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Kapitel 1EinleitungIn quantenfeldtheoretis
hen Modellen mit spontan gebro
hener Symmetrie gibt es Feld-konfigurationen, bei denen vers
hiedene Phasen des Feldes nebeneinander existieren. Bei-spielsweise kann man si
h ferromagnetis
he Substanzen vorstellen, bei denen die Magne-tisierung in vers
hiedenen r�aumli
hen Berei
hen ein unters
hiedli
hes Vorzei
hen besitzt,oder Mis
hungen zweier Fl�ussigkeiten, so da� in einigen Raumberei
hen die eine Fl�ussigkeit�uberwiegt, in anderen die andere, und diese vers
hiedenen Phasen dur
h Oberfl�a
hen von-einander getrennt sind [1℄. Diese Trennfl�a
hen besitzen eine temperaturabh�angige, 
harakte-ristis
he Breite [2a℄; au�erdem l�a�t si
h mit Hilfe der freien Energie F eine tempera-turabh�angige Oberfl�a
henspannung � definieren (s.u.). Bei Ann�aherug von unten an diekritis
he Temperatur T
 f indet ein Phasen�ubergang statt, und diese Oberfl�a
hen l�osensi
h allm�ahli
h auf; die Oberfl�a
henspannung vers
hwindet gem�a� (� = �=k T; k : Boltz-mannns
he Konstante) � � �0 t�; (1.1)wobei t = ����T � T
T
 ���� ;mit der kritis
hen Amplitude �0 und dem kritis
hen Exponenten �. F�ur den (universellen)kritis
hen Exponenten sollte in d Dimensionen gelten [2a℄:� = 2� + 
 � � (1.2)= (d� 1) �; (1.3)mit den �ubli
hen kritis
hen Exponenten � (kritis
hes Verhalten des Ordnungsparameters),
 (krit. Verh. der Suszeptibilit�at) und � (krit. Verh. der Korrelationsl�ange). Als numeris
herWert ergibt si
h mit [2℄ � = 0; 6300 +� 0; 0008 (1.4)(der Wert ist dort f�ur das n{Vektor{Modell in d = 3 Dimensionen abgeleitet mit n = 1;das n{Vektor{Modell f�ur n = 1 entspri
ht der �4{Theorie) in d = 3 Dimensionen:� = 1; 2600 +� 0; 0016: (1.5)Ein Beispiel f�ur eine Quantenfeldtheorie mit spontaner Symmetriebre
hung ist die �4{Theo-rie in der Phase gebro
hener Symmetrie (Lagrange{Di
hte L = 12 ���0 ���0 + bm202 �20 +3



g04! �40 + 32 bm40g0 ; bm20 < 0, in der euklidis
hen Formulierung; Einzelheiten werden in Kapi-tel 2 dargelegt werden). Gem�a� obigen Beispielen k�onnte �0(x) die (ortsabh�angige) Ma-gnetisierung eines Ferromagneten oder die Konzentrationsdi�erenz zweier Fl�ussigkeiten be-s
hreiben. Im Falle unendli
hen Volumens zeigt nun die �4{Theorie eine Entartung desGrundzustands. Die Grundzust�ande sind dur
h die Minima des PotentialsV (�0) = bm202 �20 + g04! �40 + 32 bm40g0 = g04! (�20 � v20)2; v0 = s�6 bm20g0bestimmt. In der Pfadintegralquantisierung hei�t das, da� diejenigen Feldkonfigurationenmit bez�ugli
h Raum und Zeit konstantem Wert +v0 oder �v0 dominieren.Im Falle endli
hen Volumens ist diese Entartung aufgehoben, denn es sind �Uberg�an-ge zwis
hen den Feldkonfigurationen �0 = +v0 und �0 = �v0 infolge des Tunnele�ektsm�ogli
h, so da� diese Feldkonfigurationen ni
ht l�anger station�ar, insbesondere au
h keineGrundzust�ande mehr sind. Bezei
hnet man mit j0+i bzw. j0�i die Zust�ande mit �0 = +v0bzw. �0 = �v0 , die f�ur wa
hsendes Volumen V (V ! 1 ) gegen die entarteten Grund-zust�ande bei unendli
hem Volumen konvergieren, so l�a�t si
h der bei endli
hem Volumeneindeutig bestimmte, unter der Transformation �0 ! ��0 symmetris
he Grundzustandj0si als j0si = 1p2 (j0+i + j0�i) (1.6)s
hreiben. Energetis
h etwas h�oher liegt der unter �0 ! ��0 antisymmetris
he Zustandj0ai = 1p2 (j0+i � j0�i) : (1.7)Die Energiedi�erenz (Energie{Splitting) dieser beiden Zust�ande wird mit E0a bezei
hnet;ihre Bere
hnung ist Gegenstand dieser Arbeit. Genauer soll E0a f�ur die �4{Theorie ind = 3 Dimensionen bere
hnet werden, wobei die beiden Raumdimensionen ein endli
hesVolumen L2 bilden w�ahrend die Zeitausdehnung T als unendli
h angenommen wird (un-endli
her Zylinder l�angs der Zeita
hse mit quadratis
her Grundfl�a
he L2).Bei geeigneter Pr�aparation der Randwerte des Feldes existieren, wie bereits oben er-w�ahnt, Feldkonfigurationen, bei denen gro�e r�aumli
he Berei
he (Dom�anen) des Feldesden positiven Wert +v0, andere Berei
he den negativen Wert �v0 besitzen. Die vers
hie-denen Dom�anen sind dur
h Oberfl�a
hen 
harakteristis
her Breite getrennt. Betra
htet manzun�a
hst eine Feldkonfiguration mit �0 = �v0 f�ur T ! �1 und �0 = +v0 f�ur T ! +1,sowie periodis
hen Randbedingungen l�angs der Raumdimensionen, und bezei
hnet derenfreie Energie mit F+�, dann eine Feldkonfiguration mit �0 = +v0 f�ur T ! +� 1, wobeiwieder periodis
he Randbedingungen l�angs der Raumdimensionen gelten sollen, und be-zei
hnet deren freie Energie mit F++, so l�a�t si
h die bereits oben angef�uhrte Oberfl�a
hen-spannung � gem�a� � = F+� � F++L2 (1.8)definieren [2b, 3℄ (die Definition ist dort f�ur das Ising{Modell gegeben, kann jedo
h verall-gemeinert werden). F�uhrt man man wie oben wieder � = �=k T ein, so kann im Rahmendieser Vorstellungen �uber die Volumenabh�angigkeit der Energieaufspaltung E0a folgendeAussage getro�en werden [4, 5℄, d = 3 Dimensionen:E0a � exp f � � L2g: (1.9)4



Diese Beziehung soll in dieser Arbeit im Rahmen einer semiklassis
hen Re
hnung genauerbegr�undet werden. Insbesondere werden explizite Ausdr�u
ke f�ur die Proportionalit�atskon-stante und f�ur die Oberfl�a
henspannung � angegeben.Dazu erfolgt zun�a
hst in Kapitel 2 eine Darstellung der �4{Theorie in der Phase gebro-
hener Symmetrie mit den im weiteren ben�otigten Feynman{Regeln. Bei der Auswertungsowohl einiger Feynman{Graphen als au
h sp�ater bei der Bere
hnung von E0a werden si
hDivergenzen ergeben, so da� eine Regularisierung und Renormierung erforderli
h wird. AlsRegularisierungsmethode verwende i
h die Pauli{Villars{Regularisierung, sie ist in Kapi-tel 3 er�ortert, und als Renormierungss
hema benutze i
h das in [6℄ und [7℄ definierte; dieDefinitionen im einzelnen sind in Kapitel 4 angegeben, wo si
h au
h die Bere
hnungen dervers
hiedenen Feynman{Graphen bis zur 1{Loop{Ordnung zur Bestimmung der Renormie-rungsgr�o�en befinden.Eine Bere
hnung von E0a mit dimensionaler Regularisierung wurde von G. M�unsterbereits sowohl in d = 4 [8℄ als au
h in d = 3 Dimensionen [9℄ dur
hgef�uhrt. Die Motivation,statt einer dimensionalen Regularisierung hier die Pauli{Villars{Regularisierung zu verwen-den, liegt zum einen darin, da� die dimensionale Regularisierung ni
ht zwis
hen Infrarot{und Ultraviolett{Divergenzen unters
heidet, w�ahrend die Pauli{Villars{Regularisierung nurdie Ultraviolett{Divergenzen beseitigt (mehr dazu in Kapitel 3). Zum anderen zeigt si
h,da� bei einer Re
hnung in dimensionaler Regularisierung mit Hilfe einer "{Entwi
klung(" = 3 � d) f�ur " = 0 keine Divergenzen auftreten, obwohl die urspr�ungli
he Theorie Di-vergenzen in d = 3 Dimensionen liefert. Wenn also dur
h die dimensionale Regularisierungin dieser Art und Weise Divergenzen entfallen, stellt si
h die Frage, ob die letztli
h erhalte-nen (endli
hen) Ergebnisse zuverl�assig sind. Deshalb ers
heint es n�utzli
h, eine Bere
hnungder Energieaufspaltung E0a au
h in einem anderen Regularisierungss
hema dur
hzuf�uhren,konkret in dieser Arbeit in Pauli{Villars{Regularisierung.In Kapitel 5 wird eine explizite Formel f�ur die Energie E0a hergeleitet. Mit Hilfe einersemiklassis
hen Re
hnung findet man in niedrigster Ordnung f�ur diese Energie:E0a = 2 e�S
 �S
2�� 12 �����det0MdetM0 ������ 12 ; (1.10)mit gewissen Operatoren M;M0 und der Wirkung S
 einer bestimmten L�osung der Feld-glei
hung f�ur �0; die genauen Definitionen werden in Kapitel 5 angegeben. Kapitel 6 istans
hlie�end der Bere
hnung des Ausdru
ks�����det0MdetM0 ����� (1.11)gewidmet, wobei si
h zeigen wird, da� au
h dieser Ausdru
k zun�a
hst regularisiert werdenmu�. Es werden zwei Wege zur Bere
hnung des Terms (1.11) dargelegt, deren Ergebnisse�ubereinstimmen (Einzelheiten in Kapitel 6). Kapitel 7 bringt s
hlie�li
h die endg�ultigeBere
hnung der Energieaufspaltung E0a mit Renormierung. Es ergibt si
h letztli
h bis zurbetra
hteten Ordnung E0a = C exp f � �(L)L2g; (1.12)mit expliziten Ausdr�u
ken f�ur C und �(L), was wie bereits erw�ahnt die Beziehung (1.9)genauer begr�undet. In Kapitel 8 erfolgt ein Verglei
h mit den Resultaten der entspre
hen-den Re
hnung mit dimensionaler Regularisierung. Abs
hlie�end sind in Kapitel 9 einige�Uberlegungen angestellt, ob und m�ogli
herweise wie die in Kapitel 6 vorgenommene Regu-larisierung des Ausdru
ks (1.11) aus einer modifizierten Lagrange{Di
hte erhalten werdenk�onnte. 5



Kapitel 2�4{TheorieDie Lagrange{Di
hte der �4{Theorie in der euklidis
hen Formulierung lautetL�0 = 12 ���0 ���0 + V (�0 ); (2.1)mit V (�0 ) = bm202 �20 + g04! �40 + 32 bm40g0 : (2.2)Die Zwe
km�a�igkeit, die an si
h unwi
htige und beliebige Konstante 32 bm40g0 einzuf�uhren,wird si
h weiter unten erweisen. Weiter ist zu bemerken, da� die �4{Theorie im weiterenin d = 3 Dimensionen betra
htet wird, und g0 daher Massendimension 1 hat.Je na
h Vorzei
hen des Parameters bm20 spri
ht man von der symmetris
hen Phase ( bm20 �0) oder der Phase gebro
hener Symmetrie ( bm20 < 0), denn f�ur bm20 � 0 ist der Grundzustandder Theorie einfa
h �0 � 0 und damit symmetris
h unter der Transformation �0 ! ��0,genau wie die Lagrange{Di
hte selbst. F�ur bm20 < 0 ist diese Symmetrie der Lagrange{Di
htespontan gebro
hen; f�ur den Grundzustand (Zustand minimaler Energie) bei unendli
hemVolumen gilt n�amli
h, da die Energie o�ensi
htli
h f�ur �0 = �Gr = 
onst. minimal wird,wenn �Gr eine Konstante ist, die V minimiert:dV (�0)d�0 j�0=�Gr = 0() bm20 �Gr + g03! �3Gr = 0() �Gr � bm20 + g03! �2Gr � = 0=) �Gr; 0 = 0; �Gr; 1;2 = +� s� 6 bm20g0 ( bm20 < 0 !):Eine Untersu
hung der zweiten Ableitung von V kl�art die Verh�altnisse:d2 V (�0 )d�20 = bm20 + g02 �20 (2.3)6



=) d2 V (�0 )d�20 j�0=�Gr; 0 = bm20 < 0=) Maximum bei �Gr;0 = 0d2 V (�0 )d�20 j�0=�Gr; 1;2 = � 2 bm20 > 0=) Minima bei �Gr; 1 und �Gr; 2 :Die Grundzust�ande in der Phase gebro
hener Symmetrie bei unendli
hem Volumen sind alsodur
h �0 = + v0 bzw. �0 = � v0 gegeben, mit v0 = r� 6 bm20g0 ; damit ist die Symmetrie derLagrange{Di
hte in den Grundzust�anden ni
ht mehr vorhanden. O�enbar gilt au
hV (�0) = g04! ��20 � v20�2 ; (2.4)das hei�t die Konstante 32 bm40g0 in der Lagrange{Di
hte ist gerade so gew�ahlt, da� das Po-tential in den Grundzust�anden �0 = +� v0 vers
hwindet (vgl. Abbildung 2.1).
Abbildung 2.1: Das Potential V (�0)Im folgenden wird nun nur no
h die Phase gebro
hener Symmetrie betra
htet; hierzuist es zwe
km�a�ig ein neues Feld ' als "Anregung\ des Grundzustands einzuf�uhren. OhneEins
hr�ankung sei ' als Anregungsfeld zum Zustand �Gr; 1 = + v0 definiert:' = �0 � v0: (2.5)7



S
hreibt man nun das Potential V als Funktion dieses neuen Feldes ', so ergibt si
hV (v0 + ') = bm202 (v0 + ')2 + g04! (v0 + ')4 + 32 bm40g0= bm202 v20 + g04! v40 + �bm20 v0 + g03! v30� '+ � bm202 + g04 v20 � '2 + g03! v0 '3 + g04! '4 + 32 bm40g0 ;und mit der Definition von v0 folgteV (') := V (v0 + ')= � 3 bm40g0 + 32 bm40g0 + 32 bm40g0+ � bm20 � bm20� ' v0 + � bm202 � 3 bm02 2 �'2+ q�6 bm20 g03! '3 + g04! '4= � bm20 '2 + q�6 bm20 g03! '3 + g04! '4: (2.6)Definiert man no
h eine neue Masse m0 dur
hm20 := � 2 bm20 > 0; (2.7)so ergibt si
h als Lagrange{Di
hte des Feldes 'L' = 12 ��'��'+ eV (')= 12 ��'��' + m202 '2 + p3 g0 m03! '3 + g04! '4 (2.8)sowie v0 = s�6 bm20g0= s3m20g0 : (2.9)Die Konfigurationen �Gr; 1;2 entspre
hen nur bei unendli
hem Volumen Grundzust�andender Theorie; bei endli
hem Volumen sind �Uberg�ange von �Gr; 1 na
h �Gr; 2 und umgekehrtinfolge des Tunnele�ekts m�ogli
h, die Einf�uhrung eines Feldes ' gem�a� Definition (2.5) istaber au
h bei endli
hem Volumen m�ogli
h und wird im folgenden beibehalten.Aus der Lagrange{Di
hte (2.8) erh�alt man au
h lei
ht die Feynman{Regeln f�ur das Feld' zur st�orungstheoretis
hen Bestimmung der Greensfunktionen. Es gelten die �ubli
henDefinitionen (d = 3 Dimensionen):G(n)' (x1; : : : ; xn ) := h 0 jT ('(x1) � : : : � '(xn)) j0 i; (2.10)8



d.h. G(n)' (x1; : : : ; xn ) ist der Vakuumerwartungswert des zeitgeordneten Operatorproduktsder Werte des '{Feldes an den Stellen x1; : : : ; xn,eG0 (n)' (p1; : : : ; pn ) := Z d3x1 : : : d3xnG(n)' (x1; : : : ; xn ) ei p1 x1 � : : : � ei pn xn ; (2.11)(Fourier{Transformation)eG0 (n)' (p1; : : : ; pn ) = (2 �)3 Æ(3)(p1 + : : :+ pn) eG(n)' (p1; : : : ; pn): (2.12)Die Definition von eG(n)' (p1; : : : ; pn) dur
h Abspalten einer Æ{Funktion setzt die Transla-tionsinvarianz der Theorie voraus; die �4{Theorie bei unendli
hem Volumen ist translati-onsinvariant.Aus der Lagrange{Di
hte (2.8) liest man unmittelbar folgende Feynman{Regeln imImpulsraum f�ur eG(n)' (p1; : : : ; pn ) ab (es werden die Regeln f�ur unendli
hes Volumen ange-geben (L = 1), da diese in Kapitel 4 zur Bestimmung der Renormierungsgr�o�en ben�otigtwerden; bei endli
hem Volumen sind in den Regeln Integrale R d3x0 �uber entspre
hendeBerei
he auszuf�uhren bzw. Impulsintegrale als Summe �uber diskrete Impulse aufzufassensowie no
h geeignete Normierungskonstanten einzuf�uhren):-p b= 1p2 +m20 ;##

 b= �p3 g0 m0;���� b= � g0;� �uber unabh�angige S
hleifenimpulse q ist mit R d3q(2�)3 zu integrieren,� Impulserhaltung an allen inneren Punkten� jeder Graph ist mit einem Vorfaktor 1S zu versehen, wobei S der Symmetriefaktordes Graphen ist:S = #(Symmetrie{Gruppe des Graphen)= #0BB� Abbildungen des Graphen auf si
h, die man dur
h Per-mutationen von inneren Punkten und Linien erh�alt;die Zuordnung zwis
hen Punkten und Linien mu� er-halten bleiben, und die �au�eren Linien bleiben fest 1CCA : (2.13)Der Vollst�andigkeit halber seien au
h no
h die Feynman{Regeln f�ur G(n)' (x1; : : : ; xn) imOrtsraum aufgef�uhrt:x y b= �(x� y) = Z d3k(2�)3 ei k (x�y)k2 +m20 ;##

x0 b= �p3 g0 m0 Z d3x0;����x00 b= � g0 Z d3x00;9



� �uber innere Punkte wird integriert (s.o. Integration �uber x0 bzw. x00),� der Vorfaktor 1S eines Graphen ist wie bei eG(n)' (p1; : : : ; pn) zu w�ahlen (vgl. Definition(2.13)),sowie die Feynman{Regeln f�ur eG0(n)' (p1; : : : ; pn):-p b= 1p2 +m20 ;?p1> ppppppppppppppppppppp2 }ppppppppppppppppppppp3 b= �p3 g0 m0 (2�)3 Æ(3)� 3Xi=1 pi�;ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppR� 	Ip1 p3p2 p4 b= � g0 (2�)3 Æ(3)� 4Xi=1 pi�;- �p1 p2 b= (2�)3 Æ(3)(p1 + p2) 1p21 +m20(Linie, die keinen inneren Punkt ber�uhrt),� �uber innere Impulse q ist mit R d3q(2�)3 zu integrieren,� jede Linie ist mit einem Pfeil zu versehen, und f�ur das Vorzei
hen des zugeh�origenImpulses q in den Argumenten der Æ{Funktionen der 3{er und 4{er Vertizes gilt:sign q = ( +1 ; falls q in den Vertex hineinzeigt�1 ; falls q aus dem Vertex herauszeigt,� �au�ere Linien zeigen in den Vertex hinein,� Vorfaktoren 1S der Graphen sind genau wie f�ur eG(n)' (p1; : : : ; pn) und eG(n)' (x1; : : : ; xn)zu w�ahlen (Definition (2.13)).Die verbundenen Greensfunktionen G(n)';
(x1; : : : ; xn) sind wie gewohnt definiert,G(n)' (x1; : : : ; xn) = XP G';
(xi; : : : ; xj) � � � G';
(xk; : : : ; xl) (2.14)P := Menge aller Partitionen der Indizes f1; : : : ; ng in ni
htleere Teilmengen(dur
h Umkehren der Beziehung (2.14) ergeben si
h die G';
 sukzessive als Funktionen derG'), und sind perturbativ dur
h alle zusammenh�angenden Feynman{Graphen gegeben.Ganz entspre
hend wie oben (vgl. Gl.(2.11) und Gl.(2.12)) sind au
h eG0(n)';
 (p1; : : : ; pn) undeG(n)';
(p1; : : : ; pn) definiert.
10



Kapitel 3Pauli{Villars{RegularisierungDie dur
h die Feynman{Regeln aus Kapitel 2 erhaltenen S
hleifenintegrale k�onnen diver-gieren. Als einfa
hstes Beispiel sieht man, da�12 j = � 12 p3 g0m0p2 +m20 Z d3q(2�)3 1q2 +m20 ;als Beitrag zu eG(1)' (p), divergiert (oberfl�a
hli
her Divergenzgrad Æ = 1).Um denno
h endli
he Greensfunktionen und damit eine endli
he Theorie zu erhalten, istdaher zun�a
hst eine Regularisierung notwendig. Statt der weithin gebr�au
hli
hen dimensio-nalen Regularisierung (Verallgemeinerung des Integralbegri�s auf Dimensionen, die ni
htnotwendig nat�urli
he Zahlen sind) soll aus den in der Einleitung angef�uhrten Gr�unden in die-ser Arbeit die sogenannte Pauli{Villars{Regularisierung Verwendung finden [10℄. Die Ideedieses Regularisierungss
hemas besteht darin, den urspr�ungli
hen Propagator der Theoriedur
h einen neuen wie folgt zu ersetzen:1p2 +m20 �! 1p2 +m20 � NXk=1 akp2 +�2k ; (3.1)mit den Parametern ak;�k (k = 1; : : : ; N).Die Parameter ak und die Zahl N der "Pauli{Villars{Massen\ �k sind dabei so zuw�ahlen, da� dur
h die Ersetzung (3.1) tats�a
hli
h ein st�arkerer Abfall des Propagators als1=p2 f�ur gro�e Impulse p2 eintritt. Insbesondere ist PNk=1 ak = 1 zu w�ahlen, denn f�ur gro�ep2 gilt , falls PNk=1 ak 6= 1, 1p2 +m20 � NXk=1 akp2 + �2k � 1�PNk=1 akp2 ;und es erg�abe si
h ein Verhalten wie 1=p2 f�ur p2 !1, also e�ektiv keine Regularisierungder Theorie.Allgemein gilt bei geeigneter Wahl der ak1p2 +m20 � NXk=1 akp2 +�2k = QNk=1 ��2k �m20��p2 +m20 � QNk=1 �p2 +�2k � ; (3.2)wie man dur
h Partialbru
hentwi
klung der re
hten Seite einsieht.11



F�ur �k � m0; k = 1; : : : ; N gilt nun aber f�ur die re
hte SeiteQNk=1 ��2k �m20��p2 +m20� QNk=1 �p2 + �2k� � QNk=1 �2k�p2 +m20�QNk=1 �p2 + �2k�� 1�p2 +m20�QNk=1 �1 + p2�2k�� 1p2 +m20 + �2 p4�2 + : : :+ �N+1 p2N+2�2N ; (3.3)mit �2 := maxn�2k j k 2 f1; : : : ; Ngo; �l; l 2 f2; : : : ; N + 1g, geeignete Parameter.Aus dieser Form des neuen Propagators sieht man, da� jeder zus�atzli
he Summandajp2 + �2j bei der Modifikation des urspr�ungli
hen Propagators ein um den Faktor 1=p2s
hnelleres Abfallen des neuen Propagators f�ur p2 !1 bewirkt.Es sei darauf hingewiesen, da� man die Form (3.1) des neuen Propagators au
h aus einerModifikation der Lagrange{Di
hte bekommen kann, indem man neue, bosonis
he Felder �kmit Massen �k (k = 1; : : : ; N ) gem�a�Lmod = 12 �0 ���+m20��0 � NXk=1 12ak �k ��� +�2k ��k+V  �+ NXk=1�k!einf�uhrt [11, Abs
hnitt 7.1℄. Da wie erw�ahnt PNk=1 ak = 1 gelten mu� und daher wenigstensein ak positiv ist, k�onnen ni
ht alle Felder �k gew�ohnli
he Teil
henfelder sein.Hat man nun dur
h Pauli{Villars{Regularisierung einen Propagator �PV bekommendessen Verhalten f�ur gro�e p2 dur
h�PV(p) � 1p2ngegeben ist, so ergibt si
h der oberfl�a
hli
he Divergenzgrad Æ(�) eines Graphen � mit Iinneren Impulsen, v� Vertizes des Typs � und L S
hleifen in d Dimensionen zuÆ(�) = dL� 2n I; (3.4)wobei angenommen ist, da� die Theorie keine Ableitungskopplungen enth�alt, was bei derbetra
hteten �4{Theorie nat�urli
h der Fall ist. Weiter gilt der ZusammenhangL = I �X� v� + 1; (3.5)denn jeder Vertex bringt na
h den Feynman{Regeln f�ur eG0 (Kapitel 2) eine Æ{Funktion ein,so da� von den urspr�ungli
h auszuf�uhrenden I Integrationen P� v�� 1 sofort ausgef�uhrtwerden k�onnen, indem man die entspre
henden Æ{Funktionen eliminiert. Eine Æ{Funktionbleibt stehen und liefert bei Translationsinvarianz der Theorie die Impulserhaltung(2�)d Æ(d) Xi pi!; pi �au�ere Impulse;12



so da� e�ektiv L = I � �X� v� � 1�= I �X� v� + 1Integrationen auszuf�uhren bleiben. Das ergibt gem�a� Gl.(3.4) f�ur den Divergenzgrad desGraphen �: Æ(�) = dL� 2n�L+X� v� � 1�= (d� 2n)L � 2n X� v� + 2n: (3.6)Damit der Graph � oberfl�a
hli
h konvergent ist, ist zu fordern:Æ(�) < 0; (3.7)was f�ur Graphen mit wenigstens einem Vertex dur
h Erf�ullen der Bedingung2n > d (3.8)stets gew�ahrleistet ist. Graphen ohne Vertizes liefern au
h keine S
hleifenintegrale unddamit keine Divergenzen, so da� P� v� � 1 bei allen zu regularisierenden Graphen gilt.In der in Kapitel 2 vorgestellten und im weiteren zu untersu
henden �4{Theorie in dergebro
henen Phase in d = 3 Dimensionen ist also2n > 3 (3.9)zur Regularisierung aller Graphen ausrei
hend, was dur
h die Wahl 2n = 4 am einfa
hstenerf�ullt wird. Es rei
ht also, da� f�ur den Pauli{Villars{Propagator f�ur p2 !1 gilt:�PV � 1p4 ;was na
h den obigen �Uberlegungen (vgl. Bemerkung na
h der Beziehung (3.3)) dur
h einePauli{Villars{Masse � errei
hbar ist. Zur Regularisierung ist damit die Ersetzung1p2 +m20 �! 1p2 +m20 � 1p2 +�2 (3.10)geeignet.Der Vorteil der Pauli{Villars{Regularisierung gegen�uber z.B. der dimensionalen Regu-larisierung besteht darin, da� dur
h dieses Regularisierungsverfahren (Pauli{Villars) dieInfrarot{ und die Ultraviolett{Divergenzen getrennt werden k�onnen. O�enbar wird dur
hdie Ersetzung (3.1) oder speziell (3.10) n�amli
h wesentli
h nur das Verhalten des Pro-pagators f�ur gro�e Werte von p2 (UV{Berei
h) beeinflu�t. F�ur kleine p2 (p2 <� m20 )dominiert na
h wie vor wegen �k � m0 der urspr�ungli
he Propagator 1p2+m20 . Insbe-sondere bleiben etwa vorhandene IR{Divergenzen (z.B. falls m0 = 0) au
h na
h der Re-gularisierung bestehen. Insgesamt k�onnen daher dur
h die Pauli{Villars{Regularisierunggezielt die UV{Divergenzen beseitigt werden, ohne die infrarote Divergenzstruktur ents
hei-dend zu ver�andern; eine sol
he Trennung der Divergenzen in Ultraviolett- und Infrarotanteilliefert die dimensionale Regularisierung ni
ht.13



