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Einleitung

Die Einfiihrung quantenfeldtheoretischer Methoden in die Theorie der kritischen
Phédnomene als ein Teilgebiet der Statistischen Physik hat sich in den letzten mehr
als 20 Jahren als iiberaus fruchtbar erwiesen. Stellvertretend fiir die zahlreichen
Veréffentlichungen zu diesem Thema seien [BGZJ76, BAK84, AMI84] genannt.

Dieses Konzept wurde durch den Funktionalintegralformalismus moglich, der
sich bei der Formulierung der Quantenfeldtheorie und ihrer Anwendung auf die
Elementarteilchenphysik als derart erfolgreich herausgestellt hat, dafl er seither den
mathematischen Rahmen fiir diese Theorie bildet. (Siehe z.B. [AL73, JER89, GJ87].)
In dieser Darstellung der Feldtheorie spielt das sogenannte erzeugende Funktional,
unter anderem wegen seiner Bedeutung fiir die Berechnung von Erwartungswerten
bzw. Korrelationsfunktionen, eine dhnlich zentrale Rolle wie die Zustandssumme
in der Statistischen Physik. Es ist aber nicht nur eine formale Analogie, die diese
beiden Zweige der Physik verbindet, sondern es gibt auch physikalische Argumente
fiir solche Gemeinsamkeiten:

Die Verwendung feldtheoretischer Methoden kommt, wie bereits angedeutet,
vorrangig bei der Behandlung kritischer Phdnomene zum Tragen; hierunter wollen
wir im folgenden ausschlieflich Phaseniibergénge 2. Ordnung verstehen, wie sie bei
Ferromagneten (u.a. Th(OH),, EuO und CdCr;Sey) beobachtet werden!. Darunter
versteht man kristalline Stoffe mit der Eigenschaft, bei verschwindendem &uferen
Magnetfeld unterhalb einer kritischen Temperatur spontan magnetisiert zu sein. Die-
se Magnetisierung ist eine stetige, aber am Ubergangspunkt nicht differenzierbare
Funktion der Temperatur. Die Modelle, die zur Erklarung dieser Erscheinung die-
nen, vernachléssigen die mikroskopische Struktur des Festkorpers in Form der spe-
ziellen Gestalt seiner Atome und aller in ihnen enthaltenen Wechselwirkungen. Sie
ordnen vielmehr jedem Gitterplatz eine effektive Spinvariable zu, die mit ihren Nach-
barn in Wechselwirkung tritt. Dabei nimmt man an, dafl die den Phaseniibergang
kennzeichnenden Eigenschaften der physikalischen Groflen bei Annéherung an den
kritischen Punkt durch deren kollektives und (gemessen an der Gitterkonstanten
des Systems) langreichweitiges Verhalten bewirkt werden. Dies wiederum legt nahe,
die zunéchst als diskret gewdhlte Spinvariable durch eine ort— und wertekontinu-
ierliche Feldvariable zu ersetzen, die haufig als Ordnungsparameterfeld bezeichnet
wird und im Fall des Ferromagneten der spontanen Magnetisierung entspricht. Der
Phaseniibergang kann dann als ein Prozefl spontaner Symmetriebrechung aufgefafit

LObwohl #hnliche Phanomene z.B. auch bei bindren Fluiden vorliegen, wird hier stets die Ter-
minologie ferromagnetischer Systeme verwendet.
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werden, und die Hamiltonfunktion des ferromagnetischen Systems erlangt eine Ge-
stalt, die der Wirkung einer euklidischen skalaren Feldtheorie gleicht, wie man sie in
der Quantenfeldtheorie (u. a. zur Beschreibung des HiGGs—Feldes im Standardmo-
dell der Elementarteilchen) verwendet. Die dadurch motivierte storungstheoretische
Behandlung des so erhaltenen Modells liefert Resultate, die zum Teil in hervorra-
gender Ubereinstimmung mit den Experimenten stehen.

Das anhaltende Interesse am Studium kritischer Phanomene, sowohl vom theo-
retischen als auch vom experimentellen Standpunkt, beruht in erster Linie auf der
Tatsache, dafl das Verhalten bestimmter thermodynamischer Funktionen in der Um-
gebung der kritischen Temperatur fiir viele Phaseniibergénge von universeller Na-
tur zu sein scheint. Hiermit ist gemeint, dafl ganze Klassen von Systemen durch
universelle Gréflen wie kritische Exponenten, kritische Amplitudenverhiltnisse etc.
charakterisiert sind, die, unabhéngig davon, welche Form der Wechselwirkung und
der Gitterstruktur tatséchlich vorliegt, dieselben Werte annehmen. Diese Univer-
salitdtsklassen sind dann allein durch Angabe der Raumdimension, der Anzahl der
Spinfreiheitsgrade und der Symmetrie des zugrundeliegenden Modells festgelegt. Ein
Grofiteil der wissenschaftlichen Untersuchungen auf diesem Gebiet ist daher an einer
moglichst genauen Bestimmung dieser universellen Gréflen und damit gleichzeitig
an der Bestatigung der obigen Universalitdtsaussage orientiert. Dazu haben sich auf
theoretischer Seite neben den feldtheoretischen Methoden vor allem Anwendungen
der WILSONschen Renormierungsgruppe (siehe [WK74]), Untersuchungen an Hoch—
und Tieftemperaturreihen (z.B. in [GG74]) sowie Monte-Carlo-Simulationen (siehe

[PSWW84]) bewahrt.

Innerhalb des oben skizzierten feldtheoretischen Ansatzes zur Behandlung von
Phaseniibergéngen 2. Ordnung sind die renormierte Stérungstheorie und die Re-
normierungsgruppe, insbesondere die Renormierungsgruppengleichungen sowie ihre
Loésungen, zu den entscheidenden Hilfsmitteln fiir die Berechnung kritischer Gréflen
geworden, da sich in ihnen die Eigenschaften der zu den thermodynamischen Funk-
tionen der Statistischen Physik in eindeutiger Beziehung stehenden Korrelations-
funktionen in der kritischen Region manifestieren. Viele der bisher durchgefithrten
Rechnungen beruhen auf der sogenannten e-FEntwicklung, die urspriinglich von WIL-
sON und FISHER in [WF72, WIL72] vorgeschlagen und dann von BREZIN, LE GUIL-
LOU und ZINN—JUSTIN erstmalig fiir die n—komponentige, masselose ¢*-Theorie bis
zur 4. Storungsordnung durchgefiihrt worden ist. (Fiir einen Uberblick verweisen
wir auf [WAL76] sowie die zu Beginn zitierte Literatur.) Die Idee dabei ist, die zur
Berechnung universeller Gréflen beitragenden Impulsintegrale der Stérungstheorie
in D = 4 — € Dimensionen auszuwerten, um so zu einer Entwicklung um die Di-
mension D = 4 zu gelangen, von der man aus theoretischen Uberlegungen weif, daf
sie die Untergrenze fiir ein klassisches Verhalten? am kritischen Punkt ist. Wahrend
dieses Verfahren (der dimensionellen Regularisierung) in der Quantenfeldtheorie der
Isolierung der auftretenden Divergenzen als Vorstufe der eigentlichen Renormierung
dient, wird hier die Strategie verfolgt, einen Entwicklungsparameter zu erhalten,

2Unter klassischem Verhalten verstehen wir hier die Vorhersagen der Molekularfeld— bzw. Mean—
Field—Theorie, auf die im 1. Kapitel kurz eingegangen wird.
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der die Abweichungen der universellen Gréen von ihren klassischen Werten im Fall
D < 4 widerspiegelt. Diese ergeben sich schlieflich als Potenzreihen in € und kénnen
durch Setzen von € = 1 auf die fiir kritische Phéanomene physikalische Dimension
D = 3 extrapoliert werden.

In der vorliegenden Arbeit wird ein anderer Weg eingeschlagen. Der zugrunde-
liegende Ansatz geht im wesentlichen auf PARISI (siehe [PARS0]) zuriick und besteht
darin, die universellen Gréflen aus der renormierten Stérungsrechnung mit einer mas-
siven ¢*-Theorie zu gewinnen, die direkt in drei Dimensionen durchgefiihrt wird.
Dies bedeutet, dafi man die Theorie nicht an ihrem kritischen Punkt (d.h. bei un-
endlicher Korrelationslange) betrachtet, sondern in der Umgebung desselben, wo die
Korrelationslénge zwar sehr grofl aber endlich ist. Nach der Renormierung kann man
die universellen Groflen jetzt als Potenzreihen mit divergenzfreien Koeffizienten in
einer dimensionslosen renormierten Kopplung bestimmen, die wiederum eine nume-
rische Analyse zulassen. Es sei aber bereits an dieser Stelle darauf hingewiesen, dafl
die so erhaltenen Reihen, ebenso wie diejenigen der e-Entwicklung, nicht konver-
gieren, sondern bestenfalls asymptotische Eigenschaften haben. Eine Verbesserung
dieser Asymptotik durch geschickte Manipulation der Reihen ist erst dann sinnvoll,
wenn sie in einigen Ordnungen bekannt sind. Fiir die dreidimensionale Stérungs-
theorie in der symmetrischen Phase sind deshalb die aufwendigen Rechnungen von
Ni1cKEL, MEIRON und BAKER (sieche [BNMY77]) erwahnenswert, die die Renormie-
rungskonstanten und Renormierungsgruppenfunktionen des Modells bis zur 7. Ord-
nung lieferten. Die numerische Auswertung dieser Reihen wird dabei mit Hilfe von
BOREL-Transformationen und PADE-Approximationen erheblich verbessert. (Hier-
zu vgl. [BNM78, GZJ80].)

Wie das Thema bereits ankiindigt, will ich hier mit der zuletzt genannten Me-
thode die Amplitudenverhéltnisse der Korrelationslange fy/f- und der Suszepti-
bilitdt €'y /C_ bestimmen, was speziell im Fall der Korrelationslange eine wichtige
Ergdnzung der bereits bestehenden Literatur darstellt. Denn in allen dhnlich ange-
legten Abhandlungen (etwa [BB85, BBMNS8T]) ist das Renormierungsschema fiir
die gebrochene Phase stets so gewéhlt, dafl nur die Renormierungskonstanten der
symmetrischen Phase benétigt werden. Dies schliefit allerdings eine Berechnung von
f+/f- aus, da zu diesem Zweck die Kenntnis der renormierten Massen beider Phasen
erforderlich ist. Aus diesem Grund wird in dieser Arbeit ein Verfahren entwickelt,
welches eine auf der perturbativen Behandlung von Hoch— und Tieftemperaturphase
basierende Bestimmung universeller Amplitudenverhaltnisse ermoglicht. Die sich in
diesem Zusammenhang ergebenden Reihen resultieren aus einer Stérungsrechnung
bis einschlieflich zur 2. Ordnung in der Kopplung, wobei alle dazu beitragenden Im-
pulsintegrationen geschlossen ausgefithrt werden. Die numerische Auswertung dieser
Reihen, deren Genauigkeit durch die Anzahl ihrer bekannten Glieder zwar eine ge-
wisse Grenze gesetzt ist, gestattet schliefllich einen Vergleich mit Literaturwerten,
die auf andere Methoden zuriickgehen.



Kapitel 1

Kritische Phanomene

In diesem einfithrenden Kapitel gebe ich einen knappen Uberblick iiber die Theo-
rie der kritischen Phinomene ohne dabei allerdings eine vollstandige Darstellung
dieses Themenkreises, wie sie sich z.B. in [F1567, STAT1, BDFN92] und der dort
zitierten Originalliteratur findet, anzustreben. Er dient vielmehr der Bereitstellung
der zentralen Begriffe und Definitionen, die fiir diese Arbeit von Bedeutung sind.
Insbesondere wird sich herausstellen, dafl die kontinuierliche ¢*-Theorie als feldtheo-
retisches Modell der Beschreibung von Phaseniibergdngen 2. Ordnung angemessen
ist.

Es sei zundchst eine beliebige Raumdimension D vorausgesetzt.

1.1 Phaseniibergange 2. Ordnung

Wie in der Einleitung bereits betont worden ist, verstehen wir unter kritischen
Phanomenen die thermodynamischen Eigenschaften von Systemen in der Umgebung
der kritischen Temperatur 7. (im folgenden auch als kritischer Punkt bezeichnet)
eines Phaseniibergangs 2. Ordnung. Nach einer allgemeinen Klassifikation sind Pha-
seniibergdnge von héherer als 1. Ordnung dadurch gekennzeichnet, dafl die ersten
partiellen Ableitungen der thermodynamischen Potentiale stetig, die zweiten hinge-
gen am kritischen Punkt unstetig oder divergent sind. Im Falle ferromagnetischer
Systeme, die wir ja hier ausschliefllich betrachten wollen, zeigen z.B. die spontane
Magnetisierung M, die magnetische Suszeptibilitat y und die spezifische Warmeka-
pazitdt C' dieses charakteristische Verhalten.

Die quantitative Beschreibung eines Phaseniibergangs geschieht durch den soge-
nannten Ordnungsparameter, den hier die spontane Magnetisierung darstellt. Dies
ist eine extensive, meflbare Variable, die oberhalb von 7. den Wert null und unter-
halb von T, einen Wert ungleich null besitzt. Die zugehorige intensive Variable ist
das auflere Magnetfeld &, dessen Anlegen den Phaseniibergang unterdriickt und die
Magnetisierung zu einer in 7T, differenzierbaren Funktion macht.

Phaseniibergéinge 2. Ordnung treten in Systemen mit vielen korrelierten Frei-
heitsgraden auf, und fiir ihre Erklarung sind kurzreichweitige Wechselwirkungen ato-

4



1.2. THERMODYNAMISCHE DEFINITIONEN 5

mistischer Dimensionen und die mikroskopischen Details des Systems irrelevant. Die
effektiven Observablen, die man stattdessen verwendet, sind Spinvariablen o = o(2),
die auf den Punkten eines Kristallgitters der Gitterkonstanten a leben. Sie kénnen
ein— oder mehrkomponentig sein und diskrete oder kontinuierliche Werte anneh-
men; als Beispiele hierfiir nennen wir stellvetretend das ISING-Modell und das
HEISENBERG—Modell. Die spontane Magnetisierung ist dann durch den Ensemble—
Mittelwert

M(z) = (o(2)) |, (1.1)

gegeben, der im Sinne der Statistischen Physik als ein Mittelungsprozef} iiber alle
thermischen Fluktuationen des Systems zu interpretieren ist. Obwohl es sich hierbei

(z)=0

strenggenommen zundchst nur um eine Magnetisierungsdichte handelt, aus der sich
die Magnetisierung erst durch eine Raumintegration ableitet, werden wir iiber diese
Feinheit i.a. hinwegsehen. In translationsinvarianten Systemen mit konstantem &ufle-
ren Feld h(x) = h, in denen die gerade angesprochene Unterscheidung iiberfliissig
ist, entfallen alle Ortsabhéangigkeiten, und es gilt einfach M (x;h,T) = M(h,T)'.

Das Prinzip der spontanen Symmetriebrechung, welches auch in der Quanten-
feldtheorie von grofler Bedeutung ist, spiegelt sich hier in der unterschiedlichen raum-
lichen Symmetrie beider Phasen wider. Fin n—komponentiges Spin—Modell weist fiir
T > T. eine O(n)-Symmetrie auf, was anschaulich der Tatsache entspricht, daf}
die iiber das gesamte Systemvolumen gemittelten Stellungen der Spins eine ver-
schwindende Magnetisierung liefern. Fiir T' < T, ist diese Symmetrie spontan gebro-
chen, da die Spinvariablen jetzt mit abnehmender Temperatur Werte bevorzugen,
die den Konfigurationen des Grundzustandes, in dem alle Spins parallel gerichtet
sind, entsprechen. Diese Symmetriebrechung wird im allgemeinen durch einen tem-
peraturabhingigen Parameter des Modells gesteuert.

Eine weitere Grofle, die bei der Beschreibung kritischer Phdnomene eine wich-
tige Rolle spielt, ist die Korrelationsldnge €. Sie ist ein quantitatives Maf} fiir die
Entfernung, iiber die die Spinvariablen des Systems durch ihre Wechselwirkung kor-
reliert sind und sich somit gerade noch beeinflussen. Da diese Wechselwirkung von
langreichweitiger Natur ist, gibt man die Korrelationslange héufig geméaf

£ = éa, é : dimensionslos

in FEinheiten der Gitterkonstanten a an. Sie divergiert ebenfalls bei Ann&herung an
den kritischen Punkt, denn eine unendliche Korrelationslange impliziert ein kollek-
tives Verhalten der Spins, welches das Eintreten eines Phaseniibergangs zur Folge
hat.

1.2 Thermodynamische Definitionen

Wir gehen an dieser Stelle kurz auf die Thermodynamik von Phaseniibergangen 2.
Ordnung am Beispiel des Ferromagneten ein, damit spéter die formale Analogie zur

'Wenn Mifiverstindnisse auszuschliefen sind, werden wir nicht immer alle Abhéingigkeiten der
thermodynamischen Gréflen als Argumente mitfithren.
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Feldtheorie deutlich wird.

Ausgangspunkt einer solchen Beschreibung ist die Zustandssumme

1
_ — —BH -

Z = Z(h,T) =Tt (e}, p= 1 (1.2)

in der die Spur als klassische Summe iiber den Phasenraum zu verstehen ist, ‘H die

Hamiltonfunktion des Systems darstellt und & die BOLTZMANN-Konstante bezeich-

net. Die (Helmholtzsche) freie Energie erhalten wir aus
1
F=FhT)= 3 InZ(h,T); (1.3)
sie ist mit der (Gibbsschen) freien Energie G = G(M, T) tiber eine Legendretransfor-

mation verbunden. Die oben bereits erwédhnten Groflen ergeben sich aus den ther-
modynamischen Potentialen durch die Gleichungen

or oG
M=—|== h=|=—" 1.4
(5, =), i
IM 2L 22G\ " 2L
X—(W)T—‘(W)T—(aMz)T’ C—‘T(W)h' (15)

Nach den Ausfithrungen des vorigen Abschnitts folgt aus der Reziprozitétsei-
genschaft der Legendretransformation bei festem T', d.h.

OG(M(h)) ‘
aM(h) M (h)=—2Lh)

dh

= h, (1.6a)

als Bedingung fiir das Einsetzen des Phaseniibergangs die Extremaleigenschaft

oG

Diese Beziehung erlaubt die Bestimmung des bereits erwdhnten Parameters der
Theorie, in dessen Temperaturabhéngigkeit sich der Phaseniibergang zeigt.

Fiir eine einkomponentige Spinvariable o(z), die wir im Moment als kontinuier-
lich annehmen, betrachten wir schlieflich die Spin—Spin—Korrelationsfunktionen (in
der Feldtheorie als 2-Punkt—Greensfunktionen bekannt)

(o(2)a(y)), (o(@)a(y))e = (a(z)o(y)) = (a(2)){o(y)), (1.7a)

GO(2) = (o(2)o(0)),  GO(x) = (o(x)(0)). (L.7h)

mit Fouriertransformierten G (p) und G®(p) vereinfachen. Die mit dem Index ¢
versehenen verbundenen Korrelationsfunktionen zeichnen sich dadurch aus, daf§ in
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sie allein die durch die Wechselwirkung der Spins hervorgerufenen Fluktuationen
des Ordnungsparameters eingehen. Wir definieren nun die Korrelationsldange ¢ als
ihr 2. Moment

1 [dPz2?G3)(x) 3% GO(p)

aY> [dP2GP(2) AP s (1-8)

Daran zeigt sich insbesondere, daf sich ¢ mit dem Inversen des fithrenden Pols von
G)(p) identifizieren 14Bt.

Alternativ dazu kénnen wir die Korrelationsldnge auch iiber das Abfallverhalten
der verbundenen 2-Punkt—Funktion fiir 7" # T, bzgl. einer vorgegebenen Achsen-
richtung = erkléren:

G (2) = (o(z)o(0)). “X° e/, = limsu 7 .
) = (o1)o0) =ty

Im Verlauf der feldtheoretischen Behandlung kritischer Phanomene wird sich her-

(1.9)

ausstellen, daf§ die Korrelationslangen (1.8) und (1.9) zwar nicht von vornherein
identisch sind, aber dennoch auf universelle Groflen fiithren, die numerisch fast {iber-
einstimmen.

1.3 Kritische Exponenten

Die soeben eingefithrten physikalischen Groflen zeigen bei Annéherung an die kri-
tische Temperatur T, ein charakteristisches Divergenzverhalten, welches durch kriti-
sche Exponenten bestimmt ist. Dabei nimmt man an, daf} die funktionale Abhédngig-
keit dieser thermodynamischen Funktionen von der Temperatur in einen endlichen
und einen singuldren Anteil? zerfillt, wobei allein der letztere fiir die universellen
kritischen Figenschaften des Systems verantwortlich ist.

Zu einer genauen Definition dieser Exponenten gelangen wir, wenn wir fiir eine
in der reduzierten Temperaturvariablen

T-T, T
= = -1

t: =
T. T.

stetige Funktion f : U — R\ {0}, die auf einer punktierten Umgebung U von 0
definiert ist, mit der Schreibweise

[~ Aplt], (1.10)

stets die Existenz der Grenzwerte

N T0]

S gtl=o Inft]

A = Lim [t]7 = £(1) (1.11)
[t|—=0

2Singulér bedeutet in diesem Zusammenhang, daf8 die Funktionen oder ihre Ableitungen bei
T =T, divergent sind.



8 KAPITEL 1. KRITISCHE PHANOMENE

meinen.

In dieser Weise gilt fiir die Korrelationslange und die Suszeptibilitat in der Um-
gebung von ¢ = 0 bei Abwesenheit eines aufleren Feldes:

T I

(1.13)

Cit=  , t>0
X C_(=t)7"=, t<0

Ebenso findet man dort fiir die spezifische Warmekapazitdt und die spontane Ma-
gnetisierung

C A=+ 0t >0
A_(=t)™=, t<0

M~ (=), t<0; M~RY t=0,

wobei die letzte Gleichung h # 0 voraussetzt. Durch das Verhalten der verbundenen

2-Punkt-Funktion bei T'=T.

GO(z) = (o(2)0(0)), “S 2= (P27 (1.14)

C

ist ein weiterer Exponent definiert.

Diese kritischen Exponenten erfiillen die Skalengesetze

vV=Uvp=vo, Y=Y =9-, Q=ap=a_ (1.15a)
und
vy = v(2—n) (1.15b)
a = 2—vD (1.15¢)
D+2—
§ = 5231% (1.15d)
8= S(D—2+u) (1.15¢)

so daf lediglich zwei von ihnen unabhéngig voneinander sind. Die Zustandsgleichung

h = h(M,t) ist von der Form

h t
75 =1 (7).
wobei f eine im Nullpunkt reguldre Funktion ist.

Die Herleitung der vorstehenden Relationen beruht auf der Skalenhypothese, die
im wesentlichen besagt, daf§ in unmittelbarer Nachbarschaft des kritischen Punktes
die Korrelationslénge die einzige charakteristische Lange des betrachteten Systems
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ist, so daf} alle anderen Léngen in ihren Einheiten zu messen sind. Das bedeutet
gleichzeitig, daBf das System am kritischen Punkt selbst, wo die Korrelationslinge
einen unendlichen Wert besitzt, invariant unter Skalentransformationen ist. Dimen-
sionsbehaftete thermodynamische Groflen sind dann homogene Funktionen ihrer Va-
riablen, d.h. sie transformieren sich nach dem Gesetz

f(ex) = Prf(x), ¢ = const.,

wenn f eine ortsabhéngige Funktion der Langendimension Dy ist. Im Rahmen der
Renormierungsgruppentheorie kann die Giiltigkeit solcher Homogenitatsrelationen
und der daraus folgenden Skalenhypothese begriindet werden. Die dort auftreten-
den Korrelationsfunktionen skalieren jedoch nicht mit ihrer naiven, auch kanonisch
genannten Dimension, sondern sie entwickeln eine anomale Dimension, die sich in
der Definition des Exponenten 1 schon andeutet.

1.4 IsiNG—Modell

Das ISING-Modell (z.B. [DoM74] und die bereits genannten Referenzen) besteht aus
einem D-dimensionalen kubischen Gitter (aZ)? mit Gitterpunkten z;, i = 1,..., N,
auf denen eine einkomponentige Spinvariable o(x;) erklart ist, die nur die Werte 41
animmt. Die ferromagnetische Wechselwirkung, die parallele Spins — also solche
mit gleichem Vorzeichen — energetisch favorisiert, ist im einfachsten Fall durch die
Hamiltonfunktion

H(o) == > olzi)o(z;) = > hlz)o(w) (1.16)
<ij> i

definiert, wobei die Schreibweise < ij > andeutet, daf} sich die Summe iiber alle

Paarungen benachbarter Spins erstreckt.

Bezeichnen wir mit {o} alle méglichen 2V Spinkonfigurationen, so ist die Zu-
standssumme durch

=Y e PHE) (1.17)
{o}

und der Mittelwert einer beliebigen Spinfunktionen A(o) fiir verschwindendes dufe-

res Feld durch

Z{U} A(O') 662<U>U(wi)g(%) ZA _BH

(A0)) = ——
oy & L 7] ( o

(1.18)

h=0
gegeben. Nach (1.4) folgt damit fiir die spontane Magnetisierung
OF(h) 1 1 0
M(x;;h) = — = - o Z(h)
Oh(x ) o 5 (h) Oh(as) heo

= (o(a) (1.19)
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in Ubereinstimmung mit (1.1). Die Suszeptibilitéten y,; berechnen sich daraus gemaf
(1.5) zu

Xij B l 6M(:1;Z,h)
BB Oh(x)

und im Vergleich mit (1.19) lesen wir die Beziehung

= (o(wi)o(zj)) — (o(z:)){o())) = (o(zi)o(z)))e, (1.20)

h=0

(1.21)

(ool = ( L2y 1 o7k 6Z<h>)

B2\ Z(h) Oh(2:)0h(x;)  Z2(h) Oh(x;) Oh(x;)
ab, die sich in Abschnitt 2.1 im Rahmen der Feldtheorie wiederfindet?. Speziell fiir
ein translationsinvariantes System mit h(x;) = h und M(x;;h) = M(h) lautet die
Suszeptibilitat

h=0

X _ 1 OM(h)

8B Oh

= > (o(2)o(0). = 32 G (xy). (1.22)

h=0 7

Die Korrelationslange ist in Analogie zu (1.8) durch

RIDMEHESIED)

=55 —ZZ» ng)(xi) (1.23)

&

definiert.

Das IsING-Modell ist der prominenteste Vertreter einer Universalitdtsklasse,
die aufler durch die Raumdimension D durch ihre Zs—Symmetrie charakterisiert ist.
Wihrend in D = 1,2 seine Eigenschaften exakt untersucht sind, steht eine Losung —
z.B. durch die geschlossene Ausfithrung der Zustandssumme — in drei Dimensionen
bislang aus. Die in dieser Arbeit untersuchte skalare Feldtheorie gehort ebenfalls
in diese Universalitdtsklasse; das ISING-Modell ergibt sich in diesem Zusammen-
hang (z.B. nach [MM93]) als Grenzfall unendlicher Kopplung einer entsprechen-
den Gittertheorie. Umgekehrt ist es auch moglich, die Zustandssumme (1.17) durch
die Transformation mit einem gaufischen Integral (siehe [HUB72]) in eine Form zu
bringen, die in fithrender Ordnung das erzeugende Funktional der euklidischen ¢*-—
Theorie ist, wie sie im 2. Kapitel vorgestellt wird.

Abschlieflend seien noch die in der Finleitung als klassisch bezeichneten Werte
einiger universeller Groflen aus 1.3 angegeben, die einer Approximation der Zu-
standssumme (1.17) entstammen:

1
Yy =79- =1, %:2; vy = Vo= g, ;—f:\/i (1.24)

Die hier zugrundeliegende Naherung ist die Mean—Field—Approximation, die wir im
folgenden Abschnitt in etwas allgemeinerer Form kennenlernen werden.

3Die an dieser Stelle ungewohnt erscheinenden S-Faktoren verschwinden, wenn wir die Erset-
zung h — h/f vornehmen und statt (1.3) die Relation ' = —In 7 verwenden.
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1.5 LaNDAU-Theorie und Mean—Field—A pproxi-
mation

Die in ihrer modernen Formulierung als LANDAU-GINZBURG—Modell bekannte LAN-
DAU—Theorie ist ein phdnomenologischer Ansatz zur Beschreibung von Phaseniiber-
giangen 2. Ordnung, der ihren charakteristischen Eigenschaften gerecht wird und
bereits den Weg zu einer feldtheoretischen Behandlung vorschreibt. Sie gilt streng-
genommen nur in der direkten Umgebung des kritischen Punktes, wo der gewéhlte
Ordnungsparameter hinreichend klein ist. Dieser ist durch die (hier als einkomponen-
tig gewidhlte) spontane Magnetisierungsdichte M (x) € R gegeben, die kontinuierlich
von Werten x € R” abhéngt. Sie besitzt als makroskopische Grofe keine Fluktuatio-
nen mit Wellenlangen kleiner als die vorgegebene Gitterkonstante a. Somit enthélt
die Theorie einen natiirlichen Impuls—Cutoff A o 1/a, der die Fourierkomponenten
von M (x) nach oben beschrankt.

Die in 1.4 noch diskrete Zustandssumme wird als Funktionalintegral
Z(h) = [ DM(e)e 0D = [ DM() exp{—/deg(M,t)} (1.25)

geschrieben, wobei das Integrationsmafl DM () eine Summation tiber alle (mogli-
cherweise {iberabzdhlbar viele) funktionale Formen des Ordnungsparameterfeldes
M (x) symbolisiert. Wir fassen g = g(M, t) als freie Energiedichte auf und setzen fiir
sie eine Entwicklung mit in ¢ analytischen Koeffizienten

g(M, 1) = % (oM (2))" + %TOW(@ FugMH () + - — M(x)h(z)  (1.26)

an, die die Fluktuationen des Ordnungsparameters (durch den Gradienten OM (z))
und die Symmetrie des Problems beriicksichtigt. Mit ro = aot, a9 > 0, ug > 0
und verschwindenden héheren Koeffizienten* folgt nach partieller Integration im
Exponenten bei Vernachlassigung des Randterms (M(x) — 0 fiir @ — o0)

Z(h) = /DM(:L') exp{—/dD:L'[%M(m)(—@Z—I-TO)M(x)

FuoM* () — M(:z;)h(:z;)] } (1.27)

mit 9% := 30, %.

Wir wollen nun in Anlehnung an [HUA87, BEL91] die Mean—Field-N&aherung der
LANDAU-GINZBURG-Theorie heranziehen, um die klassisch zu erwartenden Wer-
te (1.24) der in dieser Arbeit betrachteten universellen Groflen herzuleiten. Dazu

nimmt man wie in der urspriinglichen Formulierung durch LANDAU (vgl. [LL87])

4Wihlt man auch ug = 0, so erhiilt man das sogenannte gaufische Modell, welches einer freien
Feldtheorie entspricht, und fiir das man das Integral (1.27) geschlossen ausfithren kann.
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ein konstantes dufleres Magnetfeld & und eine konstante spontane Magnetisierung
M = M(h) an, so dal bei Unterdriickung der Temperaturabhangigkeit

1
g(M): §T0M2—|—UOM4—Mh (128)

wird. Wir fithren jetzt eine Sattelpunktapproximation durch, in der das Funktional-
integral (1.27) durch das Maximum seines Integranden ersetzt wird. Dieses ist durch

die Bedingung

dg(M)
oM

d*g(M)
oM?2

=0, >0 (1.29)

bei verschwindendem dufleren Feld bestimmt und ergibt sich zu

0 , t>0
M = . (1.30)

:l:\/ao/4u0 (—t)l/z, t <0

Insbesondere rechtfertigt diese Gleichung, den Koeffizienten rq nach (1.6b) tempera-
turabhéngig anzunehmen, da sein Vorzeichenwechsel den Phaseniibergang reprasen-
tiert. Die Suszeptibilitat an der Stelle (1.30) berechnen wir nach (1.5) als

. (az]ﬁ\f))‘l - :{ (aot)™ , t>0 (131)

(—2apt)™, t<0
woran wir den ersten Teil von (1.24) direkt ablesen.

Fiir die Bestimmung der Korrelationsldnge haben wir die 2-Punkt—Korrelations-
funktion G{?)(x) zu untersuchen und fithren deshalb die Ortsabhéngigkeiten wieder
ein. Die Sattelpunktapproximation liefert fiir sie die Differentialgleichung

(0% = 7o — 12upM*(2)) G (2) = =5 (). (1.32)

deren Losung bei Vernachldssigung des Impuls—Cutoffs

1
(2m)P

1

G () = —
() P2+ ro + 12ugM?(x)

C

[ PGP e GO p) (1:33)

ist. Bei verschwindendem &dufleren Feld gilt in der symmetrischen Phase (¢ > 0)

gerade M(xz) = 0, und wir finden

G (p) = : (1.34a)

In der gebrochenen Phase (¢ < 0) ist nach (1.30) die spontane Magnetisierung durch
M?*(z) = —ro/4ug gegeben, und wir haben

B 1
_p2—2r0'

G (p) (1.34b)
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Mit Hilfe ihrer Definition (1.8) berechnet sich daraus die Korrelationslinge in Uber-
einstimmung mit (1.24) zu

- (Clot)_l/z 5 t>0
5—{ (=2a0t)~1/2, t<0 - (1.35)

Durch die Unabhéngigkeit der kritischen Exponenten und Amplitudenverhélt-
nisse von den Parametern der freien Energie gibt die Mean—Field—Theorie einen
ersten Hinweis auf die schon angesprochene Universalitidt dieser Gréflen, die jedoch
— bedingt durch deren Unabhéngigkeit von der Raumdimension D — in dieser All-
gemeinheit nicht haltbar ist. Sie rechtfertigt gleichzeitig die Vernachlassigung aller
mikroskopischen Freiheitsgrade durch die Wahl eines kontinuierlichen Ordnungspa-
rameters und der Zustandssumme (1.25).

