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Kapitel 1

Einleitung

In quantenfeldtheoretischen Modellen mit spontan gebrochener Symmetrie gibt es Feld-
konfigurationen, bei denen verschiedene Phasen des Feldes nebeneinander existieren. Bei-
spielsweise kann man sich ferromagnetische Substanzen vorstellen, bei denen die Magne-
tisierung in verschiedenen rdumlichen Bereichen ein unterschiedliches Vorzeichen besitzt,
oder Mischungen zweier Fliissigkeiten, so dafi in einigen Raumbereichen die eine Fliissigkeit
iberwiegt, in anderen die andere, und diese verschiedenen Phasen durch Oberflichen von-
einander getrennt sind [1]. Diese Trennflidchen besitzen eine temperaturabhingige, charakte-
ristische Breite [2a]; auflerdem 148t sich mit Hilfe der freien Energie F eine tempera-
turabhingige Oberflichenspannung 7 definieren (s.u.). Bei Ann&herug von unten an die
kritische Temperatur T, findet ein Phaseniibergang statt, und diese Oberflichen l&sen
sich allm&hlich auf; die Oberflichenspannung verschwindet gemidfl (o = 7/k 7T, k : Boltz-
mannnsche Konstante)

o ~ ogth, (1.1)
wobel

T-T.
T.

9

=

mit der kritischen Amplitude oy und dem kritischen Exponenten p. Fiir den (universellen)
kritischen Exponenten sollte in d Dimensionen gelten [2a]:

po= 2847y -v (1.2)
(d_l)V7

mit den {iblichen kritischen Exponenten f (kritisches Verhalten des Ordnungsparameters),
7 (krit. Verh. der Suszeptibilitdt) und v (krit. Verh. der Korrelationsldnge). Als numerischer
Wert ergibt sich mit [2]

v = 0,6300 * 0,0008 (1.4)

(der Wert ist dort fiir das n—Vektor-Modell in d = 3 Dimensionen abgeleitet mit n = 1;
das n—Vektor-Modell fiir n = 1 entspricht der ¢*-Theorie) in d = 3 Dimensionen:

g = 1,2600 * 0,0016. (1.5)

Ein Beispiel fiir eine Quantenfeldtheorie mit spontaner Symmetriebrechung ist die ¢*~Theo-
2
rie in der Phase gebrochener Symmetrie (Lagrange-Dichte £ = %@Nbo 0o + %(bg +



i—?qﬁg + %T;—f, m3 < 0, in der euklidischen Formulierung; Einzelheiten werden in Kapi-
tel 2 dargelegt werden). GemiB obigen Beispielen kénnte ¢o(z) die (ortsabhédngige) Ma-
gnetisierung eines Ferromagneten oder die Konzentrationsdifferenz zweier Fliissigkeiten be-
schreiben. Im Falle unendlichen Volumens zeigt nun die ¢*-Theorie eine Entartung des

Grundzustands. Die Grundzustinde sind durch die Minima des Potentials

_ﬁz% 2 Jo 4 _ 2 2\2 N
V(¢0)—7¢0‘|‘E¢0‘|‘__0—_‘(o—vo)v Vo =

bestimmt. In der Pfadintegralquantisierung heifit das, dafl diejenigen Feldkonfigurationen
mit beziiglich Raum und Zeit konstantem Wert 4wvg oder —vg dominieren.

Im Falle endlichen Volumens ist diese Entartung aufgehoben, denn es sind Ubergin-
ge zwischen den Feldkonfigurationen ¢g = 4vg und ¢y = —wvg infolge des Tunneleffekts
moglich, so dafl diese Feldkonfigurationen nicht linger stationér, insbesondere auch keine
Grundzustidnde mehr sind. Bezeichnet man mit |04) bzw. |0_) die Zustdnde mit ¢g = +vg
bzw. ¢g = —vg, die fiir wachsendes Volumen V (V — oo) gegen die entarteten Grund-
zustdnde bei unendlichem Volumen konvergieren, so 148t sich der bei endlichem Volumen
eindeutig bestimmte, unter der Transformation ¢9 — —¢p symmetrische Grundzustand

|05) als

0, = % (104) + 10-)) (1.6)

schreiben. Energetisch etwas hoher liegt der unter ¢g — —¢¢ antisymmetrische Zustand

0,) = % (104) — 02)). (1.7)

Die Energiedifferenz (Energie-Splitting) dieser beiden Zustdnde wird mit Fp, bezeichnet;
ihre Berechnung ist Gegenstand dieser Arbeit. Genauer soll FEy, fiir die ¢*-Theorie in
d = 3 Dimensionen berechnet werden, wobei die beiden Raumdimensionen ein endliches
Volumen L? bilden withrend die Zeitausdehnung 7 als unendlich angenommen wird (un-
endlicher Zylinder lings der Zeitachse mit quadratischer Grundfliche L?).

Bei geeigneter Priparation der Randwerte des Feldes existieren, wie bereits oben er-
wihnt, Feldkonfigurationen, bei denen grofie rdumliche Bereiche (Domé&nen) des Feldes
den positiven Wert +wvg, andere Bereiche den negativen Wert —ug besitzen. Die verschie-
denen Dominen sind durch Oberfliachen charakteristischer Breite getrennt. Betrachtet man
zunichst eine Feldkonfiguration mit ¢g = —vg fiir T'— —oo und ¢g = +vg fiir T — +o0,
sowie periodischen Randbedingungen lings der Raumdimensionen, und bezeichnet deren
freie Energie mit Fy_, dann eine Feldkonfiguration mit ¢g = +vg fiir T — + oo, wobei
wieder periodische Randbedingungen l&ngs der Raumdimensionen gelten sollen, und be-
zeichnet deren freie Energie mit [, so a8t sich die bereits oben angefiihrte Oberfldchen-
spannung 7 gemif

ro= B = e I3 P (1.8)
definieren [2b, 3] (die Definition ist dort fiir das Ising-Modell gegeben, kann jedoch verall-
gemeinert werden). Fiihrt man man wie oben wieder ¢ = 7/k T ein, so kann im Rahmen
dieser Vorstellungen iiber die Volumenabhingigkeit der Energieaufspaltung Fy, folgende
Aussage getroffen werden [4, 5], d = 3 Dimensionen:

Foo ~ exp{—oclL?}. (1.9)



Diese Beziehung soll in dieser Arbeit im Rahmen einer semiklassischen Rechnung genauer
begriindet werden. Insbesondere werden explizite Ausdriicke fiir die Proportionalitdtskon-
stante und fiir die Oberflichenspannung o angegeben.

Dazu erfolgt zuniichst in Kapitel 2 eine Darstellung der ¢*—Theorie in der Phase gebro-
chener Symmetrie mit den im weiteren ben&tigten Feynman—Regeln. Bei der Auswertung
sowohl einiger Feynman—Graphen als auch spiter bei der Berechnung von FEy, werden sich
Divergenzen ergeben, so dafi eine Regularisierung und Renormierung erforderlich wird. Als
Regularisierungsmethode verwende ich die Pauli-Villars—Regularisierung, sie ist in Kapi-
tel 3 erortert, und als Renormierungsschema benutze ich das in [6] und [7] definierte; die
Definitionen im einzelnen sind in Kapitel 4 angegeben, wo sich auch die Berechnungen der
verschiedenen Feynman—Graphen bis zur 1-Loop-Ordnung zur Bestimmung der Renormie-
rungsgréflen befinden.

Eine Berechnung von [y, mit dimensionaler Regularisierung wurde von G. Miinster
bereits sowohlin d =4 [8] als auch in d =3 Dimensionen [9] durchgefiihrt. Die Motivation,
statt einer dimensionalen Regularisierung hier die Pauli-Villars—Regularisierung zu verwen-
den, liegt zum einen darin, dafi die dimensionale Regularisierung nicht zwischen Infrarot—
und Ultraviolett—Divergenzen unterscheidet, wihrend die Pauli—Villars—Regularisierung nur
die Ultraviolett—Divergenzen beseitigt (mehr dazu in Kapitel 3). Zum anderen zeigt sich,
dafl bei einer Rechnung in dimensionaler Regularisierung mit Hilfe einer e-Entwicklung
(e =3 —d) fiir ¢ =0 keine Divergenzen auftreten, obwohl die urspriingliche Theorie Di-
vergenzen in d = 3 Dimensionen liefert. Wenn also durch die dimensionale Regularisierung
in dieser Art und Weise Divergenzen entfallen, stellt sich die Frage, ob die letztlich erhalte-
nen (endlichen) Ergebnisse zuverlissig sind. Deshalb erscheint es niitzlich, eine Berechnung
der Energieaufspaltung Ivy, auch in einem anderen Regularisierungsschema durchzufiihren,
konkret in dieser Arbeit in Pauli-Villars—Regularisierung.

In Kapitel 5 wird eine explizite Formel fiir die Energie IYy, hergeleitet. Mit Hilfe einer
semiklassischen Rechnung findet man in niedrigster Ordnung fiir diese Energie:

1
F = 2 G_SC (i) ’
Oa o

L
2

det’ M
° , (1.10)

det MO

mit gewissen Operatoren M, My und der Wirkung S. einer bestimmten Losung der Feld-
gleichung fiir ¢g; die genauen Definitionen werden in Kapitel 5 angegeben. Kapitel 6 ist
anschlieBend der Berechnung des Ausdrucks

det’ M
det MO

(1.11)

gewidmet, wobei sich zeigen wird, dafi auch dieser Ausdruck zunfchst regularisiert werden
muf. Es werden zwei Wege zur Berechnung des Terms (1.11) dargelegt, deren Ergebnisse
iibereinstimmen (Einzelheiten in Kapitel 6). Kapitel 7 bringt schlieilich die endgiiltige
Berechnung der Energieaufspaltung Fp, mit Renormierung. Es ergibt sich letztlich bis zur
betrachteten Ordnung

Eoe = Cexp{— a(L)L?}, (1.12)

mit expliziten Ausdriicken fiir €' und o(L), was wie bereits erwdhnt die Beziehung (1.9)
genauer begriindet. In Kapitel 8 erfolgt ein Vergleich mit den Resultaten der entsprechen-
den Rechnung mit dimensionaler Regularisierung. Abschliefend sind in Kapitel 9 einige
Uberlegungen angestellt, ob und méglicherweise wie die in Kapitel 6 vorgenommene Regu-
larisierung des Ausdrucks (1.11) aus einer modifizierten Lagrange-Dichte erhalten werden
kénnte.



Kapitel 2

»*—Theorie

Die Lagrange—Dichte der ¢*—Theorie in der euklidischen Formulierung lautet

£¢0 = %@@03“(/50 + V(¢0)7 (2.1)
mit
Vigo) = m_3¢2+g_0¢4+§m_g (2.2)
0 - 9 0 4' 0 9 9 . .

o~

4
Die ZweckmiBigkeit, die an sich unwichtige und beliebige Konstante %% einzufiihren,

wird sich weiter unten erweisen. Weiter ist zu bemerken, daf die ¢*-Theorie im weiteren
in d =3 Dimensionen betrachtet wird, und gy daher Massendimension 1 hat.

Je nach Vorzeichen des Parameters m3 spricht man von der symmetrischen Phase (m32 >
0) oder der Phase gebrochener Symmetrie (m3 < 0), denn fiir m2 > 0 ist der Grundzustand
der Theorie einfach ¢g = 0 und damit symmetrisch unter der Transformation ¢g — — ¢,
genau wie die Lagrange—Dichte selbst. Fiir m2 < 0 ist diese Symmetrie der Lagrange—Dichte
spontan gebrochen; fiir den Grundzustand (Zustand minimaler Energie) bei unendlichem
Volumen gilt ndmlich, da die Energie offensichtlich fiir ¢g = ¢, = const. minimal wird,
wenn ¢g, eine Konstante ist, die V' minimiert:

4V (o) o
d o | po=¢ar
= Mg doc + 51 0%, = 0
— ¢Gr<mo+% ?}r) =0
6 M2 N
— ¢Gr;0 — 07 ¢Gr;1,2 = i - g o (mg < 0 ')
0

Eine Untersuchung der zweiten Ableitung von V klidrt die Verh&ltnisse:
d®V(¢o) ~9 9o o
Aot = o+ on



d*V (o) .
W = mo < 0
0 |¢0:¢Gr;0

—> Maximum bei ¢g,, =0

d2
4" Vido) = —2mf >0

2
d ¢0 | (bO:(bGr; 1,2

—> Minima bei ¢g,., und ¢g,.5.

Die Grundzusténde in der Phase gebrochener Symmetrie bei unendlichem Volumen sind also

o~

6mg
90
Lagrange—Dichte in den Grundzustdnden nicht mehr vorhanden. Offenbar gilt auch

durch ¢g = 4+vg bzw. ¢g = —vg gegeben, mit vy = 1/ — ; damit ist die Symmetrie der

Vigo) = (63— 03)". (2.4)

das heifit die Konstante % T;—f in der Lagrange—Dichte ist gerade so gewihlt, dafl das Po-

tential in den Grundzustdnden ¢y =+ vy verschwindet (vgl. Abbildung 2.1).

Abbildung 2.1: Das Potential V' (¢)

Im folgenden wird nun nur noch die Phase gebrochener Symmetrie betrachtet; hierzu
ist es zweckm@fig ein neues Feld ¢ als ,Anregung®” des Grundzustands einzufiihren. Ohne
Einschrdnkung sei ¢ als Anregungsfeld zum Zustand ¢g,., = + v definiert:

© = ¢o — vo. (2.5)



Schreibt man nun das Potential V' als Funktion dieses neuen Feldes ¢, so ergibt sich
3
2 g0

(o) )

Vio+e) = 22 (wo+9) + 2 (o+e) +

w‘3> w‘3>
o

@+ 2ot + (oo+ Bug)

und mit der Definition von vg folgt

Vig) ==  V(wn+e)

\/—67%290
2o Y0 sy 90 g (2.6)

Definiert man noch eine neue Masse mg durch
mg = —2m5 > 0, (2.7)
so ergibt sich als Lagrange—Dichte des Feldes ¢
L, = % 8#99 0"+ ‘7(99)

m3 V3 gom

g
5 i (2.8)

sowie

Vg = —

= . (2.9)

Die Konfigurationen ¢g,.,, entsprechen nur bei unendlichem Volumen Grundzustdnden
der Theorie; bei endlichem Volumen sind Ubergéinge von ¢g,, nach ¢g,, und umgekehrt
infolge des Tunneleffekts moglich, die Einfithrung eines Feldes ¢ gemif Definition (2.5) ist
aber auch bei endlichem Volumen moéglich und wird im folgenden beibehalten.

Aus der Lagrange-Dichte (2.8) erhidlt man auch leicht die Feynman—Regeln fiir das Feld
@ zur storungstheoretischen Bestimmung der Greensfunktionen. Es gelten die {iblichen
Definitionen (d =3 Dimensionen):

GU(@1,..y2n) = (O] T (p(x1) ... p(za))]0), (2.10)



d.h. Gfpn)(acl, ...,y ) ist der Vakuumerwartungswert des zeitgeordneten Operatorprodukts
der Werte des —Feldes an den Stellen zq,...,x,,

é;(”)(pl, cey D) = /d?’wl dPry, Gfp”)(wl, cey Ty) ePITLL L lPnn (2.11)
(Fourier—Transformation)
G pn) = 206D+ +pa) G (1, ). (2.12)

Die Definition von éfpn) (p1,---,pn) durch Abspalten einer J—Funktion setzt die Transla-
tionsinvarianz der Theorie voraus; die ¢*~Theorie bei unendlichem Volumen ist translati-
onsinvariant.

Aus der Lagrange-Dichte (2.8) liest man unmittelbar folgende Feynman-Regeln im
Impulsraum fiir éfpn) (p1y- .-, pn) ab (es werden die Regeln fiir unendliches Volumen ange-
geben (L = o), da diese in Kapitel 4 zur Bestimmung der Renormierungsgrofien benétigt
werden; bei endlichem Volumen sind in den Regeln Integrale [ d>z’ iiber entsprechende
Bereiche auszufiihren bzw. Impulsintegrale als Summe iiber diskrete Impulse aufzufassen
sowie noch geeignete Normierungskonstanten einzufiihren):

~ 1
P - p2_|_m(2J7
)\ = - 390 mo,

>< = — Yo

e iiber unabhingige Schleifenimpulse ¢ ist mit [ % zu integrieren,

e Impulserhaltung an allen inneren Punkten

e jeder Graph ist mit einem Vorfaktor % zu versehen, wobei S der Symmetriefaktor

des Graphen ist:

S = #(Symmetrie-Gruppe des Graphen)
Abbildungen des Graphen auf sich, die man durch Per-
S mutationen von inneren Punkten und Linien erhilt; (2.13)
B die Zuordnung zwischen Punkten und Linien muf} er- '
halten bleiben, und die 4ufleren Linien bleiben fest
Der Vollstindigkeit halber seien auch noch die Feynman—Regeln fiir Gfpn)(acl, ceeyTy) Im

Ortsraum aufgefiihrt:

R B3k eik(x—y)
= A0 - G

)w\/ = —V3 40 mo/d3$/7
><x” e _90/d3$”7



e iiber innere Punkte wird integriert (s.o. Integration iiber 2’ bzw. 2),

e der Vorfaktor % eines Graphen ist wie bei éfpn) (p1,---,pn) zu wihlen (vgl. Definition

(2.13)),
sowie die Feynman—Regeln fiir é:p(n) (P1s-- -y Pn):
~ 1
P - p _I_ m ’

3
V]
: 3
=
>
>

3 go mo (27)° (ZPz)v

— g0 (27)° (sz)

=3
N
>é
"3 ~
IS
=3
w
[

>

(277)3 5@ (p1 + p2)

2 2
P1 P2 pl + mO

(Linie, die keinen inneren Punkt beriihrt),

e iiber innere Impulse ¢ ist mit f 3 zu integrieren,

jede Linie ist mit einem Pfeil zu versehen, und fiir das Vorzeichen des zugehdrigen
Impulses ¢ in den Argumenten der §—Funktionen der 3—er und 4—er Vertizes gilt:

. _ +1, falls ¢ in den Vertex hineinzeigt
seng = —1, falls ¢ aus dem Vertex herauszeigt,

duflere Linien zeigen in den Vertex hinein,

~(n)(

Vorfaktoren % der Graphen sind genau wie fiir G,
zu wihlen (Definition (2.13)).

P1y--.,Pn) und éfpn)(wl, ceey Ty)

(n)

Die verbundenen Greensfunktionen Gy :(21,...,2,) sind wie gewohnt definiert,
GU(@y, o n) = 3 Goelwi oo 1)) - Goel@p, ..., 1) (2.14)
P
P := Menge aller Partitionen der Indizes {1,...,n} in nichtleere Teilmengen

(durch Umkehren der Beziehung (2.14) ergeben sich die G, . sukzessive als Funktionen der
Gy), und sind perturbativ durch alle zusammenhédngenden Feynman-Graphen gegeben.

Ganz entsprechend wie oben (vgl. GL.(2.11) und GI.(2.12)) sind auch é:p(?c) (p1y- .-y pn) und
éfﬁg(pl, ...y pn) definiert.

10



Kapitel 3

Pauli—Villars—Regularisierung

Die durch die Feynman—Regeln aus Kapitel 2 erhaltenen Schleifenintegrale kénnen diver-
gieren. Als einfachstes Beispiel sieht man, daf

B 1 /3 gomo d3q 1
_O — _ / (

224w S 2n) P +md]

N | —

als Beitrag zu éfpl)(p), divergiert (oberfldchlicher Divergenzgrad § = 1).

Um dennoch endliche Greensfunktionen und damit eine endliche Theorie zu erhalten, ist
daher zunichst eine Regularisierung notwendig. Statt der weithin gebrduchlichen dimensio-
nalen Regularisierung (Verallgemeinerung des Integralbegriffs auf Dimensionen, die nicht
notwendig natiirliche Zahlen sind) soll aus den in der Einleitung angefiihrten Griinden in die-
ser Arbeit die sogenannte Pauli-Villars—Regularisierung Verwendung finden [10]. Die Idee
dieses Regularisierungsschemas besteht darin, den urspriinglichen Propagator der Theorie
durch einen neuen wie folgt zu ersetzen:

1 1 N

e — H - @@ P —
p? + md p? + md ,;p2+Ai’

(3.1)

mit den Parametern ayx, Ap (k=1,...,N).

Die Parameter a; und die Zahl N der ,Pauli-Villars—Massen“ Ay sind dabei so zu
wihlen, daB durch die Ersetzung (3.1) tatséchlich ein stdrkerer Abfall des Propagators als
1/p? fiir grofe Impulse p? eintritt. Insbesondere ist "~  aj = 1 zu wihlen, denn fiir grofe

p? gilt | falls SN ap # 1,

N
1 _ Z ak ~ 1 - Zi\f:l ak
p2 ‘|‘m(2) p2 _I_Az p2

9

k=1

und es ergibe sich ein Verhalten wie 1/p* fiir p? — oo, also effektiv keine Regularisierung
der Theorie.

Allgemein gilt bei geeigneter Wahl der ay

1 i\f: ag Hi\]:l (Ai _ m%)

A : 3.2
e P+AZ T tmd) [, (5 AZ) (3.2

k=1

wie man durch Partialbruchentwicklung der rechten Seite einsieht.

11



Fiir Ap > mg, k=1,..., N gilt nun aber fiir die rechte Seite

[Tz, (A — mg) N 1", A2
(»? + md) [Tie, (p? + AD) (P + m3) 1, (p° + A2)
1

~ N P2
<p2 + m%) Hk:l (1 + F)

k

1
~ & 2N+2 7 (3.3)

p2+m(2)+042%+---—|-04N+1A2—N

mit A% := max {Az |k edl,.. .,N}}7 ap, 1 €4{2,..., N+ 1}, geeignete Parameter.

Aus dieser Form des neuen Propagators sieht man, dafl jeder zusitzliche Summand
aj

PP+ A2
schnelleres Abfallen des neuen Propagators fiir p> — oo bewirkt.
Es sei darauf hingewiesen, dafl man die Form (3.1) des neuen Propagators auch aus einer

Modifikation der Lagrange—Dichte bekommen kann, indem man neue, bosonische Felder ¢y
mit Massen Ap (k=1,...,N) gemiB

bei der Modifikation des urspriinglichen Propagators ein um den Faktor 1/p?

Loss = 00(-A+md) oo - iim(—uﬁ)m
k=1

N
+v(¢+z¢k)
k=1

einfiithrt [11, Abschnitt 7.1]. Da wie erwéhnt Y_,  ar = 1 gelten mufl und daher wenigstens
ein ay positiv ist, kénnen nicht alle Felder ¢y gewdhnliche Teilchenfelder sein.