Kapitel 4Renormierungsgr�o�en4.1 Definition der renormierten Gr�o�enI
h benutze in dieser Arbeit dasselbe Renormierungss
hema, das au
h in [8℄ Verwendungfindet, und wel
hes in [6℄ und [7℄ definiert worden ist. Dabei sind die renormierten Gr�o�enwie folgt erkl�art (zur Definition der renormierten Gr�o�en sind die Greensfunktionen beiunendli
hem Volumen zu nehmen):� Renormierte Masse mR:m2R = h eG(2)
 (0; 0)i�1��p20 h eG(2)
 �(p0;~0 ); (�p0;~0 )�i�1j p0=0= e�(2)(0; 0)��p20 e�(2) �(p0;~0); (�p0;~0)� jp0=0 : (4.1)eG(2)
 und e�(2) sind hierbei wie gewohnt definiert (siehe au
h Kapitel 2). Insbesonderegilt: e�(2)(p; q) = � h eG(2)
 (p; q)i�1: (4.2)~0 steht, wie im folgenden au
h, f�ur die (zwei) Raumkomponenten eines dreidimensio-nalen Vektors.� Wellenfunktionsrenormierung ZR:1ZR = ��p20 h eG(2)
 �(p0;~0 ); (�p0;~0 )�i�1jp0=0 : (4.3)Indem man eG(p) := eG(2)
 (p;�p) (4.4)setzt und die Funktion h eG(p0;~0)i�1 um p0 = 0 entwi
kelt, f indet man also mit denDefinitionen (4.1) und (4.2):h eG(p0;~0 )i�1 = 1ZR �m2R + p20 +O�p40��: (4.5)Die renormierten Gr�o�en mR und ZR k�onnen also einfa
h aus der Entwi
klung (4.5)erhalten werden. 14



� Renormierte 1{Punkt{Funktion vR:vR = h�0 iZ 12R : (4.6)� Renormierte Kopplungskonstante gR und dimensionslose Kopplungskonstante uR inder gebro
henen Phase der �4{Theorie:gR = 3m2Rv2R ; uR = gRmR (4.7)� Renormierte Kopplungskonstante g(4):g(4) = �e�(4)R (0; 0; 0; 0)= �Z2R e�(4)(0; 0; 0; 0); (4.8)mit der 4{Punkt{Vertexfunktion e�(4). Die Kopplungskonstante g(4) wird i.a. in dersymmetris
hen Phase der Theorie verwendet, da dort gR ni
ht existiert (vR = 0).S
hlie�li
h soll au
h no
h die physikalis
he Masse mph bere
hnet werden, die so definiertist, da� der renormierte Propagator bzw. eG(p)ZR (vgl. Gl.(4.4)) im Minkowskis
hen einen Polbei p = (mph;~0) besitzt. Da in dieser Arbeit stets die euklidis
he Formulierung betra
htetwird, bedeutet das, da� der renormierte Propagator im Euklidis
hen einen Pol bei (imph;~0)hat: ZR h eG(imph;~0)i�1 = 0: (4.9)Diese Gr�o�en sollen nun bere
hnet werden; die Re
hnung wird dabei in der St�orungs-theorie bis zur 1{Loop{Ordnung dur
hgef�uhrt. Insbesondere werden die 1{Punkt{FunktioneG(1)(p) und die 2{Punkt{Funktion eG(2)
 (p; q) bzw. eG(p) ben�otigt. In den Renormierungs-beziehungen (4.1){(4.5), (4.8) und (4.9) sind als Greensfunktionen diejenigen des "Anre-gungsfeldes\ ' bei unendli
hem Volumen zu nehmen (vgl. Definition (2.5)):' = �0 � v0: (4.10)Diese werden mit Hilfe der Feynman{Regeln aus Kapitel 2 bere
hnet.4.2 Bere
hnung von fG(1)'Bis zur 1{Loop{Ordnung gilt folgende Entwi
klung:eG(1)' (p) = 12 j + O�g 320 �: (4.11)Mit den Feynman{Regeln ergibt si
h:eG(1)' (p) = � p3 g02 m0p2 +m20 Z d3q(2�)3 1q2 +m20 + O�g 320 �: (4.12)15



Das Integral divergiert. Daher ist hier nun die Pauli{Villars{Regularisierung dur
hzuf�uhren.Na
h den �Uberlegungen des vorigen Kapitels gen�ugt (d = 3 Dimensionen) eine Pauli{Villars{Masse (vgl. Beziehung (3.10)):1p2 +m20 �! 1p2 +m20 � 1p2 + �2 : (4.13)Au�erdem ist p = 0 zu setzen, denn es gilt:eG0 (1)' (p) = (2�)3 Æ(p) eG(1)' (p)= (2�)3 Æ(p) eG(1)' (0): (4.14)(Die 1{Punkt{Funktion G(1)' (x) ist konstant (folgt aus der Translationsinvarianz der Wir-kung S['℄ = R d3x L', L' aus der De�nition (2.8)):G(1)' (x) = C; C 2 C:Daher ist eG0 (1)' (p) = (2�)3 C Æ(p)und eG(1)' (p) = C:)Damit erh�alt man ( eG(1)';PV b= eG(1)' in Pauli{Villars{Regularisierung):eG(1)';PV = �p3 g02 m0� 1m20 � 1�2� Z d3q(2�)3 � 1q2 +m20 � 1q2 +�2� + O�g 320 �= �p3 g02 m0� 1m20 � 1�2� Z d3q(2�)3 �2 �m20�q2 +m20 � (q2 + �2) + O�g 320 �= � p3 g02 m0 � 1m20 � 1�2� 12 �2 1Z0 dq q2 ��2 �m20 ��q2 +m20 � (q2 + �2) + O�g 320 �= � p3 g04 �2 m0 � 1m20 � 1�2� 1Z0 dq  �2q2 +�2 � m20q2 +m20! + O�g 320 �= � p3 g04 �2 m0 � 1m20 � 1�2� �� ar
tan q� �m0 ar
tan qm0 � 10 + O�g 320 �= � p3 g04 �2 m0 � 1m20 � 1�2� �2 (��m0) + O�g 320 �= � p3 g08 � (��m0)� 1m0 � m0�2 � + O�g 320 �= � p3 g08 � (��m0)m0 + O� 1�� + O�g 320 �: (4.15)16



4.3 Bere
hnung von fG'Es gilt (vgl. Gl.(4.4)):eG'(p) = + 12 j + 12 j+ 12 ����+ O�g20�: (4.16)Die Graphen werden einzeln bere
hnet:= 1p2 +m20 ; (4.17)12 j = � g02 � 1p2 +m20�2 Z d3q(2 �)3 1q2 +m20! � g02 � 1p2 +m20�2 Z d3q(2 �)3 � 1q2 +m20 � 1q2 +�2� + O� 1�2�(Pauli{Villars{Regularisierung)= � g02 � 1p2 +m20�2 ��m04 � + O� 1��: (4.18)(siehe Re
hnung zu eG(1)';PV)Die Terme O� 1�� stammen aus der Ersetzung 1p2+m20 ! 1p2+m20 � 1p2+�2 in den �au�erenBeinen des Graphen; da das si
h ergebende S
hleifenintegral f�ur � ! 1 linear divergiert,ergeben si
h Terme der Ordnung O� 1��.12 j = 32 m20 g0 � 1p2 +m20�2 1m20 Z d3q(2 �)3 1q2 +m20! 32 g0� 1p2 +m20�2 Z d3q(2 �)3 � 1q2 +m20 � 1q2 +�2� + O� 1�2�(Pauli{Villars{Regularisierung)= 32 g0� 1p2 +m20�2 ��m04 � + O� 1�� (4.19)(siehe Re
hnung zu eG(1)'; PV)Die Terme O� 1�� ergeben si
h auf die glei
he Weise wie oben.12 -p ��-� ��qq�p = 32 g0m20 � 1p2 +m20�2 Z d3q(2 �)3 1�q2 +m20 � �(p� q)2 +m20�17



Das S
hleifenintegral konvergiert bereits au
h ohne Pauli{Villars{Regularisierung; regu-larisiert man denno
h, so kommen nur Terme hinzu, die f�ur � ! 1 mindestens wie 1�gegen 0 gehen; diese werden im folgenden dur
h O� 1�� ausgedr�u
kt. (Es treten z.B. (bis aufKonstanten) Terme folgender Gestalt auf:Z d3q 1q2 + �2 1(p� q)2 +m20 = 1�2 Z d3q 11 + � q� �2 1(p� q)2 +m20=� Z d3q0 11 + (q0)2 1(p� � q0)2 +m20 �q0 = q��=Z d3q0� �(q0)4 + (q0)2�+ �1 + (q0)2� � 1� �p2 +m20�� 2 p � q0� ;also Terme der Ordnung O� 1��.) Das S
hleifenintegral wird standardm�a�ig mit Hilfe einerFeynman{Parametrisierung ausgewertet, denn es gilt [12, Spezialfall von Gl.(4.4.10)℄:1A�B� = �(�+ �)�(�) �(�) 1Z0 dx x��1 (1� x)��1[Ax+B (1� x)℄�+� : (4.20)Damit bekommt man:12 -p ��-� ��qq�p = 32 g0m20 � 1p2 +m20�2 Z d3q(2 �)3 1�q2 +m20 � �(p� q)2 +m20�+O� 1��= 3 g0m202 �p2 +m20 �2 1Z0 dxZ d3q(2 �)3 1h(1� x) �q2 +m20 �+ x�(p� q)2 +m20�i2+O� 1��= 3 g0m202 �p2 +m20 �2 1Z0 dx Z d3q(2 �)3 1�q2 +m20 � 2 x p � q + x p2�2+O� 1��= 3 g0m202 �p2 +m20�2 1Z0 dx Z d3q(2 �)3 1h (q � x p)2 + x (1� x) p2 +m20| {z }=: a2 i2+O� 1��= 3 g0m202 �p2 +m20 �2 1Z0 dx Z d3q0(2 �)3 1h[q0)2 + a2i2 �q0 = q � x p �+O� 1�� =)18



12 -p ��-� ��qq�p = 3 g0m202 �p2 +m20 �2 12�2 1Z0 dx 1Z0 dq0 (q0)2h(q0)2 + a2i2+O� 1��= 3 g0m202 �p2 +m20 �2 12�2 1Z0 dx 1Z0 dq0 0B� 1(q0)2 + a2 � a2�(q0)2 + a2�21CA+O� 1�� (Partialbru
hzerlegung)= 3 g0m202 �p2 +m20 �2 12�2 1Z0 dx " 1a ar
tan q0a 10 � a2 1Z0 dq0 1�(q0)2 + a2�2 #+O� 1��:Das letzte q0{Integral l�ost man standardm�a�ig [13, 3.1.7.5.℄:1Z0 dq0�(q0)2 + a2�2 = 2 q04a2 �(q0)2 + a2� 10 + 12a2 1Z0 dq0(q0)2 + a2= 12a3 ar
tan q0a 10= �4a3 :Daher ergibt si
h:12 -p ��-� ��qq�p = 3 g0m202 �p2 +m20 �2 12�2 1Z0 dx � �2a � �4a� + O� 1��= 3 g0m202 �p2 +m20 �2 18� 1Z0 dx 1a + O� 1���a = qx (1� x) p2 +m20 �= 3 g0m202 �p2 +m20 �2 18� 1Z0 dxqx (1� x) p2 +m20 + O� 1��:Mit der Substitution t = �p2 x+ 12p2qp2m20 + p44= �p2 x + 12p2pH ; H = p2m20 + p44 > 019



erh�alt man:12 -p ��-� ��qq�p = 3 g0m202 �p2 +m20 �2 18� � p22pHZ+ p22pH dt �pHp2 sp2H 1p1� t2 + O� 1��= 3 g0m202 �p2 +m20 �2 18�jpj + p22pHZ� p22pH dtp1� t2 + O� 1��= 3 g0m202 �p2 +m20 �2 18�jpj ar
sin t + p22pH� p22pH + O� 1��= 3 g0m202 �p2 +m20 �2 14�jpj ar
sin p22qp2m20 + p44 + O� 1��= 3 g0m202 �p2 +m20 �2 14�jpj ar
sin jpj2m0r1 + � jpj2m0�2 + O� 1��= 3 g0m202 �p2 +m20 �2 14�jpj ar
tan jpj2m0 + O� 1��; (4.21)unter Ausnutzung der lei
ht zu verifizierenden Beziehung (siehe au
h [14, Gl. 1.624 7℄)ar
sin xp1 + x2 = ar
tanx: (4.22)Zusammenfassen der Glei
hungen (4.17), (4.18), (4.19) und (4.21) ergibt s
hlie�li
h f�ureGPV(p) ( eG(p) in Pauli{Villars{Regularisierung):eGPV(p) = 1p2 +m20 � g02 �p2 +m20 �2 ��m04� + 3 g02 �p2 +m20 �2 ��m04�+ 3 g0m202 �p2 +m20 �2 14�jpj ar
tan jpj2m0 + O� 1�� + O�g20�= 1p2 +m20 + g0�p2 +m20 �2 ��m04�+ 3 g0m208� �p2 +m20 �2 1jpj ar
tan jpj2m0 + O� 1�� + O�g20�: (4.23)Hiermit k�onnen nun mR und ZR bestimmt werden.20



4.4 Bestimmung von mR und ZRNa
h Gl.(4.5) ist eGPV(p0;~0) zu untersu
hen:eGPV(p0;~0 ) = 1p20 +m20 + g0�p20 +m20 �2 ��m04�+ 3 g0m208� �p20 +m20�2 1jp0j ar
tan jp0j2m0 + O� 1��+ O�g20�:Zun�a
hst sieht man mit Hilfe der Taylor{Entwi
klung des Ar
ustangens:1jp0j ar
tan jp0j2m0 = 1jp0j 1Xn=0 (�1)n2n + 1 � jp0j2m0�2n+1 ; jp0j2m0 � 1= 1Xn=0 (�1)n2n+ 1 p2n0(2m0)2n+1 : (4.24)Dadur
h gilt wegen Gl.(4.5)m2RZR = h eGPV(0) i�1= � 1m20 + g0m40 ��m04� + 3 g08�m20 (2m0) + O� 1�� + O�g20� ��1= m201 + ��m0m20 g04� + 3 g016�m0 + O� 1�� + O�g20�= m20�1� ���m0m20 + 34m0� g04� + O� 1�� + O�g20��= m20 + �m04 � �� g04� + O� 1�� + O�g20� (4.25)und (vgl. Definition (4.3))1ZR = ��p20 h eGPV(p0;~0 )i�1jp0=0= ��p20 26664 p20 +m201 + g0p20 +m20 ��m04� + 3 g0m208� �p20 +m20 � 1jp0j ar
tan jp0j2m0 + O� 1�� + O�g20� 37775 jp0 = 0= ��p20 " �p20 +m20 � 1� g0�p20 +m20 � ��m04�� 3 g0m208� �p20 +m20 � 1jp0j ar
tan jp0j2m0 + O� 1�� + O�g20� ! # jp0 = 0= ��p20 " p20 +m20 � (��m0) g04� � 3 g0m208� 1jp0j ar
tan jp0j2m0 + O� 1�� + O�g20� # jp0 = 0:21



Mit der Entwi
klung (4.24) gilt also:1ZR = 1 + 3 g0m208� (2m0 )3 � 3 + O� 1�� + O�g20�= 1 + g064�m0 + O� 1�� + O�g20�=) ZR = 1� g064�m0 +O� 1�� + O�g20�: (4.26)Wegen Gl.(4.25) bekommt man daher f�ur m2R:m2R = m2RZR ZR= �m20 + �m04 � �� g04� + O� 1�� + O�g20��� �1� g064�m0 + O� 1�� + O�g20��= m20 � g064� m0 + �m04 � �� g04� + O� 1�� + O�g20�= m20 + � 316m0 � �� g04� + O� 1�� + O�g20�: (4.27)4.5 Bestimmung von gRNa
h Gl.(4.7) gilt gR = 3m2Rv2R ;mit (vgl. Gln.(4.6), (4.10))vR = h�0 iZ 12R= v0 + eG(1)'; PVZ 12R ; v0 = s3m20g0 (vgl. Kapitel 2, Gl.(2.9)):Mit den Glei
hungen (4.15) und (4.26) findet man zun�a
hst f�ur vRvR = v0 + eG(1)';PVZ 12R= 24s3m20g0 � p3 g08� ��m0m0 + O� 1�� + O�g 320 �35� ��1� g064�m0 + O� 1�� + O�g20���� 12 =)22



vR = 24s3m20g0 � p3 g08� ��m0m0 + O� 1�� + O�g 320 �35� � 1 + g0128�m0 + O� 1�� + O�g20��= s3m20g0 + �1716 � �m0� p3 g08� + O� 1�� + O�g 320 �; (4.28)und f�ur gR mit den Glei
hungen (4.27) und (4.28)gR = 3m2Rv2R= 3 �m20 + � 316m0 � �� g04� + O� 1�� + O�g20���24s3m20g0 + �1716 � �m0� p3 g08� + O� 1�� + O�g 320 �35�2= 3 �m20 + � 316m0 � �� g04� + O� 1�� + O�g20��� g03m20 � 1 + �1716 � �m0� g08�m0 + O� 1�� + O�g20� ��2= g0m20 �m20 + � 316m0 � �� g04� + O� 1�� + O�g20� �� � 1� �1716 � �m0� g04�m0 + O� 1�� + O�g20� �= g0m20 �m20 + � 316m0 � �� g04� � �1716 m0 � �� g04� + O� 1�� + O�g20��= g0 � 78 g204�m0 + O� 1�� + O�g30�: (4.29)4.6 Umkehrung der RenormierungsbeziehungenBis hierher sind folgende Ergebnisse festzuhalten (Gln.(4.27), (4.29)):m2R = m20 + � 316m0 � �� g04� + O� 1�� + O�g20�;gR = g0 � 78 g204�m0 + O� 1�� + O�g30�:Dr�u
kt man nun umgekehrt die urspr�ungli
hen Gr�o�en m0; g0 dur
h die renormiertenGr�o�en mR und gR aus, ergibt si
hg0 = gR + 78 g2R4�mR + O� 1�� + O�g3R�; (4.30)m20 = m2R � � 316mR � �� gR4� + O� 1�� + O�g2R�; (4.31)23



sowie m0 = �m2R�1� � 316mR � �� gR4�m2R + O� 1�� + O�g2R��� 12= mR �1� � 316mR � �� gR8�m2R + O� 1�� + O�g2R��= mR � � 316mR � �� gR8�mR + O� 1�� + O�g2R�: (4.32)4.7 Bere
hnung von g(4)Na
h Definition (4.8) ist g(4) folgenderma�en erkl�art:g(4) = �Z2R e�(4)(0; 0; 0; 0):Daher ist zun�a
hst die 4{Punkt{Vertexfunktion e�(4) bis zur 1{Loop{Ordnung auszure
hnen.Es tragen folgende Feynman{Graphen bei:e�(4)(p1; p2; p3; p4) = rp p p p p p p p p p p p p p pp p p p p p p p p p p p p p p + 12 ����pppppppp pppppppp p p p p p p p pp p p p p p p p + 12 ����pppppppp pppppppp p p p p p p p pp p p p p p p p+ 12 ��BB BB��pppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p ppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p pppp p p + QQ��pppppppp pppppppp p p p p p p p p p pp p p p p p p p p p + JJ 

 p pp pp p pppppppppp pppppppppp p p p p p p p p p p+ ���pppppppp p p p p p p p p p p p p p p p p pp p p p p p p ppppppppp ppp p p + ���pppppppp p p p p p p p p p p p p p p p p pp p p p p p p ppppppppp ppp p p + ��QQpppppppppp pppppppppp p p p p p p p pp p p p p p p p+ 

 JJ p pp pp pp ppppppppp pppppppppp p p p p p p p p p p + pppppppp p p p p p p p ppppppppp p p p p p p p p + �������pppppppp p p p p p p p ppppppppp p p p p p p p pppppppppppppppp+ ����� ��pppppppp p p p p p p p ppppppppp p p p p p p p pppppppppppppppp + O�g30�: (4.33)Im einzelnen bere
hnet man: rp p p p p p p p p p p p p p pp p p p p p p p p p p p p p p = � g0 : (4.34)24



F�ur die weiteren Graphen gilt mit Pauli{Villars{Regularisierung:12 ��-- ��pppppppp�p2Rp1 pppppppp p p p p p p p pp p p p p p p pqp1+p2�q = g202 Z d3q(2�)3 1q2 +m20 1(p1 + p2 � q)2 +m20 + O� 1��; (4.35)12 ��??��ppppppppRp1 	p3p p p p p p p ppppppppp p p p p p p p pqp1+p3�q = g202 Z d3q(2�)3 1q2 +m20 1(p1 + p3 � q)2 +m20 + O� 1��; (4.36)12 ��?p1+p4�q BB BB ?q��ppppppppRp1p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pIp4pppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p pppp p p = g202 Z d3q(2�)3 1q2 +m20 1(p1 + p4 � q)2 +m20 + O� 1��: (4.37)Die Terme O� 1�� r�uhren daher, da� alle auftretenden Integrale bereits ohne Regularisie-rung konvergieren, und dur
h die Regularisierung nur Terme hinzukommen, die f�ur �!1mindestens wie 1� vers
hwinden (vgl. die analoge �Uberlegung in Abs
hnitt 4.3, Seite 18);entspre
hend gilt dies au
h f�ur alle folgenden Integrale dieses Abs
hnitts.Zur Bere
hnung von g(4) wird nur e�(4)(0; 0; 0; 0) ben�otigt; f�ur p1=p2=p3=p4=0 liefernaber alle drei Graphen denselben Beitrag. Au�erdem erkennt man, da� obige S
hleifeninte-grale genau mit dem f�ur eG bere
hneten �ubereinstimmen ( ����), wenn man statt p jeweilsp1 + p3 ; p1 + p2 oder p1 + p4 einsetzt; z.B. gilt mit Gl.(4.21):12 ��-- ��pppppppp�p2Rp1 pppppppp p p p p p p p pp p p p p p p pqp1+p2�q = g208�jp1 + p2j ar
tan jp1 + p2j2m0 + O� 1��: (4.38)F�ur p1=p2=0 ergibt si
h mit Hilfe von Gl.(4.24):12 ��-- ��pppppppp�p2Rp1 pppppppp p p p p p p p pp p p p p p p pqp1+p2�q j p1=p2=p3=p4=0 = g208� 12m0 + O� 1��= g2016�m0 + O� 1��: (4.39)Die drei Graphen zusammengefa�t liefern also folgenden Beitrag zu e�(4)(0; 0; 0; 0):3 g2016�m0 + O� 1��: (4.40)25



Weiter re
hnet man:QQsQQq?p1�q ��3��p1+p2�qpppppppp sp1 pppppppp 3p2 p p p p p p p p p pp p p p p p p p p p = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p1 � q)2 +m20 1(p1 + p2 � q)2 +m20+ O� 1�3�; (4.41)-p1�qJĴJJq 

�

 p1+p3�qp p p p p p p p�p3pppppppp̂p1 pppppppppp p p p p p p p p p p = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p1 � q)2 +m20 1(p1 + p3 � q)2 +m20+ O� 1�3�; (4.42)�p1+p4�q?q���R p1�q��pppppppp p p p p p p p p p p p p p p p p pp p p p p p p pIp4ppppppppRp1 ppp p p = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p1 � q)2 +m20 1(p1 + p4 � q)2 +m20+ O� 1�3�; (4.43)�p2+p3�q6q������p2�qpppppppp p p p p p p p p p p p p p p p p pp p p p p p p p	p3pppppppp�p2 ppp p p = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p2 � q)2 +m20 1(p2 + p3 � q)2 +m20+ O� 1�3�; (4.44)��+��qQQ QQkp3+p4�q ?p3�qpppppppppp pppppppppp p p p p p p p p+p3p p p p p p p pkp4 = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p3 � q)2 +m20 1(p3 + p4 � q)2 +m20+ O� 1�3�; (4.45)-p2�q

�

q JJ℄JJ p2+p4�qp p p p p p p p℄p4pppppppp�p2 pppppppppp p p p p p p p p p p = �3 g20m20 Z d3q(2�)3 1q2 +m20 1(p2 � q)2 +m20 1(p2 + p4 � q)2 +m20+ O� 1�3�: (4.46)26