Beim Betrachten von Gleichung (1.27) féallt auf, dafl das LANDAU-GINZBURG—
Modell das statistisch-mechanische Pendant der quantenfeldtheoretischen ¢*-Theo-
rie ist, von dem wir vor allem durch Einbeziehung seiner stérungstheoretischen
Korrekturen nichtvernachléssighare Abweichungen vom Verhalten der Mean—Field—
Theorie erwarten. Eine genauere Untersuchung zeigt, daf} dies genau fiir Dimensio-
nen D < 4 der Fall ist. Des weiteren zitiere ich an dieser Stelle ein Resultat aus
der Theorie der Renormierungsgruppe, nach dem die Beriicksichtigung von Termen
bis einschliellich zur 4. Potenz des Ordnungsparameters tatsdchlich fiir eine prézise
Beschreibung des dominierenden kritischen Verhaltens ausreichend ist. (Siehe hierzu
[AMI84, BGZJ76, ZJ89] und dort gegebene Referenzen.) Bei der Bestimmung uni-
verseller Grofen liegen alle durch die Mitnahme von héheren Termen verursachten
Korrekturen innerhalb der numerischen Fehlerabschétzungen.



Kapitel 2

s*—Theorie

Ich stelle nun die ¢*-Theorie als feldtheoretisches Modell zur Beschreibung von Pha-

seniibergédngen 2. Ordnung sowie (nach [LW87a, LW87b, MM93]) ihre Storungs-

theorie in Hoch— und Tieftemperaturphase vor. Diese Theorie wird in vielen Lehr-

biichern zur Quantenfeldtheorie (z.B. in [RYD85, AMI84, ID89]) ausfiihrlich ent-

wickelt, so daf} ich auch hier nur die wesentlichen Begriffe und Bezeichnungen einfiihre.
Dies betrifft vor allem die Stérungstheorie im Impulsraum und die daraus abgeleite-

te diagrammatische Entwicklung der verschiedenen Korrelationsfunktionen, da dies

in spateren Kapiteln explizit durchgefithrt wird.

2.1 Erzeugende Funktionale und Korrelations-
funktionen

Wir betrachten eine euklidische skalare Feldtheorie in D Dimensionen, die aus der
zugehorigen Theorie im Minkowski—-Raum durch Ubergang zu einer komplexen Zeit-
variablen (WICK—-Rotation) gewonnen wird.

Ausgangspunkt ist die Wirkung

S(0) = [ %2 £(&). (2.1

die aus dem Raumintegral {iber eine lokale Lagrangedichte £ gebildet ist. Letztere
ist die Funktion eines einkomponentigen, reellwertigen Feldes ¢ = é(z), = € RP,
und setzt sich aus einem freien und einem wechselwirkenden Anteil zusammen:

L) = Lod)+ Lonld)
Lol@) = 5 (D6()) + 5 mi(). (2.2)

Im Falle der ¢*Theorie setzt man fiir L;,; eine Selbstwechselwirkung der Form

Lunld) = 7060 (2:)

14
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mit einer Kopplungskonstanten gy > 0 an. Der physikalische Gehalt einer so for-
mulierten Theorie ist in den Erwartungswerten von Feldern und ihrer Produkte
enthalten, die sich aus dem erzeugenden Funktional der Theorie berechnen lassen.
Dieses ist als Funktionalintegral

Zo:= /qu(:z;) e=S0) = /qu(:z;) exp{—/dD:Jc ,C(qb)} (2.4)

gegeben, welches im Sinne von Do(x) = [, d¢(x) als Integrationsmaf tiber alle
moglichen Feldkonfigurationen von ¢(x) zu verstehen ist. Bei Anwesenheit einer
auBeren Quelle h(x), an die das Feld ¢ linear koppelt, ist in (2.2) ein Term

Esource(qb) — —h(:z;)gb(:zi) (25)
hinzuzufiigen, und das erzeugende Funktional ist
2{h} = [ Do) exp{—/dD:L' [£(6) —h(:z;)qb(:z;)”, Z{0} = Zo.  (2.6)
Wir definieren die Erwartungswerte beliebiger Feldfunktionen A(¢) als

T e=5(#) b
(A(9)) = f?{@g qj(j;fiw = Z{lh} / D) A($) eSO+ 47 h(@)6(z)

und berechnen dann die n—Punkt-Greens— bzw. Korrelationsfunktionen (haufig auch
SCHWINGER—Funktionen genannt) der Gestalt

G a1, ya) = (S(a1) - Blx,) (2.8)

durch die Funktionaldifferentiation

(2.7)

h=0

1 g
Z{h} Sh(zy) - 0h(xn)

(¢(x1) - Plan)) = z{ny| . (2.9)

h=0
Umgekehrt haben wir die funktionale Taylorentwicklung

Z{h} S n'/dD e dPay h(zy) - h(2) GO (@, ). (2.10)

n=0

Als Fouriertransformierte der Korrelationsfunktionen im Ortsraum sind iiber

GO (2y,... 2 /H (d Pi elpﬂ'l’ﬂ) 2 D(S(Zp]) Wy, .pe)  (2.11)

die n-Punkt—Greensfunktionen im Impulsraum definiert.

Wenn wir dies mit den Inhalten des 1. Kapitels vergleichen (speziell in Anbe-
tracht der Gleichungen (1.25) und (2.6)), beobachten wir den schon mehrmals beton-
ten Zusammenhang zwischen Statistischer Physik und Feldtheorie, nach dem sich die
Zustandssumme Z und das erzeugendes Funktional Z sowie die Hamiltonfunktion
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H und die euklidische Wirkung & formal entsprechen'. Die spontane Magnetisierung
ist deshalb wieder durch (1.1) mit ¢(x) anstelle von o(x) gegeben, und man ist im
Hinblick auf die Berechnung thermodynamischer Gréflen in Analogie zu Abschnitt
1.2 an einem Funktional I' interessiert, welches der freien Energie (¢ gleichzusetzen
ist.

Dazu definieren wir zunachst durch
F{h} :=1InZ{h} (2.12)

ein Funktional F, welches sich als das erzeugende Funktional der zusammenhéngen-
den Korrelationsfunktionen

GO e, ) 2= {9lar) - B (2.13)
herausstellt. Speziell ist in Analogie zu (1.21)
(d(2))e = (d(x)),  (d(x1)P(2))e = (D(w1)d(22)) — (Dw1))(d(22)).  (2.14)
Die Gleichungen (2.9), (2.10) und (2.11) sind durch

571
xq) -+ 0h(xy,)

Fih}

(P(x1) - dan))e = 5 (2.15)

h=0

2§

|
HZO

’/d%l Py h(xr) b)) GO (an, . e). (2.16)
n

n=0

G (2, /H ( ik Pi_ giny: ) o D(S(Zp]) GOV pr,.. ) (2.07)

zu ersetzen, wobei durch die letzte Beziehung die verbundenen n—Punkt—Greensfunk-
tionen im Impulsraum erklart sind. Durch

SF{h}
dh(x)

D{M} := F{h} — /d% hz)é(x), M(z)= (2.18)
fiihren wir jetzt das Funktional I' als Legendretransformierte von F ein. Die Ma-
gnetisierung M bei beliebigem dufleren Feld h, die fiir o — 0 in die spontane Ma-
gnetisierung iibergeht, wird in der Feldtheorie oft konventionsgemé&fl mit demselben
Symbol ¢ wie die Feldvariable der Lagrangedichte bezeichnet. Wie in (1.6a) und
(1.6b) liefert die Reziprozitat der Legendretransformation

ST{MY oM
= ),
OM(x) |3y (p)=tzim SM(x)

— 0. (2.19)
M(z)=0

!Dies ist eigentlich nur bis auf einen Faktor 3 richtig, dem in den beiden Zugingen eine unter-
schiedliche Bedeutung zukommt.
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Die Beziehungen (2.15) — (2.17) lauten jetzt

J— 5n
R S VI B Y Ve

I (zy,. .. I'{M} ‘ (2.20)

DM} =3 /dD:z;1 AP, M(21) - M) Ty, .y 2n) (2.21)

n=

F()xl,..., /H(de] Zpﬂl’ﬂ) 27TD5(Zn: ) p1,...,pn). (2.22)

Damit ist I' das erzeugende Funktional der sogenannten n—Punkt—Vertexfunktionen
I'™ im Orts— bzw. Impulsraum. Als Verallgemeinerung der freien Energie (i sind ihre
Eigenschaften und ihre Berechnung fiir die feldtheoretische Beschreibung kritischer
Phénomene von entscheidender Bedeutung.

Bevor wir auf die Stérungstheorie und die diagrammatische Entwicklung der
Korrelationsfunktionen im Impulsraum eingehen, nehmen wir eine Erweiterung vor,
indem wir die verbundenen Korrelationsfunktionen mit ¢*-Insertionen,

GUO({asy}) = <¢<x1> - d(wn) % & (yr) - %¢2<yl>>c, (2.23)

mit {z;y} = {z1,..., 20 Y1, ...,y und G0 = G betrachten. Durch Erweite-
rung des Quellterms (2.5) um eine quadratische Kopplung an ein Feld ¢(x), d.h.

1

Loniree(9) = —h(2)(x) = S () 62(2), (2.24)

erhélt man das erzeugende Funktional Z = Z{h,t} fir die unverbundenen Korre-
lationsfunktionen und daraus wieder F{h,t} := In Z{h,t}. Folglich berechnen sich

deren Erwartungswerte gemaf}

(1) 0l 5 )+ 5 )

st
- Sh(xy) -+ 0h(x,)0t(y1) -~ - 6t(w) Fih.t} o1 (2.25)
({:1? y}) /d Yiga - -dP yl+kt(yl+1) t(yl k)G A+k) ({:1; y}) (2.26)

G ({aiy)) = Q/H(“% %%)ﬁ(f@emw)x

(27 DcS(Zp] + Z Qk) GO ({p; q}), (2.27)
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mit {p;q¢} = {p1,--,pn;q1,-..,q}. Durch Legendretransformation beziiglich des
Feldes h erhalten wir wie zuvor das erzeugende Funktional I'{ M, ¢} der (n,[)-Punkt—
Vertexfunktionen [ mit den Eigenschaften

gt
M{(ay) - OM(2a)3t(y) - 5t(wi)

[ s y}) = - ) 2:%)

M=0,t=0

L0 ({a;y}) = Z [Py Pyt 1) T (e, 9)) (2:29)

re({a;y}) /H ( de] e %) li[ (dDQk elqk'yk) X

(27 D5(Zp] + Z a:) T ({p; a}). (2.30)

2.2 Stoérungstheorie

Die soeben eingefithrten Korrelationsfunktionen sind in der Stérungstheorie bere-
chenbar. Wir setzen in diesem Abschnitt [ = 0 vorraus und spalten in (2.6) den
wechselwirkenden Anteil der Wirkung ab. Das dabei entstehende Funktionalintegral
ist vom gaufischen Typ und ergibt

Z{h} xexp {—/dD:L' Lint (%(x)) } exp{ %/dD:chDy h(:z;)A(:z;,y)h(y)} (2.31)

mit der Proportionalitdtskonstanten y/det A(x,y). Der FEYNMAN—Propagator im
Ortsraum A(z,y) ist durch

(= 0*+md)Ale,y) =62 —y) (2.32)

als Inverses des euklidischen KLEIN-GORDON-Operators definiert, und seine Fou-
riertransformierte A(p) berechnet sich wie in (1.33) zu

1
pr+md

pAp) e Afp) =

INERNES )P (2.33)

Durch Ausfithrung der Funktionalableitungen in (2.31) erhélt man die Korrelati-
onsfunktionen im Ortsraum als unendliche Reihen in der Kopplungskonstanten go.
Fiir deren explizite Berechnung erweist sich allerdings die aus einer Fouriertrans-
formation in den Impulsraum hervorgehende Entwicklung als zweckméfig, die im
folgenden am Beispiel der ¢*~Wechselwirkung (2.3) qualitativ beschrieben sei:
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Die Impulsraum—Korrelationsfunktionen erscheinen als Potenzreihen in ¢q, de-
ren Koeffizienten aus Integralen {iber Produkte von FEYNMAN—Propagatoren be-
stehen. Hierfiir existiert eine suggestive graphische Darstellung, die nach noch zu
formulierenden Regeln auf diese Impulsintegrale fithrt. Die beitragenden Diagram-
me setzen sich aus ein— und auslaufenden Linien zusammen, denen ein Propaga-
tor des zugehorigen Impulses zugeordnet ist, und die sich jeweils zu viert in inne-
ren Punkten (Vertizes) treffen. Dabei gibt die Anzahl der Vertizes, die mit derje-
nigen der so entstehenden Schleifen (Loops) iibereinstimmt, die Storungsordnung
und die Anzahl n der &ufleren Impulslinien die Zugehorigkeit zu einer n—Punkt—
Korrelationsfunktion an. Die Beitrage zur n—Punkt-Funktion (2.8) bestehen aus
allen zusammenhangenden und unzusammenhédngenden Graphen, die duflere Lini-
en enthalten — die Vakuumdiagramme, d.h. diejenigen ohne duflere Beine, kiirzen
sich in (2.9) gerade fort —, und die verbundenen n—Punkt-Funktionen (2.13) um-
fassen nur die zusammenhéngenden unter ihnen. Bei der Berechnung der n—Punkt—
Vertexfunktionen I'®) | die im Mittelpunkt meiner Rechnungen stehen werden, sind
nur die zusammenhéngenden, einteilchenirreduziblen Graphen — d.h. solche, die
durch Auftrennung einer inneren Impulslinie nicht in elementarere Diagramme zer-
legt werden kénnen — zu beriicksichtigen, wobei aulerdem die Propagatoren ihrer
aufleren Beine zu ignorieren sind.

Fiir die 2-Punkt—Funktionen liefert die Legendretransformation (2.18) den Zu-
sammenhang

1

—TE0(p) = (¢E0(p) (2.34)

Die Untersuchung aller beitragenden Graphen ergibt unter Verwendung der geome-
trischen Reihe

GCO(p) = (A (p) — 2(p)
und damit
—T0(p) = A7 (p) — S(p), (2.35)

wobei die Selbstenergie ¥(p) die Summe aller einteilchenirreduziblen 2-Punkt—Gra-
phen mit amputierten dufleren Beinen ist.

2.2.1 Symmetrische Phase

In Anlehnung an das LANDAU-GINZBURG—Modell aus Abschnitt 1.5 verwenden wir
fiir die Stérungstheorie in der symmetrischen Phase eine ¢*-Theorie, deren Feldva-

riable wir jetzt mit ¢g+ bezeichnen und fiir deren nackte Masse mg
me = miy > 0. (2.36)

gelte. Das klassische Potential dieser Feldtheorie (Abb. 2.1)

1 1
V(go+) = 3 mo+ b+ () + 590¢3+($) (2.37)
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besitzt ein absolutes Minimum fiir ¢g+(2) = 0 und weist eine ungebrochene Z;-
Symmetrie (d.h. eine Symmetrie unter ¢o+ () — —o+(x)) auf, die den physika-
lischen Eigenschaften dieser Phase gerecht wird. Die Lagrangedichte ist wie zuvor

TV(9)

Abb. 2.1: Qualitativer Verlauf des Potentials
(2.37) als Funktion von ¢ fir festes x.

durch
1
L(dot) = = (0ot (x))” + 9 mos dor (1) + Lint(dor+ )

ﬁint(¢o+) = ﬂgoqbéﬂ (51?) (2-38)

DN

gegeben, und die FEYNMAN-Regeln im Impulsraum, nach denen man die zu den
Korrelationsfunktionen beitragenden Graphen analytisch auswertet, lauten:

X

entspricht ein Faktor — gy sowie eine Impulserhaltung an allen inneren Punkten

modulo 27 in jeder Impulskomponente.

1. Jedem Vierer—Vertex
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2. Jeder inneren Linie mit Impuls k

ist ein Propagator A(k) zugeordnet.
3. Uber alle inneren Impulse k ist mit [ % zu integrieren.

4. Jeder Graph tragt einen Faktor 1/, wobei der Symmetriefaktor S die Ord-
nung der Symmetriegruppe des Diagramms angibt. Diese umfafit alle Permu-
tationen innerer Linien und Vertizes bei festgehaltenen dufleren Impulsen, die
die Gestalt des Graphen unverdndert lassen.

5. Graphen, die durch Permutationen innerer Linien und Vertizes bei nicht festge-
haltenen dufleren Impulsen auseinander hervorgehen, sind topologisch inaqui-
valent; sie miissen deshalb einzeln beriicksichtigt werden, auch wenn sie den-
selben analytischen Ausdruck reprisentieren.

Die Theorie besitzt in der symmetrischen Phase die Eigenschaft, daff alle n—
Punkt—Funktionen mit ungeradem n identisch verschwinden, was insbesondere fiir
die spontane Magnetisierung

=0
h(z)=0

M(z) = (bo+(2))

unserer Erwartung entspricht. Des weiteren treten in der Stérungsreihe keine Dia-
gramme auf, die Graphen mit einer aufleren Impulslinie als Teilgraphen (Tadpole—
Diagramme) enthalten.

Um jetzt den Ubergang in die gebrochene Phase zu vollziehen, ist eine Tem-
peraturabhingigkeit in die Parameter der Lagrangedichte zu implementieren. In

Anwendung von (1.6b) bzw. (2.19) auf das Potential V(¢) ist offenbar die Wahl
mg oc t (2.39)

angemessen. Die Beriicksichtigung der perturbativen Korrekturen, die sich durch die
Einbeziehung von Impulsintegralen ergeben werden, bewirkt jedoch den Massen—

Shift
me —mg, o t, (2.40)

der in der Renormierung Anlafl zur Einfithrung eines neuen Massenparameters gibt.
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2.2.2 Phase gebrochener Symmetrie

Diese Phase zeichnet sich unter anderem dadurch aus, dafl die Zo—Symmetrie spon-
tan gebrochen ist. Nach (2.39) setzen wir deshalb

mg < 0 (2.41)

an. Das zugehorige Potential (Abb. 2.2)

V(6) = gmid () + 3 o) (242)

hat neben einem lokalen Maximum in ¢(x) = 0 zwei absolute Minima in ¢(z) =
+0in. Durch Differentiation von (2.42) berechnet man

TV(9)

—VUmin —I'Umin
I I &
SIS

Abb. 2.2: Qualitativer Verlauf des Potentials
(2.42) als Funktion von ¢ fiir festes x.

Omin = /=3l m3/go = \3m3- /g0 >0, (2.43)
wobei in der Phase gebrochener Symmetrie eine nackte Masse mg- iiber
mg- = —2m2 >0 (2.44)

definiert ist. Da das Funktionalintegral (2.4) durch diese Minima dominiert wird,
entwickeln wir das Potential (2.42) um das positive unter ihnen; dies ist gleichbe-
deutend mit der Einfithrung eines neuen Feldes ¢g- durch

Po-(x) := ¢(x) — Viin. (2.45)
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Nach Einsetzen von (2.45) in (2.42) erhélt man nach einer leichten Rechnung

4

1 3 mg-
V() = 5 ms-di-() + 3o mo-di-(0) + adi=() = L (246)

und die Lagrangedichte (2.2) geht in

5 (D0~ () 3 M3 (2) + Lin(b0)

L(¢o-) 3 Mo-
()

/Jmt(ﬁbo—) = Mmo Qbo

iiber. Wir sehen also, dafl wir die Stérungstheorie in der gebrochenen Phase mit ei-
nem Feld ¢g- betreiben konnen, welches zusatzlich eine Wechselwirkung vom Typ ei-
ner ¢°~Theorie aufweist. Da der konstante Term in der Lagrangedichte zur Stérungs-
theorie nicht beitragt, werden wir ithn von nun an vernachléssigen.

4,gosbo()—— (2.47)

Die vorstehende Betrachtung legt nahe, direkt von einer Lagrangedichte

L) = 5(06()7 +V(9)

1

1 3
V() = —gmidi(e) + aes(e) g0

4
M- 1

RTES (¢2(1’) - Ufnm)z

mit m3- > 0 auszugehen. Dies geht mit der Vorstellung einher, daf die spontane

Magnetisierung in der gebrochenen Phase von null verschieden ist und sich aus den
stabilen Feldkonfigurationen des klassischen Potentials bestimmt, die gerade durch
dessen Minima bei +v,,;, gegeben sind. Gleichzeitig wird durch die Ersetzung (2.45)
der konstante Term in (2.46) kompensiert.

Die spezielle Wahl der Masse mg- in (2.44) bewirkt, dafl die FEYNMAN-Regeln
der symmetrischen Phase giiltig bleiben, sofern man dort iiberall mg+ durch sie
ersetzt. Aufgrund der modifizierten Wechselwirkung (2.47) tritt allerdings die Regel

1" Jedem Dreier—Vertex

N

entspricht ein Faktor —\/3¢go mq- sowie eine Impulserhaltung an allen inneren
Punkten modulo 27 in jeder Impulskomponente.

hinzu.

Dies hat zur Folge, daf} in dieser Theorie der gebrochenen Phase die n—Punkt—
Funktionen mit ungeradem n nicht mehr verschwinden. Dies ist speziell fiir die
spontane Magnetisierung sinnvoll, die nach (2.45) durch

o = :IZUmin + <¢0_($)> ‘h(x)ZO
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gegeben ist. Diese Gleichung zeigt, daf} sich die spontane Magnetisierung in der Pha-
se gebrochener Symmetrie aus ihren klassischen Werten 4v,,;, (d.h. denjenigen der
Mean—Field-Approximation) und gewissen Quantenfluktuationen zusammensetzt,
die in der Stérungstheorie als Erwartungswert des Feldes ¢g- zuganglich sind.



Kapitel 3

Regularisierung der divergenten
Integrale

In Kapitel 2 habe ich dargelegt, dafl die Korrelationsfunktionen im Impulsraum eine
diagrammatische Entwicklung besitzen, die man mit Hilfe der FEYNMAN-Regeln
in Impulsintegrale iibersetzen kann. Viele dieser Integrale stellen sich allerdings in
Abhéngigkeit von der Dimension D als divergent heraus und kénnen deshalb nicht
direkt berechnet werden. Diesem Problem, das sich durch die gesamte Quantenfeld-
theorie und ihre Anwendung auf die Elementarteilchenphysik zieht, wird dadurch
begegnet, dal man ihren physikalischen Gehalt in einer renormierten Theorie sucht,
in der diese Divergenzen in konsistenter Weise beseitigt sind.

Ein wesentlicher Schritt in diese Richtung besteht in der Isolierung der Diver-
genzen durch geeignete Regularisierungsmethoden, von denen ich hier zwei, darunter
in erster Linie die dimensionelle Regularisierung, durch explizite Rechnungen illu-
striere.

3.1 Dimensionelle Regularisierung

In der dimensionellen Regularisierung iibertrdagt man den klassischen Integralbe-
griff auf Dimensionen D € C, indem man die Integrale durch ihre Werte bei den
ganzzahligen, positiven D definiert, fiir die sie a priori existieren, und von dort
zu beliebigen Dimensionen analytisch fortsetzt. Dieses Verfahren, das erstmals in
den siebziger Jahren vorgeschlagen und mathematisch axiomatisiert wurde, hat sich
seither, nicht zuletzt wegen seiner Anwendbarkeit auf Eichfeldtheorien, als fester
Bestandteil des Renormierungsprogramms etabliert. (Siehe [TV72, LEI75, COL84].)

Ich fithre jetzt die dimensionelle Regularisierung der in D = 4 und D = 3 diver-
genten Impulsintegrale aus, die in unsere spateren Rechnungen eingehen werden. Zu
diesem Zweck iiberfiihrt man sie durch die als SCHWINGER—Parametrisierung der
Integranden bekannte Identitét gemaf

1

1 o]
—=—— | daa" e, AeC N 1
T F(n)/o aa" e , eC, ne¢ (3 )

25
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in eine Form, in der die D—dimensionale Integration durch Zuriickfithrung auf ein
gauBsches Integral (vgl. hierzu Anhang C.2) geschlossen ausgefiihrt werden kann. Die
Divergenzen der urspriinglichen Integrale zeigen sich dann in den einfachen Polen
von Gammafunktionen, die durch eine Entwicklung um die physikalische Dimension
der Theorie isoliert werden kénnen. Zu diesem Zweck sind in Anhang C.1 einige
Eigenschaften der Gammafunktion zusammengestellt.

Wie in den obigen Formeln bereits angedeutet ist, will ich von nun an den Vektor-
charakter der euklidischen Impulse durch Fettdruck hervorheben; das Skalarprodukt
ist weiterhin mit einem Punkt bezeichnet. (Dabei ist k* = k - k = k2.)

3.1.1 Regularisierung der 1-Loop—Integrale

Integral J;

Wir betrachten in beliebiger Dimension D das Integral

J(D) ::/(;lﬁ)kD k2+1m3. (3.2)

Aufgrund seines Verhaltens
0 kD_l
dk
h /0 o

erkennt man, dafl es fiir & — oo im Fall D = 4 quadratisch und im Fall D = 3
linear divergent ist. Zur Berechnung von J; substituiere ich zundchst k& — k/mq

und erhalte
D/2—1

J(D) = %/dljk !

E24+1°

Jetzt benutzt man die SCHWINGER-Parametrisierung (3.1) des Integranden und
findet nach Ausfithrung des gauflschen Integrals (C.15):

D/2-1 ; 2)D/2-1 ;
Ji(D) = 7(77;%) 1D / doz/dD emoFH) — / doe” /dD —ak
T

D/21
:( //dozea_

Die Integraldarstellung der Gammafunktion (C.1) liefert dann

m2\P/2-1
J(D) = ((ZEEW r(i- g) | (3.3)

Man kann jetzt die Divergenz des Integrals fiir D = 4 isolieren. Dazu setze ich
D =4—¢ e>0, und verwende die Reihenentwicklung der allgemeinen Exponenti-
alfunktion

1
¢ = "7 = 1—|—61H$—|—§621H2$—|—O(63), reRT (3.4)
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sowie die Entwicklung der Gammafunktion um ihre Polstellen (C.5)

D 2
r(1——):F(—1+5):———1+~y+0(6) (3.5)
2 2 €
mit dem Ergebnis:

h(d—o) = (ij (1 — S In(md) + 0(8)) (1 + £ In(4m) + 0(8)) x
X (—%—l—l—’y—l—O(e))
_12”‘52 (% i (T—f) 14 0(6)) . (3.6)

Die Divergenz des Integrals J; fiir D — 4 zeigt sich demnach als einfacher Pol fiir
e — 0.

Im dreidimensionalen Fall erhalt man durch Setzen von D = 3 — € mit

F<1—§) = F<—%+§):F<—%)+§%F(Z) +0(E)

= =27 (1 + O(e)) (3.7)
einen endlichen Wert im Grenzwert ¢ — 0, obwohl das urspriingliche Integral auch
in D = 3 noch divergent ist. Dies ist eine Eigenschaft der dimensionellen Regu-

larisierung in ungeradzahligen Dimensionen, die auf die Berechnung physikalischer
Groflen allerdings keine Auswirkungen hat. Man ignoriert deshalb die Divergenz des
Integrals J; und fiithrt nur seinen endlichen Anteil

L) = h(B—¢) = @4:% (1 — £ In(md) +0(62)) (1 + 5 In(an) +0(62)) x
x (=2v/7 (14 0(e)))
= — 2 (14 0() (3.8)

mit.
Aus (3.3) und (C.4a) bekommt man fiir n € N\ {1} durch wiederholte Diffe-

rentiation nach m3 die Integrale

dPk 1 10
= o ety = "t g D)
= o) @mpr T\ 3)

Speziell fiir n = 2,3,4 divergiert in D = 4 nur noch das Integral .J;, d.h.

Ju(D)

Jo(4) = /d4k L (04— (3.9a)
Tt g T -
d'k 1 1
y =/ = lim Js(D) = ——— 9b
Fa() (2m)* (k2 + m2)? B B(D) = 5 (3.9b)
d'k 1 1
1) = / = lim Jy(D) = ——— .
Ja(4) 2m)* (B2 +md)t Do Ja(D) 967 2md’ (3:9¢)
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wahrend in D = 3 bereits alle Integrale endlich sind:

ne) = [ k1 lim Jy(D) = — (3.10a)
e = ]1m —= . a
2 (27)3 (k? + md)? D3 ? 8Ty
d*k 1 1
d*k 1 1
= = i D) = . A
J4(3) /(2#)3 (k2 + md)* DIL%JAI( ) 64mmg (3:10¢)
Integral I;
Gegeben sei jetzt das Integral
dPk 1
Li(p: D) == / : 3.11
PPV o Ik .

welches wegen

o kD_l
1,(0: D / A ——
1(0: D) o 0 (k2 +1)?

fiicr D = 4 noch logarithmisch divergent ist. Ich substituiere wieder k — k/mg und
verwende fiir beide Nennerfaktoren des Integranden die SCHWINGER—Parametrisie-
rung (3.1). Dann folgt mit p/my — p:

Li(p; D)
(mo 1

(2m)P /d b (k24 1)[(k—p)?+ 1]

m2\P/2-2
((OD / dadﬁ/deeXp{ {Oz—l-ﬁ) —20p - k—|—oz—|—ﬁ—|-ﬁp”

B ( D/22 D/2 , B
S () |22

(mo)D/2 2 dadp { aﬁpz}
(4 D72 / at)pr P et =g

wobei wieder das Integral (C.15) ausgefithrt wurde. Durch die Substitutionen

)D/z 2

+8, 0<s< f=—2 0<ti<1
s i=a« , § < 00; = ,
a+

erreicht man die (umkehrbar stetig differenzierbare) Koordinatentransformation

i (j)ﬁ(g):(s(ft—t)) (3.12)

mit Funktionalmatrix und zugehériger Funktionaldeterminante

J(a, B 3
(Df)|(s,t) = 6((8711)) = ( (1 t_t) 3 ) ) det(Df)|(s,t) ==
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Dies liefert mit der Transformationsformel fiir mehrdimensionale Integrale:

D/2-2

(mg) Yt [ ds s
[1(p, D) = W/O dt/o dss D/?‘ det(Df)|(s,t)‘ x

X exp {— (1 + (1 — t)pz)}

D/2-2

m 1 o) B
= ((ZEEW/O dt/o ds s* D/Qexp{—s(l—l—t(l—t)pQ)}.
Mit der Substitution

wi=s(1+1(1—t)p?), Z—Zzl—l—t(l—t)pz, u(0) =0, u(o0) = oo

folgt schlieBlich mit der Integraldarstellung der Gammafunktion (C.1):

m D/2 2 -
L(p;D) = ((4(;71)/2/ du e u'~ D/Z/ dt (1+1(1—1)p?) ol
m2)D/2—2 -
- 7((4072)13/2 F(Q—g)/o dt (1+t(1—t)p?) b (3.13)

Durch Differenzieren' bekommt man

m3 D/2-3 1 —
gﬂﬂDﬁ%g—@%ﬁﬁTr@‘%ﬂdﬁ+égé%””

(3.14)

als Ableitung des Integrals nach dem &dufleren Impulsquadrat. Dieses Integral ist
offenbar fiir D = 4 bereits endlich, da die Differentiation die Potenz des Integrati-
onsimpulses im Nenner erhoht.

Wie zuvor entwickelt man in (3.13) alle Faktoren um D = 4, was mit

r<2—§):r(§):§—v+0(6) (3.15)
nach (C.5) auf
L(0:4 — o)
- (—glo%wux>)0+ i)+ 0()) (2 =7+ 0()) x

. (_ (;7) o) 16

!Man beachte, dafi dabei durch die anfingliche Ersetzung p/mo — p jetzt ein zusitzlicher
Faktor m2 im Nenner auftritt.

