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EinleitungDie Einf�uhrung quantenfeldtheoretis
her Methoden in die Theorie der kritis
henPh�anomene als ein Teilgebiet der Statistis
hen Physik hat si
h in den letzten mehrals 20 Jahren als �uberaus fru
htbar erwiesen. Stellvertretend f�ur die zahlrei
henVer�o�entli
hungen zu diesem Thema seien [BGZJ76, Bak84, Ami84℄ genannt.Dieses Konzept wurde dur
h den Funktionalintegralformalismus m�ogli
h, dersi
h bei der Formulierung der Quantenfeldtheorie und ihrer Anwendung auf dieElementarteil
henphysik als derart erfolgrei
h herausgestellt hat, da� er seither denmathematis
henRahmen f�ur diese Theorie bildet. (Siehe z.B. [AL73, Jer89,GJ87℄.)In dieser Darstellung der Feldtheorie spielt das sogenannte erzeugende Funktional,unter anderem wegen seiner Bedeutung f�ur die Bere
hnung von Erwartungswertenbzw. Korrelationsfunktionen, eine �ahnli
h zentrale Rolle wie die Zustandssummein der Statistis
hen Physik. Es ist aber ni
ht nur eine formale Analogie, die diesebeiden Zweige der Physik verbindet, sondern es gibt au
h physikalis
he Argumentef�ur sol
he Gemeinsamkeiten:Die Verwendung feldtheoretis
her Methoden kommt, wie bereits angedeutet,vorrangig bei der Behandlung kritis
her Ph�anomene zum Tragen; hierunter wollenwir im folgenden auss
hlie�li
h Phasen�uberg�ange 2. Ordnung verstehen, wie sie beiFerromagneten (u.a. Tb(OH)3, EuO und CdCr2Se4) beoba
htet werden1. Darunterversteht man kristalline Sto�e mit der Eigens
haft, bei vers
hwindendem �au�erenMagnetfeld unterhalb einer kritis
hen Temperatur spontan magnetisiert zu sein. Die-se Magnetisierung ist eine stetige, aber am �Ubergangspunkt ni
ht di�erenzierbareFunktion der Temperatur. Die Modelle, die zur Erkl�arung dieser Ers
heinung die-nen, verna
hl�assigen die mikroskopis
he Struktur des Festk�orpers in Form der spe-ziellen Gestalt seiner Atome und aller in ihnen enthaltenen We
hselwirkungen. Sieordnen vielmehr jedemGitterplatz eine e�ektive Spinvariable zu, die mit ihren Na
h-barn in We
hselwirkung tritt. Dabei nimmt man an, da� die den Phasen�ubergangkennzei
hnenden Eigens
haften der physikalis
hen Gr�o�en bei Ann�aherung an denkritis
hen Punkt dur
h deren kollektives und (gemessen an der Gitterkonstantendes Systems) langrei
hweitiges Verhalten bewirkt werden. Dies wiederum legt nahe,die zun�a
hst als diskret gew�ahlte Spinvariable dur
h eine ort{ und wertekontinu-ierli
he Feldvariable zu ersetzen, die h�au�g als Ordnungsparameterfeld bezei
hnetwird und im Fall des Ferromagneten der spontanen Magnetisierung entspri
ht. DerPhasen�ubergang kann dann als ein Proze� spontaner Symmetriebre
hung aufgefa�t1Obwohl �ahnli
he Ph�anomene z.B. au
h bei bin�aren Fluiden vorliegen, wird hier stets die Ter-minologie ferromagnetis
her Systeme verwendet.1



2 Einleitungwerden, und die Hamiltonfunktion des ferromagnetis
hen Systems erlangt eine Ge-stalt, die der Wirkung einer euklidis
hen skalaren Feldtheorie glei
ht, wie man sie inder Quantenfeldtheorie (u. a. zur Bes
hreibung des Higgs{Feldes im Standardmo-dell der Elementarteil
hen) verwendet. Die dadur
h motivierte st�orungstheoretis
heBehandlung des so erhaltenen Modells liefert Resultate, die zum Teil in hervorra-gender �Ubereinstimmung mit den Experimenten stehen.Das anhaltende Interesse am Studium kritis
her Ph�anomene, sowohl vom theo-retis
hen als au
h vom experimentellen Standpunkt, beruht in erster Linie auf derTatsa
he, da� das Verhalten bestimmter thermodynamis
her Funktionen in der Um-gebung der kritis
hen Temperatur f�ur viele Phasen�uberg�ange von universeller Na-tur zu sein s
heint. Hiermit ist gemeint, da� ganze Klassen von Systemen dur
huniverselle Gr�o�en wie kritis
he Exponenten, kritis
he Amplitudenverh�altnisse et
.
harakterisiert sind, die, unabh�angig davon, wel
he Form der We
hselwirkung undder Gitterstruktur tats�a
hli
h vorliegt, dieselben Werte annehmen. Diese Univer-salit�atsklassen sind dann allein dur
h Angabe der Raumdimension, der Anzahl derSpinfreiheitsgrade und der Symmetrie des zugrundeliegenden Modells festgelegt. EinGro�teil der wissens
haftli
hen Untersu
hungen auf diesem Gebiet ist daher an einerm�ogli
hst genauen Bestimmung dieser universellen Gr�o�en und damit glei
hzeitigan der Best�atigung der obigen Universalit�atsaussage orientiert. Dazu haben si
h auftheoretis
her Seite neben den feldtheoretis
hen Methoden vor allem AnwendungenderWilsons
hen Renormierungsgruppe (siehe [WK74℄), Untersu
hungen an Ho
h{und Tieftemperaturreihen (z.B. in [GG74℄) sowie Monte{Carlo{Simulationen (siehe[PSWW84℄) bew�ahrt.Innerhalb des oben skizzierten feldtheoretis
hen Ansatzes zur Behandlung vonPhasen�uberg�angen 2. Ordnung sind die renormierte St�orungstheorie und die Re-normierungsgruppe, insbesondere die Renormierungsgruppenglei
hungen sowie ihreL�osungen, zu den ents
heidenden Hilfsmitteln f�ur die Bere
hnung kritis
her Gr�o�engeworden, da si
h in ihnen die Eigens
haften der zu den thermodynamis
hen Funk-tionen der Statistis
hen Physik in eindeutiger Beziehung stehenden Korrelations-funktionen in der kritis
hen Region manifestieren. Viele der bisher dur
hgef�uhrtenRe
hnungen beruhen auf der sogenannten �{Entwi
klung, die urspr�ungli
h vonWil-son und Fisher in [WF72,Wil72℄ vorges
hlagen und dann von Br�ezin, Le Guil-lou und Zinn{Justin erstmalig f�ur die n{komponentige, masselose �4{Theorie biszur 4. St�orungsordnung dur
hgef�uhrt worden ist. (F�ur einen �Uberbli
k verweisenwir auf [Wal76℄ sowie die zu Beginn zitierte Literatur.) Die Idee dabei ist, die zurBere
hnung universeller Gr�o�en beitragenden Impulsintegrale der St�orungstheoriein D = 4 � � Dimensionen auszuwerten, um so zu einer Entwi
klung um die Di-mension D = 4 zu gelangen, von der man aus theoretis
hen �Uberlegungen wei�, da�sie die Untergrenze f�ur ein klassis
hes Verhalten2 am kritis
hen Punkt ist. W�ahrenddieses Verfahren (der dimensionellen Regularisierung) in der Quantenfeldtheorie derIsolierung der auftretenden Divergenzen als Vorstufe der eigentli
hen Renormierungdient, wird hier die Strategie verfolgt, einen Entwi
klungsparameter zu erhalten,2Unter klassis
hem Verhalten verstehen wir hier die Vorhersagen der Molekularfeld{ bzw. Mean{Field{Theorie, auf die im 1. Kapitel kurz eingegangen wird.



Einleitung 3der die Abwei
hungen der universellen Gr�o�en von ihren klassis
hen Werten im FallD < 4 widerspiegelt. Diese ergeben si
h s
hlie�li
h als Potenzreihen in � und k�onnendur
h Setzen von � = 1 auf die f�ur kritis
he Ph�anomene physikalis
he DimensionD = 3 extrapoliert werden.In der vorliegenden Arbeit wird ein anderer Weg einges
hlagen. Der zugrunde-liegende Ansatz geht im wesentli
hen auf Parisi (siehe [Par80℄) zur�u
k und bestehtdarin, die universellenGr�o�en aus der renormierten St�orungsre
hnung mit einer mas-siven �4{Theorie zu gewinnen, die direkt in drei Dimensionen dur
hgef�uhrt wird.Dies bedeutet, da� man die Theorie ni
ht an ihrem kritis
hen Punkt (d.h. bei un-endli
her Korrelationsl�ange) betra
htet, sondern in der Umgebung desselben, wo dieKorrelationsl�ange zwar sehr gro� aber endli
h ist. Na
h der Renormierung kann mandie universellen Gr�o�en jetzt als Potenzreihen mit divergenzfreien KoeÆzienten ineiner dimensionslosen renormierten Kopplung bestimmen, die wiederum eine nume-ris
he Analyse zulassen. Es sei aber bereits an dieser Stelle darauf hingewiesen, da�die so erhaltenen Reihen, ebenso wie diejenigen der �{Entwi
klung, ni
ht konver-gieren, sondern bestenfalls asymptotis
he Eigens
haften haben. Eine Verbesserungdieser Asymptotik dur
h ges
hi
kte Manipulation der Reihen ist erst dann sinnvoll,wenn sie in einigen Ordnungen bekannt sind. F�ur die dreidimensionale St�orungs-theorie in der symmetris
hen Phase sind deshalb die aufwendigen Re
hnungen vonNi
kel, Meiron und Baker (siehe [BNM77℄) erw�ahnenswert, die die Renormie-rungskonstanten und Renormierungsgruppenfunktionen des Modells bis zur 7. Ord-nung lieferten. Die numeris
he Auswertung dieser Reihen wird dabei mit Hilfe vonBorel{Transformationen und Pad�e{Approximationen erhebli
h verbessert. (Hier-zu vgl. [BNM78, GZJ80℄.)Wie das Thema bereits ank�undigt, will i
h hier mit der zuletzt genannten Me-thode die Amplitudenverh�altnisse der Korrelationsl�ange f+=f� und der Suszepti-bilit�at C+=C� bestimmen, was speziell im Fall der Korrelationsl�ange eine wi
htigeErg�anzung der bereits bestehenden Literatur darstellt. Denn in allen �ahnli
h ange-legten Abhandlungen (etwa [BB85, BBMN87℄) ist das Renormierungss
hema f�urdie gebro
hene Phase stets so gew�ahlt, da� nur die Renormierungskonstanten dersymmetris
hen Phase ben�otigt werden. Dies s
hlie�t allerdings eine Bere
hnung vonf+=f� aus, da zu diesem Zwe
k die Kenntnis der renormiertenMassen beider Phasenerforderli
h ist. Aus diesem Grund wird in dieser Arbeit ein Verfahren entwi
kelt,wel
hes eine auf der perturbativen Behandlung von Ho
h{ und Tieftemperaturphasebasierende Bestimmung universeller Amplitudenverh�altnisse erm�ogli
ht. Die si
h indiesem Zusammenhang ergebenden Reihen resultieren aus einer St�orungsre
hnungbis eins
hlie�li
h zur 2. Ordnung in der Kopplung, wobei alle dazu beitragenden Im-pulsintegrationen ges
hlossen ausgef�uhrt werden. Die numeris
he Auswertung dieserReihen, deren Genauigkeit dur
h die Anzahl ihrer bekannten Glieder zwar eine ge-wisse Grenze gesetzt ist, gestattet s
hlie�li
h einen Verglei
h mit Literaturwerten,die auf andere Methoden zur�u
kgehen.



Kapitel 1Kritis
he Ph�anomeneIn diesem einf�uhrenden Kapitel gebe i
h einen knappen �Uberbli
k �uber die Theo-rie der kritis
hen Ph�anomene ohne dabei allerdings eine vollst�andige Darstellungdieses Themenkreises, wie sie si
h z.B. in [Fis67, Sta71, BDFN92℄ und der dortzitierten Originalliteratur �ndet, anzustreben. Er dient vielmehr der Bereitstellungder zentralen Begri�e und De�nitionen, die f�ur diese Arbeit von Bedeutung sind.Insbesondere wird si
h herausstellen, da� die kontinuierli
he �4{Theorie als feldtheo-retis
hes Modell der Bes
hreibung von Phasen�uberg�angen 2. Ordnung angemessenist. Es sei zun�a
hst eine beliebige Raumdimension D vorausgesetzt.1.1 Phasen�uberg�ange 2. OrdnungWie in der Einleitung bereits betont worden ist, verstehen wir unter kritis
henPh�anomenen die thermodynamis
hen Eigens
haften von Systemen in der Umgebungder kritis
hen Temperatur T
 (im folgenden au
h als kritis
her Punkt bezei
hnet)eines Phasen�ubergangs 2. Ordnung. Na
h einer allgemeinen Klassi�kation sind Pha-sen�uberg�ange von h�oherer als 1. Ordnung dadur
h gekennzei
hnet, da� die erstenpartiellen Ableitungen der thermodynamis
hen Potentiale stetig, die zweiten hinge-gen am kritis
hen Punkt unstetig oder divergent sind. Im Falle ferromagnetis
herSysteme, die wir ja hier auss
hlie�li
h betra
hten wollen, zeigen z.B. die spontaneMagnetisierung M , die magnetis
he Suszeptibilit�at � und die spezi�s
he W�armeka-pazit�at C dieses 
harakteristis
he Verhalten.Die quantitative Bes
hreibung eines Phasen�ubergangs ges
hieht dur
h den soge-nannten Ordnungsparameter, den hier die spontane Magnetisierung darstellt. Diesist eine extensive, me�bare Variable, die oberhalb von T
 den Wert null und unter-halb von T
 einen Wert unglei
h null besitzt. Die zugeh�orige intensive Variable istdas �au�ere Magnetfeld h, dessen Anlegen den Phasen�ubergang unterdr�u
kt und dieMagnetisierung zu einer in T
 di�erenzierbaren Funktion ma
ht.Phasen�uberg�ange 2. Ordnung treten in Systemen mit vielen korrelierten Frei-heitsgraden auf, und f�ur ihre Erkl�arung sind kurzrei
hweitigeWe
hselwirkungen ato-4



1.2. THERMODYNAMISCHE DEFINITIONEN 5mistis
her Dimensionen und die mikroskopis
hen Details des Systems irrelevant. Diee�ektiven Observablen, die man stattdessen verwendet, sind Spinvariablen � = �(x),die auf den Punkten eines Kristallgitters der Gitterkonstanten a leben. Sie k�onnenein{ oder mehrkomponentig sein und diskrete oder kontinuierli
he Werte anneh-men; als Beispiele hierf�ur nennen wir stellvetretend das Ising{Modell und dasHeisenberg{Modell. Die spontane Magnetisierung ist dann dur
h den Ensemble{Mittelwert M(x) = h�(x)i ���h(x)=0 (1.1)gegeben, der im Sinne der Statistis
hen Physik als ein Mittelungsproze� �uber allethermis
hen Fluktuationen des Systems zu interpretieren ist. Obwohl es si
h hierbeistrenggenommen zun�a
hst nur um eine Magnetisierungsdi
hte handelt, aus der si
hdie Magnetisierung erst dur
h eine Raumintegration ableitet, werden wir �uber dieseFeinheit i.a. hinwegsehen. In translationsinvarianten Systemenmit konstantem �au�e-ren Feld h(x) � h, in denen die gerade angespro
hene Unters
heidung �uber
�ussigist, entfallen alle Ortsabh�angigkeiten, und es gilt einfa
h M(x;h; T ) =M(h; T )1.Das Prinzip der spontanen Symmetriebre
hung, wel
hes au
h in der Quanten-feldtheorie von gro�er Bedeutung ist, spiegelt si
h hier in der unters
hiedli
hen r�aum-li
hen Symmetrie beider Phasen wider. Ein n{komponentiges Spin{Modell weist f�urT > T
 eine O(n){Symmetrie auf, was ans
hauli
h der Tatsa
he entspri
ht, da�die �uber das gesamte Systemvolumen gemittelten Stellungen der Spins eine ver-s
hwindende Magnetisierung liefern. F�ur T < T
 ist diese Symmetrie spontan gebro-
hen, da die Spinvariablen jetzt mit abnehmender Temperatur Werte bevorzugen,die den Kon�gurationen des Grundzustandes, in dem alle Spins parallel geri
htetsind, entspre
hen. Diese Symmetriebre
hung wird im allgemeinen dur
h einen tem-peraturabh�angigen Parameter des Modells gesteuert.Eine weitere Gr�o�e, die bei der Bes
hreibung kritis
her Ph�anomene eine wi
h-tige Rolle spielt, ist die Korrelationsl�ange �. Sie ist ein quantitatives Ma� f�ur dieEntfernung, �uber die die Spinvariablen des Systems dur
h ihre We
hselwirkung kor-reliert sind und si
h somit gerade no
h beein
ussen. Da diese We
hselwirkung vonlangrei
hweitiger Natur ist, gibt man die Korrelationsl�ange h�au�g gem�a�� = �̂a; �̂ : dimensionslosin Einheiten der Gitterkonstanten a an. Sie divergiert ebenfalls bei Ann�aherung anden kritis
hen Punkt, denn eine unendli
he Korrelationsl�ange impliziert ein kollek-tives Verhalten der Spins, wel
hes das Eintreten eines Phasen�ubergangs zur Folgehat.1.2 Thermodynamis
he De�nitionenWir gehen an dieser Stelle kurz auf die Thermodynamik von Phasen�uberg�angen 2.Ordnung am Beispiel des Ferromagneten ein, damit sp�ater die formale Analogie zur1Wenn Mi�verst�andnisse auszus
hlie�en sind, werden wir ni
ht immer alle Abh�angigkeiten derthermodynamis
hen Gr�o�en als Argumente mitf�uhren.



6 KAPITEL 1. KRITISCHE PH�ANOMENEFeldtheorie deutli
h wird.Ausgangspunkt einer sol
hen Bes
hreibung ist die ZustandssummeZ = Z(h; T ) = Tr �e��H� ; � = 1kT ; (1.2)in der die Spur als klassis
he Summe �uber den Phasenraum zu verstehen ist, H dieHamiltonfunktion des Systems darstellt und k die Boltzmann{Konstante bezei
h-net. Die (Helmholtzs
he) freie Energie erhalten wir ausF = F (h; T ) = � 1� lnZ(h; T ); (1.3)sie ist mit der (Gibbss
hen) freien Energie G = G(M;T ) �uber eine Legendretransfor-mation verbunden. Die oben bereits erw�ahnten Gr�o�en ergeben si
h aus den ther-modynamis
hen Potentialen dur
h die Glei
hungenM = � �F�h !T ; h =  �G�M !T (1.4)� =  �M�h !T = � �2F�h2 !T =  �2G�M2!�1T ; C = �T  �2F�T 2!h : (1.5)Na
h den Ausf�uhrungen des vorigen Abs
hnitts folgt aus der Reziprozit�atsei-gens
haft der Legendretransformation bei festem T , d.h.�G(M(h))�M(h) �����M(h)=� �F (h)�h = h; (1.6a)als Bedingung f�ur das Einsetzen des Phasen�ubergangs die Extremaleigens
haft�G�M ����M=0 = 0: (1.6b)Diese Beziehung erlaubt die Bestimmung des bereits erw�ahnten Parameters derTheorie, in dessen Temperaturabh�angigkeit si
h der Phasen�ubergang zeigt.F�ur eine einkomponentige Spinvariable �(x), die wir im Moment als kontinuier-li
h annehmen, betra
hten wir s
hlie�li
h die Spin{Spin{Korrelationsfunktionen (inder Feldtheorie als 2{Punkt{Greensfunktionen bekannt)h�(x)�(y)i; h�(x)�(y)i
 := h�(x)�(y)i � h�(x)ih�(y)i; (1.7a)die si
h in translationsinvarianten Systemen zuG(2)(x) := h�(x)�(0)i; G(2)
 (x) := h�(x)�(0)i
 (1.7b)mit Fouriertransformierten G(2)(p) und G(2)
 (p) vereinfa
hen. Die mit dem Index 
versehenen verbundenen Korrelationsfunktionen zei
hnen si
h dadur
h aus, da� in



1.3. KRITISCHE EXPONENTEN 7sie allein die dur
h die We
hselwirkung der Spins hervorgerufenen Fluktuationendes Ordnungsparameters eingehen. Wir de�nieren nun die Korrelationsl�ange � alsihr 2. Moment �2 := 12D R dDxx2G(2)
 (x)R dDxG(2)
 (x) = � ��p2 G(2)
 (p)G(2)
 (p) �����p2=0: (1.8)Daran zeigt si
h insbesondere, da� si
h � mit dem Inversen des f�uhrenden Pols vonG(2)
 (p) identi�zieren l�a�t.Alternativ dazu k�onnen wir die Korrelationsl�ange au
h �uber das Abfallverhaltender verbundenen 2{Punkt{Funktion f�ur T 6= T
 bzgl. einer vorgegebenen A
hsen-ri
htung x erkl�aren:G(2)
 (x) = h�(x)�(0)i
 x!1� e�x=�; � := lim supx!1 �xln�h�(x)�(0)i
� : (1.9)Im Verlauf der feldtheoretis
hen Behandlung kritis
her Ph�anomene wird si
h her-ausstellen, da� die Korrelationsl�angen (1.8) und (1.9) zwar ni
ht von vornhereinidentis
h sind, aber denno
h auf universelle Gr�o�en f�uhren, die numeris
h fast �uber-einstimmen.1.3 Kritis
he ExponentenDie soeben eingef�uhrten physikalis
hen Gr�o�en zeigen bei Ann�aherung an die kri-tis
he Temperatur T
 ein 
harakteristis
hes Divergenzverhalten, wel
hes dur
h kriti-s
he Exponenten bestimmt ist. Dabei nimmtman an, da� die funktionale Abh�angig-keit dieser thermodynamis
hen Funktionen von der Temperatur in einen endli
henund einen singul�aren Anteil2 zerf�allt, wobei allein der letztere f�ur die universellenkritis
hen Eigens
haften des Systems verantwortli
h ist.Zu einer genauen De�nition dieser Exponenten gelangen wir, wenn wir f�ur einein der reduzierten Temperaturvariablent := T � T
T
 = TT
 � 1stetige Funktion f : U ! R n f0g, die auf einer punktierten Umgebung U von 0de�niert ist, mit der S
hreibweisef � A�jtj��; (1.10)stets die Existenz der Grenzwerte�� = limjtj!0 ln jf(t)jln jtj ; A� = limjtj!0 jtj���f(t) (1.11)2Singul�ar bedeutet in diesem Zusammenhang, da� die Funktionen oder ihre Ableitungen beiT = T
 divergent sind.



8 KAPITEL 1. KRITISCHE PH�ANOMENEmeinen.In dieser Weise gilt f�ur die Korrelationsl�ange und die Suszeptibilit�at in der Um-gebung von t = 0 bei Abwesenheit eines �au�eren Feldes:� � ( f+t��+ ; t > 0f�(�t)���; t < 0 (1.12)� � ( C+t�
+ ; t > 0C�(�t)�
�; t < 0 : (1.13)Ebenso �ndet man dort f�ur die spezi�s
he W�armekapazit�at und die spontane Ma-gnetisierung C � ( A+t��+ ; t > 0A�(�t)���; t < 0M � (�t)�; t < 0; M � h1=Æ; t = 0;wobei die letzte Glei
hung h 6= 0 voraussetzt. Dur
h das Verhalten der verbundenen2{Punkt{Funktion bei T = T
G(2)
 (x) = h�(x)�(0)i
 a�x� x�(D�2+�) (1.14)ist ein weiterer Exponent de�niert.Diese kritis
hen Exponenten erf�ullen die Skalengesetze� = �+ = ��; 
 = 
+ = 
�; � = �+ = �� (1.15a)und 
 = �(2 � �) (1.15b)� = 2 � �D (1.15
)Æ = D + 2 � �D � 2 + � (1.15d)� = �2 (D � 2 + �); (1.15e)so da� ledigli
h zwei von ihnen unabh�angig voneinander sind. Die Zustandsglei
hungh = h(M; t) ist von der Form hM Æ = f � tM1=�� ;wobei f eine im Nullpunkt regul�are Funktion ist.Die Herleitung der vorstehenden Relationen beruht auf der Skalenhypothese, dieim wesentli
hen besagt, da� in unmittelbarer Na
hbars
haft des kritis
hen Punktesdie Korrelationsl�ange die einzige 
harakteristis
he L�ange des betra
hteten Systems



1.4. ISING{MODELL 9ist, so da� alle anderen L�angen in ihren Einheiten zu messen sind. Das bedeutetglei
hzeitig, da� das System am kritis
hen Punkt selbst, wo die Korrelationsl�angeeinen unendli
hen Wert besitzt, invariant unter Skalentransformationen ist. Dimen-sionsbehaftete thermodynamis
heGr�o�en sind dann homogene Funktionen ihrer Va-riablen, d.h. sie transformieren si
h na
h dem Gesetzf(
x) = 
Dff(x); 
 = 
onst.;wenn f eine ortsabh�angige Funktion der L�angendimension Df ist. Im Rahmen derRenormierungsgruppentheorie kann die G�ultigkeit sol
her Homogenit�atsrelationenund der daraus folgenden Skalenhypothese begr�undet werden. Die dort auftreten-den Korrelationsfunktionen skalieren jedo
h ni
ht mit ihrer naiven, au
h kanonis
hgenannten Dimension, sondern sie entwi
keln eine anomale Dimension, die si
h inder De�nition des Exponenten � s
hon andeutet.1.4 Ising{ModellDas Ising{Modell (z.B. [Dom74℄ und die bereits genannten Referenzen) besteht auseinemD{dimensionalen kubis
hen Gitter (aZ)D mit Gitterpunkten xi, i = 1; : : : ; N ,auf denen eine einkomponentige Spinvariable �(xi) erkl�art ist, die nur die Werte �1animmt. Die ferromagnetis
he We
hselwirkung, die parallele Spins | also sol
hemit glei
hem Vorzei
hen | energetis
h favorisiert, ist im einfa
hsten Fall dur
h dieHamiltonfunktion H(�) = � X<ij> �(xi)�(xj)�Xi h(xi)�(xi) (1.16)de�niert, wobei die S
hreibweise < ij > andeutet, da� si
h die Summe �uber allePaarungen bena
hbarter Spins erstre
kt.Bezei
hnen wir mit f�g alle m�ogli
hen 2N Spinkon�gurationen, so ist die Zu-standssumme dur
h Z(h; T ) =Xf�g e��H(�) (1.17)und der Mittelwert einer beliebigen Spinfunktionen A(�) f�ur vers
hwindendes �au�e-res Feld dur
hhA(�)i := Pf�gA(�) e�P<ij> �(xi)�(xj)Pf�g e�P<ij> �(xi)�(xj) = 1Z(h)Xf�gA(�) e��H(�) �����h=0 (1.18)gegeben. Na
h (1.4) folgt damit f�ur die spontane MagnetisierungM(xi;h) = ��F (h)�h(xi) �����h=0 = 1� 1Z(h) ��h(xi) Z(h) �����h=0= Pf�g �(xi) e��H(�)Pf�g e��H(�) �����h=0 = h�(xi)i (1.19)



10 KAPITEL 1. KRITISCHE PH�ANOMENEin �Ubereinstimmungmit (1.1). Die Suszeptibilit�aten�ij bere
hnen si
h daraus gem�a�(1.5) zu�ij� = 1� �M(xi;h)�h(xj) �����h=0 = h�(xi)�(xj)i � h�(xi)ih�(xj)i = h�(xi)�(xj)i
; (1.20)und im Verglei
h mit (1.19) lesen wir die Beziehungh�(xi)�(xj)i
 = 1�2  1Z(h) �2Z(h)�h(xi)�h(xj) � 1Z2(h) �Z(h)�h(xi) �Z(h)�h(xj)! �����h=0 (1.21)ab, die si
h in Abs
hnitt 2.1 im Rahmen der Feldtheorie wieder�ndet3. Speziell f�urein translationsinvariantes System mit h(xi) � h und M(xi;h) � M(h) lautet dieSuszeptibilit�at�� = 1� �M(h)�h �����h=0 =Xi h�(xi)�(0)i
 =Xi G(2)
 (xi): (1.22)Die Korrelationsl�ange ist in Analogie zu (1.8) dur
h�2 := 12D Pi x2iG(2)
 (xi)PiG(2)
 (xi) (1.23)de�niert.Das Ising{Modell ist der prominenteste Vertreter einer Universalit�atsklasse,die au�er dur
h die Raumdimension D dur
h ihre Z2{Symmetrie 
harakterisiert ist.W�ahrend inD = 1; 2 seine Eigens
haften exakt untersu
ht sind, steht eine L�osung |z.B. dur
h die ges
hlossene Ausf�uhrung der Zustandssumme | in drei Dimensionenbislang aus. Die in dieser Arbeit untersu
hte skalare Feldtheorie geh�ort ebenfallsin diese Universalit�atsklasse; das Ising{Modell ergibt si
h in diesem Zusammen-hang (z.B. na
h [MM93℄) als Grenzfall unendli
her Kopplung einer entspre
hen-den Gittertheorie. Umgekehrt ist es au
h m�ogli
h, die Zustandssumme (1.17) dur
hdie Transformation mit einem gau�s
hen Integral (siehe [Hub72℄) in eine Form zubringen, die in f�uhrender Ordnung das erzeugende Funktional der euklidis
hen �4{Theorie ist, wie sie im 2. Kapitel vorgestellt wird.Abs
hlie�end seien no
h die in der Einleitung als klassis
h bezei
hneten Werteeiniger universeller Gr�o�en aus 1.3 angegeben, die einer Approximation der Zu-standssumme (1.17) entstammen:
+ = 
� = 1; C+C� = 2; �+ = �� = 12 ; f+f� = p2: (1.24)Die hier zugrundeliegende N�aherung ist die Mean{Field{Approximation, die wir imfolgenden Abs
hnitt in etwas allgemeinerer Form kennenlernen werden.3Die an dieser Stelle ungewohnt ers
heinenden �{Faktoren vers
hwinden, wenn wir die Erset-zung h! h=� vornehmen und statt (1.3) die Relation F = � lnZ verwenden.



1.5. LANDAU{THEORIE UND MEAN{FIELD{APPROXIMATION 111.5 Landau{Theorie und Mean{Field{Approxi-mationDie in ihrer modernen Formulierung als Landau{Ginzburg{Modell bekannte Lan-dau{Theorie ist ein ph�anomenologis
her Ansatz zur Bes
hreibung von Phasen�uber-g�angen 2. Ordnung, der ihren 
harakteristis
hen Eigens
haften gere
ht wird undbereits den Weg zu einer feldtheoretis
hen Behandlung vors
hreibt. Sie gilt streng-genommen nur in der direkten Umgebung des kritis
hen Punktes, wo der gew�ahlteOrdnungsparameter hinrei
hend klein ist. Dieser ist dur
h die (hier als einkomponen-tig gew�ahlte) spontane Magnetisierungsdi
hteM(x) 2 R gegeben, die kontinuierli
hvon Werten x 2 RD abh�angt. Sie besitzt als makroskopis
he Gr�o�e keine Fluktuatio-nen mit Wellenl�angen kleiner als die vorgegebene Gitterkonstante a. Somit enth�altdie Theorie einen nat�urli
hen Impuls{Cuto� � / 1=a, der die Fourierkomponentenvon M(x) na
h oben bes
hr�ankt.Die in 1.4 no
h diskrete Zustandssumme wird als FunktionalintegralZ(h) = Z DM(x) e��H(M) = Z DM(x) exp�� Z dDx g(M; t)� (1.25)ges
hrieben, wobei das Integrationsma� DM(x) eine Summation �uber alle (m�ogli-
herweise �uberabz�ahlbar viele) funktionale Formen des OrdnungsparameterfeldesM(x) symbolisiert. Wir fassen g = g(M; t) als freie Energiedi
hte auf und setzen f�ursie eine Entwi
klung mit in t analytis
hen KoeÆzienteng(M; t) = 12 ��M(x)�2 + 12 r0M2(x) + u0M4(x) + � � � �M(x)h(x) (1.26)an, die die Fluktuationen des Ordnungsparameters (dur
h den Gradienten �M(x))und die Symmetrie des Problems ber�u
ksi
htigt. Mit r0 = a0t, a0 > 0, u0 > 0und vers
hwindenden h�oheren KoeÆzienten4 folgt na
h partieller Integration imExponenten bei Verna
hl�assigung des Randterms (M(x)! 0 f�ur x!1)Z(h) = Z DM(x) exp(� Z dDx � 12M(x)�� �2 + r0�M(x)+u0M4(x)�M(x)h(x) �); (1.27)mit �2 :=PD�=1 �2�x2� .Wir wollen nun in Anlehnung an [Hua87, Bel91℄ die Mean{Field{N�aherung derLandau{Ginzburg{Theorie heranziehen, um die klassis
h zu erwartenden Wer-te (1.24) der in dieser Arbeit betra
hteten universellen Gr�o�en herzuleiten. Dazunimmt man wie in der urspr�ungli
hen Formulierung dur
h Landau (vgl. [LL87℄)4W�ahlt man au
h u0 = 0, so erh�alt man das sogenannte gau�s
he Modell, wel
hes einer freienFeldtheorie entspri
ht, und f�ur das man das Integral (1.27) ges
hlossen ausf�uhren kann.



12 KAPITEL 1. KRITISCHE PH�ANOMENEein konstantes �au�eres Magnetfeld h und eine konstante spontane MagnetisierungM =M(h) an, so da� bei Unterdr�u
kung der Temperaturabh�angigkeitg(M) = 12 r0M2 + u0M4 �Mh (1.28)wird. Wir f�uhren jetzt eine Sattelpunktapproximation dur
h, in der das Funktional-integral (1.27) dur
h das Maximum seines Integranden ersetzt wird. Dieses ist dur
hdie Bedingung �g(M)�M = 0; �2g(M)�M2 � 0 (1.29)bei vers
hwindendem �au�eren Feld bestimmt und ergibt si
h zuM = ( 0 ; t > 0�qa0=4u0 (�t)1=2; t < 0 : (1.30)Insbesondere re
htfertigt diese Glei
hung, den KoeÆzienten r0 na
h (1.6b) tempera-turabh�angig anzunehmen, da sein Vorzei
henwe
hsel den Phasen�ubergang repr�asen-tiert. Die Suszeptibilit�at an der Stelle (1.30) bere
hnen wir na
h (1.5) als� =  �2g(M)�M2 !�1 �����h=0 = ( (a0t)�1 ; t > 0(�2a0t)�1; t < 0 ; (1.31)woran wir den ersten Teil von (1.24) direkt ablesen.F�ur die Bestimmung der Korrelationsl�ange haben wir die 2{Punkt{Korrelations-funktion G(2)
 (x) zu untersu
hen und f�uhren deshalb die Ortsabh�angigkeiten wiederein. Die Sattelpunktapproximation liefert f�ur sie die Di�erentialglei
hung��2 � r0 � 12u0M2(x)�G(2)
 (x) = �Æ(x); (1.32)deren L�osung bei Verna
hl�assigung des Impuls{Cuto�sG(2)
 (x) = 1(2�)D Z dDpG(2)
 (p) eip�x; G(2)
 (p) = 1p2 + r0 + 12u0M2(x) (1.33)ist. Bei vers
hwindendem �au�eren Feld gilt in der symmetris
hen Phase (t > 0)gerade M(x) = 0, und wir �ndenG(2)
 (p) = 1p2 + r0 : (1.34a)In der gebro
henen Phase (t < 0) ist na
h (1.30) die spontane Magnetisierung dur
hM2(x) = �r0=4u0 gegeben, und wir habenG(2)
 (p) = 1p2 � 2r0 : (1.34b)



1.5. LANDAU{THEORIE UND MEAN{FIELD{APPROXIMATION 13Mit Hilfe ihrer De�nition (1.8) bere
hnet si
h daraus die Korrelationsl�ange in �Uber-einstimmung mit (1.24) zu� = ( (a0t)�1=2 ; t > 0(�2a0t)�1=2; t < 0 : (1.35)Dur
h die Unabh�angigkeit der kritis
hen Exponenten und Amplitudenverh�alt-nisse von den Parametern der freien Energie gibt die Mean{Field{Theorie einenersten Hinweis auf die s
hon angespro
hene Universalit�at dieser Gr�o�en, die jedo
h| bedingt dur
h deren Unabh�angigkeit von der RaumdimensionD | in dieser All-gemeinheit ni
ht haltbar ist. Sie re
htfertigt glei
hzeitig die Verna
hl�assigung allermikroskopis
hen Freiheitsgrade dur
h die Wahl eines kontinuierli
hen Ordnungspa-rameters und der Zustandssumme (1.25).Beim Betra
hten von Glei
hung (1.27) f�allt auf, da� das Landau{Ginzburg{Modell das statistis
h{me
hanis
he Pendant der quantenfeldtheoretis
hen �4{Theo-rie ist, von dem wir vor allem dur
h Einbeziehung seiner st�orungstheoretis
henKorrekturen ni
htverna
hl�assigbare Abwei
hungen vom Verhalten der Mean{Field{Theorie erwarten. Eine genauere Untersu
hung zeigt, da� dies genau f�ur Dimensio-nen D < 4 der Fall ist. Des weiteren zitiere i
h an dieser Stelle ein Resultat ausder Theorie der Renormierungsgruppe, na
h dem die Ber�u
ksi
htigung von Termenbis eins
hlie�li
h zur 4. Potenz des Ordnungsparameters tats�a
hli
h f�ur eine pr�aziseBes
hreibung des dominierenden kritis
hen Verhaltens ausrei
hend ist. (Siehe hierzu[Ami84, BGZJ76, ZJ89℄ und dort gegebene Referenzen.) Bei der Bestimmung uni-verseller Gr�o�en liegen alle dur
h die Mitnahme von h�oheren Termen verursa
htenKorrekturen innerhalb der numeris
hen Fehlerabs
h�atzungen.