Die Terme O� 1�3 � ergeben si
h dur
h die Regularisierung entspre
hend wie oben (analoge�Uberlegung wie auf Seite 18). Wieder erkennt man, da� f�ur p1 = p2 = p3 = p4 = 0 alleGraphen denselben Beitrag liefern; es gen�ugt also, den ersten auszuwerten:QQsQQq?p1�q ��3��p1+p2�qpppppppp sp1 pppppppp 3p2 p p p p p p p p p pp p p p p p p p p p j p1=p2=p3=p4=0= �3 g20 m20 Z d3q(2�)3 1�q2 +m20�3 + O� 1�3�= � 3 g20m208�3 4� 1Z0 dq q2�q2 +m20�3 + O� 1�3�= � 3 g20m202�2 1Z0 dq " 1�q2 +m20 �2 � m20�q2 +m20 �3#+ O� 1�3�= � 3 g20m202�2 " 12m20 1Z0 dq 1q2 +m20 � 3m204m20 1Z0 dq 1�q2 +m20�2 #+ O� 1�3�= � 3 g20m202�2 " 12m30 ar
tan qm0 10 � 38m30 ar
tan qm0 10 #+ O� 1�3�= � 3 g202�2m0 " �4 � 3�16 # + O� 1�3�= � 3 g2032�m0 + O� 1�3�: (4.47)Die rationalen Integrale wurden dabei wie �ubli
h gel�ost [13, 3.1.7.5.℄. Damit ist der Beitragder se
hs "Dreie
ksgraphen\ zu e�(4)(0; 0; 0; 0):� 9 g2016�m0 + O� 1�3�: (4.48)S
hlie�li
h erh�alt man:-q?p1�q ?p3+q-p1+p2�qppppppppRp1 p p p p p p p p	p3pppppppp�p2 p p p p p p p p = 9 g20m40 Z d3q(2�)3 � 1q2 +m20 1(p1 � q)2 +m20 1(p3 + q)2 +m20� 1(p1 + p2 � q)2 +m20 � + O� 1�5�; (4.49)27



��R���q?p1�q���ppppppppppp1+p2�q��6p4+qppppppppRp1 p p p p p p p ppppppppp�p2 p p p p p p p pIp4ppppppppppppppp = 9 g20m40 Z d3q(2�)3 � 1q2 +m20 1(p1 � q)2 +m20 1(p4 + q)2 +m20� 1(p1 + p2 � q)2 +m20� + O� 1�5�; (4.50)-p1�q��R���q�� pppppppppp��	p1+p3�qp4+q�ppppppppRp1 p p p p p p p p	p3pppppppp p p p p p p p pIp4ppppppppppppppp = 9 g20m40 Z d3q(2�)3 � 1q2 +m20 1(p1 � q)2 +m20 1(p4 + q)2 +m20� 1(p1 + p3 � q)2 +m20� + O� 1�5�: (4.51)Erneut liefern alle drei Graphen f�ur p1=p2=p3=p4=0 denselben Beitrag, so da� nur dererste betra
htet wird (die Terme O� 1�5 � resultieren entspre
hend wie oben):-q?p1�q ?p3+q-p1+p2�qppppppppRp1 p p p p p p p p	p3pppppppp�p2 p p p p p p p p j p1=p2=p3=p4=0= 9 g20m40 Z d3q(2�)3 1�q2 +m20 �4 + O� 1�5�= 9 g20m402�2 1Z0 dq q2�q2 +m20 �4 + O� 1�5�= 9 g20m402�2 1Z0 dq " 1�q2 +m20 �3 � m20�q2 +m20 �4 # + O� 1�5�= 9 g20m402�2 " 34m20 1Z0 dq�q2 +m20 �2 � 56 1Z0 dq�q2 +m20 �3 #+ O� 1�5� [13, 3.1.7.5.℄= 9 g20m402�2 " 38m50 ar
tan qm0 10 � 516m50 ar
tan qm0 10 #+ O� 1�5� [13, 3.1.7.5.℄= 9 g202�2m0 " 3�16 � 5�32 # + O� 1�5�= 9 g2064�m0 + O� 1�5�: (4.52)28



Daher findet man als Gesamtbeitrag der drei "Boxgraphen\:27 g2064�m0 + O� 1�5�: (4.53)Insgesamt hat man also f�ur e�(4)(0; 0; 0; 0) mit den Glei
hungen (4.34), (4.40), (4.48) und(4.53): e�(4)(0; 0; 0; 0) = �g0 + 316 g20�m0 � 916 g20�m0 + 2764 g20� m0+ O� 1�� + O�g30�= �g0 + 364 g20�m0 + O� 1�� + O�g30�: (4.54)Damit und mit Gl.(4.26) f�ur ZR erh�alt mang(4) = �Z2R e�(4)(0; 0; 0; 0)= � �1� g064�m0 + O� 1��+ O�g20��2  �g0 + 364 g20�m0 +O� 1��+O�g30�!= ��1� g032�m0 +O� 1��+O�g20�� �g0 + 364 g20�m0 +O� 1��+O�g30�!= g0 � 564 g20�m0 + O� 1�� + O�g30�; (4.55)oder mit Hilfe von Gl.(4.30) ausgedr�u
kt dur
h gRg(4) = gR + 732 g2R� mR � 564 g2R�mR + O� 1�� + O�g3R�= gR + 964 g2R� mR + O� 1�� + O�g3R�: (4.56)4.8 Bere
hnung der physikalis
hen MasseWie zu Beginn des Kapitels dargelegt, gilt f�ur die physikalis
he Masse mph (vgl. Gl.(4.9)):ZR h eG�imph;~0�i�1 = 0() h eG�imph;~0�i�1 = 0:Nun hat man mit Gl.(4.23):h eGPV(p)i�1 = p2 + m20 � g04� (��m0) � 3 g0m208� 1pp2 ar
tan pp22m0+ O� 1�� + O�g20�:29



Daher mu� gelten:0 = �m2ph + m20 � g04� (��m0) � 3 g0m208� 1q�m2ph ar
tanq�m2ph2m0+ O� 1�� + O�g20�:Wegen Gl.(4.24) hat man1pp2 ar
tan pp22m0 = 1Xn=0 (�1)n2n+ 1 �p2�n(2m0)2n+1 ; jpj2m0 � 1;und daher f�ur p = (imph; 0; 0), da m0 und mph bis auf Terme der Ordnung g0 �uber-einstimmen, 1q�m2ph ar
tanq�m2ph2m0 = 1Xn=0 (�1)n2n+ 1 (imph)2n(2m0)2n+1= 1m0 1Xn=0 (�1)n2n+ 1 i2n22n+1 + O(g0)= � im0 1Xn=0 (�1)n2n+ 1 � i2�2n+1 + O(g0)= � im0 ar
tan i2 + O(g0): (4.57)Mit der analytis
hen Fortsetzung des Ar
ustangens [15, Kapitel V x3℄, erh�alt man:1q�m2ph ar
tanq�m2ph2m0 = � im0 12i Log1� 121 + 12 + O(g0)(Log: Hauptzweig des Logarithmus)= � 12m0 ln 13 + O(g0)= 12m0 ln 3 + O(g0): (4.58)Damit bekommt man letztli
hm2ph = m20 � g04� (��m0 )� 3 g0m208� 12m0 ln 3 + O� 1�� + O�g20�= m20 � g04� (��m0 )� 316� g0m0 ln 3 + O� 1�� + O�g20�; (4.59)und indem man aufgrund der Beziehungen (4.30), (4.31) mR und gR einf�uhrt30



m2ph = m2R � � 316mR � �� gR4� � (��mR ) gR4� � 316� gRmR ln 3+ O� 1�� + O�g2R�= m2R + �1316 � 34 ln 3� gRmR4� + O� 1�� + O�g2R�= m2R �1 + �1316 � 34 ln 3� uR4� + O� 1�� + O�u2R�� ; (4.60)mit Einf�uhrung der dimensionslosen Kopplungskonstante uR gem�a�uR := gRmR : (4.61)
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Kapitel 5Formel f�ur die EnergieaufspaltungWie in der Einleitung bes
hrieben zeigt die �4{Theorie in der gebro
henen Phase im end-li
hen Volumen keine Entartung des Grundzustands. Vielmehr existieren ein (bzgl. derTransformation �0 ! ��0) symmetris
her Grundzustand j0si und ein antisymmetris
herZustand j0ai , dessen Energie gerade um die Energie E0a h�oher liegt. F�ur diese Energie-aufspaltung E0a soll nun eine Formel hergeleitet werden. I
h folge in diesem Kapitel imwesentli
hen den �Uberlegungen wie sie im Rahmen einer analogen quantenme
hanis
henRe
hnung in [16℄ gema
ht werden.Ausgangspunkt ist die �Ubergangswahrs
heinli
hkeit vom Zustand j0�i in den Zustandj0+i ("Tunnel{Amplitude\) in der euklidis
hen Formulierung (zur Definition von j0�i undj0+i vgl. Kapitel 1); mit der Einf�uhrung der Zust�ande j0si und j0ai, die normierte Ener-gieeigenzust�ande sind (j0si mit der Energie E0, j0ai mit der Energie E0+E0a), ergibt si
h(vgl. Gln.(1.6), (1.7))h 0+j e�HT�h j0� i = 12 �h 0sj e�HT�h j0s i � h 0aj e�HT�h j0a i � h 0sj e�HT�h j0a i+ h 0aj e�HT�h j0s i�= 12 � e�E0 T�h � e� (E0+E0a)T�h �= 12 e�E0 T�h � 1� e�E0a T�h �; (5.1)denn j0s i und j0a i sind als Energieeigenzust�ande mit vers
hiedenen Energiewerten ortho-gonal zueinander.E0a kann daher bestimmt werden indem die Tunnel{Amplitude (linke Seite von Gl.(5.1))bere
hnet wird. Dies ges
hieht in bekannter Weise mit Hilfe eines Pfadintegrals:h 0+j e�HT�h j0� i = Z D�0 expn�S[�0℄�h o (5.2)S [�0℄ = Z d3x L�0= Z d3x � 12 ���0 ���0 + V (�0) � (5.3)V (�0) = g04! ��20 � v20�2; v0 = s3m20g0 ; (5.4)wobei nur �uber sol
he Feldkonfigurationen zu integrieren ist, die zu Beginn dem Zustandj0�i (konstante Feldkonfiguration �v0) und na
h der Zeit T dem Zustand j0+i (kon-32



Abbildung 5.1: Eine spezielle Kink{L�osung (a = 0)stante Feldkonfiguration +v0) entspre
hen. F�ur sehr gro�e T kann dies dur
h folgendeRandbedingung f�ur �0 gen�ahert werden:�0(x) ! ( v0; x0 ! +1�v0; x0 ! �1: (5.5)x0 bezei
hnet die Zeitkoordinate, x1 und x2 sind die beiden Raumkoordinaten. Die weitereN�aherung besteht nun darin, �h als klein anzunehmen (semiklassis
he N�aherung), so da�zum Pfadintegral (5.2) nur sol
he Feldkonfigurationen �0(x) (die nat�urli
h den Randbe-dingungen (5.5) gen�ugen m�ussen) wesentli
h beitragen, f�ur die S [�0℄ ein Minimum besitzt.Sol
he Feldkonfigurationen m�ussen also die Bewegungsglei
hungÆSÆ�0(x) = 0 (5.6)erf�ullen; das ergibt:2E �0 � m202 �0 + g03! �30 = 0; 2E := � ��20 + �21 + �22�: (5.7)Man re
hnet lei
ht na
h, da� diese Glei
hung dur
h�
(x) = v0 tanhh12 m0 (x0 � a)i (5.8)gel�ost wird, wobei a ein Parameter ist, der die Position dieser sogenannten Kink{L�osung aufder Zeita
hse bestimmt (vgl. au
h Abbildung 5.1); �uberdies erf�ullt �
 o�enbar die Rand-bedingungen (5.5). Ebenso re
hnet man lei
ht die Wirkung S
 dieser Feldkonfiguration�
 aus, man findet (vgl. Anhang A, d = 3 Dimensionen):S
 = 2m30g0 L2: (5.9)33



Weiter bemerkt man, da� au
h die konstanten Feldkonfigurationen �+�(x) = +� v0 die Feld-glei
hung (5.7) l�osen; sie erf�ullen zwar ni
ht die geforderten Randbedingungen, denno
hwerden sie weiter unten eine Rolle spielen. Entwi
kelt man S [�0℄ um �
, bekommt manS [�
 + �℄ = S
 + 12 Z d3y Z d3x �(y) Æ2S [�0℄Æ�
(y) Æ�
(x) �(x) + O(�3)= S
 + 12 Z d3x �(x) �2E +m20 � 32 m20 
osh�2h12 m0 (x0 � a)i � �(x)+ O(�3)= S
 + 12 Z d3x �(x)M�(x) + O(�3); (5.10)mit M = 2E +m20 � 32 m20 
osh�2h 12 m0 (x0 � a) i: (5.11)Indem man also �(x) na
h orthonormierten Eigenfunktionen von M entwi
kelt und �uberdie Entwi
klungskoe�izienten integriert erh�alt man den Beitrag F1 der Kink{L�osung zumPfadintegral (5.2): F1 = N Z Yn d
n(2��h)12 e�S
�h e� 12�h �n
2n [ 1 + O(�h) ℄: (5.12)Dabei sind 
n die Entwi
klungskoe�izienten, �n die zugeh�origen Eigenwerte von M undN eine Normierungskonstante, die die genaue Form des Ma�es D�0 bestimmt (strenggenommen ist das Pfadintegral hier gerade dur
h (5.12) (Integration �uber die Entwi
k-lungskoe�izienten von �(x) bez�ugli
h einer Orthonormalbasis aus Eigenvektoren von M )definiert); O(�h) dr�u
kt die semiklassis
he N�aherung aus. Die Auswertung der Gau�{Integraleergibt: F1 = N Yn � 2��h2� �h �n�12 e�S
�h [ 1 + O(�h) ℄= N ( detM )� 12 e�S
�h [ 1 + O(�h) ℄: (5.13)Dabei ist allerdings angenommen, da� alle Eigenwerte von M positiv sind; das tri�t ni
htganz zu. Wie sp�ater in diesem Kapitel gezeigt (vgl. Gl.(5.24)) hat M neben positivenEigenwerten au
h den Eigenwert 0. Dieser mu� gesondert behandelt werden. Bis dies imeinzelnen ges
hieht sei in Gl.(5.13) statt detM nur die Determinante unter Auslassung desEigenwertes 0 (det0M) ges
hrieben, und diese Nullmode dur
h einen no
h zu bestimmendenFaktor P ber�u
ksi
htigt:F1 = N P e�S
�h ( det0M )� 12 [ 1 + O(�h) ℄: (5.14)Nun tr�agt zum Pfadintegral (5.2) ni
ht nur die 1{Kink{L�osung �
 bei, sondern es sindau
h Multikink{Konfigurationen n�aherungsweise L�osungen von Gl.(5.7), die dadur
h ent-stehen, da� auf einen Kink �
 ein Antikink ��
 folgt und umgekehrt (vgl. Abbildung5.2). Der Anstieg bzw. Abfall eines Kinks bzw. Antikinks ist in der Abbildung so steilgezei
hnet, da das Zeitintervall, in dem dieser Anstieg erfolgt im Verh�altnis zum (sehr34



!"+v0�v0 x0�0x0a x0a+TAbbildung 5.2: Beispiel eines Multi{Kinks (x0a : (beliebige) Anfangszeit)gro�en) T sehr klein ist; weiter ist vorausgesetzt, da� die Kinks und Antikinks zeitli
hni
ht zu di
ht aufeinander folgen (dilute gas approximation), nur dann ist eine Folge vonKinks und Antikinks n�aherungsweise eine L�osung von Gl.(5.7).Was ist nun der Beitag einer sol
hen n{Kink{Konfiguration (n =Zahl der Kinks + Zahlder Antikinks) zum Pfadintegral? Die Wirkung S
;n einer sol
hen n{Kink{Konfigurationist nS
, denn au
h die Wirkung einer Antikink{L�osung ��
 ist wegen der Symmetrieder Lagrange{Di
hte unter der Transformation �0 ! ��0 gerade S
, und falls Kinks undAntikinks weit genug auseinander liegen, kann der gegenseitige �Uberlapp verna
hl�assigtwerden. Der Beitrag zur Wirkung f�ur die Zeitabs
hnitte, in denen �0 � v0 oder �0 � �v0gilt, ist wegen V (+�v0) = 0 und �0v0 = 0 zu verna
hl�assigen; damit ist die Wirkung S
;nim wesentli
hen dur
h die Anstiege und Abf�alle der Kinks und Antikinks gegeben, genauwie im Fall der 1{Kink{L�osung , so da� in dieser N�aherung in der Tat S
;n = nS
 folgt.Die Energiedi
hte 12 �� �0 �� �0 + V (�0) ist also im wesentli
hen im Anstieg des Kinksbzw. Abfall des Antikinks konzentriert; man spri
ht beim Kink und Antikink deshalb au
hvon Pseudopartikeln oder Instantonen.Um den Beitrag des Multikinks zur Determinante zu erhalten, bemerkt man, da� bis aufdie kurzen Anstiege bzw. Abf�alle das Feld im Multikink den Wert +v0 oder �v0 besitzt.Die Entwi
klung der Wirkung S[�0℄ um �+� = +�v0 ergibt (wie oben erw�ahnt sind au
h�+� L�osungen der Feldglei
hung (5.7))S[�+� + �℄ = S[�+� ℄ + 12 Z d3y Z d3x �(y) Æ2S[�0℄Æ�+=�(y)Æ�+=�(x) �(x) + O(�3)= 12 Z d3x �(x)M0 �(x) + O(�3); (5.15)da o�enbar S[�+� ℄ = 0 gilt, mit M0 = 2E +m20: (5.16)Damit erg�abe si
h folgender Pfadintegralbeitrag F
onst der Feldkonfiguration �+ (oderau
h ��): 35



F
onst = Z D� e�S [�+=�℄�h exp�� 12 Z d3y Z d3x �(y) Æ2S[�0℄Æ�+=�(y)Æ�+=�(x) �(x) + O(�3)�= Z D� exp�� 12 R d3x �(x)M0 �(x) + O(�3)� : (5.17)Die Auswertung des �{Pfadintegrals liefert entspre
hend wie oben bei der Herleitung vonGl.(5.13): F
onst = N ( detM0 )� 12 [ 1 + O(�h) ℄: (5.18)Das Spektrum von M0 ist im �ubrigen (o�ensi
htli
h) rein positiv, so da� hier kein Kor-rekturfaktor n�otig ist. Die Feldkonfigurationen �+ und �� erf�ullen die Randbedingungen(5.5) ni
ht, darum ist F
onst no
h kein Beitrag zum Pfadintegral (5.2). Dieser Beitrag derMultikink{Konfiguration wird vielmehr erhalten, indem die Anstiege und Abf�alle in derMultikink{Konfiguration jeweils dur
h einen Faktor K ber�u
ksi
htigt werden, der sp�aterbestimmt wird; dies ist gere
htfertigt solange, wie bereits oben vorausgesetzt, die Kinksund Antikinks im Multikink weit auseinander liegen, d.h. zeitli
h ni
ht zu di
ht aufeinan-der folgen (eine genauere Begr�undung des Faktors K f indet si
h in [16℄). Eine n{Kink{Konfiguration tr�agt daher den Wert Fn zum Pfadintegral (5.2) bei, mitFn = N e�n S
�h Kn (detM0)� 12 [ 1 + O(�h) ℄: (5.19)Um den endg�ultigen Wert der Tunnel{Amplitude (in dieser semiklassis
hen N�aherung) zuerhalten, ist �uber alle m�ogli
hen Multikink{Konfigurationen, die die Randbedingungen (5.5)erf�ullen, zu summieren.Zun�a
hst k�onnen bei gegebener Zahl n der Kinks und Antikinks deren Positionen vari-iert werden. Als Zahl der m�ogli
hen Anordnungen von n Kinks und Antikinks im IntervallT , wobei jeweils Kink auf Antikink folgen mu� und umgekehrt, ergibt si
h:+T2Z�T2 dt1 t1Z�T2 dt2 � � � tn�1Z�T2 dtn = Tnn! ; n 2 N6=0: (5.20)Ein Beweis hierf�ur findet si
h im Anhang B. Um s
hlie�li
h den Randbedingungen (5.5) zugen�ugen, ist nur eine ungerade Anzahl von Kinks und Antikinks erlaubt. Insgesamt findetman daher f�ur die Tunnel{Amplitude:h 0+j e�HT�h j0� i = N (detM0)� 12 Xn ungerade �T e�S
�h K�nn! [ 1 + O(�h) ℄ (5.21)= N (detM0)� 12 12 hexp�K e�S
�h T�� exp��K e�S
�h T�i� [ 1 + O(�h) ℄: (5.22)Verglei
ht man das mit der urspr�ungli
hen Form der Tunnel{Amplitude (5.1), so erh�altman wegen der jeweiligen exponentiellen T{Abh�angigkeit f�ur die Energieaufspaltung:E0a = 2 �hK e�S
�h [ 1 + O(�h) ℄: (5.23)Die Vorfaktoren wie N et
. finden hierbei keine Ber�u
ksi
htigung, da ledigli
h die Ener-gieaufspaltung bere
hnet werden soll und keine Aussage �uber Amplituden wie jh0+j0�ij2getro�en wird. 36



Insgesamt verbleibt no
h K zu bere
hnen; dies ges
hieht nun so, da� si
h f�ur einen Kink(n = 1) der ri
htige Beitrag in Gl.(5.21) ergibt, denn der 1{Kink{Beitrag war bereits inGl.(5.14) bere
hnet worden. Dazu ist zun�a
hst P zu bestimmen. Wie erw�ahnt, ber�u
ksi
h-tigt P die Nullmode von M . Nun giltM [�0�
(x)℄ = 0 (5.24)und Z d3x (�0�
(x))2 = S
; (5.25)wie man einfa
h na
hre
hnet. Daher istS� 12
 �0�
(x) (5.26)normierte Eigenfunktion zum Eigenwert 0 von M . Da� dies die einzige Nullmode von M ist,die f�ur x0 ! +� 1 vers
hwindet, folgt aus einer allgemeinen Untersu
hung des Spektrumsvon M [17, Abs
hnitt 12.3℄, denn die Glei
hungM�0 = �2E +m20 � 32m20 
osh�2�m02 �x0 � a����0 = 0entspri
ht einer zeitunabh�angigen S
hr�odinger{Glei
hung mit PotentialV � � 
osh�2 �m02 (x0 � a)�in einem gebundenen Zustand; ein sol
hes Problem ist in [17, S. 1651 �.℄ untersu
ht. W�urdeman diese Nullmode bei der Bere
hnung vonR D�0 e�S[�0 ℄�h ber�u
ksi
htigen, indem man �ubereinen entspre
henden Entwi
klungskoe�izienten 
1 integriert, erg�abe si
h eine Divergenz.Es bedeutet nun aber �
 + 
1 S� 12
 �0�
(x)ledigli
h eine Vers
hiebung von �
 l�angs der x0{A
hse. Eine �Anderung d
1 bewirkt eine�Anderung d�0 = S� 12
 �0�
 d
1: (5.27)Andererseits gilt bei einer Vers
hiebung des Kinks �
 l�angs der x0{A
hse um dt1:d�0 = �0�
 dt1: (5.28)Daher erh�alt man, da� �Anderungen d
1 und dt1 dieselbe �Anderung d�0 bewirken, fallsgilt: (2� �h)� 12 d
1 = � S
2� �h� 12 dt1: (5.29)Da somit Integration �uber den Entwi
klungskoe�izienten 
1 zum Eigenwert 0 von M eineVers
hiebung des Kinks l�angs der x0{A
hse auf alle m�ogli
hen Positionen bedeutet, diesaber in Gl.(5.21) bereits dur
h Gl.(5.20) Ber�u
ksi
htigung fand, ist statt einer Integration37



�uber 
1 nur no
h ein Faktor � S
2� �h� 12 zur Einbeziehung der Nullmode n�otig. F�ur den FaktorP aus Gl.(5.14) bedeutet dies (P ber�u
ksi
htigt insgesamt die Nullmode, steht also quasif�ur R (2� �h)� 12 d
1, darum tritt no
h der Faktor T auf):P = � S
2� �h�12 T: (5.30)Dadur
h erh�alt man s
hlieli
h f�ur den 1{Kink{Beitrag F1 wegen Gl.(5.14):F1 = N P e�S
�h � det0M �� 12 [ 1 + O(�h) ℄= N T � S
2� �h� 12 e�S
�h � det0M �� 12 [ 1 + O(�h) ℄: (5.31)Dur
h Verglei
h mit dem 1{Kink{Beitrag aus Gl.(5.21) ergibt si
h letztli
h K:N T � S
2� �h� 12 e�S
�h � det0M �� 12 [ 1 + O(�h) ℄ = N (detM0)� 12 T e�S
�h K [ 1 + O(�h) ℄=) K = � S
2� �h� 12  det0MdetM0!� 12 [ 1 + O(�h) ℄:Als Ergebnis f�ur E0a f indet man wegen Gl.(5.23) endli
h:E0a = 2�h � S
2� �h� 12 e�S
�h  det0MdetM0!� 12 [ 1 + O(�h) ℄: (5.32)Da die Eigenwerte von M0 und M (unter Verna
hl�assigung der Nullmode) stets positivsind, s
hreibt man au
h �����det0MdetM0 ����� statt  det0MdetM0!: (5.33)Indem im folgenden die Terme O(�h) unterdr�u
kt werden, sowie wie �ubli
h ab jetzt �h = 1gesetzt wird, erh�alt man: E0a = 2 e�S
 �S
2��12 �����det0MdetM0 ������ 12: (5.34)Die Hauptaufgabe wird also im weiteren sein, den Ausdru
k�����det0MdetM0 ����� ;gegebenenfalls mit geeigneter Regularisierung, auszuwerten.Vorher sei no
h angemerkt, da� die Behandlung von Multikink{Konfigurationen unterder Annahme weit auseinanderliegender Kinks und Antikinks im Multikink erfolgte, inGl.(5.20) aber alle m�ogli
hen Positionen von Kinks und Antikinks ber�u
ksi
htigt wurden.38