1 — S (11— np?) + 0(62)]
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fiihrt. Analog ist

x/ol dt i ;E(l — 3)p2) [1 - gln (141 - t)p?) +O(8)] _

t
1—
_ _gm (g_m (T_j) —’y—l—O(e)) (/Oldtt(l—t)JrO(e?)),

D=

und es existiert der Grenzwert

0

a—pz [1(17;4)

.0
o 10 g 1P

S (3.17)

p?=0 9672m

Das Integral [; und damit erst recht seine Ableitung nach dem &ufleren Im-
pulsquadrat sind im Fall D = 3 endlich und kénnen deshalb, wie im Anhang B.1
vorgefithrt wird, direkt bestimmt werden. In (3.13) und (3.14) kommt dies dadurch
zum Ausdruck, dafl dort die Grenzwerte D — 3 existieren:

. 1 p
[1(]), 3) = 11)13% [1(]), D) = % arctan (%) 5 [1(0, 3) = 87‘[‘m0 (318)
und
0 0 1
— Li(p;3 = lim — Li(p; D = ——. 3.19
apz l(p’ ) p2:O Dl_rg’ ap2 l(p’ ) p2:O 967ng ( )

3.1.2 Regularisierung des 2—-Loop—Integrals I,

Von den Graphen, die in 2. Ordnung der Stérungstheorie zu beriicksichtigen sind,
weist nur einer in D = 3 einen Divergenztyp auf, der sich von den soeben behandelten
Divergenzen unterscheidet. Das zugehorige Integral ist fiir beliebiges D durch

L(p: D) ._/deldeQ |
2P [ o R md) (R 1 md)(p 4 ket k) 4l

(3.20)

gegeben. Aus (3.13) ersehen wir

oo k?‘l oo k%D—5

1,(0: D /dkil—k-D dley 2L

2(7 )O<0 lk%—l—lL/l’—)/O(O lk%_l_lv
o<k1D_4

so daf} [y fiir D = 3 logarithmisch divergent ist. Die Ableitung nach dem &uBeren
Impulsquadrat ist wie im Falle des Integrals I; endlich.
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Dimensionelle Regularisierung von [

Ich verfahre in Analogie zu den vorigen Rechnungen und vereinfache das Integral
fiir zunéchst beliebiges D soweit, bis nach Setzung von D = 3 — ¢ die Divergenz
als Pol im Limes € — 0 in Erscheinung tritt. Ausgehend von den Substitutionen
k;, — k;/mg fir « = 1,2 betrachten wir

1
(kf + D)k + Dl(p + k1 + k2)* + 1]

2\D-3
[2(173 D) = %/dl}kldl}kz

mit p/mo — p, und man gelangt mit der SCHWINGER—Parametrisierung (3.1) des
Integranden sowie zweimaliger Anwendung des gaufischen Integrals (C.15), mit des-
sen Hilfe man die ky— und k;—Integrationen nacheinander ausfiihrt, zu

L(p; D)
(m)>=> = o
= W/O dadﬁd’y/d kid™ ky exp{ — {(oz —I—’y)kf + (B _|_7)k§
+2vk1 - by + 29p - (ks -I-kz)-l-’ypz—l-(oz—l—ﬁ—kfy)”
()P = - 2
- | dadsary [ @Prd? exp{ — [(B+ )k + 207k +7p) - K

+(a+7)k3+2w-k1+7p2+(a+6+7)}}

mg)" = e r \ af + By +ra
_ %/0 dadﬁdfy( ) [k exp{—[—kf

( B+ B+
By By
- * kl - Oé
-|-26_|_7p —|-6_|_7p +( +6+7)]}
_ o (mg)P? e dadfdy - {_ N _ apyp’ }
B MﬂDmA (af + By + ya)P2 P (a5 +7) aff + By +yaf’
(3.21a)
bzw.
o (md)PE e dadBdy (atBt)
1(0; D) = MmD(A e . (3.21b)

Durch die Substitutionen

a+ v «
a+p+y T a4 pl

si=a+04+7y, 0<s<oo; t:= 0<tiu<l

erreicht man die (umkehrbar stetig differenzierbare) Koordinatentransformation

S o] stu
I (t)%(ﬁ)(st(lu)) (3.22)
u ~ s(1 —1)
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mit Funktionalmatrix und Funktionaldeterminante

d(a, B,7) tu su ts
(DN oy = A = | t1—u) s(l—w) —st |, det(Df)],,., = =5t
S J(s,t,u) (s:tu)
1 —1 -5 0
Nach der Transformationsformel fiir mehrdimensionale Integrale folgt:

1,(0; D)

(m3)P=> oo g | det(Df)](, 1.
(47)D J dsf e D [Pu(l =) + 11— )l — 1) + tu(l — )]

(m%)D‘3 /OO 52D /1 =
= W) [ gges dtd
)D se s YT =t + tu(l —u)Pr2

(mo / 1=
= dtd : 2
“(4m)D YTt tu(l — w)]Pr (3:23)

—5

€

im letzten Schritt habe ich wieder die Integraldarstellung der Gammafunktion (C.1)
verwendet. Jetzt setzt man D = 3 — e und entwickelt die vorstehende Gleichung um
¢ = 0, wobei speziell nach (C.5)

I3 D) =T() = - —+0(c (3.24)

ist. Die Divergenz des Integrals I, offenbart sich also wieder als einfacher Pol der
Gammafunktion. Insgesamt ergibt sich

15(0;3 —¢)
= @ (1 — cln(mg) + 0(62)) (1 + eln(4m) + 0(62)) (% g O(e)) "
! 1
< [ dtduﬂ\/[l_t+t(1_ —

- (471T)3 (%_1H(T—7§)_7+O )(/ dtdu\/\/l—t—itl—u)]
tin (t =2+ 2u(l — u))

VIt =2 + 2u(1 — )

und es verbleibt nur noch die Bestimmung der Parameterintegrale.

: [1—|— 5 ln( t2+t2u(1 —u)) +O(62)]

€ [ 9
+§/0 dtdu +O(e )),

Mit @ := ¢ — (1 —u+u?)t? ergibt im ersten Integral die Nacheinanderausfiithrung
der t— und u—Integrationen auf die Integraldarstellung der Betafunktion (C.6):

! 1 ! Lot 1 2t |1
/()dUdtﬂ\/[l—t+t(1—u)u]3 - /odu/o dtﬁ:/odul—o]

1 11
— 2/ duu2(1 — u)"V? = 23( )
0 272
= 2. (3.25)
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Der Wert des zweiten Integrals wird in die spateren Rechnungen nicht eingehen, so
daf ich auf seine geschlossenen Berechnung verzichte:

tin (t =12+ 2u(l — u))
VIt =2+ 2u(l — u)J?

Man findet also das Endresultat

~ —15.0448.

1
C::/ dtdu
0

1 1 ma C
I(0;3 —¢) = -—1 0 — — @) 3.26
2(0; 2 3272 (6 n(47r)+47r v ()) ( )
Bestimmung von /]
Zur Bestimmung von
, 0
Iy = = L(p; D) (3.27)
a p2=0, D=3

differenziere ich (3.21a) und erhalte (man beachte wieder den Faktor 1/m? durch
die Riicksubstitution des aufferen Impulses):

—(a+8+7)

0 m2)P—% oo aBye
2 L(p: D) :_%/0 dadBdy —P0

Op> =0 (ozﬁ + By + ,.ya)1+D/2' (3.28)

Fithrt man wieder die Variablensubstitution (3.22) durch, so folgt

0
WIQ( p; D)

(m3)P=t o det(Df)| | sl = uw)(1 =)
_ (47-[-) /0 dS/O dtdu 2_|_D [t2 (1 )—|—t(1 )]1+D/2

_(mg / dse_sgp/ s 1(1 u)(l ==

( [1— ¢+ tu(l — w)]t+D/2

)D4

__(mg u(l —u)(1 = )%
- _Wr4_ /dtd [L— ¢+ tu(l — )] +P/2’ (3:29)

—5

und der Grenzwert D — 3 existiert:

Viu(l —u)(1 —t)
= ——— | dtdu .
p2=0 64m3mg /0 t \/[1 —t+tu(l — u)]5

d
[ . {)
[2 - g_}lll?) apz [2 (p7 )

Mit R:=1—+t+ tu — tu? und

/d 16 2
YR 3(BL—4R(L— 02 3(3t—4)(1— 1)
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berechnet man

1 —t—l—tu(l — u)]5

:/dt\fl—t[/dU\/—/ \/—]
— /Odt\/i(l—t)l/ du 5—2(1it)3/2_<2_%)/0du\/%]

/ldtﬂ[(l_t ( ) \/_5 2t(1it)1/2]

(L-u 3\
- dt /dttm )12 (1 —t)
3/ \[ (3t —4)?

1
= —B<3 3) F<2,§;3;§) = 2—7T
6 272 27 4 27

In der letzten Zeile bezeichnen B die Betafunktion und F' die hypergeometrische
Funktion, fiir deren Definition wir auf Anhang C.1 verweisen. Dies liefert schliellich

0 1
I, =lim — L(p; D = ——. 3.30
2 Do a 2 2(p7 ) p2:0 8647‘[‘2771(2) ( )
Bestimmung von 1,
Abschlieflend ist noch der bald benétigte Wert des Integrals
. 0
Iy := —= LL(p; D 3.31
2 am(z) 2(p7 ) 20, D=3 ( )

zu berechnen. Die Differentiation sichert die Konvergenz des Integrals, da sich die
Potenz des Integrationsimpulses im Nenner des Integranden erhéht. Ich setze deshalb
sofort p = 0 und erhalte aus (3.23) mit D =3 — ¢

0 N =%
L L(03—¢) = - / dudt
am% 2( 73 6) am% (47_[_ 3 [ 1 o t —I— tu(l _ u)]D/2 Des_¢
2\ —¢ 15
0 . (mo) / dudt _
omg (4m)3- [1—t+tu(l —u)] =
2\—e—1 1 el
= — el'(¢) %/ dudt f —.
—— (47’7 Jo =t + tu(l —u)]=
=140(¢)
Aus (3.24) ersieht man, daB der Limes ¢ — 0 existiert, und mit (3.25) ergibt sich:
. 0 1 1 1
I, = hm [ (0;3—¢) = —7/ dudt
=2r
1
- . (3.32)

32m2m}
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3.2 PaAuLI-VIiLLARS—Regularisierung

In Abschnitt 3.1.1 haben wir gesehen, daf} sich die lineare Divergenz des Integrals .J;
in D = 3 durch die dimensionelle Regularisierung nicht isolieren 1a8t. Ich gebe des-
halb mit der PAULI-VILLARS—Regularisierung (vgl. [PV49, ZJ89]) eine alternative
Regularisierungsmethode an, die diese Divergenz zunéchst bewahrt, und mit deren
Hilfe ich im Kapitel 8 demonstrieren werde, dafl dieser Umstand — zumindest die
1-Loop—Rechnung betreffend — auf die Endresultate keinen Einfluf} hat.

Das Prinzip dieser (nicht eichinvarianten) Regularisierung ist es, die auftreten-
den Propagatoren in der Form

1 1 1
Ram: R tml A

A>0 (3.33)

zu transformieren, so dafl man im Grenzwert A — oo den urspriinglichen Ausdruck
zuriickerhilt. In diesem Sinne wird

d*k A —mi
(2m)? (k* + m)(k* + A?)

L(3) — B3 A) ::/ (3.34)

zu einem konvergenten Integral, welches man jetzt fiir endliches A ausfithren kann.
Nach Ubergang zu sphérischen Polarkoordinaten und Partialbruchzerlegung des In-
tegranden erhalte ich

AZ—mE oo ?
Ji(3:A) = 70/ dk
1(3;4) 272 Jo (K2 + m2) (k2 + A?)

2 _ 2 2 o 2 oo
_ A —m§ A / m 1 N mg / m 1
2m? A2 —m3 Jo kE? 4+ A2 mé — A2 Jo k2 +md

1 . o
_ A/ dk _ / dk }
27r2{ o Pz Ty Y

woraus mit (C.10)

1
folgt. Die Divergenz des Integrals .Ji(3) zeigt sich jetzt fir A — oo im linearen
Verhalten von J;(3; A). Wir beobachten insbesondere, dafi der endliche Anteil des
Integrals, der in die weiteren Rechnungen eingeht, mit dem in dimensioneller Regu-
larisierung bestimmten Wert (3.8) {ibereinstimmt.



Kapitel 4

Renormierung

Die Divergenzstruktur der ¢*-Theorie und die mangelnde physikalische Bedeutung
der in die Lagrangedichte ad hoc eingefithrten Parameter mg und ¢o (sowie indirekt
auch des Impuls—Cutoffs A) machen eine im Rahmen der Quantenfeldtheorie als
Renormierung bekannte Umparametrisierung notwendig, die fiir die in dieser Arbeit
angestrebte perturbative Berechnung universeller Gréflen unverzichtbar ist.

Deswegen bietet dieses Kapitel neben der Einfithrung der Renormierungssche-
mas die Gelegenheit, den Zusammenhang der Renormierung mit der Theorie der
kritischen Phdnomene zu umreiflen.

4.1 Renormierung und Kritische Phidnomene

Das Konzept der Renormierung &t sich vom feldtheoretischen Standpunkt wie folgt
charakterisieren (siehe z.B. [CAL76, COL84]):

Die ¢*-Theorie weist auf Ebene der (nackten) Gréflen mg und go der Lagrange-
dichte (2.2) Divergenzen auf, die sich am deutlichsten in der storungstheoretischen
Entwicklung der Impulsraum—Korrelationsfunktionen zeigen. (Man unterscheidet
dabei grundsétzlich zwischen Ultraviolett— und Infrarotdivergenzen, die sich fiir In-
tegrationsimpulse k& — oo und k& — 0 offenbaren. Da wir aber ausschlieflich eine
massive ¢*~Theorie betrachten, spielen die letzteren hier keine Rolle.) Im Zuge der
Renormierung fithrt man deshalb eine renormierte Masse mp und eine renormier-
te Koplung gg ein, die gerade so gewéhlt sind, daf3 die Korrelationsfunktionen in
Abhéangigkeit dieser Parameter fiir alle Impulse endliche Werte besitzen und somit
eine physikalische Interpretation erlauben. Die zuvor durch eine Regularisierung
(vgl. Kapitel 3) isolierten Unendlichkeiten der Theorie werden demnach durch ge-
eignete Renormierungsbedingungen in die analytischen Beziehungen zwischen den
nackten und den renormierten Parametern {ibertragen. Diese Relationen erlauben
wiederum auf der Ebene der Lagrangedichte die Konstruktion von lokalen Gegenter-
men, die in jeder Ordnung der Stérungstheorie eine Kompensation der Divergenzen
erzwingt. Ist dies durch eine endliche Anzahl von Gegentermen méglich, von de-
nen jeder eine unendliche (oder endliche) Potenzreihe in der renormierten Kopplung

36
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darstellt, so ist die Theorie renormierbar (oder superrenormierbar); andernfalls ist
sie nicht renormierbar. Diese Renormierbarkeitseigenschaft hiangt entscheidend von
der Dimension D ab. Eine einfache Betrachtung zeigt, dafi die ¢*~Theorie (bzw. die
¢*~Theorie) fiicr D = 4 (bzw. D = 6) renormierbar und fiir D < 4 (bzw. D < 6)

sogar superrenormierbar ist.

Fiir kritische Phdnomene scheint diese Argumentation auf den ersten Blick nicht
gerechtfertigt zu sein. Denn trotz der Wahl eines kontinuierlichen Skalarfeldes als
Ordnungsparameter besitzt die Theorie durch die Gitterstruktur des Festkoérpers
weiterhin einen intrinsischen Impuls—Cutoff A, der als Inverses der Gitterkonstan-
ten a die Impulse der Fourierkomponenten des Feldes nach oben begrenzt. Demzu-
folge weisen alle zu den Korrelationsfunktionen beitragenden Impulsintegrale eine
natiirliche Cutoff-Regularisierung auf, und wir haben eine endliche Theorie vor uns.
An fritherer Stelle ist aber schon betont worden, daff das kritische Verhalten (und
die daraus resultierenden makroskopischen Eigenschaften) von Phaseniibergdngen
2. Ordnung durch die langreichweitigen Fluktuationen des Ordnungsparameters be-
stimmt sind. Diese Tatsache erfordert die Unabhéngigkeit der Theorie von allen
mikroskopischen Parametern, und damit insbesondere vom Cutoff A. Die Existenz
des Grenzwertes A — oo (bzw. ¢ — 0 im Falle der dimensionellen Regularisie-
rung), die erst in einer renormierten Feldtheorie gesichert ist, erscheint damit als
Vorraussetzung fiir die Universalitat von kritischen Exponenten und deren Ampli-
tudenverhaltnissen.

Die in Kiirze durchzufithrende Massenrenormierung ist aulerdem in der Beob-
achtung begriindet, daff die nackte Masse mg, deren Quadrat nach (2.39) noch linear
in der reduzierten Temperatur ¢ war, in der Stérungstheorie den Phaseniibergang
nicht mehr durch ihr Verschwinden fiir ¢ — 0 steuert. Sie strebt vielmehr in diesem
GrenzprozeB, gemaf (2.40) in der Form

gegen eine kritische nackte Masse mg,., die im allgemeinen von null verschieden und,
wie z.B. in [BB85, BBMNS8T7| begriindet, perturbativ nicht berechenbar ist. Aus
diesem Grund fiithrt man mit der renormierten Masse mp (die gleichzeitig in einem
einfachen Zusammenhang mit der Korrelationsldnge steht) einen Parameter in die
Theorie ein, in dessen (beziiglich seines Quadrates nichtlinearem) Verschwinden fiir
t — 0 sich das Erreichen des kritischen Punktes manifestiert:
MR =mo. = 0- (4.2)
Die renormierte Stérungstheorie umfafit neben der Massenrenormierung, die in
D = 3 zur Beseitigung aller Divergenzen bereits ausreichend ist, eine Wellenfunkti-
onsrenormierung und eine Renormierung der Kopplungskonstanten. Diese zusatzli-
chen Bedingungen garantieren auch in D = 4 divergenzfreie Korrelationsfunktionen

und beseitigen die in einer masselosen Theorie entstehenden Infrarotdivergenzen®.

!Dies ist insbesondere in der e~Entwicklung erforderlich, da man dort von D = 4 zu D = 3
extrapolieren will.
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Erst in der Renormierungsgruppentheorie zeigt sich, daff die dimensionslose renor-
mierte Kopplungskonstante fiir die Physik in der Umgebung des kritischen Punktes
von grundsétzlicher Bedeutung ist.

4.2 Renormierungschema

Man betrachte die einkomponentige, euklidische ¢*-Theorie, deren Gestalt in sym-
metrischer und gebrochener Phase in Abschnitt 2.2 eingefiihrt worden ist. Ich lasse
wieder beliebige Dimensionen D zu und hebe an geeigneter Stelle den Fall D = 3
hervor. Soweit Verwechselungen auszuschlieffen sind, wird von einer Indizierung mit
+ bzw. — fiir die jeweilige Phase abgesehen.

Wie in der bereits zitierten Lehrbuchliteratur iiblich beginne ich mit den Ver-
texfunktionen (von nun an mit einem Index 0 versehen)

LS ({p; ¥ mo, g0),

{p;q} = {p1,-- -, pn;q1,-- -, q}, die nach Abschnitt 2.1 durch Legendre- und Fou-
riertransformationen aus den Erwartungswerten

1 1
<¢0($1) e dol@a) 56w - §¢3(y1)>
entstehen. Die Wirkung ist in konventionellen Einheiten dimensionslos, so daf die
nackte Kopplung die Massendimension 4 — D tragt und mit

%; Ug 1= g—o, D=3 (4.3)

My Mo

Uy ‘=

eine dimensionslose nackte Kopplung ug eingefithrt wird. Da ich eine massive Theorie
verwende, kann ich die renormierten Parameter der Theorie durch Renormierungs-
bedingungen an die Vertexfunktionen definieren, die verschwindende duflere Impulse
als Renormierungspunkte besitzen. Das Renormierungsschema ist dann durch das
Verhalten des Propagators fiir kleine Impulse (d.h. durch seine Taylorentwicklung
um p* = 0) bestimmt:

-1 1
—T6 (p3 1m0, g0) = (GO (pimo, go)) = Z—S(m% +1”+00")), (44)

wobel die renormierte Masse mp durch

F(2’0) 0; mo,
im0 Om000) g ) 129(0; 1, o) (145)

8Fé2’0) (p3m0,90)
Ip?

p?=0

und die Wellenfunktionsrenormierung Zs = Zs(uo) durch

1 Py _aF(OZO)(p? m07go) (4 6)
Z3(uo) dp? p2=0
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definiert sind. Mit (1.8) identifizieren wir die Korrelationslange als

mpr = g (47)

Des weiteren ist eine Renormierungskonstante 7y = Z5(ug) durch die Vorschrift

1
=~V ({0;03; 4.8
ZQ(UO) 0 ({ ) }7m0790) ( )
gegeben. Aus Abschnitt 2.1 folgt, dal man aufgrund der Identitét
0 0
Z == 4.9
O lge  OMG lgg (4.9)
die Vertexfunktionen mit ¢?~Insertionen (bis auf (n,l) = (0,0)) durch
(1) 10 o _ 9 g, . _ 90 gy .
F0 ({p707Q}7m0790) - F0 ({p7 Q}amovgo) - 2 F0 ({p7 Q}7m0790)
ot omé
(4.10)

aus den gewohnlichen Vertexfunktionen erhalt. Fir (n,l) = (2,0) geht (4.8) damit
in

1 8 F(270)
- 0
ZQ(UO) 8m(2)

(0; 120, go) (4.11)

iiber. Auf diese Weise hingen die renormierten Felder ¢ und (¢%)g iiber die Be-

o) = 1/ Zs(uog) pr(7) (4.12a)

o) = U fonla (1.12b)

mit den Feldern der Lagrangedichte zusammen.

ziehungen

Bis hierher behalten alle Gleichungen sowohl in der symmetrischen als auch in
der gebrochenen Phase ihre Giiltigkeit.

4.2.1 Symmetrische Phase
(4)

Die Definition der renormierten Kopplung ¢’ in der symmetrischen Phase erfolgt
iiber den Wert der 4-Punkt—Funktion bei verschwindenden dufleren Impulsen. Wir

setzen
Z3(u
9 = =22 (uo)08" ({0} 1m0, 90) = o o 0), (4.13)
Zl(uo)
wobei fiir die Renormierungskonstante Z; = Z (o)
1 1
= —— " ({0};m0, 90) (4.14)

Z1(U0) 9o
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gilt. Durch
(4) (4)
9r 9r
— ; =2 D=3 4.15
s m}é_D e mp ( )

ist dann die dimensionslose renormierte Kopplung up erklart.

Die Gleichungen (4.5) und (4.13) bzw. (4.15) gestatten es nun, mg als Funk-
tion von mp, go als Funktion von gr und schliefllich ug als Funktion von ugr zu
schreiben. Mit Hilfe dieser Relationen, die jeweils Potenzreihen in der renormierten
Kopplung sind, kénnen wir in den Renormierungsfunktionen 7;, 1 = 1, 2, 3, die nack-
te Kopplung g eliminieren, so dafl wir diese von nun an als Funktionen 7Z; = Z;(up)
auffassen. Mit der dimensionslosen Kopplung u, definiert durch

wi= N _. U= &, D=3 (4.16)

— ?
m}% D meg

als Funktion von ug, erhalten wir aus (4.13) und (4.15) die Beziehungen

Zy(ug) Z1(up)

-D
o= Hun)

F(ur)’
Nach Definition (2.25) ist der Zusammenhang zwischen den nackten und den re-
normierten (n,!)-Vertexfunktionen (mit Ausnahme von (n,l) = (0,2), fiir die eine

(4.17)

N

multiplikative Renormierung nicht moglich ist) durch die Gleichung

LS ({piakimo.go) = [Zs(un)]' ™% [Zo(ur)) ™ TG ({ps 4} mp, ur)
— Ut | 2] (s ahman) (119

gegeben.

Das Renormierungsschema in der symmetrischen Phase fassen wir durch den
Satz von Renormierungsbedingungen

F(2 0)(0 mp,ur) = —mp (4.19a)

J 20
O, — 1 4.19b
apg R (p mpr UR) =0 ( )
F ({O} mp,Ur) = —m}I{Du = —gg) (4.19¢)
({0 0} mR,uR) = —1 (419(1)

zusaminern.

4.2.2 Phase gebrochener Symmetrie

Die gemiafl (4.13) eingefithrte renormierte Kopplung der gebrochenen Phase un-
terscheidet sich von derjenigen in der symmetrischen Phase; denn die zusédtzliche
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¢*~Kopplung erlaubt eine betrichtliche Zahl weiterer Diagramme, die zur 4-Punkt—
Funktion beitragen. Wir folgen deshalb [LW87b, MM93], indem wir hier eine andere

Definition der renormierten Kopplung verwenden.

Bezeichnet man mit v die spontane Magnetisierung als Erwartungswert des Fel-
des ¢ und mit G die nichtverschwindende 1-Punkt-Funktion des Feldes ¢y im

Impulsraum, so besteht nach Abschnitt 2.2.2 die Relation (m3 =m3_)

V= Upin + Vo, Vg i= G£1,0)7 Vmin = \/3m/go - (4.20)

Die zugehérigen FEYNMAN—Regeln zeigen, dafl vg, im Impulsraum als Potenzreihe
in der nackten Kopplung berechenbar, mit einem Term der Ordnung 93/2 beginnt.
Wird also als der renormierte Vakuumerwartungswert vy des Feldes ¢

VR = ——— (4.21)

gesetzt, so erhdlt man mit

3m% 3Z3(U0) m% Zg(UO)
gRr = = 7 = 90 73
7§ (uo)

Uk (UO + o/ 3m(2)/90)

eine Grofe gr, deren Stoérungsreihe von der Gestalt go + O(g3) ist, und die man als

(4.22)

eine renormierte Kopplung deuten kann. Die zugehorige Renormierungskonstante

Zy = Za(up) ist nach (4.22) durch

m /
Z4(U0) = m—o (1 + 39# Uo) (423)
R 0

gegeben. In Analogie zu (4.15) ist die dimensionslose renormierte Kopplung ug jetzt

= %; UR 1= g—R, D =3. (4.24)

mpg mpg

UR

Wir denken uns auch hier wieder die nackten Gréflen durch die renormierten ausge-
driickt und erhalten damit 7Z; = Z;(ugr) fiir ¢ = 2,3, 4. Die Kopplung u ist ebenfalls
durch (4.16) definiert, und (4.17) ist durch

Zi(ur) Zi(ur)
=mi Py 1 , u=u !
9o R UR Za(ur) R Zalur)

zu ersetzen, wobei die rechten Seiten als Funktionen von up aufzufassen sind.

(4.25)

Gleichung (4.18) bleibt in den Parametern der gebrochenen Phase unverandert,
und das Renormierungsschema ist durch die Renormierungsbedingungen

Fg’o)(O;mR,uR) = —m% (4.26a)
0
Wrg’o)(}?;mmw) = —1 (4.26b)
P p2=0
3
U—QFg’O)(O;mR,uR) = —m}I{DuR = —gRr (4.26¢)
R

reY{0;0 i mp,ug) = —1 (4.26d)
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charakterisiert.

Mit Ausnahme von Kapitel 8 benenne ich spater mit ug+ stets die aus 91(34)
gebildete, dimensionslose renormierte Kopplung (4.15) in der Hochtemperaturphase,
wahrend ich gleichzeitig mit ug- immer die dimensionslose renormierte Kopplung

der Tieftemperaturphase meine, die nach (4.24) aus gr gebildet wird.

4.3 Renormierungsgruppe

In diesem Abschnitt stelle ich (auf [BGZJ76, AM184, ID89] verweisend) einige Be-
griffe aus der Theorie der Renormierungsgruppe zusammen, da ich fiir die Berech-
nung der Amplitudenverhéltnisse die Renormierungsgruppenfunktionen benétige,
die ihrerseits in Beziehung zu den kritischen Exponenten stehen.

Die Renormierbarkeit der skalaren Feldtheorie hat die Giiltigkeit von partiellen
Differentialgleichungen fiir die Vertexfunktionen zur Folge, die als Renormierungs-
gruppen—bzw. CALLAN-SYMANZIK—Gleichungen (siehe [IIM75] und dort gegebene
Referenzen) bekannt sind. Speziell fiir die massive, renormierte Theorie gilt:

0 0 n n
o 52| b ptun) |+ (1= ) ) = ) R (s
= (2= ws(ur)) mi TR ({p; 0, ¢} g, up) (4.27)
mit den Renormierungsgruppenfunktionen?
Blug) = mRaaTR . Up (4.28a)
(n) = Blun) o o | o) (4.25)
3\UR) = Ur Z3(UR) Dur |y, 3\UR .
1 0
= — | Z : 4.28
UQ(UR) 6(UR) ZQ(UR) auR " Q(UR) ( C)
Die Eigenschaften partieller Ableitungen erlauben mit (4.16) die Umformung
ou 0 go O
= — =—4-D —
) = e B b = U D) L g,
0 - 1 9 -
= —(4-0D — =—-4-=-D)|——
( )u (auR mRu) ( ) (u Jdup mRu)
P -1
= —4-D)| — 1 4.2
-0 (] ) (129)

und fur D = 3 ist

Plur) = —(i

8uR

1n(u)) o (4.30)

mR

2Ich weiche an dieser Stelle etwas von den Bezeichnungen der oben zitierten Literatur ab, in
der zum Teil die Renormierungskonstante 742 := 75 /73 Verwendung findet.
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Entsprechend haben wir

ns(up) = 5(@% g In (Zs(ur)) = mR% g In (Zs(ur)) (4.31a)
ma(up) = 5(@% g In (Zy(ur)) = mR% g In (Zy(ur)). (4.31b)

und daraus eine weitere Renormierungsgruppenfunktion
1

v(up)

= 2~ ns(ur) + malun). (1.32)

Im Verlauf der Lésung der Renormierungsgruppengleichung (4.27) mit der Cha-
rakteristikenmethode (vgl. [CH68]) tritt eine laufende renormierte Kopplung tp =
ur(A;ur), A € R, auf, deren Grenzwertverhalten durch die Nullstellen der (-
Funktion bestimmt ist:

Alim ur(MNur) = uyp Blup) =0, ['(up) <0 (4.33a)

—+00

;in% ar(A;ur) = up; Blup) =0, B'(uy) > 0. (4.33b)
%

Der Wert u}, der laufenden Kopplung tr wird im ersten Fall als ultraviolettstabi-
ler Fixpunkt (das Verhalten der Vertexfunktionen fiir grofie duflere Impulse kon-
trollierend) verstanden, wahrend man im zweiten Fall von einem infrarotstabilen
Fixpunkt (das Verhalten der Vertexfunktionen fiir kleine auflere Impulse kontrollie-
rend) spricht. Dieser ist fiir die Untersuchung kritischer Phanomene von besonderer
Bedeutung, da sich die kritische Region neben T' ~ T, und M <« 1 durch Impulse
q,p < 1 bzw. Entfernungen = > a auszeichnet. Die kritische Theorie ist dem-
nach durch die Existenz des Grenzwertes uj, aus (4.33b) charakterisiert, der fiir
D < 4 als nichttriviale Nullstelle der f—Funktion gegeben ist. Die triviale Nullstelle
uj, = 0 ist hingegen ultraviolettstabil und wird als gauBischer Fixpunkt bezeichnet.
In D = 4 fallen beide dann im infrarotstabilen Fixpunkt bei u} = 0 zusammen?,
und fiir D > 4 vertauschen sie ihre Stabilitat. (Die nichttriviale Nullstelle ist dabei

als unphysikalisch zu verwerfen.)

Abschlielend sei referiert, dafl mit den gleichzeitig geltenden Homogenitatsre-
lationen der renormierten Vertexfunktionen unter Skalentranformationen ihrer Ar-
gumente sowohl die Giiltigkeit der Skalenrelationen zwischen den kritischen Expo-
nenten (siehe [BGZJ76, AMI84]) als auch die Universalitdt bestimmter Amplitu-
denverhéltnisse (sieche [SEW72, HAHS76, AMI84]) bewiesen werden kann. Speziell

sind in diesem Zusammenhang die kritischen Exponenten n und v durch

n = ns(ug) (4.34)
und

v=urv(up) (4.35)
gegeben.

3Diese Eigenschaft ist nicht mit einer asymptotischen Freiheit der ¢*-Theorie in D = 4 zu
verwechseln, wie sie durch die Existenz eines ultraviolettstabilen trivialen Fixpunktes impliziert
wiirde.



Kapitel 5

Renormierte Storungstheorie in
D=3

Ich fiithre jetzt die renormierte Storungsrechnung fiir eine einkomponentige, mas-
sive ¢*-Theorie in symmetrischer und gebrochener Phase bis einschlieflich zur 2.
Ordnung in der Kopplung durch. Im Sinne der Kapitel 2 und 4 werden deshalb
die renormierten Gréflen aus der diagrammatischen Entwicklung der Vertexfunktio-
nen bestimmt, um spéter in allen Gleichungen die nackten durch die renormierten
Parameter ersetzen zu kénnen.

Dazu gebe ich alle beitragenden FEYNMAN—-Graphen an, deren Berechnung im
Impulsraum explizit durchgefiithrt wird. Einige der dabei auftretenden Integrale sind
in Kapitel 3 und Anhang B zusammengestellt!. Es sei bemerkt, dal die dufleren
Beine der skizzierten Diagramme mitzuzeichnen sind, um ihre Impulsparametrisie-
rungen deutlich hervortreten zu lassen. Bei der Berechnung der Vertexfunktionen
bleiben die zugehorigen Prapagatoren natiirlich unberiicksichtigt.

5.1 Symmetrische Phase

Wir betrachten die ¢*-Theorie in der symmetrischen Phase mit den Parametern
der Lagrangedichte (2.38) aus Abschnitt 2.2.1. Dem gewéhlten Renormierungssche-
ma entsprechend werden zundchst die renormierte Masse mp und die renormierte
Kopplung 91(34) als Potenzreihe 2. Ordnung in den nackten Gréflen mg und go be-
rechnet. Daraus erhdlt man schliefllich eine invertierbare Beziehung zwischen den
dimensionslosen Kopplungen up und ug, die ebenfalls von 2. Ordnung ist. Im ein-
zelnen verlaufen die Rechnungen wie folgt:

!Sofern sich mehrere Berechnungsmoglichkeiten bieten, wird dies an geeigneter Stelle
angedeutet.