Kapitel 2�4{TheorieI
h stelle nun die �4{Theorie als feldtheoretis
hes Modell zur Bes
hreibung von Pha-sen�uberg�angen 2. Ordnung sowie (na
h [LW87a, LW87b, MM93℄) ihre St�orungs-theorie in Ho
h{ und Tieftemperaturphase vor. Diese Theorie wird in vielen Lehr-b�u
hern zur Quantenfeldtheorie (z.B. in [Ryd85, Ami84, ID89℄) ausf�uhrli
h ent-wi
kelt, so da� i
h au
h hier nur die wesentli
hen Begri�e und Bezei
hnungen einf�uhre.Dies betri�t vor allem die St�orungstheorie im Impulsraum und die daraus abgeleite-te diagrammatis
he Entwi
klung der vers
hiedenen Korrelationsfunktionen, da diesin sp�ateren Kapiteln explizit dur
hgef�uhrt wird.2.1 Erzeugende Funktionale und Korrelations-funktionenWir betra
hten eine euklidis
he skalare Feldtheorie in D Dimensionen, die aus derzugeh�origen Theorie imMinkowski{Raum dur
h �Ubergang zu einer komplexen Zeit-variablen (Wi
k{Rotation) gewonnen wird.Ausgangspunkt ist die WirkungS(�) = Z dDxL(�); (2.1)die aus dem Raumintegral �uber eine lokale Lagrangedi
hte L gebildet ist. Letztereist die Funktion eines einkomponentigen, reellwertigen Feldes � = �(x), x 2 RD,und setzt si
h aus einem freien und einem we
hselwirkenden Anteil zusammen:L(�) = L0(�) + Lint(�)L0(�) = 12 (��(x))2 + 12 m20�2(x): (2.2)Im Falle der �4{Theorie setzt man f�ur Lint eine Selbstwe
hselwirkung der FormLint(�) = 14! g0�4(x) (2.3)14



2.1. ERZEUGENDE FUNKTIONALE 15mit einer Kopplungskonstanten g0 > 0 an. Der physikalis
he Gehalt einer so for-mulierten Theorie ist in den Erwartungswerten von Feldern und ihrer Produkteenthalten, die si
h aus dem erzeugenden Funktional der Theorie bere
hnen lassen.Dieses ist als FunktionalintegralZ0 := Z D�(x) e�S(�) = Z D�(x) exp�� Z dDxL(�)� (2.4)gegeben, wel
hes im Sinne von D�(x) = Qx d�(x) als Integrationsma� �uber allem�ogli
hen Feldkon�gurationen von �(x) zu verstehen ist. Bei Anwesenheit einer�au�eren Quelle h(x), an die das Feld � linear koppelt, ist in (2.2) ein TermLsour
e(�) = �h(x)�(x) (2.5)hinzuzuf�ugen, und das erzeugende Funktional istZfhg := Z D�(x) exp�� Z dDx hL(�)� h(x)�(x) i� ; Zf0g = Z0: (2.6)Wir de�nieren die Erwartungswerte beliebiger Feldfunktionen A(�) alshA(�)i := R D�(x)A(�) e�S(�)R D�(x) e�S(�) = 1Zfhg Z D�(x)A(�) e�S(�)+R dDxh(x)�(x) �����h=0 (2.7)und bere
hnen dann die n{Punkt{Greens{ bzw. Korrelationsfunktionen (h�au�g au
hS
hwinger{Funktionen genannt) der GestaltG(n)(x1; : : : ; xn) := h�(x1) � � � �(xn)i (2.8)dur
h die Funktionaldi�erentiationh�(x1) � � � �(xn)i = 1Zfhg ÆnÆh(x1) � � � Æh(xn) Zfhg �����h=0: (2.9)Umgekehrt haben wir die funktionale Taylorentwi
klungZfhgZ0 = 1Xn=0 1n! Z dDx1 � � � dDxn h(x1) � � � h(xn)G(n)(x1; : : : ; xn): (2.10)Als Fouriertransformierte der Korrelationsfunktionen im Ortsraum sind �uberG(n)(x1; : : : ; xn) = Z nYj=0 dDpj(2�)D eipj �xj! (2�)DÆ� nXj=0 pj�G(n)(p1; : : : ; pn) (2.11)die n{Punkt{Greensfunktionen im Impulsraum de�niert.Wenn wir dies mit den Inhalten des 1. Kapitels verglei
hen (speziell in Anbe-tra
ht der Glei
hungen (1.25) und (2.6)), beoba
hten wir den s
hon mehrmals beton-ten Zusammenhang zwis
hen Statistis
her Physik und Feldtheorie, na
h dem si
h dieZustandssumme Z und das erzeugendes Funktional Z sowie die Hamiltonfunktion



16 KAPITEL 2. �4{THEORIEH und die euklidis
heWirkung S formal entspre
hen1. Die spontane Magnetisierungist deshalb wieder dur
h (1.1) mit �(x) anstelle von �(x) gegeben, und man ist imHinbli
k auf die Bere
hnung thermodynamis
her Gr�o�en in Analogie zu Abs
hnitt1.2 an einem Funktional � interessiert, wel
hes der freien Energie G glei
hzusetzenist. Dazu de�nieren wir zun�a
hst dur
hFfhg := lnZfhg (2.12)ein Funktional F , wel
hes si
h als das erzeugende Funktional der zusammenh�angen-den KorrelationsfunktionenG(n)
 (x1; : : : ; xn) := h�(x1) � � � �(xn)i
 (2.13)herausstellt. Speziell ist in Analogie zu (1.21)h�(x)i
 = h�(x)i; h�(x1)�(x2)i
 = h�(x1)�(x2)i � h�(x1)ih�(x2)i: (2.14)Die Glei
hungen (2.9), (2.10) und (2.11) sind dur
hh�(x1) � � ��(xn)i
 = ÆnÆh(x1) � � � Æh(xn) Ffhg �����h=0 (2.15)ln ZfhgZ0 = 1Xn=0 1n! Z dDx1 � � � dDxn h(x1) � � � h(xn)G(n)
 (x1; : : : ; xn): (2.16)G(n)
 (x1; : : : ; xn) = Z nYj=0 dDpj(2�)D eipj�xj! (2�)DÆ� nXj=0 pj�G(n)
 (p1; : : : ; pn) (2.17)zu ersetzen, wobei dur
h die letzte Beziehung die verbundenen n{Punkt{Greensfunk-tionen im Impulsraum erkl�art sind. Dur
h�fMg := Ffhg � Z dDxh(x)�(x); M(x) = ÆFfhgÆh(x) (2.18)f�uhren wir jetzt das Funktional � als Legendretransformierte von F ein. Die Ma-gnetisierung M bei beliebigem �au�eren Feld h, die f�ur h ! 0 in die spontane Ma-gnetisierung �ubergeht, wird in der Feldtheorie oft konventionsgem�a� mit demselbenSymbol � wie die Feldvariable der Lagrangedi
hte bezei
hnet. Wie in (1.6a) und(1.6b) liefert die Reziprozit�at der LegendretransformationÆ�fMgÆM(x) �����M(x)= ÆFfhgÆh(x) = h(x); Æ�fMgÆM(x) �����M(x)=0 = 0: (2.19)1Dies ist eigentli
h nur bis auf einen Faktor � ri
htig, dem in den beiden Zug�angen eine unter-s
hiedli
he Bedeutung zukommt.



2.1. ERZEUGENDE FUNKTIONALE 17Die Beziehungen (2.15) { (2.17) lauten jetzt�(n)(x1; : : : ; xn) = ÆnÆM(x1) � � � ÆM(xn) �fMg �����M=0 (2.20)�fMg = 1Xn=0 1n! Z dDx1 � � � dDxnM(x1) � � �M(xn) �(n)(x1; : : : ; xn) (2.21)�(n)(x1; : : : ; xn) = Z nYj=0 dDpj(2�)D eipj�xj! (2�)DÆ� nXj=0 pj��(n)(p1; : : : ; pn): (2.22)Damit ist � das erzeugende Funktional der sogenannten n{Punkt{Vertexfunktionen�(n) im Orts{ bzw. Impulsraum.Als Verallgemeinerung der freien EnergieG sind ihreEigens
haften und ihre Bere
hnung f�ur die feldtheoretis
he Bes
hreibung kritis
herPh�anomene von ents
heidender Bedeutung.Bevor wir auf die St�orungstheorie und die diagrammatis
he Entwi
klung derKorrelationsfunktionen im Impulsraum eingehen, nehmen wir eine Erweiterung vor,indem wir die verbundenen Korrelationsfunktionen mit �2{Insertionen,G(n;l)
 (fx; yg) := ��(x1) � � � �(xn) 12 �2(y1) � � � 12 �2(yl)�
 ; (2.23)mit fx; yg = fx1; : : : ; xn; y1; : : : ; ylg und G(n;0)
 � G(n)
 , betra
hten. Dur
h Erweite-rung des Quellterms (2.5) um eine quadratis
he Kopplung an ein Feld t(x), d.h.Lsour
e(�) = �h(x)�(x)� 12 t(x)�2(x); (2.24)erh�alt man das erzeugende Funktional Z = Zfh; tg f�ur die unverbundenen Korre-lationsfunktionen und daraus wieder Ffh; tg := lnZfh; tg. Folgli
h bere
hnen si
hderen Erwartungswerte gem�a���(x1) � � � �(xn) 12 �2(y1) � � � 12 �2(yl)�
= Æn+lÆh(x1) � � � Æh(xn)Æt(y1) � � � Æt(yl) Ffh; tg �����h=0; t=0 (2.25)G(n;l)
 (fx; yg) = 1Xk=0 1k! Z dDyl+1 � � � dDyl+k t(yl+1) � � � t(yl+k)G(n;l+k)
 (fx; yg) (2.26)G(n;l)
 (fx; yg) = Z nYj=0 dDpj(2�)D eipj �xj! lYk=0 dDqk(2�)D eiqk �yk! �� (2�)DÆ� nXj=0 pj + lXk=0 qk�G(n;l)
 (fp; qg); (2.27)



18 KAPITEL 2. �4{THEORIEmit fp; qg = fp1; : : : ; pn; q1; : : : ; qlg. Dur
h Legendretransformation bez�ugli
h desFeldes h erhalten wir wie zuvor das erzeugende Funktional �fM; tg der (n; l){Punkt{Vertexfunktionen �(n;l) mit den Eigens
haften�(n;l)(fx; yg) = Æn+lÆM(x1) � � � ÆM(xn)Æt(y1) � � � Æt(yl) �fM; tg �����M=0; t=0 (2.28)�(n;l)(fx; yg) = 1Xk=0 1k! Z dDyl+1 � � � dDyl+k t(yl+1) � � � t(yl+k) �(n;l+k)(fx; yg) (2.29)�(n;l)(fx; yg) = Z nYj=0 dDpj(2�)D eipj�xj! lYk=0 dDqk(2�)D eiqk �yk! �� (2�)DÆ� nXj=0 pj + lXk=0 qk��(n;l)(fp; qg): (2.30)2.2 St�orungstheorieDie soeben eingef�uhrten Korrelationsfunktionen sind in der St�orungstheorie bere-
henbar. Wir setzen in diesem Abs
hnitt l = 0 vorraus und spalten in (2.6) denwe
hselwirkenden Anteil der Wirkung ab. Das dabei entstehende Funktionalintegralist vom gau�s
hen Typ und ergibtZfhg / exp(� Z dDxLint  ÆÆh(x)!) exp� 12 Z dDxdDy h(x)4(x; y)h(y)� (2.31)mit der Proportionalit�atskonstanten qdet4(x; y). Der Feynman{Propagator imOrtsraum 4(x; y) ist dur
h�� �2 +m20�4(x; y) = Æ4(x� y) (2.32)als Inverses des euklidis
hen Klein{Gordon{Operators de�niert, und seine Fou-riertransformierte ~4(p) bere
hnet si
h wie in (1.33) zu4(x; y) = 1(2�)D Z dDp ~4(p) eip�(x�y); ~4(p) := 1p2 +m20 : (2.33)Dur
h Ausf�uhrung der Funktionalableitungen in (2.31) erh�alt man die Korrelati-onsfunktionen im Ortsraum als unendli
he Reihen in der Kopplungskonstanten g0.F�ur deren explizite Bere
hnung erweist si
h allerdings die aus einer Fouriertrans-formation in den Impulsraum hervorgehende Entwi
klung als zwe
km�a�ig, die imfolgenden am Beispiel der �4{We
hselwirkung (2.3) qualitativ bes
hrieben sei:



2.2. ST �ORUNGSTHEORIE 19Die Impulsraum{Korrelationsfunktionen ers
heinen als Potenzreihen in g0, de-ren KoeÆzienten aus Integralen �uber Produkte von Feynman{Propagatoren be-stehen. Hierf�ur existiert eine suggestive graphis
he Darstellung, die na
h no
h zuformulierenden Regeln auf diese Impulsintegrale f�uhrt. Die beitragenden Diagram-me setzen si
h aus ein{ und auslaufenden Linien zusammen, denen ein Propaga-tor des zugeh�origen Impulses zugeordnet ist, und die si
h jeweils zu viert in inne-ren Punkten (Vertizes) tre�en. Dabei gibt die Anzahl der Vertizes, die mit derje-nigen der so entstehenden S
hleifen (Loops) �ubereinstimmt, die St�orungsordnungund die Anzahl n der �au�eren Impulslinien die Zugeh�origkeit zu einer n{Punkt{Korrelationsfunktion an. Die Beitr�age zur n{Punkt{Funktion (2.8) bestehen ausallen zusammenh�angenden und unzusammenh�angenden Graphen, die �au�ere Lini-en enthalten | die Vakuumdiagramme, d.h. diejenigen ohne �au�ere Beine, k�urzensi
h in (2.9) gerade fort |, und die verbundenen n{Punkt{Funktionen (2.13) um-fassen nur die zusammenh�angenden unter ihnen. Bei der Bere
hnung der n{Punkt{Vertexfunktionen �(n;0), die imMittelpunkt meiner Re
hnungen stehen werden, sindnur die zusammenh�angenden, einteil
henirreduziblen Graphen | d.h. sol
he, diedur
h Auftrennung einer inneren Impulslinie ni
ht in elementarere Diagramme zer-legt werden k�onnen | zu ber�u
ksi
htigen, wobei au�erdem die Propagatoren ihrer�au�eren Beine zu ignorieren sind.F�ur die 2{Punkt{Funktionen liefert die Legendretransformation (2.18) den Zu-sammenhang ��(2;0)(p) = �G(2;0)
 (p)��1: (2.34)Die Untersu
hung aller beitragenden Graphen ergibt unter Verwendung der geome-tris
hen Reihe G(2;0)
 (p) = � ~4�1(p) � �(p)��1und damit ��(2;0)(p) = ~4�1(p) � �(p); (2.35)wobei die Selbstenergie �(p) die Summe aller einteil
henirreduziblen 2{Punkt{Gra-phen mit amputierten �au�eren Beinen ist.2.2.1 Symmetris
he PhaseIn Anlehnung an das Landau{Ginzburg{Modell aus Abs
hnitt 1.5 verwenden wirf�ur die St�orungstheorie in der symmetris
hen Phase eine �4{Theorie, deren Feldva-riable wir jetzt mit �0+ bezei
hnen und f�ur deren na
kte Masse m0m20 � m20+ > 0: (2.36)gelte. Das klassis
he Potential dieser Feldtheorie (Abb. 2.1)V(�0+) = 12 m20+�20+(x) + 14! g0�40+(x) (2.37)



20 KAPITEL 2. �4{THEORIEbesitzt ein absolutes Minimum f�ur �0+(x) � 0 und weist eine ungebro
hene Z2{Symmetrie (d.h. eine Symmetrie unter �0+(x) ! ��0+(x)) auf, die den physika-lis
hen Eigens
haften dieser Phase gere
ht wird. Die Lagrangedi
hte ist wie zuvor............. .............
..........................�


V(�)

Abb. 2.1: Qualitativer Verlauf des Potentials(2.37) als Funktion von � f�ur festes x.dur
h L(�0+) = 12 (��0+(x))2 + 12 m20+�20+(x) + Lint(�0+)Lint(�0+) = 14! g0�40+(x) (2.38)gegeben, und die Feynman{Regeln im Impulsraum, na
h denen man die zu denKorrelationsfunktionen beitragenden Graphen analytis
h auswertet, lauten:1. Jedem Vierer{Vertex ��������entspri
ht ein Faktor �g0 sowie eine Impulserhaltung an allen inneren Punktenmodulo 2� in jeder Impulskomponente.



2.2. ST �ORUNGSTHEORIE 212. Jeder inneren Linie mit Impuls k -kist ein Propagator ~4(k) zugeordnet.3. �Uber alle inneren Impulse k ist mit R dDk(2�)D zu integrieren.4. Jeder Graph tr�agt einen Faktor 1=S, wobei der Symmetriefaktor S die Ord-nung der Symmetriegruppe des Diagramms angibt. Diese umfa�t alle Permu-tationen innerer Linien und Vertizes bei festgehaltenen �au�eren Impulsen, diedie Gestalt des Graphen unver�andert lassen.5. Graphen, die dur
h Permutationen innerer Linien und Vertizes bei ni
ht festge-haltenen �au�eren Impulsen auseinander hervorgehen, sind topologis
h in�aqui-valent; sie m�ussen deshalb einzeln ber�u
ksi
htigt werden, au
h wenn sie den-selben analytis
hen Ausdru
k repr�asentieren.Die Theorie besitzt in der symmetris
hen Phase die Eigens
haft, da� alle n{Punkt{Funktionen mit ungeradem n identis
h vers
hwinden, was insbesondere f�urdie spontane MagnetisierungM(x) = h�0+(x)i ���h(x)=0 = 0unserer Erwartung entspri
ht. Des weiteren treten in der St�orungsreihe keine Dia-gramme auf, die Graphen mit einer �au�eren Impulslinie als Teilgraphen (Tadpole{Diagramme) enthalten.Um jetzt den �Ubergang in die gebro
hene Phase zu vollziehen, ist eine Tem-peraturabh�angigkeit in die Parameter der Lagrangedi
hte zu implementieren. InAnwendung von (1.6b) bzw. (2.19) auf das Potential V(�) ist o�enbar die Wahlm20 / t (2.39)angemessen. Die Ber�u
ksi
htigung der perturbativen Korrekturen, die si
h dur
h dieEinbeziehung von Impulsintegralen ergeben werden, bewirkt jedo
h den Massen{Shift m20 �m20
 / t; (2.40)der in der Renormierung Anla� zur Einf�uhrung eines neuen Massenparameters gibt.



22 KAPITEL 2. �4{THEORIE2.2.2 Phase gebro
hener SymmetrieDiese Phase zei
hnet si
h unter anderem dadur
h aus, da� die Z2{Symmetrie spon-tan gebro
hen ist. Na
h (2.39) setzen wir deshalbm20 < 0 (2.41)an. Das zugeh�orige Potential (Abb. 2.2)V(�) = 12 m20�2(x) + 14! g0�4(x) (2.42)hat neben einem lokalen Maximum in �(x) � 0 zwei absolute Minima in �(x) =�vmin. Dur
h Di�erentiation von (2.42) bere
hnet man............. .............
..........................+vmin

..................V(�)
��vminAbb. 2.2: Qualitativer Verlauf des Potentials(2.42) als Funktion von � f�ur festes x.vmin = q�3!m20=g0 = q3m20�=g0 > 0; (2.43)wobei in der Phase gebro
hener Symmetrie eine na
kte Masse m0� �uberm20� := �2m20 > 0 (2.44)de�niert ist. Da das Funktionalintegral (2.4) dur
h diese Minima dominiert wird,entwi
keln wir das Potential (2.42) um das positive unter ihnen; dies ist glei
hbe-deutend mit der Einf�uhrung eines neuen Feldes �0� dur
h�0�(x) := �(x)� vmin: (2.45)



2.2. ST �ORUNGSTHEORIE 23Na
h Einsetzen von (2.45) in (2.42) erh�alt man na
h einer lei
hten Re
hnungV(�0�) = 12 m20��20�(x) + 13!q3g0m0��30�(x) + 14! g0�40�(x)� 38 m40�g0 ; (2.46)und die Lagrangedi
hte (2.2) geht inL(�0�) = 12 (��0�(x))2 + 12 m20��20�(x) + Lint(�0�)Lint(�0�) = 13!q3g0m0��30�(x) + 14! g0�40�(x)� 38 m40�g0 (2.47)�uber. Wir sehen also, da� wir die St�orungstheorie in der gebro
henen Phase mit ei-nem Feld �0� betreiben k�onnen, wel
hes zus�atzli
h eine We
hselwirkung vomTyp ei-ner �3{Theorie aufweist. Da der konstante Term in der Lagrangedi
hte zur St�orungs-theorie ni
ht beitr�agt, werden wir ihn von nun an verna
hl�assigen.Die vorstehende Betra
htung legt nahe, direkt von einer Lagrangedi
hteL(�) = 12 (��(x))2 + V(�)V(�) = �14 m20��2(x) + 14! g0�4(x) + 38 m40�g0 = 14! g0��2(x)� v2min�2mit m20� > 0 auszugehen. Dies geht mit der Vorstellung einher, da� die spontaneMagnetisierung in der gebro
henen Phase von null vers
hieden ist und si
h aus denstabilen Feldkon�gurationen des klassis
hen Potentials bestimmt, die gerade dur
hdessen Minima bei �vmin gegeben sind. Glei
hzeitig wird dur
h die Ersetzung (2.45)der konstante Term in (2.46) kompensiert.Die spezielle Wahl der Masse m0� in (2.44) bewirkt, da� die Feynman{Regelnder symmetris
hen Phase g�ultig bleiben, sofern man dort �uberall m0+ dur
h sieersetzt. Aufgrund der modi�zierten We
hselwirkung (2.47) tritt allerdings die Regel10 Jedem Dreier{Vertex QQ��entspri
ht ein Faktor �p3g0m0� sowie eine Impulserhaltung an allen innerenPunkten modulo 2� in jeder Impulskomponente.hinzu.Dies hat zur Folge, da� in dieser Theorie der gebro
henen Phase die n{Punkt{Funktionen mit ungeradem n ni
ht mehr vers
hwinden. Dies ist speziell f�ur diespontane Magnetisierung sinnvoll, die na
h (2.45) dur
hM(x) = h�(x)i ���h(x)=0 = �vmin + h�0�(x)i ���h(x)=0 6= 0



24 KAPITEL 2. �4{THEORIEgegeben ist. Diese Glei
hung zeigt, da� si
h die spontane Magnetisierung in der Pha-se gebro
hener Symmetrie aus ihren klassis
hen Werten �vmin (d.h. denjenigen derMean{Field{Approximation) und gewissen Quanten
uktuationen zusammensetzt,die in der St�orungstheorie als Erwartungswert des Feldes �0� zug�angli
h sind.



Kapitel 3Regularisierung der divergentenIntegraleIn Kapitel 2 habe i
h dargelegt, da� die Korrelationsfunktionen im Impulsraum einediagrammatis
he Entwi
klung besitzen, die man mit Hilfe der Feynman{Regelnin Impulsintegrale �ubersetzen kann. Viele dieser Integrale stellen si
h allerdings inAbh�angigkeit von der Dimension D als divergent heraus und k�onnen deshalb ni
htdirekt bere
hnet werden. Diesem Problem, das si
h dur
h die gesamte Quantenfeld-theorie und ihre Anwendung auf die Elementarteil
henphysik zieht, wird dadur
hbegegnet, da� man ihren physikalis
hen Gehalt in einer renormierten Theorie su
ht,in der diese Divergenzen in konsistenter Weise beseitigt sind.Ein wesentli
her S
hritt in diese Ri
htung besteht in der Isolierung der Diver-genzen dur
h geeignete Regularisierungsmethoden, von denen i
h hier zwei, darunterin erster Linie die dimensionelle Regularisierung, dur
h explizite Re
hnungen illu-striere.3.1 Dimensionelle RegularisierungIn der dimensionellen Regularisierung �ubertr�agt man den klassis
hen Integralbe-gri� auf Dimensionen D 2 C, indem man die Integrale dur
h ihre Werte bei denganzzahligen, positiven D de�niert, f�ur die sie a priori existieren, und von dortzu beliebigen Dimensionen analytis
h fortsetzt. Dieses Verfahren, das erstmals inden siebziger Jahren vorges
hlagen und mathematis
h axiomatisiert wurde, hat si
hseither, ni
ht zuletzt wegen seiner Anwendbarkeit auf Ei
hfeldtheorien, als festerBestandteil des Renormierungsprogramms etabliert. (Siehe [tV72, Lei75, Col84℄.)I
h f�uhre jetzt die dimensionelle Regularisierung der in D = 4 und D = 3 diver-genten Impulsintegrale aus, die in unsere sp�ateren Re
hnungen eingehen werden. Zudiesem Zwe
k �uberf�uhrt man sie dur
h die als S
hwinger{Parametrisierung derIntegranden bekannte Identit�at gem�a�1An = 1�(n) Z 10 d� �n�1e��A; A 2 C; n 2 N (3.1)25



26 KAPITEL 3. REGULARISIERUNG DER DIVERGENTEN INTEGRALEin eine Form, in der die D{dimensionale Integration dur
h Zur�u
kf�uhrung auf eingau�s
hes Integral (vgl. hierzu Anhang C.2) ges
hlossen ausgef�uhrt werden kann. DieDivergenzen der urspr�ungli
hen Integrale zeigen si
h dann in den einfa
hen Polenvon Gammafunktionen, die dur
h eine Entwi
klung um die physikalis
he Dimensionder Theorie isoliert werden k�onnen. Zu diesem Zwe
k sind in Anhang C.1 einigeEigens
haften der Gammafunktion zusammengestellt.Wie in den obigen Formeln bereits angedeutet ist, will i
h von nun an den Vektor-
harakter der euklidis
hen Impulse dur
h Fettdru
k hervorheben; das Skalarproduktist weiterhin mit einem Punkt bezei
hnet. (Dabei ist k2 = k � k = k2.)3.1.1 Regularisierung der 1{Loop{IntegraleIntegral J1Wir betra
hten in beliebiger Dimension D das IntegralJ1(D) := Z dDk(2�)D 1k2 +m20 : (3.2)Aufgrund seines Verhaltens J1(D) / Z 10 dk kD�1k2 + 1erkennt man, da� es f�ur k ! 1 im Fall D = 4 quadratis
h und im Fall D = 3linear divergent ist. Zur Bere
hnung von J1 substituiere i
h zun�a
hst k ! k=m0und erhalte J1(D) = (m20)D=2�1(2�)D Z dDk 1k2 + 1 :Jetzt benutzt man die S
hwinger{Parametrisierung (3.1) des Integranden und�ndet na
h Ausf�uhrung des gau�s
hen Integrals (C.15):J1(D) = (m20)D=2�1(2�)D Z 10 d� Z dDk e��(k2+1) = (m20)D=2�1(2�)D Z 10 d� e�� Z dDk e��k2= (m20)D=2�1(2�)D �D=2 Z 10 d� e����D=2:Die Integraldarstellung der Gammafunktion (C.1) liefert dannJ1(D) = (m20)D=2�1(4�)D=2 ��1 � D2 � : (3.3)Man kann jetzt die Divergenz des Integrals f�ur D = 4 isolieren. Dazu setze i
hD = 4 � �, � > 0, und verwende die Reihenentwi
klung der allgemeinen Exponenti-alfunktion x� = e� lnx = 1 + � lnx+ 12 �2 ln2 x+O(�3); x 2 R+ (3.4)



3.1. DIMENSIONELLE REGULARISIERUNG 27sowie die Entwi
klung der Gammafunktion um ihre Polstellen (C.5)��1 � D2 � = ���1 + �2� = �2� � 1 + 
 +O(�) (3.5)mit dem Ergebnis:J1(4 � �) = m20(4�)2 �1� �2 ln(m20) +O(�2)��1 + �2 ln(4�) +O(�2)� �� ��2� � 1 + 
 +O(�)�= � m2016�2  2� � ln m204� !� 
 + 1 +O(�)! : (3.6)Die Divergenz des Integrals J1 f�ur D ! 4 zeigt si
h demna
h als einfa
her Pol f�ur�! 0.Im dreidimensionalen Fall erh�alt man dur
h Setzen von D = 3 � � mit��1 � D2 � = ���12 + �2� = ���12�+ �2 ddz �(z) ���z=� 12 +O(�2)= �2p� (1 +O(�)) (3.7)einen endli
hen Wert im Grenzwert �! 0, obwohl das urspr�ungli
he Integral au
hin D = 3 no
h divergent ist. Dies ist eine Eigens
haft der dimensionellen Regu-larisierung in ungeradzahligen Dimensionen, die auf die Bere
hnung physikalis
herGr�o�en allerdings keine Auswirkungen hat. Man ignoriert deshalb die Divergenz desIntegrals J1 und f�uhrt nur seinen endli
hen AnteilJ1(3) � J1(3 � �) = m0(4�)3=2 �1 � �2 ln(m20) +O(�2)��1 + �2 ln(4�) +O(�2)� �� ��2p� (1 +O(�))�= �m04� (1 +O(�)) (3.8)mit.Aus (3.3) und (C.4a) bekommt man f�ur n 2 N n f1g dur
h wiederholte Di�e-rentiation na
h m20 die IntegraleJn(D) := Z dDk(2�)D 1(k2 +m20)n = � 1n� 1 ��m20 Jn�1(D)= 1(n� 1)! (m20)D=2�n(4�)D=2 ��n� D2 � :Speziell f�ur n = 2; 3; 4 divergiert in D = 4 nur no
h das Integral J2, d.h.J2(4) = Z d4k(2�)4 1(k2 +m20)2 = I1(0; 4 � �) (3.9a)J3(4) = Z d4k(2�)4 1(k2 +m20)3 = limD!4J3(D) = 132�2m20 (3.9b)J4(4) = Z d4k(2�)4 1(k2 +m20)4 = limD!4J4(D) = 196�2m40 ; (3.9
)



28 KAPITEL 3. REGULARISIERUNG DER DIVERGENTEN INTEGRALEw�ahrend in D = 3 bereits alle Integrale endli
h sind:J2(3) = Z d3k(2�)3 1(k2 +m20)2 = limD!3J2(D) = 18�m0 (3.10a)J3(3) = Z d3k(2�)3 1(k2 +m20)3 = limD!3J3(D) = 132�m30 (3.10b)J4(3) = Z d3k(2�)3 1(k2 +m20)4 = limD!3J4(D) = 164�m50 : (3.10
)Integral I1Gegeben sei jetzt das IntegralI1(p;D) := Z dDk(2�)D 1(k2 +m20)[(k � p)2 +m20℄ ; (3.11)wel
hes wegen I1(0;D) / Z 10 dk kD�1(k2 + 1)2f�ur D = 4 no
h logarithmis
h divergent ist. I
h substituiere wieder k ! k=m0 undverwende f�ur beide Nennerfaktoren des Integranden die S
hwinger{Parametrisie-rung (3.1). Dann folgt mit p=m0 ! p:I1(p;D)= (m20)D=2�2(2�)D Z dDk 1(k2 + 1)[(k � p)2 + 1℄= (m20)D=2�2(2�)D Z 10 d�d� Z dDk expn� h(�+ �)k2 � 2�p � k + �+ � + �p2io= (m20)D=2�2(2�)D Z 10 d�d�  �� + �!D=2 exp(� "�+ � + �p2 � �2p2�+ �#)= (m20)D=2�2(4�)D=2 Z 10 d�d�(�+ �)D=2 exp(�(�+ �)� ��p2�+ �) ;wobei wieder das Integral (C.15) ausgef�uhrt wurde. Dur
h die Substitutionens := �+ �; 0 < s <1; t := ��+ � ; 0 < t < 1errei
ht man die (umkehrbar stetig di�erenzierbare) Koordinatentransformationf :  st ! �!  �� ! =  sts(1� t) ! (3.12)mit Funktionalmatrix und zugeh�origer Funktionaldeterminante(Df)j(s;t) := �(�; �)�(s; t) =  t s(1 � t) �s ! ; det(Df)j(s;t) = �s:



3.1. DIMENSIONELLE REGULARISIERUNG 29Dies liefert mit der Transformationsformel f�ur mehrdimensionale Integrale:I1(p;D) = (m20)D=2�2(4�)D=2 Z 10 dt Z 10 ds s�D=2 ��� det(Df)j(s;t) ��� �� expn�s �1 + t(1� t)p2�o= (m20)D=2�2(4�)D=2 Z 10 dt Z 10 ds s1�D=2 expn�s �1 + t(1� t)p2�o :Mit der Substitutionu := s �1 + t(1� t)p2� ; duds = 1 + t(1� t)p2; u(0) = 0; u(1) =1folgt s
hlie�li
h mit der Integraldarstellung der Gammafunktion (C.1):I1(p;D) = (m20)D=2�2(4�)D=2 Z 10 du e�uu1�D=2 Z 10 dt �1 + t(1� t)p2�D=2�2= (m20)D=2�2(4�)D=2 ��2� D2 �Z 10 dt �1 + t(1� t)p2�D=2�2 : (3.13)Dur
h Di�erenzieren1 bekommt man��p2 I1(p;D) = �D2 � 2� (m20)D=2�3(4�)D=2 ��2� D2 �Z 10 dt t(1� t)[1 + t(1� t)p2℄3�D=2 (3.14)als Ableitung des Integrals na
h dem �au�eren Impulsquadrat. Dieses Integral isto�enbar f�ur D = 4 bereits endli
h, da die Di�erentiation die Potenz des Integrati-onsimpulses im Nenner erh�oht.Wie zuvor entwi
kelt man in (3.13) alle Faktoren um D = 4, was mit��2 � D2 � = �� �2� = 2� � 
 +O(�) (3.15)na
h (C.5) auf I1(0; 4� �)= 1(4�)2 �1� �2 ln(m20) +O(�2)��1 + �2 ln(4�) +O(�2)�� 2� � 
 +O(�)� �� 0�Z 10 dt �1� �2 ln �1 + t(1� t)p2�+O(�2)� �����p2=01A= 116�2  2� � ln m204� !� 
 +O(�)! (3.16)1Man bea
hte, da� dabei dur
h die anf�angli
he Ersetzung p=m0 ! p jetzt ein zus�atzli
herFaktor m20 im Nenner auftritt.



30 KAPITEL 3. REGULARISIERUNG DER DIVERGENTEN INTEGRALEf�uhrt. Analog ist ��p2 I1(p; 4� �) ����p2=0= � �2 1(4�)2m20  2� � ln m204� !� 
 +O(�)!�� Z 10 dt t(1� t)(1 + t(1� t)p2) �1 � �2 ln �1 + t(1� t)p2�+O(�2)� �����p2=0= � �2 1(4�)2m20  2� � ln m204� !� 
 +O(�)! Z 10 dt t(1� t)| {z }= 16 +O(�2)!;und es existiert der Grenzwert��p2 I1(p; 4) ����p2=0 = lim�!0 ��p2 I1(p; 4� �) ����p2=0 = � 196�2m20 : (3.17)Das Integral I1 und damit erst re
ht seine Ableitung na
h dem �au�eren Im-pulsquadrat sind im Fall D = 3 endli
h und k�onnen deshalb, wie im Anhang B.1vorgef�uhrt wird, direkt bestimmt werden. In (3.13) und (3.14) kommt dies dadur
hzum Ausdru
k, da� dort die Grenzwerte D! 3 existieren:I1(p; 3) = limD!3 I1(p;D) = 14�p ar
tan� p2m0� ; I1(0; 3) = 18�m0 (3.18)und ��p2 I1(p; 3) ����p2=0 = limD!3 ��p2 I1(p;D) ����p2=0 = � 196�m30 : (3.19)3.1.2 Regularisierung des 2{Loop{Integrals I2Von den Graphen, die in 2. Ordnung der St�orungstheorie zu ber�u
ksi
htigen sind,weist nur einer inD = 3 einen Divergenztyp auf, der si
h von den soeben behandeltenDivergenzen unters
heidet. Das zugeh�orige Integral ist f�ur beliebiges D dur
hI2(p;D) := Z dDk1dDk2(2�)2D 1(k21 +m20)(k22 +m20)[(p+ k1 + k2)2 +m20℄ (3.20)gegeben. Aus (3.13) ersehen wirI2(0;D) / Z 10 dk1 kD�11k21 + 1 I1(�k1;D)| {z }/kD�41 / Z 10 dk1 k2D�51k21 + 1 ;so da� I2 f�ur D = 3 logarithmis
h divergent ist. Die Ableitung na
h dem �au�erenImpulsquadrat ist wie im Falle des Integrals I1 endli
h.