Damit das Verfahren konsistent ist, sollten die Konfigurationen mit niedriger Di
hte �k;akder Kinks und Antikinks den Hauptbeitrag zum Pfadintegral liefern, wobei:�k;ak := (Zahl der Kinks)+ (Zahl der Antikinks)T : (5.35)Das ist in der Tat so, denn in der Reihe Pn xnn! nehmen die Summanden mit n solangezu bis n die Gr�o�enordnung von x errei
ht hat (n � x), dana
h nimmt die Gr�o�e derSummanden ras
h ab. Diese Beoba
htung, angewandt auf die Reihe in Gl.(5.21), ergibt,da� der Hauptbeitrag zur Tunnel{Amplitude von n{Kink{Konfigurationen mitn <� T e�S
�h Kgeleistet wird. Das hei�t �k;ak = nT <� e�S
�h K;und da die re
hte Seite dieser Unglei
hung in der semiklassis
hen N�aherung (�h klein gegenS
) exponentiell klein wird, tragen nur sol
he Multikink{Konfigurationen zum Pfadintegralwesentli
h bei, deren Di
hte �k;ak sehr klein ist. Die Behandlung des Problems ist alsokonsistent.
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Kapitel 6Bestimmung der Determinanten6.1 Zur�u
kf�uhrung der Determinanten auf ein IntegralIn Kapitel 5 war die Formel f�ur die Energieaufspaltung E0a abgeleitet worden (Gl.(5.34)):E0a = 2e�S
 �S
2��12 �����det0MdetM0 ������ 12:Die hier auftretenden Determinanten gilt es nun zu bere
hnen. Hierzu m�ogen folgendeDefinitionen gelten: M = ��2 +Q; M0 = ��2 +Q0; (6.1)mit �2 = �21 + �22 ; (6.2)Q = ��20 +m20 � 32m20 
osh�2 h12m0(x0 � a)i; (6.3)Q0 = ��20 +m20: (6.4)Um die Determinanten zu bere
hnen wird die sogenannte Methode der W�armeleitungskerneverwendet. Dazu wird f�ur einen Operator A definiert:Kt(A) := Tr e�tA: (6.5)Je na
hdem wie das Spektrum von A bes
ha�en ist, gilt obige Definition nur f�ur geeignetet 2 R, damit die Spur auf der re
hten Seite der Definitionsglei
hung wohldefiniert ist.Zun�a
hst gilt, falls A ein rein diskretes Spektrum mit nur endli
h vielen Eigenwerten�n; n = 1 : : :N , der Vielfa
hheit entspre
hend oft gez�ahlt, besitzt:ln detA = ln NYn=1�n= NXn=1 ln�n= Tr lnA: (6.6)Hierbei wird, wie im folgenden au
h, angenommen, da� gilt:�n > 0 n = 1 : : :N:40



Dies kann, falls A na
h unten bes
hr�ankt ist, stets dur
h eine Vers
hiebung des Spektrumserrei
ht werden: A! A+ �2; �2 hinrei
hend gro�:O�ensi
htli
h gilt au
h NXn=1 ln �n = � dds js=0 NXn=1��sn : (6.7)Indem man die Gammafunktion einf�uhrt,�(s) = 1Z0 d� e�� � s�1; Re s > 0;ergibt si
h mit der Substitution � = t�n; n 2 f1 : : :Ng:�(s) = �sn 1Z0 dt ts�1 e�t�n=) ��sn = 1�(s) 1Z0 dt ts�1 e�t�n=) NXn=1��sn = 1�(s) 1Z0 dt ts�1 NXn=1 e�t�n= 1�(s) 1Z0 dt ts�1Kt(A); Re s > 0: (6.8)Falls nun R10 dt ts�1Kt(A) in einer Umgebung von s = 0 existiert und als Funktion vons holomorph ist, gilt mit analytis
her FortsetzungNXn=1��sn = 1�(s) 1Z0 dt ts�1Kt(A)au
h no
h in einer Umgebung von s = 0. Daher folgt mit den Glei
hungen (6.6), (6.7) und(6.8) ( 1�(s) js=0 = 0, dds js=0 1�(s) = 1, vgl. au
h Anhang C):ln detA = Tr lnA= NXn=1 ln�n= � dds js=0 NXn=1��sn= � dds js=08<: 1�(s) 1Z0 dt ts�1Kt(A)9=;= � 1Z0 dtt Kt(A): (6.9)41



Ist das Spektrum von A ni
ht rein diskret und/oder ni
ht endli
h, so wird Gl.(6.9) ent-spre
hend verallgemeinert, wobei zur Spurbildung �uber alle Eigenwerte summiert wird(bzw., falls �n im Spektrum von A liegt, zur Bildung von Tr lnA nat�urli
h �uber alleWerte ln �n , wobei na
h wie vor f�ur das Spektrum von A vorausgesetzt ist: �n im Spek-trum von A ) �n > 0 ) und f�ur den kontinuierli
hen Teil des Spektrums die Spektral-di
hte von A zu ber�u
ksi
htigen ist. Damit ist die Bere
hnung von detA im wesentli
henauf die Bere
hnung von R10 dtt Kt(A) zur�u
kgef�uhrt, falls dieses Integral �uberhaupt existiert.Im vorliegenden Fall sind die zu bere
hnenden Determinanten:det0M (Determinante ohne Nullmode),detM0:Daher sind zun�a
hst die Operatoren M und M0 zu untersu
hen:� Zu M = ��2 +Q:Um die Nullmode von M (vgl. Kapitel 5) zu beseitigen, wird zun�a
hst M + �2betra
htet: Kt(M + �2) = Tr e�t(��2+Q+�2)= e�t�2Tr e�t(��2+Q)= e�t�2KL2t (��2)KTt (Q);denn ��2 wirkt nur auf die Raumkoordinaten, Q nur auf die Zeitkoordinate. Hierbeibedeutet KL2t , da� zur Spurbildung nur der Raum der nur raumabh�angigen Funk-tionen zu nehmen ist, KTt entspre
hend, da� zur Spurbildung nur der Raum der nurzeitabh�angigen Funktionen zu nehmen ist. Nun giltKL2t (��2) = 0� Xn2 .................................. exp "��2�nL �2 t#1A2 (6.10)= 0� Lp4�t Xn2 .................................. exp "�n2L24t #1A2: (6.11)Der letzte Ausdru
k r�uhrt von der Poissons
hen Summenformel her [17, 18℄. DasSpektrum von Q ist bekannt [17, 19℄, wobei die Zeitausdehnung T zun�a
hst alsendli
h angenommen wird:diskr. Spektrum : "1 = 0 ; "2 = 34m20 (6.12)kontin. Spektrum : "p = p2 +m20 ; p 2 R (6.13)Spektraldi
hte : g0(p) = 12� (T � 3m0 p2 + 12m20(p2 + 14m20)(p2 +m20)) (6.14)+ O�T�1�:42



� Zu M0 = ��2 + Q0:Au
h hier wird zun�a
hst M0 + �2 betra
htet, obwohl M0 keine Nullmode besitzt:Kt(M0 + �2) = Tr e�t(��2+Q0+�2)= e�t�2KL2t (��2)KTt (Q0);ganz entspre
hend wie oben.F�ur das Spektrum von Q0, ebenfalls bei endli
her Zeitausdehnung T , erh�alt mano�enbar: diskr. Spektrum : "p = p2 +m20; p = 2�T n; n 2 .............................................. ; (6.15)was bei hinrei
hend gro�em T in ein quasikontinuierli
hes Spektrum �ubergeht mit:quasikontin. Spektrum : "p = p2 +m20; p 2 R (6.16)Spektraldi
hte : ~g0(p) = T2� : (6.17)Die Spektren von M + �2 und M0 + �2 sind damit stets positiv, so da� mit Gl.(6.9) gilt(wobei immer no
h eine endli
he Zeitausdehnung T angenommen ist):Tr ln M + �2M0 + �2! = Tr ln(M + �2)� Tr ln(M0 + �2)= � 1Z0 dtt Kt(M + �2) + 1Z0 dtt Kt(M0 + �2)= � 1Z0 dtt ~Kt(M + �2); (6.18)mit ~Kt(M + �2) = Kt(M + �2)�Kt(M0 + �2)= e�t�2KL2t (��2) ~KTt (Q); (6.19)~KTt (Q) = KTt (Q)�KTt (Q0): (6.20)Mit den Beziehungen (6.12){(6.14), (6.16) und (6.17) findet man f�ur ~KTt (Q)~KTt (Q) = KTt (Q)�KTt (Q0)= 1 + e� 34m20t + +1Z�1 dp g0(p) e�t(p2+m20) � +1Z�1 dp ~g0(p) e�t(p2+m20)= 1+ e� 34m20t � m02� +1Z�1 dp �3 p2 + 12m20(p2 + 14m20)(p2 +m20) + O(T�1)� e�t(p2+m20);(6.21)so da� nun der Grenzwert T !1 ausgef�uhrt werden kann.43



Indem im folgenden wieder Kt(Q) an Stelle von KTt (Q) und Kt(��2) statt KL2t (��2)ges
hrieben wird, ohne da� Mi�verst�andnisse zu bef�ur
hten sind, ergibt si
h s
hlie�li
h(T !1): Tr ln M + �2M0 + �2! = � 1Z0 dtt ~Kt(M + �2); (6.22)~Kt(M + �2) = e�t�2Kt(��2) ~Kt(Q); (6.23)~Kt(Q) = 1 + e� 34m20t + +1Z�1 dp g(p) e�t(p2+m20) (6.24)= ��m0pt� + e� 34m20t ��12m0pt�; (6.25)mit � : Fehlerintegralg(p) = �m02� 0� 2p2 +m20 + 1p2 + m204 1A: (6.26)Die Einf�uhrung des Fehlerintegrals ist im Anhang D genauer begr�undet.Die Vers
hiebung des Spektrums von M bzw. M0 mit �2 war dur
hgef�uhrt worden,damit das Spektrum jeweils stets positiv ist. Um nun die gesu
hte Determinante zu erhalten,ist wie folgt zu verfahren (det0M : Determinante von M ohne Nullmode, vgl. Kapitel 5):ln det0MdetM0 = Tr 0 ln MM0= lim�!0 Tr ln M + �2M0 + �2!� ln�2!; (6.27)wobei Tr 0 Spurbildung unter Auslassung der Nullmode von M bedeutet. Als weiter aus-zuwertender Ausdru
k ergibt si
h hiermit unter Benutzung von Gl.(6.22)ln det0MdetM0 = lim�!0�� Z 10 dtt ~Kt(M + �2)� ln �2�: (6.28)Untersu
ht man nun den Ausdru
k R10 dtt ~Kt(M +�2) genauer, so erkennt man, da� diesesIntegral an der unteren Integrationsgrenze divergiert (konstante Faktoren werden in denfolgenden asymptotis
hen Betra
htungen unterdr�u
kt):Kt(��2) �t!0 1t~Kt(Q) �t!0 pte�t�2 �t!0 1 9>>>>>=>>>>>; ~Kt(M + �2)t �t!0 t� 32 ; (6.29)(vgl. Gln.(6.11), (6.25), f�ur das Fehlerintegral �(z) gilt �(z) = 2p� z + O(z3) [20℄). Umder Glei
hung (6.28) denno
h einen Sinn zu geben, ist daher eine Regularisierung dur
h-zuf�uhren. Im Sinne einer Pauli{Villars{Regularisierung ist au
h hier eine Pauli{Villars{Masse � wie folgt einzuf�uhren: 44



ln det0MdetM0 jP.-V. = lim�!0 "Tr ln M + �2M0 + �2! � Tr ln M +�2M0 + �2!� ln �2#= lim�!024 1Z0 dtt � ~Kt(M +�2)� ~Kt(M + �2)�� ln�235: (6.30)Diese Art der Determinantenregularisierung ers
heint sehr plausibel und sinnvoll, wenn au
hetwas willk�urli
h. In Kapitel 9 sind einige �Uberlegungen angestellt, ob diese Regularisierungaus einer im Sinne einer Pauli{Villars{Regularisierung modifizierten Lagrange{Di
hte ge-wonnen werden k�onnte.Zun�a
hst sieht man, da� das entstehende Integral dur
h die Regularisierung f�ur � > 0tats�a
hli
h existiert:1Z0 dtt � ~Kt(M +�2)� ~Kt(M + �2)� = 1Z0 dtt �e�t�2 � e�t�2�Kt(��2) ~Kt(Q); (6.31)� Verhalten des Integranden an der unteren Grenze:1t �t!0 1te�t�2 � e�t�2 �t!0 �t(�2 � �2)Kt(��2) �t!0 1t~Kt(Q) �t!0 pt 9>>>>>>>>>=>>>>>>>>>;) Integrand �t!0 t� 12Integral existiert an der unteren Grenze,� Verhalten des Integranden an der oberen Grenze (vgl. Gln.(6.10), (6.25), wegen limz!1�(z) =1 [20℄): 1t �t!1 1tKt(��2) �t!1 1~Kt(Q) �t!1 1e�t�2 � e�t�2 �t!1 e�t�2 � e�t�29>>>>>>>>=>>>>>>>>;) Integrand �t!1e�t�2 � e�t�2tIntegral existiert an der oberen Grenze.Damit existiert also das Integral f�ur � > 0. Im folgenden wird nun zuerst der Grenzwert�! 0 ausgef�uhrt.ln det0MdetM0 jP.-V. = lim�!024 1Z0 dtt � ~Kt(M +�2)� ~Kt(M + �2)�� ln�235= lim�!024 1Z0 dtt �e�t�2 � e�t�2�Kt(��2) ~Kt(Q)� ln�235= lim�!0 " 1Z0 dtt �e�t�2 � e�t�2��Kt(��2) ~Kt(Q)� 1�| {z }I+ 1Z0 dtt �e�t�2 � e�t�2�� ln�2 # (6.32)45



Da das Integral I au
h no
h f�ur � = 0 existiert (untere Grenze: Integrand � t� 12 , obereGrenze: Integrand � e�tt ), kann hier der Limes �! 0 ausgef�uhrt werden:ln det0MdetM0 jP.-V. = 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�+ lim�!024 1Z0 dtt �e�t�2 � e�t�2�� ln�235= 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�+ lim�!0" 1Z0 dtt �e�t�2 � e�t�2�| {z }J + 1Z1 dtt �e�t�2 � e�t�2�� ln �235:(6.33)Au
h das Integral J existiert o�enbar f�ur � = 0 . Damit giltln det0MdetM0 jP.-V. = 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�+ 1Z0 dtt �e�t�2 � 1�+ lim�!024 1Z1 dtt �e�t�2 � e�t�2�� ln�235= 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�+ 1Z0 dt e�t�2 � 1t+ 1Z1 dtt e�t�2 + lim�!024� 1Z1 dt e�t�2t � ln �235: (6.34)F�ur das verbleibende � {abh�angige Integral findet man� 1Z1 dt e�t�2t = � 1Z�2 dx e�xx= � lim"& 0 1Z�2 dx x"�1e�x= � lim"& 0 (�(")� �2Z0 x"�1e�x dx)= � lim"& 0 (�(")� �2Z0 x"�1 dx� 1Xk=1 (�1)kk! �2Z0 x"�1+kdx) =)46



� 1Z1 dt e�t�2t = � lim"& 0 (�(")� (�2)"" � 1Xk=1 (�1)kk! (�2)"+k" + k ):Mit der bekannten Laurent{Entwi
klung von �(") um " = 0 ergibt si
h (
 = 0:5772 : : : ;Euler{Konstante)� 1Z1 dt e�t�2t = � lim"& 0 (1" � 
 +O(")� 1"�1 + " ln�2 + O("2)� � 1Xk=1 (�1)kk! (�2)"+k"+ k )= � lim"& 0 (�
 � ln�2 + O(")� 1Xk=1 (�1)kk! (�2)"+k" + k )= 
 + ln�2 + O(�2): (6.35)Damit bekommt manln det0MdetM0 jP.-V. = 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1� + 1Z0 dt e�t�2 � 1t+ 1Z1 dtt e�t�2 + lim�!0 h
 + ln �2 +O(�2)� ln�2i= 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�| {z }J0 + 1Z0 dt e�t�2 � 1t+ 1Z1 dtt e�t�2 + 
: (6.36)Somit ist der Limes �! 0 ausgef�uhrt, und es bleibt im wesentli
hen no
h das Integral J0auszuwerten.Um dies zu tun, gibt es zwei Wege, die si
h haupts�a
hli
h darin unters
heiden wiedas Integral J0 aufgespalten wird, damit die si
h ergebenden Integrale einerseits wirkli
hausgere
hnet werden k�onnen, andererseits die f�ur �!1 endli
hen und divergenten Termesauber getrennt werden. Der von mir zun�a
hst einges
hlagene Weg orientierte si
h prim�ardaran, das erste Ziel (auswertbare Integrale) zu errei
hen. Der Na
hteil dieses Weges bestehtdarin, da� zwar alle auftretenden Integrale relativ elementar ausgewertet werden k�onnen,die Re
hnung aber dadur
h re
ht lang wird, da� zum Teil au
h Terme bere
hnet werden, dieletztli
h bei der Renormierung und Entfernung des Regularisierungsparameters � sowiesovers
hwinden. Dieser Weg soll im �ubern�a
hsten Abs
hnitt dargestellt werden.Der andere, elegantere Weg, dessen Kenntnis i
h den Hinweisen von G. M�unster verdan-ke, verfolgt dagegen prim�ar das zweite Ziel, n�amli
h von Beginn an eine sol
he Aufspaltungvon J0 zu w�ahlen, da� stets sol
he Terme abgespalten werden, die f�ur �! 1 einen end-li
hen Beitrag liefern, und so die eigenli
hen Divergenzen f�ur �!1 zu isolieren. Es wirdsi
h au�erdem zeigen, da� au
h die hier auftretenden Integrale relativ einfa
h ausgewertetwerden k�onnen. Dieser e�izientere Weg soll im n�a
hsten Abs
hnitt verfolgt werden.47



6.2 EÆziente Auswertung des Integrals J0Wie im letzten Abs
hnitt erw�ahnt, ist das Integral J0 auszure
hnen. Dazu wird folgendeAufspaltung gew�ahlt:J0 = 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�= 1Z1 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1� + 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�= � 1Z1 dtt �Kt(��2) ~Kt(Q)� 1� + 1Z1 dtt e�t�2�Kt(��2) ~Kt(Q)� 1�+ 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�: (6.37)Das zweite Integral geht f�ur � ! 1 mindestens wie e��2 gegen 0 (das Integral l�a�t si
hwegen der Beziehung (6.40) (s.u.) dur
h das Exponentialintegral Ei(z) abs
h�atzen, dessenasymptotis
hes Verhalten bekannt ist [20℄, vgl. au
h die Beziehungen (6.124) und (6.125)sp�ater in Abs
hnitt 6.3); daf�ur sei im folgenden O(e��2) ges
hrieben:J0 = � 1Z1 dtt �Kt(��2) ~Kt(Q)� 1� + O�e��2�+ 1Z0 dtt �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1�: (6.38)Nun wird der Ausdru
k Kt(��2) ~Kt(Q)�1 n�aher untersu
ht. Es gilt wegen der Glei
hungen(6.11) und (6.25) (f�ur die Entwi
klung des Fehlerintegrals siehe [20℄ bzw. die Bemerkungna
h (6.29) auf Seite 44):Kt(��2) ~Kt(Q)� 1 = L24�t 24 Xn2 .................................. e�n2L24t 352 h��m0pt� + e� 34m20t ��12m0pt�i� 1= L24�t �1 + O�e�L24t ��� � 2p�m0pt+O�t 32 �+ �1 + O(t)�� 2p� m02 pt +O�t 32 ���� 1= L24�t �1 + O�e�L24t �� � 3p�m0pt +O�t 32 ��� 1= 3L2m04� 32 1pt � 1 + O�t 12� + O�e�L24t �= â1pt � 1 + O�t 12� + O�e�L24t �; â1 := 3L2m04� 32 : (6.39)Diese Entwi
klung wird f�ur kleine t benutzt werden; f�ur gro�e t erkennt man wegen derBeziehungen (6.10) und (6.24):Kt(��2) ~Kt(Q)� 1 �t!1 e� 34m20t + O(e�at); a 2 R; (6.40)48



also exponentiellen Abfall. Diese �Uberlegungen ma
hen folgende Umformung sinnvoll:J0 = � 1Z1 dtt �Kt(��2) ~Kt(Q)� 1� + 1Z0 dtt �e�t�2 � 1�� â1pt � 1�+ 1Z0 dtt �e�t�2 � 1���Kt(��2) ~Kt(Q)� 1�� � â1pt � 1��+O�e��2�; (6.41)denn nun sieht man, da� der (na
h Ausmultiplizieren) �{abh�angige Teil des dritten In-tegrals f�ur � ! 1 mindestens wie 1� vers
hwindet (folgt mit Gl.(6.39), indem man dieSubstitution u = t�2 ausf�uhrt). Der hier entstehende Term O( 1�) absorbiert den s
honbestehenden Term O(e��2). Dur
h Abzug von ( â1pt � 1) werden n�amli
h gerade die Termeim Integral R 10 dtt (Kt(��2) ~Kt(Q)� 1) beseitigt, die f�ur �!1 Divergenzen verursa
hen.Daher giltJ0 = � 1Z1 dtt �Kt(��2) ~Kt(Q)� 1�� 1Z0 dtt ��Kt(��2) ~Kt(Q)� 1�� � â1pt � 1��+ 1Z0 dtt �e�t�2 � 1�� â1pt � 1� + O� 1��= � 1Z0 dtt ��Kt(��2) ~Kt(Q)� 1�� �(1� t)� â1pt � 1��+ 1Z0 dtt �e�t�2 � 1�� â1pt � 1� + O� 1��; (6.42)mit �(t) = ( 1 f�ur t � 00 f�ur t < 0: (6.43)Weiter re
hnet man ( 1�(z) jz=0 = 0, dd z jz=0 1�(z) = 1, vgl. Anhang C):J0 = � 1Z0 dtt ��Kt(��2) ~Kt(Q)� 1���(1� t)� â1pt � 1��+ â1 1Z0 dt e�t�2 � 1t 32 � 1Z0 dt e�t�2 � 1t + O� 1��= � ddz jz=0 8<: 1�(z) 1Z0 dt tz�1 ��Kt(��2) ~Kt(Q)� 1���(1� t)� â1pt � 1��9=;+ â1 1Z0 dt e�t�2 � 1t 32 � 1Z0 dt e�t�2 � 1t + O� 1��: (6.44)Das urspr�ungli
he Integral als Ableitung einer Funktion an der Stelle z = 0 auszudr�u
ken,wird si
h im folgenden als n�utzli
h erweisen.49



Insgesamt ergibt si
h damitJ0 = � ddz jz=08<: 1�(z) 1Z0 dt tz�1 ��Kt(��2) ~Kt(Q)� 1���(1� t)� â1pt � 1��9=;+ â1 1Z0 dt e�t�2 � 1t 32 � 1Z0 dt e�t�2 � 1t + O� 1��= � ddz jz=0( 1�(z) 1Z0 dt tz�1�Kt(��2) ~Kt(Q)� 1�)+ ddz jz=0( 1�(z) 1Z0 dt tz�1 � â1pt � 1�) + â1 1Z0 dt e�t�2 � 1t 32� 1Z0 dt e�t�2 � 1t + O� 1��: (6.45)Hierbei ist die letzte Umformung, da die einzelnen Integrale ni
ht alle in einer Umge-bung von z = 0 existieren, im Sinne einer analytis
hen Fortsetzung zu verstehen. Es wirddefiniert: ~�0(z) := 1�(z) 1Z0 dt tz�1�Kt(��2) ~Kt(Q)� 1�; Re z > 12 : (6.46)F�ur andere z (insbesondere in einer Umgebung von z = 0) wird ~�0(z) dur
h analytis
heFortsetzung definiert. Somit giltJ0 = � ddz jz=0 ~�0(z) + ddz jz=0" 1�(z)  â1z � 12 � 1z!# + â1 1Z0 dt e�t�2 � 1t 32� 1Z0 dt e�t�2 � 1t + O� 1��= � ddz z=0 ~�0(z) � 2 â1 + �0(1)| {z }�
 + â1 1Z0 dt e�t�2 � 1t 32 (vgl. au
h Anhang C)� 1Z0 dt e�t�2 � 1t + O� 1��: (6.47)F�ur das erste verbleibende Integral bekommt man nun1Z0 dt e�t�2 � 1t 32 =part. Int. �2 �e�t�2 � 1� t� 12 10 � 1Z0 dt 2�2 e�t�2pt=Subst.u2= t�2 �2 �e��2 � 1�� 2�2 �Z0 du 2u�2 e�u2 �u =)50



1Z0 dt e�t�2 � 1t 32 = 2 � 4� �Z0 du e�u2 + O�e��2�= 2 � 2�p��(�) + O�e��2�: (6.48)Das Verhalten des Fehlerintegrals � f�ur gro�e Argumente ist bekannt [20℄:1� �(�) ��!1 e��2p�� "1 + 1Xn=1(�1)n (2n� 1)!!(2�2)n #: (6.49)Daher erh�alt manJ0 = � ddz jz=0 ~� 0(z)� 2â1 + 2â1 � 2 â1�p� �1 + O�e��2��� 
 � 1Z0 dt e�t�2 � 1t + O� 1��= � ddz jz=0 ~� 0(z)� 2 â1�p� � 
 � 1Z0 dt e�t�2 � 1t + O� 1��= � ddz jz=0 ~� 0(z)� 3m0L2�2� � 
 � 1Z0 dt e�t�2 � 1t + O� 1��: (6.50)Es bleibt also no
h ~�0(z) bzw. ddz jz=0 ~�0(z) auszure
hnen.6.2.1 Auswertung der ~� 0 {FunktionEs gilt na
h Gl.(6.46) mit Hilfe der Beziehung (6.10) f�ur Kt(��2):~�0(z) = 1�(z) 1Z0 dt tz�1�Kt(��2) ~Kt(Q)� 1�; Re z > 12 ;analytis
h fortgesetzt sonst= 1�(z) 1Z0 dt tz�1 L24�t� ~Kt(Q)� 1� + 1�(z) 1Z0 dt tz�1 �A2�4�tL2 �� 1�+ 1�(z) 1Z0 dt tz�1 "A2�4�tL2 �� L24�t# h ~Kt(Q)� 1i; (6.51)mit A(s) := Xn2 .................................. e��n2s; A(s) = s� 12A(1=s) (Re s > 0): (6.52)Die letzte Glei
hung f�ur A(s) sieht man mit Hilfe der Poissons
hen Summenformel ein.Mit den Definitionen�1(z) := 1�(z) 1Z0 dt tz�1 L24�t� ~Kt(Q)� 1�; Re z > 1;analytis
h fortgesetzt sonst, (6.53)51