44
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5.1.1 1-Loop—Ordnung

2—Punkt—Vertexfunktion

Zur Bestimmung der 2-Punkt—Vertexfunktion FéQ’O)(p) und deren Ableitung nach

aufleren Impulsen benétigen wir alle einteilchenirreduziblen, amputierten Graphen,
die zur Selbstenergie ¥(p) gehoren.

In 1. Ordnung ist dies nur ein impulsunabhéngiger Graph:

e Graph 9{2) (Symmetriefaktor £):

k

C

p p

Pk Pk 1
_90/ omp Sk = _90/ 2m)0 k2 + m2
= —qh(D) "2 g (1+0(c).

Aus Abschnitt 3.1.1 wissen wir, dafl das Integral J;(3) = J1(3 — ¢€) noch eine
Divergenz enthélt, die in der dimensionellen Regularisierung nicht hervortritt.

Ich will diesen Umstand durch Mitfiihren des Faktors (1 4+ O(¢)) andeuten.

Daraus folgt

1 m 0
(1) _ 2@ _ Yo _
by (0) 2 gl Q7 9o (1 + 0(6))7 apQ by (p) . 07
d.h. man erhalt:
N m
o) = AT(0) — 31(0) + O(gd) = mi— " g0 (14 0(0) + Ol
L g
= {1 = & (14 0() + 0l |

J (20 5

—— I = 14+0 )

apQ 0 (p) o (90)

4-Punkt—Vertexfunktion

Es sind alle einteilchenirreduziblen, amputierten Graphen der 4-Punkt-Funktion zu
beriicksichtigen. Diese sind von &ufleren Impulsen k;, ¢ = 1,...,4, mit k; + ks =

ks + k4 abhingig und fir ky = --- = k4 = 0 zu berechnen.
In 1. Ordnung tragen bei:
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e Graph gé“) (Symmetriefaktor 1):

kv ks
ky kg
_= —go .

e Graph g{“)(ki) (3 Permutationen mit Symmetriefaktor 1):

kl q k3

2/ d3q 1
P @) (@ + md)(g -1 + md)
= go Li(1;3);

Daraus folgt:

3 3
L (ki =0) = G5+ 561 (ki = 0) +0(6) = —g0 + 75— ai + Olg5)

5.1.2 2-Loop—Ordnung
2—Punkt—Vertexfunktion

In 2. Ordnung hat man zusétzlich folgende beide Graphen, von denen der zweite

impulsabhéngig ist:
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e Graph g§2) (Symmetriefaktor §):

k k
P P
dPkdPl ~ dPkdP] 1
_ 2 2 _
= b [ T S0AD = [ G

P2 h3)4B) = -

nach (3.8) und (3.10a).

e Graph g:(f)(p) (Symmetriefaktor %):

ks

o
N

p p

p+ k1 + ks

D D » » »
s [ et Atk Ak Ap 1 by + ko)

9o (27)2D
- 5 / deldeQ 1
= ) @D A md) (R + md)[(p + Ky + ka)? + m)

D
= g L(piD) =" g2 L(p; 3 — o).

Aus Abschnitt 3.1.2 entnehme ich:

1 1 z C
0 = g h0:3 -0 = gt (- () ¢ vt

3272 70 Aqr 47
—.B(div)
B(div)
T 32q2 0
0 -0 ) 0 D3 L,
— =q5 — L(p: D =" — )
apz g3 (p) p2_0 gO apz 2(p7 ) p2 o 8647‘[‘2771(2) gO

47
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Also folgt
B(div)

1 1 1

Lo, 1
- - - B(dw):|
6172 0 [2 3

1
e

5@ (p)

p

op?
und es ergibt sich insgesamt:
—I§(0) = A7 (0) - x1(0) - W( )+
, m
= - — 14+0
Mo =~ g~ g0 (14 0(e))

% =+ Olah). (5.2)

=1
+5184 2

4-Punkt—Vertexfunktion

In 2. Ordnung treten folgende Graphen hinzu:

e Graph gg“)(ki) (3 Permutationen mit Symmetriefaktor 1):

Ky a a2 ks

—k1—k —ks—k
k2q112q234k4

P d® N N .
= b [ T ManBia)Ba —DAa, — 0, L=kt
2k

_ 3/d391dSQ2 1
°) TR (@t md)lla — D2 + mdl(a + md)ld; — VP + e

da die beiden Integrationsimpulse unabhingig voneinander sind. Also ist:

1
G (ki = 0) = —g2 12(0;3) = — o

64m2md
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e Graph g:(f)(ki) (3 Permutationen mit Symmetriefaktor 1):

q2

dPq1dP gz x A
= _gg/ W AQ(ql)A(qz)A(ql — l), l .= kl + k2

_ . 3/dDQIdDQ2 1
O @2m)P (qf + md) (g, —1)? + m|(g3 + md)
= —93 [3(07l; 3)J1(3)-

Mit (B.5b) erhdlt man:

G (ki = 0) = —g2 15(0,0;3)./1(3) S g (14+0(e)).
0

= 1987%m

e Graph gff‘)(ki) (6 Permutationen mit Symmetriefaktor 1):

Ky

q1 k3
ka

—k1—k
kz q1—K1—k2

dPqdq « ~ x <
= —g [ “EEE MaAa)Ma, DA +a,—ks), L= ki + ks

(2m)S
_ _g3/ dSQIdSCD 1
O @2m) (qf + md)l(g, — 1)+ mil(q3 + md)l(qy + g, — k3)? + mi]

dSQQ 1
=—q I3(—1, ks — q,;
90/ (27)% (g2 + m3) 3(—1, k3 —qy;3)

= —93/ d3(h 1 [1(k3 —q 3)
°J2m)? (i + md)l(g, — ) + mi] v

nach (B.4a) bzw. (3.11). Mit (B.5a) folgt unter Verwendung sphéarischer Po-

larkoordinaten und Partialbruchzerlegung

G (ki=0) = — 3/ it ! 15(0,—q,; 3)
4 Ry Y0 (27)? (2 + m2) 3tY, —qy;



50 KAPITEL 5. RENORMIERTE STORUNGSTHEORIE IN D =3

- 1 3/ dSQQ 1
= Same ) @n) (@ + md)(@E + Am])
1 3 [~ % 1 3
- _ d — _
1673mg %0 /0 PEFDE+4) 96z
=7/6

was im tibrigen durch (B.8a) bestatigt wird.

Daraus ergibt sich insgesamt:

3 3 3
Lk =0) = G+ 561 (ki = 0) + 763 (ki = 0) + S GV (ki = 0)

+3G\" (k: = 0) + O(gd)

3 2
= —go+ Yo

16mmg 256m2mg 7°

g0 (1+0(¢))

25672 mé

- w{i- e LB oo} o9

16m mog 3272 m}

5.1.3 Berechnung der Renormierten Groéflen

Aus den Beziehungen (5.1) — (5.3) und wg = go/mo ergeben sich zunéchst die Grofien

1 1 11
—12(0) = m? {1 — gz v (1+0(9) + ug [— — 3 B(dw)] + O(US)}

642 2 3
9 (2,0) 1 2 3
_a—pz 0 (p) o =1+ 518472 U + O(uo)
d B 1
Z e __F(Q,O) — 2 O 3
3 ( apz 0 (p) p2:0 51847‘[‘2 uO —I_ (uO)
(4,0) 3 1 2 3
Ly (kz = 0) =—goyl— 167 up + 3972 Ug (1 + 0(6)) + O(uo) )

woraus sich die renormierte Masse und die renormierte Kopplung zu

F(Z’O)(O)
2 _ 0 _ (270)
T ),

ap?

p2:O
1 1 79 1 :
2 2 div 3
= mg {1 ~ % uo (14 O(€)) + o ug 63 3 B! )] + O(uo)} (5.4)
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g = —TR"(ki =0) = —Z3T6" (ki = 0)
3 )

= w{l- Tt o 10O+ O}, (55)

bzw
91(%4) 1 1 2 [293 1 (div) 3
= T = o {1 = g (1400) + g | 56+ 6 B | + 00}
(5.6)

ergeben.

Ich invertiere diese Gleichungen, um spéter die nackten Groflen durch die renor-
mierten zu ersetzen. Dazu ist es zweckméaBig, zunéchst die Beziehung (5.6) durch
Potenzreihenansatz und Koeffizientenvergleich nach ug aufzulosen, um (5.7) zu er-
halten. Anschliefend stellt man die Gleichungen (5.4) und (5.5) nach m2 bzw. go
um und ersetzt dort mit (5.7) die nackte dimensionslose Kopplung ug durch die
renormierte dimensionslose Kopplung ugr. Unter Beriicksichtigung der Entwicklung
der In—Funktion

In (T—f) = In (T—f (1+ o<uR))) =In (T—f) +1n ((1 4 O(ur))

:O(uR)

finde ich auf diese Weise mit

iy _ (L _y (mR) €
Bp .—(6 1n(47r)+47r ’y—l—O(c))

die folgenden Relationen:

1 1 139 1 (diw
Up = Up {1 + . ur (14 0(€)) + o1 up [m ~ 5 BJ(% )] + O(u%)}, (5.7)
bzw.
1 1 245 1 :
2 2 2 (div) 3
3 575
go= g {14 T un+ 5wk (14 0(0) + O} (59

Man beachte, daf} die letzte Gleichung keine Divergenzen mehr beinhaltet.

5.2 Phase gebrochener Symmetrie

Wir verwenden die ¢*-Theorie in der gebrochenen Phase, deren Lagrangedichte
(2.47) in Abschnitt 2.2.2 hergeleitet ist. Dabei wird wie in Abschnitt 5.1 verfahren,
wobei allerdings jetzt die zusitzliche ¢*~Kopplung und die Definition der renormier-
ten Kopplung gr iiber den Felderwartungswert zu beriicksichtigen sind. Aufgrund
der Kombinationsmoglichkeiten von 3er— und 4er—Vertizes sowie der nichtverschwin-
denden Tadpole-Diagramme treten hier wesentlich mehr Graphen auf, so daf} ich
diejenigen der symmetrischen Phase nicht nochmals auffiihre.
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5.2.1 1-Loop—Ordnung
2—Punkt—Vertexfunktion

In 1. Ordnung hat man folgende zusétzliche Graphen:

e Graph gf)(p) (Symmetriefaktor 1):

k

k—p

= (— 3gomo)2/ (;l:; A(k)A(k — p)

m? / d*k 1

= m

o) @2r) (k2 4 md)[(k — p)? + mi]
= 3mggo Li(p; 3).

Aus Abschnitt 3.1.1 ersehe ich:

3m
gf)(o) = 3migo [1(0;3) = —090
81
0 2) 0 1 Jo
—G(p) = 3myg0 =— Li(p;3) =0
op? 20 op? 2o 321 mg

e Graph g§2) (Symmetriefaktor 1):

- (_ 390’”0)2 A(O)/ (Czl:)kD Alk) = 390/ (Czl:)kD kzimg
3mg

= 3g01(D) D=3 —4—90 (14+0(e)).
s
Dieses Diagramm gehort zu den Tadpole-Graphen, deren innere Impulslinien,
die keiner Schleife angehoren, den Impuls 0 tragen. Der zugehorige Propagator

ist also A(0) = 1/m2.
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Daraus folgt

1 1 1
2000) = 561"+ 56170+ 56"
B mo 3m0 3
= (14 0(¢)) o % 3 (1+0(e) o % go (1 + O(c))
0 1 9 1
Y vy _ 1Y - ___t Y
op? () p2=0 op? Gi"(p) 2o 647 mo

und man erhalt:

T§0(0) = A7(0) = 5(0) + 0(6}) = i+ 150

167
1
= mi {1+ L 1+ 0(0)+ o)}
T Mo
0 (2,0) 0 L go
—— Ty =1———x +0(gl) =1+ —Z240(42).
apz 0 (p) o apz (p) o (90) 647 mo (90)

Vakuumerwartungswert des Feldes

Zum Vakuumerwartungswert vy des Feldes ¢ im Impulsraum tragen alle 1-Punkt—
Graphen der Theorie bei. In diesem Fall ist die duflere Impulslinie mit einem Faktor
A(0) = 1/m? einzubeziehen. In 1-Loop-Ordnung hat man nur ein Diagramm:

e Graph g{l) (Symmetriefaktor £):

{)k

= (— 3gomo) A(O)/ (;l:)kD A \/E/ deD inm

1 3
= - 390J1(D) =4 %93/2

mo

(14 0(e)).

Man beachte, dafi die Kopplungspotenz aufgrund der ¢>-Kopplung gebrochen
ist.

Daraus folgt:
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5.2.2 2-Loop—Ordnung
2—Punkt—Vertexfunktion

Hier sind nun eine ganze Reihe weiterer Graphen zu beriicksichtigen. Zunéchst hat
man die folgenden impulsabhéngigen Beitrage:

e Graph géZ)(p) (Symmetriefaktor £):

(i) [ S

Bkd®l 1
2m)° (K2 +md) (12 + md) [ — k)* + md][(k — p)? + m3]
_ oy 2/ P’k 1

o) @y B2+ md)(k—p)? + md)

I(k;3).

Durch die Substitutionen der Integrationsimpulse k — k/mg und I — 1/my
ziehe ich die Masse vor das Integral, verwende sphérische Polarkoordinaten
und wihle den Azimutalwinkel @ der d*k-Integration zwischen k und I gelegen.
Man fithrt dann alle Integrationen nacheinander aus, wobei im letzten Schritt
eine Partialbruchzerlegung durchzufithren ist:

1 Pkdl 1
/ (2m)f (k2 + 122 + D[(k — 12 + 1]

mi
§/ e (2 Ol .

_ 89?93/0 dzlzl“/() dk(kzkfl)g/o dal—l—kz—l—sl;nngklcosH

_ %gg/fdlpil/fdkﬁ[% 1(%)]

= g pi 1 léé;jﬁi;] =

=72 /36

in Ubereinstimmung mit einer auf (B.8b) zuriickgehenden Rechnung. Fiir
die Ableitung nach dem dufleren Impulsquadrat verweise ich auf Anhang A.1,
in dem die Differentiation der p—abhéngigen Integranden durchgefithrt ist.
Speziell mit (A.3) finden wir:
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% g6 ( ) 20
R 1 /d3kd3l l 1 X

d 1
~ op? ((k—P)2+1) pzzo]
[oe] oo 4 d
- Q%m(%gg/ dlpl?/ dkkzkiﬁ)/o d91+k2+?2n—02kzcose
290/ dlzz+1/ k2+1 /Wd01+k2+?2n—02k56089
= 290/ dllz_|_1 k2—|-1 [22[ t (%)]

1 1+ (k+1)?
290/ ‘”52+1/ k2+1 [kaln(u(k—z)?)]
, 12 (915 + 1400 + 800(2 + 1152)
- 27r4mg 90/0 N [ 334(12 + 4)* ]
=5572 /10368

2/00 /2 lz2(3z4 +341% + 120)#]

St P )y TP s R 1)
=1972 /1296
59
- 6912m2m2 Jo-
Bei umgekehrter Integrationsreihenfolge liefern (C.12¢) und (C.13b) dasselbe

Resultat.

e Graph g§2)(p) (Symmetriefaktor £):

o 2/d3kd3l 1 y
- ] R | R ) (B m)[(k — L2+ m)

1
Xuk+m2+mma+pv+ma]
B 9m42/ d°l 1
=N ] R (P md)[(L+ p)E + md)
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Mit (B.5a) und einer Partialbruchzerlegung ergibt sich

(2) . d3l 1 .
g7 (0) - 9mOgO/ (27'[')3 (l2 ‘|‘m%)2 [3(07l73)

9m0 9 d>l 1
3 Y /( TP (12 + m2)2(1% + 4m})

9 2 1
= dl = 2
16#390%; E+1022+4)  6am2 0

=7/36

und nach Gleichung (A.5) ist

4y 1 d3kd?l
= 9Imyg; —= / (27 )5 [(kQ—I— (12 + 1) —1)? + 1] X

|

9 2( Pl
- E?0§/<MP<W+D<P+ka—U+u

9 e
a—p297 (P)

_ Xﬁfﬂ ([<k+p>2+1 )

PEdl [?
3/ )6 (B2 + D2(2 + Di[(k —1)2 + 1]
d3kd3l 1
-] Gy wr e TG
Prd3l 1
-] Gy @G
PEdl k-1l
3/ )6 k2+1)3(l2+1)3[(k—l)2+1])

9
_ 2ot a, _oa A)
m% <3 2 1-|-3 3
9 2( 104 0o 4 )
= 2P\ T2aa16 T 6012 T a1an2
1 2

" 216m2m2 T

wobei ich die Symmetrie der vorstehenden Impulsintegrale unter Vertauschung
von k und I ausgenutzt habe. Die Integrale A;, 1 = 1,2, 3, sind in Anhang B.2
ausgefiihrt.

e Graph gg(f)(p) (Symmetriefaktor 1):

s

k—p [—p
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= oo (=) [ G BRAWAK - pIAT-p

g / Ekd’l 1
- o0 ) 2r) B2+ md)(k —p)2 + mA (2 + md)[A - p)? + mi)

= _3m090 [2(1’, 3)

Gl (0) = —3m2g2 12(0;3) =

64 Py} gO?
da das Integral faktorisiert. Die Anwendung der Kettenregel ergibt:
J e 1
a—pQQé )(p) = _6m090 6(053) — Op? L(p;3) = mgé'
p?=0 p?=0 0

e Graph géZ)(p) (Symmetriefaktor 1):

- ‘&%%/<> (&2 + md)[(k — p)2 + ma2(2 + m2)
D;S _3m090 [4(p7 3)J1(3)7
nach (B.6). Also ist

3
G5(0) = —3mig3 14(0:3).1(3) = 5o 06 (14 0(0)):
mit (A.4) und (C.11b) folgt:
8 (2) 8
a—pQQg (p) T —3mggs Ji(3 )a 5 La(ps3) .

= —migggjl(?))/(;lﬁl; k21+1 6?)2 ([( - 1)2+1]2) p2=0

3 2
- _27T2mg 9o (3 ( / TN k2 / )

=37/256 x/32

3 2
- —— 2
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e Graph g%)(p) (2 Permutationen mit Symmetriefaktor £):

(2m)8
, 5 [ Bkl 1
= 3m0g0/ 6 (1.2 2 PR 21(72 N(] _ L\2 2
(2m)8 (K +mg)[(k — p)* + m3](1* + md)[(L — k)* + mj]
Sl
_ 2 2 _ .
= i} | G BOP)
&£k 1
= —3migt [ I,(k; 3).
"% | Tomy T )ik~ py + e
Demnach folgt:
3
(2) _ 2 2/ d’l 1 .
0) = - (0,1
glO( ) 3mOgO (27’[’)3 l2—|—m(2) 3( ) 73)
B 3& 2/ d>l 1
T Rr ) @ (R )2+ Amd)
3, [ 12 1,
= dl = -
1673 /0 2+ D2+ 1) 3272 0
=7/6

in Ubereinstimmung mit (B.8a). Mit (A.3) ergibt sich:

g ZL/dSdeZl 1 X
= TS x| Gy | R ) O[d— k)P 1 1]

x ai? ((k —;>2+ 1) pQ:O]

3 2(§ /d3kd3l 2
T2 \3 ) @r R e D[ — k)2

Mo

0
8—p2 g%) (p)

p?=0

Pl 1
_/ (2m)° (B2 +12(2 + 1)[(1 - k)* + 1])

3, /4 3 68 1
S R G T Y - 2( ——)
m2 0 (3 ; 4) w2m2 0 \31104 ~ 288

5 2

129672m2 70

Die Integrale A4 und As sind in Anhang B.2 angegeben; man beachte, daf} sie
nicht vom Vorzeichen der Integrationsimpulse abhéngen.



5.2. PHASE GEBROCHENER SYMMETRIE

e Graph gﬁ)(p) (Symmetriefaktor £):

59

= (o) 20y [ CEE A AwAK - p)

(27T)2D

= 9m(2)90

2/ dPkdP 1

= 9m393 [3(071?; 3)J1(3)

G(0) = 9m2g2 15(0,0;3).J1(3) = 9m2g? J5(3).1(3) =

und mit (B.5a):

9 (2) 2.2 9
7.5 Y11 ( ) = 9mgg J1(3) —[3(071?, 3)
Ip? oo 1) 2

B 9m0 2 8 1

= ] Yo Jl( )apz (pz _|_4m

512m2mg

e Graph gg)(p) (2 Permutationen mit Symmetriefaktor 1):

(27)2P (k* + m§)?[(k — p)* + mg] (12 + mg)

9
- 12872 gg (1 + 0(6)) )
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2 dPkdP1 Xk
= oo (—Boomo)” B0) [ 55 ARIADAK - p)
34 / dele 1
(k2 +mg)[(k —p)* + mg](I* + mg)
=" 3¢5 L(p; 3>J1<3>,
d.h. auch dieses Integral faktorisiert. Also ist

qymzﬁﬁumwungz%u+m»

=3 h3) 55 W) =~ (140(0),

o oo 12872m

Es folgen nun die impulsunabhéngigen Graphen (groftenteils Tadpole-Graphen).
Da sie sich auf die vorstehenden Integrale zuriickfithren lassen, nenne ich nur die
Endresultate:

e Graph g{? (Symmetriefaktor {):

k k
P P
4 dPkdPl ~
= <_ 390m0) AQ(O)/ (27T)2D Az(k)A(l)
. /dele 1
- 21)20 (k2 4+ md)2 (12 4+ md)

P23 962 1,(3)11(3) = 329 79 (1+0().

e Graph g{i) (Symmetriefaktor £):

o
o
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= () A40) [ G A wAwAK -1

_ oy 2/d3kd3l 1

=P ) (R w2+ m)[(k — D)2 + m3)
o [ P 1

= 9t | G
L, [ Pk 1

= it | o sy
3 2

327T2 gO?

[3(07l; 3)

I(k;3)

wie in der Berechnung von g{?(o).

e Graph g{? (Symmetriefaktor £):

[

L (_ 3gom0)2 Az(o)/dele A(k)A(l)

(27)2D
B 3 2/dealDl 1
T ) P (R (A mi)
D=3 3 2 72 3 2
2 2 U = e (140,
e Graph g{? (Symmetriefaktor {):
k
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2 dPkdPl x
= % (— 390m0) AZ(O)/WA(’“)A(U
3, /dele |
07" (2m)?P (/’€ +mg)
(

3 9 0 2
= _m_%go Ji(3) = " 16m 290

(1% + mg)
1+ 0(c)).

e Graph g{? (Symmetriefaktor §):

p p
2 dPkdPl -,
= o (Bam) A0 [ G A A
s /dedD 1
21)20 (k2 + md)*(12 + md)

g (1+0()).

D;?) _390 J2(3)J1(3) - 32 2 0

e Graph g{? (Symmetriefaktor {):

k k
p p
2 dPEdPl . ~
=  —9 (— 390m0) A(O)/WAQ(k)A(l)
dele 1
= 9 / 2+ m22 (P m2)

P2 3 J2<3>J1<3> = (1+0().

3272 go
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e Graph gg) (Symmetriefaktor %):

ky ky + ko

= oo (o) A©) [ LEEE Ak ) Ak Ak + ko)

(27T)2D
- 3 /deldeQ 1
- 20 (R + )R + ) s + ko) 4 ]
3 1 m2 C
D=3 2 2 0
23 302 [,(0:3 — ¢) = — S ~
3 103 - =~ st (Lo (58] + £ -+ 010)
::B(div)
3B(div)
T 32 Jo:

e Graph g%) (Symmetriefaktor §):

= oo (o) [ G BRBWAL -

L ml/d%ﬂ% 1
= 9oy (27’[’)6 (kQ +m ) (P + mo)[(l — k)2 + mg]

d?l 1
= 3m090/( T Pxm )[3(O,l,3)

d>k 1
- _ 2 2 [ k
3mogo/ () (12 + m2)? 1(k;3)

wie in der Berechnung von g{i).
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Wir erhalten

1 1 1 1 1
SE0) = 0+ £ a(0)+ 5 6(0) + 5 08(0) + 1. 67(0) + 5 67(0)

6
1 1 1 1
+61(0) + 5 617(0) + 5 G15(0) + 7 G17) + 5 61

1 1 1 1 1 1
‘|‘§ Q{? + 1 Q{? + 1 gﬁ) + 1 Qg) + 6 Qg) + 1 g%)

1
Zgé

! 2(1+O())+B(div) 2+ ! 2+ L
12872 %0 DT 9oz 0T Gz 9o
3. ,, 3 [
_ 1 _

9 3
~rez % (1+ O(e)) + 52 % (140(e))

9 3 3
1 2
128 1902 gO ( + O( )) 647T2 9o — 1287 2 gO
3 3
— 50 (14+0(0) + T3 96 (1+ 0(¢)
3Bd) 1
2 (14+0(e) — 2 1+ 0(e
g (14 0(9) = g = s 02 (14 0(0))

3
12872 7°
5, Bl 1 15 2 Lo
= oz % (14 0() — - [4+§B ]

- 2
12872 %0

(14 0(¢))

_|_

1
— @) p -
| =

1 g 59 g 1 g 1 g

 5184m? m_g 13824 mE 43272 m_o 51272 m2

B (140 b e &

102472 mo

9 90
+1024 2 mo (1 +O( ))

B 41 90
4147272 m} 7 (1+0().

und es ergibt sich insgesamt:

129672 m%

2%2§;u+m»
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~I3%0) = A7(0) - 2(0) - 2)(0) + O(g3)

1 15 2
= Tl gy (140(0) + b | 2+ 2 B + o)
| 1 g [15 2
_ 1 - Jo | ¢ _B( w):| 3
{ T T6r mo( T O+ 5 mzl 13 +0l)
(5.10)
d (2,0) 9 1 0 21 3
Loy = Lo Lseng) o)
a p2_0 aI)2 p2:0 aI)2 p2_0 0
| Al g2
=1+ —2 B o (5.11)

641 mo 4147272 md

Vakuumerwartungswert des Feldes

Die nun hinzukommenden Beitrage der 1-Punkt-Funktion sind Subgraphen der
Tadpole-Diagramme der 2-Punkt—Funktion. Zur Ordnung gg/ ? sind dies:

e Graph ggl) (Symmetriefaktor {):

k
= (o) 20) [ R A
1 o [ dPkdPl 1
- T mo (390)*f / (2m)2P (k2 4+ md)2 (12 + md)

=0 L 50092 1,3)00(3) 3f 9" (14 0(e)).

mo - 3272m

e Graph gél) (Symmetriefaktor £):

Ql
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= (— 3g0m0)3 AS(O)/MA(’C)A(U

(27T)2D
_ s )3/2/dele 1
mg (2m)2P (k2 + md)(I” + mg)
3\/3

D23 _i(ggo)?’” JH3) = — a’* (1+0(e)).

: —
my 1672m

e Graph gfﬁ) (Symmetriefaktor £):

k
4@l
k

= (a8 [ TR A ADAK 1)

) [ Pl 1
= —mo(390)” / (2m)6 (k2 4+ m2)2(12 + m2)[(k — 1)? + m2]

= —my (390)3/2/ (d3l) T _|_1m 5 15(0,1;3)

Fe 1
- _ 3 3/2/
mo (30)™ | G g )
V3 3/2

3272 mg Jo

I(k;3)

wie bei der Berechnung von g{i).

e Graph gé” (Symmetriefaktor §):

o

= —g (— 3gomo) AQ(O)/MA(’“)A(U

(27)2D
dele 1
- 390V 90/ D (k2 + m)(I2 + m})
- f
D;)?) 390 390 J2 — 16 2 3/2 (1 —I—O( ))
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e Graph gé” (Symmetriefaktor §):

k

{)Ql

k

= —9 (- 390m0) A(O)/ Lk AZ(k)A(l)

(Qﬁ)zD
dele 1
- \/E/ (B2 4+ m)2(12 + mg)
D3 Lgo 300 J2(3)J1(3) = — V3 g (1+0(e)).

™Mo 32W2m0

e Graph gS) (Symmetriefaktor %):

Ky

N
N

ki + Ey

- (— Yoo ) 5(0) [ %A(kl)ﬁ(kz)ﬁ(kﬁ-kg

o \/7/ deldeQ 1
% )20 (K2 + md)(kE + md) (k1 + ka)? + mi]

3 1 2 C 3 Bdiv)
_ V3 93/2 (_ —1n (%) N 0(6)) _ \/_793/2‘

A7 32m2myg

=:B(dw)

Daraus folgt:

1 1 1 1 1 1 1
vo= GO = g4+ g 4 gt Sl + 2l + 2l + 2ol + 0(g)

N g/f ” (1+0(e) + 1227\5

3V3

~ 1287%mg

o/ (14 0(e))
\/§ 3/2

64m2myg Yo

9% (1+0(e) —
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V3
647T2m0
3B(div)
PRCLA
19272my
f V3
= 50 (140(0) = oo gl (14 0(9))
Bdw)
+f7
19272m
\/_ 1/2

V3 3/2 2 (div) 5/2
- (14 0(6)) = g i 1= 2B |+ ogl?)

(5.12)

G (14 000) ~ gl (14 0(0)

%' +0(e%”)

%' +0(e%”)

5.2.3 Berechnung der renormierten Gréfien

Aus den Gleichungen (5.10) — (5.12) erhélt man mit ug = go/mo

~TE00) = mi {14 1w (14 0(0) +

[15 2

~ 2B 4 o)

647T2 3

41

1
=1 - 2 O 3
Pl T T a0 (to)

-1
1 409
P p2=0) 64m to + 33177672 ug + (uo)

3md [ 1 1 2 :
— i R 1 0 o 2 [1 = B(dw):| O 3 )
" 9 {87T to (14 000) = oo [ 173 + Olwo)
Damit finden sich fiir die renormierte Masse und die renormierte Kopplung

. _ g0
215 (p)

= — 7,75 (0)

p?=0

3 1 19525 2
_ 14+ (140 2[ Bd”] O }
{ a0 U0+ s | 5 T3 + O(uo)

_ VR =

T (o) VAT

B 7 37835 ;
- {1 — o (14 0(0) + s (1+0(e)) + O(uo)} (5.14)
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1 0125 1 .
672 | 13301 3 B )] + O(US)}'

31
uR:g—R:uo{l—%uo (1—|—O(6))—|—

(5.15)

Die Invertierung dieser Beziehungen zugunsten der nackten Groflen in Abhéngig-
keit von den renormierten erfolgt ebenso, wie ich in Abschnitt 5.1 beschrieben habe.

Mit
2 2
Mo\ mp
In (—47T) =In (—47T ) + O(ug)

iy _ (L _y (mR) €
Bp .—(6 1n(47r)+47r ’y—l—O(c))

ergeben sich die Relationen:

und

1 23663 1 .
e o)+ 2l [ 25 ] o)
Ho “R{ + ey vr (L0 + erg vk | 5oy 3 Br |+ OluR)g
(5.16)
bzw.
3 1 15125 2 o
2 2 2 (div) 3
Mo = mR{l ~ i vr (L4 0() — g5 vk [10368 +3 Br ] +O(UR)}
(5.17)
7 2191 ,
go=gn {1+ = —un (14 0(9) = s uh (14 0() + O(h)} . (5.19)

Auch hier ist zu bemerken, daf die letzte Gleichung frei von Divergenzen ist.



Kapitel 6

Amplitudenverhiltnis der
Korrelationslange

In diesem Kapitel gelange ich zur Bestimmung des Amplitudenverhéltnisses der
Korrelationslénge. Dazu leite ich zundchst eine Gleichung her, aus der sich die-
ses Verhéltnis unter Verwendung der Resultate der dreidimensionalen renormierten
Storungstheorie gewinnen 1afit. Dabei stellt sich heraus, dafl das Endresultat als
Potenzreihe bis zur 2. Ordnung in einer dimensionslosen renormierten Kopplung
angegeben werden kann, die entweder den Fixpunkt der Hochtemperaturkopplung
oder denjenigen der Tieftemperaturkopplung besitzt. Die dafiir nétigen Rechnungen
werden im einzelnen vorgefiihrt.

Von jetzt an ist es sehr wichtig, alle Gréflen in symmetrischer und gebrochener
Phase durch eine Indizierung mit + bzw. — voneinander zu unterscheiden.

6.1 Herleitung der Bestimmungsgleichung

Nach (1.12) zeigt die Korrelationslange ¢ bei Annéherung an den kritischen Punkt
T = T. das Divergenzverhalten

ng:I:|t|_y7 1= )

je nachdem in welcher Phase man sich befindet. Die feldtheoretische Beschreibung
kritischer Phanomene erlaubt die Bestimmung des universellen Amplitudenverhalt-
nisses f1 /[, da der Zusammenhang der physikalischen Gréfien € und ¢ mit den Pa-
rametern des feldtheoretischen Modells gem&f (4.7) und (4.1) durch die Beziehungen
1
5 = L= m?) - m?)c
mp
gegeben ist. Der storungstheoretischen Behandlung von Hoch— und Tieftemperatur-
phase aus Abschnitt 2.2 entnimmt man

1

mp+

= §_|_ ~ f+t;y, t_|_ = (mg — mgc) > 0 (61&)

T>T.

70
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und
1 .y 2 2
= o ot o= —(md—m},) L (6.1b)
wobei die reduzierten Temperaturen in jeder Phase ¢y = ¢, ¢t > 0, und {_ = —¢,
t < 0, seien.