3.1. DIMENSIONELLE REGULARISIERUNG 31Dimensionelle Regularisierung von I2I
h verfahre in Analogie zu den vorigen Re
hnungen und vereinfa
he das Integralf�ur zun�a
hst beliebiges D soweit, bis na
h Setzung von D = 3 � � die Divergenzals Pol im Limes � ! 0 in Ers
heinung tritt. Ausgehend von den Substitutionenki ! ki=m0 f�ur i = 1; 2 betra
hten wirI2(p;D) = (m20)D�3(2�)2D Z dDk1dDk2 1(k21 + 1)(k22 + 1)[(p+ k1 + k2)2 + 1℄mit p=m0 ! p, und man gelangt mit der S
hwinger{Parametrisierung (3.1) desIntegranden sowie zweimaliger Anwendung des gau�s
hen Integrals (C.15), mit des-sen Hilfe man die k2{ und k1{Integrationen na
heinander ausf�uhrt, zuI2(p;D)= (m20)D�3(2�)2D Z 10 d�d�d
 Z dDk1dDk2 exp�� h(� + 
)k21 + (� + 
)k22+2
k1 � k2 + 2
p � (k1 + k2) + 
p2 + (� + � + 
)i�= (m20)D�3(2�)2D Z 10 d�d�d
 Z dDk1dDk2 exp�� h(� + 
)k22 + 2(
k1 + 
p) � k2+(�+ 
)k21 + 2
p � k1 + 
p2 + (�+ � + 
)i�= (m20)D�3(2�)2D Z 10 d�d�d
  �� + 
!D=2 Z dDk1 exp( � ��� + �
 + 
�� + 
 k21+2 �
� + 
 p � k1 + �
� + 
 p2 + (� + � + 
)�)= (m20)D�3(4�)D Z 10 d�d�d
(�� + �
 + 
�)D=2 exp(�(�+ � + 
)� ��
p2�� + �
 + 
�) ;(3.21a)bzw. I2(0;D) = (m20)D�3(4�)D Z 10 d�d�d
(�� + �
 + 
�)D=2 e�(�+�+
): (3.21b)Dur
h die Substitutionens := �+ � + 
; 0 < s <1; t := �+ ��+ � + 
 ; u := ��+ � ; 0 < t; u < 1errei
ht man die (umkehrbar stetig di�erenzierbare) Koordinatentransformationf : 0B� stu 1CA �! 0B� ��
 1CA = 0B� stust(1� u)s(1 � t) 1CA (3.22)



32 KAPITEL 3. REGULARISIERUNG DER DIVERGENTEN INTEGRALEmit Funktionalmatrix und Funktionaldeterminante(Df)j(s;t;u) := �(�; �; 
)�(s; t; u) = 0B� tu su tst(1� u) s(1� u) �st1� t �s 0 1CA ; det(Df)j(s;t;u) = �s2t:Na
h der Transformationsformel f�ur mehrdimensionale Integrale folgt:I2(0;D)= (m20)D�3(4�)D Z 10 ds Z 10 dtdu ��� det(Df)j(s;t;u) ��� e�ssD [t2u(1� u) + t(1� u)(1� t) + tu(1� t)℄D=2= (m20)D�3(4�)D Z 10 ds e�ss2�D Z 10 dtdu t1�D2[1� t+ tu(1� u)℄D=2= (m20)D�3(4�)D �(3 �D) Z 10 dtdu t1�D2[1� t+ tu(1� u)℄D=2 ; (3.23)im letzten S
hritt habe i
h wieder die Integraldarstellung der Gammafunktion (C.1)verwendet. Jetzt setzt man D = 3� � und entwi
kelt die vorstehende Glei
hung um� = 0, wobei speziell na
h (C.5)�(3 �D) = �(�) = 1� � 
 +O(�) (3.24)ist. Die Divergenz des Integrals I2 o�enbart si
h also wieder als einfa
her Pol derGammafunktion. Insgesamt ergibt si
hI2(0; 3� �)= 1(4�)3 �1� � ln(m20) +O(�2)� �1 + � ln(4�) +O(�2)��1� � 
 +O(�)��� Z 10 dtdu 1ptq[1� t+ t (1� u)u℄3 �1 + �2 ln �t� t2 + t2u(1 � u)�+O(�2) �= 1(4�)3  1� � ln m204� !� 
 +O(�)! Z 10 dtdu 1ptq[1 � t+ t (1 � u) u℄3+ �2 Z 10 dtdu t ln �t� t2 + t2u(1� u)�q[t� t2 + t2u(1� u)℄3 +O(�2)!;und es verbleibt nur no
h die Bestimmung der Parameterintegrale.Mit Q := t�(1�u+u2)t2 ergibt im ersten Integral die Na
heinanderausf�uhrungder t{ und u{Integrationen auf die Integraldarstellung der Betafunktion (C.6):Z 10 dudt 1ptq[1� t+ t (1 � u)u℄3 = Z 10 du Z 10 dt tpQ3 = Z 10 du " 2tpQ ����10 #= 2 Z 10 duu�1=2(1 � u)�1=2 = 2B �12 ; 12�= 2�: (3.25)



3.1. DIMENSIONELLE REGULARISIERUNG 33Der Wert des zweiten Integrals wird in die sp�ateren Re
hnungen ni
ht eingehen, soda� i
h auf seine ges
hlossenen Bere
hnung verzi
hte:C := Z 10 dtdu t ln �t� t2 + t2u(1 � u)�q[t� t2 + t2u(1� u)℄3 � �15:0448:Man �ndet also das EndresultatI2(0; 3� �) = 132�2  1� � ln m204� !+ C4� � 
 +O(�)! : (3.26)Bestimmung von I 02Zur Bestimmung von I 02 := ��p2 I2(p;D) ����p2=0; D=3 (3.27)di�erenziere i
h (3.21a) und erhalte (man bea
hte wieder den Faktor 1=m20 dur
hdie R�u
ksubstitution des �au�eren Impulses):��p2 I2(p;D) ����p2=0 = �(m20)D�4(4�)D Z 10 d�d�d
 ��
 e�(�+�+
)(�� + �
 + 
�)1+D=2 : (3.28)F�uhrt man wieder die Variablensubstitution (3.22) dur
h, so folgt��p2 I2(p;D) ����p2=0= �(m20)D�4(4�)D Z 10 ds Z 10 dtdu ����det(Df)���(s;t;u) ���� s3t2u(1� u)(1� t)s2+D [t2u(1� u) + t(1� t)℄1+D=2 e�s= �(m20)D�4(4�)D Z 10 ds e�ss3�D Z 10 dtdu u(1� u)(1� t)t2�D2[1� t+ tu(1� u)℄1+D=2= �(m20)D�4(4�)D �(4 �D) Z 10 dtdu u(1� u)(1� t)t2�D2[1� t+ tu(1� u)℄1+D=2 ; (3.29)und der Grenzwert D! 3 existiert:I 02 = limD!3 ��p2 I2(p;D) ����p2=0 = � 164�3m20 Z 10 dtdu ptu(1� u)(1� t)q[1 � t+ tu(1� u)℄5 :Mit R := 1� t+ tu� tu2 undZ 10 du upR5 = 163(3t� 4)2(1 � t)1=2 � 23(3t� 4)(1 � t)3=2



34 KAPITEL 3. REGULARISIERUNG DER DIVERGENTEN INTEGRALEbere
hnet man Z 10 dtdu ptu(1� u)(1� t)q[1 � t+ tu(1� u)℄5= Z 10 dtpt (1� t) "Z 10 du upR5 � Z 10 du u2pR5 #= Z 10 dtpt (1� t) " Z 10 du upR5 � 12t(1� t)3=2 � �54 � 1t�Z 10 du upR5 #= Z 10 dtpt " (1� t)�1t � 14�Z 10 du upR5 � 12t(1 � t)1=2 #= 83 Z 10 dtpt (1 � t)1=2(3t � 4)2 = 16 Z 10 dt t1=2(1� t)1=2�1 � 34 t��2= 16 B �32 ; 32� F �2; 32; 3; 34� = 2�27 :In der letzten Zeile bezei
hnen B die Betafunktion und F die hypergeometris
heFunktion, f�ur deren De�nition wir auf Anhang C.1 verweisen. Dies liefert s
hlie�li
hI 02 = limD!3 ��p2 I2(p;D) ����p2=0 = � 1864�2m20 : (3.30)Bestimmung von ~I2Abs
hlie�end ist no
h der bald ben�otigte Wert des Integrals~I2 := ��m20 I2(p;D) ����p2=0;D=3 (3.31)zu bere
hnen. Die Di�erentiation si
hert die Konvergenz des Integrals, da si
h diePotenz des Integrationsimpulses imNenner des Integranden erh�oht. I
h setze deshalbsofort p = 0 und erhalte aus (3.23) mit D = 3 � �:��m20 I2(0; 3� �) = ��m20 (m20)D�3(4�)D �(3 �D) Z 10 dudt t1�D2[1� t+ tu(1� u)℄D=2 �����D=3��= ��m20 (m20)��(4�)3�� �(�) Z 10 dudt t ��12[1� t+ tu(1� u)℄ 3��2= � ��(�)| {z }=1+O(�) (m20)���1(4�)3�� Z 10 dudt t ��12[1� t+ tu(1� u)℄ 3��2 :Aus (3.24) ersieht man, da� der Limes �! 0 existiert, und mit (3.25) ergibt si
h:~I2 = lim�!0 ��m20 I2(0; 3� �) = � 1(4�)3m20 Z 10 dudt 1ptq[1 � t+ t (1 � u) u℄3| {z }=2�= � 132�2m20 : (3.32)



3.2. PAULI{VILLARS{REGULARISIERUNG 353.2 Pauli{Villars{RegularisierungIn Abs
hnitt 3.1.1 haben wir gesehen, da� si
h die lineare Divergenz des Integrals J1in D = 3 dur
h die dimensionelle Regularisierung ni
ht isolieren l�a�t. I
h gebe des-halb mit der Pauli{Villars{Regularisierung (vgl. [PV49, ZJ89℄) eine alternativeRegularisierungsmethode an, die diese Divergenz zun�a
hst bewahrt, und mit derenHilfe i
h im Kapitel 8 demonstrieren werde, da� dieser Umstand | zumindest die1{Loop{Re
hnung betre�end | auf die Endresultate keinen Ein
u� hat.Das Prinzip dieser (ni
ht ei
hinvarianten) Regularisierung ist es, die auftreten-den Propagatoren in der Form1k2 +m20 �! 1k2 +m20 � 1k2 + �2 ; � > 0 (3.33)zu transformieren, so da� man im Grenzwert �!1 den urspr�ungli
hen Ausdru
kzur�u
kerh�alt. In diesem Sinne wirdJ1(3) �! J1(3; �) := Z d3k(2�)3 �2 �m20(k2 +m20)(k2 + �2) (3.34)zu einem konvergenten Integral, wel
hes man jetzt f�ur endli
hes � ausf�uhren kann.Na
h �Ubergang zu sph�aris
hen Polarkoordinaten und Partialbru
hzerlegung des In-tegranden erhalte i
hJ1(3; �) = �2 �m202�2 Z 10 dk k2(k2 +m20)(k2 + �2)= �2 �m202�2 ( �2�2 �m20 Z 10 dk 1k2 + �2 + m20m20 � �2 Z 10 dk 1k2 +m20)= 12�2 �� Z 10 dk 1k2 + 1 � m0 Z 10 dk 1k2 + 1� ;woraus mit (C.10) J1(3; �) = 14� (��m0) (3.35)folgt. Die Divergenz des Integrals J1(3) zeigt si
h jetzt f�ur � ! 1 im linearenVerhalten von J1(3; �). Wir beoba
hten insbesondere, da� der endli
he Anteil desIntegrals, der in die weiteren Re
hnungen eingeht, mit dem in dimensioneller Regu-larisierung bestimmten Wert (3.8) �ubereinstimmt.



Kapitel 4RenormierungDie Divergenzstruktur der �4{Theorie und die mangelnde physikalis
he Bedeutungder in die Lagrangedi
hte ad ho
 eingef�uhrten Parameter m0 und g0 (sowie indirektau
h des Impuls{Cuto�s �) ma
hen eine im Rahmen der Quantenfeldtheorie alsRenormierung bekannte Umparametrisierung notwendig, die f�ur die in dieser Arbeitangestrebte perturbative Bere
hnung universeller Gr�o�en unverzi
htbar ist.Deswegen bietet dieses Kapitel neben der Einf�uhrung der Renormierungss
he-mas die Gelegenheit, den Zusammenhang der Renormierung mit der Theorie derkritis
hen Ph�anomene zu umrei�en.4.1 Renormierung und Kritis
he Ph�anomeneDas Konzept der Renormierung l�a�t si
h vom feldtheoretis
hen Standpunkt wie folgt
harakterisieren (siehe z.B. [Cal76, Col84℄):Die �4{Theorie weist auf Ebene der (na
kten) Gr�o�en m0 und g0 der Lagrange-di
hte (2.2) Divergenzen auf, die si
h am deutli
hsten in der st�orungstheoretis
henEntwi
klung der Impulsraum{Korrelationsfunktionen zeigen. (Man unters
heidetdabei grunds�atzli
h zwis
hen Ultraviolett{ und Infrarotdivergenzen, die si
h f�ur In-tegrationsimpulse k ! 1 und k ! 0 o�enbaren. Da wir aber auss
hlie�li
h einemassive �4{Theorie betra
hten, spielen die letzteren hier keine Rolle.) Im Zuge derRenormierung f�uhrt man deshalb eine renormierte Masse mR und eine renormier-te Koplung gR ein, die gerade so gew�ahlt sind, da� die Korrelationsfunktionen inAbh�angigkeit dieser Parameter f�ur alle Impulse endli
he Werte besitzen und somiteine physikalis
he Interpretation erlauben. Die zuvor dur
h eine Regularisierung(vgl. Kapitel 3) isolierten Unendli
hkeiten der Theorie werden demna
h dur
h ge-eignete Renormierungsbedingungen in die analytis
hen Beziehungen zwis
hen denna
kten und den renormierten Parametern �ubertragen. Diese Relationen erlaubenwiederum auf der Ebene der Lagrangedi
hte die Konstruktion von lokalen Gegenter-men, die in jeder Ordnung der St�orungstheorie eine Kompensation der Divergenzenerzwingt. Ist dies dur
h eine endli
he Anzahl von Gegentermen m�ogli
h, von de-nen jeder eine unendli
he (oder endli
he) Potenzreihe in der renormierten Kopplung36



4.1. RENORMIERUNG UND KRITISCHE PH�ANOMENE 37darstellt, so ist die Theorie renormierbar (oder superrenormierbar); andernfalls istsie ni
ht renormierbar. Diese Renormierbarkeitseigens
haft h�angt ents
heidend vonder Dimension D ab. Eine einfa
he Betra
htung zeigt, da� die �4{Theorie (bzw. die�3{Theorie) f�ur D = 4 (bzw. D = 6) renormierbar und f�ur D < 4 (bzw. D < 6)sogar superrenormierbar ist.F�ur kritis
he Ph�anomene s
heint diese Argumentation auf den ersten Bli
k ni
htgere
htfertigt zu sein. Denn trotz der Wahl eines kontinuierli
hen Skalarfeldes alsOrdnungsparameter besitzt die Theorie dur
h die Gitterstruktur des Festk�orpersweiterhin einen intrinsis
hen Impuls{Cuto� �, der als Inverses der Gitterkonstan-ten a die Impulse der Fourierkomponenten des Feldes na
h oben begrenzt. Demzu-folge weisen alle zu den Korrelationsfunktionen beitragenden Impulsintegrale einenat�urli
he Cuto�{Regularisierung auf, und wir haben eine endli
he Theorie vor uns.An fr�uherer Stelle ist aber s
hon betont worden, da� das kritis
he Verhalten (unddie daraus resultierenden makroskopis
hen Eigens
haften) von Phasen�uberg�angen2. Ordnung dur
h die langrei
hweitigen Fluktuationen des Ordnungsparameters be-stimmt sind. Diese Tatsa
he erfordert die Unabh�angigkeit der Theorie von allenmikroskopis
hen Parametern, und damit insbesondere vom Cuto� �. Die Existenzdes Grenzwertes � ! 1 (bzw. � ! 0 im Falle der dimensionellen Regularisie-rung), die erst in einer renormierten Feldtheorie gesi
hert ist, ers
heint damit alsVorraussetzung f�ur die Universalit�at von kritis
hen Exponenten und deren Ampli-tudenverh�altnissen.Die in K�urze dur
hzuf�uhrende Massenrenormierung ist au�erdem in der Beob-a
htung begr�undet, da� die na
kte Masse m0, deren Quadrat na
h (2.39) no
h linearin der reduzierten Temperatur t war, in der St�orungstheorie den Phasen�ubergangni
ht mehr dur
h ihr Vers
hwinden f�ur t! 0 steuert. Sie strebt vielmehr in diesemGrenzproze�, gem�a� (2.40) in der Formt = m20 �m20
; (4.1)gegen eine kritis
he na
kte Masse m0
, die im allgemeinen von null vers
hieden und,wie z.B. in [BB85, BBMN87℄ begr�undet, perturbativ ni
ht bere
henbar ist. Ausdiesem Grund f�uhrt man mit der renormierten Masse mR (die glei
hzeitig in einemeinfa
hen Zusammenhang mit der Korrelationsl�ange steht) einen Parameter in dieTheorie ein, in dessen (bez�ugli
h seines Quadrates ni
htlinearem) Vers
hwinden f�urt! 0 si
h das Errei
hen des kritis
hen Punktes manifestiert:mRjm0=m0
 = 0: (4.2)Die renormierte St�orungstheorie umfa�t neben der Massenrenormierung, die inD = 3 zur Beseitigung aller Divergenzen bereits ausrei
hend ist, eine Wellenfunkti-onsrenormierung und eine Renormierung der Kopplungskonstanten. Diese zus�atzli-
hen Bedingungen garantieren au
h in D = 4 divergenzfreie Korrelationsfunktionenund beseitigen die in einer masselosen Theorie entstehenden Infrarotdivergenzen1.1Dies ist insbesondere in der �{Entwi
klung erforderli
h, da man dort von D = 4 zu D = 3extrapolieren will.



38 KAPITEL 4. RENORMIERUNGErst in der Renormierungsgruppentheorie zeigt si
h, da� die dimensionslose renor-mierte Kopplungskonstante f�ur die Physik in der Umgebung des kritis
hen Punktesvon grunds�atzli
her Bedeutung ist.4.2 Renormierungs
hemaMan betra
hte die einkomponentige, euklidis
he �4{Theorie, deren Gestalt in sym-metris
her und gebro
hener Phase in Abs
hnitt 2.2 eingef�uhrt worden ist. I
h lassewieder beliebige Dimensionen D zu und hebe an geeigneter Stelle den Fall D = 3hervor. Soweit Verwe
hselungen auszus
hlie�en sind, wird von einer Indizierung mit+ bzw. � f�ur die jeweilige Phase abgesehen.Wie in der bereits zitierten Lehrbu
hliteratur �ubli
h beginne i
h mit den Ver-texfunktionen (von nun an mit einem Index 0 versehen)�(n;l)0 (fp; qg;m0; g0);fp; qg = fp1; : : : ; pn; q1; : : : ; qlg, die na
h Abs
hnitt 2.1 dur
h Legendre{ und Fou-riertransformationen aus den Erwartungswerten��0(x1) � � � �0(xn) 12�20(y1) � � � 12�20(yl)�
entstehen. Die Wirkung ist in konventionellen Einheiten dimensionslos, so da� diena
kte Kopplung die Massendimension 4 �D tr�agt und mitu0 := g0m4�D0 ; u0 := g0m0 ; D = 3 (4.3)eine dimensionslose na
kte Kopplung u0 eingef�uhrt wird. Da i
h eine massive Theorieverwende, kann i
h die renormierten Parameter der Theorie dur
h Renormierungs-bedingungen an die Vertexfunktionen de�nieren, die vers
hwindende �au�ere Impulseals Renormierungspunkte besitzen. Das Renormierungss
hema ist dann dur
h dasVerhalten des Propagators f�ur kleine Impulse (d.h. dur
h seine Taylorentwi
klungum p2 = 0) bestimmt:��(2;0)0 (p;m0; g0) = �G(2;0)
 (p;m0; g0)��1 = 1Z3�m2R + p2 +O(p4)�; (4.4)wobei die renormierte Masse mR dur
hm2R := �(2;0)0 (0;m0; g0)��(2;0)0 (p;m0;g0)�p2 ���p2=0 = �Z3(u0)�(2;0)0 (0;m0; g0) (4.5)und die Wellenfunktionsrenormierung Z3 = Z3(u0) dur
h1Z3(u0) := ���(2;0)0 (p;m0; g0)�p2 ����p2=0 (4.6)



4.2. RENORMIERUNGSCHEMA 39de�niert sind. Mit (1.8) identi�zieren wir die Korrelationsl�ange alsmR = 1� : (4.7)Des weiteren ist eine Renormierungskonstante Z2 = Z2(u0) dur
h die Vors
hrift1Z2(u0) := ��(2;1)0 (f0; 0g;m0; g0) (4.8)gegeben. Aus Abs
hnitt 2.1 folgt, da� man aufgrund der Identit�at��t ����g0 = ��m20 ����g0 (4.9)die Vertexfunktionen mit �2{Insertionen (bis auf (n; l) = (0; 0)) dur
h�(n;l+1)0 (fp; 0; qg;m0; g0) = ��t �(n;l)0 (fp; qg;m0; g0) = ��m20 �(n;l)0 (fp; qg;m0; g0)(4.10)aus den gew�ohnli
hen Vertexfunktionen erh�alt. F�ur (n; l) = (2; 0) geht (4.8) damitin 1Z2(u0) = � ��m20 �(2;0)0 (0;m0; g0) (4.11)�uber. Auf diese Weise h�angen die renormierten Felder �R und (�2R)R �uber die Be-ziehungen �0(x) = qZ3(u0)�R(x) (4.12a)�20(x) = Z3(u0)Z2(u0) [�R(x)℄2R (4.12b)mit den Feldern der Lagrangedi
hte zusammen.Bis hierher behalten alle Glei
hungen sowohl in der symmetris
hen als au
h inder gebro
henen Phase ihre G�ultigkeit.4.2.1 Symmetris
he PhaseDie De�nition der renormierten Kopplung g(4)R in der symmetris
hen Phase erfolgt�uber den Wert der 4{Punkt{Funktion bei vers
hwindenden �au�eren Impulsen. Wirsetzen g(4)R := �Z23(u0)�(4;0)0 (f0g;m0; g0) = g0 Z23 (u0)Z1(u0) ; (4.13)wobei f�ur die Renormierungskonstante Z1 = Z1(u0)1Z1(u0) := � 1g0 �(4;0)0 (f0g;m0; g0) (4.14)



40 KAPITEL 4. RENORMIERUNGgilt. Dur
h uR := g(4)Rm4�DR ; uR := g(4)RmR ; D = 3 (4.15)ist dann die dimensionslose renormierte Kopplung uR erkl�art.Die Glei
hungen (4.5) und (4.13) bzw. (4.15) gestatten es nun, m0 als Funk-tion von mR, g0 als Funktion von gR und s
hlie�li
h u0 als Funktion von uR zus
hreiben. Mit Hilfe dieser Relationen, die jeweils Potenzreihen in der renormiertenKopplung sind, k�onnen wir in den Renormierungsfunktionen Zi, i = 1; 2; 3, die na
k-te Kopplung u0 eliminieren, so da� wir diese von nun an als Funktionen Zi = Zi(uR)au�assen. Mit der dimensionslosen Kopplung u, de�niert dur
hu := g0m4�DR ; u := g0mR ; D = 3 (4.16)als Funktion von uR, erhalten wir aus (4.13) und (4.15) die Beziehungeng0 = m4�DR uR Z1(uR)Z23 (uR) ; u = uR Z1(uR)Z23 (uR): (4.17)Na
h De�nition (2.25) ist der Zusammenhang zwis
hen den na
kten und den re-normierten (n; l){Vertexfunktionen (mit Ausnahme von (n; l) = (0; 2), f�ur die einemultiplikative Renormierung ni
ht m�ogli
h ist) dur
h die Glei
hung�(n;l)0 (fp; qg;m0; g0) = [Z3(uR)℄l�n2 [Z2(uR)℄�l �(n;l)R (fp; qg;mR; uR)= [Z3(uR)℄�n2 "Z2(uR)Z3(uR)#�l �(n;l)R (fp; qg;mR; uR) (4.18)gegeben.Das Renormierungss
hema in der symmetris
hen Phase fassen wir dur
h denSatz von Renormierungsbedingungen�(2;0)R (0;mR; uR) = �m2R (4.19a)��p2 �(2;0)R (p;mR; uR) ����p2=0 = �1 (4.19b)�(4;0)R (f0g;mR; uR) = �m4�DR uR = �g(4)R (4.19
)�(2;1)R (f0; 0g;mR; uR) = �1 (4.19d)zusammen.4.2.2 Phase gebro
hener SymmetrieDie gem�a� (4.13) eingef�uhrte renormierte Kopplung der gebro
henen Phase un-ters
heidet si
h von derjenigen in der symmetris
hen Phase; denn die zus�atzli
he



4.2. RENORMIERUNGSCHEMA 41�3{Kopplung erlaubt eine betr�a
htli
he Zahl weiterer Diagramme, die zur 4{Punkt{Funktion beitragen. Wir folgen deshalb [LW87b,MM93℄, indemwir hier eine andereDe�nition der renormierten Kopplung verwenden.Bezei
hnet man mit v die spontane Magnetisierung als Erwartungswert des Fel-des � und mit G(1;0)
 die ni
htvers
hwindende 1{Punkt{Funktion des Feldes �0 imImpulsraum, so besteht na
h Abs
hnitt 2.2.2 die Relation (m20 =̂m20�)v = vmin + v0; v0 := G(1;0)
 ; vmin := q3m20=g0 : (4.20)Die zugeh�origen Feynman{Regeln zeigen, da� v0, im Impulsraum als Potenzreihein der na
kten Kopplung bere
henbar, mit einem Term der Ordnung g1=20 beginnt.Wird also als der renormierte Vakuumerwartungswert vR des Feldes �vR := 1qZ3(u0) v (4.21)gesetzt, so erh�alt man mitgR := 3m2Rv2R = 3Z3(u0)m2R�v0 +q3m20=g0�2 = g0 Z3(u0)Z24 (u0) (4.22)eine Gr�o�e gR, deren St�orungsreihe von der Gestalt g0 +O(g20) ist, und die man alseine renormierte Kopplung deuten kann. Die zugeh�orige RenormierungskonstanteZ4 = Z4(u0) ist na
h (4.22) dur
hZ4(u0) := m0mR  1 +s g03m20 v0! (4.23)gegeben. In Analogie zu (4.15) ist die dimensionslose renormierte Kopplung uR jetztuR := gRm4�DR ; uR := gRmR ; D = 3: (4.24)Wir denken uns au
h hier wieder die na
kten Gr�o�en dur
h die renormierten ausge-dr�u
kt und erhalten damit Zi = Zi(uR) f�ur i = 2; 3; 4. Die Kopplung u ist ebenfallsdur
h (4.16) de�niert, und (4.17) ist dur
hg0 = m4�DR uR Z24 (uR)Z3(uR) ; u = uR Z24 (uR)Z3(uR) (4.25)zu ersetzen, wobei die re
hten Seiten als Funktionen von uR aufzufassen sind.Glei
hung (4.18) bleibt in den Parametern der gebro
henen Phase unver�andert,und das Renormierungss
hema ist dur
h die Renormierungsbedingungen�(2;0)R (0;mR; uR) = �m2R (4.26a)��p2 �(2;0)R (p;mR; uR) ����p2=0 = �1 (4.26b)3v2R �(2;0)R (0;mR; uR) = �m4�DR uR = �gR (4.26
)�(2;1)R (f0; 0g;mR; uR) = �1 (4.26d)
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harakterisiert.Mit Ausnahme von Kapitel 8 benenne i
h sp�ater mit uR+ stets die aus g(4)Rgebildete, dimensionslose renormierte Kopplung (4.15) in der Ho
htemperaturphase,w�ahrend i
h glei
hzeitig mit uR� immer die dimensionslose renormierte Kopplungder Tieftemperaturphase meine, die na
h (4.24) aus gR gebildet wird.4.3 RenormierungsgruppeIn diesem Abs
hnitt stelle i
h (auf [BGZJ76, Ami84, ID89℄ verweisend) einige Be-gri�e aus der Theorie der Renormierungsgruppe zusammen, da i
h f�ur die Bere
h-nung der Amplitudenverh�altnisse die Renormierungsgruppenfunktionen ben�otige,die ihrerseits in Beziehung zu den kritis
hen Exponenten stehen.Die Renormierbarkeit der skalaren Feldtheorie hat die G�ultigkeit von partiellenDi�erentialglei
hungen f�ur die Vertexfunktionen zur Folge, die als Renormierungs-gruppen{bzw. Callan{Symanzik{Glei
hungen (siehe [IIM75℄ und dort gegebeneReferenzen) bekannt sind. Speziell f�ur die massive, renormierte Theorie gilt:(mR ��mR ����g0 + �(uR) ��uR ����g0 + �l� n2� �3(uR)� l�2(uR)) �(n;l)R (fp; qg;mR; uR)= �2 � �3(uR)�m2R �(n;l+1)R (fp; 0; qg;mR; uR) (4.27)mit den Renormierungsgruppenfunktionen2�(uR) := mR ��mR ����g0 uR (4.28a)�3(uR) := �(uR) 1Z3(uR) ��uR ����g0 Z3(uR) (4.28b)�2(uR) := �(uR) 1Z2(uR) ��uR ����g0 Z2(uR): (4.28
)Die Eigens
haften partieller Ableitungen erlauben mit (4.16) die Umformung�(uR) = mR �u�mR ����g0 ��u ����mR uR = �(4 �D) g0m4�DR ��u ����mR uR= �(4�D)u  ��uR ����mR u!�1 = �(4 �D) 1u ��uR ����mR u!�1= �(4�D) ��uR ����mR ln(u)!�1 ; (4.29)und f�ur D = 3 ist �(uR) = � ��uR ����mR ln(u)!�1 : (4.30)2I
h wei
he an dieser Stelle etwas von den Bezei
hnungen der oben zitierten Literatur ab, inder zum Teil die Renormierungskonstante Z�2 := Z2=Z3 Verwendung �ndet.



4.3. RENORMIERUNGSGRUPPE 43Entspre
hend haben wir�3(uR) = �(uR) ��uR ����g0 ln �Z3(uR)� = mR ��mR ����g0 ln �Z3(uR)� (4.31a)�2(uR) = �(uR) ��uR ����g0 ln �Z2(uR)� = mR ��mR ����g0 ln �Z2(uR)�; (4.31b)und daraus eine weitere Renormierungsgruppenfunktion1�(uR) = 2� �3(uR) + �2(uR): (4.32)Im Verlauf der L�osung der Renormierungsgruppenglei
hung (4.27) mit der Cha-rakteristikenmethode (vgl. [CH68℄) tritt eine laufende renormierte Kopplung ûR =ûR(�;uR), � 2 R, auf, deren Grenzwertverhalten dur
h die Nullstellen der �{Funktion bestimmt ist:lim�!1 ûR(�;uR) = u�R; �(u�R) = 0; �0(u�R) < 0 (4.33a)lim�!0 ûR(�;uR) = u�R; �(u�R) = 0; �0(u�R) > 0: (4.33b)Der Wert u�R der laufenden Kopplung ûR wird im ersten Fall als ultraviolettstabi-ler Fixpunkt (das Verhalten der Vertexfunktionen f�ur gro�e �au�ere Impulse kon-trollierend) verstanden, w�ahrend man im zweiten Fall von einem infrarotstabilenFixpunkt (das Verhalten der Vertexfunktionen f�ur kleine �au�ere Impulse kontrollie-rend) spri
ht. Dieser ist f�ur die Untersu
hung kritis
her Ph�anomene von besondererBedeutung, da si
h die kritis
he Region neben T � T
 und M � 1 dur
h Impulseq; p � 1 bzw. Entfernungen x � a auszei
hnet. Die kritis
he Theorie ist dem-na
h dur
h die Existenz des Grenzwertes u�R aus (4.33b) 
harakterisiert, der f�urD < 4 als ni
httriviale Nullstelle der �{Funktion gegeben ist. Die triviale Nullstelleu�R = 0 ist hingegen ultraviolettstabil und wird als gau�s
her Fixpunkt bezei
hnet.In D = 4 fallen beide dann im infrarotstabilen Fixpunkt bei u�R = 0 zusammen3,und f�ur D > 4 vertaus
hen sie ihre Stabilit�at. (Die ni
httriviale Nullstelle ist dabeials unphysikalis
h zu verwerfen.)Abs
hlie�end sei referiert, da� mit den glei
hzeitig geltenden Homogenit�atsre-lationen der renormierten Vertexfunktionen unter Skalentranformationen ihrer Ar-gumente sowohl die G�ultigkeit der Skalenrelationen zwis
hen den kritis
hen Expo-nenten (siehe [BGZJ76, Ami84℄) als au
h die Universalit�at bestimmter Amplitu-denverh�altnisse (siehe [SFW72, HAHS76, Ami84℄) bewiesen werden kann. Speziellsind in diesem Zusammenhang die kritis
hen Exponenten � und � dur
h� = �3(u�R) (4.34)und � = �(u�R) (4.35)gegeben.3Diese Eigens
haft ist ni
ht mit einer asymptotis
hen Freiheit der �4{Theorie in D = 4 zuverwe
hseln, wie sie dur
h die Existenz eines ultraviolettstabilen trivialen Fixpunktes impliziertw�urde.