�2(z) := 1�(z) 1Z0 dt tz�1�A2�4�tL2 �� 1 �; Re z > 1;analytis
h fortgesetzt sonst, (6.54)�3(z) := 1�(z) 1Z0 dt tz�1�A2�4�tL2 �� L24�t � h ~Kt(Q)� 1i; 8z 2 C; (6.55)folgt ~�0(z) = �1(z) + �2(z) + �3(z): (6.56)Im einzelnen bere
hnet man:�1{Bere
hnungMit der Beziehung (6.24) folgt�1(z) = 1�(z) 1Z0 dt tz�1 L24�t � ~Kt(Q)� 1�= L24��(z) 8<: 1Z0 dt tz�2 e� 34m20t + 1Z0 dt tz�2 +1Z�1 dp g(p) e�t(m20+p2)9=;:Mit den Substitutionen u = 34 m20 t im ersten Integral,u0 = �m20 + p2� t im zweiten Integralergibt si
h�1(z) = L24��(z) 8<: 1Z0 du � 43m20 u�z�2 43m20 e�u + +1Z�1 dp g(p) 1Z0 du0 (u0)z�2 e�u0�m20 + p2�z�19=;= L24��(z) ( �34m20�1�z �(z � 1) + +1Z�1 dp g(p) �m20 + p2�1�z �(z � 1) )= L24� �(z � 1)�(z) (�34m20�1�z + +1Z�1 dp g(p) �m20 + p2�1�z| {z }J1 ) : (6.57)Das Integral J1 ergibt nun (vgl. Anhang E.1):J1 = � �m20�1�z2� ( 3 �(12)�(z � 12)�(z) + 34 �(12)�(z + 12)�(z + 1)+ 916 +1Z�1 dp 1(p2 + 1)z+1 (p2 + 14) ): (6.58)Damit findet man�1(z) = L24� 1z � 1(�34m20�1�z � �m20�1�z2� � 3 �(12)�(z � 12)�(z) + 34 �(12)�(z + 12)�(z + 1)+ 916 +1Z�1 dp 1(p2 + 1)z+1 (p2 + 14) � ): (6.59)52



Die re
hte Seite dieser Glei
hung existiert nun au
h in einer Umgebung von z = 0, so da�analytis
h fortgesetzt werden kann:d �1(z)dz jz=0 = � L24�( 34m20 � m202� � 34� + 916 +1Z�1 dp 1(p2 + 1) (p2 + 14)| {z }J2 �)� L24�(� 34m20 ln�34m20�+ m202� lnm20� 34� + 916 +1Z�1 dp 1(p2 + 1) (p2 + 14)| {z }J2 �� m202� � 3��12����12� � 34� �0(1) + 34 ��12��0�12�� 916 1Z�1 dp ln�p2 + 1�(p2 + 1) (p2 + 14)| {z }J3 �): (6.60)Die verbleibenden Integrale J2; J3 sind ebenfalls im Anhang bere
hnet (vgl. Anhang E.2und Anhang E.3): J2 = 43 � (6.61)J3 = 83 � ln 98 : (6.62)Damit folgtd �1(z)dz jz=0 = � L24� ( 34m20 � m202� �34 � + 34 ��)� L24�( � 34m20 ln�34m20� + m202� � 34� + 34� � lnm20� m202� � 3 ��12����12� � 34 � �0(1) + 34 ��12��0�12�� �34�2 83 � ln 98 �)= � L24� ( 34m20 � 34m20 � 34m20 ln�34m20� + 34m20 lnm20� m202� � 3 ��12���� 12� � 34 � �0(1) + 34 ��12��0�12�� 32 � ln 98 �): (6.63)53



Mit (vgl. Anhang C) ���12� = � 2 � 12 (6.64)�0(1) = � 
 (6.65)�0�12� = � (
 + 2 ln 2) � 12 (6.66)ergibt si
h s
hlie�li
hd �1(z)dz jz=0 = � L24� (�34m20 ln 34 � m202� ��6� + 34 � 
 + 34 � (�
 � 2 ln 2)� 32 � ln 98�)= � L24�(� 34m20 ln 34 + 3m20 � 38m20 
 + 38m20 
 + 34m20 ln 2 + 34m20 ln 98)= L24� 34m20 � ln 34 � 4� ln 2� ln 98�= L24� 34 m20 � ln 13 � 4�= � L24� m20 �3 + 34 ln 3�: (6.67)�2{Bere
hnungNa
h der Definition (6.54) gilt�2(z) = 1�(z) 1Z0 dt tz�1 �A2�4�tL2 �� 1 �; Re z > 1;analytis
h fortgesetzt sonst. (6.68)Mit der Beziehung (6.52) f�ur A wird daraus�2(z) = 1�(z)  L24�!z 1Z0 ds sz�1 �A2(s)� 1�; s = 4�tL2=  L24�!z 1�(z)( 1Z0 ds sz�1 �A2(s)� s�1� + 1Z1 ds sz�1 �A2(s)� 1�+ 1Z0 ds sz�2 � 1Z0 ds sz�1)=  L24�!z 1�(z)( 1Z0 ds sz�1 �A2(s)� s�1� + 1Z1 ds sz�1 �A2(s)� 1�+ 1z � 1 � 1z)=  L24�!z 1�(z) 8<: 1Z0 ds sz�1 �A2(s)� s�1� + 1Z1 ds sz�1 �A2(s)� 1� + 1z � 19=;�  L24�!z 1�(z + 1) : (6.69)54



Die re
hte Seite existiert au
h in einer Umgebung von z = 0; daher kann analytis
h fortge-setzt werden: d �2(z)dz jz=0 = 1Z0 ds 1s �A2(s)� s�1� + 1Z1 dss �A2(s)� 1�� 1 � ln L24� + �0(1)= 1Z1 ds0s0 �A2( 1s0 )� s0� + 1Z1 dss �A2(s)� 1�� 1 � 
 � ln L24� ; s0 = 1s : (6.70)Wegen A(s) = s� 12A(1=s) (vgl. Gl.(6.52)) folgtd �2(z)dz jz=0 = 1Z1 dss �sA2(s)� s� + 1Z1 dss �A2(s)� 1� � 1 � 
 � ln L24�= 1Z1 dss (1 + s)�A2(s)� 1� � 1 � 
 � ln L24� : (6.71)Mit BPV := 1Z1 dss (1 + s) �A2(s)� 1� � 1 � 
 (6.72)ergibt si
h d �2(z)dz jz=0 = BPV � ln L24� : (6.73)Das Integral in der Definition von BPV kann numeris
h ausgewertet werden, man findet:BPV = �1; 476336 : : : : (6.74)BPV kann au
h analytis
h genauer bestimmt werden (vgl. Kapitel 8).�3{Bere
hnungMit der Definition (6.55) bekommt man�3(z) = 1�(z) 1Z0 dt tz�1"A2�4�tL2 �� L24�t # � ~Kt(Q)� 1 �; z 2 C : (6.75)Hier kann direkt na
h z di�erenziert werden:d �3(z)dz jz=0 = 1Z0 dtt "A2�4�tL2 �� L24�t # � ~Kt(Q)� 1 �= 1Z0 dt L24�t2"A2 L24�t!� 1 # � ~Kt(Q)� 1 �: (6.76)55



F�ur den letzten S
hritt ist erneut die Beziehung (6.52) benutzt worden. Einsetzen derDefinition von A ergibtd �3(z)dz jz=0 = 1Z0 dt L24�t2 2640�Xn2 .................................. e�n2L24t 1A2 � 1375 � ~Kt(Q)� 1 �: (6.77)Mit der Definition von ~Kt(Q) (vgl. Gl.(6.24)) folgt s
hlie�li
hd �3(z)dz jz=0 = Xk;l 2 ..................................(k;l) 6= (0;0) L24� 1Z0 dtt2 e� (k2+l2)L24t 0�e� 34m20t + +1Z�1 dp g(p) e�t(m20+p2)1A:(6.78)Es treten t{Integrale folgenden Typs auf:1Z0 dtt2 e� ~n2L24t ��t; ~n := (k; l) 2 .............................................. 2 n (0; 0); � > 0: (6.79)Im Anhang wird mittels einer Sattelpunktentwi
klung gezeigt, da�1Z0 dtt2 e� ~n2L24t ��t = � 14p8�(~n2L2) 34 e�p~n2�L + mit L s
hnellerabfallende Terme (6.80)gilt (vgl. Anhang F). F�ur gro�e L tragen daher in Gl.(6.78) in niedrigster Ordnung nurTerme mit ~n2 = 1 und � = 34m20 bei, also insgesamt 4 Terme:d �3(z)dz jz=0 = 4 L24� �34m20� 14 p8�L 32 e�p32 m0L + mit L s
hnellerabfallende Terme= 2sp3Lm0� e�p32 m0L + mit L s
hnellerabfallende Terme. (6.81)Ergebnis f�ur ddz ~�0(z) jz=0 und J0Mit den Glei
hungen (6.56), (6.67), (6.73) und (6.81) ergibt si
hddz ~� 0(z) jz=0 = � L24� m20 �3 + 34 ln 3� + BPV � ln L24�+2sp3Lm0� e�p32 m0L + mit L s
hnellerabfallende Terme, (6.82)und damit folgt wegen Gl.(6.50) f�ur J0:J0 = L24� m20 �3 + 34 ln 3�� BPV + ln L24� � 2sp3Lm0� e�p32 m0L � 3m0L2�2�� 
 � 1Z0 dt e�t�2 � 1t + O� 1�� + mit L s
hnellerabfallende Terme. (6.83)56



6.3 Alternative J0{Bere
hnungWie in Abs
hnitt 6.1 angek�undigt, soll nun der Weg zur Bere
hnung von J0 dargestelltwerden, der von mir urspr�ungli
h einges
hlagen wurde. Wie dort bereits erw�ahnt, wird si
hdieser als aufwendiger erweisen, obwohl das Ergebnis nat�urli
h dasselbe ist. Der Hauptun-ters
hied besteht in einer anderen Aufspaltung des Integrals J0. O�enbar gilt n�amli
h:J0 = 1Z0 dtt �e�t�2 � 1� �Kt(��2) ~Kt(Q)� 1 �= dd z jz=0 � 1�(z) 1Z0 dt tz�1 �e�t�2 � 1��Kt(��2) ~Kt(Q)� 1 ��= dd z z=0 ( 1�(z) 1Z0 dt tz�1 L24�t �e�t�2 � 1�� ~Kt(Q)� 1 �| {z }�01(z)+ 1�(z) 1Z0 dt tz�1 �e�t�2 � 1� �Kt(��2)� 1 �| {z }�02(z)+ 1�(z) 1Z0 dt tz�1 �e�t�2 � 1� �Kt(��2) � L24�t � � ~Kt(Q)� 1 �| {z }�03(z) ): (6.84)Die letzte Umformung ist wieder im Sinne einer analytis
hen Fortsetzung zu verstehen, dadie Integrale �01 und �02 f�ur z = 0 ni
ht existieren. Im einzelnen gilt wegen der Beziehungen(6.10), (6.11) und (6.24), (6.25), die das Verhalten von Kt(��2) und ~Kt(Q) f�ur t ! 0bzw. t! 1 liefern:� 01(z) := 1�(z) 1Z0 dt tz�1 L24�t �e�t�2 � 1� � ~Kt(Q)� 1 �; Re z > 0;analytis
h fortgesetzt sonst,(6.85)� 02(z) := 1�(z) 1Z0 dt tz�1 �e�t�2 � 1� �Kt(��2)� 1 �; Re z > 0;analytis
h fortgesetzt sonst,(6.86)� 03(z) := 1�(z) 1Z0 dt tz�1 �e�t�2 � 1� �Kt(��2) � L24�t � � ~Kt(Q)� 1 �; 8z 2 C: (6.87)Diese Funktionen �01; �02; �03, bzw. ihre Ableitungen an der Stelle z = 0, gilt es nun auszu-re
hnen. 57



6.3.1 � 01{Bere
hnungEs gilt mit der Definition (6.85) und der Beziehung (6.24) f�ur ~Kt(Q) :� 01(z) = 1�(z) 1Z0 dt tz�1 L24�t � ~Kt(Q)� 1 ��e�t�2 � 1�= 1�(z) 1Z0 dt tz�2 L24� � ~Kt(Q)� 1 � e�t�2 � 1�(z) 1Z0 dt tz�2 L24� � ~Kt(Q)� 1 �= L24��(z) 1Z0 dt tz�2 (e� 34m20t + +1Z�1 dp g(p) e�t(m20+p2)) e�t�2� L24��(z) 1Z0 dt tz�2 � ~Kt(Q)� 1 �= L24��(z) ( 1Z0 dt tz�2 e�( 34m20+�2)t + 1Z0 dt +1Z�1 dp g(p) e�t(m20+�2+p2) tz�2)� L24��(z) 1Z0 dt tz�2 � ~Kt(Q)� 1 �:Die ersten beiden t{Integrale werden dur
h o�ensi
htli
he Substitutionen auf die �{Funktionzur�u
kgef�uhrt, und man erh�alt�01(z) = L24� �(z � 1)�(z) (�34 m20 + �2�1�z + +1Z�1 dp g(p)�m20 +�2 + p2�1�z| {z }J�1 (z) )� L24��(z) 1Z0 dt tz�2 � ~Kt(Q)� 1 �:Das letzte Integral (eins
hlie�li
h Vorfaktor) ist aber genau die Funktion �1 aus Ab-s
hnitt 6.2 (vgl. Gl.(6.53)). Daher hat man�01(z) = L24� 1z � 1 (�34m20 +�2�1�z + J�1 (z)) � �1(z): (6.88)Entspre
hend ergibt si
h f�ur die Ableitung an der Stelle z = 0 mit dem Ergebnis f�ur �1(vgl. Gl.(6.67)):dd z jz=0�01(z) = � L24� � 34m20 + �2 + J�1 (z = 0)�� L24� ���34m20 + �2� ln�34m20 +�2� + dd z jz=0J�1 (z)�+ L24� m20 �3 + 34 ln 3�; (6.89)58



wobei J�1 (z) = +1Z�1 dp g(p) �m20 +�2 + p2�1�z (6.90)g(p) = �mo2� ( 2p2 +m20 + 1p2 + m204 ):Daher ist nun J�1 (z) zu bere
hnen, genauer J�1 (0) und ddz jz=0J�1 (z); zun�a
hst giltJ�1 (z) = +1Z�1 dp g(p) 1�m20 +�2 + p2�z�1= �m02� ( 2 +1Z�1 dp 1�p2 +m20� �p2 +m20 +�2�z�1| {z }J�1;1+ +1Z�1 dp 1(p2 + m204 ) �m20 + �2 + p2�z�1| {z }J�1;2 ):J�1;1 und J�1;2 werden getrennt ausgere
hnet; dazu f�uhrt man eine Feynman{Parametri-sierung dur
h. Bekanntli
h besteht folgender Zusammenhang (vgl. Gl.(4.20)):1A�B� = �(� + �)�(�) �(�) 1Z0 dx x��1(1� x)��1(Ax+ B(1� x))�+� : (6.91)Damit erh�alt man alsoJ�1;1(z) = +1Z�1 dp 1�p2 +m20��p2 +m20 + �2�z�1= �(z)�(z � 1) 1Z0 dx +1Z�1 dp xz�2��p2 +m20 + �2� x+ (1� x)�p2 +m20��z= (z � 1) 1Z0 dx +1Z�1 dp xz�2�p2 +m20 + �2 x�z : (6.92)Das p{Integral kann nun standardm�a�ig ausgewertet werden [12, Gl.(4.3.1) f�ur d = 1;M2 = m20 +�2 x; � = 0; � = z℄:J�1;1(z) = (z � 1) 1Z0 dx xz�2 � 12 �m20 +�2 x� 1�2z2 �(12)�(z � 12)�(12)�(z)= (z � 1) �(z � 12)�(z) � 12 1Z0 dx xz�2 �m20 + �2 x�12�z: (6.93)59



Da es nun, wie oben dargelegt, nur darauf ankommt, J�1 (0) und dd z jz=0J�1 (z) zu bestimmen,m�ussen J�1;1(0) und ddz jz=0J�1;1(z) bere
hnet werden. O�ensi
htli
h existiert das Integral inGl.(6.93) ni
ht f�ur z = 0; eine analytis
he Fortsetzung ist also notwendig. Damit si
hdiese Fortsetzung quasi auf nat�urli
he Weise ergibt, ist es n�otig die Beziehung (6.93) soumzuformen, da� u.a. ein Integral entsteht, das f�ur z = 0 no
h konvergiert. Hierzu bietetsi
h eine partielle Integration an, da dadur
h der bei x = 0 kritis
he Term xz�2 modifiziertwird, und zwar erh�oht si
h der Exponent pro partieller Integration um 1. Daher werden zweipartielle Integrationen ausrei
hen, damit ein bei z = 0 existierendes Integral entsteht. Weiljedo
h au
h ddz jz=0J�1;1(z) ben�otigt wird, m�ussen insgesamt drei partielle Integrationenausgef�uhrt werden, um ein Integral zu erhalten, das ni
ht nur f�ur z = 0 konvergiert,sondern dessen Ableitung au
h no
h bei z = 0 existiert. Im einzelnen ergibt die Re
hnung(zun�a
hst wird Re z > 1 angenommen):J�1;1(z) = (z � 1)�(z � 12)�(z) � 12 1Z0 dx xz�2�m20 +�2 x�z� 12= (z � 1)�(z � 12)�(z) � 12 ( xz�1z � 1 �m20 +�2 x� 12�z 10�(12 � z) �2z � 1 1Z0 dx xz�1�m20 + �2 x�z+ 12 )= (z � 1)�(z � 12)�(z) � 12 ( �m20 +�2� 12�zz � 1 � (12 � z) �2z � 1 1Z0 dx xz�1�m20 + �2 x�z+ 12 )(1. partielle Integration)= (z � 1)�(z � 12)�(z) � 12 ( �m20 +�2� 12�zz � 1 � (12 � z) �2z � 1 xzz �m20 + �2 x��(z+ 12) 10� (12 � z) (12 + z) �4z (z � 1) 1Z0 dx xz�m20 + �2 x�z+ 32 )= (z � 1)�(z � 12)�(z) � 12 ( �m20 +�2� 12�zz � 1 � (12 � z) �2z (z � 1) �m20 + �2��(z+ 12)� (14 � z2) �4z (z � 1) 1Z0 dx xz�m20 +�2 x�z+ 32 )(2. partielle Integration)= (z � 1)�(z � 12)�(z) � 12 ( �m20 +�2� 12�zz � 1 � (12 � z) �2z (z � 1) �m20 +�2��(z+ 12)� (14 � z2) �4z (z � 1) xz+1z + 1 �m20 + �2 x��(z+ 32) 10� (14 � z2) (z + 32)(z + 1) z (z � 1) �6 1Z0 dx xz+1�m20 + �2 x�z+ 52 ) =)60



J�1;1(z) = (z � 1)�(z � 12)�(z) � 12 ( �m20 + �2� 12�zz � 1 � (12 � z)�2z (z � 1) �m20 +�2��(z+ 12)� (14 � z2)�4(z + 1) z (z � 1) �m20 + �2��(z+ 32 )� (14 � z2) (z + 32)�6(z + 1) z (z � 1) 1Z0 dx xz+1�m20 +�2 x�z+ 52 )(3. partielle Integration)= �(z � 12)�(z) �m20 +�2� 12�z � 12 � (12 � z)�(z � 12)�(z + 1) �m20 + �2��(z+ 12) � 12 �2� (14 � z2)�(z � 12)�(z + 2) �m20 + �2��(z+ 32) � 12 �4� (14 � z2) (z + 32)�(z � 12)�(z + 2) � 12 �6 1Z0 dx xz+1�m20 + �2 x�z+ 52 :Die re
hte Seite stellt eine bei z = 0 holomorphe Funktion dar, so da� analytis
h fortgesetztwerden kann: J�1;1(0) = � 12�(�12)�m20 +�2� 12 � 12 �2 � 14�(�12)�m20 + �2� 32 � 12 �4� 38 ���12� � 12�6 1Z0 dx x�m20 +�2 x� 52| {z }I0 :Nun gilt einerseits (vgl. Anhang C) ���12� = �2 � 12 ;andererseits wird im Anhang E.6 gezeigt:I0 = 2�4 8<: 23m0 � 2m20 + 3�23 �m20 +�2� 32 9=;: (6.94)Damit ergibt si
hJ�1;1(0) = ��2�m20 + �2� 12 + 12 �4 ��m20 +�2� 32 + 34 ��6 2�4 8<: 23m0 � 2m20 + 3�23 �m20 +�2� 32 9=;= ��2 8<: 1m0 + m20 + �2 + 12 �2 �m20 � 32 �2�m20 + �2� 32 9=;= ��2m0 (6.95)61



und dd z jz=0J�1;1(z) = ���12� �m20 + �2� 12 � 12+ � 12 �2 ( �(�12)�m20 + �2� 12 � 12 �0(�12)�m20 +�2� 12 + 12�(�12) �0(1)�m20 + �2� 12+ 12�(�12)�m20 +�2� 12 ln�m20 + �2� )+ � 12 �4 ( �14 �0(�12)�m20 + �2� 32 + 14 �(�12) �0(2)�m20 +�2� 32+ 14 �(�12)�m20 +�2� 32 ln�m20 + �2� )+ � 12 �6 (� 14 ���12� 1Z0 dx x�m20 +�2 x� 52| {z }I0� 38 �0��12� I0 + 38 ���12� �0(2) I0� 38 ���12� 1Z0 dx x ln x�m20 + �2 x� 52| {z }I1+ 38 ���12� 1Z0 dx x ln�m20 + �2 x��m20 + �2 x� 52| {z }I2 ): (6.96)Nun verwendet man die vers
hiedenen Beziehungen zur �{Funktion aus dem Anhang (vgl.Anhang C), sowie die Werte f�ur I1 und I2 , ebenfalls aus dem Anhang (vgl. Anhang E.4und E.5): I1 = 2�4 (� 23m0 ln �2 + 23m0 � 23 �m20 + �2� 12 + 43 ln(2m0)m0� 23m0 ln �m20 +�2� 12 +m0�m20 +�2� 12 �m0 ) (6.97)I2 = 4�4 ( 23 ln m0m0 � ln�m20 + �2�2 �m20 +�2� 12 + m20 ln�m20 + �2�6 �m20 + �2� 32+ 89m0 � 1�m20 +�2� 12 + m209 �m20 + �2� 32 ): (6.98)62



Es folgtdd z jz=0J�1;1(z) = �2� �m20 +�2�12+ ��2�m20 +�2� 12 (� 2 � (
 + 2 ln 2� 2) + 
 � ln�m20 + �2�)+ ��4�m20 +�2� 32 (� 12 (
 + 2 ln 2� 2) � 12(1� 
) � 12 ln�m20 +�2�)+2��2 ( 23m0 � 2m20 + 3�23�m20 + �2� 32 )�( 12 � 34 (
 + 2 ln 2� 2) � 34 (1� 
))+ 32 ��2(� 23m0 ln �2 + 23m0 � 23�m20 +�2� 12+ 43 ln(2m0)m0 � 23m0 ln �m20 + �2� 12 +m0�m20 + �2� 12 �m0 )�3 ��2( 23 lnm0m0 � ln�m20 + �2�2 �m20 +�2� 12 + m20 ln�m20 +�2�6 �m20 +�2� 32+ 89m0 � 1�m20 +�2� 12 + m209 �m20 + �2� 32 )= �2� �m20 + �2� 12+ ��2�m20 +�2� 12 ( � 2 ln 2 � ln�m20 + �2�)+ ��4�m20 +�2� 32 ( 12 � ln 2 � 12 ln�m20 + �2�)+2��2( 23m0 � 2m20 + 3�23 �m20 + �2� 32 ) ( 54 � 32 ln 2)+��2(� ln �2m0 + 1m0 � 1�m20 + �2� 12+ 2 ln(2m0)m0 � 1m0 ln �m20 + �2� 12 +m0�m20 + �2� 12 �m0 )���2( 2 lnm0m0 � 3 ln�m20 +�2�2 �m20 +�2� 12 + m20 ln�m20 +�2�2 �m20 + �2� 32+ 83m0 � 3�m20 + �2� 12 + m203 �m20 + �2� 32 ) =)63



dd z jz=0J�1;1(z) = ��m20 +�2� 12 (� 2m20 + �2�12 ln�m20 + �2�� 2 ln 2�)+ ��2�m20 +�2� 32 (�2�2 ln 2� 2� 12 ln�m20 + �2��+m20�2 ln 2� 12 ln�m20 +�2�� 2�)+ �m0 �2 (� ln �2 � ln �m20 +�2� 12 +m0�m20 +�2� 12 �m0 ): (6.99)Entspre
hend ist jetzt bei der Bere
hnung von J�1;2(z) bzw. J�1;2(0) und ddz jz=0J�1;2(z) zuverfahren. Es gilt J�1;2(z) = +1Z�1 dp 1(p2 + m204 ) �m20 +�2 + p2�z�1 : (6.100)Mit Feynman{Parametrisierung (vgl. Gl.(6.91)) erh�alt manJ�1;2(z) = �(z)�(z � 1) 1Z0 dx +1Z�1 dp xz�2h(p2 +m20 + �2)x + (p2 + m204 )(1� x)iz= (z � 1) 1Z0 dx +1Z�1 dp xz�2hp2 + m204 + (34 m20 + �2)xiz : (6.101)Ausf�uhren der p{Integration [12, Gl.(4.3.1) f�ur d = 1; � = 0; � = z; M2 = m204 +( 34 m20+�2)x℄liefert J�1;2(z) = (z � 1) �(z � 12)�(z) � 12 1Z0 dx xz�2  m204 +�34m20 +�2�x! 12�z: (6.102)Aufgrund der glei
hen �Uberlegungen wie bei der Bere
hnung von J�1;1(z), ist au
h hier nundreimal partiell zu integrieren (zun�a
hst wieder Re z > 1):J�1;2(z) = �(z � 12)�(z � 1) � 12 ( xz�1z � 1  m204 + �34m20 + �2�x! 12�z 10� (34 m20 +�2)(12 � z)z � 1 1Z0 dx xz�1hm204 + (34 m20 +�2) xiz+ 12 )=)64



J�1;2(z) = �(z � 12)�(z � 1) � 12 (�m20 +�2� 12�zz � 1� �34 m20 +�2� �12 � z�z � 1 1Z0 dx xz�1hm204 + (34 m20 + �2)xiz+ 12 )(1. partielle Integration)= �(z � 12)�(z � 1) � 12 (�m20 +�2� 12�zz � 1� (12 � z) (34m20 + �2)z � 1 xzz hm204 + (34 m20 +�2)xiz+ 12 10� (34 m20 +�2)2 (14 � z2)z (z � 1) 1Z0 dx xzhm204 + (34m20 +�2)xiz+ 32 )= �(z � 12)�(z � 1) � 12 ( 1(z � 1) �m20 +�2�z� 12 � (12 � z) (34 m20 + �2)z (z � 1) (m20 + �2)z+ 12� (34 m20 +�2)2 (14 � z2)z (z � 1) 1Z0 dx xzhm204 + (34 m20 + �2)xiz+ 32 )(2. partielle Integration)= �(z � 12)�(z � 1) � 12 ( 1(z � 1) (m20 +�2)z� 12 � (12 � z) (34 m20 +�2)z (z � 1) (m20 +�2)z+ 12� (34 m20 +�2)2 (14 � z2)(z + 1) z (z � 1) xz+1hm204 + (34 m20 + �2)xiz+ 32 10� (34 m20 +�2)3 (14 � z2) (z + 32)(z + 1) z (z � 1) 1Z0 dx xz+1hm204 + (34 m20 +�2) xiz+ 52 )= �(z � 12)�(z � 1) � 12 ( 1(z � 1) (m20 +�2)z� 12 � (12 � z) (34 m20 +�2)z (z � 1) (m20 +�2)z+ 12� (14 � z2) (34 m20 +�2)2(z + 1) z (z � 1) (m20 +�2)z+ 32� (14 � z2) (z + 32) (34 m20 +�2)3(z + 1) z (z � 1) 1Z0 dx xz+1hm204 + (34 m20 + �2)xiz+ 52 )(3. partielle Integration) =)65