Hat man nun durch Pauli-Villars-Regularisierung einen Propagator Apy bekommen
dessen Verhalten fiir grofie p? durch

1

Apy (p) ~ ﬁ

gegeben ist, so ergibt sich der oberfldchliche Divergenzgrad §(5) eines Graphen 8 mit [
inneren Impulsen, v, Vertizes des Typs « und L Schleifen in d Dimensionen zu

5(8) = dL—-2nl, (3.4)

wobei angenommen ist, dafl die Theorie keine Ableitungskopplungen enthilt, was bei der
betrachteten ¢*—Theorie natiirlich der Fall ist. Weiter gilt der Zusammenhang

L = 1= v,+1, (3.5)

denn jeder Vertex bringt nach den Feynman—Regeln fiir G’ (Kapitel 2) eine 6—Funktion ein,
so dafl von den urspriinglich auszufiihrenden I Integrationen ), v, — 1 sofort ausgefiihrt
werden konnen, indem man die entsprechenden d—Funktionen eliminiert. Eine é—Funktion
bleibt stehen und liefert bei Translationsinvarianz der Theorie die Impulserhaltung

(27T)d 5(d)(2 pi), p; auBere Impulse,

12



so daf} effektiv

L= 1-(3 v -1
= ]—Zva—l—l

Integrationen auszufiithren bleiben. Das ergibt gemdfl Gl.(3.4) fiir den Divergenzgrad des
Graphen 3:

3}p) = dL—Qn(L—I—Zva—l)
= (d—Qn)L—QnZva—l—Qn. (3.6)

Damit der Graph S oberfldchlich konvergent ist, ist zu fordern:

3p) < 0, (3.7)
was fiir Graphen mit wenigstens einem Vertex durch Erfiillen der Bedingung

2n > d (3.8)

stets gewihrleistet ist. Graphen ohne Vertizes liefern auch keine Schleifenintegrale und
damit keine Divergenzen, so dafl ", v, > 1 bei allen zu regularisierenden Graphen gilt.

In der in Kapitel 2 vorgestellten und im weiteren zu untersuchenden ¢*-Theorie in der
gebrochenen Phase in d =3 Dimensionen ist also

2n > 3 (3.9)
zur Regularisierung aller Graphen ausreichend, was durch die Wahl 2n =4 am einfachsten
erfiillt wird. Es reicht also, da$ fiir den Pauli-Villars—Propagator fiir p* — oo gilt:

1

E 3

APv ~

was nach den obigen Uberlegungen (vgl. Bemerkung nach der Beziehung (3.3)) durch eine
Pauli-Villars—Masse A erreichbar ist. Zur Regularisierung ist damit die Ersetzung
1 . 1 1
p2‘|‘m(2) p2‘|‘m(2) p2_|_A2

(3.10)

geeignet.

Der Vorteil der Pauli-Villars—Regularisierung gegeniiber z.B. der dimensionalen Regu-
larisierung besteht darin, daf durch dieses Regularisierungsverfahren (Pauli-Villars) die
Infrarot— und die Ultraviolett—Divergenzen getrennt werden kénnen. Offenbar wird durch
die Ersetzung (3.1) oder speziell (3.10) ndmlich wesentlich nur das Verhalten des Pro-

pagators fiir grofe Werte von p? (UV-Bereich) beeinflufit. Fiir kleine p* (p? < md)

dominiert nach wie vor wegen Ajp > mg der urspriingliche Propagator . Insbe-

sondere bleiben etwa vorhandene IR-Divergenzen (z.B. falls my = 0) auch nach der Re-
gularisierung bestehen. Insgesamt kénnen daher durch die Pauli-Villars—Regularisierung
gezielt die UV-Divergenzen beseitigt werden, ohne die infrarote Divergenzstruktur entschei-
dend zu ver&ndern; eine solche Trennung der Divergenzen in Ultraviolett- und Infrarotanteil

liefert die dimensionale Regularisierung nicht.
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Kapitel 4

Renormierungsgroflen

4.1 Definition der renormierten Grofien

Ich benutze in dieser Arbeit dasselbe Renormierungsschema, das auch in [8] Verwendung
findet, und welches in [6] und [7] definiert worden ist. Dabei sind die renormierten Grofien
wie folgt erkldrt (zur Definition der renormierten Gréfen sind die Greensfunktionen bei
unendlichem Volumen zu nehmen):

o Renormierte Masse mg:

(G200

2

T T A® 0§ Nl
% {Gc ((P07 0)7 (_p07 0))Lp0:0
2
B el (V1)) . (4.1)

%F@) ((p07 0)7 (_p07 0)) |po=0

Gﬁz) und T'® sind hierbei wie gewohnt definiert (siehe auch Kapitel 2). Insbesondere
gilt:

e = - [G@(p?q)r (4.2)

0 steht, wie im folgenden auch, fiir die (zwei) Raumkomponenten eines dreidimensio-
nalen Vektors.

o Wellenfunktionsrenormierung Zy:

1 0 1~ - S -1
— = GO _
- GO (0. 0), (=po, B)| - (4.3)
Indem man
Gp) = GP(p,—p) (4.4)

~ -1
setzt und die Funktion {G(po7 0)} um pp = 0 entwickelt, findet man also mit den
Definitionen (4.1) und (4.2):

Gon®)] " = - (md 455+ 0(s5)). (4.5

Die renormierten Gréfen my und Zy konnen also einfach aus der Entwicklung (4.5)
erhalten werden.

14



e Renormierte 1-Punkt—Funktion vg:

vg = (¢ > (4.6)

[}

e Renormierte Kopplungskonstante gr und dimensionslose Kopplungskonstante wg in
der gebrochenen Phase der ¢ Theorie:

3 2
T up = L& (4.7)

vE my

gr =

e Renormierte Kopplungskonstante g®):

9(4) = _fgl)(ovovovo)
= —ng(4)(0707070)7 (48)

mit der 4-Punkt—Vertexfunktion I'*). Die Kopplungskonstante ¢4 wird i.a. in der
symmetrischen Phase der Theorie verwendet, da dort g nicht existiert (vg = 0).

Schlieflich soll auch noch die physikalischg Masse m,;, berechnet werden, die so definiert

ist, daf§ der renormierte Propagator bzw. % (vgl. GL.(4.4)) im Minkowskischen einen Pol
R

bei p = (1m,,0) besitzt. Da in dieser Arbeit stets die euklidische Formulierung betrachtet
wird, bedeutet das, daf§ der renormierte Propagator im Euklidischen einen Pol bei (im,,, 6)
hat:

Ze [Glim,, )] = 0. (4.9)

Diese Gréfien sollen nun berechnet werden; die Rechnung wird dabei in der Stérungs-
theorie bis zur 1-Loop—-Ordnung durchgefiihrt. Insbesondere werden die 1-Punkt—Funktion
GM(p) und die 2-Punkt-Funktion égz)(p, q) bzw. G(p) benstigt. In den Renormierungs-
beziehungen (4.1)—(4.5), (4.8) und (4.9) sind als Greensfunktionen diejenigen des ,,Anre-
gungsfeldes“ ¢ bei unendlichem Volumen zu nehmen (vgl. Definition (2.5)):

¢ = ¢o — vo. (4.10)

Diese werden mit Hilfe der Feynman—Regeln aus Kapitel 2 berechnet.

4.2 Berechnung von 5501)

Bis zur 1-Loop—Ordnung gilt folgende Entwicklung:

) = 3 —O  + o). (1.11)

Mit den Feynman—Regeln ergibt sich:

Gy = R [ o(a).

2 pPP+md ) (2r)° ¢+ md

15



Das Integral divergiert. Daher ist hier nun die Pauli-Villars—Regularisierung durchzufiihren.
Nach den Uberlegungen des vorigen Kapitels geniigt (¢ = 3 Dimensionen) eine Pauli-
Villars-Masse (vgl. Beziehung (3.10)):

1 — ! ! (4.13)
p2‘|‘m(2) p2‘|‘m(2) p2_|_A2' :
Auflerdem ist p = 0 zu setzen, denn es gilt:
Gy = @20 8(p) GV (p)
= (27n)° 8(p) G1(0). (4.14)

(Die 1-Punkt-Funktion Gfpl)(x) ist konstant (folgt aus der Translationsinvarianz der Wir-
kung S[p] = [d®x L,, L, aus der Definition (2.8)):

V@) = ¢, Cec.

v
Daher ist
GO = (20)° Cip)
und
Mp) = ¢

—

Damit erhilt man (éfp{)w =qW

am V3 9o

@, PV — = mo

in Pauli-Villars—Regularisierung):

1 1 d3q 1 1 2
- _ = — Of ¢2
mg 2) /(277)3 <q2+m3 q2+A2) i (go)

2
= (L - L) /(533 (q2+§g;g§%+ Az T O<g§)

S

2
V390 (1 1) 1 7 2 (A2 —m2)
" S mE) (4 A%)

V3 1 1 &0 2

- _ 4;;0 mo (m_%_ F) [A arctan — — mg arctan mio] + O(gg)
0

V3 g0 1 1N\7 2
- T (m% A2) §(A mo) + O<g§)

\/3!]0 1 Mo 3
= R0 (o 52) + olad)
= N o)+ ofa)
= % o + O A + Ol g5 ). (4.15)
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4.3 Berechnung von G,

Es gilt (vgl. GL.(4.4)):

—_

Golp) = —— +5—— +3

—|—% — =+ O(gg). (4.16)

Die Graphen werden einzeln berechnet:

[\

_ (4.17)

® _ _9_0(2%)2/ dq 1

tmg) S @2r) g+ mg

1 N\ [ & 1 1 1
> 5 ) [y (v mem) +o(w)
2 \p2+mg 27 \¢Z+mg ¢ +A A
(Pauli-Villars-Regularisierung)

Jo 1 2A—m0 (1)
- = — . 4.1
2 (pQ—I—m%) 47 +0 A (4.18)

(siehe Rechnung zu éfpl,)w)

N | —
DN

IS |
p2+m} p2+m?
Beinen des Graphen; da das sich ergebende Schleifenintegral fiir A — oo linear divergiert,

Die Terme O(%) stammen aus der Ersetzung — p2-|1—A2 in den adufleren

ergeben sich Terme der Ordnung O(%)

3 1 21 d3q 1
= St (o) & [

1
2 - p24+md) miJ) 27) ¢+ md

> anlm) Lo () + olw)
5 90 P2+ m3 (277)3 @+ mE 2+ A2 A2

(Pauli-Villars-Regularisierung)

3 1 2 A —myg 1
_ 2 hl 4.1
2 %0 (p2+m3) ix O(A) (4.19)

(1)

(siehe Rechnung zu é% pv)

Die Terme O(%) ergeben sich auf die gleiche Weise wie oben.

q

1 3 2( 1 )2/ d>q 1

5 = 3 YoM

2 7 C) 2 Ay ] @n 2 md) (- 0+ md)
q=p

17




Das Schleifenintegral konvergiert bereits auch ohne Pauli-Villars—Regularisierung; regu-
larisiert man dennoch, so kommen nur Terme hinzu, die fiir A — oo mindestens wie %

gegen 0 gehen; diese werden im folgenden durch O(%) ausgedriickt. (Es treten z.B. (bis auf

Konstanten) Terme folgender Gestalt auf:

| 1 1 [ 4 1 1
/dq :_/dq 2 2
P+ A (p—q)2+mg A2 14 (4)? (p—a)* +m§

1 1 q
—A d3 / A
/ "TY @) =Ag)P+m (q A)

_/ dSq/
@)+ (1+ @) (x G2+ md) —2p-¢)

also Terme der Ordnung O(K)') Das Schleifenintegral wird standardmiflig mit Hilfe einer
Feynman—Parametrisierung ausgewertet, denn es gilt [12, Spezialfall von Gl.(4.4.10)]:

1 I'(a+ ) /dac [ 271 (1 — )Pt (4.20)

ABP T @B ) [Aa+ B -]+

Damit bekommt man:

qJ

LA - e ) 1
_ = =~ goMmgy S .2 / 3 2
2 7 2 pami) @) (@1 md) (- o)+ md)
q—p 1
+O<X)
B 390m0 // 1
2 (p? + md) >2+m3)}2

z) (¢* —|—m0)—|—x((
+o(5)

_ 3 gom§ / x/ d®q 1
2(p2+m3)* ) 27)" [¢2+mE —22p-q+ap?)’
1
+o(5)
_ 3 go mg / x/ d>q 1
2 (p2 + m3)* o (27)° {(q—xp)Q—l—x(l—w)p?—l—mgr

+o<%) —

1
= M/da@/d%/ ! (¢ =q—2p)
2(p+md)* 2™ [l + 2]’
1

18



; ‘C} - ok 2/“/@
2 2+ m3)? 2 W}
+o()

3 gomé a?
e 2 2772 / dx / dq 2 — 5 5
2 (p2 + m3 ’t+a ((q’) + a2)
+ O(X) (Partialbruchzerlegung)
= 390 mo de | — arctan —| —ad* | dq
) ¢ V>3
(p + m 27T _|_ a2)

+O<X).

Das letzte ¢'~Integral 16st man standardméBig [13, 3.1.7.5.]:

o0

OO_I_ 1/ dq'
202 "2 2
. a ) (¢')" +a

2q¢

[ty - i

_ L q "
= —— arctan —
2a3 a
0
_ T
T 4a3

Daher ergibt sich:

Mit der Substitution

e+ %pz
4

Vpimg+ i

_ 2x+l 2
— u7 H:p2m3+%>0
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erhilt man:

s 7 - wi /dt e o

g—p
2
+2\p/ﬁ
_ 3 gomé 1 / dt L O(l)
2(p2+m2)? 8rlpl S V122 A
C2VH
+52
2 wH
= 3900 5 1 arcsin ¢ , + O(i)
2 (p? +m2)” 87[p| v A
2 2
= 3900 5 1 arcsin P + O(l)
2 (p2+m2)” 4xp| 2/p2 m2 + B A
2 1 |p| 1
_ 3 9o mo2 ~ arcsin ——2mo T O<_)
2 (p2+mg)" 4rlpl 4 (R’ A
mo
2 1 1
= 3 90 5 arctan i + O(—)7 (4.21)
2 (p? +m2) 4r|p| 2 mg A

unter Ausnutzung der leicht zu verifizierenden Beziehung (siehe auch [14, Gl.1.624 7])

, x
arcsin ————= = arctanaz. (4.22)

V14 22

_ Zusammenfassen der Gleichungen (4.17), (4.18), (4.19) und (4.21) ergibt schliefilich fiir
Gpev(p) (G(p) in Pauli-Villars—Regularisierung):

~ 1 gJo A —myg 3 90 A —mg
GPV (p) — 2 2 212 + 232
p°+mg 2 (p2+m3) 4m 2 (p>+m3) 4w
3gomd 1 |p| ( 1 ) 2
arctan + Ol—) + O
2 (2 + m2)? Axlp] 2my A ()
1 Jo A —mg
= 2 7 T 2
P+ mg (p2 + m%) 4m
3 gomd 1 |p| ( 1 ) 2
—|- — 2 2 _ __ arctan + Ol—) + Olg§)- 4.23
87 (p2 4 m2)* Ip| 2mo A ( 0) 2

Hiermit kdénnen nun mg und Zz bestimmt werden.

20



4.4 Bestimmung von m, und Z,

Nach Gl.(4.5) ist Gy (po,0) zu untersuchen:

GPV (p07 6) =

1

9o

g+ mp

3 90

2
my

1 |pol (1) 2
— — _ arctan + Ol—)+ Olg;).
87 (p2 4+ m2)? [pol A ( 0)

Zunichst sieht man mit Hilfe der Taylor-Entwicklung des Arcustangens:

2n+1
L etan lpol Z ( |pol ) 7 |pol <1
|po 2mg |p0| 2n—|—1 2mg 2mg
o~ (=" "
= 4.24
2 2n+ 1 (2mg)?nH! (4.24)
Dadurch gilt wegen Gl.(4.5)
2
my ~ -1
7z = G0
1 go A —mg 3 90 (1) 2 ]_1
[m% ma 4w 8w m2 (2 mo) + A + (go)
_ mg
- A —mg go 3 90 ( 1) 2
1 = o - O
+ m% 4 167 mg + A + (go)
A—m 3
=“—( 0 ) o(x) + ol
m0< m% + 4dmg/ 47 + A + (go)

und (vgl. Definition (4.3))

1

Zy,

lpo=10

aipg {épv(l)ova)];:o
2 _ s +mj
T ey e+ (1) + Ol
g | 08 m8) (1= Gy
% ol arctan 2|Z;i|0 + O(%) + 0(93) ) ] ipo = 0
8%)(2) [pg—l-m% —(A-m )j_i _ 395?:10 ﬁ arctan 2|];i|0 + O(%) + 0(93)] .

21
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Mit der Entwicklung (4.24) gilt also:

1 3 go mg (1) 2
— =1
7 T srmr 3 T AR T 0(s)
Yo l 2
L+ g+ O<A) + 0(g3)
_ 9 l 2
= o= gt —|—O<A) + 0(g2). (4.26)

Wegen Gl.(4.25) bekommt man daher fiir m?2:

% 1 2 ]
% [1 641 mg + O(A) T O(go)
O

2 90 Mo\ %o 1 2
Mo = 1 mo + ( 1 A) P (A) + O(go)
3 Jo 1
— 2 =2 _ 20 - 2
= mg+ (16 mo A) = + O A) + O(go). (4.27)

4.5 Bestimmung von g,

Nach GI.(4.7) gilt

3m?
gr = U%{R ;
mit (vgl. Gln.(4.6), (4.10))
- <</5(i>
A
G 2
= Mv Vg = 3 1o (vel. Kapitel 2, G1.(2.9)).
Z2 9o

Mit den Gleichungen (4.15) und (4.26) findet man zunéchst fiir vy
vg + é((pl,;\/

1
2
75

2 _ 3
- [ - o) ol

90 81 mo

* [(1 B 64i0m0 + O(%) + 0(93))] : N

UR —
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Oojw

)

2 g A- 1
vn = [ L AT T mo+o<—)+o(g

90 81 mo A

Yo l 2 ]
X [1+ e T O<A) + 0g2)

3mg (17 A)«/Sgo (1) (g)
= — - — — 4.2
Jo + 16 mo/ 87 +OA + Ol ). (4.28)
und fiir g mit den Gleichungen (4.27) und (4.28)
3m?
gR - 2R
UR

3 1
- 3[m3 + (Emo—A) j—; + O(X) + O(g@)]

[ (T A )T 1) +O(g§)]_2

9o 87 A
et ()2 o) )
g1 (55 ) s+ o3) + 06
- s (o) 2 () - o)

2
0
17 A 90 (1) 9 ]
% [1_ (16_ mo) 4 mg +0 A + O(go)
0
2
0

_g_zi_g_o_ﬂ_)g_o (1) z]
I [m0+<16m0 A)zm (16m0 M T Oa +O(go)

_ _Z 93 (i) 3
= 005 TOl3) * 0(g3). (4.29)

4.6 Umkehrung der Renormierungsbeziehungen

Bis hierher sind folgende Ergebnisse festzuhalten (Gln.(4.27), (4.29)):
3 9o 1
2 _ 2 2
my = my+ (16 mg A) in + O( ) + O(go)7

P 9 +o(%)+o(gg).

8 4w my

Driickt man nun umgekehrt die urspriinglichen Grofien mg, go durch die renormierten
Groflen my und gy aus, ergibt sich

T g (1) 3
Z 0 +0 4.
9o Ir 8 47 my, A (gR) ) ( 30)
3 Ir 1
2 2 _ _ 2
mg = my (16 my A) = + O( ) + O(gR)7 (4.31)
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sowie

1
3 1 5
mo = [mt (1= (Fgm—a) i + o) + o)) |
R
_ 3 9r 1 2
— (1 - (E e — A) Sz O(X) + O(gR))

I (% . A) In o(%) + 0(g2). (4.32)

8T mg

4.7 Berechnung von ¢
Nach Definition (4.8) ist g(%) folgendermaBen erklirt:
g = —Z227(0,0,0,0).

Daher ist zuniichst die 4-Punkt—Vertexfunktion I'®) bis zur 1-Loop—Ordnung auszurechnen.
Es tragen folgende Feynman—Graphen bei:

F(4)(P17P27P37P4) = » + ) Q + 3 Q

N | —

n X + 0gd). (4.33)
Im einzelnen berechnet man:

= (130
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Fiir die weiteren Graphen gilt mit Pauli-Villars—Regularisierung:

o S 2 By 1 1
I . _0/ . — O(K)’ (4.35)
2 1 2 (2m)” = +m5 (p1+p2 —q)" + mg

p1t+p2—4q

RN ,.’.2;3

= 2 B 1 1 1
P1tps 7 = 90 / (]3 5 5 5 + O<_) , (4‘36)
7 2) 27)° ¢+ mg (p1+ps—q)° + m A

2 d>q 1 1
- / 39 2 2 5 + O
2. @2r) ¢ +mg (pr+pa—q) +m A

Die Terme O(%) riihren daher, dafl alle auftretenden Integrale bereits ohne Regularisie-
rung konvergieren, und durch die Regularisierung nur Terme hinzukommen, die fiir A — oo
mindestens wie % verschwinden (vgl. die analoge Uberlegung in Abschnitt 4.3, Seite 18);
entsprechend gilt dies auch fiir alle folgenden Integrale dieses Abschnitts.