Kapitel 5Renormierte St�orungstheorie inD = 3I
h f�uhre jetzt die renormierte St�orungsre
hnung f�ur eine einkomponentige, mas-sive �4{Theorie in symmetris
her und gebro
hener Phase bis eins
hlie�li
h zur 2.Ordnung in der Kopplung dur
h. Im Sinne der Kapitel 2 und 4 werden deshalbdie renormierten Gr�o�en aus der diagrammatis
hen Entwi
klung der Vertexfunktio-nen bestimmt, um sp�ater in allen Glei
hungen die na
kten dur
h die renormiertenParameter ersetzen zu k�onnen.Dazu gebe i
h alle beitragenden Feynman{Graphen an, deren Bere
hnung imImpulsraum explizit dur
hgef�uhrt wird. Einige der dabei auftretenden Integrale sindin Kapitel 3 und Anhang B zusammengestellt1. Es sei bemerkt, da� die �au�erenBeine der skizzierten Diagramme mitzuzei
hnen sind, um ihre Impulsparametrisie-rungen deutli
h hervortreten zu lassen. Bei der Bere
hnung der Vertexfunktionenbleiben die zugeh�origen Prapagatoren nat�urli
h unber�u
ksi
htigt.5.1 Symmetris
he PhaseWir betra
hten die �4{Theorie in der symmetris
hen Phase mit den Parameternder Lagrangedi
hte (2.38) aus Abs
hnitt 2.2.1. Dem gew�ahlten Renormierungss
he-ma entspre
hend werden zun�a
hst die renormierte Masse mR und die renormierteKopplung g(4)R als Potenzreihe 2. Ordnung in den na
kten Gr�o�en m0 und g0 be-re
hnet. Daraus erh�alt man s
hlie�li
h eine invertierbare Beziehung zwis
hen dendimensionslosen Kopplungen uR und u0, die ebenfalls von 2. Ordnung ist. Im ein-zelnen verlaufen die Re
hnungen wie folgt:1Sofern si
h mehrere Bere
hnungsm�ogli
hkeiten bieten, wird dies an geeigneter Stelleangedeutet. 44



5.1. SYMMETRISCHE PHASE 455.1.1 1{Loop{Ordnung2{Punkt{VertexfunktionZur Bestimmung der 2{Punkt{Vertexfunktion �(2;0)0 (p) und deren Ableitung na
h�au�eren Impulsen ben�otigen wir alle einteil
henirreduziblen, amputierten Graphen,die zur Selbstenergie �(p) geh�oren.In 1. Ordnung ist dies nur ein impulsunabh�angiger Graph:� Graph G(2)1 (Symmetriefaktor 12):&%'$-k-p -p= �g0 Z dDk(2�)D ~4(k) = �g0 Z dDk(2�)D 1k2 +m20= �g0 J1(D) D!3= m04� g0 (1 +O(�)) :Aus Abs
hnitt 3.1.1 wissen wir, da� das Integral J1(3) � J1(3 � �) no
h eineDivergenz enth�alt, die in der dimensionellen Regularisierung ni
ht hervortritt.I
h will diesen Umstand dur
h Mitf�uhren des Faktors (1 +O(�)) andeuten.Daraus folgt�(1l)(0) = 12 G(2)1 = m08� g0 (1 +O(�)) ; ��p2 �(1l)(p) �����p2=0 = 0;d.h. man erh�alt:��(2;0)0 (0) = ~4�1(0)� �(1l)(0) +O(g20) = m20 � m08� g0 (1 +O(�)) +O(g20)= m20 �1 � 18� g0m0 (1 +O(�)) +O(g20)�� ��p2 �(2;0)0 (p) �����p2=0 = 1 +O(g20):4{Punkt{VertexfunktionEs sind alle einteil
henirreduziblen, amputierten Graphen der 4{Punkt{Funktion zuber�u
ksi
htigen. Diese sind von �au�eren Impulsen ki, i = 1; : : : ; 4, mit k1 + k2 =k3 + k4 abh�angig und f�ur k1 = � � � = k4 = 0 zu bere
hnen.In 1. Ordnung tragen bei:



46 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3� Graph G(4)0 (Symmetriefaktor 1):�����k2 �k3����Rk1����Rk4= �g0:� Graph G(4)1 (ki) (3 Permutationen mit Symmetriefaktor 12):���k2��Rk1&%'$-q�q�k1�k2���k3��Rk4= g20 Z d3q(2�)3 ~4(q) ~4(q � l); l := k1 + k2= g20 Z d3q(2�)3 1(q2 +m20)[(q � l)2 +m20℄= g20 I1(l; 3);na
h (3.18) ist dann:G(4)1 (ki = 0) = g20 I1(0; 3) = 18�m0 g20:Daraus folgt:�(4;0)0 (ki = 0) = G(4)0 + 32 G(4)1 (ki = 0) +O(g30) = �g0 + 316�m0 g20 +O(g30)= �g0 �1 � 316� g0m0 +O(g20)� :5.1.2 2{Loop{Ordnung2{Punkt{VertexfunktionIn 2. Ordnung hat man zus�atzli
h folgende beide Graphen, von denen der zweiteimpulsabh�angig ist:



5.1. SYMMETRISCHE PHASE 47� Graph G(2)2 (Symmetriefaktor 14):&%'$6k?k&%'$-l-p -p= g20 Z dDkdDl(2�)2D ~42(k) ~4(l) = Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= g20 J2(3)J1(3) = � 132�2 g20 (1 +O(�)) ;na
h (3.8) und (3.10a).� Graph G(2)3 (p) (Symmetriefaktor 16):&%'$-�k1p + k1 + k2-p �k2 -p= g20 Z dDk1dDk2(2�)2D ~4(k1) ~4(k2) ~4(p+ k1 + k2)= g20 Z dDk1dDk2(2�)2D 1(k21 +m20)(k22 +m20)[(p+ k1 + k2)2 +m20℄= g20 I2(p;D) D!3= g20 I2(p; 3� �):Aus Abs
hnitt 3.1.2 entnehme i
h:G(2)3 (0) = g20 I2(0; 3� �) = 132�2 g20  1� � ln m204� !+ C4� � 
 +O(�)!| {z }=:B(div)= B(div)32�2 g20��p2 G(2)3 (p) �����p2=0 = g20 ��p2 I2(p;D) �����p2=0 D!3= � 1864�2m20 g20:



48 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3Also folgt�(2l)(0) = 14 G(2)2 + 16 G(2)3 (0) = � 1128�2 g20 (1 +O(�)) + B(div)192�2 g20= � 164�2 g20 � 12 � 13 B(div) ���p2 �(2l)(p) �����p2=0 = 16 ��p2 G(2)3 (p) �����p2=0 = � 15184�2 g20m20 ;und es ergibt si
h insgesamt:��(2;0)0 (0) = ~4�1(0)� �(1l)(0)��(2l)(0) +O(g30)= m20 � m08� g0 (1 +O(�)) + 164�2 g20 � 12 � 13 B(div) �+O(g30)= m20 (1 � 18� g0m0 (1 +O(�)) + 164�2 g20m20 � 12 � 13 B(div) �+O(g30))(5.1)� ��p2 �(2;0)0 (p) �����p2=0 = 1 � ��p2 �(1l)(p) �����p2=0 � ��p2 �(2l)(p) �����p2=0 +O(g30)= 1 + 15184�2 g20m20 +O(g30): (5.2)4{Punkt{VertexfunktionIn 2. Ordnung treten folgende Graphen hinzu:� Graph G(4)2 (ki) (3 Permutationen mit Symmetriefaktor 14):���k2��Rk1&%'$-q1�q1�k1�k2&%'$-q2�q2�k3�k4���k3��Rk4= �g30 Z d3q1d3q2(2�)6 ~4(q1) ~4(q2) ~4(q1 � l) ~4(q2 � l); l := k1 + k2= �g30 Z d3q1d3q2(2�)6 1(q21 +m20)[(q1 � l)2 +m20℄(q22 +m20)[(q2 � l)2 +m20℄= �g30 I21 (l; 3);da die beiden Integrationsimpulse unabh�angig voneinander sind. Also ist:G(4)2 (ki = 0) = �g30 I21 (0; 3) = � 164�2m20 g30:



5.1. SYMMETRISCHE PHASE 49� Graph G(4)3 (ki) (3 Permutationen mit Symmetriefaktor 12):���k2��Rk1&%'$�q1 Rq1&%'$-q2�q1�k1�k2���k3��Rk4= �g30 Z dDq1dDq2(2�)2D ~42(q1) ~4(q2) ~4(q1 � l); l := k1 + k2= �g30 Z dDq1dDq2(2�)2D 1(q21 +m20)2[(q1 � l)2 +m20℄(q22 +m20)D!3= �g30 I3(0; l; 3)J1(3):Mit (B.5b) erh�alt man:G(4)3 (ki = 0) = �g30 I3(0;0; 3)J1(3) = 1128�2m20 g30 (1 +O(�)) :� Graph G(4)4 (ki) (6 Permutationen mit Symmetriefaktor 12):&%'$6q2 ?q1+q2�k3���k2��Rk1#�q1"Iq1�k1�k2 - k3- k4= �g30 Z d3q1d3q2(2�)6 ~4(q1) ~4(q2) ~4(q1 � l) ~4(q1 + q2 � k3); l := k1 + k2= �g30 Z d3q1d3q2(2�)6 1(q21 +m20)[(q1 � l)2 +m20℄(q22 +m20)[(q1 + q2 � k3)2 +m20℄= �g30 Z d3q2(2�)3 1(q22 +m20) I3(�l;k3 � q2; 3)= �g30 Z d3q1(2�)3 1(q21 +m20)[(q1 � l)2 +m20℄ I1(k3 � q1; 3);na
h (B.4a) bzw. (3.11). Mit (B.5a) folgt unter Verwendung sph�aris
her Po-larkoordinaten und Partialbru
hzerlegungG(4)4 (ki = 0) = �g30 Z d3q2(2�)3 1(q22 +m20) I3(0;�q2; 3)



50 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3= � 18�m0 g30 Z d3q2(2�)3 1(q22 +m20)(q22 + 4m20)= � 116�3m20 g30 Z 10 dq2 q22(q22 + 1)(q22 + 4)| {z }=�=6 = � 196�2m20 g30;was im �ubrigen dur
h (B.8a) best�atigt wird.Daraus ergibt si
h insgesamt:�(4;0)0 (ki = 0) = G(4)0 + 32 G(4)1 (ki = 0) + 34 G(4)2 (ki = 0) + 32 G(4)3 (ki = 0)+3G(4)4 (ki = 0) +O(g40)= �g0 + 316�m0 g20 � 3256�2m20 g30 + 3256�2m20 g30 (1 +O(�))� 396�2m20 g30 +O(g40)= �g0 (1 � 316� g0m0 + 132�2 g20m20 (1 +O(�)) +O(g30)) : (5.3)5.1.3 Bere
hnung der Renormierten Gr�o�enAus den Beziehungen (5.1) { (5.3) und u0 = g0=m0 ergeben si
h zun�a
hst die Gr�o�en��(2;0)0 (0) = m20 �1� 18� u0 (1 +O(�)) + 164�2 u20 � 12 � 13 B(div) �+O(u30)�� ��p2 �(2;0)0 (p) �����p2=0 = 1 + 15184�2 u20 +O(u30)Z3 = 0�� ��p2 �(2;0)0 (p) �����p2=01A�1 = 1 � 15184�2 u20 +O(u30)�(4;0)0 (ki = 0) = �g0 �1� 316� u0 + 132�2 u20 (1 +O(�)) +O(u30)� ;woraus si
h die renormierte Masse und die renormierte Kopplung zum2R = �(2;0)0 (0)��p2 �(2;0)0 (p) ���p2=0 = �Z3�(2;0)0 (0)= m20 �1 � 18� u0 (1 +O(�)) + 164�2 u20 � 79162 � 13 B(div) �+O(u30)� (5.4)



5.2. PHASE GEBROCHENER SYMMETRIE 51g(4)R = ��(4;0)R (ki = 0) = �Z23�(4;0)0 (ki = 0)= g0 �1 � 316� u0 + 5162�2 u20 (1 +O(�)) +O(u30)� ; (5.5)bzw.uR = g(4)RmR = u0�1� 18� u0 (1 +O(�)) + 164�2 u20 � 293216 + 16 B(div) �+O(u30)� (5.6)ergeben.I
h invertiere diese Glei
hungen, um sp�ater die na
kten Gr�o�en dur
h die renor-mierten zu ersetzen. Dazu ist es zwe
km�a�ig, zun�a
hst die Beziehung (5.6) dur
hPotenzreihenansatz und KoeÆzientenverglei
h na
h u0 aufzul�osen, um (5.7) zu er-halten. Ans
hlie�end stellt man die Glei
hungen (5.4) und (5.5) na
h m20 bzw. g0um und ersetzt dort mit (5.7) die na
kte dimensionslose Kopplung u0 dur
h dierenormierte dimensionslose Kopplung uR. Unter Ber�u
ksi
htigung der Entwi
klungder ln{Funktionln m204� ! = ln m2R4� (1 +O(uR))! = ln m2R4� !+ ln �(1 +O(uR)�| {z }=O(uR)�nde i
h auf diese Weise mitB(div)R :=  1� � ln m2R4� !+ C4� � 
 +O(�)!die folgenden Relationen:u0 = uR �1 + 18� uR (1 +O(�)) + 164�2 u2R � 139216 � 16 B(div)R �+O(u3R)� ; (5.7)bzw.m20 = m2R �1 + 18� uR (1 +O(�)) + 164�2 u2R � 245162 + 13 B(div)R �+O(u3R)� (5.8)g0 = g(4)R �1 + 316� uR + 57520736�2 u2R (1 +O(�)) +O(u3R)� : (5.9)Man bea
hte, da� die letzte Glei
hung keine Divergenzen mehr beinhaltet.5.2 Phase gebro
hener SymmetrieWir verwenden die �4{Theorie in der gebro
henen Phase, deren Lagrangedi
hte(2.47) in Abs
hnitt 2.2.2 hergeleitet ist. Dabei wird wie in Abs
hnitt 5.1 verfahren,wobei allerdings jetzt die zus�atzli
he �3{Kopplung und die De�nition der renormier-ten Kopplung gR �uber den Felderwartungswert zu ber�u
ksi
htigen sind. Aufgrundder Kombinationsm�ogli
hkeiten von 3er{ und 4er{Vertizes sowie der ni
htvers
hwin-denden Tadpole{Diagramme treten hier wesentli
h mehr Graphen auf, so da� i
hdiejenigen der symmetris
hen Phase ni
ht no
hmals au��uhre.



52 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 35.2.1 1{Loop{Ordnung2{Punkt{VertexfunktionIn 1. Ordnung hat man folgende zus�atzli
he Graphen:� Graph G(2)4 (p) (Symmetriefaktor 12):&%'$�-kk � p-p -p= ��q3g0m0�2 Z d3k(2�)3 ~4(k) ~4(k � p)= 3m20g0 Z d3k(2�)3 1(k2 +m20)[(k� p)2 +m20℄= 3m20g0 I1(p; 3):Aus Abs
hnitt 3.1.1 ersehe i
h:G(2)4 (0) = 3m20g0 I1(0; 3) = 3m08� g0��p2 G(2)4 (p) �����p2=0 = 3m20g0 ��p2 I1(p; 3) �����p2=0 = � 132� g0m0 :� Graph G(2)5 (Symmetriefaktor 12):&%'$-k-p -p= ��q3g0m0�2 ~4(0) Z dDk(2�)D ~4(k) = 3g0 Z dDk(2�)D 1k2 +m20= 3g0 J1(D) D!3= �3m04� g0 (1 +O(�)) :Dieses Diagramm geh�ort zu den Tadpole{Graphen, deren innere Impulslinien,die keiner S
hleife angeh�oren, den Impuls 0 tragen. Der zugeh�orige Propagatorist also ~4(0) = 1=m20.



5.2. PHASE GEBROCHENER SYMMETRIE 53Daraus folgt�(1l)(0) = 12 G(2)1 + 12 G(2)4 (0) + 12 G(2)5= m08� g0 (1 +O(�)) + 3m016� g0 � 3m08� g0 (1 +O(�)) = �m016� g0 (1 +O(�))��p2 �(1l)(p) �����p2=0 = 12 ��p2 G(2)4 (p)�����p2=0 = � 164� g0m0 ;und man erh�alt:��(2;0)0 (0) = ~4�1(0)� �(1l)(0) +O(g20) = m20 + m016� g0 (1 +O(�)) +O(g20)= m20 �1 + 116� g0m0 (1 +O(�)) +O(g20)�� ��p2 �(2;0)0 (p) �����p2=0 = 1� ��p2 �(1l)(p) �����p2=0 +O(g20) = 1 + 164� g0m0 +O(g20):Vakuumerwartungswert des FeldesZum Vakuumerwartungswert v0 des Feldes �0 im Impulsraum tragen alle 1{Punkt{Graphen der Theorie bei. In diesem Fall ist die �au�ere Impulslinie mit einem Faktor~4(0) = 1=m20 einzubeziehen. In 1{Loop{Ordnung hat man nur ein Diagramm:� Graph G(1)1 (Symmetriefaktor 12): &%'$?k= ��q3g0m0� ~4(0) Z dDk(2�)D ~4(k) = � 1m0 q3g0 Z dDk(2�)D 1k2 +m20= � 1m0 q3g0 J1(D) D!3= p34� g1=20 (1 +O(�)) :Man bea
hte, da� die Kopplungspotenz aufgrund der �3{Kopplung gebro
henist.Daraus folgt:v0 = G(1;0)
 = 12 G(1)1 = p3m08� g1=20 (1 +O(�)) +O(g3=20 ):



54 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 35.2.2 2{Loop{Ordnung2{Punkt{VertexfunktionHier sind nun eine ganze Reihe weiterer Graphen zu ber�u
ksi
htigen. Zun�a
hst hatman die folgenden impulsabh�angigen Beitr�age:� Graph G(2)6 (p) (Symmetriefaktor 12):" !�k � p����-l�l�k#� R kk  -p -p= ��q3g0m0�4 Z d3kd3l(2�)6 ~42(k) ~4(l) ~4(l� k) ~4(k � p)= 9m40g20 Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)[(l� k)2 +m20℄[(k� p)2 +m20℄= 9m40g20 Z d3k(2�)3 1(k2 +m20)2[(k� p)2 +m20℄ I1(k; 3):Dur
h die Substitutionen der Integrationsimpulse k ! k=m0 und l ! l=m0ziehe i
h die Masse vor das Integral, verwende sph�aris
he Polarkoordinatenund w�ahle den Azimutalwinkel � der d3k{Integration zwis
hen k und l gelegen.Man f�uhrt dann alle Integrationen na
heinander aus, wobei im letzten S
hritteine Partialbru
hzerlegung dur
hzuf�uhren ist:G(2)6 (0) = 9m40g20 1m40 Z d3kd3l(2�)6 1(k2 + 1)3(l2 + 1)[(k � l)2 + 1℄= 98�4 g20 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)3 Z �0 d� sin �1 + k2 + l2 � 2kl 
os �= 98�4 g20 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)3 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 98�4 g20 Z 10 dl l2l2 + 1 " (l2 + 8)�8(l2 + 4)2#| {z }=�2=36 = 132�2 g20;in �Ubereinstimmung mit einer auf (B.8b) zur�u
kgehenden Re
hnung. F�urdie Ableitung na
h dem �au�eren Impulsquadrat verweise i
h auf Anhang A.1,in dem die Di�erentiation der p{abh�angigen Integranden dur
hgef�uhrt ist.Speziell mit (A.3) �nden wir:



5.2. PHASE GEBROCHENER SYMMETRIE 55��p2 G(2)6 (p) �����p2=0= 9m40g20 1m60 Z d3kd3l(2�)6 " 1(k2 + 1)2(l2 + 1)[(k � l)2 + 1℄ �� ��p2  1(k � p)2 + 1! �����p2=0 #= 32�4m20 g20 Z 10 dl l2l2 + 1 Z 10 dk k4(k2 + 1)5 Z �0 d� sin �1 + k2 + l2 � 2kl 
os �� 98�4m20 g20 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)4 Z �0 d� sin �1 + k2 + l2 � 2kl 
os �= 32�4m20 g20 Z 10 dl l2l2 + 1 Z 10 dk k4(k2 + 1)5 " 12kl ln 1 + (k + l)21 + (k � l)2!#� 98�4m20 g20 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)4 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 32�4m20 g20 Z 10 dl l2l2 + 1 "(9l6 + 140l4 + 800l2 + 1152)�384(l2 + 4)4 #| {z }=55�2=10368� 98�4m20 g20 Z 10 dl l2l2 + 1 " l2(3l4 + 34l2 + 120)�48(l2 + 4)3(l2 + 1) #| {z }=19�2=1296= � 596912�2m20 g20:Bei umgekehrter Integrationsreihenfolge liefern (C.12
) und (C.13b) dasselbeResultat.� Graph G(2)7 (p) (Symmetriefaktor 12):&%'$� R l+ pk + p 	Ik l-p -p?k�l= ��q3g0m0�4 Z d3kd3l(2�)6 ~4(k) ~4(l) ~4(k � l) ~4(k + p) ~4(l + p)= 9m40g20 Z d3kd3l(2�)6 " 1(k2 +m20)(l2 +m20)[(k � l)2 +m20℄ �� 1[(k+ p)2 +m20℄[(l+ p)2 +m20℄ #= 9m40g20 Z d3l(2�)3 1(l2 +m20)[(l+ p)2 +m20℄ I3(p; l; 3):



56 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3Mit (B.5a) und einer Partialbru
hzerlegung ergibt si
hG(2)7 (0) = 9m40g20 Z d3l(2�)3 1(l2 +m20)2 I3(0; l; 3)= 9m308� g20 Z d3l(2�)3 1(l2 +m20)2(l2 + 4m20)= 916�3 g20 Z 10 dl l2(l2 + 1)2(l2 + 4)| {z }=�=36 = 164�2 g20;und na
h Glei
hung (A.5) ist��p2 G(2)7 (p) �����p2=0 = 9m40g20 1m60 Z d3kd3l(2�)6 " 1(k2 + 1)(l2 + 1)[(k � l)2 + 1℄ �� ��p2  1[(k + p)2 + 1℄[(l + p)2 + 1℄! �����p2=0 #= 9m20 g20  43 Z d3kd3l(2�)6 k2(k2 + 1)4(l2 + 1)2[(k � l)2 + 1℄+43 Z d3kd3l(2�)6 l2(k2 + 1)2(l2 + 1)4[(k � l)2 + 1℄� Z d3kd3l(2�)6 1(k2 + 1)3(l2 + 1)2[(k� l)2 + 1℄� Z d3kd3l(2�)6 1(k2 + 1)2(l2 + 1)3[(k� l)2 + 1℄+43 Z d3kd3l(2�)6 k � l(k2 + 1)3(l2 + 1)3[(k � l)2 + 1℄!= 9m20 g20 �2 43 A2 � 2A1 + 43 A3�= 9�2m20 g20 � 104124416 � 106912 + 441472�= � 1216�2m20 g20;wobei i
h die Symmetrie der vorstehenden Impulsintegrale unter Vertaus
hungvon k und l ausgenutzt habe. Die Integrale Ai, i = 1; 2; 3, sind in Anhang B.2ausgef�uhrt.� Graph G(2)8 (p) (Symmetriefaktor 14):&%'$�-kk � p&%'$�-ll � p-p -p



5.2. PHASE GEBROCHENER SYMMETRIE 57= �g0 ��q3g0m0�2 Z d3kd3l(2�)6 ~4(k) ~4(l) ~4(k � p) ~4(l � p)= �3m20g20 Z d3kd3l(2�)6 1(k2 +m20)[(k � p)2 +m20℄(l2+m20)[(l� p)2 +m20℄= �3m20g20 I21(p; 3)G(2)8 (0) = �3m20g20 I21(0; 3) = � 364�2 g20;da das Integral faktorisiert. Die Anwendung der Kettenregel ergibt:��p2 G(2)8 (p) �����p2=0 = �6m20g20 I1(0; 3) ��p2 I1(p; 3) �����p2=0 = 1128�2m20 g20:� Graph G(2)9 (p) (Symmetriefaktor 12):&%'$-k&%'$-l	 Ik � pk � p-p -p= �g0 ��q3g0m0�2 Z dDkdDl(2�)2D ~4(k) ~4(l) ~42(k � p)= �3m20g20 Z dDkdDl(2�)2D 1(k2 +m20)[(k� p)2 +m20℄2(l2 +m20)D!3= �3m20g20 I4(p; 3)J1(3);na
h (B.6). Also istG(2)9 (0) = �3m20g20 I4(0; 3)J1(3) = 3128�2 g20 (1 +O(�)) ;mit (A.4) und (C.11b) folgt:��p2 G(2)9 (p) �����p2=0 = �3m20g20 J1(3) ��p2 I4(p; 3) �����p2=0= � 3m30 g20 J1(3) Z d3k(2�)3 1k2 + 1 ��p2  1[(k� p)2 + 1℄2! �����p2=0= � 32�2m30 g20 J1(3) 4 Z 10 dk k4(k2 + 1)5| {z }=3�=256 �2 Z 10 dk k2(k2 + 1)4| {z }�=32 != 3128�m30 g20 J1(3) = � 3512�2m20 g20 (1 +O(�)) :



58 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3� Graph G(2)10 (p) (2 Permutationen mit Symmetriefaktor 12):&%'$� R lk "Il�k�k � p-p -p= �g0 ��q3g0m0�2 Z d3kd3l(2�)6 ~4(k) ~4(l) ~4(k � p) ~4(l � k)= �3m20g20 Z d3kd3l(2�)6 1(k2 +m20)[(k � p)2 +m20℄(l2 +m20)[(l � k)2 +m20℄= �3m20g20 Z d3l(2�)3 1l2 +m20 I3(�p; l; 3)= �3m20g20 Z d3k(2�)3 1(k2 +m20)[(k � p)2 +m20℄ I1(k; 3):Demna
h folgt:G(2)10 (0) = �3m20g20 Z d3l(2�)3 1l2 +m20 I3(0; l; 3)= �3m08� g20 Z d3l(2�)3 1(l2 +m20)(l2 + 4m20)= � 316�3 g20 Z 10 dl l2(l2 + 1)(l2 + 4)| {z }=�=6 = � 132�2 g20;in �Ubereinstimmung mit (B.8a). Mit (A.3) ergibt si
h:��p2 G(2)10 (p) �����p2=0 = �3m20g20 1m40 Z d3kd3l(2�)6 " 1(k2 + 1)(l2 + 1)[(l � k)2 + 1℄ �� ��p2  1(k � p)2 + 1! �����p2=0 #= � 3m20 g20 43 Z d3kd3l(2�)6 k2(k2 + 1)4(l2 + 1)[(l � k)2 + 1℄� Z d3kd3l(2�)6 1(k2 + 1)3(l2 + 1)[(l � k)2 + 1℄!= � 3m20 g20 �43 A5 �A4� = � 3�2m20 g20 � 6831104 � 1288�= 51296�2m20 g20:Die Integrale A4 und A5 sind in Anhang B.2 angegeben; man bea
hte, da� sieni
ht vom Vorzei
hen der Integrationsimpulse abh�angen.



5.2. PHASE GEBROCHENER SYMMETRIE 59� Graph G(2)11 (p) (Symmetriefaktor 12):
&%'$�k � p� R kk&%'$-l-p -p= ��q3g0m0�4 ~4(0) Z dDkdDl(2�)2D ~42(k) ~4(l) ~4(k � p)= 9m20g20 Z dDkdDl(2�)2D 1(k2 +m20)2[(k � p)2 +m20℄(l2 +m20)D!3= 9m20g20 I3(0;p; 3)J1(3)G(2)11 (0) = 9m20g20 I3(0;0; 3)J1(3) = 9m20g20 J3(3)J1(3) = � 9128�2 g20 (1 +O(�)) ;und mit (B.5a):��p2 G(2)11 (p) �����p2=0 = 9m20g20 J1(3) ��p2 I3(0;p; 3) �����p2=0= 9m08� g20 J1(3) ��p2  1p2 + 4m20! �����p2=0= 9512�2m20 g20 (1 +O(�)) :� Graph G(2)12 (p) (2 Permutationen mit Symmetriefaktor 14):
&%'$�-kk � p&%'$-l-p -p



60 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3= �g0 ��q3g0m0�2 ~4(0) Z dDkdDl(2�)2D ~4(k) ~4(l) ~4(k � p)= �3g20 Z dDkdDl(2�)2D 1(k2 +m20)[(k� p)2 +m20℄(l2 +m20)D!3= �3g20 I1(p; 3)J1(3);d.h. au
h dieses Integral faktorisiert. Also istG(2)12 (0) = �3g20 I1(0; 3)J1(3) = 332�2 g20 (1 +O(�))��p2 G(2)12 (p) �����p2=0 = �3g20 J1(3) ��p2 I1(p; 3) �����p2=0 = � 1128�2m20 g20 (1 +O(�)) :Es folgen nun die impulsunabh�angigen Graphen (gr�o�tenteils Tadpole{Graphen).Da sie si
h auf die vorstehenden Integrale zur�u
kf�uhren lassen, nenne i
h nur dieEndresultate:� Graph G(2)13 (Symmetriefaktor 14):
&%'$6k ?k&%'$-l

-p -p= ��q3g0m0�4 ~42(0) Z dDkdDl(2�)2D ~42(k) ~4(l)= 9g20 Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= 9g20 J2(3)J1(3) = � 932�2 g20 (1 +O(�)) :� Graph G(2)14 (Symmetriefaktor 12):&%'$-l-k�l 	Ik k-p -p



5.2. PHASE GEBROCHENER SYMMETRIE 61= ��q3g0m0�4 ~4(0) Z d3kd3l(2�)6 ~42(k) ~4(l) ~4(k � l)= 9g20m20 Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)[(k � l)2 +m20℄= 9m20g20 Z d3l(2�)3 1(l2 +m20) I3(0; l; 3)= 9m20g20 Z d3k(2�)3 1(k2 +m20)2 I1(k; 3)= 332�2 g20;wie in der Bere
hnung von G(2)10 (0).� Graph G(2)15 (Symmetriefaktor 18):&%'$-k-p -p&%'$-l= �g0 ��q3g0m0�2 ~42(0) Z dDkdDl(2�)2D ~4(k) ~4(l)= � 3m20 g20 Z dDkdDl(2�)2D 1(k2 +m20)(l2 +m20)D!3= � 3m20 g20 J21 (3) = � 316�2 g20 (1 +O(�)) :� Graph G(2)16 (Symmetriefaktor 14):&%'$6l &%'$-k-p -p



62 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3= �g0 ��q3g0m0�2 ~42(0) Z dDkdDl(2�)2D ~4(k) ~4(l)= � 3m20 g20 Z dDkdDl(2�)2D 1(k2 +m20)(l2 +m20)D!3= � 3m20 g20 J21 (3) = � 316�2 g20 (1 +O(�)) :� Graph G(2)17 (Symmetriefaktor 14):
&%'$� R kk&%'$-l-p -p= �g0 ��q3g0m0�2 ~4(0) Z dDkdDl(2�)2D ~42(k) ~4(l)= �3g20 Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= �3g20 J2(3)J1(3) = 332�2 g20 (1 +O(�)) :� Graph G(2)18 (Symmetriefaktor 14):&%'$6k?k&%'$-l-p -p= �g0 ��q3g0m0�2 ~4(0) Z dDkdDl(2�)2D ~42(k) ~4(l)= �3g20 Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= �3g20 J2(3)J1(3) = 332�2 g20 (1 +O(�)) :



5.2. PHASE GEBROCHENER SYMMETRIE 63� Graph G(2)19 (Symmetriefaktor 16):&%'$6k1 ?k1 + k26k2-p -p= �g0 ��q3g0m0�2 ~4(0) Z dDk1dDk2(2�)2D ~4(k1) ~4(k2) ~4(k1 + k2)= �3g20 Z dDk1dDk2(2�)2D 1(k21 +m20)(k22 +m20)[(k1 + k2)2 +m20℄D!3= �3g20 I2(0; 3� �) = � 332�2 g20  1� � ln m204� !+ C4� � 
 +O(�)!| {z }=:B(div)= �3B(div)32�2 g20:� Graph G(2)20 (Symmetriefaktor 14):" !����-l�l�k#6 ?k k -p -p= �g0 ��q3g0m0�2 Z d3kd3l(2�)6 ~42(k) ~4(l) ~4(l � k)= �3g20m20 Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)[(l� k)2 +m20℄= �3m20g20 Z d3l(2�)3 1(l2 +m20) I3(0; l; 3)= �3m20g20 Z d3k(2�)3 1(k2 +m20)2 I1(k; 3)= � 132�2 g20;wie in der Bere
hnung von G(2)14 .



64 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3Wir erhalten�(2l)(0) = 14 G(2)2 + 16 G(2)3 (0) + 12 G(2)6 (0) + 12 G(2)7 (0) + 14 G(2)8 (0) + 12 G(2)9 (0)+G(2)10 (0) + 12 G(2)11 (0) + 12 G(2)12 (0) + 14 G(2)13 + 12 G(2)14+18 G(2)15 + 14 G(2)16 + 14 G(2)17 + 14 G(2)18 + 16 G(2)19 + 14 G(2)20= � 1128�2 g20 (1 +O(�)) + B(div)192�2 g20 + 164�2 g20 + 1128�2 g20� 3256�2 g20 + 3256�2 g20 (1 +O(�))� 132�2 g20� 9256�2 g20 (1 +O(�)) + 364�2 g20 (1 +O(�))� 9128�2 g20 (1 +O(�)) + 364�2 g20 � 3128�2 g20 (1 +O(�))� 364�2 g20 (1 +O(�)) + 3128�2 g20 (1 +O(�))+ 3128�2 g20 (1 +O(�))� 3B(div)192�2 g20 � 1128�2 g20 (1 +O(�))= � 15256�2 g20 (1 +O(�)) � B(div)96�2 g20 = � 164�2 g20 � 154 + 23 B(div) ���p2 �(2l)(p) �����p2=0 = 16 ��p2 G(2)3 (p) �����p2=0 + 12 ��p2 G(2)6 (p) �����p2=0 + 12 ��p2 G(2)7 (p) �����p2=0+14 ��p2 G(2)8 (p) �����p2=0 + 12 ��p2 G(2)9 (p) �����p2=0 + ��p2 G(2)10 (p) �����p2=0+12 ��p2 G(2)11 (p) �����p2=0 + 12 ��p2 G(2)12 (p) �����p2=0= � 15184�2 g20m20 � 5913824 g20m20 � 1432�2 g20m20 + 1512�2 g20m20� 31024�2 g20m20 (1 +O(�)) + 51296�2 g20m20+ 91024�2 g20m20 (1 +O(�))� 1256�2 g20m20 (1 +O(�))= 4141472�2 g20m20 (1 +O(�)) ;und es ergibt si
h insgesamt:



5.2. PHASE GEBROCHENER SYMMETRIE 65��(2;0)0 (0) = ~4�1(0)� �(1l)(0)� �(2l)(0) +O(g30)= m20 + m016� g0 (1 +O(�)) + 164�2 g20 � 154 + 23 B(div) �+O(g30)= m20(1 + 116� g0m0 (1 +O(�)) + 164�2 g20m20 � 154 + 23 B(div) �+O(g30))(5.10)� ��p2 �(2;0)0 (p) �����p2=0 = 1 � ��p2 �(1l)(p) �����p2=0 � ��p2 �(2l)(p) �����p2=0 +O(g30)= 1 + 164� g0m0 � 4141472�2 g20m20 +O(g30): (5.11)Vakuumerwartungswert des FeldesDie nun hinzukommenden Beitr�age der 1{Punkt{Funktion sind Subgraphen derTadpole{Diagramme der 2{Punkt{Funktion. Zur Ordnung g3=20 sind dies:� Graph G(1)2 (Symmetriefaktor 14):&%'$�-kk &%'$?l= ��q3g0m0�3 ~42(0) Z dDkdDl(2�)2D ~42(k) ~4(l)= � 1m0 (3g0)3=2 Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= � 1m0 (3g0)3=2 J2(3)J1(3) = 3p332�2m0 g3=20 (1 +O(�)) :� Graph G(1)3 (Symmetriefaktor 18):&%'$-k &%'$?l



66 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3= ��q3g0m0�3 ~43(0) Z dDkdDl(2�)2D ~4(k) ~4(l)= � 1m30 (3g0)3=2 Z dDkdDl(2�)2D 1(k2 +m20)(l2 +m20)D!3= � 1m30 (3g0)3=2 J21 (3) = � 3p316�2m0 g3=20 (1 +O(�)) :� Graph G(1)4 (Symmetriefaktor 12): &%'$�kIk ?k�l ?l= ��q3g0m0�3 ~4(0) Z d3kd3l(2�)6 ~42(k) ~4(l) ~4(k � l)= �m0 (3g0)3=2 Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)[(k � l)2 +m20℄= �m0 (3g0)3=2 Z d3l(2�)3 1(l2 +m20) I3(0; l; 3)= �m0 (3g0)3=2 Z d3k(2�)3 1(k2 +m20)2 I1(k; 3)= � p332�2m0 g3=20 ;wie bei der Bere
hnung von G(2)14 .� Graph G(1)5 (Symmetriefaktor 14):&%'$-k &%'$?l= �g0 ��q3g0m0� ~42(0) Z dDkdDl(2�)2D ~4(k) ~4(l)= 1m30 g0q3g0 Z dDkdDl(2�)2D 1(k2 +m20)(l2 +m20)D!3= 1m30 g0q3g0 J21 (3) = p316�2m0 g3=20 (1 +O(�)) :



5.2. PHASE GEBROCHENER SYMMETRIE 67� Graph G(1)6 (Symmetriefaktor 14):&%'$�-kk &%'$?l= �g0 ��q3g0m0� ~4(0) Z dDkdDl(2�)2D ~42(k) ~4(l)= 1m0 g0q3g0 Z dDkdDl(2�)2D 1(k2 +m20)2(l2 +m20)D!3= 1m0 g0q3g0 J2(3)J1(3) = � p332�2m0 g3=20 (1 +O(�)) :� Graph G(1)7 (Symmetriefaktor 16): &%'$�-k1k1 + k2-k2= �g0 ��q3g0m0� ~4(0) Z dDk1dDk2(2�)2D ~4(k1) ~4(k2) ~4(k1 + k2)= 1m0 g0q3g0 Z dDk1dDk2(2�)2D 1(k21 +m20)(k22 +m20)[(k1 + k2)2 +m20℄D!3= 1m0 g0q3g0 I2(0; 3� �)= p332�2m0 g3=20  1� � ln m204� !+ C4� � 
 +O(�)!| {z }=:B(div) = p3B(div)32�2m0 g3=20 :Daraus folgt:v0 = G(1;0)
 = 12 G(1)1 + 14 G(1)2 + 18 G(1)3 + 12 G(1)4 + 14 G(1)5 + 14 G(1)6 + 16 G(1)7 +O(g5=20 )= p38� g1=20 (1 +O(�)) + 3p3128�2m0 g3=20 (1 +O(�))� 3p3128�2m0 g3=20 (1 +O(�))� p364�2m0 g3=20



68 KAPITEL 5. RENORMIERTE ST �ORUNGSTHEORIE IN D = 3+ p364�2m0 g3=20 (1 +O(�))� p3128�2m0 g3=20 (1 +O(�))+p3B(div)192�2m0 g3=20 +O(g5=20 )= p38� g1=20 (1 +O(�)) � p3128�2m0 g3=20 (1 +O(�))+p3B(div)192�2m0 g3=20 +O(g5=20 )= p38� g1=20 (1 +O(�)) � p3128�2m0 g3=20 �1 � 23 B(div) �+O(g5=20 ): (5.12)5.2.3 Bere
hnung der renormierten Gr�o�enAus den Glei
hungen (5.10) { (5.12) erh�alt man mit u0 = g0=m0��(2;0)0 (0) = m20 �1 + 116� u0 (1 +O(�)) + 164�2 u20 � 154 + 23 B(div) �+O(u30)�� ��p2 �(2;0)0 (p) �����p2=0 = 1 + 164� u0 � 4141472�2 u20 +O(u30)Z3 = 0�� ��p2 �(2;0)0 (p) �����p2=01A�1 = 1� 164� u0 + 409331776�2 u20 +O(u30)v0 = vuut3m20g0 ( 18� u0 (1 +O(�))� 1128�2 u20 � 1� 23 B(div) �+O(u30)):Damit �nden si
h f�ur die renormierte Masse und die renormierte Kopplungm2R = �(2;0)0 (0)��p2 �(2;0)0 (p) ���p2=0 = �Z3�(2;0)0 (0)= m20�1 + 364� u0 (1 +O(�)) + 164�2 u20 � 195255184 + 23 B(div) �+O(u30)�(5.13)gR = 3m2Rv2R = 3Z3m2R�v0 +q3m20=g0�2 ; vR = 1pZ3 (v0 + vmin)= g0 �1� 732� u0 (1 +O(�)) + 37835331776�2 u20 (1 +O(�)) +O(u30)� ; (5.14)



5.2. PHASE GEBROCHENER SYMMETRIE 69bzw.uR = gRmR = u0 �1� 31128� u0 (1 +O(�)) + 164�2 u20 � 8012513824 � 13 B(div) �+O(u30)� :(5.15)Die Invertierung dieser Beziehungen zugunsten der na
kten Gr�o�en in Abh�angig-keit von den renormierten erfolgt ebenso, wie i
h in Abs
hnitt 5.1 bes
hrieben habe.Mit ln m204� ! = ln m2R4� !+O(uR)und B(div)R :=  1� � ln m2R4� !+ C4� � 
 +O(�)!ergeben si
h die Relationen:u0 = uR�1 + 31128� uR (1 +O(�)) + 164�2 u2R � 2366313824 + 13 B(div)R �+O(u3R)� ;(5.16)bzw.m20 = m2R �1� 364� uR (1 +O(�)) � 164�2 u2R � 4512510368 + 23 B(div)R �+O(u3R)� (5.17)g0 = gR �1 + 732� uR (1 +O(�))� 2191165888�2 u2R (1 +O(�)) +O(u3R)� : (5.18)Au
h hier ist zu bemerken, da� die letzte Glei
hung frei von Divergenzen ist.