J�1;2(z) = �(z � 12) � 12�(z) (m20 +�2)z� 12 � (12 � z) �(z � 12) (34 m20 +�2)� 12�(z + 1) (m20 + �2)z+ 12� (14 � z2) �(z � 12) (34 m20 + �2)2 � 12�(z + 2) (m20 + �2)z+ 32� (14 � z2) (z + 32) �(z � 12) (34 m20 + �2)3 � 12�(z + 2) 1Z0 dx xz+1hm204 + (34 m20 +�2) xiz+ 52 :(6.103)Die re
hte Seite ist nun wieder bei z = 0 holomorph, so da� mit analytis
her Fortsetzungfolgt: J�1;2(0) = � 12�(�12 ) (34 m20 + �2)� 12(m20 + �2) 12 � 14�(�12) (34 m20 + �2)2 � 12(m20 + �2) 32� 38 ���12��34 m20 + �2�3 � 12 1Z0 dx xhm204 + (34 m20 +�2)xi52| {z }L0 : (6.104)Mit den entspre
henden Beziehungen f�ur die �{Funktion (Anhang C), sowie dem Wert f�urL0 (Anhang E.9),L0 = 2(34 m20 + �2)2 ( 43m0 � 1�m20 +�2� 12 + m2012�m20 +�2� 32 ); (6.105)ergibt si
hJ�1;2(0) = � (34 m20 +�2)�m20 +�2� 12 + 12 (34 m20 + �2)2 ��m20 +�2� 32+ 32 ��34m20 + �2�( 43m0 � 1�m20 + �2� 12 + m2012�m20 + �2� 32 )= ��34m20 +�2� ( 2m0 + m20 +�2 + 38m20 + 12�2 � 118 m20 � 32�2�m20 + �2� 32 )= 2�m0�34m20 + �2�: (6.106)
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F�ur ddz jz=0J�1;2(z) findet man mit Gl.(6.103) (die Re
hnung verl�auft entspre
hend wie beiJ�1;1(z); einige Zwis
hens
hritte sind ausgelassen):dd z jz=0J�1;2(z) = �2��m20 +�2� 12+ � (34 m20 + �2)�m20 + �2� 12 (� 2 ln 2 � ln�m20 +�2�)+ � (34 m20 + �2)2�m20 + �2� 32 ( 12 � ln 2 � 12 ln�m20 +�2�)+ � 12�34m20 +�2�3L0 (� 14 ���12� � 38 �0��12�+ 38 ���12��0(2))+ � 12 �34 m20 + �2�3 (� 38 ���12� 1Z0 dx x ln xhm204 + (34 m20 +�2)xi52| {z }L1+ 38 ���12� 1Z0 dx x ln�m204 + (34 m20 +�2)x�hm204 + (34 m20 +�2) xi52| {z }L2 ): (6.107)Mit den Werten f�ur L1 und L2 (Anhang E.7 und E.8),L1 = 2(34 m20 +�2)2 (� 43m0 ln�34m20 +�2� + 43m0 + 83m0 lnm0� 23 �m20 + �2� 12 � 43m0 ln �m20 +�2� 12 + m02�m20 +�2� 12 � m02 ) (6.108)L2 = 4(34 m20 +�2)2 (43 ln m02m0 + m2036�m20 +�2� 32 + 169m0 � 1�m20 + �2� 12� 12 ln�m20 +�2� 1�m20 +�2� 12 � m2012�m20 +�2� 32 !); (6.109)
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erh�alt mandd z jz=0J�1;2(z) = � 2��m20 + �2� 12+ � (34 m20 +�2)�m20 + �2� 12 (� 2 ln 2 � ln�m20 + �2�)+ � (34 m20 +�2)2�m20 +�2� 32 ( 12 � ln 2 � 12 ln�m20 +�2�)+ 2��34m20 + �2�( 43m0 � 1�m20 + �2� 12 + m2012�m20 +�2� 32 )�( 54 � 32 ln 2)+ 32��34m20 +�2�(� 43m0 ln�34m20 +�2� + 43m0 + 83m0 lnm0� 23 �m20 +�2� 12 � 43m0 ln �m20 +�2� 12 + m02�m20 +�2� 12 � m02 )� 3��34m20 + �2�( 43 ln m02m0 + m2036�m20 +�2� 32 + 169m0 � 1�m20 + �2� 12� 12 1�m20 + �2� 12 � m2012�m20 + �2� 32 ! ln�m20 + �2�)= ��m20 +�2� 12 (� 2�m20 + �2�+ �34m20 +�2��12 ln�m20 +�2�� 12 + ln 2�)+ ��m20 +�2� 32 �34m20 +�2�(�m20 ln 2 + m202 � m202 ln�m20 + �2�+ �2�12 � ln 2 � 12 ln�m20 + �2��)+ 2�m0 �34m20 +�2�(� ln�34m20 + �2� � ln �m20 + �2� 12 + m02�m20 + �2� 12 � m02 ):(6:110)Damit ergibt si
h s
hlie�li
h f�ur J�1 (z) (vgl. Gln.(6.90), (6.95), (6.106))J�1 (0) = �m02� (2 J�1;1(0) + J�1;2(0))= �m02� ( 2��2m0 + 2�m0�34 m20 + �2�) =)68



J�1 (0) = ��2�2 + 34m20� (6.111)und (vgl. Gln.(6.99), (6.110))dd z jz=0J�1 (z) = � m02� (2 dd z jz=0J�1;1(z) + dd z jz=0J�1;2(z))= � m0�m20 + �2� 12 (� 2m20 + �2�12 ln�m20 +�2� � 2 ln 2�)� m0 �2�m20 + �2� 32 (�2�2 ln 2 � 2 � 12 ln�m20 +�2��+ m20�2 ln 2 � 12 ln�m20 + �2� � 2�)� �2( � ln �2 � ln �m20 +�2� 12 +m0�m20 +�2� 12 �m0 )� m0�m20 + �2� 12 (�m20 � �2+ �34m20 + �2��14 ln�m20 + �2�� 14 + 12 ln 2�)� m0(34 m20 +�2)�m20 +�2� 32 (� m202 ln 2 + m204 � m204 ln�m20 + �2�+ �2�14 � 12 ln 2 � 14 ln�m20 +�2��)� �34 m20 + �2�(� ln�34m20 +�2� � ln �m20 + �2� 12 + m02�m20 + �2� 12 � m02 ):(6.112)Um diesen un�ubersi
htli
hen Ausdru
k �ubersi
htli
her zu gestalten, wird folgende �Uberle-gung angestellt. Na
h der Renormierungsbeziehung (4.32) gilt:m0 = mR + O(gR) + O� 1��:Da mR endli
h ist und sp�ater der Grenzwert � ! 1 betra
htet werden wird, setzt mannun diese Renormierungsbeziehung in Gl.(6.112) ein und l�a�t nur sol
he Terme explizitstehen, die f�ur �!1 einen von 0 vers
hiedenen Beitrag liefern:
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dd z jz=0J�1 (z) = � mR(m2R +�2) 12 (� 2m2R + �2�12 ln�m2R +�2� � 2 ln 2�)� mR �2(m2R +�2) 32 (�2�2 ln 2 � 2 � 12 ln�m2R +�2��+ m2R�2 ln 2 � 12 ln�m2R +�2� � 2�)� �2(� ln �2 � ln �m2R + �2� 12 +mR(m2R + �2)12 �mR )� mR(m2R +�2) 12 (�m2R � �2+ �34 m2R +�2��14 ln�m2R + �2� � 14 + 12 ln 2�)� mR(34 m2R +�2)(m2R +�2) 32 (� m2R2 ln 2 + m2R4 � m2R4 ln�m2R + �2�+ �2�14 � 12 ln 2 � 14 ln�m2R +�2��)� �34 m2R +�2�(� ln�34m2R + �2�� ln �m2R +�2� 12 + mR2(m2R +�2)12 � mR2 )+ O(gR) + O� 1��= � mR �4(m2R +�2) 32 ( 12 ln�m2R + �2� � 2 ln 2� 12 ln�m2R + �2� + 2 ln 2 � 2)+ �2 ln �2 + 2�2 mR(m2R + �2) 12� mR �4(m2R +�2) 32 (� 1 � 14 + 12 ln 2 + 14 ln�m2R +�2�+ 14 � 12 ln 2 � 14 ln�m2R +�2�)+ �34 m2R +�2� ln�34m2R + �2� + �34m2R + �2� mR(m2R +�2)12+ O� ln �� � + O(gR): (6.113)Dabei steht O� ln�� � f�ur alle Terme, die f�ur � ! 1 mindestens wie ln�� gegen 0 gehen,und au�erdem wurde die Beziehungln a+ ba� b = ln 1 + ba1� ba = 2 ba + O b3a3!; a; b 2 R+; b < a (6.114)70



benutzt, die si
h einfa
h dur
h Taylor{Entwi
klung ergibt. Damit findet mandd z jz=0J�1 (z) = 2mR�4(m2R +�2)32 + �2 ln �2 + 2mR �4(m2R + �2) 32+ mR �4(m2R +�2)32 + �34m2R + �2� ln�34 m2R +�2�+ mR �4(m2R +�2)32 + O� ln �� � + O(gR)= 6mR�4(m2R +�2)32 + �2 ln �2+ �34m2R +�2� ln�34m2R + �2� + O� ln �� � + O(gR)= 6mR� + �2 ln �2 + �34m2R +�2� ln�34m2R + �2�+O� ln �� � + O(gR): (6.115)Hier kann wieder die Masse m0 an Stelle von mR eingef�uhrt werden:dd z jz=0J�1 (z) = 6m0� + �2 ln �2 + �34 m20 + �2� ln�34m20 +�2�+O� ln �� � + O(gR): (6.116)Dieser S
hritt ist etwas k�unstli
h und eigentli
h unn�otig; er ges
hieht nur deshalb, umsp�ater einen besseren Verglei
h mit dem Ergebnis aus Abs
hnitt 6.2 zu erm�ogli
hen. Wiebereits weiter oben erw�ahnt, ist die Trennung zwis
hen Regularisierung und Renormie-rung bei diesem zweiten Weg ni
ht so s
harf. Nat�urli
h k�onnte man au
h hier Gl.(6.112)zun�a
hst unver�andert stehenlassen, und wirkli
h erst bei der Renormierung obige Re
hnung(Gl.(6.112) bis Gl.(6.115)) ausf�uhren. Die vorzeitige Benutzung der Renormierungsbezie-hung ges
hieht nur deshalb, um die do
h sehr lange und un�ubersi
htli
he Formel (6.112)bereits hier auf ihre wesentli
hen Teile zu reduzieren, denn au
h sp�ater werden nur Termebis auss
hlie�li
h zur Ordnung gR Verwendung finden. Mit den Glei
hungen (6.89), (6.111)und (6.116) ergibt si
h damit endli
h f�ur das gesu
hte ddz jz=0�01(z):dd z jz=0�01(z) = � L24� ( 34m20 + �2 � 2�2 � 34m20)� L24� (� �34 m20 + �2� ln�34m20 +�2� + 6m0� + �2 ln �2+ �34m20 +�2� ln�34m20 + �2� + O� ln �� � + O(gR))+ L24� m20 �3 + 34 ln 3� =)71



dd z jz=0�01(z) = L24� �2 � L24� (6m0� + �2 ln �2 + O� ln �� � + O(gR))+ L24� m20�3 + 34 ln 3�: (6.117)6.3.2 � 02{Bere
hnungNa
h der Definition (6.86) gilt:�02(z) = 1�(z) 1Z0 dt tz�1 �e�t�2 � 1��Kt(��2)� 1�; Re(z) > 0;analytis
h fortgesetzt sonst= 1�(z) 1Z0 dt tz�1e�t�2 �Kt(��2)� 1� � 1�(z) 1Z0 dt tz�1 �Kt(��2)� 1�| {z }�2(z)= 1�(z) 1Z0 dt tz�1e�t�2Kt(��2)| {z }P0 � 1�(z) 1Z0 dt tz�1e�t�2| {z }��2z � �2(z); (6.118)mit der Funktion �2 aus Abs
hnitt 6.2 (vgl.die Definition (6.54)). F�ur das Integral P0nutzt man nun folgende Aufspaltung von Kt(��2) (vgl. Gl.(6.11)):Kt(��2) = L24�t + L24�t 1Xk;l2 ..................................(k;l) 6= (0;0)e�(k2+l2)L24t ; (6.119)denn jetzt sieht man, da� der Beitrag zum Integral P0 , der von der unendli
hen Doppel-reihe herr�uhrt, mit �!1 mindestens wie 1�2 gegen 0 geht, was wiederum dur
h O� 1�2 �ausgedr�u
kt sei (folgt, da der Integrand ohne e�t�2 bes
hr�ankt ist, indem man die Substi-tution u = t�2 ausf�uhrt). Der Beitrag des ersten Terms l�a�t si
h einfa
h ausre
hnen, manerh�alt � 02(z) = L24��(z) 1Z0 dt tz�2e�t�2 � ��2z � �2(z) + O� 1�2�= L24� �(z � 1)�(z) ��2�1�z � ��2z � �2(z) + O� 1�2�= L24� ��2�1�zz � 1 � ��2z � �2(z) + O� 1�2�: (6.120)Damit und mit Gl.(6.73) f�ur die Ableitung von �2 an der Stelle z = 0 folgtdd z jz=0�02(z) = � L24� �1� ln �2��2 + 2 ln� � BPV + ln L24� + O� 1�2�= � L24� �1� ln �2��2 + ln �2 � BPV + ln L24� + O� 1�2�: (6.121)72



Folgende Umformung wird si
h no
h als n�utzli
h erweisen:dd z jz=0�02(z) = �L24� �1� ln �2��2 � BPV + ln L24� + ln �2 + O� 1�2�+ 1Z0 dt e�t�2 � 1t � 1Z0 dt e�t�2 � 1t : (6.122)Mit [20℄ 1Z0 dt e�t�2 � 1t = ��2Z0 du eu � 1u= Ei���2� � 
 � ln �2; (6.123)wobei Ei(z) das Exponentialintegral ist, dessen asymptotis
hes Verhalten f�ur jzj ! 1bekannt ist [20℄, n�amli
hEi(z) = zZ�1 ett dt; jarg(�z)j < � (6.124)�jzj!1 ezz " nXk=0 k!zk + O�jzj�(n+1)�#; jarg(�z)j � � � ÆÆ > 0; (6.125)und daher Ei���2� ��!1 e��2��2 = O�e��2�;erh�alt man s
hlie�li
h (die Terme O�e��2� werden mit den Termen O� 1�2 � zusammenge-fa�t) dd z jz=0�02(z) = �L24� �1� ln �2��2 � BPV + ln L24� + ln�2� 
 � ln �2 � 1Z0 dt e�t�2 � 1t + O� 1�2�= �L24� �1� ln �2��2 � BPV + ln L24� � 1Z0 dt e�t�2 � 1t� 
 + O� 1�2�: (6.126)6.3.3 � 03{Bere
hnungEs gilt wegen der Definition (6.87):�03(z) = 1�(z) 1Z0 dt tz�1 �e�t�2 � 1� Kt(��2)� L24�t!� ~Kt(Q)� 1� =)73



�03(z) = 1�(z) 1Z0 dt tz�1e�t�2  Kt(��2)� L24�t!� ~Kt(Q)� 1�� 1�(z) 1Z0 dt tz�1  Kt(��2)� L24�t!� ~Kt(Q)� 1�| {z }�3(z) ; (6.127)mit �3(z) aus Abs
hnitt 6.2 (vgl. die Definition (6.55)). Weiter findet mandd z jz=0�03(z) = 1Z0 dtt e�t�2  Kt(��2)� L24�t!� ~Kt(Q)� 1� � dd z jz=0�3(z)= � dd z jz=0�3(z) + O� 1�2�;da das erste Integral mindestens wie 1�2 gegen 0 geht f�ur � ! 1 (sieht man wie in derBemerkung na
h Gl.(6.119) auf Seite 72). Mit dem Ergebnis f�ur ddz jz=0�3(z) aus Abs
hnitt6.2 (vgl. Gl.(6.81)) gilt daher:dd z jz=0�03(z) = �2sp3Lm0� e�p32 m0 L + mit L s
hnellerabfallende Terme + O� 1�2�: (6.128)6.3.4 Ergebnis f�ur J0Zusammengefa�t ergibt si
h somit letztli
h f�ur J0 mit den Glei
hungen (6.117), (6.126)und (6.128):J0 = dd z jz=0�01(z) + dd z jz=0�02(z) + dd z jz=0�03(z)= L24� �2 � 3m0�L22� � L24� �2 ln �2 + O� ln �� � + O(gR)+ L24� m20�3 + 34 ln 3� � L24� �2 + L24� �2 ln �2 � BPV + ln L24�� 
 � 1Z0 dt e�t�2 � 1t + O� 1�2�� 2 sp3Lm0� e�p32 m0 L + mit L s
hnellerabfallende Terme= �3m0�L22� + L24� m20�3 + 34 ln 3� � BPV + ln L24�� 
 � 1Z0 dt e�t�2 � 1t � 2sp3Lm0� e�p32 m0 L+mit L s
hnellerabfallende Terme + O� ln �� � + O� 1�2� + O(gR); (6.129)74



was bis zur betra
hteten Ordnung und bis auf Terme, die f�ur � ! 1 gegen 0 gehen, mitdem Ergebnis aus Abs
hnitt 6.2 (vgl. Gl.(6.83)) �ubereinstimmt.6.4 Ergebnis f�ur ln det0MdetM0 jP.-V.Na
h Gl.(6.36) gilt:ln det0MdetM0 jP.-V. = J0 + 1Z0 dt e�t�2 � 1t + 1Z1 dtt e�t�2 + 
: (6.130)Na
hdem nun J0 (vgl. Gl.(6.83) bzw. Gl.(6.129)) bere
hnet ist, erh�alt man also letzt-endli
h f�ur ln det0MdetM0 jP.-V. (f�ur die Terme, die f�ur � ! 1 vers
hwinden wird das Ergebnisder Gl.(6.83) verwendet):ln det0MdetM0 jP.-V. = � 3m0L2�2� + L24� m20 �3 + 34 ln 3� � BPV + ln L24�� 2sp3Lm0� e�p32 m0L + mit L s
hnellerabfallende Terme� 
 � 1Z0 dt e�t�2 � 1t + O� 1�� + 1Z0 dt e�t�2 � 1t + 
+ 1Z1 dtt e�t�2= � 3m0L2�2� + L24� m20 �3 + 34 ln 3� � BPV + ln L24�� 2sp3Lm0� e�p32 m0L + mit L s
hnellerabfallende Terme + O� 1��; (6.131)wobei das letzte Integral � R11 dtt e�t�2 vers
hwindet f�ur �!1 mindestens wie e��2� inO� 1�� absorbiert wurde.
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Kapitel 7Bere
hnung derEnergieaufspaltung E0aNa
hdem in Kapitel 6 die no
h zu bestimmenden Determinanten bere
hnet worden sind,kann nun au
h E0a explizit angegeben werden. Mit Hilfe der Ergebnisse f�ur die Renormie-rungsgr�o�en aus Kapitel 4 soll diese Energie E0a dann renormiert werden, so da� letztli
hkeine Divergenzen mehr auftreten und au
h der Regularisierungsparameter � entfernt ist.Zun�a
hst seien aus den vorherigen Kapiteln no
h einmal alle hier ben�otigten Zwis
hener-gebnisse dargestellt:E0a = 2 e�S
 �S
2�� 12 �����det0MdetM0 ������ 12 ; (5:34)S
 = 2m30g0 L2; (5:9)ln det0MdetM0 jP.-V. = L24� m20 �3 + 34 ln 3 � � BPV + ln L24�� 2sp3Lm0� e�p32 m0L � 3m0L2�2�+ O� 1�� + mit L s
hnellerabfallende Terme, (6:131)BPV = �1; 476336 : : : ; (6:74)g0 = gR + 78 g2R4�mR + O� 1�� + O�g3R�; (4:30)m20 = m2R � � 316 mR � � � gR4� + O� 1�� + O�g2R�; (4:31)m0 = mR � � 316mR � � � gR8�mR + O� 1�� + O�g2R�: (4:32)Einige Gr�o�en, die in der folgenden Re
hnung ben�otigt werden, seien im vorhinein bestimmt:76



1g0 = 1gR + 78 g2R4�mR + O� 1�� + O(g3R)= 1gR 11 + 7gR32�mR + O� 1�� + O(g2R)= 1gR �1 � 7gR32�mR + O� 1�� + O�g2R��= 1gR � 732�mR + O� 1�� + O(gR); (7.1)m0g0 = �mR � � 316mR � �� gR8�mR + O� 1�� + O�g2R��� � 1gR � 732�mR + O� 1�� + O(gR)�= mRgR � 31128� + �8�mR + O� 1�� + O(gR); (7.2)rm0g0 = smRgR � 31128� + �8�mR + O� 1�� + O(gR)= rmRgR s1 + � �8�mR � 31128�� gRmR + O� 1�� + O(g2R)= rmRgR �1 + O� 1�� + O(gR)�= rmRgR + O� 1�� + O�g1=2R �; (7.3)2 m30g0 = 2m20 m0g0= 2�m2R � � 316mR � �� gR4� + O� 1�� + O�g2R��� �mRgR � 31128� + �8�mR + O� 1�� + O(gR)�= 2 m3RgR � 31128�m2R + �mR8�� � 316mR � ��mR4� + O� 1�� + O(gR)�= 2 m3RgR � 31128� m2R + �mR8�� 364� m2R + �mR4� + O� 1�� + O(gR)�= 2m3RgR + 3mR�4� � 3764� m2R + O� 1�� + O(gR); (7.4)77



sm30g0 = m0 rm0g0= �mR � � 316mR � �� gR8�mR + O� 1�� + O�g2R����rmRgR + O� 1�� + O�g 12R��= sm3RgR + O� 1�� + O�g 12R�: (7.5)Damit ergibt si
h zun�a
hst f�ur die regularisierte Energie E�0a = 2 e�S
 �S
2�� 12 ���det0MdetM0 ���� 12P.-V.:E�0a = 2 e�S
 �S
2�� 12 �����det0MdetM0 ������ 12P.-V.= 2s m30g0 � L e�2m30g0 L2� 12 ln��� det0MdetM0 ���P.-V.= 2s m30g0 � L exp( � 2m30g0 L2 � L28� m20 �3 + 34 ln 3 � + BPV2 � ln Lp4�+sp3Lm0� e�p32 m0L + 34m0L2�� + O� 1�� + mit L s
hnellerabfallende Terme)= 20�sm3RgR� + O� 1�� + O�g 12R�1AL p4�L eBPV2� exp(� L2� 2m3RgR + 3mR�4� � 3764� m2R + O� 1�� + O(gR)+ m2R8� �3 + 34 ln 3 ��)� exp( sp3LmR� + O� 1�� + O(gR)! e�p32 mRL+O( 1�)+O(gR)+mit L s
hnellerabfallende Terme )� exp(L2�34 mR�� + O� 1��+ O(gR)�)= 4rmRgR mR eBPV2 exp( � L2� 2 m3RgR + 3mR�4� � 3764� m2R + m2R8 � �3 + 34 ln 3�� 34 mR�� � 1L2 sp3LmR� e�p32 mRL + O(gR)+ mit L s
hnellerabfallende Terme �) + O� 1�� + O�g 12R� =)78



E�0a = 4rmRgR mR eBPV2 exp(�L2 "2m3RgR � m2R2� �3732 � 34 � 316 ln 3� + O(gR)#)� exp8<:sp3LmR� e�p32 mR L + mit L s
hnellerabfallende Terme 9=;+O� 1��+O�g 12R�: (7.6)Insgesamt erh�alt man also, indem die dimensionslose Gr�o�e uR := gRmR eingef�uhrt wird (dieKopplungskonstante gR hat in d = 3 Dimensionen Massendimension 1):E�0a = CPV e��(L)L2 + O�u 12R� + O� 1��; (7.7)mitCPV := 4 eBPV2 mRpuR ; (7.8)�(L) := �10�1 � sp3LmR� e�p32 mR LL2 uR2m2R + mit L s
hnellerabfallende Terme + O(uR)1A; (7.9)�1 := 2m2RuR �1 � uR4� �1332 � 316 ln 3� + O�u2R�� (7.10)= 2m2RuR �1 � uR4� 0; 20026 : : : + O�u2R��: (7.11)Dur
h die Renormierung sind die Divergenzen f�ur � ! 1 vers
hwunden, so da� nun derRegularisierungsparameter � dur
h die Limesbildung �!1 entfernt werden kann:E0a = CPV e��(L)L2 + O�u 12R�; (7.12)CPV := 4 eBPV2 mRpuR ; (7.13)�(L) := �10�1 � sp3LmR� e�p32 mR LL2 uR2m2R + mit L s
hnellerabfallende Terme + O(uR)1A;(7.14)�1 := 2m2RuR �1 � uR4� �1332 � 316 ln 3� + O�u2R��: (7.15)S
hlie�li
h kann man mit Hilfe von Gl.(4.60) no
h die physikalis
he Masse mph an Stelle derrenormierten Masse mR einf�uhren, wobei wegen �! 1 die Terme O� 1�� vers
hwinden:m2R = m2ph �1 � uR4� �1316 � 34 ln 3� + O�u2R��: (7.16)79