Zur Berechnung von ¢ wird nur f(‘l)(O7 0,0,0) bendtigt; fiir py=p;=ps=p4=0 liefern
aber alle drei Graphen denselben Beitrag. Auflerdem erkennt man, dafi obige Schleifeninte-
grale genau mit dem fiir G berechneten iibereinstimmen (), wenn man statt p jeweils

p1+ ps, p1+ p2 oder py + ps einsetzt; z.B. gilt mit Gl.(4.21):

_— .
1 2 1
— K L= P aretan [P £ p2] + O(—). (4.38)
2 87 |pL + p2l 2mg A

p1t+p2—¢

Fiir py=p;=0 ergibt sich mit Hilfe von Gl.(4.24):

p1+p2—q | p1=p2=pa=p4=0

_ % o(%). (4.39)

167 mg

Die drei Graphen zusammengefafit liefern also folgenden Beitrag zu 1~ﬂ(4)(07 0,0,0):

3 g2 (1)
s+ O[3 ). (4.40)
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Weiter rechnet man:

..pl .
g .
P1—¢ y -
oidpe e
v —q -
R .
< ¥
P1- S ps
. p1—y¢
q p1+ps =
—q
N

1

1

2
my
1

343
0

(5

[ar
)

PP mg (p— @)+ m (pr+pe—q)° + md

d>q 1

1

(4.41)

1

—3 95 mg /
(
1

21)® 2+ md (pr — q)* +md (p1 + ps — q)° + m2

d>q 1

1

(4.42)

1

—3937%3/(

21) @? +m§ (py — q)> +m2 (p1 +ps — @) + md

d3q 1

1

(4.43)

1

d3q 1

_3937”(2)/ 3 2 2 2 2 5
(27)” ¢ +mg (p2 — q)° + md (p2 +ps — ¢)° + m

1

(4.44)

1

—3937%3/(

21)° 2+ mf (ps — q)° +m2 (p3 + ps — q)° + md

d3q 1

1

(4.45)

1

—3937%3/(

27)° 2 +m§ (pg — q)> +m2 (p2+ ps — q)* + md

26
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Die Terme O(%) ergeben sich durch die Regularisierung entsprechend wie oben (analoge

Uberlegung wie auf Seite 18). Wieder erkennt man, daf§ fiir p; = p; = p3 =ps =0 alle
Graphen denselben Beitrag liefern; es geniigt also, den ersten auszuwerten:

R 1 .
A
g . d3q 1 1
_ . e —3 2m2/ —I_ O<_)
P1 qD go 0 (277)3 (q2—|—m(2))3 A3
W pidpa )
¢p2 -1 . | p1=p2=pa=ps=0

3 g3m3 7 ¢ ( 1 )
- _ Ar fdg—L 4+ o=
sy X

:_393?3/@{ 1 2_ mg 3]
2= (> +m3)"  (¢*+mg)

1
+o(ﬁ)
3¢2m2 [ 1 1 3m2 T 1
- 2(;'20 l?m2 /dqq2+m2_4mg/dq< 2—|—m2)2
04 0 09 q 5

+0(55)

3 2 2 e o0
= — 9o Mo 3 arctan — — 3 arctan 4
272 mg mo my mo
0 0
1
+ o(ﬁ)
3g82 | m 3rm ( 1 )
= — - O _
272 myg [ 4 16 ] + A3
3 95 ( 1 )
= — o — ). 4.47
327 mo + A3 ( )

Die rationalen Integrale wurden dabei wie iiblich geldst [13, 3.1.7.5.]. Damit ist der Beitrag
der sechs ,,Dreiecksgraphen® zu F(4)(07 0,0,0):

9 g2 1
SchlieBilich erhilt man:
7;.1". g .~'.];3
902 4/ d3q [ 1 1 1

_ = gom
P14 Y p3+q 0 ' (277)3 qQ—I—mg (Pl —q)Q—I—mg (p3-|-(])2—|-m(2)
P2, P1tp2 . 1

= —-q ..

1
X O(—), 4.49
(m +pz—q)2+m3] * A5 (4.49)
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pi,

g 042 4/ d>q [ 1 1 1
P1—4q patq = Go m
p1+p2 o (277)3 q2+m(2J (pl _Q)z—l'm(z) (p4—|-(])2—|-m(2)

R4 'p2 ".p 4 1

1
X T O(—), 4.50
(P1+P2—f])2—|-m(2)] 75 ) (450

p? P1—¢ .".2.73
d> 1 1 1
N = 998 mé/ q3 [ 2 ) 2 2 2 2
2m)” L +mg (pr —¢)" +mg (pa+q)" + m¢

B ZR N 1

: (p1+ps—q)+ m%] " O<%) oy

Erneut liefern alle drei Graphen fiir py =p; =ps=ps=0 denselben Beitrag, so dafl nur der
erste betrachtet wird (die Terme O %) resultieren entsprechend wie oben):

pr. g #Pe

d>q 1 1
_ = 992m4/ + O(—)
P1—¢ ratq 0 "0 3 4
/ : ) (2 + md) x
p?." pl——zm .".,.|p1=p2=p3=p4=0

2. 4 % 2
= 9!;0 ?0 /dqﬁ + O(%)
= (4% +mg)

B 9gam3/dq L m . O@)
2 (2 +m2)> (g2 +md)’ AP

0
o 9gEm l 3 7 5 7 ]
272 | 4mg ) (q2+m3 6 ) q-l—m
1
+ 0 e [13, 3.1.7.5.]
2 4 o] o]
= Y9010 3 arctan — — :au’ctani
27?2 8 mg mo 16 mQ mo
0 0
1
+ 0 e [13, 3.1.7.5.]
 9¢3 | 3w 5w ( 1 )
27 2myg [ 1 2 ] 0 AP
993 ( 1 )
= — — . 4.52
647w mg + O AS (4.52)
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Daher findet man als Gesamtbeitrag der drei ,,Boxgraphen®:

27 g2 ( 1 )
— =0 O — ). 4.53
647 mg + A5 ( )

Insgesamt hat man also fiir T(4(0,0,0,0) mit den Gleichungen (4.34), (4.40), (4.48) und
(4.53):

3 9 9 9 27 g
16 #mg 16 mmg 64 mmg

+0(5) + ofsd)

_ 395 1 3
= g+ L 4 O(X) + O(go). (4.54)

14(0,0,0,0) = —go+

Damit und mit Gl.(4.26) fiir Zg erhélt man

g = -ZiTW(0,0,0,0)
(i 9% 1 ) )2 3 g (1) 3
- (1 641 mg + O(A) + O(go) g0+ 64 m™mo +0 A + O(go)
_ 9 l 2 ) _ i 93 (l) 3
- (1 327 mg + O(A) + O(go) ( 9o+ 64 m™mo +0 A + O(go)

_ 5 % (1) 3
9 = A rmg T o)+ 0(90)7 (4.55)

oder mit Hilfe von GI.(4.30) ausgedriickt durch gy

7T gt 5 ¢2 1

32 mmpg 64 ™ mg A
9 93{ (1) 3
— - — . 4.
R R + 0(g?) (4.56)

4.8 Berechnung der physikalischen Masse

Wie zu Beginn des Kapitels dargelegt, gilt fiir die physikalische Masse m,, (vgl. GL.(4.9)):
~ \1-1
T [G (imph,())} - 0
~ \1-1
= {G (imph,o)} = 0.

Nun hat man mit Gl.(4.23):

A b 9 N ~ 3gomg VP
{Gpv(p)} = p° + my = (A — my) o \/]7 arctan2m0

+ O(%) + 0(g?)-
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Daher muf} gelten:

_ 2 2
0 = —my,, +myg — —

1 2
Wegen Gl.(4.24) hat man

vVt
arctan —— =
2 mo

1

/2
und daher fiir p = (i m,,0,0), da
einstimmen,

Mit der analytischen Fortsetzung des Arcustangens [15, Kapitel V §3], erhdlt man:

Damit bekommt man letztlich

mi = m%—g—O(A—mo)—

ph 4r

= m§— (A= mo)

und indem man aufgrund der Beziehungen (4.30), (4.31) mg und gy einfiihrt

o0

3gom(2) 1 . —m?
arctan
8T m Mo
=n* )" bl .
2n_|_1 (2 mO)Qn-I—l ’ 2m0 =

mo und m,, bis auf Terme der Ordnung go iiber-

+  O(g0)

AR G (i)2”+1 + Olg0)

mo = 2n + 1 2

+  Of(go)-

1 1
—— arctan —
mo 2

1 1-1
—L—,Log 2
mg 2t 1+

+  O(g0)

1
2

(Log: Hauptzweig des Logarithmus)

1 1

- In=
S "3 +  O(g0)
1

= In3 + Of(go).
mo

3gom(2) 1

— |
Tor gomg In 3

el yol (LI O(%) T O(g@)

1 O(%) i O(gg), (4.59)
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3 g g 3
mgh = m?— (—mR—A) ZE (A —my) ﬁ_m—ﬂ'ngR In 3

13 3 gr My 1
_ 2 9 9 2+ 2
- mi4 (16 Tl 3) — 4+ O(A) T O(gR)

_ e 1B_3 )E (1) 2}
— m? {1+<16 Tm3) o4+ o)+ O(ul) . (4.60)

mit Einfihrung der dimensionslosen Kopplungskonstante uy gemifl

ug = 22 (4.61)

mg
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Kapitel 5

Formel fiir die Energieaufspaltung

Wie in der Einleitung beschrieben zeigt die ¢*-Theorie in der gebrochenen Phase im end-
lichen Volumen keine Entartung des Grundzustands. Vielmehr existieren ein (bzgl. der
Transformation ¢g — —¢o) symmetrischer Grundzustand |0,) und ein antisymmetrischer
Zustand |0,), dessen Energie gerade um die Energie Fg, hoher liegt. Fiir diese Energie-
aufspaltung Fjp, soll nun eine Formel hergeleitet werden. Ich folge in diesem Kapitel im
wesentlichen den Uberlegungen wie sie im Rahmen einer analogen quantenmechanischen
Rechnung in [16] gemacht werden.

Ausgangspunkt ist die Ubergangswahrscheinlichkeit vom Zustand |0_) in den Zustand
|04) (,,Tunnel-Amplitude®) in der euklidischen Formulierung (zur Definition von |0_) und
|04) vgl. Kapitel 1); mit der Einfithrung der Zustdnde |05) und |0,), die normierte Ener-
gieeigenzusténde sind (|0s) mit der Energie Fjy, |0,) mit der Energie Fg+ Eq,), ergibt sich
(vel. Gln.(1.6), (1.7))

_HT _HT _HT _HT _HT
(Osle™ T 102y = o (C0u e F10) = (0u e 100) = (0] ™5 [0,) + (0, 5 ]0,))

BT _ (Bo+EBga)T
e Th — e D

Eo T Eoaq T
S (1—e— K ) (5.1)

denn |0s) und |0, ) sind als Energieeigenzustidnde mit verschiedenen Energiewerten ortho-
gonal zueinander.

Fy, kann daher bestimmt werden indem die Tunnel-Amplitude (linke Seite von Gl.(5.1))
berechnet wird. Dies geschieht in bekannter Weise mit Hilfe eines Pfadintegrals:

(sl j0-) = [ Do exp{-Lel} (5.2)

N N —= N

S[(bo] = /d3$ ﬁ(bo
— /d% (L 046000+ V(o)) (5.3)

3 2
Vigo) = G (65-ud). wo= /70, (5.4)

wobei nur iiber solche Feldkonfigurationen zu integrieren ist, die zu Beginn dem Zustand
|0_) (konstante Feldkonfiguration —wg) und nach der Zeit 7' dem Zustand |04) (kon-
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Abbildung 5.1: Eine spezielle Kink-Losung (a = 0)

stante Feldkonfiguration +wvg) entsprechen. Fiir sehr grofie 7" kann dies durch folgende
Randbedingung fiir ¢g gendhert werden:

Vo, 20— “+o00
(5.5)

—g, 20 — —oo0.

do(x) — {

2° bezeichnet die Zeitkoordinate, 2! und z? sind die beiden Raumkoordinaten. Die weitere
N&herung besteht nun darin, & als klein anzunehmen (semiklassische Niherung), so daf
zum Pfadintegral (5.2) nur solche Feldkonfigurationen ¢g(z) (die natiirlich den Randbe-
dingungen (5.5) geniigen miissen) wesentlich beitragen, fiir die S [¢g] ein Minimum besitzt.
Solche Feldkonfigurationen miissen also die Bewegungsgleichung

05

=0 5.6
So0() (5.6)
erfiillen; das ergibt:
2
m
Opdo — o0 + G5 = 0. Ope= (o). (D)
Man rechnet leicht nach, dafi diese Gleichung durch
d.(z) = v tanh{% mo (20 — a)} (5.8)

gel6st wird, wobei a ein Parameter ist, der die Position dieser sogenannten Kink—L&sung auf
der Zeitachse bestimmt (vgl. auch Abbildung 5.1); iiberdies erfiillt ¢, offenbar die Rand-
bedingungen (5.5). Ebenso rechnet man leicht die Wirkung S. dieser Feldkonfiguration
¢. aus, man findet (vgl. Anhang A, d =3 Dimensionen):

3

S. = 2202, (5.9)
9o
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Weiter bemerkt man, dafl auch die konstanten Feldkonfigurationen ¢ (z) = + vg die Feld-

gleichung (5.7) losen; sie erfiillen zwar nicht die geforderten Randbedingungen, dennoch
werden sie weiter unten eine Rolle spielen. Entwickelt man S [¢g] um ¢., bekommt man

_ 0%S[do]
86:(y) 66c(2)

= S.+1 /d?’x n(x) (DE‘|’m(2J 5 mg cosh™ {zmo (2° — “)} ) n(r)

Stoetnl = St d [y [ i) 57 nx) + O(r)

+0(n")
— 541 /d% (@) My(z) + O@), (5.10)
mit
M = Op+md—3mcosh™[ Lmo (2 —a) . (5.11)

Indem man also n(z) nach orthonormierten Eigenfunktionen von M entwickelt und iiber
die Entwicklungskoeffizienten integriert erhilt man den Beitrag F; der Kink-L&sung zum
Pfadintegral (5.2):

P N/H den =% =32 (11 0()]. (5.12)
2ﬂ'h

Dabei sind ¢, die Entwicklungskoeffizienten, A, die zugehorigen Eigenwerte von M und

N eine Normierungskonstante, die die genaue Form des Mafles D¢y bestimmt (streng

genommen ist das Pfadintegral hier gerade durch (5.12) (Integration iiber die Entwick-

lungskoeffizienten von n(z) beziiglich einer Orthonormalbasis aus Eigenvektoren von M )

definiert); O(h) driickt die semiklassische N&herung aus. Die Auswertung der Gaufi-Integrale
ergibt:

1
27h 2 Se
ro= NII() e ¥ (o)

= N (detM)™% =% [1+ O(h)]. (5.13)

Dabei ist allerdings angenommen, dafi alle Eigenwerte von M positiv sind; das trifft nicht
ganz zu. Wie spiter in diesem Kapitel gezeigt (vgl. Gl.(5.24)) hat M neben positiven
Eigenwerten auch den Figenwert 0. Dieser mufi gesondert behandelt werden. Bis dies im
einzelnen geschieht sei in Gl.(5.13) statt det M nur die Determinante unter Auslassung des
Eigenwertes 0 (det’ M) geschrieben, und diese Nullmode durch einen noch zu bestimmenden
Faktor P beriicksichtigt:

Fi = NPe % (detM)™% [L+O(R)]. (5.14)

Nun trigt zum Pfadintegral (5.2) nicht nur die 1-Kink-Ldsung ¢. bei, sondern es sind
auch Multikink—Konfigurationen ndherungsweise Losungen von Gl.(5.7), die dadurch ent-
stehen, daf§ auf einen Kink ¢. ein Antikink —¢. folgt und umgekehrt (vgl. Abbildung
5.2). Der Anstieg bzw. Abfall eines Kinks bzw. Antikinks ist in der Abbildung so steil
gezeichnet, da das Zeitintervall, in dem dieser Anstieg erfolgt im Verh&ltnis zum (sehr
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Abbildung 5.2: Beispiel eines Multi-Kinks (22 : (beliebige) Anfangszeit)

groflen) T sehr klein ist; weiter ist vorausgesetzt, dafi die Kinks und Antikinks zeitlich
nicht zu dicht aufeinander folgen (dilute gas approximation), nur dann ist eine Folge von
Kinks und Antikinks n&herungsweise eine Losung von GL.(5.7).

Was ist nun der Beitag einer solchen n-Kink-Konfiguration (n =Zahl der Kinks 4+ Zahl
der Antikinks) zum Pfadintegral? Die Wirkung S., einer solchen n—Kink-Konfiguration
ist nS., denn auch die Wirkung einer Antikink—L&sung —¢. ist wegen der Symmetrie
der Lagrange—Dichte unter der Transformation ¢y — —¢g gerade S., und falls Kinks und
Antikinks weit genug auseinander liegen, kann der gegenseitige Uberlapp vernachlissigt
werden. Der Beitrag zur Wirkung fiir die Zeitabschnitte, in denen ¢g &~ vg oder ¢p ~ —vg
gilt, ist wegen V(+wvg) =0 und dyvg = 0 zu vernachldssigen; damit ist die Wirkung S, ,
im wesentlichen durch die Anstiege und Abfille der Kinks und Antikinks gegeben, genau
wie im Fall der 1-Kink-L&sung , so daf in dieser Ndherung in der Tat S., = n.S. folgt.
Die Energiedichte 18, ¢o9"¢o + V(¢o) ist also im wesentlichen im Anstieg des Kinks
bzw. Abfall des Antikinks konzentriert; man spricht beim Kink und Antikink deshalb auch
von Pseudopartikeln oder Instantonen.

Um den Beitrag des Multikinks zur Determinante zu erhalten, bemerkt man, dafl bis auf
die kurzen Anstiege bzw. Abfille das Feld im Multikink den Wert +vy oder —wvg besitzt.
Die Entwicklung der Wirkung S[¢o] um ¢, = tvg ergibt (wie oben erwdhnt sind auch
¢, Losungen der Feldgleichung (5.7)) B

Stou+ul = Sloy]+ 4 [y [ ) ; ¢+/_5(£([SZO+]/_($) n(z) + O(r)
= 1 [ @an(e) Mon@) + O, (5.15)
da offenbar S[(bi] =0 gilt, mit
My, = Og+ml. (5.16)

Damit ergidbe sich folgender Pfadintegralbeitrag [Fionst der Feldkonfiguration ¢4 (oder
auch ¢_):
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= [Py exp{ = £ nie) Monta) + OGP} (5.17)

Die Auswertung des n—Pfadintegrals liefert entsprechend wie oben bei der Herleitung von

Gl.(5.13):
Feonst = N (detMy)~2[1+ O(h)]. (5.18)

Das Spektrum von My ist im iibrigen (offensichtlich) rein positiv, so daf§ hier kein Kor-
rekturfaktor nétig ist. Die Feldkonfigurationen ¢4 und ¢_ erfiillen die Randbedingungen
(5.5) nicht, darum ist Feonst noch kein Beitrag zum Pfadintegral (5.2). Dieser Beitrag der
Multikink—Konfiguration wird vielmehr erhalten, indem die Anstiege und Abfille in der
Multikink—Konfiguration jeweils durch einen Faktor K beriicksichtigt werden, der spiter
bestimmt wird; dies ist gerechtfertigt solange, wie bereits oben vorausgesetzt, die Kinks
und Antikinks im Multikink weit auseinander liegen, d.h. zeitlich nicht zu dicht aufeinan-
der folgen (eine genauere Begriindung des Faktors K findet sich in [16]). Eine n-Kink—
Konfiguration trigt daher den Wert F,, zum Pfadintegral (5.2) bei, mit

nSe
F, = Ne h K"(det M)~z [14O(h)]. (5.19)

Um den endgiiltigen Wert der Tunnel-Amplitude (in dieser semiklassischen Niherung) zu
erhalten, ist iiber alle moglichen Multikink—Konfigurationen, die die Randbedingungen (5.5)
erfiillen, zu summieren.

Zunichst kénnen bei gegebener Zahl n der Kinks und Antikinks deren Positionen vari-
iert werden. Als Zahl der méglichen Anordnungen von n Kinks und Antikinks im Intervall
T, wobei jeweils Kink auf Antikink folgen mufl und umgekehrt, ergibt sich:

o~k
-

4T

2 7an—l Tn

/dt1 dty - /dtn = —, neN? (5.20)
n.

_T
2

|
|

Ein Beweis hierfiir findet sich im Anhang B. Um schliefllich den Randbedingungen (5.5) zu
geniigen, ist nur eine ungerade Anzahl von Kinks und Antikinks erlaubt. Insgesamt findet
man daher fiir die Tunnel-Amplitude:

N (det M)~z TY)[H—O(FL)] (5.21)

n ungerade

(04”7 02)

S,

= N (det MO)_% : {exp(Ke_Tc T) — exp(—Ke_% T)}
X [1+O(h)]. (5.22)

Vergleicht man das mit der urspriinglichen Form der Tunnel-Amplitude (5.1), so erhilt
man wegen der jeweiligen exponentiellen T—Abhangigkeit fiir die Energieaufspaltung;:

Eou = 2hKe % [14+O0(H)]. (5.23)

Die Vorfaktoren wie N etc. finden hierbei keine Beriicksichtigung, da lediglich die Ener-
gieaufspaltung berechnet werden soll und keine Aussage iiber Amplituden wie [(04]0_)[?
getroffen wird.
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Insgesamt verbleibt noch K zu berechnen; dies geschieht nun so, daf sich fiir einen Kink
(n = 1) der richtige Beitrag in GI.(5.21) ergibt, denn der 1-Kink-Beitrag war bereits in
Gl.(5.14) berechnet worden. Dazu ist zunédchst P zu bestimmen. Wie erwdhnt, beriicksich-
tigt P die Nullmode von M. Nun gilt

M [Oppc(z)] = 0 (5.24)
und
[ & (wosca))? = s, (5.25)
wie man einfach nachrechnet. Daher ist
Sc_% dod.(2) (5.26)

normierte Eigenfunktion zum Eigenwert 0 von M. Dafl dies die einzige Nullmode von M ist,
die fiir % — + oo verschwindet, folgt aus einer allgemeinen Untersuchung des Spektrums
von M [17, Abschnitt 12.3], denn die Gleichung

3
Moy = {DE + m(z) — —mg cosh™? [@ (xo - a)] } oo = 0
2 2
entspricht einer zeitunabh&ngigen Schrodinger—Gleichung mit Potential
V ~ —cosh™? [%(xo — a)]

in einem gebundenen Zustand; ein solches Problem ist in [17, S. 1651 ff.] untersucht. Wiirde
S0l

man diese Nullmode bei der Berechnung von [ D¢y e~ "
einen entsprechenden Entwicklungskoeffizienten ¢; integriert, ergibe sich eine Divergenz.
Es bedeutet nun aber

beriicksichtigen, indem man iiber

(bc + Sc_g 80¢c($)

lediglich eine Verschiebung von ¢, lings der 29~ Achse. Eine Anderung de; bewirkt eine
Anderung

_L
d(bo = Sc 2 80¢c dCl. (527)
Andererseits gilt bei einer Verschiebung des Kinks ¢. lings der 2%—Achse um dty:
doog = 0o dly. (5.28)

Daher erhilt man, daB Anderungen de; und dt; dieselbe Anderung de¢y bewirken, falls
gilt:

_L Se \ 2
(27Th) 2 dCl = (27‘1’h) dtl. (529)

Da somit Integration {iber den Entwicklungskoeffizienten ¢; zum Eigenwert 0 von M eine
Verschiebung des Kinks lings der 2°-Achse auf alle moglichen Positionen bedeutet, dies
aber in Gl.(5.21) bereits durch GI.(5.20) Berticksichtigung fand, ist statt einer Integration
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1
5} zur Einbeziehung der Nullmode nétig. Fiir den Faktor

iiber ¢; nur noch ein Faktor (%h
P aus Gl.(5.14) bedeutet dies (P beriicksichtigt insgesamt die Nullmode, steht also quasi
1

fiir [ (27 h)” % dcy, darum tritt noch der Faktor 7' auf):
1
(5.30)

Se \2
P = T
<2ﬂ'h)
Dadurch erhdlt man schlielich fiir den 1-Kink-Beitrag F; wegen Gl.(5.14):
[1+0(n)]

[T

Se —_
Fi = NPe & (det/M)
1
(5.31)

= N7 (25)" e F (detar)F 10

Durch Vergleich mit dem 1-Kink-Beitrag aus Gl.(5.21) ergibt sich letztlich K:

S )5 e~ (det! M )72 [14+0(h)] =

NT(QM N (det Mo)"3 Te™ % K [1+ O(h)]

[T
[N

det' M\
(detMo) [1+ O(h)].

