei ein potenzartiges Anwachsen sowie ein exponentieller
Abfall der Wahrscheinlichkeitsdichte aus.

Fiir den allgemeineren Fall beliebiger Raum-Zeit-Dimension wurden sowohl analy-
tische als auch numerische Methoden zur Betrachtung herangezogen.

Hierbei wurden im analytischen Zugang zunéchst die interessierenden Integrale mit
Hilfe von Sattelpunktsentwicklungen und geometrischen Abschéitzungen ausgewer-
tet. Schliefllich wurden die Summen im groflkanonischen Ensemble durch Integrale
ersetzt, die ebenfalls im Rahmen einer Sattelpunktsndherung abgeschétzt wurden.
Hierbei erfahren die Sattelpunktsentwicklungen gerade im thermodynamischen Li-
mes ihre Rechtfertigung. Die Ergebnisse fiir die Verteilung p sind in Ubereinstim-
mung mit dem exakten Resultat des eindimensionalen Falles von der Form

,0(/\) ~ /\n—u—le—const.)\”-

Parallel dazu wurde das allgemeine System durch Anwendung gro8kanonischer Monte-
Carlo-Simulationen untersucht. Hier wird qualitativ eine sehr gute Ubereinstimmung
mit den analytischen Ergebnissen erreicht; gerade fiir kleine Radien wird der Expo-
nent des obigen potenzartigen Anwachsens sehr gut reproduziert. Auch der Ort des
Maximums der Verteilung ist konsistent mit den theoretischen Resultaten. Schlie3-
lich wird ebenfalls in den Monte-Carlo-Daten ein exponentielles Abfallen der Vertei-
lung bei groflen Radien deutlich, jedoch wird dieses offenbar durch die analytischen
Vorgaben iiberschétzt.

Zuriickkehrend zu der zentralen Fragestellung dieser Arbeit bleibt also festzuhalten,
dal im vorliegenden Modell das Integral iiber die Radiuskoordinaten der Instan-
tonen in Ubergangsmatrixelementen nicht divergiert, da groBe Radien exponentiell
unterdriickt sind.



Ausblick (s

Ausblick

Weitergehend soll die Frage diskutiert werden, in welcher Form diese Arbeit fort-
gefithrt werden kann, um zu Ergebnissen zu gelangen, die das Instantongas einer
Eichtheorie besser beschreiben. Es ist sicherlich von Bedeutung, die Wechselwirkung
zwischen den Instantonen realistischer zu beschreiben. Vor allem die dipolartigen
Beitrége sollten beriicksichtigt werden. Aber auch die Abhingigkeit der Wechsel-
wirkung von der relativen Orientierung der Instantonen im Gruppenraum der Eich-
gruppe muf} beachtet werden. Dariiber hinaus ist zwischen Instantonen und Antiin-
stantonen zu unterscheiden [1]. Eine Arbeit mit diesen Ansétzen, aber einem etwas
anderem Hard-Core-Anteil als dem hier gew&hlten, findet sich unter [15].

Im Bereich der Monte-Carlo-Simulationen besteht wesentliches Interesse an der Re-
duktion der Rechenzeit, die die Wahl des Systemvolumens einschréinkt. Im Rahmen
des einfachen METROPOLIS-Algorithmus, der den Simulationen dieser Arbeit zu-
grundeliegt, bestehen noch Moglichkeiten der Optimierung, die vor allem bei der
Verbesserung der Vorschlagsakzeptanz zu suchen sind. Konkret kann das Annahme-
verhalten durch die Wahl der maximalen Koordinatenbewegung pro Iterationsschritt
beeinflult werden. Jedoch fordert eine geringe Koordinatenbewegung bei hoher Ak-
zeptanz viele Iterationsschritte, so daf} i.a. eine Annahmewahrscheinlichkeit von 30%
bis 50% gefordert wird. Weiterhin kann die Verteilung p..(A), nach der die Radiusko-
ordinaten generiert werden, der erwarteten Verteilung p(\) besser angepafit werden,
was zu einer Reduktion der Ablehnungen nach Koordinatenerzeugung fiihrt.
Wesentliche Verbesserungen sind bei der Annahme der erzeugten Koordinaten anzu-
streben, die bei wachsender Teilchenzahldichte durch Kollisionen stark unterdriickt
wird.

Hier miissen neue Konzepte eingebracht werden, die ggf. noch einer detaillierteren
Priifung bediirfen, da grofSkanonische Monte-Carlo-Algorithmen nicht zu den erprob-
ten Standardverfahren gehéren. Ein moglicher Ansatz folgt der Idee, das grokanoni-
sche Ensemble durch reale und virtuelle Teilchen zu beschreiben, wobei alle Teilchen
bewegt werden, aber nur erstere an der Wechselwirkung teilhaben. Die Teilchenzahl
wird durch den Ubergang von realen zu virtuellen Teilchen und umgekehrt variiert
[34], [35]. Die Annahme neu vorgeschlagener Koordinaten ist wahrscheinlicher, da
virtuelle Teilchen zun&chst in der Nachbarschaft der Liicke bleiben, die ihre Ver-
nichtung erzeugte. Allerdings fiihrt dieses Verfahren moglicherweise noch zu einigen
Unstimmigkeiten [25].

Angeregt durch die Methode des ,Parallel Tempering® [36], [37] ist zu iiberlegen,
ob es einen Fortschritt bringt, parallel kanonische Monte-Carlo-Simulationen mit
verschiedener Teilchenzahl durchzufiihren, zwischen denen geeignete Uberginge bei
der Messung vorgenommen werden. Hierzu mufl im vorliegenden Modell zuvor er-
mittelt werden, welche Teilchenzahl sich mit welcher Schwankung bei vorgegebenem
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Volumen im Gleichgewicht einstellt (vgl. Abbildung 4.6). Entsprechend wird die
Teilchenzahl und die Anzahl der kanonischen Simulationen gewihlt. In jedem Fall
sind genauere Untersuchungen zum Konvergenzverhalten eines solchen Algorithmus
unerlédflich.