Damit erh�alt man:�1 = 2m2RuR �1 � uR4� �1332 � 316 ln 3� + O�u2R��= 2m2ph� 1uR � 14� �1316 � 34 ln 3� + O(uR)�� 1 � uR4� �1332 � 316 ln 3� + O�u2R��= � 2m2phuR � m2ph2� �1316 � 34 ln 3� + O(uR)�� 1 � uR4� �1332 � 316 ln 3� + O�u2R��= 2m2phuR � m2ph2� �1332 � 316 ln 3� � m2ph2� �1316 � 34 ln 3� + O(uR)= 2m2phuR � m2ph2� �3932 � 1516 ln 3� + O(uR)= 2m2phuR �1 � uR4� �3932 � 1516 ln 3� + O�u2R��: (7.17)Insgesamt ergibt si
h also f�ur E0a:E0a = CPV e��(L)L2 + O�u 12R�; (7.18)CPV = 4 eBPV2 mphpuR ; (7.19)�(L) = �10�1�sp3Lmph� e�p32 mph LL2 uR2m2ph + mit L s
hnellerabfallende Terme+ O�u2R�1A; (7.20)�1 = 2m2phuR �1 � uR4� �3932 � 1516 ln 3� + O�u2R��: (7.21)
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Kapitel 8Verglei
h mit dimensionalerRegularisierungIn der Einleitung war darauf hingewiesen worden, da� die Bere
hnung von E0a in Pauli{Villars{Regularisierung dur
hgef�uhrt wurde, um die Ergebnisse mit dimensionaler Regu-larisierung zu �uberpr�ufen, da dur
h die dimensionale Regularisierung Divergenzen in demSinne fortfallen k�onnen, da� sie si
h au
h ni
ht beim kritis
hen Wert des Regularisierungs-parameters ergeben (z.B. " = 0 bei der "{Entwi
klung, " = 3� d), und daher eine �Uber-pr�ufung au
h der (endli
hen) Ergebnisse sinnvoll ers
heint. Na
hdem das Ergebnis f�ur E0anun vorliegt, kann der Verglei
h der Resultate beider Regularisierungss
hemata jetzt vorge-nommen werden. Die Ergebnisse der Re
hnung mit dimensionaler Regularisierung stammenaus einer Arbeit von G. M�unster [9℄. Dort findet si
h:E0a = C expn��(L)L2o; (8.1)mit C = 4 �(34)�(14) s 2uR mph (8.2)und �1 = limL!1 �(L) = 2 m2phuR �1 � uR4� �3932 � 1516 ln 3� + O�u2R��: (8.3)Der Verglei
h mit den Gln.(7.18){(7.21) zeigt, da� �1 in beiden Regularisierungss
hemata(bis zur betra
hteten Ordnung in uR) �ubereinstimmt. Au
h der Wert von C ist glei
h CPV(vgl. Gl.(7.19)), wie man einfa
h na
hre
hnet:C = 4 �(34)�(14)s2m2phuR = 1; 351956 : : :s2m2phuR (dimensional)CPV = 4 eBPV2p2 s2m2phuR = 1; 351956 : : :s2m2phuR (Pauli{Villars):Diese �Ubereinstimmung von C und CPV kann au
h ganz allgemein bewiesen werden [21℄.Es gilt n�amli
h mit Gl.(6.54) und Gl.(6.52):A(s) = Xn2 .................................. e��n2s; Re s > 0; (8.4)81



�2(z) = 1�(z) 1Z0 dt tz�1�A2�4�tL2 �� 1�, Re z > 1;analytis
h fortgesetzt sonst= 1�(z) Xn1;n2 2 ..................................(n1;n2) 6=(0;0) 1Z0 dt tz�1 e�� (n21+n22) 4�L2 t= 1�(z) Xn1;n2 2 ..................................(n1;n2) 6=(0;0) L24�!z 1Z0 dt tz�1 e�� (n21+n22) t= 1�(z)  L24�!z Xn1 ;n2 2 ..................................(n1;n2) 6=(0;0)h�(n21 + n22)i�z 1Z0 dt tz�1 e�t=  L24�!z Xn1;n2 2 ..................................(n1;n2) 6=(0;0)h�(n21 + n22)i�z=  L24�!z ��z Z2(z); (8.5)mit Z2(z) := Xn1;n2 2 ..................................(n1;n2) 6=(0;0)h(n21 + n22)i�z; Re z > 1;analytis
h fortgesetzt sonst. (8.6)Insbesondere sieht man, da �2(0) = �1 gilt (erkennt man aus Gl.(6.69)), da� au
hZ2(0) = �1 (8.7)gilt. Damit folgt d �2(z)dz jz=0 = � ln L24� + ln � + Z 02(0) (8.8)und dur
h Verglei
h mit Gl.(6.73) alsoBPV = ln � + Z 02(0): (8.9)Um Z02(0) zu bestimmen, benutzt man nun folgenden Sa
hverhalt [22℄:Z2(s) = 4 �(s)L(s); (8.10)mit �(s) = 1Xn=1 n�s; Re s > 1; (Riemanns
he �{Funktion)analytis
h fortgesetzt sonst, (8.11)L(s) = 1Xn=0(�1)n (2n+ 1)�s ; Re s > 0;analytis
h fortgesetzt sonst. (8.12)82



F�ur L(s) gilt folgende Funktionalglei
hung [23, Seite 35℄:L(s) = ��2�s�1 �(1� s) 
os�� s2 � L(1� s): (8.13)Dur
h Verglei
h mit der Reihe des Ar
ustangens sieht man weiterL(1) = ar
tan 1 = �4 (8.14)und wegen Gl.(8.13) daher au
h L(0) = 2� L(1) = 12 : (8.15)Au�erdem gilt f�ur die (analytis
h fortgesetzte) �{Funktion [23, Seite 34℄:�(0) = �12 ; �0(0) = �12 ln(2�): (8.16)Daher ergibt si
h aus Gl.(8.10)Z 02(0) = � ln(2�) � 2L0(0) (8.17)und wegen Gl.(8.13) L0(0) = 12 ln �2 � 12 �0(1) � 2� L0(1): (8.18)Weiter erh�alt man L(s) = 1Xn=0(�1)n (2n+ 1)�s= 1�(s) 1Z0 dt ts�1 1Xn=0(�1)n e�(2n+1) t= 1�(s) 1Z0 dt ts�1 1et + e�t= 12�(s) 1Z0 dt ts�1
osh t : (8.19)Damit findet manL0(1) = � 12 �0(1) 1Z0 dt 1
osh t| {z }F1 + 12 1Z0 dt ln t
osh t| {z }F2 : (8.20)
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Im einzelnen gilt: F1 = 2 1Z0 dtet + e�t= 2 1Z0 dt ete2t + 1= 2 1Z1 dx 11 + x2 ; x = et= 2 ar
tanx 11= 2 ��2 � �4�= �2 : (8.21)F�ur F2 folgt [14, Gl. 4.371 1℄:F2 = �2 ln(2�) + � ln" �(34)�(14) #: (8.22)Daher bekommt man f�ur L0(1)L0(1) = � �4 �0(1) + �4  ln(2�) + 2 ln" �(34)�(14)#! (8.23)und mit Gl.(8.18)L0(0) = 12 ln �2 � 12 �0(1) + 12 �0(1) � 12  ln(2�) + 2 ln " �(34)�(14)#!= � ln" 2 �(34)�(14)#: (8.24)Hiermit findet man wegen Gl.(8.17) und Gl.(8.9) s
hlie�li
hZ 02(0) = � ln(2�) + 2 ln" 2 �(34)�(14)# (8.25)und BPV = � ln 2 + 2 ln" 2 �(34)�(14)#= ln 2 + 2 ln" �(34)�(14)#= 2 ln"p2 �(34)�(14)#: (8.26)84



Wegen Gl.(7.19) ergibt si
h daher f�ur CPV:CPV = 4 eBPV2 mphpuR= 4 �(34)�(14)s2m2phuR ; (8.27)was mit C �ubereinstimmt (vgl. Gl.(8.2)).Die Ergebnisse der Re
hnung stimmen also in beiden Regularisierungss
hemata bis zurbetra
hteten Ordnung in uR �uberein. Dies sollte au
h so sein, denn letztli
h sollte die Ener-gieaufspaltung E0a der �4{Theorie in der gebro
henen Phase bei endli
hem Volumen un-abh�angig vom verwendeten Regularisierungss
hema sein, da die Regularisierung nur einegewisse Re
hente
hnik darstellt und der oder die Regularisierungsparameter am Ende derRe
hnung, na
h vollzogener Renormierung, wieder entfernt werden m�ussen. Ein unters
hied-li
hes Resultat k�onnte dann entstehen, wenn im Verlauf der Re
hnung sowohl Ultraviolett{als au
h Infrarot{Divergenzen auftr�aten. Wie am Ende von Kapitel 3 angef�uhrt, werdendur
h die Pauli{Villars{Regularisierung nur die UV{Divergenzen beseitigt, w�ahrend diedimensionale Regularisierung hinsi
htli
h IR{ und UV{Divergenzen ni
ht unters
heidet.Die �Ubereinstimmung der Resultate beider Re
hnungen zeigt nun, da� dieser Unters
hiedbeider Regularisierungss
hemata ni
ht in Ers
heinung tritt; Infrarot{Divergenzen treten inder Re
hnung ni
ht auf. Der andere Grund f�ur ein unters
hiedli
hes Ergebnis w�are, wieoben erw�ahnt, da� die dimensionale Regularisierung m�ogli
herweise ni
ht nur Divergen-zen in dem Sinne aus der Theorie entfernt, da� diese au
h ni
ht beim kritis
hen Wert desRegularisierungsparameters auftreten (z.B. keine Divergenz f�ur " = 3 � d = 0 in der "{Entwi
klung), sondern au
h ver�anderte (endli
he) Ergebnisse liefert; wie der Verglei
h mitder Pauli{Villars{Regularisierung zeigt ist au
h dies ni
ht der Fall.
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Kapitel 9�Uberlegungen zur Regularisierungder DeterminantenIn Kapitel 6.1 war als Regularisierungsvors
hrift bei der Determinantenbere
hnung die Er-setzung (vgl. Gl.(6.30)):Tr ln MM0 �! Tr ln MM0 � Tr ln M +�2M0 +�2 (9.1)(die Nullmode von M sowie das zu deren Behandlung verwendete �2 werden hier der �Uber-si
htli
hkeit halber unterdr�u
kt) als sinnvoll eingef�uhrt worden. Das Ergebnis f�ur die Ener-gieaufspaltung E0a (Kapitel 7) sowie der Verglei
h mit der dimensionalen Regularisierung(Kapitel 8) re
htfertigen im na
hhinein diese Vorgehensweise. Denno
h w�are es w�uns
hens-wert, die Ersetzung (9.1) au
h direkt aus einer im Sinne einer Pauli{Villars{Regularisierungmodifizierten Lagrange{Di
hte zu gewinnen. Ausgehend von der urspr�ungli
hen Lagrange{Di
hte L' f�ur das '{Feld (vgl. Gl.(2.8)),L' = 12 ��'��' + m202 '2 + p3 g0m03! '3 + g04! '4 (9.2)bzw. �aquivalent dazuL0' = 12 '�2E +m20�' + p3 g0m03! '3 + g04! '4; 2E = ���20 + �21 + �22� (9.3)(L' und L0' unters
heiden si
h nur um eine totale Divergenz), ist es naheliegend unterBea
htung der Pauli{Villars{Regularisierung (vgl. die Beziehung (3.10))1p2 +m20 �! 1p2 +m20 � 1p2 + �2 ; (9.4)was im Ortsraum die Ersetzung�2E +m20��1 �! �2E +m20��1 � �2E + �2��1 = �2 �m20�2E +m20� (2E +�2) (9.5)=) M0 = �2E +m20� �! M0;PV := �2E +m20� �2E + �2��2 �m20 (9.6)86



(zur Definition von M0 vgl. au
h die Beziehungen (6.1) und (6.4)) bedeutet, folgendemodifizierte Lagrange{Di
hte LPV zu betra
hten:LPV = 12 ' �2E +m20� �2E +�2��2 �m20 ' + p3 g0 m03! '3 + g04! '4;= 12 'M0;PV ' + p3 g0 m03! '3 + g04! '4: (9.7)Die Operatoren M und M0 in der Vors
hrift (9.1) (vgl. au
h die Definitionen (6.1){(6.4)) sind, wie in Kapitel 5 gezeigt, die Fluktuationsoperatoren (zur zweiten funktionalenAbleitung von S[�0℄ geh�orige Operatoren) der Wirkung S[�0℄ zu bestimmten L�osungender Bewegunghsglei
hung f�ur �0 (Gl.(5.7)), und zwar M0 zur L�osung �0 = v0 oder �0 =�v0 , v0 = q3m20=g0 (bzw. ' = �0 � v0 = 0 oder ' = �2 v0 , man bea
hte Gl.(2.5)),also zu den Potentialminima, und M zur Kink{L�osung �0 = v0 tanh�m02 �x0 � a�� ( bzw.' = �tanh �m02 �x0 � a�� � 1� v0).Um die modifizierten Fluktuationsoperatoren, die der Lagrange{Di
hte LPV entspre-
hen, zu bekommen, ist daher die Wirkung SPV = R d3xLPV um entspre
hende L�osungender neuen, aus LPV resultierenden Bewegungsglei
hung zu entwi
keln. Dazu seien zun�a
hstdie niedrigsten Funktionalableitungen (vorerst allgemein an der Stelle ') ausgere
hnet:SPV['℄ = Z d3xLPV= Z d3x(12 'M0;PV ' + p3 g0 m03! '3 + g04! '4);Z d3x ÆSPV['℄Æ'(x) �(x) = Z d3x(M0;PV ' + p3 g0 m02 '2 + g03! '3) �(x); (9.8)Z d3x �(x)Æ2SPV['℄Æ'(x)2 �(x) = Z d3x �(x)(M0;PV + p3 g0 m0 ' + g02 '2) �(x): (9.9)Daher ergibt si
h als neue Bewegungsglei
hungÆSPV['℄Æ'(x) = 0=) M0;PV ' + p3 g0 m02 '2 + g03! '3 = 0 (9.10)und als Fluktuationsoperator MPV an der Stelle 'MPV(') = M0;PV + p3 g0 m0 ' + g02 '2; (9.11)so da� man als Entwi
klung von SPV um eine L�osung '
 der Bewegungsglei
hung (9.10)bekommt: SPV['
 + �℄ = SPV['
℄ + 12 Z d3x �(x)MPV('
) �(x) + O(�3): (9.12)Die den Operatoren M und M0 entspre
henden modifizierten Operatoren werden einzelnbere
hnet: 87



� Modifikation von M0 :Um einen dem Operator M0 in Pauli{Villars{Regularisierung entspre
henden Opera-tor M 
1PV zu bekommen, ist zun�a
hst eine der L�osung '(1)0
 = 0 der urspr�ungli-
hen Bewegungsglei
hung entspre
hende L�osung von Gl.(9.10) zu su
hen. Man ma
htst�orungstheoretis
h den Ansatz'(1)
 = '(1)0
 + 1� '(1)01 + 1�2 '(1)02 + O� 1�3�: (9.13)Einsetzen in die Bewegungsglei
hung (9.10) liefert1�M0;PV '(1)01 + 1�2 �M0;PV '(1)02 + p3 g0 m0 �'(1)01 �2� + O� 1�3� = 0: (9.14)Weiter gilt, indem man M0;PV na
h Potenzen von 1� entwi
kelt,M0;PV = �2E +m20� �2E +�2��2 �m20= �2E +m20� �1 + 2E�2 �1� m20�2= �2E +m20� 1 + 2E +m20�2 ! + O� 1�4�= �2E +m20� + �2E +m20�2�2 + O� 1�4�= M0 + M20�2 + O� 1�4�; (9.15)und dies in Gl.(9.14) benutzt1�M0 '(1)01 + 1�2 �M0 '(1)02 + p3 g0 m0 �'(1)01 �2� + O� 1�3� = 0 (9.16)=) M0 '(1)01 = 0=) ���20 +m20�'(1)01 = 0('(1)01 und '(1)02 sollen der Einfa
hheit halber nur von x0 und ni
ht von x1 und x2abh�angen; der allgemeine Fall l�a�t si
h mit Hilfe einer Fourier{Zerlegung behandelnund liefert keine wesentli
h anderen Ergebnisse)=) '(1)01 = C1 em0 x0 + C2 e�m0 x0 ; C1; C2 2 C=) '(1)01 = 0; (9.17)da '(1)01 f�ur x0 ! +� 1 bes
hr�ankt bleiben soll. Aus Gl.(9.16) folgt dann au
h f�ur'(1)02 M0 '(1)02 = 0=) '(1)02 = 0; (9.18)88



genau wie f�ur '(1)01 , so da� man '(1)
 = O� 1�3� (9.19)erh�alt. Mit Gl.(9.11) ergibt das s
hlie�li
h f�ur M 
1PVM 
1PV = MPV �'(1)
 �= M0;PV + O� 1�3�= M0 + M20�2 + O� 1�3�: (9.20)Nimmt man als urspr�ungli
he L�osung der unregularisierten Theorie das andere Po-tentialminimum, n�amli
h '(2)0
 = �2 v0, und ma
ht man erneut den Ansatz'(2)
 = '(2)0
 + 1� '(2)01 + 1�2 '(2)02 + O� 1�3�; (9.21)ergibt die Bewegungsglei
hung (9.10) mit Hilfe von Gl.(9.15)M0;PV �'(2)0
 + 1� '(2)01 + 1�2 '(2)02 � + p3 g0 m02 �'(2)0
 + 1� '(2)01 + 1�2 '(2)02 �2+ g03! �'(2)0
 + 1� '(2)01 + 1�2 '(2)02 �3 + O� 1�3� = 0=)  M0 + M20�2 !�'(2)0
 + 1� '(2)01 + 1�2 '(2)02 � + p3 g0 m02 �'(2)0
 + 1� '(2)01 + 1�2 '(2)02 �2+ g03! �'(2)0
 + 1� '(2)01 + 1�2 '(2)02 �3 + O� 1�3� = 0=) 1� �M0 '(2)01 + p3 g0 m0 '(2)0
 '(2)01 + g02 �'(2)0
 �2 '(2)01 �+ 1�2 �M20 '(2)0
 + M0 '(2)02 + p3 g0 m02 �'(2)01 �2 + p3 g0 m0 '(2)0
 '(2)02+ g02 '(2)0
 �'(2)01 �2 + g02 �'(2)0
 �2 '(2)02 � + O� 1�3� = 0:Setzt man hier '(2)0
 = �2 v0 ein und betra
htet die vers
hiedenen Ordnungen von1� getrennt, so findet man ('(2)01 und '(2)02 werden wieder als nur von x0 abh�angigangenommen) M0 '(2)01 = 0=) '(2)01 = 0 (s.o.) (9.22)=) M20 '(2)0
 + M0 '(2)02 = 0=) ��20'(2)02 + m20 '(2)02 � 2m40 v0 = 089



=) '(2)02 = C1 em0 x0 + C2 e�m0 x0 + 2m20 v0=) '(2)02 = 2m20 v0; (9.23)da '(2)02 f�ur x0 ! +� 1 bes
hr�ankt bleiben sollte. Das ergibt als FluktuationsoperatorM 
2PV mit Gl.(9.11) und Gl.(9.15)M 
2PV = MPV �'(2)
 �= M0;PV + p3 g0m0�'(2)0
 + 1�2 '(2)02 � + g02 �'(2)0
 + 1�2 '(2)02 �2 + O� 1�3�= M0 + M20�2 + 1�2 �2m30p3 g0 v0 + g0 '(2)0
 '(2)02 � + O� 1�3�= M0 + M20�2 + 1�2 �6m40 � 12m40� + O� 1�3�= M0 + M20 � 6m40�2 + O� 1�3�: (9.24)� Modifikation von M = 2E +m20 � 32 
osh�2�m02 �x0 � a�� (vgl. au
h die Definitionen(6.1) und (6.3)):Hier ist zun�a
hst eine der (vers
hobenen) Kink{L�osung'0
 = v0�tanh�m02 �x0 � a��� 1� (9.25)entspre
hende L�osung der Bewegungsglei
hung (9.10) zu su
hen. Wiederum ma
htman perturbativ den Ansatz'
 = '0
 + 1� '1 + 1�2 '2 + O� 1�3�; (9.26)wobei '1 und '2 erneut nur von x0 und ni
ht von x1 und x2 abh�angen sollen, undbekommt, indem man dies in Gl.(9.10) einsetzt, da '0
, wie man einfa
h na
hre
hnet,erwartungsgem�a� die Glei
hung2E'0
 + m20 '0
 + p3 g0 m02 '20
 + g03! '30
 = 0 (9.27)erf�ullt, 2E'0
 + m20 '0
 + p3 g0 m02 '20
 + g03! '30
+ 1� �2E'1 + m20'1 + p3 g0 m0'0
 '1 + g02 '20
 '1� + O� 1�2� = 0=) (� �20 � m202 + 32m20 tanh2�m02 �x0 � a��)'1 = 090



=) Q'1 = 0; Q = ��20 +m20 � 32 
osh�2�m02 �x0 � a��(vgl. Definition (6.3))=) '1 = C �0'0
; C 2 C; (9.28)denn der Operator Q besitzt, wie in Kapitel 5 angef�uhrt (vgl. die Bemerkung na
h(5.26), Q stimmt auf dem Raum der nur x0{abh�angigen Funktionen mit dem dortdiskutierten M �uberein) nur eine Nullmode, die f�ur x0 ! +� 1 bes
hr�ankt bleibt,n�amli
h �0'0
. Das bedeutet, da� die niedrigste Korrektur zur L�osung '0
 geradeC� �0'0
 ist, was ledigli
h eine Vers
hiebung der Funktion '0
 l�angs der x0{A
hsebedeutet. Da dies bereits dur
h den Parameter a in '0
 reguliert wird, ist damit derAnsatz ' = '0
 + 1�2 '2 + O� 1�3� (9.29)f�ur eine L�osung von Gl.(9.10) gere
htfertigt. Setzt man den Ansatz (9.29) in Gl.(9.10)ein, ergibt si
h na
h kurzer Re
hnung als Glei
hung f�ur '2:(2E + m20 + p3 g0 m0 '0
 + g02 '20
)'2 + �2E +m20�2'0
 = 0; (9.30)oder, indem man '0
 einsetzt und die Definitionen von M und M0 bea
htet,M'2 + M20 '0
 = 0: (9.31)Mit Gl.(9.11) bekommt man also f�ur den dem Operator M entspre
henden OperatorMKPV, wenn man den Ansatz (9.29) einsetzt und Gl.(9.15) bea
htet:MKPV = MPV('
)= M0;PV + p3 g0 m0'
 + g02 '2
= M0 + M20�2 + g0�2 �
 '2 � 32m20 
osh�2�m02 �x0 � a�� + O� 1�3�= M + 1�2 �g0 �
 '2 + M20� + O� 1�3� (9.32)��
 = v0 tanh �m02 �x0 � a�� ; v0 = q3m20=g0�:Um die Regularisierung (9.1) aus der Lagrange{Di
hte LPV (vgl. Gl.(9.7)) zu begr�unden,w�are daher Tr ln MKPVM 
 iPV = Tr ln MM0 � Tr ln M +�2M0 +�2 ; i = 1 oder 2 (9.33)zu fordern. Zun�a
hst wird der Fall i = 1 untersu
ht:Tr ln MKPVM 
1PV = Tr ln"MM0  1 + M0�21 + M�2 !#= Tr ln MM0 + Tr ln�1 + M0�2 � M�2 + O� 1�4��= Tr ln MM0 � 1�2Tr (M �M0) + O� 1�4�: (9.34)91



Indem man das Ergebnis (9.20) f�ur M 
1PV einsetzt erh�alt man einerseitsTr lnMKPV = Tr lnM � Tr lnM0 � 1�2Tr (M �M0) + Tr lnM 
1PV + O� 1�4�= Tr lnM � Tr lnM0 � 1�2Tr (M �M0) + Tr ln�M0 �1 + M0�2 ��+O� 1�3�= Tr lnM � 1�2Tr (M � 2M0) + O� 1�3�; (9.35)andererseits folgt mit dem Resultat (9.32) f�ur MKPVTr lnMKPV = Tr ln"M  1 + M�1�2 �g0�
 '2 +M20�! + O� 1�3�#= Tr lnM + 1�2 Tr hM�1 �g0 �
 '2 +M20�i + O� 1�3�; (9.36)das hei�t es sollte gelten (Gln.(9.35) und (9.36)):Tr hM�1 �g0 �
 '2 +M20�i = �Tr (M � 2M0) (9.37)Hinrei
hend f�ur Gl.(9.37) w�are demna
hM�1 �g0 �
 '2 +M20� = � (M � 2M0) (9.38)() g0 �
'2 = � �M2 � 2MM0 +M20�= � (M �M0)2= � 94m40 
osh�4�m02 �x0 � a��; (9.39)also falls '2 := � 94m40 
osh�4�m02 �x0 � a��g0 �
= � 94 m40g0 
osh�4�m02 �x0 � a��v0 tanh �m02 (x0 � a)� (9.40)eine L�osung der Glei
hung (9.31) w�are:M'2 + M20 '0
 = 0; '0
 = v0�tanh �m02 �x0 � a��� 1�: (9.41)Eine asymptotis
he Betra
htung zeigt nun jedo
h, da� das in Gl.(9.40) definierte '2 dieGl.(9.41) ni
ht erf�ullen kann. Das '2 aus Gl.(9.40) vers
hwindet n�amli
h f�ur x0 ! +� 1o�enbar wie 
osh�4�m02 �x0 � a��. Um die asymptotis
he Form von Gl.(9.41) zu erhalten,wird erst M20 '0
 bere
hnet (u := m02 (x0 � a)):M20 '0
 = ���20 +m20�2�v0 tanh�m02 �x0 � a��� v0�= v0m40 2 sinh u 
osh2 u � 32 sinh3 u + sinh u 
osh4 u � 
osh5 u
osh5 u! ( 0; f�ur x0 ! +1�2 v0m40; f�ur x0 ! �1: (9.42)92