Kapitel 6Amplitudenverh�altnis derKorrelationsl�angeIn diesem Kapitel gelange i
h zur Bestimmung des Amplitudenverh�altnisses derKorrelationsl�ange. Dazu leite i
h zun�a
hst eine Glei
hung her, aus der si
h die-ses Verh�altnis unter Verwendung der Resultate der dreidimensionalen renormiertenSt�orungstheorie gewinnen l�a�t. Dabei stellt si
h heraus, da� das Endresultat alsPotenzreihe bis zur 2. Ordnung in einer dimensionslosen renormierten Kopplungangegeben werden kann, die entweder den Fixpunkt der Ho
htemperaturkopplungoder denjenigen der Tieftemperaturkopplung besitzt. Die daf�ur n�otigen Re
hnungenwerden im einzelnen vorgef�uhrt.Von jetzt an ist es sehr wi
htig, alle Gr�o�en in symmetris
her und gebro
henerPhase dur
h eine Indizierung mit + bzw. � voneinander zu unters
heiden.6.1 Herleitung der Bestimmungsglei
hungNa
h (1.12) zeigt die Korrelationsl�ange � bei Ann�aherung an den kritis
hen PunktT = T
 das Divergenzverhalten� � f�jtj��; t := T � T
T
 ;je na
hdem in wel
her Phase man si
h be�ndet. Die feldtheoretis
he Bes
hreibungkritis
her Ph�anomene erlaubt die Bestimmung des universellen Amplitudenverh�alt-nisses f+=f�, da der Zusammenhang der physikalis
hen Gr�o�en � und t mit den Pa-rametern des feldtheoretis
henModells gem�a� (4.7) und (4.1) dur
h die Beziehungen� = 1mR ; t = m20 �m20
gegeben ist. Der st�orungstheoretis
hen Behandlung von Ho
h{ und Tieftemperatur-phase aus Abs
hnitt 2.2 entnimmt man1mR+ = �+ � f+t��+ ; t+ = �m20 �m20
����T>T
 > 0 (6.1a)70



6.1. HERLEITUNG DER BESTIMMUNGSGLEICHUNG 71und 1mR� = �� � f�t��� ; t� = ��m20 �m20
����T<T
 > 0; (6.1b)wobei die reduzierten Temperaturen in jeder Phase t+ = t, t > 0, und t� = �t,t < 0, seien.Die folgende Herleitung des Verh�altnisses f+=f� ist ents
heidend von der Tatsa-
he bestimmt, da� wir die Theorie in der festen Dimension D = 3 betra
hten. Denndie kritis
he na
kte Masse m0
, die in diesem Fall nur in 0. Ordnung der St�orungs-theorie vers
hwindet, ist | wie s
hon in Abs
hnitt 4.1 festgestellt | perturbativni
ht bere
henbar, so da� eine Division der vorstehenden Glei
hungen ni
ht zumErfolg f�uhrt1.Um dieses Problem zu umgehen und glei
hzeitig die na
kte Masse m0 zu elimi-nieren, verwende i
h Funktionen, die dur
h Ableitungen na
h m0 gebildet werdenund na
h einer Ersetzung der na
kten Kopplungen u0� zugunsten der dimensions-losen renormierten Kopplungen uR� (in der jeweiligen Phase) nur no
h von uR�abh�angen. Dies wird gerade dur
h die Identit�at (4.9)��t ����g0 = ��m20 ����g0errei
ht, da na
h De�nition der Gr�o�enF�(uR�) := �m2R��m20� ����g0 (6.2)in der symmetris
hen Phase mit (6.1a) und (2.36)�m2R+�t+ ����g0 = �m2R+�m20 ����g0 = �m20+�m20| {z }=1 �m2R+�m20+ ����g0 = �m2R+�m20+ ����g0 = F+(uR+); (6.3a)und in der gebro
henen Phase mit (6.1b) und (2.44) entspre
hend�m2R��t� ����g0 = ��m2R��m20 ����g0 = � �m20��m20| {z }=�2 �m2R��m20� ����g0 = 2 �m2R��m20� ����g0 = 2F�(uR�) (6.3b)ist. Die Di�erentiation von (6.1a) und (6.1b) na
h t� bei festem g0 ergibt dann2 F�(uR�)F+(uR+) = �m2R�=�t��m2R+=�t+ ����g0 =  f+f�!2  t�t+!2��1 : (6.4)Andererseits folgt aus der De�nition der Korrelationsl�ange als inverse renormierteMasse unmittelbar  f+f�!2  t�t+!2��1 = �mR�mR+�2 t+t� ; (6.5)1F�ur D � 4 ist allerdings au
h in der St�orungstheorie m20
 = 0, so da� si
h in diesem Fall dieBestimmung des gesu
hten Amplitudenverh�altnisses vereinfa
ht.



72 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEworaus man 2 F�(uR�)F+(uR+) = �mR�mR+�2 t+t� (6.6)s
hlie�t. An dieser Stelle sind t+ und t�, und damit au
h mR+ und mR�, no
hunabh�angig w�ahlbar.F�ur die Bestimmung des Verh�altnisses f+=f� kann i
h nun Punktpaare (t+; t�)betra
hten, f�ur die mR+ = mR� (6.7)gilt. Die zugeh�origen Kopplungen uR+ und uR� h�angen dann in einer eindeutigenWeise voneinander ab, die allerdings zun�a
hst ni
ht bekannt ist. Mit (6.1a) und(6.1b) impliziert dies f+t��+ = f�t���bzw. f+f� =  t+t�!� ; (6.8)w�ahrend si
h (6.6) zu t+t� = 2 F�(uR�)F+(uR+) (6.9)vereinfa
ht. Setzte i
h jetzt den letzten Term in die vorletzte Glei
hung ein, soresultiert bereits f�ur das universelle Amplitudenverh�altnis der Korrelationsl�ange:f+f� = " 2 F�(uR�)F+(uR+) #� : (6.10)Die Funktionen F+ und F�, die in diese Glei
hung eingehen, sind als Potenzreihen inuR� perturbativ bere
henbar. Allerdings sind, wie oben betont, die Kopplungen uR+und uR� ni
ht identis
h, sondern sie stehen in einer bestimmten Beziehung zuein-ander. Diese Tatsa
he werde i
h ausnutzen, um das Verh�altnis f+=f� als Funktioneiner dimensionslosen Kopplungsvariablen �uR auszudr�u
ken, die si
h wiederum ineindeutiger Weise aus den renormierten Kopplungen beider Phasen erhalten l�a�t.Dabei lasse i
h mi
h von folgendem Gedanken leiten:Aus der Theorie der Renormierungsgruppe wissen wir, da� die dimensionsloserenormierte Kopplung beim Errei
hen des kritis
hen Punktes ihren (infrarotstabi-len) Fixpunktwert annimmt. Dieser ist f�ur D < 4 als ni
httriviale Nullstelle der�{Funktion gegeben. Ein neu einzuf�uhrender Entwi
klungsparameter �uR, der diePhysik in symmetris
her und gebro
hener Phase korrekt bes
hreibt, sollte demna
hin beiden Phasen denselben Fixpunkt besitzen. Dies ist glei
hbedeutend mit der Be-dingung, da� die Einf�uhrung von �uR in beiden Phasen auf dieselbe �{Funktionen



6.1. HERLEITUNG DER BESTIMMUNGSGLEICHUNG 73f�uhrt. Ihre De�nition (4.28a) erzwingt daher, da� der funktionale Zusammenhangzwis
henmR+ und �uR in der symmetris
hen Phase der glei
he sein mu� wie derjenigezwis
hen mR� und �uR in der Phase gebro
hener Symmetrie. Aufgrund vonu� = g0mR�bei festem g0 und der Darstellung (4.29) der �{Funktion bietet si
h f�ur die Erf�ullungdieser Forderung der Zusammenhang zwis
hen den dimensionslosen Kopplungen u�und uR� an, da dieser na
h (4.17) bzw. (4.25) in jeder Phase als Potenzreihe in uR+bzw. uR� bekannt ist. Dies erlaubt, die Kopplung �uR in Abh�angigkeit von uR+ bzw.uR� zu bestimmen, so da� f�ur die neuen �{Funktionen, per de�nitionem dur
h���(�uR) = mR� ��mR� ����g0 �uR(mR�) = �(4�D) " ���uR ����mR� ln �u�(�uR)� #�1 (6.11)gegeben, na
h (6.7) tats�a
hli
h��+(�uR) = ���(�uR) (6.12)gilt und das Amplitudenverh�altnis f+=f� (ggf. na
h Invertierung dieser Beziehun-gen) als Reihe in �uR ers
heint. Bevor i
h diese Ausf�uhrungen weiter pr�azisiere, sol-..........................


........................... �t�uR = uR� g0g0f
m20 m20 = m20
(t = 0)t+ = t�; uR = uR+

Abb. 6.1: S
hematis
he Darstellung des Phasen-diagramms einer �4{Theorie. Die renormiertenKopplungen beider Phasen sind voneinander ver-s
hieden.len die bisherigen �Uberlegungen anhand der Abbildungen 6.1 und 6.2 no
h einmalillustriert werden. Sie stellen die qualitative Gestalt des Phasendiagramms einer�4{Theorie dar, in dem das Quadrat der na
kten Masse gegen die na
kte Kopp-lung aufgetragen ist. Die kritis
he Linie ist dur
h die Bedingung m20 = m20
 (bzw.



74 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEt = 0 und mR = 0) bestimmt, und g0f sei ein fester Wert der na
kten Kopplungg0. F�ur Punkte, die bei g0f denselben Abstand von der kritis
hen Linie besitzen,gilt t+ = t� (Abb. 6.1). Na
h (6.3a) und (6.3b) fa�t man t+ und t� als Funktionenvon uR = uR+ bzw. uR = uR� auf. Diese Kopplungen sind dur
h die St�orungstheo-rie und das Renormierungss
hema in der jeweiligen Phase festgelegt, und demna
hgilt insbesondere an den Punkten (g0f ;�t�) und (g0f ; t+) f�ur die zugeh�origen renor-mierten Kopplungen uR+ 6= uR�. Wenn i
h allerdings in einer der beiden Phasen,..........................


........................... �t�uR = �uR = uR+ g0g0f
m20 m20 = m20
(t = 0)t+ 6= t�; uR = uR+

Abb. 6.2: S
hematis
he Darstellung des Phasen-diagramms einer �4{Theorie. Einf�uhrung einerKopplung �uR in der Tieftemperaturphase, die mituR+ identis
h ist.z.B. in der Tieftemperaturphase, eine Kopplung uR = �uR etabliere, die einerseitsdort die kritis
he Theorie bes
hreiben und andererseits mit uR = uR+ identis
h seinsoll, beein
u�t dies nat�urli
h die zugeh�orige Temperaturvariable t� (Abb. 6.2). Eswird dann t+ 6= t�, und glei
hzeitig �andert si
h die funktionale Abh�angigkeit derVerh�altnisse t+=t� und f+=f� von der neuen Kopplung �uR.In diesem Sinne sei also in einer der beiden Phasen die Existenz einer dort vonuR+ bzw. uR� vers
hiedenen, dimensionslosen renormierten Kopplung �uR angenom-men, die als die nat�urli
he Variable aller Renormierungskonstanten und Renormie-rungsgruppenfunktionen anzusehen ist. Um in der soeben bes
hriebenen Weise �uRin Abh�angigkeit von uR+ bzw. uR� zu erhalten, s
hreibt manu� = u�(uR�) = g0mR� = uR��1 + a(1)� uR� + a(2)� u2R� +O(u3R�)�:In dem allgemeinen Ansatz�uR = �uR(uR�) = uR��1 + b(1)� uR� + b(2)� u2R� +O(u3R�)�



6.1. HERLEITUNG DER BESTIMMUNGSGLEICHUNG 75ergeben si
h die KoeÆzienten b(i)� , i 2 N, eindeutig aus der Bedingung, da� f�ur dieinvertierte PotenzreiheuR� = uR�(�uR) = �uR�1 + 
(1)� �uR + 
(2)� �u2R +O(�u3R)�gerade u��uR� = uR�(�uR)� = u+�uR+ = �uR� (6.13a)oder umgekehrt u+�uR+ = uR+(�uR)� = u��uR� = �uR� (6.13b)gilt. Da i
h speziell an der Ersetzung von uR� dur
h �uR interessiert bin, rei
htnat�urli
h die Kenntnis der KoeÆzienten 
(i)� , i 2 N, bis zur gew�uns
hten Ordnungaus. Wie hier s
hon angedeutet ist, existieren zwei M�ogli
hkeiten, die Anpassungder neuen Kopplung vorzunehmen, da die �{Funktionen der Ho
h{ und Tieftempe-raturphase auf unters
hiedli
he Fixpunkte f�uhren:1. Anpassung an die Ho
htemperaturkopplung:Man bestimmt uR� = uR�(�uR) als Potenzreihe in �uR, so da� �u�R = u�R+ gilt.Na
h (4.17) ist alsou� juR�=uR� (�uR) = u+ juR+=�uR = �uR Z1(�uR)Z23+(�uR) (6.14)bis zur erforderli
hen Ordnung in �uR zu erf�ullen. Na
h diesem S
hritt ersetztman in F�(uR�) die Kopplung uR� dur
h �uR und identi�ziert ans
hlie�end �uRmit uR+. Die Glei
hung (6.10) liefert in diesem Fall f�ur das gesu
hte Amplitu-denverh�altnis f+f� = 24 2 F��uR�(�uR)�F+�uR+(�uR)� 35� �������uR=uR+ : (6.15)2. Anpassung an die Tieftemperaturkopplung:Man bestimmt uR+ = uR+(�uR) als Potenzreihe in �uR, so da� �u�R = u�R� gilt.Na
h (4.25) ist also jetztu+ juR+=uR+ (�uR) = u� juR�=�uR = �uR Z24 (�uR)Z3�(�uR) (6.16)bis zur erforderli
hen Ordnung in �uR zu erf�ullen. Dana
h ersetzt man inF+(uR+) die Kopplung uR+ dur
h �uR und identi�ziert diesmal �uR mit uR�.Aus (6.10) folgt dann f�ur das gesu
hte Amplitudenverh�altnisf+f� = 24 2 F��uR�(�uR)�F+�uR+(�uR)� 35� �������uR=uR� : (6.17)



76 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEAbs
hlie�end sei no
hmals hervorgehoben, da� die Freiheit in der Wahl der Kopp-lungsvariablen der renormierten St�orungstheorie ausgenutzt worden ist, mit derKopplung �uR einen neuen Entwi
klungsparameter in die Theorie einzuf�uhren, �uberden dann selbstverst�andli
h au
h alle Renormierungsgruppenfunktionen aus Ab-s
hnitt 4.3 de�niert sind. Erst die verlangte G�ultigkeit der Glei
hungen (6.13a) und(6.13b) legt seine Beziehung zu den Kopplungen uR+ und uR� in beiden Phaseneindeutig fest. Dies hat zur Konsequenz, da� f�ur die Bestimmung des analytis
henZusammenhangs zwis
hen diesen Kopplungen ni
ht einfa
h die �{Funktionen beiderPhasen herangezogen werden k�onnen:Betra
htet man n�amli
h zwei dimensionslose renormierte Kopplungen uR undu0R, die dur
h die Entwi
klungenu0R = u0R(uR) = uR�1 + a1uR + a2u2R +O(u3R)�uR = uR(u0R) = u0R�1 + b1u0R + b2u02R +O(u03R)�in umkehrbar eindeutiger Beziehung zueinander stehen, so erzwingt die Forderungna
h Invarianz der Callan{Symanzik{Glei
hung (4.27) unter der Transformati-on uR $ u0R f�ur die zugeh�origen �{Funktionen ni
ht etwa die Relation �0(u0R) =�(uR(u0R)), sondern vielmehr das kovariante2 Transformationsverhalten�(uR) ��uR = � 0(u0R) ��u0R ; �0(u0R) = ��uR(u0R)� �u0R(uR)�uR �����uR=uR(u0R): (6.18)Mit Hilfe dieser Identit�at kann man in den Re
hnungen die Beziehung zwis
hen denrenormierten Kopplungen beider Phasen �uberpr�ufen.6.2 RenormierungsgruppenfunktionenI
h wende jetzt die theoretis
hen �Uberlegungen der Kapitel 4 und 6 auf diejenigenReihen an, die in Kapitel 5 erhalten worden sind. Dabei verweise i
h insbesondere aufdie Abs
hnitte 5.1.3 und 5.2.3, in denen in jeder Phase die Beziehungen zwis
hen denna
kten und renormierten Parametern der Theorie bis eins
hlie�li
h zur 2. Ordnungin der Kopplung angegeben sind.Es wurde bereits betont, da� si
h, wie dur
h Mitf�uhrung eines Terms (1+O(�))als Faktor an die endli
hen Beitr�age der divergenten Diagramme angedeutet, beider Auswertung der dort beitragenden Impulsintegrale die Divergenz des IntegralsJ1 (unter anderem zur 1{Loop{Selbstenergie des Propagators beitragend) in dimen-sioneller Regularisierung ni
ht isolieren l�a�t. Da aus der allgemeinenRenormierungs-theorie in drei Dimensionen bekannt ist, da� die aus den St�orungsreihen erhaltenenphysikalis
hen Gr�o�en, wie z.B. Renormierungsgruppenfunktionen oder universelleVerh�altnisse, in jeder Ordnung der dimensionslosen renormierten Kopplung endli
h2Dies ist genau das Transformationsverhalten, wel
hes Vektorfelder unter einer Transformationihrer Basisfelder besitzen.



6.2. RENORMIERUNGSGRUPPENFUNKTIONEN 77bleiben, ist in den na
hfolgenden Glei
hungen den Grenzwert �! 0 als dur
hgef�uhrtanzusehen.S
hlie�li
h sei no
h hinzugef�ugt, da� man einen Teil der Ergebnisse dieses Ab-s
hnitts anhand der Identit�atZ3�(uR�)Z2�(uR�) = F�(uR�)�1 � 12 �3�(uR�)� ; (6.19)die im Rahmen des Beweises der Renormierungsgruppenglei
hung (4.27) auftritt,kontrollieren kann.6.2.1 Symmetris
he PhaseZun�a
hst bestimme i
h die Renormierungskonstanten Zi, i = 1; 2; 3, die na
h ihrerDe�nition in Abs
hnitt 4.2.1 no
h Funktionen der na
kten Kopplung u0+ sind, inAbh�angigkeit der dimensionslosen renormierten Kopplung uR+. Dazu ist die Glei-
hung (5.7) bis zur 2. Ordnung ausrei
hend:u0+ = uR+ �1 + 18� uR+ +O(u2R+)� : (6.20)Aus Abs
hnitt 5.1.3 ergibt si
h:1Z3+(uR+) = ���(2;0)0+ (p;m0+; g0)�p2 ����p2=0 = 1 + 15184�2 u20+ +O(u30+)= 1 + 15184�2 u2R+ +O(u3R+)Z3+(uR+) = 1� 15184�2 u2R+ +O(u3R+) (6.21)1Z1(uR+) = � 1g0 �(4;0)0+ (f0g;m0+; g0) = 1� 316� u0+ + 132�2 u20+ +O(u30+)= 1� 316� uR+ + 1128�2 u2R+ +O(u3R+)Z1(uR+) = 1 + 316� uR+ + 7256�2 u2R+ +O(u3R+): (6.22)Bez�ugli
h der Bestimmung von Z2� na
h (4.11) (und ebenso von F� na
h (6.2)) istan dieser Stelle eine Bemerkung angebra
ht, die die Bere
hnung dieser Funktionenals partielle Ableitungen na
h dem na
kten Massenquadrat betri�t und f�ur beidePhasen ihre G�ultigkeit hat:Wir haben dabei n�amli
h zu bea
hten, da� die Massendimension der Beitr�agezu ��(2;0)0� (p;m0�; g0), beginnend bei zwei in 0. Ordnung, mit ansteigender St�orungs-ordnung um 1 abnimmt, so da� dann insbesondere die endli
hen Terme der 2{Loop{Korrektur die Massendimension null besitzen. Dies erkennt man daran, da� die zu-geh�origen konvergenten Integrale na
h ihrer Bere
hnung ni
ht mehr von der na
ktenMasse abh�angen und somit zur Di�erentiation na
h m20� keinen Beitrag liefern. Der



78 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEeinzige ni
htvers
hwindende Beitrag 2. Ordnung zu Z2� und F� r�uhrt deshalb alleinvon den in D = 3 divergenten Diagrammen proportional zum Integral I2(p;D) her,dessen na
h dieser Di�erentiation endli
hen Wert ~I2 = ~I2(m0�) i
h bereits in 3.1.2bestimmt habe.Man �ndet:1Z2+(uR+) = � ��m20 �(2;0)0+ (0;m0+; g0) = 1 � 116� u0+ + 1192�2 u20+ +O(u30+)= 1 � 116� uR+ � 1384�2 u2R+ +O(u3R+)Z2+(uR+) = 1 + 116� uR+ + 5768�2 u2R+ +O(u3R+): (6.23)Aus (6.21) und (6.22) erhalte i
h die dimensionslose Kopplung u+ zuu+(uR+) = g0mR+ (uR+) = uR+ Z1(uR+)Z23+(uR+)= uR+ �1 + 316� uR+ + 57520736�2 u2R+ +O(u3R+)� : (6.24)S
hlie�li
h ist no
h die Funktion F+ = F+(uR+) zu bere
hen, die direkt in dasgesu
hte Amplitudenverh�altnis eingeht. Es f�uhrt ��m20 = 12m0 ��m0 , d.h. bei festem g0unter Anwendung der ProduktregelF+(u0+) = �m2R+�m20+ ����g0 = � ��m20+ �Z3+(u0+)�(2;0)0+ (p;m0+; g0)�= Z3+(u0+) ��m20+ ���(2;0)0+ (p;m0+; g0)�� �(2;0)0+ (p;m0+; g0) �Z3+(u0+)�m20+= �1� 15184�2 u20+ +O(u30+)��1� 116� u0+ � 16 g20 I 02(m0+) +O(u30+)�+m20+ �1 � 18� u0+ + 164�2 u20+ � 12 � 13 B(div)+ �+O(u30+)� �� 1m20+ � 15184�2 u20+ +O(u30+)�= �1� 15184�2 u20+ +O(u30+)��1� 116� u0+ + 1192�2 u20+ +O(u30+)�+� 15184�2 u20+ +O(u30+)�= 1 � 116� u0+ + 1192�2 u20+ +O(u30+);mit (6.20) auf das endli
he ErgebnisF+(uR+) = 1� 116� uR+ � 1384�2 u2R+ +O(u3R+): (6.25)Na
h diesen Vorbereitungen bere
hne i
h die Renormierungsgruppenfunktionenaus Abs
hnitt 4.3 bis eins
hlie�li
h zur 2. Ordnung in uR+. Im Falle der �{Funktion



6.2. RENORMIERUNGSGRUPPENFUNKTIONEN 79verwendet man dazu zwe
km�a�igerweise anstelle ihrer De�nition (4.28a) die Iden-tit�at (4.29). Mit (6.24) erhalte i
h:�+(uR+) = � ��uR+ ����mR+ ln �u+(uR+)�!�1 = � 1u+(uR+) �u+(uR+)�uR+ ����mR+!�1= �( 1uR+ �1 � 316� uR+ + 7710368�2 u2R+ +O(u3R+)� �� �1 + 38� uR+ + 5756912�2 u2R+ +O(u3R+)�)�1= �� 1uR+ �1 + 316� uR+ + 42120736�2 u2R+ +O(u3R+)���1= �uR+ + 316� u2R+ � 775184�2 u3R+ +O(u4R+);und damit�+(uR+) = �uR+ �1 � 316� uR+ + 775184�2 u2R+ +O(u3R+)� : (6.26)Des weiteren ergibt si
h mit (4.31a) und (6.21) bzw. (4.31b) und (6.23):�3+(uR+) = �+(uR+) ��uR+ ����g0 ln �Z3+(uR+)� = �+(uR+) 1Z3+(uR+) �Z3+(uR+)�uR+ ����g0= �+(uR+)�1 + 15184�2 u2R+ +O(u3R+)��� 12592�2 uR+ +O(u2R+)�= 12592�2 u2R+�1 +O(uR+)� (6.27)�2+(uR+) = �+(uR+) ��uR+ ����g0 ln �Z2+(uR+)� = �+(uR+) 1Z2+(uR+) �Z2+(uR+)�uR+ ����g0= �+(uR+)�1� 116� uR+ � 1384�2 u2R+ +O(u3R+)� �� � 116� + 5384�2 uR+ +O(u2R+)�= � 116� uR+ �1 � 316� uR+ + 775184�2 u2R+ +O(u3R+)� �� �1 + 748� uR+ +O(u2R+)�= � 116� uR+ �1 � 124� uR+ +O(u2R+)� : (6.28)Na
h (4.32) ist�+(uR+) = �2 � �3+(uR+) + �2+(uR+)��1= �2� 116� uR+ + 2310368�2 u2R+ +O(u3R+)��1= �2�1� 132� uR+ + 2320736�2 u2R+ +O(u3R+)���1 ;



80 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEworaus �+(uR+) = 12 �1 + 132� uR+ � 1182944�2 u2R+ +O(u3R+)� (6.29)folgt.An diesen Resultaten best�atigt si
h die s
hon erw�ahnte Aussage, da� die Renor-mierungskonstanten und die daraus bere
hneten Renormierungsgruppenfunktionenfrei von Divergenzen sind. Sie stehen im �ubrigen mit den dreidimensionalen Bere
h-nungen in [BNMG76, BNM78℄ in Einklang, wo die Renormierungsgruppenfunktio-nen in der symmetris
hen Phase bis zur 7. Ordnung (f�ur �+) bzw. 6. Ordnung (f�ur�3+ und �2+) bestimmt sind.6.2.2 Phase gebro
hener SymmetrieAu
h hier beginne i
h mit der Bestimmung der Renormierungskonstanten Zi, i =2; 3; 4, die in Abs
hnitt 4.2.2 de�niert worden sind und �uber die aus (5.16) folgendeRelation u0� = uR� �1 + 31128� uR� +O(u2R�)� (6.30)als Funktion von uR� auszudr�u
ken sind. Man erh�alt aus 5.2.3:1Z3�(uR�) = ���(2;0)0� (p;m0�; g0)�p2 ����p2=0 = 1 + 164� u0� � 4141472�2 u20� +O(u30�)= 1 + 164� uR� + 1855663552�2 u2R� +O(u3R�)Z3�(uR�) = 1 � 164� uR� � 1693663552�2 u2R� +O(u3R�): (6.31)Die Bestimmung von Z2� erfolgt wie in der symmetris
hen Phase �uber1Z2�(uR�) = � ��m20 �(2;0)0� (0;m0�; g0) = 1 + 132� u0� � 196�2 u20� +O(u30�)= 1 + 132� uR� � 3512288�2 u2R� +O(u3R�)Z2�(uR�) = 1� 132� uR� + 4712288�2 u2R� +O(u3R�); (6.32)und aus dem Vakuumerwartungswert des Feldes ergibt si
h:Z4(uR�) = m0�mR�  1 +s g03m20� v0!= �1 � 3128� u0� � 164�2 u20� � 7591341472�2 + 13 B(div)� �+O(u30�� �� �1 + 18� u0� � 164�2 u20� � 12 � 13 B(div)� �+O(u30�)�



6.2. RENORMIERUNGSGRUPPENFUNKTIONEN 81= 1 + 13128� u0� � 1044252654208�2 u20� +O(u30�)= 1 + 13128� uR� � 391392654208�2 u2R� +O(u3R�)1Z4(uR�) = 1 � 13128� uR� + 665172654208�2 u2R� +O(u3R�): (6.33)Glei
hung (4.25) liefert s
hlie�li
hu�(uR�) = g0mR� (uR�) = uR� Z24(uR�)Z3�(uR�)= uR� �1 + 732� uR� � 2191165888�2 u2R� +O(u3R�)� : (6.34)Au�erdem bere
hne i
h wieder mit ��m20 = 12m0 ��m0 bei festem g0F�(u0�) = �m2R��m20� ����g0 = � ��m20� �Z3�(u0�)�(2;0)0� (p;m0�; g0)�= Z3�(u0�) ��m20� ���(2;0)0� (p;m0�; g0)�� �(2;0)0� (p;m0�; g0) �Z3�(u0�)�m20�= �1� 164� u0� + 409331776�2 u20� +O(u30�)� �� �1 + 132� u0� + 13 g20 I 02(m0�) +O(u30�)�+m20� �1 + 116� u0� + 164�2 u20� � 154 � 23 B(div)� �+O(u30�)� �� 1m20� � 1128� u0� � 409331776�2 u20� +O(u30�)�= �1� 164� u0� + 409331776�2 u20� +O(u30�)� �� �1 + 132� u0� � 196�2 u20� +O(u30�)�+� 1128� u0� � 409331776�2 u20� + 12048�2 u20� +O(u30�)�= 1 + 3128� u0� � 196�2 u20� +O(u30�);woraus mit (6.30)F�(uR�) = 1 + 3128� uR� � 23349152�2 u2R� +O(u3R�) (6.35)folgt.Au
h die Renormierungsgruppenfunktionen bere
hnen si
h analog zur symme-tris
hen Phase. Zun�a
hst ist��(uR�) = � ��uR� ����mR� ln �u�(uR�)�!�1 = � 1u�(uR�) �u�(uR�)�uR� ����mR�!�1



82 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGE= �( 1uR� �1 � 732� uR� + 10129165888�2 u2R� +O(u3R�)� �� �1 + 716� uR� � 219155296�2 u2R� +O(u3R�)�)�1= �� 1uR+ �1 + 732� uR� � 3855184�2 u2R� +O(u3R�)���1= �uR� + 732� u2R� � 1012982944�2 u3R� +O(u4R�);d.h. ��(uR�) = �uR� �1 � 732� uR� + 1012982944�2 u2R� +O(u3R�)� ; (6.36)und ferner:�3�(uR�) = ��(uR�) ��uR� ����g0 ln �Z3�(uR�)� = ��(uR�) 1Z3�(uR�) �Z3�(uR�)�uR� ����g0= ��(uR�)�1 + 164� uR� + 1855663552�2 u2R� +O(u3R�)� �� �� 164� � 1693331776�2 uR� +O(u2R�)�= 164� uR� �1� 732� uR� + 1012982944�2 u2R� +O(u3R�)� �� �1 + 8872592� uR� +O(u2R�)�= 164� uR� �1 + 1081� uR� +O(u2R�)� (6.37)�2�(uR�) = ��(uR�) ��uR� ����g0 ln �Z2�(uR�)� = ��(uR�) 1Z2�(uR�) �Z2�(uR�)�uR� ����g0= ��(uR�)�1 + 132� uR� � 3512288�2 u2R� +O(u3R�)� �� �� 132� + 476144�2 uR+ +O(u2R+)�= 132� uR� �1� 732� uR� + 1012982944�2 u2R� +O(u3R�)� �� �1� 41192� uR� +O(u2R�)�= 132� uR� �1� 83192� uR� +O(u2R�)� : (6.38)Mit (4.32) ist jetzt��(uR�) = �2 � �3�(uR�) + �2�(uR�)��1= �2 + 164� uR� � 2651165888�2 u2R� +O(u3R�)��1= �2�1 + 1128� uR+ � 2651331776�2 u2R� +O(u3R�)���1



6.3. BESTIMMUNG VON F+=F� 83mit dem Ergebnis��(uR�) = 12 �1� 1128� uR� + 103251327104�2 u2R� +O(u3R�)� : (6.39)Au
h hier ist wieder zu beoba
hten, da� alle soeben bestimmten Funktionen alsPotenzreihen in der dimensionslosen renormierten Kopplung uR� im Limes D ! 3endli
he KoeÆzienten besitzen.6.3 Bestimmung von f+=f�Na
h diesen Vorbereitungen kann i
h dazu �ubergehen, das Verh�altnis f+=f� gem�a�Abs
hnitt 6.1 als Potenzreihe 2. Ordnung in einer beiden Phasen gemeinsamen re-normierten Kopplungen zu bere
hnen.6.3.1 Entwi
klung in der Ho
htemperaturkopplungF�ur die Bestimmung des Verh�altnisses f+=f� als Entwi
klung in einer Kopplungs-variablen �uR, die den Fixpunkt u�R+ der Ho
htemperaturkopplung uR+ besitzt, hatman uR� in Abh�angigkeit von �uR zu bestimmen. Ans
hlie�end sind alle Gr�o�en derTieftemperaturphase dur
h die neue Kopplung �uR auszudr�u
ken.Gem�a� 6.1 mu� dazu die Glei
hung (6.14) bis zur 3. Ordnung identis
h erf�ulltwerden. Aus dem Verglei
h von (6.34) mit (6.24), letztere als Funktion von �uR,erhalte i
h dur
h einen Potenzreihenansatz die BeziehunguR� = uR�(�uR) = �uR �1� 132� �uR + 9059165888�2 �u2R +O(�u3R)� ; (6.40)die im folgenden allerdings nur in 2. Ordnung ben�otigt wird.Na
h (6.25) istF+(uR+) = 1� 116� uR+ � 1384�2 u2R+ +O(u3R+);und (6.35) f�uhrt mit (6.40) aufF�(�uR) = F�(uR�) ����uR�=uR� (�uR)= �1 + 3128� uR� � 23349152�2 u2R� +O(u3R�)� �����uR�=uR� (�uR)= 1 + 3128� �uR � 26949152�2 �u2R +O(�u3R): (6.41)Wegen �u�R = u�R+ setze i
h �uR = uR+ und �ndeF�F+ (uR+) = 1 + 11128� uR+ + 4116384�2 u2R+ +O(u3R+): (6.42)



84 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEDaraus erh�alt man mit (6.15) dur
h Entwi
keln der dort auftretenden allgemei-nen Exponentialfunktion f�ur das Amplitudenverh�altnis der Korrelationsl�ange inAbh�angigkeit des Exponenten � die Glei
hungf+f� (uR+; �) = " 2 F�F+ (uR+) #�= 2�  1 + 11�128� uR+ � 39� � 121�232768�2 u2R+ +O(u3R+)! : (6.43)Ber�u
ksi
htigt man au�erdem die Entwi
klung (6.29), so kann man dieses Verh�altnisals Funktion der Ho
htemperaturkopplung �uR = uR+ allein angeben. Eine Entwi
k-lung bis zur 2. Ordnung liefert das Ergebnis:f+f� (uR+) = " 2 F�F+ (uR+) #�+(uR+ )= p2�1 + � 11256� + 164� ln 2�uR++� 219131072�2 + 8031327104�2 ln 2 + 18192�2 ln2 2�u2R+ +O(u3R+)�:(6.44)Das Resultat (6.44) zeigt die Struktur, wie sie aus einer perturbativen Re
hnung zuerwarten ist:Der Beitrag 0. Ordnung entspri
ht dem aus der Mean{Field{Theorie bekanntenWert (f+=f�)MF = p2 und entspri
ht dem Verh�altnis der na
kten Massen bei-der Phasen. Dieses bewirkt au
h das Auftreten zunehmender Potenzen von ln 2 in(6.44). Die Terme 1. und. 2. Ordnung, die dur
h die dreidimensionale St�orungstheo-rie gewonnen worden sind, stellen positive Korrekturen zu diesem Wert da, derennumeris
he Gr�o�e dur
h die zugeh�origen KoeÆzienten und den Fixpunktwert derrenormierten Kopplung bestimmt ist.6.3.2 Entwi
klung in der TieftemperaturkopplungIn analoger Weise erh�alt man das Verh�altnis f+=f� als Entwi
klung in einer re-normierten Kopplung �uR, die den Fixpunkt u�R� der Tieftemperaturkopplung uR�besitzt. Na
h 6.1 ist jetzt die Glei
hung (6.16) bis zur 3. Ordnung zu erf�ullen. DerVerglei
h von (6.34) mit (6.24), diesmal allerdings erstere als Funktion von �uR, ergibtna
h einem Potenzreihenansatz die BeziehunguR+ = uR+(�uR) = �uR �1 + 132� �uR � 8735165888�2 �u2R +O(�u3R)� ; (6.45)mit der i
h in der Ho
htemperaturphase die Kopplung uR+ dur
h �uR ersetze.Na
h (6.35) ist jetztF�(uR�) = 1 + 3128� uR� � 23349152�2 u2R� +O(u3R�);



6.4. NUMERISCHE ERGEBNISSE 85und mit (6.25) und (6.45) folgtF+(�uR) = F+(uR+) ����uR+=uR+ (�uR)= �1� 116� uR+ � 1384�2 u2R+ +O(u3R+)� �����uR+=uR+ (�uR)= 1� 116� �uR � 71536�2 �u2R +O(�u3R): (6.46)Wegen �u�R = u�R� setze i
h wieder �uR = uR� und erhalteF�F+ (uR�) = 1 + 11128� uR� + 8516384�2 u2R� +O(u3R�): (6.47)Wie in der Ho
htemperaturphase ergibt si
h mit (6.17) f�ur das Amplitudenverh�altnisder Korrelationsl�ange in Abh�angigkeit von � zun�a
hstf+f� (uR�; �) = " 2 F�F+ (uR�) #�= 2�  1 + 11�128� uR� + 49� + 121�232768�2 u2R� +O(u3R�)! : (6.48)Mit (6.39) und einer Entwi
klung bis eins
hlie�li
h zur 2. Ordnung in der Tieftem-peraturkopplung �uR = uR� �ndet si
h das Ergebnisf+f� (uR�) = " 2 F�F+ (uR�) #��(uR�)= p2�1 + � 11256� � 1256� ln 2�uR�+� 175131072�2 + 197595308416�2 ln 2 + 1131072�2 ln2 2�u2R� +O(u3R�)�;(6.49)wel
hes ebenfalls die f�ur D = 3 zu erwartenden Korrekturen zum Mean{Field{Verhalten zeigt.6.4 Numeris
he ErgebnisseDie Bere
hnung des Amplitudenverh�altnisses der Korrelationsl�ange in den vorheri-gen Abs
hnitten zeigt, da� si
h f�ur seine numeris
he Bestimmung zwei M�ogli
hkeitener�o�nen.Dies �au�ert si
h darin, da� in die Bestimmungsglei
hung (6.10) neben der di-mensionslosen renormierten Kopplung der kritis
he Exponent � eingeht, den wirentweder als Literaturwert vorgeben oder in Gestalt der zugeh�origen Renormierungs-gruppenfunktion (4.32) als Entwi
klung in uR� verwenden k�onnen. Im letzteren Fall



86 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEist dann der einzige vorzugebende Parameter der Fixpunktwert der renormiertenKopplung, der gem�a� den �Uberlegungen aus Abs
hnitt 4.3 gerade die Theorie amkritis
hen Punkt bes
hreibt. Dur
h Einsetzen dieses Fixpunktes in die Reihenent-wi
klungen des Verh�altnisses f+=f� und des Exponenten � erhalten wir somit eineApproximation deren universeller Werte.Mit den Ergebnissen der 2{Loop{Re
hnung ist nat�urli
h nur eine n�aherungswei-se Bestimmung dieser Gr�o�en m�ogli
h, da f�ur eine genaue Analyse der Reihen zuwenige Ordnungen zur Verf�ugung stehen. Ausgehend von den bekannten Korrektur-koeÆzienten 1. und 2. Ordnung kann man deshalb bestenfalls Abs
h�atzungen �uberdie Relevanz der weiteren Ordnungen ma
hen.Zur numeris
hen Auswertung unserer Reihen verwende i
h die Methode der ra-tionalen Approximanten (Pad�e{Analyse), wie sie in [Sie93℄ diskutiert ist. Dabei be-zei
hnen wir die polynomiale Approximation einer Potenzreihe, die bis eins
hlie�li
hzur 2. Ordnung gegeben ist, kurz als [2,0℄{Pad�e, w�ahrend die Funktionen [1,1℄{Pad�eund [0,2℄{Pad�e die gebro
henrationalen Approximanten dieser Reihe darstellen.6.4.1 Ho
htemperatur�xpunkt u�R+I
h werte die Entwi
klungen der kritis
hen Gr�o�en �(uR+) und f+f� (uR+) f�ur die zweispeziellen Werte des Fixpunktes der renormierten Kopplung der Ho
htemperatur-phase u�R+ = 23:73(8); [GZJ80, ZJ82℄, RG in D = 3u�R+ = 24:56(10); [Sie93℄, HT{Entwi
klung (6.50)aus.Kommentierung der Tabellen:� Tabelle 6.1:Bestimmung des kritis
hen Exponenten � aus der Reihe (6.29).� Tabelle 6.2:Bestimmung des universellen Amplitudenverh�altnisses f+=f� aus der Reihe(6.42) gem�a� f+f� = " 2 F�F+ (u�R+) #� ; (6.51)wobei f�ur den kritis
hen Exponenten � die Literaturwerte� = 0:6300(15); [GZJ80, ZJ82℄, RG in D = 3� = 0:627(9); [De
85℄, TT{Entwi
klung� = 0:624(2); [BGHP92℄, MC{RGvorgegeben werden.