. Se
— K= (277/3)

Als Ergebnis fiir Fy, findet man wegen GI.(5.23) endlich:

1 _L
S. \2z _s [det’' M\ ?
Fou = 2h (2m) o5 (detMO) [1+0(h)].

(5.32)

Da die Eigenwerte von My und M (unter Vernachldssigung der Nullmode) stets positiv

sind, schreibt man auch

det’ M

det’ M (5.33)
det MO ' '

statt
det MO

Indem im folgenden die Terme O(%) unterdriickt werden, sowie wie iiblich ab jetzt & =1

gesetzt wird, erhdlt man:
_1

2
(5.34)

det’ M
det MO

1
F = QG_SC (i) ’
Oa o

Die Hauptaufgabe wird also im weiteren sein, den Ausdruck
det’ M
det MO

9

gegebenenfalls mit geeigneter Regularisierung, auszuwerten.
Vorher sei noch angemerkt, dafl die Behandlung von Multikink—Konfigurationen unter

der Annahme weit auseinanderliegender Kinks und Antikinks im Multikink erfolgte, in
Gl.(5.20) aber alle méglichen Positionen von Kinks und Antikinks berticksichtigt wurden.
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Damit das Verfahren konsistent ist, sollten die Konfigurationen mit niedriger Dichte pj o
der Kinks und Antikinks den Hauptbeitrag zum Pfadintegral liefern, wobei:

Zahl der Kinks)+ (Zahl der Antikinks
Phak = ( ) ; ) . (5.35)

n
zu bis n die GréBenordnung von z erreicht hat (n &~ z), danach nimmt die Gréfe der

Summanden rasch ab. Diese Beobachtung, angewandt auf die Reihe in GI.(5.21), ergibt,
dafl der Hauptbeitrag zur Tunnel-Amplitude von n—-Kink—Konfigurationen mit

Das ist in der Tat so, denn in der Reihe >~ fl—r,l nehmen die Summanden mit »n solange

Se
n < Ten K

geleistet wird. Das heifit

Pk,ak = % s e_%l(v
und da die rechte Seite dieser Ungleichung in der semiklassischen Niherung (A klein gegen
S.) exponentiell klein wird, tragen nur solche Multikink-Konfigurationen zum Pfadintegral

wesentlich bei, deren Dichte pj i sehr klein ist. Die Behandlung des Problems ist also
konsistent.
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Kapitel 6

Bestimmung der Determinanten

6.1 Zuriickfiihrung der Determinanten auf ein Integral

In Kapitel 5 war die Formel fiir die Energieaufspaltung Ly, abgeleitet worden (Gl.(5.34)):

1
Fo, = 25 (i) ’
Oa o

_1
2

det' M
det MO

Die hier auftretenden Determinanten gilt es nun zu berechnen. Hierzu mogen folgende
Definitionen gelten:

M= -0*+Q, My = —0% 4+ Qo, (6.1)
mit
0" = 0f+0, (6.2)
Q = —R+md— ;mg cosh™2 [1mo(a° — a)], (6.3)
Qo = —35+mj. (6.4)

Um die Determinanten zu berechnen wird die sogenannte Methode der Wiarmeleitungskerne
verwendet. Dazu wird fiir einen Operator A definiert:

Ki(A) :=Tre 4, (6.5)

Je nachdem wie das Spektrum von A beschaffen ist, gilt obige Definition nur fiir geeignete
t € IR, damit die Spur auf der rechten Seite der Definitionsgleichung wohldefiniert ist.

Zunéchst gilt, falls A ein rein diskretes Spektrum mit nur endlich vielen Eigenwerten
An, n=1...N, der Vielfachheit entsprechend oft gezihlt, besitzt:

N
IndetA = lnH/\n
n=1
N
= Y InA,
n=1
= Trln A. (6.6)

Hierbei wird, wie im folgenden auch, angenommen, daf gilt:

A >0 n=1...N.
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Dies kann, falls A nach unten beschrinkt ist, stets durch eine Verschiebung des Spektrums
erreicht werden:

A— A+ 2, ©? hinreichend grof.
Offensichtlich gilt auch

N
Zln/\n_—— Z/\ s (6.7)

d8|s 0

Indem man die Gammafunktion einfiihrt,
= /dTe_TTS_l7 Res > 0,

ergibt sich mit der Substitution 7 =tA,, n € {1...N}:

o
I'(s) = /\Z/dtts_l e~ iAn
0
— D ts—l e—t/\n
n
N
— ZA;S — —tAn
n=1

Res > 0. (6.8)

Falls nun [ dt¢*~'K{(A) in einer Umgebung von s = 0 existiert und als Funktion von
s holomorph ist, gilt mit analytischer Fortsetzung

N 1
nZ::l/\n ~T(s

auch noch in einer Umgebung von s = 0. Daher folgt mit den Gleichungen (6.6), (6.7) und
(6.8) (75 ) =0, & 15=0 F( y =1, vel. auch Anhang C):

|s=0

IndetA = Trin A

N
= Y InA,
n=1

— _;—S|S:0{F(18)O/dtts_th(A)}
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Ist das Spektrum von A nicht rein diskret und/oder nicht endlich, so wird GI.(6.9) ent-
sprechend verallgemeinert, wobei zur Spurbildung iiber alle Eigenwerte summiert wird
(bzw., falls A, im Spektrum von A liegt, zur Bildung von Trln A natiirlich iiber alle
Werte In A, , wobei nach wie vor fiir das Spektrum von A vorausgesetzt ist: A, im Spek-
trum von A = A, > 0) und fiir den kontinuierlichen Teil des Spektrums die Spektral-
dichte von A zu beriicksichtigen ist. Damit ist die Berechnung von det A im wesentlichen
auf die Berechnung von [;~ %Kt(A) zuriickgefiihrt, falls dieses Integral iiberhaupt existiert.

Im vorliegenden Fall sind die zu
det/ M
det Mo.

berechnenden Determinanten:

(Determinante ohne Nullmode),

Daher sind zunichst die Operatoren M und My zu untersuchen:

o /u M=-0*+Q:

Um die Nullmode von M (vgl. Kapitel 5) zu beseitigen, wird zunichst M + p?

betrachtet:

KoM+ p?)

Tr e~ t(=0°+Q+u?)

e~ Ty o~ 1(=974+Q)

W KE (0K (Q),

denn —0@?% wirkt nur auf die Raumkoordinaten, ) nur auf die Zeitkoordinate. Hierbei
bedeutet KtLZ)7 dafl zur Spurbildung nur der Raum der nur raumabh&ngigen Funk-

tionen zu nehmen ist, K/

entsprechend, daf§ zur Spurbildung nur der Raum der nur

zeitabhdngigen Funktionen zu nehmen ist. Nun gilt

KF (-0

27n\ 2 :
= exp |[—|— ] ¢t (6.10)
(Ze [
_ (L ex —"QLQ] 2 (6.11)
\/4ﬂ'tnez P 4¢ ' '

Der letzte Ausdruck riithrt von der Poissonschen Summenformel her [17, 18]. Das
Spektrum von ) ist bekannt [17, 19], wobei die Zeitausdehnung 7 zun&chst als

endlich angenommen wird:

diskr. Spektrum
kontin. Spektrum

Spektraldichte

=0, e3=2m} (6.12)
e, =p*+md, pelR (6.13)
1 p* + gmi
=—{T-3m 6.14
+0o(17).
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e 7u MO = —82 —|—Q0:
Auch hier wird zunichst My + p? betrachtet, obwohl My keine Nullmode besitzt:

Kt(Mo—|-H2) — Tre H=9"+Qo+u?)
™ KF (01 K] (Qo),

ganz entsprechend wie oben.

Fiir das Spektrum von (Jg, ebenfalls bei endlicher Zeitausdehnung 7T, erhdlt man
offenbar:

2
diskr. Spektrum : ¢, = p* +mj, p= il n, ne€Z, (6.15)

T

was bei hinreichend grofiem T in ein quasikontinuierliches Spektrum iibergeht mit:

quasikontin. Spektrum : ¢, =p®+mj, pcR (6.16)
T

Spektraldichte : go(p) = 7 (6.17)
T

Die Spektren von M + p? und My + p? sind damit stets positiv, so daB mit GI1.(6.9) gilt
(wobei immer noch eine endliche Zeitausdehnung 7' angenommen ist):

M + p? 2 2
Trln (m) = TI’IH(M‘I‘,U ) — TFIH(MO‘I’H )
T dt T dt
= /7 H(M + p?) +/7 (Mo + %)
0 0
dt~
e, (619
0

KM +p?) = KoM+ p?) = Ke(Mo + i)
= K- E](Q), (6.19)
K(Q) = KQ) - K[(Qo). (6.20)

Mit den Beziehungen (6.12)-(6.14), (6.16) und (6.17) findet man fiir K (Q)
KHQ) = K Q) — K[ (Qo)
+o0 400
= 14Ty / dp go(p) et P*+m8) /dpgo(P) et +m5)

+ oo

2, 1,2

_3,2; Mo P+ Mg —1\\ —t(p2+m2)

= 1—|—e40t——/dp3 2 + O(T e HP o/,
S ( i )

(6.21)

so dafl nun der Grenzwert T'— oo ausgefiihrt werden kann.
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Indem im folgenden wieder K(Q) an Stelle von K7(Q) und K;(—d?%) statt KX (-9?)
geschrieben wird, ohne dafl Miflverstindnisse zu befiirchten sind, ergibt sich schliefillich
(T — o0):

M+p?\ 7@ - 5
Trln(iMO—l—uz) = —0 th(M—I_'u)’ (6.22)
KM+ %) = e " K/(-0*)K(Q), (6.23)
+o0
Ki(Q) = 14e imliy / dp g(p) e~ @ Fm5) (6.24)
—§m2t 1
= @(mox/f) + e 1" P §m0\/g , (6.25)

® : Fehlerintegral

mo 2 1
= —— . 6.26

Die Einfiihrung des Fehlerintegrals ist im Anhang D genauer begriindet.

Die Verschiebung des Spektrums von M bzw. My mit p? war durchgefiihrt worden,
damit das Spektrum jeweils stets positiv ist. Um nun die gesuchte Determinante zu erhalten,
ist wie folgt zu verfahren (det’ M : Determinante von M ohne Nullmode, vgl. Kapitel 5):

det’ M M
= Tr'ln —
" det MO ro MO

1

I M + p? 2

wobei Tr’ Spurbildung unter Auslassung der Nullmode von M bedeutet. Als weiter aus-
zuwertender Ausdruck ergibt sich hiermit unter Benutzung von Gl.(6.22)

o dt -
1 =lim (- | —K{(M+p®) -1 2). 6.28
n e =l (= [T RO+ ) - (6.25)
Untersucht man nun den Ausdruck [;~ % K, (M + 4?) genauer, so erkennt man, daf dieses
Integral an der unteren Integrationsgrenze divergiert (konstante Faktoren werden in den
folgenden asymptotischen Betrachtungen unterdriickt):

I(t(—82) ~ %

t—=0

_ K (M + u? s
K(Q) o~ Vi M St (6.29)
e—ti? ~ 1

t—0

(vgl. Gln.(6.11), (6.25), fiir das Fehlerintegral ®(z) gilt ®(z) = %z + O(z?%) [20]). Um
der Gleichung (6.28) dennoch einen Sinn zu geben, ist daher eine Regularisierung durch-
zufithren. Im Sinne einer Pauli-Villars—Regularisierung ist auch hier eine Pauli—Villars—

Masse A wie folgt einzufiihren:
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det’ M _ 'Tl M + p? g [ MAAY
et My oy, wmo |\ Mo+ 42 P\ Mo az) T

- T N - 2 % 2 2
= iy /7 (KM +A%) — KM +42) —lnp?|. (630
Lo

Diese Art der Determinantenregularisierung erscheint sehr plausibel und sinnvoll, wenn auch
etwas willkiirlich. In Kapitel 9 sind einige Uberlegungen angestellt, ob diese Regularisierung
aus einer im Sinne einer Pauli-Villars—Regularisierung modifizierten Lagrange-Dichte ge-
wonnen werden kdnnte.

Zunichst sieht man, dafl das entstehende Integral durch die Regularisierung fiir g > 0
tatsdchlich existiert:
Oodt - 2 - 2 Oodt —tA2 —tp? - 2\ -
/7 (Ki(M +A2%) = Ki(M + %)) :/7 (e — &™) Ky(—0M) Ki(Q);  (6.31)
0 0

e Verhalten des Integranden an der unteren Grenze:

1 1
t o t
et — o7t e —t(A? —p?) Integrand ~ =3
) 1 t—
K (=0?) el ¥ = Integral existiert an der unteren Grenze,
N
e Verhalten des Integranden an der oberen Grenze (vgl. Gln.(6.10), (6.25), wegen 1i_>m O(z2) =
1 [20]):
1 1
t t— oo t A2 5
- -t e 77}
K(~0%) D 1 Integrand ~ e e
~ t— oo t
K@) t5o0 1 = Integral existiert an der oberen Grenze.
e—tA2 _ e_t“2 —~ e—tA2 _ e_t“2
t— oo

Damit existiert also das Integral fiir p > 0. Im folgenden wird nun zuerst der Grenzwert
1 — 0 ausgefiihrt.

det’ M : dt - 0 2 2
In det Mo oy, }Ll—% /7 (Kt(M—I—A ) — Ky(M + )) —Inp
Lo |
= lim 7@(e_m2 - e_t“2)K (—GQ)RY (Q) — Inp?
vy ; t t 4
Lo |
— lim -7@ (e — &) (Ku(-0) K@) — 1)
pn—0 t ! !
-0
1
[ dt —tA? —tp? 2
+/7(e —e )—ln,u (6.32)
0
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Da das Integral I auch noch fiir =0 existiert (untere Grenze: Integrand ~ 73 , Obere
Grenze: Integrand ~ eT_t), kann hier der Limes g — 0 ausgefiihrt werden:

det’ M dt 2 -
1 = [ —(e™ Ki(-0*)K(Q) — 1
o My v, . ( H(—07)K4(Q) )
0
. —tA2 —m2 . 2
-|-iL% / ) ln,u]
0
_ / W (e 2 1) (Ki(-0%) Ko@) — 1)
t
0
i 7 dt
. b —tA2 _ —ty, - —tA2 —tﬂ,2 _ 2
[ E P
0 1
J
(6.33)
Auch das Integral J existiert offenbar fiir p = 0. Damit gilt
[S%e] 1
det’ M dt ; _p2 Ao dt 1 a2
D /7((3 —1)(K(-0*) K@) 1) +/7 (7 — 1)
0 0
Oodt —tA? —tu
[ )
1
7t et
—tA2 -
_ /7( N 1) (K-0*) K@) - 1) —|—/dt t
0 0
[ dt
+ /7e_m2 + hm [ —Inp ] (6.34)
1
Fiir das verbleibende p—abhidngige Integral findet man
_ / de &
x
42
= —lim [ dxatte™®
e\ 0
(2
w?
= —lim { / “lem® dw}
e\ 0
ﬂ'2 o ( 1)k ﬂ'2
_ 1 B e—1 B B e—14+k
= g{no {F(e) /ac dx kz_:l—k! /ac dw} ==
0 = 0
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o e—t;ﬁ 2\e o ¢ vk 2\etk
O

e\ 0 £ £

Mit der bekannten Laurent-Entwicklung von I'(¢) um & = 0 ergibt sich (y = 0.5772.. .,
Euler-Konstante)

[ e 1 1 N el VT
— [ dt = —lim<{-— — “(14elnp? ) -
Ja= J{fb{g 700 = (1+elnut +0) - 3
J —
- o~ (ZDF ()t
im0 =3
l{fh{ v~ Inpt+0) ;; M etk
= v + Ing® + O(u?). (6.35)
Damit bekommt man
o] 1
det’ M dt 2 - et
| = [ —(e™™ 1) (K(-0HE(Q) -1 /dt
et Ty JEC ) (Ku(-0% K@) —1) + t
0 0
dt _ip2 . 2 2 2
+/Te + lim [7+1nu +O(u)—lnu}
1
Oodt / |
_ ar [ —tA? - a2y o _ e 1
— /t (e 1) (Ki(=0")E(Q) 1) + /dt t
0 0
Jo
T dt
+ /Te_tAZ) + 7. (6.36)

1

Somit ist der Limes p — 0 ausgefiihrt, und es bleibt im wesentlichen noch das Integral Jg
auszuwerten.

Um dies zu tun, gibt es zwei Wege, die sich hauptsichlich darin unterscheiden wie
das Integral J, aufgespalten wird, damit die sich ergebenden Integrale einerseits wirklich
ausgerechnet werden kdnnen, andererseits die fiir A — oo endlichen und divergenten Terme
sauber getrennt werden. Der von mir zunichst eingeschlagene Weg orientierte sich primér
daran, das erste Ziel (auswertbare Integrale) zu erreichen. Der Nachteil dieses Weges besteht
darin, dafl zwar alle auftretenden Integrale relativ elementar ausgewertet werden kénnen,
die Rechnung aber dadurch recht lang wird, dafl zum Teil auch Terme berechnet werden, die
letztlich bei der Renormierung und Entfernung des Regularisierungsparameters A sowieso
verschwinden. Dieser Weg soll im {ibern&chsten Abschnitt dargestellt werden.

Der andere, elegantere Weg, dessen Kenntnis ich den Hinweisen von G. Miinster verdan-
ke, verfolgt dagegen priméar das zweite Ziel, ndmlich von Beginn an eine solche Aufspaltung
von Jy zu wihlen, daf stets solche Terme abgespalten werden, die fiir A — oo einen end-
lichen Beitrag liefern, und so die eigenlichen Divergenzen fiir A — oo zu isolieren. Es wird
sich auflerdem zeigen, dafl auch die hier auftretenden Integrale relativ einfach ausgewertet
werden konnen. Dieser effizientere Weg soll im néchsten Abschnitt verfolgt werden.
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6.2 Effiziente Auswertung des Integrals .J;

Wie im letzten Abschnitt erwdhnt, ist das Integral Jy auszurechnen. Dazu wird folgende
Aufspaltung gewihlt:

o0

Jo = 0/ % (e — 1) (Ki(-0%) Ki(@) — 1)

= [T ) (RR@ - 1) + [ (=) (K0 RiQ) - 1)

1

= - [F(E-R@ 1) + [T (K- RiQ) - 1)
+ /% (e—tA2 _ 1) (IQ(—@Q)R}(Q) _ 1)‘ (6.37)

Das zweite Integral geht fiir A — oo mindestens wie e~ gegen 0 (das Integral 148t sich

wegen der Beziehung (6.40) (s.u.) durch das Exponentialintegral Ei(z) abschitzen, dessen
asymptotisches Verhalten bekannt ist [20], vgl. auch die Beziehungen (6.124) und (6.125)
spiter in Abschnitt 6.3); dafiir sei im folgenden O(e=2*) geschrieben:

o0

0= - [FREMR@ 1)+ ofe)
[ W e ) (K- Ra@) 1), (6-38)

Nun wird der Ausdruck K;(—9?)K(Q)—1 niher untersucht. Es gilt wegen der Gleichungen
(6.11) und (6.25) (fiir die Entwicklung des Fehlerintegrals siche [20] bzw. die Bemerkung
nach (6.29) auf Seite 44):

Ki(—0)K(Q) -1 = 4L—; [;Ze—"ifr [@(movT) + e @ Lmgvi)| ~ 1
_ m [Ho(e—zf)]
< | Zemovi+ OiF) + (14 00)) (S=52vi+ (1)) -
= 4L—; [1+o(e—§)] [%moﬁJro(t%)] —1
o) ot
_ % S 1+ o(i) 4 ofe ), = 3;7” (6.39)

Diese Entwicklung wird fiir kleine ¢ benutzt werden; fiir grofle ¢ erkennt man wegen der
Beziehungen (6.10) und (6.24):

Krt(_82)1§7t(Q) 1~ e + O(e_‘”)7 a € R, (6.40)

t—o00
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also exponentiellen Abfall. Diese Uberlegungen machen folgende Umformung sinnvoll:

Jo :—/ (K0 Ri(@Q) 1) + /%(e—w ~1) (% 1)

1 0

H.|&
e

+/ T =) (oK@ =1) = (S - 1)+ 0(e ). ()

denn nun sieht man, dafl der (nach Ausmultiplizieren) A-abhingige Teil des dritten In-
tegrals fiir A — co mindestens wie % verschwindet (folgt mit GL.(6.39), indem man die
Substitution w=1¢A? ausfiihrt). Der hier entstehende Term O(%) absorbiert den schon

a)

bestehenden Term O(e~"). Durch Abzug von (W — 1) werden ndmlich gerade die Terme

im Integral fl 4 (K,(—0*)K+(Q) — 1) beseitigt, die fiir A — oo Divergenzen verursachen.
Dabher gilt

Jo = —/%(1@(—32)1@(@) -)- [T [(Kt(—éﬂ)ﬁ't(Q) —1) -

L))+ o

g| 2
-~
|
(-
SN——’
| I

o

_I_

j
|/

dt Q
- [ [ K(=09)R(Q) 1) - (1 - t)(% _ 1)]
+/1@ A (ﬁ —1) 4+ O(l) (6.42)
J ﬁ A)’ '
mit
1 fir t>0
o) _{ 0 fir ¢<0. (6:43)
Weiter rechnet man (F(lz) o = 0, dd_z 220 F(lz) = 1, vgl. Anhang C):

b= [ 5 (-0 k@ -1) - 01 - 1 (% 1]

0
1 —tA? 1 —tA?
—|—d1/dt¥ - /dt! + o(l)
t2 t A
0 0
d 1 i 2—1 - 2\ 7 ay
= 5\ T /dtt (K(~0%)E(Q) ~ 1) - 0(1 - 1) (% 1)
B 0
1 —tA? 1 —tA?
+a1/dt¥ - /dt! + O(l). (6.44)
J t5 J t A

Das urspriingliche Integral als Ableitung einer Funktion an der Stelle z = 0 auszudriicken,
wird sich im folgenden als niitzlich erweisen.