Die folgende Herleitung des Verhiltnisses fy/f_ ist entscheidend von der Tatsa-
che bestimmt, dafl wir die Theorie in der festen Dimension D = 3 betrachten. Denn
die kritische nackte Masse mg., die in diesem Fall nur in 0. Ordnung der Stérungs-
theorie verschwindet, ist — wie schon in Abschnitt 4.1 festgestellt — perturbativ
nicht berechenbar, so daf} eine Division der vorstehenden Gleichungen nicht zum

Erfolg fiihrt!.

Um dieses Problem zu umgehen und gleichzeitig die nackte Masse mg zu elimi-
nieren, verwende ich Funktionen, die durch Ableitungen nach mg gebildet werden
und nach einer Ersetzung der nackten Kopplungen ug+ zugunsten der dimensions-
losen renormierten Kopplungen ug: (in der jeweiligen Phase) nur noch von upgs
abhdngen. Dies wird gerade durch die Identitat (4.9)

g1 0
Ot lgq a Img g,
erreicht, da nach Definition der Groflen
am2 +
F = —2~ 6.2
) = G| (6:2)
in der symmetrischen Phase mit (6.1a) und (2.36)
am? am? dm2, Om3 am?
mp+ _ mR;' _ m02+ m]23+ _ m]§+ _ F_|_(UR+), (63&)
at-l— go a7710 go a7710 a7no+ go a7no+ go

=1

und in der gebrochenen Phase mit (6.1b) und (2.44) entsprechend

ImF,- ImF,- Imi_ Oms_ ImF,-
at_ g, omd |y om? amg_ % amg_ % (ur-) )

=—2

ist. Die Differentiation von (6.1a) und (6.1b) nach ¢4 bei festem go ergibt dann

S E 64

Andererseits folgt aus der Definition der Korrelationsldnge als inverse renormierte

Masse unmittelbar
f_+ 2 t__ 20-1 _ (mR_)z t_—l— (6.5)
f ty mp+ /) 1 '

Fiir D > 4 ist allerdings auch in der Stérungstheorie m2. = 0, so daf sich in diesem Fall die
Bestimmung des gesuchten Amplitudenverhiltnisses vereinfacht.

F_(up-)  Omp_[Ot_
F_|_(UR+) - am%+/at+
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woraus Imarn

) ()l 60

schliefit. An dieser Stelle sind ¢, und ¢_, und damit auch mg+ und mg-, noch

unabhéngig wéhlbar.

Fiir die Bestimmung des Verhéltnisses f;/f- kann ich nun Punktpaare (¢4,7_)
betrachten, fiir die

mp+ = Mp- (67)

gilt. Die zugehorigen Kopplungen up+ und up- héngen dann in einer eindeutigen
Weise voneinander ab, die allerdings zunéchst nicht bekannt ist. Mit (6.1a) und
(6.1b) impliziert dies

fety" = [t
bzw.
fro ()
(1) o
wahrend sich (6.6) zu
t__|_ . F_(UR—)
= 2 7F_|_(uR+) (6.9)

vereinfacht. Setzte ich jetzt den letzten Term in die vorletzte Gleichung ein, so
resultiert bereits fiir das universelle Amplitudenverhéltnis der Korrelationslange:

%: lg%] | (6.10)

Die Funktionen F und F_, die in diese Gleichung eingehen, sind als Potenzreihen in
ug+ perturbativ berechenbar. Allerdings sind, wie oben betont, die Kopplungen ug+
und ugr- nicht identisch, sondern sie stehen in einer bestimmten Beziehung zuein-
ander. Diese Tatsache werde ich ausnutzen, um das Verhéltnis f;/f_ als Funktion
einer dimensionslosen Kopplungsvariablen up auszudriicken, die sich wiederum in
eindeutiger Weise aus den renormierten Kopplungen beider Phasen erhalten 1aft.
Dabei lasse ich mich von folgendem Gedanken leiten:

Aus der Theorie der Renormierungsgruppe wissen wir, dafl die dimensionslose
renormierte Kopplung beim Erreichen des kritischen Punktes ihren (infrarotstabi-
len) Fixpunktwert annimmt. Dieser ist fiir D < 4 als nichttriviale Nullstelle der
p—Funktion gegeben. Fin neu einzufithrender Entwicklungsparameter up, der die
Physik in symmetrischer und gebrochener Phase korrekt beschreibt, sollte demnach
in beiden Phasen denselben Fixpunkt besitzen. Dies ist gleichbedeutend mit der Be-
dingung, daff die Einfithrung von ug in beiden Phasen auf dieselbe g—Funktionen
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fithrt. Thre Definition (4.28a) erzwingt daher, dafi der funktionale Zusammenhang
zwischen mp+ und ug in der symmetrischen Phase der gleiche sein muf} wie derjenige
zwischen mp- und ug in der Phase gebrochener Symmetrie. Aufgrund von

go
mpr+

U4+ =

bei festem go und der Darstellung (4.29) der f—Funktion bietet sich fiir die Erfiillung
dieser Forderung der Zusammenhang zwischen den dimensionslosen Kopplungen u.
und up+ an, da dieser nach (4.17) bzw. (4.25) in jeder Phase als Potenzreihe in ug+
bzw. ur- bekannt ist. Dies erlaubt, die Kopplung ug in Abhéngigkeit von ug+ bzw.
up- zu bestimmen, so daf fiir die neuen S-Funktionen, per definitionem durch

-1

3 0 In (ui(uR))] (6.11)

P+(tir) = mp=

0

dup

entmns) = ~(1- )

amRi go Mmpt

gegeben, nach (6.7) tatsdchlich

Bi(ur) = B-(ur) (6.12)

gilt und das Amplitudenverhéltnis fy/f- (ggf. nach Invertierung dieser Beziehun-
gen) als Reihe in up erscheint. Bevor ich diese Ausfithrungen weiter prazisiere, sol-

Gof 9o

Abb. 6.1: Schematische Darstellung des Phasen-
diagramms einer ¢*—Theorie. Die renormierten
Kopplungen beider Phasen sind voneinander ver-

schieden.

len die bisherigen Uberlegungen anhand der Abbildungen 6.1 und 6.2 noch einmal
illustriert werden. Sie stellen die qualitative Gestalt des Phasendiagramms einer
¢*Theorie dar, in dem das Quadrat der nackten Masse gegen die nackte Kopp-

lung aufgetragen ist. Die kritische Linie ist durch die Bedingung m2 = m2, (bzw.
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t =0 und mpr = 0) bestimmt, und gos sei ein fester Wert der nackten Kopplung
go. Fiir Punkte, die bei go; denselben Abstand von der kritischen Linie besitzen,
gilt 4 =1t_ (Abb. 6.1). Nach (6.3a) und (6.3b) fafit man ¢, und ¢_ als Funktionen
von up = up+ bzw. ur = up- auf. Diese Kopplungen sind durch die Stérungstheo-
rie und das Renormierungsschema in der jeweiligen Phase festgelegt, und demnach
gilt insbesondere an den Punkten (gos, —f—) und (goy, t4) fiir die zugehérigen renor-
mierten Kopplungen ug+ # up-. Wenn ich allerdings in einer der beiden Phasen,

Lty F o, ur = upe

- —i_
URp = UR = Up+
md = m3, (t = 0)

Gof 9o

Abb. 6.2: Schematische Darstellung des Phasen-
diagramms einer ¢*~Theorie. Einfihrung einer
Kopplung ug in der Tieftemperaturphase, die mit

ug+ tdentisch ist.

z.B. in der Tieftemperaturphase, eine Kopplung ur = upr etabliere, die einerseits
dort die kritische Theorie beschreiben und andererseits mit ugp = ur+ 1dentisch sein
soll, beeinfluit dies natiirlich die zugehorige Temperaturvariable ¢_ (Abb. 6.2). Es
wird dann ¢, # t_, und gleichzeitig 4ndert sich die funktionale Abhéngigkeit der
Verhéltnisse ¢4 /t_ und fi/f_ von der neuen Kopplung up.

In diesem Sinne sei also in einer der beiden Phasen die Existenz einer dort von
up+ bzw. ug- verschiedenen, dimensionslosen renormierten Kopplung up angenom-
men, die als die natiirliche Variable aller Renormierungskonstanten und Renormie-
rungsgruppenfunktionen anzusehen ist. Um in der soeben beschriebenen Weise up
in Abhéngigkeit von up+ bzw. ug- zu erhalten, schreibt man

(1)

UL = u:l:(uRi) = nfoi = UR+ (1 —|— ay UR+ —|— a(f)u%i —|— O(u%i))
R

In dem allgemeinen Ansatz

ﬂR = ﬂR(uRi) = UR+ (1 —|— bg:l)uRi —|— b(f)u%i —|— O(u%i))
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ergeben sich die Koeffizienten b(ﬂi), 1 € N, eindeutig aus der Bedingung, daf fiir die

invertierte Potenzreihe

ups = upe(ip) = an(1+ W + L, + 0(a}))

gerade
u_(up- = up-(in)) = uy (upe = iin) (6.13a)
oder umgekehrt
wy (upe = upe(in)) = u_ (up- = in) (6.13D)

gilt. Da ich speziell an der Ersetzung von ug: durch ug interessiert bin, reicht
natiirlich die Kenntnis der Koeffizienten c(ﬂi), ¢ € N, bis zur gewiinschten Ordnung
aus. Wie hier schon angedeutet ist, existieren zwei Moglichkeiten, die Anpassung
der neuen Kopplung vorzunehmen, da die f—Funktionen der Hoch— und Tieftempe-
raturphase auf unterschiedliche Fixpunkte fiithren:

1. Anpassung an die Hochtemperaturkopplung:

Man bestimmt up- = up-(ug) als Potenzreihe in ug, so dafl up = uj gilt.
Nach (4.17) ist also

7 (4
_ g 2ilun) (6.14)

U— |uR_:uR_(ﬂR) = Uyt |uR+:17,R R Z§+ (uR)

bis zur erforderlichen Ordnung in ugr zu erfiillen. Nach diesem Schritt ersetzt
man in F_(ugr-) die Kopplung ug- durch up und identifiziert anschliefend up
mit ug+. Die Gleichung (6.10) liefert in diesem Fall fiir das gesuchte Amplitu-
denverhéltnis

I+

- (6.15)

2. Anpassung an die Tieftemperaturkopplung:

Man bestimmt ug+ = up+(ur) als Potenzreihe in up, so daf u}, = uj,_ gilt.
Nach (4.25) ist also jetzt

Z2(u
|, =y aliR) (6.16)

Ut |uR+:uR+ (2r) Up—=UR UR ZS_(uR)

bis zur erforderlichen Ordnung in ug zu erfiillen. Danach ersetzt man in
Fi(ug+) die Kopplung ug+ durch ug und identifiziert diesmal ug mit up-.
Aus (6.10) folgt dann fiir das gesuchte Amplitudenverhaltnis

LI (ur-(ur)) ]

fr _
F_|_ (UR+(uR))

= (6.17)

UR=Up—
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Abschlielend sei nochmals hervorgehoben, dafl die Freiheit in der Wahl der Kopp-
lungsvariablen der renormierten Stérungstheorie ausgenutzt worden ist, mit der
Kopplung upr einen neuen Entwicklungsparameter in die Theorie einzufiihren, iiber
den dann selbstverstandlich auch alle Renormierungsgruppenfunktionen aus Ab-
schnitt 4.3 definiert sind. Erst die verlangte Giiltigkeit der Gleichungen (6.13a) und
(6.13b) legt seine Beziehung zu den Kopplungen ugr+ und wp- in beiden Phasen
eindeutig fest. Dies hat zur Konsequenz, daf fiir die Bestimmung des analytischen
Zusammenhangs zwischen diesen Kopplungen nicht einfach die f—Funktionen beider
Phasen herangezogen werden kénnen:

Betrachtet man namlich zwei dimensionslose renormierte Kopplungen up und
u’, die durch die Entwicklungen

up = up(ur) = ug (1 + ajup + aqun + O(u%))

ur = up(up) = uj (1 + by + bou's + O(ug))

in umkehrbar eindeutiger Beziehung zueinander stehen, so erzwingt die Forderung
nach Invarianz der CALLAN-SYMANZIK-Gleichung (4.27) unter der Transformati-
on up ¢ up fiir die zugehorigen f—Funktionen nicht etwa die Relation f'(uf) =
B(ur(uy)), sondern vielmehr das kovariante* Transformationsverhalten

Blun) S = ) o () = A (unlu)) 2

oup up Jup (6.18)

up=ugr(u'y)

Mit Hilfe dieser Identitét kann man in den Rechnungen die Beziehung zwischen den
renormierten Kopplungen beider Phasen {iberpriifen.

6.2 Renormierungsgruppenfunktionen

Ich wende jetzt die theoretischen Uberlegungen der Kapitel 4 und 6 auf diejenigen
Reihen an, die in Kapitel 5 erhalten worden sind. Dabei verweise ich inshesondere auf
die Abschnitte 5.1.3 und 5.2.3, in denen in jeder Phase die Beziehungen zwischen den
nackten und renormierten Parametern der Theorie bis einschliefllich zur 2. Ordnung
in der Kopplung angegeben sind.

Es wurde bereits betont, daf} sich, wie durch Mitfithrung eines Terms (1 4 O(¢))
als Faktor an die endlichen Beitrdage der divergenten Diagramme angedeutet, bei
der Auswertung der dort beitragenden Impulsintegrale die Divergenz des Integrals
Ji (unter anderem zur 1-Loop—Selbstenergie des Propagators beitragend) in dimen-
sioneller Regularisierung nicht isolieren 1é8t. Da aus der allgemeinen Renormierungs-
theorie in drei Dimensionen bekannt ist, dafl die aus den Stérungsreihen erhaltenen
physikalischen Gréflen, wie z.B. Renormierungsgruppenfunktionen oder universelle
Verhéltnisse, in jeder Ordnung der dimensionslosen renormierten Kopplung endlich

2Dies ist genau das Transformationsverhalten, welches Vektorfelder unter einer Transformation
ihrer Basisfelder besitzen.
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bleiben, ist in den nachfolgenden Gleichungen den Grenzwert € — 0 als durchgefiihrt
anzusehen.

SchlieBllich sei noch hinzugefiigt, dal man einen Teil der Ergebnisse dieses Ab-
schnitts anhand der Identitat

Z3:l: (UR:E)

Tyt (tUps) Fi(ups) (1 - %Uai(um)) ) (6.19)

die im Rahmen des Beweises der Renormierungsgruppengleichung (4.27) auftritt,
kontrollieren kann.
6.2.1 Symmetrische Phase

Zunéchst bestimme ich die Renormierungskonstanten Z;, 1 = 1,2, 3, die nach ihrer
Definition in Abschnitt 4.2.1 noch Funktionen der nackten Kopplung ug+ sind, in
Abhéngigkeit der dimensionslosen renormierten Kopplung ug+. Dazu ist die Glei-
chung (5.7) bis zur 2. Ordnung ausreichend:

1
Ug+ = UR+ (1 + S URt + O(U%J,)) . (6.20)

Aus Abschnitt 5.1.3 ergibt sich:

(2,0)(,.
Z3+(1UR+) _ _8F0+ (g;;?no+,90) . 14+ lrﬂglwu?” L O(E)
= 1+5181Wu%+ + O(ug+)
Zor(ums) = 1— m;w Wy + O ) (6.21)
m = _gl_o Fgfr’o)({()}; Mo+, ¢go) = 1 — 16%u0+ + 321? ugs + O(ugs)
= 1- 161qu+ + 982 Uht + O(ufhs)
Zi(ups) = 1+ 16% up+ + 256%%% + O(ufs ). (6.22)

Beziiglich der Bestimmung von Z,+ nach (4.11) (und ebenso von Fy nach (6.2)) ist
an dieser Stelle eine Bemerkung angebracht, die die Berechnung dieser Funktionen
als partielle Ableitungen nach dem nackten Massenquadrat betrifft und fiir beide
Phasen ihre Giiltigkeit hat:

Wir haben dabei ndmlich zu beachten, dafl die Massendimension der Beitrage
zZu —Féi’o)(p; Mo+, go ), beginnend bei zwei in 0. Ordnung, mit ansteigender Storungs-
ordnung um 1 abnimmt, so dafl dann insbesondere die endlichen Terme der 2—Loop—
Korrektur die Massendimension null besitzen. Dies erkennt man daran, dafl die zu-
gehorigen konvergenten Integrale nach ihrer Berechnung nicht mehr von der nackten

Masse abhangen und somit zur Differentiation nach m32. keinen Beitrag liefern. Der
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einzige nichtverschwindende Beitrag 2. Ordnung zu Z,+ und Fy rithrt deshalb allein
von den in D = 3 divergenten Diagrammen proportional zum Integral I5(p; D) her,
dessen nach dieser Differentiation endlichen Wert ]2 = ]z(moi) ich bereits in 3.1.2
bestimmt habe.

Man findet:
m B —aig (05 mgs, go) = 1 — %um + 19; gy + O(uy )
= e g e+ O(uh)
Zot(upt) = 1+ 16%1”# + 762—7{'2 Uhs + O(ufs ). (6.23)

Aus (6.21) und (6.22) erhalte ich die dimensionslose Kopplung w4 zu

go Zl(uR+)
u+(uR+) = — (uR+) = UpR+ m
3+

B 3 575 9 3 )

- (1 b s+ 0)) . (6:24)
SchlieBlich ist noch die Funktion Fy = Fi(ug+) zu berechen die direkt in das
L d.h. bei festem gq

2m0 8m0

unter Anwendung der Produktregel

Omips 0 20, .
Prlugs) = Z08 = =5 (Zor (o) 02 (pimor 00))
o+ lgo 0
0 075+ (u
= Zy+(uot) 5—3- (—Féi’o)(p; m0+790)) — T8 (pymor , go) %
ot ot
1 1 1
1 1 11 (i
1 1 5 3
ma, (5184#2 ttor + Oluos ))
1 2 3 1 1 2 3
= 1—muo+—l—0(uo+) 1_16—7Tuo++192—7'r2u0++0(u0+)
1
* (51847r2 uor + O(u8+))
1 1
= 1—16—7TU0+‘|‘192—7T2U(2)+—|—O(US+),
mit (6.20) auf das endliche Ergebnis
1 1
F_|_(UR+) =1- 16—7'[' UR+ 3847‘[‘2 u?% + O(ui’%) (625)

Nach diesen Vorbereitungen berechne ich die Renormierungsgruppenfunktionen
aus Abschnitt 4.3 bis einschlieflich zur 2. Ordnung in ug+. Im Falle der f—Funktion
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verwendet man dazu zweckméaBigerweise anstelle ihrer Definition (4.28a) die Iden-

titat (4.29). Mit (6.24) erhalte ich:
—1
mR+)

In (u+(uR+>))_1 _ (u+(1 Ou(up+)

uR+) 8uR+

patins) = —

T)’LR+

1 3 77
= — 1 o 2 O 3 )
{uR+ ( Tom " T Toggsg e T OWne) ) X

3 575 !
X (1 4+ — Up+ 4+ —

8 G012 R T O<u?“’°+))

1 3 421 -1
= —{ — 1 - 2 O 3 )}
{uR+ ( + o7 Uit gragar Vet OluRe)

30, 7
R TE T

167T u%"’ —I_ O(u%+)7

und damit
3 T ,
By (ups) = —ups (1 s o e b O(uR+)) . (6.26)

Des weiteren ergibt sich mit (4.31a) und (6.21) bzw. (4.31b) und (6.23):

B 0 _ 1 8Z3+ (UR+)
na+(upt) = Pi(up+) s |, In (Z3+(UR+)) = By(ur+) Zsr(ups)  Oupe g
1 1
= [i(up+) (1 + = ST Uht + O(U?%)) <——25927T2 upt + O(upy ))
1
- P B 1 0Zy+(up+)
met(upt) = Py(up+) Dups go In (Z2+(uR+)) = Pr(un) Zo+ (upt)  Oup+ 90
1
= By(ugs) (1 ~ 67 UBt T agi2 Uk + O(uiﬁ)) X
1 2
s (167r 384 384 VAt O(“R+))
1 3 77

- T ler B (1 BT A T Y P ups + O(u%)) %

6
X (1 + —uR+ + O(uR+))

1 1
= o (1 - g4z e+ Ol ). (628)
Nach (4.32) ist
-1
vi(upt) = (2 — N+ (Up+ ) + N2+ (uR+))
B 1 23, 5 )—1
- (2 Tor " T To3an2 Vet T OWRt)

1 23 -1
- {2 (1 ~ 557 Urt T rages YR T O(ui’b*))} :
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woraus

11

2 3
— m Up+ + O(UR+ )) (629)

1 1
(14—
vi(upe) =5 ( t 35, URt

folgt.

An diesen Resultaten bestétigt sich die schon erwdhnte Aussage, dafl die Renor-
mierungskonstanten und die daraus berechneten Renormierungsgruppenfunktionen
frei von Divergenzen sind. Sie stehen im iibrigen mit den dreidimensionalen Berech-
nungen in [BNMG76, BNM78] in Einklang, wo die Renormierungsgruppenfunktio-
nen in der symmetrischen Phase bis zur 7. Ordnung (fiir 81) bzw. 6. Ordnung (fiir
na+ und 1.+ ) bestimmt sind.

6.2.2 Phase gebrochener Symmetrie

Auch hier beginne ich mit der Bestimmung der Renormierungskonstanten Z;, 1 =
2,3,4, die in Abschnitt 4.2.2 definiert worden sind und tiber die aus (5.16) folgende
Relation

Ug— = Up— (1 + Up- + O(u%_)) (6.30)

1287

als Funktion von up- auszudriicken sind. Man erhélt aus 5.2.3:

1 AT (p: mo-, go) 1 a1,
- = _ ? ’ =1 o _ O 3_
Zo—(up-) op? o~ 1 G Mo T T Y-+ Ol-)
1855
— 1 —up WA OB
T oam T Gassnane vr- T OlR-)
1 1693
Z3—(UR—) = 1- 64—7TUR— - mu%_ + O(u%_) (631)

Die Bestimmung von Z;- erfolgt wie in der symmetrischen Phase tiber

1 0 (2,0) 1 1 2 3
= - D20 mg- =14+ ——up- — —ug- + O(ug-
Zy-(ur-) omg " ° (050~ 90) + 327 ° 9672 1° +O(up-)

1 35
= 14+ —up- — —————uA_ 3
T 5om U T Tagaege tre + OluR-)
1 47
ZQ—(UR—) = 1- 32—7TUR— + mu%_ + O(u%_), (632)

und aus dem Vakuumerwartungswert des Feldes ergibt sich:

Mn—
Z4(UR—) = m; (1—|— 3:;02 Uo)
- 2
3 1, [ 75913 1 5
B %_1%w%‘_ﬁﬁﬂm[ +_R‘]+OW“}X

4147272 3
)

1 I S TR RS ,
% {1+'§Elm"_64w2l%‘ [5__§' - ]+'O(UWJ}
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13 104425
IR o SV
287 Y~ Sgsaz0sn Yom T Oo-)

LB 39139
- 1287 BT 7 265420872 BT

1 B L 66517,
— —Up- + > UG-
Zy(up-) 1287 77 265420872

Gleichung (4.25) liefert schliefilich

- 1+

+ O(up-)

+ O(u3o). (6.33)

_ 9 oy, Zilurs)
u-(up-) = mR—( R-) R e (uns)

- 7 2191 \ )
- (1 T 3o "~ Tomssser vne T OlR) ) (6:30)

AuBerdem berechne ich wieder mit 882 = L 2 }ej festem go
m§ 2mg dmg

0
= — (Z:a—(uo—)FéZ—’O)(p; mO—vgo))

2
% amg_

2
oms,_

2
amg_

F_(up-) =

0 2,0 2,0 aZ:a—(Uo—)
= Zs-(uo-) Om?2_ (—Fé— )(P§ mo—,go)) - Fé— )(P; mo-, go) T omZ.

2
| 109
— 1_ - _ e 2_ 3_ )

( o1 Uom T 33776z o- HOWe-) ) X

1 1

X (1 + 32—7TU0— + §93 [é(mo—) + O(ug_))
I S TR ,

g |7 3] oni) «

1 ( 1 409 ug_—l—O(ug_))

1
2
1l —ug-
e { +167Tu0 +

= (1 ~ o o + %ug_ + O(ug_)) X
X (1 + 32Lﬁuo— — 961? ug— + O(ug_))
- (ﬁ fom T % o~ F Sz o O(ug‘))
= b — g b O ),
woraus mit (6.30)
F_(up-)=1+ Tosn R~ 49?;% Ujh- + Ouf-) (6.35)

folgt.

Auch die Renormierungsgruppenfunktionen berechnen sich analog zur symme-

trischen Phase. Zunachst ist
d - 1 du_(up-) -
prlun-) = _( ln(“‘(“R‘))) “(u_wR-) Pure b

8uR—

T)’LR_
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1 7 10129
= {—(1—-——u 72_()3_)
{uR— ( 327 " ¥ Tgpemsye thm T OWR-) )
7 2191 -
e o)
( 167 1 Baagge Ui T O0un-) }

| 7 385 -1
— — 1 = - 2— O 3_)}
{uR+ ( 3o R T Brsgge Unm T OlR-)

T, 10129 \
T il SIS V0 O
R+ g5 Ve — o Ve T O(UR-),

d.h.
7 10129
B-(up-) = —up- (1 ~ 39 trm Tt mu%— + O(u%—)) ; (6.36)
und ferner:

ns-(ur-) = P-(ugr-) L

auR—

In (Zs-(un-)) = B-(ur-) Zg—(luR_) 0Zs-(up-)

1 1855
= f-lun-) (1'+ 61r "7 T 56355202 “%"+()(u%‘)) 8
| 1693
_ _ _02_)
( oir ~ 33rTreer i T Ok
| 7 10129
_ 1 — —up- + —=——uh + O(uj- )
6dr B ( 3o Ut gogqa Ve +OluR-) | X

887
% (14'2592 up-+ Ofup- ))
| 10

_ b v 2
= o ln (1—|—817T up —I—O(uR_)) (6.37)

go auR— go

0

8uR—

1 07~ (up-
g n (Zz_(uR_)) = f-(up-) Zy-(up-) au(R—R | g
1 35 5 3
= Aot (14 g7 v — g the + Olho))

1 47
e T e o)

me-(ur-) = P-(ug-)

327 | 6lddn?
1 7 10129
~ 3o VBT ( " 307 YR T S200ne “%"+()(“%‘)) 8

Al )
% (1_'192w “R"+(9(“R‘))

uR——FCKu%_)). (6.38)

1
= 1—
327 ( 1927
Mit (4.32) ist jetzt

-1

v_(up-) = (2 — 13- (up-) + 772—(UR—))
- 1 2651 5 )‘1
- (2 617 " T Topessae V- T OWR-)

_I_
2651 -1
- { ( 128w URE T S 6 2“%"%Cxu%‘))}
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mit dem Ergebnis

1 1 10325

) = (1 - e e + 0. .

v-(ur-) =3 ( 257 "0 T Taarioame vhe t OlR) (6.39)
Auch hier ist wieder zu beobachten, daf alle soeben bestimmten Funktionen als

Potenzreihen in der dimensionslosen renormierten Kopplung ug- im Limes D — 3

endliche Koeffizienten besitzen.

6.3 Bestimmung von f,/f_

Nach diesen Vorbereitungen kann ich dazu tibergehen, das Verhéltnis f1/f_ gemif}
Abschnitt 6.1 als Potenzreihe 2. Ordnung in einer beiden Phasen gemeinsamen re-
normierten Kopplungen zu berechnen.

6.3.1 Entwicklung in der Hochtemperaturkopplung

Fiir die Bestimmung des Verhéaltnisses fi/f_ als Entwicklung in einer Kopplungs-
variablen upg, die den Fixpunkt u}, der Hochtemperaturkopplung up+ besitzt, hat
man ur- in Abhéngigkeit von ug zu bestimmen. Anschlielend sind alle Gréfen der
Tieftemperaturphase durch die neue Kopplung upr auszudriicken.

Geméf 6.1 mufl dazu die Gleichung (6.14) bis zur 3. Ordnung identisch erfiillt
werden. Aus dem Vergleich von (6.34) mit (6.24), letztere als Funktion von ug,
erhalte ich durch einen Potenzreihenansatz die Beziehung

1 9059

327 P T Tonsssnz 'R

+ O(U;’;)) , (6.40)

UR- — UR—(uR) = uR (1 —
die im folgenden allerdings nur in 2. Ordnung bené6tigt wird.
Nach (6.25) ist

1 1

F_|_(UR+) = 1- — UR+ — 384—7{'2

167T u%"’ —I_ O(u%-l')?

und (6.35) fithrt mit (6.40) auf

F_(ip) = F_(up-)

Up—=up_ (UR)

3 233
— 14+ — ype ——— 2_ 10 3_}
{ + 1287 U T porae Wt OluR-) o
Up—=up_ (UR)
3 269
- _ . 3 Al
+ 1287 UR T Igippz R T O(UR) (6.41)

Wegen uj, = uj4 setze ich up = up+ und finde

- 11 41
—(uR+) = 1—|— —— UR+ —|—

1287 1638472 ups + O(ups). (6.42)
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Daraus erhdlt man mit (6.15) durch Entwickeln der dort auftretenden allgemei-
nen Exponentialfunktion fiir das Amplitudenverhéltnis der Korrelationsléange in
Abhéangigkeit des Exponenten v die Gleichung

;—t(w%;l/) = [22(“*)]”

11w 39 — 1212
= 2|1+ — —— 7 O(u? . (643
( T 138e T 3amesar Rt T (uR+)) (0:49)
Beriicksichtigt man auBerdem die Entwicklung (6.29), so kann man dieses Verhaltnis
als Funktion der Hochtemperaturkopplung up = ug+ allein angeben. Eine Entwick-
lung bis zur 2. Ordnung liefert das Ergebnis:

128 v (upt)
o) = |2
11 1
= V24l —— In2
f{ +<2567r+647r " )“R+
219 803
In2 122) 24O }
(131072W2+13271047r2 n2+ oo 072 Jups + O(upe)

(6.44)

Das Resultat (6.44) zeigt die Struktur, wie sie aus einer perturbativen Rechnung zu
erwarten ist:

Der Beitrag 0. Ordnung entspricht dem aus der Mean—Field-Theorie bekannten
Wert (fy/f-)ur = V2 und entspricht dem Verhiltnis der nackten Massen bei-
der Phasen. Dieses bewirkt auch das Auftreten zunehmender Potenzen von In2 in
(6.44). Die Terme 1. und. 2. Ordnung, die durch die dreidimensionale Stérungstheo-
rie gewonnen worden sind, stellen positive Korrekturen zu diesem Wert da, deren
numerische Grofle durch die zugehorigen Koeffizienten und den Fixpunktwert der
renormierten Kopplung bestimmt ist.

6.3.2 Entwicklung in der Tieftemperaturkopplung

In analoger Weise erhdlt man das Verhéltnis f,/f_ als Entwicklung in einer re-
normierten Kopplung ug, die den Fixpunkt uj,_ der Tieftemperaturkopplung up-
besitzt. Nach 6.1 ist jetzt die Gleichung (6.16) bis zur 3. Ordnung zu erfiillen. Der
Vergleich von (6.34) mit (6.24), diesmal allerdings erstere als Funktion von ug, ergibt
nach einem Potenzreihenansatz die Beziehung

1 8735

up+ = up+(Ur) = ur (1 +-—ugr

- o(u3 ) 6.45
397 Tonsssnz e HOlR) ) (6.45)

mit der ich in der Hochtemperaturphase die Kopplung ug+ durch ug ersetze.
Nach (6.35) ist jetzt

233

~ 4915272 up-+ Ofup-),

F_(UR—) =1 +

1287 BT
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und mit (6.25) und (6.45) folgt

Filtin) = Fi(upr)

Upt =tpt (UR)

1 1
- {1 T 16r BT 38452 ups + O(“%+)}

1 7
_q L . 23 A
Tom "~ Tr36m2 “r tOluR) (6.46)

Upt =up+ (UR)

Wegen u}, = uj,— setze ich wieder ur = up- und erhalte

F_ 11 85

F—+(uR—) :1+%UR—+WU%—+O(U%_) (647)

Wie in der Hochtemperaturphase ergibt sich mit (6.17) fiir das Amplitudenverhéltnis
der Korrelationslange in Abhangigkeit von v zunéchst

;_j(uR—;w = [QFT(“R_)]U

11v 49y 4+ 12102 9 3
— 2 (1 i i Y 3 ). (64
( T Tosx e t Tagrgeae v T OWR-) ) (648)

Mit (6.39) und einer Entwicklung bis einschlielich zur 2. Ordnung in der Tieftem-
peraturkopplung urp = ug- findet sich das Ergebnis

f+
2

el [Q%wR-)]L(“R‘)

1 |
NGRS n2) wpe
f{ +<2567r 2567 n)uR

175 19759
I 22) 2 3 }
(131072#2 + 530841672 + 13107272 ) "R + O(ug-) ¢,
(6.49)
welches ebenfalls die fiir D = 3 zu erwartenden Korrekturen zum Mean-Field—

Verhalten zeigt.

6.4 Numerische Ergebnisse

Die Berechnung des Amplitudenverhiltnisses der Korrelationsldnge in den vorheri-
gen Abschnitten zeigt, daf} sich fiir seine numerische Bestimmung zwei Moglichkeiten
eroffnen.