6.4. NUMERISCHE ERGEBNISSE 87� Tabelle 6.3:Bestimmung des universellen Amplitudenverh�altnisses f+=f� aus der Reihe(6.44).6.4.2 Tieftemperatur�xpunkt u�R�Nun werte i
h die Entwi
klungen der kritis
hen Gr�o�en �(uR�) und f+f� (uR�) f�ur zweispezielleWerte des Fixpunktes der renormierten Kopplung der Tieftemperaturphaseu�R� = 14:73(14); [Sie93℄, TT{Entwi
klungu�R� = 15:1(1:3); indirekt aus [TF75, AH76, BG80℄ (6.52)aus.Kommentierung der Tabellen:� Tabelle 6.4:Bestimmung des kritis
hen Exponenten � aus der Reihe (6.39).� Tabelle 6.5:Bestimmung des universellen Amplitudenverh�altnisses f+=f� aus der Reihe(6.47) gem�a� f+f� = " 2 F�F+ (u�R�) #� ; (6.53)wobei man f�ur den kritis
hen Exponenten � wieder die obigen Literaturwertevorgibt.� Tabelle 6.6:Bestimmung des universellen Amplitudenverh�altnisses f+=f� aus der Reihe(6.49).



88 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGEVorgaben Kritis
her Exponent �Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 0.6142 0.6144 0.604424.56(10) 0.6182 0.6182 0.6072Tab. 6.1: Numeris
he Werte des kritis
hen Exponenten � na
hVorgabe vers
hiedener Werte des Fixpunktes u�R+ .Vorgaben Amplitudenverh�altnis f+=f�Exponent � Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 2.2348 2.2663 2.07160.6300(15) 24.56(10) 2.2605 2.2956 2.077523.73(8) 2.2263 2.2575 2.06440.627(9) 24.56(10) 2.2518 2.2865 2.070323.73(8) 2.2178 2.2487 2.05700.624(2) 24.56(10) 2.2431 2.2775 2.0630Tab. 6.2: Numeris
he Werte des Amplitudenverh�altnisses f+=f� na
h Vorgabevers
hiedener Werte des Exponenten � und des Fixpunktes u�R+ .Vorgaben Amplitudenverh�altnis f+=f�Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 2.1623 2.2373 2.222924.56(10) 2.1947 2.2793 2.2627Tab. 6.3: Numeris
he Werte des Amplitudenverh�altnissesf+=f� na
h Vorgabe vers
hiedener Werte des Fixpunktes u�R+ .



6.4. NUMERISCHE ERGEBNISSE 89Vorgaben Kritis
her Exponent �Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 0.5672 0.4966 0.576715.1(1.3) 0.5711 0.4966 0.5818Tab. 6.4: Numeris
he Werte des kritis
hen Exponenten � na
hVorgabe vers
hiedener Werte des Fixpunktes u�R� .Vorgaben Amplitudenverh�altnis f+=f�Exponent � Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 2.0122 2.0497 2.03290.6300(15) 15.1(1.3) 2.0255 2.0660 2.054614.73(14) 2.0055 2.0426 2.03230.627(9) 15.1(1.3) 2.0187 2.0588 2.047614.73(14) 1.9988 2.0356 2.02550.624(2) 15.1(1.3) 2.0119 2.0517 2.0406Tab. 6.5: Numeris
he Werte des Amplitudenverh�altnisses f+=f� na
h Vorgabevers
hiedener Werte des Exponenten � und des Fixpunktes u�R� .Vorgaben Amplitudenverh�altnis f+=f�Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 1.8030 1.9052 1.859015.1(1.3) 1.8159 1.9292 1.8771Tab. 6.6: Numeris
he Werte des Amplitudenverh�altnissesf+=f� na
h Vorgabe vers
hiedener Werte des Fixpunktes u�R� .



90 KAPITEL 6. AMPLITUDENVERH�ALTNIS DER KORRELATIONSL�ANGE6.4.3 DiskussionZun�a
hst seien in Tabelle 6.7 eine Reihe weiterer Literaturwerte der hier untersu
h-ten universellen Gr�o�en zusammengestellt, die auf unters
hiedli
hen Bestimmungs-methoden beruhen. Literaturwerte universeller Gr�o�enBestimmungsmethode � f+=f��{Entwi
klung 0.6310(15) 1.91RG in D = 3 0.6300(15), 0.6298(7)HT/TT{Entwi
klung 0.6305(15) 1.96(3), 1.96(1), 1.94(3)Bin�are Fluide (exp.) 0.625(10) 2.04(20), 2.22(5), 1.9(2)Tab. 6.7: Aus [ZJ89, BB85, TF75, LF89, Sie93, KKG83℄ entnommene Litera-turwerte.Beim Betra
hten der vorstehenden Tabellen stellt man generell fest, da� dieSt�orungsreihen der Ho
htemperaturphase auf h�ohere Zahlenwerte f�uhren als dieje-nigen der Tieftemperaturphase, was z.T. dur
h die Gr�o�e der zugeh�origen Fixpunkte(6.50) und (6.52) bedingt ist. Im Falle des Exponenten � f�allt auf, da� die Resultateder gebro
henen Phase (Tab. 6.4) no
h merkli
h unterhalb der Literaturwerte liegen,w�ahrend diese in der symmetris
hen Phase bereits dur
h die 2{Loop{Re
hnung gutreproduziert werden. Die Gestalt der zugrundeliegenden Reihen (6.29) und (6.39)zeigt allerdings, da� die 2{Loop{Beitr�age bei einem Fixpunkt von u�R+ � 24 bzw.u�R� � 15 etwa 1% bzw. 18% der f�uhrenden Terme betragen, so da� in der Tieftem-peraturphase von der 3. St�orungsordnung no
h deutli
he Korrekturen zu erwartensind.Die Werte des Amplitudenverh�altnisses der Korrelationsl�ange liegen fast alleoberhalb der angegebenen Literaturwerte. Beim genaueren Hins
hauen erkennt manzun�a
hst als Konsequenz der vorstehenden Beoba
htung, da� die Diskrepanz zwi-s
hen den Werten, in die nur die Fixpunkte uR� eingehen (Tab. 6.3, Tab. 6.6) unddenen, die au
h die Kenntnis von � verlangen (Tab. 6.2, Tab. 6.5), in der Phasegebro
hener Symmetrie ausgepr�agter ist. Deshalb wird man wohl grunds�atzli
h denWerten, die auf einer Vorgabe des Fixpunktwertes der renormierten Kopplung unddes kritis
hen Exponenten � beruhen, mehr Bea
htung s
henken. Ein Verglei
h derTabellen 6.2 und 6.5 miteinander gibt einen Hinweis darauf, die Tieftemperatur-kopplung uR� als den geeigneteren Entwi
klungsparameter anzusehen, da dort diePad�e{Approximanten eine wesentli
h geringere Abwei
hung untereinander zeigenals diejenigen in der Ho
htemperaturkopplung uR+. Dieser Eindru
k erh�artet si
h,wenn man die Gr�o�enordnung der st�orungstheoretis
hen Korrekturen 1. und 2. Ord-nung in den Reihen (6.42) und (6.47) bzw. (6.44) und (6.49) f�ur die Verh�altnisseF�=F+ und f+=f� abs
h�atzt. Diese haben in Ho
h{ und Tieftemperaturphase (bis



6.4. NUMERISCHE ERGEBNISSE 91auf evtl. konstante Vorfaktoren) die Struktur1 + a(1)� uR� + a(2)� u2R� +O(u3R�);und die KoeÆzienten ergeben si
h n�aherungsweise zua(1)+ = 2:73 � 10�2; a(2)+ = 2:53� 10�4; a(1)� = 2:73 � 10�2; a(2)� = 5:24� 10�4;bzw.a(1)+ = 1:72 � 10�2; a(2)+ = 2:18� 10�4; a(1)� = 1:28 � 10�2; a(2)� = 3:97� 10�4:Wenn wir in der symmetris
hen Phase wieder einen Fixpunktwert von u�R+ � 24annehmen, betragen die Korrekturen 1. Ordnung etwa 66% bzw. 41% der Terme0. Ordnung und die Korrekturen 2. Ordung beide Male ungef�ahr 9% der Terme0. und 1. Ordnung. In der Phase gebro
hener Symmetrie, bei einem Fixpunkt vonu�R� � 15, nehmen die entspre
henden Beitr�age etwa 41% bzw. 19% und 8% bzw.7% der f�uhrenden Terme ein. Dies legt wiederum den S
hlu� nahe, da� die Reihen-entwi
klungen in der Tieftemperaturvariablen bessere Konvergenzeigens
haften3 be-sitzen als diejenigen in der Ho
htemperaturvariablen, denn bei einer Einbeziehungweiterer Ordnungen ist in letzterem Fall mit prozentual gr�o�eren Korrekturen zure
hnen.Na
h Mittelwertbildung und Angabe der maximalenAbwei
hungen zu einzelnenWerten formuliere i
h aus den Tabellen 6.2 und 6.5, deren Eintr�age ein breites Spek-trum m�ogli
her Vorgaben eins
hlie�en, ein zusammenfassendes Endergebnis meinerRe
hnungen. In der Ho
htemperaturkopplung istf+f� = 2:18(12) ; (6.54)und in der Tieftemperaturkopplung erh�alt manf+f� = 2:03(4) : (6.55)Eine Fehlerre
hnung ist in diesem Zusammenhang ni
ht sinnvoll, da die pertur-bativen Re
hnungen keine Fehlerangaben erm�ogli
hen. Denno
h ist aufgrund dererhaltenen Resultate ni
ht auszus
hlie�en, da� das Amplitudenverh�altnis der Kor-relationsl�ange tats�a
hli
h gr�o�er als die in Tabelle 6.7 zu �ndenden Werte ist.Abs
hlie�end sei hinzugef�ugt, da� eine Pad�e{Borel{Transformation, wie siein [BNM78, GZJ80, BB85, BBMN87℄ verwendet wird, die Numerik der obigenSt�orungsreihen 2. Ordnung ni
ht verbessert. Dies ist vermutli
h darauf zur�u
k-zuf�uhren, da� | wie in den zitierten Arbeiten angedeutet | eine sinnvolle An-wendung dieser Methode erst dann gere
htfertigt ist, wenn eine h�ohere Zahl vonOrdnungen der zu analysierenden Reihe und damit glei
hzeitig das asymptotis
heVerhalten ihrer KoeÆzienten bekannt sind.3Es wird jedo
h keineswegs behauptet, da� die Reihen �uberhaupt konvergieren!



Kapitel 7Amplitudenverh�altnis derSuszeptibilit�atDie st�orungstheoretis
hen Re
hnungen, die in erster Linie der Bestimmung des Am-plitudenverh�altnisses der Korrelationsl�ange galten, k�onnen au
h auf das universelleAmplitudenverh�altnis der Suszeptibilit�at ausgedehnt werden. Seine Bere
hnung biseins
hlie�li
h zur 2. Ordnung in der renormierten dimensionslosen Kopplung ist des-halb ebenfalls Gegenstand des Interesses.Hierzu gehe i
h wie in Kapitel 6 vor, indem i
h zun�a
hst eine geeignete Be-stimmungsglei
hung f�ur das gesu
hte Verh�altnis herleite und dieses ans
hlie�end alsPotenzreihe in einer Kopplungsvariablen �uR s
hreibe, die zuvor an den Fixpunkt derrenormierten Kopplung in der Ho
h{ bzw. Tieftemperaturphase angegli
hen wordenist.7.1 Herleitung der Bestimmungsglei
hungDie Suszeptibilit�at � divergiert in beiden Phasen bei Ann�aherung an den kritis
henPunkt T = T
 gem�a� (1.13) na
h dem Gesetz� � C�jtj�
; t := T � T
T
 :In Verallgemeinerung ihrer thermodynamis
hen De�nition (1.5) steht die Suszepti-bilit�at mit den feldtheoretis
hen Gr�o�en in jeder Phase �uber die Beziehung1� = ��(2;0)(0;m0; g0) (7.1)in Zusammenhang, und mit (4.18) und (4.19a) folgt daraus1� = � 1Z3(uR) �(2;0)R (0;mR; uR) = m2RZ3(uR) : (7.2)92



7.1. HERLEITUNG DER BESTIMMUNGSGLEICHUNG 93Verwendet man von nun an wieder die Konventionen aus 6.1, so ist zu beoba
hten,da� das singul�are Verhalten der Suszeptibilit�at in der jeweiligen Phase dur
h1m2R� = C�t�
�Z3�(uR�) (7.3)mit der renormiertenMasse (bzw. der Korrelationsl�ange) vekn�upft ist. I
h bilde jetztden Quotienten dieser Glei
hungen und erhalteC+C� = m2R�m2R+ Z3+(uR+)Z3�(uR�)  t+t�!
 : (7.4)Na
h einer Wahl von Punkten im Phasendiagramm mitmR+ = mR�hat man dann einerseits C+C� = Z3+(uR+)Z3�(uR�)  t+t�!
 (7.5)und andererseits na
h (6.9) wiedert+t� = 2 F�(uR�)F+(uR+) :F�uhrt man jetzt genau wie zuvor in beiden Phasen die renormierte Kopplung �uRein, die je na
h Anpassung an die renormierte Kopplung der anderen Phase denHo
h{ bzw. Tieftemperatur�xpunkt besitzt, so ergibt si
h daraus f�ur das universelleAmplitudenverh�altnis der Suszeptibilit�at die Glei
hungC+C� = Z3+�uR+(�uR)�Z3��uR�(�uR)� 24 2 F��uR�(�uR)�F+�uR+(�uR)� 35
 : (7.6)Mit (6.10) und dem Skalengesetz (1.15b)
 = �(2� �)kann man dieses Verh�altnis au
h auf das Amplitudenverh�altnis der Korrelationsl�angezur�u
kf�uhren:C+C� = Z3+�uR+(�uR)�Z3��uR�(�uR)� " f+f� (�uR) #
=� = Z3+�uR+(�uR)�Z3��uR�(�uR)� " f+f� (�uR) #2�� : (7.7)Die Beziehungen zwis
hen �uR und uR+ bzw. uR+ kann i
h dabei unver�andert ausdem vorstehenden Kapitel �ubernehmen.



94 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT �AT7.2 Renormierungsgruppenfunktion 
Im Hinbli
k auf (7.6) und (7.7) f�uhren wir dur
h
�(uR�) := ��(uR�)�2 � �3�(uR�)� (7.8)in beiden Phasen eine weitere Renormierungsgruppenfunktion ein, aus der si
h derkritis
he Exponent 
 dur
h 
 = 
�(u�R�) (7.9)ergibt. Mit Hilfe der Resultate aus 6.2 ist diese Funktion als Entwi
klung in derHo
h{ bzw. Tieftemperaturkopplung lei
ht anzugeben.7.2.1 Symmetris
he PhaseMit den Glei
hungen (6.27) und (6.29) f�ur die Renormierungsgruppenfunktionen �3+und �+, d.h. �3+(uR+) = 12592�2 u2R+�1 +O(uR+)�und �+(uR+) = 12 �1 + 132� uR+ � 1182944�2 u2R+ +O(u3R+)� ;erhalte i
h aus (7.8):
+(uR+) = 1 + 132� uR+ � 13072�2 u2R+ +O(u3R+): (7.10)7.2.2 Phase gebro
hener SymmetrieMit den Glei
hungen (6.37) und (6.39) f�ur die Renormierungsgruppenfunktionen �3�und ��, d.h. �3�(uR�) = 164� uR� �1 + 1081� uR� +O(u2R�)�und ��(uR�) = 12 �1� 1128� uR� + 103251327104�2 u2R� + O(u3R�)� ;ergibt si
h ebenfalls na
h (7.8):
�(uR�) = 1� 164� uR� + 16924576�2 u2R� +O(u3R�): (7.11)



7.3. BESTIMMUNG VON C+=C� 957.3 Bestimmung von C+=C�Bei der Bestimmung des Amplitudenverh�altnisses C+=C� halten i
h mi
h an dieVorgehensweise aus Abs
hnitt 6.3 und f�uhre in beiden Phasen wieder eine Kopplung�uR ein, die zu den Kopplungen uR+ und uR� in eindeutiger Beziehung steht und inderen Abh�angigkeit si
h das gesu
hte Verh�altnis bis eins
hlie�li
h zur 2. Ordnungangeben l�a�t.7.3.1 Entwi
klung in der Ho
htemperaturkopplungDie Renormierungskonstante Z3+ ist na
h (6.21) dur
hZ3+(uR+) = 1� 15184�2 u2R+ +O(u3R+)gegeben, und mit (6.31) und (6.40) �ndet manZ3�(�uR) = Z3�(uR�) ����uR�=uR� (�uR)= �1 � 164� uR� � 1693663552�2 u2R� +O(u3R�)� �����uR�=uR� (�uR)= 1 � 164� �uR � 1369663552�2 �u2R +O(�u3R): (7.12)Wegen �u�R = u�R+ identi�ziert man �uR mit uR+ und erh�altZ3+Z3� (uR+) = 1 + 164� uR+ + 1403663552�2 u2R+ +O(u3R+): (7.13)Andererseits kenne i
h na
h (6.42) bereitsF�F+ (uR+) = 1 + 11128� uR+ + 4116384�2 u2R+ +O(u3R+);so da� i
h dur
h Entwi
klung der Bestimmungsglei
hung (7.6) das Amplituden-verh�altnis der Suszeptibilit�at in Abh�angigkeit vom kritis
hen Exponenten 
 als Po-tenzreihe 2. Ordnung in �uR = uR+ erhalte:C+C� (uR+; 
) = Z3+Z3� (uR+) " 2 F�F+ (uR+) #
= 2
  1 + 2 + 11
128� uR+ + 5612 + 405
 + 9801
22654208�2 u2R+ +O(u3R+)!:(7.14)Mit (7.10) �ndet si
h in Abh�angigkeit von uR+ allein:



96 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT �ATC+C� (uR+) = Z3+Z3� (uR+) " 2 F�F+ (uR+) #
+(uR+ )= 2�1 + � 13128� + 132� ln 2� uR++� 114731327104�2 + 3512288�2 ln 2 + 12048�2 ln2 2�u2R+ +O(u3R+)�:(7.15)Dasselbe Resultat liegt vor, wenn die Glei
hung (7.7) und das in 6.3.1 bestimmteAmplitudenverh�altnis der Korrelationsl�ange (6.44) verwendet wird.Ferner ist zu bemerken, da� die dreidimensionale St�orungstheorie, wie zu erwar-ten, Korrekturen zu dem bekannten Mean{Field{Wert (C+=C�)MF = 2 liefert, dersi
h in (7.15) dur
h den Beitrag 0. Ordnung zu erkennen gibt.7.3.2 Entwi
klung in der TieftemperaturkopplungF�ur die Renormierungskonstante Z3� gilt na
h (6.31) die Entwi
klungZ3�(uR�) = 1 � 164� uR� � 1693663552�2 u2R� +O(u3R�);und mit (6.21) und (6.45) istZ3+(�uR) = Z3+(uR+) ����uR+=uR+ (�uR)= �1� 15184�2 u2R+ +O(u3R+)� �����uR+=uR+ (�uR)= 1� 15184�2 �u2R +O(�u3R): (7.16)Da i
h �uR hier gerade so gew�ahlt habe, da� �u�R = u�R� gilt, kann �uR = uR� gesetztwerden, so da� si
hZ3+Z3� (uR�) = 1 + 164� uR� + 1727663552�2 u2R� +O(u3R�) (7.17)ergibt. Na
h (6.47) ist au�erdemF�F+ (uR�) = 1 + 11128� uR� + 8516384�2 u2R� +O(u3R�);woraus mit (7.6) f�ur das Amplitudenverh�altnis der Suszeptibilit�at in Abh�angigkeitvon 
 zun�a
hstC+C� (uR�; 
) = Z3+Z3� (uR�) " 2 F�F+ (uR�) #
= 2
  1 + 2 + 11
128� uR� + 6908 + 7533
 + 9801
22654208�2 u2R� +O(u3R�)!(7.18)



7.4. NUMERISCHE ERGEBNISSE 97resultiert. Nimmt man Glei
hung (7.11) hinzu, so liefert eine Reihenentwi
klung biszur 2. Ordnung in uR� das ErgebnisC+C� (uR�) = Z3+Z3� (uR�) " 2 F�F+ (uR�) #
�(uR�)= 2�1 + � 13128� � 164� ln 2�uR�+� 103391327104�2 + 6512288�2 ln 2 + 18192�2 ln2 2� u2R� +O(u3R�)�;(7.19)wel
hes ebenfalls aus (7.7) und (6.49) erh�altli
h ist, und dessen Struktur demjenigender symmetris
hen Phase entspri
ht.7.4 Numeris
he ErgebnisseF�ur die numeris
he Bestimmung des Amplitudenverh�altnisses der Suszeptibilit�atmit Hilfe der vorstehenden Glei
hungen ergeben si
h wieder zwei M�ogli
hkeiten, daman diesmal den kritis
hen Exponenten 
 sowohl als Literaturwert als au
h �uberdie Renormierungsgruppenfunktion (7.8) als Entwi
klung in der dimensionslosenrenormierten Kopplung vorgeben kann.Wie in Abs
hnitt 6.4 werden dazu neben den zugeh�origen Reihen selbst au
hderen Pad�e{Approximanten herangezogen.7.4.1 Ho
htemperatur�xpunkt u�R+I
h werte die Entwi
klungen der kritis
hen Gr�o�en 
(uR+), �(uR+) und C+C� (uR+)f�ur die zwei speziellen Werte (6.50) des Fixpunktes der renormierten Kopplung derHo
htemperaturphase u�R+ aus.Kommentierung der Tabellen:� Tabelle 7.1:Bestimmung des kritis
hen Exponenten 
 aus der Reihe (7.10).� Tabelle 7.2:Bestimmung des kritis
hen Exponenten � aus der Reihe (6.27). Da in dersymmetris
hen Phase die Terme 0. und 1. Ordnung vers
hwinden, ist nur die[2,0℄{Pad�e{Approximation m�ogli
h.



98 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT �AT� Tabelle 7.3:Bestimmung des universellen Amplitudenverh�altnisses C+=C� aus der Reihe(7.14), wobei man f�ur den kritis
hen Exponenten 
 die Literaturwerte
 = 1:250(1); [GG74℄; HT{Entwi
klung
 = 1:241(2); [GZJ80, ZJ82℄; RG in D = 3
 = 1:237(2); [BGHP92℄; MC{RGvorgibt.� Tabelle 7.4:Bestimmung des universellen Amplitudenverh�altnisses C+=C� aus der Reihe(7.15).7.4.2 Tieftemperatur�xpunkt u�R�Nun werte i
h die Entwi
klungen der kritis
henGr�o�en 
(uR�), �(uR�) und C+C� (uR�)f�ur die zwei speziellen Werte (6.52) des Fixpunktes der renormierten Kopplung derTieftemperaturphase u�R� aus.Kommentierung der Tabellen:� Tabelle 7.5:Bestimmung des kritis
hen Exponenten 
 aus der Reihe (7.11).� Tabelle 7.6:Bestimmung des kritis
hen Exponenten � aus der Reihe (6.37). Da in dergebro
henen Phase der Term 0. Ordnung vers
hwindet, sind hier nur die [2,0℄{und [1,1℄{Pad�e{Approximanten m�ogli
h.� Tabelle 7.7:Bestimmung des universellen Amplitudenverh�altnisses C+=C� aus der Reihe(7.18), wobei man f�ur den kritis
hen Exponenten 
 wieder die obigen Litera-turwerte vorgibt.� Tabelle 7.8:Bestimmung des universellen Amplitudenverh�altnisses C+=C� aus der Reihe(7.19).



7.4. NUMERISCHE ERGEBNISSE 99Vorgaben Kritis
her Exponent 
Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 1.2175 1.2188 1.193024.56(10) 1.2244 1.2259 1.1972Tab. 7.1: Numeris
he Werte des kritis
hen Exponenten 
 na
hVorgabe vers
hiedener Werte des Fixpunktes u�R+ .Vorgaben Kritis
her Exponent �Fixpunkt u�R+ [2,0℄{Pad�e23.73(8) 0.021924.56(10) 0.0233Tab. 7.2: Numeris
he Werte des kritis
henExponenten � na
h Vorgabe vers
hiedenerWerte des Fixpunktes u�R+ .Vorgaben Amplitudenverh�altnis C+=C�Exponent 
 Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 5.6847 6.7621 5.02041.250(1) 24.56(10) 5.8400 7.0770 5.061823.73(8) 5.6246 6.6745 4.99121.241(2) 24.56(10) 5.7772 6.9826 5.034823.73(8) 5.5976 6.6366 4.97871.237(2) 24.56(10) 5.7496 6.9422 5.0225Tab. 7.3:Numeris
he Werte des Amplitudenverh�altnisses C+=C� na
h Vorgabevers
hiedener Werte des Exponenten 
 und des Fixpunktes u�R+ .



100 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT �ATVorgaben Amplitudenverh�altnis C+=C�Fixpunkt u�R+ [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e23.73(8) 5.1001 7.5635 6.323324.56(10) 5.2534 8.1888 6.6368Tab. 7.4: Numeris
he Werte des Amplitudenverh�altnissesC+=C� na
h Vorgabe vers
hiedener Werte des Fixpunktesu�R+ .Vorgaben Kritis
her Exponent 
Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 1.0779 0.9761 1.078215.1(1.3) 1.0838 0.9759 1.0847Tab. 7.5: Numeris
he Werte des kritis
hen Exponenten 
 na
hVorgabe vers
hiedener Werte des Fixpunktes u�R� .Vorgaben Kritis
her Exponent �Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e14.73(14) 0.1157 0.173915.1(1.3) 0.1196 0.1846Tab. 7.6:Numeris
he Werte des kritis
hen Ex-ponenten � na
h Vorgabe vers
hiedener Wertedes Fixpunktes u�R� .
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Vorgaben Amplitudenverh�altnis C+=C�Exponent 
 Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 4.3739 4.8928 4.81551.250(1) 15.1(1.3) 4.4400 5.0109 4.924614.73(14) 4.3324 4.8404 4.76801.241(2) 15.1(1.3) 4.3977 4.9566 4.875014.73(14) 4.3142 4.8179 4.74731.237(2) 15.1(1.3) 4.3791 4.9331 4.8535Tab. 7.7:Numeris
he Werte des Amplitudenverh�altnisses C+=C� na
h Vorgabevers
hiedener Werte des Exponenten 
 und des Fixpunktes u�R� .
Vorgaben Amplitudenverh�altnis C+=C�Fixpunkt u�R� [2,0℄{Pad�e [1,1℄{Pad�e [0,2℄{Pad�e14.73(14) 3.3572 4.1012 3.980415.1(1.3) 3.4043 4.2368 4.0980Tab. 7.8: Numeris
he Werte des Amplitudenverh�altnissesC+=C� na
h Vorgabe vers
hiedener Werte des Fixpunktesu�R� .



102 KAPITEL 7. AMPLITUDENVERH�ALTNIS DER SUSZEPTIBILIT �AT7.4.3 DiskussionZun�a
hst sind in Tabelle 7.9 einige weitere Literaturwerte der soeben erhaltenenuniversellen Gr�o�en angegeben.Literaturwerte universeller Gr�o�enBestimmungsmethode 
 C+=C��{Entwi
klung 1.2390(25) 4.81RG in D = 3 1.2405(15), 1.2407(12) 4.77(30)HT/TT{Entwi
klung 1.2385(25) 5.03(5), 4.95(15), 4.82(5)Bin�are Fluide (exp.) 1.24(1.0) 4.3(3)Tab. 7.9: Aus [ZJ89, BB85, BBMN87, TF75, LF89, Sie93℄ entnommene Literatur-werte.Die Untersu
hung der Tabellen dieses Abs
hnitts best�atigt die Erkenntnisse, diebereits am Ende des vorigen Kapitels gewonnen worden sind. Die Literaturwerteder kritis
hen Exponenten 
 und � (z.B. � = 0:032(3) na
h [ZJ89℄) sind in dersymmetris
hen Phase (Tab. 7.1, Tab. 7.2) dur
h die 2{Loop{Re
hnung re
ht gutbest�atigt. In der gebro
henen Phase (Tab. 7.5, Tab. 7.6) sind diesbez�ugli
h no
hdeutli
he Abwei
hungen zu vermerken, die m�ogli
herweise dur
h die Einbeziehungweiterer Ordnungen modi�ziert werden, da in den Reihen (7.10) bzw. (7.11) die2{Loop{Beitr�age nur 2% bzw. no
h 17% der ersten beiden Terme betragen.Dementspre
hend wende i
h mi
h glei
h den Tabellen 7.3 und 7.7 zu, in denenf�ur das Amplitudenverh�altnis der Suszeptibilit�at vers
hiedene Werte der Fixpunkteder renormierten Kopplungen u�R� und des Exponenten 
 vorgegeben sind. Au
hhier bemerkt man, da� die Pad�e{Approximanten der Reihen in der Ho
htempera-turvariablen wesentli
h weiter streuen als diejenigen in der Tieftemperaturvariablen.Wenn man die Gr�o�enordnung der Beitr�age 1. und 2. Ordnung in den Reihen (7.13)und (7.17) bzw. (7.15) und (7.19) betra
htet, die in das Verh�altnis C+=C� eingehen,so lauten bei einer Reihenstruktur von1 + a(1)� uR� + a(2)� u2R� +O(u3R�)die KoeÆzienten n�aherungsweisea(1)+ = 4:96 � 10�3; a(2)+ = 2:13 � 10�4; a(1)� = 4:96 � 10�3; a(2)� = 2:63� 10�4;bzw.a(1)+ = 3:93 � 10�2; a(2)+ = 1:09 � 10�3; a(1)� = 2:90 � 10�2; a(2)� = 1:17� 10�3:Die Korrekturen 1. und 2. Ordnung betragen dann in der symmetris
hen Phase(u�R+ � 24) etwa 12% bzw. 94% und 11% bzw. 33% der f�uhrenden Terme; in der
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hener Symmetrie (u�R� � 15) hat man stattdessen etwa 7% bzw. 43%und 6% bzw. 18% der f�uhrenden Terme. Insgesamt best�atigt si
h also die s
hongezogene S
hlu�folgerung, da� die Tieftemperaturkopplung uR� als Entwi
klungs-parameter in den St�orungsreihen zu bevorzugen ist.Zusammenfassend erhalte i
h als Abs
h�atzung des Endresultats in der Ho
h-temperaturkopplung C+C� = 6:03(1:05) ; (7.20)und in der Tieftemperaturkopplung �ndet man entspre
hendC+C� = 4:66(36) : (7.21)Insbesondere der letzte Wert steht in guter �Ubereinstimmung mit der Literatur.