Wegen M = 2E + m20 � 32m20 
osh�2�m02 �x0 � a��! 2E + m20f�ur x0 ! +� 1, resultieren daher folgende asymptotis
he Formen der Glei
hung (9.41):���20 +m20�'2 = 0 f�ur x0 ! +1; (9.43)���20 +m20�'2 � 2 v0m40 = 0 f�ur x0 ! �1: (9.44)Die allgemeine L�osung von Gl.(9.43) ist'2 = C1 em0 x0 + C2 e�m0 x0 ; C1; C2 2 C; (9.45)die von Gl.(9.44)'2 = C1 em0 x0 + C2 e�m0 x0 + 2 v0m20; C1; C2 2 C: (9.46)Die L�osungen von Gl.(9.41) gehen also f�ur x0 ! +1 h�o
hstens wie e�m0 x0 gegen 0, wo-hingegen 
osh�4�m02 (x0 � a)� wie e�2m0 x0 vers
hwindet. F�ur x0 ! �1 geht eine L�osungvon Gl.(9.41) gem�a� der Beziehung (9.46) h�o
hstens gegen 2 v0m20, dagegen vers
hwindet
osh�4�m02 (x0 � a)� in diesem Grenzfall. Das zeigt, da�'2 = � (M �M0)2g0 �
die Glei
hung (9.41) ni
ht erf�ullt; die Beziehung (9.38) besteht also ni
ht.F�ur den Fall i = 2 (Verwendung von M 
2PV) ergibt si
h (vgl. Gln.(9.33), (9.34)):Tr ln MKPVM 
2PV = Tr ln MM0 � 1�2Tr (M �M0) + O� 1�4�: (9.47)Einsetzen der Beziehung (9.24) f�ur M 
2PV ergibtTr lnMKPV = Tr lnM � Tr lnM0 � 1�2Tr (M �M0) + Tr lnM 
2PV + O� 1�4�= Tr lnM � 1�2Tr (M � 2M0) � Tr6m40M�10�2 + O� 1�3�: (9.48)Daher sollte gelten (vgl. Gl.(9.36)):Tr hM�1 �g0 �
 '2 +M20�i = �Tr (M � 2M0) � Tr h6m40M�10 i: (9.49)Hinrei
hend hierf�ur istM�1 �g0 �
 '2 +M20� = � (M � 2M0) � 6m40M�10 (9.50)() g0 �
'2 = � (M �M0)2 � 6m40MM�10 ;93



oder, indem man die Definitionen von M und M0 einsetzt,g0 �
 '2 = � 94m40 
osh�4�m02 �x0 � a�� � 6m40 1� 32 m20 
osh�2�m02 �x0 � a��M0 !:Diese Operatorglei
hung ist von der StrukturM�10 = F (x0); (9.51)mit einer gewissen Funktion F . Das hei�t es sollte gelten:M�10 h(x0) = F (x0) h(x0); (9.52)mit einer beliebigen Funktion h (die h�o
hstens im Unendli
hen hinrei
hend stark abfallensollte). Dies ist aber ni
ht m�ogli
h, denn Anwendung des Operators M0 = 2E + m20 aufbeiden Seiten von Gl.(9.52) liefert eine lineare Di�erentialglei
hung zweiter Ordnung f�urh, die si
her ni
ht f�ur beliebige h erf�ullt ist, sondern nur f�ur einen zweidimensionalena�inen Unterraum des Raumes aller (gen�ugend oft di�erenzierbaren, hinrei
hend stark imUnendli
hen abfallenden) Funktionen. Also gilt au
h die Beziehung (9.50) ni
ht.Nun sind die Beziehungen (9.38) und (9.50) nur hinrei
hend, aber ni
ht notwendig,damit Gl.(9.37) bzw. Gl.(9.49) gilt. Um diese Spurglei
hungen zu verifizieren, sollte jedo
hzun�a
hst '2 bekannt sein, also eine geeignete L�osung vonM'2 + M20'0
 = 0: (9.53)Na
h einiger Anstrengung gelingt es tats�a
hli
h, die allgemeine L�osung dieser inhomogenenlinearen Di�erentialglei
hung zweiter Ordnung anzugeben (dabei wird '2 wieder als nurvon x0, und ni
ht von x1 und x2 abh�angig angenommen):'2 = �m20 v0( sinh�m02 �x0 � a�� 
osh�m02 �x0 � a�� + tanh�m02 �x0 � a��+ 3m04 �x0 � a� + 
osh4�m02 �x0 � a��) 
osh�2�m02 �x0 � a��+m20 v0( A1
osh2�m02 (x0 � a)� + A2 316 m0 �x0 � a�
osh2�m02 (x0 � a)�+ 38 tanh�m02 �x0 � a�� + 18 sinhhm0 �x0 � a�i�); A1; A2 2 C:(9.54)A1 und A2 sollten nun so gew�ahlt werden, da� '2 f�ur x0 ! +� 1 endli
h bleibt. Un-gl�u
kli
herweise ist dies ni
ht m�ogli
h, wie eine kurze �Uberlegung zeigt; das hei�t A2 kannh�o
hstens so gew�ahlt werden, da� '2 f�ur x0 ! +1 oder f�ur x0 ! �1 endli
h bleibt,aber ni
ht f�ur x0 ! +� 1 (die Wahl von A1 spielt f�ur das asymptotis
he Verhalten von '2o�ensi
htli
h keine Rolle). Die Glei
hung (9.53) besitzt daher keine normierbare L�osung.Diese S
hwierigkeiten zeigen, da� der plausible Versu
h, die Lagrange{Di
hte wie inGl.(9.7) zu modifizieren, wohl ni
ht geeignet ist, die Regularisierungsvors
hrift (9.1) zugewinnen. Um diese denno
h zu bekommen, wird man m�ogli
herweise Zusatzfelder in die94



Lagrange{Di
hte aufnehmen m�ussen, allerdings ni
ht wie in Kapitel 3 (vgl. S.12 mit demHinweis auf [11℄) bosonis
he (diese liefern nur die Propagatorersetzung wie in der Bezie-hung (3.1) aus Kapitel 3), sondern fermionis
he, deren Behandlung bei der Pauli{Villars{Regularisierung eine andere ist, indem ni
ht die einzelnen Fermion{Propagatoren ersetztwerden, sondern ganze Fermion{S
hleifen zu modifizieren sind [24, Seite 411 �.℄. Ob diesso m�ogli
h ist, bleibt no
h ein o�enes Problem.
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Anhang AKlassis
he Wirkung S
 derKink{L�osung �
Es soll die klassis
he Wirkung S
 der Kink{L�osung �
 in d=3 Dimensionen bei endli
hem(r�aumli
hem) Volumen L2 und unendli
her Zeitausdehnung bere
hnet werden. Es gilt:�
 = s3m20g0 tanhh12 m0(x0 � a)i (A.1)S
 = Z d3x�12 ���
 ���
 + V (�
)� (A.2)Wegen des Vers
hwindens von �
 �0�
 � tanhx0
osh2 x0 f�ur x0 ! +� 1 kann partiell integriertwerden: S
 = L2 Z dx0�� 12 �
 �20�
 + V (�
)�= L2 Z dx0�� 12 �
 V 0(�
) + V (�
)�; (A.3)denn �
 erf�ullt die Bewegungsglei
hung (5.7)��20 �
 + V 0(�
) = 0=) �20 �
 = V 0(�
):Setzt man das Potential V (�0) ein (vgl. Gl.(2.2)), und bea
htet �2 bm20 = m20 (vgl. Definition(2.7)), V (�
) = �m204 �2
 + g04! �4
 + 38 m40g0 ;ergibt si
hS
 = L2 Z dx0(m204 �2
 � g012 �4
 � m204 �2
 + g024 �4
 + 38 m40g0 ) =)96



S
 = L2 Z dx0(� g04! �4
 + 38 m40g0 )= 38 m40g0 L2 Z dx0 n1 � tanh4 h12 m0 (x0 � a)io= 34 m30g0 L2 Z dx n1 � tanh4 xo= 34 m30g0 L2 �tanhx + 13 tanh3 x� +1�1= 34 m30g0 L2 �43 + 43�= 2 m30g0 L2: (A.4)
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Anhang BZahl der Anordnungen einern{Kink{Kon�gurationIn Kapitel 5 war bei der Ber�u
ksi
htigung von Multikink{Konfigurationen folgende Formelverwendet worden:+T2Z�T2 dt1 t1Z�T2 dt2 � � � tn�1Z�T2 dtn = Tnn! ; n 2 N6=0: (B.1)Diese Beziehung soll nun bewiesen werden. Dazu kann zun�a
hst die linke Seite von Gl.(B.1)dur
h die Substitution(t01; t02; : : : ; t0n) = (t1 + T2 ; t2 + T2 ; : : : ; tn + T2 ) (B.2)in TZ0 dt01 t01�T2+T2Z0 dt02 � � � t0n�1�T2 +T2Z0 dt0n = TZ0 dt01 t01Z0 dt02 � � � t0n�1Z0 dt0n�uberf�uhrt werden, so da� Gl.(B.1) �aquivalent zu (statt t01; : : : ; t0n wird wieder t1; : : : ; tnges
hrieben) TZ0 dt1 t1Z0 dt2 � � � tn�1Z0 dtn = Tnn! ; n 2 N6=0; (B.3)ist. In dieser Form soll die Behauptung mittels einer Induktion na
h n bewiesen werden.Induktionsanfang: n = 1 TZ0 dt1 = T = T 11! :Induktionsvoraussetzung: F�ur n� 1 m�oge die Formel gelten (n � 2):TZ0 dt1 t1Z0 dt2 � � � tn�2Z0 dtn�1 = Tn�1(n� 1)! : (B.4)98



Induktionss
hlu�: n � 1! n (n � 2)Es m�ogen folgende Definitionen gelten:Fn(T ) := TZ0 dt1 t1Z0 dt2 � � � tn�1Z0 dtn; (B.5)Hn(T ) := Tnn! : (B.6)O�enbar gilt: Fn(0) = 0;Hn(0) = 0;=) Hn(0) = Fn(0): (B.7)Weiter ergibt die Di�erentiation na
h TH 0n(T ) = Tn�1(n� 1)! (B.8)und F 0n(T ) = TZ0 dt2 t2Z0 dt3 � � � tn�1Z0 dtn= TZ0 dt1 t1Z0 dt2 � � � tn�2Z0 dtn�1= Tn�1(n� 1)! ; (B.9)na
h Induktionsvoraussetzung (B.4). Daher erh�alt manH 0n(T ) = F 0n(T )=) Fn(T ) = Hn(T ) + C; C 2 R;und wegen Gl.(B.7) Fn(T ) = Hn(T ):Das ist die Behauptung.
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Anhang CEinige n�utzli
he Beziehungen zur�{FunktionIm Verlauf der Re
hnungen in Kapitel 6 werden einige Beziehungen zur �{Funktion ben�otigt,die hier der �Ubersi
htli
hkeit halber zusammengestellt werden sollen. Die Beweise f�ur dieseFormeln folgen aus den bekannten Eigens
haften der �{Funktion [20℄:1�(z) jz=0 = 0; (C.1)dd z jz=0 1�(z) = 1; (C.2)�� 12� = � 12 ; (C.3)���12� = �2 � 12 ; (C.4)�0(1) = � 
; 
 : Euler{Konstante; (C.5)�0�12� = �� 12 ( 
 + 2 ln 2); (C.6)�0��12� = 2 � 12 ( 
 + 2 ln 2� 2); (C.7)�0(2) = dd z jz=0�(z + 2)= dd z jz=0n (z + 1)�(z + 1)o= 1 + �0(1)= 1 � 
: (C.8)100



Anhang DFehlerintegralIn Gl.(6.25) war das Fehlerintegral � eingef�uhrt worden; diese Glei
hung soll nun genauerbegr�undet werden. Bekanntli
h gilt:�(z) = 2p� zZ0 e�t2 dt; z 2 C : (D.1)Weiterhin besteht die Beziehung [20, Kapitel II℄:2� 1Z0 e�zt21 + t2 dt = ez �1� �(pz )�; Re z > 0: (D.2)Damit gilt nun (Definition von g(p) in Gl.(6.26)):~Kt(Q) = 1 + e� 34m20 t + +1Z�1 dp g(p) e�t(m20+p2)= 1 + e� 34m20 t � m02� +1Z�1 dp 0� 2p2 +m20 + 1p2 + m204 1A e�t(m20+p2)= 1 + e� 34 m20 t � m02� e�tm20" 2m0 +1Z�1 dp0 e�t m20 (p0)21 + (p0)2+ 2m0 +1Z�1 dp00 e�t m204 (p00)21 + (p00)2 #�p0 = pm0 ; p00 = 2 pm0�= 1 + e� 34m20 t � e�tm20� "� etm20 �1� ��m0pt�� + � et m204 �1� ��m02 pt��#= 1 + e� 34m20 t � 1 + ��m0pt� � e� 34 m20 t + e� 34 m20 t ��m02 pt�= ��m0pt� + e� 34 m20 t��m02 pt�; (D.3)womit Gl.(6.25) begr�undet ist. 101



Anhang EBere
hnung einiger IntegraleIn Kapitel 6 werden die Werte einiger Integrale verwendet. Die dort benutzten Ergebnissesollen nun abgeleitet werden.E.1 J1{Bere
hnungJ1 = +1Z�1 dp g(p) �m20 + p2�1�z ; g(p) = � m02� 0� 2p2 +m20 + 1p2 + m204 1A= � +1Z�1 dp m02� ( 3p2 +m20 + 34m20�p2 +m20�2 + �34m20�2 1�p2 +m20�2 (p2 + m204 ))� �m20 + p2�1�z= � m02� +1Z�1 dp( 3�p2 +m20�z + 34m20�p2 +m20�z+1 + �34m20�2 1�p2 +m20�z+1 (p2 + m204 ))Mit [12, Gl.(4.3.1) f�ur d = 1; � = 0; � = s℄+1Z�1 dp �p2 +m20��s = m1�2s0 �(12)�(s� 12)�(s) (E.1)ergibt si
h:J1 = � m02� (3m1�2z0 �(12)�(z � 12)�(z) + 34 m20 m�(1+2z)0 �(12)�(z + 12)�(z + 1)+�34 m20�2 +1Z�1 dp 1�p2 +m20�z+1 (p2 + m204 )) =)102



J1 = � m02� (m1�2z0 (3 �(12) �(z � 12)�(z) + 34 �(12)�(z + 12)�(z + 1) )+ 916 m40m2z+40 m0 +1Z�1 dp0 1�1 + (p0)2�z+1 �(p0)2 + 14�); p0 = pm0= � m02� m1�2z0 (3 �(12) �(z � 12)�(z) + 34 �(12) �(z + 12)�(z + 1)+ 916 +1Z�1 dp 1(p2 + 1)z+1 (p2 + 14))= � �m20�1�z2� (3 �(12) �(z � 12)�(z) + 34 �(12) �(z + 12)�(z + 1)+ 916 +1Z�1 dp 1(p2 + 1)z+1 (p2 + 14)): (E.2)E.2 J2{Bere
hnungJ2 = +1Z�1 dp 1(p2 + 1) (p2 + 14) (E.3)Partialbru
hzerlegung : 1(p2 + 1) (p2 + 14) = 43  1p2 + 14 � 1p2 + 1! (E.4)=) J2 = 43" +1Z�1 dp 1p2 + 14 � +1Z�1 dp 1p2 + 1 #= 43 " 2 ar
tan(2p) ����+1�1 � ar
tan p ����+1�1 #= 43 h 2� � �i = 43 � (E.5)E.3 J3{Bere
hnungJ3 = +1Z�1 dp ln�p2 + 1�(p2 + 1) (p2 + 14)= 2 1Z0 dp ln�p2 + 1�(p2 + 1) (p2 + 14)103



Mit der Partialbru
hzerlegung aus der J2{Bere
hnung (vgl. Gl.(E.4)) erh�alt manJ3 = 83 ( 1Z0 dp ln�p2 + 1�p2 + 14 � 1Z0 dp ln�p2 + 1�p2 + 1 ): (E.6)Mit [14, Gl. 4.295 7℄1Z0 ln�a2 + b2 x2� dx
2 + g2 x2 = �
g ln�ag + b
g �; a > 0; b > 0; 
 > 0; g > 0(E.7)ergibt si
h J3 = 83 �2� ln 32 � � ln 2�= 83� �2 ln 3 � 3 ln 2�= 83 � ln 98 : (E.8)E.4 I1{Bere
hnungI1 = 1Z0 dx x ln x�m20 + �2 x� 52= 2�2 pm20+�2Zm0 dt tt5 t2 �m20�2 ln t2 �m20�2 !; t = �m20 + �2 x� 12= 2�4 pm20+�2Zm0 dt(�t2 �m20� [ ln(t+m0) + ln(t�m0)℄t4 � � 1t2 � m20t4 � ln �2) =)
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I1 = 2�4 (�0� 23m0 + m203 �m20 +�2� 32 � 1�m20 +�2� 12 1A ln �2+ pm20+�2Zm0 dt  ln(t+m0)t2 � m20 ln(t +m0)t4 !| {z } + pm20+�2Zm0 dt �t2 �m20� ln(t�m0)t4| {z } )=part. Int. �1t + m203 t3! ln(t+m0) pm20+�2m0+ pm20+�2Zm0 dt  1t (t +m0) � m203 t3 (t+m0)!= 2 ln(2m0)3m0 � ln� �m20 + �2� 12 +m0��m20 + �2� 12+ m20 ln� �m20 + �2� 12 +m0�3 �m20 +�2� 32+ ln 2m0 + ln�m20 +�2�2m0� ln� �m20 + �2� 12 +m0�m0� ln�m20 +�2�6m0+ ln� �m20 + �2� 12 +m0�3m0� ln 23m0 � 13 �m20 + �2� 12+ m06 �m20 + �2� + 16m0

= lim"&0( pm20+�2Zm0+"dt  ln(t�m0)t2 � m20 ln(t �m0)t4 !)=part. Int. lim"&0( �1t + m203 t3! ln(t�m0) pm20+�2m0+"+ pm20+�2Zm0+" dt  1t (t�m0) � m203 t3 (t�m0)!)= lim"&0 ( ln "m0 + " � m20 ln "3 (m0 + ")3� ln� �m20 +�2� 12 �m0��m20 +�2� 12+ m20 ln� �m20 +�2� 12 �m0�3 �m20 +�2� 32+ ln� �m20 +�2� 12 �m0�m0 � ln�m20 + �2�2m0� ln "m0 + ln(m0 + ")m0 + ln�m20 +�2�6m0� 13 �m20 + �2� 12 � m06 �m20 +�2�� ln� �m20 +�2� 12 �m0�3m0 � ln(m0 + ")3m0+ 13 (m0+ ") + m06 (m0+ ")2 + ln "3m0 )= � ln� �m20 + �2� 12 �m0��m20 +�2� 12+ m20 ln� �m20 +�2� 12 �m0�3 �m20 +�2� 32 + 2 ln� �m20 +�2� 12 �m0�3m0� ln�m20 +�2�3m0 + 2 lnm03m0 � 13 �m20 + �2� 12� m06 �m20 + �2� + 12m0105105



Damit folgt:I1 = 2�4 (�  23m0 + m203 �m20 + �2� 32 � 1�m20 +�2� 12 ! ln �2+ m203 �m20 +�2� 32 � 1�m20 +�2� 12 !� � ln� �m20 + �2� 12 �m0�+ ln� �m20 + �2� 12 +m0��+ 23m0 � 23 �m20 +�2� 12 + 43 ln(2m0)m0+� 13m0 � 1m0�� ln� �m20 + �2� 12 +m0� � ln��m20 +�2� 12 �m0��)= 2�4 (� 23m0 ln �2 + 23m0 � 23 �m20 +�2� 12 + 43 ln(2m0)m0� 23m0 ln �m20 +�2� 12 +m0�m20 +�2� 12 �m0 ): (E.9)E.5 I2{Bere
hnungI2 = 1Z0 dx x ln�m20 +�2 x��m20 +�2 x� 52 ; Subst.: t = qm20 +�2 xdt = �2 dx2t= 4�4 pm20+�2Zm0 dt �t2 �m20� ln tt4= 4�4 ( �1t + m203 t3! ln t pm20+�2m0 + pm20+�2Zm0 dt  1t2 � m203 t4!) (partielle Integration)= 4�4 (23 lnm0m0 � ln�m20 +�2�2 �m20 + �2� 12 + m20 ln�m20 + �2�6 �m20 +�2� 32+ 89m0 � 1�m20 + �2� 12 + m209 �m20 + �2� 32 ) (E.10)
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E.6 I0{Bere
hnungI0 = 1Z0 dx x�m20 +�2 x� 52 ; Subst.: t = qm20 + �2 xdt = �2 dx2t= 2�2 pm20+�2Zm0 dt tt5 t2 �m20�2= 2�4 pm20+�2Zm0 dt t2 �m20t4= 2�4 (�1t + m203t3) pm20+�2m0= 2�4 8<: m203 �m20 + �2� 32 + 1m0 � 1�m20 +�2� 12 � 13m09=;= 2�4 8<: 23m0 � 2m20 + 3�23 �m20 + �2� 32 9=; (E.11)E.7 L1{Bere
hnungL1 = 1Z0 dx x ln xhm204 + (34 m20 +�2) xi52= 2�34 m20 +�2�2 pm20+�2Zm02 dt t2 � m204t4 � ln�t2 � m204 � � ln� 34m20 + �2��;t = �m204 + �34m20 + �2�x� 12= 2(34 m20 +�2)2 (�1t � m2012 t3� ln�34 m20 + �2� pm20+�2m02+ pm20+�2Zm02 dt t2 � m204t4 � ln�t� m02 � + ln�t + m02 ��) =)
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L1 = 2(34 m20 + �2)2 (� 43m0 ln�34 m20 + �2�+0� 1�m20 + �2� 12 � m2012 �m20 +�2� 32 1A ln�34m20 +�2�+ pm20+�2Zm02 dt (t2 � m204 ) ln(t + m02 )t4| {z } + pm20+�2Zm02 dt (t2 � m204 ) ln(t� m02 )t4| {z })=part. Int.  �1t + m2012 t3! ln�t+ m02 �pm20+�2m02+ pm20+�2Zm02 dt  1t (t+ m02 ) � m2012 t3 (t+ m02 )!= 4 lnm03m0 � ln� �m20 +�2� 12 + m02 ��m20 +�2� 12+ m20 ln� �m20 +�2� 12 + m02 �12 �m20 + �2� 32+ 2 ln 2m0 + ln�m20 +�2�m0� 2 ln� �m20 + �2� 12 + m02 �m0 � ln�m20 + �2�3m0� 13 �m20 +�2� 12 + m012 �m20 + �2�+ 2 ln� �m20 + �2� 12 + m02 �3m0 � 2 ln 23m0+ 13m0

= lim"&0( pm20+�2Zm0+"2 dt  1t2 � m204 t4! ln�t� m02 �)= lim"&0( �1t + m2012 t3! ln�t� m02 �pm20+�2m0+"2+ pm20+�2Zm0+"2 dt  1t (t� m02 ) � m2012 t3 (t� m02 )!)= lim"&0( 2 ln� "2�m0 + " � 2m20 ln� "2�3 (m0 + ")3 � ln� �m20 +�2� 12 � m02 ��m20 + �2� 12+ m20 ln� �m20 + �2� 12 � m02 �12 �m20 +�2� 32 + 2 ln� �m20 + �2� 12 � m02 �m0� ln�m20 + �2�m0 � 2 ln� "2�m0 + 2 ln�m0+"2 �m0+ ln�m20 + �2�3m0 � 13 �m20 +�2� 12 � m012 �m20 + �2�� 2 ln� �m20 +�2� 12 � m02 �3m0 � 2 ln�m0+"2 �3m0+ 13 �m0+"2 � + m012 �m0+"2 �2 + 2 ln� "2�3m0 )= � ln� �m20 + �2� 12 � m02 ��m20 +�2� 12 + m20 ln� �m20 +�2� 12 � m02 �12 �m20 +�2� 32+ 4 ln� �m20 +�2� 12 � m02 �3m0 � 2 ln�m20 +�2�3m0+ 4 ln�m02 �3m0 � 13 �m20 +�2� 12 � m012 �m20 + �2�+ 1m0108108



Zusammengefa�t ergibt das:L1 = 2(34 m20 + �2)2 ( 1�m20 +�2� 12 � m2012 �m20 +�2� 32 � 43m0! ln�34 m20 + �2�+ 43m0 + 8 lnm03m0 � 23 �m20 + �2� 12� 1�m20 +�2� 12 � m2012 �m20 + �2� 32 !� � ln��m20 +�2� 12 + m02 �+ ln��m20 +�2� 12 � m02 ��� 43m0 � ln��m20 + �2� 12 + m02 �� ln��m20 +�2� 12 � m02 ��)= 2(34 m20 + �2)2 ( � 43m0 ln�34m20 +�2� + 43m0 + 8 lnm03m0 � 23 �m20 +�2� 12� 43m0 ln �m20 +�2� 12 + m02�m20 +�2� 12 � m02 ): (E.12)
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E.8 L2{Bere
hnungL2 = 1Z0 dx x ln�m204 + (34 m20 + �2)x�hm204 + (34 m20 + �2)xi 52= 4(34 m20 + �2)2 pm20+�2Zm02 dt (t2 � m204 ) ln tt4 ; t =  m204 + �34m20 +�2�x! 12= 4(34 m20 + �2)2 ( �1t + m2012 t3! ln t pm20+�2m02 + pm20+�2Zm02 dt  1t2 � m2012 t4!)(partielle Integration)= 4(34 m20 + �2)2 (4 lnm023m0 � 12 ln�m20 + �2� 1�m20 + �2� 12 � m2012 �m20 +�2� 32 !+ 169m0 � 1�m20 + �2� 12 + m2036 �m20 +�2� 32 )= 4(34 m20 + �2)2 (4 lnm023m0 + m2036 �m20 + �2� 32 + 169m0 � 1�m20 + �2� 12� 12 ln�m20 +�2� 1�m20 +�2� 12 � m2012 �m20 + �2� 32 !) (E.13)E.9 L0{Bere
hnungL0 = 1Z0 dx xhm204 + (34 m20 + �2)xi 52= 2(34 m20 + �2)2 pm20+�2Zm02 dt t2 � m204t4 ; t =  m204 + �34m20 + �2�x! 12= 2(34 m20 + �2)2 ( 43m0 � 1�m20 + �2� 12 + m2012 �m20 +�2� 32 ) (E.14)
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Anhang FSattelpunktentwi
klung zur�3{Bere
hnungZu untersu
hen ist: 1Z0 dtt2 e� ~n2L24t ��t = 1Z0 dt t�2 e�(at+�t);a := ~n2L24 > 0; � > 0: (F.1)Die Funktion f(t) := at + �t besitzt ein Minimum bei t = q a� :f 0�qa� � = � aq a� 2 + � = 0;f 00�qa� � = 2a�q a� �3 = 2s�3a > 0=) Minimum bei t = ra� : (F.2)Um dieses Mininmum wird nun der Exponent entwi
kelt:1Z0 dt t�2 e�( at+�t) = 1Z0 dt ��a + O�t�ra��� e��2pa�+q�3a (t�p a�)2+O(t�p a�)3�= 1Z0 dt �a e�2pa� e�q�3a (t�p a� )2 + s
hnell abfallendeTerme. (F.3)Das Gau�{Integral kann ausgewertet werden:1Z0 dt t�2 e�(at+�t) = �a e�2pa� vuut �q�3a e �2p�3 pa e�q�3a a� + s
hnell abfallendeTerme= �a p� � a�3�14 e�2pa� epa� e�pa� + s
hnell abfallendeTerme. (F.4)111



Mit der Definition von a (vgl. Gl.(F.1)) gilt s
hlie�li
h:1Z0 dt t�2 e� ~n2L24t ��t = 4�~n2L2 p�  ~n2L24�3 ! 14 e�p~n2L2� + s
hnell abfallendeTerme= � 14 4 34(~n2L2)34 p� e�p~n2�L + s
hnell abfallendeTerme= � 14p8�(~n2L2)34 e�p~n2�L + s
hnell abfallendeTerme. (F.5)
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