49



Insgesamt ergibt sich damit

Jo = — ;—Z . {ﬁ 7dt = [(Kt(—éﬂ)ﬁ't(Q) ~1)-e(1-1 (% _ 1)] }
e s
_ (f_z|z:0{ Flz) 7dt (K () K(Q) - 1) }

2

—tA
+d { /dttZla—l—l}—l—al/dt -
Z|zO t2

! —tA?
e -1 1
— /dtf + O(X) (6.45)
0

Hierbei ist die letzte Umformung, da die einzelnen Integrale nicht alle in einer Umge-

bung von z = 0 existieren, im Sinne einer analytischen Fortsetzung zu verstehen. Es wird
definiert:

{(2) =

K0 R(Q) — 1), Rez> 1. (6.46)

Fiir andere z (insbesondere in einer Umgebung von z = 0) wird {’(z) durch analytische
Fortsetzung definiert. Somit gilt

d d 1 / ot
- _ — - S dt ———
JO dZ |z:0C (Z) + dZ |z:0 [F(Z) (Z — % ) ] —I_ al %
! —tA?
e -1 1
- | dt——— —
[t + ofg)
0
d x Foet
— @ C/(Z) _ le + F/(l) + dl /dt —_— (Vgl auch Anhang C)
z=0 2
- 0 £
v
! —tAZ
-1 1
- /dt Qf + O(X)‘ (6.47)
0

Fiir das erste verbleibende Integral bekommt man nun
1

—tA? L 2 ,—1A2
-1 2A
e R P i P i
J t5 part. Int. 0 / \/Z

1

A
= -2 2 [ gy 2o A
et -2 (e — 1) —2A /du A2e ” =

w?=1tA?
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e_tA2 —1 A 2 2
/dti - 92— 4A/due_“ + o(e—A )
t

= 2 - 20V70(A) + Oe). (6.48)

Das Verhalten des Fehlerintegrals & fiir grole Argumente ist bekannt [20]:

A . (2n— 1Y
1—®(A 1 — . 4
(A) ~_ IA[ +Z AT (6.49)
Daher erhilt man
B d = . . . —A2
Jo =~z {0 = 20+ 20 - 2 AV (14 0(e™))
1 —tA?
e -1 1
e A — -
7 / .t O<A)
0
d 1

- 4 C()—QalA\/_—fy—/dt i —|—O<X)

dZ|z 0

Es bleibt also noch {'(z) bzw. c?_z| o

5/(2’) auszurechnen.

6.2.1 Auswertung der (' —Funktion
Es gilt nach G1.(6.46) mit Hilfe der Beziehung (6.10) fiir K;(—9?):

C/(Z) = ( ¢ (—82)1275(@) - 1)7 Rez > %,

analytisch fortgesetzt sonst

-ty [ - ()
[AQCW) ] (K@) - 1], (6.51)
. =Y e ™ A(s)=s"7A(1/s)  (Res > 0). (6.52)

ne g

Die letzte Gleichung fiir A(s) sieht man mit Hilfe der Poissonschen Summenformel ein.
Mit den Definitionen

C1(2) Kt(Q) - 1)7 Rez > 1,

analytisch fortgesetzt sonst, (6.53)
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Ca(z) = - [A{%)—l], Rez > 1,
analytisch fortgesetzt sonst,  (6.54)
2
() = o [p(%) _ %] K@ -1, vzec, (6.55)
folgt .
¢'(2) = G(2) + G(2) + CGs(2). (6.56)

Im einzelnen berechnet man:

(;—Berechnung

Mit der Beziehung (6.24) folgt

G(z) = T (K@) - 1)
= di 7% e~ 33! /dttZZ/d (g 4e?) 3
47TF { / * ro(p
Mit den Substitutionen u=3mit im ersten Integral,
' = (m3+p?)t im zweiten Integral

ergibt sich
o -2 4 )z 2e—u
= du | — — d du' —r————

_ ﬁzz){ Gmg)l_ZF(z— 1) + /Oodpg(p) (m3+p2)1_ZF(Z— 1)}

L*P(z—=1) [ (3 \'77 N
= EW{<ZWLO) + / dp g(p) (mo—l-p) : (6.57)
Ji
Das Integral J; ergibt nun (vgl. Anhang E.1):
goo _m) T TOTE-5) | 3TN+ )
b 2 I'(2) 4 T(z+1)
9 1
+ — P 2 (6.58)
6. 0+ )™ 2+ D) }

Damit findet man

at) = 2Ll ()T - (M) BTG

AT z—1 40
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Die rechte Seite dieser Gleichung existiert nun auch in einer Umgebung von z = 0, so daf
analytisch fortgesetzt werden kann:

+o0
d L? z 1
cdl<z> :__§m3_%[§+i/dp2 21]
Z  |z=0 47 | 4 27 L4 16_00 P2+ 1) (p +Z)
J.
L2 3 2 3,2 2
_E{— Zmoln(zmo)
mg 3 9 ' 1
sl ] |
o T TG TR D
J2
Mg 1 1 3 / 3 1 11
_ ﬁ[gr(g)r(_i) - SR+ Sr(3) (4
9 7 ln(p2—|—1) ]
- — d . 6.60
16_OO p(pz_l_l) (p2‘|‘i) ( )
J3

Die verbleibenden Integrale .Jz, Js sind ebenfalls im Anhang berechnet (vgl. Anhang E.2
und Anhang E.3):

4
J2 = — T (661)
3
J3 = gﬂln% (6.62)
Damit folgt
d ¢y (z) L3 5, md [3 3]
dz o~ ax )™ T it aT

= —g{% (2) — %mg %m% ln(%mg) + m% lnm(zJ
o= LORCORS SRS RORO
_;ﬂn%]}. (6.63)
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Mit (vgl. Anhang C)

r(-4) = -2 (6.64)
a1 = —»v (6.65)
ML) = —(+2m2) 7 (6.66)
ergibt sich schliefllich
d¢i(z) L? 3 5.3 m%[ 3 3 3 9]
— = ——<¢{——mgln—-—— |- - —m(—y—2In2)——7wln-
dz  |o=0 ey T [Ty Ty m 22 —gming
L? 3 3 3 3 3 3 9
= —E{—Zm%an—l—Smg—gmg'y—l—gm%'y{—zmgan—l—nglng}
L3 3
= Ezmo(lnz—él—an—ln—)
3 L, 1
L 3
= —Em0(3+11n3). (6.67)

(s—Berechnung

Nach der Definition (6.54) gilt

6 = i Jar () ] wessn
0

analytisch fortgesetzt sonst.

(6.68)
Mit der Beziehung (6.52) fiir A wird daraus
66) = (%) [ass (0 -1) =T
- (B) il feee (- + o (w1
+ /dssz_2 - /dssz_l}
- (L) 5 faem (ro-) + fa (1)
0 : : 1
+ -1 ;}
= (g) ﬁ {/dssz_l (Az(s) —3_1) + /dssz_l (AQ(S) — 1) + zi 1}
L*\" 1
_ (E) et (6.69)
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Die rechte Seite existiert auch in einer Umgebung von z = 0; daher kann analytisch fortge-
setzt werden:

S = e+ [T (e )

1

L2
-1 - In— (1
no— + (1)
ds' ; 7 ds 9
1 1
L? 1
-1 — — |n — U .
v no— = (6.70)
Wegen A(s) = s 2 A(1/s) (vgl. GL.(6.52)) folgt
dGa(2) B 7(15 ) 7(15 ) L?
&z oo . (SA(S)—S)—I— . (A(s)—l)—l—'y—lnllﬂ_
1 1
7 ds 9 L?
_ /?(1+s)(A(s)_1)—1—7—1nE. (6.71)
1
Mit -
d
Bry ;:/?‘S (1+5) (4%(s) = 1) = 1 — « (6.72)
1
ergibt sich
dCQ(Z) L2
=Bpy — In—. .
dz |z=0 oY " 4 (6 73)

Das Integral in der Definition von Bpy kann numerisch ausgewertet werden, man findet:
Bpy = —1,476336... . (6.74)
Bpy kann auch analytisch genauer bestimmt werden (vgl. Kapitel 8).

(s—Berechnung

Mit der Definition (6.55) bekommt man

[zﬁ(‘?f) m] [1(}(@) —~ 1], z€C. (6.75)

Hier kann direkt nach z differenziert werden:
d¢s(2) 7dt 2<4m) L? [ ~ ]
= — A —= 1 - —| | K -1
dz  |z=0 t L? 4rt (@)

_ /dt‘mzl (4m) 1“1&}(@)—1]. (6.76)
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Fiir den letzten Schritt ist erneut die Beziehung (6.52) benutzt worden. Einsetzen der
Definition von A ergibt

ne gz

Mit der Definition von K(Q) (vgl. G1.(6.24)) folgt schlieBlich

2 7 2, 12y72 Foo
d¢s(2) _ Z L ﬁe—i(k To)L (e—%mgt n /dpg(p) e—t(mg-l-pr‘)))'

dz  |z=0 4z | 12
klez 0
(k1) # (0,0)
(6.78)
Es treten t-Integrale folgenden Typs auf:
rdt _me B 2
e " , = (k,1)e Z°\ (0,0), X>0. (6.79)
0
Im Anhang wird mittels einer Sattelpunktentwicklung gezeigt, daf
o0 1 .
@ e_#_/\t _ A1y/87 o VAL mit L schneller (6.80)

) 12 (ﬁsz)% abfallende Terme

gilt (vgl. Anhang F). Fiir grofie L tragen daher in GI.(6.78) in niedrigster Ordnung nur

Terme mit 72 = 1 und A = %m% bei, also insgesamt 4 Terme:
1
3,,2)¢
d¢s(z) _ 4L_2 (Zmo) V8 e—@moL n mit L schneller
dz  |z=0 ir L5 abfallende Terme
_ V3Lmo e_ngL mit L schneller (6.81)
7 abfallende Terme.
Ergebnis fur %5/(2) |-=0 und Jo
Mit den Gleichungen (6.56), (6.67), (6.73) und (6.81) ergibt sich
d L* 3 L?
@C (Z)|Z_0 —Emo (3—|— ZlnS) + pr — IHE
V3Lmyg _ B mit L schneller
+2 s 07 abfallende Terme, (6.82)

und damit folgt wegen Gl.(6.50) fiir Jo:

Lr 3 L? IV3Lmo _v&, ;. 3moL*A
JO = Em0(3—|—11n3)—]3pv—|—1nﬂ—2 Te 2 o —T

et 1 it L schnell
DV — ol L mi schneller 6.83
7 0/ t + (A) + abfallende Terme. ( )

56



6.3 Alternative .Jy—Berechnung

Wie in Abschnitt 6.1 angekiindigt, soll nun der Weg zur Berechnung von Jy dargestellt
werden, der von mir urspriinglich eingeschlagen wurde. Wie dort bereits erwahnt, wird sich
dieser als aufwendiger erweisen, obwohl das Ergebnis natiirlich dasselbe ist. Der Hauptun-
terschied besteht in einer anderen Aufspaltung des Integrals Jy. Offenbar gilt ndmlich:

o0

Jo = /% (e 1) (Ki(-0) K@) - 1)

0

—

_ ;_lezo{ (12) 7dttz—1 (= 1) (Ki(~0%) (@)~ 1) }

= ;_ZZZO { F(lz) /dttz‘lf—; (e‘m? —~ 1) (R}(Q) - 1)
G (2)
Ty

(2(2)

e o (=) (i - ) (R@) ) oo

Die letzte Umformung ist wieder im Sinne einer analytischen Fortsetzung zu verstehen, da
die Integrale ¢ und ¢} fiir z = 0 nicht existieren. Im einzelnen gilt wegen der Beziehungen
(6.10), (6.11) und (6.24), (6.25), die das Verhalten von K;(—d%) und K(Q) fir t — 0
bzw. t — oo liefern:

° 2
C(z) = F(lz) /dttZ*% (7™ = 1) (Ku@ 1), Rez>0,
0 analytisch fortgesetzt sonst,
(6.85)
Hz) = F(lz) /dttz_l (7™ 1) (Ki(-0%) -1), Rez>0,
0 analytisch fortgesetzt sonst,
(6.86)

1(z) = r(lz) O/d”“ (e 1) (Ki(-0?) - L—Q) (K@ —-1), vzec. -

Diese Funktionen (j, (3, ¢4, bzw. ihre Ableitungen an der Stelle z = 0, gilt es nun auszu-
rechnen.
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6.3.1 (;—Berechnung
Es gilt mit der Definition (6.85) und der Beziehung (6.24) fiir K;(Q) :

L (Ru@)—1) (e - 1)

() = -

2

172 f— (K@) —1)e?

T

o0 + oo
L? z—2 ) —2m2¢ —t(m2+p?) —tA2
= 0 /dtt {e 20 —I—/dpg(p)e 0 e
0 —00
z2—2
477F /dtt (K@ —1)

s

477F /dttZ 2(Ku@)—1).

Die ersten beiden ¢t—Integrale werden durch offensichtliche Substitutionen auf die I'-Funktion
zuriickgefiithrt, und man erhilt

20 (2 — 1-z i 1-z
G = f—ﬂ%{(imM) v [ o) (i + 4+ ) }

Ji(2)

o2 g (K@ -1)

477F /dttZ 2(Ku@)-1).

Das letzte Integral (einschlieflich Vorfaktor) ist aber genau die Funktion ¢; aus Ab-
schnitt 6.2 (vgl. GL.(6.53)). Daher hat man

G = = { Comgear) 4 J?<z>} e (6.59)

Entsprechend ergibt sich fiir die Ableitung an der Stelle z = 0 mit dem Ergebnis fiir (;
(vgl. GL.(6.67)):

d / L2 3 2 2 A
_— - _ — A =
G RG]
12 3 d
_ E { (4 mo + AQ) ]n( mo + Az) + @ |Z:0J{X(Z’)}
L2
+ P me (3 +—1In 3) (6.89)
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wobel

+ oo
1-z
R = [ dpg(p) (md+ 2%+ ?) (6.90)
o) = -3° { - 1 }
27 | p? + md P2+ ng
Dabher ist nun J{*(z) zu berechnen, genauer J{*(0) und dd_z |Z:0J1 (2); zunéchst gilt

Ji(2)

Il
—
2
=3

@
=

+oco
. mo 1
__ﬁ{Q/dpz 2) ()2 & m2 4 A2)7 !
Jo (PP mi) (PP 4+ mi + A2

Ti
+oco ' 1
+-L/)dp z—1 }
o PP ) (mg + A2+ p?)
I

Jﬁl und JﬁQ werden getrennt ausgerechnet; dazu fiihrt man eine Feynman—Parametri-
sierung durch. Bekanntlich besteht folgender Zusammenhang (vgl. G1.(4.20)):

1

L _ Tatp) /d i Gl (6.91)
Av BP C(@)T(8) J 7 (Az+ B(1 - )"
Damit erhdlt man also
+ oo
JA(z) = /dp !
o ST R md) (2 mg A
I'(z) /Id -l—/ood x72
= -7 T =
M1 ) S P+ mE+ ) e+ (1= 2) (02 + md)]
1 +o0
xZ—Q
= (z-—1 /dx/d = . 6.92
( )0 . p <p2+m%+A2$> ( )

Das p-Integral kann nun standardmé&fig ausgewertet werden [12, Gl.(4.3.1) fiir d =1,
M?*=m2+ A%z, a=0, B =z

B = (oo [t (g ra) T QD
= (z-1) F(;(i;)%) 3 /dac x 2 (m?J + A? x) %._Z (6.93)
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Da es nun, wie oben dargelegt, nur darauf ankommt, .J* (0) und dd_z | _OJ{X (2) zu bestimmen,

miissen J{ (0) und dd_z| _OJﬁl(Z) berechnet werden. Offensichtlich existiert das Integral in

GL.(6.93) nicht fiir z = 0; eine analytische Fortsetzung ist also notwendig. Damit sich
diese Fortsetzung quasi auf natiirliche Weise ergibt, ist es notig die Beziehung (6.93) so
umzuformen, dafl u.a. ein Integral entsteht, das fiir 2 = 0 noch konvergiert. Hierzu bietet
sich eine partielle Integration an, da dadurch der bei 2 = 0 kritische Term 2*~2? modifiziert
wird, und zwar erhéht sich der Exponent pro partieller Integration um 1. Daher werden zwei
partielle Integrationen ausreichen, damit ein bei z = 0 existierendes Integral entsteht. Weil

jedoch auch di

Z |2=0
ausgefiihrt werden, um ein Integral zu erhalten, das nicht nur fiir 2 = 0 konvergiert,
sondern dessen Ableitung auch noch bei z = 0 existiert. Im einzelnen ergibt die Rechnung

(zundchst wird Re z > 1 angenommen):

Jﬁl(z) benétigt wird, miissen insgesamt drei partielle Integrationen

Jiale) = <Z—1>F(§<;>%) § o/ldx (mg+A22)™
R Y P |
—(5;_2)1[&2 O/ dx ® f;l o+ }
B (Z_l)r(;(;)%) 1 { (mg :-_/\21)%—2 ) (%Z—_Z)lA2 /ldx - :;1—21) i }

(1. partielle Integration)

= (2 - 1)F(Z_ 3) 3 { <m0+A2)__Z _ (3—2) A% 2 (m%—l—Az $)_(Z+15)

z—1 z—1 e

0

SR TS L PR )

F(z—3%) 1 [ (m2+A?) (2—2)A% (o))
= (-1 I'(z) T2{ z—1 (z—1) (m0+A)
Gt
z(z—1) O/d (m(2)—|—A296)Z+%}

(2. partielle Integration)

PE—d) o [ mE+A)T"  (G-2)A2 oy ()
:(Z_l)WTZ{ z—1 a z(z—1) (m0+A)
(7 -2 AT oot 2 2 \~(=+3) 1
Coz(z-1) 241 (mO+A x) 0
Gt o [N
(z—l—l)z(z—l)A O/d (m%—l—Azx)Z-"% } =
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(3. partielle Integration)

2 2\27% 1 -l —3 2 2\~
_ 7)(m0+/\) ot r(i+(1) )(mo—l—A)(

“+1)

i~ -3 2, 42\ (F3) 1y
( r@ﬁm (g 02) "

G EEPIE—) RN /dac a#t1 -~
F(Z—I— 2) (m% + A2 x)z-l-g

Die rechte Seite stellt eine bei z = 0 holomorphe Funktion dar, so dafl analytisch fortgesetzt
werden kann:

ip_1 lp_ 1
Jﬁl(o):_ 2(2)171'%/\2 4(2)3775A4
(m§ +A?)? (m§ + A?)?
5 1
- —F(—%) 73 AS /dw v =
; o (mf+ a2
1o
Nun gilt einerseits (vgl. Anhang C)
0(-3) = —2rt,
andererseits wird im Anhang E.6 gezeigt:
2 2 2m2 + 3A2
L = = o Mo SAT L (6.94)
O G TR T
Damit ergibt sich
A? S A 3 2 2 2mg + 3A*
J{XI(O) = i T T 2 d s + —m A — - Mot 3
' 2 2\3 2 2\ 3 4 At | 3m 2 2\5
(mg+A%)>  (mg+A2)2 O 3(mg+A%)?

oo {L ; m%+A2+%A2—ma—%A2}

mo (m2 + A2)2

_ A7 (6.95)
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und

ot [ SAED drchre

3 3

(mg +A%)? (mg +A2)*?
1 (_l)

4+ 4 2 5 ln(mg—l—Az)}
(mi + 42)?

L
1
In(m2 + A2
+ §F(—%) /dwx n(m +A%2) } (6.96)
T (g
I

Nun verwendet man die verschiedenen Beziehungen zur I'-Funktion aus dem Anhang (vgl.

Anhang C), sowie die Werte fiir Iy und I3, ebenfalls aus dem Anhang (vgl. Anhang E.4
und E.5):

2 2 2 2 4 In(2
no= 5 — 2 InA? + - l_l__n(mo)
3mo 3mo 3(m3—|—A2)2 3 mg
1
2 2)3
_ 2 1n<m0+A>l+m0} (6.97)
3mg (mZ + A2)2 — mg

s 4 { 2 In myg In(m2 + A?%) 4 mg In(md + A?)
2 = 2933 -
At ] 3 mg 2 (m2 4 A2)? 6 (m2+ A2)2
8 1 5
n _ i Mo } (6.98)
0 (g ADE 9 (md 4 AY)
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Es folgt

d Jﬁl(z) = 27 (m3+A2)

[T

£|z:0
2
-I-Ll{—Q—('y—|—21n2—2)—|—7—1n(m3—|—/&2)}
(m3 + 42)?
A4 1 1 1
(3 + 1)’
2 2
connzd 2 2m0—|—3A3
M0 3(md 4 A2)?
1 3 3
X{§—Z('y—|—21n2—2)—1(1—7)}
+§7TA2{—i1nA2+ 2 _ 2
2 mo mo 3<m(2J_|_A2)5
L AmEme) 2 (w3t AYE 4 m
B B g A g

_ mé In(md + A?)
1 3
3 om0 9(mZ4 A2 6(md24A2)R

& 1 m%
+ 9 - T + 8
o (mg+ AR 9(mf+ A2

= 27 (m3+A2)%

2
-I-Ll{ —2In2 — 1n(m3+A2)}
(mi +4%)}

4
—|—77TA = l—1112—lln(mg—l—/@)
(mg+ %) 12 2

2 2
forazd 2 - Zmo3AT LS 3
3mo 3(m3—|—A2)5 4 2
In A? 1 1
+7rA2{— e
mo mo (m%—I—A2)5
21n(2my) 1 (m2 + Az)% + mg }
+ —— - —1n -
mo Mo (m3+ A?2)2 —myg
o {2l 3 ) | ol 0
1 B
mo 2 (m3 + A%)?2 2 (md + A2)2
8 3 mé
+ - T -I— B fr—
0 (3 ADE 3 (4 A2
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T 1
JAV () = — 5 ) _om? + A? (— In(m?2 + A2 —21112)}
d z |z=0 1a(2) (m%—l—Az)% { 0 2 ( 0 )

A? 1
T {A2 (21112—2— - 1n(m3+A2))
(m3 +A?)* 2

1
2 2 2
+ mg (21n2—§1n(m0—|—A ) —2)}

Mo } (6.99)

_mo

(m§ + A?)
n
(m§ + A?)

NI NI

LT A2 {—111/\2 _

mo

Entsprechend ist jetzt bei der Berechnung von Ji*,(z) bzw. Ji*,(0) und dd_z| o

verfahren. Es gilt

+oo
1
Tia(z) = / dp — —. (6.100)
(P? + 7F) (m3 + A2 4 p?)