Dies dufert sich darin, dafl in die Bestimmungsgleichung (6.10) neben der di-
mensionslosen renormierten Kopplung der kritische Exponent v eingeht, den wir
entweder als Literaturwert vorgeben oder in Gestalt der zugehorigen Renormierungs-
gruppenfunktion (4.32) als Entwicklung in ug+ verwenden kénnen. Im letzteren Fall
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ist dann der einzige vorzugebende Parameter der Fixpunktwert der renormierten
Kopplung, der gemiB den Uberlegungen aus Abschnitt 4.3 gerade die Theorie am
kritischen Punkt beschreibt. Durch Einsetzen dieses Fixpunktes in die Reihenent-
wicklungen des Verhéaltnisses fy/f_ und des Exponenten v erhalten wir somit eine
Approximation deren universeller Werte.

Mit den Ergebnissen der 2-Loop—Rechnung ist natiirlich nur eine ndherungswei-
se Bestimmung dieser Gréflen moglich, da fiir eine genaue Analyse der Reihen zu
wenige Ordnungen zur Verfiigung stehen. Ausgehend von den bekannten Korrektur-
koeffizienten 1. und 2. Ordnung kann man deshalb bestenfalls Abschatzungen iiber
die Relevanz der weiteren Ordnungen machen.

Zur numerischen Auswertung unserer Reihen verwende ich die Methode der ra-
tionalen Approximanten (PADE-Analyse), wie sie in [SIE93] diskutiert ist. Dabei be-
zeichnen wir die polynomiale Approximation einer Potenzreihe, die bis einschlieflich
zur 2. Ordnung gegeben ist, kurz als [2,0]-PADE, wihrend die Funktionen [1,1]-PADE
und [0,2]-PADE die gebrochenrationalen Approximanten dieser Reihe darstellen.

6.4.1 Hochtemperaturfixpunkt uj,

Ich werte die Entwicklungen der kritischen Groflen v(upg+) und ;—t

speziellen Werte des Fixpunktes der renormierten Kopplung der Hochtemperatur-

(up+) fiir die zwei

phase

W = 23.73(8):  [GZJS0, 2J82], RG in D = 3
Up+ = 24.56(10); [SIE93], HT-Entwicklung (6.50)

aus.

Kommentierung der Tabellen:

o Tabelle 6.1:

Bestimmung des kritischen Exponenten v aus der Reihe (6.29).

o Tabelle 6.2:
Bestimmung des universellen Amplitudenverhiltnisses fi/f_ aus der Reihe

(6.42) gemaB

L e i) (6.51)

wobei fiir den kritischen Exponenten v die Literaturwerte

v = 0.6300(15); [GZJ80, ZJ82], RG in D = 3
v =10.627(9); [DEC85], TT-Entwicklung
v =0.624(2); [BGHP92], MC-RG

vorgegeben werden.
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o Tabelle 6.3:

Bestimmung des universellen Amplitudenverhiltnisses fi/f_ aus der Reihe

(6.44).

6.4.2 Tieftemperaturfixpunkt uj,_

Nun werte ich die Entwicklungen der kritischen GroBen v(ug-) und ;—t (up-) fiir zwei
spezielle Werte des Fixpunktes der renormierten Kopplung der Tieftemperaturphase

up- = 14.73(14); [SIE93], TT-Entwicklung
up- = 15.1(1.3); indirekt aus [TF75, AH76, BGS0] (6.52)

aus.

Kommentierung der Tabellen:

o Tabelle 6.4:

Bestimmung des kritischen Exponenten v aus der Reihe (6.39).

o Tabelle 6.5:

Bestimmung des universellen Amplitudenverhiltnisses fi/f_ aus der Reihe

(6.47) gemaf

;—j: [zg—;(ug_)r, (6.53)

wobei man fiir den kritischen Exponenten v wieder die obigen Literaturwerte
vorgibt.

o Tabelle 6.6:

Bestimmung des universellen Amplitudenverhiltnisses fi/f_ aus der Reihe

(6.49).
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Vorgaben Kritischer Fxponent v
Fiapunkt ufy || [2,0/-PADE | [1,1]-PADE | [0,2]-PADE
23.73(8) 0.6142 0.6144 0.6044
24.56(10) 0.6182 0.6182 0.6072

Tab. 6.1: Numerische Werte des kritischen FExponenten v nach

Vorgabe verschiedener Werte des Furpunktes ufy .

Vorgaben Amplitudenverhdltnis fi]f-
Exponent v | Fizpunkt wy, || [2,0/-PADE | [1,1]-PADE | [0,2]-PADE
23.73(8) 2.2348 2.2663 2.0716
0.6300(15) 24.56(10) 2.2605 2.2956 2.0775
0.627(9) 23.73(8) 2.2263 2.2575 2.0644
24.56(10) 2.2518 2.2865 2.0703
23.73(8) 2.2178 2.2487 2.0570
.624(2
0.624(2) 24.56(10) 2.2431 2.2775 2.0630

Tab. 6.2: Numerische Werte des Amplitudenverhdlinisses f1 /f— nach Vorgabe

verschiedener Werte des Exponenten v und des Firpunktes u7,,.

Vorgaben Amplitudenverhdltnis fi]f-
Fiapunkt uy || [2,0/-PADE | [1,1]-PADE | [0,2]-PADE
23.73(8) 2.1623 2.2373 2.2229
24.56(10) 2.1947 2.2793 2.2627

Tab. 6.3: Numerische Werte des Amplitudenverhdltnisses
J+/f- nach Vorgabe verschiedener Werte des Fizpunktes uf, .
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Vorgaben Kritischer Exponent v
Fizpunkt uj— | [2,0]-PADE | [1,1]-PADE | [0,2]-PADE
14.73(14) 0.5672 0.4966 0.5767
15.1(1.3) 0.5711 0.4966 0.5818

Tab. 6.4: Numerische Werte des kritischen Exponenten v nach

Vorgabe verschiedener Werle des Fizpunktes uf,_.

Vorgaben Amplitudenverhdltnis fy ] f-
FExponent v ‘ Fiapunkt wh_ || [2,0]-PADE ‘ [1,1]-PADE ‘ [0,2]-PADE
0.600(15) |15 00| 2058

06219 |5 i3 om0 |20
06U |5 vony st 20u0s

Tab. 6.5: Numerische Werte des Amplitudenverhdltnisses f1/f— nach Vorgabe

verschiedener Werte des Exponenten v und des Fizpunktes uF,_.

Vorgaben Amplitudenverhdlinis f1/f_-
Fiapunkt uj— | [2,0]-PADE | [1,1]-PADE | [0,2]-PADE
14.73(14) 1.8030 1.9052 1.8590
15.1(1.3) 1.8159 1.9292 1.8771

Tab. 6.6: Numerische

Werte des Amplitudenverhdltnisses

J+/f= nach Vorgabe verschiedener Werte des Fizpunktes uj,_ .

89
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6.4.3 Diskussion

Zunachst seien in Tabelle 6.7 eine Reihe weiterer Literaturwerte der hier untersuch-
ten universellen Gréflen zusammengestellt, die auf unterschiedlichen Bestimmungs-
methoden beruhen.

Literaturwerte universeller Gréfen
Bestimmungsmethode H v ‘ flf-
e~ FEntwicklung 0.6310(15) 1.91
RGin D=3 0.6300(15), 0.6298(7)
HT/TT-Entwicklung 0.6305(15) 1.96(3), 1.96(1), 1.94(3)
Bindre Fluide (exp.) 0.625(10) 2.04(20), 2.22(5), 1.9(2)

Tab. 6.7: Aus [ZJ89, BB85, TF 75, LF89, Sie93, KKG83] entnommene Litera-

turwerte.

Beim Betrachten der vorstehenden Tabellen stellt man generell fest, daf} die
Storungsreihen der Hochtemperaturphase auf héhere Zahlenwerte fithren als dieje-
nigen der Tieftemperaturphase, was z.T. durch die Grole der zugehérigen Fixpunkte
(6.50) und (6.52) bedingt ist. Im Falle des Exponenten v fallt auf, daf die Resultate
der gebrochenen Phase (Tab. 6.4) noch merklich unterhalb der Literaturwerte liegen,
wahrend diese in der symmetrischen Phase bereits durch die 2-Loop—Rechnung gut
reproduziert werden. Die Gestalt der zugrundeliegenden Reihen (6.29) und (6.39)
zeigt allerdings, dal die 2-Loop-Beitrége bei einem Fixpunkt von w4 ~ 24 bzw.
who & 15 etwa 1% bzw. 18% der fithrenden Terme betragen, so daf in der Tieftem-
peraturphase von der 3. Stérungsordnung noch deutliche Korrekturen zu erwarten
sind.

Die Werte des Amplitudenverhiltnisses der Korrelationslinge liegen fast alle
oberhalb der angegebenen Literaturwerte. Beim genaueren Hinschauen erkennt man
zunachst als Konsequenz der vorstehenden Beobachtung, dafl die Diskrepanz zwi-
schen den Werten, in die nur die Fixpunkte ug+ eingehen (Tab. 6.3, Tab. 6.6) und
denen, die auch die Kenntnis von v verlangen (Tab. 6.2, Tab. 6.5), in der Phase
gebrochener Symmetrie ausgeprégter ist. Deshalb wird man wohl grundséatzlich den
Werten, die auf einer Vorgabe des Fixpunktwertes der renormierten Kopplung und
des kritischen Exponenten v beruhen, mehr Beachtung schenken. Ein Vergleich der
Tabellen 6.2 und 6.5 miteinander gibt einen Hinweis darauf, die Tieftemperatur-
kopplung ug- als den geeigneteren Entwicklungsparameter anzusehen, da dort die
PADE-Approximanten eine wesentlich geringere Abweichung untereinander zeigen
als diejenigen in der Hochtemperaturkopplung wg+. Dieser Eindruck erhértet sich,
wenn man die Groflenordnung der stérungstheoretischen Korrekturen 1. und 2. Ord-
nung in den Reihen (6.42) und (6.47) bzw. (6.44) und (6.49) fiir die Verhéltnisse
F_/F, und f,/f- abschdtzt. Diese haben in Hoch— und Tieftemperaturphase (bis
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auf evtl. konstante Vorfaktoren) die Struktur
1+ ag)uRi + a(ﬁ)uﬁgi + O(u%i),
und die Koeffizienten ergeben sich ndherungsweise zu
dM=273%x107% o =253 %107 oM =273%x 1072, P =524 x 107,
bzw.
aV=1.72x107%, a? =218 x 107" oV =128x10"2, «? =3.97 x 107

Wenn wir in der symmetrischen Phase wieder einen Fixpunktwert von uj; ~ 24
annehmen, betragen die Korrekturen 1. Ordnung etwa 66% bzw. 41% der Terme
0. Ordnung und die Korrekturen 2. Ordung beide Male ungefihr 9% der Terme
0. und 1. Ordnung. In der Phase gebrochener Symmetrie, bei einem Fixpunkt von
uh— ~ 15, nehmen die entsprechenden Beitrage etwa 41% bzw. 19% und 8% bzw.
7% der fithrenden Terme ein. Dies legt wiederum den Schluff nahe, dafi die Reihen-
entwicklungen in der Tieftemperaturvariablen bessere Konvergenzeigenschaften® be-
sitzen als diejenigen in der Hochtemperaturvariablen, denn bei einer Einbeziehung
weiterer Ordnungen ist in letzterem Fall mit prozentual gréfleren Korrekturen zu
rechnen.

Nach Mittelwertbildung und Angabe der maximalen Abweichungen zu einzelnen
Werten formuliere ich aus den Tabellen 6.2 und 6.5, deren Eintrége ein breites Spek-
trum moglicher Vorgaben einschlieflen, ein zusammenfassendes Endergebnis meiner
Rechnungen. In der Hochtemperaturkopplung ist

. 2.18(12) |, (6.54)

f-

und in der Tieftemperaturkopplung erhélt man

Fe 2.03(4)| . (6.55)

f-

Eine Fehlerrechnung ist in diesem Zusammenhang nicht sinnvoll, da die pertur-

bativen Rechnungen keine Fehlerangaben erméglichen. Dennoch ist aufgrund der
erhaltenen Resultate nicht auszuschlielen, dafl das Amplitudenverhéltnis der Kor-
relationsldnge tatsdchlich grofier als die in Tabelle 6.7 zu findenden Werte ist.

AbschlieBend sei hinzugefiigt, dafi eine PADE-BOREL-Transformation, wie sie
in [BNM78, GZJ80, BB85, BBMNS8T7] verwendet wird, die Numerik der obigen
Storungsreihen 2. Ordnung nicht verbessert. Dies ist vermutlich darauf zuriick-
zufithren, dal — wie in den zitierten Arbeiten angedeutet — eine sinnvolle An-
wendung dieser Methode erst dann gerechtfertigt ist, wenn eine héhere Zahl von
Ordnungen der zu analysierenden Reihe und damit gleichzeitig das asymptotische
Verhalten ihrer Koeffizienten bekannt sind.

3Es wird jedoch keineswegs behauptet, dafi die Reihen iiberhaupt konvergieren!



Kapitel 7

Amplitudenverhiltnis der
Suszeptibilitat

Die stérungstheoretischen Rechnungen, die in erster Linie der Bestimmung des Am-
plitudenverhéltnisses der Korrelationsldnge galten, kénnen auch auf das universelle
Amplitudenverhéltnis der Suszeptibilitat ausgedehnt werden. Seine Berechnung bis
einschlielich zur 2. Ordnung in der renormierten dimensionslosen Kopplung ist des-
halb ebenfalls Gegenstand des Interesses.

Hierzu gehe ich wie in Kapitel 6 vor, indem ich zunéchst eine geeignete Be-
stimmungsgleichung fiir das gesuchte Verhéltnis herleite und dieses anschlieflend als
Potenzreihe in einer Kopplungsvariablen ug schreibe, die zuvor an den Fixpunkt der
renormierten Kopplung in der Hoch— bzw. Tieftemperaturphase angeglichen worden
ist.

7.1 Herleitung der Bestimmungsgleichung

Die Suszeptibilitat x divergiert in beiden Phasen bei Annéherung an den kritischen
Punkt T'= T, gema$ (1.13) nach dem Gesetz

X ~ Ci|t|_w, t:= T

In Verallgemeinerung ihrer thermodynamischen Definition (1.5) steht die Suszepti-
bilitét mit den feldtheoretischen Gréflen in jeder Phase iiber die Beziehung

1
— = —F(Q’O)(O;mo,go) (7'1)
X

in Zusammenhang, und mit (4.18) und (4.19a) folgt daraus

= ———— T80y mp, up) =

1
N Zo(ur) (7.2)

Zg(uR) '

92
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Verwendet man von nun an wieder die Konventionen aus 6.1, so ist zu beobachten,
dafl das singulére Verhalten der Suszeptibilitét in der jeweiligen Phase durch

1 Cuty

m%i N Z3:l: (UR:E )

(7.3)

mit der renormierten Masse (bzw. der Korrelationslange) vekniipft ist. Ich bilde jetzt
den Quotienten dieser Gleichungen und erhalte

Oy _ mi Zae(upy) (&)f (7.4)

c_ may Za—(up-) \t-

Nach einer Wahl von Punkten im Phasendiagramm mit
mp+ = M-

hat man dann einerseits

und andererseits nach (6.9) wieder

t__|_ —9 F_(UR—)
t_ F_|_(UR+)‘

Fithrt man jetzt genau wie zuvor in beiden Phasen die renormierte Kopplung up
ein, die je nach Anpassung an die renormierte Kopplung der anderen Phase den
Hoch— bzw. Tieftemperaturfixpunkt besitzt, so ergibt sich daraus fiir das universelle
Amplitudenverhéaltnis der Suszeptibilitdt die Gleichung

(7.6)

Mit (6.10) und dem Skalengesetz (1.15b)

v =v(2=mn)

kann man dieses Verhéltnis auch auf das Amplitudenverhéltnis der Korrelationsldnge
zurlickfithren:

W Lo (ups (i) [f_+

f__(“R)] " Zo(un-(un)) LT (UR)]H' "

Die Beziehungen zwischen ugp und ug+ bzw. ug+ kann ich dabei unverdndert aus
dem vorstehenden Kapitel iibernehmen.
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7.2 Renormierungsgruppenfunktion -

Im Hinblick auf (7.6) und (7.7) fithren wir durch

Yi(ups) = I/i(uRi)(Q — 773i(uRi)) (7.8)

in beiden Phasen eine weitere Renormierungsgruppenfunktion ein, aus der sich der
kritische Exponent v durch

v =7 (ups) (7.9)
ergibt. Mit Hilfe der Resultate aus 6.2 ist diese Funktion als Entwicklung in der
Hoch— bzw. Tieftemperaturkopplung leicht anzugeben.

7.2.1 Symmetrische Phase

Mit den Gleichungen (6.27) und (6.29) fiir die Renormierungsgruppenfunktionen s+
und vy, d.h.

1

und

1 1 11
I/_|_(UR+) = 5 (1 + 32—7TUR+ - mu%+ + O(u%.;)) 5

erhalte ich aus (7.8):

1
Ye(upt) =14+ —— up+ u?% + O(U%J,). (7.10)

327 - 3072m2

7.2.2 Phase gebrochener Symmetrie

Mit den Gleichungen (6.37) und (6.39) fiir die Renormierungsgruppenfunktionen ns-
und v_, d.h.

1 10

ee) = gy v (14 g une + O

und
1 | 10325
lup) = = (1 e 20 2 03_)
v-(un-) 2( 87 n T T3orioaez Ve T OWR-) )
ergibt sich ebenfalls nach (7.8):
1 169
(i) =1 g 22 3, 11
V- (n-) o1 5t Sipran vrm T OR-) (T.11)
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7.3 Bestimmung von C,/C_

Bei der Bestimmung des Amplitudenverhéltnisses C'y/C_ halten ich mich an die
Vorgehensweise aus Abschnitt 6.3 und fithre in beiden Phasen wieder eine Kopplung
up ein, die zu den Kopplungen ug+ und ug- in eindeutiger Beziehung steht und in
deren Abhéngigkeit sich das gesuchte Verhéltnis bis einschlieilich zur 2. Ordnung
angeben laft.

7.3.1 Entwicklung in der Hochtemperaturkopplung

Die Renormierungskonstante Za+ ist nach (6.21) durch

Z3+ (UR+) = 1 u%.p —|— O(ui’%)

1
518472
gegeben, und mit (6.31) und (6.40) findet man

Zs-(ur) = Zs-(ur-)

Up—=up_ (UR)

1 1693
= ]l = —qypo ———7" 2 10 3_}
{ 6ar "7~ Ge3pnonz h T OlR-) -
Up—=up_(TR)
1 1369
= 1 —ap— 02 ). 12
61 P Goznonr r T OlR) (7.12)

Wegen uj, = uj4 identifiziert man ur mit up+ und erhélt

Z 1 1403

Andererseits kenne ich nach (6.42) bereits

2 () = 14 11 L4
R 1287 17 1638472

uhs + O(ugy ),

so daB ich durch Entwicklung der Bestimmungsgleichung (7.6) das Amplituden-
verhéltnis der Suszeptibilitat in Abhangigkeit vom kritischen Exponenten v als Po-
tenzreihe 2. Ordnung in ur = ug+ erhalte:

C Z P "
G mein) = o) |2 o)
2411y 5612 + 405 + 980142 \
= 21 0 .
( o8r P T 26542087 ure + Oltne)

(7.14)

Mit (7.10) findet sich in Abhéngigkeit von ug+ allein:



96 KAPITEL 7. AMPLITUDENVERHALTNIS DER SUSZEPTIBILITAT

e
a(uR+) == Z—3—(UR+) [QF—+(UR+)

13 1
Y S (A
{+<1287T+327r n)uR+

( 11473 n 35 24
n
132710472~ 1228872 204872

In® 2) Uhs + O(u?%)}.
(7.15)

Dasselbe Resultat liegt vor, wenn die Gleichung (7.7) und das in 6.3.1 bestimmte
Amplitudenverhéltnis der Korrelationslange (6.44) verwendet wird.

Ferner ist zu bemerken, daf} die dreidimensionale Stérungstheorie, wie zu erwar-
ten, Korrekturen zu dem bekannten Mean—Field-Wert (C./C_)yp = 2 liefert, der
sich in (7.15) durch den Beitrag 0. Ordnung zu erkennen gibt.

7.3.2 Entwicklung in der Tieftemperaturkopplung

Fiir die Renormierungskonstante Z;- gilt nach (6.31) die Entwicklung

1 1693
T (i) =1 — g 2090 2
a=(ur-) 64r " F T 66355272 R

und mit (6.21) und (6.45) ist

+ O(up-),

Z3+(aR) = Z3+(UR+)

Upt =up+ (UR)

1
- {1 = SRipr e T O(“%+)}
Upt =up+ (UR)
I ~

Da ich ug hier gerade so gewéhlt habe, dal uj, = uj- gilt, kann ur = up- gesetzt
werden, so daf} sich

T+ 1 1727,

Z—S_(UR_) = 1+64—7TUR_+MUR_+O(U%_) (717)
ergibt. Nach (6.47) ist aulerdem

F_ 11 85

—(up-) =14 ——up- + ————uh- + O(u-

() = U e i+ e Wi + Ol ),

woraus mit (7.6) fiir das Amplitudenverhéltnis der Suszeptibilitidt in Abhangigkeit
von v zunéchst

C_|_ Z3+ F_ v
“t un ) = B e ) 12 (e
C_ (ur-;7) T (up-) l P, (ur )]
2411y 6908 + 7533y + 980192 \
= 2 (1 _ _ _
( T 265420872 U=+ Oltp-)

(7.18)
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resultiert. Nimmt man Gleichung (7.11) hinzu, so liefert eine Reihenentwicklung bis
zur 2. Ordnung in up- das Ergebnis

, T
Chln) = 7 ) |2 ()

_ 2{1+( b1, 2)
- 1287 64r o) URT

( 10339 n 65 24
n
132710472 1228872 819272

In® 2) UF- A+ O(u%_)},
(7.19)

welches ebenfalls aus (7.7) und (6.49) erhéltlich ist, und dessen Struktur demjenigen
der symmetrischen Phase entspricht.

7.4 Numerische Ergebnisse

Fiir die numerische Bestimmung des Amplitudenverhéltnisses der Suszeptibilitét
mit Hilfe der vorstehenden Gleichungen ergeben sich wieder zwei Moglichkeiten, da
man diesmal den kritischen FExponenten ~ sowohl als Literaturwert als auch iiber
die Renormierungsgruppenfunktion (7.8) als Entwicklung in der dimensionslosen
renormierten Kopplung vorgeben kann.

Wie in Abschnitt 6.4 werden dazu neben den zugehérigen Reihen selbst auch
deren PADE-Approximanten herangezogen.

7.4.1 Hochtemperaturfixpunkt uj,

Ich werte die Entwicklungen der kritischen Groflen v(upg+), n(ug+) und g—t (up+)

fiir die zwei speziellen Werte (6.50) des Fixpunktes der renormierten Kopplung der
Hochtemperaturphase u}4 aus.

Kommentierung der Tabellen:

e Tabelle 7.1:
Bestimmung des kritischen Exponenten ~ aus der Reihe (7.10).

o Tabelle 7.2:

Bestimmung des kritischen Exponenten 7 aus der Reihe (6.27). Da in der
symmetrischen Phase die Terme 0. und 1. Ordnung verschwinden, ist nur die
[2,0]-PADE-Approximation méglich.
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o Tabelle 7.3:

Bestimmung des universellen Amplitudenverhiltnisses C'y /C_ aus der Reihe
(7.14), wobei man fiir den kritischen Exponenten ~ die Literaturwerte

v = 1.250(1); [GG74]; HT-Entwicklung
v = 1.241(2); [GZJ80, ZJ82]; RG in D = 3
v = 1.237(2); [BGHP92]; MC-RG

vorgibt.
o Tabelle 7.4:

Bestimmung des universellen Amplitudenverhiltnisses C'y /C_ aus der Reihe

(7.15).

7.4.2 Tieftemperaturfixpunkt uj-

Nun werte ich die Entwicklungen der kritischen Groflen v(ug-), n(ug-) und g—t (up-)
fiir die zwei speziellen Werte (6.52) des Fixpunktes der renormierten Kopplung der
Tieftemperaturphase uj,_ aus.

Kommentierung der Tabellen:

e Tabelle 7.5:
Bestimmung des kritischen Exponenten ~ aus der Reihe (7.11).

o Tabelle 7.6:

Bestimmung des kritischen Exponenten 5 aus der Reihe (6.37). Da in der
gebrochenen Phase der Term 0. Ordnung verschwindet, sind hier nur die [2,0]-
und [1,1]-PADE-Approximanten moglich.

o Tabelle 7.7:

Bestimmung des universellen Amplitudenverhiltnisses C'y /C_ aus der Reihe
(7.18), wobei man fiir den kritischen Exponenten v wieder die obigen Litera-
turwerte vorgibt.

o Tabelle 7.8:

Bestimmung des universellen Amplitudenverhéltnisses €'y /C'— aus der Reihe

(7.19).
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Vorgaben Kritischer Frponent v
Fiapunkt ufy || [2,0/-PADE | [1,1]-PADE | [0,2]-PADE
23.73(8) 1.2175 1.2188 1.1930
24.56(10) 1.2244 1.2259 1.1972

Tab. 7.1: Numerische Werte des kritischen Ezponenten ~ nach

Vorgabe verschiedener Werte des Fizpunkles u7,. .

Vorgaben Kritischer Exponent n
Fizpunkt uhy [2,0]-PADE

23.73(8) 0.0219

24.56(10) 0.0233

Tab. 7.2: Numerische Werte des kritischen
Ezponenten 1 nach Vorgabe verschiedener

Werte des Fizpunkles ug,y.

Vorgaben Amplitudenverhdlinis Cy/C_
Exponent v | Fizpunkt uyy | [2,0]-PADE | [1,1]-PADE | [0,2]-PADE
1.250(1) 23.73(8) 5.6847 6.7621 5.0204
' 24.56(10) 5.8400 7.0770 5.0618
1.241(2) 23.73(8) 5.6246 6.6745 4.9912
' 24.56(10) 5.7772 6.9826 5.0348
1.237(2) 23.73(8) 5.5976 6.6366 4.9787
' 24.56(10) 5.7496 6.9422 5.0225

Tab. 7.3: Numerische Werte des Amplitudenverhdlinisses C1. /C_ nach Vorgabe

verschiedener Werte des Exponenten v und des Fizpunkles u7,, .
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Vorgaben Amplitudenverhdlinis Cy/C_
Fiapunkt ufy || [2,0/-PADE | [1,1]-PADE | [0,2]-PADE
23.73(8) 5.1001 7.5635 6.3233
24.56(10) 5.2534 8.1888 6.6368

Tab. 7.4: Numerische Werte des Amplitudenverhdltnisses
C4/C_ nach Vorgabe verschiedener Werte des Fixpunktes

Upps -

Vorgaben Kritischer Frponent v
Fizpunkt uy- || [2,0]-PADE | [1,1]-PADE | [0,2] PADE
14.73(14) 1.0779 0.9761 1.0782
15.1(1.3) 1.0838 0.9759 1.0847

Tab. 7.5: Numerische Werte des kritischen Exponenten v nach

Vorgabe verschiedener Werte des Fuzpunktes up,_ .

Vorgaben Kritischer Exponent n
Fiapunkt uj- || [2,0/-PADE | [1,1]-PADE
14.73(14) 0.1157 0.1739
15.1(1.3) 0.1196 0.1846

Tab. 7.6: Numerische Werte des kritischen Ex-
ponenten 1 nach Vorgabe verschiedener Werte

des Fizpunktes ufp,_.
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Vorgaben Amplitudenverhdlinis Cy/C_
Exponent ~ | Fizpunkt uj,— || [2,0]-PADE | [1,1]-PADE | [0,2]-PADE
1.250(1) 14.73(14) 4.3739 4.8928 4.8155
' 15.1(1.3) 4.4400 5.0109 4.9246
1.241(2) 14.73(14) 4.3324 4.8404 4.7680
' 15.1(1.3) 4.3977 4.9566 4.8750
1.237(2) 14.73(14) 4.3142 4.8179 4.7473

15.1(1.3) 4.3791 4.9331 4.8535

Tab. 7.7: Numerische Werte des Amplitudenverhdlinisses C1. /C_ nach Vorgabe

verschiedener Werte des Exponenten v und des Fizpunkles uf,_.

Vorgaben

Amplitudenverhdiltnis Cy [C_

Fiapunkt uj— | [2,0]-PADE | [1,1]-PADE | [0,2]-PADE

14.73(14) 3.3572 4.1012

3.9804

15.1(1.3) 3.4043 4.2368

4.0980

Tab. 7.8: Numerische

Werte des Amplitudenverhdltnisses

C1/C_ nach Vorgabe verschiedener Werte des Fizpunktes

*
UR_.
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7.4.3 Diskussion

Zuniachst sind in Tabelle 7.9 einige weitere Literaturwerte der soeben erhaltenen
universellen Groflen angegeben.

Literaturwerte universeller Gréfen
Bestimmungsmethode H 5y ‘ Cy/C_
e~ FEntwicklung 1.2390(25) 4.81
RGinD =3 1.2405(15), 1.2407(12) 1.77(30)
HT/TT-Entwicklung 1.2385(25) 5.03(5), 4.95(15), 4.82(5)
Bindre Fluide (exp.) 1.24(1.0) 4.3(3)

Tab. 7.9: Aus [2J89, BB85, BBMNG&7, TF 75, LF89, SIE93] entnommene Literatur-

werte.

Die Untersuchung der Tabellen dieses Abschnitts bestatigt die Erkenntnisse, die
bereits am Ende des vorigen Kapitels gewonnen worden sind. Die Literaturwerte
der kritischen Exponenten v und n (z.B. n = 0.032(3) nach [ZJ89]) sind in der
symmetrischen Phase (Tab. 7.1, Tab. 7.2) durch die 2-Loop—Rechnung recht gut
bestatigt. In der gebrochenen Phase (Tab. 7.5, Tab. 7.6) sind diesbeziiglich noch
deutliche Abweichungen zu vermerken, die méglicherweise durch die Finbeziehung
weiterer Ordnungen modifiziert werden, da in den Reihen (7.10) bzw. (7.11) die
2-Loop—Beitrage nur 2% bzw. noch 17% der ersten beiden Terme betragen.

Dementsprechend wende ich mich gleich den Tabellen 7.3 und 7.7 zu, in denen
fiir das Amplitudenverhiltnis der Suszeptibilitdt verschiedene Werte der Fixpunkte
der renormierten Kopplungen u}: und des Exponenten v vorgegeben sind. Auch
hier bemerkt man, dafi die PADE-Approximanten der Reihen in der Hochtempera-
turvariablen wesentlich weiter streuen als diejenigen in der Tieftemperaturvariablen.
Wenn man die Grolenordnung der Beitrdge 1. und 2. Ordnung in den Reihen (7.13)
und (7.17) bzw. (7.15) und (7.19) betrachtet, die in das Verhaltnis C;./C_ eingehen,

so lauten bei einer Reihenstruktur von
1+ ag)uRi + a(ﬁ)u%i + O(une)
die Koeffizienten ndherungsweise
alV =496 x 107, aP =213 x 107 o =496 x107, o« =2.63 x 107,
bzw.
alV =393%x1072, aP =1.09x107% o =290x1072, «® =1.17x 1072

Die Korrekturen 1. und 2. Ordnung betragen dann in der symmetrischen Phase
(upe = 24) etwa 12% bzw. 94% und 11% bzw. 33% der fithrenden Terme; in der
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Phase gebrochener Symmetrie (uj— ~ 15) hat man stattdessen etwa 7% bzw. 43%
und 6% bzw. 18% der fithrenden Terme. Insgesamt bestitigt sich also die schon
gezogene Schlufifolgerung, dafl die Tieftemperaturkopplung ug- als Entwicklungs-
parameter in den Stérungsreihen zu bevorzugen ist.

Zusammenfassend erhalte ich als Abschitzung des Endresultats in der Hoch-
temperaturkopplung

% = 6.03(1.05) |, (7.20)

und in der Tieftemperaturkopplung findet man entsprechend

Cy
o = 466(36) | (7.21)

Inshesondere der letzte Wert steht in guter Ubereinstimmung mit der Literatur.



Kapitel 8

Konsistenzrechnungen in
1-Loop—Ordnung

Dieses abschlielende Kapitel ist einigen Betrachtungen gewidmet, die die perturbati-
ve Bestimmung universeller Groflen abrunden sollen. In diesem Zusammenhang gehe
ich auf die Bedeutung der physikalischen Masse ein und stelle einen Vergleich mit
der e-Entwicklung an. Aulerdem diskutiere ich kurz die Verwendung einer PAULI-

VILLARS—Regularisierung.

Abweichend von einer fritheren Vereinbarung wird jetzt sowohl in der Hoch—
als auch in der Tieftemperaturphase eine renormierte Kopplung tiber den Wert der
4-Punkt—Vertexfunktion definiert. Die zugehérigen in D = 3 bzw. D = 4 dimen-
sionslosen Kopplungen bezeichne ich im folgenden mit ugi bzw. g](;i, wahrend ich
fiir die durch den Vakuumerwartungswert des Feldes definierten Kopplungen die
Symbole ur- bzw. gg- beibehalten.

Alle Rechnungen sind in 1. Stérungsordnung ausgefithrt. (Im Fall der gebroche-

nen Phase bestétigen sich dabei einige Resultate aus [MUN89, MUN90].)