Kapitel 8Konsistenzre
hnungen in1{Loop{OrdnungDieses abs
hlie�ende Kapitel ist einigen Betra
htungen gewidmet, die die perturbati-ve Bestimmung universeller Gr�o�en abrunden sollen. In diesem Zusammenhang gehei
h auf die Bedeutung der physikalis
hen Masse ein und stelle einen Verglei
h mitder �{Entwi
klung an. Au�erdem diskutiere i
h kurz die Verwendung einer Pauli{Villars{Regularisierung.Abwei
hend von einer fr�uheren Vereinbarung wird jetzt sowohl in der Ho
h{als au
h in der Tieftemperaturphase eine renormierte Kopplung �uber den Wert der4{Punkt{Vertexfunktion de�niert. Die zugeh�origen in D = 3 bzw. D = 4 dimen-sionslosen Kopplungen bezei
hne i
h im folgenden mit u(4)R� bzw. g(4)R�, w�ahrend i
hf�ur die dur
h den Vakuumerwartungswert des Feldes de�nierten Kopplungen dieSymbole uR� bzw. gR� beibehalten.Alle Re
hnungen sind in 1. St�orungsordnung ausgef�uhrt. (Im Fall der gebro
he-nen Phase best�atigen si
h dabei einige Resultate aus [M�un89, M�un90℄.)8.1 Dreidimensionale Re
hnungenIn Analogie zu (4.19
) lautet die Renormierungsbedingung f�ur die �uber die 4{Punkt{Vertexfunktion de�nierte renormierte Kopplung der Tieftemperaturphase:�(4;0)R (f0g;mR�; u(4)R�) = �mR�u(4)R� = �g(4)R�: (8.1)Das Ziel dieses Abs
hnitts ist die Bestimmung des Amplitudenverh�altnisses derKorrelationsl�ange �uber die physikalis
he Masse; dazu ist diese zuvor als Funktionder na
kten Masse zu bere
hnen.8.1.1 Renormierte Kopplungen der gebro
henen PhaseIn Kapitel 4 ist die renormierte Kopplung der Tieftemperaturphase dur
h den Vaku-umerwartungswert des Feldes de�niert worden. Das 1{Loop{Resultat ist na
h (5.14)104



8.1. DREIDIMENSIONALE RECHNUNGEN 105dur
h gR� = g0 �1 � 732� u0� (1 +O(�)) +O(u20�)� = g0�1 +O(u0�)�; (8.2a)bzw. na
h (5.16) dur
hu0� = uR� �1 + 31128� uR� (1 +O(�)) +O(u2R�)� = uR��1 +O(uR�)� (8.2b)gegeben. Es soll jetzt wie in der symmetris
hen Phase eine renormierte Kopplung�uber die 4{Punkt{Vertexfunktion bei vers
hwindenden �au�eren Impulsen eingef�uhrtwerden. Diese besitzt in 1{Loop{Ordnung zus�atzli
h zur symmetris
hen Phase diefolgenden Beitr�age (mit �au�eren Impulsen ki, i = 1; : : : ; 4, und l := k1 + k2):� Graph G(4)5 (ki) (6 Permutationen mit Symmetriefaktor 1):�����k2 �q - k3����Rk1����Iq�k1�k2 - k4?q�k3= �g0��q3g0m0��2 Z dDq(2�)D ~4(q) ~4(q � l) ~4(q � k3)= �3m20�g20 Z dDq(2�)D 1(q2 +m20�)[(q � l)2 +m20�℄[(q � k3)2 +m20�℄;und damitG(4)5 (ki = 0) = �3m20�g20 Z dDq(2�)D 1(q2 +m20�)3 = �3m20�g20J3(D):� Graph G(4)6 (ki) (3 Permutationen mit Symmetriefaktor 1):
���k2 ���k3��Rk1 R��k4�q�k1�k2-q ?q�k36q�k1



106 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNG= ��q3g0m0��4 Z dDq(2�)D ~4(q) ~4(q � l) ~4(q � k1) ~4(q � k3)= 9m40�g20 Z dDq(2�)D 1(q2 +m20�)[(q � l)2 +m20�℄ �� 1[(q � k1)2 +m20�℄[(q � k3)2 +m20�℄ ;d.h. f�ur beliebiges D istG(4)6 (ki = 0) = 9m40�g20 Z dDq(2�)D 1(q2 +m20�)4 = 9m40�g20J4(D):In D = 3 sind alle beitragenden Integrale endli
h, und i
h entnehme Abs
hnitt 3.1:�(4;0)0 (ki = 0) = �g0 + 32 I1(0; 3) + 6 ��3m20�g20J3(3)�+ 3 �9m40�g20J4(3)�+O(g30)= �g0 + 316�m0� g20 � 916�m0� g20 + 2764�m0� g20 +O(g30)= �g0 + 364�m0� g20 +O(g30):Mit (8.1) folgtg(4)R� = g0 �1 � 564� u0� +O(u20�)� = g0�1 +O(u0�)�; (8.3a)und na
h der Invertierung istu0� = u(4)R� �1 + 13128� u(4)R� +O�(u(4)R�)2�� = u(4)R��1 +O(u(4)R�)�: (8.3b)Die beide renormierten Kopplungen h�angen �uber die Beziehungu(4)R� = uR� �1 + 964� uR� (1 +O(�)) +O(u2R�)� = uR��1 +O(uR�)� (8.4)zusammen und sind in 1. Ordnung glei
h.8.1.2 Physikalis
he MasseIn Abs
hnitt 1.2 haben wir die Korrelationsl�ange sowohl �uber das 2. Moment als au
h�uber das Abfallverhalten der verbundenen 2{Punkt{Funktion G(2;0)
 (x) im Ortsraumde�niert. In der Mean{Field{Approximation (Abs
hnitt 1.5) hat si
h gezeigt, da�sie im Impulsraum als Inverses der Polstelle des na
kten Propagators gegeben ist.Neben ihrer De�nition (4.7) als inverse renormierte Masse k�onnen wir also au
hna
h dem Abfallverhalten der renormierten 2{Punkt{Funktion fragen, wel
hes imImpulsraum dur
h die Polstelle des renormierten vollen Propagators bzw. dur
h dieNullstelle der renormierten 2{Punkt{Vertexfunktion �(2;0)R (p) bestimmt ist.



8.1. DREIDIMENSIONALE RECHNUNGEN 107Die zugeh�orige Masse bezei
hnet man (na
h [LW87a, MM93℄) als die physika-lis
he Masse mph, die dur
h die Glei
hung�(2;0)R (p) = 0; p = (imph; 0; 0) (8.5)bestimmt ist. Sie ist ebenfalls perturbativ als Potenzreihe in der na
kten Kopplungbere
henbar und von der renormierten Masse vers
hieden. Wir ordnen der physika-lis
hen Masse eine Korrelationsl�ange � zu, die dur
h� = 1mph (8.6)gegeben ist. I
h bere
hne jetzt das zugeh�orige universelle Amplitudenverh�altnis mitder Methode aus 6.1 in 1. St�orungsordnung.Symmetris
he PhaseNa
h (8.5) ist�(2;0)R (p) = Z3�(2;0)0 (p) = m2ph+ �m20+ �1� 18� u0+ (1 +O(�)) +O(u20+)�!= 0;und damitm2ph+ = m20+ �1 � 18� u0+ (1 +O(�)) +O(u20+)� = m2R+ n1 +O�(u(4)R+)2�o : (8.7)In 1. Ordnung sind physikalis
he und renormierte Masse glei
h, da in der symme-tris
hen Phase kein impulsabh�angiger Graph beitr�agt. Wir haben also:m20+ = m2ph+ �1 + 18� u(4)R+ (1 +O(�)) +O�(u(4)R+)2�� : (8.8)Phase gebro
hener SymmetrieHier ist das impulsabh�angige Integral I1(p; 3) zu ber�u
ksi
htigen. Mit (8.5) ist�(2;0)R (p) = Z3�(2;0)0 (p)= m2ph� �1 � 164� u0� +O(u20�)��m20�(1 + 1564� u0� (1 +O(�))� 316� u0� Z 10 dx  1� m2ph�m20� x(1� x)!�1=2 +O(u20�))!= 0;und damitm2ph� = m20�(1 + 18� u0� " 2� 32 Z 10 dx 1� m2ph�m20� x(1� x)!�1=2 +O(�) # +O(u20�)):



108 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNGWegen m2ph� = m20��1 +O(u0�)�;liefert die IntegrationZ 10 dx 1q1� x(1� x) = ar
sinh x ����1=p3�1=p3 = 2ar
sinh 1p3!= ln 3; ar
sinh x = ln �x+px2 + 1�f�ur die physikalis
he Massem2ph� = m20� �1 + 18� u0� � 2� 32 ln 3 +O(�) � +O(u20�)�= m2R� �1 + 18� u(4)R� � 138 � 32 ln 3 +O(�) �+O�(u(4)R�)2�� : (8.9)Dieselbe Relation besteht au
h in der Kopplung uR�, und das Verh�altnismR�mph� � 1 + 4:56 � 10�4uR� +O(u2R�) (8.10)deutet an, da� mR� und mph� in 1. Ordnung bereits nahezu �ubereinstimmen. DieInvertierung von (8.9) ergibt:m20� = m2ph� �1� 18� u(4)R� � 2� 32 ln 3 +O(�) � +O�(u(4)R�)2�� : (8.11)Bestimmung von f+=f�Es �ndet wieder die in Kapitel 6 vorgestellte Methode Verwendung. I
h nenne dieHo
htemperaturkopplung u(4)R+ wieder uR+ und die Tieftemperaturkopplungen u(4)R�und uR�, die ja in 1. Ordnung �ubereinstimmen, einfa
h uR�.Na
h (8.6) ist die Korrelationsl�ange als die inverse physikalis
he Masse de�niert,so da� man in den Glei
hungen (6.1a){(6.3b) einfa
h die renormierten Massen mR�dur
h die physikalis
hen Massen mph� ersetzen kann. Allerdings sind dort anstellevon F� die Gr�o�en G�(uR�) := �m2ph��m20� ����g0 (8.12)zu verwenden, die na
h ihrer Bere
hnung dur
h uR� auszudr�u
ken sind. Dies f�uhrtin Analogie zu Abs
hnitt 6.1 auf2 G�(uR�)G+(uR+) =  f+f�!2  t�t+!2��1 =  mph�mph+!2 t+t� : (8.13)Man betra
htet jetzt wieder Punktepaare mitmph+ = mph� (8.14)



8.1. DREIDIMENSIONALE RECHNUNGEN 109und f�uhrt in beiden Phasen die gemeinsame Kopplungsvariablen �uR ein. Dies liefert(6.8) und (6.9) in der Formf+f� =  t+t�!� ; t+t� = 2 G��uR�(�uR)�G+�uR+(�uR)� ; (8.15)und das Amplitudenverh�altnis der Korrelationsl�ange lautet dannf+f� = 24 2 G��uR�(�uR)�G+�uR+(�uR)� 35� : (8.16)Die Bestimmung der Kopplung �uR in (6.40) und (6.45) zeigt, da� sie in 1. Ordnungmit uR+ und uR� identis
h ist:�uR = uR+�1 +O(uR+)� = uR��1 +O(uR�)�: (8.17)Aufgrund der in beiden Phasen bei festem g0 geltenden BeziehungG�(uR�) = �m2ph��m20� = �m2R��m20� �m2ph��m2R� = F�(uR�) �m2ph��m2R� (8.18)kann das Verh�altnis f+=f� au
h in Abh�angigkeit der Funktionen F� ges
hriebenwerden: f+f� = 24 2 F��uR�(�uR)�F+�uR+(�uR)� 35� " �m2ph�=�m2R��m2ph+=�m2R+ (�uR) #�= " 2 F�F+ (�uR) #� " �m2ph��m2R� (�uR) #� �1 +O(�u2R)�: (8.19)In der zweiten Zeile ist angedeutet, da� in 1. Ordnung gem�a� (8.17) alle renormiertenKopplungen sowie die physikalis
he und die renormierte Masse der symmetris
henPhase glei
h sind.Die Di�erentiation der Glei
hungen (8.7) und (8.9) ergibt (na
h Dur
hf�uhrungdes Grenzwertes �! 0) mit ��m20 = 12m0 ��m0 bei festem g0G+(�uR) = �m2ph+�m20+ ����uR+=uR+ (�uR) = 1� 116� u0+ +O(u20+)= 1� 116� �uR +O(�u2R) (8.20)und G�(�uR) = �m2ph��m20� ����uR�=uR� (�uR) = 1 + 116� u0� �2� 32 ln 3�+O(u20�)= 1 + 116� �uR �2� 32 ln 3�+O(�u2R); (8.21)



110 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNGwobei i
h zun�a
hst die na
kten dur
h die renormierten Kopplungen ersetzt undans
hlie�end (8.17) verwendet habe. In 1. Ordnung kann man daher �uR sowohl denHo
htemperatur�xpunkt u�R+ als au
h den Tieftemperatur�xpunkt u�R� zus
hreiben.Daraus ergibt si
hG�G+ (�uR) = 1 + 116� �uR �3� 32 ln 3�+O(�u2R); (8.22)und man �ndet dur
h Entwi
keln von (8.16) f�ur das Amplitudenverh�altnis f+=f�das Ergebnis f+f� (�uR; �) = 2�  1 + (3� 32 ln 3)�16� �uR +O(�u2R)! : (8.23)Wenn man no
h die Gestalt der Funktion � = ��(uR�) aus (6.29) und (6.39) in 1.Ordnung ber�u
ksi
htigt, erh�alt man wieder Potenzreihen, die si
h entweder auf denHo
h{ oder den Tieftemperatur�xpunkt beziehen. In der symmetris
hen Phase mit�u�R = u�R+ ist �+(�uR) = 12 + 164� �uR +O(�u2R);so da� aus (8.23)f+f� (�uR) = p2 �1 + � 332� � 364� ln 3 + 164� ln 2� �uR +O(�u2R)� (8.24)resultiert. In der gebro
henen Phase mit �u�R = u�R� hat man��(�uR) = 12 � 1256� �uR +O(�u2R);und (8.23) liefertf+f� (�uR) = p2 �1 + � 332� � 364� ln 3� 1256� ln 2� �uR +O(�u2R)� : (8.25)Eine numeris
heAbs
h�atzung der 1{Loop{Korrekturen gewinnen wir dur
h Ein-setzen des kritis
hen Exponenten � und der Fixpunkte u�R� in die polynomiale Ap-proximation der Reihen (8.23), (8.24) und (8.25). Die entspre
henden Resultate sindin Tabelle 8.1 denjenigen aus Kapitel 6 (Glei
hungen (6.43) bzw. (6.48), (6.44) und(6.49)) gegen�ubergestellt. Wie si
h in (8.10) bereits abgezei
hnet hat, ist das aus derphysikalis
he Masse hervorgehende Verh�altnis f+=f� in 1. Ordnung nur geringf�ugigkleiner als das, wel
hes �uber die renormierte Masse de�niert ist. Zu h�oherern Ord-nungen sind demna
h fast vers
hwindenede Abwei
hungen zu erwarten.



8.1. DREIDIMENSIONALE RECHNUNGEN 111Vorgaben Physikalis
he Masse Renormierte MasseGlei
hung f+=f� Glei
hung f+=f��u�R = 23:73(8)� = 0:627(9) (8.23) 2.1625 (6.43) 2.1730�u�R = 14:73(14)� = 0:627(9) (8.23) 1.9281 (6.48) 1.9346�u�R = 23:73(8) (8.24) 1.9813 (6.44) 1.9889�u�R = 14:73(14) (8.25) 1.6764 (6.49) 1.6812Tab. 8.1: Amplitudenverh�altnis f+=f� in 1. Ordnung. Gegen�uberstellungvon Werten, die auf die physikalis
he und die renormierte Masse zur�u
k-gehen.8.1.3 Pauli{Villars{RegularisierungWir haben in Kapitel 3 bemerkt, da� die lineare Divergenz des 1{Loop{IntegralsJ1 in drei Dimensionen dur
h eine dimensionelle Regularisierung (mit D = 3 � �)ni
ht als Pol in � isoliert werden kann. Die dortige Re
hnung lieferte vielmehr nurden endli
hen Anteil dieses Integrals, so da� si
h strenggenommen ni
ht beurteilenl�a�t, ob diese Divergenz die Endresultate beein
u�t. Dies will i
h jetzt am Beispielder dreidimensionalen 1{Loop{Re
hnung na
hholen, indem i
h diePauli{Villars{Regularisierung aus Abs
hnitt 3.2 heranziehe1.Wenn man die St�orungsre
hnung in 1. Ordnung aus Kapitel 5 mit dem Pauli{Villars{regularisierten Integral J1(�; 3) aus (3.35) wiederholt, so �ndet man f�urdie renormierten Massen in der symmetris
hen und der gebro
henen Phasem2R+ = m20+ �1� � 18� � �8�m0+�u0+ +O(u20+)� (8.26a)und m2R� = m20� �1 � � �4�m0� � 364��u0� +O(u20�)� : (8.26b)F�ur die na
kten und renormierten Kopplungen beider Phasen gilt einfa
hu0� = u0�(uR�) = uR��1 +O(uR�)�; (8.27)so da� wir f�ur endli
hes � die in (6.10) vorkommenden Gr�o�en F� als Funktionenvon uR� bere
hnen k�onnen. Es ergibt si
h mit ��m20 = 12m0 ��m0F+(uR+) = �m2R+�m20+ ����u0+=u0+ (uR+) = �1 � 116� u0+ +O(u20+)� ����u0+=u0+ (uR+ )1Diese Betra
htung erhebt allerdings ni
ht den Anspru
h auf Vollst�andigkeit, da die m�ogli-
hen Auswirkungen auf die 2{Loop{Re
hnung, zu der die Divergenz des Integrals J1 multiplikativbeitr�agt, unber�u
ksi
htigt bleiben.



112 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNG= 1� 116� uR+ +O(u2R+) (8.28a)undF�(uR�) = �m2R��m20� ����u0�=u0� (uR�) = �1 + 3128� u0� +O(u20�)� ����u0�=u0� (uR�)= 1 + 3128� uR� +O(u2R�) (8.28b)sowie s
hlie�li
h in der gemeinsamen Koplung �uRF�F+ (�uR) = 1 + 11128� �uR +O(�u2R): (8.29)Diese Glei
hungen sind dur
h die Di�erentiation von � unabh�angig geworden, undder Limes � ! 1 existiert. Die Renormierungsgruppenfunktionen ��(uR�), diena
h (6.10) ebenfalls in die Bere
hnung von f+=f� eingehen und aufgrund ihrerDe�nition (4.32) aus den in D = 3 endli
hen Renormierungskonstanten Z3� undZ2� hervorgehen, sind a priori divergenzfrei, so da� die weiteren Re
hnungen wie inKapitel 6 verlaufen.Die Glei
hungen, die man dann f�ur das Amplitudenverh�altnis der Korrelations-l�ange vor�ndet, stimmen mit den Ergebnissen (6.44) und (6.49) �uberein, und esist damit zumindest in 1. Ordnung der Beweis erbra
ht, da� die dreidimensionalenRe
hnungen von der Divergenz des Integrals J1 unber�uhrt bleiben.8.2 Verglei
h mit der �{Entwi
klungIn der Einleitung ist bereits das wesentli
he Prinzip dieser Entwi
klung skizziertworden:Ausgehend von einer renormierten (masselosen) Theorie kann na
h Dur
hf�uhrungeiner Massenrenormierung mit Methoden der Renormierungsgruppe die massiveTheorie in Ho
h{ und Tieftemperaturphase rekonstruiert werden, wobei in der da-mit verbundenen St�orungsre
hnung nur die Diagramme der symmetris
hen Pha-se ber�u
ksi
htigt zu werden brau
hen. Dur
h die Bere
hnung der zugeh�origen Im-pulsintegrale in der (ni
ht notwendig ganzzahligen) Dimension D = 4 � � gelangtman zu Renormierungskonstanten und Renormierungsgruppenfunktionen, die vonder dimensionslosen renormierten Kopplung und dem Parameter � abh�angig sind.Dies entspri
ht einer Entwi
klung um die Dimension D = 4, unterhalb derer manni
ht zu verna
hl�assigende Korrekturen zumMean{Field{Verhalten konstatiert. DerFixpunkt der renormierten Kopplung, der mit der ni
httrivialen Nullstelle der �{Funktion identis
h ist, wird dann eine Funktion von � allein, so da� si
h die kritis
henuniversellen Gr�o�en als Potenzreihen in � ergeben. Im Rahmen dieser Re
hnungenhat si
h s
hlie�li
h gezeigt, da� im Fall � = 1 (D = 3) eine gute numeris
he �Uber-einstimmung mit auf andere Methoden zur�u
kgehenden Werten besteht.



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 113F�ur das Amplitudenverh�altnis der Korrelationsl�ange, die dur
h die inverse re-normierte Masse de�niert ist, ist na
h [BGZJ74, BGZJ76℄ das Resultatf+f� = 2� �1 + 524 �+ 1432 �2 �29524 + 2I��+O(�3); I � �2:3439 (8.30)bekannt, wel
hes in 1. Ordnung mit der �{Entwi
klung des Exponenten �� = 12 + 112 �+ 2113122 �2 +O(�3) (8.31)in f+f� = p2�1 + � 524 + 112 ln 2� �+O(�2)� �=1� 1:7905 (8.32)�ubergeht. Die dur
h das Inverse der physikalis
hen Masse de�nierte Korrelati-onsl�ange besitzt na
h [BGZJ76℄ in der �{Entwi
klung das Amplitudenverh�altnisf+f� = 2� (1 + �4  �p3 � 1!) +O(�2)= p2(1 +  �4p3 � 14 + 112 ln2! �+O(�2)) �=1� 1:7837: (8.33)I
h benutze jetzt die renormierte massive Theorie, um diese Ergebnisse zu veri-�zieren.8.2.1 Renormierte Gr�o�en in D = 4� �Es sind zun�a
hst alle Re
hnungen des Kapitels 5 in der Dimension D = 4� � unterBes
hr�ankung auf die 1. St�orungsordnung zu wiederholen. Die dazu beitragenden,in D = 4 divergenten Impulsintegrale J1 und I1 habe i
h zu diesem Zwe
k in Ab-s
hnitt 3.1 bereits bere
hnet, so da� die Resultate (3.6), (3.16) und (3.17) sofort�ubernommen werden k�onnen.Da die na
kte Kopplung g0 die Massendimension 4 � D besitzt, ist allerdingsbei der De�nition der renormierten Kopplung zu bea
hten, da� im Renormierungs-s
hema aus Abs
hnitt 4.2 die Kopplungen g(4)R� und gR� in D = 4 dimensionslo-se renormierte Kopplungen darstellen. Will man also dieses Renormierungss
hemaim Einklang mit der dimensionellen Regularisierung beibehalten, so sind im FallD = 4 � � < 4 diejenigen Glei
hungen, die die renormierten Kopplungen �xieren,dur
h Einf�uhrung einer Massenskala � zu modi�zieren. Diese wird si
h zusammenmit den Divergenzen der Theorie bei der Bere
hnung physikalis
her Gr�o�en forthe-ben.In der symmetris
hen Phase ersetzt man (4.19
) dur
h die Renormierungsbe-dingung �(4;0)R (f0g;mR+; g(4)R+) = ���g(4)R+ ; (8.34)



114 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNGdie implizit die Kopplung g(4)R+ de�niert. In der Phase gebro
hener Symmetrie f�uhrei
h dur
h �(4;0)R (f0g;mR�; g(4)R�) = ���g(4)R� (8.35)die renormierte Kopplung g(4)R� ein. Die renormierte Kopplung gR�, die dur
h denVakuumerwartungswert des Feldes bestimmt ist, gehor
ht der Renormierungsbedin-gung 3v2R �(2;0)R (0;mR�; gR�) = ���gR�: (8.36)Symmetris
he PhaseDie beitragenden 1{Loop{Diagramme ergeben die folgenden Vertexfunktionen:��(2;0)0 (p) = p2 +m20+ � 12  �g0 Z dDk(2�)D ~4(k)!+O(g20)= p2 +m20+ + g02 J1(4� �) +O(g20)= p2 +m20+ � g0 m20+16�2  1� � 12 ln m20+4� !� 
2 + 12 +O(�)!+O(g20)��(2;0)0 (0) = m20+ (1� g016�2 " 1� � 12 ln m20+4� !� 
2 + 12 +O(�) # +O(g20))� ��p2 �(2;0)0 (p) �����p2=0 = 1 +O(g20)�(4;0)0 (ki = 0) =  �g0 + 32 g20 Z dDq(2�)D ~4(q) ~4(q � l) +O(g30)! �����ki=0= �g0 + 32 g20 I1(0; 4� �) +O(g30)= �g0 + 32 g2016�2  2� � ln m20+4� !� 
 +O(�)!+O(g30);wobei p;k1; : : : ;k4 und l := k1 + k2 wieder die �au�eren Impulse bezei
hnen. Man�ndet also Z3 = 0�� ��p2 �(2;0)0 (p) �����p2=01A�1 = 1 +O(g20)



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 115und daraus die renormierten Gr�o�enm2R+ = �Z3�(2;0)0 (0)= m20+ (1 � g016�2 " 1� � 12 ln m20+4� !� 
2 + 12 +O(�) # +O(g20))(8.37)und g(4)R+ = ����Z23�(4;0)0 (ki = 0)= ���g0 (1� g016�2 3 " 1� � 12 ln m20+4� !� 
2 +O(�) # +O(g20))= ���g0�1 +O(g0)�: (8.38)Mit Hilfe der (in beiden Phasen g�ultigen) Entwi
klungen�� = e� ln� = 1 + � ln� + �22 ln2 � +O(�3); ln m20m2R! = ln �1 +O(gR)� = O(gR)l�ose i
h diese Glei
hungen zugunsten der na
kten Parameter auf; in 1. Ordnungergibt si
h:m20+ = m2R+ 8<:1 + g(4)R+16�2 " 1� � 12 ln m2R+4��2!� 
2 + 12 +O(�) # +O�(g(4)R+)2�9=;(8.39)und g0 = ��g(4)R+ 8<:1 + g(4)R+16�2 3 " 1� � 12 ln m2R+4��2!� 
2 +O(�) # +O�(g(4)R+)2�9=;= ��g(4)R+�1 +O(g(4)R+)�: (8.40)Phase gebro
hener SymmetrieIn der gebro
henen Phase hat die 2{Punkt{Funktion die folgenden Beitr�age:��(2;0)0 (p) = p2 +m20� � 12  �g0 Z dDk(2�)D ~4(k)!�12 ~4(0) � �q3g0m0��2 Z dDk(2�)D ~4(k)�12 ��q3g0m0��2 Z dDk(2�)D ~4(k) ~4(k � p) +O(g20)= p2 +m20� � g0J1(4� �)� 32 g0m20�I1(p; 4� �) +O(g20)= p2 +m20� � g0 m20�16�2 " 1� � 12 ln m20�4� !� 
2 � 1�32 Z 10 dx ln 1 + p2m20� x(1� x)!+O(�) # +O(g20)



116 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNG��(2;0)0 (0) = m20� (1 � g016�2 " 1� � 12 ln m20�4� !� 
2 � 1 +O(�) #+O(g20))� ��p2 �(2;0)0 (p) ����p2=0 = 1 + 14 g016�2 +O(g20):Die 4{Punkt{Vertexfunktion besitzt in 1{Loop{Ordnung zus�atzli
h zur symmetri-s
hen Phase die im vorigen Abs
hnitt angef�uhrten Diagramme. Da die zugeh�origenIntegrale au
h in D = 4 existieren, erh�alt man aus ihren endli
hen Beitr�agen gem�a�Abs
hnitt 3.1:�(4;0)0 (ki = 0) = �g0 + 32 I1(0; 4� �) + 6 ��3m20�g20J3(4)�+3 �9m40�g20J4(4)�+O(g30)= �g0 + 32 g2016�2  2� � ln m20�4� !� 
 +O(�)!� 916�2 g20 + 932�2 g20 +O(g30)= �g0 (1� g016�2 3 " 1� � 12 ln m20�4� !� 
2 � 32 +O(�) # +O(g20)) :F�ur die Bere
hnung der renormierten Kopplung gR� ben�otigt man die 1{Punkt{Funktion des Feldes �0�, die si
h im Impulsraum zuG(1;0)
 = �12 q3g0m0� ~4(0) Z dDk(2�)D ~4(k) = �12 p3g0m0� J1(4� �) +O(g3=20 )= p3m0� g1=2016�2  1� � 12 ln m20�4� !� 
2 + 12 +O(�)! +O(g3=20 )ergibt. Mit Z3 = 0�� ��p2 �(2;0)0 (p) �����p2=01A�1 = 1� 14 g016�2 +O(g20)bere
hne i
h wie in der symmetris
hen Phase die renormierten Gr�o�en zu:m2R� = �Z3�(2;0)0 (0)= m20� (1 � g016�2 " 1� � 12 ln m20�4� !� 
2 � 34 +O(�) # +O(g20))(8.41)g(4)R� = ����Z23�(4;0)0 (ki = 0)= ���g0 (1� g016�2 3 " 1� � 12 ln m20�4� !� 
2 � 43 +O(�) # +O(g20))= ���g0�1 +O(g0)�: (8.42a)



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 117Na
h (8.36) �ndet man au�erdem:gR� = ���g0 (1 � g016�2 3 " 1� � 12 ln m20�4� !� 
2 + 16 +O(�) # +O(g20))= ���g0�1 +O(g0)�: (8.42b)Diese Kopplungen h�angen �uber die Beziehungg(4)R� = gR� �1 + 92 gR�16�2 +O(g2R�)� = gR��1 +O(gR�)�; (8.43)die keine Divergenz mehr enth�alt, zusammen und sind in 1. Ordnung glei
h. (Eswerden deshalb alle Glei
hungen nur in der Kopplung gR� angegeben.) Wie vorherinvertiert man zum20� = m2R� (1 + gR�16�2 " 1� � 12 ln m2R�4��2!� 
2 � 34 +O(�) #+O(g2R�)) (8.44)undg0 = ��g(4)R� 8<:1 + g(4)R�16�2 3 " 1� � 12 ln m2R�4��2!� 
2 � 43 +O(�) # +O�(g(4)R�)2�9=;= ��g(4)R��1 +O(g(4)R�)�; (8.45a)bzw.g0 = ��gR� (1 + gR�16�2 3 " 1� � 12 ln m2R�4��2!� 
2 + 16 +O(�) # +O(g2R�))= ��gR��1 +O(gR�)�: (8.45b)Bestimmung von f+=f�Um das Amplitudenverh�altnis f+=f� in der �{Entwi
klung mit der Methode ausAbs
hnitt 6.1 zu bestimmen, habe i
h zun�a
hst die Gr�o�en F� als Ableitungen desrenormierten na
h dem na
kten Massenquadrat zu bestimmen und in einer gemein-samen renormierten Kopplung auszudr�u
ken. Die ans
hlie�end zu verwendenden �{Entwi
klungen der �{Funktion und des Exponenten � werden hier ni
ht hergeleitet,sondern der Literatur entnommen.Aus den Glei
hungen (3.9a), (3.9b) und (3.17) folgt zun�a
hst:��m20 J1(4 � �) = �I1(0; 4� �) = � 116�2  2� � ln m204� !� 
 +O(�)!��m20 I1(p; 4 � �) ����p2=0 = lim�!0 ��m20 I1(0; 4� �) = �2J3(4) = � 116�2m20



118 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNG��m20  ��p2 I1(p; 4� �) ����p2=0! = 196�2m40 :Damit erh�alt man f�ur T > T
�m2R+�m20+ = � ��m20+ �Z3+�(2;0)0+ (0)�; Z3+ = 1 +O(g20)= ��m20+ �m20+ + g02 J1(4 � �) +O(g20)�= 1 � 12 g016�2  2� � ln m20+4� !� 
 +O(�)!+O(g20)und entspre
hend f�ur T < T
 mit der Produktregel�m2R��m20� = � ��m20� �Z3��(2;0)0� (0)� = Z3� ��m20� �� �(2;0)0� (0)�� �(2;0)0� (0) ��m20� Z3�= Z3� ��m20� �m20� � g0 J1(4 � �)� 32 g0m20�I1(0; 4� �) +O(g20)���(2;0)0� (0) ��m20�  1 + 32 g0m20� ��p2 I1(p; 4 � �) ����p2=0!= 1� 12 g016�2  2� � ln m20�4� !� 
 � 52 +O(�)! +O(g20):Mit (8.39) und (8.40) bzw. (8.44) und (8.45b) ersetzt man die na
kten dur
h dierenormierten Gr�o�en, und na
h Entwi
keln von �� resultierenF+(g(4)R+) = 1� g(4)R+32�2  2� � ln m2R+4��2!� 
 +O(�)!+O�(g(4)R+)2�; (8.46)bzw. F�(gR�) = 1� gR�32�2  2� � ln m2R�4��2!� 
 � 52 +O(�)!+O(g2R�): (8.47)Die G�ultigkeit der Bestimmungsglei
hung (6.10) setzt nun einerseits die Glei
h-heit mR+ = mR�und andererseits die Existenz einer beiden Phasen gemeinsamen dimensionslosenrenormierten Kopplung �gR voraus, in der das Verh�altnis F�=F+ entwi
kelt werdenkann. Da die renormierten Kopplungen beider Phasen aber in 1. Ordnung �uberein-stimmen, er�ubrigt si
h in dieser Re
hnung die Einf�uhrung einer neuen Kopplung.Man verwendet deshalb in (8.46) und (8.47) die von nun an mit �gR bezei
hneteHo
htemperaturkopplung g(4)R+, deren infrarotstabiler Fixpunkt in der �{Entwi
klungbere
henbar ist. Bei der Division dieser Glei
hungen fallen dann insbesondere der



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 119Pol in � und der Massenparameter � heraus, und i
h erhalte das im Limes � ! 0endli
he Resultat F�F+ (�gR) = 1 + 564�2 �gR +O(�g2R): (8.48)Mit der bekannten �{Entwi
klung der �{Funktion�(~gR) = ��~gR + 32 �1 + 12 �+ 12 �2� ~g2R +O(~g3R); ~gR := 2�gR(4�)2 (8.49)und ihrer ni
htvers
hwindenden Nullstelle~g�R = 23 �+O(�2); (8.50)erhalte i
h F�F+ (�) = 1 + 512 �+O(�2): (8.51)Mit (6.10) und (8.31) best�atigt si
h (8.30) dur
h eine Entwi
klung bis zur 1. Ordnungin �: f+f� (�) = " 2 F�F+ (�) #� = 2� �1 + 524 ��+O(�2): (8.52)Na
h den Ausf�uhrungen aus Abs
hnitt 4.3 be�ndet si
h die kritis
he Theorief�ur D = 4 im gau�s
hen Fixpunkt und kann demzufolge dort als frei bzw. ni
ht-we
hselwirkend angesehen werden. Dies erlaubt eine f�ur die Reproduktion der �{Entwi
klung (als Entwi
klung um D = 4) geeignete Vereinfa
hung, da dann diekritis
he na
kte Masse m0
 den Wertm20
 = 0 (8.53)annimmt, so da� die Glei
hungen (6.1a) und (6.1b) auf Ebene von (2.36) und (2.41)jetzt 1mR+ = �+ � f+t��+ ; t+ = m20jT>T
 > 0 (8.54a)und 1mR� = �� � f�t��� ; t� = �m20jT<T
 > 0 (8.54b)lauten, da t+ und t� positiv sind. Die Division dieser Glei
hungen ergibtf+f� = �+�� = mR�mR+ : (8.55)



120 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNGNa
h Einf�uhrung der Felder �0+ und �0�, mit denen in der jeweiligen Phase St�orungs-theorie betrieben wird, ist na
h (2.44) das Verh�altnis der zugeh�origen na
kten Mas-sen m20�m20+ = 2: (8.56)Diese sind in (8.39) und (8.44) dur
h renormierte Gr�o�en ausgedr�u
kt. In einergemeinsamen renormierten Kopplung �gR, f�ur die i
h in 1. Ordnung wieder diejenigeder Ho
htemperaturphase w�ahle, hat manm20+ = m2R+ (1 + �gR16�2 " 1� � 12 ln m2R+4��2!� 
2 + 12 +O(�) # +O(�g2R))m20� = m2R� (1 + �gR16�2 " 1� � 12 ln m2R�4��2!� 
2 � 34 +O(�) # +O(�g2R)) ;und na
h Einsetzen in (8.56) �ndet si
h zun�a
hstm2R+m2R� = 12 (1 � �gR16�2 " 54 + 12 ln m2R�m2R+ !+O(�) # +O(�g2R)) :Diese Glei
hung zeigt, da� anstelle von mR+ = mR� vielmehrm2R� = 2m2R+�1 +O(�gR)� (8.57)gilt. Die Entwi
klung des Logarithmus liefert dannm2R+m2R� = 12 �1 � �gR16�2 � 54 + 12 ln 2 +O(�) � +O(�g2R)� ;so da� mit (8.55)f+f� = p2�1 + �gR16�2 � 58 + 14 ln 2 +O(�) �+O(g2R)� (8.58)folgt. Setzt man wieder den Fixpunkt (8.50) ein, so ergibt si
h in �Ubereinstimmungmit (8.32): f+f� = p2�1 + � 524 + 112 ln 2� �+O(�2)� : (8.59)8.2.2 Physikalis
he MasseDie physikalis
he Masse ist dur
h die Bedingung�(2;0)R (p) = 0; p = (imph; 0; 0; 0) (8.60)bestimmt. Man betra
hte wieder die dur
h die inverse physikalis
he Masse de�nierteKorrelationsl�ange (8.6), deren Amplitudenverh�altnis in der �{Entwi
klung (8.33) i
hjetzt herleite.