— 00

Mit Feynman—Parametrisierung (vgl. GL.(6.91)) erhdlt man

o N 1 ) +oo o2
720 = v O/d _[o dp (02 + m3 4+ A2) 2+ (p2 + ) (1 — )]

1 +co 9
z
= (¢2-1) /dw /dp — . (6.101)
[ ) e @

— 00

Ausfiihren der p-Integration [12, GL.(4.3.1)fird =1, =0, 3 =2, M? = ng+(§mg+A2) ]

liefert
! m2 3 %_Z
/dw 272 (TO + (Z m% + Az) w) . (6.102)
0

Aufgrund der gleichen Uberlegungen wie bei der Berechnung von Jﬁl(z), ist auch hier nun
dreimal partiell zu integrieren (zunichst wieder Rez > 1):

1
D(z—1) 1 [27! [m? 3 277
A 2 = 0 2 2
- Moo (2 A
12 (%) F(z—l)TZ){z—l i <4m0 + )x

1
_ Gmi+ AN G - 2) [ i ! }
2

z—1

N[

A — (s F(Z—%)T
JI,Z(Z) - ( 1) F(Z)

1
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1.
ﬁw>:IV—@ﬁ{WHm%
z—1

z—1 :

~ (%m%—l—l\z) (%_Z) /ldyc 21 }
0 {mg—l-( mg + A?) }+2

(1. partielle Integration)

_ Do) [lmgrAnET
I'(z-1) z—1
(3-2) Gm+A?) al '
z—1 p

z(z—1) mZ 3 o N
{TO+(Zm0‘|‘A )x}
_ I'(z—1 77%{ 1 B (3 —2) (Emi+A?)
PE-1" o) (m2 44277 z(z—1)(md+ A2+
CEmiA’ (-2 /ld e }
-1 m z+5
HE o [B+Gmi+ana]
(2. partielle Integration)
_ feo 1 G- Emieny
- 1 1
I'(z-1) (z—1) (M2 +A2)7"2  z(z—1) (m2+A2)"*2
EmiAy (-2 pot 1
z+1)z(z—-1 m2 +2
+D:G-D a7
Gmd+A) (G- (E+] /d g7t }
- x
1 —1 m 242
(z+1)z(z LA m%—l—AQ)x} 2
I —%)T%{ ! ) <%—z><%m%+A2
1
I'(z-1) (z—1) (M2 +A2)7"2  z(z—1) (m2+A2)"*2

(=) G+ Emi+ay° ot
a (z+1)z(z-1) /dw 2}

0 {mo—l-( mg + A?) }+§

(3. partielle Integration) ==
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—z) (= - %) (§m2_|_A2)7T%

) (5 m%—I_Az)Sﬂ'% ; Lot
/dw - —

0 [HEHGmErane] T

(6.103)

Die rechte Seite ist nun wieder bei z = 0 holomorph, so dafl mit analytischer Fortsetzung
folgt:

3 1
P — o ECDEmAYTE AP Gmit A
| (m + %) (m3 + A7)}
3 3 3 1 N
_gF(_%) <1m3+A2) . /dyc 2 — . (6.104)
0 [BE 4+ GmE Azl
Lo

Mit den entsprechenden Beziehungen fiir die I'-Funktion (Anhang C), sowie dem Wert fiir
Ly (Anhang E.9),

2 4 1 m%
LO = 3 2 2 2 3 - 1 + , (6105)

ergibt sich

Jip(0) =

(m% + A2)% (m% + A2)

3 73 ) 1 2
" 5 g Z o + A N 1 + 3
30 (mZ 4 A2)7 12(md + A2)?

_ 7T<§m2—|—1\2) i+m3+A2+%mg+%A2_%m%_%A2
0 mo (m%+A2)%

2
) i<§ " AZ)' (6.106)
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Fiir dd_z |Z_0Jﬁ2(z) findet man mit GI.(6.103) (die Rechnung verlduft entsprechend wie bei

J{4 (2); einige Zwischenschritte sind ausgelassen):
1
OJﬁz(z) = 27 (m?J + A2) :

3 .42 A2
LrEme+ Ay {_Qm _ ln(m3+Az)}
(m + 42)

d
dZ |Z:

2md+A2)° [1 1
PIGmo AV Ly Ly (d 4 2)
(mg+an7 12 ’

(o) o =50 - 3

[T

+ 7

Lo
Mit den Werten fiir Ly und Ly (Anhang E.7 und E.8),
L1 = 2 5 — 4 ln<§ mg—l—AQ) —|— i —|— iln mo
(% mé + A2) 3mg 4 3mg 3mg
1
2 4 5+ A2 4+ 2o
- - o o HAD } (6.108)
Smi 4 A)E 90 (e Ayt
4 4 In 20 2 16 1
Ly, = 3 5 2 {§ + 7o 3 + 9 - L
(3md+A?) Mo 36(m2 4 A2)2 Y0 (m2 4 A2)>
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erhilt man

d 1
£|Z:0Jﬁ2(2) = — 27T(m(2) —|—A2)2
3,42 A2
+ %—Fl) {—21112 - ln(mg—l—Az)}
(m2 + A2)2

M 1 1
—|— mO_I_ ——1n2——1n(m3—|—A2)
(m3 —I—A2 2 2

+ 277 mO—I—A2

4 1 mé
3 1 + 3
Mo (md 4+ A?)2 12(m3 4 A?%)2

I}
{%%}
)

+ 7T ——ln mg—l—Az)—l—%—l—%lnmo
1
41(%+MP+%}
— — n
3(m2—|—A2)% 3mo <m2_|_A2)% _%0_
4 In 2o 2 16 1
—3@ 0+/\2){—n2 b 1
4 3 mg 36(m2 4+ A2)2 9mg (m2+ A2)?

m_o 4 (m2—|—A2) _ %0_
(6.110)
Damit ergibt sich schlieflich fiir J(2) (vgl. Gln.(6.90), (6.95), (6.106))
m
sto) = -5 {2 + st |
21 A? 2
— _@{ T _|__7T<§mg—|—A2)} et

27 mo mo \ 4
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JAN0) = - (2/\2 + %mg) (6.111)

und (vgl. GIn.(6.99), (6.110))

d A _ mo d A d A
dZ |z:OJ1 (Z) - 27 {2 JLI(Z) —I_ dZ JI,Q(Z)

dz |z=0 |z=0

1
- o (i ) - 2m2)
m§+ A?%)2
A? 1
SLUE - A2<21n2—2——1n(m(2)—|-/\2))
(g + A%) i
1
2 2 2
+ m0<21n2 — §1n(m0—|—A) — 2)}
_Az{—lﬂA2—1n<m%+A2> +m0}
(md +A%)2 —mg
Mo )2 A2
(mi+ant L
3 9 2\ (1 2 2 L1

B m0(3m3+/\2){_@ mj

2 m2
In2 + =2 — —%In(m2 + A?
(md + A7) 3 2 = n(mi )

11 1
+ A2<Z - ;M2 - Z1n(mg+/\2))}

2 A2 mo
_ <§m3+Az){_ln<§m3+Az) o (mE A4 }
1 1 (md +A2)? — 22
(6.112)

ST NI

[N TSI

Um diesen uniibersichtlichen Ausdruck iibersichtlicher zu gestalten, wird folgende Uberle-
gung angestellt. Nach der Renormierungsbeziehung (4.32) gilt:

1
mg = Mg + O(QR) + O(x)

Da mpg endlich ist und spéter der Grenzwert A — oo betrachtet werden wird, setzt man
nun diese Renormierungsbezichung in Gl.(6.112) ein und 148t nur solche Terme explizit
stehen, die fiir A — oo einen von 0 verschiedenen Beitrag liefern:
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d m 1
—  JMy = - ——F 0 _om? A2<—1 2 1 A2) — 2] 2)
3z pe=o”t ) W%Mﬁ{7%+ y (k£ A7) - 2

2
o _meA A2<21n2 —2 - lln(mﬁ—l—AQ))
(g + A2)3 :
1
+ m%(anQ — §ln(mf{—|—A2) — 2)}

(m%{ ‘|‘A2) + mg }

(mi + A?)
3 2 1 2 2 1 1

[ ST B NI

— Az{—lnA2 — In

M= —m2 — A2
(mi Az L

- mR(gmg+/3\2) Mg g MR m—%‘ln(miJrAz)
(m%{—|—A2)5 2 4 4
1 1 1
2 2 2
A (Z - 52 - Z1n(mR+A ))}
1
m2_|_A2 5_|_%
— (%m%{—/&z){—ln(%m%—l—/&z)—ln( i )1 773 }
(g + A2)F — T
1
+ O(QR)+O< )

A

4

= - %{%ln(mﬁ—l—/@) — 2In2
(mt + A

—%ln(mﬁ—l—Az) 4+ 2In2 — 2}

b OAZInA? 4oa2
(mg + A?)?
At 11 1
- -~ o2 4 sIn(md + A?)
(m%{—|—A2)5 4 2 4
+ 1 — l1112 — lln(m2 —|—A2)
42 4 R
+ <§m§+/\2) 1n<§m§+/\2) + <§m§+A2)L1
4 4 4 (m2 + A2)2
In A
+ O(nT) + O(gn). (6.113)

In

Dabei steht O(%) fiir alle Terme, die fiir A — oo mindestens wie TA gegen 0 gehen,

und auflerdem wurde die Beziehung

atb 1+
= In
a—>b 1 _

In

QR
|

b b3 N
=2-+0[=], abecR b<a (6.114)
a
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benutzt, die sich einfach durch Taylor-Entwicklung ergibt. Damit findet man

4 4
a4 Jhz) = _2ms AT ; b oAZInA? 4 2me A _
dze=0 (mg +A?)? (mg + A?)?
A4
o mmA <§m§+/\2) 1n<§m§+/\2)
(mi+A%)2 M 4
A4 In A
et 055 + ot
(mf +A%)2 A
6my A

= 2 4 A?InA?
(mg + A?)2

3 3 In A
+ (— m%—l—Az) 1n<— m%—l—Az) + O(n—) + O(gr)
4 4 A
2 2 3 2 3 2
= 6mg A + A°InA° + ZmR—I_A In ZmR—I_A

+o<%) + Ogw). (6.115)

Hier kann wieder die Masse mg an Stelle von my eingefithrt werden:

d
Jhz) = 6moA + A’InA? 4 GngrAz) ln(zm3+A2)

dZ |z:0

+o<%) + Olgn). (6.116)
Dieser Schritt ist etwas kiinstlich und eigentlich unnétig; er geschieht nur deshalb, um
spater einen besseren Vergleich mit dem Ergebnis aus Abschnitt 6.2 zu ermdglichen. Wie
bereits weiter oben erwidhnt, ist die Trennung zwischen Regularisierung und Renormie-
rung bei diesem zweiten Weg nicht so scharf. Natiirlich kénnte man auch hier G1.(6.112)
zundchst unverdndert stehenlassen, und wirklich erst bei der Renormierung obige Rechnung
(GL.(6.112) bis Gl.(6.115)) ausfiihren. Die vorzeitige Benutzung der Renormierungsbezie-
hung geschieht nur deshalb, um die doch sehr lange und uniibersichtliche Formel (6.112)
bereits hier auf ihre wesentlichen Teile zu reduzieren, denn auch spiter werden nur Terme
bis ausschlielich zur Ordnung gz Verwendung finden. Mit den Gleichungen (6.89), (6.111)

und (6.116) ergibt sich damit endlich fiir das gesuchte dd_z |Z:0C{(Z):

L? |3 3

L2 3 3
- (—m3+A2) 1n<1m3—|—A2) + 6mgA + A?In A?

4z 4
3 3 In A
2, 3
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d , rr ., I? . (ln A)
— = A - = A+ A’lnA —
dz|z=0 1(2) in in Omoh + nAT+ 0 A + Olgr)
L? 3
+Em3 (3 + 7 3). (6.117)

6.3.2 (,—Berechnung
Nach der Definition (6.86) gilt:

() = e = 1) (Ku(=0) = 1), Re(2) >0,
analytisch fortgesetzt sonst
= (Ki(-0%) - 1) ! (Ku(=0%) - 1)
C2(2)
= (=07 — (a(2), (6.118)
F A2

mit der Funktion ¢, aus Abschnitt 6.2 (vgl.die Definition (6.54)). Fiir das Integral F,
nutzt man nun folgende Aufspaltung von K;(—9%) (vgl. Gl.(6.11)):

. L? 2= ()

Kt(—az) = E + E Z € 4t y (6'119)
klez
(k1) # (0,0)

denn jetzt sieht man, dafl der Beitrag zum Integral Fy, der von der unendlichen Doppel-
reihe herriihrt, mit A — oo mindestens wie % gegen 0 geht, was wiederum durch O(%)
ausgedriickt sei (folgt, da der Integrand ohne e~ beschrinkt ist, indem man die Substi-

tution u = tA? ausfiihrt). Der Beitrag des ersten Terms I}t sich einfach ausrechnen, man
erhélt

27 ) 1
/ _ z=2 —tA® -2z
2(’2) - 47TF(Z) /dtt e A C?(Z) + O(AZ)
0

L?T(z-1 g\ 1-= 9y 1
_ Ei(F(z) L (a7 = A - e + o(p)
= g (/:22 ; - AT — G(2) + O(%). (6.120)

Damit und mit GL.(6.73) fiir die Ableitung von (3 an der Stelle z =0 folgt

d 12 12
@p:oCé(Z) = - (1—1nA2) A? + 2InA — Bpy + ln— + O(AQ)
L2

2 2 2 L2 1
= - = (1-mA?)A? + InA = Bev +In =+ 0 5 ). (6.121)
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Folgende Umformung wird sich noch als niitzlich erweisen:

d ! = L 2) A2 L? , 1
@p:OCz(Z) = -1 (1—1nA )A = Bey + In - 4+ lnA? 4 O(ﬁ)
! —tA2 1 —tA2
+/dt% - /dt%- (6.122)
0 0
Mit [20]
; —tA2 —A? u
/dt = / du S
t Uu
0 0
— . 2 2
= Ei(-A%) — 7~ A2, (6.123)

wobei Ei(z) das Exponentialintegral ist, dessen asymptotisches Verhalten fiir |z| — oo
bekannt ist [20], ndmlich

1
Ei(z) — /%dt, larg(=2)| < 7 (6.124)
~ < znjﬁ + O(|z|_(”+1)) larg(—2)] < ®—§
lsleo 2 | = 2k ’ -
§ >0, (6.125)
und daher
e_A2 2
. 2 _ —A
Bi(-A%) o~ = = Oe™):

erhdlt man schlieBlich (die Terme O(e_A2) werden mit den Termen O(%) zusammenge-
fafit)
L? L?

d ! _ 2 2 2
T2 ) = —5(1—111/\ JA? = Bey + In =+ InA

! —tA?
e -1 1
-7 — lnA2 - /dtf —|— O(p)
0

1

L2 L2 —tA2_1

= ——(1—1nA2)A2 — Bpy + In— — /dtei
4m

ir t
0
1

—7 + 0[5 )- (6.126)
6.3.3 (}—Berechnung
Es gilt wegen der Definition (6.87):

! _ 1 [ z—1 —tA? - 2 L2 o
G = 1y /dtt (7 = 1) (K07 - = ) (@) 1) —
0
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2

(I& (=% — 4L77t) ([{'t(Q) - 1)

(K (—0%) — L—) (K@) -1), (6.127)

Ca(2)
mit (3(z) aus Abschnitt 6.2 (vgl. die Definition (6.55)). Weiter findet man

oL G) = / %A( (- 8%—%) (R 1) = 12 _ a2

= -2 6+ 0o(5),

dZ |z:0

da das erste Integral mindestens wie % gegen 0 geht fiir A — oo (sieht man wie in der
Bemerkung nach Gl.(6.119) auf Seite 72). Mit dem Ergebnis fiir ddz e Cg( ) aus Abschnitt
6.2 (vgl. GL.(6.81)) gilt daher:

V3Lmo _2 mit L schneller 1
! = 2= Pl O(—). 6.128
z IZZOCS(Z) T + abfallende Terme + A? ( )

6.3.4 Ergebnis fiir J,

CL‘Q

Zusammengefaft ergibt sich somit letztlich fiir .Jo mit den Gleichungen (6.117), (6.126)
und (6.128):

_ d / /
Jo = d7 | C1( ) + dZ|Z:0C2(Z) + dZ|Z:0C3(Z)
L* 3mo AL? L* 2 In A

2 2 2 2
—I—L—m0<3—|— ln3) L B e e Bry + I
4m 4m 4m 4

T
1 —tA?
e -1 1
S A O(A_>
0

Ly I3 Lomg - @mo Lo mit L schneller
T abfallende Terme
3mo AL? L2 L2

3
= -— 4 —m3<3+11n3) — By + In—

27 4 T

1
—tA?
T
0

mit I schneller In A) ( 1 )
A a2 12
+abfallende Terme + O( A + 0 A2 + O(gr), (6.129)
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was bis zur betrachteten Ordnung und bis auf Terme, die flir A — oo gegen 0 gehen, mit
dem Ergebnis aus Abschnitt 6.2 (vgl. G1.(6.83)) iibereinstimmt.

6.4 Ergebnis fiir In det! M

det My |p.v.
Nach GI.(6.36) gilt:
det’ M / | T dt A2
1 = dt —— —e ™" . 1
" det My .. Jot / T / et (6.130)
0 1

Nachdem nun Jy (vgl. G1.(6.83) bzw. GL.(6.129)) berechnet ist, erhdlt man also letzt-
endlich fiir In 32:]\% Py (fiir die Terme, die fiir A — co verschwinden wird das Ergebnis

der G1.(6.83) verwendet):

det’ M 3moL?A L? 3 L?
| = - — — m? (3 -1 3) - B In —
! et Mo p.v. 27 + 4g MO + 4" vt 47

_ 9 V3Lmg e_ngL mit L schneller
T abfallende Terme

_ B3moLl*A | L* 3 L?
= —T-I—Emo (3—|—Zln3) —pr—|—1n4—

T
Ly V3Lmg e_ngL n mit I schneller O(l)
s abfallende Terme A)7

(6.131)

wobei das letzte Integral ( ha % e~ verschwindet fiir A — co mindestens wie e_A2) in

O(%) absorbiert wurde.
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Kapitel 7

Berechnung der
Energieaufspaltung FEg,

Nachdem in Kapitel 6 die noch zu bestimmenden Determinanten berechnet worden sind,
kann nun auch Fy, explizit angegeben werden. Mit Hilfe der FErgebnisse fiir die Renormie-
rungsgroflen aus Kapitel 4 soll diese Energie Fp, dann renormiert werden, so daf§ letztlich
keine Divergenzen mehr auftreten und auch der Regularisierungsparameter A entfernt ist.
Zunichst seien aus den vorherigen Kapiteln noch einmal alle hier benétigten Zwischener-
gebnisse dargestellt:

1
2

1
S\ 2 |det’ M
o B 27 (5 ! 5.34
’ ’ (277) det My (5.34)
3
Sc = 2%[/27 (59)
Yo
det’ M 1.2 3 12
! - M -1 - B In ==
" det Mo |p.v. ar 0 (3 T g " 3) pv 1 In i
_ 2 \/\/gTﬁ”boe_ @moL . 37’)’27[/2[&
T T
1 mit L schneller
- O<K) T abfallende Terme, (6.131)
Bry - —1,476336. .., (6.74)
[ (1) ;
B 8 A 4.
9o g+ 3 T O(F) F O(gR)7 (4.30)
= wd - (dema-a) 2+ o5) + ofad) a)
0 " 16 477 A R/
" = ma (g A) g OG) + 0(67)- (4.32)
16 8rmy A R

Einige Grofien, die in der folgenden Rechnung benétigt werden, seien im vorhinein bestimmt:
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1
2
P g+ s+ O(x) + Oled)
1 1
2 1+ 728+ O(%) + O(g)
1

32mmR

— i<1 __T9n -|-O<
Jr 327TmR

- L (1 + O(y (7.1)
Jr 327TmR

)+
W el ()+0<9R>)
(

8Tm
1

1
O
X (gR 327TmR +
A

Mg 31 ( )
_ mm L 2
o 1osr Tsemn TOR) T Olgr), (7.2)
mo Mg 31 A (1)
mo M of=) +0
o o 1o8r T Semn T O7) tOlm)

i A By e () )
= Vs \/1+<87TmR 12877) me T O\a) T Ol

- (o) 0w

_ M= 1 1/2
= ot O(A) + 0(g?), (7.3)
27 2m2 0
90 9o

_ 2 3 Ir 1 2
- 2<mR—<EmR—A 405 + 0(g2)
me 31 A (1) )

X (gR osr T semn T O\7) T Olow)

m3 31 Am

T

64w 4 A
m3 3mp A 37
= zg—j + 4;‘ - in 2+ O(X) + O(gx), (7.4)

77



3 1
ms, 1 1
= — 4+ O — Ol gz 7.5
s+ ox) = olof) )
L, L
Damit ergibt sich zunichst fiir die regularisierte Energie E{ =275 (‘;—;) : dd:tt]\% i
P.-V.
) _1
Sc\ 2 |det' M| 2
E([Jxa = QG_SC <—C) €
27 det My PV,
m3 e !
Y i I A R L
Jom

m3 ms L2 3 B L
= 2./ —2 L 2912 - Z m2(3+=In3 = ln——
goTm exp{ go 87Tm0( —|—4n )+ 2 n\/ﬂ
4 /\/§L mo e_ngL 4 3 mo L?A 4 O(l) n mit L schneller
T 4 T A abfallende Terme
3 1 1 4r B
= 2 ﬁ+o<—)+o(g§) LY
GrT A L

3
e o)

Jr 4 6 E A

X exp { ( \/_371/ Mz _I_ O(l) _I_ O(gR)) e__\ngL‘I'O(%) +O(9R)
o

mit L schneller
abfallende Terme

}
X exp{L2 G m;‘A + O(%) + O(gR))}
|

mg Bpv 9 g SmRA 37 2 m%{ ( 3 )
= N - L*|2—= - = e (34213
" mp € 2 eXp{ o ir oir R—I—87T —|—4 n
3 A 1 3L NA
3 mpA _ V3 Lmy 2 L + O(gn)
4 7 L T
mit L schneller 1) ( l)
O — Ol g2
+ abfallende Terme ]} + (A + 5
—
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m Bpv ms m2 /37 3 3
o 4,/—R —12 2—R——R<—————l 3) O
Oa n mg € 2 exp{ l n or \32 1 16 n + O (gr)

V3Lmn I , mit L schneller 1 1
B O —)+0(g2). (7.6
e {ﬁ ¢ + abfallende Terme + (A) T (gR) (7.6)

Insgesamt erhélt man also, indem die dimensionslose Gréfie up:= Ti—R eingefiihrt wird (die

Kopplungskonstante gz hat in d =3 Dimensionen Massendimension 1):

L 1
Eéxa = va e_U(L) 12 _I_ O(uﬁ) ‘I‘ O(X)7 (77)

(7.8)

V3
V3Lmy ez el oy mit L schneller
L) = on |1 -1/ O(un)|, (7.9
o(L) ’ ( T L? 2m2 + abfallende Terme Olun) |, (7.9)

. 2m} ug (13 3 2 )
Ooo 1= T (1 e (32 ~ 16 In 3) + O(uR) (7.10)
_ 2mi (1 — 2" 0,20026... + O(UZ)). (7.11)
Ug Axr R