8.1 Dreidimensionale Rechnungen

In Analogie zu (4.19¢) lautet die Renormierungsbedingung fiir die iiber die 4-Punkt—
Vertexfunktion definierte renormierte Kopplung der Tieftemperaturphase:

(0} e ) = o = g 1)

Das Ziel dieses Abschnitts ist die Bestimmung des Amplitudenverhéltnisses der
Korrelationsldnge iiber die physikalische Masse; dazu ist diese zuvor als Funktion
der nackten Masse zu berechnen.

8.1.1 Renormierte Kopplungen der gebrochenen Phase

In Kapitel 4 ist die renormierte Kopplung der Tieftemperaturphase durch den Vaku-
umerwartungswert des Feldes definiert worden. Das 1-Loop—Resultat ist nach (5.14)

104
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durch

gr= = go {1 - 32% uo- (14 0(¢)) + O(Ug—)} = o (1 + O(Uo—))a (8.2a)

bzw. nach (5.16) durch

o = Up- {1 b (140(0) + 0(@_)} — up- (14 Oup-))  (3.2b)

1287
gegeben. Es soll jetzt wie in der symmetrischen Phase eine renormierte Kopplung
iiber die 4-Punkt—Vertexfunktion bei verschwindenden &ufleren Impulsen eingefiihrt
werden. Diese besitzt in 1-Loop—Ordnung zuséatzlich zur symmetrischen Phase die
folgenden Beitrage (mit duleren Impulsen k;, 7 = 1,...,4, und 1 := ky + k»):

e Graph gé“)(ki) (6 Permutationen mit Symmetriefaktor 1):

kq ks
q
X
qg—Fk1—k2
ko k4

(2m)P
3 2 2/ qu 1
= —am _g 9
0 2m)P (¢ + mi)l(q — 1)+ mi][(q — ks)? + mi_]
und damit
dPq 1
G (k; = 0) = —3m3—93/ P T —3me-goJ3(D).

e Graph gé“)(ki) (3 Permutationen mit Symmetriefaktor 1):

ks ka
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d.h. fiir beliebiges D ist

dPq 1
2m)P (¢ + mg-)*

G{" (ki = 0) = 9mi-gi, | - = 9mb- gt Ju(D).

In D = 3 sind alle beitragenden Integrale endlich, und ich entnehme Abschnitt 3.1:

3
LG (ki = 0) = —go+ 5 11(0:3) +6 (=3mi-g5.12(3)) + 3 (9mi-g3Ja(3)) + Olg5)
9 27
_ 2 2 2 O
Pt Tormas %0 " Tomme- P T Gammg. P T (%)
. 3 2 3
90+ Gamme— 90+ Oloo)
Mit (8.1) folgt
5
gl(%l = 9o { ~ oam o + O(ug_)} (1 + O(ug )) (8.3a)
und nach der Invertierung ist
13
_ @) uld @2y _ (@) (4)
wo- = ul?) {1 + =+ 0((u) )} — D (1+00)).  (8.3b)

Die beide renormierten Kopplungen héngen iiber die Beziehung

G- {1 + 6% wune (14 0()) + 0(@_)} —up- (14 O(up-))  (8.4)

zusammen und sind in 1. Ordnung gleich.

8.1.2 Physikalische Masse

In Abschnitt 1.2 haben wir die Korrelationslange sowohl {iber das 2. Moment als auch
iiber das Abfallverhalten der verbundenen 2-Punkt-Funktion GZ%(z) im Ortsraum
definiert. In der Mean—Field-Approximation (Abschnitt 1.5) hat sich gezeigt, daf}
sie im Impulsraum als Inverses der Polstelle des nackten Propagators gegeben ist.
Neben ihrer Definition (4.7) als inverse renormierte Masse kénnen wir also auch
nach dem Abfallverhalten der renormierten 2-Punkt—Funktion fragen, welches im
Impulsraum durch die Polstelle des renormierten vollen Propagators bzw. durch die
Nullstelle der renormierten 2-Punkt—Vertexfunktion Fg’o)(p) bestimmt ist.
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Die zugehorige Masse bezeichnet man (nach [LW87a, MMO93]) als die physika-
lische Masse myy,, die durch die Gleichung

r%p)=0, p=(imum,0,0) (8.5)

bestimmt ist. Sie ist ebenfalls perturbativ als Potenzreihe in der nackten Kopplung
berechenbar und von der renormierten Masse verschieden. Wir ordnen der physika-
lischen Masse eine Korrelationslénge £ zu, die durch

f= 1 (8.6)

Mpp
gegeben ist. Ich berechne jetzt das zugehorige universelle Amplitudenverhdltnis mit
der Methode aus 6.1 in 1. Stérungsordnung.

Symmetrische Phase

Nach (8.5) ist

1
Fg,o)(p) = Z3F82’0)(p) = M+ — Mo {1 ~ gy Yot (14 0(e)) + O(U(Qﬁ)}
= 0,

und damit

L {1 - 8i wos (14 0(c)) + 0(u3+)} = mi {1+0((i)?)}. (8.7)

s

In 1. Ordnung sind physikalische und renormierte Masse gleich, da in der symme-
trischen Phase kein impulsabhéngiger Graph beitragt. Wir haben also:

mie = m24 {1 + 8% ubtl (14 0(e) + 0(@5;}1)2)} . (3.8)

Phase gebrochener Symmetrie

Hier ist das impulsabhéngige Integral [;(p;3) zu beriicksichtigen. Mit (8.5) ist
M(p) = ZI5(p)
2 1 2 2 15
= M- (1 ~ oin Ug- + O(uo_)) —mg-q 1+ i uo- (1 + O(e))

— /2
3 1 mzh_ ! ,
——uo—/ dx (1— £ :1;(1—:1;)) + O(ug-)
167 0 mg_ 0
L0,

und damit

2

~1/2
1 3 rt me,_
mﬁh‘:mg_{l—l_g_ﬁuo_ [2—5/0 dz (1— mpzh :1;(1—:1;)) —I—O(e)] —I—O(ug_)}.

0—
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Wegen
2 2
Mpp— = Mo- (1 + O(uo_))v
liefert die Integration

/1d:1; !
0 V1—a(l—ux)

1/V/3 . 1

= 2arcsinh | —
~1/\3 (\/5)
= In3, arcsinhaz =1In (:1; + Va4 1)

= arcsinh x

fiir die physikalische Masse
1 3
mi- = mg- {1 + S to- [2 - §1n3 + O(c)] + O(ug_)}
1 13 3
_ 2 I CO R e (4) \2
= mj- {1—|—87T Uy~ [ 3 21n3—|—0(6)] —I—O((uR_) )} (8.9)
Dieselbe Relation besteht auch in der Kopplung ug-, und das Verhéltnis

TR A1 4456 x 107 up- + O(ud) (8.10)
mph—
deutet an, daB mp- und m,,- in 1. Ordnung bereits nahezu iibereinstimmen. Die
Invertierung von (8.9) ergibt:

1 3
mi = m?, {1 -l [2 ~ i3+ 0(6)] 4 0((u§§2)2)} RN TRTY

Bestimmung von f,/f_

Es findet wieder die in Kapitel 6 vorgestellte Methode Verwendung. Ich nenne ((ili;e
4

Hochtemperaturkopplung ugl wieder up+ und die Tieftemperaturkopplungen uy”
und ug-, die ja in 1. Ordnung {ibereinstimmen, einfach upg-.

Nach (8.6) ist die Korrelationslange als die inverse physikalische Masse definiert,
so dal man in den Gleichungen (6.1a)—(6.3b) einfach die renormierten Massen m g+
durch die physikalischen Massen m,,+ ersetzen kann. Allerdings sind dort anstelle
von Fy die Groflen

2
amphi

Gi(uRi) =

- 2
amoi

(8.12)

go

zu verwenden, die nach ihrer Berechnung durch wgs+ auszudriicken sind. Dies fithrt
in Analogie zu Abschnitt 6.1 auf

Man betrachtet jetzt wieder Punktepaare mit

Mgt = M) (8.14)
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und fiithrt in beiden Phasen die gemeinsame Kopplungsvariablen up ein. Dies liefert

(6.8) und (6.9) in der Form

v G_(up-(u
#=(7) te_p 0ol (in)) .15)
f— [ [ G_|_ (UR+ (ﬂR))
und das Amplitudenverhéltnis der Korrelationsldnge lautet dann
G_(up-(u 0
f+ — |9 M (8.16)
f— G_|_ (UR+ (ﬂR))

Die Bestimmung der Kopplung ug in (6.40) und (6.45) zeigt, dafl sie in 1. Ordnung
mit up+ und up- identisch ist:

ip =g (14 O(ups)) = up-(1+ O(up-)). (8.17)
Aufgrund der in beiden Phasen bei festem ¢gq geltenden Beziehung
amz + am2 amz + amQ +

G = oS = P ok 8.18

i(URi) amgi amgi am%i i(URi) am%i ( )

kann das Verhéltnis fi/f_ auch in Abhangigkeit der Funktionen Fy geschrieben
werden:

fv ) F_ (uR—(ﬂR)) ]y l om?,_[Omp-

()|

I- Fy (uns(up)) | L0 /Omis
— [2]]::—;(1%2)]” [867:%__ (UR)]U(l—I—O(u%)). (8.19)

In der zweiten Zeile ist angedeutet, dafl in 1. Ordnung gemaf (8.17) alle renormierten
Kopplungen sowie die physikalische und die renormierte Masse der symmetrischen

Phase gleich sind.
Die Differentiation der Gleichungen (8.7) und (8.9) ergibt (nach Durchfithrung

des Grenzwertes € — 0) mit aig = ﬁ 8870 bei festem go
G (i) = 2ol 1= g + Oy
UR) = = — —— Up+ U
" ang, Up+ =tp+ (UR) 167 ’ o
L -
und
am?, _ 1 3
G_(up) = =2 = 14— _<2——13) O(u2-
(UR) amg— Up—=up—(UR) - 167 o 2 ! - (UO )

- 1 3 ,
= 1+ ——up (2 -3 1n3) +O(a%), (8:21)
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wobei ich zunéchst die nackten durch die renormierten Kopplungen ersetzt und
anschliefend (8.17) verwendet habe. In 1. Ordnung kann man daher ug sowohl den
Hochtemperaturfixpunkt uj,; als auch den Tieftemperaturfixpunkt w7, zuschreiben.
Daraus ergibt sich

G_ 1
——(ur) =1+

) 3 )
- X (3 ~Shn 3) +O(ad), (8.22)

—u
167
und man findet durch Entwickeln von (8.16) fiir das Amplitudenverhéltnis fi/f-
das Ergebnis

I+ , (3—2In3)r _ _

Wenn man noch die Gestalt der Funktion v = vy(upgs) aus (6.29) und (6.39) in 1.
Ordnung beriicksichtigt, erhédlt man wieder Potenzreihen, die sich entweder auf den
Hoch— oder den Tieftemperaturfixpunkt beziehen. In der symmetrischen Phase mit
Up = Ugy 1st

1 1
vi(up ):§+64—7TUR+O( R);

so dafl aus (8.23)

;t (ir) = V2 {1 * (3; 6i 3+ G 1n2) Ur O(UR)} (8.24)

resultiert. In der gebrochenen Phase mit u}; = uj,- hat man

und (8.23) liefert

jij( R) = \/5{1+(3;T 65; 1n3—ﬁ1n2) uR+O(u%)}- (8.25)

Eine numerische Abschatzung der 1-Loop—Korrekturen gewinnen wir durch Ein-
setzen des kritischen Exponenten v und der Fixpunkte u%+ in die polynomiale Ap-
proximation der Reihen (8.23), (8.24) und (8.25). Die entsprechenden Resultate sind
in Tabelle 8.1 denjenigen aus Kapitel 6 (Gleichungen (6.43) bzw. (6.48), (6.44) und
(6.49)) gegeniibergestellt. Wie sich in (8.10) bereits abgezeichnet hat, ist das aus der
physikalische Masse hervorgehende Verhéltnis f1/f_ in 1. Ordnung nur geringfiigig
kleiner als das, welches {iber die renormierte Masse definiert ist. Zu héherern Ord-
nungen sind demnach fast verschwindenede Abweichungen zu erwarten.
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Vorgaben Physikalische Masse || Renormierte Masse
Gleichung ‘ felf- Gleichung ‘ flf-

(8.23) | 2.1625 (6.43) | 2.1730

s, = 23.73(8)

v = 0.627(9)
s, = 14.73(14)
v = 0.627(9) (8.23) 1.9281 (6.48) | 1.9346

iy, =23.73(8) || (8.24) | L.9813 (6.44) | 1.9889
uy, = 14.73(14) | (8.25) | 1.6764 (6.49] | 1.6812

Tab. 8.1: Amplitudenverhdlinis fy/f— in 1. Ordnung. Gegeniiberstellung
von Werten, die auf die physikalische und die renormierte Masse zuriick-

gehen.

8.1.3 Pauri—ViLLARS—Regularisierung

Wir haben in Kapitel 3 bemerkt, dafl die lineare Divergenz des 1-Loop—Integrals
Ji in drei Dimensionen durch eine dimensionelle Regularisierung (mit D = 3 — ¢)
nicht als Pol in € isoliert werden kann. Die dortige Rechnung lieferte vielmehr nur
den endlichen Anteil dieses Integrals, so daf} sich strenggenommen nicht beurteilen
1aBt, ob diese Divergenz die Endresultate beeinflult. Dies will ich jetzt am Beispiel
der dreidimensionalen 1-Loop—Rechnung nachholen, indem ich die PAULI-VILLARS—
Regularisierung aus Abschnitt 3.2 heranziehe!.

Wenn man die Stérungsrechnung in 1. Ordnung aus Kapitel 5 mit dem PAULI-
VILLARS-regularisierten Integral Ji(A;3) aus (3.35) wiederholt, so findet man fiir
die renormierten Massen in der symmetrischen und der gebrochenen Phase

1 A
Mpy = May {1 — (8_7'[' — 87Tm0+) Ugt + O(ugJ,)} (8.26a)
und
A 3
2 2 _ _ ~ 2
Mp- = Mg {1 (47Tm0— —647'[') Ug— + O(uo_)} ) (8.26b)

Fiir die nackten und renormierten Kopplungen beider Phasen gilt einfach
Upt = Ugt(URE) = UR: (1 + O(UR:E)), (8.27)

so dafl wir fiir endliches A die in (6.10) vorkommenden Grolen Fy als Funktionen

von up+ berechnen kénnen. Es ergibt sich mit 822 = ﬁ a?no
0
am? 1
F_|_(UR+) = 67]2%-'- = {1——UO++O(U3+)}
Mot Tugt =ug+ (up+) 167 o+ =to+ (Up+)

!Diese Betrachtung erhebt allerdings nicht den Anspruch auf Vollstindigkeit, da die mogli-
chen Auswirkungen auf die 2-Loop—Rechnung, zu der die Divergenz des Integrals J; multiplikativ
beitragt, unberiicksichtigt bleiben.
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1
= 1 — —up+ + O(u?%) (8.28a)
167
und
om?%_ 3
F (up-) = B = {1—|——u——|—0u2_}
( R ) amg_ uo—:uo—(uR—) 1287T 0 ( 0 ) uO_:uO_(uR_)
3 2
= 1+ 98 up- + O(up-) (8.28b)

sowie schliellich in der gemeinsamen Koplung up

iy =14 M
[ DT

up + O(uy). (8.29)

Diese Gleichungen sind durch die Differentiation von A unabhingig geworden, und
der Limes A — oo existiert. Die Renormierungsgruppenfunktionen vy (ug+), die
nach (6.10) ebenfalls in die Berechnung von f;/f- eingehen und aufgrund ihrer
Definition (4.32) aus den in D = 3 endlichen Renormierungskonstanten Zs+ und
Zy+ hervorgehen, sind a priori divergenzfrei, so dafl die weiteren Rechnungen wie in
Kapitel 6 verlaufen.

Die Gleichungen, die man dann fiir das Amplitudenverhéltnis der Korrelations-
lange vorfindet, stimmen mit den Ergebnissen (6.44) und (6.49) iiberein, und es
ist damit zumindest in 1. Ordnung der Beweis erbracht, dafl die dreidimensionalen
Rechnungen von der Divergenz des Integrals .J; unberiihrt bleiben.

8.2 Vergleich mit der e—Entwicklung

In der Einleitung ist bereits das wesentliche Prinzip dieser Entwicklung skizziert
worden:

Ausgehend von einer renormierten (masselosen) Theorie kann nach Durchfithrung
einer Massenrenormierung mit Methoden der Renormierungsgruppe die massive
Theorie in Hoch— und Tieftemperaturphase rekonstruiert werden, wobei in der da-
mit verbundenen Stérungsrechnung nur die Diagramme der symmetrischen Pha-
se beriicksichtigt zu werden brauchen. Durch die Berechnung der zugehérigen Im-
pulsintegrale in der (nicht notwendig ganzzahligen) Dimension D = 4 — ¢ gelangt
man zu Renormierungskonstanten und Renormierungsgruppenfunktionen, die von
der dimensionslosen renormierten Kopplung und dem Parameter ¢ abhéngig sind.
Dies entspricht einer Entwicklung um die Dimension D = 4, unterhalb derer man
nicht zu vernachlédssigende Korrekturen zum Mean—Field—Verhalten konstatiert. Der
Fixpunkt der renormierten Kopplung, der mit der nichttrivialen Nullstelle der 5—
Funktion identisch ist, wird dann eine Funktion von ¢ allein, so daf} sich die kritischen
universellen Gréflen als Potenzreihen in € ergeben. Im Rahmen dieser Rechnungen
hat sich schlieBlich gezeigt, dafl im Fall ¢ = 1 (D = 3) eine gute numerische Uber-
einstimmung mit auf andere Methoden zurtickgehenden Werten besteht.
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Fiir das Amplitudenverhéltnis der Korrelationslange, die durch die inverse re-

normierte Masse definiert ist, ist nach [BGZJ74, BGZJ76] das Resultat

Jv _
A

bekannt, welches in 1. Ordnung mit der e-Entwicklung des Exponenten v

5 1 295
Wl + — — 2(— 2[)} 3 I ~—234 i
{ +24e+432e 24+ + O(€?), 3439 (8.30)

11 21 .
V—§+E6+@6 ‘|‘O(6) (831)

n
7= V2314 op F g m2) e+ 0()p & 17905 (8.32)

iibergeht. Die durch das Inverse der physikalischen Masse definierte Korrelati-
onslange besitzt nach [BGZJ76] in der e-Entwicklung das Amplitudenverhaltnis

£ ol
I 1

. L__ L 2 5;1
- \/5{1+(4\/§ Tt 1n2)e+0(e )} 17837, (8.33)

Ich benutze jetzt die renormierte massive Theorie, um diese Ergebnisse zu veri-
fizieren.

8.2.1 Renormierte Groflen in D =4 — ¢

Es sind zunéachst alle Rechnungen des Kapitels 5 in der Dimension D = 4 — € unter
Beschrankung auf die 1. Stérungsordnung zu wiederholen. Die dazu beitragenden,
in D = 4 divergenten Impulsintegrale J; und I} habe ich zu diesem Zweck in Ab-
schnitt 3.1 bereits berechnet, so dafi die Resultate (3.6), (3.16) und (3.17) sofort

iibernommen werden konnen.

Da die nackte Kopplung gy die Massendimension 4 — D) besitzt, ist allerdings
bei der Definition der renormierten Kopplung zu beachten, dafl im Renormierungs-
schema aus Abschnitt 4.2 die Kopplungen g](;l und gg- in D = 4 dimensionslo-
se renormierte Kopplungen darstellen. Will man also dieses Renormierungsschema
im Einklang mit der dimensionellen Regularisierung beibehalten, so sind im Fall
D = 4 — € < 4 diejenigen Gleichungen, die die renormierten Kopplungen fixieren,
durch Einfithrung einer Massenskala p zu modifizieren. Diese wird sich zusammen
mit den Divergenzen der Theorie bei der Berechnung physikalischer Grofien forthe-
ben.

In der symmetrischen Phase ersetzt man (4.19¢) durch die Renormierungsbe-
dingung

({0}, gi) = —uglyl, (8:34)
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die implizit die Kopplung g](;l definiert. In der Phase gebrochener Symmetrie fithre

ich durch

FEO{0}mp-, gh)) = —pgly? (8.35)

(4)

die renormierte Kopplung ¢’ ein. Die renormierte Kopplung gp-, die durch den
Vakuumerwartungswert des Feldes bestimmt ist, gehorcht der Renormierungsbedin-

gung

3 €
% Fg’o)((); Mmp-,Jr-) = —H gr-. (8.36)

Symmetrische Phase

Die beitragenden 1-Loop—-Diagramme ergeben die folgenden Vertexfunktionen:

) = gk (- [ o B + 0l

_ n(2,0) 2 Yo l l m(2)+ 7
J (20 2
——— 17 (p) =1+ 0(g)

6p2 0 p2=0 ’

3
= —go+ 593 [(0;4 —¢) + O(QS)

3 9 2
_ ﬂm+—90(——m(m“)—v+0@)+owm

2 1672 Am

wobel p,kq,...,ky und l := ky + ky wieder die &uBleren Impulse bezeichnen. Man
findet also

-1
0
Ty = (——2 5% (p) ) =1+ 0(g?)
p?=0
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und daraus die renormierten Grofien

m?% = —Z3Fé270)(0)
11, (m? 1
— 2 1 o 9o - _1 ot . 1 : O O 2
m0+{ T6r2 |20\ ar ) T2 T PO +0W)
(8.37)
und
gl =~k = 0)
- Jo L1 m(2)+ 7 2
= “g0d 1 — | _ 1
o go{ 167T23L 2n(47'r 5 T Ol +0(%)
= 1 g0(14 O(g0)). (8.38)

Mit Hilfe der (in beiden Phasen giiltigen) Entwicklungen

2 2
pf =M =14 elnp+ %lnz/,c +0(c%), In (m_g) =1In (1 + O(gR)) = O(gr)

mp

l16se ich diese Gleichungen zugunsten der nackten Parameter auf; in 1. Ordnung
ergibt sich:

Wi 2 1
mg+:m§+{1+ It [Z—§ln(mR+)—%—l—§—l—O(c)] +0((g§§+>)2)}(8.39)

1672 4
und
— udM ) ggl 3 1 11 M+ gl O O( (4) 2)
go = W9 It a3 |73 ) 2 +0(e) | +O((gp+)
= gl (14 0(gh])). (8.40)

Phase gebrochener Symmetrie

In der gebrochenen Phase hat die 2-Punkt—Funktion die folgenden Beitrége:

—I3%p) = p*tmd - % (—go/ % A(’ﬁ))

1 -~ 2 dPk
-5 A(0) ( — 390m0—) / (2m)D A(k)
~5 (=) [ G ARIAGK =)+ Olat)

<
) 2 gom2 L(pid— o) + O(ed)

2
2 2
2 2 me- |11 Mo- g
. - S 1
Pt 90167T2l6 2n(47r) 2
2

3 st P
—5/0 d:z;ln(l—l—m2

0—

= pPH+mi- —goh(4—e¢

d1=a)) 000 | + 0t
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7 g 1 1 mg— v

0
_WF(Z 0)( )

20 1 1672

Die 4-Punkt—Vertexfunktion besitzt in 1-Loop—Ordnung zuséatzlich zur symmetri-
schen Phase die im vorigen Abschnitt angefithrten Diagramme. Da die zugehorigen
Integrale auch in D = 4 existieren, erhalt man aus ihren endlichen Beitragen gemaf

Abschnitt 3.1:

3
POk =0) = ﬂm+§h@A—@+GCﬁm@%k“D

+3 (9mg-g5J4(4)) + O(g}
) -5+ 000)

B 3 95 (2
T 2(6 (
7_[_2 gO —I_ 2 gO O( )
9o 11 me_ vy 3 5
= —goql— - — =1 - === :
90{ ]6#23[6 211(4w y ~3 H09] +0%)
Fiir die Berechnung der renormierten Kopplung gr- bendtigt man die 1-Punkt—
Funktion des Feldes ¢g-, die sich im Impulsraum zu

dPk 1
(2m)P Ak) = 2 mg-
1

93/2 1 1 m(z)_ v 3/2
= VBmo- (-5 —5+5 0] +0(")

@

1 ~
G0 _ -5 3gomo- A(o)/ J (4—¢€)4 O(yg 3/2)

C

ergibt. Mit

-1
L go 2
—1—- 0
p2_0) 116m T OW0)

berechne ich wie in der symmetrischen Phase die renormierten Gréflen zu:

mh- = —Z:15"(0)
11 m2_ 0
_ 2 ) 9o | -\ _7_ 2 2
0 { 6m2 | 20\ 4 ) T2 T 1 PO+ 0
(8.41)
g = 2208 (ks = 0)

= 1 g (1 + O(go)). (8.42a)
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Nach (8.36) findet man auflerdem:

_ o 11 ma_ v 1 9
.= ugedl — S | _ Tz
IR a 90{ 16#23[6 2n(47r ;T 10| +0w)
= 1 g0 (1+ O(g0)). (8.42b)
Diese Kopplungen héngen iiber die Beziehung
(4) _ J gr- 2 )
g = gn (14525 1 0(gh-)) = g (1 + Olgn-)). (3.43)

die keine Divergenz mehr enthélt, zusammen und sind in 1. Ordnung gleich. (Es
werden deshalb alle Gleichungen nur in der Kopplung gr- angegeben.) Wie vorher
invertiert man zu

2 _ 2 gr- [L_ 1. (mp\ 7 3 2
Mo- = M- {1 + 62 l i In (47TM2) 5~ 1 +0(e) | +Olgp-) ¢ (8.44)
und
(4) 2
e @ Ip- o |1 L fmip-) v 4 (4) 12
v MgR_{1+167T23 L p (zwﬂ) 3~ 50| +0((6)")
= w2 (1+0(R))), (8.45a)
bzw.
_ gr— o |1 1, fmp ) v 1 2
wo= o {1+ 2 [ (2 ) - 2 000 + Ot
= pgr-(1+ O(gn-)). (8.45b)

Bestimmung von f,/f_

Um das Amplitudenverhaltnis f,/f_ in der ¢-Entwicklung mit der Methode aus
Abschnitt 6.1 zu bestimmen, habe ich zunéchst die Groflen Fy als Ableitungen des
renormierten nach dem nackten Massenquadrat zu bestimmen und in einer gemein-
samen renormierten Kopplung auszudriicken. Die anschlieflend zu verwendenden e-
Entwicklungen der S—Funktion und des Exponenten v werden hier nicht hergeleitet,
sondern der Literatur entnommen.

Aus den Gleichungen (3.9a), (3.9b) und (3.17) folgt zunéchst:

0 1 (2 md
8—7’)1(2){]1(4_6) == —[1(0,4—6) == _167'['2 (Z—lﬂ (E) —’)/—|—O(6))
0 .0 1
— Li(p;4 —¢) =lim — [1(0;4 —¢) = —2J3(4) = 5

amo p2:O e—0 amo 167T2m0
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0 0
am% (apz [1(p74 )

1
p2:0) - 967T2m61 '

Damit erhdlt man fir T > 7.

am? 0
8m§: T Om, (Z?’+ Fé&O)(O))’ Zs =1+ O(gp)
0 0
0
= (b + L - g+ o)
ot
1 2 m2
= 1- 3 12;2 (— —1In (4—?:) — v+ O(c)) + O(g3)

und entsprechend fiir 7' < T, mit der Produktregel

am%_ 0 (2,0) 0 (2,0) (2,0) 8
Tt = (25-152(0)) = Zs- amg_(_FO‘ (0)) — r%(0)

om

0 3
= Js _ 4—¢€)— = 2 11(0;4 —
3 8m3_ (mo — go Ji( €) 2gomo 1 €) + O( go )
0 3 0
_Féz—’O)(O) amz (1 —I' 5907”(2)— apz [ (p74 ) 02 0)
0— =

1 g 2 m2_ 5
1_516;2 (Z_ln(zlfr)_7_§+O(6))+O(93)'

Mit (8.39) und (8.40) bzw. (8.44) und (8.45b) ersetzt man die nackten durch die

renormierten Gréflen, und nach Entwickeln von u® resultieren

() /4
Filght) =1~ ?;q;; (— —In (4;;*) — 54 O(e )) +0((ghl)?),  (8.46)

bzw.

Pl =1 - 25 (2o (2) - 4 000 + Olgf). (s

3272 Amp

Die Giiltigkeit der Bestimmungsgleichung (6.10) setzt nun einerseits die Gleich-
heit

mp+ = M-

und andererseits die Existenz einer beiden Phasen gemeinsamen dimensionslosen
renormierten Kopplung gr voraus, in der das Verhiltnis F_/F, entwickelt werden
kann. Da die renormierten Kopplungen beider Phasen aber in 1. Ordnung iiberein-
stimmen, eriibrigt sich in dieser Rechnung die Einfithrung einer neuen Kopplung.
Man verwendet deshalb in (8.46) und (8.47) die von nun an mit gr bezeichnete
Hochtemperaturkopplung g](;l, deren infrarotstabiler Fixpunkt in der e-Entwicklung
berechenbar ist. Bei der Division dieser Gleichungen fallen dann insbesondere der
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Pol in € und der Massenparameter p heraus, und ich erhalte das im Limes ¢ — 0
endliche Resultat

F_
ry

(9r) =1+ gr + O(g3). (8.48)

6472

Mit der bekannten e-Entwicklung der f—Funktion

i) = —ein+ 5 (14 e+ 5) dh+ 0GR dn o= 28 (59
und ihrer nichtverschwindenden Nullstelle
Gi= et O, (8.50)
erhalte ich
5—;(6) =1+ %6+O(62). (8.51)

Mit (6.10) und (8.31) bestétigt sich (8.30) durch eine Entwicklung bis zur 1. Ordnung

in €

L= |2@] —x (145040 (852

Nach den Ausfithrungen aus Abschnitt 4.3 befindet sich die kritische Theorie
fir D = 4 im gaufischen Fixpunkt und kann demzufolge dort als frei bzw. nicht-
wechselwirkend angesehen werden. Dies erlaubt eine fiir die Reproduktion der e-
Entwicklung (als Entwicklung um D = 4) geeignete Vereinfachung, da dann die
kritische nackte Masse mg. den Wert

m2, =0 (8.53)

annimmt, so daf} die Gleichungen (6.1a) und (6.1b) auf Ebene von (2.36) und (2.41)
jetzt

1 —V
mps o~ [ty e = milysg, >0 (8.54a)
und
1 . )
—mR_ = _ ~ f_t_ R t_ — _m0|T<Tc > 0 (854b)

lauten, da ¢4 und t_ positiv sind. Die Division dieser Gleichungen ergibt

fo _ & ma-
e | (8.55)
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Nach Finfithrung der Felder ¢g+ und ¢y-, mit denen in der jeweiligen Phase Stérungs-
theorie betrieben wird, ist nach (2.44) das Verhaltnis der zugehorigen nackten Mas-
sen

2
ma—

2
Mot

= 2. (8.56)

Diese sind in (8.39) und (8.44) durch renormierte Groflen ausgedriickt. In einer
gemeinsamen renormierten Kopplung gg, fiir die ich in 1. Ordnung wieder diejenige
der Hochtemperaturphase wéhle, hat man

2 2 gr 1 1 m?% v o1 _9
e T {1 T 1o lZ mah (4mﬂ —y T30 + 0
g 1 1 m%_ v 3
2_ — 2 _ 1 gR - _1 R Y )
mO mR { —I_ 167'[-2 € 2 47T/,L2 2 4 —I_ 0(6) —I_ O(gR) 9

und nach Einsetzen in (8.56) findet sich zuné&chst

2 et 2
Myt l _ 9r § l My 5
= {1 = [4 + 5 In (m2 +O(e) | +O0(gz) ¢ -

mp- 2 Tt

Diese Gleichung zeigt, dafl anstelle von mg+ = mpg- vielmehr
Mp- = 2M'ny (1 + O(QR)) (8.57)
gilt. Die Entwicklung des Logarithmus liefert dann

2 —
e =o {1143 | + ot}
1 = 4—|—21n2—|—0(6) + O(g5) ¢ »

=
m,— 2

so daB mit (8.55)

P a1 [ 24 Sz 0t0)] + Ok (8.58)

folgt. Setzt man wieder den Fixpunkt (8.50) ein, so ergibt sich in Ubereinstimmung

mit (8.32):

%:\/5{1+<%+%1H2)6+0(62)}- (8.59)

8.2.2 Physikalische Masse
Die physikalische Masse ist durch die Bedingung
I (p) =0, p=(imu,0,0,0) (8.60)

bestimmt. Man betrachte wieder die durch die inverse physikalische Masse definierte
Korrelationslange (8.6), deren Amplitudenverhéltnis in der e-Entwicklung (8.33) ich
jetzt herleite.
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Dazu greife ich zunéchst die fiir die dreidimensionale Rechnung verwendete Me-
thode aus Abschnitt 8.1.2 auf, die im wesentlichen auf die Uberlegungen des Ab-
schnitts 6.1 zurlickgeht. Anschlieflend wird der in 8.2.1 eingeschlagenen Weg be-
schritten, nach dem sich aufgrund der verschwindenden, kritischen nackten Masse
das gesuchte Verhéltnis einfach aus den Beziehungen

Jr _ e o

- =2 (8.61)

’ 2
J- Mpp+ Mo+

bestimmen 1at. Ich berechne deshalb die physikalische Masse in beiden Phasen
zunachst bis zur 1. Ordnung in Abhéngigkeit der nackten Kopplung, um nach In-
vertierung dieser Relationen die nackte Masse als Funktion der physikalischen Masse
und der renormierten Kopplung zu erhalten.