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 121Dazu greife i
h zun�a
hst die f�ur die dreidimensionale Re
hnung verwendete Me-thode aus Abs
hnitt 8.1.2 auf, die im wesentli
hen auf die �Uberlegungen des Ab-s
hnitts 6.1 zur�u
kgeht. Ans
hlie�end wird der in 8.2.1 einges
hlagenen Weg be-s
hritten, na
h dem si
h aufgrund der vers
hwindenden, kritis
hen na
kten Massedas gesu
hte Verh�altnis einfa
h aus den Beziehungenf+f� = mph�mph+ ; m20�m20+ = 2 (8.61)bestimmen l�a�t. I
h bere
hne deshalb die physikalis
he Masse in beiden Phasenzun�a
hst bis zur 1. Ordnung in Abh�angigkeit der na
kten Kopplung, um na
h In-vertierung dieser Relationen die na
kte Masse als Funktion der physikalis
hen Masseund der renormierten Kopplung zu erhalten.Symmetris
he PhaseDie 1{Loop{Korrektur zur 2{Punkt{Funktion ist impulsunabh�angig und mit (8.60)ergibt si
h aus Abs
hnitt 8.2.1�(2;0)R (p) = Z3�(2;0)0 (p)= m2ph+ �m20+ (1 � g016�2 " 1� � 12 ln m20+4� !� 
2 + 12 +O(�) # +O(g20))!= 0;woraus si
h mit (8.39) und (8.40) sofortm2ph+ = m20+ (1 � g016�2 " 1� � 12 ln m20+4� !� 
2 + 12 +O(�) # +O(g20))= m2R+ n1 +O�(g(4)R+)2�o (8.62)ergibt. In der symmetris
hen Phase sind renormierte und physikalis
he Masse dem-na
h in 1. Ordnung glei
h.Phase gebro
hener SymmetrieHier ist das impulsabh�angige Integral I1(p; 4 � �) zu ber�u
ksi
htigen, so da� manmit (8.60)�(2;0)R (p) = Z3�(2;0)0 (p)= m2ph� �1� 14 g016�2 +O(g20)��m20�(1 � g016�2" 1� � 12 ln m20�4� !�
2 � 34 � 32 Z 10 dx ln 1 � m2ph�m20� x(1� x)!+O(�) # +O(g20))!= 0



122 KAPITEL 8. KONSISTENZRECHNUNGEN IN 1{LOOP{ORDNUNGund darausm2ph� = m20�(1 � g016�2" 1� � 12 ln m20�4� !� 
2 � 1�32 Z 10 dx ln 1� m2ph�m20� x(1� x)!+O(�) # +O(g20))erh�alt. Aufgrund von m2ph� = m20��1 +O(g0)�im Integranden und der partiellen IntegrationZ 10 dx ln �1 � x(1� x)� = � Z 10 dx 2x2 � xx2 � x+ 1= �2 Z 10 dxx+ 32 Z 10 dx 1x2 � x+ 1| {z }=2�=3p3 = �2 + �p3�ndet man mit (8.44) und (8.45a) s
hlie�li
hm2ph� = m20� (1� g016�2 " 1� � 12 ln m20�4� !� 
2 + 2� p32 � +O(�) # +O(g20))= m2R� 8<:1� g(4)R�16�2  114 � p32 �!+O�(g(4)R�)2�9=; : (8.63)Wegen (8.45b) gilt dieselbe Glei
hung au
h in der renormierten Kopplung gR� .Bestimmung von f+=f�ImHinbli
k auf die Bestimmungsglei
hung (8.16) bere
hne i
h zuerst die FunktionenG� in jeder Phase als partielle Ableitungen des physikalis
hen na
h dem na
ktenMassenquadrat. Als Entwi
klungsvariable wird glei
h die renormierte Kopplung �gRverwendet, die in 1. Ordnung mit den renormierten Kopplungen der Ho
h{ undTieftemperaturphase �ubereinstimmt, und als Massenparameter in den ln{Termensind jetzt die physikalis
hen Massen mph� zu benutzen, die in 0. Ordnung stets mitden renormierten Massen mR� �ubereinstimmen. Da die renormierte und die na
kteMasse der symmetris
hen Phase gem�a� (8.62) in 1. Ordnung glei
h sind, istG+(�gR) = 1 � �gR32�2  2� � ln m2ph+4��2!� 
 +O(�)!+O(�g2R): (8.64)In der gebro
henen Phase haben wir na
h (8.63) in der Kopplung �gR�m2ph��m20� = �m2R��m20� (1 � �gR16�2  114 � p32 �!+O(�g2R))= F�(�gR)(1� �gR16�2  114 � p32 �!+O(�g2R)) ;



8.2. VERGLEICH MIT DER �{ENTWICKLUNG 123und mit (8.47) ist dannG�(�gR) = 1� �gR32�2  2� � ln m2ph�4��2 !� 
 + 3�p3 � +O(�)!+O(�g2R): (8.65)Die Division dieser Glei
hungen ergibt mit der Bedingungmph+ = mph�die f�ur �! 0 endli
he RelationG�G+ (�gR) = 1� �gR32�2 �3 �p3 ��+O(�g2R): (8.66)Na
h Einsetzen des Fixpunktes (8.50) hat manG�G+ (�) = 1�  12 � �2p3! �+O(�2); (8.67)und (8.31) f�uhrt mit (8.16) auff+f� (�) = " 2 G�G+ (�) #� �1 +O(�2)� = 2� (1 + �4  �p3 � 1!) +O(�2); (8.68)was mit (8.33) identis
h ist.Dieses Resultat veri�ziertman au
h unter der Vorraussetzung (8.53), indemmandie Glei
hungen (8.62) und (8.63) in Abh�angigkeit der renormierten Kopplungenna
h den na
kten Massen aufgel�ost. In 1. Ordnung kann dabei in beiden Phasen dieKopplung �gR verwendet werden, und das Ergebnis istm20+ = m2ph+ (1 + �gR16�2 " 1� � 12 ln m2ph+4��2!� 
2 + 12 +O(�) # +O(�g2R)) (8.69a)m20� = m2ph� (1 + �gR16�2 " 1� � 12 ln m2ph�4��2 !� 
2 + 2 � p32 � +O(�) # +O(�g2R)) :(8.69b)F�ur die physikalis
hen Massen beider Phasen gilt wiederm2ph� = 2m2ph+�1 +O(�gR)�; (8.70)so da� man mit (8.61)m2ph+m2ph� = 12 (1 � �gR16�2 " p32 � � 32 + 12 ln 2 +O(�) # +O(�g2R))und f+f� = p2(1 + �gR16�2 " p34 � � 34 + 14 ln 2 +O(�) # +O(�g2R)) (8.71)ers
hlie�t. Dur
h Einsetzen des Fixpunktes (8.50) ergibt si
hf+f� = p2(1 +  �4p3 � 14 + 112 ln 2! �+O(�2)) ; (8.72)was na
h Entwi
keln des Faktors 2� tats�a
hli
h mit (8.33) �ubereinstimmt.



ZusammenfassungIn dieser Arbeit ist das Ziel verfolgt worden, die universellen Amplitudenverh�altnisseder Korrelationsl�ange f+=f� und der Suszeptibilit�at C+=C� f�ur die Universalit�ats-klasse des dreidimensionalen, einkomponentigen Ising{Modells mit Methoden derFeldtheorie zu bestimmen. Die zugeh�origen Re
hnungen sind auf Grundlage einerst�orungstheoretis
hen Behandlung der �4D=3{Theorie in symmetris
her und gebro-
hener Phase bis eins
hlie�li
h zur 2. Ordnung dur
hgef�uhrt worden. Der wesentli
heUnters
hied zu allen fr�uheren Ver�o�entli
hungen in dieser Ri
htung ist deshalb dar-in zu sehen, da� die feldtheoretis
hen Gr�o�en beider Phasen in die untersu
htenVerh�altnisse eingehen, die si
h selbst aus Anteilen der Ho
h{ und der Tieftempera-turphase zusammensetzen. Da diese allerdings a priori dur
h unters
hiedli
he renor-mierte Kopplungen parametrisiert sind, setzt die Anwendung der Bestimmungsglei-
hungen (6.10) und (7.6) die Einf�uhrung einer beiden Phasen gemeinsamen Kopp-lung voraus, wie sie zu diesem Zwe
k ges
hehen ist.Die numeris
he Auswertung der resultierenden St�orungsreihen hat insbesondereden S
hlu� nahegelegt, da� die �uber den Vakuumerwartungswert des Feldes de�-nierte Tieftemperaturkopplung uR� die zuverl�assigeren Resultate liefert. I
h nennein diesem Zusammenhang stellvertretend no
h einmal die Ergebnisse (6.55), d.h.f+f� = 2:03(4) ;und (7.21): C+C� = 4:66(36) :Zumindest im Falle des Verh�altnisses f+=f� besteht also dur
haus die M�ogli
hkeit,da� sein exakter Wert oberhalb der meisten, bislang genannten Literaturwerte liegt.Die dur
h die 4{Punkt{Vertexfunktion erkl�arte renormierte Kopplung in derTieftemperaturphase habe i
h hier ni
ht untersu
ht, da mir ein verl�a�li
her Wertihres ni
httrivialen Fixpunktes aus der Literatur ni
ht bekannt ist und somit einesinnvolle Numerik ausges
hlossen ist.Des weiteren hat si
h die im Rahmen der vorliegenden Arbeit entwi
kelte Be-stimmungsmethode f�ur die gesu
hten Amplitudenverh�altnisse na
hhaltig dadur
hgere
htfertigt, da� sie | wie am Beispiel des Verh�altnisses f+=f� in 1. Ordnungdemonstriert | die bekannten Resultate der �{Entwi
klung reproduziert.124



Zusammenfassung 125Abs
hlie�end sei darauf hingewiesen, da� na
h der Bere
hnung von weiterenOrdnungen sehr wahrs
heinli
h mit einer Verbesserung der Ergebnisse zu re
hnenist. Das ents
heidende Argument hierf�ur besteht darin, da� die Kenntnis m�ogli
hstvieler Glieder der (divergenten) St�orungsreihen die s
hon erw�ahnte Anwendung einerBorel{Summation erlaubt, die die Genauigkeit einer numeris
hen Analyse dieserReihen erhebli
h steigern kann.



Anhang ADi�erentiation na
h �au�erenImpulsenDa das in Kapitel 4 vereinbarte Renormierungss
hema unter anderem die Bere
h-nung von na
h dem �au�eren Impulsquadrat di�erenzierten Integralen (bei vers
hwin-denden �au�eren Impulsen) beinhaltet, demonstriere i
h hier die Ausf�uhrung dieserDi�erentiationen. Es bieten si
h daf�ur im wesentli
hen zwei Methoden an, so da�damit glei
hzeitig die �Uberpr�ufung einiger Resultate m�ogli
h wird.I
h behalte die in Kapitel 3 eingef�uhrte Konvention bei, den Vektor
harakterder Impulse dur
h Fettdru
k hervorzuheben.A.1 Kovariante Re
hnungDie Verwendung der Identit�at f�ur euklidis
he Impulse��p2 = 12D �2�p��p� = 12D DX�=1 �2�p2���p2 = 16 �2�p��p� = 16 3X�=1 �2�p2� ; D = 3 (A.1)besitzt den Vorteil, da� man in massiven Impulsintegralen die �au�eren Impulse na
hder Di�erentiation problemlos auf null setzen kann. Einige der dabei entstehendenIntegrale bere
hnen wir in Anhang B.Zun�a
hst ist die Anwendung von (A.1) auf Produkte von Impulspropagatorenzu untersu
hen. Dazu bere
hnet man f�ur n 2 N��p�  1[(k � p)2 +m20℄n! = 2n(k � p)�[(k� p)2 +m20℄n+1 (A.2)und bea
htet bei der zweiten Ableitung die Summation �uber glei
he Indizes. Diesliefert: 3X�=1 �2�p2�  1(k � p)2 +m20! �����p2=0 = �2  3(k2 +m20)2 � 4k2(k2 +m20)3!126



A.2. KONSISTENZRECHNUNG 127��p2  1(k � p)2 +m20! �����p2=0 = 43 k2(k2 +m20)3 � 1(k2 +m20)2 (A.3)3X�=1 �2�p2�  1[(k � p)2 +m20℄2! �����p2=0 = �4  3(k2 +m20)3 � 6k2(k2 +m20)4!��p2  1[(k � p)2 +m20℄2! �����p2=0 = 4 k2(k2 +m20)4 � 2 1(k2 +m20)3 (A.4)3X�=1 �2�p2�  1[(k+ p)2 +m20℄[(l+ p)2 +m20℄! �����p2=0= �2 3(k2 +m20)2(l2 +m20) � 4k2(k2 +m20)3(l2 +m20) + 3(k2 +m20)(l2 +m20)2� 4l2(k2 +m20)(l2 +m20)3 � 4(k � l)(k2 +m20)2(l2 +m20)2!��p2  1[(k+ p)2 +m20℄[(l+ p)2 +m20℄! �����p2=0= 43 k2(k2 +m20)3(l2 +m20) + 43 l2(k2 +m20)(l2 +m20)3 � 1(k2 +m20)2(l2 +m20)� 1(k2 +m20)(l2 +m20)2 + 43 k � l(k2 +m20)2(l2 +m20)2 : (A.5)Dur
h p ! p=m0 kann man in den obigen Glei
hungen nat�urli
h wieder m20 = 1errei
hen; es ist dann allerdings zu bea
hten, da� dur
h die entspre
hende Transfor-mation des Di�erentialoperators �=�p2 ein zus�atzli
her Faktor 1=m20 auftritt.A.2 Konsistenzre
hnungAnstelle von Glei
hung (A.1) l�a�t si
h die Di�erentiation na
h dem �au�eren Impuls-quadrat au
h gem�a� ��p2 = ��p2 = 12p ��p (A.6)dur
hf�uhren. Zuvor mu� allerdings si
hergestellt sein, da� die Integrale (na
h Aus-integration der Winkel) nur von den Betr�agen des �au�eren Impulses p abh�angen.Die na
hfolgende Re
hnung m�oge dieses Verfahren am Beispiel des Graphen G(2)6verans
hauli
hen. I
h substituiere p=m0 ! p und gehe zu sph�aris
hen Polarkoordi-naten �uber. Die Verwendung von (B.2a) und die Ausf�uhrung der Winkelintegratio-nen ergeben ��p2 G(2)6 (p) �����p2=0



128 ANHANG A. DIFFERENTIATION NACH �AU�EREN IMPULSEN= 9m40g20 ��p2 Z d3k(2�)3 1(k2 +m20)2[(k� p)2 +m20℄ I1(k; 3) �����p2=0= 9g2032�4m20 ��p2 Z d3k 1(k2 + 1)2[(k � p)2 + 1℄ 1k ar
tan k2! �����p2=0= 9g2016�3m20 ��p2 Z 10 dk k(k2 + 1)2 ar
tan k2! Z �0 d� sin �1 + k2 + p2 � 2kp 
os � �����p2=0= 9g2032�3m20 ��p2 Z 10 dk 1(k2 + 1)2 ar
tan k2! 1p ln 1 + (k + p)21 + (k � p)2! �����p2=0= 9g2032�3m20 ��p2 Z 10 dk 1(k2 + 1)2 ar
tan k2! 1p ln0�1 + 2kpk2+p2+11 � 2kpk2+p2+11A �����p2=0:Aufgrund der Singularit�at des Integranden in p = 0 setze i
h ihn dort na
h einerTaylorentwi
klung in x = 0ln�1 + x1� x� = 2�x+ 13 x3 +O(x5)� ; x := 2kpk2 + p2 + 1 ; jxj < 1 (A.7)fort und f�uhre erst dann die Di�erentiation unter dem Integral aus. Dies liefert mit(C.12
) und (C.13b)��p2 G(2)6 (p) �����p2=0 = 9g2016�3m20 ��p2 Z 10 dk 1(k2 + 1)2 ar
tan k2! �� 1p 24 2kpk2 + p2 + 1 + 13  2kpk2 + p2 + 1!3 +O(p5)35 �����p2=0= 9g2016�3m20 Z 10 dk 1(k2 + 1)2 ar
tan k2! �� ��p2 " 2k 1k2 + p2 + 1 + 8k33 p2(k2 + p2 + 1)3 +O(p4) # �����p2=0= � 98�3m20 g20 Z 10 dk k(k2 + 1)4 ar
tan k2!| {z }=19�=1296+ 32�3m20 g20 Z 10 dk k3(k2 + 1)5 ar
tan k2!| {z }=55�=10368 ;und damit ��p2 G(2)6 (p) �����p2=0 = � 596912�2m20 g20: (A.8)Dieselbe Re
hnung l�a�t si
h au
h f�ur den Graphen G(2)10 dur
hf�uhren.



Anhang BBere
hnung einiger IntegraleEs werden nun einige der konvergenten Integrale und ihre Ableitungen na
h �au�e-ren Impulsen ausgewertet, die im Verlauf des Kapitels 5 wiederholt auftreten. Da-bei erlei
htert es die Re
hnungen, dur
h eine Substitution der Integrationsimpulsek ! k=m0 die Massenquadrate in den Propagatoren auf 1 zu setzen, was ledigli
hzus�atzli
he Massenfaktoren vor den Integralen zur Konsequenz hat.B.1 1{Loop{IntegraleIntegral I1Wir betra
hten das konvergente 1{Loop{IntegralI1(p; 3) := Z d3k(2�)3 1(k2 +m20)[(k � p)2 +m20℄ (B.1)in Abh�angigkeit eines beliebigen �au�eren Impulses p. Na
h der Setzung q := p=m0,�Ubergang zu sph�aris
hen Polarkoordinaten1 und Anwendung der Substitutionsregelim Integral �uber � erhalte i
h:I1(p; 3) = 1(2�)3m0 Z d3k 1(k2 + 1)[(k � q)2 + 1℄= 14�2m0 Z 10 dk k2k2 + 1 Z �0 d� sin �1 + k2 + q2 � 2kq 
os �= 14�2m0 Z 10 dk k2k2 + 1 " 12qk Z 1+(k+q)21+(k�q)2 dt 1t #= 18�2m0 q Z 10 dk kk2 + 1 ln 1 + (k + q)21 + (k � q)2! :1Die z{A
hse des zugrundeliegenden Koordinatensystems kann dabei so gew�ahlt werden, da� dieVektoren k und p gerade den Azimutalwinkel � eins
hlie�en; die Integration �uber den Polarwinkel' liefert nur einen Faktor 2�. 129



130 ANHANG B. BERECHNUNG EINIGER INTEGRALEUm dieses Integral ges
hlossen zu bere
hnen, bezei
hne manR(q) := Z 10 dk kk2 + 1 ln 1 + (k + q)21 + (k � q)2!und bilde��q R(q) = Z 10 dk kk2 + 1 ��q ln 1 + (k + q)21 + (k � q)2!= 2 Z 10 dk kk2 + 1 " k + q1 + (k + q)2 + k � q1 + (k � q)2 #= 2q2 + 4 Z 10 dk " 2k + q2k � q � q3q [1 + (k � q)2℄ � 2k + q2k + q + q3q [1 + (k + q)2℄ + 2k2 + 1 # ;na
h Vertaus
hung von Integration und Di�erentiation sowie Partialbru
hzerlegungdes Integranden. Das verbleibende Integral ist jetzt einfa
h die Summeaus Integralenvom Typ (C.10) { (C.11b) und ergibt��q R(q) = 4�q2 + 4 :Die unbestimmte Integration dieses Ausdru
ks bez�ugli
h q liefertR(q) = 4� Z dq 1q2 + 4 = 2� ar
tan�q2�+ C;und wegen R(0) = 0 folgt f�ur die Integrationskonstante C = 0. Insgesamt �ndetman also na
h der R�u
ksubstitution des �au�eren ImpulsesI1(p; 3) = 14�m0 q ar
tan�q2� = 14�p ar
tan� p2m0� (B.2a)und mit der de l'Hospitals
hen RegelI1(0; 3) = limp!0 ��p ar
tan � p2m0���p 4�p = 18�m0 limp!0 11 + � p2m0�2 = 18�m0 ; (B.2b)in �Ubereinstimmung mit (3.18).F�ur die Ableitung dieses Integrals na
h dem �au�eren Impulsquadrat bere
hnei
h mit p=m0 ! p zun�a
hst��p2 I1(p; 3) ����p2=0 = ��p2 Z d3k(2�)3 1(k2 +m20)[(k� p)2 +m20℄ �����p2=0= 1(2�)3m30 ��p2 Z d3k 1(k2 + 1)[(k � p)2 + 1℄ �����p2=0= 18�2m30 ��p2 Z 10 dk kk2 + 1 1p ln 1 + (k + p)21 + (k � p)2! �����p2=0= 18�2m30 ��p2 Z 10 dk kk2 + 1 1p ln0�1 + 2kpk2+p2+11 � 2kpk2+p2+11A �����p2=0:



B.1. 1{LOOP{INTEGRALE 131Die Entwi
klung (A.7) der ln{Funktion behebt die Singularit�at in p = 0, so da� dieDi�erentiation unter dem Integral ausgef�uhrt und ans
hlie�end der �au�ere Impulsauf null gesetzt werden kann. Mit (C.11b) ist dann��p2 I1(p; 3) ����p2=0= 14�2m30 ��p2 Z 10 dk kk2 + 1 1p" 2kpk2 + p2 + 1 + 13  2kpk2 + p2 + 1!3 +O(p5)#�����p2=0= 14�2m30 Z 10 dk kk2 + 1 ��p2"2k 1k2 + p2 + 1 + 8k33 p2(k2 + p2 + 1)3 +O(p4)#�����p2=0= 14�2m30 Z 10 dk kk2 + 1 ��p2"2k 1k2 + p2 + 1 + 8k33 p2(k2 + p2 + 1)3 +O(p4)#�����p2=0= � 12�2m30 Z 10 dk k2(k2 + 1)3| {z }=�=16 + 23�2m30 Z 10 dk k4(k2 + 1)4| {z }=�=32 ;und wir best�atigen das Resultat (3.19):��p2 I1(p; 3) ����p2=0 = � 196�m30 : (B.3)Integrale I3 und I4Integral I3Gegeben sei das folgende 1{Loop{Integral in Abh�angigkeit beliebiger �au�erer Im-pulse p und l:I3(p; l; 3) := Z d3k(2�)3 1(k2 +m20)[(k + p)2 +m20℄[(k� l)2 +m20℄: (B.4a)Da i
h nur seinen Wert f�ur p = 0 ben�otige, bes
hr�anke i
h mi
h darauf, das IntegralI3(0; l; 3) = Z d3k(2�)3 1(k2 +m20)2[(k � l)2 +m20℄ (B.4b)in Abh�angigkeit von l zu bestimmen. F�ur den allgemeinen Fall sei auf [Ni
78℄ ver-wiesen.Wie bei der Bere
hnung von I1 setzt man q := l=m0 und f�uhrt na
h �Ubergangzu sph�aris
hen Polarkoordinaten unter Anwendung der Substitutionsregel zun�a
hstdie �{Integration aus:I3(0; l; 3) = 1(2�)3m30 Z d3k 1(k2 + 1)2[(k� q)2 + 1℄



132 ANHANG B. BERECHNUNG EINIGER INTEGRALE= 14�2m30 Z 10 dk k2(k2 + 1)2 Z �0 d� sin �1 + k2 + q2 � 2kq 
os �= 14�2m30 Z 10 dk k2(k2 + 1)2 " 12qk Z 1+(k+q)21+(k�q)2 dt 1t #= 18�2m30 q Z 10 dk k(k2 + 1)2 ln 1 + (k + q)21 + (k � q)2! :Man bezei
hnet nunR(q) := Z 10 dk k(k2 + 1)2 ln 1 + (k + q)21 + (k � q)2!und bildet��q R(q) = Z 10 dk k(k2 + 1)2 ��q ln 1 + (k + q)21 + (k � q)2!= 2 Z 10 dk k(k2 + 1)2 " k + q1 + (k + q)2 + k � q1 + (k � q)2 #= 2q2 + 4 Z 10 dk " 2(k2 + 1)2 � 2(q4 + 3q2 + 4)q2(q2 + 4)(k2 + 1) #� 2q2(q2 + 4)2 Z 10 dk " q4 + kq3 � 3q2 � 41 + (k + q)2 + q4 � kq3 � 3q2 � 41 + (k � q)2 # ;na
h Ausf�uhrung der Di�erentiation und einer Partialbru
hzerlegung. Dur
h Zur�u
kf�uhr-ung auf Integrale der Form (C.10) { (C.11b) erhalten wir��q R(q) = (4q2 � q4)�q2(q2 + 4)2 ;und die unbestimmte Integration �uber q liefertR(q) = � Z dq 4q2 � q4q2(q2 + 4)2 = 8� Z dq 1(q2 + 4)2 � � Z dq 1q2 + 4= 8� Z dq 18 " 4� q2(q2 + 4)2 + 1q2 + 4 # � � Z dq 1q2 + 4= � Z dq 4 � q2(q2 + 4)2 = �qq2 + 4 + C:F�ur die Integrationskonstante folgt wegen R(0) = 0 wieder C = 0, und es ergibt si
hna
h R�u
ksubstitution des �au�eren Impulses das EndresultatI3(0; l; 3) = 18�m30 1q2 + 4 = 18�m0 1l2 + 4m20 : (B.5a)Speziell haben wir in �Ubereinstimmung mit (3.10b):I3(0;0; 3) = J3(3) = 132�m30 : (B.5b)



B.2. MEHRFACHE INTEGRALE 133Integral I4S
hlie�li
h sei no
h das IntegralI4(p; 3) := Z d3k(2�)3 1(k2 +m20)[(k� p)2 +m20℄2 = I3(�p;p; 3) (B.6)erw�ahnt. Seine Ableitung na
h dem �au�eren Impulsquadrat, die in Kapitel 5 bereitsbestimmt worden ist, reproduziert si
h mit der Methode aus Anhang A.2 zu��p2 I4(p; 3) �����p2=0 = � 1128�m50 : (B.7)B.2 Mehrfa
he IntegraleInsertionen von 1{Loop{IntegralenZur 2. Ordnung der St�orungstheorie tragen vermehrt Diagramme bei, die 1{Loop{Graphen als Subgraphen enthalten. Die zugeh�origen Integrale sind daher gesondertzusammengestellt.Mit (B.2a) und (C.12a) bzw. (C.12b) ist:H1(3) := Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)[(l� k)2 +m20℄= Z d3k(2�)3 1(k2 +m20)2 I1(k; 3) = 1(2�)3 Z 10 dk k(k2 +m20)2 ar
tan k2m0!= 18�3m20 Z 10 dk k(k2 + 1)2 ar
tan k2! = 196�2m20 ; (B.8a)H2(3) := Z d3kd3l(2�)6 1(k2 +m20)3(l2 +m20)[(l� k)2 +m20℄= Z d3k(2�)3 1(k2 +m20)3 I1(k; 3) = 1(2�)3 Z 10 dk k(k2 +m20)3 ar
tan k2m0!= 18�3m40 Z 10 dk k(k2 + 1)3 ar
tan k2! = 1288�2m40 : (B.8b)Ferner hat man mit (B.5a):H3(3) := Z d3kd3l(2�)6 1(k2 +m20)2(l2 +m20)2[(l � k)2 +m20℄= Z d3k(2�)3 1(k2 +m20)2 I3(0;k; 3) = 116�3m0 Z 10 dk k2(k2 +m20)2(k2 + 4m20)= 116�3m40 Z 10 dk k2(k2 + 1)2(k2 + 4)| {z }=�=36 = 1576�2m40 : (B.8
)



134 ANHANG B. BERECHNUNG EINIGER INTEGRALE2{Loop{IntegraleIn diesem Abs
hnitt bere
hne i
h eine Reihe von Impulsintegralen, die im Ans
hlu�an die Di�erentiation na
h �au�eren Impulsen gem�a� Anhang A.1 auftreten2. I
hnehme im folgenden m20 = 1 an und verwende wieder sph�aris
he Polarkoordina-ten. Das zugeh�orige Koordinatensystem ist derart zu w�ahlen, da� einer der bei-den Azimutalwinkel (hier derjenige der d3k{Integration) von den Vektoren k und leinges
hlossen wird. Die Winkelintegrationen k�onnen dann ges
hlossen ausgef�uhrtwerden, und na
h Ausintegration einer der beiden Radialvariablen verbleiben stetsrationale Integrale, die na
h einer Partialbru
hzerlegung lei
ht auf (C.10) { (C.11b)zur�u
kgef�uhrt werden. In dieser Weise �nden si
h:A1 := Z d3kd3l(2�)6 1(k2 + 1)3(l2 + 1)2[(k� l)2 + 1℄ = Z d3kd3l(2�)6 1(k2 + 1)2(l2 + 1)3[(k � l)2 + 1℄!= 18�4 Z 10 dl l2(l2 + 1)2 Z 10 dk k2(k2 + 1)3 Z �0 d� sin �1 + k2 + l2 � 2kl 
os �= 18�4 Z 10 dl l2(l2 + 1)2 Z 10 dk k2(k2 + 1)3 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 18�4 Z 10 dl l2(l2 + 1)2 " (l2 + 8)�8(l2 + 4)2 #| {z }=5�2=864 = 56912�2 (B.9)A2 := Z d3kd3l(2�)6 k2(k2 + 1)4(l2 + 1)2[(k� l)2 + 1℄ = Z d3kd3l(2�)6 l2(k2 + 1)2(l2 + 1)4[(k � l)2 + 1℄!= 18�4 Z 10 dl l2(l2 + 1)2 Z 10 dk k4(k2 + 1)4 Z �0 d� sin �1 + k2 + l2 � 2kl 
os �= 18�4 Z 10 dl l2(l2 + 1)2 Z 10 dk k4(k2 + 1)4 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 18�4 Z 10 dl l2(l2 + 1)2 "(3l4 + 38l2 + 72)�48(l2 + 4)3 #| {z }=13�2=5184 = 1341472�2 : (B.10)
2Man bea
hte, da� diese Integrale ni
ht vom Vorzei
hen der Integrationsimpulse abh�angen;sie k�onnen deshalb bei einer geeigneten Impulsparametrisierung zur Bere
hnung vers
hiedenerGraphen dienen.



B.2. MEHRFACHE INTEGRALE 135Des weiteren ist:A3 := Z d3kd3l(2�)6 k � l(k2 + 1)3(l2 + 1)3[(k� l)2 + 1℄= 1(2�)5 Z d3k 1(k2 + 1)3 Z 10 dl l2(l2 + 1)3 Z �0 d� kl 
os � sin �1 + k2 + l2 � 2kl 
os �= 18�4 Z 10 dk k3(k2 + 1)3 Z 10 dl l3(l2 + 1)3 Z �0 d� 
os � sin �1 + k2 + l2 � 2kl 
os �= 18�4 Z 10 dk k3(k2 + 1)3 Z 10 dl l3(l2 + 1)3 "� 1kl + k2 + l2 + 14k2l2 ln 1 + (k + l)21 + (k � l)2!#= 18�4 Z 10 dk k3(k2 + 1)3 " k�4(k2 + 4)2#| {z }=�2=1728 = 113824�2 (B.11)A4 := Z d3kd3l(2�)6 1(k2 + 1)3(l2 + 1)[(k + l)2 + 1℄= 18�4 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)3 Z �0 d� sin �1 + k2 + l2 + 2kl 
os �= 18�4 Z 10 dl l2l2 + 1 Z 10 dk k2(k2 + 1)3 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 18�4 Z 10 dl l2l2 + 1 " (l2 + 8)�8(l2 + 4)2#| {z }=�2=36 = 1288�2 (B.12)A5 := Z d3kd3l(2�)6 k2(k2 + 1)4(l2 + 1)[(k + l)2 + 1℄= 18�4 Z 10 dl l2l2 + 1 Z 10 dk k4(k2 + 1)4 Z �0 d� sin �1 + k2 + l2 + 2kl 
os �= 18�4 Z 10 dl l2l2 + 1 Z 10 dk k4(k2 + 1)4 " 12kl ln 1 + (k + l)21 + (k � l)2!#= 18�4 Z 10 dl l2l2 + 1 "(3l4 + 38l2 + 72)�48(l2 + 4)3 #| {z }=17�2=1296 = 1710368�2 : (B.13)



Anhang CMathematis
he HilfsmittelDieser Anhang beinhaltet die wi
htigsten mathematis
hen Identit�aten, die in denRe
hnungen dieser Arbeit Verwendung �nden. Da sie gr�o�tenteils der Literatur (z.B.[WW27, GR81,MOS66℄) entnommen sind, kann i
h an dieser Stelle auf (fast alle)Beweise verzi
hten.C.1 Einige Eigens
haften der GammafunktionGammafunktion �(z)� Integraldarstellung von Euler:�(z) = Z 10 dt e�ttz�1; Re z > 0: (C.1)� Produktdarstellung von Weierstra�:1�(z) = ze
z 1Y�=1�1 + z�� e�z=� (C.2)
 = lim�!1 �1 + 12 + � � �+ 1� � ln �� = 0:5772 : : : ; (C.3)mit 
 als der Euler{Mas
heroni{Konstanten. Dieser Darstellung liest manab, da� �(z) eine meromorphe Funktion in z 2 C ist; d.h. sie ist analytis
h aufder ganzen komplexen Ebene mit Ausnahme der Punkte z = 0;�1;�2; : : :, indenen sie einfa
he Pole besitzt.� Funktionalglei
hung und spezielle Werte:�(z + 1) = z�(z) (C.4a)�(1) = �(2) = 1; ��12� = p�; ���12� = �2p�: (C.4b)136



C.1. EINIGE EIGENSCHAFTEN DER GAMMAFUNKTION 137� Entwi
klung der Gammafunktion um ihre Polstellen n 2 f0; 1; 2; : : :g:� (�n+ �) = (�1)nn! � 1� + �1 + 12 + � � �+ 1n � 
�+O(�) �= (�1)nn! � 1� +  1(n+ 1) +O(�) � ; (C.5) 1(z) ist die logarithmis
he Ableitung der Gammafunktion 1(z) := ddz ln �(z) = �0(z)�(z) :Betafunktion B(x; y)� Integraldarstellung und Zusammenhang mit der Gammafunktion:B(x; y) = Z 10 dt tx�1(1� t)y�1= �(x)�(y)�(x + y) ; Rex > 0; Re y > 0: (C.6)� Spezielle Werte: B �12 ; 12� = �; B �32 ; 32� = �8 : (C.7)Hypergeometris
he Funktion F (�; �; 
; z)� F�ur Re 
 > Re� > 0 und jarg(�z)j < � lautet die Integraldarstellung derHypergeometris
hen FunktionF (�; �; 
; z) = 1B(�; 
 � �) Z 10 dt t��1(1� t)
���1(1� tz)��; (C.8a)f�ur Re� > 0, Re� > 0 und j�j < 1 gilt:Z 10 dxx��1(1� x)��1(1� �x)�� = B(�; �)F (�; �;� + �;�): (C.8b)� Mit der Identit�at�1� z2��1=2 �1 +p1� z2��2a = 2�2aF �a+ 1; a+ 12; 2a+ 1; z2� (C.9a)erhalten wir die speziellen Werte� = � = 12 ; � = 1; a = 0; � = z2 = 34 : F �1; 12; 1; 34� = 2� = � = 32 ; � = 2; a = 1; � = z2 = 34 : F �2; 32; 3; 34� = 329 : (C.9b)



138 ANHANG C. MATHEMATISCHE HILFSMITTELC.2 IntegralformelnStandardintegrale� Z 10 dx 1x2 + 1 = ar
tan x ���10 = �2 : (C.10)� F�ur n;m 2 N gilt: Z 10 dx 1(x2 + 1)n = (2n� 3)!!2n�1(n� 1)! �2 (C.11a)Z 10 dx xm(x2 + 1)n = m� 12n�m� 1 Z 10 dx xm�2(x2 + 1)n ; m < 2n � 1: (C.11b)� F�ur p > 0, q > 0 und pq 6= 1 gilt:T1(p; q) := Z 10 dx x ar
tan(qx)(x2 + p2)2 = q�4p(pq + 1) : (C.12a)Beweis:Mit partieller Integration und Partialbru
hzerlegung bere
hnet si
hZ 10 dx x ar
tan(qx)(x2 + p2)2 = q2 Z 10 dx x ar
tan x[x2 + (pq)2℄2= q2  �12 ar
tan xx2 + (pq)2 �����10| {z }=0 +12 Z 10 dx 1[x2 + (pq)2℄(x2 + 1)!= q22  11 � (pq)2 Z 10 dx 1x2 + (pq)2 + 1(pq)2 � 1 Z 10 dx 1x2 + 1!= q22 11� (pq)2  1pq � 1! ar
tan x ���10 = q�4p(pq + 1) : 2T2(p; q) := Z 10 dx x ar
tan(qx)(x2 + p2)3 = q(2pq + 1)�16p3(pq + 1)2 : (C.12b)Beweis:Mit partieller Integration und Parameterintegration folgt aus (C.12a):Z 10 dx x ar
tan(qx)(x2 + p2)3 = q44 Z 10 dx 1[x2 + (pq)2℄2(x2 + 1)= q44 Z 10 dx 1x2 + 1  � 12q2p ��p 1[x2 + (pq)2℄!= � 14p ��pT1(p; q) = q(2pq + 1)�16p3(pq + 1)2 : 2



C.2. INTEGRALFORMELN 139T3(p; q) := Z 10 dx x ar
tan(qx)(x2 + p2)4 = q(3 + 9pq + 8p2q2)�96p5(pq + 1)3 : (C.12
)Beweis:Wie zuvor erh�alt man aus (C.12b):Z 10 dx x ar
tan(qx)(x2 + p2)4 = q66 Z 10 dx 1[x2 + (pq)2℄3(x2 + 1)= q66 Z 10 dx 1x2 + 1  � 14q2p ��p 1[x2 + (pq)2℄2!= � 16p ��pT2(p; q) = q(3 + 9pq + 8p2q2)�96p5(pq + 1)3 : 2� Aus (C.12b) und (C.12
) bestimmtman dur
h partielle Integration von T2(1; 12)und T3(1; 12): Z 10 dx x3(x2 + 1)4 ar
tan�x2� = 17�1296 (C.13a)Z 10 dx x3(x2 + 1)5 ar
tan�x2� = 55�10368 : (C.13b)Gau�s
he Integrale� F�ur Re a > 0 und p 2 C gilt:Z dx e�(ak2+2px) = r�a ep2=a: (C.14)� Allgemeiner ist f�ur k 2 RD, p 2 CD und D 2 N:Z dDk expn� �ak2 + 2p � k�o = ��a�D=2 exp p2a ! ; Re a > 0: (C.15)
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