Durch die Renormierung sind die Divergenzen fiir A — oo verschwunden, so dafl nun der
Regularisierungsparameter A durch die Limesbildung A — oo entfernt werden kann:

1
EFog = Chpye @D 4 o<u§), (7.12)
B
Coy = de 5 B (7.13)

V3
V3Lmg e” 7 ML g mit L schneller
L) = o114/ 0 (714
o(L) ’ ( s L? 2mi + abfallende Terme +Olun) J( )

. 2m2 ug (13 3 2
o= St (0 5 (g ) + o)) T

SchlieBlich kann man mit Hilfe von Gl.(4.60) noch die physikalische Masse m,, an Stelle der

renormierten Masse my einfithren, wobei wegen A — oo die Terme O(%) verschwinden:

13 3
my = ml {1 — Z—:_ (E — Zln 3) + O(uf{)} (7.16)
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Damit erhdlt man:
Oo = 2:;?* (1- (5 -1 m3) + ofu2))
~ zmgh[ul_R = %(%—zln;%) = O(uR)Hl - Z—;(;—i—%ln;%) + o(ug)]
= [2”;—5:1 - ”;—7%1 (%—%m:s) + O(UR)H1 - Z—; (;—2—5—61113) + O(ug)]

2 2 2

13 3 13 3

= 2%—%(3—2—E1H3)—mph <_—_1n3)+O(UR)
R

m?  m?, (39 15
= 2= - Ph(———l ) 0
o 2n \32 1 m3) T 0w
m? un (39 15
() )
U w32 )T (u7) (7.17)
Insgesamt ergibt sich also fiir Fy,:
2 1
Eoe = CpyeML +O<u§)v (7.18)
Bev m,y
- \/p 7.19
Chrvy e 2 = ( )
\/We‘@mphfl w it I schnell
L)y = o | 11— ph R mi schneller Of u2 (720
U( ) ’ ( T L2 ngh * abfallende Terme+ (UR) ( )
m? un /39 15
- B ) o)
7 U, ( w32 1) T () (7.21)
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Kapitel 8

Vergleich mit dimensionaler
Regularisierung

In der Einleitung war darauf hingewiesen worden, dafl die Berechnung von Fp, in Pauli-
Villars—Regularisierung durchgefiihrt wurde, um die Ergebnisse mit dimensionaler Regu-
larisierung zu iiberpriifen, da durch die dimensionale Regularisierung Divergenzen in dem
Sinne fortfallen kénnen, dafl sie sich auch nicht beim kritischen Wert des Regularisierungs-
parameters ergeben (z.B. ¢ = 0 bei der e-Entwicklung, ¢ = 3 — d), und daher eine Uber-
priifung auch der (endlichen) Ergebnisse sinnvoll erscheint. Nachdem das Ergebnis fiir Eq,
nun vorliegt, kann der Vergleich der Resultate beider Regularisierungsschemata jetzt vorge-
nommen werden. Die Ergebnisse der Rechnung mit dimensionaler Regularisierung stammen
aus einer Arbeit von G. Miinster [9]. Dort findet sich:

Ey, = C’exp{—U(L)Lz}7 (8.1)
mit

o= 4@ 2 (8.2)

— F(i) UR ph .
und
2
_ =M (e (3915 ) 2 )
O = Lh_}rnooa(L) =2 - (1 = (32 16 In3) + O(uR) . (8.3)

Der Vergleich mit den Gln.(7.18)—(7.21) zeigt, daBl o, in beiden Regularisierungsschemata
(bis zur betrachteten Ordnung in ug) tibereinstimmt. Auch der Wert von C' ist gleich Cpy
(vgl. G1.(7.19)), wie man einfach nachrechnet:

F(é) ngh _ ngh

c = 44 1,351956. .. (dimensional)
MV us Un
B
e 5s 2 m2, 2m?2, o
Cpy = 4 = = 1,351956... 1/ —= (Pauli-Villars).

\/5 Ug Ug
Diese Ubereinstimmung von €' und Cpy kann auch ganz allgemein bewiesen werden [21].

Es gilt ndmlich mit GI.(6.54) und Gl.(6.52):

A(s) = Y™ Res >0, (8.4)
ne g
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1 4t

o) = g [ar () 1] messn

analytisch fortgesetzt sonst

1 7 2 2y 4w
= di 7= e () I3
(2) 2 /

ninp €7 0
(n1 777‘2)7&(070)

2\ % %
_ 1 Z L_ /dt tz—l e~ (n?—l—ng)t
I'(z) 4w
n1,m2 €7 0
(n1,m2)#(0,0)

—

1 L*\’ 2 N i z=1 —t
= o) \ir Z [ﬂ(nl + nz)} /dtt e
n1,n2 €Z 0
(n17n2)¢(070)
L*\" ~z
n1,n2 €Z
(n17n2)¢(070)
L*\"
— (_ﬂ) 77 Zo(2), (8.5)
mit
Zo(z) = > mi+nd)] Rez > 1,
nng €7 analytisch fortgesetzt sonst.  (8.6)
(n17n2)¢(070)
Insbesondere sieht man, da (3(0) = —1 gilt (erkennt man aus GL.(6.69)), daB auch
Zy(0) = —1 (8.7)
gilt. Damit folgt
dCQ (Z) L2 ’
= —In— +1 Z .
1z s n o + In7 + Z5(0) (8.8)
und durch Vergleich mit G1.(6.73) also
Bpy = Inm + Z5(0). (8.9)
Um Z4(0) zu bestimmen, benutzt man nun folgenden Sachverhalt [22]:
Tols) = AC(s) L(s), (3.10)
mit
C(s) = Z n=?, Res > 1, (Riemannsche ¢(~Funktion)
n=1 analytisch fortgesetzt sonst, (8.11)
L(s) = Z(—l)” (2n+1)7", Res >0,
n=0 analytisch fortgesetzt sonst. (8.12)
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Fiir L(s) gilt folgende Funktionalgleichung [23, Seite 35]:

L(s) = (;)5—1 I'(1-ys) COS(%) L(1-s).

Durch Vergleich mit der Reihe des Arcustangens sieht man weiter

L(1) = arctanl = %
und wegen Gl.(8.13) daher auch
2 1
L0) = —L(1) = -.
0 = 210 =

o) = -2 ¢ = ~Lmen.
Daher ergibt sich aus GI.(8.10)
Z5(0) = —In(27) — 2L(0)
und wegen GI.(8.13)
ro) = st - tray - 2
2 7 '
Weiter erhilt man
L) = (-1 @+
n=0
17 >
— dtts_l 1" —(2n+1)t
F(s)/ Z_%( )e
0 n=
17 1
= det*~!
I'(s) / el + et
0
1 e« s—1
— / it
21(s) cosh ¢
0
Damit findet man
1 T 1 7 Int
L'(1 :——F’l/t —/d
(1) 2 (1) cosh ¢ + 2 cosh ¢
N—_— —— L/_/
Fi Fy
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(8.16)

(8.17)

(8.18)

(8.19)

(8.20)



Im einzelnen gilt:

= 2
! /e’f—l—e

= 2 /dt s
= 2 /dac;7 x = ¢
14 22
1
= 2arctanz
1
133
2 4
s
= —, 21
; (s.21)
Fiir F, folgt [14, G1.4.371 1]
INE
F, = —In(2r) + Tln[ (‘11)]. (8.22)
I'(3)

L'(1) = _%F’(l) + % (111(271') + 2111[ ?Ei]) (8.23)
und mit GI.(8.18)
L'0) = %lng - %F’(l) + lr/(1) — % (ln(%) + 21In Hg;])
)

_ (3
= - ln[ F(i)] (8.24)

Hiermit findet man wegen GI.(8.17) und GL.(8.9) schlieBlich

Z(0) = —In(27) + 2 ln[Q ?Ei] (8.25)
und
_ L)
By = 1n2—|—21nl2ri]

= In2+ 21 F(%
- “[r&
_ (3
= 21n[f r(i)]' (8.26)
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Wegen GI.(7.19) ergibt sich daher fiir Chy:

B
va — 4e gv y;_h
R
r'(2) /2m?

— 4 (‘11) Ton (8.27)
F(Z) Ug

was mit C' {ibereinstimmt (vgl. GL.(8.2)).

Die Ergebnisse der Rechnung stimmen also in beiden Regularisierungsschemata bis zur
betrachteten Ordnung in ug iiberein. Dies sollte auch so sein, denn letztlich sollte die Ener-
gieaufspaltung Fp, der ¢?—Theorie in der gebrochenen Phase bei endlichem Volumen un-
abhédngig vom verwendeten Regularisierungsschema sein, da die Regularisierung nur eine
gewisse Rechentechnik darstellt und der oder die Regularisierungsparameter am Ende der
Rechnung, nach vollzogener Renormierung, wieder entfernt werden miissen. Ein unterschied-
liches Resultat kénnte dann entstehen, wenn im Verlauf der Rechnung sowohl Ultraviolett—
als auch Infrarot-Divergenzen auftréten. Wie am Ende von Kapitel 3 angefiihrt, werden
durch die Pauli-Villars—Regularisierung nur die UV-Divergenzen beseitigt, wihrend die
dimensionale Regularisierung hinsichtlich TR— und UV-Divergenzen nicht unterscheidet.
Die Ubereinstimmung der Resultate beider Rechnungen zeigt nun, daf dieser Unterschied
beider Regularisierungsschemata nicht in Erscheinung tritt; Infrarot—Divergenzen treten in
der Rechnung nicht auf. Der andere Grund fiir ein unterschiedliches Ergebnis wire, wie
oben erwidhnt, dafl die dimensionale Regularisierung moglicherweise nicht nur Divergen-
zen in dem Sinne aus der Theorie entfernt, dafl diese auch nicht beim kritischen Wert des
Regularisierungsparameters auftreten (z.B. keine Divergenz fiir ¢ =3 —d = 0 in der -
Entwicklung), sondern auch verdnderte (endliche) Ergebnisse liefert; wie der Vergleich mit
der Pauli—Villars—-Regularisierung zeigt ist auch dies nicht der Fall.
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Kapitel 9

Uberlegungen zur Regularisierung
der Determinanten

In Kapitel 6.1 war als Regularisierungsvorschrift bei der Determinantenberechnung die Er-

setzung (vgl. GL.(6.30)):

2
Trln% — Trln% — Trln M A A

— 9.1
My My My + A2 (9-1)

(die Nullmode von M sowie das zu deren Behandlung verwendete p? werden hier der Uber-
sichtlichkeit halber unterdriickt) als sinnvoll eingefiihrt worden. Das Ergebnis fiir die Ener-
gieaufspaltung Fo, (Kapitel 7) sowie der Vergleich mit der dimensionalen Regularisierung
(Kapitel 8) rechtfertigen im nachhinein diese Vorgehensweise. Dennoch wire es wiinschens-
wert, die Ersetzung (9.1) auch direkt aus einer im Sinne einer Pauli-Villars—-Regularisierung
modifizierten Lagrange—Dichte zu gewinnen. Ausgehend von der urspriinglichen Lagrange—

Dichte £, fiir das ¢-Feld (vgl. GL.(2.8)),

V3 gomo 9o
L= 4+ S (9.2)

1 m(z) 2
Lo = 200+ 570" + 7 A1

bzw. dquivalent dazu

V3 gomo

L= Je(Op+mi)e+ Y500 + et op= (98497 +95) (93)

(L, und L], unterscheiden sich nur um eine totale Divergenz), ist es naheliegend unter
Beachtung der Pauli-Villars—Regularisierung (vgl. die Beziehung (3.10))

1 . 1 1 (9.4)
p*+mg pr+mg  pP+ AT '
was im Ortsraum die Ersetzung
(DE+m2)_1 — (DE+m2)_1 - (DE‘|‘A2)_1 = A” = mg (9.5)
’ ’ (Op +mg) (Op +A%)
Op 4+ m2) (O + A2
— My = (DE +m3) —5 Mypy = (Op AZO)_(mfg ) (9.6)
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(zur Definition von My vgl. auch die Beziehungen (6.1) und (6.4)) bedeutet, folgende
modifizierte Lagrange-Dichte Lpy zu betrachten:

1 (Og +md) (Op + A?) V3gomo 3 go 4
SATE L v A S A
A3 gom
= %@MO,PV@+4g? 09934‘%994- (9'7)

Die Operatoren M und My in der Vorschrift (9.1) (vgl. auch die Definitionen (6.1)—
(6.4)) sind, wie in Kapitel 5 gezeigt, die Fluktuationsoperatoren (zur zweiten funktionalen
Ableitung von S[¢o] gehodrige Operatoren) der Wirkung S[¢o] zu bestimmten Ldsungen
der Bewegunghsgleichung fiir ¢o (Gl.(5.7)), und zwar My zur Losung ¢g = vg oder ¢g =
—vg, Vo = 1/3mi/go(bzw. ¢ = ¢g —vg = 0 oder ¢ = —2vy, man beachte Gl.(2.5)),
also zu den Potentialminima, und M zur Kink-Lésung ¢g = vg tanh[Z2 (2° — a)] ( bzw.
o= (tanh [ (% — )] - 1) v).

Um die modifizierten Fluktuationsoperatoren, die der Lagrange—Dichte Ly, entspre-
chen, zu bekommen, ist daher die Wirkung Spy = fd3x Lpy um entsprechende Losungen
der neuen, aus Lpy resultierenden Bewegungsgleichung zu entwickeln. Dazu seien zun&chst
die niedrigsten Funktionalableitungen (vorerst allgemein an der Stelle ¢) ausgerechnet:

Spv[%@] = / d3$ ,va

V/3gom
= /d?)x{%@oMo,Pv@‘F%@S‘F%@#}v

/d3$ 551’\/[@] n(x)

3 V3gomo 9 | Yo 3

[@ene) 50 ) = [ g {M +VEg mo g + %’&}mm. (99)

Sp(w)?
Daher ergibt sich als neue Bewegungsgleichung
3.Spv (] — 0
()
V3 g0 m
— Mopv o + %@2 + %993 =0 (9.10)

und als Fluktuationsoperator Mpy, an der Stelle ¢
MPV(S‘Q) = MO,PV + V390 mop + 92—09927 (9.11)

so daff man als Entwicklung von Spy um eine Lésung ¢. der Bewegungsgleichung (9.10)
bekommt:

Sevlge+m = Sevled + %/d% n(x) Mev (o) n(z) + O(n*). (9.12)

Die den Operatoren M und My entsprechenden modifizierten Operatoren werden einzeln
berechnet:
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o Modifikation von My :

Um einen dem Operator My in Pauli-Villars—Regularisierung entsprechenden Opera-
tor MS, zu bekommen, ist zuniichst eine der Losung i)Y = 0 der urspriingli-
chen Bewegungsgleichung entsprechende Ldsung von G1.(9.10) zu suchen. Man macht
storungstheoretisch den Ansatz

1 — (1) 1 (1) 1 (1) 1
Pe = Poc + X@‘Qm + F@Qm + O(F) (9'13)

Einsetzen in die Bewegungsgleichung (9.10) liefert

1 1 1
Moo ) + 27 (Mool + VBgo mo (6)?) + 0(55) = 0 914)

Weiter gilt, indem man M,y nach Potenzen von % entwickelt,

(Bg + m§) (B +A?)
A? —m

Mo,Pv =

B+ m3 1
= (o5 +md) i e 0 +O<—A4)
M 1
= Mo+ 55+ O<_A4)’ (9.15)

und dies in GI1.(9.14) benutzt
1 (1) 1 &) /3o (1))2 1
— My ©or T A2 (MO Py T 3 go mo (9901) ) + O A3 =0 (9'16)
A A A
= (-0 +md) o) = 0

(8 und @l sollen der Einfachheit halber nur von z° und nicht von z' und 22
abhingen; der allgemeine Fall 148t sich mit Hilfe einer Fourier—Zerlegung behandeln
und liefert keine wesentlich anderen Ergebnisse)

- el = Cpemo® 4 Chemmo” Ci,Cy € C
- ey = 0, (9.17)
da @) fiir 2° — + oo beschrinkt bleiben soll. Aus G1.(9.16) folgt dann auch fiir
2H
Mog) = 0
= el =0, (9.18)
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genau wie fiir ¢!}, so daB man

, 1
e = O(F) (9.19)

erhdlt. Mit Gl.(9.11) ergibt das schlielich fiir Mg,

Mg, = Mey (¢)
= M, pv T O<A3)
= My + Az + O<A3) (9.20)
Nimmt man als urspriingliche Lésung der unregularisierten Theorie das andere Po-
tentialminimum, ndmlich c,o(()i) = —2vg, und macht man erneut den Ansatz
1
o = w2+ el + e + 053 ) (921)

ergibt die Bewegungsgleichung (9.10) mit Hilfe von GI.(9.15)

1 V3 g0 mo 1 1 2
M, pv (99(()22 + It o + p )) + 5 (99(()23 + It ©@ + i 99322))

go 1 1 3 1
+§<99é2c)+x99é21)+p99é22)) ‘|‘O<A3) =0

) n V3 go mo

2 @ 1 2
— MO"’F 990c+X9901 —I_P 9 0c+A9901 +A29902

3
Yo 1
+§<@OC+AQ‘901 +A29902) +O<A3) =0
— LSy + 30 @) @ 4 0 (@) e
A 0 Po1 90 ™Mo Poc Po1 T 2 Poc Po1

V3 go mo 2
+ F (M3 + Mold) + T )+ Vg0 mo gl ol

g 2 g 2
000 )+ 2 o) o) +0(55) = 0

Setzt man hier c,o((f)c) = —2ug ein und betrachtet die verschiedenen Ordnungen von

% getrennt, so findet man (c,o((ﬁ) und ) werden wieder als nur von z° abhingig

angenommen)

Mogl) = 0
— e = 0 (s.0) (9.22)
— M@l + Mol = 0
— —0598) + mgel) — 2mgve = 0
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0 _ 0
== el = Cre™T £ Coe™™T 1 2md g

= ¢ = 2mguo, (9.23)

da @) fiir 2° — + oo beschrinkt bleiben sollte. Das ergibt als Fluktuationsoperator
Mg mit GL.(9.11) und GL.(9.15)

M2 = My (%)
9o 1 (2) :
= Mypv + /3 g0m0 S«%c + A2 9902 + 2 @oc + A2 Poz + 0 A3
M2

1
_ 0 3
= Mo + A2 + Az (Qmo V'3 g0 vo + go @2 99(()22)) + O<A3)

M2
= Mo+ =5 + F(6mg—12mg) —|—O<A3)
M2 —6m} 1

e Modifikation von M = O +md — 3 cosh™?[Z2 (20 — a)] (vgl. auch die Definitionen
(6.1) und (6.3)):

Hier ist zundchst eine der (verschobenen) Kink-Lésung

Goc = 1o (tanh [% (+° - a)] = 1) (9.25)

entsprechende Losung der Bewegungsgleichung (9.10) zu suchen. Wiederum macht
man perturbativ den Ansatz

1 1
Pe = Poc T e + VA& + O<A3) (9.26)
wobei ¢, und ¢, erneut nur von 2° und nicht von 2! und z? abhiingen sollen, und

bekommt, indem man dies in GI.(9.10) einsetzt, da ., wie man einfach nachrechnet,
erwartungsgemif die Gleichung

V3 9o mo

Dpoe + Mg o + .+ —%c = 0 (9-27)
erfiillt,
Op@oe + MG o + @ @5e + 3, Poc
+% (Ope: + mie + V30 mopec o1 + %09930991) + O<A2> =0
mi 3
— {—83—70+2motanh2[20(x0—a)]}991 =0
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3 _o[m
= Qp, = 0, Q:—ag—l—mg—§cosh 2[70 (xo—a)]
(vgl. Definition (6.3))
= o = Coopee,  CEC, (9.28)

denn der Operator ) besitzt, wie in Kapitel 5 angefiihrt (vgl. die Bemerkung nach
(5.26), @ stimmt auf dem Raum der nur z%-abhingigen Funktionen mit dem dort
diskutierten M {iberein) nur eine Nullmode, die fiir 2% — + oo beschréinkt bleibt,

namlich Jdpp,.. Das bedeutet, dafl die niedrigste Korrektur zur Losung ¢,. gerade
%80@% ist, was lediglich eine Verschiebung der Funktion ¢,. lings der z°-Achse
bedeutet. Da dies bereits durch den Parameter a in . reguliert wird, ist damit der
Ansatz

1 1
Y = @Yo T p@% + O(F) (929)

fiir eine Losung von GI.(9.10) gerechtfertigt. Setzt man den Ansatz (9.29) in G1.(9.10)
ein, ergibt sich nach kurzer Rechnung als Gleichung fiir ¢,:

f—— 2
{DE + mg —I_ 390 mo S‘QOC —I_ %@gc}@2 —I_ (DE + mg) S‘QOC — 07 (930)

oder, indem man ;. einsetzt und die Definitionen von M und My beachtet,
Mg, + M3 ¢o. = 0. (9.31)

Mit G1.(9.11) bekommt man also fiir den dem Operator M entsprechenden Operator
M, wenn man den Ansatz (9.29) einsetzt und G1.(9.15) beachtet:

PV

M;{v = MPV(%)

g
= Mo,Pv + /3 g0 mo . + ?0992

_ Mg 9o 3 2 _2| Mo 0 1
= MO + F + F ch W2 — 5 mg cosh [7 ($ - a)] + O(F)
1 ) 1
= M+ nz (90¢c992 + Mo) + O e (9.32)

((bc = vg tanh [% (xo— a)] , Ug = \/Smg/go).