Anhang A

Berechnung der Integrale

A.1 Integral iiber die Instantonpositionen

Zunichst wird durch vollstdndige Induktion gezeigt, dafl sich der Wert des Integrales

IK(L) = / dCLK’/ dCLK’_l /
u(K—1) u(K—2) s

. : T
U(Z) = T Z )\j + 5/\i+1
j=1

fiir K € N ergibt zu

K

Te(L) = %(L L

j=1
Hierzu wird die offensichtliche Relation
B L-Tig B -
IK(L) = / daKIK,l(aK — 5)\[{)
u(K—1)

herangezogen.

1. Induktionsanfang: K =1

B L—3X\ 1 )
Il(L): . dCI,l:L—TAl ZE(L—T)\l)
/M ’

2. Induktionsschritt: K — 1 — K
Mit der Induktionsvoraussetzung

K-1

- T 1 T
IK,]_(O/K — gAK) = m(d}{ — iAK — T Z )\])K

j=1

da1

-1

(A.1)

(A.5)
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ergibt sich

B L—-ZAk 1 - K—1
IK(L) = /u(Kl) daKm(aK — 5)\[{ - T Z )\j)K—l

j=1
K-1
B 1 1 T K\ L-3Ak
= 7(}( — 1)'E(CLK - 5)\1{ — T Zl )\]) |7'ZJK=_11 )\j-l-%)\K
]:
1 K
! i1

A.2 Integral iiber die Instantonradien

Weitergehend soll nun das Integral Ik

1 % %‘Zf:z Aj K K
Ix(L) = F/o d)\K.../O da X -7) A" (A.6)
j=1 j=1
vollstindig ausgewertet werden. Vorgegeben sei hierzu die Integralformel [18]

/0 (1 — 2)bds = F(l‘f(:i)g(f;”. (A7)

Zunichst wird zur Vereinfachung eine Substitution vorgenommen
n; :T/\j VJ € {1,...,K}, (A8)

die zu dem Ausdruck

K

1 1 L L-F K
a K
Le(L) = —aroe /0 dnK.../O dn [T ne (=3 my) (A.9)
J j=1

-

fiihrt. Mit den Bezeichnungen

(D) = —relx(D)
(@) = Zm

folgt
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Nun ist das Ergebnis der k-ten (k < K) Integration gegeben durch

s _ (C(e +1))*
Tie(L) = (K + (a+ 1)k +1)

L K L—%(k+2)
[me TLmy [ dmecsns (= 20 DY@, (o)
0 0

j=k+2

was durch vollstdndige Induktion bewiesen wird:

1. Induktionsanfang: k£ =0

L L-3(2)
R A in [T (-2 (412

2. Induktionsschritt: £k — k + 1
Seien also bereits k Integrationen ausgefiihrt, so dafl nun unter Beriicksichti-
gung der Induktionsvorraussetzung der Ausdruck

- _ (C(e +1))*
IielL) = (K + (a+ 1)k +1)

L K L—3(k+2)
/dnK... H n; / d77k+177?+1(L _ E(k + 1))K+(a+1)k
0 0

j=k+2 2

-~

Ly

zu integrieren ist. Betrachtet wird nur das innere Integral I;,:
L-%(k+2)
Tin = / i amf 1 (L — B(k + 1)) K et
0

Louke2) K+(a+1)k
- / Ao (L — Sk +2)) — 1)@
0

= (L —2(k+2))Kta+k / L_E(Z;Zma L —S e CRL
0 RV L-%(k +2)
1

= (L —S(k +2))<HletDktett / A1 M1 (1 — Tig1) DR,
0

Hierbei ist
s Mk+1
T = TSk 1 2)
und es ergibt sich mit der Integralformel (A.7)

Mo+ 1)K+ (a+1)k+1)

Iin — (L = %(k + 2 K+(a+1)(k+1)
( ( ) MK+ (a+1)(k+1)+1)

(A.13)
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Durch Einsetzen in (A.11) fiihrt dies zu dem Ausdruck fiir Jx (L) nach k + 1
ausgefiihrten Integrationen:

. B (D(a + 1))k+
Ix(L) = T(K +(a+1)(k+1)+1)

L K L—%(k+3)
/d?’]K H n; / dnk+2n]‘:+2(L _ Z(k + 2))K+(a+1)(k+1).
0 j=k+3 “0

Hiermit ist die Integralformel bewiesen und soll fiir die Fille k = K — 1 und k = K
angewendet werden.

; (Cla+ 1))
T (L) = T(K + (a+1)(K -1

L
) /0 dngnfe(L — ng)*HEDED (A 14)

Riicksubstitution liefert

L

i (C(a+ 1)K -tratt /T i )
Ix(L) = AA NS (L — T A ) K (et (K1)
0= SRy nE -1+ J, Pk
L
Mot yyieen ]
AN (L — TAg ) @D E =D+
Nt K112 J, Pkl —7r)
und damit
L
(D(a + 1)< [ 7
Ix(L) = A X (L — T (a+2)(K 1)+1.
*(D) = Tt (K — 1) 52 e J, AxAk(L = Tx)
(A.15)
So 148t sich I3¢¢ direkt ablesen und I ist bestimmt durch
K
Ix(L) = (T(a + 1)) 1 @2k (A.16)

" T((e+2)K + 1) rletDK
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