Symmetrische Phase

Die 1-Loop—Korrektur zur 2-Punkt—Funktion ist impulsunabhéngig und mit (8.60)
ergibt sich aus Abschnitt 8.2.1

r29p) = 2z p)

g 11 m2 1

2 o 2 Yo l . l m(2J+ 7 l 2
mPh"‘ = Mo+ {1 167'['2 l 9 In ( A ) 9 + 9 + 0(6) + 0(90)
= mp {14+ 0((g))?)} (8.62)

ergibt. In der symmetrischen Phase sind renormierte und physikalische Masse dem-
nach in 1. Ordnung gleich.

Phase gebrochener Symmetrie

Hier ist das impulsabhéngige Integral [1(p;4 — €) zu beriicksichtigen, so dafl man
mit (8.60)

r29p) = 2z p)

1 9o Jo 1 1 m2_
. S 02)— 2 Jp o 11 Ly (Mo
Mph ( 7 16,2 TOWw) ) —mo 1672 ¢ 2 "\ 4
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und daraus

> _ I R R N
ph™ mo_{l 16#2[6 21n( 7T) !
3 1 2,
—— | deIlnl|l-— p2 z(l—2)] +0(e) | +O(g;)
0 me_

erhélt. Aufgrund von

me,- = mg- (1 + O(go))

im Integranden und der partiellen Integration

/Old:zjln(l—x(l—x)) = —/ %

_ —2/ dve+ 2 /d = 24
T xr r——— _x \/g

findet man mit (8.44) und (8.45a) schlielich
g 1 1 m2_ v V3
(4)
gl (11 /3

Wegen (8.45b) gilt dieselbe Gleichung auch in der renormierten Kopplung gg-.

Bestimmung von f,/f_

Im Hinblick auf die Bestimmungsgleichung (8.16) berechne ich zuerst die Funktionen
G+ in jeder Phase als partielle Ableitungen des physikalischen nach dem nackten
Massenquadrat. Als Entwicklungsvariable wird gleich die renormierte Kopplung gr
verwendet, die in 1. Ordnung mit den renormierten Kopplungen der Hoch— und
Tieftemperaturphase iibereinstimmt, und als Massenparameter in den In—Termen
sind jetzt die physikalischen Massen m,;+ zu benutzen, die in 0. Ordnung stets mit
den renormierten Massen mp+ iibereinstimmen. Da die renormierte und die nackte
Masse der symmetrischen Phase geméaf (8.62) in 1. Ordnung gleich sind, ist

L gr (2 (mpe) Ly
Gutgn) = 1= 2 (2w (B8] 5 v 00) +ouR). (se
In der gebrochenen Phase haben wir nach (8.63) in der Kopplung gr

om?, 2 g
Mone_ Omp- {1— IE (E—EW)JFO(Q%)}

amg_ amg_ 1672 \ 4 2

= F_(gr) {1 - {Ziz (% - ?ﬂ + O(g%)} :
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und mit (8.47) ist dann
2

G_(gr)=1-— gr (%—ln (mph‘)—7+3—\/§w+0(e))+0(9§). (8.65)

32m? A p?
Die Division dieser Gleichungen ergibt mit der Bedingung

Mppt = Mpp—

die fiir ¢ = 0 endliche Relation

G_
) B 2 ‘
o o) o Ih_(3—3r) +O(72) (8.66)
Nach Einsetzen des Fixpunktes (8.50) hat man
G_ 1
Tl =1—[-— .
R (¢) (2 2\/_) + O(é?), (8.67)

und (8.31) fithrt mit (8.16) auf

;—f( ) = [ g; (e)] (1+0(2) =2 {1 + i (% - 1)} LO(P),  (8.68)
was mit (8.33) identisch ist.

Dieses Resultat verifiziert man auch unter der Vorraussetzung (8.53), indem man
die Gleichungen (8.62) und (8.63) in Abhangigkeit der renormierten Kopplungen
nach den nackten Massen aufgeldst. In 1. Ordnung kann dabei in beiden Phasen die
Kopplung gr verwendet werden, und das Frgebnis ist

gr [L_ 1 (mye) 7 1 :
1 1. [(m?_ 5 V3
2 | ph EERLANTY, B AR
o { 167r [ 2" (zm,ﬂ) 2 TeT 3 w+0(e)] +O(9R>}
(8.69b)
Fiir die physikalischen Massen beider Phasen gilt wieder
so daff man mit (8.61)
2 _
mph"‘ 1 9Rr \/g 3 1 _2
—— =—¢1 - — 71 —=—+4+—=In2
m?, 2{ 1672 [ 7 ™y tgh2t 0] +0lgr)
und
f-l— gR \/g 3 1 _2
— =V2<1 — 71 ——+4+—In2 71
TV g | T T T2+ 0| +0(R) (8.71)
erschliefft. Durch Einsetzen des Fixpunktes (8.50) ergibt sich
fi 1 :
= =2¢1 -4+ —1In2 @) 8.72

was nach Entwickeln des Faktors 2 tatsdchlich mit (8.33) iibereinstimmt.



Zusammenfassung

In dieser Arbeit ist das Ziel verfolgt worden, die universellen Amplitudenverhaltnisse
der Korrelationslange fy/f- und der Suszeptibilitat C'y /C_ fiir die Universalitéts-
klasse des dreidimensionalen, einkomponentigen ISING-Modells mit Methoden der
Feldtheorie zu bestimmen. Die zugehérigen Rechnungen sind auf Grundlage einer
storungstheoretischen Behandlung der ¢},_,—Theorie in symmetrischer und gebro-
chener Phase bis einschlielich zur 2. Ordnung durchgefithrt worden. Der wesentliche
Unterschied zu allen fritheren Verdffentlichungen in dieser Richtung ist deshalb dar-
in zu sehen, dafl die feldtheoretischen Gréflen beider Phasen in die untersuchten
Verhéltnisse eingehen, die sich selbst aus Anteilen der Hoch— und der Tieftempera-
turphase zusammensetzen. Da diese allerdings a priori durch unterschiedliche renor-
mierte Kopplungen parametrisiert sind, setzt die Anwendung der Bestimmungsglei-
chungen (6.10) und (7.6) die Einfithrung einer beiden Phasen gemeinsamen Kopp-
lung voraus, wie sie zu diesem Zweck geschehen ist.

Die numerische Auswertung der resultierenden Stérungsreihen hat insbesondere
den Schluff nahegelegt, dafl die tiber den Vakuumerwartungswert des Feldes defi-
nierte Tieftemperaturkopplung ug- die zuverlassigeren Resultate liefert. Ich nenne
in diesem Zusammenhang stellvertretend noch einmal die Ergebnisse (6.55), d.h.

v _

=200
und (7.21):

Cy

o= 166(36)|

Zumindest im Falle des Verhaltnisses fi/f_ besteht also durchaus die Moglichkeit,
daf} sein exakter Wert oberhalb der meisten, bislang genannten Literaturwerte liegt.

Die durch die 4-Punkt—Vertexfunktion erklarte renormierte Kopplung in der
Tieftemperaturphase habe ich hier nicht untersucht, da mir ein verldfilicher Wert
ihres nichttrivialen Fixpunktes aus der Literatur nicht bekannt ist und somit eine
sinnvolle Numerik ausgeschlossen ist.

Des weiteren hat sich die im Rahmen der vorliegenden Arbeit entwickelte Be-
stimmungsmethode fiir die gesuchten Amplitudenverhiltnisse nachhaltig dadurch
gerechtfertigt, dal sie — wie am Beispiel des Verhéltnisses fy/f- in 1. Ordnung
demonstriert — die bekannten Resultate der e-Entwicklung reproduziert.

124
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Abschlielend sei darauf hingewiesen, dafl nach der Berechnung von weiteren
Ordnungen sehr wahrscheinlich mit einer Verbesserung der Ergebnisse zu rechnen
ist. Das entscheidende Argument hierfiir besteht darin, dafy die Kenntnis moglichst
vieler Glieder der (divergenten) Storungsreihen die schon erwahnte Anwendung einer
BOREL-Summation erlaubt, die die Genauigkeit einer numerischen Analyse dieser
Reihen erheblich steigern kann.



Anhang A

Differentiation nach aufleren
Impulsen

Da das in Kapitel 4 vereinbarte Renormierungsschema unter anderem die Berech-
nung von nach dem dufleren Impulsquadrat differenzierten Integralen (bei verschwin-
denden duBeren Impulsen) beinhaltet, demonstriere ich hier die Ausfithrung dieser
Differentiationen. Es bieten sich dafiir im wesentlichen zwei Methoden an, so daf
damit gleichzeitig die Uberpriifung einiger Resultate méglich wird.

Ich behalte die in Kapitel 3 eingefithrte Konvention bei, den Vektorcharakter
der Impulse durch Fettdruck hervorzuheben.

A.1 Kovariante Rechnung

Die Verwendung der Identitat fiir euklidische Impulse

o _ 110
8p2 2D apuapu 2D v=1 ap?z
a 1 62 1 3 62

W~ Gondp oo U7 .
besitzt den Vorteil, dafl man in massiven Impulsintegralen die dufleren Impulse nach
der Differentiation problemlos auf null setzen kann. Einige der dabei entstehenden
Integrale berechnen wir in Anhang B.

Zunichst ist die Anwendung von (A.1) auf Produkte von Impulspropagatoren
zu untersuchen. Dazu berechnet man fiir n € N

0 ! _ 2k —p),
Ipy ([(k -p)’+ m%]”) (k= p)+ m3H! (A.2)

und beachtet bei der zweiten Ableitung die Summation iiber gleiche Indizes. Dies
liefert:

Z 1 Op? ( ;er%)

B _2( 3 AR )
oo o (k2_|_m(2))2 (k2—|—m3)3
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B 1 B 43)
op* \(k—p)*+ms) | ..y 3 (K2+mg)>  (k? +mg)? '
S ( 1 ) __4( 3 oK )
2o \F—prrmiE) |, = "\ Ermr e m
0 1 k2 1
= 4 -2 A4
o ([(k T maP) e ey MY

3. 97 1
yZ:l op? ([(k + )% + mgl[(l + p)* + m%])
_ ( 3 B 4k? N
B (K2 +md)2(1P+md) (R4 mP(2+mg) (k2 +mg)(I? + mf)?
AJ2 Ak - 1) )

p?=0

(K2 +mg)(12 +mg)® (k2 + mg)* (1 + mg)?

0 1
p* ([(k +p)? +milll+p)* + m%]) s
_ 14 K L4 /2 1
3 (K2 +mg)P(12+mf) 3 (k2 4+ md) (1 +md)* (k> +m§)*(I* + md)
1 4 k-1
— + = (A5)

(B> +md)(I+m)* 3 (K> + md)*(I* + m§)*

Durch p — p/mo kann man in den obigen Gleichungen natiirlich wieder m3 = 1
erreichen; es ist dann allerdings zu beachten, dafy durch die entsprechende Transfor-
mation des Differentialoperators 9/9p? ein zusatzlicher Faktor 1/mj auftritt.

A.2 Konsistenzrechnung

Anstelle von Gleichung (A.1) 1a8t sich die Differentiation nach dem &ufleren Impuls-
quadrat auch gemaf

0 0 10
-~ - (A.6)
op? 0p* 2pdp
durchfiithren. Zuvor muf} allerdings sichergestellt sein, daff die Integrale (nach Aus-
integration der Winkel) nur von den Betragen des dueren Impulses p abhidngen.

Die nachfolgende Rechnung moge dieses Verfahren am Beispiel des Graphen géf)
veranschaulichen. Ich substituiere p/mo — p und gehe zu sphérischen Polarkoordi-
naten iiber. Die Verwendung von (B.2a) und die Ausfithrung der Winkelintegratio-
nen ergeben
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0 P’k 1
— 4 2 ‘
= 9m0 9 a 2 / (27‘(‘)3 (k2 + m%)z[(k _ p)2 i mg] [1(k, 3)

p?=0
992 0 / 3 1 1 k
— k Z arct -
3271m3 Op? B2+ 02[(k—pr+1 k2

p?=0

1

B 9, O /OO L k tan k / sin 0

N 1673m2 dp? Jo (k241 arctatt 2] Jo 1+ k24 p? —2kpcos =0
92 O [ 1 k 1+ (k+p)°

= 32 YN W/ dk k2 ELI’CtEL 5 lﬂ ﬁ
m3mg dp? Jo (k2 +1 1+ (k—p)

B 990 oo k

C 32m3m} ap / R (2)

1
p
2k
l In L+ k2+pp+1
p 1 _ Qkp
k2+p2+1
Aufgrund der Singularitat des Integranden in p = 0 setze ich ihn dort nach einer
Taylorentwicklung in @ = 0

1+ 2 I 5 5 2kp
1n<1_x):2<:1;—|—§:1; +0(x)); vim gty <l (AD)

p?=0

p?=0

fort und fiithre erst dann die Differentiation unter dem Integral aus. Dies liefert mit

(C.12¢) und (C.13b)

d (2) 993 0 /OO 1 k
) = — dk ——— arct —
gp2 9o (P e Lommdop? o TR 1E T 2) T
3
1 2kp 1 2kp L O
p | E2+pP4+1 3 \E+p?+1 P2=0
995 /OO 1 k
= dk —— arct —
W6romd Jo Rz T ) T
d 1 8k3 p?
— 2%kt 1+ O(p*
XapQ[ k2+p2+1+ 3 (k2+p2+1)3+ (p)] 22=0
9 5 [ k k
= —— dk ——— arct —
8m3mi 90/0 (k24 1)4 arctatt (2)
=197/1296
2 [~ K
—|—2 5 2go/ k R arctan (—),
=55m/10368
und damit
8 (2) 59 2
559 (p) — 7923 - (A.8)
op? =0 691272m3

Dieselbe Rechnung 14t sich auch fiir den Graphen g%) durchfiihren.



Anhang B

Berechnung einiger Integrale

Es werden nun einige der konvergenten Integrale und ihre Ableitungen nach &ufle-
ren Impulsen ausgewertet, die im Verlauf des Kapitels 5 wiederholt auftreten. Da-
bei erleichtert es die Rechnungen, durch eine Substitution der Integrationsimpulse
k — k/mg die Massenquadrate in den Propagatoren auf 1 zu setzen, was lediglich
zusitzliche Massenfaktoren vor den Integralen zur Konsequenz hat.

B.1 1-Loop—Integrale

Integral I;
Wir betrachten das konvergente 1-Loop-Integral

d*k 1

Li(p;3) := / (27)% (k2 + md)[(k — p)? + md] >

in Abhéngigkeit eines beliebigen duleren Impulses p. Nach der Setzung g := p/mo,
Ubergang zu sphérischen Polarkoordinaten! und Anwendung der Substitutionsregel
im Integral iiber # erhalte ich:

1 1
hpi3) = oo [ &%
3 = G T DR —ar 1)
1 oo k? w sin #
_ dki/ d0
47T2m0/0 k241 Jo 1+ k2?4 ¢* — 2kgcos 0

1 o0 k? 1 pHG+9®
- |k | dt -
472 mg Jo E2+ 1 | 2gk J1+(k—q)2 t
1 0 k 1+ (k+q)
= [k m( * +Q)2).
8m*mo q Jo kB +1 L+ (k—q)
!Die z—Achse des zugrundeliegenden Koordinatensystems kann dabei so gewihlt werden, daf die

Vektoren k und p gerade den Azimutalwinkel 6 einschliefien; die Integration iiber den Polarwinkel
@ liefert nur einen Faktor 2.

129
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Um dieses Integral geschlossen zu berechnen, bezeichne man

R@p:%ﬁdk k 1H(L+w+qf)

B241 1+ (k—q)
und bilde
d %0 k9, (1+(k+q)’
— = dt—— — In| ——=

k+q k—q
= 2/ 2 2
W+1 1+ (k+q)° 14+(k—q)
B / l%—l—q?k—q—q 2k + ¢’k +q+ ¢ 2
B q+4 + (k—q)?] gl +(k+q¢)? k41

nach Vertauschung von Integration und Differentiation sowie Partialbruchzerlegung
des Integranden. Das verbleibende Integral ist jetzt einfach die Summe aus Integralen

vom Typ (C.10) — (C.11b) und ergibt
0 A
I Rg) = 2

Die unbestimmte Integration dieses Ausdrucks beziiglich ¢ liefert

Rq):47r/dqq2

und wegen R(0) = 0 folgt fiir die Integrationskonstante C' = 0. Insgesamt findet
man also nach der Riicksubstitution des d&ufleren Impulses

= 271 arctan (2) + C,

q 1 p
W= e (1) = Lo () (2
1(p; 3) pE— arctan | T arctan e (B.2a)
und mit der de L’HOSPITALschen Regel
2 arctan 1 1 1
1,(0;3) = lim o 5 (2 0) = lim 5 = \ (B.2b)
p—0 %47rp ~ 8mmg p—0 1+ (M) Smmg

in Ubereinstimmung mit (3.18).
Fiir die Ableitung dieses Integrals nach dem &ufleren Impulsquadrat berechne
ich mit p/mo — p zunéchst
0 0 d*k 1
2 I(p:3 = [
op P T ) Do Gk Tl
1 1
- i / Bk
(2m)*mg Op? (k2 + D[k - p)?

_ 1 a/oodk k lln(l—l— k—l—p

p?=0

87Tm dp? E2+1p

S a/m% K 11+’“2+p+1
8m2m? mg Ip? E2+10p 2kp

TR p2 41

p?=0
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Die Entwicklung (A.7) der In-Funktion behebt die Singularitét in p = 0, so daff die
Differentiation unter dem Integral ausgefithrt und anschlieend der &uflere Impuls
auf null gesetzt werden kann. Mit (C.11b) ist dann

5,
— Li(p;3
op? 1(p;3) o
1 9 e ko1 2kp 1 2kp 3 ;
= ———=7 dk - =T
47r2m36p2/o k2—|-1p[k2—|—p2—|—1+3(k2_|_p2_|_1) +0(p’) o
1 00 k 0 1 QL3 P2
= — dk ———12k -+ — — 4
47r2m3/o k2+1ap2[ Rl 3 (k2+pz+1)3+0(p )] "
1 00 k 0 1 QL3 P2
= —3 - |k 4= L 1O
47r2m8/0 k2—|—18p2[ k2—|-p2—|—1+ 3 (k2+p2—|—1)3+ (p)]pZ):O
1 o k2 2 %) k4
= —5— | dk |k
2m2my /o (k24 1)3 +37T2mg 0 (k% + 1)47
=n/16 =r/32
und wir bestétigen das Resultat (3.19):
5, 1
op 1P 3 iro— B.3
ap2 1(p7 ) 2220 967ng ( )

Integrale I3 und I,
Integral I3

Gegeben sei das folgende 1-Loop-Integral in Abhangigkeit beliebiger duflerer Im-
pulse p und I:

d*k 1

2 ) (B + )k + PP + ]l — 07 + ]

Lip.l:3) = /( (B.4a)

Da ich nur seinen Wert fiir p = 0 bendétige, beschrianke ich mich darauf, das Integral

B 1
15(0,L:3) = / (27)2 (K2 + m3)2[(k —1)? + m{]

(B.4b)

in Abhangigkeit von I zu bestimmen. Fiir den allgemeinen Fall sei auf [N1¢78] ver-
wiesen.

Wie bei der Berechnung von I; setzt man q :=I/mg und fithrt nach Ubergang
zu sphéarischen Polarkoordinaten unter Anwendung der Substitutionsregel zunéchst
die #-Integration aus:

1 , 1
e | T

[3(07l; 3) =
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o0 2 i
_ 1 / m k / o sin 0
4m2md Jo (k2 —|— 1)? 1+ k24 q2 — 2kqcos 0
1 00 dk 1+ k—l—q
C 4mmd /o (k2 +1)? | 2¢k /

- %/mdkLln(M).
8wimiqJo (K2 +1)7  \1+(k—q)

Man bezeichnet nun
- 2
_ / dk L In (M)
0 (k* +1)? L+ (k—q)

und bildet
d 0 ko9 1+(k—|—q)2)
— R(q) = dk ————— — In | ——— 22
dq (@ /0 (k*+1)* 0q n(1+(k—q)2
k k+gq k—gq ]
= 2/ dk
/ (k*+ 1)? [1+<k+q>2 L (k= q)f
_ / 2(q" +3¢* +4)
B +4 k2+1 R+ NR+1)
/ lq +k¢® — 342 —4 q4—kq3—3q2—4]
- - k 5 ,
P +4) L+ (k+q) L+ (k—q)

nach Ausfithrung der Differentiation und einer Partialbruchzerlegung. Durch Zuriickfiihr-
ung auf Integrale der Form (C.10) — (C.11b) erhalten wir

0 (4¢> — ¢")m
= R(g)= 1 1"
dq (@ (> +4)*’

und die unbestimmte Integration tiber ¢ liefert
4q -4
R(q) = / = 8 / d /
(9) I AR s qq 7
= 7 [dg /
[ dg [q o +4] ;

— mwq
= d =
W/ q(q2+4)2 q+4+0

Fiir die Integrationskonstante folgt wegen R(0) = 0 wieder C' = 0, und es ergibt sich
nach Riicksubstitution des dufleren Impulses das Endresultat

1 1 1 1

15(0.1;3 . B.5
(0,4;3) = 8tmy ¢2 —|—4 8tmg (2 + 4m? (B.5a)
Speziell haben wir in Ubereinstimmung mit (3.10b):
1
15(0,0;3) = J3(3) = (B.5b)

32mmg’
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Integral I,

SchlieBlich sei noch das Integral
d*k 1
Ii(p;3) = /
P ] o BT ik~ pPE i
erwahnt. Seine Ableitung nach dem &dufleren Impulsquadrat, die in Kapitel 5 bereits

bestimmt worden ist, reproduziert sich mit der Methode aus Anhang A.2 zu

S (B.7)

C1287my

= [3(—1971’5 3) (B-6)

0
a—pz ]4(19; 3)

p?=0

B.2 Mehrfache Integrale

Insertionen von 1-Loop—Integralen

Zur 2. Ordnung der Stérungstheorie tragen vermehrt Diagramme bei, die 1-Loop—
Graphen als Subgraphen enthalten. Die zugehorigen Integrale sind daher gesondert

zusammengestellt.
Mit (B.2a) und (C.12a) bzw. (C.12b) ist:
dPkd>l 1
me) = | . . .
(2m)° (k2 4+ mg)* (12 + mg)[(I — k)% + mg]
d*k 1 1 0 k k
= Li(k;3) = / dk ————— arct —
/(%)3 Gt 3 = o ) Ga e actan (Zmo)
1 o0 k k 1
= — dk ———— arct =] = ——— B.
8m3mi /o (k2 +1)2 aretat (2) 967m2m3’ (B.82)
dkd*l 1
H,y(3) == / 2 2 2
(2m)° (k2 4+ mg)*(12 + mg)[(I — k)% + mg]

&k 1 1 e k k
- L(k;3) = / dk ——— arctan | ——
/ ory gy k3 = G ), R Gy et (Zmo)

1 o0 k k 1
= — dk ——— arct - = —. B.8b
8m3my /o (k2+1)° aretat (2) 28872my (B.8b)
Ferner hat man mit (B.5a):
kd®l 1
H3(3) = / 6 (1.2 N2/ 2 22 2 2
(2m)® (K* +mg)*(1* + mg)*[(I — k)* + mg]

_ / k1 ok = — /Oodk i
(2m)3 (k2 +m2)?2 > 1673mo Jo (k2 + m2)2(k2 4 4m2)
_ 1 /00 i k? _ 1
1673mg Jo (k24 1)2(k2+4)  576m2md’

=7/36

(B.8¢)
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2—-Loop—Integrale

In diesem Abschnitt berechne ich eine Reihe von Impulsintegralen, die im Anschluf}
an die Differentiation nach duBeren Impulsen gemiB Anhang A.1 auftreten?. Ich
nehme im folgenden m3 = 1 an und verwende wieder sphirische Polarkoordina-
ten. Das zugehorige Koordinatensystem ist derart zu wéhlen, dafl einer der bei-
den Azimutalwinkel (hier derjenige der d*k—Integration) von den Vektoren k und I
eingeschlossen wird. Die Winkelintegrationen kénnen dann geschlossen ausgefiihrt
werden, und nach Ausintegration einer der beiden Radialvariablen verbleiben stets
rationale Integrale, die nach einer Partialbruchzerlegung leicht auf (C.10) — (C.11b)

zurlickgefithrt werden. In dieser Weise finden sich:

Y /d3kd3l |
P @r)s (R 1R+ 1)2[(k - D)2 + 1]
- / Bld?l |
S @2 (R 122412k 1)2 + 1]
1 oo [? oo k? w sin #
- dli/ dki/ 40
87T4/0 (2+1)2 Jo (k2 +1)% Jo 1+ k2412 —2klcos0
o] 2 0 2 2
- i/ g / L R e G
seido Yz S COE TR 200 T\ T (k)2
I I? (I +8)m 5
= dl = B.9
Ry /0 21 1) l8(l2 T4)2| T 6912 (B.9)
=572 /864
W /d3kd3l 2
L m)s (R A2+ )2k — )2 + 1]

Pkd3l [?
(: / (2m)® (k2 + 1)(12 + 1)3 [( —07 11)

B L/Oodl { / / 0 sin #
 8xt Jo (2+1)% o k2—|—14 0 1+ E2+12—-2klcost

Y (g I 1+k+l>
o 8rto (24 1)2 o k2+1 2kl —1)2

RS /oo di 12 (3[4 + 3817 + 72)m
gt (12 +1)2 8(12 +4)3 414727r

=1372 /5184

(B.10)

2Man beachte, dafl diese Integrale nicht vom Vorzeichen der Integrationsimpulse abhingen;
sie kénnen deshalb bei einer geeigneten Impulsparametrisierung zur Berechnung verschiedener
Graphen dienen.
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Des weiteren ist:

Ehdl k-1
As o= / (2m)5 (k2 + 13(12 + 1)%[(k — 1)? + 1]

1 1 oo [? klcos 8 sin 0
e
o (2r) (B2+1)3Jo (P41 Jo 14+ k*>+12—2klcost

0o 3 oo 3 p- .
_ L/ m k / Jl { / 0 cosf sin 8
1% Jo (k24 1) Jo (2+1)2Jo 1+ E2+12—-2klcost

i | e P e ()|

8mt k2 +1 [24+1) kl 4k21?

_ 1 /oo " k> [ km ] _ 1
874 Jo (k% +1)3 |4(k% + 4)? 1382472
=72 /1728
d3kd?l 1
/ (2m)8 (K24 1324+ 1)[(k+1)2+1]

1 00 2 00 k? ™ sin 6
- 8?/0 dlm 0 dk(k2—|-1)3/0 dal—l—kz—l-l?—l-Zklcos@
1 oo [? o0 k? 1 1+ (k+1)?
N 8?/0 Tl ey [ﬁln(lJrEk—l;?)]
_ i/mdz I [(l2—|-8)7r] _ 1
st Jo 41|32+ 42| 288x2
—n2/36

Phd?l k?
As o= /(zw)G (k2+1) (P+1)[(k+l> +1]

_ /00 /OO /W o sin #
87T4 l2 k2—|—1 1+ E2+1242klcost

B /Oo I? /oo 1 I 1+ (k+1)?

T8t P+1 k2 2kl 1+ (k—1)?

1 > [(31* 4 381* + 72) 17
/ di - .

sriJo T 241 48(12 + 4)3 1036872

=1772/1296
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(B.11)

(B.12)

(B.13)



Anhang C

Mathematische Hilfsmittel

Dieser Anhang beinhaltet die wichtigsten mathematischen Identitdten, die in den
Rechnungen dieser Arbeit Verwendung finden. Da sie grofitenteils der Literatur (z.B.

[WW27, GR81, MOS66]) entnommen sind, kann ich an dieser Stelle auf (fast alle)

Beweise verzichten.

C.1 Einige Eigenschaften der Gammafunktion

Gammafunktion I'(z)

o Integraldarstellung von EULER:

I'(z) = /OOO dte™t*™', Rez>0. (C.1)

e Produktdarstellung von WEIERSTRASS:

1 el z
— vz 1 ~ —z/v 92
re) ~° 11( +V)e (€2)
=1 1 ! ! | =0.5772 C.3
’y—yl}rgo< —|—§—|—---—|—;—ny)—. e (C.3)

mit v als der EULER-MASCHERONI-Konstanten. Dieser Darstellung liest man
ab, daB I'(z) eine meromorphe Funktion in z € C ist; d.h. sie ist analytisch auf

der ganzen komplexen Ebene mit Ausnahme der Punkte z = 0,—1,—2,..., in
denen sie einfache Pole besitzt.
e Funktionalgleichung und spezielle Werte:
[(z41) =z[(z) (C.4a)
1 1
r1)=r@ =1, T (5) — VA T (—5) ~ _aum (C.4b)
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e Entwicklung der Gammafunktion um ihre Polstellen n € {0,1,2,...}:

D(—n+te) = ﬂ[%+<1+%+---+%—7)+0(6)]

(=1 E+¢1(n+1)+0(6)]; (C.5)

Y1(z) ist die logarithmische Ableitung der Gammafunktion

d I(2)

Pi(z) = 7 Inl'(z) = )

Betafunktion B(z,y)

o Integraldarstellung und Zusammenhang mit der Gammafunktion:

B(z,y) = /01 di 571 (1 — et
['(x

_ @)y
= Tty Rexz >0, Rey > 0. (C.6)
o Spezielle Werte:
11 33 T
B(z3)=m B(33)=5% (€-7)

Hypergeometrische Funktion F(a, 3;7;z2)

e Fiir Rey > Ref > 0 und |arg(—z)| < 7 lautet die Integraldarstellung der
Hypergeometrischen Funktion

Fla,Biv; 2) = m/ol At (1 — )P — ) (C.8a)
fiir Re A > 0, Rey > 0 und |3] < 1 gilt:
/01 dr 2’ (1 —2)" (1 = Ba)™ = BO,u)F(v, s A+ u;8).  (C.8b)
o Mit der Identitit
(1) (14 vT=2) " =op (a Y1+ %; 2 + 1; 22) (C.92)

erhalten wir die speziellen Werte

1 3 1 3
A=pu=-v=1.a= :2:—:F<1—1-—):2
H 277/ s & 076 Z 4 191y
3 , 3 3.3\ 32
)‘_M_§7V_27a_176_2 _Z F<27§737Z)_§ (Cgb)
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C.2 Integralformeln

Standardintegrale

o 1 0 s
/0 dx o = arctan x ‘0 =5 (C.10)

e Iiir n,m € N gilt:

oo 1 (2n =31 7
d = — A1
/0 ) T (n—1) 2 (C-11a)
/Oo de — - / <2 —1. (C.11b)
T m < 2n — 1. :
0 (224 1)" 2n —m—1 (2% 4 1 n’
e Fiir p >0, ¢>0und pg # 1 gilt:

<  garctan(qu) qm

Ti(p,q ::/ dx = . C.12a

1(p-q) 0 (x2+p2)*  Ap(pg+1) ( )

Bewers:

Mit partieller Integration und Partialbruchzerlegung berechnet sich

/ da x arctan( q:z;) _ 2/00 da :Jz;arctam:211;2
) o [#*+(pg)?]

B 1 arctanx / 1
= ¢ 37002 T2 pq)*(a? +1)
- 1 [ )
_ ¢ :1;
q 1 1 -
= - — ——1 arctanx‘ - 2 . o
21— (pa)? \pg 4(W+1)
o /oo o rarctan(gr) _ q(2pg+ D (C.12b)
, = X = ) ‘
2prq) = | (22 +p2)°  16p>(pg+1)?

Bewess:
Mit partieller Integration und Parameterintegration folgt aus (C.12a):

<  garctan(qx) qt /OO 1
de —— = — d
/0 ETEETIE T (pg) T + 1)

R iy O
4 C +1 2¢*p dp [2* + (pq)?]
10 _ q(2pg+ U)m
T i) = 169°(pg + 1)



C.2. INTEGRALFORMELN 139

0 z arctan(gz 3 4 9pg + Sp*g?)m
T5(p, q) 3:/ (g2) = al P4 Pa) . (C.12¢)

T =
0 (22 + p?)* 96p°(pq +1)°
Bewers:

Wie zuvor erhélt man aus (C.12b):

/OO dp arctan(qz) q° /OO J 1
rT— = = T
0 (22 + p2)* 6 Jo [22 + (pg)*]P(2* + 1)

¢ /ood 1 1 9 1
pu— _— x R -
6 Jo 24+ 1\ 4¢*pdpla?+ (pg)*)?
1 0 _q(34 9pq + 8p?¢*)m

- T —
5 Bp 5 (p, q)

96p°(pq + 1)

e Aus (C.12b) und (C.12¢) bestimmt man durch partielle Integration von T3(1, 1)
und T5(1, 3):

0 x> z 177
d B t —) = — A
/0 RIS (2) 1296 (C-13a)
o 3
/ dx :1;75 arctan (f) = oom ) (C.13b)
o et 2 10368

Gauflsche Integrale

e I'iir Rea > 0 und p € C gilt:

/d:z; e_(ak2+2p$) = ﬁep2/“. (C.14)
a

e Allgemeiner ist fiir k € RP, p € CP und D € N:

2

/de exp{— (ak2 + 2p - k)} = <§)D/2 exp (%) , Rea>0. (C.15)
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