Um die Regularisierung (9.1) aus der Lagrange-Dichte Lpy (vgl. G1.(9.7)) zu begriinden,
wire daher

ME M M 4+ A2
Trln Mgé = Trln i Trln m, i = 1loder 2 (9.33)
zu fordern. Zunachst wird der Fall ¢ = 1 untersucht:
K 1 Mo
Trln Mpy = Trln % + %;
Mg, Mo \ 1+ 5%
M My M 1
M 1 1
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Indem man das Ergebnis (9.20) fiir Mg einsetzt erhélt man einerseits

Trin MY, = TrinM — Trin My — %Tr (M — My) + Trln Mg, + O(%)

M 1
= TrinM — Trln My — pTr (M — M) + Trln[Mo (1 + A—QO)] —|—O<F)
1
= Trln M - Tr (M -2 M) + O<A3) (9.35)
andererseits folgt mit dem Resultat (9.32) fiir ML
M—l
Trin MY, = Trln[M( + (go¢cc,92 —I—MO)) + O(AS)]
— TrlnM + pTr [M—l (go o0y + Mg)} 1 O(AB), (9.36)
das heifit es sollte gelten (Gln.(9.35) und (9.36)):
Tr (M~ (godepo + M3)| = —Tr (M — 2 Mo) (9.37)
Hinreichend fiir G1.(9.37) wére demnach
M7 (godepo + M) = —(M =2 M) (9.38)
Aot 9o Pepr = (M2—2MM0+M0)
= — (M — My)*
= - gmg cosh 4[ (xo — a)] (9.39)
also falls
9 ,cosh™[Z0 (20 - q)]
P2 = — My
4 9o ¢c
_ _9mg cosh” [ZO (2° ~ a)] (9.40)
4 go wo tanh [Z (20 — a)]
eine Losung der Gleichung (9.31) wére:
Mo, + Mg gy = 0, Poc = Vg (tanh [% (xo - a)] - 1). (9.41)

Eine asymptotische Betrachtung zeigt nun jedoch, dafl das in GI.(9.40) definierte ¢, die
GI1.(9.41) nicht erfiillen kann. Das ¢, aus G1.(9.40) verschwindet nimlich fiir z° — + oo

0

offenbar wie cosh™[22 (2% — a)]. Um die asymptotische Form von G1.(9.41) zu erhalten,

wird erst M o berechnet (u := 22(20 — a)):

2
Mg Poc = (_83 + mg) (Uo tanh [% ($0 — a):| — UO)
4 2sinhu cosh?u — 5 3 sinh®u + sinh u cosh* u — cosh®
= W mo =
cosh” u
_ 0, fiir 2Y = 400
—2 vy mg, fir 29 -5 —c0.
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Wegen
M = Op+ mj — ;mg cosh™? [% (xo - a)]
— Op + m
fiir 2° — + oo, resultieren daher folgende asymptotische Formen der Gleichung (9.41):
(—83 + m%) w, = 0 fiir 2% — ~+00, (9.43)
(—83 + m%) 0, — 2vgmp = 0 fir 2 - —oc. (9.44)
Die allgemeine Losung von Gl.(9.43) ist
g = Cre™™ 4 Gy Oy Gy e, (9.45)
die von G1.(9.44)
o, = Cre™ 4 Chem™ " 4 2yom2, Oy, Oy €C. (9.46)

Die Losungen von Gl.(9.41) gehen also fiir % — 400 héchstens wie e™™0 z gegen 0, wo-
hingegen cosh™*[Z2 (20 — a)] wie e=2"m0 " verschwindet. Fiir 29 — —oco geht eine Losung
von GL.(9.41) gemifl der Beziehung (9.46) hichstens gegen 2 vgm3, dagegen verschwindet

cosh™*[Z (2° — a)] in diesem Grenzfall. Das zeigt, daB

(M — My)?
Py = -
gO¢c

die Gleichung (9.41) nicht erfiillt; die Beziehung (9.38) besteht also nicht.
Fiir den Fall ¢ =2 (Verwendung von Mg?) ergibt sich (vgl. GIn.(9.33), (9.34)):

M M 1 1
Trln Mi% = Trln M ETI’ (M — M) + O(F)' (9.47)

Einsetzen der Beziehung (9.24) fiir M3 ergibt

Trin MY, = TrinM — Trin My — %Tr (M — Mp) + Trin M2 + O(%)

— TrinM — %Tt (M — 2 Mp) — Tr6mi7Z2\40_1 + o(%). (9.48)
Daher sollte gelten (vgl. G1.(9.36)):
Tr [M™ (godepo + M3)| = —Tr (M —2Mo) — Tr[6mg M. (9.49)
Hinreichend hierfiir ist

M (go Pe @2+M3) = — (M —2Mo) — 6mgMg" (9.50)
— 9o Petpy = _(M_M0)2_6m3MM0_17
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oder, indem man die Definitionen von M und M, einsetzt,

9 —q|m 3 m2 cosh™?[Ze (20 — a)]
gO¢c992 = _ng cosh 4[70 (xo—a)] _ 6m0 (1_ 2 "0 2 ‘

Diese Operatorgleichung ist von der Struktur
Mt = F(29), (9.51)
mit einer gewissen Funktion F. Das heifit es sollte gelten:
My h(z®) = F(2°) h(29), (9.52)

mit einer beliebigen Funktion h (die hchstens im Unendlichen hinreichend stark abfallen
sollte). Dies ist aber nicht méglich, denn Anwendung des Operators My = Og + m3 auf
beiden Seiten von Gl.(9.52) liefert eine lineare Differentialgleichung zweiter Ordnung fiir
h, die sicher nicht fiir beliebige h erfiillt ist, sondern nur fiir einen zweidimensionalen
affinen Unterraum des Raumes aller (geniigend oft differenzierbaren, hinreichend stark im
Unendlichen abfallenden) Funktionen. Also gilt auch die Beziehung (9.50) nicht.

Nun sind die Bezichungen (9.38) und (9.50) nur hinreichend, aber nicht notwendig,
damit G1.(9.37) bzw. G1.(9.49) gilt. Um diese Spurgleichungen zu verifizieren, sollte jedoch
zunichst ¢, bekannt sein, also eine geeignete Lésung von

Mg, + Mg, = 0. (9.53)

Nach einiger Anstrengung gelingt es tatsichlich, die allgemeine Lésung dieser inhomogenen
linearen Differentialgleichung zweiter Ordnung anzugeben (dabei wird ¢, wieder als nur
von 2, und nicht von z! und z? abhingig angenommen):

b —mgvo{sinh[% (wo B a)] Cosh[ 2 —q ] i tanh[ (xo _a)]
T 3;?0 (x - a) + COSh4[ ( )] }COSh [ : (wo B a)]
oo Uo{cosh?[%;4 Exo —a1 T (136 Coshz(f%fo = @)}

—I—%tanh[% (xo—a)] + %sinh{mo (xo—a)D }, Ay, Ay € C.

(9.54)

Ay und A sollten nun so gewidhlt werden, dafi ¢, fiir 2° — + oo endlich bleibt. Un-
gliicklicherweise ist dies nicht méoglich, wie eine kurze Uberlegung zeigt; das heiBt A, kann
héchstens so gewihlt werden, dafl ¢, fiir 2° — +oo oder fiir 2° — —oo endlich bleibt,
aber nicht fiir 2% — + oo (die Wahl von A; spielt fiir das asymptotische Verhalten von ¢,
offensichtlich keine Rolle). Die Gleichung (9.53) besitzt daher keine normierbare Losung.
Diese Schwierigkeiten zeigen, dafl der plausible Versuch, die Lagrange-Dichte wie in

GL.(9.7) zu modifizieren, wohl nicht geeignet ist, die Regularisierungsvorschrift (9.1) zu
gewinnen. Um diese dennoch zu bekommen, wird man mdoglicherweise Zusatzfelder in die

94



Lagrange-Dichte aufnehmen miissen, allerdings nicht wie in Kapitel 3 (vgl. S.12 mit dem
Hinweis auf [11]) bosonische (diese liefern nur die Propagatorersetzung wie in der Bezie-
hung (3.1) aus Kapitel 3), sondern fermionische, deren Behandlung bei der Pauli-Villars—
Regularisierung eine andere ist, indem nicht die einzelnen Fermion—-Propagatoren ersetzt
werden, sondern ganze Fermion-Schleifen zu modifizieren sind [24, Seite 411 ff.]. Ob dies
so moglich ist, bleibt noch ein offenes Problem.
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Anhang A

Klassische Wirkung S. der
Kink—Losung ¢,

Es soll die klassische Wirkung S, der Kink-Lésung ¢. in d=3 Dimensionen bei endlichem
(rdumlichem) Volumen L? und unendlicher Zeitausdehnung berechnet werden. Es gilt:

2
3mg

b = p tanh{% mo(2° — a)} (A.1)

s, = /d% {%auqbc 0. + V(qbc)}
(A2)

. 0 .. . . .
Wegen des Verschwindens von ¢.dop. ~ % fiir 2° = + oo kann partiell integriert

werden:

Sc = L2 /d$0{—% c3§¢c ‘I’ V(¢c)}
= 2 [ar{-Lo.via) + Vied ),
denn ¢, erfiillt die Bewegungsgleichung (5.7)
_83 de + V/((bC) =0

— . = V'(¢o).

Setzt man das Potential V (¢g) ein (vgl. G1.(2.2)), und beachtet —2mg = mg (vgl. Definition

(2.7)),

2 4
Mo g0 3T
V(¢C) - 4¢c+4'¢c+8gov
ergibt sich
2 2 3 mi
R A YRR P P
s x{4¢c el - el St o =
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3 ma
Lz/do_g_04 2 My
${ 4!¢C+8go

3m61 2 0 41 0
gg—OL /dw {1—tanh {imo(ac —a)}}
3 3

—%L2 /dw {1 — tanh4x}

4 g0

3 +oo

§%Lz [tanhx + ltanh?’ac]

4 Jo 3 oo
s (1, 1)

4 Jo 3 3
276 12

9o
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Anhang B

Zahl der Anordnungen einer
n—Kink—Konfiguration

In Kapitel 5 war bei der Beriicksichtigung von Multikink—Konfigurationen folgende Formel
verwendet worden:

+Z
2 Tn
/dh dty - [ dt, = —, n € N2, (B.1)

_T —
2

Diese Beziehung soll nun bewiesen werden. Dazu kann zunichst die linke Seite von Gl.(B.1)
durch die Substitution

t,thy..t) = +L6+L 0+ D) (B.2)
in
T T roq
/dzt’1 / dtly --- / dt, / / ---/dt;
0 0 0 0 0 0
iiberfiihrt werden, so daf§ Gl.(B.1) dquivalent zu (statt ¢}, ... ¢, wird wieder ¢, ..., ¢,
geschrieben)
T 11 tn—1 Tn
/ﬁl/ﬁ2~-/d% = =, n € IN#0, (B.3)
n!
0 0 0

ist. In dieser Form soll die Behauptung mittels einer Induktion nach n bewiesen werden.

T 71
0

Induktionsvoraussetzung: Fiir n — 1 moge die Formel gelten (n > 2):

T 11 tn—2

Tn—l
I —— .
0 0 0

Induktionsanfang: n =1

98



InduktionsschluB: n—-1—n (n > 2)
Es mégen folgende Definitionen gelten:

T i
Fo(T) = / dt, / dt dt,., (B.5)
0 0

O\T“
L

Offenbar gilt:

Weiter ergibt die Differentiation nach T

H(T) = (B.8)

n

und

FL(T)

I
N —
S
)
= —
Q.
o~
w
o~ o~
IV} —

Tn—l
(n—1)!"

nach Induktionsvoraussetzung (B.4). Daher erhélt man
Hy(T) = F(T)
= F.(T) = H,(T)+ C, C eR,

und wegen Gl.(B.7)

Das ist die Behauptung.

99



Anhang C

Einige niitzliche Beziehungen zur
['-Funktion

Im Verlauf der Rechnungen in Kapitel 6 werden einige Beziehungen zur I'-Funktion benétigt,
die hier der Ubersichtlichkeit halber zusammengestellt werden sollen. Die Beweise fiir diese
Formeln folgen aus den bekannten Eigenschaften der I'-Funktion [20]:

e 0, (C.1)
;—lezor(lz) =1, (C.2)
r(}) = ==, (C.3)
F(—%) — o3, (C.4)
(1) = —~, 7 : Euler-Konstante, (C.5)
(%) = -7%(y+2m2), (C.6)
M(=3) = 273 (v+2l2-2), (C.7)
') = é|zzor(2+2)
- ;_Z|Z:0{(z+1)r(z+1)}
= 147101
1A (C.8)
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Anhang D

Fehlerintegral

In G1.(6.25) war das Fehlerintegral & eingefiihrt worden; diese Gleichung soll nun genauer
begriindet werden. Bekanntlich gilt:

B(z) = %/e—f“dt, -ec. (D.1)

Weiterhin besteht die Beziehung [20, Kapitel I1]:

9 o e—Zt .
;/mdt = ¢ [1-®(vZ)], Rez> 0. (D.2)
0

Damit gilt nun (Definition von ¢(p) in GL.(6.26)):

+oo
RiQ) = 14 iy [ apgp) (i)

+oo
= 14 imit o 10 /dp - s+ L) e-t(mi )
o7 P+ mg 24 Mo

_ p =

+oo _th(p/)2

_ g oe-imit 0 —tm? i/d/eig
2m mo L+ ()

+oo mg

= o(moVi) + e—%m3f¢<%ﬁ), (D.3)

womit Gl.(6.25) begriindet ist.
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Anhang E

Berechnung einiger Integrale

In Kapitel 6 werden die Werte einiger Integrale verwendet. Die dort benutzten Ergebnisse
sollen nun abgeleitet werden.

E.1 J,—Berechnung

Mit [12, GL.(4.3.1) fiir d=1, a =0, 3 = 5]

+ oo

- Lo (I (s = 3)
[ () = e S (E.1)
ergibt sich:
PRy PSS IN Gk ) T LG+ 3)
1 e T I'(z) 4700 T(z+ 1)
2\ ' 1
NI .
)
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=—@9L%§”9“%% NCINES)
Z r(2) 1T TG
+oo
22 [ 1 }
16 (P + 17 (p? + 5)

E.2 .Jy,—Berechnung

+oo 1
J, = / dp
R (r? +1) (P> + 1)
1 4 1 1
Partialbruchzerlegung : = — —
NIy 3(w+i w+J
A +o0 1 400 1
Jy = = dp —— — / dp ——
— 2 3[_/ ppz—l—i J pp2+1]
4 +o0 400
= 3 [2 arctan(2p) — arctanp
4
= 3 {277 — ﬂ'} = -7
E.3 J;—Berechnung
+o0
Jy — /dp In(p? + 1)
(r?+1) (* + 1)
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Mit der Partialbruchzerlegung aus der J,—Berechnung (vgl. GL.(E.4)) erhélt man

p +1 7 In(p* +1)
dp — [ dp ————2L ;. E.
{/ P (E-6)
0
Mit [14, GI.4.295 7]
7 dzx T ag + be
2 2 2 _ T .
/ln(a —|—b$)m = Cgln( . )7 a>07b>07C>07g>0
0
(E.7)
ergibt sich
8 3
Js = §(2ﬂ1n§—ﬂ'ln2)

_ %(2 In3 — 31n2)

E.4 I,-Berechnung
1 I
rTinx
Il = /d$ - 5
Szt aza)?
, O-I—A2 2 2 1
— t* — :
= F / dt — 2m0 ln( AQmO)’ t= (mg—l_Az $)2
V/m2TAZ
_ 2 /Odt (#2 = mg) [In(t + mo) +In(t —mo)] 1 mg) o =
Al t ¢
mo
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_ 1 md
par:Int. (_Z + 3?) ln(t + mo)
+ / dt

mo

1 mé
(t(t—l—mo) EYE (t—l—mo))

1
21n(2my) hl( (mg + A%)2 + mO)

3m0

(m3 + A2)?

L

ma ln( (m3 + A%)? + mo)

+ 3
3 (md+ A?)>
In 2 In (m% + A2)
_I_ - -~ M 7
mo 2 mo
1
ln( (m2 + A?%)2 + mo)
_ o
In(md + A?%)
6 mo
1
ln( (m% + Az) 2 4 mo)
_I_
3 mo
B In2 B 1
Bmo g (my - A2)
1
+ o

6(ma+ A7)

6m0
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m2+A? 5
i { / il (ln(t 2mo) mg In(t — mo)) }
e\o 4
mo—+e

1
t(t—mg)

O
mo+e
Ine m3 Ine

{mo—l-ef - 3 (mo + ¢)°

ln( (m2 + Az)% - mo)

lim
e\

3t3 (t—omo))}

(m3 +A2)?
mé ln( (mé —I—Az)% -

)

+ 3
3 (m3+ A2)2
1
L ln( (m(z) + Az) ? = mO) B ln(mg + Az)
mo 2m0
_ Ine In(mo+e) N In(m3 + A?)
mo mo 6m0
1 mo
3 (m2+4Az)z 6 (mi+A?)
L
B ln( (m +A?)2 — mO) _ In(mo +¢)
3mg 3 mg
L 1 4 mo 4 Ine
3(m0—|—€) 6(m0—|—€)2 3myg
ln( (m2 + Az)% - mo)
(m3 + A2)
L L
mé ln((mg—l—Az)2 —mo) N 21n((m3—|—A2)2 —mo)
3 (md+ A2)? 3mo
In(md + A?%) 2 In mg 1
3 mg 3 mg 3 (mg _I_AZ)%
mo i 1
6 (m3 + A?) 2 mo



Damit folgt:

2 2 mi 1
ho= m{_(3 t e ant *)MQ
Mo (md+A2)E (A2

W

+ B L
3(mg+A2)%  (mf+A?%)2

# (e = ) [ 42) ) = (s 07) )] |

2 2 2 4 In(2
I A2 + _ _ A n@mo)
A 3mg 3mg 3(m3—|—A2)5 3 mg
1
2 2\ 35
_ 2 1n<m0+A>1+m0}. (E.9)
3mo (m2 4 A2)2 —my

E.5 I[,—Berechnung

In( A%z
I, = /d v nmo—l— ), Subst.: t = \/mg—l—Azx

m—I—A2)

2
g - A dzx
2t
/mZ+A2
4 (t* —m?) Int
Tt
mo
1 m

JmIFRE  Vmoth? (

o

mo

i 3?)} (partielle Integration)

mo
4 {g In mg In(m?Z + A?) L m3 In(md + A?)
3 Mmoo (mZ AT 6(mdrA2)?

1 2
TR - —0 é} (E.10)
0 (g e AE 9 (g4 A
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E.6 [y—Berechnung

Subst.: ¢

dt

Vmé+ A2
A% dz
2t

2

3m0

2mi + 3A?
3 (mg + A?)

|

E.7 L,—Berechnung

)

A4

Ly

_I_
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(E.11)



2 4
Ll — 3 — 1n<§ mg_l_Az
(2 m2 + A?) 3me  \4
+ dt 4 2

1 m% mo)
part. Int. ( t + 12 t3) n( + 5
+ / dt ! mg
E(E+ 20y 1283 (L + 32

3

% 1
Cdlnmg  In((mE4A%)F 4 )

g In(((m + A7) + 22)
_I_

3
2

12 (m + A7)

mo Mo
2 NE | m
2In( (md + A+ 50) (3 + A7)
mo 3m0
1 mo
- +

3(mg+A2)7  12(m§+A%)

1
2in((md+A%)7+53)  op

3m0

—I_ 3m0

_I_

3m0

%)

2in(3)  2md In(3)

128 (to— %))}

I (m3 +A%)2 — o

3 (mo +¢)°

md ln((m(z)-l-/\?)%_%) 21n((m(2)_|_A2)%_
_I_

(m3+ A2)2

12 (m2 4+ A2)? -
In(mg + A?) 21n(3) + 2In(™ete)
Mo mo Mo
ln(m% + A2> 1 mo
3mg 3 (m2 —|—A2)% 12 (m2 + A2)
l 7
C2In((md A7 - ) g (mee)
3m0 3m0
1 mg 2111(%) }
+ e+ +
3( 02+ ) 12 (mOT-I_E)Q 3m0
3 L
_ ln((m(2)+A2)2 _%) m% ln((m(2)_|_A2)2 _%)
(mg + AQ)% 12 (md + M)%
l 7
4ln(<m3+/\2)2 - 70) 2 In(md + A?)
+ _
3m0 3m0
4 In(%2) 1 -
3mo g(m24yAz)r  12(md+ A2
1
—|— -
Mo
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Zusammengefalit ergibt das:

W
w
3

o

2 1 2 4
Ly = 55— 2{( T — 0 - )1n<§m3—|—/\2)
(5 mo + A%) (m24+A2)7 12 (m2+ A?) 4
4 81n myg 2
3mo 3 mo 3 (m2 + A2)?

(o )
(mg+A%)7 12 (m + A%)*

[ ) ) (449 - 2)]

L 1
2 2\2 0 2 AV IR
- [ i)+ 20) - (i) - 2]
2 4 4 1 2
ER 22{_ 1n<§m3+/\2)—|— Blamo :
(3 mg+ A?) 3mg  \4 Bmo | 3mo  3(m2t A2
1
2 A?E mo
_ 4 In (mg + )1—|- 5 } (B12)
3myg (m%ﬁ—A?)?—%
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E.8 L,—Berechnung

m2
0 {TO—I— (%m%—l—Az) x}
/m2_|_A2
4 roo(r - Z)Int
= — ;[ a
(gmg+A5)° ) t

/m2 2
4 1 m2 Vms A2 N m2
= Emian? | \r e - /dt 2 124
(3mg+A?) mo o
ER
(partielle Integration)
B 4 4In72 1 9 9 1 mé
T (3,2 A22{3m —§ln(m0—|—A) 5 nE 5 N
(7mg + A?) 0 (m2+A2)2 12 (md + A2)2
16 1 mé
—I_ - 1 —I_ 3
9mg (m2 + A?)2 36 (m2 4 A2)>
B 4 {4111% N m2 L 16 1
(Fmd+A2)% | 3mo  36(m24+A2)7 9T (m2 4 A2)7

— %ln(mg—l—Az) ( 1
(mg + A?)

E.9 Ly—Berechnung

[T

12 (m2 + A2) )}

W

0 {TO—I—(%m%—I—AQ)x}
A/ mE+A? m2
2 - 0 mg
= di 1 =2+
(3mg+A2)° o 4
mo
2
B 2 { 4 1 N md }
Gmd+ A" 13m0 (21 A2)7 12 (m2 4+ A2)2
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Anhang F

Sattelpunktentwicklung zur

(;—Berechnung

7Zu untersuchen ist:

/f_zte /dtt—Q -|-/\7,‘)7

2 L2

a:= > 0, A> 0.

4
Die Funktion f(t) := ¢ + At besitzt ein Minimum bei t = \/gz
a
s FA=0

(V%) N
r"3) = W2ﬁ>0

— Minimum bei t = @.

Um dieses Mininmum wird nun der Exponent entwickelt:

(F.1)

(F.2)

7dtt_ze_(%“t /dt ( + 0t - @)) o <2m+\/g(t—\/¥)2+0(f—«/¥)3)

]

Das Gaufi-Integral kann ausgewertet werden:

/dtt_ze_(%‘Mt) = — _2\/_ e\/%_g’
0 \

gl
>l

- hnell abfallend
:_\/E</\3) 2V/aX Vel \/_ schnell abfallende

111

Terme.

0 N e
/dt o2V —(t-v%) n schnell abfallende (F.3)
0

schnell abfallende

Terme

(F.4)

Terme.



Mit der Definition von a (vgl. GL.(F.1)) gilt schlielich:

0 1
4212 40 eI AW =575 hnell abfallend
dt 12 e VA —R2L2\ schnell abfallende
0/ © 1212 4 403 ¢ T Terme

AT 47 =
1 e ﬁe_m’l n schnell abfallende

(ﬁsz)% Terme

_ e—VAAL | schnell abfallende (F.5)

(ﬁsz)% Terme.
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